alakazam/0000755000176200001440000000000015120174005012026 5ustar liggesusersalakazam/MD50000644000176200001440000001623715120174005012347 0ustar liggesusersa08c1e932bb8db757b0a88c2e6fbf210 *DESCRIPTION ed6485eda4a1889ffac224192bf9f07b *NAMESPACE 3d1043b1cb75f35f52a0a5dda4ff1f59 *NEWS.md 32b61fa932efa50c8fda8bb71a3efd6d *R/Alakazam.R ac3d757b655945c9c26fe584a6ec7118 *R/AminoAcids.R f81ef9176e96a80bb2bfc6a12422cf70 *R/Classes.R 0807b912b9127e5971ebf5bb78b41110 *R/Core.R 71edf30ff926aa0f3c09394df9ca1e93 *R/Data.R 4fac75c94c5dc66c1503ffc25212265d *R/Deprecated.R 6614d8a3f24c6a8680ba649565672c58 *R/Diversity.R c9bdee2a3a5e4916aef326268fb16468 *R/Fastq.R aa14576ff4900a2d0136b3e9ba57b561 *R/Gene.R a8e1528509b247ae8c00d7ac9dfc69dc *R/Lineage.R 6f8a72642969fd382cd8f88bc18e6b24 *R/RcppExports.R fba272fc01f7f9c06134fd387f1a7ee4 *R/Sequence.R e4cb54c098026cdf296d0aff6599a4f7 *R/Topology.R def92a4fe63ca7bcdba22c3a382dbced *R/sysdata.rda 2f853a3e0ca370aa8b2546f2802a454a *README.md d099472a921b18b90eac98e769d07a90 *build/partial.rdb 0b0f4a9676b40a138f3cfc1f96d9bc94 *build/vignette.rds 8e55f0c4422bff63d5f9a73636ccd2ea *data/Example10x.rda 2ca0c64c8ed79f363f7b06e171839818 *data/ExampleDb.rda 44a2714d7443c83b5cf8d6f7b21c252e *data/ExampleDbChangeo.rda 9456c9ccc04b81b1acdaa564afbbf243 *data/ExampleTrees.rda 26bc36d9477eb80794992f0aab49f5c0 *data/SingleDb.rda b034dfc6972e3bdd19b8801d55ac4b7e *inst/CITATION d9d5ababa8ef62395f5398046b516a97 *inst/doc/AminoAcids-Vignette.R 1e445632d6742bfb157a783657d1ad56 *inst/doc/AminoAcids-Vignette.Rmd 1b545363dfb66fb11cf32358280908d8 *inst/doc/AminoAcids-Vignette.pdf 93ba4b12ce025f154eefba075a0ad8e6 *inst/doc/Diversity-Vignette.R a2c89a9cf48062d46104d77e8f9f474f *inst/doc/Diversity-Vignette.Rmd e20d414489107077f25ae099426d069b *inst/doc/Diversity-Vignette.pdf ddd0dc0980ee355a5114b98ff2a97ce8 *inst/doc/Fastq-Vignette.R bc1ee42a0d0f5be791bd1f6d7e9eaca7 *inst/doc/Fastq-Vignette.Rmd 6a3ca21e4b71e911b8db2a759e2dac6b *inst/doc/Fastq-Vignette.pdf 1d2e0d9136c6d75a95564ebc0c38a6b5 *inst/doc/Files-Vignette.R e83df6ce6b04a14b1eedfc8cf85935b4 *inst/doc/Files-Vignette.Rmd b40535a71dd3925f0f61c485c10dffba *inst/doc/Files-Vignette.pdf 35e9193b29e6087483cdca358c2c9a4f *inst/doc/GeneUsage-Vignette.R e3ee207abe0ce9261ffa223e788fcc5d *inst/doc/GeneUsage-Vignette.Rmd e64d5100d9ad19d10629defa5affd9ae *inst/doc/GeneUsage-Vignette.pdf d6b9c5b466e6acfac01f41f70279e462 *inst/extdata/example_airr.tsv.gz 2fcc671e7657eed4ee9b6819004d9563 *inst/extdata/example_changeo.tab.gz 547e6794bb28cdeb9d355bea001d77ba *inst/extdata/example_quality.fastq a859f8de5695231a17a684df638aff58 *inst/extdata/example_quality.tsv 987475fe1f56c385e720c6afd798dd08 *man/ABBREV_AA.Rd 9984cb333b62eb6d54df5188899f5d4a *man/AbundanceCurve-class.Rd 1865f875fe65a4f90246a68446fd9399 *man/ChangeoClone-class.Rd a84a6d4edd8410275bb1abd5a463ad32 *man/DEFAULT_COLORS.Rd fe18069131a614b6f119ab12bbd4f870 *man/DiversityCurve-class.Rd ddc49fed05c59121028f0dabecbe5fb1 *man/EdgeTest-class.Rd 1932908e3468566f4df4b03b421a5948 *man/Example10x.Rd 407424a705d79f858d4e57db2caab842 *man/ExampleDb.Rd 40db6c9c2338f5fee3bc9d1c8c9ce4e9 *man/ExampleDbChangeo.Rd 6e69b6b8867ec8ce3d7a0df5da568603 *man/ExampleTrees.Rd 6853dbdd976e24e406dcc39c824f277e *man/IMGT_REGIONS.Rd 4585817f760a903f7ad773fff25573f5 *man/IUPAC_CODES.Rd c9edbdf0ebda5e884732d53be2eabd62 *man/MRCATest-class.Rd 3b369061d3f5a02afc617e3bdcdc6f74 *man/SingleDb.Rd dc4c6860390e58ffc85bc22d0bf30182 *man/alakazam-package.Rd 1fe888fc83446431a5c83bb141724566 *man/alakazam.Rd db19819685d940da24bd3022a9d4e8be *man/aliphatic.Rd 14d7a80970ef09bd37bda31b80e04b1d *man/alphaDiversity.Rd ac7db0bbbb451f89d065020acf2943a6 *man/aminoAcidProperties.Rd a8d03c199086e18e26fd673624ffa1a4 *man/baseTheme.Rd 2188fa4b91cde905b65da90ce7b1c50c *man/buildPhylipLineage.Rd bbfdb6340b92a396e2b4bb5f15cd5633 *man/bulk.Rd c686bdeedc7abc3277241668dfe4bb2f *man/calcCoverage.Rd af307d6e0209dbd3acaf15c8ec4c8295 *man/calcDiversity.Rd 42c99ea962c520a3d6cb6b88572ad984 *man/charge.Rd 995aabe2f257ba72862d5b226ce03c66 *man/checkColumns.Rd 4e8068f197386ef3186f0e4f4c407f78 *man/collapseDuplicates.Rd 1edcf4295bdcc9d9ae06d7bf3b89caa5 *man/combineIgphyml.Rd 37681bc65c9671b7cbbd4772bb252935 *man/countClones.Rd 6bc4ce3781edef19b33d14923fbecde3 *man/countGenes.Rd e53becee13b70f2005243881ad2cb6e4 *man/countPatterns.Rd 228c0d1d4a6fc2744f10623b6342ead8 *man/cpuCount.Rd cbb3d8fda724bb4236422c52f9e4f942 *man/estimateAbundance.Rd 9dd006c3a64d4b51deafeecdbb805fac *man/extractVRegion.Rd d9bcf6fa4885d0682e7f951faf7f2254 *man/getAAMatrix.Rd f3d1c78e3419a6d133ac41d1b340edb6 *man/getDNAMatrix.Rd da9177951218d3a90104d18255531f86 *man/getMRCA.Rd d97054f355e98a82cf5a5a806526ed5b *man/getPathLengths.Rd 18e41b200a453d4a5b9a28b0babdb50a *man/getPositionQuality.Rd 898317ea6c420342bd7145c831893611 *man/getSegment.Rd 76697bcf036a02fbe6ddb7f351926ca9 *man/graphToPhylo.Rd ebd8bf4d329181cffdec5346ad8721ee *man/gravy.Rd d76480d11876bffe3d8724fbec516b6e *man/gridPlot.Rd fa596f64f9942f59fd3a00cf2c74452e *man/groupGenes.Rd 56bbb424640d95b6e9fcb109c76df6f5 *man/isValidAASeq.Rd a9acf8807ef75725f015d91f0869fd64 *man/junctionAlignment.Rd 89f037a76206f4ae41689f2277d07207 *man/makeChangeoClone.Rd 16c622dc1a843365e20d348978727214 *man/makeTempDir.Rd d977ffb1591f5c93f326241acd133275 *man/maskPositionsByQuality.Rd 1eeab523917cc47d245c324644f4a387 *man/maskSeqEnds.Rd 18ef28997eb2cb4a67ae7f06c4856f6d *man/maskSeqGaps.Rd 1dbeea7d8ca4d987e66eec4298e34f15 *man/nonsquareDist.Rd 7ff01dba7bb52b0f78b5fe6e8883faab *man/padSeqEnds.Rd 1e23c90638621a4425fc49ced382dc0c *man/pairwiseDist.Rd a93f7fde10257f4d80ca1a3db58ebcaf *man/pairwiseEqual.Rd f0e407fd33a9a29bf63240fefb36c724 *man/permuteLabels.Rd c380b34307cbbee5f99ba5e2b06f4efc *man/phyloToGraph.Rd a2ccc1960f51fa22cc5868297967ec86 *man/plotAbundanceCurve.Rd eaaa2a39adadc8fcf35b10d416d48cb2 *man/plotDiversityCurve.Rd 202d728968c9933121d825d175e49dce *man/plotDiversityTest.Rd af5d9096d8470f1f895d4bc07ad2d0fc *man/plotEdgeTest.Rd 553a53b5b0a96f390422a565fee9d970 *man/plotMRCATest.Rd 14f6a8cb7dbdf6658e827dabb856ea65 *man/plotSubtrees.Rd 57f38289101ef92fa9db938e09766869 *man/polar.Rd 7c2c3846d5f429596501499da0c9aec9 *man/progressBar.Rd 0db2c1713974b92925667f80f1a7862d *man/rarefyDiversity.Rd a07a1db2516b5e3389f7632e93ce8fab *man/readChangeoDb.Rd ded74283da2084401944c9ed4e06ae4a *man/readFastqDb.Rd cf495c29c7882c26a3ae89454ac7ab78 *man/readIgphyml.Rd 7cc1917257918b65d8ff2c5e0f47e93c *man/seqDist.Rd f5e27a7fa978350281f109893235c4d4 *man/seqEqual.Rd 0c647e5454dc4290d946b9fb409e9723 *man/sortGenes.Rd 4551455c0ab7d85eba44ccab82ddccd5 *man/stoufferMeta.Rd a70b6eafc7cbb3753f60afe631379f3e *man/summarizeSubtrees.Rd 68a832553b26782673d82eeaedea750c *man/tableEdges.Rd b40be779af7ec82fb400f257504f2070 *man/testDiversity.Rd 2dc1fded59f2f258192ddb2d9b9a72c5 *man/testEdges.Rd 6afbc7577d809e0fef8278d5060a9c9d *man/testMRCA.Rd ed2b5d2d9fd87a693a560dd5fd7fdf7f *man/translateDNA.Rd 8242a3df101301f23473a572115fc432 *man/translateStrings.Rd 04cb7509996ed099f47415db4fec4e03 *man/writeChangeoDb.Rd 3b377cf40c356ccde3fa098907bfd279 *src/RcppDistance.cpp 48e120890b196a5e995ea895e4f926be *src/RcppExports.cpp 1e445632d6742bfb157a783657d1ad56 *vignettes/AminoAcids-Vignette.Rmd a2c89a9cf48062d46104d77e8f9f474f *vignettes/Diversity-Vignette.Rmd bc1ee42a0d0f5be791bd1f6d7e9eaca7 *vignettes/Fastq-Vignette.Rmd e83df6ce6b04a14b1eedfc8cf85935b4 *vignettes/Files-Vignette.Rmd e3ee207abe0ce9261ffa223e788fcc5d *vignettes/GeneUsage-Vignette.Rmd alakazam/R/0000755000176200001440000000000015113266500012233 5ustar liggesusersalakazam/R/Core.R0000644000176200001440000003776315060255526013275 0ustar liggesusers# Common input/output and data structure manipulation functions for Alakazam #### File I/O functions #### #' Read a Change-O tab-delimited database file #' #' \code{readChangeoDb} reads a tab-delimited database file created by a Change-O tool #' into a data.frame. #' #' @param file tab-delimited database file output by a Change-O tool. #' @param select columns to select from database file. #' @param drop columns to drop from database file. #' @param seq_upper if \code{TRUE} convert sequence columns to upper case; #' if \code{FALSE} do not alter sequence columns. See Value #' for a list of which columns are effected. #' #' @return A data.frame of the database file. Columns will be imported as is, except for #' the following columns which will be explicitly converted into character #' values: #' \itemize{ #' \item SEQUENCE_ID #' \item CLONE #' \item SAMPLE #' } #' And the following sequence columns which will converted to upper case if #' \code{seq_upper=TRUE} (default). #' \itemize{ #' \item SEQUENCE_INPUT #' \item SEQUENCE_VDJ #' \item SEQUENCE_IMGT #' \item JUNCTION #' \item GERMLINE_IMGT #' \item GERMLINE_IMGT_D_MASK #' } #' #' @seealso Wraps \link[readr]{read_delim}. #' See \link{writeChangeoDb} for writing to Change-O files. #' See \link[airr]{read_rearrangement} and \link[airr]{write_rearrangement} #' to read and write AIRR-C Standard formatted repertoires. #' #' @examples #' \dontrun{ #' # Read all columns in and convert sequence fields to upper case #' db <- readChangeoDb("changeo.tsv") #' #' # Subset columns and convert sequence fields to upper case #' db <- readChangeoDb("changeo.tsv", select=c("SEQUENCE_ID", "SEQUENCE_IMGT")) #' #' # Drop columns and do not alter sequence field case #' db <- readChangeoDb("changeo.tsv", drop=c("D_CALL", "DUPCOUNT"), #' seq_upper=FALSE) #' } #' #' @export readChangeoDb <- function(file, select=NULL, drop=NULL, seq_upper=TRUE) { # Define column data types seq_columns <- c("SEQUENCE_INPUT", "SEQUENCE_VDJ", "SEQUENCE_IMGT", "JUNCTION", "JUNCTION_AA", "CDR3_IGBLAST_NT", "CDR3_IGBLAST_AA", "GERMLINE_VDJ", "GERMLINE_VDJ_V_REGION", "GERMLINE_VDJ_D_MASK", "GERMLINE_IMGT", "GERMLINE_IMGT_V_REGION", "GERMLINE_IMGT_D_MASK", "FWR1_IMGT", "FWR2_IMGT", "FWR3_IMGT", "FWR4_IMGT", "CDR1_IMGT", "CDR2_IMGT", "CDR3_IMGT") # Define types header <- names(suppressMessages(readr::read_tsv(file, n_max=1))) types <- do.call(readr::cols, CHANGEO[intersect(names(CHANGEO), header)]) # Check if ChangeO format if (length(types$cols)==0) { airr_columns <- intersect(names(airr::RearrangementSchema), header) if (length(airr_columns)>0) { warning(paste0( basename(file), " is not in the Change-O format.\n", "If you are trying to read an AIRR-C Standard formatted file,\n", "use airr::read_rearrangement for correct type casting. ")) } } # Read file db <- suppressMessages(readr::read_tsv(file, col_types=types, na=c("", "NA", "None"))) # Select columns select_columns <- colnames(db) if(!is.null(select)) { select_columns <- intersect(select_columns, select) } if(!is.null(drop)) { select_columns <- setdiff(select_columns, drop) } db <- select(db, dplyr::all_of(select_columns)) # Convert sequence fields to upper case upper_cols <- intersect(seq_columns, names(db)) if (seq_upper & length(upper_cols) > 0) { db <- mutate_at(db, upper_cols, toupper) } return(db) } #' Write a Change-O tab-delimited database file #' #' \code{writeChangeoDb} is a simple wrapper around \link[readr]{write_delim} with defaults #' appropriate for writing a Change-O tab-delimited database file from a data.frame. #' #' @param data data.frame of Change-O data. #' @param file output file name. #' #' @return NULL #' #' @seealso Wraps \link[readr]{write_delim}. See \link{readChangeoDb} for reading to Change-O files. #' See \link[airr]{read_rearrangement} and \link[airr]{write_rearrangement} #' to read and write AIRR-C Standard formatted repertoires. #' #' @examples #' \dontrun{ #' # Write a database #' writeChangeoDb(data, "changeo.tsv") #' } #' #' @export writeChangeoDb <- function(data, file) { write_tsv(data, file, na="NA") } #' Create a temporary folder #' #' \code{makeTempDir} creates a randomly named temporary folder in the #' system temp location. #' #' @param prefix prefix name for the folder. #' #' @return The path to the temporary folder. #' #' @seealso This is just a wrapper for \link{tempfile} and #' \link{dir.create}. #' #' @examples #' makeTempDir("Clone50") #' #' @export makeTempDir <- function(prefix) { temp_path <- tempfile(paste0(prefix, "-temp-")) dir.create(temp_path) return(temp_path) } #### Data manipulation functions #### #' Translate a vector of strings #' #' \code{translateStrings} modifies a character vector by substituting one or more #' strings with a replacement string. #' #' @param strings vector of character strings to modify. #' @param translation named character vector or a list of character vectors specifying #' the strings to replace (values) and their replacements (names). #' #' @return A modified \code{strings} vector. #' #' @details #' Does not perform partial replacements. Each translation value must match a complete #' \code{strings} value or it will not be replaced. Values that do not have a replacement #' named in the \code{translation} parameter will not be modified. #' #' Replacement is accomplished using \link{gsub}. #' #' @seealso See \link{gsub} for single value replacement in the base package. #' #' @examples #' # Using a vector translation #' strings <- LETTERS[1:5] #' translation <- c("POSITION1"="A", "POSITION5"="E") #' translateStrings(strings, translation) #' #' # Using a list translation #' strings <- LETTERS[1:5] #' translation <- list("1-3"=c("A","B","C"), "4-5"=c("D","E")) #' translateStrings(strings, translation) #' #' @export translateStrings <- function(strings, translation) { # TODO: use match instead for complete matching? Currently regex characters in values will mess up the matching. for (n in names(translation)) { rep_regex <- paste(translation[[n]], collapse='|') strings <- gsub(paste0("^(", rep_regex, ")$"), n, strings) } return(strings) } #' Check data.frame for valid columns and issue message if invalid #' #' @param data data.frame to check. #' @param columns vector of column names to check. #' @param logic one of \code{"all"} or \code{"any"} controlling whether all, #' or at least one, of the columns must be valid, respectively. #' @return \code{TRUE} if columns are valid and a string message if not. # #' @examples #' df <- data.frame(A=1:3, B=4:6, C=rep(NA, 3)) #' checkColumns(df, c("A", "B"), logic="all") #' checkColumns(df, c("A", "B"), logic="any") #' checkColumns(df, c("A", "C"), logic="all") #' checkColumns(df, c("A", "C"), logic="any") #' checkColumns(df, c("A", "D"), logic="all") #' checkColumns(df, c("A", "D"), logic="any") #' #' @export checkColumns <- function(data, columns, logic=c("all", "any")) { ## DEBUG # data=df; columns=c("A", "D"); logic="any" # Check arguments logic <- match.arg(logic) data_names <- names(data) if (logic == "all") { # Check that all columns exist for (f in columns) { if (!(f %in% data_names)) { msg <- paste("The column", f, "was not found") return(msg) } } # Check that all values are not NA for (f in columns) { if (all(is.na(data[[f]]))) { msg <- paste("The column", f, "contains no data") return(msg) } } } else if (logic == "any") { # Check that columns exist if (!any(columns %in% data_names)) { msg <- paste("Input must contain at least one of the columns:", paste(columns, collapse=", ")) return(msg) } # Check that all values are not NA columns_found <- columns[columns %in% data_names] invalid <- sapply(columns_found, function(f) all(is.na(data[[f]]))) if (all(invalid)) { msg <- paste("None of the columns", paste(columns_found, collapse=", "), "contain data") return(msg) } } # Return TRUE if all checks pass return(TRUE) } #### Plotting and progress functions #### #' Standard progress bar #' #' \code{progressBar} defines a common progress bar format. #' #' @param n maximum number of ticks #' #' @return A \link[progress]{progress_bar} object. #' #' @export progressBar <- function(n) { pb <- progress::progress_bar$new(format=" PROGRESS> [:bar] :percent :elapsed", width=40, clear=FALSE, stream=stdout(), force=TRUE, total=n) return(pb) } #' Standard ggplot settings #' #' \code{baseTheme} defines common ggplot theme settings for plotting. #' #' @param sizing defines the style and sizing of the theme. One of #' \code{c("figure", "window")} where \code{sizing="figure"} is appropriately #' sized for pdf export at 7 to 7.5 inch width, and \code{sizing="window"} #' is sized for an interactive session. #' #' @return A ggplot2 object. #' #' @seealso \link[ggplot2]{theme}. #' #' @export baseTheme <- function(sizing=c("figure", "window")) { # Check arguments sizing <- match.arg(sizing) base_theme <- theme_bw() + theme(strip.background=element_blank(), plot.background=element_blank(), panel.grid.major=element_blank(), panel.grid.minor=element_blank()) # Define universal plot settings appropriate for PDF figures if (sizing == "figure") { base_theme <- base_theme + theme(text=element_text(size=8), plot.title=element_text(size=8), strip.text=element_text(size=7, face="bold"), axis.title=element_text(size=8, vjust=0.25), axis.text.x=element_text(size=8, vjust=0.5, hjust=0.5), axis.text.y=element_text(size=8), legend.text=element_text(size=7), legend.title=element_text(size=7), legend.key.height=grid::unit(10, "points"), legend.key.width=grid::unit(10, "points")) } else if (sizing == "window") { # Define universal plot settings appropriate for an interactive session base_theme <- base_theme + theme(text=element_text(size=14), plot.title=element_text(size=16), strip.text=element_text(size=14, face="bold"), axis.title=element_text(size=16, vjust=0.25), axis.text.x=element_text(size=16, vjust=0.5, hjust=0.5), axis.text.y=element_text(size=16), legend.text=element_text(size=14), legend.title=element_text(size=14), legend.key.height=grid::unit(18, "points"), legend.key.width=grid::unit(18, "points")) } return(base_theme) } #' Plot multiple ggplot objects #' #' Plots multiple ggplot objects in an equally sized grid. #' #' @param ... ggplot objects to plot. #' @param ncol number of columns in the plot. #' @return NULL #' #' @seealso \link[ggplot2]{ggplot}. #' #' @references #' Modified from: #' http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2) #' #' @export gridPlot <- function(..., ncol=1) { p <- list(...) n <- length(p) layout <- matrix(seq(1, ncol*ceiling(n/ncol)), ncol=ncol, nrow=ceiling(n/ncol)) # Plot if (n == 1) { plot(p[[1]]) } else { grid::grid.newpage() grid::pushViewport(grid::viewport(layout=grid::grid.layout(nrow(layout), ncol(layout)))) for (i in 1:n) { idx <- as.data.frame(which(layout == i, arr.ind=T)) plot(p[[i]], vp=grid::viewport(layout.pos.row = idx$row, layout.pos.col=idx$col)) } } } #### Multiprocessing functions #### #' Available CPU cores #' #' \code{cpuCount} determines the number of CPU cores available. #' #' @return Count of available cores. Returns 1 if undeterminable. #' #' @examples #' cpuCount() #' #' @export cpuCount <-function(){ if (.Platform$OS.type == "windows") { nproc <- as.numeric(Sys.getenv('NUMBER_OF_PROCESSORS')) } else if (.Platform$OS.type == "unix") { nproc <- parallel::detectCores() } else { nproc <- 1 } # in case an NA is returned if(is.na(nproc)){nproc <- 1} return(nproc) } #### Generic statistical functions #### #' Weighted meta-analysis of p-values via Stouffer's method #' #' \code{stoufferMeta} combines multiple weighted p-values into a meta-analysis p-value #' using Stouffer's Z-score method. #' #' @param p numeric vector of p-values. #' @param w numeric vector of weights. #' #' @return A named numeric vector with the combined Z-score and p-value in the form #' \code{c(Z, pvalue)}. #' #' @examples #' # Define p-value and weight vectors #' p <- c(0.1, 0.05, 0.3) #' w <- c(5, 10, 1) #' #' # Unweighted #' stoufferMeta(p) #' #' # Weighted #' stoufferMeta(p, w) #' #' @export stoufferMeta <- function(p, w=NULL) { if (is.null(w)) { w <- rep(1, length(p))/length(p) } else { if (length(w) != length(p)) { stop("Length of p and w must equal.") } w <- w/sum(w) } x <- qnorm(1 - p) Z <- sum(w*x) / sqrt(sum(w^2)) pvalue <- 1 - pnorm(Z) return(c(Z=Z, pvalue=pvalue)) } # Stirling's approximation of the binomial coefficient # # \code{lchooseStirling} calculates Stirling's approximation of the binomial coefficient # for large numbers. # # @param n vector of n. # @param k vector of k. # @return The approximation of log(n choose k). For n < 100 \link{lchoose} is used. # # @seealso \link{lchoose}. # # @examples # alakazam:::lchooseStirling(10e9, 10e4) # # @export lchooseStirling <- function(n, k) { if (any(n < k)) { stop("n must be >= k") } n_len <- length(n) k_len <- length(k) nCk <- rep(NA, max(n_len, k_len)) nCk[n == k] <- 0 # a = index n_small # i = index k_small # x = index nCk_small # # b = index n_large # j = index k_large # y = index nCk_large # # Check for vector inputs and assign indexing if (n_len >= 1 & k_len >= 1 & n_len == k_len) { a <- i <- x <- (n < 100 & n != k) b <- j <- y <- (n >= 100 & n != k) } else if (n_len > 1 & k_len == 1) { a <- x <- (n < 100 & n != k) b <- y <- (n >= 100 & n != k) i <- j <- TRUE } else if (n_len == 1 & k_len > 1) { a <- (n < 100) b <- !a i <- j <- (n != k) x <- if (n < 100) { i } else { NULL } y <- if (n >= 100) { i } else { NULL } } else { stop("Inputs are wrong. n and k must have the same length or be length one.") } # Small n nCk[x] <- lchoose(n[a], k[i]) # Large n indices nCk[y] <- n[b]*log(n[b]) - k[j]*log(k[j]) - (n[b] - k[j])*log(n[b] - k[j]) + 0.5*(log(n[b]) - log(k[j]) - log(n[b] - k[j]) - log(2*pi)) # .nCk <- function(n, k) { # n*log(n) - k*log(k) - (n - k)*log(n - k) + # 0.5*(log(n) - log(k) - log(n - k) - log(2*pi)) # } return(nCk) } alakazam/R/RcppExports.R0000644000176200001440000000477515067711716014700 0ustar liggesusers# Generated by using Rcpp::compileAttributes() -> do not edit by hand # Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 #' Test DNA sequences for equality. #' #' \code{seqEqual} checks if two DNA sequences are identical. #' #' @param seq1 character string containing a DNA sequence. #' @param seq2 character string containing a DNA sequence. #' @param ignore vector of characters to ignore when testing for equality. #' Default is to ignore c("N",".","-","?") #' #' @return Returns \code{TRUE} if sequences are equal and \code{FALSE} if they are not. #' Sequences of unequal length will always return \code{FALSE} regardless of #' their character values. #' #' @seealso Used by \link{pairwiseEqual} within \link{collapseDuplicates}. #' See \link{seqDist} for calculation Hamming distances between sequences. #' #' @examples #' # Ignore gaps #' seqEqual("ATG-C", "AT--C") #' seqEqual("ATGGC", "ATGGN") #' seqEqual("AT--T", "ATGGC") #' #' # Ignore only Ns #' seqEqual("ATG-C", "AT--C", ignore="N") #' seqEqual("ATGGC", "ATGGN", ignore="N") #' seqEqual("AT--T", "ATGGC", ignore="N") #' #' @export seqEqual <- function(seq1, seq2, ignore = as.character( c("N","-",".","?"))) { .Call(`_alakazam_seqEqual`, seq1, seq2, ignore) } #' Calculate pairwise equivalence between sequences #' #' \code{pairwiseEqual} determined pairwise equivalence between a pairs in a #' set of sequences, excluding ambiguous positions (Ns and gaps). #' #' @param seq character vector containing a DNA sequences. #' #' @return A logical matrix of equivalence between each entry in \code{seq}. #' Values are \code{TRUE} when sequences are equivalent and \code{FALSE} #' when they are not. #' #' @seealso Uses \link{seqEqual} for testing equivalence between pairs. #' See \link{pairwiseDist} for generating a sequence distance matrix. #' #' @examples #' # Gaps and Ns will match any character #' seq <- c(A="ATGGC", B="ATGGG", C="ATGGG", D="AT--C", E="NTGGG") #' d <- pairwiseEqual(seq) #' rownames(d) <- colnames(d) <- seq #' d #' #' @export pairwiseEqual <- function(seq) { .Call(`_alakazam_pairwiseEqual`, seq) } seqDistRcpp <- function(seq1, seq2, dist_mat) { .Call(`_alakazam_seqDistRcpp`, seq1, seq2, dist_mat) } pairwiseDistRcpp <- function(seq, dist_mat) { .Call(`_alakazam_pairwiseDistRcpp`, seq, dist_mat) } nonsquareDistRcpp <- function(seq, indx, dist_mat) { .Call(`_alakazam_nonsquareDistRcpp`, seq, indx, dist_mat) } alakazam/R/Classes.R0000644000176200001440000003027014740172103013755 0ustar liggesusers# Classes, Generics and Methods #### Generics #### # @exportMethod print #setGeneric("print") # @exportMethod plot #setGeneric("plot") setClassUnion("DfNULL", members=c("data.frame", "NULL")) setClassUnion("CharNULL", members=c("character", "NULL")) #### Diversity classes #### #' S4 class defining a clonal abundance curve #' #' \code{AbundanceCurve} defines clonal abundance values. #' #' @slot abundance data.frame with relative clonal abundance data and confidence intervals, #' containing the following columns: #' \itemize{ #' \item \code{group}: group identifier. #' \item \code{clone_id} or \code{CLONE}: clone identifier. #' \item \code{p}: relative abundance of the clone. #' \item \code{lower}: lower confidence interval bound. #' \item \code{upper}: upper confidence interval bound. #' \item \code{rank}: the rank of the clone abundance. #' } #' @slot bootstrap data.frame of bootstrapped clonal distributions. #' @slot clone_by string specifying the name of the clone column. #' @slot group_by string specifying the name of the grouping column. #' @slot groups vector specifying the names of unique groups in group column. #' @slot n numeric vector indication the number of sequences sampled in each group. #' @slot nboot numeric specifying the number of bootstrap iterations to use. #' @slot ci confidence interval defining the upper and lower bounds #' (a value between 0 and 1). #' #' @name AbundanceCurve-class #' @rdname AbundanceCurve-class #' @aliases AbundanceCurve #' @exportClass AbundanceCurve setClass("AbundanceCurve", slots=c(abundance="data.frame", bootstrap="data.frame", clone_by="character", group_by="character", groups="character", n="numeric", ci="numeric", nboot="numeric")) #' S4 class defining a diversity curve #' #' \code{DiversityCurve} defines diversity (\eqn{D}) scores over multiple diversity #' orders (\eqn{Q}). #' #' @slot diversity data.frame defining the diversity curve with the following columns: #' \itemize{ #' \item \code{group}: group label. #' \item \code{q}: diversity order. #' \item \code{d}: mean diversity index over all bootstrap #' realizations. #' \item \code{d_sd}: standard deviation of the diversity index #' over all bootstrap realizations. #' \item \code{d_lower}: diversity lower confidence interval bound. #' \item \code{d_upper}: diversity upper confidence interval bound. #' \item \code{e}: evenness index calculated as \code{D} #' divided by \code{D} at \code{Q=0}. #' \item \code{e_lower}: evenness lower confidence interval bound. #' \item \code{e_upper}: evenness upper confidence interval bound. #' } #' @slot tests data.frame describing the significance test results with columns: #' \itemize{ #' \item \code{test}: string listing the two groups tested. #' \item \code{delta_mean}: mean of the \eqn{D} bootstrap delta #' distribution for the test. #' \item \code{delta_sd}: standard deviation of the \eqn{D} #' bootstrap delta distribution for the test. #' \item \code{pvalue}: p-value for the test. #' } #' @slot group_by string specifying the name of the grouping column in diversity calculation. #' @slot groups vector specifying the names of unique groups in group column in diversity calculation. #' @slot method string specifying the type of diversity calculated. #' @slot q vector of diversity hill diversity indices used for computing diversity. #' @slot n numeric vector indication the number of sequences sampled in each group. #' @slot ci confidence interval defining the upper and lower bounds #' (a value between 0 and 1). #' #' @name DiversityCurve-class #' @rdname DiversityCurve-class #' @aliases DiversityCurve #' @exportClass DiversityCurve setClass("DiversityCurve", slots=c(diversity="data.frame", tests="DfNULL", method="character", group_by="character", groups="character", q="numeric", n="numeric", ci="numeric")) #### Diversity methods #### #' @param x AbundanceCurve object #' #' @rdname AbundanceCurve-class #' @aliases AbundanceCurve-method #' @export setMethod("print", c(x="AbundanceCurve"), function(x) { print(x@abundance) }) #' @param y ignored. #' @param ... arguments to pass to \link{plotDiversityCurve}. #' #' @rdname AbundanceCurve-class #' @aliases AbundanceCurve-method #' @export setMethod("plot", c(x="AbundanceCurve", y="missing"), function(x, y, ...) { plotAbundanceCurve(x, ...) }) #' @param x DiversityCurve object #' #' @rdname DiversityCurve-class #' @aliases DiversityCurve-method #' @export setMethod("print", c(x="DiversityCurve"), function(x) { print(x@diversity) }) #' @param y diversity order to plot (q). #' @param ... arguments to pass to \link{plotDiversityCurve} or \link{plotDiversityTest}. #' #' @rdname DiversityCurve-class #' @aliases DiversityCurve-method #' @export setMethod("plot", c(x="DiversityCurve", y="missing"), function(x, y, ...) { plotDiversityCurve(x, ...) }) #' @rdname DiversityCurve-class #' @aliases DiversityCurve-method #' @export setMethod("plot", c(x="DiversityCurve", y="numeric"), function(x, y, ...) { plotDiversityTest(x, y, ...) }) #### Lineage classes #### #' S4 class defining a clone #' #' \code{ChangeoClone} defines a common data structure for perform lineage reconstruction #' from Change-O data. #' #' @slot data data.frame containing sequences and annotations. Contains the #' columns \code{SEQUENCE_ID} and \code{SEQUENCE}, as well as any additional #' sequence-specific annotation columns. #' @slot clone string defining the clone identifier. #' @slot germline string containing the germline sequence for the clone. #' @slot v_gene string defining the V segment gene call. #' @slot j_gene string defining the J segment gene call. #' @slot junc_len numeric junction length (nucleotide count). #' #' @seealso See \link{makeChangeoClone} and \link{buildPhylipLineage} for use. #' #' @name ChangeoClone-class #' @rdname ChangeoClone-class #' @aliases ChangeoClone #' @exportClass ChangeoClone setClass("ChangeoClone", slots=c(data="data.frame", clone="character", germline="character", v_gene="character", j_gene="character", junc_len="numeric")) #### Topology classes #### #' S4 class defining edge significance #' #' \code{MRCATest} defines the significance of enrichment for annotations appearing at #' the MRCA of the tree. #' #' @slot tests data.frame describing the significance test results with columns: #' \itemize{ #' \item \code{annotation}: annotation value. #' \item \code{count}: observed count of MRCA positions #' with the given annotation. #' \item \code{expected}: expected mean count of MRCA occurrence #' for the annotation. #' \item \code{pvalue}: one-sided p-value for the hypothesis that #' the observed annotation abundance is greater #' than expected. #' } #' @slot permutations data.frame containing the raw permutation test data with columns: #' \itemize{ #' \item \code{annotation}: annotation value. #' \item \code{count}: count of MRCA positions with the #' given annotation. #' \item \code{iter}: numerical index define which #' permutation realization each #' observation corresponds to. #' } #' @slot nperm number of permutation realizations. #' #' @name MRCATest-class #' @rdname MRCATest-class #' @aliases MRCATest #' @exportClass MRCATest setClass("MRCATest", slots=c(tests="data.frame", permutations="data.frame", nperm="numeric")) #' S4 class defining edge significance #' #' \code{EdgeTest} defines the significance of parent-child annotation enrichment. #' #' @slot tests data.frame describing the significance test results with columns: #' \itemize{ #' \item \code{parent}: parent node annotation. #' \item \code{child}: child node annotation #' \item \code{count}: count of observed edges with the given #' parent-child annotation set. #' \item \code{expected}: mean count of expected edges for the #' given parent-child relationship. #' \item \code{pvalue}: one-sided p-value for the hypothesis that #' the observed edge abundance is greater #' than expected. #' } #' @slot permutations data.frame containing the raw permutation test data with columns: #' \itemize{ #' \item \code{parent}: parent node annotation. #' \item \code{child}: child node annotation #' \item \code{count}: count of edges with the given parent-child #' annotation set. #' \item \code{iter}: numerical index define which permutation #' realization each observation corresponds #' to. #' } #' @slot nperm number of permutation realizations. #' #' @name EdgeTest-class #' @rdname EdgeTest-class #' @aliases EdgeTest #' @exportClass EdgeTest setClass("EdgeTest", slots=c(tests="data.frame", permutations="data.frame", nperm="numeric")) #### Topology methods #### #' @param x MRCATest object. #' #' @rdname MRCATest-class #' @aliases MRCATest-method #' @export setMethod("print", c(x="MRCATest"), function(x) { print(x@tests) }) #' @param y ignored. #' @param ... arguments to pass to \link{plotMRCATest}. #' #' @rdname MRCATest-class #' @aliases MRCATest-method #' @export setMethod("plot", c(x="MRCATest", y="missing"), function(x, y, ...) { plotMRCATest(x, ...) }) #' @param x EdgeTest object. #' #' @rdname EdgeTest-class #' @aliases EdgeTest-method #' @export setMethod("print", c(x="EdgeTest"), function(x) { print(x@tests) }) #' @param y ignored. #' @param ... arguments to pass to \link{plotEdgeTest}. #' #' @rdname EdgeTest-class #' @aliases EdgeTest-method #' @export setMethod("plot", c(x="EdgeTest", y="missing"), function(x, y, ...) { plotEdgeTest(x, ...) })alakazam/R/Gene.R0000644000176200001440000017513315113266500013246 0ustar liggesusers# Gene usage analysis #### Calculation functions #### #' Tabulates V(D)J allele, gene or family usage within each locus. #' #' Determines the count and relative abundance of V(D)J alleles, genes or families within #' groups. If sequences from multiple loci are present, the frequency is calculated within #' each locus. #' #' @param data data.frame with AIRR-format or Change-O style columns. #' @param gene column containing allele assignments. Only the first allele in the #' column will be considered when \code{mode} is "gene", "family" or #' "allele". The value will be used as it is with \code{mode="asis"}. #' @param groups columns containing grouping variables. If \code{NULL} do not group. #' @param copy name of the \code{data} column containing copy numbers for each #' sequence. If this value is specified, then total copy abundance #' is determined by the sum of copy numbers within each gene. #' This argument is ignored if \code{clone} is specified. #' @param clone name of the \code{data} column containing clone identifiers for each #' sequence. If this value is specified, then one gene will be considered #' for each clone. Note, this is accomplished by using the most #' common gene within each \code{clone} identifier. As such, #' ambiguous alleles within a clone will not be accurately represented. #' @param mode one of \code{c("gene", "family", "allele", "asis")} defining #' the degree of specificity regarding allele calls. Determines whether #' to return counts for genes (calling \code{getGene}), #' families (calling \code{getFamily}), alleles (calling #' \code{getAllele}) or using the value as it is in the column #' \code{gene}, without any processing. #' @param fill logical of \code{c(TRUE, FALSE)} specifying when if groups (when specified) #' lacking a particular gene should be counted as 0 if TRUE or not (omitted). #' @param first if TRUE return only the first allele/gene/family call for computing the frequency; if FALSE return all calls delimited by commas. #' @param collapse if TRUE check for duplicates and return only unique allele/gene/family assignments per sequence; if #' FALSE return all assignments (faster). Has no effect if first=TRUE. #' @param remove_na removes rows with \code{NA} values in the gene column if \code{TRUE} and issues a warning. #' Otherwise, keeps those rows and considers \code{NA} as a gene in the final counts #' and relative abundances. #' @param cell_id name of the \code{data} column containing the cell identifiers for each sequence. #' #' @return A data.frame summarizing family, gene or allele counts and frequencies #' with columns: #' \itemize{ #' \item \code{locus}: locus of the gene (IGH, IGK, IGL, TRA, TRB, TRD, TRG). Note that frequencies are calculated within each locus. #' \item \code{gene}: name of the family, gene or allele. #' \item \code{seq_count}: total number of sequences for the gene in the locus. #' \item \code{locus_count}: total number of sequences in the locus. #' \item \code{seq_freq}: frequency of the gene as a fraction of the total #' number of sequences within each grouping. #' \item \code{copy_count}: sum of the copy counts in the \code{copy} column. #' for each gene. Only present if the \code{copy} #' argument is specified. #' \item \code{locus_copy_count}: sum of the copy counts in the \code{copy} column. #' for all gene in the locus. Only present if the #' \code{copy} argument is specified. #' \item \code{copy_freq}: frequency of the gene as a fraction of the total #' copy number within each group. Only present if #' the \code{copy} argument is specified. #' \item \code{clone_count}: total number of clones for the gene. Only present if #' the \code{clone} argument is specified. #' \item \code{clone_freq}: frequency of the gene as a fraction of the total #' number of clones within each grouping. Only present if #' the \code{clone} argument is specified. #' } #' Additional columns defined by the \code{groups} argument will also be present. #' #' @examples #' # Without copy numbers #' genes <- countGenes(ExampleDb, gene = "v_call", groups = "sample_id", mode = "family") #' genes <- countGenes(ExampleDb, gene = "v_call", groups = "sample_id", mode = "gene") #' genes <- countGenes(ExampleDb, gene = "v_call", groups = "sample_id", mode = "allele") #' #' # With copy numbers and multiple groups #' genes <- countGenes(ExampleDb, #' gene = "v_call", groups = c("sample_id", "c_call"), #' copy = "duplicate_count", mode = "family" #' ) #' #' # Count by clone #' genes <- countGenes(ExampleDb, #' gene = "v_call", groups = c("sample_id", "c_call"), #' clone = "clone_id", mode = "family" #' ) #' #' # Count absent genes #' genes <- countGenes(ExampleDb, #' gene = "v_call", groups = "sample_id", #' mode = "allele", fill = TRUE #' ) #' #' @export countGenes <- function(data, gene, groups = NULL, copy = NULL, clone = NULL, fill = FALSE, first = TRUE, collapse = TRUE, mode = c("gene", "allele", "family", "asis"), cell_id = "cell_id", remove_na = TRUE) { ## DEBUG # data=ExampleDb; gene="c_call"; groups=NULL; mode="gene"; clone="clone_id" # data=subset(db, clond_id == 3138) # Hack for visibility of dplyr variables # . <- NULL # Check input mode <- match.arg(mode) check <- checkColumns(data, c(gene, groups, copy)) if (check != TRUE) { warning(check) # instead of throwing an error and potentially disrupting a workflow } # Don't allow a copy column for single-cell data as it doesn't make sense to count copies if (cell_id %in% names(data) & !is.null(copy)) { stop("Copy column specification not allowed for single-cell or mixed bulk and single-cell data. A cell_id column is present in the dataframe single-cell or mixed bulk and single-cell data is assumed.") } # Handle NAs if (remove_na) { bool_na <- is.na(data[, gene]) if (any(bool_na)) { if (!all(bool_na)) { msg <- paste0( "NA(s) found in ", sum(bool_na), " row(s) of the ", gene, " column and excluded from tabulation" ) warning(msg) } data <- data[!bool_na, ] } } # Extract gene, allele or family assignments if (mode != "asis") { gene_func <- switch(mode, allele = getAllele, gene = getGene, family = getFamily ) data[[gene]] <- gene_func(data[[gene]], first = first, collapse = collapse) } # Tabulate abundance if (cell_id %in% names(data)) { # Handle single-cell and mixed bulk and single-cell data data_sc <- data %>% dplyr::filter(!is.na(!!rlang::sym(cell_id))) data_sc[[cell_id]] <- as.character(data_sc[[cell_id]]) data_blk <- data %>% dplyr::filter(is.na(!!rlang::sym(cell_id))) if (nrow(data_blk) > 0) { warning(paste0( "Mixed bulk and single-cell data detected.\n", "Sequences with '", cell_id, "' NA will be counted individually towards the total number of sequences.\n", "Consider filtering these sequences first for heavy or light chains. \n" )) data_blk[[cell_id]] <- paste0("bulk_", 1:nrow(data_blk)) # dummy cell_id for bulk data } data <- bind_rows(data_sc, data_blk) if (is.null(clone)) { # Tabulate sequence abundance cell_num <- data %>% dplyr::select(!!!rlang::syms(c(groups, cell_id))) %>% dplyr::distinct() %>% dplyr::group_by(!!!rlang::syms(c(groups))) %>% dplyr::summarize(cell_count = n()) %>% dplyr::ungroup() %>% dplyr::select(!!!rlang::syms(c(groups, "cell_count"))) gene_tab_count <- data %>% dplyr::select(!!!rlang::syms(c(groups, gene, cell_id))) %>% dplyr::distinct() %>% dplyr::group_by(!!!rlang::syms(c(groups, gene))) %>% dplyr::summarize(seq_count = n()) if (nrow(cell_num) > 1) { gene_tab <- gene_tab_count %>% dplyr::left_join(cell_num, by = groups) %>% dplyr::mutate(seq_freq = !!rlang::sym("seq_count") / !!rlang::sym("cell_count")) %>% dplyr::arrange(desc(!!rlang::sym("seq_count"))) } else { gene_tab <- gene_tab_count %>% dplyr::mutate(seq_freq = !!rlang::sym("seq_count") / cell_num[["cell_count"]]) %>% dplyr::arrange(desc(!!rlang::sym("seq_count"))) } } else { # Get unique count per cell and # Find count of genes within each clone and keep first with maximum count gene_tab <- data %>% dplyr::group_by(!!!rlang::syms(c(groups, gene, cell_id))) %>% dplyr::distinct() %>% dplyr::group_by(!!!rlang::syms(c(groups, clone, gene))) %>% dplyr::mutate(clone_gene_count = n()) %>% dplyr::ungroup() %>% dplyr::group_by(!!!rlang::syms(c(groups, clone))) %>% dplyr::slice(which.max(!!rlang::sym("clone_gene_count"))) %>% dplyr::ungroup() %>% dplyr::group_by(!!!rlang::syms(c(groups, gene))) %>% dplyr::summarize(clone_count = n()) %>% dplyr::mutate(clone_freq = !!rlang::sym("clone_count") / sum(!!rlang::sym("clone_count"), na.rm = TRUE)) %>% dplyr::arrange(!!rlang::sym("clone_count")) } } else { if (is.null(copy) & is.null(clone)) { # Tabulate sequence abundance by locus data$locus <- substr(data[[gene]], 1, 3) locus_tab <- data %>% dplyr::group_by(!!!rlang::syms(c(groups, "locus"))) %>% dplyr::summarize(locus_count = n(), .groups = "drop") gene_tab_count <- data %>% dplyr::group_by(!!!rlang::syms(c(groups, "locus", gene))) %>% dplyr::summarize(seq_count = n(), .groups = "drop") if (nrow(locus_tab) > 1) { gene_tab <- gene_tab_count %>% dplyr::left_join(locus_tab, by = c(groups, "locus")) %>% dplyr::mutate(seq_freq = !!rlang::sym("seq_count") / !!rlang::sym("locus_count")) %>% dplyr::arrange(desc(!!rlang::sym("seq_count"))) } else { gene_tab <- gene_tab_count %>% dplyr::mutate(seq_freq = !!rlang::sym("seq_count") / locus_tab$locus_count) %>% dplyr::arrange(desc(!!rlang::sym("seq_count"))) } } else if (!is.null(clone) & is.null(copy)) { # test if no clone IDs are given if (all(is.na(data[[clone]]))) { stop("No clone IDs are present in the data.") } else if (any(is.na(data[[clone]]))) { num_na_clone <- sum(is.na(data[[clone]])) warning(paste0( "Found ", num_na_clone, " sequences without clonal assignments. ", "These sequences will be removed before counting clone frequencies." )) data <- data %>% dplyr::filter(!is.na(!!rlang::sym(clone))) } # get locus data$locus <- substr(data[[gene]], 1, 3) # Find count of genes within each clone and keep first with maximum count clone_gene_tab <- data %>% dplyr::group_by(!!!rlang::syms(c(groups, "locus", clone, gene))) %>% dplyr::mutate(clone_gene_count = n()) %>% dplyr::ungroup() %>% dplyr::group_by(!!!rlang::syms(c(groups, "locus", clone))) %>% dplyr::slice(which.max(!!rlang::sym("clone_gene_count"))) %>% dplyr::ungroup() locus_tab <- clone_gene_tab %>% dplyr::group_by(!!!rlang::syms(c(groups, "locus"))) %>% dplyr::summarize(locus_clone_count = n(), .groups = "drop") gene_tab_count <- clone_gene_tab %>% dplyr::group_by(!!!rlang::syms(c(groups, "locus", gene))) %>% dplyr::summarize(clone_count = n(), .groups = "drop") if (nrow(locus_tab) > 1) { gene_tab <- gene_tab_count %>% dplyr::left_join(locus_tab, by = c(groups, "locus")) %>% dplyr::mutate(clone_freq = !!rlang::sym("clone_count") / !!rlang::sym("locus_clone_count")) %>% dplyr::arrange(desc(!!rlang::sym("clone_count"))) } else { gene_tab <- gene_tab_count %>% dplyr::mutate(clone_freq = !!rlang::sym("clone_count") / locus_tab$locus_clone_count) %>% dplyr::arrange(desc(!!rlang::sym("clone_count"))) } } else { if (!is.null(clone) & !is.null(copy)) { warning( "Specifying both 'copy' and 'clone' columns is not meaningful. ", "The 'clone' argument will be ignored." ) } # get locus data$locus <- substr(data[[gene]], 1, 3) # Tabulate copy abundance by locus and gene locus_tab <- data %>% dplyr::group_by(!!!rlang::syms(c(groups, "locus"))) %>% dplyr::summarize( locus_count = length(!!rlang::sym(gene)), locus_copy_count = sum(!!rlang::sym(copy), na.rm = TRUE), .groups = "drop" ) gene_tab_count <- data %>% dplyr::group_by(!!!rlang::syms(c(groups, "locus", gene))) %>% dplyr::summarize( seq_count = length(!!rlang::sym(gene)), copy_count = sum(!!rlang::sym(copy), na.rm = TRUE), .groups = "drop" ) if (nrow(locus_tab) > 1) { gene_tab <- gene_tab_count %>% dplyr::left_join(locus_tab, by = c(groups, "locus")) %>% dplyr::mutate( seq_freq = !!rlang::sym("seq_count") / !!rlang::sym("locus_count"), copy_freq = !!rlang::sym("copy_count") / !!rlang::sym("locus_copy_count") ) %>% dplyr::arrange(desc(!!rlang::sym("copy_count"))) } else { gene_tab <- gene_tab_count %>% dplyr::mutate( seq_freq = !!rlang::sym("seq_count") / locus_tab$locus_count, copy_freq = !!rlang::sym("copy_count") / locus_tab$locus_copy_count ) %>% dplyr::arrange(desc(!!rlang::sym("copy_count"))) } } } # If a gene is present in one GROUP but not another, will fill the COUNT and FREQ with 0s if (fill) { gene_tab <- gene_tab %>% ungroup() %>% tidyr::complete(!!!rlang::syms(as.list(c(groups, gene))), fill = list(seq_count = 0, seq_freq = 0, copy_count = 0, copy_freq = 0, clone_count = 0, clone_freq = 0) ) # fill in the loci gene_tab$locus <- substr(gene_tab[[gene]], 1, 3) # TODO: correct locus count, locus copy count, locus clone count if needed? } # Rename gene column gene_tab <- gene_tab %>% rename(dplyr::all_of(c("gene" = gene))) return(gene_tab) } #### Annotation functions #### #' Get Ig segment allele, gene and family names #' #' \code{getSegment} performs generic matching of delimited segment calls with a custom #' regular expression. \link{getAllele}, \link{getGene} and \link{getFamily} extract #' the allele, gene and family names, respectively, from a character vector of #' immunoglobulin (Ig) or TCR segment allele calls in IMGT format. #' #' @param segment_call character vector containing segment calls delimited by commas. #' @param segment_regex string defining the segment match regular expression. #' @param first if \code{TRUE} return only the first call in #' \code{segment_call}; if \code{FALSE} return all calls #' delimited by commas. #' @param collapse if \code{TRUE} check for duplicates and return only unique #' segment assignments; if \code{FALSE} return all assignments #' (faster). Has no effect if \code{first=TRUE}. #' @param strip_d if \code{TRUE} remove the "D" from the end of gene annotations #' (denoting a duplicate gene in the locus); #' if \code{FALSE} do not alter gene names. #' @param omit_nl if \code{TRUE} remove non-localized (NL) genes from the result. #' Only applies at the gene or allele level. #' @param sep character defining both the input and output segment call #' delimiter. #' #' @return A character vector containing allele, gene or family names. #' #' @references #' \url{https://www.imgt.org/} #' #' @seealso \link{countGenes} #' #' @examples #' # Light chain examples #' kappa_call <- c( #' "Homsap IGKV1D-39*01 F,Homsap IGKV1-39*02 F,Homsap IGKV1-39*01", #' "Homsap IGKJ5*01 F" #' ) #' #' getAllele(kappa_call) #' getAllele(kappa_call, first = FALSE) #' getAllele(kappa_call, first = FALSE, strip_d = FALSE) #' #' getGene(kappa_call) #' getGene(kappa_call, first = FALSE) #' getGene(kappa_call, first = FALSE, strip_d = FALSE) #' #' getFamily(kappa_call) #' getFamily(kappa_call, first = FALSE) #' getFamily(kappa_call, first = FALSE, collapse = FALSE) #' getFamily(kappa_call, first = FALSE, strip_d = FALSE) #' #' getLocus(kappa_call) #' getChain(kappa_call) #' #' # Heavy chain examples #' heavy_call <- c( #' "Homsap IGHV1-69*01 F,Homsap IGHV1-69D*01 F", #' "Homsap IGHD1-1*01 F", #' "Homsap IGHJ1*01 F" #' ) #' #' getAllele(heavy_call, first = FALSE) #' getAllele(heavy_call, first = FALSE, strip_d = FALSE) #' #' getGene(heavy_call, first = FALSE) #' getGene(heavy_call, first = FALSE, strip_d = FALSE) #' #' getFamily(heavy_call) #' getLocus(heavy_call) #' getChain(heavy_call) #' #' # Filtering non-localized genes #' nl_call <- c( #' "IGHV3-NL1*01,IGHV3-30-3*01,IGHV3-30*01", #' "Homosap IGHV3-30*01 F,Homsap IGHV3-NL1*01 F", #' "IGHV1-NL1*01" #' ) #' #' getAllele(nl_call, first = FALSE, omit_nl = TRUE) #' getGene(nl_call, first = FALSE, omit_nl = TRUE) #' getFamily(nl_call, first = FALSE, omit_nl = TRUE) #' #' # Temporary designation examples #' tmp_call <- c("IGHV9S3*01", "IGKV10S12*01") #' #' getAllele(tmp_call) #' getGene(tmp_call) #' getFamily(tmp_call) #' #' @export getSegment <- function(segment_call, segment_regex, first = TRUE, collapse = TRUE, strip_d = TRUE, omit_nl = FALSE, sep = ",") { # Define boundaries of individual segment calls edge_regex <- paste0("[^", sep, "]*") # Remove NL genes if (omit_nl) { # Clean segment_call to keep only the name (remove species) allele_regex <- "((IG[HKL]|TR[ABDG])[VDJADEGMC][A-R0-9\\(\\)]*[-/\\w]*[-\\*]*[\\.\\w]+)" segment_call <- gsub(paste0(edge_regex, "(", allele_regex, ")", edge_regex), "\\1", segment_call, perl = T ) # non-localized regex nl_regex <- paste0( "(IG[HKL]|TR[ABDG])[VDJADEGMC][0-9]+-NL[0-9]([-/\\w]*[-\\*][\\.\\w]+)*(", sep, "|$)" ) # delete non-localized calls segment_call <- gsub(nl_regex, "", segment_call, perl = TRUE) } # Extract calls r <- gsub(paste0(edge_regex, "(", segment_regex, ")", edge_regex), "\\1", segment_call, perl = T ) # Strip D from gene names if required if (strip_d) { strip_regex <- paste0("(?<=[A-Z0-9][0-9])D(?=\\*|-|", sep, "|$)") r <- gsub(strip_regex, "", r, perl = TRUE) } # Collapse to unique set if required if (first) { r <- gsub(paste0(sep, ".*$"), "", r) } else if (collapse) { r <- sapply(strsplit(r, sep), function(x) paste(unique(x), collapse = sep)) } return(r) } #' @rdname getSegment #' @export getAllele <- function(segment_call, first = TRUE, collapse = TRUE, strip_d = TRUE, omit_nl = FALSE, sep = ",") { allele_regex <- "((IG[HKL]|TR[ABDG])[VDJADEGMC][A-R0-9\\(\\)]*[-/\\w]*[-\\*]*[\\.\\w]+)" r <- getSegment(segment_call, allele_regex, first = first, collapse = collapse, strip_d = strip_d, omit_nl = omit_nl, sep = sep ) return(r) } #' @rdname getSegment #' @export getGene <- function(segment_call, first = TRUE, collapse = TRUE, strip_d = TRUE, omit_nl = FALSE, sep = ",") { gene_regex <- "((IG[HKL]|TR[ABDG])[VDJADEGMC][A-R0-9\\(\\)]*[-/\\w]*)" r <- getSegment(segment_call, gene_regex, first = first, collapse = collapse, strip_d = strip_d, omit_nl = omit_nl, sep = sep ) return(r) } #' @rdname getSegment #' @export getFamily <- function(segment_call, first = TRUE, collapse = TRUE, strip_d = TRUE, omit_nl = FALSE, sep = ",") { family_regex <- "((IG[HKL]|TR[ABDG])[VDJADEGMC][A-R0-9\\(\\)]*)" r <- getSegment(segment_call, family_regex, first = first, collapse = collapse, strip_d = strip_d, omit_nl = omit_nl, sep = sep ) return(r) } #' @rdname getSegment #' @export getLocus <- function(segment_call, first = TRUE, collapse = TRUE, strip_d = TRUE, omit_nl = FALSE, sep = ",") { locus_regex <- "((IG[HLK]|TR[ABDG]))" r <- getSegment(segment_call, locus_regex, first = first, collapse = collapse, strip_d = strip_d, omit_nl = omit_nl, sep = sep ) return(r) } #' @rdname getSegment #' @export getChain <- function(segment_call, first = TRUE, collapse = TRUE, strip_d = TRUE, omit_nl = FALSE, sep = ",") { r <- getLocus(segment_call, first = first, collapse = collapse, strip_d = strip_d, omit_nl = omit_nl, sep = sep ) r <- gsub("(IGH)|(TR[BD])", "VH", r) r <- gsub("(IG[KL])|(TR[AG])", "VL", r) return(r) } #### Utility functions #### # Get all VJ(L) combinations from one or more chains of the same type # # Input: # V annotation, J annotation, and optionally junction length of # one of more chains of the same type # - v: V annotation # - j: J annotation # - l: junction length (optional) # - sep_chain: character separting multiple chains # - sep_anno: character separating multiple/ambiguous annotations within each chain # - first: to be passed to getGene() # # Output: # A vector containing all unique VJ(L) combinations represented # # Assumption: # 1) number of chains match across v, j, l # 2) if length value is supplied, each chain has a single length value # # Example input # v <- "Homsap IGLV2-20*09 F,Homsap IGLV3-30*09 F;Homsap IGKV1-27*01 F;Homsap IGKV1-25*01 F,Homsap IGKV1-25*38 F,Homsap IGKV1-32*02 F" # j <- "Homsap IGLJ3*02 F;Homsap IGKJ5*02 F;Homsap IGKJ3*03 F,Homsap IGKJ9*03 F" # l <- "36;39;60" # getAllVJL(v, j, l, ";", ",", FALSE) # - 3 light chains # - number of V annotations per chain: 2/1/3 # - number of J annotations per chain: 1/1/2 # - Expected supremum of the number of VJL combinations: 2*1 + 1*1 + 3*2 = 9 # - Note that this is the supremum because the ACTUAL number (7) CAN be lower due to presence # of different alleles from the SAME gene (since computation is performed at the gene level) getAllVJL <- function(v, j, l, sep_chain, sep_anno, first) { # is l NULL? l_NULL <- is.null(l) # are there multiple chains? # assumes that number of chains match across v, j, l # (pre-checked in groupGenes) multi_chain <- stringi::stri_detect_fixed(str = v, pattern = sep_chain) # are there multiple annotations per chain? multi_anno_v <- stringi::stri_detect_fixed(str = v, pattern = sep_anno) multi_anno_j <- stringi::stri_detect_fixed(str = j, pattern = sep_anno) # separate chains # gets a vector of strings # each vector entry corresponds to a chain if (multi_chain) { v <- stringi::stri_split_fixed(str = v, pattern = sep_chain)[[1]] j <- stringi::stri_split_fixed(str = j, pattern = sep_chain)[[1]] if (!l_NULL) { l <- stringi::stri_split_fixed(str = l, pattern = sep_chain)[[1]] } } # separate annotations # gets a list # each list entry has a vector of one or more strings if (multi_anno_v) { v <- stringi::stri_split_fixed(str = v, pattern = sep_anno) # take care of 'first' here because getGene will not split by "," if (first) { v <- lapply(v, function(x) { x[1] }) } } if (multi_anno_j) { j <- stringi::stri_split_fixed(str = j, pattern = sep_anno) if (first) { j <- lapply(j, function(x) { x[1] }) } } # get gene # gets a list # each list entry corresponds to a chain, and is a vector of one or more strings v <- sapply(v, getGene, collapse = TRUE, simplify = FALSE, USE.NAMES = FALSE) j <- sapply(j, getGene, collapse = TRUE, simplify = FALSE, USE.NAMES = FALSE) # if there is multiple chains and/or multiple annotations if (multi_chain | (multi_anno_v & first) | (multi_anno_j & first)) { # gets a list # each list entry is a vector of one or more strings # do if/else outside sapply so it only gets evaluated once if (!l_NULL) { exp <- sapply(1:length(v), function(i) { # eg_df <- expand.grid(v[[i]], j[[i]], l[i]) # eg_vec <- apply(eg_df, 1, stringi::stri_paste, collapse="@") n_v <- length(v[[i]]) n_j <- length(j[[i]]) eg_vec <- stringi::stri_paste(rep.int(v[[i]], times = n_j), rep(j[[i]], each = n_v), rep.int(l[i], times = n_v * n_j), sep = "@" ) return(eg_vec) }, simplify = FALSE, USE.NAMES = FALSE) } else { exp <- sapply(1:length(v), function(i) { # eg_df = expand.grid(v[[i]], j[[i]]) # eg_vec = apply(eg_df, 1, stringi::stri_paste, collapse="@") n_v <- length(v[[i]]) n_j <- length(j[[i]]) eg_vec <- stringi::stri_paste(rep.int(v[[i]], times = n_j), rep(j[[i]], each = n_v), sep = "@" ) return(eg_vec) }, simplify = FALSE, USE.NAMES = FALSE) } # concat and convert to vector; keep distinct values exp <- unique(unlist(exp, use.names = FALSE)) } else { n_v <- length(v[[1]]) n_j <- length(j[[1]]) if (!l_NULL) { exp <- stringi::stri_paste(rep.int(v[[1]], times = n_j), rep(j[[1]], each = n_v), rep.int(l[1], times = n_v * n_j), sep = "@" ) } else { exp <- stringi::stri_paste(rep.int(v[[1]], times = n_j), rep(j[[1]], each = n_v), sep = "@" ) } } return(exp) } # Check if the input data has heavy chains # # Input: # a data.frame containing the AIRR or Change-O data for a clone. See Details # for the list of required columns and their default values. # # locus: The column specifying the sequence locus. # # Output: # A logical vector indicating if the row entry is a heavy chain or not. isHeavyChain <- function(data, locus = "locus") { check <- data[[locus]] %in% c("IGH", "TRB", "TRD") return(check) } # Check if the input data has light chains # # Input: # a data.frame containing the AIRR or Change-O data for a clone. See Details # for the list of required columns and their default values. # # locus: The column specifying the sequence locus. # # Output: # A logical vector indicating if the row entry is a light chain or not. isLightChain <- function(data, locus = "locus") { check <- data[[locus]] %in% c("IGK", "IGL", "TRA", "TRG") return(check) } # Check for common single cell problems # # Input: # a data.frame containing the AIRR or Change-O data for a clone. See Details # for the list of required columns and their default values. # # locus: The column specifying the sequence locus. # # cell_id: The column specifying the sequence cell id. # Output: # A data.frame containing the AIRR or Change-O data. singleCellValidation <- function(data, locus = "locus", cell_id = "cell_id") { heavy <- data[isHeavyChain(data, locus = locus), ] light <- data[isLightChain(data, locus = locus), ] # check for multiple heavy chains heavy_count <- table(heavy[[cell_id]]) multi_heavy_cells <- names(heavy_count[heavy_count > 1]) if (length(multi_heavy_cells) != 0) { stop(paste( "Only one heavy chain is allowed per cell. Remove cells with", "multiple heavy chains." )) } heavy <- heavy[!heavy[[cell_id]] %in% multi_heavy_cells, ] # check for unpaired light chains pairedIndx <- light[[cell_id]] %in% heavy[[cell_id]] if (FALSE %in% pairedIndx) { stop("Unpaired light chains were found in the data. Please remove them.") light <- light[pairedIndx, ] } data <- rbind(heavy, light) return(data) } #' Group sequences by gene assignment #' #' \code{groupGenes} will group rows by shared V and J gene assignments, #' and optionally also by junction lengths. IGH:IGK/IGL, TRB:TRA, and TRD:TRG #' paired single-cell BCR/TCR sequencing and unpaired bulk sequencing #' (IGH, TRB, TRD chain only) are supported. In the case of ambiguous (multiple) #' gene assignments, the grouping may be specified to be a union across all #' ambiguous V and J gene pairs, analogous to single-linkage clustering #' (i.e., allowing for chaining). #' #' @param data data.frame containing sequence data. #' @param v_call name of the column containing the heavy/long chain #' V-segment allele calls. #' @param j_call name of the column containing the heavy/long chain #' J-segment allele calls. #' @param junc_len name of column containing the junction length. #' If \code{NULL} then 1-stage partitioning is perform #' considering only the V and J genes is performed. #' See Details for further clarification. #' @param sequence_alignment name of the column containing the sequence alignment. #' @param cell_id name of the column containing cell identifiers or barcodes. #' If specified, grouping will be performed in single-cell mode #' with the behavior governed by the \code{locus} and #' \code{only_heavy} arguments. If set to \code{NULL} then the #' bulk sequencing data is assumed. #' @param locus name of the column containing locus information. #' Only applicable to single-cell data. #' Ignored if \code{cell_id=NULL}. #' @param only_heavy This is deprecated. Only heavy chains will be used in clustering. #' Use only the IGH (BCR) or TRB/TRD (TCR) sequences #' for grouping. Only applicable to single-cell data. #' Ignored if \code{cell_id=NULL}. #' @param split_light A deprecated parameter. This would split clones by the light chain. #' For similar function use dowser::resolveLightChains #' @param first if \code{TRUE} only the first call of the gene assignments #' is used. if \code{FALSE} the union of ambiguous gene #' assignments is used to group all sequences with any #' overlapping gene calls. #' #' @return Returns a modified data.frame with disjoint union indices #' in a new \code{vj_group} column. #' #' If \code{junc_len} is supplied, the grouping this \code{vj_group} #' will have been based on V, J, and junction length simultaneously. However, #' the output column name will remain \code{vj_group}. #' #' The output \code{v_call}, \code{j_call}, \code{cell_id}, and \code{locus} #' columns will be converted to type \code{character} if they were of type #' \code{factor} in the input \code{data}. #' #' @details #' To invoke single-cell mode the \code{cell_id} argument must be specified and the \code{locus} #' column must be correct. Otherwise, \code{groupGenes} will be run with bulk sequencing assumptions, #' using all input sequences regardless of the values in the \code{locus} column. #' #' Values in the \code{locus} column must be one of \code{c("IGH", "IGI", "IGK", "IGL")} for BCR #' or \code{c("TRA", "TRB", "TRD", "TRG")} for TCR sequences. Otherwise, the function returns an #' error message and stops. #' #' Under single-cell mode with paired chained sequences, there was a choice of whether #' grouping should be done by (a) using IGH (BCR) or TRB/TRD (TCR) sequences only or #' (b) using IGH plus IGK/IGL (BCR) or TRB/TRD plus TRA/TRG (TCR). #' This was governed by the \code{only_heavy} argument, now deprecated. #' #' Specifying \code{junc_len} will force \code{groupGenes} to perform a 1-stage partitioning of the #' sequences/cells based on V gene, J gene, and junction length simultaneously. #' If \code{junc_len=NULL} (no column specified), then \code{groupGenes} performs only the first #' stage of a 2-stage partitioning in which sequences/cells are partitioned in the first stage #' based on V gene and J gene, and then in the second stage further splits the groups based on #' junction length (the second stage must be performed independently, as this only returns the #' first stage results). #' #' In the input \code{data}, the \code{v_call}, \code{j_call}, \code{cell_id}, and \code{locus} #' columns, if present, must be of type \code{character} (as opposed to \code{factor}). #' #' It is assumed that ambiguous gene assignments are separated by commas. #' #' All rows containing \code{NA} values in any of the \code{v_call}, \code{j_call}, and \code{junc_len} #' (if \code{junc_len != NULL}) columns will be removed. A warning will be issued when a row #' containing an \code{NA} is removed. #' #' @section Expectations for single-cell data: #' #' Single-cell paired chain data assumptions: #' \itemize{ #' \item every row represents a sequence (chain). #' \item heavy/long and light/short chains of the same cell are linked by \code{cell_id}. #' \item the value in \code{locus} column indicates whether the chain is the heavy/long or light/short chain. #' \item each cell possibly contains multiple heavy/long and/or light/short chains. #' \item every chain has its own V(D)J annotation, in which ambiguous V(D)J #' annotations, if any, are separated by a comma. #' } #' #' Single-cell example: #' \itemize{ #' \item A cell has 1 heavy chain and 2 light chains. #' \item There should be 3 rows corresponding to this cell. #' \item One of the light chains may have an ambiguous V annotation which looks like \code{"Homsap IGKV1-39*01 F,Homsap IGKV1D-39*01 F"}. #' } #' #' @examples #' # Group by genes #' db <- groupGenes(ExampleDb) #' head(db$vj_group) #' #' @export groupGenes <- function(data, v_call = "v_call", j_call = "j_call", junc_len = NULL, sequence_alignment = NULL, cell_id = NULL, split_light = FALSE, locus = "locus", only_heavy = TRUE, first = FALSE) { # CGJ 6/24/24 -- onlyHeavy warning # Deprecation/Removal of only_heavy = FALSE if (!only_heavy) { warning("only_heavy = FALSE is deprecated. Running as if only_heavy = TRUE") only_heavy <- TRUE } if (split_light) { warning(paste( "split_light = TRUE is deprecated. Please use split_light = FALSE.", "After clonal identification, light chain groups can be found with dowser::resolveLightChains" )) split_light <- FALSE } # CGJ 6/24/24 mixed data check -- with the lc options removed we want it to go # through the SC pathway # Let the user know that data seems to have single cell sequences, but they didn't set up # the function to run in single cell mode if (is.null(cell_id) & "cell_id" %in% colnames(data) & !is.null(locus)) { nmissing <- sum(is.na(data$cell_id)) if (nmissing < nrow(data) & nmissing > 0) { # cell_id values are partially missing stop(paste( "A cell_id column was found in the data, but was not specified.", "Additionally, the data appears to have paired and unpaired cell data.", "This data type requires the single cell workflow, please specify the cell_id and rerun." )) } else if (nmissing == 0) { # all cell_id values are present stop(paste( "A cell_id column was found in the data, but was not specified.", "This data type requires the single cell workflow, please specify the cell_id and rerun." )) } else { # all cell_id values are missing warning(paste( "A cell_id column was found in the data, but was not specified. All values are NA." )) } } # Check base input # CGJ 4/12/24 added locus to this check to not repeat later check <- checkColumns(data, c(v_call, j_call, junc_len, sequence_alignment, locus)) if (check != TRUE) { stop(paste( "A column or some combination of columns v_call, j_call,", "junc_len, sequence_alignment, and locus were not found in the data" )) } # CGJ 4/12/24 # check for factors here rather than after the indexing/one-to-one annotation check # NULL will disappear when doing c() # c(NULL,NULL) gives NULL still cols_for_grouping <- c(v_call, j_call, junc_len) # cols cannot be factor if (any(sapply(cols_for_grouping, function(x) { class(data[[x]]) == "factor" }))) { stop( "one or more of { ", v_call, ", ", j_call, ifelse(is.null(junc_len), " ", ", "), junc_len, "} is factor. Must be character.\nIf using read.table(), make sure to set stringsAsFactors=FALSE.\n" ) } # if necessary, cast select columns to character (factor not allowed later on) if (!is(data[[v_call]], "character")) { data[[v_call]] <- as.character(data[[v_call]]) } if (!is(data[[j_call]], "character")) { data[[j_call]] <- as.character(data[[j_call]]) } # e.g.: "Homsap IGHV3-7*01 F,Homsap IGHV3-6*01 F;Homsap IGHV1-4*01 F" separator_within_seq <- "," separator_between_seq <- ";" # single-cell mode? CGJ 6/24/24 -- SC mode is not needed? # Initialize mixed mixed <- FALSE single_cell <- FALSE if (!is.null(cell_id) & !is.null(locus)) { # single cell fields exist if (sum(is.na(data[[cell_id]])) == 0) { # all rows have cell_id data single_cell <- TRUE if (!is(data[[cell_id]], "character")) { data[[cell_id]] <- as.character(data[[cell_id]]) } if (!is(data[[locus]], "character")) { data[[locus]] <- as.character(data[[locus]]) } # check locus column valid_loci <- c("IGH", "IGI", "IGK", "IGL", "TRA", "TRB", "TRD", "TRG") check <- !all(unique(data[[locus]]) %in% valid_loci) if (check) { stop("The locus column contains invalid loci annotations.") } } else if (any(!is.na(data[[cell_id]]))) { # some rows have cell_id data, and some NA single_cell <- TRUE mixed <- TRUE if (!is(data[[cell_id]], "character")) { data[[cell_id]] <- as.character(data[[cell_id]]) } if (!is(data[[locus]], "character")) { data[[locus]] <- as.character(data[[locus]]) } # check locus column valid_loci <- c("IGH", "IGI", "IGK", "IGL", "TRA", "TRB", "TRD", "TRG") check <- !all(unique(data[[locus]]) %in% valid_loci) if (check) { stop("The locus column contains invalid loci annotations.") } } } # only set if `single_cell` & `only_heavy` v_call_light <- NULL j_call_light <- NULL junc_len_light <- NULL # single-cell mode if (single_cell) { # make a copy data_orig <- data # regardless of using heavy only, or using both heavy and light # for each cell # - index wrt data of heavy chain # - index wrt data of light chain(s) cell_id_uniq <- unique(data[[cell_id]]) if (mixed) { cell_seq_idx <- sapply(cell_id_uniq, function(x) { if (is.na(x)) { # heavy chain idx_h <- which(is.na(data[[cell_id]]) & data[[locus]] %in% c("IGH", "TRB", "TRD")) } else { # heavy chain idx_h <- which(data[[cell_id]] == x & data[[locus]] %in% c("IGH", "TRB", "TRD")) } # light chain idx_l <- which(data[[cell_id]] == x & data[[locus]] %in% c("IGK", "IGL", "TRA", "TRG")) return(list(heavy = idx_h, light = idx_l)) }, USE.NAMES = FALSE, simplify = FALSE) } else { cell_seq_idx <- sapply(cell_id_uniq, function(x) { # heavy chain idx_h <- which(data[[cell_id]] == x & data[[locus]] %in% c("IGH", "TRB", "TRD")) # light chain idx_l <- which(data[[cell_id]] == x & data[[locus]] %in% c("IGK", "IGL", "TRA", "TRG")) return(list(heavy = idx_h, light = idx_l)) }, USE.NAMES = FALSE, simplify = FALSE) } # use heavy chains only # Straightforward subsetting like below won't work in cases # where multiple HCs are present for a cell # CGJ 6/16/23 # subset to heavy only -- for both B and T cells data <- data_orig[isHeavyChain(data_orig, locus = locus), ] # Check for cells with two heavy chains # singleCellValdiation 4/12/24 if (!mixed) { data <- singleCellValidation(data, locus = locus, cell_id = cell_id) } # flatten data cols <- c(cell_id, v_call, j_call, junc_len) data <- data.frame(matrix(NA, nrow = length(cell_seq_idx), ncol = length(cols))) colnames(data) <- cols for (i_cell in 1:length(cell_seq_idx)) { i_cell_h <- cell_seq_idx[[i_cell]][["heavy"]] data[[cell_id]][i_cell] <- cell_id_uniq[i_cell] # heavy chain V, J, junc_len # If the cell doesn't have heavy chain data, the gene # calls assigned with paste0 will be "" (empty strings) data[[v_call]][i_cell] <- paste0(data_orig[[v_call]][i_cell_h], collapse = separator_between_seq ) data[[j_call]][i_cell] <- paste0(data_orig[[j_call]][i_cell_h], collapse = separator_between_seq ) if (!is.null(junc_len)) { data[[junc_len]][i_cell] <- paste0(data_orig[[junc_len]][i_cell_h], collapse = separator_between_seq ) } } } # if(mixed){ # remove the entry(s) from data and cell_seq_idx that are cells with only light chains # indx <- which(data[[v_call]] == "") # data <- data[-indx,] # cell_seq_idx <- cell_seq_idx[-indx] # } # one-to-one annotation-to-chain correspondence for both V and J (heavy) # for each cell/row, number of between_seq separators in heavy V annotation and in heavy J annotation must match # (in theory, there should be 1 heavy chain per cell; but 10x can return cell with >1 heavy chains and # you never know if the user will supply this cell as input) n_separator_btw_seq_v_heavy <- stringi::stri_count_fixed(str = data[[v_call]], pattern = separator_between_seq) n_separator_btw_seq_j_heavy <- stringi::stri_count_fixed(str = data[[j_call]], pattern = separator_between_seq) if (any(n_separator_btw_seq_v_heavy != n_separator_btw_seq_j_heavy)) { stop("Requirement not met: one-to-one annotation-to-chain correspondence for both V and J (heavy)") } # NULL will disappear when doing c() # c(NULL,NULL) gives NULL still cols_for_grouping_heavy <- c(v_call, j_call, junc_len) cols_for_grouping_light <- c(v_call_light, j_call_light, junc_len_light) # Check NA(s) in columns bool_na <- rowSums(is.na(data[, c(cols_for_grouping_heavy, cols_for_grouping_light)])) > 0 # Check for empty strings as well. They happen # if a single cell cell_id only has light chain data. # If not removed, the group identifiers can have numbering not correlative e.g G2, G3, and no G1. bool_empty <- rowSums(data[, c(cols_for_grouping_heavy, cols_for_grouping_light)] == "") > 0 # consider empty as NA bool_na <- bool_na | bool_empty if (any(bool_na)) { entityName <- ifelse(single_cell, " cell(s)", " sequence(s)") msg <- paste0( "NA(s) found in one or more of { ", v_call, ", ", j_call, ifelse(is.null(junc_len), "", ", "), junc_len, ifelse(is.null(v_call_light), "", ", "), v_call_light, ifelse(is.null(j_call_light), "", ", "), j_call_light, ifelse(is.null(junc_len_light), "", ", "), junc_len_light, " } columns. ", sum(bool_na), entityName, " removed.\n" ) warning(msg) data <- data[!bool_na, ] if (single_cell) { # maintain one-to-one relationship between # rows of data, cell_id_uniq, and cell_seq_idx cell_id_uniq <- cell_id_uniq[!bool_na] cell_seq_idx <- cell_seq_idx[!bool_na] } } ### expand # speed-up strategy # compute expanded VJL combos for unique rows # then distribute back to all rows # unique combinations of VJL # heavy chain seqs only if ((!single_cell) | (single_cell & only_heavy)) { combo_unique <- unique(data[, cols_for_grouping_heavy]) # unique components v_unique <- unique(combo_unique[[v_call]]) j_unique <- unique(combo_unique[[j_call]]) # map each row in full data to unique combo m_v <- match(data[[v_call]], v_unique) m_j <- match(data[[j_call]], j_unique) # CGJ 4/15/24 put together instead of back to back steps for same condition if (is.null(junc_len)) { combo_unique_full_idx <- sapply(1:nrow(combo_unique), function(i) { idx_v <- which(v_unique == combo_unique[[v_call]][i]) idx_j <- which(j_unique == combo_unique[[j_call]][i]) idx <- which(m_v == idx_v & m_j == idx_j) return(idx) }, simplify = FALSE, USE.NAMES = FALSE) exp_lst <- sapply(1:nrow(combo_unique), function(i) { getAllVJL( v = combo_unique[[v_call]][i], j = combo_unique[[j_call]][i], l = NULL, first = first, sep_anno = separator_within_seq, sep_chain = separator_between_seq ) }, simplify = F, USE.NAMES = FALSE) } else { l_unique <- unique(combo_unique[[junc_len]]) m_l <- match(data[[junc_len]], l_unique) combo_unique_full_idx <- sapply(1:nrow(combo_unique), function(i) { idx_v <- which(v_unique == combo_unique[[v_call]][i]) idx_j <- which(j_unique == combo_unique[[j_call]][i]) idx_l <- which(l_unique == combo_unique[[junc_len]][i]) idx <- which(m_v == idx_v & m_j == idx_j & m_l == idx_l) return(idx) }, simplify = FALSE, USE.NAMES = FALSE) exp_lst <- sapply(1:nrow(combo_unique), function(i) { getAllVJL( v = combo_unique[[v_call]][i], j = combo_unique[[j_call]][i], l = combo_unique[[junc_len]][i], first = first, sep_anno = separator_within_seq, sep_chain = separator_between_seq ) }, simplify = F, USE.NAMES = FALSE) } } # one-to-one correspondence btw exp_lst and combo_unique_full_idx # exp_lst: VJL combinations # combo_unique_full_idx: rows in data carrying each exp_lst # exp_lst may not be all unique because gene-level info is kept instead of allele-level # make exp_lst unique exp_lst_uniq <- unique(exp_lst) exp_lst_uniq_full_idx <- sapply(exp_lst_uniq, function(x) { # wrt exp_lst, therefore also wrt combo_unique_full_idx idx_lst <- which(unlist(lapply(exp_lst, function(y) { length(y) == length(x) && all(y == x) }))) # merge unlist(combo_unique_full_idx[idx_lst], use.names = FALSE) }, simplify = FALSE, USE.NAMES = FALSE) stopifnot(length(unique(unlist(exp_lst_uniq_full_idx, use.names = FALSE))) == nrow(data)) # tip: unlist with use.names=F makes it much faster (>100x) # https://www.r-bloggers.com/speed-trick-unlist-use-namesfalse-is-heaps-faster/ exp_uniq <- sort(unique(unlist(exp_lst_uniq, use.names = FALSE))) n_cells_or_seqs <- nrow(data) # notes on implementation # regular/dense matrix is more straightforward to implement but very costly memory-wise # sparse matrix is less straightforward to implement but way more memory efficient # sparse matrix is very slow to modify to on-the-fly (using a loop like for dense matrix) # way faster to construct in one go # (DO NOT DELETE) # for illustrating the concept # this is the way to go if using regular matrix (memory-intensive) # same concept implemented using sparse matrix # mtx_cell_VJL <- matrix(0, nrow=nrow(data), ncol=length(exp_uniq)) # colnames(mtx_cell_VJL) <- exp_uniq # # mtx_adj <- matrix(0, nrow=length(exp_uniq), ncol=length(exp_uniq)) # rownames(mtx_adj) <- exp_uniq # colnames(mtx_adj) <- exp_uniq # # outdated: # for (i_cell in 1:length(exp_lst)) { # #if (i_cell %% 1000 == 0) { cat(i_cell, "\n") } # cur_uniq <- unique(exp_lst[[i_cell]]) # mtx_cell_VJL[i_cell, cur_uniq] <- 1 # mtx_adj[cur_uniq, cur_uniq] <- 1 # } # actual implementation using sparse matrix from Matrix package ### matrix indicating relationship between cell and VJ(L) combinations # row: cell # col: unique heavy VJ(L) (and light VJ(L)) # row indices m1_i <- lapply(1:length(exp_lst_uniq), function(i) { rep(exp_lst_uniq_full_idx[[i]], each = length(exp_lst_uniq[[i]])) }) m1_i_v <- unlist(m1_i, use.names = FALSE) # column indices m1_j <- lapply(1:length(exp_lst_uniq), function(i) { # wrt exp_uniq idx <- match(exp_lst_uniq[[i]], exp_uniq) # stopifnot( all.equal( exp_uniq[idx], exp_lst_uniq[[i]] ) ) rep.int(idx, length(exp_lst_uniq_full_idx[[i]])) }) m1_j_v <- unlist(m1_j, use.names = FALSE) stopifnot(length(m1_i_v) == length(m1_j_v)) # no particular need for this to be not of class "nsparseMatrix" # so no need to specify x=rep(1, length(m1_i)) # not specifying makes it even more space-efficient mtx_cell_VJL <- Matrix::sparseMatrix( i = m1_i_v, j = m1_j_v, dims = c(n_cells_or_seqs, length(exp_uniq)), symmetric = F, triangular = F, index1 = T, dimnames = list(NULL, exp_uniq) ) ### adjacency matrix # row and col: unique heavy VJ(L) (and light VJ(L)) # row indices m2_i <- lapply(1:length(exp_lst_uniq), function(i) { # wrt exp_uniq idx <- match(exp_lst_uniq[[i]], exp_uniq) # stopifnot( all.equal( exp_uniq[idx], exp_lst_uniq[[i]] ) ) rep(idx, each = length(exp_lst_uniq[[i]])) }) m2_i_v <- unlist(m2_i, use.names = FALSE) # col indices m2_j <- lapply(1:length(exp_lst_uniq), function(i) { # wrt exp_uniq idx <- match(exp_lst_uniq[[i]], exp_uniq) # stopifnot( all.equal( exp_uniq[idx], exp_lst_uniq[[i]] ) ) rep.int(idx, length(exp_lst_uniq[[i]])) }) m2_j_v <- unlist(m2_j, use.names = FALSE) stopifnot(length(m2_i_v) == length(m2_j_v)) # important: x must be specified for mtx_adj in order to make it not of class "nsparseMatrix" # this is because igraph accepts sparse matrix from Matrix but not the "pattern" matrices variant mtx_adj <- Matrix::sparseMatrix( i = m2_i_v, j = m2_j_v, x = rep(1, length(m2_i_v)), dims = c(length(exp_uniq), length(exp_uniq)), symmetric = F, triangular = F, index1 = T, dimnames = list(exp_uniq, exp_uniq) ) rm(m1_i, m1_j, m2_i, m2_j, m1_i_v, m1_j_v, m2_i_v, m2_j_v) ### identify connected components based on adjcencey matrix # this is the grouping # source: https://stackoverflow.com/questions/35772846/obtaining-connected-components-in-r # Create igraph object from adjacency matrix if (sum(rowSums(mtx_adj) > 0) == nrow(mtx_adj)) { # This "if" is to ignore a warning in the special case # that all sequences are isolated (only diagonal elements). # When mtx_adj is a diagonal matrix and diag=FALSE (no self-links), # the diagonal will be zeroed out and max, used somewhere in the igraph function, # will return an error like "no non-missing arguments to max" withCallingHandlers( g <- igraph::graph_from_adjacency_matrix(adjmatrix = mtx_adj, mode = "undirected", diag = FALSE), warning = function(w) { if (grepl("no non-missing arguments to max", w$message)) { invokeRestart("muffleWarning") } } ) } else { g <- igraph::graph_from_adjacency_matrix(adjmatrix = mtx_adj, mode = "undirected", diag = FALSE) } # plot(g, vertex.size=10, vertex.label.cex=1, vertex.color="skyblue", vertex.label.color="black", vertex.frame.color="transparent", edge.arrow.mode=0) connected <- igraph::components(g) VJL_groups <- igraph::groups(connected) names(VJL_groups) <- paste0("G", 1:length(VJL_groups)) ### identify cells associated with each connected component (grouping) # each entry corresponds to a group/partition # each element within an entry is a cell cellIdx_byGroup_lst <- lapply(VJL_groups, function(x) { if (length(x) > 1) { # matrix # important to specify rowSums from Matrix package # base::rowSums will NOT work cell_idx <- which(Matrix::rowSums(mtx_cell_VJL[, x, drop = F]) > 0) } else { # vector cell_idx <- which(mtx_cell_VJL[, x] > 0) } return(cell_idx) }) # sanity check: there should be perfect/disjoint partitioning # (each cell has exactly one group assignment) stopifnot(n_cells_or_seqs == length(unique(unlist(cellIdx_byGroup_lst, use.names = FALSE)))) # assign data$vj_group <- NA for (i in 1:length(cellIdx_byGroup_lst)) { data[["vj_group"]][cellIdx_byGroup_lst[[i]]] <- names(VJL_groups)[i] } stopifnot(!any(is.na(data[["vj_group"]]))) if (!single_cell) { return(data) } else { data_orig$vj_group <- NA # map back to data_orig if (!mixed) { for (i_cell in 1:nrow(data)) { # wrt data_orig i_orig_h <- cell_seq_idx[[i_cell]][["heavy"]] i_orig_l <- cell_seq_idx[[i_cell]][["light"]] # sanity check stopifnot(all(data_orig[[cell_id]][c(i_orig_h, i_orig_l)] == cell_id_uniq[i_cell])) # grouping data_orig$vj_group[c(i_orig_h, i_orig_l)] <- data$vj_group[i_cell] } } else { for (i_cell in 1:nrow(data)) { i_orig_h <- cell_seq_idx[[i_cell]][["heavy"]] i_orig_l <- cell_seq_idx[[i_cell]][["light"]] # if it's just the light chain give in an NA and skip if (length(i_orig_h) == 0 & length(i_orig_l) == 1) { data_orig$vj_group[i_orig_l] <- NA next } # sanity check # both chains are present in the cell # ssnn: TODO BUG This sanity check doesn't work for mixed data # Error in if (!is.na(data_orig[[cell_id]][i_orig_h]) & length(i_orig_l) != : # the condition has length > 1 # Debug shows: # !is.na(data_orig[[cell_id]][i_orig_h]) # [1] FALSE FALSE # Browse[1]> data # cell_id v_call j_call vj_group # 1 1 IGHV1-1*01 IGHJ2*01 G2 # 2 2 IGHV1-1*01 IGHJ1*01 G1 # 3 3 IGHV1-2*01 IGHJ1*01 G1 # 4 IGHV1-1*01,IGHV1-2*01;IGHV1-2*01 IGHJ1*01;IGHJ1*01 G1 # Browse[1]> data_orig # subject_id v_call j_call junction locus cell_id junction_length vj_group # 1 S1 IGHV1-1*01 IGHJ2*01 TGTAAAAAATGG IGH 1 12 G2 # 2 S1 IGHV1-1*01 IGHJ1*01 TGTAAAAAATGG IGH 2 12 G1 # 3 S1 IGHV1-2*01 IGHJ1*01 TGTAAAACCTGG IGH 3 12 G1 # 4 S1 IGHV1-1*01,IGHV1-2*01 IGHJ1*01 TGTAAACCCTGG IGH 12 # 5 S1 IGHV1-2*01 IGHJ1*01 TGTAAACCCTGG IGH 12 # 6 S1 IGKV1-1*01 IGKJ1*01 TGTCCCCCCTGG IGK 1 12 G2 # 7 S1 IGKV1-1*01 IGKJ1*01 TGTCCCCCCTGG IGK 12 # account for the NA cell_ids length being longer than 1 for (i in 1:length(i_orig_h)) { i_orig_h_temp <- i_orig_h[i] if (!is.na(data_orig[[cell_id]][i_orig_h_temp]) & length(i_orig_l) != 0) { # sanity check stopifnot(all(data_orig[[cell_id]][c(i_orig_h_temp, i_orig_l)] == cell_id_uniq[i_cell])) } else { # just the heavy chain if (is.na(data_orig[[cell_id]][i_orig_h_temp])) { stopifnot(is.na(cell_id_uniq[i_cell])) } else { stopifnot(data_orig[[cell_id]][i_orig_h_temp] == cell_id_uniq[i_cell]) } } } # grouping data_orig$vj_group[c(i_orig_h, i_orig_l)] <- data$vj_group[i_cell] } } return(data_orig) } } #' Sort V(D)J genes #' #' \code{sortGenes} sorts a vector of V(D)J gene names by either lexicographic ordering #' or locus position. #' #' @param genes vector of strings representing V(D)J gene names. #' @param method string defining the method to use for sorting genes. One of: #' \itemize{ #' \item \code{"name"}: sort in lexicographic order. Order is by #' family first, then gene, and then allele. #' \item \code{"position"}: sort by position in the locus, as #' determined by the final two numbers #' in the gene name. Non-localized genes #' are assigned to the highest positions. #' } #' #' @return A sorted character vector of gene names. #' #' @seealso See \code{getAllele}, \code{getGene} and \code{getFamily} for parsing #' gene names. #' #' @examples #' # Create a list of allele names #' genes <- c( #' "IGHV1-69D*01", "IGHV1-69*01", "IGHV4-38-2*01", "IGHV1-69-2*01", #' "IGHV2-5*01", "IGHV1-NL1*01", "IGHV1-2*01,IGHV1-2*05", #' "IGHV1-2", "IGHV1-2*02", "IGHV1-69*02" #' ) #' #' # Sort genes by name #' sortGenes(genes) #' #' # Sort genes by position in the locus #' sortGenes(genes, method = "pos") #' #' @export sortGenes <- function(genes, method = c("name", "position")) { ## DEBUG # method="name" # Check arguments method <- match.arg(method) # Build sorting table sort_tab <- tibble(CALL = sort(getAllele(genes, first = FALSE, strip_d = FALSE))) %>% # Determine the gene and family mutate( FAMILY = getFamily(!!rlang::sym("CALL"), first = TRUE, strip_d = FALSE), GENE = getGene(!!rlang::sym("CALL"), first = TRUE, strip_d = FALSE), ALLELE = getAllele(!!rlang::sym("CALL"), first = TRUE, strip_d = FALSE) ) %>% # Identify first gene number, second gene number and allele number mutate( G1 = gsub("[^-]+-([^-\\*D]+).*", "\\1", !!rlang::sym("GENE")), G1 = as.numeric(gsub("[^0-9]+", "99", !!rlang::sym("G1"))), G2 = gsub("[^-]+-[^-]+-?", "", !!rlang::sym("GENE")), G2 = as.numeric(gsub("[^0-9]+", "99", !!rlang::sym("G2"))), A1 = as.numeric(sub("[^\\*]+\\*|[^\\*]+$", "", !!rlang::sym("ALLELE"))) ) # Convert missing values to 0 sort_tab[is.na(sort_tab)] <- 0 # Sort if (method == "name") { sorted_genes <- arrange(sort_tab, !!!rlang::syms(c("FAMILY", "G1", "G2", "A1")))[["CALL"]] } else if (method == "position") { sorted_genes <- arrange( sort_tab, desc(!!rlang::sym("G1")), desc(!!rlang::sym("G2")), !!rlang::sym("FAMILY"), !!rlang::sym("A1") )[["CALL"]] } return(sorted_genes) } alakazam/R/Topology.R0000644000176200001440000010755015064742672014220 0ustar liggesusers# Ig lineage topology analysis #' @include Classes.R NULL #### Graph analysis functions #### #' Generate subtree summary statistics for a tree #' #' \code{summarizeSubtrees} calculates summary statistics for each node of a tree. Includes #' both node properties and subtree properties. #' #' @param graph igraph object containing an annotated lineage tree. #' @param fields annotation fields to add to the output. #' @param root name of the root (germline) node. #' #' @return A data.frame with columns: #' \itemize{ #' \item \code{name}: node name. #' \item \code{parent}: name of the parent node. #' \item \code{outdegree}: number of edges leading from the node. #' \item \code{size}: total number of nodes within the subtree rooted #' at the node. #' \item \code{depth}: the depth of the subtree that is rooted at #' the node. #' \item \code{pathlength}: the maximum pathlength beneath the node. #' \item \code{outdegree_norm}: \code{outdegree} normalized by the total #' number of edges. #' \item \code{size_norm}: \code{size} normalized by the largest #' subtree size (the germline). #' \item \code{depth_norm}: \code{depth} normalized by the largest #' subtree depth (the germline). #' \item \code{pathlength_norm}: \code{pathlength} normalized by the largest #' subtree pathlength (the germline). #' } #' An additional column corresponding to the value of \code{field} is added when #' specified. #' #' @seealso See \link{buildPhylipLineage} for generating input trees. #' See \link{getPathLengths} for calculating path length to nodes. #' #' @examples #' # Summarize a tree #' graph <- ExampleTrees[[23]] #' summarizeSubtrees(graph, fields="c_call", root="Germline") #' #' @export summarizeSubtrees <- function(graph, fields=NULL, root="Germline") { ## DEBUG # root="Germline"; fields=NULL # TODO: should probably include a means to exclude inferred from substree size # Define node attribute data.frame node_df <- data.frame(name=V(graph)$name, stringsAsFactors=F) for (f in fields) { node_df[[f]] <- vertex_attr(graph, name=f) } # Get edges edges <- igraph::as_edgelist(graph) # Get unweighted paths paths_step <- suppressWarnings(igraph::distances(graph, mode="out", algorithm="unweighted")) paths_step[!is.finite(paths_step)] <- NA # Get weighted paths paths_length <- igraph::distances(graph, mode="out", algorithm="dijkstra") paths_length[!is.finite(paths_length)] <- NA # Define each node's parent node_df$parent <- edges[, 1][match(node_df$name, edges[, 2])] # Define each node's outdegree node_df$outdegree <- igraph::degree(graph, mode="out") # Define the number of nodes in each subtree (child count + 1) node_df$size <- apply(paths_step, 1, function(x) length(na.omit(x))) # Define number of levels below each node node_df$depth <- apply(paths_step, 1, max, na.rm=TRUE) + 1 # Define the maximum shortest path length (genetic distance) to a leaf from each node node_df$pathlength <- apply(paths_length, 1, max, na.rm=TRUE) # Normalize node_df <- node_df %>% dplyr::mutate( outdegree_norm=!!rlang::sym("outdegree")/sum(!!rlang::sym("outdegree"), na.rm=TRUE), size_norm=!!rlang::sym("size")/max(!!rlang::sym("size"), na.rm=TRUE), depth_norm=!!rlang::sym("depth")/max(!!rlang::sym("depth"), na.rm=TRUE), pathlength_norm=!!rlang::sym("pathlength")/max(!!rlang::sym("pathlength"), na.rm=TRUE)) return(node_df) } #' Calculate path lengths from the tree root #' #' \code{getPathLengths} calculates the unweighted (number of steps) and weighted (distance) #' path lengths from the root of a lineage tree. #' #' @param graph igraph object containing an annotated lineage tree. #' @param root name of the root (germline) node. #' @param field annotation field to use for exclusion of nodes from step count. #' @param exclude annotation values specifying which nodes to exclude from step count. #' If \code{NULL} consider all nodes. This does not affect the weighted #' (distance) path length calculation. #' #' @return A data.frame with columns: #' \itemize{ #' \item \code{name}: node name #' \item \code{steps}: path length as the number of nodes traversed #' \item \code{distance}: path length as the sum of edge weights #' } #' #' @seealso See \link{buildPhylipLineage} for generating input trees. #' #' @examples #' # Define example graph #' graph <- ExampleTrees[[24]] #' #' # Consider all nodes #' getPathLengths(graph, root="Germline") #' #' # Exclude nodes without an isotype annotation from step count #' getPathLengths(graph, root="Germline", field="c_call", exclude=NA) #' #' @export getPathLengths <- function(graph, root="Germline", field=NULL, exclude=NULL) { # Define path length data.frame path_df <- data.frame(name=V(graph)$name, stringsAsFactors=FALSE) # Get indices of excluded vertices skip_idx <- which(path_df$name == root) if (!is.null(field)) { g <- vertex_attr(graph, name=field) skip_idx <- union(skip_idx, which(g %in% exclude)) } # Get paths step_list <- shortest_paths(graph, root, mode="out", weights=NA, output="vpath") step_list <- step_list$vpath # Get path lengths for (i in 1:length(step_list)) { v <- step_list[[i]] path_df[i, "steps"] <- sum(!(v %in% skip_idx)) path_df[i, "distance"] <- sum(E(graph, path=v)$weight) } return(path_df) } #' Retrieve the first non-root node of a lineage tree #' #' \code{getMRCA} returns the set of lineage tree nodes with the minimum weighted or #' unweighted path length from the root (germline) of the lineage tree, allowing for #' exclusion of specific groups of nodes. #' #' @param graph igraph object containing an annotated lineage tree. #' @param path string defining whether to use unweighted (steps) or weighted (distance) #' measures for determining the founder node set.. #' @param root name of the root (germline) node. #' @param field annotation field to use for both unweighted path length exclusion and #' consideration as an MRCA node. If \code{NULL} do not exclude any nodes. #' @param exclude vector of annotation values in \code{field} to exclude from the potential #' MRCA set. If \code{NULL} do not exclude any nodes. Has no effect if #' \code{field=NULL}. #' #' @return A data.frame of the MRCA node(s) containing the columns: #' \itemize{ #' \item \code{name}: node name #' \item \code{steps}: path length as the number of nodes traversed #' \item \code{distance}: path length as the sum of edge weights #' } #' Along with additional columns corresponding to the #' annotations of the input graph. #' #' @seealso Path lengths are determined with \link{getPathLengths}. #' #' @examples #' # Define example graph #' graph <- ExampleTrees[[23]] #' #' # Use unweighted path length and do not exclude any nodes #' getMRCA(graph, path="steps", root="Germline") #' #' # Exclude nodes without an isotype annotation and use weighted path length #' getMRCA(graph, path="distance", root="Germline", field="c_call", exclude=NA) #' #' @export getMRCA <- function(graph, path=c("distance", "steps"), root="Germline", field=NULL, exclude=NULL) { # Check arguments path <- match.arg(path) # Get distance from root path_df <- getPathLengths(graph, root=root, field=field, exclude=exclude) # Get indices of excluded vertices skip_idx <- which(path_df$name == root) if (!is.null(field)) { g <- vertex_attr(graph, name=field) skip_idx <- union(skip_idx, which(g %in% exclude)) } # Get founder nodes if (path == "distance") { path_len <- setNames(path_df$distance, 1:nrow(path_df)) } else if (path == "steps") { path_len <- setNames(path_df$steps, 1:nrow(path_df)) } else { stop("Invalid value for 'path' parameter. Must be one of c('distance', 'steps').\n") } path_len <- path_len[-skip_idx] root_idx <- as.numeric(names(path_len)[which(path_len == min(path_len))]) root_df <- igraph::as_data_frame(graph, what="vertices")[root_idx, ] root_df$steps <- path_df$steps[root_idx] root_df$distance <- path_df$distance[root_idx] # Switch name column to uppercase names(root_df)[names(root_df) == "name"] <- "name" return(root_df) } #' Tabulate the number of edges between annotations within a lineage tree #' #' \code{tableEdges} creates a table of the total number of connections (edges) for each #' unique pair of annotations within a tree over all nodes. #' #' @param graph igraph object containing an annotated lineage tree. #' @param field string defining the annotation field to count. #' @param indirect if \code{FALSE} count direct connections (edges) only. If #' \code{TRUE} walk through any nodes with annotations specified in #' the \code{argument} to count indirect connections. Specifying #' \code{indirect=TRUE} with \code{exclude=NULL} will have no effect. #' @param exclude vector of strings defining \code{field} values to exclude from counts. #' Edges that either start or end with the specified annotations will not #' be counted. If \code{NULL} count all edges. #' #' @return A data.frame defining total annotation connections in the tree with columns: #' \itemize{ #' \item \code{parent}: parent annotation #' \item \code{child}: child annotation #' \item \code{count}: count of edges for the parent-child relationship #' } #' #' @seealso See \link{testEdges} for performed a permutation test on edge relationships. #' #' @examples #' # Define example graph #' graph <- ExampleTrees[[23]] #' #' # Count direct edges between isotypes including inferred nodes #' tableEdges(graph, "c_call") #' #' # Count direct edges excluding edges to and from germline and inferred nodes #' tableEdges(graph, "c_call", exclude=c("Germline", NA)) #' #' # Count indirect edges walking through germline and inferred nodes #' tableEdges(graph, "c_call", indirect=TRUE, exclude=c("Germline", NA)) #' #' @export tableEdges <- function(graph, field, indirect=FALSE, exclude=NULL) { # Function to retrieve the name if x is exactly one vertex index and NULL otherwise .getSingleVertex <- function(x) { if (length(x) == 1) { vertex_attr(graph, name=field, index=x[1]) } else { NULL } } if (indirect) { # Get indices of excluded and retained vertices if (!is.null(exclude)) { f <- vertex_attr(graph, name=field) skip_idx <- which(f %in% exclude) keep_idx <- as.numeric(V(graph))[-skip_idx] } else { skip_idx <- NULL keep_idx <- as.numeric(V(graph)) } # Iterate over nodes and count indirect parent-child connections edge_list <- list() for (i in keep_idx) { # Get parent annotation parent <- vertex_attr(graph, name=field, index=i) # Get indirect child node annotations step_list <- suppressWarnings(shortest_paths(graph, V(graph)[i], mode="out", weights=NA, output="vpath")) step_list <- unique(lapply(step_list$vpath, function(x) x[!(x %in% c(i, skip_idx))])) children <- unlist(lapply(step_list, .getSingleVertex)) # Define data.frame of connections if (length(children) > 0) { edge_list[[i]] <- data.frame("parent"=parent, "child"=children, stringsAsFactors=FALSE) } } # Merge edge list into data.frame edge_df <- bind_rows(edge_list) } else { # Get adjacency list edge_mat <- as_edgelist(graph, names=FALSE) edge_mat <- vertex_attr(graph, name=field, index=edge_mat) edge_mat <- matrix(edge_mat, ncol=2, dimnames=list(NULL, c("parent", "child"))) # Build and subset edge data.frame edge_df <- as.data.frame(edge_mat, stringsAsFactors=FALSE) edge_df <- edge_df[!(edge_df$parent %in% exclude) & !(edge_df$child %in% exclude), ] } # Count edges edge_tab <- edge_df %>% group_by(!!!rlang::syms(c("parent", "child"))) %>% dplyr::summarize(count=n()) return(edge_tab) } #' Permute the node labels of a tree #' #' \code{permuteLabels} permutes the node annotations of a lineage tree. #' #' @param graph igraph object containing an annotated lineage tree. #' @param field string defining the annotation field to permute. #' @param exclude vector of strings defining \code{field} values to exclude #' from permutation. #' #' @return A modified igraph object with vertex annotations permuted. #' #' @seealso \link{testEdges}. #' #' @examples #' # Define and plot example graph #' library(igraph) #' graph <- ExampleTrees[[23]] #' plot(graph, layout=layout_as_tree, vertex.label=V(graph)$c_call, #' vertex.size=50, edge.arrow.mode=0, vertex.color="grey80") #' #' # Permute annotations and plot new tree #' g <- permuteLabels(graph, "c_call") #' plot(g, layout=layout_as_tree, vertex.label=V(g)$c_call, #' vertex.size=50, edge.arrow.mode=0, vertex.color="grey80") #' #' @export permuteLabels <- function(graph, field, exclude=c("Germline", NA)) { # Determine which nodes to permute labels <- vertex_attr(graph, name=field) i <- which(!(labels %in% exclude)) # Return input on insufficient number of nodes if (length(i) < 2) { warning("Only 1 node to permute\n") return(graph) } # Sample and reassign field values s <- sample(i) perm <- set_vertex_attr(graph, name=field, index=i, value=labels[s]) return(perm) } #### Test functions #### #' Tests for MRCA annotation enrichment in lineage trees #' #' \code{testMRCA} performs a permutation test on a set of lineage trees to determine #' the significance of an annotation's association with the MRCA position of the lineage #' trees. #' #' @param graphs list of igraph object containing annotated lineage trees. #' @param field string defining the annotation field to test. #' @param root name of the root (germline) node. #' @param exclude vector of strings defining \code{field} values to exclude from the #' set of potential founder annotations. #' @param nperm number of permutations to perform. #' @param progress if \code{TRUE} show a progress bar. #' #' @return An \link{MRCATest} object containing the test results and permutation #' realizations. #' #' @seealso Uses \link{getMRCA} and \link{getPathLengths}. #' See \link{plotMRCATest} for plotting the permutation distributions. #' #' @examples #' \donttest{ #' # Define example tree set #' graphs <- ExampleTrees[1:10] #' #' # Perform MRCA test on isotypes #' x <- testMRCA(graphs, "c_call", nperm=10) #' print(x) #' } #' #' @export testMRCA <- function(graphs, field, root="Germline", exclude=c("Germline", NA), nperm=200, progress=FALSE) { # Function to resolve ambiguous founders # @param x data.frame from getMRCA # @param field annotation field .resolveMRCA <- function(x, field) { x %>% filter(!duplicated(!!rlang::sym(field))) %>% filter(length(!!rlang::sym(field)) == 1) } # Function to count MRCAs # @param x list of graphs # @param field annotation field # @param exclude vector of annotation values to exclude .countMRCA <- function(x, field, exclude) { # Get MRCAs mrca_list <- lapply(x, getMRCA, path="distance", field=field, exclude=exclude) # Resolve ambiguous MRCAs mrca_list <- lapply(mrca_list, .resolveMRCA, field=field) # Summarize MRCA counts mrca_sum <- bind_rows(mrca_list, .id="GRAPH") %>% select(!!!rlang::syms(c("GRAPH", field))) %>% rename(dplyr::all_of(c("annotation"=field))) %>% group_by(!!rlang::sym("annotation")) %>% dplyr::summarize(count=n()) return(mrca_sum) } # Assign numeric names if graphs is an unnamed list if (is.null(names(graphs))) { names(graphs) <- 1:length(graphs) } # Summarize observed MRCA counts obs_sum <- .countMRCA(graphs, field=field, exclude=exclude) # Generate edge null distribution via permutation if (progress) { pb <- progressBar(nperm) } perm_list <- list() for (i in 1:nperm) { # Permute labels tmp_list <- lapply(graphs, permuteLabels, field=field, exclude=exclude) # Summarize MRCA counts tmp_sum <- .countMRCA(tmp_list, field=field, exclude=exclude) # Update permutation set tmp_sum$iter <- i perm_list[[i]] <- tmp_sum if (progress) { pb$tick() } } cat("\n") perm_sum <- bind_rows(perm_list) # Test observed against permutation distribution for (i in 1:nrow(obs_sum)) { x <- obs_sum$annotation[i] # Annotation count distribution d <- perm_sum$count[perm_sum$annotation == x] # Expected mean obs_sum[i, "expected"] <- mean(d) # P-value for observed > expected f <- ecdf(d) obs_sum[i, "pvalue"] <- 1 - f(obs_sum$count[i]) } # Generate return object mrca_test <- new("MRCATest", tests=as.data.frame(obs_sum), permutations=as.data.frame(perm_sum), nperm=nperm) return(mrca_test) } #' Tests for parent-child annotation enrichment in lineage trees #' #' \code{testEdges} performs a permutation test on a set of lineage trees to determine #' the significance of an annotation's association with parent-child relationships. #' #' @param graphs list of igraph objects with vertex annotations. #' @param field string defining the annotation field to permute. #' @param indirect if \code{FALSE} count direct connections (edges) only. If #' \code{TRUE} walk through any nodes with annotations specified in #' the \code{argument} to count indirect connections. Specifying #' \code{indirect=TRUE} with \code{exclude=NULL} will have no effect. #' @param exclude vector of strings defining \code{field} values to exclude from #' permutation. #' @param nperm number of permutations to perform. #' @param progress if \code{TRUE} show a progress bar. #' #' @return An \link{EdgeTest} object containing the test results and permutation #' realizations. #' #' @seealso Uses \link{tableEdges} and \link{permuteLabels}. #' See \link{plotEdgeTest} for plotting the permutation distributions. #' #' @examples #' \donttest{ #' # Define example tree set #' graphs <- ExampleTrees[1:10] #' #' # Perform edge test on isotypes #' x <- testEdges(graphs, "c_call", nperm=10) #' print(x) #' } #' #' @export testEdges <- function(graphs, field, indirect=FALSE, exclude=c("Germline", NA), nperm=200, progress=FALSE) { ## DEBUG # field="c_call"; exclude=c("Germline", NA); nperm=200 # Assign numeric names if graphs is an unnamed list if (is.null(names(graphs))) { names(graphs) <- 1:length(graphs) } # Function to count edge annotations # @param x list of graphs # @param field annotation field # @param exclude vector of annotation values to exclude .countEdges <- function(x, field, exclude) { edge_list <- lapply(x, tableEdges, field=field, indirect=indirect, exclude=exclude) edge_sum <- bind_rows(edge_list) %>% group_by(!!!rlang::syms(c("parent", "child"))) %>% dplyr::summarize(count=sum(!!rlang::sym("count"), na.rm=TRUE)) return(edge_sum) } # Count edges of observed data obs_sum <- .countEdges(graphs, field, exclude) if (nrow(obs_sum) == 0) { stop("No valid edges found in graphs") } # Generate edge null distribution via permutation if (progress) { pb <- progressBar(nperm) } perm_list <- list() for (i in 1:nperm) { # Permute annotations tmp_list <- lapply(graphs, permuteLabels, field=field, exclude=exclude) # Count edges tmp_sum <- .countEdges(tmp_list, field, exclude) # Update permutation set tmp_sum$iter <- i perm_list[[i]] <- tmp_sum if (progress) { pb$tick() } } perm_sum <- bind_rows(perm_list) # Test observed against permutation distribution for (i in 1:nrow(obs_sum)) { x <- obs_sum$parent[i] y <- obs_sum$child[i] # Edge count distribution d <- perm_sum$count[perm_sum$parent == x & perm_sum$child == y] # Expected mean obs_sum[i, "expected"] <- mean(d) # P-value for observed > expected f <- ecdf(d) obs_sum[i, "pvalue"] <- 1 - f(obs_sum$count[i]) } # Generate return object edge_test <- new("EdgeTest", tests=as.data.frame(obs_sum), permutations=as.data.frame(perm_sum), nperm=nperm) return(edge_test) } #### Plotting functions ##### #' Plot the results of an edge permutation test #' #' \code{plotEdgeTest} plots the results of an edge permutation test performed with #' \code{testEdges} as either a histogram or cumulative distribution function. #' #' @param data \link{EdgeTest} object returned by \link{testEdges}. #' @param color color of the histogram or lines. #' @param main_title string specifying the plot title. #' @param style type of plot to draw. One of: #' \itemize{ #' \item \code{"histogram"}: histogram of the edge count #' distribution with a red dotted line #' denoting the observed value. #' \item \code{"cdf"}: cumulative distribution function #' of edge counts with a red dotted #' line denoting the observed value and #' a blue dotted line indicating the #' p-value. #' } #' @param silent if \code{TRUE} do not draw the plot and just return the ggplot2 #' object; if \code{FALSE} draw the plot. #' @param ... additional arguments to pass to ggplot2::theme. #' #' @return A \code{ggplot} object defining the plot. #' #' @seealso See \link{testEdges} for performing the test. #' #' @examples #' \donttest{ #' # Define example tree set #' graphs <- ExampleTrees[6:10] #' #' # Perform edge test on isotypes #' x <- testEdges(graphs, "c_call", nperm=6) #' #' # Plot #' plotEdgeTest(x, color="steelblue", style="hist") #' plotEdgeTest(x, style="cdf") #' } #' #' @export plotEdgeTest <- function(data, color="black", main_title="Edge Test", style=c("histogram", "cdf"), silent=FALSE, ...) { # Check arguments style <- match.arg(style) # Extract plot data obs_sum <- rename(data@tests, "Parent"="parent", "Child"="child") perm_sum <- rename(data@permutations, "Parent"="parent", "Child"="child") if (style == "histogram") { # Plot edge null distribution p1 <- ggplot(perm_sum, aes(x=!!rlang::sym("count"))) + baseTheme() + ggtitle(main_title) + xlab("Number of edges") + ylab("Number of realizations") + geom_histogram(bins=50, fill=color, color=NA) + geom_vline(data=obs_sum, aes(xintercept=!!rlang::sym("count")), color="firebrick", linetype=3, linewidth=0.75) + facet_grid("Child ~ Parent", labeller=label_both, scales="free") } else if (style == "cdf") { # Plot ECDF of edge null distribution p1 <- ggplot(perm_sum, aes(x=!!rlang::sym("count"))) + baseTheme() + ggtitle(main_title) + xlab("Number of edges") + ylab("P-value") + stat_ecdf(color=color, linewidth=1) + geom_vline(data=obs_sum, aes(xintercept=!!rlang::sym("count")), color="firebrick", linetype=3, linewidth=0.75) + geom_hline(data=obs_sum, aes(yintercept=!!rlang::sym("pvalue")), color="steelblue", linetype=3, linewidth=0.75) + facet_grid("Child ~ Parent", labeller=label_both, scales="free") } # Add additional theme elements p1 <- p1 + do.call(theme, list(...)) # Plot if (!silent) { plot(p1) } invisible(p1) } #' Plot the results of a founder permutation test #' #' \code{plotMRCATest} plots the results of a founder permutation test performed with #' \code{testMRCA}. #' #' @param data \link{MRCATest} object returned by \link{testMRCA}. #' @param color color of the histogram or lines. #' @param main_title string specifying the plot title. #' @param style type of plot to draw. One of: #' \itemize{ #' \item \code{"histogram"}: histogram of the annotation count #' distribution with a red dotted line #' denoting the observed value. #' \item \code{"cdf"}: cumulative distribution function #' of annotation counts with a red dotted #' line denoting the observed value and #' a blue dotted line indicating the #' p-value. #' } #' @param silent if \code{TRUE} do not draw the plot and just return the ggplot2 #' object; if \code{FALSE} draw the plot. #' @param ... additional arguments to pass to ggplot2::theme. #' #' @return A \code{ggplot} object defining the plot. #' #' @seealso See \link{testEdges} for performing the test. #' #' @examples #' \donttest{ #' # Define example tree set #' graphs <- ExampleTrees[1:10] #' #' # Perform MRCA test on isotypes #' x <- testMRCA(graphs, "c_call", nperm=10) #' #' # Plot #' plotMRCATest(x, color="steelblue", style="hist") #' plotMRCATest(x, style="cdf") #' } #' #' @export plotMRCATest <- function(data, color="black", main_title="MRCA Test", style=c("histogram", "cdf"), silent=FALSE, ...) { # Check arguments style <- match.arg(style) # Extract plot data obs_sum <- rename(data@tests, "Annotation"="annotation") perm_sum <- rename(data@permutations, "Annotation"="annotation") if (style == "histogram") { # Plot MRCA null distribution p1 <- ggplot(perm_sum, aes(x=!!rlang::sym("count"))) + baseTheme() + ggtitle(main_title) + xlab("Number of MRCAs") + ylab("Number of realizations") + geom_histogram(fill=color, color=NA, bins=50) + geom_vline(data=obs_sum, aes(xintercept=!!rlang::sym("count")), color="firebrick", linetype=3, linewidth=0.75) + facet_wrap("Annotation", ncol=1, scales="free_y") } else if (style == "cdf") { # Plot ECDF of MRCA null distribution p1 <- ggplot(perm_sum, aes(x=!!rlang::sym("count"))) + baseTheme() + ggtitle(main_title) + xlab("Number of MRCAs") + ylab("P-value") + stat_ecdf(color=color, linewidth=1) + geom_vline(data=obs_sum, aes(xintercept=!!rlang::sym("count")), color="firebrick", linetype=3, linewidth=0.75) + geom_hline(data=obs_sum, aes(yintercept=!!rlang::sym("pvalue")), color="steelblue", linetype=3, linewidth=0.75) + facet_wrap("Annotation", nrow=1, scales="free_y") } # Add additional theme elements p1 <- p1 + do.call(theme, list(...)) # Plot if (!silent) { plot(p1) } invisible(p1) } #' Plots subtree statistics for multiple trees #' #' \code{plotSubtree} plots distributions of normalized subtree statistics for a #' set of lineage trees, broken down by annotation value. #' #' @param graphs list of igraph objects containing annotated lineage trees. #' @param field string defining the annotation field. #' @param stat string defining the subtree statistic to plot. One of: #' \itemize{ #' \item \code{outdegree}: distribution of normalized node #' outdegrees. #' \item \code{size}: distribution of normalized subtree sizes. #' \item \code{depth}: distribution of subtree depths. #' \item \code{pathlength}: distribution of maximum pathlength #' beneath nodes. #' } #' @param root name of the root (germline) node. #' @param exclude vector of strings defining \code{field} values to exclude from #' plotting. #' @param colors named vector of colors for values in \code{field}, with #' names defining annotation names \code{field} column and values #' being colors. Also controls the order in which values appear on the #' plot. If \code{NULL} alphabetical ordering and a default color palette #' will be used. #' @param main_title string specifying the plot title. #' @param legend_title string specifying the legend title. #' @param style string specifying the style of plot to draw. One of: #' \itemize{ #' \item \code{"histogram"}: histogram of the annotation count #' distribution with a red dotted line #' denoting the observed value. #' \item \code{"cdf"}: cumulative distribution function #' of annotation counts with a red #' dotted line denoting the observed #' value and a blue dotted line #' indicating the p-value. #' } #' @param silent if \code{TRUE} do not draw the plot and just return the ggplot2 #' object; if \code{FALSE} draw the plot. #' @param ... additional arguments to pass to ggplot2::theme. #' #' @return A \code{ggplot} object defining the plot. #' #' @seealso Subtree statistics are calculated with \link{summarizeSubtrees}. #' #' @examples #' # Define example tree set #' graphs <- ExampleTrees[1:10] #' #' # Violin plots of node outdegree by sample #' plotSubtrees(graphs, "sample_id", "out", style="v") #' #' # Violin plots of subtree size by sample #' plotSubtrees(graphs, "sample_id", "size", style="v") #' #' # Boxplot of node depth by isotype #' plotSubtrees(graphs, "c_call", "depth", style="b") #' #' @export plotSubtrees <- function(graphs, field, stat, root="Germline", exclude=c("Germline", NA), colors=NULL, main_title="Subtrees", legend_title="Annotation", style=c("box", "violin"), silent=FALSE, ...) { # Hack for visibility of special ggplot variables #..x.. <- NULL ## DEBUG # graphs=ExampleTrees; field="c_call"; colors=IG_COLORS; main_title="Outdegree"; root="Germline"; exclude=c("Germline", NA); style="box" # Check arguments style <- match.arg(style, several.ok=FALSE) stat <- match.arg(stat, choices=c("outdegree", "size", "depth", "pathlength"), several.ok=FALSE) # Set stat column and axis labels if (stat == "outdegree") { stat_col <- "outdegree_norm" y_lab <- "Node outdegree" } else if (stat == "size") { stat_col <- "size_norm" y_lab <- "Substree size" } else if (stat == "depth") { stat_col <- "depth_norm" y_lab <- "Depth under node" } else if (stat == "pathlength") { stat_col <- "pathlength_norm" y_lab <- "Path length under node" } else { stop("Invalid value for 'stat'. How did you get here?") } # Assign numeric names if graphs is an unnamed list if (is.null(names(graphs))) { names(graphs) <- 1:length(graphs) } # Get subtree summarizes and filter excluded annotations sum_list <- lapply(graphs, summarizeSubtrees, fields=field, root=root) sum_df <- bind_rows(sum_list, .id="GRAPH") %>% filter(!(!!rlang::sym(field) %in% exclude), is.finite(!!rlang::sym(stat_col))) # Set ordering based on color names if (!is.null(colors)) { # Assign missing levels to grey x <- unique(sum_df[[field]]) x <- sort(x[!(x %in% names(colors))]) if (length(x) > 0) { warning("The following are missing from the 'colors' argument and will be colored grey: ", paste(x, collapse=" ")) x <- setNames(rep("grey", length(x)), x) colors <- c(colors, x) } # Cast to factor sum_df[[field]] <- factor(sum_df[[field]], levels=names(colors)) } else { sum_df[[field]] <- factor(sum_df[[field]]) } # Make plot object p1 <- ggplot(sum_df, aes(x=!!rlang::sym(field), y=!!rlang::sym(stat_col))) + baseTheme() + ggtitle(main_title) + xlab("") + ylab(y_lab) + scale_y_continuous(labels=percent) + expand_limits(y=0) # Add distributions style if (style == "box") { p1 <- p1 + geom_boxplot(aes(fill=!!rlang::sym(field)), width=0.7, alpha=0.8) } else if (style == "violin") { p1 <- p1 + geom_violin(aes(fill=!!rlang::sym(field)), adjust=1.5, scale="width", trim=T, width=0.7, alpha=0.8) + geom_errorbarh(aes(xmin=after_stat(x) - 0.4, xmax=after_stat(x) + 0.4), color="black", stat="summary", fun="mean", linewidth=1.25, height=0, alpha=0.9) } # Set colors and legend if (!is.null(colors)) { p1 <- p1 + scale_fill_manual(name=legend_title, values=colors) } else { p1 <- p1 + scale_fill_discrete(name=legend_title) } # Add additional theme elements p1 <- p1 + do.call(theme, list(...)) # Plot if (!silent) { plot(p1) } invisible(p1) }alakazam/R/Lineage.R0000644000176200001440000015212315060255526013735 0ustar liggesusers# Ig lineage reconstruction via maximum parsimony #' @include Classes.R NULL #### Preprocessing functions #### #' Generate a ChangeoClone object for lineage construction #' #' \code{makeChangeoClone} takes a data.frame with AIRR or Change-O style columns as input and #' masks gap positions, masks ragged ends, removes duplicate sequences, and merges #' annotations associated with duplicate sequences. It returns a \code{ChangeoClone} #' object which serves as input for lineage reconstruction. \strong{Note}: To use the #' most recent methods for building, visualizing and analyzing #' trees, use the R package [Dowser](https://dowser.readthedocs.io). #' #' @param data data.frame containing the AIRR or Change-O data for a clone. See Details #' for the list of required columns and their default values. #' @param id name of the column containing sequence identifiers. #' @param seq name of the column containing observed DNA sequences. All #' sequences in this column must be multiple aligned. #' @param germ name of the column containing germline DNA sequences. All entries #' in this column should be identical for any given clone, and they #' must be multiple aligned with the data in the \code{seq} column. #' @param v_call name of the column containing V-segment allele assignments. All #' entries in this column should be identical to the gene level. #' @param j_call name of the column containing J-segment allele assignments. All #' entries in this column should be identical to the gene level. #' @param junc_len name of the column containing the length of the junction as a #' numeric value. All entries in this column should be identical #' for any given clone. #' @param locus name of the column containing locus specification. Must be present #' and only contain the value "IGH", representing heavy chains. #' @param clone name of the column containing the identifier for the clone. All #' entries in this column should be identical. #' @param mask_char character to use for masking and padding. #' @param max_mask maximum number of characters to mask at the leading and trailing #' sequence ends. If \code{NULL} then the upper masking bound will #' be automatically determined from the maximum number of observed #' leading or trailing Ns amongst all sequences. If set to \code{0} #' (default) then masking will not be performed. #' @param pad_end if \code{TRUE} pad the end of each sequence with \code{mask_char} #' to make every sequence the same length. #' @param text_fields text annotation columns to retain and merge during duplicate removal. #' @param num_fields numeric annotation columns to retain and sum during duplicate removal. #' @param seq_fields sequence annotation columns to retain and collapse during duplicate #' removal. Note, this is distinct from the \code{seq} and \code{germ} #' arguments, which contain the primary sequence data for the clone #' and should not be repeated in this argument. #' @param add_count if \code{TRUE} add an additional annotation column called #' \code{collapse_count} during duplicate removal that indicates the #' number of sequences that were collapsed. #' @param verbose passed on to \code{collapseDuplicates}. If \code{TRUE}, report the #' numbers of input, discarded and output sequences; otherwise, process #' sequences silently. #' #' @return A \link{ChangeoClone} object containing the modified clone. #' #' @details #' The input data.frame (\code{data}) must columns for each of the required column name #' arguments: \code{id}, \code{seq}, \code{germ}, \code{v_call}, \code{j_call}, #' \code{junc_len}, and \code{clone}. The default values are as follows: #' \itemize{ #' \item \code{id = "sequence_id"}: unique sequence identifier. #' \item \code{seq = "sequence_alignment"}: IMGT-gapped sample sequence. #' \item \code{germ = "germline_alignment"}: IMGT-gapped germline sequence. #' \item \code{v_call = "v_call"}: V segment allele call. #' \item \code{j_call = "j_call"}: J segment allele call. #' \item \code{junc_len = "junction_length"}: junction sequence length. #' \item \code{clone = "clone_id"}: clone identifier. #' } #' Additional annotation columns specified in the \code{text_fields}, \code{num_fields} #' or \code{seq_fields} arguments will be retained in the \code{data} slot of the return #' object, but are not required. If the input data.frame \code{data} already contains a #' column named \code{sequence}, which is not used as the \code{seq} argument, then that #' column will not be retained. #' #' The default columns are IMGT-gapped sequence columns, but this is not a requirement. #' However, all sequences (both observed and germline) must be multiple aligned using #' some scheme for both proper duplicate removal and lineage reconstruction. #' #' The value for the germline sequence, V-segment gene call, J-segment gene call, #' junction length, and clone identifier are determined from the first entry in the #' \code{germ}, \code{v_call}, \code{j_call}, \code{junc_len} and \code{clone} columns, #' respectively. For any given clone, each value in these columns should be identical. #' #' @seealso Executes in order \link{maskSeqGaps}, \link{maskSeqEnds}, #' \link{padSeqEnds}, and \link{collapseDuplicates}. #' Returns a \link{ChangeoClone} object which serves as input to #' \link{buildPhylipLineage}. #' #' @examples #' # Example data #' db <- data.frame(sequence_id=LETTERS[1:4], #' sequence_alignment=c("CCCCTGGG", "CCCCTGGN", "NAACTGGN", "NNNCTGNN"), #' germline_alignment="CCCCAGGG", #' v_call="Homsap IGKV1-39*01 F", #' j_call="Homsap IGKJ5*01 F", #' junction_length=2, #' clone_id=1, #' locus=rep("IGH", length=4), #' c_call=c("IGHM", "IGHG", "IGHG", "IGHA"), #' duplicate_count=1:4, #' stringsAsFactors=FALSE) #' #' #' # Without end masking #' makeChangeoClone(db, text_fields="c_call", num_fields="duplicate_count") #' #' # With end masking #' makeChangeoClone(db, max_mask=3, text_fields="c_call", num_fields="duplicate_count") #' #' @export makeChangeoClone <- function(data, id="sequence_id", seq="sequence_alignment", germ="germline_alignment", v_call="v_call", j_call="j_call", junc_len="junction_length", clone="clone_id", mask_char="N", locus="locus", max_mask=0, pad_end=FALSE, text_fields=NULL, num_fields=NULL, seq_fields=NULL, add_count=TRUE, verbose=FALSE) { # Check for valid fields check <- checkColumns(data, c(id, seq, germ, v_call, j_call, junc_len, clone, text_fields, num_fields, seq_fields, locus)) if (check != TRUE) { stop(check) } num_clones <- length(unique(data[[clone]])) if (num_clones > 1) { stop(paste0("`data` contains ",num_clones, " clone identifiers in the `",clone,"` field. Expecting one.")) } if(sum(is.na(data[[locus]])) > 0){ stop(paste("Missing values found in",locus,"column")) } if(sum(data[[locus]] != "IGH") > 0){ stop(paste("Only heavy chain (IGH) allowed in",locus,"column.", "Heavy+light chain trees only supported in Dowser: https://dowser.readthedocs.io")) } # Replace gaps with Ns and masked ragged ends tmp_df <- data[, c(id, seq, text_fields, num_fields, seq_fields)] tmp_df[[seq]] <- maskSeqGaps(tmp_df[[seq]], mask_char=mask_char, outer_only=FALSE) tmp_df[[seq]] <- maskSeqEnds(tmp_df[[seq]], mask_char=mask_char, max_mask=max_mask, trim=FALSE) germline <- maskSeqGaps(data[[germ]][1], mask_char=mask_char, outer_only=FALSE) # Pad ends if (pad_end) { tmp_df[[seq]] <- padSeqEnds(tmp_df[[seq]], pad_char=mask_char) germline <- padSeqEnds(germline, pad_char=mask_char) } seq_len <- stringi::stri_length(tmp_df[[seq]]) if (any(seq_len != seq_len[1])) { len_message <- paste0("All sequences are not the same length for data with first ", id, " = ", tmp_df[[id]][1], ".") if (!pad_end) { len_message <- paste(len_message, "Consider specifying pad_end=TRUE and verify the multiple alignment.") } else { len_message <- paste(len_message, "Verify that all sequences are properly multiple-aligned.") } stop(len_message) } # Remove duplicates tmp_df <- collapseDuplicates(tmp_df, id=id, seq=seq, text_fields=text_fields, num_fields=num_fields, seq_fields=seq_fields, add_count=add_count, verbose=verbose) # Define return object tmp_names <- names(tmp_df) if ("sequence" %in% tmp_names & seq != "sequence") { tmp_df <- tmp_df[, tmp_names != "sequence"] tmp_names <- names(tmp_df) } names(tmp_df)[tmp_names == seq] <- "sequence" names(tmp_df)[tmp_names == id] <- "sequence_id" if (length(unique(data[[junc_len]]))>1) { message("Junctions of multiple lengths found. `ChangeoClone` will use the length of the first one in slot `junc_len`.") } clone <- new("ChangeoClone", data=as.data.frame(tmp_df), clone=as.character(data[[clone]][1]), germline=germline, v_gene=getGene(data[[v_call]][1]), j_gene=getGene(data[[j_call]][1]), junc_len=data[[junc_len]][1]) return(clone) } #### PHYLIP functions #### # Create PHYLIP input files in a temporary folder # # @param clone a ChangeoClone object # @param path a directory to store the write the output files to # @return a named vector translating sequence_id (names) to PHYLIP taxa (values) writePhylipInput <- function(clone, path) { # Define PHYLIP columns nseq <- nrow(clone@data) v1 <- c(sprintf('%-9s', nseq + 1), sprintf("%-9s", "Germline"), sprintf("SAM%-6s", 1:nseq)) v2 <- c(stringi::stri_length(clone@germline), clone@germline, clone@data[["sequence"]]) phy_df <- data.frame(v1, v2, stringsAsFactors=F) # Define names vector mapping taxa names to original sequence identifiers id_map <- setNames(gsub("^\\s+|\\s+$", "", v1[-(1:2)]), clone@data[["sequence_id"]]) # Create PHYLIP input file infile <- file.path(path, "infile") if (.Platform$OS.type == "windows") { infile <- gsub("/","\\\\",infile) } write.table(phy_df, file=infile, quote=F, sep=" ", col.names=F, row.names=F) return(id_map) } # Run PHYLIP dnapars or dnaml application # # @param path temporary directory containing infile. # @param phylip_exec path to dnapars or dnaml executable. # @param verbose if TRUE suppress phylip console output. # @param onetree if TRUE save only one tree # @return TRUE if phylip ran successfully and FALSE otherwise runPhylip <- function(path, phylip_exec, verbose=FALSE, onetree=FALSE) { # Expand shell variables phylip_exec <- path.expand(phylip_exec) # Remove old files outfile <- file.path(path, "outfile") outtree <- file.path(path, "outtree") if (.Platform$OS.type == "windows") { outfile <- gsub("/","\\\\",outfile) outtree <- gsub("/","\\\\",outtree) } if (file.exists(outfile)) { file.remove(outfile) } if (file.exists(outtree)) { file.remove(outtree) } # Set platform specific options if (.Platform$OS.type == "windows") { quiet_params <- list(stdout=FALSE, stderr=FALSE) invoke <- system2 } else { quiet_params <- list(stdout=FALSE, stderr=FALSE) invoke <- system2 } # Set dnapars or dnaml options if ( grepl("dnaml$",phylip_exec) | grepl("dnaml\\.exe$",phylip_exec)){ phy_options <- c("I", "5") }else if (grepl("dnapars$",phylip_exec) | grepl("dnapars\\.exe$",phylip_exec)) { phy_options <- c("S", "Y", "I", "4", "5", ".") }else{ stop("Executable not recognized! Must end with dnapars or dnaml") } if (onetree) { phy_options <- c(phy_options, "V", "1") } params <- list(phylip_exec, input=c(phy_options, "Y"), wait=TRUE) if (!verbose) { params <- append(params, quiet_params) } # Call phylip wd <- getwd() setwd(path) status <- tryCatch(do.call(invoke, params), error=function(e) e) setwd(wd) # Return TRUE if phylip ran successfully invisible(status == 0) } # Reads in the PHYLIP outfile # # @param path the temporary folder containing the dnapars outfile # @return a character vector with each item as a line in the outfile readPhylipOutput <- function(path) { outfile <- file.path(path, "outfile") if (.Platform$OS.type == "windows") { outfile <- gsub("/","\\\\",outfile) } phylip_out <- scan(outfile, what="character", sep="\n", blank.lines.skip=FALSE, strip.white=FALSE, quiet=TRUE) return(phylip_out) } # Test for successful PHYLIP dnapars run by checking the outfile # # @param phylip_out a character vector returned by readPhylipOut # @return TRUE if trees built # FALSE if no trees built checkPhylipOutput <- function(phylip_out) { # Check for failed tree build result <- !(any(grepl('-1 trees in all found', phylip_out))) return(result) } # Extracts inferred sequences from PHYLIP dnapars or dnaml outfile # # @param phylip_out a character vector returned by readPhylipOutput # @return a list containing an id vector, a sequence vector and an annotation data.frame getPhylipInferred <- function(phylip_out) { # Process dnapars and dnaml output pars_starts = grep("From\\s+To\\s+Any Steps\\?\\s+State at upper node", phylip_out, perl=T, fixed=F) ml_start = grep("node\\s+Reconstructed sequence", phylip_out, perl=T, fixed=F) if(length(pars_starts) > 0){ seq_start <- min(pars_starts) seq_empty <- grep("^\\s*$", phylip_out[seq_start:length(phylip_out)], perl=T, fixed=F) seq_len <- seq_empty[min(which(seq_empty[-1] == (seq_empty[-length(seq_empty)] + 1)))] seq_block <- paste(phylip_out[(seq_start + 2):(seq_start + seq_len - 2)], collapse="\n") tc <- textConnection(seq_block) seq_df <- read.table(tc, as.is=T, fill=T, blank.lines.skip=F) close(tc) # Correct first line of block and remove blank rows fix.row <- c(1, which(is.na(seq_df[,1])) + 1) end_col <- ncol(seq_df) - 2 seq_df[fix.row, ] <- data.frame(cbind(0, seq_df[fix.row, 1], "no", seq_df[fix.row, 2:end_col]), stringsAsFactors=F) if (length(fix.row)>1) { seq_df <- seq_df[-(fix.row[-1] - 1), ] } # Create data.frame of inferred sequences inferred_num <- unique(grep("^[0-9]+$", seq_df[, 2], value=T)) inferred_seq <- sapply(inferred_num, function(n) { paste(t(as.matrix(seq_df[seq_df[, 2] == n, -c(1:3)])), collapse="") }) }else if(length(ml_start) > 0){ seq_start <- min(ml_start) seq_empty <- grep("^\\s*$", phylip_out[seq_start:length(phylip_out)], perl=T, fixed=F) seq_len <- max(seq_empty) seq_block <- paste(phylip_out[(seq_start + 2):(seq_start + seq_len - 2)], collapse="\n") tc <- textConnection(seq_block) seq_df <- read.table(tc, as.is=T, fill=T, blank.lines.skip=F) close(tc) # Correct first line of block and remove blank rows fix.row <- c(which(seq_df[,1]=="")) if (length(fix.row)>1) { seq_df <- seq_df[-(fix.row), ] } # Create data.frame of inferred sequences inferred_num <- unique(grep("^[0-9]+$", seq_df[, 1], value=T)) inferred_seq <- sapply(inferred_num, function(n) { paste(t(as.matrix(seq_df[seq_df[, 1] == n, -1])), collapse="") }) inferred_seq = toupper(inferred_seq) }else{ stop("Input file format not recognized") } if (length(inferred_num)>0) { return(data.frame(sequence_id=paste0("Inferred", inferred_num), sequence=inferred_seq, stringsAsFactors = FALSE)) } data.frame(sequence_id=c(), sequence=c(), stringsAsFactors = FALSE) } # Extracts graph edge list from a PHYLIP dnapars or dnaml outfile # # @param phylip_out character vector returned by readPhylipOutput # @param id_map named vector of PHYLIP taxa names (values) to sequence # identifiers (names) that will be translated. If NULL # no taxa name translation is performed # @return a data.frame of edges with columns (from, to, weight) getPhylipEdges <- function(phylip_out, id_map=NULL) { pars_start = grep('between\\s+and\\s+length', phylip_out, perl=TRUE, fixed=FALSE) ml_start = grep('Between\\s+And\\s+Length', phylip_out, perl=TRUE, fixed=FALSE) if(length(pars_start) > 0){ # Process dnapars output edge_start <- min(pars_start) edge_len <- min(grep('^\\s*$', phylip_out[edge_start:length(phylip_out)], perl=TRUE, fixed=FALSE)) edge_block <- paste(phylip_out[(edge_start + 2):(edge_start + edge_len - 2)], collapse='\n') tc <- textConnection(edge_block) edge_df <- read.table(tc, col.names=c('from', 'to', 'weight'), as.is=TRUE) close(tc) }else if(length(ml_start) > 0){ edge_start <- min(ml_start)+3 edge_len <- min(grep('^\\s*$', phylip_out[edge_start:length(phylip_out)], perl=TRUE, fixed=FALSE)) block = phylip_out[(edge_start + 0):(edge_start + edge_len - 2)] block = unlist(lapply(strsplit(block,split="\\s+"),function(x){ paste(x[1:(min(which(x == "("))-1)],collapse=" ") })) edge_block <- paste(block, collapse='\n') tc <- textConnection(edge_block) edge_df <- read.table(tc, col.names=c('from', 'to', 'weight'), as.is=TRUE) close(tc) } # Modify inferred taxa names to include "Inferred" inf_map <- unique(grep("^[0-9]+$", c(edge_df$from, edge_df$to), value=T)) names(inf_map) <- paste0("Inferred", inf_map) edge_df$from <- translateStrings(edge_df$from, inf_map) edge_df$to <- translateStrings(edge_df$to, inf_map) if (!is.null(id_map)) { # Reassign PHYLIP taxa names to sequence IDs edge_df$from <- translateStrings(edge_df$from, id_map) edge_df$to <- translateStrings(edge_df$to, id_map) } return(edge_df) } # Modify edges of phylip output # # @param edges data.frame of edges returned by getPhylipEdges # @param clone a ChangeoClone object containing sequence data # @param dist_mat DNA character distance matrix # @return a list of modified edges data.frame and clone object modifyPhylipEdges <- function(edges, clone, dist_mat=getDNAMatrix(gap=0)) { # Move germline to root position germ_idx <- which(edges$to == "Germline") edges[germ_idx, c('from', 'to')] <- edges[germ_idx, c('to', 'from')] # Calculate edge mutations for (i in 1:nrow(edges)) { if (edges$from[i] == "Germline") { seq1 <- clone@germline } else { seq1 <- clone@data[["sequence"]][clone@data[["sequence_id"]] == edges$from[i]] } seq2 <- clone@data[["sequence"]][clone@data[["sequence_id"]] == edges$to[i]] edges$weight[i] <- seqDist(seq1, seq2, dist_mat) } # Find rows zero weight edges with inferred parent nodes remove_row <- which(edges$weight == 0 & edges$from != "Germline" & grepl('^Inferred\\d+$', edges$from)) # Replace inferred parent nodes with child nodes when edge weight is zero while (length(remove_row) > 0) { # Remove first node with zero distance to parent r <- remove_row[1] r_idx <- which(edges[c('from', 'to')] == edges$from[r], arr.ind=T) edges[r_idx] <- edges$to[r] # Recalculate edge weights for modified rows r_mod <- r_idx[, 1][r_idx[, 1] != r] for (i in r_mod) { if (edges$from[i] == "Germline") { seq1 <- clone@germline } else { seq1 <- clone@data[["sequence"]][clone@data[["sequence_id"]] == edges$from[i]] } seq2 <- clone@data[["sequence"]][clone@data[["sequence_id"]] == edges$to[i]] edges$weight[i] <- seqDist(seq1, seq2, dist_mat) } # Remove row edges <- edges[-r, ] # Re-determine rows to remove remove_row <- which(edges$weight == 0 & edges$from != "Germline" & grepl('^Inferred\\d+$', edges$from)) } # Remove rows from clone keep_clone <- clone@data[["sequence_id"]] %in% unique(c(edges$from, edges$to)) clone@data <- as.data.frame(clone@data[keep_clone, ]) return(list(edges=edges, clone=clone)) } # Convert edge data.frame and clone object to igraph graph object # # @param edges data.frame of edges returned by getPhylipEdges # @param clone a ChangeoClone object containing sequence data # @return an igraph graph object phylipToGraph <- function(edges, clone) { # Create igraph object g <- igraph::graph_from_data_frame(edges, directed=T) # Add germline sequence germ_idx <- which(igraph::V(g)$name == "Germline") g <- igraph::set_vertex_attr(g, "sequence", index=germ_idx, clone@germline) # Add sample sequences and names clone_idx <- match(clone@data[["sequence_id"]], igraph::V(g)$name) g <- igraph::set_vertex_attr(g, "sequence", index=clone_idx, clone@data[["sequence"]]) # Add annotations ann_fields <- names(clone@data)[!(names(clone@data) %in% c("sequence_id", "sequence"))] for (n in ann_fields) { g <- igraph::set_vertex_attr(g, n, index=germ_idx, NA) g <- igraph::set_vertex_attr(g, n, index=clone_idx, clone@data[[n]]) } # Add edge and vertex labels igraph::V(g)$label <- igraph::V(g)$name igraph::E(g)$label <- igraph::E(g)$weight # Add graph attributes g$clone <- clone@clone g$v_gene <- clone@v_gene g$j_gene <- clone@j_gene g$junc_len <- clone@junc_len return(g) } #' Infer an Ig lineage using PHYLIP #' #' \code{buildPhylipLineage} reconstructs an Ig lineage via maximum parsimony using the #' dnapars application, or maximum likelihood using the dnaml application of the PHYLIP package. #' \strong{Note}: To use the most recent methods for building, visualizing and analyzing #' trees, use the R package [Dowser](https://dowser.readthedocs.io). #' #' @param clone \link{ChangeoClone} object containing clone data. #' @param phylip_exec absolute path to the PHYLIP dnapars executable. #' @param dist_mat character distance matrix to use for reassigning edge weights. #' Defaults to a Hamming distance matrix returned by \link{getDNAMatrix} #' with \code{gap=0}. If gap characters, \code{c("-", ".")}, are assigned #' a value of -1 in \code{dist_mat} then contiguous gaps of any run length, #' which are not present in both sequences, will be counted as a #' distance of 1. Meaning, indels of any length will increase #' the sequence distance by 1. Gap values other than -1 will #' return a distance that does not consider indels as a special case. #' @param rm_temp if \code{TRUE} delete the temporary directory after running dnapars; #' if \code{FALSE} keep the temporary directory. #' @param verbose if \code{FALSE} suppress the output of dnapars; #' if \code{TRUE} STDOUT and STDERR of dnapars will be passed to #' the console. #' @param branch_length specifies how to define branch lengths; one of \code{"mutations"} #' or \code{"distance"}. If set to \code{"mutations"} (default), then branch #' lengths represent the number of mutations between nodes. #' If set to \code{"distance"}, then branch lengths represent #' the expected number of mutations per site, unaltered from PHYLIP output. #' @param temp_path specific path to temp directory if desired. #' @param onetree if \code{TRUE} save only one tree. #' #' @return An igraph \code{graph} object defining the Ig lineage tree. Each unique input #' sequence in \code{clone} is a vertex of the tree, with additional vertices being #' either the germline (root) sequences or inferred intermediates. The \code{graph} #' object has the following attributes. #' #' Vertex attributes: #' \itemize{ #' \item \code{name}: value in the \code{sequence_id} column of the \code{data} #' slot of the input \code{clone} for observed sequences. #' The germline (root) vertex is assigned the name #' "Germline" and inferred intermediates are assigned #' names with the format \{"Inferred1", "Inferred2", ...\}. #' \item \code{sequence}: value in the \code{sequence} column of the \code{data} #' slot of the input \code{clone} for observed sequences. #' The germline (root) vertex is assigned the sequence #' in the \code{germline} slot of the input \code{clone}. #' The sequence of inferred intermediates are extracted #' from the dnapars output. #' \item \code{label}: same as the \code{name} attribute. #' } #' Additionally, each other column in the \code{data} slot of the input #' \code{clone} is added as a vertex attribute with the attribute name set to #' the source column name. For the germline and inferred intermediate vertices, #' these additional vertex attributes are all assigned a value of \code{NA}. #' #' Edge attributes: #' \itemize{ #' \item \code{weight}: Hamming distance between the \code{sequence} attributes #' of the two vertices. #' \item \code{label}: same as the \code{weight} attribute. #' } #' Graph attributes: #' \itemize{ #' \item \code{clone}: clone identifier from the \code{clone} slot of the #' input \code{ChangeoClone}. #' \item \code{v_gene}: V-segment gene call from the \code{v_gene} slot of #' the input \code{ChangeoClone}. #' \item \code{j_gene}: J-segment gene call from the \code{j_gene} slot of #' the input \code{ChangeoClone}. #' \item \code{junc_len}: junction length (nucleotide count) from the #' \code{junc_len} slot of the input \code{ChangeoClone}. #' #' Alternatively, this function will return an \code{phylo} object, which is compatible #' with the ape package. This object will contain reconstructed ancestral sequences in #' \code{nodes} attribute. #' } #' #' @details #' \code{buildPhylipLineage} builds the lineage tree of a set of unique Ig sequences via #' maximum parsimony through an external call to the dnapars application of the PHYLIP #' package. dnapars is called with default algorithm options, except for the search option, #' which is set to "Rearrange on one best tree". The germline sequence of the clone is used #' for the outgroup. #' #' Following tree construction using dnapars, the dnapars output is modified to allow #' input sequences to appear as internal nodes of the tree. Intermediate sequences #' inferred by dnapars are replaced by children within the tree having a Hamming distance #' of zero from their parent node. With the default \code{dist_mat}, the distance calculation #' allows IUPAC ambiguous character matches, where an ambiguous character has distance zero #' to any character in the set of characters it represents. Distance calculation and movement of #' child nodes up the tree is repeated until all parent-child pairs have a distance greater than zero #' between them. The germline sequence (outgroup) is moved to the root of the tree and #' excluded from the node replacement processes, which permits the trunk of the tree to be #' the only edge with a distance of zero. Edge weights of the resultant tree are assigned #' as the distance between each sequence. #' #' @references #' \enumerate{ #' \item Felsenstein J. PHYLIP - Phylogeny Inference Package (Version 3.2). #' Cladistics. 1989 5:164-166. #' \item Stern JNH, Yaari G, Vander Heiden JA, et al. B cells populating the multiple #' sclerosis brain mature in the draining cervical lymph nodes. #' Sci Transl Med. 2014 6(248):248ra107. #' } #' #' @seealso Takes as input a \link{ChangeoClone}. #' Temporary directories are created with \link{makeTempDir}. #' Distance is calculated using \link{seqDist}. #' See [igraph](http://www.rdocumentation.org/packages/igraph/topics/aaa-igraph-package) #' and [igraph.plotting](http://www.rdocumentation.org/packages/igraph/topics/plot.common) #' for working with igraph \code{graph} objects. #' #' @examples #' \dontrun{ #' # Preprocess clone #' db <- subset(ExampleDb, clone_id == 3138) #' clone <- makeChangeoClone(db, text_fields=c("sample_id", "c_call"), #' num_fields="duplicate_count") #' #' # Run PHYLIP and process output #' phylip_exec <- "~/apps/phylip-3.695/bin/dnapars" #' graph <- buildPhylipLineage(clone, phylip_exec, rm_temp=TRUE) #' #' # Plot graph with a tree layout #' library(igraph) #' plot(graph, layout=layout_as_tree, vertex.label=V(graph)$c_call, #' vertex.size=50, edge.arrow.mode=0, vertex.color="grey80") #' #' # To consider each indel event as a mutation, change the masking character #' # and distance matrix #' clone <- makeChangeoClone(db, text_fields=c("sample_id", "c_call"), #' num_fields="duplicate_count", mask_char="-") #' graph <- buildPhylipLineage(clone, phylip_exec, dist_mat=getDNAMatrix(gap=-1), #' rm_temp=TRUE) #' } #' #' @export buildPhylipLineage <- function(clone, phylip_exec, dist_mat=getDNAMatrix(gap=0), rm_temp=FALSE, verbose=FALSE, temp_path=NULL, onetree=FALSE, branch_length=c("mutations", "distance")) { # Check clone size if (nrow(clone@data) < 2) { warning("Clone ", clone@clone, " was skipped as it does not contain at least 2 unique sequences") return(NULL) } # determine branch length type branch_length <- match.arg(branch_length) # Check fields seq_len <- unique(stringi::stri_length(clone@data[["sequence"]])) germ_len <- ifelse(length(clone@germline) == 0, 0, stringi::stri_length(clone@germline)) if(germ_len == 0) { stop("Clone ", clone@clone, "does not contain a germline sequence.") } if(length(seq_len) != 1) { stop("Clone ", clone@clone, "does not contain sequences of equal length.") } if(seq_len != germ_len) { stop("The germline and input sequences are not the same length for clone ", clone@clone) } # Check dnapars access if (file.access(phylip_exec, mode=1) == -1) { stop("The file ", phylip_exec, " cannot be executed.") } # Create temporary directory if(is.null(temp_path)){ temp_path <- makeTempDir(paste0(clone@clone, "-phylip")) }else{ if(!dir.exists(temp_path)){ dir.create(temp_path) } } if (verbose) { cat("TEMP_DIR> ", temp_path, "\n", sep="") } # Run PHYLIP id_map <- writePhylipInput(clone, temp_path) runPhylip(temp_path, phylip_exec, verbose=verbose, onetree=onetree) phylip_out <- readPhylipOutput(temp_path) # Remove temporary directory if (rm_temp) { unlink(temp_path, recursive=TRUE) } # Check output for trees if (!checkPhylipOutput(phylip_out)) { warning('PHYLIP failed to generate trees for clone ', clone) return(NULL) } # Extract inferred sequences from PHYLIP output inf_df <- getPhylipInferred(phylip_out) # Extract edge table from PHYLIP output edges <- getPhylipEdges(phylip_out, id_map=id_map) clone@data <- as.data.frame(dplyr::bind_rows(clone@data, inf_df)) # Convert edges and clone data to igraph graph object if( branch_length == "mutations" ){ mod_list <- modifyPhylipEdges(edges, clone, dist_mat=dist_mat) graph <- phylipToGraph(mod_list$edges, mod_list$clone) }else{ # or just keep everything the same germ_idx <- which(edges$to == "Germline") edges[germ_idx, c('from', 'to')] <- edges[germ_idx, c('to', 'from')] graph <- phylipToGraph(edges, clone) } return(graph) } #' Convert a tree in ape \code{phylo} format to igraph \code{graph} format. #' #' \code{phyloToGraph} converts a tree in \code{phylo} format to and #' \code{graph} format. #' #' @param phylo An ape \code{phylo} object. #' @param germline If specified, places specified tip sequence as the direct #' ancestor of the tree #' #' @return A \code{graph} object representing the input tree. #' #' @details #' Convert from phylo to graph object. Uses the node.label vector to label internal nodes. Nodes #' may rotate but overall topology will remain constant. #' #' @references #' \enumerate{ #' \item Hoehn KB, Lunter G, Pybus OG - A Phylogenetic Codon Substitution Model for Antibody #' Lineages. Genetics 2017 206(1):417-427 #' https://doi.org/10.1534/genetics.116.196303 #' \item Hoehn KB, Vander Heiden JA, Zhou JQ, Lunter G, Pybus OG, Kleinstein SHK - #' Repertoire-wide phylogenetic models of B cell molecular evolution reveal #' evolutionary signatures of aging and vaccination. bioRxiv 2019 #' https://doi.org/10.1101/558825 #' } #' #' @examples #' \dontrun{ #' library(igraph) #' library(ape) #' #' #convert to phylo #' phylo = graphToPhylo(graph) #' #' #plot tree using ape #' plot(phylo,show.node.label=TRUE) #' #' #store as newick tree #' write.tree(phylo,file="tree.newick") #' #' #read in tree from newick file #' phylo_r = read.tree("tree.newick") #' #' #convert to igraph #' graph_r = phyloToGraph(phylo_r,germline="Germline") #' #' #plot graph - same as before, possibly rotated #' plot(graph_r,layout=layout_as_tree) #' } #' #' @export phyloToGraph <- function(phylo, germline="Germline") { names <- 1:length(unique(c(phylo$edge[, 1],phylo$edge[, 2]))) for(i in 1:length(phylo$tip.label)){ names[i] <- phylo$tip.label[i] } if(!is.null(phylo$node.label)){ for(j in 1:length(phylo$node.label)){ i <- i + 1 names[i] <- phylo$node.label[j] } } d <- data.frame(cbind(phylo$edge,phylo$edge.length)) names(d)=c("from", "to", "weight") if(!is.null(phylo$nodes)){ seqs <- unlist(lapply(phylo$nodes,function(x)x$sequence)) names(seqs) <- lapply(phylo$nodes,function(x)x$id) } if(!is.null(germline)){ germnode <- which(phylo$tip.label == germline) phylo$uca <- phylo$edge[phylo$edge[,2] == germnode,1] if(sum(d$from == phylo$uca) == 2){ d[d$from == phylo$uca, ]$from <- germnode d <- d[!(d$from == germnode & d$to == germnode),] }else{ row <- which(d$from == phylo$uca & d$to == germnode) d[row,]$to <- phylo$uca d[row,]$from <- germnode } } d$to <- as.character(d$to) d$from <- as.character(d$from) g <- igraph::graph_from_data_frame(d) igraph::V(g)$name <- names[as.numeric(igraph::V(g)$name)] igraph::E(g)$label <- igraph::E(g)$weight if(!is.null(phylo$nodes)){ igraph::V(g)$sequence <- seqs[igraph::V(g)$name] } return(g) } #' Convert a tree in igraph \code{graph} format to ape \code{phylo} format. #' #' \code{graphToPhylo} a tree in igraph \code{graph} format to ape \code{phylo} #' format. #' #' @param graph An igraph \code{graph} object. #' #' @return A \code{phylo} object representing the input tree. Tip and internal node names are #' stored in the \code{tip.label} and \code{node.label} vectors, respectively. #' #' @details #' Convert from igraph \code{graph} object to ape \code{phylo} object. If \code{graph} object #' was previously rooted with the germline as the direct ancestor, this will re-attach the #' germline as a descendant node with a zero branch length to a new universal common ancestor (UCA) #' node and store the germline node ID in the \code{germid} attribute and UCA node number in #' the \code{uca} attribute. Otherwise these attributes will not be specified in the \code{phylo} object. #' Using \code{phyloToGraph(phylo, germline=phylo$germid)} creates a \code{graph} object with the germline #' back as the direct ancestor. Tip and internal node names are #' stored in the \code{tip.label} and \code{node.label} vectors, respectively. #' #' @references #' \enumerate{ #' \item Hoehn KB, Lunter G, Pybus OG - A Phylogenetic Codon Substitution Model for Antibody #' Lineages. Genetics 2017 206(1):417-427 #' https://doi.org/10.1534/genetics.116.196303 #' \item Hoehn KB, Vander Heiden JA, Zhou JQ, Lunter G, Pybus OG, Kleinstein SHK - #' Repertoire-wide phylogenetic models of B cell molecular evolution reveal #' evolutionary signatures of aging and vaccination. bioRxiv 2019 #' https://doi.org/10.1101/558825 #' } #' #' @examples #' \dontrun{ #' library(igraph) #' library(ape) #' #' #convert to phylo #' phylo = graphToPhylo(graph) #' #' #plot tree using ape #' plot(phylo,show.node.label=TRUE) #' #' #store as newick tree #' write.tree(phylo,file="tree.newick") #' #' #read in tree from newick file #' phylo_r = read.tree("tree.newick") #' #' #convert to igraph #' graph_r = phyloToGraph(phylo_r,germline="Germline") #' #' #plot graph - same as before, possibly rotated #' plot(graph_r,layout=layout_as_tree) #' } #' #' @export graphToPhylo <- function(graph) { df <- igraph::as_data_frame(graph) node_counts <- table(c(df$to,df$from)) tips <- names(node_counts)[node_counts == 1] nodes <- names(node_counts)[node_counts > 1] attr <- igraph::vertex_attr(graph) seqs <- attr$sequence names(seqs) <- attr$name germline <- tips[tips %in% df$from] if(length(germline) > 0){ ucanode <- paste0(germline,"_UCA")#max(as.numeric(nodes))+1 nodes <- c(ucanode,nodes) df[df$from == germline,]$from <- ucanode row <- c(ucanode,germline,0.0, 0.0) names(row) <- c("from","to","weight", "label") df <- rbind(df, row) seqs <- c(seqs,seqs["Germline"]) names(seqs)[length(seqs)] = paste0(germline,"_UCA") } tipn <- 1:length(tips) names(tipn) <- tips noden <- (length(tips)+1):(length(tips)+length(nodes)) names(noden) <- nodes renumber <- c(tipn,noden) df$from <- as.numeric(renumber[df$from]) df$to <- as.numeric(renumber[df$to]) phylo <- list() phylo$edge <- matrix(cbind(df$from,df$to),ncol=2) phylo$edge.length <- as.numeric(df$weight) phylo$tip.label <- tips phylo$node.label <- nodes phylo$Nnode <- length(nodes) phylo$node.label <- nodes class(phylo) <- "phylo" nnodes <- length(renumber) phylo$nodes <- lapply(1:nnodes,function(x){ n <- list() n$id <- names(renumber[renumber == x]) n$sequence <- seqs[n$id] n }) phylo = ape::ladderize(phylo, right=FALSE) return(phylo) } # Reroot phylogenetic tree to have its germline sequence at a zero-length branch # to a node which is the direct ancestor of the tree's UCA. Assigns \code{uca} # to be the ancestral node to the tree's germline sequence, as \code{germid} as # the tree's germline sequence ID. # # @param tree An ape \code{phylo} object # @param germid ID of the tree's predicted germline sequence # @param resolve If \code{TRUE} reroots tree to specified germline sequnece. # usually not necessary with IgPhyML trees analyzed with HLP model. rerootGermline <- function(tree, germid, resolve=FALSE){ if(resolve) { tree <- ape::root(phy=tree, outgroup=germid, resolve.root=T, edge.label=TRUE) } tree <- ape::reorder.phylo(tree, "postorder") edges <- tree$edge rootnode <- which(tree$tip.label==germid) rootedge <- which(edges[, 2] == rootnode) rootanc <- edges[edges[, 2] == rootnode, 1] mrcaedge <- which(edges[, 1] == rootanc & edges[, 2] != rootnode) if(length(mrcaedge) > 1){ print("POLYTOMY AT ROOT!") quit(save="no", status=1, runLast=FALSE) } tree$edge.length[mrcaedge] <- tree$edge.length[mrcaedge] + tree$edge.length[rootedge] tree$edge.length[rootedge] <- 0 tree$uca <- rootanc tree$germid <- germid return(tree) } #' Read in output from IgPhyML #' #' \code{readIgphyml} reads output from the IgPhyML phylogenetics inference package for #' B cell repertoires #' #' @param file IgPhyML output file (.tab). #' @param id ID to assign to output object. #' @param format if \code{"graph"} return trees as igraph \code{graph} objects. #' if \code{"phylo"} return trees as ape \code{phylo} objects. #' @param branches if \code{"distance"} branch lengths are in expected mutations per #' site. If \code{"mutations"} branches are in expected mutations. #' @param collapse if \code{TRUE} transform branch lengths to units of substitutions, #' rather than substitutions per site, and collapse internal nodes #' separated by branches < 0.1 substitutions. Will also remove all #' internal node labels, as it makes them inconsistent. #' #' @return A list containing IgPhyML model parameters and estimated lineage trees. #' #' Object attributes: #' \itemize{ #' \item \code{param}: Data.frame of parameter estimates for each clonal #' lineage. Columns include: \code{CLONE}, which is the #' clone id; \code{NSEQ}, the total number of sequences in #' the lineage; \code{NSITE}, the number of codon sites; #' \code{TREE_LENGTH}, the sum of all branch lengths in #' the estimated lineage tree; and \code{LHOOD}, the log #' likelihood of the clone's sequences given the tree and #' parameters. Subsequent columns are parameter estimates #' from IgPhyML, which will depend on the model used. #' Parameter columns ending with \code{_MLE} are maximum #' likelihood estimates; those ending with \code{_LCI} are #' the lower 95%% confidence interval estimate; those ending #' with \code{_UCI} are the upper 95%% confidence interval #' estimate. The first line of \code{param} is for clone #' \code{REPERTOIRE}, #' which is a summary of all lineages within the repertoire. #' For this row, \code{NSEQ} is the total number of sequences, #' \code{NSITE} is the average number of sites, and #' \code{TREE_LENGTH} is the mean tree length. For most #' applications, parameter values will be the same for all #' lineages within the repertoire, so access them simply by: #' \code{$param$OMEGA_CDR_MLE[1]} to, for instance, #' get the estimate of dN/dS on the CDRs at the repertoire level. #' \item \code{trees}: List of tree objects estimated by IgPhyML. If #' \code{format="graph"} these are igraph \code{graph} objects. #' If \code{format="phylo"}, these are ape \code{phylo} objects. #' \item \code{command}: Command used to run IgPhyML. #' } #' #' @details #' \code{readIgphyml} reads output from the IgPhyML repertoire phylogenetics inference package. #' The resulting object is divided between parameter estimates (usually under the HLP19 model), #' which provide information about mutation and selection pressure operating on the sequences. #' #' Trees returned from this function are either igraph objects or phylo objects, and each may be #' visualized accordingly. Further, branch lengths in tree may represent either the expected number of #' substitutions per site (codon, if estimated under HLP or GY94 models), or the total number of #' expected substitutions per site. If the latter, internal nodes - but not tips - separated by branch #' lengths less than 0.1 are collapsed to simplify viewing. #' #' @references #' \enumerate{ #' \item Hoehn KB, Lunter G, Pybus OG - A Phylogenetic Codon Substitution Model for Antibody #' Lineages. Genetics 2017 206(1):417-427 #' https://doi.org/10.1534/genetics.116.196303 #' \item Hoehn KB, Vander Heiden JA, Zhou JQ, Lunter G, Pybus OG, Kleinstein SHK - #' Repertoire-wide phylogenetic models of B cell molecular evolution reveal #' evolutionary signatures of aging and vaccination. bioRxiv 2019 #' https://doi.org/10.1101/558825 #' } #' #' @examples #' \dontrun{ #' # Read in and plot a tree from an igphyml run #' library(igraph) #' s1 <- readIgphyml("IB+7d_lineages_gy.tsv_igphyml_stats_hlp.tab", id="+7d") #' print(s1$param$OMEGA_CDR_MLE[1]) #' plot(s1$trees[[1]], layout=layout_as_tree, edge.label=E(s1$trees[[1]])$weight) #' } #' #' @export readIgphyml <- function(file, id=NULL, format=c("graph", "phylo"), collapse=FALSE, branches=c("mutations","distance")) { # Check arguments format <- match.arg(format) branches <- match.arg(branches) out <- list() trees <- list() df <- read.table(file, sep="\t", header=TRUE, stringsAsFactors=FALSE) params <- df[, !names(df) %in% c("TREE")] names(params) = tolower(names(params)) out[["param"]] <- params out[["command"]] <- df[1, ]$TREE for (i in 2:nrow(df)) { tree <- ape::read.tree(text=df[i, ][["TREE"]]) germ_base <- paste0(df[["CLONE"]][i], "_GERM") germ_id <- tree$tip.label[grepl(germ_base,tree$tip.label)] if(length(germ_id) > 1){ stop("Can only be one tip of the form '_GERM'") } if(!ape::is.rooted(tree)){ warning(paste("Tree",germ_base,"is not rooted and should be!")) tree <- rerootGermline(tree,germ_id,resolve=TRUE) tree$node.label <- NULL } rtree <- ape::ladderize(tree) rtree$germid <- germ_id if (branches == "mutations") { rtree$edge.length <- round(rtree$edge.length*df[i, ]$NSITE, digits=1) } if (collapse) { rtree$node.label <- NULL if(branches == "mutations"){ rtree <- ape::di2multi(rtree, tol=0.1) }else{ rtree <- ape::di2multi(rtree, tol=0.0001) } } if (format == "graph") { ig <- phyloToGraph(rtree, germline=rtree$germid) trees[[df[["CLONE"]][i]]] <- ig } else if (format == "phylo") { trees[[df[["CLONE"]][i]]] <- rtree } else { stop("Format must be either 'graph' or 'phylo'.") } } out[["trees"]] <- trees if (!is.null(id)) { out$param$id <- id } return(out) } #' Combine IgPhyML object parameters into a dataframe #' #' \code{combineIgphyml} combines IgPhyML object parameters into a data.frame. #' #' @param iglist list of igphyml objects returned by \link{readIgphyml}. #' Each must have an \code{id} column in its \code{param} attribute, #' which can be added automatically using the \code{id} option of #' \code{readIgphyml}. #' @param format string specifying whether each column of the resulting data.frame #' should represent a parameter (\code{wide}) or if #' there should only be three columns; i.e. id, variable, and value #' (\code{long}). #' #' @return A data.frame containing HLP model parameter estimates for all igphyml objects. #' Only parameters shared among all objects will be returned. #' #' @details #' \code{combineIgphyml} combines repertoire-wide parameter estimates from multiple igphyml #' objects produced by readIgphyml into a dataframe that can be easily used for plotting and #' other hypothesis testing analyses. #' #' All igphyml objects used must have an "id" column in their \code{param} attribute, which #' can be added automatically from the \code{id} flag of \code{readIgphyml}. #' #' @references #' \enumerate{ #' \item Hoehn KB, Lunter G, Pybus OG - A Phylogenetic Codon Substitution Model for Antibody #' Lineages. Genetics 2017 206(1):417-427 #' https://doi.org/10.1534/genetics.116.196303 #' \item Hoehn KB, Vander Heiden JA, Zhou JQ, Lunter G, Pybus OG, Kleinstein SHK - #' Repertoire-wide phylogenetic models of B cell molecular evolution reveal #' evolutionary signatures of aging and vaccination. bioRxiv 2019 #' https://doi.org/10.1101/558825 #' } #' #' @seealso \link{readIgphyml} #' #' @examples #' \dontrun{ #' # Read in and combine two igphyml runs #' s1 <- readIgphyml("IB+7d_lineages_gy.tsv_igphyml_stats_hlp.tab", id="+7d") #' s2 <- readIgphyml("IB+7d_lineages_gy.tsv_igphyml_stats_hlp.tab", id="s2") #' combineIgphyml(list(s1, s2)) #' } #' #' @export combineIgphyml <- function(iglist, format=c("wide", "long")) { # Check arguments format <- match.arg(format) ordered_params <- c( "id", "nseq", "nsite", "lhood", "tree_length", "omega_fwr_mle", "omega_fwr_lci", "omega_fwr_uci", "omega_cdr_mle", "omega_cdr_lci", "omega_cdr_uci", "kappa_mle", "kappa_lci", "kappa_uci", "wrc_2_mle", "wrc_2_lci", "wrc_2_uci", "gyw_0_mle", "gyw_0_lci", "gyw_0_uci", "wa_1_mle", "wa_1_lci", "wa_1_uci", "tw_0_mle", "tw_0_lci", "tw_0_uci", "syc_2_mle", "syc_2_lci", "syc_2_uci", "grs_0_mle", "grs_0_lci", "grs_0_uci") paramCount <- table(unlist(lapply(iglist, function(x) names(x$param)))) params <- names(paramCount[paramCount == max(paramCount)]) params <- ordered_params[ordered_params %in% params] if (sum(params == "id") == 0) { message <- "id not specified in objects. Use 'id' flag in readIgphyml." stop(message) } repertoires <- lapply(iglist, function(x) x$param[1, params]) combined <- dplyr::bind_rows(repertoires) if (format == "long") { combined <- tidyr::gather(combined, "variable", "value", -!!rlang::sym("id")) combined$variable <- factor(combined$variable, levels=params) } return(combined) }alakazam/R/Data.R0000644000176200001440000003172414312265171013241 0ustar liggesusers# Documentation and definitions for data and constants #### Sysdata #### # 1x20 vector of default amino acid hydropathy scores # HYDROPATHY_KYTJ82 # 1x20 vector of default amino acid bulkiness scores # BULKINESS_ZIMJ68 # 1x20 vector of default amino acid polarity scores # POLARITY_GRAR74 # 1x7 vector of default amino acid pK values # PK_EMBOSS #### Data #### #' Example AIRR database #' #' A small example database subset from Laserson and Vigneault et al, 2014. #' #' @format A data.frame with the following AIRR style columns: #' \itemize{ #' \item \code{sequence_id}: Sequence identifier #' \item \code{sequence_alignment}: IMGT-gapped observed sequence. #' \item \code{germline_alignment}: IMGT-gapped germline sequence. #' \item \code{germline_alignment_d_mask}: IMGT-gapped germline sequence with N, P and #' D regions masked. #' \item \code{v_call}: V region allele assignments. #' \item \code{v_call_genotyped}: TIgGER corrected V region allele assignment. #' \item \code{d_call}: D region allele assignments. #' \item \code{j_call}: J region allele assignments. #' \item \code{c_call}: Isotype (C region) assignment. #' \item \code{junction}: Junction region sequence. #' \item \code{junction_length}: Length of the junction region in nucleotides. #' \item \code{np1_length}: Combined length of the N and P regions proximal #' to the V region. #' \item \code{np2_length}: Combined length of the N and P regions proximal #' to the J region. #' \item \code{duplicate_count}: Copy count (number of duplicates) of the sequence. #' \item \code{clone_id}: Change-O assignment clonal group identifier. #' \item \code{sample_id}: Sample identifier. Time in relation to vaccination. #' } #' #' @seealso \link{ExampleDbChangeo} \link{ExampleTrees} #' #' @references #' \enumerate{ #' \item Laserson U and Vigneault F, et al. High-resolution antibody dynamics of #' vaccine-induced immune responses. #' Proc Natl Acad Sci USA. 2014 111:4928-33. #' } "ExampleDb" #' Single sequence AIRR database #' #' A database with just one sequence from \code{ExampleDb} and additional AIRR Rearrangement fields #' containing alignment information. The sequence was reanalyzed with a recent versions of #' alignment software (IgBLAST 1.16.0) and reference germlines (IMGT 2020-08-12). #' #' @seealso \link{ExampleDb} "SingleDb" #' Example Change-O database #' #' A small example database subset from Laserson and Vigneault et al, 2014. #' #' @format A data.frame with the following Change-O style columns: #' \itemize{ #' \item \code{SEQUENCE_ID}: Sequence identifier #' \item \code{SEQUENCE_IMGT}: IMGT-gapped observed sequence. #' \item \code{GERMLINE_IMGT_D_MASK}: IMGT-gapped germline sequence with N, P and #' D regions masked. #' \item \code{V_CALL}: V region allele assignments. #' \item \code{V_CALL_GENOTYPED}: TIgGER corrected V region allele assignment. #' \item \code{D_CALL}: D region allele assignments. #' \item \code{J_CALL}: J region allele assignments. #' \item \code{JUNCTION}: Junction region sequence. #' \item \code{JUNCTION_LENGTH}: Length of the junction region in nucleotides. #' \item \code{NP1_LENGTH}: Combined length of the N and P regions proximal #' to the V region. #' \item \code{NP2_LENGTH}: Combined length of the N and P regions proximal #' to the J region. #' \item \code{SAMPLE}: Sample identifier. Time in relation to vaccination. #' \item \code{ISOTYPE}: Isotype assignment. #' \item \code{DUPCOUNT}: Copy count (number of duplicates) of the sequence. #' \item \code{CLONE}: Change-O assignment clonal group identifier. #' } #' #' @seealso \link{ExampleDb} \link{ExampleTrees} #' #' @references #' \enumerate{ #' \item Laserson U and Vigneault F, et al. High-resolution antibody dynamics of #' vaccine-induced immune responses. #' Proc Natl Acad Sci USA. 2014 111:4928-33. #' } "ExampleDbChangeo" #' Small example 10x Genomics Ig V(D)J sequences from CD19+ B cells isolated from PBMCs of a healthy #' human donor. Down-sampled from data provided by 10x Genomics under a Creative Commons Attribute license, #' and processed with their Cell Ranger pipeline. #' #' @format A data.frame with the following AIRR style columns: #' \itemize{ #' \item \code{sequence_id}: Sequence identifier #' \item \code{sequence_alignment}: IMGT-gapped observed sequence. #' \item \code{germline_alignment}: IMGT-gapped germline sequence. #' \item \code{v_call}: V region allele assignments. #' \item \code{d_call}: D region allele assignments. #' \item \code{j_call}: J region allele assignments. #' \item \code{c_call}: Isotype (C region) assignment. #' \item \code{junction}: Junction region sequence. #' \item \code{junction_length}: Length of the junction region in nucleotides. #' \item \code{np1_length}: Combined length of the N and P regions proximal #' to the V region. #' \item \code{np2_length}: Combined length of the N and P regions proximal #' to the J region. #' \item \code{umi_count}: Number of unique molecular identifies atttributed to sequence. #' \item \code{cell_id}: Cell identifier. #' \item \code{locus}: Genomic locus of sequence. #' } #' #' #' @references #' \enumerate{ #' \item Data source: https://support.10xgenomics.com/single-cell-vdj/datasets/2.2.0/vdj_v1_hs_cd19_b #' \item License: https://creativecommons.org/licenses/by/4.0/ #' } "Example10x" #' Example Ig lineage trees #' #' A set of Ig lineage trees generated from the \code{ExampleDb} file, subset to #' only those trees with at least four nodes. #' #' @format A list of igraph objects output by \link{buildPhylipLineage}. #' Each node of each tree has the following annotations (vertex attributes): #' \itemize{ #' \item \code{sample_id}: Sample identifier(s). Time in relation to vaccination. #' \item \code{c_call}: Isotype assignment(s). #' \item \code{duplication_count}: Copy count (number of duplicates) of the sequence. #' } #' #' @seealso \link{ExampleTrees} "ExampleTrees" #### Constants #### #' Default colors #' #' Default color palettes for DNA characters, Ig isotypes, and TCR chains. #' #' @format Named character vectors with hexcode colors as values. #' \itemize{ #' \item \code{DNA_COLORS}: DNA character colors #' \code{c("A", "C", "G", "T")}. #' \item \code{IG_COLORS}: Ig isotype colors #' \code{c("IGHA", "IGHD", "IGHE", "IGHG", "IGHM", "IGHK", "IGHL")}. #' \item \code{TR_COLORS}: TCR chain colors #' \code{c("TRA", "TRB", "TRD", "TRG")}. #' } #' #' @examples #' # IG_COLORS as an isotype color set for ggplot #' isotype <- c("IGHG", "IGHM", "IGHM", "IGHA") #' db <- data.frame(x=1:4, y=1:4, iso=isotype) #' g1 <- ggplot(db, aes(x=x, y=y, color=iso)) + #' scale_color_manual(name="Isotype", values=IG_COLORS) + #' geom_point(size=10) #' plot(g1) #' #' # DNA_COLORS to translate nucleotide values to a vector of colors #' # for use in base graphics plots #' seq <- c("A", "T", "T", "C") #' colors <- translateStrings(seq, setNames(names(DNA_COLORS), DNA_COLORS)) #' plot(1:4, 1:4, col=colors, pch=16, cex=6) #' #' @name DEFAULT_COLORS NULL #' @rdname DEFAULT_COLORS #' @export DNA_COLORS <- c("A"="#64F73F", "C"="#FFB340", "G"="#EB413C", "T"="#3C88EE") #' @rdname DEFAULT_COLORS #' @export IG_COLORS <- c("IGHA"="#377EB8", "IGHD"="#FF7F00", "IGHE"="#E41A1C", "IGHG"="#4DAF4A", "IGHM"="#984EA3", "IGHK"="#E5C494", "IGHL"="#FFD92F") #' @rdname DEFAULT_COLORS #' @export TR_COLORS <- c("TRA"="#CBD5E8", "TRB"="#F4CAE4", "TRD"="#FDCDAC", "TRG"="#E6F5C9") #' IUPAC ambiguous characters #' #' A translation list mapping IUPAC ambiguous characters code to corresponding nucleotide #' amino acid characters. #' #' @format A list with single character codes as names and values containing character #' vectors that define the set of standard characters that match to each each #' ambiguous character. #' \itemize{ #' \item \code{IUPAC_DNA}: DNA ambiguous character translations. #' \item \code{IUPAC_AA}: Amino acid ambiguous character translations. #' \item \code{DNA_IUPAC}: Ordered DNA to ambiguous characters #' } #' #' @name IUPAC_CODES NULL #' @rdname IUPAC_CODES #' @export IUPAC_DNA <- list("A"="A", "C"="C", "G"="G", "T"="T", "M"=c("A","C"), "R"=c("A","G"), "W"=c("A","T"), "S"=c("C","G"), "Y"=c("C","T"), "K"=c("G","T"), "V"=c("A","C","G"), "H"=c("A","C","T"), "D"=c("A","G","T"), "B"=c("C","G","T"), "N"=c("A","C","G","T")) #' @rdname IUPAC_CODES #' @export IUPAC_AA <- list("A"="A", "B"=c("N","R"), "C"="C", "D"="D", "E"="E", "F"="F", "G"="G", "H"="H", "I"="I", "J"=c("I","L"), "K"="K", "L"="L", "M"="M", "N"="N", "P"="P", "Q"="Q", "R"="R", "S"="S", "T"="T", "V"="V", "W"="W", "X"=c("A","B","C","D","E","F","G","H", "I","J","K","L","M","N","P","Q", "R","S","T","V","W","X","Y","Z", "*"), "Y"="Y", "Z"=c("E","Q"), "*"="*") #' @rdname IUPAC_CODES #' @export DNA_IUPAC <- list( "A"="A", "C"="C", "G"="G", "T"="T", "AC"="M", "AG"="R", "AT"="W", "CG"="S", "CT"="Y", "GT"="K", "ACG"="V", "ACT"="H", "AGT"="D", "CGT"="B", "ACGT"="N") #' Amino acid abbreviation translations #' #' Mappings of amino acid abbreviations. #' #' @format Named character vector defining single-letter character codes to #' three-letter abbreviation mappings. #' #' @name ABBREV_AA #' #' @examples #' aa <- c("Ala", "Ile", "Trp") #' translateStrings(aa, ABBREV_AA) #' #' @export ABBREV_AA <- c("A"="Ala", "R"="Arg", "N"="Asn", "D"="Asp", "C"="Cys", "Q"="Gln", "E"="Glu", "G"="Gly", "H"="His", "I"="Ile", "L"="Leu", "K"="Lys", "M"="Met", "F"="Phe", "P"="Pro", "S"="Ser", "T"="Thr", "W"="Trp", "Y"="Tyr", "V"="Val") #' IMGT V-segment regions #' #' A list defining the boundaries of V-segment framework regions (FWRs) and complementarity #' determining regions (CDRs) for IMGT-gapped immunoglobulin (Ig) nucleotide sequences #' according to the IMGT numbering scheme. #' #' @format A list with regions named one of \code{c("fwr1", "cdr1", "fwr2", "cdr2", "fwr3")} #' with values containing a numeric vector of length two defining the #' \code{c(start, end)} positions of the named region. #' #' @references #' \url{https://www.imgt.org/} #' #' @export IMGT_REGIONS <- list("fwr1"=c(1, 78), "cdr1"=c(79, 114), "fwr2"=c(115, 165), "cdr2"=c(166, 195), "fwr3"=c(196, 312))alakazam/R/Diversity.R0000644000176200001440000016742615066734040014366 0ustar liggesusers# Clonal diversity analysis #' @include Classes.R NULL #### Coverage functions #### #' Calculate sample coverage #' #' \code{calcCoverage} calculates the sample coverage estimate, a measure of sample #' completeness, for varying orders using the method of Chao et al, 2015, falling back #' to the Chao1 method in the first order case. #' #' @param x numeric vector of abundance counts. #' @param r coverage order to calculate. #' #' @return The sample coverage of the given order \code{r}. #' #' @references #' \enumerate{ #' \item Chao A. Nonparametric Estimation of the Number of Classes in a Population. #' Scand J Stat. 1984 11, 265270. #' \item Chao A, et al. Unveiling the species-rank abundance distribution by #' generalizing the Good-Turing sample coverage theory. #' Ecology. 2015 96, 11891201. #' } #' #' @seealso #' Used by \link{alphaDiversity}. #' #' @examples #' # Calculate clone sizes #' clones <- countClones(ExampleDb, groups="sample_id") #' #' # Calculate 1first order coverage for a single sample #' calcCoverage(clones$seq_count[clones$sample_id == "+7d"]) #' #' @export calcCoverage <- function(x, r=1) { # Use traditional calculation for 1st order coverage if (r == 1) { return(calcChao1Coverage(x)) } # Use general form for 2nd order and higher coverage x <- x[x >= 1] n <- sum(x) fr <- sum(x == r) fs <- sum(x == r + 1) if (fr == 0) { stop("Cannot calculate coverage of order ", r, ". No abundance data with count=", r, ".") } if (fs == 0) { stop("Cannot calculate coverage of order ", r, ". No abundance data with count=", r + 1, ".") } a <- factorial(r)*fr / sum(x[x >= r]^r) b <- ((n - r)*fr / ((n - r)*fr + (r + 1)*fs))^r rC <- 1 - a*b return(rC) } # Calculate first order coverage # # @param x a numeric vector of species abundance as counts # # @returns Coverage estimate. calcChao1Coverage <- function(x) { x <- x[x >= 1] n <- sum(x) f1 <- sum(x == 1) f2 <- sum(x == 2) if (f2 > 0) { rC1 <- 1 - (f1 / n) * (((n - 1) * f1) / ((n - 1) * f1 + 2 * f2)) } else { rC1 <- 1 - (f1 / n) * (((n - 1) * (f1 - 1)) / ((n - 1) * (f1 - 1) + 2)) } return(rC1) } # Calculates diversity under rarefaction # # Calculates Hill numbers under rarefaction # # @param x vector of observed abundance counts. # @param m the sequence count to rarefy to. # # @return The first order coverage estimate inferRarefiedCoverage <- function(x, m) { x <- x[x >= 1] n <- sum(x) if (m > n) { stop("m must be <= the total count of observed sequences.") } # Unrarefied case if (m == n) { return(calcCoverage(x, r=1)) } # Calculate rarefied coverage # TODO: Read up on this and fix #rC1 <- iNEXT:::Chat.Ind(x, m) y <- x[(n - x) >= m] rC1 <- 1 - sum(y/n * exp(lgamma(n - y + 1) - lgamma(n - m - y + 1) - lgamma(n) + lgamma(n - m))) return(rC1) } #### Abundance functions #### # Calculate undetected species # # Calculates the lower bound of undetected species counts using the Chao1 estimator. # # @param x vector of observed abundance counts. # # @return The count of undetected species. inferUnseenCount <- function(x) { x <- x[x >= 1] n <- sum(x) f1 <- sum(x == 1) f2 <- sum(x == 2) if (f2 > 0) { f0 <- ceiling(((n - 1) * f1^2) / (n * 2 * f2)) } else { f0 <- ceiling(((n - 1) * f1 * (f1 - 1)) / (n * 2)) } return(f0) } # Define undetected species relative abundances # # @param x vector of detected species abundance counts. # # @return An adjusted detected species relative abundance distribution. inferUnseenAbundance <- function(x) { x <- x[x >= 1] # Coverage rC1 <- calcCoverage(x, r=1) # Unseen count f0 <- inferUnseenCount(x) # Assign unseen relative abundance p <- rep((1 - rC1) / f0, f0) return(p) } # Adjustement to observed relative abundances # # @param x vector of observed abundance counts # # @return An adjusted observed species relative abundance distribution. adjustObservedAbundance <- function(x) { x <- x[x >= 1] n <- sum(x) # Coverage rC1 <- calcCoverage(x, r=1) # Calculate tuning parameter lambda <- (1 - rC1) / sum(x/n * exp(-x)) # Define adjusted relative abundance p <- x/n * (1 - lambda * exp(-x)) return(p) } # Combined unseen inferrence and observed abundance adjustment # # @param x named vector of observed abundance counts by clone. # # @return A vector containing the complete inferred abundance distribution. # Unseen species will be denote by a clone name starting with "U". inferCompleteAbundance <- function(x) { # Infer complete abundance distribution p1 <- adjustObservedAbundance(x) p2 <- inferUnseenAbundance(x) names(p2) <- if (length(p2) > 0) { paste0("U", 1:length(p2)) } else { NULL } return(c(p1, p2)) } #' Tabulates clones sizes #' #' \code{countClones} determines the number of sequences and total copy number of #' clonal groups. #' #' @param data data.frame with columns containing clonal assignments. #' @param groups character vector defining \code{data} columns containing grouping #' variables. If \code{groups=NULL}, then do not group data. #' @param copy name of the \code{data} column containing copy numbers for each #' sequence. If this value is specified, then total copy abundance #' is determined by the sum of copy numbers within each clonal group. #' @param clone name of the \code{data} column containing clone identifiers. #' @param cell_id name of the \code{data} column containing cell identifiers. If #' \code{cell_id} column is not present the function will assume bulk data. #' @param remove_na removes rows with \code{NA} values in the clone column if \code{TRUE} and issues a warning. #' Otherwise, keeps those rows and considers \code{NA} as a clone in the final counts #' and relative abundances. #' #' @return A data.frame summarizing clone counts and frequencies with columns: #' \itemize{ #' \item \code{clone_id}: clone identifier. This is the default column #' name, specified with \code{clone='clone_id'}. #' If the function call uses Change-O #' formatted data and \code{clone='CLONE'}, this #' column will have name \code{CLONE}. #' \item \code{seq_count}: total number of sequences for the clone. #' \item \code{seq_freq}: frequency of the clone as a fraction of the total #' number of sequences within each group. #' \item \code{copy_count}: sum of the copy counts in the \code{copy} column. #' Only present if the \code{copy} argument is #' specified. #' \item \code{copy_freq}: frequency of the clone as a fraction of the total #' copy number within each group. Only present if #' the \code{copy} argument is specified. #' } #' Also includes additional columns specified in the \code{groups} argument. #' #' @examples #' # Without copy numbers #' clones <- countClones(ExampleDb, groups="sample_id") #' #' # With copy numbers and multiple groups #' clones <- countClones(ExampleDb, groups=c("sample_id", "c_call"), copy="duplicate_count") #' #' @export countClones <- function(data, groups=NULL, copy=NULL, clone="clone_id", cell_id="cell_id", remove_na=TRUE) { # Check input check <- checkColumns(data, c(clone, copy, groups)) if (check != TRUE) { warning(check) # instead of throwing an error and potentially disrupting a workflow } # Don't allow a copy column for single-cell data as it doesn't make sense to count copies if (cell_id %in% names(data) & !is.null(copy)) { stop("Copy column specification not allowed for single-cell or mixed bulk and single-cell data. A cell_id column is present in the dataframe single-cell or mixed bulk and single-cell data is assumed.") } # Handle NAs if (remove_na) { bool_na <- is.na(data[, clone]) if (any(bool_na)) { if (!all(bool_na)){ msg <- paste0("NA(s) found in ", sum(bool_na), " row(s) of the ", clone, " column and excluded from tabulation") warning(msg) } data <- data[!bool_na, ] } } # Tabulate clonal abundance if (cell_id %in% names(data)) { # Handle single-cell and mixed bulk and single-cell case data_sc <- data %>% dplyr::filter(!is.na(!!rlang::sym(cell_id))) data_sc[[cell_id]] <- as.character(data_sc[[cell_id]]) data_blk <- data %>% dplyr::filter(is.na(!!rlang::sym(cell_id))) if (nrow(data_blk) > 0){ data_blk[[cell_id]] <- paste0("bulk", 1:nrow(data_blk)) #dummy cell_id for bulk data } data <- bind_rows(data_sc, data_blk) clone_tab <- data %>% dplyr::select(!!!rlang::syms(c(groups, clone, cell_id))) %>% dplyr::distinct() %>% dplyr::group_by(!!!rlang::syms(c(groups, clone))) %>% dplyr::summarize(seq_count=n()) %>% dplyr::mutate(seq_freq=!!rlang::sym("seq_count")/sum(!!rlang::sym("seq_count"), na.rm=TRUE)) %>% dplyr::arrange(desc(!!rlang::sym("seq_count"))) } else { if (is.null(copy)) { clone_tab <- data %>% dplyr::group_by(!!!rlang::syms(c(groups, clone))) %>% dplyr::summarize(seq_count=n()) %>% dplyr::mutate(seq_freq=!!rlang::sym("seq_count")/sum(!!rlang::sym("seq_count"), na.rm=TRUE)) %>% dplyr::arrange(desc(!!rlang::sym("seq_count"))) } else { clone_tab <- data %>% dplyr::group_by(!!!rlang::syms(c(groups, clone))) %>% dplyr::summarize(seq_count=length(.data[[clone]]), copy_count=sum(.data[[copy]], na.rm=TRUE)) %>% dplyr::mutate(seq_freq=!!rlang::sym("seq_count")/sum(!!rlang::sym("seq_count"), na.rm=TRUE), copy_freq=!!rlang::sym("copy_count")/sum(!!rlang::sym("copy_count"), na.rm=TRUE)) %>% dplyr::arrange(desc(!!rlang::sym("copy_count"))) } } return(clone_tab) } # Perform boostrap abundance calculation # # @param x named vector of observed abundance values. # @param n number of samples to draw from the estimate complete abundance distribution. # @param nboot number of bootstrap realizations. # @param method complete abundance inferrence method. # One of "before", "after" or "none" for complete abundance distribution # inferrence before sampling, after sampling, or uncorrected, respectively. # # @return A matrix of bootstrap results. bootstrapAbundance <- function(x, n, nboot=200, method="before") { ## DEBUG # x=abund_obs; method="before" # Check arguments method <- match.arg(method) if (method == "before") { # Calculate estimated complete abundance distribution p <- inferCompleteAbundance(x) # Bootstrap abundance boot_mat <- rmultinom(nboot, n, p) / n } else if (method == "after") { # Calculate estimated complete abundance distribution p <- x / sum(x, na.rm=TRUE) boot_sam <- rmultinom(nboot, n, p) boot_list <- apply(boot_sam, 2, inferCompleteAbundance) # Convert to matrix boot_names <- unique(unlist(sapply(boot_list, names))) boot_mat <- matrix(0, nrow=length(boot_names), ncol=nboot) rownames(boot_mat) <- boot_names for (i in 1:nboot) { boot_mat[names(boot_list[[i]]), i] <- boot_list[[i]] } } else if (method == "none") { # Raw sampling of input p <- x / sum(x, na.rm=TRUE) boot_sam <- rmultinom(nboot, n, p) } else { stop("Invalid method: ", method) } return(boot_mat) } #' Estimates the complete clonal relative abundance distribution #' #' \code{estimateAbundance} estimates the complete clonal relative abundance distribution #' and confidence intervals on clone sizes using bootstrapping. #' #' @param data data.frame with Change-O style columns containing clonal assignments. #' @param clone name of the \code{data} column containing clone identifiers. #' @param copy name of the \code{data} column containing copy numbers for each #' sequence. If \code{copy=NULL} (the default), then clone abundance #' is determined by the number of sequences. If a \code{copy} column #' is specified, then clone abundances is determined by the sum of #' copy numbers within each clonal group. #' @param group name of the \code{data} column containing group identifiers. #' If \code{NULL} then no grouping is performed and the \code{group} #' column of the output will contain the value \code{NA} for each row. #' @param min_n minimum number of observations to sample. #' A group with less observations than the minimum is excluded. #' @param max_n maximum number of observations to sample. If \code{NULL} then no #' maximum is set. #' @param uniform if \code{TRUE} then uniformly resample each group to the same #' number of observations. If \code{FALSE} then allow each group to #' be resampled to its original size or, if specified, \code{max_size}. #' @param ci confidence interval to calculate; the value must be between 0 and 1. #' @param nboot number of bootstrap realizations to generate. #' @param cell_id name of the \code{data} column containing cell identifiers. If #' \code{cell_id=NULL} then the function will assume bulk data. #' @param progress if \code{TRUE} show a progress bar. #' #' @return A \link{AbundanceCurve} object summarizing the abundances. #' #' @references #' \enumerate{ #' \item Chao A. Nonparametric Estimation of the Number of Classes in a Population. #' Scand J Stat. 1984 11, 265270. #' \item Chao A, et al. Rarefaction and extrapolation with Hill numbers: #' A framework for sampling and estimation in species diversity studies. #' Ecol Monogr. 2014 84:45-67. #' \item Chao A, et al. Unveiling the species-rank abundance distribution by #' generalizing the Good-Turing sample coverage theory. #' Ecology. 2015 96, 11891201. #' } #' #' @seealso #' See \link{plotAbundanceCurve} for plotting of the abundance distribution. #' See \link{alphaDiversity} for a similar application to clonal diversity. #' #' @examples #' abund <- estimateAbundance(ExampleDb, group="sample_id", nboot=100) #' #' @export estimateAbundance <- function(data, clone="clone_id", copy=NULL, group=NULL, min_n=30, max_n=NULL, uniform=TRUE, ci=0.95, nboot=200, cell_id="cell_id", progress=FALSE) { # TODO: # Add alakazam style cell_id=NULL, # similar to distToNearest # filter based on locusValues # if cell_id # for rows that have unique cell_id, ok # if rows have cell_id not unique, count only once # if not cell_id, count heavy chains (locusValues will be IGH) # If mixed bulk and sc do calculation but raise warning because different type of abundances ## DEBUG # data=ExampleDb; group="sample_id"; clone="clone_id"; copy=NULL; min_n=1; max_n=NULL; ci=0.95; uniform=F; nboot=100 # copy="duplicate_count" # group=NULL # Hack for visibility of dplyr variables #. <- NULL # Check input if (!is.data.frame(data)) { stop("Input data is not a data.frame") } # Check columns that are reported are real columns (can be NULL) check <- checkColumns(data, c(clone, copy, group)) if (check != TRUE) { stop(check) } # Set confidence interval ci_z <- ci + (1 - ci) / 2 ci_x <- qnorm(ci_z) # Tabulate clonal abundance count_col <- if (!is.null(copy)) { "copy_count" } else { "seq_count" } clone_tab <- countClones(data, copy=copy, clone=clone, groups=group, cell_id=cell_id) %>% dplyr::mutate(clone_count=!!rlang::sym(count_col)) # Tabulate group sizes if (!is.null(group)) { # Summarize groups group_tab <- clone_tab %>% group_by(!!rlang::sym(group)) %>% dplyr::summarize(count=sum(!!rlang::sym("clone_count"), na.rm=TRUE)) %>% rename(group=!!rlang::sym(group)) } else { group_tab <- data.frame(v="All", count=sum(clone_tab$clone_count, na.rm=T)) names(group_tab)[1] <- "group" } group_all <- as.character(group_tab$group) group_tab <- group_tab[group_tab$count >= min_n, ] group_keep <- as.character(group_tab$group) # Set number of sampled sequence if (uniform) { nsam <- min(group_tab$count, max_n) nsam <- setNames(rep(nsam, length(group_keep)), group_keep) } else { nsam <- if (is.null(max_n)) { group_tab$count } else { pmin(group_tab$count, max_n) } nsam <- setNames(nsam, group_keep) } # Warn if groups removed if (length(group_keep) < length(group_all)) { warning("Not all groups passed threshold min_n=", min_n, ".", " Excluded: ", paste(setdiff(group_all, group_keep), collapse=", ")) } # Generate abundance bootstrap if (progress) { pb <- progressBar(length(group_keep)) } boot_list <- list() abund_list <- list() for (g in group_keep) { n <- nsam[g] # Extract abundance vector if (!is.null(group)) { abund_obs <- clone_tab$clone_count[clone_tab[[group]] == g] names(abund_obs) <- clone_tab[[clone]][clone_tab[[group]] == g] } else { # Extract abundance vector abund_obs <- clone_tab$clone_count names(abund_obs) <- clone_tab[[clone]] } # Infer complete abundance distribution boot_mat <- bootstrapAbundance(abund_obs, n, nboot=nboot, method="before") # Assign confidence intervals based on variance of bootstrap realizations p_mean <- apply(boot_mat, 1, mean) p_sd <- apply(boot_mat, 1, sd) p_err <- ci_x * p_sd p_lower <- pmax(p_mean - p_err, 0) p_upper <- p_mean + p_err # Assemble and sort abundance data.frame abund_df <- tibble::tibble(!!clone := rownames(boot_mat), p=p_mean, p_sd=p_sd, lower=p_lower, upper=p_upper) %>% dplyr::arrange(desc(!!rlang::sym("p"))) %>% dplyr::mutate(rank=1:n()) # Save summary abund_list[[g]] <- abund_df # Save bootstrap boot_list[[g]] <- as.data.frame(boot_mat) %>% tibble::rownames_to_column(clone) if (progress) { pb$tick() } } id_col <- "group" if (!is.null(group)) { id_col <- group } abundance_df <- as.data.frame(bind_rows(abund_list, .id=id_col)) bootstrap_df <- as.data.frame(bind_rows(boot_list, .id=id_col)) # Create a new diversity object with bootstrap abund_obj <- new("AbundanceCurve", bootstrap=bootstrap_df, abundance=abundance_df, clone_by=clone, group_by=id_col, #groups=if_else(is.null(group), as.character(NA), group_keep), groups=group_keep, n=nsam, nboot=nboot, ci=ci) return(abund_obj) } #### Diversity functions #### #' Calculate the diversity index #' #' \code{calcDiversity} calculates the clonal diversity index for a vector of diversity #' orders. #' #' @param p numeric vector of clone (species) counts or proportions. #' @param q numeric vector of diversity orders. #' #' @return A vector of diversity scores \eqn{D} for each \eqn{q}. #' #' @details #' This method, proposed by Hill (Hill, 1973), quantifies diversity as a smooth function #' (\eqn{D}) of a single parameter \eqn{q}. Special cases of the generalized diversity #' index correspond to the most popular diversity measures in ecology: species richness #' (\eqn{q = 0}), the exponential of the Shannon-Weiner index (\eqn{q} approaches \eqn{1}), the #' inverse of the Simpson index (\eqn{q = 2}), and the reciprocal abundance of the largest #' clone (\eqn{q} approaches \eqn{+\infty}). At \eqn{q = 0} different clones weight equally, #' regardless of their size. As the parameter \eqn{q} increase from \eqn{0} to \eqn{+\infty} #' the diversity index (\eqn{D}) depends less on rare clones and more on common (abundant) #' ones, thus encompassing a range of definitions that can be visualized as a single curve. #' #' Values of \eqn{q < 0} are valid, but are generally not meaningful. The value of \eqn{D} #' at \eqn{q=1} is estimated by \eqn{D} at \eqn{q=0.9999}. #' #' @references #' \enumerate{ #' \item Hill M. Diversity and evenness: a unifying notation and its consequences. #' Ecology. 1973 54(2):427-32. #' } #' #' @seealso Used by \link{alphaDiversity}. #' #' @examples #' # May define p as clonal member counts #' p <- c(1, 1, 3, 10) #' q <- c(0, 1, 2) #' calcDiversity(p, q) #' #' # Or proportional abundance #' p <- c(1/15, 1/15, 1/5, 2/3) #' calcDiversity(p, q) #' #' @export calcDiversity <- function(p, q) { # Add jitter to q=1 q[q == 1] <- 0.9999 # Remove zeros p <- p[p > 0] # Convert p to proportional abundance p <- p / sum(p) # Calculate D for each q D <- sapply(q, function(x) sum(p^x)^(1 / (1 - x))) return(D) } # Calculate the inferred diversity index # # \code{calcInferredDiversity} calculates the clonal diversity index for a vector of diversity # orders with a correction for the presence of unseen species. Does not take proportional abundance. # # @param p numeric vector of clone (species) counts. # @param q numeric vector of diversity orders. # # @return A vector of diversity scores \eqn{D} for each \eqn{q}. # # @details # This method, proposed by Hill (Hill, 1973), quantifies diversity as a smooth function # (\eqn{D}) of a single parameter \eqn{q}. Special cases of the generalized diversity # index correspond to the most popular diversity measures in ecology: species richness # (\eqn{q = 0}), the exponential of the Shannon-Weiner index (\eqn{q} approaches \eqn{1}), the # inverse of the Simpson index (\eqn{q = 2}), and the reciprocal abundance of the largest # clone (\eqn{q} approaches \eqn{+\infty}). At \eqn{q = 0} different clones weight equally, # regardless of their size. As the parameter \eqn{q} increase from \eqn{0} to \eqn{+\infty} # the diversity index (\eqn{D}) depends less on rare clones and more on common (abundant) # ones, thus encompassing a range of definitions that can be visualized as a single curve. # # Values of \eqn{q < 0} are valid, but are generally not meaningful. The value of \eqn{D} # at \eqn{q=1} is estimated by \eqn{D} at \eqn{q=0.9999}. # # An adjusted detected species relative abundance distribution is applied before calculating diversity. # # @references # \enumerate{ # \item Hill M. Diversity and evenness: a unifying notation and its consequences. # Ecology. 1973 54(2):427-32. # } # # @seealso Used by \link{alphaDiversity} # # @examples # # May define p as clonal member counts # p <- c(1, 1, 3, 10) # q <- c(0, 1, 2) # calcInferredDiversity(p, q) # # # @export # calcInferredDiversity <- function(p, q) { # # Correct abundance # .infer <- function(y) { # # Infer complete abundance distribution # p1 <- adjustObservedAbundance(y) # p2 <- inferUnseenAbundance(y) # names(p2) <- if (length(p2) > 0) { paste0("U", 1:length(p2)) } else { NULL } # return(c(p1, p2)) # } # # # Correct abundance # p <- .infer(p) # # Add jitter to q=1 # q[q == 1] <- 0.9999 # # Remove zeros # p <- p[p > 0] # # Convert p to proportional abundance # p <- p / sum(p) # # Calculate D for each q # D <- sapply(q, function(x) sum(p^x)^(1 / (1 - x))) # # return(D) # } # Calculates diversity under rarefaction # # Calculates Hill numbers under rarefaction # # @param x vector of observed abundance counts. # @param q numeric vector of diversity orders. # @param m the sequence count to rarefy to. # # @return A vector of diversity scores \eqn{D} for each \eqn{q}. inferRarefiedDiversity <- function(x, q, m) { x <- x[x >= 1] n <- sum(x) if (m > n) { stop("m must be <= the total count of observed sequences.") } q[q == 1] <- 0.9999 # Tabulate frequency counts from 1:n fk_n <- tabulate(x, nbins=n) # Calculate estimated fk(m) fk_m <- sapply(1:m, function(k) sum(exp(lchoose(k:m, k) + lchoose(n - k:m, m - k) - lchoose(n, m))*fk_n[k:m])) # Calculate diversity D <- sapply(q, function(r) sum((1:m / m)^r * fk_m)^(1 / (1 - r))) return(D) } # Helper function for computing alpha diversity from bootrstrap outputs # # \code{helperAlpha} divides a set of bootstrapped clones by group annotation, # and computes the diversity of each set. # # @param boot_output data.frame from\link{AbundanceCurve} object containing bootstrapped clonal # abundance curves. # @param q vector of Hill Diversity indices to test for diversity calculations. # @param clone name of the \code{boot_output} column containing clone identifiers. # @param group name of the \code{boot_output} column containing grouping information for # diversity calculation. # # @return data.frame containing diversity calculations for each bootstrap iteration. helperAlpha <- function(boot_output, q, clone="clone_id", group=NULL) { ## DEBUG # abundance <- estimateAbundance(ExampleDb, group="sample_id", nboot=100) # clone <- abundance@clone_by # group <- abundance@group_by # Compute diversity from a column of each bootstrap output <- boot_output %>% dplyr::ungroup() %>% dplyr::select(-one_of(c(clone, group))) %>% as.matrix() %>% apply(2, calcDiversity, q=q) %>% data.frame() %>% mutate(q=q) return(output) } # Helper function for computing beta diversity from bootrstrap outputs # # \code{helperBeta} divides a set of bootstrapped clones by group annotation, # and computes the alpha diversity. Group annotations are then ignored and # gamma diversity is computed. A multiplicative beta diversity is used corresponding # to the gamma diversity divided by the average alpha diversity of each group. # # @param boot_output data.frame from\link{AbundanceCurve} object containing bootstrapped clonal abundance curves. # @param q vector of Hill Diversity indices to test for diversity calculations. # @param ci_z numeric value corresponding to confidence interval for calculating beta diversity. # @param clone name of the \code{boot_output} column containing clone identifiers. # @param group name of the \code{boot_output} column containing grouping information for diversity # calculation. # # @return data.frame containing diversity calculations for each bootstrap iteration. helperBeta <- function(boot_output, q, ci_x, clone="clone_id", group="group") { # Hack for visibility of dplyr variables . <- NULL # Compute gamma diversity metrics gamma <- boot_output %>% dplyr::group_by(!!rlang::sym(clone)) %>% dplyr::select(-one_of(c(group))) %>% dplyr::summarize_all(sum) %>% dplyr::do(helperAlpha(., q=q, clone=clone)) %>% tidyr::gather(key="n", value="gamma", -!!rlang::sym("q")) %>% dplyr::mutate(gamma=as.numeric(!!rlang::sym("gamma"))) # Compute alpha diversity metrics alpha <- boot_output %>% dplyr::group_by(!!rlang::sym(group)) %>% dplyr::do(helperAlpha(., q=q, clone=clone, group=group)) %>% dplyr::group_by(!!rlang::sym("q")) %>% dplyr::select(-one_of(c(group))) %>% dplyr::summarize_all(mean) %>% tidyr::gather(key="n", value="alpha", -!!rlang::sym("q")) %>% dplyr::mutate(alpha=as.numeric(!!rlang::sym("alpha"))) # Perform comparisons of alpha and gamma to extract beta beta <- bind_cols(gamma, alpha) %>% dplyr::group_by(!!rlang::sym("q")) %>% dplyr::mutate(X=!!rlang::sym("gamma") / !!rlang::sym("alpha")) %>% dplyr::summarize(d=mean(!!rlang::sym("X"), na.rm=TRUE), d_sd=sd(!!rlang::sym("X"), na.rm=TRUE)) %>% dplyr::mutate(d_lower=pmax(!!rlang::sym("d") - !!rlang::sym("d_sd") * ci_x, 0), d_upper=!!rlang::sym("d") + !!rlang::sym("d_sd") * ci_x) return(beta) } # Helper function for computing statistical significance # # \code{helperTest} computes the pairwise statistical significance of differences # in bootstrapped diversity values between two sets defined by the group column. # A p-value is computed using the ECDF distribution as the frequency of bootstrap iterations # for which no difference is observed. # # @param div_df data.frame from\link{DiversityCurve} object containing bootstrapped # diversity curves. # @param group name of the \code{boot_output} column containing grouping information # for diversity calculation. # @param q vector of Hill Diversity indices to test for diversity calculations. # # @return data.frame containing test results for each value of q. helperTest <- function(div_df, q, group="group") { # Hack for visibility of dplyr variables #. <- NULL # Pairwise test group_pairs <- combn(unique(div_df[[group]]), 2, simplify=F) pvalue_list <- list() for (group_pair in group_pairs) { pair_list <- list() for(q_i in q) { # Currently just testing for one diversity order mat1 <- div_df %>% dplyr::filter(!!rlang::sym(group) == group_pair[1], !!rlang::sym("q") == q_i) %>% dplyr::select(-one_of(c(group, "q"))) %>% unlist() mat2 <- div_df %>% dplyr::filter(!!rlang::sym(group) == group_pair[2], !!rlang::sym("q") == q_i) %>% dplyr::select(-one_of(c(group, "q"))) %>% unlist() if (mean(mat1) >= mean(mat2)) { g_delta <- mat1 - mat2 } else { g_delta <- mat2 - mat1 } # Compute p-value from ecdf p <- ecdf(g_delta)(0) p <- ifelse(p <= 0.5, p * 2, (1 - p) * 2) pair_list[[as.character(q_i)]] <- list(delta_mean=mean(g_delta), delta_sd=sd(g_delta), pvalue=p) } pvalue_list[[paste(group_pair, collapse=" != ")]] <- bind_rows(pair_list, .id="q") } test_df <- bind_rows(pvalue_list, .id="test") return(test_df) } #' Calculate clonal alpha diversity #' #' \code{alphaDiversity} takes in a data.frame or \link{AbundanceCurve} and computes #' diversity scores (\eqn{D}) over an interval of diversity orders (\eqn{q}). #' #' @param data data.frame with Change-O style columns containing clonal assignments or #' a \link{AbundanceCurve} generate by \link{estimateAbundance} object #' containing a previously calculated bootstrap distributions of clonal abundance. #' @param min_q minimum value of \eqn{q}. #' @param max_q maximum value of \eqn{q}. #' @param step_q value by which to increment \eqn{q}. #' @param ci confidence interval to calculate; the value must be between 0 and 1. #' @param ... additional arguments to pass to \link{estimateAbundance}. Additional arguments #' are ignored if a \link{AbundanceCurve} is provided as input. #' #' @return A \link{DiversityCurve} object summarizing the diversity scores. #' #' @references #' \enumerate{ #' \item Hill M. Diversity and evenness: a unifying notation and its consequences. #' Ecology. 1973 54(2):427-32. #' \item Chao A. Nonparametric Estimation of the Number of Classes in a Population. #' Scand J Stat. 1984 11, 265270. #' \item Chao A, et al. Rarefaction and extrapolation with Hill numbers: #' A framework for sampling and estimation in species diversity studies. #' Ecol Monogr. 2014 84:45-67. #' \item Chao A, et al. Unveiling the species-rank abundance distribution by #' generalizing the Good-Turing sample coverage theory. #' Ecology. 2015 96, 11891201. #' } #' #' @seealso See \link{calcDiversity} for the basic calculation and #' \link{DiversityCurve} for the return object. #' See \link{plotDiversityCurve} for plotting the return object. #' #' @details #' Clonal diversity is calculated using the generalized diversity index (Hill numbers) #' proposed by Hill (Hill, 1973). See \link{calcDiversity} for further details. #' #' To generate a smooth curve, \eqn{D} is calculated for each value of \eqn{q} from #' \code{min_q} to \code{max_q} incremented by \code{step_q}. When \code{uniform=TRUE} #' variability in total sequence counts across unique values in the \code{group} column #' is corrected by repeated resampling from the estimated complete clonal distribution to a #' common number of sequences. The complete clonal abundance distribution that is resampled #' from is inferred by using the Chao1 estimator to infer the number of unseen clones, #' followed by applying the relative abundance correction and unseen clone frequencies #' described in Chao et al, 2015. #' #' The diversity index (\eqn{D}) for each group is the mean value of over all resampling #' realizations. Confidence intervals are derived using the standard deviation of the #' resampling realizations, as described in Chao et al, 2015. #' #' Significance of the difference in diversity index (\code{D}) between groups is tested by #' constructing a bootstrap delta distribution for each pair of unique values in the #' \code{group} column. The bootstrap delta distribution is built by subtracting the diversity #' index \code{Da} in group \code{a} from the corresponding value \eqn{Db} in group \code{b}, #' for all bootstrap realizations, yielding a distribution of \code{nboot} total deltas; where #' group \code{a} is the group with the greater mean \code{D}. The p-value for hypothesis #' \code{Da != Db} is the value of \code{P(0)} from the empirical cumulative distribution #' function of the bootstrap delta distribution, multiplied by 2 for the two-tailed correction. #' #' Note, this method may inflate statistical significance when clone sizes are uniformly small, #' such as when most clones sizes are 1, sample size is small, and \code{max_n} is near #' the total count of the smallest data group. Use caution when interpreting the results #' in such cases. #' #' @examples #' # Group by sample identifier in two steps #' abund <- estimateAbundance(ExampleDb, group="sample_id", nboot=100) #' div <- alphaDiversity(abund, step_q=1, max_q=10) #' plotDiversityCurve(div, legend_title="Sample") #' #' # Grouping by isotype rather than sample identifier in one step #' div <- alphaDiversity(ExampleDb, group="c_call", min_n=40, step_q=1, max_q=10, #' nboot=100) #' plotDiversityCurve(div, legend_title="Isotype") #' #' @export alphaDiversity <- function(data, min_q=0, max_q=4, step_q=0.1, ci=0.95, ...) { # Hack for visibility of dplyr variables . <- NULL # Check input object and call estimateAbundance if required if (is(data, "AbundanceCurve")) { abundance <- data } else if (is(data, "data.frame")) { abundance <- estimateAbundance(data, ci=0.95, ...) } else { stop("Input must be either a data.frame or AbundanceCurve object.") } # Set diversity orders and confidence interval ci_z <- ci + (1 - ci) / 2 ci_x <- qnorm(ci_z) q <- seq(min_q, max_q, step_q) if (!(0 %in% q)) { q <- c(0, q) } # Set grouping variables clone <- abundance@clone_by group <- abundance@group_by # Compute diversity metric for bootstrap instances boot_df <- abundance@bootstrap %>% dplyr::group_by(!!rlang::sym(group)) %>% dplyr::do(helperAlpha(., q=q, clone=clone, group=group)) %>% dplyr::ungroup() # Summarize diversity div_df <- boot_df %>% tidyr::gather(key="n", value="X", -one_of(c(group, "q"))) %>% dplyr::mutate(X=as.numeric(!!rlang::sym("X"))) %>% dplyr::group_by(!!!rlang::syms(c(group, "q"))) %>% dplyr::summarize(d=mean(!!rlang::sym("X"), na.rm=TRUE), d_sd=sd(!!rlang::sym("X"), na.rm=TRUE)) %>% dplyr::mutate(d_lower=pmax(!!rlang::sym("d") - !!rlang::sym("d_sd") * ci_x, 0), d_upper=!!rlang::sym("d") + !!rlang::sym("d_sd") * ci_x) # Compute evenness div_qi <- div_df %>% filter(!!rlang::sym("q") == 0) %>% select(one_of(c(group, "d"))) div_df <- div_df %>% dplyr::right_join(div_qi, by=group, suffix=c("", "_0")) %>% mutate(e=!!rlang::sym("d")/!!rlang::sym("d_0"), e_lower=!!rlang::sym("d_lower")/!!rlang::sym("d_0"), e_upper=!!rlang::sym("d_upper")/!!rlang::sym("d_0")) %>% select(-!!rlang::sym("d_0")) # Test if (length(abundance@groups) > 1) { test_df <- helperTest(boot_df, q=q, group=group) } else { test_df <- NULL } # Build return object group_set <- unique(div_df[[group]]) div_obj <- new("DiversityCurve", diversity=div_df, tests=test_df, method="alpha", group_by=group, groups=group_set, q=q, n=abundance@n, ci=ci) return(div_obj) } # Calculates the pairwise beta diversity # # \code{betaDiversity} takes in a data.frame or \link{AbundanceCurve} and computes # the multiplicative beta diversity across a range of Hill diversity indices. # # @param data data.frame with Change-O style columns containing clonal assignments or # an \link{AbundanceCurve} object generate by \link{estimateAbundance}. # containing a previously calculated bootstrap distributions of clonal abundance. # @param comparisons named list of comparisons between group members for computing beta diversity. # @param min_q minimum value of \eqn{q}. # @param max_q maximum value of \eqn{q}. # @param step_q value by which to increment \eqn{q}. # @param ci confidence interval to calculate; the value must be between 0 and 1. # @param ... additional arguments to pass to \link{estimateAbundance}. Additional arguments # are ignored if a \link{AbundanceCurve} is provided as input. # # @return A \link{DiversityCurve} object summarizing the diversity scores. # # @details # Beta diversity or the comparative difference between two samples as quantified using Hill # diversity indices proposed by Jost (Jost, 2007). # # Briefly, the alpha and gamma diversity components are calculated for each comparison. # Alpha diversity is calculated as the average hill diversity across each independent sample # while Gamma diversity is calculated as the total diversity without distinguishing between # samples. Beta diversity is computed as Gamma/Alpha. # # Diversity is calculated on the estimated clonal abundance distribution with a correction # for unseen species much like the calculation for alpha diversity \link{alphaDiversity}. # A smooth curve is generated in the same manner as in \link{alphaDiversity}. # Confidence intervals are derived using the standard deviation of the resampling realizations. # # \enumerate{ # \item Hill M. Diversity and evenness: a unifying notation and its consequences. # Ecology. 1973 54(2):427-32. # \item Jost L. Partitioning Diversity Into Independent Alpha and Beta Components. # Ecology. 2007 88(10):2427–2439. # \item Jost L, et al. Partitioning diversity for conservation analyses. # Diversity Distrib. 2010 16(1):65–76 # } # # @examples # div <- betaDiversity(ExampleDb, comparisons=list("TIME"=c("-1h", "+7d")), group="sample_id", # min_n=40, step_q=1, max_q=10, nboot=100) # # plotDiversityCurve(div, legend_title="Isotype") # # @export betaDiversity <- function(data, comparisons, min_q=0, max_q=4, step_q=0.1, ci=0.95, ...) { # Hack for visibility of dplyr variables . <- NULL if (!is.list(comparisons) || is.null(names(comparisons))) { stop("'comparisons' must be a named list") } # Check input object and call estimateAbundance if required if (is(data, "AbundanceCurve")) { abundance <- data } else if (is(data, "data.frame")) { abundance <- estimateAbundance(data, ci=0.95, ...) } else { stop("Input must be either a data.frame or AbundanceCurve object.") } # Set diversity orders and confidence interval ci_z <- ci + (1 - ci) / 2 ci_x <- qnorm(ci_z) q <- seq(min_q, max_q, step_q) if (!(0 %in% q)) { q <- c(0, q) } # Compute pairwise beta diversity for bootstrap instances beta_diversity_list <- list() for (comparison in names(comparisons)) { beta_diversity_list[[comparison]] <- abundance@bootstrap %>% dplyr::ungroup() %>% dplyr::filter(.[[abundance@group_by]] %in% comparisons[[comparison]]) %>% dplyr::do(helperBeta(., q=q, clone=abundance@clone_by, group=abundance@group_by, ci_x=ci_x)) } # Generate summary diversity output div_df <- bind_rows(beta_diversity_list, .id = "comparison") # Beta groups group_set <- unique(div_df[["comparison"]]) # Compute evenness div_qi <- div_df %>% filter(!!rlang::sym("q") == 0) %>% select(one_of(c("comparison", "D"))) div <- div_df %>% right_join(div_qi, by = "comparison", suffix = c("", "_0")) %>% mutate(d = !!rlang::sym("d")/!!rlang::sym("d_0"), e_lower = !!rlang::sym("d_lower")/!!rlang::sym("d_0"), e_upper = !!rlang::sym("d_upper")/!!rlang::sym("d_0")) %>% select(-!!rlang::sym("d_0")) # Test if (length(group_set) > 1) { test_df <- helperTest(div_df, q=q, group="comparison") } else { test_df <- NULL } # Build return object div_obj <- new("DiversityCurve", diversity=div, tests=test_df, method="beta", group_by="comparison", groups=group_set, n=abundance@n, q=q, ci=ci) return(div_obj) } #### Plotting functions #### #' Plot a clonal abundance distribution #' #' \code{plotAbundanceCurve} plots the results from estimating the complete clonal #' relative abundance distribution. The distribution is plotted as a log rank abundance #' distribution. #' #' @param data \link{AbundanceCurve} object returned by \link{estimateAbundance}. #' @param colors named character vector whose names are values in the #' \code{group} column of \code{data} and whose values are #' colors to assign to those group names. #' @param main_title string specifying the plot title. #' @param legend_title string specifying the legend title. #' @param xlim numeric vector of two values specifying the #' \code{c(lower, upper)} x-axis limits. The lower x-axis #' value must be >=1. #' @param ylim numeric vector of two values specifying the #' \code{c(lower, upper)} y-axis limits. The limits on the #' abundance values are expressed as fractions of 1: use #' c(0,1) to set the lower and upper limits to 0\% and 100\%. #' @param annotate string defining whether to added values to the group labels #' of the legend. When \code{"none"} (default) is specified no #' annotations are added. Specifying (\code{"depth"}) adds #' sequence counts to the labels. #' @param silent if \code{TRUE} do not draw the plot and just return the ggplot2 #' object; if \code{FALSE} draw the plot. #' @param ... additional arguments to pass to ggplot2::theme. #' #' @return A \code{ggplot} object defining the plot. #' #' @seealso #' See \link{AbundanceCurve} for the input object and \link{estimateAbundance} for #' generating the input abundance distribution. Plotting is performed with \link[ggplot2]{ggplot}. #' #' @examples #' # Estimate abundance by sample and plot #' abund <- estimateAbundance(ExampleDb, group="sample_id", nboot=100) #' plotAbundanceCurve(abund, legend_title="Sample") #' #' @export plotAbundanceCurve <- function(data, colors=NULL, main_title="Rank Abundance", legend_title=NULL, xlim=NULL, ylim=NULL, annotate=c("none", "depth"), silent=FALSE, ...) { # Check if abundance is in data if (is.null(data@abundance)) { stop("Missing abundance data.") } # Validate abundance limits if (!is.null(xlim)) { if (xlim[1]<1) { stop("The lower x-axis xlim value must be >=1.") } max_xlim <- max(data@abundance$rank, na.rm = T) if (xlim[2]>max_xlim) { message("The largest x-axis value is ",max_xlim,".") } } # Check arguments annotate <- match.arg(annotate) # Define group label annotations if (all(is.na(data@groups)) || length(data@groups) == 1) { group_labels <- NA } else if (annotate == "none") { group_labels <- setNames(data@groups, data@groups) } else if (annotate == "depth") { group_labels <- setNames(paste0(data@groups, " (N=", data@n, ")"), data@groups) } # Stupid hack for check NOTE about `.x` in math_format .x <- NULL if (!all(is.na(group_labels))) { # Define grouped plot p1 <- ggplot(data@abundance, aes(x=!!rlang::sym("rank"), y=!!rlang::sym("p"), group=!!rlang::sym(data@group_by))) + ggtitle(main_title) + baseTheme() + xlab("Rank") + ylab("Abundance") + scale_x_log10( breaks=scales::trans_breaks("log10", function(x) 10^x), labels=scales::trans_format("log10", scales::math_format(10^.x))) + scale_y_continuous(labels=scales::percent) + geom_ribbon(aes(ymin=!!rlang::sym("lower"), ymax=!!rlang::sym("upper"), fill=!!rlang::sym(data@group_by)), alpha=0.4) + geom_line(aes(color=!!rlang::sym(data@group_by))) # Set colors and legend if (!is.null(colors)) { p1 <- p1 + scale_color_manual(name=legend_title, labels=group_labels, values=colors) + scale_fill_manual(name=legend_title, labels=group_labels, values=colors) } else { p1 <- p1 + scale_color_discrete(name=legend_title, labels=group_labels) + scale_fill_discrete(name=legend_title, labels=group_labels) } } else { # Set color if (!is.null(colors) & length(colors) == 1) { line_color <- colors } else { line_color <- "black" } # Define plot p1 <- ggplot(data@abundance, aes(x=!!rlang::sym("rank"), y=!!rlang::sym("p"))) + ggtitle(main_title) + baseTheme() + xlab("Rank") + ylab("Abundance") + scale_x_log10( breaks=scales::trans_breaks("log10", function(x) 10^x), labels=scales::trans_format("log10", scales::math_format(10^.x))) + scale_y_continuous(labels=scales::percent) + geom_ribbon(aes(ymin=!!rlang::sym("lower"), ymax=!!rlang::sym("upper")), fill=line_color, alpha=0.4) + geom_line(color=line_color) } # Add additional theme elements p1 <- p1 + coord_cartesian(xlim=xlim,ylim=ylim) + do.call(theme, list(...)) # Plot if (!silent) { plot(p1) } invisible(p1) } #' Plot the results of alphaDiversity #' #' \code{plotDiversityCurve} plots a \code{DiversityCurve} object. #' #' @param data \link{DiversityCurve} object returned by #' \link{alphaDiversity}. #' @param colors named character vector whose names are values in the #' \code{group} column of the \code{data} slot of \code{data}, #' and whose values are colors to assign to those group names. #' @param main_title string specifying the plot title. #' @param legend_title string specifying the legend title. #' @param log_x if \code{TRUE} then plot \eqn{q} on a log scale; #' if \code{FALSE} plot on a linear scale. #' @param log_y if \code{TRUE} then plot the diversity/evenness scores #' on a log scale; if \code{FALSE} plot on a linear scale. #' @param xlim numeric vector of two values specifying the #' \code{c(lower, upper)} x-axis limits. #' @param ylim numeric vector of two values specifying the #' \code{c(lower, upper)} y-axis limits. #' @param annotate string defining whether to added values to the group labels #' of the legend. When \code{"none"} (default) is specified no #' annotations are added. Specifying (\code{"depth"}) adds #' sequence counts to the labels. #' @param score one of \code{"diversity"} or \code{"evenness"} specifying which #' score to plot on the y-asis. #' @param silent if \code{TRUE} do not draw the plot and just return the ggplot2 #' object; if \code{FALSE} draw the plot. #' @param ... additional arguments to pass to ggplot2::theme. #' #' @return A \code{ggplot} object defining the plot. #' #' @seealso See \link{alphaDiversity} and \link{alphaDiversity} for generating #' \link{DiversityCurve} objects for input. Plotting is performed with \link[ggplot2]{ggplot}. #' #' @examples #' # Calculate diversity #' div <- alphaDiversity(ExampleDb, group="sample_id", nboot=100) #' #' # Plot diversity #' plotDiversityCurve(div, legend_title="Sample") #' #' # Plot diversity #' plotDiversityCurve(div, legend_title="Sample", score="evenness") #' #' @export plotDiversityCurve <- function(data, colors=NULL, main_title="Diversity", legend_title="Group", log_x=FALSE, log_y=FALSE, xlim=NULL, ylim=NULL, annotate=c("none", "depth"), score=c("diversity", "evenness"), silent=FALSE, ...) { # Check arguments annotate <- match.arg(annotate) score <- match.arg(score) # Define group label annotations if (all(is.na(data@groups)) || length(data@groups) == 1) { group_labels <- NA } else if (annotate == "none") { group_labels <- setNames(data@groups, data@groups) } else if (annotate == "depth") { group_labels <- setNames(paste0(data@groups, " (n=", data@n, ")"), data@groups) } # Define y-axis scores if (score == "diversity") { y_value <- "d" y_min <- "d_lower" y_max <- "d_upper" y_label <- expression(''^q * D) } else if (score == "evenness") { y_value <- "e" y_min <- "e_lower" y_max <- "e_upper" y_label <- expression(''^q * e) } # Stupid hack for check NOTE about `.x` in math_format .x <- NULL if (!all(is.na(group_labels))) { # Define grouped plot p1 <- ggplot(data@diversity, aes(x=q, y=!!rlang::sym(y_value), group=!!rlang::sym(data@group_by))) + ggtitle(main_title) + baseTheme() + xlab('q') + ylab(y_label) + geom_ribbon(aes(ymin=!!rlang::sym(y_min), ymax=!!rlang::sym(y_max), fill=!!rlang::sym(data@group_by)), alpha=0.4) + geom_line(aes(color=!!rlang::sym(data@group_by))) # Set colors and legend if (!is.null(colors)) { p1 <- p1 + scale_color_manual(name=legend_title, labels=group_labels, values=colors) + scale_fill_manual(name=legend_title, labels=group_labels, values=colors) } else { p1 <- p1 + scale_color_discrete(name=legend_title, labels=group_labels) + scale_fill_discrete(name=legend_title, labels=group_labels) } } else { # Set color if (!is.null(colors) & length(colors) == 1) { line_color <- colors } else { line_color <- "black" } # Define ungrouped plot p1 <- ggplot(data@diversity, aes(x=q, y=!!rlang::sym(y_value))) + ggtitle(main_title) + baseTheme() + xlab('q') + ylab(y_label) + geom_ribbon(aes(ymin=!!rlang::sym(y_min), ymax=!!rlang::sym(y_max)), fill=line_color, alpha=0.4) + geom_line(color=line_color) } # Set x-axis style if (log_x) { p1 <- p1 + scale_x_continuous(trans=scales::log2_trans(), breaks=scales::trans_breaks('log2', function(x) 2^x), labels=scales::trans_format('log2', scales::math_format(2^.x))) } else { p1 <- p1 + scale_x_continuous() } # Set y-axis style if (log_y) { p1 <- p1 + scale_y_continuous(trans=scales::log2_trans(), breaks=scales::trans_breaks('log2', function(x) 2^x), labels=scales::trans_format('log2', scales::math_format(2^.x))) } else { p1 <- p1 + scale_y_continuous() } # Add additional theme elements p1 <- p1 + coord_cartesian(xlim=xlim,ylim=ylim) + do.call(theme, list(...)) # Plot if (!silent) { plot(p1) } invisible(p1) } #' Plot the results of diversity testing #' #' \code{plotDiversityTest} plots summary data for a \code{DiversityCurve} object #' with mean and a line range indicating plus/minus one standard deviation. #' #' @param data \link{DiversityCurve} object returned by #' \link{alphaDiversity}. #' @param q diversity order to plot the test for. #' @param colors named character vector whose names are values in the #' \code{group} column of the \code{data} slot of \code{data}, #' and whose values are colors to assign to those group names. #' @param main_title string specifying the plot title. #' @param legend_title string specifying the legend title. #' @param log_d if \code{TRUE} then plot the diversity scores \eqn{D} #' on a log scale; if \code{FALSE} plot on a linear scale. #' @param annotate string defining whether to added values to the group labels #' of the legend. When \code{"none"} (default) is specified no #' annotations are added. Specifying (\code{"depth"}) adds #' sequence counts to the labels. #' @param silent if \code{TRUE} do not draw the plot and just return the ggplot2 #' object; if \code{FALSE} draw the plot. #' @param ... additional arguments to pass to ggplot2::theme. #' #' @return A \code{ggplot} object defining the plot. #' #' @seealso See \link{alphaDiversity} for generating input. #' Plotting is performed with \link[ggplot2]{ggplot}. #' #' @examples #' # Calculate diversity #' div <- alphaDiversity(ExampleDb, group="sample_id", min_q=0, max_q=2, step_q=1, nboot=100) #' #' # Plot results at q=0 (equivalent to species richness) #' plotDiversityTest(div, 0, legend_title="Sample") #' #' # Plot results at q=2 (equivalent to Simpson's index) #' plotDiversityTest(div, q=2, legend_title="Sample") #' #' @export plotDiversityTest <- function(data, q, colors=NULL, main_title="Diversity", legend_title="Group", log_d=FALSE, annotate=c("none", "depth"), silent=FALSE, ...) { # Stupid hack for check NOTE about `.x` in math_format .x <- NULL # Check arguments annotate <- match.arg(annotate) # Check if abundance is in data if (is.null(data@tests)) { stop("Test data missing from input object.") } # Check if q is in data if (!(q %in% data@q)) { stop("Test for order q=", q, " not found in input object.") } # Define group label annotations if (annotate == "none") { group_labels <- setNames(data@groups, data@groups) } else if (annotate == "depth") { group_labels <- setNames(paste0(data@groups, " (N=", data@n, ")"), data@groups) } # Define plot values df <- data@diversity %>% dplyr::filter(!!rlang::sym("q") == !!rlang::enquo(q)) %>% dplyr::mutate(lower=!!rlang::sym("d") - !!rlang::sym("d_sd"), upper=!!rlang::sym("d") + !!rlang::sym("d_sd")) # Define base plot elements p1 <- ggplot(df, aes(x=!!rlang::sym(data@group_by))) + ggtitle(main_title) + baseTheme() + xlab("") + ylab(bquote("Mean " ^ .(q) * D %+-% "SD")) + geom_linerange(aes(ymin=!!rlang::sym("lower"), ymax=!!rlang::sym("upper"), color=!!rlang::sym(data@group_by)), alpha=0.8) + geom_point(aes(y=!!rlang::sym("d"), color=!!rlang::sym(data@group_by))) # Set colors and legend if (!is.null(colors)) { p1 <- p1 + scale_color_manual(name=legend_title, labels=group_labels, values=colors) } else { p1 <- p1 + scale_color_discrete(name=legend_title, labels=group_labels) } # Set x-axis style if (log_d) { p1 <- p1 + scale_y_continuous(trans=scales::log2_trans(), breaks=scales::trans_breaks('log2', function(x) 2^x), labels=scales::trans_format('log2', scales::math_format(2^.x))) } else { p1 <- p1 + scale_y_continuous() } # Add additional theme elements p1 <- p1 + do.call(theme, list(...)) # Plot if (!silent) { plot(p1) } invisible(p1) } alakazam/R/Fastq.R0000644000176200001440000005772314007007324013450 0ustar liggesusers#' Load sequencing quality scores from a FASTQ file #' #' \code{readFastqDb} adds the sequencing quality scores to a data.frame #' from a FASTQ file. Matching is done by `sequence_id`. #' #' @param data \code{data.frame} containing sequence data. #' @param fastq_file path to the fastq file #' @param quality_offset offset value to be used by ape::read.fastq. It is #' the value to be added to the quality scores #' (the default -33 applies to the Sanger format and #' should work for most recent FASTQ files). #' @param header FASTQ file header format; one of \code{"presto"} or #' \code{"asis"}. Use \code{"presto"} to specify #' that the fastq file headers are using the pRESTO #' format and can be parsed to extract #' the \code{sequence_id}. Use \code{"asis"} to skip #' any processing and use the sequence names as they are. #' @param sequence_id column in \code{data} that contains sequence #' identifiers to be matched to sequence identifiers in #' \code{fastq_file}. #' @param sequence column in \code{data} that contains sequence data. #' @param sequence_alignment column in \code{data} that contains IMGT aligned sequence data. #' @param v_cigar column in \code{data} that contains CIGAR #' strings for the V gene alignments. #' @param d_cigar column in \code{data} that contains CIGAR #' strings for the D gene alignments. #' @param j_cigar column in \code{data} that contains CIGAR #' strings for the J gene alignments. #' @param np1_length column in \code{data} that contains the number #' of nucleotides between the V gene and first D gene #' alignments or between the V gene and J gene alignments. #' @param np2_length column in \code{data} that contains the number #' of nucleotides between either the first D gene and J #' gene alignments or the first D gene and second D gene #' alignments. #' @param v_sequence_end column in \code{data} that contains the #' end position of the V gene in \code{sequence}. #' @param d_sequence_end column in \code{data} that contains the #' end position of the D gene in \code{sequence}. #' @param style how the sequencing quality should be returned; #' one of \code{"num"}, \code{"phred"}, or \code{"both"}. #' Specify \code{"num"} to store the quality scores as strings of #' comma separated numeric values. Use \code{"phred"} to have #' the function return the scores as Phred (ASCII) scores. #' Use \code{"both"} to retrieve both. #' @param quality_sequence specify \code{TRUE} to keep the quality scores for #' \code{sequence}. If false, only the quality score #' for \code{sequence_alignment} will be added to \code{data}. #' #' @return Modified \code{data} with additional fields: #' \enumerate{ #' \item \code{quality_alignment}: A character vector with ASCII Phred #' scores for \code{sequence_alignment}. #' \item \code{quality_alignment_num}: A character vector, with comma separated #' numerical quality values for each #' position in \code{sequence_alignment}. #' \item \code{quality}: A character vector with ASCII Phred #' scores for \code{sequence}. #' \item \code{quality_num}: A character vector, with comma separated #' numerical quality values for each #' position in \code{sequence}. #' } #' @seealso \link{maskPositionsByQuality} and \link{getPositionQuality} #' #' @examples #' db <- airr::read_rearrangement(system.file("extdata", "example_quality.tsv", package="alakazam")) #' fastq_file <- system.file("extdata", "example_quality.fastq", package="alakazam") #' db <- readFastqDb(db, fastq_file, quality_offset=-33) #' #' @export readFastqDb <- function(data, fastq_file, quality_offset=-33, header=c("presto", "asis"), sequence_id="sequence_id", sequence="sequence", sequence_alignment="sequence_alignment", v_cigar="v_cigar", d_cigar="d_cigar", j_cigar="j_cigar", np1_length="np1_length", np2_length="np2_length", v_sequence_end="v_sequence_end", d_sequence_end="d_sequence_end", style=c("num", "ascii", "both"), quality_sequence=FALSE) { check_cols <- c(sequence_id, sequence, sequence_alignment, v_cigar, d_cigar, j_cigar, np1_length, np2_length, v_sequence_end, d_sequence_end) alakazam::checkColumns(data, check_cols) style <- match.arg(style) # Process the fastq file header <- match.arg(header) fastq <- ape::read.fastq(fastq_file, offset=quality_offset) #default: -33 (pRESTO) fastq_db <- data.frame( "quality_num"=as.vector(sapply(attr(fastq, "QUAL"), paste0, collapse=",")), stringsAsFactors = F) fastq_db$quality <- sapply(fastq_db[["quality_num"]], function(qual, quality_offset) { paste0(sapply(strsplit(qual, ",")[[1]], function(x,quality_offset) { y <- as.numeric(x) - quality_offset rawToChar(as.raw(y)) },quality_offset), sep="",collapse="") }, quality_offset) fastq_db[[sequence_id]] <- attr(fastq, "names") if (header=="presto") { fastq_db[[sequence_id]] <- gsub("\\|.+","",attr(fastq, "names")) } # Merge by <- sequence_id names(by) <- sequence_id data <- data %>% left_join(fastq_db, by=by) data <- sequenceAlignmentQuality(data, sequence=sequence, sequence_id=sequence_id, sequence_alignment=sequence_alignment, quality="quality", quality_num="quality_num", v_cigar=v_cigar, d_cigar=d_cigar, j_cigar=j_cigar, np1_length=np1_length, np2_length=np2_length, v_sequence_end=v_sequence_end, d_sequence_end=d_sequence_end, raw=FALSE) if (!quality_sequence) { data[['quality']] <- NULL data[['quality_num']] <- NULL } if (style != "both") { if (style == "phred") { data[['quality_alignment_num']] <- NULL } else { data[['quality_alignment']] <- NULL } } data } # Thanks!: # https://drive5.com/usearch/manual/cigar.html & # https://jef.works/blog/2017/03/28/CIGAR-strings-for-dummies/ # M Match (alignment column containing two letters). This could contain two # letters (mismatch) or two identical letters. USEARCH generates CIGAR strings # containing Ms rather than X's and ='s (see below). # N Alignment gap Next x positions on ref don’t match (Deletion in query?) # D Deletion (gap in the target sequence). # I Insertion (gap in the query sequence). # S Segment of the query sequence that does not appear in the alignment. # This is used with soft clipping, where the full-length query sequence # is given (field 10 in the SAM record). In this case, S operations specify # segments at the start and/or end of the query that do not appear in a # local alignment. # H Segment of the query sequence that does not appear in the alignment. # This is used with hard clipping, where only the aligned segment of the # query sequences is given (field 10 in the SAM record). In this case, H # operations specify segments at the start and/or end of the query that # do not appear in the SAM record. # = Alignment column containing two identical letters. USEARCH can read # CIGAR strings using this operation, but does not generate them. # X Alignment column containing a mismatch, i.e. two different letters. # USEARCH can read CIGAR strings using this operation, but does not generate them. # Tested with IgBlast output, not with IMGT calcSequenceAlignmentQuality <- function(sequence_db, sequence="sequence", sequence_id="sequence_id", sequence_alignment="sequence_alignment", quality="quality", quality_num="quality_num", v_cigar="v_cigar", d_cigar="d_cigar", j_cigar="j_cigar", np1_length="np1_length", np2_length="np2_length", v_sequence_end="v_sequence_end", d_sequence_end="d_sequence_end", raw=FALSE) { # query sequence sequence <- sequence_db[[sequence]] quality_phred <- strsplit(sequence_db[[quality]],"")[[1]] quality_num_values <- strsplit(sequence_db[[quality_num]],",")[[1]] v_cigar <- sequence_db[[v_cigar]] vd_pseudo_cigar <- NA if (!is.na(sequence_db[[np1_length]])) { if (sequence_db[[np1_length]]>0) { vd_pseudo_cigar <- paste0(sequence_db[[v_sequence_end]],"S",sequence_db[[np1_length]],"X") } } d_cigar <- sequence_db[[d_cigar]] dj_pseudo_cigar <- NA if (!is.na(sequence_db[[np2_length]])) { if (sequence_db[[np2_length]]>0){ dj_pseudo_cigar <- paste0(sequence_db[[d_sequence_end]],"S",sequence_db[[np2_length]],"X") } } j_cigar <- sequence_db[[j_cigar]] cigars <- c(v_cigar, vd_pseudo_cigar, d_cigar, dj_pseudo_cigar, j_cigar) cigars <- cigars[!is.na(cigars)] ranges <- bind_rows(lapply(cigars, function(cigar) { ops <- GenomicAlignments::explodeCigarOps(cigar)[[1]] lengths <- GenomicAlignments::explodeCigarOpLengths(cigar)[[1]] keep <- ops %in% c("N", "I") == F ops <- ops[keep] lengths <- lengths[keep] ranges <- data.frame( "start"=rep(NA, length(ops)), "end"=NA, "width"=lengths, "operator"=ops, stringsAsFactors = F) ranges[['start']][1] <- 1 for (i in 1:nrow(ranges)) { if (ranges[['operator']][i] %in% c("S","=","X","D")) { ranges[['end']][i] <- ranges[['start']][i]+ranges[['width']][i]-1 } if (i+1<=nrow(ranges)) { ranges[['start']][i+1] <- ranges[['end']][i]+1 } } ranges <- ranges %>% filter(!!rlang::sym("operator") %in% c("S","D") == FALSE) ranges })) iranges <- IRanges(start=ranges[['start']], end=ranges[['end']], width=ranges[['width']]) reconstruced_sequence_alignment <- extractAt(BString(sequence), iranges) reconstruced_sequence_alignment <- paste0(sapply(reconstruced_sequence_alignment, toString), collapse="") positions <- unlist(sapply(1:nrow(ranges), function(i) { ranges$start[i]:ranges$end[i]})) quality_df <- data.frame( "reconstructed_sequence_alignment"=paste0(sapply(reconstruced_sequence_alignment, toString),collapse=""), "sequence_position"=positions, "sequence_alignment_position"=NA, stringsAsFactors = F ) %>% mutate ( !!rlang::sym(quality) := quality_phred[positions], !!rlang::sym(quality_num) := as.numeric(quality_num_values)[positions], !!rlang::sym(sequence_id) := sequence_db[[sequence_id]]) # Sanity check. Just to be sure reconstruction is working correctly, # and be sure I will later transfer the quality scores correctly sequence_alignment <- sequence_db[[sequence_alignment]] expected <- gsub("[\\.-]","",sequence_alignment) if (reconstruced_sequence_alignment != expected) { stop("Reconstructed sequence_alignment from cigar doesn't match db sequence_alignment.") } # map position numbering: sequence input positions <--> aligned positions nt_aln <- strsplit(sequence_alignment,"")[[1]] for ( aln_position in 1:length(nt_aln)) { if (nt_aln[aln_position] %in% c(".","-") == FALSE ) { pos <- sum(nt_aln[1:aln_position] %in% c(".","-") == F) quality_df[['sequence_alignment_position']][pos] <- aln_position quality_df[['sequence_alignment_nt']][pos] <- nt_aln[aln_position] } } if (raw) { quality_df %>% select(-!!rlang::sym("reconstructed_sequence_alignment")) } else { qual_num <- rep(NA, length(nt_aln)) qual_num[quality_df[['sequence_alignment_position']]] <- quality_df[[quality_num]] qual_num <- paste0(qual_num, sep="", collapse=",") qual_phred <- rep(" ", length(nt_aln)) qual_phred[quality_df[['sequence_alignment_position']]] <- quality_df[[quality]] qual_phred <- paste0(qual_phred, sep="", collapse="") ret <- data.frame( "quality_alignment_num"=qual_num, "quality_alignment"=qual_phred, stringsAsFactors = F ) %>% mutate(!!rlang::sym(sequence_id) := sequence_db[[sequence_id]]) ret } } # Retrieve sequencing quality scores from tabular data # # \code{sequenceAlignmentQuality} is used internally by \code{readFastqDb} to # process the sequencing quality scores loaded from a \code{fastq} file. # # Once a repertoire \code{data.frame} has been processed with \link{readFastqDb} and # contains the fields \code{quality} and \code{quality_num}, # \code{sequenceAlignmentQuality} can be used to retrieve the quality scores # from the already present field \code{quality_num}, without requiring # again the \code{fastq} file, and report them as a \code{data.frame} with sequencing # qualities per position, not as a string. This is done setting \code{raw=TRUE}. # This \code{data.frame} with qualities per position can be used to generate figures, # for example. # # @param data \code{data.frame} containing sequence data. # @param sequence_id column in \code{data} that contains sequence # identifiers to be matched to sequence identifiers in # \code{fastq_file}. # @param sequence column in \code{data} that contains sequence data. # @param sequence_alignment column in \code{data} that contains # IMGT aligned sequence data. # @param quality column in \code{data} that contains # sequencing quality as Phred scores. # @param quality_num column in \code{data} that contains # sequencing quality as a comma separated string. # @param v_cigar column in \code{data} that contains CIGAR # strings for the V gene alignments. # @param d_cigar column in \code{data} that contains CIGAR # strings for the D gene alignments. # @param j_cigar column in \code{data} that contains CIGAR # strings for the J gene alignments. # @param np1_length column in \code{data} that contains the number # of nucleotides between the V gene and first D gene # alignments or between the V gene and J gene alignments. # @param np2_length column in \code{data} that contains the number # of nucleotides between either the first D gene and J # gene alignments or the first D gene and second D gene # alignments. # @param v_sequence_end column in \code{data} that contains the # end position of the V gene in \code{sequence}. # @param d_sequence_end column in \code{data} that contains the # end position of the D gene in \code{sequence}. # @param raw specify how the sequencing quality should be returned. # If \code{TRUE}, return a \code{data.frame} with # quality information per position, where each row is # a position. This \code{data.frame} has columns # "sequence_position", "sequence_alignment_position", # "quality", "quality_num", "sequence_id" # and "sequence_alignment_nt" If \code{FALSE}, for each sequence, # concatenate the position qualities in a string, and the # quality information to \code{data} sequenceAlignmentQuality <- function(data, sequence_id="sequence_id", sequence="sequence", sequence_alignment="sequence_alignment", quality="quality", quality_num="quality_num", v_cigar="v_cigar", d_cigar="d_cigar", j_cigar="j_cigar", np1_length="np1_length", np2_length="np2_length", v_sequence_end="v_sequence_end", d_sequence_end="d_sequence_end", raw=FALSE) { pb <- progressBar(nrow(data)) qual <- bind_rows(lapply(1:nrow(data),function(i) { pb$tick() calcSequenceAlignmentQuality(data[i,], sequence=sequence, sequence_id=sequence_id, sequence_alignment=sequence_alignment, quality=quality, quality_num=quality_num, v_cigar=v_cigar, d_cigar=d_cigar, j_cigar=j_cigar, np1_length=np1_length, np2_length=np2_length, v_sequence_end=v_sequence_end, d_sequence_end=d_sequence_end, raw=raw) })) if (raw) { qual } else { data %>% dplyr::left_join(qual, by=sequence_id) } } #' Mask sequence positions with low quality #' #' \code{maskPositionsByQuality} will replace positions that #' have a sequencing quality score lower that \code{min_quality} with an #' \code{"N"} character. #' #' #' @param data \code{data.frame} containing sequence data. #' @param min_quality minimum quality score. Positions with sequencing quality #' less than \code{min_qual} will be masked. #' @param sequence column in \code{data} with sequence data to be masked. #' @param quality_num column in \code{data} with quality scores (a #' string of numeric values, comma separated) that can #' be used to mask \code{sequence}. #' #' @return Modified \code{data} data.frame with an additional field containing #' quality masked sequences. The name of this field is created #' concatenating the \code{sequence} name and \code{"_masked"}. #' #' @seealso \link{readFastqDb} and \link{getPositionQuality} #' #' @examples #' db <- airr::read_rearrangement(system.file("extdata", "example_quality.tsv", package="alakazam")) #' fastq_file <- system.file("extdata", "example_quality.fastq", package="alakazam") #' db <- readFastqDb(db, fastq_file, quality_offset=-33) #' maskPositionsByQuality(db, min_quality=90, quality_num="quality_alignment_num") #' #' @export maskPositionsByQuality <- function(data, min_quality=70, sequence="sequence_alignment", quality_num="quality_alignment_num") { required_cols <- c(sequence,quality_num) checkColumns(data, required_cols) sequence_masked <- paste0(sequence,"_masked") num_masked_seqs <- 0 data <- bind_rows(lapply(1:nrow(data), function(i) { db_row <- data[i,] seq_qual <- strsplit(db_row[[quality_num]],",")[[1]] low_seq_qual <- which(sapply(seq_qual, function(x) { if (x != "NA") { as.numeric(x) < min_quality } else { NA } }, USE.NAMES = FALSE)) if (length(low_seq_qual)>0) { num_masked_seqs <<- num_masked_seqs + 1 seq <- strsplit(db_row[[sequence]],"")[[1]] seq[low_seq_qual] <- "N" seq <- paste0(seq, collapse="") db_row[[sequence_masked]] <- seq } db_row })) message("Number of masked sequences: ", num_masked_seqs) data } #' Get a data.frame with sequencing qualities per position #' #' \code{getPositionQuality} takes a data.frame with sequence quality scores #' in the form of a strings of comma separated numeric values, split the quality #' scores values by \code{","}, and returns a data.frame with the values #' for each position. #' #' #' @param data \code{data.frame} containing sequence data. #' @param sequence_id column in \code{data} with sequence identifiers. #' @param sequence column in \code{data} with sequence data. #' @param quality_num column in \code{data} with quality scores (as #' strings of numeric values, comma separated) for \code{sequence}. #' #' @return \code{data} with one additional field with masked sequences. The #' name of this field is created concatenating \code{sequence} #' and '_masked'. #' #' @seealso \link{readFastqDb} and \link{maskPositionsByQuality} #' #' @examples #' db <- airr::read_rearrangement(system.file("extdata", "example_quality.tsv", package="alakazam")) #' fastq_file <- system.file("extdata", "example_quality.fastq", package="alakazam") #' db <- readFastqDb(db, fastq_file, quality_offset=-33) #' head(getPositionQuality(db)) # #' @export getPositionQuality <- function(data, sequence_id="sequence_id", sequence="sequence_alignment", quality_num="quality_alignment_num") { checkColumns(data, c(sequence, quality_num)) bind_rows(lapply(1:nrow(data), function(i) { seq_id <- data[[sequence_id]][i] seq_len <- nchar(data[[sequence]][i]) qual_values <- as.numeric(strsplit(data[[quality_num]][i],",")[[1]]) nt <- strsplit(data[[sequence]],"")[[1]] if (seq_len != length(qual_values)) { stop("Different length, for sequence: ", seq_id,". seq: ", sequence, ". qual: ", quality_num) } data.frame( "position"=1:seq_len, stringsAsFactors = F) %>% mutate(!!rlang::sym(quality_num) := qual_values, !!rlang::sym(sequence_id) := seq_id, nt = nt) })) } alakazam/R/Deprecated.R0000644000176200001440000002420315062565012014422 0ustar liggesusers# Deprecated and defunct functions #' @include Classes.R #' @include Diversity.R NULL #### Deprecated #### #' Generate a clonal diversity index curve #' #' \code{rarefyDiversity} divides a set of clones by a group annotation, #' resamples the sequences from each group, and calculates diversity #' scores (\eqn{D}) over an interval of diversity orders (\eqn{q}). #' #' @param data data.frame with Change-O style columns containing clonal assignments. #' @param group name of the \code{data} column containing group identifiers. #' @param clone name of the \code{data} column containing clone identifiers. #' @param copy name of the \code{data} column containing copy numbers for each #' sequence. If \code{copy=NULL} (the default), then clone abundance #' is determined by the number of sequences. If a \code{copy} column #' is specified, then clone abundances is determined by the sum of #' copy numbers within each clonal group. #' @param min_q minimum value of \eqn{q}. #' @param max_q maximum value of \eqn{q}. #' @param step_q value by which to increment \eqn{q}. #' @param min_n minimum number of observations to sample. #' A group with less observations than the minimum is excluded. #' @param max_n maximum number of observations to sample. If \code{NULL} then no #' maximum is set. #' @param ci confidence interval to calculate; the value must be between 0 and 1. #' @param nboot number of bootstrap realizations to generate. #' @param uniform if \code{TRUE} then uniformly resample each group to the same #' number of observations. If \code{FALSE} then allow each group to #' be resampled to its original size or, if specified, \code{max_size}. #' @param cell_id name of the \code{data} column containing cell identifiers. #' @param progress if \code{TRUE} show a progress bar. #' #' @return A \link{DiversityCurve} object summarizing the diversity scores. #' #' @details #' Clonal diversity is calculated using the generalized diversity index (Hill numbers) #' proposed by Hill (Hill, 1973). See \link{calcDiversity} for further details. #' #' Diversity is calculated on the estimated complete clonal abundance distribution. #' This distribution is inferred by using the Chao1 estimator to estimate the number #' of seen clones, and applying the relative abundance correction and unseen clone #' frequency described in Chao et al, 2015. #' #' To generate a smooth curve, \eqn{D} is calculated for each value of \eqn{q} from #' \code{min_q} to \code{max_q} incremented by \code{step_q}. When \code{uniform=TRUE} #' variability in total sequence counts across unique values in the \code{group} column #' is corrected by repeated resampling from the estimated complete clonal distribution to a #' common number of sequences. #' #' The diversity index (\eqn{D}) for each group is the mean value of over all resampling #' realizations. Confidence intervals are derived using the standard deviation of the #' resampling realizations, as described in Chao et al, 2015. #' #' @references #' \enumerate{ #' \item Hill M. Diversity and evenness: a unifying notation and its consequences. #' Ecology. 1973 54(2):427-32. #' \item Chao A. Nonparametric Estimation of the Number of Classes in a Population. #' Scand J Stat. 1984 11, 265270. #' \item Chao A, et al. Rarefaction and extrapolation with Hill numbers: #' A framework for sampling and estimation in species diversity studies. #' Ecol Monogr. 2014 84:45-67. #' \item Chao A, et al. Unveiling the species-rank abundance distribution by #' generalizing the Good-Turing sample coverage theory. #' Ecology. 2015 96, 11891201. #' } #' #' @seealso \link{alphaDiversity} #' #' @examples #' \dontrun{ #' # Group by sample identifier #' div <- rarefyDiversity(ExampleDb, "sample_id", step_q=1, max_q=10, nboot=100) #' plotDiversityCurve(div, legend_title="Sample") #' #' # Grouping by isotype rather than sample identifier #' div <- rarefyDiversity(ExampleDb, "c_call", min_n=40, step_q=1, max_q=10, #' nboot=100) #' plotDiversityCurve(div, legend_title="Isotype") #' } #' @export rarefyDiversity <- function(data, group, clone="CLONE", copy=NULL, min_q=0, max_q=4, step_q=0.05, min_n=30, max_n=NULL, ci=0.95, nboot=2000, uniform=TRUE, cell_id="cell_id", progress=FALSE) { .Deprecated("alphaDiversity") bootstrap_obj <- estimateAbundance(data, group=group, clone=clone, copy=copy, nboot=nboot, min_n=min_n, max_n=max_n, uniform=uniform, ci=ci, cell_id=cell_id) diversity_obj <- alphaDiversity(bootstrap_obj, ci=ci, min_q=min_q, max_q=max_q, step_q) return(diversity_obj) } #' Pairwise test of the diversity index #' #' \code{testDiversity} performs pairwise significance tests of the diversity index #' (\eqn{D}) at a given diversity order (\eqn{q}) for a set of annotation groups via #' rarefaction and bootstrapping. #' #' @param data data.frame with Change-O style columns containing clonal assignments. #' @param q diversity order to test. #' @param group name of the \code{data} column containing group identifiers. #' @param clone name of the \code{data} column containing clone identifiers. #' @param copy name of the \code{data} column containing copy numbers for each #' sequence. If \code{copy=NULL} (the default), then clone abundance #' is determined by the number of sequences. If a \code{copy} column #' is specified, then clone abundances is determined by the sum of #' copy numbers within each clonal group. #' @param min_n minimum number of observations to sample. #' A group with less observations than the minimum is excluded. #' @param max_n maximum number of observations to sample. If \code{NULL} the maximum #' if automatically determined from the size of the largest group. #' @param nboot number of bootstrap realizations to perform. #' @param ci confidence interval to calculate; the value must be between 0 and 1. #' @param progress if \code{TRUE} show a progress bar. #' @param cell_id the name of the \code{data} column containing cell identifiers. #' #' @return A \link{DiversityCurve} object containing slot test with p-values and summary #' statistics. #' #' @details #' Clonal diversity is calculated using the generalized diversity index proposed by #' Hill (Hill, 1973). See \link{calcDiversity} for further details. #' #' Diversity is calculated on the estimated complete clonal abundance distribution. #' This distribution is inferred by using the Chao1 estimator to estimate the number #' of seen clones, and applying the relative abundance correction and unseen clone #' frequency described in Chao et al, 2014. #' #' Variability in total sequence counts across unique values in the \code{group} column is #' corrected by repeated resampling from the estimated complete clonal distribution to #' a common number of sequences. The diversity index estimate (\eqn{D}) for each group is #' the mean value of over all bootstrap realizations. #' #' Significance of the difference in diversity index (\eqn{D}) between groups is tested by #' constructing a bootstrap delta distribution for each pair of unique values in the #' \code{group} column. The bootstrap delta distribution is built by subtracting the diversity #' index \eqn{Da} in \eqn{group-a} from the corresponding value \eqn{Db} in \eqn{group-b}, #' for all bootstrap realizations, yielding a distribution of \code{nboot} total deltas; where #' \eqn{group-a} is the group with the greater mean \eqn{D}. The p-value for hypothesis #' \eqn{Da != Db} is the value of \eqn{P(0)} from the empirical cumulative distribution #' function of the bootstrap delta distribution, multiplied by 2 for the two-tailed correction. #' #' @note #' This method may inflate statistical significance when clone sizes are uniformly small, #' such as when most clones sizes are 1, sample size is small, and \code{max_n} is near #' the total count of the smallest data group. Use caution when interpreting the results #' in such cases. We are currently investigating this potential problem. #' #' @references #' \enumerate{ #' \item Hill M. Diversity and evenness: a unifying notation and its consequences. #' Ecology. 1973 54(2):427-32. #' \item Chao A. Nonparametric Estimation of the Number of Classes in a Population. #' Scand J Stat. 1984 11, 265270. #' \item Wu Y-CB, et al. Influence of seasonal exposure to grass pollen on local and #' peripheral blood IgE repertoires in patients with allergic rhinitis. #' J Allergy Clin Immunol. 2014 134(3):604-12. #' \item Chao A, et al. Rarefaction and extrapolation with Hill numbers: #' A framework for sampling and estimation in species diversity studies. #' Ecol Monogr. 2014 84:45-67. #' \item Chao A, et al. Unveiling the species-rank abundance distribution by #' generalizing the Good-Turing sample coverage theory. #' Ecology. 2015 96, 11891201. #' } #' #' @seealso \link{alphaDiversity} #' #' @examples #' \dontrun{ #' # Groups under the size threshold are excluded and a warning message is issued. #' testDiversity(ExampleDb, "sample_id", q=0, min_n=30, nboot=100) #' } #' #' @export testDiversity <- function(data, q, group, clone="CLONE", copy=NULL, min_n=30, max_n=NULL, nboot=2000, progress=FALSE, ci=0.95, cell_id="cell_id") { .Deprecated("alphaDiversity") abundance_obj <- estimateAbundance(data, group=group, clone=clone, copy=copy, nboot=nboot, min_n=min_n, max_n=max_n, ci=ci, cell_id=cell_id) diversity_obj <- alphaDiversity(abundance_obj, min_q=q, max_q=q, step_q=1, ci=ci) return(diversity_obj) } #### Defunct #### alakazam/R/sysdata.rda0000644000176200001440000000200313732424726014401 0ustar liggesusersBZh91AY&SYøœ!4ÿÿÿÿÿÑüÿÂÿÿÿô¯/h 0 @Р!,F%оìš5€ÀÉMMM4 €Ó@hi¦€4¡¡¦Œ4bÐ!ÓM(p40’jbõ4õ zšz@dƒ@ DÐÐp4$‘&A©“LÐjhÒz†€M@РhU³ƒðßËÄl¤RMxI¯”€AmÈ /B†ëö°‚‘¸ˆÕžP…(€ÈHÑ!ˆÉêF †Å±X¼TN%— ‘£ uÈÈõ`)^R­I¾@A]ùÆŠnŒYERLc¦ùtS€É6&A²sL»&ùÅ8M9çR F“É76)¢åbÀ®™1v™3¥É(!«©CSn¤-¬é[Šf'³b,Ô'ds® Â$ÈI ï°¨GÈEŽÄ‰J„L"Ð&€Å\d@œ¤HhœtIŸ{æ%C"€"ÀD& $ €M„OÃРB ë…<0 ÎU’× ¯dA·„X£5 €­˜²‚€½TŧC9®¥ öC„‹ ¦èˉ-r!ÉÍF‹Öí˜ü­eJ_l›’;á 0e¥ÉWôœý4Ç£L‚U©X—,Ù£0QÁ¯*µ$HVÊÀ²Q§¯.¹úý[Õ|»èÈ©n²Ie«ƒí_z³©R  ˆN"G%‰4c&a˜*'–nƒÕÒp[Ï×~®—v `_M‘(ë„âN³c½…]LÈ[¼ûâ 1GxfaG€&|8ruªGJüôgb|±Y Âĸc=ƒW`¤’#’Àç(騈 1¤§·¡Á+*š¬æ0 VDd‰`@[†«IC 0쇅yœÌ°g…ŒN&RÊÀê¹óeÐE˜GÌŸ¨ÌÉ‹]SWZ`¸©@ÔÄÜ TõˆÁ¨ÍÎÌ„Tʵò¥E)30®1}g'‰3‘I]¾¢¡VgE#™ÖV°EÅ•2ÝÌÛ ÒšÐ° “ÝÚÙeLdbã[7@±‰mNBÛ§_–®Ñ¿«VÛm»ÎUÑN/©H6Æ52”®œí Ô£KM´JºíU~uÚrŒ„„…sÊUI¶Û™© زÀ±§Zñ$vAûîÝÍÐ ¿lH3 7ZóÀõ„jP¤µe:(âh$ÏÙ¡ŽìêŒ~[‚(~Ó-áÁJ@qs„åE…˜€’ù‡~2éªC6 ŠŒX/VÌÂ*ÏGíþ.äŠp¡!ñ8Bhalakazam/R/Sequence.R0000644000176200001440000013162115074456724014151 0ustar liggesusers# Common DNA, amino acid, and gene annotation operations for Alakazam #### Distance functions #### #' Build a DNA distance matrix #' #' \code{getDNAMatrix} returns a Hamming distance matrix for IUPAC ambiguous #' DNA characters with modifications for gap, \code{c("-", ".")}, and missing, #' \code{c("?")}, character values. #' #' @param gap value to assign to characters in the set \code{c("-", ".")}. #' #' @return A \code{matrix} of DNA character distances with row and column names #' indicating the character pair. By default, distances will be either 0 #' (equivalent), 1 (non-equivalent or missing), or -1 (gap). #' #' @seealso Creates DNA distance matrix for \link{seqDist}. #' See \link{getAAMatrix} for amino acid distances. #' #' @examples #' # Set gap characters to Inf distance #' # Distinguishes gaps from Ns #' getDNAMatrix() #' #' # Set gap characters to 0 distance #' # Makes gap characters equivalent to Ns #' getDNAMatrix(gap=0) #' #' @export getDNAMatrix <- function(gap=-1) { # Define Hamming distance matrix sub_mat <- diag(18) colnames(sub_mat) <- rownames(sub_mat) <- c(names(IUPAC_DNA), c("-", ".", "?")) for (i in 1:length(IUPAC_DNA)) { for (j in i:length(IUPAC_DNA)) { sub_mat[i, j] <- sub_mat[j, i] <- any(IUPAC_DNA[[i]] %in% IUPAC_DNA[[j]]) } } # Add gap characters sub_mat[c("-", "."), c("-", ".")] <- 1 sub_mat[c("-", "."), 1:15] <- 1 - gap sub_mat[1:15, c("-", ".")] <- 1 - gap return(1 - sub_mat) } #' Build an AA distance matrix #' #' \code{getAAMatrix} returns a Hamming distance matrix for IUPAC ambiguous #' amino acid characters. #' #' @param gap value to assign to characters in the set \code{c("-", ".")}. #' #' @return A \code{matrix} of amino acid character distances with row and column names #' indicating the character pair. #' #' @seealso Creates an amino acid distance matrix for \link{seqDist}. #' See \link{getDNAMatrix} for nucleotide distances. #' #' @examples #' getAAMatrix() #' #' @export getAAMatrix <- function(gap=0) { # Define Hamming distance matrix sub_mat <- diag(27) colnames(sub_mat) <- rownames(sub_mat) <- c(names(IUPAC_AA), c("-", ".")) for (i in 1:length(IUPAC_AA)) { for (j in i:length(IUPAC_AA)) { sub_mat[i, j] <- sub_mat[j, i] <- any(IUPAC_AA[[i]] %in% IUPAC_AA[[j]]) } } # Add gap characters sub_mat[c("-", "."), c("-", ".")] <- 1 sub_mat[c("-", "."), c(1:27)] <- 1 - gap sub_mat[c(1:27), c("-", ".")] <- 1 - gap return(1 - sub_mat) } #' Remove duplicate DNA sequences and combine annotations #' #' \code{collapseDuplicates} identifies duplicate DNA sequences, allowing for ambiguous #' characters, removes the duplicate entries, and combines any associated annotations. #' #' @param data data.frame containing Change-O columns. The data.frame #' must contain, at a minimum, a unique identifier column #' and a column containing a character vector of DNA sequences. #' @param id name of the column containing sequence identifiers. #' @param seq name of the column containing DNA sequences. #' @param text_fields character vector of textual columns to collapse. The textual #' annotations of duplicate sequences will be merged into a single #' string with each unique value alphabetized and delimited by #' \code{sep}. #' @param num_fields vector of numeric columns to collapse. The numeric annotations #' of duplicate sequences will be summed. #' @param seq_fields vector of nucleotide sequence columns to collapse. The sequence #' with the fewest number of non-informative characters will be #' retained. Where a non-informative character is one of #' \code{c("N", "-", ".", "?")}. Note, this is distinct from the #' \code{seq} parameter which is used to determine duplicates. #' @param add_count if \code{TRUE} add the column \code{collpase_count} that #' indicates the number of sequences that were collapsed to build #' each unique entry. #' @param ignore vector of characters to ignore when testing for equality. #' @param sep character to use for delimiting collapsed annotations in the #' \code{text_fields} columns. Defines both the input and output #' delimiter. #' @param dry if \code{TRUE} perform dry run. Only labels the sequences without #' collapsing them. #' @param verbose if \code{TRUE} report the number input, discarded and output #' sequences; if \code{FALSE} process sequences silently. #' #' @return A modified \code{data} data.frame with duplicate sequences removed and #' annotation fields collapsed if \code{dry=FALSE}. If \code{dry=TRUE}, #' sequences will be labeled with the collapse action, but the input will be #' otherwise unmodified (see Details). #' #' @details #' \code{collapseDuplicates} identifies duplicate sequences in the \code{seq} column by #' testing for character identity, with consideration of IUPAC ambiguous nucleotide codes. #' A cluster of sequences are considered duplicates if they are all equivalent, and no #' member of the cluster is equivalent to a sequence in a different cluster. #' #' Textual annotations, specified by \code{text_fields}, are collapsed by taking the unique #' set of values within in each duplicate cluster and delimiting those values by \code{sep}. #' Numeric annotations, specified by \code{num_fields}, are collapsed by summing all values #' in the duplicate cluster. Sequence annotations, specified by \code{seq_fields}, are #' collapsed by retaining the first sequence with the fewest number of N characters. #' #' Columns that are not specified in either \code{text_fields}, \code{num_fields}, or #' \code{seq_fields} will be retained, but the value will be chosen from a random entry #' amongst all sequences in a cluster of duplicates. #' #' An ambiguous sequence is one that can be assigned to two different clusters, wherein #' the ambiguous sequence is equivalent to two sequences which are themselves #' non-equivalent. Ambiguous sequences arise due to ambiguous characters at positions that #' vary across sequences, and are discarded along with their annotations when \code{dry=FALSE}. #' Thus, ambiguous sequences are removed as duplicates of some sequence, but do not create a potential #' false-positive annotation merger. Ambiguous sequences are not included in the #' \code{collapse_count} annotation that is added when \code{add_count=TRUE}. #' #' If \code{dry=TRUE} sequences will not be removed from the input. Instead, the following columns #' will be appended to the input defining the collapse action that would have been performed in the #' \code{dry=FALSE} case. #' #' \itemize{ #' \item \code{collapse_id}: an identifier for the group of identical sequences. #' \item \code{collapse_class}: string defining how the sequence matches to the other in the set. #' one of \code{"duplicated"} (has duplicates), #' \code{"unique"} (no duplicates), \code{"ambiguous_duplicate"} #' (no duplicates after ambiguous sequences are removed), #' or \code{"ambiguous"} (matches multiple non-duplicate sequences). #' \item \code{collapse_pass}: \code{TRUE} for the sequences that would be retained. #' } #' #' @seealso Equality is tested with \link{seqEqual} and \link{pairwiseEqual}. #' For IUPAC ambiguous character codes see \link{IUPAC_DNA}. #' #' @examples #' # Example data.frame #' db <- data.frame(sequence_id=LETTERS[1:4], #' sequence_alignment=c("CCCCTGGG", "CCCCTGGN", "NAACTGGN", "NNNCTGNN"), #' c_call=c("IGHM", "IGHG", "IGHG", "IGHA"), #' sample_id=c("S1", "S1", "S2", "S2"), #' duplicate_count=1:4, #' stringsAsFactors=FALSE) #' #' # Annotations are not parsed if neither text_fields nor num_fields is specified #' # The retained sequence annotations will be random #' collapseDuplicates(db, verbose=TRUE) #' #' # Unique text_fields annotations are combined into a single string with "," #' # num_fields annotations are summed #' # Ambiguous duplicates are discarded #' collapseDuplicates(db, text_fields=c("c_call", "sample_id"), num_fields="duplicate_count", #' verbose=TRUE) #' #' # Use alternate delimiter for collapsing textual annotations #' collapseDuplicates(db, text_fields=c("c_call", "sample_id"), num_fields="duplicate_count", #' sep="/", verbose=TRUE) #' #' # Add count of duplicates #' collapseDuplicates(db, text_fields=c("c_call", "sample_id"), num_fields="duplicate_count", #' add_count=TRUE, verbose=TRUE) #' #' # Masking ragged ends may impact duplicate removal #' db$sequence_alignment <- maskSeqEnds(db$sequence_alignment) #' collapseDuplicates(db, text_fields=c("c_call", "sample_id"), num_fields="duplicate_count", #' add_count=TRUE, verbose=TRUE) #' #' @export collapseDuplicates <- function(data, id="sequence_id", seq="sequence_alignment", text_fields=NULL, num_fields=NULL, seq_fields=NULL, add_count=FALSE, ignore=c("N", "-", ".", "?"), sep=",", dry=FALSE, verbose=FALSE) { # Stop if ids are not unique if (any(duplicated(data[[id]]))) { stop("All values in the id column are not unique") } # Verify column classes and exit if they are incorrect if (!is.null(text_fields)) { if (!all(sapply(subset(data, select=text_fields), is.character))) { stop("All text_fields columns must be of type 'character'") } } if (!is.null(num_fields)) { if (!all(sapply(subset(data, select=num_fields), is.numeric))) { stop("All num_fields columns must be of type 'numeric'") } } if (!is.null(seq_fields)) { if (!all(sapply(subset(data, select=seq_fields), is.character))) { stop("All seq_fields columns must be of type 'character'") } } seq_len <- stri_length(data[[seq]]) if (any(seq_len != seq_len[1])) { warning("All sequences are not the same length for data with first ", id, " = ", data[[id]][1]) } # Define verbose reporting function .printVerbose <- function(n_total, n_unique, n_discard) { cat(" FUNCTION> collapseDuplicates\n", sep="") cat(" FIRST_ID> ", data[[id]][1], "\n", sep="") cat(" TOTAL> ", n_total, "\n", sep="") cat(" UNIQUE> ", n_unique, "\n", sep="") cat("COLLAPSED> ", n_total - n_unique - n_discard, "\n", sep="") cat("DISCARDED> ", n_discard, "\n", sep="") cat("\n") } # Define function to count informative positions in sequences .informativeLength <- function(x) { stri_length(gsub("[N\\-\\.\\?]", "", x, perl=TRUE)) } # Initialize collapse_count with 1 for each sequence if(add_count) { data[["collapse_count"]] <- rep(1, nrow(data)) num_fields <- c(num_fields, "collapse_count") } # Initialize dry run columns if (dry) { data$collapse_id <- NA data$collapse_class <- NA data$collapse_pass <- TRUE } # Return input if there are no sequences to collapse nseq <- nrow(data) if (nseq <= 1) { if (verbose) { .printVerbose(nseq, 1, 0) } if (dry) { data[['collapse_id']] <- 1 data[['collapse_class']] <- "unique" data[['collapse_pass']] <- TRUE } return(data) } # Build distance matrix exact_duplicates <- any(duplicated(data[[seq]])) d_mat <- pairwiseEqual(unique(data[[seq]])) colnames(d_mat) <- rownames(d_mat) <- unique(data[[seq]]) n_uniqueseq <- nrow(d_mat) # Return input if no sequences are equal if (!any(d_mat[lower.tri(d_mat, diag=F)]) & !exact_duplicates) { if (verbose) { .printVerbose(nseq, nseq, 0) } if (dry) { data[['collapse_id']] <- 1:nrow(data) data[['collapse_class']] <- "unique" data[['collapse_pass']] <- TRUE } return(data) } # Find sequences that will cluster ambiguously ambig_rows <- numeric() for (i in 1:n_uniqueseq) { idx <- which(d_mat[i, ]) tmp_mat <- d_mat[idx, idx] if (!all(tmp_mat)) { ambig_rows <- append(ambig_rows, i) } } discard_count <- length(ambig_rows) # from ambiguous rows in d_mat to # ambiguous rows in data data_ambig_rows <- data[[seq]] %in% rownames(d_mat)[ambig_rows] data_discard_count <- sum(data_ambig_rows) if (dry & length(ambig_rows)>0) { data[["collapse_class"]][data_ambig_rows] <- "ambiguous" data[["collapse_pass"]][data_ambig_rows] <- FALSE } # Return single sequence if all or all but one sequence belong to ambiguous clusters if (nrow(data) - data_discard_count <= 1) { inform_len <- data.frame(list("inform_len"=.informativeLength(data[[seq]]))) # For each ambiguous cluster, return the best sequence g <- igraph::simplify(igraph::graph_from_adjacency_matrix(d_mat)) inform_len$clusters <- igraph::components(g)$membership[data[[seq]]] inform_len$select_id <- 1:nrow(inform_len) selected <- inform_len %>% dplyr::group_by(!!rlang::sym("clusters")) %>% dplyr::slice(which.max(!!rlang::sym("inform_len"))) %>% dplyr::ungroup() %>% dplyr::select(!!rlang::sym("select_id")) %>% unlist() if (verbose) { .printVerbose(nseq, 0, discard_count - 1) } if (dry) { data[["collapse_id"]] <- inform_len$clusters data[["collapse_pass"]][selected] <- TRUE } else { return(data[selected, ]) } } # Exclude ambiguous sequences from clustering if (!dry & discard_count > 0) { d_mat <- d_mat[-ambig_rows, -ambig_rows, drop = FALSE] # 'drop = FALSE' to keep dataframe structure if only one sequence is left data <- data[!data_ambig_rows,] } # Cluster remaining sequences into unique and duplicate sets dup_taxa <- list() uniq_taxa <- character() done_taxa <- character() taxa_names <- rownames(d_mat) collapse_id <- 1 for (taxa_i in 1:length(taxa_names)) { taxa <- taxa_names[taxa_i] data_taxa_i <- which(data[[seq]] %in% taxa) # Skip taxa if previously assigned to a cluster # or if ambiguous # (ambiguous taxa don't get their own collapse_id) if (taxa %in% done_taxa) { next } if (dry & taxa_i %in% ambig_rows) { next } # Find all zero distance taxa idx <- which(d_mat[taxa, ]) # Translate from d_mat idx to data idx data_idx <- which(data[[seq]] %in% colnames(d_mat)[idx]) # Update vector of clustered taxa done_taxa <- c(done_taxa, taxa_names[idx]) # Update collapse group if (dry) { data[["collapse_id"]][data_idx] <- paste(data[["collapse_id"]][data_idx], collapse_id, sep=",") } if (dry) { #idx_copy <- idx data_idx_copy <- data_idx idx <- idx[idx %in% ambig_rows == FALSE] data_idx <- which(data[[seq]] %in% colnames(d_mat)[idx]) } if (length(data_idx) == 1) { # Assign unique sequences to unique vector uniq_taxa <- append(uniq_taxa, taxa_names[idx]) if (dry) { if (length(data_idx_copy)==1) { ## 'truly' unique data[["collapse_class"]][data_taxa_i] <- "unique" } else { ## unique after ambiguous removal data[["collapse_class"]][data_taxa_i] <- "ambiguous_duplicate" } data[["collapse_pass"]][data_taxa_i] <- TRUE } } else if (length(data_idx) > 1) { # Assign clusters of duplicates to duplicate list dup_taxa <- c(dup_taxa, list(taxa_names[idx])) if (dry) { # Keep collpase_pass==TRUE for the sequence with the # larger number of informative positions # (the first one if ties) max_info_idx <- which.max(.informativeLength(data[[seq]][data_idx]))[1] data[["collapse_class"]][data_idx] <- "duplicated" data[["collapse_pass"]][data_idx[-max_info_idx]] <- FALSE } } else { # Report error (should never occur) stop("Error in distance matrix of collapseDuplicates") } collapse_id <- collapse_id + 1 } if (dry) { data[["collapse_id"]] <- sub("^NA,","",data[["collapse_id"]]) return(data) } # Collapse duplicate sets and append entries to unique data.frame unique_list <- list(data[data[[seq]] %in% uniq_taxa, ]) for (taxa in dup_taxa) { # Define row indices of identical sequences idx <- which(data[[seq]] %in% taxa) tmp_df <- data[idx[1], ] if (length(idx) > 1) { # Initialize with data from most informative sequence seq_set <- data[idx, c(id, seq)] inform_len <- .informativeLength(seq_set[[seq]]) max_inform <- which.max(inform_len)[1] # if ties, pick first tmp_df <- data[idx[max_inform], ] # Define set of text fields for row for (f in text_fields) { f_set <- na.omit(data[[f]][idx]) if (length(f_set) > 0) { f_set <- unlist(strsplit(f_set, sep)) f_set <- sort(unique(f_set)) f_val <- paste(f_set, collapse=sep) } else { f_val <- NA } tmp_df[, f] <- f_val } # Sum numeric fields for (f in num_fields) { f_set <- na.omit(data[[f]][idx]) if (length(f_set) > 0) { f_val <- sum(f_set) } else { f_val <- NA } tmp_df[, f] <- f_val } # Select sequence fields with fewest Ns for (f in seq_fields) { f_set <- na.omit(data[[f]][idx]) if (length(f_set) > 0) { f_len <- .informativeLength(f_set) f_val <- f_set[which.max(f_len)] } else { f_val <- NA } tmp_df[, f] <- f_val } } # Add row to unique list unique_list <- c(unique_list, list(tmp_df)) } # Combine all rows into unique data.frame unique_df <- as.data.frame(bind_rows(unique_list)) if (verbose) { .printVerbose(nseq, nrow(unique_df), discard_count) } return(unique_df) } #### Transformation functions #### #' Translate nucleotide sequences to amino acids #' #' \code{translateDNA} translates nucleotide sequences to amino acid sequences. #' #' @param seq vector of strings defining DNA sequence(s) to be converted to translated. #' @param trim boolean flag to remove 3 nts from both ends of seq #' (converts IMGT junction to CDR3 region). #' #' @return A vector of translated sequence strings. #' #' @seealso \code{\link[seqinr]{translate}}. #' #' @examples #' # Translate a single sequence #' translateDNA("ACTGACTCGA") #' #' # Translate a vector of sequences #' translateDNA(ExampleDb$junction[1:3]) #' #' # Remove the first and last codon from the translation #' translateDNA(ExampleDb$junction[1:3], trim=TRUE) #' #' @export translateDNA <- function (seq, trim=FALSE) { # Function to translate a single string .translate <- function(x) { if (stri_length(x) >= 3 & !is.na(x)) { stri_join(seqinr::translate(unlist(strsplit(x, "")), ambiguous=TRUE), collapse="") } else { NA } } # Remove 3 nucleotides from each end # Eg, "ACTGACTCGA" -> "GACT" (with "ACT" and "CGA" removed) if (trim) { seq <- substr(seq, 4, stri_length(seq) - 3) } # Replace gaps with N seq <- gsub("[-.]", "N", seq) # Apply translation aa <- sapply(seq, .translate, USE.NAMES=FALSE) return(aa) } #' Masks gap characters in DNA sequences #' #' \code{maskSeqGaps} substitutes gap characters, \code{c("-", ".")}, with \code{"N"} #' in a vector of DNA sequences. #' #' @param seq character vector of DNA sequence strings. #' @param mask_char character to use for masking. #' @param outer_only if \code{TRUE} replace only contiguous leading and trailing gaps; #' if \code{FALSE} replace all gap characters. #' #' @return A modified \code{seq} vector with \code{"N"} in place of \code{c("-", ".")} #' characters. #' #' @seealso See \link{maskSeqEnds} for masking ragged edges. #' #' @examples #' # Mask with Ns #' maskSeqGaps(c("ATG-C", "CC..C")) #' maskSeqGaps("--ATG-C-") #' maskSeqGaps("--ATG-C-", outer_only=TRUE) #' #' # Mask with dashes #' maskSeqGaps(c("ATG-C", "CC..C"), mask_char="-") #' #' @export maskSeqGaps <- function(seq, mask_char="N", outer_only=FALSE) { if (outer_only) { for (i in 1:length(seq)) { head_match <- attr(regexpr("^[-\\.]+", seq[i]), "match.length") tail_match <- attr(regexpr("[-\\.]+$", seq[i]), "match.length") if (head_match > 0) { seq[i] <- gsub("^[-\\.]+", paste(rep(mask_char, head_match), collapse=""), seq[i]) } if (tail_match > 0) { seq[i] <- gsub("[-\\.]+$", paste(rep(mask_char, tail_match), collapse=""), seq[i]) } } } else { seq <- gsub("[-\\.]", mask_char, seq) } return(seq) } #' Masks ragged leading and trailing edges of aligned DNA sequences #' #' \code{maskSeqEnds} takes a vector of DNA sequences, as character strings, #' and replaces the leading and trailing characters with \code{"N"} characters to create #' a sequence vector with uniformly masked outer sequence segments. #' #' @param seq character vector of DNA sequence strings. #' @param mask_char character to use for masking. #' @param max_mask the maximum number of characters to mask. If set to 0 then #' no masking will be performed. If set to \code{NULL} then the upper #' masking bound will be automatically determined from the maximum #' number of observed leading or trailing \code{"N"} characters amongst #' all strings in \code{seq}. #' @param trim if \code{TRUE} leading and trailing characters will be cut rather #' than masked with \code{"N"} characters. #' @return A modified \code{seq} vector with masked (or optionally trimmed) sequences. #' #' @seealso See \link{maskSeqGaps} for masking internal gaps. #' See \link{padSeqEnds} for padding sequence of unequal length. #' #' @examples #' # Default behavior uniformly masks ragged ends #' seq <- c("CCCCTGGG", "NAACTGGN", "NNNCTGNN") #' maskSeqEnds(seq) #' #' # Does nothing #' maskSeqEnds(seq, max_mask=0) #' #' # Cut ragged sequence ends #' maskSeqEnds(seq, trim=TRUE) #' #' # Set max_mask to limit extent of masking and trimming #' maskSeqEnds(seq, max_mask=1) #' maskSeqEnds(seq, max_mask=1, trim=TRUE) #' #' # Mask dashes instead of Ns #' seq <- c("CCCCTGGG", "-AACTGG-", "---CTG--") #' maskSeqEnds(seq, mask_char="-") #' #' @export maskSeqEnds <- function(seq, mask_char="N", max_mask=NULL, trim=FALSE) { # Find length of leading and trailing Ns left_lengths <- attr(regexpr(paste0("(^", mask_char, "*)"), seq, perl=T), "capture.length") right_lengths <- attr(regexpr(paste0("(", mask_char, "*$)"), seq, perl=T), "capture.length") # Mask to minimal inner sequence length left_mask <- min(max(left_lengths[, 1]), max_mask) right_mask <- min(max(right_lengths[, 1]), max_mask) seq_lengths <- stri_length(seq) if (trim) { seq <- substr(seq, left_mask + 1, seq_lengths - right_mask) } else { substr(seq, 0, left_mask) <- paste(rep(mask_char, left_mask), collapse='') substr(seq, seq_lengths - right_mask + 1, seq_lengths + 1) <- paste(rep(mask_char, right_mask), collapse='') } return(seq) } #' Pads ragged ends of aligned DNA sequences #' #' \code{padSeqEnds} takes a vector of DNA sequences, as character strings, #' and appends the ends of each sequence with an appropriate number of \code{"N"} #' characters to create a sequence vector with uniform lengths. #' #' @param seq character vector of DNA sequence strings. #' @param len length to pad to. Only applies if longer than the maximum length of #' the data in \code{seq}. #' @param start if \code{TRUE} pad the beginning of each sequence instead of the end. #' @param pad_char character to use for padding. #' @param mod3 if \code{TRUE} pad sequences to be of length multiple three. #' #' @return A modified \code{seq} vector with padded sequences. #' #' @seealso See \link{maskSeqEnds} for creating uniform masking from existing masking. #' #' @examples #' # Default behavior uniformly pads ragged ends #' seq <- c("CCCCTGGG", "ACCCTG", "CCCC") #' padSeqEnds(seq) #' #' # Pad to fixed length #' padSeqEnds(seq, len=15) #' #' # Add padding to the beginning of the sequences instead of the ends #' padSeqEnds(seq, start=TRUE) #' padSeqEnds(seq, len=15, start=TRUE) #' #' @export padSeqEnds <- function(seq, len=NULL, start=FALSE, pad_char="N", mod3=TRUE) { # Set length to max input length width <- max(stringi::stri_length(seq),len) if (mod3 && width %% 3 != 0) { width <- width + (3 - width %% 3) } # Pad if (!start) { seq <- stringi::stri_pad_right(seq, width=width, pad=pad_char) } else { seq <- stringi::stri_pad_left(seq, width=width, pad=pad_char) } return(seq) } #### Subregion functions #### #' Extracts FWRs and CDRs from IMGT-gapped sequences #' #' \code{extractVRegion} extracts the framework and complementarity determining regions of #' the V segment for IMGT-gapped immunoglobulin (Ig) nucleotide sequences according to the #' IMGT numbering scheme. #' #' @param sequences character vector of IMGT-gapped nucleotide sequences. #' @param region string defining the region(s) of the V segment to extract. #' May be a single region or multiple regions (as a vector) from #' \code{c("fwr1", "cdr1", "fwr2", "cdr2" ,"fwr3")}. By default, all #' regions will be returned. #' #' @return If only one region is specified in the \code{region} argument, a character #' vector of the extracted sub-sequences will be returned. If multiple regions #' are specified, then a character matrix will be returned with columns #' corresponding to the specified regions and a row for each entry in #' \code{sequences}. #' #' @seealso IMGT-gapped region boundaries are defined in \link{IMGT_REGIONS}. #' #' @references #' \enumerate{ #' \item Lefranc M-P, et al. IMGT unique numbering for immunoglobulin and T cell #' receptor variable domains and Ig superfamily V-like domains. #' Dev Comp Immunol. 2003 27(1):55-77. #' } #' #' @examples #' # Assign example clone #' clone <- subset(ExampleDb, clone_id == 3138) #' #' # Get all regions #' extractVRegion(clone$sequence_alignment) #' #' # Get single region #' extractVRegion(clone$sequence_alignment, "fwr1") #' #' # Get all CDRs #' extractVRegion(clone$sequence_alignment, c("cdr1", "cdr2")) #' #' # Get all FWRs #' extractVRegion(clone$sequence_alignment, c("fwr1", "fwr2", "fwr3")) #' #' @export extractVRegion <- function(sequences, region=c("fwr1", "cdr1", "fwr2", "cdr2", "fwr3")) { # Check region argument region <- match.arg(region, several.ok=TRUE) if (length(region) == 1) { sub_sequences <- substr(sequences, IMGT_REGIONS[[region]][1], IMGT_REGIONS[[region]][2]) } else { sub_sequences <- sapply(region, function(x) substr(sequences, IMGT_REGIONS[[x]][1], IMGT_REGIONS[[x]][2])) } return(sub_sequences) } #' Calculate junction region alignment properties #' #' \code{junctionAlignment} determines the number of deleted germline nucleotides in the #' junction region and the number of V gene and J gene nucleotides in the CDR3. #' #' @param data \code{data.frame} containing sequence data. #' @param germline_db reference germline database for the V, D and J genes. #' in \code{data} #' @param v_call V gene assignment column. #' @param d_call D gene assignment column. #' @param j_call J gene assignment column. #' @param v_germline_start column containing the start position of the alignment #' in the V reference germline. #' @param v_germline_end column containing the end position of the alignment in the #' V reference germline. #' @param d_germline_start column containing the start position of the alignment #' in the D reference germline. #' @param d_germline_end column containing the start position of the alignment #' in the D reference germline. #' @param j_germline_start column containing the start position of the alignment #' in the J reference germline. #' @param j_germline_end column containing the start position of the alignment #' in the J reference germline. #' @param np1_length combined length of the N and P regions between the #' V and D regions (heavy chain) or V and J regions (light chain). #' @param np2_length combined length of the N and P regions between the #' D and J regions (heavy chain). #' @param junction column containing the junction sequence. #' @param junction_length column containing the length of the junction region in nucleotides. #' @param sequence_alignment column containing the aligned sequence. #' #' @return A modified input \code{data.frame} with the following additional columns storing #' junction alignment information: #' \enumerate{ #' \item \code{e3v_length}: number of 3' V germline nucleotides deleted. #' \item \code{e5d_length}: number of 5' D germline nucleotides deleted. #' \item \code{e3d_length}: number of 3' D germline nucleotides deleted. #' \item \code{e5j_length}: number of 5' J germline nucleotides deleted. #' \item \code{v_cdr3_length}: number of sequence_alignment V nucleotides in the CDR3. #' \item \code{j_cdr3_length}: number of sequence_alignment J nucleotides in the CDR3. #' } #' #' @examples #' germline_db <- list( #' "IGHV3-11*05"="CAGGTGCAGCTGGTGGAGTCTGGGGGA...GGCTTGGTCAAGCCTGGAGGGTCCCTGAGACT #' CTCCTGTGCAGCCTCTGGATTCACCTTC............AGTGACTACTACATGAGCTGGATCCGCCAGGCTCCAG #' GGAAGGGGCTGGAGTGGGTTTCATACATTAGTAGTAGT......AGTAGTTACACAAACTACGCAGACTCTGTGAAG #' ...GGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGA #' CACGGCCGTGTATTACTGTGCGAGAGA", #' "IGHD3-10*01"="GTATTACTATGGTTCGGGGAGTTATTATAAC", #' "IGHJ5*02"="ACAACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAG" #' ) #' #' db <- junctionAlignment(SingleDb, germline_db) #' #' @export junctionAlignment <- function(data, germline_db, v_call="v_call", d_call="d_call", j_call="j_call", v_germline_start="v_germline_start", v_germline_end="v_germline_end", d_germline_start="d_germline_start", d_germline_end="d_germline_end", j_germline_start="j_germline_start", j_germline_end="j_germline_end", np1_length="np1_length", np2_length="np2_length", junction="junction", junction_length="junction_length", sequence_alignment="sequence_alignment") { # Check input check <- checkColumns(data, c(v_call, d_call, j_call, v_germline_start, v_germline_end, d_germline_start, d_germline_end, j_germline_start, j_germline_end, np1_length, np2_length, junction, junction_length, sequence_alignment)) if (check != TRUE) { stop(check) } # Get deletions for (i in 1:nrow(data)) { v_dels <- countDeleted(data[i,], allele_call=v_call, germline_start=v_germline_start, germline_end=v_germline_end, germline_db=germline_db, junction=junction, junction_length=junction_length, sequence_alignment=sequence_alignment) d_dels <- countDeleted(data[i,], allele_call=d_call, germline_start=d_germline_start, germline_end=d_germline_end, germline_db=germline_db, junction=junction, junction_length=junction_length, sequence_alignment=sequence_alignment) j_dels <- countDeleted(data[i,], allele_call=j_call, germline_start=j_germline_start, germline_end=j_germline_end, germline_db=germline_db, junction=junction, junction_length=junction_length, sequence_alignment=sequence_alignment) data[['e3v_length']][i] <- v_dels[2] data[['e5d_length']][i] <- d_dels[1] data[['e3d_length']][i] <- d_dels[2] data[['e5j_length']][i] <- j_dels[1] data[['v_cdr3_length']][i] <- v_dels[3] data[['j_cdr3_length']][i] <- j_dels[3] } return(data) } # Junction alignment helper # # Report the number of deleted germline nucleotides in the alignment # # @param db_row one row from a Rearrangement database. # @param allele_call column containing gene assignments. # @param germline_start column containing the start position of the alignment in the reference germline. # @param germline_end column containing the end position of the alignment in the reference germline. # @param germline_db reference germline database for the V, D and J genes. # @param junction column containing the junction sequence. # @param junction_length column containing the length of the junction region in nucleotides. # @param sequence_alignment column containing the aligned sequence. # # @return Alignment deletions countDeleted <- function(db_row, allele_call, germline_start, germline_end, germline_db, junction, junction_length, sequence_alignment) { # db_row: one row from data # allele_call: one of v,d,j # germline_db: the reference germline database used to assign genes. allele <- getAllele(db_row[[allele_call]], first=T) deleted <- c(NA, NA, NA) # Check for valid allele information if (is.na(allele)) { return(deleted) } # Check for allele in reference germlines tryCatch(germline <- germline_db[[allele]], error=function(e) { stop(allele, " not found in germline_db.") }) allele_germline_start <- as.numeric(db_row[[germline_start]]) allele_germline_end <- as.numeric(db_row[[germline_end]]) germline_head <- stringi::stri_sub(germline, 1, allele_germline_start - 1) deleted_head <- nchar(gsub("\\.", "", germline_head)) germline_tail <- stringi::stri_sub(germline, allele_germline_end+1, nchar(germline)) deleted_tail <- nchar(gsub("\\.", "", germline_tail)) deleted[1] <- deleted_head deleted[2] <- deleted_tail if (is.na(db_row[[junction]])) { warning("NA junction found.") return (deleted) } if (!db_row[[junction_length]]>6) { message("Junction length <= 6.") return (deleted) } junction_len <- db_row[[junction_length]] junction_start <- 310 # junction_end <- junction_start + junction_len - 1 # get aligned junction end (counting gaps) seq_aln <- s2c(db_row[[sequence_alignment]]) != "-" seq_aln[1:junction_start-1] <- 0 junction_end <- which(cumsum(seq_aln[1:length(seq_aln)]) > junction_len)[1] - 1 # For V and J alleles, calculate number of nt in the CDR3 germ_cdr3_length <- NA if (grepl("[Vv]", allele)) { last_cdr3_pre_np <- db_row[[germline_end]] - db_row[[germline_start]] + 1 first_cdr3_pre_np <- junction_start + 3 # without conserved # len <- last_cdr3_pre_np - first_cdr3_pre_np + 1 #germ_seq <- stringi::stri_sub(germline, db_row[[germline_end]]+1-len, db_row[[germline_end]] ) germ_seq <- stringi::stri_sub(db_row[[sequence_alignment]], first_cdr3_pre_np, last_cdr3_pre_np ) germ_cdr3_length <- nchar(gsub("[\\.-]", "", germ_seq)) } else if (grepl("[Jj]", allele)) { j_aln_len <- db_row[[germline_end]] - db_row[[germline_start]] + 1 # germ_seq <- stringi::stri_sub(germline, db_row[[germline_start]], db_row[[germline_end]]-j_tail) germ_seq <- stringi::stri_sub(db_row[[sequence_alignment]], nchar(db_row[[sequence_alignment]]) - j_aln_len + 1, junction_end - 3) germ_cdr3_length <- nchar(gsub("-", "", germ_seq)) } deleted <- c(deleted_head, deleted_tail, germ_cdr3_length) return(deleted) } #### Rcpp wrappers #### #' Calculate distance between two sequences #' #' \code{seqDist} calculates the distance between two DNA sequences. #' #' @param seq1 character string containing a DNA sequence. #' @param seq2 character string containing a DNA sequence. #' @param dist_mat Character distance matrix. Defaults to a Hamming distance #' matrix returned by \link{getDNAMatrix}. If gap #' characters, \code{c("-", ".")}, are assigned a value of -1 #' in \code{dist_mat} then contiguous gaps of any run length, #' which are not present in both sequences, will be counted as a #' distance of 1. Meaning, indels of any length will increase #' the sequence distance by 1. Gap values other than -1 will #' return a distance that does not consider indels as a special case. #' #' @return Numerical distance between \code{seq1} and \code{seq2}. #' #' @seealso Nucleotide distance matrix may be built with #' \link{getDNAMatrix}. Amino acid distance matrix may be built #' with \link{getAAMatrix}. Used by \link{pairwiseDist} for generating #' distance matrices. See \link{seqEqual} for testing sequence equivalence. #' #' @examples #' # Ungapped examples #' seqDist("ATGGC", "ATGGG") #' seqDist("ATGGC", "ATG??") #' #' # Gaps will be treated as Ns with a gap=0 distance matrix #' seqDist("ATGGC", "AT--C", dist_mat=getDNAMatrix(gap=0)) #' #' # Gaps will be treated as universally non-matching characters with gap=1 #' seqDist("ATGGC", "AT--C", dist_mat=getDNAMatrix(gap=1)) #' #' # Gaps of any length will be treated as single mismatches with a gap=-1 distance matrix #' seqDist("ATGGC", "AT--C", dist_mat=getDNAMatrix(gap=-1)) #' #' # Gaps of equivalent run lengths are not counted as gaps #' seqDist("ATG-C", "ATG-C", dist_mat=getDNAMatrix(gap=-1)) #' #' # Overlapping runs of gap characters are counted as a single gap #' seqDist("ATG-C", "AT--C", dist_mat=getDNAMatrix(gap=-1)) #' seqDist("A-GGC", "AT--C", dist_mat=getDNAMatrix(gap=-1)) #' seqDist("AT--C", "AT--C", dist_mat=getDNAMatrix(gap=-1)) #' #' # Discontiguous runs of gap characters each count as separate gaps #' seqDist("-TGGC", "AT--C", dist_mat=getDNAMatrix(gap=-1)) #' #' @export seqDist <- function(seq1, seq2, dist_mat=getDNAMatrix()) { seqDistRcpp(seq1, seq2, dist_mat) } #' Calculate pairwise distances between sequences #' #' \code{pairwiseDist} calculates all pairwise distance between a set of sequences. #' #' @param seq character vector containing a DNA sequences. #' @param dist_mat Character distance matrix. Defaults to a Hamming distance #' matrix returned by \link{getDNAMatrix}. If gap #' characters, \code{c("-", ".")}, are assigned a value of -1 #' in \code{dist_mat} then contiguous gaps of any run length, #' which are not present in both sequences, will be counted as a #' distance of 1. Meaning, indels of any length will increase #' the sequence distance by 1. Gap values other than -1 will #' return a distance that does not consider indels as a special case. #' #' @return A matrix of numerical distance between each entry in \code{seq}. #' If \code{seq} is a named vector, row and columns names will be added #' accordingly. #' #' Amino acid distance matrix may be built with \link{getAAMatrix}. #' Uses \link{seqDist} for calculating distances between pairs. #' See \link{pairwiseEqual} for generating an equivalence matrix. #' #' @examples #' # Gaps will be treated as Ns with a gap=0 distance matrix #' pairwiseDist(c(A="ATGGC", B="ATGGG", C="ATGGG", D="AT--C"), #' dist_mat=getDNAMatrix(gap=0)) #' #' # Gaps will be treated as universally non-matching characters with gap=1 #' pairwiseDist(c(A="ATGGC", B="ATGGG", C="ATGGG", D="AT--C"), #' dist_mat=getDNAMatrix(gap=1)) #' #' # Gaps of any length will be treated as single mismatches with a gap=-1 distance matrix #' pairwiseDist(c(A="ATGGC", B="ATGGG", C="ATGGG", D="AT--C"), #' dist_mat=getDNAMatrix(gap=-1)) #' #' @export pairwiseDist <- function(seq, dist_mat=getDNAMatrix()) { pairwiseDistRcpp(seq, dist_mat) } #' Calculate pairwise distances between sequences #' #' \code{nonsquareDist} calculates all pairwise distance between a set of sequences and a subset of it. #' #' @param seq character vector containing a DNA sequences. The sequence vector needs to #' be named. #' @param indx numeric vector containing the indices (a subset of indices of \code{seq}). #' @param dist_mat Character distance matrix. Defaults to a Hamming distance #' matrix returned by \link{getDNAMatrix}. If gap #' characters, \code{c("-", ".")}, are assigned a value of -1 #' in \code{dist_mat} then contiguous gaps of any run length, #' which are not present in both sequences, will be counted as a #' distance of 1. Meaning, indels of any length will increase #' the sequence distance by 1. Gap values other than -1 will #' return a distance that does not consider indels as a special case. #' #' @return A matrix of numerical distance between each entry in \code{seq} and #' sequences specified by \code{indx} indices. #' #' Note that the input subsampled indices will be ordered ascendingly. Therefore, #' it is necessary to assign unique names to the input sequences, \code{seq}, #' to recover the input order later. Row and columns names will be added accordingly. #' #' Amino acid distance matrix may be built with \link{getAAMatrix}. #' Uses \link{seqDist} for calculating distances between pairs. #' See \link{pairwiseEqual} for generating an equivalence matrix. #' #' @examples #' # Gaps will be treated as Ns with a gap=0 distance matrix #' seq <- c(A="ATGGC", B="ATGGG", C="ATGGG", D="AT--C") #' pairwiseDist(seq, #' dist_mat=getDNAMatrix(gap=0)) #' #' nonsquareDist(seq, indx=c(1,3), #' dist_mat=getDNAMatrix(gap=0)) #' #' @export nonsquareDist <- function(seq, indx, dist_mat=getDNAMatrix()) { nonsquareDistRcpp(seq, indx, dist_mat) }alakazam/R/AminoAcids.R0000644000176200001440000006115014740172103014370 0ustar liggesusers# Amino acid sequence properties #### Chemical property functions #### #' Calculates the average bulkiness of amino acid sequences #' #' \code{bulk} calculates the average bulkiness score of amino acid sequences. #' Non-informative positions are excluded, where non-informative is defined as any #' character in \code{c("X", "-", ".", "*")}. #' #' @param seq vector of strings containing amino acid sequences. #' @param bulkiness named numerical vector defining bulkiness scores for #' each amino acid, where names are single-letter amino acid #' character codes. If \code{NULL}, then the Zimmerman et al, 1968 #' scale is used. #' #' @return A vector of bulkiness scores for the sequence(s). #' #' @references #' \enumerate{ #' \item Zimmerman JM, Eliezer N, Simha R. The characterization of amino acid sequences #' in proteins by statistical methods. J Theor Biol 21, 170-201 (1968). #' } #' @seealso #' For additional size related indices see \link[seqinr]{aaindex}. #' #' @examples #' # Default bulkiness scale #' seq <- c("CARDRSTPWRRGIASTTVRTSW", "XXTQMYVRT") #' bulk(seq) #' #' # Use the Grantham, 1974 side chain volumn scores from the seqinr package #' library(seqinr) #' data(aaindex) #' x <- aaindex[["GRAR740103"]]$I #' # Rename the score vector to use single-letter codes #' names(x) <- translateStrings(names(x), ABBREV_AA) #' # Calculate average volume #' bulk(seq, bulkiness=x) #' #' @export bulk <- function(seq, bulkiness=NULL) { # Get bulkiness scores if (is.null(bulkiness)) { bulkiness <- BULKINESS_ZIMJ68 } # Remove non-informative positions seq <- gsub("[X\\.\\*-]", "", as.character(seq)) # Create character vector from string aa <- strsplit(seq, "") # Calculate average bulkiness aa_bulk <- sapply(aa, function(x) sum(bulkiness[x]) / length(x)) return(aa_bulk) } #' Calculates the average polarity of amino acid sequences #' #' \code{polar} calculates the average polarity score of amino acid sequences. #' Non-informative positions are excluded, where non-informative is defined as any #' character in \code{c("X", "-", ".", "*")}. #' #' @param seq vector of strings containing amino acid sequences. #' @param polarity named numerical vector defining polarity scores for #' each amino acid, where names are single-letter amino acid #' character codes. If \code{NULL}, then the Grantham, 1974 #' scale is used. #' #' @return A vector of bulkiness scores for the sequence(s). #' #' @references #' \enumerate{ #' \item Grantham R. Amino acid difference formula to help explain protein evolution. #' Science 185, 862-864 (1974). #' } #' @seealso #' For additional size related indices see \code{\link[seqinr]{aaindex}}. #' #' @examples #' # Default scale #' seq <- c("CARDRSTPWRRGIASTTVRTSW", "XXTQMYVRT") #' polar(seq) #' #' # Use the Zimmerman et al, 1968 polarity scale from the seqinr package #' library(seqinr) #' data(aaindex) #' x <- aaindex[["ZIMJ680103"]]$I #' # Rename the score vector to use single-letter codes #' names(x) <- translateStrings(names(x), ABBREV_AA) #' # Calculate polarity #' polar(seq, polarity=x) #' #' @export polar <- function(seq, polarity=NULL) { # Get bulkiness scores if (is.null(polarity)) { polarity <- POLARITY_GRAR74 } # Remove non-informative positions seq <- gsub("[X\\.\\*-]", "", as.character(seq)) # Create character vector from string aa <- strsplit(seq, "") # Calculate average polarity aa_polar <- sapply(aa, function(x) sum(polarity[x]) / length(x)) return(aa_polar) } #' Calculates the hydrophobicity of amino acid sequences #' #' \code{gravy} calculates the Grand Average of Hydrophobicity (gravy) index #' of amino acid sequences using the method of Kyte & Doolittle. Non-informative #' positions are excluded, where non-informative is defined as any character in #' \code{c("X", "-", ".", "*")}. #' #' @param seq vector of strings containing amino acid sequences. #' @param hydropathy named numerical vector defining hydropathy index values for #' each amino acid, where names are single-letter amino acid #' character codes. If \code{NULL}, then the Kyte & Doolittle #' scale is used. #' #' @return A vector of gravy scores for the sequence(s). #' #' @references #' \enumerate{ #' \item Kyte J, Doolittle RF. A simple method for displaying the hydropathic character #' of a protein. J Mol Biol. 157, 105-32 (1982). #' } #' @seealso #' For additional hydrophobicity indices see \code{\link[seqinr]{aaindex}}. #' #' @examples #' # Default scale #' seq <- c("CARDRSTPWRRGIASTTVRTSW", "XXTQMYVRT") #' gravy(seq) #' #' # Use the Kidera et al, 1985 scores from the seqinr package #' library(seqinr) #' data(aaindex) #' x <- aaindex[["KIDA850101"]]$I #' # Rename the score vector to use single-letter codes #' names(x) <- translateStrings(names(x), ABBREV_AA) #' # Calculate hydrophobicity #' gravy(seq, hydropathy=x) #' #' @export gravy <- function(seq, hydropathy=NULL) { # Get hydrophobicity scores if (is.null(hydropathy)) { hydropathy <- HYDROPATHY_KYTJ82 } # Remove non-informative positions seq <- gsub("[X\\.\\*-]", "", as.character(seq)) # Create character vector from string aa <- strsplit(seq, "") # Calculate gravy aa_gravy <- sapply(aa, function(x) sum(hydropathy[x]) / length(x)) return(aa_gravy) } #' Calculates the aliphatic index of amino acid sequences #' #' \code{aliphatic} calculates the aliphatic index of amino acid sequences using #' the method of Ikai. Non-informative positions are excluded, where non-informative #' is defined as any character in \code{c("X", "-", ".", "*")}. #' #' @param seq vector of strings containing amino acid sequences. #' @param normalize if \code{TRUE} then divide the aliphatic index of each amino acid #' sequence by the number of informative positions. Non-informative #' position are defined by the presence any character in #' \code{c("X", "-", ".", "*")}. If \code{FALSE} then return the raw #' aliphatic index. #' #' @return A vector of the aliphatic indices for the sequence(s). #' #' @references #' \enumerate{ #' \item Ikai AJ. Thermostability and aliphatic index of globular proteins. #' J Biochem. 88, 1895-1898 (1980). #' } #' #' @examples #' seq <- c("CARDRSTPWRRGIASTTVRTSW", NA, "XXTQMYVRT") #' aliphatic(seq) #' #' @export aliphatic <- function(seq, normalize=TRUE) { # Calculate aliphatic index for valid amino acids ala <- countOccurrences(seq, "[A]") val <- countOccurrences(seq, "[V]") leu_ile <- countOccurrences(seq, "[LI]") aa_aliphatic = ala + 2.9 * val + 3.9 * leu_ile if (normalize) { aa_aliphatic <- aa_aliphatic / stri_length(gsub("[X\\.\\*-]", "", seq)) } return(aa_aliphatic) } #' Calculates the net charge of amino acid sequences. #' #' \code{charge} calculates the net charge of amino acid sequences using #' the method of Moore, 1985, with exclusion of the C-terminus and N-terminus charges. #' #' @param seq vector strings defining of amino acid sequences. #' @param pH environmental pH. #' @param pK named vector defining pK values for each charged amino acid, #' where names are the single-letter amino acid character codes #' \code{c("R", "H", "K", "D", "E", "C", "Y")}). If \code{NULL}, #' then the EMBOSS scale is used. #' @param normalize if \code{TRUE} then divide the net charge of each amino acid #' sequence by the number of informative positions. Non-informative #' position are defined by the presence any character in #' \code{c("X", "-", ".", "*")}. If \code{FALSE} then return the raw #' net charge. #' #' @return A vector of net charges for the sequence(s). #' #' @references #' \enumerate{ #' \item Moore DS. Amino acid and peptide net charges: A simple calculational procedure. #' Biochem Educ. 13, 10-11 (1985). #' \item \url{https://emboss.sourceforge.net/apps/cvs/emboss/apps/iep.html} #' } #' #' @seealso #' For additional pK scales see \code{\link[seqinr]{pK}}. #' #' @examples #' seq <- c("CARDRSTPWRRGIASTTVRTSW", "XXTQMYVRT") #' # Unnormalized charge #' charge(seq) #' # Normalized charge #' charge(seq, normalize=TRUE) #' #' # Use the Murray et al, 2006 scores from the seqinr package #' library(seqinr) #' data(pK) #' x <- setNames(pK[["Murray"]], rownames(pK)) #' # Calculate charge #' charge(seq, pK=x) #' #' @export charge <- function(seq, pH=7.4, pK=NULL, normalize=FALSE) { # Get charge data if(is.null(pK)) { pK <- PK_EMBOSS } # Calculate charge arg <- countOccurrences(seq, "R") * (1/(1 + 10^(1 * (pH - pK["R"])))) his <- countOccurrences(seq, "H") * (1/(1 + 10^(1 * (pH - pK["H"])))) lys <- countOccurrences(seq, "K") * (1/(1 + 10^(1 * (pH - pK["K"])))) asp <- countOccurrences(seq, "D") * (-1/(1 + 10^(-1 * (pH - pK["D"])))) glu <- countOccurrences(seq, "E") * (-1/(1 + 10^(-1 * (pH - pK["E"])))) cys <- countOccurrences(seq, "C") * (-1/(1 + 10^(-1 * (pH - pK["C"])))) tyr <- countOccurrences(seq, "Y") * (-1/(1 + 10^(-1 * (pH - pK["Y"])))) aa_charge <- arg + lys + his + asp + glu + tyr + cys if (normalize) { aa_charge <- aa_charge / stri_length(gsub("[X\\.\\*-]", "", seq)) } return(aa_charge) } #' Validate amino acid sequences #' #' \code{isValidAASeq} checks that a set of sequences are valid non-ambiguous #' amino acid sequences. A sequence is considered valid if it contains only #' characters in the the non-ambiguous IUPAC character set or any characters in #' \code{c("X", ".", "-", "*")}. #' #' @param seq character vector of sequences to check. #' #' @return A logical vector with \code{TRUE} for each valid amino acid sequences #' and \code{FALSE} for each invalid sequence. #' @seealso #' See \link{ABBREV_AA} for the set of non-ambiguous amino acid characters. #' See \link{IUPAC_AA} for the full set of ambiguous amino acid characters. #' #' @examples #' seq <- c("CARDRSTPWRRGIASTTVRTSW", "XXTQMYVR--XX", "CARJ", "10") #' isValidAASeq(seq) #' #' @export isValidAASeq <- function(seq) { # Get valid amino acids from seqinr # for consistency with `gravy` and other # amino acid properties that don't consider # amino acid ambiguities and special encoded amino acids # http://pir.georgetown.edu/resid/faq.shtml#q01 # Also include here characters for non informative positions valid_AA <- c(names(ABBREV_AA), "X", ".", "*", "-") .isValid <- function(aa) { all(aa %in% valid_AA) } return(sapply(strsplit(seq, ""), .isValid)) # valid_AA <- paste(c(names(ABBREV_AA),"X.*-"),collapse="") # valid <- !grepl(paste0("[^",valid_AA,"]"), seq) & !is.na(seq) # valid } # Count patterns # # Counts the number of times a "pattern" occurs in "x", a string # # @param x a string (usually amino acids) # @param pattern regular expression to be matched in string # # @return number of times the regular expression was found countOccurrences <- function(x, pattern) { return(sapply(gregexpr(pattern, x), function(y) { sum(y > 0) })) } #' Count sequence patterns #' #' \code{countPatterns} counts the fraction of times a set of character patterns occur #' in a set of sequences. #' #' @param seq character vector of either DNA or amino acid sequences. #' @param patterns list of sequence patterns to count in each sequence. If the #' list is named, then names will be assigned as the column names of #' output data.frame. #' @param nt if \code{TRUE} then \code{seq} are DNA sequences and and will be #' translated before performing the pattern search. #' @param trim if \code{TRUE} remove the first and last codon or amino acid from #' each sequence before the pattern search. If \code{FALSE} do #' not modify the input sequences. #' @param label string defining a label to add as a prefix to the output #' column names. #' #' @return A data.frame containing the fraction of times each sequence pattern was #' found. #' #' @examples #' seq <- c("TGTCAACAGGCTAACAGTTTCCGGACGTTC", #' "TGTCAGCAATATTATATTGCTCCCTTCACTTTC", #' "TGTCAAAAGTATAACAGTGCCCCCTGGACGTTC") #' patterns <- c("A", "V", "[LI]") #' names(patterns) <- c("arg", "val", "iso_leu") #' countPatterns(seq, patterns, nt=TRUE, trim=TRUE, label="cdr3") #' #' @export countPatterns <- function(seq, patterns, nt=TRUE, trim=FALSE, label="region") { # Translate sequences if nucleotide region_aa <- if (nt) { translateDNA(seq, trim=trim) } else { seq } # TODO: What is the proper length normalization? With or without non-informative position? # Calculate region lengths aa_length <- stri_length(region_aa) # Count occurrence of each amino acid pattern for each sequence out_df <- data.frame(matrix(0, nrow=length(region_aa), ncol=length(patterns))) # If patterns are unnamed, make the names X1...Xn if(is.null(names(patterns))) { names(patterns) <- names(out_df) } # If region name, append to names of patterns if(label != '') { names(out_df) <- paste(label, names(patterns), sep="_") } else { names(out_df) <- names(patterns) } # Iterate over patterns for(i in 1:length(patterns)) { out_df[, i] <- countOccurrences(region_aa, patterns[i]) / aa_length } return(out_df) } #' Calculates amino acid chemical properties for sequence data #' #' \code{aminoAcidProperties} calculates amino acid sequence physicochemical properties, including #' length, hydrophobicity, bulkiness, polarity, aliphatic index, net charge, acidic residue #' content, basic residue content, and aromatic residue content. #' #' @param data \code{data.frame} containing sequence data. #' @param property vector strings specifying the properties to be calculated. Defaults #' to calculating all defined properties. #' @param seq \code{character} name of the column containing input #' sequences. #' @param nt boolean, TRUE if the sequences (or sequence) are DNA and will be translated. #' @param trim if \code{TRUE} remove the first and last codon/amino acids from each #' sequence before calculating properties. If \code{FALSE} do #' not modify input sequences. #' @param label name of sequence region to add as prefix to output column names. #' @param ... additional named arguments to pass to the functions #' \link{gravy}, \link{bulk}, \link{aliphatic}, \link{polar} or \link{charge}. #' #' @return A modified \code{data} data.frame with the following columns: #' \itemize{ #' \item \code{*_aa_length}: number of amino acids. #' \item \code{*_aa_gravy}: grand average of hydrophobicity (gravy) index. #' \item \code{*_aa_bulk}: average bulkiness of amino acids. #' \item \code{*_aa_aliphatic}: aliphatic index. #' \item \code{*_aa_polarity}: average polarity of amino acids. #' \item \code{*_aa_charge}: net charge. #' \item \code{*_aa_basic}: fraction of informative positions that are #' Arg, His or Lys. #' \item \code{*_aa_acidic}: fraction of informative positions that are #' Asp or Glu. #' \item \code{*_aa_aromatic}: fraction of informative positions that are #' His, Phe, Trp or Tyr. #' #' } #' #' Where \code{*} is the value from \code{label} or the name specified for #' \code{seq} if \code{label=NULL}. #' #' @details #' For all properties except for length, non-informative positions are excluded, #' where non-informative is defined as any character in \code{c("X", "-", ".", "*")}. #' #' The scores for gravy, bulkiness and polarity are calculated as simple averages of the #' scores for each informative positions. The basic, acid and aromatic indices are #' calculated as the fraction of informative positions falling into the given category. #' #' The aliphatic index is calculated using the Ikai, 1980 method. #' #' The net charge is calculated using the method of Moore, 1985, excluding the N-terminus and #' C-terminus charges, and normalizing by the number of informative positions. The default #' pH for the calculation is 7.4. #' #' The following data sources were used for the default property scores: #' \itemize{ #' \item hydropathy: Kyte & Doolittle, 1982. #' \item bulkiness: Zimmerman et al, 1968. #' \item polarity: Grantham, 1974. #' \item pK: EMBOSS. #' } #' #' @references #' \enumerate{ #' \item Zimmerman JM, Eliezer N, Simha R. The characterization of amino acid sequences #' in proteins by statistical methods. J Theor Biol 21, 170-201 (1968). #' \item Grantham R. Amino acid difference formula to help explain protein evolution. #' Science 185, 862-864 (1974). #' \item Ikai AJ. Thermostability and aliphatic index of globular proteins. #' J Biochem 88, 1895-1898 (1980). #' \item Kyte J, Doolittle RF. A simple method for displaying the hydropathic character #' of a protein. J Mol Biol 157, 105-32 (1982). #' \item Moore DS. Amino acid and peptide net charges: A simple calculational procedure. #' Biochem Educ 13, 10-11 (1985). #' \item Wu YC, et al. High-throughput immunoglobulin repertoire analysis distinguishes #' between human IgM memory and switched memory B-cell populations. #' Blood 116, 1070-8 (2010). #' \item Wu YC, et al. The relationship between CD27 negative and positive B cell #' populations in human peripheral blood. #' Front Immunol 2, 1-12 (2011). #' \item \url{https://emboss.sourceforge.net/apps/cvs/emboss/apps/iep.html} #' } #' #' @seealso #' See \link{countPatterns} for counting the occurrence of specific amino acid subsequences. #' See \link{gravy}, \link{bulk}, \link{aliphatic}, \link{polar} and \link{charge} for functions #' that calculate the included properties individually. #' #' @examples #' # Subset example data #' db <- ExampleDb[c(1,10,100), c("sequence_id", "junction")] #' #' # Calculate default amino acid properties from DNA sequences #' aminoAcidProperties(db, seq="junction") # #' # Calculate default amino acid properties from amino acid sequences #' # Use a custom output column prefix #' db$junction_aa <- translateDNA(db$junction) #' aminoAcidProperties(db, seq="junction_aa", label="junction", nt=FALSE) #' #' # Use the Grantham, 1974 side chain volume scores from the seqinr package #' # Set pH=7.0 for the charge calculation #' # Calculate only average volume and charge #' # Remove the head and tail amino acids from the junction, thus making it the CDR3 #' library(seqinr) #' data(aaindex) #' x <- aaindex[["GRAR740103"]]$I #' # Rename the score vector to use single-letter codes #' names(x) <- translateStrings(names(x), ABBREV_AA) #' # Calculate properties #' aminoAcidProperties(db, property=c("bulk", "charge"), seq="junction", #' trim=TRUE, label="cdr3", bulkiness=x, pH=7.0) #' #' @export aminoAcidProperties <- function(data, property=c("length", "gravy", "bulk", "aliphatic","polarity","charge", "basic","acidic", "aromatic"), seq="junction", nt=TRUE, trim=FALSE, label=NULL, ...) { # Check arguments property <- match.arg(property, several.ok=TRUE) # Define the data.frame that will be returned with amino acid properties prop_colnames <- list( "length" = "aa_length", "gravy" = "aa_gravy", "bulk" = "aa_bulk", "aliphatic" = "aa_aliphatic", "polarity" = "aa_polarity", "charge" = "aa_charge", "basic" = "aa_basic", "acidic" = "aa_acidic", "aromatic" = "aa_aromatic" ) # If no label, use sequence column name if (is.null(label)) { label <- seq } prop_colnames <- lapply(prop_colnames, function(x) { paste(label,x,sep="_") }) out_df <- data.frame(matrix(NA, nrow=nrow(data), ncol=length(property))) colnames(out_df) <- prop_colnames[property] # Check if out_df column names already existed in data # if yes, throw warning check <- checkColumns(data, colnames(out_df)) if (any(check == TRUE)) { warning("Duplicated columns found. Overwriting previous values.")} # Check input if (length(seq) > 1) { stop("You may specify only one sequence column; seq must be a vector of length 1.") } check <- checkColumns(data, seq) if (check != TRUE) { stop(check) } # Assign ellipsis arguments to correct function dots <- list(...) args_gravy <- dots[names(dots) %in% names(formals(gravy))] args_bulk <- dots[names(dots) %in% names(formals(bulk))] args_aliphatic <- dots[names(dots) %in% names(formals(aliphatic))] args_polar <- dots[names(dots) %in% names(formals(polar))] args_charge <- dots[names(dots) %in% names(formals(charge))] # Get sequence vector and translate if required region <- as.character(data[[seq]]) region_aa <- if (nt) { translateDNA(region, trim=trim) } else { if (trim) { region <- substr(region, 2, stri_length(region) - 1) } region } ## Will retrieve properties for valid sequences only ## keep index to fill results data.frame valid_seq <- isValidAASeq(region_aa) if (any(valid_seq == F) ){ not_valid_num <- sum(!valid_seq) warning(paste0("Found ", not_valid_num , " sequences with non valid amino acid symbols")) } valid_seq_idx <- which(valid_seq) region_aa <- region_aa[valid_seq_idx] # Calculate region lengths if ("length" %in% property) { aa_length <- stri_length(region_aa) out_df[valid_seq_idx , prop_colnames$length] <- aa_length } # Average hydrophobicity if ("gravy" %in% property) { #aa_gravy <- gravy(region_aa, hydropathy) aa_gravy <- do.call('gravy', c(list(seq=region_aa), args_gravy)) out_df[valid_seq_idx , prop_colnames$gravy] <- aa_gravy } # Average bulkiness if ("bulk" %in% property) { #aa_bulk <- bulk(region_aa) aa_bulk <- do.call('bulk', c(list(seq=region_aa), args_bulk)) out_df[valid_seq_idx , prop_colnames$bulk] <- aa_bulk } if ("aliphatic" %in% property) { # Normalizes aliphatic index aa_aliphatic <- do.call('aliphatic', c(list(seq=region_aa), args_aliphatic)) out_df[valid_seq_idx , prop_colnames$aliphatic] <- aa_aliphatic } # Average polarity if ("polarity" %in% property) { #aa_polarity <- polar(region_aa) aa_polarity <- do.call('polar', c(list(seq=region_aa), args_polar)) out_df[valid_seq_idx , prop_colnames$polarity] <- aa_polarity } # Normalized net charge if ("charge" %in% property) { #aa_charge <- charge(region_aa) aa_charge <- do.call('charge', c(list(seq=region_aa), args_charge)) out_df[valid_seq_idx , prop_colnames$charge] <- aa_charge } # Count of informative positions aa_info <- stri_length(gsub("[X\\.\\*-]", "", region_aa)) # Fraction of amino acid that are basic if ("basic" %in% property) { aa_basic <- countOccurrences(region_aa, "[RHK]") / aa_info out_df[valid_seq_idx , prop_colnames$basic] <- aa_basic } # Fraction of amino acid that are acidic if ("acidic" %in% property) { aa_acidic <- countOccurrences(region_aa, "[DE]") / aa_info out_df[valid_seq_idx , prop_colnames$acidic] <- aa_acidic } # Count fraction of aa that are aromatic if ("aromatic" %in% property) { aa_aromatic <- countOccurrences(region_aa, "[FWHY]") / aa_info out_df[valid_seq_idx , prop_colnames$aromatic] <- aa_aromatic } data_cols <- colnames(data) %in% colnames(out_df) == FALSE return(cbind(data[, data_cols], out_df)) } alakazam/R/Alakazam.R0000644000176200001440000001724615060255526014120 0ustar liggesusers#' @keywords internal #' @aliases alakazam-package "_PACKAGE" # Alakazam package documentation and import directives #' The Alakazam package #' #' \code{alakazam} in a member of the Immcantation framework of tools and serves five main #' purposes: #' \itemize{ #' \item Providing core functionality for other R packages in Immcantation. This #' includes common tasks such as file I/O, basic DNA sequence manipulation, and #' interacting with V(D)J segment and gene annotations. #' \item Providing an R interface for interacting with the output of the pRESTO and #' Change-O tool suites. #' \item Performing clonal abundance and diversity analysis on lymphocyte repertoires. #' \item Performing lineage reconstruction on clonal populations of immunoglobulin #' (Ig) sequences. #' \item Performing physicochemical property analyses of lymphocyte receptor sequences. #' } #' For additional details regarding the use of the \code{alakazam} package see the #' vignettes:\cr #' \code{browseVignettes("alakazam")} #' #' @section File I/O: #' \itemize{ #' \item \link{readChangeoDb}: Input Change-O style files. #' \item \link{writeChangeoDb}: Output Change-O style files. #' } #' #' @section Sequence cleaning: #' \itemize{ #' \item \link{maskSeqEnds}: Mask ragged ends. #' \item \link{maskSeqGaps}: Mask gap characters. #' \item \link{collapseDuplicates}: Remove duplicate sequences. #' } #' #' @section Lineage reconstruction: #' \itemize{ #' \item \link{makeChangeoClone}: Clean sequences for lineage reconstruction. #' \item \link{buildPhylipLineage}: Perform lineage reconstruction of Ig sequences. #' } #' #' @section Lineage topology analysis: #' \itemize{ #' \item \link{tableEdges}: Tabulate annotation relationships over edges. #' \item \link{testEdges}: Significance testing of annotation edges. #' \item \link{testMRCA}: Significance testing of MRCA annotations. #' \item \link{summarizeSubtrees}: Various summary statistics for subtrees. #' \item \link{plotSubtrees}: Plot distributions of summary statistics #' for a population of trees. #' } #' #' @section Diversity analysis: #' \itemize{ #' \item \link{countClones}: Calculate clonal abundance. #' \item \link{estimateAbundance}: Bootstrap clonal abundance curves. #' \item \link{alphaDiversity}: Generate clonal alpha diversity curves. #' \item \link{plotAbundanceCurve}: Plot clone size distribution as a rank-abundance #' \item \link{plotDiversityCurve}: Plot clonal diversity curves. #' \item \link{plotDiversityTest}: Plot testing at given diversity hill indices. #' } #' #' @section Ig and TCR sequence annotation: #' \itemize{ #' \item \link{countGenes}: Calculate Ig and TCR allele, gene and family usage. #' \item \link{extractVRegion}: Extract CDRs and FWRs sub-sequences. #' \item \link{getAllele}: Get V(D)J allele names. #' \item \link{getGene}: Get V(D)J gene names. #' \item \link{getFamily}: Get V(D)J family names. #' \item \link{junctionAlignment}: Junction alignment properties #' } #' #' @section Sequence distance calculation: #' \itemize{ #' \item \link{seqDist}: Calculate Hamming distance between two sequences. #' \item \link{seqEqual}: Test two sequences for equivalence. #' \item \link{pairwiseDist}: Calculate a matrix of pairwise Hamming distances for a #' set of sequences. #' \item \link{pairwiseEqual}: Calculate a logical matrix of pairwise equivalence for a #' set of sequences. #' } #' #' @section Amino acid properties: #' \itemize{ #' \item \link{translateDNA}: Translate DNA sequences to amino acid sequences. #' \item \link{aminoAcidProperties}: Calculate various physicochemical properties of amino acid #' sequences. #' \item \link{countPatterns}: Count patterns in sequences. #' #' } #' #' @name alakazam #' @references #' \enumerate{ #' \item Vander Heiden JA, Yaari G, et al. pRESTO: a toolkit for processing #' high-throughput sequencing raw reads of lymphocyte receptor repertoires. #' Bioinformatics. 2014 30(13):1930-2. #' \item Stern JNH, Yaari G, Vander Heiden JA, et al. B cells populating the multiple #' sclerosis brain mature in the draining cervical lymph nodes. #' Sci Transl Med. 2014 6(248):248ra107. #' \item Wu Y-CB, et al. Influence of seasonal exposure to grass pollen on local and #' peripheral blood IgE repertoires in patients with allergic rhinitis. #' J Allergy Clin Immunol. 2014 134(3):604-12. #' \item Gupta NT, Vander Heiden JA, et al. Change-O: a toolkit for analyzing #' large-scale B cell immunoglobulin repertoire sequencing data. #' Bioinformatics. 2015 Oct 15;31(20):3356-8. #' } #' #' @import ggplot2 #' @import graphics #' @import methods #' @import utils #' @importFrom airr read_rearrangement write_rearrangement #' @importFrom ape read.fastq read.tree di2multi reorder.phylo root ladderize #' @importFrom dplyr do n desc %>% #' bind_cols bind_rows combine arrange left_join #' group_by ungroup #' filter slice select #' mutate mutate_at #' one_of #' right_join rowwise #' summarize summarize_at all_of #' transmute rename #' @importFrom igraph V E graph_from_data_frame as_data_frame as_edgelist #' make_graph make_directed_graph make_undirected_graph #' vertex_attr set_vertex_attr #' degree shortest_paths all_shortest_paths distances #' graph_from_adjacency_matrix components groups #' @importFrom Matrix sparseMatrix rowSums #' @importFrom progress progress_bar #' @importFrom readr read_delim read_tsv write_delim write_tsv cols #' @importFrom rlang := sym syms enquo #' @importFrom scales log2_trans log10_trans trans_breaks trans_format #' math_format percent scientific pretty_breaks #' @importFrom seqinr translate s2c #' @importFrom stats na.omit setNames ecdf sd cor cov median mad #' dbinom pbinom qbinom rbinom #' dnorm pnorm qnorm rnorm #' dmultinom rmultinom #' @importFrom stringi stri_dup stri_flatten stri_join stri_length #' stri_count_boundaries stri_count_fixed #' stri_count_regex stri_extract_all_regex #' stri_extract_first_regex stri_replace_all_regex #' stri_replace_first_regex stri_split_fixed #' stri_pad_left stri_pad_right #' stri_detect_fixed stri_paste #' @importFrom tibble tibble #' @importFrom tidyr complete gather #' @importFrom Rcpp evalCpp #' @importFrom Biostrings BString extractAt #' @importFrom GenomicAlignments explodeCigarOps explodeCigarOpLengths #' @importFrom IRanges IRanges #' @useDynLib alakazam, .registration=TRUE NULL # Package loading actions .onAttach <- function(libname, pkgname) { msg <- citation(pkgname) msg <-paste(c(format(msg,"citation")),collapse="\n\n") packageStartupMessage(msg) } alakazam/vignettes/0000755000176200001440000000000015120047446014046 5ustar liggesusersalakazam/vignettes/GeneUsage-Vignette.Rmd0000644000176200001440000001665414757675731020177 0ustar liggesusers--- title: 'Alakazam: Gene usage analysis' author: "Susanna Marquez" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4 fig_width: 7.5 highlight: pygments toc: yes md_document: fig_height: 4 fig_width: 7.5 preserve_yaml: no toc: yes html_document: fig_height: 4 fig_width: 7.5 highlight: pygments theme: readable toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Gene usage analysis} %\usepackage[utf8]{inputenc} --- The 'alakazam' package provides basic gene usage quantification by either sequence count or clonal grouping; with or without consideration of duplicate reads/mRNA. Additionally, a set of accessory functions for sorting and parsing V(D)J gene names are also provided. ## Example data A small example AIRR database, `ExampleDb`, is included in the `alakazam` package. For details about the AIRR format, visit the [AIRR Community documentation site](https://docs.airr-community.org/en/stable/datarep/rearrangements.html). Gene usage analysis requires only the following columns: * `v_call` * `d_call` * `j_call` However, the optional clonal clustering (`clone_id`) and duplicate count (`duplicate_count`) columns may be used to quantify usage by different abundance criteria. ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Load required packages library(alakazam) library(dplyr) library(scales) # Subset example data data(ExampleDb) ``` ## Tabulate V(D)J allele, gene or family usage by sample The relative abundance of V(D)J alleles, genes or families within groups can be obtained with the function `countGenes`. To analyze differences in the V gene usage across different samples we will set `gene="v_call"` (the column containing gene data) and `groups="sample_id"` (the columns containing grouping variables). To quantify abundance at the gene level we set `mode="gene"`: ```{r, eval=TRUE, warning=FALSE} # Quantify usage at the gene level gene <- countGenes(ExampleDb, gene="v_call", groups="sample_id", mode="gene") head(gene, n=4) ``` In the resultant `data.frame`, the `seq_count` column is the number of raw sequences within each `sample_id` group for the given `gene`. `seq_freq` is the frequency of each `gene` within the given `sample_id`. Below we plot only the IGHV1 abundance by filtering on the `gene` column to only rows containing IGHV1 family genes. We extract the family portion of the gene name using the `getFamily` function. Also, we take advantage of the `sortGenes` function to convert the `gene` column to a factor with gene name lexicographically ordered in the factor levels (`method="name"`) for axis ordering using the `ggplot2` package. Alternatively, we could have ordered the genes by genomic position by passing `method="position"` to `sortGenes`. ```{r, eval=TRUE, warning=FALSE} # Assign sorted levels and subset to IGHV1 ighv1 <- gene %>% mutate(gene=factor(gene, levels=sortGenes(unique(gene), method="name"))) %>% filter(getFamily(gene) == "IGHV1") # Plot V gene usage in the IGHV1 family by sample g1 <- ggplot(ighv1, aes(x=gene, y=seq_freq)) + theme_bw() + ggtitle("IGHV1 Usage") + theme(axis.text.x=element_text(angle=45, hjust=1, vjust=1)) + ylab("Percent of repertoire") + xlab("") + scale_y_continuous(labels=percent) + scale_color_brewer(palette="Set1") + geom_point(aes(color=sample_id), size=5, alpha=0.8, position=position_dodge(width = 0.1)) plot(g1) ``` Alternatively, usage can be quantified at the allele (`mode="allele"`) or family level (`mode="family"`): ```{r, eval=TRUE, warning=FALSE} # Quantify V family usage by sample family <- countGenes(ExampleDb, gene="v_call", groups="sample_id", mode="family") # Plot V family usage by sample g2 <- ggplot(family, aes(x=gene, y=seq_freq)) + theme_bw() + ggtitle("Family Usage") + theme(axis.text.x=element_text(angle=45, hjust=1, vjust=1)) + ylab("Percent of repertoire") + xlab("") + scale_y_continuous(labels=percent) + scale_color_brewer(palette="Set1") + geom_point(aes(color=sample_id), size=5, alpha=0.8, position=position_dodge(width = 0.1)) plot(g2) ``` ## Tabulating gene abundance using additional groupings The `groups` argument to `countGenes` can accept multiple grouping columns and will calculate abundance within each unique combination. In the examples below, groupings will be perform by unique sample and isotype pairs (`groups=c("sample_id", "c_call")`). Furthermore, instead of quantifying abundance by sequence count, we will quantify it by clone count (each clone will be counted only once regardless of how many sequences the clone represents). Clonal criteria are added by passing a value to the `clone` argument of `countGenes` (`clone="clone_id"`). For each clonal group, only the most common allele/gene/family will be considered for counting. ```{r, eval=TRUE, warning=FALSE} # Quantify V family clonal usage by sample and isotype family <- countGenes(ExampleDb, gene="v_call", groups=c("sample_id", "c_call"), clone="clone_id", mode="family") head(family, n=4) ``` The output `data.frame` contains the additional grouping column (`c_call`) along with the `clone_count` and `clone_freq` columns that represent the count of clones for each V family and the frequencies within the given `sample_id` and `c_call` pair, respectively. ```{r, eval=TRUE, warning=FALSE} # Subset to IGHM and IGHG for plotting family <- filter(family, c_call %in% c("IGHM", "IGHG")) # Plot V family clonal usage by sample and isotype g3 <- ggplot(family, aes(x=gene, y=clone_freq)) + theme_bw() + ggtitle("Clonal Usage") + theme(axis.text.x=element_text(angle=45, hjust=1, vjust=1)) + ylab("Percent of repertoire") + xlab("") + scale_y_continuous(labels=percent) + scale_color_brewer(palette="Set1") + geom_point(aes(color=sample_id), size=5, alpha=0.8, position=position_dodge(width = 0.1)) + facet_grid(. ~ c_call) plot(g3) ``` Instead of calculating abundance by sequence or clone count, abundance can be calculated using copy numbers for the individual sequences. This is accomplished by passing a copy number column to the `copy` argument (`copy="duplicate_count"`). Specifying both `clone` and `copy` arguments is not meaningful and will result in the `clone` argument being ignored. ```{r, eval=TRUE, warning=FALSE} # Calculate V family copy numbers by sample and isotype family <- countGenes(ExampleDb, gene="v_call", groups=c("sample_id", "c_call"), mode="family", copy="duplicate_count") head(family, n=4) ``` The output `data.frame` includes the `seq_count` and `seq_freq` columns as previously defined, as well as the additional copy number columns `copy_count` and `copy_freq` reflected the summed copy number (`duplicate_count`) for each sequence within the given `gene`, `sample_id` and `c_call`. ```{r, eval=TRUE, warning=FALSE} # Subset to IGHM and IGHG for plotting family <- filter(family, c_call %in% c("IGHM", "IGHG")) # Plot V family copy abundance by sample and isotype g4 <- ggplot(family, aes(x=gene, y=copy_freq)) + theme_bw() + ggtitle("Copy Number") + theme(axis.text.x=element_text(angle=45, hjust=1, vjust=1)) + ylab("Percent of repertoire") + xlab("") + scale_y_continuous(labels=percent) + scale_color_brewer(palette="Set1") + geom_point(aes(color=sample_id), size=5, alpha=0.8, position=position_dodge(width = 0.1)) + facet_grid(. ~ c_call) plot(g4) ``` alakazam/vignettes/AminoAcids-Vignette.Rmd0000644000176200001440000001734015120040677020310 0ustar liggesusers--- title: 'Alakazam: Amino acid physicochemical property analysis' author: "Susanna Marquez" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4 fig_width: 7.5 highlight: pygments toc: yes md_document: fig_height: 4 fig_width: 7.5 preserve_yaml: no toc: yes html_document: fig_height: 4 fig_width: 7.5 highlight: pygments theme: readable toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Amino acid property analysis} %\usepackage[utf8]{inputenc} --- The `alakazam` package includes a set of functions to analyze the physicochemical properties of Ig and TCR amino acid sequences. Of particular interest is the analysis of CDR3 properties, which this vignette will demonstrate. The same process can be applied to other regions simply by altering the sequence data column used. Wu YC, et al. High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations. Blood 116, 1070-8 (2010). Wu YC, et al. The relationship between CD27 negative and positive B cell populations in human peripheral blood. Front Immunol 2, 1-12 (2011). ## Example data A small example AIRR database, `ExampleDb`, is included in the `alakazam` package. ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Load required packages library(alakazam) library(dplyr) # Subset example data data(ExampleDb) db <- ExampleDb[ExampleDb$sample_id == "+7d", ] ``` For details about the AIRR format, visit the [AIRR Community documentation site](https://docs.airr-community.org/en/stable/datarep/rearrangements.html). ## Calculate the properties of amino acid sequences Multiple amino acid physicochemical properties can be obtained with the function `aminoAcidProperties`. The available properties are: * `length`: total amino acid count * `gravy`: grand average of hydrophobicity * `bulkiness`: average bulkiness * `polarity`: average polarity * `aliphatic`: normalized aliphatic index * `charge`: normalized net charge * `acidic`: acidic side chain residue content * `basic`: basic side chain residue content * `aromatic`: aromatic side chain content This example demonstrates how to calculate all of the available amino acid properties from DNA sequences found in the `junction` column of the previously loaded AIRR file. Translation of the DNA sequences to amino acid sequences is accomplished by default with the `nt=TRUE` argument. To reduce the junction sequence to the CDR3 sequence we specify the argument `trim=TRUE` which will strip the first and last codon (the conserved residues) prior to analysis. The prefix `cdr3` is added to the output column names using the `label="cdr3"` argument. ```{r, eval=TRUE, warning=FALSE, fig.width=7.5, fig.height=6} db_props <- aminoAcidProperties(db, seq="junction", trim=TRUE, label="cdr3") # The full set of properties are calculated by default dplyr::select(db_props[1:3, ], starts_with("cdr3")) # Define a ggplot theme for all plots tmp_theme <- theme_bw() + theme(legend.position="bottom") # Generate plots for all four of the properties g1 <- ggplot(db_props, aes(x=c_call, y=cdr3_aa_length)) + tmp_theme + ggtitle("CDR3 length") + xlab("Isotype") + ylab("Amino acids") + scale_fill_manual(name="Isotype", values=IG_COLORS) + geom_boxplot(aes(fill=c_call)) g2 <- ggplot(db_props, aes(x=c_call, y=cdr3_aa_gravy)) + tmp_theme + ggtitle("CDR3 hydrophobicity") + xlab("Isotype") + ylab("GRAVY") + scale_fill_manual(name="Isotype", values=IG_COLORS) + geom_boxplot(aes(fill=c_call)) g3 <- ggplot(db_props, aes(x=c_call, y=cdr3_aa_basic)) + tmp_theme + ggtitle("CDR3 basic residues") + xlab("Isotype") + ylab("Basic residues") + scale_y_continuous(labels=scales::percent) + scale_fill_manual(name="Isotype", values=IG_COLORS) + geom_boxplot(aes(fill=c_call)) g4 <- ggplot(db_props, aes(x=c_call, y=cdr3_aa_acidic)) + tmp_theme + ggtitle("CDR3 acidic residues") + xlab("Isotype") + ylab("Acidic residues") + scale_y_continuous(labels=scales::percent) + scale_fill_manual(name="Isotype", values=IG_COLORS) + geom_boxplot(aes(fill=c_call)) # Plot in a 2x2 grid gridPlot(g1, g2, g3, g4, ncol=2) ``` ### Obtaining properties individually A subset of the properties may be calculated using the `property` argument of `aminoAcidProperties`. For example, calculations may be restricted to only the grand average of hydrophobicity (`gravy`) index and normalized net charge (`charge`) by specifying `property=c("gravy", "charge")`. ```{r, eval=TRUE, warning=FALSE} db_props <- aminoAcidProperties(db, seq="junction", property=c("gravy", "charge"), trim=TRUE, label="cdr3") dplyr::select(db_props[1:3, ], starts_with("cdr3")) ``` ### Using user defined scales Each property has a default scale setting, but users may specify alternate scales if they wish. The following example shows how to import and use the Kidera et al, 1985 hydrophobicity scale and the Murrary et al, 2006 pK values from the `seqinr` package instead of the defaults for calculating the GRAVY index and net charge. ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Load the relevant data objects from the seqinr package library(seqinr) data(aaindex) data(pK) h <- aaindex[["KIDA850101"]]$I p <- setNames(pK[["Murray"]], rownames(pK)) # Rename the hydrophobicity vector to use single-letter codes names(h) <- translateStrings(names(h), ABBREV_AA) db_props <- aminoAcidProperties(db, seq="junction", property=c("gravy", "charge"), trim=TRUE, label="cdr3", hydropathy=h, pK=p) dplyr::select(db_props[1:3, ], starts_with("cdr3")) ``` ### Getting vectors of individual properties The `aminoAcidProperties` function provides a convenient wrapper for calculating multiple properties at once from a `data.frame`. If a vector of a specific property is required this may be accomplished using one of the worker functions: * `gravy`: grand average of hydrophobicity * `bulk`: average bulkiness * `polar`: average polarity * `aliphatic`: aliphatic index * `charge`: net charge * `countPatterns`: counts the occurrence of patterns in amino acid sequences The input to each function must be a vector of amino acid sequences. ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Translate junction DNA sequences to amino acids and trim first and last codons cdr3 <- translateDNA(db$junction[1:3], trim=TRUE) # Grand average of hydrophobicity gravy(cdr3) # Average bulkiness bulk(cdr3) # Average polarity polar(cdr3) # Normalized aliphatic index aliphatic(cdr3) # Unnormalized aliphatic index aliphatic(cdr3, normalize=FALSE) # Normalized net charge charge(cdr3) # Unnormalized net charge charge(cdr3, normalize=FALSE) # Count of acidic amino acids # Takes a named list of regular expressions countPatterns(cdr3, nt=FALSE, c(ACIDIC="[DE]"), label="cdr3") ``` ## Default scales The following references were used for the default physicochemical scales: * Aliphatic index: Ikai AJ. Thermostability and aliphatic index of globular proteins. J Biochem 88, 1895-1898 (1980). * Bulkiness scale: Zimmerman JM, Eliezer N, Simha R. The characterization of amino acid sequences in proteins by statistical methods. J Theor Biol 21, 170-201 (1968). * Hydrophobicity scale: Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105-32 (1982). * pK values: \url{https://emboss.sourceforge.net/apps/cvs/emboss/apps/iep.html} * Polarity scale: Grantham R. Amino acid difference formula to help explain protein evolution. Science 185, 862-864 (1974). alakazam/vignettes/Files-Vignette.Rmd0000644000176200001440000000500314552000477017336 0ustar liggesusers--- title: "Alakazam: How to read and write files" author: "Edel Aron" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4 fig_width: 7.5 highlight: pygments toc: yes html_document: fig_height: 4 fig_width: 7.5 highlight: pygments theme: readable toc: yes md_document: fig_height: 4 fig_width: 7.5 preserve_yaml: no toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{File input and output} %\usepackage[utf8]{inputenc} --- As part of the Immcantation suite of tools, the `alakazam` package includes a set of built-in functions capable of reading and writing tab-delimited database files created by [Change-O](https://changeo.readthedocs.io/en/stable/) into R data.frames. However, due to differences in how certain values and sequences are handled, `alakazam::readChangeoDb` and `alakazam::writeChangeoDb` will not properly read in [AIRR](https://docs.airr-community.org) formatted files. These files should instead be loaded using the functions included in the `airr` package (`airr::read_rearrangement` and `airr::write_rearrangement`). You can read more about how we use both data standards [here](https://immcantation.readthedocs.io/en/stable/datastandards.html) and [here](https://changeo.readthedocs.io/en/stable/standard.html). *Please note that the default file format for all functions in Immcantation is the AIRR-C format as of Immcantation v4.0.0, which corresponds to alakazam v1.0.0.* ## Reading data Small example databases for both the Change-O format (`ExampleDbChangeo`) and the AIRR format (`ExampleDb`) are included in the `alakazam` package. For specific details about the latter, visit the [AIRR Community documentation site](https://docs.airr-community.org/en/stable/datarep/rearrangements.html). ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Set the file paths from inside the package directory # These files are smaller versions of the example databases previously mentioned changeo_file <- system.file("extdata", "example_changeo.tab.gz", package="alakazam") airr_file <- system.file("extdata", "example_airr.tsv.gz", package="alakazam") # Read in the data db_changeo <- alakazam::readChangeoDb(changeo_file) db_airr <- airr::read_rearrangement(airr_file) ``` ## Writing data ```{r, eval=FALSE, warning=FALSE, message=FALSE} # Write the data to a tab-delimited file alakazam::writeChangeoDb(db_changeo, "changeo.tsv") airr::write_rearrangement(db_airr, "airr.tsv") ``` alakazam/vignettes/Fastq-Vignette.Rmd0000644000176200001440000000650214552000475017355 0ustar liggesusers--- title: 'Alakazam: Using sequencing quality scores' author: "Susanna Marquez" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4 fig_width: 7.5 highlight: pygments toc: yes toc_depth: 3 md_document: fig_height: 4 fig_width: 7.5 preserve_yaml: no toc: yes toc_depth: 3 html_document: fig_height: 4 fig_width: 7.5 highlight: pygments theme: readable toc: yes toc_depth: 3 geometry: margin=1in fontsize: 11pt vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Fastq} %\usepackage[utf8]{inputenc} --- The `alakazam` package includes a set of functions to inspect the sequencing quality. ## Example data Load example data: ```{r, eval=TRUE, warning=FALSE, message=FALSE} library(alakazam) library(dplyr) library(airr) db <- read_rearrangement(system.file("extdata", "example_quality.tsv", package="alakazam")) fastq_file <- system.file("extdata", "example_quality.fastq", package="alakazam") ``` ## Load quality scores This method allows to add the quality scores to the repertoire `data.frame` as strings. ```{r} original_cols <- colnames(db) db <- readFastqDb(db, fastq_file, style="both", quality_sequence=TRUE) new_cols <- setdiff(colnames(db), original_cols) db[,new_cols] %>% head() ``` The function `readFastq` takes as main inputs a repertoire `data.frame` (`db`) and a path to the corresponding `.fastq` file (`fastq_file`). The sequencing quality scores will be merged into the `data.frame` by `sequence_id`. The newly added columns are: `r paste(new_cols, collapse=", ")`. The other fields, contain the ASCII quality scores in the form of a vector, where values are comma separated, and `-` or `.` positions have value `" "` (blank). After loading the quality scores with `readFastqDb`, `getPositionQuality` can be used to generate a `data.frame` of sequencing quality values per position. ```{r} quality <- getPositionQuality(db, sequence_id="sequence_id", sequence="sequence_alignment", quality_num="quality_alignment_num") head(quality) ``` ```{r, fig.cap="Sequence quality per IMGT position for one sequence.", fig.asp=0.25} min_pos <- min(quality$position) max_pos <- max(quality$position) ggplot(quality, aes(x=position, y=quality_alignment_num, color=nt)) + geom_point() + coord_cartesian(xlim=c(110,120)) + xlab("IMGT position") + ylab("Sequencing quality") + scale_fill_gradient(low = "light blue", high = "dark red") + scale_x_continuous(breaks=c(min_pos:max_pos)) + alakazam::baseTheme() ``` You can add use the quality `data.frame` to complement analysis performed with other tools from the Immcantation framework. For example, you could inspect the sequencing quality of novel polymorphisms identified with `tigger`, or the sequencing quality in mutated/unmutated regions. ## Mask low quality positions Use `maskPositionsByQuality` to mask low quality positions. Positions with a sequencing quality < `min_quality` will be replaced with an 'N'. A message will show the number of sequences in `db` that had at least one position masked. ```{r} db <- maskPositionsByQuality(db, min_quality=70, sequence="sequence_alignment", quality="quality_alignment_num") ``` alakazam/vignettes/Diversity-Vignette.Rmd0000644000176200001440000001557414652702266020302 0ustar liggesusers--- title: 'Alakazam: Analysis of clonal abundance and diversity' author: "Jason Anthony Vander Heiden" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4 fig_width: 7.5 highlight: pygments toc: yes html_document: fig_height: 4 fig_width: 7.5 highlight: pygments theme: readable toc: yes md_document: fig_height: 4 fig_width: 7.5 preserve_yaml: no toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Diversity analysis} %\usepackage[utf8]{inputenc} --- The clonal diversity of the repertoire can be analyzed using the general form of the diversity index, as proposed by Hill in: Hill, M. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427-432 (1973). Coupled with resampling strategies to correct for variations in sequencing depth, as well as inference of complete clonal abundance distributions as described in: Chao A, et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol Monogr. 2014 84:45-67. Chao A, et al. Unveiling the species-rank abundance distribution by generalizing the Good-Turing sample coverage theory. Ecology. 2015 96, 11891201. This package provides methods for the inference of a complete clonal abundance distribution (using the `estimateAbundance` function) along with two approaches to assess the diversity of these distributions: 1. Generation of a smooth diversity (D) curve over a range of diversity orders (q) using `alphaDiversity`, and 2. A significance test of the diversity (D) at a fixed diversity order (q). ## Example data A small example AIRR database, `ExampleDb`, is included in the `alakazam` package. Diversity calculation requires the `clone` field (column) to be present in the AIRR file, as well as an additional grouping column. In this example we will use the grouping columns `sample_id` and `c_call`. ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Load required packages library(alakazam) # Load example data data(ExampleDb) ``` For details about the AIRR format, visit the [AIRR Community documentation site](https://docs.airr-community.org/en/stable/datarep/rearrangements.html). ## Generate a clonal abundance curve A simple table of the observed clonal abundance counts and frequencies may be generated using the `countClones` function either with or without copy numbers, where the size of each clone is determined by the number of sequence members: ```{r, eval=TRUE, warning=FALSE} # Partitions the data based on the sample column clones <- countClones(ExampleDb, group="sample_id") head(clones, 5) ``` You may also specify a column containing the abundance count of each sequence (usually copy numbers), that will include weighting of each clone size by the corresponding abundance count. Furthermore, multiple grouping columns may be specified such that `seq_freq` (unweighted clone size as a fraction of total sequences in the group) and `copy_freq` (weighted fraction) are normalized to within multiple group data partitions. ```{r, eval=TRUE, warning=FALSE} # Partitions the data based on both the sample_id and c_call columns # Weights the clone sizes by the duplicate_count column clones <- countClones(ExampleDb, group=c("sample_id", "c_call"), copy="duplicate_count", clone="clone_id") head(clones, 5) ``` While `countClones` will report observed abundances, it will not provide confidence intervals. A complete clonal abundance distribution may be inferred using the `estimateAbundance` function with confidence intervals derived via bootstrapping. This output may be visualized using the `plotAbundanceCurve` function. ```{r, eval=TRUE, results='hide', warning=FALSE, fig.width=6, fig.height=4} # Partitions the data on the sample column # Calculates a 95% confidence interval via 100 bootstrap realizations curve <- estimateAbundance(ExampleDb, group="sample_id", ci=0.95, nboot=100, clone="clone_id") ``` ```{r, eval=TRUE, warning=FALSE, fig.width=6, fig.height=4} # Plots a rank abundance curve of the relative clonal abundances sample_colors <- c("-1h"="seagreen", "+7d"="steelblue") plot(curve, colors = sample_colors, legend_title="Sample") ``` ## Generate a diversity curve The function `alphaDiversity` performs uniform resampling of the input sequences and recalculates the clone size distribution, and diversity, with each resampling realization. Diversity (D) is calculated over a range of diversity orders (q) to generate a smooth curve. ```{r, eval=TRUE, results='hide'} # Compare diversity curve across values in the "sample" column # q ranges from 0 (min_q=0) to 4 (max_q=4) in 0.05 increments (step_q=0.05) # A 95% confidence interval will be calculated (ci=0.95) # 100 resampling realizations are performed (nboot=100) sample_curve <- alphaDiversity(ExampleDb, group="sample_id", clone="clone_id", min_q=0, max_q=4, step_q=0.1, ci=0.95, nboot=100) # Compare diversity curve across values in the c_call column # Analyse is restricted to c_call values with at least 30 sequences by min_n=30 # Excluded groups are indicated by a warning message isotype_curve <- alphaDiversity(ExampleDb, group="c_call", clone="clone_id", min_q=0, max_q=4, step_q=0.1, ci=0.95, nboot=100) ``` ```{r, eval=TRUE, fig.width=6, fig.height=4} # Plot a log-log (log_q=TRUE, log_d=TRUE) plot of sample diversity # Indicate number of sequences resampled from each group in the title sample_main <- paste0("Sample diversity") sample_colors <- c("-1h"="seagreen", "+7d"="steelblue") plot(sample_curve, colors=sample_colors, main_title=sample_main, legend_title="Sample") # Plot isotype diversity using default set of Ig isotype colors isotype_main <- paste0("Isotype diversity") plot(isotype_curve, colors=IG_COLORS, main_title=isotype_main, legend_title="Isotype") ``` ## View diversity tests at a fixed diversity order Significance testing across groups is performed using the delta of the bootstrap distributions between groups when running `alphaDiversity` for all values of `q` specified. ```{r, eval=TRUE, fig.width=6, fig.height=3} # Test diversity at q=0, q=1 and q=2 (equivalent to species richness, Shannon entropy, # Simpson's index) across values in the sample_id column # 100 bootstrap realizations are performed (nboot=100) isotype_test <- alphaDiversity(ExampleDb, group="c_call", min_q=0, max_q=2, step_q=1, nboot=100, clone="clone_id") # Print P-value table print(isotype_test@tests) # Plot results at q=0 and q=2 # Plot the mean and standard deviations at q=0 and q=2 plot(isotype_test, 0, colors=IG_COLORS, main_title=isotype_main, legend_title="Isotype") plot(isotype_test, 2, colors=IG_COLORS, main_title=isotype_main, legend_title="Isotype") ``` alakazam/data/0000755000176200001440000000000014574025041012746 5ustar liggesusersalakazam/data/ExampleDbChangeo.rda0000644000176200001440000035102514007007324016565 0ustar liggesusers‹ìýk‹sM—ç‰=í™ñàyaøs8I•/—–¤%)Ï™‘ÇwclƒO 444n(º¨bh¦è‚¢Š.\t1…7~að˜¯díõ_±µ÷^!¥N™Ê¼®xžë¾ï¼”ÒVìøÅ:¯ˆý0~íü¯ÿÅþð‡ÿäÿÉÿ|ù϶üñÿÙS˜þo†øÃú?[þåŸýá?ýÃÿbùßÿròÏÿ«ÿÓÿõÿø_ÿ·ü¿ÿ¯þÏÿ»ÿúÿ²üÌÿzùúÿªøÝþðŸÿOö¾ÿ¥Üôg£pÞ·_žn𝅻oíæ«­ÉµtÏÝ«ãÖù¼Õ|µ3¡§ÑSóÕÌúÝËæ«ýùÕdèÞÛæÅ3MÝæ×­Žïân0»sW ‡ç›{uÔ}›]$îmÂn ­ñíä!ø{{ïc÷êøe1öw<»ë‡¡{uqÿüäæ·=êÜóÄÏÃËíãÜ¿z=êöÜu§×]?ë-žÊù›¿ã§Å݃ŸßÁËÅ»»7f¾qcèÍÚW=wÝÁ|4¿xô¯¾¼^ø‘Ñù0¸ëgw}?¿ô|ùêÈ·'7‹+O“gçâæ·¿Ñ•cÑMÃô¹ùjw|þ6yn—÷7ÞÎèfðàÖYoz3”WÝ»ÞôÅL.oÆn­·Ç­î¥»ãþŒî^ZèirK7ÓÇ{?““ö¥»·ÎxtÝw2Ô¡yp4û³çùÀÍz‡¯¯N—´é|6u#ëϺÔ&¿Þgçìî‚ÃeÛÍYw2^9Æy¿ñk²5î^¼»yhî“{µMÝç‘cÑ›/õÜÂk‚«÷—™×žãó™[QíIëé<¡Ï®/Ÿ†Ìù~àÖNúH£[¿JÞÆ×^&OîÕþìª{î´Ær.Ü· ååùÞëÔÑÝèÊÍooÆǸ'73Ǹ?½ ÷Žq›^'-÷mÃùüÂw°¸“[Ñè¥åÞÛŸµ{N§¶&óî»—ÂÙÅäÒٷΨõ~ï^íO»¡ß÷×] §Ó©mî>S×ëêǧ™'?ôgN÷µù¡õèçl2¼¸uÖ—çë§Á‹ç·®{µ· éÂ]a©å.ý†Óa¿å¯ ÷³?g<_8¹hÂðÍÝqo6ë=:BƒùRËy½#Ýþ«g±¸||póÛŸöÚWNbûÓšúu¶˜¼M¼†¡Åͽç&½—›ÄZïŒØ½:œ=¿¿»{ëÏzo·^.äéžý]Hvî^m_ûnvzÓakád³;Κ@¦áÞé’Þô|ê}£O ñ¯¾vGndÃwœuꌻ·ÞcjÓlzé$¶'Oã…óÓ‹Öµ÷å&w÷=¯ûƯ‹ë+ÏmÜ{Mèßé…×%KëÞv×mó{§ç½Šy«3v^Ew´è_úëò9~èÒý¬ï$«=–ö¥£Ù™ÜÜ_8ÛŸ–÷ìm÷S{âhvG7Óg'›-¾¸¹Ox wÝà<…¥Ïuí}‚ÞâaxåFÖ¢·ç±ã6œ½<¿ùW§ÃέówZZm·:Üz;½éÛäʽ·=š´Þ¡¥uê/œ/×_<¶nܬ÷g­‹ ï™Ó`ôìæ¡=¾î¼»µÓ_Ü]º+ôf—SïÓç‹;mßO{×ÎJ·Gïý¡$è}ðàýõé|èWêpþn=ôäbqî#µi˜?¸UÒŸÓó«ÓëK©ÿæ4m‹e–ÂVWœ.iÚƒ‰×%$ýkï§Ž»#0}¾:)ìN^GÞ˜?¼=;ò­ÑùÂGƒùâÊ{ ƒy›.Ýü.U=³[;C™¿7²Þtð~ë£üÉÕ¢›È)<]_zËO2IÌä{çÍa Ýà}Z¹»÷39ñµû¶6MŸž1ÃëEÛGžöì-n-'ÇýÅûð-á½Þ½·}fDÞøÖ[ÞÉå}71;áâÝ]¡E“·‘cÜaºøg~ÿÔóÚ~t;~p>mk<»7mÎêõgO}¿Jz‹¥fwvh8»—–×Õã÷Kï‘g×ÏÞêÏæo}·Jz‹Ñ½8 Þ®ž|ÖgܺòV¯/—÷n¥vù]ÈÇYÂWoyéþz˜ðHßû­Dîj2º÷þÙ¨uÝu2Ô¢q/8;Ô›[ §zr>xqïÊãèÑç''×-qÑWküx÷ìcœùãÕe"ç(ãk¯ d2¾õã•ÞhàÆÛŸ-®¦^æG÷!;__Ü*Yj‚×s'ÇýÙÍí…c¼œ³§sïÿÎÚn ý½]$ü_é?ûüÙô¶7óÖtÖŸÜ] f/ONºûróØJHìdvíìf›ØG_½Y7Œ¶ùmúæ,Nw|5š'VÉËõ“_ëÓþÐ{üƒéýµ÷ †Óvkä__…¹ótûóÅ-û˜aÞš½»+t–ªïWÔ|öüäu&/ƒ‹Ä½=?|þaq>y÷YŸ¥«œ˜ÉÑ{§ím,½O&ÞŠŒwÁyƒ­ñû׃Ùã…·dí‘,د‡YëÖË|›O'±ÝÑK»ã×äüîmäãÍÉíÄç2[£‡ÑØÇ £ö›¯–ôççÏÁ[ÈÙpô–€»Žš{òB—>v’óîÐÙØžðb‘Èôïî ËØ)L}¼Éó›Dåj´h‰‹°;Ü;ï;™NŸºw>s*×OsÇm(÷¯¾ÒÖÐÛ(Q\¾y:'r6|;òÒÝæÁ…×;½Ù»Œ}VbyÇÞ×è͇ç#ëMn‡ìVjw4}œújßhÞñS~sÛv×]Z§[_ëhÏ7Þ·ŸLÚ=_åbº}r:ªËÏ£×;2¼'r¯½‡¹÷£ÆÓË¡»‹ÁLøÚ{ Óëpî£|yr×íÍÛoäVI‹ç·Þ»’î„Yá×›ÇDÞþáòÉG>óé‹÷¶[|w>Nx¯üªOÚÞh/ÈgF–^ÛøÁÙ€áâí®ç®»Œ[ZâÖowt¨_ æý§ŽC_nÞ«LïžÄg\Æýɇ䊯½î›-n}Íré]²[ƒùE"÷ºôÛ„m?°ŸÉÉÃ}ËëÉÙ Ü:Ÿ`°x½>Oøžc¾ôUDîÎ|g8í·üœ-øòÖûž³—û›DŽéõõÚK7?¾ôÝ<ôæý—Ž×“4Q"Söøèý¾.·¯ÇÞ¯&!_ íðãÓ·±Ó»Ðó5áÑ|¨Òޝ ;O×®“¬áüY|-i°xèÜ&´òôÉËfkòÚ›û<8·^ÉÇôÚyôúwöÚ»Iô´Æ÷‰5ùö¾pþÎp~Íc·ª‡‹§ÑÏ]ÉxR•¶i×­êå*™<9 Ó¥áÜWÚ–ºoté=~éwÞ|ökįo>¾ þûÄéÔÎhAþÛúóÇÇ…$æÃÎu"+ѯÏZ“Ë^ÛÛÍɸßIdû³KŸõ¡ÇGöëw|=MäðZƒ„VfNt’Œ&·Þ‡iOÞg¯Nº;ãöÃs"‡wÕMT×¹?ïyÏ||Ý}uТÞÝ‹¯\IïåÍ[ôñøÕKV_îù$::Cß“³ŒÄk#~êL½×&ï­Ç„þÜOÝ<,­Èk¢z6¹z”„^½g¥³Û·ŸW·î|æ´ÃÜ}ITiÇ/¾¶8˜¿<µùß·óABÿ^/¼ÖåI¢÷«?í½õŒo/ÄçOçÞèŒoG )$éûLÙdÚó ­ñâjì«¿<øjuwr?¹qcèŽßúÞ^ gÒ~ð䳎÷«Û˵ãsƒÑÕý•‹Eº£Ö}ß“Ÿ¿öÚ¾š:y|¾B—„W<=ôEmz¹»Kä¹nnÞ}t0:¿÷™éå]ÜÜ9½Ó›¾]z 3ËÙE¦ƒÞÌ1îŽdö໼æ÷o×Î[éO_^Ÿ|-ú*^—t¨w;ñëatA/¾³h1½öu½Þü|à{³nwêhöçïtãs Ìí ßʃ۶¯}F‹Q¢’Ùé=ûy˜÷®}_‡f‹…¯Oäü%ÍŒ»=_ûšB×÷ìÑã ï;ùîÊßÛ’ÅýÄGÍó›Îe¢sàvôàkT³þ¹$ÖÎËø<ÑÓ~_$ü(¾¾KT£†o³DGXwá«}ƒÅû¥c{³ÖÅC"FŸ’¿B—;£Ÿƒž\?¿&²·/ÁÇ…“pç«;íñ=¿{m¿x¿ñš¶=ºå¶ÏŽ/¦íDÕþ¦O¾Ö<šñ¯8Înæ~=,-$OýÚáQß÷6·FýéÄÛBiÉ"QÇ9¿ñšvò2¹OTSߟ|oh—ìý³=Í[^Ì/Æw)[¼½èLŸ'2#áÁ÷sµÇÓ—^¢ëOm¯Á×ïï~=,íÛ³ÏÈ.ÚçÓD6¿ÅÞ'è-&‰~åÙûœœ>k[Ý‘_%4㉯ÕÍ.žÄwR/Õúu¢Â?˜u9óÛ®¯Q ä©ÿìûSÇ—}ßåÕŸQð™ôÖä½=Ld/¯¼=ÎÞµ·Ý4xNôN¯}m|8{¾óÝ»ãé£Ï½¶GÝù³-ÃÅ[O˜íéÌ{º£á›÷•{óÖâÖ÷bÏ–ž˜ïÿ_\ø¨®Kýû7ß9}í<û{ÉÓÔ÷vðôý-Ñ)y>ò‘ûp1zî&êÝ—¡÷ð&ïwÞ›Þ\ÏÝJÊ`ʪÝÜ=&ü¾éà-Qq¼nùŠÍp6ûj_o&ñõãç„g>œž8±—àb컇rÑzõ+UÞç^#ö·¡›èñµ|U£'/½–ÏÀÑÛùs¢Sgpéë ½Åe×ïdiÑdàóQm^ßúùåû׉ɿ½ŽïéŒÞŸ}ï×PóD—×ã´ï#ŸYw²ðYŸQ—}7loÖ}Ÿ­£§Î«[©ƒÅëË«ï)¡×Dwû¥å#ìÑ0\%têû}HT@®‰þßÙÃDYÖë§ïWËÓbàëóòÔzKdr:/“Ä]<†×ÄöÓÀÇóÓÎtâÇ0}»Zx¿oúvã+ƒÝñekàæ·MKÃðiiìû2»c^Ü&:é:acßG/>>?ô„æW}ç] 擇¶ï ˜ÞÉÈçÚæƒ‡„\Œn{ýÄŠšÏ|<ßßÏ}÷Púì{ó‡óûðè-ŽÐÍÐw³ÌZ>W<_\%<ÇѬ5JÔõæsñ»¶Æ³§Ë„¶ŸŠïì°ŒÛ>ë>{l÷|…_îî‰^Ë÷þmÂÃë=_%ºw¯Ûw‰yx:÷]iÃYÿÎç‚Óö¹¿ngé­?ø¼çø9ølGwÜwÝšíéMâÛž)µï&±Ï§3êÐ÷£&³NHìP¼Yø^áÁü¡“Š’–pûÒwõ gK™È<=ôlj(ðÞMt7]sÛûQãÎÔ¯õ¢?*‘+žÜ´}ROFO7‰žÓ§¾ï j®øÎ×:Wç~ŸÄÒBÞ½¿#­g_}X^w€y­Ñ¿¾Gž/û^{ÎÛ=ß÷:?¿™%öI̧o oåfá}¹î¨Óï$ê³—·„WqÕóYªñó$µkë2\øxˆ_ÞÞë|Ô÷°´"Cï—tF=ß½°ô>Ç4ËÑÄ[éŒ.]L6œÞ¿’$fƒùÔw—Roßzò7£¹ï¤¦Ëg_…Èû“ßÑÓ¢Îãu¢+xÚyòÞàìöæÂG“‡7¯×Ûã·öÄç''/ÁW=—äo|º;%2#Kéžy«×ŸöDÜÚÌ»#ö~½><%îø\Þ;®G /ÝÃy{0Nô”õî}ÕsÚ}IìH“ûItá÷žû„Ÿº>ã2°ðóÛ›?>ùLoO­„Ý|»õ}ÅÃE몛èv»¹óÉíûu¢6s=ù]2eŸiÓë•ï¥êÏîzï‰ú|çÖ[½¥&xo'¬ÿÛ|ìX —~ÏüwÆ}~ñ»iöàëzÃÅU¢o»?Ÿ%öÏ÷Óg¿³0Ïýú]Ì.ž< ï»’G³·è}yï?øý…óvçÞ­êÁÒ¹òU‚þü­å÷ˆuƳkJtŸ_Œ: ÍuŸØKКÜÞúÎŒáâîéÍ{ óéýs¢vps;ö±ÿüþÞëÖøýæÊ÷ÈNfã×DwÿÎç;ô´˜&¢ü?ùúædzå%`Iè<‘Ÿ¤þœ+j,íÄîìÇù•ïÙ£óÛàc²YçÙ[ÓÁ´ç3D]z•D/öôöüÁïΞ½f‰=ñ7—~7Ø2>~öÕ‡./:SŸ¡Ÿ]ò áGÍ^ÉW=íîE¢óepž°Yô0‰ý7w’È÷õ§³D'õ°G‰®N¼~Þo»§×þ€Áôñ¥—ê¸NÔò'7O-_©˜uïÙ‘ïÐäÞËfgru“x/O¦çn¼-–Öµ·Ó7jùì×B®g¾¯x:}ó¹×öd´ŒN½\L®òÖ»&üÔ—ÐõÝçôþêk½Yïµåm÷ø™^¼Å™Ü_ûïÌo}Åq² 8ÄïÏÞBv(Œ}~gürç{¦—þïCÇWÚÆOW^—{ûü<ôôÚóõùù|ñêw+Í'ÏÏ oðýrœØ×ü4;OH÷ÅëÂÇCܽô±4Ý?û\[Ñ uí«FóVÛï¨ìÍøîÝûë3yó±e”4ðgß åúŽVävæ;ë{ÓEhù1ÈÕƒ¯ÄwG³@ÞÎ/®;~jwr×õ;oړ׋yb§f÷Ñï°íÏÇלèýjý¿Ý·Q"·Ý{õ»SzÓ~èùSFW-ÞJ{4¿»MÃë·D†þü­›8ÏæêÙï­îpoæ÷r-#á™ßÑÞ›>ß&j¡Ë¨ã>Qá¿~¼pÖ¿M·!Qõ켿&Nþ¸»ö;¹ó÷þ aÑϯn|ÞsÜ ¾½Eo>çØuîÞ}Wåøüõ.qnRp•¸Bë-Q-wû‰~{¾¼ôý©üȉ]’O3ŸÛ^ÜßûÜmîN‚·d|ÏW‰î¼ásËÛÂÑåÛyy8ózg¹&ï¼gÞ·{ƒÄ¹j¯C_Ç]=ÞúXd¾àI¢‹ùezãîm° ±Ïb/íЋ?!©¿XL|&}i¥§³Äš&ÎkÌÏï)Ñ!8é&2†r×[$κ»ôépþxN‰ŽÑó_ËJØóÙºéÓäÝ{A“Û‡y"Ž}ºšùo[ȯ; ä±ã÷0õg£¾ßÉRèÔq¢öõÞ»õ»«æ ëëĹ<½ò2/ü™‡íÑhè#ìeúêLîž: =ÙyöHg|uïk–¦‘ï$éÐâå2Qïî¿{Zêê O¾?_t¼'ÖŸß^úK½>ð1C‡Ÿn}ïLkÒ ~¯r›o9ÑQ>y"¿»µ3¾ù³±:tÕñç¶'ã™»îp>è·½/½Qâl·—Ÿ™.zNßã¥ôΧ]ÞŒýn»Ý=Þù¼Æè|q›ènz˜½$rŽOÏþ´µáìýí&±#"Ï¢,=…Ń<|W{‹Ú}º@›ïF~§[‘Í÷2¿´K%îïøzâ¦ì5x{ôzN>O;íôž¼w5<ß%útŸúã„^¼Ÿ:¾œøó2—ÚþÕWÏú³ÅÃÌ×…æï~ÇÉâúΟ2œu¯îñüí¨“Øm'7ãÄÇçÐóz‡úO-O~zþîwÈôæ7~·Ç2.øÜÝÑ[ðçï f/]ñq!_Ñ‹÷æsñûy{ó[ò»'ŠUâkîKÿìJ|m|~Õ»Iìç½»÷=9K¿úá4X„ÁuÂÃ뼤ÎO}½¿ó«oÚz'vˆ?÷}WòúèwL-uÔ¢“è¹~nû59—™?ë¯=±ß‹8Xú;‰ªÑü2øfZãKJTGïϽD§ÃíͫﯞÞLý ¡æ©ßßݽwG>g3‘De¥7§[ï1õg÷ÝÄÞõéðÜ÷ìµÇ÷!±“pÔNœ„ø8÷gô|7ODïϾ"¦¾}Â[i?Ü»õÐŒî½Ç4¹ñÕÉÞìùöʯ¾ÙâÑŸ¨7X<¾_û~Z:¿ö«¯=ž‹Ï#.ýIñ~uk2¾óUñúÖMd\ž¨ãû5Š'n ­qxxñ™½ÅÒÐ'bÈÉ`â_•p5÷g¾L^gþ¤¨åLžûH­¿˜Üø}uºX$Æ;ºì'²¡‹ëËT¿Æ¼•¨z^ÌüŽàÁü¥ÓMœ+ñîüÎQÿá5Íô»~×á@nn}6oO7‰3¿{mߟÚI¸Hœ !S_á_ú´³sŸ?›ö.UûÅè&qæá¸û@N¯wGÁwÃè‘ï ¦—ûÛDOÙbä»@ûÒ}¹H컽}^÷MÆçO‰³8^­ÄÈ®_S§È/¯©,×þŽ'w]ï æÃĘmг–Qǰ›Øñ:}ó;5gaðè+bruë÷Yf·×”¨ë=Ó(<ó(qÒC‡î}ç€ðÔŸF¾Œ ÙŸXØ›õƒ×ëKﵓ¨UÏD¶ù¥åk–Ët0õq ½\ŒYÀ»ùÈŸ9°àá,Ñ»xþà»»ãûQŠÅÓ»ïë/îÄïNÎE|§o›g¾»©5zxzKœUy¿Hœî2ku.|˜=ŒüÉ=i_ûÎÙá|¹T»_‡>ë3ï'v¤u&ܺõ}x³ë«V¢pñrésx£ës–A‘=ðgá·'ï#ö¹øùìÅW× ¿S¾3‘ëo‡&‹±$*ƒÄž æq꼕Û[ߨ_<ýY^­ÉÝ»ïÎ[úöÏ~‡ø`z{íwIæãá]âäÑùCâãËë';ÍÞº¾2ØŸM¯ýÉ5½éàÑg¦‡2¦Ä‰Y z8/¨Ø2ñyð-üÈz³ÎÌW*Z|y3MìÏzù³a‡ó›àwÊ÷—qp¢ >¾½{½>¿ _óéòÓÐ× »|þàûåºÌÍ}âµ—à÷V·Çí~¢#WÆCïŸu8ôlj½NB{>µ}&g9^NŽ\œíe¾{þîwÛÍC/Ñÿ°®¯ÚwF-NtJÊuÿÚG·ryù¨}_'vžË|Îþäýe„2õCñ§úµøé&$ÖÎ"ñ¤€.½¦N,œ,žÞ¼…œ¾¼øoëòE?ÑÉ·Œ„ï|—âxðì«}y]ø=WÅðCßµ:ë¾ù\ÛRbï/}ýxz1øs©áî%UqœûHx0{mûóKzóׇv"9|KœÄ5?%öa_¾ú^Öö井8‡ž/F©ø;ñ܆Ó×™?§·;¾zõO™XÚ·7ïÙt(¼$:(h6òg»µG³ùu⤳wJĦ“ûǶÏ?ÐùÓÌ÷9ò;ùý=™²Jk"£aâÌ8¹:÷Q?Ý?'ºf‰>¼Þâþ<}ÉôŸW1˜=Í|-¿3¾»ò'kw'W3_Õ ¿û<Ììáú5qøóä"QE”¹ý‹>ó§D…ér8ñþ$?¿,OoãËĹ£nÇWSóé»×r½yëÆ_w‹Ìï',ŽF~ý¶hpîO¨[¾wà+mƒÙÝÌ?½­?}¹ï'N<îwOxwØŸº\t1ûÞÛ"JJœþ´Œ §~.žïZ õ|éw+-}‚[¿›¼7mѹÏËháÏëO:>Ößý‰…ýùK?Ñm<îÜ$žÃ4¿ôuÿÞìêÕï°mMÚ~‡øPÞ{~Tö8|õw1ï¿úÜÕRºoƒêf£¾×¿íñìâÂÇ£§žÖagt3ò5ÖÁô±ï£ÛÁü^ü 3K)NœåÕÑíMâ4òÇ¡ïøhߦDÌî¼Ùòæ<·ù(ñD n?´}Ea<yyöµƒÖèeâw_¶é|Üóš`z¿ð½_ƒÙE¿ïÏP™ Ï9qÒÎu§“è/é¶ý)yº|{H쿺öÒÁB¦þY$ÃéÝü6q®ÚùÛÀgˆ&×Ý·D:Œü)y½éýÔŸ±Ô½ljÊà}bßLgüòèë"ñCËW‚º£ùü.}Íî†~·Ýõ.¹í7ñ½Â$"Ëb˜?Ñ©ÃÏ#2qoþt;Ld"___½ 烞¯‹ðÝÓ­÷øùv”ˆòyÈþŒ»îøqâs½ùpæ}‚χç‰ÓZÛCßsÚ·']/Ctü3ú3{=Ùáñk¢ãc6NÅ›KKæO[댄ü ùƒÅýãKB#>Sý0Cï{fƒ‹÷TúþüÉ9?û,Ëø‚Ÿ~õsðÏžèÏ{-¿3ºè»òŒ‹§;ú³YŠ3ùü®ŒÁâzæŸâ±ŒÜgóD}÷ÒŸŸ:«û‘|Æ·/~• ÷½Ä)7ãŽÏZ¶Xn}$1œ½Þøs—žBâùCÉ[Ï?ÁSŸ3è½âQÿ¡ëû£F/¯>ƒ¼Ô½ÄsÇ×7‰gNCðO£,¼ ;/ÝÔzèù¥GKØwPL;ω•z}ë£ÛÞìy’°C2¿Ç±8±å1qžcïî%a»CâyuË÷N9éõ?¼8ÙïËoÓÕ°ãïbñ8÷^Ew|>KôxÏ®Ä÷] ¤Ÿx–YO‚ïAnñãØ?) '÷ó±ÜùáÝïóéÏ./‰“]Ûw‰Þ[šÎ¼ßמLC'ÑUy3ñ•íÞü6øScºLþÙŒíÉóÔŸÞГÞ|‘x‚‘<'úw·÷¾“d(×o¾W¢7<ú3à{ó×®ÏÞvÆ ûÔ¦—÷Äs¹†Ÿ êòã“?/s0=ý0Ý‹D…þ~íŸLן¿]ùSg|+‰]ÉÓç¶ÑÛ|/~ßpÞb/›q÷ÍŸ¨×ž,“DfoľòºŒPž‰~çsŸñîÉÝßËÕŸÝŸ‘íÉàzšÈAwÎ'‰N‡ËàOþèÐEÏg[£Yâ|ðáüòõ1¡íg>{;˜½°nßpv?öñÐ@&S¿±Emé'r½¾ÏµµùåÊŸàÞ_Z–TZ¯O€Üø¼Q1zš&|åÅë•ÏÞòãƒßɲ´ ×>ŽmóÅt”Ø#ö8Ÿ&Î_™øsQúó×ÅÝ6‡Vâ郳Ag’8¯­ë×zwrßñ=­ÉÛ'2½Ã›v"ö<ö9Çîø²—èÑ“?™m©Á¯}Ü2˜Ñ>Cg ^Žg½àÏ êŽƒøLdþðžðgÝ;Fc‡Î׉ׯÁŸ<Ú¡ÖÍ4Ƚ—ãÞâòqâ»Yf—>Ò?'ó‹Á³ï'˜¶æÏ‰çÜ ý½-­Ó«?b©azþäý¾\Ýú˜a w‰3gû²¼ _=Óƒ÷2óI×ïwZú;W‰{“ᣯ¹·ùñÞ?9­;ê´|t‹ºOþ9xy~÷ÝÆƒyoœ8[sFCÑp:õñ[gü<óÛ¢^b~óû'”,åíü:;ÍÚœ¸îûƒÏ¶G/w‰g6Í.®}Ú=¼{_£Kïã—„?y5ó:ˈõ<±òÔöVz±¸é$2Dã×aâ4»öu¢orÕó»/ûÓ—™Ï~µÇWþœ‘îè¶ï}Þb|§do>¿ò{i;ãyðõ‹âÄyßGÚ½\ø¥'í»ÄIÊãé¹ßw»Œ»¾6ÞwC"YÜß ½Ç? ‰só[t•ˆ|ÞǃÄþî—Ku´Ç‹®ß«¼ŒšÝ„­ÉäÒŸ3Ò¡ÛûûÄu/º¾ SœÝ?wãÎn&þ”¦¥·²ð½îË•ú0ö¶pþp—8µ`VôÑù5y}|__÷Ͻ_2yú}–Ef¤ãó0#é·Ïè½>';|…©Ëáþ9¡•{­‹„×öví}‚6ž}Φ5 “~â %/·’8èáÞg¼‹ܧ‰®¿‹±Æ_Oè¡ãã–ñÕÍ"ÑauÙŸ&žKйó]×­qçÜïýíRÿÉïßȨçÏ„êðõuâ¤êÙíõ­¯@{âó0ÝÉó¥ópþ4k'žÒ:½ö§õgWƒyâÀ—+¿ ªxΊ?Q¯Åíëa*'vçŸ,Þ?v}qoö8÷»/{³Ë·a¢£ñ|š:Qïöý.ñ¬¸ÎÜ÷& gí+ï¯í^â<èi·7K='žm'ƒ©¯"véââ*±Ë÷ùÝŸ/×ezö;{³×«x&ìD|ÏtgÔz÷³Ó÷_ÏŠ› BŠñKÏŸÛ<”›Á4Ñ»8xð5ªôhìç—n¯ü)š±\w|áèâΟÛ<˜-ný³‡»ÜúýóKŸöºèмøzËP^¦/ ö{åºã—pï#ìQ®'Î_½z?uùjð9…¥ïÙö9ÇÁüµ3öû:d1H<)v2~ ‰3öÃl’Øí|yîŸ!Óf^ktÆ77>š,ƽÄI}üüsVóûiꙥ2»ôõ–Qqä›—7$öÓ¹´G³‡×ÄS‰.—ÞJd&wó—Ä^£›«¹ïÙ›vÏ]oŸFóD=àýÉw:,c‘Æ~›ÛO‰~™'ªgƒÅtñ˜Øm^F‰Ãðà÷·ô“§Tgçè-õÜÉÞS⌚&v+µèò>Ñ©3š=ús†‹Ùƒßӛ˓¯Ê g/×þ<¦ÁL¦Þi_ν¿Ó³×ë½Yw8ð{VfwƒG'ìOcìòuÏŸ2˜·FþdÁÁü®ãOëÏ[7׉üäÛÛ,qžù2Nt÷¿ÝøSM†‹É[¢Û‚†C_wê/:WÞvw&w·~•,ã¬ÛÄ3Cèu)àžÅù]'¡Ÿ‡þ)kEÆ÷ÿvx>ñOîŒ7‰St9öOlìRïÑÇݽŕøJñ`~çÙÐå“—ùÁ¬;z÷ÏðâvÏ?¾3~oùêY{t|OzOf”°þóáð6¡5.F¾«·x<ï$¬éíà=á¯ß¼ }oÛ×~×ÀìõÖïŒî/FáÂûgšN}ÇÇhpžÈá’ÃÅüÞïÄjM¦ï7¾³~ô~å½øÞ´Ûö'í´énšX}<|ó§Z÷æ·>ó4XÜï}Çóôz˜Ø96½¼xL<w©Ž§9/.ýIàn…ÄÓ–Ç£ÿl„Þlvýæ­½=zmÔŸO‡>ß7”á}+áïÜ<§úןßüé.ýi;ø3‹º£qëÉç5ƽée¢†Ý{ñql{†>kÙg>=˜=õo'Bvž'‰jjëåÁiÖ¤3òÏn-ò}Þ_ïðøÜ?!j8;¿ð¹ÁÞb´Hd8g”x®çü±—Ø ¶}÷cwô<ò;Yz‹‡gÿè·.ý>Àþôþª—°C­©?Ïq·ôçw ¿¯£·˜?ùýùýƒï h/߯ç?¼ÝÏóÅÝu≷üìóÕËØßWÌ—„gJŽ:ï¾*סɳÏm·Ç­Û~â\ì÷gJôÃ,Ú‰êï¸×ñ§ÖOÛðçδ—„®ÆR²¦¾´xÒf"Z¤»GßIÒæÅCÏÏÝ¿¿»7ÝÌüêÓÜ{™=yjÝÎϟïÏkžßú[º4¼}Nô,¦þ|Úþôyè«ËUÍä÷¿1ŸûiýÙèÉKì`v5õO€ÌïS§­õŸýS÷:4ìû§8÷g×âûi[ãVâl–žÜwü3V[ü2ò^ÅÒ¢¿$žZ6½y½õÿh0êû½èxöfþ4M>%ežè‹ß_Þû^µ¹ŽVozÞJœáZøæk_ãÛÙ›÷2·÷ -'“'¿Ÿ¬5~Og†‡óDÖgΉ7çï-¦äRƒOýÞ¨öäáö:ñäžñóCj/íÌŸiÖåɋߕ1œ_óÔg%ÆÃgŸ•hsÿÚï)Îð{@zÓ·‘R@—ǯ>jîŒ_ÞüÞ³Þ"Œ'ÉÇw¾.ÒßÝû³þz³»žºBq‚Ï4ñ$§åü],& ÿ¬Ùá,ˆ¯vÆý»Wï¯OèÂïBíͯ‡‰çYN§Ï‰=+-¾Oôœ.^}¯Úp¾hùjIööàÏ îÍÛÏóÄÉ£o/œ8ëæ=ÕÅñpç»èºã÷©¯÷ççW^Û·ùéÜgC—òvëã·Öhþ¾Hì"éßwOn¯½¶ïËÓeê”èç¾ßA×?µ|}¨'·÷þIóíÉô&qÖßB^üùC™¾Q·}Nœ`9oݦž%ωóS¥ëŸgÙ_Lu‘ÞìñÍï7íÏ/¯ç‰½žá)qÆÝüÕ÷Z.cÓ›™÷*&ã o³†ÓÖÂï´Xú}}¿Cf þ)4]~j?ú½ˆ“ûk’çÒ_¿k%ÎãëÌ;‚ç‰Ó”ø©Ÿê ¾Ü'â€÷÷;_'›¿Ÿûçˆ äâU—ó^B{¾¯Ãç»Ä³^<í$ΔöïÝšÝD„ÝŸÞ¤ö\-GÐJœÂ=hùjÉPæÅÓ–ÿð‡ÿòøÏÿ'üöŸý&‘ Ës(~’Pü´üÉòåâu¦åX]ü­ø‘„xùÖâG|žõƒ–o^þø¬ò¿åU‹·ë*>‹·2/?Fŗ脊áwÅX$Ó„å øS^pù§øÕrhzÙb :¢â«H0xŽã¡€ï(ÞC¤_»ü±x?Ÿ(~-Å•ŠÏâfŠ·ê¤øëÅôpËúÌLñ…Å<.Ǭ?—W¦bòëtóF:7ú‰åŠ¿ëOúžåÏŒ©“¿ëøSÍ1aðÏþA¶oæp:Ïż`r.´/8Á_ "¾\(ÆSG˜Øåw`šŠ7éúd|RßY\ ¸’(*Ú”Xw¶çõwñÒ/ Xhx}K^¡Ê«!)/Y ZäEëyáš:ITÌÈòß%/Ì©¦(®¼'/Nñ IA xgMÐH‡§â×säVü̺ìVzFçRg‚8ÎµŽ¦xA¿(“ú Rŵ }VÌéxʹÔÁ,/I±CIýÿ*Æ‹ð5øìò'½Y–Þ»*6H®Þë…ŠYeÝT5$Œ—ÚÈ{ÃxZ;EJሪMÖV:cSR 㥺#ŽJIûUɺæuÚC$U¼Œ—.pëè„«:°i¼`ÙÙfLÔL+¶¤”`,|¢øfýnÒK×SYU¡,þ”b¸­züûíÌGs¶­ÐIœÅ9o Ýs¦CU‚%-5”&tusÆ[](Q–añë2g¡nΜ²ür]bÒ‚åZhèJ(…¨jò ¹Ë°‡¥êÈœ u+ô.Yÿ·³°’̰ƒ¥š.¨ƒ¡Z®aÓTà`q¿ÖY†µ–Ú;5ÍïÆ+í,b¶²dZ ²9².µ K Œ‚úU ¹#9ÖMD±°xJ_QÌWd±)Q0LÑW,\̆BVSòHŠá*c¡±xY½7õŽôfnÞsô®°$‚‘ׄñV“¡!' ™›§+ ¾¢šzÖïÂ"cÐð¾"&ÊРŒzÓ°È`üæªöŸ¹°r¡Ý¹èäØK1SÊEª\*>| %¹pä‚pMƒ&Jraã¢×3.ê>…‚ŽÁ¯â×BWáÌfŠ«J«k#¨pÑ1ֹȊ Y#Ô¸àÿúN[~ jŠ»Ðt .WqÈuŽm)/¼Q^ÂWË‹l#/_«úˆQpM^ Ü42©p9–¼À-¨¦!%ø æoç¼ßn\¾\mÅåC=FáX\Ès¡5zÌ$+Ú:̾dyÙI^B€DïÚ¢q ¼ÈOà’\B… ¯¸ðçpᦼ¨ÍÑkts+š.¦j¾Gj\ÂÑôX–Ç¥˜RÒ9xE+m–—l_¾À¾„]ìË_nlæz_ºÞ§þXÐôZÅ͇êbC S¨R/\¬î«¹ú(5að½éXšª¤cùáÃéTkF„Ö舣*tŠáŠY[?¨¼×S™åèH–£ÊÂHÖ™o4†ÜÎq4g:'¤s–eçÓÉší'Ò‘èÄ^‹cСƒè„méІG9³!#ykf(KÊ,ËÎÉd‡¬,£N¯E=˜Oí“èö¤óG­#lö¨¹œ~u=¬èY×…UL”¦XŒŽh­«J‡+tA1èMv”¸9F¢¶tµ@ãа†N0Z;Ú|´ÑáPC‹rfWCQ±Ä?"̇Z&ÚÕÑdMÊ»p©JEèH %»ãh—ºÔlËEb¤ƒ4WËî‘NÉEìŠúVnpQÀe~€":¬+¶r´õü»É`êny›’ËvÚl;.¼¾kñ3¸È¸pJ^êÅhëZ .z–m­tlÇwO[Ã%á?‡í¹È\¨É…?æ¢aâv\šzl_.¡&/ѨÔ7u`vá•{†vĨ`‹éØvȧí /™ËI¹PŠKX¯ÇÂ6^™ 5¡ÇŠi¢ô˜zeú‘ª ð~ñ«¹hâY¿³¼Æî«ã†}Ñ÷ª)2¤Å1`A’Üzŵ…#&‰`ÄJ.ŒáWü1µRÆåOªÞr8f,S“*ýG޽ى;HÝ[6yù ÙI¶nvúÐ[æz]@´™kU— RÐl‚à4q 8‚Ö*.ÑŽ‘B6 攀ÏÒ ÔíL‚ØØu&‚ (®´Í Òô²PY—‰;GLìb£D€ƒù‚;ƶ² Áub ð ‰ )%¢XnBç¸Të%!â:‰°zI™óWõ£ªf%+ME*Aˆ+Ä.‹nÀBŒ8>DE">N ÿª 7B0ÜtHíøÏEL̶ˆAlÑzÚó¦DJŸ*ì‚bV%hƸõ7þÀëʶ½31±ÁSM5Yµ×b9½¡ð”¡{f"ªøT¸åŸ*ÔwÛè¥÷l|-™ìå:2“ðã™À²$V¨ù,&„¹ÙÌ$|«ï 'TUXH®®3Ѷ92.™ (Š–£eTXæê˜úƒÁ.¬[,¢_ÁÖ ƒ¦’Ìägò›ÙÞÑž¬z)c"ëpÝõ¯·b"[æy}ž‘6å?ÈËÇðCÌ‹:«äMÁÌ1òŒRÊ §ó¿õª‰æåÉ–•)t ýá[ådW 9ñ»â×Ò hËG@z¸„HqñðÍ€„€4ô]€˜Ê&S\¢vD ¼=ÙABd_•U" •ö’² Ov/k€pH¨KH©²¸©²<‰9¡mCÂBǵ!‘À‡ÙϨƒ‡d §’ú¾FÝZM–¶¾jàžÂÈçyY«ƒdbÒýP/ë_nr"²nmí.±!uD†²:¥I 3Bä°JI&}}o©õ£,&ìPù§¯£ »Œm @ÛQ`£ [PØäëîN!T)hB¦6¡jäÅo 'ä]PR†™‹ù{ýÃ[EŒ’©ý|jšMÐ!&W‹‚¸vï I­U_ÆqxÞ…,`Ôh& ™X|Ì8¾‡aà`n@1d-Ê6ªï( ±;«É믆£º‘¢Ñ¾½ÂÁ›qèäÃê8ÈãàÅÜ?EË‹!Á¶³œp['Ç‘ÈIÒü1þÇ:騇Tp¸؇8¸ŽCŽ„cݦº¬¬\Šó¦(°r`44´Üu¯I¶‡áˆN²E’léuxþ»·}´™žÖ‡'´‡$6fÁÚ‰ª† Ž2<Á]ÔBû€EU-ÅC»À“ÔD˜W¶ƒuke_ßÏ…²o¬ðjÚ !‡)žtÙ·’,[€ñ,Öäg“®*MÇâjÖiÔaS¼÷O£Ã™Î7¦“e'ÓÉt¶Þ¼=YÓн¢SwŒN؆ŽX»,5â”ýéP…ÎÇ­’æUUœä¸`PDAèX² s@´¦Þv8È+Ètö ƒŒ ª–H|¡DÄæY›“Ý®p#·©Æl¤ã{,24¨7í2f©'' ülBƒ‰Õa²s” ƒèJ` !‹–õûÀu»ƒ 8¨­¤CC'¥ƒ%»™}@·²Æî ¾¯CÂv¡²ÁUÃ.2ûªæ”#Æ=ìÎ?˜Æ‹u_u½A5"Ø;±D#)[ÖyPß Dƒ?¡²r0ù Ãµ­¨+Ù!t~`òbjÒ¿b¨ 4héýA¡$cb»¾¢…Ÿ*„×ÂÍÃ"9Ì´©”)€#bÍRküqa_£Kºäµ“4e^‡ñÒvUUsǽ>Ì…2ˆª3”y€k¶MG]“ðåFKÊ6/o0½™×ËWñ§(pÌ#ÇmÀ¤Z`%+#6?g^_/_¨$hUØÚ£bèTÆPzRÅHw串2¯ŸÄ+Ëבx©ŸŽ| ÏæÐ ŒN‹ŽƒáUîëoüù£L…Ô£­õå$©—“ÒÇþ‰p2ÆR­‰ð³ÔñRÃae0Šs‚[GÄ[”“BÉ‹vØžnMÔå¸Úž¨g0c¥#%D§FAYYÔÀnÏÓªÜÉçÈ㸒;ZÉ8¹£†Ü)E«V'åŽVrÇåŽv—;«6úœFy®€®”ZÞÉbg“>ý•à_:2MDØÑšÜñ‡z2óÚ“—ÊdQºÕ»_…fu¯WW=Íq¼„DþîÝÌ+óú•xUý/ë—RP{vQŽ™P4+›—x—™×WËW07PM—Ý…N€ÖIâ)oµÜ•zz3¯¯—/c poYœN©Ê¡N“ÄBôî¼þ±áçséçëQ[êÖ«£ZVUðq}Q«àpÕJùùÐ:öŠŸo5+±![Í+D^:~{NñJ;…+ b²-˜gñxŠÈKýd‘/n½a ˆ%ò*ý|M³o¶_²ê§²l¥-#ô“"ˆbUšyÐ,#;™P¶Ã¥¬BÖ‹• zÖ"Fƒß¡UºŒìK¥Ll$ñQ×L0™ØÌY!e¥Võ-Q•ÍȾY`Ä᳋Tu#£·V™(µ–VɇB ûå¬2²Ãl™†X„Æcbɪ€t6ÔGI=í¾3²¯CF–WWÄyê`XîJ­ºÛt {f†ÿ´Ìg†±h"2 ?Ò™a^e†•¥óðcÊ=T=üjfx•Ég{Œšg51SW­\w²ê†¬2Ãk·ÆºÀFÍ#: ;2ÃR"cƶÙWC#‘â¦4Ì¡µ ^„μGÇ!humà(ÍkÄ6ã°0¦ŽCÙe¹ŽCa‘lJÔWqè0DLÔ Õ%[¶0‡š ;yÝÝóíÇ×ã_ˆcmK$‰#lÄÁ°jvYU‰%ŽP)c¥p„õ8 ¬>(c…MöEýn¨¸:Ž=ªQÿF¶ÃÁ¥¹ßÇorà‰^@®Zz5ó3㎑òh¤ŽFó„:rn ‘ˆÆzK›h7 ¾!…&Yð¨ ÿV_¤×|—W؈¦Vð Ѭo&…n²¨¸”ƒ&<+}¥Òccgb„Bµ%…ywi*‘YNUÂGÈÖJ“lRndž&>:Ï»ÔèYÐMiÚ»F_|pû½(2NØÑÊ$ÑßÇFh±4B° Ôâ ühšê°l©H™WÊöCö«¶Uh˜G\+|% N:5Ä¥ê«-PyxV!+ÆÏSŒtÅø)7£±UÎÑ®nÆšU—[]Ê(áf„•×g[E pVR&ÔÌ*ÈÖRV=)")ea )Så¦#3;«Ä]`{çƾP8C¡òj ËK*R¿J–”o …B™KÝ…i(Ԁ (lÛß,,OCñ;ÝPþ è7¬"ÞIÐ:«”™P„HðèD…©9Í’ò…’Ô‚xÈ6H¸Ñ:+±%Oƒr–¡l§¾ÛÁ"¸íÕô[URx#”?©:Ì\mj‚¶PµQ%™/e eî@gÕ¤š&Ùͱ¡¸?¦ïÕ]ÞJC‚†1{Ø‘@!{‚(#²]A`C³|Ù„joša3QÜ´Au‰à$‚« ¤Bj6= ‚µ­= ÂÂäÝ@pD¨€à´Dàb•¨Áì Â÷XЈÍ„-Å]ÅX­Ä7ñU6bOÕô-m[`ÌæÜŠV,ö‹52ˆƒŒ5ÒŒˆ&Šñ!Ïa/TA›@„Í ¤ÁÑ|îúê, â$¼ï–nŒû,Ò¥b7ŸÁV©¬ƒÀRDw!‚0¾.£ûZI rÈ!‚ø@"2ˆAdÕt€j øZLµbÑtÅîªé¯¤"1±Ä¸Å³U“žÍ9&±~~A1*2ß9`=@Uþ‡DZŒ²íÛ56U´l Š:H„Ýör_U‚@ˆotB¯ ñä%LzŒ²1ÑŒ"†¡*ª–T"KˆÅöàXèVõšŠÑÛvЀ£–57UÛÁÍ1ƒ䈀‚~ª H6bÛkàëù.Jª²•$ @ÚÆ’¤CÅÕàF@R u@¡ˆª€ÈqLƒ¬´’ˆ…zQŒNØs$F x1zû$ÿª‘§:W9 â* u´ q×… Þìˆ7:@‚è`@\D Z »²~®M€ø@M Z¢m%H*Î’$ûJP”e@‡:† ¢6ˆÖÛ Ùh“ âmlÐ6NBØÁIp€ô!€Ÿæ$¤e7{+/K×^ª§¹\ÒOEuZ ª©¸cyq›%h+/n½Š³™ßÚÍFÔ¿NÅ}¡ìfoŽƒ’€èsÜìTqâÜlIâmUÜaq¬ô×HE@±V]|z›í~¤ €ݹ¶Ý›€ô.àZÕëËí~È:™¾hl÷ÓK D :°`K‡-%&H7Ѧí~ºªŠ÷!‰†Ÿh÷í~hªÑ3[ò%û€Î ±ålÝÖì‘;÷»fF‡1NZ ÈšNž˜¨E'*3úzFf ,·«Š¶Ê {Bö—¬`œ})£ Ì(á[ŠnÜx¤sP7ËÑ×3 z¸†`GCô¸$N&Œ‚²A(3úbF:ÅÅëZ.›ýVG7(2SuûEF™ÑAŒlì:}¨Ø4ÔËÖf•Ü@¯ÌèK¡çF‚Õ‹yPîgªŸZÌÇ˺îKã#T¡ˆ­€ˆ†ótÕ5À,e{ô¥ŒBÌÆÕmŽ8Ðo.(úö³Ïp"Ÿ! ã^K#†Uehô ›6i® £ÿÔ‹ä–ìÓõ¯aåm”‰É:ÝE‚‘ ÕÉïÝ(fÕÒyB¸VàOJ‰Sq·…ÁWw9){ÆÞòy^Õ½Z{²M嚀ÔÉ/n@Ó~HMEFDU¬t·Îª^-Ä7„Ø^¢´·¿A / H™)-¾>) ´N@ÊL)ÊgÍTv°ž%w¶¹­ˆÝƒJýJ@(&G4Õ¥,V4µ±©ø ­¢Š€@áë—hc˜º[ ¯c‹"á/Ѿ†'¸a+sl/#Mùþå(eJ?€Ò—ÊRñhÝ n6/M·ª6ÚÙÞdJÇ–%õVÐtÌb ey(DwÎ ñž”þŽN¯q $DÏŽ£Åv+§€K§ ¤tìóQ_|>JÕq JdÅtÈ’-ü¨ @e EK²]$G«Lì0bp³c!]4µTøû&b²ÖõÎÄŽDL/déý~Nft„z•CeÌx‰Å—JLÖÓk‰˜…\?œ˜Öòth¨)é{5ÜàjÈk|V”#ÊX¥N,”OðØJƸBŒts‰ªGŒcÂ_kÄøb\S‰àjŒ¡à*ÄàäEbb“oÊÆŽ¯)õ¤Î2ÄO.¡€X™ÝáLì×%–íØ>vLÃŒ2Þ©üRIʪ)ѸE—ì|Å¿FLŽõT¼ÛˆÄ`¸!$Ñа©ó¢WÐ_b0Ž'h"Ò` á+X…BˆTL $:ÇÖXÓãÍDzÕI«ÐNPà!ÝÏ…i˜HŒlÙ1Ât¨3®Ä(n­Äíe©³e!c9®R~LböªI™`^Ö:bÙÊ=Ë„?ˆ};F¦˜yÒ“ Íë`=Û¹s1Tetî/ÉèûÉ‘…\šx©ùö,J œÄ=NAúaŒ¾Ÿé\l¨¯C JiÖ~}]÷ åˆñÕb¼-‚^í,YŽNÁÈ&ƒPU¯aMÈËp‘Uf9úbFàIìzXùáP…È7¡s"뺓0RõE1Ìöý^Ê(û 'd„ãEÓ>º_A!3:#È Q`u °Ó_ Øï ë2£ïÏèûÙ#FÉ·4I¨ûþ>ºî·`”sªGd¤€TSmêã·à(Ëщä( R’[5Êú ¡âµŸ=ú[äZFÅXêŒd #ÙÀˆtÌb½ÕÅÕÒŒ$͈ØÚ|¹á3`³¦š ks£àIƒï(GZ«b½aÕP QBèºo)c:&RÇN`š kW2¦Scb^c’XÓyëë±!cú*L*=6|Yë?ˆ ÷ùÒt–1¥01BÚ€¦ŠdÅ\²m:=&ëlY¿iÃ˘N‰ å!Á}›b ¶@¿[ç*c:µ4÷£öˆ(|H‰eL'ĤáxñÒ:…GÚaž¥éÔÒ„ÐN!ÓI/jÍ©ñÓÛl\× \s!RîRÃ<¸ë„0ÏÚOˆÅžVfë’·+“b%%KZUЯv©º¹±KM8½Kɪ bóŒ‹.<ÁK‚íœzóœîiÕ·H°¤ž~\‰¼Þá¾Ù¡Ìå .(Y«q@bR/†Iä½³v™ËÁòe^o×/Íë’¹œ€‹ºõ8Hê‰oMØ3ïV‰ø&\ÎŽÌE¾Œ‹D}EæZIJ <ëÛÚY^þ›È…” i¿^ŠKHp¡Ý¸„È…låì$/Øû]ç‚I.†CæÈ¡˜äå%¶‰–\B’ ÅnÒ&ØŽÀU.ú Þeƒ±õæg>$f^j3¿›Dì2ógž ¦oí̇úÌã‡bBjÁܘù(ð€3÷}Å™§ÆÌÇbZmæåð™—<óßnæe?+°×̇½fž›3OÕ™¯Z ‰™7ó¼qæ%`æiý̇Cgþ ío8¢_$Mû‹J¾VCsæCHÚߘxJÛ_öö3âÌcˎז¹Ú¤çõë¾~æé³g^~ÔÌÿmEÛ@°ãÌ×z³Ñˆìlj!Aöy¶™©™—¸æÉöÂ\Èf>¬RO@­S¦¸”ŬŽÍ|™á væ†N³Ž!¦žtjlÛ'áp•¶Ž-„åqœŠCãi–nHï L¾ Ž­¤ã´8–L‚4d‰$a {©ž•ÕaÒaq–õ ?Œ1Ý[ãø³œº<(±–€2ãdé}ê=ó3™ÈaD k«ø^§CÛ±B™‰H*ß¼sÍ89˜½K÷ˆ¹ö쵨&*K³Î–¨ÔÏ2‚,¸ F$¬•0n`mÕHW•;Åæ‹©du²qŬ¯•°™:]ÖåMµ“Åe­•ßR‡Õ“”…¶¨i„1CˆÕ°9*‘ˆùà*4‰„j„ˆ*K\:ú A\O¡– 48Ù'6˜˜ºÑ¯š˜ÿXEð³ñYùÍŽpS÷µk‹#ÜÄìz­hÿáÔi¯-ŽáóyÌX"àØ`³G­ù±óþóW²K ÚÇì~ÒaÂáÒa$´R%¤Çnߨ'³;ìèD ¶+£‘ä„uepq‹zk™ÝIØ¡õ}̺âuèbtpH÷ÁƒPY¨Ë:óëØ›¨¥+Ãéå%©CŒ8ö˜D¤›”‘ö8 øEzB‡Ž;« Qft*FHâ™ûF–Û#tqc>eô2b¤.vdäSGŠYÕyØž‘¦ ¢ªŒð³o0¢-³óŸ×Ô‘/ˆàú¶(B×ÈBFö9ÈÐî„ $¡¹ÊÈ"Tº˜¶G–¥ì³¤ ñ’áJå#ŠØ …-R}Yö+ed§RŒ:É:ÇÖ.aÕGíU‡¬é…BóÈ’C‘qF¶2L³ÕKH»xô&zšûaŽã"f);LÊÀLÐä/ˆ…­§&Ú2M©«þÄÕì~¾ý›پȂ•ë½0iÈPüKG¯*L¿ â—¥ìä¶LÕ]°¯JæÔ¢Áï?FM$#;YЩ®Çch*¾„СÉÛ—@ÙcÌÈ2²‘¡Í,fuuD–ÙK÷9¡©8#;]ÂÊ&Ebgo ±&­H{A³-;9²8[I zA³Ž9¸ÜŸ‘ÁcŒcT3¶†V^4ÂÊÈN¬¸më \ãäë†(ëÕè,»'D†ã™Ò>†nUÁ5 eÝ  ŒZFvŠâ ëåÖle`…aóZÖ—~('¬N¨­‡“»Ö±¶PYøòIRvÆhyÌÈÒÈà|”mº$kºgCébSH¶e§ôu>P¼ ¾¸LŠhë ¦M8_¾2µ46jôÐô6ôN0¹$Ç@†h›%€JSb¢Û}Škê²ÑWVÄ2² ²€V72¿Â\¶j‹÷Lt~8»YF¶ƒbdÂ@ÔûÐÁ°0l˜,Y„–mÙ©‘é-ÄæD…Z´1ÄPVîý qFöÓe)«tÝúTÑg¥²f@¨‘ÞÙ?ñGÈB í¬Ì…–Møô12ÝÿF‘ñê()ŒèÓ5’R)ƒû£‹ÔIàøµæØ[‡•毴•4–†‘Ó¥v>ão?4|9F½“ ­yj”¬¨EA£‚f«˜¨öÔ(Li^ִОÔ8E-$©á©QÜŒ¦1'!†fx™,€²¥Zô Ù^˜šçFÛ‹ëûÃ@Ï&¢—TŒ]eÎ0¡«yãá o†íoP´aSê‡7è·é ‰ÃìÆÑ¯Ó^RË룹ƽãÎ!\ “ŽÔ [‡ª;]ΙÜGñâÁ§zo¤Ã™N“,”bϘ ½/}W¦s:jôSÁ¯u™Zþ`:Ò >¢*t¢W¶–Bõ’oAGŒ’&^(E‡>¢Rtâ¥*thE'l¢£. Ÿyæ„üº–&ó"9Tvβìì";¶Šâ c-ÆÅάÙ2LÇùlª#6 B×9/Ë¿‚Nö¨âò’®Îë·ñ‘¼‚O—úJ:’¤CM:²ŽlçQ³óÙßxb!çÖtªe œQÍ‘N ˜x…Nôc¶ ˜±Öž ÊftTéÖéA“œÞ#SIGƒ~\ÆÚã4»´¢ƒKÃ*.é[7?Òü‘Té ç©t„V|Ñ$ÉÊv“°’Êõ©Âн}º*Ô·ŒyƒjdêŽ;V1ýµmêຑ“Ñù7XÅ»Îò“Kɉۖþ_,Í¥ê„lú1cÁâ}j?Œ }3.¢ÿg{ {Ù ’"CÉ\N!/l§~$BQ"dpÂþÝ•™Ëa\`Õ£}‘ZOLµe._ÏyN‰—®÷*È>õ¸ÏäÂaÅ…?ä¢Uª=ì¾ ;èGë\8ÀËÅ/Š?›¸pš ¼î$ L µFFG >ôC^B–—¯{l8ÊkkúÂŲѿ¼ûv~2¦Œ,;#ö߀`™çßËw“Õ¢/FèI(m ê8{qù\IѰqÑÏVžßøS¯Ña‹éK@HO‰Ø bѶXȼâ"6ÞÈ…ìAU)ÜéŠ Ò)1ù£ ‡mTG{DH<¨ªÚ9`iE, ý¶5íUÖID1 ÉîÛò‘Á}øÚEAu=ôR¼ò:ñ`{{º¿¸?k$EõFmUœY‡Yë®*b·‰¼$ó.MqxG™v[ß«} ¥{uo¬P³^\¢¡Êu‡^èóízuMqªƒá1’‚Fj )JŠK>ùR"hÉ «<§=]¥¸‰cËÈY&’‰ìL„NN4eLq¡£ý€¬µ!"p94d€ÿlOáDÂÇDd["’"¢sŠˆ8"¸gO„+D`?ƒ.O½µ Ù‹ˆ(6"„b\•H,wj‰eKAZ Ú¢Æl™M”mÝì$#²Œ4´–ޝîCwÑÞêŒÜB [t4ZNN„-šŒy€˜´Äðì–+@,Љ8P  È'Aß"l!tœ0âµÁÅ¢³Þ†Åîy0²âš¸û" ~':Õ1³šµ(Ã-c!™©¡Òö©°“@T†-š2þÈŽ¨å@¦"ÝÉÉq© ¶Ú Ó_ý¬tÍ·K£A{芩•Ϭm£4{×Ñ~ ï—OÓ\ õ®4åvøFªè»IÞÉšStj Š=_jhìöŽK@bƬ¶ÚæRÃÉ'¨¸³ (!A–£•jW´UgVÝ}å“mЩœõÖ“™gV­F’UÜÉiÿ‰šn¶Ê ÃiÿöÄ_(”€x@´T‰ M/ŽWàªIkò ‹s¾7 _VÅéè¥4du+æü÷ôÝTœí2 X›rûa@zL)À,PØHvÄGD_Èîv%;Tß·«¯œÜe@ßÐokƒ4Fë©æ²³åwÊ$| Þ>Õƒ¡ëĉ¦ ÉpÍ›¢NÀð´³ÊIØp|„æz8sû«Q›ŠCf ¶e%Vâ6V¼Š YÅ}²afãv„º‡]éÊ ¡{Ú ¿Ä9ÖUQo×iJ¶ƒ–€~q”h]¼žleSÒLVC• ØÊ›ÛA­äJƒB¦Z;hˆ+*í Á×U uUH¦9¶4¬íãEQ¸”% ¬J„ØÚ€l烿2Ãè†:R–„p¿eI(Ó9P‘JDvyd~2ÓÐQ¦¬Z Â7Šþ2ÓÐѹÒ$uR§iz4ÛÓÉN¨„•Åê¤)Õ>]îžÎ^—¸Š4yÁ˜þ¬é÷<\Õº:Ê<}‰I™ÈBÚ]ô†‹é«ž¡ƒÀTuÂØ4~ê£CEG‘E•È+µwþ¾š*yvÄÁD8EDªDØ¡ˆÈ:"ዉÔr˜1ë¯Ñ|ñw]‘ØŽ·Ë[Vˆ„DŠqy1U´‰HÕŽŸ º 1 ƞƊÙ%›(Nµ¶öA5"D¦at›&Ä.}š‡9]´"B ;NH±ùcx}eÐ-›ïЇ{Ä?;åa~(ùþ ˜£:ÓÔé…À$ÊÒA­ëÔ‘$ n}‘;['UAÝF{nu2Paµ*‰ A–d‰:%(B’™VÒDn3bV}§¥q,,ykUÆB_êì——ü—•%j³Òa²E!ѨjÄñ@é–”AQTð‘íÁ Šûh€ c« ¤JCÈ&(þԦȶJP\å(Lc£›f§1¶@Ö³Ë1Mß%Y¢¾ÚëÓy^çó!5AÙë;qÀ‹š‹¦ «õiÔ²:)(Lv­3+ÍÈ EÔéU_°‚caQË®UdN$QgÔÏ•%jG1ª£ZHŒ”êª0 *r(¨?WPAih`^÷\f¼IïÃ@!•b}"Rîy%%IVÇÅã‹JŒÂÀÚ°²¬Ž¾¸ÿ éÏâ[qAc… ®+­ªrâ¹Ì:ë±Æp‘F…õC²rσþ§,ËÖ OX#b·l5m,ñÌä¤L‡ªS'–5?„É?çš~Ùª@K²e6y¸¡ *L BØdM=¡Q Õ®ˆX µ˜ ms6„X Ý¤Ð"£µZ+3¾?öºX¢u»rì¿™]dB?®/JS&¸” þMžZ»ºÐ¬>,±þ­­ >jiùø·¼³ÎÊ|J>lÝ >iÀ–w:ÔÎg>‡ÉR€}‡&µtŽvKùÙÄç/R3;‡ye_¢Ã¬S“°/²Î¾(sô½}Á—F>)‡YÌaÖxœc¡Ó2¥ÈJ Òý5‡Yœ})f³/(kä07ùrÑÅÀµ\çæ©ËÂí&°š+£œÑÉP‚¢ÓŒyk>6FÁ¨hïܘµ/ÉP>Ê_E(ìÜc®@Á@ɆÐt£’®¹ÇµþE)M“Äø8Þ7³EJ(šk1^ƒ(Œ:L"Þï³%ôá®I(²9Þ{hL2Ár+ i Ú 59µÈ\n2Y(±Ñ÷¯RRS_¬<‡n$Ñþ+rÔékzzâO)5úS ÕQ HEU§ÑJD²PLm‘¹·¿èkVד iJ4Êpè¥Òï€s!1+V&Ì,ìQŽŒvõ`¦¶jÿ±1ˆmc£JP¨úc h]”¹.iZ‚8`œU ú0cF+ 2µ¦ÿŠÎê–¤:m‘“ Ú˜1C²*Að3±F°²VýUa¿ì.>ðÏ\>Ë…¶ÅÁ¯c’l½Å u‹³E†¹Én@hf˜‘$[oqæ-ÎGæhqtÊ‹ñ˜¡Á˜6â½H`Ö¹q¡Z¾ ‡Uõݬ$¸0ÒRÊÅN7YÖ¤(q#¹Õ+î¨æD‘?ª?à¢øê €B)ëªRç@—.1JÓ¦ÍaÈ€>ZªPêeäÏ«¹æ2ÆQ¡Ít@Z‰Á&†€¶oY¦±LÙ@p²}½Y"Eã“2òDè¦1ãq©’ è %ˆÌ!$È­²Ñ,–ÔØO‚þŒkUAÎ×;KU ôã’¨Dç )V—[cT9‘@NuY%°Ê3§ªš)`lÁ.÷~›O,µóQ•‘V¬<ë~nmÍ<¤J æTk ¯Û°ö2:™ÈÁD ðÐÝŽÏžnˆH…ˆ|*Ùˆ¤ˆ„UÜu2"¦#Óž³õqe"Û‘£Ê¬ Ř“Ûà–-ù*"úÙâ_UûAv7YF¾žË«bœúQ*3fñEËp~>ÚRFu" eì‰p•ˆÞB$"ÑÇÖI`T«VD$ [ÙqD¤NDÿCYv½%áò4vج˜d¹_6•û³ŒjG¸âò"‰ AÀ,f­µ;9€HQÅÔÁ[ƒ™5¼+„À9ùêx„mŤšúuâ÷ŒÙg98BD›%©!¨“›oïkÑŠýBDy-œI J ›+蟚Œð·!ò«Éˆ®öøJì‹î–fYµªÂYk}¥ŒXÈAÔŒ¡²eÿrË^Ü¿nP^ņ‚@-gO$#è—˜FtOˆ5ëB¤”‘Ð.‰ðF"R!B°\k‰„­-»þÃ"Å7₱ø‰œ©sÓ ‚ŠG"ïК—j1蟑X°2H‘È*f/þ›Áôãeà ë›MuÙ.—õ–~m"ü¡oM$ËÈw#ò;ÊH&r"ÙûÝÙ×*wÞ‘­š ت„ç9fÿò·â-¼ Yh`ÍñÈ–DŽš×Òü•ß¡ö&ò/*Z+l "‘ˆàãZCdlAR"šÂÑY¤;« ‹ûD8‰Ë×*w+"úƒN«®B» …XÓ¥ l‚n܆ªóQ±#vîÊŠH "¥ œߦ] ¿©¸Ç öxµj*¬C u´ÅÆz2¡U¡À]-?_Š˜ƒõØ„`%¼BÀàZ"Àþì'UªIï£xs](âÆz†SRÜŒ¶¸A(Ê‹I¡X!„x”% }Q‚5e÷‡u”D ¥`/áû# µØ#;# !#øÉ6Û‚’h ¤j BÊ:[ê¬@ "¨Ù)4ln ónÖZg¶˜be …°L>¦HÚö¶@k³±…ë„xËš|KåöCäÜ£7 ÅAXg‰Ó!àbØ9šcõ 85Ìn6ú»† z+ø#k­+Ã1„Ú‘2”p½,z&œ×¤ƒ×åQ":Hõ0›AV¼ô‡ÄÜk9Á ‹ÕN‡`›¸è¤ª¼U'*·ë¸âdË*é©þß"©sIl Ýž‹ê’ï}K.ÍžPlË0Ñ([4,h7å¹|Ò®B]4ŠË ÅY#ÅÁì²uzOr ¶pç(è a[Ô@‘Üä¡zºÃéÅ>E–ŠfŸ4UœE¸P»£ø;ÎɃ’æ>»®6K@u)|ÅÆÑDïœôøIµQZDçi1ãBÈB™•×ì¾èÆÅ=S¸ Rt)®–9¼?lê­BŠÓ¤È‘âHŠ›Iu´TI‰¹Ž‘ )Rl¤¸$%Õ2GS½©|èœEÑBäKqóâXM†ASjD`úXÓðž”8q<Ôï(SGÓ~ê´ëê°$@R 2ô\#BØ­qîï*1¦E:¹Pµ=)¡f£N²J›U²‚š#&)ƒ›l§Na§l’9¨‚y&T"0M¬Y25SêV"¿‘Iýº¤þ;Ó§ñßzgúYFÀdiúø)òH«é§2'µ÷J3L ˜L=¸€ y8’2µµ ˜ÎÎâS䙣c¡Æ£RRz+duZ,`îAˆ“¶T°…€‘”E]l'Vm²SÐÀñao˜íbšp4ÎÞ)…a‘¯Ã"+,œÂ"aY%>½Kœ{fÜŽ±eš'cùr,µeÕí^HÈrg,'4áÅ £…,-§Ã‚*óØÎ“ÈJì´Xp;©Ã¾Âò/%‘ºføg‰Bb)s)‡dÖR×’L]›÷Èe­3úß–º¶/%ó™ ‹ö©×B!RŒÒ N 4'’fKREæÏKòÄo6/—@Î t‚n ˜º–2uM¨}rÅ[Uü‰íüUK‰ê-íw…Îu¹OÛ¼Œ­c>›Q½RSñ¹p6$[Z­¿£¿KYœà,NÔÂÎΩÅÙÜá÷»bÄVÁ×IRƒð¥Åad7)ÖѰrªVŒ8–x•6ÜØ8@õ 7Š_‡tã@ÄêœbTjàÈ“ –á˜##µ~ÀTÏ]©YVsk«ômIÑÏ Å{•‡6ŸXðôF,¬Ùù ¿ÝŽÔZ/n=©" ÍbÀ7ã4¼8DeLxhr17µG|bâMó¨â´ñ³šqzO$Ö×5 ¨®bõˆe—Í%¶U´—êûn˜äGaRg[AÁ…”X¡6Ä cúS8:¦ Fi ÕÆ†©˜Ý0”2¦o©*MSõÉyß$¨Ä`nM= ZºÐ©$(o•åC“ ÉºçöIPï“[EM?œÈƒ2ª ¨¾’Í”¡dJAã»`*¨æ5èûÃÁ™ë’mAIÖR¢H 7ô¿§LëíK‰”lÊAIŒ’®]¥ÄÕíßnRRr6.ArǦ³õ%[sXA°ø~m3A,b5$ËÒ©dI¿Þ\pd2*A-UÕ]¦t"JbuÍ<‰9¸-M±˜ƒó¥¤ì=|7JY–>’Kš>xÌ7бÚ2¥¥³Ý)‘eàW56‚,yŒ43¥SÈÒ‰)…LéPú±²2¥@)ËÒÇÍŒæÒ€5)Ѷ”ø“|<­¡Ã½“XWÒ ²ÊƇ‘$’­)q–¥cÆKúaô‘k –ÅC@³éÙ?q¶u{F×]까߂Òo®ñø³5Þ¿Aí+æ6V=_¼¦ç‹`ÚÐóRe@v÷š‡d„諞/G+t«ž¯â>ÁSuJ±l«Ø•Òú„Ô´åÄÉVk_?¸¶çK¡a­Ê€MJx£y ^Ý1R®z ŸåÆ*kã‹ò*É»Œæ04¶+c•¹3¹;Àe4ÇA#Íc-00>Àêd4Ç@cÓä‚’óhþ½T<‚ šb€4ÚñÁšw'óЈÐ6QŒS¿§Ò_,¾HæÄ»²SµCQ#:e\ñ ªÙ<¢¹„A`ÂíKËú+Ç#úÔß½kFS¶”ž¥™_slÄî\ÌAPË 4:RßgWL7BQý0Ã]SË6E1B—ÏQÞ×!¸TÀÔi„ÙÑcF) ¾¾—d\Îßf\áÃÅ@Hƒµ¢ß ²µ®£(ÃÓáâo‹ ±Í|­ÉAÏÇÕlƒ™aüs˜tU¢Y+ã£R‰fÖ9²E†9«áªG³´ŠfùÃhV{z˜9øLŸ›s(ÝŠD»¤z}!fÍÆLƒ=™ØÖ8á®U†×a¸”¬vl$‡gùTZ½2®Œ+ãÚ—^,sU7Ãb;Ò|æiE2®ÓI‚ø2ȄΠ)àk›¹¿`Fìh¸Î2®í] …4)‹p™°QçA½e+êfexz\6ïxg h¼›ˆ†võé3®“JBdleJúóZâã#%¡2®=CÖ¦½‡ {BÒm.z‹(Ze\§Ãeþášî Ö¹²C v$\:ã×¶ÊP{æPW„¢ÛÂô÷¨¶dexZ\úKŽ–«yšáUOêd\'–.2³ÄúH¼5ç€X\†À9ãʸN€‹jþ?—ج؆kÌŸú‚¬ÃÒoÓ/Ù±ÞõpýHé êG¤ºfV|ÔÉ ­5˸N&£Ù§®YSñ›t>uŒzƒûãúÍéŒÿÖÛ¬‡—lÝlkg®µDSŒõK\² .ŠÍ¶áЖh>¬Ù6åÂrm¨¡h7Û0ñ³o‘Ò&Ÿó!d– JÐða¶ùÓ¹–}úoD$8"üD$.؈ȖDìß[ÁdD-ã¡öIÏtÚ·#:ËÈ¡2"z#›˜¨J+9 ’hóñü­=LäTDÿÍD>MkéuÈFAVSù«j-ÊD¾‘ï+#p÷,&* s}­“ÙM¸0±¸úf"ÜD’‰œ˜H–‘O‹GR%‚_Èû=û1DŠÉÖ Š¥²0E¶ñ"ò³dDo’‘¦‰9” IFä³Öúz­Gd¡é<õ¼ŠKd9 Õ„–UŸ9ŠF–‘¯&ÐÉVÌ}1Pü³§‘ìý~3"YF¾-‘æ3=ŠbF¾Õžb%¢¿øf{Šqª7­·:¼ £/ÁÄS#Ù¥3«£^E)kÚbŒü‚]}€,MJ“~P“!ªq»Yí¡¯•¦Œ)UðøÐ+gZ"YéSг}àÙ8i‚"Ù6SñA½I• M …TC™ºÉÅûŧÓ¡Òd—*ä¦Þ¡ÄêÒ³6ÈJ¦²4Â…ÐHJV"TUzêï }µÒË.„Ä8Ö6Õ—.DPOôxº€Ô@¶M'v!ôÀIÑ4‡Z&Æ–•Pí(îXÁŒéT˜t‚töW\ôýG“Û–ØÖ„šÊÞF"äðöø˜ôpâ,ò~êÛ#˶é—Ådœ2¦ã`ŽÞ²åz ÛTÐcÙ6馿5Þx°ª¦õ2¦Ó(=ìí%sœg®¯q¶M'ĤÆ+œÄø •D’¥é´Ò&É<„˜íÊžÞ©³jxÊÆä6Þ\½Ý“ S(sßú-¡ižð©í1…,MŸ"Må+’¨B&Ae¥wBLÔ0¨X¬Ê”³§¶M¤Ñ[§²â„ª­2Q/c:9&T*jUÁ`SqSßSø0¡!SfйP-·Æ?W:[cÚ7§÷«xzG¤F§°N:ë–Ûc|ý•‘ºç+c:TéqT{¨ä&“{eæU¬ò”[V¾¶³(>CP=®ª åÇÓ—1/YT|^½søtúç$c:¨,ÈŒúm ì·u)<ØüàzÓÿ+^Îþ­ß²+d¥˜;ÌŸ^TGÄXl&eqÒ—SPÕºÇÅê¨ÂY¦°MI#xóˆ´r [6ù+dÁºž32C‚ØY3Aj¥Cö‘¾Ž‚FÌÁòX‚Úg»ð垪X=·"ÖrŸ)|qC+¬ÌeãsÖH_ï#acf¯øMØ·Ê“)ì/ ÁÞY±Ñ’)|9Ô™-«}uæ ÙŠíJ›Í?¤PÏ©²¥aC@U½¤ oAñ=€ïöxEAïºF¡˜6«+I !ÖÚµ!£„LÅ¡®§`ÏÿÂÙ£pöKP`Èý>I¶£`íRV_ûi$t˜”0E¥F idÝbÒ @Ö÷Ä5 Q#©êZK­¶ %|¹€Œæ“…à4RØÁ.ðvAêB"§jz#- ’¤À0#ıúÏ5»P~YR¤,ÈY`|(hš¶jj²À)»ÀŒS$ÈÔIÑìBhÈ‚dëüÖÙ2©TN+“µ}¹T£@£}ýÆx#NS  $Ä^ë(45ÒA±s(åAM=ï‘ÁøÛ*…âgóTÐìò‘b[~TÆØEZoö^ùHЬ`€Û§T³7¬­Þ'‡MÍÞ´{³wˆ¥›”]0û¼¦Ç»rRŠîi¶{p¨ÈæË®«71y'*c:“‰3ÙŒéûô¨nÐ;*®«åÕŒé³0U·NxLP櫽g±‚µºœôý»yøSÆ”1%•Û Á~_üF iîkVfÓ‰lSìü • ˜”8OÒÒôS‰éì+1±ÕH„ZŠ,Y´œ«¯áÓWK“˜m'm‘4ZçŸ32j”1@é…Ø §ÖL ‘—)¾,M§±MzІà_z ÎD1ÁŽüxgÓI\6·‰'}%Ÿ‚Jš¯cI2¦/Æ„·iç8ÒŽ¢©\SxÚ)‰¯PSÅYšN7i) ÅOÓs¦×ˆâM }L³Ò;U‚ÑaoM­ÞÍÓûÕ„^ᔎIÃ$a"«7¬Ç “¹ŽIÂkŠLH‡»h‰‰<& KJ¯Š ±«ªBK½² ŠZ¥âR!f‡¬¬ð½Â$Yš¾Ì6 b¥õåŒxße)+½` Ö´¯ß­Ï»WMI\lQß<È!—zq¶¶Md>øNÇb˜Öœ¨›#VªÝ V‚^³Œé$˜Èl“ùå.ù ÛêUàXù L’19Lhp`(çµŠð†¯‘¦Œé›c:Û¨ôξëÿ>auix»kÌáLÙÀ$Ýyë…§ƒ×Åü",hƘõÎ +pÿêÒ$VƒÖñóô$X€ß0zzRJSé=j#(Ρ-û»ôuÑ  £ØF$[ôwIôôp/êJJ¥¿+°õwÅR:îï¬yz˜5Hë<À_ÔOXªˆÍyˆ®Ñù¸ïë_¤èp…ŽÎØ–àºlj&AGÖu߉ù·!Ù}Vºt°m>Ä`2X»¡¢$2¯G5¢ Ÿ9°)g žâx*tˆQì¾Ã·u:"•‘ ªN¶?­¸ Ááœð"$ªD€Ð.ÆöÂf1pØ o‰@6"àï€9”ÞZMw™=ÝJ þlÇh%ÃÑ([4ºü¡2ÿÖ'£Ñ,eSè+UµøÑ…ˆ‡Ñ5£Q €›2`ñuã^%å 1¥U4` ¬…5G])Ö8íµh4ÄÜN™4`ÓªµÍýÁ:×ì¨ )"œ‰d"™H&r0ú=‰È÷%ò³däì7‘O ÂI•‰Bù>2ò{ÙZF„÷#"M":2¤)¨B„¡F"\'"¡³ õZ ‡µµÝÅ"µZ N± ô/YÏÉZŒ¾ !u°0ôO³ qg® —ËÂ¥`mh,Ž #~¼X7ÛŠ¯‰G4èZK$¤e<-#¨ZÇÄ‘M_BFtಮ—H]šÄLjO3 2bžJØ$T%¢ef‰Ùƒ²%`%#\=£[ƒEE Ö•Šm¸V{šÆ*‹eAzY‹¶¯‹3‘L$qDþªJdC"‹(ÎÔ¶™^—ÈZezK;²>Ó[\ –b?dÄ{#Ya‚·ÉôŠËô"-•Jd¹Lo5‘U6Ù&ù0±2J°Ž F­_³úd Vš†~cšë§¢ØÅ¡ÞÓö€|*þ@@\©'@eÿ3«Lê7hZ4hÉß|³ñ?Ð÷ k:sÍÎ夢õNb¯Åoè»Hž7¤ê­&?rÚ àïèÛS0hµÙ)@V®¯ªW%VQ5-c›Q„T+¦ £$JCñÄÂ1 YSª€¨RLaô# Þ¢˜B @ÄÑâ¬Ù}£SȘ¼Ý«À™ËA\Ô!Œ© Ü›*8sÞpŒ×çpá-¹ÈÇ\Žfä"5.침«Ûà"M.!ÁE\‚/>¦¹ðF.ä¹hcŸ¦›ýÃR!>šir!ÇE2—Á…$s9Mk~¥¼|ž}‘Ÿo_ &¸xà•ofÓù3í~沞ËMG;2殬i:ªpA~Mûˆ” O d*g¢Jìʳ|;[T5©s)™Pæü ™?B ÝfÕ@&ÕªÉ@&Ž/á\ËB@ø->5îŠàߤ¬ë~”‚â{+Tü€@wöÖXUÉÛäŸeMë“õ¥ZÈ.1hå§€¦CËjkq³5×üDDPi½“Šv"›ØZ8ŒDˆÚI5¤f‰¬]|.µq€âÔl²y<MF“Ñ|!šílJî%Öº™X!Nï!þ[VañAÔa>ÓÖlD#4j§kž0­Ð+F4¡!5´Mñµ(tXºI#iFÑ#`àºY\*R“D£^1oFcuÔ*²z%¤†U: 5Ì5© Kd4 ‘†&+´­ZÀLc¥Äßú}^"¶$N¢Ð~O4¸°¬‚zˆ­N·Å•z:’­ÙBj8£A¿f”ˆâwzå(,ˆ|õªšXÙMÈRs<4š /.áûšXPެAww©¡ˆ]\g‡»g;£I»´BCp48¶§š êò„hý¯¢ 4v3úwi  «¸&„¤ Ñ:7€Nã¡ýžRƒ%©+*¤µíÛ“ÑìFåCEIߦ[¹Õ=Ö« R‹¼/šÅ۹߭[I¾E;ivÊVN­Sö0.™Å¡,b=B <Á ÛYPïÏBÿÔXP’E( }’) Ž,ô[ËGѡڂ÷ìÌ‚À¦/Í‚W,B%ÞGñ¿¶PÑ2*ê`9baõÇCec¯TÁŠÿò,ö :ž\èfµQb ü{ùQøYÕ½ú§éúÖa–êIqh¤¾_þ¯€âDZøö‚ƒÉ† ŒqÛ]n/èËY„cʱ\—P/.ÀRéPƒl»ßï`»¿‡ŽR?ʾ¿$BSS¿©uJŸV­¶ À‰÷¸šÃ߃Åw‘ 49$І"tR¼ Ùƒ ½-Xó£0A´¢ ±¹þ°+‹ÿ(YpdÁz×BBΔ-° ôóf,âþ‚š\4¹Õ 3—i[Lu<9ƒm[“MÓêÐM@¨ ÎWŒ[òqãTgÁ:N­!ÖCž,T¡AGÍCëú²‰×±DHV,ÂF¹ÐÛ6¯‰’:«EiW´fUrÁ@ô²u.ËQ°hUP‹S*Ú‘ÇbÖÌlÚXþ$j.^§¹ôþWEJh.vVD¼æbÓ­¼¾W›æ²‰#‡PŸˆt¤ñQñØ­ù¡„æ’mzµ“š+T°®b8DpÅTÃêZ°˜pµU‚XkB¶±•9ÉæýAB›>ÉôÅM²'ˆ¦9'¸¹¢sަ>]Ê ¾„À-¨ä wNNýLjÒbÈ‹!Z J@,¤£­€(-†Hlõ×ÒbHi1(<«CÓ °¡b1¯¶‘H´²²¬+ *+m1$ZŒ èŒØPX*ï°l5êЉ˜5Ebæzǯ •µoö¬tœTÙwPa§5kŽ5Ä&D:åvâ­=[š ¤dÇ0q7©‚ŒBDˆ¶T2™Šú“t*8ÍÚ&­Ë†WO`Y ذ¤’];Ž>ÈÊÚc,ÖÚ¢#uì-Ö¶5 Q”Glµ·þ-2jz3vЄ†öhÁßÏ/(»ªÒÇHvÚÂøÒç —û©BP=Gh)ÀÚÿ9FšlC3 ¤OÕ jY6Å¥Ïâ"ŽÅÒWüŠÒ])ög4MFó» ¡š³Ñ„FhÌ­£!áš 'ID¿¾êrÃĪSRs¹ÑŸZ¼CLÁ¡¡:qhBDƒÞjZy øH¦å?BVhÌW´Ô†Ý¼9ä3˜m/„9r+4«™ü*©¡´Ô Ÿœ¢ÎÁ îìC…† gSjÔá·œ)V/5QX9áø:ª¢ï¥BÓtäRæ$¶¨2Ü[r¸±u>6œßŒæwGó›¹Öªl\zF|#QáîÝÕ}<[ÓDÓ´5(·¦l ¯o‘Ä«kmM·5%Z¡¡£¡!Dåì]FK8%š¬ÐvQh¼¿BûGÙªÀI«\œD¿cSR´¹‘"c©š] œX¬êÝ©;„¶ å«#bm±%E?<툰KaSR´¶‚R£~/Òu¶"jlrІKU ó{4ŠùÐéݵW##;—EPßâØÑÉ„éü–âÃ)D tªz‘âÌÈ2²Œl£bŒ% ©kCFÁ[dUHZõèhuB+}»+ÆÈÎùAÎy\£+$eË`·Œ© ݾná_`mDƒ“†O¯«âMº«uÀðQ0VLju@ªÕ)U,þkI¢²sf§¢è ˜Ðw¨òTïÁKÑc§ÊäÜE”W„—H±f–äé*aҵʶÙI(}¬÷ hSïÉ~UrÒ*9Ñ–z¯ªŠäúîÃÐèÅ‚ÙP%ûvº*¹˜ZÕ‰)Cå¥?2.S­T­Ó"Rù ‡ð—C¶wÃh™*I• :Õd–\V¨êYñ8 •‘}-24h[#Do‡µQJ‹a© ¤sªD2²¯Ff¢¤n.5œÒƒêzž]GæÁ0•”q‰Ì<©ß™4zR4j¾ê=F׋ òB褌ÎúYʾ™¹êdýUR…U綠¦!DLLÅ?êþưqk)û§vv“‰°¡él@û¡@"hÞ_`XyÏàkwj’Ë%AÃíP´Âë¼z²Ž@ý #Åe¼³Eûï·ËJ1I=Jìr]¯!kÚbûíO`ׄ˜2,'1¬–K,í;œ¿æàHG~­säwµš¶.ù„t¡¶0ûª½ÌèPFŒ¹1k«‘T3¬òž¦)3:˜‘õºQÂñãÀ±* ûG^b•gFŸÇ~w(#á`ÊÏŠY¦ðX SfôåŒô„$sípß!¦JÛTßZ®ïÐ1³®ûl9bäl‘l8uZ'"ËÂ#¿CšlNà3hÑ‹­–§±@Í01\8û躿)Y>v‚*;ÆIY%!>g)&!šp6lÎò^IÚ7RË£•ÔØdQk£¨l›;(BÊ”£då^M¢˜ ªé<ý”8Sú”¾­, šE¸ry;ëÌԦʔ2¥µ”ó!(…%YC)Ô(5Kze VbŸZ‚¯(q¤DiJT¥PÛš’úŒH aîÕ1%ÔdPðå8xøZž×oYQ’Lé÷¦töó4½( ÇÛBÛu5%ÞíR¦”)eJ?ØÇ#´´$áàðÈh¡r¼t:Jl…êlBŠ8¬¶^~.%>%ÍpîC ùþ)…)ÑG”dGY“XŒ@Ë…µTêÿ(Ö/²,N–ðI®4uÕ·´…J‡P¦t:jv©*Oªî˜3¥“SÂV•óPqëÈr°_e—2¥L©[„”)}cJ?W–Õóâ·zkÛ¼<Æ™Ò骀:Œ•<9B¯še餔°=„e]_Aº2¥“Ë6ñ»¾;ÖjÆQ<ñ¿Šm\!¶Åy<ËçpµÏ«‘mÕ¡ëà7äYmqº ^ñíÚˆ—Hs^¿À@ôcÅÒΉßP¡ç¤Ò)¹ ý¸åº*€>:ÙcJ@b€ôâ ü7b%ž£‹F©o¤ŠD§£É!€òƒíêÈ¥å(¥s(SÊ”~iJ((–;’*±’õòS~ÿ;Sú”R²]:%Óud5fÑ€W=CY–Ni—6+L¾ê ¼LéÞ#áÄÎÙâ;†*S:-%²ÙòÉVM”èo)S:©]BN‹!JÍmÚú•íÒÉ) ckfôÔk&úLJg™Ò–Þ¾2•¹“£ö¤dY:€&#ÁÓqYú ¥„‹‡Ý)…­)©‹J!Nhˆ””´Iª DiJX]H‘­(Ù1«PÂbÊQ)‘í(­¯WE±ÃÁÕíF¾{o&’¡oaqnBÈPNEšÕ<Òš14î~5¡àJ(!C9¦¤à}Å´DC²ú:-nÆ7Ö(p|(¼ÝéøePäs¡p ­VPô è·B½íbXÊXg ¾åVê« åÿ!i¹Z )±˜Šã`ÍGÞùÛÈn”P Lzu0Á÷G(JDõ³þ¢öŒmý6½&WÛ@JùŒm‰Pô®µÚNºðš˜K(Œ/-%c±Ê¸Ž4ÑÓ響áÉÇ3ŠëÏŽgŽ÷ñÁ^sæv71;ã0°ºÒ{´ÿè8ÑNæ–¹en™ÛÏäö¶C¸EpÆí_4¸IéÁ׉ƥ³Ç(À*7»UP )g…KÒiÓ4›yX£ºWŠ 1bñ#ÞÀÛàÂ:°âzªêgj†6ƒ§§Ý±u±*g´É“Š$aéÁÛZM{ðDF.‰ìé¯ÿy .‚3äJ‚P fN‡j.®-A ÒT,BÌO6ŽUÑ,¨-@¶}„€ëJ ;š8ØÙê£Ì¨ªÎþükÅâd‚TwŒk±Ïˆ$39t«,°-ÌῙɧé.ä œÔ¡¾VwÑLPŽ££0‘ƒ˜ð¶L¸Á$$äD¿\KÛGjƒËLög‚¯´j5|CÙœPNŠAÚqM•’5oaORP>• 9&d¡U‚I¨0‘Z1)B<­“€’«L‚gÂI&Reö×]EIJjË)âŪ™'Îròµr¢¥§µ%‚äKÖ]§´ñV¢¶ù”Ãj‹`f’™d&jätÊ)Æò|øfƒÌä &ú•êo y”øäßç8~“Íq<¾]“PéF ¨" š ÒºèÐ=ëp}€‹3®ï„k“teéúI¸²2̸2®ŒëGâJÑ’Œë»âÊÒ•qe\xæWgìÂjhZ’`”‹ŽSÆË¸ÄU\H¯\¼žêQ,ÞÀÈçã:˸~®#&ù Ä ¬K JÄ’¸dcb0ì• —ýaÌ©h»³1ÅÇ‚=ŠÃ:‹vÓÐo†«¸£¨Õ„S‡*P¹¸Í-dÔ²ôJ[íZa½¢×/b櫸MÔéÁJ×+f"$—°h#,ú}+04uà­aIWaéVFްŠY0ØýP‡…É_+”°ô¾0eiXú­f¹`úôCf©ÕSÎ&œŒe¦gbè¸ ýy[ –ƒõ±dÑÖ’ÅG”,^#Y²N² ñ¨„E&Y´^²¤”¬°’,NÁ¢šd©ŽlB!4‡X¹7ýÇæá §âÊC å¾Y©ÃÚ°í?«ÁCÕ`P¡^«×£È”`;RƒÖž°„Íew¬\õøA«ŸÚÌ”m˰¾ –æÕŸÔþMÓržZ'‹¶þ°½Ù,ÅO•¬ð#a…¸)TxĽŠW„‚íCÕ‹°:!Y ~½d¿a{OZÞ Î!öúê B€‡ša}¥ÍÒÀ¡nH 0YžA]¾â1V„ô‡ê©Y²¾ÜfA¶ÔíÓL1‹š3»9‚—¡>I†õ•°4ªÀ¬¢ãFžáJL<µ[ÌV†•a­ Š5}< &[0Ù¨áQ⑌éÊjð«%Kš±u3¬°I©š$"1Ë¥fX_­%XÞCB2‘|$g0N‹uîãëÎ ÔT¯˜ÖÓ_BYêfÆ,Y_ K/ôw&D›2êå’âYåQl²³dí‹÷w0ÄJ/*0æ:¬õ µ¢­¿GT,òÅÇò*ûÂÂ7”°¸+| ƒ×°³KgÓÁ¢DñqwÉ ë`…†d‰æ …&+¬4Å:£z[øæz›“¬)ë©øø KÖÞjM‚"b*9à.’Z7M¶Ó¶§ƒñߣ–‚å5Œ‰dÍ€é­eFç8XËŒÞÿX\Î|„¥9³`G¢“£îPXø¢ Å JËŒvÇH¡KÔæU¥Xm`Ån]jj˜°üãÞq瀅±°."nj¨Ÿ—ø¿P¢ÄÒî1Ú I”%Îp‚%If,´×‰Ô Ò¶ûÀ¡ ç(pp€Ó U­¨!Üg›áG N,…®*ˆê0nç d8Ÿ¨Ö,r]é3™@_#9´òÞ6Âá*œ€£*  G‚£L˜Yf$«× 58áa‡7Á!©Ö`]|Jñ±~[Í«ÓààH ŽD8œ%çH’£_V‹MU£é –œe1"â²Ù.î‰K®!9ìºÏÙ¶âØ¿¨&9÷к¸§ˆÆ‹…Š{ÈÌ:Î5Aªb)ãY÷D8÷PŒ{’[q%Џ'‘„mÇö($³8‹€t†æ¸µgZØâhëom°ØÐßúMXœýPúc€’¶´Ùî**²øeá È–,|nf ŽCµ4Jd±un†ê‰4„Ø’ÈÍhwÉBj¹cQ5 IRa±1E]¼„›Æýšì´ééäQ¢ýº2¯ƒx \½¸ 9+8bW;%«æ& ¢C{5±f^ñ—G¯PGD– õû›œW±› û¤?3¯/Ó‡á(úP¯yí«QTÐðO?ϲ¦0Ž«ÆQzÏ¥–ÌúðKí"iÛ¨‘·ØÎ÷µàà"¶Î¼¾–—æ›Ö¸P‘‚ [ý\ïG¿ðžÌëkõ!Û`ÆË¼‰&A¢ÒÙ`ë~=ÔŸ—4/CC\åê¼\vu/‹¸÷ãEM^ºƒ¶ÝxÉÖ¼Éatc/Abr-¯ÐäUh=Õ€¯CÝëÝB¶@³ˆÅ?yòJ¼Ì/¯üÃF¼Öó¢(_×7äK`KòE%/¶Ücõ‹ãE¥|Q—æ?õ[ ß`Išª|‰‚P^dò¥‘xÙŠ¯ñ¢u¼tÔ˜6­ÔlWÛ’M¼Šé× õ—œÚ¦aµà*eo‚8,ÖÊa¿$úÃ:—>#ûqÈþ)#;™*:†*ÄÞ&‚öŒ˦ 3R¿º)q¿\‡Rc³eô©ÔÐGô15®Sã*µP§¦É ä:G/B•שI¤¦™“:5ZG-¬4Ø_•/ä>´¡¤HlÞz™‘ɰDÞmRfë’]·F™ñø ¨ñï@íŸK]Cš¤9³“OÉ6åàªb^žÎùÔBŠZE“WòÀlGrˆzë¥ Þ EA*”*"5õd5Ç ¿“Ô¸`ît8gÛ|ŠÎ´%Sj)vàB«Ô5dÖlÔ;ב4ÿ¼ÍüKœ2OuËùG«ª­Âúü#¯dO3ÿZ8Ö•@À âRŸÿ°aþÿ#'æ?Tç-çŸöŸèvë_âüójþ ó¯ëKkªz_Õõ¯Ñ’FM!ÖA¶žUl›æŸãü‡õó¯‘#ü1Í›k~œdSÓ…ÕCÄâK‰>¼¾ý„?MÉN¨ËN•í-;СQ·'Ù‰c̃-&ŶJ³†ÕjÚàÒ©ìàܨÒÕa¥vdQª¾væó&Ù¡¿Ö»Ó[±ü•ÚKGmEüÝݶ‰Úf…CN…# {"æ°”*aÒd/8Âv8d­e ²GHàëqÄÝuÁdDì_ªôJL,¬nÜ㈙ê¿JPõ Ñû"Û?B ¶4¬Ò„Ð6 Ÿ/— ;P:d£tè½ï"T‘ް¿t kɘ†-X‹XJÍÞr8ÒzË3Ž/ÅAŸ€ƒ>ƱAYí…£©¬¶6åü™¶Ã’ÔŠItõYW= ¿§)?•g%Ð>pUœ+Þ¿ùg'ëMy‡ìˆã#S.Þ”‡ílà(æp SN+‡™r.M¹TMyìCÀ{RéàÓ:ºò5ÒáÝp £[†ðá¨2&z­tXÊikÔ4åR‘óð•Œ4pˆSVa# ù"tøb-¤zÙ8‰f>ôr’ÄñžÕ±m‡ÒNk;,¥ #^¸UqгtÕ?RVdÒA»á%Ž•í@R×›rè–ÊŠC*¶#4¤C8*Ûò‹ÁÛ ª™uK6 j\úï°F:xtüßw”ŽíL¹~Q¹J¾m ˜.µŸÈ÷Êj¿Ä|/ܘƒóaç|£Vp‚À£€Ã× '+ð0è ¡²‰×²eQjCq$³:+|)„§‘ô%Ë¥#*ͬNÆ*`z4oEU{C™¡/CÊâ—*c™Õ©ä ÎjYg·m•8÷gVÿ†ë¬ø£ª¾~Ú^´‹Õ«ú"IoŽ­>¦=|‘ÕVûND#<[“ñ²(+Á½¦ÈJ=‰d*%¶&áDÙmÏ`XçÍI)EÖä3ê™w[ «žoôì2šÐà- ïÌä¥a¥T07c·ª~Fsšb.,‡cîòŠæ€2š­ÑÈ¥ÆBD«þ£G*©ßtÖv UG4ÇThøÃg³£E Ý“ae[óåRSö Y tµÆ¯²vîqÎhE£õ|Í* õû£?mÍ©š¦Ó,ÄÑ8±< F£*—ŒæDR#´1´Á6¬Ðp }*Ú ¥Ð ký'tžƒ4]昴›&¼#KÍW£Í®Z“¶Qg²Bûz4š+ÞÑà‹ã„Y´Þde²óüåqp¬B¯À¡ M)'>KÍWçÐ %¦Ý~;©ÜëÙ 8³&M[£ŸQ=—mÍIœgA›¬M‘Þ|9™º8 ÓG¶&×kŽ-5+ñ¦´˜§ÎÅGåÀ¸æ÷BsT©YoZ¯'d4'@P‰W{H‰ŒVØr•óëÑÀ;&d6áhL#flt†C“=´ý3ÏÙÐZ3q½áFsÑð¡³Bûj…†¹×V'gt ›,5§ÊŠOÐÔ=h•š½œÝ€S)4+¤!ƒÓvWLMÈnÀ—£Ñ!âÒ˜ÕšwV¼QSŸv7h¦ÞZjÊC¶ uúY6Çã,u„è`äÕvNí Û'›h(ăv=Bƒµ•³349.(Ú¾¢k†,ˆÐ‘µsòÙ†vN\·ø,ÖmñŸPN‚®B¦I+h´|_Eƒ˜RlŸ¹ÍÒ3ú1©ºÓV©ÖŒ›M¥º Q×…R×…’ÚºÆÎ’oIRÔTDdEMüŽ[˜f3”Z¨SãõÔЀ°Ï¸JM%“ Í £‰±°B-4©‘u–)54S@ ­ kÅt‘£ÖR  fÒj¨_ rׂ™¬P³ýÒë-TÀà%%k jg™ÚO ¶­†LR3} ɦ!é ’RŽª!e ¹Ö®‘Ä(zEw¥†=fÀ½^ÖBEÖÔ4y’¦†íËä¨1ÙaKèž ëeÖÈc›B¹“Z¯%Ø0ÇöÃá²¶rDÖÈm'kIoä÷¤f5Òp¶µõ²–©}%µÝdíûPãïJ¤Æ»QÓhâÛPã,k¿¢]ÛÖ‡äÍ>$êšÅ_ªÔà™­§¶Á‡ÔõŸ FZ3]sP¥pPeX%@Ì•ŒÔðNMôDj1ɪK²-¸þ*å•j•%H"}[46­‘šbC?EÕ‡ %µ?—¨­òCöú^ž¿Øñº)Ï¿!Áê¶°Ô8XºËîÉ´NãŽäˆò±žš²‰Ôt66luUÉYÉZ5m¥ªT3t¬„Ø]\þÙJ™ùø¶Lèg0¡€0\zãôwM,üJL~ˆœï‹©vŽvæ@9ù§™˜µ:]IÁj7Î∳8ðn´@;Ü* š*olÓ§˜h›ÏŠ 5-Nƒ ­c"¸š¤6EíJ@>é"j N0÷¡¢âv‚&™Úq¨4³ºþ:Ù¡ìi¡z¹³zˆI:”&µèýjÅõ,Ï`*ÌÕïG?…þ@ˆë§¦_Z£?^¡vv"Y;ûÔtZyC_Ÿ=³‚Vž¶•5ä ©Iˆ# ’Ṳ̈Øàjej_O¼¬©"\³ùlµ™ÓUƒY“L픲† -b l1Jé“X¢"vrpÝ´}µšdj•>(B ’ê]ëFTΚz/–nÚ›Ú_k†ó,ÈS"ÑÇh‘b£I:2 Y @TÕ5‰f˜Ê¼®NEqï6ÃŒ%§±kqçˆ=á5#Ç+jV¦ÇúÕk£•íT‰¡aý5Ï'R£¸"VÔ ~Ö{²œ:쌃k5ß«3‰%‰H]t«1´¦—ŠÏêÖ:LõÛUâ)ꌰ`*ŒBft,FúfÙ&±B —‚Ú»ÊÑŸrEû±1ÒÏ2´EF¢JF°\1FÁtY•‘­«ìK•'#ëcã7 , åD0áÕ\”™yedý~:*0’€èV鈂;ÊL{ñZàØëG!FÅe}dM(Fj†J,/µ§ZË8Ã!«HX›cTD2Ž“ID"zÙj10úÇA8ԨĠ֪µèA\kßa¶ÖØ÷ŒãPÛa=|P¥ooò!Žâ"5Ì+||q¨çq„ãá%ŽÕî']æjÉ&ï7KǧIG@´hÉ+VêZÌ8N¢¬ðmêßâ6mGÙ”Ÿ‡ß58ÕÍ‚N„ìY æ,•g¶+{V'ò¬T/ÜF°¸â²tœD:„ʼˆ…ƒ¤‘ȧKG@Ãì¡#Tq¨§q„M8ÌSwE­f ÙSGT]„ ^áàâ-phr ŽÒW7Ϫ¸¼°HÇ+_ã`鯒Y+ œ”ްµt²Võ–d²åÛãø•ª­·O(?ͳ²úŒcË¢&p›¥ÿ,_C¿Ë^›ÃØO‘=«ÓÔ;â-ú`¾6…øýqœ}mX*(Ô›ù½VVV_^ï°èíÃËÊÒq2vNÆ*£«ƒÔš`–ŽHºÈC%(Çôdé8£ËK†ØÁ€”{Æq²â,N¿A±S¿Cÿ·‡Ž7ãø´Œ®esa4/Æ{ç¬þN*8,²Ä§Ý‚¹š·³Ú {ZºT–:´JAlM)qèhñ¹P2,ð×âÞÍ“aŒˆ%æ¬teç æñ^QìëfŽzƒ=Á˜c}1–}(«çµ-ÅoEäîtK —¤£×‰EªÕ N&u()”?Š9Q? q¢Ž^G®¹­˜â ™Ô‰H­“ ­_X4©e,u—s¶'©ÿðeÆHÒÆHsGH)n£€’†ÎIÒ…•1’”1 )c¶0FA‘l2F¶®™ã·ëì0F_*Ãzöš+†”TpAâäˆÄÉXó^Dw8v r«úú)õð¸&€ønuüfD.ƒûzp8CÃn½ÄÚrx8 ïŒuÃÁýuÕ¨ÉZ£ÆÑ¨ÑÖF­¹; áœR°å°…Q fK8 N¢g;é!–¨ð2V’j%d›s²ÁSmwYrF_83 I£¦{\êF­ .-põAÖY7‚BĪÙÑŸ¨ùüQéx¨,~ÄHœã!Ø(‹oÒFÅÌÔq…‘UÌñP·«Òc`‡‘˜K#QÝñhìàƒ³¯UFœb„²˜÷…#RU¤û‡L=®ä+ ‚"9=ˆ³ âSA„:ˆà@Ù ¢°)*ôx¹fÂÔ7Õ-ëA@‘®\ñ¸§U"î,A( F+Z+Ô\ñb`ú¥R÷ßD5FU!)ÕÄŸ)>&Úb‰ ªPF;IDÄz‰ˆ1QD]"tê„ñïP¦¨¿Ø„| V ÚQÒ1G€Ú}:Z¢xë m–j€ n‚€j"⃣KR‚ ‰€G¶F"‚@ƒ`)e,É?X"~œjYãÍ2rG§ñ…îkD8¢×¤ãû† ¯I¶óš(KÄ'kŒƒÇÃ_ÀXÿ@P‡ª™ü9 Ä@PD8Þ'ATº°³±fù} šŠ×U/Õ²¨WònõÊ,J¾ž‘•jæ¢$«¦/Á¶Í]jîë·Júý 4q[LIñ±ÖÄu^Sñyª Ï&(ç¯LFe_o#ô‚•€î Õ¤c¢O!UÔ"I€  xOú"BÃí@¬²¯T‚ ËõémèM®q_“Ù×,GôšônÐú‡À.«¦OA)˜ÎÒË»ÄJD1¾bz8‘÷ÓF±=@èàj6â¬B>¡Y×u hǤEÁ@P„Ö(un‰C Bv²:Žip«G@ðfÁÖ¹£î«UuÈ%T"8 "l! —þ@"b Þ‰à”DЖ¡Îù „XÚSßÁ;J„ÞîÇÁHqP× CL0ù˜ ä9PÆÐwˆjÊ N"¤mÄY]5©,&@Ø”Dr̤Ÿ‚TÒ¨–ô[_¡“M6Ù·*ˆðû¸R¡ÃÁÐP¶ØVî+gcýe‘µnNÀ67Ä ¶!{MÄïB„(>¥w@áÝ׈쾦SŸæ¾f‰Ø=Å‘ëï´]]…"«¦/ÐÄCiLb®Y'ÝדԬEë\³þtÕ„ezüUI¿ð1ñ *ÁÎ! „*š6´å¯•‘íÌsðD¨e/ÛòÑ>Ÿds[þ (FÖ[IDø@"B8’Dн¯A[J„XŠ£æ¾ŠÖ—p5)=Э%â¶ü³¬šjª 5ÿ•ñ´¶oë5‰{H—JÙv‹j·!D™jó x=ˆf©”u Y6”J·AAðfTR xDpÍk )Ð…­:¶F}‰WÞB—|hJl+Ü­)A°QÙ13ÀWÓÿÆ=ÄÈyÖ:®àP‚àò ˜â‹>–ˆ„H ‚’!k7œŠ¾Z¤ÂÒÆ°g°D€jV‰PwQï’bERزÚzÑ [ÓyÙ3ÛpêOQ€oCpàT“Ý ­ßpª™ÆKt\c‘N—‰þŽ ·ÛÊEÆq܆~+ÁyRÛm 3ó88ãØ‡Z:ÍY•¥ † ó­óV“Þˆã﹎ƒKéÀ w'TâÀÇõEíbs²­Ú„>&‡Ö æv…æSl‘…¤Zù fDˆ‚·Îš©\…*𣠥õÈÖqb"áZ\ln‹·`n˜°g~SÄ!ØnšÆQžù&¢‹i°sz‰ÂÜ·^Rô³é€%»úòï„¢hDŸê#Xxd—W°PïZËÆI\ƒE5X”‚¥.N±à± W^4¡^f°óy6ÀRAà–åzLPö¥C'lïRÁd3Þú]z;šÃ.¼‰xï!f±ôë¶:»Ï@ýk¯äð%U%G5%Wè8Yë›R‘Ô‰)‚"i*¹ŠS\Ur` €u‹‰Ô 1©²»gŒ¨qR2:Q–QÉÅè$4•,ùGRUÐÇ}0²VIòõ@‚’¶:?ïäC5g)3«Á°/•Ÿ äÈR¼¯âè RYS ký2U×Û¡u~™T-F#|L + ëjÑJG@¨éÈÖ@Vq|H2¡Rš¶‚IYY)­€sFV5ç#PZï=gJ(é4³ºÏœöÔ,½yYªS:ûf”ä»R²âc<Ø‹ˆ“q;ÇpÒÒ”Î6ÉÒÙv)äLé³)e·=¥¤’ Z£Bq.|¥ï¦ñ¾+%u°ç*)M˜t8Œ] z3èȲ”)eJk|<Œ¹ì~Á±c˜ÇbÊ?UãeJ[Û%ä[‡œvb$9ZT›)í¥ñ´zqóB+‡¢¨ŠàN´¢YUFónö~'JY–¾3¥3P:Ë”¾3¥,K?R–¥Ÿ@)ËÒ¢´N–Î~$%ùE)eOüGPÊï¥D™Ò ”e)Súž”´Yç$¸Œ8ëŽÓœ?=¥bnЬ3µRQGãªdJ'¦s•,¬k—á1déÿ“¢ꔊëV(Ñž”ôî‹;¨Z*¥¢å^"%ZQ"PÒƒV‹ÉÑ¥R¼£¤Ä˜"ÒŽ|Uý6¢¥jPâ%F nP6Q vuWü zˆ £ ã'(Šm¾“cêÃbBtVíÛž¡®`RÒ ¹Â°þ<]+—FÖI¤”4ˆ£`ƒ¸~—Nƒ4%M« 3¡ õ+* )-i±ÉUª’ iÁ–Zñ¾Bz+ q fn5^½wÈ›¾V|]À 뤮(ñFJrŸ –Ý¥lwNvPÊ1]ŠÍ!{ú]:ê4mO'îa¨B‹Y ‚©Ô$H¶;'°;È;­Ñl ptŸ-ÓÙ–ꪢEÈJÌSÈÓÉ4g:+:w• •³$ËÎ éÃnh59¨w Ó9ÒT½Þð݈¤ó8A'ÔéègÎþ%l‰ã¤Zk‡bñt~¯/aS,!“M_SÂöŸ õ(MÖ”±ާߦ?”^6;WÌÓ?¬]èša¡œNƦRxw8ËÞÔmð"›*yŠ»+ºŒLŠˆ-»­5»8?Û‚û‡”>ôàrÓȺ¦‘ ¦ ÙS½â*ÊDµw3ëmÎÌÂGÛÿÝG¼°Š°Ðv²_kžI#þLÛ”ý¢Ò~Á—j>R+ö Qþ¾¼xkûÅx WyanySovñ‘âÃúÉýýÀ¿ßN²xWOC~‘Ó‡ÃzOÃ$+@`’­@zOާ„”a °ý7jJ¸#Ñ>µZ(Yëú]dËêU_âD_‹M‰‚ah|ŒÜfC ÉÅ]o‰¤Ø"w]rªÊÌÙ „|¦€ùV]Sjy¤5#Œ¬¸&T Ù³&Lbã­ÎóYì ²·ïÒ‰3+o°t&MbV½ÞúrV­ØrGÚôϘ;[ô b\èGráÌe‹˜7ûx[ûxú_˜#©§Œ ÛŠ´<ã¿Çêš;³ŸF‡ìIEœjtä2qôkÐùq²“éd:™Î¾vGÙÄ€CÓ­ˆ Å Õ¾½è4·q9:²ÏCUõ>ªt$¦AÔ¯«fÂÅeB…Ãu¸y%n¤ Ö2 ²3 æy&2 ìB^…™:#„ß˶×½fZ×÷’y»*Y˜+Ù.Ó¹d.™Ëö\þ$ZßµV} —¨>“Q+=Øù{B\³2TÎY*u£ÓV\ ¾4£¯¹F—ºY=.“©dT4uC°a­•¡’ עοêjÖÌ’.}æjˆGÂìBÒ ØŸ&âAðæ 4­Í=cÃÙ£Çjæmœˆå×çÐ$) «ZÐ4÷¡‚K¤‚±Œ…å5¼§ÒMÑ Æ>!v»N"¸‚’ ¤‚œD¨ã"ˆ“™ä5•èj«€ˆr¸)™™“™bÆBªó’+M% ‰ TE‹w(BTÜài¡¨"ÞI"öÌ*sÓd§št±T$#\ ‚ª [²…ßÈ*ë<*‹5zIÕÕƒÐÔ/¥`,?œ°.!¦ENÍ´i1†ÊDVv`yÕ´6¶’ª‰J¼^5Um„Í™ø# f›ÍÞU@ 5¸Îvccî{»Êä"æRý-‰A^®l6¶å‚¹Ê8¾/Ž í Á/×>"(8h`|^‹‚¥@·v·Üì21´V:°Jš¡ô?k 9abÐPAuy V€þÆ®öج ›ƒ”9ÆÕ³ƒ|¯ »²y^cbjE $ni´"€Ä8NbYB *€¸ç`Q’†‡–ý<Êt2Lç:¡F‡Std-•|œfcÌgÒ)ߤCé„&`tô«£¡QÃ/•¾î*iÒ!LG:Ú†v €Ô”ÿk[*|ô³æ¦{õ2tÌêP腘ͪ›÷,PQ *Belê14½øÐ†ba—â´Pê!)¸¬ÞgUú!)gLuˆn€.KŽë f?úŒ‚6mm°—¾ !³BÍ}våÈ‹‹ë²€ûd|2¯ƒx‰%² …— 6k‰& 2­ÛãÈ×Ù/ÃK 2vÁ¨˜„(ij¾$n´ÕÉ娭W$Ë××óR™ÒK3 [4¸Œþ)F=/0bl›Z‹•2¯/·_¨­²C‡¨m÷4“q±·Á1Ù›—|¯†¯^åE+^âxQƒW ’'yÑŠoäE»ó²lFôýÒ †â^Äš@‰sbÕÆÙFX†“yˆ|e^ûó ¸Ž˜JÔ4¶¬5`jÄ‘Jȼ>WU&xaÔI:¨@¨¡2¹3C¯ Y¾N!_LÈÊ”ZP Å¨T’Øœ|ld7 jó°;¯¬ò²´FôŠ9!ƒµ*»ããú¢m‘P6v½hï²¶ê4©¤Í-W$6d«¡1¶x jiñ”9‚N Š+ëZдÅYlÖŽ¼Ôjˆ¬x1pë #õy•¥@dÏ7êC©‰Ž\±–mFÃy±õ}vNÁn!XFv2üO\'LDÿ×\W錉dU A*#ûjd,Ñ~!‰AÐÌ!#J±;…f„- ´wEöwÔqLȪžXüïz"f¯’æ ±ž(Ñ…Ò‰­ÕU=QR'K[þ‡iûz"iÆýÃz"­±«'Z#Dl¬Lû†úudÅE#±òKfûm5WHGêOÂÕ$eeŽÂE[“Ú|Ø~¨†ÌpR|ÈŒ½F ÃJ†cI# ¶¤ÜV¤ Á¨üŹ‹¤$ÕÍÂë„K¥Q,¸RÇņFMÍÓ*M€•®%˜µ‚óE8¤‰ƒS8(‰#ަ׎PâÇ.×u8â®Ò ±«†£Úo0]½ªê:<')jF0±œ-íÑ5Tâˆåªd› ìÃ!ÒaÅ]>V#t´¬—UÒqó4Wåœ.µPÖZµ¹/BBcû0Ç@5˜Î°†E:Öªt„õ8èº`h=ñv8BGÕ¬—ÞJ:¤†ƒš8˜öWVúŽÖ–Ë ’ØT•¦œµÝ¤²’•t ™ªñ]mW´4X“ªTKé@Œ ‡Z: ÛôÔÙ"‘µŽ%p@Ñ•VžÖJ‡”8ð§a;4\Å#¹bå7ãàj×¼…èééòCëTÍvpGêH"üLVÌ­Zy»Að\k;ÈÒ@„ •d €c'¤~ŒHÝ:Æ‚C验ÖKPÓ—> ²¤¹'Y‰ùdì T­*,1ö…tjÔºÔ3Þ(APha²u›,ÖdÈÕ­Mé„HŒ&gØÞ T¢#ppø“‘í‚L߀Ò4 YƒË”…®š”útdÅìKFV"S7‹,zC+…Åqew­JˆÑàPúQYʾ™Æ bÕ áU&\½•3âÕ‹oŽúМóÜ®0ËÈŽbË4§¾®´«Ò¤I;‚“ˆkkâ~[ö’@Æùô[ #8ðšþkv”iŽdﮉ?©Ê\u‚׬$v險Nêq§«N»&P#*A+—Ï®:}P%„m d-"{—×3ˆƒ@ËÉE¥ŠÎ=²:©”qoñé97ËŽÄT`«ùíb/2ˆCUº³ÔÎgÕt:ø …ã4e'à²mÆ0*˜‚Ê ¾ÎFè;„£7+pÒ÷‘Ú „ìBó|,ÍçžT@pX ‚Xh çôÛwj å0Ť ¨o^ß {-Äê&Œ\AàBš¥AP¼…ªûŠ˜"`d\b}.TAp–ˆO•‹$,Íãï!Õè¾°SoñlÕ0ƒÓ`Ð!aSN‚öbTèš°(Á¿?}eÛ·éÝhèìâZEæ |¡í»ájÃŒ†øF y¬ÆXãCÒ¢lL´ê€¸Tбö%Kå’¥ ÄÆbm„:Ò´±®§ƒ=‚\°÷Þº/öö¦þª˜…Ñþ€ho@´ï©›VDÛj”•1b{ð“î€{XåC0/±¶{Ýÿ¯¡úJþP¡*€J?c&¼hWCJþFl9ãfËYtKp5µX¶œP‰ÛTC.m€Dgþ QX:Œ¼ÝV-g1éd]ø´{Ë™&´´÷-1´dˆþ*­h€eÑûn¹Ä’Ö·Ýñ!Œ8Å«Œ8ÁHÓ>XjÖVŒtõ"QgÄh3ÒUŒô¯f«Œx#£Pe„T ÞWɈ›ŒÐ(²"³UÅ=é±eOŠ›Àì«v@ç x"Ï8jDTzF’åèÈrdIE¤å¹^ôBÆ1šºQ¬Æh/9ÊŒöb¤­=ø'XxÝÞa¥Y¼so]—íÃÈzÀu ­! ÔÁ›áY¨ÿ½_m+3:‚Ïw­L•YuXK‘‚®)¶;ÕŽN½ýÌèë©ãV5YAÒl41ÂBÀðˆvbôßJ%€ØÀ}‹³LCL£ÄgèÔ8 +0Q˜‘€” ЕŒ*5âXÕE#ªµxJlve} ?K¬ Fј+Ùˆùv»M>™{Qæpâä#4 eÄXN>×&?T'_cçÆä×&Ÿw™|my¦Ùù<:ùæÄ—“oíÍL>ÇÉGÁŠËóy ¼X€xÃjòU¬Cì°µ5njJÇ’Xù›hkVþÙš•ö=V>…æÊ§ýW>²òëî–ÆVÛ«ÿãä˵£¯3GµC6ù²iò%µ÷–vè&b›|} ÛêÏ4»‰8.6|-Ê1{©àR­)\v©Ô©®üUk #Ù]šÌ-Þ[f/­…-*X7»Éc™ç—`q+~.1ª«Vv—×fi>—Xø‰ÑO&ö[ÊX&–‰•Ä~€ ™X–±_Ž‘Bç¹KMbŸÞyêÄêV¢u€’æ"B(7]Z^ÓÔ·­¯˜Ú¥¢÷ Ø@«H$v¶±jhUüêÄš‰”€LNˆË.Äž„&1½¶c6bÂub¬r»"&kˆ±'¦?#.³°ÄôFä ÖÈ^'VĂĹ{G@wŒõ­hËöyî±øH G3b¥JLJ;–4dYÈö2=þM—#¶vÜb(±õPŒ?PÈþZcp̱XAžÁ¨˜Ü¥15b×yÑ+°˜¶C„oÕ4=S6q°†P‘ŠY­ZêÊCŽª$†ãB͆QíÔ³x’a­bš&#³-FŒ0*XJŒb'nW{`a,ÙŠF§Uþ‚jY}UKÌHàéÒJìž²›ÓÏCmÊn­'?Œ}7Fz*O(Tp¥Kê zHlôæèD½²U03:Œœ¹ˆrÔØ1U I5À¾-\?ŒÑ·ÓuhÐò;xÃ2¢a%þ=}?9‚·%Öýè÷Ë Šj²²®; #TÇA"©éÔ™WñËÊ‘|‘®ã}•óƶê™u."Ä æQ²ˆc„;ý‘Œ¾¹=*¾`mçVLL ôùuåè{ë: ê5ÕV»gñdF™QÈŒNÃèo™ìWIFšr$kI‚‘Í'z PCKU&Iš±åh¹Áˆ­Ù‡¥Õ²w Fr# Lõ~öHý‚â›b®než¶ÏØ} ¦(J'ÅÄ;`â=0é¹+EÆ—1‡!‘RVvʘN)`Š‘åÊëÁ’JnPsöÖ†KML:?+L!c:¦4Y+>§³všÚ»L‘1k’.”ÅôÔáa¸õƒ0ý˜ŒÓÎÍú5[^íkÖom‹A0¹‡žqœr‚ÜcbÉJ¼ú™ÇYAš­¢B_§šõ£ —Ëæ<À#+=5ã‚‚—@C®é…DP´K½ÛpAØNq‹øna,'¸èZµìËçpAa–·á^Ë…?à"¸ˆÉÅÞ\PùÖ)µMÅt`°H¦nL¥†µ.wær ­6ÔZP´ÂÚÐt´O(„™î`inŠžUÚú¹ä/?ìÙÈ@è I72ˆkdÐÖ57#ÀÊa L“ÇF† ÑÜlhd€Ž×&åu T¶õ¯ãÂÐdêZ»ì\ˆ[`+_!>BÑ< 2©\Á2¦cc2•FØ‹¼&¡ÁÿBLt&íäŠSq &9o‹‰˜BÅà4(®PîåÃAËêe«SCûcúK^a²ïÃg¥rÜo{‰>6`1|lakøÄC “¤â¦]Ád¡¸jvBÿVí0 ­Ï¨IÖÜz»Õ1Ú(Mb»îÀÚ¶šM‚Á³`6Ó9  ¡áÊ]Àž:B:WoLÅXÛA3¯¥¢ÃR0‹bÔ×=Ä}:g™Î7¦óSeGï^ÛÃõ¶ãÐížt)Ó9™ì m¾œ86»Ã°=RÎfÈt¾žŽ¦ª•ˆþ NrnÈùÄi–¯§c}ÀŽ0_Z‡Ó9–öÚ‹ÎßhºjCX*µ°CRúQXš~â©hÞžWa©fîja)—tt´ˆì4ª•UM¸5·6؆ Þ5,Õh†¥šu‹É¸HéüÊÉ2z 1»ë§ØÕg†GVÕ„=j ÛRj$˜¶Mü&”‚D‰XÓ2¥ÓSÒ 8vç%})%nP’”B’H‰¬ˆQIIŒn}-¥°žoI‰f=Te‰l¶4 ‡ê¶.I˜ ¬M5FŠP¬‘îI *¥ð1¥³LéPʲôó(e»´ÑÇ[…ú\;}Eýÿ7d—”¯F‰ê”$E‰’.ê:¥)I’ÙjT¿6R²(…pzÞ”B’T(‰£$‘–®& @‰;J!¶Žcd¡u`ʆú¿:%ZK)dï螸Π‚ÖR†”R­ÃŸããeJß’’$e Š&b¨QbP uJ–hiR’ub]ÒÚv"%Š”‚Ä©QW>Ì…-ÿR×xÅ9J¡¤¤“å“´š ½9ê$(9ïñ’àA5bVIoŒMG×4^ÙkÏM'ßÄ.iú­*Ká”v©*KäíR¨ËWdé»DÙ¥L)SZCé‹}¼õvi %YK‰#JY–²'þu>žþ üvL&«ôq“Ò>>Þ²”òñª”Bˆþd)¤¢Zs¤ê>o¦$%¥º,1\^-¼íLÉ¢ZŠ”4­£Ä’’ö—kVªFIe)xYâ”,•uZóñt;›ÿJ’)ý¢”²ÆÛ?ª]ÓÝáq¢ÚR:ªÍ”>¢„ÝÉ%+‰³* úGȶfY:’ļC3G¤_wÌ Q¶KŸn—Êœø^vÉ „ áYbû¶¤,eJŸJ)ËÒ¡”íÒ!v)]©…m:†]úS®SâH‰×lY&ý4^´‹éD‹õn¦)¡À S¤ 3¥¡{šëÈ1«-ËÅé,v¢oý1ôÅü‘u’ÆÚÒM:xµß±ïl%Ë•’ØÐAë¶,W7óc¬PÒ%‹ëê>[£ƒå­”^¤¡ qÕÄêw*ÿ)VÊqqp ‡DqБppˆ8˵¸Ol%À—jD©&žmª‘+íËú¿–†©;iM²0¢O]Pdõ4èò‚á·óÛ¶ô·sžÍ<Šààû¦Ôè¯7%^t‘ ¥Ô„gãmÞš˜óŒD”y>{zkÈni óγ¨p!sž%*reåP¼G}P4\eGÆ!I="«TOWšüìäÇ¡å·Ça ­…7ÑîqÆqŽÂ[@ÆšÀ®ça‚U…އƒj88éq5qh¦wÙ_Y©¥»!îÖ:RÇP~ް9H”Ê Á²ý»ÒŠláb¥qÈFéÃa©(ÍŽ'qX.#°ÇÁ+é€u㎘(r8Ä/êÇÊ_GØ„£!RMÚoÄ!Ié(Û—Ìi×u®’"&Ápõ›ÊŠ¿µ²ú5L9ò*BJ¡Òd¦÷ºµ²ú³Ï(im®0–%-ùñFõœUj¨£Àû'Šÿ#¯„àAã³’Ï1â-γjŠP¹†0•ÁBv\-!bvlŠùÒ§%˜°µ4ev²#Åc½/)í¢µÔ̲ºN‚m’ÈÄèÕgÛÕ‹þì€NÖ±;ûÎì,†dTìØòUæÿÁïE)‚´J ¸ã,w_/wVñ3ß; Pk/û5¢‹fƒõ´¯ÎüëíÂ]ÔÅ5ØQTú»D¯ðv*q¤ÞhÕÉ„ ¢‚:× êP²C=Q]„Ðt£G²Qgª.DOP«N) öí%ÈŒc«×HMWÓo#¨ Ô_|!#ØÊÌ(2 –‹)O6¨—¶µ@cHD¥Y޾žL #Æ+1¹ö[AgÂ>ñ×?~ÈÈlÙŽŒ¼/°Ds1_´£€x6ºX• jE24ÑŒªÑ¹… Wý/¡é»„çn„ ±B9Ô<5‘QF¶2Ýp`Jͦ–³Ž›X©AäÁéèȶ‘²³Œ¬–å ‚~3O=ÑøØ‚_»[5\§@–¥¬"efyØú,ñŸæ‰„bþÉÈÎ~dêõˆ™.+N¡®Àq“ZÌ‹VxØü”Ÿ‡ì×2Ë„h:qM±øB8û_­%‰ìl[d!"ãý‘qzج¼´?2Ù™XþÌõÑ!ld3tÒìbÍœe);bÔz¥à•€õ(¡loÄd¬ ‘‘¥ û!‹ŽNL9šʶMB¼Åø[x>™yŒ‹ ZµÔÐKÓÎéÌ!#Jf¡,e'õך0JÐej¹©¬OJÇÖc€3^l#Çü¡Ýš~_,*ed'@†²e"åk²§ÝNŘ G“-°—ûhˆÌy&[ázïA‡ã‘ÉöÈ*R´MZX ‚^Zõ/0;ÈYÔ°ÓP¿tXœaeXÖ'ÃÚl¹ö«`&¶ª7XÛV0k°8‹¶ƒõ– SÊ–oI–˜-“òÔ§bL–êÙ½¥-Ã:ÈÍÖª•A¨¦k.ùîb9ÙÓÁିlÀbƒEÖæ¿%Š›Ähr€0Xú=±¯ÍNl6ßUbÝOÅÑ ›øÉ¼P……ê­6¯8°æ ¸Ü/ûRô°AÝ,²Gc¼N¾ê"}…,!¡Y¢Ø¾Rƒ‹õ°éH,K>é×Ô:Ö¢*ñ®U+$Ó9ŒNq­°ÖYG­òÓéÈèÐNt(Ò¡O¤C[Ó‘$Á6 {1TLZy­¢,æ9ìLçï1þU–ª4Ck7¹¯"J»šÚ/#¶É››Ü‹¨`õ'K:ÍÞAy‡ŠìàÒA@'½ÉÝ¢]Öq®ö˜¨r‰t¤â­á„ŸAgÍ“P1CÉMîX70 kì(#¨®ƒdvܬPE X\‡E%,¤J‹­ 5XèSÃÌÀY…E5XT&¦—°àmÔ`)!Ô³ –4a±ù0XX3%,ï—nHéëÇtJE”B„¥kƒáƒ³^[¿Æ6÷é÷ã䀭iŒR–í¤«I–vF <¾í$‹Ž"YáCÉjÂÚA²¸&YØï¦s²V²‹¸!Y”’,NIU$‹jznµn÷±} ºD¿ t”E ²?ê¢ó¤¯v;"J6Gõ°¯ A;¹6…Eu#3m^pÚHqÝHçB„Ã\ˆ8Do¬+Žp³1ƒkÈv uW¸>ð)4pÙWøÀ§ >&.ÙWØ—lÂE&ÿÑœEöv9œ ˆ C-­pÑ^¸²t ]!P%‘èKƒ%">ÎÉÆÿo®H—ZJÔWŠ¥qwlÁN1GGgÝŽ-6Ó_NÆ b »˜ºJ•ÔÄ6;¶BbÇ–•Î1[ïØ²Â…ì¸c«¹ï˜*fÚb3$Z¬÷Œàf$I²U»¶¸ÉšýŽ©yRP¸¸³¸œÉ¼+ óФÔ?þ"¼œå‹FŸTÂ5 $&x* %@2›ïTì8 Ëר#²Hæ92Ò6`© ¢8¤”.s=tÆ¡Dtýêí">²l*ÖǾ&ËcÁOT=èð´kfÕ¯~>òájÉÌÏå†\mؾð q¡ Ú’ U¸„4Þ†Kˆ®:¸PšKSß}>ù\d.²Ž‹¤åEÖs‘õ\8r‘Ì%sù.zì»ÙúDû‚É·¬Ù¶\P¨Y9nĶÙÈêDë¹Àµ-¹ð·?8¹p(e©‘ƒ¿v`Êã"GâRšý¹XÂ[k v0ñ6 VòB 7™N£ÇjA)ýûÂûê±ÍöåtþØAöe—‹`÷³/k¸üžñKæRã¾ —ð?¶²/áC.|ÞŽKÈþØ'ùc„BŸŽØrÏl²ÀŸë•ò²=—`\¢¼”‰èå¥Â…J.‡Å/´—5qe‹µcÁî“Óc|€Ýÿ3«ˆÉ…r±ž3뉃†ˆR(biZ¤ê™×ôÄùÖ{‰u‚²‰g­†ëÒ¶Ä3Gz=lAE«¬ ýw+):"­±„JOýŽfOVl°î”‚k³Ù'ž8cÙÇÑOŽW²þ‘]ÛCþ¬Qh[C$lODÖáuDĈ¬Jìˆh`dÕ¥(¸fšÈÖ]жܭã ìRLádÿoˆÂ„ì1£DåþæX%ˆ2"u"^wŸÈÆí)Ûñ2²‰ˆˆªàˆP±öZëÔ1L¡N;¼‘Høt"â´•Dèc"jЫZK¢Ý’HðD¤IDšDšOq¡:’cèΩpèÛ‘ÛH–‘}d¤è÷ÑZ¤;®0ö[ï.#˰¸±¤ G'Ë—”9X[°Î~t«ÌÌ镞„X…9â`Ü&DѼF•5çŠXz,˲JoÃֲɃŽLÝ-½}¡1ŒlfÕo?‹%e”vÑþŒt}I“ ~JÊÅˉhQƒÔËaã ›Â+^ž.†Œ)cʘÖ`bëµP_ ݦ†Øš3c:&†<ãU37~«aDŽXM¬gL'Qz¥Þ¹ài‰šø™£²¦¿âïL;Û*™vvÄd!ksp2 ËXçŸÖ*½ ÷±¶š¶1{ó=míbÿ¢ÆíU휤ztD8çC§Á¾5àG§¾…yó9V¼Gz'à>ýŠ{×»w¦#ûÑ!›õtøóéH…Ž$èH“NhÒá:@«–êôk¸ä¢Ú"ÓÉt²f«k6ýàºúž~(_©Ù2šÝat™1J"®Jwê{Ó¡&P¥6ÒQo‰tèc:æ°Ù†Ž¹”;yp̻͆…gÊøÎ½«?ß_vhÙ¡Ýe‡×ÉïBGSUo4‡¨<„²S¾³ìüªšM¥æ§RÝ^‚EBðv8Ú“ŽXÉOƒD½êtxE‡ªtt—Î&:ÁèGG5›°–šuÐ? t¤¤ƒ0žÞI):|R:Yv¾³ìƒ•tVm!Öòj·æè˜¨m¢£ýK+â cS­s¢‘¤Sõ ô†ÖÐ9Sg…J5РSès–Wv'ÔSÓ®€B$jŒMmùb¯àÇÒ¡ïK‡·£Ã\$4ìC#WP¼§˜‡¤Ý ølÚ:V ¼®ÙH¢G]|]E³ÉŠŽà–•N™Õ»‘ìå¡ÍšÃÊ€•OÇFŒ£ŠOoÉnªX—–šÖµµü :q1e:ß‘N–F Æ¿=ú¦t~gÙÑÇ’|kÙùé|Í–£Ñ£E£…¿¬óË¡Vå¡/¯RŠNBvÊxgµes¬ñr*G ;°ŽŽFä1¨©ÒaKðÆUj붤# Ã1‰t´‘µ Hdri z zSfA‹?š Õ‹² ½xKЮ{iÊùÚ B8N!4ìÕé°Ñ‘ѯè„]=‘Ž`.Ï*ÿ3Íf«KkUxŸi6iб° I%ÝÄT££3Q•šÝN7Ù1k¨¢ŒƒnL¨Ráã5tšYÐâE¼9d¸uvXµ*­d97½œ`ºƒ­Ü_Îî„(;¼)G½œæ½Avø#»¼ìL³&`âîH‡?ŽF5ª{yâG2)² 5,Â&[JJ….ÄV"«ÆDõy£x±u,ØUBM)¨-ö’BÈÛ“ItXCí6#‹×dÁè"±P‹o]¦ØdVÇHpÁ,гû\ì΢*µÖ‡rjr! ­%z\J€ãÓ`Ò,RT—‹²²F²Nk‰gAΦó;À0$zήƒcä² ›¦ )Y°ØÎ‚°;Nœ%Ä2G5Ÿ‰të·R’…Mæê[AIÏF­²Ð»K³€Ž e¥¦´ \‰+Cô9-‰¨™LôNbè„é߯^„ÃäbkkÞ`AikYhƒÎ¼½ ˆÚš7X¬‘‹Š½HTœ“Öܳð¾–E!ëá±l»ÉB’,PÔ3ák²Xo»WùjV0ÅÙ‹5,BÔQ|\‚»Ñ:©éoúf,|Vߌûš ¦'ÊEŠ‹ iÊfI3a;¹ÇÂÅŠ¯õ£8¡£Fвo:ïéh÷" É,~}[ûQiŸ6åGQÕŠñESGÉŸö{±ò£Bda:J}Þ >­ê¨PË 3RɸF™ætìF?*ùXÐ-Ë¢“FÑS‰^Á öy° ̓Üœ\p°‹†Jbþ~Ó§U°Zóê×ÓW¼á—zçƒyþgËBQ. íÅT>–ÅnP/P²É< \ˆ8GjéLNy¶ùwÛ!Ú‰ˆ¶5=ÛþPhJÇz"@¢Ó C ËÌb¬6»¤X^ØQ žjDÈæP_Ãø\š©ê1"¥ÊV];6¨qA‰)•€c™í( U\X9€R¤TЛ¤2¨ï*)RÔo*ì Šj ¶4F!æ5NjeŒJP¡*˜Õ©W"áx°:«:\ý³“‘Ê ŽŠ‘—јŸêO”Ð/¬é—gP'¥“bì•h™d1³D”Ø“ŽY߃ú%!0DZ-¶ ï ¤2¨#ITõ›8qýGšA¥²Ô§ÄQS,õÄ _@9sUsFƒÀ¾•Uß‘½>Ì›7c3š`3vlá…þ-ƒ:¨"á(hàMî¼ dCÊuj‰Òš YI‘ìr|š"úÅTŸüLP¨†Ðʹ >ú]EPûƒú·Lb^Â%(mF"Y‚/¢/ÚÅ4˜CÇ«éjßn 7n!»Õ›¹æª9ÁùAá@bZì¹(˜=\ÐXé\[v ®pm’TY²¨Îº~‚JÅ_tu°.¢2M¸L!ù²*™×'\y¢‹•Ÿ©rý+˜f>§àÃPI»Tü+ËÏIùàù•Luí†Íç{Gµ™Ï1õ›¶¼H,Þ3ÎKRPœùœž)Öo"¤ÞƒÊÑáúí¯¶rä̹ÑÉ“F‰IU¯,_qä O®ÊG4Ý즮ÎÖ·©ßHNBç@Ý‘#åÃRv†¬9qŽ™ÍÐÏ“aŽœ~låÈYû D!UF×dšFÔíª?ŸBÝ8‰cœî]Ë'8@a `žf Pô´ÅF·ú·d†³ˆÖ2Á Mûëµ# ÒJ§‘ ¬Iô´Y…µ £4Rž¶¬ó´‘…SÜz»…h…Í+·(l °6]—” Y()A+s¹Y‚™­oy;  ýh%ªIPØ,A6)%r‚¹Ñ•QJP P¹(I5ò: *cª•) }g)AÖPt ?’ NŠrÙ  ‘µ€«¯Ò¤TS‚ šPHÞˆR뢫Zç°ªâh£ÙÇ›±*$ˆ-ŸV‘ ¹áÕDAE‚ªgãØ³«LF$>£œ °ÑåVÝÌKu ú°%>’ÍÉ®KPhH¦¼$U\)Aa[ âÒ™… ^%ˆÖ'8JPiƒÔ†šq)AÈzèá- ¢uœ ‚K´ŸUý…æ$J< }›Ù®IÐjrV*®‘í,$Ì•}G,Û.®‘˜î‡“€°¾W þXˆÙž• -{í8¬l*Kø‡:÷ºä¨aƒÐGAŠÇT…Òé·”ý4Aç6˜©KI9ªZ q¯&¯¸3«&íà üñCÏ­EVP¼cPKÁm’8¹úÖªÔ„”Ôp]j‚—“ŒRj‚MWJjšj L£c F¬ê@••Ž˜ÔÙVËbÎ7z47E 8\;t¥Þ<Ö KKøÀa Ûr‘& ×2—½¸ÀXÏe­ŸÓ—ååó¹œe.ß’K–—Ì%sIs¡Ú"бDÓ'qYu½lÅ‹4¹4J¢+.­ÙðüÙ¢6r‚ W¹P’KØI^x£¼ìÍ…w”©rÑ Öq¡¯á‚©ÎEô\ÐÈ…×q9†ûŸ„Ìå[rÉòò‹páµö%sÉ\NÅ%d.;Æû¿»¼|Kû’¹|Oyù1ö…~;.›ó0Ÿïoàb3ûEzLvá\¼Ï™Ëž\Î2—oÉåÉË^Ýz++.â¸P…‹Î¨vî >o)î Ù´•¯±5î%ÌÂz¬Ò`¦ÉmpÁê±ÞPpáíKñ%ú»ÿ?{ÿþrÍ’ÝybûÔ{ꢺH§TW©t)µ¤–ªºÎã÷¹?­ …4¡±˜w¬qà°†1m7̸‡„D‹Sд˜Æ¢Å„7þÁà?@þ“¼c]2VfFfFæÎ½wîý|Ÿ:»NžÌ‘‘ñ‰u‰µVæžä↹мŒqáÁ›”—\øª=.¶*†å%VÈ ñ.üëÚ}ßâ"eK,/ÂÅÏââÀ\Àe5.®m_:y±T/åjò•õ±s¸°É(s)æÅ:å—É)©²ûƾÄ~³pq†‹)kå+åBÕxÞrñÊ…kÀÅÇ9˜Kls¡ç.Àåü\ /à.àrõ\"¸l’ ä\À\ÎÊ%´¸l=ž¼b¾2,­·ô¥xr¨ƒå(X|^ï×Å“C/ž¬Sn8ž†ì~?žl¹ôãÉ1LÆaH*ø¢7\¼Wñi>×áâ-—Ðóó·Û\b!žì5žìU^:ñäH]§îÔÁÖǓד—°º¼øƒå%–ó/~=yéæ_ uã³å\Þ—iûÚ\<¸¸v(¬}ñ™K²/-.n*_éŒ}‘«•ý1ß¶/¾c÷o&âüõùʤâ;\Ýréæ‘£ñÇœñÇ:öEgy!l¸TØ—‹âRÊ#ƒK—.›äypÙØýmr9…¼DpÙ$ÈK‹Ë ¸4\ËF¸@^Œ¼À\—ø6¸° —Ãå­ÈK'nÙä_ùaÜ" YÒ7‚kpw¹pٖ݇¼l‚‹—MrÉòÁe“\ /à2ÎŃË&¹œX^|o·A.[ày¹ .áÜñ±p9²¼DÈË\z…J«Çò•'åÞ¤¼lŸK­¼\u~?l‰ËÍúöeì9‹-s¹`y¹=F‚Ëæ¸ ë±ËõÇŽÆÅm€Ë[•·qyy«\¶®ÇÀe\Š þ .7\ /àr>.7é¹Ã—›Öû\.P^n°Þß$—Ë‘—ë‰ó_ qÇ /ã²¢‹à²I.py“\.Úî_S~¿ïŽmA^<äzlÃ\BiýBXÀò.†‹äy¼\6¾ð)¹,yb—ËþÚ#\RÓÊ¥û~ËÀ\¢r † ßñ¤Ÿ3Í s‰ÌÅQ[aø=½!oÉKº]ƒÂÔ.M6—ºLß<ëïñËñ¹@ξ¸j=æZò‚÷À«¼8‘§ö…¤Q¹Ã…§µãÛà)N’Ðp!v.ÛÖ —Äå\6Éò²M.—©ßMòÓ4ƒv?ÔÙýtž£/ˆÝ•—A»¯È»\Ïv”Kc÷[\»OÝr±þX‚âÉ3v?vì~û÷+ãôú%^:—› ¸l‰ËÛ“7À¥~]éeAJã»\|{ýâŠ\b‡‹ëÙ]WzÃ…—CÖ¾¤!mq‰=ûiÏÌ%ˆ}ûW²/ͺ2á÷Ù¾´×/1.|§±e_œÚ—P½Þ—Ms¹™ÏÅMøc!ж™ô“[z¬Ï%-¤ã0Âe¶?–õ˜®÷Kq˜ã00pL–ºÐÕca¶\^À\À\À\ª×/abý©³‘¼©Éü‹w®_ÒÈvÖ/´éüNbœÎ¿°¿Õæ(ÎïËqåÒ[¿¨[UÁ%×/àrÙ\ü.^¸Èz?¬Í¥«ÇÚ\B‘Ëh^Ìp¹)pÉqKŠáZ=æÇ¸Lé±– .aÝ|eìsq&ž®>_)\.£f-.«¾O)ž‰‹¿>.—7Àò²—R¾ò ¹0–p9\ /—Ã%^Ÿ}¼¼qyyCõ–ðÇÀ\Àe”˼?ùMr¹.»ßKÀ\7—Ú÷\ËõÈ ôØ6¹\—;?¬_ /àráöe»zŒ°\—7d_bŸKv5MÝE¼:.ÛÕco[^¶Ëåâì ¸€K‹KØý!.\6Éëý¸øA.5Vã'{¾Wô®ŸìÚ\ÒX.4™‹ëq F^\ê,Õr‰Ê%.|Çí:¥ÔPæâyìÛïSrÕïSêf¸ÄEòâÁeÛzŒºÒõ‹b¹D.p9—Ãò/éðAù_™ñÇÍ¿„9ùýÐp¡üKèå_ÚωS¶Åp™™«­ ].“ùý`Ÿß£ò☠ß`G^Üøs¯¾ÅÅÏÌ‹ÕÈKÌòâ„KK^Òpñhöä…¿ª÷zRlLeÌWê±—’sËõ˜á¦õ½FÁ5uãnPõååùJvl2—Xé'×pqksq™K°\œÊËH¹(/±Ã%—ûâÀå r™­Çfp9rþ%â•õ˜Ú—d(Ïï'_—¾}¹|.]ì$v?¬Ÿß¿!.¡áâëõX '`cëÊkáâÎÍ¥\¶ÀeR^°Þ?òz߇U×/nÂî‡Òz¿$/~©Ý÷ãv?Ì–—!?Y×ûaB^zv¿ä'û>áP—¸—xn.¥ßI¼^.cí2¡Ç ëÊq.,ã&>6Â%.¡ë'§œ‹å’hPËm.…÷[Þ(ŸõX‘Ëój_HW¶âcž¸¤V¬})ÄaÜbû’äåÆ_!—¸—›sq¹JyYËÙäå­q¹— .ò²I.Ðckæ+ÝD¾2ðê/šue¨[ï§AQ†ñMs¹JyŸ¼M.p—·Ë%€Ë&¹lK^Ë[æÒ­ùq¼lS^ö½âä×ýdÄ-Ï$/ò²I.—‹äyppŸ .໿-.ñípQ,ÁåËËUæ+/=|y¹»øIût7ž±Œr‰T°8Ë%µr5\N"/¾À%öä%Ý’çñJÿå;\ßŠÊ Õ)ù’¼¤.®Ì%.ÄÄ1—ø¦¸¼ûr\D‘ÑxR†?Z%ÚT¼ÁÂç¨ÇèûÅbHnðíqÝp¹.Kóû×ÂÅ…mr¼€ ¸€ â0—Éò.à²&—pÙ$—sÊ êù·ÉåzåÅŸƒËUå_Ζ è1p—.7Å…é».ò²I.Ðc—ÄåRë“ÓÅ„Kìq‘‚Ú®®\R«RôV±Æ9~¿¥¿xyÙDýØÕÈ ôØÅs‰—z.n3ò.Ðc—Ãåüõ0+É‹'0¾Cæb¹¼ay¹ÊúäK]¿@^6//[æÎÏòy¹~.—þ|åEr —ss9ÿú\ªäÅËy¹Øý“sqd÷7é'ÇÍé1ÈË6í ¸l‚Ë)ߟœ°lˆËUÆ-!/Ûä2S^<¸¬ÆÅA^6Ée%=Áe“\6º~ñxÎbËò‚÷]l“ËFåeùʳq‰æypp¹\.ˆm“Ë5ËK—Mr¼¬Á…_x.[ãyâh "—Ζi.„ïç¿y™Ã%€Ë‘¸Dè±Mr}¹.°/Ûär^y à²I.—)/\6Éò.—S×·9.x?ÿ6¹\«¼\8î¢áâ \ÒÌZ罹]Ì\<Õr¡q.®Ë%•å¬bæ’ÆL¹ËÅ+—˜¹¸.?Â%(—ô-ЄK:”ü'â’ÉPö¸ÄÌ…w€Ëer Ve.4 D¢Ë¥Ñci ¢ .ëÒzßp ===F6\|Ÿ ]2sI':×Ñcû=“\BKèê±Ðáâ.Fq=*—F…Q.uz \À\6ÆÅ¯ÉŃ ¸\7è±Ù\²Ÿì;~²¯ô“#ݬŽÃ|?™æ¿ësñ]?95Tö“ÝÁ~r´\|ßOöÆOæÑåu¥øÉüÍ¢ŸìÕ/.øÉ\fsqáÒÖc‡éè±eq˜¬ÇÂXÆr)¬+}ì¯+C7SÐcMÆe=VŽÃÄáue,é1? ÇÆ×• âcà2ÄÅŸœ‹;”KçâGìþÚ\|‰‹¯æâÛ\|1.WÏ%n–K|Ó\ /Ûä²X^n¶Äå¦ç¿l.— ä?y›~ò¥rñ%.£ñ±C¸œ^^¼á2·îBÊ27Rwáš8L(s‰† QâEv:˜þß· uôW”—^ÝEÖc±SwAò"1ÎbÝE0qG\¢åâÀå*¸¸ áâ+¹¸9uJæ’íKìÆ“K\†âÉñ€xr,Ù—³Æ“;\ºñäØŽ'GOö¡OîÙOpYKèr9fýX—ËX^¬Ãe"ÿ2Ÿ‹k­+ÄÅw¸ÄMpéùÉ–K(¬+OÉò²MyépéÖÁž•Ka]ùf¸@mSË6¹œÒ¾xØ——uJ7Û°/oƒ äe›\ÊòR´/kË ìËÑåÅAÁƒ¼`]¹1yÝ?7—Eõüâ'Ç ær~y™ÉåæmÈËÅqy#z \.‰ üdøÉð“WÓc~—+|¾r˜‹_ÀϽ‚Ëa\èj —0a_ü:\ü¶¸@]‘¼œÛO^b÷ÃÚv?^¶¼ÈË&íËIÖ•×Çöe›\¶èMryò.à=¶—8ÏOÃv?¥¨¦¸„£úÉ•\nn”K\ÀÅ>/F\|‘K<Ðî¿A.Y^Z\âpqÕ\ür.þ\b‰K€¼¤¯_†¼¼5.—¢Ç®ˆK—cq?ÙÈ˦¸@ ¸ÀO¾j?9TËK8X^"äzl„‹wà²E.p¹.¥÷Á‚Ëù¹A^n. üämryòr½\·< /[àâù^Ç“½×õ¾ç¡kqá—@÷ν5\R?:\Üàó/Þp‰$¬ÊEÚos‰=.‘0D[w‘NKç¦áõ±©ƒuÂÅ[.i"úÌ%u“záyŠòhšº‹Øã’§rpppép à²I.‡ÈKÜ>—›mr™ë'oI^n /'çr=¶I.°/àrY\nÀe“\ /àòF¸d0WÁåæZ¸lU^ü——•¸ÄÈËÛår³i=öv¹lÛ¾\—`Á€Ëf¸@^¶ÉåøòâÁò.†Ë ¸l’ ä\ÀeE.\6Éåä%‚ËÆ¸„ÊËÍçrÕzLÀ€ËƸ@^Àåˆ\6Zoùæ¹@^¶Éò²:—ë­O¾¹h.Ðc«r à²I.pÙ:—ôpÙ—‹•.ãÎ#/\ Ç°~¹.ÒÅI.®Ë%Ý+%]¨Ë%Ðh½ïtO†Kì¯_ —h¸ÐØŸû÷‘cä¤á¦n·¹È{{bæÂ;ˆK¬ç2¤ÇÜUpñ‹¹ørYS^äe“\ ÇÀåÚ¹¼uû.à‚uåÉÖ/¥åK8òzßMÈK`.>¨¼Læ_äeÿ/?(/Â%TٗЕæÂò:òB=ÏòBTÒÔ!.Îp¡ºòâ‹`bõºòH\ü±¸ø·ÀÅ_¨¼„rñ§åâ®I^ÂÕÈKÐc޹ø6—Øp —ý±ô®¼P×½Úý0Äå¦Í%ÒÄÈ\¹‹Ãòâ v?s!öŽÇ©k÷…Kˆãþ˜'.ô5¶û‘ì÷—~Ü24\Fü±­p àrD.û²Œ‹ëp¹0‹¹8p9Å.ç岺È ¸¼=.zì<\ÒW /Ûã²m=övåe3\äe“\Þ°óÌ`¾Ò—ì~EÜr4_I¶ _I §ƒò•a,n™jj.®›¯¤÷¸h<9s¡K3©|¥ábò•5ùpp™ä2¸~qãö…¹Äiû’Fûö¥Ë¥c_|Ѿë."sñÙ¾Ðùƾ4SwÑãZö% µ/¾m_ÂhÝ…µ/còW“—8ÄÅÈK8•¼ŒæÅœæÅ¢Øý޼LÕÃÔÈKÔèV•— ,Ë‹÷3äe:_éæÈ‹ëÈKóÇbK^¨·~@^z\²¼J]6òâ þØAò2±Þ—3q¼€ ¸Ì·ûõ0Tâ v?u e÷L«$[~²Ïvßp‰¥8Œkûcv½OƒÕ¶ûŽý1ß®S íz˜Øç“»Õ­‡ñ:XO…[õ0ÖîôÍáõ¾pa\À\Væ2w½?¯žßr)­÷ýðú%´ã–v\{ý¢q˺z~º+¬_âüzþóqé­+;\V^W†µ¹ÄåëJÃ%ÎçÒõÇ:Ï#×øcÓq˜¬ÇØ_i¸Äµã0ÕþXhq™á™8‡a,„z,œÀOpy3\¶k_B‡ËˆÝçëßî7öÅÚ}êreœŸÁ(O[B\ÎÈåü±Y\fùÉáR¸ÄAûr)\ /à.àré\®Ð¾ÌÌï_—iy àròr…z¬-/7—Éå åz \À\.˪v?ž…‹ç”ÙuÙ}øcà².7Ûæâ¤$Ä¡¸å*y1?ZãJ\è˜á"COyæRÌ‹ù‘¼X.¡ /Aóbq€ 矆@(ûn^Lêb¨{]..s©«ë[-_jò•rµ–¼ qY’¯œ[o¹j¾²So-—.×Â%¹¸êç^'ô˜·\Ü .~œK(qqµÏ½víËÔs¯E.±§ÇäþŒs=ûb¸ÄSÙ}wÌú±a»œú1²Œe»ïŒÝ÷õcCòr쪸„3q¦‚Kàâ»\B·>¹Íűvœå'ûÌ%.¡ÈÅ©.±ÃÅ —ЩS".Aï5Œ' ¬zÌøÉýzKWå'“‘ÈdÞ—®¼lKÆòvåe‹\úzŒ¼Ú6—0‡‹€±/.~)?Ì%’}XÀ%–¸øŽ}99—y)æÅ†ä\ÖçâVÐcàr2y}Ù—Aûâ!/—+/àr—r\ÎÍåòì ™—7l_ /×(/}.½¸¥?Ôsey)Ç-]eܲ(/.îœqøc×(/X¿,”—¿j<zìq¾Cè1è1è1øc—ªÇ /×+/'å²ßqs£EU×Ì%µ±^] a¬z?Llqq%.L¸®®ÏUÖ^×GëúüÆÞ;z".±¢Þ\6$/à².7à2ƒK„¼l’ ì>¸@^6Ïåxòr.K¸8è±MrÛ4ÈË6¹@^Væâ /›äò†õØx<Ù™8‡‹Ëqþ¹ø¹åâ|ŸK¨âÂý¦(¼rq-.éjG¹Ðhz£Çb×Äù¥UãüÂÅ)—h¸P0?rÜT¸ç½8ÿªï!)Ë‹kËK‘KåB½kž{ qT^Ë‹+É L›KìrÑÎûñ|eW^\¼pþÅÊKhÉËÈï#G[ãjôØåp¹—Mr¼€Ëö¸Ÿ¯—³s¼€ ¸œ™‹—Mr¼\&—pÙ$—¢¼Ü€Ë&¹@^ÀåJ¸DpÙ$—#ÈË ¸ÔçÅÊ¿ó^à¢Eô¹øv^ÌûQy S\|› Ýx+ÿÒþ÷>—HHi®éŸrq&ÿÂ\ºy1”Ì%M:ÏÝë¾ß²Ë%4\Â)¸¸—p<.’$m¸ø6—˜¹„Ì%h^lKèqá¼XO^NÏÅ]ÿ–¸\†¼Ôë±kár)òâjä%€ ôôØBlšKßÛ — ÈËMËÍ€¼¼Qy 'áB϶_#—®¼¸Ë—ÅrÑ\®Ð¾¤¯\¼¼\!—íÛ}¬_.˜ ü±-r¹R=F7<"/áDÏYø=g×zÎzìzõX̹Üp¡ÒäzŸ¹Ü\ج÷¯† ä\®ËÆÇ®‚K½¼\ —Kñ“ßZ¦Z^\ÃÅ qq.á .ÎÊ‹_X?V®ë+Û—°¥uå2=Ö_ïûØZïoÁöåÍÚ—ÌÅ_ÕzßY.¾#/½ºñÔ3ÃÅwâ–¡Ç…†™JÆ}sßC\bÃ…?‘4 ctÜt®O£•¾ÜyÏU<©Œ¼DÕc\K®qK_°/t3¤·ôÊŸRt\7xÔº\œá<‚ÆN/^ùEë—x¨¼¤Öã•÷FíKæâÃ\ºq~p¼€Ër 4lÃv¿YWªÝý|e{ýª¸ò•®c÷©¥V¾ÒMå+y½¯¯ÅÅ5\Øî{Y¿DÃ…×/,òt4þ˜ÜŸë>/Æ#{ˆÝ¿—Mr¼\!Â.›ãyY‡ Ý@lqñ™K˜Ï¥·t].#Ïïû6?ÅÅõ¹„*.'èúcA¹¨?.zèÆ-¸xËEÀßââÁå.ñ<\ÖÔc%.®Vu¸t×/ëq)¯_Fä%ÌãR­Ç¶Æå\F¹tãÉK¸„yz¬Þîw¹ÜáâK\ªí~1/æ•‹ëq)Ú}p)È ¸€Ë©¹Àîþx¶ «É‹ä÷WXWæx2äò²)yYѾA^¦ìK„¼œ@^"äåBäe3öe„‹Ø}ØýëÑc׺®lÄ%@^ /›¶/›ñ“gç‘}‡KœâŽ«Çfq‰™‹ëp 5\üz̹Œä÷[òÒ«—ºé!y©«w¦nœÇ¾Ì%.D©S7N{”K¢Q°/uuãaR^ªw}.n¾Ó<òÍñ¹¸Ã¸„7È…ÄEÞç.çç²À@^6Ä%c9}—\øVÁek\ö_¹ñà².7\c=¶1.Û°/7à²I.p©ˆ ä\À\»R.^äåñä€8ÿ|.o(ÿrYþØ ìË–¸¼Ay—mr¹,=¶=y¹b.×¾®¼—MrysòâÁåDöåØydØ—\· àrö%¼5=¶v= Ö/Û仿J¬µû‘ô˜Ï\h؆¹¤[gA÷Úçâ\‹W.‘¹Ð¸wÞ×Ƹ¤Öiì]åsIa-»[\úïççýi;\B[^\‹ã+$.¾±û\æùÉ=»ß}¯õ:þX¬Òc±§ÇâZzìÈqËÂsI[çâ·À%\—‚}±¿\²/é’tSŒ-LÛOz,D?*/E=æX¹ÐÑc©Ñôå¢ E=æ²ëp‰,Ë1s =Ö~Ž/2—ØÖc ±ÌŹÄU¹ûâ³û\ľ¸ ¼W!sayñqÀ¾ø¸¸.e=Öµû.}»ÏrÍ\xNŽrqÌeø÷’:\¢áÂÜ¥ó~Øî»®Ý/é±—þóû!s‰†K_^¢åâÖyÄO'–_’—Pù<²wm.=¬F^føc‘±„ãÙ=Öp9Š#öes\`÷Áå ¸ì›­þÝp¹y —Ë%^3ÈË4—p™Ã妰®„¼œŸËìK—ãÙ—á8ÿ&äëÊmrY%>.Ðc°ûà.àré\`_`÷·ËåÔòr.U¿ó=¶-.°/Çä­ÒVôm4ày—A.¾ \6Áå”òÁe5.ò²I.}yq\6Æ%°À€Ëù¹4zŒ½Ñc‡qm.éN îLæR¨÷™Kóü‹Ë\¤v·Ç…ï8s¡§"]‹©­ºñ—˜ó•®Ë%&~˜ =ÿBydYºj!0ú&•»;µ‘ß±âÄʼnKÌ÷F¹».àòÖ¿Ò¯Ãåpûb¸ìK·/qؾt¹¸B~¿k_šö…o4õÒ‰}¡¹e¸”ìKTû×±ûey—ss¼lŠ ìK¶/Uq˜ݨ}™c÷‡©X¿tå%T¯_–ÈË:ë—0´~™%/Û^W^° ;'—pÙÅ=vz¬—Ù’¼¬Ã…þ}i\ Ç¶Éò²M.my‰Ûâò†åzì´\jãc==6+ÃëáEëýt!—¹¤K§‘hÖû±r½ïÜPÝÅ&¹TÈË äe“\Þ°‹×ÎëÊÌ%Z0à’ŒÐ&¸lI^Öcöå,\n6i_Àe›vÿœëÇãb¸8ÉW2¯ ˆÃ\!—7e÷·áµ¹ìvŸìvŸÿ;áóï}Õºß;‘W”›À·ÔâSü=«ôO³îoËMqÝOló‘šÓ”àñp\ß'=¢uàÎûO#šbé²4þQªÂJëþ`ã—Ô}Søxú‡uÿ€NÆ!Áúë9›ƒÀÑ8“¡Áa¹Y .ð&".ž\l-@ Ü:¸œ8?ÊëßNñ™§‰6h J¼ÚŠÐ©" YД—æÅmÒ %%•BiY³Rá ©(V±Ëxù¯X´h jÖ4ëF²œk‘Š µ©Ãdk©ÿ¯1^bªùÜýÝ,u‹îÝócqN”*Ý#AI_Žlxƒ pÉx‘­‰âR¶ŒW²²%R'ÚôôÉ:ûF¤<¯ä xí‘¢ç]Ré|rÒ°G%E^‘ð¢)C}cÜ^£»Æë0‘øãQŠjî³zt£êñ¯êÌÙ„ÿÞºP0g:æ3òÔU²!”Ln•õ=YèÚæÌW]lP:ž†Ž'xߜŶ9[å¹,À,ÀÚ¬ÃYÖµJÖÈWt K|EÚå¯ÄW¤˜‹øŠ¼Òd_1À× ‘/¤¤¸žfð윋¯è_ÑS4>ì=›§y´$HB=Km²÷éø·Õ«gï\ ØWL_¡ÖÉÓb_Ñ}E×, h÷0,7ß«·\Æ?p9F.ÛàB+¾XÜ‚ËùåzìÄ\&8@^Î%/³ÄeohÀe \ /×f_þù>@¾¯† Ç«)|í9ñ.thê:tV¦S#) ³]ÙÐÐCèÔ&Jt<ùW¡ã¢ké¸_ºvå ÙÙ°ìHÜ":? ´¢«¦#+Á :UXi ‚ÏtB¯ Ë:žÅL‡°Yv'×"ÑM†Et|‰NT:6¹&UXy:g:7>.p©[‡.ŠÛ€Ë!\&õØâx¸&/±R™ÍÍo‚ ¸\#—:*úWÍå­·×\Ë´¸8¾‚r™Wìä…Kh{ËÂe¢Ø)T;MzËžòÆ[v½ÕÌrƒ€€8±D À˜_ªèX®šþÕœˆ YÖÎ=ÙîÐØî8„Ó¨J~Ø7œã%R¼ÏÆ»üBÄKŸ9ÒÈñH-è°z-|%¸m(`/žIO;¹Kgr r2áã‚ ˜€I‰É ºë_b}^r¶Öˆ›È€@BΤ(² ÊÍ £¾¥ôú¡^Ö?¯[úƒƒ¾R[Gߨ_ò=¤Qç•aÈoi¢‰”•ƒ¾‘:¿ˆ+)}ûµu£ëu×@Hÿ?ñý[P8…93& v‰Ôþ&è0'­ JµêŽ£ùÌm)Ž­à˜áÇa8&”™fàØŽ€ãü!âàØˆtÌÄQù`ViyâŠ8ÂЃY´‘´¯Á!Ë"“Úl/Oh}"8rÚ—GŒR½&Šã„2¥}Ch¥}ûõ\œöuŒƒÆy`yÒJûrGºi_?cyâç¿©t@t@t@§E§žM “Бx?è\:µšm–®fØ‚2›Î_3—æÿ‰[xå^úê/Óa ž^§ç4üO4}£•ª¯ùǃG«W×zx È‡$rɾj¯Ê?c’0ðPG]~f¯ó—›º†õ\:ëFÒ1óÕšþðº(^®ÈkÒ¯¯ƒxÍñº ¯‹‘/ðº0ù‚ý/ðšâµ×Bãÿã§"¡½ÚN'…v:©üÚ¿´*­¶ø_¥ò*âLgFZ()¬”£÷cky•çužG/¦“–=~ÄòªâŸ’hänä'ƒþÚr\Wîz³Ü¹,w¡'w®#wD‘åÎåÎe¹ó£rçæË]4?/黢DÓ¤%wãyCð:€WXë·¬Á ¼Þ&/ë‡x¸Ž/È×Ûæ5._ëКÃëo:~¾oü|ú¡ι8'¼¸UºqÛôêvÉg®äç“Ĺñó%+BÀ"{²9‹Fúéqº Wzï·L›äý“Óu£¯§P^ÁÉœP^žqÓ ;ït¹ýüè[ecG¯Ki ;ÙâõÈN*e+ƒ”Ù¡¸–Åì¼¶,ýÙI‘"i #ÃÔAÖ sŽ"sa02ìÇ#ÃÒ1ãáÛÈp7’„Ÿáy±ìÁÛ%È‚“éÁ3ÀKqüëP‡Ã7æ¾^Ú@t¹4„³ß{ÝõÄúhBCÂwí„oÏy²­#k~\Rv d²Z#ªd›WŒRr3:ŠÐB}¶›QDÆßè s7#22rxœ¨ÒÌ ®UÕȲ›1€,V s3‘YÕ7ži@@96”z"€²M(õﯔ㩯ܲÖ?´sÚN¢sË%@”7©+r¦Ô?L•ïŠkf.òZêÏ; hââÏZ4iQâD & §1… `#béXWb5ñgœýnVٲ¤[¼ÉEz”4çÕ·“!w4’¼Ê¦Œ²Ê¦ B7kODWÙr5ºZúFiœÞ¼ä ¾ IØL-ñ…ƒ 6¢çÙ(!t]eó@'ÍTI=Jíò| rçA¸Pè€WÙÔÓ6ˆi[Ýù[’» å€fÅp—WÐù-/‘ HèÏÓw8Dq”3„t¸UŠPÿÒ£ˆâ*m@”¼Nq[KÙ<¾Ã9@Ü´ 4òÔ±(S'•FÖ>î$ùÎgp¬Æ1 ùûQb~-åüzW0:ŒÑ\@nAM2” m˜QñYf0Ú#·ìys0:¹®kd rtFËщ-Ä{´íõ|†më:ø Wë3ü÷LAI,.Pì&¿ ÂeF„”žè x™÷¥g7báÙ zb‚G^ƒu~òÕ<4ôìFêBúÿ4nÜW ¼ÑPG~ƒf£k™g7UFEÞG~ì¹ÚtYéÝÈk$eR¼šjMJ¯Êžt¦ÞxcR¼àÈ&%“yˆfvGö‡µ~jÊ ‘*âÕ¤Hç]ˤ6nÔÒÄ#­é‚#8R—†$]%MÉt-×5#/·ŽÃp ÉÇBE=æ¤ÑÑãW)X­°¥æ_ñW)š¿VúÿQUXÀZЇ…- wõ°þt¦¢ ÕŠ®íy×}ƒím¢cõƈl¶k`^‚‘ú#=(£:)3¬èR7;¯Rh¹#v§õG8˜N˜ùìÝÆè¸‹¢S'9 :Ðl}Í6¦‘Î":•¶ÉÔh‰[~’ŸÁ!´ØÐ‰ÓtRçè5>‘WÀì`S *гºÐÁæhrÚOËÏIÛuì9.B½pN²ecËOà€t¼me5 XˆãºÆîÿÁ!üž«ï„¸ú[IÕœP¢{ä8zºsuõ%xÔqõev02 ßÉ8PÙ¨gJmÇ’/HéÌŽƒUÑÅÌ.;Ýpê85ñ"b“¨5®/{Qüã w.ñ"ê‹°£ž®eïV)Àþó#eÂV_†Î^w#v\‚Ažy,eâxÖh±¤ÍY·Q Å[Àè$Œ‹ähërF#0‚] £¿™däùÜ™Œú¡# ?ð¥TrXÍ(rž0È?¦AÊtÅ#WÁ蔕@¶1dë2HÙÕ [‰×¼°Ë–Å¥õ›@¶Ù:&2Ø2 2 2 2 2 2 ²7‚l`@†€A1^²Ux!’)2 ²ô÷È€ ŠñJ‘­C È€ È6¥ÿÖO!‹-dn1²àô Cé\þê$²Ô2ŒÌçWIqކ¬ôâ¢uˆñ_C-ýÿè[þrJÐRCä^Ï´_ ™š š4ºüþT×úÕ¨ÀÝJw—n µ¼š/Q‹Ejü«Q~5A«ÇÔ}o´t1õ°ÿò¦'ƒ—nS1ÑðFÁD“süå A0Õ½¼tb¤—7„öË¿¼A/ê /o×—7ЋáÒ-x}yCêB<òËx¦Çƒßê=JǃN‡NÕ{ôœíÒù:g S©Öèt¶);r× : Ó¢S㵈<êe5dg³šMþÑáwT{¥£ fZº:!Gç|Ž€IkBJ),ã…½‹±M'#‡Ú‚w Zôs34 G—2n:¦CÃ~ÃQž7)%¡Oý$:4p4™ˆNp9Àg8Þf:ŽÁDC‡†r8ÔCÑ…j:%`þjÅåFB?¢‰È1•¾uƒ_>$, SÜ6°ü´Zœû»0.nc\jd\ /àRÇeñÏì€Ëa\æxsòqÆe[vEK]1—­ÉK•˜¼=¶-y©ŠÖÀ¾œÅ¾LÊÌ2.ÿÞ›.tnù‡ªBpÚ_¡ãeM/\¢ToJtbÔ5¯Ë\‚᤿ÊÅÉUEÑpˆ"sáp #©§Q¯Vû-ˆ8ñCU5ŠlÆ_.LÕÜäx¸pUq飀ûãR­ŽÄ¦o¤ÂŠî­ »…°¬ÂÊE›°Ûp­ëKVªZ«CÁ¾h¨I­·Ì¢AÊuF­ŽyÍéd­N§(ÎÍ‘7‘-©/^ÈÈÛ$2Ã!‘i­õeä/iÙâše õFòÐ7ÝeËþÄÐÄd±/Dä–‰djƒW1Šƒ´‘®ÁËyY¶¸ÀWä%< BðMÒ™nCÖî¼äឥ6é iEÓÔÀÓªDV”›æeKú Ç(’¡Iç²…Á¹fÙ’v¯dGè&C¤PIàEVÆäF1ýÙe…k6F«-ÞXœG»0@Û‹§Í‘#ý›“ ¸0@[“ %xh[™‚òmL‚`ƒ6î$´þ â A4Ó‹{+€6§â A[— Z5@Pq@gƒ*ñtÕm$hÓNTÜæ%¨ÑoóÊÝhãé†?åzÍ«N•ƒ6€8ßíP¡4 ¼¿Xš†È;Ä™î HËAýx9hÌå Ú«V9h$@rÐØÏ«:ΫºÊ«¦L÷xoÝk –¦SAt@tÎA§蜉N ÐÙ¶ììù€è€ìÎÑ϶e:K§cþR£™Žók6ÐÐY¶Õ?ØÍÚx : :Dç_̤“ÚíÓ £tnôU9²(£‹Ð¸+oé„”Ó&:ÞÅ"7AÇwé¤}¾‚Ž_â,_{ÎgQ-)7æÏM½¶(Ý©°pžë•·/~mQhKÊ*,Æügf1Ç[‹í°(¾©€ÎnÿîïÒsº]‹ÏgÍ› b…—"™(,ÅôXYE`¹Ü%¡ákÞT4Mê„ãGæ¥F†ñD?•8f2–j*9„Ȱl,·ÿSçºDâ(‘Xx›Ã‘Ð&YMÐÛ<˜ ݨã¾òèRG¸$γ-O˜nô GD"ïã"´·y°úJC§D\G_¥6ýœØ‹o0u55“šÕ±öZFèÛ¤j Puˆb4”jãe„  ¶ ÕPS *e    *m@@Áë{{ P(8u°ê(€¨ÕTý ê_(¯ ¨\CNú]fþ݇€¢Ë$6„Áqâ©ó»Ì>h7äqy‚8Å™‚ÁsCÒ²ÔûýÒKxô¸AaEcí(eKT(E·Ó€jʜɱF¾ %À½ š–mO‘þ5–uƒ&Ûcòá°˜ø?õS -í4 Z*´Å—û'e˜tšï)4ÖõÄN‚–Þ¯ ZÖl¢ÐÆ´±)_ShÊh0A;bgdøÓÿ¦cÿG?[&ètÚº2á™ðoä÷ãÇ-ÿá|á3ÃȃÏYägÐá|þ¤ä0w~<¦e_Ôa¦¡)Ø—0d_ˆB b ºö…/ª|Js‡9µàØêxá˦'5R_Ëa=ûÒ8Ìb_´þnÜaîòI#*\fGE…tyaÂV3Ø3:€r”I&æP.ÊŸU®÷©£4b%÷˜ë’E ´êi¤"]³ÞÓë}1[(±»Þç%‹¬¸«Öû^‘¢KÖû‘Z›ƒ¥ÁÓXj¾é1ÿùœ€*2Û´ ýñ"ËØÿq@? ƒ$\À\Ö²8Ô?¶­iÙ2ÃМ“Ëå{SB²œËŸÑ’y˜Kä¦öÕºÍÌ6'\\+@¢¡fW¸DÃ…®Ùmn½y?p·hÕß`V=a"ÉÒ-¾Àä•?g˜ ákªuXþ£HŲB t$@´4ZæªÐéÕ  NW‚ â AoP­…¢MúcßÊ޹³ uSÊÐé¡%PçG½Ø]AÆÒ«SÝd $óìKY‚4BÉóìdqƒâSFéÉ,ÍŽ&óì(Yáó]š%˜ı:m<ï "Û$ ‘‰LÚDÂ|"¡D$æu×ÙˆTã‘ "a=©–9ÈÈÆˆÔ™QÑô‰¬hÙ¡µ¶&# ²1"µJ ë‘Í­G`G µ@dëÈÈIˆÔª,h­kX!²#Ò‘cÈÈÊXÁ²ƒˆ€ˆ€Èé‰Àû]ßû üà9dù‘ $²íHã?3Z+Ö |º‰}"éîúD|4DBªž"^‰èôí‰LÄÑû#šŸ¢z{z˜1¶E®›$â™ÑMß‹D§ŽˆS"½·RŒñ‚s#˜a)€€Ž‚`ŽË gGPùø¡—n‘Ç«1è½" As³êï ‚(Ãã~òˆAd×:Lj|~;5éÂ’Çéù€t4 4ØæºÁÖã‡}õ¨ëþ_븸ùÐHÒÝÒ½Wr‰ôd?úÁÿpƒÿÓ{'‹v~§W.Gú«8ñðܓԙÔ$­S¢eÁs³Ëb!Šp /¡‰5P¸ƒPÄZ®ƒ¢zwŠš ß"©ø·nœ$¸1ôWoâß"©5ƒ à, á‚Ô¤ÊH\û-$e¡Í%…DÕ™HÁNm.Ro‡ÔÿÀ£Öü?Ý{ð¯È»&¦kYe7‹"]0Q€­°`â8œãõ ¿€¢ô+òÜ,…K´W…_‘§«-ùùáÛ$…Å!`9Ë0˜&Ì,'ÇR£·€åÒ2ö®oHË–°¸h5°œKߺ¬‚埇Bè:q x ûh¢s×ké[=A@)üùÜU|àÓ‡WñÕ¤i).f(T­âÙ¤ðmìÿß`´òåU|4«øhVñA )没 S6°Šç ^Åû5òb!9ÎL ëhÊ]4Œ"‰Ñ0bÍhÖ/dôoK'ö,ÎZ5t¿]‹ÃGßXÏÑM'ˆ¹_ >A£ëAºeÂUAPhÔ=àEˆÆDAéJ•Âtpä”@ ”:ê”6Kéð:P%PZ'ï J§%ý%P%P%P%PšÃ>Þ¶)Áß<%¬—.Ò ï_sîËk0õšNö5_ŽÎ#5_±”ôQîÞsy–dù´æ‹Z3t¹æ+Mæ™Fœ Z-v}sݽoj¾ÒØSç©D(E'3!•ɤ¯PyÌ@ÍAãi”Ó€]Jé‹€U×RY §-~WC†ÊÕ€f43]»žÐÍ9¥hÎf&˜yhþ]h—œ(šÔAƒ†*>¤žçò.]Àu"\ë(Cà®·ƒk–.l«DàÚ²tõˆ×–qAn×|Á.HpÉv×á‚t].(Ãóâš'[°]ç–®y¼~ˆ¸€ëÍàš Žü¹qð:$àÚ¾g(Ëqý/*4ÿO·æÛ:ÆÅ_M·Û*¶¥Qz3ïJ>à/µÜ} ™¤¡mÔâ¨?Á£\V "ˉŒËÇÒŠh9–Œ€ÈÖˆ´è€ˆ€H´ˆ¼u"#4àkmNF@D@¾Ö¶ˆT¡‘íXvh­óh-ÈÈå÷{"°# "g ÒýMÔC:ÑÇ4G˜>é&`¦¥7ïA$`:—mš÷ü%0mß…HÀtL3!¥?`Úøºé”Þe(=¸—áBÈ0m¤ ë&`Bb˘>¤Vòôz½Oò‹ÀtÒ íälê¶ $^|G}ñ0]¦™ùI0`:— LW‡ Jï\˜þ´ƒ)¦4—ë»hº»t¦¾+†éú.¹lrÙkíÖwE/õ] FãéEþæbOOþ”NºYK§_÷õÏJt¼¡“ºDs®GÇé„¡ê»Àþ­ÊY:t‘,D–Nä9–è›LÂyÓ”!™\˜G>sšóÔ7î¼Óþ:‘‰5ÕwÁTߥ;lѱ~xòý¼t‰F@di1ò¢Î"‚uj¤`ÁÏ\:_½uæU·¬RJ«Q/ =ë(kJx5êÇW£1¯FµW­Õh,­FcÅj4Rî Õèü§E@D@D@D@D@D.•ȇÙOé‚È!D*xÈ_C„Wˆ " ²˜ÈŸY"#,çt¤j#½½@–Ó¡‹]"ÑÞÔ"?9Ô üŸ<ÔÔl]¤7ô"½–*²z‘Þev¤ð×2+ãÁÞKä´Š#÷ @ýPü9͈Æ_* mHÐBÌÿ‰H͉Ьdk 5Õh*Ó”nÀ&¥†‰À ¸r7hÖVh–ÚÑÑÌ…2Í¿ðunÀÖª•Â&ÊÉF’/ ì>X‰Å‚°?X€ÅÕ³€ŽÚ‹ó£+`q<sXüRYl£ê{XA-‰Ÿ\*‹-ÈŘH¼%{± ¹€u,Þ\lAG¹‹Û}z¹‹­°1_Gý܆…Wûo¥Ûq Ê"µ–N§ÒZ ëŒf§NµÂ¶<ÔvMGhÈ0¥» ÿN…ÙŽ©¥€,Eq3Ü@ñ[ÃÂS?©´”XPh6 Rh¬£"Å¡i~ÉÀÓNž".dq”Eúâ¨\| ÚìÔOº9å™ lq–U° ˜ñ¨ú`!–?œÔ\tÿ9Éá–j.ÇDRF¢äàõ4ÝzªÄv‘3Ûù‘ò)9IYm¥ÿU[±„¯xŠ 6bÆïÿ¡¢±aÀb„I‹áJ <Ý ˜ÑX î¢ó’m,Fh,gø÷ÿo-Ý[Œh,Fôù1’ #d‹áif¥o YŒ #¶8PXõGf2ÝLz KBÙ—5ü/t·}vé ;ÊYsN¾ “K…ˆ†Ü° }kO;øÁ|5šÙQ§Ü¹o„ˆØñ…"™^³P$ Žü {ö³ƒ¼Ãˆ%D„ˆ8©1›4A »Èì¼ú ÙÚs_äFÔÓ»ƒÉ•ÿz~ÁÈ›£ÿµ•¾´íÂY~Ç(Á W‚ä9²–’ßXü;F”†ËÒGj´¬å·PÉ3“«JŸE3Q34@4@óvÑ„šPBã‚ï —†.b]î4¦¥ð£I>¡IN÷š0ŒÆe4n54•<9rš“H Ð Ð4h&¡,_™ÂÖÙÖœ ¤æD íoBU‚ÓåXœEãhP4‚¢œ˜¡(Æs¦œ<"i<¨ ô|B¤@O”@ÇB9¸éYr‚›~ÛŨƃ¢­g!\MjÓÑYP«dçEöa~i,Íú[ ÿnÆqóâßr·ðO‚Ó|+‰’ŸÎò—hÚ<`œÊº\\•󀮕t¥<`úOÍ%’ê˜L#ʳ8-®jWŽð.õØüÈw¡²3\9b²^n–ˆÍIMë=ÚÕ{aY–ÜQ–Ü•³ä}½—æ‰äpÅ[·”'Ì1*ÞzYò%ÑÔ®4Ã!²d‡ò* [aÙdG”² W2(F [üdƒl¦”ý-–]'HòÖý“Z(P{³é’å?ÝÅ ýÆS•ò~%õ´ÊuX=²¬]ÆØ'¨i” .{äâÏýœÐ†ã„ÞTùÈŸ ?*@`F`ÔüÅÀ]åÁt`F`T÷àÈDŽƒFÔu–꺿h²~í „3OŒw‚!!¦—³Nƒq`9k—³~QÂÄf¼¤ú(F©Nš@ ”@iœR¢(P%PZ®ñò((-÷Ä "hˆIàêHÖÄÎ…C¥/„:çn kJ tÕ”jU((JiµH8(Á.4ÞEP:ø »tõ”¦e ”@ ”6DéOˆZã|J±šRç5CQ)y¦”r DÉ•)%°4‘”’Ë”è¡gz°yŒRt’IߣLI¨£4œ¯˜¶Jù¯Çdäͼ€r”ú` œÊ´2K7E‹ $åíB©e(‚²H}ýßCÙGN]3PAIÒ]jgÅGžýÛt‡JÂD­3¾¾B!")-M—jÿÆ6]àÁ¥2~™ Cá)GPh.Q¶=óRÏB¹ïÔ1Ï÷ î‹dÆ©§ s ý¿ƒ½fp;9·UV;ànànà6ÎíŸu¸…ÆYlÿ$šoœEò-Ù—òÊMn•©Ä’³ØY¤a£0[䆸ä­)¿ãf!2oéDdVÐ¥EžŸcªägR„ͽÞv祊•8s™lrH9HØ8‹2WË΢YVÍñ×ÿÕiÌýy„Ô9ÓåŸG ±u2½ôh o# %oº€À-øy„ƒÅLVgÂ: LÎÆd˜˜lHNNÎÄÀ„Óqn&á &¾–‰ï0‰r²Š›&Ë™ {À`rF9“í1)Sî:#è®í1ÙÆúLÀdëLJ<à oÊïZe}òï°Žc2¾Ž2ñ#À\À\À\À\À\À\ÀµNA–ÉÀ\ׄ Á9ÏÝÑ® å;€ ¸výU&*f\^p¥ÿ¾YòR…t7„«XPOèõj|Ï„KÞ‹Êý-?Å—ŠïSãÒ 7•®åÒ¨sµ7÷“¸Ü_ª@H~Ççxª —›&<Š+Ý‘óŠ«ôR…e¸Ø|¥Û¤ aEóuì©€u¬¥’%mX"X€uX¢Ò? ’µ=5ø4aW B²¶ +ÿÖöaA².ÇÁ€<½d-§õ!y€µ}5ˆuÖÁÁ‚d]Ä¢°k}5oðb$ ®ûÁÊ€u° YÁ€d]”ƒuÖJÖþ°.V½dý›t{¦dÆÀê¿ÔßGmðMiÉ ]'JÉ ÝÿøK ,ªc‰a쥆i#¦Ó¼)™¡ê˜È/5$eÂL_J$š—z…åå²4#"í!X‘ay¾w¾s†Å})¿ÔpÁÕ‚€³ N­$Îá@r6 §%6€³)8«T¨ÎqmNKŽg3p—œAëºhà„ºuOì­{œ®{ÞÆ’LÉNÅÈ §Áâ(,HS$áv`q*“fdŽ\ü5±èJýØÌ º ¢pevl†¢®ý;–!b3ôXMÃ"´b3ÂÂ"‹`X­ÈnI5xÄë°dÝ‚ä*xI¾:àÀk㼠Ϣ•0èCØ/ð:¯‰qð:“>„ýºDùš]† ^çó7 _à^à^à^àµE^s2^NÞ8yð;¼Ü¯P䏭:¼Š¹-áå¸{i«Ëm…1^ zaDK0Ï… 2¸2 dÈ.ÙßÙ!È–Ë c vAëþÍŒx€Ú%Rû§¡Mî’ ó›O<”í¦–䦼Ê2µX¢¸Æ†¿Ñø^^AJ£HzçKê !’——†*½B:Açõ”‡[T¤il]õ›O¹r‡Ë’|~ó)ãrÔ@C­Scã†ãŠV×yŒÿÇèG]kÇÿ?øÂøG;þ¤|3þî ñ'¥;þAÇßçñw<þ¤x¨þ5zÇJOÇ?é§Åñ›©µãϵ³#ãïuüãðø¯Vu±TwýQIvb[v,;·XvHã7º½È.ôØEVôé¼Ö¶ŽÅ1Q‚Bf†d'‰O¤î8-jv-v<Û#ïcvâóÙ¥ ZÙéXœ8ήä¶ÇÙp,ÊÈÇRÓŠjÁ¢8ŽAG«ÇÒoÇ …à8ŽtÇæLy¿v8Ž*S&ŽîF”Uyé8Ž¢í€t\–íø¿ÍÄ*q„R¼Ñ)¾ZêjŠ7RÌ1…tóóýAã½D«ù¥±ÅñÆ8;Þ8;âÈ•*ÔÛÏåƒÕ Y9°:«™ReE ¬6,WÑÕBVÿÚ·Yù©¬>-;¥±vVŸ3r=÷ÁK~ÌÇö‹c8+?VW˜>‘^›@çrƒ1ÿ`'×úѬ~àw0}ÑC¤!qfõë(±wýò-Wº@sšÎÄŒ¬>Ђf. ™@V”š¹d ÐN¦Ðê€ÀÖœAj`k€æm YQ¡Í4W$5Þ qGEãæ£q%4µpÎóUI Ð\=šYHàjþ iÝ,wL&$麘\¦œ|h½Oa¡œüí$Ñ{ë0¡ÄÝwÉ℞Åñkwô~lþÇ4H/‰Çô]…Åñ†‰µ8~ÌâTgCªŒN©Š -Z?Ô@ Ô"Û_Ô@ ÔF¨­Àd Ô©­ƒLÀÚ•ËÚŸS„Ç™køøìD#ݸšŽBV´d¥d¤í´ˆ¥Û%L|YÚàáÓËòô+@« 2#½¥ ¤Ô¡46>S“j)ŠFj;N±ÁÔº3kh :Š÷I±ÃQjNgD¦&x›î‰&-ÝnäJû¤bÊó”ä•z U¯]Cû™?¿¨BŒÞÆŠÑbÁš#Gd#í^ѹžµŸSF84ŒXzeƒ0Š¢Ë,#VVtƒ–+NÏQé¯2b,ž•SRrÞµ^Oˆ‹—·rŠ{Ōҭ¸ Œ¨Gѱ*k"íi_ô¢Ï%²N7B°R¯¼.5¬Ò~Àq:ŽMá€tl Ç ƒ…ö8 ׃c¤ã 8†hDà€gÀq8 ¬àYÇHÇ–¤86…ã½x8¶ƒ¶cc8 [ ’@:6åYÇÖpÀ”CY¤ã"p@:6æèpG Á˜տ Gäqà³}3ÛMë {TôK8RCé¿ â ê-Ÿ¦Ê‚ÿ3ͦÌã}çÌP*ú Ž©ÌmÑ/Í‹C0÷<œ1Í™ÁBš¦–R<½=HÔ#5“üØè"RÿþdÆ(”Q>êbCÊwŒQš&‘i•QÌÆ(”ŒQ,£XaŒ"£0fŒæ³*°Kàèz®1[4œ¸•Á­ò¬Jûw}÷çÖ¨…A£æÕ¨¹j£Ö}:,ñæŽ2*ŒZ[’ž‚Iœ8\²;ÄÑóLrdÔÒ Ë˜;é¼k=æHF"ïcpb@ŠFžqi5 .ÎÆ¶Ñ¦q™fÔ8$‹óu<|f”F¦ÍÈFÔÕ ŽGÚ­Ï©’¤&ˆK¸GmÇcò >_bÕñˆ–Ql1ð; ¢÷'á†_õ'±¿ü€PĉA@"6bØHt%brmðš.Œõv@”¥bAØ Ž²ŽÈD2HÄyÜ×HÄ‘@ Œ=lÄ9$bH`#Îï5ɯFĹmTÓF@°ˆ‚€j‚¸zC“Ј³»¯0Ö› q@¼I3¢¯q¯‰ìŒ5@¼EÕ^@llÄyCˆÓƒ0±…u„ýk@@5Z5ÁXoD"`¬7â5-z  š®bM'1æ)-ñGéBÓ ¼‚¡አÂà§¾Àc–AP'Ó×=õ•Hd‘“A$`ލñXÑC¦¦ˆ£F#=pDóÀiÿ- ‘á0á>¹A7üÀ©«à´…ÃÇÑp¸‰¬i#&áðÀQ‰£8ú¤ÜèÍ'ÑŒò~žX$¾Ewá¼ÊXÔõJXzïü9-©Ùf¬¯˜¶ÄJ@ý˾’s¬dŒ’sE%WöÅD©„Ò/;ÅW³JÎøbVɱ§ÑI0Ò8Û—…Ô¼H©è‹_¤»J.usäe©:ØR¶:— ÄϲPÍABÎ%!C–e1¿¨ðËH]×qC~™8d1Ú~™+‰ˆøe HšJ#¸®#ªäåãÀ»ßb HìÚ–*G ÆÃ (›dé2(A–@ ”V ä`—ÎO©B”Ú J w½”T„@é’4ý(((((((((Ò )MALüü”êbâ ´u·Š,ý¿-¥B)¶)¥vçSúЦôÆ2î'V‰–ÒHä‡}cr«ûÿ¹0ÿÿç¾µÉmJŠ’”Òÿ¡DIn0|°”Ò5md‚aQÒú ýJ’ÃÀ³.†!‹#=„YÄùYúÇHZPI£ÃŒ€ú`ºùE®!†ô¯tJìKÚ\Ï”@ ”)Uy+h¼šFGÆ•I(¥/¥BžtKCB÷éÙæ§{ð¤î¥azvhxà <4Šl™È 1ñ™’<¬"ÏtMŸÊú±ÐPJ}sôsëŽ]"Sã¼<žåäWredJb‚x;9%tû|»‘¾F£ÅX? Ì§Ðw½ýñ4¦ÉbÅF†Ÿ˜=Î÷£ÔW#%âפ")q2øÔWòùœŒ´ AŸ‹„9Š”P_»¿àî½ñíäj4ÕhêFiÜ1âÅŠü„Xã5°ˆ¦g-h¸Ä­ñ÷\F#ðõ‚” ))ÏŠ…®ÁªLœ øŠž ña]C°è6–8*Ô³Ô¦c%]£]SCNu »Ñº þq‚t-*a¦‘w ,š ¢ yr­7í^Õ‡·\Æ} pÙ&—âš>^µW«ÂV¬š=p@ *è€è€ÎvíÎR:ÝǸ¦èˆ¿TAçÚË3}» NâÂcUëEƒ ¸€K5—?´V&Ns© ÝtGå+(—y¡}h;´­L]è¦ÿcŸC¡›šÔƒkY™³B |∠†I@"N ¢âGÖâÈ ¦@"N*#+€€ˆ¹¯XGÄ›±¦júWsâ·(à|ðXÄ#48DêÅp££”2½pŠk–Òqlj┳M-~Řæs)>c#œ¥ž¤±¡SŠÚ—AÐËÅ„ í¢>G¯+K…;ìåg`r“AÁ“ É =PNþ%¢µ%#R­Î ȹ€ôÔ$dc@ô@Î¤Ï 2¨²òÏë<_ðR=Ê’;„9ž/ßCuö{ÍÓ”4‘Ò òR=Rçq% Å¥z - ap…ØXwþtþ· p, sþfFW@ Ô@ Ô@mˆÚÁÝ;ÄÝ«cRïfp\Žj…5à ¯|Ø¡db\GzØ ‰$ 11D†ò€-C6Fpä$þMÇéJ„v Ÿµä$€k²–ú6üñ$@(&|¥|¸e¯¹Ðй>:Í\šÿ':tnùGRRBBÞ'<Ø‘éDY¨P™‹Y×È‹’š¾‘Ç t<=tß_ÚÐJ(m¦ÁsüòŠÂ¤p³tŸÚ«ò¤$ <ÔQÝÂìu¾±ÙW_ÂsBÛ,mjéLüÙEM¯ãñ:RI¾ÀëÈòµŠxA¾.A¾ÀëØ¯p^oÐòr™Wèñr^Ñ5¼|‘—˼ü(/7Ÿ—D3úÞàjozlñšŒK€x]/« ¼ÖÖ‡àu\ùZ…Ö^cyñFT ‰X®‰fðé´“ ©‰WŠH8 ›»R4ƒÜ ÎÙ™h†D#X¤qáhFT^Ä0½ˆŽq”Ÿ.á–i“’¶¸ÑbmåE•;!d^žqÓ §lcÐ0¹F3è 2CÑŒµôáü%†ì![•²ó!K ÿv"Ÿ=ï‡yå]7Ÿ5ŸÔÅÆ±qô1çCéÍÒR#á]}>‘#Æ“ùD—‘ùBzw>!FCÂ5÷Í]Ô®¡€¼ —«&uܗ퇰ì½já€j–CLX¥®ŽÃpL Ïܪ¡ ÅÑxøitgà8¤Ö 8Þštt³>2§9™ëq„qŽó¸Á“¹ü¯ò­"{sôrÄtvû]d™‘äˆãhŽ8rÄ”™å‘×ÅQ'­orÄĨõŠê×û  Àù^Ç·Ìq/9âÉ_ÀpüìÀXZ¿õŠ×a”Ú°GÕJ ƒÈàÏ| þ‘g~W;ÍR;ÿ³Ÿ| =z¯ƒïdðâҔ4˜ «‰øõS§®&²¦¡WMä–šoþKÒ8ߨãl!1111±K"¶ˆR4ÿ,!¶â³oØ2ö¡O,ŒÂì£Ðaäç1J·°ÐkH¬±£ñɘ"0­ˆiñÓ 1ÍdCCÁe¸˜ MÀd1-e4ÓSêE”Lžž=÷½ÿæ)YßKzMJ®Žç$h0ýqO¹¥`Šõ¨Ó §[:‡F'Ñ`±~t2˜¦Í{ÿýx±¾LΦTïÚËA\*Þ¼,” .Çå²T^þ’GÞ;1+ýB.ë÷ Âè—28*dpåB†Ð+dHÑ •_"Oî¤(ÀKBE!ëxçØ22¸_à+ÿ,>Á©yTzÑÂém`r`ŠT×ãVÁÂäk1ù¦x–[ŽéO}ÆÄ~jàsƒy»ß4öA}l†åÙÇܲcÒì±öè½ø2 ßõ± &6YDÖ;®ßj½ È‘5ñæe@Ú«5_4*M51:ÐÙ2F×ΉéÔ@ì€è, €Î†eÇ0íÉÇ @çät*åf1¿ pUý²Tbu~zYZþÅÓ@q{Ÿ—¥¹k-K}C‡z›.ÈËÒ´ÛE‹›b´¬M†EËRºî²4zY–F³,õÝ_I‚((]¥J"°K—"K O”@éÂ)Uë;h<Ø%P%P%P¥D©(]ˆ,1(P%Pªör)ÕÉ(mšdé(™?P%P¥+§´Š]ú#îZCÉ+%?ðȲ£³y§4FšG–K”?²œ¾ùrÁüÍÀüÈr"ÚHçÀjQJã縦5¡§~æG–iƒPŠNfBš&é+4=dú¹¡G–íÃ|©†MÙ1F¾÷–Bƒ†ºE#ÇÑq¤¿7Žƒ|J‡yÕa.Ôê°^Å7 ©Þx£Ã¼àÈ:,yˆfvG ÕLjÊ ‘ª³U‡Õü\˜xÔ5]pG†‘.‘FnöÛ}€ã Ò{¦8ކÒ±£b± Ç_Qyi4GôxG&]v1¨yçWü 毕þÔÐÿéLÙ Õ²;²C“ž<²ƒS”×–žqÞñ/ÏÒâ@Hñ"‹$ŠDKFuþbeXvR7Ç_=RGƒE:kþƒw : ³ˆÎ‚ÓÁnѳ‡ÞIÆ_"£iW”QW”®ä¤Û”8„ Ãz2=t®ÒiV”dESô#’ÑJWÍ6H¬£ãö{»¢ä]B‡L¼—¡Ž|j_†W”­0L›uýXï$«ôÖÄ<¦æJRC‡ÇVú4†‹ÔÄioMxSxŒå†.ÄP$4°Ì[ãèVÚO\&½5×áâÆœç‚ÔÇ)pT‰Éeà¨XËlÇ)«+ÀQEcÆOÍ@YAY]t\“²z3ÒQ¯¬þ)­RZ£ŠÿƒÏB½ã±Â{Œ(DÌ*²´`wsÞ=9üÇÃÒMÓIØm€]ë¯#w`w,vëà E¹»#ËÝ*ìêÌ??R€:”Þ+ï4Zퟳ·9çȵN&»Q=ꑯPdžçÉEˆ¥µ ®)wa†OF`F%@ójrÀètŒ–®¿þf’‘ز™Œú¾y+\ËL™ÊjF‘׳Aþ1 R1Gì0rŒÖJ˜®ç ÙE!›© ì0d+#j@vQRd@d@vEÈVâ÷RdGö!e2 ²«B¶1 »nd5‰ì´ÏÑtñMlö9šC#ç ¬ñœ2``Ö¶`-EäÙp§º%'ê… XG“¬ƒäJÙUKV÷A]/°œÔ°ÑQÇEäž²“hä ²VbÓÍö*±i§ãoðÓåVÊ™Sëô(¨o`Ñ£ Š×¨vº(°˜‹ãúj¹(×°qâ_`9¹q.Œ§ÁO£B~fúo.T‹\ŠÇm*±¹/RÃF=]KÔ}ŒtÖ¦sÐïfƒÎtêµÙ2:ÅýW:Î7fhð!÷¼¢”ÖÈ>У9^èP‰l›N:!F^ºï:NÍP$8.°åËt¸éÆrxÆ„ÀJ‡ªmŦðŽ·™ÎÀ3&¶êéð‡Üíß‚RjÀ:ÖbRmj€uÉ:SO²Æ¼Ç^m‘ò-#–)7ËH‘‹Ï°\ÛHE6RÎ)ß6R±g¤â±]ˆüçäm'¥ ôTǬw¯×!¸–Èp]„t¹—®ÿ—7{ÚN·B§š'¶ØNy~bKMaì?±Å_å@ FÆÅù i,]Ć&jžØŠ…'¶»Ü³ŸØb\šð®þ‰­îsLJ‡&Vø#šî ¢ñyK_ºÙÞ æ^ XAÈ>¾0'O.à.à.à.ak/Nž&cþ®˜Ë¶ä%í‚aäÅ ô¸€ ¸€ ¸\²?6+’vÅ\ÞŒ¼üq§T„¸HMÈÔÄQl¶I™†PWW,½ço4)S/Åi¾WÇô1G{)êrM\pú nYø°æ,¹&μ‚ÅÖÄE¾Á0Vçæ¤u"¡]Rx)ˆ@d"À;Þéý‚däÍ©f¹`ùKr9œ×”2õÆÑ`õSÊ>Ê£k4úì ¹åÀžD ³âð|›t vhÅãr¯ÈÎ BðM1݆xIQÒüéË©MúBª ¿+:NàÓÈ’x£)eG¿¢“®E>#»OÅ”2•ÀsJ9í>ÄŽô%eéC ÀLÀL›À40]½4ý™¿¨ Íæ‚i¡:Á¹0›va€¶U£Á¨£·hcT§ÿ¼b@Û“ zF 'tÞ„mP­“ðVTÜöU‹ÏÛ´94CÅÉßÌ$)Æ‹#4o@‚.VŵIÐæœ  ‹4Ÿ ÁI ¨¸‹Y-TrtE*îO¹‡^߈Î-¿ç£DÙj&ËUoˆÆ•¤x¿¾—$]¤”†È;D3$d@Ì$ \ô<2®ôžɉ§F´W­÷|DD=â÷|Ð0ôߎßn„ßaê=Uù:·8ß :‡Ð©ÐÐik¶J4Ðlç±; ³e:sS Tcg|6Ð9·ìÐdg£vt@t@ç¢èÌåÀ+ÐÐÐÐЫ¢ƒõ–éÐè ƒ:‹¡S+;°; :°;C§ <ê­{ ³UÍÙÐ9u$ç_̤“ÚíÓ £tx Ò?Ò Yw¥ã-С³ßËtüö~kt€XœœÅ”ˆ€ÅIåb”ÇÌ•Ë|ÕäÆü1‹’ Ì"Ý©°pžßûé"Ü( ?Ì"´-È‘YœFGÅ8‹SÚîã°0:ªË"º8îYÕ±p‹X|Hÿ ²(IÄ峸¹H`ñöXÀ:–UüY:;ÿ, š ÒjÒsº]‹Ïg.2 ˜MYxy-F¹hX0½> Ëç§wÐð5?Ë’F4uÂñ;Ø#u^‡±úgY"Ët:œÚןe‘¤qYœd&‘ÿ©Žˆs]"q”ÈHOSÑ8Ì$yR¦a&$aŽûÊ£KáFx–„‰;ïZDaä}üІÊaaIC§D\G:R›~vÆ$ý%º‘_¡cͤµÙ%PPu¡ Ä;Õj« Y¨Íƒ‚DT• E¨¾³ƒ‚D]¨*F¨óƒšåLÔÆ%*ýA¢.@¢ ú.Ô‡¼‚ZêLÄQpâPôÞ\ÆHeÅ1]Ú)Qü:$6)¼ŸÚ ¼A ÝxL’29›kVP©çŽúK¯ðå”Eê=5)Ù”á…5%4|ࣄ×0¹3é#;êt†kPM\š²hÂä‘þ5²psAÏÉùLqüœ•ϸ̬aˆÀçxú |ÎÏçØúíÏ*9ê3 ^(¤Ñép4Ž\7Nc™ðP.½Þ‘îŽüFväÒ…ºŽœ#>©ü úXçÈyñ #¹—K¹¸(Á47«@Zð»´q ¢?‚­(^> ãKПL’s»Ñž ^´Ç¢=ĆÆ$8W)A©«ä÷E©œÔºÇ¦¨ÕE'.‡}ÔÁ¼9M­ÝB(aÊÎ(5.XjjIHýíì"appppp©YÅ€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€Ëµq¹‚ê‹Éú pppppppppp¹,.o!žlþ.† äe›\Þ‚¼€ ¸€Ëus}pppppppppppppppppppppppppppppppppppppppésÁ{Á\ ÇÀeû\츀 ¸€ ¸€ ì>¸€ ¸\;—f¥ùpy«\ ÇÀ\À\À\À\À\V‰[‚ˆ¸@^À\À\À\À\À\À\À\À\À\À\À\À\À\À\À\À\À\À\À\À\® Þ§.à.—Îö\À\À\À\À\À\À\°Þppppppppppppppppp—-s‰ÏÅ]eý¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ËÕç_&x\2È ¸€ ¸€ ¸€ ¸€ ¸ÀOp¬÷¯ËEËK¥Ý·à.à=.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.àrl..™Ëpè±·¡ÇÀ\À\À\Àåípy ~²ýp»>=.à.à.à.à.à.à.àr—.à.àrá\.:žL\& € ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸\ —i$à.à.à.à.à.à.à.à.à²Z|Ìáy1ppppppppppppppp¹z.ñ‚¹Làpppppppppppppppppppppppppppppppppp¹h.—ÿÞppppp¬_ÞÊúå’¹°¼¸É÷ŽÚ?ppp—µ¸Àîƒ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€Ë—ËÏW‚ ¸€Ë[çû²M.oA^ìߥp¹hy©dq‰ò.à.à.Û·ûà.àrÝ\.zýrÅö墹\±¼pp— çrùöe ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€Ë‰¹ÄKæ2\¯pØ}ppŸ .à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.WÊ%^<w•õ0à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.×ÊÅþ ¸€ ô¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸€ ¸Œsù.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.à.'çÁ\À\À\À\À\À\À\À\À\À\À\À\À\À\À\À\À\À\À\À\À\À\À\À\À\À\À\Àåh\.úùÊ à.à.à»».à.oÒ¾€ ¸€ ¸\º}™àqÉ\ /à.à.à.à.à.à.à.à.à.à.à.à.à.à.[â²Û}²Û}þï˜Ïîë¿ýOþëÿî¿øo¾ûŸ„ßþßßz{ûý÷ßý‹Ç^¾ÿþ~àØÝûï¿¿}ìáÓû‡áóžž¾ÿþîlǾfŽ=}zk»ù+…C?èî«ji#‡ê9oíØËöy_k{•3ú~[bî{s*íüÍíŸÑ¡°¿Ç‡‘cƒd'Ϋ;¶´G>ô¼ö¡ÜWí¡ö x¾¿œcCºkøØÞ^Þû–}¯u÷%=’v> 4ö8r¡C޽|ž½±ÛOžz7Æ;ïßö }sH,Ö96¢êfÏÄXwÂãx+³/{ÄìïyÄ­Þα‡OŸn‡UÝõû¦9öøéíûä„ß½}³Gí8Þ~z78‡plP'>Ÿ÷8¸tZëXG½§™þƒîÎÛ²)Å C'XÓv÷éãP˜• â–ÎZÖà²C˺Quèë­CwOCr÷ÖŽÙ!»ýô‡†­{¼ŽŒ ‹Ávlp û0$WÛŒ0àÐ?tlßi¿FºY?Ý us™ñšŠ ŽœUÕài¼å6OáÙþƒ¶2{ÿéCÏkÛï¾êâñômݱúe×¹3pç=v72.8†cãǾW:öƒÞÎK˜|c%éýÇOU ;oKÇæßC7.sÖuïy¢k$bΪþ^éØz;‡¼›çÁ90R˜qò8ËFb:§ìüu¯1'ðÊõn­ŸuǾÖ:6ß CÏsÕ¯Êjç>ö½Ò±ôv^Þ-=fe·Ÿ>½~zWtvaÌUYãØÒê–ñcǯ[#±?6Ù=é±4U†ƒSDz‚þ~ïØm·Þãéu°nðXgœ»Çc£¹Í;÷=~¯wÆcÿŒïß>\Õ §ºä²ªÓ\c1ïuʾ×U*ëÒZ:/jq æóȱÁUËI­å,´§ÝÝÒCCÿvd"ßÞW×&M–úf{_†ÝF]ûh¹¬oÝ–ÛÂ~üÔÖi‚¦ÛÌ‹áØQmÆààØ6Ž– š¯_.%yt¼{?u_¶Ä}Kcv)ÜOÇhây±-^㜀p¼þaÕ ï_ÏÝσrHÇ{wé±¥}ÙÒ±º{ÿ^©Íy°NáÆ|¯Ôæz; èFÞG3TÌç-(õÅ)sOùjOy(í|Ùþ v¢Å K-—ž7•7ßRN}èØÓØ[¢N\‡°þ[=kóÔ÷>X”31?·tlm;m›þöH:nüÙ”Ã+é8´fAß*×êÌ–£—¨te¼>­ã˜mèɆ»ÅÓkð¢‘òMß5œ°¥ŒÆ÷JÇ~ÐÛYVÈU'ô¯>VÔ±ôØ6rB—zìòݶ9|Á¡ƒm½ômK™¬nõRgM6QjwŒcKÞ|q-ÇN=Ö×pl]·ŸÞ¾ É-ŽáØô*õÙ.®ÆÅ¡ã:›³Ö ).|{æ:qÎ+vp¬æØißDzô1ˆc<¨qîç̶üØÉaÇyºìÜœÎýtÝ1Ȩrӱתc³/ô¿«>¡¿³_msoS-hútM8ÁêŸÊª?o» Š¥Ç¾aŽÝ}úüþ7íÀŒlÇ<·ûbuñî±íÿ>Ò1^L3öºÐm¾\‡p‡<ÔQ«ü(ÕìŸù™Sò8RI6õóÁê´Íü° ŽáXW"ö+ª§úÏþóòâç©ô~ɧ‡!‰¬:áë¥ Ǻ?Ü0çÑù´cxyç&Šc5Ç–ÖÊ.ý…áU~ÕwäP}/lußaû %>ãá‚{¼îÝt¦Ç*\lÄ‘­>´ÂÛ“~¥pèÝ} ÞÞ´)~þ±sS¶ÿ÷]7ÿƒ©coÿ<õS0)|_¾±û£ü¬éO¨uƒÎ=õ1üÚgKˆ&^x}Wzáõ DŽ4¶‰G2pÂÜ'ߎóû§lpõkÕÅ&N}쨣ôyc/þ[åØ&— 8„CC®ÁãH5ù:?¹ôX¥F>à§ Ë.áTFèï©XÚæÐ³#ÃdO­@ñ{‰‡Ûüoø­[vÈvñÏ(®µ@;Íó3÷Ø £ºÍ?èî{ºŠ¯/[WlêÖ»ã™-m)—·,GvÔCgü%Ë‹^HŸõPÕ-wš‰¢Ç±_ ¼®_\zïß+{mޛ˰>ߟc×ÝÄ®½ëvõô»î?½ïöþáÓÇþ‰õ»^æëöÓ‡§Î·Ž¼‹ ÑÁ»úó}hPØõÜ7sGÝõðéÓmoªnn×WÒ®æG¯a§ÌÕ».ËÞ%¿íÓþÖc׋X¼k/1ï¿ûr¶]¤ø×óz{nOøš³jöÔ´<¼çK¼ç®«n/c×yŽÝ_öžYîüã}Ïíí*,´VÚµ ‡{Øs¨ò~¾ëû#w Öh¡UHÿ;Ãg­±v»_eX »ä·O#–ÃÞÉñ,GØu×ï=v½¥]…Xc/Š(?qßßUøÖ‘wMu¢í\¯ïú­í®Šf© œ~‘ÛÞ5r]Õ?ž_¿ÖÕÛ3b§°kñ®/ò®‡AþIãñ=ÐÐê»ÔºM?±{7±SNî… ˜Ô‹»VÉ;Ìðp÷» ÏÕv¥¡î¹Æ»žd×·ó.NÚ¤ínRç€ãG¸dáÆŽ}GèRa`Ž´ëúgˆÃV¸óÓªë þê3àœ#w5_S §»º=xÛÇ{{ßËØŽFjö|Eî÷¥g|°sÉN™±ëEc\Õ(Œó–v?‘þvÍ –LÍûÓÇOìêšÍyT|C§Õu§\þrÖô1v]Ä®ëŸêvÕ5ä]#]ý–9ñÝÉúj¤#Ô…úáuA×äm-þwØ®Á¶Ç%ß/9âÔÙõT(ú^1„¶°–sΉkvµÌ-s<ò®E“i½W(Ö SãÕùê=³cý³ÛÑÁ\#XÞo},R~Âã MV™pz#{Ž`‹tQTUûUð½&*‘¯b×zÕµKRøç-­8M|IÃÆå¸õ Æm«­vMT k…Òv×—Ó®»OŸßÿfî~iŸ,ˆ6÷\(v¼ë$/N8 ¦Ý{BhCDaö´'ë²÷E´ßY0O}ì§žêìæÎúÈv¼ë—†ô¬üG!R—=ëíj?'=ö|`/~²Ø&{t7¾«.¥V÷n­^~5|½Uv-SÁç~CÔ¥W³sõg°¼3k¬¿‘÷ü Ùœ,Û>¶ 0µëèù­õ^ótÀ«™ Ï­YŒ°æ»™¾ÁéÜ+¼º]—øê¢J6HZõuCý=kuØãÄŸrÍ]$˜'·ò ÄCç7´ Æž#¾]g¥DÑ€ôV¿L§e:k—‘Ö8õjž5åï±9d×2‡¾fÏ—ØwYX´Ä'Y£ä _ɹ›úæ™òs\k8ôqÌW¾¬µçÈ/€<‡×¶þžáªf=ÿ#ØuY»Tfõžá²ú‰çŸjš¸pé=„›{%Î)v=8pä×áX7æ[æ[?è7‚Ã8\xöÒé:vÍPXo×òaÞÚ¼¥]Šæ¼Ý†^À.ìÚØ.ØòŒÃ©y ÝÁa¬\6µëzÆîòï䂺úÆw]þ\Ã.ìÂ.ìÚÈ®Kóð.­¿§óX°ðÂaÆaÆáóÞš¡Ä.캴]WxßĈ^ö®S󹢫ËVR8|ܹ¾áÛÄa†IÇ.ì®™» °ë»6lq‡qv»¶¹k»Bq®Nol6|¸ Á6ÜÛóÞí>Ùí>ÿwòµ¯ÿö?ù¯ÿ»ÿâ¿ùîþ¿yÿémzåèwÿã±;~¼9öµÖ±ôÃ!ÅÓžøUúÅcŸÞÞ »ÿô®uì›­óèyñïþgÿyÍ+;zG„ß-¸à-¿Òlà6Ú#:ë6^‡Y´û:vûõWìöµ7pu¤Ž}ìáÓÛçÝìN¶Êi1&sîà›í;¸mcøZëÌA™˜iOö&¾Ö:ï¶vXÆûY?2ËFmL[tPç.^–´¹ôؘæƒ4Öæ1deL‰tåh ¶]ÅôµV_‡elÈŽql¬› 5ݘJ§W/)•Zb ì¤ò¬3޵ryŒy;f¦FFe¼ÉeæfdJqswK§{½_Ú›9Þ[-¿‘]ªªÇ¦ç¸=­ŸºÕúc™V½å_˜{¹9#6"D#WkŸõºùC#·\Û`­Ë5z±EÞtâJó¸òjcNÚ˜”ŽŸÇƒã5&QõÓ¿vy\?FtáÈYm]O¿1 ë—êì¥ ö4«§9k–õ}ìéû_ÕÑœáÁ,ø‹•WëŠÞ˜Š«t –® ǤáÇÆ4øx¸g,ôö2<–µ1QŸé:ö2`¹?8¶”9õ±¥ªóv•…ÇBùªTËÌÞ”›¿Ä^ê8»ãúm‘ 7vlL‰u¯·Ðõ;º7q_´)£Ú^Ž;HõîÓanÀqõæ…µj¬ ¾×•ûÙ—›‘‹8\¯Œ„ÇçdÄŽ,±3DèŽßý\6Ç9TžZ“Â1[‡“׉€.έ±|ï9Q²#¾é„3?–ô{/Æeg,ßµZãéÙ,ïXjÄ¡»‡1}R <¦¤Fšœ“ X8¡—çùWÐÝ3ø#8R==í¢p¬›£±¶µCsÐÃ̬0ÝgD;k-ɘW´Ðp­u¬Z~FWåKûµ¾â²Øñá ’‘kÈx9Îõµ0©?'óPi;§ÂU÷=fŽ{c2ߊ£eNsÌ+ª]ç×/×P¤KÃ7K…,–<®usÎz|¬Ío¶àÝŽ¸´#ø»oËÊ.ƪ&ÇSJ§N"L$Õ¿, ü,k {þônPe[š·˜(ól­ëp-‡9å^µb¼6°¾Xªv⎵yŠÀ9EÒÃ=]¸îš´í‡ZƒÞÒEËŠ6RN´xQ2áSÎoòÔžÜxÒìeqš`~’tù±z£vx zÄ›±h9ªZX8Y#OP•m ªô¥UÏ·ŸÖªUyGˆ·àÖ.Ì“GN9Eë+çca8WñYÈ.Yfŵ–˜ãñÒñ5Ò? KQ–?¹¸4f±Bdúð¥ŽóØä«Î¥’7öH\?žqìõð ̅Qø9 Æ úœWm›cú}éZy,91©ZýÑÃÅZ©>9±lVï_/{Šnáô[9qVó8Ï.^û-,5X[¸”c3ê"—ª/Iº…Ñ„õ²ú¾“®DǼ’ϸ[~Öz¬°V-,Ýõ㪫F¬æª-饱è¥1å1Gu<…´4Ú¾üز|äRs9ú Ðê.=Ö-”[cT–fpG†e#4cª,#Ð|3ÞíR9\ËŸ«Zä¥"qx^ðØËÚφ­ó$ÍEZhxgMɪBÞÊ5áÒj¼¡wÚÈãƒO—,|ØrýçõÖªºY6-ëŸoZšH\Zf6¾°Xö"‡ÕŸ9\’Ò_.Yõï[©Lb-Œù/-™YÉê,+0½¬C«äwkýú9%eÕó•(Xýdqƒ¦ž•>¼pâp< à[ç1ªרôšñâ·ÊÈÅÂ×D-;Ø·U'óx,{#5‡ËôÓ%¸æËŠÆV8Ëæøu…õîÒ×w̩Ο±:]ô˜çx«>‡²üµ¸µ–ó(iò…µ›Ë¢‹ÉZ¶t\øbß9ñ¤úË^¡°ôíãnóEUµiº¤ò”ÇN^ÐYº4žs^%Ù9©ÛMÀóœê¢Z_`N̼ÞÔÌyWiýSVë{Ës Êá&q­‡QV3ùÕïZX*}õNÛ*/+Xzl|@g¾ÙbÝÄÛÒ·=ŸàµÝ1^~·0`0^\Z_ö4â1"›±B[þбJB£.ªè¬%ÆœÎÊÓÆŸ+9‡'à3ž¶J8 ‡-Œe. ž ^j¦&ƒkf¬çDxªåbŸ¡XÃg;ú3„ë—å–þšÕ%gµ ©¹^ì:.ç^ö½²[ïzÏdõ áe³sƳ£+,Í{d‹žòšQË[;$Ç~¿vV. úc¡pü_稴uc¼—*,ëÇÒ÷Ô,.XúžÕ!˜‘9<˜ºðgNVÿ¾sl(» Û…C9K®ú·µÞ¤±Î3¿KŸ [þVœu~ÉeYaË)Õ‡—¾†|Ñ»SfÔ§,«ÓX#L¸ºn;B2aa~iDEÍI2¯`±Æ c;Ng}hqi\uΛµçý—8ºëO±¢:ú³þ[:Ví´žú="›±5<ÞåÖ—IÕº.ÿ5äE‰¸Cr¾‹4õœ9ö:`¡P.ˆ.{oç‘+É3FdN•Â’Ìä¢HåqÞa0Ü•ñ¸âõsŠ,æÔí-‡ö¹{&á¤Çæ¼¾æÔý¬Ž™¶O[g}„$ñòç`«ªvâ.{>gùÓ«;…Çx#ùoþª~ßá6h¥ÀC-×9nô ÎÝqÖ\kW©ni°ÎoÞÕû–½PxyˆtÙ/éaºô=‹K_×9þþ¡9ÙÓuÞS~Œâ»9…y•a ñøXíê£rNÌx9õ:FoÙÃAKŸ‰\ö±‹¤káoù–àØ¸üËméæ®ýØv1¬þ:UÃ1Ã1{µêB#½(åuÇV÷†6rhK3Çpl»šBtšÁÄ!¡ :TëR-ý9˜‹Ôb'¸¹ÍúÊ8†c8†c8†c8†c8†cKŽmd}³‘C["³¥chÃ1Ã1Ã1Ã1ñ =†Žk>l³öcÎû«í±cü‚ƹgŽmAºfÌê+’sÂ!Ú¤Ã1Ã1»Òc›-ýƱ·yl#.áÐÆ­$}°8†c9fÅý”?z$=pjuKž5ŽüØn÷Én÷ù¿“ï|5çóðý÷÷ÍÉö@ëUÑöÀýìö-`‡5µâV¾å{~ÐÞS¾±ƒWßÔÌkÜ]ÉSŒÕ¢_{B=áÀáuÚüY0ØÔ6 ªàu”MɉœµW3 ÜfgÉ ž\©ÿb»WÝ}à\Øø6'ÌÕX×¹¤oWiÏ?c›ÞÎ6]-8æ³®¨ÏzàÜŽÓ)Üë™N±â>k€`Ç"E6ØÔ)lP…ãÀ1Ýû‘5ãZ&õ¬2¸®U;Eyƒ¾èàLܦ¾¢öm ÉLe¹M—s›y–¬hîdþ‹½?8qw¶¹Bós/nÏ-Ù¦™;0ÓrnsŠžõÀY3o÷i¼®îÀ¡åS^N¡D¶©íÙ‡S,UÎ![ñoôÀ‰,;ºÔ5kvî’Ö³¸¤învÁzôëÄœâÀUL¸u5ñù¦Ï¹Ÿ>_8ùÜOVŸbØ·9᎚´Ú¦(a¹T"k' Ùs àà\Î õÁppppppppppppppppppp`CP‹†8€8€8€8€8€8€8€8€8€8pÅv»Ov»Ïÿ|á÷cˆÁ·ÿ_ôΥʹb ¼½ÿøý]L{}Øÿ¥ïîw9¿ß›¾µo!ý7mÑwöÛûc!ÈEbsú‚wûï¤ ¤³÷bºB:;¤ÿŒé~ßâþß©Yº`ä˦kîÛp¦íæR¿]¤nDÇÿ¤øiÛ§îí¯ìèšôBWŒåV]:Óaj$xþ‡º¿ïwtŽG,79Øê?iZ¥»§[ÜÿwúÒ~#RwÓ€§Ž§ÛLwÀ ó©3.Ý’£&Ò0и¥«ÓͦšÛk.û»æf"ÝN"$ ˜¬“ñJãC;yLÜO§aš¥3JÂÀ€y*M ”i˜î6<ºÓºç]qVÃiÔib¥ÓÓ¿Ó—& ͺY=¦6iiÞó?NÚK=ÉÝ Ó ÿ5ì¤á4³éÄ<ÜVÔ6<µáFÚàÿÑäsiäd“L:ûÈ2ý`<äV%ðÕÁ ÉWЭ6ÜÀ½ÈÈéx¸ÁñH£+CM Ðù4HÔõ#]*’r™¶¤HÓX™ å6<ëNš<4FGTöcÆxÄÖxüF{âE7«ªI–i¶±ÅEjÒ´DjIFG¤‚52iœÔ_ÙR^Òqô­Ž’aû–H’xÔ™³Î6B¦6·_Ù'U+dÄeVñŒ";êI£ µDs2™ŸôÅt Žõ™?ôè}ãFtVšÙiDX˜Œ&­Î÷C¤ÉZ–4×}j=éC¥¾‰ìd8uD4ÉÒ¹<ît/q@wØ ªó¬kë]6‘Œ'ë™¼#2I¹O…pÐDß±«0<Ÿ6Ó‚<ÇvÏ5zE½!ï 'Qo={)ävE¶lé¦CéJé,O=cOrTÿ½Fž©4¶±ííД™2ŽMžç%¤Ìê*à5²çľ%‡gÉ®‘½N>ëÐ1Èv,Æ^ÿoáI…½˜Æú°ƒMr'õèÙN&ñXçõ´Îê¤ÿìe2þгMÏ}·ç›=[´g ¿|xßšzS×ÎN¾ åô˜ߨú½Ó÷ VGÎø=syÑžý?úÿ´ py‘ÅKZ&ˆ¿ÃóBû䋳èøW¸7¼H¡ /]¢—åeáT-ZXÊ“†,°“NsŸ5TùT9ÅGß¶Ô´‡Nn_Õñ©¢ÅnÑüˆ¢ñ"/¥«OõíSCéÔ,±³øð|“eÃoNõìÈÄâµ/­ÔVwôøoˆ}#µÇž¢Ç!x¢‘þóz×Ev«]Ëö\K¬ëÉä’áåiÔœÇÆ\42¢^V9…ç–xÖ–—¯I Ù0x¶ŽØ7è¹Ñ¼€âÛ˜y¹='&ˆ×ï²Jä0P^h0TVïãí±í ‡(ÇŒ¡øŽ,Gî—Ç.ìØØ—µ±d”FƯ‘Î~l‹ŠŽœ$bÙ¬áYŠˆ¦ùìÕ·rü/±9é8Ï1=ÍGM“8.š¦Œˆ•Œc×>n“1Êœò!¯Ø²¯˜—›#Ôê%YåȰÔ>7®IгÀ7©ëçšÚ=ñÔQ•‘º?¼šT_qªÇ¦yõøÇ4ŸìÄwŸÙ<¹²"ìöÅýB“ «mžÔ'ú¢,¯½Dö†gHä@/Æ–xr„ýžrÒ¼µŽ×è6‡k¸YŽÛœºyŠIÆ~^Ȩ³ˆ]5sD»xV÷R )iÄ¡)Äe£ÚÙ³¹”@œ%ÎÃn€ç\£¤'(”P¨ójµ§ÁÞÊŒ„͎Ф©gOÚ¤SÔ]äX6WŸ75)#-ñ¿|ótÍe§ ›Õƒ‰õF®ó{œÞ5qfÑŠQBû# ¤%ÏAË åvlPÄ@y5 ÆH¥[œ£´ô}‰ 8Nû)‰Òϰ—є姣ÀqK‹Ÿ’‹•ÚüMJ°šå˜U,’Aâw¥t!kŠù^4¹~“r®°KAÖý3Ü+™D^ü¾%¤òZvÐgÍK~fÄÇæüØj\_u“šôú G¨×â¨÷;"=þí×ÛðÃóÇ2rgT9œÄÃÁõ™½ä^< ¬Ùçx¿M ´Ö\‘öì¤J,}!qYíhø /¼Þ&ýà„ W6©µâŸ‰RÔåœ>µ]¨1åø-€ÈŒNuN%õ\/UKd\ò²J–ÇŒ4³6¯I'ï Ñ%ßQïCe“QÖŒQe]زI¶~ ÉûÉg=d5œÝ#V¿C¥Zé`ühj(¼“2ÔáS9Jäƒ<$Ë+ÅC¡8ï^#N¼Þ «Y±D„ÎUsmYp}%sÀù¬ò©¿ÛiØoü¬~î€ÚŽ.G0‚H‹~”6,+s~˜XÒc‘%ZŽ»‘0©u¢¥ä®g®Ø;t˜Ÿv}™‘ZÔÖ¿ûجh§[¢zóîâQbÜH¬i‰Ó9dxÅ€—#f<ú£K¢ûÈsÍKšÖ9щX³æ+²»—µ˜†À­ú¡0™çóOM{¤"ÙÉòœÚbõ8}UÎŽ8)ùïñðRÞœú”…õ°“š6y~ € ˜³9R祄uEnÊŠ¦}viN7ÉŽ±³Ihåë´º©qd~×Ì –H!gàx>æ\eã(jpK˜ô†äÌÄ—]9¯cëY«óÃwê˜õ\Fv’ÕT”ôe¾Žgï»8~‘k$ -Wˆp…d9o¡õÕå¹eï‡ËG\W@ù„Ñ€·ÿzx…ß·õ^"¡’K×ÙUˆ,ÅEO„à R7‰I"Ã'jax’?9Üó$¤pYŸ‰™àã%1ÆO©JêTw›¤Ťjüß6ÁZ‚EèjLŠC,¡­iÏiÑVW!7L*Òà¶=]eÄ|×^Rb9ñÓ1ã¦=’â,°+xà<Æ µî#E­ûmf€•DÖ¡º@¬ïŸÎeáRˆ>׬e:<SŽm6DÆÍ`M3§=2*, ,WNšT2wþ9‘jÁ¨á<É@ÄÐY–Ûûaë~=›ââãn¹cÃSë‚ÿ°%.ϧ֚ødaåÉ9§yÍË|”¦KrD~fÔ,­†CªÇËS’dÈⲪwí'´õI 9½góÆ‹,˜‚”¾³al;y•SÅôžÛ^’†$bpÛN›×>÷'ÎtÙòþÓRƒ~¸”ò;Nk°Jž‰–E7ªa*ɶ‹âQ…:=Ùn>Š…n{ÑñJ–ÃüP ?úêæÌœ£7϶]5’—ÀAŒC¡ßÄmk”/ecP—ªÀû¨åµsÇžìûpŒ#8Ž€„ü ËÜ™C^ 8êC׉ú8ÎìÞ“S¤¢TLyÒ×9~.OZ×5ãÐxKöCÖ¹¹O• Ùób·ìGr¡•x‚úüGý§”BÇ+,ꂉc9uýš¨èdïlã <ÇŽ(Ÿ‚*Ÿš™#å}ì€òäö0{ö)Å_ž­ƒÌöZ[$ÙíQ¢$s›ì^8a&¸½&ózÔÙ+¬F{俹ę-¸Ö.©! Ê㥑ŸmN¢S$v·ÞQŠœ‰¯-7§-YA"š2õÕÐÄòä"§Ø$rÇ2˲¤fŸ.z_˜€A‚ n<”¥qåÅF™VŽÃ2´~ªi©ñë¯Ò}¨ÈvK\PC6"4:(lš “´Fú]“zk\c¤ 'ŽkÕÝ­ÕûˆìŒöReíüæDK;(W3uÞæ39 ú%·AW^Sƒ²dë·$ey‡m?ùœ_”ùngi/%5:Š­R .ô¤Ä ¯6r°æ æ žÍmp!°æ%Ó#qÍ&Ú®ÌâH0Í –’±åƒiƒ­CÙ‚Kbb² –Q$ˆSºOÛà˜$±l̼ñ¢?Hp?âÀ˜Æa“ã´CLs/®‰¶8‰‰9 .y‘ðéñà(E4IíØÈ‚»Ø†yÛ³DfŃ£9Ž@Șy™›ƒæà÷­üKLPêI†/²£A2 Žðé;Ô§2I7%-NóL-4g“ÜZ•Ð"yG>›%JÃ!Û!‹7<¸ÍÙòð@ú®ªU SÆ0z¶°”Wq°Ç˜0¶¶¼°%/¿Øóè{¹ÿS^‚>†Na7j\¡á¤Baâ™R ö9:ªJTºÓDİβyñD›²Z­ÈYóIÅ“‹Z¬×xp¦g,(M̤k[Xˆ¼¼':ße(öŒŸÆ(„Ò4Ä爞oð9¥Ú™\+ÓxS·éY-²^ê.]#«g=ÕÑ$Mfº™m^l¾ÔT5FWæ¢ÉbM=y”µñ ×J"ucSÔ)=ŽÃFÒ6}çõ®“9Š3h®Ø˜äO¼©3qò ˜#NlK´¦›¤H¯¶4B«0âÊ‹Q½M/·É’Æc#5\´Ê ŃW•â„ 7•¥YAQÅœ‚*™Íáó”l•·§)Ê ñæª †5ûäÉB„ßW¶Ä-X ¦1† ÏaÖµä9MGkC£Ê˜qÆÞï“«&"瑇¢‘®,¬.úÿž×AŽ{ò€ÔßSÌnƂ̱²do½ÑsM¹}mcŽKâ͵ßʤǪ1uÔ‡S}ÖIùÉY*ºR€ßü GÐ'õú ¦²<¸ßÒY)‰!V«Ò  }5+Cv»gª# z1äû¶ž/äJSªY%]sQBe{C9=®oãPLTÁjïƒ,ÍØOTg1òÓóâ±rý¬Qã|a'1Y ¡–´Žc¯[‚ðCxnX¼øèÖ÷Æ›¢c^=Òb6ªoëEr‚ÈrãoŠ)ß~«Ž9¿6g _ µEaômT¹I f'xÝ,ÎgjRTÇÁûBìYGÆ&H3,Ðö½eQ¡Që.[H¨÷±BGüŽÑ»QÎÉÏp¾-²íR6³7TÓKÇK^QºÎçæªBÍ­&%çî:ÑGö!‚ꄟ±I^¾wgJ‹«7Oæƒù«¨¡JV/hò”Mòï¢1lu%izóª@ób˪æ%eg9xWLUQÊ¥Â/j½î0‡…¼wC!¶9S]Ÿ9øÆ]#š)ÒôT뮵Ds°vÌ4ãšPjVa]\1f¦™Ð]x8ñ–+Æ©i†GgÀ™ðSÍÄl—yÉÌ5ÐÄÛ¡¥¿H¦ eÌ(9RÌ ND•" MPVÛNO ²ô¡ö×1rR›ÝãêtlMAÉLDN·XG*ÈÛ-|³&µ‹‰©¶i -o.]NÎéw §i$±Áo¦ Æân£m~l£¨8¸ÜM 4¢—ÒØ”ÞL÷›Â^Sõ¤;8Uí½¾G¡£¢ |Kj1Æ(3Eªh¸6šÕV“ð˜;&ü%Ïofá(]aÒx]QúYs冽̰ G5Ì~ê€C]©s6QâðõºÊ‰X ýx/G–t•ÓézŘxÖ…ü(_{<¨z’sa®$Õ‹‹)*uèÕ©«ï·‹ú¢snhÍ&óŸ¥i m'î:¯6ŒAàà “¥µ«/!2ý¦8°+ÙÜXà§5¦7Gv‡_Z#ÁQœÆÖ‰û;© iûµìŽ—àNYÍÊï¡8I'r:¨gÿ$ÊÇócžª *¶\tÃsµì ÉÙ>Ø¡0©eJ_ ºR­kóÒ0šø6‹nÕÙ®³<ŽŽ¯w6Ç–$Ù{JpÄ^OÝ÷ò³ÙïåÙÕrIjÇœQoÊHÁÀqÏŽ½Õ딽¢³ÉQö’§v—æNjƒœƒ&ÿ?z;O£“òˆéžÇVù…T§/ë©Ù"Å2ÁE‹z½äøµ›«˜ÝÌéÎ9ÏnÅ+J¼›x9»sJ=¹2RµæY0 à©(/Ș÷Æ×ö’³d±üŠðjò§òÆÅ…gKtÞ–BõMF~z¸èªqF)„9céte'!%Žõ– Ž$,Ùøæj«—äMK¤³Sp$±éÀNrõ$"S4PÿAÜëVHöw)hú”*2‚äú"ÁYx(iHÎ8/8}?þ.qºPÙd’7þfnƒV2ôá70N@Ð*dxÎÝÅ·,Ž(+:o,ÑdhJ”ˆK|g,ID}QH…@ÒÀ”ggh)2ëÆÙuu¦7›¸k›ô*1èÓÜM›AÚ’UÍ„£Úî%Ÿ_”Ÿ¦þ–ôH*CìñáѾØè˜ O²¶‡“«+çM"¢:¤sÉ)ö ­m2ÆöSÓ­f}-9sª;ZVRÆ"GÅšf-ê›Ó${“‡nû;<‰ÔéœcÇõ…)¬g?Ä90§d=Ü$¿¬M~|Âëモ=¢è_ñrçXH‰îø éúbtMµÆ ëÕŠ•ñÛz½^rk󦺓²ÞØÍ'³?ùe0³&QR¯ž–E°˜œZŽ øÜGLšìHßañäG´GÖ2­ß—’Sú.¦×`ßLŒ¬f‡Š„£è^ªË*u²hÎx)oðÈË}¸n,ÎHÎŒe“¹þ°^{±×ƒïPÔªç©&ÿËÜK-Ä‹Áp^†TüTy-ÊÁä±Uí÷åR²*eçÀË(¸RÜCÏÐÚV,›J¥Òž"2Vh£—ê¿þ‘þPŸÅ«9îÕü38`àtmÉöBc ƒ÷áØÕç×p‘wà'ÆŠÎê‚ð¾XumÏàiÔöЏ¥3<;¯ŵ¤,8êâ%·Ã>¥Å;—¾ÓÐïäXqX¤; ¸'gIó;'¢”ØÐkV´^<êÑkDYðµò”ãgP4Ñ©ŸA&È3Œg–“¬ñ:ghR‚Ý ž®¼ÀÑÐÚÀ}xñ>Y9^uñ}æn7I-õ)©m?UâµxyŒyl®ÃKÜÒ,1nÀh<¾ñ\å•xΫ*÷a¸,RÌY§3iT~§Cà'sÉbW6)&Eƒ4›Š(ւ޳ξ>S“N½H~H6pž1Hްå I¼­b,¬âÐBGÖO"º5Mz‘qž±˜µs ¡b,¹à‘޳ CsJÞä&{Ù¤öd9Çodôå cŒu7¹HYJ\ç­J\; AÊP‹Ç Þ I­âéEæÝdý¤çw"Dy— ­çye¥ÏE›)š—ìy’RlÙ)Ns²æ5}ôU7NM"õN«å-nö΃¤!Ç›ôª6|àã$'ä›â'è»IHÇ6MET9:¢â"…³‚œVnbÜ%–æxäÈDçY.¡ÅºI$cD…t—ælU“NS<—zB#+±®ªIñµG–ŒÑ¨Ë#4éôIî&0ThÒËúa¬Iû)qÐ…£úܰ$ƒ¸þ#L4/]Ô‚%ºûR>„Š3e|Ó1 $Ámó¡c¯¨¶™WüRJÆÏžÙºì„Ùg+5ß.4)%ïЬéc“ΉúûÔ=¯(ÿ†`ä –ïƒä7äOnŽÝ³Ü Mîß³‚%Ç{ä Pœ«“8¶Ö Ìû[Q_‹™ƒéì†Nº úÚ'ÎmJxàÊI°¸Â½·Úãl³èw]¢µæ"´aEÑnÏéoôg€×•›?™}4*Åör0BêWB?éÌ>@píE ~™™vx.T.é]ÒÉ$¦o÷ϳÂaÍÐ aÉÊ(pÒQÒ+5ãÇÕ·žÕšo»Ô>†æ`?x¿6‰¹¢¨±j4¸›]“ìÅpz>öoœ«4ÎÛ¤†kå…—YO#è#gkR«*E·†&NÀËU<Ĝѓ‡8‹vª&f&d¶éF^ߺ*â—Ñ$/ƒ‹-ñ _Gµz^zé*+ðBÿäQ9ÒÃaUVÆÿg[¨+æMÆæ!'5«mg8Vÿ„¹ñ1WÌK¹ò¼^F ×ÆÂ‚Ÿ•Éܱ¼Œ& 6A¼8Ï ÈÌÉW©WÁìô rM|¯²I-𲯮q¾gõ’V¥úÏŠ¹¦IûÛ!4Ïæ¸|úVÎóms²Ð^}q(j°1[‡#U&,z‹£Y†öMrzã)š)þU«;s“œ$â[–e¬óš޵§U&5¢Í¤çmÑ®ÀÃÊ¢.Ëæ8³—^Ö­±¯3(ÞCGg<äý¬Óï6Î g‚tpc;ð¯ÁH~hŠ0ÎKR(´öXžˆòûë[±r²x$C± ¼ì?< E:%jæPCÎkrzx(²ßåC±ÝÈ3L¿$'6’;´ “ºˆR;*1W'Ë©ª¨9б“k¦5zWŠ(5²DËñ¡T¹é1åËÛ@.g§õqt0±ãLÍÏÈU8ͺŽÐGyu²Œ[^AÃã¼7ãçl;Ÿ×‹:)RqMÑÄhÑsôÜ‘,)}ç%G**.Í ž¾a6W|²×…jòPxË»f<Üã(O¸ò€ö¯yUU²<ÓÙ œãtiE&S y×mHuZòÈ*8µýÉÀº7?OeÀ\±‚;7ì¸*¸©%d«TP¡ÏÕ_C…®R‰ÍéÆ287½P„Æš$¤û0í1=„Œ D$-, ­þKÛ¶©×0[5ÖéÅÄ{ŒâÅ„¨¿´Â¦©8¿ùAÿZ³4ˆz«ñ(ri…wáa¿ÍzpìLÔ·Ä¢5¤Äm‰ÆžÕ'ŽðKŠ0+lyœyÞÝÉLηÅÕc•ž—mÉ5Õm‘µ¨vL’Á²(6Â3дf+ݘ©©>µ Á[õ ’G¯8/²Î#•’ˆÑŒóåó™!'Žd½GL1ß$ :÷) ¯Q‹Ÿ"Ž9iƳÇ„=1'‰¦(El®˜ê‹9j1Ú6¯WôÅ $nö޶›YõŠ£Ê¼lLâÜ1a}ÃÉQñS*tœ}–Ü…f¤FÆ;jøGjõ<‡²†Ó”:IBœo¶÷Ó!ŠÊ#EçÅ„&RÍš~tL¼$ïoò’üëTŒœèH Ô4¾wdú]÷tèä—Tƒ5ÅlDØð5§F')»L'y"¡üÐýf7ƒkÜ-¶‡^ÝSšZ±/TzÕÀbÈß•%ix*i¡¼n×WZåT šòú¬gGG†)hÝp­Õ±î0ùf˜‚&µ­6ìÔ\µ'VÀak¢„pÙmàd~s»…Ç5í½òЊM¾ž/cø^9JY$x™Ê±FÖ'Ï´âJ‹ÉÁ$V{A³w$Ñ“)'¹WÒcWº,a%Hqtm8rY-»Å®óîâšY _«zLZa(6Oú¢»¢k¸y˜j0"‘Éèk·[OÏ‘±qìVÛ5I¸ž&mšáL†å‚öŸ7$v1òû¼OOѸüPF9'‰år3üO6„üuGë2//÷Sƒ216¤Ĭ[½J}`•^´Û­fH‡’D°é§æšIP76²lÖaÁ¦èåAך!v汎ÒÔ!cx ]̪ ¿à ð7Æ› \Ë8P¦,:S½ Á©‹C›† R¥ê5ÚI׋ãÀy¡Ñ¾19UVĸžb¾ºÜaÔÕWdÃæ½†”×»ïe)œÜv¬h&xYãÒŠÚ…–ƒHjR;9. ùL© :R–ò²ºš› Cs„)J`½BQð#,V³Z© m6¥ý¢¬o¥]üêa¿ J‰Jî‡ô¥ómÓá9O ‹‘›j2B ¢+*zCºÊ«Úm‹”쮚~ª´xºkñR³æàGQ'zCS‹569ù=ÝÅ)OQýì äftáÀó+hÖ¶ÉGI‚S:DÛz¯·Æ·ÛÜo,=¡×¿'Û‚Ü_Á‹Óeœ ­+ˆïÚÑs^ad”ÂÑF)C¸wè(á §¸‚.t\üä¨qÇ+fåÉ®./¢Ä™(»°úÀ·,N‚¼@5TW¨˜(Ìsµúðn(Èoð1+5¯#3ÙÏpœÂŒœÊã)­Jc!ã£ÐiÅ6§®ÀòWÉTóÍ¥h gÞCd›ÁÞ7à¤=/Hö%J ãì+hºÐôKx\&o«¶»æ ‰dk2÷fa3÷¿­¥ØváQiæ]}Y 祗ptqȦV¼ÿå÷:&ëZ†Ö·ÍX…ZŒ_-f)&—# wšnŒm i)›–Ûs\aC뮸oQ„®×¿ûv†#ê—_¹5sj0¯fŒüˆÓè#žöª|)œF¬:•A'¸(rɦ–Ç®u¯¬Û¢¯S¬ùÔì€òKºxÈÃ0±æT.eŒÈ—äØO“˜K…=+£(1ƒ‘WR™S#¿Ã]Ü(‹ž:8ú~Å …28\1ÂÔ·4sÎ Í8˜^¶WeG=¥Áë³Éæ¥nä'¬9~è$°6q*ËeG{^«WÜkלqùUÕôçEQGtÙ{½ªç7=”tm¼2.Š®zú[ãÄëÞ rj˜ØÆKE;´7uU^iÉ¡{æpØÔUÙ‚·,[‡ 8œtml¾DóªN• E¤Ø(Ètœ:Õ©ÔP‡=?Î:<‡?X¿4jÊÞ›PmϱðµV竤kµÊâËá"OådˆŸÏS>Vµ:¤õ¼”çŠJš§Ex¸Õß73›=s^»®ÇdƒÍ:¿dÛׄ1,yb»Ãÿý–¼“ÆàÅÁ8#}ëÆè¿{"Þ‡FÀéF¦."ù¼ÆÍŒJ:uv¤|EÂÂÃI›ßÖ—DIÖaä zcí}ª‹R¿.êå~¯~’—ÕW‹#GÅyÀ 'ñ‹ëL++¡á+ñ{ƒèœØäYØ ,å$®in®ÖÌ+?t¥¾ýÑ€>×ë^”Ñ µ£ÇNlo‹Ÿ˜¯ˆœŒ6ÙÁÑA¯ËVÿ¨™a¬Ç|Gµ‡<°×ÀaÌöÜ ½“ôÙ©ÐòÉ Ë¡>šA "»’£ÇáÝæûQ×ç“ÓȇÐRÃÃ'¹æ$‰õ{r É«r=Ç€ÙXñÂbüž\h?¼£÷Dš/'¡|(ž$ÜÀKM¯²¨±º’/u)µÆË¼Rˆ~HžæŸ$’ËÎ#÷RœÐ<ä~`ô8y%¥béÅpcC¾à$º)ù¶Ø3zÓhÁó4ò®‰xý¡©¹¥À$‹lØbžŽh”Ä`÷ت“Ìú !äAkLM“!™w¹Œç28áåËæ»Ó=Ž@ªF’ôD•¸{­7÷ÈL¢H»¸Æä—„Ü{Éu6¡op‡3%dY<Õ±%åÿ|*©΃ò&ùT^CJ¬©™~8scŠœÔþ,‹?ZŠ79NÂ6ã5æ‡r!h“‘pi§ìF"{®"Jðd»K[s¶3Æš—§Ù³¹ (ˆ)‹|+£«vs¶7‘[ǾÕԵǎck”Ñ 6Rè4dâ¨Ñé&ÙÓ$î—Åšj—V/ÉÑå€ZM–9ñkj»Éâ½JÙflUòV6)œ(E,¦›º°%5b?o9n“N’ùýÐ/)‰îs•cI‹áÐq@{Òb˜3Õ)ô¨ég ã륊‡„M¢I4y!M²/8/ÑÑCžmk¾&âBª ¯-ßÇZÜš&%™T¶œ"¨êå?&·°õÄŽ¹cÎUJñøp¤ùg Kh¢›ìDJ`&èB”ÂÌbåƒÆ ©IÚ&Ùã+…»ÄÆ»è}ÕÿÃÓœ°4ÉÙóÎßýµæò\r佦3e¢ÐÊ2Êê²ì±~Ãú–Q“+r0šp·Ökñ¢ßixoÈéâÈ别œÛ–ȱÖr‰çSîNH¯h;è|!ÉNÇ9/Ê*v¤íß0ÒÅÌР ¿‚aì­–ø10ÉbÄ O¾5qãñIÓjIôÒräw(èoZ MrÂ8E.†X'Á¦%©`¡adÕÛR„}8]iZâUTžá¬ß¸y®K¡î†é–4áS¤Ywç,ŸH<†3ª¶O!?ÈuRwª¾4!ùñw‰ï„d«%ÇY˜òÝÑ ¬Žc÷ÜózÇ:Ú.ÎqÑ?´ü3í°¶æ%m¨î“D~ÛwÖ6³U}rÞäŸ: Ÿj©IÐÄÀÅMØh'ÑL§óI[WMVì–œF_8&æøqá 3eç'þµ–|&Ì&¬ÉðÙ­¢@w„6ìïB.UÐoV6/µª†ÖôõrV*œÚéܦ*4tsÆäJ°},¶ôkÔ ¼V`M!Ùt¡ðôÔTï—o¥ ýÁ8¯SŠùF]üôO"ï“§Çj4ÁŠWrNêÝ)D»yqÈȵO’\äÇÒ ‘cUR«GâPì—°8AóB@ÄÊsÂ'žé$/= —¾›EUqc^Ö8)wÏK^Ö¬OB_¯½ÊŠ\$΋QïgºðRˆ®àÑÅF©M7Ðȼ®èk#‹O¢V§ º¶•-`´gëÏ]q$¨¡­>›×¹\ÝÜûHi_ëìô Õ†¦F£öÚ‡ÍkLÇ…«5Žï[EÓƒNn˜W-1í{KaGœ¾æã@žµ´pc§™ÂHŸp…š+ÜÓøe/¢T9îAÙôö:<´-áÁ§6 ú Õ€¼–áü““· 8ypËXrÒ´Ì”|!¯¤¸@^dG⦾u±Fb«-…nK춯-9~ÚxKyÀw† A×&yhµ%ÄM^væs5Ug`WRÀžƒÀ¸Doti†ŠPL¿ÉžIifºy½ƒb$Uƈ+*'ûíxE¨Aò’˜¸odQƒÚñf­ë¥uJ[û¦(A‡BTt¯ù¦mt¼IÜÙõêv4ÈꑽB‰=r¨Ÿ`™j[õúz/ ¸,”ä…OÓc2£ádzºµÖº|žh[ëÿ4§ËÊÅI­¼UG^¸(a‹ÐÌ»BÛ?l­l—ÈÓmªÃ8Ž#WàE Hÿ°/Ü›â¦yþW{$‹$hÌÅ/ 蘋½<“T’ Û|§.f½o¤…×½Ž’Ñ¡B@´Ð¶Ð¼VXðL/¡ ¾{tn“ùgãKí-jR²Ajß8¦ƒä­‡Š|½ ªiÀ \P“òDãç´ês=ggTÉեϗŒârG5M¨@›tÃMF^”ûVõ0I90ŸøúMŠƒÙTrQÄÄ7ï+37Þx<~êÆ«ÇÒUåm’¼>¡ï‘õ$–æLu_êe£Ï£ÎtvN9!NÚä ÿâÄ…^¢/u]öFÕ!œ©‚û:ˆi·HƫDzÑDëá9s“–)ŽgÝXÞ³“¼Œ¾ç…÷blôA²v(Ê3…&Ç»ôTYý—*|hÝ“Ÿ u©¹ -ÃøTÏ ‹ØZS„ª{ìx¶–úšºjä(–:äœ0]—"5èŠN–1åhƒ‹MàŸM#¿‘ãv¬ø\´FÛ¶¬U£ñ47Ö’±{ɤJΓSÙ d׈+zrÃPs9ÿGàÈÁÐòà^-‡kÖ´2“ŒŒ<ú2Ña&íß²9óšO}Rõ!ù•Ø/_Hý-!ZØ’62à.jÆ[¦š÷Zã•Ç×+”!wü‚:¶i½ô޽N¶¶4ÛiVIN*pü“g{ Oa óud>‘«R¼ºõ¡M 8Y¢FÍÑMßgiµª—f”ñ*ÆÜ8ní¼-kð§xß6ã%¥Xx‡ªP™iO5pÑôé§CkÛ‹ +;òmõ̡ͩL·ÇC!a±¦ÉžKPœß?´œHœ ³-Û' ìg˜Î¶ºKªÍ;­ÍÒRÏ­ç¡È<Ö7¸ž˜±[åÍëÖ(‚@ZŠÃqóz$”©u¡ô¯®ï/9³pL>±×œ(墣j½R€ÃütË ¯½ÌšÞ³(çÁØ ÏîúÁ ¹jÔËŠWÎkK! ¶çö¼™¥b#J.ÚkšÎœç|éG VÏœÀ¯ ÝØ5$%WÖ$>p ° ÕÌœÁ!ל@0*å¿^¬Ô=‰ý§ãg÷ƒVµóÑ„ &šgQPWrOdµ)¸Ã«IÜÕöžÖ`C#äÕXźWØÿnK¥¹¨OŽGyÂÀÓÝI'wíwS¹ve ‡(ï0KôÂÊ@ 4 ’–èý±Üã(î“…J”‡±yrÓ|ïC<jg÷=/ÁùfJ°+0²DÍä¸|a@ëyÖIÓ-q¨XVœbLí V,M*ý–~×,6ÈÉgŸÛ@),°½”å–#qgÙÊ!{Û²Ù“÷r–6œáÒÙt!Ú@hm  ´6ÐÚ@hm¼Ý6Úk±Ôè¡q©em,½wÀZ]9h½¿å6̘ÆÎ˜¶ãcuëìs¶ámüƒ²f~ÄØ‹õÅÂx¬ÑF«l‰‹s{÷RˆÃ YzÌ×´1¡?Öhcê^¤‰Z=WÐëhm  ´6ÐÆVÛö×Û¶²½n(æÜ¼µÇùÚhÆÃ5¾eìŒéd- Ú@cmôæi=®£ ´6ÐÚ¸è6œi£*v6ÐÚ¸Š6ÒW&Ö/mß’–b…~hl¼Õ0ìŸÆáœEá^úýÁÆÂÚt Îñ¨m ­‘CjâØm¤!‹sbÒ›ncÞfpÜ6è^bq]I·SãK™ñðCkS_ß5¡mÄQŸ.Î^Wö¹¤óÖÙsîm  ´6ÐÚ¸º6’9mÕ)Ñ·Ö*¤ƒËŸ±ºÀ6FýphýØJm¸@û¦Ç#·Qÿþ±¶GžYûYQ´6ÐÚ¸º6v»¯ìvŸÿ»ý¿ÿ‰ûÏùü“ýçw Ÿ_›øüÆÄgè¼O;Ÿ×Âçiâóýýç÷äs?ò™êcùüW#Ç~8ðé^ÿ× ß)Ýïka\JŸßªüüöŒÏ/ì?¿Óù Ýßg¶Ýýt¯3ô)Í›ŸøtÏ-qþþŒk/ý”æŸÊR·?Ýïuçw:ç>5ã<ÆoíÏïŒ{÷S£WÒç÷å3¦Ò5kåaìSÓïšÏ{óÑ>~8à£zá—:ýµ:C÷uǯtŸS:õÐϯ |~­36c÷<4¾o>vžëykËò¯w>cvbéç­8öÇÖmK>ÿe‡Û©>ǺŸ$ã:§ç°éÊá˜ÞÓö»ó¯æó~Á§ä“ýÁŽçfíu»ö Íí×Â~k/~OÆs _aîG9Ì=oÈoûýÂçWF¾?öYªKJþû!ŸZ;wˆþë·ôù%ùüÁnܯóµô³D†æ~~¯òcO}WçÿÜû_ò±¶×ÎßtýšõÈ©?]Þ©ß§´ƒÿ¸óßi®&ýù]{nâG*]£w×ãSkíÚ±¬YoÛuvi½=g=]Z;Øõçäݘ»FžZóê§fsè×òéúcŸSøicú´;ÇÆtIš/°_«.Y_NÙ'»¿ë_׬5»ŸZÿzµçšëÏCÖ«CŸ¥kØÚ{]È|ðÁ|ðÁ|NñÑúÏì?_Ú¾(Ÿ_Ü>Ù~BþýåýçÇÌA¶?·ÿ|Ö|÷srì‹O:÷'峓sôó²ï òߟÙÞí?ɾ/Èñ´ÿc³­Ÿ—§¿[ù|,}ÞßßîóòùHö¾óùª\Oïñ+Ò矗Ï7䓾ó§/Ëç§öŸïšk¥¶~Vþý}içó2.Ÿ“ï}QîùKrì'dŸŽÇÇrþçdû3òÝ/Éø}Å´§ãþcŸÏ›í/K[_“¶>‘OŠí~[ÚÖþ|d®ùE9÷çeû[;ž/š¯Ösþžô_ïó9ÿ ¦¯ŸHÿuŒ?6}{'û¿$ûtý˜œÿsò½÷¯ïÚóàc³ýEùÎËçóòïŸØeîŸÝå9ù®ðѱû†ÜóçL¿”£~>6mïÌ÷?'m}"ß{'×ý¦ü[ï/mÿ´œûÙ§¼wÒvjó—ä»iŽi~(±°óåg̘êùÊâ«2?#m|k—ç—ŽËOË÷•YêãGrìùüêþó÷wyè}èœû¶ÜãWå¿?Þõu‚í¯Îá/˜ï¿ÛeYÐùôÒïåó9sÝϘ±T¾?aÚû²l뿕ʺ¶§çªLê|üÈŒƒÎ‘Ïíòœûh—õ‚~>»ËªÓôœ/î²|¨L¨¼)ÿͱ¯Èùïä;v^ÛqøÆ.ë²ÛµõuúïŸÚeÝõÙ÷±{ÕÇŸ‘sunêxè8¥6¾^øì与‡ÕµªÏ»úNõ’Êëî­wUO|e—eý#óù 3Ö?-ßý®\_¯™ö}U>ª¿´Ë6«ûQ†Ÿ˜v>2×W›¦ckuG:þ³ò}Õ·jg~|—méO~Ÿ/ü[ïOÇJuŽ™Žé;ùﯚÏÇÂ㋦Ÿª[>Û9®|T/}n—íŒêÍÏÈëœM2þÌý¨Ü©«­Õ¹Õkªu¼t\õ¿?6íè5Uþ´_Ö¿øØœ¯ßÕÿV{¦2ÿSrÎe¬¾%cô5ù·ÚhõITVTFí糦­¡OúÞO›ÚÕYzÏVVtþéw~Â|¾e¶ÕÇQ}ðu¹Ç_Ýe]óñ®=Ôöu¯«sá#é§ÊMšËß4ã§Ÿ¯š{²²­ö<}þÞ.Û¾_”ï~Eú™®ó 9ï'¥_éÜ›]ö³¾c¾¯÷ùãVïZÿEeÓòÐy¤óö³æ^Ì´“îq·ËsìË»¶ÞÒ{üh—õsº¦úEúù’ôù³»¶ÞÒó¾dÚÓ¿Ï›ãcëï}×|Ô7WÛžþûgd¼Ó¾¯ÉGÛùÎ.Û~G_Ûe}úe3î_Ùe{¡r¬ãæÊÏËùê g—ç\jãï|Ô†¤þÿ”|tM®©LUÞõÞÕ«<ª üœœ«cÿ»¬×Õ/Ñãºöø‚¹†Î ý¾Î¯Ë½éµÔ®¤>«_d·íçëæÚïä{ÊÂÊò·å;Ú‡ŸÜe¤ûÔ>¨ŽPßÕÚýNÚŸø§¿oî²-×±Q?ö«òŸvÊ]ç¾2Ù™kìäßvm×ÕÍ:ƪÿ­L¾+l«\~v—ùîvY®ÔÖèzâ“]¶}Ú7µå:Ov»¬;uœ~ræÇêþ_6ûÕÿ×ë¤1þÖ.Ûkí¶ã¦¾ªÞ[ºç_ýºû¼Ü³µv,u §õ?¿Ë¾ÀLûêë~—Yª¬÷´3ãzÛùhú}kÃR»I‡¤9Ÿæ’ê{Õÿ:—’mP=ò•]ö¹Ò5JÚþšŒ÷'»¼~P¿V·ßír,B×[ªÓõ“žùª´¥úüË»¶þªÍþ)iû›»¬í|Õ5—]ï~"m§ÿø.ë0¹è¹©½oN:7t ¥ö@í´©t™~a`ŸýìvÙ~ÙývŽª~Ø™1ï¶£r®ë=]ƒ¨léœLcóÓ»<¿"m¦ë?˜{ÒÏOÊx|[îۮǬ­Wû¦ã¦ö6]ë—MŸTŽJc¡÷Ðݯ÷«q¯ïHl×ö{Ô'Ó¾kµ/꿪ýûšùè:?õ¯ì²Ì¨LéÜQ¿»üh7¬§Ô¿µ±²ßem×媟uÍ©òcõ·§uç¤ÚÍhÛŸì²RýòYsÝ/ìÚ6NýÒ§´Þ,}¾i>_]ðÑól›KÚÙâ§v\tÌ¿6ñ9Gßk¹~󈟩qû$;ò“}þŽùüԉǟúÏ”|(ÃÚöì¹µznîç§f|Ž5^—òÇ÷CƦ;gJsçÛòokßט¥þoI_ž[Î/ásˆ-:äÓíÇ9ý¤Ïv>Cß[[·i=Å9S<<­ë~A>If“OŸÖí?-û4¶£þ²ÆÅ>Úåµ|÷^>k¾«k']çêzT}wõãw»öÚn·Ëkùî:}göëFÇPýr]§”æÛ7víÖ'»S³y¢¤Ó¾%Ÿ_”ÏÏÉwÓ8}Wö¥ö4Ï÷sr}]»hÜ(÷/˘ÿ=é›êš¯ïò:Çæ€uý¡ã±Ûå\ÇÐçKf[cÞ?¹Ë1øoïÚ±†t/?mXh\áKrmÍaÙµîOK»ÚW3ü¸{·Ëëg]Cë5Óøü}éÓ/Ƚ[ú÷ rü[²ï3æØG»6ûîŸÞ÷'»ÌSç’¹ë¸vm—æšt½Û嵞޿ýûh—9}"÷ö5?ëšòw9V¡ñ²/îÚuºvÖüí›í—]^¯ëÚü»òIóî2vßñúTî'åT’|ÿ²Œ«ÊÃÝŽsó7òùšœÿ÷å{zìg¤ŸÙåX€²|¿cHßýžœ÷]Αè½hÜCcﻲëóå:ª 4–÷ Ò÷4>êç}]Æâ«r]³Gî]õå·w9楱eíûÏìò|úù]öU>Ú5:’ú¢ó÷Ý.ǧ~ZÎÿ™]Î]ÙÆÇ”¯Æ*ô|;·4'ac©?¹Ëñç±ßÓ8³òèÆQ4N¦õBír½Æ—dÜ~Ü×8 æâUömŽ]}Tøh<髆§~TÞ¾.×Wýò÷dœ¿&cù3®j3lü~×¹æ'Ò'í¿Õµ¶fçs¦j¾¼Ö3V9ûÎ.Û¬oìr~U¯­¬U‡þ¬iGcm_ÝåšµKé¿“ÌüÀÜëçv¹ŽÀæSõó탽ׯH{_–kûi,a—íù7äž~I>ß”>ÿ”ÿÙ]^3hn,íÿî.ë#Mþ²|~JÆÿ»òùÕ]Ö©o×λéŸúzÊz·Ë1vÕ:g4¯òÑ.Ç?ÞµsÒª¯\îC™ë<Ð<ˆ~çË»<¿Ó1Ítcôê›üŒôQã›C­ñÑÏ7…ÇÏÊ©þ³²¢ŸÛå\ƒÍUØ«êX½÷¯îrîLk t õžw»¬õ<7•yµ£©ïíÚ¾£êq•A™Ûøõ/ï²ü~{—åàW¥ÿµŒáý.×s|ËðPßỆ޷Îs•;>š›P]¯ý³µ"z¿Ÿ“kªíýÌ®_¿ ãö±ù·Ú‹¯írÉ·w9§g×ß2cûÓÞçMÿt>Û<âçvÓkSóÿÄÜcºf’·Ÿ3,Ô¦©}LßW;¡ó@íü7äxºÇ_4c»ÛeVÙÐü†Î£/îrý“êÉ_”ëüün¸æS}H­Ùüy3FzžÚ!‡»]Î5©_¦ ¾³Ë¶VûüU?iö¥«š>ª U|WÆMçŽúxߨå-õItN•r?¿Ëy õAÒµÒzàW…Õ÷äZéš_ÚeÿB×jk|—}Cí—ê9]cªîÓ«¿ô5éïLß–KÆ ë›hûírýëM¿¾,,TWïvYé½ïL›úß»]æ¨:LsLº&S}o×HírMç ½®õ±”Ïgwy¾Íù¨N×þëxغ<•éôQö—äØÏJ¿-cõu³­µº~ú†œ÷¿Ú1ûtý$K?ص}ëvõF)7fõýÇ»\?¢ã¬cü93víú¹ÎÛµcr¶Ö+õëg¤ÝïìrMÍäÞÒ\ÚñäsrŸì²¯fçâwͽ|w—koÕNéúøk»œûÓ9ŸÆPõ€•WíŸúQ:Cúé‹r黺†þ¦ðQágwí·ôÑõЗw¹&[û­5bj¯¾¸Ë¶PÇúë»\Ÿ¤rõ™]?_ªþ˜Ž]÷£1VVô£mÛëëZ;Í;ëw[¿WÇMÛÖ9”Ö…iýøËrß?-÷¬œ>•¶ÓœøîŽçÄÏïò5]ã{rþŒõ/˜Oºþí®]Ë c®ºB×óê/u??·ËvÝ~~f—×è:.:—ÔΪM鯼¾h®÷Y¹†æÑUWªŸþy¹—ôýo˵´}õa~f—ëúô£kÒ!=µÛå9®ùþn}…ÎOäû:Uþ»¾gúžÍµ¨ï£zE׵ꓩMø†¹/Ÿ¶NBãRª;ùØ¿%çqáy—ð±ãÒ]óÚïé¾±¿S“ý›ûý-ý}dþ­ŸîºO—ØàsþÏÔŸú‚ÇšÛøœ÷Ó­á?¤­´Ñýë~çódèZ[ù;7çc}ÖÔëçú;÷ÚÏ7:ŸS]÷Ê¡ó{áß}zûÆ&6±‰Mlb›ØÄ&6±‰Mlb›ØÄ&6±‰Mlb›ØÄ&6±‰Mlb›ØÄ&6±‰Mlb›ØÄ&67¿ùžÿØÄ&6±‰Mlb›ØÄ&6±‰Mlb›ØÄ&6±‰Mlb›ØÄ&6±‰Mlb›ØÄ&6±‰Mlb›ØÄæÆ6;/{ýOþOÿéŒÍß\všÙty3L}aáÞÿ´x‰ÉÍòmº}(ßÛœÆ~³¸Yîoù sZ˜åN *¶°yu7ô¦7eýW•¡c¶ª—9Ù‡ÉuÀÙôú¤Š_hß&MÝçŽ/79'çŒúáVäp‹³°ës|åÙ‹U{69ê‡/&'ÌÂÍ…ë€ÃµÜáÓáSîpå8©åŽäª®ðBB«*›cé³Ãûp,ñß‚ûuEzi›q›‡»I •îäi Gra(âÒ$ël•ÃC• ýêtýpÁ)÷÷ðøäáãp¬ ÎápÎzóði´ªkyZspøHNžvxÔýð´Ýª<í%N°žs‡§’åx+Çzø/ôaNŠ8Ö„™ãÍYYžÀšs‰Us¬[p´æÐœôKŽ¥ÚV5€[°±Çš\s67u×¼y¸t¶Ùw¸&(¯yç(èÃÞªqå…ÍéÙ:y‰…¾ÑáAê9_8–Kµªû5é¾iÝ·Pxç(Ã3™«¦PšÅ9R8GÞ¿ã9£~¬ÐÙ\Ÿ-˜ü…‚Sæ¶°gs öá—I뿪N}{~êBK6 kacs.±022§…U]Ë…µ3 ½¶…ŽÖæä †za)ÄduÈ¥9{§5ØÇ²…1| ýÉc…d&-úá;Ç«fÚªÌUýõòN»„™œ“[X˜Ÿ@ZÎ6Ô[É-t›kIÀámá6±yf5¸…ÛÄæüù°…>\ðæœñ½ˆþ^Äæv»¾°g[¸¡íÎßx6oosÕš3ž°'›ØÄæ úXÚè"4¬6¯os ÊæŠéX¾çž~›Ð;ojsc•’gÓQ[è6ߨæn÷zÙën÷Qåç‹fû³cŸ8öñH{ï*®YúÎgF¾ÿ¹‰ö>>àÚŸélÆìëþÛ~ïãcéóåÊ~tÏ}·+÷£;ÞŸ¸nÍXŽÿLÅX×\chÜj?sçÇÔwÓø}ñ€ó—î?ôzÇn¯F^.ñÓ•é¡ï}iäøÇæß%ù?õx~®pµçÍØuçŽûÜñÒi5c_s«¯‡lÀ)ÆsÉçÏtÝ1ž[«RÿJþÊœþõÀ¾üØÂñ>ñ¾YÙèú‚KÚ_r?5:à#ÓÏSÚ°9þÑXÿ—ø2%›vJ½5ç†üß)¿õÒ>Cë£-|†| 9kƒ9çê^j?ŸÛÕÛúϯԧµÖwÎíÚc̵/ú\«[×\çûcYá ן;†ï ¼ß-d3¤ÃOmC9¯4÷Çb1]?°öž×XCwýÎÏvö}kàžJñžôïoT\Ì×­á|l=ÿå]ÛJò¨ºçc‹’>¶÷õùN?»÷u;r¿cçÕŒíÇÿeâœ1ÙûogŒ÷!Lºì?oöÛdWßëþ¯ ´7e3»6ÌþûÇ;ßýÜ®ïW©p~úüäÈ5¿V«¡µóíÆãØCŸoúÕµSóªÖ¯úÊÄñïîÚ±èÒØ}†ú¹gñÑÿoWžœWú|½pŸ_ž¸~í§t~í½OÅýºÇçø\c9“Ôžú_Þåù?w}ù9s!Ý?4&¿ØéÛw29Ô®üôÀ÷þÍ£9sè':ÿýÕB[SýþlᜩØR)§6uÎvý8Lé>‡ü×®.ºÇô=µÇŸ1íuç`—Ýç:íNaêËPþe*—þýú05§j?ꃕìÕÔ|¨ùh»_2÷Ú¯¯ÚÒ7öÜ¿o¶ÿA§M;KÖ9ÝüdM¬ij|·°ïW+ûñ¹C«÷Ò¿¿S8÷ÿ`Ú˜sLýèY6>sw×lÝëÖýûfëQ·žšï==éÖóm³õ [/¯ºõÚ´òÚ\íU¾»}ÿÒlÞÞåÍÇfóÎl>7›÷ÍæCnìéaÆfn÷)·ûò>o枽潯Åͦ…»‡»¼Ù\íî±iìî)!÷áî%÷µ¼Ù\âþ®iìþá¾Ù|¼Ë›÷›ùÂ÷ÏÍðÝ¿ä^Ë›y³iáá}³÷áî©Ù¼Ï_¸oºþûûG}zóµi÷1_íñö}Þl®ö˜Gçñþ.o6=>çÓš©ÛÚÌ,_òi¯MןÞ?•6swžnówo›žîšvŸîówïówïOyî<=äž›{{ʰZ›Ížo›žóœ|~|Ÿ7›®??5~~yÌ›O…Í—÷Í^nóÞFm¼{yÈ_ȲùòøPÚ|ΛyÔ_^o‹›Í%^uµßlîø5O¹×û§©Í|ÚÃû¼™ÛÍÒòš%ö5 ÎëSn,Ϩ×gÝûñíû÷wy»™ûí»Û¼}oö7J-m¿æíg³¿QííÛ†JÚÎ}¸½5Ûwwf;·û`Î}¼Ø6í<åþܾ˜ý¯ùûwïߛ헼}{k¶sîî͹æû÷åí§§ms®aqgúvk·ŸÍvîÏý]¾ÇûûÜæý£ù޹Öý³içÅ´ÿúÞlçþ?¼Ï߸{o¶óuÌu·žÌöKyÛŒÛÓÙ~¾-o›~>šk=š9ùøøRÞ~Êséñù~`ûá€í'³m®kÆùÉÈ]VÊiÛî¿7Û¹ÏO÷·ÓÛ¦ÍÓΣiÇŒóÓ‹9÷%ßËó{»ïëÙÈé³¹ÖóCÿçÇ<žÍØ>?›ï˜yøüb¾ó’¿óbø¾˜k½˜ùóbø¾<™s —£^^ív>÷õ}>÷Õè¥W£³ŠÞo?¾7Ûf;ßûë“9׌ë‘ÇW37^¿å㽊zÍÛY/ݽ¿7ÛyîÞ?šýY¦öÛæ;OïÍöSÞ~¾3Ûæº/ï¶Í÷_L;/æÜWó<Îw·Y·ÜÝÞås³Óœ¶Íþ<Îûí[³ý0°ûpût7°m¾ŸçÞ~;ÿ~ ÍöƒÙ~6Ûù¾Œíhoß™s »»{ÓNžÛwwYïî³ÝÜŸjögý°7Mù~ïÌw̸ݛ6nsŒ>ßo?ší<þÙho?˜s͘?˜9öðl¾oæÃãûÜŸÇ,kw¦?¦?ÙUNÛæûYŽök˜|]£oï²gœ¶ŠÛO†é“ç§ÛÌ÷éÎì7cþ”uÔݳ¹¯ç¬ÛïžïìöÙ¾/o›{|κåÎèÕý¶¹®ÿÖö“éÏÓýô¶«#/¦?­m3Ç^L;/Ù÷¸{;ÖÝkögî^Mû¯f _ž¶ÍwÌu_ì¿f?ðÎèÞýösyÛÈūѯF§½æ1¹7zx¿ýš·³,ïEöÑl¿–·³¾½7zõþ63mmßÝåöïò}íEÿÑlçïßçyxotÈý}ž“÷÷¦Íûì;Ýß?˜ï<˜ï<›6͘ܛ>›6·³lÞ??Ùí|Ƽ6óÿù%³x1sø%ûÌím3Ÿ_Ìø¼ÜÚï<˜íçòöiçîî€í{³mîÅðz¹7ý|4ç>™ï<›s³^º5í¼š¹újdö5ÛåûW#³¯fœÛÛMÞgÖfí¿ß~ÌÛÏæûÏvÿ“Ù~ÍÛùZïíµÌömf÷`bfíÿ`Öø·/¹ŸwYFîò|x0ë÷öv“ÎöKÞ~¹Ø6×Êrú`Öæ{U—ûvŸýŸý²øizûõÖl›ö³nxÈó¿}o¶s;yn?}»_ŽçþÝ»_Žßší»mÓŽ³xÌþðÃc–»£o÷ÛùÜÇìS=<æ9ü`ôíƒÑ¥æûæ¾ÍÜ0ëý‡Ç'³ßÌ[ã+î·M;æ^ÌÚüÁ¬Á÷Û¹?9fºßξ÷~˜Íö“Ù6óíéõýÀvãO>šõò£Ñ“{÷6·ùdÆÍèÃýöó¼m3¶ÏYÿ´·ïÌv–ÙG³v~4~éãsögÚÛ†¯ÑuFí͈Ùo˜¾d?j¿m¾odöåÁì7ý|1¼Œ®{4>á£Ñcûm»ÿÁlçs_Í<4ëñGãC>šuwgû¥¼ýø~`ûuzûÙ|ßÌá×<‡ŸÞg;¸ß~0Û/Û¯yûÖ´skÚ¹7ßy0ÛÙ?2ëúööÓky;Û '“ {2úm¿ûK öÛylŸŒžy2ñÉ'K|2~ì~;÷á>ÛܧûìÃ?™õþÓ½¹Ö}¶¹#Ûæû™Ý“ñuŸŒO»ßÎ÷~ÿš¯ûåèÉø´{7êÞlçk=äµÉ“‰C¶·M›¦ÏÆï=Ò¶ég¶qí|ï&¦ÑÞÎ2¾ß6ßÏzþ)çÿ÷ÛÙ·yz2í˜XÁ~ûÁlç>ßõéÉÌÖöƒùΓ¹–aóûi;ï7ñÏ'ã»>™ØÂ¾™;³ýl¶ó½õ)— ì·Íø?›q{1²oôó“Y§?ýüdòAO¯¦Ÿ¯fÜ^ÍÜ3zòé5ÛǧWÓ“g2:íí½Y{?°ý`¶_ËÛÙ·|6yüç÷¦óG³?ßã~ûi`û9o?™ï?›k=›ïäuÖ~;·s›ç̳ññžoóœy6þ޳љÏFgî—GùZ·O¦ý¼|¾}1ÛY??›xÂóÝ­ÙoúsgÆÓøiÏwf¬î²n|6úy¿m¾ÿlÚÉ~ãó}¶ã{¹5Ûæ;Ù.?ý¼ßÎý¿Ï~ûó½™KÙÿ|~Èv¤³}g¶ïØÎãorFÏÆŸÜo›ïF&æ°ß6ßÉ6åÙèØçG# Ù/}61Þg[x6ñÛg›}6±Ùý¶97ûœÏOYÏäðé­)Û¸5)Âö¶)-6fèָìÓ˜‰ý¶)»}µÛÏÛ¹MB¹5¥ímSjÜûºm3L¥³m®eÊDŸÌý>™rñám[¾›ïѤoMøe¿mJpÍÜ3!—[S*vûlÛØ~1ÜM9Ù~ûÑl›r\S®übJÇ_Ly¿IÞ¾˜rk³Ü¸5i»[³Ä¸5¡›ÛW#§¯y™s÷Þ”í½7ei&D|gBÄwïM9Ù{SvxkJCMÈ÷.?<–Ê_M)ì½9×”ƒÞšRÞ[SÒfRTw·¯·Ûöû¦$Õ”ä™TÔ~Û”¿š²Râ¸3<Ü™%À)Q»»3e·&ugôÒ)9Û«½Ûò¶)+5©«;ó˜Ã Aï·ËÛ¦tÙèº;S2q÷`X<Ö&¶÷¾Lù«)C}xyØ6%µ/æûfΘ²·»üPYÚÎ}x4%©¦œØ<þpgÂw¦|bȔšÒG£3·MšïθÜw&Œ¼ß~4Ûæ;fþ<=Ü•·MIç“áûdÊzŸM9´)uÞ6}ko¿¬³mäåÙ–›’TSw÷ü<´mîëÙ´cïý奼mʪŸ³]»3iÊ;S·ß~4Û¶¬×ì7òØÞ6%¾¦Ùèá‘mó}3¯LøèÎèð;~¿3ú|¿mÎ5úÇ„†îLIÆýû\Ú}o¸7¡ž{ú¾7>ä½ñ!÷Ûæ;¦<ïý‹ióÅœ›íõ~ûe¥mSBüúþ„ÛwÛf¬Lùîðöã ·Í0eÒï__'·oMù1¶±½ÞöíÀöÙ¾Ÿ¹ýP±ý4°ý|ÀöËÀ¶‘#Sªí9Ûfn˜²öáíûn?`»·ýxÛFfÍc;·æ±óx~gû~`û¡bÛôáîi`ûÛØÆ6¶/c;ÇŽ:Û·+mßl?œiû±bûy`ûåm¿þÿÛ;—ž( 7©ÅWL]ø;šPjÑ% R‡L\MÐÚUÕ¤mâÖŸíÊa&ª|‹eùÎð¸3@Âp/¿Ï*¸¬Ö\3p÷îÃ~[ŽûŒõ ÷4Hu‡R-%Y+Á+H¥‡tà7X¯8Clávž¡oCIµ§Ý£Þî;ÉÝvï\5CG»#—»»Üw;{žíã»pÈôyì^ÅÑèLj]·V¶£^™K¤¸CMÙ6;·½ƒÐ³Îç»5­iëÕ-s®Ã“@ÓÐèh–Ûm ­´4›uÐ\ÍØîõʺ2ó¹sF]ê¶Ë` í¦š O·|ÖbÇܰÎS››eîSG{‚‡OvÕt횈.ïw=н›_>ËWÐTªó ,Ŭû{—cÓ^ìëtÌ@9 »Œî÷ƒÞ-½S{Û;ËÛÓ‡¦ö«™·»×“Û)Ûv$ò‚†Ú­²‚Øêš2­h -Ì:tmv{oc}}UÛíºî}ëjîl;`mvçKm)Kw7¶½íꀷ¯v_=Ǫ(} }n¤ôÞÎö§D©¦½wfŠØU@u•ÐÀ;˜ WFŒÛ.‡BÆÚ…›Ä6{Ìøß-=ó>ìréÛ:kw{ÙN€q»z=Îë±ÜÞíÞݳ ½ëpö'›Ð' ö»¹wÛ¼=ôïw·ºÝ•Ûz÷6 T¼Õ ]€ .³¬×yÎðô{Ý˶G½‡l¼Û (¨¼Šû½ç•c®Ù¥©š£Ø®½{µ›k"¤©ä÷zàè){ʺwwfÝw4Ñ!ÜÑÓ'»u®½W@ÒJ‰µ±@«||÷ßc'Ð:WN‡lQ£Tî­§ è4÷¼oyè§ Ü÷ è;­ÛÝ£nøPÁ>ÞÇÜç0¢–ÛN²û»²½6—±®½4+v:Šã(—£Ð è^îÖœ¦zw´l2ôuèoXn=w·»ŽÀ;ÚIY½Æ7wu+{·T†š×o¾x H_}Îô÷^Ê 9k¡Ð:Ç-K^õ‹·è  :Ìé@@êù¹ï›”öÈM˜ {’÷œmv8ɧEt :ªäZÞÌV·Àâ&@Âhh*HOQ¢Ÿ¡L™4ÚC4ɦ™#@Ô”’&FJ~’i¡êy#Ô¨d ¨ ÓOPI”¤‰L©éžš'¢=›@˜˜ “1#6€dÂ1 d4Â`BITªŸÿ¤R¦LHzCÈÔŸê“M©Ñ膃 L#A£!€ %OQLѦ¦Œ)âh§¨É”?Tõ42y&M=@1=@€4Ô$’’IOH=&€ F€@}ý÷E_×ÿÃþÖùåE/úïó™î.ÿó‡õþÏèþ÷ö¿ø}ŸÊ·ÿùÿ’ȯãþéÖPC‹øöLÿŸù8þtøWýþz2Ç{§þ†Èo÷ª_ÝÖt]ʺy‹Ÿ‘×¾Eš´ÿ+š§ÍŒæÿè«?¢ûm{—òï%ßã‰F—&v÷Ío¬›äðÓ{ž·n÷7yìï§®bÿ žšÞyËÎí<Æ\§‰p„ ý>_>W”Ôk¿Õþéói=aç—Ê?}ÉÓϽu¥6ÛV_§mþ€Ç4K§w¨ÎêTûáǰoxæ^ß!Šb­¶ ­Æèà=øV……Ê…NênÖùjÇwótïñ]ÛWúöí»1ì!ìnK0ˆÛœ*>êÏ…v¿€¶7k2‰}t>ÉvQøâþîY÷=Ÿ†¯Ý÷ê½cö×ܵ¢»ß¡o(cóéÊcO9j“nâþê|éߨÇcíÐJwóS¶LlòšyãŽ0Ξ¶{ݾ^oœ¤ÏÌ<ëGoªHóúéSÍxÝpž§¿§æX&íkLø?Í;Ã7V¯bI徨º³Æ'®.Ó¬j¾0çf'C§Ý-—õšíúØVè{¯»’ž'ëœðËÂÚoûT„nš;Tº×ykïÐçvo‹µÎÛÍ=5ã!µ9i‹åËÖ:EÅ-÷;uíiùáÊjزš¥ .îþÛÖÕè[ÞîÍ]¯îÙô:wž}Æž8ç²XxÉø;^8…;ûƒ}î°[OÚ)ÎYw·N ‘ž=öβî¸ð©¨ƒ|Ü6¾û“»¼Í:mBæþü}¥»:;ÛoæpÂßGÍCê=ÚnM˜<è—ïjïävº$žö­Îž gxer'¨]ùªÛŸœIPól{úåÍ—×¶ë’+íJúw½HîUÚ–óíé§5F¼Ãz«Ç8·äa·ŽÛèÖ{}÷m𭣦ÿ¾âé)½Ú¼`öç㸻j‡vÐüㆎÑyýçjÛ>1KÕµÁǘûž=ƒ¹.§ÓÎ}âçúÚŸ)΋կ—œÈê·zK9¤B«”ÊåÛÆÓлNÅ÷]>˜òÈXSø}KﺆçÝ)Ó6Ù‡¨8»Â8ûž™JMV†¿¤ã—:Þ ‡~•šm§Øç_\œ8µ‰÷ì•Þ³Á|CL¥vžÖÄË곿۾@S¶C­»ÃŒõËžª»Õ–”†nÖÄÜþç/K÷c5ã]pFEâ6õ3—“Ë?ÄyﯙdʪŒ›^Áª+a:Ò^C7=×Yé„d¾ül>ÚÈÅC¾zj©¶çk ¬ÅÞ¾^<·¹R©W…ŽzÄ.9ô—\‰úmœ)ëÎ7VÛ]\ö÷ˆo ²F‡Ï†C÷µñnôx@A¥µøÈ±È¶Jœëõ©æõÅ(Ó'Íp‡ÛWN´f8sÖzm¼¹&ÌF™U<ññõ¤7éLÒÈöûeaÆ-Ì]"ùV}>úxJV7RÊh?˜åKb2å»]¶z{J}ã/N'κܤ¹°pË—Ù„þv߲©D¼RYL2;ûÌ£%h~E;ÕËåi8uÕßo­ÈøöyE1ÂzqÅ™¹û-§;PøðË÷¶{Ç‘÷ë冹ë¤;i>ÿ:ä'~TŽZU\OàlGGékaj×t9—m¯­ýߨžÆCÕ % ä­*d5EÓH‰ QBPõæ JñCQL4­IJ¤(¥( E)Ю”¡ÒP% Ž„4•Ð"RÛ Ð‹@Hv ºP,¨ÐWJ襤ZR‚¤ J€ *… Pí( Q‚*Ha¥"¡ S6@ÓiÒ@PØ4ĬH-JA/ç!qP}ß½?b н*¼;nœÀ 6u*U- Æeqca6pÒ$À4àTÒ´¶3³MbrCT0[e§B˜ $…‚&– ‚ØÅ#@ä3˜a º €Õq òc …²š À&M T4¢Š€6ÚJC„È 04£@ H‚A&”ĨBNƒgÄ“˜’pcaq!ˆ‹± I(U¥V‰d‰`7qœjˆ§XÙ€Ó’²;C‘ €’°CÀ#‰4ˆ¥i-„ì%£b©%LTÈD@k(:CciÓHªa¢è2% `ÅK.ÑI¬Ih£¢„s2écBÆ« fÒ€†MŒ!K¤¶ ÄÄ‘”°4¤‘l0Ài…F…¡Jˆ: š6gm•)c f§ÛØD31 5O°cheˆJJF’¨ U°>h’ª¨j”B ̶Òld d T®B ³ŒáDÙ%&TL¦q@ETˆRÅd('“‹QN\"å`K9G¢³´ï*(÷æ×Èý“@RƒlYÔ" (Ó‹E" KB*ЖÎù,·+rhÜå:½€FºE .Ù°aSCàÑc:EPˆÇ Ÿ?<üJEîr?Å”D@>ª «_f½€ˆŠ‡ÅWñ „_C•q5¤BRF%C$È)³‹c(•HPºEÀTÀø€Sh!¸9€T‰A ¶*šÉB /H¨âE"!`ˆ"'ä”R)RP…h a!B–*• 6!@ˆ€E„%!()j$¥P¢ Ά`UÔ›FQÒ†È ÂºÁ2(è@h¥WB5ÕPgÁÀp<Šq§õ>áNGJ |H+Òü8r†’Âé„ ŠQ’„¶€šE2<°á&È*d ônB©ˆ`£22ÈÊ s¹I$"„‰faY&i„$^ DÊ‚R(4ˆ(C@©@©@R€”ZP2U¨Nº# Ú%#BªúȆUTü!Gâøè#!îÔèЉ¢%EöÏ»r~?kÇÚ,üžýû}‰IÉÙL ðéBw@' ¡‹@ˆ D¤ƒÁèÜqï)èCЋ8l«õu•µõÿ—åú·ÊŸzŸåw輿6¦©ísþŸÕxW+ñý ÷óp~‡np üÿkl˜é&f0Æ2oáÌ‚Œc'Rˆ¿îb‚Óßóû=½Šó·Óôý;åíDøÈ*~Psåü ¯—ëóuãîè½ÏŸ<žÛ.8ñÇsJ¨õü„fñ ùÞ*™{¬ýD§õÄÞñÍ#—RÈ;UóÞ·»É়¨àBU.ß…™@ºkR ‚˜Vî?7Çæäó[>¨ÆHànmW‡¸(–þ)¦Òçíø}›Œ«î?µÏâåq¢ôú•ùHó$²ŒŽuw¸¯~jvsůڇÇç¦æ(¼ô0>Þ ‹²°˜âc$M7b±0ˆççÃ=8 ç“âCÛ“»¶6Lr 1ÄÌA1€O=<cìæ¾qf(®%é.Bt™ß÷‚µÎAL0».+:êï(›Ê+Àµê|)Ψn ØŸ‚§eŸÊdy½ÒbB¼eæü«›ºr‚wçÎñ­å7J(ók™ö—ÓHw€©†ï¹äú£¶*}G½ W/\Ó^5ZòKÒúÏ“Ý_‰Î¾  Œ¸  Œ Ä æ…='¢añ”öž>¬<ÿíU<Þ*%XE3ãt+›ê}¡ á=ðbÄAQótÊÔÅ ã=«z®KiC„ëÌhýà1ŽštÕ—çëUêÑ®G»«¡\›CìûûX=–Ú:5õEo.gاœó?µaL)÷­¿‡6 òþOÏ9½A!•4t³§7ù€ &0 ‘èA¢%ôHu>ïŸèß,'²Dñ‘>o~{ ÄÀch?^@`ì@Æ3«mm-~Ð0­m T:-¿I;{>wó…5dk‚¶ç©`su™ÓvÃpãž[sÎXЉj\Á%uF¹"<æÌ¯œ«#Ò„sßÖ*¯ ÓÎ>ïX£~ç~´ÑWq‹7g®‹ñºG/( ár–,Ô9˜“1sÃ2ÉQm>:µSTîø ‡@F–®®ëYï¦ò¹l5âЪ ‰ŒÆÞ[ß'uéîöêü 5æ€Ì…ÙéÌyü.“ã;úÈoæ˜Î[M®ÊñXUÅ8ùæ >ž=y,=…µãŒ½Ê˜S¹TZ!*§Wfù µbJLºNó„æN]ìá+rS…qöþö»¾ùêXs¦ óJÐê€)ËÅÇ;K|Ïe#nymsåã¡ ùá™°ªG0<»-u‡¬6”å€ßÒ®yõ¾0U†T9ùâÌQ£_éC±Ç¡XÁQSæöJ®@äŸ,/l×)î_ñŸ,=ž<Ñ_’é”öû¼šl/¾òGPvxÈ;]õøy”6?ÔIükÝÆto&1Œcͼïe÷¡ ÷ÏJ7]¨aÉ!ÚBô¯µmƒóï\à~Õ–*çßs”‡USdtÍóFïžrÂWq¶ËÎÎI34Gëb†»fùS»¤;á ¸xgœæ—k+Ü®äéÄõOý{²'J̓è']¼/AÑÀ“}VÜÖÆè@  ‘Â1ÄÆ0yó{·U}òH/uõo³TöG¾÷Ï%PÄ@bˆ˜  ŽÕGŠû(dŒc ¤ÒÛßÚ•tRáÁïÊ÷ìRUÓ"-4$\D8)'^ø+¼Tíîóׯ8\³lÝ úhÎ=;~Ã~€u.Ñh߈÷Ç<ŸÍ´ùðôbåß–J;å¬Zcn¦ wk#!Ød‡óœÑvŽÏžÉc³ñÖ5:ó̼Üé”H.YîHL`Ï ~0z#Ûy¯ž=R¯® Sã|$û’´Lcz¿s¼;}Ç·WñYQÂÿi.6…ÙÀ¡ â¬÷ñ Ì–C:ò©nÍC¶ãZUyë qHdìÙÍ4¹‰óå´ñÉ×Ï›©áªÚ βPz;Þ/æio\Þ˜çÌqÊ0¡ã¿Zéî0 gÕÈ-1y5Y ùµeL’Ö)hÇ^ÔÝó¹{ŽKB&û¼ì$ûû¬¢®$`¨‚DÜD@  €‘ D ` Eâ`2 ƒQ1– ˜˜ œîQ[[ç²zÖ7Qˆµ°½í6Î¥Ç~#á­˜¿s€ßåô]úèÜÉx§*‰÷{¼Î5W¾J]nÑÛpÚ{³¾™OØn‡Étç²Ô±õNyhêjþïëà¦Ù9®ˆF8«ÅêTŒë··CÞ–Íoì8óFê 89®ÆU±æPV ì+ß®SºÈ•=«€uœW†Jº«`—«žrŽ7¬só=Z‚é÷ÃX‚›¥±Îid)ÚØ€ëÃ1¹îÙzÏ¡~sæ–±É+)(X_# S¯r˜ð¾¹p*¯O>ƒû´¬6{ÈÆ0ÆÐ&0¡OÒZP>ŸÈxäʄȉUXQ¡)yô"gò!ÊŠò ý)H…)€RÁ¢)ñ!¤¦Y‚U&I ç †@€üå@ú?!¤CéV† FoaÄ0ÁR”£3¦%" M´ - H…P¥ @¥#J…l:F‚•1ô P…!AD@ (Э«J0Òžd׳⠜ˆÐ õ?/êÓë>»æEó¯›ëÅÂ9fâ—–É2ôؾBÄå"À²ü*ŠQ êCÛ|Þìëº×{þoÊï=|{ôÂ$Ÿ ú´ gJ%4ÃP°(AH¡BÁD ´ét‡å *æ8T4»DJ ŠÀ†@ZU¢üm 5·¹W'~Ç!ÔoÑÏ]8P‚½€C† @iÑš€C­ÙEÊĨP‘+Zˆ B†AÛ2ÚȨ–&˜¡Ø2&?웃Ï.ÔóévÚC  4MP¨Î6”ئ.bV:± Ä…q£9“ T±ƒ¦0YÈq4ÆÇX¤1‹Ò P»'¹ liV!m‚ ˆ„ˆÂY vĨ„J«0­+A¶¢ÓA J¤‰³F"±Ctd Ðð¡lº Q­R—,ãXK,£E J¡ È:r#MõÜ›‹ªâk¤fIÊ~íÀ©¹Dß ½y£:ŒÑ¸Ž'¹Ò@¼ÖM;¨;ƒ¢JZT¤fŠ©šH– &”&@F¨÷w6ª˜ÔºØ£&6Êç~ºSµvÀDvWÄÏî½^ö÷Þï‘á퀬@±öñ•ðotôã•Æáéᢠé^É€â¶1¶I.cB…RÑ@8PÄ¢Št¯ŒnÔ‡_scÅír;•;±<ˆl­@f+-pY–VêP-6Uù®fé˜fÖ˜€®Ê…pC;<_·†=…>û^(‡½åˆ*ööãŠ;H n€DËÊÈÌXwqéDŠ)AZðysŒ»NJl¤’:X],8ØÂzÀftŒi«Y,w“ØZ% ù·dMÛ„èH °L$JWpwZNìǘl@ d’A²mˆB›9°…±Àˆª·¡¨QÔKqs¡ûO»ÉÏ×{P{&i¤¸´*È |%z/y$“žHÐdµÑÜ8×}È{ÍŠ½[ǵbtq\w ‹m‘.䈑ѻ ©Ë‰î¥Q»)غ8 „m.à#•C@rqãÛÕúqIÑÊÁ¤!ˆÄ",#™ÖîÜ"I¤ ¦ "fbÆXDSÕ¾Â} ?Eì:N¶0u¬ªh–À’Ará£pt(ñÆ8î-ª©"~‡ŽT<ÓY"XÙ%3 \ÓÛ„;¸ìü³ÚóÊpW`ºÔ.nä€î°/Ý¡;€í ;WêE<>ÀŠÐ‚=Žv.D·p&”… …* ŸÀòñüôý£ô»Ê÷÷ø¸åôÁ>3®Ÿ.üwÖí€ÈžŽ£„1ˆD(Ì[»„W¶È²*tîÑú×ÜðL’ª¬ªLJ B¶×]k”ÊH‡XÀƒ¡ÈªR `™-À ¬¥A”9%1 F2dBp]!ñTÀ…‘vTÊæéP9]wCу@=0£ uB ”4Dbën8Ž@啬©ÄŽÐ ›¢ K"‡uMœÚ3ZTžŽˆ(ivÁâCµ(ìqÜè¶Ç&Dé˜6ÛR€<Ò!Ä»f2¦Wqv×?€>zD#¶Á §´‰Pd!K‰%5"ɺ²¤ tK˜ÉÍÝ܈ëXÄŠ”Þèmä4B&°Fâxá5É¡"㘺I m4°5Ë`ʬkw!Ë89Ä™cQ©HÊiëYÞñåOF [ʉXÅXë$‡Dh1ã£[Ž%x ÜnÁ‰_½z Ù@}÷ÃÆ×A$!©$ #Ï¡ cl’î:föƒ±¬‰¬JÖÆ4vžîÓ¬ç¿o/^ÜŸ'›{§y•D?R4böÅøÀwÇ‹$hÛ¹áôeWŒ³Ž‡âˆö éB”÷ÙøB%9ÂoÀ ð^HKÝŽé[H@eV;€ãJ!ÙÊ †ŠÉŒ"N(DâôŒø±ÁÀ/ZŠ€RÛVÛHB!¯×hR7v‰G¤ÝŽ£;<¡D6cºqÓÊ|z Ym²C“·(¥¤„+ŠŠk†³ÝFU@õºÎÖ­_®ûÚ+ßh´¼:ƒYKÜo6Â@¶oAàA= A€Ë™@‘n3ÁÖTJo@à!:î€eœ£‡ëòOwŒMÉ (•#@@C@Ô´‚Ä}:(¢’„ Ó§BµCABÒ 4©ˆ)&4QS¦±DIJQHá"d²ª¼#u$ ·=¦‚!FÑÔ% nÎîã»-Ü|G¹ö‚¥`'Ñx2¥ÈrCóoãÁÝr:Ÿáóäœ$2|drPÖ Ì aåíƒn…ù%$ §Ä†/¢Û Œ {sÛw&ŽàôúR¢¥JhL@`Cʸë"" Á¸î´Q.çN2ZG Z»ãdÔI8Û&Âf=„ÇÓ²éâ¤8À8Œ ¤¢œð&aG©'t v“‹E¢‘žŽG§»®•4ckâæO{±ØEN¨7°sw±¤ n»ëÆöã½èB€§4Õæúí=ë®sB¹„éEˆ Œƒ§ q9‘(2qÓ‡ q@6ÊÜДêCÝ#§l®€¥À{°ôkè÷>(+ ¡ ŒbCvŽã Æ ûÊ¥âCFq 8ç‡Câ#vEÍ(J™±qÄÐLM M:0Lñ°‚Ñz^•…ty1Ñ ŸÏ½ãXö €éˆ\ÊtÐk=€)Фq)E6Aûñá~ÇYÑvæamdШt ˜‚m´‚àEÊ6‘W¡rHÉ"ËwG~ÅÛâõ§®Ö–Û$¹Cc>”om»Eìe €M%ØÊvÀ’šU}íphsbÓ@£Ó¤£»ø^Þ•¯£èP€d)P£@† `•$„€"PR£¶6X€3J€„ 4  ˆ4B…*,B"Á%I íé *k*bŠ—[KNÝÁÓ7MtLóé>ó‰ìs¹$,€içpédBA¢¬h¡LXavL <ŽÀMë27jÅ™òÀÆh®ØJx`G³»HV FBÚ¶© ‡ãؽ¤¾24{g¡é1$Gõ½à . jp}ßÃóýþ?7Ê^û¯í{Ø~÷Ñùßä"á#J¯Œd‚™  4¨´£çCE-J©‹#@¤6»bT… ¶¥¦ ¥DÉG=û ×§£€»svçšÇW\)Š:v5Î_{É@ ÞÊBlÇHÒ€PA+Ûsc£ƒÐ‚*,Âr‘&˜½»‹%„äQyZ’jHH&Åà ±Æa ÀØŸ^ꆳ¤´ W N™àeUç``:@"I•Æ¨Ý bdÏÅ9§¸ Z\?Gq€)DÒ8ì¼ôмÈ{žTI@öךH㺨D¤Y™R¤ Z$*¦Ç'B€RR©´‡@Dñ.I8”4h¤hÖë5»½ìO{%œf‘€`‰b–Š„B`Y(À#/n§[,ÙÝ…¼ÀPCØ-ª<™ËÂnëd¢ÑÈ–‡=®;¨å ³»¬wW‰0x^AÍ»™Z–ÔJCÔðv…ØuBPD€Rµ•:%$ézBždbVeV! ‚W¥Ê”Ò *Ê¡FØ^`FD”åA킈˜Ýíñ¼Ít¾^Ç]q;»ž‰®·ZdT-VŒ…Nœ¦$P8‘è TçŒðÂt)(!°hOѼ]%xs‹@hq'\c)–S¢0ezuní‹@ªˆ bI„³¥5((QhÃ$ìÍp;!Y!dh@p‘uKÉÛ:°³•I1 ˆ¢ÜGºØÎ‡¸‘DY¢L-ÝÆP5@)2(nÃwÓÝc}G~·Žb4|nº‡M*æ”;`9ÄÒÈíÔQPÜDgô=KÞǶ2u¨“ŒÂð?H#¨èô9±•G(H™B ,¢AfÎ]Ò·&‘ÀG$r<®" Ü®¹pA¢¸ìĸ]‚csˆ$„Ûn¥Ï8"R®tc7'=Çs§CÊ&±Œ"É%ˆj±´è©bBA*‡ s”V#J]*¸4ª.‰ClIDrÍ@ŠtEhž€x¸ÙÓ [ &$ Ò‘"Ã<ã)âx>'ަãbÖéAãïcÑyÎ͈ɳ‰@P+ݹ‹( :5®u”ÀŽ@PºÏ F´s‡ŠbJ)$âÖéPZ±Û•C a£¦©&ªªEî‡yRçLj@ùïä ÚäPºeB ªH‰¤ 8C—²p£aåBÂ¥²¨ž<Ø‚¼vìH,íʺx;`P÷¼\Š¥SdÎ6£òæˆOªN®¬Q8)DÒ pE9"O¤G¤>Û²¢r?x£±£ÙR|&çNƒA×IÒÑñ"ç7ŽND-Yt<ШX…BÇ5€(ÎÙs`dÖ'AH"$Cw×0‚vݸ÷½å° ìŠÉs—£ÛÀ˜-µ–¸Æ¡Vâr˜pB’{ºx« ;¢4¨ !µÂiQO’» hMlHmxØâ 7?\ t ”Q4(àŠBT ”tª„IYˆª„€JH„”e V(©BH¢(èUã³"%Ò(tÒ²…ÙG¥Q .„’¦$„za&)Š•åW5UE ’‹0°‚F2 ЊңudNcwìcÏšñÇá]òô¯xvC£F8„>ÁïBx(z¬x“¼Žz £i̇V&#¸î>]† +(› Àaµß>OÔ+ƒ¼` LIìÏW¸0Xһ׻Ȩt 4 )Û,¨0€(©°¾F#ƒÅãªN$mÙœ  ’{&·CšBAŽBâîó¶ "Sªø èö|†oÃÞVyPk~víX"#ç·ví÷³è£>ÎŽŠí %ÑvAÏZ®gmœb.<ì©Âh†ï:DnØŠ7çzåH£ à€-}„1Óõ{—Ä ‡m?¬Šš®ß}´ð^QiWB¡¬b@ÌlF:ÜœàrZÉKµOIÒt¦´ˆ>%õqçb£UÅœ‘TYÜ:3T¤=z‰ `툠;“·vžöNP(ã Q6¦ Òt@bDD3Âo‰@ÃèU$Рq¤¥è,¨}Aõ™Ì©€Fl`L¨8…R•]T*£Jé™Çª:P"|{§uÍ6ž×!¶] =»½à:[Š1]¢CyX$JTÄ )   •劄¸¾£s¯ ]±ÒŸîópvÄ"x%w¦­  @ªóúûס<Ë…m¾O¨òª–Ëõ³Ðû/Fíûhz„÷<`yØ›wnȯµ=YÇ6ÁI,6ÞÏ;¡6“Û+ÉPÓ±Rõ{›×¯<À>†ê£¦íÂGXZzèÖ÷w‘©kÐWm…@ŽþGâ÷žÄ;E«?!P5î¨yÌ—{x±$÷vx¶6h@3aæÈ B²È$QÝŽ¨ T%D–( ’&¢7¦=‹(¡çræ¥T &ã5ĽÎrÁ%BÄR 0ˆ“R« $ ¥ „(ʪB°"¿ÈE4“”ÿ?Ãñw·„ƒØw¾ä ؇ëì¾:¯7kpªîFÓÏ}íÂF_;)ЉІI{·m§@&¸ÂdæÅÛ‚@,ªÁ²Ød °ï7gãä`ŽaP› 7i ‰D!X‚ì&šc?Âíåhö.÷ñ¾Àat†: ·‹Ü N;ÚMÇÉêH>ÁøÇaâ× Ò˜Ô ¯¦‡VÀ$â:Ì%àè‰F˜÷îuîÉ ø{sx9L«OXå € D(íå½ÓC@: t LúExx]8  {öL˜Ê/¥ P#è6aézÒ?Høñ„^•:J]¹D!d’8„6éæ2"7RË{Ú;dë&aPÀ˜pk稧z8í×TŒ3÷cÞ¬)ÜDþ;Ž ‘Hž÷~Øòœú—ò7¨Â¡xâEØõfz&JwÁîS@*oŒ”šø8³é>û•Nà`TiPë}ë>î~„8ï+0èÒÏÕóÇß»ïØûÈŸ†7ê‰t¿©Í§!qïÚ€‰Š$$¡Š"ª) z¤ê•à R‚L ¥³¾î…!š‰$2ä2¢éPDÒÈP{­RýOJ£‚Yì†ûÜ‚ñ(vý¹ô4-yœJ4ÂÀI–ø~ùﲯ޹UxbELWÙ@Áú8߀ã~>ˆ‹^üôxë}Téר.$®M¾ò É‘ðqfOy¥˜éQ-*'ТÜf€@!ƒ“yw“[Æj)ü¿.ÙÞ7Ï„òG£K LÀ´H¬HŒ{‚ívâçmE ÏáÏxÛ€ß*õë£óÙå YAX• úïÀZ½˜Àn1ïcмQIižèªÚÀçòñ`B‘“"àõD‘~L~åo½‚X—òËQPÊPŒöWBRTÌÅTQRTA{÷Ãâqô÷Éú96ú>úà{܈å~Ї¡$#ö_ü,|.MJGÞüûa†ò¿|w··{m´Bž“ÊÑñò|ýíñåé„D8Mï½kÑØ±ïaW¸Þ»®;•Ì m—&‡cÈgïïƒÒ[u©Z)D,‚:°§G õ©Ç¡4(ÒPŒH2*eÚwxö=®%“»±îæ8•FæL@s˜æ1Àˆ õâ_Öþº³ !f`ÿ×þ»ùþ°3ŸÊ`~#›ûBI!(Oÿ#ó«e€ "c€„HÂr €D &@qþÆV®S¿':<ÿ ¢E9ô>ù=¿/—×ÙÕøþNîf~/?wÉê’b–iPi($`B¦"–ˆ¢ Š‚bª"h›Žî7¹Ã.Y–DTŸ®îâÖá1m@ÈfLQÀÝeaZJ1 ìYÚÕ‰XD8Ræ”6f 6 F¶da.‚ޱΓìqǬñ”GŒ1F;²è@‘µ™ë'Ш`;)ƒ\Úìã° \8 ¡*°ƒ˜LG¶{fqìõÝg[ Õ7=—»•ÐiP N\š .¹Áºš;»ºµ¹S"0)*ðxÜw‰Å œÛÝãÇšCˆ¶HLNÝBKÀiM#Šà;žä„•qÆCJ‡l Äi;mÁj>,Ö†£´ÛY 1Ð×g[’ ‰LX®Ø,FÒÎðÇ»€±˜Ûj"YHXî¨T׎ã…Zz޳([°.@!¥™·çŒÇ-±=pG¬Jz#Jh].”ÅmŽâ(×[B)Òô£¡K¡¸haÛ’7)) `>sîO¸Å´î—¸ö8æP¤I~cíï8òDŠé ¸Î’ D-Üì›*âÊ`F¢;F„ÓŒ¤à˜QqÓ°#\gFÚyºîäýg¼’'FRQ¦Ñ£·9^õqÕ$Žž›»„«EDÍlD$Ô.³ÃÎè½ø·ƒ¼8‰BZÚDî.7±Z nÕ¦#¸Â tzQJ86NHG ¨Â0ªž‘ʶv(&/V,MŸdèæ¥@&¸e7m¬šEì­ C›ˆ1¶…À²ñ&ˆ™ŽžÝœ‹¡‚”FeÀÒ©!Mzà †—,@„‘2öGf²hËÝÆÙ’¿hä¾P™DèÂ{ï·*”¢#ÑŸH¡é…!EzQN$y*¹ûÞQ;!©@'Û¡é€Pl‚9€¡€¬ì–×0ÖÞÑ Nó¹àm¨qmÉ"´ØóFCAj8¨!†W6í©ÓÖ”h‰ž,¡,™Êêd»+BÄšê:Z„-.ž;ŽeÕcM@0 K˜ËêÙ{S¡~>܆@|òóÙXă¾íÆÎ§Ó§^n± ‡ °¨Ú ИÝÂ!ŒM å¹ÜF0šF„Zš'¡zDÀGÒè¤ßc¥÷cE;±£Hè¤+µwEA (z]R˜»·OÇ&B“Û Òú@Wv;ˆR[;R/]!q€cËcŠŠDJ=åDãl'*;±ŒÃÕîã ñP‰Á"böñÁ¼„dIF`—vy ³Ñiòñð!9ä'‰Ün‹¶%•è¤} Àƒ”ÂH‡îL±Tœö9Þmv„ŸU°ÿBå¿öq)ýLÀèþÿè9Ú=âÄ!„ +¾žIP,cøý.VŸ§)~Öúawé á¼<*¯ø­”tÂÇk·”q¿û›îuÌ2…üàB *•ÿ™üáeÂÈ3¸Ž’ÐQŒZÒˆ›Å.ǤÇX~dH©2•›™fvrU9£pÇÁš¦ÝýD[kÒÓ‚Ejb²Ú<Å8–/X¤zyÎC‘ÄnLøV~Øœ uièôJ¡|‘“D` ŽƒœçÄ}äêV 8œ—߈>½. äåT³*¨ölðá1:Ä›´¨ˆ(‚äyÎjXªƒc´zª“"Š.—‰ZößHÍdÿq½×„ žœ ¾HBm1Œ`ÆÙ`§‹|¶S˜÷N?&Ž/Gƒ4¼T$‹PN»[ËÚ½ÄÅg¤}¸ çvUãQxžË¿nÊ”†Ö—ió êž4Wšµ–ˆ¹kã{èÈïî´û ‹ˆcspˆ ôeY´¨R¥i"• éÀÈ´<¤GÉJ†^% ¨¢k è/ÝäRêas‹"ôzþ=ÞÐJμS`+Ï(xÑZšY0±:ü#±WFl$ÄõA¨£E БYzS:ä<± Zb´$@€‰ UÙÔä"!æÂP J„Fc’"rÙBì@9"‰¬ õHpZÑE2ÉиÉ΀6Úwnæ„Eé0Ò„\7 áÌ®&´½Â6“ îÏæ;(dWKÔʽ¶V13Dáž•ƒÀ‰NA¨xÊ=nÆQÅ*NîÝž7rNÖÕµ¬"!@‡@Ò("ÂèV!$€H¦ºA¤‘ ÆÿWèþMê½=‚?P«‚7ÕBV ÐѶÚ'öÊxG †db@,²À´¤¸²@ÅI&&j@%n›(!Í¡I.àá8` hR `‡‡q‚¹%ŒÅ2AÌ¥§r"'B••?OÄÑ{[§p5 H€Q›F»´«A­*W‡W}¼^òæ0.;Çñ ¾ØÃïƒG½`N¾Þ84^{Ž‚ÝPªg´€m9S¥A&H]‰ &ØîêÇ®êBI(Qš oˆP:‚Q!i…µ̲àP݀ƚQRUJELn¢ÉÁ|÷vA*$õ2žŸ„ˆ…8tÄòÒ4òÛ¥¦?M\9f¶ì@¥‘@«Ðl åD™„*›¡è:èä Èè.ÀG×…`ñ²¢„ÉRªP 7"$øLfx‡(Îy$Ù@:IG¢ë×.J%‡¼B©ƒŠQ"™W8CÝlq§›·A¶ìpE¹\÷ã(%=(˜¡À¡c`z(“Uaz>”8ò°ºÀ é)TÒ¨´ €D‚é o|Þâ€s€*¡Ï•o9aÙÈÒ;¬\w¸õ'2ˆ›Ñ”dÁDÖ`„9äà’WHäð‘øøu¦ûž.T(¨QPx^$§žâ(„B¸&â4åíÑÃsÎãºTØC2`€Ð…ƒdC (*¨mˆ$àÖ8BDiUÈDx]°Áϧ«»£ãȉO{YgÛ×q¬é†ãK³Gfi‰l|«"}Ä7_}ŒdÚ…ü瀥ùDà ‚é·WÜ›‚!@¡ca4rÌtFUd„ UzzS»(:àë¨UƬ´’gR)‰TÊ-­›I­à”L© ÒꋬqÜhIœ2t®Á :â}çFõƒ+íDÍÇbH°¡Š´è !Ì@¯pF$Ž´®YŽè¬EfDM TÁ—Ì(1 1EDÙ°áõÖŒ¦î*ç­tpÀ„jDp@ B¢‰J ʉ†:TyK¬t—vÚ52Xƒ4™ÛÙE" ‘”âQ€,JfHZ¢ÌB&“a4GB©•$ "I“X¥®MHÍǨÙ#€åA¥·dˆ4Ôn¸tå´ Т˜áìÙäã[¸Û§£¸xDЙ’‚@PèžÛ…ŒmÚ`¶ÖlŸGïÕüjOãtäPê§9Y¡*s,ÀöcÐçÙ·¸¬ €³-…ž-µ@…¥J•ÈAÈ*@@‹!" «C¬´„È,W91dT:UPĨY–ˆ8# ) !e &k!üWEˆOBªpíAÒp# }à§£»&½•1ȆðÉÜ„˜îìà 4ªš^aDè ” BI`UÖ¤ 'pB …Ê 6í ´J¡q»-¡VŒv ŽÑ‡¬Atª=(ƒ’Sn;8q (ÅG `BÁ.Hj²äM"ЀH¡*Ò“¬$Åeh ˜’@W¡s%MµŠ%mhLBƒ`Üé$Kn¸¦"ä0sÌôA·mcÀA-ƒCbcv8ü×£Ø=Ýv)#ƒ…ˆ>ö"T6<‚—ŸF€#q!,-kq¶„ 5·YÉ&>:pÊp ô‡ñ~­õe ÿï l[ú•.ÁÖV™ëëèP_ >ð éaF™—Ê !„ S¥ÂH‰ÂŠ©¡üà Р¼›Üt!Å p¬F˜€¤ $€…"de©-<èC‡+vtpÀ6ÝŽU N!^{¶ÆÛªƒÛ;ç C Ü1R'gsP0° (8¶þ ú\x[ŒŒÂ½) QT‰´•èàR%‡¤E4€¡(`TÒdN^¬ºe…C¹‰DQÒ¢tƒ¡M‡hîTÛ# îêD”ˆQW“M¶'.­Otw/OÏcIJ¦ðôý`‡³®Å$•Fè@>S¯öÂïJ*v³NïW?%YU‘’Uÿo‰âIÙÿ?øOØò4p²ÇxSЀ´­>qóýÌ'ËúÓ|£ù~qõÈcëO^'ý? iÒK¥­þ>+¾~ÁïÐÏä}çü¹5QDVc™a«öÈÄ;>sØü—¿¹íÄÆ¤Œ¤Á{¦¿+=_Õá§Ãá÷=·Ïô~W·€%‡Ä=ð"òt¯‰æJòNY…˜ETAO)äøou—õ7ËRü|fŸ˜ùFN¥¾ß’Ëa½ÿOæëô½údzByX?/”Ýíowo£ÕïçÁÆŒ??  Š••Ô> ì4D„8¼Øˆ¹Ç]€ÕAÔ²T+% @ʼÊEžÔ˜­Žç‡v.ì §çŽE9PiÕ¼èàÇ f½w±ã‡0áÐnT›ªmƒc¥ƒ‰ÃAL± !@éuÛB#3BŒ Pµ ‹J£–Uir(ɲ¡:AÀƒ§,l€˜bmLh4h?=ÓÒ=.¯¶Gr!™´•±?0ÁÛ‹¸€8ŒË¡àTâ/2<„tr8CŽQõ}Ä4„йiô+ö˾w T‹‚T%f$’]Ì>ÿá± ðó°^"ô8¦n6«“N&ãáFÜé¡DØœlpöè1ÍÁr¤ÃØF¿€S¼¢õ·#"4…JièUý¿wʧKÇØÁ‚”æc,ŸwzJ|’‰=Á„0÷r¨Dì')ʀṱM±Š ÈA ’´Ò­aÄ öUݱTcnï°žø<¾ä1@A߯*A2P¥Õ€'ÃâPô=¤p=çá{ðü?7}õ±À@ß{ŸeN.d(îzÊŠh@"Ò : ™T”i:S©H¢t š‰3œL KÒ¦H" H¡@A¹88"ãD8®A®ƒC d{¿R7 åð9@ˆéqÌhí°h6㚈ã„VYGÆC°~ÞÁÀ»?‰' úAÔRà#F´Ô#´µ›r–gZ¢TLBÝtC›ºæ9¹p© )eÚ{»›yÐ%–4‘êÑÆ0†“mQh®m”qŒ0`:¢dèS·ë¸5¬cXÆ ‰9à:Uä]·Èú_ç¾K÷Hú‹â1€Û~ܹȺ¯Ÿ®ýÕÿÛé%HQù…Sêéõ€é8M‘ÖÅ%‰ ʘΕ’1 qÆí²HW—´`4 CDs#¤,v×PÂ6\ÅÌ×Ù§ p× X¡B¨hDZEè¡q‘ˆî]·s™ànÏ}àDÖWÁÀ DuÙ©QPÑ%¦AòùzÒõ¹š XÓd .d ²Ä$Í5";Ž´wqp\`t „0#ÆLsŽåÛŽzAK–ë"¤Â'vjæÖDºn«ƒ»e¥²â×]h¾p4œCH$ccÓuÞxÁá@Ò‚´”…(xLÈ%4 … Ǹr’ $IΣץ±rË«ªl¡a•ÝWhÓ\Ф[˜¸á…ë<)€ìwrV± ó@Øò¡!%5ŒHw"µTò’ÄjÉ¦Ä€Ý ,–ÕUQåEíħ, —g ¦!ív:‡64+`åvy;G»ÞÄ-*²£é"TpÀ¨f ºQä< :V€€\G'Q(@ùe„<²ÍD¨ßÅFÀ¾•2°  GF˜UHäôpyþeïŸ:ý(þTð@¾’óô@Œg~Û¸q ÀMÄ"¯Aéô CØ÷*ÊÙ×l×tEÕivD ’–РºƒXÁÌCB'Ðá”CŒhL9Ùçë»Ð‘Ò³™`D¦‘CHªÐ” r¦sÃÝ„B‹°Gv³‘Û5_C‰x‘R~ÀðòŽq Å¿W~çt*“‚at÷ AxÛŠKq‚i8%"ŽQ^Uñ6ØÝâD“ªD‰ iÌ ¨Àœ÷˜ç­4“1`ªˆîAÅÉF÷wd2JöÄ{T%žnÒ=Æ pihE´R{÷ÛYhÉ,”‹!ÍglyÕa’kU!¨‰D‹Àe1”0a,ɨµRË$Õ¡1±m> ÓÊ£é”+@¥ ! ” áM ‚$†U¨ÊS­:¶42¶Û`*•Aj+X§UEU—4È+%*SˆZ¨vÇ{ÞcÁ&#×SåI>ãAÁj?Á~gªŒ@ÅÔUÚ'VÀ¤È…˜É F%¤"ÑŒl8Ø%¨„ÀBÁNÝnÔGãr¯ éØ4( ¡géÖàáÄ×dQPA(S?@- #‘:bŠÕµ¶ ÐÄ`€u€p¹¢Ö °9‰Eça(8@=*"¥)J*R¨héTÖ *laÔcBBŽœ!²y ‹€±¤¦¬9Ò ’´Ð”„ªÌ¬T4@4(L”H*•:DÔ´ l ™ÂMµ­‹*zë ¡3`J2Xµ²o“ð‰Þ•GIOÕÖN1ŽÔ[~ª‰h € (hP˜‚ïs³ÆÞ<]Þ«[§‹×2+íY©½ƒl!iÚ‰|8÷mïãÏ¥èn6:ÎzLH!¶^ézA (¹ÈÃHR¦$‡E3a‰@¡] 9 e³ô~ÛŸB¾AùC#„ðUCA2L”‘DSž`(@^©)Ò—­Ù½oÔí4;¦-ÑIëÄ{;`Ƙ1ÎGH)ô ‹È»×[ŒŸIÞ$Ó«­÷ºç?Ë_ˆ àIM`ôc”c±ÅÔl(„}Þ|ûºÆ ¸œËÉÄ‚&Ö×K¬’S[œb6HHÖ¸R–¨íVªžÇ ¢¤u"Ý µ$œ. ;8âªXgÜÉʈ$Ã$b£íÁÚìqÎ ·®6¸z$B‰P)T TJØSB"ë¹N#“‰Sä½îeU@éhSVM]cMðB ïy÷JƒGÝG9¹të€ãkØï.‡×wbÝunç3ÛtòšhGP$„2fݰ¶“¸±EÅÆ‡¬^÷{ÅÂP/q΋:R eAhAB%;¸áÐáÃvöâ'¸#”@tHÑ@Š1 D€ó,"K§$ˆt¨òˆ°¨HjÈ QOCÀD %tu¬7 ŽÓZa$$7 w¤:Âa²BìZÊ#ñKÜ*bà4þ{ÉÓí€à$A°ƒ„BT•J$d”$Y¤˜\c+0È,ìaŽÝhR‹ M³"ë+K!€eö§0c!Æð?öËø¿Œ£þoñ—ùȰž£ü_Ûþe¬.ƒ4hSù£è,7ÑögÓNOj0Ù :ak!´@pÏQÓa Ûš8Î4Émd̮ĂR .åL½—»²0š‹©:—úMa)¨tã*Û‚šºH7SÌ\èNB$ÛhÝ(„uu4P2±» é¡°!·h5‘·P¡ªä QCX‚”ÌUB•T€Ž@*úô!“¨êÝÐf¹Çs[Ši3µ`X6š”jjbÊ¥QZTÛ@B÷…ލ‘q‹pܰå©hÀÛÄî”ħÖ@30M ½ròÔ‡‘T¦Ã¤€Â'Ak ½éN ÐŒÆ5Ò¬,ˆWHšžÀ@ ¡ÉHJ5e;€ÎâÜv$Ä@… †‘6 J!¤M:\ÈêÆB”6].€’"‚”. ‚‚ŠZ¤£™TMdŠSbÒh–XØå”5ЮØhçeü_d»Üìk¦ž§AÎ(;‘c‚6ç‹§»­£¿À‡{o_7S=ìÑ»`âÜn빤àÀW6-,Ñ•l‘¤‹`îKScc%bn*“”×a¹µa±Y¦¢!(iØGqPÝ4”U0`‘‚l»±ÇW:¸©” HFlxC$>‘‚€}"…é E4U¡QÐùã^Äøá»X%@`@h(LQ%ézìš’Ä#YQ™?R‰ôiT{ãÜŠï¶HݰÜÇU<,] q‰8! W¡îÇDÖuÇ®öB×=ïFǼaidSÚÞÆ7Sœtlø½]š<€.P¦¶M„VM‰ ®“Üù'O4’,.7¬ñ¶²”½¶ÍsÅI$GÞêâò?L^ÁÉ461`5¡#‘ Æ*†; ÙW[q66ÓuêâPE™º‚MŒDž=qleC)ºêÛ&zw]Ìq" „1(ƒÐ™þIÜ" ®$ ~-{rªâPzÒÅ“ZÇ9Ïá9ªTH7:´þœ„@üýãìF¯4\˜‡aI@n>¾çåù½óéú FíÓÉœŽìu"«®‹¸ã+¾° ˆøòÓ !ƒf$ÜœãOÔ“¦%{h›/bìʧdPÍ<Æx:TÜ#Ó‘yÖÑIÏ`wp–bQåBŒW%¶0/½Æ_†OA´.4 ÅRTÅMQ‚žš*Œ«Š„áDY®Í«m‚ca˜ŽÙ‚Ih?N3JÀQá„S¤D¤hˆ¢:T"¶i4Û(Ä š‰" é^¨4hÐ!M´ô…/E#õÑ@qèuÃ:S@H‹EªU¥ˆ‚îÈ*H†€ÒHÒ­/A (ÆÇZF•¦º :Z FÁèèWУ݄®ƒBFÇ8ÊraQ¬rÈÉ hèN“¤)4Ýë©»­§{=ÆÐôé(hôgQƒÝØî' òZì9É&œœAÑN \èg®G¦„^$‰ávÊ,¹ÇB”@¨R4-Ю‘4Õ… n£ÿý7%ï¾¼XÎÈ{¼Ä‘æ²f}ó¿×þýÐõKOk'µ ö¤øYÝ €=€2‡Ñ½µ¯UâÀG 3I[ÂéäÞØö)õë¼îܼ˜"–¤z:ëW¥#ŽìàÊd®$Ç=€‚‰=.0ŽO]Û“-€ÎÇbwZº9n(¸P0"nLÅ´/O–6ž¼“ È bÜáx0’¡ÇmÃØÜµv:A:Žª3ÀP9á—Š¡YŽB\0ƒB4‰B)J f^†÷>ñÆÌäEèÓÒ(¤:˜JTétÙAâ4(ÒŒ¬e®PÒ†„¨ÓºÓÝŠMb œZ" … B"sn2uUÅ¿?¸ñf1GgKŠЄMnA2ƒ’žˆ„2SKª` 0ƒ\9¹®ˆuv6]5¬"H"d¡ ²A „Eªh«O[Fë<lpkžã­È„ ` I®ŠFIÉ!vL2²A„™[¤TCƒ`NÖ`N{·EH!T<Ç ¤¥Wb€G Òк•Dþ7&ùÒ(R B¨#B+B”YE# »9‹6$úÛžxÀ×vÂ+ÅÄ 2ˆ¤”MGYq+òQ=ëÛ\ª¨€20"FH*h¤ôhplbJu€X $T:S#Ž^‚„2„U§:EZ䇰©+Ç`Â(db&ˆ–(Rbg &„ªiˆÙ™Ý“’›:p”†°›L× Öíó€@4¤ì|`É{Á0î<æLp°)Yhi-¢Œ#éUög@Y žPNŒ]A»¢ÝÌ6œ= %´¢ˆ°€÷ŽÝ÷‡ÕFöG«Üà&UÊhzÙT(@zÝ‹‰{’âN8å4†ºÌ€ÑÃ*êã['=¦)0œ†¨È p—¨¢è¬wnTš¬÷wvVÈ¥ qnQº:#½Ï J^‚I äâPº*Æ…#qqßxxÎÆ7YœqbÜp$ÃAÕ‚¡¸ V·c ´‚‡H"J¶ë¸®íÊuˆ`m‚"Aü•ô+¬x€»¡S³”ÈKL‚J!¨”É(šAI™6‹`™AO@)Ü{²©ÄÃ…S'J"ßœñçܲ+dˆÄ¥ iP \©Ø¡éӅÓUJàhuc,½Š£,%mlq»(Т”Œ]Ãsv•2è ã£GHD¡ÒÁWŽ:H"Û×(4D,D;GÐw8ÞE¨ãpô –èÝžà8;P„J `5æ2xl%ž7' ÅîÇ{º…À€”‚+B‹¥1˜¾È‚npehPC91°¥·À>0oe2,A *œ•à•K †µÑ帺ˆ½Ñ„ÆCÜwqOXTØÞa]Ü6òÎìx ƒmÉ‘]ÜÄ8sÀmÈ„pæ¹´œBâD¢°) CȤfˆ‚©$z0š¥Ònºk¨/SS¶bµq`w·D@2Š >½túsƒáNà99úƒÍŸxC@k9ð§löƒ ²'ä‚î(À–% LÄ é‘SíÝÛ¾8¡Pð ^‹ ±g6 Œ reC ,êLHúô‡-ý˜‰N` O¡Ë+èP=˜Â)ôŠ}(á‡>z9‰rÎA‚˜eø (™ø žC@é ܇æQ$Œf P¦DJPNÚE4`Bˆô£ 2À,(¸Ø” „ ЀՅ];ÒˆB€š…r¦ìŠ3Û•G¼CÇn8ÄÅvÙ=Ÿxð÷I]Ü!ŶÛ\)ÂD M¶U Ýg7$c²$qœH8Y¥ "Ú¢`Á¯éYšŠQ |Ä>ètB@AÔ¹PìQ±²Lé4Ò*aº „5ÿLŸÈŸé?|ÿR¿¦T~ÖûÃ÷P›ñÂuÐR¨äЀa 0rvŠéEðŠW˜ÓÇ1C0ª°q2$½^Ž!‚`ÙBÈÅ;c@à[Zsƒe8í•Ò¨èy€ ¤ Ò224 £iZp×*¦‘Gl"¸è ! =2˜• m! ˆFƒs!p‡s d”𹦄ÄðEЪ… Òô"¼J=ô(=׉J€8¤¹.ãC ÿ,æH€WËì=ÑÈ«“Ç"b1Äa°¡ n5=q„*Ú‘„]i$K,J£v P«Ð(R–ÂtcfJ£Ð‹Á¨i’ÐÎM³¡î•v Ä{€ƒ” ê±2¢Ä¡2R‹ ƒ!0PJÄ’»- háʼnqŒà;žç€Fу®æ­ÒõºÈ• bÄ… P¤…j0ÆÀ¤#83®8@›€xŒ,kV2wHð’(DcãpªP£™E= ¦IAq4”/@œAûÛî. ^d”) M.$a‚”h&ˆWéPø!7d=­âÓã½l[.ÇœJw ËŒ\ ¡)t Ð ÈÛ‚€é^dè‰wc2: ]ƒ hA1 ¯PÉ$J”²llÎz»Ž€“žq¹Ä—Q£M§¼ˆý}èkˆ¥þ^Ô^Ç‹¸é£gO°y<Ìg4Ä¡È(p´-¦·\•«kdÁ09¹®&£0„%¤%­=G§¿fybJt5öžý²1ª(Ìr;” ‘ ˜”#l”J­ý‹æŒ—s®8ì9úÉJCûšLÇ—§`ˆZ=Ísœ ±ÝT“Tb%צь#Kº¶K‹Zw‘z„€Œà~è¾PœD…j+|Ö•jKJ#ä¹ÍGB@çYj@HAbD ×eÅ" ?< + TF‰S¢ #ˆ„ñìõؘÇôÞ·šX7\ÒQ…e©j¹é@¡bqºþ¦°W¬bK®¸é‰îïP¤DsšV*VB»lñ†ng„86=ã +·þE†xîÖ®ï[Õe -^´ ­Jõûùáü>þjÊõÑrŸÊÕP®×hÇ8/ÃíMË,ZÄí­¤yÏ>=sâÊk¢³‘Õ‚A'Rð‘É÷EµX+²b^?„¤:r9Ô  08#Dò MÀ/‹`ŸñYRrprm¡ßŽâ€`<᪠Ѩ.9Áp"èTqÎÉÙIPî¢;E>ýÒ»™cs4ˆŽàšû{{[Þ…44:®`%CÂ>­P%Råó]0³a)b:lRQ(~` !™Ò©ï'œ /"ÿ뎘{º7 §¨Î‰Ò?2͘»Mðÿ޵¸},üíóȧ;ÒÇ-½fͬÅùøJ/{ÌöüíØ÷àÔ9 TŽä’Ò&†2¨8Ê…º\­âUxdDÞNx °àæú97$+&×èÇŒü\üy>dt›’…Ã…9޽$Œ|”­’qâR¾“h–ÓØÄëbŸ¹dæ <­7*ÂJÞÅܓŠ٠O-‡Ù" ;#p5JôPÊ)€Õs")ªõ7¢Z‹k Š¦Ò¬Yñ©5Â@"ÒÃN  £^‹|¼"‘gÖœôÆþú篭’l×-'·<+ðûÑúµ\KçÝ2 |íuïõ|Þ^}WÍÝãê‘}0">éP~0‚ä B ´‚ ÈEùxÌv&‚:”BP$Ò éPéD3"PÐ4ª‘%1"…*âÒ P´E,.Ä1²DòËœÀÀ ƒ ä#ä³#>âwÉÖì|GÑ';ñà QP‹KF Èžô4ùí.žK~ÄBe~W¯Õ1kA]ŸvÝ Á´‰ßŠRˆ<×$QÀ§XÓ0aÈ`V„Iè>pá/W§Š²±Ä!A >0½J…ï ‡ˆ} ¨]ç9­Ö8ãqÍÙ@¡¹#¿•j÷‘\<å¾óÝ JC¨€\-dÖB]ÌYnž¸(ã%ØÂáQ^ªÓ¸Ù1;w!cCÎRãuo0†Î–íöÞ|‡·@¡Ò¨A¼ Ûöþóíë€:Ô‡1Ž®Ü~xÕ Û €K$‚Plþ¥}Åï-E  $k® ŽØ‘ 8%Y áŽÊ)Ш)Ј=Üñ.•ÒiQPDºQ N´t`|шñ!y=(Qvîçk’‰nK›¹ÄMEŽîa ¾ùô¾˜ÖÞ¬<(!HØG8I @¶£E^0aS_yõA4Ц E!N6šºTf¤Ã1N• ú¹QsÐp‰v¾n¬1ˆpÐnWÈq-*ý ;Ã4ˆ¯È ´‰•4ót€i•’ Lc)  BÙš„966›‡§(îdØ3Áš+¢8BPMlîÇ]`QÐP«Jí`@HªÕFÀ p*¼È{°‡D ãüƒ#ÊGÇçÚ½Aâ‚ÙÇ— ›"ý¿ˆû"HG ?ˆ[ý¿Çÿ{/•’óè¶ß³_yŠuësÝpM8ã¬-pí‹t§ô;ÃήÊyÒØqî7€Dì€ò;`xR ­(< ½ KqŒÝ0[f.ff~¡4RÓžÚC‚‡ 8pcåå–ŸF´Ï®€÷¬ˆÌz„䄚T'»¤9É0B"ayî;´—MÆU sv¢Â”¶ÜðL@@¡‰HE;#¤.»ˆ"ìˆçiÕ [°œŠ4M6]¯‡p¼4ªm¨Š®‡%®»µ¢ì‰Õ­ôz}ìºÑÐæwÜèò¢¾Ë ÙU4†Z”C„E N@æWFZXÐÀÂHéuΘnäÛANaDæTM ÀGgó°DB¥PÁAUAHL!EIMPHD ,¢ˆIà2¨eX ”¤!¡ª( R‚ˆª‚†¢*h¢’ ¨*d¢:Òm»m¤‹DZZx;¤ ÝFõã9¶ÊZÒëQ4Ô°&Íi¡¢ „¹'|ðÜÌržXfè(näÔ-lÞ±Ìé¬Ö V†-ó%£ ÊÝf¢K‹e.¹¥’ÚL6 †©mCdt›)–O¬ïb,%Ëç‚‚è±×*â °sh6’¶´%F˜B ¹‡¸ºuþóëý¿Zþƒú}þB|€Ø&«ä|’?mØvVôÀO‰>X½ø÷öÏ«÷öùÿcÎÊ µŠh­¿¨( ÜiRT~Ð>Ï=æ÷¯æ}½{Æ5‚Ô Ë»Â?:׉n¸û }éê|>]ôÐ÷|Þ|§=Ìì÷çizO>·ö°¢šZD¦Žÿ)äNCƾéTîî'",³œÊW"{ß‹oîüŸûðòOÞPý^çS·SòzûOà¥d÷ZžÏÀø±¾=¿e3ò¼ÃͯŠùž¾RŠåþº˜"$ì?³ ~î jP‚’mj)¦1#™,·wwÏïð ó` }!=§›åûš% »êCê¦ëÊÿ~»Îl‘Ȳi ªk-ÎÄÜcE©3—BèiL“¯Ú&w@®PÁ1­'q òB¡Ùî(­#ÎS…‘(ã ;‰«‹ŽX‘3œeÛ/œeÜ¢‘!KBE6îä]"‡@)@ôôº_Ï€hÆjÙç~mãâ;o„¥{PhÜyMÜÜ­¦ôaz4òÂï çQ½PoN»=¸;h^ç;kkFÙ\嫌]ŠÍrÐÛXV ænÏ! ‹‹@ œ¸â{ÞŽ| hDÒ\`î †@‘€D`˜”b‘“‘g8CJª˜d 6œP‰@[`G 6 Ý!*@¡ITv0À J2S©9Êô¢pP‘ÏuÖ´zê“•&ö¶îrá»[bÛSžêºã‡ÊñSchCé4ž!QÁ…ß~.§Ê»œ»¢ƒÕno c!´c‡E”î1ŽÕ(Ä]#å$–% ††J’€‰»°W§q(¦M mÌ|Oèý>>ïï?Ê÷úïPû³û[ãvʈR(JˆC2@=ða1‡o_?ó¼;UC¤1@ô`ˆ™~ˆ2 '†  âÝ®(;8 ³¸cš`€'Œ­ …(¨qàÔ xž‘åI£‘ »"W¢ã“‚›Â€ðAÄøbLA‚€Ê$¡²ìbF]p— Fp¨)T6:7e„¸…5< q¤2Šƒ8°(v9D5Òq¶ƒt(JÀ©+ ö`5€èž6*RÊ ºãdãSŽMƒSd€\Ð ‰RI:€ÐEG¡Ç"BÀ‰ŽæçR]tDGbCq°òd¢£\X;m• €ˆPda ©˜]Á@ bâu"z@èM*HxEòƒ*ĬLPÀ ²!'uËÃÇA(±0 ›#ƒ4eÖ² d!E‹Œ¨t!±g‚"b"•¥¡^´$1•1°öÇ 4¨à‹˜è`SJˆ4¨¶(4<ª#”_á²r{Ú‚–4#(° ””·f”pBN•0„­¤ÑDR¢¸‡œ' ¥¸xJ¹^£ ‰‹ÚÁd¾€é'd¼ñÕÊ&53•2™R@l8 eQg)X6UC è)ĈB8ÆJî$eG¨¸#eJ‡q !×n"!é’'óÜ¥±rÉ R‚E  )´SPÐ,„¨BgdzM=4îyÃäÀL@ !ÖCÒy€¨Ÿ¶<˜_Bâ1¹ˆ«­–v¹ºÛ*+÷½¶ CxÝ(ÆVz5Åvèé ÁØÆé@rg¹Ùíu»nH {¦SÝ*U€[Î✑jfCêÁ qdQ–ÑÇ=2‹B(ã²½[AWÒ‚˜º0«¾—Bœ|uEqžƒŽ4†ÚL©¤t-Ùqvà³#CÚÙ)E]ÇIÄGEéÄ\ñ<:°pÙh^ÜCÊ›Š•.v†çHÑjb@Ó#«\¸ÙZbîî…ísÑw ¶ÙkÞ¼r¨m—¼£Bþ¬ž~1õ–Öç[ÌæoZiªA4BYŽVaGj:ª›KsLUÆiƒeÕ6’êšžœó› %V»J¡¶Ò%° ÎOLDÞ]e±°¡g°`WDtÇ8† `’ ‘˜‰¦(µ¨Œ9Æ×Yy‘U¢$R”B„F‘·R ÝÝ:¦+t]@®b†S|@q“¸´áˆFAÀŠM…¾¾:' Éèêçv^4D)£8ã•^•SèO0€ž!@ =!‹Jà ‡÷^„ô¿ ÷ àh ]ªJ2§±šàº;»]Lò‘å#½îV èÃ4{‡Žˆèì¦Ü¨”iFy;:î;†@›–ᬘXég®,%¤qM¤½Q¶‡¼@(ž®Û©‘z¢†–† ¦j($ª‚ŠiY!¶4)Í€±È©B4´,kGEO)$ôœÇZØÕÌm·OÏÄŠ…®ç6ä6˜É¶¾w¦êqls°LQ,R˜hk3)ȸënÜssñrŠ%*¢Aî.÷x쨎£zMÕ×w`æ³§s(*\qÓG‘-äBÔª'ƒ¥ CÈ*gAÀg($H€ftñ»z`P0ôyÿ'âé×ä”1í,™P˸-ÌÖtÜÊ"ýR{ÛÇwD'¡r-¢(8ááëš.9ͳa6±°$Nt ŽC¢r ’³9ŒcwmÌ` MÃ`±)2›ÂT½ˆ ±÷ö/8ôõpSu‹ª¬z,`î£Ý`Á4N.»¨@Ú25¶ɰ@(uNaàa岋¶K› ¼áÉÒ%#vy£ t`®Ð@ᆠAÎЪq»°êä ¥A˜>Bd¤€ UJd$V&UX•JPG†ñ££b8ì% 0iEKÆäLjŒvä&¥,¬ãd1×vuÊ9B– @«2€Á"CÉ‘x×E•† ˆ2œÈw|„ò>@T¤ ,àžö^&ØE=(ƒJ:yŽšV$ªr¦Ñ<ˆ` "»ƒ¥èeKjgóIÒïp£÷• )($!W´)°(Ô‘AØÛ0¤ !€ ôñÒ`ß¿‡ˆ:úB€¥¥¥aVhŠšD"I¢ ©NU6h"ˆª†¤’šŠb˜ˆã¥•»©D•NM(”«T¬ÍK$R2RƒÐ‹‘$Q$€–$dQH! ¤¥¡X1‘jA á†Qu5ZÄÉP&.¬A5¤ wrˆtˆœ)ŠY% ||$îÉ«2_) /BK.:ÌCÀj¬„H¶ˆã^0uêTh™BUh ÞíÈ€ìw\"™ì¨áNRÒ‘ (Z-T1s Si —0*½ŠÝ܇IN‚štRƈý?Ù=ur$(qµç817Å $I/D#ü ZÝ?è`AþŽ  Ê&JEi®fØ[£)"÷íüO|)Œ æÐl|%ŒJ}¾ˆÎBgjÓé)2’@Æ4lc?mÇ{ ´·`zÝt^ÍÆÒô*‡Iˆ  V– ¥‘Z’¤ @-Ž.uÊȉ™ "¦:éÌhÆ #‘º28=IÏ,õà–=rªèDuJ¨(¨èøü6Óxû*÷3Ñp¤Aož@_Ú>ÆÎ}ÛwPà»õ>‡°cïÒl.Ž>ÉÉê PUòŸHÒó9…@˜O„WéA.î“@Ȉ…h¤ (€ž¸ÔQ§s &’™¨ ‚J (ª`Š¡"I""’Y Zb¨f&%¢ª¨ª&¢‰Š‰ˆŠš" ¡B"iXbUI@‰J)*Šˆ„šb¨’`¢˜‚–•XŒù¤Ya嵇­Ç²ú‚™ ð}`Fæüò¼eÀ–÷s ¡ #G“îäôífCÝÝP’ %LÐ5Z~öJ¾€:zô&ì„@|Ðn+îP ‘yT.0Û4w9Ò¨QôúB+ÑàÝ·µññðüÅöè„^;c0»#Ѭ/våê2ÈsÕ¸î‰Ýƒ%L…Ò¦%C²BJ‡œ]Špª‡H)è{QŠ ·@œäîì­ƒ&À‚ ª×qv1¨¶aL€±l¨àI7`'me­ ¤÷™î‘hŠ&K4¥X•¹ÀPôt¤"d‘“`Á ¨P6Qä+@È{$lˆhCT ÛEc'¥J€{ê¸ hЯÇïùŠl‡‡‡¼\ƒ¨úy¡5’û"2÷K‰%}qØW@R¾™Å„“ˆBt¦…;¿Åí©øŸöÇ>‹õáA?o±åa@B„=ˆŸ·­›²¨Á<Û9 Ü^Gr€Dã½¼ÀGËaл¶1¤„Ý…0 tîã…t Œªô ±qó¼GhäÆ*’M¦+µ%XÙ€0 çÝÆÕŠ ¼z ‚éh<¢® º1XÉðçÑüYEd4Ò+jeErÛdÉiµ¦Á€—L¥a³äÚrk€¢N+!Úñ;«Žö‘ |<*€”˜V(bQ¢’…À‘®í¤G( –€à9 pOŽ#½ÜÄ$Š‚¬y|®|@N2»t©ÊƒÌõvJÒ+­~&Àûyº¡]6 y Å’wSÖ;ÂëÆ ÊÙ„3Næ^48T7­“‚Íc‚w\⺳Aغ­FÓ#rÄS2Òª&±Æ³°0ƒ” CiÕ)åÈ€z=½‰w!\c“Zd$5¤n’ÅÝÓÅ!¸U5%t—&ݸˆQ(CsÁÁ‚îÄ °š”:@E(T™„TÌ¢œÀDÒ\@ÉΡ6àlmЀÂ1E²CjÍ&•L<á×*?H‰ÂzEõRwìªt$—t EAÚ,¢Ð jw!®î F„0BâÒ‹H)Géð€A‚èÂÂH!äÈqÜ£cÛ$ JÀ‹”$aÈšn¼w :D`%4ãŒ@3˜Th¨a°Ywùüýˆ \~¶í1MK–¸{žJA]*¸ e‰dEiDÓ™ŠÓkGãx¿a”4µLˆÀ¥K rs(Bƒßi Ñ«FUȉ‘W]Ûƒ"ƒ¸ØAN•TeFY£è~¸è )= ¥>Äݵ1Ïmy#6D; ƒ ©—c×¾8“góT@¾cê_*)¡`„C hPJAï÷r¹Ae@£}Ù~UÔõ°!¤ (B…iâã±íÜúÈ@ ]8OÆ1ïrkÐ =¾-´Ù ää@çXË1»“¢ O×ëÆ¯¾üº…^ýç'€‚M#¡Ò’AgÈÊp' ˜€ªR$ˆ(|f²t.6uBQÕ³¨ƒÑÙE;"ó!$$°„U<œŠOw×$ô´P%)@h€Á@¶Àwä}·»c½É®ÍÒ”„QÃaQg³qTP0À‰ãà‰àôªR)«Äjz¦$„B7 FÛa_•-Š®îï¡ãOAvÀ‰Ô*ïÂûǪÛÛƒ¶Ò!ÉDàÆÌó{”SzÔŽŽí 8$%”1ò8 _K¥rÈ}ûžhúAO”ä:!\™9¥dC“J¡Èp&,”9ô¼[Ü‚‹‹€âJ)(@:EÓÙuOJ%&ØÄì*—wnÊ¡L=bä7Ö yÈ ÒöBÃÑ’ÛG4?±÷½VýG ¤Qè~€Fa%ãT$¢ž$%‘8{ºšÖ…\ìáºÄ°©Ñ¸ëíó Hæí dÇpIÕÚ ±©ö¾O£êú¾¿<òÞígJCú!‹]ëÿ›ù¿ŸúXÏñÄ‚äè%$“äÉjdHQ2ú˜Æ0Œc±ƒôÌDÆ1æÂ_ÔÍ8 ‚Ÿ)ˆi( ?Œš .ó°ÿã?úµr™B!:X„ 5¨æónü磟–ø|ʩފÊ1(=’"D"” fT|`½ß?8zð{±ò~Ï·%¡å¨7miP(ÄUG츀1פUsg¡# È¡ÙS)Ü‚ÅöËí¨Š* \:}8"îîØØ;“e! È,(†…S «Ø;vì‹Ðˆ˜GÜ04캌Ɍsp`îŽFë´í¢rÃ’± !WdäØ8Øxe¡€íF¨é5$ª‰… ni5Åu2¢y‰¼ç4¦Ë@m„52§¤éñj ¸{!Æ€„Òh¤"4†”é4†ÀI Å@(°ˆbP ÝdzV„V A[SÃqƒnD0¢È,hîQM=É:Ý‘‰ R#³ •lůŒš2>ì{»VA ,Aîë™$„•”ºB½s °¡@ÄÁÁȨ} L´JD´%1-L¥U2ª[ЃäŒ]"hØ„C“p¦E@„ˆCJ­(“×ÜJ—qÇM 0EVݳ±Ýz´NÈ©.Ø-ש¨ƒD*GObxìÜá†F…Ý€ Æì¨$ ÝÆ ¤Žä…B-׬‹ Ð$ɦ0ƒÅÎ6íãrõ¦Ä)¬‹H 2]‡\üïœí%&vådäìqB ¹éS-$,e«¥ì(ç£o¾âêëƒìýgÕ\Þ¶ž—7‹í Žk£‚ûãnA)º·û¯¾$ùòaõ½(¦Ü³Ê|-c!\ôÓãÑap<±iÎPF¢¢Á‚Ç40CðÎhBâwB,‡ D6à¤Àu9à($‰(!9Ÿ‰óƒ˜ ¸ƒ ¹=lÞg@‹r½‚­ J3IoÍ”–´œj`†uê†gŒ^.69oÎ TâŠ;¨"ö¥À … &{Òƒ¨sËcܨõÁ"¨=Í“ž+Lyjž"’»méIÙšïîÐ2ÎÛ'çQì¹ç£óÏ'ÞW̧|‚.ð~Û­_V¡·ð[ÛŸ„ï5{|OÄØ~tÖ%⿉ìtó!(]Ì“Vµº˜é%5\+ íãº>KÊyÆ}Æ7)A­a¹² ›¶Ã7÷}ð ì´&·c;ð®¶§Ðd/¶á÷b•iÔŽ#W¶ÐèªD-ºVÉYåž™§,dÞÕ¼‚²:Ê©(ª»‰¹X‰æ¬©æ|ìŒýU6~ò¢Y >nÊwÞω;ËÖÂÏ<°Ÿeʽk¹~•…ö%–¤°%óЬ&¨j]ûw½ëSµ9ýv`Ô|}ε^–]ª0­»Ý‚Ò[u£¢n6r®ÝWòyËk™¹X²ì½š RíÊn ác¶[Âß[OÛtß${_|öX¬²ã„kºbš¹ Ù_°±&=^požæ.¢ý;<Á÷I?ÒtØ|Þêñí^îiû¦ÍŸµbŽ²Ã—7ÛnΗÛñ°‡nv¦]òy/¹®ÍŸ->eÓvÏ,æ½zÆÏN9ÉÁ¶of îêaÑüS›Nz‡Èƒ%Ûx×›sesåù3Þ9î kBC”ªÇùûîj¡ÚÜìz̓+‡§Œ'CR•6é9f}v#óMžÕñS%mC—Ž6F1ŒcÜK% r…©Þ×9Ýæ”ÞF €>dH ˆ97mž+³jAÛÜ~S ÒQ^ F,ùÁÙÏë5»˜¾ŽÊR:²ð'¥ƒÛ ` Œ`´@Cñ€ñ[&CNæPߘF@a±&IˆJæ?28cá`-û?Æ1êÐæiæ±™‰×"ÆÿB*žÑw‡E3æ =Ø«ï|»[ÕX÷qt¤î%øÕß„ûô&œ½}±Ç~ ßÜàï/œÃ™ôÄWž'eãp·2„ôÃi­Á߃<4WP¦;`¤q” ŒÆG>3=ë¢c|Ylü”;7)Z¸ÖŽmÐeÿ‹úßH O±Õ#¶ G½ ²“¯>Ýf½G¨aµ“©‰Z`ü+CËV}48›e‹r¢ß®îö–ÒÌÔó.éôW]Ö/TÏÎ6ZõÕ»ñÔÖtRü$Áª;î”xmÆÚ6Ì¡GuMU›Éé,\æŒÝ+„w(pŠeSFfëå´{ÄñAë&n¦cËY†ƒÑuooУŸLíºçôîâû Bá~[>’ú¿02Ëɰ{d’Ëu]§Å:Ò´/©µÇ/Dn£4½wæ­}Á›k4ñ>:ó µr‡Îl}Oõ£ªu¾šm¤¸¿ê5ùmU¸Wwy”w°¿R<_ªUdÃïooç×á°`ÚZD5­ÿ3¸{ÆÑQ+=Ÿáä~aáÞ=^‘™öW$è=½ŠŠ]æÊ¼/«NÌÄòÄü_mµÕ9¿½D÷Îal.`1ç:×Õl2æZ<'"· ÝQS”Q$H“ubë:Íh_¦ûu–×´QÇ.óg Zyh⌯|!Ø»Ùk£u‡u§ºÉE¿0F˜žÙr T>¨×Jõêã—ÒϳÊLºñ丱ðÇW‹åaÄsÔõ Èj9¸s…ÞâbÜüú¾sšòÞz˜ /ÞËÒO{ızwŽÓ%a¬Yt Ôxt¯);Z'­',÷ñ4Ý÷2NDß/bË.¹#²¹Ç­ñ:cºedR˜õÕîg}ÕÖ·p«¥zäýéœÐ.î“°ûÇ—|©x¬z‡·«{§¦ù\yÉÚDŸTÓ&Œî½mó5a}P˜¸W¯}6«yo™I‡ž=ãóá¾n`ƒ¾å8Æ1€ c[q”’êÙÊ…®87½÷.îÓùÌÑ µÝdž«=¤å93Û#ö”ÞÎW‚Y²¸VNJM ÔõrRðä]Â9q&Nï²ygGm‚ïó-)™ø #J{LÃZaµQZµwé"ª–T’? 8"¤ãNÊ®‘qhP F$ a!“w »*¤ Ðé1*¤¡FT(EE #@Á²8Æt¢0 [™ŒcÆ7{«cdÛßθ÷¶-šr?ÏÀ \"ez7úNt’,û©×Êï• s¨@ @D`0 8€c‡s|ñÒxE%ç<Ú:BäçŽÏbʉ^Œ=Ìn,`,t‹L[’äfömØ$½§¶ÀsÉtôã#& î×mr½´ó¹#‹F˜iPy}tØ‹e|zÜØE¬=Ýóþþ0cОùYåʨwn©Û¹TF6Œ)\!ØÙÉGXE»·;%ÖHâîA Ôrpt¦ý­Üb$†ì‹H¡´$,”v›&ƒ ,!ˆLbáØ„˜Îl1Õ&YÝ³Ê q€’èE`T$ØŒÇwGW$pç`Vúãs©ðºŽà‚Dáê{8‡°ª¹“†d¢-Ö¢ìîÜVîP‰ÒÐÑMÇqȉ4¬ õØ8y2¨JLu“ vÄ·`{’8Àw#=ƒ• ÊÊ…À(®!FRJÈH   *Ñ‚aD ³€Ð¡XQ»ƒ`L˜«ŠDžå6;ŽÁ“‡ ÚÕŒiG¤9s… t“Ê-d1ÁŠMM°×@lWw mÖ˜_^v6ä3¤II šV˜¦ •e`¬ª¸PÈr r®œ@Ð!Fl+Úá×—ª ¹Þº-7 6ÈÉ´LT¦4·X®d¦3©Kœë½,ל;J†êºÛZ.°\¢¹ƒD¶­F8ÀV\vç®Ø»:æ\Ýܸ†ãU—;x„€ó‚ò° ¥™@yxÅ­°dCØf¬dÀ„¡¤ÄS#!%R4JJ;‚!±­”w—9ééDMܲ€j; Ñ€bxNE\!Ð"‘§jë@õÑ9ÁÅiw]:¢€Ö„y®Æƒ é¤22L b C¨ØiäÐ4èû·ä~AôøŒGx÷“›Ähx‘*N{=u²ò¼ÓÐ;1%w" ò"õ$V¹RQ.q¢"}¯4Šb?;Ù7x2¯¤ÕPÒˆ~^b„ì” zCÒxÛÒ§J´‰F÷¸}ýÇŠ >–ŠWCCZÓ­ :â­D”AЕ§‹TGwviþÆËMé4/¡:ë­\U[§ïLG« U „½eŽŠ/Föýßx误N²Z ¤v•Å4ÒÂ’Δ4ñ)AÓ¤~޽£HPŠÍ~Ò€ûÀJx\’Pœ‡¸qvÎ鈔&ìb:1)´5ÒŒG»WkÈøèÀ'XZL8LàÄP# ( H…Zk@Œ Rièh°’ º®Ôli? §ù¬çk<,6u-ÌÜL $ÆD¥É;à4Ü}H(¢R€´ŠÐ ( (L(РÝõ·­Gƒ/qnÜœ{°§L= @úQ}vt¼ÁÜÙ¡:÷@Ö&Ð¥ÛÜÌyµ_@t‡H—w]m¹ÁÎÅ’#[·&ØKOr" ôªtøcÇ E/B ÑÓÜdYph‹£<<Ó¨h¼ó×xz‘ñprÆÀa"U`&Qšè0qØêgŽÝW\Ê7sŒ`ûÛÅÕÖ QOƒ8Ÿ{iHRt/@c»PhêM‘C;Šêoyîö\3(“50[ã»=€NBÛwr+, #(_H…_(””Ì$*”ÃQ LR Jž=Â+ˆd­b³®.‰®½…x% ë”ÔMA‡C@ëß~PöÛÆU\Ö±ÑÃ] ŒDv­L(‘ ¯Ouƒ%A!*+(!œ@‰ÀŒ°’‰–M¹~ƒ£lz•C¡‰SgU Fr Y¡@:Äðˆ…P€“{Ÿ>ؽ;±Û¨áÀSÃ8¥*Ø-¬A 1<´0hÁ æZ^§¨I(3kÐ)¤âT4€CAJ‡Žî%@°[lÔ9×Õ}W`ù¿eìró·¾ã—8¶[‹™â#¬qÌÖ‡„LÕÈFÊ¢l©EUÀl0U€¤qØÝÊ}G®÷O-×'`8©9Ó—n lHXã³Q)©×! Yü-á–lQ(±l€J–8#,ø;¸× aM\¥Î$†f²@y@ºÄ« ž8âZ¸ÉAÕ[³¸·Q½È>ðïàFÆÙ&K¤ÎJfÁ”$ˆFdSKÄ;5:d îâB‘L[8ÑÊÆDÃŽ¥ž+ŒèxÆ “¨Î-¬ä’:5Ám¶]t @l éÖ÷A+-ƒ©hjUXARŒ#¡B6à°¼r;R ²‰ß&©3¡² f©}S4(P !,(”ˆ…6Îd¶ÔIÕœ*Rr `z@åØAîÎàS¿<î=Îí%&T¥L¦]ìcÁ@‹ÜÂ$I€è(4£•©í¤è ** H< "¹k†ÑÉ `L‘Ð4R”QLªÐô]ÚrwBQШ•Rdt:éNâd;=¹„F…JU‰BUHBP‹•Û…z•N„„B‰—»»³%›* T:TtˆR/С %T^ìOÇDk»–’•ÚâÝX¾Ý¾ˆl´ B€pÞc»e·G08ºî:y¤'Fž†×<©aÂ[ðCBðV«Ðî)lСDù=¾øPð)(¦‚I ÷néC‰V‘F}40EQTB 8C÷ !™@(E&ÚÇʉC³Bø;Ås¨2ô?ŸÂr¡ÞøÉVãq“DÔ ½& J0䦌3H¥3ƒÐOP»—™ SŒ¢•Ð(¦H2ª¡@P€ê%" €Ù0RÃÎ {” “A*ŠõSˆ„@ "•~ž~ Œ/ ˆàhJ  $!ܪ©¾G‹Ûl¨>LòÝÚBÀ‡@Ü,ƒ§Ä±®T[³ž1·\"LIMÃÐ(ÊÏ;±£»¢í@†”9Ò¼@º) X‰&Š X‘¢‚¨h"¨ˆˆ„‰Z)‘H ¤¦H}  ô¼@â`šPb˜ª©¨Š‚¥R•ZU¡ª(JJ ©š‘ª˜IB§ÛÐAH¨M4%@»< 0;pṈМàTʆ@L@›“`”B'w`mœ(ûìv© ”öžxP$=P!'ºÀõêjz¬i Ìʼn¤ g–*ŸP? @áB$©†Icë12ذÒ@AQY€~À"+B9ý¬ç—¨Az.Ü|§ä!¯ƒ_}À\”d™È&‚²†ÀåJÍ M@!b¡v¨çŒhÚ\‘I”•BA i22AFÊåú‘}R#Ì­ì’`…)"ª˜¢Y‰BT]°ƒdÈ’!Æ! „ÆÊP.š1Da‚¢»ìÒÎÏrfDãn ƒ”œQÇX(8WÀiH£¹‘;®ÈdÈ8ä]bõ ÃÑ I£E è ĨRîÐx@HVÕ÷¿n÷AãbGeÙ HÈByf%hw!ÒtPÃõ‚cmðÝpVl‘ì÷H0×n¦í7…CJ¨ô¦6V”ТhÐSH‰HP‚PJ iDÈBPµ- *€b¸àÔzwk4¸iV³»BÅ•Øh%–@’YÔ+Ý„ØÃr+Ž2îì¦!QPˆPm Aµ”æ<(B ){Å©\"i5%Ù6¹MbѼõ½·4Õi+J"œ@Xî‘ ¡Ð B¡U% ¡Pt",‡¸Cº² f»´e;AzÎâËàh!7e©{MÈ;=kKÇ‘ “%²¯£^DGX“I¡Cè6—ÞçFUöŽ»Žýrœˆ=sغœ$܃ `Ýœ sÆ+n žª0iÁ¸ŒBJ·2Š „¤È”ˆÑÀq*âÅÀŠ¨æž´TGÝÑL¬÷K1z[v–ñ³†–S 3µÅÔ„“RB #UÑØv(í3-²ƒP)¦”M 2k:J í±Ü EÝFááV^º5¿Xüï»&Ùt-} iŠí XÀ{Ç£ ½jönמn½ u €LꉒÌ%]s $fp–ì9n¤;áä6 ¬‡(ÂIq°·ÝÞÇ<ÝEÉÒö“Õ¹# 9ÆNK¦%í<„ÅÙ;”ÒŽÁ‰P¶±’ Jd!×Ni{ž@¥ÍTv »¡Glq w}…¶P7wœ‡Ô¯8žªd¢„5Ê@Ò¬Ð]Ç+¤Í-s‘Mk.Ï¡5îб4¢‘ Ê™Ç¯q¯l é8èœàzÊaWwÈð<Û¨»˜ÜMƒ ÖÀˆñØ ã% “ ŽÈÝ‹Dn‡ˆàÁaƨ'#¹Â(ë¥4€©QAchâ@€$ p«!zÝ!Ð=g(J,FR°¥DfAX•¤†9M&pàìGbã.V„4ƒÒGC‚îä9è =a•Dš™T³m° ^@pÀðiA0‚¾‘T4pÀ‡˜Quå½Óˆ:TG£w5Ú\‰ïcǹR: ”Î*È@n¼o]¼t4G(rôáN WN :JkRJ!І•‘B”¥7F^_/·½Ò™n¡AàaV]ßc.€È=ØÆÒÊ* ")'*,#žîxŽ‡Ð”(ŒB!ˆÄ€¦€ÀH‰HRB2À©$ ’„"àL' Dgc‘H¡›+º²í8)ibÚèà2lÃAÉw L ó«â@C—À£à•Œä€M*= ”‰”$De8ŒDCJ©H‘(å€2‰¬œB„#œˆ`Tj@ ©‰B»!¤‘1lDŠk²lít TÒI›B4=fU¦Ih)Ä*I•·HsÄqk0ðeÐ.$äá€B((S2+2âÀÀ€ãlãM(dЀt°ŠJ0 j!%4‘†2à:²¡J¦IÑEÀBL%AeAí¡x²9ƒŒ[ÇAž&œ½ºç °¤õ…Ä‚t«®‘93l!c¥œ˜#<®!PÈà¬j€ê5”gTvŽí!g¶kƒ=¬¶Ç.Ž.â ÂÙÁ—DÊUšY‰¶•ºÃÝrNHf•M†=qãÁåð ;r–é#®øü§_»z•l¿S{ûòý‘ž"0€ „g?ÑøBL` BUéÀÁ@–Q3£u@ØE0LˆnŽ!€ðÚcJéîs×dÊ“!™ ˆÈ‰ÉBJŒCM"‘$‚ ËEhzE\fHÆ“KqÀ<*˜@h”PìR <¼ZRHP #µ¤VÐçÒ <¨H˜DZ-Bƒ•°*÷>‡ÃÛ“Þÿã²ûìGD¬¨P'Л´ž°º@Œ Ý]uu¡®%mÙ!B$™) ”„ªR!¤*Fˆ„%nL<Ü8 ÃL/%µ¢ÁGp@zTÛgÀp“ÂŽMH¥‘ ²J‚zA0ˆî#%A•W¤)D™ˆ2 wmÝ=mjJë¸s/Ý;&‡I’S~ $ž…tQîÏ]Y:ÀsÀt‡EttèÐ AÐP'AÒ˜ˆÕއ¡JGŒ`‰V©¦…ÐZ‰EžâáÆgh S‹E0Hnyãh4 ÀuaÙyU˜Pö铌ý Q4- hé!øÂœ²uÒ¢·aQ)»+µÜ¢*..Î!’ëšr§ 8Ö‹½àô*„ !  H)4ÑBP¥"°“!P2˜$WÏÜô œ€ø‘q“ ilµ„„t! RTÌÔSÜ‹[»;aBåC°¯QZâ]ʦH.ä‰b%@•ˆéAà64' ±FÎE nç•rt}½ŒØbóq¡(õB¦&’°a r®jKhÝ:¾88æ‰J üÚ“èÄ íˆ!ºí™K;Œôà ä'œ`î&)ÒÀ”Rdža&"BXV ™TrÆaÜB ¥ U4ŽÇs¸ƒ4 ;ˆPh80dyV‘„ÒªI -¢tôðØÉâq$ËÐãeÀ*@„Ý©•6ÂáA1l"õ+°©»(D§TÝÜò$ œäN„²ˆl¢ @ô£" ©Üê”p Ow nHÐ(B,J¬©- $À *Å*ЪcÒº)}”J#¤N!Epœ³a°½Û¹SŽU 8¹;gv3¥ròMÊÞpùôD÷'B1ÐeO [95Mì„“©„Ê–¤t¢½¶ŒtñuºqafleŽq£vа1•¸i´Jà’w>@rùµðm<ñ,M$²†…Ò;80¢Ä*«J•¤pI´†!ëwƒ5!bzÆ“2 0¦•$Ði »WTn@ ]b΄êìà·MØåBÈ[¹ÃÅ@Dh¤z•: å8†%Ž‚¤š B¸œ"@*¡2Ä¡¡@4P@¤!5§HR@ÍvÜs€ãB„ƒìôxµ•OuÙâÁ"•‰% TJB::ìãutñG2§vBâLóöð'ªBh>d?¡óïÌYt7Ëó"u1ót ÄHR½¤PÓ v íÚ+vLÔÐPiÍ`ºÜ®Î3ÚÀävv(ˆÉq`3‘¢S`.çO0£¡Ck1†ë¸ ïY=8*Š$š% )P PÓJ¨é@=q0ÏB‡Úm*é§°`ß‘îÞN æM€µÆÂ¡Â¡ŒÜÅÊ›´%@¡Ò t=ç€ãÒƒ¶ `TÇ—n ™žQ™A¡(Eè R) (£IH:€SH€¤ªPS•@éP@ô ¯¼‚ã ÁȆØ&Û (…hê]Øp eE¸2ìsdpÈcéC ž.G†ˆ‘GÎ6–H0J!!È ÈÀg°Ž´bhˆE¤´¢:LH¬r%°&h€‰V™´ tŠ.y¯¨žPÍB€žG¥ÈFÚnT¸¸˜ãhL@Ô O(Ó¹É1ˆ÷·¶Õ ' ÇtC¬’G:@j!”šëBÄÔ0ªaBJìæP6š ³LàjâÆÁ!×Nî⇣.ìˆD”Áê¯%P£³m ÅîéKˆànsÂ4ˆ ÒQG±€N‘:.À“ÀAäÛGH©Ô@U{X sœ‰ÄðñÁ÷…0žÊŸ@¡, 0HwÚ2€RhAS@Ì èxRQN]²’†%D«1€¡‹-ll½Nû3åØ`,mBÏ „QÄeÜqœTµ.¤’Ù–@c¢‚Jki|RÛ:ÓYŒÆÇRµQK*vwÆf :!îÂ&/Ïtr‰^y~;HÏí}$ZöÕXØ­ÄpzWH‡ |JP €ìŠ…Õm•ncÈ«ÈA²äEAê ’ÂE°m1$TÒ˜•AöÉÄ¥!BJTJúu$ÂQE1TÑKADINÀjJ¤ªZ H¦B¡æ$Ílk@D ˜ õËú}"„$j'@l ¯7?Ô¨EÂRàÚ”¬&aZÁÚ%¤ˆç:é$$‘×BP,4JCX&ÌlV*„qž©ØäŽ¥68†q\[‰$;‡¬ tî¢Uã ¤0D%„J"!2Щ9Æ U˜:UyÀ$¤T>&s$D˜R‘A‰cØÒX@L¡J¡R%XtºB"B8i€ „%¤t-PвBm‘[±Û²!Ö8BP$ 9¶î)ë«‹¬ iÐã)•DBa@„С†4LJBtèÄê즆YBaZU” %Y`FeN1F‚¹áÔ&©ZT>“@'™•]×"\BºDä’•F‰¶ ”#„íÙB29TAˆZ`Äc Aî3é)@Ò RˆúN€D¡@H HФ¡@¡%CDù…GHz8•^`»OBR”¡*„¢R«ŒtM¸` A‰‹Œµ‡§;hîáåA8Ñ$ l¢”±ÁZ˜ø¡È˜éid±Š¬¢:¡èÆé;±Ð³¶d4’¡”V€dP€ P ¦€Z0 Z)¥A¡B–…t€”¢Rªj‘Hº jÂ÷:¥@zO¹ð«è $U½ý¥×iÒ C ÈÑI(Á 2².Ò…i»‡wXF¬’G"Y­]d (…Ø(®¸Öƒ D®G‹TDKV•‰x Z)‚$¬F‘¢„ДkNHdá0ôpAL(| !+P¡T¡@PÐ-ua ɧ}ƒÐÙOé£ÒÍ¢²… ú–Š}.ƒÑîËKî¡Ð4,@$ÀSHÐ HI TA 6ŽÍÁ:„&yËZ[¨ƒœ0³¤æE:9NÄí™-:`Té…t€P % )Ø1Š8É ´[F5ë)eãˆls—“NÈÀ#B°RDA!KD!(´2²”  zÐ¥ qb14¡¥:Œw]¤c:TrÀ<ÂùJkŽ.0Šb A•$;8*zvP@7Á G]*/B¥(âд]•:A )H€RÓ pP„ˆ„2q#2LÄPP¡@¤B+!P(h@:cuÛ¹PŠ$(ZH Eˆ˜h)"E JB!I UˆD(Ff‚ŠPñ Î:W&µÜœwˆ™ 'tX,çªQlåáxQ(P) i£™¸DiE•rPLn爵¨:qz»¬ '•€—¢DÁ£$;™¶îÜv¥Bn^ݳÌR1ÍÚŽŽÂã ´lAÝ]„ÇbxÇ#œçœ‡¾-š¿…HýÏáýå~÷÷‡Ç~Kåü å Ô!û?ƒñú àÛ­Yެ‰zþïï`J¹ßªÕàÀcÆ CLL¢ÔˆH¦¤qd‹ð|þO'Õ·CO–ôî‚JìåÉ+&Y)DÈØ9 Q65¸£šk/hà`Wmj2?§Ç”9 [Œ–G)‚P·äsà:ƒÇA¤¤+¤GŽÙMÎm¹âC—’¦){‰t~G5Æ}¸.&ˆiª kHN‹!täã°äPPŠ0Œ…l»&n$îɰ;iõ‰‚K/‰ÇP¯uμqÏ*y¨ù'¤ïv. ÆA M—] †;ˆ2Dž‘ÐÐ: ç#s”zœŽ …4¤`‘ ©èÒ€Dqï½(TƒŠ“@Õ­g;6Ùº€BAu(¤LV®ÅÖZÜèÝy“n&5åVás€ÀbcWq¤z„U 9& SÊÊŠÛÖ€G y¨¡}PÒBòX*ÁäÍ+q€ŽPÀ(A`ÅbÁ€ºÆ@UW à‹ § T •UVC°ˆ‘º{Z:6Ó‰¶Î—f’DîÜH‹¢jîC‰ž¤„A€"% UTëÖõ µ/-̹d…KD‚¨“§‹tšÃŒpë®\!ñ"¯"‡q»€Žˆ ­Àˆ ä”â €::kZN:AÃÐCZÐk3Ü “–âÛ[q … Ü hãç)Á"WF!;;`á•–r¬D ‹6©qj…zèA"S¤äP„l·'EÉÛ€@ë$ó <•@w Pˆ,ȉ ciJDÎC¥4LˆB‚h:¹2BŒ0J :R—ºª4¨eBc€W”4 hHbäî(„vwPÃ’¿=ÃïRÁ±ßxw•$ñŠO\SÆP€Ìs`–Ji&ë„âÁRJ¤ÒœIJ˜˜O)IJ@AdȺq„HœeqÀã#¹!ÉNB’¸…E¡\v^Gä!AÐl1­’\$K#BI0⹃Ù©¦X[&Æ&jÙî¤ÇãÕ{œÜ›´â2ªÙè‰ÉÒÈîYA2(/£ŽuqÒ—\#L‰#1‡ mfÅJŒÓ®*ì$áYÜ’h¤ÀÝÝÛcIHã ô”?Aé@ëòôªfüz>¿úþ?|KïÛZÜõ‡J¸´ômÏvØd¨Õ\j…XQ Z!J‚‰{—­tÇnžâ²›œDH#¸µÉØXë©n#mùq/êt½/Ôr#µŒK0m¤½póD¤§;¤¨F¤Ä°5RëhØáf¹¥|èyNöC ¤·ÀÒÝ8 @(Dbz+SSeèwØ /Ý÷À)÷Y‡ìö”SV² éYå™1€evg ºh„$a”J%Mˆdaˆ(CÄ)¦€¸³Ì½Ž6I[Œ†#l„Ñ–l j@5i0ºË&-·Vˆºlˆ³h¦TàÄ ȉ ’ îy²wlÜè“q©´îÍŸý¥<ÉBÄ?— ©Ð @Pý Û¨†ÝEuD½¸ )wvĆ<áà[Ê(èri ¹W¶$'uâìGõàzR'‚H…Þ)‰T8÷QL=5–íŽ;h:@‹qvë‚Ý=W™J@x%ŒiÏsnÂ<qÜ](¢&€2€ºˆƒq¸Ç˜(÷xð¶8z"‚’ÓHMpãRÆ„,llÏvî7^¢ í-3ÃÆë&Ä™»k5Ÿ@‰î_2CÂ¥QÔ.†kJ†©+.¦[M“ qÈd1ˆNàè(PèPÞ‡HI-ÛÀ'‰P„E4ªÂNåÔhÒ)O@h ºà 1 þ/OB ‹Ê€D†² Ûµc´0qÜ"š ¢9ت„Cîk…íDOBt9WÂÒ>„Ð8‘úPé÷‰m€ì– ,š0Q=`’»•åK<À<¨}àLzT 1!×! pͥɃ»”¹äU@ÇAÛ ‡Ò!B€s(­!¤G! Ì„"LÔ¸¬ŽÆ´"‚"QÊ,æöNÏžrñ ¦Íì1HàQ –@8ç–€:ȉ#eCCd;= lmœ20,Å*%(ÐÂm–ÒÙ&ØŒKi 8¬‡´ú£¡Í’]c¸’&ÐH‘`©#!^’À((z@/0b  ¬@§$É‘M‹û8?‹Ž’w@6b%C4-D-b4]Øà:k+Œ$Æ4š‚ÃïG%¡>]õÄ– b¤ÎmŽT;qZHÌ+Œ1EDACI@›%[AÊ”K ¥E2©§hq3µb6´8¶ØZul.&fÂW 7;E‘rk¥¤@Ô 4†™&c˜QdŠ[’*I¯0äìÙ¬˜Ù¥‚±E+¤@¦pFÐÓ€4&M÷¿†|_/û×ÎùŸ?쯾üߺT[ø&~…Ýù€ßûýÏÜBÿL¿L9%6êèf?ò¦¬ý6ËøqO별Ø)–ZÿkMÞݹv£þ_J ÎQýx\Jë¬M¯õâ†ø¯O×û½+8¨8Òn³¾~Øüen°AoN 8fŧ¡M1ø'Æû=¢ÎµËÖ hÒÍÚš¨:¶æü2“›æ+ Pûûé©Xé$ÌqÞ9±;?7ÑüÇ6ÄËêþ{ÚøáÀ÷¿Ù±#Áø®ŠÃå1i\ºDV›n¿ÜØuÒ½Ý úqñëjÓÝ"·dœMj<Äþ‘ׯ/Û$Ý}{lοe~þà¦]í›ÏG—¾NðmÒÀW“¶áøà¡§W&ÌÍëÇ«@t#ßÇÓF »[”ˆmœ‘¬»ú¢³vYëï¨ÖzæV0Áü"vßÏÛÅw;“¤0Q.÷oó󶇹¤û⚟¨³Ù|ñV |8¤ÛY‹gÇû˜]Ÿ³ÃgT¼fke³[ÕñîO+QnFC­‚´ø#“GÖÕtÄúwa¸[Iß³Nîš¡4P*æßUÅ” ‡K'íˆo„¯éýâXwCªu²q†ÐúHéUOƒ;±9ÙüÔÅ”z{ÁiÑ\;‡²¢"Àî+BbÒw:2BŠÛÐsÛJwÒŽ®íðª?G‚Ã˰‘GJééf$hi–ÜQ“$øÓÅêÜøwÿTü#Ê`Äý~·c·Ú7Îþür©l¬Ž!#Ó„d½ò¸"àJûÜ]s†ÿ[ Ý|'k&¨L‘ª+)e}Ö=Ò‡±Š}[èœ`|qrp¢y>ïLÔþ nŸÇÝÕpê1¦Åa›tvGk7%rð™Ã~5Q¯ÁOGè_‰ží ×ê§§5íeû¾›2ÙCÍò¯zo2ÝØýtëþÑ ³tqu«@lOz-Özt¶c>´¥tlÀ¬½c…6S±….´µ>ˆufÖ¶á«fq»OxæK³Ý-uUû½e­`ñÛ©!¼Á“ʨVx' Ixz¾~DÇ»kCßµÔïÈS>MôÃCë¾:Úá›:ÙŸ;<4ÞnâᆵT^0ÉY—¨£:e;xeÞ‰§åºxØ‹¡«¡Ú—W‡‘…dߑПËqîtbñŽ[,POq9Z ´•C=BWÏØ×>›²*ÖI )µNƒwѵ׸]kg/4ßæ!nCUEŠ®‘¡rJÒ"ÉeR# 3 ¨âzD"½+T•iеM’"´d²‘}/”‰@ÔŠ¾úJú´¨48¥KÅV GQ$àUê¤Ô‚äK*ʆR1,’´)’j‹TrEÂ*qB­´å'(û(,ªe&(/ZWô[Ô#—'ÊPyØÆ6m¦6c2šÕ™šéL˜2ªSP=¡Äóù yr®Aè ‘d•ÛÉ0®T« ¤ª*‘QG—ÌÒz{{›º=>¨òI¿P«%¸^[Õ:Ör òýíPÓÕuT VÕK©©qv…eR®‡Â/â#Ðê Q8(ZK_ 6*ÖÅ™(¯‚'’”ø¥ÊQÊLŒkYl™f5bäRì—P® )UÔ‰\D‡¡Ñ©Cô:½jZ5l˜ÌäW'H®ª´>C@ø¯†î:Ó+LcuÜlÆi©ÎîÃ(Ð√Ș¬¡ÃG¥FJމ”žK¥F%8Œ(âu&”-¦ÿ(è~«Êœ ’ô>’…ôDj”²Kв„œ“J1`\©2&¨¾ FTÈ»ØK½±q¹Ì™ËLÛl™®meÉŠ$S”ª–¥\±UË sÉI\«œ+£f7s8u5„•E–ŒNìÛlÚÚƒœçkk·Mgnm åÇe”s›YÙrÊQ™¹ÊâL­Ì¸¹F¢–IW*–DåÊቊ4¸´G99(·.JBOªiTúF”ñU‰UŠž”žŠÅ]‹È¼+…ZÈV…Wh5D"áÒWTœTYð‘t*š¤Ò—RŒK•>°’¥å••ûºf6¤G ¾j³ ø2Mþ_ŒØ?¤Ÿd"¿BüÏšõ‡‹LhË kÇ™mYØéç<½ÍssÜЯPj‰ˆÕL& ’¢¬™Jí&q„ö°¾­„ž ÞZ>vÛ/Ÿh}fÛX—ÙXm›CìrŸBÅÊŠ­ —Î ‚d7c©ŽƒŠr£¶@6¢óHÎ"0‡8€b"Ÿ°Ç1ø™l_‡ïèø!?ƒTOÜÀ²"õŒ4§c[×çXÚésýÍ?wAà4]³¿ÐÏ5 Cä÷ra»‘ÊÍïwüežÿ½°ˆtP¯€ÀST»‘ZT~º&€ð:©¤0Å)2MBË*††#é)ñêyˆø9t8ªº%ˆô5U_±¤$》°b CwvƒÖÜ©+Rƒ¤@!ß)Úˆo@êCžv©¡ RÃU'€áÑD[Š^þRö…ª8ʲ+µó}ívÝ>,.é!(œø&2ä N™Ô+z¡L 2 Ó> xóA3„L! ¡–à…úTe*™­”VÃ`Ú‰J Uú­ èñ.¿u¿­©›•½Ñ°ëôÍËDA7’‚rEW5 (2ÄÔˆÏÂ=S(ñ jqêê—£Uä¹P²i•+ÄÌ3kZ6†¬ežEO%“ ™,ˆÕ¨4UÙÎrÚÙÉÜÙ²ÝN6e!‚‰Ä²:¢ÌªF“¶Ñ·´ØæÓœÎ×rrR°ÙÍ6ã]ÙÚÌY›Wg,q–&\¸IÊNÉeArÔèsŠ8`\m‹W²¸ˆÍn[”l³\ë–e‹3"õÔ5IÏ.âÍëv{=ÙÑì[Tí6¦d•{×=ˆööSÚM4Õ„í.Œ£i棦ZËÆæ­©íW5.s–™g¸vÙÍÍ.w%äɱÁ™]€Ê:)uÕD9"LUj^¦Ì›,Ê<@¿4<'(ÒCäF- em+☞Y2GЯPrIÕ Ai*~a/ËJ9O}!&Qd¨_HaODŒ’…‰¨W*ÐC)4I”Œ‰ˆµA1<&§‰èA‡†”rƒ¨0eÉ OäꜣEWPøêL] Z…\‚š`«H˜b#Jå)LA]X ‡’žP–•I- — Ž”œGÊÀGÅ'ªM‰¨–’.‡Cä#*¥=dR¾…e¨VAdªЬ¥'ʇ*‡P¬”¦$‹¢Pd ²´••+%F8¢0¦e)”™Q,EYTy".Âu¯¹—rùîV9Ïcš³wt¹»6ŽTµÍ3#MÒêņƒÔòå奙Ùï7=¥ãQ±f5m”ÊÔÍf2Ìiª½I¨µUdO„¸>)4Gª#Â| ÔQá'ï&_q0“žEÒLGÉ+é R†‡ÕA¡Ò§Ý(XTr^¿°ªÕlÖM†Y…q!u`D-^¤ž¨¯XªÀ^‡1U >% âL©=A©¨hŠûd/Ò_Ha/¥àÖEj™ê‰É8ªe&#Ej¬Ut¡qQäòž÷»v­ocÏ:5ƒzä»[œãE¹å娛.iïuã'¡•*Úœm­«vÔöŽw+ÍVuÎÄÓÓÛdžV˜¹¬kÏpyªæLÕl\5N2ÚOeÚ·œ§i­M¦²›Eìwpsi°ö®ÃaÓjj3[El[kk[ZuR°¬ÚZÉ’Sd¥D–RIRI¦”R›,\¨å'49.€äô:%<¤â8SRž…S£ÐòQìñEʼ‰bÑ_=`úë|ßEQöPúª«¤Ÿ(g"ûý6žå“ÜÊøÙô,/e ö(®QW9pܱUz«¹K’”ĵ¡NCŠzR UÈ J‰ð{g¿]³/DÍéÛH÷:D,C¨r@Ü*›Õì|8· ÷ÚaAFðõC¼s =Ý6ÙºÀ (k¢`‘fWÀ,’ø(´à¡j¤TŒGÇ/z¥j  yS‚ԣऩá ÄVI¢Ò—‚ZK —¡.*º"j Uj¡‰TÑ<©Ô§‰z‡Tš¥—@êœ@²¦¬K¥Ø6’šX¬ DE|ž#ÆÄ~‹¹p±vŠ11P/±MLKí ½R©ªRÊž^°å!fÐÏSé_H",QêáÒB:#ÔÕ*éJÈ ö銧£ÑFPjhùA¥85T,§¨iGN p‡šª²¦”º“ÔT\SjjI^„ÊY¡—v˜NL:³w[6+ N¥p VKž€êš©!Ê”À–*°¦§*rXª*N(XKªNµ*´ÊZ$:‘„»b+åÒyQ:¦"KLtyÃ3ímPü Uq5*àJSʘƒC…FRz‘9SCÔ£¨ˆàœ§ )b~ñ,7ÒðSñ=Ù”û!ô‡ñAúr¹Ü•M’&¨z>T‡ÜE‡ðÖlyÎ@Cÿ_î ‹øÇW'\9×÷ýçñOØ0ÉŒ~޹k¶çÂ~ƒøÿõhë>4Ò¦l’Å%€Ï¾ýpí\ü,Üú`PL@gj,2ñ!ÈËê!(HQY5Ìå¬ÙÌþâþ4ú}ÞÑ£õZŸ‘’âʽ¥ëz¢fš<úš9D± Üd¹[IQü¥úI?);Œi•f‘äZÛZ-+J_`)])À!iL+F¨hé!¡ÈVDÊOCÂiBý®ø§Æªf¤|KÊN•=éK‘=E.¤y' ž*F‘è“*y)M)™Ñf€Éx+Š«—C„óUØ—hW‘d#B¬ ñ)Nƒ‘4—‚ô%ê’§!…F¢ªòޤ. pªÊEçŸEEÔ¾@g(+Ù ‰Ô>”„´˜—„WR8ŠœŠÐhr!èixSÊ‹Š²RW%•¡”œ©ÍŽ&—ÉWjŠ\¼”±*—ŠŽ’óJQOÍ@ÉyR¯ÔRȲ# ,*CéÅBbê.Pp©ÉK¢BíB¼ =¨¸‘¨£ý½JŸ½•#Ò’ù Hq!€ÉN dX6¡-b \U•q@œB¾ŸÎùÜÎekéJEôBaA‰}:>åAiN‡$Õ^¡º¦Á£ebÓce[6•#µyR/T5 •1/B˜¦€Z.%KEÚItU‹F‡BiS‰4“U/ ÂO\—%/ˆ%t¡ŠõFK¤‹åBâ=ä¥4§ XŠ4QOxU”4%Õ^Px%Å\!.DÁIÈ¢ÅVA&Š£¨G©%ꬤqE+¨V 8•}ïQ¼ žÈž¥"å$´¨2…>C¥GJŒKªˆêTªÄ«+†*:@0ŸÏKÐõ‚™'Å!‡¢…èÕxT²¬Ԏ榤¸´Æµ ªÃTx‹áU4• tKªzŠ®*.$^‡@N„øUbU•5œTvD\ái,b«UUÀ§)h\²*d‹´*4‘ÊéM&„z­Pip¡iÊxSÑÒ•ôð¨â2h'—RÉùv‹ïì›R—ôj¶ ó¬ݱWïdTõ¤Eì*«ØS’Ê«B±/HiS¥F`‹’z‡©OG©÷G’B©åAò†@Ôå'J$Ρïž=½6fØ–±Y’t8|"}õM!u@ò'ÊU0¯%âˆÃCäe”™f[2[*Ù°KʺU¥Ô]A‘O릥_Ù`¿+¨TÒ/£bÀ´¼µKÞéZÂÞt¶ó[íxü¿+[ëʬšÛ¤Ô›ÐZõ\hèMU×6üó[o¸ÆÛ¤ÝzøKyÍÕôÌžç<Ëîªá}3ðá~V,Òûl¿#^ÝU¨ Ã¥±'¿ÒUøŒ‘ür—Ätµã»DÓõŒ­}Š<'ÒVŸB³”B Õ3AVÊe³¥š aVýuN çìT2•ÀõIƒªIà y)O%)âhe0Z W¨9Gr+TÒL©êHºDYÐV º«]T8”r)•¢2'P\•tJŽ+ÄÉ(Ô)4:(z¥ ÷)Õ#Ôô:pÒ‹¨”:S¤8¨,>^¡Þ‡¡À”â# uÙ*]•1ÚR¼’42&#© ÕI^‡PŽW~]/’™Ušä—Ê‚š#šˆ\ͬ³635›1²I© êv'2MY %ZƒãÒi*O”#ĵ$´44¡dDdNAʺŠâ®¢ìíeZ©ZP¸’x‘Ð4£‘8Tu%O ¹!ÂÁ<²Å‘ZKD¸E|’ò'¤š\)ð– øˆ§•=ÐÈ+J^$Ô­f Ê!óØ«ÀèÇ DÊM ½Rd¸2j†SJ`<…4‰Ú‹Dù^Gɵm5ðîCäe}ž÷ÙWŲög²‰&B½”£ÑDRɇô¨1.‘«ùõ·ÍÉI|{­±G§¯.B§Ôš©¶fж¶¬Å²™©5#óý ÐŒ©©TÔ²O¶ŠS¤+ÊÍ RCJŒ¤†‘dŽ„µˆÉJjr"e-P`(ì¯eëhzIj_ E=.¥JÀXCA#ú¡¡.I- ªç(4q'³•Œ©åîµÛÜ6ÌËÚd gn̉]·chm{¹ÔÑ- GjfM9(i ®¨4(ŠP¦EEm(MW*ÔÔœ>aWRòh|QðC”SJ‡UU] º‚'. èuÔªb`d+Qj AM" ¿zx§À¡á©é<·´>Cï𙚊³p"K^,¹Jܼ”¡ý% ?hÃÅsÞ¹ºù‡ÍöìççÕè?>¤d±V A)TÎçÚ7½¿ˆøŽ Y’<š}ézS‚¥ÊŒÌ6m³VÛQFª¦O xŽ'€YHÔ’²— #‚«,Ó3M†Ö´¯4™¬fµªë1©Œ®hÍC››®I±&’Éf”§értÞ:ÖÛÚöVhÖ›6fa•3i˜Æ­ZE²ÍjY+)-™ªaQ¤šhÖ‘™«RËcYlÕ‘4rèKÅE‘ST®GÎËÝã×ÀªõPYP²êX«ÛK¨rO¢§ÞÕEÄ-…pCg¡/Øà‰!#ÁÛƒÁR•þPÕäÍ_e«ê±¯‚Õý[Èktz<µtUÑUþæKô°¯È‰¡§å ÉËö1§¾hQ¢’‹aksb¹˜|d„XûÛæ§eÇ’eŸR¤þ ¦ãQ’hF‘Ä~DO/5aбT>ŠY/$¬Nªò <ÄêB†¥lŠyµ6«kÉŒ³3j› efÓ i†±¦¦“# –­L¦4´µ`ÐÅ–YmªÆf´ÖFSf™µ(Œ· •‚“´*Z‘:¨=8N*¦ªe%ÈaLé p±l¶°©6Vi–I S46Øb4Ò´#I1Y¬dlµXÍU†–ÆQ•]Rz$þ3û¿÷;ó>¢‰šªƒå8‚uŠ¢h¦” KG„úò|qÄŠ°D½êì(ŒF‘¹û¯<Ö(·ñÜ.<Œñ¡ã¨Ba* ‡þtE(*‘ ƒIÒA”Dj‹g¢5Ai¥Îî÷Sû½~(ûÿþÕÏÀÁÀ± ܶ>{$!—qÇ`9*d‘û`Ü4 UdÛÓ„"”`J¿~k:Á¹f±É±{œ‡PnX,C”Zz»Ô@$M”Siç#)­jÃS+X˜ËcF6«L´Õ†­C-k¶ZÅ153QFr­µÍ\1S# :Š•û#TªÐШ¼‰“½'µ1´¾üãW¹–’³J”ÉY1Uf.ØšÑÛd›)Úì,¥Ø„Îê»)-1«5f§Í)¬—XšÆd̃jÚ|ReƒÁ5I)Š®Å>µÐÕSœCÐΡÅ!Òž”ê¨ð§ÅU€:’ÿ2ÿÂÕD½A…\]ŽÍ~{vˆxÊ;ä`±!–1¨¡”p 4ÿž-xÎ.¿ÐϧÛnûqûSðã'éÔŸ…~Œˆ¸He¡äE<”¦Š3(K*aKPґꄾy ,@µ M ,& Ñ^*W% ´\TqQò††T2EZÅ)‰xáNKT.©9t„§¥C)4–¦…–Tñt5A©Rxªå¢«•K ˆÐ§%.‡C¡ÒJê C„µÂ’"ì¹Ô//!r£¨8ša¡:ô¨Ò] rR˜Sâ_(§ÂŽÔ+ÅUjJÀ- »AüŠ—WP¬ ²…^*§ÊkF5µlFfͬhÅT¼>R|t¥¤ÒV˜Ù­‚µf’ ¡¢‡¾h2ËQ™­£2›Y†jRž*¼)#UIĸUNY‘5*C¨˜Õ1’µ É42¦¥' ?9Ò—ÊŽÔÌ£65jͱm²)‰N䈹&Ti.UØ—Ÿ×yï6͘|zT^SUSû_Ø~¿ì”ú)Z¾°Ð„jHÒ£D´#H¥–¥MA… L„OoÚ¿^~}¯¥éJ÷dW­#”š j^¹²*ʪÔuS¨éD˜!Ô%Ò$:*ž¤‡Cï©WdE”DX¢uV”""%rá±f‘Ù Â!õ!LoÊÓòu~–¯¥ƒÞçèZžñJ÷‡"h‡QM VÆÊÕ³cIc4Ʋ„¤BJYMZ֙ɒ£blšj¦DUƒ"m’¢™—CóPp©/Ù*½$¹1|(^ú“ ©Ð-US!^©Ar¦”ñU’†¶Ö4Í©´ee¢–DÔkQlØšÊk4D 2D‘i¥šÍ’bŒkV²Û…f¦k(¤–Ø™i’—£ªqJ=*5Pá PeÒ—TýBƒŠì‘بV ò–T£ª)©Q¥NšTdT<Jq£PÚPðz¡ÕqRp§PÐâªz™OŠ+¡¤å<ªªW’GƒS ¯')x©Z'©òRs“>_ô9Ê-P®\%+¢ñV‚ÀUáW•*9<”º«„AIå&+Â*|0¦I”ø*t>>*«´ƒiM‰²“5AÔ%ÉI•4Ž|• Q|*¾K$Ò%|ƒ!Õ © … R!¨iKGØ*2EöPi Õ Ê•iû^ž¯yÞÔ+¯D…XLª­'ÃVdXŽ"» ¡5 cTyUIZƒ =A”A´ØÓ6ÔÕ¦‚ızóESâhRx‰”…bÉTj JyqM“2r(á4TކTö%-'æä|LîêYòDšl–Rp5WÙL¾ÈF žSȨDÍL1Õ ñY!¢V$䈱+ª-B°‘u ªM*2Ir¡÷ O‰ö™žÒæí.gµì̽Œ­wS7Í ÙìNÉßyñË|º¶“ÔY.FÕñ‘>z_ ¾sš§“NcÍSãS̱•ïŽCÌžÇÍÚ6=‘šY³c¥K½ê+˜*²%•^*±S%)„1.ˆÜ´õMNÚ ôÀw`0ˆjÄÆ"8Ñ"+“PjRÔQ’”ÂMÉÁÄbhbªi-Hw@ô>ÕÄê‡É+Ĺ&E†Rñ?9‚§Ê•—€‡5Q “¡L©òáN#ªœ¦ÈÕ&@éQÐò<‡¥SÌmjÙ”]*ÒêÑujJºAv(N¡`Gh8•’ú‚Ð9/ ¯¨`m+1U²3 ±ª¬µ3!Kh1¬¬ I60´‹#m¤¶©M¤-–Ä©¤Ò2ȵ$kXM¶•°6FÄä+¡©â«Érð¨à¤WŒˆ„V”¥Þ¾ƒ±óoÚZ‰†¨‡(Ù çÞúåÃ~õ´Aò™g‹lùOOèvud’Ut:ÅþÙD00x‡€„ Q—cë!k4„>x`ŸªªqC:eð°al!o£Pìé7@õy¸ÌqÊ?yBcµ4Vya±õ—,Ú¨¢ åó_ÕTehÕU7@*˜²•â­I•ûI=¨œ½-MA¤ñ­4е¥i¶±jÚÁN(`ÐýÏ”ùAaª|IV¡e­AÉJtF¨0jµq µ"Å¢……XD²R¬’bN‡é¥ÜúPê ãÅV(S@dÉBÊy.² ½Ò¡uPt$½N^)á+ÊN•%‘5 ÁéD¶ÚÔ’ZL%T›SVšŒÐÌÊÒ±©¦ŒÙk1¦´‰ScEI¶R¨fj”É)¥ –i´ÓE¢•±škM(l´¦˜Û3!a&FifÓJš›5&l`«kfRÆÕ6)¦V–3MCÉs$]ôø†÷ˆÄÊ‹Iª`5!–µ&Ь%Gåoê2Ò…Š¯¡GB4>´=%u.Ò´Zp”=J’9¢'{mí{'Í󸱾;úÑ=¨D|Ò–ú2ù¹ñ¶ºÖÌ–#Ö½ït)‰UD!! —o,–FÕóbÙ±™lÏqv“e†;§nwƘÍ[WuÙóN•¶÷R•ó_ ø±|r{Çžv¶kdÖa—:ém•-Æãjqk™[LÍì=£1š½´ã\Ã,®ãiœ®¶Ý4å¶L7,¾0÷Žœù+î'ca«‹F.ösN²ìäÊÕ“\µ7k­ÇXiµ3œ6´ÍÖ®ËsO8ãlºÌÛ9–-»Nî.dÍm™œ­¨ÐËnÉñŽmygM4gƻι™f³[iaã]^êÇMÕ˶×9ܳ¹©žd¸Ólru8l­t&i¹2V’“0I³kfÓ»šÌḇŽqwiÛº¹S6µÅsRdLfIFk§WÇŠ—NP¾CÔWÈF*d©¦U‹d+'*êŠ ļ£Ä°§ª9JÐ9.Ur'"8RõRÉz•MQ:HÄå`ZDY)v¢âˆb«¢ò+Ê]‰È¼•q,)èMPèŽ)p¹Á.‰UÙä—vi?wJþž?œÄ›[RgÖaÕ CTi%”ý¼•ûLÍ õð³w;}zìlª¿e‘÷`~¦× €®@R :8ˆ Ž"×úʳç’ïstš¼¹{ kÃT}:Rjàŵ¾X$°EN±Ö×L¨¼ºÙíÅÄEOàÐüì¤_¬>à~µTxP}Íz*dAqäQÜ†Ñ ‹ ‘#ï_…˜}Ü~äñ_…ùíGßΩ9S&óÁ*ßlê;¤;Pp!ŽsÄ %÷•S‰hüAèãL©\…XEØZƒħ%)ÅV¢±K&G ´â¤ÒN õÈõUª[Áí°mC¡â=PÔñƒÁ”^p8N‡Tž‡.©1:HrMHÃÒ$áOT\ $é,KH“#ªŒ*í+²"át•Ñt“€Ð]S!hF²Rš“’]…|œ‰^O$ž$Tè—-éU‘Xt+alŒ5‹lhÆ’{&Ë4¦¬6¦Ò¶¡š&À¶kTØYŠÍÛd«4KbÍld¹«5TíÛÂ{T¯•+ÂâK³Ü…Ø;¨0Âz¤Â])©‚iAäYBò©'t=Jºƒž’è#Б\WR¨é%„Ê*P¸"ôŠê’­RzËļ†ÔÚ%š C¶˜ÖŠÉ°­‘– VififÙJ-1µ j¶¢±lÀÖÂ̦¢fI«bÈÔÌ•5a¬b¤«-hŒÍ’´Å4•bص”%Z*›SRÆ™¬M´ÖØáEéQž ñ2éWU&‡B=IdjIÔéäKµ ²– rD\ñRK¥F’9$z+¨u%“Å…zTô‹B¹"q ö$í+µ tK‘<—`hX•ª‚ñRa¡è¡‡•ò ¹Å]‘ ä‘Ê‹¢£“$õIê‡*de'Ã4rr•j R«Pz•ôXH5H(Z‘CíŽ*¾"íBµ¤ðªµU¦iQåL)’tQªK”H–EqEt&«ÉÉKÔ#ÔÉN¡¢ÖZÚÚV·+W@„Æle,’RRJJ)Q)5JŒ$ŠS!¤ÑhTjÅi6"d*R„Ìm&c1Y£[Y$ýü£4)åU¤T)Ä–•PøLCЪpÈš"rª& MQ-%À¡eZJ²ÊBh UPdœUN•ªä¡ýnWòÙÃé j™TÈD)P+ƒÁ1U —´^»ß쓊 n@Ê‹Ü"ðL¢ˆ9ˆ%{ÅT‹ÕQŠ…iTž Ô hz‹ú»úŸãþ7ì6 `ÞzãÀBŠ7gK©Ùæšä!™ÕLÓB^Ôˆ²I=«”ªäÇdŠeCPä´ž¥kЗœS@z‚¼¨5E¡è‚ÐÑSI2‰Ô0 ¸Tt:)8ªêÈ?–:ªR¸QMÐŽ•rNqÃ’ê5D](À)@¥ RŽ"b"™°Ù‚<tà:M/º?§Þ¢²ûØÔ=Ht:T|_ÂX‘Ê5LñUЬN¡Š]£ù¿Xu êP­Š,˜ŠÔ>T\P–¤ìWviBš•L©Ô8QÐŒ¤ñS(ô•¨“–•‡%Ê‚ê)4§¤-Tº‡T=¥*½üÍ¿ÂÉ?……)÷j?GVÙZ¶½­*9¡m `l«hlˆÚU´™fbÚa‚Õ–’Id¿…Ër’‹c ”YzÙ/…‡ÀÇ4§Áµ=Ö){v=ÖRÿû'æÂGã Õ(’”Àê&MD§TÆÌʡȖ¡Š¯*qU䲕¤Yx—•=CCˆ§”²áÓú:OÎh_¡¿êH}CìªòåZ’²Tò“]*:TyK¢¤9L(t$¹ªM%0úͧ¢‰öâöÚ¬ØÏų¸§öŸZìj,ÍjB¾Ì©'Ú°”aŠwªBõ!‘Z“š3354±™–he«[dÐllk%HËeR¦cj)R”Ú›RÆ´Z±¤ÖI l Í™»³%²N’ðУÔRœV¤#Êš O(òEÀ“Ѥ¼»y—±ÛJٌɞ)¥WªG…r+"hL‰ÉuBP‰r&Þ…3šC,Û¦1\‰öÂ,¢…ø `-AŠŒF§Ü&’yI¥4–Yd òRž#S@xNª§)1HêF‰¡aU©"¾Џ’ʱ…SIbàÅ=A–& .(èDꃉ{V_C¤G¢“ éṳ̀§äd_×ÌgøŸ»Ì~>Ô¿y©_£’‡ç>$‡RW߇Zµ•³ûÿµ¶i5Ö’ÕáÎåuêò%Õ-|–*ùí»X§V#¯ sA'H”g‚èg*N„q £ 4“%-- ”dÊjå (¡ÂxÀ¨°7âcÏ ìÅÔ6ùE$ îÇCB“Š:0âƒÝ dLÙP\ì,Ö€†ÁÚT Cr Ž¢)Õèö€Eõó’e5•DÇñàg'ÿÏïÿÿÿÿÿÿÿÿÿÙ&’l¤’Kl¶[m–K@†M÷ÒðâJÛœ7jå9ºÕJ4Ö«•:nÜæìÓ»ºŒó{ÀhùN¶ã;œå(‘õ c6èÌCÝŽšzé ¥}’Ù­ËÞzz¥5§ré§/®æ´ôÖÚ«Rw]ÝRá5¦Ûaßw]½×oKlõ×ß|/·Ý‡¯o}ç¾ß@i#ì+/C¹¨+WGnÑG/®»k¶‘GyÁ\ç׋Íg»ws"ÐéFõ»ÝÝ:MíÅïk·k»»o³©ì=6Û5ÙÉ ;»‚´i}ôw^}­µÕknûrðõv;£lÔk'Û.8ÎØèYË»w m›§Pë[fŠQ½ÚrÕÛ]åÇU×¶Ü™õ¹¨>M[êIiÈÕóéÃ$¾úæíÑwÍóÁ/¾÷»ÎØo½Û¾êKîc’÷Ýã°J!>¹ï‰ðCí¾î»¦­»Îî¨@f¹: n³cjºiwrKeó·÷ ÍÚ¬9ÝvÚtk¶ÔvÛŠÒ{l½µVòÔ:-¯nžžö®½og“­±Nvß1èöƒ@jO¶nmzEJ¢§¥ƒ¥rÞ“iª3MNÝÎT‡›Óµ}Þ©ßnƒ‹¦ÛݪÝÃvK=½öÀoVP]ŽíuÕPiÓ"€vÃAÐ;Ø>÷—wØõÐÝ€6cÝ·²ÝÀè +Ýñp»pnÀß}öÛ¯®º4(>»ï»®úÝ·®{V؇}ޏ 4M 43S'¦”ôÍF¦#É¢d¦£Ôõ2d4È2Ц“jh””SSh h€ €Ðe%%&©¡´2h4ÐBIUSü’£z¡êAé=ɦ 4b š 4’JЍýªŒ›Sõ@Ñ£@&š=@0€Èd1Ðd HM Ry¤›ÔŸª4ÉêhÓ& ´=& &šhщ¡¦šdÐ €¦Ô‘öU}œhEÒ"•AVQýœ ‰‚TKö_ð>ûáD]áVDT%U@>­*U)²MgB¤P£.2&Ê ŒÈ¹E\-X$r+…(bÌ‚ØÆÆÄ["’ÍŒˆ4:jä0}ç j•Ut‚ÚÆU$+ZQB@‡m:µ´D lBg%Ȫ­0Éœ‚â6œéŠÎÒ–Cf)2b@ÎYXB† PÄi,íY-U%$;R€ŽtÁ‡CTH +²28’¸C–UOtté«g[lÐá àÀ‘Nf‘˜Â©E 0Ž„@2`µ"‚–š6clb–®@M׈§·óe1RURR4ÓçµZÁ ¡ š  -ŠF´¡NØ¥ªÑ ¦–“¥4U%"v0¤@)©B•):t÷pbS¶¢…h”))-šHÕ!HR§¤Ð4t€h(R()() kH5Z‘)€i¡(% ¥ªJ´šM˜¥hZD¡B‘¦… J  F tâ V—N ¤$¬( …0( Ê4 NƒKJÙH†©–”)   Z Pˆ¢”ib7@!¦©9*É%%P©@¤hiuZ>ŒR«Ì8ØBÎÍIEˆW=*ŒˆÚfTLçQ°òE¦+.ȹtgKˆaUÞK’(c‚[”$m}Aa¬ø4Ø  QÁEã:#‰ò"øËáUT‰T|€¯²•PUU@Øû("D@€‰DÊRÂ0‚ŠÊ0¢ ( LÐ0ÂH¨ÂÊ„ ¢CO/´ôdèB´.†’”"QÐÒš–Ð"F–%¤JÒ¦š¦’‚Òèhi ‰ )*„ h ‚hªYšRjh¢&¨jšª(ªš©)W ŠQG9’TJÒ¨¡3в¡HŒ ÄèŠTs“V—U‰G*¨¨˜VRЂ®f¨ÒeÅ‘r%¢ªŠeDA¨QÈ4@¡””²ŒJ£…Pi¢‚b‚& Œ“E@QM% %5BD ht-,ÔRŽ„4ÒD¡¡@hi@…"%-#T¥4ªéHÐRÐ%4)CT´…SE€tHд--4QJÒÐ(PÄRRPÀ®È%(ªŠ **äû÷RBt.‡)AU2RTÁ¾aåÇÕHä ñ+Jûu´tûÖ¶‡M4J¡AJ´- ĵ%TS,CCJ4´ PRR@S5 út£M!Q©HDJ-4´P)-!JÒh4´B(R”P%R‰§JÒˆ$ã«c™±ø.º>«ìGAZ¢rƒlÁËq–·âÃizBq§Ö¤2j‘¥Mî=|8˜ÝwƒZÆ£àŽ“¤ÓFÛkÁÈU èGIB­-Òšt©KBB´ÒÒ%P% Ð%îÈœO[Øôq4´”ÍMëEVصšB:î÷mvB¢ éÓ@q!ŒÃUj˜MNЙÖNf9 Ï9¿¼Óp§D  5'H %âÞ8Üß}§*Jª)¸ûñ•ñ ñˆ’ÖH¢*š‚&hˆ›°EÐÜ&––Û8ÐlÐRQ|˜a£'#ŽIÏ¥â̈Aó¾CISPRÒU$@DÄ…R¥?2:V•/Ÿo”ø÷»Þ}íÉÜD*ÖøáIôüè×ÈúöØ2BŸ P•?0‰òdáú£Ó8Ù:¿mENº;„ªÈ²«L@Ã)ª„<;s‰æçR˜§H; ÄšŽÐêCQž&A­´¦ä(íPîöÓ@p¡€9wƒ]4sÔÐÞ:9òê0ØÔYL“o›u”x’—Ã%ãM+{0Öæ8¦¸Hbh[A²—{70—´ d…3¶ž%^¥¤ ¥4r¹!¼äcˆêvß+Æá¿8½§k²0ÛÚz@s!Ö’‡ t= š‚(i¥ ££Bi4iG\!¡V•‡`Ë”“iH•¸îáìO$„8 (ž,¥ÑPwÛr«ÝÞ÷«XÙÛ[ëNÛuz@dŠä”…Q“Z)-—îÆ†'êîöh(?3ùÝÁmæKf)æÌ;e,kŒâ±P¼jXó +X ;˪f± p­^lŽôk%Öl¡ŒÉ’cXqeª^Ï6ð±SN ŽªIŠX¨=IyÛX0g-<åÉœR•R\50ñ•s13wTU–Ë…ËÎ2ó3óTŇ13VV¹ ²Qwf,ƒ5—3§tñ(L§C.ÌÈîë i¿*i#,8 ÄšŽÐêQºÔZÐ;Jo 6Ä €aaÛM‹röÅj¤Ñ›á| ¢²Etö’=^5´ÆÛU çhVj¦q›1‹¼¼â²32¯8+ Z˜véìͬÛmJ1vk·³5vµkSZSó!ŠÖƒ1DÍUaÊÅ:ƒr‹¨ÜØhª­j±ŒéÂ¥fYr¬µ¶.LÙÔÚ’:‰±’ëk—6“.c+–]í—&f\˜Î33‹—UWWŒèÖ^Óš&+geŶh­Æ«%â ÙeÞuŒ1šaYÎmiXÖnÞª1âLjÙWNëZŽíÓ§–[Ó¦´ÃfiëX¥w©±¬m™‚mSj(Ûjå§æcS kdë¬éé¤îm…­]^ÒÞ²óçxøúõëÖ».×q ã_/ž\º¼´oµby_WŸI=]o˜ó¹Ûu'‡µV‘lQ bš•›Úbñ`±›Æq´³ƒÓ“YÍÙ¬M=«Y©&¥V%Þ.2òU-E–[øJnÝ0QˆÃˆÁÒ HüIÐ*t:MñôÛ(lpÃL1Þ·HÝgIa¥ )¡p`§ Ý‚Ë6EB9«3O2‡=°¦“{71…NÒt뇯@Œ±%m"€Œ 5pfZ­÷FqTg{§‹¹›ŽÍVA·©ž† –ƒ7´¸3‚Ñ3 VÛÙF6+jeÛÐRXH8±"}Ãàáö?7·¸!ÚIÑC1¤–¶û hC§9i7P8“zÉ!äߪ:)†o6a£2’RK$¢P„LíFÁ||¿O¦5¢ÙíÛ¹àÓ &•¥ãe Ð ”ê:Mt=htôd4‰¡M"’iiQ¤H!’¦¥”M¸·»ZM£,̪ªÚMÅy®’K¿oPÖ(v¤Q%£ëíã½ ·ºÁp-†Ø{i`ÊAƒb’ )%o5ŠÖ"Úζ(Øm´M‘ŠÂDƒ¡ƒI FÊ-4+…7•ø1ã;xúcÙR@Q»í¥]4‹ïo/Ï…67„ê€G€t`*;ÇL1Šìb 9ÇX­ "užhê (‰ =¹vÀl<*Ú ”¬€’ž˜’ˆÀð&P% HCÌ*#º ÑEßÀˆ‰"c¤ üï(¯Q:¡â;¢+1 wQ D À]nŠJ¸€/Oez"9 Ñ‚Ûi@8Ù#å!$¥GD#12‚Ÿ+"< ü¨ø,H¤ŒÞ#vAd@ ”ÜP€Dê €`:TWqE8U\@&¯QM ¼ˆ´"Ê0$Ò§Á ‹ˆ‰JQŠÄð"ˆ*ì('ëaB„BDý`Š™A!IBFDú  €2þ³(’å„D‚°(˜@aAR„Bʈª|*0Iˆ” Š„°Àœ§T)()ZJ)bU)ZY"“ª(0ƒò ôº­è «ë¼ó™#ä «°ƒ¸9G°…ùh Ù½´LRžŽ¨T°raX;y°*x€OG(“=ú©E©V*€ …s2GpS )åý‘P”YQ•D!T!€DÄ ° ¢K÷MÐÿqÒ¡ @S*ÆЈ`ÐiŒdC{¨I0)¹( T—!ó½Ö”Äâä+­Àw ¨)œ)¢”÷wfA!…+} QÐ ‹—>«êñ¡q¤žHB¡ Ý v0 £E”‰¡ Çv¥é`U—nT8° id„lk’Í–š— 7¤që#ÒyçÐ ]œ‰hëw@©È{•çjž. ;±j¢zî7zN…29V.š‹.YqqêЃ 9ºй¡GQ-ÆÍÁwµ>Úh¤Qéä’ÜG êh’Å¢õm´½±„­ìIâûŸz ºhÆÙØ£²/.,GuñíǬC¦]&± ¡]Ç@vØ mU-/ç}ÚO ’ënh·3úä~&Äp%>³JÒ‘h"¡#„ÛUÊ%ÒÄR¦€ „Ut.uºuÐa}—{=°Q0‡j<&#A:îB„WIww )Ų¢÷h‘»X»f4u½¶Õ/¥† ¬O½×m€"Ñ%ÛrMV„…ÅâÀúÞC—1°;¸¹RrÑ€QJ•²y#ŽŒè3ÖT…RàLª¦ìcœcôÈ&Tzð¤*µ" Î$SnÖQsÆPrØÆÅ󶌧;ÝÕÒuËŒî8Áu 0)0#AŒdÚUNâ (N…WîUö׸•¾ÜƒÊ {¸cƒC‘¬jç³½*>«Ú< 8Öñîíî¥xM‡;` g#R)S¡‡®:5ÐÂñ¤nÎBý*ñï'‚LnûÛØÃ\SjW§rñ`ÉÙ:½½"ž›Øt¨s‘ô:F¢çÞ{‹ºI”í5²Ù1h.”8¡p†§™ˆC,váTQPSuˆ‹Þ¹õÈ7$Ä_^7uëlêÈ Û‰$€¡ Æ ¢ã<˜ãy9CRñú±ïa(k®±& ª l­`<h Zõ1Ñ M¢kën–Ĉ½°íëÜûIìÇyºõU¶n=„½{M¶oW¡Ž”ÂQ©pƒRµmí+kRA€[2eÓÓ¤ˆ!B÷£@ݧ!ʈ§  •bF“Lv1+ Ò™ºŒ5:õnײ}GÑü?•÷¿mðúüBO§Ûñ¢úÝG1Œê ÀI³¥ÄTJšÐ’.GˆÁµÎÍ’hH6° xÜÁ<ÐÛ$ °„GlwE †º9A†A!È€i)Q‘Ž@Ö6­€*ʤ„Ó"šÌd‚}Çk!áR>Å@1®ccbEõ0¯Eœ„¦ë¸®@1H™RÆP¨:CAZ4=ÜqDT”Ë%ƒ.jºêŸØ}ÞEñâÏ{ØR@h2(©0#D‚ð€+„»º;PôÄH«°Ž‡šëaÀ\M€»^¦ç6ŒÖ—»‰­%4<"wGe8yLeÀcº·|»—z¥ œ5Ù,#ÒV6Ü‹·—q‰Á¼Ê8ÉÁ°Ú¬A'¨91 ìòNãZàVÜÙÄ0œÍÜ&‡’g/AÝÆ«ŽELÝÊ'8lVÁÑIÈ ƒJº^`¾åââÌ ¤È£Ï{6Ê„‘Ðþ (AÐ/J ‡¿YÀò$ž”|È¢|½Ž°ƒ•B$^à%Ê"!¸ [J·:×GRƒxµÚX²)§Ž'ƒªuŽlÃJ•ÈŒ èB„ $ÊUjfŸ®óá÷ÙÝÈøé¬ŒîÃoóŽ’Hq!HLÁ@àŸ¹_=on[u=v§ÍKe#ADPMÁFÈFU\´ D¦È T$ M¢ª( J¤’‚b³£B+™ª‰‘pPCjpÕEU£SAIR±F4*äT<²ƒ{zN1¢R¸z.îãëöô‚xeJxC+£pBQ˜Ð!$¨ \eÆ1‰-¥¾—¸ðpî³e×0¥PI0é!AÔlÙÁ‘Ú®›j 2*#nAMMŒOsˆ1¹Àv¸ª×Ñw•©™CÀ`ƒƒÌ1«jõ¸wÜŠbP|](7Qy]»»ˆêó§{è À®Ý»9šÚÙZÜ[”°íV¬f› ]ÓÄotŠm¾ŠðëäNŒf£]Öò<‚;¡&¥;»”l±s¸:eRºÔiö¸'@—ªÒBÝ=I±®RAåçèñíïrJgç8¢‰¼ˆ'>íwU¸“P°uv1‘m3RÝÚ´BÝÖäà(*H6ì´¶Ý•ÂÕ×ÍÜSm¡7%Àv5Nœ!JåÀ·4‘°=RL”†„4¨è@üÀ4¨΂€^dˆ|ñ~& ‡dE:äÎDÕ#@Ò Ñ7Ï8ú·¸]ªè%±dËtmºåiM«ai îî;€Ý³ êD…¡MÛ\íôŽÅí›­ˆ‚]ÄS \ÕR‡(œ%œGXÇuØÛsØuÂã±£*ddä Au•8ÖFF¤XAE#g*0ƒ±i`ú®4eʘØ=†•4¬@•% @`*üÉOœÀ)ļ(}$îÁˆ>{ÝDm`:D4•AÓÓ ^‘Rö44‚R´RСҥ¤$ªPø”ôÒlcîß´‡ÑèHºMt€Q¥ JèuJÐꥆºZVBêu+ïçÍ!ó O Òƒç Òkš©:Æf&£YšŒŠ HÅ\·l¦ÚMa5 o}»­#dí¤ç,0™ÇÇ—'Íy‰ðwãëÔ˾»˜(•Ð Ä/éèØCh”‘_Æ‘w1ôc\Y i6%lŽš×Sùýß?Ë£èý«Ûîw—w»×Ú_¦y¸ówù~Ç»âþ €ü$À)¶ü,ƒùÌ}ëê ¤o¼E0û; èümÖÓ¥* Qô¦„Ä@;‹OAÓ¤ÒÐßg>“ͤóÝ‹5c–YAæå[@¤b ªyÚu)ø&÷z:1€æõó M³ ¥vZ]5i©b©ˆ C×2¡¸r¢ÆØ\KGå_w½ÅwvÁ'Þò”õâ ‹­vB.±·wf°=dëÝ3 а%-„€4À7 #®ÀÖ6W‘kÇJÑÀ˜Ýj v=Ò= ¼d")¢š^ýÆ—>ŸÍ¿çÃLôPÁ±³‹åY¸ eA†„9) ám¸ª:Â=µÇ×áA=]îމÖ:;Ð <ÁÍ“d°yQíÑ«¬ ºؤèä’A ‚PE#Tf©á©N•Øî^zP_dM(ɾB¢±äT.ºzMaÁÉ‚vÒMÌ{ƒ‘HìfA€@HÛ£Ì׸S½j¢e¯l”P:hyétŠÃ£XT黃AÍ»¨Z–Õ.îž ®¥Cl*¸ paÁ¹Šíi‡p=Ü"z¤ë¶4NAõ"†àŠr1'Ò#Òmý€7Ñ{/qNƒA×IÒÑñ1ï")jÑLuÖÊŽ‘K¸ÎžÊ—@’mÌ —»=&Ò[h¡"¡tj.ÝWS'mR")Û(-§X§*ª IP|©„’H)($ *0©‰KÕ‚ÑÆMÙ³iDíˆ1ÁܘáAqÉ;£ž¶Ñ ¥Û¶Ð'×r¡‚°6<PcwÜž=ŽÛmÁ$ˆåSBI‚ȦÝ™!C¤?O(p°~=ò¨[F3âé÷° 'y7" ë <ˆ$"$÷RªšÑAT4 ĺ CDA#¥PDR’¤+£ º@E B¿V4!äSi @S|ñÂ}¬zH.ï(ä „X‰?ã«Uä=ܨ*zÊ  £,…±*RÂåOp®“’kÜlD$ÕŽÃ'a0#‹zÝ6I½uõëy·­'"ôƒ…u$Àm­a¶_ ;¹ìq;!%ȧp Ͳ@ÉèÁïzLêq{Ô‡Œù¬w]Ék%.Õr²ÇŽ=ž=€Œ`v^ƒðl¯½’”-€äë‹îð¥À£i¬g¨ƒ¾ )ØQläDïxäp ¡")eUÞÛÓÚåP×;»´E/E–Ømíïy¸ì¨¹;AîÀÇyœ<$`ÅPrœÔõŽ'3Y¹rMç>©Ö%¾ÕupjÇ˯O‚ÞŠ—«Þ°w†êNæíÂ]agsÉ>¯8¯A]QÖ8îÄPp##ï.ø¾ì~;Sø==±Â!B¤œÙH.îQxD :b!îxiDKŒa!BaU%I-¹ã_£¶÷w(1§žûrGô Û«· –U‚IS}X{ zK±E!…FW@i +Ï$ÑJš¨‰"’Sä KÁ ÂÓ€ÆÜ©o$îx°“XHÖ`t/³ Æ:˜ùÞízNë9 xß(ʧqG(;BkT2Š}$Ô ô@”SØt‰ñ#ât©¤¥Þ?‡ûmôD}hOÏuÚ=c±@¹lZŠwMw^ì{ÙY{èèo!1äŽ;Ë@w$÷$íVO¾úÛìo„PÖ#«ÝÆËÄk‰Þ<‡ÁBP”Êø{À`ø’„RP Y7Ywå¶ÅMmÌ; oÁª“o¹ŠZÜ,$«!6p`WiDãì[‹u­³`¡)úN/?Nù#Ò`ZF Gz D¸¹ÛQBÍ€ùáÞ½w`G$ª* ¾¿"—¯®D<ê)«lUSôx`B‘“˜:¢H¿ïv b_¬°E ¥ÏeqT%%LÌUEE%AT}»w~N“¸N@ÝÀ¹Åß™ȃxøö=¶@{ê7>ÅÛl©ôžGëʧ§;І|òêj®«¬$![ ­É]È¢F0]y=ƒÞ„§ŸP ;»£Ö<„&¤²áÈkœ‰«e60ДØ Ê´½4K@îÇ ÀaÒ…-XÊi¦‰„¤ƒl© ëHæpÊÐ(EH¼"ªÀPÄDDKT#v´mÇ|¯`„ÓFö#žCr] ðbÅ›H)˜à°RÁ“ìèÉö;¾ã‡FJ×'УÑâæí^@áBÂ”í£±f;F­Ób¦•HdÐÅk0fÒ®RàÙLBÞCXy«n­Ñ Uãà<¤Ô“™©ÉssD¿S¤;< Ô%Ò9÷Ü¢tC˜Š…åeâMOBa $ÝÜN°›¿ ½Océ-…éÀªOÖèûqÈ¥  f­X6õœÃµ–”¶‚Í߆ÊJûs.“*9šk´´|¼®¸ŒoPÂêvƒ¹…½Û[mç¶!^ÙP%¬—q€" ââEW.“н'â_¢“}Ž—ÝîÆ#¢®ÕÜ€¡étuJbퟎÂz_Cwp]«En²=»BAeãLŒ¤må… ãy¼¼–Fë°UžˆŸ^}ä¨Q^¤'qÜTA*ÑHô'a¿ >@‘SÂB¡ H„Ÿ À@"<²‚˜À@ÀÛ"RüÊq…+€j  BaƒU$ÄmF\àƒª['miÜÍa JAp@‡ bg…)Zr L€"©æe#Ø È4ª@2 ýt¿›a㊚B~ Äâ»häSg@4‹…úåëžA pp2¡uɶZÑn”´RB¸Bxì][£r\jQ´ñÚûV·Ã–Ðzܧ=Ø=»×]Ó.|+8¬ C@ꡌîî±õÂtªB‚¤†“Û…Û³‚’:žp`å¸D9Äc² ƒ×&Ùx•S®Qôª¾¡èdìOiR绕Z£ÝÇ0žÔcãǽé#•,nÒM%[k±±Ã¥B´4І­‹»[ºé@wg;Èé@à nÕÇq¹“”LÚ m"’ôˆzéH¤¯Rç–äèˆxÄàÇpc‘¨…N@It¬PX¥SÈ$*x”&g ¦Ñ’r¯›ÖYE(Æ#M„@-aÝÝÉF¸¢6ENQ"È÷/J ¡Ò¹nxƒa*¨UǸ÷C³—Á‰ÒEî$㉊&³') Tã8²pÈ(m@!vÙâéP# ™aG ädRPzàHTA»¶£ >¼#í÷Þñ½fÝÖçdôÀq׌›_‰Nò‰ocOrc`E9€Ù¶`в °ƒmÜ!¶;¥ K£¬M©bV®Û#µŠA{ŽQ5f퓱ƒ®†¡( LÚ@¥ Å9•«ÈF‚£”º*Dë*Jƒ k8h‘ž-KYP0£,"b (³qÛs(¦´ªÍ“Y- (Köãg"vè©G ˜„ÿY¿Ùÿ*Dý%”„F1ôŸ~,þcp#±:1͉¥ÀBZ€ ,$@Ѹ‘t—c(˜>SèîÉ‚ôº=Ò§ŒÒ€)Z8œñ•Ëp¡q»Ú{"ªCULÈ€ÃJ r"Áʤ†’[2à‡¹N½ƒ¨­£q- æ°#Á˜@’µë] r§pô £@p½‰å¿ðýoþö$>ACÀ|H£©˜ZÊ,„O‹ð$¨b2€)G: ’ØÄ=»Pí¢#¯¤À`9`¤€`”P1®tÑÈ(¸wYr§vU] Ô`Ü€ rkVÆÜáGTL@¿âáwH@ð=ÙßÌà a/Ä`:d‘þÿ=ßá#$†Ü„ ä·_è{Ñ_åæ !"Frr´±æÁ¥v › nHùi:?ö¼| t4»°¶B?à_«TÐ0GQå, áqÜȸ>È6*¢wwŸ}AÄH1#¤BMBÈ Wè÷u¸8»² k˜Ñ@¿1{¹¤»lÐ¥…FV’D“‘. B€•4è _êí=#ÒêûˆºJ² ñ…7@@äÜu£ƒc ÂUD‘ùAìX÷ÖÛh¸nŠ%ÐW=ÉÍÓr¤ÁÄc×9y “ÇãÊ/—±Œ‚ÜÀle“ÝÞL0)¯vAS ônëƒu¶º•[—sG¬lÀ !‰,ǃg"˜XÕ—@˜a4‘§¤`Ô6€Q ’¹lc£PlqÈ ;KI0•¦ ‚VŠe€ ƾ=î¡RQð,€`ÛXÙ‘[¹8ñ}A½ïQ;©Á°Wb‡"(§ ¡"4¨5a!jbQ+™î;µâ5·­ƒCˆn¹ŽÖ¶1£¢«½¸ôaPåRPCñaE9dFŽ\ÔHÑ¡AD th6¼¯!ÜUV‰l Øîí%8Øfê*0I`”Ô¸ÑÌ3aÙº—¶bÉ›3®bÚŒè]’ ¶#¸…0IçÞoiæìÏkŠ CU\×* nÃÝn]v€T>!Mʆ-èÝÜŠdG'{»»‚½ºî0‰¡è9°! UÒ€p<¢. ¡LüiÃÀ¤ *øPàò€)î‡ käS”6ðm»±ŽESqÜ2sj4£q©·\’Dá87„¶Q#v #ªô¢€1·ÜÂéä^Ü[ˆî0¢ŠrŠ1¢uH‘!­9†q±8&jI¬YªˆúCŽMȤÙ#=·2=Á±Á¹hHŠOËwÁd¨­B¹¶÷Õ$Ñ*ÔZ‡Y“QJ²É$&0[k:(„–XP; ~öQSþYT_Añ£lE¶ÆAZŠÖ42©8ZŠÖ)*¢‰Â晚T¤%ªî68IŒt¦(å玃‚ÆŸ™ÌóH²ìd’ÌÅ#HEH©6ÚžÚ¢9¤Áj GãØà(5„bDdA$Ú­³#!bE¨ ȯú¿¹ýÎ!ß(‡Â¡Œ"ŒXšÖ‹i€ûyÇ\G(Üpq]«•›Ã÷°{Öôfr]wxŽñ¡O6·BÃ¥½Œ"œ¯#… K H•â|ÅÕ·¯W—ÑìçÞqnŠâ6¥3î3Â=áe9(I LT€@!.tŠÃiiL›H·¹8-9kF¥ =Ð*º{ºéA†íÀöh²¶Fµ,zào:@rÛpÖBR”)W&‰‚Ë`nÁ l“º­î<"<&E]qÛ(· ìcA®¬6m×lUC ݇mEÝ€8×^Êhà‘¨Ì°–„6‰uMj9Ä ÑØ.Ô÷vÝÀ()°/  ¿>ó<|*ñްª«‹ëq÷'zM:ºß`ùDù "2‹Sçžî±¡Øå šž¬c$÷Gv ÏvG¹K©WŽQ).9Ú’NÚ¥S»›H.•8´÷XÝ+‘ØPNÆGn «›È’ƒÜp#â̡ܚóÏ:™[r‘vl¶MjÜ1QMƒ]1sï]áåÛ¸à˜S¤‡¶íÐ'ªœ)H‚@Ž,Ï PP¸Š9Qp 9`G¤NNÆÐqØÐI»!ÂyסåL~®áó½Ê—p‰õœxE4 §H0 åÛ^.¶TU7"+”yrƒ“Ž6ùȦ—ÖǪDï›k ‚`gÈ × :ëh§XáDí{à×"›Øµ‘‹«´; 5k§<»¯²ö.ïybÑθ×Z8å “`ns®kŒâê)mºê ÚêŠÊ\PÕu—Lq;ŒrU­ Ü”Ç#sJNc`äæã`àè¡AéÖN­öÜ@Fx *?@ ¦—¼XÝÙ×;²\Gêq)Ï\I›kìÝ¢‹¶Š‹(06ñî”ÔãmÎ+âÑT§¡ñ!ЋЎ€T:ÐŒ¼aH¡]ާ²@È«qµ¸ì@*Ì(ù‰ Z@€‘\ÍB)—€ "¸w¦Û®3‚@7s &­iTLs‡„’B›Th“®X×JW“¢ÇÀ"wqf‚I£AªáNò–ÙÈ'(z”(ËТ¡Ì.*´E›·N{ÐELKAñ¤ƒÊà Cj¶*ÀèÄéÁŽN¨Q‚ %#¦…Ò½×EÆ7 ÓBt°Zˆ‚„(A¥W „5&@Ä ¾BÅøöR‰ho²t õC ,m4t¯Ä Ò>ô4¥ÚÅ}[õþ>§ Ÿ ?:Þ²JäH‡k¼d}â;p…B¨N“I†.æXoÅÀrõ:O:vSn@ä ÉHê5ÉšCã^·“ÌŸ~‰€ä|h_‹=㹑+Z' M%–°qŠtèb硤”é^•ih” Ðt¢ 1Ò~d%ƒè0V™dCcqâ1ÃÛ>´¾7ë¿ïûæÛîçDFß›¬é:+î%ô=^Àz~ÔkÏøY¡•!é.tÌŽ’®HˆœeÂAA(Pó7vݰTµ#Ñ×Xr½7nEÂŽdSÒp]Œlzrƒá2·›žbº ,qØráNîÆå«´¨j5Q­À€¦5N”KL%*itÙAâ^$„MõТóq£‹LB£4¸´¦¸ ä§¢! )Å…Î ÕØØtplØA1-§(Ö²\`y×U§w»B‚v;utÈc‘–Pr©ÇaÙQsà@Ê … *ÇŽ+»e¸ŽRåqÕ•{wjåQ%™!BH IHBhM¦G@5%VÂ8FÅÙ9)³ S¹(rÂ-“Ø„‡¼gS€¦8²w‚€D>»‘»´ë`غ ‚ =ó½OopˆñÒò¹Â'[ªuÜâ8cŽØ¨wR»|÷»Ö‡j^r%<ÊÏCÔss"”"9’´^bB7¬°²Á,v´_lø´„W’èð÷1)ã¬eÓ횊£, iI) q¹BR‚eÀ‚›l*È2¨=÷aT<‚²À¦êŒBâ€PÄ»±V\maAã 2 ð Øç>“ö—½ò mÏe‰D¸ÁÆŒ_v8s "€È!„ªž˜b&&(‚P‘¸B¤‚'az¸2¡ÑQ±¼ Ï㟼H¢r¢Ê 7@e‘~%0#ì-R"›»¸ •H…Ù½%N e’6#’B¡¥¥“¸‘(£l DCPòŒfˆ‚©%c4ÝÁ¢ •”që@"¡ !ÊŒ¢)*LRMS,Tµ¶^±jSBÒ¦$h+C¦*JÄÑMSAQIL"ÓJÁv1@%RÐÅP4Lˆ” QJ-•LÅAS -Tìê4"&DAJ’6–ªB˜’‚›gF- ´E$PVWºJ >>œ× 0ãŒ!Õ….0#`H@ ! ã°#ð/(0&0¤ áPSÆ ‚i<Ê„)¸QôˆÈœ p,ª†< *—€9ç·"…Ħ¼®°¤í¶´# ,2Ü ‰Ô)(U7TtÀQ®Ï :¤{•-‡œÖX¶? B ö.¶ƒËv»¢#¢â«j>l„}Èr»ö±–¹› @‡Ó÷^J:ŠˆxŽÏéùsC=éx!ß=ïV‚¾K’ꥻ»?{ìOµÕ­7öq>Ýý©zqÕgÄ”ýãøâIX! U!à^Hå@éã›TÚ¨‚ ˜eR”ûì!@8FTÁ‰@’°#ävQG… PééX€{4&T!Tê3ÂOƒ#æørÚï/”“¤L’Ÿ‘uцOeT“v`*BŠ€îÙÁî÷*–/d+EB¾«'âœf¤i¡rG‰È8! ÚBƒY‰¶ØSTo;Kõ‹ÜÂ('Ú¼UuçÎtë @ € h5ÎÆ»k4 H´!AAC¤¢ù7qT„BP×4jÁA1Ü€ÀeÀ ðˆé‘xe_yA¢0ì ®n¸5 :8Ë81cë½Y65ÝL£š"2ém*Ƙ»!†^æí<–ÛÆÜ[ºäSRØÓ¹.œ‰À=‘È(v“°#ÅpÐ/Õ!áí){$.ÖÒC+*U• Ré0B®U4/¼Y…BƒÏpu¶;Ëo=V#49Hc”Ü2@wÁ¡ë´]¬‚Ë›YAˆº\bv(ÕÅG\\Q…}A‘S­ô~ØÞÒ^,dãp#dYêŠê8ØæFwt)£I-¥mT6%´ŽÄÎ’:ciF£G—šÎ‡ö=u=_2x™Õöþ&çÅ!¾W(š)”ψþKﶆ»iÚ‰Cq¸G9h”EO¿;Ç{~v( p”w°ËcZs6Ûo¶ ãGܲ°2BB{ÀÒ¨*ùƒ”÷€Š+ý$ … P¨ÐP*€Ò ЭÒ*¥"4‚”ˆRƒBдҫH!B¥ %"”*S@%4ƒJÐÒ…%(B´¥ ¢ --!@P *ëÄ@NÂÞZD¥PF…@¥EÒŠJˆ"¢ 9QùîǪŸ§Q·¬qǶœò`ÍÞíà„éz‰`!µ‹²2Êq"UZxØKºƒ’â?AF‚¸ßßmJ& FG@êóì.ÎÙë»uÅG4!˜;§âÝO¬Elr‡ ÃB­®âç@¢`‹!•¼ÝsÞ:ŽíÜ.Ju7t-EŽã¶ûÎÜ»G¹åirìÓY9¾óꉹESÔvT]°87v7·¹#Æ… ­ž%DS£iâ–XPMÇ r ›v9A°ÑnÆà GSɤ ÚÈ€í \`5Ð`ëËçÉ1±]ý/‚?ÍSꟓß@€„&ÑõË)—±Ü2‚Yb 4 ™ËùˇÁèAé®Å£»n·jD£ó™éûCÛ³ÕfÛî·vÙE h‘Îk»,ê·s×iÀ¸‰´ YJ¥⌓bÝÔ㸥٪`˜…MNÙTˆ’ªˆ*„@°¦ÆåëÀÐj@…hM p £`ë®:r%Á”p=m9‰AÝ•bˆ’‚™&XGŠ ™\ÄJAÓ–ˆ(Á3!úI7&®ºY’ƒ¥0QIH$CM$Ò‰(*Ca42eš ÷Ëcœab%ë°héÙÒb Oœ9$žkOŸozð#ÁÑÀšpnä'ÑÝd lz:žº.F¶67éÐÀlyðï1Ïm³¦¥Â«"¡ <èÖô“–³Kºà;":PÓl\Xck›šÈ÷N—¹ ~¹/0740%<èÀŠË²”uÅ;†;±/; e2<‘¹æ}sEØžn¬¼qÎì×+‹§«¹_­è^„P¥UX1oq¸»ôݲé¶_O½Œ R»qËËñ³æÇ;ÆóSzDï=è÷JRËß =ÚÀ|g“Hñ/¦è‚½”ª)Ï üs×aú ¯Yˆô½hâ¼Äx¤õf“¬ÿ§ÊïÞð>AöÒ!èÔ}ÓïºÓÉ=ÝÓJî%år"]vL•)ÒI BCƒ’©‹CMõu›Ë–x?”i?kÑ;}_"ã±Áttî™T6$„=! €¸XRV°¾{—;¦(°Hu‹!שù°Æ¾á/Ù}õ²þ—xú8ÿè{Bl>(y­ÜCA&†–f’‘˜H ˜)"&bH ` ˜&ˆZH˜Æ4`û»ï;¥R=q ñè¬Q…4#µŠØÁ†”\oIÈ(CÞëdÇ=n u¹(Adq;ŽL¼ öwTqD(âDWl*“Úzéªé䃫€„ p…ÑŽvADðÈi‚J ˆAWN i éÒ¡@i&‘d$‰Ð¥b@i+È *œî8m†~„èSV—H_BG@„†Vqrh³öž¯¢ wÀÇÍuL)”á†K·*®2çàòXSÉû'Ö÷ÿvý–¹qg 9 ¬ r2[-vÔuU»C»¬6놵sœµq‹cnb·#‰ ïr‹Åì(*r „.3l ØØW+ºk{“ÔWd·»c×…õ[VEñ.`¿‹©õ]Î]ñžHÞX7Yêƒ@úMzw‰JètõA $P07< ¼2NÈ8eDR}°n0¨€t – c¢#ŽÞ6yŽ\Ѐ.˯G†Œ„H eM näíÙ¬ ÷ ¥²ôÉ @¤ÈÒfQ¡í€·m£‘Rí¤Rë,*†Œ\(pìeE.æçQtƒa2FRÑBA`Ø å8:°d^@F…bÒ@£¹ÔV•ENžfˆ¥ihW­ —°ˆ` äUHÃ(&„0¡Ý¨)iAË ´M"A ÂÁ 4E ¡‹œ‡ /ˆ¥Žîë8—`, …†²#´¡ª‡AÐR¹1Œ– YËÝÄPˆt)>÷ì;€ lœŠG¥ôÞø>|Ö(_¸×±*™@ ÅìmZk â¶¶a«¶Ö&$YV{7ŽºÑ€YÑQhSr)›Ã±ãgÙ8`ºB$#i #`”£JÑÎ[XZ´vŠ•¹ÉÓÐÂ`Ä=Æ6ͶJ‡«Ž×(äÆ0Bl-D!5òB1:qB£¼êëÞûd²I m“Ž®CÍžsIEÀí´„ÎM iz¶*¡F¹P*Œc±v‡3$-DQLI Ä Švëv¦·EÔ(è¦øAñÑíê{eièD;‚êA Œˆ«@P¨Ë‚«Ø\c`Eã†&hB¢N­Žƒ»vP>Çö¼F­"=·÷p (3((x9$0+Â"`L‡H)Ò€‘0­ÝÝ­ '@¡Û“—Ý€C žznÅ"4ÿb{²E¼[S B#Å™::¹Ý—N3ÆUt¿B(B"”‚½!‹Bàgñ} Ò )z t´ö2\`à[hWÌ ²QÛP˦ª,¨t=Øâ¹ì¶Æ:MDéz­/½‚¢xJg $l”¤ ("X¨hC¶4„qÇ*›¸D;–5¢8§…’zNŽ‹è‘àFœ`g#¥çæ¼ó3£‚b¥ŠS Ù˜Ò’TnsMXË ƒ h¥yá¦7rÕq j:ˉ \$HÆ@È£wï;Š AL'ž¡‰×J ˆn öÆ,\qqv»qÓd²Bå$ઠ®´ É:èç"нÄä8ŽŽ‚ÉI¡Ók°`A‰i8县Ýý0‡ }ö.É»4¥/½…MlhmaCl( j@‘LŒ8D,¨G6TpäéR‘»=”ŽíCFÈ‚Rˆñ»²jàNQD%ER$Q€ 7:8‹à KÇphŽBjÖVq³Ž»qr’ ”!™ :/Þ~7€`ð £`ÏÐ`K@‡H(h4Ò5C œð¦Ò(íÜ–Ú*gê‘çÙ¡(h"‚$ñ³,±×~â;î• E"¦…"I¢ ¦¢*)*’šŠb˜ŒŠpò€(t(‹±ˆnÉ ÇÖãnáw½Æ³a¬ÉzÉ œ@ uŒµVHQÞ#½¡”B@$Hë(,wp£ËÁ\@ª,W…¢ÕC$E2mnVUÒdº—U zqú³õ>V'Ó“÷cåý§¥<§zñ` ãJéÀ™QCÌ_µÅ¸ ñŽŽíÓ™`„Ô„®¦tQ€e6q%¡HÉADÒ“H¢$Å U@E$I$QHÒÐA;wWwrñÆf â(l -•\|Î,œ©&²HØ@7|€=/¼.ЀðM½Ü» À*pÒQµ„á;ž[ìàr")¡ryØA$*Pr")`p0(Í@DÍ!A M#LD4UAÁQ2M4"ŒÍ$JSH2]—~}ÝzûËÄ>…ܳhBC[ÝÝ6ݱ$‘"‰SZÑØ‰[l¤*mhøtuêg‹£• §B"ô ¡¶êqϯ'JCÖ,§F0wF´`²° | 4NÁ/&½iÕ]¾]Á°H{<°]\‰báG0$ ¬B¦Ù-ìrz<S’Žúïx1PfœäñÕÑXÝ2Ž÷x³Â‘ikLàW''v1Ò€\ž÷ y_vé¥ScR-×n ¡*õëmíÝäyÝʽˆßw° €|´ýì” zéëЛ²ð{O!רá TÅÆ EškFZÛ–>/ÃÇ·ÁùwXè„á"¬¹£º!}á°ØÑŒ"H"–Lmìctˆñ À IS‚L¼2`vkjÎjrP%1ÜZèà..N‡€I+«)‘3lÕRê¶“Sc$ت8mƒ&ÄÓ“æ=¡³´ìL„†¤}®‡r qª¦‹¹:-„CpÒ(£È(Q°¦§îèo^’ `*ÃJ³HÌMP€b$öØ.+wVp÷pBÙ0ŠUˆA‰SåRñÞƒ4 ”D/ïr‚‹€ÞÆ/qWg¦eDî4âÊŽaK[aQ4ÄWÛÊåPD ;M]Ȉ¦€Pè@Ý‘TĪ·PIb,ÚJ ŠÒk9#Do¢ tJêÆÔçm,eÒ»ÑTŽU®6 ƒíž{/BÕªI$YÆE”p$N‰¨š [ i¬Ô}mtÛmYèi mEÚÈJ%Eù»Ú)í¼F¶Lãº@,Ñ4&¬Â8îxÐbÉ"JÂŽÛM¢Œ‰Öƒ±&Kb£CH÷ÉD¥-µVõºUO\WA ¥*“F¦5kg(¡ù¨n±ÙUÐ"fIall­ˆU40[j2TEdYT´ê¦mY5^ƒqÈ“aà9;btE¶3ZELªBª$ÅQ €X#.)Ѱ Jbp°‘2IhjÙ²æb[í4wS,å°¸Vʤú:šRÒjÆ«î{ˆˆæ6Ô¥ ‚!éÔmФ‚(da`Œ@`3’M€m‹‚Ùµª5B¢ld V€UJÀf© *W•š G 6`qŒ¢Å[aVÓ”c hƱ@ín,ìn±¡GråN' »/\Cd ŠCan\q‹(K® fjÔºäPõá?b8¸3Ž3gPø‘‘R ©7°Ö&H^P 3Gd¤€”‚k-5h˜Ói‰:Çn 4"( S €è¢Ô Baî)Ý‹In0S•…ä&ì*Ù¬vc5…ƒJ€dB±¸ë‰”^`‡¥U  ³‹”£²ƒ‘®ƒFz‰²EÊ«O#XW»˜¹-p"™@c˜×`>OÐãÝí·ŽèÚàG*YQq€åÚi= ¥`z[`th1 L ÂWÒod_œBô Ol=!Š=ܨð¡ #ÇqÉ­q•¶É‘(lYJ*Öw6—¬1‡Osw[N)@QH×J®u1„“ä6ÝÑÈÝ<ÙdœB/6^†µjŽ“Z….cãcTÖ³œú¸óœÒë`I©!:nN£¥i®„éJ@>´Ï”ôä7—ve€XQ4Χ=Æ ¹©"Ú;„AKZ˜¤$ØöŒ5éz¹±Û3 HþÆE:ùB¬ HÄØ;¦@^7H¸šCˆƒ¡â„Lˆ8|Þw3E^º²?l{ÏžN=p“5Ï’x‡;a°Û‚DÑUÊÜ Â€',©ŽuC4©"R! ïS–¥.ç›]R“ J^ö⠼ݻ8@QâD@:6.1‚w"懘uwimÙt.×QEÆ’’$È&…Kl€‚šCì[:}rƒoYc uÓÉuÉØ¥{(„KDòcŽMwt B !1l&id±ÌM² TÈ‚[p ÇdÌUŒª¡.âÜ¢¶ÁXÓ F-Hsa÷{Ê®hŠ÷Ðržp[¦]"ŸxÝâDtÇ`{Í”ÆÀæÏqòÞÂ>¹YíÜ¢)-Öê )¦ÜwF,@D88TúëÙ]j¯w\P09TÊ€`ì—=¸¶"Z¥IöèñãEB!(0´Šk‹ªÈS”e¦P*Ž ªJE)0¬Š[Ð`RF„JPÒ¡ vÒÆœÂÀÒ¦ƒ…¶H"Hœ"”1QRR4Ä LQJIE-4HÄ” HÄC4RDAS%DÄÌDÐI QH%+E*ÊqÈ]Á¤‡LE(šPtvæ9ňÝóà÷z5Q{8%R$ ^L4XÑV­ˆeO½Éè"A|ˆ1¢ÆÅYâN:q^ö8ëÐÕöሔЕ©ˆ¢ 9>°„×lØM­ê¨GBhjš`"©‰) „¨ŠˆR„߬áx¬ŠÊ¤)Ù ‰…b¤Ž£6QuUÒR(ˆ?¾!ýáÞûš“²œM Ð u»±ºÎ£O[°#`Q56“"6,tV,¯=Ú±Rp窷qšL`âÆ»ÜiÈI&ËqH&É)î]Ü4š[²f¬]Ø…Œ&)Gg8±Û@†UU,e{a œÝÖ\ݬ1ö½â öv-«r‰Îâípv .ÅD€ŠhEDMÅP÷¨øâ‚¨J ¡"°@Šd0 ,ªŒ‚¢a?DWðÙCð¥B€¡rƒ¡¥j„)2„Ž’–$hDˆ@X€AhªB†PC<¡ È¿|'„àOÅ„ä”4Ý@(|Q4'Ù8Õdùœ/Ùò‹÷éÂâOyÐ\4"ޱ&ejf‚f@iP R©¨\0ÀuPëm.Ê ¾´¿]O[sh¨ ßËÄÀ'ÐxãÈŒ¡ÑÒ#² ­`²¼ëÉíU|ª °ˆ Ь* tœB¬+ äY "@’ ýAL&+À?Ö²ô…7@6€0‰) ?è#$™˜… $•P8@õ1á„Ê„¤ 2†Ê€ TD?%Eá‚ej&‚f@iP R¨E´ˆ3  ôP<¹´¼‡ H H‘\° ªÈ! ÔÀVt„„ b„ Á¾‚“BB¤*|ƒ äXV!à Ô_0ª>#AID=¼¨/·óâ južÛ1 ¶3ÜZ@N…SÒ‰=˜pAv];b"ŠåõÏ!AèÒAØ4%0ÑÕ–ìe®‘Qx8Àlè†R¥¨Tdˆ¡8I4ÄK¦'P0Á±Ff4h`Ÿ¦<‹{ƒFÚFH ÖS ìgdÔ+I¤`ì %`’€Šx3¤8Πˆ©d“²`f‚T" ¦SiЀ#“"’QZ3I0K°X0Ò™1EUVîÆ”QݹqÿeS|MÅDz/ A ‰”AL(¨Ê"hŠ =ß—.8¦ñvålP†S.»8€(Ìy‚omŒÛ`qP{´ÊØžy.a‰ //Î;lîC«¾ßÜ[ß\CxŒËG]‰!v2Q°ÚBjÃ8ØÆTpB(…ÎM$ åSŽ“»h­ËÝ6ÆX FAÄã ¸zíuöxžw‚{¬ˆ§Q0a…Ón±MmÝ7v:!p©! |äò`^ÒŽ•´ÈA] 2„Є\e3€ÐYL¡ B›km”Ͳ$£Amdç‰r)()È®îÖ˜®WvÝÎì½ 6ŒÆ“(B«ÈAîxˆwmE¬Šô'Ùׯª îÒ|ÓqÉWµn*xH‚wwv D]"7\?EÁã—-jëmj£¦µI‹h©s=iìíg»¶Ä7 $vò#Î Ô1Æ©8„NÝË*›c»X×ÅÖr¸wXŽƒºèœàâ´»®‚£¤(SH:iດë‰J@ ht€Cî%Ê_Äšv”ÞxšœŽuœÃ´êHùãÞÞ"àŠ“’.cr¥\ƒµZg D ”@¤’àäÔ¥,ö¼‚<}LžöMçÖGÒ´ èÕ*ô(P­P ÑI’¾¬Šú±·Ã.Øá< p±°æÀr5& )Ôv€ #é_E„}Rž(©¡ßBó@%¬)µoŽ|>IÑ]Ù*QE4¥IJ4=(è+CKÐTÔ99«5S¨CÒõåþH™ATÐ'à½é(=kÂ2%ËÂC!ÉiÌÌ-h}´?ãàúЭ!ÞSެ ácMÚ;k>ÿ}j§ëîÀ ¡ î妳eNqN”4ñ)AÓ¤~޽£HP ‡è$=Âä<’UÖL碒w‰’/œwOžøëÆ‹Jè>…ƒCÝ¥­#7v탡ˆê. 5ëàYãŠ}ÜTOæÏ)s™Î 4 [Ž€7ÊpPÝ/aËЇH<>N)ÂïJø@ê]ÒDü¢úÖ}OBèªßŒï;…qä h) ;ÍŸÖr¿‘üçC0Ï=„g¨Ð-·Þä vmOr¢)õö!åA%Ñé +±½ïè;ë ø8° ®"k Èõ£SómöœÓÁJÇt2‹ÀtQÂÛIÒA0$ B‘„BÝŽ´ª—"dRÊð¦ îêKet£HRH&‘4iP="Ó©5“àÐ΃¨÷:Ž;vôhÊ ªg¾ M(<)±°<È›D pVK.@ ”J‹ØÂ†ré" ”Q±LwFðiõ¥<|tðºH· ÝÒ]X‘Ï€ä'… ²´H+áFî§­QÖÔŠ_i$ô£{[õØz¶:BB‚–€)×IBš"C¡ ü-Šïa:Cð ü üYOÜKýñ*‡éúý3·½‹jN$Š`‘5ž"N‰d.°¼¢€H²ª !ÕÑ•PN€1Ô]õøPNT𪩑EÙŒ¬âÉÏlmwGA=J‹KŤ„*‘¡S• £N—¶A(J?=*šN$}[”ÎÁIuððA¹_ÆÖ>$;ö_+áz~%ç~wÌüÿGçx9ò>m ×ÕMRë¢4:—Ù}Ä€’)˜r‹H¥^:ÐÚQŽp¨€B.“¤@) UH è§ §"0íÀ!Ž@eå@BÒȪ”!,ˆ°,8’ª `*µ¯Lù]ÔøQÚO’üÜ7œàÇ®ÎϬ'ßÛ]Œ¦0U6<òpórBÒ’ôG5b{¹³ËE—¾ÝÞ‰E*¬Á–QiÒ¡HH®'³‡öÝ€©ð?àÿ}$ÆÈ\Ì„Cj†Ú &t4¸£³‹£:¼°pEI@WE#Ðt©Ñpñ ’ôÐRÄäHR@(e­:’®¸Û§l }½Ûq˜÷M¢ pðíÝ6c¾½åE-¡4¯áÇÝH~ òÊg.Sf4ä14€TT"¢ù´UÖ ˜)ª$ƒJ t Ø¢R*  ¤*!¡¥öÂDS+HÓTU7¬!¢RE@ЕDSUD°ÄP¥L¥TQÙ AµADDËQ15M"DÒe"ªFª*)³§$ÂÒ¡@Õ=hE¤"@¥F… –„‰—TÕ B”%1TÒ‹K@ƃR´”-SI$˜C¡!ÙH’öÜ`5˜ÐÀäO^yŸë£çé_v,XP­ÑÈ|XW‹ÞÀ¸„-B¨Ð©B¥*´B´ …"´‰ D%$!1JÔ±O@¦Ÿ<ª|¸_=H;‚Ã(°U)1µÙ/Òäí¸¸íÚ…›Äq\UØâW‚^NÄr*‘Lq]l€ wv¶2#(‚iGÂvq­ØÒXPr@ €¤!‘Há\@¯U€,‰p2@’6ÝÅÛ¨×*"=”tºC7gA\ðd4R”‹J ~ ~ Ä:ZLBºDå¦$B€ÁÝD10±Ç*p/q‘¡œžèCDqŽˆíÊ  ÓÛU£¨Ð¤ èK‚¤ßÃÐ<šFYŠEPBQCéžE;Õ•Ç=R…"­¬ƒÀn8]È™€{ LàÛ˜yDGehÉIZ)‚$¬F‘¢„ДkNH{±¹QØÈõFä“ȸœr÷.ÙB*ôo ø’ö^º] ˆŸ\‡Pýí¦Ä:~áë{6ë‚{hBgœµ.¢Ô¬Ö±LÑ9d#S˜ëÎûƒÏçpgéøubHøh<'•I*•Ø£¡±‡)ÇéYc’ÄŠãU&Ÿ<ùÜÆמà¯uØIcÀµ–Ê! í ‘«WKI i;ßÃ^ –3äíˆím¼#¥(hšPÒ Ûºì $Yèºâ`PS"°¨B@¸‰%")©)(h*ª*h ˆ’JR‘(˜!̈Z:ko$o¡wMI¢À1¾ò=~kħ—bˆLPd°$ €vQL’* ®”Œöœ·”ût“9Yn2¬µ‹pQ¢Óxc˜¢¼FânÒgTKWcÌ’ÃÛÛ†_KxôÕ;î‘Û#ÂcL޶²ëÙ²ž.è[Ð%Ä%6fŠU(ªàȸÂǵX,4´=SYVn«‘¡šÂáDŽLoPm²HÒ»ÐΖYeºò`´Ìˆ¸/^r6ÓŽZí«c¾8Å%:ÛRœy1@Ö «zuóÌÍ7ßß±S6««’Ž©øÿÃo ÇUá‘°•Iškž¬ÅÝ×tï}]LçeÞcgcÚO{UÒÑ8¬ÑΤ“¿ßuÔ[ãWOòÉP·é;Ý Œé­¨ÑOÉPåŠÁ–íª|(7{/Œ¾@sÛñ\ÁrÞã½É6n°øç¯ºq\·ã×<êp+óO ÜgFr±<ÍrYøndè„7yò¯«&kµ!Ï£ nt,õws®¾̃áÕž:½c\¸ëÒ&ÕÈèáË•®Zß—-‘—‡ÃjXÌäøq‡W•Žç·^ÜEË—Oq«Ôïm£‹ÞŒ>½‰[ç­ôpÛFxuÖ7J­¥>n>:­Æùæp{ru}œ©¾WWx×OMjö¦÷yçÛXõè×5{%®V^ …æfZU'ã~à m¶w;¹m®½ñ¾ŽHIìëØêáØJë—Ó[5¿^»8ë³§†ü]S¾4¯{êuÇ|aÔ'z}¯…__'”ÍéãótÌ.žs•òEc¦ÔlkžQÙ´ÙmÇ}°tïµÛÛŽš­âÉÖ SûàìÞ¸ã:ka$Ežzï`[œú m8o¤àï‹®Ú·‹¼-ùÌgȪmÉlûyÞÀ™†£D|(Q(çE1ñžÓÎyôæ <É«R)…†ÙJ¦3‹©£L®6çlû+ºåâ2@¼€¦ãŽ:Æ;ª!êPn5ˆ³aGB„dè»bh& JR%èú¦“¤¢”£ÒZ÷•ǨH“íè”ÿLoÄš=i÷䟡— úr x¹âjju#¶Œ#¸ê bL°´-& i[Œ©&³a$û½8Nm@•œ$VŒ(ÂŒ‘31B“#$JZOZN|˜¤Ò>›=ŽÈ¼mv0ëh·ÁÆsI}D˜.ó}Ñïu÷x×Yk šÑ÷Ü\àI,ÅÙ£ðñ޹"i3²ÃV„©†ª£P¦¤lmbMèÐé_º•yXSƉ´ÆÌâÍŠ-0E`U° Œé0«¹PÝTeEcà(  Û(  ýåeEtPTÿÐ7Uÿó’e5˜ÖØp:ÿÿÿÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷ÿþ=À÷À.>€ñ@Š í¸£Àú]¶„ìÀ¤ÕmF¬ P €6™È@àç@•14&`&ƒFMh™ˆBm š&F˜*~LIèžTý =Ojž#Ô<5M1©ê™2=CO$6 Âi¡¡êyM SÔ ¤G¨52h@ÐS&SJhÐ €  4h4Ð""dz!“L&€ÃHÚ é=! ÈzL&&¦L›SG¤Ñ¦MdÔ=F#M©“G¨ÄÈdƦL11241=LÐÓL™0 …*ªd14biˆƒ&™ 4Ó&@ÐÑ‘“G & FŒA“Fš4É£F˜21&šb#&&CÄÓCL@Á H“B#Oš=FÔÈÈщ¦ƒ&L#G© &Chd#ÀšaG¨d€hh 44ôƒ&!‰¦ `II%IâƒÐh¨   @ø€'#'I!û¡!}T%4‚dRdA’ÒädNX-ä "d4d&B”¥&T)¥йY‹Y9Q†BR¹™)J ˜ˆTÓUKFT.FFˆ94” Ò’ÓT®-UFdå‘¶–¿Â6ø¤3­òM'|ËÌ3íÿ½­F=÷šõÈÖ©8Q‰EÇØª°ÔÜÿËO•ýÿ÷ý+—R/n›üÄ3ùKü­Ž¹]ÙmOTb8/ê%²ÙzOO€¾uüO~n Õ+M‡æ—TT:FËŽ:?“­›l|¨¹îLj§æ·È¢ÿ¥ÚEÍ9Þ—³y24MÓšã_6óýñ﹇ ´û…Ñxú h.«ðîê_z< V[þ/vJÒp“t7ö¿®§÷»Š~†AE®¶+2HT¨‹s#î¯ÙWÙ;˜¶œ¬öîZ‡Aµb{7ùj9§ä,˜U°fúÙ,ïå»™W¹2²è)Q&ÒÂŽæLîMn\ÈspcÞlèÕnVnfAüƒ•æÛ™ô®tv×ðv¶kô%“48½‹qð¨|oC·êw˜t°°­z÷gÖöo=¦-êÿ¯%r¸½M tük¶7´ö¯Êø”ýOÔÏýÚz¿Á>ÔÙ_c­ïô|âçå;ú>žÃn§Csíàoä·û*õó³=3m_W‡7e;Cw›_ù¶=g3“7yÇãù»Ï}hfÓ7_nlÜÜéÓ¿treâÚû¹~kéÉÒ{$â‰çƒ·ŸÎcõ÷G>Y¹™…`_üù|ï·½ßágñÆvtp³s‹ëçò¤}~–ç8û­ïK‡àûíîOÁ5¾û«òq¸µìó%jx:mœ)R¥hÜ M”+{¤¦ äøv–¸mŽ÷Á ÊÇ6èÜ•º"æée ¾I´—+3u»8Fjô¸ç,-c¤.ðï„c-c€ÉHë5A#U-^{ÀYË­Ïâ‡k}=â褺ü¶tøóñÏYï„·„—çrCˆñâ€oûá%âœÃ½åkp¹I ÅÐä-~p‚†ó¿—&†é¬.Üï0±æeÞÁá¶zA¹]íZ¾,ó;8s8w;vññá^ßÄÅÇåÚPK<Î/J`””õÖ³¤YIdån±rÆÙŒ§Â«­ÂŸÅ;5ÊTªc‡çB3¹Ëy?‚s þ:¤#ºÅMW›ÞPó‡ÀO6Vp‡EmµvÈÞÈ  ´^Ÿ•‡ÚæÓý ¯'(ºÐÐû ü⻑q`ÒŒ4Ô ‡nv]‰œÖuñ‚®JÆ©PÓu¤­½Å<³Í‰ÔIè¬t­Ñ;Ô|p¸Tm³1a9B—²ˆXX[dØhžàqâ®&¶L&ë?´oN—Öm^ŒMœ•ÄÀ(¹Gñ~ê#‘"M´ú§D‰™™”ãý'f™ýû ¢„Ù¶º×)š õÿUV+äWÔŽ¦ÂêV›v•ö¦ñõ¦¢ùz:)Y~î63ý£‹ó¾×ãÍáöºû\.×kÂñ>okóÿè{ïÕáý¾ïaÔÂBFÕŽ#üä½L‚”6²ZO H¦ò‚p€zé]§ª€ýÙT>#|xæ„ì°´.Ð<òj]IÍ ’`ëãS¶ør@í“™Á´l–ÍøüsTmGR›Î}% J )¼ ÖÀ@”ò] xN„‡4‡ ›ÂšÌ\(ÊšJé¤ÔœÑÂR™ ò]^ = ñ"Mã&ž¿—+§á2'VúÄz}±;×fÄ9dÚ{ ‘´§5*¿‰©Û†OX<Òo% óí­({ÅÓÂk†ñ—hk¾F@-´ ù'JN[häˆ&f4 Z )Ä‘˜Ù†wùœJSH0¢XLÚJy‘‘{ìka€U4i€„ÒjÎ臽n-S‰Yü¸šœÍ†fm%P•uq½Ä•þd7L8AdžB_zïø‡`“£cÈ8È™ ”òR¬BWêÛ–ö=Áä«É†jåcdçÆNæ„–OµÇÄ£tŸDYR{6'9:“„a©ðG¸ÉÜa\ÈE¦¥(}Á0«¼ç,,¯¶$Øíž˜™–E>†ÖãŠ=¹ò[S9žydLjaùAyòÖ‘ÊFÙ"âÓ¬ÝËÁ³³F¤®|!½ùu¯,ც×çž(d@™Ò@Q1ÉØRM¾N\`Ù ÉI—ÑîrªóªóÙv`ã òJ•F E‘¼]fnÝ ÏsykD/Œ åíÑaa÷ÞhØ«TÛÄ÷uÓ.3‹wÝ8ñ–/ ±­I¡Ég5Ã$K âc&o‰–W4˜‹U‰Ž9©(ÊßAG £É¦è— ¸Ý»Yž3‘>!޶9tf3’âgXèܽH¶Úþ[Î~VyÍÚÏCkîÓ-@È”Òs ¾âÈ¢\qŸR\î [e~l»Ü‚ÝcDǬ®@Îzê´ÒüWez õ3êæ8×–(/‚ã béÇOë\›7™!e5ºç%Å šGÎ|r+ÃU0q|sqÁÃ;ÚÔX’¨`óÀ—GvJ<&Ò;ÏÜ úû.¹ êæÚ+¦uÑJ´Oµv\ÌÂÊò%•±´S"JË6Ís¹ƒ(µ‚!6Øjw͸àL”Ù4e ·¶Ä8¸Û{Ö1„êÖÅÍXVÓc¡(Áì 1=ä Ìeì5 <È1ëZÈ È+¿kq8Üzårêe®ë¨’*/$k"xt¶ÐMöŠö1¬ª‡Q(9YœŸY8èo¼G¦!{vË'I¬-‹kç¤_q9o„ùÅí+¯ŒIOy†’”Eqp†K3 ·Gš-æêÁtk×ÃÎjé\8ǘú†m¬Êv :”3=žâ½-sà›N'>:Òûãh¹êZúb…î¶}–o„η~]Þ9Uá{—M­æ²áV«Z9p]Èü:™¬ Üh\(x0Ò<ÑäÌf¹±Û¶•lßri7FV8°Xd¬JæQnå"îëªÙéP™®ñÞm´ßÖ™ÜõhÉÚÌç¯BKbºÄëæüÄ])º}¢d±1Çïαo òÔ6KX>6lzYÏØùØÒ†[c–SKñÍÝŒKÛ T8LÁ*Xš ÃŽº0J9“nK6env”4eÝ.wÂZ+2'ÜMÁËæ€ú?"H“·Ç¶îC›){JŠÁ©Ë=ô7ÄÇ  @\@^·è’}Mîå¤*ùšÌ„¸˜Rì—u"‘G“FY¦WÞùnnBlÇDÕ‹eü CÁíѸ]%ôË:h`—‚?²ìñ{ɬÂU*B5f"&g†»½;2{‰x°.”»Ybùm8%ËË bÙ TïºÏ.:XâÙ3P› ÑÌCֲɼ.|&Μ7€Â"tÂlSL8éÍyîµÜFûkF癫R‚¥ÄÀR¹R”J (.¤¥ …èÂ’G!)¦•ê`ÞP‰„¡]ró„q*Éj f´@„®¹' ‰ƒK \ 4æšðÉfý4s \³s6!7nV^¥·4w2P¡$DG©)¼OYx6sƒy•ϘۮÂí° Öšw… „ ¹ðz¹JSª€8æ!¨ÔRÑÍu]N_Y¶Öã&áÄšMÞþnç¡o,›ŽY¯PД¡™)@ˆÄ”¡QîcgõX=ÈL¼lyI—4áƒ:8]ÆðÜáN0Ž] îü¹\á^<8_ýŽâE]¯|¼–®/1y4€BC憥PQ,L;Æ}D§•àªOûÿ'î’Ê+Æ#`œ¹öákbøMg®¨ •‰Ó²¼Û&¶ð×øvðeÛ¶ ׯ€Ùp¢_,®{c¾Ë›RÎçw‚¼Í¥ÚÓeLqË: Oièæê°c¡D‚”øqŸ'ºËŒ&ûEt­2(M­¼ò G—ŠÙÎí~/¡›a;¼j7ÈjÌ5«ózvør›;˜@u»»Ã_7ø>)ôïÞÅéžž!ã’€U B¢·èÞšÁ±S:ïQ™€Ò Ky{»§‹•È€PR”¨QïÿIU xBˆ§G°aÃöxríÒAéHD.ÛvjÚ°Î|9Z¦Ô ç ràqèóó¯5À®% hÈ!Ëú, ì *¹Á¹ÕÚ‡O†ë";€B¡+hR™c4g¼”ôo>O ô¹ÃÒ})äkç¥)˜ƒÎ^‡u}ÕqMp¤<•É<Ô(rlmÓr8ܾ»ñÎïÿj‡ y×TAÐåòJÅWP«ªÓSfRƛλ{Úeÿ7ž×÷pá®cùüNw=¸ðºE^õ)O—ÐADi(½eHØÑ8½—ïù”ìô/¨ÿ·Üúyß]åEÞdDßýWÊÿ/tŠ#ß5x÷ä{ûùü_tñ~ ¢äz—Ñ÷>6÷µó7Qo"»œ u2†@‚<8¯%|/¡ ÍìÒn“~W¾¿v„^à4ÏÀ뿽|q×Èò>ÎÇÚ‘óçA‡A$t²Á|öT©ÐgMi!š,•H´Újf ÅÂIçZöû´Í/ýÿ¯f.;möq hˆHD¯—&ƒÁHœñäË=Ø2/åÂI àSS`]h-ŸŸ•“‘:Pš¾ˆ€A^a…»§¬›º…ê—eWy Çî8€9«†¯'@…Ê8¾Ö4|kS!ÔP’«¿}ŒôBüE{¸IIKçÝgaÔuPtI(³BI*ƒôàBiGìtî+šX`|›[5=j–ÿûiZÝ‹Ò1‹$HYö¦</r_°KgFŽKt›#%·ïI<‘ÿ:d¬ã²(ÙYRÚ_‰‹š®$hAÜII^Þåø•bň X®$–+¹O#?;ǯD’(M/&=HFn],È7ñ\//P„!`HÀØ@<ðž_×ã;ø/‘á´ ¡°}¬ªdŽ‚ †…)¥JDì.a±MÛ4æSš$Í#cj=“Å6lGZæ©¥«TP¥SAHUPJÒR£M#I´dQ9ˆæ&ËfÓce6ˆØ¤)()¡¤bAãó)(G ÍbäxXèJ5Bm&I2…4¥49#’-QLÊPÒ” @еHR@4%!IE#JR9Jd¡J$BR:9(d&BÐp·jÅ7² ¥(J·“„?Õü”þIªäÕ®º6/@È ùŸÝËåz¿+oîa®F~þ±ZÕâÓÙW¬„PºBL0a€I¨Bd44iòá&Y$T!K™ôdŠŒ‘³(ŠÊ‚ÌРL"H‚ŸŒ‚‡xxu#P•f(o*E%$ABPZÁL•¤(šGP†¥ FðŽ@m¼êBµ ä†Ðš(T¢„ÌÖšPÉCxR‘¥ “hGPjÔ¼&äŽÐ9®Jm /Y ´¦¤8I¨ BP™!©SR”)G*ZV©¤i£R™(ý4í¬ñ’ò&¡M¤rT¤¢—!<Ô® oˆí&´æ\Ô›!Ý¡Ö'\å)Í6ÙMK@dR4Šê¥sY© ŒËš“j:ÜÅE°[.`s.a™m%s Ùl“™9³ K’dj%MJ”j ©@ÈGS©P(Z€ Hq”Ú T¥*UU ¡B™˜&@ÐÐPSAAFÑ«hv‰Š`¦ŠJRK00i¤¥ZJkàF(Ð¥-AM)M)>è1 …bmmVe°Ø¶6 H%)KI H%X¶6mL¥˜©°6B”4PÐ4¥4©HPÑ@"±5HÒ‹HÐ5DJ%5D¬H(R2% BÄ+@ÐÂ2I&¢)˜j*€¡¡*†’Ž€ ‚ä#H jR¶•l[Q² e-…d‹Îók3f¬Å­f±¶›6ñ wróʃÄâ&ÉUÎp£Ä…JZ‘ª©Ò­TÖ¨›¢¦Š9¥N`Õc•fJ둜âAËSkFÖeT­$¬ÄÚf£lâœ+9Ó¡¹9Ìç)uÍL–èÔæ:&«šfȺ±ÆXÖ¥›IÓ¢cjã)Q×Q¥.bmTNI.h•s¢X™´-%´RØ4¤cš®&Õ8ÄÔÊæ ‘Œ%8`HÒ,­Tçj™×3\j[SQÎFêL¡8ÜŠiÇ%¨Ú s*m!„:F"ÙK”à005(†!º¿à: ÆW¹öüS•Q'{*-J™Uµ*ÑG}dV…g|è—D¶RÕªråÉqȧJÚ¤N®bK+•"h“¬ƒa ¨£¢sA4ªuu·T©ÊØhJä`´es%KL¦¹2¶G*Ș¬±ƒ1²®NuL ê¨fƒ:N¸¸ÒrDÑ —PÊgHœ®Š\—\¤N"Fr±Ô—;C¿õZtá”·TÊ{Bæ ÆT€?CÄ’ ÔÀ¢‰$‰äšÁàÒ¦¨›Q-Iˆ^?”smGT.9*T­TÊKªu(Ƹ­µ(ÑbYjŒ”±ªŽ£„®Êê¤è:ä¸*hÑ©¨WGPä°Va\¥MT×NŽºìi\Ç®ÕÐãŽdë®dYÎEÛ³»¹Ý‘݃Rë®Ô ­¨vÄmðGZ“! ~Űo¸ëX`“O 9 % ’D IS„ @doŠäk‡"‡kVÀ’D— $q¹Ç*á´.ÙK”Ge6µHæ-e*á›TÆRµÓޤœÔ]SuÕK£B5#Q¡*'ÏÕ]ºTuªf)Ø‚ê-’­A•#6Ñ6«Dl£:EMËc¦œ 0—ê®îÁ9ÚäÜ–råa *g%Úq*\H˜¥aMTð휙Zºœ J1hq$$œd â`¬’@’dãß¹4x9E>²ì#Ù¾_­ë>?HN¶èrà‚I°$-‰Z‡océ[ãq·öhY (« )rÀ€ ,A7i¤…˜@60’HMÝW²<ìÕ?=-UW0‹‘p°scã„’ž¡ Ü딦ò‘&¶Ût`ÇŽàêûL0ÅZ±SB¨0‹/³á™š\—¦˜/LcåGÊ&é¾€Ããa–JãçŠÊc |ÊibËlyãØPkigðôx*^Ø TjFQF:"HzeèJ;yAé娀_ó'–†÷3™~@Ün¸˜7K[k©[iéÖ…àd³‚««î¶Ÿ\ÞŸ=~ÊÜF•wrø!ü8»7Ä&•c‘È‹GMm)QY® gI¥ªÎM<¥ãkuÚ¯C“ÓQàˆ®ùGá2‹}ëôùó°u˜h¾zH~«·GIJ¡È®Ä h A+-Ùþ½³õÓ¼w¦%ÔáÊÈW d“If3Ř¢ †$‚Œ,¢J"qI9%Y&F1ˆ 0ªa\Éc™¶}ò;êã̋đ püîH:H MCú°j8È<§´å× `È7‚Ûá!œ†÷&ÜüÀð…ÚåŽ ¡’´y8òšÚµ@,b$€ `AfH%Y22‹2aH¢ZŸt>Û¸Õ»o‡ÙìùݞϼóôðöZz2üÊ jêõ6OCxë–Ͻâ86Òm²ã´…¶|% 4(†’!õ¢Brß~ð >O“ñ<c§ãÜ"ÑÛÂD֜ɓ‡í5E´=zȇQÍØm´Ÿ½VR!‡ÏáR¯˜k¶{‚åÄ °€}×e%|À•‚Ç@‘àa#Å]òz€Ø` YÖ|Q¤ÎCi#; ˆ“Ú”ôIudCÃY ©M°úÌ¡V` C«äçz^ÒÆÆëâõóñª9|þ}.MY) ›Yâ£EhZ§eúF{ ÁµYÂѼ¨m‚OÅ|„ˆ¢¼†Àˆ —Ï•ýäé¿tŒÙ× Ñ „$$He'¾eR¢ìçð`röN Cû¬ˆŸÏÍÍ>-Ÿ6~Ûh[Ÿ&Lè¥ÝB*3@ö^oÀ·ï߈0™‹[[3àŽÀHT°6^ƒæ‡¤Ûà@n3å˼‹J<7LAWD&K~1å`²$AÙÏx’°‘G§ýè"àâãœe#éâ(9ºB†J$h4=Ó…ï¶žß‘­§§¥²¿¦’ž§)'°$RÞÎ{ƒµÚTt©‹[ &Ýgx8¸M4¶ù·Zzz›òD\‚à"ã\OŠÎ).%âgæÕ·•ɉ ¥ºW·6Œh¼—Wµc‰?…>|é1/hkÈ..¾‘»uÁ%JqRéT›£#RÌ1ÒæÅeé?$Ò‰ËlÙ¤R7Õ÷Á¥V.ÚMõèäÔj”8taä_@»†‹ªE;—ï£^¿ÇÕãï³³³¤àP™!C»È¼Â‘1›ûø™±,´BDç\„þÅÐÑ ³lÀ¯own >®48Oe—Už¨³c½j?—¾ÊÄÁ¥àƒSõP$„,$®­¿B'â¼xêÄ&US1꼆û/i±2 £}™ IbÁnL2™$4H™:߸.äŠp¡ Ÿ¤RZalakazam/data/SingleDb.rda0000644000176200001440000000211014500036453015115 0ustar liggesusersBZh91AY&SY–}iÿcèÿûùÄÀâ¿ý_â¿÷ÿ€@ Ð^ôØQ€ž©êx&˜FÒƒFF€4h2jši£MiˆÈɦMÈhÈdÈdhC 昌ŒšdÐ †Œ†L€‘¦F„2B¤£S@††€ 4P ¤SjbžM&LM56I @СéCÔÓ&MM,ÎÓJ–•#[Jª¥PÓP0Ú€5éL ‘öùB 5­( G×û¡šîÕãHlriüýDIÈõÝÊ4ókZ6:žhHId^T p`fÒ) y(žJÝus2L¥¤j˜ƒ7–÷°¬ôÃÕ¿º¾LPT‚ET’߯‹=:ÖyÌ.n7©ÒÆm+¥˜!šR*­o1é^½þ7ž .Û&†Ú2k½d˜Æ¸Z¢ ’HR@«ÆJÅÂ'@±@ìF!*¤ TI,¡$7^n[„H1åº ¤ûûÝü»ŒäøÚšŸ’ñÛêË¡š´]âc¨E}—š'® ¡ü¯iM‡Êk¼Ñ4o8¸èT¸¨ Æ ZÖ½FµÎœ æµÙÍsöáÞdÃF5‹FŽsœ×g¡€á¬ñI^‹ åC³Ç'©É903Ì×ZÑëÔÇ s†µ¬cXÆœÇ1¨nÉÂ;ˆò•Íc^f¼ ÀPÌkЭcZæ kœ4 f0pÀŽ 4HÁ#\ÁÎc±ááÚðç5Ž{¾oôçõú ;B#“F´é Îc‚g!k\å‚T#šÅƒœ0à­`Ç£¨cˆyÅä燂pŒ€á¬cÍj‘¯`>ü/ÃXÚד\Æ9´*¥…PL %¹)&e\¼:¢1ÌZ|¬)N™ñü^ÛŸ¼é÷'?tçµ`Ö<:ˆ` Æ1¨Z£pÎkÆ´hÖ5k«šÄ8s\æ<ð~È^œoK”•ŒºE¥Mzök¯FÞž×·;˜ësº .\¹á\çbM¦ Ø–YzÍ©&Jãiƒie–fÌO;îÿY$¼±Ii¡ÿ'‰&$ËGvùêÓ=F”Î…é§¢}'T‡çƒ²“2u³ h\Фt:žJ”å»sC#÷œn7…”¥)J)JR”îË8¸$•mˆm’É‘åCq%¤—9›ß^MôºIÖ¸›†¼ Lé­&ƒ“±RO†ÒLyÀào¬³‘õ:ÙÎ3¦ÊlÕ®ô õ&'g%“2ݽü&ùN$˜2¤ÁN¯C2Q0’Ri;…‹¤™» K,Y ¹ÛQÂA†¶£°ã›ÚÞ”0°´IK@¤ž¼ÅzOZw°%ÙV}ÍÖguÚN%IËm»‰­›q°”ÃI9ùsa$àI”1R І^Ò^ÉÞo9œÊS‘ºãüyzHyù oÕYwþ.äŠp¡!,úÓþalakazam/data/Example10x.rda0000644000176200001440000020554613761510560015400 0ustar liggesusers‹ì}€]U™ÿXP ¢p Λ>™I9œINB&ãdæ8!‚‚ ˺+MAjP± ŠÊ*‚üÅU×®+"¶Ý ¶E±K³ëêêÿÞ¯œ{ιçÖ÷fÞ$y¾yïÝ{OùÚïû}ß½ozü¸¾EÇ-êêêzP׃ý÷èÏ®‡ÜÕõàFoÐõà®=¢×EkÏzú?Ÿò‚g7zΊŽ~DôÉHôßâ进舃„JÆÿ§•ÒBèåŸùÂ9ãyÏ9±—‘"úNÂ×ÑQZQBDGI¡â¢ÿKið!ZGgkýý¸ŠŽ¿×RÅGÅ%‡ô›dtùx]N*œKt…hMñk4’5PŸY´Ž'©âùD3×ÖUÍU¢…êxÍHÛ‹NVo]¼3B†¶.þ\ÆWÁ±Tø%` hÀð!o]ÖUâM‰MS²1+о†}Æ‰Ž‘*´/ÑŽE;"a"Ñ̃‡èXØRà”d@FÑÅ£ X’tÄè(C,"­à?8«à ‘ ‚Š)b…‰E-â9éྀºÀ¾€ ’CõŽ·D¡ÎD„â¹”wÐHâMáéfèKüŠ/«KpwcáÅ©q‹Cû¯(Þ\ JÚ:TëXù%¨pèØ80žQxE*Ö…ø*ñî†Ä(ñhÎîZˆ÷W€ HÇÔú“Ý…EçÃP¡p’ #éúÛìã¯bÕK úØ÷XÈñP: kÖà¡T–a–°"áX€íp½ñ÷B„$ï|<˜ç+C’Ž #ö«±Ï‹#$£X Ðë‚„·N“ÅÊ:$Þ Ø”xô ±ÿW`µ±o°j¢ ±Ç u"ìP]$úT‰V«\pº P ÄØ§…•!þNõ_gÍE¡©)\|hë06â”U8dÅÐÞ ¯c'8fޱ»Ô v±W¡Ý…!bS‚0öÞBbLÓÊ‹ÓÖîÆ¶ºëùk_$D-AÖ\4™,¨¹šZ¬Ú±Œã¹:»kE{'3÷Åx00ܰ#‹Í5VL°Ê zÇv!Thy $ž­U+I0DÓêCa.{p n3§F5ÐͰ Š¥ W±VŠ#.SÐ5k0Ø{HvAñ¾JÀ/ñµBp dWË D¦*å ¹JŒLÀDЪCû‚ž 4*KÒ€ÃuĬö†Š_²‚p,xÙjƒº»Jp—Ze D¡"è (r,ó0Þ…xF:AxÀ6{„Jdž1†šà@ES« òˆc<î. ß 5²ÇŒ†[ñÖjN&d‘ €Vy+jxW‘"Ûy€sÂ@ "(i°Ã\ƒµÐ¡a‰1M’Þ…A›=&J¡„ƒðrl)àxƒÁjsu½T,ŸØƒ‘*A°-œÄr_(UЦÉÔ¢ÐàŠ´ÀЇHIe¸fÈm Hg­ˆ’p¹ Msø8TLí³u—âdsît-ƒ•ˆ›cãdY ÏìAï„cÓvjISƒÒ„$­@]0™ÃP ¶ªÑÁËð¢13…l"ÅLn“2S1 ´òÛ4àRÌ > SLÔ,È»cH MWòæÅ™}†5*Úb†ÖÅÖh6vAR=€8ÒÁ»vRˆÈ ÎhÀÞ:È6Àq‘j‰Ájƒ‡€+•Ed.Z1é@8ù«G/¯uÐì‰9A”ïáÄ© ŠG è j}$çáfåÖ¢a¥I3CЄÉðbÁ ˜P ÇtV”€òà4[a1'è€Ã /!3š¾VáL¾$ÿ,Tø*0Q×ÂᥒPNÚÁ\D2á!AÍ^ã–¤÷Å>”Rb*Ä Š”´"ì‚ ÚÄbæH)ˆÀa~Á#œ`ã$˜ÅŠ,BÔRâÚ1µ‘Dw1•ÞpÚ‚á7y€ŸƒdA Fª”¶P®tA¨– ¡¨ #UÚÆüU5k…¼P0+Gv’P~žãL‘¥ %J‹˜ ƒ!ÀÌ_Ó^Ï¿ A†Yœ„\ñÝ¡Mu>º!LGKdN‰‚NUà1á¤PpË:ìÈ€w”a2I'ÌŒÀ‘Ù‡ &WÁ `FܺøTôRÀ¿„ó£Ø)`2ææjN°Aö LïRæÒ £CâóŒ^…%Rº¬äGK¦»+4åÉ)žÁfÚxE^ji¡C ¾„.„¡ éaD˜À ‡D¤25´E°Ö]&ßÓŠiå$ òü ¹CEè#C;Æs¸—ÁïJ2yPÎR¥¼R ‹’Œ‚÷ z)È>9¿ ;U Š‚RÙ‹vªQ|Ž^ Ðdü”$’oR#ª“¸0°%¦Ÿ¦T›’0<&'ÃÇã+ RÉO™ZVMb ‰È hÑšC¤&¾Ká 1› jÎUAt‚IcªH'ãbÀ–0l(ÄìšþOà|$’ŒŠØ 0Q˜00· “p‰X†ÐJІ(JPQGãø]:€,ZqB¼°¸[@ΊDd+ŠÖ‚[¦‡!‹¦)P4àÊ 'UB “¡)Åg`ðÀ퓸6Ù0Ì“k¬Y`:[À¯@0\ሖ€aÁiKM¢ÓT¹´ÍXÏ u[Ó€dL ¯A”¡IýŒÂŒƒfIJ%Ñü@DX°®YX©Mrp1 Ä5£T’”Š÷1+•Â=AQ’RÑÎ ÉKl;1 Oœ*£Î@1/¾Nwv4Z#Iæ£$e‚HÞ L:г"æ ´ˆ÷7ŽfxÆ#kqF© ÐIV*T*\žH)I®$ÚUYÁО`ª°-Ñ*ŸÉxAþð1•zhi`û¤AÏwÇ ÅA#Å/0à¢-iÉ*ÃîAP`X?×T”&'eBå!Ј0ÕöPà¢î|ÅR&Xè:žˆÎˆªæa0™ÂÚ í/‰òâ!ñúŠ6™=ÔÔ‰š¢¬W¡¡=#¡'ÆÃÚ•–‰&ñÈòis0<‘oìÁQ@ BöaMÂͯ+¢ª?êÌ–ŒVH,0"Æ%‹QŠ×*‰cmŸ·z…"ú™;t.’õF"”8-òÞR*鵨‘òZ±…ëµL¶ÈX•*h™x-F’®×Z$^PkøÔòZÊóZÒx-i{-”€-›YØk)n:õPŽ×R*Ñ5ˆB‘“×BX‘öZÒÓ5Œé}Q¨»$Mm¤H§Ðç KÇ‚VÚ¤$õÇŠ«Ÿ2~‰u¬æ€0L]@Ñîk¶^2ÊI'QL!ËQé&+pF×Ô£©.€3Ó¤ÕCXrPÇ,¨¦2 šÑ,ªi„j puMö;¨& ªÉdH?Ë@5Ø.¶FPÔ¾A5‚jûN¨¦(óMròd>TSTÞÐGË_£Ì¨ñÉ÷…T0þ`u™¨ÌX©¨H-Ua-•-£oC¹Hmð«&Žц¢­#4"¨€GgÑœbÝ”Qb¸D&“ºŒ8ìHMºDèhãK 2ãN;K ’êÅ•¤Ä“jL{Qbvö`=áºLŽEÉœìQ÷ÆeÚ@B²J€y¼  Ã3±Yáb16“™ öa«R’Ú˜®0.“$&  q[4¡ Å+¤h ²A•¤†ƒ@x¦  Ѱ™ÂØìBz's8D‚F!íT•ÀMB˜«Ù×f9@ÊU Cø¹ªÎq€"q€Âr€á\Æ)°•3åIÁœ\•¦krUº|±„ðŽåÅý¥P.Pè‹0-t N±DJÂÎX‰˜T”±¢‚ Î…2V¤È  ¢³ðçpq p¤R˜\K„8Ž­m˜!mÓ­×¶1 ® k'Œ.)¡Àkµ*¡ Í-—P kÐ*œVÈË(Ž…~Z!ƒi…NÒ žF’VèPZ¡K¤•2/AEð,°ÆHKÃmƒi Õ²‰ÖêÐr¶< -*#òI'ò¡U7ùD*òÉâȧªE>Q)ò)®²bs õtë$1 D>éF>Š|º~äƒÄ%IGµA<èp`ÛÅü©Œb¥Y«vRÇ#ÓŽG;ŽG´ÜñèÒŽGg;?Çäì{w4WPHRË*U[£Ø“Ó`T ]!‘ÜÒL+JV+°^Ôš ]y0²$ì -IúêÓ ö¶éŠ,’U£²"IÚòqË€í…QdEguÖxç `Õ ¿ÚD±퇚Z=k7,é*a©þfg­r¸¤Ô”†xÇyK´H7Öc84¸—ÉCbNŪ‰IÓ†;TÌâ¹y}.R³Û7)îPyܡ֜ÉS"hs‡š0¢$K5Ü¡_hÛ$èKršš‹¾Šh³,‘Fg@tº‰4?5>H’Ó:£‘(1„^è–|¤R<}Îd /]Bgˆ~Ã&[#‚ ‚µdd“t»nJ:Þö@@”užðc<RjXBÈá†,„'üêH0IæÌâ(!qãÊE ö£µ*¶>#È9kÞ ‹0ÿ”Š5Á«qºˆˆ±JC‡¥Ø•#W=Ì lõ ‹ÀL”+,ÊTsìâ/˜%`Fš À‘4F’ù‹yšôéå¨O’3cI¬†*œ!\dêµãË—ÄÚðlŽ\àh؈Žo#zlÕ®¦)ô2&i`½ÎBùWdÈÌ©h„&Q@þW$wöû3wšÃ1ß Ú‹“uš>±þ–Ü=%eR&qݹö ~¾6÷óaÞ'Pçओ¾[ŠíWÒ‡mÁö µp”ëŒ0ÇH9#ÍÎHØÎÓGV V£j}’ܪ ÷ýáàž’!7ìû®<ï¸!ᩎF¼†P— †"GSF3æ•Ô<ÎÏ mŠ•(ÄàAZJpÜAƒítæ`nomgxº”/|ž÷o;3³I:hNš±)HDìºk?T,A_¨åã¦$FNK{v =7•7q]^ÜD­"ћʛ"7ÕðpêLÞb>‘´Ô\$¤ëÈÃa~¨¹jƒ–ÿÒ3Ì93É‘ÆsU`¥zš)(vDŠÕÕ‚8+‚èÑP<¸ÿ <·R=ec,E`EÚ .œJõ$v2Æ2̽͋jèà@Û…h©AБè±Ï@€] Wˆ@Ã5•;5݃‘µ Ë8†»;Rχˆ¯Çútƒ’¤0¤˜ª9À."gXå9[‘4kÕ(2I.LRà5E&ÙL‘I—-2É”ËÄš.Y‘¢b7vEÎVIËSj;Ë …#AK ; J(2ÔÃ?%ùHÆ+t}ƒ»È&H“¸f«&û(Æ+¼ç‘À8Ù¨ÉOžDQ aÑN«jÎH |\0=Q5+U¨œ•ªæš7¡¢rjS³Båäù¦'è°ÓLìÁYPp”ÐéòÊY¥jŒçšÀºÉP›ÄâR´hC`'µz%å k!ø u(9'¡ôB³ïEt‹:.tÆ<KcH™ jÏA .Ã…ª05¬²{ïBj8ƒ‘™Ô°éÀ0ÒÊ¢†x!ádĺ¹›³lD *•. êäÒmäï>C[ÄŠÂAØŽÁuë¦Òvs^ÝT‡c°0øÓ¯› ›…QYnŽB£åæà4‚^H¸’Îvs’è=ÌôpoÈépÚ‚8Åus:忏n “”Ä–qsÒqsÄÀk%8«20€hˆ‘b˜£U*ƒûÛ‘AæËØ:®uq­J3GÏ– ÷B©¶Ä÷c)±•Ü´Ú¯:¹M•~L¤‚ð±F?ÊNt£;æ”…JÐ'£ôzÞTŠ4j5[»Q#ªW©Ò9Ç•þR'OwÁHÊBàÆ§:sÔ¯“Î9E… ]³sNúj¤l5²YEÙ,<’Æ&H”ê‡$ç;óàG[ .H(­¤Y Í +ÿLÙo¦.'Zy<EÐ9Á³ŒX÷£€g«‘ј 9­¤Ì'§¹Í öŽ^Õ[ 0â ê)AÌã·9i.%¡Žâ>’#G7²="§ñâ6'Œð¨?Ââ¥AIÛ¡@Æj‚@"@²Å<´ãhŠ! @ •DâÁl_“`Ù’út-ü“¦¢óðh þ‘„KVú=òG¢„Û£!à.µ¯ ¤t¬Ñ¶‰©Mp1å5–^O/’6(U¥ô‡ítõ‚ ¶LkömíNoÀÜ …® žšê”šŠ,5U­swzŒ»Sa_§Êû:9¾NUÑãK3ÀQXB׊Ë`ºØL7ÅYUQÁ`в]öZhî²Åô DåbºÍ–(\bFo«Î)¦£Ì¹˜®¸51)¦K ps2%j ËéFi*¦g€½ÜbºÀ®PœŸ`r€²>²ÎyÕ«Ìà:«‘ZQ+fêäs†?}@ërõ mt…0%ª1üTÒ\b\`æ(Yw«Ôƒ E@sÿ¦×^+gÒcø «†Æ ”ô~eRpÿ9 ¬dÒ’»Wñf8Ê€ 0Ô@Ö¢·bëA:†‰×¥È\ä0d)§KÑ`V÷ªliÓù£×Ö ÙZ©+QøTy›Ÿ¾†F¶wðЂÀCF!\P £tˆÂ³TœµívÒ^y·#Œ€=¿6«HUk™ ~b‚n§˜#P˜ì&z"Rngî8íë …Ô`g‰5ÓÂb *«Êü¸ öA'*Ò:HË4 Ke#i˜xS6’!¾ÔÒÂiÙ ©n+ËÄkæK‘ÍS)&>¯ì˜ibLaSYÁ©3„ŠGš°I¤mÖT¸@Z$Å£b -R@Gϧ]¢*á‡2È…ù€ÖG) ĵHdZ8!SØÖÃŒ*jR’vŒ‹I‚¸SøNIË“IM¶,+Ц"†¥B¾Œ¯Q…¸üÊ‚µ8\ ¨&BПàkò^\yT’™c™äbÒrc KáŽ.‰×¤!Г™ ¿$>œ”Ö6hÂ/ab²_^!960TªŒyObjŸêŸ‘R·MgÞHQ.ñE ö~U*HvEÂ*Ýd»"Ó‘ôí¥sz| •n6ŒbD0¥›öþÒƒ ‚Pbm5¾þF¥ ÚU¨Á«‰ŒBÍ aR }QAÛª:òý„²¢¨6ª»£4_HVÝt=;'Š¢ ‘Ž‚±ZTÛïØ—p?‰vg¤‰•‡µ(òmòˆ‡ G”¤ïüßVü¯GSfE€=¡ÇÜ®Kº½ÖªÉe:‰›mr>Òr>Òu>2Çù ¢ñÈv>ˆ œOÂ^)‚Þ¾óŽóÑ™ÎG‡œ"”!‰“iðª˜0TUaM2FKQjÓ‹Š®I(µ…N•Ûã° ¯€Ž vÌyÂJ8ñT¹Aýkå%•‘ •ù(+7œpŠÒ¡S¦³’¸8áÔ©>WCÛ2?÷“¥²¤'Z½LèŽvƧZ™Bníp ²fP—0ä"¿(œÛɺúÒV­G¶t9þGòó*tñ0 A v’‡•uƒw.Eðyz]þÞÿÖªÉc).ÀŠ Vßad"‚X=«D¨Î8%BÔééŒ Ñ‰Î´®¦#¹tOÈœ ¹Mý Ð5eŠêéÑ€¶ @„<µ$ÚN¹|ªtøT‚¬Cͧj“´Mfñ©ÂFH²$Ÿªªñ©ÝÊñ©¨s°BZ-¶øTéò©:Å§ê¦øT ¦ ûÞ2ÑÖ(&X÷ž ÉHÙaâÏ)"î-±'Ô0ß!Uæ™_qŸÐ1B–Ùðn_`} Àid‰x‹Â^›=„¾#ƒµ0¨ 0 VÔPOñš®0,jRÊI! GbÒåäZÚZ2ѨCÆFoPüW2N€Ù84ÆÝ H&ÄK-E+£8ˆN‰P#(µ©é i)2I”UI…y9*>º]1ãÚAøc¬T¡ŠIåÚWô±P³•Ê)ÞÊ1+ÑŠñLÓE¥˜X ¢Ä0Ž™h ZVô1ŸÜ6$tèr[µ‰X΋½V=0žÎá˜j7Þ­ —æÎ¿Lú\XÞ͉vÉAhØ’“út ¹ÄøêÓçu~éVz€‚m3x’É“·‘;±ÜO‡IrÝÏÂe’y–LÓÿ§éŽípDT$6ˆ¬Â»}=?LRÛÔ>.rl!¢¤pѤ”ÄJ¶3´Æ(ñÊêU‡ݶ¢ÉʨF·y ©,$$ç„–”v!Ìlƒ„ì–Á[‰–¢DBbã@hw1¦œuÈšA#-°=ÛQ4…„é&_ÉÈÃ’!‹ ?ÂUcv…Z#ó üÝÑñ@Ó@aÎ/•˜ŸÒGI;]úhàªSú`#±Œ'ͽ²~•¿›gÌ@ÈgA{ò¡'))k¼«MX I‘v ´ zšâÊ ›‚ÁIÖÒZÀÑš p vöØÁõ;®7y;eŽ ôàb*øÍyEmÛ5¹Sn-Èèb×XTO´‘¨ :%mÀ˜QGá©#‚ n£ŽñYq> ¹cÃeˆ0—‘VÇœ‡guÔõÕÑnråC‡¹ ÔB6ŸËÔQ“:r­´@5±alìñyØ]…ˆV‘»bé–«Í£^¾bZ¢pÂ(þ§´½Í áܦ­0H ¼·7——Y™-›Wµ{*ª¥tbGR:I1²†ÒIGé$+2¡%•N9J§Hé7>yJ'd V:ÍŒ­Xœ¢íÓ<åJõp‚`4aHÑ”æR6hÉ P%íªR4YÅ”¾4%qa "QH2`ïQÈŠD4L$]Ká& >E \‰¢ RÙµ˜ pp¶ê :ð|hIÀת3 Öš(‰0Zkè4)3´VW|°¥t´6›SZ+86£• W”›ý:VVp¥¨"ñÌþÏv•bn\%ð~ß*%$ÔPä \¶B/‡l]RDÊô¹dµ6Ô5° Ñ·Ô¬o‚Ü 2I*n¥&²ä¬ß}Ãp!},ˆ‚òôRgMMœÐ+D<:^ 4WÐs¶²° ÊÆ‚°¦Dy¤± f,¨ýZ–Dª ÜRÒÏ€¾©ê½Cèâ!ÁÇh¼"b¸¦h²wHäÞ–ûÞ]"q–5gnàwgešÛê$ν¡{âÄYIó¬TqMކH)-[ÆÑƒ1ùGaœJríã&ß±b8{]U¿W@õ Èp¯–/2z D+ŒáÂë5{`ÝDñp›Ÿ_g÷ h+¿¹1Ü~ß+!X[÷€д°UÂeç‘Û$eêÇHA©¶ßa‰yF¼r²x P4ÒØ}v»À)“Ò!è‚Þ }5|f­“HÌæAßh´ð-Žr<8 ³ ‡‡¼Q²Öì Ï/„C v˜}ÔÄ…#Âl÷-ãö£/©sShNH€˜ +dÃ)½Oë Ö"Ðߨz#CzƒBÖ‚+ÖÒÁzƒ`ßfó4ë #U‰P‚Îè pÊÓ¡×’¹àê¦Ú%ëÊÔéêȉ‘„-zmÉLD›o%Qqõ£Þ½ÂAŒ`=&aŠký¢ÓEâv‘Èænq ( ²%~›$Ý)¥æ…t3µ®Îø± » ‚9nQ±Q’/­È®š?FI?²ü †i‘&00 s½éV[¸Z¢XÉíÚ(ˆ¸ sãŽp%®À(œÁŠm§àd6vWAìN. ôŸ[}P£PáÍoŒnTÈIju± m ç1*‰˜ Bãð*Æ$笹ÂA/Ç8g•–S>+Fÿê~ê3*ЉP?.:WÁê\ŠQ)dð2н¦ºVÔúK€C•æš[ Ö–éÒ_°Hç*‘ÊPÜ=.ñ³ùVÖ˜çÏG¨•¡¶sOBa­ |W ¤2’ç‚abçPSd°‚¥Î*1¤a†(Ø_ *öS"ì§°¦ Väø)êœ$ýr2KÛO…3K¸¤ÊöSAˆÖÒÒ¯Ê~ afÔ‚œ45Æ™²}Ff‰=wùŠ|?åe–*ÛOÛç²°mÍ,I{Ž w@É FBœZâ.cyˆ`š${l¢ÃÓAVˆ¬:Gª[I/8&,Ô¶½7OŠ„…ÄB0à 8ЪOfBW£2Y舅@¥1JTQ…^T)¼íÀ%ˆ‚ÐvÑQ3¡,±â¾Kœ]-BØOfR†‚МSJr™Ò¦ l¯âV¸ùf:Ôf‰uFÌÐ4¡™£ ¹Ãæ…¤ŒÏ¢DE-øÇe ‘¨H£¨j,ðN¨œ.&ß$3—!L+.³È†ä$–`& PøwÉÇeà) e;;#½Lf¨‹”Ê‹1AÑ,tKp¹z7ºA*+¼z·˜Ãgerý/\…b” ö ¬z§{€˜Að«Þämt6ƒ ªô¹¸^TdUUz€§]RQóšLõéò ‚NSh™¸²)¿¤xOÀƒPÎ*íÛ ½¦M¢¨8Ö£‚#zÙyÚ( ¾3Û(àý4}jö¶XZ#A´öjÖµ;?ak§` ¼ yÌV¸¹È ®9 "PÂd¸Í9 äD[Å*ÑÉB`ª0‡ ù;DÜÉïÊØ¯ENµh¨´+$éòPlh‚éhÔ  ƽe˜zR @š „vU{+0­I¯>vÞ›ÞŠÒL½ ä”LØ,¬óP&Ö„.¦ƒî±'g ˆ œQ>…eVÉþº;Ø¿¡Cö‘Xl¡1¥Å˜;@ ‰ùÍG‘¶#j®Wâwقȶ•‰ÂŽ.|ÿ‘­L*S™D±2)£LRR‚—V&U¨LÚS&Õ eRÜ å+“¶ë‰¨LãšQ&-ì¯Áñ”C+rQEÔZD6ÔZ]D¶¥ ÛEîçô0Õû…Û„Š`qç8÷ÒMhjA5¡Ñ}V”€ªÄùÌý›ô=A0ìØA=TÔcî–Юå!1S2< F"k‹L(µÎÈñ¶ðdœ§t+R’]BÚWçN~.+ä/B±HC›“Ž Sz`‡Ãª˜P&x=ÐDÅ” j"Æ+ö7®&ªÒšX®=Ì×D¬Kj¢bä'\M,K™`°†2z¾DT€}º³›ª¨cŠfnh¢>SØ0MâC×~(U@±¤´È8Î"Ódœ£Y&ÖBý¥ŒféyЬÒ9…¢|TÛd¦8,+=‘K¸>®†r)e+ç:+§ÀÒ+8 šÐÂH(ŽfaÉÄy%$uíÖUYÆ7‰ j®uU RÌ—y$¾I'¾ QPªuUÆBÁÖU%Ód·®Â\5Ò\U\ûËsOA }…· 0˃d^æHkÞîÁ,O„ç‚ra–Ôô(}_:¸áÒ¤¥@Ê(†–‡ž8.ˆ;-¨âh)fR¬@Ú nKÿT‡%Z ¡LÛÌ ×0(3€Y˜Án‘a&­0æ¼@KdŽÁ 1·Á—’à¾\uHE$KÑ b@ÍýÝäÜÂ蕬všl8Q¤R¾¸`[fd~q]Ø>®¥Åõt”ÄNSÄÔæ¶$TŠÔ²µn%(ׄ”6~MInÝW\0•#îLËä`pZZ!ÄÀ)_FE€(ô`E@%%%&Éó*ÄŽxRì…B'—„ÈjØzÀ1÷î÷îSa˜sÜA²dî‚lN`xu{bEism¡D,'ñj”“ãæ¶£±ñÑDÛ’‰a#>ð¹-â¶D·e”C6ÍmaýÍp[*Ll)YŠØ’DíW&¶DsÄV˜eI%œ@Ýæ7ÿÄßDyì\¡ï¦˜ÎcF{b!C$QX”f^y©Grª¨êaù=i¿ÃQ,áÔIºóæw,Nݹ¥[ä9á9¬%¢ìl§cõSË–:íöS;NôB§£Õº f~=iÇ#4_0+¡•Yz!]½UôB˜(…#Ò ]¤XDâr¾ÒìQTX/dJ/ü`¶}‚;¦}½hy0ʺ˜…Aû¶Hnã‘èuÛ£¸Qxv´ºÓAÀf°Õ¹ÀÖa›iu!®žö¥^«‹äVŒ>œaBpI·º„° ÊÆ4L Åí`ŠÚ F«`V4’"ÂØ# ƒWÖ ZiçÔB° «lÐ2P¶‹¶‹’©Ð%ƒ¡+/ë‹jÑ/ e : œcû‚Ö¸2DŽJˆÜQdZÀ–áç¤ë…1|…*k4p™M*Lää¶Pa!ÐBe¸Æ¶På9'@N¶E¢ÚYîè …€³tÈú$ádAáy~|Œ4ÁênTnTRÁ¨$SQI- TJfjŒ“JÉ9H¥t³©”HÇ#h~>…ÝäþÁ ÕA|†K–\ÛÛEû éZŠ(ª¢ ý‡»è–kZ¹$· ™ŽFø*™mÕdDNS Aü…Ì­B-Á›|c“:ã¶áBuŠaJRˆ´nk4?M©ê9VʨÅÀD/CokЖŽRÈ>!)Ñdµ°ÔT‘cKJ= ’ùP aãƒW¦°Ëˆ¡º¢ZQÞm B™nC_«¥ÑÚ¶…½×‚ÜÚ¼2D*qk2qk"Ï­©0C„ÆS!RÆ­¡Å+YnM:P&nM¥Ýš@£.OKKªû ¼ wLám5‚þ4&*èN¹ - HѯЊ9¼ÿ™”²»ÃT. ¦’Êã0X±E Ç·§Ø®æÓ$1ˆîã;ÓÓKa·ÂMa.Ô6íÙ„} ’4ÅÐP £@XDì¥a”p`” š, £:w‡ªD»e3w‡ ‰o¥éV˜ÈÐô`%íòH ÄWbüµèrÍò7\¹¤ì\–$¾Ž£ÉÁpå:Ôâqå(fmiÓÇ-âÊe•#ç$ÑKbªÃ\¹Â¬ A.m¢MÜV¼2(ä—4upª\éö¶ß^£‡_&5%y ê›ÑnŤ&žiRt¸šuÝf”D>)§Û ”KjºT à(ó{4V’[¨å‡NN4Ë„·$µSШ¸f†ãýêu§ÁÁLjr:ìšœÄ Jê©£Bð$Š¡ƒÀG`DèöÚ–]À¬~n3 ÒVÊ8!å`óBî5€Óuâæí™ Aî”õeŠ‚%æ_«HgMR&/¡ÍƵ“jcN’¨6º*Gµe!_/L{‹¬ÔÞâ«vâ4IµužjKM|=vdÖÂãë}ä¦i¡ö¤”2’a ,’‚kÌΠë´\Pa>Ãçoå±ö )E¬½ðrAÁFÉðÝ/ÈŒÛi¶Ùo®%ÄkŒ· ÿ™ÛC…qY¶ç4’#³¬¢dDl‰…ö@azÏ¿ºiB»ÒƒS'¯0­T¹A§ 0L lP”.¢7ïÕI%b*®šÓi þT ÏV¢Úiáû°9|¸LRØî(Õ«TìR¡]T¨­ºôT•DEh–7]¨ö>$ ˆ°qÒDQ6 ‚);©j0 ævIÈ…ô IŽˆP8b/ÜnމT/ Ôu¼æÄFô—ÌT)Éw¿€?@ã—–2P$;MS)Ñ#¨eÀ#ò2Å{hæ=ŒG+v ‚³S¶«²xH¥4›7óÎÍ/ Ò¤Å{(‚ÛÌ{ˆLÞC¹¼GîÍ/X3À “ÜUŠ~^9 TY‡°F$ç§eðL ØwüØŽáÇP{%*–óSÈ(Ô’*qr~´ÕïDG÷lê]¤&‡$HùdÖ“hξòiWù4· Èr÷ųJ!$­|¾Ü¬§‹¬–Õ]˜U,èæVØc©MSXf‘Ôâˆú™G]­ ¸ÜRA•K] Bcõͪ„Qet—¶  ¥œW/×mÒRÕ•E;ÕƒVpbÒ.4 ÊtTÛØ‰‡Y™*yd-íŽU·A c…®·µUnU\åVœ AM‚²o®r'W¡Ê­µ[åFͳªÜ˜Õ¦ªÜü†ªÜ’Rê¬*· uNÞ'ÈŽÍæV¹\·C-Þ”æ¨2êr²7 s¸á!q¶Rlϩ $.xöÔvT™àÈæqÚp¢Ц0Ä °Êà ¨7€ð;?XÞåèmÖ—Pu"a$&(NH­ªÁ’%]K׉LiõPtzº²³bƒõÕ\ôtI"¬û ±ëêEx+³$„.H©Fª†@m:iÎû+¡}…9Éð(‡PxûJ íjm|¤>ùŽ j£ B®TZ`¢†4K•®­yõ9½,l§ªÜyfRˆ°â…öÌ(!¨§)yóîn´ñHvAÍÌ‘òiK„næ ·IÈ•°æè æ¤‹©œæh4RãÚÑBš° DbIú£ÂçéÕ{SY´—ÑQn‰ÈA³ÛÆT¶"OIš³Zª@XFÇ õ|<O…oºà™` ö5 “÷’„§Š©ñ"àòX½¥A‘ÌòiÅ¢!oúF…aóf±s0øÚgð9·‚Á×µü|#(dð­€\6.ë¢=íÅIPY5‡Y p=¸¹’ˆ0C‘N-G§9YA¡„û+„­œeDîÈ¡ú+Tµþ 6r ¢GXƒ`…\"âFæP¬þ ÓsLÊê¯ÐEŒDW˜Ý_µ$%Òe$65„›@YÒŸ'"Ò´S¤Õmgh«çILÖ–ásÆÁ±,Ø[qRŒCe‚²ÔMâX"ªÕ[¤Bœ”.¯²ÒìeR×!Ê ³yèÓ†cÈ+Ã>R£Pñ˜µ§§{ Ò©X10‡¢Â$¨^“]MnErÌ5H ч]Ø í+†L¼Š„{Y%R¤%ˆ8’‡DDBsØLb,ü›úÌ9£ž "ŽÑÐÀ5š¡¶bÌ_jªƒAŽî43AGp² di\$ká¢y»ÁCä÷ãˆØm…¶`ùej‚Û‚¹ÉVØÁM`ˆ“Í7i7].¸Ië!(Ê nZä7C¾Š”¶¢³!)45—ËD±'lÜØ»O¦º£«Ã“!Ûpt¤Ž£Ëç9Zìè€'HžÄ¥¹óGqä/U¤œtÄ¿]n©•Ú ™W­¸T«êÌhSï¤ÈHh̆T¢Ý}Ëc8MAJ‹‚¬é‹vÕ‰¸—¢Nî&¬Mpî_²N¤M`cÓBÐÂM›À¦œÀŸi•ÎÚ”ÉÚT:°ifv3²6“AC# ¬q ¢MÖ!Ù>z¦J„ª ( ÌCiŒß‰ÿ¢ˆ,1?RQŒžSTÒ™Ùá–$L&qQb\Ä{ìªÄÅÄã"ÃÙÌV;pW¯¦“¸H"Çк+,ÂL„˜&ƬZ!"ŒM5,ƒ¶+'G‡’žs‡48oAœ°²­Q•OH.ŒæŒ?ÔÙZ±ê âH“­ìT§n#$jÌGǤbër85ß9&LzäpÒDMzÞžà„øD£ˆÈœ5Á °9-“Ò™pJg¸3¥ÚÃ¥3Tò.äq‚9¥3‘S:SéÒ&[ªdé ’=L=AöŒ§†KgCLé̺5¬·¥¹Ò.ÐéˆQH¾3”–Å€<àÜ)Òqvº/,¸ÌI.ƒ–Q›ŒRìðܼt{?eçÅé~©gx(¼Ý=U`#ÿº@’þÚ…¢UKQt=(D oò{”ýÜõÚĵ$¯Sb]"ë„n”¶~Èy¡×þ 'e´ÔNe_ O{¤«=²H{´¯=ù@Z´Gei¡4‡Kfì{\ò+ »Âl ciU¬@¢’å`iX»$ŠÖÏÕQÎ k¼ík8ß—â1AˆY¤ JXs×TøKŠû°ƒ1¡ûgÏ"(’¨ ꈼâ>]3³¸¯ˆ<4áFiVí÷E¸¸ÁØ/îƒ.豊ûŠBá?Y¯¸¯¬â¾—ðS”™ t !”½o b>š¬V á’5%ÌVcdïÜê‹’‘"ñ(§Iþ Ú,ÄÉ‚£c‚“•`Ýˬ\RŒWa%wh´ÅIxjC5ìyŠŠåš€0¿!×m8gʤáœ;5³Ä«-К™àI¡"…šbä9Ÿnj,ÉÆ”•áÂ(ƒA¬tLšâ…*¯IÂB¸¹é˜ i¦c©î¥ÌçvbÔÁè—Ü; }H”C±°èûø¹‚ªQ˳~å<·Sqñ Ü~ÆÏíÔ™úä=üB6"" }¿@ °BPC•qàóÓB:t–Bo?§ÍB€ñn… ij*ȶ0YEler.ì«*™QÀX œ ×W 2ËPÎ%,È,°Á3#çÒö-†‚+mD¸b§"™©´«;Òçݤµðé`™€ÕX>N¹•É@$Ó"dÎgÙ Æ[8«€Â(A¤0¢5ϲ# Ä O[54¡Úâfà²Û Ö;Y†n ›ÏVeùlåAqt)Äg«@EͰ ¤Ãg ªca€@$CÝÙ|¶6P\yÐIÛP<›Ï&[Ø2£0RàTqmqJOÖÊÀp9WeY'ŸkIY6W‰²ó9Q»,»ÀZk%y&ÅŒ½ö:m‡@m²=ÊõD ” 4ì$1dZ;줠•iB¯d!€Xý;©Œvà™9ì$^S–a'Zj’9zì¤ ³“™|v’ãSÂN²Î% Ò,;™¾õH*ûH«[§R†¸…ü€–H}£ð0›A@Ö+æ€^H,+0B™ýPŒÙä)‘ó]ðO£%Áh©jÁßFK¤Q*AK”lʹ(øËPÁŸe‰hIÖ(øƒúëÒ™-ƒô¿àžW5{>jsž°ürœ§VùT•ÒYT•Ì ’"$Ev´êl&HŠæƒ¤Ä2¶Kz ª³(‚}’œ¥ƒ´²Û´’*PB;0+3BBL"$8j¡“&[!%10RßÉB`7ˆaƒª3!…Ôs§¬…Ò²õˆrŽs…äy±‹l= "v‘¶TM=¢èg:P,=ÒÒJêÐSºˆ=Õ‰et:PŒ*ƒ-¡(–â´S`‹’&Ü2ãí´§JDì¸FL'qDeÝsR-¢¶V³Fsи±!>Tr>ßdÿi§d IZR±§Óa>T> 5Mò¥ØÅÈ5Ý}RÌ„bó€Hšˆé­ÖÚ®L Ì=2Õ S=…a¯j¦[c9B4À`+ì¨B,@¤zhË5ÔƒÁ"Ã0OmQD&›#ƒ”àÛ$ú2E™‰D$3ï©«kQôßM]:ÿtþ‰ÿa{x@ç¿ÎÿºwÅö£ëÀ jýlßò¾že=ýGñßËû–õôÑ{Æ6–7†—õ4ìú—Œ,ë¦öÇ£z—õôeþì§/áu‡¼‹,hxí[Þ?âÕ¿¼¯‘|´7žØèYÞÈ=ŽfÝ?˜šu_òÑÞôÑ0L<½àþì€Óívªqÿ=ž\Ö<¸Ü_`4Xt‘¡«©2Xà”ÀvfL):È_ª+™îÐ艺¤g}æEà¨HG,éªf©m ªnY•Šw´HAjÜX>8²¬ÑC=ÊR¼£Ìß^ûkZùQÉߎÔÒÆã*RI©rÊÒÐî/k %±(lóýËû=»‚-môf«ï†5­øïÞ´Æöe+Ó^ñGCËûc‰zcõöçîJàú¥ö6ú¬§Ðᆠøƒ ?¢)å“‹½›ëi€Æ€÷‘«Ø­±Fwä’[Ûˆ¦1XÅïfèqŽŽÉç¬>ê]>ë}¥xéz˜¢9}_zÌ€v5òüÐõ޶~8Ø?žˆÅ’ïÔ£¬ŽJ 2Ël½ g¸¡žf‚cªå¾qáfVÔÓ!ߨܡJÎ. yÑ8CÁ]- ¸±Öد;—Ÿ-§Š6§^ƒƒÉtã¿ûÝ3-‘ZÞ3_\MGº\§Ž6)HáºÄÌÐÀ·ÑÆõyðì t}üž­ÿQ@?ƒªíXTC/넯@L-wBÂRþd¨`Êî~g^*€JPº’ñç©Ejæèk† f´`;Õ(ëìåfÆž ª†à{~®S#ÓJ;äE¸IÞ'Ž(ËêV •¹Ûš¡#®— _©­ Ä”`ÎÞèKùÝ~³¼œ'Æô®eAvw^žÿuéøøñóxŠ0©z¯÷Q´Žžä£Cãz—Ó–áŸÀmÄZ Ë‘ÖGÖ×xèÀŸ4݈öìéÞX‘{J ßëϨ7%}o’ÊÛ[|_îE-ÂFš)°Ía>Ф>˜:ª×ßÀ‰îž=¯ÕèOÄ~Êú;g ²væ¨äoÿ ˜BW×ÿˆþ)Xƒ»ÍKhÖ„XqàÏ>{ý€~ð@Rú»70åæåÔˆšPíÀ€½©xVÔ”M €öù¨*±?ZDJ’;ŸÃ“ 8ÊüIþ¼Ï7r÷i› lWÆACË{Ó&•ÑhwsµŒê¨à(•8ª@e3¶ÄÝÜÃ¬Ž²œýv%)-q?ZnEÊ‘;<#Wž•äbWèÙöêcÁƤbi(Æ”‹îBaÃzqOzÍ&ñÏpÕÍÕ­¼“Òsèuç`û¾G&šrT¦Õ¤ô³Üj]ù¸ 3 Àƒ ®ÍGL;}_váPš?R†9– )ý)„-¤í3Hj`ù@átÊi¥`«zªª@*€,²U `S—EŽ*Œ³ÐEàD÷¨z¸Îµ²À|Àøh¶ cÇüÁ3ÜKW Yz^¨¯e=oÙãj»Eaý«Ë~·,ÉS‰&àENÖ¡%dPrwýU=q9?`D¸Ö–ÞÇüpðÕ¥_Î`êD¾2ž sB`-0x9'WNKšPVw€Z°ïHk iÌ0ÂRù6…Û `ƽìþ¡èk‰†ž˜öy2; —¹Ù=úêXKƒï¼÷ýïýóû*^Ï?Þ_t}ÿû¢ù¶ú}Ñü‹ö«ê÷Eïýýnõõš¯¼eµÆ·ÞïË画Ès-h¡U ¯h¼¢ëW]oÑüŠI³Š5PW°U=RÑñURÕCùçWµà¹ö(­ö8U÷·YE+’G‘¢W=¿Õó™ïˆÖjGÑjy6먚E Íú‹¢ñ‹üAUÿSuüfç_U¾-<~_šàãf hfÄic4ëúZ}|­ó¤â¯±owónÂ?úè£ùa!É}ø¢ôCg޶þ1Oi˽'¿ÔS·ñ‚ø,ŒœgoãäçþñÛpª¤û¼<%JÖ}Éär‰O¶ <«*^}…û˜S÷td"ÍÍ¿Í>è“.Xô¸O”ÉÜ?ñ“–¬ègúé*‰Võ•Fò¹"çQTͪw‰’l¦5?_h®i"Í}£8è\ß:J·æâcvDàQ¾‚ŸHj~L—ÿ’ÑEŽ_“à-ø¦[ˆDÀ†$=°Èµ!óožŒh'5>3Ò~.€òlH’¶ ñ³hñ‚ð{Žšî˜ÊØâ§°_SŽ )•ÈÈ7ÿY/~ŒQ©OÂÔø4WºÑ>ë¹/^ŒAgCîß‹1ô€=TT|,…Ô1FY1F*z =>mï6wbŒðž+ ö‚c(z¼ =Hƒ¿aD‚ Ñ9Qa‰ÈD"—+Û:ܧ!¦¬£ÚC†W3G$‰="‘$"ŒuÈÖ?%==» ª'ðiàiX›‰0oôä“FeÖ£!<‡,†Dâ 2G>°‚äII4Z±ÅÐRøù…à©à uøB>‚gÔŃ,T&(f*ÃÍDù„P™pÄÂ0À¤Ñ]Z?ï…yC4œªôoMÅàož*Rü£3LäWî³"üG¦ ;øÛ¦CÌÈþÁ‡FXÁ_‡‚¿.üµûø´8ÃgùŸOqÖüôËê1ß{ꡤ8S«©ú^MTòj(#ðjÂõj½?ÿ%äÕ¤ëÕtÊ«éú^M&³(Ù@@,eÚQ#7a&2m&Ú11§f¢K›‰Î61l±ãI~zlü)Ð(Ú„Ê®ÌÅÈ ð0rVž©­*)¼T·˜ó[n1»9ÆÎ–P¨ÐU~ÖŠý–@z?Ùs´Ÿ@jŠ]¥h}×D(`ác%›HaIø•Ÿí”>Ë ­ŸõS>%iý?Mx7Y:¡w®ºPo cà·°ž’6 **À%=u’„B«Vè'YJ"üP⃑üCoDá5=Nw…B ~ ¥¢EòøwŠ:&«GÓ€§6JFl–ßJ™å/†LC~1³Ö"ˆ“DHˆóâEÉYU&Rhµ›²óÏMY½o™À®ÛØs°¯Âßw"”Êпž :I{ST$n0Ù<;$çí•ñªNàn2p“?ŃœpÀõL£ÄkqMFnLÒv î•RÖ Üù¦!ÚnX›”2 mû(6 UÉ44›ˆ£‚i°p¬h¡©’E¿\Y%ù»Â6 U`ÒHª4‚?UÐIáúC\¼DÔLÐÏj誠+|  GVºüüô, «³®ò®f{¨ÂàRº°ûø3£å€.¹#”2Ê!¥süÕeUl¤Rà7u E]åÚ¼L~hEië‚\|rGVÁÝ­û N½Pô›¤ MšQ·‰ë• ’7{‘Ì^I¼¢Lí]Ù€–Ÿ¼ÕÞ• xµ xcåB/`^§ö.ƒ€W¹€×ª½Óo âït”¼2é†`éð«)i~kTøóʈHka›ÛOR§Lç5ÉjÖY×t°˜Œ+Ë0èEÌÅ\ÊÃ\eM‡ Ét„‹¹ È`.ᙎ²0—(Æ\ÊÁ\Âþ±"$Nâñ„ìñ1àL×QÙ“Ÿ)*²˜º3r…íqgÀoËLwžÎ“‰˜Ow†¤{3Ù å¥:µAñçñ#Ù€·ò@úiA‰ÌŽRª’DÎéXASAºB¯8V4Ф-X½n®Â#ŒQHók­¾t"êyB’4idTÂ7 JÈ Dt P&ƒUXøÁ4‚zÈJ4¢Ê-?ïEF—F"¢9£PR§$bŒB¦Œ½Ào_ í—ðœlÄNU`ªÂ”DmÈë4·”ÈJ5c£€ÀueH)ìºÐnphCàcêËŽš±kYôÃÑ%\—”©j°:—`º`i¦ø+rT½-o7ãEÒIH¹ð.­ð¾KÞb¢0œ»$4W½"ÈÓ¸˜€˜æ¤ƒ­&©mAý0~…÷ÉhaõãÒ’ o1åEEÑCÚÑI1iµh%mAÚÉ'áöDN‚LRñ‘šlEHPغ‚9'Þ¶Iè’ëÙ.Mº´lf†±D½ S$õ„ÌŒdrÌffºR6ÉÌè²ÌŒLY¤˜h=,~E”%yQE6¨¤e@éúIÉ;B¦´ |B—†‚`—VøQ™$¨’RÞ½¾Š B«øç‚¥ 7ÌÃöËÖp›µ¨îÛ¶LœŒ½$3Ë]°å‘Áz5•BeE½ŒåœX Vh×d„•U–ɱLF¦JޤQH‹¨‚Ûã%%+Hì‡Û¼`—±újˆ}ò]:“ƒ™KJ‰Ê˜ŒtLY}°\B+†Œ8F?:nó2ŽhT®h.ê˜Lí.aÍ¡‘=åÍDÅú×ÅvdétCV¾¥£‘…þ(-Y赩¼àç”±xâ4J„*/ÐêQ§ò"1{IU^(Ãm¦ò"}q([ù•° ¼ûJ(Á0bŒBV îzâ(L%‹ýÌz½‰#UëõèÓ—–Œ|IZ)Bï¬&ÓV&§OÕë)§¦’øG1¡þå`g‘ ìú‚(2T d¨Ü‘D ‘Ÿmù!0®¤šdA}¹!Z2¤Š¨ 锬y‡O5A”ŽÝ)EãaÕc"X•&‚$ÉDBû©¼¤jÌVrb78(•-íY†3) E…d BWŽ]Ó.ÞJd‘ô ( ¢nsv*Q)ÊÐ…¸¥dFàVI=T¦·NØ_;pc4¤DˆFä¬0^¢8Ê‚6R± 5‡ÁQš7RóÂà(%3Ò ‡šO‰œz) ˆ4mMwR—ÄörT‰´¢4  ÞUËÓªù.mÕž.mßA!¢~6ã6vð±2Ø=Ÿç¯.)” [9ÑËE¨âF;å&ŒRvÒi´Ó$ÑJ¹è¢F;hâýV´ùü¯ªQ¯rJºÈ”hÚ, ºlÉǶN“— ] ÛbÐ6deCRÊEtv†À†uS$G{Blk{,ê @¸+âb½#³L{/¹¾Y‹Ù}·tŠUL/×È04ú~¾… %ØzÔñtGúFˆàÒû” …˜ÂN©²aœ·Ï¦V[+Œ#Ó {­È4E…΃¼S³Óá­š¹»ŠU^Ù]J,•RŽÞ¼žÃ0ʬ²Â¼À|ÂXá¬+u§u{.ÙCŽ!ZR‹))@f‡ü’—à$!g–€-•¦«´¦ýOÑUÊbu]¥=Ôz Š &WtG¥1júyˆÉƒ‰hþú÷Áeˆ8£ú!ôÏMÁ.Ÿ+r%ÃC3=Dœ@Zˆ@³®]¤ÄÌ’­Ô¡¨N XRHÜi‘æv‰h¬`/%““P–ˆ‡’t”#òZÜQÅká" ê¸Ä'jžDè–à‚ŽT¢[LÐÀ lÒX…ÄkWAa—t"{‘¿µLCk6™ºPë­­ˆÖ‘ +¶@4—„kÃÍ(@°SM:¶@”ˆt¢Y R{4£ ­M‚Yºˆb~W’Ÿ†1ÈÏ$ƒ0jª;„"¿ÊódﴳǖX šošWa‹Qå-&‹Ÿc‹Eô£Æ†-Ü`äÔ Œ­UZñíUiÉ,˜¬pùõÄä»”=iaaãš’qD›Ã~¥Š):7Ëס<’n1©Òµe…uÊ$ñ–)RÔ-ñ.š<¹Öí=œ·Ò¸_BD‹XÈO0F¡ØjÅuç¶…NsiõæR š‰œ”¦”]b  —ªb#àNl¯Û&TʬNb§ &Íu,åBð¶¥È|KAÇë[Š(g)è× ,Ex–"TØR„c):ÏRtÈRˆ.C ¿ö:È3AÀD‘°8c?í[]ÑŽ„RåQ80adU¿®¨Aˆb—•YW4©&gëóÓ>” â/¤1÷H neõ®Nìh*v4„=Dzáü[+©œ¼«ìHBFNÞ11fi ªL$ÉIÞÛÕšMµF0l/ÇÀŽI|õvÔyü½ ïY—6Bq®¼6í0Á%H(z.¼5Ÿ€ Õçeõ¨~ –Mëd„ª~FÈ>l'x¸ xM• ö›ñU½¹ñ—’4IØ/]ËE½ÊÌŠ&ÀÇkŠ—#»(Ô RF蜀M"… žšD:câTqâUBÃö*¥}%YàCL$Ôܘ¶\dì’St öl¸¬JÚž¢5á[tQÄAThm¨Ô¨h†ÃÒ’¦«¤B‚•F׃\&'´‚¬ ¹ZEš(Sàni‚”w¹ðÁ8¹r»STËHŸ:Ž`H9Êê|bÅn ¤8†'B©{vŠ.ìn;+Œá°™4xNUD•¤;ؽ½Îã뤇€‰2æ@Eeruòóó;ÙH“Ùˆ"ÍGÞª^Èèä„ÍIRBv\Á†FØ#0J©(©Ž³ŠY”ýžÇ.bPWV|o½Ÿ“s“Š¿±Q0€æÁ 9À/…"«ÎôÎGTg¶§©¨žÝzR$‘–Eõ€D42‹zÁün(\¸x-Ú0ÄÈ7"˦âØ0UˆßU /ëÄí¦â6Ú51TÝ,bÎZ|Q±®n(l6^këâÞ› QëŠ ¢Ð2¹µJ‹BSÆA!ÎÃ*EŒ3h6íã …öÑ©æÃ)˜,¸>´—i¢Àšbvçµn+ÉÅÔŒ HF²d0ß*/åHF‘dJFú’‘NKFsj¨éN {šç^‡D,ô[ÒDÉ]„ü„4‘<¿åçè tQvŽÅ$¼-×11g&BÍ3n9p‘°€‡ñ¾Æòœ®tÄA0K%0Ëè²\±Xv~iqÀ£Òœ.Nß¡! Ét¸B"ˆáBšû¤UNQÙaÖ #TL…ÍaDû4 €3¼å›[‡Å¡Š8Ý9X²&ÀâRy`)Sô¨ °4Z‡¨°”4 Ô(S~ø(!l]!Ä›×1×Íf-ôT"‡M5ÙÄx ^µŽMÔ¹žÊ¾1Çg1u´jä }M÷©k¡Îï’Ù+ÖÆ:ØYÅïný­R4ìœÒlb0 «çV)A=?Î-k˜ bŒªÝˆ·°á®i'ˆT~Öœ•«§½–ôró¨ ÉrÁœ˜® f *(|ÆÉE‡å‚veä¢2å"]¹ˆ¯¥ñ¤vSœ$ Yðž/w!fW6×á“Ѩ¨¤ÞQwª ]'K¯^‘$“³ã¹jm ɬH©` ‘*R`ÆÚÕ:;!L×ájÉæ'ý‰ »@š ·Lˆ›+qAI™P%ByQ(‘®P„áFJ§ YÔ ácÞ€Pt"¾; ¾à~PÆ#BµjþwQ'†7ÃqÒÒ¹ýÇ©‘‹_ÚœwÊ1„]£^Ñ Ådy&p7Í„nN¹9yÞT©l¼(àŸŒX*›ÖX¨áraý@•Æ´Í…¸°-Mñ‡^̰ÜV§3´D9 D†8 2tÍt½Î+¾«i ®…`˸–G# ŠÍGÄŠÅÛlû,A¸VÛ„•ÁµÊÚ8!\+qÊŸ9W!ìÛ ”ÁµšqÚ„rq­m.Èm>¨Di*Ø;@šÌ]gÉBúä¡Q›Ö·èÊì]ºI@6Ý¢+L9C¨1X¶D%íøA^ÿ.Ù¢K©¢Âë[@Ф”¢G¨®NûÛ¥ž* çõkH­+™åÂyfõ C;åróT}‚¥O ÂÁà‹ì­²ëN5CÇå²H,­ätwÆ¢9­#ë^gÍñ¤¡}>Rº“¡`Š«‚C ˆQiDÿÙ¤ŒUcaé#ãa$ãH*tÝèr™íÆÆ;RáúσWA’— ÔXn6$oéÄ]Æ"é OÅÆ6Ð_E€Ú' 5•F,‚½xìµÂª<¶%Ä<ÂH¡,7†îG—XÓ4H‰1ž¦{+ uO„¹J­”±cêÆbxcªÙ4þµ!™¨<™ˆb™  “N¯àÊDÊDe¢Z$%ˆ8ôe¢m¦ e"“–Ì™·b.‰GBiªDÊJå|”ETseµ`Ë"Ôƒ ‡9`Ðjî39ùJ§[.L+š°tY)jø·—KUR*C„+޲8ýPŒÊ1¹é(ÍKS´#(¨0Í'ÂyH/Æ4‰ú!¥øG’ê‰h~›~5w÷øSCDJÙ"â0¯³Â<Òc€‚iNMVÙCiº”¨ƒQ5K‰èÂÂ¥D!Ø}g•¹Ê)%Â4‚bfÀÈXómäŠ „öÕ5LW³‰Ö¡@‚ˆƒs6Ò*Êà±ÛØ1 ïG-¸ VJ.m£4KA±´ë¹4u>)‡‡$vYÏ¥3I8ƒGw#…ópA<-Ká£ÕĈ½2Ô– BÓHnRGÑV‹ëÅ—N\oÖKÅ~¥)±p•×}RÌ%™öRøÓö©³gRŽKŠàBZI#‚Η锕tŒ ~¬Tê­”oA´$ß@:ÇÎ7̾…ò U.ß”š/¸GWƒÝ>kj€j_êôýè"¿Ä¡¤Œã(±¾•EpaËÍÁ¤ß)ïnN›ƒðÌY*\{Ьê­lµ9蜻›a…p*†xsT AØ~ œ%ÇÎó]eôPŒF°µiëÖZÀ³ŒiKËâU©`Ýf=¬¬®yf—ˆµý&˜uÉÌ:ú%ê½ËbÖC1µÅ?Eƒ"®)*º)ÓØP%TùÖ!lë)7%óÝTQÔÖ!ëhÑC0щBjWÃA]"ÁÚI"|ö<3X{9]ÕIDŠò™ “Óµ¶¢‘›D`|†R’ƒœHåTªÃ݈Q5b`ÀÆöFVjÔìÊer'\̆’™‚p0”œc ¥›ÅP"휄¹q3•䩤1+C"Êpù$‘W0ÿäeÛ"£q„¦ÀƾÊo\€”× àð!%¬DáÆmI¨Dæ³J,‰¨`ã‚T‰¯Â·82«¤°ÂÀ¼Lã:½Øu ºi|k5Gõß>”c2±‘gª8Ç€ÖÌ1”±·CT ߊ÷Îd؇t•LìC¥íØ?Y!å–DÌ ìsÀÍÄÊ’¡Ê!:‰Ê’ÙÞÉþjgTðCáº-˜Ð¢^!öµF"-—‹Ø%îŒOᢈ ª,”7zlUQPQIPétÃ),zaxÃj±B4C\:,©®½¼'»Y]¯™°ï4÷;+$oI9¦SŠìGSIR%Ѧfmö"c@-¤Û×Kùˆ¬\›•\© r„›AÚ^-Ae ÈUA˜hª*è•¡4>0Ád2H÷Z$Qƒ’3H¥eB÷ çù `/šû¯Gõ²¨_®©se,F,¦do‰H•u.õ¾‹ü !æYÁ¾Äß¶•šæò*[D›A+·Á S?Wüê"êçí €&€44°Ä‹€Ï"ú«f‹Ü…‰4)¶V¸÷ö¿– Þ%‹âIivØsV»F¿»$K¸S[4=Ìš` æDº¹¨‚7¿éÅt~ݾD#  › îuB4†»ÓlÔ¿¢cHMŠXân#=›â–_€?[ur‘™@«NˈM62Sè”W.Df”Ò"Sà,ÉÏt»•ãâÓ Á369ÂSRe¤rÁ3J +ïÑØÈ…YUi@vQ'ïo"ïÇJ›ƒ„’Tf.Yš³TÅœ¥¢)Á@g)™³4’V8KÅY Ÿ³T™œ¥Ò’Ÿár–²€³LÒЉ@ôWù©«õ±_^l„†Qól–DÃÁØ.¤iï%Óªˆ†‘pÊ@ÃÚ aQ kSö ¡a–ˆ0hXÐ0ô$VÌÇW#t:FtJ+Í”V$!_«“ Ë„@à`Ç£Ôaâ+ßFÞÚ MQÅ‚ „BOjs*èå°¥¤¾€.ìNS5IûZ"M­kUÎ*D¹tneþq׸kDÈ$šiÂY¢‚!\\´ÿ¨Ý òï¿.Ü!ê?=È(±÷ô ‰É·¤ýWâ öß*TÞí*‚y}!{ Ä–u’¾Óæ$1×y‰9;²Ö%溙Ä<_…‰¹åª9¢‹*vsY°VÕ'y-ʪ¬U9Ý\:‰a’7·› U >É‹\ˆi„ÕEUÅ.Õ™R#:5bk,úR1¨º ¸ØdFsøØ?êV¶û—EûB‘‰ÈâÇþ%® ªÉIÙ*•´]ùü[ PÈ÷BØ'ê— .*Ÿ0|ßÒEÞX‚ cŒÒDsYr‘²úÍ Ûç8‰8Ä%ë£Çï2]ó@@T”Ë‹Zï»DÚw ¬Èf}W0³Ð¥}—´ú´•å»´Èó]&õé”\2å£2jç*oóýî¹´QÔífhI6h6Ó(hW£(D³-6ŠØ¬»F4—;캵[çAr’SedKŽ'áª(ìØ±CÔ­¦šç=§%ª;­ "À%—¤C´qZNó¼ ÓaƯqZÊqZð±ViÀ¥ àR™tˆÎ¬×¢"Cµ OTÐ0x²dduÉ\TΣÉ|¦[c6¶dÀHŠŸýƒ>ÕŸ¥òŸý#Bf£Él85+0@¢˜™¥ª³ÈÓW…\—XIkIC$ÔTeÒP†º4iH+´DcŠtV;J“† 0÷bMƒE#±2i¯iZ ªœ@ä‚dquQžX,‡ôºKµ0ÛÊ+ø3;YLµ‚!ÌÑ ‚Iò¡(©«&—óæ“âW ±rj³*tK¢Eb!~*Kbqm—AÖ€û\²SQ‡:Á;‰¦:uë¤èt…ÜÇqæ›sŒŒ3mNC|§Ûº^·µÂÒÀ“š0oh _äÇ5—A¾^L¡´…î#s]ôî#•„ËÉ„Xld}°~îÇœQÚ¢ù9ã+Çw… ÉB¸Ñ"š‹–m.ù\ Ô³$eñ½,ZÅÆ`g]º?Qco“5 è¯?Íl°0žŒØ`‘ÇcñAf²Á†æ’ÄSxѼý>,Âl0àKÉÓ㥑trØ`%m6XÔdƒ•ÅÛž ?pq\Æ/Q£˜Ží@œ;m'd/&¼0ÌÉäXð,PÿBšn^¬WÕ½¸Ã}å†ýª.G ¸( qäKšIòD@•›¢¤J'™·%¢—i3qnK,ÙY­y¡ô ,¾-oæ„$%˜âIº-QåÜ–¨3ÅáuV+ +”ÔH4Kô좕rŒË(GÔ¿""%*3w•²„ù …·³2‡@P•¯’˜ –öQVµ oðÙŠì+ª(Ëi;1‰ ²‘´)àªJëÿÅ0ÑL˜0ϯNn*Eí«0Ã6ÑÁJÚ;7K¡8òo–"ù"§£ýÛ¥Ö wˆR’¦oÉ ¥ïªlú®òÒwtñ˜¾«·¥2‡›¾ ›Œ×)$ú~™AÆg§ïÚÄqå].}'FX‚ ¦Eqͽ’ɼµ ɘ+ˆ¹&jW’u(f!´Wö¸Ã˜¤YQ@—bˆ¡ôPùéaSÍB©ôp®š…Äœ6 ÙéaºY3ëy¿ÿXŸÜòíÆ 5;Ù‹øaH`ãa3‚i¢@õ"Ý©ñãHï;6ÑZÇûãgŠ‚hP¥8Ãq# RJJzvƒ¦LX \¦î+ql«üI¹×86I9B†c”'*Ä…ÆzЫ‡ÎÇe€- ÷fùzÊϘ¯·Ä¡¥ASg´ðµÔ†¯Oܘòùz])ÎEn ×’Š3(¤IÜ%n³#ÊÝ ®@Š£—æö<Ösf6«‚sÆMªóhZŸÎ`»¤J"¾DëAƒùWs]¦÷Næb2™o+ºŒë"[©Þ©¢2:UDqm+éTéÙ$îf SŲ¥<’ËJé5%'I÷|RÌÐØÔ— ×OQ…ùÈ’ ‡¬¯IÖ+¦o9)n!Ò˜„«š}D’£ k‰*É¿X ?þ0ó/iþUJ;QÅ$üˆ°0Èû ¿âçô sIdAZ‚E/iþ þEÙd¢Fò>çò/vi;.  4ÑxÂÆëF’³:ÙJSÙ 6o•’ ×aÀªÔy‹jîZ0¼Kü\’–VBbÀŸÆ ÈfH¸`y@•)¼¨‚¤ººGÿÝ´óýòtÙ<¥µ­IþGQˆþl2¹ï4+(c€U„ Y ‚eˆŠ¿ ˆÉ]bCJ%2"‚,ÍTIBO=ø§æ?µ^BYH¾˜ƒ;Ìþ¬äG›—û€´c R[¤¨ ̹$ùCþÌÞ~ÅfâXHU‰\®ÂÖÑ¡KÐÇäÁ „Û6“f"L¥ÛÁµ„,†D’m1°‚„‚¡ÑŠ-†V `Ðf’åH½õ˜zd ßØÂò±[ˆmÙ ô[\‹Hè˜øoˆ˜¸A¥féøƒ¿I1‹ƒ¿Ø~[nR¨¬‡M‡j&Õc¾GòƒW“¥¼šªïÕD%¯†2¯&Ô“?¢¬ÅFc!Ÿ6Y!ÂTÅÈ3ÉŽù¾´¦2“äÃê¹²&1²Ý>&ò1²¨‹‘¡÷…1rè&¼rúÒÁÈ&ÏÔõèKéaÿµ"KY\jÉ¢S«\S*ñ­œ’¡su öÚ–§ú»¡ÉF‘K Ÿ@1oü˜Ü‰ø1'•Ô&K¬f¢Èj¥.ç·Übv1rŒÊÁN²R9Á­@vîO-¢\Ò÷§z˜Ë õ¸sÕ…‚xKÓ¿…õ”´iHMKHÁ¦AµS-¹ƒJ‘¥$Á!¥Ò »{ÐQFÀ¨)ß’ševg~ ¥¢EÒÞDQÇdõhpï®dÄfù­”iPþbÈ4øØJ 'ÌÀ_𝀬e²^Þ…‰Zí¦ÄÎÿdB’¡ÔxÞ\ôª.ˆNÒÞ i<”-Šz,}'p·¨ª¦L6ZO"v‚xÍ äMŽÇ¸fàî˜F=Ó°á“¶º$&k%WØFÑ)T.¸ÈVepñÄdÕLÐÏêÝ&€î$º#;ÿ«è¯.«b#•Ç®qW]b&Ý£ÔÃTuë×vßì G&ìU§ö^ð’idõ ÕLG^ÓÁ\51'&E7ÁÞ•H‹yA¡;#y¶ÇI®?çód"æÓ™4• Z^ªS4{!?âç錤ŠDÎéXASA]”ÂÅ÷ŠFtƒƒ0·¾5-<Â…47õú"ЉèžAOŽ`£PÂ7  "Ⱥ„„—{¨g'#Õ[~Þ!‹Œü4Í…’:%c2e˜ˆèáö?Ùp>jò:vÓUUAUZF“švOÑ»ªáýb9¯%t̪%Kd‡.¡'¢Wl"ëètË5×-—6œ¸S+¤¾òg•eôÎN¡ª…y»Áé¾ «ˆ Ó’ÏÕë|SB¡€µhs“Iuc©Ä@vXz›¥ŸÌêbÄά0z±‚‡,ödq¥WàÝ?Æ‹Õ ûH²È” 2I]€Â d/WFaF¨ÍxA2^–SH²`¯:Çp‘Â\\D²øAÅ…c ”ʹފB2‹©:mØI¥·ˆjL!1Ä2–ZîÒ:ÌL5f@1ZO‚½h¸ D6ˆiNPÉ;euAì÷ú¦æ…ó4Oc3õ~T@Î 2;yËcÚ¥y¨,öauo[tL¦ÃŽ5Ó«zˆ25ÚE“©Ý%ìa³”7›¬Xÿº¸c&M™Iž,’ÈR^²(Ð+7Ðw*/©±æ a›J=Ou¡'ŽÂT²ˆÐ_XÏ»A¡‡ëõ”ÓSIü£˜ÐO`•ŸEV­;‚(2Tv™2’¨!ã³í¢L©dš,2DkC† i²înhÒ"Z»SjG$‚ j*‰AØ5®˜ž¬Wk¬íšvñV"Kp«n‚uk6g©’rºn•¸ê[FàÖ ûknÍðÅ¡æ‘Í@zy9„@Í+—šOã(¤æ… Üð$àBjÞG"0!S©+ˆíåa­( hƒ –‹-h3»´U{º´u°"ÐÁÛØUòW—Ê…Îm —¸Ó5ÚA§ýžl¹ë”t‘²$ÇÃD— ùØÖI5Åèj؃¶¹ +›@úW ‚!0GÎJ¸»hOˆm:<2xî †¸pŠÎ ¦ž8Y“Ù}·tŠUL/×È0v¹‡ƒý°«b£%¼Ê"«š±˜oÕö-&EðNÖ¤wÏï„ù¦Â¼í½@U&ë?:-¨-!ÙÂ,×_Õ»‘׿.%K—ª)‰(s+§JKDäJ†‡’-Dœ€DhÖµ ’ˆJD—jÝÎävW+ÖÏ;u\—QTéÖÆIöi•QØ%ÈÞDd'Þ$1 #ˆÚPë­4)㺰OLi¾¹Áwnõ*#ﴳǖH‹0!¯vêG8¦ãL6åR ßÞØ¡%ƒbÚBc¦ÞI&ËŠà5:|Ž `ã±êÄõNvsô0âÞÐúx«î£ :±½VlÅ[¯ÎŠ5ËYv,¥¶¥¤RÁä6’Ä@J ¢0p aÂȪ~]Q14‚łȬ+šT“³õù©+û… _lû•Ô»:ÑTì°oy Åt"R7©œ¼«ìHBFNÞ11fi ªL$ÉIÞÛÕš-€¬WÈöòwÀauÊÀçu4ŨàýºløÁvÕ£ú%X6­“ªú!û°ÿá6v‚ÞF«“¢7ýŒŽRyÔoÔ~•™-#L€×/G*vQ± ª, s6‰\6xj‰Ò.ñJŒ|Àú¥}%YÄs‚ŒÆ¡A0‰‹ÂVNÑ)سž°(ixŠÖø·@E„F¤¤ÐÚP©½KH§ó¤„°*ûw’›Ê ;¤I›µ::I>´hîçÄ/ªÃÇp±K<¾Îbx9ÊÖ´›v²‘êÙµ3$ùxÑÉ ›æ‘ÙÍnhôIMœUÌ¢t"I»˜È‰³Âš4ï«Lô(C*äbçï£î-ìÌ,Z¤b ¦·Õ›Šê™EeµÅÕ ég‚ Db  Jè•R‚ŸS²óÁ [,ƒÚ- inDv¸Y’ñãt?¬.^Ö‰ÛMÅmûQØñÉ ¸æ®Å'EëêÖˆÂfpaãµ¶±.î½ e°®¨ M¢`º®@Ú©`cVA0(bœÑuìã …öÑ©–ƒS“øÛº"Tˆš›Œ£#™Lɸ±ÄZº¸ÐoIGåsô]å9N ·Ì¥§Û #õÃȤO“Lúÿ4ÅévVMb$uŸT-Ytn^oŠM4^I3/¢ÒEÉJ·JmëÐÆ:dRž‹[¥hØ9!¤ÙÄ"4ïV©Iû–5§•¤nwâkˆ}€ôÚ’‹*'’K©GIa$Y.˜Ó•rAVA¹€³\tX.X`WF.*S.Ò•‹ÈñZ€©„Ó7é<¦à=_îBÌ®l®Ã' ™zJÙCR ת®U¹¸6¶"A¶ÏÊǵjÁÞNæ§âs¦^³!]‹¬óèŽî´è®cøWÒ`: ™]@Š™¬ÿŒñK=UÎë×8ÄNúÌKÜ+刴ÿ­:.—EbépºeŠæ*ë^g“•· ´wPpÝ®Që×ó(E©J#úÏ&í`¬jKd? @’·6kr™ô¥CgëÎóàaQl&:/q7ÿ$='þõSÆNŒ©c¸bƒ±fSÆ×vdÒ™8 £wÿA‡0™ÄQvÊ"áô±LYDSŠeßu;÷vz²Ê”s]V¼Xÿörécâ¯JŠC…ü•pÅQCΆ£rLcnZòÒGOÆ)¥šO”÷ &BJñ$Õ}>ü|vkÑ= "e15D¤”-"):?Ìc:‰sj²ÊH§”¨KØ u)Þ{¥¸Û·N£È3 H«Ù 9Cyž#ÍRP,íz.-5™&*Æm¹žKW $àFÑŒdŽD‚´ ¿ô¤¹s‚¨<>²Ž8Š*.¸Þ¬—Š÷¡)õÂoñl¢´º0•¬§ÖùaârpOŽûcT:–Èœ?¤¡8ß@:']®R;í£« ¯HXDdµÆ/u‚ua°ærº¦érÞ¬_jmúAðîæ´9ÏÁµUoe«ÍAÿNw B×äAXˆ$ž«:ÏwõËè¹™7¼À¿üY5Y¼*¬;̺,ϬCŒPVuŠÉ`M“µŠs*º)ÓØP%TùÖ!lë)7µ€ÂFTë ØKd X;IDiö\•¢:”̦:rÙsä 2Ùs“Óµ–=ÏM"’ªlàA>“õn8·Cw'bT†ýãPÍ·æƒIœpÑÁP•0;'6‹T’ç´e%ò âl[¨Î³JJ4.D–”9žŠ!¢êr²oèØG3)·Ubµ}Õ¤]¯)™íÉ4幘ùðÜ–_[ªŒµ^k$Òr¹ˆ]¦(>)“u«ãoôت A¥Ó g„âþC•&áÞzPY4ïÀÉãnVg×k&ì;ÍýÎñhj|óþi:Ú\dP§¯·J_¯c2†úeTP#g)Ù["R%A+‹]ä é—¾t ¯DÇÖ¬¹twRÛ\”}3(;¯¨þpÞhL8[êöÀ_Ø‘H“akåL¦¦ Þ%‹âIivØsV»Roõd"…x&ZÓÂÔ%Ö›l‚Ç›ßtÈb:¿n_¢ÅûYh·ß|EÇš2$?Ëäìðo[Z+¢N.2ɈM62KÔI}¸,2£”g°$< ‘¤r\)ð, kŒ:5À³6 =z ^ÓD'ﯗ÷'i½ÃÁ $j•èå®ÂY6YŽÌª‚a6/”ýS UÌ¡ƒ†k£avJN¬hwJ+Í”V\²+3¬tâë­ÑUl'ŸSi€.ìNÓÝ“ê¬<¥FQå¬B”KçVæw»F B[÷æ*QÁ.®’eÀ×õ÷²^c¹ý‡ C,ܧ9y:óó±êôÓ:‰y®8 sóè÷ÊY^§›« ’7¹)ݧAL¹ª‚,v©Î”¹Ëò|)° êå›Ìh~ìŸ&hìš»½Ä5‘Ÿ‘ÄGá´\…‡ä+ú]ÃGñ-]äcq1P w UNÛ;À©yàä¦{©®yB¹•äò¢]Éwµ¼«n’ŽBÁïìT5 ¿{®ÍγQd¢YÑ4›M(ê· ïdܺT•ÿ ¹²­U»M¸*m·Ò5Yì4Ï7Ù¢Šœ )ÍKÆgÛ3<šÌ÷hº5fcK¦Ò³2ÍFT0MféYÙè¤?+Uµòõ Ñå’Ž•4k%GˆÜúÆñšŽ@Zqg @_ÿ·EêÊ$ø3;V‚M:È«zòq¹·ùH¬]¾6 rÒüÆ‘M§ÛÙasÑÜiˆït[×ï¶Ns(‚Ÿ#×,àêÄ”Òù{°¤®´×¯(œjHJ99ã+ËBd¡B²;ý¯¾ØÙHº?ÑIékÐ_ ~šÙ`a<±Á" Æâƒ,ÏSŠ®yû}6X„ÙàX&à ì$¢!64ƒ"Ë+i³Á¢l°íÉðSÚüŒb‰¬ULÇv ζ²^ædr,†Ÿ× 訤k±‰ÒI‡ûªË}%\½\,7VÞLŠŸTÚ¹-Ñø.[€›l&ñ’ê"èTIš{ö8*ŽãUÃÄÅ0Ñt˜»FÑê*‡%훥*Þ,%Ò·KOþ©Yú°“¾çÆñüô}~ð^»©tßÚ!K ¢°ù!Õöà=^W5]*™ªÛ›…D[›…ÜèÒþÑ·+Ôtøárü0›C8M4îMÔslϯcƒýñ3EA´(‚"^„IhD(I&Âhã!‹¸¯Ä±Ií•{=Ǧ²›°º$&­'ù;®®¢8.lY˜¸7ð)?ã€o‰CKƒ¦(Îh7àk©MÀOÜX*àëJq†’NA J*Îh\ &q³òÄ!„½tJ(Í83›UÁ9ã&HÕy4­Ïg²]IÄ÷eUÕVJöÞÉ|[Ñ¥1Y.ɵÃuª$Ù‹“W¦2—zQEvÈú hÌ%ëÝÝ7²iÂR.±øŠUø+á.Æð/2Å¿Äʱ8±“ð# ï'üpi·š(€W$ Ò,zI“ðgð/Ê&5 ÷9—±ÓHÛqqp· §Hrüº‘ä¬N¶ÒT¶Òlè¸ÊŠä­aƒµðÙàt$·üSºæžÉgÕyK³Á-¯¹C,·þ4æ`2ð(4TyIuu-Žþ» %Ö5bwõZ‘Fd‘íèk¶@Š"«¦Ö¢ðbë“ Mh’Ÿ ߉Ä ˜9|H_ b?éz=æzˆ3vƒ…HâÉxótrÞ †=p€® 1q‚‹i¾ûñfêìµÎ*´Ä„ ’4Ö¯!áì>ó¶d5”k4LÆ6VKLOl÷äáµ.Cb‚ÃJ†ðõù €)‹¦ýäá"(X“œJÈZ`ök˜:!õ ÓgZŽ,XaÒKOh4ó¼1k$>1-ÕQ.YÔ DF\—Úà ë2GÇÀØ[±OJñÝt‹²¤ýMe™­iœ¨¥#´óÌJoòDƒ–ÎF"ž \ Çäè†Óaø?xÞrž*Ü{­8Ë“ NB… œ–NɧO´7É Ðm:1·Ì!5]R/Iy K"¶mІ.wÚ¦(D›ìû;2n$…a AÁ€…JŠêšÕÍÂ!ÿHÍùÛ#hàe"úØ¢%ü±×>†aÀÐ#>)É\]üŒÏä-²µ3Þ{áì$,Å1IÒTà²|Ì¢Ð3uŒ RK+pÂç…æ˜eÎ>²|ØlïôƒQݽ d@Ä4¢ÞcÍ?àj7z‘™•ÐLÀâŒÅƒžÔà¡A ší•G`Ù f‰)>š{!ëì>Ka(†ØÞ4?ÃŽ-÷aAâb·tÑ‚¦^Ô§ '´Ñ6qÄ´=©Ä} øcZŒÎˆl‰+EòB’ÕD'á$¤§ö˜¥CX€,7æ€|W—°xšáæÅO‹tå‰MzŸªf+(iÈs-’B(†74¸8Q$7¬‰SDWÏáIæ­ ²PšdEGYN©Ð¡Ò§Â·ÈŒŽÚ¡Œ¥”Kjù a –ÆaÊrÒ` Ö,Ó¡Ö2UðÕœ§©$æx‡enÔ‘ˆ É-Mh3HGà V¸´Àü[SºX<ƒsÀ7x®NJÞŠç ÁGÙ:œ8×Ж!Nd3i2܈…y›¶ŒD'i7»¥­ˆÌ$íFì»”øyÔÁ<‰Cºâ0âGGa ©µ²¢DA‚­Ø”$•™°W£¶ÀnC‰å=2î¼À :£Ñ©#E€¦Öl`6” 9Ú# ‹-ì'4ò0’X?{R¸Ø· «&_CæìGâü|’)‰ó ¨¡-L$OÝlÇe)²óqÌ€©ë‹À(0Å–4Bà¥É.ƒìn&ã9)‡(¢”…KJ—Yî]#žf¨.»¶:1E@Yô" ²møHˆ)’•@`gÈ…BªS¿¤dÌq~È~@³#Xz0òIOrÒq;ähÂë¥ù”q›c@©‡Ÿh'Ð$èÏœ<Ÿ§Ü-³“`ÈcJËBÒ©Ç>[WAí NCóÄz˜ là óÎD—ê,ŠÀhÂNªg„Ë̱eÙàVI ~n`| Bd2H–†‚x|œN°ÄIE’ÎÏî˜MÆ…‘›P€qY•@Dre•àýF7FðTfì—!¨¸¢±··@멞Å&™‚“àd€¡p„*ûh" 5¦®Yk*m€gMÜ«&kP”^ø¯öªƒ ¤JT`)™Ö ³˜911„Ø%ÏM*Ú&a² n­É¶D®:J¬r‹‰`’5¸ÕèãÅ£¨â¥6 LäÎM‚` h@vÉe…pöaãŘR™-£¼ÆvóFKÃklñMY2š r¨0Lr`7)R>äP‹’Ì`]8Ë4gò(XÂÌL~–«MN-I—Zšó7`^À&o…Eñ("Û·d¬Ø€ÄêPGÄÒ¬ÆÂfÊl5ʤ´|QM€ VõÑP”¶4¨¤£¨½Ì@š7 Ðo`- Ç i;0)O.F£\<·T”$OŠMèûÔ…(þ%6†ˆ%ƒÿqq0¬,Åõ :Èt+*4û§©LDóH©…d°/Å„;5P„tBR¹Øh/Ä«àö­OìiRNª &™w>i‹¸YNMšZ¬˜ËÈÕhƒf%¹6AõÏðÒ‘^à)«m‚ȸöšJyªÈ­iŽ1˜ 5§¡5%å|mPÀt–å°%a¥ÐÜ@ñíÂŒd Ëä¦:>µ ‘.…â¦aB›øN.kæ9¥ìâ“Ðé öµw]a¡‰°j:ÞE›å¡W•…­ŒÌ([Qv\ÈÊ»m¶àIJâ*ñßá„!zQ´Gæ ó“uä8 <M8ŠeÀ’asNà2n„ 2”3yp Jé숋†¥içõÓ®Då€RªnHôf’q?›˜J‘Ñöe,ˆË‚im­(ŸDjœµ©\¶ˆú*‰Hb3#š,¨ë™H›†¼¤FôW*»œ!9-ůî>çdSÒØ&ÊXe ›Èå–ùlŽºqtv¤Ld!i § žSæÂs–Ø[T4m,"¸Ž Èqö•2/¶Þq·H Ñ,{IÉA"gŸ°ëÙ ¢¿Ìò«Êe®3W"‘@2‚÷W"åž´hé ûÆÝJÖº¤s“qÌÆZ9q,@éœR“ µ’¹š‹=dŠÊNE|Å! ‘ÓWØâ°cè¶ÉQº;Ç®ÉÚô™¥P­±O…ÌV1hlÖÁiaf‘IQ¸"­jÔFE‡4`ÔèWaõ.<=+àÊŠÞ¹F0»¥  vº¨P½üšC*IÉe¢ ·r( ¡¤¼µáq4:Þ2XŸ¨ôŠÇÒáÛrÅjOÑíb-„ÊÓ¦ß/#3c‰6™«Lù¡Dhó]eI «|‰~"'Ï`IËT'–qGÿˆã~RiŽúADF<Ñ$þ$ÚšÀ{¢,qbftªïâ&V{Í”·Ö’{U‚\b§9Fs_u–f/½Ûâÿv!¿X뤣‰™<ÞV ”¢@‰ûc]Õí¨„Óãf6 µqýÖ­[Õ¦ñÙ-ôÕ£â¯ÔV¥¶Î¨©µÕûú€èëõk£o·ª5³uú ­¶¬ŸâïGßoñw3ÓëÖoåÏ.Õô¬ŸTbfÝÖé™ É7ñ€ëgÕøÖµbbËô”ðÜ_êéÙ™™èÓñéIµy|\¬ß|)¦£¹È¥fä̆ÙIo*zƒÞ4;15µn|Ó̤½„ÙéÍSããSjfýÖñ­jZÙΛ™Ù@fÖçûŃÍnÙŠKŸž²g ªfð»õÎ}µyzm4ÿ Ñ^mݺÞYÞ>ñê'ÔÆÙ‰ ÖnE—Û8>±ujBl™™Ù²Õú 6XMF’Y;aþ°èóuÓbVDCxO¯Ý¼yË„˜rÄ ;=51=Ú¬sÂìÔÔÔôZ=%Ä„;ìT4µek´)ë7$›©§Ç…ž,…õ“Îê÷Š7MG˘L®˜žŽ6³~Æ×°GÊÙi1­g¦g”Þ:»nv“lžÞH ºÿ±ç+Ãæq5.&¶nqW¾VlV æ¹ÞšÅ!‘,Ö­Þ8=>3;»)RˆÉééñ“ëâëN¸×bf*VU#Ø:Ç'¦bÓg딞°.Y“غ92¨èß ““Žåî«¿Š¼ÌÌ–1.ÖÆ;7ciâÖÈpÇñª‰P£­Þ¨ÖÎLÒh‘¦Z2˜œáÄD¼×®m̉mö>Þ¸nËøôÔ”gIrbÃŒŽÔÖR›}a‘3bÃôÔ¬£ù‘!E²ŸY§×Š­žQ±ÄÁ¬‹¼…#ˆHõ•÷%·hìÖõÑz­ >(òp³j6ú'2Ö ÓÓjÒ?1vfã³jíÄÄÔ¸¯>k7Å{¥\·°q|óÌø†)¥£ñ¼ØÚÈOÎÎNÒÎGÿo sz|í¬ŽÖmgô¿ubºf$Ä'jÔTä‡×é-jrËÔ&XcãÆg¢¥Ýš™Ö{G¾GmÙ¼ybfJŒÛžxíôú(üLÌŠ)5»IÍÚ¢aGvç-˜þ8xZˆxnüz*òV7N¦v÷QôžŽ#H4I=3;éùééÈ'Fú"m5Š7~fZÍL(_ãÕä†X”"vWÊvÉàDâX<9~û¬H%Ç#·0."s§mM]ÙùÖIÇå<:îô8ùé­Ó:庹6"2L[þ§¦bG´Õš„‘™(vO¥õnz½š¢½±¯óðÈ*´^'"™N¯_·Õ]匒±ã’›§¦¼Ð3í±žœYï©ðÆññ-±ÎYÄ«œUšÎÖ(üoU)/ÉfC쓽]mvÓlÉg½mžž°D´ÉöÇÚfÖMú;¸~ýÔ†)ŒÛS“Þ26ÇÆ35íž2»qk7LoU ¼·Æ¦íƒ#µastòD”™:”Däª7Dž0v—±2ÙWu޼ÚlÌòÙÜÕþѦ#ùF®NÏn^ LÍ:û¬Ùñ”ŒBɬKLlˆP»›T„UìbK¬{fÝwǧ ˜œRÓb³X «rY½}ý=3áÆÊÆqFÿJút÷èï™Þ‘Áä}ï@ô¾ß_ØèíiôÅ'Åÿðÿ â½ÇõÃW½ÇÁ7pÜ@ôô®Îê_ôi?Ü;L× ûéï^ú»1Œ£‰<'ž>|Ÿ4Ä'Çÿ×GSÀÿðïþhÌþ^8²ç¿éà 6zy0™Ü ·{o£Çݗᙾž†µo#Ñ÷ÃÖ¾ÅÇ÷òû¥ñ÷#Cfñ `ïûaGhd÷ä>ë}¯ý~·‘w.XF=ÉûžA÷ô~oîÑ\úz²/×ÛˆÞ÷'_÷{W‹¾á÷ÃÆàL_/HbˆvŸõc˜þÁöÓ·ýîõúzÌNÉXàJ ¼>ÃhIoîiQ¢q½¨< wª#FˆÇƒX±úYî<Õ^sqø´ŸFŽ. ÑCõ¢ô÷XJj6ë¤FÿðL£g.0D×2×563ÀWè‹.>ý7LÊÚ/††Åõõ;òT¤oØR$´¾´”¡:BÞ'þ>eýñ§ñN ñÖ÷ÇÆÓg ›6Éû›¿ˆW­=ѶA[d)#Yê¶²Ñë[¼ö!Vþc ÏØz¯‘Ú Xr¯ãüå?±·§1YH/©L? ¢\ÁÂÖïž¹ÌÅ‘¥ ³;ëAiá$úYkXx¦ƒ<’?õA:«·—Oâ?úÌtŒ¾°ÇŠÏ6Bh FN†¡ïØÀ`zà™{XÕ½¶¦¦½ÂȰ­A/†ïW&N¸aìLȘ*A/M½‡¦=Âk0Ç6œb£bõ±¾2þ´Àží°­E²Ñ7„Zbd²‹5p`€¦cÒ(ñ× >°¿×2¥!w(pŸÆ‹ŒDBé_IQl¡a”Àh>¯½%»sK{žlôG@ˆBÙö:VÕϪ1l0£!Æ?ôÒ‚’eŒØ;´4~?21Q‰‰=}Ö@ñc€¹Øž ƒ¶„2ÙŠ—>Ì6ÐkN™‰Ç¡Y÷›­[™„ˆ^ŸÁ &x é™ÿëKœ[oß =ÛUñTŒËjðUbßÕ0Ž»—8 c§ÆØw£5ÒÛ4úzgAMØ–'£ô&oFhHã FxêŒmÆï€Qqô²|aOÃõÒƒFñ{Œ‚ϖiŽx0®§ÇÚ| 8ád`+³»[R¤@Ÿ ½+­„l˜ýFÃ\°—5Â:¼á˜î'Ò~–aÇÃ@Ò5l™bOc†‡]Ó³Ðó¡®gvžn6òXüD 6ÀQö¯´]àQ±yõ“ô›ÿ7€À}Zÿp¢2‘ÁÝÃÿ‡©8‡¹A ¥×u v×¶¯èñˆ?1ìö|‰³ÛÅp}Ì?˜ô¹‘dF¶0A\¸•Ãô7ÌZÐ`gOüC¯ÉÝŒðµ,Éyt™‡{ݵöÙïÖê+D8ôïÓç àEÐSšµá*qÃa ÖE°2„>fÝØ!€Bôš]\Éè‰7ªß`s3ÅÍ1ðæs˜Üäe|}xirÖ#ìtØì†èÓÆH¢ìî×h8¦† ¦×3 ~ÀûX”ƒìÉL\98nrx–ô©É`Öó!¾tN°Cö1r[ÃCï÷fkìiVÀ+ ¡ 8 #ìM@ØPl€C#¬Ç,…Á„'JÒ` ˆÑÈ Cxo4a¸ÞaÞ0Œ~¶k†¯,I“NnŠ?E@o¶ìQ¡Á9÷°öÙ2dVÖ{‘8¼6Äà1C|ö.Mb …lˆŒÖ×Ñ û9!¬×gì³;Îw ªF«ï1a€¶6cóžϘòkÒ¡‡•ÉveŽ«Û ¼Áˆ§ÄIÛ¹½’’ƒ~Î<úEÒï;®ŸU³1Â{ÝÏp!‘ôÄ¢`žzB·®D8‰JfÎ ‚GX¿–ÃvϾÎ;”ÂŒfÞ‚Xýá>ôUhXŒ‡VZNÊ$aÄ2f‡~‡4$ƒ½LH!f0”Á¤†%hPBâ(‰Ï›ö¸ ´°K·Ê³G #'“ã¢UÏ$ƒìÑße{“½½ÉqÌé™4¹wªC“N¼Ûc gdfp2Á»õFV>àŒÒ;h]4ÒÿÉD£iÁö°Î»õÇŒ„õ}OoÌ6Ùëˆ<¾ñp{ôA–0™|Ð?Ј/hÍ¡¦lÍ!BkƒÎz£Øe- .:0i1yñE‡íA¢mèµfmÃdobñ4G’Ý\òè±Ù»¿7Hß$²dæ:QLï‡ÉFoþý“Ìq žR¢÷ýQ¢=2iÍ 0šÿÐþ{["ç5| òE]ÀÞø…MZ±¤¿'J“ ìÖCëkØ3kÀ¾F|ý$êüLжÞX}ìUDIƒ½‹"ûŠ÷ͨБÅ@n­l 2 É^3È^ý1mè)r<û>kù{õG}xrÀžÝÞ}‘q L¢sOÆ´epÒÒþáè½½„þز¬5ÂN'#E*ßïO'Âðƒ–9.½î›´-6šq¿¥¶ÑÀ1km®ÛÒüh§F,•[¯'ÞL3·Åý}±ÔÉëZ‹ˆ­Ì’Ãýƒ‘6MÚÛÑo-»ox ÞP×ö­ެj(^’¥Aƒ½ŽKjĺßÛ°6nĶ¡=ú‡ñÎZô¸J½w¼÷Ó}ŽÀÀ6ûÝì‹2ìÙ7áDµh2±@äÒÃ=¤Dö¥{#Í곦Ø Ç1ËØ$Þü0° Ö1ƒŽÛ-ž`¯­Q Ïiö€0ÌäňÛ°fÖˆ'b 2 Ÿd•¸ –cŽ×b¹¼žh\³I¶z¯X'‡\-%‹%ËÃrp"£øDD™Ît‡ŨÂQ§(ô[ì›ÕÀäˆpv‹ÕÔRøþ†gE‹ÀÁô»ñ!ökŽèGœ¡#Ï+¦YæÞ}Q„š$l :Úð!Oj½¶£ˆíÕõÀ‘:[Ž!Æá“îÆDn~زؽpÙƒö–rp°¤?¾´½Càì#âéšÙ-ŽU¹1i*,q €»ëuô>^l#9{Q<«¸üm…‹†»­ÃÞ>GG ù¸h!æÂ/§Ï}“Î&÷ÙÎ?v2np†í³Ä°7\th²¥E/ïË|hrÈ•hOŸcºÑ6ƒß°®=`;ÅžØHì Ø¯Ù2Ëa76íÑÃŽ^±±¼ä"P×¶áÛöö;v·€ K’,W{·>ç’±'²ÑFÕGc?9`¥Øï Z?´o$rúÖòG¼˜ÍË^8ЦZ;ÖÛð6¨A,ññ}ÃQJ â³õ»§á²ÝÎvÑŽŽ}¢Mi :ñf*ŽrX§,‚éÛè$òJýñ‚líÚ ÜµèþjXkŒ¯Ûë€\à­Øê+I£áiâp¿ç.#÷ÝpUlŽéôÄ¡ßÖ’˜“·F‡ÕïÛˆ›3ô ÅÚÉ*âiXð¼ØE¥ &‰­¬aÑ^ñ¶÷N:•“hFœˆ·[,߯` &ÇM`$E rc¶øc85`mÐ`´ývG¢ÈèÃýû‡)ì ÚÂ\b /žå€…©G"ëqyMkñq×P„*¬i öE{Üo»!çƒE±bÿe οhÿd¿æb×Ûo©z\®±ÖŠáÀe7©6Œ‰C`¿Ÿ‡¼ã°ž´Wì ¤ûä‹ô!™ê>±µ MöCŸî_ à±ÿ€ØÓsúlh"sÊ#ãSÀìzMO`Ÿ›¹-Šs£H-ûÜnx²ß–UŒ±ìÅú1`™úà0d<À&–ëîÛ`¿·Ñƒ1øï·®ÒL]eøÒ½“ƒf6‹b0½’Û%í0ÚaÎ|t,ȾIÃÜ0{bûì¡ØŠm­t´c·È«% &ûƨ®aº•¬e ŠnÎ..ênĪ×ge}C±Ê¯´ûó¢½ö6"k²ÙûÄ»24Éý.¶FZjÔéa`-ÄŠÙ—ŠÕÊ<×€wbÄd *îëtŽhÀÎ; aoÓ#ãÁû'Üê‚¥ÒÄ ¹kÜ;ÞF‚¶eÆj7`-|`ê±ço½üªí8ö釿¢I*ð¸Âq'ýŽ‹"ß0`1ÒpT ¨ë=úO ¬{DÜ•h jQìpÅØ­¨Ç1”¸:hi< ƒ~Çrz‡â µñ½mŸëmcLã¬}pÀq OžŒž³ô}é€ïK{ݸަ߹HÄb{&Ñjm]_Õqê{ 4ú<ìó5àºà½ã#“ýN^òðžXà@ã÷;¾cïxÌ!d<, ?ÔïG$ ìúmÛqBé¢8þ8~à€x&Ã+©Íbpeƒ›j“õx‹ëò”n°ÇÓS/¶ô™LbËþ1ÊêëåÖ3Ì÷:®ÌÙV¸E±BF«èu±5n·˜Y²£WŒ±Áäç6äLtï˜ãÂy9»Úë+gŒ¾,E‹729`›]£û`jÖ;ŒíiYZþ°8F lÏ »ÏóG½¾­Lrÿˆ÷A”?»Î¼¿ß3³m,Eu´=N÷m›Ù7^ìÈ$ô’ ڂܧƒ•YËc·Ö?ÙàÎêdðÝbmµÍ·Ø:ƒÞ÷},|x쀙£D²,$m—99gózú¥Û œ‡§†}îõ@é°ëöŽ…o´àÔÝð$“e‘{ÅlsµH$[ÓcÅùÝbu°SÂOj1hpÁªï£û<¿–¸}#®ž÷CI¡ß§ãû-;‹ñÈdoɉ@ì½tþ>¨†Xo±ƒÆ°3Ú# 7kÌ离dòqÊä8 W×÷:‰Û·@[=ÒÅžÒÃÑv’rnŸ¯:6[Òðü$c–8bõ‹f—¨ÁàÓ‡ÄT¯Å\öŒPèÊT™h G.Qx ·a&ï ¿emqL2ר'fï‡Prvö:8ây¶^W(û 0ûÐky,p.ŒïñÔ7Òð”É §èø®8!ìüÓù§óOüÛÃ:ÿuþëüç†Ú ÖwþìüÙù³ógçÏΟ?;6óg”ÔFÿÝ´fb[WüÏšÍkðuº _×ÓëÆ.÷û'ms_ù8ÿ¼IzåëOÑëZïs>~Ý6÷u£÷¹?Î1]îuù•¯;ìÍ_z×¾Ñ}¿a›{}þžçË×÷ç·eû9ï ¯ßß'‡_ýu¯Ëøž¯Çãò¼ô÷úk½ã¦2Îß¼Æ]'ïïßï¼'yßûã=É;Ï_ÏŒw¾?O_ßø:þ8|,=a½ðçÉïŸäïË߇¯Ç¾þ®ñÎó÷õ×ß×ÍkÜã²ôÙ_¯¯¾^ð÷,WYŸgÙ‹¿ß|}_ßý}fýòíw£÷êëÉæ5îñYó÷÷Ïóõ绪Ë=/KßY®¼Ž)ソ_¾>øóçã};âñ|yñuøs_ïùúþºùxž¯/'~Ïóæý¡ëwq\8Œ>_B¯‡u9ÿ¬9’^w§×Çàëêûé=7ê½?À=ž¯c®{´÷=˜{üšoüeÞø|<_o?z]ì}ÏŸwÓk/½öyß7èuÈûœÇçùÓ<Öô{ßózx>ÝÞñ<½K ^ù:‹½W¾NWÆç<¿Ã¼ï÷¾ßÏ}åÌñ<¬ñv÷^y½|ÝÇ„Ï3r<<<®ÿO–¾¤ŽóõË׫£Üù˜yà½.¡W^×b÷<óúï•?÷ôŠÿ1ãyó3óïñ¾çù,ö>÷×Åãñ¼ýyúzì_Ç_'¿ÄûœÏg½äùñø}ÞzXßøú4_Þ³ËÜï³äâ¿çùø~À÷?¾¼ø•í?cÌù‹½÷K¼uìî~nÞó>dù=>žÇÝÏ;ÏÛ¿5<>ŸÏë÷÷m?ï<ßO%KÁ¸àÏŸcqdÆ{¾î€÷Þ÷{¯Ë{ïëíîÞ|Ø¿-v¿g9ò?©¸Ùã­‡×;à½÷õ‰¯ãëÍ‘Þy¾ŸóõŸç»Ÿ·_Ïø|Ç_Çïuwï{Þ7Ï×KžoÃ;ÇÉò—îòÒqΗ÷Þ燻ç¥ÖãÙk*Îzó÷ç‘Úþ>k>ñŽ÷ðP*ŽùqªÛ=Þ|¿*|ž™o¯w<_Ï[_Êî—xDZ°Þdé¿_ì½zû•ŠS<Gùvëï»?Ž/÷%ÞçK¼ïù:<.Ïçhož¾_YâgôÛókÆO¿ÒÅqáéWâq'܈¯'nÃ×§Ñ{þþù'áë3ï¤ïéúO[“ñžÎßJŸ?•^Ÿâ]—ÏããžFãoáãèõ©kÜ÷'xßóužA×}:Í÷Ä.÷¸“¼ëø×7ë y<Å;þyë{öw]ϽÓ}ÿ¼+½ù­q_y_Ì>ÐçÏ u<}›ûÊûÉó<Î[÷ÏWºŸóq'Ñç[é¸gÑüyxÿyŸ·ÒçϼÑ—¯ûlz=ž×u¥{<¿÷õá9t<ïûŒw<ÎïŸî}Ü6÷¸§n w2¿¿ÓýütÞÉ'ÑçÞx|½¶¹óçïŸÍãúó¾ÑŸ§·¹Ç±ž>} O¯¼?æ8þþFwÞ¼ï|£ßWz¯tË›{Š·.–ÿ3ø:Þ÷þºxØNŒ¼h>'Ð{Ö7³ÏüþNo›û¹±wž?_Žc=fý4ïi<Ö ßnN¢ëð>óñ,—Ù5îº|?Áþñä%îºOôŽ÷íƒ;‰Ö«½ùžì­Ÿ×s<½²>¹Ðç3<}þœ.o\zå}çq}{£ñº8.œC×{ ÍçlZïÙtÞ9=øz}îõôýb:ïFïý­ôz?¾žEÇ¿dŠÞÓç<îÙ'yÇñy4îÙwÒçtÜ9<>ÏçOãžCó8§Ë;ŽÆ?{»ûž×÷¾î’ðüùø »ÇEó:×[×ù×»ï/XâÍŸÖu6s«{=3ïmôºÄ}5óírÏçñx]Û®tç½?ûF÷¼sé=Ëó,Z'ëÅYtþ¹Û¼ùÑ8çѸ/Yì®ëÜw^<þKè:çÑq¼ßgòzù:KÜóýõEóeý;{Êýž?ÖyÎIôÚå¾?^Y.fŸé¼—œBãñ÷t]–;ï›Ñk>ŸŽ?‹Î?Ó;ßÈ•æÃûú’íÞ:ø{^ß)îøf¿øû)ï|åmôf»;?³ŽëÝù±üy=f_ø|¾î÷<¶[¶s–·‘ ³Í¯¿Ÿ,'¾ËÝø:ÎÈÉ_?}~ö•Þ:hþgÒõÎêr×göq»¾ó¶e¬{1½ïrÏ7vGë=óVwþf®ôÖÇëâïOr¯{&ÍŸíÇ\g;¿óNñŽçuó:pÜ.Š >¿×yí¼v^;¯×]óµ‹ó…3ðMêõô;éõ~ïóû½×½÷·f\ïÊ‚qnuߛﷇ¯kŽ¿ß=/õ>c>…ë¼Ó{-š¿¾wüé×{óóÖk¾÷׿Í;ÏÇ{_ôjƽ5¼ŽÌ÷7zçßï—šWÖzüã2¾ÏÔ£ûÝ×L½¼3|~j=÷g¼÷çUt½Œïý럱$ÿ¸,½Ê’sJ<ÎâüóO?…^¯ÏøÞ;¯¬Ü3×eÆ8·z¯Yë¼3|œ™ÿ­áq‹ô»h_«ÚÙé7–[gi½ñç}kÁñþëîyf~WçÙex$:ïìz¥ó8/?—ƽ€Ž;¯Ç=žó—sh\Ο8o| ¿„ÞÓ÷管Ïéº/¡ï™çñc>ãÜíîõÌüi|Ê/€iív•ÉM^L×c>äÜSÜõš¼•>g^ä÷þžæÇùïË97Òq<Þýøº×3EŸó+¯÷$|ež÷á\ß]_²Ï<Ï.÷zœ^¸Þ‡áñhý&/^â¾?‹^ Ÿv'͇çÇë¥ëp^Íy1Ï—åÅûÂy-çéçÓúL~ÍÇŸäÃ×½Ñ]Ÿá)xþôþÜ÷øóOñ>§uð~ñü}¹=¦ù±>³̾­qÇc>‡?7y;{’»~5|~½;žùœ®s]רÁõî{3ox¾÷½ù¼ _Ùî ¯q§{žÑ?^½ž½Î§q™×a^é|:ŸõÚð{WºŸý§ë²>þjŠ^o¤ùÑçF¯§óx>7ºëçy›}áñè{£wºÇ± /G×=ŸÞ³~¹ÐølçfŸhžÌñ~’»^–‹™¯»nã'iÿº8.?ÕE×£ùûÚ†¯Û†i\úÞìÓõîqW ¾Æ=žíØøQZ§áóh½Ìÿ{¥;Îù4OÞ'öëFþ=îzÙ.xyçòõï§ëÑ+û1¾.Û3Ï—ë,&Òqç]é·í8ºÎ½çë\ïžoƹÓ}å8Çûjö‹¿ß殇÷õíú¥‹Ýë°3þÚ›—‰Ë‹Ýy¹Ñx¬ß¼®»˜y\IÇóy4ã÷èüói=¬Ì、õ°>wŠû½ñO4/Ö®w°]Àó¢õñ¾óuÎ÷ÞsÍØ9­‡ýιt=#ÏÅÞykÜóy_L\¦ùr\ñõ“ÏóçÉq‹ëA¼æ|^}nüÏ¿‹>_â¾7öÇã­qÇ1õZŸñ¯4މßtSwáëÒu. ë°>Hã±¼Áóáñè½ñ—ôjê‹é=­Ëìßî÷þ>|AïM\âWšÛÝù·ºó0ñ›ÖmêV´.ÆWÆOqçÃx“åÄqÏà]šÛ?ï ׇXÏ>ðünu?7ø_üŒ×éâ¸àß°˜^¹_‘ûȼ~Ms¼ß·î÷µuyïý>G¿3«¿ßï[å~+îïâ>5êë2ë= |¼™O{^j]xŸûýÀ‡{ŸwyŸûó÷_{Çù÷}ø}–Y}˜ÞúÍ<øx¿ü>Å%Þù<žw}³|\·w|·¯ïÑœïõÝšûYߺ½ãý¾<Þ¼.>Ÿç“5®×¯—Ú_¿oßßw_/xÿý¾qÿ<¾žß¿Ü•1_/ü~N¿š¯ãÝ7dö‡¿÷ûþýy°ßï'õõ#«/–÷Íïë§qR~Éßï‹õûÊùxg™wÏo‰÷¹ßOÌ×ç~Ï.ï|>.ëþª¬~_¯ØØÏ7Kx]~ðáÞç}å<ã'éû.Ž ÜËó¡×Þ+Ï÷hïs~ïÛ÷õó}c|ß›oú¼÷üÊóòï§)ø¼á­·×ýÜŒÇrö>÷çÍëâù³ñuùþ7Ö·ïxžç€÷½ïÇÞq~¼ãýfyóxcÞx=ôºÄûž×3ä½òuyü#½ãy>¼/¾žðúVÒë°w<¯çÁ×ãñx¾|þˆ÷ÚëÇ×9*ãû!ïý‘Þç˼óú2^y|__Yßx,ÞÿUç±ö^ù<¾ÎjoÞ|·á½úûÝ㭗߯òÎó÷‹åÈëæõeÉq¥÷¹ï7X>=Þ«/_¾>Ïg ½²xÝ<_—çÍëñýûÓ,»ö×Éóæñ÷>çñýýà÷,G¾.Ãòô×áï—ïOüãxó>çãY¾³~øã÷à«ñ“4Ï.Ã#mÇã Ÿ°˜Þ_Oï§ðuÛøjò”5ôJÇŸGãù¼á{è8ÃÏÑù†áóéx?_gžù3“gÓ÷ÌgšãiÞ¦Ž°Ý}Ïù?¯ÏôÍñzxþ‹Ýã¶@×áùÒü™ßboÛYôžÆÛFãÏ뺒^ésÎO ¯y Ï×¥ã̾úçóu·¹ç½ôwf=|>göõ~|5}‚=t½žÏŸó|è<®?ñ:X¾œïòx† ë˜z ÍÃôíÑ{Ÿ×0|_g;Gç1hÖGÇmãuwÑçWºï™ßàã}¾Ïð%§¸ç^í$:ŸŽ7}—¼nš?×'ŒœNqß‹ãyÒ{³ï÷{óæïiž†Ÿâõò:h}>Í‹õì|Çì7ϼ0ïç…t=#o—¾ßv­û=ÏãB:ÎÔ#é•õÛè!­‹ã+_Ÿ¯Ãç=YLÇâŽÃëöõåÂÝÝõ}¾Õ]/Û¥‘ Í‹õ–åÄúÏxõ›×ÇÇý¥óYßY_·uyóÙîÍû¹ôþzúþïýýîuYOØNͼh]f¿ù:ô¹ÑK~¥y³þð¾óx¬ofŸilfþkÜqXO/°Ý™ºcü=]‡ý·ñ3ôþüëé:ô9Çqã§è8–‹‰÷4oÖ#'~ÏãžDס÷ç_éΗçÏûÎzcì‹Æ¿¾çýb¼Æëe{æúæ6ž÷6w¼ =½2vFzbðÇõ ’cÇŸçòùsgõë&/_ì½özÇgñ®]Þq>?éÍÏçÍÇ|¾Ì;Ïçù—xóðyâ 9Å.Îxõ®gŽçyøÏ7ðyø%î÷þzSÏsÈ?uŸþï}—w<ïç«þ|üñ|¾Û—kV= c^)½òùl~Íz^_·Ç›·ÏƒûÇwyßó«ÏC{ú”)ÿ:>ïÎãù|ðaÞu™áëÕ2êR)>Û_¿/¿îÓëçóé¾]vyï};öëþñK¼ó{Ÿóyž2ëž=Þõø:Yòõê9©ýó_™ïc~Ë—c–íò>?Ê{]âï×¼qRûç×ϲê:éç“`\x}ίþs%×ûßg·Á{õç÷þu˾ú×÷ç•õ>umÕŽ+º.~ì¶üó[½^/KnþyþñYãú×óõ£hŸªêÿyÖõ³ôÈj‘>TÕìëfÍ·p¿2ŽËZgÕëÔÕ·²úPvEúTä7Šô"uþ¶ð<ý}Í:¿èúYë-ûy‘ß,ë²ö·ìçßw™úÂõø¹É'¯Ä×/Æ×3Or¿7}‡KèsZç9Þùæ•?Ÿ Î|ˆ9îzï¸5øjêÛÜ÷Ì7™ç ð|ýëÜï½Ò÷¦Ÿ®cøþþN÷<æUùý‹éø³½ãxÜ3y|žÏ­Þuùsš¿¹o„®cžSA¯¦ïð~÷sÛ¯¡ë÷¸Ç™¾ãû½yÑ{#Oo>fº®Ùž×6ï=]—ïHé—¿ÿû)šÿtÜ­áó}Þçoê0þëýî+÷ï1ü"z5õ­“¼ó®wÇãúHJoý÷4΋i=ÌkgêûõîüLß"Ÿ«wþ”û9÷[¾ÄûŽ®kúko¥×Sèó5ÞçSÞúñz]üŒû~ò¤+7ËSùØÝ—ŸøÐ?¾iõÝ|þ“w?eßÂû¨ï;þýª·mÎîÓ¾÷¿ÔC'oy[ò¾÷¦žú°kÌû{Þö÷Ǿçú¯¾çù?¿íä¯ÉâùÒºï¹÷µ‹ÿðèÿÎ÷ ‹‡OxÎÉyýÑÛ·ÿêÉ>³¤qË—®¾÷WǾfÿ‰ËSçß³ß'¿òÜõŸM_÷¬7?⛽=ýùu?ýÍ·¾!9ÿÿþÙïM|>ë‰÷ü¿§XÏÕ/;â9›Vß÷þþñ›=oZ}Ïo¸õÈw%ó¾÷òý_ýÒm™óºï'Ÿ8çû÷72õ!{—^÷³ÆŸÓë~ÓŸ´÷E›²Ï;cÕ›W~áéÏi¿yî[3ò¾ß ŸwÅ{Þþ©ï—–³ÿù½g6.ýâƒ/\}ï-/ïûÐng¬¾{ÙA'œ{ûå«ï[ù¶ËŽỹWßû¡·‰×þ([/¾vÙ·~ñ×”÷îo<íy|ÿêûD¼ð/¦Žãõðû{Ÿ¶çä¾ßûoóù½'¾ð‡üö§«ïû¯Þ½ßºöãÙóZýøEŸÿéê{~÷‡'Þôìç·Üï;ýÆÏýíÒÞÕ÷~õ’W}ÅÍf¼¢óî^ýúŸ­ûÍl y¹r5û³ô¢ßégßMÖyÁãn~í?°úÞ‡¬ZþŒáï^÷ž|ûΉ‡¼aõ}/ºúÑ¿÷®ô¸¸mûxp²ÿž|Ö\uñù?¹+²³{ïüÝWV¯¾÷ÏíûRײèýcÿýÓNX}ßû~¸úÓßù÷”Þ÷Ø¿¾ñ’.)Ô—{7ýí®ý÷¾nõ=ß;ô€óÏM¯ãÖ[Ÿóš.¹o÷þü¯–—]˜Ö‹ëÏxÏ©ÿujÑ>uQ\èþÎ þé7,º¿ûê{ŸûÜm½ãÝ¿éÞpï{õ-O8óæƒöðÍËw]û¢‡ÿyI÷{N¿þQ_øï»üÞ;žô¬[ÞØ}Ú©¯~Ê'Æ?¸ô¡?yÜ’ ^uýÒw\ðíó~~ú»ïù±üègî¾ïÍû}ðëŸ|~÷UZÿÔ·Ýò­¥#ž{ìå_¹¥ûží›>ôµÝï>uåa¹zéã~ï·øåŸí¾z¿ãýÊYÝߺÿ…/½ï#§òqK§o>óêÕ‹¿|ÄS·m¿à©Ó+»_ô?úˆ§ž²Çgä/>Û}ãÑÝ÷!ï:òñ[¹¦÷¦/ÿaÙÀ™oþí]Ûïþöºv{ÁG~cæqõÿüðï§}ø·fß¾gä_þËÕG^rÅùÿô±¿¸ûÆ·¼fûñÝ[OyÉ[þõaÇv{é–í¯;å3G\;pòÌÈÅßì¾æoWÛÞpÜáÏÙçÆ¿~rÝ»ßýŒâîîo>áék¾ôõ™ëö;ü#»}à–{^ð“îwò¡û·ê¡Cïë{ü¯W>çÎ[»»o?÷¯?Ýó…Ý7pÞ¥÷½üåG\{듯ûù¾Þ}Ûÿò‚Ý.|ÕÒ%ƒ÷=ä+xÉ÷œ7ðÅëºß}ÅO?ìàƒŽ¼ñÏÿ·ÛŽûJ÷go~Ëÿ]4óØ¥¿øêó~tíçßÉûÚ}ÃÓºª÷ÿî¾ç½túÚÿ=Bòô#·œú±üË¡§w_»é3“—öüôˆÆƒÿþ뺹ûª_Üð»×N½ôñ¿^ûYýûw¯è¾úšOÎŽ}ê}ݧò·™§ô¼¢û¶‘ƒ/ë;jÏ¥Kî¾ú'øÀX÷ÕoyâÝOÛºtúïGL}ú‰—t?åc®½ü1ßëþ<¼ÿO|ÅÒ=Wô‹#¯Ú»ûÆEW_|×Oï¾wì¶÷›ÿÏWŒßrÈ—oèþöñßý¡XtJ÷5c7Þ÷±W¿³ûÓ?zÝs~¤ö\ú³‹8òªÑ'vç×ÿzÓGóÔEò/rߥ£ëÏ”:ê3G¼÷AÿûÕ3>wéGOþÊ[¿ºù›F~Ÿ¹ýÿžù«îûî¿ïÿoŸ_uo}Ä)¯zÉÏnï>õ»'\sâa|Ü÷¾øÌ¯ö’¾îï¿íg§ì½ùÝßÙwû«ùÑSºßó˜3ß~ú·–w_óýkÏ?ö/ÝG|ñÛo8ªû_Ž9üÇËo{éSNm<á‡ï⨿ì¥nì~v÷Õ9æÆc‡ÿÆûÒ}ÜÇžsÞì Ï>ük|sôÃ{¿¯ûݯ{ÒŸö{ç½½æC{­9ìü£»o{á»~üÓ/ÞÐý“—=hÝÙ§.ûÐØõ=ë7Ÿ]úòÛ>ü™=/ê5ç}û O{ÂïÞý¸îß-{üÔïþ»îÛþûÜO~ê UGÜô€©Ÿ_ðæwtß?ùå÷>hé9G\÷°Gÿ×YÛÛ}Ão_õ¥OÞ½¹ûšÿì-w_ôó¥cOxÛ |à¹ÝŸùÚ-ç½ï_ÙýÕ»î{ù)Ÿ<ò˜SÞÿ›g}ãEÝŸYuÊÖ¥¢û3òOÏ}ót÷UŸ9ì£Ïºí5K/úÁÚ­ïøÕs—>ïšë^󟧽{éCþã{?ÛtÆ×YïºO{åWßñ€}næë.zÙaœ¾dêðßñÌ+÷~ÀáyãOXvìÆ#|éÃ^ðæç¾¯ûÞ—_ôý‰_óþ˜ëиOøÁ³ºÏ>åQ¿í^¶ìÕºë¤'v¿[/›üáÿ»°û7tñ¼ÛÔ}ß+øøÛßÕ}ÿ=_ºòŸ>¨ûšC®;èí¯ûk÷íûÃÆÛnßcéׇ_}Ö/¦—ñ8G,;ôÇ¿~Æ?vä5/¸éÄÝÞ6¾tä¥Å?¸pU÷Õ_ò›ž=p%û%Öï#_¿ò¡ÓǽôKߥ×^øñÞÔ}Û…_}Ï‹¯~w÷i»ÿè ÷ü‰Ýwÿý;_öȇwßþ®™SNøòØá_ºÿØ;^-.5ö|ÿxÿó¿õº#÷úÓÏ#Žú>ëéáw~ïÄ7Ýü£ÿ]zÑ£ÑóðO}bé¿n˜¸ðÞ²ôö\ûÌ}Éø/½ûqÐ ˳{Ë#n¸iø•Ïì¾íðßÞzÕdw÷wÎË“¿øöG½tŸoŒ´×‘[?ú±=¯úä!Ýߢñß½öÊŸ|ýÈ'ù­Ç¿÷ºÝ^þåîwÿ~ßœ¾ßC»»øÇüâ²£ºïÿÇoŸ}ñ[pøßðüîÞû½¼øŒ/]²µK½éªMG¨ÇœþÂK^qZ÷§¾zü+ïüÙŸ–ÿ~ôÐÆ§ßÓ}êÐknyúËyŸ8.¬é9ð­Ñ?o[3úV|]» ‚Æš#O†ÌkßÏðu%}¿a+?òá¾øŸ5C7Çÿ|Õ¼çëˆÿ‡ç;ßՇ߯¦ïýóýqøx¾ŽÊ˜—é÷Åë]ño·«Ìõy¦š®Ëïy<ž÷š»ßûóçýâñùúŸ?†Ž_w:¾çùó¸üžçÛMÇóuù<~ÏÇó|y>¼<.ˉç9â­KyûÈ×gùðüøxgü58σÇ1÷Ð<øx‡åÈßó+_Çß_ÏÆ5îçY×áqüýóåÎëæñx¾YïùU¾ÆÕ×¬ãø•åÉÇñ<ÖŸìê/¯¿÷ícÈÛ×µÞõýýçÏy¾YóãqXN|ë-ëÏ×—χ÷…×Áóa9“1_Ö#ŸY}9û~ƒÏãïù½o÷þ<ø8Ö>Þß¾.Û7Îïy¾½óuùõO~<ï§/7>¾Û;õ€ý“¯×¾?åý£ñŒŸœÀ}é*û<Õ»Oý¯SþôÉ; k÷ë=O>aúçËM~Èëûq/ùŸ}O»o¯ÊçùûÊïï­y~Õ×_ýÛÕ8à'Îݾ|ìöùÜùŸNç³/ùé;ŸðÞoתuÎÓ“ß½a±úÞ©ïÞõ³/|1ó¼{ßþµo}v7W¯_tÜÝh¿)¤è¼_ú¦OnzÓî«ïÜ·ÿÁ¿šs{»çQò—Ïüþ†öÙ}É})z-’wéùÔôsýzïpLL]à~¼&~²‹ó…GÒq'=cÓ7~óÞ¿­zÎS.⛾òïkžŒŸóï³®¾ý7]z‘\½æÆïÿåëVþúÓkný·U«Ïzãÿñüóÿwõ[1n­>÷ý»7ÿåKV=û²=oZôÌ?¯ºó?VÜ1~›ZyóÓö¾çÑ{¼Ðô¯.Áë˜ó/§×oc<^=úÝÍÞ²Û‰|ŸÞª;¿ê/?øÀUÿâ¾ß_!þgÍfo^¦ëÒøf½ô~Í~tÝ?R¼§~L~¿zÍý¿ÜóË9qÕÉG­xýð+^½ºëoïyù¯O¾{õïÑ>W~õSØ{ ßßÈûµúŠ×Âx»êñû/ýÁÑ/þÔêÞsÌë½Ç[øøU_¸kô0ü¬UêS'ðñÿà~'÷Ÿg¯ºóCçïûÍÏ<`õÇþó##Ç-~g~—õñ¿®_ô”›oc½àû7W~ðÇ_Zñ¸áÕFß>±ù×/?øÓ«?¾ñKï¹ï_ÿõbÕOŸµÿÌäñ×ñõV­?gèiîþ_#wÖ—ï,ZyÊÕßY´ú°áÅ¿xù¥2ûÈúÉïy?àãµ^õž3ž*N}ÈïyßÌq‡>á]ÿrvã>nõÁϽò›nØÎϳäãŒ^/ºòÏßÛý_åù¬¼nÉóñŽ+¿Ãëe}X}½¾í7¼8Ú:³¯ÏÝ[þðŠ/=hÍ©dÞþ¯9õ$çêw=æm7ž´|õcß¹ièsCÿ¼zÉšÏÞuýªCÍ{Ò‹UGþãȧNüßìšS¯ÄónúŸo¿éæ÷­^ý–×>éFŸõ”U{þù!{øCyœ5"9Ð:Ùî>Ñ:y>«6ümÏ·ßó›ãÍuYŸÀñWÞýæ­§þêŠV/¹æy:ãÂ_uÍ»/üÇïï™^½úŽOtàIÿ»úã(¯5›é¼·_s×ÌŸn¹ÃÈñ-ÞôäÇ>õÉÈᯜ·Ð¾¯ûüóN:ù½‡¬ºéàí¯»ý›W?æ¶¿\1|ýÆUwݽnŸÛ`öq É•í’íöß|Σ?7q²±§®—}料ý¿ÃþkÕM¹ëÌÝ=|Õúñ•ï˜zÑ«î<ç–£Þ!¯Zõ£?ÿõ[_=ôøUŸ{̾¿êƒ7¬zö1—vî÷oX}è¢G\0üE¹f?ÚWzÞíª«>÷Åüñ9Š÷kͩדÝãüYVÞrìU}؉^“^Þ›ý>¿zÍ9g­{Ƨî\ý±Ϙõ™ýäÊKGîz߇.8«‹ãÂñdü»A³ëÐoÎ܉流û±æ8Ú_~ÝüÔ¿Ù/áqüúdZ·e ž¯ï ã×¹Çó÷OžÁãùUS^Éçñõ¦_€×çßoâyðç|¿Ÿ¡xÀ×=žÎãÏy|^ü=ÿ^_—×ÇÇñ¼Ì<ßžÇÔ+Üyøóâã¶|Ïc9ð+¯—çë¿çñ7ÿν>þ”.wŸÍñ¼w»ëb¹ó~ñº}9ò{ž7¯“çÅûçïëËûfäâéI–¹ÝéΗߛuxzF~Æì?ï¯çxÿû.W.<¯‡_y?ùx¾ï‡ù7O¿ýýáqü}àß_ãuñ¼ÞÑøüÊ×õ×oôd«»¯¾žob{þ¤»?Yrb¿Âã;òô…×Íë5þˆ®gìúמŒý‘½ñ+Ïßø'ϯù²>Ѻyø•çÅòçýöý€±×Œóøó”¾ò<é¸'èù±;Üyúòâß äïù<ž¾|y¾ží*â‘î[û•ÿx›¾[˜çÏ×ë}›~þ«/Jú†îî}ñ_ÖêûÎùþý=t'ymŒVÖÝ“ëxý!Eßßëñ/÷|ë²–½µ‘¿eð5÷m~ÿÛþþØkÓŸÓºÌùö÷«žÏþòãŸ=øu'eï_Öøc¿ýÚeßúeÛå=_¯¼÷žò¬»yÕ—RûŸõêóýùÕ÷÷¤‰ùç+ŠçõÆßnßG&ëË)C.÷Eh8‚ĭ׋ ¿pß?_ÿƒ—þß‹“uÝðÑÿÖ·”Þ'lÜJŽ+É;Þ·ÿçäóכa·æûŒóJŽßEqaÅÓ~ö¸/¿ì‚‡\ÿǦN:pôõ}ó¯¾û‘+Ç–?üôG}Îî+íR[¶rÕŠ >sõ=_ûðé£Ü²þÔ—|rõè~_é~öÑ7¿nìó‡^±é ×=z*ž7zÚú?üAÌ~wôƒ§Ÿ¶ì¸Í¿}Ä—úÌcß52:ýfý÷üeÿÑ_m8ºûUÏ}ýá_ÝšŸ?zê=—¿ç€OŽnþþ»üÉwýꢟ|íÅ/jŒÞ|àA·üáS#c{1}Ëÿ8fô×Ïüâ>—Ý5úȽðÁ'¼ÿ‡cýpù“O8æ÷+xê ý§Æ}ùß¿öÑï›{Õ¼iÝc®Ûó´½ã_G®{ù;ò›?gÓØúeßøÁ¯ýêß>ðµ?õ¹bõ=_»jÓãž>¶þçï#>7úä%k÷ŸFóÚçêïu=óæÑÓö¹÷g<õè1u׋ïûøŸ5òãkù¹×5¶Ï£vÿnêâÑë{ÿõ²¼âE£/zƃùÁ“?ú†7-¿âW£·Œ,Yü¨§ýll½øåé¿¿½ùɯ{Øþ¿øÓØ+/øÉÛÞ'îíÒÖC·<ãÍcOÜpXϵ±±'ÜpÊ¿|ñŒÇ®xÀùÇ/=«ûßF7ñŸÿï¨ËxêÏÏúÀ¾wŒn¾à+ïyб׎Þ}ú—Ÿxx×ìØ5‹NÐÌm=c›^pÔuÿ¶æù£÷ÿùŸÛãKV\þÌåwž~ÇïF¿qÉîïýá“ûFï>røiÿ÷Å_Ž}áøþW.ºøc'¿áïþ·>=zê¦ qú—¯XqöÕøúeËž±bÕ{ýñÓž34zýÏÿä¯>üƒ£¿þêkþþÕ n}ã_ZyéžçÞ·ì—‹/?𣽟yðEß;¶wåƒO“çMÝráè̚ל{ÿ²ÿùñ×¾û§Í=bôÒÛÿþó<ôG£¿ÞãÀëžõó»Vœ÷‹+?÷=çî·làÆžN=íO{Þ|­ü!ËotºñÙÛ_ùÛ¿žú¶;ûÝç}{t曯ýÁ~çèÝoèzÒà£>:ºý¿ïÿÐÏ.»côTÖ§®ÃöØ{éÓÇznyÄ?ýöü÷^ÿ½œ»|Ù±å¯}ü§ïøßk.úÑOyðƒF¿±¸ûñÿú§ÞòïÞ¾å?ž>öó}þ°nÝ·Þ2öªÇø¯»‰g}þŸ½h÷—Œö½ø£ÏÇó–®8a‰xƶ{ï{ù¥ã{¯xõOÆ~þ‡W}ï!—ÿdlÙI½{Ïgÿdôºÿî•oùÚ#Vœ÷¼Û^øì¿¯8û®-ŸÝ÷+‡Üÿš3Þðêýôïï»aztàˆ¿Ý¾ø„ÝF~,öí]qÙö·?ìÿŽ»qÝŸFó°UoÝ¿±ïè~wýìšß³uôîgýÛ;ûû÷¬8çË/äCÞsÊØºùª·43zÚ{ß“x×»GõûÊу]ñ©»ï¸êC®aùŒ}~Ùmç>øì©±‡}ê¬çþä•wŽüÍ{>üž“3ö\ß课÷ù¿O|á¶Ñ[î}ñ­gþúcgë.ÿÙ¡»ýeblÏŸ }ûŽ×ÏŒn¿ã´—Ýñ­ñÑëŧo>ï1£§<û™¿_}çÝ+·Ý|ÿ§­¾d´oøkÿùïY6:øö§]ýæ·Þ3ºù''ÝrØÔçFO½ø•ǯùÜz–ûŠ%ØóO‡ïö†±:ååGô§ïüd·g]óä+þ>zÙùÀE·û›__8ºÿþÿtĹ·ß·âܯò¯gž÷ß+–|å‡÷´ò¨ÑÓ_ÿ_?zÑ+gÆ.]ñûU'“ýÀØEëO|ûà·žñ’Ÿw½÷…ZñGô +þðÞ?¿ÿ€ß|htû웸ê±Ï?éSC×|ûè[ö|Ýû~ýcËß»ýãÿ}ß]cŸ¿xßͽìêÑi1"tçèØî×ì÷ÓCö¹jlãï?ðºo®S´_ûãüV<õtÅ'Nèñß|àãÆöºû}<ù©ß½nÉoOøÎDë û‹ÑýþvíÏ>±¬{ÅÓšºåÙ¿ÿéØºÿ<䙇>öVã÷N™Þ«ñÿ†Ÿ:ºý¤×=è­/þϱŸüÄ•«oyé~ÛOÿûØ+zÜ3ÿüuã÷¦·ü´K^ùºÑ[^ô†©¡×^=¶áŒ¼ëµœ¹zëé/]ô³¡Ñ™ïûúϼpÕØÅ:öÀóŽyìŠOžôÑ7Ÿ|ÂïÇöøÀ+?ó¾ï-;ö³ÿrÊÊëîÛý¿¿¿©ï ·öm¹é­×¾î=c{<ý/÷¼ìʳˆbÂâ8.t=¸kèuR ¥´Šþ_êø%”ŽÿŠþG}´R2þPËøø\À»èO¡„ŒÿÄóãwÎUµ¹ª¤«Æïã«Â˜BÄÿâUál*ºªŒÿ–Ú¿*Í5þ;¾*œ+q®GëÆ_Ås„ J¸>^Þg\5Z®0;àÌUæ*q®:4WEW•Ö¾Êd_%~žì«*µ¯Ê•–µ¯"5WMà a³ùªñ\Uh®™: ãÏL&>W†æ _7!­øüÒùx; Kí€ÊÙ¹™« KK•³mY_ö<>„bÍUY¹Šù°­ÄØV  ¬ ¼ÅÂ\…™+ìúÐô\£ókÌ“æªc»ƒ¬«Ê¹Ø`[í—Vþ\Essm±­©Y*S³ªÌµù¸%Y³D™¸¥<Í:Úü£• Í5¾*ÍUeÌUÆ×Í›kúª¹E}Íj],˜›¹†®*í«êØ t¶Õ:¤iã¬ûvÇ­ˆT)¯­çÅÎ *fgZÖbu%½I½é\ô&½Ádtu‹•Íú´´ªæ0s‹]â} øakVV,ˆ¿ó2×¹Æ.!iiã_uâ_µU?6·Z†àUv3¯üÀœFnUʶDÓk4K´È´ M~”öU—Ý×l¯-êë+Œ0·~àè9—Vë¼K‘ w‰)±ùŠ0*¹ªšÓŠ«j=?>«þ¾æy—Škxí9¹j ¹·’^;å_u¸â¹Íâæ µTZÒ«ÌŸ+RsU³cíÄØ¶Æ‚ ½…²ãrV—ÏeÆ/†giÅGCÍÈäÜñºEÂÀßq=JÜWÑR‹­(­Ò\Æ\c—ùË·jïëÜ`—9–l‚6ˆ(À@Ï5Ÿ57q«6C¢+kV­X0÷¦u¹¡ÑåøWKZ²Ü¾fZA‹u@€g{¹€hÌŽus\†wÕ9ðYÍyíx~!>+¤¯-ªm´\Zs·ªòÚªÊ\ç&Ûˆõ¤ÒŒ?”6ÒT¡¸ÕrœU2‹ciµÊk/ |kîuª¹­ã ç½¥®ªò®Ì çÎ#¨U3š¿«6 »È\(²­¸Ô§ægɰÅÎwu§6§ÙÚ®„9±­9êÑÔ¾Õž°ÄÔë}l¿ªyÝ×Vêk%æ‰+û2”3W™ÌUäÍ5ˆˆæÂ æ nÍ!Êhyfdæ÷ˆã,ÝÊhØL½`¡c¹Gš-Æ„sZ5››¼ (‡ªlÖÜØVy½‹òw@xÒ¤Y‚œk3ylKQÆ\ìë<¡·æñkÑUá]aÎ]ÐóÔ2Ûš‹JÔæ†óÏÔÒyA-Іsa²w@Ìå4SÛ˜“|«ÞUU³: *û,?´Í]¥_µGZªdÿ€0>Kø>Käù,•í³æ>ÆÎzS­Ì  'šôµ¢m©¶`—y¯Ã¨²¶¥æ)ÂÌuän±ÏÊèLu3NQ¶J/^U¶:ÆÎ­'T-í¬ž}m1ÊpŸ™Ð'èK˜&fÂRã è8S= dïNN¥ Œ§×*aRp<ž‹û¿¿ýŸJ~ ’©PA%¦áp¦0£Â 0*Q³>(›Y£*oTiF•þ¨B“¦ÖªBk­ÃZ«JÖ*A+É?UYk×eJzV<*iTx›@_…½M2µM2,œ G;£Š£*G8E* 3g­ŽJ(oÔèSëT•§Mþ©ÑŸíÖaÅ£ª„ÄÚ£ U A¨‘¤b¥Ôß•«ª²Ã™ÛTW›æy›šµž½–Ž´…7—\k%ó}“²…£]áÏ7•U"ê«uj+NM±gºWã§LhЂ˜v–ñž;›è¶PÔ‘®àEÁap\|¤†6jŸÏ¯°›µÇ Ààq~ƒÞð\µøzÏcÁÊ"à‡» $.3‡ÛYâ&o‰Ÿ#^Aíƒ7¡qpeV®ωà `‘p{ $Zùƒ+³rpœÉÊ!ÈY+W*wXÝ7D€7kÀ"½r™\㶃«£Id®,™Ã’`å:i„WèG™ƒlü•kg劄–„ÚDƒ ³rt%RQmC¢·Æ½ÕÉc+@I!~EφØv0|”â• £p–¶ XŒV¤í±Œ©K.¨ípC¯\dÈ\' §B §C §K(œÆ•Ñöð¶KwÛujÛusÛ^nåºôÊuöÊÓÚŽË8ãdlS3NF{NFºN¦Ô¶g®¼I'“ï^‹¶}Ž=Ü®êÛ)¤Ê`HUÍ…TÏ½Š€‡Ó¸ítöp¸r¿$4nµí©•“‰“‘ÎàíP¸ìáv]…³¶W®*­\óÊa ÕVÞÖxžejÊ75Í+š² ©ø—5âÁ5B7]ÝÔXæYΖ9eo †+%ó0nG '+b¸83Ò(XYÖÔd @æi»ðV®,mÅÚ®mÎßv1ßÛÞF$³ V®Jg©Éà2×¥osЬšðíZ—öí2Ë·· Ãíºéƒ Ý4˜)0¡Ý•‡dCjir@ç:µíÊßv‘½í¹îB¾Ñ‘¯íM&ŠÊ“¹"™K[æ@e¦´]Z¸=ÎÚq2ñ.™Áe“îU—u¯2ÃÎ Ù¨æK-'3§‹RuhÛu¦oWØ&J¯<ƒ\+oWÆR7žKpe^"ž;!I/zºKñ+³Œ*R+³Q¢õù¹Õ|;|$U¾ÂÁ¶«ìÁÓ¸½­Ð™ÊM¨l±~Ç#òàFÛ5+†Ta´AH-gjsš(f¥Kz.’]œ4H¬± LéiåôÀ(¯ÆR…Á5)nšš½íŠì¬O°ÅÁ):KÛuY…3˜uÌࣦsµ¶ùv=‡ Ö© ޼¢ïÛµ¦aS¾]YEgøv]Xb¥BB¨ÎÊS%FIX4"]\µÎÔJÅó¶‚ 9wp- tö‹ ŽÛ'ƒƒ‹ 6ªM5tQ„«%cE*°ÈìÀ’!óRe§-ðè6k{¾ÌÛZQTä^Aìä^ ÉQ̽¶–pYg—M•°ÛD.€t©%l·rZ9Ås“"Ë´Âa‘&¡?Uf¢8ÐyG—ù\$Šaß.’tiÝkØÉÌ9ñÛ~‡Á)V*äJBӉ “.¡sÇÙ)œ3¨"„} ï„loY$ €ÉÚž‹^UëÝ+0m—­«4„j,mµó…0x;Cj›3–¶”¶ÚÚ!ÔV÷º.hj¢ÂàÚb&téÁç ÉdàvUmpå ®hpƒKpÉ2Vi«m ¡ Raºš‘¹Ê–9ÝŠ‘–9Á˜”ÌCÌDMm׸r1Ÿ‹¶´=¿´e“ ¬mAÙ¯yð âW[•Àe«È¢Ä¶—ˆj²9è\F沘Ð"mjZWÊXÚÙ!ÔV…[‰b»z&Ú™.•H‘b8a§Èʘšé{Åç”33‹÷ÒÊÕD sµ„‡ƒ²ð*Š Ã̓©µUÛë×Rµ Z*5fan¦Ÿ®¥Š*ó&WP– ®mߎƒËzmSð0>PaõQjÿ@UûH>R&GVŸ¦àÇ\ÚꦦYáÈò£9K_Bß l¡ÔÝÑuÎè•…i¬@‡nþ’ ]B;Ý‚æméj.×Ùº7€Z—Lëæ\ï¦ZÀ²œË#õps-ÕãbUZ^A2»©›*sµtµƒ9¯¦.¹ ´cç9²­~GKZè‹w5n§¥/d)‹Žl í ¢´SäuW dAóª2K=Zçær=;Æ,w¼õ¼°®|äü)§Ö©ˆ±ƒ™ÐÜlf’ЇBe[]Ü‚p;&ÒÕ vžs¡;ßèª4°Pk¤Û8¶„Mj•O;¡fÎ;}Õ^[›û ®îYà{<Ò-Öw+n‰þÿhëhÀÖ m ñ±Ú96ŽUö± {Ë×ÕØ§`Ï:õRsØA]Ú›¯JÍ ½bþu³æoO`œcãuÚ³¶èBfaðyÆÚÊÍ!ûº2|Ý´ÜÌu…;_¥C2Ì>pç{l¶>È&ô!$ ìÄÁg4$Ç2+~ÍV¡ð— å–§“UåÖÚµ5ݰþÚ{&ü=Sî üƒPîžÅ÷yöL‚*co¡}¨8‡ÒvQíºyÇf¬­„OÍ:ÖøÔÒö–å[ê£D®NÊú:™9œ¬»¿Jåî™ ù>ÏÞpt}@¥./ŒŒKøõ\;–)»àVÖ (}ÝR~'Wc6×[ÈÞTÚÞóM¦\ŧêú±z0ƒ±¥\j@…(}l)öõÁ?VÁ-bºi}¨²¶°®GöUhó‚m>åSÓX.VÝŒ •›Á;*k϶ÊÎV®„Ï*à>”›É‚nÜnWW‰…å°Qŵe\n‡(1_E¹HÓX®ß'šÂ©UŽÅnp¸óÅØPì tœ[Âeö nÑE\dâ’1«ÙøV*׫àw2ÖV%o™s{kæØ<»+ƒÇŠÌ¸™ò¿*䣀˜/¿6wEŽîˆ”WÈy«Äùª±[•œo•¼¥ÚÚ*Ø[¼^-ï¦{›b»1Ç ïñcP³ü™¬íϪá¾ÒñM}T5¿®‚z†wo5cóë­îZ¸X9KUì™íKTh¾¢<¦ ËBU%¹A$ã}h5WÊ*à¾J6_{VÂ\Íú¾L!cUs¾á}Ùkƒ@äÉMˆ”îdîoŒ©KÍ¡ ÖhžË¬–›†m 3‡ÊæU°ÜÜàß¹ª‹4/ˆ?SAž ¤½™¸iëŽdÝÑ!;N뺬ÄÙ´Ä?”¹nóœ®ÈŠóáxÑ$†)oÇ! £*c‘ÚÒwBà‹æ`+ÈXÖqyݧ$+›Ö3ªoÖ®Cq µÇ‹DÕ*äþT›ˆe}ŸÐaÞ3/¬µq 0)”:+ø:~=UÏÊŠ…åt§Óªø#ÛòœnÓ¼\˜ÿudQC'KqæUö·wû+¦‡ÇÃN±F\ 0Ñå`¼ rš® Ú%àaÖQøÐ…è|KÁèa­öµDìØ_KS.ì^‹ëáÍ þ⎈}$,s Oìœç`<øDo‰$¿¦¶£ê³‡Çú€ìµ7béε°Êãí6¯i÷Z"u-8*0bëäˆJX0{)PñXŒˆ‡Å*æX4ûVî}™ÙC=¯Ÿº–®ª_Ù;¡íÐ]ëEB#:R¬÷Ré=X²½FP:GÚáµ°G,««å®E“²l[‰ôµÊy¦x§Q$¼° Ú·¡ê}y-”þµ$Äž:ž)íå„?b|ŠGIM†¦¬k1mÝxÖµ$ËÑ–P@ÚçžòÑÊål;mÄÏÉê~¢¤g’øÄ$W¿”•WYzo4‡ˆŸ´æ”ð¾¨_fÄŒ£ÊYšbÍ¡<Ì »“³íQ¼ ?oɵZô˜WÓQRs#§å1É:”‰=–,­Œ‹gßð üý’À’z>1SÞ®¶R£‰"5©0%êÄmÇO`. í–¢´’x¢ 6‰·g·’—ócZɨPÆ”ž}Ø3•|þQ%æUÅ›ˆ|oR>Z•ÀÑ ã­=¢Àç\æÇm,YxkÄÂj §…Ø·\ì(íWËð%ö^gI;i]f¿Êñ«e£{$ZÆbø„:ÌVy¶³Ðf!÷܈œ±ÆìýªÈc–Û ö9ØËÓì¼CUòLÅ:/tîK×(JóÑ)ï[SЙ:¡ªÚPYo" Õ’ü*ýÚ½ò½‰œ{-_G [s°Å¹ ‚I±Q¥,­l¾ Ê¥¤w­Pàã¯ú\‡oC" KhNY&°Â~ei´[Óìƒ"ÁNc ?ä«@O´ L•þEx¥€>¥SW›S±` ;)лÆ7®ÃÃU¸÷1û2Çàe$0Á !Å\¬V`†Œ4OV(5ø-ki$² ¯¤¡Ö …kMåk)ñI°šTzàêñõãß­à ´Ï[ÌYúqq°gÐË…¥ ¡dîÒG€ s‚Å EÏ$ª¤g À'Ð @徉þ…YjÎb5ÔÐO\‚Y[&…°·\ÓŽñ`p²ðÄ/æo-X™DÕ‰u_kj&°¿ =„?ùeô8œ]ÿXŸÒá3y¹Ri6÷”ªÄ_KØí>K_¥6?5a-³öyLÑ…2• ®Í£ hôoaawÁ*œÀg$ÀF±^:SøàåðñÒÙ*<¡wê2bä¥áhŒ¨YvïŒ#`bðÃ$tÄÇ…GÑ s›¹D“—©Ã{̲A0ð5õx•˜F`MŒ.‚6#¥—­Pò¼Ešš´fvÁ(2þ.l(NØŽ$XIX;VøÜÈ]Áä5Ž[#;Ò@)ý/Ú6DOB¨©&ï;¸µv|£ƒ$d¬,$P¤LnmÈÜþÜ:F•äÚ°êê½)ú>o9‹žü´mÁ ±!;cG‹Ž: ÐŒ¥gÑÇåÒw¥µV´¢“¸S/(5Í-1Èi¼{–œeº4°9vLP}8¢Û»¹çìn@á!Ô‚_ÐìdÐÝ(ŠE¸åÒÝsȼ=ÚrDÉÁñ~—¤p„a#F‡ä5ý¼0ÙWMª4A–$&Á×ûq’.0 ß­}í.gP±'’‚P•¿÷"éùöe ãI‚ÃQô+,ì9üd•#X¦…–¯óŽ#XN^‰™IÜãŽ]Á1 áòx_CH€Íðç›å7ã•dù„ñ18eEG¸°æzO­ýÛD–[‚VãF°…p¼9E‰ó‚}x;.™‘I 5 Œf„ÖÓàÖ&EØ ÀC"EK?µ›o·Ý–g—ˆ‹ÈI¤Õ}£"ô¢æÌ‘w%ªð3Ãò‡G<Vë¹)UPéÍ„¡QÔҽı /(¤°4HŽÃbLGÒ¦@$­Uh<)¶ðÅ ;úm£ô·¶ÒVKk«Qœh¼Ö0Z+Ëg&{ŠÕ1¿¦»€0öAf*QЙ2BH_£…¦aRö°^J¼‹:åä%zc,Xã£kAGä¯(,°½£ƒdÊ‘@ ”dÝËMNéDmãÓÛ´*Aråáu7'e…˜“Á”„ ïMQ$O ȼ@Öp+…ZJòG”a´¸ñ);”2•ªt³;Õ’:÷ŠÀ¾Œ°“‡w([…¥x¥Òy‘R„×ЕIôyJ„£Ù¨ ôÌ*ÀNJ&Áç$L7½œyô’]÷¦´>qdüáuÑ WŸå­U‚X}’@žö.I†I˜á4»\kSLZùUÂ``ñ»È¯ú¥œX Ê2²£œ6o$sR†%,ÚØåäÁÁ¦N¼"â þ*Kï¯Iº- Ãí >ƒ¶W„ù–5‰Úãk\— Úl'&,9ØVážØÉ=¥ÊØ–Ûxµ…©a‰ €à½DwB°L†vä`Jµèz@gê)t8ÄNÅ(§°ø]†$£M’Æ”*=˜&!Ñ"jâÚ4é¯"°ì 6â $€ù}Ga"8X!Þ7‰ÊP[ÂËd jF&¬ëM]e¢;\4!IÁ¤š·èM9xµ!ŸmÃr‚-˜x¸ †c ±ÈMXœ_9@—íh«QA2´0ÒÂä¶C•²€bîN|±’ÿ¿¼g ºä¨êSy!Bb¥ŒbQ|q¿çîb`··çÞ¾—;ßuîL;_]µ\Öý6a·6»ë>µTY%*P)Â#²hx%$ $¤,~DËå/K­ÒþàŸÏ{úœ3Ó§§gîÜû%òÃ@Òß<ºûôyŸÓsûø¢&5‹ Êœ™ºz¥RÁ•Š\®o¢ä‚¤ØÚzž-£GÇ=ýÊM7Ýž‚‘3‡¹¸v3 Égç& ½k™ Nš@a2,{meeJ3¸ga,®Lº,]ÔyUisî;|åL­´Ãmî'2W vVÓB[dÙ3Rãoù€­@Ýzœ{&[¼Œ›SôwPÎLBjZPñ^´™6¡`ålz({àø¢Ì¿¡EìÄG”^V%†4¦çqnNæÊÔ ]†Þä]5¨1‡Æ· JÞ“"ˆ Ãdç-”"CTE~Mé9ð!Ã¥‘Ûf0×mn ÿM¢Š¸kä/Q`jÄʰ"¦«<Ú¥r ².ÚuOÀ¨x–:®)4¼ µB†”’Ž‚Ä#…|H¤——$ <$…Ÿ¸³¶£Áï„@XUé-Ú ;3J¹Iwn躇WâRM°DfÜ[ɺƜ‡ç©© ¯4@[¹º7ë•LçðíT¥/ýÀœÐ] /”Il !f¶›Z“¿H¢Yòy¡¢á¤xwG c²ŸjEÕæ`‚±ŽãóIü\»¶XÒ¿^×eW0~ÀäÅ’ ¨ZJ±–9 t³ ´$&ä$&5‰/fE1ÀmS$˜F©“ù0XyH…4|Î(܉[´Œ€Aj9&ƒÞ¿,å5È#/7d ©Ù.ëè{5pò}`,Š\æft¹ÏÙ»Õn€JË-h7ܦ†Ü1ÂîTŸj n.HIê8ˆ+q ï…ç~µžŒ·±Xn\•œJ9£ZrðVQaPB²eÃ^Oi>ª5X®ÐMΈ/eÜ 9MHö릴>s¢ Mè󄬦ø›ó)¨ëmÊYC@%ðk+7—É0À;Û·*]”g=Ê æWdh}tì©bÚï g³Àshú®¤€Ãs—4Èz@•×€!¯˜öF€ˆ¬wÝš9É\š*؃W¡«_X¤¤Ä|]kTá¯PÒ5~ºÌhPwíþ+ú^ÒÛH“n¦Qx¸ŒÊ²Ò¸IG;Ô8€ èk]ÆR²&ñ"–&÷¡dxi ²ô—‰r²ö…G©| -5$~†6As‚tR«š0Ø€*!›Ðq˜åA“üE°§³ ¡šùÙD`k6 :µ=lPŠ/œðS6ØHˆdéÉ„¥ü” ÇH»Ñ!mÁ¢“à¢).TÕroE» N)i£ö5§>úyJHT¾ËW&Šýe—P;kTP ‰yè€"°ø]¤†ÍC"î ]îÓ’Æ©s,nPG…|i Û–øÍŽU…å@9ú>§tø½Ý‡ÿòü ñ‚†ä%8á©(£+i^s‰l.üüá £7ìséjL­‡á_®øÜMÀntඨinä¬,W¹maÝWLZ0årµfɦ ½ÀT¦¦_wÔô¦„/eªL:©˜E/ñfÊ )øÆ2£þš75fplæRÀf*:Ü6Ú<Ðxü+Öëé(0’ÐË+ôD–X·±•¨žXƒŠ¹þ¢[õDkˆsmŒeþï>AÜ –œÑ@†pçWIwû“{«еTO~8cU¤ÏéƒêMb°ä@‡Y@2A¸kŸáƒÔâ?ì ;x;Ήޕ@Ör!€¨¦sŸhü¶¥ÌÇz>ü5À¸O4›ÅEÑðK*úá%§(gHÆ:£)WüøaTÛt„Í»ëA‡û]ŒC@™kô¿óÀ¸ÛGО‡ û]ú`]¶“ ›€ø¼[wMÞ7¸(.$}vnÙÁÅ8'Ó\.lÖ±IóBdœ'Ðx”á~ˆùƉ¸­ŠãZÑ·½’ËõǬàÚ¯ªØz,RHm»}À{‚Ýi£ð¹le2Þ‘ä‡XÁž(øL~ŒÅ¸?Z…8óÀÞ d?展Rö´ ­«C¬Uàƒiw®™£çJ=åê|Ÿ%]ÊÙýQüpÞ¥î°Áž–‚SŽÌ`!˜Œ Ö{„ß2HÎ!À‰àszšf²ÚÏ¥|uº’ñ5E;Ò/.‡`fU £ òjõ2Ó!sBäÇð)D[Ý{Âm[¦Cò¯å&? #¡|H܉”þzJ1ÔðÅç*ج·BÇV {?6J™-!Ö 2]ªÁ÷`ƒ].+àL_ Љ–àL²¬‹;c‚keëIðããQËOÖfºŸi׸Áã¹EN´”ãØ/M5X!¦]ˆ#þÁÓ‰¶G-Å9ØM~›*L+ÛðV"˜>Ð6 „­dï‰ÆÏ…=» Þ½Æô*›‡¾5Ðð6çx°g6ÙîRì6|b(5÷$(›jaZˆÐðBH¶m:€Qþ}fíf8dtlØ0&%VÔKL¶­¿)CÜëØ`Å9^ã>*P•a‡89¦¬2ÀOQ\Þä9yÏw¨“¤Çñv!øçàDˆ@˜V¶Îº$s¦¸¦ÀȾ[ Œ&mg楡†…·´?ðóøõ›u 9 £ZHUçxøZxœˆv¾xäv?‰ð,:~ÙÚE2¨Á­µ>·Y(„#h5­-a|hˆ:]~³‚.ïST- ´<ÿ Bx››`|ȱå4µñ‘ðÖ©´–Ijéé* "g£K¾R É -<ø½¨Ë!=UáC-1f±nâvÁª>•]ŽÇXÜ®•ê7ð™~æ”øõ·Ûè_k¾RÀ½T˜›t9?ݰG¼ ð”ë1ü ô ·%àP×kn1ì=TBqÏARø!X<': >£äÖ Í9ü°Âó¯Á#öÖc3°ÈŒZt<}—îb÷1QÍb&«Ãà áÇ$RúP¢+Šé:¾R-Ë]XfÑ{Ä•Ôñj‰Û9ø8WAæ€Eàq¡ŸÈ}XØ“غ8ø1„{Œ )‘ðSMï ÑbÑ.LÁ³fŠÒ0`и­‡H=z/sð‹ÂP”S—`†²iœ>6–@‚y\Vêa †ÁFŸá€‡âåC@‰cÁl‰Òdë÷{áuð“¸ï/àÛ_ˆ˜Ž·?˜˜îgúõ|+àESðÅ!$;™m$ÏÁ&î\Ë„†Þ’ÔóÒ´¤pAðÈ•¶£jñ|ËòT!.´™SéåwlÎhðþÞlÐ0} ø<_p}-5‘Ôójà£Þºü +´'L ðÓp·&`Íй¼Cß÷Y¡Ù,ˆj9‡X=ÏÐ/væ ÏÝ]1TƒÈù{+pÿÅæo±ÒðÒÿ‡¿]D¨÷bµ_Hˆº¼_ƒz&-YÝ€jZkÂäÿò×¼Ð:gIËÜPÌýÒó¶þšóü÷C7ÒÀB½ê¾µºàÔÉÜ…„ HÒŠtyâÇ¡ýÒï@ûÅ·Cû©=ˆ¯Mh¿‚øxê ý¬Æuâ:úC¸þzí»qœ'€ç…ëOÚïÞ÷ÿéú9„ÿa¤ãÃ7@û·@{ùz\Ç'—¡}ìï ýÎ/BûÈ?!"üâ¼wà:¿íWß‚ëDx¿™Bû8âã1ÄÏ7^‰ý&Ð~fí{ÿáx1´ïù>´B<}þ¯ ýö§¡ýÖM°Þ/-Ãõïþ7´Oì‡ûOÿ3âé¸ÿÌÛáúá¯áûHûÿáêC{âó£ïÀ~߯q^׿ùö }ößàù½ë? í'AûaïØÿa\Ï#Wâ:nGü=í—ß íCwAû•B{áûäÐ~çh߇p>>Æ~ßïýŽw ×qçýkhïÁû~Ú?½Ú箲zòo`]_Gùòq¸þêâz> -ñÝï'p}/ÊÑý?ë;Ï?‹ëüòßB{ßcÿ÷ð=ä‡/|×·í±CÐ>µã|ã'àúä‡O¡úŽ÷1¤ëe„ã³(~ñs çA}ó%Äë7q]ÄÏ}ñòKÐ~ç{ü;ˆ·ÿÂûW@ûØ¡%>}æ{ïGÞ×_Ü‹ãÿ#´¿±„pâü_;㢾»ü™%üì›ð}í~loÁö§°M.AKï¿ÛÞ¿ÆÁk‰í>¼ÛŸÁvÛÛ±•ØFØ^E÷/ñkzÿõØ®{ðRû“ذÿ!¼î]âðÐø›x½æÝ'8©Õ‡pN‚ƒî+ïùÛ¼ñ~‚ïï}g [Â/уðzÛU~zo/¶o¦uaKtôûÓ¸4ï!„oÃwŒí-ñuÑü4­‹èáÃ…yýßì½ÿFl Ïħ4îA¯=ŒpßáKã\·Ä×EëÝã­§-ám¯÷Í7ôà£kÂÍGt<äÁs›×à%9#<“¼íñúè¾Ï'„âÿ·àµÏ7„’3šwx‰¯ƒôõ¿[Z?ñ5ÉÙ’÷|/¶ÄG$ooõ® ÎÛ¼÷ ®ë¼çÑ%ÿš÷Ü×+´^ÄûÁïãõa|NüOü@ãÐü·`ëó5ÁMóÓºi¾77Ü'¸‰Ž¾|Ò¼Ä邇ôÁs¶Ä'wxÏQ,ñlëU&†È×–×ÖÜë•å•ýîõúòƼ¾ž¯º—kËûÜ·7–7Vøèëøh›+mïûÏW–×7ùóµuïú@GèžÕ5üÍå•¶áêà5×ð|ý@ËtæñþvìñáÍu+vüç†8ëm´öǯcoµ—ë¿ Œ¿y dŸ =ˆCìåÓ§ŽÿöçB̼¾¼Þ¶¼:º÷­µ‘Ó'ǾåýùV[™90žO¾½s kÖµ¿œY²Ï£åÊF;w·sc}<ù+MÒÒ…š>8þõêò¾½màðf kï5 ¯¶®˜½Mû+3°µÒÞ¿³®@QšS¹jò™Íy¿Au8 ‘»N>_˜Ú×çãÛÞzÿvòÖñ¿¹ÙŽ_w¯7ÙO•5 w«4øÂæ/×7åÎ%mõùÛ•‹OmݺacêÎ’®:{úÔ_?ÐÞ~E¸{Ííhõ#|èêÓqpê²²Úúþ¬ùêðnÎ`¾š1—_䣯RWÂò6Z['%ggñ¡î-Š+¸×õµ­øýgXÅ͆Å} z»ºzXmr0¢åW¿DL×÷ˆV—÷{]í­/¯ìãÏWÙp«éîðÁñ|ðï3ðÖ–Ì3œ¿Zóü@ÛµÁ²7ÞêFÛûþr ­Ï³<;ÞÒÒÕ?0ÿ´ÁQ§’ëïFÜdΕ:’[öyÀÞGJ «MÓ7,Þu•ƒëÓt­e5>4>IÕ…Fß·¼ºSb˜0 ìÌA¯½ÞŽ™ÀóÍn˜hâæVÔø|â£ÆƒÞÝáƒ.lµÁ5\6jgË ®Ðk×õþ«k-Èôq? œ€ÍÐ|¾&e~¡/ãMÖ4\ƒâôÑZ1féù EøÓÍ¢¥/ò¾eFf™¸s© ÿ}çy³´Î}‰.rÝúÜ'~ 5Cæb†Öiáì—Ydülºb¼Ã Úñ °Ö ïÊv7ØÃ&vh½ùë^ÏJ“yž…+áyw•‹ 8³p:‹kÓÕ•î­«œé›­¶š‡ /4ÇtÍ뮋}«o…~²f@3/mf½ïëWÏM· Ͻÿâ ¨·m6^l¸ë¬ÏZ·Ö/šGÛìή/šak^vÇ'ÍÏë‹€Ã^[]`ž>VŸtäÄõn£u\B3Í2·Ÿ_9m~­#l…v£/ ÌíZ;bgj7#±™«:öÙõ¤/ ÔïZ²vøE$xÓ¶ˆ˜5ÏÓ,Lå´ã<‹ÀÖ‘ »~m×ce·‹ëÈ;»~­sîá°¿‘¤“ ¡l  “þìñÁó×tY¥ç Ê3{# gÖ{­”ƒí¦êk5ÞÞr<8$ ù©T°ökÕoSãá¯öXa8dÏ=„[R×*À†P²pØj°ƒxæ²Âó®´_]¤­,¦:,¾éŒ5 DóÏw­#´[eØaÕ.êÃ+ùâJ3„ûÝá O-œLÇ„)r€s¼ìX1¶à°†ãL‡×ÏŽÆón›˜ã.§Áñ–B(:´µ:2²<ž™j“³kÈú˜Ç“UuR2ò·ä%{ª~˪Òpluº¦*c 0D[UYOx )Buª-ëMÙ­Âl€;Õ™åbÂ-¯6[wå­×œõ¹5‚ž¿ò¬7`x¡ú³A m5ÀžrQÂ9Â2ÀVHºU¤­z¿Á‘|8$å …&£3"@YžÉFG ñê´Uï‘g™å¢5j뫟§RmÕ{Ía´!®¶¨×« ªÿ]T­ áf—µkCªÔR À’–[4(Îöbulƒj^T³ ©9…öO/ætaˆŠÞ<)\M dzBO:”ÏiÂãµCξ*¹ORý[/DëãEÊÑÖA¡Cjˆ9UÅ•’^¯¥­)p(PƒÖ•ð5ÂZ¥°Ð_œQ 6 NJáÉx`ö—¢œ¬NúŠhbV±ÚZ'‰çÉ <Mdƒ-]v¤‹?Á¡£¥‹ ëà­qö°ç? ­Âåk}ë‹gl¡ßÜPÄ6ìÔ <¸Q5øSvͲn i’] Ú†”œnjŽ MÐ6H<¥Y…O­¶' Ùñœå™ ”®ˆ¦£QmT+q^B[¡Û5Q¢k¹Û ûAh³'> Õ­èmü²*‰žWCéÛùç(€[õîU¢¼hÜ»/áøw!(†Ëýt3tˆzÂ-‰[÷ÂP£U¥½0nHø!…3êåqÃÄ´q¦ðDBsÈ Aªœ¿T.Gƒ˜¿`n@áü¬€„»µ+,ØqK•O^nžô¢i®µ,9˜õ:¾É¨°\åæ#Ã4ÕØïXh«(W½8N"Ÿ?z[®—ûQ4É¢a¢´ÁŒ§¦zFæù1oþë3z¹6ë2è4ÿë‹ØÓ1³óÔm‰JŒ¢íëm5ÞN¶ìêGñ0Ê b[Y&œ^n”‹ÚžLâ,‘«j{éÀØ—8‰Ê·Tî’ÊÛ³JüȪRkÒ¸:1ê(Æ5ì¾Ê˜ç´0HåcO§Fé~‘.ˆÏR•ÅÊçx5¤…>R®ÎµZ¢0¶‰Ñìn/Ã’‘‘ûHy£ÔåÔäé˜é”×ÄM#TÄÓT×À«,oö-"Œ`ºô·†()4ÍÔÀÚ‰Ìç(©ó]:P‰ܸã\o¤Bë¾04Mý)_e¦d¡™ä$I<Ûëq6ðXxEÛÏ9«Ì•&¥35ö}ªjjÎÐfX(]Ïæ™Ñò­Ü˜êÜCsšgÁ Ù½mmWÖû ’a†9{˘“¤¼K>Š ;ˆ©qË"™9ºÅ*ЉѫÙ8OÚzlü¤‘Qt™Ï,¦ƒÑœãŒã7Z¤Äã~{€)ÃÛ†•ŒU¯m¡ bKr£ßúÆŒ™¼ßÀ.QkÆ“âÂE4Ô (±Aja•Þ¶ÎÌXš[†) ³8ºò¥v¦³ `·um…6àæÄ¸DŠO\g묗Ûtd0yÖÂ¥eº¹¾á(OŒQÞNŒ›:p‘«#£ÈwþŒ½RÉh»&Uà2¥ Ò½•Õ@‰dÇÉ­_H²šy¨yÃ\ {™qÅõt¤ú*öä¸×3pö¸H•ìm‹Âë,Ίì°Ð€ÆËö8ª§âaá)] ö›ŽâÂ3ÙŽ{½Âúx~ñnÔVZ  ' &вq’³‰ VcãºzôcWÑ[-”·Ç <™q¬ƒôãØó4fÆ".¼_y6]‰a§~ìéî‚»­Ã“z*BYBƒ›ù&qÆœ´B€Šå€£âÑÜÜ2~7·aCòÏ"5`4è™fyÍ<Ӕē‰ÑPËá<´\i¬b8cº™5°š*Æ–Ib¦)Š1…7öXEÛ½©o•ó¾)µéáX¥à'7ÈÎ ß3©¸Å¸`4ä“IML¬ï‘ÆÛ –ÏñX˜ÑÄèš\y>VGmõ#ϤëÒåÆ>˜€Òƒ-—$‰.B‡ÂØÞ@qoÙ„ŠÏk¦TV"bõ]¾Ù²83މç¨ÌjlQî2Y60|ÂS%Æê*³Ñ”)WP%:·T3SD¾?` Uϸ§Ì²†*J ÛšX®b(ã¸L‡‰!Fž¹Ó_c½.­=OÆÊ¶ é™§•OPS¦ vÝ*<#P¬ž£(DÞKÁ‹ì9~·ÑöÆ‹R‘ljQf ùvn$²¦U/) ­.ü…º`D†Mœh3óP0Í‹Ú.)Š=/"em—§RÍj…¦‹¹?aàÖÙXMqn´(ƒÈÍN>`ÓﱬžG¨½¶+Øy\uCÁÞ…JÐÆ)1æHy†v% p¦§Ü¦[=t>M蓦§0X/ìŽÃ¤Ú(7Ž UßY[šš>é1U”)œVpÿÒÄ(F'€ŒGÛ##ÍS/$¢Ü¬!w£‡å¬Î+Hm,o2à«1*×Pe²­ÃtªÈÑž¢ì;Cj81c‰²ƒQÍC£ù õX0;ªe_£Åò"mç&£n0 H =jÓù¤gS/}·WŒëhLGÎ3 Cã¥k±¥ŒoâNTH¦‘æ¬?ähŒÒÒò•ЉèAØ}Åš7~ß|ñé£w/Šã]gþ¥ƒÒ^zþø¯\<~úØñ#'vðÖUt‹®Ï¿çȱ3wŸ%‘?{îÌÎÅcNÜCo¼ÄÙ0öÉàØ'Æ>ÛPëü±3çÕ×ÜcxÏûÄ…_Å;W›.ž={¦Ç”õØ©õØñ{œä=NÖzœôz\qç;Ï­8¯:¯9Óy.WÛ©Þ7¯:—'w;~êT%Y/9æÊÂ+Ž9}þøéóÏf¼X²ûÕï>Án\ÒudeﻪõûwNúw^Vòluïî½Bz¸‚¸úÜ™wÞNJâåæß½dþcìË[}MrìÔÑó¤I^D‹»ð˧Žì܉W/2W%´G/½„kiéŠÿ½(L—öyalakazam/data/ExampleTrees.rda0000644000176200001440000004073614574025041016046 0ustar liggesusersBZh91AY&SYüoš Ôõÿÿÿ]_ßÿÿÿÿÿõÿÿÿàÔ0AAÑ@@@àŠ^|¤kb™ ‰XÙE‘ YóuÁ@  !€iJP `©¶A@ €@  @`6e€ÈZÀ­  €(  € ”@ AU2F€ˆ&‰â4Ð@ ¦f¦€€‰£Ó1 2i“õM42dÄb6€!6£C¢¨“ €&1&À#cÿUU1`š` É€ „À˜L €„†˜BcSÔÆ‰£A’cM$öFSSh˜€d=@4  ‰¨’JIÑ#Ò=Ôô›Q€Ñ0FM†€}Aé~ƒý©ÿl$dªš#¨TP£ÂPȨ¥$ìªpª¡‚í˜<ÄcÇ8Êq‡øL?¸dù…ã*Ÿâ³÷í³/††_çª|Šî´`%*I¬¨k)š›É¹¾qñæWÏÇܤåq–Y–XùÃñ—ããŒÅ”¿ÊÖÖdÌ©èV¥yß ˜hÉXntG¼²DñÕ±UÀªÑ€ØtL±Hm+ xŠ"¡š³SYQ‚¶>'U¬ ­ D‰(¢š…ä•Be­ÎFmõÊÚ©&²¥+aYaý8øÊùžcc2sœ±5Ì Ð½Y½r²h^EÄX0&’…dÅ&¹Q41E ‘b‰"%I"H^šI’$ФQ`©{RÂÅdR1–~Ç31ŸÁŽyÏôÙü¬ó(E4ÊÜ©R !jÂŒ“E!*ͳ,+,“\¸Šµ….E4Q¢¸ mXYE3˜V¥L*q¶†Iƒ1¢ªšŠÔÃ6MT™ƒ‰(½el•[R´‹IªÆdKÊ‘$­$Ò$¼ŠòåEI4X’*B£z"‚J(ͱ ª?Hà\Š+$ɘΑŒ"“b¨„—¯o'-û‹‹…aY:Æ ÊSÌt°éã S >3ò›ª#•:¤;ÌÎ.«ê#(ŽŽÔ&w6¤~©¹£«Àì;™<‘;Ôky?Y­•‘ŒQ~»ö6(bŠZ;¯%k‹ÚÜUHI‚ŠÓkEâˆòEð÷ˆÂPACë !/Në<|üžKÛdœ7a_s¥Q¾®ž´:º=gW}}»òݺձ׺èá¦ZafZnņ7Û)Ïv»î¼=>L¹|ùœl!û¼¬&GeÆ{ï}‡ð³y^WÂó6;Î1xTñ;)ì']ì¹ï7«ï¼^jÕ$ó<Þ)>)>/gÍ¥‰/{0|Ö(æú«jh¹D×>I&|ÝR\±[QÑR.¯¢k¯Xê…îŽÎmAj$Q 8Ðy'ÖH™$‰’§3¢ÔßvÏ+'ãaÎä†äÚÍTmUu>mWÂ÷¤}÷–(›Áy$ÞÎÕŽˆ¹=’v"ôEÓVó 8\o2 ñÁ<È'DZµÖ!f…ý¤þÀ™“0̳,Ée˜ÌÀ±q È_·’›„~ …Ê’dŽ&1‹ Å– dÈY2Œ22ŒŒ« eŒcПìBäüú!~è\Š¿³úD?eS'èÃa–K©U1"ò’r¯$,<_¤,ª¾CÊú’¬Õ¾'ý½÷°æw^Ë•ì½cÕSí|”MФßj×s&Ç›7Õ©­c[[Âðµ³q8]Çy¼ëÀ””',”Qý ±TZ B %TÁa ЉíQm(ƒhU$ÙPÚU«ElZa´±XB§ù˜© ¿Â9™Ÿé¹rÇèãŸè¸¹–c)U©ªd¬q™ä|l'©…1Y˜§ùÎpÏùŒ9fc2Œ2Yþ{9˜˜Ê3+2ÌYŒÉ˜ÌFb³ø,q˜™â…ŸèÌfKœ¹‹Ï?™óùŸŽ,Ì¿ƒŽ_¦G9Æedãùœyã3ùÜ9ܹÇîpæY–bŒg8ÌyÇó±üïœÌ«3(ü;Ï0ÌÉf#,ÌŒÌÅæq’Ì3†c13ùÜâ…¨_Áÿ" ŽÈ'²A8LêzOSØî=O3ä|â?1B‡"ÒEð=I¸‰ö?ˆÀûŒ ϰú–HBa ÞL+LIÌy͇ ç3<ç¬zXóž3Ðk0l)¡¸ä)ü§1ó™t÷)ØwžgÈò<"ãÈÀüóÁóøiû†òÃä}KÆ}Oa¡aÔ÷˜MçSðÍgS‰iäm+7ʇÌð5—S°Ä̬ÄÞp<2Ò³Qø LFÂ&c¸ÜLèDØDè}„e§Cí<2ñ°‰YâDüEç¡Äõ= KSÚr7•eŒÎEÅs2!“=æ¡#ý\Dž“ñ‡âË2±g'2y)0Ç>PWíY (FP²)TµT|±OÁœ¥å"ýÿœ¢©æªH_»^Gõl{Uµ°Ø[M§fÍœÌÆbÌcÌÌÂzÐX(_ó…VXL«’’©KøªŸî|*¾‰ÀÆffcŸÙ1Ìþ£œÌE™™™„ÌÌÌÌÏ1s3<çË9f)û1çŽqÎfVg9Ìə̜Ì̳0ç.ff ÌÌaŒgœ¹ŒÌÌÆfeÌæc ÌÆfj%OÜ*³&ª)ÌÌÌÌùœÌÌÌÎfg333333332«™ÌÌÌ̪³333#32fg31333a˜f†a˜sa˜f*BÄ/à…Ô~fÞÒÌK3’p,ì­Àl•¸á\1ÎTÜq•7‚£Ç”f„:¢UúÞÞ¹î§çücUJ¬ûµ~¾ˆ!Eë)|ÿ$þä«Z\a;¦Çð$û–a¦ ©%ºfÇ(ã}øÊ6J©0a•õÍÒ /»ö4–XÛ•¹æÎrŒîÊ–W°¶ø¯¾KgVgž:c]rU› sÂc *“+©fYÒÒYßtivé]Ô²3Ë®¥º]d»Kšg*ã*0³°Ç+²³(Ïߦ7ÛžYW½Cü_MÜTB‘Vk`µ©“7j™niEççxü¦¢Óñ¡d4ç^<ÓÍV·ä#îAøÏÓ? ßÇqYBÍ«•t ‚ˆ¦mtæR½Fò¡AàÊD6ߨº¿úÚ ƒÊŽìå®õ­“9ÅŸä>¥þH~CYiø‹ °í65%¥Càm(nÃnÝ;:ùR[ê¥{#\©ºœû$ãî@DÉØÄÍoU]j×C"%ŽDÈ牼êP0"<ˆœˆì"fDÚDÉЧ.;£gg çµmÄùxX™úeO«¬¡ ðד •‘ŠªvÑìj¬MI!‚)Û$R„µÅEߨ›$Jæ’Ë1¢ eu™Ô®Í9pË‹" å):Ål)‘ß>è™ØXT~¡i#̑ȴõ>D‘è|‹LÏw‡NãÇ’ºR<8ööwJÈõ¶7Fûæ‚ò{Ñ0nkWmØYŽl™;çlíæ0`™reUì¯V)îÏ6ß m{–Å-õÛ"=¦rŽ ¨i.ÒÆdôºÜj¯´¯ÍªÎ›lM‘¥¸ñ½ÓY´«¥ú¶~©ætHLÊHÁI³œî”ëç€Èö"{ž§‰ŸM|÷ñ§„»åç.6YßáL,”¥j»–Ûʼ½=†K;Ø"Å­Å'6Ê¥JžfÂHœbFgÄð<bÖËIsã4 'Î8L®# ´ìÙÄù_¿Ýt½GqÎÇwy²´ŠmŠUR¿e^è¶nzÜó+¿3©«gØ—•ÅÌëàô¨”9Çv,_2åWoN¿K4¶ÞĈƒÄ‰Çļàv”‰Ì´õ$q!U;ùU)ržÍóí©WZU>ºå¾é_ÝÆßoC¡’ÔZ•°kt^óed›H›Ì ¡y3äPýBGq‘´Õ€á¯ åHײ=zœ!Ef¥Ôß,ª´mÔU—±(mŒòNv¢Æ2a8Îêê›§ÐÎmµ[7aT¥¶R–0“Cr¤vSWmS…QiQ³q\È †þ²ègÔAiƒæ\}NÑQB&ãQî:‡¡™ô;vôŠQ‚íÚ¶R‘J.›ì•œí®ØïŠ~Þ„ä `±âÞÅÚ¢=ÙGQè|’= «»M•îÆÉxüýSÈÛ¨øšméž–C´¦¸UÜdkëË­˜ðTLÊ4ƒÀŒ³ÆWbRìD·e¾¥Fâ» ªå=š¯Ï×ÌØl6œN†â œ‡9¡í™„zÆ¡ÎhvHˆ¾}‡‘ï>G#N‰zKÓÃwKºwwÎuÒ–ùÝmµûÐ{ÂNö ”}UI'ЬØTx›O6ÝÛ6UTîÊ~*að%^ëí³^3–Þ NsÂé_„þ -æj²û[Q¥Ö{¥±ÏœélmÒa¶£æxÖ»=iö‡JQ=‚’Jm0HìÉß;§Xî"=çB†Ã§œºÊ\ºgDzÚtå.èá>ëñúx^¢¦Æž°‰ô5$Xo0=ŽãÐû ÕFÌ´O‡­%ÎVig>Hð«Qw;ýzÙÆ—jÉ–r¯4ð±rºz¹ßj6ÏQ;L°ÂÖ¹I…Ú»6ܤxŸ¼ÈÈÌ ø‡Ôˆ;qÚ{Î…GÈ÷ž§¸ì>&³äl5ý|¸vs®=ý²¤»©åu/üÁ@Ç}–F“Ç içg°Ñæ±{bmk1›³Þ}g¡º0ÏdçÁv’¦D·èp¿eûk½²É]žãv®uc)=ívá,Ùã»^Ý+³»#e~ã¼®Í àVô0»K1‰ ¼Gô«œ¾F³ôΙiC|¤œÅ Äug‘Ä‘¬úω‰™â}c}Ý7Ê=þ~voì¶>>u˻˴ªúîáeXíÃÃéî È F¶·Í’(¼Íçàv•–5êßË+)¾›yU['¥[Xv˜oqæì[ë©å”þF¹|Ã~ªå|©+¾Íµ6ÅöJåS…¸k”Ï3ì*47œO"ðHú›Ž·Æ2—9ã§:«ã-Ѫ1˱7e›ü{/º¬­ð‚Ô‹G…öÆ©í*>…&j•Pd¬*©'”Á‚4T?O!­„~?Ô9\gîdÌ«˜³1…s/'Êæ9^eã2~Î>y\Áó/™XÇÌ|eŒ³Á¤x|Éñ˜dÛlË šÖÛ5›3¼|ü~â©4QT55²$¥DòŸ!‘øÇèý8gÇ1óœáÌ3(ܧʩ‘Z4L#RS5z `©Tß<îIÒnjMeJ¨Á“mL“+"¢‚ ¤…b!‚#ö+—ÆXÆ?‘ÔìÚÌ©Œ_ðÒjnd˜R§¡X4A7$<ìÍQ&ÅT›Jª“Õz¯3쾤l5«,Çïd¸Ïé9Ìa‹1†,1ŒÌY–ÍfY1že8ÌÃgñaÃ9Ëæ33ù^<£†a™ýc*üex|rÃÒãŒaó÷œý™'š(ª‘J“¨VäÚ`Ø•¢¾8çï2ã c1™˜ýæ3#,ÏÇ#™3 f9ÆqÇõÙr3Çò2Ì>~çÇÃË3,ÊÌÆ,xäücÆ?‘žæXÆf32™“29çey•9•ã™e‘ýã?Â2?¾~œŸŒË8Ë휧ãÎKæ8ýÎ.)„dS5tJkTž‘MjjT•¢¹úbæ|im¼ç3üX|ÏfùÇ3ù ®yœ~™y‡ãdæNdùŠÆ1ü¬œÈf3Ý·Îp¸Å˜Ìqžc̬Ïq–|åd΢òóŽg‡§„ö’'¸’>#Î`sæf‡Ø=ÓÞ>"™‡È¨O Fàö‡„ï{¦Ãì›MC€ôˆÉ¢B¬_ã±YNL!ŒIre&N\äXIýg+’òåÈæTœÈÎd¦.PË“ ÌÊpßþ9b+X¸“ ^.|ýŸƒñg˜¿2Ë”¥Å\³— FOÇ‹Å//,þÊåð¿K)\¾<~&*œ>Rf^N<®YÃÊòx¼‘áb¼eN*¼®yq?gËÇ™ReYY*ç'Ëœá*Ì•/,+2y<\ ËÉ‘†OÈòç‚G„x ”Ë ‰æ<^Ib2 ¬¯U‰ePó9¥ʰ9X&,ÁX2¹sY2¹Î9xqe•ÌäLse\\™áy\0Ç—&*å…Iø‡÷LHùy">YÂ33*ã°†*Ãô0æ)ŠY`ò‡éYW˜g•óö|‡ã>c2Š™G1~31^¸b㜋ËÄp‡™™<ž+žsÅ•–I™TÈʜ31TÌ©,AÌ®g‹ÊËË+Ï(xxÀ†J©‘î+ >%|í y0ÌÎ'L£†VJrâœIúeœøYœÈÆA˜æ\LγeÆFFY˜³#+&bø9bN31™a•™9̦S,³8Êœ²xL«™,°äY0yg'–pçþ&< «ø2±“ñâ>xå'W(Êã.pa8r•眡/!pâÈasÃ'&axŽL£Êœ¡– O"ybe…–˜„dòa˜y\•b²±…âáyy8Ÿ¹ð9ð9—„XþƒúOïŒcÅÔ2)?OÓ&+3#_¸Tò‹’xbòÊ^3Ìž<³qF.^‰Çœ±brxxŽeOçXƒÊ#'0&C%W̱ŒÂù“‘˜W19„ÈÏ ,8’Èœ8CåLŒ²Ê¥xU9Y‡™)ÆLç#Ï92ÉüêåÆe|(ËåÊf\Q<Æbs—",¼“ §˜0á8áJaK“…™Ã*ƒ™Ç‡^sœYE…Ê^bp+,$ðyþõÁü§—Á?<ó—' °pÎ3 „“ʼn“&EL®qg$,<É^YBó Êc˜ËÌfYFU™ŒÌff`óâ–,Êc £Ì Ç*ÌÉ1ò2¾aåf9Ê|ððó `å^yeYc•‹•X\¦W†c1™fS2É™‹*Ë1’qNŠKІf^PÈ“Rs$«Œ¦x¼œ'œ<<^fy.QË(Éç ˜YENc,<±à§Š/öƒ /`ca‡98e”©Ã+àå•'/,؉â%æýï/™å)—'ô2“—ðäæ^9>aç–xáį/!•ó,†e“2aÑøò^1•fe2#0£ðáË,&°åCÇ⋇âg*_ƒÎ<¼K' xVOÓÁáæ+‹2Á?såðòÏÅcÆ/ÞXÄŸ‰æ*¾póÊä8TqQá™WÂð«çÁüƒÅ‹ññÌ•øøgYW3“8b«Cø'–WÅ9<äðåðʱ‡ypä%Îa1.a‹,1~“ô©|¼1àñW€øø¥Ëåø)á”yÆR±)ð¹1þ åøòý9eŒ²~/Óy<åÁâ^+,‰å9\fRÌFb³#(¼œU!2T’d¡…Lž™Ät‡lÖšéð~çÄ|±S1'Ê<æ2Ë"bÌ“!—”a”Ë0³ÌË32fRÊ˙̔ójF ¡Îp›Æ`ã7”Àqû“÷,')˜¹91y<Ï'<œÊN½rðbò¾\CÅ,ǘa&O8’ñG.òÃÄ®b2®eÏä aŒüY*³Ëœ '•ŠG'9e9,RgöŸ<§âsñ~ ®\8áð§‰\²ÊÌÉfLy‰QËÎ\°—†/eË1SÃX\IDЉ²?dô?a°´°ý’g²þi#xæ\\¡qûF‚f£â~Ѭ¨¨w‘$DâDàn(V\‘PÚ¨ès8¶Vk?d‘°¼‰ûFC™´ÞdfZ2./6A07“&L¹iô.(dP‘yÌtж7œÍÇ#ûÃY¡÷͇±#¥lN &Xl5—‘$l"TD‰2e¨C#õX/ÅûÁ9Š9*²§?‘á'ƒ†Ar2†K—9Î ¢9b¬±d¬™2“Ã)ä̘¯è0œ_>y2r«’®Yå\¨ÊJeås—<¼aåå`ÉçþÑ“2r3ž|2Ÿ)ŽTÄe“.Lpür¿Á^WéŽ)dÅrÌ2å2ùçÅåÃÅ'„^^fG„r¯!¦J— ²`œNg2O+Å Ì!åxs’Ÿ²ý‹ËãSñ? “ rr¯+?{8cÅ—+ƒ†R¹ŒáÏ9O2Xq¡äåÊ2Åá™â.#&É”c,QÃ0fX“Ë*YáÆ# 9†fX&+,0²Êf#Ë0s,Êò± âb–VY• ²Œ1…Y1ÌNXÏ„«ÉÃËžd™%æ.UˆÉ,‘’²Ä³†aœ˜Tqœá9‘’<2¨¸be˜ÆaŒ òœ£9ÎyrþË<³<¸³‡éÊsñ>_Hå1˜£ùÙJåÆ1e™˜üpsœ²øL^efS)<Å“„¬ËÏ!'˜‡ˆ¹™ˆs(– „Ì¢DUU!FIªdÎ>„wßA0üÏ¥)Z>¶§°ÀÂhØ7Èß–`s sÁæe1*æY‡2Á– 39bªÁáårqYÁ0¿˜¯ñÙýÛ˜s Èùã™NCôÈ`ÅL³ô'ôÞžƒñ?Y^OC+—/'–W<1ySÎO/Ù?eÊ“–e™O˜0Càòðe~ˆ¿K–eú8©y•QÅ,™Êò9NeÊbaž/ž^YÌ®a˜ÅDòxrO9–xùåp‚ÎUO)ÅPù\,E™O&rÌ\Äàfc`Ž)rr>g—‰9<áò\²|Ë•W<—1‹)IåääpœÁç/'•™W2'9Ç9ÎHʥ˞yâG<«<#Ê3"óÆÌŠYË•bÅ”dó™2䣓Êe“žLžQSˆæEŒÃ «"©ˆÇÈãÉâç.fp²ÁÌ|¼ò¨ä™c 3Y“1,L+˜—ƒ*eUb³Ã<ÅàåW”äÈó|ÉVX^%d9|Då>L™ËŽâs•”ªáYϲÀŒ°¬Œ¨r¼²á”dž`\áœåa‰â1y8q1ãö|ù—Ë‘“ ÊŒa>e'3eX¬²²+0ÊÅÖr# TS4Â0ÚV¥oŽáï˜?Á?„~ô˜²™’Ì9?zaâ3™‹)ž\åà+*CÌf\Yrg8Ï&G™”på“™Äd¦V9 X.c™dªfYËœ§<þDÎKûµŽxÏægéfYúVTÉÎã“'~ >ÈòxŒ¦ 2ÂpÅ ÌE1‡ŒªœÊŒ ±2Ɍć ä‹™V`S1±eKƒO/8`xbâK*®f1˜"æBs,^1a•åýû‹Ê>(dŸ•ŽU9â˜0y9dÉæQËÀó/% ‘åÌ<™åæI—âøù~‡àyd‰1s’¢òÀe1^^T©ç–s\ÉS“Àå%Ń ËÏ3+3*.aÉ™Argeˆæ\ª2¬†/ð¸eå^gˆ °FL«xqy^žYFe²¥ŠÌ’ʆee&VbÁæ2¼˜ã cΖG ˜‰‰1®L^gˆä?O&<˜øy3çÉÊ9ðÄò¼ùó å0òã–)™æ)̳32 °£,¤üd_ŒGŠÊrÌK0?˜ó”ó0?IÉúrcå’_¼>§ŠqS,ž^Ir&f/”s•pÈ«8®g™Èyc"£g.Uæ¬Tñ“Æ\¸by0ó(ð¸sÊ——(s#¯.YO åc”áŠÄà ¬˜ãî,X’i¦Ð™¼ê}Ãí>ÓG37Ú‰¸Ä¬‰¼‰¡Y¬˜Øy&~Ó‰ÁiBÃ%u/**>¦§i"GRÂÂb‡¡†£³©°æhP¼¸°Þs0‹kÖPl(^uwE÷é—M§Þ0<G‰QCyêTn$l9 ‡Ü^$DÞTfp;Ê …‡"Ò‡‘y#q¨´™àXLÀ‰Þ*?'Bž ’I%‡€ˆð=ÇG3‰ä|ß&<‡¡Äàt8˜ f&DË ‹óqa¡"'S‘QQ¼÷0"^Hð;ÎËž¸R 'URMJŽ¢Œ™2f’Dþ&?ð뜪K 1 Ì*RDDoÓ®u …:GLÔuL©Ú8ÍG1­ÎT’ª’Ñ&¹“œ¸YU_Îy œyÅÉ*Éy"ˇ(¹fUÎL˜aT¹þ³ùdKñ–+3NXd0øÇ+Î\¼²§“ ååbÊ2Ì+ü¡?þŸæÿœãËËäü~ÉŽ)dOÙ)Ëœå•X¸es)ÌÇ"b¹SžˆåxE•y‰YfežQ—2£˜¬Èc1<±+Ìf &S,óÃ0ydrb1g–VL9?´ð%Åç‡<±dË.\ª1’Q˜Ug¼’x9âÆ\¿¥•gœ/†JœŒ><<°‡'2#'<ÇŠÀy.$óÁ9cË—0¦T¹<™†äe’®Qò9O“–3Ïî?™òT_)†VOŸ‚ç—,'ñ^/Œ>¼±„y,2ñ%Ë—*¿“ÃÂŒ¥\ÀY•OÆI|̘yYee‡Ã%8¬£*³¸.ay‘C$<˜G,!yç'<³’˜<3%ÇY1˜#ž^1|œy0É…#‘Ç3Ìyñ–O‡pååç1|¤òyyƒàaþÝŠhÖ…AÐJA]W¸ÀƒëJW,æ*>d¦X/à?fY2ýéüÎR?‘xxŒ3Ãá†YgН<¸T9L¡Ë92U9eäÏÁ‡&<2‹Ê‡Œ¡••W˜‡"æ\å“ÄdðÊW˜£åžWœ<³’ùYæ^YR¼˜_ÌÈðSIJQbË$Ïî—âòž.BœW.‹#˜¸¸d|8EÅžxxž39\•Ybc ™YŠdâTË*LƒxPæ!Äaáæ!”˜Ã1ç‹(™,ó!å%Ê<ç*£–ÊL¼–~†31c Ë,YœðÏŸ1çÏŸÐXý?²b'ì–Eû G# ª XfAŸ¥raq•ÊdÊaˆ™Ã˜ÎUÃÌG'˜¥Êðò‘Ęg…áƒöbù”s%_ 8Á”â2—+3*Y*8àÊ®\ÁÆLV˜aJÌÌYÊg—Ê/,9`òåÂÌ–NY_b£ ñ™f æ,Êa‚ÉeòÈð3åŒg‹#Ó—œ¬1NXaã’s.bògŒ ²U_ÎÉ'&3ÏŒœÂgžQ™3†r\áÃ,ÎræfP33 r¼™Ž劕˜’ñˈœŒG‡”瘆L²²K,²rrråBó%G/,œ¤y21s fü*¾LKÀœàYY>eVxL‡àÊðÌ£,VbÁ”Ì—Ë™•øòpøF!ó<±ž9yÏ NF†\\¬aàe†CÀ²Qžr2x¸E1%œÉÉ 3åR|žQ1Â̈åC8ÌÆS/Þ†NL2~$×!ó*‡ž+ ±Ì¹ ôÈâb,É òÁòÂO òg /.`2üG(âç%O–#á2ùE•+¹‰f30Y‘†T2ÊcÂÊ0ÌÆ!˜OÊ®d˜Æ1)—Å…‡Ê•ya”1QÁІ ˆò¸8‹?°`þ‹ð¤“ôYÊOÓf3)Ê/1s\ã$œÄ¨åþYbŸÄg 9…_…•ø²ðüHæy)ÁË)”¼ó,<˜?ƒ<ÊRùˆ¹óŠŸÈ¸s+ã€â€sÁÅÌ«ËðOôÁð~?ó˜Ì£™9™†d–d£Ì™,ñã—ó²¾|³.S‡&pb«”c0Uó*Pò8©ž~Ÿ|È“bG2K™eQðË“ 21b<`³˜à™ŠO ¼ò³Å“•ûÓá9øýÃÅÁú|’¡‘ðyóç’yçK)ðçXɆ,¹ò“Ä>LxÊáyò—ñ)—ʦg“‚S&eIø,*ç‡#.Xs—àÇ ,*,1”L±Ë2ø|‰æ™9ÉÅòÉ>>^0—Ë#•ƒÌ¾Gb’Læ,ÊfTf|0& qÁc¸³*fEdŽrâ™1b#1X†Y,3pÅ¿y0 –^§î/Óñ>~/˜TÄçøÎ~ôÉòùFã9Ç3—81&Y•‚¦d¥™—,qÉË*q•ÊS._¦<¿zÈ_þEg.(ãçéÉ™Yœæp/˜æ.fsgÎ\æ1Êœrņfsœ³#‰œŸ<àÎpÌ.e˜Ëc˜˜f33,2a†c2¬LÌf1™†eŒòdaËääó.LªdáÌœ³—éžGÃ>^s™ VXYLJ²Ã2ŒfUf)e‰Ë+9Ì#œe_ã²æ|¹–p”ç/ØÈ3À¸ðå1TÌFW)\Œ±QŒq‘˜™ìÊ9NYJþSŠæ\ æP¬aòÈO1f3¹2¬IfæO*qXãÆ\U†eøaœÇ3˜Ç™9‹™pæ9Žg,1/2ù’^cã21Æeb³g1X±ƒ2³#1™L¬ÌŒÉ|fÆfYÌÎ#'“2Ìfc 2Ž3Ï–s0™ac0–d3™ý/”Žbe’xäÌeŠ2¾e‰fKÉóËÎ#˜¿Cå1_(óüKú QÈ]£ÂlJq£Ô:†³g ˆˆÜ› ’x˜”M P!Y«L(E4I1$’¢’³qQE˜##ka56¢°MÀ˜ Á…"y*æL’™&(ÅCÎr%ä&rÂeW,²J䬕\2reI•˜ Q0â‹ú f2Ì«0f’ʧ&&cœùyç •UÌ8/'#—*dðÁNYe2ñ‘ÆRpòxÓ˜2J™y9‡<É“™!x¥Ì9Ë8æsÌ(äñ\G''/',2G VErg„äñå–Aç/àr2–Îs™aÇ30 Æ)†9S2e&e%3Ç)SËË8S1 ‡‡ƒ&’ñUŠœÇ8™†erÊÈK dÆ*<1™~ ¼ÁæsŸ3‰X£*̰9‡Éž^\''%òʱ•œæBòÉ—"ðÎO(Ì#'+•™eX©™‘|ÁW‡Ÿ)â..O@fVV32±OÂã2®W 3*±²ŒÈf bÀœÅ“Ìs&f*ÊÉ–bɆYPó±™EÊVYpá˜óœV`—–PX£És’²x>\©æ(übVbòñ•ΉàòŽx ðÀÌUæJ²SÌ!༘UœŸ”ä“ɇ88Ã#甜°—#&e–V0—–\Àç†^N\Îc•8åãÃÅåÆƒ,Q1ˆ3 dEÆÃ‰&Â'Ý$$7‘+4/>¤Ì ÊЉë´0uOdˆˆÈÉMóiL„I25”Ú2A7Œ s©Ø(L´´‘a3¢¢&Bò¢D‘a2$…D9¡¾£©ê\Lâ}HšqQa‘"EšŠ(}¤ÄËÊ”$Vz(`PÌìãiÞ<èí¡Q’Ec™LÉLÉ,Ê–gøÈO”ï"T}Ö†ã wÍã#Œá&;‰š‰+?QYĸ¼¼‘âV.&y“*&m¡=]¨¢üYÚt25ŒMÈP‰A´Ü|Àl„M¦Na¬âP¡Y™aiB¢$I’"P¬÷˜’&"m$k~†§¹ì’I7óäk=âfÓY´ÖwŸ v˜–¡´¨ùˆ™òÓ©È™Àâhj #Q‰¬ØLàHÀÞ|N¤ËL‘às5fd§aÐÞb^$H‘ dK×w5®‰$“ó9•‰§#QÚfs53¸Ôp5–L™àhTj>g3CaY"ó¡¨Ú\y…Ç4 6œ†ÃCCÀâboB‚´Šq£¬DDdpŽ&j®&”¤6‰<#™i1 †òE`ðpŸ§8U'39Åœ†cû ¢Iq”f¨­DDÊ…CËü–CŸã Ì–UfyþK‰üΘø1FXRÃ,±3•e”2…™OÑd—2‹2«>qÌU‡‡ÊäåÃ898p˜X±?Ág"bcf3)“™L,ÊÊeQ™Qñ˜ù•0qŽLfc3?gå?¶||øsWãÄÐM°Y‰Þs8šãÄèq5‘./&:Îg©3м¨¼Ìì6žò³"gSBãBÑÞj/5ž‡¡a™ï/&^q"=dzyY¨Øk;H˜žGq3Y¡¬õ=ÎþóC‰ê\{#¼ÜvŒÕNÓiÌêv ˆ˜% GqÔx ƲEg#Y"'ia2Gï9™/-§È—ÌWƒ 2¬Ê³)>YbÃ.`«–òÅÁ0ä‹ñˆ|Åð_1FYY”¬Á²IË!Ž9+~–Kø<ügŸ‹'2ʯ2S™~1 çž'+œ”~1YŒ|Ë–?ÕqË3|Çá‡.'žOÓË–8#å•á“Ì%äòæNW99\âÌÄy‰~Ì/2«0ýìQæqÅ™å0ür™Ã–s2YÊ— eÌ(áÌÕøxx¯ŽpÂ̾d¹”¾|•2Ì<áØ¼ž8«0œÅÂff$3,™ L¤Ã'ž9–H«?sžs0>#"“–^FœSäYqdùeðó–\&eY*xVX`ÁйG”£TYyËÄóÓ—,ŽG<§„a.,¿*¼Yò—Ï,¼yá˜ó˜£<ǘ|¾U†S0ã•gì¼æ ðÈÞxò§ ,\TŒ<±Xp/#Éær?ºyçÉSLª³ &fY̪O™R8d‡<(²ežXfO'Gé9âùr|ÈàfRL—9` …2²fC1,FVCÃʼn^Ny”æ3N3™)ŒEÆ8̬&Äd3,§Š˜ẽ†O1y€ÆbÅ8åcfbsÌd«3,Ë Å,ÖXÅdó™Çʲp†%Ë.YX®œdåÎW‡‡–xG“<ååyLÏàÇ÷çLïœglï›$Ú›0˜I$™R˜–RÌÅ‘eLLFQÌŒ‹Â,¬2d§<̬by”ó ˜ä8¬£1™– ™“1Œ¬Ž\<¼œOä'—Èsƒ3IŸœ—/ä><“”ÆfKå2®sàòÅTdÉËe0¡‹Ã<Ë )y˜fY”˜L¬˜˜“,Î<²\''(𼞕O,¼F,ÉåãÃ'“Ç)–UXÅÊ«”©ÎSË*©–T9#'”á•ÄLb\®%Àçă œ2®PÊËÉȼ—“2a2°òÃ?ÉóçÅy^`É”1ŠÃÂr¨äÎINe‡’8©Á‚e‹1++0<¢É“Ë”ydñKË,¬¾exgÇÌã8å|˜³ã•˜âðÆròÃ'0Fd±ˆ³„K™9“‰ä—Š3ÌðË“†9y3'‡,ŒdÉ–L)Œb¦DáÎU˜)ÌsÌŒÆs—„xÃ*3 æVLb™‚ÉÌ^VO,|¹_'.#Ï*2Éå˜ÌÅ30s3Äs,¤È³åÂ8Æf32§˜/9¼®rÎ\¬g Ë•™<ª,9EybW—•Äó—‘W' r©^#'9ÃÃ̆ ]”UÿQâ9ø?^ b‘ä¼raÂ1/2g‰ç†Np0yÉ‘äc“ÎG“9U…årc*³ 1–“$džD²e‘‘f'3,£“™äSÈyŒL§’¸œžYÅpNXž³‰ÁÉ3‡*äÆpâËÅ—“<‰–eŸÒç*¯…Jù–RexpGöÏÄçÉðËüTžXù—•“âáJrd*|žGaõ;JÌ Ì‹NãÔ¸Þr12>dP‚ ‹ I¥e¤jŽJדw(­¸ÞX™èbq,*:Š+*bÐõ.43±ÉìŠI;N§Ðï<‰˜™Çyó45œÈ“3,*0;Ë •‘7ÌŽ…Ç™äDì7çCRäQx› ¦'Ùàl2¬ÚZVp5›d΄ަ'1ñ<Ï"EfóY°ÈõH ùOúA0‚jÍþ-Ÿ»êþ÷ðc™Ÿƒ—n¼´öì…“¶¹ü?úÿr¯­>ïðUuöÒ½3Âz²Î’–êÎ;®Ã(Îës·kŒ.Â6c•/Âßá !V¹ß•zµåVQsÆÚµe,p@Cœ !ÿ¿ã@Cùäk©·é³†ª§¦Ùí¤§«v«}¸oφ:Y¥•o®3Œ´¾)³‹Tå ïùS…)új²ùá~¸êÇ^x]…´Ó^˜Yªø×«ªÕe•Õ]ÖÕ„¥…yefzçvè@B­Wc~kªºÛêã†5ç}ñž7kŒ­ËUó–9JXãyK Õv*KU¹çÛVWjÎ퟼€‡$7kÒ«¬ì@CùPÃFꬦÍSº©Ù~Hk×F¸Kׄ4@BÒ4Š¿u“B! !²ÝvU¯¯¯_í¿ ¢êëœU;æAf¸ì˜al±ªU× Î&wÏ|k¨†*T×e´Î9]lìÆ»4»zûuãls”õ[…ùgü('[^¬ú^žùÖHB $“£—JÝ­ÚµU[4ÓuØÛ<,ÛS;Q­lã–Yß}¹×uò» wã.Ïã@B(NwîŽT³Ž¸ç(鎾¤ˆB»$ šø7cN=[7œJ °‚tÐO¥ÿÒx !÷ˆq!!ë×n=7ré¢|mŸ<[·_käìvS–5GUJì0ç}rºþÊðÆuÇ%ÑÂùY¥öT¯É$LÐLtMôq ÐMMh'Ì:„'D’'£89+𠜈&›½¸'2 `˜A>¤Ä‚q žº ØA;óqvó)8ß‘†EQ…)Jv*ùÚš&‡Þn`ØÍøÙ&˜BJÑIûiåE6 ’&¹%~Ú/"(‘f¨£‘ßkl~»îŸ#í<î£×3}·Úy_3æcn¬\}Ãï0ßhÃFçI õ¨H"PœÏÖû¨¿õ„OùHO†Hˆþä ܪ Oð$ONü ι‡0NàMDHlïþ¿½ù>^>Ç×çùáì-Áá:!CöÝâ(Œ-òùÊŒ]Y„!<]yž¾$¢[ "ø»’)„€ã|Ðalakazam/src/0000755000176200001440000000000015120047446012625 5ustar liggesusersalakazam/src/RcppExports.cpp0000644000176200001440000000701714611470626015633 0ustar liggesusers// Generated by using Rcpp::compileAttributes() -> do not edit by hand // Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 #include using namespace Rcpp; #ifdef RCPP_USE_GLOBAL_ROSTREAM Rcpp::Rostream& Rcpp::Rcout = Rcpp::Rcpp_cout_get(); Rcpp::Rostream& Rcpp::Rcerr = Rcpp::Rcpp_cerr_get(); #endif // seqEqual bool seqEqual(std::string seq1, std::string seq2, CharacterVector ignore); RcppExport SEXP _alakazam_seqEqual(SEXP seq1SEXP, SEXP seq2SEXP, SEXP ignoreSEXP) { BEGIN_RCPP Rcpp::RObject rcpp_result_gen; Rcpp::RNGScope rcpp_rngScope_gen; Rcpp::traits::input_parameter< std::string >::type seq1(seq1SEXP); Rcpp::traits::input_parameter< std::string >::type seq2(seq2SEXP); Rcpp::traits::input_parameter< CharacterVector >::type ignore(ignoreSEXP); rcpp_result_gen = Rcpp::wrap(seqEqual(seq1, seq2, ignore)); return rcpp_result_gen; END_RCPP } // pairwiseEqual LogicalMatrix pairwiseEqual(StringVector seq); RcppExport SEXP _alakazam_pairwiseEqual(SEXP seqSEXP) { BEGIN_RCPP Rcpp::RObject rcpp_result_gen; Rcpp::RNGScope rcpp_rngScope_gen; Rcpp::traits::input_parameter< StringVector >::type seq(seqSEXP); rcpp_result_gen = Rcpp::wrap(pairwiseEqual(seq)); return rcpp_result_gen; END_RCPP } // seqDistRcpp double seqDistRcpp(std::string seq1, std::string seq2, NumericMatrix dist_mat); RcppExport SEXP _alakazam_seqDistRcpp(SEXP seq1SEXP, SEXP seq2SEXP, SEXP dist_matSEXP) { BEGIN_RCPP Rcpp::RObject rcpp_result_gen; Rcpp::RNGScope rcpp_rngScope_gen; Rcpp::traits::input_parameter< std::string >::type seq1(seq1SEXP); Rcpp::traits::input_parameter< std::string >::type seq2(seq2SEXP); Rcpp::traits::input_parameter< NumericMatrix >::type dist_mat(dist_matSEXP); rcpp_result_gen = Rcpp::wrap(seqDistRcpp(seq1, seq2, dist_mat)); return rcpp_result_gen; END_RCPP } // pairwiseDistRcpp NumericMatrix pairwiseDistRcpp(StringVector seq, NumericMatrix dist_mat); RcppExport SEXP _alakazam_pairwiseDistRcpp(SEXP seqSEXP, SEXP dist_matSEXP) { BEGIN_RCPP Rcpp::RObject rcpp_result_gen; Rcpp::RNGScope rcpp_rngScope_gen; Rcpp::traits::input_parameter< StringVector >::type seq(seqSEXP); Rcpp::traits::input_parameter< NumericMatrix >::type dist_mat(dist_matSEXP); rcpp_result_gen = Rcpp::wrap(pairwiseDistRcpp(seq, dist_mat)); return rcpp_result_gen; END_RCPP } // nonsquareDistRcpp NumericMatrix nonsquareDistRcpp(StringVector seq, NumericVector indx, NumericMatrix dist_mat); RcppExport SEXP _alakazam_nonsquareDistRcpp(SEXP seqSEXP, SEXP indxSEXP, SEXP dist_matSEXP) { BEGIN_RCPP Rcpp::RObject rcpp_result_gen; Rcpp::RNGScope rcpp_rngScope_gen; Rcpp::traits::input_parameter< StringVector >::type seq(seqSEXP); Rcpp::traits::input_parameter< NumericVector >::type indx(indxSEXP); Rcpp::traits::input_parameter< NumericMatrix >::type dist_mat(dist_matSEXP); rcpp_result_gen = Rcpp::wrap(nonsquareDistRcpp(seq, indx, dist_mat)); return rcpp_result_gen; END_RCPP } static const R_CallMethodDef CallEntries[] = { {"_alakazam_seqEqual", (DL_FUNC) &_alakazam_seqEqual, 3}, {"_alakazam_pairwiseEqual", (DL_FUNC) &_alakazam_pairwiseEqual, 1}, {"_alakazam_seqDistRcpp", (DL_FUNC) &_alakazam_seqDistRcpp, 3}, {"_alakazam_pairwiseDistRcpp", (DL_FUNC) &_alakazam_pairwiseDistRcpp, 2}, {"_alakazam_nonsquareDistRcpp", (DL_FUNC) &_alakazam_nonsquareDistRcpp, 3}, {NULL, NULL, 0} }; RcppExport void R_init_alakazam(DllInfo *dll) { R_registerRoutines(dll, NULL, CallEntries, NULL, NULL); R_useDynamicSymbols(dll, FALSE); } alakazam/src/RcppDistance.cpp0000644000176200001440000002204614115144216015710 0ustar liggesusers#include #include #include using namespace Rcpp; // [[Rcpp::plugins(cpp11)]] //' Test DNA sequences for equality. //' //' \code{seqEqual} checks if two DNA sequences are identical. //' //' @param seq1 character string containing a DNA sequence. //' @param seq2 character string containing a DNA sequence. //' @param ignore vector of characters to ignore when testing for equality. //' Default is to ignore c("N",".","-","?") //' //' @return Returns \code{TRUE} if sequences are equal and \code{FALSE} if they are not. //' Sequences of unequal length will always return \code{FALSE} regardless of //' their character values. //' //' @seealso Used by \link{pairwiseEqual} within \link{collapseDuplicates}. //' See \link{seqDist} for calculation Hamming distances between sequences. //' //' @examples //' # Ignore gaps //' seqEqual("ATG-C", "AT--C") //' seqEqual("ATGGC", "ATGGN") //' seqEqual("AT--T", "ATGGC") //' //' # Ignore only Ns //' seqEqual("ATG-C", "AT--C", ignore="N") //' seqEqual("ATGGC", "ATGGN", ignore="N") //' seqEqual("AT--T", "ATGGC", ignore="N") //' //' @export // [[Rcpp::export]] bool seqEqual(std::string seq1, std::string seq2, CharacterVector ignore=CharacterVector::create("N","-",".","?")) { int ig_len = ignore.length(); ig_len = ignore.length(); int len_seq1 = seq1.length(); int len_seq2 = seq2.length(); if (len_seq1 != len_seq2) { return (FALSE); } else { for(int i = 0; i < len_seq1; i++) { char seq1_char = (char)seq1[i]; char seq2_char = (char)seq2[i]; if (seq1_char != seq2_char) { bool ignore_seq1 = FALSE; bool ignore_seq2 = FALSE; for(int j = 0; j < ig_len; j++) { char ig = *(char*)ignore[j]; if (ig == seq1_char) { ignore_seq1 = TRUE; } if (ig == seq2_char) { ignore_seq2 = TRUE; } } if (!ignore_seq1 & !ignore_seq2) { return FALSE; } } } return TRUE; } } //' Calculate pairwise equivalence between sequences //' //' \code{pairwiseEqual} determined pairwise equivalence between a pairs in a //' set of sequences, excluding ambiguous positions (Ns and gaps). //' //' @param seq character vector containing a DNA sequences. //' //' @return A logical matrix of equivalence between each entry in \code{seq}. //' Values are \code{TRUE} when sequences are equivalent and \code{FALSE} //' when they are not. //' //' @seealso Uses \link{seqEqual} for testing equivalence between pairs. //' See \link{pairwiseDist} for generating a sequence distance matrix. //' //' @examples //' # Gaps and Ns will match any character //' seq <- c(A="ATGGC", B="ATGGG", C="ATGGG", D="AT--C", E="NTGGG") //' d <- pairwiseEqual(seq) //' rownames(d) <- colnames(d) <- seq //' d //' //' @export // [[Rcpp::export]] LogicalMatrix pairwiseEqual(StringVector seq) { // allocate the matrix we will return LogicalMatrix rmat(seq.length(), seq.length()); for (int i = 0; i < rmat.nrow(); i++) { for (int j = 0; j <= i; j++) { // check seq equal std::string row_seq = as(seq[i]); std::string col_seq = as(seq[j]); bool is_equal = seqEqual(row_seq, col_seq); // write to output matrix rmat(i,j) = is_equal; rmat(j,i) = is_equal; } } // Add row and column names Rcpp::List dimnames = Rcpp::List::create(seq.attr("names"), seq.attr("names")); rmat.attr("dimnames") = dimnames; return rmat; } // seqDist // [[Rcpp::export]] double seqDistRcpp(std::string seq1, std::string seq2, NumericMatrix dist_mat) { // Check that seq1 and seq2 have same length int len_seq1 = seq1.length(); int len_seq2 = seq2.length(); if (len_seq1 != len_seq2) { throw std::range_error("Sequences of different length."); } int len_seqs = len_seq1; List dist_mat_dims = dist_mat.attr("dimnames"); //print (dist_mat_dims); CharacterVector dist_mat_rownames = dist_mat_dims[0]; CharacterVector dist_mat_colnames = dist_mat_dims[1]; int num_rows = dist_mat_rownames.size(); int num_cols = dist_mat_colnames.size(); List row_key_idx; List col_key_idx; std::map rows_map; std::map cols_map; for (int i = 0; i < num_rows; i++) { //const char *this_col = dist_mat_colnames[i].c_str(); std::string this_row = as(dist_mat_rownames[i]); rows_map[this_row] = i; } for (int i = 0; i < num_cols; i++) { //const char *this_col = dist_mat_colnames[i].c_str(); std::string this_col = as(dist_mat_colnames[i]); cols_map[this_col] = i; } int d_seen = 0; int indels = 0; // sum(d[d>0]) double d_sum = 0; for (int i = 0; i < len_seqs; i++) { // find row index int row_idx; char row_char = (char)seq1[i]; std::string row_string; row_string+=row_char; auto search_row = rows_map.find(row_string); if(search_row != rows_map.end()) { row_idx = search_row->second; } else { throw std::range_error("Character not found in dist_mat."); } // find col index int col_idx; char col_char = (char)seq2[i]; std::string col_string; col_string+=col_char; auto search_col = cols_map.find(col_string); if(search_col != cols_map.end()) { col_idx = search_col->second; } else { throw std::range_error("Character not found in dist_mat."); } // distance for current i double d_i = dist_mat(row_idx, col_idx); if (d_i > 0){ // Sum distance d_sum = d_sum + d_i; } else if ( (d_i == -1 ) & (d_seen != -1) ) { // Count indel indels++; } d_seen = d_i; } double distance = d_sum + indels; return (distance); } // pairwiseDist // [[Rcpp::export]] NumericMatrix pairwiseDistRcpp(StringVector seq, NumericMatrix dist_mat) { // allocate the matrix we will return NumericMatrix rmat(seq.length(), seq.length()); for (int i = 0; i < rmat.nrow(); i++) { for (int j = 0; j < i; j++) { // check seq equal std::string row_seq = as(seq[i]); std::string col_seq = as(seq[j]); double distance = seqDistRcpp(row_seq, col_seq, dist_mat); // write to output matrix rmat(i,j) = distance; rmat(j,i) = distance; } } // Add row and column names Rcpp::List dimnames = Rcpp::List::create(seq.attr("names"), seq.attr("names")); rmat.attr("dimnames") = dimnames; return rmat; } // nonsquareDist // [[Rcpp::export]] NumericMatrix nonsquareDistRcpp(StringVector seq, NumericVector indx, NumericMatrix dist_mat) { // defien variables int m, n, i, j; std::string row_seq, col_seq; // extract the sizes. Note: This should be satisfied (n<=m) m = indx.size(); //number of rows n = seq.size(); //number of columns // allocate the main matrix NumericMatrix rmat(m,n); std::fill(rmat.begin(), rmat.end(), NA_REAL); // sort and push indices back by 1 to match c++ indexing std::sort(indx.begin(), indx.end()); indx = indx - 1; // find the position of the column ids in the indx vector NumericVector pos(n); for (j = 0; j < n; j++) { pos[j] = std::find(indx.begin(), indx.end(), j) - indx.begin(); } // begin filling rmat for (i = 0; i < m; i++) { row_seq = as(seq[indx[i]]); //row sequence for (j = 0; j < n; j++) { if (!R_IsNA(rmat(i,j))) continue; if (indx[i] == j) rmat(i,j) = 0; else { col_seq = as(seq[j]); //col sequence rmat(i,j) = seqDistRcpp(row_seq, col_seq, dist_mat); if (pos[j] < m) rmat(pos[j],indx[i]) = rmat(i,j); } } } // Add row and column names StringVector subSeq = seq[indx]; Rcpp::List dimnames = Rcpp::List::create(subSeq.attr("names"), //rownames seq.attr("names")); //colnames rmat.attr("dimnames") = dimnames; // return matrix return rmat; } alakazam/NAMESPACE0000644000176200001440000001224115067210306013252 0ustar liggesusers# Generated by roxygen2: do not edit by hand export(ABBREV_AA) export(DNA_COLORS) export(DNA_IUPAC) export(IG_COLORS) export(IMGT_REGIONS) export(IUPAC_AA) export(IUPAC_DNA) export(TR_COLORS) export(aliphatic) export(alphaDiversity) export(aminoAcidProperties) export(baseTheme) export(buildPhylipLineage) export(bulk) export(calcCoverage) export(calcDiversity) export(charge) export(checkColumns) export(collapseDuplicates) export(combineIgphyml) export(countClones) export(countGenes) export(countPatterns) export(cpuCount) export(estimateAbundance) export(extractVRegion) export(getAAMatrix) export(getAllele) export(getChain) export(getDNAMatrix) export(getFamily) export(getGene) export(getLocus) export(getMRCA) export(getPathLengths) export(getPositionQuality) export(getSegment) export(graphToPhylo) export(gravy) export(gridPlot) export(groupGenes) export(isValidAASeq) export(junctionAlignment) export(makeChangeoClone) export(makeTempDir) export(maskPositionsByQuality) export(maskSeqEnds) export(maskSeqGaps) export(nonsquareDist) export(padSeqEnds) export(pairwiseDist) export(pairwiseEqual) export(permuteLabels) export(phyloToGraph) export(plotAbundanceCurve) export(plotDiversityCurve) export(plotDiversityTest) export(plotEdgeTest) export(plotMRCATest) export(plotSubtrees) export(polar) export(progressBar) export(rarefyDiversity) export(readChangeoDb) export(readFastqDb) export(readIgphyml) export(seqDist) export(seqEqual) export(sortGenes) export(stoufferMeta) export(summarizeSubtrees) export(tableEdges) export(testDiversity) export(testEdges) export(testMRCA) export(translateDNA) export(translateStrings) export(writeChangeoDb) exportClasses(AbundanceCurve) exportClasses(ChangeoClone) exportClasses(DiversityCurve) exportClasses(EdgeTest) exportClasses(MRCATest) exportMethods(plot) exportMethods(print) import(ggplot2) import(graphics) import(methods) import(utils) importFrom(Biostrings,BString) importFrom(Biostrings,extractAt) importFrom(GenomicAlignments,explodeCigarOpLengths) importFrom(GenomicAlignments,explodeCigarOps) importFrom(IRanges,IRanges) importFrom(Matrix,rowSums) importFrom(Matrix,sparseMatrix) importFrom(Rcpp,evalCpp) importFrom(airr,read_rearrangement) importFrom(airr,write_rearrangement) importFrom(ape,di2multi) importFrom(ape,ladderize) importFrom(ape,read.fastq) importFrom(ape,read.tree) importFrom(ape,reorder.phylo) importFrom(ape,root) importFrom(dplyr,"%>%") importFrom(dplyr,all_of) importFrom(dplyr,arrange) importFrom(dplyr,bind_cols) importFrom(dplyr,bind_rows) importFrom(dplyr,combine) importFrom(dplyr,desc) importFrom(dplyr,do) importFrom(dplyr,filter) importFrom(dplyr,group_by) importFrom(dplyr,left_join) importFrom(dplyr,mutate) importFrom(dplyr,mutate_at) importFrom(dplyr,n) importFrom(dplyr,one_of) importFrom(dplyr,rename) importFrom(dplyr,right_join) importFrom(dplyr,rowwise) importFrom(dplyr,select) importFrom(dplyr,slice) importFrom(dplyr,summarize) importFrom(dplyr,summarize_at) importFrom(dplyr,transmute) importFrom(dplyr,ungroup) importFrom(igraph,E) importFrom(igraph,V) importFrom(igraph,all_shortest_paths) importFrom(igraph,as_data_frame) importFrom(igraph,as_edgelist) importFrom(igraph,components) importFrom(igraph,degree) importFrom(igraph,distances) importFrom(igraph,graph_from_adjacency_matrix) importFrom(igraph,graph_from_data_frame) importFrom(igraph,groups) importFrom(igraph,make_directed_graph) importFrom(igraph,make_graph) importFrom(igraph,make_undirected_graph) importFrom(igraph,set_vertex_attr) importFrom(igraph,shortest_paths) importFrom(igraph,vertex_attr) importFrom(progress,progress_bar) importFrom(readr,cols) importFrom(readr,read_delim) importFrom(readr,read_tsv) importFrom(readr,write_delim) importFrom(readr,write_tsv) importFrom(rlang,":=") importFrom(rlang,enquo) importFrom(rlang,sym) importFrom(rlang,syms) importFrom(scales,log10_trans) importFrom(scales,log2_trans) importFrom(scales,math_format) importFrom(scales,percent) importFrom(scales,pretty_breaks) importFrom(scales,scientific) importFrom(scales,trans_breaks) importFrom(scales,trans_format) importFrom(seqinr,s2c) importFrom(seqinr,translate) importFrom(stats,cor) importFrom(stats,cov) importFrom(stats,dbinom) importFrom(stats,dmultinom) importFrom(stats,dnorm) importFrom(stats,ecdf) importFrom(stats,mad) importFrom(stats,median) importFrom(stats,na.omit) importFrom(stats,pbinom) importFrom(stats,pnorm) importFrom(stats,qbinom) importFrom(stats,qnorm) importFrom(stats,rbinom) importFrom(stats,rmultinom) importFrom(stats,rnorm) importFrom(stats,sd) importFrom(stats,setNames) importFrom(stringi,stri_count_boundaries) importFrom(stringi,stri_count_fixed) importFrom(stringi,stri_count_regex) importFrom(stringi,stri_detect_fixed) importFrom(stringi,stri_dup) importFrom(stringi,stri_extract_all_regex) importFrom(stringi,stri_extract_first_regex) importFrom(stringi,stri_flatten) importFrom(stringi,stri_join) importFrom(stringi,stri_length) importFrom(stringi,stri_pad_left) importFrom(stringi,stri_pad_right) importFrom(stringi,stri_paste) importFrom(stringi,stri_replace_all_regex) importFrom(stringi,stri_replace_first_regex) importFrom(stringi,stri_split_fixed) importFrom(tibble,tibble) importFrom(tidyr,complete) importFrom(tidyr,gather) useDynLib(alakazam, .registration=TRUE) alakazam/NEWS.md0000644000176200001440000005176715120035265013150 0ustar liggesusersVersion 1.4.2: December 15, 2025 ------------------------------------------------------------------------------- General: + Fixed a bug in `collapseDuplicates` that triggered an error when all sequences in a group were classified as ambiguous, resulting in a dimension-dropping issue during data.frame subsetting. Gene: + In `groupGenes`, the logic for detecting single cell data has been updated. Instead of throwing an error when an empty `cell_id` column is found, a warning will now be issued. Version 1.4.1: October 1, 2025 ------------------------------------------------------------------------------- Gene and Diversity: + Fixed a bug in `countClones` and `countGenes` where parentheses were misplaced, causing comparisons to be evaluated incorrectly. Version 1.4.0: September 22, 2025 ------------------------------------------------------------------------------- General: + Development of `alakazam` has moved to GitHub: https://github.com/immcantation/alakazam. + Adjusted data processing and error handling to accommodate for mixed data (bulk and single cell sequences in the same data.frame). Gene Usage: + `groupGenes` has deprecated the `only_heavy` and `split_light` arguments and now exclusively clusters sequences based on heavy chains. For users who need to split clones further by light chain information, use the `dowser::resolveLightChains` function. + Enhanced `countGenes` to count sequences by locus for bulk data when both `copy=NULL` and `clone=NULL`. The `first` and `collapse` arguments (utilized by `getGene`, `getAllele`, and `getFamily`) are now exposed to provide better control over how sequences are counted when multiple gene calls are present. Version 1.3.1: August 1, 2024 ------------------------------------------------------------------------------- Documentation: + This is a documentation-only update to address changes in Read the Docs. Version 1.3.0: September 29, 2023 ------------------------------------------------------------------------------- Backwards Incompatible Changes: + Some functions now require the parameter `locus`: `makeChangeoClone`. In `groupGenes`, `locus` was previously required only for single cell data, now it is also required for bulk data. General: + Updated dependencies to ggplot2 >= 3.4.0, airr >= 1.4.1, igraph >= 1.5.0. + Updated the example data `ExampleTrees` to use the igraph 1.5.0 format. See https://r.igraph.org/news/index.html#igraph-150 for details. + Performance improvements in `collapseDuplicates`. Diversity: + Fixed a bug in `plotDiversityCurve` and `plotAbundanceCurve` where limits were not being applied correctly to zoom in the plots. Gene: + Fixed a bug in `groupGenes` where TCR chains where not being considered when detecting heavy chain sequences prior to subsetting. Version 1.2.1: September 19, 2022 ------------------------------------------------------------------------------- General: + Fixed bug in parsing of TCR gene names. + Fixed missing import of `ape::read.fastq`. Version 1.2.0: October 31, 2021 ------------------------------------------------------------------------------- General: + Updated dependencies to R >= 4.0 and ggplot2 >= 3.3.4. + Removed lazyeval dependency. + Added `junctionAlignment`, which counts the number of nucleotides in the reference germline not present in the alignment, and the number of V and J nucleotides in the CDR3. Gene Usage: + Fixed a bug in `getFamily` where temporary designation gene names were not being correctly subset to the cluster (family) level. Lineage: + Fixed a bug in `runPhylip` which was causing `buildPhylipLineage` to fail when run on Windows. Version 1.1.0: February 6, 2021 ------------------------------------------------------------------------------- General: + Added `readFastqDb`, which reads a repertoire's .fastq file and imports the sequencing quality scores for `sequence_alignment`. Added `maskPositionsByQuality` masks positions that have a sequencing quality score lower than the specified threshold. The convenience function `getPositionQuality` will create a `data.frame` with quality scores per position. + Added a vignette describing how to read/write Change-O and AIRR Rearrangement formatted files. + Increased `dplyr` dependency to v1.0. + Added the BioConductor dependencies Biostrings, GenomicAlignments, and IRanges. + In `padSeqEnds`, the argument `mod3=TRUE` has been added so that sequences are padded to a length that is a multiple of 3. + Fixed a bug in `translateDNA` where `NA` values weren't being translated properly. Amino Acid Analysis: + Fixed a conflict in the default argument settings of `aminoAcidProperties`, which will now default to `nt=TRUE`. Diversity: + Added a parameter to `countClones` (`remove_na`) that will remove all rows with NA values in the clone column if `TRUE` (default) and issue a warning with how many were removed. If `FALSE`, those rows will be kept instead. Gene Usage: + Added the function `getLocus` to extract the locus information from the segment call. + Added the function `getChain` to define the chain from the segment or locus call. + Changed the check for empty columns in `countGenes` to give a warning instead of an error so as not to disrupt running workflows. + Fixed a bug in `getSegment` where filtering of non-localized genes was not being applied when called from `getFamily`, because the "NL" part of the name was removed before the filtering step. + Updated regular expressions in `getAllele`, `getGene`, `getFamily` and `getLocus`, to parse constant region gene names correctly. + Updated regular expressions in `getSegment` to be able to parse constant region gene names correctly and not remove the "D" from "IGHD" when `strip_d=TRUE`. Lineage: + Added `branch_length` argument to `buildPhylipLineage`, and augmented `graphToPhylo` and `phyloToGraph` to track intermediate sequence in nodes for phylo object. + Added a parameter to `countGenes` (`remove_na`) that will remove all rows with NA values in the gene column if `TRUE` (default) and issue a warning with how many were removed. If `FALSE`, those rows will be kept instead. Version 1.0.2: July 17, 2020 ------------------------------------------------------------------------------- Diversity: + Fixed a bug in `plotDiversityTest` that caused all values of `q` to appear on the plot rather than just the specified one. Gene Usage: + Fixed a major bug in the single-cell mode of `groupGenes` where the `v_call` column was being used in instead of the `j_call` column for J gene grouping. + Added support for TCR genes to `groupGenes`. + Changed the `only_igh` argument of `groupGenes` to `only_heavy`. Version 1.0.1: May 8, 2020 ------------------------------------------------------------------------------- Backwards Incompatible Changes: + Changed default expected data format from the Change-O data format to the AIRR Rearrangement standard. For example: where functions used the column name `V_CALL` (Change-O) as the default to identify the field that stored the V gene calls, they now use `v_call` (AIRR). That means, scripts that relied on default values (previously, `v_call="V_CALL"`), will now fail if calls to the functions are not updated to reflect the correct value for the data. If data are in the Change-O format, the current default value `v_call="v_call"` will fail to identify the column with the V gene calls as the column `v_call` doesn't exist. In this case, `v_call="V_CALL"` needs to be specified in the function call. + `ExampleDb` converted to the AIRR Rearrangement standard and examples updated accordingly. The legacy Change-O version is available as `ExampleDbChangeo`. + For consistency with the style of the new data format default, other field names have been updated to use the same capitalization. This change affects: - amino acid physicochemical properties (e.g. `GRAVY` to `gravy`); - `countGenes`, `countClones` (e.g., `SEQ_COUNT` to `seq_count`) - `estimateAbundance` (e.g., `RANK` to `rank`) - `groupGenes` (e.g., `VJ_GROUP` to `vj_group`) - `collapseDuplicates` and `makeChangeoClone` (e.g., `SEQUENCE_ID` to `sequence_id`, `COLLAPSE_COUNT` to `collapse_count`) - lineage tree functions (`summarizeTrees`, `getPathLengths`, `getMRCA`, `tableEdges`, `testEdges`) also return columns in lower case (e.g., `parent`, `child`, `outdegree`, `steps`, `annotation`, `pvalue`) + `IG_COLOR` names converted to official C region identifiers (IGHA, IGHD, IGHE, IGHG, IGHM, IGHK, IGHL). General: + License changed to AGPL-3. + `baseTheme` looks is now consistent across `sizing` options. + `cpuCount` will now return `1` if the core count cannot be determined. + Fixed a bug in `padSeqEnds` wherein the `pad_char` argument was being ignored. Diversity: + Fixed documentation error in diversity vignette for viewing test results. + `estimateAbundance` slot `clone_by` now contains the name of the column with the clonal group identifier, as specified in the function call. For example, if the function was called with `clone="clone_id"`, then the `clone_by` slot will be `clone_id`. Lineage: + Renamed the `buildPhylipLineage` arguments `vcall`, `jcall` and `dnapars_exec` to `v_call`, `j_call` and `phylip_exec`, respectively. Version 0.3.0: July 17, 2019 ------------------------------------------------------------------------------- Deprecated: + `rarefyDiversity` is deprecated in favor of `alphaDiversity`, which includes the same functionality. + `testDiversity` is deprecated. The test calculation have been added to the normal output of `alphaDiversity`. General: + Added `ape` and `tibble` dependencies. Lineage: + Added `readIgphyml` to read in IgPhyML output and `combineIgphyml` to combine parameter estimates across samples. + Added `graphToPhylo` and `phyloToGraph` to allow conversion between graph and phylo formats. Diversity: + Fixed a bug in `estimateAbundance` where setting the `clone` column to a non-default value produced an error. + Added rarefaction options to `estimateAbundance` through the `min_n`, `max_n`, and `uniform` arguments. + Moved the rarefaction calculation for the diversity functions into `estimateAbundance`. `alphaDiversity` will call `estimateAbundance` for bootstrapping if not provided an existing `AbundanceCurve` object. + Restructured the `DiversityCurve` and `AbundanceCurve` objects to accommodate the new diversity methods. Gene Usage: + `groupGenes` now supports grouping by V gene, J gene, and junction length (`junc_len`) as well, in addition to grouping by V gene and J gene without junction length. Also added support for single-cell input data with the addition of new arguments `cell_id`, `locus`, and `only_igh`. Version 0.2.11: September 12, 2018 ------------------------------------------------------------------------------- General: + Added `nonsquareDist` function to calculate the non-square distance matrix of sequences. + Exported some internal utility functions to make them available to dependent packages: `progressBar`, `baseTheme`, `checkColumns` and `cpuCount`. Diversity: + `estimateAbundance`, and `plotAbundanceCurve`, will now allow `group=NULL` to be specified to performance abundance calculations on ungrouped data. Gene Usage: + Added `fill` argument to `countGenes`. When set `TRUE` this adds zeroes to the `group` pairs that do not exist in the data. + Added new function `groupGenes` to group sequences sharing same V and J gene. Topology Analysis: + Fixed a bug in tableEdges causing it to fail when no parent/child relationships exist when specifying `indirect=TRUE`. + `makeChangeoClone` will now issue an error and terminate, instead of continuing with a warning, when all sequences are not the same length. Version 0.2.10: March 30, 2018 ------------------------------------------------------------------------------- General: + Fixed a bug in `IPUAC_AA` wherein X was not properly matching against Q. + Changed behavior in `getAAMatrix` to treat * (stop codon) as a mismatch. Version 0.2.9: March 21, 2018 ------------------------------------------------------------------------------- General: + Added explicit type casting for known columns to `readChangeoDb`. + Added the `padSeqEnds` function which pads sequences with Ns to make then equal in length. + Added verification of unique sequence IDs to `collapseDuplicates`. Diversity: + Added the `uniform` argument to `rarefyDiversity` allowing users to toggle uniform vs non-uniform sampling. + Renamed `plotAbundance` to `plotAbundanceCurve`. + Changed `estimateAbundance` return object from a data.frame to a new `AbundanceCurve` custom class. + Set default `plot` call for `AbundanceCurve` to `plotAbundanceCurve`. + Added the `annotate` argument from `plotDiversityCurve` to `plotAbundanceCurve`. + Added the `score` argument to `plotDiversityCurve` to toggle between plotting diversity or evenness. + Added the function `plotDiversityTest` to generate a simple plot of `DiversityTest` object summaries. Gene Usage: + Added the `omit_nl` argument to `getAllele`, `getGene` and `getFamily` to allow optional filtering of non-localized (NL) genes. Lineage: + Fixed a bug in `makeChangeoClone` preventing it from interpreting the `id` argument correctly. + Added the `pad_end` argument to `makeChangeoClone` to allow automatic padding of ends to make sequences the same length. Version 0.2.8: September 21, 2017 ------------------------------------------------------------------------------- General: + Updated Rcpp dependency to 0.12.12. + Added `dry` argument to `collapseDuplicates` which will annotate duplicate sequences but not remove them when set to `TRUE`. + Fixed a bug where `collapseDuplicates` was returning one sequence if all sequences were considered ambiguous. Lineage: + Added ability to change masking character and distance matrix used in `makeChangeoClone` and `buildPhylipLineage` for purposes of (optionally) treating indels as mismatches. + Fixed a bug in `buildPhylipLineage` when PHYLIP doesn't generate inferred sequences and has only one block. Version 0.2.7: June 12, 2017 ------------------------------------------------------------------------------- General: + Fixed a bug in `readChangeoDb` causing the `select` argument to do nothing. + Added progress package dependency. + Internal changes to support Rcpp 0.12.11. Gene Usage: + Renamed the count/frequency columns output by `countGenes` when the `clone` argument is specified to `CLONE_COUNT`/`CLONE_FREQ`. + Added a vignette describing basic gene usage analysis. Version 0.2.6: March 21, 2017 ------------------------------------------------------------------------------- General: + License changed to Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). + Removed data.table dependency and added readr dependency. + Performance improvements in `readChangeoDb` and `writeChangeoDb`. Version 0.2.5: August 5, 2016 ------------------------------------------------------------------------------- General: + Fixed a bug in `seqDist()` wherein distance was not properly calculated in some sequences containing gap characters. + Added stop and gap characters to `getAAMatrix()` return matrix. Version 0.2.4: July 20, 2016 ------------------------------------------------------------------------------- General: + Added Rcpp and data.table dependencies. + Modified `readChangeoDb()` to wrap `data.table::fread()` instead of `utils::read.table()` if the input file is not compressed. + Ported `testSeqEqual()`, `getSeqDistance()` and `getSeqMatrix()` to C++ to improve performance of `collapseDuplicates()` and other dependent functions. + Renamed `testSeqEqual()`, `getSeqDistance()` and `getSeqMatrix()` to `seqEqual()`, `seqDist()` and `pairwiseDist()`, respectively. + Added `pairwiseEqual()` which creates a logical sequence distance matrix; TRUE if sequences are identical, FALSE if not, excluding Ns and gaps. + Added translation of ambiguous and gap characters to `X` in `translateDNA()`. + Fixed bug in `collapseDuplicates()` wherein the input data type sanity check would cause the vignette to fail to build under R 3.3. + Replaced the `ExampleDb.gz` file with a larger, more clonal, `ExampleDb` data object. + Replaced `ExampleTrees` with a larger set of trees. + Renamed `multiggplot()` to `gridPlot()`. Amino Acid Analysis: + Set default to `normalize=FALSE` for charge calculations to be more consistent with previously published repertoire sequencing results. Diversity Analysis: + Added a `progress` argument to `rarefyDiversity()` and `testDiversity()` to enable the (previously default) progress bar. + Fixed a bug in `estimateAbundance()` were the function would fail if there was only a single input sequence per group. + Changed column names in `data` and `summary` slots of `DiversityTest` to uppercase for consistency with other tools. + Added dispatching of `plot` to `plotDiversityCurve` for `DiversityCurve` objects. Gene Usage: + Added `sortGenes()` function to sort V(D)J genes by name or locus position. + Added `clone` argument to `countGenes()` to allow restriction of gene abundance to one gene per clone. Topology Analysis: + Added a set of functions for lineage tree topology analysis. + Added a vignette showing basic tree topology analysis. Version 0.2.3: February 22, 2016 ------------------------------------------------------------------------------- General: + Fixed a bug wherein the package would not build on R < 3.2.0 due to changes in `base::nchar()`. + Changed R dependency to R >= 3.1.2. Version 0.2.2: January 29, 2016 ------------------------------------------------------------------------------- General: + Updated license from CC BY-NC-SA 3.0 to CC BY-NC-SA 4.0. + Internal changes to conform to CRAN policies. Amino Acid Analysis: + Fixed bug where arguments for the `aliphatic()` function were not being passed through the ellipsis argument of `aminoAcidProperties()`. + Improved amino acid analysis vignette. + Added check for correctness of amino acids sequences to `aminoAcidProperties()`. + Renamed `AA_TRANS` to `ABBREV_AA`. Diversity: + Added evenness and bootstrap standard deviation to `rarefyDiversity()` output. Lineage: + Added `ExampleTrees` data with example output from `buildPhylipLineage()`. Version 0.2.1: December 18, 2015 ------------------------------------------------------------------------------- General: + Removed plyr dependency. + Added dplyr, lazyeval and stringi dependencies. + Added strict requirement for igraph version >= 1.0.0. + Renamed `getDNADistMatrix()` and `getAADistMatrix()` to `getDNAMatrix` and `getAAMatrix()`, respectively. + Added `getSeqMatrix()` which calculates a pairwise distance matrix for a set of sequences. + Modified default plot sizing to be more appropriate for export to PDF figures with 7-8 inch width. + Added `multiggplot()` function for performing multiple panel plots. Amino Acid Analysis: + Migrated amino acid property analysis from Change-O CTL to alakazam. Includes the new functions `gravy()`, `bulk()`, `aliphatic()`, `polar()`, `charge()`, `countPatterns()` and `aminoAcidProperties()`. Annotation: + Added support for unusual TCR gene names, such as 'TRGVA*01'. + Added removal of 'D' label (gene duplication) from gene names when parsed with `getSegment()`, `getAllele()`, `getGene()` and `getFamily()`. May be disabled by providing the argument `strip_d=FALSE`. + Added `countGenes()` to tabulate V(D)J allele, gene and family usage. Diversity: + Added several functions related to analysis of clone size distributions, including `countClones()`, `estimateAbundance()` and `plotAbundance()`. + Renamed `resampleDiversity()` to `rarefyDiversity()` and changed many of the internals. Bootstrapping is now performed on an inferred complete relative abundance distribution. + Added support for inclusion of copy number in clone size determination within `rarefyDiversity()` and `testDiversity()`. + Diversity scores and confidence intervals within `rarefyDiversity()` and `testDiversity()` are now calculated using the mean and standard deviation of the bootstrap realizations, rather than the median and upper/lower quantiles. + Added ability to add counts to the legend in `plotDiversityCurve()`. Version 0.2.0: June 15, 2015 ------------------------------------------------------------------------------- Initial public release. General: + Added citations for the `citation("alakazam")` command. Version 0.2.0.beta-2015-05-30: May 30, 2015 ------------------------------------------------------------------------------- Lineage: + Added more error checking to `buildPhylipLineage()`. Version 0.2.0.beta-2015-05-26: May 26, 2015 ------------------------------------------------------------------------------- Lineage: + Fixed issue where `buildPhylipLineage()` would hang on R 3.2 due to R change request PR#15508. Version 0.2.0.beta-2015-05-05: May 05, 2015 ------------------------------------------------------------------------------- Prerelease for review. alakazam/inst/0000755000176200001440000000000015120047446013013 5ustar liggesusersalakazam/inst/CITATION0000644000176200001440000000411013667727155014164 0ustar liggesusersbibentry(bibtype = "Article", style = "citation", header = "To cite the alakazam package in publications, please use:", title = "Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data.", author = c(person("Namita T.", "Gupta"), person("Jason A.", "Vander Heiden"), person("Mohamed", "Uduman"), person("Daniel", "Gadala-Maria"), person("Gur", "Yaari"), person("Steven H.", "Kleinstein")), year = 2015, journal = "Bioinformatics", pages = "1-3", doi = "10.1093/bioinformatics/btv359") bibentry(bibtype = "Article", style = "citation", header = "To cite the Ig-specific lineage reconstruction and diversity methods, please use:", title = "B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes.", author = c(person("Joel N. H.", "Stern"), person("Gur", "Yaari"), person("Jason A.", "Vander Heiden"), person("George", "Church"), person("William F.", "Donahue"), person("Rogier Q.", "Hintzen"), person("Anita J.", "Huttner"), person("Jon D.", "Laman"), person("Rashed M.", "Nagra"), person("Alyssa", "Nylander"), person("David", "Pitt"), person("Sriram", "Ramanan"), person("Bilal A.", "Siddiqui"), person("Francois", "Vigneault"), person("Steven H.", "Kleinstein"), person("David A.", "Hafler"), person("Kevin C.", "O'Connor")), year = 2014, journal = "Science Translational Medicine", number = 248, volume = 6, pages = "248ra107", doi = "10.1126/scitranslmed.3008879") alakazam/inst/doc/0000755000176200001440000000000015120047446013560 5ustar liggesusersalakazam/inst/doc/GeneUsage-Vignette.Rmd0000644000176200001440000001665414757675731017711 0ustar liggesusers--- title: 'Alakazam: Gene usage analysis' author: "Susanna Marquez" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4 fig_width: 7.5 highlight: pygments toc: yes md_document: fig_height: 4 fig_width: 7.5 preserve_yaml: no toc: yes html_document: fig_height: 4 fig_width: 7.5 highlight: pygments theme: readable toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Gene usage analysis} %\usepackage[utf8]{inputenc} --- The 'alakazam' package provides basic gene usage quantification by either sequence count or clonal grouping; with or without consideration of duplicate reads/mRNA. Additionally, a set of accessory functions for sorting and parsing V(D)J gene names are also provided. ## Example data A small example AIRR database, `ExampleDb`, is included in the `alakazam` package. For details about the AIRR format, visit the [AIRR Community documentation site](https://docs.airr-community.org/en/stable/datarep/rearrangements.html). Gene usage analysis requires only the following columns: * `v_call` * `d_call` * `j_call` However, the optional clonal clustering (`clone_id`) and duplicate count (`duplicate_count`) columns may be used to quantify usage by different abundance criteria. ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Load required packages library(alakazam) library(dplyr) library(scales) # Subset example data data(ExampleDb) ``` ## Tabulate V(D)J allele, gene or family usage by sample The relative abundance of V(D)J alleles, genes or families within groups can be obtained with the function `countGenes`. To analyze differences in the V gene usage across different samples we will set `gene="v_call"` (the column containing gene data) and `groups="sample_id"` (the columns containing grouping variables). To quantify abundance at the gene level we set `mode="gene"`: ```{r, eval=TRUE, warning=FALSE} # Quantify usage at the gene level gene <- countGenes(ExampleDb, gene="v_call", groups="sample_id", mode="gene") head(gene, n=4) ``` In the resultant `data.frame`, the `seq_count` column is the number of raw sequences within each `sample_id` group for the given `gene`. `seq_freq` is the frequency of each `gene` within the given `sample_id`. Below we plot only the IGHV1 abundance by filtering on the `gene` column to only rows containing IGHV1 family genes. We extract the family portion of the gene name using the `getFamily` function. Also, we take advantage of the `sortGenes` function to convert the `gene` column to a factor with gene name lexicographically ordered in the factor levels (`method="name"`) for axis ordering using the `ggplot2` package. Alternatively, we could have ordered the genes by genomic position by passing `method="position"` to `sortGenes`. ```{r, eval=TRUE, warning=FALSE} # Assign sorted levels and subset to IGHV1 ighv1 <- gene %>% mutate(gene=factor(gene, levels=sortGenes(unique(gene), method="name"))) %>% filter(getFamily(gene) == "IGHV1") # Plot V gene usage in the IGHV1 family by sample g1 <- ggplot(ighv1, aes(x=gene, y=seq_freq)) + theme_bw() + ggtitle("IGHV1 Usage") + theme(axis.text.x=element_text(angle=45, hjust=1, vjust=1)) + ylab("Percent of repertoire") + xlab("") + scale_y_continuous(labels=percent) + scale_color_brewer(palette="Set1") + geom_point(aes(color=sample_id), size=5, alpha=0.8, position=position_dodge(width = 0.1)) plot(g1) ``` Alternatively, usage can be quantified at the allele (`mode="allele"`) or family level (`mode="family"`): ```{r, eval=TRUE, warning=FALSE} # Quantify V family usage by sample family <- countGenes(ExampleDb, gene="v_call", groups="sample_id", mode="family") # Plot V family usage by sample g2 <- ggplot(family, aes(x=gene, y=seq_freq)) + theme_bw() + ggtitle("Family Usage") + theme(axis.text.x=element_text(angle=45, hjust=1, vjust=1)) + ylab("Percent of repertoire") + xlab("") + scale_y_continuous(labels=percent) + scale_color_brewer(palette="Set1") + geom_point(aes(color=sample_id), size=5, alpha=0.8, position=position_dodge(width = 0.1)) plot(g2) ``` ## Tabulating gene abundance using additional groupings The `groups` argument to `countGenes` can accept multiple grouping columns and will calculate abundance within each unique combination. In the examples below, groupings will be perform by unique sample and isotype pairs (`groups=c("sample_id", "c_call")`). Furthermore, instead of quantifying abundance by sequence count, we will quantify it by clone count (each clone will be counted only once regardless of how many sequences the clone represents). Clonal criteria are added by passing a value to the `clone` argument of `countGenes` (`clone="clone_id"`). For each clonal group, only the most common allele/gene/family will be considered for counting. ```{r, eval=TRUE, warning=FALSE} # Quantify V family clonal usage by sample and isotype family <- countGenes(ExampleDb, gene="v_call", groups=c("sample_id", "c_call"), clone="clone_id", mode="family") head(family, n=4) ``` The output `data.frame` contains the additional grouping column (`c_call`) along with the `clone_count` and `clone_freq` columns that represent the count of clones for each V family and the frequencies within the given `sample_id` and `c_call` pair, respectively. ```{r, eval=TRUE, warning=FALSE} # Subset to IGHM and IGHG for plotting family <- filter(family, c_call %in% c("IGHM", "IGHG")) # Plot V family clonal usage by sample and isotype g3 <- ggplot(family, aes(x=gene, y=clone_freq)) + theme_bw() + ggtitle("Clonal Usage") + theme(axis.text.x=element_text(angle=45, hjust=1, vjust=1)) + ylab("Percent of repertoire") + xlab("") + scale_y_continuous(labels=percent) + scale_color_brewer(palette="Set1") + geom_point(aes(color=sample_id), size=5, alpha=0.8, position=position_dodge(width = 0.1)) + facet_grid(. ~ c_call) plot(g3) ``` Instead of calculating abundance by sequence or clone count, abundance can be calculated using copy numbers for the individual sequences. This is accomplished by passing a copy number column to the `copy` argument (`copy="duplicate_count"`). Specifying both `clone` and `copy` arguments is not meaningful and will result in the `clone` argument being ignored. ```{r, eval=TRUE, warning=FALSE} # Calculate V family copy numbers by sample and isotype family <- countGenes(ExampleDb, gene="v_call", groups=c("sample_id", "c_call"), mode="family", copy="duplicate_count") head(family, n=4) ``` The output `data.frame` includes the `seq_count` and `seq_freq` columns as previously defined, as well as the additional copy number columns `copy_count` and `copy_freq` reflected the summed copy number (`duplicate_count`) for each sequence within the given `gene`, `sample_id` and `c_call`. ```{r, eval=TRUE, warning=FALSE} # Subset to IGHM and IGHG for plotting family <- filter(family, c_call %in% c("IGHM", "IGHG")) # Plot V family copy abundance by sample and isotype g4 <- ggplot(family, aes(x=gene, y=copy_freq)) + theme_bw() + ggtitle("Copy Number") + theme(axis.text.x=element_text(angle=45, hjust=1, vjust=1)) + ylab("Percent of repertoire") + xlab("") + scale_y_continuous(labels=percent) + scale_color_brewer(palette="Set1") + geom_point(aes(color=sample_id), size=5, alpha=0.8, position=position_dodge(width = 0.1)) + facet_grid(. ~ c_call) plot(g4) ``` alakazam/inst/doc/AminoAcids-Vignette.R0000644000176200001440000000642515120047430017475 0ustar liggesusers## ----eval=TRUE, warning=FALSE, message=FALSE---------------------------------- # Load required packages library(alakazam) library(dplyr) # Subset example data data(ExampleDb) db <- ExampleDb[ExampleDb$sample_id == "+7d", ] ## ----eval=TRUE, warning=FALSE, fig.width=7.5, fig.height=6-------------------- db_props <- aminoAcidProperties(db, seq="junction", trim=TRUE, label="cdr3") # The full set of properties are calculated by default dplyr::select(db_props[1:3, ], starts_with("cdr3")) # Define a ggplot theme for all plots tmp_theme <- theme_bw() + theme(legend.position="bottom") # Generate plots for all four of the properties g1 <- ggplot(db_props, aes(x=c_call, y=cdr3_aa_length)) + tmp_theme + ggtitle("CDR3 length") + xlab("Isotype") + ylab("Amino acids") + scale_fill_manual(name="Isotype", values=IG_COLORS) + geom_boxplot(aes(fill=c_call)) g2 <- ggplot(db_props, aes(x=c_call, y=cdr3_aa_gravy)) + tmp_theme + ggtitle("CDR3 hydrophobicity") + xlab("Isotype") + ylab("GRAVY") + scale_fill_manual(name="Isotype", values=IG_COLORS) + geom_boxplot(aes(fill=c_call)) g3 <- ggplot(db_props, aes(x=c_call, y=cdr3_aa_basic)) + tmp_theme + ggtitle("CDR3 basic residues") + xlab("Isotype") + ylab("Basic residues") + scale_y_continuous(labels=scales::percent) + scale_fill_manual(name="Isotype", values=IG_COLORS) + geom_boxplot(aes(fill=c_call)) g4 <- ggplot(db_props, aes(x=c_call, y=cdr3_aa_acidic)) + tmp_theme + ggtitle("CDR3 acidic residues") + xlab("Isotype") + ylab("Acidic residues") + scale_y_continuous(labels=scales::percent) + scale_fill_manual(name="Isotype", values=IG_COLORS) + geom_boxplot(aes(fill=c_call)) # Plot in a 2x2 grid gridPlot(g1, g2, g3, g4, ncol=2) ## ----eval=TRUE, warning=FALSE------------------------------------------------- db_props <- aminoAcidProperties(db, seq="junction", property=c("gravy", "charge"), trim=TRUE, label="cdr3") dplyr::select(db_props[1:3, ], starts_with("cdr3")) ## ----eval=TRUE, warning=FALSE, message=FALSE---------------------------------- # Load the relevant data objects from the seqinr package library(seqinr) data(aaindex) data(pK) h <- aaindex[["KIDA850101"]]$I p <- setNames(pK[["Murray"]], rownames(pK)) # Rename the hydrophobicity vector to use single-letter codes names(h) <- translateStrings(names(h), ABBREV_AA) db_props <- aminoAcidProperties(db, seq="junction", property=c("gravy", "charge"), trim=TRUE, label="cdr3", hydropathy=h, pK=p) dplyr::select(db_props[1:3, ], starts_with("cdr3")) ## ----eval=TRUE, warning=FALSE, message=FALSE---------------------------------- # Translate junction DNA sequences to amino acids and trim first and last codons cdr3 <- translateDNA(db$junction[1:3], trim=TRUE) # Grand average of hydrophobicity gravy(cdr3) # Average bulkiness bulk(cdr3) # Average polarity polar(cdr3) # Normalized aliphatic index aliphatic(cdr3) # Unnormalized aliphatic index aliphatic(cdr3, normalize=FALSE) # Normalized net charge charge(cdr3) # Unnormalized net charge charge(cdr3, normalize=FALSE) # Count of acidic amino acids # Takes a named list of regular expressions countPatterns(cdr3, nt=FALSE, c(ACIDIC="[DE]"), label="cdr3") alakazam/inst/doc/AminoAcids-Vignette.pdf0000644000176200001440000063446515120047431020061 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 9 0 obj << /Length 1740 /Filter /FlateDecode >> stream xÚÕX[oÛ6~ﯺ=ÈX¤òªK±>äÒlVlH C[ ´ÍØDuquI–üúòP¶å¸IƒX‡ÑMžëÇ"Á2 ÁOÏÈ#Ï“é³ç< h3*E0½ (Iâ,aA’ȘLÁ»ð¸PÕ*_N"A’ð¸4U=‰8a¡š›JëÕ„%ámkæðHsûºÒ¥™«ÂΠáº_àá~ÖMçæãOªR,m'¦¿¼84 4Î¥dÎ"ÉãœäAÄÓ˜d Zô¶oUU)X JÞ¨æS¯ïìbëJN%L¦1ã'3ÂdDYD%êOò€Š˜‹Ä鸜€âHИ¤לÖÕ„Ó°Óøð–q ²ÖPgYóD€Pfmµë^ÿ­Êu¡Á0ÎÃ…êÀD âI$ ù7‘ç_AË7ñxÀˆò¦:ƒw,éx”å±¹O”*æ}¡:ònåa«ÍVZj+Íèë+œ¥|[+~l5TQ5·sS)¿é”==LgúJõE‡>·Ð“ÖMIøãÿg¹ ¹|Nø£AJㄤÈDLϦ%ä` µé`$ÍG0â—ä"f$/QyÂÏÎvTð8ÙÛn­ƒ³ð£Zº– ¡©æE¿°¬'4t-Ž¿µºC[„†W}5ïL]µøÚÕøtH}çúf£üÓ ø§üSþ°â?wÀOÃF\cf;¹Ýõb‰(š ‘dHI,sæCRÙ~ýÓÓK†n†£Àw3 nºÙf§áoW8¾V°­EŒßMeƒÔéF·iñ‰ÞYýÃé䶨½¢Ó³KîUŽ¡æGoVÃà<‚´e;I8ËG‡º•S 6^›e¥;„²$¼1Eã ]B"ºPÎz#”¦ÑMlU©q¢;bÁpÛ«œ« …Æ_Ôz]½ÀL-878Ôèåzˆ¤ívÐeïeU@ÔLå3¶ãÔ¢ÈÅàœæ!ˆµx2Úñy]ôe…rßêŸӆç~Ï{lÇœ D·?zèV&Ã?OP°ÕlŸªˆQøÙ,WQ·jê~¹Z÷þWS–}U/‹zÖPn¬ÑkHcmí5l’oߦíÀåÞ´+í8AÀ²“]°éîFk¯pÕ—Ê‹Ë7(”ÐævØ`B{cºùJ/îO9‰æÚÖ‚•×õÚw6=1Vîí©ÚIQ×^¥‰%)‰2”ßI¡žD‡\x<¢Í|ļ=+³Æ‘‘ÿ§g,E©ÒK˜x­÷ü^×­ÙŸàÃ9ü¹øîÄÀ'ò~¬!‹f ­|Üf60£ˆ ÚΛºòÎ]¸‚ð+Ø=àŽ£ØÑMìKn¹ê&”,FÍ÷)a*±ð€yDbA„«j™ûª>öS*ê]vy|qy¹å™3ÕꣃÇKí䞌¬9›²Ü’BSP»ñä D îB>®»æ,N³lÐôÐ1&ò]óv-1\PHœpû/ÀƒñÈ¥E‡lL.áÃÓ1H|‡IüµV‹¡p?õÐçCª¹ÝµãOLlc#À4Ü}4ry›vË«0³FA' „«¥!,¶ž¼³o·×ð¨_l7;ºŸH ³pRÁѵÁ·ý¬à`S‘}qÍðÝÓéÛÔñàཅ³!¤Äî%ì®Ü›°;réøœ5ÿÇhŸåÙÑÍFïF­Š™Ô$^ñhÄ)¿ß7¾uJþžòåZœ!¯^íÅö‹W>ÿ!]<߷ãۇC=¹w¼žO2ÖÝ)S´þö„´¢î;ĈÍq¿§«º)Uç±äÚ‚ 0Q`Ÿ_qZ—¥eN}e: ·~cÏmúR#gs'€¿»™NDd2ÆâÝÛ" 1nR8  R ƒŽéÁsà—VD~ Ò–ÏX*}(†#ÆG9‡ï*)’¢7p3®kØ–¾:q±;ØKª³ ©ÎBŒ›/*lK<·TÚ:ÆÇ€¨ÚÔ䡯—zf …ÌUz#À6V¸ÂEÁ çè–"D§2;ä\8†Øüyc‰,Ót¬&SI¼BQ[‰4Ý^¡°ðl\O$P~S¨Ùp&Þ‹ˆ›Ûè—£ê˜KF¾ñ8e‰¯y_)ï%{‹öŸ¥6ÇV¡«e·:ä3‡Caqžý‚& èëNù#ýÀ§KŠûÊ:Ø=hv©à„Žƒ§™½lÔõí!«Y’ìY ³+ÿ­DÙZ¼ž¸@ûû%÷—8bÝ. «zfæC?ì ƒrHÆþ4_€Ã„ênÛlj÷Ç×ÐØ‰‘š»½d@Sì‡EÄÆ×Èø“Ëëé³Ý0(c endstream endobj 26 0 obj << /Length 1923 /Filter /FlateDecode >> stream xÚíZYoÛF~ϯ œ ­˜=¸<ŒúÁI#EѪ[ H"W[ŠTyØV}gJ$MÉ–'. ‘Ücîùf–2f2®^ Îõõõ‹Wï<ÇÀÈò‘ë©á1‹Rj¸È· #‘ñÑüD0|¾þi½ïÕ;×onÂÔòm˜‘«—Yäq¹;^½£¬¹Ðf–‡½zåù`hÛ¶ ˆkÞ ˆgò<˜ñÁ0—ƒ! (RbjÕ -õù–˹²¬#wšå Øõ/„Èvƒ‚Ô N#~·[j‡Y¶ÇŽ‘:œ9˜¬Gdj[Ô¡ˆœòR  ¯im—Øö,ŠèQvã¨ßȽëåRÚ"ŽxKÜ8U9‡©ªžËR1[ruy¼>ìu&Aѯ ñ,‡:m`õ`ˆÍx€Í'Ô‰XÌuŽòQž-¶¥B ×vëÔ£†-„2°ábËA®áàæ³0¸žÇ`2J|“ß‹e" #3â‹,-Ê<(¹žžgFnÕC™©k$a•À"õ$‰ÚžMõºy=£0ˆ13ˆ“`’ÔË8ÍÔˆjp™g\€«2–ìaz PÓo¹TŠÕZ´²lB”Fÿ§âi¨6RsšU©ÎFe&*¥’–ï¸ãfHýU¥aƒEûœä[6[ãU˜%ÕBÓ–š/¥¹ÚœßÄYU$+õœdATÃÃåûÑH~BÔN¸U{Œ´=Æ<×B¾§=6ðˆ™ivâ ©£ WÅn„•†”ù-sˆ™ºÖ–wÖ–¿¿6.êa¡s)8ŒLTÉ÷ŸURª‡Û¸œo$é3òÆkÌÕ $´JË‹ëÑï?öî<½ c(ŸNg+ jµÐ!o‰|!ÂFÌê!=ªB®î•yàfí\ùTë­eÅoÞŽèý… ’AÔT=£ *ã骳½)ßC&qÒ©ÌãÅ.ƒH,‘!®…=w³óv+Tå€CTN‚„@s)n™)|„¥äð B//Jµ(P¹â˜IP…™Ô,’Æ‚çOˆ!Ýb2-x®š‹HÑÓÀZÀ:¬-ó8ËÕ­´­ä$«".¤¿|@!ÞÍif;c¥ ‰„˜w}棯s1Êio¹pšF¬Á!ˆÖ¹¨$£›ÄÍ*a¤rYÕ%¼‘åi°Pøb›U§³¸BˆoyîÒþxrq&=ë“Ô%âRÑ îê"q-2X§ÄVÛ¢ÉXÀh¡j’…À¬– D-L*T{dtõÂø8d„™? [U I(²°#ûzgsd³SÊ%@ɯÀW#w“”(’9Ñä{-ìFs1I¹5²¡ IwÑ‘Š°ZzGëÓ‘{ͳ:ÉϺ‚ì-‚LÇŽ ŒÖf„¹¹5¢d¨Sø@îØ£dhõ*€²È:è:nÁZ$ê©åð£½ÝÉn¨­ÃµˆDÔ(-âË4›Hky3­ )g–êFT,q]nÂEÅQ®÷¬{‹H=OVêZ×›]Ýj[,Z&«\«ø(CŸ [Âò?êU:~l !­ |7BÔ#Š>ÄÅç}›âD4õç:TEäe1–m@öñÁö`Ýlç¼-üÞDÁ—‡˜¹LV…qŒžÎDñ“ñ¥Çfyp³jMªäïöHãìÙnžÅ»A÷R'Aǃ+ñ¡Ž:pvs‰©§Ÿ±maBm¥Ð•Ó”:Û£úÙ3{¾ãìâAš<0Bæ¬`{Äeþ†‰ãÝ5§–A3!ŒX»˜Ðš‰³aâ{ží`V3C¿¶ÆÇ«š»çí D}D|ÚpNmýz°>cD´µnk`·Cävbl#­ ¡Ž”;·Ò¯ypFsð…²¸…1²°ØÐ;>Ùè#] |¤éc_-9ó»Y¦Dz˧qª¨Ël¶L2÷Ð-êj ºA¹¬® bY±¢—‹åXQüj Žd7žÜöáZ£„>Û$½ïŽdº>¦«1>ãid-³"-ÒaíÄ$+Ëlñe ¤; ¯\W<å¹|ϰ —-±þ¼Ýb”u²ìoM·Äš†Œþz1¦fG±wEúûð}båî¢K!Cw–ìÝF¯îjævq?4•ê4é@ÄS&&!"xÚ5›•q™ð£Û õöA¦Œ´+ÝžRÇßÁ1ähÝÞY¹Zòo¥’ŽÊ/¡É¥zŸ&3Z’â™x©€<åã)¼/‚´ ’c±@¼ù8¬XlóõÞ(r$ðz锼¿¿ùðó‡Ño߯Ò3ž-Æ“ìn€ïÛ_³…Ë·Àve¡Ø6 «®xäTñž¼âÉcç©àí,xóU0Ï&q‡ìSá{Ž…ïjtùÇŸ§jwªvÿÛjGOÕîÉ«|swªv;«]ãífý õTòžcÉ{ýl¥ àj ŸåË8­ào'G¿'ï—ɨ8ⓚø¨Ïó§å©U8µ ϯUh¼îü‘yòÿð5Åò|¢t$­-?^¿øæ± endstream endobj 31 0 obj << /Length 1224 /Filter /FlateDecode >> stream xÚÍXYoã6~÷¯¼/2+—ƒßáOOÝxƒŸì¿nŸˆßrQ äÝ´‰xÁ‹t4¦>5E·#b²ªáà”@´Á° j®´ œ_ÓŽ{ÀÈ×ú`Ë \{¾…0¤¤Žø8›õ|4Ææ´fz/ŸÄ“˜Ðí(‚:›ø«³ÅlH`.ÕËTM«ðìxžE KÔöy-µÐ,¥œ]Ò0QpgDîH)N‡ƒ¿¥  ²»{£*ç¬pkå^À¦s$è1ÉyQŠ|¯$á*'¼"‹C Û^—%6ÞÚǰk[¶Û®¸ùÄ,+afÏd‹(ŸeìL¼ù+LyYÔj^àï üÅ‹Àßø‹µÕ›¬n*KRSªue‘µ;¤qÅTZEE¢h’ãËH:JÛyá bòY—Ïå”Ǽë–jN‰û`u°:]máà—F݄ȡ®¸=œt¼ÁŠ`ùA.€¸` RS)Gm³(«<Êø¿˜(„»‹A,{Oaê}¯2.ç‚ÉøŒÕ–òSÛ¢"ã¨uRXÉxª 㺠¨˜?-Etì8Ï£–OWÇé(¸·4”à Ûä9T² 5.[€º.TÍÉÚuØØ¦ø¯YJD€­–ê[âûÝX÷ÄÚöõõèrQ³¯oë–þž±ˆ»ÓÛ¥• ߀¸é©·å3û´8¸AÓÞ¶«Š ö©EDYÜì iå}tª ~$¯E)7yøóêdûÈ›ÇÛœD|xØ{#w)›Ì²euÂ…æ@Ç©YÆâW?=n ñ­î ¿Ÿ‹·ôitÛ ÒL_ŽþhU7QÕÔá?¼y>9ŠöZzÝÈ÷> Šy3«~€;ž³úZ¥*¡”T“ÖÕeŦŸÕ …†Ç£º¡`:mïßÅìj2øجa endstream endobj 28 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/AminoAcids-Vignette_files/figure-latex/unnamed-chunk-2-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 35 0 R /BBox [0 0 535 415] /Resources << /XObject << /Im1 36 0 R >>/ProcSet [ /PDF ] >> /Length 36 /Filter /FlateDecode >> stream xÚ+ä2T0BC]S]C#…ä\.}Ï\C—|®@.Z/ endstream endobj 36 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/AminoAcids-Vignette_files/figure-latex/unnamed-chunk-2-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 37 0 R /BBox [ 0 0 540 432] /Resources << /ProcSet [/PDF/Text] /Font << /F2 38 0 R >> /ExtGState << >> /ColorSpace << /sRGB 39 0 R >> >> /Length 10338 /Filter /FlateDecode >> stream xœí][%·q~Ÿ_Ñ/¬wx¿¨+‹}ÎÙ¹hfwç˜{f‹Å*~Åf³y)ýöÛÍoßmÿsóôos»s[ðÿTKýøÍöûíû›~ûÅçŸnoÞÞøÝ9·Ùß·o„ýë/ϰ¿üõ¿CjÝþïæÜÜöõß~{ã·ïn<–ó»›w~³}* hŒ{j[hu÷~ Ñï.m>ø½¦"}§‚›í/÷÷6û ¦¸=ÇaŠ;˜BÚ£ëðçî&”´ç ôíÍ—’!Æ='“h“!×½8“h“¡ù½“è‘!¹¼×020 æ§ÁÒëžòÈδ)0ø={S Ñ&CÊ{®&Ñ&Cé{‰&Ñ&C{é&Ñ¡óÔî˜L®í0ÂL}d`Úæ¨eÏÎä Ú䀯ýÈÁ´ÉáöàÜf¡E¦R;©~nòÛfÅ-–´7x2#!ï­o%ïÉo±”½Ö,dâ d­{.Êm{J*ÇjŬœ¡Q‹\Ø[Q­H`V.“¸Œ†ä,Ö77Ÿ´ÞC©¾{/¢Êǽ%)ˆŸ¹å˜@­¾w{ó"çúÞ£h%ÂÀg.£!9‹uÁ_ðü¸Å– ë7ð[Þ}U­ì.HADøÌ%€,Çj5ð[Ø{W¹Ý©hEÂÀg.£!9‹uÁ_🾌_FBس~uCÜ“~u‰0ð™KYŽ Ôjàä•ïðG:$ |æ2’³Xüÿyà×¾‡<½ºnQ_#¿‡ñ’!a_]âòËIrDV¿¶Ý7‘«uN´aà3—ᑜÅzM_ÝìöØ,üì÷¤ðsØ£Â'ÂÀg.d9&P«Ÿú~j{RøDøÌ%4,g±Zø¡‡½$?ô3IRz‚‰)Ïψð…‹EŽ Ô:à‡îaº(rf~¢‰_¸Œ†ä,ÖkzueV=Ê^²>È iò˜‘0ð™Ë̓ä˜@­¶ñ$˜ ‹\Ü‹~ˉ°‡¸Œ†ä,Öÿ£/+.ãC€ËÒ{lÐÜC#aà3—{v’ã…ÔjW6h^i¨{iºÒ€„]i .ÃkæE­ þ‚¿à¿öžgÁ_ðüÁ_ðüÁÿèáû²W7­²Õ½6]´hà_ KHØU6âò:É1Zí*[†±®È¥½fÕŠ„](!.£!9‹uÁ_ðü×?”=N1¡îÉémÛƒNª‰°K´ÄåEX’cµÚ%Ú ; "—ö8~‘0ð™ËhHÎb½¢õýÁÿGƒ?{@‚'k‹yïy»Û&òvÛ¾¼?ƒÛƒ/›ÛSO›Ûkä¸}w“28ŠèLÞÞ»á%òù¯Û§7a÷ÆuV¾Íâ€ëè{û8GŠâ¦Î’*‹„8KÄG¤YxwSô¢Ãcê ݇ÚëwBõsš”ÝÞøvNiÊ{?g´ä`/ÙM4°—,?޳¾šG¯L¨mó5í9Û!¼¦àXÜ× ­Š‡éì;jFñ¾Ö=·ÁoИU–)Èk ŽÈUëª[ÇòZ6óËZÜôf.[>n[†7ƒ¦ [‚è#)o84áV‘eJ}4D–üD÷pk²…ϸXÖâ^¶,[–-Oµe8£h z•ˆ>r8‘ò†?Šà>aY¦Ô%ESзDëÝN´žÔ+Eë‘ùŒ‹e-îëµåš¾/Ë–eËKÛ’óÜdK.{¨ª/×Ýg-(k‹ð «È2…º­-9Áè^eãFO”µEøŒ‹e-îÉãߨ)è¨Èú؇QÎ GÆ£|βL©—£¦ »¢Ê¢'£êVGG-›ùŒ‹e-îù¹ G_I!]©r敺¾¾R·Â§zY¢†»¯¦ ß®È’K¯è¿R¶ð)ËZÜË–e˲eÙr]¶·»yœ\üîšê+žf$TQÖáV‘e uOßÊF3þV¶Ý™ï0RÓ·’ùüulv6#º—-Ë–e˲eÙ²lY¶,[–-Ë–±Eìèh·kuÜíi…˜ÇåzfGÇíÞ® ‹,Û¢Çv4¥Ñ 1×ÍÑzÒ“;ZÌg¤Í®.ÛÃ;Š<ÁŠódK†FjKG%µ©Éæ³-,Ëêžæ/¼•T6ÀV½êFjš¿0Ÿq±¬Å}XçWï,M©„Ž×ùÑK×ùÕAK×ù™ÏëøÕZ6|´4­T6:Ö­nZZv²èEÖâ¾^[®i=yÙ²lY¶,[–--é\SÐ;\÷ØÑq\÷àÕ¯\÷è™Ï~,Ë”º–k úˆ«,º«nõ.ײ™Ï¸XÖâ>Œ-5䢦`ìDßaXEÿiÔE2ŸÇŽ,Ë”^ÔŒ ¨²\QukìE-›ùŒ‹e-îeËk°%zkfm‰v!H_Œ»ãr¢¬-Â'¬"Ëê¶¶D·»1 v!xl‰Ô4¶ìv—Bd-îónÑŠ–Ý‹gšü€ïÏâöè †nià ºqÎyouøFÏôíï/Ó‡üg\…綃†Ç» ‡Ð)D‘º h ný‡è(žºHPÙá6"z:)½ T–)uÐÜúWYt PÝê6 e_p‘ì„ûüãf²¬ %H ^¨,I’úÚUX;àúÌttð[b×ÇÀC®e ¡åñ… -žÐ”ÿö îqK>—°‰¢Ï:ÄÓƒ½'.ô—6 õ£þ}úÕI-/ÂøÅàÙÿ6¿}õ—­ïØåIß 24´–¶¯î¶_x÷ÉöÕw7ÿòj¾_¾Ã¡‘h~¤hB} -µà Š>¶Ôî ‡Ѩ¥JmšèÜç¢.ŸéÁltnSC]O‘¯1 5òÕ±q |mø2È›â^¾,dMa¯ _Â\OQ¯ÿÐ&õ³*ABiãjÃÝY{ ¥ÍæÐÚS(mÉ1…ÖžBisŽ9´¶5õg¾9#ú𡳆ó›ÏÿíWnnÞ§Ø,ýÙƒ¥K¦€õVúó‡Jß÷ZÒ¿;¶ö‡÷+޵;sGx?# ÚGnw¡ÄÝÓ›ú›·?üô÷¿}sDñˆ’Œú_šR}„Þz"Gدî¾ýþ‡íOo¾ýúíclž_€‹1þC?ì ·mº~h¿ð¬)Äÿ³UaèеBë.ù]5xÞêö· -ÆÓ#üžÜHð°×Ý™×½6þ„ШÏa=]H }ïaðS>ïü±¶°NI ¹Ô7VÐ… ÂÍt‡AË{ÌBš2˜ˆ4|qÓ«Õƒßw}¡zõ0¤öáGÍj W­ÐÃŽóGè|ðÁ¸T¹ÊæÚõ1ã˜pTï%h£‚g(ç =´Š+:Z½P×g‡L›*–©b¦mó=7õð´ëq±Š…-UÜ 8Ù*¾ÍTñå´‡vf!Àøäeªº}Ø!ô¨bMá*ÚVñ¹á~i/þb+›«8ÄJ­âKÐFÏPÎA{BGîcÝ1´8L¾b=eEüL…|öÜ…ô¸÷z(äóg.$¤Œ}ÂTÈ£†6OæÄÃ7i¾Ç×ÝwDóëϾˆÛí7ßÿ÷O½”Ñõa.E:[ô™+‘jܪ§ÛkôHåŸãB¤·÷`.ö!’/þ©G¢ÝÜ Ä´ÉPÝt·Óg/3[°•kn"6 ïÚˆ6²'÷cÉ@´ÉÐ:I” DóMEÕqmÞ1å{°•¬|&m†Z Ô Dš 8—˜4žá–"Xét¸rxg t«%ã.‚«0ÄcóˆxC‘`=–¹ mc9&²†kà„´Ç¢rø®ŠV$ÞPd,“¸Œ†ä,V L±à/ø? ~« ÃÀo 1‘ªÖaÞÌaà3—²¨ÕÀoæ¤"—kEÂÀg.£!9‹Õ‡¥bÐ÷})êº:*…þ? 3±± ý?jÈ(¢ì9°ŒM¬Ïk¼(*‹x„d ¾¹½4Xc²í…bä“ñžbäSÕa*œ¹Ü"Hމ&¾O’P!DŒ´—Âù°½ ÈÇí…¸Œ†ä,Ö ¾÷ÙÀ‡/ŠSø¶aúÑ0>q Ë1á'8˜ üŽ÷0ü®A~ç[ ÉY¬3|GŸgkOµ°µ1ü Ç->qq,m˜k¿ãM" ¿áM"  Ÿ¸Ú‚Ÿ±^üÞæ¶Ó;¾…¬´§Í™A—^Ên^Þ67Xá–n²|é…Åÿ›¶˜—”d ÄcïË¡ƒÑtðÞ›ÞûCï½éàC4¼/‡Þ5ÓÁg:øà|p¦ƒwmÆz1îhËt܉ò\aáHâ>AJìPwæ-îîÞ¸O7tY·¤ =EBRæÛYölÜ'Ênâ>8‘O €ä;L«a´É{ØœPñ8sÀñvm8å!lÓƒÐ!@&áF¿²EOAsn™ˆ\Â3ά5éh.“¸Œ†ä,Ö ûÖ<®N ¼NîD;,ÂÄãbY‹{x\@ZÆüÖ–âàùо‚2R^1èð «È• :NiÐÁˆl®à‘+º‰²¶Ÿ‘²¬Å=ÛâôUÖ×ÁÇDëÆaÇ#uç†ÿ×-ó «È2…º­-Ž„XÖœô³n¢¬-ÂO2ˆ*õ€{ÙòlIĬ-‰cW¾„»©RQÖáÖ¤q/²ê¶¶$\·VYŽ]Áºýðeä²5¶E1²÷Û’`v²%S/ËúŠœ´ÁòÊ8iÃx˜ÏX³í¡I÷dK„]X• ©u‡©…˶Y‹{Ùòl©ÅFQ+Ô˜{U}o9—òˆ²¶Ÿ°Š,SÅFQËônÖšöž†n¤¬-ÂOâ*ÝÂ÷á»;úÖˆ;l¡À²úmÖ¸³úíf>×½Ä!˪{z.CVŸK£Xbü\Ú8‹ÅÏ¥I¬±bd-î“6vìÇòÔ•©+'ýX™ú±<õc餋S?¦~,œôcaêÇâÔ¥Ó~,à¢ÿ4¶ÔÓˆ8¶ôàÖ§cK¤¦±%óu4éÌHu[[|ƒIýÎ6û.úé4"~§õ4b1²÷l D;Øâ¨6Ô–4Ù’NlI٢ϣ‘îƒ-ÉØRÁNmAj²…ùjK Ü×û\–-Ë–·ÅÛSՑĶ´bm1'’Ø>‘TŒ¬Å}Ãr¿6)‘F§¬/Ù5,¢¦µ æ3V–e*Œóëœâakì{$o×E’Ÿma~’—иOú±ÖŽýGæuË6ÆLaŠÍë–-Ù~Ìöj¨û°nÙ¼íÇz´ý˜‰Íý˜í¹4 t1º?ŸB/ósɸÚ+ú2µR.©é¹0Ÿëeõ)i®Oª™ç _UÝaôàY|aœ·O¢õîeËk°%%pš>Ì+ûXOeo£Mu˜W¶±6.²:¯ló»ŸâÞÆÚx ¶žˆ:Ì+M/,²÷Á–9¦ù¾ƒ\:ß÷rZçû~œæù>óu†ßFMº'[Eðe[ªíWˆšla>#eY‹{Ùòl©6ÎëcuŒaªžvç–2“«žvÏFV×Çêc-_!«îÉ–•T6RŒÖǪ —%†B1²÷aÝ2_ªIIöû’“í7‰šÞ—d¿/"Ëêžö+½ý¾do¿/Ù¿/Â×õTó}ÝË–e˲åi¶$ŒîpدôÕöÉv/)Ÿì%åi/‰eÇÎQ?öÉv/ ÝPÌ~¥?|+™¯}² Ü[ÊqœœÚô}i{7}2R“-Ì×ïºý¾”ã8n¸kS=Lß®ã÷%Oß–µ¸mÌ÷ÅèéésŽv_Œ¨©E»/&²¶EMmÌÙ}±Ôí¾Q“-Ý¬Å½ly¶° I©t¯ÛÒì>Q“-Íî‰,SeÄyâ”L»CÚšq+QS?Æ|Æ•íÎ’è^¶,[–-Ë–e˲eÙ²lyõ¶\ÓØrÙòqÚr²œ§}ä<í#ç“}ä<í#çi9Ÿì#§i9MûÈéd9MûÈiÚGÎgö‘—-Ë–·ÅÃ*ÐáÝ÷ÞÚÒ»µ¥÷£-½Ûwß{k™‹G[z±ï¾köÝwíøî»fméå€{Ù²lY¶<Õ–kZONÏζ¤bë&NãŒÃÙá«-iì*“îÉ–2MÀHÆ–¶¤hÑ›³ ¢ûx6á°g‘iÃZ}Hòtþ%ŸœÉÓù—bö,Ò¸¿Gw1òtþ¥˜z2÷(ë>r1{Q6ʋѽlY¶,[–-Ë–e˲eÙ²lY¶,[–-Ë–kË5­óC°ã9>ŒÌ«Õ?Ùu¢¦çÂüy>¯O)ÌñaÀïϬÃD¹­”ý“Ãa†ùú$|9à^¶,[Þ¯-×ôî/[–-Ë–e˲eÙ²lY¶,[–-Ë–e˲eÙ²lY¶,[–-Ë–e˲eÙ²ly½¶ø1¶± ³êƒXÏÃï–(k‹ð «ÈEº­-ÏyÄRƒXÏ#Æ QÖá3R–µ¸/ÜÃc†;$îFmyˆE÷ßH”YB†k§øšs×+ã99£ƒ9ë4*»½ñ½ÂµX§4æ¿=ÈŸ½"gäÈxEÎЛÞà3]±ú^—™èê˜Mè†Í …$ÉWHÒ,µB@<¶úÜÇ`uð›«WštÝÞp´/§4å¿=ÈŸ³Zr„÷Ým¢è³VÓ@ï¾æõËG_Ì{þ‚^jã÷þ+‰œÖ¬€Àí¼¿ r)/(¾_®T‰DýCECDóá¤@@Q÷HÉVàÄ)Húã¾{º.×A“–ûkím¶xù,rõúÚé6[×Ûk§Ël _.¯î²µ×eß÷ïg™H7¨•F¡iíu¹æ~\aO×åšëq•OäàóË*üé²ÜË7‚?ºÕæ °s‡Ø{Ç Áïm·úö üÙƒ…K†»=&áÏÜx=>œ„u1÷c.ãö‡Ë¸=]Éíá pHp„àí?ýýoßüŒ+Èö_šB}Äh|>“ÿênûÃ/>ÿâWŸlÕm¿øÏÿúäÛW¿}ìmä÷\£"Æ[…]ô¸?Ð%ÚÏVƒ¡c<à ¯Å;*ð°•î:st2‹<8à÷äÆï‡½ßμߵa'à€ÿP”ÃûG4ÔUPnÀ;~ùêê3w)Ö|Òá1ps3º ™º»›–ñ.¤Fq0H0Xü)˜V%Œç`TôuéC‡&$ø…ÔÚä©N!Õ„ó7bŒòr©B…Ë5а`ªô&­Ô ÄL­Öêñ Ü‹Tkí{oÃ&GµR‚V+“¦™žõúJá@/T+s¥Z[Á“}£ZÏcÕjAœÁôÐ^*àEÌ/R­ð± AMR«•¤Z…4ÕznXÝâz¾Z…ËÕbÅëö´Z/`Òj@œÁô„~ûÜ—·ãg饂 ÏTxâÅ2—ñÙs—Ññf±©ŒÏŸ¹Œ2¾ø¶ŒG Rž:`‰‡Ï-Ò4F΃%#~ýÙqûë'[tÛ/þþõ?üí¯?üùÛ7ßþô÷û[¨ŽFaÿLÔßl¿ß¾¿ïíÕ×ó”}úzúÃÀûÝÅÃËdÁFïq(Óð²æ¢\p‹Ƈ€}·†CoÓt¨ãÌq«ùòT‰ÔG]Åvw“#ÞHÆ4Nw8¸¾w“ƒh›£¸5~ä š¿ ¦JŤèšdÎÏ´ÕÍÑD#Ñ6GI¸l¡9ˆ69’Ã…"ÍÁ4æ€w=IÕÞ \£e…/ob/zä ÚäH©ƒ:ÍÁ´É‘]€Y®æ`Úä¸tñ¹oÇéÅÄÛNb¬Ô}›”¶xtÖAbìð<ØJ¦Þ`îwŸ)?ÃmÄ*Ëê¦Üœ‚AÀU‡Òª)ÊÍe3Ÿq±¬ÅM‹…’–ƒÔДÕ&úr‚e )(k‹ð «È2ä †¦xøR©,¶}Õ”µEøŒ‹e-îeËk°¥b›´¶À5AõUl—R^5oá>aY¦ÌÀ) B·©l„±“êŽr_»–Í|ÆÅ²÷lKª0µ¶$¼Lô%¼\GÊKzùŽà>aY¦P·µBv¸![`Pu#em>ãbY‹{Ù²ly϶$ ü£)¸$¨ú2Èhyy c<Ìg¬,ËT’À?šàJ• 0RÝHM¶0Ÿq±¬Å½lY¶¼W[t¬nR¢ùV†žÌ·’)c‹ò«Ê2¥Ga5Å›oeèÎ|+™2¶(Ÿqyó­TÝÓsqÇqrò°Klê&g[w9ÏÏ…ù\ï,Ë”;'wš.ñ8W]tœÜ†åŒYÖâžmñPVSpíFôÁöÞhcDY[„OXE–) («)™,gÙD–³n¤¬-Âg\,kq_ïsiY74¥À¤èk¸u-åem>aY¦²8nhJç •°·­º£8nhÙÌg\,kq϶G]­-A» ÐÂƼ’(k‹ð kЮ)Ô=µ±¾‡hÛg,¶ýÆ2·1æs«bY‹{¶¥øÝÏcþH†ô\b”òˆ²¶Ÿ°Š,S¨ÛÚR„ðÓùKߨO5Í_˜Ï¸XÖâ¾Þ>YÖqL ¯ðsá~.HMÏ…ù\ï,ËT½§à.‚Êè‹Tw½—Í|ÆÅ²÷¡Oæµ4“â§>9L}r8é“ÃÔ'û©O6³^JqÝöÉ®Ù>™(k‹ð —ÈZÜË–×`KÌri¤YSkf­¯Âö£~ÏšÖú˜¯kyͬõe¹4RS¬ß«l´ß®Ç·‹Ëf>ãbY‹{Ùòl¹¦>ÙÕã\Ì5;sÍÎň²¶Ÿßífçb¤{z÷³‹¹lçbDMï~¶s1‘µ¸¯÷¹ÈIé4rà6ëhäÀmÚÉ…Úæ™Ï£I–e u[[B¥Õg—Z}æqk‘ 1t\Ë|ÆÅ²÷²eÙ²lY¶,[>V[ÄkÁ¤ÔiM©MkJídM©MkJuZS*ÇýÊ”íšRJvM‰¨i 6Ù5%‘µ¸¯×–kjc×dË5Í‘{'ok ¸ïŒ¹X¯vm‘(k‹ð «È2…º­-=íqÌÅzG!Õéûa‹ðËZ܇çÒ Çô\Ð…]Ÿ3xÐŽv€Ô´Ë|]cMc“tOk°•Vlù™8 Ï¼ÈõÚ&˜¯û¡p/[–-Ë–§ÚB;Ó|ßÃiE3çvãÛLÔ4ßgþØ¥½é¶¶ä¾;ãsÕàܤîY 5íY0Ÿp‰¬Å}ð¹jà€>ù\uêeyoÊÁ9Ý»rVU÷¶˜OXE–©&aU5ϲªÏU¡^–}®ÊxŠìsUl/,²÷õÚrE¾ 02¨u~÷ÝÞÒxÿ<ítñû‰Ô4†ñÖ“OduÄRëd ŒJúÃÔ½ýC¢¦1 óu Òxù‰îil‰žLÓØ²Ú}äÐìš/QS?Öì>²È2…º§±e¶ûÈ!Ù}d¢¦±e²ûÈ"kqÖÆÃqœã䟜&ÿät⟜&ÿä8ù'‡ã8άF;ƶþÉîÄ?ÙMþÉ~òO§ãäe˲eÙ²lY¶|h[NOSšÕ ðÛfƒ{< ËùSÔpR3†‘hDø@ßÞÀ¶ é/Ò‡ü§áI%l 烲ðá$pNÈ+B—ª1M$‰½%‹œ¼b½g;£Ù•ö Y¿Ò¤ìö&Á¼¦œÒ”ÿö ÖlÎ.Bm¢hy*gÏJOEA…l[JtDcì˜j îz&¸´ÉŽ(ŸÝ2;¦‰”0Ÿ”°¬Pºcª)¸ë©²øÌT·î˜jÙÌg\$;á>ßÊE#¿Á£œuaeI’4#9¬f÷åÐC "Óè!„–V›J‡('tä@*³ü¹Ç­Þmªé'<îì¬7&ÅaQSôÙy¨Ïä2ô/z©7˜Ï©*?r•e*ŠÃ¢¦˜Æ©¬‡&«º½,*jÙÌg\,kqŸܬ'ZðnM‹…XY’$[NNûRÌ¥Ô)ýJËãÍp佞Ҕÿö öqs^.ßDê|GÌ¥{ŽÀ~°¨Kà3™á).a¤zp™†—`ÚÄ—üã…‹‡$ / ËÛ·)ágŠ¿ÔàÙ¨ƒê|à—b(5Û~méºç¿&‡ðü¾·HLâÛKRºJ´$=E,9¦SÅÓ)bÎ1Ÿ*žNsŽùTñ3Æd‚þà×ü”¨Là?ÜAúÁa™Rlp&l–~p\¦Ô\`>K¿ßÀLüåà%þ‘™BÃÐLÐz‹?ýÓÛoßl?~óöÛ¯ÿ÷›·O‰õp_Ô“Ž‹W!ø—Ï]„åwˆ#ò³4ÁL#Ä-„òZàLq«[¢¢ ÁO¸‡’”N±Z„NáÝ¡š`Ç á3®h"¨îe˲å}Ú×dÄypÒ· PÃ[©ipÒ· Ê2ÕÞ‚&åyÈã-È”µEøŒ«oAÕ½lY¶¼O[dRcRº9± —'ÛLY[„OXE–©v8±íS5'¶}*æÄ6SÖá3®jNl«îkµ¥rÄb“iàCú î¦zó2em>aY¦Â˜’q RfYgFELY[„ϸXÖâ>¼/éd˜Íé@h¥ãt SÓûRÌé@•e*L£9ˆÓË1T áp:PùŒ+šÓª{úVâöÏô­LƳ¾~óž©é[™g½ÊŽ/ã<4'Œ14Ñ~‰š¾•ÞxÖ«¬Å}½ß}ðëÏó»_Lô,xãFô,¦¬-Âçw»˜èY¬{z÷“‰žùGô,¦¦w?šèY*kq϶ä“kK®S?Ö¦~¬ôcÍöc"ËTg<9%Û~,'Ûem>ãʶÝ×úî_Ó÷eÙòqÚR] gR‘#}%Á>œ”G”µEø„Ud™BÝÖ–‚—aª¬§3r¬)k‹ðËZÜË–×`KL°6-ïe9ΆKl¾IºWÆ×—蘯Ëwaôɤ{ZÞ‹»}r v|DÔ´¼Ç|ÆÅ²÷l Ýx7}_œ‰j†;Wf3¢š)_7FT3ÖmmñÍD5ãK>u3¢¢š)Ÿ‘6ÕLuO¶O<Àív#Zƒ÷ÉDk`ÊÚ"|ÆM´Ö=ÙâM´¸³pDk`j²Å™h *kqÏ;鬡g»3QìÎD9îL»3‘íÎD:„i/×±3ìÎD8îL»3íÎD: ÐðÊá_ÕqÙ²lY¶ücÚrE_Ä«²EÜsLЇ£83«ÇxøÊ碇Ϻ§Y}ŸfõmšÕãá+_WæÍ¬^t_«-×ôî_Ó.KÆöÓŠ^‚{æõ¹d3öcjz.Óº—È2G”Náu-–f@ÙÌ€¸læ3®iMLt_ësY¶,[^Ü–ëq—„qÂóÆ #æŒìŠH8ÄüQ¾ŽQºѸCÌﺉùã!ιÙYk‡˜?Ê'\"kq/[^ƒ-×´“wMÏ劜B_¹ßô‚¿àÿ£Â¿¦nhÙ²lY¶,[–-Ë–e˲eÙòAl¹¦ÓC¼H?bp2mÃt¾+˽a:Eø@kXÎËô!ÿÅ0Þ¬áñ 1˜Nß|«ê3.)mç«AbÝ|ëè ÆÇ׉ÂGÒ+‰g~Û“²LUõ—”‚Þ`"›Ñ'\tgõ—²™Ï¸XÖâæ¦ËiÆÏZRÈWšõ±5—gü¬ð «È25ü¬%…|¥E–ü¨E÷ð³–²™Ï¸XÖâžl1Ç\9Ž«’6>ÈÊ!Æ1WÂ"\„)rDŒc®œ@ÇUY޲²ÖqÌ•Ëd.¡a9ƒu~ÅEñ¸ÅÕQn}rue…ð©ªE–)wò(:acñö1ËVúhÈçÊgY‹ûB/ÂC†ÎJCÚJÜõNRب·­iTÙ{ƒÞŠz¥Ýäö„¦ü·ùw½_ƒšGÐ[¦Ÿôv4VIÀFÇag©9J¸ m¬´–¹Ï–å˜ÐÆ* ØèD›£hÕÆ*e2—МÅJõUÿ¦W¾à¢ºž§0½úaºÛ¨Ç÷DéÕ‚ÐòÑ☺'4å¿=È¿#Jï@7k|r”^ó‘ÓüPq¤\þˆI„•ñ‘ãH»ÊÇ(¼*ËT=Déå•Êf¥×|ä´ìl¢ôª¬ÅMUÒÆABMÁÀ¢ Jyã ¡à>aY¦ô ¡¦àa@•Ń‚ª[jÙÌg\,kq_›-£'ƒãPo#4²Ä32Ñ“½«ƒM²p £OõJ“. –|BSþÛƒü;‚'‹'¾OfúþàÉ—"M}èØÉ5>9t2ì¦=9t2l$>9t²oþ…C'Ë×oŠ«e‚«ŸãXËæ/µ9°–Í!´æÀZï;priSÜdj¨&X—òmì.«KøSè.ªKøSä®ç˜œûψ—< ?6\ò$üØhÉ“ð – žï'VrÏ@@I¿zóí×ï%Vr~O‘’}~–@Éà‘ðRq’¡‡2±ˆ}>‰’<I.Š‘Lj.…HÏ+!™HSæS8†G.stdÅô¸àÈ/R­NXL2ŸDFž#« |©Z™Û§¨È£Z/` ÇÈeŽˆüØjå€È/S­BXM`2ŸDCžƒ!›ÖúŽXȪU¸R­ ÙTëyLáYªõˆéqA_¤Z9l°˜ d>‰€<@6ÕúŽøÇ—ª•¹}Š~<ªõ¦p }\æÈÇ'Õú> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 44 0 obj << /Length 2011 /Filter /FlateDecode >> stream xÚÕYÝoÛFÏ_!¤÷@»$E×MœïŠÂ§88†±"WŠTHÊ®ÿû›ÙYR$C)–Õöp/Òîó¹³³;?²Éý„M._1ûÿnñêûŸæÑ„37bŸ,V“¹˜ÌYä2fÉäÆùî»é̾ç3À?sù\x\†íœÉˆ‰HFÓÛÅ?@êŒK×÷¢>·€·9cÎŒ¹Ò ÅÜ,»p÷Øœ¼#ìrÏ…¡pß²s—sæù Ù¿ÿ |èøÒDè†Ü#i¿Vi~?ÉP:»J—8òœDdÒËuBªXeº"aÒ c®ù$콊§"tÖÀ&¥³-‹-˜:º¬‘üD䵪h ðO8 „;zÊÔ.«‰n´Ò›•®k0ó Í–»šh°•µQ •U 2ãte‰*«u™«ºI>™qº"õZÛ—ÓjíNgžç;‹µ¦U€(ƒ¿lÂ1ÂÜÞ€Û«"Ë ÔÿH±”àÏïj³%ó¹S­éiES;£I]îtCFeMTžÐðÒ¾º¶ƒ«4Ñ¥žn^Ïlt8˜eõ˜$° ëb™Æé~ø>¸EõÞÓ(ê¸Ê|ד¹ú¯]YªÒñ¬n¯Ñí9‚±€FÛ+²æaêûð|G¡öœUYlhdµ ··ŠEà¹<à}í•þ’æåh"vl–L«×gÝRj~V÷šô§yUk•ФXí2ƒD¯0«‹’µx—©Ú®sëEk6Ä˸†VíåõÅ”sîüö›jy¢·Q£¸K'×6ŸÁÂ9lò3×E¹¯ 4@ֹğhRB‰êS®/¡Z…#›R ië•‹è,ŽŒ“8(u¦T^Ó,Qµ¢Q±ü¤cô'´b=>» f q515Æ6•Ôe¬ãüxÖèÅÝ_w[äl!ÉÒ¥I³®T d>#å0â6@ßÖ5¬ ÆÓÑJ™åùSdo¯±CŽu£‹¡PÅK««KA]7&äŸ ª5þæÆŠ~ÃXq=Šç¼¾úðãEè3Îøë¡Õ··§HúÛýدÛ3}}ÖŠÜØ$­V:¶¾^ŒÃdÊÞÓHˆÞ=ýð‚èÀy}8%žçÈ}©žzñƋױ¹5¼±‡ŸJWÀ ¦—pü›at|Ù$üY= 9·¸þõýÙë“©¥Î^–$qRÊsdxL›r©êõ WðÑéiwõ•m»ãg£ël³§ò”äzûö%9]Á0®Ç78UžÞÉiŽ"л7¢¡8þ’¥{;Æô-Mòë¥6¡>ýˆ®jUÖÕÝcZ¯ÏÞà£IØ?åðC{}÷öí>÷çpÖ‚¨;¥îLͰǯ%Ñö?p+Àø>Â-0”z” ËïC.Ö@’û   `öÂ@>©À#)dó –›N0‡=¨¸$ €‰‡)¶¾xW©±0 \hú«ô!Mv*#:aØÃÁe€†ê@ûЦ…ãnÀæÉ¡‹DÀÛ¸Åñf5’.àC}–Çæ1Í‚$ ä¬ìY^xýÁ6\45PýÅð†ˆ 0|ä©ÎqPÓ³ÇRm$†(ÔÐ"[¯¡Â¥@ç›zA*æÙ"¢ AÆ/g³jüN‘Çš(ÔHšgÇbÉ}@V¢\ìªÜU‰—Ø1lBÈW~Ÿ‘á9VzcÙzjï»H.VDW4m@¤8E,,¦g#¾›Z§Kýe—–›áËõº¡·èN–œ"eq ½~àw²)‰èd `ú@JòhgQ; Š\w1 Ù`b!œP”Ÿ§Í­ɦª_c¡z‹!]x»_ˆ>Â0 VPºT?z›ªÔÈbÁž”±¯½EÍ÷s ŘPQ—¬‘->sÒ:æ ,½ëσ~e:Í—å.û<êŠÀáÀ…QÚÒ\WÕqSeà†`â¦n‹L•Ïû¨­‡9QxU–n×P‚â1»}bý¡Ý-‡…òT;jeP tÊgX¹?c‡&JÏ•x陘7à(!â ï‘8†®d²wúžh`±Ëë_6çùèQ3÷\ø*0°¹0 êjP= “q ȇ65¼»· jZˆ<»‹áàk°û/;PÙ»-‚³¢P.i¾ÝÙ°..Ýù¤àuCýñÉ®²m]m¿-H›ÛTã»5²µT¶–z{KÏ€^] ʦ½-4¦ŸZGpöãÏ-²jƒÕƒ`¬¹fæÚ§¦dR‘Zˆv•–U=xš©†hM‘WG3jpƒÃ æÿqÁxŒv g!’MÌÿ_˜Û“ÛÊ?´W?‡s—E}ò²l³R=Ø#Ç|pXB’®Ø$s{%æfùIýÚzÃoá¦Üݯ¿>5Tíç\;o¾ÏöwÞà€–š~(2‚˜ÚÊèõXÞ/^ýÏØ*ï endstream endobj 51 0 obj << /Length 1299 /Filter /FlateDecode >> stream xÚÕWYoã6~ϯ¶/ Ð|>zÀ—ÖÄg‘)²l Ɇs·ÎÿRw8ÈgYmdÃI{àÔtpD(Ê•P=ÂYDÚSŸÆh$Aõ¯sÿ‡"øÿæüËâAµ(}ÖªKßÂr3íûW67eµT¯_>÷b=‰Þì8»Ö­?ד'›÷<*L»æR£¯ö½ëý­nàdªrãw¡Ü¢ñkÖuºY;üULë6G±Þøã¡zã¾$žA¸wprxr°—vu„Év[ÜúæüðèâÍCUòl ‹l¢‹—9asöæU¥Êd@Â1 vã߈í™Í`9 l+ÚÞè¤äß[ÍŸµZܯfî6ä]=:†RcŒ(ØÝº‚þá¯J‡ú2[PP‚hó¬Ð-îƒö° 1+áb—Êßׯ3¸M !Â˪(ªmž„_My…ªF_êF—¹-c+Ýæi+EᢵŌ[t3?7½w´õÌî»mMmF¹gznÀQ\n]Þf¡nßòí-^õðJx<¼%~ጮmmAÀ5\¾·¼»Y×ÜÝÍ T%ð~,P€m"Î8ôä`<‡'×™=\…{§]3¯Ú.›˜Ât.FœÈÊ©¬XoŠnh»ž}^ÕÛž•ê¦ê´)[0E4> stream xÚ]PËNÃ0¼ç+ö˜HÄ]{Çæ­Ä An„ƒ•¸ÔR^ )‚¿ÇÁåÑžvvvgW3¯€°Kð¢ÞVÉf«pd ‡jº`D%†20-<§µà˜½T÷¿ºÍ–Šÿ"NÌÈ0ùÞ~È„NÇÎÎ~YÑg–Éô­±»^¯gÈUØFà` %2“F@Õ‡»Ù™(Óå`û è‘ÅzÓûaŒÐ6¾¨õ5¹Ù ‹Ì~œûõõ±³‘XN¢ƒë¦ˆÜÇÔY?ÄfšÇÅý4î}ý=vÇÅCø+©LŸÿwëâ*ú¸ð yH¢­D®•\½SZcÜ”2TÎ΂rE†i:…­Îîªä ˆûj< endstream endobj 76 0 obj << /Length1 1935 /Length2 22962 /Length3 0 /Length 24180 /Filter /FlateDecode >> stream xÚ´ºeT\[Ö5ŒÜÝ wwww—àP¸»»—àîÜÝ-8îÜ ð‘{Ÿî¾ÝãýûU§æÒ¹×Z{ŸQBN¬¤J/ljo ”°·s¡gf`âÈÉ«ØÛÙ13Ñ‹ØÛ˜X˜˜Ø`ÉÉE€F.–övbF.@§‹@ÑÄåÃÑ ÀÂÄÄ KÚ>”¦cO€<ÐÅHÍÓÈ  2ú (Ù;»Ð9¨væ–v@êQ{O'Ks —?1XééÿDúã-Â12±¶ww¶¶Ù™dä öîBK•½Àhadc°7¨µêªâ*ªIEu%Uj†Àª®öNÿÇETUM]’ &¬ &jÐ$ÕUÕþ¼ªí>ø›ÓÔ>ôò|þq—WVÓVgfü³3À èälù'íÿp£ø`øµW3'{Û¿¨,\\xÝÝÝÌ]]ìÌlþâ§faé p·w²|\€6À¿ ãjgúQN àßþ´ gi´sþq’°ÿ[iûQʧ¹Ë¿‰}ÂåOL›¿ÍÎ@ॱ0rþËWNII`kdiç´3²3ù0t1rquþ%ûxM)ÿ&ˆº:9ýÉ!ÿ/•Ó¿Óü‹ºˆýÇÊtm¼}Üÿ·cFv®Î^ÿ¨Í/ÛÄÞÎÙÒÙÅùïˆ@€™¥ ð{ç?=³´ûK&/¬ -!®ªF/÷1xvôòöÕ±cpñpùËúOf€…àÍü1ʦ@¿†ÀÈ`gïòáppuñ˜Ù;Áþi$'3€QòèoÄ `Tü7âb0ªÿqsþƒ¸ŒÆÿA~&ÿFÌLLFÓÀÀ@£Ù ˇ¯™å?Ô¬FóÀÿÔ~äµùdþÈd÷ø‘Éþð#“Ã? €Ñéð#²ó? €Ñåðc¹®ÿ€yÝþAú#‘ç_ð¿[¦ôç¬úk+2ý§‡ÿwˆÿ…U]œì­š–¦7°˜È¹8Yz|fúØGÌòÇ¿ÞéýWòÿÿð±÷ð¦gãâгp³˜9˜8?³²úþ—¯Éßçé_{øcØþ…ÿf ÐhûsÑÞ„7Ä*µ9¬ÜO¼p¦’œ›á¬ S@K&âgÆL'¶XÞ P°(°5 “¢È^NŠGÏïk ]‰y†ÍÛF[ò·é[Se¡]#?y?T¦/© õ;çã¼¼–?¡í ¬OO}Eø†?µT 9{ÙÕ10lI—y˜'_Þ™‚iÿ&…´Þ÷íq“%úûv2å–¶æ‰ðàeï½´ðA”(¯Ç¬¯ª„î$ÉS›m `z¾¥ä5î'IÒ+:¤>¾p–‚þºã™å©g¿Qš)PÏOr>uˆ—óHêwi˽.\›eÜ3C;Z:©?éYݼ‹õ÷Á^dËcÇ4W/r§ •-$,wÄ‹°Â¶m&LÓ¿XY’ÚýœÇ¢ãz‰Ûìv$xF5€@ò©Ìâ $"g¹ÏW~¸#ºhÌljvñ³V ïÄΠ,ðçoý*á zŒñÅ .*îêh î‡yÛšm“ ©”5Æ ˆA> ˆœ–plB×åó±ì ËèWb?*pÇí')…AO;Ÿçðxt•(.—…tÂW#dyì#Õ¢r;©$K·³Šö«¼¯°´pRße$b,Yו²"›—W$el¤ê ÛZ¿å®$g×/F¦R¬Pžžs‰ñÀ|m·›iâ*I›4ïèܵWÚòˆ»§#Dü„EIõ‚”féÇâ’F¡¿3MfgÓL÷­÷V£µóÉ>…ƒ“”HÃé¶bш¡É|d·±ñð‚ ÃqbD{16+tÆu0Ÿ™6Vi:¯´ãÞ÷%SçYÀJ¨Ð‘{PíàÉWô"ȯXõ>´Ôæë;}J–w‹ ÄqÖ-x/nþ×|¬¶kDûkk?âðÂâ/¦ªY‡úÚ”Ÿð†˜¬¥XXÕW¬VôÊ'¯ÙóÐ38`%Do[¬Zz„'k ¦ë§ ·HÈm,»¾d·A;b牜ªœz€PÚ¹‚m&í®ÂÇ ´a3$†’AGƒ­’섬,€(†ëH­[â¦Õm$.Ç,y‡Cêdg#­¦hõŸp0uõw$½:NÔ OÛý|w Øqqì•a‚N.9óп¿ãàèDº‹¶² V+•S¥Çeeâ%aú±&Åçûö¨Xûå'R¢­‚¢÷Ù>\+ #Bua KÚ‡LXw¨;_ûíæÇó…«Âäil­O•8¶Ã\/Àëf]逆è6_AšC„i8/ªñ~£tA‚™^²2¾ª¾!DåvN¬=·>è•ú€&ˆK:‚¶¹íÑÖm@<¾”Á‰?ùµþ;Æ0\Ç3¡/H4¦ÆQøú¤J4%ã4òO‹¬äq#ÚšÉÒ¯ž<îÐý\O”ʽݛ"l;ýZÞŠÆ\'*=͘ «ØÊ˜ô¬ù?®µ…Ö“Þ9¬Úd…lGÝ ÈcWž&boXðMŒf©<—¾ s[$Y/ ]IÚ˜Œlý¦/ù%¹H¼úø5t¥56°:Í™P1àìöåó—û ¦NßÍcÒ ‚/çég=±6† ¼\·Yòbld±Kó{­6®år®íaZÊë´—õ•VÈâ{dy¾÷ç;F!‹1Z˜KሰõÕY%9ȼÜ*w¤DÛ%Æ®#N/(,<3@®§h¨œ×êì6ÞwUÒÆå­h3Z$˜çú@A@¦]n£7í`â5Ôvâð@«ÎYn{­á3’k©6ñíá-±ãùß ,!„ÖÛTXù ÀvàÈð¹ëÉ–tPŃs•ŒððmÊ€,“¬M![#×|¸#öBÒ–#’á£*drýX‚X¯pqY™P­ðo.®¯Ü+k’÷}M šÝO&4´Aœñ?>eŠQ¨v&vã4É‘0+¦Ú(-Ä¾çú.cJRª ólz^{¬Æûü»àR¸m>JK !Gn´`z…u8cI[bõ­„f(÷RV¿\O@Q©.Ä|\Û³¶¿9œŽÐúfÃy©¡ÝÙLXæ:À…‰Â†É¯„øÕ×5Á2McOLóÀg$ÛõŒÅ˜5zVmX{ÉxÕ(]2nLºÛ¹úæÐæÌäy¨Â‹2ýj@Ž >ŸV.©â¬Ì÷¶Ø‡·â;i+±TèNØîÙ\EÜîg-yIÜà€¼Nß’7±M0qºÁ?Î'¿d[ÑO/|èßmø€†’ošÍ‚DiMô;cœº¦´S!s#|ÁníØþwÅܦÊZè_›ÀÏCºT:(Òi›ÅÜßK«†f„E6¨ýDò•…ÒƒµãÚ 0w nÕŒ?ïÕͺTµ ‹BêxMÖèâ|–B¯F‰ƒnÑÅ;-z°‚ý±¹Zrö•F‘39Ê„‚½ ¢Š.„L×K`¾£þÕ;WØ&KåÀálãæŠîÂ$ù'÷OÎ_q½n‹ã¿ká¼/ì$«HÛMì8ü­÷T'÷³`jª>ÑÈx“kšÔ–aR+”7°%0O¨™HZ‡Í£D›ipúNÈùN1Ð"g=(Oî—eT–læÑtmQ¾Î(Íœfß^ÒÃĨNØ£%¾;‡«ø4X\8p“=χ0fÚ>£©òÄ¢”£’ l3¨ØÓ±°8Ž$[î ßšãl_“칎jIiâÆ—¾&4Ä[{Yí#ÝG¥äoD\g¨WSH^¿ÊaZ9ÔƒÄuÎÉf?9_Xkä…ñ,æÃÆWù¹ö­¡Ò‡ËN<°=ÉSʰ`ƒ!•d»ÅéÛSIïç]靿ÇLÈ´‘jÈÁÃbu‹ÇýY À~g·Jåò8³H’œ>DþÜmÞlª f×B¼>ÍcNŒwY†výxú,ýy(,a!žõÏÔ0¹®MN¾Bàb¦òð˜ÅêCH®ˆtX8߆Žù#ã4?Á6ŽíHL9ñ»ìöc9ï‰`—ä ð¥Ì2|[8IÏ‚‚r³Ù'h™+•znôB¸.­àùúoR´© ¬—Ž)Š™øý\ OýaE“e”Q2ÑÉ¿Œ {`eeaü+^züÜ0Ó¤€fSSžYTj]'°ÍЬ‰±ŒÁ`Ýà¶€àj©V;Ó‘atSjïª*Uó‹JRtŽÁ¸éaWïwi ÊÊ7òMxÖIÉÀÏF‡š¬Mú—ìŸî­QÛ ¤—{:¸ºt¤Ÿ…´D½ÇîÇ;¬³QÀ¾S|ß=˜=í/¡¥æ‚ÆAºjÓáZKz{>rß;Õ¾¹³1×Mq3õ.”÷SºkYýúuÖò &cÖ{‚Ww'¬ÇQœå'¤öˆè@ðr :´Ç¨¬šo]ƒ¨®ã¤]a3‰¥ÍòåíÑÂï¤<ƒ×˜u}ËS¾ "¬ñ·ø¸˜ßðÞùó\Ñ 9?nušºÝ˜¢^‚‘- bν¼ô‰À4ûÄŠ+џƯJL&ôâ´£ü¨¸ÔúwwpÆ{{ªÙ7õZÂA©X:‹|þº„J—%‘Zœ=W·årµ´æc»Iðb²î‰E¦4FïÎ ¢?ÌÑç”®p[UbÖ¼[<ȉ¶ozv¾l8m?ì驨Ô)Ìó¿¥XÄô)ÌÈŠ*ÈÈi^‰^‚¸Y}›µÛämAÊ㼋¹åáÞT”y52›¹e¶ ÖŒP"ÇsivŸjî—Ç&*èú½·3Nˤ39ÀýÝ@y×âhDÑ•ê–dó•×)ßâHg–«Ÿõma¾ ä=’Mç\0 PÉæSÅùæVœ\sÙšq¨Öã~9ª9]ý%,jXK4·˜bFjp³F¸ÅÞý)ê’ÿÙ‚y4gŒ»Ïm3µò§L£.r à®üÓtA)÷Õæ±»A{¾´Ž&%Ž´#+í%ÚYõ, ,úyGa©ÄÈnMQPcuáמÔÔ1üŽU´wþ]˜†ÄÀ¢F#øÿú´rÛ‚ò…ÇCõ]õvÝbU¥Ù´«¹t"PÜð¨QsÕòÈ 8-hí80ku˜ —%~XŒË_߇eËîýe] Ômz}¾óÈ8$“DRºº€±®ÐöPƒºà}µ»^ðä`uÌŸ®™\VíÝZ÷/è”ItFª±HΞõ!GðÁ?±µ—Wç´ âÝŽmŠûFŒÞZ Q˵r°—­²a’gç–{‹¼gyÖ$ò\ÍG|ݾkêè’uÇÃìÅÜ4-̧c=²yÔží½ç5vÕc88ã Õy#åÙ\bˆCå3Ö_÷Ê–y-гøðsÁ(@ JÖŒý—´¦Y{{[$"ˆ[«—.¥k oN1Áìͼ [Ú5HzÆ„¤mðÎLu]hp3&Õê«ÑCAQE¯ëdg~t¿Üññ¸N…‹)1žiÉ ÉÞ¾^³Ç7 j8?AÕDæi†q›7:Ù‚Q˜ñ2&Éì¬Þˆí#ÅÂ:8žVóQ.ü¹ þ­ŸšN°z佦ŸÄ¬·ìÀét ¤3rÚøJ‰ÆzçI’sˆ·óTa0—&Âdý=;–ÇxF=g2C\Ò“ÕѦÊÇ¥Ø#±d[óºS{úc¨^±f1¬FÄEÚDj‹àLÊrZçÔ X†‹ÓÇ_´S”z–À~}UŽ£g_ðg¿Îºy>ïR…š’ Rã¬ÉKMVº"¾Üè½´æ3Ë«Ôxz˜ g×A‚pþ‘ÆæØ‰8x'“éå¯2Di®y/ZV>úüD.¿ Õ¤lHY~³ÊúË´þÇôCùé÷…llÀAôا$åÈþìÇ[äá®~¸QÕ]ÍEG¿V-1iP Ž2µhãѨkÜÇ :²ÎOêL¿ø2ªàá™×³|ä$C&”&µ´I,v“zò$ Ož:ùÃPv =XæýeýŸ› ÃHH?Ï…Ëü&Œ‘±!¯æþY%RêæÞ™¤â4Wˆ?[•§Úà7A=·UfE€Ükú¤1ô޵=‘@DÕÅùÇà"˜„{aV÷è’/äïfE Üe:…RÔÇ3‘bâkèõl7†õ/Âç äðœohÀ†4½þ_? £$NìϽ°fŒ+ Ýæ>nš~ÃT¨dBÜ,œ–Ÿ‡Ð6.LÎÑP6ÁîL˜gŽK2öÔAë2÷ñÑy¾¬y,å2“$Rï–Ùt}.¦y2ôXxi ¼ÒkZ¿2ck‡†(ô>ÆÊYòŽCôœâ‚¨-…ŒGc©°àe2w>#ÀËf×,yo6QïÉI4@.úé’󭯇«‘1ôFëÁÊ0€ZœlàzöÖ|“ gckW»‘ç&å •œ/;²ì®(¦ÆV ¢– (ue@&ÏN&ê­õŸ{ŸÝ¸†{êR©ÒðªŽÔªXT5.«$¢NŠd·m[ëžâêo;…ÍóÄ +öÚivÿÐ ù²?k·Úú]¼nlÔS?,3Ó™«‡rdùDc 3FD#ó·‚fó¶ü… ááÊsBôaQ•ø”‚‹%Î"ûÍ`½Ù6FF˜‰m­O€Ew;ùøÐuì³éô†¯”.M{ˆçÇïóº˜|ë©° ûµžØaM$®TÉÙß„LÆb*[~š •ðê%J® å˜o¦ƒ!¯å5…$ éIÞA0Á¥ë‡7ø„Å'E¶¹:øëa ÞëÍzjã@1U½Oðtûæ!€G䬭³( Ð>¥r³ ðŽ»…åÛê¢Bç1Ýþ¼2ÌÝ(QJ¤Ë¾w«i|º8obß­Ú¨¿Iõ=ê6%^êvp’޼6hžÐfnúº}yo£Ê{Ãeõ¨È,ed¯¸’V^>*ù5Ïi-BËÇÂóÈ>ûb•Åî çîw¡]+ˆÓi·’¨¥€h(´Q7 R}g†IYЬVÔ‘ÃXOÑ×qÆŠ‡¿˜žy/A®›(Lh}[ÀõS‚2×ѱCŠûÕ7u³©EmI•Mð€ë8*Í]3yÊá½Ç–¶ZwJôóqkg²w8ô4´îÀGqYo¼c`~Ot›]‘í:¼a¢À¢„êJodÒûgKÅîn™wtåelÆWGê™– Hß:$ñµ¥¬aa³IþY*¬lw€‰’6Dnÿ›r Ù¼œøaÛY8Ó"ظÓÎÅÒ'{ƒx€6û¥Ív?<´h˜ŒÒ¼WÝgÔ\ãPêjÙ<½SmÅîüÌmLõBVƒYð.ÍV X%黬(«¢åJ>BÆH›M ×¼JÓ ·‡Ó/BĉQR•+€d=ñ—¡&ÑŽöÐFh ñÓ7µ-ƒ4SS*Æ ø™,Rí´tKM‹‡BNâ;ÿBœÝ F»l¨=ÙF ™ië–SÛa©umŒÐ¼¸@,ÅÇ– cKµ,Å¢R¼/I¦í¦?:xÓnã1 Ü£‡ÇgEfnWμ÷{™ºYí —ŒØôš/ØÕ¤Ò×þKt~S“  Æd´®VàºÔªÚÈÑê0a!M¤}‡Û_¤¯ä\ã½M\¿oÝ£À»-JKEk¶{áZ#’hD¼ ¾D÷Ù>nd¸Œ“XC´‚0D!ÍYZôîi`‰‹~Z3÷ehæ,%i‘Ý¡ hh!"aæAbvoåÓíû9êG”úm©òÂ3ÒÙB aÒwj¾HÁ-J÷¼à„¯Gà*L¡ÔIƒ>‰ëÊÍðtªjÿû)=+Ýk)…è«W®Ï"â»ÑžÒ°>ÚTŒ$»Êï)E°;f/Û‰ë%ôxæ›ëÈ "IXGÍm«¾õ>BRMÆ/Œº•ºe~^fIDÑÄýÅ‘ÏCÖL|‹d<{^lj¢LåUcoõÌZ«'ÄPÊ£"dŒ'ÔFqvåÕYe)ô«Å¢tÏ*ˆ—|HI5·0™h£pŠù!Î3šd_Oããq*åjvàw‘w+F¥|2~TæœNfqÃ^‡· ¬O@`˜…G´7sõñ¹›ãy<{qÁzÜ`l‰¯Q Ã_‘ ò!ï4ÊAÖXÙø¶WW…?j1`Wq)Êró Ÿ—¡Äq¤S#)öÛŒÁ ^Î÷Äw ðè#/*C]ÙÇ(>ïa~[G½ D¨oA”ʤü}R‡"ŠˆÞŸ¦¿ ¦ (‰^v"y§zTlMËSÉ«+þf—ÈeÚÓ—ö0Ø$«¢Ñƒ\dÛgôàHPýx9±¹³ER•hnî[!X^Õo‚K@¨hç×Ô÷ð³,÷ ï ^ŠM]¬Vn=·¢¸ÑjÎBÆ ×eŒ ÙÙBÌêuwÝÛ5“¹×T%·U«€ß 7•AÅbzÛ¡E§—¯›bý¶ù tF Á÷C|œß RlÖþlþœÊ+tá©|=ãËZêÔêìá8½ªQé‡ÍÀ鳞¥Ðò,;À«SF'µ¿ºäz,zëÇï’²f'kìdÂPÂá[?ÙªÜñ*DǹÂ2üZXÝ~s®ÒÛ/€Y=¿…>s˜RÐ"Üæ>)ß#IFÔ ÕxQîYu>í= ?G‚”?ªÑ¥­ZÕù!³1¼|iB†.BX Wâö:`¿þ.R½›U¸ë‡ïcn¦Meut-+‡;â0?d5­¦±8ßÝ7±L@Õ½A2IÁgˆ w–[ÖÞzž¶ø­ ÷-ÓRf¾3›Ùíïý—¶‚…ÍŠ›ó椶MBñÉ|·Ö¼_ÛùŸyR6ƒŽŒv1ËѹšÌ°`Ÿ 'a´:à`²‹©ö;L)JÕד1¹®¡Ro†Ó_Õ}ýøVky7d2åx¸Î.|ÔN ï_ë²RVóhvk7á‘g¸8ã|:žYÃßȧ/DUe⤠˜Ô˜öáÎfŠ"ÓTü«óXë ¥ºÊCõ÷Ã:ãÇN?Ÿ’Dëà­ M¾òV')S2„[Cðr¹>îu µû\¬pQO·Ïf?@Y?6ÇÆ›lè`XO Í<˜I—T%fO ^Zçö¿ îê1N؋ʳ€µ›Í_R•gL0¹¼ã™Ì† ¢e‚¢ôDìë*¨\rÝ¢r½qÔx-ô’²V"ed¯Ëºé!ß/^g·Ó>›3Ù๿L‘Û¡N {–Ñ·÷áû·"ïû¥“·EìXœ¾^¸ ÛGà:Òý~¨bö[¡ïœ ›WÀÌ(OfãÑ””JX ¾pÁŸÝÚuœW~ìõÇ©V%׿°°«—äM°ÃÇæ\[îJ›ÈâþI¹“¢rÙÃg|™]çqÒ¤qL ÷ÞN…õƒ@@-è ªb}B-ð¾^OŸ¦Š"pÓƒýØGëwµÁ?£ÔFñ˜D8-6oïC«‘¿D û=Õ²‘¨Êì3fvEÊ¿K×Ku]äÕ˜h7Ë„ Å›¾4Ŷ)ú5ü-÷wÿ“iÚ–‘¹\q R­¤ž~幎À+× Ü@üWˆõ.˜P%!ÕÆè„Ï?u›}sÈŸûÝ"êßo¿•9°ï7_Olž 1,áƒd±ûPà×p )Oí³¡Ž¸ð•ÊßtYJvæ+˜¿¹ÒwoxO5ŸKâÙ̓‰±’p ®Ã¼‚±ú™ö&›¤¢Ëžòk-“ÞGe‹Þ»|ZI-ÛãÑÎI'·–XäFz¤+®Ó¬p¯€´¨ƒÓ”(ëe¦ž7pïw '9nU†`áZtŒ¶¤ÎeÁ"WQk/>öТŽoþ¸ÙPRtkŠ1Z¯[i%sfP¯ÎLoÅC›çO(2ÕuÝϤy áÙ)«£çÛíÞžvMœ„%syk~™>º›ñV!¬½ sgtI ¸öÑÒ¤ìcÄ<2hNÓžl)ÒÉîÆshybãò߀ ç¨J@íÜþîC yÆ áµøyŠUXbÂÎE«g\ îÜýËÈðÓë³JQÞ:QÉ L0X¤¤éfïœÐVÝuø°µ¥sZk{£KÇ?É7¯É¡°QÃÍ-yÃI¶Ü¶þ®Õ…È3>Ƨør: âk$Hz„| XÚõ« †}‰%háê)_W ¼e8ˇ\)Ź8Fç']5°GïlêÕ*eÈm|.NFÏ[ýÌ'‰yƒóÆÑüeº`"ãV&ÌÙ²¿T¥Ð½­ïq¹ºI}·¹¦ÝÝW’³Ås5ý°èçáò¼ÃôØI10În´iµÙ5éWÇÅMPË´r—rm:„ÚíÀºèy½ÊïerõøèŸ(7Ñ–j+æª(¾Û•êoŠõÑ?l«±6Ä[‡ Dð5¹™÷/ ™Í~ÉŒ_l„©î5ü~ ƒ¢È1È»4œy#]ê|…bArà÷kЇ’`E] 9ÁHkô‹§ˆÁbZÕÛüöDú`Rvs˜Sõc šøhk‹¢ ÂÙé×%1XL¥Ÿx‘^çkN•X|O»X¿† z™bÓ “·yاóã>ÿ‰xÑd0qÅ1å=æ ˆ©ë=]óeÚ@älÚ¡%Åü—|,¯_JŒ¹òß6L±%ì”UNï .€'óv’0µvWðŒ ·aŠÀ?WÇìD¿ýD×^c|Ààíj‹×’IR^³È¶üîÿò‹Ùzø¼ixÞ%ï×1‡ÿ'A Ñ·YUÓçN2ò8Œ7ÅHe_9hUBƒêOÄ} 1 XÒt­‰ 4^Q"µtäão ÇÔŒ< ?.@À½\´¸ï½Æ *O.ã˹#0_G2WõfÞ±ŸPfØ íí;b3Nߘ}þ?õÈ]ÒR”)"¼„² ¸Z(²Ì£ˆ<¥ÀYŠ(LÎõLã»ìS1{øâ×âbzªºJFY„i;¬ŒyØÛB4Ïæó©I+Ãq_í–È W$NMÓ; ®¿¯¹Pë6f ۑȲHÆ^ 7R¶Ÿë¤ É/¯7†Ü“w7ùQ é*$Ð4&çD_@Å`íbdM{x.oWx}Ö ?;#“!bb…Ã'ûº:²9X;rßH‰·Ým«¼L_î_K.@6è_NÛÔë“üᘹOX´±lë% Um\àŽEùk[—;É#L€gø•9Ñ'®á½úÝ0P<–äˆþù`éû*<#ETkÏ;Uê  ÁöÈèªv‹OK™6­Ï³/ŒwcOìÙæweÙ%/jGmî”!Nö¾Z‰@ˆºúê“ãi,ÐûMc½Fà±×fe(œ€ÁŸÐ]“Ca^u‡3„üì?òB¿‡i_i¿j}µÒŸÆ‚*­u×Êwzü¸û€0®ìj šcsx°š ú_±‰JHŒÜ:&vù“KÔ“DÀ®$;|뢗sÔÂXˆ/ERïÆµAÓE!ýNlëj>Ï{µ1‰»÷zO£ûìi¼N7ÏÃÃ=ìÒ½*³)½\Ÿÿ(³r·á¤ßƒ±œÇG ¢Gù°¢•Œ ²ó+n(µÑ :õ~÷~ ‰¾V@º1kTÇÍkÆÄ×29´êœ€+FW¼ÍÃQÏÕ, `­Ê$Ûá3n™¥—|² cü”Q`3¦Äy„¾¸¥¼Þ\œã^&€ã~ÚúÑ"À¼a‚[l£^øê5à{¿îÚ.P± psßÂÁ¶½kÔn'¢0».ÎqûcêÍÃQóqÂkúéœB11aF¦kÏïm„PÚùžº!qŠÍ9‡ô=ÆûEZ¹Wfƺ€Ð‡8±@<ÁjÔ_…e¹¥¢Â歹—»ÛUiEE­®x*~,¢×}ááù-iÀ¸Ð£Š8tS’ÁèÏiû™–+‰›¢Qº‡ŽJ;§Ùšè÷®0¼šW¦Ë&dÊyhƒL†Ixnm—IAR\z`ý}féÌv6É¢•b³V¹b¾ }ÁÉ··Âú²åÞƒ .Ø4ÍC–¶}0QGy!è¹V6¿ÕÝЃ£uä¬Fõ|쫜™ë¦HIÔ»Ri¯Ì:®áOëK°&=;Q¸mÎ3ªËó%¡‰ÅV½jÇRnfâKÌ) å…RhÌž•äbñÂOoÓè÷PàWG>þ€},âi,Rú•€è½Ë‰óØ¥è©óAž2¾X Þ€=„ÿ}gé\œ‰§äô¯ÍSR”O¨ˆNÂälYŸå÷-ánÉ+éºnʼµ Íëæ1‰Ì]Ž*´ITŠã»Ñöe,Œ¹…¦’%íAÊæ•ûòˆÊ©H¤ä=o‰Íþ²áæýVû•£š¤ÀË»kÀÄ}ú·úoTf= xåã5Ê‹ÿ¨6¯˜Õm37æ¨5Mö¡E[«¬s•¬œû¤ƒ“QxîM+‰ÇšUWqâL 5›{êÍ›¿<¤•~-Ÿ‡½AÚ'ÌÉèûÚÙ:fxתP¤Æa‘gNäþ±x5x6ÍAbýy¸ëuUŠ7³³‰ ’#ÙF†1¤ G=£¢íÈJ/W¦¼‘1âë=ͤ>Sԫŵ-Ú‘ÆÐ ähâÓ«Á‚Y€dÔq ü¢üy7n)ãQ/¨Ô¤²áÒpâô§.Â’¡¸€¯‚­oã}΋*$~­±”é¨Í\¤èžnÐU¡s¤µ$Ø) *þ˜ñ~IÕ:Vê=éMÔÓñé÷©ŠDaÆ 'žÏ˜Ï'°¤Z©û¾¹%XÃ{Ó¢^¸NHáÖyZÕ•ì{IѶÏp7ß-ÙîD®dA…¾š£?m;€Œ £dN‹Œ…çQ¤S:­ÑÀAýØ«D [F†à‰c“šR^9:3u¿8«7ÿéì±K” óñŸ)ˆK7ïcC#bÏyònƒeeªÕ9%祩ÃÏ ¶ Ÿ°'Ò-%³„s‰|›6§É”(áZ °± ~ó¬`ÐdòÄŒ& °É\¯ÖÛÃsd~9!jðÊWYáÜ“St³‡Ü †@ªžµï–6•ö½Žæ“@PÿTTO–ss–m¹R”2„>$˜ÅL–Võ:Ü©0Æ%4eõå¦Ú¯.°¯9l@'Þ–/›NÖÁ d¾wøuu¶n«8ç›v JM0·=¦Â÷£‰ž>l°5`ÿ'Öç†v&A:» Vx;¨hÁú ‡Þ1ŽùùÎl•ÒIs^h\Ú³úW­5)}Êßhž´ÚáÁ s¬§òB4ùâ¿SCâ;,1øK1‰ü÷ÀD1õ¾:=ýÞ"hYΩ$B_›ˆŽŒrbÞ5¬°m'TK'I¤$7„/‘-‰h¥þbjìõTïÀ°ÑûKK߀´His¨@üô¤Dhšt9Ÿé¹N$-}QôtöÇyäpl¿úŽGí “á–>·O¶ÊéiN+0€<"AˈäÍÓ›"=^ìcÍþôù‰‚mé7—O¸]°¡!L·Z,²²ô©¡Ê3úüïѬÎgmÃG².¬2qU¯dïTŠÉ¦Q"iÑ.ãÓŒ#Æ&Bï}Ò¸v$JGeì4ËVYùòíl'î°¥2ÀŒàK»É/ßÈò¯ÉÛ+ÅKý9õË \;njsGšÏ¾Ö‘ãàC¬êŇ½9ÄDÚŸøå–àø#ùhçˆÚ¨yç3W“B#pЈ8ÄDVuïǼäÀ8Kç‹ýʶuôírS›ðØ™äU¢ Œ¿iæá©ÍþÒ%œšBÛ÷šÜž¾ÎmªYÆóµaúU~|ŽËÁÉén'”"‘û Œ ? Dñ“.šÚÐEÜ-»ý{A]ˆ+}Õváu`èL©†‹…Œ†£©AÒ]‘¥µ¹—õÛ DaÈØuƧ¦“IZGKŸí8 B›¥öPhßOÔv‹æÂ¿#[7zyŠ`ƒ "2k7 $ ¿#jPõØÄhgßê¥Ït…߯6Ms¢ñMièH’IK«i¨6–u>…yJú¤ƒ&o>.Æö És‘ê7`€ð帡˜@Ëkñ¨ŒÚ©ìAt“ej¾Œe‹[€éᇗì¹²®ZŽr'5ëŒÞJ&ì£oWpÌÿ¼•K*a×l,á2^Ôùøá5ÙH³–á !Än§Pøþ¶w +é’\ˆódÔéGzÜxèZªÕÕŒŒ(+§ìÏLÂar|éÓ#¥нíÈTëR†„vJmW”BÊæþ¾´øH;FrpËßÖöê[`å‰;ÊšÊÒñ9£‡l’z‹ ´ÃÍ…·rëNÅ%y¯8$í7BÍô:ýÇŸÊ4¡•³)+µQ¥¹¨Ë/>“ó¯œMY’~k!MeMlØ@yØ|XðIt¢J‡B}B³e«æIaÛs3'¹³ƒåì´ kå{8´ÖªAÆ…]lûÇ'X’uW|êÊ~³ò–PœÂbÔ1± Te'pý&Ï¢¤Ÿdâ›ùÒ…)s+î))ãjAŒ~dœMÙ?ÃPŽrX+]7ÈùÎ¥›ðñ™ÔUuÃ…e¿IµËë7}¬=“[ÅÒ©dz’§þ¸tæsêø]óaŸ§Èç9:'ØÕ~0ŤÑá‰"…Da¶©l”K&%P‹Ô!5ëéöò}‹ÛFÚBoÔç €´H*©â'gH$„À3cIJfÎ:®LóØÅ絪-ˆÜžh‚e?h%w0´£ˆ5lV04ûû ì_Ø»äOUsyºÆT¢W×Ç'¬Q$|U)ñÈô»f]= >Ž<¾)áè¹ß¡ÃÛ;ô5ÖÄ¢´K¦õ­3´,<#jjÃ#A³V²˜6éƒWÆL®[Ñzh"¤ê[£ì’²ÜÎeãÉŽ”Ýžeòñ#*`ìO3^O[Ýj›0E v®¤õMÓ$Æ{§r1óZñ6ªû„w^7¶peØwvp4Ö¥Û¬âñáIÕËCÇX¨¢^¢€¯ÝØFÊçÖ¿/ЇÂÍãF)±Y¸Bõˆ8v”Ö¦]‹c¿>¸<ÄA(ë/»;7”UŽVÖ Lð’åb{”=Øäš¢z)¯B@ªE®–Ò‘±Ñ[4F4^8hw"›¬2AôÌQäï«Õ°Øn̆«;‹€ÈÆÖ.éÖ§È‘œæÐ>74–ÐI¨?\y£_âõu.KGF¸ù‹ ¡áô×FŠcs¼À’¬Uì,›‚jï¥RÔ¾tàÏü†KËÍ)ÜYèM«ÈV¶É3ƒï¯m‰-Ò›‡²̈yûâ:PEóµ3þÞĵ0ä·#Êg¼vEðzàBeÃØqfŒIäQ$Ÿ{Ç- ™‰~Ÿ÷)] ¦w}}^Æ-@.õ¹>^’j!{ÔÁRçµ3†ñ SnÙK¯v ?Ž«#í­ˆ‡ŠT„TÛ’,ĉÊfcÅ{ÎÊøÔóª¤6ÊSFÇ¡{®¦Pzè ‘m2üy)¶è!¸½¤ª¦i‡»Š&Ò1µ©¢¬Èª~ AÔ¬zÉñ½˜ÍÊ ±c_£{NŠè’û– D «5¬4Õ-ÞKRðÉÄý;H¡J5ÿþ’ã°]Ø“søBuêâñüaá±d.¼:œ¤ºs8/cQ¸VË‘ü†ÞìReHÿú´^¹K=THDµdù¥Ôc!®!²DÚq'i—ü´ X,HŠÞEßD‰d`Nøô‰j:ö—·*1IM1yÊîpœü§FëD/µÓÈ·èyÕADôÎB©jH«‚W]Ù)ŒºÐï÷7Æ}‹¿qdðCÂøÖª ™± &ÁáÜÒiÑý/ÃCðlêÅ3øu,lÆWFSü‚Èõ­ÆÏ¼¦öu2ìoéVeszhÈeÚ<Âo3cû¸¦=p¨m¨ê:´IJªó}¡Ñv€xÎ1¶eLdz>PKÄýë% ¬þ”ñ\¤™y,½…°Ÿím©¹igü miA ¥ï’¤“'ã%¸_IS²š|à2%OXí±”KÜ¡5¯4ö ù üy}ñx´°ß¿Ò˜Ó£j¿ÆA¥ˆe·ôÊøyŠÉ„‚ê³U°¡ëÚÒGJÑÝŽ E¬œ’~,º€®f4¥³já]zœ¤%1Q»ìâ-}J0ÂÎF ……ð+hQÇŒ°Wªn¶+Ðri}%±Üt…Lö}~FúLXÑ‹?’]´)Pé$=Ún¦öSYÀíå$0L–*á$L®‘OºXå‹ K„ÖñêÝËl{å§w‚!ªýjei\ß&ƒýµ¿´¦#N pDØšá!}%J—ÐÃø««ØéâÃk{GÔ#Ú÷ìzŸF™"¯¼…)2˜¦—>[ K@Ë72Ü–Z#Þõ@añÖõ–Ÿ¾Z9DùD0HVYÐNVÏOÎæc^Á*1 i¨æ~¯DÐÛƒ¨1xWc¤ß^:i.Ë„ðóPh^J{Ÿ†xQs®ˆË>SYWØñ˜òogΠ_óQ7f‹/¹#`Ý5VpmPÑŒ6%\·º~ïãÎß|QÂ'”æG*|>Ÿ÷½c (Ž%~E”CêeZQÉW£¥ ’'Y6²ìq:gŸ·‹`5>ÂÀåúf_R‚êvCtôÕ ­ùT1ø›vÅûÔhƒµVWåF°·:¦ÒQ$•šHE[A6F‡™f9x&â³"Géx Aj/$:Ü~¾uY9™WQacÊ’XÉ]Ø®$S9Š„ž‡”!’BSÊØùß]'ò øµš' fhŸ[ƒ¡ÍÀÊ!w|ÏÁõTheŠºULT'.Íw \ß|Ñ[e»• aüu;׫›Ä<'©ä_¹i3ûëªQ=ï‚VÅ]Ú-m^VêåC?õ0C·ôÍ¡Y+@s1áÁ$´‘K™všXÝsƘX²¾™#wk×– ~¦=§ÓÿªƒQ©jã¯ÁêÑ5ÌûˆŸ‰Y†ðíY´^½0k^7ÈØ4ÈŸ­Í][ù]ôS‹¢ã]ßNŽ@š2¡Î„@}òé™m˜ ±t•|[ˆ [P·,ÝIBîP§Ò-ý lZtžéV•ÂÁŸÂR~Q‹ê—Bwé;ãõ>~`¼Meƒk–Kú¢šQsHQäXʥψ̬WÒ<Àîv!° ¹5\2oY(B:@Ûõºš?bŠ%!ñÍçš,5„žó¦øäÀYogð®Þ÷û„7›Ût”ZhÛsíd¯r·yspŠikU£È²‘Ìhå>¼_Ã~sÔª›åd¸hh Ì·qºRY½šRx®Ì2Ï(¾†à=²Œþ‰ºì¯É|6û Òñw’Á7W¤¬¤9QA·W}-Æë¨Û|×\I**£ áLø;ñ¡„ Çék?‹É×#ø¹í ·jG•1;rŲ &ª-¿ðh%8 Ìc¿Ë±ØfG1ål]¼ÞÊÓ<Û,è±’ý. i6ÖÆÝ­SŽ~ÕO†&Å Qß­û#B«˜˜ÙK>+2(õÍE8üp¥@Ër"*×Ü9 òè;,Ĥ¶,UÈüòùÍ ­AðùÎphQ/%äu]5˜ ÝFQ·`¬cÛ6|8„éœ…í¾ Næ—Ya „€rÆÜ–”†Þb|wà•μI-²nÕ|_Z [„Œ#(:"=ý®óîuƒ´Ù©kaØ>zÙT˜¶¡A™j…ñr³¯ †Û€Á™Ç@MØ-¯r4·å®NùuãÄL„Nñc4f‘Â{ìîZâÞÑa°xwPJX?òéI¶Mpj½þ|û$'¡ƒ˜ç§!å—¢´róåøþ¯n‚¯òrk£Lë¶´¤ª YÑœiÙºuÒ€‰”& ]×´Å%ôY£m–A¢j˜J̼|uâéΛ®’¦.sÞ£5èšÒUb¿f?UTtìŸSZóBþ`òAÁßUÍþV.õ£_* %ôœÛBÒöÜ~ÆÅ>g.ÁmfÕØQÝKgÓax<A‰›†:Sœ«}—c½h]ÚÙ°©U>fzö›ÈƒB”’ŸT—«ÊÉ9;I„ù&òâ4_ ÞÃîšx,s0ãÂòl:Mi6®ì ùÙ­ FR^â†ÍY&‘:à©‚Uïu­u6*iÞ°ûvÜ-õœD­¼0þ …w˜T¡V}4mêœ:‚_ItËCȈ™RÈ”%V’gsÚa sn©¥e)Û÷Û%óö>‡jࡨm¯Cÿ±³÷—c5Ö5÷®» ð4[2¨¶•ÿõfÖÔƒ¸­OuÄøq)´³—|{¨*D讪ähÎŒ ŽÑÓ.u/qÉ»BC-À&« AWÜ"ßÍ´íA¾ÝÛ:¢ –/Õδ_!ŠñËŠ¨ö!?è^4Ôðï_ð—HrÕ¿7c "éÌ;M*R#†¡b•ÂÑZsèÞßr º§|+·ÜÐê+yêáLcd Õ€ñ¥ÜGCÇK(—ÜÊïïöé{ÊD_'Y´™+À”£Æ8Þ+Æ6u¬#“x Û–Z[éuÝ=N[‘?û³,Ûeµ^žZdÙ9%fb|ý †ÀÕ1·ŽÁ˜ÿk‚`Mc ¦¢ͼçoI”ó…Õ¨ mÐ×PÅÙOíó2—vw£H¡ ´ÐÊøöD\£Ú¹!Üõ„&GÙl£ÒÈ÷Ø>„0.²|gD_‡5œ6Uv™»5\‰–kîí™FÀ&’¬·]yKN"ê?ÈÅüŠLh!œw\±>ÅáiÚRgYa.дãú«gk °Ýù?(} 9eüÏ^ê“ábñòV›  ákuãúâ_dµ'8x¤\Ã/DšðÃ!âiTUª(,ÝÐâC@êHùˆ+¢ýj¾Œw”½OV\5ÕÒëþ¨ûZš¤Ö(UæÝ1ïsÄ:±Ô ¿þ4ÿ[Ó4~ øýEÀzĽ_Ê,Ë#Åq"ru½}-¹§ÊRŒžHNÅoö†“k¨ô—ä\Õ Ñ=ø ÂÓ˜Zâéfð1D9¨ƒJÓ~é2RŒDÒK½·€Oäð”^Î|c*ñGyx£ÇælRÃÃǵÛ8˜Éù¹“±êP,Ü”¤+°k ó­8£”´{sîÛTÔ{_Q"-ìÝ-&åxvCºù3ÚMEê[ XС12‹}9pOçB¡ª¨ÆI+}G%oH4Dg†L‰íÕ`µ4)‚Ef ªLÆØ{Ä…—v¥@YE/E †@j1%+­è\•uŠí¹W vðg’íhmä¦n˜×œ9t,ãî_0¸N.7 ¥{Ò,Ú²>!²3í´7+âþŽ×óm5P“‘W¦zŠ›Ò`:°>å$ïÙ•±€d¨kÔ³•“^¼I5S*à ñŬìj ½'¼A“å×'r›ý61ÿÿÚ8§Æ8†Qƶ“&ÝØØØ¶m4æÆf“4¶m;ml5¶m³ßsqÎÝû/æbf®‚íßKùý%ôÈ™¬Aáu´BŽüf2|«EuÍL–ÓÜTïNkj³ƒÎmô¥ DTù¦ø§Æ(¹bÔ98%z‚"¶…¨â«iD+â4AHæ"nµ} Éi <áEv²>–y6‰²÷Mõ˜Z SKW÷?å±±ŸBâœõóî|ƒ¹—QIX%ôá}KÅr±Œå@ü!³¤¼>ïÊu¾ûÌjIN”QØ«ý*aŒ¿+ø²‚²-Â+ꕇԙÌË]Ñ7×µò‘œP‚FèZ@Ý×Ô|(ìÑMAhó»r¤Ÿ"Çœ°)õ¬1‰Úïˆý=¶.vÿe©Õ8Sî …b¨]#ä¯ì`8X3ܦº [ßµ2cG †<À—‘£c#‡`+Pf:ž<±.ý†QžRJÌàùX/ôúS±©½álæ‹f´åÂ+NçŒ$ÃNÐYþSöiãºJÙNÑ׳Z]RQþ§ ÄkÑæ&W»¦­¬ÿ:%0‰è¡n¨˜)5M{¶>‘½¯ŠÒª¤.ìðùêÎÇ4 uqHˆ®öÇÖV‘é{ðý{¡)¿¡a"ÙÆIáô‡Ñü[¢½!îZÒº8ÂÔôÕ,ôð÷gŽÀ’‰ÂÅÁ0PÐVK©w Œ¬Œöx–RªšZ;‰Þ±OƹÖ?’(¯89RLdáÄ ÎçCoðQoHÏôF>ÚL` NuN„t01ÖIŽ™ûi>Z5ƒVg[¢ÄtŠ×ê8ªNÛ`!—¸8 ¾+&;ãÂ;e«©É€^Vƒ¸‘åyNz‚ƒvDœŒïU.0°K¶}æÆd™§29‘4ôZ¹BÅfÁ¥\ ‚Çûå²:wYZ̸Cu — §%²Á£ðÛÕ-Zñ¯ßE͵‹Ó9¼ ˜CöA¨ýòãP9 Ƹ©•X:™9Õ5’çÄœÃ$êÓZ¼ÖqšÙôˆÈn Ö:œÏ¸eo•W‹1¯)šGŸWî¹ù¤¾ñ]·¼ô†v4âEñÝW”¿öZúô¬N)3ûþi·Ñû€a¤ŒÔ–^âj~ts=iŽá¿½ëG¼g5íD„ r£~Œèþ„2k!s£´ÖÎrà&xQ{zÕ6¾ \õ}•³a¤¢Z¼ü{1ËÕrÆÄQ„tžz3*»‘9‰)Ñä‹e½#• úfWî¼z±K\9:­¡û«D…ãJah[ºá zÚú—Åêëv´]¦+å›ÿÚ<Ðý3˜^E],ï.Fà XØ–¤ eÿiÈù|evÃÆ ZÜ‘´`*›¥³P²ª— 0ù2*jÅs®’Q®ºªqÅ_ÇÂò¶b£a\%¨ÆÒûÈT{a}¢p¢a8‡Oúiê‹¢»ÑÞ™& 1ùó âüu–‚o™”ÞëŒî0–:Ü6P¯gÔÒSòEÇ5iH—9|pŽ “æ@áFiãG(:{þAX«Þ©|¦™E¼hë¼âL¸ œ×²þÏçQcÎŒHÇêÈ%ë}ÿ ƒÞI¾[ËñÀ Ÿ‚:jã9ÜMšK+Ï v²°•©42¹YÞ®©]¿" S:;¿›€ÏÁkCÆÉTñjt6”m{™çl¡€Ü@ð¢H¼<Í‹úS$QßK®ÜÔ›½HMðÏ£uEÚÁ32p—£¥?P_ ó÷¯=ŸR0ú,Ì2Ò|¬ rõºƒ+ìö®ãàåG#?Xóuéî9L.’zÛEqvslQ'©éDØYr}輨LǵW_S¾Ü%„vßœÓ6®3¢S¾¬óyõ°j1S„R”µ˜µ= m)ç8ßðùìþÿ@ûùþχÈÈð@ ¯¸âñϘ øƒí6΂ú3ì"Éð‹µ Àµô„˜î"ê–˜iù¾Í YñšäP³§Mð%x’M×€ñùëe,‡®›6a¯»ª-Ÿ´1og:7w6¶CRfëÉ̳]ù^r*“²š±ÕÂí²"ÀµK‹5µ±m°øŒ²VžÆÔÞúÝa_E]Z5¬SïšÞïJ<´©Ã>AH°× É“' âR4D+*½ËGc"l îONñÝI´ÓBØô“´:›GÒº0Ì,¬Ùì—0«r«qã¶ï95arÃ@ˆ-q{G÷°L÷ÌyñõÑK5ŽûuŠ&ƒ"gpL~oÿ›°À@Üò± ré– S.ÛÕõKv'½­žÂoXȦ½•%Ot4³wí¡ÊGóáSxvª"ɵÑ×d\åÇR¬rLaöwj}Á>\¨,ÑÈÃ÷¹qÎK¡¾€BYH6 ü-9Â3¡0Èï %" o¯ "30ÓŠÍ#ø-è¼7 Ø!¾O´¿,ĈV7kÏÎ y¹6Vµ°‚¾2JÇ©?²;¸tÍ )ß)Ö§öƒ¹Çsñ]É^áêšèÎ’³Ñ(hm™‰a6ƒë]/ÌI§’Ôóà­Ô=$ô“,Ü‘ºlƒ=ԲɰѺékœâ{§024t¤9Su4èw_Ž~,3ü¼VT™ºó^<.Ô8¯lÕú@ÙY[ ¼m i·X–º8Ê Õ‹‹M³S)µߥeH3§Ó#¹Ó§é2 ìoÕ „9äDxUç™…°ñÛcnŒ‹ÐÚ§22ì†g™;‹½ÌÛ¾?|º:¾IT]÷k©;ñȨØà{}lÑã·VJ޽ëÓ«Z¢¿Yr¥¾ @¯håsª·COJÉfë#ÄP¾zF7~a¹r:Òµ4™H(ÚgaÊþéIãcã)‰à!Â?ù*…À¥1•òäd•øQÄ'Ç{ï§ÔJzºÅ³ï{ ù»0k¯93*ÿ‘†0ç£B¨ÉŸé Úh3Ëò‚L­8!TeA{z« Á’Ô& 2\~ÁðÃýâ÷/¶Ëò»Ø öÏI£»Þ„NñˉòÑKÄJz6µöÊ–3ë?é¸Aù>Á˜CÎÓÑ4Kã7ܘl¬ Ÿ-v>¹ØòÕ‡)Z˜/–ä[­™víÛÙlõa,"`Lç{`Yiw«ÌH”2¯á÷>Ò2[xY*”±4Büš)ÎÑ϶y–!ÜãûÊMmN_\œ/–fçöd;O“»“x*´wñn°“Ff¬Á#äò váÀ•x#äáÛ”³+=Íö^¹k‹ùXù=.KWP™ú´ö©KÐ̧Z‡KvûЕÁíoìåy–d( ¾dZ"Êçþ»š{RUAV]Ož¢ƒ\Û1±|"ÎäX«¯Þ2.Z5¤ô¦àÐõðéÕJ5TKßRD .»Bo’!#I¹^Û…9è´dy 2. !œ(ã¾ ÄùÉqyöV% £•$XýøåÍgt  XÞ™tBd=¦•ªBV÷^¡=ˆØÓÝ¢ÖÞ=„ ¹PÚWÁM^‘I²1êýñÊ%j°Y\T²ús(üÇ8©î˜à­mÈŸ%#=:½¯ÿ8t%bÂëyÂ2;•ž³wÕßÚòúºÓæ-À wbÿ•öÐÉ kEÊS®~y¡Z$B‰këS€²)*…Y»–©ó'”.ïñ¿±[oܲ#Ô®Ìÿm ÿjFO>ÑwõÁì\“J^2°KA¡‹`ê?Ø`Ú˜1©ÁGwãoñžùôï,…¥ïåþ!=3îAÙz¶úªuÓ!C»òvFíû*Ïê˜=K=q~Óù–«£H0‘ƒüFŸ­p¶UâºIMEJÚ+MÛ;áiÕÆdêI ‡¼8#ÍrÅj0G™fw 80…žýŠ@Ç¥šþßäG""6jts)»¦:æÖ{4–º€Q熓nÁµÈÜE~ßÓ7î‰ìg€Ú—Òä’PpßÍ´‚};mNPö k‘9¨ ÊPP¾}’ŸÐx™üIo.wìˆi–„Í(·RìSD5]ÖE ]î/S”^?NW¯ŽéôðÉ êÿ¸ÒŸ +¿^TÿÖY_=¸TOvöO^ 7O׋ÐWNyftžˆ"7ÐC9:Ñ­WI¬|ë•ù9ƒƒÃ —ßAÒÉHS˜!q$·3qƒD;°±Ç¤0 Ãqæ7ì mΪÍL¡ÇÁ¦m#â¤,_U´`i49ÊK Ëj]ÌV·¼:9$×4ž[2$èe⦔I£cÊha§hØà{[Så˜8ƒg{ûïÜSºlŽÆ…7’ß’šê®Ì@gW:hÔ¬ø64Geýdˆã$Ølux)Gýç‚á’ùãyKX‚ŒÆ¯[Õ“ã[RÚ£c_lµEÖÚV‚O€'«,"¶‰rÜK…þ~¦ Üdø6ïTƒÝ¡nÁáóîîP\%m1€ÅB…FŽîš¥˜*‘PѦ±žeª‘…gð ç(›×$ƒbeéŽz §Ÿþ)•4¢Î¬PÏÿÊ žáâ¿H&•‡]"ž¾î²ÐÄwe}¶ ûÛKpÇé_¢8s@ƒàé½ÜDñùv€ÁC¬™fÉz Yµ&j+ØM¹k{[+zZ>½_±I¿³ºˆ y‰“â‘Tv©À‘c›‚ÓÔ8íœzÉ7¥’ö@sv— Œ&œ.жÁ”ÕT$ #=Y¤Éhz ÓòéòÕl¾e{Ñ¿³æ hØJE÷^ U¾»ÚfÜLL´jì9cQ¼lïÉñ·žCr…_qeÖ¸aÖ¤Hè£å|F"ˆ`Ö-ŸtúDê!¿‘Ÿ–Ãã'`vãã {pJÜ:Ðc~ ðüÈ,ùé(]‹žI)É!Öxð„—CΰìzÑ3ˆ„Òš¾˜’œÏ@v PÔ`˜ž´usûØòž µïM€‡¹0¯G ÞU3G!H½£H s]ÉÂl3qÎÈ×RxºáÄÖÞ†B÷âÙæ‹VUÄx£kH¥œÙ>ùùjÆ'4’)UjÅᦰiõŸÄ×à`j˜=Æiá‰ÃðÏ Vã P Žßji'3²¶LY N}÷듪–É–‰…ÙAqÖ:zÍ·­Í6.%47ÉÑÄH:Fw¯GdYVíw/?% ÍÉU¯Äzÿsù@KzHø„ u”ôŸS[g¥ó òƒG+Wa'ñA]r ñªG†dÿž¸›°læn>484ë@œÙ¥ëÇV°gæçFX¬–]q,6vJB7ÜQ$h×”N29-[w.³¥nöþ˜ÝÄÑþGALûôrqBê˧¡ºÄÑT7R|_»%Œo³(¯C¨cœÜUÛs «·Ãz©ö Cr{(Bƒ,l»În˜úûê/#1ʆ¿ŽrXìò‘Öu|&»—§’J¤œghV1U±@áÊÒYÜÓà¾^üy©¢Ÿtº—Í·…p¸šáÄ‘G<ÑCø½ÝÝDð8/á;ä¢ýK½6·[4F™ôÝtåDO44U)ƤԖ2ñ8£ŒúãHcÐhD¡1Œâè¤B¼ó|q‡óš#Á‡Å‡k—Œ‚t*™Wºa±ž‹¼„Aíoe=ßí;¯?L’=Ÿ(>bˆ ¡,.§PÃSKö"§"@Du,ªC¬8%X‰B[Ю£²^!6_éMí6-+ÕÄ“« #­€˜•âW0Yð~Ó@铘J¨hÉ_îcß@ó§®_¤ég])6 ÀÿÂ8ËĆ«]&ÉíÓFÄÛ‡d9©“@0qo™Öw¸zî?Ź·•‹$¼×žÄ›º›Íw‹¨]MéJ>¡ˆt}¦L1’Y“êI´0¹°=ª8¿ú ¼·TêS¦È8ñúâ RB*IÞݲÛ¦þ±H&E§s Mñ]ÍX#v ·Ž"˜où½˜ÆH¨ùtKBÇ=líÛ!±=f°•ú‘¢Gr¨nž†%¯4Fïr¿5BÝ>½xÝÂ|FRJ@]ÎÃÕ˦•­‹êYö3»yÓù“T$[0?jL|\ž'?CøEõ½Iƒº|ÉaU”ì-Qœ)Ëh"Ç÷ñöga›è>ŸmÓ †`g]n^ ²,‚†Ìa…fµ;>YÇýD¾?½µãC¦faøW £ :èp_;×V ׋æÁà»<6•]ÀXʆSŸ‰ˆåãÍ7¨>Þ–=1á|sW1m aR$__> stream xÚ´yeTœ[¶-ww+ÜÝÝÝÝÂÝÝ%àwîî‚ÜÝÝ=ø#çܾ}ºÇýûйdϵ—U¯È‰•Té…ÍL€ö®ôÌ L<9y;c{fz[3 ,9¹¨3ÐØÕÊÁ^ÌØÈàtµ(šº~8:X˜˜¸aÉ’@{ ó‡Ò `⺫y9™TÆ%Wzc—5ÐÞÂÊHýá"êàèåleaéúç Vzú?'ýñaÈ›Ú8x¸ØXŒíÍ2 ò ¡€ÊÁ`´4¶58˜Ô€ZuUqU€¤Š¢º’*5ÃÇÁªnŽŽÎÿ‹¨ªšº$@LXAMÔ Hª«ªýù«´ÿˆß‚  ö¡ÿÃóaøÇ]^\MXM[Iœ™ñÏÌw ³‹ÕÚÿŠâ#2À¿Cûp5wv°û‹@eéêêÈÃÈèááÁ`áæâÊààlÁàhûW|j–V.gÀÇ«3ÐøWbÜìÍ>Òéj üû€?%ÈY™í]€œ$þVÚ}¤òÃéCîú¿}$ÂõÏ™¶›\€Àÿ ±4vùËWNII`gleï ´7¶7ý0t5vusý%ûøšQþ  êæìü‡Cþ_*çÿ¥ùWè"7Ó³õñ3öøïŠÛ»¹xÿ#7ÿymS{+W—¿OÌ­l¢wùS3+û¿dò ÒâªjôrgO/ïð‘{WO׿¬ÿœ',&Çàbâ0s³˜>šTÜÞLÔÁÎî#jØ?é³úÈ“«ƒ³ãuµ½ƒ‡½ÏKÍ­ìÍÌÿdÝÌÍ‘QÝÞÊÉ (-ö?¶"ØË,€®&Ð ô4µdüCõW§ü3ÿ¤ÀÏÇÑÁ`nlëô³2~¼Àú¸»®În@?Ÿ*þÁ2s̬L]?šücP`ÿ:]ÚÞÜÀý·ø#’©þ§üT )õÇ„š9ØÛz̀氌 ®Í@õÿgÆþ‹KÂÍÖVÁØHõŸ ýo+c;+[¯ÿ´û/MàŸP©þg+ +O ™’•«©åßYý[.íjüÑôÂö¶ÀŠü%Rÿ3G¶ û±t¬þì,=3'ûé>zÑÔÆèâààøKüÈÁÅû‘ø?ÑÕ¥4¥¥iÿ«]þ2·7u0³²·°°sŒ½`™>z€…àÃüÑÊf@Ï¿šÀÈ`ïàúáptsõ˜;8Ãþ)$'€QôèoÄ`û7â0Šÿ/âþ°4þ7úЙþ/bfb0šý2ÿ€,Fó@6£å? ;€Ñêð#ÛÀ"»Cæ"ûÀ"‡À"Ç@V£Ó?à¯ó?à¯Ë? €Ñõðãºnÿ†,¼žÁÿ¬‘ÒŸåô×ì1ý»hÿ³µÿª®Î6@M+³w¬˜È»:[yê2} ó‡üãç_ÿéÿù¿gþÞ""ž>ôlœz.n3;'çŸÛrúý‡¯éß ô¯¡ýè®á?Û zMa—æLyC­SšÂKýÅ &Ë È¹N+0´dâÁ—Ò';ð°År·I€‚…A-…rR<úþ߂싴ÈC1lßÖ[“*'nÍ”…vŒýåýñÅ…Gs4Ôƒ3ä˺H¨dròµ‹Ù¦3ÚâÛê£Ç¢ÜÝÑ,ãï(×É$zem«yßg™›ÑmQ=‘q;ñ';A]ßÑc¿÷ /ÑÌå‡cŽÊ@:öt#kÜÆ“-U^¦ôù]¶øvãQˆùWa˜õô”0^4ábTÖ)‘iBÉo~SËYZìÐr à}Zi ×É‘³QଂåŒ;Èáëó@GÐ}Òjï‚ð…ÌnF‘A+~æQXv¿XÒœ[®9Ñ«EÁ ):ÓXܤwÄ{i>R{×›ðúdxùFvE޾t~ ¨N¤ð½ 5vã½Ý©à“²³>ˆ‹ËŠ~ÃÓ×¶–²Å°}œ“NS2/®ò!éÇ9Ý‘êf§6 ' ¡#{¹“ uúzflVÈ>F˜øÅƒb”c´›m}Øc–Zí0’ü4Žõ½màq¾Q!ìÇ1÷9án ½C´J–Øz“Èún¥4Y‰$•ßNDB@øeBj2Ù»æN°Hz/—z«§ïrá /ä$i=>–-ØïaæïÍ}¾ÛÎ*ìêLFTàÚò1¹ïvhŸ˜Û¡I|ä*Ý5½ˆ"ÕrLú£‚ËÞ,ùAÊõï-8ªuUÕ’öó ›ó“'±+rÏÌlqLï"«jÓÜž•¤u”8P³?ÿ8‰¶@_/H¤‹çŠ‹I…, qí3ÃL&¿çz€ö¹ÿyÌgi^y+‹îã>s“>TLºŠÁ3M6Ndže·Q>Ÿo³¼]±^J(N¿<ét,¡EÇ"DK––ú”o@Œ s¨àÌønÄ޳Fñ=ê”ìDoEF®˜‚ל<¨”Æüµg,YB¢5GK ®æ/Ç,5³˜u>ßÀ‡"{^˜ ¬¯ë<ð,uåý_ÓÌD&$Õc.÷Ì—ÎQ}³SW†xwmïgk—ó«öN¡~ƒ…97jÔ›*»C‹P u WM¾œBsׂ×Ïpgñ;ÏôÞæ­ñ[#Øp0Ü&~çãÃãdËQn7haá,üÌ…‹µS¹}Ó^Å^-ô½)¢V©ý›òtº ¬eO¯ ÜØû’1Ï>~ˆ€Æ[úµÇF[¬·üƒWÄ4[8AÁó*þŸfA*"©†¤'¹Ã:“ꋵ÷BS-·pÝŒ’æñgeýÚ„g=Í*ÊÝ¿5ð3ûìsÓ0"†çDšÔæ±àI1¥Úº\Χ õà\'çYüù*¤Z7Ç÷ˆÂÎ@[â ü”ç…}ìì·›½éãÄ¡ˌ̬}¯ÏT\€ÝasÏ5h×Xt 9¨èspC2¬N¦ˆ ,„‹Ú¼±±,ûj8½yè´2mu m]=|)7Ì&´URSѳZÙìâbÄšNþ#†þÀ’ ñëÑ{b¶,®)Ð\¦ÜÊÏ;Óç['uMF"BðõÏœŒ­ }Ñ£$‹—#¶¦¼û1Ú'üŸ‘D˜r¿4<ïÏJp ÓK–ǵ2’ˆ& ÔøÛþŒ>k§oéòðL´q|Úb¨ÝŽçu·Íoûù¤®×¶|=zßœù’( ¡FŠ!ÒA´B±²9>•¸…3žÙför"Ù·4‰%¼™GúÜ•B¸$èåûé8Ò“ÙUEЍ9úíµN‡C¼’Ûkú¶ k€l¤^7,™ÏæLÿˆÄóASpѽñx¶-Ào=dß½}GPÙ1~alsŸÝß.·]¥Ÿ>>ªŒŠ¦O 9ëx]ÄU*Ö@ ^‰LT‹Ä]w½lhŒ§Ï”‡[Å×Ú²Ž%e ì ×Måž¡œ­ŠF¬Õm!Þ¹XÆÕ–_ÓìÉÝlbxvdƒ;^÷0ÊJõÝ¡3¾Ú}í–2eúöÂíÚ §H¥rÕÏ0¥Î&¾é0ßÁ â¨Y+б·xx‚ü•ø¡€1a+¨•"æAïªÌZÔ†ÿZÁo ²•»%›šl²”q¬·êУsør¶I‚Y›³·n/žHã-al¸LÿËdŠóŘÄÄô=Âólmó&8á}TcuF’Ã#‡‘?;êéloí¬‘¦2¥ôå§-ô/YßGüWjàŒ¶m+± m¥Æ Þ­ô ‚³÷%áîêE® Ì*ëCuG»q…3óÁèõRmʸ!ããky7Ëf6\”TÔ}Ë‹?ÅÓ/5’²§;¾–@gädÃ)p€ m_D톜ÚÀMªÞ§I—ìšIFÅ€Ô²xÊóÁ}3Òÿ®gÑá½ ž]0}¾Àø"ýÚÒЫ«™îÔýüÑ%b¶*e~/]]H³5œÔäü‹ Bt1&ø~¢ ¥s:]ÀRBvìSl \x~+^d›×H¥Š¯eKòYíÓ6ÃN3>F<ŽV¼üc 1¦ÒÃ+ЗÙÌ™S,›vêÆ <~þ¹SËØG±,D¸o£­™í u’Íaì¤Ãºk怬VCbqý;é¢éèì9¦¸Þ1ÜiªK!ÙplLœ^æo¤A²½ï8íS Ãjá$éË}ß΂ԧʪ­q¼ñÐ/¿—KàùÈÉ»Åc²àpe )¸ŽÜHaf}Ö¹”1qöÜeVTmò0]l¯¨’%1²»ýí?À» wôñø«¨ÚÈ&äÁݳIdë°€Ž"zàÍãæVj(Ñr\ǧŠõ(Ù‰K°ÃoeØXmƒZõ0¶ãëœ7NÏù¿Òï©Ú°=D$­*QúyÏ`èf{¼± …,?ËînÜ'àhPZ´ÁôÉÆZvusôÈörz©ß E!Y)¿žnÙ û§¥ Á ÅÎqrKú×Þq"LMÛÛmÔ5ïùU)ß“+XËór©5‰ÂuY‚×emU ü¬â»Ü5àZËX@IÒõZ2uì³¾¤ë×ÍO©5IýfGØÃj!«·¸´Œ›Ž¹‰R¬Þ*‰6ædo²kDäe:ùrƒ¦{°+5tá7¡B°KK뉆:%§\ëƒþ¬E¿±¢Iå«^¬ˆVƒ&*©XÐüR„ï¤ç„5½ÖÂ…±è~Ç»ŸÃÛÆ4¡ÆyÜù…œ±ü]Š+™=U§Ó¦ yí4Ç©t†äÃtmÙF®ý£N3,aìê½¥0\J°&«„âÞ£ÛúrQظØA&ø{R?DFr’Oží0æ€ bòçiÑ\fT]㦮F—|RLuÞ†„¹§¢"Ë:-~#HK’KŸÚKG#hÉå"³]3›Xó¬ÕVEﱺTŠá1'µ÷ûÞ„œQ÷|vGƒŸÁ3‰ðäu¯œÙ°âTØnžñÛoâ,!7¡_ÜÁÞ£ì-R–æg罤Åë³(Ñ”˜ö‘|¦5küTƒÔYl wH#µ‡†˜;hòÖÅ_RBãÚ­0ø‹æ1‰¼ßðh0ºS­Ôˆ3É=@åöôγåu¾Á''¶S"–)YÝKÿT„sqÍ‚ $`ªe÷ecÑxQë.(~Mªirmÿ½íyny3î’ÂÜWè}©/ÉmÌï°¾' 3*…íOsFOñµmÃ1 ãÆ<|Ï|±gáp¹(P¦J‹ë°¥àžˆ4y„|Q†ów°¶Z°xÇÄÚž‹©ï=BeQôõ.YœÒ¢8þüt™½‚N·»êìVü¯¡ XgÈö©ÈʸdÜmeeø…îy°ž`œý.D'/Ž#Tm;Aý0Ôº¶<[L6¸aSä@:9™õk¯ÒcÙ®Öv ªáǪCŸùâi;óEÃnjÆ2ÝXÙý7º•ÐX¸8FV•a9@رw=ÜüÅHò@XX«)@š[нMo;µ‡<£ä·¶q£Ñ¢d$<«þ˼ ÞϪ,ˆQ5Ï“!u<•TÂþ½¼p¼Ý–~MþžºÓ—!å­Ÿ¨óØÑZ†OÀ«ÖÓ 1ZóEÒÊ€së8Á Õæì¥’9’²¹{ ޒ¼ƒÅ[Hz [ìSI“çzÏeÓå쥺[@™­Ý[õÁN,Gå¾CçðbkªÞb-Š[òþû†YþÏ@q£¢ä*pŒF!çëµé«»Jª0Ѩ>ÊÅt¨ï­fœØV~VÑg~'Q;IQB±eðbÝ”)ÉWÅ¡¨/ cU–Ƀ•ÛTiÈ'hú)‘gÁÉ1ÛÎzå´‰8îÇ*5}e2>âögŽ|”Uã«ïÑÓÇ)²¬^9_ÁåBM›-6jhà\7=^‡C/FÅ5ªÈ_ñS{E9|(pÆ^í´F1ÒBd\¾ù<ꨰó¾gqzÛ‘õïhàmüŽçàÒ¢lN…gܬ¨ísêÝ^1ÃóëðõY38ŸÉñocÁåh¤õîdÊ»¡œ*ª˜·tû£Ê·Z¼«–¸¿ ¿[UË„Qçñ{9µˆùn#.ê^/…4E~ÀH˜Ô»6ÊùÂ+zI†øi oˆ6G/q×íý¼PùÔp ®±º¯Âh¨¯äp‰òt¦q“Þ‚£ée\]!{|jï\GRîÂé4ßJkrį¥Üè î ~ú,»´aú¯KMããåË >TŒÀäI™²µÛæââéONÝ ×ž_ÂÇÕ<õŸg‹HtJ¡µš¼¨f:Q@Y] ˜Û¹*M6Y?¶¤Ü&†@b£Ô‰3[ø|µŽºuÒ(íƒ8~ÚĶĦ6j_2ÒX¦³6ÂxÜîe†­ƒ° Á& uŒQ4[© ª`Lžiä=Á½oýUÌ9@dkNœÚÃK‚¦äurÖ5Ó¼¡Ñ‹Ô&êÍØ £ÎuvŽVˆ2» ´àn¯³Ù}zêÚ7x*¤å9½\uÔˆI ˜Ç/!˜‘Dp¦M/λµ'us”Í®ƒÀÕÝî6Z˜SÐ6ÔS¥Ò»mŒ)ÕÆ×ó´PœéE¹½à36(‹5¥Nªí5¼½àd5Hsc°¯×üÑ![¢@1â›üÐæîV^~íoH’"õ`ÌçGŠÙ\‹¤!¶I¸÷èẲ»Þ]u‘¦È鸕f&ÔŸ¢: Ÿ)Ñúž(K94åx=!:K iopÞuY8®¤=Ôlø ǧøe7oèúÛ‚7ªú†<û!÷%<-BFÊíiÆÏ®üèvI©Lzì΄õÅ7½ }‰c^®ª­íÞ¹üFÆxú=^‚ùò'5XÛ.®™$6ÄAÊ\=ºRHJ>éT Ì·0G+[@¸4™™'ÜÜ2ÁŦœÛ@½"Á6žŒî+°|³º[Â|Ôxdwˆ†ø & ÃÍÄ”PÁž‘¤©˜âF„*2ˆÖß?qfО¶Žû—7²è-½JÆ!'¼Û2òmד<Ü— “•k÷75}²°ç°¸ïF5î6ă8 ©¯¥õÁ…*5f€Ý}Šj+ÔGú©îÇ¡mÌ7ŒJ@a«‚zw$‰…ß4ÿÛyˆW/R"RÐü"ÏϽ‘4«c8¾Û­à{›P&ý-Äoe” Êhnü ph¥_°f£K‘»Û ®1Z€¤bå¥ÂèÒ£“(ª R“ ¥òJ@÷û¦eÕájM§ÞÄe¾§ò÷e^ìëŒÅˆé¥ÌÅducäˆ7#È…BËaJ7¨.'m§%Á£hkÕÚ߃B»àL³ }ôœ‚t;ðlÐMC[ §Æ_½hßã²ÊOC7…® Ý§íÕ_` uð*©îZ,̧™±Ç®FP>_OÁiìœähÉ(u+Ëpr—Ú¡…hë®e¦öZ|ŸˆÃ$Ëôβ$T»;ìĶiÞ¿D¨B@év)Cêð:ÞjS“¹ÇȽâVÓuÞÏ‹a«~“sOÖ¾KÆYYl1 7ÙCäs3L×]ç§7‚‹¶ ~£ÄêÅaÁKjïÑ9$ï=b_ÌBQ~çü¯…©Ÿ<^¤ÙK½|[£˜DJ0È &¾¹ãa¸ƒ°˜ôÕ{: AÞE”.ã˜H¦HSã±xæ‰íŽÅÔܵÎÛ×ôt©†§$çÍIbæ$vlçß§çò °ìài°|ÇGcOìûG IAëV{"bI#†”]_XŠð<=¬R•¼æáP˜S¼ðš+o6Nœj½›Pm! œÝ„b¨Ñ"¥ðMVè×H8½j÷”ࣘÊ@^rÆûm•Œ0nI’uÇ âˆ¯ Ü—ßíd\2v…–L¯ò†Å©¿A Mퟟä?B}JjĈå½í%x׿’Dle¿‹}ê|r4d‰ª”}nêCˆ•w>5­Azé{G­ïÁîíðá_¸þ5(’ÉG¶ ʇ~æS¢“ËÚØÛb×Úwa€ùjO#NÚšEá]í†ìyòÃ3â$TÝA´j½ûùŠ;ÏZžû4'™§«9t›4ÜK0­oMv9d¼€î,¨*¬úõ¿)W”Û) êûuÿ7c³Ô‚d®g‘*m¢=ð|£Ô4à”»ö%7/ÛÝ~ 8]QH-i®F ;™bO_Ê(ó~Iku\ˬ† wf%‰]²µEj7\ ÃʯBåè©=áÒý§ðë¢@-ιoÁDZõͲ.ú±JÇÏH[^ûé4@+ˆþsBÁì+áíØ þ“^„ëéº5‡Ž¦8(]4Ø—h‘Œo 0Kùªè&IJ¡‹ÝN=¤¶û¦š}q²^ÍàƒiU0ð ¨U°Þ©dcÝQÅí>8äÔ̽3Úa/~éø*üÁã¾ðª›A¤§ÎŸk¼U´O ¼”Ÿo꜈ßA׋n3½%IÆ W·ä5fb(°·¸8<‹ž$¿§]´ÇÕ‹£×"”8ë4芊ce^$ø™;ç`Ó-b/ÑÊR”¼S…ß y!éÆVLshìj6_œzÄî 5ot ¯ŸÉ÷V,&¬rð³ —Ê©òÁœžÚ·lôNp ¶œŒÃgxb…ØkvžºÌÒšö¡­Ú¤Ú‰5mboZ$š–aìì;[þÕ³ÖÈ€c·î‰ÙãŠn ˆ*­ö@™!;ñ4d?6+ûüsPÞ½(!äLLøm­ÌY}ŽE_Lgó¼8’cV¬óW=½6-È1&Ý@÷ÐÄÝÅa‰ÂáíÒ’S5e5¶Ù$öEI>·À+œ~˜[šŸM”Í”6ÒéyL:¨­+â6¢¶$›·U±Õ°¶¢?è<³òJ¦ª>•îÞf!²‚@íLV]ØÂ9®›J±Þ1ªÏÓÕ5$yå¢*¦¼”qÝmX¦[Ÿ©j[ÕŠõg¥­u 4vä'ì’/,…˜i(Õ[œ“Óï†qªþÖ]oÏÙE›º¨¾Ko|¢¾CÙ=éi.š¶xv‰ucm?3d1µ:žw°àe>¡À[•t3Y€xD —,”¹§©dž¶WÝF¤‘R±°£E>)Q É–Ÿgpâ¤ßSË·ÑR0KZ:¶©ëJªÀŒ ‘*ÊfÉ5+yἊ•d»u‹ú3m6ëº;<´ýF•œâx^ý´È¸Ë…±5…ƨäŸ3{[…Im.§ƒµçŒ¿Ûçï6mµdÑ’–KìðwÿŽÉg~°½„yAÆæþZëDÓ’ @ãýE¤fcá¢3ìbÀƒƒâŸjî;Ê*?ÚÝÙÐW]²L-!Y£=j¡žH˜tyQ´Lodî 8’¿“Üè9Y]fê•}þž¯eU£\©^Ê¥–N’Õ³lÌ_’>áúëØ.еtW~F%%Sqæûö«4t)£®/WÑ3—;}Š=V/*H®ÞcèI,(bþîÑë¼:hèFCž¹áNæû^ºr¶i$«ðœôfµ³!k 9Éb£´÷O)Ø£™^Ò^mm´BÂp»"Wº|ŸÇ6¾R+žSsÁèÂ0 >H±ò7ÂG“+•=ÇB OÕ_¶”ÝwÝŽô9s÷.«Ž‡¿Ë |ϺùÔ"1lÇTÐLöÕP³ŒÎn.G®Q™¨m§ï Þ§áˆTé¬V×Õìx1ï5g¬»Ç‚xI˜Ÿ/¸Xdð‹gm‹ òMGV¡Ú;Î ®eЭöý±àÆøÀr_†]’ÏX+© ZpuˆåÍR¡4â~~äsdå,›”ïÍl9FçØ!?í}ľø*@ª=‘cÔp¡„ eDùÈž2ÜÙE¦E ·^µûŽÈHíswŸh¬å;½1˜îzZªî¶­è`c¿ÙÚïÌ|¢­ˆßÏéTyáÑÚ×È¡ÁFŽԇÁ&;ÕÛGÇÉ'5Óø¦ÓŒ^‹²Xòa7¾æÓ#¯ã1 ~—Ó¶…îŸ:ÈŽ•šWDëŒ8j¸[QT˜ˆ‹ ¢o²àÌ к¯ñx3ÇÕ45ÖCŠL"_Oÿ]§ÉÎ (ÊÀÉ{3o¹Á?Á= XKà‰ÞZúÉÌk0ˆã7‰•F4<ó%ÆË1‚PÖh]T^u®íGKöyëöãÄ@ÇÆR!WÜrüfuˆä§% E÷—ÈuªÁ·­T=¹ ™ ›æ»©5mŒ°ÜØ ,ÅGÓ×[«..AÉö²DÂí"#vìß}Þ€ÿÚDÖK4¥x@MÂÄ•f8§mš¤ž`Û ѯÍÔ±!H¤Y²“Ÿ:»ùôûvìˆPÃåä'­2,Îsž˜YZ<Äàq¢)Ö‘Ñd6CÎÁgMMp^q¨fýÂÙÌ€1•—ê¢CO‰_¡Ç·üÝŒŠ64+‡ÖÑ$Ç’Êß™÷ò~±7ITLæGH7‘§Ê™s ‰xû›!Ú~««†L—R¯e"„ý˜xX´:.£½­Ý&ÏJ j8ApÕæ †Û7:étÜ#û†_첬ÁÁî׊Ìê³kÆMù ÷7\¼óœ ÆÅ¥ Zر5¹Š³v)Ž‚j ší¬2_Ò t[’r/E/£ÑPÛϯóÅd1DIxR«Xso4ƒ¸ý3fÛ(¶[’áGg×£¢|y}õ¹ö2èkÚ£qÿ½nF(_øÝ­ªy6 »U¹~%x¥]ÙšNnÀïÜ«CM¹onT¬hG ÆVb Ó÷g‹ ̵ÔI¿û–=‡ÌÁ=ž†DZ Ö$Ö™¤aÕÙ1D_åø©ÉØ–‹éªQ×´ry¿È6³”Ò4²ð|hŽÛåÖlµ`˜ª|O½Ö¸ñ“lz}Oû,gâöS<ĺ ßHP˜bÂÅp&b'âîëøš#FC_Wì.u’éOz•¥óÁÕÑç|Õ¦^6—-ü°CXôü‹Ë„ª:øtO½®¶AvFÍAÄé]3굇ô^$Io ¶©f Æ`c¶Í:5ݰ×ÝD+'àecºö›«QîðÍÔq Ô•}¼:ØèÉ"/¿õ¹kE­'ªk W"VLGU€>ͽÂÀå3OA¿¶o¥Ú"©Òï¹7?™¦Éj¸þñ§Þ~³JÓM…˜¶^Û·èõX[¦|Ú.´.®³ã`û7~ !è¡¢,qËD©>:0 Tã[aä’bN×®ƒ)ךeÞÓi'$,¢{…5\ÚC²å­HBÀ}¡œÈU¯å½Ï¾©ÙäŒJ`Úæ›úN¿¾iVîbÁJ•U T™·Ÿ{me¼º 30ÿú‘Fk¾ì´ØEbo·i­ZãÈhkþ³Ã>ëV‡$_Êc·P:E:vžæ˜ïÕœÓþÛæ'ö´Ê/w{Ÿt çJ¾œè½Ug"4ªpob¤_¨€>~Õ–àX•Rih4¢¬7[e§¯o=8òm—Õ'¨¢€WVaG™‡]M¹òˆfšì Ô CQMPÑçi?Û®Toësú ô©µîî6GºD*ºÀÐ¥]^º–;r¤wQ5CÅjÎ3³ií!@”O§Y·S¿ss:æYÀg÷Ø.8“oÄïfœoÚ­íb7íìB19~ÞÀ»Æ‡¹'xôöNØ£è/%¼%VqyÄçrô–k¾†-º O©<ÒÀ뛇kùRÑ—}ìòÊfåú¦Í®3šfSí;çÔ,ãØÉõ":¢¨]c4`]|·CQx*·LÝ(7}ÊzÝ2Âñ²Ìòú#¥6Ñà;Ŭ = ©åDß–”Édó§Ã$j¸ïoù Ûí×ÉT[wÖ }#ü»×‚Àÿ´ÒÈ åB7Îgv›@΀¥•åõ Þ5ˆÕ|tðVÔ0íl­©kÝ~…Ë~Ì>±›S¹ pôÞb25±5×öÂKüÞò Õn›Bÿï;¦}ï¶ÝcZz?>[]ûßà‹1Jb->Ïæ†ÊDãøÌPj-;XV]>ßNI+¿Ü›oý; Š””ûæeÁ)^šu¤ÛX)§`¼Íý=Ý©Œ²=e~‘}µ-PÍÄ×Èôn°×ýÃÐR ':yèÄΊxª¹Ó·SKè‡Mó&ˆƒf;3O`ºêS]?]÷£-d“·1ûWÏÉâ×á)7ÑåÐÇäh¯¾t©&BÛ7î‘õÁR§˜àçwCjY}/ë¸ç ïy1©Gþˆ‡zEUVÆëöjÎ(í Fœ r ééÃôÖB}¥:E6G‘w4aú5tÒ±(—ñÀb³…¹éz½6¯ ˆL`²¯òE¸ŸÔ€Nëô6VB|×o¬Õ­61¯"Â9¯xàö`ÐþRo·o%¡Xß#ë´ŸJYªÏV«v)4Ûí÷.9d9r°oPÏ+H©*IG­Öö“Ùïè&¶—*¥úÀ%‘3µkëú¬RæOp0ŽÁì0ÍHðfV².Ý—l®Cm+BŸ¶’0ÀßìxŠè ñÖ¸áYò`PwñF‹c‡/"Ò•Σìë¾Hç=ëQ^R<Ùw3\Áº? ¹š}Ë-H¦ é#Ï# x¾`T»ƒ+>mð[á†(ùÂ}Ÿs†~ܳ´µûŸÈ1]@½;¯ès ªÔDd Þø‡oªÿHAºß5Ü„a‹ÅÛÕ4'so÷ïD0à¦`ƒËÉ"¹²–áHùi¹»™ŽH:’ÿV1±§ÅTlkCÆQ¥c–õñe9È!‹LplsV$†8~°áÅcùÖg¸‚*ïT T|¥ŠÎž ¸ ¢‡^訳zñ¶8+H«I¤Ø6òv›‚–<ŠQŒ•u:4ñ.]Ê/¥ý¾ùžòå\ñ ®©ææjgÎÕU²‹µHFSɽÊå{Å®b£#E ë1Á*2éºÛÞóR·­×qHqÏq*Ÿô–d,ô1qÎGJÿ4Æ’ ç p~¦õW:ËQD²xÒ]øfȬlþ¨wm;|1bú}ïä‘,¸u’¾÷.ÐJWwp¡|f® ÉfÒ¼äßР} 7~9ñ¬$— ƬVñ˜ç„Œß¸R™1l#ìQãƒÝ¶ü¾¹Þ’Ô•9rÞBìIVÖ:h˜§ ñÑ:ɵ }e.¹§hmJ1°{Ï-ÇôÛt]·b•î{³ˆè²¬|Ò0ek¨£eùoÊ“a#\949U¤³o¡û Bs˜1¢»D+#|ö ;¯fmæbY.n:4§509ÉŠf¬Xc5q­…¹Âàpñjç˜Z+}wùD'tCçù™ܓޭ_ÊLê%¼v ¤‚Œ±æì†Yä¹!†T>±}8'Að§*fÒñ,Y¸ÂZö_0õœ'»’E±¸ÙŸ JG ÁÂ’ãh3t>ÿzEã‹ï©°r“ŸËiÌ Ð—5ÄÚ,uš. Ó€ÅQž™CT»ð Üã„.ÁŽHÐ"Ã)ùï'NÔÙÇðT·T¸JU§šE6‘ܳ|cpkyTfÔ#Ù9Ø3 ôB€ö‰áç«£D—¼®ÇVÔâ ÍyÁX ¿%Ytæ^ƒSÎhîgÆ:N4_”w767%ÀÔ•¨TYSŲ ójwòŒ>»€Ã8m$i¦jÔLÝÊA ö,æWøÖÁU¡$uo>®ýN¦8fŒ*’`‘–] y–¿-jq‚^<]‘N²½¡ÞGO&ŸÕ¢àŽSv™ÃÀH´`ßðÍ–j¼X´ë’·1‘ÉÇ-#Q”× ’Ü’à¶ØGÔIi29 dK ½œU+L¸êá°Ÿ¯ÂPñÒ8t}N˜-.9îûêD¡a=TTD}ˆ¬—ƒìä—m¸uñý_x°¸Ëß¼ ³^ö"ÏŽª³c9ç-"ë.be—³¶HÉ»þ©ùIã;¶ ¶ß ᨨ·@‹,riðèŒÖ5D £úœæ°ªi±Í·“åÇ4‰´™'ÛŠ|¹ã~¡´Ø%†ùÍ{6Þ,]«xž<—ý¼ƒæ˜+Ií’þ‘.}JÃÒ 9ô=–ÄO\àÙèB霣{Q&Îcßy`bÑLz¡Q½ö}›©ç3Sk‚9IC³t.çà$c˜F¹€”ñ ºTÅCq'Œ«_éæŠ3¨µXt[…: MC¦ujì<¦ /ç¸ ðçå^VÔ c=~¡<¶ÁCiÇCÃA›N²¨Ç3³ä¡.§8'Aý…´oßëÛéú.ÚÑᢟíL1]¯úËá­÷ˆà÷öªIgn=9Y;ö—U¶üT7 ù]5õÉÓ½kÉüZÊ(—ŽI±âÏÆfïÓÓ«8\\¨ËšŒ""ˆxÇ;‹²l‘XæX_h+?-³¡ˆœÒ³®Þb n1×Ò(úš]”mHÅ•ÍÃcäÛD¡5ùL Bw‘7š½^ãíGÓSn»øY©òq·JÆ¥ © üDÞ¶S²tlƒ˜èöK»9"S·*Ï¿ç&Û£ºAŸ©!üõ&%gñ…ÀÕœþB,Œç$Ü” y8š«CDh¬¯*®4–añ^ê$l'ú¼Ê{Ô`:6ïè¥v<$‰‚³®¨Óö7»¹žAjVA1‰TWÁH8‰kæ‚*ÏaûÀ¼MG=É ¢Añ×ï[½Uç8('Èìý›’PgUÁt0Rû8y K iß«Š$¹º›#ÂÙjGW”¦*Zg}½um!šq:ˆUU«³YL¥-$ëÔæd!«ñY¤y*Q`Íæ³Íóy¿¿Ãkƒd¤YøÊ褄#dabhùYVx;ƒ‹éuê ý4eø-߸°‰¾ÂTÚõˆÙðEÝø©9§F#sçk°ïÁ'ƒKj—«‹ÄR8 i··ˆ¹«¹çµ»ÈP׫hL\’¨r3~hÎþq稘ècë_v0Å'F‹Gö¹-X?†Àý;± ~*Òîçß³Y<²uu¾!Q„G¡IÚ°›>Ëî ?g¿^3>AŸ«m#}þyÌ%Dáç‡ëHõ•¯ñeWÔ҈ߡ·BWð_ÏœWõ³§ö9®…hÛz"LañÛŒ˜G!ê6¶ž zVcNî’x ‰l¦sAwÂWYP¤‘(„¥ÒËr—Bù(jŸ<Í’6fÛNÄ2p˜Âi7L“NàÑMµ(N\}þ¸g»ˆÆæ¥Ø5¡Öþ¯ÓÒ· Õ!\§_ò¸(]7Ÿõäç àˆÂ)!eaë¸D“-¦Îrj80Ç{*‘ÁGFê/®BÜ$“ût…Îí~aÓÔºíí“,=äYtžÇ9x…"¶ÁVx¨ìüž`3—®fÖmU–'#’Z:ÉÆÝSà|þ"iû‰ýfŒ~°W–ïó°'ö.]ç3þÆ¥çõ‰Úõô±)m‰k¸ŽøÌ@ë›gHã‚ì»È ˆ8œ¬| `ã‹lõFǰkGo È‚$¬Ïý X޼~Ï¢¤×ç£pk]J™øíªdêJ[’5÷ÞkíýÃê~ß%ÔȺtíºbÏÀ«Ø³UNAÕ´ñ^² ò>Ïõá)ç¥Ã~ï‘‹—"«¾‘ã Z;³¢DÄË«§ŒªeÚá_.ߥ— +[:¤MÓõžöáuT.üê¸`mÚXäOkÂG9$bV¿N`m¾’¤ë-ÐòNŸMò£yšKò¯%{N«XZÑ›ßî·¤ž ÝZ¢Ú[ñžž—ä1Š×¼ ®¢]9à¸Nãÿ ’ØX«Rþ6v¥®(ʰ›4]mà¥Ú?GØVÏ´ðJFÖßíÅ3ꤘáåCa–<Çvù²òc¢SŒ9ù‘¡í,^m-k•ÉÖ(DÛ9žÿKüŽÏsѤ«·¬èò=zÙ9BX\A¾¥Ú™r_i^€ì:†ØNljÙýOßš•#éT«ñ›¤º/¤Ìœè†l°öŽs¹ñúR&¿Ã}¹W†w!h²Ìá¤"ÅÏý¸ÙüËlHg%ëÈÉ‹@)© ALÀ:¢$‹Šr¯±Kéî†BJ&‹S\'D B,>› éSKÀáx{¢ï{ß wÒëö$¡Üý„îZ#5'¾Ê?´JS„®Ä«l¢Œa·[]@PñäýZ ˆbHPij ?“¢óã½úé苤‹óûÀã›»L¼¡*ÝD ÍšªysÊP ù§·y(@ m V¦ iÅFYmã£,{¢7€½«-jÙü[ TØýybøl G?þ\]K†j7âÛ0JææNFiILu´½-¡dHA³º•T‘ÞèðáÕè“síâÅØttì¯UðÆÄçX’—ÐŽ§ÄãBH$|Ù¤|qó•=¬¹øcËTcHˆ „!#>$Wá”t  ¿”±y\KÌæO×ù•.hÉom‰°šÐå® Ýú öRß¹žd_¡¦ ~O)·âJ#e4äCÉ&¢ÓQw1´¨šü¿©Vç¦ÅüU[+(°0Ìëû”¢?ùØë/Î]øès¯’ç¤ïÇn\|ýï»%‰£â"9 é `«YDq±BJÛ3>‘A+Ëê…‡¦?·|›ÍI³=z) OѱnéÌÆ½4¥@Ì „¼ÔäŒæÜ‡ÂDi‹·VØÙºEŠîd¨ù÷îé+§iÜ~LZ³õáŸ:9ïÕkh/Èf3X¨²ƒ(yîë¦059[pm“`‹(Ÿ`ÿøÇ2‚] e×ÉY’`|›¯T­Š¾leK+Æ Í—î}8†fnÄ—I¸·©ÞfAÁtèõpàA Sc߯0P–&yÄ”Ô$¨y7á“(ë§jjïå! y¡ª–óTæüôù¬nVå2^ðì˼á.#Û” Ùn[ͬÄ̪ÉÞ?fžÁæ¶?èM_k6;Ÿú΢véo0é•Tø§¶à˜…µõÛãSŠE«øIè®)r µÀ N`-¢9̽WaSñSªÄØRmQ·.ôÓ€"TX“°æ'Åf=£•Bð 3B@Náí¦Ö·w¦¯õcª<ù´ñ°£¥°ôŒÒ¿”B7½ÏµxýÄL§H~=9Gœ¤vY]?ÚÉö£ÖPWœ/ÆÖÇ>ØB³:“–‹ùÛÉõ‡úšÖñÝØ H„P3b%ÄîÜ#3ý2ÕôŽ]–s5¸+@KÓÓÂ~ÀµöB¨b  µQ¬ušÛüjÂ3ö=Û„ûnnæ TöG?´a’þW¤,5 W‚œÅe§µžnæmËqâ+oÊjõ ¼x](©ò‡b/ÓÙUºV´*«Þ9£Ä€X65”&ç§Ñˆï Öx‡g]sJFW‘LEc6ʙ¹F:‰¥«WÃw»,"]ÊæJ7¥e²Õ„† ‰™¾ù‹å)$3ÌÜÁo¯0Å¡ ÕôûÓ@Gøõ+‡ëKp¸VðÐfaì¶Æ&ò˜­A̼;§4FN‚[¬´¢¦î«SðIª½’½æWsL¥ãéY§“9zZÌ«ˆ^©B£ÞMîƒ^á^LÑ1Z3 .õƒ ™ñ‘2icB„‹m ß3¾b¯¤z‰–C©UZ“p;ýœ1Ú#/áû’=:¾x);ðcûäâS`¤ƒm+yƒÓ;d"Yr#½”IÚU׃.ù W·“ Á­âó´\óÄè)‰]A;©”8H8°½é¿"ËÉÃÅ9ÛJ±¢ôÏW‰¦e¨Oê9Œ´ôJÕ«Ô ˜‹ÓoúĘ›Õì¢Oªaa±ÿÒ*1Áÿ’íUü~üþ¢Dl¶ì¾rAKÔ{FÒ!dHÿÃEl¾É<ÉS«¥ vß!¯±¬L! ¥Sïl r*.öGr2­‹û߬h¸Æ+Ìhk“ Q§nB+ß$Ö÷ l»œ¸ACû²Hªd<ß)HIÓÂñßàέ¬“aQ§k-`ç§­U™ãfáÐË®©íB ,0•*MÙ"àšw¹g8d0×*€7¡ ïÓg{šG9ÆzÏ‚ªÆR… ÙåÙT$ºüSï¤*¡˜HÙl~‰ hG7 [ÉêN§t°Y]‡ÂõþÙ×\$®¬àgJ”ŠŠMo¥nÖïuåýjÖ=[‹BÃArÅõµ6ôKO4R$¡Gàø Ü>“°@¦¤™Ì-ÖKß΃ú§ ƒz ÑêÑ z?pÛt Ï7 `‰ÜQtcÔÙ·§ú}˜……÷±màû'ÓRñ© ªÙJ -âγYòlõ_C ¨žàŠz—»z­‘Ùy7p_nú£ÎÝq{zµ«ÎèP„ŠÔ¡ÑnÛ¸ËFg±ÉÈy^†››tûo@¢ðr¢®ü¾JÈ-¯îøn¶r®[ ™æ˜Ëx²2|k¿Íô:ÛN]kÀ?n(¼O1¤ª™¬‹âÁ¶q˜e’®s’ž¿ä{y) ªs@R®ü®ö¬€â2ÂÄ kg°U-ÄÓI˜Q¬Nf£ø%aÔ¢*àG¤aû/x“Éݳ3'šë’¬êþçê(õKd:›¾öRð®wäv±ÀÈ‘ýHÊÏ ƒåàûqÍO<ÕÃeöD{™6½Žfþª¨Î?ÿ2g!—A©Ð¼+»`ÃiÄ?b83*‰0K¾>.×ÐkåX|=ë¸]yKÎÆ6s…;@ÿ-B_­”¸4KrjóFøð#',ÑߟƒXø¤Õœ$^Ϫt]úºy%|d–õ‘U–³H³ÔIéh=øÆÐ‘ÅYâYÒ(+–ŒÝ¨íce–ûº<2¦Ÿiròã§Ï? °Äa}uùÿºÆ9W©6§ù¢ €P“9ÀÛ=åh0Y²d'R¡+´Ø=”Ù̶ÀíƒF–~ÕA3¬±zöô’âFcàB+!Ý*^«†uœc8zy±è¤9¹-„‰8x ®°ˆ¶ éùf'îô´ð|ÿ”:pªs)áÚí6ƒ`Ù4;'ùþWùfÀzUG–wZ ©YÝŽ²Úf™ ']1¡6‹=C!ÀJènùªåWgÀ€•Dõ)ÛfãåA}BÝ( ù¨†V£~Èõ¬‘½ðê{uí÷,ÍK±ØMèâîl˜íe.¡^5øt78†ÿ›þPŒ:uW1lù‚!C*HóþCLwôuŽ…»—§ñPZC™Ôu£þX2Ö.îšê’ø­µ3EýHa9ƒÃôÓJ‡Ñ½†.æ‹óçØK¶ž°›‘ôM>º$z óîèûO^ûxd¸•4d)±pgE·=|-ȲhKg5\n³ 8Ô‡HŠW÷©·MÜÞ1Úùè pŒL”ì¹T(êÉe˜* X¬²« mRɧEô@¾:¹n“hÖ/ÝÜajÜ~Ÿ渥bŒœ32emh/º£TØs“΄J²FÓ‘4Ôøs—†S3Ki5y ¾ä ³×„ÓHôôÿ~)õAÏŽß6ô’£Júª)†{Ï‹Ù×¾Ca—‘‘yüÞQÚê@ ¯‰‚Ýe; w’š†ë‹ú£ÔË^2tÖ¨5QOb½‘¹/æÔ `5ŒUäÌŽ"íç³ò>ËÚ†8RÙóÃ0srsÿ¶BŸ=åR½Öò…Ú´ÅdÂjòV–U7SqŠàB_ÙëfgÈ}£?¤ëHrª0=3ÕG‰•µ3†Oå Kt‹I Ã|ë¬îò9ôyšÆƒ¯ic¬ÌÇèÑ&PËü ©µ\½øÈž¤â*ýij^Ÿ~°Z¼þ‚Ó)Õü¸ÃTvŸÞ¹c=3€¥ïhqÌô¨Ûåwãý—€¤.Ój3émBžüyÛU}È ¨ý~+%ub†Q*KyÐ…ôN[ ³ï[BVZýZÃܽx’?mØž²K²ó5¯ëGÏ1¾ú’©ßvÄôœ\ø¿‹šÞ3Õž—n$ˆëØ0̰£PÆ•ã«Áš›GBŽMÆ<øýþJ¼ÌõˆÆa–çeU.¯š@R±£‚ª.¢Dð Ýλ¡›4’ú»Ýñé´’ÚY}°9*Ö0ñ…§éz}ìêœün®³tè˜ð«-o$qÔò¼æy+…±}œÌ[ã~ê¼d´‘K,¶ÚÓ#”`t1õù…&T$ÒNÍnœDLŽûa[­–' &}h@¬è4‘#ïãQ=1Ýq ¼§éØ8Ÿå*ªVåo‚gŠC'ël£Nµ¦¨±ÀÇåžï@íZ$¦ ‰¢ïj¹\®± ¨‹ /§öùX·OLJ~dÉdU˜W¥ ƒÄ?ˆ1_EãŒ3…¡@Á“θ>ÍïÖÃÎzKènJgXzJ^@“ùŒzr@¿ÈtJ* èb¸´«ÐOƒà_ÃsáÜ©40K sGð_òrë]‡5…ÿñCÖ]Hã – ƒ BÈ®‹»à³D$ÖH¸;}•{ùÎ; ˜?O~…5í4˜„Þ.UÿòÖ×1Ä}b%ƒÙ[}¿='XÐ)þmÁ3jKTÞŽP©fé4ÇínFØþ—ÃØ=H‘÷°3ËøÂ%]äÀ5Ò0:¦mõe&¤±@+í¾s\âŽä«ÈP|·Ý¬Ër ûPnÅ £þÏŠ°”¯u↓ª/3°œ¦¾—P/5aL×>'ò0o‰éÐ$¼Íy6~Ì…~´P¥êaË[9›©îņãû1Ÿ˜W‚ÿëyLÈ—~fZ®\F›O²xLžðyT'2N€Áu¼™wE tàë ™ÎÿÚMÄRŠöµã¥™!ñAè%Ôâ«ä¦MGÖ”k_®5nÚªÓ˜„ú.†@¥Xý}f¾óXˆè~:õÛßÓ¶üõ”;õ¾ïñù¿™0¶µý•é&¶¥~OBD´ªø×é̉˭0ËI¦`V¤)õK7)±} @Au?üMÏ“ÚÒûiàB^kR|N%ÒŒÞE>÷¤àœÇ);J’³OûbsïO(ü±*O,pérܥµJqI^¾ÍýSe\4úÖ¯PqÅ»ú»ÞX[)~U¦ R*À˜þÂN‹‡…ÎM픳à°`·å}©Nq|‹.’À¡€Oî~\Zb›Åµ{jÍv6ú¿Íέߗ1u`D¾uÀ1Zû` ’îì,â¶É§g6è—UÂ7…Iº{'äKøØU” ðß;î§Ø†“8øÖ¾Ã¶<^™™Àk4§ž !E¸jW’Ž]·´‹Ò "Õ[îèY¢å³€tòªä Úü¼ìÃâ7ިɀ% ª×KµIi½[PÛyƒÖ{È·î¶ ‚¦âd$Öýe­/3ÂÔ]¯ È¿´\ÞŠµœ+~ÜÕi!»‘…_ °ÞŸ™©¸ ¤YŠ œIDIÆ›A[Š0żÁ¦u¤º~%šÕS‹Ðƒoí çð›ÑHø'“ ñì³ÝG‰‹’@«;ÈñO»W'› è<¹åë‘Çÿ32éÜÅuí”+Áé㦹®æs®û«)…_³Ø‰÷|zÒ‘Äð¾Ï1 –„3:ÚÀ ]U¨2sñÓ¿|×ßëùX¾dÀüÎÿ1>†;¢raÒº£p#¼±K:½,š¹ )>•[$EÛyÀ%\€òï²ËˆT>o\ËÅx 6‚šÞ;FT²e®h”ً̘8ð¡"L½ö÷p4ü«Ÿ ¾;À&šÜ›iͶÁˆRêª †ÉÏØ)h°±Z_ûN¦9DÆÃ76úñN8ã-”‡Œ:qóð, +©z«"=í‹ìéÍ6óðœj° ¯XÎ"íד³c E‡ÿwfd-Sˆ×dÎ^Àä¸÷Ãíóø@’©06-Ð’)È2ýˆâ,#;(N»`¶-5Ð~x<5Ý]°Ðg Ä +rfˆ”ÚÚCõ¤¶~/ƒÒ ÈP]iÛµõ­F°l¸Bž,ïåúqKa!‹Msø©wxyÅ…±’Ðö¿ßÔ8·Ü®K :vy?.Jjo¤/0Q`ºTê ÀâüèPaœÚK¬úJ‘ºŠ]¢ÔÌzÂ’H¾nŽnkl]…é³ljolHë•F«²›®eKíûì1œóо ¾ V2nAcnÙ8S:õÚ¼Ñqð­æcŸ¢ºÞة٫DÆõÔ =–þ·hĆ ·é•Ó2þÅîE­Ù4w'<%ænÏö;1-k»ú«`, üA¢g”1%§mx†¤æåötö¨þàzzˆ! z•7-~S-ÑU Seäå%Ê7QuG~¥€hŽáãƒèÀþ6L.Å}hbÎ2ÂGl—E}[ý¢n’õ&v/L̯è;0iÙ… ps´±ÊC—}! ¢õ¼ï¯ Çšºôß.íVpÔÁá†ChíŸõ+—¨eŒ\×'~+'‚Mu½ûµïáŸm¥¿ðÔöúàîjŽfŠíeµ¸$ØOJž}Õt„>:™íi†@Â,‘¼5VÖ E©ÕÀ«òÊÐ| ¬iÎ…ÞKÏj\JýMÓÐ bÂx§r*¤?¢³*å.0­¯PÖëwôM{ð3tÈ‘D]ÿ°Ê”`H‰vå™´VVàP½8‰¹æüâq~Š£æ0hÆ>á× %[d²ˆœx·¤5.åØ,|çþ ²?sÕuŠ:_ÞËN°°=Ùßz•—¢^g´îÁèZ:tÖÕá¿@[¶ Ê*‰AWî ô ð<]]3(â—Åî‡þ÷ŸèÿNËÐî ˆ;bßE’ÒƒƒJëM¯´.(ÓhÎæ4 FÒ‡„â„“-gcK&NB±JªFL‰‰Vmœ‘*Í´zR°o¿ø0¿ù»þÞ䩨V¥çt8ÙtP/º? ü[ŠÆ§òà+QÆàîv”Û/@OÃJ, ô½ ”{–îþ® êåÉb–‘Z¾÷?¦ðX‰No&‰ª¢±±„Ú)¶UÂåEcZ;rè/_Œù073“e!â4°Ø_7¾”íÑKg/Jà"©^’rö)ÀÈ&´ù~N È‘)w6õ4n 9æí¿òíÜoµ‹„ mîx]sê±ÿ™Þœ«!Ð?"³’‘Ñ8l]2‰±RÎX¾èõѤ:f+êPšÀ„/Ùï±'oh™]õ/„¼5Ô@ÞV¶$…ï·xÖ³‰÷€&ØbX’Ïž- 5gœš:¥t7eã@”ÇBLviɹm‰P^ù¸%Éû ¯8û{uh0æ{æ‚@:C¬QmLh=þcaŒÈ5;èw¯n`oÏÀiå¦ÄbÚx¨{o ß‘Y a Nüv>Çž½ï#–^=÷›”­ò«ýéÿ›&jíÎöãt°ˆb\ ‡êÞ´)si[Ô>ûóÀ@ÙOFr)S{K"z§·é‡WÕ2üÕ­žŽïñþÑŠg¾rpÎÛ»Ö0å”¶µÄqm aÛ $-D†¯ðOð<´kÉc‘Ø2Ë]ã[·äH²ÅKÇÿQ#º€V»*D¶Æ¥›0¹½tûFĬ²þþ[;A÷@üšøøÙª¡<»“‡D3ë á5rpíRé¡…êUxJëo{Ðók¥t¿ª¼™n.Ö,¶;Ý¿LÏé©4›“ÕñË{ïèpEöICf¨Ç®äÓWžâN'UÄ¥ù9œŠƒÿcÃnÀhé|gî¤g±ô‹aöO€¦«˜BHåhîeäVæ'gº²–G•äܚŚÎ)/7÷–<“à ¢±„Ìjý\å$sbž•ëêÂf]Bع¸ç`ëLµŽëÚ+ì÷9¹¡­ó—u^»k´•ŽŠ“ÀHQ¡ôØá™¿Ü;> stream xÚ´ºeTœÍ¶5Š„àÜÓ8!¸Kpww—ÆÝÝ îww'¸—àîînÁávÞ}ÎNö>ßß;ÐÌ¥s­ZõTî&#’S¤á7²1ŠØX;Ò0ÐÒs¤¤l¬ô­èi€&N–úöFZzzf822A{ ¾£™µ¾#Àæh 5tù‚,èé9àÈ¢@k =Hi0pHõ•Ül Jý€œƒ#¾H ´61³~¹Úغٛ™˜:þŽÁDCó;ÒooZ€„¾¡…‹ƒ…@ßÚ A+M ±q Í”6Ö ©¾¥1ÀÆ T(+ +(Dd•å?Ñ‚+:ÙÚÚØÿAE%eQj€¿Œ’0¨B UVTúýW h âoB Qéçþv—VâWR—f û]€à ´w0ûö¿¸‘ƒ˜þP¹ÛÛXý“@iêèhËIGçââBkâäàHkcoBkkù?%S3€‹½ôj´þÓ'k#P;Mÿ ð{URf†@kào'›)­@­9äŽÿ&j„ãÿ28ÿ‘ÆTßá_)99)€•¾™µ#ÐZßÚdè¨ïèäÐûGúQü‹  èdoÿ;‡ôÿªìÿæ© Ø€*Ó²ôðÒwùïÓ·vrpÿ«7ÿY¶¡µƒ™ƒ£Ã¿"Æf–Àßì~¯™™õ?2i~qaE%)ÐàYÓHÛ€ºcMëèêøõïxüBRœvzV3€4¤ÂÖF‚6VV Öp¿Û'dê“£½Ýÿl kkÿ‡ÂØÌÚÈøwïœlé”­Í윀âBÿcÁý‘™ô èjhJ÷;á?óò[Ìð[ j„—‡­-ÀXßÒèef ½Ày8è;ŽöN@/¿ÿ‰àØFf†Ž Qm¸¢‹[Û8þ%1ù_Õÿ å?[õhŸÙX[ºŒ€Æpt26Ž ‘ üÿg§ýW.'KK}+ åÿééê[™Yºý§é™¨³¥”±±·Ò·ü/™ƒˆ™+ÐHÎÌÑÐô_­ý—\ÜQ4ÿüÖ&–@вü#Rþ½¥,A³ zþ˜ý~|h˜YÿKKC k ƒ€ù_n@P#þ‹1¨û¿ùè¤å”DdÅ>ÿß±ùÇNØÚÐÆÈÌÚÀÈ з·×wƒ£Í# Àƒ4ØF@׆@GkmãrØ:9zŒmìá~/(+ €Žÿ·è_ˆ@'ð±èÿ vÐÄ þ7b£ЉüA :Ñ?ˆ@'ö1èÄÿ fÄâ"ù²KÿA ì2(»ì¿;(»Üʧðò)þA |J¨Z•?Sý߈SãqÑÿƒ@\ þ˜AŽ AíÁ[€D†ÿF, {CKÐ(ü¯„™ù·ÄÊêOLzPB£¿ ¨‡À?@LÿÏ¿ @eÿŒ ŒÆf˜~Cç¿"ü6·q²ÿ+ÈÄä/¢dú‡ h)LÝlMÖY€dfA'ó¿ ¨EAPÍ–A=«?TìŸÈ, WkЮøKªÞæ³Í¨AÅØþQƒ‚ÙêƒK ñŸ13üÔþ?úÚŠt¶@{3›¿zÍê„Ý_Ô‰¿úÄ*Ûá×ßèüW_X@æf®2€ªq°Ôw0ý+(é , fަöÀ¿T£‹Í_ NAP3ÿ‚ ~¸üµô o׿ (¼Û_Ô+÷?ä@‘ÜöÿJõŸ¹ß‡î?§ ýŸ'ÐÿÜFþÁŠŽö6@U3#ÐMì/i}G{3WMzÐQÀ’ƒ~þ÷?íÿH@öçûË[@ÀÆÕƒ†™‰@ÃÚs Ì ÒAëËæõ¾†ÿºüs •ÿ‹ŸÊ Ðh·8gcÈhžôýk‰·pÞD)íI9&šDì»ÅÔ‰6„Ö uh‡Ç#ð!Å/5PÄkÁaº¤öHc}ƒ GÍwèpòËŸ¤È 8Âiø0¹ðÈÁtí©Î§´ìŸ$|²Ü}dAÊ™b%ê®öÕ¤•·Ñ•Þ…ë•0 &-çX¢öQš}4úÖé~ã¥ö@ÃJ}îu æ¾aQ&,Ð:í¸“b$ïëËœ0g"¢ï¸@ìÞ ŠäilsŽH ÖËòs‘ƒÀblz€@¨¤ÀûŒÙͤjÑiÙN{áµ;˜†]°ýå…·êì?†6XÁ/Qš›­› ‘ðÕfª©\>úŠØ¬8² ŠÀs¾a›°zÉam Y ·–`g¤h—AU\>¶1™~^þ …¡£¶Å%‘³ °L5@ã$xÉ<¸•âuÑÀ*…aÎMÄ5£Jͦ´1¸{²0ª¡†”­‚;LS®íòi½¨füçPdÓ§µGdÈ2 Rë5á*‹aÏÓq7Kâ¯YéÏ hž,A1QãÒ`8À÷F²äÞdLªãH±ìÈw6Ôç»Kø³ñœ^+(¿ò‰¬©Ú=õÈãºížóbðë.ð‰J7ÑkÀ kåTuÔ¾1+ü¥–7á°ª£8E)©÷ÐáagŽýG4!¥ûW´-;¬ñS0áknŠ„wæ¦O¼é;îïRƒ1¥µêäC+"ʽ&všw]¹ç©:c³î¤\®–ÃAVLœÇ2ÔZ 22~”M—oÀP„?­st»ÆË´NØ…ƒ¿~ùÒ@Ðáŧ{U< ~=fM¥Ê«sÐíψ'ÞÈÁ“ÞÛ¦},•—ëN>Z.~Sùh¥M®KÃQ{Jr0µù•#_àÈOÌ5iÌ7Û:!LÌ]É!-—‘õˆ<˜ëQæ XÑò@wOVò1ж%Iž|xAغ»1É'œÏG>úÚ: o¤YìÍ–œ Áäðæ$Ž%h$„Ö}š#–ÿÈD£Fþv=1ɳ± q²5Gš]pv¥.¥ƒ -}«©\ÊÔßu5{ËRoJ¤‰·jy¨l`Ø–›ròBÝБ̱ÊaµË?én5w¡ÂI„;»½?§oCÃÙp’äõ”ªóód[ïyº&[Óß<èÜ#.œÝ ‹Å¯ÒGëÉšrsrÐ*Ýø¼I™™jgÙ—úÃ'søöfÖ<õo GÓ1Ÿü¤ÂÇpÖ¬«6D ·Ø ‰¨?‚ñe}¬d‰´ÑRb\.YÜÖBˆDYLâÂoþ$» E®/£Z±ƒî©Ñt<ä0É!²‹¨¨ºë¹pǺ~¾Õ¤èèY8ƒÈHúÉG!ïºÖ sË~ý}žn?ºcÛ¬â7^"zî¼Q»9Û’WÁŠá)s©÷v°®p!rOi\AË”yvøï)¸Üž¦ÃÓ±÷n仯 9_­òÑr‚¿¼g„X»AÜðoª¯²£8²ÒŒ¾ÍvOöV$;ŠüTå‘…~Dí)kì×hGGñÑ/üå9ì6½muômSg3«Õ %LÝ,TE© N—¾à|Y8‰‰ ›“+:1¯?¶æÑÎyc,Ž1˜J¸UÀ'ø9iÔÇìΤÐýºeƒ:>.Ë“váÉR]Ï¥ãjEÉß3•5à½+<ƒwZ’ ÞÓÛÃqÖ„Ñra‹‰Øùš8`ÙÎìL¡ÝÙ•¹‘;(nˆ¸‰RÊÒHASªî¸Âm\k7Sa›wRĶß1ân_ÏCä¹]—VF¢~ã&ëC†ìב×Ãð« |ß+²3ôë—h—‰ Ä–q‚!¼˜¸V@Ônµ— æÏ÷¸Øð®õ˜Y4·ö÷_Óˆ˜·Ï;~XTÃzÙǸ8(Mò±¡õepvl…?nøÙ×t‘—¸¹ˆÎlíî³°…¡<}y5ÓòLu‰¬Yý¬¤{ÓI{‘6$É…‡$!שáL,qøÒžœû4@jðñG:¯¿€_[×|s?ýYÖî p\ê%Éùy\yÌMxÍq'jÖô ®:G}÷)0ÃÈ»mõ,ƒjJó€×¯^LKì6ñt¤xZÅ šW‘í˜öð5½Ô©IjJÔªb599L'^o?Ét Žõ÷ÀX,­é!ŒlFÁÂÊ›+Ú&æÆ2ö‡&Šúi, ßøŠV(vºˆùx°+Ò³?«¹4°‰N3ÏìP¼¸·¼jØÞQõRè®±J"EŽî.j"pe2 —Ó ´ { À§0qƒñ+‡†ÉÌôêm^𭳕:-ë‹*3¦©ÊwKÆ´¿§Ä™à‰k 4ãëÖvEÖ[ö?!U°ÊÞ>'&Üü‚2&‚\ ¥j9La'Ó¶T³aö¤ü™Tœh%·,U—U€MiXŒ+g1‹‰ÄÕ4K¶Æq»ŸY©ª½8A’8e^WyCDF f!ÛêÅvt9Þ¦¸ñRÓÔ”¼áLZSïÃÌk(^ld3'8 ”˜/±Êª*z(²ƒf¶H¨’BÕþËŽµØßŽ)e]6‡<MÈIHÌèBqì`Âü–Nëq9ùø+îa‘М¢3®¯X!UÎч¯œŽÌ»¼”]üÞðSê½ö¼-t?rªJkÄ40‚YŸu8­óO%¤Ù4i–'Ýu 럓¯ÎI‹iWNÇä2â,f·{íuŸÝ~‘ÝST¸µv ¿Üˆ£kŸžo3… ¿œþJHà–HégliÓRzO‰´ÉӋǯȩտՠRÇ*¦Â‰¨J2Ü—Ò¯Þ¹ø“ë¡ÏU‰9%!Jps°«ÍR—&”Äv š«ÛLbò­¾çs|Uì[_تÕ3Ôµl½Ë—”#Ò\\þÜ ÞÝG £¢ó ‰÷K5:åŽ;rI/'ÞÎ h¤û¼@™Ì÷Èxñ=C=+RšPt¼8j4 iœnÐEdu~†Úsr7ïZÐ{§gã“U¹û%»º.õWOPD|Ÿ”¢F ¯ÚE¯Ä„÷Y¸S×úCG*ÖÖsjäd)¯¶`päEŒ—Täúe»ñ;Ð6¼ðºÌ$ueoÞì{gë솕*¶"ƉPy½pùh¿ïvËjgÏ©¢-DÎT TÌ’&Öuû"9ËìòŒ=U/edØ…½âÖM_µ}ÜÒ^ÈG6 Y=ž£ítS\µze#áÌ{Sh¯âÍgýÂä²…U„zÁo¼e*O€4“¢¡ÅGª±/õªJ<®£•{½¾íÓç;¨ïëix Œ˜ô#*ø”öýwì5L;œžÄÆŽéNqíJ¬ž÷ËG´›©NE·Æ{Ó\Ý%êÞ0Æ¡³þÆöM!ü†Gìv,aë°³ùqÆ u3®ÛžÁ÷>yxˆxŽ7ªŒK”ëðM €P!R½/ü§­‰p (y\?ÑûM+¾Üá$\<8Þ5)Gô‚.no~ª-|ËKwÄæåß±¡VikHß«¼;ÄT_D[Ð ü\Ùw¬EäÓÔe©±#:7Àñ<Ñ7–?Ž·¦cãp]·¿vz\å¹âž(CypöðîØL½f:/ÉX…^©vJNÇ7?’?Æx´)„‰Ê$™Å$åðiŠæ§eE†9“æçñ °¢>·#ëú}IÂñæR,$K‹®[fn· „”I€høa$Â'™?nÝAä—N¡#ßÛ.*.­®—huÆþ%‰a“ɲYˆ\qÁ|}ï;!ä`ÄüÚi‚Á3ýÆN™q2yש©ÞÆ» oegjïŽK¤BJQ]yMÄfw’Œ#‹Ÿ1Œ7ç}gš8¶Ó0­_âÞÉ-kªT­•gˇe’†)LŸ…ÈƧAçêßÿÈÓFÉ·¢«!Æ4Õ”ùEèn—$tøñè ÿké·uf¸äÖh—Iý_SHµmóG±h›kðyþQã”ñ¾ì ~ÖiïÉ{5x‹?4ª?ôë›|ÂÉßV(`óI³ÌBˆm7 ®~ƒËïžѥ‰?2rŸ¦½_zR—Aþið¹Ú8Ïì'©ã¬uÉDôk EÊ$†òØ‚¸É·•ãR/ð™Qjã*ßË›·7Xî™WÙÚÄ0QŠ Êð«Ò yÁh¨º£¦,Ð4à ß[“2¥6ÌãE>9Þ¶1Ì3Þ# *Þ¦l’U“‚d]ÜDb3°‹REã&”àFÍN¡t"ðÄIuÚó‰y„^Ç‚#¶ŒÛÃdÜÏ,‰»Üý  ¦ËŒÊ¸@ñݸÊ!§òkjuþB è"ÎÛF}Át¼VÔ.GІÂÕ‹ˆ;Ô½/Ôƒ¼GFýqò™ôÈíb–ÂüxÛŽ_›x°h-MBÎ@}‡±l'äSŽ·„`åýòM7ˆ7<» ÅXµ^«%‹¹“ñÍ1÷Néur±âTæ]£«%Qj  xÔ€. ÁmÇPe¼.sK®yÊ×4ß4´zji`,“oAë{ùh°à'(ÚôC–HÛ5þ–×Q61Cnpèï@¡r6™^wÛèú%ñÊ&øï¡"ËÍFĘu(¤wcÒ ÅX$5 TÀp2Ÿ²îqçiÝŠ¥±x³Ù&ŸòÍ.È‘ìïnùvaJ({êw—©\¼_ðh©È8'ɚȫ’y»I t;õỲcŸ^:1¹ä§cMJxô_Òø¡¸¿{\# п{5W‡hȘ§m÷;–Щg ŸE–´ÞÓ¦ù^VéÇ4Ð^Í¥v6o¬=CW¢@gˆPœR0ÆŠ«n@~³Í¸1ùp¹“¦e„®-ÔµØÞLÈA”˜5÷YüæØ|¿NY(Là1n»´Æ4úÝ—‰2o–ö´£&rá6AE ñø ‹?Ê–5¶@ Oº¶öÒê¤æ³kæøöZèÔ„r7@“K9¿Èù$ŸÀ»Ö1"I󔣄5Y¡ôú¥2)Þš5tï¦ã°˜AÏæ¦~©[Ÿ©Óðü0#š·ÙM À÷ì8ŒuЍr–—ù®"˜Díˆ 7SB-9O¸Ù¤yÅ<‘3 Δ6;'ÈÒj`ʪýJlõÙZÙŸ‡eÕë®7‚!L ®¾ïc¡>qC” Q´žÆM¤ÔÇÎB|Õ#ÿj³†þÎÖ©xЄÊ(q)iÑDÜÄcFÆ.MýË\Kã)  PwÖJb1ŽV6ºÏHBR—›Mr&}նרþhÈSmô¥VÐfè)Ç ÚäíLÚ¥<æ]p.Üç¼r¹‚n=7£ÝHœ—•úC¶¦ÈµÂéüÔ€«Z½÷:\ÖÏž7RlÀzîzÈY·§Ú¯RÙt´ŒÃëtÙ7¤ÜŒê8ÑT£íJ †_Ê(\j,¤8˜ÌÔ81Ç>kœ“WíyœŠUCˆáŽí“²CsÀÓ  á°˜ÕPF£‡aKHM¡×Ô~ †pþص’½¹Žj§€ÝqzžnwW°üUg„ºn{û‘Ýìüó»’¯‚)PçˆG0?¤¼N_VÞMLñzÄZ­Ì:lD$iР±æPx“%n|Ø?Í $5‚áÏÊÃFœë0*æO¾‘óªÝ˜Ô­ë”s\Y:ñ-Pƒõ6ð@yIvØ÷©9ÖÀ¡£ Ñ·>-Žàëü’‹†4C3Eâ©t¬Úƒ«Á[‘:´Œ÷²…µ!2ýô9°(4 x ®Æ¾þ”èw ìîë,+~/ /1]2BB#@ºfàr…|Ædf/Nï}ëìõú×Iìg‹¯âª»²JÓÒˆ(µ.”dö÷i•È·|xÇ?Àp…žJÒØæ!µ0"j£2o-§bvÞD³ ¤m·°A`ä¨+6ñCù'Ö÷½í¹Cò¯—qW=~Â,Ÿÿe4ovø¦*úMÌÙ"H0…Ÿ6¯Ö+€&¸Í=ÿNh˜=©RÁx öU1œDŸŽ¶ú¥© õðÉ{”QýkqáØ—Šsü3?õé Wèa<ËRqüîˆwÕ›½¸Ö×Õ†ÊC TKu1›k&k2¢l¥æ%IhNnvjDñe«¤ÈŽ®åtiM3xçüÄW¶:iZ·ö'Êz>‚™q¹bû†ÓÊ炟 J€F²Ü8áº=82lôŽ$‚ÍuáaDïK‡û">„õœ¥œtFYês±ß¤ëJ 1›’,níÈI"Q-§\e v~_ƒÒîŽÀãÕvÂã¿cs×£¢Ñ:“àË ÀŽ$´:ÑL¯‘ä§ÑŽÑýÆÃ8Ï"C¥a®—?<à×{Óûá.€¤Ø}‰a:?Â.¦ÚD!¡FÙäW¯$[†ñ\j¡øƒOyײ”p¼Â=zú5$ÇRltÄ·]Ý íkÂßÄ5Xu%~õß‚ƒ]&õáÓwMyÝÇ5Wƈ!k†QÕ4¹š¹ãm»³+Oœ©‡ NH}&Ym³>êI>ê¹ä °_†©ÒH‡ë|‡MùcêM0ð Í Nùã‹eà82)s'»Ã¡K0­Çå·¥w ÚÞ“a«FÙE%É”èŠJÛgÑp` k«+Ø&•€¹ÖjùW‹²rc0OÍLª.3¶ø¸y «.`jJÏáŠ*‚²ñ`(Wéi—OiLËÉ»€µË.ÕŸÂn¸Ìî\BÄ}q–E³~’ˆ9 Hh¯ËüTÀž 6IÄê”Ýâ~) à[M»]ÁÒå!Ô§r…Ò@oó ¨wo:üÉ7¨u’ ½…k³™ãi‡î£ùðQªNíHÍV"j0.Ž Æžâ¼³6Ï_h£Ä,ÑÜ5+÷ÚËyúËVpq OºÞÏoäâ6í"Oõ¢²pØ&WëøÅDýêߚϠ/9¬25u£Û÷Whg®YQ#ÀdæÇÌ—ú®«bqtý8µð<4þ0yÏøhUÛä!Ÿ|€Jþ¶«e›}S÷º”—M5jÓˆ`…~æúXÓ®ßG.ªÅ’w]'"y,jeùh´d«Úäõ|¯ý­§"vNˆrWïöSC6q9ë§{rd±€NJ÷´±³ úQgèÈRù©]F%NÂ~Kä ¯çj¬ å-!Ûvo£·†ätoþG•ðœW´‡—º—pež¡”…”œðþEÿnËDÁxkèg¹†&í¼1¸a‡ÀIäŠz¾®áÓñé]0›õ|Ÿ.ª“Oâñ!ôÏDuO¨È±¥Ö× hëÎê5Èy°H Ôu£ ¹€œ[H Kæ®h‘µ÷å›ÊN.‰ÒÛºÊ kûŠ>×Åd©“¥´¢ó1oéÏD±Þðy›éX±N)G­Î˜øÁ{ž·¸É;]ùqÁŒÕBÚ}þ,˜¥¤Ó9Îåv&8€ü{y ‰¨ÛûšVà³èÃ]€‹Î ±ÿ\ïKLÔµ¿SÒx0jl»9Zƒþ5=$_ưsï–¦Á{Œ.$µÌíìÇçŒ!îM—K Ü™óC° 4ÈçÓŸÎr XïiñBBÞ?*6ÇŽ˜pm~’gÓ¼?<¡k«†a•{ §Qƒ=ON²¦J¡N<²‡Óo»¤k§bÅóã‰í1üép©”É{Íć¦(B£u-/Æ JNV'«<ÆÛaŸBÎÈû>f•f¥ŸyzŽyþç{yÌõýò¯R4SõÑVÓíUvvùšFÌ‹x¶›Ô¢îØ•¥0eŸSF±]`ššÃ[aElÅÝ>¦“Ü |䩤¾¿"ÙqPñt {K{®fÕ#WºÆƒÞä‹&•%¹])àÉ.ðù’IAPöz´ ×7>kmÞg6¤ÑëâüësXøܶû^MG§HVõ „üØJþ¼Kåë«Ïý«¦ÐÚzøåÑ2µ—6Á@}Š|.›X¥£Ê6…õ_è­5(ù¨„„óoÓÔ“ªâψZ„ï ´w¦“(KöWOŠ·¾Ø±â¾S…øZ%qÍŒjFQ²›æ÷æŠÀO¥gÅÔå TªÄ—:C%“ž;1]Û£ò”ca8¶!N9V-åî¸7Á-ï‘å‘ ÷.;«rýø±˜ !Ð}¥Ûaâ+§°C‡¬ïÅV»Y_«o`ZÐs_À©Å€à@R(A LLžÙ{Ü€Ü$2­¥ ú&t‰þw7-cíg÷vúkâ†Ò©¦oWpM£él^¾Ïÿ˜+Ý ˆ¾+ø…•m‰öÍÔ®¹_JN=¨%d#Ú…0E).¨À u j(~mU/†Ò¢›‘¨s4˜<“ ÛF«3z4>jýØ5¿&s™ó-óH§1Õó[3'ÌËÁþa;ì­?0uçå×,OŠªÅ2ZSŠ~ÛCÀUþƒãyuÿÆòÊ1ŒÛ 7·Vpp{uãHHœôi@¯`›:ÞÆgÿýç–¬Jaw²=Gè°&”Xs÷ý”¡YôM’—Ö™¬móâȇÝXèÁšR­B÷‡ä`-%e? ØÉ÷»Ìpo"T•ÉBÕYI41í€GqÎìiñ묵Û'´ª­Xé [g'•·é¹úÊ$ûÂF{¦º&rùýOŸÐ-š7&¥1M”(EúOss׿,n¿}>|׃"CyÙùi7výNáHš[·kM úüãwz™X‘ðÓ ì#SµÉF‡þsežâ¤Ù«U1ìlŒçÀC’iû~Kð~ArôŸš‹úd¹z-~j•a¼áÀY;0Åà}%;T}àây×rJñ²³¸SG>9‹J׫´&VgøqåµäípF$”æ¤y™'ÞV0Ǿ#¬É²›6ÚsjœÌê±â)ý•Ô‚>6FŸâ(Jî|˜™~22"nßrCÖþ…$¯›æùŽröçñõ¢ÚÊc…)¡p'##L„º t;’yaËK%ÍP)ó‰:Õ°ˆ¨(RŽXRâ{eH]Ëd &ìV`ë>›œ ­±µbñhªüÃÀB´ÇqîEt,°àx²8¥Ÿ‚P%?ÍŽç/¢°< Ù`<ãÖ~­ÿR^¿N׌Hfù•-Jàׂùëràšõ6iŠ(°@±1¯Òï.\Y!ªM31–6ö‘·9ÝŠ•‘©ñ¢‡Br(¼Æf ‡ŠHÄ Þ¤TåqG]ó]“.Ç|âî'4ùJü©vAg•3&‚‰ÞÿÇõÒB›4û›K#,ØÑ¬7,qTglíç[ߥ†G¸¥7Ùa2öΠxoŠ=yêuîV·¬•'¤¢lm ÜÁJçQíVp˜ÞkòLJ‚Ddv¬ïg#i|ê0¹½Npo¶caÚ°ìPÖå³õËå híwI!Z…tÓ”–¦TJj쬡ҿTαÕÎ/EÛ— ú¡C*¬"ñ¿YP›‡¼ÆøpÔ‘|Ø“~C¡x³Øõ†¡Ø±Õr« p¥\3OåÜÄ»·Óª7*Åc é~Â{eùåå®iÆóŠ‘oü A¨òóô˜ã‘k­Ù1¥„ û%­ê7S^ŠÙÈhç" —IK‚çØ5ƒ•Pãzf42S–<†žƒj`ɉøsçÇC)³ªòSUÛ«M§‘?|7:YìaçòoÎBöô'ŠV±Ô‘¢Ö‹º]Z¶¿Në~3´îâ´ng©riî„Bb%pnrסpúA)¸nïS/ê¦UÈQ0åô2ðíÌ“ý–x†[«(óœ[ܱƬ&xå‚Ñ6+¿ø¡k‘¡ÓŸˆâÁ®#{¡ ¾6ËÏ ‡S°2ž¯Û°ÕÐ[è}Ö^x­ç¦”ì>§[ 7ç‹5ÔIi‘šKO‡R© ö튼¥»²6ï˜"ç]c$Ô‚´{å—í<ãdƒ/íuäMãÓË ·ÊƒXepýIîu›ßylQ°èÇ®à ]…ÆÅð<qPö[¼ïÈú—WÛÇi… RT7b hvB¨¡à7mx( ¬VËè•`fì͇h¶¥~áI´âmƒÇÓyI²=¸*7HãH° ·ˆÆ–0^üðRbÈfò3´(øž&|ý°Ó¹PÄ> UÈìCjäÅHha—ùXAÖ16SÙþb¬mR¤uùçîºF£ØóZ”Ú 'È)æ¸ýCßÚ^úíy2Ä^¶[Š›ªÖ­ÍTWI€t‹oRé¹]ðÚ­Á¤>ÃÉ^1ê6î*¦0予«·“þ„)«¢‘ÆV:/leÚeùæØ`xìÄ%…JWWŒ‘‹Ÿ•B*ã¡\ͳ4ô2S.\î=´÷kükxRd_žCè||Ò»RbjV_”½1¤¼ÄZ^ScY{J7ìª2"!›b­t®J’¶Qö•j,'"abOx"¯)ù¶Ia¿áW”0߇šBÚûîæ ™qɸ\¬37¹ -è%2>Øê“‚R^§¡á\–rïð;SÒäè²YõˆÂP†xP­E"×Ovëœ$ûu`è'Lƒu&áoDCÿÞK`,¤ `À&ŠÌ‚WUöØæ5äæ§R®ÎKî‰0˜¼úŒ YŒ±lûŠÍ–‘…©ðâL€®›Ó}i¶'BiãÏ-Šd?›r_䤛56_e¿“±Â-9ÖЗ[6P?/…aƒÁ¤Ç/i²•¨c¶Å¿ò„ +·ðVаá %äGô(*~xµªç¶«Ã+{²Ñ’-,VÉ«~Üòl®sù¶±¦½‹É|ª¹Ê÷%ÓI(sWµ+ï”>%èî}LðÉð)ŸÎá¦Á+¢ÜÓœí–s³ä•>0G¡]šT§ô¶`õ¦R(e¬RâF0—˜5!­$«ºpM«ÍÅI|EÂÅ‚NU_kÈïz :fGܺÜ{µ#Zp†EÄqT±šµ$ÇD*Ò%ÍxO]I‹ ~ßá }~ÍÒšäJ*v•Ìö3_ó¸ùöÈñt5Ðýé>™£@^*tK*Ã>g´ÔcaÞíFm¿#å~aÎs'M…w‰ÅVð]AˆˆHå@£7>ïº7Ð&¡kÖLëâÕ#£¢Ã+X•ªcÂÊrWÅeqÙÕàæ`ÀéXxq6+<師®£Œg7x¨î@7¿Ç8ꥯÔy¡öËy†ºøŒ?ªg.rä¬e˜‚5ón‡JÐò€¥’£Ñé“ß]¦¶{êåj2,‡öвM–É7"LL#ÿáÝðÞ¾}ž«Óî½çÆ!Jaø—«õ0 ˜´ÊÑc¬®µnz‹ù¸è$ùÁçÁ1r^´¤#ìÖbJËä±â´dõ…ݘ\j†§©£»Bó.W{ì_Îsȳ*ðÞ¾£H‡6ÏŸ+»üÙ8tõØ.°!™¾/ðaË`¹ ¯!8Á[ÛbH4!hðµÖºÓc‹QÓ¯)‘±×úWâKÑŠÐÂ]-È–ZG/ù<\œ*i}‰(Wpu;ÅGQ ´pÖ26¦Ç%‘iËïê~>žV†Þ`ôpüŽY|!ª‡³Wn/x7'.€Ê•gñ¤WÙ]‡HeȧÌóâs!ßÁ&Yâø r]!ü_îr<#ˆÜ· ãQàêÊhÌçlÁÁ+ ÚìÂmóèžx¥Ô_ @ábÑ–íÅL7¦î“Ðý#ÖiŸŸg7xõÔÐÍœ5ô&‚MLÉsr¯eºTÃ}îMê­¬ÜV¢Ò¾¥CgÏ@ÆÃpw;T«#u]¼µü)s¸9Þîà>fÊPû£Púê…8FŸsn%‰è´PCÈ|ïOO0Q†0IR ØîòÆèoÙ_ß{56ÍgÖó/1%Sßé~‚§vd/@’o‰UŸÒˆæOg(‘Ø7dž²,™\møGõŠ–d<ñ¥ø›<É œUx|W¿v¬#¼!ø²+Ú•ñ"×Ü‘™àést@{Á›°B„_;’ëDšß-oîgÀ«Üy¢I¹€ŠKîÔY£èû¡Ž@')‹%çfÙ5²lò åûýáäâ<­3xþ?Çi­|¼y>7Ä=Ç*æS(.µN1[1‚è|&{_@¦Ï*ZEkÒ;Ëíºøû¾ H%ÈŸöf­²QÁ'œ÷ØÓ¢íž-kÆ¥1)>ÍóÓIÅLcùy¯ü°×cÝTíŸ`]â¾I>ä÷:„+¼?éRÈA€³Äþ¨d}þ*a¨¸ü]g)ù4Î>uŒo¥`­ÝË7†ì1_h¹g§ßB˜-^’R™n×è#¯¯`e£VQ؇^&„{™/ŠL¡ǛΌ<µãQ²×#ûwMW°aqƒÐÏ*1á,ñíO#ù½T ÖþɵKÅ Ûº`máú‹ K*ù_⑯+qp×n—‘ïDã¯ûÈÙTúà ÓÜ‚øUî±f4¨ý  !ôŠJW媈2È*s•7´NÀz4¹Š+dšö娯l/˜«²nÝÞ½hr‹=ðåaMIðïΆlÂi&E‚¬»ŒŒHÑþ©.OK‡ªDûRœ¤Î÷ Ýb·›@øùÛ﩯’䨫%ŽÛwu³Ä©_ ÖV—*¨uO±’×òÂàYçÅWd™¸¨w±ãFãó‰$‰tÕô™ÖÁmm>‘•t!hÊÖ˜|*ŸÃl®òe•âegRü˜„¥.йRDæ¦H4¶FZ ‰ƒbn¯)eS±Cai1½e1 .sRrkoãJƒ ¦XÁ®E(Âz¹`n!+*›C€Ê¬“2wË*ð±§@I®D.}ïŽÙŸ(Xͬ Z]¦j%U¹UeÁ b‚$Ìrn©©ªâÅúw] …ãܧg~wÚáZÇ%2¡ÏŒÁÅ… ¯CÛÆqÐè+ù S„—u041òÒ¿®!§1: âç=¿CH€Þ– K÷¤D“ég–¡ñÙ%ª¶«µ)N ï 4ÅMæÉÄmÇ)n? 3KùLÏL†{QÉ#X6y „2Q}õ¶f¹3Ôaòfuƒè°§…ÞY9,Ò‹Ø÷¾<ìiÜÓJ{+õþN›ŽøeEŒ#)˜Èc¨Z•Áà“Ž^¤æÇ(¸î´ÙÀG¿ (À¾Sï{qæ'Ex–ŠXåsÈ Ç2…¼ªŠûÌè4xó_¹Zfàœ°:Úï1•L ³ˆc Q^#¤FU‹Š‡n¡?ÄoÁ— å[U¸½ã1}k&Îì_“™-^òʈn)Ú'H§i3î‹o™ä¨ÛB.ºÇÚ©v°¨!l2ƒ`ø4d2½óÍM’vËï•è—„)*â’ʳµˆù—|d’€B0yTW™[cq¯ñr{j¶¦ú~þ_¤‘ÂI/á™G8¨r±NJ¸ ÖåEï¸Ò÷"F[¿—áÓ€=§ó_Ï*«U<ã¸õ×}ßÚ|`š-ÿÚ´G|‚ÐkõÎ%ƒGúúq´MXW.rÐøñæç\E›"§D|•2DÐR,öY')zÏ1(«±É¤6‰[V¢õëíDœy¬ãQ!F™ªR·Õ–.ê9¥òâ´k…ZiYà„µhøzRX³-ç—ýÖ·‹ìŸ&"pþõHU®ùeöÛ‚ôŸw¤Û+(¹Þ!™Ex ¦ª¦Èê×Q¦u›Í1b&Ö,öÂ×’vOÇcÛ]#£Éq êÙmgã"1!°+ݾïXñèß%ræÍaÖ‹V/„+2Ü: È?¥ðkÄxŠ¢ûÝ…¡ r,oÙû–¼†£#Ë/¾4•Þ±9¡RŸxÃEU–g]xë³ ¹ &¢“åøÊgwõ¶p½d»lscGŽš|k¬¼öY>ßMcR.±ø Ñ/–ÅNÞq™Þ¤^AvÚóþxHÊ ¬°sCè¬Òd1‚Åq¶gàbòºçe7Þ=Ú$ˆ(Ü4kýŽ·'›úx%KëýŽVÍâ ì–qýÀ³òÙa`H4IïCmüýwÝk"e//`1ÖŽ†ïwieÀ¦ÁŠÂ“%VƒF¸Y2©M¤ «½óB4û Zát2T» ¸ëV°v[8 É<  WeäÓ1í ÅؽÂt~†-×·Ÿ\†È)&Ø<º¹§d Am„‰²s±?8.†ä4Û‡ðSîÉ\ßÂɵDBÚ`ßOñ¤Ãn¼”OøV½vÇ_ÃfМKè‡'Àþ¾O?Öú?5{’뫹êW+¶"ÝB¼ûUt¡Þ÷R2#UAÖ#½ÈpYixà]Þt‹õĹKö­ŒÂWªÇ·CÝ^éWê °ûDpN|cË{%Ÿª–ÃÁ¤ZÞÚ¥7ÖQ¦¯Û'ndšÞzjÓ@ŠVO65JÍP¾û4-Æc˜©É—‚Ÿ=9ašLN¦•Þ†|ÍW^*:úý…½Ü+Äp‰ <-ÕÒa”xDß+w9‡è,ósæaë¼n5þŒ!QÇ+’\ˆÍŽƒ;ì~ˆ)d‰Ï›$ `ĺéyºÇƒº·Á!)ÅÛ çï9— ¯Yt©4NŠÁ™Ç”Üær~9ÈÆ@ƒCnÂZcgI7\&Ò j{hÅÝ»µÓ]é V…¢ɰ™Ä-2WíßÝÏQz¾3Ý®Lév9¡+cÎu¨­‘ŒT“,‰|ýyÛ‡šŒâÍõ¡ÏSœJ¨ñ†G'8…¡#·YË åˆ!¥â½Ò|àp–#^CÛ#"‚dFÕ¼ “%ù(2™ÔBá¼ÔówYrÜj có¯UC¤òî'øz"ÀÉá鿆 ¿IÁ¨ÕG—öRA"zVÏ­£[p"½|bÝ ]öjŽ«ªO%HŒÅ½7”ÓÁQy’žñˆMMÐp H¹Y#Ò«W!Ü&ž$¹‹êš~8—Íà‹[2¹¥aF†¬0W˹cZ qÎì-vTº=sA—°1‰Šä_#£O‹ðV/:ºuŪÐ\!¢“ˆùžSKxp4cüïÚYchãµ¢¨Aߨéøü²Í1Ÿ•ß»››;àÔ&¾³äçè3e<‚>š¶|2Ìm0þU…ßÅ4æÑîI#™ÓT_×Ô-h>?ÝûpB¬£î'NÍã#êÞΫ ˜b""9ï&BP¶—]^†î"¼¿ºÅ*k§ç‚ú±‚#ï݈W3%¶“Œtú ̹ÏʯˆÆsiTyžÉS UÕô'¯—6éXÓê)lô¤ôli§%…›XUR.ù‰Ï­á ‘Ò ½Ã½p¦¶|lÕt¦#¥ÙÇc;×–O9azëÞgË$œ”E¡bÿ.ðÅ»¨iKr6î}pCmUõ—!kĵ³¬}ò»4Z$ü8¹ºÍâ°.M à3· j>ÃãËQb{“}Ú¯‹‚ä´©£KÞ™®vÚ&¦*YÅQ±Ã]ô›a½^„Û øÉv2½òeê–¾”v9¯ªX+[ß>”2ñexC!Üíî±G²uàÄ•¯cÔòbkòˆa?˜ qzŒ_÷­Ä¾ÿ˜ùý¾—ÌW[°ƒßsŠ‚j<Þ²M,® ên¤“½ï‡þ MF`8M«/éK€³}ÁÒ¯«ùÅ»ê2Ÿ=£…p•½‡±Jý§&¹žd6÷pÞÕ§ì#©‹ÕoÉ%Ž1âÄ)ßE^Qaì}~ÉmÀ4ç–ôgØòõXdf¼¢Õôm­iâ‡<®'¸]6Qêê/²DãRgê’1×Ñ´¨Oã=ÛÆ²¸WªJ{{¡ö—‡æôÎ9ýøüË¿xåÀÄõ ×ñZ;j.:RdÀæš\4å÷%Óá`OFk³sÆIoÞ)Œ¹¢–\®ÓÔžÖ ÂxÀ*ð¿z‚ˆP@ðÌ%2'ž–Za@ÿxu·;ªÑÇü©êòšwOG‡Y~‚p¡Ì)wK¢q†ï™ TŒÖ°|­4à‘éˆãœ›ê5^œ!^ Ý­¹Ô¬ÑIµXŒNÍ7¬˜3¬B9]d+ŽLë‚ñÒÂiÍx¨Ðý6dðt8† Šöá{ŽºŽÙ-ü'˜ÙNFÎôÓ’ÙpùÐ(ó§t§LáCº½¡á–\‰ìáÝž ò¤ü¢Èïæt"²+OÐÍ Ÿ/u³y÷8!h\ù¹Ä#¦úBÍ´pª£*¯x^¡ai[x.wY™èBDºÀ‘ô¹*…†óý_kõ‰ àj£µ7ûuErC´3Þaš&†Vqù¨úÆ=Öx•´æuóljxÉx2fB£aýs `Aß.ÅÓeyùuçñ¸fš…añK¯n¡¶Ôîœcð+•Ë=aî¹ u¡/å[É„üQQǯÕÍŒl70¢:{¼d ú·Y¦®”Ar•ÁÙN;˜÷ ¾í_Ozyo\i‘a¬aÏU§˜°w~Y4`?¥½Àåèy`°+‡3s¥|LÂï52¸óß‚Kþôõ¬•¨>÷Å_ÕäÜOoWk¹ðÆSŸÆýLkèsb—ÙyuRi`ÛÚƒ ƒ‹RãKéÇ ×ÇÐÏVã1åSàˆaŽ—úq -¾ƒ6sÂdû#e!},íÄ,jA›m|ʈí¢jà~‰oêóPÙ ¼ÁÈK–œRF¸Áïžá·îö~Ì¡" Êûþœ­÷‡­À^ ªwø©­é X¾¤"Qãݘ2=~³éJû-\° VvÖöçÊM<°M(ûôñ]‚.FØwë}2ºê&鲨8™y±òÛã¥Ø­®9jø¯MW®ëÔAÖ‘2žPîõ^!¾Ê®dúM"Õ§êÍäÇ›ÁuÃ%dl®kT}dáÂ"s‚ºýEÝÍx&t¹ÜYÁZ`„ÎG_`Ö!ò»境/·0Oò¢¹~ârxê0¬ý˜D¸ÃÏYÓ´pᥧ}=ó¼ë2¨Kÿ >œè¥: ÉA›ß yáýJ•‡S;^ù·­ kö VÁ%ƒ¾§°½­–O#t.öa!ºaëì!™Wìèݳ«í‰ðYì[˜<õ9¯JçuTà£zìðzµ·SQ&”|jâ:N.O‘2šÀlû~wÜcA: ƒŽŽE¾ÓO“ã]¦®Ø}wGßvfωˆî8 m® qé2”,s<ƎЂ­÷ì?ß'ßuìZ£³(á’”.߈Ӷü>sXq\Ù‘î×÷ÿ„ÌÁl uö§48÷à¿„)… _'7cÄ$®ÊÆÕرùqÄÏ}ý.½¿pƒI*ůÎPŸ±Ä|šÁÂ+gÚü<¿•Ì-Jÿ^ß84ÄÑÞÂ÷Ê«L>BÍ9Úc|[ãy×Owÿ ÚWR–¦Ð²â—ŒÜȉƒÒd{xlµ¦ðî W)ˆl[»ëÏÓàÕÐû–_ózeŠô9qoXBKó» ýš=c6㘃3—{°—vËœ4UPnÄÖÆÕ&SœÒÊŒ:9T<Ê›/qIŸ×·dn`¸rÄT;¨§jÊGH{*®¦íç·È"I•­øê¶ tÓ[A˜|Q^í Õ2[ãÅð¿îæýÞB©þ¢;¯‹³ZO¸j—«L4Šãû–:/¾ !A_è-9ìï©ýûŸß(¼27G@ã‹ûi­7.]l4ß$«5Íb²Ø‚WUàÄñMÔˆé?FH±í?›huR¦Ý‘R"¤|ƒ§ä¼{›6rà–6:\@ë« {Ã=ɱ]ËÙÓî^ %±¨bf½Ä1ìÓK¦e% Î"#<Ÿƒ¿‡{ùžÀ,µøÉê­˜)„*Ôñ0{ N•oW÷<æ,ÐfE·ø”x1D’À uÈ_ ¡(‘°KŒ¦ÜN˜l+šRð€œdNgFj“¨›…¢†¾e¹¢é~®Ó#)NE@3‚Mÿ^²µÈ¢Ê$ñD“Àˆòþí5l·TÓ<¦ÎpÀpħE»è²® ¼3"H$œGn“r/è3lAÁö¡âoUÐ2ºj×™·¤þn‘]°£†#ÂÏ÷#ìvä{X·³“ÉÜG¶,¬ÓØÖ},œŒùÅs!O³>®£à³Wª¿íð«­ú€}”ô¸Jò‡!È^¬ì¼^eà=÷²o{l`²m‰ˆC»vÛü*íÜðQcºEƒê`ÅÖV ƒŠKšBçdMýjÝØ<­ÝlÉ>_6ƺa7ëNÿPbp÷™ã!´1$1šþª(ÁÁLçÙ7¶f[áu^ú%·×€Þ™„ná\<.¦ö:©ê3 ‡X nä@6? ýU€ ÖÓ¢WˆþvPúUnèúf” cQçlï×)}]²Cpžƒ§–ŽÝ¤ikõ0¶™cœ³CÍ…£ÿÛe+Ÿ˜ù}|fƯ„ÏÜ2Í·[@:oÖ¿¨¿ ŒžÕ¿;•^eˆ±¥ý¡œ¼ž|Þîüêz]iîúÈ‹µÉ|[qÄ'mNà"xsÀÏGp˜c'@[Ö³sï¥ë§3¿ƒi }­Ô×6Mœ*yq›»vjbÂÏ H8‚œ@Ñøäu T74â½Còô”J°È.–!¢<0·Á æô¢ÿÈùi“Øõ°]‡/µ0BaÑd\]Ä,ôY7+¤îóÂp[.,¯Tàéj·¯€g0[kwò.lîOÕ„³éÀXñE#X8rì øøg¢A±4ôå›Ùj'ž ÂhÀZú]Æ‚[qÈýBCÈ Ÿ!7‰4Žkö9h_­NI;Š"€‘–cÔGJÕ7 coè'áÔ›7ûT¹ºØDósÑ·<¸?Z7x7C>­XFÕ¢í‰G2–\k7½‘Ø™î:­wƒ‘•ƒý6Z[>qY‹ egùWHü`K †*0ãæA[ýÿ«DØÊÝÖ®Å*Æœ“fˆ×þ~rÊw¡2ª­´ýã–¹~ Ø%A@~ìÙEûͯ'ý3âyJb~à÷ʬÎ5RÑ/܉Q NÛ™êGÄáSS·|‰àïÐ:6=PÁûÍ™7™aи^:?¤¹­+ \ „ÛÄbMÿÍ#Ü­Fá0˜jcíúМ¯ðÏŠÞýO†Ñó!pwÝaLчÇ›;¼Žš8¬Ë´°·]óä9À¡Üj*íÔžŽèÀ­c&ŒY‚¶;¸ Ö‘hö‘‹/t‡O‡‚wð%ÂuÝ{væýXâúÏå <‰¼ž- ‚ Ólâ¤Nr4›|Ú’ä%ÔÉ:Uƒ`¨Å.•»sàš€B-9‰öŸáñ¿gÜ#=ߢÓ÷5Sò5¦¡+¢Æ+Ÿ¯n—@2µ!2b‹¼^^÷=¾ra Ír€¢;ÄÉîØ6y³Õ3$ääE g©87º?ÍÐLˆvÅå—pb¢–[‰ƒ‹Äa|FÿËwªua™Ÿ•HuüŽ\pÄ ½{z¬òãn£¬}ÝZm6£J7£)Œô¾7uªHö?å˜ÅåËþ½zS˜ß_h¨a±’…‘Ð\‹+º@UeÆ=—ƒ•‹0õqÍž‚®­ò‹0Ë-¬ÁR漤(Ô(é±~1BÒŸÊÕ’ð©_{¦¿DË›aüÖ‚â‰}†´"œ¹RÃr¾t ñ7¸ó<ÁŤŽ*öÏ8Lläñ-)R˜ë&¿  GáJú ¿IL¹™© Ë–òþôîÊgØhý;¨ héqzÉø…#벯¢ãŠ› Á¢a8x ¼æ®ÃünœÇ!Ÿ`¾DSz`}†DÔðøÃv¡Œ¡{:J¨>í;3ï¿*?#æ %‰TžØJ1Øå ÜÞör%Ó•Ø©©vÛŸžes+vò msÒ¯B–]3)®-`jVCnF‚V6Œ”3¾ÏÞ=mMsó@H¿Å©tUr1;=~‡%² eûÖ¢ãS匧fq=‘Lº#Y+ÕÛã¢<“ÿ뮊zÓC!Å¿¨'¬¿­¬`Èu3;a.ûÝÛ|Cr7Œð‡ \WßíÄ1¼OQX'ñCwüÒ²5i9q²;ú„3;¹tÒÁØ}WÐÄ=é§}×8/…>f3…‹È丵ÀL¥HÃtõBªýy’WÀ• m|{¤cÇòpôºˆ½6Þ¾Üj#ܘÊ„…Ñ->+‡Ø°ïð§‡ñåzªçeÐ ßáê¡öNzôwBö+yµcLfkF0?ù2^ýɦ}·8½FIøÅ_H•Ê*½ZL£‡²lat«b*™¡yC_ áx³á2zžŸ¼³é¨Çì,XN1aŠ’Ë)Õ]Q8gÑêRA®·®âþ¶ÄÐiòà¡Zïj4²<Û'útÆõœ1oLßè7’w¬´”®ißDÌ+È®|r‡Ÿ*SÍcÄiëÝô‡+ì&‡ô©hXË;1‹ß&kÁ\î*†ˆÁŸœEBܪì¿éœ{ÈŒït+¦œÀÍ"´DÑçT:nx”ÂS‰ˆl‚ÚyxDà ֈ Ç¡’É:›ÌE|Øwú°§MŸëµNÖ ¸^Y@¦!‡ÆûB/hü%î«#åU¹-(,)†4FÝ£Êw~ùÖe’§Í6@eáRõ”rTzzîʲÕu^x%ù\ÜJó<ÀN9M¹^å5!6 ØãåçÊ'Á/£°F#¹¤ÀšUr6ÊõÎ$Í€¯í8Ó¢|Çÿçè@cmxÞoÜ'í?Xü÷G|ßzŠ„ëš^¾Ár³ ê³ ‡£±Ò¢ã‰‘¦ëÛ‹{oª£ g><ü»hÓ¼<Â5«î ºûãjïÈÏz«“ d é€zê°=‘öñïšiÈåRgÁ›]±ºõ»’ý#| ùh?›ýÙºëæLj©B£|KŠr÷"ÏÃNèL€%%ú2Õ©&ßõ¨•’òµ{;[ÑBp² ŸÁýšB&3BŸo°ø^ØöOÍ>r8ÌßüvKBþi4B€÷<†”•à{;œXwÝÒ×r¶Téz|§-0§¸~мÃÚÖ¬¡[…nu†(ýOH2/«ý÷NÊBvNë]ˆ#øüclÜœ…•.oJÌ@ét»kÏQÊ%Æ8©¦U2ß3\“D—³¢õOãùÝdÆDÅ}þÁòE5vx¾¥ xÁ1Œl!e¯lž¢Á()Z“ç7r ‰ƒ 3xÏ$/Ñ:S GÒ¡´PÒ6$:+:d•/{ïGª©··õ þ:ºÁ†<¤@eùi, pBU¬&iè¨85²þƒ2ø©6¤×5pN+åeRÐ'(qûë¨ ÁÝÞ¨Á?)<ó)‹Ÿ)ÄRN°ÓQ%›Ì¯õR¥>VTÈÉ9Üá;83 Î..´Äre6z6=õÄyrvÿ8RD:—"i®qSvœ‰U×é÷çÝéÑ:¡Y‹jPŽ&Fmóf²ôvåO«gRÃDgäçg ?FˆW Ý)¡$ôÁ Q’[Ú”­ÿ­¼6˜)µÕ ´ºq¤}­mô>HXÉž™ãsÄö¶èîm…–¥‘>©šK…v³ï“­=EN/p‘À$ ò–\²>FZ ÅÕ=Î(µFÈvLvJ•piˆúСÑ÷FxÎ?ÐÑ\"ë¨,B¾ºüO|æÒ•L,÷yø¬±cÊQ‘s€ñ”° 7¼4LôÌ)·9„#T×Ĩ©ž„ŸPW.À~åÉþgÕ+yUT•Ûû;¬’i‘ Xó+ަ`ñ8ɧÙó<:ΫŽ>YºùÈC³@¦Ü ­¸‡AO,ñ±Ò†t‹,RæÞï®+ýêyôfD˜ÜîjâR k˜ö®Ð¶‘e £hyÁ)4ÝëܺhKL^¨é©ôì¬ü­¦ù¿xÇù¶¯l~<-Í=´«MõÕS‡w¶~ý©çìÓê/þ5™6ŠZž°ÞY’{0Ôb$_z®Dß±àR`¸&2ή eßóò` '!aæ}Ò9†RÞ½~±+bÑåÁr¾¯öeú }Ƹw„C³¡Ä]Y¥t¹~!E†1P6û—";•Ù÷yÓÊ-¨GN_~:ÃhsTªN ç€Í2»Ôós VàÞ©æGÞu¿ÐkB~b_¸a`}ü_:xšP¨¬ž;:+i#ëÈáö4÷^Ï%í¾ôÌ^.ÿÈ5L©=ò&(<ùÓh”v‹!ÉqÇS:ëAæ_.ÇZ«F8¤%`FŒ~å#ý=£{U^h“¾„˜¦´J*üjÞY-^/£œE1p–I ×sÓù‰‡½›Eé³k##C›o¾Û'ŸÂ wov†ÍäÌw„ÜXp‰þ!ÀóEëÙÓÅßuëcÆñsÚ(šÕ@Ðì&ç¶ì±È/éAZnþ4G0ÅN¹„Î'<ÀiÖ6 "ârêØY®Ëçß\Y©±J’¼/ˆá$AçsðuAÐʼnê5läÈO¸ŒŸ¦v—Ô%öÞ í߉ÓÌ©I¶3‘bæ–‰M—TÀÀ_ÛPCAzCØZ³ôOB–(~Ë•ƒhœ%ë^á‡8Œ¾Ò=ÚÂ×°-i$¡ó ÎµCYOA•¡;!®Nèõ÷Uacv$‡€ãf:Ýâ½ù/vIꙞΨíy.: ê”ÇÓ¶ÉPuÊ}Ð'õ|o²L ¬ÙÌÁ/ë`—~PåQ£ëb ¯ y% i“Ã]+h£#„‡Ð6üÆñE{>óöSUŒn}–sõ<1²áœ¯)©#[J¥ØëœY=rüðÍ0 ˜Xó<ìú"ÇZ’S…¤ì÷?¸»y,ãúãôXì(\gj ´ žZÁäëY. VaÃC%*OPv%T Ù¡´Yø2¢.mi&3$O“D 1 M)kõ£T¯ÑèîlE³¿©¶ž*Ž£Ì¬ìÇy'¿JÏKñÀNG bÿx W, ÞlNõ\è]¼3qâ!R¯Ö9†Ç„Vwý²Åw¨¾mYmÎ5ð6]ea÷€s V¸Ðš#J¥Ùíz³ð§"´Ê𡼈a²û#Ò7í<"èëíL÷~•BXK â÷÷†'þ G²ã Œ&v/KüÜ”éù=£‘¼öhñ|ôÅ)êÔ‘,%{´™—.lb¥Eà$ÏYݤ=Æw¼Íü#zf%ª*M+­¶I$:,dV•$ò}¶§vœv¬„Ð8a^6Ážñ¬žn¶sá»–JwÅì€èl:¼å.X{Vjgܬ䃉c«Ò…²%ªwÏ –M†TÍÅ·ÍAÖàÊæÎÒÑg6WŸb[ùÇêªd§‰ðH‡´’V®]9rÊ@*zonÜ|áƒ(èéÀU¾}I ÐGõ°¿`¹uå휃;>ES} ¦›Ä…Á;¾D:Yîçã#Ýu•v848áD\¾Îp3ij$ñ#Ï-‚¾7(Gÿ84­$¹¾o<ÕµlO¾…ùμ*íÅd —¡_%ûì#l_Bü®¸g¼‚W}΋\ ä’‘.F®`7V‚÷žúdRËÞÍâwÕ ûr¢ £ÊOz½X^Û%`~+ѵábuÐüÙØÐc«xÛF]”M>Äïàæ‡êŠ[N»èunó?†|.×6ÂÆ¢VtŠÒ`€_NÒ0»úŸˆÁýPÂð³>”Õ¤§N½ýϧöêÂV¸$ÆÁ=ÁR¡tÃel‚e&äÝÊø›’‹é¶K9Áµÿн:Ü÷­h÷ìÇQP|`š–hIt` ¼5¥&ê[5Ŭ¼Ýš #¥òäv™¢4 ò{…œyÀ‡Ú ˜ë3¢8œ‡÷^ËYϹMèæSŒµÙfâQí0†r"L>Î/)ÝFâ ®Ý Ú‡ÕÙûš29'º\›ÑíÇâ~3ÜHê¡å]~–0­¼ñ)Hc °rXv±a^p]8Œ mý+B Ê©žkà墉3¯,~Ç-o~$ݽøéNÎ=Ô/#N‘P=33,GïÓa«>Y#¾ôÑ@S»&8fÙCñÙ“¼pÅZºs²òEξ(ÚŽJ] ¿€§‘Ó3öCÅfBêýBxÂT囵æŒ?d³¢é»W8CžFxbì—:+^Âת@¤1é@¶"ã¸èìó4á)ôO±h>ÊuÆ}ùó×Q Ìryœ.ímÙqËL”RÑõÉUüìÇS.l{Ð+B¾ŸdÞŸ+.kÚ(6þð¹ãÆœ\?»JC¼ÖSX!³§³°G}éÿ•t,ÞEælôÍB›.lMi»m>‹º‡=šã–EמJ'P_ ƒ‘ØMܵ%ïçÇü MÊ¥Ö[Þr´«ÔÖoÆà3@ÕÇj±fÃìñ™®ìlžb@ÈŒD›¢ ¤²M5rïÅE^l‹ ]4rYÛ‘ô¸ñv(ö™×‚˜Ô/¨ÅHíJkú? Ÿo¼‘ÿWêuë„–‚zy@Ö+Õõ<GÏ8—´Ã[† k@ȨѲâÒcj©X›ÄÞrÏ«ç2¬3xˆöðæ±Måù»8C™¯ =ðk,_&þ—ûkÚùWb)qà/j½ H{KËlÇ–Týú—Öü‡çÕž¢0†3t¼?æe›Œ…ˆ\¸¾€ž–{iT8‰}’·òÍåó@ù›,L üž5EO¹ž®¼8ëÌH–*Ûk¶{vÒÖЋÀ‹\aõQ3àÏßïN‰Ôý°à:6ïôH±°Ò1Ž¿hÛ)K^ˆÒ;±†t¢ªþ;vÏ»5×'µûáÚ-:Æ6dc|{Æ|Yþ%dŽxIJ a hß,Û#Ì¢§M™?}ç+Ñ&Ëo¶ž†!qó©9ð+?šÃi™ÓnØOÿ™ñ  eù¾È8…6§>àêêa’ýôüvøgš¨G$¼i)"UeÌxÀÍ¢C@©ÏYî1Ê?—„¤ VˆhüI‘gwv÷©´­ðýö.%QòFp¨¾¨OÐM¹µgs2 I¸}Éq_q'´g”Àl~å=žÝ@©›à?„nlÆY. ›Tº ÿ\” |ñsüš…/Õé ï T¡ÿ(³¼ì3r åX¦ÖCh÷ˆdCð/¼ög>ÿ×$§.̆ƒÂ\~ÉÏú›k׋ƒÂŒ6„iqÀ ÞêÔ[5‘iq\G dÙN°ÊaŒr'm¥Hn B#pÝÔ¨, „PBR‰Ñ$à^¬´›lÏÇÇ oÕ7©i§‹ð.:õ5ô÷_z.¦5âR»ÐZ00±]{²ü&&ôTUo8²D6çàHá1Uë€Õñ ™w’ý´0P?ÆvÝɉ ù¼mFÅO~ RlêL8ðkÇ}4¢1+üHš8ùåYÌ3ŠÓ¹?ý °‘vO÷çêZÍJ’‡—:ÿ)íY4Î[?©fÍÁlµî©‹Ýôô‹Qt87¶Bob]¤ößœ'Ê€EK055ä’ÛØX™þ’:׆!,úHÏ]³Êx%W5žc‡Æð¼Ø _®Ü6Y¡MT¸$¤ž¬ƒ"@þvˆÊäš;«4ô/×?$º…:W°Þüí× ÑÐ mæê_ù ô´ýCøm3´#­ õ" )Èî^ AÔ¯ïÄË‚÷‚ÂשÒC}0¾kÊTÂògê ØéÀ6n/ú^ÉZksÜ·É \\eQ$ýÐ]…Y½;Ø”‹¨ Ѽ¹JQ ÄOòo-4þºy–üÉ^ã$»tf_š;H¾4>^ÌW­?Þ\-þ´©¶Ü¡Þ¼hh ·Ï…øP¨ßù‰2±ÌuV+`o“é¹»G€hÅ´ÇÍû»•>GÌæMÆQ£ +ôªqnUYãÑsÑCéÂg,í…±Á#ÈÚW­±Œ‘ Œª²À3Æ“•èê-¯Ú$j˨ő\,VÂÿ)k³¬ö“3¼ÈP+÷šGo˜mg5ï¡Çù¹ì–£rºFòPΉã4[P”USðbÍuXonïÁ.NžCŽÙM³d‹wNžg^€²µƒkG^däõ¥±JËE¿"Îø±³IM`¦9ÖQ±‹€„PˆüêúЄ÷8Š ü…ÜU W»žŠ8l|úŒ;-_à“~>ç0®›A1>E_];¢xHÐüp"†@D÷êK øŒ‰ÖŠˆ¨µ¨ìÙ‘5–~g±íà#û]иSn°™Í#p¥ç u¼˜¬ZœŸÉÃýŠ* ÕÿÙšz›úÖ§;Ï^”b™IÕ%¸ Ù;ë9îÝx¶@ÀϾZ6®?õ{Ò¬=Ü›YãÛÓR!Ú¢¤¼þ8Ñ9ߊ}¾óû߇ 6XŠ[@–¼à<þšMÈw!´ˆ8jŠÄDÀÛO[I ZÈI|-A¨ã?þ…ˆ¶mXÂ@Ù“ÊJÚœþŸ¤’wt ¼e’k!`|4M)LÖetêä,¸ZßÕ\„×5"âÝl¤ 84•à’,‹E 'råMÄÞv>CtõºJÔ¿7V´kñ`€Á^ÓOkIzO:ó|OK›ۺ…cGYï¡A‚—-Iíɇ¼O væ]·.V›Ë™€«³¹ž¹Q†*R³ö!‡ù¿…cWž¨³àc«·õ +ÌQ¨xåìs³å„§º99Ãu{}d;¾«wMª|Ò®uñ#¥‘û‚¼‡âŒ¤ð;œ;Ýfw½M¦Xfs"‚û1ïÍõ.ùãülގL{RëNúHc¨Þ¼Ædô â°Hƒ³²Ë¯°Ëq.®•?‡ V¨£êdŸØ”ùáuv±¶¼ú2-ó5f@ë>‘º”@6[Õá¯lQУ”óø7Kõ0Z–·§·òOìžl }‚Ûl­Ým:›´Ï­œ‹zÍ‘)Ú˜–…„¾«ó -9ÉTÃ|RY†ƒà$Gd@hŸV,Ô­\Ç\÷˜U9LÄÈÆAü•Ácç”<0ìñ´ô†åQÏ °ÃŸæD-LQî5]ÿ@ý“’ˆ³©ZmIªeŠ@):3×ð•Ÿ3LfZ褠Åzü壿§m/Àgù=óp22þ{˜mªðr\Ä‘P+ÏŽ?öП2W…ÁO¡:W`Wèêí£â,” _‘¶«ˆsÈúᆵåš#(LÇOÛÄvcù°1Íj!h\”¥h}㛳CzFç¥MƒÿO¿š ê4á!›ØÛ`ìÄ›H˜ã>*pç‚t5…rÇØ¦ºB²® æ¸€JAµ>uÉYOà%A„¢›íË[ªãcö™Û,LžGKŒÿtxLÙ±gß@M:ˆ#Zzq܉údJ±´°"75q®iRb1“fx’l(!ô$%–|®<âbJ¼¶?G„ÊM’Þj®Œ¹ÍÜuMAbªêa’S¯o˪I…'¬É¤ãYz¶oü¾£„þ–‘“ëîå¦'×Kþ^èøE‘íÅûZ &‡ yEÊý‘öÁjÓ1¯”„Ña÷—ûÅ.…§=僬 ¹ 'Fh™$ë×,«óè“y*ψ©Óñ¶‡Û(§˜ô-o×] v¤Ü}7¼Å^Å1òߦ}pou‰Æ6xŽ ¡üOH¾î[ ø2û§Èí‹Uø8‹q¸äi™Å_ª·\‡eCxÓÝcW¨pL\ÌXR…QèÏ\Aü0O 1Ù ñsŠ&ûS&·Ocå1 QP¿Çzhð²¦úyb‹)<„ò«mîÎøŸ'FÒ9¦Ú¶ÉÅÙê0ù]¿Áß/†÷ÂÔn¹¨ë-HtÿìË”_­A6ÁŒ!Æ0ñ£Ä'g:n]FXЖC4´ðÙâJй'¾b_¾T{åb¯|ï‰Ã»­V¾¼·c|9XÚ®aò¨dÍ¿b 5$°¬±i[­šQKÑÄ@ën?íØÚ¾¦)wVø?KüFx×M¥ÐšãD¿¯Ó¦ÙË$Õ«Ò“J‚r6vUVexá®Ó¯eÔ$0%©3&7σy÷hÎ7/§åMìôÂÜTUbd‚#È‘‰þˆý¹KÎ¥A)ê8]¯”4Ô¯çuÔð ˆKclˆB£Žk“Aí5c¢JJÝuÿO*³˜:ô˜jwó(ýüÞ³ÎÀ]`,ð7ð´Afm|įL«úÚxêŨª.GlAˆÐ= y¸AïŸ/¸}*ÑÏTjÕN'ôþÿW;ü¬m‚·,érÁˆ”? Xʉô,±X$î9¥F¢ ’ gI²Þ£4ùXëVŒ‰™·IHá0À…O%ýù_o㣉Ç7-(öŒ° î§Z­íaKÕV¦Uk# 'õÞµ®¶Ÿ×àdñÙpdèÓ-‡I íîW—·Fw_@ÎÀV^ƒS œ~^Þ,ÛX–¶ä8«ï ƒþº°C†Qu¡@&PSÏJKCuô‹ªïyi@úBÍìaJ?çÏØ{lRîMà„Ý‹U ˼‚u?žšCª›ï€è@0©ò‚šÿœžæ…AûÙj0›NèB šäLÇбÈû˜wHÕ‹z*MiO½,c õ÷5áˆÖ‡°${†‹n,XSŸ7L;,‚+]vèS hžP…ô»EJxêÂ8òûæ "Ëê?g2;3b¬B…ÞÈþäܨÒ,sV ÆRnÛÃQ­ó§ßwŽAN‚)r€ï»ê"ö,8ËÿV~S¡y]Ê(ó¶ÃÆN’QÜÆ ¦<`°á0B›ZvÞ¬ vÆ9 çW7þ=²a?І¢¥XÙ0w Ë]}8σÌÈF‹Wöù݄֌*‰Ü³}[ÕË‹ÌnÝ^¬Ú³{L&Ïq:E¦†]?#¥ ˜}€Ÿ{×~§ägØ hÍôþ‚ý¯¢];¾[Ç v|HŒû„MÅ|ÜáàPʵbǬª.ÐÓ”¢KœAð^V.Šÿ¯>jGtþàº&„\ ù%æõ…)x«Tp¡ áÇ/´*·"N)ó¹Zo| Z~Ùu»<àì/¸ä‡šk]ø³ïãÑ¿3‡‘ÆiÊ¢3_.A-}Æ;r"rCÎÖî¢D¼‚QíÚ¸IO0 KK² 3,Àä‚wJÑýz´² ˜ r~ Ž #ê—»%¸fg¦ºD”¾øL¸|„LQ… ž­:5J«¼Uí+@ßA1óžQàú娋Känh×àÛèR€í¬iïÂ/,ÞŠèÁ;ܰ½¹†. ³ãßù#¿ U»*ÊOg¯è4£ 7Eó€æÑj½š „(àΆ‚}ãŠÌ®Þù!¦½F¦¼üËf¥½©g[shÉ–ÄÝ4KœVé„ׂö¨IÆQ)¬yÜ4ý ;Åc†ÝeÝèä*·¸QOŒBy÷»ŸÓt„â_â/QÉ[8Y[Qè!åê(’¨³NöIŽœœ’š€6xÛtcîùàKü±æ«G|"‡1l‰‰o,¸ß3p“v¶pðŽ+*É=BùZ[9Q%RÞá]…ÝÍy‘èïõ6¦@ê8x ÿ /ë…1ÑÌ Bô+³4XL„Ë·a'Ý Fr«ré¸rúQÆ;FÈ­¿k›<ÎÛï-¢A„j²ü0ÿÎaþ5îo£²ÝäD‘YúaM%"\âµdj´’»½§»AISÎ@97O ,ˆV6"6}R„cò—`M•? è/ëQÔ©³·ï‘e þ*ˆÅ¬-fIû²rÄ9WÝ£r&"ýˆ“žÑ¸ñdê‘…S).¸HÇ« -WÜÿK‘\±°$=ÛÕŒ*þl8GFmÊ ÁèÐr)K±SE~”/ÌÇ%yCjÕpz¢QØ*[¬f‹nµXëB}a˜¿=»RÍz"°³ŒâZ@ Á~7ÚtC:GÀ²ìÒôÁMYÐüÊc“ ’§‚—À§´ëò#;P\\­EM*úmr\”@H— €>Ãgo+>©¦RÔÊ«=BypU„CÂç4ëè[>"÷D¤ÏþÔ¨PÛØÁÁJ8„ Öãâ6Ðë[+_v/—]_ÛšH±R+¸h€­ IÔEb,›;L™5qÏ% §ìt£É`ˆ—º¾±-1ß¿†|e>èŽõ_V9(<]eŠA`aD–f ³;êówËðnVû{¯ažˆ3—¦ø«Ô'•c˲ô‚ ÓD¼_ùJ Ý+%T^o'2 ãäĬÍ-¿Ê½â,¨Þx_ÆÉY5ŸUèB¯aci5C‚Ü;óo ö¯ Ϋ.fŒ³A ¦J*>ÊІg¤äG×Ä0wPFîZÙ–ahƳöT,¥Üá âyˆµf—°fŸ<@#5ÕB¥9„#ùß8<Žv’þ’’šÉ»RM§Õbæží– ¢XËüö†›‰÷ƒl8†VDzV~ö^EAmÀ*lèë›Æóê“d A žËŽ¥¸³ÊƒRÑþV ì¼Ò¦Ò æåY§N­Ï [;þ-Ä7´<é³H¹Sš`«W3q² 1ÙÖØ¨'z þÄÝg5Ú$ŸµÌ™¾­”j€ƒ®€èImmä¼a³ÓZŠŠ¸N%ˆ 8&pf€±°3µ| ÁŒÕÁT2©|¦,sq 3µ²Óa2ƒãçf”¢Õ²ÖéçËþ‡û`ÍVxizæô:´ô¸ˆô1@Ëz‹Ž9~}ì:Ì|ý埮;?—x¤ÜÅ1üçèÉô©+ @ËñíxÀñf6¼E§¬øÕÅëñV¯è’…ÈT’Na*KÀÂÎcK®ù• Fï'‰¯pJ³Oj¨Ð<äæC÷L’clX¡:²ã=ˆŒ«¶ÖÞr¡äM^æ×0@ÇøS‘%‚WÔÕ™Æ/ÑÎäfÒé¸ÅÉaSCøZO­êßNtš×ï\Q1$. ‡Žhy@@3 Dó?ìY ã¹îœ½/{ù®Ök[Ö)V8þÌ(h¯µƒÑä%¥#ÄB!îœIwo§¯1³áæ>í°eÀÁir‹Ff@4ºöiß®y¼.¤6„ï£_Ëîäo· ×ä¨nÆL辰%ah7â#qÔ²²Ç{ó•ÒK><Œ¿Ð›qiÎO9u¤Õ}SKù¼4l\²¼=T"¥UÇ*§úìM A»ì>m§=ñY ›VÐyH{®¬³çVòØ‹\é$§„÷îÁÓƒDSC¦qZR ~sà™òÍLgKÔ/«§èÏ>WwË-ÓåÕõØÀØí?oÀ³åï3È0$BÀ«T—Ø/4Lþ0%úcÐPk3o¹ƒ…>.<Ä´­µå -ÝîÒÞ0v¹JED‘9yáŸOózú/^ ŒuqúÚþUPXÙþ×m%VÉ ås7 µBÐÓFsÞûêð¿Çp0ÙÈ“'yé4ô³Šùª”Ep œ?Áå-c€Áèï\6¹û“//šJìVÆFYZÒ‡v˜Zþ ý³Ì!Ù<ÍzÓKFàÒ8ú¤^4Ž GÞìá© e¥ÊBãï¢ËaM@<† :* ç |Â2T¢)ïTÙ)O_ØhðØ\G·ÍB6Œdò}†loéf$‚~æññ¬êb!2èÚ·ŽgŸl©¬ÍPyGÝj?Éüv=õT‹UÞ‘î<0»M·v—\K.dº rñòp!ü W]ç˜÷á[iÜSœœ)ÖžÓ9j¦×Ö…qˆ{̬¯³›up¡Túú †³$®ÕÎï•ôp“‚} ïT'E(YŸ=’ºâ`³–;F˜,öƒ»+ƒï* ¾ÎJ"¢P=zŽß;ÌиO÷D9]¬W—Ý„/sÄ6$ÍÁ¯•ùT«ÎgïH¸®zùÜd¸»E€TÆ=4¤ÅÛõ޶Ñr­T”ìJLޝq71ž³°š"l]u@ÒÚS[–ÛƒM.P£ðéÜ׌e–7ß*2w ñ†¢¢of ͤ˜¤:9ÖÛÞ¡ o;¢¤ø[.pÞl Q[ï¶ûD›C¹‚¶Ø+‹§Wµa%H'ýÙ"KK#÷$ÐkYJƒ.îÞ í‘„ò3dö*¬ŒÜV·ô“ÄÈPv³R*tvÄ Q¨.n+ƒ(ý–g‡rŽ~‚y…+„Ð-ü¢vã I}Åc. }Ç ÁÎEØ‘?Ì‘QŠ•žgFW£±gÖÁ.âà×[uºø2àúk_Œ»g>ŽwzÍvxñˆ7SRÙ„'XC~±J/è¢Ę…¡ã0÷³dÑCx®DzKc}ÈÂÆ ÚšK€[ü`0\ƒÉ€v–/íÿtÜ ”o’ ¢Co§ûŠSàŽ Usk·ŽŠúh6S‰ƒÉ±¢­$6õ§Â®Ï.•°r¡X™C u£ðÏ1£,XÛKÖÂ…“}»·ŠY·=2£à÷I¦ó.u —޲]޼›”X¾‡×V,¦Oî6¿v§I(>¨ cš4Íbœ|Å’ |5}9r§Ä:6dÌÄö¸íç&ϸ$õ`lÎþkn;†9­éÂÜg­2D´Jl¥mœ|äGàÚ‰kŽô³&Wß¿ÜEì$^ø5}˜½ø¬6ËÌŘ?‡Òè {IE[Õ pÀgGK(Å­Ò^ÈÊ\šf?!ä´ç뢕[ùÕ ßäªv\Á˜å»å—å¥ñFÄÈ  `Î{¶œì-Ë"Zªú Àh]!‚·Þü£—et탢Ù?ZnóŸ ý1§]f“˜- ª®x ´£`»_Aö½¼cRp6mÑ›*ëiï…C b€Rº*üYœ·."žOŒ™—xg—ìcnpóÅÞJëC“V$E¾‹~]kO¿-ÕNö¦=Ž©¶ëj©"h0NB`IýGAe^ oýzaÿ¯Å‰pÄw¡ ‘Æ ºu Xsíƒ Ñ$ˆ°¼T°N 0©w¿‹êÈOrt* `S_¢ÙX貽Ʌû€°2Wáqi÷˜«º,ø² é:´ƒu5ªŽ¤âvºšáÍù6¸½‚c¹f<1ñdžÎ€“.æã^2¼ÿ†È@ÈÆ3²C³‡ä­Ç!¶Á ‰'@ƒLbêcw'°$ÿæi+c2¿•¼*êÞ»ƒe×¼b=ë(¡ãJ/’‘‘üŒvì²Ð §¤‡M[:B½üËÛ ¾ï9k­£ U‚`±v~QPyȽ¶Í}£Å Ç,’:ôB:(¿EáóIê«p¾´m1-iæ"Œ›GUCðòÜW¯GöpI¢ÖQ,®–÷vw³y+‹›oõÿ|ü†¼öï‹­s»b°¿¹ :ZÑêm‹ûé‰u¸8!Óê z– CõÉðò?ë¦ö(sÖÀ>V{t4åÂ6ðÓêuæ¸}¦¨÷RÒt¾½¾ïÀªîzèGh†oÀD±Øc+ÿ¯D@ª<ïtÒÁlöna¿lŸ#‚aêö°¡²*‚ÿm^îê`™ù§3f?Ç·F´.RÝ7î€lSbá×f-Mb]ÕP)Ú§‚}ß–q/À3Ôºu&ÖcûKÛ~&HÒ”tÝiÜkú,)Õîà|(ŒMqª'“Â+8ܰŸÜˆ9ÅÔ¥ nï'ƒ€¡ðó Ðns/Ô!Ñø-“aÊ>ê‰~X¡Oüâø{a=ѯ/*µŽ!HZ…jÏšŠ¼îr[š:”?£÷ß/íõØ>ÔõɾvƳ$uJ<ÏàA…æÍÛòñŸ$làK ›XW-ö²ïÍ“ç—d$\ºMpóM±®jÑ;°`ÌëÄÇ ïžB¡8ÿþ?!9Ç­dY¬vI¯¥aýèÿû DáÑ}qcòç°þN3&ƒ ‰ÌhuQUjòÔWXÖݳØúëë§ô5Ùq%½B ŸŸo¥9±‘4èT¢¹0ÂTkèD(ÇS 4YZ®Nß/Ù‚v›-ÒÍs[i“ÓˆöëXMdýþ1}Ùb¦o)&}R|VuDZÅ=ÈÀÈÂýä·#ÝÁè-sÔíjtm<²½ä%“hÒþÑr°Ñ•Ø[u…¦¨Aµqh Œÿ¨wrÑx/—ŠM% ¨ëìS|£Â”µ]ŸºhÊãHÑädj+óû§lé-oTÒ9Ôd­k+a9 óèä5¼×¯Øèæk˜ñùâhÌ¡ýú—vÝ?8,ÏÙ4…ôeV‡O"/dÅK µDËÒ€´K6cakˆßÔ‚1ÔÄ m ­çÜÛh@4¸ÒšÂ~÷¯<ã¡COè§A»½¤®ƒä›¼»zóDÒ-;k†ÕëÚ~˜•1ªla¸l20þîô7áër2Ò­Ñð•WPUKã“­Íz¾+Æ|7¼mžãÖ°çX!òÑFÃ%å0ú²-Jùä®ì<í þ¡Ø…žÍroR à9¬?Ëg wù3‘(?™Ä ¦ðS&U‚/QóÏeWËùƒ¿L)¼ù)ÜÑäoL€/ý[˜Ÿ `†Å¢Sª_KÂ¥;â © Ì€t޵`RT[×Ð76Ìî¯  U‰Yçp‡ZhµìÿXþ] endstream endobj 82 0 obj << /Length1 1859 /Length2 20537 /Length3 0 /Length 21759 /Filter /FlateDecode >> stream xÚ´»eTݶ.Œ»»hînÁÝÝ NãNãîî4¸w·àNpwwùÈ»ï9{Ÿsïßoô讞þÔ³æ\]£G©’*ƒ°©½1PÂÞÄÀÂÈÌ “W±·5²caePš»Ø9X™™Ù((D€F K{;1#À²(š€>b?<˜™y(’@; Ó‡Ñ`삌Ô<€,j£%{gƒ±‘ó‡hgni¤ùµwðp²4·ýÍÁÆÀð7ÓßhF€Œ‘‰µ½›³µ%ÀÈÎ Ã(ÏP°wûPZ¨ííÆ@ #3€½@ ¨PWWQHª(ª+©Ò0~$Vuqp°wú?XDUÕÔ%éb jâ =@R]Uíï§Ðî¿9=@AíÃþ·Î‡ãßpyq5a5m%q¦¿ç`¸œ-ÿ–ý_Ø(?þ í#ÔÌÉÞöŸj È—‰ÉÍÍÑÜÅÄhïdÎè`ó>5 Kg€›½“5àãè´þCŒ‹é à¿ü]€œ¥ ÐÎø7HÂþ_FÛ*?‚>ô ÿöAèoN›¹œÀÿQÆÂÈùŸX9%%9€­‘¥hgdgòá2¹8 ÿÑ}¼¦Tÿˆº89ý­!ÿ_&§ÿ.ó_ÐEì?Îì«—‘Ûÿ^1#;gÏÿàæž¶‰½³¥3Èù_3Kà_ôÎ×ÌÒî¼°‚´„¸ªƒÜGãÙ1ÈÛ°cÇrýãý7Ÿ°˜/€›™ÀÂÃ`þhRq;SQ{[ÛÔÎé³üà dïäÁô7¶µ½›×ÿÃ`figjö—{S&u;KG ´ØÿqÿP!ü[g˜@GÐÝÄ‚éoÁú寚å¯úƒ/{€™‘3ÐÇÒ øq@ðr6r@N.@¯ÿ4üO … `jiúhõqAø'»´™=€ç_ê$ÿeú?M@ýϨÒ|Ì©©½Àh†À¤`úh êÿ&íÕ’p±±Q0²Rÿ_œþoG#[Kÿéú¿\4ÑR+Ø;ÙÙü/›¥³„¥;ÐTÉdbñ/jÿ¥—}ô¿°¹ ðcYþQ©ÿ)›ÞýØ,ÿn_.ŽÿeûhKk; ³3€ýðƒˆÿ…øƒý¿xLšÚ²òÊÂtÿwÛüã'ngbojig`åà99y 0ô+À‹å£±Mîÿ4 €‰ÑÎôppùÌìþ.(€Iþ¯ê‰› À¤úßχÍè¿%fð¿EŽW3K×+Ø9L@»‡°0˜þ-²ó˜ìí€ÿaþÈáø";€Éé?Ä„Îÿ®÷‘ äfÿæt.ÿYYLžÿ.Åý!þåþ?‰Uú»¹ü35ÌÿfúÿìºÿȪ '{k ¦¥éÇ/θȜ,Ýu™?ZžåCÿñú¯ozÿ£Å¿§õ?¢EDìݽØ?P2°r,ÛÇþÁÂÂÊåó?bMþµþ3n-ñ_òßݺM–æíM¾[¥ý -õ/˜,ƒ¦àa<)ÇÐ’I€Zú6ÙFˆ'–»EüÐäŸIùÃ^NŠWÏ7%À®H‹"Ûæm­9¹bâÆTYhÛÈWÞ—E\x4GƒQ=0S~Ñ¿¬ƒŒæP&'_»˜}:³%¡… >z$ÊÓÖùÃúûý*•ìkYËj´[á,K#–“ †û"A;áâd;8èý+.Ú¨Gx‰vÆ0?gTÆ¡»s¿\ßCðûÓ6ê¦vD0IÇ0沑˜Z4Î >ä&+—;ÞJÛrŠ4gXrÉ&¨l,Wâ7Qí AÚVÜ¡d;ùc²Ò¦ù(ÕæzW\ÐÆ>汌âpXÅ0NRE›ñ:†H¿±=^º—cŽú{<6½%Êä†hEîù ‚£q†°*œKjp>AâVÚГpClYaúò'Š;çe¸'mC¦¨'€qzî:_ÝTP9Scޤ.„²ž¤‰R䘶7A°Ÿ+Pš*-÷½”öj"¬g³ù ötCô-¯ùLN9RAÊB²kúÄV`{¥n´Ù ><¯¬•õç™LÍLˆ×ãê§>­HÁpø¦¢>ÎŒiÕÔ›¾î~fÊôä6¿²ëgÀ\a²‘áY漸|ìjŽŠ jöb5Öû‹KÛ<¯û\C™§¶vEöÝyì\O¼ lÚ•îY*ÕQ#@b²±Dô1·ÒöŽmÔ(TtqWìó²=­è—ó²ÍYó¦¦4…-áj™`pŒ$|ê~ëÙó ‹×¤y ¦UEÈ—úöúwmóˆäÀ#Ó'ÌðCË®Á VåÆ?Iðcä৸"ƒcê-âò2èogj÷JZGñJÚ ßš°לI+™Ñ!ßÉjz«ŽØCkÁç7Eð ®". õNWè¢3¨eg°\[Lð’s–:ýêßÖDîq*T³¥/¢£ìužŒáÏ'%Œß7È[ÇS„˜ÿ˜9›Öœ0m${—ñ,ƒ¥ÿ\Tb[”{pª¡Â£¼,¬ä¿Ú õlª[pš¥ÿpæávžƒ~ϸñâ³#0¬ñ®Í/»¡‹ƒ‰Éòb¾›®ë8¡%U8ÅïJþäÂÁï_U¢öã{µ‘o dóhoÎÂ’)b²åýg©D|'Ïôúš@xB õ›9Œví¨èJõ-â»sÅ÷6ÎJÁ@"|ð™+‹ S,8^yÜj6é”n¥;÷¤>!<æUú5èI²Kw õeNjû¤J¿Aºü×"Mˆ(nLlöÛž”{óËù6ss&{wíbœ×(b¡3‘ÏiÙ#°³*ŠÄ×x²:ÚõÒ‡r ÌEÌý¯`äK¼«çè-g•_ñ\Vvè?ŸÌ©$‹h]ã)P‹?_Ü¢<û@d쥺ãÔ²z[wŽßð®(èYwq‡~º• ŒÕEarÄí"#V„Òò/(F™e‚@CÅ9Ï5à!ëç P(s‡¿8÷Æéø]Ù_ùØŽ#¯ä;R™ìŽª9'À¹Gdª4A²’±ÔN³ 9”!Ùž#ÒïäIôÇØY¶+$ñôI8·½^Ï…ÄLøµÂX`†U$ܶÈdÙ‚ÐríÌÞYûÒ0<mœ—êg„écü–LõCë ÍcáœiØñøYtQ$c†ÓÙ»Z=ƒv—+„¿ °Ô™ƒµpï¾èOP! ¦Yü¶F²æµ”Ø ª­C™Ož_úÝ»y,Yv.³QG¢ýÎYa€úOðÀŸ\Íkå)-ã>!7!ƒ Í0ÌŸe×ã\N=OÔa~*ö$üíÔÔYnðìï3èHqn’Ô;T±'ê•Õ!cÊQ²)“ñãï±`a>‹Mòx[QT5ʳ÷‹ê}GkC´Ån&ŸÃ35Zô_~Áæ°ÐL5ck÷¢YÃ<Á²ÕY8›×Nѡ℀çV PªtuʉÐs^å±1hƒ!j¸í%âl€ÕƒÓýS|<!c-†çØê4áÇ7è ¬;˜zÈËïÀ..é„eÊ„‡“& ¹ÂãI¤R;8 ×qœÅòÒE2>G8B•]#ï?¿÷ؤŠÍ5…|øŠÊŒYYS[ö§–ͧÉx‡@P¼V\2Õ+ÅIþíPÕ˜ŠR+´æ]mÕ ‘eœÿ„Ç„3Z­Z,8õrã sBàð+¡¤ø¸$X¦kìˆi°œ‰§Û™¿q2JÐÆÄŠZó Î,ÓJ¾„õoOàý¡:¥i.™ Y›I -LW0däò8%ïPõ߯¤HRL›ÍÙÁ?)R+ïfÔ71Ë]ô&°&-¥Ð4= ìJ Ùî.! ÄÁ‘ê‡@ð#:ko7\Ø‚£X_Î|íá8í|=ø£¥•d­Ú;ôiißNtù}¥d%Š^,l-»Û‰¶[Ȭ¸~Šc7oŒã—Dùd~˜ô/ŠŒ}93α,ëz¨‘ŸñÜ…–R*¯Òxdº_!]õÿÔ€U­û¤>Ø8/[$„+â£hqckÚóª>j<ÝñÑ}p“˜¸f~ª=tÖ¦zt¥žô$qcBÃc)Æ>”ène£óÃŒ…ýÕ´z‹›>«½Ø8ªÇÊ|GL:¬àŒ¾Â>)pîê•Ìíó9ÍÛ¼Ý8{ Twì |Õ¡ª—<©llüÓ9&±‚¯GÀ5–3ƒDW‹jÒúFÓÔ2<õ#8²Û m8û¢ÕY¤š:8À(¬w²BüÄŒJ- .ݪ­6˜šó´/¯{'¯"PØ•³é<"sbˆ¶H8§õå·n;8¤iÅz?<5*÷ëô½È¯Ä|^í ƒ-R¨†¸(;ÑŇnÅr(0o0bK’éW†ìþÖæW|Y Ô9?ìàüál£Àkàd Æ”/B¢áò6SßææuOP‡(þ.dm®.rK­")âþY d›M¢i*lïgI×s–Sulñ+«Zªµ9Ñ'V¯º8V³´Ô¯—m)<ôN“ùO*œó‹s &G­I.1^ÒÖs`ű]·žÂ¯G¶Ãþâç.t~̯ԵLm繓h¿S/»wÉiOûÍ‘ T5õWÏaÌßC|×`A$Ó:ß¼GG}ÑÞr˜3qÑÙ±ªBdb»®1AÄeãLõ:ËBÕ_-ߨT ƒAJ¤¼¼P‘«è ,y-µÜ¸5»÷/¢·~™â4Šeõ}¼¦£Â!‡ÐÞo¹gPú2ˆ)ÖÇÄë•"0s¶W,Æ:«¨FÍòŽ´/œøŠÐQ^²þg€¬{W‘ih”ÍWmÿV­¶¸N¨0y) ?VÊö‘³½/êŠ_º9b{ŸÈ6 P®O áñ4FSù B¢@/pKÑUÃŒ¹¿ZwyWSd3¿|iG“¦Âj}Tùqî†y>îi‘¢>÷çÅàTJÛqs¼g…“ôÍfùm{¦n™¾ôDþéúZšˆ™\‰‘ÿÞP A׈1]UÓ-uг_lÍÓR÷Ùœ'¨úòÔòæ&¯ûc.÷ÑЗb•…‹,S ëz‚9@©`Ù ‡ï8Ž#ur½Nâ€Çeo1íÙkføPsÁ.–?ûøÜ”¸6ºy8ᇧ® >GnKºÙÍÀ¿ÿ*_«øU €»V58ø•‘Ýz¨Æƒ";©ÑE(S^×…Xôöˆ$\š÷ªZJœrz%צ ²zW±&–è‹*Jœ³‘ã‚6l”]‘¯*n øìŸØŒß¿(ª?Ïü\ç­øšz_˜Å6€5ÿÁÂôªŠ¤+êKµ»ÃÇ óòEô‚¢Ï<Îú}%n½ X]gÅ[Í0µ#¬ÊV§tÛ0öå&¹H£:?n`4Xáz²´-B ñòeÂ`‰c¥åÛðÒõ}(KþŽ×á‰DUf\z¹C¢ÅKÓÒßytW—íö¦Ïi´ÝŽZ¿Æ†Ì¨áðÂü~’]Ncí-Å_NV¾c-%À ÞÊ‘¡­4 Vx’ò"ãJá4'ëÁãLË I/¬XÎUW @œ}nâ4üâҥ͟c‘E¢TøêBì ŠÃyÕh*q·Ù8.†×³Ç‰5d¥¡Yt‹a ›T þ©Í®‡œºâGVÕ<‰H® QϘÙL]ù·0Ø]9”L1¦ß9Í(}{C3½>KtÓívÆÎs»‰klÒ¯ù5faê’e£gäÃñ²&(Î í§ðTµ©ìºãr¨÷ÈU࿨'xkxäÂjš Œ=Õð¬¹4‘wá÷ ë wYŠ}Ú‰ù¾ã¦ï(kD%ïüPêæîÑR“8y×¹Ä l½Ó‰¤÷:ŠÔÇNÏ•èÀ/[‡Ú!»´˜ÂPö–©§‹²8ͽûhL(œïÝôvðÞÿ"u<­EÍ‚„{o˜t##íŒñg¦&ÅrHèQÀ¯Úº]U:¸=3dƒöch@ZUkÐJ†%Þ ókã˜Ý^û›ºü7/W£0ÿùlŠQzĺêaqìŒôe L¬›­ø‡ž{‚QÌÇg9#„Q^âÏ¿,–Ë‚Díâ–ý/NU޾òE—«¸{ny|µz¿éB"Æ÷™E›»Ì°ËüeN¾•›áÉ6ufzoŸ×Ræ4<”Ç\:¸€„‹Û¸ ¦–Nu[ÇT¸¨Wë–•Êzö锾Bñ\'«LÅð°=Nà†þ&‡1RÁ’àÛë}Ô(S\ÁW×qó†T£¼rÌ¢úGÁªä Ïâ$­ ™”}ÀdµhPõ¥[£–ëÏü°;IÞ1L±5Í&«‰ 1{µ|Š&Ö×@±Ô†ß O0ûÔüIÝ´kPÊ'*FV/¿+_|Hˆ†x@¬ÌJÓt"V¶Æ‹nnÉã Xưçs…Ë7çÙ(™3öô?Èk³dË5?×G‹×8ð\îºiôô’õ&ñ=é»<Ô1é²0F‘•nýkÄÔä‘D~bŠ$ÒŠê+ ·½¯G·¶»ªÈ Ï­l&IP«D„æ 7†zîV ~ánû$— SôŒ×—,“iYi¬ûû€ª3r—ÆÑ!°ƒ3)â! ÝåkZ;«ôÃa¼ã<—á»|…”Z(Uëò¶k{V¤ŸÞßåà±IR£tY×´•˜f¡2·<¤¾ÜhÕ‡ÌøÄóš`¤ÛuŠè˜¼4é—é§“$çÑ‹W9-ª½›å}À6_‰Dÿ¼F~Íùº Ý£Lz<£a éÚb/9 jÔ RññƒÞáƒË"ÛÑ* îwYóœ{»0[§§@^.ƒ~·`v­&Æ–àš°`?IÅíå4ËGMV+(+4ùU˜‰aêNÕfÞFÏ·0~s%½Ÿh¬þ !Qná\ æ“ ÅB´^ÿ‹×õ°VÏÑz.Ýè–Pƒh ]91o,-›†î‹ææ}és¥´-Å\ æd±b«ϋ9ÆoúòÍo L|¦°FÚ±jþ5¾Y8G…Xop»üù“âOä›eÊN´å ?¯üæo$ý‰:ܪáã¬ñÛÂî,üåV<8˜ÏuqžÌÓ‡ü5A6«Ä}Ùóèb`7N ³>©Ü¦k¥Q” “Ußì*§]®}v7ðd>·vÌ=$â)Ѹ$Ü"a±M>i«ÈœÝ8ýêÐ`a—PÔ·cô‰Ò‚@€ˆ$&³ÿ]' Ud¹…Á׃W°‰Õ~” çLüÎcÞP,\«roÚنד€ž¬:1©8ȉE¹Ì1“p(àà5®(¼n4æT‘É Mg’\–TQ·ìu®¯6kUv+©¼Yõ`ä£@4YïjþÄ©c@¾Wès)çK{銴3O[šŸ÷¯ûN›¤m„a  º땸ºZwkØÏƒm#3cè™`ÎËG¾–¶œÚßÇ7 Ø" „Máî~„óµbZ{v¾Åt¢zÿüĆo6v­ÿ“7y¬9ú֙ϧQïÇ1?OAóë9ö2 6ôøŒ›º‡ÍÜ+lÒÂ9 bz«HË¡ôÎyO‡p<-_UK¹QcwÐï!Îd:Û0vfÂBzå„q”êd‰¤æ©H¬Ã?s`…á'i?Uä™2ÉÄã\OcïÔ‘~5Þµ.„ÆŸÓâL˜òâjvpY:=©ú\ƒ÷CAc ã‚%)ÅÜø0t,f Býºß(rnMÒqv:ËÈNnUyÀ‰ñ—×<%*´ŠJ@iËrYR6Ü §<àÓiÔ^qL,`}’¾ ƒI‰'¶°õ÷ãŽ+žÂo,SG b+_¹51‘ØÈ/B@V”™sʆMB®Õ?¤ê€4#LAF8L¬Óƒsé«f.™l/Ï8çòv—rwTmÔ*8 ¸…aóÂÖÜ‘ãt#"L¯ðÍ­2,ý¡×+ÀÝ{œÐK¾Ö`Ì’­9A˜˜'® )ÖNo yÇvýÅ$Ýü[±ÔSÔ) ãùÑèósÅ£}«Ìª‘ƒSânÑÔËIë&§á'8Ïu ˆ®_9tà@ŽñÓùd»#%l`Çþ>²;3$¸6ø+/ýÂ\JÔ°9*™ê3aÔT³ùçCX2±T I•‹µ¢‡m§×1ò3?Gþ·é-Š ĘW×ç…­µÏküKåUüóC žg;&xt‹/Ë÷6ºƒXöæ%‡ôXüVº³Êb—¹œ¡²ûæT ÁD³Î|Œv‘(ó¶ Që{ëµ²ÉIq‰óW‚ÞP(~;ܨú#´¾ HñÜØ‚·î¦È;M“àY"¬áY‰—äô‡òCœ¿+c©²¼ZÿX°…HyÌBÑBwËi‚ žaùr'ðßX!…G[3è ¢ïd}Nì4mË;¯3’ˆÉÆâR_‰4ÀXCé_ˆdWÚÈ倃Ô\j¶E2ý`9É|Ñ¿ ®±S ·à\ZptºòO„el)é ^Õ”]Ô…ú®!@£\ißä(\¾!™¨9K¶2â^$íñZ 9;ÜëôÛb™)µ5k±|ç°ò"Óµ,:q{8_ÅÞ3ÞÙ7«4°š<]lŠ6+°…ùsä¢å87+÷3kô¬×/oÉQ]Rü؈4®?'ôýnáóÊ‹Bgj½Ïo¶…ó2¼1SÓÇ"QÄ»Â%!o|…øYS–;§T[FCýËóeu îEÔÖ’æãa±¨vÇfH‰û°/×ÈôLn»‘WÔh3b&Ô.DU§½Û3s$FUthŠ´ã¶¾åÜFÀ€,üA5‡g“¯TDQ«>3ö¦¬à·ïi˜ä÷äe:óS‚/ýÛ·Â_Ð_¾Á*‡Ê;9`þªòˆá›ÿ‘å“ ‘Šê Î÷†Emæ„¿s [‰§V\Š—½ÃÌùt$tªt)„X^“$˜y †ïªœÑmw{„†$áxöÊç|U‚Т.íf¯#6?òÙ9,#óäÎj˜!À*EE;O8+šâæ+ª ÅÅtVa‚ë ¥$ ž¾ j,¼•Ì7^·zÇkƒþ”È.{Šè¢ù÷`ÒmV­õ3*˜YÜVLí:tÆv©8¦ )b⵸ U'Å[O$÷À€}ÔŒm sBÇd UŸÌfÐ$"ÿÖŸñÇø¨A›¼khŠ·›]¯À ƒ?}QšþÔfÁ»·\l‘¶k ö0¨LéLC¥îßLä*ÈŽý³I%´­$æ52fLeFU¸Ž¸^Ç%'ï°Þ²ÑóÿF­vÇçä·Ñ §hj,÷ÍHR#øâ5QÈ…É>ÞEüìàÙcàÝw^ˆžƒÏZ'ç'MÎåUg]Qöu芒ŒÞ¬p6š½ä›±ä›}7?ÍÏuì—T#·ŒûàbÕÌüˆçŽ}ƒntŒ–õwMe`ö¾LØ×&t\O@I2‘Ký¾Mq{ éLô~6ïÍ6õkj®ZŒ¿ËÚ~€Âùmpc–Fró ïûç£FbH2µ¯o¬!U§‹Þ7æhG°äwj¥öØMÛ´þïó´fõ«8è+§a—ØÒôqÐ_ýžžìD’“k{"" ¢Á!aŒŽ£UÂ7-6£C“óz•|'ú=júÔ‡#* Ö™Pâµö¦ÛþÜÀðh  ¶ÉGÞÜåšœ¯}÷ªÐraM%Üí{ð«ßk›Bá‚~ãµü,âGÑU¿µÉ]TðÂzÖbX_z«á°6ŽêS²¶{ƒ^µäF{†—|w|ÅyÐÙt»¡Ñr quIeYÌÝ\AÍð$1H†O‘¿´H5Ò®-€hýˆÄ:r>BSVõL¼$âµÙ±½]ÏͼUbþRõÇÆsKbÒâËɈ{WåaÝ,87ø@/èÔû01K"?6ÿžôŒ¸I®%žF§ù4]-f*}áP¥ @±g-ŸÎm;BÖ³Ÿ­ã‘Y¹(<ΩÖ9§Â—º›ÎM{(yýÀÉú¢ /å“‘Äi%ß ÅKùsï°«<Ó‡Ç Ñt,¼@ËÝ¿#šq$±•Þ«ȄÔ_Jüϯí@ñ•| ô[jøs3’à. yÛÓ£‚Ĭ{òï#>Çý–R\[ŒÂ›àÐȶl×Ñ}Y”WXØÙ Cx0…/ïTœ“ o:j=h(ÌýYR…,mê<%ªXÛs$9±òøø­ÅH gûÙ IðÛY÷‘R?YÃz™ŒjSp|꞉ÄÊ4±Ö0±$ÖoÁÔšRé?DÑ »ŒË ‰ùz¸CñWк›í¤Á“1Þ‡ãU¶'¯#iv©¾§ô[}<–LÓW=¶´5U¿·Ô)¶ÓElšŠõj¦¨ê+ýP0YQºÀÍgQjׄ¨¬—‰I5¢øD¬žIàÑôB~­ L—>/: Ñb Š_}v®á«®c²äðxe;&ÊA°;¦íÄJ¾%R{íWÆ^íqÄzNÁÛÆkê²5‰…x2)TŠí›ŸºÕȇEëМšºy(õõ&h¬nG‡ÖPç¥Õ ¢-e(¼VÄ÷x¾tÄ~Ìç4È¿2<×|¤ )­7ï5f赬 »@€|ìåòZÓÆ #ò5Ñ…ÄvUlsÈas§d]¢sâ‡ÉƒÓ‹¹¶Z¸1iù3c¨fNâ]Ⱦ# %EG€·È¡ £]ÿrT~snedž^5—%;¼£!‹dßxÔæUi”ÿñï²då¬Å﵈MÕ5ížDÓù¶Îás»W! ì«·kk½r²î9pË”«•÷À¬‚Ý6D:ÌI´&ª»XdüêçˆpAÜmŠv4÷ ‹ø ÃþÑ2}´X:ΨÁbëf°T b¦@Í´!&CiJ&£h¿{µA×þe3ß)çÌi8 \ ÿþÕ"Ÿ;ŸöRë}{èæ7E¹KH±o2U¢ ,j÷8Ü—.7©pÈËH Ë;¯‡h›2f«›:ÑV´I¹äúÚï7Z)5Héî™þ÷mf^É%ÍÙ¸pl§zv,j)m°¬ÙØôṺŒGôìÂwܾlĤ1ºéƒ?Ã^‘Àa8;ëg<,휛dÁu™cŸUŽÜó »M©U‚ßÚ<Ìe'ò+NÅ8¾ÅÏ´ðÊQ´¸^é?{žB ¦o Z,jsš=¥ªyÔ>è<©ežÑî‘Ò¼së¼”5ž¹—äz„Þ$Qõ†³x­zÅȇ’[3'ÄQÅ*°sÆü‚*èá^}™©H5U×./„¶÷›O™njS] ñ„Ç.;UÆz"Ùk®H}íá‡y4g-õ‡ÙU-À=„XO­-;ž‹7îÖ&Ä(m¢ï „\8tÞ—En+«Nl!Ö5b‰´>j™~è"E ÄË‹@7¹\•1çCµ],8Ø,³Sç’ìý¬ì¥ÕySÖºÏ't’-®ZçûHò^*‘³@Rýcw,eüãæ &¹@ñäý-)ÿó>ÂPÎÔ·s§meŒý–5E˜ =”¤ÚÝVò´öL 1œP“ ÑysÈÆœù¯¨Išõ½z'óü'˜Ü\ñ9›ß#÷_ûßë§" êñ׬zÝ»CìGDÎ>Ú”›:‚}¿+páã‘`‡'X‘›R Kàð[³Fúêta_.=a䃬wuËë¹ ùp&ËV°!S€®ÓÌ´ôA¼“dã}efZè'Œc®†F*¡òÄ1&”ç/\X9¹J‚ÊßQuv-2Ô“•¥-Ãk,¬?—o£tb›Š_í°M¤{Ô¸ÿ  ÓbW[h¦/ =úMkR·¨©DŽcòè×áÓÕn–~C7ʬøš1Ì Ãß§gÃ&Ùξ¹4žf‹ŠfZNYv·ØŒàª€ëa §²ì3“†ì¸|¢DIš ý.–6±¯úÉâì 0N§~>.'ž·`WÞ´‡Á£¥Âò¢Xæy˜–מ ÈKË"Ø íæl¡Ì„¨AWÄôs˜¦è Aù¶k´G€C<5ç^si¹ÂÇçM`ƒ ºÎT};‰¦•¹v¯^úÅ,¸q±Àx´xUü·Ø >7{£‰ë¨JÅ5Ò÷Fù]ÅŒnÙa<[)„yºéµ‰:ÝÄ|«ï‚ü Ó ùòã›p0m"¤ïÕWúI©ÁæSer;Òo~|î fÏ6›È,Â[­žU7ú¾Îë›ÚW©>$JfïkëCa`§MpC rÓ»š27Yah!~‡ŠŽÑûÂÒÍÉ ôóÅÒ}ìr¶K±é=Ïç=-•!î¶/+òfÙ!ÞNþ†ú+Ô—¥Ýî¡%9§ÐÖ‡Õ}©2Ü£HG!H”pQ¯NO|WYŸ*6.ðÿðžÜ ÀPTCA§Ì\ƒGçñ¬¸ÊÎ}?»*<ò©„^XŸÇÎnøÎyp!Tô¢ÿe‹AèW6¯Ø…ùeÿ['ÊtK~ÂYºâ‹çVî¡““ç@OJz[_˜¾lP/ÑKç´(0o*r’£¡)/F‚ÀyŽÇ;„6KK|r%R.ê9æ™ñЋ¬Þúy®·˜Ü=èÇR[~{y½âé; ÁŽã‹J¦ÛƒvgR ù³Ó<‹jÉ›²¦÷«¢Ãí¸†=C ú-Ý#ɡ܌ÑÕ‡«ŽËT´¤Áù¼òH/Z+fW¤W°Ú:I!|Ûyƒ ß±©B’œd`bE¤¶á1«™7£ÝUŒn+³;zæ7¥¾Zû½`¤€fcžªÀ#P;LÌy‘U¦÷€½x;N‡W&âY ïC…­¢f%@’ æÎ §€x‹ÿÕp<æã oåÎQ-낟”f +Q]§l»pG|ö ¡ÀL0/Z;åðžêX‘ưx*°E*`'qõ*ݺ…O•R¡4¤þùŽ´N[F†óÓ]ÎF:Vi“çj¹$¬kP˳ñÔ…nŠ‚bVèEæ¨ÕÍÏ4œ;°èEGyÿ2¤/ÍUÂGýg°z3CÁµ¢õI…¥q/n7³íBÏæ0ï!|¶Çº»ß¶tÄU¡ïÂü®W£f¢Üåljb 4eçÁê3ªùùm¶nBhŒ „I¡µë¢&‡b½ÚåCÙJE…Ô™K­ÁmŠX×ù®Ñ³¢3Õš6J§k}I9LæpÒ- mjPڌǤuZ°Y²”ùXÔ;ÎÈ áÈ+C[ç%x‹]ÈH«ÚtíUX½ÚÀëOYŸ°\XJ„Nwlü¨D¢aÞ9c–èÕçUßðYTT|âe^Ia.m'¡â+Ì(Lˆfxˆ¸äð£íÚPqðØ‘I½_¬×mŸßßo»#]PD&Þ°-ì74/‡XGf¢”Vüšpy@ËÎ’[¾€¼³dñ»(3Ú\ÿ²>ÂPQÜyä BBf¢÷øT@Ú¬44ꨡ9;ƒ¶ÍQ`O[Ë©IqùY l5ÖÙøúœT_='|÷îwª[,¡Ï¼™Åþï›&¼Ñ6¾QwャÃp£¯<-cµ€UITxqdøXÁ&Î@ý©‚†¦\ñ ï¾Þ‹aæb©X\¨»MÓž‘6=~›ôÑ&6?Ô7ÒwÉÅ7 8¨rp5“j¢ˆuDêøi¨Ý¯üvw9ÈlN>•Ê¢†'AÂTµîO¦ßÍ(kÚ5}¹×¼|>Cþ‘êFŠlLÔxëzcÂÝë7 +é‰kmSA(ïl¿—9EäpÉËzo''yà‹‚j» ¡¼÷&੨Mk×ãø#z»<¿È2™Ð3TUòúUè™,˜iOl@z•Ý`ˆ<Çò»ªikÁ΋öÔ=W\ã8Ä">EIKH)§`¢xÈ©FsÒ»4jœ—Œ€ô4åg»¥ñãôr¶Å5¡À"Cæš¾Õ«ÃSÚHòúŠI¸o31g…ñ®( ý'ëc;‰ô`ˆÐÌy³…Ÿk¢ð>9µL´æðòCµ€sÑý¼O·­m"´®B! sOGÎà{íؽ~’´3J¨–¯YÿA¹¯ÒöÒrYßÙš3÷ÀˆˆK lyU(°”aXèˆÌ=†¤èØÞ-)U9iŸÈÚ“‘NͪÐÚ8ö… v^âmö/TXfˆ›}¶XOϬ¬Ód“KË’$1“űçùòi6åD‘ŸºEYKL~ÔlçW#IlÊÓðÍŒ½†@21jEœ¬/ËýÀ—¾ez¡‹è…º›~°äÎí׻ך {»è¦Å¶¹Ïx˜_WhY:ðl­ûöÅ“úQÔÇÅ~¥™ãhÏß߉´ !`ƒbÒ[n¦ºÏ® XëplªçªT>—p«Á÷Û.¿Êl_'`Óš½@>t7S=žIÕ•jõHÐÈb\ GÃßX“úË7¼ì–ð¼´© »KË"P-/C:Ë’.Ø”ÞH£’ãÉIŸW å š2ém:°EY8Ì«ù6ÅReä Åzû.ÍÅÍ$Ûê®þ9Mp(¤ôRh²/¾Ÿºb&FjéNY_[IbÕ˜n™±;±œcÒ²¾PýGsi_^CµÆ{`<Ì>:SD¡›žde|¢~BÚ$¯<Ütxlf;¹-3‡åáùŸÒ ¬\ ë<ðÜÛ$¡Ç㛵§mª2²cmÇåÜ%XX•kÿbÔxýWX÷¶ÜÙ2wá5L ÛÃWü€g“[‰2s›erø`»hŽèëóvíÀyμO~ðbœÈ\g«=³ë7ª0¿°!á¦äT²5¤ÔnÐg¨‘ðœ3HÁ¬ä2Çkõ±äšãóqð´u~Íí«€¹CK"=¼¦BFs)†ùÜT ‰X=àáéÆqrŽmä'=B§É rAV®á"Î'wß(žM{—iÄöû5‹êç Ù~‡Üò’;EæBÍΌȇ38`ꀞ6^èˆJ0w<<2m³w7‰uuJ¤±Ðÿ©Iƒ›Ÿàç ÓM~Š=/»x‹×Fùioâ¬üvcø¥k;§§c&eeHr¢·|l®ú÷î;º€KÄ6bQtßWóçV2“Cm¼›)Ý{â¨ÒM6jjåÉõ%ÈðWä¿/›9rÞm5WðØŒ•XoÐ+•¡R¦Ê$—¿»Ôgoz›Ë¿Ër »iî¡!À†eùù™)\LJ_é§$ ^ŸÉ‡½¡F•Þ&…ÑÊàé·é Ñè6¸Ró`—'ŸÝ V+Õ÷¾Õ4Wæp¸ú ®üºYéÎÙ Ý–Ú%Š©!ªè¿êÚV»T—ðÓFà¿jÔÍS¥Âú×á$i[X>ÝÚyÞº³–àô—áÕà’?Üí²jy®¥ª›h„ËõŸ®s¨Á ºž:Gt²À×éOX¼á7¦®‰Ð`…¾’.ÁL[~yò®J¼ Ãó40ß4í›,ûœNJ¹ƒîŸµïE“îJsî ÿó,¡µÛÕ ·§êÒª%°úQê힬ð`ㄜº)Sµî‰êì^ö˜H¨ ‘Ná)™šJÅþ}8€Ï¯¸iWv >&¬n®hðY1j¾WÙÁs>Ã?*<µþJãÆ©oŒGfª…{oŒ‹°Þ¿DK(]yðIID¨Ç§?ê]ˆ&Q,ïÚ†L«¨¬,@ê˨c_ÞèWë™Í Âv±*3©k Ùm%—î€8+üwû:CÙnÖŠŠaú•ðX¯Ö´V…ü&ÒBŸJv´ƒÒ¬Vro|Ùp×XjAD§W«1°Ž‹7Cñ~{î<§šÐ Ãgñ[sUk;Ì+"ðg<8©Ÿã¹L4vcü•¼÷¶ú¼•OÉÇ—Ý}é¢z(]¬œŒ¨r»è_L%‹ä}(5¡ƒyCïéD¤ºÛ'õÁ%€Am :”¡yDf¥ôG¦­ OŒûbÔ¬~&×3ˆgá[è4ÀD5“‰´óñ"qoG¹J…`Hj嵘AÜÓ]±Ø&:{õŸ‚k—IÏà@` }»t U£ï™»>[ýÕ¹d„qå—)·êÓÍ RiÅiŒª¸gþ•ÔךµÈ%rgy+¡éÂ%ÅøÝø"³IÄ‚!þç/[Gµ#›<àº)ºÝŸ˜í»5ÎÒž…‹Ýü‘®åç>8å»e-“1V ˆ9÷lV/ù$6Ê¥ß?›½çË †bCî8¨„žõ–Í¥Ï,k»Î9ÚÊât»H á¯Èœ‘LÆs0Õ9rÊVäØÎ.[-Ò³…_ƒÁ×>½Û*¢³’iÂ<W( &„ áesÌ¥y]2z$SB„9«O•>Åâvz',Ⱦö¢êá:»L@L²lä°Ikï?VWŘ‘ÊDÍæ–¯Œ²† Tbè—ùi»"T]ª¶?ëҲDZr\/ù½²ý'sÏØ:ÞpM¢êÎ…¤úêSÙÇ3"jžB´¾ ËJ© ñìÐgG‡Ò‡²mN^(¬úµjäEùFåŠòÙÇBìOšJaæÂŸÕ ¾ÿ<îÝOc’¿ø¼›sgVrÈi‡xÞì’ðØ¢¤ëf,Kê%’1­†£³*—ŽÊžA•(KÞH'Ûqó2ÁÔšyG=伫ZC"‡ÛþÎÒœÛkþ›°;‡‡n×¥öÌ}CÎàxý UŽÄ’Ê7gcÐuÚ¢ôKèÏëQO·6r—•…OX#SÈPId¤^fV!GCƒ&\UŸ¸¤\³õ ²aœd¥IŸS›.WõÔ‡ÛØe'U¸—wÌZ¥¸IþáTÎZ¼EöÕ]34ÎÐâÁ(P¾(%{÷V˜Ìfâxrg4Š8¡ØBæøóì-‹@k+¶C…Ö–_ý&‡ñ^4EÎȸÃÅØ%£T¤ /Qa\9aCŠåöäœ|¬'ºíBJnãvm¬²¥(÷¤)Ñ2•Ï.¸^¾—à>|€æFÜmä±£™.“¥Žõ%KíñדnŽSÕdܾ*b7oˆ®¥fVEŽí¿Ñˬωc"É %fG3(·q"»S;¸7³åÀ7Š¥á³gOž>Š$õCXvp8÷„cߟT[™µèIèÍá1ˆ‡V}3Bm?›Îô%ù3$l (³¿Å’ûè×ßãç•z¡8¶[ói÷qd”¿6£Ø ÜåôÜå.…rë!vͳ±Ûý³4um¬§qmo* _5ûØÈ²ÑzÇéágÛלN«Õ±eèox~88±{,V›;û 2Å*\ÊÛÎhžHtE°^o«&d‚´Â¾IÍÕhµ½ç!°÷·›°áêæ§‡Oð_Qûª­ïn2¹ÃϘÛeàl%|Þ ºk ý§¿˜Åc+1ÙPšõ“ËË{ &|rÆk©Ž¯t¨{šì-)ª‡Õ`y²ßæÀ+Ö)cŽÞ‰t–\´ÙMZmv—ób}2S7›ô‡¯ÎýºAu|@§ãŽöögX¥ÄuÁœ“XNÊûßÊà:¿Õ\Ësù°¡ó ¬hÑÞâäîÿVæ{9 Cµm°Ò³‘®[Ê%„Âûþ5ö}z[i>þ¤f• D®.~ ¡ß%Ûƒ²€Œ¼öphôu`ÞYØè§¶È þÛ¢ 2¶ˆ³{¯|ªQ“‚’}ù”'9»)W_ r‘jô³€ »Ó©Y)8 ÔÇiýcjJ;ÛÃ}°úhƒ…$þl* QŽøÞdSƒ ÉÉÊv:ŽAð ŠÌ2 ¤0x`,61˜³`éÕpç¡âëV2¯;óÛ8 ÏÈ/ŽyL´A²¹¥Ùª7Ú]Úi5ןñ6ëD¨Þ‡Ú'Ÿ÷ÕK@ùT•¸vßD„g¶%+£®îÆP„OS×ú» Þ‚Ð…†‘ |€]F†U­™Žº¼ r}IúbÕƒaƒJÆÀ!zʇÁÖ-åÄ/#Jîι>A¤Â¿#–¾©ù®1¨îe¨æ»{¨ÎÖ+ÒÓB¸‹3ÿðÁ›fGYz: ð”•×ñPÛUoà‰9G¢¥ûfhzà’âËMŽ%³³¥°©b½Xd>È`®Ø¦E[°ÊËã¡gÙUä–¦µçµ«E\Ÿ™"#?¥ '‘Å`—+°#á·*JluµNœ§[øÇÅ/R¦e.l¶Ü£%!b°¦2Ëa¨îñ6À._Æe›4ÃS“Iã­Œ$ÔPi^£Yªg.m’×B÷ m?*°z*V8I1V0Ž·'x¶äAâÞŠ)LBüJ¬¾i ¯Ë{þÄÈ+Ü}ù»8<XC‰V)·£¬©g‘㟗P'Û—â¤ÂâJÄ78øB1fUšS¿Ç̽®-‚1»|јé|u—¶WcËõ¼n«qN½`áÓ±’{‡ÁŠÐaÃÜ`náô„Œ¡¨S;çÔrÔä¢mš/Ÿ–Ô]SŠü…/ǯ§”×Ïò~ú÷íò4}ü°pÏŽ0“°m €ÎÖOß.--Æ>ïìc+&ªäiZ£›í»ÆØ»‘ 0¢ÏÁÎ(Y•±8†­_š“« Dûý‰ö[жâýYðvêÛKÜ—Š‹äØnYµ“ïà««¼²®/'t㯌ZîOLòm×¼OMyÈÃÌ#áý„œ ~ç¾ÿâè`cФØxòœŒ6b³6òIÊonQžæÿ+2¾yÞºÊŦßÕkPG…v…y΃±ô¢Ãð!Ç2C%qpa}o¶ÆÙˆ†×ÒÅeh÷pI’xRãÙ8'ý2ÕôŽ]–s–É,Åd±tñ¢Î¨fP=2pŒvà º®•=[Š$Ê›\´ñìWÝñ”¶DsYKÄmÊ€˜Ââ&Ì´q¿(þj¦ŠïÄIÖòÅ„_•Ø(‡‰{‘%±_@8ãL¸˜¨€!Öo":nÒêáSJ”f÷ö.þ½Ëµ]ð$LÙ…í÷1[#êcnQm@Î Ä/ÖÔð´«¿F»±°ow†´ÒïÁÜ+›*]õ ‘Òª <ƒ ÚÔÌ?±¬ú8]œ¬WVacüÎÂzüݾü ;d—û[bz}]=þ­_®«djÙÔi~>æ¼±`ÿ®9Æ"ÄñåôƾW‘Ôf6O µA)Svo{hÒÈm:ÒÚ…ˆ6˜§@‡ÀAôË•hÂmæÊÏL?ô•ðÓ±1}I3áà—­Ó°–š^n“(…™~æÉ÷ÌðêHv<ÂÑhÿÀ÷—Ó¸m¤t²<¸e t{Þ”\Z÷SèzJÅö›‡ß‡pb©Í0Pü»-vKu¦ó«z9¤ºbª°O@6° ‹†¿§[PÇÓE8$ÓìÂfòCT~Ó ô•‘SËÆ7xÁ1_b /ÛdÃÓCåozqŽé‚ê®v<¤"Ò?E¹~_—]7˜d¤ÌÓ™D>¨$´Ïk<ÙñiªgÁ¤‰ À.³]£èã?mK.œzÛ7–;†î$TãõÌW• °æ›·§C<»aH0³:ïÚ^@ß#ˆbä^iš" KTe‹ÃiÙÀñ£ÜRÈNŸ™‹iJ‚8 ¯¦%R¤¸å/IàKm€nZÍ&*Ý W–ä±q›€04/6p-IsÉ,Év¯×˵f{Åszhÿ餒iœy γ0Y¹MQ)ßÖ¼g=€…®eÄ"ª‡ÍÙúX[ 5rmRäÑ Ð¬~=§a3ê\Êi‘ •‡NµÔÖÒs™µ³rÐP(‚8ýZ¤”FÎéÑWDSsÝc¡¿7N61#@t‚:J'\:[>êu_Ì‚«:ú¡^dèÅx2^Ô¿Å>.6Ä0 Ôê*NM†¡–:27Ǥˆ8çþ­Å>L]"^ £æ‘Š.{K”‰þûÍ5›lìç-y’Ü{ÄõÐø.¿¾XÏÛÃaÖžq'¬A(˜I6á¼Î™"[ÄeƒFz”UYaAM€ý ˆÎ£¼Ø‹t ˆM"¯µâ9¹(*‰o—µª¨¤j²Ì ùÄΊ-öÝ•+3ŸõôQa¬¨;©: æ<ß Ù¤Tl“%)Ð/L"‚7Þ:ab(™¦Í¡¶ºwÏE%é7ó öUŠ„~“#,FdâÄ=ô™¾8ÊN4ë ËM'æÉ4¢]Âç–1IŸ°[³u …NQW„~·©löù~hŽÐÒsël^tȱÔŵ-ÍÜ[ñ Ì_—üÓIøA‹jåyD²–†‰ðÖ[îsû³*ñ‡j‘D á1Eœðû!³QNË©aõq4„-KÒ"é¤<»?ïk‹Ì.Ó:°xlu0™Aàk2ÙÑ™“|¯>©+a|˜ó=Oªá¿yÕ¸s× ±¾æB(™Y~!üc»èh_1ïU´(b?Ñæ!U[¼¢l˜jÊiqNâ…áúXI×oøH™d§„ÆóϤKU.È EŠR¶Žp.×ÓÏÓm~$îPÍ +ß®€™˜à¶À,ñ+蜠r×%¥~YPŒÂKÿçÂp'#l·Å,š§…©ŽŒ"‰Vyþa3|­DhjþbÝ]ÙÃy |ÌiR†sxÇ„t¶uUWݰ܉‚8Š w\²§AãåÌÈ•@´9UÐ3‡mïBÆ=)f„0šy;ÿÍ”ÏøHf¶ŒÌ8>Tð§4ì­†“}2úʳ)ûç®§pÄÝÑ^à87W’k­xwì¦ÄDZ­¿˜–ìJøAäC‹DbѼY“£š:çQÅK?4à&†?yã°²‘áPNâeÚE-{dÀ.ÌH®³e¯íÙU˜=j÷É6¡"¤ÕAÍ’m&ðÏÁB×’ ¾iNj¶mP `mHˆY¸×Ñí€ ˜5æË§óâÛ ÂØS Ù´‰³4¶‹¶±FÒè÷”ÁRò‚ë:DØÁ¯ê¶fU*ÎqÔô¯øG]@3¯sòóÿ4ß{Õ’¨eø· rüȽŒO j³ËBÖ1‘ûD'œÖÅ+H*ÅÁÀBzÒN,™vI F¸¶›"µ`•“^l%„|s›nê×ßœj¹£á0BÊxòÝÐ-†2´&È’]Po—®åüw‡ 埭Qÿ¾ÚD«ž¤þ-×€½3‹z T™ý‘hÎLêÞüÓzÐ —Åè‚e1˜)öS¢±¤íŽæ=‰Ê2®‡Ü#!x {`à55Ú6«#=‘íÁ8O’®ÿ¹QGdÀù%(ëµáØo¯ ª³t ÜñÕ´('—¾Á‘dQ,€ÑÆè‚+TÅ䇰ÇCKåÖ’ýP%‰÷±Kî‰A!èÉššjSÚ µmă»£î¥5›:ŠÇUÇ1LŸ£g“ͯ,˜û§'¸¼ÛÁ¬Œ2}0/ûœáªÉßÇŸÑÇŒ³ /“ž‘sCÔí¼]Ï9Øæ»Ч8û"ʱå|´,¯oÝæÊ2ZvíR³'Ð)Eܺdé¡sn3fM­˜á3¦A‚ÿ° c[Czê*Ò Z,áâÀ3Ð˳¿bpb.îàXÅ¢ËëŠöØBLM¡G“ùxID2äÐÖØüãÈEDò#¦$á§hÅÓ ì\×q±á­ü½d*úQj™Ö§Ê’ýG3ª&Ês¡I-oi9›Ç÷³;üɲ¢ø^Ï€Ž?OsAZb•cþ™»¦\À€Ôó¦ˆe¾™Llt"Ž½ê¿¾+˜Mü;ì WR¥Ü÷>}+u"ŽpaDµI±èÈ &1YûÂzAÎP<­OôD9“&ܶƈØ^J«ñ í( ºŒ®6‚—š¹A³íi,;÷ qøØ¥(Æ©&F—ZVâaãÁi7ΡÉIªlVJFßTU×k/†Ýéý¹R¼Þ‰-ÆS[+¾gW¹²š^ÑïbCç–Tþ‹¸Ž´e;þ—A/nwÇzì£)5ª©þ AGVa—oœ’5§ÕR/k&òÖw_”ŠMÈ-o`×ÜoqFR¡Ç ÷…i>ku¿ÀCb#dê°È:µâmâ…[vZÃz s ØW6å§_­Æ›ãº#˜Dž¥²—>RËRwä ‘JRžánÂÐØ«GÒ«©È"Ÿ,ë_VO‡‡cAÝ‹ä®]Õé TäŠy¾uâ— æöZàŽVWm!HT•š1˜'†iD+ ¼œÙ'–‡qíÉIîq ŒÛ>OšfR§¥{ù<™5Ü.åïdù®×·ÔWì¥+K1Û‹õißÚ.ƒ…dz_i·rƒÍ;Q›CÊ(2È=-%û;S‡<áÚÍ´ÜŽÔ|`ȶâ÷èr.<{>[º[4¥ð>±¦¬ëµŸoäì#ÃKù_´@ TëW;W&ª0æŒrª:ÞÀCäÿŸÍ¹É5ô*$Ϲl€nM°anˆWÀ ”˾öànd«)Rº¥wõ¿d ”°ÈÞ7«Ûj«»5Ý` ÃÍ÷pZJcþçy§ºëV£€«¹TÌ–<€*Ø„_LÛ☑Q2þëU{Q¶¨cøÖjB^cÝÆ"§£w#jµÐ¢H¿Hš(£5ûDÿùìÈ2^åŒ.ãó5K [ o2åFäãœ;0º¶Zúžì¿@÷Ÿ5 :é’«Ìñ+OÕJ-X·'`}q.2›Gî!Å|=ÀŒvO1kŒ\ÊváS‘©Þ†W~&BÛÖßûªÝ#ù=󈸗¨8@Æ<øýþJPèÀp †}ˆ¢Ï`žsDåU“TÞä:ü÷ŽeÕ̧6>¤n•Io’MV¼«Ð¤ZÔÅ8;Â9mþ~ò‹Ë›äÞ„ÇÞ“+ö6ãI2ÓìP8v{ꊲ‡Ì…5~~ã;3ÄíªÖŽøsT(c¿ endstream endobj 84 0 obj << /Length1 1912 /Length2 22780 /Length3 0 /Length 23921 /Filter /FlateDecode >> stream xÚ´zeX›]¶6RŠ+îîî®EŠ;‚$¸[q(îîîîw+^(nÅ¡Åý£ïœ9óΜùû]¹’'÷²{íµ×ÚIž+”¤*jŒ¢f ìÄÈÊÄÂPPT…؃Y¹UÎ6Æ6&dJJq ±–0vò¸,ʦN¯¾¯,,¼È”i èðª4˜¸NÆêîv@Vñ_@âèÄhbìøª‚-@` í«‹8ÄÎÝdaéô';#ãŸH¼Å˜rƦÖWGkÀlcRd(A\_…  0ZÛ˜ æu @CMRU ­ª¬¡¢FËôXÍÙÎâð?¹ˆ«©kH3$D•Ô%ÀO i 5õ?¯ê@ðkþ %õWýžWÃ?ê¢êÚ*’¬ÌÖ`¸Ahÿ#7ª×ÌÿJíÕÕÜbû€ÆÒÉÉŽ™ÙÕÕ•ÉÂÙщ â`ÁdgóW~ê– G€+ÄÁðzuÚÿ*Œ3ØìµœN–Àø³+)ìüã$ù‡Òöµ”¯N¯r§ÿMìµNbÚüÃàþ¥±ã_¾ ** [cØ 6›¾:;9;Œþ’½>fÔÿHwvpøÃ¡øO•ÃÿÒü3u1ÈëÊôl<½]ÿsÇŒÁÎŽ«Í¿/Ûv9:9þ#"`²þÉÞñÏžÀÉE•d¥$ÕÔ^̨y­˜ÉÉÍé/ë?ñD%ø<,œV^NËk“J‚ÍÄ!¶¶¯Y;"ÿ)ŸèµNNwæÿÛØÖ`ˆ+Øó¿(ÌA`3ó?µ7s¶cÖƒì²ÿcþ*Bþ—Ìè`í@7SKæ?„õË1ëñk!¼=í vscG 7ÈøzAöt4vœœÞžWü;Bfå˜L^[ýu\ÿŠ. 6‡xÿ!~Í䟪ÿiš¿F•öuNÍ `w€Ð™Y âôÚ4ÿ&í?¸¤œml”Œm4ÿ§¦ÿihl ²qÿwÓÿ0ÑþÉ–F â`kló:£È h¦r2µüGiÿ!—u2~íQ°… ðu[þiü)›×Þ}=@Ž/#'Ûè^ÛÒÔ ttpýà øZˆÿÈøµúò0+kK(ÉéÐÿß¶ùËNl 1-lœ\ccwd–×^`ãäx²¾6¶Ðí¯f03!N¯.;g'o€9Äùφrq˜EÿˆþB¼Üfã!^³éÿ"NžW±y]Ð?%¬,,f³¿AV3ðoÀlù7øÊú|¥²þ|nó7øJmû/ÈúJô7^ÖW"Èß €Ùîoð•×áoð•×ño Àìô/ÈöÊýoð5”Ç_ðßwCåωôר±ük{þç¨þ «99@¬š ³×©¿™(;9€ÜtY^ç„õUþúøç;ý# ü׈ÿÍ[L âæÉÈñZfF6.+;;ÏŸÕrzÿ›¯é?NÍ¿fôµþ‰ÿY Ð hм´1å´Jn .õ‘ÌÿVGÉËt\+¤%ûf)í[!¾DÎP¸às‹_:UDA†Oß'ñ3¸H‹2Çæy­5¡rêÒì£È¶±¢á[IѱìOLþéŠßýʾ’ÑÈeçis̤·Å¶4ÆÅy;ºî"Ù&_0'‘镵­ä¹α6c;Ø`¹}Ç è$üþ­Úéå;:¸Wt‰nÖ(/wLÞ®§ CÿÓ»âõIª9e±Á y¤ŽºîZáñK}sEåôé*ýŠ|²ù_ðTŠøµJ…‰ÂS¿7±ØÙ®çâq>´‹®ÓØšµ%cº$”d-šJXh·¤ì%)—…=ñK×PµÖèµí‰1µOöÈ>¢Ú]ßZ¡F]F~S¹Q³¬Ðª¢§<²ÉoCµ|G=Á2àÇý”åMÌQ6ùÞå¦N²´I"°PsÓ&¿üM „l©kÍ#§ ó&0¥'×F¿%W u²]¯‘Så¨,˦×Îkˆ@ER.V]šíáýðˆo×cÖr¤Ê§m`+jçÛJX¢ò&¾9X}óÒƒ¾&¡ß_ùŒ3ÓòÄc+ͧm$Ü€í7«šY$®½óÔ&œè-oPçî¨z6 'ê¢ì‚m ž²øÂ×¥§öãÁWHîîâc´'—Ί2Œ-ßwüã#ŒãÃÃi9}4¤æúp6žTÔ¥/0Ÿ¦‰cÜ4¡|yk2¾dªë 0ïæGNn&çRÍôCIµeñ/¯¬3qäXi&¼Ñ=ª$Ù‚Ã^W¶ iô™Œ†«CÕ?a*½©Çç,³É©4¥¼° _|½ «N•XXß`äÔ¹N[6_6›.RY¥~rá(æ-½[ØÓÇd»ì‹áÌÞ¡¢ÐJû²$MÙqpì2ÏáMéDÃÞ´"tK’Vz)ÖdÌdz[Ã, ú”ºë?”Ì„a”n&¤x`ÍÕË ½ vÌ[p§‘q´}Çß²êÆæÈuÆ•ÙP ŒpÁ¥:~XáÈxÄ6èxäµ—6÷K¹‹³ê-åvn“¶ô"ús‹^œ‚®þ ¥Ë„&­"ÅZÚD¤ÜŸ×׸ڗðô”Ù­µ}uR@¨Ñ©=ÑȈ0ü6:½íéØ6¦JY–É0—¸ŠÞö¢²cÉ4ü[“˜Œ“·¿˜*å©l¿#ófn~š”ýƵ̓)}õˆb« +ÂôÄ B‹1ÏbŽkW‰BCLJ—0²}Añ•°¿êÛŠ‹%F®kÚr\&-±JÓïK2ÇX¬jZŽÖ¼­pva™GSùòz9>«÷Nêô»ï®I7› æj«Ôn¿ð‰\ÃV‘5CFŒŸÉÕsˆÛgžû K%k‘6èG¾F3«÷ÁWЗ™šïý–3âëÛjLí÷>¸i1òèêÖâŒEô©Qp‚H“äê¾ê±FÎib”tH5ï™PJ󳺯ÁqàÌ 4­”ì¾P0v@¾ñXãËÃ[ÔK+øCPdŸ‹‘GkJ’e—Ž4É£”n¤È½i›Ú„}E¸Áô»ô¾ƒ›7A™N‰K›•¨zÄB0t»ÖVµ/š“«Ö„ëó•XQX‘'íJâõøðY"ó驿6îj˜¨$–5â®Ëß/btP]ûe±³àùpú”ºÖбÔ\"NÓòMÑ],š £Ð'~˜ ç%y×Í÷®ÌéZÃ<ÑÅÏ8"Ž¿¼Ì9ÑÈ_ʇÓ¶AžKhCÇyßÇpÐ6 á‰ÉŸÈnผ¦Ü™X¯=ÌyOÿ ¿Ð%œ&¹J}/÷F¶w¼~’ïrÀh]VWk^È>2Ì ÄqøäŽRFEF‹êÚ/«ýè)0F›!&µlü¸¡(ÔH†ÞÄÆ$0kh¼EÍêÑëÞZ{&”ÜŽ~ñûVÜÛ=ýt¨zFGËãÄ0ûëÕHý䃳«·ä~hšÜÏWã¼Ü<Û“ûxo…´ñbÈEªà_Tò3#™Wè¤C¶§ð¥²òçUÌËâÄ{sȯÇv¶›ô1.·>óXÞø6û†A–ž5æc-q2—HûGsßZÜNAùnñÜuó©Hyß:ÉÁy©ØóJRøÕ›„|Ê/m¢è@-ñ­]BB–7W:¯õäèhŠG‹iƒõýÛ³àxÑN‡@ƒ¼7ñÚÓu‰œêJYY ÛRFÅMÝI*j¿En… ox ÚhëßÔ[9µr¦ð2c°Ãß°VéNóÍ“6ðÖðQY2gw¼~ÝKœµªa H3†ƒúºV€~œ+måš“LxƬ˵Z—*6mˆ“ø8‡áÒýœºº€µÖåѵS²cí×Tü&§×i)=z2ýθÌÿ¥…‘Ï&ÜCÅ¢xÀ¬‹ì¦%·?»_G ³Þ‡_nÓÚkÈzÐÏo …†NÁ@‘ù<#:†“6 l×îût·æ×¬‚_£Äæj¡?˜yæpm˜ÆväPbÿHÇ–-¬ù=¾@0ã‘ ªÌ ¶FI•bÌ è¢ùQ}§zÐ6C¸!ÊŠУÜ…Zù& ú÷íÏ Yɦl±†o%Z·ùͦ.oqó$ ±èÛ1<„ê ÓÀ³˜”P÷R6­)ûÙ4ç]·þ$±÷¦TõŽ…ŽÊ ÖN»1'"5O­®Ë²öŸ7#š bĽãSá«C3¤"Å;ïEó[Õ:G¥gÁh…ĤšH/ 6F±áø|hsSÇÚWÔš±5GÛäe# ŸMV;,ÑOéÝáßËÍÈï¨næ-GΊó_êçÜÎØê‚§£ŒºÇžûÇÈYŒXœ”:;ØCÍ'…Ìäå§I‰ï[ú ¾àô¦ÒÙÞÐl¨Э Šºpšž3´:¸Âù±xÓÁ^/qdö½Ø4/*9rÛ8hÞ MH…Ù™\=]E6K£äG_ÉDâ‚ ö½áÉdQåïÿæhúUÑnÅz†®ã›8™¼À| ò²šÙ „/Z䑦äÊdÂ&£ô`:N„ÛÀëÞ#£]ßÒCëêAêG£ñ'&íG[Õã@ÝàŠÝ¸|h¯™-ÔÃÄÌ‘ë2ª“|˜ú÷ޝª˜·i›Ä vÔà7Ì,MGÏ6WΪ[»ÉÒUPÕ;óiYÃÜä†I£æ-Œq3ËæS­OÛ}”1•Ì37åc¼Ê%¢TȖąщ¾Yÿ’å‚Ï ,UòŒ \Bÿz½H•#§_ÓmÊã½bÖ…æÜETŠŽb,g œ3ÞúQ]jŽqxU ¿aÅ„–ù°B³Æ,Áz‘'œ?p“=”âùÃ-·ŸÅjH_¡Þb-¼yÅ;âTˆO+eÌÅG2âgŒ“òôÃëqAÝlfaîC¤àRzɸ ­»äDAúdC“ŽÈwñ‚RͤMÛŽ8 oU0@†öÚtÂ? ðÒJW8«HÔý¦,?–©½`·;zNZ»¤JÑü%ÿJ}BŠ¢´ØJÞá'?§zrÚÎE±2EÅ­{_ãÁL†'7ɽÐÈ~å¶Oâ:ÆIW0S&jû¢$;wÖã÷7¹Ž=]s­³}œÑ'yôf¿pZVAòÄ%"³’)¶IÍ…¤ã˜|;Î-ß…­+>íÅÙ'{\ŠZgqEt¿'™=6×AÿįñÛñ îw=Ú/Ÿüö|P›[¯EL‚» ×¾j@´æ@ßÛ¯³‘0pš½®­øó9v=Ìî¾-ô‹šn”’JТ ùñ(}IAÀÜ«áÕm«ñК€ånÝ Ç•%ÿNœÿAHžcÜòU1¤,öV¢¤ó@CÖNfwpQPêPãi`›#˜çï6^i˜7‘Å™=ߢ%¯5Sj]ðŒûKFt'J­©Í­D"< Í¢Í"û-¥Ê½ixAÇŠ=+ŽLáã´Ôú¯ÝÈ#»…Œ-G™V)$* ËÚöló“rB¦jPDЋ0KÓñÇîÈteu‡”=ƒíEX5£­è2áÚÅkR(û^x…„5EL…0…oZ‹Ù‘¢±²|œ2ß>4¶U†ðd“=ÜOåãÌäÖÜÄë%©[K]e ¹]ĶùÁÇ\!MNì‰ÁÞpEÒ%‹Ú/¶2ÐXt¸‹7q@{½»îƒä#=öhàÔ»”˜f{óHÊÍ£»1_Çã(9ò(ÓQhǽš“™-ÊìˆÁëdƒE‘—ùž(C”J–}æcó@ðsϼƶš¥UENaM°¤=ÖÊ›œSA#þCQǺŸoÌ€8GÑg?îÌ {Ë’È[,”ß÷v­eë*¼Z-öÞâ%øøXè¿ùàãï0\錧Ýó5M¼j`Ó¹FJ÷w,±¥¼e¿‰òt ßÍc-Íi^¸!ÿë7]ÅïY¾Æ¥gÏÁ€/¶¸ÞOšïüáüÝjÒ_²Ïœjæe:Ð2µ}K°[Æ'ÁÇ6OyÔê¥wfõݳZÚŸoz¥G»û®DOÇTŠÄ˜“Önȼ—À2k¥å¾ûì[)€Ìæ³i÷“zŒ¾ š&Õ y2rõ„n}S¨y»ÚŠ`ÀE6D‹ø …?¼î`??Ï5¯^¬]ÊÓ[$ õF½Ù¼ø|~úÄÙõER55¡( Pò~™»j”§í÷ðàÓIøö×Þ¸M¶—Åþ~Ý÷Œ” ã­¥ßT?ŸÎdûº•Z»<Ÿ WËËuĦ²u QÙøØ½ËnµÀêJ{€ _,Lyˆ{aŠ–ýR!¥ïQº©+wGqíô™Í¼:j"M?OaÙ>G¹Ä—j=dÄtD‡ÄÛD¤ò4MâN(°-©#tʆž`SYy]L>n${Z¶Ÿ5tô;:rá¿=\€Ù“¬Ðþ8jÅ—ôä3ÌSïR¥e2¢Uð=Dö1ÙYŸ7S{7LÔW6tföÜp®™€¼-P >ŸÚíæy`¶±óq9öíЗ3¶Î6ÐUŸšMT†¥þÔsø7Â÷ŒN¥zÛzàÉämœ>×Éì»oÀßÙžkñ-TGðh¤0Ú›Í-ù> +ŠE®Œè‡.†öù0LnÇDdI_w¯ØÄä–W­ñý‘¬ŽoÚ¸[(úsÜ¥‘!<:Pœ3ë?Ï®o¾þ”_Ï.a9mœ(LÔ°ý[ˆ˜*ËÈÏ,Ø\ï¤ã"ħÓ$…)0‹>{Å ú’Û^Ô Ͳ™%5H€4úµ:Ûе7QúTdg²ƒ¬ï¶W{$wÊÊ<;R$:°w.hdà æŒÌgc*54å/ýí…>WbâN|sÙãIv²4·©M˜RÄ¥¦]”Ü_ýšòÒg+† G«»j:õôL®EƒâË2ß½ûÍgöG%“vFËoEªú8Ãr…m¿VWƒšÕ:ÐJEð*…F–1’×^6«–ê—¸a—ß4á¶žä–åD æF d H¬êmà=vÛíJÝ7’ÑÖ`÷¨1þlvW+WwÐdÛjPú@4h´î0cZ+È63•(à¡,'±cOªƒªêwÉ óºŸRb\Ï5 èš ¾¼½3zÿ@CV¥èû5}©H¯½nšØfw¾¨á9ËÞš\±óo%Ê» qè(¬ÌçP¯Õ„x»µgˆcºk±r×mµ™›`Õn“®½=.ÓgPÝ>#Fô ó{?wpù-}'*ÕÁÁ…q1†ûyšHP÷Æ® Ù¯£ø§Ó y|gGÁO3ÇÛÛrÖѾ_…<ìk‡â_5¨°Òî3E˜Æz€Ô14ˆKÎc™ˆÞORÈD|“:IK\¯× {| °‰sôB›øô š2sñûEýÂ%{ã‚iE³›Ê­V.ƒC zÔ©œ¿# ¼·Ødhaá;cô4M†Ž"–^‡Míà¢À£57²´ö€Ê÷OÊúŒ%ê¤û“‘³DºÏ[|k›ÑLö.Ê¡f `-NRðÌ*!×㸔æçÀ0\åh›~¶O¹àkÉ#Ëïu^*‡^ÔÀéþE¯þsy}Àv2Ö7RÉÝËfZZ sֲǸk$ì%ÒZ£]xÂÆqô¸ŒQQ2_Á7˜SçÊê'S;¦!è¦Èh™‘gÞ%gÑ’xqZÁÒVûm³TZ:ö¿‚ètžþË–\BYF^â^¢å‡Ø¾¬ZŽó7ÊÎk9‡~l}f©ÑNõÌŒ½FâRõf<­Š0W&Ò ×¿›£…öíLv¢õ¢M8”¸ n‡˜q¹lŒã¾Á¦è–ƒe—“H‰nF“‰9q!Ê:. ¡9ø–·Wö ÊÔ•Ì»Éo3GÚíÐi8±šk,¾ág€; ‡279LE·ü¬ ªc ¤4 Ó=X7â5ÆWÁx7ƒù…gABºx;^9oÓoä6âÖÌp‘š³HÞsŸ\sÙ)¿M4‹TÜ.~¾«½E×ÓcT½ —ÔÄìÆöj†H“·ÃP)ôŠçò ($âÓvÊb1T¤4\Y´âï‡5‘ZÛõ‰îZø<0¹J'C¤Ýųì+¾'4 LÓzAú3ïÙí(ÓŽYwMH™ŠV‰5~¾;k ¬Ï¹;awy«:Dú›ZøíRQþ—úŒ:Î7Ï­Ç—n^ÃMÌ4 ¨Ì'üøz\û–¶ä)ƒœ„8LT¬¸äÕ5”:±/×Íp£^(´ÏØnOä£6 uÈ[¿¦¥Ëš`B3òçHGæïX.ê¯FfIå?žóŽk€”iMs9‰`f¶ö•B€"ðõ ên?Ï©C“E=žm:¹`„_[7D”Ç£––øðÈßèxÂý€ØW _óSùÆöo4`ú4–~ÑF¸~”¸?^Ðѧ ™µðyÇ.ÕHÚ¶'Õë\\â'Ø^–î®Ffh/ñ ­½áËÄòîfݨœ7ÁC¸¬Qæø­D…,uô§/Êò+qý¦_ù#Ë ?fâ]µ¢V”³0 \K0aóJâE.“ëz ”ƒ‹M¸Ôïaóûåc¡,cHÊUc?ÛÉË™M6Ë•»¹û´ò¼—©Û"8Á»èµáiÇ«áÀØÍ²ñ’›AÚýy­Î‚)ûy† šÿ¾íÙUI·`>çÎȇr…•#k}cqêÆE+…—óp =hÅ æ³ h¦8@þàXô2jùÚÝ)ŒÜÒ¯J˜/½¸fåÐlxý†”Ñ>Çz cZäãd¦ÝPÔ`JåÔ»`«ðIÓö´A88;½þÅXS@)Üá ¦OёԓÂ;£ú÷8S22.ÓþLŠ*[HËÚn¥¥Õçj±JZž_«÷fßmn!A]Å‘ ±$kðŽ}³¦·h³'™Å‹ÁQ¥#kuèb ÞÕÑ8|˜KClÃg#Ъ³uîDR {Y«t\›¹RKÂå ‡Þ¼§DŒ·7$=J‚&õv=´v}Ч¤\["ý„¯Añ&¾ÖÏK ê¶L ºp§î”—“œª°9Îj½”Y„-½Ú˜$ZTþ`ôyáž‹ *™ úû÷UíVZxe©ÔŠwš¤È"˜’•÷ !ãô*Y™ve†jKlCÄÅVC{MæIh‰ ‚—í¢Sœªsã}9¸  “D|«Vå³öðµG “Œv%tæó|÷æB$öÈ»¾,骚V$÷#®½?ÀÒÛAUF¤Ù®ãvô]„ešÚ~ EøÆÈgæšh^9–ª+]`OA¶~}hJV¿þ£¿Íœ"sWÀxI0`ót¢%Måg~ÉÁO#Hœ O™áô•“3ÄW½‰Ô0ýfÚ߸ í¨ƒt7r‘3<Ú$µñÆg3Û‰ôe}ÜϵnF…ÁWÙ¾ÿ'ÁÕOzÐ]‰ÆËXNÕ³ËÊplRomˆ€ƒ*ÏŒè\´~žœ=321{ÅÓå­Êϯ—ËŽ’_–³Y…Îw~­69Ë5`iÐQÀ@ÍÏ$þóiè$ÝBǘú÷BsS\N*Hï¨A«#Ð%o:²(;†¢õx^blkqðñLT|=-Æ}•ùi™ð¿ÜvíÇÉŽçº*½T×%—¢'Çjq$[at/YnðÆf“%ã’qëdØzöž•ЧXÛ6>>Tò^¥ä2/ƒQ¾O±]GŠ’<~?°ÇváæLz‚ÝõüP²]š8Xv¥ESÚ®»1—òuZ±2 ™ˆµÇÉdYoéÖ<ˆå~¦ØÃà$h„E@Ùb´Ñç}¢±G JÙÀZ;ë [Cf(—§Ç’ÕÿþD&~Ïâ¬-‹¾ AS9Ê'U2ÞŸÞˆ­:Ã7«b¯;#+è{Œÿξˆ(T‹™,‹µñƒí\F•äѯ>–·a>&ýȘ[™ö6Ć=ºÉãô:í`~ãn÷"Ø)Þ@aó#ö=~(á¯ÉgÒNEM6¿|,Në#ç_4ÅüÑâöèL8´ÒlÂ7ä¤*z5“>0ŒPëmDÑ?k•>+¼³³zÊ ¸€?Ëÿ€õÙû:bЦkÔ,(µ…Ø0ÑûnÓjT×Ê'¿ s”ºFVÈ'ˆÉçˆíêgÖ+¡È\(ü-½¼N‘ŽG:8õy^õˆò¿|c†ÎÈÝJ?Ä­";zÈ|÷sñH{Q%g‚Øêãoô|“¬ö¼¶M®N–Ôg¬¬ õq£¨X¡ êþâM×¾$Ý—`ºÉE»Oá ½u¬Þ~µÅ(öejθEU‰¸³¬ådúq%ìNQ°©ó”¦íƒÔ*— ƒèZòžá²ø0µ 8õ ‘,oì>äT!Û›J¶)OYƒ„­-‰OŽpv­`“ÞGÄ6aü¥ÄïÈÜaÚÄ Ïš}Ã=ž¢e Km$>›ÕŸ¸ä>^É3,÷x'Þ"^-‚”Ð53#û“ÆßõëœÂ˜’ò_dXG×½6µ|èžqˆÊûB‰8Í(Ô&¸œJÞ$âõ•êKWeì™-NÞD~œ£¢HOùîñŒwEÑuºðÌÅ?ðÓuvš­¯ „PLµ ŒN0 ˜Us‡)Í$>S jÕ#Á5ÚL®q_Ø[ʉì!«§³.-)re4ÖòŒ"£½SæçB#ñFñÚ#8);K V4-† òŸñYa>󤜿;{¡ï†‰V@Ñ­HA}1ÿš™×Ih…1n媈{I“B“èÜàr¤¯ûèºìÍ9Å`Ï[¤X1ÿ„@•0DÀw+z·½€M‹*W7΋°ÓGLšžo¯“1úx¥ªûÂm8Æܵë[Ïÿ6"n6 ,ºÓ q¼¿+?y30«Dï­“¥|åP’ÅÐ8–[AX ?¥tîœÀ‚§à”^ZÛ³Ó÷Û^C#g{é^GªC£cA(h>Ÿ_b•%¿bÛŠZ!Qêû¶—òt÷JÈzª¤&lI®Wî–‡Œ°SI—©S–4ÄËïeãÜåFLÃî~¥ÈÂ@ãCŠÙÕÃö6l¦ÉêÞSäÁõÞ¹ƒr¡”Ð7CÐKd0게Só–mmØOQÞÕ]˜îfB„“Öÿf“ó’DPñvÌç+êie³ÿK)í¾_”ò¯$ÅiÙ(ß._ºÙ0)-û/ÆÁí —u1ÕúDÿå6¯¦ÉãPÂ’h 6%ôXê1cÉJJÊÏEXIúŒP-G/ý^¼,‰Ä±Ñþˆ ¾"Ä ‡ë.ÔÙTra©Z…&ñë×CˆâYJ‡›à*ꇲkUÞ ²0æXÿ7|·èÆyñßwÌye‚ö†z.? ßW$TßGÙUpå ‡’8–pÀÆÿl®HΠƒ]|fŸZ£í¥«³ýÆkR¼†>-ZËÇ+e 1$›´ÂB{ ./.ϧÁ¿—êþbñªHý°ôŠ­5ÓT³&£Óu) ÷ÓD³MògûÓAãb!‡ÒZ¦÷G„BTè>ÇD¾Dv‰hæ9;¼§Ãð­eöŸ©.)‰=YKq–<óåþŒÍNCi´WžURIýZÞ¿“-÷.ˆrGlE;J|Ÿ­c&4l8>H‡QY°ã\´÷—ÛUñ5^ƾѧ*¤:¡Çµ~@1éM€–E¼F7‘ :5€£©7ÁX1œknÚÐBz“ç[ã{Î(ãÿ|zâ¹A‡tBΚ&:oʧ•B½J¡PfÝ”÷àõ]g¦Ã«QETte81ÊR|œ?ˉJ±¬C—ÖK?ðŠ­OÖ` ,œ½µxý·k·—Í">ãB¥å, ¤XNS«ÿL\,KTÜü‹ýti‡aÓ°»ÁâЋӡÑG!÷£²¤ÚSCS¡"OTÞ‰œÇÁ6JæÝÈ(ä*ó³å}þ b½Ë\0qÕ2ÑêšZjýO 96‡nÃVðéÓÇ:—ûi”ùžïc b ƒ?üB©îL¦ÐÞôŽx8Bw”R…¼ÿâ`ÐXÇ>¦ —= #žQTAHÄ"w¯Õ"ìpñÇkH_"CÞ6ïöö—–S{ÜÆ»âƒVEœ~>!™°k( 2 E*q›”"¥$`4±áññ7Ù±¤î¨%SI'KìªÔetâÎ 5 ¤™‰RÙöüZ;­! k¦‡éDr?hÐRÃö`V@ Ö×å°òÀ«tÙÀ*æ>+lï~þA¦Ä…ëLàI¤³#ò Æ’¶qõïÂ_AN ÊåÇý¦……çvÀźDÌ?O!(1°_wœèSHÞitá³äñÜïC ¥ ·Q¥îi&[¨U)fmóœ†]¬LJ®ïh/æYñ¹žÀ/®7û7XÊ¿¹§Çe/&†µ¾A–ïöZ‚ q·­ÏKÓZ?ÐÍ:5ÅŸ ^eѦ ·¹Ät¡ÙóJy ˆ®~2uîK²"Í÷5[# §8H+ö™§ZÊqÜÞÁL÷^–aÍ440©¸ÃM)Xóv¿!=6*ÔHö×e|Š•qã©ÞàÉ©¹‰‡÷ËòÕèDáÔdÝéP•vÇ]V½ýp…âÑßÏò%ˆ†þéÙY(J\Ð"[gá»~'ÐÕM»Á_6*šÏÌB †¼Wßú& SPÓ™»þ~ë\ró`C<´‹,¥~¨˜øÍo=Ü-)û¢;ÈdM«íŒ}ÅåŒu¹ Ñà´fIUõò@ykåé÷¸là{g˜¸‚ÑOBf° ê›—‚½9q‰‚ã iê0m¹a›Ë],U‹·œäáË-¢×0ŒmzZbA|J©¶Ämbú¸ŸÿíóØ#¾¬³Ìq^*ì3™ûˆasÁ;ȪÚrUøNˆ°ô†Ê‘«ƒòÞUý,‚ÂY˜£F×õÖ»ýæ‡Üë©”©Á·\ærmj›âǵD –3ï7‡úZ×)'–/ÜiO5jØ žµcÛz5¬2¨é0R  jLqÔÝrêáû@ºŸ|á™m쟳* sõ'3ͲKcø\Û ~µK«RDÛ=å#Fš¤c“jm<Ä ?0k*“Q5xf46˜yU"Ê}<ù]\³KØ¡so.#J¨DŽvz»‘ù5†äšªXeh?,Œj zd_zþ~¦åùáޜޑ(!Â.÷¬BBñ;Ë!áSI õ£œøÏùnj ¹Ä¦9b>6¬Âa'¢g“YÈþþ5µùƒrÇÑÆ‘àãƒõî;’y†µâû;c8 ¡u‰8zú«´ NmœÀØ’§ð™¡K»HR³1éA½(¼)Bñÿ~å]&Íj™!aZ–„ªäãGÌ&*¬S+»<ø‰ ÁݱŸ_ÈaBÏ@Ù…b“+«EE„œÞ¬Øˆùнº¦›Òªh=­?as½ºknŠê# $3º:ôñët÷ì Ïü’U²£¶TA"ýÔÆU´¢T.yßï€1~ômwA,òË*À¡"}ˆ#¨rØx[Ö5®+Ò±àEz Áýù •V³ +:=>iÙÈ\7Í}~»šüiM™æ*®”¹IËôãúxcç›IzoÁùËyÇúÉšJ¬43cIS¤öOÛWD£M×^ªÍ4îX)o<@KùUÙ/ñ ˸YNöã͆=Œå½›ÕtDÅ}np»ÚÙpµð·ÙBIÒ OáÈx;iB­Æ ô,_ýœç“Nb5‰¡§Jô¾ïyp>á226ühIc#•¢É¸XEAS…t:'{ùÚO°›ñtÊI6?©jzÈVüàUhï±”§¥µþ„‚ÿNpfEËÿ­—/¬Ù—€Ua9Cï½X?¿<‹óÐS„5¤Ó‡´ò7åØÚ ïÃCdJc˜e¤íÜŒÊ+Xî”á(Â:wDRX b8++œ»j.3²‡Ô?! 4ɼ ½ÃÞã|" yú̼ÛYÛ§Êãv°å”¨ŠoØ}‰U™ø-Ш<&ô}»Ãøò9òIÖéÈ"ðé×cqsŠ…Ó¤¥*Ñ–\ÛlüÁ7Ývú¿—+R—`'D[Ô äDÖíè%£+žøM6Þ¨!p~wIçÅÚÛª$¬o;EwÀ%£ÚpJ&+îߨØ[ˆæpÝr¿ï€êØ¢„màæ¤Î=©†ÿª™½^62@›ú†ð_—¬þýõÕ²ú´µÍª‹–I àã0ñhƒ«¦Gu¡L`nÉ ѳ]a›È¹“7£½|jaª¹ûê4ÙôžGMžå¯‰ E²„0½^C6IeëæEΧìsº1@-è6¾NÒ’ïÑÁ./Åiâ%&E½¯~w'mbÇÐò¯çmê×Ò¦gOhIku"*!ðïöÓs ³ kdÓc°&G»dÃT¢úý*|ƒd‹“¾6%ì¿ësiÍ›¨0YqLåø,ðB»{]¹—y„¶1NPÀ¸)wæuØumâNjë¿ 5â{¢D÷(rJŠ$ÊR= èVfžéI4ë>r ±Ë²oñ“ÝH ,ø <.$Ï2;t{ìß»Æ7Pc‹ +ëxE‘¶ŽŠJÇšÇ95´*šé®–5 ­üÜ¿!‚´`¦Ê}ÙDX"cé¯ ‰«SÍYW)ø° ™áÖ:¸Q+ £_*®Ä¾Bj“d{û F( úô(Lñ ÷AÚÁDŸá…ïœÅ÷Ö.¾ÛÅ—’rBYŒéÂ1ð« ôŸ¹u“®Fç rõí‘.eâOŠêpÜ+!íÿïß}¿Ø6ú¼I¿¹ó<’'§ü0t>!U‘A[p½ÿ5yjª>ñ8[‹ró,òÞøÃ ƒ»;ƒv7 ¬/ö·šC*ÿŽO²C5üqÞ9W_î–Å9íôål§¶m¬hþ( 7õŸ*\§Ê­Ã‡f×t$Üi¤j*³Pµ9³hâ³>s¥·køVýn ֌̅s៞]²0 ?:åpãd*ƒ[(reüÒ=Þ:g:8©áÞóð–,œ¼«SÃ>1ß }t˜†!7ýòWH‚&*×Ü» iur×m6?< ¯4ÕžƒÜ Ù‘Ï—BxoˆÍ²6¿õ„kÿÚzi]/»EÜæc5Eضƒºå™£îKQÉÒYD-J ù’øÈò¢úôc6TVG î>ÆÍáÒ+ÝJä õ ÛN…›Ñ é’E&>¹Ìþ\ÃñqÊÓýsÌŒ˜O:'Šnõé’æÚ`VႼa™¶"„ùËsšíZ(LK£eà%õS„‘±@v Efvh)§¡ãï‡üùg*Qóf Ѭ¹87Ji3ü=g¯VDŒ"©'¡ïè”þJ*ÉŽìÛï7¬I:3ç»ÿ–ê4ág+#~Ü´± J‰?½¦^²2‘'e‘ðìÄX*,*°O[`¦9œiíûIÍ’+ï:öÁ¸&ô2Ä»’—söPyI [Ï„'äÐ ªø»ÎÈüq³¨øÓÚŸYQ&]«<Çí´b2•ÕP±Gî%Â`iCîyǶÍ*o”ŒßvȰŠ_”‹/”–]Ç™+qžƒ!Z\9Èü{(?])üãàpA†àñ[ê41^±B÷ÃålP¶Î°Æuq­¸<I7R½1H;ಒ幚[í¨-1cͪ€gei¦¾‰ —íéè“tyj¼„‘„ü;ÿÓq®êwWò´¢i·,¸ ’}Ó~zc³šç«kè $gMl¢ÃNý¾²_+|m‰2ßn†¦@`‹Ô<ŸP¨sþÆd2,³9 ûÆVðúÒ»n$Þ‹¶ðÂòQÒ¥#¶‚OåLó'I·S×ðF×ÎaÜ:b§<Ü㲦å­ï1.öA 8eÑQÚnÁѪy‚F5ÜXR˜li;gªòàϯÎs’.éØÑm¸RÕsS?¿¡ðÒwÁ/ÀTWúÉn9p,=¼ÞÅ|ø¨hÚ¨²û”nÇ›ªŲïã.À¾‰ÚF)ý$A1HSó,9³eÔmméf‡D^QH£«›€7éÉôV¬¢‚]Ëñv #ˆ–$2þ‘z×2…>êãµvcÝà­R"l“XºÝHŽÎQ««y-T/qû¸UZÙ<å³9~͈ BH]Ö<öWÑKALm” ççfÝ@´à$ÇæÅ¬‹« ÁCýìðR(;TêOZëy­D¯xÝ5BÈž†Ê§µéÞwémñ’A8gŽ&þ¾´¼ìcz»ð‹”¨çKFi¬Æ“Èv6Ë0ó]oÐ<ý›ÞV»rùùÖÐo¼‘y-&ê£Â̈µ¡c ©kМâ‹F4>Ì÷ÝIÅ1¨ïοµ!yn~?éʈ*Ë|óÍnm§VF–êƒ,;^ØåžìR F & –.dlS mÒ©¨V>0œÜv\ŠsϲšòÐÓ¥/˜ô9‚BÂ[vˆ¿¼­QXáñ»¸ç¦¬„¢{J’cc׃l:Îg5cOÅw*g= ËÈnøÊŵ?Iûi¯äCÚÜ2º×â–Ä´ÅPëáº.Ù%=\’Ñ2…ÞÇÌÌ6W"ÏF :+ ;í¦¤W ¬_é©¡É>y£WïïÙ½²)¤—–ªpcìëŽB¬Å¥ Q–ÓáîN¶X"µÂ¯ã=é@ ’)hw;õ>+[_ÿ}üÖ ©”ùÚÓgËìAjŸ-QJ£ævñ±473»c•ÉÌò›¹ÚÉŽä*æ Êû뛊äÅWEZ¢V·ÓW‘F»ïË–VL5Sýº±ödý‰½ ÷® ŽüÕɘìÍc™¸ÄÉ´«ß’I#dvž¢1¸ÐóŠºÏ`q–ƈ,ÜÝÏ•’:Qç5#áÇ5%ÞQˆÌhb"7 ?c s‚aÑŸH;§¨ëˆÒmu¸@ñ„gãöº$UJ7Sð2`¤«õ%žxòTÃzíâŪՔÝA[ò=­rá“Øßv6ù’1:éM§ãy{MÛ€¦@\}!æQá.b,Fƒ‹Q¡ò#r Ô/zÂÞ¿Qžav½ÉðC£•6wà z!w‹,­‡9/kÜ¥†|J<œ _ùº›Œ¦,œJVÝ!FÁkt$ev#SDµ×£ØzyÈ.?X"N…ûÃî\Ë`Ñá‡âÈ¢òç’dC…ÙÖ•o1éÍ#þË}×B»P4ìàçY‰>²Ýnhßö•¼­v¼øg°­„s–.v Š/6˜ 7h[­Ù_ªôcHŒ‰ê×ö3w+êkHDV·ærûã¹di‰ÙK˜™ZB¢:üÄ#}‰XŒ„ƒ¡8òQm›„6x$µ•4yN”FFŠu“|ãõdd’Í,ê—0o…¾ÂZ˜ïÅ%Û¼d#¯íÎßõôðRgnHùu3¡…¶Â((m›þ?×]—;yxƒÃ®?S¥€5¿ÖxQ×ÿ~xq1%mšˆÖ”'u×CFw9kìZ’ÿ†û~ ÿÍëÄrOJ¼°îa«Ì8¹®U§·Ct°oI`ª½7¹‰Ož{rä·i a¨´óŸ]!k ¿€ØØ[ô Š‘ÐPòý‡‘ô%JVÐvqÙóïŽ$µË­èriš, ,EŒí >_E&l¦äfÌý½ø?Il9LßãæÀW€¸ÓýÕ–uƒ1õeýÊ Ôeœ%´™Çg\õ*õÇlÝdHTƒ³1ŸV É­w(â,W;åÈ„òÐ¥òLŒËôA“=¡5¸6‰5ÑþW¤®þsWÕ>ïoò´¹©;q\A(¡ŠèpàG¤â‚n†¶/²|*g}cZT%<ÓF.:³ýŒÃn©Z2PvJ˜³ç(9”Æ™$ É ßñ™¿sÑàA-_6¸` ÁÉ“ûcƒ$/eº‚“^Õ²ÒO…µ³Ç÷þ ¤öOÑä|lý]Æ••™­º0ॲDŠø“Ǫ§g샗ÁÙø(— yeÕ4’?œÖ¢Ûf oE µkž±na¾®l.-ù™Z¥¨íOy‰§yÅ$ý^eÌÙî˜Ò[„”ƒ›{*Ü5b|”iÛB2WÛˆH™Ü•úbBò× ÙuœáÈnv.aˉß>–t³qs5m}Ù'f•ÉÊ£Šl#¸Ô³¯ºÇBÿ„ë`øÂÊ¿Þm¹^¿†!½®½­¤«{ï+=yV"Í`ëχ#û%›I™´c²²À3³,‰ß†7•–Å™\ÁÑO•’ €Kq™÷wò¯ý×Û¸©áY3 'ƒukiün©ôz6m};&È=”žÛ÷ÆáyDk›X¾Ó:Åyl>4æþO_Rƒ—84 e Íwë1^“Ïš”²Ü ô¶8H¤P‰KeN_ÎÝúY’‘ÿ+6pŠ>m8ݶ°)—²Œ(6Z½³ ‡¤dˆã³¬µÏ;Lql³‹ÈCwˆþ1¢„ÁÚ›5ã@´öµÊk»YÁ3êm$äép õÝsèŒä/¿ÚLsºH™É#ãï#v›Fµ„%ø=•#HAv´£çæÛâ. k•TµYá{2ò”G—7ÞÔ 3£÷=ÑVÄdqvÇ‹G–c($µ" xm±/€^K÷‚Õƒ«bd<í®Cp6o µD¬¤áœ†ˆ"` ¼çUî)#Ì [ NœLËÌÜ.Ðú¾ÑÞÄ»È)ï/y{Ž5bµ2@}4ˆð4Öä½p›9ú[>јµI¥ÃЇlЃA·Å׋¥D0ýà4ýR]èã껢­Š¼“ïSÕ3¤Ý‹Jû øˆøð™ûîºn¿=ÍïjqU¢63ó›âÿ*ͨ¾@*ù×ïøË>Y(ZØA‹4õŠê\P>;. Ò«Ç ˆ:hEÕúŠ„ ŠÄ"üŸÍ1÷íšw@÷âœÙ]Ú‰ºçL ‡òG…¤R Y–@7|bæÈ°ˆ£ï1|M5ƒæ¡«!@öWÉ9°òË„…‡ÿ:`(¤0­ ðËUqé«–)QVç¯ò=ó`€Âÿ;MÄQêçÞlQ)•„·}!#77XõÊ4ª×.…AòÏeTЦµ.ØÇÉ(É‘}Etk1„…îvÎt1»et±T:)z> LP° צRx»K‰;|=Ê ð(z˜¤^uùâßL˜îÌ—ø;ã3¤Ú?Ĭ̼-i ÅøÑ 9¶O{±N[ ìÊæ—›~ašÑçÂxÁò¿Ú;“ŸUFÌw¿ˆÚåÚÇln+‰ÅúºÅ6GÝÛ—Ô½J™Îx:àÈ|µ[%/šÿYæ·§”ú‹úÔ^é¥ÈmäçïU+TNܾԑüXæYõãIŽ?[E÷ÿZLb÷÷™’7LN¬0.’ïÅVMLP2€p¼wÎ1»B¤Iòzš5u+wìøÿüpô‹ýešüâ«'ÿéÊÕqHŸÌÉu#«?L“1¾Ù\ê-Crqõ2Ž~wÖÀÒó¾ãCåþ檙þ©n,ùöíi·T¢ –78@ùKÉ ‘#Öä íó9@K‹ª“ùVGÂX%!v<œJ/w:«Ë™¶ûŒm©š‚AQ£8·}´-ÁrŒú;ƒé`×o$C]cÓ–¡°¸f=¶@ŽÑ'Àa}ìܨ"Ìiï8 ’¶äœÞ›¨â.ËzÂ{¦hê|_¢B{é6S“†£#À‚—>êÀúÀdlŒ°ïvJ¥™¸8.QÿýÏ7©Ž·* )wšÞjøß»µ?äÔIÉ VØÐžÄç0Ðb·õP.D$ìÛà%(b¦½ªŸºu"žN!ÍÁ 1#Aìûag}"·¡¤(-íZPJØÁ ¿ýìÚ£¦DËûKÂÑæo‘(>|‹ZZÞ1.¶o5´2xMÐ_F¹“B5´§°jÅâ„]ZéW%NݸMªÎG©ük‰f¯á©Æ±Rѱ¿ûv¸5Ê'i®ùÄe¼M¶1ÄNnèý€ÑŽ”bá;ª^¦:ìcŽ4ÈàIÐùR o7ç=]¯™ßÞƒõï†í´~ö­Yz£¦Ž_¡Î®ÄZ¥µOasîM—þ‰Ö÷=îuO¹¦ìÜ1òÏ9Nsw^Ô0 Ð7‹˜K·gZ‰Iw8™ånȶ<]§¢ÄPcá œ†sŽúÑÏòÛ®9*Õ÷Êý_p}·á0”[[Nj0ã#JÏlçAb.VwÔEŠ“?=¦ÏÉqR0ç%Ž^°äºn³rš<4Ùßë?|CàÝ|’.ñN° ZwWÛªºîÃÀ%ÛÕ4Ÿ7ÆùY×Jéâ{”²"¹Á1¹­ƒ;pÛïÙ&Ôcµ×æÞ*R ½ì)(ÏvñQš,D`—3Ÿ[ö1ïñ7æ„ß5yÑ'"Tj¨4Xö²ˆ;g] ;Ϩš¡FH._÷œÑ}O_©§ ml7uEvÈ˳€=,>!ˆ¡³;°LÒAAŽÕƒ°Žn-F4ë#tGWcEZ¸´úoŽÃÀÃä(†p•ÝËm³ÁºM|ÈrdÜ'y&pXVV&Ø×o¿Œ^u¢±2þ[{%;æä´¶Z3ÎÊ 5LjbŠC¶Ô/Ù¯zqCnc[G€cÊæpö[–4‰«z×_†ñ×| øô¿íÔh_œïÅ6Ù+JÅY|øUó“qѤmS=Ó) qàð czO^$x)w8PI®¾)$¹Eö>Ü$8M|É “¨ ª¯UÝ%£b ‡`•å “aRèÕ°—ò ëuÕˆòu,“`Å9Ký rõÔÍmdßNú,ÇhUÍõnÁ»qãÎKÈ ]‰I*ªa~8¶m­!‰ã"æßš˜¶ÆÓ¥óUù¤åN²‹xû†£d·B{•¡ÒcÓ@v‘×?,®Ÿ}‹ ”‰ø9¸SÐ$*L[2 78®Ø] D˯vªê3FCfAeDûA=ô×"̉­Y‘´ V¯9!ã“ÜW/¼ ˜?}Ñ‘J¾ ¤•¹E~,D+þÝ_£<)Ô3ÞSU¤&¬kÁ …LddÄJç&•HÊnHVðzF?±8){MØÚE ›™;WJOÜ{ã¬e<¸î•XÚ­î5 %²¾zšƒ»ßÖÇJ041q;Ì*à¡kO³qVk÷s„µç 7cwu.›e¸ˆ¥ì^ H”[þ<¹üÓßF^\{¤£ðU1»ÙÐÑ¥©§áûuŒfÁ;k:—àLÝ¢«¡œ bV;ªÍŸìO²ƒÚÓ£/³óSH邟_ë~O?c’úˆ¼¤Ôšv ¦/1PpOªâÑ„”`ýž±50‹'ê‡dT¾ØÔÓ:«C·ÓsË}ܯŸóçý®9[`¨ÿÚ?n™õ‹-§ÒÅD@4ôUçùzFAl#ù\ Õ$•ê*'‰àb9µRê,Êoµ›"¤Ó“Ã]”bÕ×={*ÿø·ðK²÷@fB ‡–·®0Ò|œD? Úõ CÆ•J?¬"Ĭw°çßÛ¬²IµmÃgÍ!X?&ä\zP -öK5$½å,ÖÍõ™÷ò®w¹Þ·ãÖY™Z \ë.¯&ª×ÔcTxôòÜŒ!  mEŸI‘¶€c·æSïKÊ&ÅîÏ++aŸä®3šeÁî„"~Ѷ5üì :ÿíÉš³¸;À—|Ñ¿5DãI7´"ÜgcŽKq¡þI)[öR& à¤N\¹N äݰìÃPv¦'á{l!í¶ª~„ÕV*ÑÌlòØž¯ˆN–)¯÷êMR¸$+ÞsÕV1µ[;¡óxO†qwdÇ<Šr+öB pw»‚ªy#ôýƒHkÕÓgèº4Ýä|ÿo¼þµ}1pU?m¨çæ°CÿF‡Uðî«Æiè'_OãI%˜ÛuÉsdBžÊƒ?2X{iÜw…ÎËÚgPã—QɦJ³hܨé™ñÑUºlûñ±Fí.çꈷ0&+¯j"v‹ž‹i•Ö Ýå‰rp@3‹Ì°ròúg)-¨@óiÈñŸ¥iûÊEQtó¢ ù³™Dæƒq—0À@r3¹Úlªßpˆ?t6D4ƒ*Æ:ìÝñçå™Õô²k’@2[ô÷êðÛ¤ööì€ÅEª‹ÊktfRi¡/iQ”jƒ#ûD—¥è ,ãô£«MZ’;´çµÁ—Çá¯6´du®üäï.Ȇ¢‡”•à<!´ËÁõ ¦JãT·‘Ñ„l\tûØFSY³ËÏW‚r¥Ïƒµ—X½ 6ÀìÙ)³­LIu—.M¶|®½!Š‘±§š…cÀ¼nÍuñ2²óp¢Å¸ÖS¸ë_€kdÔ6òçq}'CàÜï~*hLr(…F–b­dSqÆÁêïôµ š“sâtT½Ÿ†G€‘B]7ß;#«ó—o¬´uæôŠÑ‡ó-àä£/U¡c:ìï[k³Ü—øn ¿´M¾0'ç};‚jŒZäïò„þ¶V|ÖaÌÒ7ú—²—³O•–êŠôë9ê ßEÕÎÊ¿ó1ÔxÚOÁÐÇNÿLÞ’ÅNšÉ˹Ğ@æçÉ>ù r}Í,SŠKÆ{IØÙøÁ¶¡ÓYrâ’;ZÎë ”‹ÙØÈpŠ!xÏ2ZÈá¤u\ÑÃUGœAtŠÙºHòi¥ã‘‰f'Iù0/턇¿gàz/ýÅaÓ,g³ô»BýF` ë¶T²5~2Ê')˜–®h/3f®Ûõv4]<°rÜaëä×¾m"^‡^q Ua*[cYs›¥“:îÀáøAÆ\ç¼gdƒ š2/hEEä…xeM=©”¶ltΦÈÎéæP²“ØÉeˆC‡ÊˆÝ÷Ó÷ÙÞÚTpìèCíÚZâã2v<é™9åE*,§ÉÞ#©9¤=;²ÜÝEuÏ¼Žˆ+UM°ˆe 'p1þ‰œ!¹£­7yasXO ©vÃÐ «{69›Âp˜{]@Áôw¢Ì×P,‰žÙQ§kC‰r Ù®l0ÂO_Ÿíۘʴþ’Á@êÅo›ó,…¯ójÝzÕ)¾zæ±pØFp (ßr®|a’0Â`G´Àß5–ˆ¸ŽRU0º<´ÄGt©¹Ð61úç¸ÆØç…ßp, ãéâ|x‰i_b fSœw*O¦ÎNÃw —ùÂîmux0® ®ô®‡ª_¾›.çM„µv›%µ¢r–H‹M аâXto”ž„Pßý„ßNÁ¯¸‘¨$…‚=yΑ³`Èí‘û£þ°“ñQ¨.D˰UÛþþ5çO$¦ùí‰t‘òl*ÿ[öòRòõOÍZ'ݘ,J‰rçPß㾟F·BbC97úјñsÙ?‚$-‡;êv] ²v/^RÂ\ÿ·,êµ%°b÷c3F´‰ú)à·@Lç³Ù!o%š§wVGVxà.ô¸&õœÉ-÷úòý;ɺYέ“q\Õ#sΦ1Ž˜\ô-0÷ël!kÞ›òÕЙpÄ$Y,Ú®i„à\{Zt`&…®€Ã•Gƒä0ýz(¤Tl#MÅw¶)ñ!ºÔú^båZã½ö4 €™Y5[‹Ö [›‹¡D9íQ¿›¸»{/C‰à™?ÛŒ7¢N{VÁavɤGÉ[5ÑÁê"Èzóéá^„^™IB=Ú–Œ¡KkþoPUÉ.âØ;׬Ò'¡ É0×ãNlFõX…VúMJÎÊ^Ìr¢n…zê^ûŸÐîì#Kr4€Æ•6­C,sKKŒÅÅ~b€v—ês[»‹ï¹KùæÊò¶CÙ"²ÖŸòÞ4Ÿ_È:§@\8ýq[nÆ%‡o¯i’šªÂ@ðSÃxçš~ ×/Ow]€×¥×_Çå<Ù8¡îç £Œ ”GG}‡¼x¦ø½Äh¯ !N—Ñ ;ÄiÈÿâ"÷ñÜ…ï ýÛAgHå ƒ=ºÈ®‹ U£_ž‡»Í´«Z}‰) ¤JׯYi)˜Š Ejš]ʸ€Õ’Žù¼¤<ü\BP?–ºnÜe3SJÀ™¿ÆaLÔ艸Éõ Ïèù¢’Á½“vpÏ8?* žpp&¶/Je2í;J|×]t|hLjH.ä+®RÉ#«“<ä‘ù4¸ŸFA|§@"‰{,T÷æ8.wØÓÕt>¥__•T‰cË´J•šÄßY‚lTÃ(TQ_ucöÇfÜ#µiöuë¸n—%ÌË: wM–\¬deèÄ* aÐy¬ÃÀ4]…bŸ(ÿ zór7`¢Ü„¼dg+üŸ½ýU GíNÂwbŸÎF)èUnYˆôÀœ±êŠÔ'Á^gE7|‚0›qÁöçwÎpÇm•3£.ú8TÒÛܾS£„ÂIÎq^oµ+D›ÛxP%ÅNQuÊ€¾6Ñ$Âöl YÒ“Ë-N"j4áE~¶@c2Í멸-“êkAïæÖÿ?91ϯ&Ec'ŽK=_™^Ê«Òm¦(—¿Tz¡`ƒ1`½D%ï:pFGµW›¸ÖT©z÷ù}`Ð]$-EÕœ(î’OÃvO†­“VèÛQäáÙ…¼5¥o¾ãïGY”d¿÷çÀêYü|ÿ ÍÅ)\K2ÝàÝÔþàƒápyìýK†Ù*5õÄõÂò¦óq푈ãéf}9JzYE¤Ï5ù Ó]v>öRjãæ‚ÏàÑHsQC$Dò,Á°{þ@thó‡ç -—Ngˆ¶·ùaV„ÿñZC970­>Á1¶T Õ¬[¤ˆT7ZXn-ňúç¬C¦¼zoîÔK'X©¦h$ÁÜx Ã÷ÆÞ{ž¿Y›ªŠ(üUZ­e:*–ßÏc„ƒ$½™À3iZ¼Iª@$¼gˆ´lɘñ)~ŠÌ+â~i„ÒЃ?3ÉKk%½#¿4÷3‰l5ù᩹VðGé%‘kÅ_æ¨hØí[¨€c Bû£Ïo`0¤Œ¯ÉÇû¶›ì Gñ½øÝ<ÍÄÚ® ‰Äà‹EÇ«“<½ûEÙ•é*Ï—W„+ŸÉØÜÎìMÓ9²}o0?úX9ᡳëbuÃR>Áç  uÖñä¿æ0(eº0‚¤},s±µ[ž³«1ˆ qí‰9HÂt˜£,Gòu…ö¦¿“Äêiûj8þ¹·ÿã%ïŸ9Ú}ÇÐþi©Ë"£“«É­MÀ×È\ëx†uÀ'§âÂÒ®†×!EøŒ¼¢ÎáÌn¼ m‘ÿUSYvè 5u¢ —øXëÃ"GzGçПŠ4›~¾Q Îˆ‰5_së#7 9]Õ~¢Ñ(ßQ )Ä9‡$ QÀ°¿Tƒ¨áð ÒtLû«}hTå÷öïkÇÔÞÖ$aÚ¦C ÊׯH°ÎÙFàÆ9éš‚ÿðÀÕ` endstream endobj 86 0 obj << /Length1 2790 /Length2 29346 /Length3 0 /Length 30940 /Filter /FlateDecode >> stream xÚ´»eTÜϲ5Œ%Hp‚Û ÁÝ!¸»»Ã w îîÁ‚»»÷àîîÁ=àüϽ'9ç>_ßÅ‚aWUWíÞ]Ýý[Ã@A¢¨B/djk ·9Ñ330ñdåälA¶ÌLôÊ@sgk# …ˆÐÈÉÒ$jääp:YLœÀCÁLLÜ èvšŒÝr@'#Uw; 3€Êè hëèDolävAæ– 5xˆˆ­»ƒ¥¹…Óï¬ôô¿3ý-Ì62±²uu´²LÒ r y[W°Ñ@e -Œ¬Í¶fU &@MELY ¡¬ ¦¨BÍN¬âlggëð?\DTTÕ$è¢Bòªb :@BMEõ÷OU Ìßœ ¯ öÿ®ü=\NLUHUKQŒ™ñ÷Ì ƒ£åï²ÿÅÌ ð‡x¨™ƒ­Í?TNNv<ŒŒ®®® æÎŽN ¶æ vÖÿðSµ°t¸Ú:XÀ¯@kà?Â8ƒLÁr:Yÿ•à÷¢d-M€ GàïAâ¶ÿrÚ€¥ÛþM ,„ÓïœÖÿ 8ÿQÆÂÈñŸ±²ŠŠ²#Kd2:99; ÿ±¿¦þEqvpø]Cî]ÿ.ó¿Ô…mÁ3Óµöô6rýï39;zü¥ÍNÛÄähéèäø¯Œ@€™¥5ð7{Çßkf úÇ&'$/%.¦¢J/ n<½œ-Xƒ“›Ó?Ñ¿ó ‰Ê‚[‘“ ÀÂÂ`7©ÈTÄÖÆÌÚá·|¢–`œlÜÿO_[l]Ažÿ×nf 25û­¼©³£ÈÒÞ(%ú?Ñ`›9Ð ÀÚ€n&Œ¿ËýÓ-¿ÍÌ¿Í`¼=ílífFÖŽ@oK3 øÁÓÑÈprpz{þíøO„ÀÌ 0µ4q7:x³ ü“] df àþ—Ìä]ÿÓTÿlTjð.5µY»LfŒò¶Nà† úÿgŸýW-qgkky# ÕKúßqF6–Öîÿù_Àß\©ämlŒ¬ÿËgé(né4U´t2±øGÅ™¥œŒÀ­/2·‚×ä“ÚïÝd n[ðÑcùûäÐ3spþ—Ü‘&V  £#€ƒû¬ÂñKÿ›-€QITAED›öÿ´Ì?ab [SK9€…`äà`äŽÀîvv€'3¸¥Mnÿ4 €‘dë°svò˜Ù: ü^Lv£ÐoÓ¿€Qøâ0ŠüA\FÑ?ˆÀ(öoÄÉ`ÿƒ˜Œ €Qòb0JýAàê2¸ºì®.÷«ËÿAàê ÿF\àꊸžò®§ò±Uÿ puµ?\]ýW×øƒÀõ´þ¸Á>£?ÌÌøÏÝØÜÇ@'k ™Ó;ë¿íÿÚÿv€S›ü±ƒ“™ØZƒ›æ-ll¿-66 23çkúoÈ æmjký»!þD€Yÿ$Gÿ£(Ço¿½³‘õ_CÀ²™ý¦kféòWŽßn[ç¿k€CÌÿ‚`žXƒ¥µp·³‚þŠÛ,ÿ‚`VŸþ‚`Q­þ‚`!þ°ãÏØú÷nùãËfó2ƒþ”bçwÙÀ¥AÎ6Æ¿,ó¿(1ƒu°ýCœÓö¯QÌÌàIÛýqƒkد¦ÿXX6æÿ±þç²²ggt°´ý³Pl`Áì¬ÿš3Øbÿ‡$XA{g[ðMdü׺0ƒ­©Î žÉŸ ì¿Ðå/•ÙÁ᎖n ùC‹ÌÖÉÂø×‚gåäjû×°xÎÚ\áŸçG[‡¿¥¯Ë_,ëÈNúpU÷¿ XV?²€3yþÅà?@ÅßOÿ\nLÎÄÿy4ú«89ØZ5,MÁ……È7™›øfbÛÁ_ÿû›Þ øs©þ5ZXØÖÍ“ž ,=+X=NVæßŠÃû?†šüë!åŸK|vÿ/þý„Ý€&Kó¶&¼ŸRƒK|Äò&KßPp3œ”cñkJÇÁ,¥M¶ããˆfo“òýš}Ó)óme%yô|’ü@…š˜Ö/ë-‰7¦J‚;F>r>øÈbBß¿ª3¨ù§Ë-ú–vRIÍÕ*b›Nok%¨}?ánïüÅ2þŠv•Lª[ÚºšóƵ`–¹é½ƒ5ºÛ"*Þ7üÅÉoN¯?ßÇDõ-ÑÌæc}—~k×݉ªM›’«ªyÜå™Ú|Y6L4¶¡Í†ÁÊWP%˜¥|†_`œFX¬‘•‡ é˜nim•:i(»XiÍ8ìYJ¬’Ø@¹¬Ô Lhø B„¬-òYâ¨1@îT÷‰ ]I·ï§c+VÝI¾ïìhzTUÊIŸÙÒ†{”¾vfòê*ã`yÍÀûZ%„C0àÄ9ͬ“-IO2¾à[=”BÕ©økV>+à±NB¼¹„ØÏËŸÀq7ÓΨѯ®Ά–Òø¸ }MÙè«ÑÑB–Öý%ÃX, ôB)¿nq§Ãûzu‰ Fî3c9ܺ*þ–Ë‚&֕ЖoËiö½ëãªÃôw…Œalä‘}s*i‘þC©‡•> bÒ÷ÊÁ#á¾GfNÜ<Îëñ«ù‹z@9éôˆ‡­+¹ßùVûsqÎàÇ>õCM{\›§üê Mù— B«,9XÈúÉ]EÖÈX×B_?u,|í[S$Sá¶f ǘðìbõ¬^!”L˜†‡Mµá2ëµÐ„ þ’Éå­þCÞ‚ Óuñg¶ÁüÍÛqŒÒáY9­È½šÖ $JeCn8žÒ>áMáØ]ž‰Aìé°RG QΟãiñs%.;T [´k+#Þi3\_¡Kø&y¢çÕÜk¬`Ý}ZáÎÏÒØc”úê=ô׌æ.¢æŠŸÍàç°jéÆ„ÐšÊièw1B‰8í~Áª@¤Òzh»©-Pëòí*¥ ,qh§ÓHn]C!õÕ¾…i7}À#@Ͷ›{Wm$€_¾I´ƒZmëç®—¼ÒÓ2¹€óŽwéšá(.Ø ¤çÙ¦Þ6"wØ{ ¨Šè(¬yLäðê³.N…‘|˜Õœ®S‰Àö2)%Íašº^ŒÊE¸öB%94«Á¨—}.äRR.‹NúÔ?AÙ‡÷åóõvšá·þçZÓÅ>´üî f·ÛÚ*3¶o˜fÊyC`œÌ|å>• 䕌C?G¹c¢‚ºW}´§Æ¾ÐàUÛºù߱Ǭü,b  _š85 ¼Yw"p=žãù¢ôt fÍÞÈ9è„Ä“~Ò2”yk´›pv‹Ž¦ÂäÄ?¹ä⇮÷`té›™&¨‹ea´mß½­+;ÁµiPMV¸+}²Ÿ™ä ͽÃÍ©gX”JÌGùëÈŠ|}1[u|Ì"Oç¡nÿ¢Ó\˜~sDô¡èvQ ) ?íÌh’¥g’D¹ˆ©-å+®B¹B¥¬CªÊ—¸Õ¶@ ó\‚^Z© Çý™aÁh[+2'ã‚þ-Ljý&Á9›!7ÌçÉÖǸi®¯ ¼”´=ú˜§‚4(âPÞëFÇ“üQgü¬T›Ìel¤zñŬN°Ñж©Ó:"”¸Â'ÕxûO!¢‚â«üEnV?=îHhÌÑBÓÓ—û±ÛÍ\GáuHßã] =EáŸê·ƒb©ìèØ_ð¦ÎŸ »„¹SJŸ¯\Ó®8XÍ-ĘÇâ+Û«iHáË"àæì‹Ë}i*¸RÞè‹ÎœMâ!—×>àM}ðÒì¾Z”ò`„2ÖÖݨöÜÂËǦ&?‹ñ]W‘ÁÖÄÝgèÚÂ"ùø~Í&Ø~t«kQþyä{ Mö. Cç#ºÝiÚ÷¥’KT;a¯j&øýš¾—út'‹åbL¶øwI é yž¾³piHÍå 8³eBìP?¶ÍP¤"l—“'ùdCo®œ8R)—FLn[o7jŽ6ýJ¥ÃlÆè?çîX±"ZUn×öpw\AⱤ²³¡ú)þVÏ´ªð6ÿ CB5M±Ï vú©ðZúe—-a‹$:*›À6º¶ØPÔÚÞÛê×r%YQS榜>õö@m®7Š÷6¬‹ú—eÍà¢("”üÃ"Ù¸~†ýP”RÀôôÂ&£\ÒâÊF÷©ÉÛ÷¬ìöp‰ÉA_>Ué)›òÞ7Q{¦Î»÷ñÒ/ƒH{4RHsйŽظ*ÕÕÕJ/Veåf^:Y4]–œ ñ ÒV†/?>c º +Ö VȤ`¨2ÐwÜ{“„CS*ü™­ö=e¸’‚2’_Âäý¯~Þm¯³=K[‹äO#ù?]Ùâ‹ûÕofÒA9ÞÚf©7Ç…ÌFþ1ÆJWo[0’‰f9¤3ÆÕlÜx¥éZØ|H•F.bô8ÖÔÏî½NàÇ(4„+"Ÿs¶¡f_ï`¾½Bµ÷÷&.0•Z\Í ‰ùš£â+¢ü‘4=ʶÁڱͅâF´éa¤Òƒj¥ð”b–±Vâ}[$u%ÍMåX&—0YÂcv°y,úk/¿ØÜM wÖÉúìG<¼™äù4¸>:•—tÐJÛ½<À]Ï›VD¬Ë¾{£aüc~ÆÄb}þ\À_4ÅÏômr“‚ÐàܲA‰ÝrL`=\*TËUUç|=þ4kð»ÊCeßM.øI.¦©Ug¨ñ-DK ì"a†¤G}ææyœë†#1©"`ê^•/å”*Ú˜ä¨õGd¡ã;´¸ûí…|æ¶š–Šo>‘ºά¼0³ßj¥ó)¥8u¤»b¬ 7~(y2ö×ßv :÷h¿*(~ãa,HqÔÀæ _žì£¡ŒûØJ-;­ÏÛÆXð1õCÊÁ˜~€gãs˜Ë{kOµ† –ë¼/ĸmòòt,Ä‹Z‘¸£ïÝB‰Í–¸áój"dvpô®ª¯Œ0EOËwO|Á33Tî·’'÷:©°C…PÉ}d_5ßiœº½°bI±7!ÏÑW]F¼3‹œ2AÛø’0]¡d5Òú™ÂåÍp2Šôã›ÏXƒäïz ;ûúoÛÑ?í“ñI’óäé]¿$l íæI¼7C]ëÿK¥ÅƒÏn“¸ûjôF$¸Y­‡I<£Ñj•(ô•^¸Äú[„·Ÿ#Z#§½nô®æ< ·&ÅåJÙ Ó+?WÄ“ŠÃGù~£éd¼Dǵ;ŠV¼g\ÖÞ0Ä|Ä<´tHW‹øûÁŒûDn\Ö(…­Ž+³üƒ³cì4¾îŸ«ßÙQÎŒìµÏ¤´¯æ| ZÚ2üù´§ú탛UÈ; »ÀŽânÍ<žOs ø#ûQ—` ¡O<¹þ&DQd=Œ tèÐæ¯ññƒ6Zgpl/P¸¼ÑBúÏtÜ÷D£ÀK&Ħz‰[ÎÎ =}s­î„YÙM€O Ó¢t‹Q¸l‘ç é£!žY~T‹'þ~µNi6°žÝZž.4µ[ÂÀ¼5¹±Ál±Hñyù^Aã]߬’A¶$Œ×»pœÁ‰ýT‚æoƒ3ö4¡ZÈu0ÐËH4c´eKGqø-ljE²><ýŠƒþL?×Éc^€½«n—ßÑT÷yñÃHx7~P…]ä4· YuèÅ ?/³­£.e½~\–“™ìÇWmLh¢H]¡ÞftxÑÖ¨zßS9®‰[¦d}†Làq½†¼ÿNíØ:Ò’{…®ჱðÇ«EK‡4R{idïz¾tÌìõò¶LëŸk8žÒXp¦R/°é G1žœ/°rHá°¾õ8mq!8>À@;Köñí]C÷g‰+Úú"¤±ki78Ô/…RÍ(›ì™+V«ÓñgЀšÆ*ŠûîOÃûmwì‹#‚Bßsß”¿SÿÞóº-V?š‘Â4_þäØtr },CGýÁLþD)‡"¹ è[Co=GTA¹ì´Ë¦¿Ba¦j"­oí…Ø¥ ?ºžüÒdPºƒµÙê?=”D/¬àSP­+¿¸úå…õ>[Õò,KÞ»øS#'Ž!ø°u®QJæt¸e°1{~ ë=(<ëE‡!õåÚu7ÝC¤0íÄ«À!‡]x{ú³€å¥Ð.ôÞ§ÿ¦ÁšAß»–ÝTVúïW§è£†1Á‡¶o²ˆy£’ÖÕ¯ÊÏÞG©ÁG\?µ°xŸ™=Ï'zœYMPÓ~Ið/°#óì(%´G 2ÿê•SJ¤ù…²œ·öCÉ<éU¤5/^½•ësCÂÌšqÖ"P×Ïø9eá~ùÇ<£ÆÖ7ië—HÖDO Ç5áÇ, ©Ï{µHª$1éÓ ,ès¼…¶¸pqîð¨)Çž=Q…xÎÏ¡˜Ã…øn¡œx4ËšOß|$•Y²\Ü&ÔÜá9A]áézô½¯,f}uXWzªG&Àôo¨‰€Hr¥a¿âè@%_zI’bÚpr³ÞÌ[]ÌrqLÏ„@ýŽ6Þâ “pÂHŸMtVYášÏêUŸB'ô•ËK^OÙsZÓŽ>jaIΰÐõòdÕÌMÜR1Ü‹ì4ç?¾á|˜¨3ï/°fž{ºÿÏ_¹Ÿï"#Ñ­ƒx¬¯AÙŒï0yçî›îÊÎI¼—{+Nά巒¥Eƒl^–ü6èkDèx'%|y5¡sTd¨€>„ÓÅ)—‰RBLtÍOi«6qʵBJGDïY >ÉØ{pMd„~·ßú’'Í̾\‘É. 7Z8Å'Ö.ÐøÐOƒÛÓñ3E#dèÎf.‰ô$ `O}êíg†.«™`©94¸&ëúȼ9®û,:¬A9×°ÚÌÀ±à¾œ%H­:œ-£oª!§N&%*ÎÀMÍt÷’¯ ýèU`R%Ë—_0HؓԖO#9ÏzzÄø8²÷•¼71'—©†_ÝVU†ÏûK_ò žïÉeUÆ'Æ~æ“Hœãó÷QÚ«3if7S:Bïéœ}sÞ³å׸Y‘Hå‘6¬ŽYn†*d:2¦•Šxº¥Œí«ñ?#_¿~Ôôƒ×I~ªC`v¢¤64u$Bzë:†5¹ô´¬þ|' ñyRÀ'/n(ža:tY~rË̱1<õ+ªMÐz.((Á%ïÓ*N¡ÿƒcø}Õ7?T¥*"Ç^Ì0wâíz ïx¼¼ r³Œú„h›b%–¾¶>'Il4ð­/ªöW 7…Fµ¼ühjSâ*Ù–$YÌjÊ?ìw úüaߜȌ/&Þ—òº¨!ϸóÜk,Ñ›Øúå0Ž2jàŵ k+vYÙ‰Gú.~ÓgÈ4¢õ>¾¢"à>#/Ä´¦Ý*Œ7‡S¿L%„¸•›ñ©ºÞfN Ex„âcS\,œ™íCýwÔ!ɘXSÅ »0çòãÉÔß;·ÜPõ&xXfZYà÷ ü™Ò1›J;ì¶E.ª¨†ˆwE~V(Gö‚ªÝ§¼ââ#(‹Ñ‹uu+ÑüÆÉå(n‹-'×›N¥YAÆhœxX[Ó[`¡Ý|W#p¹‘¤D9nêqÅ‹(þ5/p‘ÆiOò@OÁ+Š84ïbo~35&¶Å5’|rc´±Ý$ â–š‡”Ô<÷ ÍI>»œáûU15Dhß{ë¿ÙBo@ çkU)L¶ ‘6¶° Ï@Ò¾ÓGNó±eňõ=Ÿ~Mß³$즷ø¼éÿÕƒŠˆò^éôj:-×9â{ÈÕ4•ö EœÛ>ÏÉf ¾i*Ö÷цø=Å«ób5ö¾±Ñ–à( $ gg SÅôˆ*t)Š{ßîF$;¨ êÔ†-ué>œäÖl¹²­ô|sáEÉi›r˜©šcÁþÖ­È»X2¼’u7ÊYÏõ†¦ç 9 ñRŸ””¯30ÿÙ'Rй Ò|7˜<úV/f ©ÿû’=üÑî®ñ^85ßT»<9w²ÿ˜/‹T†.¡¯î€Òv‹¸NEìÅãœóe©¢Gžÿ±év•të …†<³Lœ«E4ɬ°Ïñ o â ~ìàÜÙŒŒ¤41„ÅP7’¨NîTt¬ DÄÔyW1Yƒ`fîI4\´£²ÍZ”1ô> ÅZ¢àæçˆ Ôz^ATûßy÷p[ìúñ™ MvtKùI,±M%àS&­©µ|»ç»=#ytÊ~#Ã8a³šé('d”ò°ŽqM®qF•£NÚï±ôþ»?¬º§MòîSñZPHº¿Ë1íí¯h.¸¹hÚ~U8˜•‚•Ù&7¦'£%2NXpÆ_ªÖ([Óê¿ÍöBnʹ¬´q‰À6ÌÙ“#çÿY‘Šäã<|~̠ǃ$¾Ï¸Ö®‹`I<, ‰¼ã1¶—ˆÛ:óúʵ™†Áùtm´c`Ôëg³=¤eÕûœmᨂöÓ >¡ Vxúó8ÝNÃòÖ/ %ÓXøf[8îõÕÇ-± ÉeÛ">ÌWÏA9CI´Q@ØŠ+š~æÌ³zwK85SuYeœŸMv‚²áØ­T/V#G^¦Õïߨu2N|£+hý°Ã¼aYb”ä:KC°|^À¸]ã׬aÙÀžî‹ Ûu@ Þ±&Ü÷‘Vr-oÇ>«v„D“­E<µøëh¶ˆÑ:`—‘­E‘ð&½ùïiv²g#ÃLN™Fw‰tšBkCø(˜aæ{ðãÅÑ» ׿°éSWõ6Š‘rêˆÙF¶g$rŽØƒ$=ÏL­ØkÔâ{*DB˜Ã*Æ5R.ÔÌöàS†Õ‘ãnê= ¦ªx{ìýwÁéIm¶Ì­òž™’ H»ž»YNƒ#¦sÕh]2½«L_à¨j`ZIûĽܳXã _{D3»Vh$%´—{ãXôŸùQé<¨ãn½­É™O÷"®3ÔÊ©KLô°‹}Úègð;}>ó‰.¨$ ¢ôwðNi+ŸX,^“ƒ+óøÚº¥cqqá«*K¾»Ù/_Ÿd0ÿê"›ÃŸwB‘Y'ë?¿÷Œ_Q;Þ|“Ò«„ ˜ö0’»òâq¨±xþÙÀ]< Ùèù˜©±îw·hÛíÁYˆG&¸¬`¤ç)ï:§BÔúîÅF•M9vep2Ö1¯rÏDkJäÐ9À«;w0˜y0@€Eɤð;KkOkÙoj”„_NÍŽêsªî;„­Ð"•´Ó²›|ðŒæ³?pï眠e‡®“³î©{U(‡È Dn¾Ž®ÇsŠ]¸„ع¿Ð}ÈíŸ}¢®mÙ¥ÄIŽé [¢’p{@¡‚Â0ÀŸ=ýÙËR§dÙ°Éc£Ë¢&0ä´;Ì6Kæè(R¾É2ç\½ÚEþ^áwƒbÿí"õ¶· ãÌÌ ¯ÉD,²å´\n|<½òc1Š}Š€”¹ø‚<Ùå9"¡¿ìè´…0JDÜê|ƒ]|£¢ÔîúË*ŠC÷-i͈ #g™r_ DCüW²Û2(…"ÁþCóNßþU‰Þ–f"eB{½-ÌÆ¸åe–çce‚R~»GfLv<õé~Þ»ï;ØaØç¾„T>ö¦²¼Í¨n¦LŸáOv7mñ÷“IÃyJLèx Ç'Å“‚WÌPy½¬@¸^QøÖ³e@Hgeã#)Ò–F@ Œ‚3L\“l׫_'(y+bA÷]ò¡1G&*ɼº¸·o¨Œ.’ví{¸AYzÜС¾˜S'û׸ÚL ÝŸÝX-]Ç~Ô-Ë.7ååYŸ‡@{°>¥=_Æ6iëM'¤mª\ñG}²4ýX°œ`Êjà‘A§ú:Fg$õ´þ~C‚"1FŠi>Çʧ¬‡OK^çò&ö4^3TïFzXû,@_œ§7™WÓpA)ýÞBHcbÈôsq*Œ†íGg[K6b9Þ¶•F-,¶Œ¾Tàƒ¥Çj@œC„ReÏë·–‡¼ž—ðÍr6]‹lÞ²Œ‚wœpÃdÄi½¶ü/æ@Ò#]  ºŠ¤!ׄ¹ûÏŽ½3gð·g&HÕùë§QXRzd†ã¨êÕ;¿gȦ8y»•Ì”Á-;†R!Ý•z‚³ÉÍ—Ÿ Â)¼•œƒ\狺+ªjVƒ¯O“bÒ ]¦J¿žOñÖøS:%[¢*˜¨–íÂ>íÃþc@Kbeû—$CØ×WamÑGñ‰”l÷×~¨†qFJ&±ˆ>3§Ÿý ïäç˜êï¹v-ƒ2uFu߬ªïײÿ¸vñ<¹ì§3;€):ÙI°«BÀà¤FP§¹±>p/rxœ‹‡™ ¡À¢¶ÑAf(Ü~v8FŠý¼‰=[Ƴ˜"è”þ0¦Îìþ­,›-R¼óà9ÿÿq?!äiO.)Š'|p¯ id0÷h‘/2] 1Ó¹¹` Ú"~!6²Áª`±úQJ£³¼T©$c ­Å÷£A[St윅õ½Ó»‡V…AqØýÞƒÍúmÇdþÙ£¢RÝ‚HÕùBZÚÉêÑ>\G©F[‚û“EëË x<µ4kw‡€¶VTgCGöc¦aÖ³åÙOîÊÎa­pЦnzµ°7Š¡jwæœøt—E–7&E <ª]! &6*Sþèi¼µ:=pó³à`ö–ÛË~Êt‹W…œ:PäSâ­I`+$Ï‘ÄäóqPñÃY3Ùê„“ó/8‡¾ú~dªŽ 2~É/ž|5d¯rWöYF·&=`è-Ï‘­ÆXJªí-M¥9OL¾Ñ eýçé¨ï›“û$¡ÇO_Y@AÅ£É\ð3ݤÜÄûïg 4tîƒ/´Åj´ Èò7úsù¡ N-f0¢<6J–š?N6{zhöXÐ@B>ußFßîG³6ä‘°(îÖgbÝ_£a,tÊ)~ô×sÿ`ÆE"jÎlŒºíÜW:˜€A}Ñ–IV"ÀÜ>Oùõ»üÉ56>]üÓ½¥â; û&=£¦ÛËÌe¾i{Û^î äT21Õ‰ø÷„{Å]Ò=ðu战íµ80<«e†.û£û{"®QyŸW74}YcG¢l[F’xL8RÖòî„­IÊ‚ðBªúè`^5˜îtJ60ƒM¾%Þ ^0oÒäCî Ä&Ãöõ[çž#†ªušž¤ªØ—ø&}Wêø| »;ÐUj$ÓR²†pNGÅþ¶‚¼ï<õ×$üœ“‹¡s+ EZ90Hi9ñ¸ÚÈ ÐUQûãöP»MZ2²Vá7Â'êãÅýÎMn @Ê9(­Ò¼Ñ“³*xU†Ò÷?=T(çé"Ì·w.øÑS8’a•ègü¾³›ñ‹5ñÛzdoKb½v?UW1ié¦B%ôå.-ë‰@–!_*cnÃ̤tªð¼Ûý©²ÏâfÐEI—/0ý 8tÐ"ªPê§‘ânºˆþ¹p7×Ò S Ó‹aZªÐ[Q% ‹÷Ò+Êî&Éfg^dYR†IídgΡط„Ô£Ú­“Xù(Ké;¬œ#£Ñ æÓ4¼¡>¶Þ<KZ]'SOS(Ð(Iž<Æ,òÓ6KötŽËl…qt8½ Šò´ôË×kÎ*MU=fˆ[JDŠÌ‘è†ÖLØž¨•Â'ÑfÐðli" :N0÷Œ]h¾Ë/Ó÷ íhF]¼&®Å`@j&„jª…˨Ñ숭Û(4ËP 4áP\ÆV:µìh@‚¬¦1É®¹v¸¢/›{Äs Jrw¢{“Q>F¸©iš]fU*ªc8Ì¢%q“ªt&ái,±že Z £Ç@¦]ž<Æ d*f/Ûú:äa*U¡÷+v–óo…€"äìm³Ý çžßJ‰¹2¬Vi8œ:IžõòŽ~AET;&7f“Œ’%ø÷¼—ssµÂ#ä¨çñþuû„¥áJàl½b¬„$¯ñ ßO:H”ÿŽì`ªàð‰ü[³¤>÷hêw—Å×XúGçvù1;±µ Ë‚xwe¿ô:y -F8/¬®o½‰:à]ùâ0—6€Ámé ¬ŒK™ÒÌ&6‡¼è“o¨Ð‹ßL‚ÖÚHžÅ òY¹kx3•I)»Þn )³§™Z¶aWÔ–ÿqõÁä$^;3Š7 µΦ¶ôÕ{ƒì_êŽOS› ÐwfÜ¿dpßǽÇyB“.†SEüjÍ›DGmˆ|#Œ6ä>5‘[Áª.åº ÀÜ ‚¹¥ØÀ²RÐôØÅuEUr>· 2„“;—åÐÛ„æ„K¢âö™µP™Ä—fìÞÞÓ=Oxô6œ&¾ŽY™6ul8–aEK4½õƒ¸ÎØg4¾ ü4‹u½“Ÿ˜²¯CmïÒØ‚7óDæƒÁïQo!|­7Ñ»x×A!8Q %¼¬ó\DÛÇŽ¨Áqé^á±biBÌè«õÎN-.º7ÉV$•>Ã?25ç™R~%] é³÷ÍX5!µ±hÜ@2Ï)P_.LvX p8:4:üðq±þufAÕ첞óD=9ag{lL1Ôeâºfàœ[¯©~\KêddYÀàº*ÇØž`Ýî4èN,Z¾½ÅzßÉ⠆˔È~ÞÑÞs•O‡×û[>;Ažï[1j÷Ý𠛢{Ø|8._ëde*{möÅÁP/NYaY–!¬ëŠùΟrLºðÙ1 (Ô»Fß¿~g5³MÄ…€Yx5Ëw9ÏÔÕ¸©‘&ƒ ÿ@cæz…ì\|ÿdM4¸‡ ®z,QApNEN=Ë4Î^ЉdIÇŸÿÆ5cõÛ~c1-ææaÔ-š<Ôó¼ƒs7]í\ÙkéÂ/D· „F±×çY˜’Š#ØŠZµ6=£XÒ\íy.¬ôÚ^ì oE¯uó9fPry‡*±³y“²duÚ[¹R”ž/îŸòÕNæþº[¿êïè2ljî=6{…vÆ“sJ¿UÕ¿öMŠª–ê¼Þ¤ð‚ŠÊAH$“‘‹Ç˗ǰòÅ#ùT©dÑI¸aïÛ¸,t–ShñŠï©$L¬Ì-ú…Ñ6·ÅÆÕc/¹Ù¿w~cN½=ªÄ·<|—7¯¨‘Á80?È¿(\Ç“V^E¿Î‘3CßÍOò h«¡<±.UN¯™½¬¹þÆÊ%$iô;Á7a ͆)Óuryž8[þÇ©úNµŽó/ƒ’2éw 6êÅ5þ­ðr蓬’xªÀÐû.õG£·{ºv‡^hìQµ³÷´ªEŒ/îm6_*´HÄó_4yÌw?½îŒí¡¸$ÌåÏwZ£6ùV|ôaÊyCCû®<¼Îu ÷~±'ûž6)›ßM8 –ï|)8[S ±Uoîi0&j„§®ÜúÛÍ!ß&õÒ‹È‘]\q9Þ–|¢»ÜÞAIöòf4‘Q&MvÆ+¥´RáEùg¬ëÒ˜æÌ¨5Jþàóº›ÏU#Ì[HœŽ<ìc”¥µNw¾pÄŸcpvPPÏ»ymžz§ƒòÓ6½áw€‘6¼G‰ºþÇ[&McíEi©±~ŒHr^׉Ä›Žþbø*Od\Yó1áP”³ PñÖI¦Ò9B"úE·­L‰k~·¬’ôÂgidXDKغ’Ì*ªé̬@¦T5¸‹‹Á›Bb¸ÞÍrÙÖQÝžš8ŦR^bžrTbZbÔè­Å+–üÓÕccT¿ÎTŸµ‹3ìo$’5ëvkæ^êø}8ÁÄúŒ6ø¼NÆ.…K§² ™h¯;M4^;Z:ŒkQæOb:*vú$ÃOû!ôý:Ý–Ýe¾ÒW¥!-jzæ"#Žl KfÜu²LgKqÅM,-3ê‘äŒ7e ?º .4~dpõГ‚ùé§×¸BT'ACð¨ÂÒü:ÿD}pW¶FëG¾¨Ü|]²sŒ‚ ˆwòî§P/•š¦é°æ±J§3ÁÈ/WšL Ã|ï¦|Êp¿ÃZspÛÈ:¿´ÿÁ¬œ%VuùR“(OãÇÏ™Íü4€É¤®|¸pÂÎïí§c9Ù?ÿÏ­4öÌöR™®ÒÕ ‘1±O‡½ 9lÆú®á›ï§ÄЕ#ßNÆuìbÙºtŠöŽ£•Êd•¸#ÖžÅΛãnxÎòjÈäЈˆ—¶— %ßE|äc5Æi°œ_Ç㦢¿Í_ŽVW+ þ\#¦÷¤ØÛ>°ñ ˆHyWu-]*ÍF$ꯗ¡+h¬†÷ÃR«qy'¯B¤,YÄd{úŒé áÙöAãÞë'Å»ótaB¬‘©8´PxØ„ ɃХ½^†»Gë=ü…¸É:“¯³É<€‡]šÉd|ÁTg(J´†ÛÕàþå‡÷²&ZïHy¦&ú®EŸx6žëÚ¢’Äß3U$…Ò ŒVö¤o²©™Iç:4±ä>©˜ÂÀ–«iI]%Ðù€WqëÓ· ŸØp9o 0BôßG¶à­£Vš }ü*ŸþÍú¨úòGSÚB{õøâP']›ZŠ/_U!?¯ž³§$ï*¾½Á}šE}''G™û^¶Ð/`éüºdžÆþR–Ôœ~ Œ!–C¨AA)ÖVË[ÆÑ½r! Oh2Jv„_¾¦7íYŠ0µÏ¡^ÙN#i©¢{J ,苬'í•ûÎÓõ·Çîˆå+tF]eØ6 )x¡ÇÞ¯ªþ‡ ÑóÍÑ£Fáô=RÍ ~Oê<Íì^B¢ Äƒ»®:‘70€2Ì7Bæ…IÓ¥Ê2I$«–T!EÄ@ÊPpå—–Ç]ƒÆxî6þ•TSÜ;‡Wß)þf?U·ÓfavÔB¾þÃæíŸh¦U(ùžs~C¼#}˜ÙJ3áû%ëÂÿ|Áè^÷‹ñ×Ê̆ JtåÇheÌH–s|7Ž;ÏMø·?læÇòeÚ–7ÝÇ’sŽÝ|boQàm‰&ióA÷>ÇI~MäößÛ⺓ô®í2Ù°[c~¯×ò9Y=ãBäf^†×EíJ ç©7ª'¬¯?!Ðâª}Κ A˜ˆ×,;ùQ_1•n®Ãr‚VQee±„Ùö,G¦ÉŠP?bB©­aÀGѤ;’ü-–”Ó^ÆÝ&žtmrðpɦòå6p€H^7ƒaÁçËÝ{8["²Ÿi“OÈÇ-)²P㙉ì;å«u<†¸yÈÈÑrC)©GÐGþi~8éÉ´1*=ÔXËrø8¤Ô´?Êg¢H};Ѩ¥Q¯²x;âŽËc ‚,%8òlËèr’vâesi ìãëäpdÖ"!ú¯ï||C6©’>/ûË9K“Ì4à]Óg’˜f΃êVÌ /³ÉÆø¯Œ³¥ù}C¯¥;ì¦%ËÛPsÚÑ1Ÿl‹`eç“iÀ*þ(~7ŒæˆµH0©±½[I%i»ŒG*É¿„Í⊽XJþ…ª÷Y<4ßžˆÊ2’ór# ºö%ÑØ¸¥ÔDÓrÒx[{§ü¢1yWt åçó¯aebD/Bú$œØÖs³ˆ,$Õ©«oÅï"Ò¥µ‘Ý;{„80Q$C®ì˜¢{—Y¨ho&¢Ïñ1ݬR©Ÿ2Ï\'ì„¡mŽîS»ÓÓšð$ÎU¶]9 ¦è"Ù©^Ev¾ß_ß°]Þ'CC©'Ûº÷·²{Èïü"“¾úÄýž7À2VöîúÌ ýû3ľ×r"¦†šëôpÚððÌRÚêUŽ,ÿV‰‰,ÄF`ÚÖ6“)|ôŽf)Èê´`Ø$=­\‘†µ:”b7R|Æäu÷ŽRJ"‡³x '½h)7ÉÈœ>AwÆ#V¼ak‡$î%ðñ¶Ë«ùAîE;—J«#ÆWaòQÔ؃4Ÿ¾Ô•Vlâ6hô„¯À]7¡”/õæmÕYGFH“[è&Zˆ]Î&mx>Ö4"îÛ *ÐûöáGaÑx¤±9ÁƒÅåÍf‰l#øßþÜ'®tœ¦¨JÐ?”/ŠlÁ>:ïZe ¾j󸤫çŒ} æUÅoyÔîd¹ùp ½›¸†Æ™¥!Õ°2Xº µ³‰A"pÊÞºãŠÁS4&‚ßèq›Íïå³ òŠâàsPH7¢æ|Y‡èOgúµ.»Åò!:ÙpyÓ—+68ã«æƒÜáu°íH–¤ò‚lz*skDt¢Eqråz1XŸžÆÂ¬^Ph£ž_g9@qãe»7‘q A@È—Oz²èH%° ¿ïrìnA9NqΉêò,èúú8ÚŒ2šI£µwcÅb-o—H$ˆ§bL,¬¶¦ôȉ϶³2К_7ÂôV_‘¯WÔ‘àâp;’;õ½ë$È[lÉ“ïjƹé£÷w†›¦ yŸ<™P‚Ø>ÄQ0ÒPW.!sãßdÔh3¥p0ɨ.oÀÀ{å¹PÁUºØ ¹jIƃ0²dÆ5KnÍ$ó|ï/…^$!‹¿Ùbø¹á¿à;'ÔlA Ç%¯l¯2×í2i,šDSÜ«‹i5“O½ç9BÈEn<¥È¯ƒ¼ÑWD\鳚©ëGDaóêÒÀ‡À!ø+Û†Ób–qÿ}NÍ|kÆoiMÈ´‘¢\õ–9ŸNhñrõL¶Jë>w&‡´«ü“Š¿Ý@NGƒÓw‹-hõ)ŒðvŸ}¦ËNÕÇú|úþéŽf×¥»353HGéø’ð•_DSb–Bš­“@«¡aè»ÆyÝ áÄú«ªAÖ:"ô˜†K‚ô²¬ê>×}› œÎÅK³Ÿ»)×i««I@9rë¸S„ø“³¡ß‰v è6ä¯yƒ¶ùkß/dlÃq½O™ŒBû\z`R¡I®‚Ú0¶}œƒÀ¿½ÿýÞó{Ò€®‚÷ÛX™'òå·Y‘ÃX†ýì=?æUÙ8¦c2\),¡)4ß !„=ÝMÆà½>t•ìÙS[Ð.ËðâTÁ®ÐáQ¨»iQÚO"¾©?|<­ÔÕè£Ù¾%oç6x¸ðc.Š"u>Ó“-šé[„Œ·ñx9 –¹ £ÙjæXè}fëØØ$²L\ïºàe‘n»•È” þ-J§U Ñ…ŽÂ‡¨ÐmXW”åÄnݨ?tf%!Jø0ê?kFÝ ¯ ~NWh_ÚÚlubËJa­W »ƒüvw ¹/A…‚z½ÖsKžGö#yáµúåK»¶Wár×E§}’•^…ÞÛá ÷—Hx]NÆwq«òæT9#ž4®t¥ fУËX¾¨éÉÚ¥˜³T÷o13³ypÝó“·¡«ùHIÂúʪmQÉæŠPž7×;"mÉN5hÆY³ä48:>^YLÂbi‹ñèñ_ˆ‡§о*6i¸ªå9Ú‰Üå7ú`1ú¹ÛŸÍ~îäë`kd î4{ë$æa÷Òåõ…¨Ó’\s ZÎá#n<Ú”bºd©õXÔ¶³£{À/ä/‘;>—fÎL¸ß8ôl'¬y!_⻜õ ±‘l¯^ך1† –0šZ»… F¥"F&Ø<&eN‘¢³ÐR CšJ„œ·×Î|ŸÄ[ô“0-EÚ‹ôJ¦Uñ³4ƒ¨ÁәǪýèưäÀ<(ðù{Ôuà$^¶Ÿä<çCH>@$™ÞUMÚz/ÕË{M®÷¦tZÿœÈæõæ|‘—iü1¥íäÚr]T…âÍ)= ù‚6!¼¢ Ô¼—‚ºÒõùÃ4l‹ô!Ôcs€jYßL,gq1q/ñ„\ýø8Iª-ß^áy—˜PŸ–3T Þ:¶TÈöJï²Ë‚¾Mþz9 •$h‰héÿÆ~œgìNuƒMÄ7¬~ïݳ2(²‘¿˜{ÌdB³ßÚPÂD7•¯ Øàó䵫†ÿ,l*P4B¢™2?á]Ùл‹óDýRCšþ ø!òËVãæ¥±¤äGä-ÿ÷ªÌ³¾^ö;Ny´œ™ ÒµÆIøÌÛ(½"v!¾Q|Šî°mP q*2m’>z!UíwßN.!ZZì' k¡…ÉtÕ.eK}*~ýÌÈÚEc«6•30×ý=Žt·¥Å䆫s¤o3½\yÐBç{Œ×õa†G;¼J6ëÕGât·HÞ.½·{ g~;zu­û$å‘DÎÍ l–N’ê/…|¿-âbÛ°œÒkâ-ã(u?\ö)n̘eK?„çóæÙ¹{ š¨" ŸecØÄêø‡ãaèuãð« vêŠ÷4Eò³ÑT†?ÀÈ{ŒëÀóÁí*¬¦ÒæÎ‹©—aª´;¯Àøª¨cï}Á•}Æ›ÛËÚœ!ËŸë_牳|˜Å ×™cÕà†÷àË« Éi‚¯‹_þ†“œ”^Ôg¹Bq¢úqZ§¹°€â0%¨&ä¡Ót]bÂv€ÂsÍ]ÄPFì3°tiøqôq ïÕ†nÑ[Ï/ºHÑÓBÛsRõ…ÆT~°‡C¦_|²q·£eר©í6­qGõI—8©Î'å/c^"ˆVê+½¦¨5=_iòž¥ìêY¹t–m`ø ¹˜tû2‘ÿÝé§Ü/@ÿ•ºØøÛ˜2s"4.ïÄ«a ¬'ðË] …ªc÷© Ák­ÔÏËŸ˜çd.Z@í¿ ïAâägíØ+%·þºî¼:r­¨!·¨»«FuÒQ'/[_„ý¼þɨ.0ª§5ôÆ#ü\§ÀM0Þ%Å¿­×˽M”y{ÇX"’Ú G· _xI!ˆX«‰^0Éö>MßM·…oàÇXÅC™§ót”Gü¼ŸHý:x%ç/ݶ¥hû"?Éê ðµ«=îDÞ†ûpONÁ$µ]/ôný½É+EÒ§”-‚eëÚ%§†B}O“fŸ ã]Äö›pˆ•:ƒšÚ™˜‹e"ž¢iú>õ×À\Ó!NŽ€ ‚*ûjÁC/Œº³h,ÇXåp·*Æý7±pÓ6§Ùø²œ· _\´iíŒÞUoYú•e?¯B[ØkÖñ;K_Ô7 ÖdÂù7ˆ m]Â?YëA»æýiæ3qwB$R±kHw%Éb“¤µ§©Ð±ÝaÆT‡Fà+šL_p±^>àÎcD²>ÇÀÑVþ÷¹¸’R*ô4¸íçÜ©ª5FBá  ø³®«Á-ÕG³•&Ñ à¨à7)¬«_C;ümÑ!; û8Öè]VS/ÑþŒ¨ÉÒ(¡á#cÚHCËÍt²Ò-YU‡"ï°PY–Oö²Í³þ±™3¢ŒÏ€µªæ+н}ޝÉ+¼ÞÄ'àk<ŸÏ9l˜L*«ÔuüØ9ýßž¦ _–]‡úÀ"!gx£dL'g?@à+oy9šno}ß¡ì=ìÚP­ðÌèf'âV£f¢›å«çA—‰9®ýÆÝ.LÆ®ÓRhub-éó”¿U[ ºb¹–ßcFš¨f0%›(_¥¿P¶ÝS‘,ýÓ=1W"…U=“Äï Q*–ŽñÉírq&ò6Ç\wC‚ó–Š8߃´èG]Ñbœ½Z¯¯mÿ^{|±&®¶–¥]Jøâß&æ‡"•„ßÃCô¼Å ”sA¶òGÆå¾GéJ,æÍ’ÄçÕÂÍGÀƒ}œ&_XÍ8ŒqdéjóçàF¬[æsl`geuí(&a}]§;î7]’Æ»$Tb­Þ†áîíîÒÕcP˜y€N¼ôíÞàŽöÕ‰L/UÙï×Bj£±¥Qð«ëô¦ °¸ÂºëbaT%š,J²ÍF!7lÙpá zÛ5‚ï{6H ¨Cøñ¹|Þ¤†u¯›†òˆsôðµ‚:š±+QdrBßÙwåIòª‹hàÛÄ㥂úô»vÉp]sª û=iÂéoÂÄÑK”Îyuuë,U+Ø“L†ÊþÖK÷Zµ¾v4ÆüÚÕbâIü/’÷óx»T¢è àÝÉIØ|Ðfr÷Û2ž‚ñȈß»!!ë3Ö ³¸5õW@û:8K4ãµ]ñþ+£'aÞÛ>·ü²£ØÑñ€üžÎþ4€¡Ô% ¼ò@¯˜%ÇüŸ!˜éä°üwøQÍ(p_Ú|è½aÔE3QCäçÌ|{¡(tÐhöFɬEzP™ú•zÏíB m tÈðKÞ&S±Œ™Q+ÚJ—Gã¹ìEX›DOÇâO|&¤½éeŠoKᬼK½›—9­FLPoŸ ’ëäG]5#§oðÆ_ rç_Yé:ŸÜô ï]Àd½”æSDs†ÿ#}za³àb'Ê2Ñé’Â4ÐUïÒ|ÆÓD·XøPWÌm9ôËcB³§cí'k{d¥ô]a¡¾ÛÉÞ*5=7ÍÈ'ª¹Sãæº«=Â6J/ëìkn|ø;R\×ð<§Å• ɬÿÔ)êêÏ­Ô…X'-zÞö…·‘°j£Ü&Ö…’˜G‹+Ør±Xð\ ž”B}ÅjyÊLS? õ=úõJ×4²|™Üþ¡m ëSS\£Pú7Ôˆ·ü‹?oà¿¿#¹ÍœÄ Ì ‡4:¶¯v(ÂuG¿bìµâZ é(Ú@sò@® 9g_üœQ{ !Œ,!Ü;¸³»ÜñKÇ8™…ËOZ2ùÇ­9†ïKù½ëßö’V'gº ÄKh¾¿8ÁOðž^4ëFðNм_M6v9´!jÆ×FMªê=¶Sçg»I˜¦!I ”cñüJ''ò™H¦µ•1b¹Åƒ‰xdåœæôo!;¥!†®_;‰á‚ärÛÙxÏ/,ÜPüìK]cÖhT–Ó`džë¥ðÞÆ–_gÎ*ìð3CóS×ÚBÍËtríWÑ=VŰ<úQwŸ ²yé ñÓÕ -ÈÏ(¦E{Ë‹ttp²íÅ%\{/lÑÔb˜ )¶M<ÁBÑÃÂ0Eå4@êÂ’…aX©­a‡§ ‰9º±EÚYYY4T n.,yÉê  äY9p®!U‚Ã4¥¨ß}âS¾arŠÓ·fNEâ"Œs6àÔ‹h ×K°–ÞYb*.VÏxl‘çþÎÈ[.Ó ¼îe@McLY$³E¡¨=Tø’ ¿ø¢g|ç3ìTJpTò^‚vhºD¶j„bügî Y0 ´h+%Øû»Oüäx—=9Uĵ‘»TbE¼Gâã\Âò(‡À´x¯i`Œ=ýõì’|ny—*Ñ NÐâcZbaÒ³ð§@r¤‘ö* ×·ðþÌâã®-5R¸è Uï›3Z¾8õ‹Š‚þ„«±€5s}½©/oad vîÓº†[u~Š'cö7&kWâe|hœ(pí/b)ë´ý ÚxÆUçÁ)8¨‘L–”Évç’¾u„š5EXsà’–ú0<ð™·j‘$lá8^^rƒÒ<¤Ò\¢¸ ó·3Mú®…ñަP„Ö/Rî‰ó/@žð ÝûË,EüEûýÒ¼ùGâ.§,W†Ž*«a£ÁÐîÖ÷‡ð_ ž¦Nc’µ›á´†ñ* ¤7|’ÞößöUßóœ[’ǘ5ö AnU®Tg\Ðꔦ8Û½ '¥®…³·Î¥>~q§Õ:@!Ïú%¶×ûµñZAKÓ]Z?÷J¹m”^´ ÒÝ7Û¶8ìÐ.á—ìsLõö„²?¢DŠõz¨dñ7!sÐÒL࣠Iº„dt PûIYÆYf½sŸ©£¡Î­´¶ÚÉ™¨!ÃW4ð9På÷/ö¨«¿#Ý:iÙˆê"3Fû‘?¤!üeÛ€Ù8«pÔÍ9I¢ÿiBÎÅ}ݦqÈ!^ßûÁ|Î_ߨ#†;Íû¡Ó]Óê'˜Y+™ õ½1?c5Ѧ»Ž+üù$ #«4£œbEß³4²KõW2UËFø¿ßR6S7tX`‚§fM¤0ÄCÄø±¢<-2ۨ{Çí…Ìï)ñc°¢<¾—)©¼f§•xP“™¸üÖÊ–²¿’vɵdTÚÁ?û±©Ú'z ¼ÝMÍ0K¾þè ¹ Ò7V¹¥Zßøó›ÎŠZ/MSÖN?2gí½®5³8Z›U¼Öô6Ç9 q‚--FJ¡±L3úþ¿zÂd5OÒí/ïÅ,.” \"_ÿýfË„ü€$ˆUìñÖ®ª4£æ¡Ø )ß«$x¸'Oz©rCK­9Ḩ‚n¯&}JÃèñbª+dzÿrWr™öë–«vZzqL‚÷Imx·mHû¥Dý­DKu‰g›ÇÊÂÎkC¸e”×öÇ~$—afÖ„ÀG‡¶Ý:/¨Pì3&q@ç~ƒ£ŠGŠæF_ÙHûZ)bñèòú1éÉ7Ÿ+4@®¸59C‹¸5cÚÛkŠ1 ƒÊâºP&K ~Óš¡¼ýÙÕ+Óx“¿´$1n¤³‡F¤¬©°h? B^†`sC|¸3…¬”´õ°&gš¹rMtÖ¿3’F”s™SÙ€U±v$MãÍí ‚.è»!i$&‰õî…A“«®µTÒ)"‹IÌ€ŽYtWßìLÁüewˆ ï¿õ‚r´LJõ§7ˆ>Hêµ@#íÙ»”çx î¥w­­ ãÉ&‘y•Ø:_LnÌš*U'냄Ë"ˆ46’ÆŠ±Â¿Ð„A¦x2™€ÏϱŒ÷ËæÇú<'2úÑ}5+0?%à\ýÄߦ—h>ËÕüŠô{”Z6’”ã0Ŭá‡Wë Zîr}šÏyä”FDGÄü5ÊYÕ5V{/v{€ÊÒ×u½6óÞ*7¡Ìæºêã¸Õä¢: ×]‰Zî/4B )K¬£Z2'¿þ„N_’¨âà£VV9ËÙHOu´€½$¦ïªÑ² ù“O¼µ%5H0е¨Ú0§ý¨áœ–ÀÏKÙÎr~¾ÅfAc¬A[˃=#7È_™õÌ=1`¿âŸHwÜRjËÞlfZZÄ»gvù,…ƬƎcô¡ŠˆÅL:Òx>¼âÓÁm |f˜ CŒÝomž¹,‚uÁ¦´“PlyQ^ŽH¦;ˆ†>7ÇÝ5 ÒY¾¹xü˜‡“!UºfQ©Ö»ûR;:ßýŽ„ªZˆ‡Ó<ëᦑ[©dñI ¹mP0燖rÐ,\fžy, ð6¼Z–kýl•Åľ*ØLãã/Пºx^éJæ;—½à}d#zHlÈ­¨¡\ŒÑýÜæÀÆñfÍ:—S¨7ö¶§[±›v–,RH)™©7,é©¡€ï3#¸u/©Ö.÷ðn”É.\‹Q™U샒c8þ0b:ƒV°)Úòªš"ûK>€/yz)£‰ÉkÖð/jŠtú/%¤Í¢ |JiùƒŸ¢dk퀀ÔBCçD…û‚#bLµ»,Iì§¶kúæþ(È­§jâ z×D+VWFÂóc ~çÜ1ïc^Ù’2Â4P[9XQcu¦&\ˆjâa3Q}þ9äÆÎ–=œ‘‡‘ŸfÅãç§Ú{ ÕüfTnS7>`&ÃXß¹ãÑ<}-7À¢÷õä5óÚPf¹IWêYŸ0C„ËYƒë3Úààv––.í::ÄÜ_RZjQs¥Æu‡ŽÐ ûªØé› “X¢ŒÏÜz.ÑÌnð^{ãv}h;š3Ï´!ž} ºÖãƒÏžÎŽÄ|¹Ö_^µÊ×gêÐhamCPúU§öÇ’uïè"ðˆpæaÒÌzÔCwú*3ÀëA± dÁBZßB4×\Ì 0Y ²rç6¹ŸŒ/r9°=-ù[Û¼¦7ÌÐh¨gs£ûtÐ}Õ—+Vµ·FIfÚmMªqŸ„º‡~^²›þ)ßâüš #6;ŽtÈ”«0±æ i›Ó´´˜7$&¨ÑLçNŽ(âU¡|M’²‰ø Ǥâ<2Aðf i™ˆzÔÑ-Úé´¬œ…Á*l ‡H½)U,mÛ*°4eq®ïÈ’¹½²)òÂ…#“ó¬椷JÇʦ :žù¡‰41qjG<華®n¼«Î+k[‰]rwÓÿ6Ñšµi­í`¦-$07 ëçuó7ÁpöO`ÿ·þ:7ÿZˆ‡yfr}Ÿ¬Õ_Å’I¦$ð`+€ý†¬œåuJZ¹…Rãú½­"Õøø6©Ê¨_‘ƒ `'G‚ÿÀ{{ -d}h˜Éßr½-9‹ãÃâ¼i¢æbB‡Žq»‚Õ^ôðŽÕd¸dt’|ê{`ú Räæ1ÍzІèñ²ž|wÛÛþäú•(HJþ÷|±R=ÒÒr¤fzûÄ\$”×7ESS9v$4”}JÏ"ìWÔÏbŽÉn¤ÏBÄ4y:È„è´&@3Œ­óZÿÈá5÷{k9‚‹ÿôT]^a˜ß|I[•¥XõŽíN±¼IT—ÑÐò úØØù{ÑÛçx™m!Ðæo¥’—tä˜Èƒ€ó<ô†ÕVþk»ºW§¹«Ÿ_4’ª¶¾&·€{/.æ1½ °c•^ÕÊËÈ¿zä¢ì(u@×d¤cXn3…]8ªÐuɯü`b¬Žû9£ÅO¦Ÿ8‡Äúµ#ÓïŠ×݉ô %±Œ„ÓïèˆÑ>\ìYÿš)^^ §Ì…7 {⡨%-êN_ç— ´É‡Ú^"S¢—wT°qâL'oðI÷56³»$ çß½øp%N@L)³þyåþœçæ÷K´:…”oRëA V¥ÕÀNŸãÔ%¸ôÄ6Ìr6ø½Æz¾ßK¶Ó&xd”¿6£Ø }rˆ‰îU–À^ >\RkÇ<äç¤ ”–d…-f%]*(°êSCá•&›­“à¤í¨I;<쯪íb.ñmàÊqèðwW"4µä-4‚_šùyµÞâ ëÆún>†L4=\I^lÚo¸¤Ø\½? z¾¦÷ì½²«Ç˜ŒJÜ! áÌÓ_mpÑ¿výßK5?*qVäì¿ ‚a±%œ‡^ØkI‰QŽQö]ôëHõ†„èÝÔdyÎV%úá)÷–w ér:Â_êæŽçŸ«Ø:çüÆg¥¸¶eQž~Pà ¹Ð'›ã’íÒ ¯xwù²t Ö ŠÉ@KqƒŸûÀ>Z¯£nÙ÷¨åپϾC„àK oéµE°Tôñ5¼œN‰C‚ŒêÇ Å3“˜ëF¥ÃŽóÅZßî2xg^g椕©žAµÐˆË¯uÿZ5ã›Ævξ B† |#žÉ< v & ¥Kg—õË™ÿÚïy€lÜN9GzzP*&mÿZôª"¢–ÒÐÓúËåø=ôQ_âj?ˆ?q*È ‡kÔj]âëü·1öÓ¤BæHÑ ­¢53i¬: ‚‡‰\\@,+ µZ¾ø"9&ÑŠÝ;A¾ùÖïÓèhÑ%!¹q‘Ør±Û;~äQ£]£w W\±2£ÛMßÝ,—…aÛ>}Ûä¿æªnPà§ûâÕdØ/ðx° ž ‹_kEeì¹sÚS7n–¹AvWo€}bí(áæÌÀ_až,FM=sX¦  X“–OÔ1™3ELð¨;™FÖÒ#Zàe y‰ù…ýutW|o¾•5¥ :—x^§šá4cAãòQsw8ž†+I’ ÞPF_ϲxô0ò 4ùôí4ÏäXÎâ+­&®TܹÿôÌ!š%VŸéù³Ïß=dš‚ õç4ê-æøÍB%ë”ÔCi%ÙËKhä–1lÌW–y ^yH·,Jë¢4¤@c;‰©2ÉFERVÞ‚G÷dØC]äàƒƒ¶¢iÙ(Ý”ÎtŠÁð鞸iLᇺ®ÙGÍ_}Ø‚dNòÞY™D@KxöÉ4[Dü–Ð&únô«\ÇÖ M×{½« @@òµ(ÍHÍ/‹’Ê·DÐÔÏ"ëÜï,È`¤-_µ)êlâ„í͕؂O¡Ðþ G­ŽxIÅÃム{°®j°Ï“sq‹…JÔºòëîVg»5:ÊšÎ÷wV@›5"Yh£¹Ç *œ1Ýs°¸Öâg$>ý²œOÌ×Õý5c©¡Þ©j$ãeœ»¢âs­m®X lä|÷Eä/ñ úNìLÇqvÁ$ ô3qp)?DšÕH‹•éahË©¹w9S•Œ¿Ê0.ˆØžáH-.!)^e &+ºÊ´n[ q“e~øŒq»-ËçÜ–¢ø¶`~Ŭ°kŸ8[l@Iª*¾~ïb¡€UãÂ0X‡X×èµA!¿Ê‹êq ª¦³â®,?9Ò’KJ¦«bL.:7CñhßåñèªXìðפVÄ—é#™Óžô6Ë£ޱ¦åCx-«ãÿƒâ¶µðÏkÜ›Bëõ¾cÆÈ|+³àÔi„]½ic¿Bóž±AœùèÈ4'h¥zw¯Œ6ŠcNŠÈ› ˆ4Ÿ/噞¿íiæûùBɇ~Ý&¹ÜAÕt\¹c3”Çö9]Q>é½–1p(ò¤öv×yþúÀ}-§ÞÏ4èîÔÜ´; i¥<RÙÜÙµ š£O›—ÑþaB:_[$÷A<Þ+ÂB|jf»#P#yèֹ̪ÙÍ4M‹5ÀwqÕOU‘A±ÿªâмÎÅ.ª#d·ÂkÏØÙ-¬à§´‡™»¿ZÒÍΗŒ«‡S÷x,¬ "-ôäøvÕãK¸føùÛ™eÝá< ÷;¡\XüG2G]ÓI¬ÿév³Þ;ŠrD-Ð`š;õš¹‘2+T9¦Ü ·QíF^Ⅷت 4€ƒh@ÅÀZ%Vvcà°Ý˜¹˜OÉG_£± ìû#Å ìãø¤‡B“:IyO›ÇH^ƒŸï埥ø/¢¾rð‚rFü¤NK µ›å”:áAt›G R¡kî=?׫ÄÌÙ­ °\WhSþÐýtÄYÑñf$Eõ…bví+& upÇ­—|ôIÀ”'dâg›3ž¾UA„ÐXÁÃ6´_¬öJ¶VCO’á2¾+Å»évCCêÆ¥‡v®ñÐyŸ3þÆíõŸW>~ækìaNGùkaºˆé•Dá ‘Š°½Ê–§i´=…`ÔïûHè;›«¯ýô¥ ½8 3]üÙ ?\î ËTxë—F (— |gP—-<Ùªtî[`YPa—ÚÓ¿KÁÄWëßš–ÃWÂ…Oæ4Ò̯¹Ãƒ—>¤]ºB~âxS‚Së—+Ï5nß‚fÙ¨0ѵ ŠÙd·2WjH®œî'Þ´i?€¤ÊÐdä>PgÉÐÐÂödŒ«¸Óõžï¤,Üìâp–¸%Z¤ĽÒ‚H"<ƨf¯ Ã2ëUÓþÙÎüA…XÏ–N(à åì¿v&º˜/Þ„zØ^Fábº*¿?l®¥Œï1îœyäñPÚ:‹³R‰™ I-OÈm0¾S,85åâ0eú·Ô€Ðþ ŠJîúTWàŸ]4…]¬ß~-4B„.Ÿ=RÐü2Ö ×@^¸²NLÉõçi‰Q<"%;—S›oòœ4ò³…ÕYŠàMŠV!â/ʺ_Ypc^¡ °\ðeꊔ …Ô¢BÕü¡DK-–4cipŠ…¢¼OêC—èVC=ÏȲü¥'≱r¯›ûþªá|Ã>‰Ö*ƒÒz”RO;‘`N¼âÓs¨ïgÕ9Ø ~¨’`£ú@³6Þ@Ñ9—~-t½Dº²vpôkˆÌ•›Hñ2XS&,cYcÍlïð»¾7L¢yhX8 õiSpTEÇ(ÚZÚZûø!Ðgÿ `¦Ž&ìp³›ˆ„}M^“ láu’ .dz[Xò¤‹ÄÔ¢R¢Bè^›§!4ÌÈ;n÷t€JüBE:™”ÏPîë~ÃiTÔ©ÒˆÒˆ?q4ëð.[•uéVž#¦¶‚Àb܆sc”}SÌJ}›Úú ˆ8s{òdÌsÚšDhÌ5ír ÚÂѹ:7Ctfgqâ ýDË»ÏR«¡O©þÅ '‹M0ÞÊÝ̈Ž4(Ž—ÁCWm*ÓFâ}.áj[¶zåÿVÅ<°ÚŠv"©1Ú); Ÿ‘óì»iÉÿ=…Ö­[c¥0êÀõdÌUÇ"Ek‰÷ë]>‹wˆãÌÌø8<0°UH¿$ÒµÃ.n_í¾ôÞé6°mŠÃÂuè~êæåÑÝ‘ÝàýiÒn]q"°3~Ã*€”*ò¸^|>u Ò–u휿GÂ|ÿ;<@\ÓêZêZ`àW=Äs¨8Vi¡#Qè9«¸þ[V‘•=÷1\ÚÈH4¡P±úkÔWìštUÊWÅÉüm9Œ$…Hê!‘ÙBro‚’E_‹ÖÔÄûº¹$-ÐȤÚÏ0Þa›—TIÍœ8Ãm^­*æ&¬þõzÌ$>Gñžl Žò}ÆS GovÝy_7:€ETÔ:iô—YÎ\bÑ0€4álv—“kØáLsdJèTø‰/õóGÓ«6Fª`xÉkúPÊpuw¹ù*yðñÍ w€¢z-ÜxsÅà'`/ë ¼249V<Œã{ì2ܬKõ7Œ„ç‹ÓÈÍW“¤‹L ¦Q8»ËmÈž<©e×ÎñI°§·?²Ç@;¹gîÇRË›^Uý‰19ʧ8ï¶»ÁßùWK:eBÄô3°Ñòð¶ÚÓôNAåE; 2®z8 á̳eÎÛgŒ&+Æ9¾!º‡ýZ^`ÒÌȤxc¢“õÍ)—:_¯™ñó¿Ú˜©'“dÊ3 Y<á…ÂÜëñJÚŠ‹1Òµr-ïqö‚ËI°†o{.¦8ÇûîøpÏ8ØbifªàƒÚÅmbORö K’0kAë2 #®‡’}ÉYBô?Mq\—Û§‘©åIW<,zhOãM^’Ý_;zca)TKÍéd×u‡ã×7–œi˜È#T›+…<¤kÐT’¨7Î ÷ÄíA² ~Wæ \ÜÑÌw•Ùß©¹˜÷Õ³,ûX>&ÛFÖm¡44ZG2TXFLà8Yh%}u¤Up*²÷ËRQÄ6€]‡/Ê/€Qrmö{ʹ諌õ™Lã@œ%OMlàÆ˜Qéü‹&J_÷¸«Åi]íÓ£^{„ƒÓ ~sÌêÇØ¼»ªL‘H®Xüˆ%,n]Õ™ó.ÄGÚqÌ¢´;yÏ<ߤÞð¤Úër¾ ûKïF©gg=²´®XÀÛÞ¡00†tõ#šñü»y%šVM²¡EƒƒÌKh¢)Y×ÜGCæq.€Jø“ö°{£˜x¨pQsv®a ù®RžŸ ’'tV\-ê7¢7¬ig‘õ™ä¿üµåç{‡¼ÄêU•Ïg3}÷C„²_üO+ÒM49ž¹ôc|Ö‘{Ê ¬o¿#2@ Ï÷E®Èù¸ÅîO¸ZAªÚ]\+_sÉ€ž"X¾§ÖSÆ<óÕ¾×ûª@žU? 5Í©±3F ‘)¯ðÝ‹ f⪀æjjÑc4.Ÿ•Yy_Â]*®”9¬x×ên9L°³SÅÖ®” ;øŠúŽœõ6ÑÒEË‘wo¡ˆ¡(z7…µ ;75ÆÕD‡Uý“4ŽŒ©ˆ5Oízò”ÍyK§¢!~؆êgÓðFˆí-·2_7ŸÂ‘Í]ùÌÞmÖÀÿ!ÑýŽ… .C¨¸ÍL1òþsØ6ÌRPl›nöÛòù Ó•dÀ–.Ö"®uyi!Ä¿¢# ³å$6…lÝÊþ4K¤0^K‘ÛãXSà.§Œ½Ãv:›õz¼<6tXU?ÒqUdV(».M „_m`‡E£“{§^‡Œa ìÌr®] 9%ƒ´Î†â|÷øCƒ-äsfipû¶Ÿ“ûñç«sí³lh÷:…¤ö  xü•+›CŸ3£ôvœC6y?èÅ úƒ“Vï‚…ð¥_#Üa2K}'uæ=Ãk’Züké›tT¹ßD÷îÕ^[ë–àDä0¥RdÙ€£lÖ ªñÏS¯©¤½§À48>K¬Q;©D?t5Çæ¿lIy5ôóñ‰ÐJÄt§Jž¹ &`™§Ný:½?Èyqæ-è}`Ð ‹­)­&Ekïâ8j|³ÀV,Pib¿žo¶}Ã?Áèr’yÿQ®„ÚP%Œúck¯â¯Б¼$_ß™÷ΔŽv¡~E˜$ƒÄßâhSjt1Êz˜1±Ý‡# ïºËÏ ¸Ø¿5ñ“¹”l®âɦʂü v±‰ ,.t¹ …<-ó`S¿QnìŸ>€A4sz¥Î¦½a¥’‹z ˜ä:d)<žkzLÂuì8ôeùˆpLÐXââÕ:Ú!eŸì`%Ú'ÂÎ}Ü̦aó†è…ÔY\Æ“!‡ßpŸ|Ai„ÿ–@ÜœbP,Ø6®Åvû,,øÑ–‡”QR`‡ý^EÕòN4°¼Ì;§Šš¶…Š*~"Bú’¦ÊGsCs`qÚ°-wÁhªq^«U愳o7~:;«‘>¦»ùr¬öÙþMà(¨†¼åί¿5ÖïGý!¯º1ö ¥/‰?žK[c+£ñý:âåÒ2˜¶d™›86©JØŸQ3iA7ƒC¤¦–¸Þªç¸ÀUø4)0§Q“9ŸÔð8R¿A¿ïø(Äáš:eæƒA’à…:Eža|ŸÓ-¡â¼&.{kJ¾'öøõ~DyÕ¦MÛy‡3FȰc‚£Óˆœè$ÁØàÅœ>JŒÄYŽ¿­Q3ïN•@¤UÛ5~ž—w‘ªãlݯtóOhîÆEojäÃÒ¢ 4i2€èVýSaßQžÏÁ?6ò ¶‚M¢_’Âì=”ñËØ‘2õÉ“¥{Ov&[ÈIuÓ?ÿ’™´³Q¨ïƒ[•¤û¥7’?Äүܼíø&ïó1ßoÜIHžÑ^š¶ÜôÌù|ÐþÉÓܳÏ]†`g4‡•]s÷ŽŒ+ö#s§²«›ì–Ý«ÆaÇ úìóTÇû‚ óTñ>_ù\Ì×ùÃý1pãNkÀ%_ÜÎ >gÀÕ°Ä Y2ÔÍf܆ît—æv+ÍñÕºQæEñÍ {«ÞÈÀ‹¾h½ÃÓ&¢õãÄèkm׎š™m§ƒs®KxÃûÈY;Djô: ˜YÝS°ô'+9 fw¡Oœú¢{öýn³à—&1SÕ’á$áÏ’—_f¬ —6U™#³ 0^ž-3Yâ®Ý Š#70¿µ((dw+ºðí|Ñf×t><¶ÐÛšœÌ:˜çð˜€|~¿_rYóL.­àÒ'$5¦®¨R“Ewv×…tç¬}ƒÍˆ EïEñÁ¢µ §TÚȺ×ÊC:J€´Láy„Ô–—§Ìa–#™è9áO0{qšè3˜m–P„żb-5QŽ’ÃŒ¾WÔ—v¸`ë­&tLXòû×ÚŠè[ž»í”¿œÉþï¾€2vƒObÔ†a;fÅ’ª3®c¥áüHž›L·Jʆª½á„˜ –߃P?2à5GXí\"<±„CûR¾’Ö§}|(^Z£—ÂOøøîiÕX›!xÝýêO «/²ã5Ô!>#±$À¥™ðÿC­B…l7” µÒM,B+®’~ë«RF¾uÝ Q%‹gû—¸¬Ç(ƒ(dù +¾"h·'3Ë7Ù*Ä¿z®*3òn5­íßüG¹nhYXË&8>¼ÐY R+=Ñ­âøfÌ¥‹¼[Oቢ:±÷ÕåY8°§L‹9¦Ú8üÂÏXfŠ“9–¦×HTÚøÉ~ƒ²‰Æ–“ºD´°:àÀ=¬Ûj©¡cæŒô5)í·êPN¯¸„C»$Zérø4L§¾ºãBï~P–úÒ¸ÔÐÚ ©³ó¶‚)\àµášf[«‰§‚ÁÛ™øYòIí¥Âa Ñ·ƒú£I`½cËm.×åSdÉÆÒ_þîw¢1U† Æ¡s6)ô·Úw«„ø7S_vÔ°L@m:ýóÝFÒÞSki⫇'@ú&¡«Y/“r†ÿ xo½ä—VÐ (Å «H¥ê¡jáq;¡¹†Æ2ÙW=. ¼ïXNãWßA!›æ¾íçwÃVFs ÀÒNSM±ÒvÄÅœæ?W’?{?ÇÿiW¢0TKȤQ1W݉šPå†yß|a‹pÖМáÿ-yt½‹s/E8¾-VÑ(ô²$ ~6içÂAŽëc·ãoškZÌA+r‘A,ǧeš rfùÙ¦v5+©é„ 5½~}(p–EÛ^p\J%oÁ0õé꣬xÄC<. iS¤.BŸ¨—R2RÌæÄòÇ“‰ F:ÞkšAöÔÅ |Ûù”•ŒIà}žxØýAŽõ\ÏS`eøË¶ãb!3ª˜}•ÍK¦ÞJFR7ÓH™lhõú¾|”í°ªŽ›Â¾'xr<ÔÈ#ÉEt)•¤—ì¢Yë¨rÓÿ˜‰{‹Î("ˆ•+6â‰Gs]nÞä®a¬úH›‰bä…$zïJŒÔÀ?M%4`¨=ÙH¬/äJ0‚"7Ÿy5 ´ö\7ŒÇ°t¨ÌäÍ-¾—äp}í'ФA¸ÿi/¯a©½“ô+\z˜òµ¨N#¢Íeü>×8n€Ìß9y«—¯Ú-xóB¹¸([Ùï]#r¬Ô…矲‹~^Ķå*t‘øqP¾ßñ˜!*¶âA]èpžÄõp°ªÁ|ÊÖ5?ºÐŽýƒ×Qcûø£S(ÊÙÈf6ß¾ Üì@*£#i•þ,ãpa€,vЖ/r=+/ƒÊãAšðéæÖ›]ìî³ žZ…õFîÓ’ËIœùád*$Šà†·“µöž <«;§1ËšïH¬b9ËGMzŽðjBø—X‹á–—9€²Þœ!—1äKˆ{c-ùVräì ´f(q{ µ>uà×dLÑ7Tfúr¶s{Â$—‹ò4ªù×–Í{1q —zLîô©V?<¬2†¹¹è\ Ïh‰`ˆŸ3vg€I{s=Øæé«ï£ì¾h±1£rxÅ®ã-×9Æ¢–{Æá *mÈÐ<®þ`]K¦§Œ]„—•) ÷P[ë²OÒ+ꘞ sjNZ×—_QÖM£ü&êdæ†úõÒÔF{°¢Ózê¦DvR™—K\Wy¦¬€áÔQ8€§Õ0ÆTù£¥Pð—|+PzûÏ•fèêÊ͇§~¼¤Ö0(é!Kóµ3[WÈ·yf³µú?©Ø¦¡[çöRõÍEîª?OsÿVæÉk¢–% *ì*ͳä rÂý-¥Øª›^—¢MF|£ö|Å,ÂtAîtƒô‡Ù9Z€ôÝu÷ÔÉ >Íõ®ÉéV9Ä žˆ\¢.wøTês"£'+ëÊ+õëÀ Gjiû’£Y³ ·À´<ǵ*{óeóÎT’LN°½ÍúÛÌ^û"†tƒ°Öt‚ܼ>ªùk Š?lŽì&øûâpÈöÇ3ŠÆ$1 µC ÃáþH`ó4€@®9XùÓ£?°q`ìƒ]JðŠÊ@…ö۰Ðέ!µ*vL¶wXƒS»+Ä ¡ÈÀDÀNéŒFr7z«3á› ixMmäŸaB¨·ÃwA;1Qy5!>–ôæÇÍ,=Y"#ƒTþb«VYœ¥û‰£¼TX·dÿ’›ÇaIÿ…ÆEx_ýÁòÍÚŸ€áî@ÜJ}‡U‚†ÏÉØŒ¹MgÞHóÒÖxü '8ˆóØN«`l[ºÃOUÖÁüØû¥I9Œ7óáVðŽä_ŤÝÉKíÀw)‚v¯™I6äÛ‚Ãõ7À¯½Ó’ÔE÷NhxXªMØCEqÉoö– €Ú‰L(–¿ÿ¿Û?ÅvÀ2Ì~ çpút‚ŠòøU‘ñSWZþ¬Ü ÏŒ¥ÈФ¸‡\¿’‚#žß¹OêìeJT>ý?ÊiŸÐøÍq!A1Ñã)¬Ïi¢¤Ñ+,VÇ÷ù(õ¿Ê[ÙIÐ&ϯ>£¨¿›—>¼ãßwux•[ý*Åz"ŸÙ‚<ÈûõJ§ù`¥Ø×Ҙȵ£ÆÚ9•ÎŽ%!Öî(ÑPƒäÌù€–¢ô¦=ÙÔ«ô+ÄÍÙ…ŒäŽDVNE¥»Èr¨QL ˆfõ'w"3 a’Üþóõ+àèÉ#Z(¦"ç˜ÇVXùïø¶å¶RÀ­wu‰ä$ö’HÇ},L^Ð&AìÏŽLQs”®Ï#F÷öñ-D' –úõºˆ:”)lƒ÷¥3¯ýËc›(j°ô4*;“n«< ÈÐVÂ*R W¨y‚˜–¼›Â endstream endobj 88 0 obj << /Length1 2205 /Length2 16705 /Length3 0 /Length 18042 /Filter /FlateDecode >> stream xÚ´¹eTœ[ÒŠ»»Ó¸kp îîî4NãîÁÝ%¸$8Á݃C‚kpw'pÉ™o朙{ÿÞÅ‚æ)}víªz{uS‘)«1‰˜;˜%@®Ll̬|y+“Œ«‰µ€™••ŠJÌhâjí7qò¸]­Jf®ïžÎvVV^*€t~WšL½ @Wu/G €Öä/ ìàâÊdjâò®‚,­A@ºw1G/gkK+×?1>01ý‰ôÇ[” kbfëàábk 0™d™˜ŠïBk­` ´2±³8XÔÚ 5 U5€”ª’†²ó{`57GGçÿã"¦¦®!ÅQT—5RjêþªAïü-Šêïú?yÞ ÿ¸+H¨‹¨ë(K°±ü9€ àtv±þ“ö¸Q¿3üMíÝÕÂÙÁþ¯Z+WWG>fK7WfgKfG»¿ø©[Y»<œmï¯Î@;à_…q™¿—ÓÕ ø¯î om¹ÿ8I:üKiÿ^Êw§w¹ëˆ½ÂõOL»™\€ÀÿJceâò—¯¼²²<ÀÞÄä ™€ÌÞ ]M\Ý\ÆÉÞæ4ÿ"ˆ¹9;ÿÉ¡ðo•óÒü›º¨ÃûÉôí|üL<þ÷ÆL@n.Þÿ¨ÍÛÌäbíâêò¯ˆ@€…µð{—?wf úK¦ ¢(#)¡¦Î$ÿÞx &‡÷ꀘ]=]ÿ²þOD\þ½¹yìììÖ÷&•™‹9ØÛ¿³vAøS>që÷:¹:8{±üo[Û‚<@>ÿ/±…5ÈÜâOÝÍÝY4@ÖNn@ñÿ3~!ü-³ºX@'ÐÓÌŠåO²¿zå˜íø½~>ŽŽ ; ŸµðýÁÇÅÄpuvúùüSñß`nmæúÞæï£‚ðWt…€÷_âw&ÿVý_Ðþ5¦tï3jî²ó˜-X\ßÛöÿŸ)ûŸ\’nvvŠ&ö@Úÿ©èÿš™Ø[Ûyý—áÿXhÿP¥Utp¶7±ûµ‹¤µ'Ð\ÙÚÕÌê¯"þKü¯L" K; €‰ƒ™õû¿4&Êî½uß×õŸíõ®çâþÝ{WšÙ‚€...Þ¿TÀ÷Züí÷ øCÀ¢ *'ª®Íð¿}ó—•ÈÌÁÜd `çä˜8;›x!°¾7;''À‡í½«Ížu €…äàúîptsõX88#ü¹Q.N‹ÈÑ¿7€EìoÄ`ÿâf°Hý¸,ò£wKÅÿ V‹ò߈À¢ú7ú`QûqXÔÿFï\4þƒxß¹˜üÞ3˜þx,fÿAl¬ï Íÿß™ÿß Xü¾3°ü|§`õÈñNÁÊËÑ ú‡Å»Ìúðýä6ÿ€ï4mÿßyÚý¾µÿ²½ý;ò‡÷À 7{Ó?Ódù„lïüþßù;þ¾ówú|çïüøÓåð¬ë ç{zW†~'ïöøNÞýoÈþnîùøNËëð–÷_ð¿ÛVùÏæþk-±þÝÇÿ÷Hû «¹:;ص¬Íßçÿ0Q0qu¶öÔc}ß)lïò÷Ÿÿgð_ ¨þ^‡ÿðuðôaâàe0}x?4ÏŽ?}Àå÷_®fÿz¸üµÎÞçíßøÏfž@3„¥y3þP›ôoáþEÓ•ÐT¼Ì'_p>jË&B-eMwâ‰ü" µfS;ÈKóø§Jµ©B±í^×[S¾Nݘ«o›ø+ø¢HˆŒåk2kg+,Vv‘ÓÊæê”qÌf·%¶‘4ÆŽÄx;ºcÙ'ßЯÒÈõ+ÛV?C{”ü`kÆr¶Ãð\D#è$\œîw}{ÄŠ1éY¢Ÿ3. Ç“…qìíFÓeH/T×>1ȆÿˆÅçë‚ñÅ>‰¸mhr‹½ŠcWÜÜéÎБÐÍ7]T/ÞµI› —÷3ògŸTÚþ“¬lK®Rcnç@¦Li¥÷8uÈ)Kö×o‰³ðøµ ïÀÃRêv±‰ß•¹ûžÙ±V}±É $ȉΉ §*Py»x˜åS?Úo‰›¸š¿›”ßÕ‚ßG9u›”ñkøhTýQé„YYˆ ±É‰ºéšÏ–ÒêÐb´ÏŸdŒ¤£·ö~rûQöµPÅé·{)™¬DÓ(µöXÏŒ$ŽYÓ`SM9°ù4ÞT%(ª¬yà4íÆˆ iÃrS©÷ ¹ÕLløcÿ|p£±¶vzx:i| ÌR„Ÿÿàˆ¤r/‘ϗ冿²Ûž*˜5·"ŸJ§ÐíPn­?:cÞLö©fV )µqBWbfKU@—×|¶ º ÉL håóÙÏk%ÅÍÄß i‹0e›ÚQïM÷T>zLáÁŸ†¼±Q†ÑN#ȧHú[•ûO¡hæà8­¨ªáÑIÞ”­?ý*3Œî+ Ú¥´·a›ÖËT‘8:Ž`+ór(a_)Y†u~8¸fCÈ/×yV>૆¸Y¸åމ¤*5£Ók²åà#¹Â‰ádE„)ù"‡HW@‰Îοмùšn&¥mÇÝmn¼ ¢¦¨Ä  |/’íá†èÌRìë³E’rb±Áäý‘qÍHW—šÿ[º4Û ãu æ¢cT×>€³ÜÈ^_(õÞ­·Ž&í%Q¦>‡&}öì8ióÞßpb}%)Mo\“‰ :ÅÄ®VLÏ)³‰×üΓ•=ÙèÐ1—ÉA †­ÖìegB€0†Ì¨SÚRD™DNõ‘™‘Ü&Í”{-ÊhíÅB(ªø¼¥ ÊÀÅ H–ÌæK궺¬­çál 0©ë°+*rH« P)Ó,É'-þê;—•…5~ÿú[IÖˆYÖ•ÈÇ.‡C9Ø,T10i(i1i¥°&2C‹1¼É9²×3hnÙm?cØX阚Z(§–¼ûÖÞ(¨[2ôLaâpüü:Dk䘃.zÓL{³ý§šaõWÚl +?lAxc\JòvópQWVéoä$š£.Õ–`g>=œ§# íô]¿üÒÜnQhœ’¼BŒe|ÖFXÊh `“V'È.ÔÂëG#S,þ“½:¤U[¾“tçî¾RÚk Æ"÷ŠÚÌ€ïç/¬Ö*­`Nü!ò$}% ÍæÅ•ùìç@nBn?rÕ)„°Qžrp5Èk´¦r˜8zpL:YÅáš9–=Á5~–úâ¿tîÁý¤<š´K+­ypiBúË‚óž5 ê•‹häYGqIµh¹‹ò˜sœæ¹'#Ö:û±5·!œ/ññ¶|Ÿ×9!Ö^‹ÃÊu¯•«¼ãöX݉-3´svj"Å©H2­0’Ár¯\|L£r2‰h4†Fj¸­Í¶}þE§‰IòEñ<3¬:,“£Þè©ðeK“0†ŒÏ!µ½ ‰¦C„}ð ‰ûÖ ¿á$ÕJ¡´||áÎÂ?‹j¾ç¨É9øaøÅlÀÌB¡&Q¦a5¹®‹ÞÞÔ¤t_*¥‘Ajq|‹íâ”諊 ml—©p¾É¥F¹/)ugÓØáÈRSÜá>w´-îŸyè…Ö:ª†“g-¤~<»Ò˜©¬±! “£Ð÷gá ŒŒînÕø¥Èì'e DË¥N'L¼ÅDø-9¶(hâm÷¡ùÂúOØc»ÏrÎÔ¶ä©00±¢‘ßPcÒ„d(µÍ£~ë;GÄÄ·Þ]±Ï*µÊî¢ãÂ)ŵžïz¡GÚ ±¼­DB†•Û<µ¯í:$˯Œ‹µòäQƒj9ÇyGh7E_ ³Q{ *²`ø#€ yKsä{áóÝ>ÀÀ•bªæbÊ~Å<±¯šm¶z‰úEHß!ï¿KDþC^J*=£ËRZ³–×·âží<ÜŠ‘•!öèv5€kâ쌥C\L]˜¤ZXêßK?ÂPiãæ®9\¶9î çëq@¬Kieü- ¦0uÙÌô©@1a[&ücÜ6æ|z4›‘3ŸpZM÷~TA~~6FÁ´ãüçß&Îm?ýÄ®ë &`ZH&¦P9´åúáÊD:x$ £×9‚l;Ó¿Ðá˾¼! PƒSÂÌñ›ÂÈóç ©“Œ-³lsLZómóôI×§E•–Ë>ú‰h¢—vÊèoø±wxøòPÝ:E0¾DBû*c×$¼"6°Ñow®gÌ”÷™IOv›\ÉG5"ìšm“¾|!! î``Юð˜[º…¸yuPz¢ *·fû¼³lmûÅÍÏæˆ ×û×IR3 /Rˆ¥‡Oö)*›_>ãÕf ãqlƒ à¡7MUhàCÉä–Û-M >åù_Oô¦l¸‰Ì)ÀI£}v`f‰+Ž\à ð¥Ò¥J\ùW@Ü„.œ»/~OÏeç˜ÉÎäLeÌ|’ô¤ì*Q-]±a5ì.šÌ|– YcÃÔscÜûD©BTÑè]iû!JñÆ‚â«óäÏ(é»å8.©oB÷u¯g}°Ą̊ bA•*¢-ÏyEÈ2’N Å¸A&êÔVølŒ/W„ÓýaäÐ{Âܺ9•ª~о©WßS3¹Sßh\ò2‹›¢›>òÐÜi2¿Gáîo $ÄL/=ÙhßÓ:Ò?—;)~ËÊ™ 6šIüÌõ4ÝGŸ@˜§ßˆÄNN·û”àõTô‹‹U› ®f9 Iº*Ê£¹ÇÙ˜|ú‘Út×B°sÆÙ÷â–ct ZÊ"¿`!‚1‡tŒh³xKɦ’þ±¢óà9†B~¸ Ï 6©Á”ʽ‰΋×F¾­T9Ñ`2n·-gßR ®³†èøRî‚aâ³Ç«9ðaެom†p×Q‹<øJ¼+£)ë+ÌfžVÄÏÐMÛ©{¸o«t›››&=.G!…õIäóøÁLpSºã¹«V‹ùì…'Kô¾» ¤1Í?p³4°ŽR¡CîZÊtÊÝ“/æƒÓ«jeNNðHÏôX¥íÂÔˆÏp(„ò7kvAµì¢tØh-ô†úª3Up¨qBé¡ü¸´U2¼öq¼ºúN§dâŠÛέ…ÜGÑôP,UoÒ<ÁhœÁ€¼ÜzÝ–ÇŸñ?±´h{)"Èøé ´´Xrd¢*EäN&‰ûÏ*Â&1À!dØ\r(‰Ë}ëæ÷(fºŸª. kg¨Ù÷tËê2v°ˆ€ˆ¾Ú^|á×£ܸK€¹cËœm¡‘çÜãÛ\O)(\=…î€c†`v#ÐþlÔ_:ƒÛûñŸ&«Þ<ñ¼¢¢¼Cx—KÌEGpæ·Òºx,Spõàò¤ƒ,ç€C3aV=ö ÃÙ›­nrñ‘f,ýeJÅD«V@Ÿm·vÏ^5ƒ:O%2êð>NiÄv²åÇãKŒk$ê¦ôý(÷º <*²s’ÌÄèàÅöâ©=5* nÀ=xIë“=%Fw“§`CÏÝ< G—ŽpÁºn8bà˜8oàÍ~FªgtÝܼ$swˬ—êv¨™GQú-¸Çt5!ÜÅ,Åçɨc?.áë£ì±˜>’h;êc@VžáÎK<ö×™ïWãgN_ê J¶Y]Ü¥79-|tyäÒ™Ú¯â¿á”E\Ý{ë<ëÈæböóøè¶ÁhwØÓ Ôã͹ «z³ý¬·Êo·½÷ê:ãqž(ÇÜ^Ky`EÐl»¯]Å „ 8ÇÅÒ¨˜‡v 4ù! §þZÈhY à#‰q‹ÂöT¼UG ûüõÌì–çà+ãŒiö È‚ Èþõ0‰žðdþйZ6£\ãEa/³vDž³ä:%ˆtµ¦_:Œ¾9}”B¶rîÛv‚6¶ šŠ$¤é,ÆÜ,mrTx|; ðÈNˆrjïáÈÅÊ¿DZ~¨|#ââz8#x;=ð)sU½ï™ÔLíx­‡f.IoŽ)Š,Ë#JñÀVû×§|MÇ’B‚UX?HU¼ísð•®ñ´>.yz<]ê§¶Oü8z¯*×(xÿþàZ+ïXGâðÎ϶âO=­WOH¿Ï̉ò%ÆßT° e°¡:£uÉ/è®Ãñ/J­W¿|‚²Ö÷ÍdŽt­4nx÷gGJ¸àž¢Ú=¾éÒÁfú×)ÔQwhÊ ×ò'5ùÜvEÝ.K!Ô £¹èŠß¹ÙëSw\´Oø1Î!Ú{³™É5§ý"ûP!%b_HÈ3ŽåÞmfÙ§JšÕÔþ”ëá¾Â æˆß[¤8[]ˆ9Ä,J»Ï8'_㫎%J¦ŒÙ¹Èæÿ ·íT_ILâµèâùœÿÞEw ³„tö (ë”Xó†êØÞFaë”&•ºsâO“OJ€.¢_LªÝAý%Fÿ©q.›WA/ó‡å×ýá12¯ZÃÔŸîGwDãK&*´x –EË;qt"f|X¥²(5 É‚QXB±£^±ì¡©6ŒˆÒ•ú›|_Ùó¾ŒK´š–z° ÛŒ†{6)‚øÐc¦ f>?ãÑXhêé\B`ןÝ'áçÂRe Z 2›¤ù°$Qñhà]ÍR÷ ƒ»†z$© /~ð¤ÔþMÑ'!*ÿ©ÕúÌôÁj¼ÆÇÞT¹æ˜ÌãR Çã`4§©8¹èbÇ3x÷ª<§s“t‰$ìý:‡ò‰}¡ìÄ ’˜ Ð/ž¥ôÛø­ýÉС}y)¨ñY Ã8›kù¡6ÒõBXÈöQœóãcÊËêõªÌ2HM^Ú€Í3=B­Î(ŽKõ~)*ÃYÎã˺¿¢€€ØJÌz a¿°|$± ôÈl‚ž³Ûf(ÍþnI¢þÞªWV™^«:xÇs6`0è²­v!°aÁNA…8Y]3/:lΕaÏÄ÷'ž=Ž£4ß 9ƒèsF«YCR”IÞ«<´Ý1o¡.¼jæëV6Ž [3›¢!O¥2ÑÄÖ•E¦;²g“Auî —d.è1SŸT†^<»øÅ«~Òyý±Õ·Ç1âf¦ÀCª‰Ðõ~‘Ç]Ò*N¨îñKÌœÂxÞä[¥‡éüõ““†±„Ó¹ÂUªXvjG\^ O0á(õ}…e“h·Ül ÜÑ;ßÜç_æÝ=ø‹ú“['‡§±5a+GôMÒViaínJ0lÑ ¾çjKúÔÌß0aåŠÈ²ü6ÚOj˜?`†ÊW\õ ÐSâ72ã’èhPÕ†àÁÒp±†ˆK½X—Õ³Í ¯ wôÛ–8éÙ]‘À#dJõH$>çh®P§ùB¡ŸþÛŠu)NÀÐ:é™ÚýD¦– >0÷a¥^+úGÑ×Äy'¼‹¨$‡0­bγ &Ü^¤ÖØ6ÖÍ®Ñ,§Q]“A¬Í@Áù<ËàÀ3 A³cøõÞ›ßòéWv¾ú ß· ’ÏŠwë‹•^JS®p Ç*§=¾†’º:È.ŒkíË tVÑ­¹´ªnUŽ\Y]´Í°Pd­kRýwSÌÅ—‡)I.²‚•HÐz¼ëMRä ã”á*K”à£CFzdV—%]²f×ås’¡p*àJÎé<³ÚŸQv£³Ŭ§ Q©ð_–¬eâØ"µÉÔ~Ú€TX‡<Ûà—Þàö´ÅyH!£åû®Ä©_ÏŸÓX4µ‹ûÚ)ÛV…šSpšë'ïúK`~¾l8WõÞí&‡ü¤€£â!M´?¦Çé c’–>*i45Ô‰˜ÏáqIÞ#ëâIáÓIëe#:ERàJA‡†zz;¬¿#;=ÉzÓ_²Ñ¿‘§Zwõ‹xõÆŠ§H¨ñßNû*Ñ}Eø0 ‡cÿŠÞà¬õ̺Ïu'yžrYY:d ²H¼3«ŒËŽ^žLÏn|ŒòŧȀIfÚ’øÃx³ ‚©AQhÙDìïÉäI?¸ƒúóÊBá¸ìÚYq£½‰\?(G@­3Š¡„L=½E¢âr1ƒ;šúy<EzöNŽ*ÂÂÎËx’“ÐÍûûDÇ+¾kÿÃÑ5*H!ÝŠ-£³Št·\è—Xxô%uÖ~—<òל(æ‰áæ‹/?Öœ¼ÜhËj5¹~'ïNðîê—I)?–sÈ9Gè@^Ât‘êpsï„!pÌ»8üîR²Ù¨•teq•8UyŠüÉì _?¾18œÕ"7 YEìé1¶w`–³d–Z_/²Ï„Ðb̳Ïó>(†6Ý:o ¿Á«ò;’š"+íðÞEmgĶ:Øèo¤Íö«‚¡Ó[×%TúlCÒ¯fч&!FG€ü¾Ìj‚ç=B8LíOëú"PóF[ô ëÇ =H‰á»ñ]„!¤‡¸kgømØÿ盚nfün…Ê=™Ç—Wý/WOý(ã=U6aDˆ®©<¹Tœ.jËràUÉHÔ”“ç²N›mµ³I¢±ß-Ì–5’SÇ‹pÆH÷Z+¡ ™îDv†¨°Î)Ïe£ ‚º>¶¥yŠ~¡ëóE%ÛR?Ÿê¬>¯ÍÜɆxÖ9Çæ}€§íÝ}Ólzû sGAóZHY®¹ÙÌš•ŽŽe_-ß•r-î¢ïKVz´ÜŠÛNî[©\CC%Ürø¥:lG&e1iÅÚ2/ä1fK„{(­:œvt=s%åÜÑ$ rÜ>Lèö`##™Û›Z¡-£èaß2É¢ÅöŸt}Ñ^ V§¤ë²¬¹3{ÛϘ 9ôã•3?Ž€?ÊMÜò’¾Ã´Ì”T$)N)xÌǬzF–êv†¨_4ê< xÞZ§CmŠ…¿·zª¡Ÿ=¿­& ûP0ãÖvl~ä/ƒ®ÔeDÕn\£–ˆv·_+S7ÀÖ‡"µáœ;þ«·5;þAÃôŠ‹Â®ÿ1Í%¥9ÜÑRÒ•¦˜{v‡NÒŠŸÍ@AÍÆ³MÓ|Á…Úç¦õŽ„É?.ÏʬÆ&íZ”îs^,Æx†§Ù¥˜î ‰Hw{.MoûtL`ý(ˆ­Î¸†G2 ïÍÔK{fÊf~Õ*a–Ѷ†kíw$†Ä¬ü›(g«ææ|‰À“¥…mk &¶l$ÌŽ kÜää/„%KâV飞³Px°Ëª ¾TF‡ /%ïÆ+<ÔÊÞÀ“…ŠÆä6_L|ʆ/ íaM–ß ¾Ü±š9´§÷6hQê`¿Ž4*CJaæíBìŽÑßCå–-ž(Q·K13ÚY¡xõW °’z%A<†µÏWWVe]o$Ûû›h' WÄh#g á–âs ËÝß•EÒ/ÃLL9´Hu–“J£êC­v€–_гXõ+&["–ÃÄžch s'¢Ò§…µCþÁ‡&Qêb¾­\.4»ŸB¥ŽÜ!-½4#îîRtD›ƒ¢^ã2ÚÝ2â  ÝÁîªmÅ£ÞÚ˜¯¾ ì‚<¢…ï´è/Ïñ–΢п`Í¥å \·HmZú¿ß†e·WŠê;¤öÐ;¡U»n3´÷it˜¦ÛHéenào Š€¿]Þ<ríÇò·«A¢1ÉÓ…ß!0m|mžQÖ±=yÐ RmzDN©æk่ƒ8¢KOÙ¬:)Ž3déÈnšËkk'~éÁþ¯5½©´d¹Hq«ånw<§-f(íÓnóeÿUŸ§ë…ñ¼ €º´TÁðíÓóçQ&´â,ƒzrxŒLt.Ô¶ÅÙëG ¥’s…“ǃé-áG‚"Cqj??GÚ](×±6¼Ó΄Ä%мÌþqÝ´™+‡pae+JÄUô ³Þxܲϙ:)dTó“t™»2$9'ò)‰(¸LAâ—U1ߦ‹´]j¹×*â1Ð ]´>¶Ø¤ÌRs´{œx •;F¸Y¹1ò×óú„…»dÄì;ÄÖ]Ô›[Ú²¬¤³¡âž#¼<ðÖŸP³á½â„e 5/±Ä.°¶‰ûˆ“+ZI3Š9Ü‘¡¿ŽŠÛ‡—âN÷’)%KñÕ–”2OáŠd”J†(· ŸôT˜1¥ÚÝs/v$¿õò0õyF?}vÊ A§~©XCªm"Z¯* ¦%Üú³Tâ&º‘ôüCael/ùÕ¯iç_žÐ”bNv‰$ù ACUb²=e/ ߬a¾F­€QÆÜ]!GPð®6iÕ™íH‰Pp-8²¨ Ì|ÄÓƒ™åMI£†uÙMócRÖƒÑ99ô§ÿøñ•Ä9]|Ê}Ü·žÝŠ4nÈÇRˆÂº`þÇR$ïõ¨ “òS©tE0Ë™ž\ƒ#ÚaäÅ%åE_=*rܺ!â‰ð“ò: {w,]¹˜$ 5ö‘J¦êM¨?Q0÷sú' Ç×í ~ xü´‡áû!;¯ÝœâR’Ý[Θ1!†ÞÍ[ê‚nQ¢-þHŠ ‰RLHrwö5¦È¬­4˜X–­*ª–•êÆ(YêNS~0W«ÛüÔ1x&¦„ŒþzHˆ¿¢EB"Ø2xW£2íœï0©«0?µÿKq9uÐÚC:ÃLÓä˜èþl|ME“1‘ÎŽpÌ—Õy_1`«V×Ó]*‘uúm¸ÂJêܢߘ՗È} Vö9]žÍóÇÁ©RàÍîƒ ¡+>ørM0ZlÃ3‡©Ô«1Öô±‘ÉÚ»¼ƒ¸¯ì4„SA¤5ÇѲþq]7§`%çÖÖ¼;4<:º¹Ðpê|PHQå?F'î­Î¦$‘X ¹8õø”üîñ6O™õÀ2Îèã3N ðõ˜w¿ÜUž.‚=t"1´ŽIbĦ! %Æq噣³€Ò:ˆHRׇ'¤^( ÓæÚ9N”›†ç»õB/$¯=iÞ‹áÓ*“n-¯ó:ªW>±Ê-߯™ÔåøÐúW›NØ6&•´Øöoè÷ëRÉÓ¹5‚ÞÑ{ˆ×Æêì©0 @Æ·ðL¯–^žº" î‹46ÿ¥Ä“†p{ÏY¼@ž¬H™´ÃNê6@>Œ4²SïúüXÍ®D ›ª®&T¢eZÀ¯ D&b3vÓÈÑãPÚøÐÈ ôU¾Mõæ] —uùRéÏ× 2(ˆ1™Ûó2dÀ ùÉ0=f3ˆ™\£ÏÝ1bGD˜’1=)0OŒ†F vu¦{'Á’eZÈÉ"E0 úé®i¶ ±úsåƒW1@±_L# ¶% @ˆ×=ÎN¬O£/²;œññUIäkÏÇÇ­å{œ+ø$}å P5:Ũב·àHCqÒ+íOû ×s^HkÔ'Bâ‡è¦g ÷ÏšPîf´S~Þó¦NR :1­ËÔß"Ù öÎ:¾Î’ßäûcJ:³x\çÐ9«üPQNCF*øn\¸ë]D„éôÐçõc÷~^!FŠã¾¹oýŽšV/ø³X™½6µ– å ™¨m»ëEg¼ou¹›~»v m6}¸D®ÅĦú¼€–^LzVC#LXå7ïßUùŽjaÁ »ãˆ^ ìëꎹôÚM¿²È`_t¿Œ¾}ÜSÌeä¥QûH±»Ö9O2»Xˆ&kKæÜÄå&¢ø4%‡ù &î;ÚlFëFÔUá4ÌÍÎ"¡ñqÙÉS ÊnaJ¼ò%2*ŸÃ/¶÷c°Y®Ÿz›‹rÚ·÷ Ñõ]qú²hºôc¿Î‰»Ç5¯ÚHâÆ A\óæÃ~ñÂë”0.M«†bÆnv¾Z’‰³¾S#¯àš'RÛoÔS>õ¹¾Áˆº‰ò!r‚Š+ó†~h1“SÌx£çáâ%ÃYT^7 íÆ¾)¤‡¿„°œ°æ ±7Ñ<Ý—¶yOµ{sz3ª‹òu-9âöåC™=’VÈû‚ÔÇÿ|µÏ9c$r_‰pÚ‹]£UÊŽÏQP¼¼%s'ÍII²±|ZýñR¥¾¥U³{o R7ªkÎàŒµ#£ìJuc .÷G*¥¢î>Æ€Ÿ~çåX>±õ­UõS»þ£'ZðŠf²O™í’Öf8 /ø-e¥ÐÒ¶œX]º,: õ"²(|Ì£À¸‰îM%Ád&—à•¾W·0úØôXXQ*Wå£Hœ?™+Å èÂê‡úiyجIâÕÒ[â¡ËÔ¨¼¤²dÌUŒMå$Lp®ù-u·c.„ÆÝ“Æ43ë¶°oû.|úNTx[»Í4e„¡fé\ã¶Iäs3„û“îjôÛ\v3&Ð{9û´]r:»ŽUZÀwAÁ÷w`Ä.‚G@$&í#¤`—\ï"Á ˜ì<Ø‚ŠÖšR»Ñ^ókb6ßRæùxR^ãnl‰˜».?KðëkµXm±hü«Zä‘S'S³4+1¼&Ô•‡©‚ï¶ï¹¹g8 ‚&ɲ‘ã’u¼¼C‰…Ïî¬Ñ³u£Œ]ãùŽ)ùÓ‡#ÞsAú×d¶dm,¯2ÔJ—0ªI‡ûœ>:Î\§œÕKTþ{—7³ª´¦øÕ|ûj©Peɱ×E§ƒ$ƒ`€°;’kL©ý6eµ‰~ps˜ú.JÃ_ûnEsÔ¤ØÌmÒy£»íâ_ŸÝ´×ÒNÓs³}íw¢ÐfE´c=O0*ÛäL×¶ƒèË—¤ÙR|Wņ5 yhüOb›öÑ&B?ÐÔ]còµ@Cáiμn$»Ámù•àgiµñ;#á$O3ó!ÀîbóÆÜÒlöɇÙhà‰Æ*$ª]ÌK¾æ.êþÚžØ*žzâ§È¸B«s&|ÿN'­ôÞ>¿i¿ãM$`vJ‰Ì}ÊÁCW SÖ ÅCœ™ýè'%¶yØ_0Œc'ËF€¤z ¦›m/÷˜›ÄFÛC‹ñ|–'X:IJ„/qº-Ï­“càÒHdÝÁ\Zû­îõV"7µ›væ/eDW¢%0¿5{Áûã–ë{wAH›]àF¿F‘iéÒOÚî·r zdép#D62[ðU={wî {O÷ö×.í¨aæo®»ý)ÓKÁ€u¿ÕyBÀI•ûÁ½3•EÍŒ/4-o Šèb»ý0‡ÎãåL.‡X\Ç9ß Â}¼#UOÿê<å±â¦rêÞ”Ú‹o¦žÅ–OÂêM…k½i¼wì¦Uë& Éä³ä|2LšäCmÕd 抺ý”TpW€$¶ŠU£ ¹Õž¥P¡Ýox˜pg.âú o‡=à"~aÍLTˆ`…Š|½ÞÂðÖã˜Cü­[èJÛ™í¿Ë~óþ1mFG#]¯¼:W‡¤ZoìÚ­¿¡:çné%ØÊŽøB¦ÒU0j  `­÷‰Ô”HeÇÍÕ ÆóìI«|ÑÿéY4êDË73&Œ“¸Ì|ÅTA§õUjáǼ/%¡¼ž7ã9b$ÛùÔYßú”{ekCi}÷š…œ«#€ÑÊìc“Â6™þLÓ0ÍÏU,õ&õV_p¬…î˜ò «ø~Ê#Íl. €è¶´²1ǶÒçÅKI|Ò΄ŸÜ}=ñ1hÝNø¶ú²u<ûe}C¯D?C¡Æï¶\~:Ä Œö¿ÑÁÞ^¢Ç9u•|ZÞÀ1ïÏ$:…HÎ ›‰÷úÈn:ò„yz@[®i3v{éº/Q¥õ és¿ÏƒÍ«{êCC©f3c_Å]ì½Í—À\-/M}í™Y,óa¸õcKfYØ0­«R*&¹ÎϤé.K”¢ÂîùĤóï-ÈRÕ` Yg9v¸ª‡E¢Øß ¥´ÛV¦ä½µûnOÄ™±x %pc—)ô¼a«@e¦ÜpL„—)Ó‰t¿ Z×b -÷Q[NÈäÆmüúWž%¥ÅçK»E nƒBÄkoßËÅÃ(vžMTTÔlæóÑ‹aÚ¯O[ÔQ÷)¹š;¥¿ÂÅm7f¶5Ô.¦8ŠzM°S%µ?×~@$6' eH¦3Âÿº§»'Ô…Á¡ ÀX8$‹Z7a¬ß<}Ó ×*6vî°cÞ1ùyÍ ¨0uâH!4þƒ/8nÝT&¬ÂL¤JiI6R·âÆ^=§Â9~€-*©Šøt)ìÏ‹F•OTžo[Íö¿¹#®Gi†Ï=PzA YýÆ$L6®Ê 1ÁÍ;ó«É:µîŒÙñùòhËQø=[÷ CŸ\Èhçu1Ѝ3ß{ìKy9¸—¬Q¤QO-Î>0Ïq"1ÿ î ½l¢ ÷”ùÙÎMPÞ%Ç”pEUÈÄ9îÒ#×—¥ p£Øþ‡£ÜV1Ï,|lQ¸<²¸»ýµÒ®Záû+$§`ãækÍro@zÄž±zÚïŽs¹«Ø%ùLLÓTW9 v7MQà”O6› bâ§±½ÞÆ[‘œ(4¢)Æfñöæ L3xìËK 8A¾1îDTÓžšUf9fÙåAï¸Å’­ÛüyÇoª(:O:“Å‹·Vú*…üÄû²t«8 /•Öí}B9vr”{wgíE÷ôÊbíë¡,;·µÌ£fY=©‰@òU‡¾ÇùŒÓþµæOˆl‚Ó)álQOÑJ/ó³nwyÕ•1ªrîEì×5!VH¢í ª€gd)ÚpZÇÅœ°ÇSѹ;Ò™åñ¶nΜëBU\ç›ç3Ö˜óbå‘tónq„nd”§}+,©¦ƒÉæ[Ÿ~?½v‰+"ô‚+j~ÞÚØÜâ24†*­Šfß¹~h¼~3`×÷ߨæsMQMaà RŠ…ª5ø ³Y£_(8þ²ºüÑ4"œ0f2¦ÞâØ<Úã¨æº9²šø¢ÁQýœÜñUD·f‘mJK@ÛøÀƒ’Æê¤ä®ŽÑ QœùsŠ;º¥ô9ÎÅÆçòñÚØ›AÑÊÃ"4ájÌOÁ7Ÿ¬Nçºí×ñì>¸ŠAº›h²Ùn@Ta.lÉ<á‚öÂa.Ô0”í .KW”"È}>““€[øÕHÄǰ˜,ÒÉÈås?T”ÒZÜhÝùQGÈÔ¬W ižAÄ'¿p«TÏ,ùÊ âÒ¯¶úèœZÅðü¬ fjvåè΢»õ) ¡¸üi¸4‘å‡rºå~!Â)á“é8Öên1Ø8â»î{Sòs©%—Œ‚zñÒZÝ£¹ÕM­Í¿íSÛ÷ÓµF˜¹«Ÿ^Ü6ÝF¿ÀI^¯ë‚ÎÀ«³¸î‰påÌÿL9g¡óÖ¼a®Oö6¶Ú¨,clc‡´HýVß–ñ&ªÂL¢E,)T^7poù›õñGÞ†IBG‰†<÷+&°!àoÙÏßÊ$™Oo½.¦59'þR/Œ½ŸÿX$ùVB¯¹GlÒ a‚rñ&á0Ý‘K’Ðâh°=ÝÎ* <Ž%3~ب o,‡Æ¥jtMÀ(Ô0Ée„Ûèe™öH r´"<—Z8©Gvɶêœ= å[„k‚o\mо3Fño9­ï—r/Å6éMÕôü[0r CQ¯’Дnð'Ö¬3Œ)ðÖ±™X¢6#£‹d5kpòôŸG%`÷–¼‰Ö\hç×k!õ’99z‰W•»¸ÛA¢-ÏAùC„}#ƒÁ[‚¼fr×îaÒBá37n¤­hrŸüTjp[5©'X7Þ¢nv©¤MC&ößDØ»YhP€_Këq‘^‘¨@6IÔ› ƒ#w+´ z†š‹"øçô•xt8]ð»}ËÈ~[j<ôØ͛л®e™”|­…‡Ê~Ì¥\€Flù6Iß—kôI4÷Ëîädá"o²&ÃHU?®Øz³»sRå"‰žH8’Ÿ£µK÷×ó9xñ S¬G«áf‹ÓB¼¡Yc9Îô£¯‘:–jÁ5(¤]wÛ±[wRADÜ!à'‡Ò„í}S_„´OÓΟˆî—…{‰VŸ çQ{_õg¶ÇlZe|C/¦vçEРͦ›”[-îñ†Ú:WŒxÚZ¨ÿܬD¶2Ÿftð]ÕCDŽݥõ „w#¬Jt:û“¶O€]›ð‰ÂƒÇ×à¶8(Iôßg’D>k˜Þ kªÞ&5›ØÂ=cÍÏnàpÊ|0!w–4<+Úî—‘ g‚OSTÇÓ{ëN~î NèL‰iñÃ&›MW1„dÖýÎûÌ ëä³Ëω8^êù霊Z:{ƒbï`_…ÿ&žÖ]Ռߩ­aŠÇfW!1hX´Ñ“ù!³’£³Ét£ýKµ¹±ý‚ùeÕ«£ÑªÒÎÓ”Òæ\ÐÁN)©sÓ±âˆìê§§×o¶Ò­q&¾£Ý,Ωúu‡îçã{™Ú¤L÷!´š+ƒ€ƒBÉÍúM=ÀOÑæ½êZmܦ¯F=•]ñ`Ú‚äâûQ¸æ7¤’âv5˜¤¸l¿WNl§eØ`Žr”0Ár’uß̸¬_ð1kßjlÞhcì¥1jYÓ›{«Üf™)Eb;íˈXz<廈´FvÌ nï#)Œ*À«8“ÜÐ(÷âZã,²#¾Çpöªàðsºî C_ŸÌÔy¢®|Sä,ÞÿP" 'fѰlÝà꺈y©5yŠƒHtó”‘ͱ™]©‘·ÊövNíµ¹‡ †z°42ƒ¬ Ž!^´åÚ|›Üc¸Â7XС¿õÊcÄ9_÷-â³²ìÿõ û[¶|/úîSF˜M2ü¸öÛûnè]Q0KKŽíí˜n¯Ï¯x--ÐWçaÁE¢ô€M³‡=†û~vOöm“ЇûO(þN×g"›†>t§ ~º<9’”u>€&—´¦+³dñXÛ®/)šg{Â7å¥@C+—Íi @Ða¿ÒÁa°UEN÷±£@zÑ+#Œç~ÂR[L4Ť 6„s‰‚þ'f5»O6I»Ü$ž3/qCoL²[ÞÎà=߉5¤ó¬äÇžïB)*„ OUßö4CnwG$—1ô`71LOŠë°—/ÅK÷.wVÐÉò¢Ni É_´²ͦò–™’/ëÖZäÁÐ×fËSs ¬âÕ—¬¡ !\Jºr¿LnBCæDM¼ò¸ŽšîB3¤¿ùì¬Á¿7‡c_ÏUhEÏ—%IwO•ƒY=HŠ^ÇY°²ó¥â¶<Í%|ù{?+;Žç18:û<¼ß´<8àn7b‚ɶwhHÕeN bZM.4ÅÈ«)÷@‰3P%’Û¿ƒ†˜ôüö9˜³vªh²§tÃ"JöƵJî©CX¥{ i\É¡÷åÈÂF¨¤l¼Ñ¢ÉÌ!LFÅmf¢¸•óœ³C¾fÝð/t²Q²0ûv'.U„†®ÐüÞoü¯µíXRqûaT¶V­SSVë!ÏEqµÞÝ68äFXï¼ÎŽšùz5ˆímpåÊë ?zSÇaãÛ»EC¦Zìe§Íìd¡¾†t=±÷å¸ £ »:&П6‘Óà9šî8jlê¦äF ÖíŸ#e@øãzHés¼4ȉU·ï)'s¿î°€ïÖWååý¿»OøÕP:3´&4 sH 8crÑu¢ZL¥<’•è®@í¹¨/XÎ#÷Pð1ïß½ÀýXG•üèHÇ & ž¦€‡ÑOÀXž|÷ögq†MKn{,mzâ%ãîþ”8V+ÅfµÂû¦¼’zX±Š¼þNaÇê7½³Ex⥇s‡pˆõ2õPL¶ª"¢CΑ„žåË}zÒ¢Ú“‰à{Ì…¤sam;ã´™œÍ¸sÔ*RNÞ5ѶŸÄzHtTæ^² ÙlD[ÒöÕh³®œ6v‡öx¡Z1‡‡Þy±ˆ}2ŸLlj‰ß»‚[](œ[n$ÑȾö_úb}P_'…ì{ÇMœ%8F<òK5q¦n¿¯$pcœà°G/Ïið zhw—Â…CCôn¶¹&*Ž´;ÉC*X ñ˜Ãão2zk…Eq–$ËíPrñƒq±z±“Aè7ýîÑ] j`¾5ódì,Û}‚šlìý~ö÷$¹Y­í"RW endstream endobj 90 0 obj << /Length 859 /Filter /FlateDecode >> stream xÚmUMoâ0½çWx•ÚÅNÈW…œ„Hv[•jµWHL @Úþûõ›™´»Uçñ›ñ›Ǿùö´žØ¶ßºIt¯Õ³;÷סq“òûæÜÜT}s=ºîòùֵãìùA= }³vu[®ªU·¿Üyòªk×Ö¬¯I…{Ýw¬£n_ܯ‰k&‡ãöÑþ öËþr𬯠ÊGÕ§¨¢´Ÿn8ïûîA™{­µ,»¶ìèäLEšŽúvû®D’ÚB``BÕŒè·9zK¼~;_ÜqÕíú`>WÓg?y¾ o¤ò.˜>­öÝ«ºý¤ÍÏ­¯§ÓÁA‡ÒÁb¡Z·ó%½?6G§¦_·ùNzy;9ÒØ°²¦oÝù´iܰé^]0×z¡æu½\×~š3§lw#w鹺ö?¡ŽòE07H6!L‰@Œ@ÂÈBŒ€Öû@æq\s óŒ”*댌ÆTgùäÔÿÇÀ á]8 i/°n¢£ŸTv<ÊÈkã­õØ0†×YÈÚ²ˆ1êg3ÆK`òÚYÂõ³”1q2î2ñ‚Ö%/Ì ¾dchÎJÆð(«S}êßÄØYÍ:sÖcÝœõÇà笟öPÎúcèÉYB¹¬?Aï9ëO‰Ïúâ³ÎšsÖ™âç¬3¢\ÖQ.ë4ôa±Ï½Xñ=Zñ9Ÿ‰#>c-+>c_ZñëZñ~Zñ™8â3z·â3ô[ñ:­øŒÞ­ø ߬øLõÅgè·â3tâ3Ö-Ägð ñüB|†žB|¦\ñ½â3ñÅgâg|2–³½â?z)ÄìÃBü§šü­XªÉßIAuÄp*^+†ÇãŽ&™#ÌsU-'H8ªqµ¼_Íuü A÷û8ñ÷{¿¢Ný YôÐÝ6Þ§=ÖÁ_ã8ßN endstream endobj 91 0 obj << /Length 859 /Filter /FlateDecode >> stream xÚmUMoâ0½çWx•ÚÅNÈW…œ„Hv[•jµWHL @Úþûõ›™´»Uçñ›ñ›Ǿùö´žØ¶ßºIt¯Õ³;÷סq“òûæÜÜT}s=ºîòùֵãìùA= }³vu[®ªU·¿Üyòªk×Ö¬¯I…{Ýw¬£n_ܯ‰k&‡ãö ýì—ýåàY_”ªOQEi?ÝpÞ÷݃2÷ZkXvmÙÑÉ9˜Š5õíö];ˆ$µ…ÀÀ„ªÝ7Ñosô– yýv¾¸ãªÛõÁ|®¦Ï~ò|ÞHå]0}Z7ì»WuûI›Ÿ[_O§ƒƒ¥ƒÅBµnçKz~lŽNM¿nóôòvr*¤±aeMߺóiÓ¸aÓ½º`®õBÍëz¸®ý4g"NÙîFîÒsuíBå‹`nlB ˜„‘„­=öÌã¸æ@æ )UÖ 9yŽ€IÁ(±JÅ5<æ§T`,© M%5ŠÖœR£h”ºäRê ®á1ÚûÌgcßÍïÍ yq(¬ ábŒÆuX&Àá &èq,–Ñ1Ç+à„±N97Î8Nüœsk`Ëq8­ ^—8%Ç àŠ½FMq.â†5„SâhzAìkO × Ápý$Áƒqù1¦7]}Œ©ÎòþÈ©ÿ»pÒ^`ÜD3F?©ìx”‘ׯ[ë±a ¯³1´ecÔÏfŒ—Àäµ!/²„1êg)câdÜ?4dâ­K^˜|É ÆÐœ•ŒáQV1¦úÔ¿‰±'²š1tæ¬?ƺ9ëÁÏY?í¡œõÇГ³þ„rY‚ÞsÖŸŸõ'Äg)4ç¬3Å;ÎYgD¹¬3¢\ÖièÃbŸ-z±â3z´âs ,>G|ÆZV|ƾ´â3Öµâ3ü´â3qÄgônÅgè·â3tZñ½[ñ¾Yñ™ê‹ÏÐoÅgè,Äg¬[ˆÏàâ3ø…ø =…øL¹â3z/Ägâ‹ÏÄÏød ,gz)ÄôRˆÿ؇…øO5ù[±T“¿“‚êˆÿàT¼V *ŽÇM2G˜çªZN(:‘pTãjy¿šë0ø‚î:÷qâï;÷~Eú²è¡»m¼O1z¬ƒ¿'ßX endstream endobj 92 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlöo` òKwÞ{Ò·óÊÕ× ¢¤_ny×È| #¥Ê:##Ï0)%V©¸†ÇÁ²£â” Œ55¡)°£FÑšSj­‘R—@J]!À5£G+>ÇÀâ3qÄg¬eÅgìK+>c]+>ÃO+>G|FïV|†~+>C§ŸÑ»Ÿá›Ÿ©¾ø ýV|†ÎB|ƺ…ø ~!>ƒ_ˆÏÐSˆÏ”+>£÷B|&¾øLüŒOÂr¡—BüG/…ø}XˆÿT“ÿK5ù?)¨ŽøNÅkÅð¡âxáÁÑ$s„y®ªå„¢ G5.–[ ¹Œ£¿ èö¡s'~×» ê8‘EÝlÓUŠÑCüjÝF endstream endobj 93 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMèßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø ®´ÝP endstream endobj 94 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMêßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø YÝi endstream endobj 95 0 obj << /Length 858 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N7R!‡þûõ›Úݪ’çñ›ñ›‡±¯~<>ÏlÛ¿ºYt«Õ“;÷—¡q³òçö\]U}s9ºn¼w®uí4{¾SCß<»Q]—›jÓíÇOÞtÍáÒº‰õ=©poûî“‚uÔõ‹û=sÍìpG£ýì—ýxð¬ï ÊGÕ—¨¢´_n8ïûîN™[­µ¬»¶ìèäÌEšOúvû®D’z…ÀÀ„ªÝ7£Œè·9zKüü~ÝqÓíú`¹Tó'?y‡wRyÌ†Ö ûîM]Ñæçž/§ÓÁA‡ÒÁj¥Z·ó%½÷Û£SóïÛü ½¼Ÿœ ilXYÓ·î|Ú6nØvo.Xj½R˺^®k¿Ì™ˆS^wwí¹ºö?¡ŽòU°4H6!L‰@Œ@ÂÈBŒ€Öû@æq\s óŒ”*댌ÇTgýâÔÿÇÀ á]¸i/°n¢£ŸTv<ÊÈkã­õØ0†×YÈÚ²ˆ1êg Æk`òÚYÂõ³”1q2î2ñ‚Ö%/̾dchÎJÆð(«S}êßÄØYÍ:sÖcÝœõÇà笟öPÎúcèÉYB¹¬?Aï9ëO‰Ïúâ³ÎšsÖ™âç¬3¢\ÖQ.ë4ôa±Ï½Xñ=Zñ9Ÿ‰#>c-+>c_ZñëZñ~Zñ™8â3z·â3ô[ñ:­øŒÞ­ø ߬øLõÅgè·â3tâ3Ö-Ägð ñüB|†žB|¦\ñ½â3ñÅgâg|2–³½â?z)ÄìÃBü§šü­XªÉßIAuÄp*^+†ÇãŽ&™#ÌsU-'H8ªqµ|\Íeü A÷û8ñ÷û¸¢Ný YôÐÝ6ݧ=ÔÁ_ÁÄß” endstream endobj 96 0 obj << /Length 860 /Filter /FlateDecode >> stream xÚuUËnÛ0¼ë+ØC€äà˜”¬W` $ È¡ME¯ŽD§lÉåCþ¾œÝuÒÍAöp9»œQäÕ·ÇÍ̶Ë›E·Z=¹Óp7+¿oÁÕU54çƒë§ε®½ÌžîÔã847©ëò¾ºï»éÆ“ïûfnÝ…õRá^»þƒ‚uÔõ³û5sÍl˜¦Îhÿ‘ý¹›öžöCù°úV”øÓ§nèÕZûÀºoËá€fNÁ\©ùEâ®ëÛQT©h L¨Ú®™dD¿ÍÁ»‚äÍÛir‡û~7Ë¥š?ùÉÓ4¾‘Λ`þ0¶nìúWuýYœŸÜœÇ½ƒ¥ƒÕJµnçkz~lNÍ¿èôõüvt*¤±amÍкÓqÛ¸qÛ¿º`©õJ-ëz¸¾ý4g"NyÙ]¸kÏÕµÿ u”¯‚¥A² )`JbD>`´öØ2ãš™$`¤TY'`ä`ä9&£Ä*×ð8XV`TœR±¦&4Ö`Ô(ZsJ¢5Rê’H©+¸†ÇhÿÒg¾¸ôÝüÞŽb‘‡ÂÚ.Àh\‡e®`‚^Çbs¼N[à”sSàŒãÄÏ9·¶‡Óºàu‰Sr¼®ØkÔ4ç"nXCA8%ަľFðÄpý ×O<—czÓÕǘê¬ÿâ_8õ¿1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦xÇ9ëŒ(—uF”Ë: }Xì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&+–jòwRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\.ï÷@sGEÐ Dç>Nü®wï—Ôq8"‹ºÝ.—*Fuðgõá¡ endstream endobj 97 0 obj << /Length 700 /Filter /FlateDecode >> stream xÚuTMo£0½ó+¼‡Jí!m0U ó!å°mÕT«½¦àt‘ˆ€úï×o†4«j{ÀzÞ̺v|t®võåïð žû®ÚºQÜf›|Ó6ã'oÚêp®Ý…õ’uïM{¥ ¸}u¿gã f‡c¯¤i"Amƃ§}Ã>,¾†%þrýÐtíƒP÷RJ(Ú:ëŽXÌÌ'Ab~‘¸oÚºŸT‰7h ”uSÓŒÆêè]AòöcÝqÓî»`µóÿsûÒyÌŸúÚõMû.n¿Šó?·çÓéà DÈ`½µÛûšÞ‡ÇÝщù7+ýd½~œœÐ4W¬­êj7œv•ëwí» VR®Åª,×kë/ÿbÎxÛOÔÔ0ñƒ”+³ðØ,ý ¥F Õ§)1<öÂc«8Pø€Æ\ ‹6¦€Ç>!Pp #]QxQTýÙõ“v)#´–êZB¢‰ÔYL½tž/Xˆ^r<ާÀ1çÆÀ†ãÄçu§%pÊñØr_âd·À9Ù¢PSiÆ0@¡Wå„Q_«úUžhÖ©±ÍÖhèÑ諵"œqëÒì–FM]R¯rCpt¨¡3Ì9õÂãж„~ðj™3FýeÁzpÉ8ô8úÇóˆ8Q„:1ù¬bøcäÕ7£®~}õÜðHq”('b ÃÄ„ùŒ>^ÐmØ# &½zdìõÄò…}4¼)Ö` Æð"áýH‘›,¸4%¬!Åþ%¤AQß„÷ÞB[B~)Ò™äÌï Õ_’)ïMн±¬?DM;Ý豬ßÂ;kyoóþQnNçRæð®d\ÆÓ €;‹WæóA¨Î}ïß zŠèÀÕoZ÷ùZº²è£gîòºböT$Z|U endstream endobj 105 0 obj << /Producer (pdfTeX-1.40.25) /Author(\376\377\000S\000u\000s\000a\000n\000n\000a\000\040\000M\000a\000r\000q\000u\000e\000z)/Title(\376\377\000A\000l\000a\000k\000a\000z\000a\000m\000:\000\040\000A\000m\000i\000n\000o\000\040\000a\000c\000i\000d\000\040\000p\000h\000y\000s\000i\000c\000o\000c\000h\000e\000m\000i\000c\000a\000l\000\040\000p\000r\000o\000p\000e\000r\000t\000y\000\040\000a\000n\000a\000l\000y\000s\000i\000s)/Subject()/Creator(\376\377\000L\000a\000T\000e\000X\000\040\000v\000i\000a\000\040\000p\000a\000n\000d\000o\000c)/Keywords() /CreationDate (D:20251215191033+01'00') /ModDate (D:20251215191033+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) kpathsea version 6.3.5) >> endobj 2 0 obj << /Type /ObjStm /N 79 /First 629 /Length 3687 /Filter /FlateDecode >> stream xÚíZ[sÛ6~ׯÀÛÆ»kÄ`§ÓÇ®›lâ$uœ6mâZ¢mn$Q©lÒ_¿ß Š’"ÙN»}ÚL À9çŽkÊSL¥L³ÔdÌ0™Kf™–ו,,£Ÿ”9!Xª™SuÌer ËÑïX®“°™fÀLSk™˜†)`É¿èW.c ý4”cifS¦rÓj ç0’’L ç˜RL¦ &sü‚žÆ·tŠið¨2Ã4 ~4@´A;ð4˜7¬äz@,eß Ýå@ÆÿÄ5èåYÊ X™‚ßjB3hA‘™,ˆ”Y(ã ˆ5-,³€³(*£o)Ìæ`**~ÃÚ)#– )Ê€y¨È8ˆ„´še³Lg9H€žKŠÁ!jfä€â  ¨Î‘^º ˆC%Î2Ô/•@¥9é'50‡I¡d–ÛÊU,'þRÉr4@é°S EPŸPêA£Ð )ÉÜŠÎÙRŠøC%sŒ…S¼£’‹ ĨbÉê Ž‚è¢&!i*Èe”GÇWª‰1¨f²Á·ß2þšñꋚñöNÁ Ï?­ÚKöÝwèð‹Ï³’ñWÅM9àÇõ´-§mÃr‚ðó²©óaÙÀó|ÃY9ªŠÇõ'öN ÁBÒ,—— ÏGby°£é´•wðuÏøÒú2óåå`mt?à¯W­ÿ~^M? øãz>*ç~$qÉŸð§üø]ê?ˆ³aËÞ¹,‡Àñ\¢á¥©1‰ƒ!‰È ÀŽØ†5@¬êéßy@øSÙHuârrj™ J›yêÏgC¨D#FHÂ[2É3»Ÿl'_ÈÒn\é\‚GR‰AëL&ÅG.“Ô‘üQ/ ?úö[??òcó×üÍùSú{tÛ¶³æÎGõ°IŠj>?Ö“ÉbZµŸ“z~ÃË)oÚâj\òQÑÂãf|^óy1½)'ä¶Ém;¬äX9üÛ_~¥40O(óMãñå(Ê#â“©Ä!íí‡BK(¿ì‡J-œWl@"½±N)y˵:¥êÞÀ±N ߯:’[šÅ:Zš/ë–²Õ15¯‡¯KØ‘rÊøEù©Ý Ê” ífNú!Ia%¿4we¥€ãëÂõ…^ ú•©tK¸ü+„ÃȣŰœ³G³ÑõEùö0…ii0\µ­Ñƒæå'¼ÿ¤hKöèä)$â45)¦y•þC¤âo€;«Gw\̋٬A ŸP¯.¾›œB™WÅtJ¼\ÜV ÃÿÀÓ?ÙOå¼ÁÐL%©†JkÔ¡Lì’YöžxdÏ«%ÖR½?`fE{Û”ûQm¢HÅÞ/Ì>)ˆýª£çœý9n«aÃ^.ÚÙ¢=è«óœéÄ e÷ôx~°nQò˜^Ò¤ÆtÀ_ê“ÈcESz¯âOÊñDz­†Å€?Ö£jzôXÚñz|LÀ#¦½W\öYÂr6ÿ¹šM›jÕ}R]_—ðr%Lƒ†Oªéóªå¿-ê¶—×-–x©Ò7MÅoæÅÇ’ÃE[òa5.&×ãòo«ñ¨ä“b8G¦¼š—€J1Âùø¨ÂMÕð™zT^ó9ÆæCxìx\t·‹éM1_LÆÅ¢åõM=-?ðaAôšY1,×2“¸_ºk ‹Gä9·+€we¤+R½ÌÀo_^ý›fB:ÁjÉý‘ØÖz3¶µüºÄ¥ï7›èõo­MlæîSÚ&ú¹‡¿¬¹?9ß›­”¨ó¯\º=k¾»—¹K$VßÎb‡Mˆ@îÁâ"Ïhìák‹rrU7MdºÆª¢L¦eË‘B>üØÄþð]•³/,)Ìý‚Äl -Ž0‡îšåz¦ë›z×4ÿÇÍk6ÍkÔ×E…Ñ_;¯Gý>!ö®á½W™Å_ö^ñ=Ÿ¨(¨˜P1£bLEIÅ{¡ýŽ:¨Ö×w¬Ò×:î°=å!‹îsEvmHßr»ÕìœSQwŸe׿‘ª®­éczøë~ËJl2í Ö†À¨ß×t£üÖÉSvd†+öè*ÛÖÕI‡xÝq°ÒU»ÅÁp]·Ë!ßYålÞ}™ì:bI»w…€Ók˜^[¨¹\£U¥9J­³DÆÒïù{}H+‰Šuê»ï_Äöe ×/^rଇ #%:TH!G†m¤BK.4øÊlØ''/$•ÍÓ„ü8«Ý`¨#ì@*¨‡ÎœÓI‡MS盾̄L\OÞXóüˆeËRç&M1X¬Ë ueÒˆZ£.|«Åž0|;D¼–úuFrãT‰Jo•U_ÐÕðw9x—eÈ,øÅžšýÿïö÷ ÿUZöù&Ä[Œ:E-¡4`ICOœ6ôZCÍGÃÂÇv( b­ÏC‡:õÝ÷Oöhd[%ñÈe © ŠðLúVŸŒ,-xpvK9&ó‰ˆà”¥ bRŸº<¶…>òÔÆþØæq#õ c–ôô ÎÐ!¨ì†7´R!Ò+Ac- ÑWoÃj²S|¨+áMÑAD†V¹RG4…Y‡Êçg¦•`^o ÔCéG†3¸Tú´+IH”ž)RG™å” ±D48µvP’bf:¶Yà@ zʼn’‰u§rÊ©’޶¥ÏüÚÃå€ÀåŒÕPZœ Ò4@œ„ AF -Qb ¶*¹'JÒûßÔOZ%þ.ƒhÉ%tlÍ© -¹Ê"Ä 6ôk“{køú Ê÷ ù:ô¥p¸JW ˜Ì×Í(‰ ýá’_ýR[RZlQ4 «Î2™ö®ŠÝMZAíÒC)Lgt¡<¦ôžI× Yìôf¤-iª3º£MPtý#„í>Lî¢ÈÁ½e4 õ­AD´2Ä@W“9yÁªß ìÛ "Ïùo—FÜ*ô)8•Äl¨¯ú³¡J?̃ ¢„®‹¨Œ"b%/ժȔ¡…TеÑT—‰-Ô#Ikì)`l!qeD²4R ÕÜ“€ïT=v¬ƒkâXPÝÇôen(ôû-ù+¼{M‡š×u€-«éÒ¶T¯Õ%ÂÓ­ÁD„vŸ£~2és¢ÇíÓô0 üÑ:+¬«ô Ò÷yB=–4úåÆÁØIÙ çÕ ga/ŽÅ~:ûõÇgÇÿx~v^OŠi*×ãÆÅ vûò±ß jìÛér1¥õ.œÝ'4t äØX³'eus?i@ê;LqAÈŸ¶Å¸MopÒ'°eoËÉOtC…£žˆ„4·Åœv€øü%à ~Ň|ÄK~ͯqDÆ+>æS^süó†·|Á?òÏÑÓ Ä3ÛßœÞ%ÿ›'??}ù´“_î“?#ùíÆ3/Ö“ßé5ùéó>ò‹|§üÇü„ù—ÒßzÑ'Qøß:ñ?­ ï"üÙ«‹Ó—OzÆ?/oãb¾C~œùÁþt/Mך¸z\É/úÒ‹•ìb‡à¶/·JûrñÇQöSøý‹?ãgüüá?ÇyÎÿ‰ÿÂõ¾q…#œÝ ù°ã°‡.‹ ¯0O›œÆûÍ5N²ù5N9àA·üöóìIÿ7ÿu:­¦%‹“Q(wFÇt>jsOjVΫzßà‡§Õ'ÞŒ‹æ†hoçeÉÛÿÔÞ#ÿÃ?ñÏüwþ{9¯ûöqâ!öùù—gg?õœs¿}p,ÿ„}°ôذuëñéîŸÖì4Ó Qc’f£B§^Ñ5½&¾ ù ¼üåäÅ¿~í4Ý¡AŠ4…ÜäH¦¯µ®µ¦³+B]_bÝQ‹ÎïÈã(@?ôB4(¼`M|ýñ÷ï `º>YEñt1¹¢;ª›é½z6^4ðY'3ºo„÷z`/¦8¨n†õ¼Ü㚀Î?{|ñveâ`ˆΣ…ý³ ?`áCšwïac²ð°ë‹žMû3ò®dÚ·Àj®Z&ÇO[Añ…YkÇ=šÌBFÇ–be²ÞxÁ}°ú¢Í!a°wð¶Èzt„ÉÉšÞkˆÛ`{ïvÞ}Â÷¾¼Óû›÷_¬Rƒz‡EâÜ1u1‚DØl üœÖ‹ì‘ÖBËÔžâÑ–)ú6X_$tÞzy/-ã1QœY/ïsúºWݵœ\sz…å¯N«yÓ’¿ájdÀŸñwÃ\§ŽpßL¾Ó‡ó¹g…¶ÎªK·TºÎª\±*ïfU>œÕ=‹• VÕ&«ÚìbUßͪz8«{V¬šMVÛŪ¹›UýpVw¯68Ý )¥wqšÞÍ©ù WÝ5‘m0ºSj§õÅ݌ڿ4¦û¼Ò×2O囼º-^³m^éF¶¡+Ù-QüY5j–¯Ãâ©øÒ">ˆWÊáÂu#9ãÑÌR9¦×£žb˜ÙJa(Õaú§76:ï=¸õµxÓ›G¯ð섞¥ö˜²Ã»1—œ¼ û\«·É˜|IÆd_$0× õ”õ褾Æ[Àö€N“vÍ Ö$= ÷Ô«oÜˬ÷ ]%{ßú€ž;¯¾Í=göjÆË‚IÕn ¶„ºÜdÈ·Ûzìì©uעđÞhW©ÛhgRl´;¥6ÚÀ¡¶›.Gïƒm±ØõPgdq{+Õ&Ù>F´#\7/è™røM÷iðKt€€£7Í[ÑrŒ'Ÿãúf¦{e²ôû•³x)é1tt¥›ÏÏJþ¦)W1òrVNÃÖ¹Õk endstream endobj 106 0 obj << /Type /XRef /Index [0 107] /Size 107 /W [1 3 1] /Root 104 0 R /Info 105 0 R /ID [<44A5A193BE5132E7AF995D5B1B42CD52> <44A5A193BE5132E7AF995D5B1B42CD52>] /Length 279 /Filter /FlateDecode >> stream xÚ%ÑÉ2CA€ásîE‚È%ƒ$„HÄ<ÆHÌILU6Ê ð8,â ,-mlm=ˆ O èÿØ|õ÷íSÝU·ED~=OÔ/6…RðÀ‡è„^ l¤ BP‡„¡ »°ݰ=p‡0Qˆ¨„JvhŸJ"i•‚@%úcË$ BúU’϶11ˆCB¥öb£0¤ÒªØrÒ0˜€1•«;ÉÂäT®ßíÛ$ä¡ÓP€( C ¶av`æaa –aEå¦`­ª¼Æ­ÖTc÷Vëªío« ÕÏ[«²zK«MõÞž¬¶Ô?ºÇ‹ÔÁ—#Þv¤ªŽô‡#óàÈýÿˆ#hB Ná ÎáBý|à —3òâò å endstream endobj startxref 210718 %%EOF alakazam/inst/doc/Files-Vignette.pdf0000644000176200001440000051040515120047443017102 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 12 0 obj << /Length 1903 /Filter /FlateDecode >> stream xÚíYÝã6ß¿ÂØ{q€µªoÛƒÞÃÞv·×¾ô0`qh %ÖLŒ&ñœíd:ýëKв{¾·¸úS²H‘ù#åðä*áÉׯøÏ\¼úâƒ*‘3)ŒN..”Leb­aŠ›ä¢J~HßnÜOî·=[dšÛôŸÍBÚôf‘).Ó¾¡gë]E”ÛE⦭{Oä\éïÿ¹øö‹Z$B°Òv䰻ɓL化v|_ù pÂ6oÛf‡lI&·°J0©­’\šLÈLlËDh¦´ ‚3É-³ 1ÓÀš âyâ”H{O¨’2 +y)‚J–)«AC%‘ïì«wW ”Riåz·Èl!R¶È ç¿å¡Ëòwò?ñxÄðòvəвLÅt–Ã+ftIÿ¸(T 4sz)ô_þ}&Ã3œ™!â‰HrÁLi]æ éb‹‰ßÁ¦E‘^»¶'ª¹Äg™ökOßl·+·[È<í]_Cr…ÙnRÿÈQ €UÍdŠô è(‹ &$`^N0ª¤$gPèT'ÁèÞÄ=Z£Àm¦¬×n…Šþ䮢nõnµÙW>Zé¢î~fër_oú¬&:u˜Lt¡™< â/÷»ºÄ)kÓ•»v˧ÊR60I “„”@ÜŒqƒÞ-3€¿z .Œï1ô—.8.Ê•v©ãÚ%šxKô»µÛ]ùì;ÕtLÍ}vä_’ç`¶¢MÙeë¶¾ƒˆÊ­ÀŸðÃÁù’¾…sÔð¦Ú{bÂSÌ5h¨|ëw«à^¶Ïu”+ßönxsX ç»8‚èü÷£¤J€#‰ «¯Þ<Fh ê¢Õ4„ÎÎð8ÈIÍWË"JQŒ„J¥¬˜ÉÙZÊ‚EþÐþ¡D>[eKVæv*ì¦Þ„R™§»¦'âºm®!Ùà”ÚÍ-MÅò :Ÿo¿9?GªH/›6 1»Bé?úL+¦KMÛl]O!¦ÆàCD2<½XûÎO^à O»u³ßDŽz×õ¤¼X’nôfÓ¸ÊÇû.‚½%|Á¹Ó¤ ‚BÆF†`K\ýÈ!è :Ÿäê¶½Ïá§N0\²Ò{ÂP¤  ™4xŒ³\ê@–•:®ý‘~ŸfšIé*jB¡ø ~Ú£aëwý½á€½L)FÖû£OB“$fòC¨=gÅD1nv0b¥à%³2‚ß¿…L›=œGŽÐ‡“›!ì`jÛ`Æâœ£óoö=G<Àe.Dï»Èú5 ©À]pmÕEIøžˆ5Í2²¸ ­¡û5ÅÔ²†C˜» Mi1Íe ì\Os1gNÐDÂ[j>QTå/Ý~ƒ·ñ6Õ„]W{(8=¢‡Ò)ìäãíÁçܟ2iáÖ09ÿ>!å445ÇË3¬„0 ‰ú7ìöMú=vÖH‘¸¬7‘ºvýº‹“m³% Ú†ºò3ð9uð8¨êÖ¯ú¦½\kž£öü¾uŒÝÌ \T)!B†oipðmGˆŒ#Äω¢#¦E˜Œhý¡nöög8Ær ¢|5±cÇQåøYfEðð)8‘N‹st¿†¡ÈìÉÌy¸â~_f3‡aÝ‚¸ÆÅÑa“™#gw ­Ü–7/˜#J€8i†mmTd2Ä¥¯ýÏ=úåõ\ЛH J½Ž¾þ}ÂÀÙìê—ƒEpá±d`<™9 ŽÁö÷™·žgÞ€,¯ïq” Ž{ƒØ©ýuœ'lja}wø?8ËÏÃJÀI¸ËA-?Å óÐ5Î0eèrž‚ˆ!¢ªå¿1¤âìi±|®ïÎÎ>#8Ó;WóyhžÂß<¡ÌhýpÍûL?JúƒÍ¾{K›Û>Å`ønyÚ)\”úø15?£ÏŒZü^d&Qû‘>÷ß Wšjb%ÃéG®±xAhÿy¡x÷+Íü<Žiör¬KVwxQ¡ø“ì~:c–½ÜòÝÁÔ1¦}¹Ä¿r¸âW^ÿÚ™²¼¿xõ+_ o± endstream endobj 40 0 obj << /Length1 1801 /Length2 20844 /Length3 0 /Length 21989 /Filter /FlateDecode >> stream xÚ´»uP›ÝÖ>\ÜݵÁ]‹»;w‡à\Š»»w/îîZŠ»»k‹ûGŸóÊyÏüþý&“ܹ–ß×^kg'3¡ QTa6%@vÎ ,ŒÌ<9ye­‘ +ƒÈÆÀÊÈÌÌOA!ê4r¶Ù‰9yœÎ€¯&ÎŽŽVffnx €$Ðèø¡4{äÎFªö@µÑ?@ääÌ`läô¡Ú™[Úi>\DAöŽ–æÎc|a`ø鯷#@ÆÈÄäædm 0²3È0Ê3@nBK5È` ´0²1€Ìª@M€šŠ¸² @Rù«š¢ ãG`{{ãÕ"ª¢ª&IVPÕé’j*ª_Uvõ›ÓT?ôó|þu—WVÕRgaú{€+ÐÑÉòoÚÿ¨ò£2Àÿ–öájæ²ý'€ÚÂÙÙž‡‰ÉÍÍÑÜÅÉ™ähÎhoóO}ª–N7£5àãê´þCŒ‹éÎÀø»$9K ð¯“è_JÛ*?œ>äÎÿSØÎcÚüËàþŸ4FNÿøÊ)*Êl,íœvFv&†ÎFÎ.NÃdO )Õ¿ D]ÿæÿo•ãÿ¤ùïÒE@w¦kãémäöŸ+fdçâôí߸ù¿·m²s²trvúWD ÀÌÒø·z§¿kfi÷L^XAZB\E•Aî£ñìäAìØ1:»;ÿcý7ž°˜€‹™ÀÂÍ`þhRq;SQ­íGÕNðé³üàÉäèÁô]mmr³óüO©™¥©Ù_ÖM]ì™Ôì,\€Òbÿeû!‚ÿ_™9ÐÀ :€î&LSýÓ)Å,Åx{ÚƒìfF6N@oK3àÇÞÓÉÈpvtz{þ»âÿ"xN€©¥‰óG“ ü?Ñ¥íÌ@î‰?*ùoÕ-?õ?CJó1¡¦ ;€)Ð žIäüÑ ÔÿÿÌØä’p±±Q0²Rÿ_BÿÓÊÈÖÒÆãÿÚý‡‰ðo©ÔÿgK' Kw ©¢¥³‰Å¿Xý—\ÚÙè£é…íÌm€+òHíïÙ|4ìǦcùwÏ0°p²ÿ‡î£M¬í€NNŽTÀþ£ÞâÿV `’ÐP–V¦ûvùÇHÜÎdjig`eç9:yÀ3ô+;;À“壕Mîÿ4 €‰Ñäüá°wqö˜áÿ.$'€Iô¯èÄÅ `Rþ_ô¡ÓøÄýŒþ±03˜Lÿ ²˜€ÿ¿˜Ìÿ ²˜,ÿ²|øÚýüðýd09þüðuú7È`rþþ_²ÿîÿ óÿ²÷_Ûç?XÅÙd Ô°4ýøèø7y#gGKwæfù<þûÞÿI@ñ¿Ã÷oÞ"" wO6N+7€…“ó£Ä/œÞÿÇ×ä_;Ù?Óó±Ìÿÿn# Ðh¿¼2á ²úÞRæ#^0UEÁÍxV- )¹œ>ÕA€+–»C ,ôoñË ,ÉIñèù$ûÛkRaÙ¼m´&UNÞ˜* íùÈû ‹ å¨3ªdÈ/ù•w‘ÒËääk•°Íd´Å·ÔÆND¹;º£Y'ÞÑþ¤ê–·­åA¹ͱ4c:Ú »/¡âw,Mu‚9¿?bÆFõ /ÓÎæ‡`É@Û÷v£j]“Å“}^®¼ú>à}ÕâÕ5AàO)æS…eÚÛ[ÊtÙDh€UY§H®#?±•¬š³¼Ô¡éâËû´Ú¢#g­ÀYÏw˜!Ã7à†‰¤ó¤ÓÚûDÊ8·Að5ŒGyhÅõrYc~¥æT· °ø\}i‹ZÜžà¥ùXõ]wnÈÜàêü7æ&ÊeÈ :‘Òë*ÈÈ…Kôf·‚OÊÖê0".+ú`\]\ËJÊËæq^:MѬ¤Ê“tïlWª›fTŸx,žüåV.È!êÜÈ´Ò}œ81ÒrŒc¬›mcÔmŽFõ(œâ,îËfÛÐãB£BpÏ ÷%ñ^ (Z9KlD­Idc¯Ò–¼Mí½šàr•šBþ®± ’ƒÇËå“ÞêîµRxÊ }-ÉcROˆcñ0ÊRÔÜ8൹íçx©ŒÄ®ÆlˆD ©%“ûn‹ÎÒKê)Wéªáñ9\5'a¸gÊRözùTøØZ~Øpd ÚUUK6È/lÆ‹H‘Äþ•{v¾`›ÛwfIßHE‹¶àæ¼4­£DÃþÜs`޹*^HÏ#’ ]@ë<`ŠBñ’ëÖóOHOø Ÿ…Yå,¦§ë쟔˜ï#Õ9dk˜¡<3äŸÍ²l7,ä[¯ìÔcm”‹3¬ÌBƒüO$4éYå€)2°Ràùú$¨pG ŽLïFÖƒ³4-:šÏôÜŽùÜè¹ ßEw#ÖG»dÓ)‚ô;É#È‚Éâ©_Ê䊡ué4eå&b×D`¨CØç‰˜å×ù9ÎÅ÷i~¢e'~SøêÖÇSðš“ó½1ýG–øóº½ö%W Kä kÍvg2äHxï sÕŸ:7 yŸ×4S‘IIµ˜«}³¤ t¯ìÔµãÞ=›»¹Ú•üª}ÆÓ¯0!#Žêõ&J®°"TD##%USïg°Üµõ³ÜY|$޳}7ùÅëüVHÖŒ7‰E||œl9Jíú-¬œÃ…a\ø8»•;×íUlÕBEM¡µöx(íÉ ¨3é‚ð½}R´ãïËF<= ~(߯†õÇFœ·üÃW(eä4AÁ‹*þ~Sh¤FÿCe‘ŒT²ÓÜÑPí)µ¥Ú;¡i¤–„nh&I³øór"¨A-âóÞfe¥î aæ`Ï> 7-’AHND¡q}9Ïwêí«•|:¿17Î ÎÃÆ¯úØ¢»Ÿ$޼®£ÓÅËœ\<{m¡ !X(fŠ#¿ÿ„ÓU¯_  Lñ«ÇNÔ²°|ºµ¤-}2}Y¼ÕwLŠfÔ~QÄ~¦—ªÎ Æ#K hæ>ý¹Ôÿ*¤R7Ï÷ˆÆÎHWú ø”à{âè½—½åéÀ¡˂ʢu§Ç\R€Û e}Ç5hW_‘ž T €\P„ ªS(cü áÆ#¶®­-Ê£ f¶ŽVgŒ#Î`­ªG¯äFÙ„¶Kk*z×*›Ý ¿¤SôÄð"Z£ G¿'fËâ›Íd~Xº|ËôLÉHD@ øÓŸ“ÑÓª >=FºtõÓÆ„÷ FËí”? U@„y(7²áq£dN‚•AòG\+S!©h’@ý¡Môy;CK—›{¢µýÓ6cíN<¯«M~[ÿ“šnÛÊŸ±»æ|ì—DI(Uú ,‘ŽÏ«”«»áÓ‰;x™m¦/§’ËÃá8Â[ydÏ]߉—=¼ÀO¡ÝYœ•¥>7G¿½ÖisˆWr{Ìܔ㠑ÿ¬× Ná³=§¤=×;&u¿&`Ô\2KYû$&È:i©3d¸h/aj©hN2ÄíÃñ6ïN551 ;϶ xÐEõÚ?°“ç‡öÄ5óü®óàtÓUþqfÐMŸÄpÔö¸Œ«üZ#ø[d²Z$îO×˦úDúìËâx’Z›/ãIYC{C˜uÓ¹çè¾çk¢¡ëuÛÈ×OÜÁç#Öä_,~&ZY'n8&%ž½_@d®ò!Ôò˜´¡"Ô58È´ª­Àô;_}³‹ÅTë¢âi y@6$ÙŤªºE'•V4ÒˇÈR¨¯ í Y‚?¯1M<J3ÿÍh‚Gc€ªðäÐKƒ³y\©ê´®T@ZÙÌÔšT‹OœëZ~›Á¯¥7+ “§&#û–$Tþÿh†ìÓnía ÷žãÍè:¤MöD2Lå^`a<`þ -†©Q‘)AüOå1`à“È´“ú ˜“¼¨ÀT±¬ˆäfÛm®ÉÕ·ó-ÐeÙÔÈ䉕‹cTm•fGaäb›À³+ÐñºU^¦ç ›eÕ-eœüÂí†Þý á+µòïAÆi56¡¸-ÐB÷'{ZŽý¥£SÔ(’û¦h¤mÿbtʘ{ÝßåV¢Öü¼‡*[¹[²iȧʘÆûªŽÜ:G¡Fàç ™¶9~Óé#i¼!Ž ‘|™úîÍr9.19s‡ôxwùm2»`æâÀ—éEúµ¥¡_G-<Ý¡ûyÔ0  øM"982¿›ÆYóE}Ne ïòÙäáŠí)YDè뾩·GÁ¾¬vSø!ŒòiR}ë˜fͳó#ÞІrL‡Á'ÅKÀYý.,ÊÐR}²*ƒ¾„B%žJ·a)1æ+³ßÍêý7<±íµ+§OÝO»{æ]eí€å]Fqôâù$>¡þ<ÅDËd J¾ÑH#çX"B—ëÌîz©_Á|gï˜áƒ|§ÛÅñ:eŸ€yeб»ã¬¼!÷=¨öŽz’Wªœí8Nà–Å` õ ¬Ñü,mty罿Ê#­MWïÑ‹ˆëጹ>¿7›Z}ë²®’fßí‡?4ãìËGç€ó_À$zËK©>Èg‰Z ä§un^HlW–™†¹U»+ÑŒdSf ?h>™è[Á(j²Êí/þc²K`¶Ô»x´Rì'S¥·ÍuT€£¨u"ÆÏo‘lߤ`òÐôþÜñ½³æN¹3o­Zëí[{Ÿ»T-·ºç”òçÎá,ÊÀ¹7¯¡ Ù/ΨfK‰yµòö“eSAɯÊLo£ïlÆ…=÷žRÞ'“Øà«ÐtG)SðìÚ˜‡_w—êDÎï$)püÏmv¤7Ö +r¬TV(¶íEìŸ2x"†µGDíǨÑ63í®®°FpÅ_l6›r‡\žòôÍÞ8ýÉ’äеhK¢t…dʦŠ9Éî÷ï¯V2­+ öå{p‘§à/Û´i=3Ît䟇—Ò±÷ì%«VG›TMʰÿˆKjáR@3u+.´Ì&¯ŽHNöWÈq¤|KÂ¥èúaÔ}‘†Îê`7!gn(Äí°nt²:Õ¾´Še—En @/à …oðÔrј_ ‰ ‹sl£w}{w-1 гºSZ¾?w‰‹‡f<§ ‰ù¤ ìío²·ëé‘®Ñò))1!5î´þª×B2Ãä<“å¥çóø<Á‚3Šì¹øàå½÷¯tñÚùñ[‘=W†ÌÔ•6|OAóŠ 8ÚLˆ]4'“ƒê¨iEêy¡°Û´/ìÀ&Ý·qmo«ç]vOª8¶(©[S/YoÔ<Î-ÒÔà ¦ßå;LˆáÓê„u!\Ó32eךåê2MEl(õr¾Ò䜞õÖ•åº#(IéÍJ°y(«éO³Ù3–÷GîòâÌ  òEW~ ¹…^Xõã§²ŽÁý”CáØ¯‹ü}–#ÑMf-.¼©m·šÝ>Y ¹¤¥ûÔ?g*‡ö»Êl«¯f EñÖES¶<àHˆñŠïú•ûß°ã(X­nèÃvÔ/ÏŽ—Ò\¹z(U „‹~¾©Ý„c¾Yª<¿Y³•LÁÛZª?å9”%Üùì%ÆžI×W‰?Zs™”‘îº?f0·¨ì2d»øÏÁœî2Õª|i1³ð~Ýëá›ÄöDòld&Ë£×a÷_ú} L-äXö*ðÓ±º‰òì%‡¼„Ò˜—õ¶Ê2VKñ¾XÁ(Ä]qkb8]Ž-q”sÁ§j²æ³íƒ‹:È‹<èhýþjI[矪pPdŠŠŠåÚyø'¶°×Óg<"¡µ²jd(=¿Ë–¢ÓxŸÕq¯–’¹ˆÉR¯&óK¦â„%pYú’À™û`J7¯´i‡W0Ï´¹Œoiž.L×>bõyß@Ų–*ƒ%…¸#–IÝÎi ðÓ¸G «®f¤ŽC¥vÌ…54°ÕX²¢X*x)Ô>!TêðIfDùèu_¾Í§Wk ®+ôÓ‘ûø,ïÇá<GÅÈ)€\Ö$öp–µ‘–6YÝ5­D£û=èÜ“ïYtòTÛÞ[*t™¯…çîXc´BðdrªçâÝÒ],;ô+ý—lç‰êò ÃàǤª/R7Ô|!O¿áø·EhñïQÀÙg!æ‰abEÒ֋Ũ‹‰ŸÚZγ@D‡KË­OóÄ·ªÆŸ‹ë˜ $æ$理«$2Ä’îÛEYšêŽïŽ,8N"¶W[™bÀx–5×e&³©ŸNÂí›\’)LS–éµÍŸÊ~@úL¯èýè7»ÄÆ?q°ÝB‰ùD§ì ‘7a8^ƒ!Þ@—´Rƒ˜)t?”Ì÷CŒÍy+Z~co|¸õN•rÀÔÀý^ùP ¶¿ëšÙ³À¥©ÒÆ¡LÿÁé(äʲ‰eû 6>OO¬+«Æœ®•ºx1ˆ/ µÁ¾¥KwB¼ ÅhýëYNwߌ¯Ès‘Þ²PG4 6ÒJ¾Ã7ól«ê3;¯.¼õÐE*ZÅÔÔ€õ1ÜŽ øÂåi¤p±Â+肆bP_x£ÜN\/ TZ;-XŽè2%%[¢:Š£jht5¦ ÒsœRë~A´y=íñÄĺö'³Õt¹]£_V˜˜P8DÜŸH&Ù¼Ãô­¡Ü–ÚüÊò·PžïWêÆT¯­–Í5™°þÂ+¹ËÛƒ$¡$¡9ÀC:€±\Üf-€£ˆ­º`•)«fä;-j&¬Ôsó­¹y×™áŠò_vÙi `ËËÖ‘eÙç¶ño€MÙÒWËö}ó/®RêTݘp}:Ÿ".`÷Ûźõ¢&O ·^YM´•Ì£°¦y½^·qÔ&Nƒ‡y¨}y»Õ¥—Á%"Ž[ÔÞi,$h Ñ[*‰Æ’}ý„'-ÅÏ»ÓðhC¯ªE<ë)Îõ& |§ó;ûá^”6jÓUN{ÿï"®/'¢]jø”èéOY¿cŸÙ¶¸ÉÎKwž+Zf£ÆaºnEÐè©ïž 4N€ƒ}Òžbqó«±»ã²ìaÍW~ZyÞúéæXþ°<¾•H[TµÞÕYÜrÉS²p§¹­vSW~&õ‘Ü‘¤"F­‚[Yòn¥I=Uúýz7J…ï÷PÅXoa}Éß8þÂB…xe µâáBöÝ Æ@ÄÓ“’êŽ‡ÄæVaoä ‚õ r¨‹®~AW[ÐÔÅ_áÚ¢”ŠÜüžþb3•¿ÃYºÐXÁ_®«ôÂp©ö€`Vdfþù °;üú[A/¼ÐEŒt¼>Aò †+O¨ûHB.=%æ´ˆ¨ Êu,žå ñÒ¼‰¬KÓZÆm\Õ¡ôÄÛWBÑÚª‹áç豄æv¹ˆÃ*·ánv±S“*©ÅoïNâ-/ʪþC ìˉ ’BWåFۛɛ?*KºO¼œá˲|~Kùªž’åMÀ·Œ¹ÆlB®Þ¢áž ŸË†ñ @ ,×í»…¼¡s=¼ÏQ# #MÇâ3¨Æ`æHjX`ä2qâÍd¤jqæçj“ÌE²X ³‘ýì«»v¨UËŠ<%7x*IVV¼Š‰Õ¶xæ5à /ñ$)llÑ¿NÒnÄîò´áO­8nÌ¥…s!RšÀ{mÔF£fºx¿Þ1úE"9—[±:ÆŒ\…®_î«åˆÑK¯*ˆÏ¿ƒ‘Œ0ê… ¦à©'åДŒÉó$ð×I±b ˜ù–u¸„4‚ó•‚]ŽütU¿Î^VTb*!‰ZˆÎÆ®¤ÿœm÷°ïÈ\MSfYpºÜf£¦ß××Î ¸²/—•—ªç×:`¸)hî-lÜœ² nÈX]4-É5”ïDÜʦ‘»’[{ý™o©9ʆÚ1 ò—+Aº2`˜¢gï ÐL£&Õj™z²XdõÈÊüûw}(X˜B7ƒãâ_‡¼l…ðàÊ£ïåU×ïŸçlÝç4ÆñÐYQývýf?›æf—-ÒL‡²-Ï«‰«y‰ùÈo4ôÎàAè§q -€k!›’0q4ÿö.ÃWØŒ†+G¼»ì:¤qÓ&¶F~ÙáÁ¤ûSLCKú¸(zØGd24€‘†Ö¶¯« |Åu{ŠÎõXœò²¶¤³Òz~¡­1q~¿ôÞÓ„©18™>•¼Õ™Ì<…ž£õ¢o·œ5JßO4Œ‘É'àŠè1&Pò¬Ê™QÔü§Æ*ì£À-šMfUoȼ9x7`{ønJ*è=¨SlÙâ!(õ3VáH°ÑTh3í`MzoêsBÈ6jðBLË®ÀÚ6^1ý»s¦»£À}3mmŠ˜¤2~ŸJkg’•Ëoÿ—¿ø~cz…ÝÉÕHéÚöó±o ñùeú}£“·—À`µö ú÷#粂hþJ%⛨Ng¼¡+'zœêÌ Rd¤…I!„X:ÛêØ)¼Ê?ù’¦Wâ'ô{£â7 «Ye@A½q¿£_TÚE¨Ú<Τü2Ì‹¯x÷žu¿¤>éw]{äý~Óî|ØsYbøÜzŸeoàl^C5ª½ÔÔsˆûÓ÷5=ËåzJ@bWã¤Ûu £`6‘S–ÐW؇ãê'‚°:vÎjòŠØé±Â´ôX‹™÷f¿eòB.Jòp"6¿éõi¼·ÿÇ7j|i h}cs46’nSæV¡øüZú¾þ®oªmº¹á>Dï¿/¬º¾HæŒn¥¨è®GXYlÉw£²Üc(ì3ý¡þÎðƒÌ—Obmн†,Zµ{ÁW….¨$¤ ÈnÌ·½Ì~oàt1îxà+ú#[ǬzÖ…*êu1GN§Sõµ7¾|û×Lû–±}c<½svu˜9„áZµ¯ïBù\©ôÊÆa¹ËHì8^Ä|ÐÞ–õä=lÓÍÖÖ›QÓIX‚öQWFÉ!$>RÛ'Ðr ‹ó{¯ò1²`Ρôˆœüx`#üŠY-|¤pAóÏEó“) b#[QÅ'µ’»á—Ë#JÕÆÓÔŒ¥­—¸:<Ò¡ Û_\ðïý`Ô,ÏP¾Š}T3ü?“¿'9z“¯ƒO*­´¯eZ%ŒAjhCLÒ mjE¥pÞ‘ bª6³~JÌ/NÒú²·h‡@Ò8Ÿ¯ìâ%랸žjÿtpx\ÚS¯õa½#%Y$¶R2‚#5kâd¡qû4ãà s¦?ˆ¾ÈZE7ñ‡ ¤Ã÷ëÍJsQí&uo~=ÑhD±WVÞŽFÚ:IÈuT§¿gwI `óênTS݇F+o²Ä­1!,šëü öYà-0èI„:À^£]0)¹šÕ2 rŽ4ÇÃǃ%?ǺÚô*§n’ò¶?—€wF4ÑÄ?áûô(¸P671ÓÒ½ißPÆ·u‡>Ól›{Ÿø®s>½£}ãÏÓ¾`𠢿X*!ô®M©±À„ûm ñÀÖ·AATý¯Š¸@CÙà0(-FŽ©\馓ÁkU¡c¹#p~â#·§P%þÍäת)ü#ìFÖÚ“®Ådϳ޼Yr¢¸£`øFLI3é S§mÌSG?öÊîI`Êíîšì3†udµÌ¢„&+Œn­€ïÊ&‹“/æ1ÌÆO°à—°Çï¾ÆxϬ—&Á‹Ñ çT›qº´ÎKuW–̳Y2U÷÷Ôþqwº5‰ÑBh Y;Á‡¿JOè:YqÅ„rFU|t>5[ö§oàü³(Þ,6)ÿƒõˆYK¿V÷އ¨ŒK ?¯ˆ ú}¦ ÁXöºÒ+xrëˆsF†ø“ùsx˜Í¬tS{R"ˆlvd—3fÀµNͳ@v¶^&=Ê~ŒÄþó¥Šì=¢”Yö¹öŒ¦ÏE²Ûø¬qGþ˜z…XÈéJR5ÕhÞÅÉn8ŠæRo(®zšªá5ˆKß¾†!ÿ&•ê×ÕuÆÖ¨\u6ÐÖ3Ú½„«ùJÍfÝ·Úwý'Eå]à•×ËNƒýÖ/'´X¡-¹˜¹ö@…¸Oqž\|&þÇ “Cªîøo9ü,„ÄãÒÞàãOÖaáœ0¦ÀRŸb~õú¼¦Á‹¯7ÃýÊÌÇ6ŸÈ1pòSN*¹Æ©èöfܶ©i:$ö’ÑÂ-ìÝìžÁÎXpvc늗ÊÙV(§z?iw<á8$7ÓnE q„Ô=Ç)þds5Wj‹N xÐ/ÂZÞu½JúöÏLI‹½5Ê£¤åjE¾~ûA+@tÕ;šP‘“Ø­,WTí ý‡¸3]p¶»›gÂ>̱0ÐÔ?NÁ¸¶Ú&‡Mú[/õÝ$nîqöG2ƒ?Ãð¥ªN™ÉG&Kûô'¥íãŽc,r‹ï®‘kBQT§–çJÿÀÔPB÷‰€e$9žoŠîž|&à/’üéÒî®CÜQX¶ó9¤å™¯ÊÒté3ãÖaË5¢¹Ô„ýz¾»h°õ쯯ãåCçm?ðð`Nðø¤†ó’«?Ô¿5ä|ÙÁ{“¼éŸS„‹'gKMØzw…Ý›-í¦",úÜxi“ð§k‚+&È8Uê‘«ü!ª6êÝù%¼*õlsª;ž{©vK²L¶«ú—›ãý?Õ…Š+˜»mÅ×0ìÖ©¦mÂCzï‰oî,FþaKlyG?ÄßwÙT˜Þív•(¨;‚[â›>†öþU(dnŸpI®Ú’ y‹:Ä]çdÄ~ÃV¬(1´û’k—häýÌçqTLºÃçþ1(ƒ±LO²¦(Îuhú8ÇÙõEµ,WF>Yîì¹u}o÷2§€ç¾~§er ©éÑ=”Cj§A³M“͸k|²U/­ hƒ“×@?œú"…¯Ò–zP¸WqŽ¥HŸC,Uj¹¹—OÏrÛk¹êžš"nôí &¢;`BAd]•±‚D«!“¨^–¼ …îëz™$‰¢nÍÄñ³¸>çÍ6¢ØÕ˜â–5ÎÃសòýi‚G½eTÐúû¨²BéßýÈ*6’ ‹e®‚>.®äG ½,,דë¬Æur(ÃNµÛÓõàž‡L! ZôŒ B‘°Y…ædf»@W›Ixa(£V™øfI5îLò¤èDPxb ´ê¼Ê$¨ËmnB7 œ‡sl;NÔ'>B@Ž §ˆz©'VC>ˆùdÍb°w«÷w—ûgYD66²ÝKóa“ ÇSíÆ—²^‡EïRxžÿuÆ»½¬9×I|ôü"Ø·íæÎŽ„œ y! ƒCo\–²Öµ™'‹j•Aôó•­À\^ÔÖ2@’IlRoP‚u˜Q‰X¯9ñ8 eqTq;œQünOc?R,zøc®Ë+ˆ%‚£Áå€èN_Ë30m^†ÖÑ•@`ê?ªÚä5›®ÑDBG‘@¼›åÃŽ@T”ÉDó"’hwˆ©¶ùCmˆ³#T¹! ~qª…›Ÿf®¥§?á8Š&Õs üô½'„W/aôdc5DPQ_îJ³ý ÖÑáÂûgN°—/‘ zý›ŸõbÀuÉé²âŦo”ü˜Ãš#kf3‘%2¸Ñ ÀÛrkÆáúyT”Ã3³Çç/ðá?ˆ~ mǾI^³Ð0‹9Ĺ©1MjÛ1“«ÙíM'bHoY©£ðrCõ 6!f L+Lû,ŒuŸ¤$ûí+Ü>Œúá…¯y*í‡y¥fS0)Bh™òÒP Àô^èq9~‚Ü Ž4–™G~Ôï2¤s§á&Eb'<ÂÉ>P¬Y„‚¶¯„£spNp^lów›ùºÇ@p^†Ð5†Ò±VbÎV5Ú^ QªúíS܃Ÿp¯õçK´äÔ}gÓ#\¹{ëƒ_Ê‘KH“à“s¤+µê?6ÆJ6Øq]®»CjD’CVÍP_ˆ½˜nñ ‘­E7ë-h3Ì\å™”ê¸yÖ ¬zÞñ,"*ò:åŽ^ lXáÇ>ÛPz Ô­t+©'§@‡påï ¶÷ãþ“Öeý£È®á¥OšØZƒã¬œx=†,Ù3Õ»ñÍ‚Èþ¡3»T7xÒAu ?·»8BkT°d~ÌÞ€"xASÛöð¨aü*x[Úo:ø£+h±¨…†G9.ZA›šõûÞ(^?‹a‘³bmÓgV zi‰ºÊñRUqFAnçí¬,ì8•qž¹uÓ¤þB z4bVÂ~?3OZažd5yˆ{5ãOÐ{~m CÅvÁM`ð\Ã Žƒó²ËÖ ð›M#+wz+6ŸóBDqm…‰]…׊[`Ëqg—£›€²UNv%ý`5T­…ùaž-®»šºH}hÈêwØòBò6€"¤Õw‘´˜†+C¤U£ëßE»œ%°df!å3K0›”ö ¾Çãà˜Ž1›@Û×õiûwøcɰ5¿Ê:ÿ]¬ MG´Øiý’BdêGÖ À;ØÌb}lߦKB*º–`ÈÃ%Å¢»R"ÛH+fBòêö•E¯÷Ä^KB|³_Dé‹ÑèÀr²©Ñ•SöI¡d06‡/Š'¬šjÛ%i6öFô§¹_,ž’]"ìTÇ燻™´?ô:¬åI¿ötB4ìa¡â_}Ꞣ‚8TH&,àˆMB~Åó‹«:¡y>Ú“‹ßáNž­‰—.ÛzÂð†Ææa§^æè fgQ7ã“[Còí)ïž¡äÙ×^ù¿Œ=vë]ôSaöxl8•Œþ™2¼¿ý‘·›_ŠiîÔV·B ·ß"Èÿ&ášn¤!»«­øFѾq^ åþYv¶F5ˆ_¶v=¿2¦ŠZ˜ÙãD­Ö¾„_òäö¡TŠÁÕ¶ck½±œŸ•Éa7µ0FÃh¾·*dÙ¾Ô™HêrËÒl _PPÚxDû†›K –/=k„ÍñHrª±cÌNê­ËíƒÃ@ƒB¯s%ñ`qTÈŸ"Œ”oØÂwc fýLÀB"Üf3ØšŒ(ãÃPHVÒœµ%¯/M³3T—ïâ½ã xF"¬Í>4•WÏJ‚Y£Þ©~~û%HÃîÍÇc ÑZb®7”½dTé^Œ° 5p6˜hÚ­#÷NÕ8 ýøm—kö±CCó1»éSÓŽæøi]|dâE >Ôìf´QÞãy[ WKéYÓß¿ïXi#HÖS‘Tan%Ì‹o‡"³6­B’dy/´,YÖ½õ÷“8áÑœqëZ6„ãõU7ÍsÐa²E–|ís8އÊŠ©ÍnŽ4nN¼)~…J׸;1¦H¿h¹'u:ÒIJ[ˆ$m‚áÈÖPì8?¼yc67Èv)ÂùjíX#ñ?AlQÇQ“BPJ‡¶Ån ÏÁ›úrþ©¯ ¢5Ýô§Q52Ûø—ª’˜¦Lrw>ÇTl\pØÞvŠªá™ŸûËgB·þCZß8º6™Az"íNŽØfoÛv%S$çýÔøõvqJpÆObáàìF4¤z‚8Ìf4¯öÙ138Å\u§•EŒà¨­A1 VBißÞò”…çèñýöŸõNfýÍBŽòN{¢têJ "=BŠãêjã6Wæ‰t÷äö|º—¥Âûø©1*;òK\´x^h!¥klY]³»@èµþwåEÛìo¨gŠ’ªéIƒ{¨¿ÇÃ×WtK»œeÍþÄ‹P"!´ŠxÁ$f7šfºœ½k>Wô²â þlÚC–Ò àWcm€g:órïá§‹SF9Ýrmyª¸…\Aen,sânŸäpPš&¸OüÞëy@ ±v âÔŽ0‘ŠW§gvçüÑ!2ëÅmX„Hö UoòeT"õûQÌð2ÍnƒÓX>7äJN·dpv'T—ˆ^Ö[·óQ‚YLŸ7K›‰ÿýÒ1{úCLðuUx.›Fs '»é×`Ãæ‹xÔ¢| 1’Ü—D;>º¦ &#J>»œ+›{‡9ÿH BŒ ]$b¿+ö{'åѵƙù2žyàës^i’öø²'Ñ)Q“"u^ wƒŸEÖµðØàÒkZú©‚Š÷`sVß ;|„rýŒõ‹¾ü aóð£oÅ?X‘4¾(Š´ŸŽ¬ýNüÉ/´ÿÅI‹Š>*a}š•üzΞ]5õ’ÓóB™4ÍAÌ»ûæÌ¬ßè­”Ì<{‰Âj/=—ÅÓÒ¬ ãa­àGÈ­>QÆÝä~€ý=FÆRó•Ü¢²zR—Y÷eæé¾è!§×g$eõJO Ï«<$´k#7scÉ c…\'vô¢€Åg3{‰¢ø}=â Dó5¦rb?8/s;!]Äl‚®†à:ê ¨‘¤—g˜ón z¸:Ç€|ˆ É›âo r ›­ ‚2PC èèÆ–`»¦?¿p8¯ùvÅ;s Ìú$rxYüÃ'Ý-Ïw(D¥Ü3œè&®µ²©JÑVˆ (>ß' ]]`·|_º¿Ü5Ù%´%‹:Å€–8˜‘X€Üñ jÀZyŽŠü=·cŠÞÐrô½%O¥ V%÷é«Ö½Î÷Ä`'xiæKb'Ö„èÄ0 ©®“rƒÏ>ÅTì´àk­´8mnWôLƒ=¶l=½| £õ‚VºtuRS£æX6¼@hfcAQ=wè8¼Á¨‚›1k nv–A]‰Þì·¸•êb•#®ß0«ä@dF•ãÖÂlé͸âòcÆÚºëb£évg”Ó¼é,–öñï”bǃü¨ÕZ»G!*ØÔã9+¡¸þìõ (t¸¤Ò·gs§X_+íW’:mSÎ-²ûqœË&Øø”ôïV}쯒óæÑ¤‰Öº+ÈtÎ/8¢J›àr•”üîœZTGª©*^ÓNæØ:úÜ ýôAÐQ À+ 76X«Ê-4øñé§ì¹ -;›8øé_n3)—n®žBƒ’z®=²Ö×!v ùÝGÖø,XÕªÕçÏöa.˜Îu ÷¦|Ø8¹ËJ/ùn,M<çµ.ÚÂ;Èòáò Kp9Öåˆt?CסfŸ™U7o@÷¡\OJaä—óªTcÞS_g“tüDŽR’'š–f]Ÿ¬:ŽNPæ_nl´Øþ8{N1Døj8÷YqܦèyñYiÄnfíG‚4ZOìp6èɉ Ààl±µö*û Qp´cq¢¡GyPZ‘óŸ˜Èº}Õû5©ËÚì> ¢I¨”y.©~‚:sövù3Iòƒ¯©Ì>–ÃõZ±å2 ÿƒºV÷¸ð»”õ!‰ÐÚ§WEöœl쑜:ƒŒù.ân¼eö˜[ò¢·S×—/Hd¨KÑš]賿|ÂÛü/ì$èp­7W“žDž—’éšãWñÕ]=áI¯ÙKŠ*¹õ,𡲕~xÅ…°ÄÁÂd‡Åf-&Õz4HËÆI£Â.¤ÅÇÖº‚K]غh²<ö×v+q·;Øa½A3i·‰#­å¥Y†v®ËÍÿCØð]rtä­ÔTóÆ/ÈíÃ^›ÊG{Ð0 ßµY]è2LÝ£‘Äu qøë:L3ÁO‰˜éß“ëóB†}Û?(x2zrQs0¼N< Ÿr•÷XÆ¿M…@aÿá}uå€ß5­Q iÊÛçŒ@}æ{³ÔýÆÅärÏûØ;"Og¹a%ÚÊI¶wBNíæpOýºvÔëÊ']ù€E[Œcoó@±ê¦ðʳ·x×”|XRxîvšÞV‰³ å8“q×aÃòSH&“‰Û˜é¶üì—Xц à“ãÁvÉ›}Å+S™5åETAhÑx0/²×ù 6厹SzgyzZ€™/‘q£/ÜZèÜ\£5«?Næì¥5Áì<¬¢Úk±ý¹*®­ÇÀ2e¦ “9æJ»;‘Ö‘?Õˆo«<1‚aFÚI­Ãcôd¥þK–Mé3Àm_utDǰ„$à6,׋DŽÂÓùþÍU‹A(êÎ%mùÌ[ï@éìrò­ºƒë¶áyœÔÙU²&NBZ„¨7ž¶ïÖƒ*Ç’§’eʼnžni÷W¹¼,²ˆh蕜É÷ wO¸€‚ 0²êU›äÌ b퀤œYvÌ|µœ ÁP tÏÜÃ%ù ð^_KBl¥Þ}`ëm?¸GC‰ u»Ñ^/Û”€y ªóµå™N-¹ ÁZ²f7»Âx¨Zövç Ùy2dØ¿ÅÜbŒi»uµÃ{ÙKl~€a †QÇæ¦}É¡Eõ»KÖ8vSF£ìÖ:–xw{í2X[Èô­$q„È¥ÿžøð73bŸºL šr•ÁÜÛ¶‹’hÀ øˆ¯áë¸.e¡Û4¼Áuw"y½ Y#1í T"ýêç’N*}õgâX?R\TUÐ'¸Ç`v¾ô˜îÃÕÌt >åqR­œˆN™ëI7š›M-uáÌÝÌÌ"ïÞm ¿y„´â S¥®{ª…ð­Ióäpœé™S0B›Ø9¿|ó-Üý¡&e>öûð=¤»ùLН »M>A.:¬ 2%žNgÈòjµD>¶¤‡,B´"ú/O(s1Öêò ¥ä°õj[³$#qhÎÞÙ””ÊŽ ©®¥®M´°­­ªž#¬oàï?ÐÉX쌿t”ƒ¥÷ãæ€Áåýí²Æäf‹V› ݉³)L(ªßåt–¦Âx,hˆäúfÐlöÍvñ“<¼áòŒšÖ$t©Ó)+Êâ€x<¹##Å}ðXÓ¬{OuˆßRŒ³”;™’ÿç'hίk)­Tw‰×ж®£¸_£KѸx¿Žaw×-Â7ë JC“çfldH´mŽ^C˜Ð`»—,~Së®ãì¬&œþV<&AÿÕé¯møñ­.Î ÿÇY^ÎCïú¸/1Ú4p¤{‘6݈¸~Xý¸4·ûÃÁÒŠfì]U—¾7|o{íxU?Ý´×1k)m]-\‚ûÞÎÏ­Ô¢W2÷ªÖ3fó5ûKàfoù Hž±õ˹0üÁ(¶íZ ŠPÕy¤ È– Bý‘i‰þ’hжïP‡O©<Û“)U8šü;AGg„°"†…¦x>=¤Í¯a&UŠPg„¿ âDÎßl²±zãz­dÄ"¶¨† HÔZÖÔ7åF¤ØÀ¨0€‚öÐd³¾hiq» FÔÃP g¤]Ü÷¸È¹"¨Éké“oŒõ-¿óL ¦7PG•9ç„¡*í·4î ¶ÁQ" œt“ݦ3v#3ç‡KÊQ}»5¿w­ Qá&DwHï?µrU®·HeÏ ó×38inÊëTÅÕµôY¿;ØŽÃôÒn9uæ–ØGRÑØ÷Zº¾%7ì‚i®év³Œtkí»¡~ŠÊˆb]Û–²ä| #92:e‹Ú  É¯ ƒ}È3ƒ!8̟܃AùNÜà%CFë­ÿ<åH„×lÂW‡)½«3Þðìƒúmls‹™V0ç̃‰m°ìB†:0(Ûk<Åîy—§6 ×yµæ‡?;Ji`%Uµ4|Ì—lNB»)ÿ4rÔ™[åÕ–Ù ²„DHráOï:y/²UÆâÔŸe29$ (`]¢itRþ\‘Ó\hÝNjÊUÒ+K”Bˆ[Ñ ÷45vpÅ žC:/Ê‘a^ *pÿ0ª‘'ÛŸm(/ü ï(ŒÐ1%È3ó¿Z«Ó0Ú{…8\´+¶"1#^í|êLou_3a(O™´¿’Áƽ bËÅ·‰ò(Š h̲‰î²(¯F3¡ˆ¡ø‰‰ÂÎ$I \ø€êw)j!¡ÿìT2{”ƒÄ—­ÙsÝdÃP›Ôá`nÀ¡±gj¸ìŠ{GIPúœ›cBW§‰åuhc(Qnpk¦ GDl™Øéh…²¯âÁ߉dü=ãÄaHù2 šýx[«à¹æ3¹¤@‹Ï<˜zᎠÈN.®„ͧºÿÀma9‘æwð8*™úJ[fúð>_²g2bd¼UTaŽDy6xKè?…¦q4^:¹XW ë瘌5bÙÈ6ZTm@\T3T ž‚©„š~¨ñ®_Â_L%¸Å½ӱR\Xé'R 1…K¯,;Wúið}£¢b&äæ)”ÏǾӭQÅøð¯BßB Í–¸…ÞÜ@á×d%Úý¹Æ×0sIÍsu¶³ äTU€rدÐß[8Q/¼1á÷Åpê8ƒŽ×»sÇÌn¾úvOßø¯Ø'i–ÛÆ©Œ7Äå\Tiù¬>èß›æzá6ûˆmQÕ¬÷"¾Šÿíti™±§¢+ÐóT¿sR$š¨)ILg5Iíe¢¡žAtæd—Ù £„ºë8ÔÚ³— ¡‚áX8[Ô6E Uô–ûàË:ݘׄGÚo3šëÖÈ¿¥€“<¦ÐÎáSÍÂç·Ü¦r/”Ø>‘ˆ¼c4´/ú~rÜ*¸a¸6¦äŒË4Vïµñ´$!õó¶`Ñ9ãɨD©ÝR[ï“£6'†QÙ‡k”Ú‰ßÛQö·á‰«B•­™î97x”•KW;}n5t,\K¬+Ë;ȳŸGøôŒÙ‡l¾±‹þV„°e›; 3MI©¿*o’‚­ÿó³¥§à~:Ì#&lºê1°Ï\Á A ‹É,| Nú?Õ0“–yæw²Ù±p‹+ 5.šæÅãŽ}/u«.Dnï« }wtäªÎ—á÷í‰(PP’vÂrˆ;%zBêA¶. á:UZ?•Y¦ r@× AŸˆ1V6 =•æ³¼·ìÿ…ÞPÓIþ¡d{±8"IÐÄŒ‹W»›Ñ©Ñ‰Æ½Ú„Œö3=UØ9’c5n•Ï;°Þ¦U@¾H»xèFgÔøÌ3lšý¤m(T «|c/ ²öÑŠðð!Œ¦%ÆaX’mgW÷½9¼ó ¼w ÍЧ3Á̱ޭŒO1u\¡9·«vd¬"- ¥«Œó€/†tô«ú8ž¸³÷Á89"8YŠùi "ÌÖÉ '3NQ*‡°G~îèhôƶ(8¼œÑµÚÂÒSΛdu‚ŽÔ§‡Ö³ŒÜÎwH9÷¨r™s·Æ˜¯oª¹g±kB:·á¦+WÐa¾pð ÛkŒÞ¤Äp„ Q‡d>z6—W+¹BuŸ%’.œmçP²ñ^ ^Ë•îÞÔSϰ“5„0µâ²8KX€£µÝÏ=K)ê«¢,U´øl‚šrüW#›Cd©å¯Ïø”™Û_–KVÞ4¶¨»}Ÿ:•ß^(ÿvD¼P—À:pN+ˆn Ë÷ûb4c%é¹»“À†ßý+é52V¶IÐàyêsäœâA,³-J¾@ç”q#ŽÏb$ OòZ\˸B¹xü3|ŽD¹÷öÕ†ºPQ±]Òl[6 ^Ë?êþ×üb†O.o¶%]ˆpI”¾èŠoDƒ7Qzg÷‡vx|f¿V¤ædÁV¢s:VÝDøŸqàF¶ßß‹œqÖ Îa`ó}ÊG}žêë ÏǞВÃ=û,I{ö$õmÂÙì—Õäî·xä9GYâ;²\ú³p „\)ýö/˜!ã Æcñ3Ð †7†oø°:'µ’hÇçÚpX<³{º*:7÷ÙÆv /ðRÅÕ|D5#ïáûJÑ«øñÕÕr0JØyã¬wD%DÀ)À þ-—›ûaªí¤Ö+hÍsð‘f]ˆ$»SLĆˆ^Xû,l%ð:ç¦[­Äú*”Ž@C~Œ ˆÌtkùïRŒ¦­Ø°³“Ê0]}Ú:ÊEþz/lb2_[Ä®4Ý™¶·%a¢’õB³®Ô}Ùµ$@¦ªyBÊò°Ñýºž¤1„2#Œ3d¼=åúóW|2WäŠzwµWF—"C¦åjPq§Þ’.÷ˆj¬Æ†™ŽìÞ’©uOà˜|XäÆh^i*%.z…O­®âÞõÉ2@­ÚL¤Â¨‚Y0Æ;d»ìg{ö¡öÃOÕÀȈ,ˆ‚ÑòÇÀ'…&Ô~ž°O¨Iuí‚ý2Àº‚”G—?Pä_6¼/h%²ú¨ÖŒÅ_?Mó¹]¨šÁœ[8óÒƒpT C—&0)B¸¬Œè0­æ‹bÏ3EH£ôüf9²…—PH–ã´Ó)v:kRù¯Ö£ÆÄô¦ÙjÚ^+£åXzS‡†¢òAïïÿ¯PÀÖ­.'7“·Â$a g“&áØl=:à€l¢¯5ìž_Ž%•0Ej!̪ÖxúJhÔÂ?R¾£„ÌK•–EÇçÉÏij[¼‡œn³ z°nõŠ©ö°ÎèŒimþ9ƒÆÔ=8§„J ëÓú«$ºqAaøbÊ`,—±“yçoP°š+%ÏÆÂ‹Ë{ëLgÌÉmL?΃|( T¶ë‰œ¶{n bµƒ|ÖùS6½Ž»Ìò´E[ïÜ·˜þáΜÓçOQ¦<Hrž¶ܾфyxi=ÿ&ø9]××y Þ—”)ÃDZ› ´˜9„™[_ˆýùÃ…CøÆ–~иÿå92¦Î£»ÎQÒdvýÙ[ü3 *ÂÇûœKŸÌ£fVl‰þ§Øõ&“(³!¼ŠÊ›NWIhR“ÔçÍÛ¾ñßZvo¾/Ö° Ù4NÌ‹K;‰¢@LG°Òox:<èI%š•W~ð$ù¤ŠÂ\ÎÒ.G[l©iÕÞû/×X!Mc¤Îõ¸éÖØæG‰l*$Ç=†„k'@åwÛ¦úlæ{^ŠâüT· £gqHx7BîBcÆÿ;ºÏ¾— õú$¿j†#[Äë%@õúýû\´(ô‚‹Kõ#Óü¢Õj!ŠÞ†Â­Àò5=qÃ4aÀ€ Õ¿ ¸ÃbÍo5.yuÑ3‡+Ž£S먭ö êö4++»f-áª.×äÿ¬Ql ‘$7D–͉Ië‹ÇÏÆYžÛ¦¹ˆ¯mÒáTU忽듃R€@ˆ K¹KÉsè!.Ò™À^îøéhëw€÷l3Bùwa²ðôúäyò龋‡Mµô+ž¶V§®ux¤›Æcî±´²Ãšï7󶯗MÚ?ë€veta>¿¹ŽGÖ”„pùêu-b['g™ ÚÆÿ¼½)y,£Ø*‡ßÂ*"$Å"2É7ý/LõY¶-ÞéybåþÏÀ6OªÚ]Ûäúúz°® `ÞYÍ¡9ÀèF:©qlgk®ðÿ G‘NÐlXàŠÓþÉDÅù™õëx̳®ixÉû3¼hþkyME*CÍwÇÀùç"Ík‰6Dê«+TTa¦¢/ §7ý€“’—N]îé¤Î[J<÷ºÕ¥#‘3T5üSÛ"=u Œ D×5æÂKy4I¼ž«/tŒÜmèÂLnÐàáG>À7± 6¬[\ÎB"ó Ÿ@ñ{‰Ö«Ãò õ_ø1Îò:ÈBÀ~Ï2«‡™9‡è’Ë7&J&Žo7Ä@Psš¨j^ÃZµP‰ý¨˜Û5@[Sj‘÷Ÿ ‹ S-r¨rÊHô(+}ÙÆ d+ϯ?/õÀΊL¿º ]z÷v=Ò·Ñ¢xÕkÚt1*² ?|b}’e•AÓf†ôŠð4ç/ Íå×ÕG€^eð¸ÛdþâÖÓ¥™‰`Ý—ÑxÞÖŽŸú7ôº3ãÏÍa¨’¬ N^ìág(›“$i俇cm—û7šî¡‘Ȭ±ÿ• æ`%Ò®àW`áµôãe TwçÜêNUD|€ƒBXa±9™„ß+¾{X ¨:NP2sîRº¦jƒG –’1¯Pµ¿"ÿKX¬Ù—Æ…ÒŸš#Yj̉Qéê¢Òá¶øŒÀ|‚)LÿvlO»±”¿2ŠWlÜ ;TÙ?úfJq"Ö7â¹ã71=âýmU9OKM:yÝ®¹cñûykHB>‘ä îÒIˆR&²°rŸ89”³h¾” ›¤È¢Úz‚ï‹Ì¤¥ånè™upzÑàJ$rŒ@ =* Ž¿÷¢;Pl‹…í¾Íµø>ƒÇoPEŽ’t£gäÅiaF,×Ëǃ>/³}8ææBr“S>šzCšrÆ­l˜Ž,Ó\·$ßWÂÌÙ³"Ød÷˜É.2C=·²é.†A‘u±o I6·¢H[ô¨æT:ùuçA„”畼s´KñwŸÿct©ut*ðÉ"!¸]eqlÔÚ½GæçUÚøïJ(PÍÅ!‚‘Knp•ŤàiÕŠ’ÊzS¥!˜à?J«±û(M*ÿ¢ÑnÛÃb£:/FT‹§åk ke5GØb„gr°ÓŽÅB9ž"·J»#¾ž,ÁÕ³ÏüE½”áÀ?ûô˜Aò$𒌂F‘^Lž^˜¡ÎÎGöÉA¨éâeŠ}¬ ù‹–f!³oG¬õìtÇéï0hŒÕ§0k2ê0á| wS%PÆQˆädÏwš¶LÉ¢gÊFØ–U*ÊíA†PjŒˆqÑ…$WL‰”x¼R)ËdÃÙ âÒvSéÄ8µhæÂQs?‘l\ a VÆÛb…(SúŒ.¶;L_ÝÏO6´¨S·ç¸¤r ~=Ì®‡Ø“­4Š"ÒûeÖË7à /`ucÒq lÑÒÙHÊs4]ø ‘ß ­Ýoá“Ú¯¶>âN&UïÄîtÖ£å>)õâ#£t­9Tü ã•v¿ÕRñIt<„ðhbßÈÜ JNQ«qùN6™°ÏÅ:‰Ý|gÅ JkEÕ,è¢ßE Øaà—ûl•4Y ¾ ™ò._Æ~f¡R>úk»ê3/r†~âÅ5?î¼ÑÿûëVòU‹òø²¹ÔÛ)??Õã6ÐÕl‚fµFÏc]¶š²gš!þ‚NÝŒ,cYá2T뤃Ò"8ŠZû^7*&-P êú¸AGhÐÊÊÒ¦"Zã1x¢ÍñR¢{&ÍÊ&ï›L7ø¨Ì_!&£yOÞ \Fæêï®þè߆wJ\ guE¥Ôu’§êZâo_*-9ñÊé‘- mÉ ˜ñ%p\‚¢Ux`JˆØ¹n5•VáËÈy1då¤l…e¬¼FÛíÙ&[J:ùJ$£|118¯Ï/DWQ ‹Ò¶¥îñö¥ÕÖ@ŽÈß/&%‹;jød¹äTn“¼f&cœ>„Rñù˜>M¸eÎ S×oáÒAôËmÆ¿‘ ÎFŠ˜@¢¸ÊÆ?{'É®ð87^ÓIbË© ¥i›.f•~nrª“UFzBy‘Ÿ±×`Z¸ËÛIl¡“tyÍ<_WÀÀ)FÐCVø í›¶î¯^NÆK‚I<Å%™Í›Â3Æ->ëÆúbR¢æ ù£\ãGU]êßBžÖ¢¾@3xIݯœ±‹åê"Ÿ—ä4Ìší=6½û~_ßÎàò|qaB nvÅ©3.Q…‹ o“¸íj9…w9b ]YMd½×pZÍüYñ0ŠÏBÈå9ï>µ$ád–:Õy*º… ÄÆkÛ·5 hH]ú’ç{Ç¥%DTp£ÃŒÎT™ÆßÝ‘2]Åx2 ÍÄ$òÙµ)‰;º“oº±Kz©äùøb&ÓH™hø¹þqô?BKXÔ-Ž.=éÃ<¦Ç´nk¡í– p]±lÉ}ÏDO¼ß±«Á 9' ,ÂNÏBó÷µžCÞ´‹æ*›Ìû‚þJøåG÷‰<›8œÈJê©÷¿[£K«u#2Ä8Uäç•çÆ—œ 9ÌŸöýñÏÅÝ"ûôL>åu VîA:£mrøÍNM4—"ju4þv?.@¨d™ï1 %¡‡ÿçÁ‘®®—µÅþîÃ49ï'<¦³br=>ŒB†f{‰ÍZt€•³¹x +EœFF_\#Ðöž‡wsN£ØÒbÚRZì³i“ò,PÝš‘ÿ-¶ðÅÕ¤ËJŸÍ]lò-[%§0ÁĹŠS‹#?Àìöšb]Ó!þ.nû½ƒëtÍáÎ Pý@UQ†nÇ€O0Õ¦+”ÌÞƒ· Žjh>¯r ©A™S©oó[ÛZê€#¾fPýÿ=Ë' endstream endobj 42 0 obj << /Length1 2271 /Length2 27764 /Length3 0 /Length 29122 /Filter /FlateDecode >> stream xÚ´ºeT\Û¶5Š$8§ 8ÁÝÝÝ`…SXáî,¸kðàî®ÁÝÝ .ìsïÙûœûý}­µèCûsŒ¹VAQ*©Ò ›Ú%ì@`zf&€œ¼Š­ˆ™‰^hîlcä`a`bbC¤ u-í@bF` €lP4¿ù¾Y01q#R$  ã›Ò`ì‚ÔÜíÌj£¿€’˜ÞØÈéM ™[‚€4o.¢vöæà?1XééÿDúã-Â12±¶su²¶L2 ò ;×7¡%€Ú0ZÙ˜ìÌj@-€ºª¸Š*@REQ]I•†á-°ª³½½ãÿpUUS—üVP5>$ÕUÕþ¼«AoüÍ?ÔÞôò¼þq—WVÓVgfü³3Àèèdù'íq£|cø›Ú›«™£í_ Ô`°=#£««+ƒ¹³˜ÁÎÑœÁÞæ/~j–NW;GkÀÛÕhü«0Î Ó·r‚-€ÿ ðgWr–&@ð“„Ý¿”¶o¥|sz“ƒÿMì­à?1mþepÿ#…‘Ó_¾rJJr[#K2™¼‚ÀÎNÿdo?@SªDÿäÿ_•ã¿Óü/u»·•éÙxz¹þ÷Žœ<þQ›ÿ\¶‰ÈÉÒ ìô¯ˆ@€™¥ ð{§?{f úK&/¬ -!®ªF/÷Öx zy»·ê€Àn࿬ÿÄ“ãp1q˜¹ÙLoM*2µ³µ}cí„ø§|b–ouÛ9º3þ߯¶Ù¹‚<ÿ 3K©ÙŸÚ›:Û3ªƒ,œÒbÿcþ&Bü[f˜@ÐÍÄ‚ñO¿úå˜ùø­Þžövö3#' ·¥ðí‚èédä€ÞžÿTü'Bdæ˜Zš€ßZým\ÿŠ. 2³pÿKüÆäUÿÓÔ*ÍÛœšÚlܦ@3DF;ð[KPÿÿ3iÿ•KÂÙÆFÁÈHýjú߆F¶–6îÿiú_&šÀ?l©ìmlþKgé$aé4U²›Xü«´ÿ’KƒÞú_dn|Û–¿DêFÊæ­wßÎË?Ç€ž™ã¿tomib :9Øþå|+Ä1~«þ¾FIEi9ºÿÛ6Ù‰ƒLìL-Aæv€‘££‘;"Ó[/°°³<™ßÛèöW³@và7€½3Ø`fçˆøgC9ØŒÂDÿBœFÑ#N&£Ä߈À(õ7b0Jÿ¸ŒŠÿF\o–*£7KÕ¿€Qíoô–OóoôEû߈ûMgô7â0ÿÞ,MþØÞbš¼ áßÖÌLoÔMÿ™ŒÀÀ7‚fC–·hf–ÿP¿16ÿ| oñw²·‚Y¸Û[Aÿ°x“ýÓÿ¹õ?àu›À·l¶Cæ7¦ÿÅüÆÔîïdo¶v 0g~cnÿ·úÍ×ÞèíÈ´šÿ–2ÿô_ã÷o1Ç›èhi÷º0¿­Ôáðm¥Žÿ€oËrú| þ|[¥ó?àÛ*]þߘ»þ£ÄoLÝþß(ºÿÿ³é•þühLOÁÿÜÿª`G;k ¦¥éÛÓÀ?LäÀŽ–nºLoÇó›üíõ¿¿éÿGŠ¿OÒx‹ˆØ¹yÒ³±2èY¸ß†‡ímio•æôþ_“Ýœþ: ߯õñŸ;tš .ÍÛ™ðY%7„”øˆçO–ÂRp3œ–ãhÉÄÁ,¥M¶àŠål“ ü›üÒ) ìä¤xô}ýAß´(‚°m^Ö›*&nL•…vŒ|ä}PÄ…G³5ÔÒåýJ;ÈhŽd²ó´‹Ø¦Ó[âZˆê£Ç¢Üm¿¾°Œ¿¢_%‘é•¶¬æÂºÎ27b9Ú`¸-¢á·,N¶C‚_aÅDõ/ÑÎæ…àŒÊÀÙwwbîBF þޤÞMçyÀ§þå°¾¬~¯îÔŽDAäKNXj.  úª‡ˆãšÖ+ÿ!:l2®À©ÃÙ?OzR”*+ð¯}jñ‘›õÚK[Hm% Yüt¥ç0Ùšœ'ÕVÒC%=ļU°ÑÉ•7‘V›ž{"Só(Ïõ#ýÓ­óÃæsÍ¡Ž­ö(âËö»‡ú%Ãw Ä ô“N¨Ñü矌2ˆâˆšá^¢pÐíªKH²pt%,*¨‚ïA^-o¤øZ“CÕ=kuË$JyÁˆƒà¯Øð 6xPoŽx…¬®”Cl³±i”6.ŽÌÒ¡,œ'¿±þÈqö -½+D¾É>+±7ÈÄqm/‹CFêÞ†ñ¹&_øLͺF½'RK¢FRB…Ù’haë1y:Ö"5M»ËB&qc§ì&˜. îpܦŕìæ`Cžßã7_dœÝÓc÷Óu§|~=o0E¥ÙDõoSÉýþõ3Óú¹~Dû $ÝÏÀûßóq)q1lH¥p|¶¥E ÛîBâD!v¹É9êGXJtµ X^©{™xè?°VWmÂ` 8 SP²eèÊ îY"ÝQ”}jÌvŒ;¡Æû~ï›K:5 Àc]HÓ#6å‘Èþ¼¨YA&CßHï¿\ÊÊ÷3§œ{lò;pèœNð%@W|eëxˆ%G64v©•«.±|‡i‰"þš›úß “[Ê««ÖÕÝÌ|?hÊã¦gÀN"~Õ§²Ô¥´ýÙ¯T² „%ú ì?Ê2u!æc«Ã! ®ì­ IA”¯ÂïÊkQËVu^—!¡æmcµƒ—8h)i y= “£•Õ[!“kF@bç>›n˜ÞŸp`¹æ§\oÞ`—ÈáÇéëÆ¥‘Øy²Ts…½Ð; ÿe^¼ ¼C,º L¶wá9Y÷R^+9µ2Ý» œ‰vU¬ùmÜ”æàò„œLíXmáLò ¸(4¹áÞí#·è5r®´r)»ìpûœàå‡aOO.¢ úþ'r ³– ö´Sc†œÍø‚éýR¨kOF³[zä#ºÒª@9Á€«bX¥â´âÜhˆËñ>ÊÕ@â÷ª0û²Ñ¼éé ‹ÊåÍIù(¼ZQ%Ø,fÛèÃ!MZŸ¦x$„è ¼¶ö3/úXzNæˆ1¦õ à¦<öEôGß ë‡Ñ1¸Ò`Ö˜GVn ZxÚÕ»`&×ï÷çƒMÐç¹êÒ~[¼œ/½ü×5‚ƒgùû¢é`aOÖàehƒ¬Ãä¹i­nmƒócÞÎ;†¬14üu=±°)K±Å–QÁ-yý=ƒ™ÁnÄJþç 'íOíØ¢Æ¹¨7Ý…i mY»œ2êíjüç}x©ëHYcÓν¾ò@K6úʵ53ÿªhfxo”Š„0P$ÝkÚèÓðyø˜h9ò¥UÈäI “N®æÆœŒÍ"×1׃>ˆ§óƒéј•(¼p1#éSBÏ"Ó,m–h'’®Ö’è,Ñ ·‰ïÈ8¯ÈOXg…[¼B0ØîÔ«½ŸéßW©¶:dÕLß+Õ 8×ȃš)]ý+úÀÚÍA欪7Æ0uk¿g¯â6[ñ3Ýi¶ä™¬¿ø ˜£B¯Ó•|Ø¡–W»Ã袟 œÒF»P¼“;+grÈÄ+B¿÷äL pÔ‘¬ØjÏ9/àÊ¥‡Ây ý> ôÀÃÜéÊ#0'lÔÒ¨úíB9Ëà ,÷X•€ø’È·ˆh(+ó»ïU¶ ̉ØÌ¥þC\HO‡ˆ¼Ã´m®à,<#ÿN Ÿ0׎ÑÏwV“Û5¹úvkà ùäó¾è—ŸA!å¬ =ÂG‹‰¾-)ãÉF¨Ã¤®8S…³ÙµX°£¯b;´î÷vÜ™%0éT6ý„!/­Ø"²ZÊ'mÖXݘÂîAgótökÏã"ŠøÍGv…6{0<Ô6öÚ·‰ë¦Ž¤£’…!ù¡Y?\±j6Hß¶âË F]÷ FCñœmI±DI|OïI˜2õÖ¿>°OÕoÞ‡1$píÖA0—¾q«íìjRÊÓ::ï;Z±ËòýBîèÔzxÿuîñ¶®õT G ÃEšÀ[ðË=¿KtsBœ­ÁUIòÎÚZµÍ”éDGÖ›sþ-±YÙ†’vt³Å3ªG´zÚÆ.š"|‚+LH³XûžãQóò4¹ü]r†µb,#èÆÉ„ßDÅ4€kÜ~ åyq¥r'ܱj߈On÷äF$yóWrn0Ïãí=‘뺧|ømAbÜ–°B~£öK†r ,GÕNÔM+ø‹J$E°¥VàQdcK®6v ­’}(ÿÖ tôîå³ <Çþ§©ñC‘Ï0PgßÉ1\ØùG¾ëÚœÐÑòÑ*·¢„nL6#öt-'Ý|m¤Ž$ãBbT 5µ³. m•dj0®¾®åâø1,¥1ƒí¸3I°„Ì`µz‚S«°¹çƒ¼£ZéP‰y™‡¼‘®síP‰â0¿õK¦¿#oò’üYeŽM/ñŽ[6àËõÈöóý}¯Ââ~¥çÇ]ÿ­"Ùá­Ïg ]¸[HLÉË!ŠJ¶)Ë¿•ݮ¢C磢2®µÏ[cmƒ%³xµ ÷ð®å% ™Hä…+ÉXIê€n5èX™YÊà žú¥eŒÌ®ç¾¥¹Â_Ê„~H¶A‰lŸÏuáq\ð±lƒ’U4‚C*c,ºxr‡/ä†Ù„¶Š«Ê»W+Ý YÓÐ?eÿæ^)ÂÑ} uŸ }ú`·§Ûv'éúð<«†Ûâýs©·¼œÄ‹Ð >W®)ô‹¬øÅÁQN73ÛÐG¬i5¬jùýÛÇ8õ\”¥ÉÐ.È©´`Î*u›-u€ß3 {,1U¯%Ïþm(" ÇêbÜ,¥ÇR7†Ÿ{sèK‚«hw3mŠÓû«åÂÀXéŒulƒ¨ï‡Z%Õuøö•òf^7óBP„éhï×%¯€C´Öî\}ã1k@Í/±1ø»ÞDêµÊ±’™V?_Ï`±sÞÞ ÓÐ÷$¹JÖB²k#gã²ÊÍõ¸n déMÃ¥ðºð©}Öêçvöï¬'!gR.žpMÒ`€ ‹<‰éêáÑ>•M›'ë:„ï0`þl®Tù—æGŠ/Ã"žÃÑoÇ´ßÄ®|pŒ—«*1VÌ8‰¯#n8¤§ÕjJú* Øf‘mÐÍŒ7¿Áƒ®‚è„»…–yßî©SP&ªRo6whª?ïQ^ РTDã¸Ë–Í.ú˪†@wuͯ{¢œqfC“ü|šbßeÎÖÐsŠ[,‚5ÊŠœœYÅ :®n…MÕ°Ý=m?é«^ir¨Ï–ÂvCŒ3 ´ òÖß(>ÛÉ$ÖÎA§P¹/p{^.†N0ƒ(œ–àÃ.Ó%ª "–\uæ"w‰½6÷íw‡§ZÍ3Z:¤“2 4szð‡=ú—¿Ì½3¯ËùÁH¿Ó ’Ýxâ@Ý ‡"nh}”gUŠA@'Ô~kœQêO[²šŽ Þù†A:J…‰5vsÏ¥Ót:ÇQ餛€&ý¢I(P£ÄŒïHfÃiè{H3Üì*DÁk=žæ„sÐMœQÕöVÔñëL¿íSä”õs¯9¯IÓ¢^#þ”-Êm¢a äÖ= ó´‚<Û}õ_«¼“ix§!Šªï¿ÅÒA×ßzä"*ñ•VúÆzÝ·W1,W ô‹ª„1ãä\ÍrÁø¹Û˜þaÁÃBß›ÁÐ’n»Ò;‘–3Ý u§ÄœhJRTÑ®nŠÕÞÝÕê%¸#B[Å,!çæÖœ½ák…¢Tâç×tN ‚Ã陼 1¢éT:sd¼êL2€òÁa¦WKåĦ‘<‘NíKÞ;Ó‚ØÎd¯ %Ë÷Ua¿á‚ÖÔšÂv/ŸÞeæÙqµ¹êÊÀÀó}so¨XÉSâÄð¡m?ÂoH”;É7ÍA`¥ç:œ(¢Ó*!OátW^é-Ïòžz|ŸºkY2Åó]µNauªðQ¹lÑ.Åæ9/¢}ˆìèÙ–g¯AÑcWŽx~9Bàb¸ØÉïèäß8—¤*ÖЩ}—7ŸËÖ}-æÒ5£8)é¦ã`G§ÙäýûA?±¯Là†Vz}!êEf…Þ¾1uuº,ß² ëZxžòÝÊk‰†åF¾ë*wÍÞŠ´)»…rö˜VA>$7iøN=¢l¾Kôª~ú—Ð:L~-†>*µÚ(8/çãïNÓaf\¡¼çp¥?o^peÔ—2WJP¥dI5Z*þº é:ÒèYx+îKg¶dÇ´-nÕÛ!(u¤_áhÑF¿-ݰù@ùêaTœ=×5y€W€»§6¬zï©«³°ùi£@®tsÛk0œ‹.›+o:°SÜV?òådT×ÒÁ—,G3î +ù£z¥]ÛR% Ž«Èd; &Á™$s³§`%e³¹dñÁjëç)h?.Í& X'ÕÇWYQv@c7Q_ó "|ÿÓCH”ª|’­¸?gn Ò–¶Z«Ãž¯ýÑÙ¬û:éŒuDo…ëcº\ŽÞ±æV «ñF;’~l”I»Çf(Ùê~¡ ÃJè±Ì" W€†Ðylcnkf]æ äx=ÒˆB]d ‰6ˆ©?oï…Sä ‹½ïb[^êNl‰$î>*Ú¼s åÄß`è *½Ô!ö¤Ö:F<̉Ì?}Xýá5œ|ÎÛ\ñx±\Y­lý›lÖ…eÊç¢z©FèC.}” Ñ3Rl…hÙ­o ¸“ôY?ÿè7Td•SRCéø·c?e„*¤&àlè2ôa…S+ ìÏ,ã¥&¦V Ѱ”οF‘4 Ö{|0„1¯¿†–'³]UãGj>œúz—aðÞɹ٠[ÎÓÊÖ~ eoÏÄè4¥¬e;EáD.G-BªGäé¯e$Ië¶ÎÖMŸ×Sìë0Ab‡Ý4{øųÏ—ž×xB^Dz­<Š’±VØ6_S¥ãû)W.õóÃÒüóã°I•aõéè2K‹u|±®H"iZÛ›7°Ì®Ü1¹Ò‚B¡Ú˜‡Ï,‘¸ K¸ê¾Ðæ@Ó¼rßKÇ)ŸÓʼ(æ“b$Ê醜{ìLâ䫸D›<ñty/¼®¨wÇ;gäªÎ¨O|WXB0ûYmÕësaÏÝðka‹ §ÅcûÑg}ˆ•ˆ³¶mmËJñ—K.F ³ã_]þ…¹8©*ò7Og…{ÙvxÙªéÚM> n™:fâïèy{¢G}žñ$´ûTÕ×Rhþy˜ÏГÒúÙ¶OªØ—=™%n#æ±.´TV.Ï}DïÇ0Þ¥ŒL™zº#ÕÛG©ž³²_/a4v·dê’"BrˆTÛ8HÖ8°ŒXÀ/XL<Ö&Yë/ŠÚâ·÷ž\kYÓ ÷Ë)M›Üu(¹QŸ‡*R_¥»àé4T`–ñMœš”@–Ô6öß°9;+çiñußÍvOï3[!ŠGÌ$™4Ù<äY{yA²ýÞžÓš¨±´­{ÿbÉ ¥ieŸôûðÜà³ôŒ™âão…/Üã÷Uë×s(cƬ¶GÌPmE;s¢1ÍXìöZ7ŒjhßäO û6w$3bƒÆf'¢íBkò–[š ´Ùî×M+„t•7=- ¢æ¯Ò¸ìåƒêï1‡Ý‹k†õï•‹4 î.ÏɶÖ㻈ÏõÓ$3Hç‹–3­‘ozÌ"k(…Ú¹W¿?µÂrÃEpèO·´cF’ÿŸWÑ»ø¤²^Š*eõý¸}¤ÚžQÞoÿ+¾}/[bÊNl>%͇^>…ásàÖgpÃë:«˜b çÑßyŃ‘~"!Ç­ÿt‹ª¢Ð~nå˜ØøJ|éí;U"IAyUrÝé …¶Œ’®sS0_†¼³#;y¨ƒ<^"Rǘ3†tQ‚^”a"H»#z…ŒlD°R,ysæå‰X‡‰ˆ‚ïÖ½¯* æÛ KÕ'Äœgû#)ùsUî‰úš0¯_@)|õfóüÉèµ º¡± 0[ÉÈòAŠÊÌ Rë-$e›“8—Y•¿@ÇŠ,ÉU|Ù¾.u GCåÎxpRÉîÅ"Ë?²Ç|âÊqæÒÏC(‚Ú¢¿SNBš:ÓeÁæR6濳C¼õ^fç/âçAÈzF%is3'D¬Úuï¢ÈâCYä!ó!¸n©BbÜyÌ“™¶´HxcpTì½›wÕÌß+/<àN~;mÍMVRuøÍ==Ä5K¤õóPgƒ맯պ½Éxo)®*Ê[Ár´G›½”óÓÙËfX4Œôíü çR/&¹¢À÷§ uîÌãr,dîÓ^Ä„ñ÷t}7øx×›bl¸Èùd>ó4âñµ‘E ›¼Döá â‚&Uªƒ½ÆÅîHms¡žˆJ† •|=k­ÁqoÂtï!#†&0sdº9ðx'¹t–gùgìuŸ(Ž3nwçb?çN@½t,;Û˜¦oG&c›ÊZwj2gT»yGÛþµÜŒq½c§åþ¥¼? }Úwzõ´N†™ÜOtnŸÓæ±ÍÀþx·±±3ŒÍžžXâd6K‰«ÊQõʬ²Ì~„d-ƒ˜ë^?/3<ËáÔ-ßXÔE'ï ‡%˜öÙпUttý,‘ZNôºË_ìbuŽ2X½ô1òv’e-?öÞ)”hDc'°htïz6>ãÌJ’ãxùÆfŽ÷Bh¡ÕÑ-]^fû ßúæaŽkÛ¡÷`X urþJqH*¬ÿ…}`2·–…«J£]ãìö*e}]ž×íá_'¾âôîàÚÞJöÝûõd1vˆàM‘ˆÒî‘Mÿ{ßž£ntéÇ$ö¦^ï©f'[¦¨¾ŽyðN$J*v; RÓ·ùÁ;^¤ŒVÆÃzöpQà .^ŸM ‘(çàÄíÁ.C—q¦–Séï£l{ÿ„6¸W¡“)èPaÜ7Q»°¯WÇáǦu€ý%²JXCóù»&ê²Ôdïwèy Vyì ]éíÍîFµo­ÔhÙUée[ëVÙ¤HÚ°&Ç ¿˜ø é°ÙšVÐ2Šr2âô<á陡A°g2,<[ó‘áÀÃM©üÒøZ¸Ê¿2ºÀ ç¬Ò®´ª*bÕ¼ÿè˜\ö¡nšÉ7/0{ÏVw‰÷L¨µ¸êi|V «‚,¸lÜ›±}ÿ„¡ÍŽÎÈ@"R^æ¨Ë«Ã6ƒ6°* d!(­Êíp¨¾îè¡ZÞ[RÏtRŽîhWS¾jé« ‡¥4Û}(Ÿb¨ÉÓ@û( [Y*â®ýSšÊÐîÝ …®Y¦ûŠ·°T÷çy´»ñï(ÇÄ»»Ç¼›ŠÝ‡a¸Íë/g}¦mr"FN16VI×üèä›p -ŸƒÙ›†æIXø³ïŸ¤,Ê º£J V*Sz&‹/6,Sˆâ×óêû»IÒ®†cV[f;r‰¢L í9÷ÛŸðUºô°,üÆ6ÍO ­‰f8!:¢Ÿ,s4ꇅOÝÿbô³ô™Û¿)¬:ÿ\üçn £ðc¤íí/M¶E'<6%¤Iâ%­ ã/E]EFTÐ#ŽtÒB¶œý:YçÆSÕ:£‘—,—;i ™´Ê.ÑÌÓ ¤¾&|ˆÁ„FÜœ;¨õæbpƶ¸†P Pˆ“Ææ´Âðî` ÎïÝ|dw¯®üˆHàî1ÎÅi[ÅBäMÇÚëq„¶ ²Pj#Ë’®Ÿf~1 lro(ÚúÖ‘»ùrõÍO‹s®ÉÃGð+µúfiý(›â ûIJ”W'³$Tû{RŒÖ(×FñÎŒ­¦Å7‰R«ùœãç­`üþ9‡à-Rßr«NŽ3ú]h©I®øz_µ0€ºç±ƒ!³·ÞW˜V¯ës‘vªüq¸‚¿@%Õ¦ô:ÄÎkM`õ¥Ï¥d÷ùh —ÞZ]Ÿ«à׃BžÃ¬ëðÒ2ùZêHKØS˜3fÎv.D*Tiÿeû/u¾àpAÔéù¿ýÝ{ϯ%ðùÝ´¤ûˆF9XPåc!+˜//ÉQ=oÎæÝ ¿–)v‡ã|yÙg‹ôÕ`›s˜.…taÌ¡|º·=;ú¾(€‡ˆ'!YŠ(ü˜îüHÞ£$g:ró&l|° >âó†ÿªÔÕ²xÒAR’/ƒPƒ`|=›ìUc—Xé)÷ù×$$òb/`¨°rþú<4ä«[pdÑþîÜ®©´ŠŽœ`mIàB}D§Š•Ö²DÀð…ô‹ÅQ÷ö$’'°ç•gbˆß`² ÄTLéxµ(áîSt¢ÞJÄPÛÔä=Âxù°oÇícžÉ@ãÇï ºlu°9¹Ì1g¿ô±‡&31«J"ê˜Øh£\vUˆ/9ó÷>Ñ&ŸW-Ú.u2òÔÊoËãTBêŸ Ùcᮄ²þÈ–Ú]®½ž{GdR_!Ö<Q¿ü €µbïué‹_Ñ$x­½û&¹Äs çMª!ÈŠ!kÒÌ’C﬷ߋ€ªó­r˜¯u¹„[õ¢°˜dt³Ñ‚µÁ§ÍŸ~ð;·R#OBd‰û’“+ä5ýE)ŠÇM“ÙæÉðì×9w”=‚ÔãºHö#ûôÌØ¼‚râ-¥jü&‹éw²Ebç™ý@±’K•È*jë>ïAW‘â.ôaãȳ ES ÄG"b ?ƒ(Tl‚d“Ì{ÓÑp²à%Ýýrc…×ýê#E¢úZãhr¯W}ÿ‡£É‘NO®/ñ³Hö±.3 Ur¶U)‰O®ü5ŸñÛ¡Çë£|6°Ý\ß­išOƒÅCȃæ¢ÜÎîz€ˆF/ç›ß¼5@»ÛPŽ st÷¸$Êö lïY7£Þ7Ôhš›V4“”ýhДúáww1"K¸ð íÇÏ:§ˆÛ£÷á[jXЦ$3ô׆'ê|Åç첚a—º¹)Ç ÐbI@š©ˆr¦d¸ëo@Z$¢²OÐç·®õàaÌsè(†‡ûªÍERÐ0DÀÿ¸{±eÙ¶b+·8õ€Ù’[„Ÿt™O–Uõj›°%…£¶ÇõÓ‡'”Jul]¸Ë±çsíV9=;O-¸t³'Æ–ˆ=­<<´ò8ÂØ×l~Sr‹ÝËÑcåíÝ/æŸav9µj8ß]ª:+Ç ¿øCS$Ï2n@û«ºª¼¹ T‹ôq ì„òåt¦Ü¬˜ÁANŽ7FQ«oÿ}6å‹€Å#4­Ü4ÞJ|\Å&e_8!ý4"¼å‚ÁÀOŒ‘I´…rã|\³jƒÞ>$»tLAîjâš4÷À¯–þ›ÔqùkŸ7Ù6Ù»³š_¼ƒÑGÀL‘ƒóZÔ8”2Ÿ4×\s¼1âsüöл.}.¤š"ž½àªë$7ðú¸Ffî˜*]ö€ƒ¬vl´õ4 ®ƒ@Ïœ”ËÌ3"éÞœ¹wÕ¾œ‹Ò†ÝÊøGHŒP¸{"ž š:]õQ9;c³hC‡ÔƒØ²"Géy úšj±ŸèøýÈ¿†­$^Gé×{ï«{¤Öx¬ x Ü÷òOWk3ú‘úüþ¡½}#ˆO¦£ábw^:c’ö—qÎ3”¿}§ËùýjšÝXÀ%Ò×:ŠÕ¿Sºˆ½lÝàϸǯ[ìÚ“£+oñšƒ†tkZ»Â\7+¦K¤CîcUåÉ\BOY·½*õß ö61L¤^Ð'ÇL_êå¾ût÷5•îñÄ¡‹ˆ„:²Ú’¥ ÿе º‘Pü'¿!²Õæ‘jÞ6̬„Ðk.aƒÇOÜóµ§K~«QÍ%KÒD7´!nµúœ´åø{c6ìÊøm! ,ß¹JÓåí$«¯{Öºí¦˜¯¡ò~=OÇ*$p¾’uÿd§ÄAŠ8{Œ³ñ)èQ;"ÂÑ„Ô36pû AÔg8Ùäi¸jDû \õVþ9*(;~ßc{™€q’#ÌØò¼¤xŠ×w¸úP$ƒÔó£Û³“ •EÊ ïaùÒ[|)@ñ¼Œ ÊhýY%õ5nîI¤³Ÿë¾´-#Èià¥äÅŸ¡ª‰’{†Ž@ë/uO^8M¨Âvzšì›ávÛŠàèÓ7eü4 ÿu0\QA]ü5.ïíûàï7îÎÀôüÅìú}«W÷«j½‘c²¨æ~™˜àµ‘=ÃfHiýòrŸ Š/ß)à˺:õ£ý‰•ÉC¦Ø Ѝ8DõïÃþ°áÓ‘8TVµY á'wHºê nþÕ«pÁÐ4Ô™udä²¾gû4ÉÛ—f®=äÊBdÿ48_¶Ÿ²?]^èQO¦ºÆÂëüµÞï¬ÿ˜Gü†ˆá¥{hùÜýöòpMâKn8‚Aœ® ‚}À;B#*²©¥¬Sçåæ¹Œî»’ØeÎÅ«F»€ "ú9,;YÔȲßGÆŠ9s£–ìÀÞå<2‚Ý”'ßH4öêLL³`£Ñd‚9gÑT—–üqŽBZ\O…WÊ·¬áלf8öjßç·ò¹!1»ó÷jE|@ÑÔ yùx:Q‰d×ú/`Wö8uá^H#¡›|€)ÈÅçênŠf¶ùÑÉdúñγwiSŸ¶&v%VS%I6a,–ñÇ·èÀlúÀ>³Ž¾ËqøVÏc²SÓ‘@R¡m‹ŒÉTô}h~«§¶–ßï Ò¶šMqIÏÖ¨6²½i8•¤DÄ8ë­c5üˆÕO+‰?½Åž„´sü Pb²ÿq>ÿzöâ“M°’ÿ¨éq¯GBë óøYïsN°¸æ V tš§D>–€7ítQÏN!{DBÕÓÌéQphŒ;†+ Ÿ Ë¹ó.ëofñž%>¯ÌyÖ{:búÒý¢2ÅúDØ;¾ µ{6|‰q»²4!9ó3냂•™×¸„Ã<ð:_Â{²ïn^šBÄ)ä(56»Mg]߮܌M’\(˜®ÛpSzÂðOå#ä^öÜþÚá †I­ÏžZiqè{÷<·#ù6,Zì>8£Pž-%[ûY­îÏÙ}\¸~ø¥áبÑB¾¢œ—Ë\ϯ7(QÀ°¹|Þ¬®¿ãóñ)T€<, Gâ=¯ÈÑ£˜¼LÊ«jgëú*U¹?„ŒE!ļl•Õ'QŒq){‘½}@pœSƒ/–ð·6”ÕÖ`àã'pzJ†uk¸Œ¤­" ›uomzkÖžÓ@8o©»Ãh™·=NG±^øg—~[¿8%ƒSFfx— ëÄ]ܧŽÒâ—©ÉÙ…yøý% ›TuCÿzÖ‚†Ñ]„'ç.è*/ÎqRŸ%é«#)m®šPOƒÏf¼ì5ú¼X™pöR®”jPæf£ ­¾+l;ÅHMo©‚rÇ?9õA÷E2óÓ"Åyb)V$)k Ÿcü05™ÿÝÒè`¤æ'ÛÂ9Ž»kBÁJ(¤Pªøáº¡H87H‚¼HÍT@oo#D¦…dsÏ×Ê8O.>™›Í™ñ}î_ƒ­å¨¨tÿ1¯èjæ6[ˆ–>i²Ð°r˜“«^øJ@ƒ.'djòi»*Áx²œC&éÛ÷„Ë!×Ô' ªþÍH<9ºg ØÇ‰dnüz–8)tÓsoJÐcèÞžx¬ë1НÉH‹ñM®ø:‰ã;Tp‘+’ÅâÞ¬Å8ã2l7:÷±ˆÂâˆwÚKè©ÆU‹®šÑfÞ…žÈšuZŸØ&(*›C= å)WòÄq±››Ñëá³Êì¤øÑηoŠŸÆ`œ&%VbôH:`Pk‚—çpëg¡õèçõ–®?ë!űATVJ«¹<"Ø9QJøSæVȇ7ŠG_ ͇ùEû·3ù¼®é¶¤2ÛÂ„Ô è¿Éue¯3aÛBÆéà*\i2[`êrÒ™;QYy¤ã ^¢°€×<k{¯áBGëpëkÜ@® Y#þ!²ŠÔaŸ_qKÓNDŒ$V*¹€hª{Ç»V··—‰’é5c_Þ‰ëü¬E^…¡É3n<Í©•_ÁVZ½Š_ÜÖ²sìQ•}]ÌÐ…|àûžÄò:¬Dêã¦X¡¶f£æUãoö„Ný3¨Ë[ëÅÚY ù¢êzrÕ%5Cœ#ÏÙ€þvÜ;ŠŸ0]S¾—i‘ °Énq“ù®Hãu3Èê˜.<ê ¥LT"&úµ}á„¥­Q´<O†ŽÝKOWL=\Ï¥)ÐãiÔ#£N'Ù$.òÄŒQýà„ÈšHÒÆðY'̺µ]HE%yiÇqz'Zg(¸‡õ¡ÌSOZZ%Nž…bÒ>°ª3ZM],Äk¦wxqAÙ†Á¯¬RѦðôîžNVøb9nìžøèQ6Ôäôy‹ýŒ[(€šD³B±jD:œ¿úç>[‰ˆ‡ BéE6»É¨.цz¦H´úSrŽ—9®R2=ßR)ø§®¡¶’fb)>hâa ´ÄŸðéÎÀ wâaZ s0þ''ÌÇ0ÞbÍ~EO6B”1ÆFyf¢Çr6xºÊV(#©­ôGÍØYI?¼#éïò,MÚ~caªHÄ}ÄIåWt÷^ðŽ“',A džÛľ±I`¦\ž%æP|*ˆl«7æVڇ兰h3=êUò.p Îq*ÆådÑô>’Y±¯ßw]Ýú½Ç7‡)xY:äZ?ËFF7ò~ÕáŒKhKÝÌ!].â™Ó ¶±Ö‚Å3nüí®Í4'¢Ðe²¤v¨Ñ/ðîN¢vósöÕn®QåŒ`NÄÊRî˯áÿk뜺3Q˜%Û¶mÛÖĶmÛ¶íLlÛv&vÞØ¶Ï¾9wß赪QOµ-(׺ŒÁ¸*aüÉëÁ̽ñ¨æ§rYs“yu%Öço´ltüŸ_ž°ýìÙTµŒ¨hy‚&ÒõÞ·Èn<{O;ýXœ¹cz€- Ò̘LK0ö¹‡ð`M`¢Dc‡ÜÈlŸ°#\Ýîcbe ð‰áŠ×ßM]‰›!í_ Poš‹WpgT#ÂRVgA7÷ÈAÏûrÂLÝ%ÇôÔãÍU°{ æRÒµ9$Ä+ ð°§Ì±¸F'ƒ"½2ÞìÂŒ³TÀíÉ,T­$4ŸÀJåM+ÎÍE2qq‰k¯RÓÏi2Ù¿>xh àSVš&øÃôzÛ6`öòCá—ΪÈÈgß¶„–{诬éç[ne‰=U\¨µ5ÆðsìïNåÞpEC“É7Ú,".M÷9ç.æEw!ËÉ7PÉï4_¬ÅÑ¿)¤y7®ó:uþ‹´ƒ•0í0öpÚN–IžhˆìÝ$‚„?þV5" òU”h[ølîSÙF2S•ñé š¦(Þj©¡C+2MHrÖwë/ŠU)’}ÌbÂåøï9L¼ mî EKäõ¤¨DÍHÇd-\(QCy¸º "µ[»‘lØbéu"6´½ ÎaµöÝ{ñã0©Žü!¸:/§ ê«Ñ·ïDä‰gPs/&0ºˆKJ†öžøRÓ8ph W[¥Âsš™›cFèz†¶2¦°;ÚÌóÚº Yß ©?u‘ñü‘Œ<ï:ú.6EŠ.IðjøgVÖe,«ˆ`Q\Ü”m ?„x;®o£1f\gRW‰ñ§@°3KWoR§dÐÖ¶²€ÖX3+ù{މDŒùòŸŒ_©Ín«²~²´Ðz¾ufCÌΫÖտĆ÷Þ=&~ä$I¬·“”K¡šC×[ìZ{t(ôàO˜þ•õÅøYd*†GB'çµÄÒ=]ªfëÇ™œ–¯ÎuY¬WÔÏK÷ci¯qF›D~ì{dq!SUÕa_¾BÐÀ]9ý“e;EÑNšfh7ªŠäë¥á³´¿ lÈ~×é‘Çuê‘úèã“§ä„€G R`{­—WÛñ/O´i‰ã„ïÁMb¸P0͘´#ûWÚ7ÛâŸ.ž—$ùCI$ˆ¶è€’Ì'UPpŒö<ëžå>¼6•ªl·%7¸‘E‰æñK«’%úæ[颸ÚÉš’t2oœ¾`FóÔ©ù`ª@Nbô—à\¯ 4u²Š 9æNÔ!fÜœ`óe9 \­ýîV$ù¾MÚòèuŠoèMVÚcÆ™âQ †JZ"½ÅO;Uÿ¥-p‰Â°"2QdfîÁ\eÖk„ŸÏ“!ŒõîcµHzéö"Ò.GÓŽS¿FäîëŠY‹Ït wßrv¿ùªaÈC-Pæ˜äV¤cZ}­K²áÂYäÚ¸äW³—¯EæÎV ŽI¿«Â¼‚WÆIB Ë¡´ ,¨ò°ÂAew¶¨‚¨˜ð<*ÎÀRH@ 2¶òŽ<»µsaAUVøuÖ¯’ÄG&‹]]Bµ}mÈhI§^ÖŒ6x³MJz÷UÉ®¾ jù¼‡u+SVà%ÖÔ#å–ìºOư‹ ÅÉÀ9ÕÀÿÆÍ‘´9ªfzk'œ[ÊïP< ßœâ|ëDõÞb‘¤œ÷·SÍ„‰Zu®EŽc}Œ¾&i# S„Þä4!¬"rÆk¾¿ˆ¤!e …9ÁÉ3P!ƒ\y®HB¤²o?üB9ðRGꑨÇѳ/ƶ“ÿ.Ra†Œ¨0†?›†Ó\¿ _RÐüæýAm³­åI[ tm¿”9ŽM“VöÏ%Yc•ô}3ꊮ×:>òð.°ÇÙU5X`ÕD¡ÓÝÔùKJ³3ßÌf‹#!²çWÂOñÇ0/^®Q¤–U¿’~;ͤK›{"ËÌÛÎ}Þöìe-|SôÙ.âò»gþZ­Hã²#ãF¢TŽxGp:4_UWžñŽÆÏ’Ó3ï4V¢W.¼6 ~HíJ- ‘»’¾šÉ¯+Z@+Ï œð)B·]Ȳÿ8f82ô\ùÒ=f£Êˆ;zh¦ºœ–ÌÓã*Ý嚥dr6I’ºLÞë8ÿÐLV¡‘`~zKKrŽ+ôs®cû—QBå9]üÝè=qàŒ£>ö§ÙÆÒ •/‘x›í eÆ%¤¨uX.½º2Þ4B 8ÀÚ]¼Ù°>Æ6¡˜ft7añlWÖ’B[º£QR¾–ök¨ÛˆF ªŠæ’¥ˆÌ #%G;¬ÀD‘<ÚC¸šúßñç¼ôÆ6x3âô-ïr8áÊÔç’kƒ*سBÅÆS\¿Æ Ž=ú0«&&Ò%ÃØ"Zd”]¬S£?@òM©Ùöۢ•7Á# -š.Ðâ…¢rÔc;vTò0‡žë]boÐc6l óyBëa ü·Éþú#m>sª©~sÕÆ¶Ñ‹£" »Ë“rý) õ5¦c— ‹ˆÁ'±'”üOà±É¬Ýñx­v"81ÜT•ƒ&£á{u²Z`°A®{î*ò£èxÊîî' -¶š`N&hqºÿø™›œö>‹Â&+…vUò‘¡õ½˜;ˆŽVQ§~qؤBÙË ¤“méÔ€ž8Dõ»œZ™k_~Ê¡_¼éjâù9cÛq*oåp•ø¹,Áá3¡þ+hÞ¿P`\Ÿ3ð" é»ÍY9<Ùû¶j6bwš<Òb6æé¿|W±—TNQ\jJ¦Ã,£ñ¾38óxH–®2ökAc__‰D8¼oÂ)ÞaUP#NwÌ.ëÛS%%÷«8øä¹µtóÀ8‚BûÂtø=bX°Îf=\Û GÊ)x"\÷!þâOòϯÊ<¹Þ¸Í55e1U ¿l ‚™6#òB"^5#-ÃV}¾iƸ)°Ô.F2gzí”»»íú@7ÿ8Ñz)S“6&Ùö Ÿ"vdS7 eÀQŽù¨ĦB£ã-l»ìÙ+|×ήjVµ_þÎl BïöIüäz®Áü!0öM#Åé!Ì»W8Â!Áàyk a»ýW÷ " ²DÞÖ=KL^ôR_Ó7æÏ¿4ƒ=ëîSÌ‚¯¹Df D{‘ðo¯q)lcj,t0 ƒ¨j¤¿w|VÄÑ i›á²…6§ypÊds©ÅÞ­Zx97·Ugqbœ¼­\îÇ4H¡r\°c[¸ºæÅ6¢zêæ¾wûµI!‰1QB, «œSuSÓô; éOi\æ'l'¤§H5J*ebÜ’*]/é뮆E`ô«¾šíÅ7Ðýke9:»håðq¶®¸Qî©úØu1E1g  ëaüúÙóèv¾|©ô_GúÇÏPÜÛ)sj8ËqìÜçƒK­é³¡Ž7ñÉÂ8ùî¹ñÕ½9CemE[^ãv¬¿bYDΠ¾ñ8Ø —ká¨)Î8}O ©­è ¼OL‡Sô‘¹f¦³ÀýÉ>ƒ¡õS ä:ŶGËb&­#ê¼úoF­Êø×ÀàAŠ­nU˜ÿaßøe¾4 #Œ¼dÌŽµ†ˆŒ¹væî‘æÔÑ9XkÜDz% +;>qóF¯IüÍe û ÙSZ,&ŠPAAkYÕmF¦öä þ†5fpÿGEÙV9J L)%}|Öê÷ž}¸óÀÛÊ×r÷¡ð¿Á4`ñ°sXt„ cÈø¥_SˆÞÇ~Ùcl@˜5P©Páš±$[î._”‡ý'–Øm°9DÕüy½Iú/µç=9°ßZÌÂjS˜R|®’?Ô&á+—eô÷¥nÓkÕmÃý¡%¯\WpCìpéØ¿o@½9´2 D6¨í Ûòîå–aõ°Ð—ÞKFÉR~#žX“äj­$k—Û>˜2ø4d汎9g¢#ø&¢ã®³¿…¡ºjì6†³Ö£C-€0/X„ªµ<××Ü÷¡u Ùh¾¦9¥rV«ŒŽ–F_÷v Ê6ˆ;IñbÊ@iÔŠý?@Ý”M½ÊPYô7ÖŠ½âdÕiϸ»´ž¨¸ª*cÙˆV@ªFMÊ0júþô6—¸YÜ›ß÷÷5m=ýíäì§Y •Û†ƒ¨l›TÜŽÄ€‘£ýÞ¯G~/º Nðå¶ï€xá»fW˜†¦ŠÐI „¨½­J¯õȬDµ….Ê͕ѭ§m`æ™ãËf8ÁÙº Cl¼ÚÜ/Úˆô±¹hÒ øÜì¡ö‡Pò¬¾ý@ñy(²!I_`{¶¢‘%“cƈдœ|h7"쀠;vx82·î¯ÆW¡ÀЧÕЪÕ|¹a××ê¶Ü!Å)¢cÑœœù¿Æ ¬N¶4\ü«5NG;ÿ´/4)îyŠÉ"”øÐÖç„0a1ǯºÀ­À=iËUÁ6gü¡}ʵ¢ 3"õ©7..• ¬-òccÃFxJ ãfƒ‰šcöª’ r¥´T!ÇmÆÍmòÙ·î1[Ôa˾ŽIˆŒfá™Üäø×;Ãeú¿V\“šòä)Hé”è¯Bbt¡‚¢“U‘PëY0:8®‹O£nÞ㥧¦n7‘;iÛ,/„âÎöŒ¤vᮂÖÑÉ™Ø> 1XÈõ/mYÞ¼ô-´×ÌxLz9]æDŽŠ“¨Ç¹n*Gªõb¢Ÿ.<¾¬‚¢#;º’&‚´Ø–âJ|dº§©VnõFk{¨³œ¡°xÏèbAdݹÒ8=IUºËð£w²õÛ'wž1Aâiá=´ð."ÍÐ0¤Œ——LO—†îO€”œ““œcIìÞl¯‡}¾µ5~'1±HݬÍAPvLɈŠíÑbE$Û\\bÉJäW }J¸zdš(ÞG/ưo¶²ˆ%´=«ûÞ=ý)ƒMVy%6 áw‹j¾¦á´:äû±•j}ÒÑÚ.™nÐËè`4Èl!'*×”yÃÕÈuWlà*Ó‘ø;¡™gþ; aï”Ó³zLÉŠÔ,éqEâåÄæqˆí”±€r=–Ÿp~ßʽL•€5ËI¦S­V¹(„HjÀOt-9­t}ÓàÂÊóbëßý*ÂmqàYÑÎÂlÑZªœþä§$¦tb8T“{/(?¶$…Š>öúÎm£œ¥*Çtªh3¸Ð¹7LüY¼èž—C²&³lGäJ“ÌmÌ@Ü_j*„¸·5ªµ}q›)#¶{°ΰ8é.Ê£DÙ·uµT˜»=Þ›òÝ.ÃeìK­R>…Öò°×G´i‹$u‡°’ðmÊØgüÎEO ¼Ìj¯®cYyƒÐA’Zಎ‡p]ÊiÑá Õ$£µ+Ø^N|dKB¨ÛÒ£ï¡_‘ÛÞýŒ"÷Â1{ÕÁH]$‡Èªj×2dƒ&ûyOÎŽå‡×½F2ÿ†•wäåæ5Þ°W‡êý!×õ#ÒÉιéúL¶¾ÏO8ëò¬ÂöÕ²÷l2CÁÐhßbcGè’a<‹ób¢ˆLtÓŸdRªè{@T?Ÿ789IµóÀEüqrö(!XÙv"€; Keý}ùþv¥]ç_=ÿIŠEš­åSŠø[SÙ`)•ø«÷ü’7›ÐIËÊØ¦X0üÁ­”õ%þNdn2Ž©b=# å4©<‚&§J$R»ö~\[ט_}`䢊\J®Usäµ^„vêò·¡¦ÂQbƒJÂXxÎ%·À9”>÷L¢WRú’®a°`ö|® ÔðýœnßæhEÕ´’!z@!¬níNY.1a†ÜxŸ #ÆûLÝã0¢Ç7ØÒAÁRXkGœ'V* °Î·.æ“lª\ÿu£ö£ÏâÁYéÝš¾Aìê«,ù•šßó”MÁiíš.Öûé€kRoU!®¤Ãµ¶#|ëî¡Å©é´HÏÿд?,1ïÌH5s’•P¿”¦o«X×áºÁÈAAV›Ži¥–{›ÉÂ*ûkéRäž=ó £5-j#†$¸ô›á%,vÇÆjY‰ {u°‚ŠMlÃiÇHAà"xF*Áeu­ÿûG‘”®x¯"TKk‡øà„ø¬3ù½‚ÂÆuíxæàJÇ«—J|PŸ@†r[Á°“ì©Øöþœî‚Hõ#œ ­æŸL¼“!n‚WL„‹)­5°Ý“vßá5’>¾/Eá©(‚"¨ Ö&`8ÏsïŒM2/ypàŒõ2¿Ò¨œ½˜*é‘B§Ø ;ÖPº/|€yµ-i¤úé=ßIž,ÁSqNõ=®Æ§a†GŽ›ßZlw›ÿ!Þ"7ÂéfÜóô+8~[£3úB*¡ä–Paâ)¥Ë,ÈÕÙGÌßA½˜ç&9ò†vY—ÓõÁ›šM ÅÔ6+‚ÙóåÐwgOMW‹›[÷t¥š¾‘Ù÷}b3iCÒß®Euþº_Ò½š¯\šQeé^"•¢­ÇM6a3éë2ñ°×ÈÇyŽ R¥aË™”*úù?…GÖ!\qmLFCè"ˆn•t?†ûFNÏXÊ«q^ÁM÷Îx6·ûÈåâ!ì4É«¸9ɵÒ8~yÅß'•s=E|±jêBj "ö UQ@:.ŒVýßO¡Å}Ö;¼ìV¯º]Dð#œÏ”Oõ¢BÖëÈ-°V5Úª ¤ù-¹³J9Fä•R|g›ç•`#Í@OÀµ’q3Ò_!Ð%ÓLìü}îûšÚ 2!†˜å*E“ä±ÅÕÚHOS]ò_xÖ+b‹‡“¦R´ëçzö ˆÉÖ”œF™/ÙLs´é —а,׫‚ýÛ¢u‡7|u˜4"Ÿã#µÞËíÔ3Ñ!?)„‚U¸ìˆÝkmô)Ívà ¿œÒÝ÷UÔóMýß­ÆŠë®<µtµž« j1JppdÅ«ÿ#[±^Ы<¬ÓüáÍ¼Ë‰Ú S®ç‰Àˆ,Íx°lÅ·SšìðÇ\4Ñ×kÅé}î3Gô_µ`°ÖuŒñíq†’ÑÒÕÛ{Ä;Qéë‘2ËB±ñc|DWýÄŽ{lCÿË…Û&ª>hêé÷¬DÞÀzkWª§yci¶‚úÎÝKC¦pÑö]I1qúEsŠ@‰œ9iÄø1?ÖÄ»Ü[9ñs^†ÏwËÿxè-Ä,oœ—á@Ó{aiéoÚ±>²š×¿i.Ÿ8x×å"U[•÷ŽñòwD­@è§C’"ª¨·§8~Û™ˆfxƶ»!'V”uæÈ‹‹Ïk8ÈìòÚ®Åözî¸ åMÒÛWDqöêš®”ÉöÅÊ…#?Ñ~ÛóÛßèÜÌæ?^øB˜h·ŠÙ{lºhÅQŽ|dæükC \¹Áù7!~»©efîJÖß"­™ögF>ªÐ$»ÇIa+±ê¯f6Ôö 'Û“Q­(€«’SO&cNí[^›a‘ÓêàHïziX}sÜ–‹·š6ýr_Œƒ÷i™-^®¥;{J)¹!ôä<°ë?>''[TÐô•®*ª¸òá©>¸W*ßž•µ²ýi]®AKPD—–*B¬œrýÈ1š[‚DIPf–n3 Ì÷–øÏÃîžWÅ Wº]Ô= ÊX#7œX=}ÈOVÈͼÛ!º8Maè‘×I߀G¢_á#Coi2‘sͰ­ÙúÏ*ðŒîÒ%Ìdäñg'økvà«XTh&w/¢7V–¾Ë LÄœ$>%*ˆÑt.šL™ÙýR¦o©Ä¼ªý‡JæÊˆ°/b„|þUA —èß»‡D_õíá¡=í]0Ù_*l«t ßè ¶Ô·UŒúzH¾¼kP+Ó‚qÅN2q<ÈÒ›D¼ÂL°½^áàòxSUÖaÕþX7"´ÿ”9w¹»Òp ‹.2yZå¤Ó2\jÂ÷˜d5<·0|§O(Vã§ÒM'Q¸ t‚ýb0«–oùÀ*¦~³ÄÿÈôùozZx'Òà0c­ëQHÑ«ò¤È6ƒ•ãa9ôÔÇ úƒ>-'Y/\]ÌLÈò&Äc䢇ñ÷ÛDÙ1Îí¿ÉoÑlŽmÿqÉ=¢Š—&ðç@kT=Tç)´²gŽÁн9£ó˜\6æŸä ÚŽ×AD™/,Èú8!è×ißú¢pèœ+—6¦ã0Ìk1hú2³ÓN¢×æK˜ÂÕƒ‹uæíôt£ȃ“k)¯Šoן…Ôd ëèSGw h[çßpïÝñüçøSßɺKÑ7„gÁ±å:r„ÃÆ4­2 ¡A‡›Ê7@=ÍëøŸölZñ¿~ÂØK& Eóã)ÒNÂуÌÕkòú™X`ždkgjxk£ÎKê\ùÙ®îÊ0X÷B¥Å+#cÅ]Gºö¹Ø–Ú­1í¡$"½|k®o¼5öò&x)ý¡¤™Ò.ã‚~OÌÉ™nÅ¢iÙÜ|æã8ÀK^½]ÜÖrÍzyòŸÌ pÔ`±Ïnà4;J¥ÕÛ¶6ÙáZâàጅžòšç2léÃ|§–C–q8s÷Q/œä’ÀŸpœ?ª¸md&OÛrÆÇb\Ì8çyšTÕôr¡7ƈ—ÒÒüIù™à„´—u«ücŒKí_âpBÑW½ïó©Üë³`Ã'!Žïkj´ØóÖ¿‚ÚÀÒ±Bc&±šÇx—¹Ö’Éáóm'‹·æ1w·èùœüšÃaÑ{êÔc,®tߨY³smŸ;ñ·:öw?0ï5QÐR*î+ÌAçáæ Q´9¸È$ï¯<˾¨:6ÔQ ­!/!”¦ÐÒmÍ@iº`¨Óër],•ßç×›%þ]c⛌‹œ¬SÈ{þé7Clîdº»šÈ+x^¿ú«#$(P£ßÝ÷ñ ßKr‡'ÕaÃfÝé©1eM„±âÛyº] &6ɽ.Lo 7m²NVþ•½TøO¦%@ÅÛ´7ó&ãƒtÍò)þ¯ñùDí…+³ŒË´–êØ*÷\Û[aÑÓ†°^5A”ÙÞ„roL«X«÷üveà°z„V»ƒdÖÚ½"ÝïlMÓù:¶«>RêXø€ýžüòÑÃÀ¸Û¶Egý]qˆNÀmwð̦âʨî"cê€ÍxWï­B1ʯþ¾#ÁÄrZí¯=FÖ±ŒÍÖ—0FüL 'd`3¾?&¿…MSG©¶ùlèŠs4ú&P^Þ4<ËÎÈð™Ðë°¸QI¤(Îîb ùqŠ‹„(6‰m6P`Мßæ˲¸ž‘uS9ŒU¯d?Y°Ù¿ðôKvþÑ ,h:R𯕴` Ùóy˜·ýrW…«EÆÈƒÁ"|ªvKbORxpwï–ó‚UCaEàb÷ŒYª‰÷ŽŠ¸2q:¹†§T¨JSƒ3âseúº"c¬÷Y•‡Û”ºé¯ '&³†z:x°sp²8óÂðhþ☄ƒ„ŽGÁ±bè ˆÇoRø1uѹ'œ*A7äúµØ8Ö|ƒä/#­t6]í .)_!ÍÏÁ}¶$¼©Š¬ÙXР˜ZÍ ÈLfN˜åáh>#ˆ~4ÂtPêд8ÖDíœ?TyáŸíž®ö¯·%m‰»yÀ# ñò&=H,Xl˜í—òRÓÞ¼ýü 6”f– ¥)f:Ûy"%Qð¼¶¢éxsü®f[ÔIÆæÑ%ßõfWµ€¯ÍïðªûòÈN¡ÂÞêºpvâÊdP»o Tp„I´„²®¡ôÚ õÚtâ*p_?Nϵc6ú‹>ùxZˆ5w“qÿMPúÂoVò¦;~ŽdQv ÁÉ@½1Ð;¦Ò*#¨*ô£Ž rs¦æ¦?ÈjCt]g…OG”ŒX½oÓ¤ã=ìöcì,†ÛFƒ^µ®9ƒþ£öÍKà®z}ÁÉs•@ý9ê×CÉ|¼œûüuO,J8ÑTc²ž«–¨«‰w!¢ÕZ ÏñaJø*¤ßÜÄ ]>X|ó.÷_);ÝSô¶û1¢ˆ\š^«·|GþuîÕà„Ú)§¾¤; ïPÆÑÍ«Þl”(ð;÷³>BuÊ”›)G m0WŸB(–¼ÓJ©´ ,¿¨(´[¡R!À]ügyWZÐûÇ˙ɟä*&n©…J¯^«¼®å-‘öoΰ°AL{ß Ùë„?ú"@÷£°óº ßÈÖÛ¦'Ò¬I'ËH/ß"~˜&€´–ÿ"…«¯¤€|ÂV#!fÿt:­>¹½¤™íT¤>Ï\BÓÎ(ú°ÂlW ITQ9äèТxÛ4€˜îxþœŽHì4ôµHÀÏb£É%»¢ÜŶ•ßO}]Wó†‘ÄlÃN öf\С Ä ö©´×ɦjfµèCmÒmžÃ+¤˜®Õg†9’Ì«G2íR€éÖ|«£W-;Œ;ÐàóÒšæö”P1­ÖÉZ'”ŸŽ,(1D„ø$€i@Ëʃ&„ÐA“ƳÝùÐñG7\„Pîb ÛÇz‚IÎÎ[’•šã×Ù‡™àåmiE8ËÝh´ ƒŽÐ º*ÎJ–0Ø,'”!"2˜Õ®&ã;Ú8Òàúÿ»ÚÐgI hWÉ4¨"}é*AÃÒis´É Hÿ‰ž)Ó¦’>Ùqº PV,:` Wˆc† Ú‹.Ú{Qø ©±hKiq.8Åâl®ÔúQ§³Å_OW'à½[ °`˜½·AJÔÖOÑãd½kSªw[)ÿ,Èʹ˽ ŒN˜Ð³ê·éÙâùh`>_s¹vjü& Ž¡6Ro—³Ä!ñÇËGl¹’]®<+Nõoi™ ‚ô‚L&(XuRÐ^Äe .ÚÆ.ålØ}Xen˜s’ ̇‹V“XÞù©høõîÜg“vtËHó—ß¶žh ëÐCÛ©ý‘A·à@2Ë\÷-¹~FüÖÉBŸÑÅ;µïaC<òŸä´ã'¹§bÚHS)­$9˜ÞèÂ6ÝËZ-3V0+8ìÌÝÇ,.þóŠ#=‚Âô÷øù ×OEX²² ¦?{¦È™õIÈõhdìr\ 2‘?ÜRˆ†ÐÃG §ÚÖøbÉe#z`@„jç#uÃWuÿôÌ[“_éäŠr¿^UÕm3x†¿R:ôxßü7æžWôŠ~âSVs|ÍŽBÍŠ B‚ÁÔ,Òrº<ì+Y=”/l®‡µ»ù¿(¾wŒ«t Xôv¡­’³]ˆÐz‚ñ—¢ÕÝCËm8àÓ䨆WjߨÞZ mêlÿóºI’ùbVam»ûõD^;‚%qÒü©HK?s’z– I`W|\yïTb¨•…Ù˜pN„éɳƒ hà(ðdOÈ;ÊêýMðĨÜû¼è(¸¸!Öbð—ãçt½ÁØ Ä;\Ù*‹$ø·wV!¢™“ÇÙ{Ç|ÇS!8zí:ËÕà'tBË×Epª¾Û—ytÓ™ xY«¯Ì*Üõ|—•©›¦ªÖÇÑ>ß"š%GŸ óa_>æ»-tÆBä0:£ É/»OääK‘è$–º‹b ;?·ºké¥AAÓêE)­%Ôĺ,Mµ/-¿²Ñ>ié Éo¶xaí)*X/³ší¾ÖÍ£êÝ›D]QÕ#›0¶ö†Îb­ÈœF[=ì½¾u¾q ²Ó£œ;h3ý ždá̓î"¡^™ÿ€'kN 9ºÙ(/– Å…{ž7·ýæ¦y¿£o>N_k+ÖPÿø- šŠXˆ¯çrd’Î,+úAÆ×zYÁÀtcß»gèŸV¹Å ÈXºC(ÅÓZ!”8’€Ååî$·/l)~Guw[m“ßSqϲ¬¸Î>z˜ !Ü *[–³&?ú‹äŠ$í·ù¦)Õ,÷<„…ƒ¨Bs`_< +\|0¦+ ÜŒ0ý”Å1Ï{}Ð[’(U™9dÛªùW;¨ ”¥üCi ‡P&æ4#fFÚÍ<´É94 é/·Òø²ß¼ÀòÝŠñ€+ÞI » ç‰.Çeq3š•TP<]O²­—¸öéÚ°`ä3³Œ…²j<¼×®y¯u,P±0ÄÇâÈ&—.“å†:}VÈ+íµÐwf›ì¼$~ãA;¶ X Å=“N‰4ri:ÐJCPûJÓÎB—‡‹¯ö¶£ V¨[å¶VÜ» ñÿÞâ” gí{._–¾IÚ4Äç-§ñmY°Ïo Ÿ'léL³R{:!TG!fk(°Þ§¢ÂܺôÆÑR-uýG˜é•%Ñ-ê.\L„X›©—ãòýéYÚ£Uñ*muâV0Ùz]Á&’x8úúdjŽ„ªµ/â )Š53ùvµoKHÓøé“wðÏ.Öõz=dMx•‘¹‰Ý-]IÙ ™­8S¨ÓÖ“ kf)¤m5€vŒnþW¸¼ endstream endobj 44 0 obj << /Length1 1830 /Length2 19828 /Length3 0 /Length 20996 /Filter /FlateDecode >> stream xÚ´{eT[í¶.Z´@q+wwwww'8ÁÝŠ‡RÜÝÝ¡¸»»;ŽŹôûö>[Îù{GF¦Ïõ¼ÏœÀ ‘¢ ©1PÜäLÇDÏÈ •S¶³511Ó)Í]lŒÌôŒŒ¬ðdd"Ž@#gK;¨‘3ÀálP0q~}÷`dä‚'HA@Çw£)ÀØ t6Rõ°2(þ휜錜ÞÍ@¹%Hõ"bgïáhináü' ÝŸL¢…éÒF&ÖvnNÖ–#)@š^Ž oçö®´PÚÆ@ #3€@¨ PSSVH(+¨)ªPÑ¿'Vq±··süG/"*ªj´Q!yU1P ¡¦¢úçUzïßœ ¯únÿSçÝñO¸œ˜ªª–¢ßk0\ŽN–ÊþWoäïþÕÚ{¨™£í_”ÎÎöÜ nnnôæ.NÎôvŽæôö6õ§jaép³s´¼¿;m€ã2}‡ÓÙøw‚?§µ4‚œ€‚Äíþ6Ú¾Cùô®wþŸÆÞpþ“Óæow€øe,ŒœþŠ•UT”ØY‚œ #É»£³‘³‹Àð/ÝûhJñwƒ@€ˆ‹£ãŸrÿ49þO™¶.l÷~eº6^>Fnÿ}bF 'ÏÃæ?/ÛÄädéäìôwF ÀÌÒø§{§?gf úK''$/%.¦¢J'ûN<œÝ;: zgw翼ÿä•åp2²˜¸XŒï$™ŠØÙÚ¾wíÿ>QËwœœí=þ7±­Avn ¯ÿÃ`f 25ûƒ½©‹=ƒÈÒÁ(%ú÷wü¿tæ@g#躛X0ü)ø_þ¨™þ¨ßðñ²·³˜Ù8},Í€ïoð^NF®@€³£ ÐÇëß ÿ)Á3qL-Mœß©þ>.ðe—™Ù¸þV¿wòOÓ?H@ùרR½Ï©©ÈÆ` 4ƒg·s~§åÿŸIû¯Zâ.66òF¶@Êÿ…é;ÙZÚxü§ë¹hÿtK)oçhkdó_6K'qKw ©¢¥³‰ÅßÐþ­—r6zç¿ÈÜø~,©ÔþŒ”Í;wß÷åŸõ câ`û/Û;-M¬A@''+ë_&à;ÿÕñ;úú0ÉhJjÉÓüoÚüå'2±3µ™˜ÙØFŽŽFðŒï\`fcx1½ÛèþY ô ;ç÷€½‹³ÀÌÎþϲ³½ø£ú[â0ˆýÄÄÈ`0ý7‘ Àü‘À`féú/ë{* { èßB8 6ÿ™Þþ›•é=¡Ý¿âߋۀÿff08þ«Þ{¬³Û¿¹¿§ö:þ­øOìÿ쿃ñ_`þc±þ%«8;ÚY5,Mß?TþÍEÎÈÙÑÒ]‡ñÕLïú÷Ç?ÒûdÿÈ‹¶s÷¢cefÐ1s¾ŸËûŠ`bbæðùX“¿wÜ_õ~êÿ”ÿ,è4_^°3á ²Jj )ñË›*…&ã¢?-Çä×”þµœ:Õ†‡-š½C È÷oþ’Fžo'+É­ç›à*Ô$ °yÝh‰¯˜¼5UÜ5ò•óÅCÍR§W H“[úRÚALu$•«UÄ:“Öú­• 6z,ÂÕÖùÅ<ñöé:‘X·´u-Ú­`Ž© ÝÑÕ} ·oiªÜùí=&Ò¨Gh™zÖ07sTúƒ}w'Úa¹¾ª@Æã4ò+šVXIÇ0ÚŠ‘¨j4:æ ä63‡;®Þ"R ËýÇ,$)ö¯ñÅ< P™è®¯"ZƒÔߘ±†âAr'Ä%« *-õ®XÎ[‡h'Ò Ãý_óȆ1¿W´o©>ë7µÂIõ²mÂRfÄ2` Ò*’#ÓHl‰TdÏ“Ê;§©PÀº$åâÆíä  =ªR×PEWägÞ ËÜÙ¯¾‚{R7¤‰±ègæoÂ?ਙ (¥©ÏÃÖ“÷Á6“ ŸP÷`}(À!@¢HÊN¥•ÔZ‹ƒñl±"Ԛɡ‹¼ã6ŸÍ*ç@ÌKXŒwMžÜ h/%׉4›Åã–±²&™MÓHƒx9©~ìs¶nÆÝVÐÇœ5­š~Õ×9LKø%5µ Á§¤Í¼È^Ã?_odwž¶ &½–¥,€œ¹ÔCÉ¥ùö“É¥mÛ}¾¡ÔSK+¬ã×Eô|O¬LÒµÎy"Åq\¼±xä §âîå%­mÄ(TdQWôÓŠµÈ‡ÓŠÍyËš†™-þzwpŒ0tú÷Γ'“×”y šUE0O}{ý›–yXüÑÀ-ôȲk°‚Y©iý;Ü)*ø–ðà˜Zk€˜œtÀ§×sÕߊ?5cµR›16œˆ*?A¾×ôV³†Ô‚/l cCù_û‡]è­ÒD¦PÊÌ9¢»àµš`Çg-wúÕS7„cV( dJ]FFØéä œŽá,|ÿ6þ»AÎú$–,Ø<ö|FcÒ´‰øMÚC † œ¤°Ø¶0~ôêR°ñS#ÎÞ:ÍIT’Ñ»ìÅTo”'Š_ñùV<þZ³­ÔþÇÕ©û $ž쪟ŒaNžW³Œ_lPz¶Õ,ØÍHó¸8æ!F€)·P#^¼¶`¸†5¾3µy:© ½Î5EÇ )°±c° o7¨Ní‘ÄW¤;ó©<<”ßùÎÄÞˆšå¨ëßìPI­=••ÌPÜ„[F÷›‰ð‹·ÕÌG€5z¥oO-öºqši+г²ñŽB¿—#{-cf ??ñl0ß ¡8-€MÈøDÜCOqœ t»l%gk©4 A$ÖwW¸=¦ÉfëklQ±o¶#èÅf¯.Ç×4}GáMÇûþÉbCïôÓ›¯µY:±g¹M•—T$­ùAo›Ì³v“úASê¦*S¸ÑÄMŠ@Þ 26sK-¹ .]dÛínä¹Ûñ¬4ÿcµ#ÙÏ&ºÁˆŽ”ò³ß`‘nʬ–Œ2‰¼1·ªöZú÷iɘâÌüÁ')ÝsÃémõQߺ¤QgÌ嚌Š×.‚ …ÇzÇЉúSÕNF«"4`ÙǾ¹SƒrÀçç”°îm`<5g*RtGl2»âûÀ›Sœ´eöîk“D1µ'Ýò9¶Biޤc W1Ð †l(#­¤a¿¤kâJTrÐè² ¯M‰ìëe¦1±çªfœÁ‘öÁvRPi7"êRÂb ákSu¾ñ¦X¿[D„Ù û \—èï´¡WýVNQ®hM\nptjCm8Å×ß…90Rë4ýI…à4÷‚/–N]ôϺ’ þBƒ?cÈzÑî¿Éà8çwðv2|Ò02^úp—Ó=íx´S)ƒ”ôS#k¥v—-ÂŒ™V½³;Þê9†øŽ§•¡æ+áFbÞã~uží«Í@PöY‘ŒP^ãsñ"v¾ü~‡ôÚD ZÅÜø¨Tè9TqK[^1³áÏ+sæ b™Cþøµ0ä:™/û…ÔÌ(†ß¹à>ëÈšU.ú-¼°Z¹"ýØ—g¯Áž‘Ä7)þAƒÔ¹d.Ý'Ш󑠾ñz"¾èüÞ•R‹_¤ŠsjîÀ¼Ül•φ|™Lv)‡`Ñú¹Qw‰V2̵וƒ‹â±YñsÞ‰C¼s”§-É €çÒb©[º£kškÿåcûp_A$ÿiÊÏ#³*–ØÝ§IÁøð¨Q…í¾ß‚¯´åa»„²wÒÊ5 µuŽxâêÏ);hu.`¹¡Yó43ðüD¨·×úü¿IìX~«l\K™ÝB*:’åØÈ.‚ªï¥ŒyÊÀ2Þ–ecò¥D/¹ú˜¦sxƒV*â¬ècí;:Þhàhþ§xSÁÒüì^$Â*òÔ°æëÀldŽÍ¶~e(¬ÀšKÞhnxk覼âÖÅåù0ÕúHÊ0іȤæJ‚ójo¾ê«júkãuËÆ3”Á3#ƒÎW…nZíÜõlMgÊ ù]@Fª7=ø39âQ)EÈ‚² þdÄEœ1æ‡ ÚÇH{_šY˜µ·’ý@{Ûf‹á ¬ËScF„øiíÊæŸQ’Ñ.?î’V¥voÉQæ»—q¿FŸ,Ø8ô2Ѫ½ä8;±l°œTÌ?0a§id¨Ø<þŽ6Äë¡wIÐRFoJö¶=ÐÆ'/ø¡y¹Oñ¥ª‘î%*nÈУò!$0 ÉAgEÊD3yn”†­(ø«rñù'gAÑü+w뇖‡°Ø|_”Äb¯ ïNV½ô®}5{ªClŠ^{¼áånjHõ«Ùo€™T•MßÕ^‹B`PÑÙŽ 8‡WØÉu­KâæÚÛ¤ëA#jÉ}\¹GH캿w’ñ¾6ñ©ÃGƒ¶:v£8‡JfwVšyYË“lˆn'$Q‘Á¼QÈ?XIð|F$¢Êä,áJÌ>ñdÑ8Fv€¼íÉD|€fÙñ??Зû‰0¶¹uÿ  3&òÑþÄ_'4vXñÍ:&;¸R2™*2ÈÞVk¢_¿Ù&@EË*3䬟¸Ù‚¡%4™5ù à ֟‘¿ñ~—ÑOÝQ[ 5úçÅàa«~N¶|l—}œt*[œ« ™5*âïO¤# ¼Æò&Iû‰ìÜÍ—äÆ;z¤°ø:Î~ß{jÞl²…8´Øü¿äåÂÔÖ1#úZ) J!A±xƯ";Ê™œf,£þj/μæKÏ{å >yõj– v=–Êg­–KÐ@× Mlè©`õÀ’éµ Í5aÁ[•&rr‡žêݳºÊ?€GUÉ ¯ò0;M“…ë[U…VÜã&èß_¹>Ħ ¬ jh|Má×DΠ¥«ÎÞ=Où-ø!.SJZ'¦Ù3^-5,ª×ú"¹SFZê·Z5ÃÉjMwäC@ t»¹£nà…NO_Y•Ý“½.þ.³Ý‘ËÇàY@d¨Uwêy÷±b?qC>­tJµÇ8eÏ8óhòćâˬ­Ù£2œ,s/ßèdœgÃú»®A—í7Å”qn†‚Ô' %+¤ž‚:ëpBD›Š’èR«SÄû{ŒÄݼ°»ÊÝO‡uÕæ'"ÞFàU:t/Qh‘”?Á¥í+ùôûw ¶lG©Xq ëö¦ßľÿ@—ù ¿õ5}/„£·x³‘4WòºîÉÆÞHÉõ7ª…ÀHâ7’‹q)ʦÕ\[Ú=2ShE ë7dEÜïbꢧ÷B f8©­|5•¥hLËàB#q´RATæ‰'hº"V¾´\gî¹ { ˜kØ^¬Á‹ÑVÝáÉ#o*‡~μf*µ–ß÷—“òDò´Ü¸Õ2r¶ÜrJ½iËr¢ˆwR8혫çTjÉ }[Äl¸òÉázËNôŠoÁ:X>=$2ˆ©’ð}óýSfÞG)…:¯NBƒ* id" œ\-ÕÌßíÚðÆj*»\µA0 –“kd/Yÿ;×k×%±×ß:ùÎ~ãnd–û‡˜mÚ¬éÒ7Ö¥SƦآæÁ– &q xAù‰q M,»c]]Ü*ñwøåaú–ö9Y„±©'¡ã]Þ'\Ûƒû²Cñ;$Z^oȨ‹›º;8æ0Lnë /O?Q]|Ÿuw24ð„ ˜4…¨¨E„t""XÀxÅ¡„û¢ôŸ‚£>Ô… y@"X‚«¯ìaé2ɘö8E¿°Ý)Q„÷ ׉d³³Œ¥S×jÏ(@ *eÑŽ}ˆhê4½Mös„\ŸøŽE9ªz±‚ٖˬ½®Ú½Ù»'ˆz@8ù… YnYëFùr?3Œ»9äQ!ÍsKí¨½¨<±ê$¯:ß, Ø0í¥È¶Kd VxûL.X…žŸV½4¦æZŒ¦–µ›Õ|Š×¸vTs±tI ÝYïY,³rmmùeé–-jgW®å°’.ë­[júÌ0Oíó2p$ñud¹Q£_ÇÏx+˜/¾#Vá+B²f¯µ ´n±ãÕ½¡ …S+4„Ü œxM³Ws³Ú½îżÄïÇó˜S1y>rÌõ –QuÃá#Ǽƒ—Òºæ,6??µ"÷˜’KK ŒTõ,Ó¯?N?O’2Œ È¤Clx  †0 õàg^aÆ‹KÞÔP¿~¯ ÑÈÓÎãÑòT1¤È`ª”@G-~]7±>ÞàÝ7©‹±94,™¾0?ùmµhéÞBTzµO\&F!l™4ï@Hÿ)O¶Ï»ÅRw±÷©¯Ë‚‰ ž€Ø‚íø<¾ÔGǺayfƤzõµuÿ˜Òî‘>Ъ¦-”›EÑÅðµ÷ø ÝlHöŽ•F"U\‰£=–ù<~15šå°Œõ»½¡ëƒ¬ ×Žrà ×ä¥äH¼6~ÓAmMòÉÅD Ű$|ßïI°£ /˜Ä{Ó =š;øÜg¹…ý;x ]9v°²;ÊΣùN+ðç 2uZ¤÷ì*H¢.ó¤¡úzœ¥8™ê¢”ä®ã™fv,G[UP¼òJÆk«BçF—pç“qÀûë^©'yžF¢â(¤¾úãÀû£¾¢‰´¤å‘½Á}J…ËP@Û=B8SLšTVÍojŽú’%7iF°7!J%Nó³§Üƒ‘ˆ/øZZš¿šwè¾L£Gˆ¦_mF³í‰bQ‹÷Ci«x³»@ÉëÁ4#K5[¬,ÂUsÝQý°÷ºžÁÀEW »@öžO¯ThNò§{(mOÜ@2V—ƒ¸«ŠzCiêT¢1ZºWÏÆöLˆI€l⊡—|;¡x#òîì¿eáÁ3%jIàB fMhò¦3W%4î¿Ö~Þ|ër¯µbð¦^º`:H›Õ†óã2­¦Ðñ¿:Æ–†‚ ¥õg¾ÁB"Åç*Šž/o²¨)5_DΩ§ æÎ½²Ê¾ñ@=Ú²Ó Ý óyô–Uƒ§ÀÃÜWÃ>¿Þé2œ¼½¬¢«-z&wr‘GŽ—nUå³óH&—KÏ ¾ bK³'õZìm¥"‘•ž_È»»"‡“ ÀùpÐK-b¢ÿF߸µòwäil²–å¥§× ªWqnÿà™~9æü»Uo¼Büûí¶“Iˆì(Ÿ¼zC*<ÿŒÈ¦AŸ¸6ÎÚ¯>‚›j²Ð9¦øö’I› …ö¨†è«ŸøyQYÏ‘¼HRF{üÎlbÈûÂÑ="]€´¦óÍ „¦\»é…²ûܼèÄ“C¤òšR  ,oæª8ªÔ:ż6«Ö[ˆ†Ò¶ÖFÔ,bëà6¹(‹ÿЪ@ñ©Ï‚td3ÏŠ‰‘ÜË>=qœÐ4+èRôzyÅBÂF˜€B/r[B9q¶s#XmbÝosþ¨â| ûeuÈø•‰ìæ¸vyŠý—bb µ.R(¥ðü”GyÙÃ;"ÑÚ¹R4N¥SFXJ¦ÜPLøÅ ª&%˜`¥Y©kËù¹Ãò)u27œÌ9 –œNc1 9˜æ-i‰C¦q&Ó©XÑA-ÙA¨L-%€œ„ÃÚ n}çsq¸ë0ù1麵Ò3õó3‚!ûá/Õíç©©­RÇyáŸ)êZÆF±Œ pqÖjã”jóS ái3!ë^ÝrÚž_§ îÒ¢; ·Ñ}“‡3, ¢  ªŠoó¾/w®¦íGÍHg·}O®/ÈEb•„Ù'ÙϬ¶Ó¾+‚ûœO&òrG:¼Ê­gæ õÅìî!{3î\6‹ñ¦¯bo†QÙa9þ• $Ô?ý§ö<>ªüh|²+Qb³­üú‰L (| òÚ#¿–X¼ãEºÝ!BØÐ@>Åêañ%‘© lÊA sÁ[R}Õ}z>ýP®Þ 9FîFè nî¦?qà:’~ ,ÓÁûõ©ó‚b躮GÍ›’ƒ#Ǹ¦ñGCæV2²µ0!×wj¼ yÇx­>n;¸¥‹‹_]ôJþGj•i ²gXº?3Œ¿bv0Z•¥÷—òEÛÃ5­ÔiÅ-gcÐßV2K]#ehz¸­Í÷VbPbɪÐp}º©Ý¾4¡Ât/Z\Që®cíã­ÉòŒÛ ¿4G*UÃÁÀ?Ö`ô?¯c›æ&ˆ ÞHЦƒÿTês2!ZØœ ñv’¿µX1>Q[0c?ܘœMÁšìf½½©ãàµ7ØÄ¯+¥<^¿2·¤')ivŒ8„Ò»ár9eåôÓ—éË}écŽ…ÁÌßÖˆîŸwM}ÓÅjË£}ɯBGA3u@=4Ú#Ñ >îÕ…h#{Fªx˜â”j™×P„ôOkGßM"QBÒô3[]ažÿyüNZz–O·ëOøY1ƒ¹4$3¢ds³N©nºvšIáØ4Åéiã_WÕJõá§gz“sÝ¡e®ºWW¹ýÚÛ)–ý\¦©¶Ópóή†.­Pd©åÀ`¥•xqµ‘E/áIEq(ûZö¶&^SDŸ=ßP]”/>*éßn^pŸ¢ÙDA+µhâU g|.ì–Ô5ÜYDÃÕù*TÊž_1]ž|¯ézNƆ׿=‘\O•ñ6–؇9ëîùV›”æ2%ƒnòܙ௶Â$}\,¡¡ð6©q¿ûù‰™A^¡š¡j%N€L›ä§ÕWX©ÉÜ 2hbA¥¡ñ®ììÖpÿ˜þoÕ(:Í ¤š¤ˆý¼#‰,DIt 5§¯< ù_5›~Ê~‰)5ù]ßm]9‡?9š•|hJ™çMõ)•B¹”z¦°,Ißø£>œ ³-ÓšÀY"ÙúóŠfóõ¦·î—UX.™j.Ð9ì ãntzÈaÿÇ©*f23;©L±eí@—µ‚±†Ð ÇNæ3 k±DÚÈ Ýz\ýÒ¡{æCXV\õc)ˆ‹SpL€®fQõÁ9Gø 2>nGr'! j}ÙZí¤›KFdk{£È=RÜõ'Eê[ ®ˆLS%¡áÙßã_o¾âÇbi©÷Ëg²Gúy”¬;™¢?2ÖGaËw*,Rˆ5~™ ¾uêÚMCa zd¯çúp”^¦àÊ×®Ýð±4w+»ØŒÆÅu‡}¸c;Õ¶ê"ú©Ü[|_ë5ÞLYÛ ^•þÙ­È{Ñ÷línþ¹ÞdñM)Jl\sœFa‡z+ãæÆùg"Óódέ†»ïI_Þ`Ðv¹žÝpõÃ[’„_$A(G§vBKžù"»7\,…ZX²ŸÉH¤ ÷ãø¯ ùpp†’åEÉo= y#±§ûÛÉ…ýÌß«…MÑȤqoït3 ;NR—¯ -uÖÆù¸¡¹mËv]„Š“ <}Öcºeo8ð '–X¼²#õŠz£Ô|–ôkPŠš¨Z ÚpŽ‘ÔÖÎb* ãÜߤuг¨"å,ŽårÀ×Y+ùüKÛ©:\g&^y„VÏ¡ÿãw<µùˆïe…ú”Š’ ä5«¶ö54ßžxíàáâP¹)ìXËbO<Š}MÍçEÁ>ÏD\™É졺•Dô1ÄXS nuá¹µLY×”Á‡5Zð?9‰«süR 4±ýÄ?˜œbL€¦ÃÈ™V½±Æ´ÌJmæ¶HØù“ÊÁ:¯sNxËö1T6±-z%ÈÂqƒ0·Êåñ‚¦ê«ëdAü 1/q?”ÄW°!$;a• P7”ø!2̼C_Ê•Kv^8B‰ŸÝôˆÍØeh0´WwîSÁÝ(L6ö†ŽmYØUômX÷ õS­*¦o·´–(âÁ˜¶Hvn,Ë™k“Iñª)a„†MlAž·ö¼oê õW¬_*(|#OÒk §\‘0”‹ÃŠDî"/)£’â˜>¸ZµÝ8߬©6ìUÏÜ•™e¼ÔâðÜyzݤÏnë°ÀC[?G>ØE\×µaí ¤—S E¨"—e ͨAWÙçbŠåYKI€Œ„De?+RC!Ö¯ŒWöÝÇå^ÆåíéÀP+2X>ñ‡6£K†“<ˆÚ#¥D€3 µ4” â$‘P&Nš¾ˆEŠÈ§aäµc’¨Áô8Â,m×w§ uµüÅEp%®,1‹êmØ"ýÙå‰Ý'!H Â×.g¨ 0/[ž—ÏGÛ÷\“ÕfÆÑ¤‹O‹äö€)"«Yý[óê)~:î+÷ymXogŽ˜J Ö%X¯nÐ  ½ ³êð&í ~—’šß õ[ñqGëI'h‰+}3÷sà™ž]6×'99gug£/…Þè/t£A¿T!¨.XAOF Üã–•U­–O§[µ`æm3 ¸_¯OÑ…0דCŒÒlœÐ-ö5 ¯ñ>Œ /îÎøõ-W1õöî¬òÅ©²sƒuÖ^×¾ ¥ÿø%ôi‰) _&?kæCQ‹¯¥(o"Ê ¶Ê—íYqMZz‡ÔQ—"Hóo–ÍÞ 3^)Q–§"¢Ñsé†X-:Ùíqº}?ô½³–t€cx*µqx}NþG]lѾÕ:ÔÔ_½Sr;Ó¥]V?¶C¤Œa]e)«íÇ—ýú˜¹Ññù˜ =µÁêkÍ]iZ"µ?ä=ÂUIˆÕ–³|÷X©nÖÁ³*¹ÁÔ_f=Y4«‰¹ÔJÞ-œBö¡¤QBä¶JHjȈ ÍÞ//ê$ȘJKöÙH5=úQ†v £ý”»|p,|½ó3:ÒljКZPߥ ‡OÉøê!”´ê†ÇB5}WzýZŸ~Þß®÷s‰îtQèü`ã÷\§¼,\ ërFE‘f iÇGh¼&¾cšðoRâÍí̯‹·žE«?›šë ç[}Ûè_ÉVÃ×,KÁíÂ]rÃŒeÁŠ˜µc¿‘´å­?¯lø[2iazvð®MøE%ÛCJ¹·U7X¿‰ô9%eûéVk¾<•—5'ùcWD ú2ƒmfݨ}SÕ‰1QL3‘œr§ã§¶‘ ê÷>Ý*ÃïV‡Ê4âþd3ÖûîÒù°mq4@PìzûZD—õr\"¥CõiÌ_gž'aÌa7ŸkÚ¤3–Oп{¡t®Xjyã0‹Ôe(fÌ|hWªš¾øn½Ê¡¯z˜º¨‹Û/ È¥ÇÉÁãÏÌíBð«,üDmâ¥| -'ÑMCŠ÷lÜàM°„‚ZEõ+pA×¶îJïž$RE.ÑV„êÂq *ç6àSÀbž¤~£É·Æ¡n¹¶ú{Yܹ˜eí*™Ö¨ÔZ æÃ¢Üœfa|WÇ2õ QœÃ©™¾xÉ&Ú;fghü ,­ojl˜²VwãULhSa‹CúšZ×^Q}ýK¦×Í tÁäà]ÞG¥–DW”ŽÙÓQäuæ÷¾­dÉ“ÆÁl‹Œ%>ªê4¯É}ÚüÉP«h‰ç YWÐÅ,Ke&-¬{^pºW±Ò¬U¯Ýk`E:À»aÄ›êó Àÿ&üƒJ$ðº{f ¶v›ŠT§§úòÄ€¨Œ2à7ÖõM胃A8•gœòDÆ)6ÄÄÏ»Ïe‘Ð0ZÍцròŒØ»i.Ì@[ '–t'‘* g•·øJÓ¦6‰–IèUÎHxó¯MáRæÌ@·š9"¿!µÎË^Ž"YÑcB½YÚln)wÓû¥ÓÑéÇLîßÄN”ÕÓ.¡18)å(`~›vÅÞºä]ÖC ¼ >D‰÷¦¢/áj£ÌÜЧuùë‚[Ù¹vI ^½w dìŸÒ |1ò>±‰3>|K‡ëáÖ[rŸ ò™~£Éï3݆ 0çã~MF~ù–÷¬Ò;“€ ¼°‡‰Ó@Z¥ü•ÈŒcf1hÁ¼Ì¡Nw˜ô~ôbÍâ•À÷œÙ?³Ë”S=þ™ÉXN¿¸'éKÚÁˆ–F|†Íûî°´:œ4¦›kÂBV.pé 9LOKŒVKq&&œS³®e<› ús8­‰ƒÊ±vÀ”y¨Oº´áÍæN†l'3$ìfžÕŸW ݼ˜:ëI…  ü^bålç‚ÄtY¿í„ôšmß|­Ä]ú¾]^³”«Ò^NWôãçi€WVnN_²VÊ; .ë%ôJ¯ÒuàüÙ£›QDfM,&;G‘3Ö/³!¯—“…úJ±;t©ÆÔ°ÀB9¼Ù8U™™ÕΕØ}Qi]hIPØkNÌß›1œ·íòùYÙªÍ3~ÇѾ· :$Þ÷„´0P¶û‚È Ég97_øs段¼[iÇG°Úkþ>ÎÙÍ&È‹•¶FMt}j)Ül¡þÎú仡D4U6…ÌRæbFf=ˆ!1DáŒ\øõ2‚QoïóàJ‚=zó-°ùØ&TëÕFÓƒG 6½l¨âî8)zî»&ãY31:*NÞ€_Q8›þ¶šùi$Ò)о/üJô5{Ëf¬Œn“.8·Æ¢TíÆ Ëœ‡M„£ÅÅþ¹5b—;îšbÇYî—î=µ+_d-JnH½…7D0ˆ§IkæLwm´j¨¤lUº1]Ë/‰NãaKá Í7XHö‡z]’‡ ëíuÿxSœò‘A'«4à &7W£Òë¥d–L$âxS-ŒÀ$ðÏS¾›dksI?å<›vzKtGQÔ:?(¾ n¶~”Y¸:îÏyNóu8›ˆá ŽòìÆÛd²h¶lmÃö‰suÏ>4BDýs£gWÖT< ºa`6¶†¦:ݵ_6œ4 À4ÓÛ¤‰7¬Øv`Ú6‘³®çŸ›0~¬âÃþ±ÉXÕIâ=fÁå÷n+þÉŒ'p±r3µ Žê©{ɘí`¹÷¿—°šC™†:C¹™ÖàV7Œ­1Ñ]ëL2+A<ˆŠB„´£GR„mïá|E•2ë3¡ñn‘ÍøM¡{²¿•óãSN¥·Ë‘ÃñG®/:"ÒP´@â06®/¡ûÐrÚûœ¬1*NßÄÝÛã¢îèß¿â{PRØ/µô›ù·p똙 XRBùG µ¹A¡/^CLfnÔj¼ƒ¨^ù~Úð[]ܨ?2Æ>>¿óA‚‡}@ét–.²ÉSk[)ÇÃK2FT¦T~@±Ý¾u«ßOZ&ÜâSÕh/DV8Ù5|Dû™–ƒ—©7SLæž +zä_[Š2Ïh†i_À0ë*ðd¦¯¶‹ã¼–øt^‡ñ›©³ÖÛâ;.¢ìÇM*Ztˆ’Ø99£rœåãÉ-tÎ0Al*¸)æEB³ÑõÀãDM(Ê]óÓørËaúxòÄø.ħo5¦?PvÙ¼°ðãä DÚ)!./ä;톺k?âN½Ð[ɪ œßú@­â.`~_ð{rt2q¦;áŸjsV‘m™ÚµF»÷–î;vuR£Í°Œ€Ãn Þfãr[g•Œ·žÒ̲ñIWiƺ^ú$q£6#mý·%à…‡‡“à %ƒó1<éÌ zê“ÂöIúhVL%Ãï^6/Ds ë†7k ´~I+Œ·Íéü`ÿú\5Mš máŠ:êÇM¾À³²xj{—­" Ì+­/ãxËx]+Z¡«ŠÁ&ª;šºSÓ°bœUì“þú4„B‰Ÿ%ÏÑ%Ä¡™;¿'Ëîö/¹6Úä`phU«É»©X‹ÆûÑΫ¾3ú´ÛG߈O i>•÷G« K×—WŽô'v[zˆ=Õd¸<ø©-kÀkrGWa­¶ÔzDî=u¸qTcFâèT6gckr#LdÖ†zeó¶íH¥¥fðeƒ@µgÃwÝšf¥›ÅÎЇgK”Ñ$ÏxÍŒ¯Ñfƒøvû7 ŸŸ¯l ¥I[r@AM\X{·ê }lý²ß=(…íŒWˆH5ˆ_p?%:«x,˜êÁÁ–ÜmW²éRkùÝÓþú>ö½2–jÍ~¢†|×/ÍbHñˆœ*eR8Cžç¢BE¨x+'íımÜÍ={îxð±ŒT½qvm/û~‹ó“ÛˆG>°üÖ#f …vS§ÆcéK܆ֵj¡}Úž§ óû}8I}N}ñ 5P5(›x¤1ˆ»‹ž,Yõj7þÞ¿±éð\¦¡t35é.×Ä´Ö·>,·ªL¶P,[ZŸ¯:Wû±©£#ý«´s?jô»ìæ¤w"Ażhº¤|={£SJj Å*óØ_ßy;7VB#†$4ÀBNoÖtS²—Ç…Î_P˜*{uÄÈü,/A}Ía¥Š•ýqšok}”ÒÖF…--1ô[#·§ân¾p“ÍÛ¥íáÍo:/@IÂÄÍ® ,\­æN˜M,Y*ñjŠ¥ËÀPèX •h?aòØ·gA6 ÷¡áÚhMíåKY爮h!hHóÝÊ[XóŸ°I%•o„„ùo"(šcÞªµžhƒVpºfŽ ÈüáP…B`}ó¸@{¬†ë胓ô¯ÂÙ"½MÄPœSŠ%Ú•“'ÅcÙC¡¯+â«›ü J]÷‡†(Xµh-•¶ioê}PaöB›ý<+}/?&€†Æjþs ÉÎ>£á°»M¢Ríêšã’½<šVz¾ð»á£…ÒÞ„/àuPrm鋸¸´)Ï¸î¸øüîÓå<ú§¼§ ’JRäðo7* ¡î p#òž‘’ŠgÛFg* NcÒÈf^Å]åé ¾B'´`ާ«ìjfi]×Ò1à˜SÎyš0Ή-ÚïË9Uýíý=°@7w‚Íïù–ÄA"þ.âÏþ®y§S“s}B®?£†“̶V¿ÛËu}ÇbR}"ß™?„˜ê²½ôéŒüE/C#Eò5_W©Û3.{XL¡Hp&s‰gÁµÞ,ÈFt¬µà>ÿü'´Fâ¬ËýëIšHåF>×ÓWŽ•+u¼®Ø¬ðxý¦‘>m£Ô—>Œº”‘´µƒc;¤jeƒíü{ˆËÑ"uYì9Iâ œ[œOB'ˆq>Þ½ô¥ mö–ƒ„2”’ÉôOUOòë»t¥1 jÄÈÓ•I+0:bp¿Ìfá‚_»³m Ôk+”4â¡ ½+"dxy'œ6ÒAö]q ö¢^Ê &žØJ¢Ñ:¨ý¢&‡ñ*5e¼fFÛ8e÷T>½s}ÕA[¦û9Júoƒuù!»ŽÑ¬þ…!lþ=Ô¬iáMuímJpß=`µé‚o®ÀË ^ÍÝø„T ¸öå”” *û»dͬ’§D%®Šu@³MÙî OZ4öË ú»e×l‹ÌÌÂ1Ä…ø€;—ɰÊ[ ô!Ð+RF᣼†¢£R^D4ýƒü”þ[¸±_Œ”Ä.ÒG¼QÒßdròöYÓÁó+†¥&П; ~ú„•$Äo¯,ödÖ.ÉsÎA»ÆÛðLj·ôlz {'˜u¦§‚T·H[gé:T$‹Mý•rJŽh`ñu»Z…,¼øÁêÚ~u¿üŽ/®àI2fŠ?Cæ o€Ý\³qÂ5\£Hµ'*³Ø?¥²œð`t!>×^®¡¹]^sY;ÐÒ?¼zßì®HZiºÆã-pµ5g2¦Äó¹ÒÊúèž'å§¶•ÖÖ¬¢Ù áǃäYÌ7äšÐPG›µ×‰æ Ø\¾5GOχLã+ÛËèÎ’‘Lô±«„èoV=}ãC¼ÒLOùÇJzM'´ÑHa9èÝ>^ME‹•…xmãÅÔTNà;Ét=Ÿ~ -ùÝGï†tI¦Åz ð2ÁŒÉ×íÿøeà9=‘9›é(<¤Ÿ¦z&#]9JY¦ß÷ÖGüÍ—”W¹ü øüÙÓµÌ4Vô)¤,’ø/2‹]áüD+$€KØvÅ›",S•ú¦_Á.éÌŸR* Ù‹$NÀ9r]´¸¾Û•õDöȨã”:›áÉ“Noå`ú±<ÂZ1kÚJ‘íþb‹ùN¸5»ˆm¤Àø‹!Þõ)\É([•0qµÏ3ñáZÛ&eÒ|áÚCf gðƒRËvѢǼ5JM'ç.øŒ\8Z⣠ã¼[¤Ù/÷³t°X¨ÙzÆßif¹NûnÍuO7|$¸¾ëüj³KRªù€eçYãˆËÙÁh”1îE÷2¼6„+¿:‚nô{oô§¤À•EÜZÖ`+:Ϻ†úÿµy… ©Ð4öú •%nÊkc¡e=Ð7±îà è‹°´HÚ»%SÛX.ú¼€'–w“)¸÷¡€+’GqºyXÁ Ïà¥cfÑG‰VÚeÁ]×zo߈–uÊû+ *´ÕËmï^ìÀ|Ÿ_;8q §”Ñê\½O)ˆ6«ªÜjTÆÚqì"…×ql·!d Îå|W9Éʰ£µ±N°ÈØ!qÆyl¾DÔ¦o¥¤Ãb²j‹Ñ²f ZðÚÁ— ›ŸØÂ ºj‡“ç†AÐi…4´Õ?ú²ÅÅ ý‹2¾3bn™®|«¨þÃWÇ}Ѝn"¥@õ¬×EÝðÐRüÖeB`3À9úö9æÛ3“¥ãfE¯¯r’¨~Ìäí³Â˜fÉëK¡¦Ò¼ñ4}¢¨¢Ë—í ‹²ñŬ~ jæCŽ™Œ¨9n𬇀ëœv›h€Qøv٠㋱£•~¬ÈƒÓuÑ—:BØ¢‚¢¶±RÖ‰ž=d¼Û:(ì nt?GC}Jí”3“¥TF{`ùv-­²O7ÑÅÈœíýƒ½ùÉ;~< ʾbÿ¥nßþLb­?Ó|3e-»!(^P›dÉ¥Lº¢f'”ì zcÇ>(Xš ‘=Ëgt¡íH-é™÷(ó «˜$È¡B«Ï|]«˜SÕ¬<éîþ–ýs©™…UØnßÀ±Þ‡ë(‡yÅ3d/Æk‹V2­®Z¨ô*öMƒÅ]`R"Š€8_Øšu½c^[P~u¶×Oo Æé œQ†$Ö/.ðÏ.­52þÞ;ßöŸ"t-ðŒh_u÷úãLqh»ù IF*‹!)8ûsêú_4LÆ(TY+§ÇIÖoûÅüû 5—ŸƒàøOfû°öû¯k¢êÄêUXì!; 㪵ö0ƒRèN.D¹÷óq¡$Åû¼k‡åÌРZXa+-ŽÓrk–Ÿò³| y'fm†Ðöð>²Öt÷‹p}è+Z…ê3Xè.ŠBÃ_ÊÄ3¬nß2圧GåÊJ¤#· Œ…"ȾHF¥A$†Ê”üPX²®’ù&Ï©%ÜPÅÏ7œd,×eóTª› p*‹ 3…é°4¥€n¹: Ñçûó þÒ ŸÛ^ú[õvg»ÏåsÆ`yð/‹C¸ ð³=ö$ÿlk>XqǼ1ã$Kxò }'¡73àb±¤‚—Î •Ô§b‚Ó9²·ô5ê&û¸F- X©ýMʲc÷ÝGâšÇSæj—/„ÌTÃoTþ/^ˆ°ð:{8‘vÿ/®QïÉ.MËw#¡LƒáN–Îô¨´¼…¹õÅЪñ9¾&ý{Ÿyì–p»Ð¦ÞÞ`ŸN‘ ®naÃÐKm¸ÄbSÿg]—¦PŒídœÿ¢bˆv8ÜÿCk„ù94¼Cf2‚Ytö3î]èL°ë-)b`øs/ {påï¡VÃ@^QxûÂ;üN#uÔF‘àéãT4w±.Êňó{ßŸê·ø[eÚn Bh¼J‘ž)ê`+ ,OxðÃà„_1²¢mpá&<Æ”Ú}ʬð<¸ª÷7u,fì|“Ï0LÙ×9߈ÆU\Œ¥\z=–ü g½SwµsC(S:ùÜPpóÅB˜BGÿª¿©e,篋B ĬijÛÅwä2‡i±¡GŸšÐÛpÖ&v¯‡š]P·J&N;åYNE­è}È×­)Û{–K/oìßÓa:ù¦Êo˜`{ÁNÚ8¾ÈǪH9Cþýg »²vœŠ½*/ɵ5jœØŒ&C R<56¡p;î$EB¿Ò„IŒ#’7ìܲ4XÀfz«úÖñVþ#‹‰`ŽcÇî„¡Ìúè\ ¿§Y±cnKìua–˜Äðþš“ðn¢Š˜Ô ÿ{‹JɧØê6>.\'¿Õ¥üH/‚Ih_C;Wü4½SUØhsÆz|ëæü2ªÍ¼}4Z+p'zð˜C¨”uÆl½¶6Ñʪ½cÄžf^àîz½fï•w’ŒÖ_zîž0 Ë^}¶ºAæ4Ù¡#Ú*j0ⱡük nÊ·=þëoÔ@Ýàeí<ŸÌxx·!Ý>Ì+ ‘ÑÈ™4Žq†6šo9Þ®‘œ„2 zšš8pá’XF‰õ9¿l€œõLP¯?Á˜¡12(b]ÀÊR·k¾‡Y;­¬ûúó©$K¨7£`4PtŒ¹ÐÒ˜ŠòÿjL9AybàÞ—†×-ïšížâjÉ>ôDœn&)¾¤ÒE™FÄ"®œp×Ë®›ºrè.ù‘M:ímU>DVhýê#©,y’åúd-Õ(žÆ€.¾q~ÒxúG´!+Ø´öot@‘pÚ>z#rïb#Î7yb•µà[Ö„VmÏ C °ùuÞ®/vëcØcÏË*Ý÷ýòýô”)÷B/ f Cöè~*ÍÂgw2XàL~Œ@e6ÎÏÝêŽÒ©FñÎöêBû‡·`²œ™÷7¤õ0B e§:%Z¹wÔù®Ó 41¶i¾ŠØý(©ïŽë%ö¢0Üj°pŽ©·íÊ©6‚B¡úUïðH\¯b}ÉÄã•´M›%ñ#XÜŽrÅÿÅÒÑlÅî™s¾½åú*qoX].Ǭï ÇÓ4³lp P~ëÖNz zS/S­P÷ õ4g‰4¤6-² €‹ÓÉ_Zyynrwl'zt–`“SM¦ë)œ'a™PÒ²uûéé”)˜%Ò·H&’èÄH~õô[šN P¥—JœØsQC~GÌà½ÃB©'ÿø7-N Ñrг(–H¥8Š‚ÛKJäý©Aqäfå\Ú ã=Ht´:=+‘iÌë{1gî…|-¨?:T–úV©eæšÐñì 0ÂóBC‚òXl˜/ÍbÅ!*ÍJÎf\“,…¯P:xñA—ª·ÿúÎÕ¯µ„DàAœÊåóÔ²ÏÉQK×z)>øY9–Å75Á°FÐ)\œhÑt†9ÚÙù¿æî`-Ëðš;ËÓ.kÒ¯ ½AòóIKŽýæá˜çíØ’, 7>±=‰†(µr‹yB2'îqZ+æE›c7uUè…¶w”´XÃ|ÍÙR““Æ ^ZNË©aõq4„-KÒ"é¤<»?ïjH$#qƒh'!‡›Rמ܃Suí=t³‚Åó¦g“¨ë’ðv išýK€Š×Æ–•"XÀþ“ÍU{nzË}2ï„SL6Ùb«ó=å¦a*á,”„`9úÝ.âCàÏÅ©v4䔋¢ç¸6êsº*®?Ê].x«õ Ïõô-NÑ™BˆŒ¨£¸ Ûká)kßÒ•c+‚åÊ,ë’âùÈÇ¥ªç? g\X‘º1w·ÃÍ”õ[;¯ƒ`ɧ!8³z[#—¤·²6ÕWÂi\5å‰`GêEl°0Ùf–æ°5ãÐúnÖ¯¯.|Øè_ÑF¯¼/o•ç‘{Îú½X7£¸ÁÛ<¿¼RŸ·Íã¡ ÛXƒF)ô¥±r¡0¿ÙxŠGr!&€Âl’-öY 2¶%›p÷ÄÝnè8×}Ûû7 ½P…ؾºÆ7ÓÁί–´XmFk÷©‡¡PJ[¶|AK¤FÀwƒ¿¶ÔUÖ«¢ùÀ@%x°¡ô4Wcñ›«šó0l*QõP¶VàŠÀ5{Ê TºKãÙ†"j;jÁeø3t×>%è·(éN™„ñRJým§„}~–»K’í}ºÖÂÜg+ùíD¤-Ãl…(g»ˆ`³6GŒ5æH‹&”€ZF`¥º•ÐâÍŽCW%’Wiݳ¼hȃ‹X3xv• Ød Uì‘GÙíEƒ{ƒP™>c°“ ›ñOI;ôcTRC´(6”ˆ‡&<:£AZÚM•¿lBîо×(ר5­=v†Ø7§þºéórà ¾˜ÇÏ$öƒ÷;‰K€Q(€9‰ìI^Èð[^Ç»¤Õ¬üVÞ•¿üW|ëã*BJŸ/;†î$TãõÌW• °æ›·¦œQºîþç1I罌 ·ygIýf!1רŸ‚t!lº°–è€D’Ò7sÙ+AÇXôøJè¢ò;ÐnË‹¦ù_@–ỏf´jªv?·l(${çÎ~rÁkn2žwçxÏUy 7núÀŠ›]ú-A,b"¨MÏ^ænÁ:q0,g†Ð]A–?g¬ÕÒ»˜°e *]‹ˆhTÚ19ßš·c2X(ªÚ"Mº¡ÎOŠ«{ÈÈñ^Ãï’zÒõ޾Ë> ä‡LRÐëøKbê㩇›7]ü„¢g‰^0D µº]£Ð+§a) Ye]ì"HÆÆÊw7 £ÉyÑr¾Hºˆ¨_ÍêNʉÆWXR COe ï;WY`æl#§xþ¿WƒVX„³82å˜5 G 5^ßZ7ú‘b¸Á~2¹ ¶¨élå0å|ª¿]Š»ºUÕµ:LíßKDD—áxý²p¦ò4ÅÁæ«…ARæuÁGjÑ`Ñ_þ¤s–l¢µ=³Y ‹´gÞÞÑ:$¡pÓz#å½®a&$qN“Gëv±¯¿ î÷„WwV’ëŒBÎ\%c#o»àóx 0—Ï+È1GC78ƒ²€XÓ´²ÝûË,EüEùÜHwTiZLuŽãÑá„•°L*ø ʨD…#äûaR+QSjÖŸ† ¤};_¨2p‰Œ7 -L wÆd¡ _'§@[l@µ¹äôùÓ«Õ)µhé­ùèþüVî Ö½T#µÄÀð0@ä 4¢,ðCÍžð•z²QÖ!dºF=ÀqEÖ‡ˆ­,Òb,:mîšX¶ýªPíbnQÈ‹~Ofa2î¼O¹ð½õ¿ªÛa@é÷“¾Öxÿá¹I8 »[‹›Gd½Üi÷¯J$8êdØ A“GIjÝ/"Mú5üNe hý¸±åíêò#e†%øÊóÖ{ î+HúÜdµC¿ÌLÈþ\u”âØ·IŒÞsZêé>EjÚÕÅ÷ .RHž¢u£º´Äˆ5‚»7ð­ÅêÝe›7pt[wM‡œØçB_YêJ5£3êµÐ~ßã…g{_P}i¿^`ÉZo¬,ùÖpñýÈ‘½,†ŽþMHÝ*Dåm߇¯Œ/Tv‚ñÖCu"…XÁ0› 3vó¡x LB!2¥›N”¯ÆÕt£;œæzV9ãNny&ùKJpb@c{œÀrgæŽ,ÁgVå‚Å’d,Á>¥¦#Ê­¨(a9÷7E\QÎVgk®räw&[¾xâ¢j;-è0@±kÿ»ës…!™¸ÑËìM^—ðz²ZÂÄôhË®i9ÐÉ´÷R뱡0>‡ ?β<àtñIÂ©r9¡7œ7K”NgrϽwËà©QþÂò®Ã[䟥™Çªx%A´m¶5v:Ê_Pè4â¹À°¡ô vî~y˜U3M¬7`êX›UbóÔ†VŽs’Få=Ù¿ÒÚš9¤/j4/¯¡óŸ{AóYŽl¹é=hÓaëD9I…¡J(zŒŒ†œãº¸Ä‰h§aßGQúKç¶ß yÁþ’)׊ ¾Åþ½Á6v ÍÞòPXZrªÞ½ÜÀ›mØ¢™r"3² lú¬¨À‡´À¼Âªáô’*ßä¼2LCcâ_=q<$ú{ýžT$Ùw»Kñc7ENw=ÌéeÿÞ @©"B1:1w¸<\ÁÙÈ~˜‡­×®qL6øšGXâB%lFWbÁ^)¼òŸqì—[çO5oÊÈîJµèoÊÜ;¯.?±Û£¥ÀŠÇåõ¹÷^¤n[üiOb ÇOoMª#‚J¦ü »ÇU;çTNd1²×Ò1’ÆPü×ÑøíÿôLÞ#ñ¸û¸ªã‚r–“9ÙÒÁ_&û]4e´!LcYNx¥Y{êþBSZŒ-N"áWÉ3}¯M®r ÊT2°ÝH‡vL6 Ã÷å,s3¼¹ IüzX`!k^‰†Þpa·àrN½[’(à “}, (°ú‚WûW5mdo‡«IÒ;»¥Ó†ññ\ùšôµ“ÝãQeB÷¶hgf¡žÙÝ•€x«í|ÔáB¤ûjíJ„µ%µ,÷{PyÃÌJ endstream endobj 46 0 obj << /Length1 1898 /Length2 22742 /Length3 0 /Length 23935 /Filter /FlateDecode >> stream xÚ´ºeX\˶6Š;‡ »»;'¸{ãî‚ww wwwww'¸Ë%k}öÚû;ïÓO÷ìwx£æìª&#RP¢2¶5ŠÛÚ8Ñ1Ñ3rddm­ l˜8è¦ÎVfzFFV822 “¹­¨Àád7rúÐý`dä‚#Hm€Lc€¡;@èd ìndPülè ?Ø@Ss Õ‡Šˆ­»ƒ¹©™Ó,tt,ýѦHYÚº:Zš lŒRô²ô9[×¢9€ÒÖ`43°2Øš”ê%1E%€„¢¼Š‚ý‡a%g;;[‡ÿ‰EDIYE‚ *$§,ªÒ$T””ÿ|*m>â7¥È)ðÿøùü£.+¦,¤¬¡ ÆÄðg &€ ÐÁÑüÛÿŠü#2À¿CûP5q°µþË€ÒÌÉÉŽ›ÁÕÕ•ÞÔÙщÞÖÁ”ÞÎê¯ø”ÍÌ®¶–€«Ð øWbœmŒ?ÒédüÛÀŸYȘm”ÄmÿfZ¤òCéƒîô¿}$ÂéM«¿ÅŽ@à¸13püKWFAA`m`nã´1°1út2prvèÿEûx)þqvpøãCö_,‡ÿuó¯Ð…m?F¦måémàúß3f`ãìèñÜüç°lmÍÿ¶˜˜[ÿDïøgÎÌmþ¢É ÉIŠ‹))ÓÉ|ž ¬íGvlèÜœþ’þcOHT†ÀÉÈ`âb0~©˜±ˆ­µõGÔŽpÒ'jþ‘''[w†ÿ·°-ml]m<ÿ†‰¹±ÉŸÜ;Û1¨Ø˜Û;%EÿGüƒ÷oš)Ð ÀÚ€nFf þU/ÈLȉðö´³µ˜X9½ÍM€8OG ÀÉÁèíùOÆ"8&€±¹‘ÓG©´ Ü_Ö%mLl\“?"ù늀ò¯V¥úèSc[+w€1ÐŽAÎÖé£$(ÿÿé´ÿò%île%g` ¤ürú߂ֿVîÿ)ú_"jÀ?ÑRÊÙ:XXýÏÜQÜÜ h¬`îddöwjÿ¦K:|Ô¿©ðcZþ"©üi)«ÚýXÌÿ,_:f6æÿâ}”¥‘¥ ÐÑÀþ·ð#ÿñGöÿÄ `PRД”—¤ùËæ/91#[csS3;ÀÀÁÁÀŽñ£˜ÙØžL…m tû«X ô6¶N*;g'o€‰­ÜŸ eg0ý!ý…8˜ _þqq þ±qŒl­>ô/ ##€Áø Àü7dæ0˜˜ÿƒýáêŸðúå?à‡y«ÀeëC¦OÿpÌôáÉöÀàðøáÈñÀàôøaÙõQ~ Ùã/øŸùWø³ýÕ\ŒÿžÿYœÿÂJN¶–@5sãÓ?Dd œÌÝ´?:ƒéƒþñú×7ÿp@öï¦þ‡¶°°­›'ëGbé˜9ÙL,,œ3³yÿ‡®Ñßëä_]ùQ9ÿÂ)è4‚[š·5â °Hª*öË›üIÆEZŠÉ¯.±”:ÙŠ‹-š½M ÈÿÞè›Fžo+ó…[Ç'á»M¡:Y†ÕÛzS|ÙÄñWÁY\$1¡‘,Uz¿4ÙEß_íÄTGRY¹?Y§Óšcš *#Ç"\­Ìãï(W‰ÄÚ¿šWs ] f™Ð¬PÝ‘qÚp'Û@Þѣ º…–¨gôsƒ0G¤ ìº:uTÑ’U~nŒ“ÏÊ ïòIöVwV ŒÞè˜8ÈʧM•óê”æÏ]B‘ËbWÉ$° L\m¡²0ßÍÆaàµmLªlIZÓßàŠ1NÄÏ·˜‘u–HÚ¿òHT‘7Uj7ï Ó·ŒwI¾ ØÝ=X|úް ÷:¢p¯dVª^N*Bvb•g³Òì¿=|†ªËƒ©šé“Äj+o¸Øá¦L¸´n›ˆcªä¦ArsE´ÝVVŸƒK†1à&è§OKªŠB"Qúád½Q)¥ÈZö+‹F#·6V¾X~cü{kÅ#®E›AmÀ‘<ª–¹°…{;~‰Ü›à:øh â½ëÓº¨NoÙÆt+ü+k´µ·†¾@-ºïŒºùôAÕ£§ö îXwI­2Gkÿ›~(~Yx=/Å„iw‡¶ÒÊó7~©{Èë¯Qžì~Ù}ðò`Ö܋ا'ȧÇÑzSR:ˆ° 5¡Ìœ)Ka`ªSøýÑnj ߸*ÓÃ2Ï•5¡örCg÷ã³)Æ:?ˆ4$±on-30¤˜€¦m©¤†\QÐ]cŠ„Y|ƒ^8¦·Ö柦ÓïioW*úÁʼ)FgͲHÈÕĽР޿yã–ŸË12}îCήv¸0k¸©?5.X2Oa?äC’Θ]¢Íïë`¿0ßôD³óeíR𓪧®ïÀJÕÚ:8v˜ds%·!¢oYàº%JȽÿT£Ë Gª‰cà÷zMY÷H¢GÖO3”=ó·äˆì¦•˜ 9åÊTI?ÙyzäiÜ5ïDgÍ5o‹ý5bEÚ7ÄË™âôSo•5ý]·-Ðk?uöR¾ƒ­‰l'§^CbáÓ[£v¬´–˜æ&«Ü½Y|½z¡lUlÎÁÝ¦Æ T(YVSUOµ8$Zhb_(ÞvHjçuÑÈ:ŠÂ¯LÃAvíyÇ¢)ž8$Ãèô3$ÖKú2irëE8®Œ-Õ±~ÉIöeÎ ‰Ûxk5pAúWZšä9FL»2xJ"êø¡kÒvÜÞòÉU3ä×ÔåØ *…ú«bë¶pù”•IsÁÌü§šü‰íÛ›Ñm4> ´EWèÄû­Z¥5 ·Kl|WÙP™58µà!ƒ7ål‚–é7Ù½b±*ØMš¡Éá(å¨RêÑ_F&ûWRúÜ=Ûu)½ÞG}‚ú­ümÀ*Œ‘ð%Rös¢D©êvMÿçöÅî)f]p~«Ÿ•¸¥¾ŒÃÓFÈOx÷æ7¹…kà|ˆ– {çJ=˜ÜºÀðCÑÙ‹µ†©o]÷*1ÑÊ«ÑPãŽEsŽá4=ÃeF¹{ëDûŒ¨š›Ü-?µxæZæLiJì¥Øé†O+(µ"ÎáüV²ƒæv7-'îaêW©677Y :Ãøf¹öÓ…U·¾ Ùy%ö˜?øn¦µÁ° ­BßIÁ¦7 B˜\N˜„ [¨O+bÑ]_¦Sª÷Ž=¶RÜm½^Ù-«·â‘ÐDù_Îç11Y9Ïìmhyt≶+¢HQ‹hª¼jÕöâ—XŽ×ÉNǾ‡/xÇvþü¤ž—è½mwâ…ü¹1'Bˆí×íò‚F†`'Õ·®¶¬¦éºÐ˜5~ aÃÏ)‹KUÔ³ÔÞ°;„÷ÀiÏrêc"” #öžøBŸZ;Ý”ü âõêH‡ö;{–¬h$€ü2oqwýô[*`\»(ÅflÕ€S"ŒêR=rLÿ ÄÑY°K¬íÃÛHzζu˜%c…ã°ÃÐ í7ömoYVïçÆ&×Åún„¿“ÈS*?VJBØò&¥Þ¹ÑÂ5šÏ_±`­Ä§0½z¥È’sÙ¶¬ë$l†ú‰ÇäsžñÅ”=µŽ}¿u‹S‹‰Ÿ ø2Àû$ êNUž‘n, ŽÍÅz\ôùY›’uÉ:4%_ĵ"ŸŒš•ÆìKCu§ÐÒzŽî!3œ–¶ÊH´ øÁ¨÷,-ªž¡‚X³½¹ÅA,Á±Ã<“Á@Q1½n;¶  èL~úcÊÿdÝå%—!Ç¡TE«°€!šøþ‹gI÷ÀÖ;ß7!SÞÿ ¨aDBÌ#¡5qdõ¸=¥º_—œ‰´¾rÜo:üœšê·UßWˆÃzÈ3F´ÂL ]¼9Ÿ¾œ,¡ggó9n?ßãùÑç a“Ïoz‚µ–ÓD¹»½E£®s "Á•Æ ß 2µ õªF€F°zªM|ªæÆ ¥“ÀVwuÎÀ«Ÿ­OÛƒ­Ö©‰HN˜…møÏTg^?œ—@‡~Ÿ¼¸Áòç{#o @#+Oæ ë±°"NZ·!p; é4¨%?›Ÿ†Öä¿¢EŽ’5N½ky~Âa.­ †1ŸWÍ ¿¹k%ÙóíÖÝÙ•ŠðºéLu ¡øù†.Kü7“EÅdx2 ÌJW½´O[ˆïNÍ ZĈ‚gÁúï+ŸH3o²\hgš™K©òJ"ÒH;©0¿HéÆ: òe71$8סf 6—0ä§["Ð3ã,A<´ØAÙ›eÒg¾U›š—å¢{q:¡Æ¦äüw×5…@™Mê´ÚǶ·k´Õ¾±7ŸOÍSÕº‚F¨äãEÝC8Ì´™—ò ë² ¸*_zq¸JÜ2‘"/¢BÇŸ„Ï‚¡P86“c5p"+…e÷IV«x*¤5òÔÕ>µbv•IâÔh+Áiôœ°êΕͨL™]hó!ï€I½Z9Ö©+6U^©ì3·Ê”«É¾ïÕ¬˜³?é,¹4û/çínßÒ¸”¯sqîÙ÷'¯× 2\k½îdtñ:Ãwvy°Ñx¦%­¯WesôXŽ»á]ô¼‹C6¿À.9ºÑ¤$H 0оßå>èkh’T_S‹×¹ÝÛ€yò>‹Lœhº`<£ƒ ê½n–ægeÝXyÊ:Ó¥ø¦Û‰Ÿ¸ž©XMb:Ìê ¶äŸ­eqÑ­ëã[¯k(‘ïˆÉ‹ä˜lï±\v*Ìhï–Ѳs!Û=Âh`7¡rÄ­O`Ø bs¥óÝX)ÐóÛ=æy+0+àåA¼‚ƒœOÚxn ¥S­Ÿœ©Qk¹9~ݸ¡® ÎJÞI¯ç¨™H p·˜½46„˜(Zç’…ö¾Ùƒ+{ž‘I~ò‹eÔf+±¬Ý]]À &RÊâE &®f— Lèn¥ª9íL¹Cÿ½Þ .«’ud‰z%¨Ÿáâ¿ù„ÖN:.é¥ê›ª=¾(g‘FJQz2í ¡qÞÔÚþxá“bcZ刀h¸ºVÛgÜmq¥š¨Â¡dº)¬·tbb€‰fA0Ã÷9ç¹Øýݳªª„¨ó8e:`¿‘f`ì 4älX‚fMÓ3sü´;…ìJ±mä.C³L0$ ?áó»ùT]oŸ¹¨"‹HšÎ°+snGöX£OZån¥f‘ÛáL*Vq7Äyᙵ—$f%&½Â²‰ NªÃÛÍêüÏ[zuËÂÞîæÝò#i½o¯·ÃlOˆ¿ ¸r‰x(*èÖ‹)Ф(ûÄŒ„äGÜË*¯Ý?ÏZ»Íª}F}dF~ô‡«Ët$÷²¹,ħ‰}Ç=cl¯…‰ÔÇeÕºƒ76\sG3Qeɳ&ÿбHðÕ®S´’ú\§)à;Msµ”W(?`ÂÓ[512c†zµ4ùYQ֌ȿ…™³Õ5:fÑGç³N›×sê’ ìèÆAÚ¡|û¹äµ›m˜øIìgÔ_e¿m˜›z&’W€›Vd^ëˆmeލޫ¨°æÃÊcz!¯!SJ}Qˆ†Ô¢N†$®¼aô ’þoëT½fvñåMó?0©6ŠA•Á]Uˆ ‹Ùú’d)¿7» \iž<{œAòë'o k¼·ª©¿#Ä`¶ ‚Ôo £TÇ„%z0HÚ³ãPd)^ÒÿöÁB1pjOÜnÛÊ 3­[õ‹u«B…ãÖá(ŒÔHÕZi²»<¦4(W°“ZÄ#®(êNñÂæ€Û1®TªÏÙãE~æ}3×öñÆsÜôÖ ßÒdè­‡/Âm8‰F¾Î/R5Ø ÝPóð¸ÖÊc©ßKŽQr-Ù”¼¼Ò[ŸÃ‚¿Ã°t×Áÿ:ÊØÃP†ñd«Îž dzàJê ‰Šãx»d³êÐÐTÛÚÅ [•€s%pôÎÿÝjò­Û¥N`•hZå|ÿ® ê[°ÁãeìÉœýÊúC`]&¨¿?¦ò–÷sñDú+„0::.‰÷íŸcSÑZJÈÊ©< Œ´7øn¼ %þðsÈœeÉèñÁ¢ûqœ)I¯í­Ý3¶'ÞºŠnèÚ1?…›fˆ9Ä4k¿ÑѢ͕**‚’¡tTMËn{t%¯_ÌÚTî³°»óaõàlSÊ;¸H3”°Îë®ðÜ2ž˜}ï=^ð}Œæb¶3ÀæmyGŸ¬‚•®‘ç‰ ^¡žgª7Yíþóõ·Ü·xN-ê¡¥ŸÚBÇŸ¤&Y ‹è*tqÚÆyt´AtyE†j}7VÙ¦YŤŸ«¾%\¤ wÐPõ53Ä$¢½MT„ÎÅjz–ûr"Z½¶ùÍH¹,„q%¿ögVïipl ¬°ìºg·;µ ¬Å. ­u $0÷€÷* á²2]qµÿàýšf¨µÚþ‹Ø^fV bœj¨ý·8»{.ÔåÑPýçO|…¥cÖýƱ –ÔϺGCw}xilµåõ Œâ¾À©Ü’Ë2Vf™»—àAr½BÖ[a_qõ8­uBª®ßÑD!”'Û«wïžÐO¤E´$”œÑ›¸=U}~º|é*;¿0 Xpè>›!PöŠ|a¤ÛÌz¸u¯‹ƒ}DgH?ù±êf\Ò ¶å®WûrSÐ,èsÕü(ƒ¸Á4äï_«‚ ezà·Äx§[0oä]j{«â*µ‡Ôuií™)?LxÐŒS(„½fÌZxøÒýssUÖ¼Þ ’E-x€µ¬LÿÒÌpÛ %N ¡ŠU9Ë:âŠjøÎ^)9êo•¤n×1uáþ>Š6˜í™X󎬞£P¥ш«ç¤¦ŸIÆIÛÈßJ ›jsq'ˆ³ÎU£7½—áªH×äÑâÔï·›;ÑBھ猢EùòöbüîÌJ¶Û·Ç+çDfªŸ¥:Â{ðªçæI£ª&Þ“À ã¸1?Ú|í߀xì^3ÈñÙ¢cÀ>{ƒÝ´‘AæFƇ[Aª Ų" ÷;‡µè0vÂZÆs±õ5sß.BÖSçY`­ÉŒâV5ÂrKà´¨âf·Ço«Ü[R^,:/™­ ÇÂ6û›Ë%*Â#nyñòùr_©<+T’Œ ÅÝç’Î-·)íp";Û¼C*W’,#=í£YìùKã:m;&MÑÁÙŒÄ?o4&$îîJï¿Óþ°Š»NÙЫˆ¸Åtá¾VeRD.:=ìΔ>óAÇD›Ë4­x Y•å5ê|q?"-Wžë§”_$P–ÀÁ}¡à+ZeZ5z9î}úAßäÌeþ;[nO5þë-KÃu­ü——Âfl_Ba}ÄìO{ ˆ”ì;üßB 4˶IÁEø’~£×¢—ªŠ'=yÀáÔ‚cF©½2¾¢©ÅǨðF´dÏ}*WÇÀ}Fx½÷[ììÐM?Ñ"5²ZÅ¿ˆz–.[V‚W—[Ów! ´Jø~®ïrý…Á~Õ$¹kvIZ÷–k€j%“øÆÚÔk³¤_(,2¼í‰µtýèVr—‹ø,¿¡‚Sl löµ“œ™ÀH¸ô‹n”µ`vfCÜQlš¢ô´ßcÁ+*¿tᦦ{’sÝ N‘ŒZ&4¦—Br%÷G2gïó}½’G榌DV6ÉØw]šWTÎcµ,‹ý”á¸XRZ_fÏ[.:µ*9ÎêOSˆÑºÕõ¿)téBíÔͻޖ=7PÚ¾ÉÝô3<™'õB·&¿ëZ&0B в*˜q¨¯Èl²McR“÷Ÿû^ï  ÆD jUÎ6’c•'’ª<’‘Z2¢Ô›Ü ‡Äô(ÒÈLûƒFÖ¡5§#t©|\O$Í#úâêh{2£°+›6È41 wÆ&ðÂÏ`à½EuüX…χä·ϥמ³jíýâ»nlA´¿¼íkÅßLy”Ov¥Œ‚b.ÏÚü4ê¼3ÇsÙoÆMÆoû{`ð§÷-²Ì_¬•Ñ[^ÒæåèÊèPÈRLñ4ó¡.DÃŽÀãã=YOo“Ú/Ø$õŸB¼´°ÕØ‘Îð H‹·ÒÎЦ86v.ð¢Ã`b¶L~fª›T%Ü\(s¶Z°j7ð{x$ã¥?b‰³ÓʼnøCmT—¤±Ö†0&ƒ¡=!ѲOµzãxúŽn;½ZÔ×fþäѪÑa5Ë ¤r`çÀXZ¿)‚“.®Å΂AœäBÕ9ÏO*×î1PZ]1CО[/7EhÙyÃQ)¹XÇ´‘,Øz± «tAK_èJ Tb|'™r¡ ýyˆ§ØcúvN…vÙZÅ9ï@§LQ éw8~X#àûâl€åMÁ K…l“]ü8 -Ÿo‡ü©Ðì³d“ªùãÄ×zü²d ‘»±‚ þÊÌx™Pîc+ nzXµÁž¨ÀÇtNø<½(³çwÆ mº¦ÐF¹½†»çK\k­Ï EðÅâ^3w¼xY-!¼BøUf7g E çé¢!…j8pƒ21Áeu!+ý·i~Ü7ôàEò”´FU§šD“T¡-ÚV»¨äÄù,)ÈS´i÷˜þàëYðL1óÀlÞ˜ DX¸ò,Ó$VJÄÑŸxi t“®uÅH<Î9z-ŽýVÌ,¥€§6ÈvšpªvÆ:dš¨£,ƒßp‰ßÂVgI¢Ôl`ëbÖ>Ùć̈́Ÿ1×H/NF×ès¤Tk„·uÔŒ&›ß¶¿¹D eíûz Ǧg;&”8-„ãÎ2H‰9 ŠP–÷V¾Z¨lz‚ɆùÑž’i‰K²láG¥ÔIÍ9vrÚ<òºÛˆ‹î›è7[A)2+ÞRÔpxüT ¯n6²I ×7ôjJwœÔ@•]¾—07¦wÖ¾+‰ÒJˆòŒáÔýаÜ|Ô$eTÑ|çØÈ2ØnI«óеS¯¨î7—únჄᗩqî¨ÆbbÃUf 9á‡Ï»òüù\ò9!±Dñ c.Nö*!A:m:É1 É:ÀDcÜx‰‡—Ô§UÑŠÁ*,î7½/ÙïJz­>±’½hÚùÁ­o/Ò ÑÂ2ž\«ëA1sQJrÔóYåY£ÆPïãX®5ó0 ù BK¶Œ´UjaHkZHãBÇ w¦×h…X½9åŒÍ…—LÝ^›uÈc,U×úhÜØêº“à ŸHͱI%KRµÚÈ;²c¹3æGk™ë©]rò“‰ -+ )ò«;›©—*&¥TrØ$ÙøÅýH3y|ï¦Ìôõš aýP#Á×¾ ‰ùUçºRI0p;4C4Nl ¿0«K¿{°ÌEÜïhdVRZø¿y²,sZyøŽó)(bn’¯gÓxcHSúe3å: ’4ç>?ÍSc¼‰-e cp‡<ן‡.å’C/oן×/¦…¾‡Ê•ÑzKÖ®Òcýdì0‡«hh•§åq`£˜Ñéù%›UwM@ã}¶1 ÔêÓ¦´ÓDÆ£3-<xáçÓüØþyýÖÑ™£ ÕÃ׊‡Èäl`\‰ÇhÐ'™ï\!÷Mi5ÀOCCý®q›Îw =L4ýr#’mÏžõŸŽœ"Ý61]Ý»åEÙ&$=Ä¢ÄTïVUqØ\aN:r”ãøöÖ¬.L÷xq“‡ó(®OÜ6"ñ«.^jþn9úôÖmñ ™(­Î)ÀCkiÎ"•—ò¾žüÞG¬]¹à&ÓKë­`f·v•Ëòèâ!o)I½¯ ŸÝK‡þÉøh¹½DµURg#nxüe¯Xã{G7¤*ƨ„)mŒèb©k˜kÖÕI®…cR‘ýʾÛÞ}ÄÍQåÓ“}ø[@ó®¶éw’Ú¶w­þü¿š¡Ó ?:õ_º¬æÇ#˜^Œ÷ .€¡Wj=ƒOi|4³(ÏiùýDW¤ <Èî÷O 7Çrc[Ç"ç+ *h7ôk\åŠÔ˜ðXÙ¦mgCŽJfÙé»ÚX£¥Ê Þé{âÊ^i’´w˜ð—öOþ ˜Dn’][‚Ë‚1Ñd߈‚&ì­Ì”ަ’{Õâ WµVgǨ#7פ:¶›0¾Án ‰Žsi#†>U>6^Wüâ—‹Ûá{wÿòæw³¼ª-~OÈòPµŒj(ír4GcR(¯h->®èd_Pbl¼e0sÀþ ¿$#˜Ö²A+„o¯¤ ­*•ÁKì, ò :¢›’H>ÐK†šË¦RYæD‘ÂpåKÏ̀ݶ@¼æN²W¸y•^3ÆÂ(€WæÍ7 [Ûâ®pjhsÛÛq÷¡EúúÙ‰QSNø>² e]b µ ‘ð\.WÆX äÓ$W+•ÂÆ îãïºSßéé0öX40f”¯ŠnÙû×`†½wT|}/Ù¹!žš¯BŠ"¥PUÓ*SÕ&uv)íÂE­¾Þ6º]ï”z¬Ð6èɃGÝ•IÙQ™²â7 ¢ œ‹èZrý²+¾Ãµµž‰£¶‰çܽ…Ö`2 ƒ0ãm"ˆ´¿X†a ¹f­e4pŸç`b¬ß“ÿg…ò3¨²F´A©y#v`ôî2Û$p—­aŒ"v‘…P•çÚi ­w3í÷_Œ¨Ö/Sø–dŠ—áµ‹j)ÈÂôp€<~7ò-vzÿ>5œ¢) òÕÅAÀÊÿ°Â^2ƒkÒ´<7÷8ÃB”[çGÃ:‘ÁO;”Ø;u• å*Ùσ'h“‡ ƒKgɇŽ~È ýíVÅði HuÁ‚«½ÍÉ2ŒÈEA±³Wô/lz>v®}ØÕ”?Î_Œ[ñ"¾Ù£˜s‚Ñ~šýî‡Gy!{ßæ(Òà n^yöõ«O×õÐÛèµß¬±WX‡öt;ŸŽ™žFOq,þ8–ƒÿ¤?¡Pô+™¡±–¨@ê·€'€Z¡H`fp¼}Hã!Ü{–µzˆ¬íP·lö‹MúµçûF¨;£Ù„#Ź?òÃKpnêü‚ö£Õã¹cÏéMú+W¾ ²Lk\2z9ÖeŽ{Uûx™NtB˜Úû/ÉÛOSb.¸øf¢¿µ2¤ËAAÌäñoúáp²‹ÚUÇ«hd9!ÝæžïÙ€³ª'M?&l]P™oêKàæÌ² )rŠ’þ1ÉéORÛÑgí=ÞÚܱ€ë PѪð*̘ÇôJ³Ó”Ê[*zeWþ-—>›ÀþC n8¶ÈK:½Ÿ®!7à‹ð=sElþZ‚§ güà®$ECä»»)[” ÅÙ¿Ò*éˆA >Y_·<àà™e”$•2ã* ~E6‚¼"ð3ŽÅÓ‰ãEWGK³ü^£kĸ!sS_Xd¤.\ Mîé‚\8¥v̽ìuÇ_Ž·Þ¾'㌑4Ð7­{4-$*8g1Dcara8O¼/ÍÄéG^ש(AH© Zur÷¶8ôŠÍËJ63Ï©åj\µ *ÇThÏÚ»íèúãy+ò’èyA’ßôä‘—¥T­<–íüŒäÛiÙ¦$Жád… ’?Ø/© §š“ଙ¼WÖ!‘³ß¿¥”sNV¸F rP€ö»–¬&ûñŒÅIq€¢x–$3r®ùå…ÃõØ~¨GCåd¼”¾}ñ9¢Ø@e?2Êj] eêãÔK-;%TnñP¢äLÃLyN¶g‚o²u…œ„!á]P`Zø©ûGß×Ü@"Ù–‘©¤‘;Z159e+ ²ÍZ}A8ž‚ù…œÃÑãåùeö²HÖKæ:쇮ÖÓø¸JtW„¶ ž×Œº—tÜîóäA·5åÇX‡ùR­"‰ŸM¢^9»ÉÝãwƧ¯ø,xÐå ²Hé…nóCP%‰Î×öI°_Æ~¤l}Ë~„øYhî‚ë‘î™ÐFU™èwÕ“•Öo‰*ÌÃNx0~›_Cjšh9Õ…–›wLEH'ôŒ\ÈQ¦—þ=ÚÚÚ?å’-P`ç[®-h1|¯œër‘³.SðFùi’Ó¡-x×Ú­9D ³ô"iF=½Ç¾ý·¨ÜQðúÚ…ƒLsOgÀ5ÇÂcÞ“¥ñÏßRP“ËUº¥N‡ž »!]]ˆÝŠ£Ïì²ý™Wóª|z´¾„ª}‡k ØŸ­/mÜs§W’A]Uù¨­§RÔü}žð¸!Í\tíìöŠŸÒ¶kÍ´©JúRF¶±EZF=ÔlÉL¤ëÖ‘åj¾è›{’i;ØbØõ»\7>ö¶ÕË}Ytœ#MÛ ûÏ îŠ`hubDésê\pPL¿üƼo¹@,Üå3š– ~ûDAü\êæ–ò;¿{`çR)<ÀÑ]²ý0Óµ¶‡‚?õ¼ëX¡¸.ŸV*¥Òý ô3e÷àPD{ch¼ÆmÚ4”ù˺Øwڳϥ´C—¡[N4(zò?_#YცbÞµÀÃY w(ƒC“Ñ"ŠKG68ùP¥&óž†]gR[ºë"’:^ƒ9Aa‰€}ÜŽ}j¸Ç$o¡ö ¡.Êq ÂwxÄ­_uªüâäÁåŸxüÃyÄ(Ž%©vû÷ß2ôÝ[Ñg²ûž¿0ÜÐ-À“ƒÉ©j‹éò¥§Šg³+è Y§ß­¿Ü°>§£/Ê~ã° ¾c[™nmÝÄ¢)tL:kÔ(~ÌUË3™  ¥¸¦i©EBÉ}óé h”][ì 2ÜN+ÌtÅøþ©JÁËEK—+K®z®¢½O¼ä뛵k, $r#.¾FhY¡°ræ~ï¾€Ò´àjvjî©nôæøY#…Õtâ ÇÜž.¹ð<§Qµk3c«=¶3éïês¶ÃÈÑÍ´Ÿ2q´ÕUgñ£7å2]7õB\ q² q‹4µöWÎO%‰öBÀ)öyóŒÊUG É©÷’ÄQt®&Lˆ5v×ôtÎ$š·óîIœ¢°ÅÝt•V\³~xçíkP„.]?±®øùÏ0'+i"©/zé{.Â7Ôà´X¬>ˆÑȽLÛsmägŒ·‹5tC„çqyÏÇèðA1ölâQ›P—3Ti<›xÃjÿ:âKj H( ó¾};Ð;@¿ž“…rò%G Ø V*Ó8ÿ Ÿ.ËOp@"RfÀ 7~hŸw±o.DˆáÌξ–,ð.7 ÝŶ …ÈØ#lcI“0»}lw|¥›^'18ýȤ^èY§ø  ¢3N1ÂGpŒNuIíÀ¯GBmJ ÅœÅ-}GüZº8ÁÊêØA‘ÍSšp0%›—¢ë,€õž¬±ƒ;t"Ú”Eï•Ù3µD [£I¹²Òþ2O<º-9(2#ßWE¨«ã!”·†w† cפU®ûzKærÓ´»üó×Ê CG]Æ“¤àÖnTÞ« h¹6\á’¨î¯g=õ³ms™ÛdMYW8ÛÜ]?}žþz€!æM•Ví« ³ä!oOeºÞN¸Ç f|³HOÆC¡1‹žiÓÚŽu³;ÿ€¦› ZòUãMPÂ`<ñã˜ÿÖÒ6V°Ó ô>’¿FàìhÔ|z;–ž£÷µ?NŽ¿ Gg8J®€á¦~Îtî“ÇŠR²6QŠ_¯Äü#2\@·­Îé.C˜ÁІ „Ï@nžfI^4dŽDË`kB'™B!„PËÀ1d¾›¾ ¾r,º¹›±ó{´ª‘,"XÎð7³ #BÛqv}…3ö¾S¬Ù†Ì³•4jœ¢šx¸Öâ{“]Nn ¶Û ‡;?eº–£ËRªQhç*2¶ãƒ‚ÉV«¾'j5ëLÊÒ{IÑ9PœPI,‘îŒÇ·²å­.MD[4Ü}ËY„îzü‘Õ‘ॽžc=™~6Ø&;1Ÿ?W—µÙÅþ¸$Ÿ¬×GM°Õ­ŸÍ!-ý—~*&Î’,ʬx>³”‹ï¸‚)f°6ÉäÈ™ºøaÆÀ’f„'/1ê>ÜQ¬WØJ}|÷ZÜaÚÌj×.ƒœ VŠ-ÂÁ™Þgµ e嘫 –»ýÆºŽØ¤Ô¡)ù‘̽­y{¯ ˜Aõݬí§t”Û|úà^Æk“É” †¶L»òÞù!M—1¬\¶TJYÐØµH·ðó)!rËŽž|,Ù¥T 1še¯íŒL¸{¸“–ðJ"Dù:”<ŠFý@e0¸>̇‘¥î2ÔPC M.1rsã`^‚Ï [oñ†Êè½ÛˆFM¦íé™$%6ÊCÙàÚ%S‹7"¿6ó.:HSY¸ ý·dŸA>wR ¥ñ öªD›@ÃwK£Áª—e¯2ÐìP6•}.”É!ÀÔ¨t\›‡…õ¸)-A°t pð„ÌóKÛ,ì³-³µ °ë,ù[H½3A—B¾°tÛ¶Il*Í+Y^ܘ®ùfËå%m•íá¢A·sÃr,L/f’W 'Ã-"W'—¼â"G¼Û©ùœàÂáÊn¾zÖE6ñ5kK¹T¹‡Ø<—?U’‘«CóÁ$›û^d¥w¾1¿JóŠRж¿ÛyåÙGé“ ²1³_­ÚºïòÚ3–ÌÔîZ­œDļçù-çû· ²ÿjßðÖ;;³gýÏôs•mŸõŒIIö¡&‘PGÓ¢d |½M×gö~8áÛÆå¬jÉ ï,¦¢ºü½¿]E¡±èrÄï¶%¿`™DÄx=N¢ÖðÛ×è 7ƒ®JÓíb„M·$>Öñ¶m_ùFäpb–ÄÌ„ó‡ÏÉ ¿Äç|^'¶AÝ'C.kç9›'žC èîá>«F£¶fæ¦Y   B !Á‘ûÑ‘\sSwÊSÅ#YIQµæTXŽö/ÊzËÑ7q4‡Ú e›†Ö‹¥2òûîQ Dñ@ø·k²þr~ߢ#-Ižã90/˜T¦…š*í‚ û©ò$¨§vxÔ*ÝÜö[¤àù"_eÈP!\ìCñ–•¿¨Xã’“´/ úS äJÛ3ËüŽ#Þ@ÚÔQäYU4ŠHCüuÉí°1‰Ý JÕÆ£GÚ’y[ù}æ÷Ìâ„ñâÝçrƒ,íûÎÖ·|œªZ_Þ> |ùFÄ >š ÝÐì¤i•M8£ÙÀ—¡àŸ‰·x#Ÿ¬¾r~ÛAüì2iDŠû†}®x8¹]²3UZrVŸ¦Ñ|®H{`õ»>žíÌÑT¦dN,—DRdÏÀç^UôS0b~=UoßÀ^ÞÚ5¡´w ÂH¶dàsE…7:ŒÑÜ–ŒvJˆfçA:<žäÖ*¬yÛÕÐBüp·Í×Ü“k{Ò¯l&Ô¦Ó·…¶ÏýäÔ€ÆQO)šOQ;E[#߉ µqÐgqƘøÜxiz{‹BžÛ¯ÞºdõíºxÉþH|ånà+¿?rSHΜqïÝ®–9Ru”Ú½çJ)ú¢fÁ:êÓiNm6‚”F;¦ºSãˆb‘:ui»7&°SUAØ™Š5ðyчÍo=cë¨Ò/X;úŠB•zݤ—;¢£Ä •ÃÌ<Ù™“é„î–:áõEWÀغ¦ü†&î:ˆˆ„÷V¥ª좦â0«`¾Vþà&"¸…›U(M¹+̵léŸAsØLD÷[ ß•ãùtŠ7_Io{Ø–º¢ƒrÎ×§,ôsïdMÙlI©²ôûV\Ä›~ìñ‹z÷7míûùìF¬ †;‡”ÌÍwÉ=z†PÛ87í~ƒŒëäÄéÞ<_—D)©/¥Pc‰—¯« E/wçèĹP­Íº.ý1»…¯ÉÅ“?°+¬-ñ°88^¢+gMt{m¦jŠ›ÉQçŒúCö(€“uw<Ôº×ú×d³®(¤˜‚ô$NG(án#tÝÍY€o4n`Žê§Aáåˆ÷ y¡òdýäÔ3šû±“ó“Òƒuú•çä÷—£™ÎÒ7pËyD9–a}m¶»I^H@7£7Ã7AÕs\gµ‚ìõ Oødú¿Éy/–[ÉHíÌO–ù™Ù?0üçbÙ¦¼ CÜ-w£ýÓÏþ7 ‚ýn%êõ½ƒt®û0òFŠ»]r¸D ž¼ƒ«`–°´‘Œj/ÖÌΨåXŽƒ½¯¡#ÜéäÁZ¦©MI#{*ç÷6É Õ‡«ïó’LÜÒzI %q˜ÚR¥ã¯Iå \w+&ð¡èøIµ*j÷š«ëæèèU 6ùæô¸ÎPxc›ëáì4¡·×&$äÁ¢œÐ¨¡Ì¶¼H¥Œ8±›º(ËH~”ÁÒbÕ‘ŽÆŽMÒ x爴ÓÖ¡“ïGš :¼¿Q½ëXü1<õà3ªïCÈUÌ¡0§d&;û« ”1w"À(j,3d=­ÅHïq#ÞT@Htò©wóAzK-t¯•(hùÞ SL¾@°ûIÿñQ%Ðçz\Œtu[c3sI¹˜ý>–L’­¬÷àžK|E9æ#†ërU³þ8Yº1ÿ‚nµÝ’àngÈD8ü2 ͬ®…W†Ò¹)gm&ãÔ±çý¶…®äµ{GÌcúÉ t§Bȧ*åà¾^¯o1ñ«ÈårS%šó'Ö’*¬‚¨¡¢É^XZQ‹¹6„÷ÈKˆÂA赋lúL<Š=«.5U¸¬“Ž}Š›è¦Þî t±nbx“^ôŽÁ/Ï "FǽJ,âÀùðw“`J>šk_Ì€é6±†§’ôõáqLOA¢Ã³>3”1—ç!¹UVµ)¯ïNˆ› î¡ÁßEXúà*Iz_e÷mÝ=¢)5›q@ HMÙÉøW\JCogŠ× Ìã6 sà«[iÙMô%ƒSå$)á”èEöÒkª“Åw)ó¯v¨ù=o7 zë]©¢+½¤TŒ~E#îÔQs‡Ö_­ÝM)¬Ò+ìÀyÔëk7Õ¹Üd{½š±%ZËkX­„dU§¡Êï€@ôœ÷ìÃÆzÃì~šÚëXÃßc8§ßuaD|CR›ñ2⚈ԪlÙ5EÅ'6ÉùÖBª}ž›ËKŸ¶rþË0¨”$ w„9¢‡$¥{»z•1ÚŠõ©Úç1NÉ¥Q•Sæ¥ Áñ!Q] G`S|+‘ó · {ÔDO:ŸÃ$WHÄ‹NÐnînptÀ Ä3ZÜÀtªÄqåá7w #÷°ÑÑÐÿ ôã QW‚D_]C¡Æ5a„€787}"RÏ …É8¨YÉÀ¶†¬¤Aãí ³Ì¶ì»Ð_¸!.a–Ò亮.ªSÿC:ªm%o NLµMIc¹ió¨E™×>³0={tˆ>±1Ê…ºtœ|±hzßû ƒ§ƒ„R¦ñƒG‚J§†È$KÖ¼Ï#!Â!Û¸–1Á\¨é-Í3ÇÝsû¯­*>íDQ“½ǹ@ : )çwÅí…Ø¶P,-A…Ê(À§™Îõ.Œ—BÈC*ª±žIÉ9¦Môã5lèç¯gÈUàRÎTüÑ}5+0?%à\ýÄߦ—h>ËÕÿdeŠŽ#Dh°äVíV'áÀIÆ€¶Fݨ톈Ú0eÅ ™îêÄ0’B¨šŠ)RŽEÄ ÅjÕ8œ>èßèY{"Gîƒ|ôñn{W]¬z$žóï*Lr‹ÈKä¬;4L)³þyÀ LO$‘Êý–}üzµ_Y0kY§ŒñcåÛ|ÊŠO±‡jž‹ÿl‚Ö¼c÷Örøþûù÷Õ—:ö ?s|€‰‹¯²YùÇ—U“„¡YŽ>43B˜¹~ I—Xì¤5gÈ((8<§m¼à\u7·Â"Æd)›éÓ©LßðˆþH`ó4‚)0DqwU/Íý¡l ­L¬¾²áÝGžy¦+^4ú¦-ù)mÕŸLµQºÆé®fëm7kY±‡ ¶yE%^wEFQ#©ó£*!IùæM[¤»€ ^óü´1¡ï³ª[¢$¤€bGËàºQ„”¨ ÛË>ÈekŽEO%Ú˜ÈèÖœ€áÝmÌ‹ˆÇ†YùÀUmí¹¦Uî4Ÿ VÛmbhÆÈ¤|ÿ¯‡‚ÃO¼Õ ”Ý£hÇR†¿IÙƒd¯×ÉØøZ˜Êhð ÿîš3¢_tGâ‘W^;Û·é–¬‡ ÊÈ£vÙ½4 Z•Žž‰ ®k$ „÷Ó„U¿öŸ½mŒ·Ög÷.ÿ•lÛ 5ºè ¦¾ ó#mXrU*m²’ôª´B^|2kkK†Â1±Ѻ¦²Ÿ,ꪙUÿÄû8®Íê‘%ó‚Š”€Ö–Mø.š½»~ò&øbÉ샒«œ½L¥ãÈ×G¤²B,ØysOÔ7_½Ï©¼7êá GÓ°júûJ ‡Ãà#Üý‹àÅ:‡ÃÞY7ÔTY7Qí×òmÏæ¢¶â/2½ˆ?vÆûÄOú¬R8cÆ~ 'ìT9q[ý…HCêwöH‰Ð¥l˜ZO—:šJÃ8oz°èw[vÌ;kÄ€| 6²ÝƒÅ»\Æw"³ì­|¨UÅ=—Ÿ¶L$¹¨ißÙ§,ƒÒÞB:Y%¥ýéû@"'X¬¡“Ð4ÒÆüÝË1àª>ÈŠ. vÂÂÇðè+¼ ˆP§†q¶ÀâEË3jHD^d0–¬ ^ù5líÁµÓ9Jü./Ç>ÀØi:•a­,?Ÿß½EJë­S©3éâìjxT5‚®ØúÞ²¨ü÷_~ºHû ´ƒ€EüÈãÕ‚£¢« “§ï””á#ZEùêõNï hZ2³E,F·JŸ¿½ËÏÏGz,0§.Â'² ”ú wk_`'ê?Õnkd Š7C…'G-ÌŠ¦€F;̳i)`PôëòÙ]ÚžWÖ…×jËWâ6ý OÂãÖB‡cˆRƒÎ…>—o¾[ &½SPJA@™ºŽ»hã˜1T0Wü©cäÎhäüõ–¦H“[i‰œ-8‹Š‘Ð`›…W“…r²0íäqTVûÔ)‡ÓæÀ5ÿˆ\– •ßÖfCHǨ­¿E’éü¥ÕXƾ¹ua =mî²1¡Ô€bèѵÿ„x??…w/ÝùJ%¦†0#C r}P߸Ð!Ãú7Æh¸„Å$¶‰ùn?êQï]é5C†PQjÙ~!§õµ_¿äóAëö€I†tq3:u‘”OŒ^±àÐk'¾ ÒŠÕ=.÷h½wnî²â?q.Ôm!¹,®ÚXU\K³«³‰nKcøéºe¿CCŽùõ*ø“»Ú!S«¿v£…ÎÇ¢ë‰×ó/½`À‹†£˜«ïElí¥¢ÈIï¸o!ùIq!ˆÁ‹7=Ëâðª%ˆÐ†R(ç¬uYØÎÁÐvÄ:“}–£÷˺­—œ¾Ä›KM1Â)쥨¡q¤¤<æ™±8MúžhïR×z§ó ý1SùIðšiµëñqq4SoUnìoÓ*¥…!Åü††óÿF£? Àn£ :JylKw-:£Œ1„h*T€vòûÖ'¶zÿ$ùŒ'POÿð¾Ž#zÕîÊ €ŸŽð™_H1qáÀä–B7ÙÄ€yÜ?Q:þ¶Ó.‚€‘ðŠ—šWä,´ ¹XVq3f#Ûóq‘’Å‹ã^ÝDµ<«zËàשÀ¼Yi-{–•ÒV?aGp“ʆ§›šÙsê,V ¯œ4*€ü•/øÔ}r=Êçà1¼lªeÃïïEIÿØjó«[á!§zB`O¡YÙÿ–I[¹µNשcÊv%ÁH⎠« Pr4ˆÒïÐá#*\=Å5â'ˆ™_='»VØo"í>¬Äou@_¯–&Ž€¢’%Â.,“°Ìz;RíÙ¦j2ØPŸ;EšFÏ¥êâÓ-Cÿ"Är4)¼ßÕ‚ÈSVSÓÃF*åâ}{ +;ßVÜÞM±ÞêÛEmKrTã–%›‹Å”Ñ¢ÞÙ:¯òi!&´úÚW8{s2‚ AJÊo‹JÜÖYG7û%¥t;LPoOJZ7À¤¿¿¹eÈ*b`IJò Ƥ€Í™ú%Ÿ? Í.ÍB½vþ“g–å” «{Â2ê¹1þQ›£Ö|`6{úCHÜ#9ÕM¥4>|›Ì=XÖûkÖeÊ ,P’pÅ;^  ´à·gÒÍSÞåG×ÚÕuž®¬+ƒ›gü-iòÙ6œ­Žu{¥1.Q–X™@j5ôÖ =Z]Z¥MEfÃjä~Ä¥ãRg"?F«ŽtØÑ¹†²ë®UCw¦ÈFzFú1, ÷ îW;Ûã4«›iv‚䮨Ž,7bɯºÒVªPrÉâÜÖPK >Ë@ôCÏïDÖÄýs~‘g4ÛæÍ4ŽVu©V×a‘UïæÂãü·íU­ëá$ƒ¶pÎÓÛ¨EmTì"•Ä&}BÓìlE¾m³õl„§¡<Ì¤Ç ¥‚‰ÃÛ€c†’ؤAé8äÔ©üØAíîYó=$†-DÁ>²C¨i÷´.B“kAr¢ ¾§pRô5ìž G‡Ê÷4¿²üµÉÐŒ`îh,ú4kùDË»{«ÀA?g‚R?<»æ÷ôg¤פ'|f¬sž²GùIWQ©-$“—ˆšV[Ù?J¶RåÒ¦c–¯3Wðo‹j4DÆêÇÑÅÍH`tŸ‚ÿÚá95†ïÐpŸpn£6ø˜€ÎL[€\©ó ò—‡,üål΂£ \¼Qd|ÿsÃC —©'®ÿ¤ÿCXÌ|Th²zÅŽ<…!†e,ºÒ9¯­Ë2%ƒDgƒûXO}Êéa•DþŒ½’j¸MZ¯ï5Rãfıï8{Xé(¯ ²W¤ Â)°’%b!²s Žoa2…§ tbZ_žø3¤±µVZ¿ï6öMdò“ÏFÑ$¾†dþ¦q=Mîî?‡Hö_¡ä¨Õ!M±I yTL/„¹ ‡r#µm»ïŒ¼„ ÓuI ¢Èðá¹²UͼC˜»O-„6 °×”þCs¶Ù´¢O¥Ä3l{®­îh²?ý¨1좎†,x91*¬ @«Õ-Ž6Ü:È ~^í–ÒZ¼ôì|â!G†îRµ˜ eÆ Ô3® öVŶÊâ¼wC1óÅÁ@k‘ßé'Þ‡¨Ô«ó¬CDn®.÷õÕôrüøQôÆ"´æ°bkîäìÀT÷Ú*ˆ¹È‰ç¥±÷)€ ¢þ„ñûd'²§:Y#a÷[l Ù´²{]O-iD¦u¦VQD%émÙpØHþ4uÁòÚCÛBg{L0e-¡UùÂðòR¾ðÎ;*Ue¥L…6zuãCÏÏX=WwïïòŒCvÜf¥à&á¨/m®NÆM‚4¾´»ÝÎëÙ¨“.UñJË2p°4è í×D¸ÔEETå+ÈÚö—_F@óHDœèQÄsc!ÖßÎ 9/ò£íÞVà  kÝ=¨;•ÉÓkâyH³è^Âð”«Ô'µáçA+3i3nê=Q¾_~悈¿=á"]˜(©ºÚÝÖ¹aCà«x>#ú,p“ Ï¢^ù¼|»U8[Öá+  ÃOÝ R\â¸èÏM½àuI¡v’‹ë+n`S›@5VÁšV¹²ïBýîR]¤—kwÊòзp÷Ül…@†"VŽ/Égv,>åtÀ<çvœ¢¯ËñTϳ ÞÙŠç~œK/ît Ïf§»Üñ™Ϫ֤ñ ÃÕNÿÖjõZ"¹#•è wíbq[{®o±£q"gzßM§hŸ´•ó r^µñ¡±5µå ~`¯ßršS^c·©:åp8!2/ñ«»¾ÑF|¿Ù¿×TJŽp.²¹ÖUü‘$ÞHötV»’Àc7¡˜PTIC—–³y¼¼Cè@OŸ?ÈPAx+%¹¯’ÿ½úp_2Š­Kû¶Ä Mrìc°B òºS¹évÛ.¨æ.Z¶@°r¨âI=‰Pd‰¡ ±¨·léÊ¡%¾F¬¥ú:´ &^ÂQƒ?ŒG]{Ü9YÃ1íﻗǾ§•±'–G¸Ø«=’ºZâß‘UL‡I‰,öÞKÞqòÍ@u•C½X"+»ì­>/§ ¬‰pGÐ*ÒÔöµ¨Ž{nsPë?Ì&2åPâ ð«Ç’"dotAδ³Ýi m€[Œðœ¿Å½Ð¢MÜf«\bGaÖÁ¤úù®F¼ö¦G[A”;¬½‰boª¿%“CY°.Î5+WÇòo¥€YúaD¾IµššŠÃ\Ãá8<“ˆ9K[ì²sž‚W‹'ãLdÙœ|,˜Àyž­b¼YHÌ 3~!ï\úúdö×¥ÿ»˜ŸÐl-ŹBÄ–ÐadÏu÷hƒqÔz47 .õVÙó+xÅLw²Ñ·Ý΋öd*éqÛ€š%RòߎØË{e~îØ_'ýX^®jRT²Uާw hØåÔhÎ/ÚÁ 9êBNÚ¡X%“|N÷§«vß+&ªì¶L“¿ú]¯Îꯖt©2Úã¤IâñÈÞBÕ¸†îqœ›«bcG p Ó4`Ô?KÙö¼LÂvysÖþw÷«.rð@ƒž±+r\‚1Ým~w"‚Ñ»K(þ" Àø‘©Ÿ„0•ésÝ®¬ÚÔœ›[]¨3™Ÿˆeاþí4Ô³»E±Èy1M ƒc=Ž @]š^kÎe?¶tÁ6õè¡äÓç' œüh‡…¶öœÉ©Û}©Qñ&9~0—?ÉÉBm~*àc<3Èä‚6À¦ؘÅqb ¯“7=¬‡~øì F²D»¼öáÖ·8R_ï‰år,·Þ×éªè[Ô‰‹–·{÷tF-m•ÅMaÖÞò³€à£ ú¸ô-CJHãô™=ß_ß“Éâ}T°›Û§ðâ<^RpÐ9´ Õ :LVØ]™K%©ãCñ3´?º0Å,¨¥óóV~=¹œ}8ö ðZ>á˜Óóó4ºÂ9˜ 8–ù¸åÜ“„lÌŠÎÞqõÉíþf8Ííá-uË“ø:pÕ¿øª 0L„¶Öõ^HGcbFdÆ Ì^ù¶# 1#8 ­ÁÜØ½‘DÌœ9Ó{Ûo0¿'øWÿüÇ¿€ñ6:úºùPæÔyŽßy6æh¡wšÚ’"ª&¡ žò.O% Ò4€€E¢44ƒ¦<}oOÜäº8…‹Øí_ƒPëØþ›ê™ÉJqbúöà^';]¸•I1]ÑV”ÒÝÝJJ>¥°¡ú„å^Êv¤$YTpV–§‡ÔÇyuuÉÓ\ÏáÞj̇4PN†w·?I–ZwWºÙNK,#põ@dïÉ·9>uè ¾Àx›8ÊXŠ‘ã/ý”E÷ ^® YA/½ƒEÏ <*…_ÔUÏ¢’¢g´l£ÓÀdÿÿ-bD&z8Áw;šÒ´+m4Ó;Õ¼–FÊóðÛæcÆœ7Ôk×”pòRÒ/¿¸²…Û wMdÊ4ɽ5ÆÕDðý |ïßBû¡Éöb£_;?ÞÙ’aëìÏÍC÷FL×˲±yºVHÊg®: >’ BÙëÜVRµUÔ˜à‰°Q‹Hþ^‰\õp8³ý:=j¯a„ £}}œºv—Ö’Q‡e(‰Þ=[u±GÔâNÁ¥˜72¡`hÉà Œvk+æ8/Ìž\†°'öÜ9»Á‰Š*½ž5Åâúl‘Õ<‚P“»Î3°À½Êˆô—¥¶Æ];¸aïfï7‘c˜ûE„‚·r”&ûã^°¸Ê švãuºËKä 8’gnËÈ6 *:¥òûy°¥dj+ì1!U À>^èÓ^ Úé¹|­®ßÅò:Øá ’¼NŒt¡üY•ȯý¢3jCJ²ä…$þÝ/¤«õ;Ñ¢‡±™i1Àö.´âŠ¾î€„ç€*X‰¦–yB©Cú˜ [š^Ú§€Â(lõÿ¯YˆYŒZѾ5¾ßWµ[›¬ (eÕìàô&FÖ¾d',Lº—‚Ÿà`Çfn[øÇvF ˆ—š vÆÌ7ïóÛ&§»Ës³W=iµÝçvV£È×7~Vr|•R¶@†\æ2î¼ï?ÞQ¼¬ƒ«ëžðB.¥š·„Âw•tW}: g›P¹£’Оy¯QúV¢÷Ѧ[$kßÙÐÌõTe! Šâ“í`!e, z€¯üŸZërÏaýK·Ð_ÒßInûéM;›£CD̉¸ü 是ÈwAˆÜÔ¡~8÷MÚY×ËoPÀßÐc¹×˜ò2Ïßh‰8ï;‡~ýAiâÙ=¹!§åð8UG,»R`g-‚ò'àìœ_(žãÓDÿì`2?ÚÔ endstream endobj 48 0 obj << /Length1 2119 /Length2 16739 /Length3 0 /Length 18057 /Filter /FlateDecode >> stream xÚ´»eTœ[¶5 Á‚w…»»»»4HÜ݃Cpww‡wwwwîÎKι·ûtßïï7j”Ì¥s¯½Ö~F‘¢ ±µ!PÜÚÊŽ‰ž‘ +§lmi`ÅÄH'å``af`¦gdd…##±8˜Y[‰8¹¦#‡wW;3##@h´{W ]r@UW €Òà/ hmï@gh`ÿ®Z™˜Y©Þ]D¬m\íÌLLþÄ`¡£ûé·0=@ÚÀÈÜÚÙÞÜ ``e ¦—£È[;¿ Í”ÖVC ©` ¨5j*bÊ* e5E*ú÷À*Ž66ÖvÿÃEDEUM‚ *$¯*ªÓ$ÔTTÿ<ª­Þù›ÐäUßõò¼þq—SRý¢(ÆÄðg &€ÐÎÞìOÚÿâFþÎ ðojï® ;kË¿(Ml¸œéMíè­íLèm,þâ§jjfp¶¶3¼?Û-€ÆÑÊø½œ¦À¿üÙ€¬™ÐÊøÇIÜúo¥å{)ßÞåÿ"ö^‡?1-þ6Øÿ‘ÆÔÀþ/_YEEY€¥™•ÐÊÀÊèÝÐÁÀÁÑðõ/ÙûhLñ7A @ÄÑÎîO¹ÿUÙý+ÍÿR¶~_™Ž…»§ó£½Û?jóŸË6²¶²7³w°ÿ;"2³þaoÿgÏ̬þ’É ÉK‰‹©¨Òɾ7žœõ{u¬è\þ²þOHT–ÀÉÈ`âb0¾7©˜•±ˆµ¥å;k{¸?å5{¯“ƒµ+Ãÿéks+kg+÷ÿ+™YƒþTÞØÑ†AÍÊÌÖ(%ú?Öï"¸ËL€FÐt12eø“î¯nù#fú#~/ƒ§»µ d`aô4ߟàÜí œ€;G §û?ÿ‰à˜8ÆfFïþ>,pE—²Y¸þ¿3ù_Õÿ´å_ƒJõ>¥ÆÖV®c ŽAÞÚá½!(ÿÿ™³ÿÊ%îha!o` ¤üï’þ·¥™…ëZþ—‰ðYJyk;K‹ÿÒ™Ù‹›¹ÍŒLÿ®ìßò¿s Y™XtL¬ôŒ,ìÌkÔþŒ•Å{ÿ¾ŸAfް?zöÿÒ½·¦‘¹ÐÞÀÊø— ø^Žÿ"þ¾hdE%…”ThþOïüe&fedmlfe`fcØÙ¸Â1¾73Àé½·.u €ÞÊÚáÝ`ãèà YÛÁýÙUv6ƒÐÑ߈À ò/ÄÁ`úâd0(þ1”ÿ…¸Þý þ¸ FÿB¬¬ïè}Jþ­gb|eüÈ`þ¾‡ý2¿G™ý ³ýÑZ;ÚýÃþ=é¿Ó½/ÈÔÕÆhõ‹w™Ù?à;[ó@NƒÅ?à{>ËC¦w®ÿÅôÎÕúßÉÞm­­þÁéÍ¿ÕìïhgfýÅ2½³ýy¦wjöÿ€ïÿ€ïLÿß™:ý¾gwþG¡Þs»ý;÷»­Ðîo®ÿÙYŠNؿƷÚÿ\zþÂ*vÖæ@ 3ã÷Ëî?Lä ìÌ\´ß'Ÿé]þ~ûßWºÿ‘€ì߇Ö?¼……­]ÜéXÙ8tÌ\ï-ÊÂÉþ§^lžÿákô÷Uà¯Sç}&þÿ9‚@  ÐnqÎÚˆçû·ÄŸÅ^b¹%Pd\ôÇe˜üšÒÑ‹)-xØ¢Y[Ä@<ߟTò¨ðIôN¼ýþ®µ‚i&4èÉ«u¦v™âI1ÑðQ]"g;Y^7<ðé$ɦ§ÅD†8ä4wAó,5å™cmç¾ÔÙRÓÓÞº|À&Â;|‰ç‰j¢üñ ž ü:¯w^xûo,/Þ è@(Ï.ªé²kÜš—¬×¦’µ®,{è˜jr宿L«„¯x¸.©Búá@ÞåRRRä…rL'Q)Eø‰:C}r·­ûˆ9Rå'”ìTxÌ <4h—¹’•r•¨m ó|ÓúoÙn¶‘hýŸm®¾H<ÿ¸YÈ @’l¡®n„.Ãi®zæ¨[ÿ B~“NnÍ¥qÕÎÁ*9)KÚ ÷¶Hã4ÚF€\û á¨|â©ó1è³MG429A|+bº@œþRË9Už gN;t»¶ƒŠ7Üaiå¾ÒY÷3NÂÆPtjÔjs LHb-g›ÊcXgÀ±®¸%ªs˜Ì}P¿gËZt6¥ËÊé× P´pà>xùŒ¥ÅÔNž6Ð'Äž-dî¬á¯ÏÒú»ìs;bÕÐ<Íþ}:a‘§E†\~ÁT ¾G]<,ÅS íJ&žÕ0}ÿ©$Óöz†ˆ×ê€ €¡”2Œ,ô"Ì3Œâú®ÛWy %0©úŠ)*çñžNˆìH O#§º‹gü빞ÓKm`7[áàz_qp”¼® ÇT½ÇÙwÓX¿úÍä‘n1#äm¢©:Þ/З×<ä³e:½Uf+Ã,=CôWÁaÊXò2º˜vßqv¯×bHXíäHIôkÞ1C3·½Ô˜{™Ç"ÄDÉëoÄ…ZèýÂÔ'v@LæKð…^…Sßé³k'£ˆüWD¤Ö {{jÐë‰D 0ëIÜ̸MzvBÔF¬2–-t\wÃ#¨PîDéufdjJêøº††è;mdà2>¦ÇMû¦Á€¨ÐS~¬u‡—ô _W’Üë âÓud¨]M>ºŒñÝãÞüð2yXCûeâ,† ¿Ö‚?ý'úöe²ÌcÇZ¬ÌöŠ1‡SÆ ZgôFçuŸ_§-Ã9À>ùÂÍÑÖ-(¡7=Ùc$ŒÝc(¤BÍÔúÎ[¾oäiòÇlÍÖŠv·‰q 11%3|x’Ç$Áž—¾'Ý9¤™;ÐÊ<±U ®^t1†sv %Õ¡Q²,‡×*Jr”_¼z ¾³ÖŸÂG‹?õ?ΉcM«ïaÉê¨é–ë6¢Àí˜NŽhºÙÓ{؇zjð“ˆí³Õfºƒsù%qÒùÁb×So²Œp9¯²JÆ™Ohf X¸­ï;ö@K±>©À³•G«AL8”ª±p›(Á͵¶"yÅØ~¹Ù×0 J?vŸÓö ÖOcs`I1 ãefm—Ç i®¹#Ô-VöÜÇäœÇäîhC[eìCõù&â§è¯{µ?ƒ×Umû>fù»!NMÂù Ø,;ÀÀŽ3ƒgH†‚õª gÚÝã8Ý#[wt9 àØÀ°° 3Ÿ„c ËÕyç–Ø¬«5Öoøz}ì+üjâñx1ã´ø¥s)rZG‘¤Ž–?Ç·+‚ðTºC@dRP¡:»‚·é ·[(>Ô3¶1ƒuถ›zq 8k¦k³"›,í'©6eû¬Çûvšæˆ†ª÷ãa£~‚Â-“¼§?¸€0$„`Æ£ïmý8:§®¹òÖ(å>–LÖ–+±×ª_é*Z(%j™íWFA—„Ï{ÀÒ“z‘Qy° ÒˆÆÃ!M}fk€7?näß±dKa&jƒiŸvت4fãyò¥:è@øæÙw?•+^>‚З|¾žØžŸ%íG (ß¾j3ÓV„˜ßZ€—èf0 u]ó{¸Rbü²F¬[³x2¸;6B·kƒ ÆB~mB÷Š0™p¡4¼Ž÷¾½ÔŽkbŸ'I¯ #¬×g?‚ó헤޳嫷IQO®+ÅëÈÉÛ¼eŒÖò¡¦*Gòó¡Ä‰É¤D:¤NW§µ†ÁSµHÏ!Šéom ÉÃ.ƒÂ¹e߬]vÂ|‹†PÒÑ8Ä `Û;xxsT@äŸô”¹Ÿ»ãyÐÎ3¡8© ˜Me­Rùg·œ'c1Øv$ñB":âzä{s .Û˼NaA rš\·Æ=9Âmh |Á¼21žü=ŧ;ÔnˆäD[ˆƒ æ«Ûêû7ˆÉfоüè’Û¶&\2ßšd5¢”éL}¨4¹%>hW×Z§˜K–Í­OâÍæo[Ý Í«  ÜÕ¤‰*ÄŒÕÉ¥ ít›‡§öôÊGq›Q-3NÉ_æ{žJ¥‡¥ëè¥3ØÎ“Qô´¨¿Ü›'‡¾©Ù9(U{ÙኮÒcÔ¯²ad«éh±Õ§ò£$Éw¤®Œioê ~õd GƒIÛ×ï%?W¼â¹4–‚u¨rwÐÝèñÝOƒL(_ÖÝïûš^×kŠ´­;DFS(¸˜éë\Áú šïìÉJoóÆí¦…³(f7íâZ¸nø&÷%ñY| ÒaZo3¿Õ›œ$z…i-R^ÅKZ´]=ç”ø¹ìÇvæϸ՘īÉÒPYñ´Ô‘`:œŽ¡fo~rZ¹æ÷šHÜÆ`“t•‹a.t¥Z\E¨ÓŸ%}†Dƒ~òk´ßùnÊ÷$ªÄZì£/Xçgá¨sÆäXƒ°ãÜc‘v“säé—¾¸md»Ý9Cžq‡«±IkÐxJ79ƒHN°kßÁ%Î0·€H/`Å—ŠD%"WŸ[Txf¯§P éÿéܹh>¸†´ó;KÜ©ØÿWÕ炟¬(ºž’½IPŠéÔKü²=?ß 7.¬° Ð8Ö2‡´Ko¸ضžQvgDæm:lú4TCÍÉ}…+DÃLz¹­×ÓÆCé­›Zv/8Då;áô£$Ô(W¨’ áë8Ýc-.ÌÉ8&³3¬¤ÞDUìk@½*&~éØãiBmà:¦mó,C»EÛ«;àŠòlFÛ%ö^b¤îêÛ;Üy!X"DZÓ#)© ¸R¤8¼‚”]¨ª@Å‚/¸&fÿ\S½†²± –ì#ß“>QÈV7OØ" ”Ë‘^:6ºÅÏœô·]MæßÊѲµu>9)hmyr¢}͆e*£€\¦r@툺ÛÏ¿Þ;ÿu˜y®i¬@Q_ñ§©`>‚è³M¡Ÿ*bÉgÕ YQ{9D©ª:ïw3ƒMâÕ¹€ãø!™|[ê5ä|&bð‹ïýa—ÄP»;gDŒÞ ¼M”ÓtÜK~9SÚU(^‚w[–:³•‘Ö"§Z‰S“eåΡ(ìjúbÜØ‹©#m¾=éo,?=©Ž'Š„ Ín0¬L_­{="ÅÈý,]Tm¿ùì@ÔÏÎÒâ_ü.JügÚ´œÒ#0)å2ðnAìçD“醤 ƒn6Ø Ç— õík„VOÏÃçhA¿…XŽfš9èxŸg÷˜Fié/aUH&ÜábÜX+~Žš ÖPÍ`Þ/¿^"> i…†ž÷ÎVÿ`ˆz¤ÔOTî_P$e)m2rKTo¾µ\½TrØ£„N„æIo¯¸ V¢ˆNñQÂ_?a”Ï3c\ú¼Ñžõ~h~vÌçPžÕ¸Ùde%8C ë¡·)–AÌ È=]€)s´21'ò |ŸûI¿T,5ÈvˆÈ6ô\AþZÄ(óTß03¤ôlé€f"JÂPæèºÔ¦¼ÒÚ.³_νbaÏbu,ŽïÛ€n˜q~`1žµÂ¢ßS²SƒÛª/MIbÞbtKÚˆS‡T䓎So¹Ö±J/FO+½e͆\WN_?”TLtÀ”Á…ÓÖ$.z\^ûùçWF½+×ÂiÃ1Í´ÂPÈ} üL<ÂgFR1Kˆå“3Žç%®õŠC¹™â|q­øW»j(8a'ƒüóÕÛÊÖ*hcþ2½Ïå;_K>²!4ʼõúØ®ÓÃã]ƒ10ãúViž3&cüšÅS5+Ž+ yØÃ["2ÔË寺ì Ö/<¬§­$£µý°ÍRn@–R!¼o÷;8(G7 úštܤÞú²ŸjG´egd¨¤ty,üLKÑ2’Û̓úG»ÓÕºŠ?ÐB:e"o§ÂåÛ˜9‚+cW§E=æ‹,¯ÌÕ˜ËÓ2£„©»¿óIÃC¬Wž}°Nb#Ÿ×§Ñ'Œ®#³}T„â,˜cÒ ò[mñÅ^<ƒyæ¶BÜ _燧Œš‚ÜÕᳺÍìCd±ó¬PÚérðTâã¶÷Ÿ¿w¾¨ÓM)D\ckÚ*ÜI`±®UnWa`·Z¥íß4Óz!¥,“ÛUÑg÷±È‚tZu Âñ±TÉD¢^ko;Þ¸2¿|,'ZmÜ/ü& I J£Œ]ÇÛ“ÖD÷80[ ú6N?I«9«cΦütó¦Qx”¿MFáËý›šý^‘¿Ä¯WO,3(•„ÙS¥A/1w=OPè!¬¶ ]r ¼Ý6V¸;Æ%8€Ûù䜺E Éh;°j—£– ÉŽ,L•FlC«V³ù¾€”OÀ 9ÂFÈ%[”fx!@¢ºô C8è(tÝÈÛs¶aþ¡†Ý:w8s>´ú}oa[rLoŒ%츌hšÄOy@rŠ4Á™M¢AY­><)ÒDNìÚþf° ٿθÛhÒ±šïX§~0lÒâü¾Q”еÀ{ fTüû˜G o-ÊÖ¾ƒéÎqxBßQÿ ¡Ä±­¿ ´q7Þ®PEòtS÷m‰ ¢GÂŒ5h©T7#*PÜ5jàq5±$@ЩÜÂT¯¡Ð‘rq·ˆÔ"Z4Wù©ƒF0ôðèI’gè~\NoHêcÎE8½œ7‹•_ä$ìr¬¹^å HÌ48VâäºÖŠlDÛ?¥çV8^íô‰¯pqö´ù^2& GÓ-±Å4pí[ÈÖ]ž á\¡0)ÌY~ÔGµõ˜êui_J*Ìù{^m˜Ïšˆ9·Ò¶¯Q¹0*-­k’ÚÕ_œìÇX ô¦—ˆ á{KѵNJ€÷™¹75 q+‰M.7šÝý+ Ék‘Lƒ¥2·KÉ»—“(Ó¶Þ×ß-ù­¾b]ñrϤW¼¿õ‹üâƒMd‹²Ãã¤!ûwJÝ¥T¾^ShèÕ–.þ{Ät³—Óê…,¾æîÄI°ÊÔN²9J‰âà£gw¹òB‡#V(þå{´bKgî²0D[t¸­ý]_$­ë!5Ü$VÓìø“Çx¾J[ê*wzõטúâúf^õzÕ"9žöõÐo¾!.±TˆcÏ¢ÁxŸt›Ì:(¾ÐäA+D‘rFÖü¢…A­&ùøª­ ˬ"¥%åŽ7d‚IùöýèóRÈW^ø¦©ÃÆÆ©¯C„ÛÍ8˜TV>ìéWºÙŸ!ö>s~}x®å®»f(¤˜Ù$¸(Ñ3ß2ãýÖ3Ÿ@ü»/?"t-°.¨’|^-ȵªFô’ÒÛƒµìñÛæö¡™âið7›²m;AÔ+…re|>J¯øoA¤ûqxn^›=hú~XëIŒúG4zá7å3þÆáNVÌ x&oÙ¤gç“!Ò{L?«¯jNÂ쀽ӅëòtI¢·^ìæ>„l/¨ïÞh³°¬B)ë‰ÙÎ>¼Šý Û]â{h§”{ùšp…»Æ±vgÌ¢öG/²+.v{"¿r…RšW)Y°½¼æ\fg­(ìS¸¾Ä¶aQdzß@Œ¥•:zˆž ÷뮸)‘N ‚Üå®BÝöšÅ]¬Âh[C³q“¼ÿì0UÏV ¨=ÔnœŒp£û„w§,%اðl‹Ávéúz“ºþ•S6k´ªR‰$:C´¼< \> gœýìõ8iKþ¢­•WuAõ¤kñcƹܒÒ‹’µu‹¼zX8Ž~‰A›M^^÷ñ‰ÙÒ]"×Í‘ÐÇ0¡ùAX8ìáâL¶–Råkêb,ΠnYû³¹p¯3ÇÀ€qö—“öŸˆ§-MÈÆyðã Ûrè”E¾æ 0A—Ñ…Öd°¡P’§2§ËWàµG¨‘d•ŒéÏ3ãß?zÒ_ÙÅÏ­PLÄȸÝTÙ\hü,3ÏÓ=¹ÊÄû°l2™ËÊ˱ÑåЋ ‹XGM3$O.Ÿ3Ðõ"¾¡·Þú~5pÕóÒ‰bé|ZÍ4;ìÍ+OÆÅªðȼe…Ò˜2¢züЂǃ·:­3,ùØí—>(UD?¢n*V[¸SnSuÿ“ åÂL´,Ùõw='¼ “üº‚ˆAÝãûGr¢³Ã šêu[oî_%6݆h²MâoÊ„ò¤Úý üèƒ$ 9'#מ½a™f/Šä{9Qº9NoŸÕ'?–èk†.í¢ôrû‡íŸ;Ž%ä³£—/Ù3ÀR,•v— F¥Æd[…nQèù;Û%*§éMi,}÷Jh[C]Y8Ÿæ}uf%zéÑ侞W‹%áîXŽàúdBé¾ûÔ$_µ™Åž³%Je–!©èÚ,Í­¼vø}޹‘fAch‚X•dÌ˦|;eðé ßH"½–,ãtÉ¡þ„%8S-Apé·¿ßOŸè¾—L&;h)u2WÈz¾}l¥PÚW‚‹l;«—«æ°>NʇÜ;v"ÚWšæëCÌ­ÔmE\ûÞS–>ÿ:ýšN‰Ã[£ávUÅ@quÑ£S#¥ÐL,BP£»lì2|¸;r2 (ÜM\wñÉd]ö¢­©´EXú±dª†s¨úi‚ d2p-¸%¸T!Ÿµãl#™H8¥–ÁaGeq³ÄFÌ,&ˆ»×Ͻ>œRݰ ˆæç»„Øqá/¶êfFq˜®îà%½Ü‡©Ì-_°Ûøâ&Wù†ÈyõpùÒi­>·Ú! fQ¸kçK2+#}Cˆ„N ÿ68»,¯¹ca–oZЯ?zs~Ÿ=¿@,ìPˆ¿à²RÿÀR|ø¤]°µ,k™¥ÔùK8¯ß )Õq:fÑ©SÅgKNWï3;ÿ ÙUM¾ÀxÝ8t·Õ¸r®ÝˆºŸàyŽÄ)4L:|âEo¨°SR·U#(ÔàŒ¤HqôU(IU_ÆÞv%ǵyü]‘þÐÅÇn2c¢7ÝeRª&$¼yûŽhŽW0e|Ø×ƒí”3Då;»í"$µ’ïÊÕПw€²¢Å‹KDÈæT7gpÍïs7ù‘q“È˪½^VسLVa¦Ùe9½Ó®ÞnþðeRæxµ¹‚Ù"yCõ ó4E ¶u2e}[Y› Ô‡Úm—e5…›Å'ä„Ô‹8ÕåLˆ§wUjö°­«6]¤0¾M—×S·V\©ïvdfHÅŠ×lLqb™#Å>jȱ’­¢®íjÌ´‡2²p!™tú2xõ$Óâ)Š (ÕJ9¼NocŠ¡¬_(d"Ÿ—Á>?úQPœy´µ¢‘àné WŸ‰Ù¼õè\ªÌá rùø#Âg‘æŠ&#pMWÌF&¿d¼?ø ÅWögZôØwYWà643Ù<‚wÌñ|ÙÅž­J_TÊ9ãZõuEoãý¢÷Ôƒ‚½×)ËÒÜÏ£Û†w_+Ò÷&Ã"é«^*¯*¤ÿ¬Pd£JÒ—dEσ¨tãP·Ã†|ÈWʦ¾¹Y„YÓ ûóñ³¦¨_ÒM£@¶ñcÌZ‘4¿aº:.ˆ q86Mà´öÖŠEª'¶xN/+8‚M‰LœhVÎÌž‡ÐU87lɤ¥ ;z¿:R'Ûr¶!EtÅcbÖ›ÞcS¶ƒ}:ä§Ô£¯Á"-LvÛ¡-Ÿ[k^ùVýª-H6Ù;žyjþ².]èzƒ·†Í‚yƒÄ06 ˆ½ßû”|þð9>ô·¼È½pTì„‚®ÍØ… º;BôéK,“qw<%æ,Dâ­‘ÛŽˆhp=Ìí²\ÅkÈÆšÉA³?É <(‚sÀ"Ewžztäò’Ýã¸öÇcâœ|aˆ!C‰3÷75R?/B = Â^œ/½kIà T–¹JŒÓ$v@ò»ýß6(^D=݈ðn&l«r4$Y ®Ä晫޹_óÌ\sè ó"LMöX~5ëD󶽬£|!]@,í™gÂn.ÿˆáM4Ç‹–dw'b»9pá- ×hxC$ˆH"·Ö ߯"Ö> ˜ëGjô&'Õ‹ °eŽTßñÛADL)ýÙÐsN}?a#‡ŠRFH=6E¬îF1ƒæw•^ ÒfZ­žÆáïËž¾z)ËyÌ$q[bœîØ’·9:•ÓQCFÔÞaeAškÐ Ù„Óh”¥ÖÅßî]¹ú¦#‚¯pÊAŒ³ÿá­!K=rùm{¯j¥>³âîÃÊ%†—Ù ªÈLù¼ãÞߣçÓ¶Ðþ4äÎwD €¨g“‰R+8›SÆ×Gð¬H0}™[¥ƒênozë5”ntâ•ÒÀ•Ò_—î81„cšƒøÈ·;¹°'b&0±ŽÂÕÓcÄ›1v¦Ø€õOÌ]VÕ^IÒT·}$¯ 6Ú´¼€z^V¾ŠüËƒË¾‚H †üÌreT…FÞ:pðao¸²Ðü›,Áá¦î>TÖ•wŽé®Ý(ªlq¡Ã¼‚‚A_êCƒ2v‰ñäJ|–è˜Ï–¦‚òtq{ù “Xiq» ¬boÆ.|ÇgI?¥`3B¢s¾Txë-ÇWÑþ&†³½:*hGð}¦ M ÜžKêwt†Ü…»ÍÈ7î4YÎIh¨î”iî\h‹$˜}«ÛÐ&ÃDŠ[²®;âË36h›ô™efüY£CŸjWàžW£d;g¾R]x´©oäé…|=Úøœõ¢ä~]ÞM#ÔH¿‚ü^;2BÆ‹Ë;†‡èp™Ä㈓ذ†u¤]4>ÝRÈ?*× þI3`Q‹û°|€°"°T)Û¥Nù¥nú<³Ïš[€b¤itXs½u¢Ê >5«Yæ¬7Ï@µ9L_þÜH‹Ì¦@ý%Ó Ntºþè³<é!5Æ]ûCü `ÃäÔ\Àó®åˆtޝ¡ÃWYŸN´™ÒD:ìéü+’Hv~'·|­mK»”Ê•ŠÊà[²#®–‚^èz?$ª‚ ™ºÒbþB™³lËo‘äïß3Ù 'uŒ¥Ød¯x{\ýë¼¥?¥ î‹â—±j”ÖNu>% ÿF.†W˜ÊÏ Ófêr(B&UÞQßQ‰ºò‰ zeQ2p*kìÌÆL‹ gÅY–§).[YW†g¬•úv~ Þý"ɧGº´X ").pÞ‡oc˦}¢í Ì£Õ:žE•øÎ"u Õ±F9ã Û¸q8ž%x¢uáÊ5_—¯ÛÙ®÷jòóÎñn .±³Ã§UsÈc‡n½—†Ñ’¶p-KWFži”É#x»ø”=c‚œ’C/Ä3Ê+™PÑ~%êô#ð#ïã væ½"yøZ×B¬™h‡È&ü¦x[ˆwIÁöû-ÑnÉ,²Š»g ØŸ-Rßh’’–³œ:–¶™#Z>³ÇÍ[˜*ÞS¦¸G;þøQQ ½)|ã#Ð M"çK¸ðÔÆrðÒc°­óEÑW3'@/¹¹£Mnþ Œ !-cSšb•ðÐåpàwtc7àÉ*ªH 0Îk,ëÎ>jØ•N„mª±éèw‡3 o ¾3ýl0AGY Eõqó$_ÿ"VB–Û(÷ýKÑbÿ¹Ö6QýG²>¢óºûŒºj,ŠXo‰ìŒe¬†™;²4i:Â!³ƒ~ªF&|UÇ9'µRdüø*ÎW›oF¸C…¶€ß&Ò ¬Õ¥ûÄ £qìq_Ùº.7÷›ï‚5AËÜQ&4s¡b~÷­çdQ‘Á(be ›+"sÉú(zè[S‡Š<Ë´)‡§„ë\K= vWÅ0FÔÿ‘1öwE´¹Ù\œ,rÞ2é@ûo~JG ×ñRß3\ëÏ4KfúZ•‘þ¢BÒpfÝ–CÏB‘ÔṺ́JC9EððÌXSPžÄU'CÛÎH¶¨ÓªŒ9žÀ˜tœ”:R4+Ïö¼¦¡4Nc,S^=Šå_ȼ"ôKÇØC3D “B™ÝØ;Nn>¤op¤þ ÒÅcoÄJcÎ{õµÇ3ï0îuÍ/³S†_ýŸ~\OæãæÔµ±Gí»æ¯ô,P^Gœºx«*ÈÏ™Î4l/‡è ¸¶&ÛÏšút…__²j6t@ ¥ã…ý¥Ôõ£ìDfõ@?)NSVŠý#êºãõ/ÁVg˜eöIG_aŸ@Þ(«C(šK+øäB˜Ï^@Z/1v×Ä}§e<²3‡vaOþ$óG½úÁò„—žU›~æÅ €ìÙ°@©0ÿÖ\º ƒ²¹Ê§hÑCLê8ËÇòøSxV«æ†ä‹+7DÚþò³äÀÎ}„_6ŸÞ*ÛmÛz-vT°O’&„4êŽth|Õ8¥¯†Š°€Å‘Û©”´£…2– Ô2[¿ù?³™Q(ö;™Ö&¯ŠUü"£Í„£°ÍÃe{;.蔽´ ׊ñyÔÜoXçX›ˆëûéÍen ×WcŽzÏ¿f£}4°ö gñÄôšY‹%Ž ' `ªLI@…Eã!>)^ÍET§_¢¤ú42„݆ =‚ªfÏŒ±“¯~Ò@5ô ùÃI_Ïhw?šŽèWÔ[Ä zØÛ“yêø;èv߉Ó»8ÎXrÎ5$phq¤4IaÛ½¯w× n0®¼<ëâáb^ŒÈÃPi)ebŒUdõd¯õDæÒôË×<$¼X†þù£¥´OÚŒ£?u×>-Dš XžõLu„h¯T=ïß(Ì„S³JüCod!ìlº!ØÌ|älP$2w›©H&aA5uú r0·ÎîããÝ Ìœ°š}(™ ¿žê¨õ ϼ,çå ¹N«|ÐeÜý']áE¬ï=Y3[mø¢RÚ/R#¿ 6ÀzKܯø¼¿ß’Ûá1»ZÝÅXÌ@jš{@Þ• ±M°¶/‘2©ø®Ä´–d—„-ÄÅs¤ô1Z÷#˼5²!;¤†ìÁ(4ž¥¸ Ï9,¢éÕÄvsü ÖMÆ­²O‹ÈB¡Ò[·[Ç ÜÍÜú•Ñó Ò”ÅÇ<¼°=̧iRq­¹­êpø »NQàÔÐG™LôVNE0—˜[`™¯·Ã¿hº¬ÎWéØwˆ^a—"‘,^y£Oêp©×Z0MWݽ]4jÈŒ]V+õàlºÐÜ“xpõ} 6ìuÙßPM%¦Èê7f¯6æªÀõá@Ê´Bzb¾+ô‚²øŠN’ζìÚ‘LÈL_nu s±;¡Ìo9ÇfŒð]¸I´'Î^F#; r3ÃÁ×mút=ö÷µ"Ð|›ˆ_QÆ/×½ˆ”Ú DƒðPÚDÅ™âgAÂ…hW{lhï'â¡…ž×ð2bÅÛÍh5Q(T+Ü©ç¬dì±üYÔìtñUÅ’¼Y§3Ð)5~æ‰Â-÷Ü^À4>V »°¸‘~iBùðŒð³ÐÉʇN…&õï|ÓûŽö —´b¾¯F³$1X Kºû8Ãø+õ™D±£,émαyè<œ¡§ìèù¤ C´ç:‰¦xóõCÁ¹èH¯÷¤Î)¤ @ßr…ãv‰vt>E“Žè‡ˆ‹-hŨ™âYl•Fÿí7_Ÿ¶äbòÚ~ƒ¯ KöD{Să4+rc†OŸ‚𣠰¾¨÷Êg°‡x»¯Fѹ\H´.îƒ ÖC}z´I†ÃèwMÇĈ ó­ÌLýPÊ1ì“ AÓ•™x+çƒc÷Û" R+­8±ÜRd=|vé’ǽsÑo¨0–r òü.—OvŽ ©´‡ƒ%/‘ø‹å1oÚŽ7;c_zcÜ’õ£Ô§åÓ>C̵Ûy_²SÕ´—ƒvsÖÈý‹ƒN¶2ú[éGgð%b2˜´Ê2ŸŒ¹¡ŒùCáëHžÏåXÃY))ó‚Z}ZKR‰¦Æêc±¶Ö‚Å"ßBºüÙ|}31ë2u´©¾¥¤SxÄÖq {JÍÈ®Àòôó/DëðàøîgÎßÛ<Õ¿Äßllá51V`”ŠÉ‘ùAÔ’ûp‰y_£JžFq=2˜{ÍêM/Pí­´™ Iã)8%]v~&®-†$¾›˜ÉùºõE‡DÓ€ Ñ´ò§¦˜›~¸Ø˜C¥Öžnþð±ˆóE˜]1{Ð4&rÔÀÞyFmõ¶ƒNÒi4…¾…<ùù^• ¸f‹ú"mîjðù¿]öþx:|æEé«'»Ýü7‡Ð ï—)}Uç©‚y×$L»›yŠï8ü1õ†c‚]ºÞ§ƒ™p,¯þƒö{_l¿Xö óVr§ÌÌ9l³9'æÛ…‰7 ±- 2:d 9Âý䨶àL5ùá£ð¸ÒN¹™ÙfÁ-ˆÉU"ùÄêªM€%3ªmSâ,‰o‚îf•lzpã_:~ï~Õ:}p€eÒÎU“kæ&ÊŽ(ˆ…Óû2÷»Ñ’ýè@ÒÓÈ€i¼®‰²$¾Ÿr2˜%Åã9 ^èéÃñ̼j­ßý±[Í©n¥ Ê9WQ¤¥ßc¼¨wÐüìྭ3ë#ÛYÇóâåÈTÄQ¬µ³l@Z‰ßOëùKÎA÷ú¾Ãˉ Ç®âJ !׿Ñ[ÍcäÈPQÍy„*¢±L}÷5…Ó«d^‹>‘"@¦‰h·®µ-(`>—FÉ•Ã&°5מŜ´¼ía&6Wf­ªûnýà qat‡B!xpüO¬“Ø tÝêg()C!Û„ÉT Ö?'IÕ„MîÛŽÍ.B*ºÕ. Däà]d°î–>¸hg°-5šG¿ÕÏ87«B¥¿+{´m°‚zh1à0ci8´_¯‰tšøM®Üñ–1«ú÷—»&mù"¯Ú§…•ù]ØYаˆëŒDé#ç-ëpô™åîn‡ˆÏÈÔ‹Œww¤¹P=Ëîmüé˜Ö‡•_£Î‚-g-¦Û†Ì[Õ°KŸ,ú†6¿W9&=S½¨ë𶇴räìdýl³Ís75இÀkw螆զ«G;N޽^KÌi·5†9¼å´'ñÄ ‘˜.¡ÕÐҵÚ@¼xLn2Š$-…¸"'ö.wËÐ(„Ÿê‰u»˜ýÉ›.åÜÚ5î&E± Ä&~²×:¶ÄÒ‘ÉÛqb¿“4êÝRöµÉŽb6»§:çÎCuzÄ#\rt!¤;dZONæ¼å!Ð,‘L"ãùC²õ⃻!!–tµÓìÇF/òšŸ_±âvëð¯î8¥©làs"knß6 Ë#H¬¿ZNŠ{Rê WÞŒˆoSƒ-ŠLW%ÿSJQ9¶¯qŒ“ÇãKæúWT¯BÁÆ%,ÙüS´OäÏz?(ÍRž_.¹zŽ0…BDyÃâh6qTöcE:E ÉÁdÜÚóÕUùK'„èZÖ>nêªlèáå±m8i˜–sœÊÝZõ­ÐùŸ" ”tj¸ä°p¹ Ï]m‡ôbçõÇ Kã#u «¡ ªUn]„£Ú~ƒC,]zÜ2 !j4¶E¢ù ¸'ÖØÂá‰V5Óa(´€]!*x;$’»vGëb|òÇÌ‹Õ[¤§BômsâPÜ‘×Ô— †WZD2‚dJhÊÑ8Y…ÒâxæÓ²¦îð.‚jæY¸{l]ÆèWg<ÖzDâÅú]…Óp‡Ò>k';XtP ¦"« _Ö¬¡NcËLof?Ho2ØáïK¨9etõ).Heõ/‚jN¼«m™ØFÇ;«›¸¹_åÄ•ƒ°”Òr"5ùõšjåÂWR?Ê.ÚÎSëºn© šµéÉvXðé°¤VŒÄü¬ô‹ùú—)@Ç9V\" Dý©ŽÂ¯ÑÊ(žÞ…‰¢)žP°¡úàö½Z›-%®YdÆŸñ•G¢ uxý[ý–[·Ðv8.2Ú,£ãô̽Ûõ*³h¶©¢&oôÍ:!lþFF>Ì9jGø1„uÈÈ¡³uß³èÅ5¯€‰oLÙñ®Rã?ºÅ/Ô­µ™g­Sî\êŠÊd¦Õ„bOmÍf··v?Ï ò­”sü63/“‰Öô ·A-½*Û­ÿR"<ܾ–y 3P¸ûšÙ®ƒËCCáéü¼î%O’ZpÛOAã¼mJ`>^œ>]mÅKsóÙUb•;Θ\]9òŒLНQè¾è!.½äQp|ŠöH&»ƒÇq—ÿé7œ“…iÆ`ÏrÕÅûÙWO韕ð½c]Vžó&Šß¹ 5y»±û¬È*ÄlzN ê?ì"çÙNï~üéiÚtïR;fKG©é×)oJ"óU5öŒŽásv«GĈQ èP,Œ:ÓÄ;¼Xp‰ƒñ>™JW¸rÞ³'^ï;fdJß=Ù@×râONÚñä°ï®ßf.Œ !Njָ¶zøä1÷@|l0ÜÂS2//5‡Ðù¬—éã,Bx8r§ô™ì¸èîsww~+¦xÅûúá´ã¡¿«°…£á/dà}­jÝ0æ“§GåÈL äܵH­®²‡lÑA—ãVë*‘±É#JÓÊû.ŸÒ² …ùèÝàëø~ï¸æBÈa ØÙžÜµaj…“H3b$Ôí÷\<´Hƒ­™’i…dÇb”óÛfï$}¥=L&hè!®×îÿ‰CVœ!{^z+8/,@„ù ñÓG8ÞÀs€çËÌ~Û¬0§†ëUäý¥.îMSaiÄF¼(I°Ä”€³r¯,žeûØ¥VÚÛ¶Y“ê&Õ%²K)F$ª†iü¨ë´ÅëiývI+Ùs' W6„»À¢/Ù!MáuÀ@ÕêCn<ŠA¬ I~ï€'Ìrƒ§íéKÎ\õ < —þO¦ÌÝûì ¸¸=·~ÖQaçw‹Õ3l6ÒeîM:¯Þ’²¶¶ c@†ÜðõÑF¶pÄ•åÒĸÚLLíL;;•âBå`y^þNÅ,¹Í:Ôï-#0:®€ó“IîJS’Ÿ~~3ÉÝVñ0oi{Ù®ˆ³Eæ‡+ø§ÃY;ÍM¯8É?f ´9ä7¥[墌Iõ'¦`b³ùœO7)ˆlR‚—‹X`}­’ôs|ãÐ?²ºqäõU@Mó"EÅ jD†æ:Ĭ¾e;¿ðŸ­`ìmñ¶%ÅGLéœe|ï¶¾ÊHáÜE:¼qÄó|)RœŒxbÃx>^.bŠBz«d'·Z­†2Ó¦—’òª¾*Tµ“kä)Sÿ¶ŒG“àÄC -t²ØÓJ†Kp¤Xmýoypªèíš[’yšdk‘ Egš~<•ï^˜ï^ŒØ‘<}·¬œ¦òÌõ•¾ÇSû^¥šPèÙÄ›ïØÖ2 ¤7_T¸Ù`•d)¥1ª™û=e\U§q;ˆ{í~mŒ„'/רŒ äú“ìCA8×ì-) ž?v—üœŸúž9(ºØ‹Ù{#MåÌK½³µG1a°E,† )©^¹·ùñ3ÌU&:-n‹,Ì]]h©qu˯ÓÁcQªvÛÔÛáI–Xq:‹Ñ‡Bõûž¥žþ ,ÐÒ$ã>Ëãò ƒÏ}¼T“þŸ‹*—•Ó¼ ÒRiÊsbÀrÚÔHp¼y–ùæÕÜRb„m3œ¢RÚ±AËu2¶¥Æ/9?Ó¶µ añ)råÕéé½-Š…WýûÃg†Péfò8›£tT¿¢I( }í”~nŠÏQ+ÐmÍî·*kª'_ŽŸB¶ç#¼x‰½õ?æÞISˆŸÁ–Šò cW¯ë‡¡)]%º ™Ha¤¨Ž™Vèo*Ë0ÇWØ3Nï[=ÎãÇzpǃ±^F|é×\ý¤–ã­DÍé…I؃ÈjAž¤À”ùTpï¼Y¥‹tRù`ê;Ð*ž ¼Â3XÖoûøÿ õúÜËþËÌù“¬&Åw²}4²€³5­|Šj1•Qµœ€`.ªnšŒ¡¸î›²ÍÝD¤¬XÛk0f¤†ÓœÜiF|U? ‘àãýöXšM*vÆAƒîL̤7déÍÂ-‡‚䈘«"ÂCÏžÙ•Ù:ìeéôH“QK²yM¦§ý™½¦ïÍF1í"›tåÆx'0PLjkÆQ‹~JK’&&p ùåvÙ;š, gw&ñY²_Š~“G’ã}îòÀ7Œ?Û£„F—ˆíp¤l°K¿ßm_؉Tu–‘5&‚ÙÝ“£ ÊCžsâ¢"Dš¼¥þ2üôÿÿ =Ôùx¾ºÂ½û×I·è¬Ä¾/?y^aö˜5T©3õÅv.Æø$ÜÍìˆÀ݆pˆ®A ^ÈÍ çs·7GÇ¥öÒÉzAEsk¥èµ¥ÉñÐÚÙîR6á(Õ”:>R%à7~ÓHJ&Y~õ¯*æ1lÝébÆ4Ý©Ñ`ÂϹW9$ؼ"í±m(¢‘pÑ…¸²R)ZLËC ’ZÙþξîÑÂ÷ªe²ÔÖMq\—Û‰ ©þIÅèM™‹èã8ý½Ú… ë>÷%ÈŒ$óן [¸¡ ë >íÇ÷áÞçÊP<ò”U‚jè5K€yÆÖ¬O³@7·¾†àަE‘¶ŒÜÿxêA³%#\ˆž¥Ar¬‚+5/ñTI£‘]2@E(Ѧ\°h:#™p¸) ,S•´¦éxàyB»K}Á©Û~ó“moØ·‡¢ÎkkAùîg¯É°Sƒ'P8ß¼o2ÕyúŽÖ¹g¿u-PBKü Õ¦™i©.ŸÓµQã>%fíÿcÇÛ©hò}O.–ú! ÍËKN±²†(䯞Qé1EºL@ÿ)Æ’KìËÀfts;L;_w^'—sÁ).ÓecÓß$Qá?Hu±—h6öÃ,3+Uö”´¬º–2­ Ù‹’'äúÒˆÙóbªÊCƒ$¥„‚„8cnçÿÛØíîÄΡ‰ùd†Ìì ?ò³…ÕYŠàôˆ–—ˆ[›fúå¨êRÎ9"þg!:Ô˜;Ôú”š¸s_þ%ç#ƒ ޳š3U³x»ýäìRë?ßñõrœ;¥ƒÖ‹ÛBlñÐhyõå?ä©TÐ-UÖZS¬}éz×f—ÌÆCE^Žr2¾?å’î÷ ì]qv¡ÚÅñòp´iÓñg N3 6¶ödäo:ÀÿñCB§ç-1õ¢Ž±Œ­†ïøç°7ÓhpÀ¦š^Ni(8öª<׌—Æs$güÉ©D«×vñH¦)»µ +¾> WÌ.sœiv¥ômièÍ8ðá×Ön„Q—‘»2O®ãè1øé‚ÔnsÍ%·AÂèדD5Ô1(ÉVÉì’kqÅr÷Ze/‡¯ËroÑÕÁáŽjD¨þÖÎMˆ¤“¯*Í>ñx ð(Ó…Ÿ~€ø'o˜ñ84ÖÒ•Í=}µ»¶œF(Õûêlõmóâ›÷OÖ{}ŒÝ‘o.(‰ ªý™4 jVó¥¹ß ›DR×VÛ˜ÚJËbÎf½ŽíöQ}y™içƒèÒÉ-8%˹Û@½Mnps5˜îã-iL4_ Id6 ß¶Ó‘­BQDêZ­p¨?IÏ,Ñ[ÚÒ,÷xNïuØØÕƒ}¯Fx6‹¶'ÙôÀg„J endstream endobj 50 0 obj << /Length1 2201 /Length2 23130 /Length3 0 /Length 24504 /Filter /FlateDecode >> stream xÚ´{eT\Û²5ÜÝ¡Ñ ÁÝÝÝÝiwww‡àÜÝ%¸»» ,|äÜwß9÷¾ßß`@÷,Y5«V­Úc콡$UR¥6™%@ö.ôÌ L<9yy=ˆ™‰^hájkì`a`bbƒ§¤u»XìÅŒ]€<NK€¢©Ë»ë»7<%@htzWšL<ò@c5O 3€Úø/ rv¡71v~Wí-¬ì4ï.¢ O'+ K—?k°ÒÓÿYé·@ÆØÔäîlc0¶7È0È3@îïB+5È`´4¶5€Ìj@-€ºª¸Š*@REQ]I•†á}aUWÓÿpUUS—üVP5>$ÕUÕþüUÚ¿ó·øPP{×ÿ‰ónøÇ]^\MXM[Iœ™ñOf€ÐÉÙêOØÿâFõÎ ð7µwWs'Ý_Ô–..<ŒŒîîî ®Î. ' Û¿ø©YZ9ÜAN6€÷O' -ð¯Â¸Ú›½—ÓÅø¯þl @ÎÊhï üã$ú—Òî½”ïNïr—ÿ%ö^—?kÚþËà þGKcç¿|å””ävÆVö.@{c{ÓwCcWg€Ñ_²÷_ ÙÇD]œþÄÿ·ÊéÃü›ºè=3=[o_c÷ÿÞ1c{Wg¯Ôæ?Ó6Ù;[9»8ÿkE ÀÜÊø‡½óŸ=³²ÿK&/¬ -!®ªF/÷Þxöôò ÷êØ3¸x¸üeýg=a1¹÷Vää°°°˜Þ›TÜÞLdg÷ÎÚþOùĬÞëäròdü?}mcr·÷þ¿rs+{3ó?•7su`T··rtJ‹ýõ»þo™ÐÀ:€¦–ŒÂýÕ-ÄÌÄïeðõv9Ìm¾VæÀ÷xogc7 ÀÅÉèëýOÅ"xfN€™•©Ë{£¿ø¿V—¶7¸ÿ%~gòoÕÿ´õ_•æý”šìm=f@sxFË{CPÿÿ9gÿKÂÕÖVÁØHýß%ýo;c;+[Ïÿ°ü/ Mà®Ô ';cÛÿÒY9KXyÍ”¬\L-ÿªâ¿ÄÒ.Æï­/loa |ß“¿DêN“í{Û¾«?“ @ÏÌÁù_º÷Ž4µ±:;8¸ÿRß«ð_|ßKÿ‡-€QMRMZV‘îÿ´Ì_fâö¦ 3+{ ;ÀØÉÉØžé½XØÙÞÌï-môø«QŒ ö —w€ƒ«‹/Àäÿg3ß™1Šþý qÅþFÜFñÿEÜï–Æ£wK“¿Ñ»¥éÿ"öw)Èö=óKØØþHììþögfb0šý2Gþƒ]mÿaÀ`4ÿd0Zü¾°ü;û;òt°ÚÿÃâ]fõøžÍ?à;心q¼s³ý³9ëß´û2¿ücmæwº Àwª“y·u0~Ÿh¶@s—¿¥Ìÿ#ý×ùø_1Ç»èdú»4¬ï©9º‚Þ”É?ÊÁü.uú|Ïît™ß—ù{Qîwå_3ÞÙäü‡Õ{Ònÿ€ï9ºÿ YÞy{ü¾öü|ÏÑë/øŸ]«ôghÿ5˜þnãÿ¹šý…U]œ@6@M+³÷+ù?Lä]œ¬v*ÊÝÑýË2ù†v“F¦WÞ¶žå^4ÏÜŒéd‹î±ŒŠßI°<Ý îòöˆcÜ'¼B;g”†=&íÐÛªC—ž¯¦uÚãÑr]1J<¹¥ÃŸÃÊWT-”«rIPd’ETª[€îœeek“1m$·\eÉ8ê]N¢šÒHµªÜ¨BdôK•YGÔßì¤)XöBÏšÔîSYo€õ© «Þ4_ø;š>uµJwª¡?[ÖhŸò—îÏaÖ>=l¢o…Áø_ª…q ‡\8g™u¿ŠÆÐ“‡O.ÔŒ¤Sw+½Ì+ä?ÕKJ´”‘ãû:ïv0n ¬/…µã€¡29mGBßÂgS@6þb|²”«ýpÍ0‘@ ¹_. —JÒítbs»¾BX+ïÏÄX »©FkN°ã¶¤…}#¼ÐzñuƒÞýiÕivL1§Lùû¡µŒèà±ô¯µ Rê÷ÚÑÑ¡×çvÜÄEÜ·Ó7‹ßÁ•d³ß½@î?v:F˜Kó†ù4޵pñìž k¾i)ü-¶É•w#…áo˜ÞWbIp/ÔÀ,Ô¹3C2ÙjÿÅŒáõµT#·_%ëCc‘Óš–úh…íFDrŽ@ÙôêΑÀ1oQhøÅ¦Ä+ÛpáöÝ$Fùè¼<¡vL™~mÛOÍ $*#nXžò‘m‘„}ž©aÁ¯³‘åΔbœ“YWI en{ÔŠ`;t`kß}³æ¸¾@–ñMóÄ-ª{ÖÚÀxÀ·Áþ¾ÊàLPhôÑß2Z¸‰Y(ù[Á-`×}šFk®¤¥ßLj ætxQ'Ì(¦óÒñP_¢ÑãÛWÎZáÐɦ• Ù¹…@ê/©ƒ¶ÔiþˆOˆúÕaNüW”Z!ÜêψõÖ‰Aî©}mÓ+Xß$·~ 9®Ò’Jv]qÆ]"I—£ š¨®â†×T¯kñòL$éÇy­ÙzÕhÓr²üxˆ™ÛµáØ|ø[TÒcóZŒ¹×b.e•ЏTëî¤)ªáP‘£S3àƒ*r¼S ͌ɋVBfTf·Ù&ÊKÄS›Gi|†Ü@b># Jïd±Ë‚9'›|Âvä×¶-G¯¹YèfûË@jÃv>ùY»²*”†ðà”Z‚±*uy 9šóÜ2-?4ûh”fãëŒo6CC‰ð¾õR6SV0zvÂÿF ©Ç¬Š¥Ï©ÎnD)DãBý& zïÕ÷ÛE.ÉC+•VØ>vÈØÎš5ŠÙØàZhTºŽÁÛÄÏóiI#kÁ\[¦$ï5teÕ“¼"%}<í2VI©Æ¾%”<–ÇÈŒæ‡òïµä§±NöTHj¯)¡‰™#Ã+Lh?+yñazj*ÛÉâ”»ñ$*ÁÊû…¿ÉÈ’‡¾OàÞÇÐ3Ss‹‘QË+Xàý"m«SÌ“ ²Lí«óø°\¤ZŸ¥•&+W(W-~Ïó3›¾~#ŒûC6Ò¦Së5ÂmÒeóYÔjñÍšW­õÑb²Ä£°ÅÂÐ/Šû®“ŽÙì|SnþA”‰Ô@hÍ~¶¯Dè±C"G«e•ÂßújÖc ¢õ²ò†9Õ¾RY´†Óü¨ (Õ¿€e´mpóÿù£’Ý^'º1„\Þœ8; Ä~Ëlñô)cž–ʆx{lU‰Z—Î ÃÁç•I~™‹Uiü4MߨÏÁ” /ï Sƒ˜“Ž€¯æ¨É]àÅ(ò90»Ûê>çøVQÏ—¸‹š"¯ðÁ„ðËâÅ&hy³<‚I-ºt9ˆ` .ï³·9RÕs±È7¯ù{ÈåÕÓ™ÄUCK`R»u­k4H¬nàÀ*¯Ú;ÓßÉR¿¼{×).&4W×ÕÊ$ë¹ã‹K¥ÛèÚB©? E„|p±!4„¡Ð’R| k!ÄÈó£³f3{ûZB_ipfËqØÊYC EgåºÕ V"wŠCŸeèûâ'R]ɨ7“þ=6Æ>ër­y›ó7õÞ­—YžºØd†7ºú?•p“áõ² ¸ÝY2âMª5Ú 1ÁÈ®‡7Ö?¦8ø3€Ì ¤•÷J2 H7<{¤š:  åÅ•U;Zö¶Q-ê!ÜôBlIî<’tðh?­¼.“x1I¿ö”tëéÌ÷‹ÎYŸ‚ûi>nxæLDÌNt¹Ó=’'µ’É‘Ó]÷Ï`l‰KŘLßhi©·¥ˆFÞÆ¯Ö„b4ó‹‹#•Ê„6ª·¸¹Ñ°G¸ªYQÁ‘&Ž'V°ym-çâ„Awz ß3¸]Ü-(«š´ù‡j[CB—¡­VÑ~Ü2‚.³yÝjhfhiEzø …_%Ô|òêm †€PÓÑûê!1íñˆ€¯ãû™ª´ŠZ î‡0¡4›)äB…ðµc•WŒ>’cìb1Vû5ƒÿÚ?Rü½Cî«»‘Rª+xO¨gΫá¡}‰o!Ú¶™ WòýgüÌ}áVgÕ÷¶Wª«ïéÓ[=2Âv¥d­7,-S¯“AO<1‹}ÕB†’îsbß~Šs]‰Ã¡mÍW94´Ûy­Óà[¬~éEŸãC-¬Ïâÿtewåîv$„ 7³0=½ªäµ%ÚWÅ ¸“tßsæT•=>e]IÕ¿.àK)h]³[:þüs°ŠJ–« ´ÈÐ-Õ‡4–ùJWe©î™•[ȉsày s¡]ý,#ˆ„Ì_Fw`cÜøSêg`Šé‡A4¢ÄáÃeͱõe«O*Ü(ܱ8sf%óƒ¦Vå¬É–¾Ð˜ ýp¶;Á\o73úEorÔz}C6¸ÒþMßÅÛç8'…Ì‘#{×N¤¢~Q½À‘ôË#¬Úl¨Rý6?';O ²p¶–ø´gUÀíf™<%gwd\©W]’_CÍ­Ÿ,^é¼Û1* GSÇ9cšmlX·,=hè)›jòé1F“Lé‰1ŸãñLZªþ˜¸ :ž¹¶vQ5}A›Ç†Äsê‹Öµ^RñóC3ŒT&ëÊçi)œxå$øžl1&hÝÃð¶ªÉ Cßå 3…›MíL1!Y÷ çëÏ’ûUwUy7¹6‹Ù3µ7Ÿn9û«J NmVÞ[ðÒXé0£Y®ôl”œŸ®æmlR„|~Õ ŠE.–f¨<Ï_ëpAð ÈÉÿÀ\ùD {4Þˆ¹j·mÄ[®S¸°ì¶N,~¥)2Rì½Ñ©í]ŽT¸ƒ)YYÝž¡ ߉»ª½dJ7OD”-µç`yãqBiôlINŽé—3ý¹zZí«Í¾!d6Ü’·§ayN†lßRâ²ÞñæÌîÒŸŠÌ¹ƒ]m¸ôéKòC4uR ÷óþ¢ŒÓ½„Vƒ–GD„ÃpÝŒ ¾_Tà¯&´P±`Ô&šlm> Δrý!à±£@i[´ýy†ýcµ‡˜¸&IóòãÖVrX=Ÿ±‰Ói6¦ÓIc¤ö_ãÑ‚9P ¨Õá”á(,'­¯ ¨7Pœ_–Ñ­éƒÚ/–Wp À úIp<°Ym\ª£3™»zú­ôÚÑx}lQ%Ù#Ò¶¾k©1&uv³X¸“:ñK9H2F%y„*”¾î ôóLv+ã\´¨ –IKÒÈ3`Ô,²‹ývô+}+p¼©ÊÝV¼å9 ޲Ë` ‰kzÇyÕ˜¶ê®`VkØ'ãgFr_Tù¬¨¬Ã½BAžflå~0χ¢¢u¾9ŸâWO쇬‡¸†tX²Ò¬ nvVµ·†ð׳úëAb£oÌÕÃÎtý,z¸Ð¿Ðª¹ãhîH®Ìð¦ØNÑ©¬‚~Œ÷™8ù0µÃInþî‘ÒÆÁC%Å;FB! 쪛õ[zffÀúÚf,y„gì£Ó@tšXÖ™ '¹ßq¬¸¥ ü•0¥‘ú ÛÉ£I§GºuWR‰k°˜K9ö ¡¾fT+3£°\‘å¨NãòÀÕ*ãáùé™—¤(²gö²ìœ}R0ÅÎ7@÷dM YšÑ çô¬ÑF]Þ…õ²AÎIa1',}ÚZEb Ž-ÌÄÙR¤dÍaíæ™D°§`ÜÆ˜£ íÜúM®³ŠÞÑ%4dÌÕ2ÂK‰ú|dS+ð^Ö|OƒªõM¥fÀK‘7}ç@ÞäCŽ€YhüfOþvlc>ÍB@Ê—Ô…^Âû:jË5çJ‰8¡l˜²[ŸÑÍõçßÜø\ìq1W¯Ü˜u‹ã„¢”xÊá^¡%Ž*œ‘õõ’e¬‹?•>çïRô¬ÆI$yò9%4òEtèö¦»ÜÆûu1ÿö7ßCøFu FE'¯TFc…5J÷Q($czí:ë­ ˜¤3¾ƒ¯¸òÊØû£]èð&p™Ûš_¿øÅè>¥¡m3ÛW-ÛÄÈÖÝko„[(cYÀç!s,6µÑ<ãß{)¶´C~™PU¯Î\×]$§¼æH(„ëvÓé‘uÅÖ°DÁ–´»ÂñfNkË×Dãšh²Ô»Ž XEô}­Iˆ“ÒÄ _Ò%&hiyÝ{ÑQÝM½g˜dEoÃ#ò«DM2’ÑW6äõE×£µ‹Qîe7º©D”i³þðe®^ÉeYw5ËX_E|Ê@[x‘Åæì×î€\ºÎ÷1¯(Jyì‚ÞA_'¦|œÞ$9‹ˆøƒ çOEû†oº ŸÍAXæw,ë•e]ùf§R¨hÂÕ7’Ëð"“ ç^6›^¨õŸö‘˜¾)Û¤ìN(=0ÖþŠð-;/ÍÀ@ôYŒü¥É‚¦ùk¿-Dº9K+pbL÷U?——ÐÌlFò–ÞòƒÆ X\h”~Y:‹#ÎW½m‚%,³\@BO¸77ÐŒ&‰ÂN;ùf‹ ¶/˜†ÙH\Õ Àäžp±UcÖnÂÎlñrOãpCÌRŸ…»ÏðK¼Ÿ”èhP@ó@‰ŸäÏÿ 7M*D–±.Š“«òÙIØ© \-‘À¿bšãÕúõ,öƱtÍ*j¼r©4*#X ÉIè¼={ÈHw¸ž“[týÓ=ÚO±ÆoÒª©Gr³K Añúþ{3l#ói/}Ê"G±7Od5ÓØÒ›’)qç—ÔœÎÜ3ÌR²¯d¢Ÿ§‹‡$ÿ´c ’ïJ~äüPmð«8%“oø°»nW/Π÷Èö3´AÕÊyjàtçt›‘ØÜ]ñ+y¥ÜI½ z¬·lÀ% gäÆ.2+…¼óª0D$v–¨E#¸ëg+ë÷h€qtN‹AZ}¸“ AÒÚE2û¢ŸÎ€þIzC·5ÿ)Zwð6R˜¥oX&2õ»[dõ §°yݤŒ 9”‚0ãñÈbZª¶â˜›Õ™ë3mNvË3]Z ÑD`}VÚÒëQ<„ŸªŸH³æ Ø[aURcÀã´Ü[ÆáEøºX7ƯE™[{55^aÌP5ã®À‰Ÿ)}5Ï wÙœ8|Âå!“(_È'÷“ÁQî™Kx¥¨k ˼~˜,èXŽvÄ™TŽ“î˜krÇêø5 s+úEsá þŒÆ“D\.*ˆod¸c‘Ï2§©Å(Æà·à?9t ÃËv¢Êùéô¨Y®Ü)þø‘­ŸÙk¹<7ÙÜ×}¶‰ôºß~ú¡½¢ªíþaã)Àv|‹ô‹ =Ã4R¦`Å}’“uÚeÛï™4SŒbGz¦³yDïóm-3=K·bÉÞ/9ÖŒq¾œž{néu+ò÷w•2!`2‰€l;–ZP†\T!Ï e¯zî +•>K0))÷d;ƒÖukòËT‚–ýÇ$¹u§Uîy,Ú»àïû$þþÛå‚$¾À¸Å×Cô‘›’Un¿|*+ñ7°þCCïØj-…(‘V ~žîé*Ai¤€Ö[êb€#É›ä¾*±íJ¢$Ž…í™×·þ™å¤¸¸ÚZËa²£Ý—פ¯sŠËëŒ[%ßû ¿ËúñË’ÞGÚ¥É??Â_#w¡ Ͱ%Cˆ8#½âL ·c—fz·µ6å&wlZÔ-|º“÷Ö‚Hžžš»ã¶q2¤ûyBá’KÞÁOp†Œ¡<1ê¹>86?zb®´ÿäzÇ0d¢o øèe‡Ø[¹é‰fvüKã†6ÕºS¥Q[—•zä\Fdh"#ðAvch%R~ÓDpŸÿ{;mÛÈK˜^’½{SaábåP³8‹›¨°ãJË¢/%wDØ@-Õ$ÙuM¾}vÚƒq”úê>sÓªWùyúWߣ&wV |VÕPJÕ(¦\&ÝÎê]®`c:¶«aûr³7ËLãGሠp¸»ïß6ëDG ‘Ũ¤”ìÃ'BåÔö}Ä¢j.ÇdžÎzŒz‹ãL 4-¼ÎV››÷*jRñ‰ßd‚¯Šï%žäÔ¼tÝlÕŸµ‰s#æ0P¼Ul(Sî‡õHØ‹o6&9ù€åú¤å7»d.`bã¨ÕÖ­¸jfíµYFµLOÍcé¬È¢fÚôÅ—ÎÖÚO–ÈxÃKp…S0ËÕÀkv<}pñ›Õ“ MöÕ ÀY™ZXÍß*©q˜¬I¯ó£þmCíG¥„zÒÀjvN…/‡1˜•ývÓ›­žR:éT±"Ùy•™ßtˆ8x§0òĢѩ±LäÕô³’EtÂ}°y¡‹-ŸÒ Eö§ºÊãxÇ*x0Í‚ h*…éGVŒç™Uˆ»ßA[=îvZ‡ W{D±BÞa;‰k}}”sÕÄY“š?¬~GÎ%~×âÍ¢|ˆï'{–]€—È+ÿõs®cðøÀ²õfbNLg‘AøÉ,ÎïÚ!zcíóИ{„H.ûb' ë·jªëOëù»°›‘*`¤ÌØäbÕ5”:‰o^b÷ÍPß}h~£~„ ¯¡ÄɱõkMǤÈÊòa‰õ¡ Í+ K+#h è˜Fð=7QÄÑgj.‚KÐ^÷Ð㿘õlSÕ+ßS‡Ø6Ìb†É1ª6O"¤ ‹v íB²té" ùsýµQe¾Myº{Ȫù2÷rÃQ›GÓ÷kyoeè.)9!šà4Jåb“‡Ž(†!ñŽLÂvw³7>5ýÎ7ªDħt±Šµ¦w€E‹þX«|<ÿ°¬>pz¼9B[ânJ‘Áßì«€åpöô“2#(úWÜÏ7ëü]±ÇjÉïá¦æ0¶__¯ÖÈ!ÍÜ Í]¨MægM&X„¾OÕÛäåòÅž^À'];¯óè}>¯×Ÿhl£#Íšýdï¦$(¸'ÿ8Ž!ί %2Ê-[Æ,¸wJðVÇww7ŽfËŽ*ZNs\yiOŽ3™æ[½Å«Ã‘øM –yˆoÑ.#ˆô#Ö¼7ÏÌ´Ò•¼\žª¹À[”)8Èsxú€8òðkFŒF 8‹?3ùòÄÆ²Û\UZæ@buF±L@ˆî°S·èÖò%Í×{ª ÚÒòõiK±ÜŠªê¡{Ûhlô~Ï‚¹¢…Ñ£V{Нó>õøj‡."„ëáÑ ìÕHi:([3”-”ÉŸ>zö×ÀVKT?H^‰ïÍ]{õNå鋇oX£™ Ø .î°aFhnû\}M³ŸJ¹±Ä·Œ›„:O~é „öXÚS}“ýÀŒ@•!úŠÞøö&”@¾ ™²7žÇ1Í‹þ‰âU‰G&¹Z"t5—OÑUŽÉgÊndÚXJärÝ!M<ônÇåÊ5`LŠÒ8ݤÞOØyÞÞÜÿü@<ü!|ìgª?âÖu›Î›F"¢t«&ÒoЉá…Sú£D>+#Uí{&p\cÒ p-¯ÚÉ”‡,÷b÷„„j”ßH¼NÓ Lë\Ïë)®¡+OúÐÚí^¹ÂáèŠÄ9+â%´H_Œ˜¹8èÂbî4›/Í>@®¾ˆË0qÃ˘ß(ðÒ.ÍeßÊ×hX9mn8h¶<•%IËàt‚óÞ»r$­œNMŸÄÿ äJÛö‚Ð_ŒAù!››à6þ¢;Fu©ÈêÉ$|,p£´ f@:N½¬±“$¿yîˆ`;u£$Uüg­p’1¶;¸\jšÈ|:C@ËÉ_ñ[Ò.b\v~=¤ñò7©÷v‡/±\¤ŽIš—MÑ¡bÅ¡ç’.Z8`ÉÞL“|F´t~I>þ°çÁvžü“Ep¨V|GŽý(q°–ÀBMõ`ÝW+G Dõ†T‘¡ä\"°ˆ‰YDÏ€„SÄzcV½¢ƒÚ Ù;§Š–HðƒÜ*|h$ÍÊ•vaº?•/%yÙ_bR!ÇKÕ¬¬…Trlw-à,Š/w)F9€¼ÀYþz4(¥¾EOϳ&çÕx©¦ËÝZ—P"S­kÚãÊ—ª€áfZù NQö““™pzHMýÇ«ì)vøªEÔ™ô¡èŇXó8nüMÛ*@#rºZî`¹”ˆºX¨%…Hþ LXøã÷§ŒKÍÅù Yô?p3ò8Mªç¤c5>o£CÓ™w@TîÃ}P—Ú¦Ó­v7x Év vª¦}ƒRÉß´K?'T!Xj„ëàÌÎòÀœ!Ú‚†7ÇTêIüI>¾Kü’ÀΆ‹{":þ$àǪñ\ûBD'RŸä°Í×d½ÏûšÝµ\aFþHõ°`:Lô˜LM±ˆ‹×Š•:7”Ëøõ²šƒzì³¥NªñÉ(þ&¦‰*šéÍQ1ôÇu¡±¬Z“äy÷œ0¸cÙ©cQŒ%t|ýé‡_\¾ËßŊĺvQ¹èkXˆ`GhÝp#6"h½¬¡»…XQSK‚ÔN'¶)ÅÖŽ|¦ÞrsRá'¥ápD8DD0Ïïœ/Ûƒ7¹;mûݰ‚˜¿3\n™n/6:5[˜“eºìÐøýÇ9ý9w¡hs#¤CÎ]eÞòóVóÍ>_J§'gÇß¼Z2þÔdð9?: ñ`˜³¬7ÎRVW]t¼:¥"MÎUßEá^Ã5Îòu¤{˜ìóÙn¾ˆeÎÿìOe5ZßÎÅcá~yh;Ñ ÖTkÑøvß`wàqÎD«gz'Ù!wð0A@ág <ó‚n÷*R4àûX’ðÝO£A ÿ#f…ŠÞ³“l_«úå„Ò»=¯ÃÚnkËù€-[UÄàR—zZ¹Ÿþn°„O›©…-B7rúX#ælæ¯?ìe/b[KL¯ÛXö•Û{‡Ÿ£õºøi´”ò¡n“^˜wèúTiN'èÎJSŽhò2÷æºã®š¬buG;o®œIpËé·z¥\§PýâÙñ¸1ÛûMC«õ>B$™ym¡£åJAîNàAa%tV–«„f‚»Ùâû¨Ý‹l[î?Á,ŸñLkp^k>¶Û•”Ôš=&`óêýbÕÀ7Edu§¯ÑÅ…Èí)Çpˆc„ ~êmè¥ÝQd±òïÈ?CwGT%Íö1|•¢¿Üñi)«øœÊê[œ‚ÃÒÒ“Ùpè±cš´°è=‚]‡lPà2„ãÖé×Y °Wÿ‚e¾&ù™ÈåÙ gæ“ý˜Ñ=ö¡›£[}1c*adÌ=°âJüHÔsѯ§Ik=Ȇ€ ¾Xên{ŸÙûå’»L¬ã¦å7O7CMõ+¼½ëŒ‹’þæ/Y¶D£Iû0ìì«äÈü‰½\ŠIUo­Ê¢ä´éùõ"d™”ì'>Ÿ4d§¯Sââ¦gÏl \Fj‘ç±é'Ö §šxæ5Ï(ë“pãù ruØDËœvM¼³2 )"Ð)_™áÛ²_ÃYyãÁ3² á“&‡o¯ë@÷»3ž>\[Lé_&9y7O l µÒÅt%1R·@ܳâg/Çákçø“S÷}Òˆ¶ì/ϹÂDÏA,åežªF#üª¾ ~òȯ°ø–bÈõÜôŽh|¢;åuhR‡ gô¤ÈPN=µ£TÜžßçY[1„=½FæOBhIO ÎÆ8Fð¾ gŸ„œŒ·ZaŒ‹aŠJv«/Ê7qá‹119·ƒ¿v¿¡¬ ]χhðOs©$5 ßï:"2šñ2Ðû|úݦcÖB/x2ékÿÿì¡Â4Ä{:ôž£@Õs ¥±ÛR•yp03[ç<à`HE>]:x;ä9ƒÍ[ÇžQÕ&Â1ôùü9ج³#Õµ†[6z…C$ã÷oN-Ã+ GoƒÆ´I¿l(Y¶€ŽDhm‡x©ðoЏŸ‰Ù«“]‚wëkz¹ pt!Nr¢kþè݆8/—6ÁüWœìCE¿½â³ÎL"ü§ãP\í®Qµ.\²À«€ê[ÝÛ qËâ„n-[_ý[èNÈ$„Áü° µŠ§èÙ¦µŽ¨óZ¡Î ½iwQ-5pÖòÉKžØ·úôUzŒŸ-Ç7èâæØç89¨*¿vB´!ÈÙât¾Ð`Õ U»‘C€é~3ôiÈ  ×4Â;^-‘m1h¯ÈBjòFá_øºJÊvuy,‚xßàñPëÔ5¹ÐfEi×_Q»ŽWÇæ7= >µ{ý­¿÷1üôZ"3Ùoð噣òË$ßÙÎt¡åd¬Ô­s&“…RÔ—³ºt|î‰:1š}í¯û{ÚÛƒqeÔ$täçäÛb<Š’ ÖpX¶É™ÒIƒT«=¦Õ›÷zÙõ½$q˜ÐÓµ$îâcB¼}NëƒAµ¢ðÎZþ$ ñÈ®UÂYt¯Í|ñžØU[ r¾¢©Ý¤X’âæi¿“ïP›•>r>*ö^Ý}ö [Äû %r ®qÁè_ÚŸk•öªu€uâ,ÐgZ‘#oZeºÑZÆÔ¶|!÷G¤÷8k1 xJpÚ?L=  +ÝÐGÝæåÞ{H$PJ¿e!ÄK©ÿ^0æùÌ縬!Œ:X]¥<]:±äsK(ý™•à)' ¶îUIm„+¶ô39 ­ç@ÝzóCž–Ù+÷híû»¥òàcRéŸðìQëîPXvö~, h¾Ò±¹½kž¬,>Z f0q¶Ûç Ò)ƒ? \4³ƒ5W°oø'ïoµ±`Ðð®70€}@÷úv9ªïÊoizN— û]Ð f%˜¶„~ꓱ$Ëís×(OÆñ¹f—ðšnxKÍäÂaàѬ- ×âÆÁ®S§&= ×`sÙr …î«V-v€Œtú·ß‡Û(!¿ÈºƒâÈ :ËÉíd›Æw2zÝ$æ!L”\’‚Ó¶b;I¾•‡]ÂìK.ÿ^î^ûæù!*»ªDJÇÒ—‘¬UEV3zêSqßÞ|G«i ¤¸«½'å ¨XìèUZ)lH¸1}Ë`÷\îc¼æ+Ó+†fJ:â¯Hå!±<øvŸÍ\«×Ï휟x×oï^™ ö{Od°$Ä·úE”YGÖ¹7cù²9…~3|ާ§g[ÎNÒÚÃgR*ôë’_è-,š$¼ꆅ éKi—-Os»lm¢j¥¤]jtƘ†^U¨º.oEM?óÇ$Q²_IˆF§=±ÕÈ®|¤ùà1µà-ô3ßkI&‹Þ'£~Ù¦^syt“8Atɉݖã ër f«ú,FÞÑÖ~׌ã}k<”$Ø\ØÄ­ gGS BVÒ¾íÙ MíðâéÉt Rk~GižŽ±×äÆv9¨ Ìà°wæ}"òÅ÷õ¥XôC/G*Ê)]4oIOäø“ë ?:{:¥b¤bZ›¼ÿá%–rõ#`W±ÚLƒmܼÚxTà§XŽ=Mqa,þ¬x¦ÄÞ8œ“¦ ¶TÞi™jÂ5Ó2ïÈ Û¤ä*Rµ) …xË™£·L Oê¤JÔë.4ÃZ¶xÈû«Nh1&òEL^ 2ü$á`5r§§F<°¬'$ …2#|Rs2áô%û.(щœ¹{L¥¡¯†cÕÉ·t Ñœþ† )»Ñ[ózœ¿¹JªNY/x]6×ë7¾äB›j)×ÌúçD@^Žq'A§Un|…dÓÚA—‘L"ìÈ”Å/„C‰›ë d¿#ˆqð}Ü´ûY>†›ó’‰!Ž×÷( ÕÔãýL½4èŽo2jDŒñQ…!à[ê+“÷AR¤hÔ«y¼ðbrégíx–\žû~0pk}ÛïÛ”A w±•$=ʬró`(0°wAýSÕ”~,Tže¼9»³iÒr¾+´6³½Bÿ¼– À}îÊÞš)~A³‡V`ù §_ø)9CTë¿~ÖtOlð`žLxÉÆò1÷×}Jõf dî Þe¢&Í0¤Éœz2‡ÒyLÒÞ¶Å­ašy7M„»Š&GºüxèÑ÷Vþ³íì:^Ëлm<^b˜¾î/[~ äÙÅ÷ÃéÜ÷@¿”¹ü?¬8ˆ”vbk‡Ïx3IfQ¨C¹Ò²XÝŸñ,äýGóB®ìu—FeBF –¬mðøMÝ7•©?âÚ*}|Nµ°,ÀmÁÝÁ§£çx5qA*¦°çÔ1raeýCã1‘|-ˆIvÈdyÞ†AËž°ª¥™½ÓX±7¨y˜Ó߯“rWöwú>·€É]üç ¥L”ãbDas»ÉNŒèS?3Xk°.qCÓ•­±¨¢û´É}ù‰e`»xŠ¿9E½=V»´Çî 7òI»§ª±¨ÚÎ<ù*C ”ø¨ðBΓØfà¨5óù沉źš(Ý\À!Í-“µrp‡‰`bòÓˆaÌ7[ér`ç!ÿóÔY§^>›énYòÕ†Ó–\^„fA'ÁŒ©r´úº &ªÞKnj3«bvë¨ÜçÀÊÙUޏf†B»†øŒ«’Î3þàd438W¢–BcQf­f{&Ø>tÝ F—£Á¤¬î)vDi)Õ9 R4¤tê×äLQ7¼Ø&ת÷É&^$¿Š@s‚uðçRp"+ê¼/#hùÁg“›…ÊO©6¦Ž7RŽ%mOßÜ2œwm¤gç4$÷û\ü…”ùyœƒ—~¹_7èg• ­åA {mþ¸ñ‹³ôý†¤Áçð+ª£ò~óU†t´#»hÕ…¦1U°¶ œz¨SäæÃí/žò‚Ÿ÷Qq‘Ÿø¡h ͇ Ð,ŸâVaÒNIž-®ú DUaOrbËýØp„Å¢â¶×[ÆÍ¾­¿ßý¢Ò{EQ8èÏÀ:?0ÊÇÅ3}±’e2w’"öÖ³óžÐî{Ÿj¼Ø5­ÅŠçá–ê2m>¥vaÀÂ>¼T]ˆÄŽÅÇj˹K,„)ÇM€¾«:ËÞØâ#Y†Ídð[ÜQ9´ ·el…ÃÍâHÛóñ´Ö¯w( 5G â‘ÙbÙéñ3~û–Nß¿;ìZ¶ zP¼•ãÿ.ªe ÂL™n¥×9㈇ˆ-Äo1ñs{džÐ¬µv³™9Akçðó[ô öœTD!I 3lõüÅJ.‘ K²OÌÚ,ö”˜Ø£5ál{,ÐnõKÀb˜þhœj=ÊÀ¢#×½fž#Êb5yÐ3®Ú.óÍíÆtž]ŠGxøy¹|aÖqÖZ3®«.Kë†:Ao1GökdT ÂêíZª#¨ºö’ß[æàñÖÌc÷žì&zÖFr›¢¦ÝìÁò$±ïÍé·R Nœ«˜Í¿LÒ–áj<îÉ|R”¡C( ¼jl"‹_ãË®zDÆF0/%BÄÁìðÙc©R‰„ ¶Èu½0͆åÔ‰{A‹Âí„Ø† ¶c>á ‰FS xF(EÑÚ‡Û-¼ª†sÖó6ËÊ”¨#º„K·y4Ʀq˽A· °¹*‘3.¬áÞGöµÀ#øhQáoW¹ì@äC¾0¶~W€£æ#‹‰Ý´dfNk¡²¯ÿhTž!ê¤×“é1ÃÃÇTFôrÌ5˜É|£vÞ§^pRKq~;þ‚,$ á÷!¨Ò`q&q?­dPÞ2=Ù' í«]꣛r²ïɬ“øÊî=?î”$ð³S5Åêž~'côÕå®+z¸‘DŽÛOÝÂGÿ wJ«Í#ìŽ.hûn\—åþØéŸ¥èDî<ã[‰ûvÃäÕ³ÅÝÌã˃eÒÏﯺ¬š‰Ñ˜Xˆq™­\ʳálDçK§¨PïÈp}M‚¹÷£¢12s&F‚vŸÀž^y^ Óx½—´¸¥eJøxާ/ºAïªÖøÅ™ 6ÓÙhÓEY­€Íò¢‘ª{D…Ì$Éû´LO’«'ÅY~c7æýA¯Ÿö;ó]%®kñ:èû…]“^F×3Æ)”†þdjåýòJdþON©¶Ûµ¥.'•³%ëò‘݉-W°Ð4s:øjJyf:<)“© cÁp09›!½KÊ´M;  xSÞùŽ„³³öòSÓI„©¯[ÖàdÙ÷@ðZ‰€‚V ’·îbŠ5{D&§¢L¸­ŽÓÓU— 0Ò3UÁ6ämýs7uïô¶Šgé§/ó™KZ°–°™yä.L”ý3¯ó”ü×b>RúIzäÅäL¶5åɼžj’1ü§ï_†x¦¯19'¬ƒ„ŸJ2(ap[ZF»gW£”$ù9Ãù¬£ä@è<,}ûPï­ä1L}¼ù¸ ìÕÅ£˜Š?0XŽ@…ÆÕçs$™#øHrå'Ö§ŸgÆ{‚˜Þ`—¯zŠ@ÁÛZ+›u¬ù‹Ž.æý‰IùR¹´·cï®ðÏJ­Vóâ»&¯VË5ÝÞ]nhq*cóß.YŒMúÖ€!h­Ebín“š\Ã`˜j†XYM.ðYùù>ŒÄ»é=l„<ûL™õÚ–sÕå«ú,EOi?5„·¦ÐT Ú‹5ݵ jÆ#CÒônúâb`5+½wgûŠN:ø!$µK´fv6ÂÉ5Îrø³=¥ó ØŒb¯ßµ¢Ýd$ãõg&<“/†¯7zC†º£ë.®ZáJGœ±Èî¥ïÿ_„ Id¾—1ÿ F.. e‡¥R¢¨\~ŽÝ$tºI§vWä«>¸NVãÅ|¢*Š5!#@¡ùÿçMÔ½3kYÏ·”ì÷ Ïj<Gℊ]:Kâ^¼°Ù}¼þ9·cÄ”HÅ Ù²¤™ÃéðdhÖ<ßš—ƒù×­ž2b †Â¶ˆ| ø]µ¾~Ù묰lÇxË"+¢N"‡íAœ8›4ZN ïtLÀØŸ>Â=ñ&^ÛùÖ>¢ 3ä"Xl$I“ÆEF³­}^ (üÝW#ä5ÃÜ<\O’pÙ¤Ý'`DU›aoã]/Þ°pÜ=ÚGx‘®/Ë]uol)E Dê—Å÷³$/4Súâà }”ÏÆÁ™ˆ1¥ã¢ÈÏ<åüLÞµ¼^ŒAï6Èë‘=ÀV-—~Dá^k#ÇÍj¥Å†í2I§óƒªúП¿¿Tß?aÖc ‹H{‰W Ræº3ýž8¡–QI~’½å¦³lö™xÐ9 `!#ࢲ»&‹“çI_#aÌ"˜DëŽ47ë«b·}%ÀyÃfßmÆ…¥½Ý™ÛUŠñ’B¶¸áKÛJlžO³¥'»Ç4¿>ü´<—0áòüéØÂ@ª“Q—1Šž}fnQXDßÇ&Ѽml†“è ¢)ù­£a•_‚êÜØÛùÔ Õéká¤üïo ¢÷¢ŽâÚýSNK ¿B!@=¢sÞ×q« üß7¯4­âpøëZ{_êMfïO4»bƒú_˜¹E°‡s(í‹,ÏÙ´/5Ö"kjiÐLÙã%O¸­µ›bâ&¨K+¥›Àk‘XŒ ZeKÃ:x`‘Ë2JëEyå[çŽ8r8[Ü0„U–IPWOUÑÍÓЙÕÙòŸQSdøR$ß°-!MŸ|Å9áÂàÙvmï# ¨]¼Î/¨Ís yÌPWlœ,ÖÎ.ÒAKg‹_ìz#©Êïœ!ó¸ônõã—E¾* ÆÝ‰}¢A©(3¯ØQçg¬¦ú!¤'¶¿ñ%˜žAÅ£å`‹SlÄšäÀPÕª–*ƒ9 ß'ßsn¨£ØVAÅWó³8ûØ¢ÑÌŒTt¸¡í9‰Pþ&õ§ úo+6mÓœµ’V=Ó¸ L»½x-rK ¸S¸ PTUn[ Ê¤DEɃŠìc±¸‚?«‚7ÑÞ®§ù)r7²LvÙ$žòáÇŽ)²0û½Õå?£Õ# Fe†›-ì3´×-; J%K>ÀWa~¶&5ãy3Ëùù„”Àó =ù{¼5¸ðŒEããÇh'% ¯¬M ŠºÒM—ü˜Ï ø^xÚm‡D?ªß†Ë·zëê‚Óüà'“¿j‹œïÇõ¥Ú$õG$¡2JFM¹­`·$1´uÝIŸFÛÒÊ–^¹oZ6 €Z¸‚Pæh6·2Þ]jÇH+ôرúfÖžºÝ.©éñtŒ³v±aŒÂ~Ššqv‘#J‡LB)̹Œ]Gâf쑯1B¬f¯µ:ÖÞ|£!¦úA¶ï·c‘~R^•ÑRÅÍB8Ϩâ¯m „´e2â#0˜— ~1~¦vbùs$ ìT†ô6dKÛª8¢ ƒj'fäêš«eÕOà§äT™¬èdÀ'ó¤Ôº¬H9å+‘D߯Ï,É~/t#7“¼‡á_¯¬2TžÄiN¡6ʈ “[•&¦uÇ…'`,B¾AÖÕråqþÔó¹-±8²˜;ÚôáøÑýyp™§nPt>›N™*@Ú°–.|ËSÛWÃR a~)ÖÐ@•½'t’ìͧQ`uEóýtÒQ˜ÄÅg§go{yQi7óA?Ä{3ˆ?Zýd…¥”%¢>RþÅOnɬѽ’™g~‰Ð±»RÖÑì…ò"ŽÝx ìÃ|ƒb¹á¢ÓãŠÉ·Ô™†[×mÓ.KRgd:Ñ>Öò­ÍR§ª/i¾<]ø1£ï°|ƒé´ ¦wh\èHó%ȟ梫Æ)ÿÐ=Õ¾ú¾òÇ’Ü¡Q°Øá±A&'3 õ’Ç0—д}‘Þ\×`æAŠ Ñåì“HxÀ#(½0„Øä´E„«Ÿ‚XA3ý™^®(ÀÈ'•ó™ÈÒaš¡1üšÀq»ª¨{cš†Þáð#aFSŒ@þ_m6œµÆÂäœØ×ÏŸ²}ƒJÿm:𼋶{‹._O°»- š6_jt>rÀ4OxtÁóöŸ}îDËá}ÑŸ²[^Fv¸°‘‡TqG¡;©8ú½þ/ .×ú÷¶f.+’ÐŽ‰ðæ+‰ôŸ0ÞðrÅè!䔇SÉF©Aï`òW`cíÿ20øÛëž³AùzÙl“™3Íeغ6Óù˜Z1G(´òÿ- ˬÙIPœ[¨—/Ì2 7™†'r²AÖ-_ÈsqùÓ§½»G„øñI«yU· Éw©k¹Mý ¡¸œ„¢&z­+ì$â(SsÖ¤ “¼ŸˆO? (Æg5§Å¸ÙH$Þzñ9£?ékÔ¬'áA÷aP§þÞÞ{Ù’µSVZ&¡‡ $¢®ƒQAkyq|SãLPWˆ ³,ñYBÓ`jª1ËD}ý`ùF¦`ÚÏrºqTgVhÁζÉ?dT–™dÖ4›saõ";”ó|ŒÔú‘8çÆä±Ìf_K†7f¢A@tÚ ŽÔÀ”Ðån”™­-£#†æªKŠ\~=¹œ}8ö ðZ>á˜ÓóþÝFÄ);Š}Y^ãùÇé³tž5÷«¨—P“* )¾t@D^ °É'M8×9!󍦯L[Rz¿¥Tzè{vzšiMSrG6¢ç+á¡"ú†-õÝž =[Þd$ÙS÷h)hö¹:tdÔu:“5N>O©Åb'û’ M©Hþg/"§Ü^ ¢–ø¼W-Ö5Êr°¥—ö¸µ³”HŒM¡nBZCÖñó¿“ÿ\ÉþšÑmÞ‡'ý|Âõ´F´U",ª ,v|b¶Ù½ º:[ƒ65 ‚¡ì[$iJÁ©ç˯ÃOJ'6Ë®zQ0¹#ÝgøD}µ~s瀹‚¼yøÚŒ1Wðë,úa)ðX !h>a<Äñ=Å"#Ärº|qãüªP ×Ô‹×É; ­î½­P8yù ‘oùä²ãÔ„ãižP»T'A1Qëݹoh > .(²a$bq9åÃá+Ù•÷š 0õÃãûÎSå Élk/åÚŠº(he…&·G'ü±dòù‹¬!ê²\‡úþLárbY`ï/¨8òþ$lÆåø^_çPÚJ›@?Ò“ÌCmðU~oPí,.•9Œ éö z, •2BdÎ{¸³Ïwæœ)x¦}›Éq—ÇJ[DÔXÜ…§X߯-†™Räp ÆcÍœŠµ®ëj{Ù¦`oDTDT+žÝ6noo´ÂU|'77¡b±Ã »µžà˜o„ù„uŒfÿßÈÚ.ËS4 @T°.ˆê=ŠÛCùíÍìÖµö…÷yçï6ôÿš©l¸gsLÒ\w‹ÌýÏø±…‘“hL"oá_%@£*çK׈Ü8æ‚ë+þ|ö7¯ÏnÙÿq€âwÇq»ÈJ0”¦îÛw>ìVH¥01Å»­W¨el¯á‹é0ˤ…[D ò@»sמ³W lÖ~"kðH¦£9 úÙ§÷¦Ìî4GÈŒ,ÿ-œòµîËôµL>),ÂêAz‰».üÓ¨‰·$?Î=¾øVv‘0Lb,ê3!GÇáN}=Y,yU(Ýz3Âöâ{³^Yëÿ•€óxã¿.^‡N·ðÓÔh¯èî2³eCF¯ûa#ŠÒg²!à5«Ù.­ø_§¶*ýG‰hß®ý§zØz¡ÈÕù°©xU:*$'*fwòu¨÷ûlÇå FTèæ™yt@Ã|~óÑF‡<¸H÷±lžÒ 2¥›N”¯ÆÕt£;œæzV9ãOìcÓfVE©öùdÀûÁA˜L½RM“,›òþ>êÉøÑ•ß'ŽbJ˜tËKaŒe¢j@¼š2±Uú‡ºÜKtÓPeM¶†øóæç¢Ügo®Vy·ÓÏSÝÍkjŽÜ6ЏïL­Ûk:»ìzë]6¿4CTú©²‘¬¼ù¶›äø&P?±¯hJîQƒ’§’µBRm[ÊPVÃ$º¢Ç‘œ~f)écð¸Sñ!*gˆ››ÚÅؼfwÌ ["ɤIÑb—û[bzyÉ7”Òb\g‡râ!‹×\?{ic3LôSÿ¡a]ùìõ*d*z«Äqž©!½Öâ"1E»PgòaRZCC‘癇¤ÌÚÓ8ý¦"Ž"µŠkÜ}~XZœ„œåJ3Ö;i!QsýÈž ¿œqÉFëwíUlÐu¥Ô_Ⱥö,ùr˜Gµ¤¡ã{vehÈ3¹Œt±T#³È°¥Ã…\ìë_*)ÁBªœ¾YëM— O+¥Q\Bt˜gZ{}MíUéŠ r ë¾{pÈÎ åt&W'•°‚hi¼e¸È¯[9ê0<Ûrûƒìâž)ø­š>íŽ/y™ _²ÑñfûUfJ§Ö·ø 5ö½åe†W½ytý1…Ò,òì.;­%þùÒÎZ…e‡ˆy^ë‚eÇòroƒ«ëPT•*é}׈A¢M©«ô Ñómc½'~¦ösí_4ñÁÒ `š.ÞÏ¢hq‚NGQsYƒ1CréìÈÖ+bìø ýŽJå×íž­¨9w]‰Áуoo^‚RèÇŸèÁ鋬½Ûh¯|ÏŽq²_þ•ìþH‘O„ÿq§¢`æ Æuë ¾a* —»’„'8@:¶£©FÆ5éìÙä€Ó¬žô¸3ÙQζ:#½ƒ#æT˜ý+K6-Û;ö ûm—Žô—˾U);Xx3Ÿ*À¡êSÁ77cÝŽ÷¹!hRhFևѻ—ºÆ­JÒМ@$}f؉]ì+|‡.ý¨’謟ªœ!í5©H€܃L?%ZN:Ùž@©ÉC‹t¡D`ø¦Ës«Ç¸™` µ¹ÌÊPa ’k_UÉË(UÕÐK±„Ú¿­ ÝdÅ‘ò¸,Kڜݘ" Z¥Bé‘eZN…¥Fç#£ÿìeÐZø« Ot)Z`è¤)w‹pòt„ý 1Ùg©x,=`â_ïÚš1Öèg[yžo£à‡GÕp_D>-ïókò‰È #„Tâ’Uè„j±«žDK‚¬ ç-/)lÃEÙ\qG\޹YVju…fòðtZ},;‰™P|`š.ÖcáÒO˜QA·ù-Ä•²>«‡³9͇°Ÿ»r‘8Q(mEíJs fñ`9Ø£ÊÁu«S.;½ž““Ú,¯ä[Âèºù¿!¦o²5Ãñ¥83ÞêC¾U&šúñˆ+'[Ì’ _ÀÖ mñ²·p èÆÄ»ÏUšŸ/ñÃa_د”ðt|Q¯F†rW¹É&ÖÑÓÔë³Í0YV½ë`¸€g0EßWÄ8Ä.Z’“HäÏB{{&'ö:!udôŠ^A1›‚xƒíȼÝßËj‡Áúx™˜gÅð— ªû2‡ü]•€»ðÓë€ “Åf‹áÕ"x­ Ïÿl7ó-¦8®±-R.Ñ“Èb>4 U¥íe@V·½~_—]7˜dX§Û`NÍuaÅäJ¸Úßþá‘iøÍhFÌÍž«;žœÛ0‰¤„ ÍìñH¨¡è»!-J"eks±¡ì)â¬;‹z0®ù¿ü¾(Hå9’7­Íé.øóÍ›–*eÿN?—V±›u*R‹d&Ìru·z§.‘Ã\ɨµ±âQx9Õ0¶•ªàgºUb…ÍõI$;#e2Z:OˆË)V7ñM»ÑrÌæÍ+`•°{›)_$NcÒ@Ž+¼£Vòqß-%°Ö¹hÂ…~Zh!9ø_ÔOE ô„» Ÿ¾«ÑÛUÖÑúÔäVéÙ2ëò’èüõExeßmOzë¯ÔVÝ7n voÉz›yeM®ôpzŽ“xÒOÈ”˜•ÖrÔ¼™næ¼2þeŽßƒ7ªÓæ`ðR Ioê?YQµWÖ,w(&7¨­.–æô$yÐg ´I@BåØåT¥¤:©ñÔ“Á†M&àªã^-¦§mŽç6bgxí#RÍÞ21CíéáO+óÀT™é¢?`HÌ÷ÅÑÛðÍæ‘¥NÑ’V£ —Û ìÈN€UÑYE²åCd#›ö[„­–Ù×øžÖIuÜiËï{ëÚ†~&W‚ƒV%ki¸'^ÿå¾Üø‘ëÞôÌ{­“kfàÖ¢û¨“sæ’ 4i'©å›{’ÿx A*`m3Àsœµ|#Ç“…8‹ŒÀ‚ˆÍ¤˜ªï²Z/!V2²™Â–@…üïË›’Ò²dµï#š×kîÑXÛ;âÜK¡Ü!k-_"ûðt)vJfÇ֮藖‡d.;ñäôª·¨Õ¨YŒU Õ‡¾ÌÊšuà‹­ÔûXÌQdw!Ô÷óû7ódrö°+Š€{O;À³Ð[Ïœ/ަJÃÅ÷Î-Тáèì·Ýkly6Ÿ®d)í  ºÒ©ˆ`ýP0c-E+È¢=ª)^õõ bäâôe+°‚†ÙGA>H÷ úAÁÙÏ%! ¡@õS]j÷aô7àt¬8¢ƒ~C“äØìÀµBÛP™²mDß •*꺳Íu(–TSð™ßÈ‘)7½ÛN/U D7Ø*{¦o å´ÐõÔ¯{mð^2ÁûÏ*]ä“$]KÆÿ¡ëJ9\V–åà×Ï÷vXˆ 95êâ…Üq „aq…K'ædÈ;î •˜® ààSß³²´ƒ¸ÿÆ›w¯£RtXƒùè‹J}p[¬Pq‘¸EÎŽniÑáf³È™™~âö­Pæ@—·¬"¾¼¥G––p5út¸`A QPLˆ¨õcýƒÉ&ÖÑÓ0!Sìú¹ƒ SÈÃZ]–Æ"°OÍÛ@¶uð3w6MêH l*‡„„j’š.ÌœÑQU|ÐâbG .°-LfµÖ&3ÔÜl郯ðî8¦ÛžÁûJ¥¯1¡oÀ}Xö­5³Eº¹ymr¢¢ö!$ß? ß‚—Ý0×jϧ’öXH3z/„™¹#Íù,x¢ 7ÛÏ;:ß…ý¿@žú”ka¼$Õ»‚]…aN^²³cEþSkó&ió ‰>$ÛdH* ª<¢•aO_=`>Jh¾N°,zïѼ̉TymÓ;ñc2ÔkùáxS0šO=ÿC½MÉf`¨>;o®zç×At=ì¾Ö¿x²T·8Èz¬õmX4†èÝWã^JãšêÍ\ˉºÆîŸ]Õü{²ÆCCžüË €[“¿RL¥¯}ø¡ âÑ£’ìã㥿ÜQŒµQ3K1€"ºÇÞ|îð ГíÓé$‚øxRÂóõ¸ÍrÖt2µ#¢S“¹MU=RMÜ/¾6'oÌZSŒ´¥…£ÑZy ðqI#Nµ¶å,h@6X5ãÅùX.;Ûf³í'맆ޣÑÍ6Ûå6ÂùOÖ‚=ÐäEµé)Ë߯â@Ì"Õ´Sâ©•­¶R~§ÇE˜ïª+MšÙøÎ,üIàü,Hdý–kÜ'UW`zªjÕšÂÇï[qÞýsׯ/ÿßr‹~±B(ÝÝÏõÌÛˆˆŠ;‡1óŠÅoxΔ-äq’ N© ”Ó#=D~‡R|5óÍéM• ÍFTø†‘ˆÁL&Œ;jöš2œÄ'wÝç)²’]OŸSGo.ÓVíV'áÀIÇK_¤á6Ünø˜tX`mß…¦\\€¾Õ–3Š9+˼úß´ß˪âüMQÊO í¿w§û’÷$ë^Ø]ûãiIÓ¬g/Zþ1/óF±aé2 &§oeÄ<Å´çä5?à0P¬°`†šO„*Ù^¥mdÿßQ8GÞ`ŽdP[± é`Îbó? Y&?ùL™Úò¥}2E$äb [ ¬8¼Ž¥ÎïÈë®uXWÕ„1SZ2ç—'¬ôd)òðf•N É]øó'é°OPýuVEÊ{ R`Ó ”ÃПü­•¡ÆOûÆ1*–Ýߦb­dIj„¿V¹BÃx Õšù$!Óªç«%ߊ7é’ØXõ~^ÐÓbu•€*%Á¤ò­lb÷¹36­×@/õŒjGó™àNÕjs®¥¢±ÕÄÆ¢ºë8¼³>g/ëóp ïÚävˆõ#(«²Ø$E–âgÚOïƒõ‹F¢+ÅO{§GÙ6|?ÏS;‰Èm¯'½ËÚ¼WVœÞá纎T$ÈШ™ö!ËI h#¿‚0Øæ“üÊ׎)Ýf©AÎ0YaTmðêo—ðoFœxXŸÛžÃ:ƒqì`ÊÃPúâøfX/¡˜4ŠXIP{iI¼Û›áˆÈ`úM^J8@”¡rËølUºböpÝxÐÚxtj¹mp›ÝèÚÀ:x#ZÙ®¥ö^:n¤íJM7[-BÛÑ· z^´ò§èˆmÕlÓ¾Êk½U«üèlÆÊá„´·zM¹oA&O Èy¦þñé8ÁPRñÓ …ãã¸ô¡È>Ðzðý;SqØLÇàE¢Cγ¡ú—r"œc*N& àØæ7[z•¤Œ†ÁþÄ'+¥‹ À¬üâÿj³v)Í ë yèÏtO ‡5C z$膵ÙdäŽ÷¢lãÓµ'GÖº¦b×¥üÙŽ–+½"’#ÒFó_ð6ˆ±ª°vU¯#spWÜPVVÓˆÃk¡k'ÍÎ?ü¤â¡ÛïZu‡±À˜v ªüQâÊyu”6D³ÚãVG·Hfê3(c_íµN:´Üh¼Ì×µibàDû¿Tíæ,½€˜î 7CøWÑ?€?˜6ÂÔÂ`Nõ"óC,O)hi¨cýC“º¸µfNiIì÷ $õS>P¿¼"¿ø+¡-©±P|îÕ 2.IÜßû>EÒe‡7Ûn)NÂ/¡#ída?:æÃkÏop#ýC›çëæ9P*17U WA§‘ëcpЀû(»,3ä;ì%ƒÞꆇ§Ž)·;›X%É4b>§4O8áÀQ;áùð?„w"ü~^ßÔí¿@DðâÒB\-`d#Múº7ÃÔÞ£w„åõ‹þõšbQ+J bâàÈ —×Å&Ž=eãü)ïL,áP+¾¹!Ÿ_ 5vVä…áþ&jËuÄê壚=ÃfZ¯¯l±3c¹"z.ŽÏ)6çLSUó›Ór§uÌxº|^,´õ—`W8z©UaK1Õq¾…“õ3²í±„2@£›X³Ê”²ëi•>éN„³XC^¯¨®oT†Âð’¶| _[ÌXëÖ«é ùVÔªR"…:l qx ¹RDp âríhÚrvì ßÊ gpÛo¤Ðáv§PT7‡÷“›4p´>þ™SrÒ¯ð³iû~ªR*cœÏÑxï[ ‚0ªÖÅÓÓ¤íÀóTîéÛÄ`ríywk)¦Ã¸ÔˆdÙåÕŽè«‹ç¦bÞuÇrûÎVpàŸ¡'‘rP!ðR§é ¯Ö¤e@k‹ÈROZŠ&ÿï¦|&y;Ÿy&à× Þ‹ÏßVœ@qX7ÌçGN˜æR¯_ÞAÏU¿ÆðÃ7§Lœ „!î¶…f"/¤ƒŸ½š:˜Å!OÇ\î‘»«ò‚¼½ž¿ÿ7›rÒÏ|r\¬¢K 0~F3•Má·“ò§*©“éêëºö˜+RÌ(Dz0#òiÕ$VØÔ™ŽVð޾ǂml’pŸù9ðû+ÈÙ·cßGc;ˆ ë°dpÖÃòo¥ë¬y2]§Vžmé®ÑŠOÍlÇdÀžü §BZøH&d ¥÷©Ê¾fÉqÊÃrÁÙS™¯+|T¶þ›‚6øAoÒ ?]¨©HK†”¤ª¿§Ë,g q½}ˆÆ*$Ç*ù¥|¿ØÎÐé„4q´}ô9UŒµ‘É ç&Ý €ˆóž—Úl†×‡‡!ùäkãjVÂL×!£4½ÙÇ+'¬;¶vs­F^ºò¢·@×T¿»¹ÍûI•`|¥¹^ˆß OÚåÏÙ8QN„Ǿ Èþ°F¤×ÆêO~ ïo­ˆP'xõÐÆ©0ÜÏ“pÿ0<+ˆ›+)L+bš ºb¤íd­°‡Ãf·äG ;KmxN…ŠÄ0r¹ 1¡§ñì̼äêÆßr¸Õ`¾÷æÃLrƒ8Í3çDÿ¼MO> ½¡ã¤Ù)üÄ`‘dmMÙ¨û¿’©Z´ sO¤Ñ›—ËGø{ òùPœŸxÒiÿ«_aÚgûÞ+U¨°6”ÇnøÑheþMÞ$°RÛ˜2u2Ð3]t‡ÛqóÏü©ÜÄ/|¹dX­qE/¸šVt4×ü'C[Í´/¿ mªXy¼qwy‚ãJÁ¨*å­ó³/TYŸ°›§Æ:Qæç)ÁU•Eª›žgè&÷í­ endstream endobj 52 0 obj << /Length1 2046 /Length2 14960 /Length3 0 /Length 16236 /Filter /FlateDecode >> stream xÚµ»cxdÛÖ'tì¤S±mvlÛè¤bÛ¶mÛê c«ã¤c››7½÷wÎÙçÜû÷>õÞÁw9æ¬Us­"%”W¢0²ùµ±v¤e¤càHËÈØXÛ02ÐJ8Xš˜èX`II…ìŽf6ÖÂŽ@.»£)@ÎÐñÃÓÀÄÀÀ K Zí?”F€on £²›-@að·qp¤ýfàð¡Z›˜Y)?\„llÝìÍLLÿÄ`¦¥ýé· @ÒÀÐÂÆÅÁ ``m¤“¡ÈÚ¸|Í6Ö€o@SKc€1@¨PQQTˆ)Ê©È+QÒ}Vr²µµ±ÿ?.BJÊ*b4aYeP• ¦¢¤üçUhýÁß„ «ü¡ÿ“çÃ𻌈²€²†¼#ýŸc0œöfÒþ7²f€ÿPûp5¶·±ú+€ÂÔÑÑ–‹žÞÅÅ…ÎÄÉÁ‘ÎÆÞ„ÎÖò/~ʦf{ ÀÇ»=ÐøWaœ¬>Êéh ü;ÀŸ1H›­€œDmþVZ}”òÃéCîøob…püÓòos€ø_iL þò•–——X˜Y;­ ¬ ?  úÉ>ž@#ò¿ BNöörÈüKeÿï4ÿ¢.hóqdÚ–^.ÿ;bÖNîÿ¨Í¶¡µƒ™ƒ£Ãßc3KàöÆÌÌú/™Œ€¬„¨ˆ’2­ôGãYÓÊØ|TÇšÎÑÕñ/ë?ñ„¥?Z‘ÀÄÄ`øhRk#!+«Ö°Ê'löQ'G{7úÿmk kkÿ—ØØÌÚÈøOÝœléU¬Í윀Âÿgü!‚ýÌè`í@WCSú?Éþê•?bÆ?â"xyØÚØŒ ,€^fÆÀ7Xg ÀÑÞ èåñOÅ#XFv€‘™¡ãG›LØ¿¢KXÛ8ÿ0ù—êÿ€â¯iJù1Gl¬-ÝF@cXzYÇv øÿg–ýO.Q'KKY+ ÅÿTôÍ ¬Ì,ÝþËð,Ô€¨RÈÚØ[XþÎÌAÔÌh$oæhhúWÿÿIÀÚÄ ed¡c`fcú[£ògFY~´îÇòcögõúг±ÿî£+ -¬6οTÀZüíøC@/®,).&@ý¿}󗕈µ¡‘™µ €‰• ``ooàËðÑ L¬¬Æ®6ºþÕ-z:kÇ€­“£ÀØÆöψr0èÿˆþFÌz¥ÿ ½ò;€^í߈óüqè¿ýqè ÿôFÿ€Œzà?àãÀ&ÿ€Lÿ YX?›­)Ðú2³À^ÿ€Ä,ÿ?˜Yý2~0ûO(æHÖNVßþ4·É?20~¶ùü lûøÁÐþð#ˆÃ? €ÞñðƒÓ?à;çÿ@¦:®ÿ€yÝþ‚ÿÝò–Æ¿æ=Ãåÿ¾3þÂJŽö6@53£ï˘È8Ú›¹j1|LZÆùÇã_Ÿtþ+éÖ›x Ú¸zвp2h™?ŽŠƒ™åÏP²yý—«áß«÷_ëÅGCÿ ÿY:@ +ÐviÞÆ;Ð<¥)¸Ì[¤`ª’”“î´ƒO]2b)}ªK8w›øµÐï‡oY¡´8—Žw’Ÿu±:i ºåÛzKbÕä‘ÿŽ·Œ7îgÑU:ÿ ™EßòN"Ê#Éœ|–™ŒÖ¸Ö/•Ñc!Îö®Ç(¦‰wä«d"íòÖÕ›ˆã(C ùP<‡Kè‰Glíϱ{‘ô¶àFk·¹É¬D˵t›MÇš‘£‘NÚ0{4ÜTÄÊ(¬¹`4îE ªC³“*ô}u8®ßðFŸ{p"73³{x:ýîûæ›.ûitŒÙ^á^$‡+Ý {e¯-‰7}vE:‰R¦Ë¦ÔL{dÚ¨™0¼j†'>›¡aLSdzK‘G“Óh&·ºÞ™§`%ïlîZNvóîÕZÜ8H÷¦vÄ}Ó™™ÔCË—6Ø?|ÐýóÒï"Àoxíö­òŸ§@$#PŒñDÅàˆxw’–9¯òT½û2°61õèÆõEx–öc貆œï™$Ðo$ôC¿l3 ¥ ë\ËÌØŠNÆNY£BÃIrÍúÈTªŒÇ™Øð£Ž0Béa¹Aržâe‚3ó/äïžß6ã“w¢ï67^"‘y~HŒt³ƒu¤ËövZÀ‹ÙÑ›£rþJ=àò%®‰Nʹˆy/öG7Dy›„ºhÑ´ò`,w2֊ݬ×[†óã÷ãI “žâó\ÛO[ÝöúEìÞ¾§4¬IDûJ¢¢W˦få…k^Ó„$%O7Ú5Œ$2aÉ «U{˜haÁôÁSëä¶d‘&’<$¦EwÒ¤Þ RÛ{Ð` Êò¶T­³:ŸªÐCD3¸â»L/ë­×³16>Ó*kÐÊʲˆ+À’Ê“/âIÇ/n÷žKJBë?V½Ê©CëÑI:âyXf²ÈûÊúÆÆ/Ưäׄ¦J£Ñ7Ú‡ö¸ úÍ.;¤éË‘}ͬ%êºýöIϯK4ðLvühìü:@mø„…2bÓP}³mNIׇ¬Êœ"ÅTÇ ÷“¾5LbÂNóPAgúw‚W„xòãNÅXz{.-Œ§cXbõ”=¯œâÌ.AHŒ¢¬|”el†h’c`£Z‡µe .±Û¯Ú(ì'+epÓÖ;ñ޽¹äarÇR”Eö¥é~ϼJ3©š?+ö Q<޶Šj³ìÊüú³/;.»‘â$lÐG)¨ø5Rc)T4†‡5²d aÙÑššÎ5vºòâ/X¯öƒøl•šäKSµyPq\ªËnê/8/FÝkÄdß."fl…E]xÖ"¤.J#Ï1šgŸ<ôê¬Fל1*scb,¸òÖYÁÖÞâ ƒJ5¯å«íÜ£÷œñâLÒdÔ3©wkB…ãH¿Ä¦™¢$€d½®\ðÅ’Ú„4èC¿­Í²xÞ¦TE%‹9} #~öŸR’ÈTnp•y ³ EÆdX\|‰„¤„ƒ~ð è—ˆnú®½a'ÖB,·|ráÌÀ=ƒh´o«Ê: àù¥[i¸ £'V)Q1_×Dnkl”»/SI%0 9¾Gu²ŠôVD6´I”Ùßd‘}¾/*vfT9xaIóS’Ýe?³µ(ì›~èTêÚ(û¥/÷'ñÝû©L—טã‰>Sõ¥c|ÙÛªñJ”8ˆOÒ‰JšŠÁ ñZÔ³ý!£ŠµÓ‹ä í=n…î\8Ã:]û#[š– „è† •< U®u^±©÷ÛloÅ*½Ø4£“’ £Ó"b¾è†jŽDÿ¾ TjþÔ¶¶gÓ ½2&Ô‘Mf]Ë:Æ9L±)ø™NƒØ£S–…ÃÊŒÍÎ]š%Úžïê÷ú®²6{ã“ôÉf U©¶ZhÅiÀ?þ¿kø):'„°”øµøŒ2]nÍLZÛ”}¦ãh+RRߥËfD¦‘µ#&Šn1ia‚tg©o?åµ_¡•;¢æhßüè´M…'¶áþ91k*ñ|H¹ë¶^$|3*}Iû«¬Ç-+ø¤0Mêeo$ªF›;½°è›G·J‡âœ¶Uߊ¯a0^¸Z8Ī´ç5G<TyXµ(&dño¡{§"FÛ" ú ¯øøM7ˆ d¹OоJx o†ßˆÂX9}CõöÎ!e4÷8Xb”Lã$’kðb2¶çõ/9‡ªŠc’‘¦<n;3±´CÐö˜CóËeâHV½<Ò_øÚkB°XFpÔ „{ßAÅœ¿ŽJ ]1Eª¯rÑ‘K¤z.N±oÄ–ÉñXçſtMÈlúÔ.2P¿m7¦ºþ°K^`x|£çNÀxpѹ¹ ÂUp³"ØQÅÝxˆcãP'oN…§ß¬¬ëþŠŽp ¹ÄRKGíZõÄF%‡ÚDé°4®¾ÛÔL¢µHG+ÀÐ ™o(5íÛÌ0厌Úõ¥²wUWWý—£‹!˜‡Ý*À~ä„ ,]Œ½Õ$¥Çé³{BCLÓjIîÉy(†]3nR‚îÀÆ&ÃöX柰‹×|ÆÿN·º€+>Þ ‘U³sÞQ²¶óNïäe~Œ“å¾])J`HìF+÷n•¨°Y~‚U›>„Ųc ö ró›‚ ù§@B©å6c[ðlïëñžÄ 'YqD¼<:úèÂ(À5L?We’È•wØMà¹óbhJËtFkMÚ“¨+±hg‘b¾õCÚ÷=Ýe]ƒé<‘/kŒ¨ZN4ûÌ9Ç$j8ñe îåÌa²7–`ÄUös/âwËÑlb|ï_ïëÞÎz¡ éÀ©…üÊ~<,¦—^0@™…?3ßð½%eTHá+ë8|Ž$–ªÀ²ƒŽÿþT¹ÌŽÒÓ\º©X>Ng"z¯5óÀD ¦£ï¤ >kA7n’ÎåM‰ø0KØ»6»g«Fä%œ‹–Ú˜^µ™­2¸»i1yÓ´J¹¹¹ÉbÐíp_O4íO 3©9–µjº˜Ã”ºDåÉ× !†€jÄÌNÿa„|ÏD¢Cêžhà3ïŸÜPQ+qzŠEp¦Å nåÓ¤„† ƒAü5g³fϺ–Iéð•®ö¡ât bô×”@nLŠ _N«h0ÎvMm»‹ñ߄²;ö-ù*ìÇTôïâþH¬þ€ì¬zÍs1!shj=Ä!„ÜT¹j°ê<ôY‡aåÒ±§ø}geA( `Œ8™$ø¥žuóûÄÓ]O—±àµÓdLûš%u©»høÛ§Öx>U•ÜZ€‡Bgt‰³-$¢Ì{lóëÉ3™«§À]k„p-«èu²=7„÷€Ÿè0ëÏv\ Xku¹¸¤(QóÓÓ [jaà,Glójµ—³Û×X:hIs›Bz¤üiLŸ§¸œgpµÀÓ»Qã. õ¯å$‰ÇøfNFdªK*U{Õ‡âûÈ4d™:eæ§5\Âz¹¾šGúS–!Æ8ûo«[£‚m]²‚ýXk(†WŠu6I‚[ú­[U?›I³þð:Ýáv@h3xS ³B“ß(ÄÓ”¯~|k 8J£Ì1;ìúv?ÛjmÄÑ3o΃có?;¤*ßeßÇçF£d€ áÎýÑ®ÁÉK)……ÀB¿èNÝ_®”§sÊ|†AV”:˜ßŒGwy–ý:u‡÷s“:Ÿ3â–4 qmçY.saSÜðÆÇ :9{a£†VwŠÆ–KŸÚŸIÏú`¦¢Ò“’Gçö~lÎ`Õ½#F„SPsër‰®àÆèVœ¹ó;‡I"5¦L¶¸ŸÉ,pp:È´ÛJf(c³ÅI*&Ô¾¯D®oÕè±ãÔæÚ# ¤Sç*GHÖ ÚË*×F¸üxr‰r OÖ˜ræ|H™ŠEJxþ%-.±mr_‰T„pAZTÁðdE‚ÒÕèÊû½ûnþ3K§†pÁ¬n(¤ÿ7•£ãN|F ¥wÝܼ$qwK§•ät¤šM\Üäßým56ØÁ0ÑãI¯å &6„áQòDH^° ñÑ'=Kw÷%þzÕôÏ+–±3»ÊúCWúT^ ì²Öïtd‘ÚòËIç_ãLùÁ(QÕvû‹íÅ®+ëc!¥Ý²=l×­qÐNêÚj¿MØ[#Y£²ã‰ØÃpV™wâÀ aI5g…ŽèCrÍý¤À|cÔ=¢1ÑAã=úrïê–ë rn"ê]ÞæŠÒ^ëa].ÁX#©‰¹ô.¥†,P<][%|øÚà #/àèÜSçZG8y͵@¹B±Ë”œ«cÄ®+[Ñsr”áeö}q+¶ôvÇ}¿®#ã‰dÔé­˜ZðÉ¢ëªaû*6Ç>:Š\ÁP?°³¿Ñ v(i{!½ÿǪ×—H§0tWÙ[e¸ ¼ª3Ã[æGšéo ÖVoG1ðT¸§óWtÕ’©¥*/2ûiµÃÒ¬E‰~«5-ØâATÍ)#Ä’å³M;±êèH ¢àßfPfg(‚cÚÈ¿¬-a¾’Lî?;˜:s‰Kö‚n„\\B¥úÏc §ø>¥­*÷>*¬u“ÏÆkÍÒ†¦»„ÉZ¨o‡ç¨Úåã¬*h@{+bíœk€®tŽ%÷²ISaah’=µ>¸bGS¹U8†}òîó¯5u²Åîȳ~ên¹z=3ÂË{W@Ë—@‡èˆÐ$º ¼Öƾ(6[­ ‡0ÓöL£ t¯4l¸÷âg„Š8`þF´||פ„Nó®“©Ñ#óoW•ªåŽoôÊ½í »]ƒå©çGrоs²Ò&k¿h÷¢™…³rg4”jNö÷Û&d.°Ê'öåCs î24éU$Hol{Êrq^¡·ög‰Þ_%>[^ˆ<Â(H¾O='Z㪎ÂK ‰Ü½ÈàžƒÙ±«/‰ Åÿb“¾èàÁºœóÚ AyµöÀ+eWóŽhÛÖJ fá@›,‘´{êMžC€ƒ, ]H ÞN–Q©} ß0›Á)£•öˤê`h\Þ‚‹^Ó?°œžkiaçA³Kß0´ÌÓ Ý>ÚÜ :Æ-Ö¦íÇEŠ;sBŽ‹Ð„4r®:åÖöÇÆQµŠpÉ—̘Z&bÌ}x'޵=·À†|”7BôQ»  ?Ê\ý†„@Ó–¯ïÊ:5qš†Ý:;ÂÇ¢ß{‡…Yìr„MQ<ÖË[@Åå¯;Ú­þ@¨<Š.γôTßÿ1ë&z™iŽ »ÕdÕÒÒÇʧ\¿2¼99|ªÍín© fÌÛÂä2a~^<ïÝNio nî·„Ý™%qš}–Ù›þý‚?Ã{?1,¢ ìŸ Žð£~MDˆYlƒnÆ,>¨v;WzŽY"TËkOH_Ÿ5O/ ¡à&¥äŸ•§%¬ÁÓ‹FUÁóL2Õ ]¢2CFsœöX¦–ŠÇâ”D~Þ‡^Ю¿½7ËÇ"ˆ£íû<}è7V¦ÛkïË`ô~uÄîTõN0Ђ³ ¾3l É l,™ì úÙ@*Âÿ‡NâfÞqÅ–Ä•sdºa ó¹1yÙ½¶þõ=݃ÃþTÀƒÐú>â3² âÝž¬‰n»‚ÎeG ݧšý{ÉÚ*î^ÃNÿP[8‡§ é\ícµ-Ø’{tQ§dz%ÍÙÖ;0¯½Wø$à¨s¨?„ÁP(Çã—¢åd`ÉVÚ¶wr¼Ì–ÞéJýqþo#.oÙÐDnã&ç±7}¬=§ê:º7¹§Dÿû~¹7Žº‹m–Ž·)Û¤§ò’LüqÂ׊ ¿$®Úh0RÎe†óp`ßRö¨yx²dW¶ž ꃺ'Ä ¿Ì9˜t/Ò»ŸW |?ݦÆç:Úñ·kÄ7±) â¸Óüù«¥t²îµGƒh·Ïß.>´†Çu°Bƒ±¶â“ÅoÙîböŸÖ ÕÇßT‚ÁˆÃ0·mß-â „nøð!¾d“-êòN)·+¹#Ü!ª»²^Zè©¥ÍÎ&EáèÁÙXO´¸ä¼î±6Ï+÷I`Âó8³O›=¹’G5Ö ]ßE¿‚ØK}Š»Œz¤À+K NL3h—¼EnQØÜE1¤ž¼ æ%9î<;nh›¨YŸ™"±ƒVìPæ©w˜&càCÛ¬S…•yéþZ©<^Ά,6ötŠýù@ó ‚„§øm_ªJT|Z§íg"o;t·„ãR;=úƒ>,^Sj-¹£˜ƒzªáß)9?̤¼h_¥(ó‹2í•û†¦ÞN3ŒU¹¤~·Ë9¾È‘u Ú´h¿º»–íF tŒað³¶Š»Ø&•„Fˆ£"Ûñü2‰þ2eb€¨ò–ŸÊ.¯‚5ªÏe¨ìφͲ Ť‡Z§y±!>ükÙkTmn=ýw»ª­1$Ú·gÿgò…Ô·WÂv»<½bO>Í)}ä7J™ªð¼£„yOÐE.•»l‘î—„‡›ÕK6V¼ ¾háýùšî>†òcΖÊÖ&7M6dåé ôèË-Ú3’(Õ˜CêÑÇ•Rctòݵ‹©;;N„sèYý—;DzÜOû¾Ì¿‹·K›4³…ǵe¶_d¬ñ|§¯;^yÞð –ÎÛ{nA\×l©QÝ;¯m]z„6ø¢Úd6‹°̆Œ;èÒæmvLm0„›^5 k¡YµÊY2_߯çn­tÈåh7.pÈ-Y<0˜×AŒ¹Gó¿çõ¢¢œÂ–Т8\ÖeªA¦#ã»Jü=§Ôysâe¦$“I`­1¯µÞð§çcj.k¾FÄçŸ".G8ôGU÷Cû;&¼ç—Y쨨/=1Öf$Ñ“êPQÔ+ ao%‘Åd”ƒ†QI©.\ÉÌ™±È '§£²‡u¾g›„ø¬ýNyõÌvX—±’µ=Ï'æ55„$f'HN’ÀmÛ ÇUé—E7¯Ó¤†…Za/ídƒaýö3 "?=ãÌŸ¬S;gª¿`åvq×EæŽwRì8ó#´ÒñþÅ=ÎFkþ.¼ç5 LO­gZtKCù•x%Ihg™V‰Y£²ð ð~ë¦ï'dž„ÂÀ¸¯V{ˆk‚=-_ÀæNÅ&Ñåm-;Ȱ aöòØŽ×ÙðnŠÆÌ{ådžŒ}.¿¨ÚŸó´ãÒ L>¤ éæ” ¼ ÖEKoKÚ9CÝï0O˜qÖ31ul:àé7·:›ýŽ*]Ç"âñ^‡M ~W±ÓOÝDüá¤cÏ×R½ôÓ='Ösa V¨S”‰?}¶#GT–¸&î™ c4Ø‹Ü&—áËáÆzõ·À)"o^zC÷/ÏM›™[‹}çšÓê[ö0¡b©¡¿›ž0ü(xÃ&ß4@ëÉá§§ÀÀÖ¯ÝA™|ôÖ4Ù|5½JmÒv÷ âÚLIJihEˆ•Þ˜ \~Q·†l'´*÷Ó{–e.€^¤?,(‘ܤÝj²ûðù÷ã†F:^òÞöiüêêõïo ¯Ì´x†t#?x1LiBŒå)G³dFsHGÃOi"însXéOÌ'ž´"÷3È–WÞ) gv¸aĹÕÄÉñ:ѯ³),ýz.ú"‘)]0QùXÁò%^Øšsw> › ·*L/(fž@«Ù“ÃD],J-N˜6=ubâ䆣´šÕ ¢:¿¤a¬«`ÑIPTž>ùbu\CCP?ÍÙ9s®Ô¿>£©´ƒñÕÙ#’Ö¥ôkõ _"ïËó™·L3‹¯¬c£Tø±Ï‡HcC\1&R—nÈ;ˆc¹ç c’D› ì–?"Œh&º¸‹Ú±ƒð¸zëtêW™AéÇ7†+¯ ÎÍ ÌÓ¯Ô ÐžŠp6à›_èSû¾~®Äœ]0ä«Nß×:V«¡°äG{9@5ú:qRCrµÈ|ÓS-äýmÌ‹žf Z¨º¨Õ@¦t`Mmš mHcÇìÂ Ž²¥¦~#ƱuÜ8t¿â\n‰¸8[?e£“®#Qe°·5þ">ØJÇÁ.ψðV 2„®P #–ÂJfVÁìÇœn:¾½&Ìë8;DS¼y€e„\Ý«6à´;Fæ${x J‘*5¥‚‰Bø å&?\9­­‹®÷”µŸ<_ËŠ çàåW%™eüÒp¨36~*åbðÁ'm_B=Þ,S'1,k®C,ºÖʵöÁéi«K@¡Ps@z±ª‹È16 ÷$ù¥Ä¾&뵕-ÄÃFecéºÇeê§@·L©[›orSQ§h*‹Í•’$…Vj}vŸ‚8Èö‰Ð{röF(ùo ƒ–EG$¾âûÀ×íÕâ²ùÊì»Ç–:*Òõ1ùà»ëKFÐ(ì>Ï™c‡‹àm¨À(dd,štO•zÇ,ôêó!Æ?éŸÍk&Jšº¨›Œˆ¡iS2YŽ&‰.¾4:Ùž¡Íáp½ê­Cb.HOq^_gJè!ÜKFÆ(áˆ]Ja,ˆ+Ò¯¯ ~%«d÷8/(òÄ’%Î.µ³jfŒ+@·å3:É¢0¡¤|µM7U=òϵ=Tg[ô0ñÉʆ7”×€Èé}SðeÀjš¥¶v³‹ñTÚ‘–$ÑúY­äQµuöm)K¹÷·:Z÷ô&o»Ñ•#a&ï<}¬&®éªLóËüRÒØMY^8ÖÆîãGÛ ¥‡+‘E¶z²K[{€€k³Ô ˆx% s)h‰`-*þÎp ˜žz 3ª't/kUû!ø •ªø¾*ÊÅxm+ >wÀó0çmŠó¼¬U¶|h‰|jÙdµ–ð(W”+£oŸz8ægM@=œ§·‡ã4¶j¨—|Ĥ‰PŸa~R@:jý§¬À¤`B’”8³|6Á4ûââ$®|ñ/Í<¼N>JÅÀºwÐa´xLêՌƣû\C„?ö tÒÅvvÔá5_¼ ¯Š<dž'c@N$ˆ 0Óñ" ƒðÓîp#d»lµêãJüV®Z’¬ð'Q̶ϾŽüéäùÎù_d¸¾+F–_R û€î8/L cìà/jývñÈÒ;øm(çh®5xé÷ ¤{³d¢ã½í@o)âtÙïË2£ ã=d¦÷†éa@¸J¨¡¨Ð_ðÙ‹A¶ ЃsþÍQ¶Éô~ìÉ챋žà>Fù#Gß FSºèÒÁ¢ö±º£WÄpX®TïŠ*/µ€.¹¢â<¥Ü…¸ª³£Ïƒë¹NÀP!ðÄ”ð%^JYfuûs1>…˜ž‚‚„w‚Þu­êno+éeß¹?´c¼7H2#sL €Ú±E2©dö°Jîºx‚Ûx—rK*õ6<uƒÖôˆt "OLGt‘)ùšCüB趃2nÌkxNhŠ3Ãõ!§Læ«J,pCd¥ÍÓîÇÀjQæ3\Zs˜0qánÈ›$Xh¢•‚<©Ÿ+èræý¹)Ë™“:pR)Aß 4/cÚÿ§hê ç›u7Å-ƒŸ›UþîãÞ%ä3™«\yÁõ™p ÷Sn›W.ÕÜNÃE‘år{(Ôø哚Elqÿòüüðt)}¼èT½ñÅâfÄÀ‰[àL¥ôd2+Ïù§`߇Àßô%´t|,ÇUJ¹‡®‹£[LJœõãg3íY!ØR?Ò}®• :EÖ®„–$é5§ì]0Š»ç®´B_®é) ë¯/Ëù 7ý$Ã%#iðÄÚ.iÔ´Ã/:e–HøÑX¤Xy7N/Gpߣ´½e„¸E€UèÂ/ðÆÚKÚý-˯”º€à¾~Š yö”D®€œ—“Ù€•êÑÀ ÔáÑj^¡'2ð9rÛe›ÕX1Aw ¾)/”KDš¸ôqsêÎÅZé¯Y)†Ÿ4-èÎÈÞ•Ë!!ï• áKĶÂ,Ä^YÕ ˆž({\è”-4§%£ñœžsÅi8;س\BnêVü)/Õ‹§zŠ!¦Ð.Î~,xóڜۡ,^"hŽˆ‚ õ“ œGKñêë\Ñùde„FÃFŸ—¨K²£ºêº4“B_àn¡f¯ñˆ·\ð†Ÿ£xwôïÁC³eµ00@Í=ÍÅosOí…µ´Œáz=þOÞ ëïÒåGØÁà ¨'EÎÛzóîd{õÝP»:¯xÌ3÷ÁHùÙP"l²p"?uêNÿÇo˃gâˆÆ—Ñy4P·Áz UÏ_7ÚGã”×ÜÌà}vK+6;(¾ÌuƒW)Sót2¡}%†EXú™É…úH0ñÀ³ÿøÅn¢+‰°}û5µ«l*«ÆÊ“Þý%)"ïêùëRËÁ}Ëw‰]:7µmŠù¤61HC%·–6‰oW¼‹xõß#†k3¯†¿‘Ç«ÈÑ(…½ ¨fÐÖQ DõR3Nßr€ØÊÉö‘>Ÿ%8·"»óÀ†‚E ¬2¿És_5CSÇÕ$ÆëA؇UÊRJåwšR=èHj”Qq1"$ž€Ì=š)„G:9B±eS=Y:_+lQP‘0ÆÜh ŽËBŸ´ÓV̳­Ð½}šÐŸ€\WÞu?ІŸÞ`Qv7O M²Ø»”)Õ•*/“ÜDJ;Í…R´5Ͱ==¹gmd?‰Ä(ao%Ø?”ÞnL”¸’M‘˜Ž—Óì¬À‰n+ÅÛôu>“—é ÕE ïñ.ÛÐbêŽð<ØãºïjçQRƒ4|}Kù<£˜© c+† œ(]!†qhÎm —{ÛX'_KVò²¹|êÀw äS( õ{ÕÑõlu„3—TphÀX‰gÁm±oÔ¨”?s`ù¶j¹Ñ<µÀZÊ)Xö˜;ÃDÁÓµ±vÞÌabò[-¨Äœ›ö¿Îâ½íÄ!è3aÚiÐ ¼2Û4ZsõÃï×A¿`;yŒprðŒ.Øš lN~…uïÖ¾0}ÿÅ|Îú"mµÐ»â'Žž·Ïm|d/çF+ƒO³Î¶Ú}npÚ¯-Ãц<€(ä…}všT²Ê/|7“‡–úMHÊl_ÎЯq8ß¹Û1ï'¦úÆ»"ÅŒýV-v‰E`›ž¡‚ ªK³cÄBîgà/¢ßùB¨V.[ݧÖèlÈAtÝʉ“1lO§<Ìæ&èÎrÏG?ú¥ÇßaáI a³í¬üÕ3dNMKŸ1±‚ÚÛÎ`¿’*zZKJæ3 þä÷ä$øTÈw1ÒÙ«¨„‘ÈcQcÎë²]‡y0Ûkq†K]•~c³,'ºUh0i£Ò2dk]ê™GÒÎéó ùÃúˆµiR%FµSg†ðfS‚JOõ•-?<%)è@ÄÊï$èäZµ#“<„"øãÌÐù\ÇÚ`¿ÛÈÙäu Žÿ|EiC¿vÅf¸~&êk^o¢ŽÅ\B8íX¬¥°sXöI!y¼ D3G4ß':å“¢ƒ˜òµR´_½ç1ªðஸªêx,lÏÅíú-$‘q𼂔ã*uþ¹8œ j÷á”[”bîùØòÖ QI´©©gq¹ª&û-;RÒeÈaR8+¡àØ/¨ýYcÆÙyªžb™€yaœ¶RVÅiy—Ý&Tzwh·–Eßý=ôžG;j ·-d%Žº%®öëPÀiúP™6 ÓXW]+‚<h-‚ß^©“Þu¨Ž“È_§5µ4ôH:0KEô”Ü=RÈ~RÏxzç8ìŽÍá¨-˜R¦ÎJüjî’g°à o­T^ú ÉêS´Sû©ð‹ÉÓi8r.›,|¹nŒCn웄w$ÿü+ ?³Â»OeMÏ^85¨!47+ X)ã+”‚Ýoî¹î,ÆY *=WZÇ× 7;»æ¢ˆ .KçÒ£E ¾ì@É¡ŸõÚ|~ðö·’í¿Ù$`Ý´ñ%¡w~ÍèM³°”I´ßŒžoYH[*U·¶T}i¾g°J„2½':o><`ÿ…êL§½Mé;ͲÁ—káM D®ÕøDðÇ(Ô&¾›òü%jÎX;yÉôPÍÕ81[pYêêÆx‡c«ÇÒ¤é…ù£3P##6”[ç«¢Þ„•ÂIï4ª‹Ì3Ï/L§ÊËñm“ø è:r÷Á·NSÍmãߨ|óÌ­ï*¬Ü*Ëú‚¹¤XÔp•áßý€Q—0h‹½¹÷\ #n>œÝïÚÓUiæ&ŸÐyƒ2¡ªÒõò“½EøŠ+Ó‹yÈìÏÝ<-T³ìfJ™6ãHÜ:ż…”ܬ‚Ëu© zË“œü²6À¾^˜ëqã(T‹Ë¾.˜¥%U\í6ß±n›ï%@ÀöÔG‘ù•–+Të 5á9˜ˆ §!žÐ3Ì]£¢vê$&n¸-ûµãânl=5Ltä˜U,ÊÎÑGHÌJŒDô”;¼©·cîué¾:ù´µì ç.zEÉÝ/¸5«tRt’Ëîý‡0²E[·i+þWê?êã%/dBüü›KÏ ˜õ ÔÐ0ù c2„X{­^ýD!Uªä•í<ÖXNíH˜-šíýúü]xo¦ç‹¢̤˜âo¢XN!±ê_¦ëay"’äâ’â¨ößC@¤-w03äk]6¦Ö°AŸÕbÓ°¦¼K€`êÂéœtž#Â!¨ ïV¦‹ÒRHòú.ç?Õˆ˜Ni^+ÆBÞâ2T¾µÌ…ÖœV!.!_þ TåâPŒÕo¸Û¶5Ðâ®l:ÔÙ­¯ÓJhnu«$½v—•ÁÛd{,ÇgñÅ`!š£œà-ŸRLzJ¹Ó+ÅhˆÆ)b²E“ô2IjER&³õQ‡ í^ˆnæ7Ý-/s‰ \¹¹dóf²™–|)Þ)‚iþŒÌo=fÑ_ôâoC»O{€Tú„Ò©4oWó''U¦ÕqIÈ“,‘~¯®U¹y¡ê§Ñí6R‹ŽìpÝsv².k±²N6Ôª’øÖ9åfßÂí<j6’ é×%¼°|ð±êrþ®æ§³öÑ|àÛÓ„YpEǯs„‡Ç¢æ\)µ+1|ÆÇèí³šS¤ÓR«öy'¹|·T¸¸ºž„"Ú¯V wG͇’:m k<—)¨zÏOÕªÆÜ+â댓%³ê{M{Z‚á'`ƒ¿p2õAcÔQ/ :1fM !ÜI(ÕUˆ.Ó4Ψ›Õ±Ømz(%ÛÀêJ-ŸbÔõjÄÓQ<@ôbë§ßŽG[uJaÓºz"m d…´bÜ]]³Ý¦Ì)5TûÝgB¼;³ÁîÕ*7}콇#=ó¼}\Óꛤ‡¬ë!‚з,æåÃz68ñµBZ-c_W©wAþ<ìB¸htž)Vó@Ñlņz§(ÊÑrªˆv!Ç ς͗È-:ݱµ06]æÐEé³_êÿ¼À¯ß´IôÊÚ5{x! pïgÿ‡‡R¸,7i4=›TÍo 'p£5[˜n'3—Ò˜¤(oˆ±Xî0\E[õ›$~jíNÑÑÿÕí-Ù$Åû:°’iAº]··±_YUÕ®Eך¦:ñL#ÄŽ×j>½ƒG`ëhD’<ÿy*œÔq»‘œü¾m%{]®WFô‘&M"LôgÓúâí$?7 KÇ‘¬‡Øé–V°’è’êSÜL/XÌ‚ÜúwS0–$åÆç‚¼'#9º=.w˶GëðñZ·ý4òðFžƒ<’…»å[üïGî|Ù©µb.Y2Ù^ô˜µ“õ ƒ rÆ× ŸIªsÏÞº3Û¤”q9×O/òØ~ð’HßR.u½­=²=S •ø÷)#¸Ý}²¬oŸ·>ÿÎÀ‰tì×\Öj¯= ©É½Å¦üˆ`Ø {áÀ ÁGHVµù,4mGÊ× è†±>BñLm_ù11^D¢µB5!òõÒ¢Ötm»…á×dgËëg¡ŽK«„/H.®ÁAá÷2=sCkmùbÀÙ¯D÷¨ìñOúÙÁ€b=Ér÷hôU·ÙŒž@¥gÊO Qð``ÃÏ9Џ¡¾jM¹Ãw™KØ;ÈMUGàM‡·ºÑ…ᱤ[ðݺ½Òø;,z|’­¯¿á9ö7BeOù8Fì\…ºWŽi‰Ì“» Îr@?K'tÇŒç½ã—¢3˜·r±òà€N§³»mxòž*1sÀáðD¬êîÅžÚ‹uý…nOB?¦†YSh'¦0ÔÕEâ`‡‚ß¼q•»u$ÈpÇów ÿ§‰óð3š÷˟؇ø-ËJU¼^Ô¸ˆ<"OÉSÚ\WWhMÈÚ/Ñ—ÑYwhVOØÌdð_oXR‹t70r?í«´qÒ‘;±_&ÙíéûtiUaõ ØUÆ”??ÄSž·MXݦ<[2·¸ûsê_N`¶¯þ©9¯È's¥càË•râ:ö3®=Icj¥ºæ‹=½Äëw=,ñoöêrù5Âìx¥-…/±&q¢£[k­Ÿl´m ç|ïY×GÈ@Z ‡žÈ:ÇrÃΔXZ=çH ¤ûA£F€l®ÆæÝöãÄû’s¬Z♈`é´Éàð!g9Nñd{Ü¢+ª#H€»d³É_*c¥}½ñˆb£½i:µ€g- ÒÂaÖé„çx¼ƒ´ïöáó%‚óϘ«Õ ^1ö/åK*Ëçâ?õû·*¡òÎEmI\_5ÙRŸ;Ä€?§ªÝH–šMª=¯PWZÎVŠnqê•fsÓøPŸáùy$¯¸´Ëü½Iæ,[ÊÞ°ô*΃0°4ÇfÁƒP4*JÇ,÷õÛ¯o—xà¨"äFÑ0ñ ·~‹û1=ÒDÝíòht_´,ø®hC¿ c½J½IƒÚ: M¬È;_ϱ§»~pdˆžþxµþ¥/­pwÙÑÞŸ XIö?‹£–ÜÃSQh¼§½Z'"ȘmjHêeZ)…Ý<=̹À­ÍûÑ+#Al&œ;­ÉË×€š¼PcΆˆ-ð4ÐSå½(¿™mDè¦&ºK_®–@JžÄæÇ/|£˜ÂÔå,R±‚2žÑ!?«÷Ö< ¦€ü‰@Ù?²`tzÎIh í*Ñuca~†s=}3˜‚'7Ûÿ‚ ØQfrŠ[¯éþ®õXÒŽ4“ V÷åÒº¹ÛcWqWÎ?÷ž;w2èWÅ"Á´n'·NjûK~{…‘0ÝþÆëõE}bz:ùw¼)Ðh†âZ;Eï ;îÁeL 3ÈVŒø/5 íñ†/­ç YS‘I¨ÄC·¯ûŸš4@i`*Þi4WUî¯o~FqÏ.³Š O¸xA›)J8ÑÆ3A% ê½¢Åñ<\ó5ZÇ£Ì&‡ N'±,¸'"7FbMZÖÙŸ¬àüŠ2´@tïñ 9 T±ª^wdfxͧn‚•îa u¶ÕRHÙAÒ­4önHm T2˃µñ-™Px‰O¥juv䀸„-^)¤òqZf“ÆæsÇÓMEa©É:ÄÿFÐ@VçÇjóZ·¹8k"ü ‡IpÜ`Év93³Ïy“þŠ”ÿÒÏWªáHŽ_¸r1A|c½þ¶©E^$ñI© Qþ$Øw×ÜJº6ò”’£÷Lÿ³¼ôbKdw[ ØW”žÑQ$œŸ¸­5µßK¿ŽÄ)-LO“¡#:—‹I€f»ÛÕ±ž9|Î/½ÞŸkËûRø|‚¨¡+áþDˆ( ¹'C?ßR5ÿ󎯩ªi¥ÆˆÅWä¾mÌo+ú°õs×–'t]QÁ—TÍŸ°ÎŽÌ…›NŠØÏZj*FÇ#à Mi0(³î¿©p1Ò߸œúG¾˜Ú7ص XB$ö¨r¥“FWûØÆ%çîwä ÿ9X~ÉW´aòå„›­=áûQÒ¯+uÛwpóýY¹Ϲ³{×࢈Y£©Î¦Ñ°Õñ *„ŠȆ²„ȦnÌg“s?왬e5S¯AÜ Çˆý¸»y(­U .c2K‚ÊÝ'õÙ¸ý‚<˜å–«E\As$<ˆŠ3+Ä•ª[I Ï®E‡¬á~A“ã“¥Ö~Ëéñ"xú†5Tƒ;ëcv¸=x/{¥Da f:mÔÜ8^Lóå‹Ï ëo¡®È{»t°3Œ^:¢*O‘Y$äOÈy>+¾áÉ{óuÒyNu ÔódYù>fÔKœfþù­n^ëtá,‘I‡¸¢ñjÄX¨Ú€™ª.a·ã¸¦›&-=ÇäwÈÍ„!6²UØg(ÕèÞç8,7#ÓxŸ «±Š{RÅóØ—aú^ñb'ƒSÖ0FF9o‚¤ÏÒZFP«'ÎÍ>e Éu‹£Äî” ‹Ž¿½–ôЦX1ÖãøÀ-Äíqpà¬`¨žSN~üîÉÉ–Ê ÀPðG•Ù “}Ññä+ѹ< ZrÉ&޽k{”Ü”6Òü‚‰Êc‰É‹çíï•ÍZ Ö',j·B"&ÐB[a-·Š•ª |µuøño†ºr³Ì›ªºP&È/ëÒŸ¸¨Þ»}o>Ë>§‰<,þ?ç<ý¬ endstream endobj 54 0 obj << /Length 859 /Filter /FlateDecode >> stream xÚmUMoâ0½çWx•ÚÅNÈW…œ„Hv[•jµWHL @Úþûõ›™´»Uçñ›ñ›Ǿùö´žØ¶ßºIt¯Õ³;÷סq“òûæÜÜT}s=ºîòùֵãìùA= }³vu[®ªU·¿Üyòªk×Ö¬¯I…{Ýw¬£n_ܯ‰k&‡ãö ýì—ýåàY_”ªOQEi?ÝpÞ÷݃2÷ZkXvmÙÑÉ9˜Š5õíö];ˆ$µ…ÀÀ„ªÝ7Ñosô– yýv¾¸ãªÛõÁ|®¦Ï~ò|ÞHå]0}Z7ì»WuûI›Ÿ[_O§ƒƒ¥ƒÅBµnçKz~lŽNM¿nóôòvr*¤±aeMߺóiÓ¸aÓ½º`®õBÍëz¸®ý4g"NÙîFîÒsuíBå‹`nlB ˜„‘„­=öÌã¸æ@æ )UÖ 9yŽ€IÁ(±JÅ5<æ§T`,© M%5ŠÖœR£h”ºäRê ®á1ÚûÌgcßÍïÍ yq(¬ ábŒÆuX&Àá &èq,–Ñ1Ç+à„±N97Î8Nüœsk`Ëq8­ ^—8%Ç àŠ½FMq.â†5„SâhzAìkO × Ápý$Áƒqù1¦7]}Œ©ÎòþÈ©ÿ»pÒ^`ÜD3F?©ìx”‘ׯ[ë±a ¯³1´ecÔÏfŒ—Àäµ!/²„1êg)câdÜ?4dâ­K^˜|É ÆÐœ•ŒáQV1¦úÔ¿‰±'²š1tæ¬?ƺ9ëÁÏY?í¡œõÇГ³þ„rY‚ÞsÖŸŸõ'Äg)4ç¬3Å;ÎYgD¹¬3¢\ÖièÃbŸ-z±â3z´âs ,>G|ÆZV|ƾ´â3Öµâ3ü´â3qÄgônÅgè·â3tZñ½[ñ¾Yñ™ê‹ÏÐoÅgè,Äg¬[ˆÏàâ3ø…ø =…øL¹â3z/Ägâ‹ÏÄÏød ,gz)ÄôRˆÿ؇…øO5ù[±T“¿“‚êˆÿàT¼V *ŽÇM2G˜çªZN(:‘pTãjy¿šë0ø‚î:÷qâï;÷~Eú²è¡»m¼O1z¬ƒ¿'ßX endstream endobj 55 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlöo` òKwÞ{Ò·óÊÕ× ¢¤_ny×È| #¥Ê:##Ï0)%V©¸†ÇÁ²£â” Œ55¡)°£FÑšSj­‘R—@J]!À5£G+>ÇÀâ3qÄg¬eÅgìK+>c]+>ÃO+>G|FïV|†~+>C§ŸÑ»Ÿá›Ÿ©¾ø ýV|†ÎB|ƺ…ø ~!>ƒ_ˆÏÐSˆÏ”+>£÷B|&¾øLüŒOÂr¡—BüG/…ø}XˆÿT“ÿK5ù?)¨ŽøNÅkÅð¡âxáÁÑ$s„y®ªå„¢ G5.–[ ¹Œ£¿ èö¡s'~×» ê8‘EÝlÓUŠÑCüjÝF endstream endobj 56 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMèßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø ®´ÝP endstream endobj 57 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMêßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø YÝi endstream endobj 58 0 obj << /Length 858 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›Úݪ’çñ›ñ›‡±¯~<>Ïl;¼ºYt«Õ“; —±q³òçö\]UCs9¸þ|ï\ëÚiöt§Ç¡yvgu]nªMßoÇTgýâÔÿÇÀ á]¸i/°n¢£ŸTv<ÊÈkã­õØ0†×YÈÚ²ˆ1êg Æk`òÚYÂõ³”1q2î2ñ‚Ö%/̾dchÎJÆð(«S}êßÄØYÍ:sÖcÝœõÇà笟öPÎúcèÉYB¹¬?Aï9ëO‰Ïúâ³ÎšsÖ™âç¬3¢\ÖQ.ë4ôa±Ï½Xñ=Zñ9Ÿ‰#>c-+>c_ZñëZñ~Zñ™8â3z·â3ô[ñ:­øŒÞ­ø ߬øLõÅgè·â3tâ3Ö-Ägð ñüB|†žB|¦\ñ½â3ñÅgâg|2–³½â?z)ÄìÃBü§šü­XªÉßIAuÄp*^+†ÇãŽ&™#ÌsU-'H8ªqµ|\Íeý A÷û8ñ»Þ}\QÇáˆ,zèn›îSŒêà/½ßS endstream endobj 59 0 obj << /Length 858 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N7R!‡þûõ›Úݪ’çñ›ñ›‡±¯~<>ÏlÛ¿ºYt«Õ“;÷—¡q³òçö\]U}s9ºn¼w®uí4{¾SCß<»Q]—›jÓíÇOÞtÍáÒº‰õ=©poûî“‚uÔõ‹û=sÍìpG£ýì—ýxð¬ï ÊGÕ—¨¢´_n8ïûîN™[­µ¬»¶ìèäÌEšOúvû®D’z…ÀÀ„ªÝ7£Œè·9zKüü~ÝqÓíú`¹Tó'?y‡wRyÌ†Ö ûîM]Ñæçž/§ÓÁA‡ÒÁj¥Z·ó%½÷Û£SóïÛü ½¼Ÿœ ilXYÓ·î|Ú6nØvo.Xj½R˺^®k¿Ì™ˆS^wwí¹ºö?¡ŽòU°4H6!L‰@Œ@ÂÈBŒ€Öû@æq\s óŒ”*댌ÇTgýâÔÿÇÀ á]¸i/°n¢£ŸTv<ÊÈkã­õØ0†×YÈÚ²ˆ1êg Æk`òÚYÂõ³”1q2î2ñ‚Ö%/̾dchÎJÆð(«S}êßÄØYÍ:sÖcÝœõÇà笟öPÎúcèÉYB¹¬?Aï9ëO‰Ïúâ³ÎšsÖ™âç¬3¢\ÖQ.ë4ôa±Ï½Xñ=Zñ9Ÿ‰#>c-+>c_ZñëZñ~Zñ™8â3z·â3ô[ñ:­øŒÞ­ø ߬øLõÅgè·â3tâ3Ö-Ägð ñüB|†žB|¦\ñ½â3ñÅgâg|2–³½â?z)ÄìÃBü§šü­XªÉßIAuÄp*^+†ÇãŽ&™#ÌsU-'H8ªqµ|\Íeü A÷û8ñ÷û¸¢Ný YôÐÝ6ݧ=ÔÁ_ÁÄß” endstream endobj 60 0 obj << /Length 860 /Filter /FlateDecode >> stream xÚuUËnÛ0¼ë+ØC€äà˜”¬W` $ È¡ME¯ŽD§lÉåCþ¾œÝuÒÍAöp9»œQäÕ·ÇÍ̶Ë›E·Z=¹Óp7+¿oÁÕU54çƒë§ε®½ÌžîÔã847©ëò¾ºï»éÆ“ïûfnÝ…õRá^»þƒ‚uÔõ³û5sÍl˜¦Îhÿ‘ý¹›öžöCù°úV”øÓ§nèÕZûÀºoËá€fNÁ\©ùEâ®ëÛQT©h L¨Ú®™dD¿ÍÁ»‚äÍÛir‡û~7Ë¥š?ùÉÓ4¾‘Λ`þ0¶nìúWuýYœŸÜœÇ½ƒ¥ƒÕJµnçkz~lNÍ¿èôõüvt*¤±amÍкÓqÛ¸qÛ¿º`©õJ-ëz¸¾ý4g"NyÙ]¸kÏÕµÿ u”¯‚¥A² )`JbD>`´öØ2ãš™$`¤TY'`ä`ä9&£Ä*×ð8XV`TœR±¦&4Ö`Ô(ZsJ¢5Rê’H©+¸†ÇhÿÒg¾¸ôÝüÞŽb‘‡ÂÚ.Àh\‡e®`‚^Çbs¼N[à”sSàŒãÄÏ9·¶‡Óºàu‰Sr¼®ØkÔ4ç"nXCA8%ަľFðÄpý ×O<—czÓÕǘê¬ÿâ_8õ¿1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦xÇ9ëŒ(—uF”Ë: }Xì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&+–jòwRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\.ï÷@sGEÐ Dç>Nü®wï—Ôq8"‹ºÝ.—*Fuðgõá¡ endstream endobj 65 0 obj << /Producer (pdfTeX-1.40.25) /Author(\376\377\000E\000d\000e\000l\000\040\000A\000r\000o\000n)/Title(\376\377\000A\000l\000a\000k\000a\000z\000a\000m\000:\000\040\000H\000o\000w\000\040\000t\000o\000\040\000r\000e\000a\000d\000\040\000a\000n\000d\000\040\000w\000r\000i\000t\000e\000\040\000f\000i\000l\000e\000s)/Subject()/Creator(\376\377\000L\000a\000T\000e\000X\000\040\000v\000i\000a\000\040\000p\000a\000n\000d\000o\000c)/Keywords() /CreationDate (D:20251215191043+01'00') /ModDate (D:20251215191043+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) kpathsea version 6.3.5) >> endobj 2 0 obj << /Type /ObjStm /N 48 /First 365 /Length 2742 /Filter /FlateDecode >> stream xÚíZ[sÛ6~ׯÀc²;&ˆ;°“錓ԱÛÜÖv7M]?(#s*‹.E·M~ý~€$J¶ä*éîSgLÎùÎ`ÁJ¦˜L3á<3¨*f™Öž9feÉðë% ,8ËDÉ„°‚D(ãƒT@»cB«’I‰_ë™D»)ÑR£5“¨Z‡~ÒR0ðëh.&<èøy_H%ø(äóøµ$ŽgÊ¡jP T@Á0gb{ðÕŠQ:¦ ÃthtÌØ`:0¨PÅ”Ì@5S’YïhRæ¢>9EBYæL % sÖANåµdC)ä@*æІyEL~àC¿Æ»tÌ›2`2üZàz'0™Æ¯’ƒ'O?cüEsÞ0þœ](€ÊøQÝ]²o¾A÷€Ÿº©;œTþ¬™uÕ¬›3°á€ŸVóæ¶UsB6¶¼ªÆõðió»(Ñ`A肼€A‹‘$h$;œÍ𹀕iÆØ +Sébécb)Êøs9X)²ð³Û]|YÏ~ð§M;®Ú8yyÉù v!â I;êØ…w…FúBkøQ… ûè²(Ù!Û€åÑëföB>&XþR1„.|päž…-á6ÒF> †Ú*Æ}óÂ}˜XΫ­+$ü[{Q”ˆ #|QÂ?t…5dª¬JÔ„>ygà‡qn~Æ8=¡çÑU×ÝÌÿÅùèj8›TMÑVÃqwU›Ñ¼¨^Íø¼~˜Vüñ—ËDaJƒ0R…E,) á‘ ¬)ŒÑûË…Öm{0j®¯ogu÷©hÚÉ—K¨¬.7té! F>p…@k€*Ô€Y__†³nHÝÛ»!ª³ñ°Ï‹«îzú QÏ¥ Z©Â{ÿå*<è É¿Rp‡€A¢“…yÅ z);ëBHÿ—yÆèmuáWÛ’Š×” 7•X%Ñßÿ„dŽüí øšÝN§—[¨$‘ÑwS»`ÜM¥(º±0í¦Î Žô:Õ’{L9GXÕ„É+/asÝZ R+¢¹î-H©N‹‘XÔÑž&ÆümÛŒÎ*«Éó#ÆÏ«?ºENß™ný¬œÅã~.Ëò”ŠŠŠ!c*j*fTL¨ø¹Ôå²/Ru±öxð@B]›èí’}·×DHáìïçò\]+ D’­gë¾r‚.h->¦J‹]–Ô.ˆ†>¡RÍYê[Pø"ä2ì÷*ŠÛ\O½_Sfž±tn%Iª÷gwZйRA*'°Î!ƒf/è[QÒHd›é”' BÆYÒÃJÄ?ÐèqŠ\Óø<ƒ „UÄ0Ï(cñé·XgJHÉ\3«‘}”´-ã³zËh/ÛúXP«Œœ²¥’e{ÈE~R,í¥T¤P‹ÑÖ’åµ%¼tD#Ò]þƒÿ§XôäÉR鵤’üEFW´~õZS-ù¦ðѾ±$е¾HêÔ÷gÙãáî”ÚÅH-ØŽ¹2F‰Œ­Ñ£¬/¡QŽ;¯)z m“Æ£±›cAØÜŸÛâØÌþ*1“øQÊåô†vLÄz¥h®¥¦ìCÛ´ÖKàS]•ÑKŠ `j•+8²)Ì:u¢PNŤš ÒëM ¤z,á^H2=Â*l­fLE ¥ HY_ Æc‹ê˘’ øŠÒº%‡!f2“ëØÍ¢—ÐŦL=¢è(°ó—¹šJl¡Iÿ(‰qË$_ É-ÚÆT™ôŽ¿)Å!™¹˜‚LlMÔ¹5P™Z‚r™bE›úµ ѱNT@FaG‡c|viQøŠ’¸Ðãà€v­Ô–àÉ-8¶°ga§£;"ùJ•–‘JacK–*Ž”ÑûàÁåþÄ/̼%}vÓJæMTxDYÚå‹ >«œ\Xf#Pß b¢•!–5ÈÞ«þ¨pl3ˆ.ß½Èc—T©OÁ­È±€1Sétˆ6žàƒÀˆ2*‚ع=Õp‹Lc4­T±Ì4ýÞR,ë©÷kÊÄ'•ä8W6¬"K-dTú ÐT"n@‰U’dP[F-àn*S*I4Ú‰ÌHaä)ÍÄþÌ5ŽÎu`Hx–T3ä9c %˜~‹A–YöhëT‹ÖN}”_]Úå©.‘ üMÆ$µÇ¼›ñ‰–Êcû<#ÍÂj¤iª÷{“>©žKšý²·ù¤=Ðój>jë›®iÓžèõðšzÞžþóå«Óæz8òài3ƒ`:œÌ™N”Oã¹×Æ›av„rtš3Ñù—õ }6¼9®êÉU~¥ ©ï@¼tÃi=:œM¦+±íªëÿ ºÂ€ÿ˜!̓ÇÕ°¥ÝÔ#þŒŸòw|ÈǼâ^óoxËç¼{œ¤:ªÁIÇýÙúN{»²/Þ¼>yúr©lypZMn§Ãv‹¾8m<K™¦sW!×ô ëú†?¥¯í««D_ÝC(|Þ@ñ3~åßCý|Äi란øÈ?⯠WüêÓͶñ5ÿ…Oùuħ™Uü†ßЙä´úØ¥ZKÓñ›ª­›1ÿ5aÈoùoüwþÿ´†¦ÜÍÃï<~ÿºç:»ÑÄ9¼§¤ƒlý¡iv ùm«þ­Z5]BÔòî÷†®ÚfM{½ögo:ys²ÔÞ= }I¾„#>¡èB¤“Ð…öj]{µ¦½Ù;¾¯}¹®ý1磦­¹gÝÍ^¹üøü»ã‡+Pw:`ȘúøE÷å˜öüoª‹ôpMžwožÝ^$õ$a¹ò¹¼lîÉËßÎF͸žM nýñcìéºêBº´Bàó~…ÿj,˜÷š É/›> ™LG¾c9’¤¢¼Š=Or|¡%§ˆ.ƒ´Œ;ë²sáË–5Ü—ae{˼Lø`kÄßᓜ¿ÇçWÏ7pÿy¸Fs½H½¹»ŒñÏ—w=§w}E0ÒÓἊÂ[?|ÖŽ.>ã½ÞQÝÎ;²0ð—Ãü‚­Ú€¿«q0§»ÓHº0 ]~Ɔóæ‡Y6¶e…Ù%çŽo– QÕ¦¨rMT)V¢Ú‡E5û‹ºãƒ`CT³)ª6k¨ê•¨þaQíþ¢îX½7DuwPõk¨Ê•¨áaQÝþ¢n_j7$ ^Rý°¤~I·¯së’š;A¥ô6IÍÃ’†ý%ݺxlz'¤”ÙRêAAí=ëýÿÁœþábÛ÷õxžoµ6òÙ›ÛnZψ8JCÿù“4ôñ%ñ‘Ë‘u‡ÕCe¸éßAb-ÿÓ‚ÍoÛê·¿µ‘Ò/GÚ{G¾¦».µ¦­ÎPáÑóftp†›Åî1öOñ²ìÑ ”-Äcú¯–ø¾¼¦¢6·Ñ†;2)7Úp%uÂ÷Ÿ×u·1QŸruKXÍAgïYBŸáæsÚLÉ ËÿáX ½Ò2ªdÕ‚Iõ öä?Ì«•QÞÜT³t ËÄb¦ÿª»û… endstream endobj 66 0 obj << /Type /XRef /Index [0 67] /Size 67 /W [1 3 1] /Root 64 0 R /Info 65 0 R /ID [<07B4AC0AF0A1FCB210C6324404A677E1> <07B4AC0AF0A1FCB210C6324404A677E1>] /Length 195 /Filter /FlateDecode >> stream xÚÐ;NBQ€á™ƒ¼ä% òô"‚^ÐXX± :CAabAAB =;¢#–ZR™°8ÿ4_þb&™ŒˆÈɉ8Q·j ¥à …Ä!YÉÙF.¡‚ÚÐ…GHC2ð9èÃä!„k¸‡¡7p e¨¨ÄwvËÊ(´ªªü|XÕTƒ½U]uñkÕPÝþY5Õõ’V-uã£ÄäÛóùîù:x¦ÏìÍ3ÿ·¹gÀ ¼ª[2²ÊŸb9 endstream endobj startxref 167751 %%EOF alakazam/inst/doc/AminoAcids-Vignette.Rmd0000644000176200001440000001734015120040677020022 0ustar liggesusers--- title: 'Alakazam: Amino acid physicochemical property analysis' author: "Susanna Marquez" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4 fig_width: 7.5 highlight: pygments toc: yes md_document: fig_height: 4 fig_width: 7.5 preserve_yaml: no toc: yes html_document: fig_height: 4 fig_width: 7.5 highlight: pygments theme: readable toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Amino acid property analysis} %\usepackage[utf8]{inputenc} --- The `alakazam` package includes a set of functions to analyze the physicochemical properties of Ig and TCR amino acid sequences. Of particular interest is the analysis of CDR3 properties, which this vignette will demonstrate. The same process can be applied to other regions simply by altering the sequence data column used. Wu YC, et al. High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations. Blood 116, 1070-8 (2010). Wu YC, et al. The relationship between CD27 negative and positive B cell populations in human peripheral blood. Front Immunol 2, 1-12 (2011). ## Example data A small example AIRR database, `ExampleDb`, is included in the `alakazam` package. ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Load required packages library(alakazam) library(dplyr) # Subset example data data(ExampleDb) db <- ExampleDb[ExampleDb$sample_id == "+7d", ] ``` For details about the AIRR format, visit the [AIRR Community documentation site](https://docs.airr-community.org/en/stable/datarep/rearrangements.html). ## Calculate the properties of amino acid sequences Multiple amino acid physicochemical properties can be obtained with the function `aminoAcidProperties`. The available properties are: * `length`: total amino acid count * `gravy`: grand average of hydrophobicity * `bulkiness`: average bulkiness * `polarity`: average polarity * `aliphatic`: normalized aliphatic index * `charge`: normalized net charge * `acidic`: acidic side chain residue content * `basic`: basic side chain residue content * `aromatic`: aromatic side chain content This example demonstrates how to calculate all of the available amino acid properties from DNA sequences found in the `junction` column of the previously loaded AIRR file. Translation of the DNA sequences to amino acid sequences is accomplished by default with the `nt=TRUE` argument. To reduce the junction sequence to the CDR3 sequence we specify the argument `trim=TRUE` which will strip the first and last codon (the conserved residues) prior to analysis. The prefix `cdr3` is added to the output column names using the `label="cdr3"` argument. ```{r, eval=TRUE, warning=FALSE, fig.width=7.5, fig.height=6} db_props <- aminoAcidProperties(db, seq="junction", trim=TRUE, label="cdr3") # The full set of properties are calculated by default dplyr::select(db_props[1:3, ], starts_with("cdr3")) # Define a ggplot theme for all plots tmp_theme <- theme_bw() + theme(legend.position="bottom") # Generate plots for all four of the properties g1 <- ggplot(db_props, aes(x=c_call, y=cdr3_aa_length)) + tmp_theme + ggtitle("CDR3 length") + xlab("Isotype") + ylab("Amino acids") + scale_fill_manual(name="Isotype", values=IG_COLORS) + geom_boxplot(aes(fill=c_call)) g2 <- ggplot(db_props, aes(x=c_call, y=cdr3_aa_gravy)) + tmp_theme + ggtitle("CDR3 hydrophobicity") + xlab("Isotype") + ylab("GRAVY") + scale_fill_manual(name="Isotype", values=IG_COLORS) + geom_boxplot(aes(fill=c_call)) g3 <- ggplot(db_props, aes(x=c_call, y=cdr3_aa_basic)) + tmp_theme + ggtitle("CDR3 basic residues") + xlab("Isotype") + ylab("Basic residues") + scale_y_continuous(labels=scales::percent) + scale_fill_manual(name="Isotype", values=IG_COLORS) + geom_boxplot(aes(fill=c_call)) g4 <- ggplot(db_props, aes(x=c_call, y=cdr3_aa_acidic)) + tmp_theme + ggtitle("CDR3 acidic residues") + xlab("Isotype") + ylab("Acidic residues") + scale_y_continuous(labels=scales::percent) + scale_fill_manual(name="Isotype", values=IG_COLORS) + geom_boxplot(aes(fill=c_call)) # Plot in a 2x2 grid gridPlot(g1, g2, g3, g4, ncol=2) ``` ### Obtaining properties individually A subset of the properties may be calculated using the `property` argument of `aminoAcidProperties`. For example, calculations may be restricted to only the grand average of hydrophobicity (`gravy`) index and normalized net charge (`charge`) by specifying `property=c("gravy", "charge")`. ```{r, eval=TRUE, warning=FALSE} db_props <- aminoAcidProperties(db, seq="junction", property=c("gravy", "charge"), trim=TRUE, label="cdr3") dplyr::select(db_props[1:3, ], starts_with("cdr3")) ``` ### Using user defined scales Each property has a default scale setting, but users may specify alternate scales if they wish. The following example shows how to import and use the Kidera et al, 1985 hydrophobicity scale and the Murrary et al, 2006 pK values from the `seqinr` package instead of the defaults for calculating the GRAVY index and net charge. ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Load the relevant data objects from the seqinr package library(seqinr) data(aaindex) data(pK) h <- aaindex[["KIDA850101"]]$I p <- setNames(pK[["Murray"]], rownames(pK)) # Rename the hydrophobicity vector to use single-letter codes names(h) <- translateStrings(names(h), ABBREV_AA) db_props <- aminoAcidProperties(db, seq="junction", property=c("gravy", "charge"), trim=TRUE, label="cdr3", hydropathy=h, pK=p) dplyr::select(db_props[1:3, ], starts_with("cdr3")) ``` ### Getting vectors of individual properties The `aminoAcidProperties` function provides a convenient wrapper for calculating multiple properties at once from a `data.frame`. If a vector of a specific property is required this may be accomplished using one of the worker functions: * `gravy`: grand average of hydrophobicity * `bulk`: average bulkiness * `polar`: average polarity * `aliphatic`: aliphatic index * `charge`: net charge * `countPatterns`: counts the occurrence of patterns in amino acid sequences The input to each function must be a vector of amino acid sequences. ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Translate junction DNA sequences to amino acids and trim first and last codons cdr3 <- translateDNA(db$junction[1:3], trim=TRUE) # Grand average of hydrophobicity gravy(cdr3) # Average bulkiness bulk(cdr3) # Average polarity polar(cdr3) # Normalized aliphatic index aliphatic(cdr3) # Unnormalized aliphatic index aliphatic(cdr3, normalize=FALSE) # Normalized net charge charge(cdr3) # Unnormalized net charge charge(cdr3, normalize=FALSE) # Count of acidic amino acids # Takes a named list of regular expressions countPatterns(cdr3, nt=FALSE, c(ACIDIC="[DE]"), label="cdr3") ``` ## Default scales The following references were used for the default physicochemical scales: * Aliphatic index: Ikai AJ. Thermostability and aliphatic index of globular proteins. J Biochem 88, 1895-1898 (1980). * Bulkiness scale: Zimmerman JM, Eliezer N, Simha R. The characterization of amino acid sequences in proteins by statistical methods. J Theor Biol 21, 170-201 (1968). * Hydrophobicity scale: Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105-32 (1982). * pK values: \url{https://emboss.sourceforge.net/apps/cvs/emboss/apps/iep.html} * Polarity scale: Grantham R. Amino acid difference formula to help explain protein evolution. Science 185, 862-864 (1974). alakazam/inst/doc/Fastq-Vignette.R0000644000176200001440000000311715120047441016541 0ustar liggesusers## ----eval=TRUE, warning=FALSE, message=FALSE---------------------------------- library(alakazam) library(dplyr) library(airr) db <- read_rearrangement(system.file("extdata", "example_quality.tsv", package="alakazam")) fastq_file <- system.file("extdata", "example_quality.fastq", package="alakazam") ## ----------------------------------------------------------------------------- original_cols <- colnames(db) db <- readFastqDb(db, fastq_file, style="both", quality_sequence=TRUE) new_cols <- setdiff(colnames(db), original_cols) db[,new_cols] %>% head() ## ----------------------------------------------------------------------------- quality <- getPositionQuality(db, sequence_id="sequence_id", sequence="sequence_alignment", quality_num="quality_alignment_num") head(quality) ## ----fig.cap="Sequence quality per IMGT position for one sequence.", fig.asp=0.25---- min_pos <- min(quality$position) max_pos <- max(quality$position) ggplot(quality, aes(x=position, y=quality_alignment_num, color=nt)) + geom_point() + coord_cartesian(xlim=c(110,120)) + xlab("IMGT position") + ylab("Sequencing quality") + scale_fill_gradient(low = "light blue", high = "dark red") + scale_x_continuous(breaks=c(min_pos:max_pos)) + alakazam::baseTheme() ## ----------------------------------------------------------------------------- db <- maskPositionsByQuality(db, min_quality=70, sequence="sequence_alignment", quality="quality_alignment_num") alakazam/inst/doc/Files-Vignette.Rmd0000644000176200001440000000500314552000477017050 0ustar liggesusers--- title: "Alakazam: How to read and write files" author: "Edel Aron" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4 fig_width: 7.5 highlight: pygments toc: yes html_document: fig_height: 4 fig_width: 7.5 highlight: pygments theme: readable toc: yes md_document: fig_height: 4 fig_width: 7.5 preserve_yaml: no toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{File input and output} %\usepackage[utf8]{inputenc} --- As part of the Immcantation suite of tools, the `alakazam` package includes a set of built-in functions capable of reading and writing tab-delimited database files created by [Change-O](https://changeo.readthedocs.io/en/stable/) into R data.frames. However, due to differences in how certain values and sequences are handled, `alakazam::readChangeoDb` and `alakazam::writeChangeoDb` will not properly read in [AIRR](https://docs.airr-community.org) formatted files. These files should instead be loaded using the functions included in the `airr` package (`airr::read_rearrangement` and `airr::write_rearrangement`). You can read more about how we use both data standards [here](https://immcantation.readthedocs.io/en/stable/datastandards.html) and [here](https://changeo.readthedocs.io/en/stable/standard.html). *Please note that the default file format for all functions in Immcantation is the AIRR-C format as of Immcantation v4.0.0, which corresponds to alakazam v1.0.0.* ## Reading data Small example databases for both the Change-O format (`ExampleDbChangeo`) and the AIRR format (`ExampleDb`) are included in the `alakazam` package. For specific details about the latter, visit the [AIRR Community documentation site](https://docs.airr-community.org/en/stable/datarep/rearrangements.html). ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Set the file paths from inside the package directory # These files are smaller versions of the example databases previously mentioned changeo_file <- system.file("extdata", "example_changeo.tab.gz", package="alakazam") airr_file <- system.file("extdata", "example_airr.tsv.gz", package="alakazam") # Read in the data db_changeo <- alakazam::readChangeoDb(changeo_file) db_airr <- airr::read_rearrangement(airr_file) ``` ## Writing data ```{r, eval=FALSE, warning=FALSE, message=FALSE} # Write the data to a tab-delimited file alakazam::writeChangeoDb(db_changeo, "changeo.tsv") airr::write_rearrangement(db_airr, "airr.tsv") ``` alakazam/inst/doc/Fastq-Vignette.Rmd0000644000176200001440000000650214552000475017067 0ustar liggesusers--- title: 'Alakazam: Using sequencing quality scores' author: "Susanna Marquez" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4 fig_width: 7.5 highlight: pygments toc: yes toc_depth: 3 md_document: fig_height: 4 fig_width: 7.5 preserve_yaml: no toc: yes toc_depth: 3 html_document: fig_height: 4 fig_width: 7.5 highlight: pygments theme: readable toc: yes toc_depth: 3 geometry: margin=1in fontsize: 11pt vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Fastq} %\usepackage[utf8]{inputenc} --- The `alakazam` package includes a set of functions to inspect the sequencing quality. ## Example data Load example data: ```{r, eval=TRUE, warning=FALSE, message=FALSE} library(alakazam) library(dplyr) library(airr) db <- read_rearrangement(system.file("extdata", "example_quality.tsv", package="alakazam")) fastq_file <- system.file("extdata", "example_quality.fastq", package="alakazam") ``` ## Load quality scores This method allows to add the quality scores to the repertoire `data.frame` as strings. ```{r} original_cols <- colnames(db) db <- readFastqDb(db, fastq_file, style="both", quality_sequence=TRUE) new_cols <- setdiff(colnames(db), original_cols) db[,new_cols] %>% head() ``` The function `readFastq` takes as main inputs a repertoire `data.frame` (`db`) and a path to the corresponding `.fastq` file (`fastq_file`). The sequencing quality scores will be merged into the `data.frame` by `sequence_id`. The newly added columns are: `r paste(new_cols, collapse=", ")`. The other fields, contain the ASCII quality scores in the form of a vector, where values are comma separated, and `-` or `.` positions have value `" "` (blank). After loading the quality scores with `readFastqDb`, `getPositionQuality` can be used to generate a `data.frame` of sequencing quality values per position. ```{r} quality <- getPositionQuality(db, sequence_id="sequence_id", sequence="sequence_alignment", quality_num="quality_alignment_num") head(quality) ``` ```{r, fig.cap="Sequence quality per IMGT position for one sequence.", fig.asp=0.25} min_pos <- min(quality$position) max_pos <- max(quality$position) ggplot(quality, aes(x=position, y=quality_alignment_num, color=nt)) + geom_point() + coord_cartesian(xlim=c(110,120)) + xlab("IMGT position") + ylab("Sequencing quality") + scale_fill_gradient(low = "light blue", high = "dark red") + scale_x_continuous(breaks=c(min_pos:max_pos)) + alakazam::baseTheme() ``` You can add use the quality `data.frame` to complement analysis performed with other tools from the Immcantation framework. For example, you could inspect the sequencing quality of novel polymorphisms identified with `tigger`, or the sequencing quality in mutated/unmutated regions. ## Mask low quality positions Use `maskPositionsByQuality` to mask low quality positions. Positions with a sequencing quality < `min_quality` will be replaced with an 'N'. A message will show the number of sequences in `db` that had at least one position masked. ```{r} db <- maskPositionsByQuality(db, min_quality=70, sequence="sequence_alignment", quality="quality_alignment_num") ``` alakazam/inst/doc/Diversity-Vignette.pdf0000644000176200001440000074475715120047440020042 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 9 0 obj << /Length 1865 /Filter /FlateDecode >> stream xÚåXKã6¾Ï¯‹ ´8âKûÖ;¯$H.N.É"`[´›[òHr?æ×§ŠEÙ’Û=Eö°‹\ćÈb±øÕWEæÉ:É“OoòWÊݼyûQV /™àZ%7«„óŠU¹NŠB3 åMü–^mìgûÕn/™Ê‹ôª±›§Þ÷‹Læ"mWT.7-ôSÝÞî›Ú6K›MžÖþ~!ŠÔu½°ò´ø÷Ío?*ë2£µ*ä B¥“L–,¯ RáGÛ· ¸üB”ép׆ò‰:]T×qµ¿w¾v ŠOtÎŒ)@gBJ'r¡3.2®IƒÂ$\1©Š A&ò‚°t¦8ËKNsÞÁ‚’§ƒ£¢§™RƒÂÌä†Ý & @îç}x´ÛÝM!eZÛÁ‚A[d:ÏÿN¡Œù/HùŸ(¾±°ò°ÉoW¤|Þ›'—L+Cÿä×Ù!ZÜRq€§T3xâ¯}°¬Rhj®ÿ1Fÿ¹ÁyêÉXäÃUpÀ¹•æÿ\þe;ËoÚùWï¢qg†-Gîúx CÄ/5Ï¥ztõdvùìXÚ.PbYŠÿ#¦ynÅ*Õ'Vd¦2PÍž”œy™¨2gÚénÁ¬7w¹ÅÄï‹ GÁ$†”8§s»E­ïFA¶¡Ê-ý£9cáW·àiMûÞ7kx·¾•X¡µÌØÒ Z~2ü5=D·Ç‹Òø¸s‘( QRIÚµ@Ùu-í í  ´>‚â{¿ÙPÍ7—3»ŽåÛU>k9ÆD&…"Т€ 8-¡ÓŸ•ïý}Pø‰š!äcÅÝ»¦q}û©Ø7~õ …­¦ìà1¾Ï¦zÄ=V–mÓ»/{ŒÝt$B jsOú°l7í:®¯UÔO‰­ Æï¹Î¹)%”œ‹ß«‰msÁ*Umßµ{ˆâhMÎÓ?ÜQ­s=†w:th÷²æÚ;< ž§CKý˶ëÜr Æªí¨r¿Ð€¡Î‡í÷Ôç›(‰¶|\»Ýpwõ’¤? „Ó„ö aå:´Ö)Xde˜0%mˆpÌÝbzBL¯&þ"Oãdíasþv?êŠLW»~ ¿È3ê¿…­ww¶¥ÓºŠG膌MÄÚµíÜÊ.Ï@Æ=‚ùwíf':*¬ìàöÛ[@ëå‹Xº¢q«ÎnÝCÛ}ŽM<6¬|¾z?øídiË~ç–بçŽÒûڰΟ#:zYÛ´ë.n_ä\Q­R—JgEI³³éNô_¶æ/ͽóÇÝšhu¶‰ûŸàvrÄõÜ>½hÑÈþëó…>µmÝì»ÃŸ>&Ìäû`.»v‡9m÷ô¢±Àý6ÒT3EÜ8\m ‡þ³Žy¾˜‡Qá_9†¼î(§;»DŸûT ]‹÷îÀéqÔÖÁý¼¡LëØ°£”¡mcÏÑKC?º#v[j½2´¢W†ÇSÀ_”“MN"ØxLûÉY Î%&/y¸$ÂC¤"‚Qæž92"+Ÿ‹ˆ`wWu^àÓQ°x&eµo‚##“.¶ÕŠ,‹ . ‘ dׯQ;°;Å] ZYÕ⿾‡€sÜY¨Ìƒª¡Ph" †qý3ºZ†ËpÐtÆ~sfK‡Àxsã'yÌaX¸” ÜF™ª8‰ù6¹0;*¦‘Ó©Ùo Nm 3ÎÏe‹ØûžŒ‰ÓfWH;°óÄ™xðñàb“…Ï.SBÙûr\Œõ ûæ†5»ÙÝÙcòpCà‡¼BÁ¬14çÎÌ›ŧsNÏrIUH$wÑûuã1‡^Ž!N…d;&Î1:F©óY™œ<ÄavaBñ蟇 ñAjÌÔG™_&9 ¾NßG²ÚÀœ\ž>2”š^%9 "\L—áWø0!jã¤EÜ(û¯~¸¾¦n”k{wñ­Ã ÄÌ—ˆj¾¿}E=a4+J5Ÿ|ügÒÀÄ o–›}Ù† Ù•¯P™4Ås­l|ßzE)¥ VžØ,„ƒ2„ˆ<¥–˜ŸøÍHÈGbáJ‚ؘX.íf¹3É ¤”_öpíè©õ7W* `.8Ô½’ß x«‚ñ³yW·©iaD!ÄÔýv$gT¦¥3=î@ÐØ®ð(&¦C‡oŽª‡ AGŠ<¬°Ag@?1äÛ͘Èê…Ñ6 ²uíÑ>O(Î’©2f´ërôÔ0¯EÝñöªtúC3º³©«›>Ë=,Æ+ÔãíH¡¹ ÈÙ *®ÐŸ;)JVñbd-Êhþðõ¹CÑzJp‘ÙNB\Œƒ–,ÑIÏ“*¼@Æq‘ÿ<òæ¬ø1Il8ï¹YùL8S0? jßQ*õSkcʱ[à è ý<ïÄÐLÅÕg=×gïSßøÛÎvO'd:únÀèôÿ©a¾ÿâ~ ¨+ßfçS>ܼù­{Ÿ™ endstream endobj 29 0 obj << /Length 1988 /Filter /FlateDecode >> stream xÚíYYoÛF~÷¯Ò µ™].—GpÓØMч"0IPe H•G÷×wŽ]^’å#úR0÷œkgg¾Y‰ÅõB,.O„ýº*Z7Pø/^Ô0:y{yòËÕÉó‹H/¤pcËÅÕfz‹PÄ®ð¡·^¼w~XžiO;TÉš[Ù×d»+26Y~¼ú}ÄUx@^ðÏ7\'#ÀXŠ1K±8“ÊÕ0I÷hÂØ¡Åkfüë :<¿PzFÇ=Ÿé\,#åTõòL)嬳6É‹†;ÉjyæENÕµØ÷ö&ã‰ó7oßrkSÕÛ¤=åÎç6J'_Jçívé…NWæí¨ßÆñJ»mVâp›´yU2•&o3—5óÒµö¬&±ëI5¹ÌʬNZdj'áOZTeR˜¡UW®“25+Ò®þ¼TÒÉYIÒyÀŸ\„ÒÕq°<íª&·ÀëE ²òbyEM®6fèÆ¬š ˜ÞXg̓½hЋӪ+quÛ˜érÍ›:û»ËÊ4ÏÌÌ6é­(<0dAkc³³kòò5¨æ-0h„&DµP`2ÆÔõ¤Y£%Ôt ŠÚ¾U@¢ãv”:rC%§Û7]™š£='ËA‚šÛ_ Í­j4ÂÞ´ÚYÍ¡GÖêȳŒêÝ|û PÌxŸ4šüÓ¢£BÎIŠ› ÇN Uâ^Þ°Ý£é8r=ˆ¤\š¬Þæ%Y|y…„Œ_÷7€¼ºÃû±Å_­Ì\;¾ ®Ù²Í¦ú¼àëþ€€5V³+o‚ÕŸIÝæhû†û$k®¨µJšÌ4<¢ÉªfàÒªè¶å$ݾÒÞc0 Œz>Æ?e‚áxä-7âóòìÑaÔ윹éQóÔˆ›…«¦E„'#áëºêv?ÍÄò´?0 MFh·óŒ-ø)_?; ’´¶¹_CcZÍ–½É P‘-nõ#yÈe@¨AB;2è§ï–m–J{7SÆÍŒŸ™Ï¹ñŸ|qòÅÒ§ÏWþøtͦÚ̈\¢µá&œIZòä{ùqLÁº’8´œ Ò÷àî}"'ºl|™ÞÔ?/Ï|OçåzU@Û ÐMó²Å¶ìÇï ‚œ$~ Q¨*éEhà NÚGÈxûdp3ɦ*àòˆ™Õ>_*¾?Pñý£ÂøûdÂÐQ#aÔqô2V'´‘%ãEâa9ÜÒ ã˜ãö_ËâÇ`ó(GíÐw’¢©x¸ÙqôMóÍíWø6â1¨8Y'y‰9–æMªÙ”Ù#BHÐåô£9ýDœ~ô8@/o×tIQÜZÞ;v?›«(‹Lúʉxy1/†N"ˆ!¯·ò2-º5ò "ç á•üú†”cÍ` ‰ ß‘ÈÐKMº„¦I®ÐZÙ X,„+«ºÎŒ]«rÝÓ*A ת ™`Ð3ôÝP0vÙÕ¶UdDêm¾³°ŒB5óCøE'8‚QáAE’Fè„ò3ƒÝš®W$™ònò…rHÉ©Çæ€çöÚúZ¹RÏT&Ÿ û|A9úSÊFØ2ã«åÆÑÈn$b,” ¤1_üÎqJ (±Ø æèÜáÛV-¡VhZ?5»s³’èÁ‘å B${ÄR€QXS9Áßoï4ÕH?ðjWBo²-5²QllbnjVÏ êׯ%Ö5˜g=G~ÊÝ@X¸\1RC`š›j…àÝÈ픵N2²ÂÁ]¾Üo†uê;ÀºU…hûÀë$Õ ”7?¥ Œø53øs¿*óôÃÔÞáµs¹Mh!‘àHÌôêv®^·+ò žqÿ˜>^,¨~2Æß€lOA‡ÔxÆîv"?Ú&Iž†ÕgÞu§^üi²Xàú}Êëøÿ}Ýà?±naÈã…Ãé~H{ï=®ŠGÃce±CÆ0ûЂƒ‹Œq{¿øPRE‰œ(ó¢Dß]“P!òæò·sÓäò„0xdfPƒÆ.èiáCkËæ²gÓ—/~l1 ?F1H3pëP㣎ª3)p˜?*»Ý«##õЪg_Ø3Ô¥U‡8÷¥P zuDú­‹öõ•–×3×\ÍÙ3Áý•“[ª*(†=ïnòâè;¡>¤Go²éï„ÀR„z²Û”(ÚwêÌ”5V/Z÷o«€ðÖ<ÒWôÀ“tË{- Ï íê ó眪ÅU‰@mê/X›sÁ†L4Õ†.˜_F˜öë/ ø•~`•1RЃ´Ž‡çÞ`úÜ SkûnNèmÍ6;¿aÍP¡èØ>r'/7”Tk&Íï¼4qÏk®‚GÌ0ð§2gM›Ã“~vÞKxü°´€ká…S"ý£îœ6ýìØwWú¹‚ÿ·M[';¬öÜC7éê&7¿rÀƒòŽMm^]“Ñσ3ü¾ÑQQ`ŸðýÞØæ¥÷±ã¸BŠd¾»¢j{Ó¾‚ ÛWnF5›¬9Ÿ^)œ)á¹Q?õø±¿Öž*æ)éz¡y|W‹€Åð&[__ü M¢¬½ endstream endobj 34 0 obj << /Length 1254 /Filter /FlateDecode >> stream xÚíXKoã6¾ûW) ÈØµBŠ’%Í!ÝdƒöÔm}Û-ÑQ‰rôÈc}‡/YR²Mlo‚6Ø‹IŽÈ™o†ó¢‘³vs1AvôHì oNäOâT@R~¿˜ü¼˜ŒC#/A v+'ò% `•9ŸÝ¦³ÐÝ4OÛœ6¬Ökª‡$üQOÒR¬xÆDÊôš‹†U74׫nöc„ôdY–MÝTt£—£9ÿB^Šzú×â×N €‡úð3ÃÄ ƒD£KÛê†éB WÀ&ZÝÔu>+a?Í"`Ÿ/·Ìåfc¨e{’Õ /À§ËVdT*ÛgxþD!:¿£Å&ggË÷°@^8×ûeË~]•íædέs£Ö€¢N»Gµ’yɳ£1¤Q¤üQÊm@ê‚¥hpGáÁ²…ô‹½ÄKÏ:Xó¼l?û«£™<OÇã8ÁÛ}ØåƒXü-‡Ø„aEÅ߆Ðy¦ÖHŇš–+=6WÌÆÄ3·Ÿ¥6\;&;Å¢qÁ´Ì˪~½˜L‹A#þyw7ÃWGcéÏÀí®+ÆÄWõ9l”æGï¢ì57Œå˼eÿæãϸ¶‘ÛlÀ›»B庻‡°ö>5?±UÄ—îÌ>gk&²Ë†7ùž‰â%ÿë&<_L®'Èj²“9öâ(tÒbrüK³ròI×mHCÒ }S· ñ½9HRf½`‚UPª¦3©@üøˆ·òX>è:ë|Ó<”$/Z:ÓKHãùKÎSxß×¶–Ô]‡>-íj†-’}}¼º9S5Sóh µ™Sz]¦ªOÆ2šÅ AßJ¡ó»4o3‹\eÑqáá"ãé¶"Z$æ…[Z‰®|¬®éšíRŠx]6÷›ïµÈTå2ÿÿBχGÀ÷Bô(Dá›­C]†þÄ/°3 æðW‚y¤‘Á‰óÅägÐR endstream endobj 31 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/Diversity-Vignette_files/figure-latex/unnamed-chunk-5-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 36 0 R /BBox [0 0 416 276] /Resources << /XObject << /Im1 37 0 R >>/ProcSet [ /PDF ] >> /Length 35 /Filter /FlateDecode >> stream xÚ+ä2T0BC]S]s…ä\.}Ï\C—|®@.Týì endstream endobj 37 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/Diversity-Vignette_files/figure-latex/unnamed-chunk-5-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 38 0 R /BBox [ 0 0 432 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 39 0 R >> /ExtGState << /GS1 40 0 R /GS257 41 0 R /GS258 42 0 R >> /ColorSpace << /sRGB 43 0 R >> >> /Length 50485 /Filter /FlateDecode >> stream xœ|½Ë®.9¦7Ï«XW°Z’¢¦ž4à™Ý_@Á݆Q]€]÷"|öŸÎAî½ß$EREãSÿù_úÏÿýóÿüõ¿ÿ~Úokç™ãùk¸?ý¿ÿçÏÿñóÉö²Êüóg¶ße?sÎß­?cúïòdþ/ÿù¿ÿ×ÿåçßþó¯þÛZû©þç¿ýÇ_ÿTþ¯Ÿÿþ×ù¯ÿmèúùÿùWûKÚ¯öǶÕì-¯þ«ýg¨ÿšÿüÏ¿|þù骿}üüû_{ý®þÓE~×úù÷¿z[¿{ýô>m>¸ëïž?½ËoïãWäça›¯ßý`ýµýà9~WûÙþ;Ç íw¿°µJû5ûÙöÛ_e"¿Í~vû5}ázþÿîÿþW×öÛÆëïx©:~mý¸ün{¡þöùãý×_½º~eþøüµ×,Ý¿º¼ý6 õ§:K×+Êæ¯ÚÇk•éïÜ?«ÿöW¯­G²íßõzÀüwíŸçÏ·ìj¿Ól=òÀ×Ë­ù;õÇFH^ò”²ñë¯Ë~{û±–p=zuÿ¶#Ê?¨? òÀýëöÀCõþüCíw¼T¿Ý~TÃO«¾P^3\ÿ«Þ>ð±yüú¡¾Á =ê»ç¯¾eûa>F¶_Üú„˜ŽÇúzÍx­ÚökoÙ*{½UO§x ? ýP®· ó˜±壎Ö^×õ_×€>øFìh=˜»¿p¼õíO¸ô*/œ¿ó5òÂ]ËʯúÃüÆÆhúüCüñçKøFìhöðPW@ß”C]ÿÅO¯{àööS#+~<9Ú~Úî¡î€úê/s;ÅÕÛÛÓv|+ØûoÛ?²~—TàÛ‚£ßöŠ ¨úP÷[£>ŸûTAŠfôùdЇù(’'„dE£tyšã1òPõ §ì¸ækÆ|¡=Di@Ý®'ff (oÙ=ºQþ¤— í5cœ²Ç“ë$Ã>­ ·ôùÀ·ÓÑž–ùõÐÚËìŸ&“¨ïèOœ?egÀõ–§ìx[A~»”—ùxrŒGÅ#ùõÕ˜¯7$x¼½ì‘,ý¥ŽSöUQ¡ÉÐ_½'ê†F‚YƒùB÷RÖRò¨¯s¦t-’ßTÿQ×*ò$Þ×.õõ'mV(µúoÂ|D?ï·õoõ÷Óe¾²û ûOÑ~¢ñ±ù­ÂlÛ•Cð*Ìý yl;p¾±1f@+®›=û†ÊQý6ž¸ Q#jt©'r‚:߈-P«¢ù$ùëç)¿­J–§=pTûZaJÄU©og¿5Ò7A]f}³J¡úKm§¬=>ü|eÑ £Œ@Jª?©HÈs…Í!j=)ñc^Ï8õ‰Zo±ì»ÒôˆÉ zú9©¶Š(`½ûaûZG‡ æý&ÆBõö)’wêrEI{RâXi¿bŸ¨gR´@=¡°Gð„§N J^Ö$à*Í-ýI‰OFz»†ŒHAψp[PF4hˆí¡èáóãdžéÇç ßÉØ•ÔŲ%Ñ y†ÔJ=!zá²"Y¢‚QVŸ)ÜGÕg’öÕH³§$sô²¤·ÕÞQòúÊ"ƒÙ2!¯€6‹^‹¾Ôõ®®äõºîJ^Ñ !y=s‰ZvQÔ12˜={h xÂìB%&ý%g ‹â¯' ó.Nö3{j4Žc³Œê'´²§¹/½[[HnI=éúR—Vi{mÎiö”(ÛŸR×Híéðôß‘ÌÑq’y·"yDªæ¬òÌ3W);"Ì¢¾ãYw}U1g3ÆïÞEÔ|ø2Ïwtë;3}I@%u‘ñ|Dà2KŒtÁ,1x]x¾°JÞðÎÌÖ7ŸUÆx%æ5‚ªé«„ÓÀ¬ÇÏ#  i( j1ïÂô£É–5ZÅA={Ë®ÒÕ¢õ÷)»žøcΩ˅³L¨ôLÔKY­UxWەꊲ»éÙWÀÓ»£üM¹Wò»Ê¯e'/|’y1Ò²;*xa·¢wg&”fP­doÝ1²‡ÞP±–3¨°/Pg”·ìY˜Xˉkh,ȤBoϾ°ÖúZÏŒ´JõôîSýgcAW‰I{W¾_Ùq6Œ"€mD&Œ²ãmßì¡6²§$”’Tm ïÛ1¶€‘dî*yæÜ¬ ·'u”Œd3ª¿v@ ZÉfvRP師"‰6ÊfF «äíV…¹Že&ï´§P­ öîºTê1ãR÷*zõ5ãVPs ÐŽ’'MÃ!Jc.z™m½gÑZ˜Ñ(Š×ìí —Ùž¥_…ÃöÌØ+U¨æ ®Z_ËE ¸k}W¬CÏ òìŒÕ¨[ÙCJCY%ÕªëVFì èÌ»Qkº`>‰±À:›GB¾T©’3O†Œ[v5”­éËã‚íìÎ3`¯Ì;}•0)ËNR¥æœóçd¶2c|v&Ê:á¶ÏªÕÞΞÔÕ2®’:^øîm>p–!fµ˲ltº„'Úm\’½ƒù¸î*Ú»0ŸM§¬ï³[ÆÁÕß¹w¡Ö óêˆRÂÈ £K&ôQ¬êu!yļýƒÕæFFõÌì’Gxò–=«¶žÌu¯` LÖÈÕq–=».#áIª¡h²¹çÛÜWÑ|JUê¬M6³§$³lPOL^h ̱ —€. ÖñwIvgIX [_"õ]8PfQ$‘{R­j½Ë@uuW_ékóeVF¬Æš.Ecé¢4l~7öXW"+çÀ–eë2miL¨ZšQ‡¶uÆ”LæKß®°Š²wf~ËæVÙ9þ.ÃøûÀ]$çˆs¡*˜m‚º:̨в¯g®ÞXïFÊ-»"ÇóŠ©KˆZ™ÍÎ29Y+Âû–³ •™ÌÊyû-»6¬ršqªУ QÖ³ Iíeì^Î*xôÐ[VXVXV0òó ¸Xv±¬ mêE mÒÎ]—„£½9ðE+ìLŒ; LHÖQ'ç„ûÝœ/ðŒ8W”7Âæ:~NKO9…ž²c³·H›G”çÂäØüÀªDÕùÆ̦`^ÔUf_Þb'ÿZµK/󳑨`6 ½=ÚèÂÑÁ<Ô©€2 èŒ adÏ ºeemCÑ2PÌ»d®"yĪ-ôô#¿;ê-à(Èfva4£³,¥}Ätú2ŸÌpE-J^dv2Ÿü¬ió»Ψ`˜1£‚\EÔŒ †¢™Sñ¤ž Þ²u”ô#Î-«e„õ™-˜em.2û ܼµØ,Ùé4a™Q¸dˆ&y™%‡¯zB‡(øj†¯nÙ“‚üB–5–5–]Ì‹T'Õ¨'®>X£N"#Ub´º°×ˆ•˜{_jªíÜ¡ºp’:I=}ðœ=°Ì·`f¾%†òK=ÛYXeÔf· ub³%\÷AܤîÚé4“¹&\€pÆáZX•³Ü¨¾bÚ³•®Ó\‡&µNz¨„ŠÐCs|©6a$¢N#›}p¡¬³‚Î*ìæ:CÞ‹ô ÞCŸ‘°vv‹{ËÖ çm‘Ü>¸Š¯,&—: Ah1\Eq(aõ³å"EY™¹í“± 'áBÙÒŒM›we^97k '©d>½,ª°b’ðQÉ<ÈSµT™0ᤓ’Ϝኒê™3|T2+™•f(Í0šGB’\d^µQVž–fY´`.ÃoY§äM›O Þíu-øÁIHæ^mvN0<Dz™pƒ:&¨ƒ’c[Øž>x™Ï.Ó¸ÔšÜòØîR1´yôÁKÕ:XçÕ¦ê({¦¤ä3ý¸eÏœðƒæEÉNfdQçl$—ÿ<ÃSºnWæ¼<’s7 $K²§A?h„¢bf$T0cÜÙ Id>ãà%U(a}µzzè-«d6:Çè3R7à`^ôä¢s| ¬³¾î€»žúö„oÞ+ ³·ì°=ái²‘p)7©Ña/Õ ù´ïe>íûA%t”yNJ>ø£² ±j[ Ya”U8c襬ÂCoÙ³qt«púïe>ý÷R—J«œV9«à´êœµ]¸iUì2¥ä3) Q=&EAÍÝ•—ñ.<ÍýÁ‰²ÑSrß ¢¹;›ûî´€³ƒ:iU ¸IZ%´JhÕI×ïoJ<0f¹žt½žÔ€']÷¤žñ÷–=ã丹ñ÷Š:ãïG5RiÕéÝ—Ù©(†ã´êdï˼©è Ç·ìY¶„ÞÜuù z);bJÜ“ó+M¸c~•eOëT*ŠÎžð´~ Oë_¸@=­ÿÁIh„¢”ŠNnÿ En¿pžù†'Ü({rûe^¬Qôý,ëTäT}ÿB*ÚT´Y£ÊOט‘êƒ:s(÷„UQnþܲg#ôƒæ¾ yPј„F¸K˜åÖÐ…ðUÔ,à †NBEÙ³}wá †Ë¬T¤Tt‚ m€ù Õ!3ä¶Òé÷³ì÷?¸ÀŒÌ0#3\½'3|Ћ¨¼òúÁê¼uÐ’Ú¨'6>êIõ-áQÔžÝÚ–Ô4Âã,{f}Wԉ˳‚¤Fl$5Å¥*©j$Š YVidÄF”Q#ᢑ‹e\ô¤ÓH§‘‘7.¤‘›­°éÉ“7jäÖVÐD>ªF¨$s¬vÂc¤&<­0BåBù‘7Å4 xBå–P¹p>¡RÊ> À •Еec>™’•F*Ë+h4ÒXÖXÁ'«TȲ‹\oY÷€>•pîF8 Yv{çI…oÙ½©jï öIȲ}£ì`Ù9dÙÁ²s€:Yv.B––ȹT–=+‘žT=e{B%t@k„“ðè Yv±ìbÙe(»XÖ;ᳩêî„Ô»YvïÏO¥U(„Õæs¡½P{µ³lgÙβ‘‚$á[v]h„§¬œÔɲ“e#VÀH—*,{éƒPYV’•e•eezm¡‚Æú.–],»¨wQïÉH–¢ü”Ý ©p³ìB#¬e=âêƒBh„,ÛY¶³ì‰«³Ù=âê“ >(„oYÙ 7à‰«¾ýh^h„o^`?¿©˜ÌNÂø˜Q!Ë>U¨e;Ëv–í,ÛY¶±lcÙÆ²­–=Í]¡ át–}‚°B–u–],»Xv±ìbYcYcYcYcYeYeYeYeYaYaYaYaÙɲ“~ž,;ÙFƒeË–,ÛY¶³lgÙβeË6–E\ãÊWgh«eÝ YÖYÖYv±ìbÙŲÏ@_ ±ì3I¨ee•e•eHgbS éLŠ*dÙIÇN–E ©Zƒe3Xvбe;Ëv:§³l£sË6–mÕ9gÂ\¡NB–EF:Óø  2’2#)3ÒY\h,kFÈ²Æ²Ê *Ë*+¨¬ °¬°‚ ËNVpÒÈɲƒ4r°ì`;ì,ÛYÁN#Ë6V°ÑHDÎY¤W(„c™0çsŽ0çsÎÙ”¨pÒH£‘F#e•F*T©4Rh¤ÐHaY¡‘“FN9iä ‘ƒF*4²ÓÈN#;uÙhd£‘ž&³Êäð4™U&³ÊdV™Ì*“Ye2«LŽG“ãÑdV™&Ç£ÉØ˜ŒÉ‰ÍäÄf26&cc26&cc26&cc26&g2“±1“±q6É ìTÔ©¨ÓŠ5*BÞ̃ycp<˜7óÆ`Þ8.*ZT´¨È¨È¨È¨È¨H©H©Á08Ë=FR‘PѤ¢IE“І*!«?¨¨SQ§¢NEŠa霸vf†ÎÌЙ:3Cç ¨33tf†ÎÌЙ:GÎQ£sÔxÿQ!&SÓΩigëw¶~gëw¶~gëw¶~gëw¶~gëw¶~çä³s Ñ9…è:Ç…Îq¡s\hg›}¿±ï7öýÆ¾ßØ÷û~cßo‚Æ q h' “„ÆùdãJ¤±¹›»±¹›»±¹›»±¹›»±¹›»±¹›»±¹S}Cª«> a¬ËÒ¸bTᬽ;./UHf#³‘¹æö¸RU ² Ê*(™…ÌBfa}'ë;YßÉ* 222wÖ·³¾õmdndn0×ú:Ûב½ãš_Næš½ãauΗ+$³‘¹ö߸ôX ’YÉ\Óu\¶¬ÌBæIæºW@ ddôd's'sÿƒ™nodndFƒr2®ÚVHf4èBBŽ+¾.2/2/2™ëø×’ T2+™•ÌBf!³y’y’y’yyy¹“¹“¹“¹‘¹ÑuhAc—äN`\†/ÐÉìdv2#Çr¯¯q¯/®÷WHæ:†Æ‡’YÈ,dFäö]|ìP!™™™™ëÚ9>Ш°62×IQ|r!·à⣒ ÉŒ&SfQe“q“->„©Ìh2e“)›ŒÛhññNBf¤Mî›ÅGC’y²úƒÌƒÕ¬Qgõ;kÔÉÜX#ô2Á²%>Ϊpb&#œÉpw«qw+>(«°"1 ÛH˜¹Á(¬‘ÐH!󤑓FNÖhÐÈA#ì4²“¹ÑÈF#ëÒ²qÓ)>r¬°¢M¦¾É~Äm¥ø0³@£^L?Î'Ÿ*õ*TêêêE®›ì8ÜŠ`+¤ÞA½z;Ó¨·Q/’Û`£p·'>.°.ñâCã1çØŽO˜ DOáNãN|:]!õ « ¬‚PÔ¤ÞI½ƒU¬Â`:EuêíÔÛXtÎVèln³ÄgõN@´Bg+t¶7Râ§ TŠRŠRŠŠŠš5)jÒƒÞôÆ 7:½Ñ)ªQT£(ÌÍG nwÄHT(„µ(jQ”Q”Q”Q”R”R”P”PÜÞèvîQÄÏ€T8;EuŠêÕ(ª ÖùÃ&*a,Ñž?¨R`óÇX*l€FQFQ%óçOÄ(´Yh³ÐæIQ“¢m´yÐæN›;mnT?;ýìô3–ÿù@@øÙég¯8ùÃDv@ø+úüA¤ ©hRѤ¢IEƒŠu*êTÔ¨¨QQ«Š°*ÏŸ¥*Ðp®M(„ ШÈh»À‹Ž]tì¢c»èXÜÀÉŸ+°ÓŒN3ÍhÕ cÄ#Ö˜ŒkŒX«k«ü·Í i†Ò ¥Ú…fœ¤N9hä ‘FvÙhd£‘­©ô¤Ò“JO*=©ô¤Ö±,r°Â ¨¤ª"©*“*.lä(VÈ* VaÚIí¬Bc[¥J›åOJè¤:©èÝÂÞ-L›Â Äj1B³BR…T¡0…®ºNè:awºNè:¡ëfÝìÊ2-ÐI…ë&GœÉþ;u“Q7u“™p2â|?¶BRÇ&ÀNj'µ‘ŠÔ7˜ú°ËŸÏ­ÔEê"ÕH5R•T%¾ôÕ ¯}58ÏLnƒÉmp˜&'6]²3®:ãª3›uf³Îl†QþXtj„¤ ©B*ÒW¯»Óùó×’Š@ê ¤Î@j ¤Æ|Õ˜¯;]£sÓèœFç4:§Ñ9 ª1·7:§±—5ö²Æ^Ö9‘Ó‘'žùcïÖq0~(¾À²”Ι/°v«øú '`íVñÓ÷N9iÆ ‘ƒftÙhFíGñSÿÀÚÜé §7œÞpzÃé §7¼nä³ÖÁ+žT(pPQ§¢NEŠœÆ;NÓò ‰kÊuœ—åãvÀ:”;ŽÀòQŒkŽ5 ´yPT§¢F› Æ®ÁÉv< R ªÏÙu†«‰¬cŠázák´›²É¸5e )ƒÏT‡áËÓÖÑÙð}èkf0|ÅùÀ:–O.Lh€ÆÓ›4cb“ܸ¦³‰E«Mzƒ§Æeš1·wòm°Q˜Ì»ñÆíwcö6.¦làhƘ®­cL1®ŒùÙ:«ßY}.y 7pXWm†[4¬ÓKã–²5Œ ÖØú\˜X£Ûú‚nèU®5tC¯â³‘Ö|¥Ì¢Ê+Ê=UeÚT®”û¢Ê<©øõ•2×Ĩ ›·º0SfB]5”{ŒÊó}åT\¹O¨Æ âÚùkVQC+~Ÿáƒ¢jÇQe *’ªr“M9VEOQn”)|U¨ˆ›]ŠK¼RQ#f$ÅWØC¹é¤LAŠO˜(¤Rë¢Uyz¨L2:0)îO>°.ÿuÐWƒÝŠ».ÚY…Î0ãΉvŒeЇ6äIml6)“Ÿ×=°fBá3á1á50áÍ.áe-Ùèƒâ°Y}Axê!<×önáÙ„àÇ…Xgª‚hX£]fÈ‚/P†ðžŒp9,Æêó‚Šà»‰!Ü$nƒ 7ºE±üE‹°¸–\•`XáÁ=ó!¼H \Ó ûŸ_Û«pPwM…û¢ÂÑY† é¬ ;ŽtL{bX{Š4ºc¨4l° O…ç¡“Ãâäâbâ›ÇÖó”É‘n:̘¼¹79ÉŸ¼æÂœp. ‹Ÿn=°&Õi¬÷s&wl&‡˜É›NSÑ ?óÀÚC'¾y` Ñ)˜«L“199ÛœkÉÉ œœ1N.ð'wÔgG¨ÌŽ\7ñ‰úkªŸ¼ 0qÓøu¤Á06ÒõàöØXÓ |.ú@!¬Á?¸?9¸å88u<µørí5&‡b†<4·~0ç`æAÕàÒc°¹¾æc ®Æ@BÜ“¼¾2x61ð9ÿërxà«óÑ7æ G?°ÆFçßÎíhþöÝëæ*mt^¶ä/kÎE+ˆitî@òw{FÇFƒ?óòÀš ŸŸQÀÚÙù#¬­Àßx`%ù‰ú«'ùEóhLŒüv4î3ð{ÉѸiÌÏëÆó}Y•ÌQ²ñ\’ï<°N¨ž;jY^"j8!ê;Tý¹:¾[¥b&Ó7V}ããÊ–ÉXß?ÌÛD/ëÏ¥¸V >¢y`«TL »ãûýîø6¼;¾;înñ›ïOßwÏ•Èû£¾Ýó×¢–½0ÈOÙœ3ìÃÜã÷Û+jåë±}¾ÐãW|ýPóçq¨?¬ýþèz_g×å=Ø}`¾¨èë…g˜x7áØÞI‘nívšl…d;7ºß¨¨¯^?/;t;§áû<ºÝ휴&Ô÷Z”Æ+6]ßÌð¬°Þ²ú~ª5Ò÷1Õd~§.êç=‚.oª·7ã=ð}Û×$¬z&Eöcñü}¾‹V{ço0<ÛeoõÇ{"ö8á5Þ!uõó>N??²·ä¼GПº~Αâ¿ÿµßuö¹ÕþïóûÞöqóYÞ÷s/òßÿú¿~þû_ÿå¿þ·¡ëçüç_í·{ûi¿*úóì%÷Ÿÿü·ÿˆ"ëÍÿ3ä=Û‰ãê:[S×ge~fžý†[ }oZÝ*ê:¿˜P?/Ô…{TÏë”á<µó±áÚg¥«Ÿãõ½Íú5Ë»Äü-ã=šô½}ð5ø›#Þ¯ýn°hürm„ÒYžÞ@ÓË9#a.z$%–D…zñ]–S—ù,¶ \»”= 59må2®P× O/‹%à¥îxÕgÛÏ·|,ð<\óþ.=å¤ë\˜J„÷Ì—ÓNëÇ¢ö2Ÿ%oç1–Ü㔀ù†Õ;Ê¥v§F'_Í|:;ÊÎxÒêÂÓÜÁ|6.<Û· gó Àx9Ü~¾‡+ùlKd0ĦÅ-{¶4 Õ«o:…¨³YrcH—Ù[‹6ŸMš«èlá¸eá+Ϙì?ßÖÑû³£ßÆÒ<#Nn;eäÌ|C2¨;:lOx^l{ÇîÜîJɱVàÏŒØH+Ôj†ä#{GrlÑݲ=ž—‰²=zÙ¥.ùª[ƒ—:âÑ›(;â1Ò%?ߦc¡®jÕˆô’g<˜Ìg³ó*:[¡.Â]\›¬WÑÙ‚½Š2D/u•ˆÍÝlîØú-pNÀó_”Uô²Ør¾ÌgC:#6¶« õ<â¢ò‰ã ½*:ÛäWÑÙD¿’ÏL¦@­UXù|Š:F¾“íÜÚ—3SÍÿË|Ž®^×¢.u•îx‚/˜ÏaEvº8ʸfœƒŽ[…¯Eݲ»äÉ8B)ðH>CL¿¤Íq8“¢âè&͈ƒ4CóÑÈS…8ºŠ:¼¡ùââeŽŽ³~¾Ã¨«7Ÿ+¼p”<Ç\Wò@BŽ#²Rö<–6x&1¨ùºÝ‰vÍêN/‹ƒ»÷sÆïX¯ÀEª×²9ô„çÍÌP”š]x%³„6Aö?ß!çU¤ñb[Pó)­Kh—ŸïpõJÎw¨nY(ÒP´Þ)Sê^QOÿ…(‹á8êk1”_æ±=™—¡ì®¢Î1õ•ï{[Rg­àÂÇã׿•9'©gRt©1xÉž}pþ|‡ö×f§†C‘ÇÃq·¬• . fTp³‚;ç“òó]R¸eóMã O¾Š*ìËÂæ;,¦¢•ÆÅ ‰ s\»HQq)£0ŸÇ±ä¸ÐQ˜eÏc†îñÕÈòíÙÜ£¾g:mùB쩠壯žT EÕ@Š«1·ìˆçì.<™ð¸=.Ýê,ƒu\Ø)P7Ê®êI2î –ïm†‘ù„f0gÎ ×MV²ú33CÂEEgéÑ“ºWñ³Ä{}a†ÄÜ»'<Ý*Ìl}ûù.se¶|êðR—ºy—ù¤å³gÐ.³¦7úÏwy­”Õ2<ÅÅ·Rv•T—æ ó.ë…¸pwYÑ~Õ™j\ˆ.ԺЎËÔ—¹G˜µÇâ"ôv̽ã÷•Ü1 à·‚™Ÿ/uMˆòæ]ÂlÝtm 7`wÀX¥¶Ÿï:|¡Ö~\¥/Ì6@­]cå+ͤÞ]:ûšlî™i$©£ê±–¼Té JIñÉÂÕ{>h(Ì5åÆÇ“ñ©ÄµJr‹¦%ܠ±ù0ïVÎT/<ëz–ÕhÐQv•6>:)Ì{~{nñÁÊ¥jCÂ^&Ìñ)L¡›Ïff|FS˜Ïøƒeütr”ŒÏw µôñéOa>½,$fæë1pLPëøŸ+( P)ʪë,âùš±Ìn€»¶ïŠ”°jEŽý`™ŠÇ‡_ÎjÆŠà–­ªøà¬è5š±:á†(§§ =ªpá©BˆòÜ œcs¯¬»=ñé^)+,«e—8> ,p½ãï{P™–².PT'êñ©âµcÛáÌëâ3ÇkÕÎá8™G ÂÙ;™Oÿ½P;˜ëê)>Ü,p @o(ëeZŒ¦Uñ9i2ÇǦ)*>Eͪêl„E‘7,ãÙ¢W°ÖÈïšÔfñÙn»ôýøä÷Ö¨GgÉ=Ú(Êöh£K8PáTƒF«ŒÌ‹ÌNæÝÀ¼KˆÆGÛ·‚©ÀÎÅT|,~h²Ë,ò…w|†^ÊÖ}Ñø„½ÀšÏé‡eÙè°=`Äó…eYê†%@üHLÎ'ã'd \µÊºÌóÔr§uY?lsáŠæþà© <Í5Z±]f¬œåö€s€:eE•¢Ta†u0Ÿê_ˆêçÄæR]@=ùùÖhW›sžfx´~ˆòhý°Ê±:ö<¹¸Ìuc!~¨©Pcª”]em?=UÊz³SÑ`ÞeÑ?ˆu©)ñcZ…ùÃ¥ÖÝ¿GØ.0ËUhÆñÆ¥Txcc÷#~–¬(òQn`Þ4²v硇yßéVÂ> 7ÊÖØˆŸpË ŒxËöŸ+eEQV;©Ù:aYá]Qkú$tÀ=!y—^¶s;:¬ÊÍ »€¹†Jü¼_až¤Î’¾â‡ozŒáÉNçä¼îšEãç ÎétNÏIÂ…¤ÖÍø Æ+y ÅÏ7ØË–ÔÎ=™ÔS˜­ ˜K΂ ó2(rŠŠÉç(Q›¢¶jî?GÙ\Ô„¢^r>¦T¡–ðÎgš¢æ#NEï„z»U>±‘GÉå+ž*¢T 7*h’myQÔR0¯ ½þT¤:[²J>áUÌØ^œ3êaS>V`¯Ž5{ç³cŽæ¡UŽuò¹³ )J¨"„×tS¯² q¤›Ô¸y;.ØŒVÙ —Ê*ø€ÍN½±÷Õ DíZ…Y7Bó¡¼Ë<ëšìj7”PÀ<¨wvB%Ü(+’Ï$ГªÔ«Qº@Í,k¬o9vÏG iÖS¼|ž±Â¸YßM#Ñ(®!ub“N^3„"l‰F¹eÇ$\€òÃGý.Ãçó›…Y´8Vb8¾TýæÏùìga¶f£‘öMÆò¹ÑRÁ%°j9¨Î9=éêf6=‰ÁZ9Xk¤¯(«õè<Ÿu­Ôˆ6ÒDFBm¤»5·ß“m”ëÐ+YX#ÅÏÊl–—=.DiÌ nÙŵ•§‹Õ÷F(å FnVýHÙò”'êkuå• _Q–Wõ’¹Ü9ɧ• eÇwŸ!m.Ì÷­žYçsбXÎÇ¢ãÓ­|JºÂo?6Ÿ¡Žµs>R]©emB‘`ÙQϧ³cEŸkÉNæ“ú$+xšìJ޳ò4#.¤Ÿ÷*¢VÌÍ¢ì=¨ò„«(Ê;6·l”í«ØœÇX—¹ìÕçÓè¥ì$ó¤äIf¡Íå.b>ç^ ’Y)Y)Ùh†‘Ù(y5øjM0—­¡:Íð QN×íFHÉ'OF£xÝ8za•ì‘'/ìÕŒ{ôæ ÏŒpCÑ äAÉå:ôãzÒHhÐ;7l–A¨%dVJŽ=¨¬B¹ûÀrÄùB…esï‹Ìg¤»’ÏHw½áe]P êõxô…ô$ºäf—Ì݀лsÞ>nPûDÙnÜ7¨ãÛ­}¡BÔp(*Û†/Tˆšd–N(`–ª6HV!¤s¬¡¬MBƒ"Û Æô2©‹ž\tŽ“ÙY_wø*6$=¡@ò.õ}¾²o_Ùž»Groõ¸áåêø Käô¼öQ7DA¨Ð{Apv0O¢š{ž¥^½R¯.”U2—sç$놑Æ*˜ÂæòýÂOÿ½eOÿý «àlg+8­ò E{*ê»KVé=&E¡èézÂÚÜÍÝ£¹?hÜ7Dæ¡„XnѼPl®nÏ­’Ë,F¸u ¬Ò*¥UÖÁ\Çßž)ÖTï˜Aõ¼OøQ7jäô•S‘³Q6e³ú›²kõzà •Ô’Fúˆ)qH˜_õùU˜_õÁÖÏ=™ˆ{ÀÌèìƒ=·h“ƒ­?ØÙ[ä:4™•5R!\Ðk Þ¨¹ýFæ Xs{Ï“ôº 9¾›Ø '|…¾?êgPÜlÐ-(»kˆN å¬5šÊ{nþ„¨™ÍÖl–w>ÃŒÜ º¢Fm£Yo ½pÃ*¤‚‰¹wÏû¢—*T$f”ßgÏãþk³vH®}Ï£+ÁÌOŠ’Ù”T‡äÅ-¹è“Î|²Ïú…þ ©Èپ峯R2Cn:…(ÉÓ´™P`]yõ¼„pEõêöüL&"'ï$ܲußóŠB)Œ ‰YßU4i䤑Ҡ÷ÄFô2©‡ò/t˜¡ô& ‚…vÏkº"6¤Þ±yáu5P× ¤‘ËF:=éFHOîOn3ò†2o䵊Ы1ˆ„¨üL5Z_9…È­°Ë\W]ë÷te˯F¼Ðk¾Ò\ \(¨Â\ Jƒ^a*Zo =Pé° ¡¢œ`hø¦^£‘uùðÀ æÅ²‹e1Ä(çy3äƒec°çžÛÙÝz~U¯(œÙT“UŽ(«ßz¼p–mÃιž;r—¹O0w–-—´8Xv˜Ç÷{2/dÙ9À\¾‰{á*¾2Uôܾ»eË!õ OÙdÖ†²Ê²ªP¤ª±¬Ñ±±0É e±ì¢c—AT쨧¨¸i|!Ë:ÅÙ ›e7ËnêÝå<4~*íV!oÑ|T#dÙztÞsŸ0-éöt©ƒeë©VÇ œ–ƒ×žr¢¾‹´rê ˆ@ÊMÅ[}Yd¦^eYe}c–›VÅÄ&ËËm®g1Üu¯+j±ìbÙÅúú ¤ÍβN›7mÞÔ»ˆ«¼DôA!4Âj³3Aå£ËÜT–5ž *73?Xýì8<}àódÙé€ÂúÖkÝó¢õ¥:ôj³²¬*Ê*Ë"_9î$tÇ9l¿¡ ëqÒ©Ô[¾k{ 7PËW`/T‰ÏsÊ”a–¿CõÁEXÓÈ®wÕ^XCt3Ì6Ãl3ÌrOõƒFæêöÍ0Ûy/( EÙzÔØw‚\æfWÔdÙ¹À|&T—Ùl3›Ý ØÔ+ÌõŠQÏýØÊê+]gÌÆ*Ýn¸:D-ºQ—¿$v%×3;™Üîæm–õ:£ØŒºSé¾u›É-o”æÑÜÆÝڽаÞÀ Q7òúÙ ³Ñp¢ýü¾hó(ãÂhÈu#/§}e7$×óî‘ûÀ·lCGC®-s]R…U%³C¯6Pu@” á‚de+Í0VÁXcË.V¡^¹¥ì UpVÁRGØ‘;Ìnš±'!«°Kö¼n7zá¥*á"¬ÁÐë]Ó ˜ëŠ`äo³Hê­+‚N0×;c£× Àœ Š&͘E³\ny¯ïJ–Ž ½!ôF½o6:Ö £#1>Þ81y­Ò ›kb¼"ø@zÒØ u8ÃñÈ „Wïbƒ.6h½Ÿ3ò+ûJ3œflš±éº,ù…þG=›lïby ,.Æ`ˆÜíw“<™{íe#BÔ/UP¶W3ÖãÞcLQÑÁzÜ-t 7.Œ´9˜6–Ïo8Ó ¡¢¨¾,P•f(ÍPšqÆî+ª®pÇÝ~OªÑ £7êuÊ‘»ñ—Yt`Áû@#tØìl_„‚úÖ«˜c`(ù£ ·F›a†ˆ½?¹’ë²eÌØ‚‹²Ë–19²OFlþ\رwc_Öˆù‘T2#b'#vâ¶á˜ØuùOd¦¡ìt0K#ü~ÿù…‚*ˆ¡úB3êgL¬qÆŒ5Î-«‹T:Ç(ÊèSB\¬ÑªYåþ€ê…lîÅæFON&§“Ó€ÉiÀä4àž/¤c·¢ú›¢05NM%Rî\ ËŽëÈÓ‡÷Çí|á@ÙÀ42—£™‘÷c/u”Mã!¸$6òlâc¦¨“¯Þ9HU”­¸¥Ò9BçsâùÂÏœ·•ZÂEJQ'ž/5S—Ê +¸ás\¸Ð`UÄsRãòaR¢êÑùÈCÊ&Û´j3âL$YîGõóˆ$åIHÖÌÏ¡ÖKqCóp-%w!,ç CÞyµøƒ5”ÔEêFc3³%œ(;) á­ o𾊄¢„¢dÁ ¡Uõ wäáËGUBZ¥´Ê( á­ ïü±»RÔb­ª‡zCqhäIÍ¥Ö3¾‘¿rs%;­rZåpST½72ðýï iÕ®}ÐíÑþÁšÑnõglØ) ÉÜíÆdnŒvc2ÏKÚ~©´jPÔ ¨ÙG ~ùóÈo–¯¨IQB«„¾ŠßÛ¼Ì%ô•R”R'© 3üy9üz£^L¼+> ÷T‡1·[ÿµ:!­ZJHQõÒãÈæ+Ê)Ê•TC9#v70oºn366[¡Þ ¼£>S}žL…y2¢òsïKíÕ;˜ëíÙ‘¿ËFæýöyŽŽ²c’JQõöûÈc¬kd½3'6yªå™zÑòë*ª÷rÇ·c±/ð"ýX¸°1ç9‹}!À®J×]Wï}ž'bדÆPY¬o½Ý1ŽìÈPY嬯ST½ï=Ç…Åqaq\¸?a­°YßÍúnÖw×ÑÊÙ5ò‡¶‚9×BïýÀ:ÊvŠêŠÐ5<ºÆ¡k8»F~Gp5(jÐÈÙ@¬ï¬©€ ç0‘ß \QB#…FŠ’™FÖK#í®Ÿë ØÒH¥‘êÐk ÌÆúÚ„"£‘qñé–Ý(‹)“ןÓy¡™FbG~„ BW(rélÌ ÂŒü…Ùkúʯ*¢F›ƒÈÆí»±¹Î_`øÊnP{‡¨zg{äï¹…U›ª<=¼°^ãøGþ˜ÃǬ° cJþ¸îeÆjbs5±£ã\QÓe1¦Ü£Æ%”ŒÅÅæâbs휿ñ{©:f(T‡"k„¬¾M”5¶Qù!IJ%/V±›{±ú‹Õ÷N8 ¢n„4r3Ú7Ül£­pÎ^„ÅÈÙ°™ #ÎË;n8Ïû —ºQ¶—6š #ÎlõG2_h0£ö£™ç¡Wò ‘un6úÑÌãÑkÆ`õ'«?¡@Ô¤‘s‘JÉÂê «/Bf:¶üݵ\Ä Ýjòœ™Ïå|T¶‘R²±úÆê×n5ók.2oÔ·ÞËøMÅ j´èØEÉ‹q嬾ӱNÇÆ‹0=¡³ì†U»£ì¦ä:‘›yh{ëkœóÐöƒÇæ™p’z${Ârò8;NfÇéÃÌ#Ý+9zYŠŠ%Ï¥RrFXÀAÉ1Z¥‘qëàB%¤ä8›Hj\B¸p€¹žÿÎ<ÿý %Ï (”,” ¢ôFÜκÌtlÌú’9~ü O*½¡´Y)Y)Ù:¨Fɦ¤ÚÈÊ©åÌ£ä˼(yMB†Ù¢Í‹6Çr)™~vJv†™ÓÏή±ió¦äMÉ›ÞØ´¹^–žùŒKøŠ§Òs°Óå§[Õ½Ô(©?HÉ}*¡í+ë ŽFØ ió Íƒ’mž”<)yRò¤Í“’'% % ½!ô†(ËÒϱ)‘M¦ T¥d¥d¥7båå égÝ€FÉFoœ+F×f£ÍFoØ5ÎÊÓŒ5 …̽‹ñ¼(ÙÙ‚q™’] ŽõEQ”¼ióP´éØèNɱÑ}™«äübîƒUò=v¿Pɼ̽&¨<…¿Ì}’™’ã‰%tPÑ%'®€Î<£ œgôWÔ02ÿ!yONvÉÉ.99,N‹÷ÿ2o@¡d¡s„nJŽ5])”¬lPeƒ*mV%u² Ö ×(£ä=ý¿TC+%/ڼؠ‹’³ŒT'dƒ:%;ÝîBfV!nd<;%oÆä¦s6«°í›nßµ ™ê½Wpá$¬í+1h~¢þ¼1h ;lÞ:ˆêç'Ѡ‰k¾i{á`0q½¿Ù•¢0q½ßK^耓’'SotÏüšò£©¬Âd„’…Uº½^!›÷Ã…lmp¬RÙ¾ª¤² ú‡dVÁX…øŠS² Æ*Ø‚dÛµ¨‹‘ƒþ{?ùÌæ^lßÅö]Îq†¨³}Up¿³œÁIoÞ”ø [a3D7[“^ါ\iæÏ¬EóE8çÞ£h ËnÀÞÀŒþ›ß¥~Ì ½˜+çÀÊ+n¿Oå:T9à*סŠËðS³;§U“’Ñ•SbÍÓ‡ ¢Xa„ŠDà ¡¯„UÀ*õ¾!˜-¨T¤õU*R¶‚RfÈÊá8_¼ýà$³B”jdlnc\-Fì`^lîEÉ‹UX¬‚³¹1aVöî¼ òQé+gœU¨Sg>_~Em!•¾Ú¬ö‘ŒKZãèœ÷FBѽ72*™a+ã¶’q°6öî¼Ur­êÉŠú ¢Æ œÐ;XtvãìÚ8»Î‡¥>HE¬óG¯¨¹àØIEÂ*H³° B_ }%ô•°õëmð²QtB¯ ¡.–e£[soãÜÛ8÷6®Ž«cãê8/·Ü²‹²&©T´¨hQÑbë;[ßY# 審øýÆ Ù(›­¿©#{^ŒùÊ2Ì6af¾Ø÷ó îhÐÅ™ùâÌ|qd_\J/NÔGö¼E›äy‹æƒuƒ}ñà&/Õ|Ìg‡9õâ'ïØ|Šê}³™ŸŠŠM*Š+7’pÂæIE“Šæ"óU¨¨^N{ T0²…Š"¤‘±îN¨T¤TtRÁ•|¦ñ¤"¥ë”5:©à–­Wæâ‘ÐÂIëÌ—,¾²‹pƒ¹Þí™y·ç2/ºn±£n±F‹5rºÎ©ÈY#§"gœ5rÖhSÑfmÖhSÑfmî5r\~˜ù ¾KªÈq›tÞOò/ó"³ƒÚ©¨Þ¯›ÎÌßï‡sòûýº¢â¦ÄHHEƒ5T4”pQk4Y£Ù !]W¿Axà¢ä?±ÉÎ$á‰DáÌ y=é+KOžIÂÇLE±"H3t€‰ÂyXœ——®UÊ&S*ÂÙ1ï2Í{—éBz‰Ây”œW›nVsüØNÈ-*ZŒöÅ-zÒÎ tzÍ÷TF³F8wÎkQWÔ¦¢ME›½l37ccSÑ®ŠòÒÔkæ/Ó~T!4ÂEXccãRúÜÌy¥ê–íTToX=ŠºCf›3Šï5ææŒ‚®f¾Åy gYzrÒ““Šb'_RQ\ñÝ YA\#áí¬¹™F6'›·Jîe­4£^Öš›id3ðîÖÜœoäÝ­²‚˜oÜ«\i†Ò“Æ +hÔkFHOõÆE¯ éIL?òÞ×YÁÅ .zr±¡âeãÙ‹ gˆ:cYesú‘—Ä>È "lN?òÎØ*›®f¹¿’! K J׉TB#\„TTg#Ò°N‘†ÙÈft¥(*êNêµÎF„×ϤaÙ"÷g™/³RïpÀÉ NêFÆG4;¡¢&[¿#†É‰4$™²‚ñ»#¡À 1ÂEQ¬ 60k'¤^BFŽÒ±Ê¬Ÿ$ï¹IטÂ{nr`$=iŒc Ö$# ·²¥áV¶4$iXãHç=’—â>æEHEÎÈqêuêu:ÖYAgä8[Щw³A7m:vÓ±›zë’GòBÝG­ z/Ô­„ƒp*a™JÇLFòº]D{ÇLæÌõÛRéÌ9yûî*êÆ²‹Ì¬à ÞÁúV°NläÞÍK½ƒŠêÄFîU½džpÀæºs"ë#éÌ9ysïƒN¸!YèX¡ce’ª„Ô+Ô+Ô«t¬R¯²¾Ê j™äKÞúû˜\W—KÒ±¯")¨cÚ#óé¸y+«'é¸Ðþ@Òj(»XßÅ]‚*,ú¹îºHÇg#Ò™‘:¾"‘ޝH¤ã2¼tf¤ÎŒ”¿ßîi•S¯o4ʦÞḬ́'™©wSïffˆŒ4îïmÞðè '©Â²FêbÙsçóBêŒtá œ¿íp¡‘¹lG o*JþØÎ-éÂ* Öw°¾ƒõÔ êR©w²¾“~žÔ[Oy$¯5~ÔEQNH½Âú õ õÆBìB#3õF‚ºÔ²Êú*õ*õ*ý¬l_e\źl%d}ëuŽ2®ŒzcÊ”¢Œzc{ç2³¾F½‹~^¬oœ¥¢Åú.úy±¾‹qµ¨7òURzO¾ºŠœíùêRپθr¶ï¦Þz³Kò7ŽnÙÍþ«¶ éöÍþ»k}'î}I>dùQ«ÞÉ|u/jö„F蔼Q6q©¨S/Ò×d¾Êkœ4ÂŲV Õ¥ŽNx¾OÑ„¬þPBÖwPïpX5©w²¾H_yôƒ¬þ4ŠZ¤þ¡—Í-4Cèg¤¯¼ ú•U4¨°¾B½B½ÊæVV_Y_¥^es+Ý^o“JþxÔµÊX_ë(k¬¾±¹ÍmÔkt»1Úcïz\¬o½Ü"yõôJ^ìe±w}EÑí‹n_t»³úÎ0sºÝév§ÛQçÔëìe›Í½YýM·oš±©w³wÇò0½±i&cÂɘàÚ¹ÜË …PYv‘ê„ÌHn¹Y>5ûAêíJª‘J3â`]êÔ‹¹™0¹åt}eÔEÈêcn–×e¯"$7áÜ,¯Ë^ÉSÉL3&ͨ×Ý%_*¹e…Õš!4Cèv¡Û…z…Õš¡4CéveÔ)«¯Œ:eõÕ ©×¨×X}äºüÙ±™n7êÅÌM8sËkº—y5Bê]Ô»XýÅVX½‹f,F³úξï4Ã'\ç ~§^gë;«ïìû›Á¿Ù ›ÕßÔ»YýÍ Ü4ëPåDN9‘ËRû˜'©Bª.2ÿ¡·V_™ú4ü.u:!*6ÊVBcÙEè„Õ T¤>ÍïéRRŸrš—W‹?ê"•Þ˜¬þdõ'«?YýÉV@&TNóòâñ'™ÕšL¨œõåÇ}ÌJQFfšQo*ŠrÖ—·”oY¥7”zë·´¢œõÝK˲”­ ŒIc_¨×E™ óñ +Ê Fo½a¬~H#cÓéÂI*Œ¥Ç¥Ò*£ÍF#FÆ“eê œ¿²Bªá"tÂý/ðÝÓ;°7P;mî´¹ÓæN#cðÚ€•6ÇÇÂ× ÚÜió cmŽ¡íRió Íƒ6Ú'DVæEfÚƒµ$Ü…yåÀ7vRáüG(„JÉF¸Èìÿis§Í6wÚÜç?BÚß…´¹Óæîÿió Í£Òæ?!m´yÐæa„‹ŠX…A›mŽqðBú9Ötð£ÒæI›'mžö6OÚhó Í³¡ìd&Ý>Y…I›'mþ² “nŸÿ{÷®C1®t‰9ï§è'ðUÅ‹RO0€;ðÎ Û0Ž£ æõ}‘¶¾>}N œl/ˆWQ¥MÖZ”sîGxPoɹºGåüWh%ç’sÙÎeeeo/›}´¿Wáa³999{û0„!çao¶ó_¡!LC˜6ûç:ÿLa ÇßÀuœp —…·G ?¯ÔìB9¯|„†° áóýÁÉeŸWêÊy·GhÛ¶œ?¯Ô‹Æ6„mÛfßrÞ6û6„ï+õÂB—s_к!D{„– C9G=BCCˆõ·4 !åœýBBÖ#4„4„\L›= ! ¡ ¡ú#4„2„²ó×øø+<=j³×~„†ð}ÿž—rþ¾pàï¨! Crþ+ô. CûÂô.LC˜ñ aÚs>/ܱÿœÂOGŠnný¼° ãoàu©Ïû÷w´„ư áóþýÁý aÂ6„ж!lC؆ð}_G aïGhßyà:¡!ñ7ðª÷0„ÃŽñ½ ‡éó_á-„Ù¾¯ãìðÂlçÞ ÖßÀß¹C8…K¸áAEÝz„†ÐÓ£õ‡çB_… ¡{¾ÿø;jaa…†Þ…˜ÐˆÂ²=BCÈæ#4„ô.äüø+liiGJ#*Cø¼¯Âe…†P>Ÿ·sÿNáîGx?/ëì0„)ü¼é ø;: OCø+4„iß—uG azæüø»”!LC˜Ç\†° aÅ#4„ekB#*#ªù¨ ¡Ž'8 áóf¿šnÑ0¢a£¡ CëÑ8žà4¢i3¡MC˜ão`­¾#úlè<û÷Eÿ/áÀÏ‹þ_Â. a>ÂŽGhDËÖ~„F´ a÷GhD;¡mCØóÑ6„}ü ¼n÷aDG„FtÂQЈŽù—$è8þ5ŒïgÀváçIYÀOŠþŒïgÀÖ#Â)\p ??»¥ÿ-|}ÜaÁÙÿlÀÏ¥þ%ÜÂõ§pë¦0¡µ{DŸÛý·p ç#Âz„) a„F´GhDÛˆö|„F´ aç#4¢Ý¡-CXûÑ2„5¡­|„F´ aµ'8hÂ\Јæx„F4 aÆ#4¢iãx„F4Ö#4¢a£¡ CýQЈÊj>B#*C¨|„FT†Pí ¦!ä~„F”†ãQBÆ#4¢4„8¡!Äz„F†õ( !ú#4¢n}?BCè†ÐÇ#4„žÐˆº!ôö›5ChëQ3„VК!´þï!4ßûÍ÷þ?Ã%œÂñK˜Âx„]Øžà6¢m{=B#Ú†°ëÑ6„Ý¡!,CXûÂ2„5¡!,CXñ aÂ<¡!LC˜óÂ4„™Ð¦!Ìö‡! CëÂ0„QІ!Œþ ¡ ¡ö#4„2„ÐÊ*¡!”!äñ ! !ç#4„4„ÌGhiÙž`BBBÌGha‘Т=ÁnÝúz„†Ð ¡×#4„n½?BCh†Ðö#4„fÍZ=BCh†Ðú#¼…ðMɸÃý—p Ç#,a ãv¡!lCØûÂ6„=¡!lCØñ aÂ2„µ¡!,CXãÂ2„Ж!LC˜ûÂ4„9¡!LC˜ñ aÂ0„±¡! CãÂ0„І!”!Ô~„†P†PãBBɹú#4„4„ÜÐÒRÎYÐÒ²?BCC9Çz„††õ ! !äí vCè†Ð×#4„n]Î=¡!tCèí 6Ch†ÐäÜæ#4„fMÎ-¡!ð:Þ¾ŽÿnáNáx„%La<Â.4„-罡!lCØrÞõ aËyËy·'¸ aÉy­GhË–œW>BCX†°äBC(9—œ+¡!”œSι¡!¤œSÎYÐRÎ)çlO0 !ärŽù !ärŽx„†rîrîûB—s—s¯Gh]Î]ν=ÁfMÎMÎm>BChrnrnñ 7ìò•º|¥þ3\Â)Âæ# aÊyPÎ[Î[Î{B9§œSÎPÎ)çsÈ9Ö#”sÈ9ärŽx„r9w9÷ýåÜåÜåÜåÜóʹ˹˹ɹíG(ç&ç&ç&ç–PÎMμ%§oÉékñŸáNáÖ#La»PÎûx„rÞrÞrÞrÞõå¼å¼å¼å¼ŽG(ç%ç%ç%çUPÎKÎKÎKÎS’s?B9O9O9OIÎ|„ržržrrûÊyÈyÈyÈyä#”óósɹö#”sɹä\r.IVJßGéû(}¥ï£†CX†° %¹%¹%¹%¹ç#”ä–ä–ä–ä–ä–ä’ä’äZP’K’K’K’K’K’K’S’S’SVs>BINININININIIIIŽù%9$9$9$9$9$Y’,I–$KV5¡$K’%É’dI2%™’LI¦$SVYP’)É”dJ2$’ I†$C’!«ÈG(ÉdH²K²K²K²K²K²K²ËªËª÷G(É&É&É&É&É&É&É&É&É&+^1á+&|Åü3\Â)¦0„](É-É-«-«-«=¡$·$·$·$·$—$—$—$—$—¬–¬–¬–¬–¬V{‚S’S’S’S’S’S’S’S’S’SVCVCVCVCVc(­J¯ƒÒë ô:(½J7ƒÒÍ t3(í Jû‚Ò¾ ô+(ý J¿‚Ò¯ 4(( Jƒ‚Ò  t$( JG‚Ò‘ ´ (-J ‚Òs 4(MJWÒU t(]JÒF ´(mJ߀Ò7 ô (}J£€Ò( 4 (Jg€Ò  ´(µÿ¥ö¿Ôþ—ÚÿRì_ŠýK±)ö/Õý¥º¿T÷—êþRÎ_ÊùK9)Ø/û¥`¿ì— ýR¡_*ôK…~)É/%ù¥$¿”ä—üRƒ_jðK ~©²/Uö¥Ê¾”Õ—²úRV_ÊêK}©£/uô¥Ž¾ÔÑ—ÂùR8_*åKi|)/¥ñ¥4¾Ô—ZøR _jáKñ{)~/Åï¥ø½¿—òöRÞ^ÊÛK={©g/õ쥞½°—öRÀ^ ØK{©X/%ê¥D½Ô¤—šôR“^jÒKMz)B/E襽¡—ªóRu^ÊÌK™y©+/u奮¼Ô•—BòRH^ ÉK!y)$/¥â¥T¼”Š—ÚðR^jÃKmx© /Åॼƒ—bðRî]ʽK¹w)÷.õÝ¥¾»Ôw—úîRß] ºKw©à.Ü¥d»”l—’íR²]J¶Kv©Ñ.5Ú¥(»Ta—*ìR…]ª°KÙu)».eץ캔]—ÂêRX] «Kau©¤.•Ô¥’ºTR—JêR:]j¥K­t©•.ÅÑ¥8ºG—âèR]Š£Kùs).åÏ¥ü¹Ô;—zçRï\êK½s©h.Í¥¢¹T4—æRÂ\J˜K s)a.EÊ¥H¹)—"åR¤\ª’KUr©J.UÉ¥î¸Ô—ºãRw\êŽKÝq)4.…Æ¥²¸T—RâRJ\J‰K)q)%.¥Ä¥X¸ —báR,\ªƒKup©.ÕÁ¥¸Ôÿ–úßRÿ[êKýo©ÿ-¿5ÿ:lò¥ªÂ·Tø–’ÞRÒ[JzKIo)Ú-E»¥h·í–¢ÝR´[ªtKYn)Ë-e¹¥,·Ôá–:ÜR‡[êpKám©´-•¶¥Ò¶TÚ–JÛRi[jiK-m©¥-µ´¥–¶ÔÒ–âÙR-[ªeKµl©–-å±¥<¶”Ç–zØR[êaKl)€-°¥¶T¼–×RâZJ\K‰k)q-%®¥ˆµ±–"ÖRÄZŠXKk)S-eª¥Lµ”©–2ÕR¦ZêRK!j)D-…¨¥µ¢–ÊÓRjZJMK©i)5-¥¦¥¶´Ô––bÒRLZŠIK1i©-Õ£¥\´”‹–rÑR.ZêCK}h)-¡¥ ´„– ÐRZJ>KÉg)ù,%Ÿ¥ä³Ôx–¢ÎRÔYŠ:KQg)ê,E¥l³”m–²ÍR¶YÊ6KÙf)Ì,…™¥0³f–ÂÌR˜YJ/Kée)½,¥—¥ô²ÔZ–ZËR\YŠ+Kqe)®,Õ”¥š²TS–òÉR>Yê%K½d©—,õ’¥^²ÔK–ŠÈRY*"KEd©ˆ,%¥æ±Ô<–šÇRóXjK‘c)r,EŽ¥ª±T5–2ÆRÆXÊKc)c,…Š¥P±*–BÅR¨X*Keb©L,¥ˆ¥±Ô–ÚÃR{XjKía©=,Õ…¥º°T–êÂR]XÊ K9a)',õƒ¥~° –‚ÁR0X K…`©,‚¥$°”–ÀRXjK `©,E¥Ê¯Tù•*¿RåWÊúJY_)ë+e}¥¬¯R¸W ÷J¥^©Ô+•z¥R¯Tê•Z¼R‹WjñJ-^©Å+Åw¥ø®ß•â»R^WÊëJy])¯+åu¥ž®ÔÓ•zºROW èJÅ\©˜+s¥b®”È•¹R"WJä*ÿ:šñ!§&®Á•ª·RõVªÞJÕ[©z+en¥Ì­”¹•2·RÈV ÙJ![)d+•k¥r­T®•ʵR¹VJÕJ©Z)U+¥j¥­£•b´RŒVªÏJõY©>+Õg¥Ü¬”›•r³RnV ÊJAY)(+e¥‚¬T• ²RAVJÆJÉX)+%c¥(¬…•¢°RVªÀJX©+U`¥ì«”}•²¯RöUê¼JW)ì*…]¥’«Tr•J®RÉUJ·JéV)Ý*¥[¥V«Ôj•Z­R«UгJqV©Æ*ÕX¥üª”_•ò«RoUê­J½U©·*V¥ÀªX•«RQU*ªJEU©¨*5S¥fªÔL•"©R$UФJ‘T©Š*UQ¥*ªTE•2¨RUÊ JÝÓçÐz‡õvXï°Þa½Ãz‡õë-,ë-ë-ë-¶¬·¬7 0­7­7­7 0­7­7 0¬7¬7¬7 0¬7¬7 0¬·[o·¢n€Ýz»õvìÖÛ­·`³Þf½Íz›6ëeDRTê€JP)ü)…?¥ð§þ”JŸRéS*}JiO)í)¥=¥–§Ôò”ZžRËSŠwJñN)Þ)Õ:¥Z§Të”òœRžSÊsJ=N©Ç)õ8¥§à”œR€S*nJ‰M)±)55¥¦¦ÔÔ”"šRDSŠhJÕL©š)U3¥L¦”É”2™RSêbJ]L)„)…0¥¦T¾”Ê—RùR*_J©K)u)¥.¥¶¥Ô¶”Ú–RÌRŠYJ1K)f)Å,¥˜¥T¯”ê•R½RÊUJ¹J)WIõ)©>%Õ§¤‚”T’ RRJª@I(©ä$•œ¤“Tc’jLRQI**IE%©Š$U‘¤*’T6’ÊFRÙHªIu"©N$†¤ÂT’*AR%HªI¥©ô#•~¤ZT둊;RqG*îHÅ©¸#w¤jŽTÍ‘ª9RùF*ßHå©^#Õk¤T ‘ 4REFªÈH©#•`¤ŒTs‘j.R‘E*²HEéΕ©È"Y¤ªŠTU‘Ê(RE*£Hu©n"ÕM¤B‰T(‘*#ReDªŒH¥©"•B¤Ú‡tcÇTûjRíC*vHÅ©Ø!U7¤ê†TÎÊR9Cª_Hõ ©`!,¤‚…T° R…BªPH ©$!•$¤’„TƒjRÑA*:HE©Ê Ý0U¤*ƒTeÊ RYAª#Hu©Ž ¤ÂT)*ÒÿR¥@ªH¥©4 •¤Z€T &ÿ§Éÿi¶šíŸn±—fû§ÙþizšÞŸ¦÷§ùüi>šÀŸ&ð§ üišÀŸfì§ûiŠ~š¢Ÿ¦è§9ùiN~š„Ÿn9—&á§Iøi~šuŸfݧiöiš}šfŸæÕ§;Á¥yõi^}šHŸ&Ò§‰ôiæ|š9Ÿ¦Ê§©òiª|š*ŸæÆ§¹ñin|š Ÿ&çÙïé¾iiö{šýžf¿§éîiº{šßžæ·§ íéîfiB{šÐž&´§ìi{š²ž¦¬§)ëiÊzš£žæ¨§9êiRzš”žf¡§;…¥Yèizšvž¦§yæižyšgžæ™§yæibyšXžf’§™äiêxºëVš:ž¦Ž§¹âi®xš+ž&‡§[e¥Éáirxš žfƒ§éßiúwšþ¦§ùÞi¾wšà&x§»P¥ Þi‚wšÑft§)Üi wº“TšÂæl§9Ûi’vš¤nÿ”&i§YÙiVvš†¦a§{6¥iØiÞušw&Z§‰Öé¾Ki¢ušYfV§©Ôi*uºYRšJ¦R§¹Óiîtš,&K§ÉÒi²tšfG§éÐé¦Ei:tšæ?§ùÏiÂsºñPšðœf8§ÎiJsºyPšÒœ¦4§9ÌisºãOšÃœ&-§IËi–rš¥œf)§YÊiZrš–œæ!§ñ¤yÈiršxœ&§›é¤‰Çi¦qšiœ¦§⤩ÅijqšKœ&§›Ú¤ÉÃiòpš-œf §ÙÂi¶pšœ¦§ùÀé^3i>pšœ&§ûŤ ÀiÆošñ›¦ø¦[À¤)¾iŠošÓ›æô¦9½iNošÄ›fí¦;³¤Y»iÖn𦛦é¦iºišnš—›&⦦¤‰¸i"nšy›fÞ¦™·iæmšj›¦Ú¦©¶inmš[›&Ó¦;•¤É´i2mš=›fϦٳiºlš.›n ’¦Ë¦ù±iBlºEHš›&Ħ°il𛦼¦)¯éÎiÊkšã𿏦{s¤I­iRkÖ_Ÿ_ÞÎf±¦Y¬iÚjš¶š¦­¦yªižjº)Fš˜š&¦¦™¨é>i&jš‰š¦ž¦©§iêiškšnN‘暦ɥiriš\š&—¦Ù¤éi6iš>𦦻B¤ù¢i¾hš šîû&ˆ¦¡éViFhš𦀦) i hšó™n¸æ|¦Iži’gšä™fu¦Yé. iVgšÆ™îƒ¦q¦y›i¢fºµAš¨™&j¦›¤™™iffºAšŠ™¦b¦¹—éŽiîešl™î)&[¦Ù•é6iveš]™¦S¦é”i:eš?™æO¦ù“iÂdš0™&L¦’i†dš!™¦D¦–ûiJdš™šê§9iÒcj›Ÿ&=¦YŽ©1~šå˜¦5¦^÷iZcšÇ˜ºÙ§yŒiâbêWŸ&.¦™Š©}š©˜¦&¦&óijbš‹˜Úȧ¹ˆiòajŸ&¦Ù†©÷{šm˜º»§Ù†izaêßž¦¦ù„©C{šO˜&¦ìiaš1˜f ¦ƒiŠ`š"˜¦¦9iN`š˜z¡g÷4ë/u;O³þÒ4¿ÔÀaM˜EfÑ„Y4aÚL˜6š7†y2ažLhÏ&Æ„‰1a&L˜ Z,†™0¡§b˜ú¦¾„®‰a®K˜ë&·„É-¡óa˜Íf³„f†aúJ˜¾Ú†ù*¡?a˜¯æ«„ *a‚Jè1f¤„)¡‹`˜‚¦ „Æ€aÎI˜sZÿ…I&a’Ihîf•„Y%¡__˜F¦‘„Ž|aÞH˜7&Š„‰"a¢H˜(ò‚)ì@Þ å…© a*Hh…æ~„¹¡Ù]èn&{„É¡]˜Ýfw„–ta:G˜ÎšÎ…ùaþFh+&l„ ¡q\˜¡fh„^paJF˜’º½…9aFèç&]„Žma–E˜eñ‚%ôRÝK5/Õ¼TóRÍKÑÛMœ'Bo´0S"Ì”ÝÏÂÔˆ05"ô7 ÍÂ\ˆ0"´, “Âä‡0Û!ÌvmÇÂô†0½á½ÔðRÃK /U^ª¼Ty©òRå¥ÒK¥—J/•6NÚ8a;‡í¶sx©ðRÝKu/Õ½T÷RÝK5#jFÔlœûlmèŽ&„‰a"Ahxf„™aª@˜*šV…¹an@˜úP…Éa2@¸ú®þ‡^R¡yT¸Ü.÷‡öP¡=T¸¾.è‡ úá‚~hñ®à‡+øá ~èÚ.Ù‡¾Lá}¸F®Ñ‡VKá¢|h¦®Â‡«ðá*|h—.»‡Ëîá:{¸Î®³‡GáÂz¸°®¤‡+éáJzèS.‡KçáZy¸V®•‡æBáÖöáâx¸[}¸®†‡A¡#P¸üzþ„ëÝázw¸Þºú„ Ü¡oOhÔ®h‡+Úáv¸„.a‡f;¡»Nh§úç„‹Ôá"u¸H®J‡«Ò¡Nhz.C‡¶6áºs¸î®;‡ ÍáBshMîß®,‡[r‡KÉáRr¸”®GwŒuí8tŒ ‹CO˜Ð&\m^B›—p98\×Ãõßpý7´j |ÃßÐ}%t_ ·lýUBC•pI7Üg9\à ×pÃ5ÜpÑ6\´ mÃUÚp•6\¥ ÷,—eCë’Ы$\‡ ÝHB7’Ð~$ô ÷ÿ FBG‘ÐB$\Z MBB“p-5\K 7Ï OÃÅÓÐÙ#\- WKCïŽpy4\ 7¢ ×CÃõÐÐp#\ @CKpCØpÅ34Í]2ºKœÝ}Z»>Ý5Í®ÓE×颻›j×Ë¢ëeÑ5¯èºUt79íÚSt—)»ÝuÉîºd×b¢»Ù]ˆì.DvW»+]_ˆîRcw©±ëüеzè®-v½ºfÝÅÄîš]»†îêawõ°»\Ø].ì.v=ºëƒÝÍ(». Ýí&»Jv}º+€ÝÀî `wɯ»ä×57ènÝØÝœ±k_ÐÝ~±»¨×]Ôë®âuWñºž]Ïî²]×U ë*Ð]§ë®Óuæº sÝ»VÝ=»»vÅþÝ¥·îÒ[W¿ßÕïwûÝíùº‹kÝŵ®¿»šÖUÙwUö]Y}wù¬»|Ö]/ë®—u¥ñ]i|w¬»@ÖU»wWÄºÛÆuõìÝ%°îXw¯·®D½«IïjÒ»‹\ÝE®®Ì¼»ªÕ]Õê.cu—±ºRñ®T¼»nÕ]·êª¿»êïîBUwK²îÊTweª«àîî#Ö]ŠêîÖewמºkOÝŦîbSWXÝVwW—ºûjuµÒÝå¤îrRW ݧã•ëGÝ£î‚QWÑÜÝ£ª»BÔÝgª+Rî. u—„º2äîPw ¨»ÁSWYÜ]ôéj‡»Úáî*Ow•§»³RwY§»¬Ó]Çé®ãt÷?ê.Ütnº¢ÝîJMw¥¦+Ëí.Ít—fºÂÛîæAݵ˜î~@]-mwñ¥«–íªe»«-]=lw#žîòJwo®Äµ»žÒ±vE¬]Õjw¥»€ÒÕ¥vWLº+&ÝhºK$Ý%’în2Ý5‘î1]¹hw¤+í B»«]Égw™£»ÌÑ]æèª8»*ÎîºFW§Ù]Èè.dt•˜Ý•‹îÊEw§’îREWMÙ]ªèn/Ò]›è $»[„t#ºÈîêCwõ¡»úÐU5v—ººÅîvÝõ…®2±» Ð•"vºbÃî BWNØ•v— ºK]…`w »FÐÕvº»Bt·èîûÐ]ènåÐöï*õºÓþ]i^wž¿+¾ëNìw'ö»ûÝ}º3ùÝ­ ºŠ¹îÔ}W×ÕÄuçê»sõÝ=º“óÝmºB¶îFÝÙø®T­;ýÞ~ïúówçÛ»r³®å~W_Ö`ï*ÈºÆøÝõ®F¬;…ÞBïúÕwe_Ý9óîœyWØÕ$ïJ·ºFñÝYñ®8««ÆêNƒwýÛ»†í]‡öî¼wWQÕ•Pu'º{÷­¡Szÿ¸C>0t;ïNew…N]eSwîúe•²JY¥¬BV!«U—U—U—U—U“U“ï'œ»² ®“vw†¹+üé*}ºSÊÝ)å®–§;‡ÜCîªuºòœî¤q×hº+ÀéÎwÍ¢»ÓÂ]ÿ箈¦;Üîš6wu1݉߮ñrWùÒéíÎôvµ-ݩݮz¥)WiÎå6MŒ›‚”æämsò¶)9ijLš¢’v0¶7§g›Ó³MH;Û›ó±/há²pY¸Œ777 !, wãíÆÛ·Y¸Y¸ý¥ð=^gM›º‰´ð¶ð}ônZÂ6¥MíCSìМmN„¾ …‡…‡…ïÃuS¡Ð”$4-R›„æÜfSeМÌlNf6uÍÙËæìeS)Д4§+›–¡Íäÿæüd3½¿éóÙœlZw63ö›3MûÍfN~sʱ9åØôÌlÎ16盉ôÍIÅæ¤b3U¾iVÙœElúO6³ß›Ó†MÉf~{sž°™ÁÞ4~lZ;6sÔ›æÍ™ÀfzÓ€±9õ÷‚fŒu®¯9××4BlNî5“Ûf†ÍlðæôÍ|ïæô]sú®i*Øœ¯kÎ×5›IÚÍ¬ìæ¦ê͹æŒ\3ѺéÈל‚kšì5s§›snÍmÄ›ÎxÍI¶fþssÿîæ¬Z3ù™ÒÜœF{Á–…67k:Å5ó›‰ÇÍ}¥›3cÍÔâævÏÍ©°æTX3[¸i³ÖôUkæ7€›¿/8„¸,Ì›Î鬿tV3M·¹ÿosþªé$Ö̼mNX5ÍÁZyœ¡j|5·¸mNI5óc› ±Í­f›F[Í”×æ†°ÍI§,aò¹×j3Oµ9­ÔÌDmÎ#5瑚¹¦Í‰£æÄQÓ-ª™>ÚÌm:>½ õ¦õ†$ÃzÃz»õv§Yo³^7·ªlÎö4·›lNï4s/›¶E/8„ÖË“âNs§™0ÙÌl:5÷=lNÑ4§hš6>Íý›s2Í<Ææ$Ls¦™©ØLMlκ4-qš[ì5§Yšé…ÍôÂæ¼J3°éEÓœHi¦6s›3'M‹˜æ^oÍ©’f^ß z©´5ÂÖ[#lnkt/Õ¼TóR|›™_לîhúœ43èšóM¯’¦9IsB£™×4iÎ`4óÜš‰mMW¦ïGsªæE39­iÖÑœ”h¦Ÿ5 7š³Yˆ8È({Ã!ìÀ[oÃÞÞÎoXœ^jz©ÛÈÿ†r.9—œKÎé¥ÒK…œCÎ!ç.ç.çfE´ó¶·íÌßÿ¤·í¼mçm;ãfð†V4;væý –•¥¥¥……u+êVÔ¬¨YQ»WÄ¿ò7 àÞ®CXœV4¥AÃ.;ð²a— »lØeÃ.– œ74Þ..&v§1í±Ó;¦=vÚcÑY¿açJcHcHc4`I£$™MI†$C’]’]’M’M’íNrؒÖ¶ä°%‡-‰%û Ò’ü-}ÁáÑQ@Õá JÂÆ ¦GÓ£ݣÝš¶ûQ¤¦o˜ÀíÑíQžîòé.‡Í²òoñé„e',›®ì„e',›®lº²éÊǹlº²éʦCÆø†Ý¥éÒ7Núü¦½.íui¯KGÂt$d}ÿÓ£éÑ8„ìímeè ‡>þˆ½àöèöèòèòèôèôèðèð(m¶UØVa[…ß9áànák"|M„6ÝG²Û¯ºýª;šuG³îhÆ¢7ìÀ1…-–G¾+½`x4Î~^î´?§£™ß“›œÏ7´ðý½¿Ãç7|~ýbÜao¨Ÿˆ›üÉ7´pY8-œ w ``7Àní>¡Ý;ؽƒÝ;èwÝîŽHÝ÷‘r›Éê7ìÀnÍîÒ·Ÿj»ù5Òrý6ÛÍg°9æø1¶›·¬yËš}’yàì²jVtèe/xÿ¢X(|_ðÑÂ=øï-<~_ðþ”-œx_ðþ=¹¸¾`—äý-'Q—ßH‹,©\ž{ÿ(Z·¾àý=¸ü zAÏMÏ ÏížÛ=÷þ³–7eySü°yÁœž{p–sŒ/è¹÷±}-CpÚp-CX†0 Á™À…î ;ðþì/¿FÖô.¯ò†^*¼T÷Rt¤aGr nù±pÆ{Á饆—º¿qù/xÿ„XN”-ÔI/ؼ2³s_‹Ä‰¼¹«˜¢YNg­òù-Ÿß’³3T«ä\rö½¿œtZé›¶sÚÎÎ#-Ì£ÞЊҊèiß@‘Ëw÷ þ¤¯pœôe½ÂQ…Ít^ð>Ô¯p` ¾¯–s2+lX¶q‰ÕíÀN³,ø_q£ûÐaó‚ì’ì’t2d9ûñ‚ xÿ»|‡®fK6[Ò—æjvÑæhÖ¼ÝnÄÄCãï#ðÄŸÿïÏÑô=8I˜ãÕôÅ7I<~üßßéúàÄá—ðþoâHð‚%La»ðþ8O,¬_p —ð>æLÿhO²I_0…´•ÿ§ Usòobúš.6M¼v_°„÷Î?)¿à½_M}&©‰/x§LÒ _ðÞÛçð–ù?t;Ò°q©ÆDyú‚÷·óDú‚÷‘a¢â|Áû»lºr1Kþœ®>Ì”î…/xÿ*˜ìø‚´†«Ó¿iÓ±}:“?Ûâ`>ŸN¿OGï韩‰UÚ ò8ãQö‚÷—õt|žÝð»áû—g’ó‚÷m“,š¼^N§”'Ûå¼`y.Oh³ÙÏÂÀ‰èïÃ×`§’¼¯z Ó9†£è0%c8§:6‡ÿ†ó¢Ãqrà¾ò‚aáûÀ8“·»þ\¾¿Ë†ëûÃOñá<á˜HÚù ÞG•ø Þ_šcí¼?8cxƒêp’mø <ØÏúﯘá‚ï(+r²kÄû‚åQ"rD¨°c8é4‚æ,†GïZ‡«‡ÃAf°Ïã ÞŸîáŒÍÛ*|¬œuݺÝÌ™“Ñy— „Š1ãähÞ›†ËIyÝ ÞGÂ2Á¬Ì+ÓÀÊÌ®2Y«p¸ŠÂ‡êïÏB¹êQ®k”Ow¹6Q˜ ½àýKµѼཷ×â ¹P D™'Sþ®iø&¨º‰('ÉËiðr¢»p,Á{®òù_²H•Á{-SŠ<ó\Â!L!M^ÊYÓr^´|;{qFuôÁ)¶_|ÁûÉòI©f³û-ö‰{Aº™ë¡ék1ýs‘h_𾞒¾é’=Œ^ð>|¥ùéË+ß„Éf+/xï„iÎXNCp>'±I_1i¦S²À ¦GïOh¢ wwQ77Ý÷¤÷hŽ´º¥ï ÒÎΨ¿¶1=€÷±Îý4Ãý%ÃíÃí_ðþ¦s÷ºps·p³³¼ÿ§so¬pë¨p+¥ç'Ýy'ܘ&ܨ%ÜÇäï}òµuÅÞ;’»$D`˜šê¿ Wö¯Gx»5G›A‡Ï/xÿª!ð ÞXýc_ðþwX»Ñèì!ºS¾à½ohfø‚÷«÷Ý Þ'÷´J‹n²¥ÎZÑýÓªStg õ퉎Â(´yyÁûHØÙ“úï»&/x¿ z¼àý-©Dýï-©¢9š£ØhÎ3¨—Œæ¤±òºxéËîWö-Ù\—T¼ó‚÷ª†Ãs4“ˆ+Dý`†ª¿RÇ`»åK¦ü›èâʼ}Œõ#¦~ð”õWR\»AD4/ØîGù€ìý~ßhÃûFwÜ78}¡$7@}óÍÐ7îÐ}‘žÔÏ`_¤p÷ÅNC}1ëÒb´¾xMô…ãqŸÞ²IFwŸl[Ó'«á}²ÒÚiQ}02ô´4b}ðéÒ‹¡¾W}ßìÇ~CŒ¦{~þ´¾=í_ðÓÞÞ>ÿø£ÇgEìýë?¯Ô÷¼ú?þè_“½x}½ÿãÞ>;î½ðŸÿÙïAë|×ïßiÍÿøãóï~¼…Bÿøãÿüóÿã?ý—ÿèþÿõÿô_ÿçÿòßÿùŸÿã—äfüùZm¾v,žþÇþŸþx¯ÿ·?þ—ÿõÏöçÿöGûóø£ÿùýñ1ïø¿—ÏFDÿ÷·ÎþÙ½þ$Ôã=írÑý$©_Á¼²xû/ÔýÞ©ôjˆýž³¸ši¿w‘¿q¿§]®&^o?Žë¬÷€uÝž5¿mú¹yëýÔ]·ö3i~Ýøù^µ½ºÅ|¯Ë^f¾.¯.5ßâëÃÍ÷ð}uÇñÎÕ»:ëØŸ;òíÊãíúzuôñžÛ½ƒ×ÜAû=$ãí–u=B㽇Äõ€wRÂõø·ÏõpŽv~?ºã½*ÿ{°ßbžßc¿¿—ú 謁߱_ôo@y[ñþ†›ý½¡ßÁèŽöªÎ¦ûdó{¿ÃÜ|}CüÁ·SÀoˆ|ÿ?ü  ïÉëßðúžßù ¾ó{÷¿Có[ ñ¸/øÖßk«¿A~ü¾np½Cx?oçëä Ï—Íü´Æù*šŸçü|QÍÏ =_cï­à~/¹ ~^oÐß òýø{}¾~/×úôØóÕ[gEŸó ¾†×:+ú¼ÔoðUÑ;Õé÷APŸGãü\x‹´õeõýÔxÏ:ý>Dê3Ÿ)õyŽÎ˜ ~>qêÓ Ï  ~>ÞSê¿§·Àû÷iuÁχW}ž”ó³ì½ûûhËO÷>?é.øùà{_ð÷9˜ŸáëüX¼ÁúœÛnšü|†æë;þ÷‘ú¶ ü}Âæ§óŸ¸oyðïó7¾7ôûq|ƒóóþ¸XÇgp;?»op½ÏýÜÐï'û Ö§ð¸}î_ðógàG÷çhÝþfÜàÀ}ÜàøFtA þü\pzåϧÜ÷s?oâ¬Ï¥âö‡í‚Ÿ¿s7X¸îðóGñS8…ÇíÊß?¨7xgõýs{ÁÏ_ß·ËÞïñ Î~öã ÿ„UÀoD'üöœüüÕ¿ÁÀu/ü™D¸ÁlÀ1û^ïgòâ3€Ã£û}´¿Ÿ£ï¤É ~îÂ?é‚»Ýàúr¾`,àèÀ5€Ÿ¶úÂý퓬Î<î4>SW7˜86ðÂwÊ죀5wß©º öoç¿àç.|†ëï$à ®ãã;P\0…ŸzÁ%ü6ì~&=o0…C¸„\ª¾ÏÂS8&p ð3A|ƒ™ÀÀÏSvÁo³àgÚúckg÷½¢Ïdú Òt˻𙦿Áå¥ ¹¿Oèçíü]¸Á à8€ß–<áq?÷³hqƒ±ßðO8¸,|Ü Znð~åï"Í Î\¾sדr˜À{k|—npy©ã~©øõŒÌœøùf¸àq»)ß%º –G‡G—G÷ýèù"¸`÷hz´6ðÛ½óÏßbç qƒç[ã‚ß¶:á··Ÿp4à,  +º^1'ŒÌÖN/µ¼Ôq¿Ôg1ûûfVÇ. >Š.xÜ ïó '¼ÇûMU¹ÁjÀᥦ—Z^jß/ç‹à„=€ßûÛÿü%îÜà·ŸðûìŸðÛ¯NødNxܯœçƒsÂo³Ÿ0à7ü~Ã?áLಢmEǽ¢:ß°'ì0;°88 øý&ÿ˜üà– +Vth7"Únö÷ÞàqgÕÏ·Õð~¾’ã;ÜÀÀûxõ•:ßàýÁùʤïÐÂËÂÛ‡!÷âû¯í‚÷çhÏÑ>ÿL}›¾’ò;\À²ð°ð°ð´ð²ð²ð¶ðaáã^8ÏOø ð‚ §…ÓÂß§ì„ÃÂß;xÂiáï<á²ð÷ ê‚þLý}áõÞ¿àö†…c3Õ„8Bx§$—õ.InIÖ{Üëßy•<€}‰wïõ qBâÆ;ŒwœcÎ §—ZÖ»¬wÂ6îïôþ^ß'ì)<€á¥ÒK¥—*/U^jx©é¥¦—Z^jy©í¥/Åó»¼ÝËÛ½¼Ýë;]ùƒ˜!Ü@Æ«åã¼ áç ðþà··ŸðÛÛ/8oðúιàöÀ(`6¡•• +V4­hYÑ÷ëú„» ­èÆgòö Ï9Õ<€}£ '0»pik&á„CC´Æak¶Æakç×È 7’G£o×çÖ ï}ãhô£Ñ7¾Fo7˜XMèÑÑ…8=: aÂòè6„m€‡G{çtôz´{ôÞU¾&€7˜MVNàðèðèô(Ómœnã\Ó,qÂ<<ú}Ž>0Îçè‚íí †GÓ£éÑòhyô³êñƒpztztytyt{t{ôðèq?z}@^УݣݣáÑð(m•¶UÚVi[å9]Уӣӣˣˣۣô«´_«_XçˆtAvv~?Õ.8éÑôhyô;@ðû*¿ G§Géfe7+»YÙÍʦ«s¼:ááQÉaÓ ›nØtãü+}BšnØtæçðuÂj¿=€<¡Ã^7ìuÃ^7ÎÑ삸=º á0„ãNržÒ/ø—£v:¸M·3Aå‚ ¤ÎóEpÂ!É!É!Éo'l'ÜÀïó{Áü¶ä'ðÛ’ÂãÏœ±ÜÀžÂŒN`váJ£¤QÒÒÒ˜V4¥ñý6» -il+ÚÒ8Œ÷¸Wt®µýàÀ^ ¤a÷ÙEO˜V”V”VTVTV4¬hXÑ´¢iEÓŠ–-+ÚV´mº£ ­ˆ{ýA¸àöN`4a 70­(­¨ºpå<¼ÔðRSÎSÎKÎKÎKÎÛKm/uÈùó­Ïdîp{¡— /^*½Tz©ôR·þ|nÉsƒ·þ|nçsƒMæ[¶ôÛ è7ð£öüÁ Ü^j{©í¥/uÜ/uÊá~°„ØCè¥ÂK…— /•^ê£RûÁøýà~4ä?襆—š^jz©å¥–—Z^j{©mk¶Æak÷Ö87 ûÁ ìMXÂŒ.˜)ôRe½e½eÆ!L/5­wZï2„e˶õnë=¬÷0î¹aÞáì)œ@ž…ôYHŸ…sƒÀ´Þ´Þ ¡õëÖ;pZï´Þ)Ée½Ëz·õnç£æ=æ~œÝ~°„ûÏF~pà÷¦\p¿7傎Ì.,¡$K’%É’ä°ðä”ä”ä”ä²ð’ä’ä6¢-ÉmáC’‡${D§áøN`oB ÷ G 7{tîôƒæ ïÑð ïÑ𮬜F4-¼ŒhYxþ¶ð6ümáÃð ó&ø?XB w ÷!´p„ÐÂß7N}á÷½Á!´pYø;Ö]ÐÂË´ð°ð´ð´ð÷–]ÐÂËÂÛÂÛÂß[vÂÇ…{áÓÎéShánáïGÂ- ‡…ÓÂiá´pY¸,\žžž^^6ݲð¶ð¶ð¶ðaáÃÂǽolïàöîsœs0…Sx»…»…»…#„C¸iá´pZ¸º°„Æ;ŒwXxXxZxï4Þi¼Ë–…—…·…·ñnã=Œ÷û–ì'\?øqÞ¦ÐÂÝÂÝÂßû{Áø½¿ ü~ç\°„²*Y•¬ÊÂÃÂÃÂÆ!LC˜†0 aÂ2„%«-«-«-«-«CV‡¬Ž;«~~]°„ ÈíîÞîîíîÞîîíîÞîîíîÞîîíîÞîîíîÞîs§º|³ÚÇ~†ë ü ×?XÂü¼0…S(«-«mEÛŠ+:¬è°¢ã^Ñ9ëòƒC¸½ K¸€Ñ„VVVô¹û{°„ ø¹û?˜Â)<€ÃІ +šV4­hZÑ´¢ÏØþƒV´¬h[Ѷ¢mEÛŠ+:¬è¸W”ß¡þS8…°‡°„VVVVôùTÛã ¿á‚%\Àog¸` ‡p‡ +V4$ùyü M+ZV´$ù.hEÛŠ¶mI¶ÆaE‡w’çÎ"?XÂìMÂÉ<á~fk0…Sx?_}?XÂüö ZQI²$9$9|Ã)<€Ÿ/™ôÜôÜôÜOGúAÏýt¤ôÜá¹Ãs‡çÏž;=wzîôÜå¹Ës—ç.ÏýŒH«NXÂ%<€‡çžûíW¼Ÿ{îÀôƒ%œBÏížÛ=÷Û¯â„ðÛ¯.XÂϹí„ðÛ¯.ø1–=N8…»Û×Çö\.­í¿ëûeË:êeÑšÕßæ¬s–ù6«:ÝWÇü˜ |ÌWG}_¿Þ«£ÝF?¯…Ѿ†©ïÕËôã½ú‚õó^ï$÷Ÿíþüe?ím÷Çøð4¿Ý+©Ó÷ôõüçž¾ž_[Ý÷€÷3ݽàÇañ½ôñ3ì}Ã?;ßÓ›ókö;?.z§ðüz ~‚¿msÚo_“áñm¯ñ{ôgPüþ ýÙ××1ôknüuß<­/ø™3®¯Ùï×6ù„_ïÕ ~|Ô.øùãõ5ã<½W¿î›§÷ê§ð3z}½9OïÕ¯7çé½Z_÷ܯ÷êתóô^½Áçî×{õ‚ùµý“ä~¼Wop¯ü¸%½ÿü¼W/¸O?Ñ®ã2=½WOOЯ÷ê îwÃ~T›_ïÕ Æ7ޒ雾q:†~½Woðc‰ú…õ5.ýÂÓ{õc/zy¯~áé½zÁýñ}Ë÷¿KO§ùè×{õ‚Ÿ•Šü¬RžÞ«78Ö~½Woðk\úåÇekú™6»àÇ{õǸ¹œ~¼Wo°6𸛞~þÃ]¦§Ÿü žÞ«ïÜŸ÷ê×õô^ýZ¢žÞ«_xz¯®øóڟwïÕù‰÷ô^½àÇ{•íÞ3?ïÕüx ŸÞ«ù±p>½Wó3æÜ¼WóÏ'ïÕñ'Þ«oÎ?ïÕö'Þ«'¼{d^Þ«wÆË{õ‚û~´p£¼¼W/x÷}¼¼W/HáÓ{õcxy¯^ðî yy¯~áÂpñò^½àºY ^Þ«¬¼{(^Þ«LáÞ=ö.ïÕ Þ-è.ïÕ/<½W/x·¯»¼W/xw»¼W/x7Õ»¼W/xÜiœÞ«¼[ý]Þ«_¨åÞå½zÁ1û^ïå¢w àðè¾½ŒñN˜8pßY-9_Þ«'¸¶Ú8ÿý¼WOx7lKé~Þ«'̼›ê¥&s?ïÕÞmó~Þ«'¼Óøy¯~àå(y àHà*àqã\—÷ê S8p ï¾€?ïÕ¦p—K–{?ïÕŽ \7×±Ÿ÷ê^Þ«'ÌÞ}ã~Þ«'¼›ý¼WO Xx· ûy¯~àå½z¾wµŸ÷ê ——‚äå½z»{ßÏ{õ„ÃsiÉË{õ/ïÕÆþçÜÏ{õ„÷{ôó^=áýÊ?ïÕÞ­Ñ~Þ«'¼sþy¯žðîW÷ó^=áØÀ奎û¥.ïÕÞÍÞ~Þ«'¼w³Ÿ÷ê ï|?ïÕ¼ô‘ÇŸwïÕ –G‡G—G÷ýèù"¸`÷hzônwy¯^pyôn¬uy¯^0:ðîIvy¯^ðî”vy¯^Š&6c—÷ê‰hÑÄíìò^½àÝ(îò^½`_Àì@îѱìò^½àÝîëò^ýÂÓbð‚QÀ´ð°ð´ðÝ®oh"xy¯^°O ðÀ¡íò^½àÝ’íò^½àý^Þ«¼7ìå½zÁòÜá¹ÓsפÞγpy¯^06°px©é¥–—ºûä]Þ«ì¼ßß©{ßå½zÁû³?µë»¼W/xܯ¬?ßå½zAL"ÓðÓð“‘a:]Þ«¼Û^Þ«Ä«²x¬.ïÕÏ¿òË{õ‚w§´Ë{õ‚wϪË{õ ¶[—÷êCx7?»¼W/xw;»¼W/¸…w3°Ë{õ‚]˜Â»Ûå½zÁ¹K¸àÝeíò^½`ÞMÈ.ïÕ áÞÝì.ïÕ ÞM/ïÕ vaSXÂ!œÂ»AÝÏ{õ„wo°Ÿ÷ê û_à a ïF€SϹŸ÷ê ï¶yS“¹Ÿ÷êþ¼WOˆábÓê¯i©ÜÏ{õ„xûé÷ó^=á½é~Þ«Øéf?ïÕÆâÞwy¯žpñPì<’?ïÕb]Üߟ÷ê !’ I†-¶dØ’¡ÑcÐ Þ«'¼f?ïÕr»SÍÔÙ15§L<ö~Þ«'œÖ»¬+ÇËã‹Çùç½zB¶p¥úy¯žðîÂõó^=ál \^ùî³õó^ýÀ¯ØÒGíç½zB8kœöó^=áÝ:ëç½z»UØÏ{õ„[’‡$û¥ôBûy¯ž0x7?ûy¯ž°¼ÔðRÓK-/uw³ûy¯žð¸·Õå½z»áÏ{õ„wÿ¶Ÿ÷ê « 7ðn@øó^=áòÜ»CÛÏ{õ„„° aÂ6„m¶Ÿ÷ê=wxîôÜå¹Ës·œÏ¥#v¤Ë{õ„wÁŸ÷ê sy~Ÿß×ÀŸ÷ê WwJò~S~Þ«ÜÀ>÷Gãç½zÁ,+V4¬ßÇFD?ïÕnYݨŸ÷êcË®Ñãõ—ç„9€÷ñêç½zBœ;»Î]çÎÎûó^=áaX†Ö¤¡5ihMúoïÕ{¯Þ࿽WïðÿOÞ«y¬À1€ÓKM/µ¼ÔòRÛK^ên0ùó^½ >¦Øm.í6—v›—÷ê7°´D^jXÑ¿½WïðßÞ«wøoïÕ;ü·÷*ðÿsïÕ zôðèý9úy¯^УݣݣáÑðhz4=Z-ŽÀéÑéÑåÑåÑíÑíÑãt¤´#¥)íHéS–>eéS–¶UÚVi[¥m• A?ïÕNN..nÒ¯Ò~•ŽHåˆT¼­~Þ«ôhtá¦GÓ£åQ¨âUþó^=áô(ݬìfe7+»YÙtåxUŽWå#9lºaÓ ›îò^=!M7lºaÓ ‡¯áØ>lºÁGàÏ{õ‚†@¯öºáh6͆£Ùà=øó^½àäå½zÁ¿=€<°ÓÁm:¸]Þ«'¼@þ¼WOH'œ¾þßy¯^PƒX¼“§.¶SÛ©‹íõ±}Ai`;½´^Zt_Þ«\Àáâ¼ô¾¼WOXÒ(i i iL+šÒXMhEKÛŠ¶4ã=î]kmˆ=ðÖxÛ°[{àmÃnvÛ°Û†Ý6ìå½zA+šV4­hZѲ¢eEÛŠ¶Mw4¡Ñc¯?\@¬¯”ŒF–pÓŠÒŠ°a>4´>4´>ìÀ‡í|y¯^PÎKÎKÎKÎÛKm/uÈùó­oÞ«\ÀÞ…Cè¥ÂK…—J/•^*½Ô­?ß¼WOxëÏ7ïÕÞ,ØOïÕ;ôRËK-/µ½ÔöRÛK^ê¸_êš¾` 7°‡ÐK…— /^*½ÍÞmö~ß%àô^½ÁÑ…^jx©é¥¦—Z^jy©å¥¶—Ú¶Æak¶Æqo÷àö&,áFáÌz©²Þ²Þ2„aæ—šÖ;­wÂ2„eÛz·õÖ{w!ïïÐÓ{õ`Oáò,¤ÏBú,¤CPú,¤ÏBžG´Þa½ÃzÇNëÖ;%¹¬wYï¶Þmãlë=¬÷$7…Ý6NïÕ;<€Ü”ò¦”7¥|/”ï…ò¦\ ”dI²$Y’’œ’œ’œ’\^’\’ÜF´%¹-|Hò$/ëáËz8| ‡¯á=_Ã{4|p†Îð œá=Þ£á=Þ£á=Þ£á;exÆý êô^½C /ÃßÞ†¿-|þaaž£éà6}ÑO_ôÓï«é÷Û‰œÞ«whaÞ8Ó÷þô–M­îçyË.8…¾í0pz¯Þ¡…§…§…oœÞ«whámámá½€‡… ÷§åShánáÛö§÷ê †…ÃÂaá´pZ8-\. —…‡…‡…‡…§…§…§…—…—M·,¼-¼-¼-|Xø°ðqïÛ;¸½ƒû'OØ-Ü-ÜÿRø†…ÃÂaá ¡…ÓÂeáÛ.§÷ê   ¼m®rz¯Þ¡…—…W -¼-¼-Ì ÝÞÐí Ý>’‡7ôð†ÞÐkõð„ÝÂÝÂÝÂÂ!ÜÀ´pZ8-\]XBãÆ;,<,<-¥}ÛÍ6;döm7Û¾ø¶ÝlÛͶÝlÛÍ®«.x?÷°›v³ÃnvØÍ»Ùá{ð°›ç&' Ï Ï½ïRÛöGíǹÝ=7=—×âÁ¶ýp4;ÍG³ÃÑìp4;Í6¼í‡£ÙÁV«ý°×][c]Ðð—ç.Ï]†¿Â.ê¦ñá¦ñ/(øz»›ÞÊ–ä:Ãóú51 ÁÄÌȈŒZ‚-@€ XÝ3AY6duö`øï<$ù”ú¦n·ÜˆZë]ûîˆÜ§x)ƃ[trXÏé-:½E§·èôÞ¢Ó[tz‹NoÑÉÙ=§·¨¿~NoQYý«´QiUb”%FÙhÛhkµÅØb´m£¶QkÕb1ŽÇFÇFܱo?Àü«\ÊR6’;6¼cÃ;6¼cÃ;6¼cÃ;6¼cÃ¥ôáÞ±áôÁÓæ ž6gð´9ƒ×83xÚœÁkœ¼Æ™ÁkœîØpdž;6¼Ã8ܱᎠwlðÊz†7px‡7px‡7pøÞÀá ÞÀá ÞÀá ¼\¹ë¿þ*û¹>ž žr#¿þfûùñ›ß>åR–²‘S«©ÕÔjj5µ ­B«°QØ(r ¥giµ´ZZ¥V©Uj•Z¥V¥UiUZ•VÛ‹³½8Ûë¼½ÎÛëÜZµV­UkÕZ­ŽVG«£Õùjõñëé>åT.e)µZ ­†VC«¡ÕÔjj5S¹•CJ­B«Ðjiµ´ZZ-­–V©Uj•Z¥V©UiUZ•V¥UiµµÚZm­¶V[«Öªµj­Z«Öêhu´:Z­¸ÛË»½¼ÛË»½¼ÛË»½¼ÛË»½¼ÛË»½¼ÛË»½¼ÛËe^.ór™—˼\æÏo =¥V¡ÕÒjiµ´ZZ-­R«ÔŠ›¿¼ùË›¿¼ùË›¿¼ùË›¿¼ùË›¿¼ùË›¿¼ùË›¿¼ùË›¿¼ùË›¿\õåª/W}¹êËUÿüVÔS~µÚÞüÛ›{óooþíÍ¿½ùŸß¨zÊP¦r+rj5µšZM­¦V¡UØ7ìö û.û.­–VK«¥Uj•B¦}Ó¾iß´oiUZ•V¥U ¹…ÜöÝöÝöÝZµV­UkÕB¶mßcßcߣÕÑê|µjG£v4ÚÑhG£ö\hG£v4ÚÑhG£v4ÚÑh‰ö˜hG£v4ÚÑhŸ‘Úg¤ö©}FjŸ‘Úg¤v4ÚS£?þMæ)…L!˾¥U YB–%ärkµ…ÜBn![Ȳµj![Èòy„Pç88Ç3åx¦_Mç88ÇÁ9ž)Ç3å88ÇÁ9ÎqpŽƒsœãàç88ÇÁ91ÇÁ9ÎqpŽGÌñˆ91ÇÁ9Îñéëøôu|ú:>}çèøôu|ú:>}Ÿ¾Žstœ£ã‰s8qâ…9ŠæèU.e)·Rç¯s/ÌQ¼0Gñ½ÊFN!§Sç©ór :‡Îaý2t—õ—Kç¥ó²~ ™:§Îiý2u.Ëú¥sé\:—õ·Î[çmýmý­óÖ¹­ßB¶Î­s[¿u>:õÎïÇÓãGÇó›¶O9”¡LåVê:—ýè|¾:‡#ùü¶ûS.e*·²‘Cç¡3#Ždx†#Žd8’áH†#Žd8’ᱎd8’ᱎd8’ᱎdx,†Çb8’ññšî)uN/Nêœ:§'uN+”Î¥syqJç²Bé¼uÞ^œ­ó¶ÂÖyÿàìÅiÛ ­s[¡½8­ó±ÂÑùXáè|tæÐ\NèòÐ\šË]šË ]¯?äЙ}¾ëà)S¹•:O+L§¦ÎÓ Ó ¡sX!t+„Îa…°ÂÒyYa鼬°t^VH+¤Îi…Ô9­?8[¡¬P•Ê ²Bé¼­°uÞVØ:o+l+lƒÚ ­s[¡un+´ÎÇ Ç Ç c…cÐóË›Îo:¿éü¦ó›¸éü¦n:¿é›Îoú œ¸é8§n:ÎéëÐt~Óס雎sú:4çô‘8çôüMÇ9çtœÓqNÇ9çtœÓqNŸÓqNãtœÓã8çô8NÇ9=ŽÓqNãô8N§;=ŽÓéNãtœŸïýxJÛ ­s[¡­ÐµÚ c…cбÂ1èXé.OçrºËÇérºËÇérºËúœîò°.§»<¬Ëé.ërºËúœîò°.ërØËúöò°.‡½<¬Ëa/ërØË׿尗¯Ëa/¶Ëa/‡½örØËa/‡½örØËa/‡½örØËa/‡½örØËa/‡½<ÊË£¼œýò(/g¿<ÊËÙ/òröË£¼œýò(/g¿œýçcžÒ c³¿ýíìoOöíìoOöíìog;ûÏwÑÌÊ¥,åVäûì?¥AÓ iÐ4h4 ƒÞgÿ) ƒÂ 0( Z-ƒ–AË eÐ2h”¥AiÐûcüS”¥AePT•AePTmƒ¶AÛ í¥Ûmƒ¶AmPÔµAmPÔƒŽAÇ cÐ1èt¾=ß&ô”CÊ¥,åV6r4  ƒ†AàaÐ4h4 šÍT4 ƒÂ E»úã!á) Š‚ü_¶ Z-ƒ–AË+¹ Z¥AiPz%Ó 4(-˜•W² *ƒÊ‚ePTmƒ¶·AÛ mÐ6h{%Û 6¨-صW² ê‚,x : ƒŽAìãÞx¾iê)C¹”¥ÜJƒ†AìãÞ8îç;¬žÒ öÆqo÷Æó WOiÐ4hZpþdÁ07 †AaPX0 Z- .ƒ–—¹Ë eÁen”LƒÒ ´`”•Ë ²`™[•ËÜmжà6w´-¸ÍÝ?Y°ÍmƒÚ‚mnÔlƒŽAǂǠcбà1èXðëVY/<~¬¶Êza«¼ÊT–r+ úºUÖ [e½°U^åRš; úºUÖ /[Ö [e½°UÖ 'ë…­ò*-8Íæ†ÃÜ07,憹ñC—¹Ë eÁeî2hYp™›¥ÓÜ4(-˜ææA,sËܲ`™[æ–ËÜ2w´-¸ÍÝm ns·AmÁ6·Ím ¶¹mn[°Í=惎¹ÇÜcÁc.;g¸s†;g¸s†;g¸s†;gð h wÎpç<ß}÷”Kiî0w˜;,8ÍæN Ns§¹Ó iÁin˜ sÃܰ`˜憹˂ËÜeî²à2w™»ÌM ¦¹inZ0ÍMsÓÜ´`™[æ–¹en™[æ–ËÜmî6w{a·¹ÛÜmî6w›Ûæ¶ÛÜ6·Ím/l›Ûæs¹ÇÜcî1÷˜û¾‘Ƈ<_äó݆O9•¡\ÊRne+Íæs‡¹ÃÜaî0w˜;ÌæNs§¹ÓÜiî4wš;Í sÃÜ07Ì sÃÜ07Ì]æ.s—¹ËÜeî2w™»ÌMsÓÜ47ÍMsÓÜ47Í-sËÜ2·Ì-sËÜ2·ÌÝæns·¹ÛÜmî6w›»Í}ßWOin›Ûæ¾ï«§4·Íms¹ÇÜcî1÷˜{¬Ìe_=ß™ù”CÊ¥Le)[iî0w˜Ëú ÷ÕómœOi.ë+ÜWÏwu>¥¹ÓÜiýiî4wš;­憹an˜ÖsÃÜø!×úKŒeî2w™»¬¿Ì]æ.sÓÜ´~𛿦¹iý#Í-sËܲ~‰Qæ–¹enY¿ÄØæns·¹ÛúÛÜmî6w›ÛÖosÛÜ6·­ßb´¹mî1÷XÿˆqÄ8æsõ,·å6[>Œ-—Ûr¹-—Ûòal¹Ü–Ëm¹Ü–Ëmù0¶\nËå¶\nËå¶\nËå¶\nËå¶\nËg³år[.·år[>›-wÝr¹-—Ûr¹=À×SŠb„¹ËÜeý%Æc™»Ì]æ.ë/1RŒ47ÍMë§)F𛿖¹eý£Ä(sËܲ~‰Qbl1¶¹ÛÜmý-Æc‹±ÍmsÛú-F‹Ñb´¹mn[¿Å8b1޹ÇÜcý#ƃ՗>È¥«/]}éêKW_ºúÒÕ—®¾tõ¥«/]}és]º ÓÕ—®¾tõ¥/KÓM˜nÂtõ¥«/]}éc^º ÓM˜nÂtõ¥yé&L7aº ÓM˜®¾ô1/Ý„é&L7aº ÓM˜nÂt¦›0Ý„é&L7aúÔ—nÂt¦›0Ý„éS_ºÓŘnÂt¦›0} ›.Æt1¦‹1Ý„é&LÓŘ.Æt1¦‹1Ý„éC`ºÓŘ.Æt1¦‹1]ŒébLcºÓŘ.Æç›¥ŸRŒcî±þãˆñÃbä™°Ü“åžüøÍJ}>äR¦²”[Ùʃ|Û“Ÿr*Åb 1†CŒ!ÆãíñSŠ1ŘbL1¦SŒ)FX?Ä1BŒ#Ä1BŒ°þc‰±ÄXb,1–KŒ%Æ#ÅH1RŒ#ÅH1RŒ#Å(1JŒ£Ä(1JŒ£Ä(1¶[Œ-Æc‹±ÅØbl1¶-F‹Ñb´-F‹Ñb´í¤1ŽGŒ#ÆãˆqÄ8bœ0¾^œw¡Ê© åR¦²”[ÙJ1Ø¢oYÿ”b 1†CŒ!Æcˆ1ŘbL/ÎcŠ1ŘbL1¦!Fˆb„'¤ ©BŒ#ÄXb,1–KŒ%Æcyq–TKŒ#ÅH1RŒ#ÅH1RŒôâ¤T%UIUb”%F‰Qb”%Æc‹±½8[ª-Õ–j‹±ÅØb´-F‹Ñb´-F{qZª–ª¥:R1ŽGŒ#ÆãˆqÄ`Ç~¼½ÿSåT†r)S¹•­cˆ1Äb 1†C Vn»rÛ•Û®Üvå¶+·]¹íÊmWn»rÛ•Û®Üvå¶+·]¹íÊmWn»rÛ•Û>Ƕ¸ÝÀín7p»rÛ•Û®Üvå¶+·]¹ŸAø”b¤éÅI©Rª”*¥J©Rª”*¥*©JŒ£Ä(1JŒ£Ä(1¶Û‹³¥ÚRm©¶T[ª-Õ–jKÕRµT-UKÕb´-F‹Ñb1ŽGŒ#Æñ⩎TGª# ù¸ ù¸ ù¸ ùø |ÜÏÇý|ÜÏÇý|\ÈÇ…|\ÈÇ…|\ÈÇ…|\ÈÇ…|\ÈÇ…üñŒÞ2”K™ÊRne+ò}??åPJR…T!UHR…T!Õ’jIµ¤ZR-©–TKŒ%Æ#ÅH1RŒ#ÅH1Ò‹“R¥T)UIUR•T%UIUR•T%UIURm©¶T[ª-Õ–jKµ¥ÚRm©¶T-UKÕRµT-UKÕRµT-UKu¤:R©ŽTGª#Õ‘êHu¤:_¨òãGÊ¡œÊP.e*K¹•­”jH5¤b 1†CŒ!Æcˆ1ŘbL/ΔjJ5¥šRM©¦TSª*¤ ©Bª*¤ ©Bª*¤ZR-©–TKª%Õ’jIµ¤ZR-©Rª”*¥J©RªÌ«2…L!SȲ„,!KȲ¤*©Jª’ª¤ÚRm©¶T[ª-Õ–jKµ¥ÚRm©Zª–ª¥j©Zª–ª¥j©Zª–êHu¤:R©ŽTGª#Õ‘êHÅnîöánîöánîöánîöánîöánîöánÿøÐЧ”jH5¤R ©†TCªùr•BN!§SÈ)är 9…œB†T!UHR…T!UHR…T!Õ’jIµ¤ZR-©–TKª%Õ’jI•R¥T)UJ•ë*…L!SÈ2…,!KȲ„,©Jª’ª¤*©Þ7¾Ë÷Íÿ”C9•¡\ÊT–r+[)U¿\¥-d ÙB¶-d ÙB¶Gª#Õ‘êHu¤:R©ŽTGªó•êãg¿Ê¡œWÊ¥Le)·²•B!‡Cª!ÕjH5¤R ©†TSª)ÕœW)är 9…œBN!§!dR…T!UHR…T!Uœ›\B.!—KÈ%är ¹„\B.©Rª”*¥J©RªÌ«2…L!SȲ„,!KȲ¤*©Jª’ª¤Ú/W)är ¹…ÜBn!·[È-dKÕRµT-UKÕy•B¶-d y„åPNe(—2¯²”[ÙJ!‡CÈ!är¬«r9„B!§SÈ)䌫r 9…œBN!§!dŒ«”9„ !CÈ2„ !CÈõr•B.!—KÈ%är ¹ú*eN!SÈ2…L!SȬ«”9…L!KȲ„,!k]¥Ì%d YB–[È=®Ræ-ór ¹…ÜBn!÷¹É–¹…l![Ȳ…l!{_¥ÌïçÑx—ïçÑSåT†r]e*K¹•­ü ùñéÑO9®r*C¹”©,åVöUÊ2™O_åWæÕÊ¡œWÊ¥Le]åV¶Ræñr•V2™ÇºJ+ ™‡Ì£¯Ò Sæ)óœWi…)ó”yÖUZaÊåPʼã*­°eÞ2ï}•VØ2÷ËUZ¡­Ð2÷ºJ+´Zæî«´Â‘ùÈ|æUZáÈ|ò*­p¬pd>ç§åÇÏIø”C9¯2”K™ÊºÊ­l¥Ìãå*­0dq•VV2}•VV˜/Wi…i…)ó\Wi…i…¹¯Ò Ó !sŒ«´BX!ÖUZ!¬2G_¥–Ö¸J+,+,™W^¥–V_¥Ò )sΫ´BZ!ó*­VȾJ+”Ê 5¯Ò e…÷wþ„,åVöUäûùû”C9¯2”K™Wi…m…ÝWi…¶B[¡çUZ¡­Ðy•Vh+t_¥ŽŽμJ++œ¼J++œ¾Ê/êã_|Êq•SÊu•©,åVöUZaXaŒ«´Â°ÂXWi…a…±¯Ò à óå*­0­0ã*­0­0ë*­0­0­/Wi…°BÄUZ!¬u•V+ĹÉe…e…5¯Ò Ë ï§óËOÈRne_åA¾ÖO9®r*C¹®Ò i…ÜWi…´B½\¥Ê Wi…²BÕUZ¡¬Pç&·¶ö¼J+l+ì¼J+l+ì¾J+´z\¥Ú ½®Ò m…ÞWi…¶Ây¹J+œy•6:V8y•6:V8}•_}üœ“O9®r*C¹®2•¥ÜWÙJ+¼åu~BåTÆU.e^e)·²¯ò §æ¸JM+Ìu•V˜V˜û*­0ÏM†Â 1¯ÒFa…È«´QX!ú*­°^®ÒFË +®ÒFË «®ÒFË ëÜdZ!ÇUÚ(­ë*m”VÈ}•6Ês“e£²BÍ«´QY¡ò7Éý!K¹¯²•ùvÐÿ¤Ê©Œ«\ʼJm+ì¾Jµz\¥:®ÒFm…®«´Q[¡ÏMq•6:V8ë*mtê*mtltÎOËŸró)‡ò­Bþ„ åºÊT–r_e+ß*Äo–ïOùÖèõ}æ¿øö'þ‹ñý¿þó·×Í/ß¿þù‹?ûOßÿçÛ_ýõ÷—ï÷m|ÿ‹oo¿@7OÃOñÎx|çèýý·ï¿øöŸ¿ÿÏßé¿?ýå+ÊÌ~…ù“þË?ÿÓïûJ/óû×?ÿùoýíOþÃü>¾ÿò¾?Þoðòüã!çãŸâñ}±_þêû¼üñË¿ùÃï¿üÇoÿþ—ýïöã#–¯wþqþ–wÄãŸ9^ÿrþÖÁc?>mðú—÷o‘<˜óq¸¼þåñµóÇþøývmÿì?ëÿøË÷¿ø6¾ÿã·ñHûßÖÇËËßõíùË”ß亮¯öã-n_}SŸ_ñø!_~—_¾¾ßþ|~ýM~~}ÎÇça?¾þ._¿þsï´ßË…xûVùì·.oêm(^QÆz¼àýøò»üüúœ!óñõwùùõxy|àðãëïòóë¿÷¡yû¹JãñÆä·;è7Ý|åß|È·çÛùxeý·Ÿ}ׯãSÁ¿KæxûõÙŸ¡ãgÏÙx¼çûw óña®ÏÐù³CÏã;Ü¿Kh¼<Þ2÷?Žõï²S_Þ3>þü;õñÚùñŽÚWŠ¿ü›_ÿ÷A~§°Ïˆ?úÌrc>þ­ý—¿úþWðïþË~Ÿ/ßÿàÿúïþæ×û÷ø×ßùÿÚEø 0ãðõÏW˜èÇ»œÆ|¼…#ÞÞÅôøùH¯'Ú?ü¿Ü^͇Œóø!#ãíŸf_¯ç/þæWÿãŸþþ7lìŸÙàÝðí×_?¾½ñøãÿa³ßÏøß_ÿÝòg¿Ôûß~œwãí÷>Þ·óøãù·ÿŶüÁä_ß–¯{~ëñÍþ_}_/Ÿö®ÿéû—ç†ßºt<~ÂÅ­ôèWÒ\¯Ô±¥ãñyóŸQúG“Ÿ_:ïRø,ý¦)ý{»µÖËãm ãí×¾ÞZÿvÿÝïeRoiñøÄÎkÚÿöÛ,¨ÿ/ËëýAa?>WóX'¯ëëûÏÞ)ßþ/¦¸Z3 endstream endobj 45 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 50 0 obj << /Length 601 /Filter /FlateDecode >> stream xÚÕU[o›0~çWXÙKªjÌ-HË˶,Ê4©[JŸº Qp·p©Ô?›S˜@‹:MQ°}ìóû9„‚­ÛUÑV*¦F?6(U¤ì·ÒGGºù²2€ Ú*pÀBÀ‚¶ur ÀÃòÝ•l cù=Î*¶óØg¡LþìðÜÓÚÙßo®Ï/Ü !k•Ñò3Lv`ké%yŒÙ>ˆžpQFÕóÕ/çë,CÈCYÕC·­wiù^ÅáÓ:yÄEO<>Õ8õqÉŽfúìx(²„í°çÙ.,²:gÛ(eku䪨"¶t•'î…]÷öôdÒÜÄ#P ›!1J×ÉGÕ˜­…ÚúÐÈú ÷¼}bÒÇÜKå…3÷Ê C›¨BcÈu@F+Ñä:”i¹¸ŠÜbV¥´Ëý,Ίòíl÷ÿÚlY=.úÒ'è½\÷˜¦I+±§¯üz=CéÆòÅ{+xKÅ+ŒãǸƣ1-l>/ProcSet [ /PDF ] >> /Length 33 /Filter /FlateDecode >> stream xÚ+ä2T0BC]SJÎåÒ÷Ì5TpÉç äTßê endstream endobj 53 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/Diversity-Vignette_files/figure-latex/unnamed-chunk-7-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 54 0 R /BBox [ 0 0 432 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 55 0 R >> /ExtGState << /GS1 56 0 R /GS257 57 0 R /GS258 58 0 R >> /ColorSpace << /sRGB 59 0 R >> >> /Length 2014 /Filter /FlateDecode >> stream xœ½XK‹]ÇÞŸ_ÑK‹ R×£_[;±A@2^/Œ$ÇwŒí ù÷¡ºªN÷HcéŽ-²¸Š>uºëõ}_L/¦·é—ãïïÿš¨ÖÄ‚Ð9‘ pO¿¾I_§ŸŽ÷ÿøêóôêþ@È9§ýÿþÕOLJüôýñâ«*-ýóþÈ@­¤ sÊÐrþE_• h¤»£th5!UÈ’.G­P8!¨9]Ž&À9!2ä’.G'È-a® úpÐ%}¤Ë1TLƒAÔÂ\ôL½W5‘Kê¨Ï\¤ ƒR«À4͵§†Pšš\AJªá+D©2´é[ÆH5CéÓAiúÂ˵i¥è /¶¢†6OÕY#(¤ááÈAÉÐçF£kØ2 é«(Wà–¤CÓh P’4êK„0PMìÓº£T(óan‚sUІ Å’C…4)–VªYCZ§Ù¡š¬ñR«Z*au¹ÔrU³ÍcŒÙ <ÍY9a@}˜s›! }3c™!nw9˜h†@–væP¢W(õ„Aæhø2º «ƒO‡&Dõ¸paSä»?¼ƒuØåŠ(â±à†uTº6x`•™Îí¨K… CmçA©x…- ’aÙ²Iô¶ ]aeù¡KOŸuæ•]â%¯ä˙׆˜ýy+qö®°Êy(^x"†N«/ˆ¼Õ½mãyë*Â8Ÿ5åWOR.†ªÞ²”Éü½£ÕmÒ†7<v¼³y@Íچ؋!O*ð6lMGðœEl¬¯9GëpÛ&kq¸µAG… ±øù&°ˆåÃQDÓš7$DiÆŽAZ†ÚD¡ Í¬#r7æp€Ó2N6püCf‹ÏížJüñîSàoëbÍà›õ UÖYz·ÔúQº¯E2=<ÐѬ§#9G^,OY€÷<æîéyF?YÔA‡·:é`­:R° ×™ù¼¸û~Þ'ÚÞu룒µ]Ï>ÃR ¼±’¡‡÷)Öîg}ŒÍ©Óû{ö¹²9À^uÏ9ÁJÃæGµÂÄœe´ÜÇæ ´)Âlu9F±üÆœc÷÷;hNP±>wÑ·´2ì*É!ˆEspWã:‡/eÑv¢¥"Ì̼CŸÊ„¾Ð+M`~qóˆ@¼ùâoÇ„Ûÿß|›rz}äôòÀôöÀ¬ïûk 0‰j¤S>j¼e“´à]ƒîöA®Ù(Ó9£=ÈSG N[5&õèÔTU kB=² • ¹}SÁA‘Ñ?®Éêê­Ûƒ|]5w?¤wÉ­‡ tÒ/F¯! ŠÅ‚A ŒMNˆ±mˆ g¦" Ô7¡B0x“1•6‘C†!Èx$ZB>y…zD ¡Ñö õˆ€›lSù´!¦¸õèZ+Ô£køPÙôÃÍÙªïÓºvhÐ:n´.˜×\HÓ:§FŠ©iŸ)Õb¸Ñz6^òyäîãîãÊÅ’ãÌ"ÉÆÆÑDTýšãpAl:àD¯Weƒ,.#œÖ½•Ös3Ú ZÏì÷&‡»Ñíø‡CìbpÙ‡©¸€Ó.6Ÿ·m„n58n¢™]p]‡Õ8༊Û÷%Þït 4»Ó… §}§uÛ8jÓl]Ó66ý®4j2Ã錆Õ6hŠßBœÖ‰¼ÍœÖ5ßÛ ±zW:­£Ç´Žh‚4h=»‰­çf׫½Q)k£®ÿ÷¡ÓËÜÞoûbpÕïó[Ã}ü+=gJû¿ªâ_RÂtû}ê0OÓÔ=1éxÜÞ¥Ïò³tûöøËíÜáCŽ8%@ŸWZu¤üDWä¦] ¾òdß1omê[Ÿê«XÐûôíË7ûi~´Òï’&“²%‹6Ó÷€YÚC¶ÚçŒXíþ9#VuDz=—ÝÜÖ+¿ëf®u’ªënêúµöIÈ­êî.¬nxs§/‡y®Ç­Ä×Ã\ë纛çºo¬‡y®òaÒOGª^´ž6LTgOO¼Ö“²(E-OºÚ³Ï«îòäk=¹Œ)ûNOywŠ~teß#þ?]zSnÓSüòî)~×NóýUÿž×m¿†v‹·ÚSµNö|É.@M/êúçkrõȱãëpï@e^ȸ'Ó1¦ íëðJE{˜ôiò`½ú¨È–ö›ïî~¾¼yG¯ŒÀ_(¤ä8ô³×ü»îë6±‹:kGÎ[Éü;½ÿø H·˜ˆÜ&â&ɤêÌíKÚXüÉA«°¬ ú±Ï\4³Þ:¯ú1Q}]ÐÜ#VÐf?ú“µ–䡲lªE³?µ×Ÿd¦?´½FènÏñ‡§àØÿ㜾[Õkýí]úÆÇ-½þñßÏ•ôÙ›_ïüן}›n_>zòã¼Y endstream endobj 61 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 64 0 obj << /Length 1167 /Filter /FlateDecode >> stream xÚ¥WYoã6~÷¯PÓ‡ÊÀŠá!ê(6‹¶Ènv Ø6F_v C–™˜€,)’œ£¿¾Ã˶Õv’‡Ãá7g†4ön=ì]M° |±G¼˜zaHPšR/_Oî&aøcfu6‹v“eœY3ﲚü ÿn)À`ñ·ÙäüS”z8œSov£UŠâÄ›-½oþßR¨Z;ÅÛË'(b‘ òHyÃóV¢TTè7›²”å­ g‚÷ÃIpˆ8¦¦O5+êUv)ïõq<Å?a(!‰“‡eYQ]÷SÁl#¬†µqŒ"ºÕz7¦(E,bN¢µG’ëóK¤vL0b` Rb’µésþº‚4Nz°9b˜Â44ø?NN¹?ƒl1Ôr=Í,ûî¿s±KåÒq¨!¾cŽÅÝFÞg…(íÆ®2c[ƒ*6jÒÈ|Uжµ×«¬,«ÒL`gSÕO® œà0„!¦=×®åºn«ÒF¼N@š»PÿdEzQã(¦ÛC·ÖËr)ÁW[Xо· `ÄlT©èdëºsiÖWÅf]¾ǛLjÆlÔY‚±!Õ¶ÊtÀEVÈ3[dÚêÆZUïÊÝa©v_–vrßÀa:B.Ûª{ªÅ\5›¨ê…!|3õ8Ê¡oZñû` UœˆDJ؆¢ÇÙí|^»[°I9ôñQ‡þra³JíLjGNc÷8;lÝW.–Qî<ˆ¬O=ŽÞíŸåóšÃÙО›°–åünÔ ug‚ãðÛug¯ÔM߬»íDýJåäÍÊM ¼J7~{Øó¢*Å+³Nm…s6RäÕ—V×Âi¿Û|m¤kó_ÝúlÇË…xq5é-µV6RÜ#Mç¤Pý2Ó·g-o+€7§ ‚~µ®Ëøþ³íƉÍÀõ fxKÁ~ 9£µOƒ0V*°"u xTÍ×"³7‰™·¶S×&â‡0ßç«æ€ÒÍz¹(>8C¼åÿ¢–°wÞ—«ÏÖá.¶œKCaëa)}¼uc8bà17=ÉÁó:=ŽNzîÐS2†þÌxvž:ø#,ø)€m¬Ç௶±á1Ø"ÛCŽ¡œõð6<¨×`B¢Ø:ÀQÂNŠOtž:øXEÃûø¤Ã ÿ1Hž¸ÃIO2>9ïr‡Â‘ZxxŸŸ‡w¹Ciº³žñcðæÝ6LÄÑܱuÅw™¯Þ{'À“ãðÛÂâ{e›&ûð{ÏÀþOʈy’²š,5ÊyoËÇÙä?Æ|–Š endstream endobj 47 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/Diversity-Vignette_files/figure-latex/unnamed-chunk-7-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 67 0 R /BBox [0 0 416 278] /Resources << /XObject << /Im1 68 0 R >>/ProcSet [ /PDF ] >> /Length 33 /Filter /FlateDecode >> stream xÚ+ä2T0BC]SJÎåÒ÷Ì5TpÉç äTßê endstream endobj 68 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/Diversity-Vignette_files/figure-latex/unnamed-chunk-7-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 69 0 R /BBox [ 0 0 432 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 70 0 R >> /ExtGState << /GS1 71 0 R /GS257 72 0 R /GS258 73 0 R >> /ColorSpace << /sRGB 74 0 R >> >> /Length 3301 /Filter /FlateDecode >> stream xœ½ZM·¼Ï¯àÑ>˜b7Ùü8ÆN¢D€$»@†O²œXX9±e$ð¿š]=äHùÉRrð3¨yóH6»««ŠKáY ð2üpüùíÿB–Xj੆¬ƒ¸PÌ=üø"ü5|ÖÂì+culÈh ÍynóÌwSYåÀ9Y£ZtœÒ*&æ¡8pÖs­¬RÔñ^©ÌM·q²N[¶:g ¯ÁsÑ8Q‚9[aD˜Ù@ÃŒFbNÀ C(¦aí ÆÔì|oLÕâøcíË瘸[sÄ÷)'À¥ýå|^ÊÕÎë¡ÜcOk½¤SÖ~¨Íás¿TÈâAZeÅ‹$[u#žšVv¾oª~~vTs}Õ†®cçI-YÇySófù@­¡iY¾P'äƒåõbùŒ|Ó4-må# €1ò•”lä•Ï4ªÅùNcDJ[=$ä«×K*Ö̼žòÉë-u˯G[ÖªWB#õz¦‚z§jñq< SÝð‚†à„ÉÊ`Ã`8€"α/N¦¹>¿ ãj  Lj PïmÔÔ qH±v¥‰<Ò… 6]ÄI¹XhA9űœ4Ó"ˆT,î¶Ò°Õs›”¢lQÐÿYo³(Q"çŒ3Š££_Y‡XNã F¶Âb'¨ôs;à^Áûìü{|[ztŽ™Wöô„NhÉÕFLcåޙʖš­9-E‰Ý h å}ÚQrV5¬S¢¨Ú•Tð\”dív¨ØÚA@¬ k>[½×†UÔj‘ZT`Rå‚U¬›Šj±6 ¤ªÅ:?€¬B çœ5k6ÔÇPÒD…Œ à§”›5‘íË'§¶HaëØ‚ä˜6’(Ùº)¶¯à×Vp¤k,tªÆ ¬h …]*D€ŠTM¶óÈÕ€•n„Ç-Ã@É  kë©5™ÊA"UÒ<Ó¬fK$$a-v(HÑ*‡3kw³ô®egÉßÒûªXá´ló¢¬ZE•Yѵúi%©•²Á^Ïøeh>ª;a]$q0Τd±þk02š¦‹Ð{Yä"ÔibþzQ²Ü~ðd(Ô够5&J×iNš(èÕÀWé–á@_r6 êÈ­CZ¸.NëûZãmAšÉ3oÒ é½­H»Pt[C[Ò|ÛÛ–8À¢­IC[DÛÓ6ß·¶¨by§‰ÒЦ@¥^¤‰ŽûN¥Æ–7š¨‚7š¨EBM´E§‰RAë@¥B‘&jµ¥&J…êMq}g4QëM±þã4Qqgl4QǼÑD/v§‰"F›&ê˜6š(bàï4QÂ4Qj4QÄâë4Q±fÑÖ¼ÑDNbñòßKhî>___h&ÖK9–}?JKeÛ/5ÓåêdT\·®¢Ä$_h¹[NÛPê´¾¢I9íïÖhý¼FÏ&ÆÖ.UvìÝT¿6[Ä)KàV²ñ:eMµ†sÊžvÓ*» F]6 È&—UÎê©$7¦¬ÞÌ~[õ¨¦HÛêUý–¼Õ³JνÞÕÚÙe£Òø²ËJ±>æªS̯qMŠêpÅZM¸žmÖ1\í6K×Â@WÊ K@MRÌ4;ò‹»GìÄ»/þ¤Ê»…_}RøæHáÙAáåASè}y¢ñô,—Ù˜L†9’‹uÏ…ó“T£ ˆÅ "²Y$º Žè,ÉÃ:ÃØPÅî5’9U8„êR^c6åê¦È@Ï‚eRq@ð \‡áí®Ä¸:á4È =w5º»¿p=zƒü€+Ò]ÙÀ5éí®J§‹Nm` WF¥_Ù\›&p™àêè5FÚ\¥Öå’¨o d&ÓK±hûÍ ö¬›jÛÍ îH ¼ü-pí¡Û;óTÿq»šQ/ekJ#]¬Þ¡œ-G;R´£!»ê&+—È áÑ ,=ȲӃçªÀäª;áè!‡Üö‡Xê¶A—RèuÈËZÁJ,-U,mpY‹% ’²zŽAugc®ºjª›.÷ •à@u'Û‘«îÉ Q:y¬ðê]Ðvë.waã¸îÀVHåfMË…4T¨Ëìf_Þ³ðM5´Á¥d=–¥†²½íjˆ-<®†ØÌÕî\ ±á—«!‚ºq5DWÓ\ €­o³ Gœj(Á9ÕP¢³¯kïÖñ\ÍÉÞ†Á‰Ãeé¸i\OuÀeiHǸ,®v—Åápy^ú.K1æápY®&©²A3m—Ú¹·ÌœW\ê×Ê—“nÎÅd¯;{Ïî?€Ýë¥ÃÎþ3LvWÊž7Se²ë .ç¥ÂfÉè6ÊÖÓµ[æ-Kµ]A€ºÉÉî‚\ý0î[÷DåÙ××çÛ̓³_¸¿{ì:þ¦ÿ>¿7¡/>ü|øúT3áÉï9P¸ÿ6ô8Wës¨'ÞCž ÿ*|’> ÷/ßÝÏÞõ"Íâ%ê ïú&¥÷|W»2§ù.¯w}‡‘ý_ ù›d_Ï›ƒ¥Ã+†'Çž“^yùc ×s%óïp– RìöÃû([qÔL~å#\üß-$²Ç><ŸŸ¾ˆ=÷ázcx>?}{îÃóùGÏËÒ• èíUzϼÔ6ÚÞ¤[ßTÖ§|æ|“o~³Y1œoæ[ßÌÖÔÖ›åÍ:ø5(0GÚnžoÙú¼kÓUüðæ*~ÕLó÷§MûYÝæÓÓÑ3®Sí¡Z+ûl-—f3œ7ˆy¾úÛ[bõȲÿË_1uRÁ¥G¶]YUüÓ…¢]ƒ>‡¹7m;T‡ŽtC|ýŸ~þç‹G ðÖ-Ø/ k›êÌÛþ +÷îW°¢Ñ±óí7_tйÀ¦}øUÈ£Î[Y?„­#¾÷¦õÏ$ò;6ýødø¦Ë¼·ýÅM?®çoÛ´:[´mÚÆ¶éÌ*4ßuÒݧú¦óäÊ7œôcÚð¶Mç¦Eµ6mãÛ4Oãè]›~ìNÅ7Í“ÌÞ°éǤÈm›6;emöʾé†"%±^%9üEžþá7¿ß5ù€˜î- þèÓeQ͇éžþϧcQé¾|Ÿ–üi×`¢­ªšº¾òξùî_Ÿ–ðÉ‹_÷ÓÏŸ~îŸ=ºôã?ýWÉÒ endstream endobj 76 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 81 0 obj << /Length 570 /Filter /FlateDecode >> stream xÚí•Oo›@Åï|Šmr±¥²™™ý|i“º®Z¥M¸¥•eÅ4µd›ÄÐJýöØ%lÅN¤öT[2ÃcùÍã1wÄ8¿}“gïb2Eú]D$"H$hÞ›‹›Áéé04dHn;¿?wÕ«Ñ£2v/ÑQµÖ*9  J; 0ü–~à¶!*itÒë'ðŸ\õ†™‰D7’¢aˆ&2ðú0=ž¬Œ=>’…7‡ñäñ*–l†li]î„cztÛzo6.z£«è-;¶RÑQæ£Ãxlð±ÝâõqÑLJñÍàPƒ¤‰Ûø¤ŠH«ªŸDlx‚»ÊÕ¸fÓf¶D¼Š´·äº}^楫6YñsYngæÅ‡xa=orš¿ÏVvâè÷.d®Xe³u¯aQr9Ûø½yök1+ùúFØZþÑÞhGq™A/³¶ïûÊp›ÉÚW0°(òò÷}6-³¢|ío™&­]³ŽR¥rã§µGlܤ±ÎaMè([Âm¾Ì7ŨϙŒ§o/?^^]?¸š-ÖÓrQ.³hs©Õ’gp)æ+·Ý4—Ù]¶žïëã³â˜êÀ¶é5Jmup2qfNöܬµ‹4@ùžVÏre‘MÅâv<(?ÖmÕî ?É g“•çyð…¿ÇŒQszÈMÃV×ý¯¥Q’ÖqÄèÿˆý£Câ×Xü²3#æÛtƨE®ÇHuî ¿ý•Ð$É]¼íx¾Hƒ?”™ôx endstream endobj 77 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/Diversity-Vignette_files/figure-latex/unnamed-chunk-8-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 83 0 R /BBox [0 0 416 195] /Resources << /XObject << /Im1 84 0 R >>/ProcSet [ /PDF ] >> /Length 36 /Filter /FlateDecode >> stream xÚ+ä2T0BC]S]C3…ä\.}Ï\C—|®@.Zk endstream endobj 84 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/Diversity-Vignette_files/figure-latex/unnamed-chunk-8-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 85 0 R /BBox [ 0 0 432 216] /Resources << /ProcSet [/PDF/Text] /Font << /F2 86 0 R /F6 87 0 R >> /ExtGState << /GS1 88 0 R /GS2 89 0 R /GS257 90 0 R >> /ColorSpace << /sRGB 91 0 R >> >> /Length 1293 /Filter /FlateDecode >> stream xœµXÍn7 ¾ÏSðÊ¢~uÒº5í.ÐCCá8EŒlÚÆA‹ŠâGQ”Îá þš~>ü‰ \FŽ âÑeàXP2|º„_áãôüú—³S¸¸ž‰ÆïõÅÇé6üï¦çg†ß¯›™›‰ÐqB_<&ç`óâ§j<Á?Óë7@ðv"8Ÿ®&&$‚WSö($`ް“¼.ü`3¯a^UÓH«é(Xp HÞå$˜Ê¾B!„1W]1Î žÐ{ØA!å›ðP*P¨~£…‹dΜÌrÁìg.$3q3:5ÈU¿®­ &^bÇp>d‡žÀ3:Ý";‚,Õ/ȹÇR_Ôy½t]DᎱßjOç™LÈ¡a¤ KÍžýÖyºVÓ™†ü»˜N‡’8F`bŽŒ¥hêy§;î#‰0pt˜pâššs ¨t¡³’[ô -X“ÌvŸ­#¹î¶ccBŸfÛ&Ùl[»ë›§ ;ú½‰ÃlÜÏ…µ\pž1dð]Ô@ôˆâÁy‡>‚Oè\Ïd.tªÇȳ6 /3εjSmÀ#—'5)ºUlª­Ù´æMà ¾ÞÜüͳ´¿ùµ“ Ž‘pNzÖÇ‘\8‡ôì'‘ÌUq-úPÏøŒm’Ú¶Ùm$`É 6 Ób[%›ÝÖnúæWÃŽ~÷H´#¯ ¿|Ëåí5x³V÷ú;Ý„Ì÷@O¼å«Ì|ï€aû2ª§ý£"gWiö¶;xÆD'°½š¾ÛêwC c( ÷„²$L¢Xwße9K=¹Š]ÖíáéWÛ\ݼÚDê¥æu¹]cÒ¤Ó¦i‹¯ç§kMZ´ì©wu}Ž˜ü¢7±ê̓GÙ¨Ý .X}n’¦lu¥UÍ®îâ¬oE¥ë»8ëÛqëú.ÎúGOéä1Ôb^CZóãdz¾=:¹B»"ðËcÁN´ŽîÏŽ ;Œyüêf^?¤4P[ŽÆ»»{´øñÍâ Æ9añêÑ«Ëß>ÂÚ~tvTtœÑ3Õ~¥¢Wø-ë2 Vè>ñn¨#LVþ½ïª.b´ín^þ•X¥Ï\»ÊÌõÔ[9Cí>BëÆD_ÚO(%'+²R%ͨë?>ùór­X¹³È±¶çK´Ï#>'¤hOËœ0iGÞd0…§êÈ¥6|ŽkÖìÆW)“¢Í0;Áä—TÒö¡ˆ¶¦]ïkÏ4c›¤¶mv!ŒeÆrÁ̳m“l¶­Ýõͯ†ý®­Éÿ¦”"f¹›Ò¯<㎢”f7PÊa|ä=à‰q¥Ì5l#¥ì0ç%¬‚)..©4RÚõFYÇ6‰’ÚÕ~¦c©ÔÓ=o_¥‘Ò®o~5ìè÷C(-Qû“»éÚ[å(FK²Gÿ¼ÃPsèàŒÞÿ¥t¡¤Et$”·U0Óâ’J#¡]o„ul“ÔöH(é=Ò°¥`.Ý´ ]ÛœjÀÑ釰™c}ÕÁæÚãë(6ë5O ›%Ôöú€Ìû¿ün!³p=N—ÅÕ½õ€ŠÕOsGjŒ ªkÇ™ V YéT\.X¤[5a ±kÍJn·zúøµ'W‹L-ñ.t¬O¶tå Ç}ªåJA‘ƒ¦ø©VË%=¨‹~´Îzµ×·ÿ ¯MÎv¯{koßÿ}.À³ËO×ï?9yÛóU×§ÿ‹‡• endstream endobj 93 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 78 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/Diversity-Vignette_files/figure-latex/unnamed-chunk-8-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 94 0 R /BBox [0 0 416 195] /Resources << /XObject << /Im1 95 0 R >>/ProcSet [ /PDF ] >> /Length 36 /Filter /FlateDecode >> stream xÚ+ä2T0BC]S]C3…ä\.}Ï\C—|®@.Zk endstream endobj 95 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/Diversity-Vignette_files/figure-latex/unnamed-chunk-8-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 96 0 R /BBox [ 0 0 432 216] /Resources << /ProcSet [/PDF/Text] /Font << /F2 97 0 R /F6 98 0 R >> /ExtGState << /GS1 99 0 R /GS2 100 0 R /GS257 101 0 R >> /ColorSpace << /sRGB 102 0 R >> >> /Length 1335 /Filter /FlateDecode >> stream xœµXÍn7 ¾ÏSðʈ¤~uÒº5àí.CCá8EŒ¬ÛÆA‹¡Dø|oàfzyûÛÙ)\ÞN„ÆŸ·—7Ó}ø >L/ÏVÜÖi^­&ƒL ÚdÁ``†Õ«_tòÿNoß÷“ó‰àz"ƒÆÀÅ-Šq=l J Á'€Õl£x¥SG0ùwžÚ &äD=Ý@“}Àè¶'0(†Á ê!§2[AgÁ1²… 4Ñc»p—(FŸ^R† ’EB—`³œ0Úyv¡L±»;ºÉª_ÖªƒúÞœO‘Ñ%7 lºœ÷,в$cê{\ê8‡VšÎ£PÔßy¾<®È™‘б˜b›/ÿÎ㊭¢+>Ìàßåt:ìÀ>‰ã,S @ž0% o0”Ïo£òŒ1ä>öÈÒeíÐp×;L¦c«”çn£õKèÝŒuQ#b·,•ÑÅvÓ¿vô{{'ö£q;–b€-¡‹à,:ÊÑ^8}²e´^ƒ×ú!’­Ïž²µèiÖ:´iÆ!ÏZ†–¢Ü7£sÐÓŹ:´Ø¬ÚâMÅ ¾î.~7—¶¿”i„€¢ÓœØŒo<†ÂŒÆÅ€>ôLÌÒem‘M×;4±c«”ç.£ë‹Þv¬`ð}î,•ÑÕvÕW¿*vô»íDMùðý¹_.ï¯Á«¥ºÐßéz d>ZàõgfæG‚õˆ˜=m,r@f`§‰±ÞÀ sëëé‡u¶p/5e\D[€î`$E†dšI2GB‰¥Y¥cÍ’›—ÊGÛ­-Øn·QÒÂb ûFÑ¥ßr)ºR"ݶ‘RbŒ±okéQ›K½‡m´T}¡¬a«D¤ú&_nÖ$ÍîyùY)múêWÅŽ~?†Òäsÿòp’.Ý®b4…ò™b^¡ËÕnŽ·»P“‹èH¨aLÜ7Uô&;»”¥‘Ц/„5l•òÜ#¡&Ÿ#›’~,h‹OíKBµÜ´Õ© ~ ›Ñë=ü6—®‹±©Ç¼él&§Wù=2¿«ÞCf"M§Ëĺ¶¶¡RêgqG:5… ªkÃ!Ï:°˜L)“~‰ikNí3OµÙ´Å3”Ü6ëéÓÔÖ°-ñì÷:Ög3grÚëqŸË\J(²×?—µ˜P£ºè'ë¬{ýr5V›œõÞ¶Ö ÞüçØÁ‹«Ï·¿|=yëóE×§ÿÖ«Z endstream endobj 104 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 126 0 obj << /Length1 1964 /Length2 22509 /Length3 0 /Length 23667 /Filter /FlateDecode >> stream xÚ´{st\övœÆ¶nlÛÑØ¶mÛ¶ÛNc7¶ÍÆVc~é;¿™ygÖüû­».žÍçì½Ï¹&%”S¤0²50µµq¢e¤càHI+ØZëÛ02Ñ ÚZ˜èX II…ŒõÌmm„õŒ¹ìNfYC§OG'4)@ÌØÆØáSi0pH;é+¹Û3(ôÿr¶ŽN´úŽŸjcSscÊO![;wsS3§?1˜iiÿDúã-HÔ7´´uu´4èÛ$é¤é2¶®ŸBs…­ ÀÀØLßÊ`kP2V(+Š((Äd•å)é>+:ÛÙÙ:ü!E%e1€°€Œ’ÀX… ¦¬¨ôçVÉØæ“¿) @FéSÿ'ϧáwi%%u9Fú?k0\ŒÍÿ¤ý/ndŸÌÿ¦öéjâ`kýW…™““=½««+©³£­ƒ)Õ_ü”ÌÌ®¶–€Ï{c+ã¿ ãlcôYN'3ãøÓ€”¹¡±£ñ'QÛ(­?Kùéô)wú±ÏB8ý‰iõs€£±ñ¤1ÓwüËWJNN `­onãdl£ocøiè¤ïäìÐûKöy56"ÿAc€³ƒÃŸÒÿT9ü+Í?© Ú~®LËÊÓ[ßõ¿;¦oãìèñ·Úüç² mmÍÿÑ`bneü‡½ãŸž™Ûü%“‘QT¢•ú<ZiÛÏêØÐ9¹9ýeý'ž€°€ƒ ÀÈÉ`øR#![këOÖŽÐÊ'lþY''[wúÿšjKÏÿ–š˜Û™ü©º‘³½²¹½³±„ðÿÙ~Š ÿ-35v0ŒíÆn†fôRý5)Čğ%ðö´³µ˜è[9{››ÞA{:껜œ½=ÿ®øOÍÈ027túòÏýWt [ç?ÄŸLþ©ú¿öSüµI)?w¨‘­•;ÀÈØš^ÆÖés(þÿì±ÿÊ%êle%£omLñŸýo+}ks+÷ÿ´û/Uã?T)þ‡³¹£¨¹›±‘œ¹“¡Ù?ªú¹„“þçРؘZvä/‘òŸ}dõ9°Ÿ‡ŽùŸ3 @ËÈÎú_ºÏY4´´1vt°±ý¥2þ¬Áñý,ü¶zI!i9UAêÿ—¿ŒDl mÌmLL¬l}}wh†Ï`bex2~޲‘±Û_C §³±uútØ9;yLl ÿ4’@/ôGôÄ  ùbgЋý q°èUþ…8?ýôÿ8ôÿFŸQ ÿ…ôFƒŸQÿ ™>MÌÿ¦fÐÿ~F¶úü´¶þ7dü mó7øÚöo @o÷7È wøüLäø7ø¹<§¿ÁÏõ9ÿ ~Òpùü¤áú·5|Òpûü¤áþüÏ~Êý9ÈþÚ§ ÿnðÿðaE'[KcUs£Ïg·¿™Hë;9˜»i2|n2ÆOùç埴ÿ#é¿Ï‡¿y ÚºyÒ²°³h™88Œ¬ììŸ `f÷þ_ömðÏIü'þsҌ݌ ¡Wm ¹ƒ,R›BÊ|D ¦ËÁI9éÎ*ÑùÔ$ãÁVÒ§;p0…swˆŒù ý[ü2È m¥Ä¹´}’ýmŠÕHƒÐ¬Þ7[“ª¦nä¿îêûHûàÀ‹Œå¨Ð)dH/û•wQKæä«—°Ìf´Å·á”ÇN„8;ºŸ¢™&?nRˆ´ÊÛÖóÀ]‹æ›Q¬Ý–±;q–§;>žPc£ô ¬PÍé几IBØõv#ªãý&Ž'&X©ºJí÷¾jñêšÄñ'ö©F3êí-¥¿lÂÕE«ª—#Q…”žÜNVÊYYîPsöå~^k ÑÈ‘²”a¯†f;ÌäéwE…Óü0¦Vß"⠜ߎ  ãR\u¹\Q]X­=ÕªC ,>WYÞ¦±Ãym>VúКƒtѽz'¹&EÝB¸ 9Ô$’y]é;sÝîVòˆ[[Æ‚ÆeE¿ãL¨ˆ¨[ˆ[¡Y=-H|—3)©ö$À:Ûïf¥Ñ¡Å ¤!y½“ ²:×7ªòcÀOŒt%cëfÙq§T: '=‹c¾@m|Zl” î9á¼ä2Áßk¡µVÈVnÜÜ«2ýBRj A὚àr•–Bò¡º ˜ƒÇÍá“ÞêæµZxÊ ñ[ŒË°à ôq„±¨¹±ßkkÂÏáRŽU™AŽL]:&÷ıý ‘§T•‹ª;A¸RNÂPÏ´2Ø·ß+§ÇÞÒCþûK¶ºJ]Õuļ&ܰ¤I¬²œs ¿8}g÷àtôÕ© nÏK¿w”ÚR²¾ôœF˜¢®‰$ÒÄsÄŦAP9õ¡§^ƒq<|ñ¼ é ?á13©ºý†êé2w““ 6\“@¼ŽÊ5K2I`’e½U±˜o¹ºÓ€¶Y†/B»:aë"ªFÃ$eŒ’"ùE$_‡êHÆþCÈ|f޲%BSí…†Ó!Ÿ³@9×öºè~ØòÈ~—8ð`&ÅŒŸf'yž?Y$¹œVªB‹Zí›ÔdìºÐ"$Eë=¿ôüÛy£È>å(Rv¢‡Œ¬k#GLÁ[NdjcþÆ Æ7|‚ ;+2ŽZÆÈ¦ÚyôzÏd°áðÞW†‹›zW3MiŸ·ïF‚SbÊ1Wû&«pÈ^ÙiëÇÃÜ{V÷óu«ùÕût§² !Ã* †ò._Éñ†;†Kª§? ξpÖ5Ìqfñ:Ìý¼Í/Þåµ€³d£»M,âáÁagÉ‘o×iab* ãÀÆØ­ÚùÝ^ÍVóµ¨)´NÔ ¡=Yq6Ú¬÷§8ÌÄÇŠ>WO¿-/¸oã­íÆS£Æ{þá¸üw+~þ‹jÞ>#¸FÿCÁŒ4]âÓÜ‘Piååºû¯3p-·0Ýôb&ñçåxàêøç½Í òݪ¶¸™=û„œTôpº!9… a\¦\©†¿®Vó©ýÆ\Ù7IÙeuÐ…vD¼~G§‹”9:{öZ €ƒ2’ÎG঎Bi©4,’¦@ú5 'ª›™?ß™S•>›½.Ýé8$EÓh¼Ê¡¿Ðˆ×dc'4sž .÷½}U¬_àyBb¥£.õ0~LÊ€qdžÿ|)£[Z G[j¹K–ÓvCþ÷¤Ô§¶gŒJ»å•iRá"‘û0øsÎô@eÔñVwŽßÛÈ5Òf½_'‰ÑVx.ˆ¦T΋£zrèÇÉvG^X7Ì¢ºOpt(×úEmUœ=S ÕsÉC¿ðñ4q!ö Àz\ûݧ»‡ç6…n¼û1éöqKQIÞqÅýE"QÈ<›ñIÇM)Ÿ^4[þF„ì ³e]­œ®Æ[¼b7É$Ê÷¸ºêEÉö…£/ìI_¨-œ}<’O—ösÜáÇ Å4Û£tÓE£·µdlIl”¤õîuný¢yÕ ¼Öl(  AˆÒ-Ý*õÔL"ßXÌ'LXº‘Q÷/q‘¬¤xúéÐë¹"™M¹O!®Ó–Þt%…¤ÙmQ¢ à¾÷î¡¡O Ðü@ì1`ܡʜ¾7Z²æÐêÅs©óœ(Ô2‚UãG_ØQÀª©B§–çxí':+(šZ(g\ƒ_ã– Q‘Giâ‘:œ}ÙD%™„Svu—mØìêÊ/Ÿ“½Æª Ïe)Ó¸ªÿæ‡Ø¶r\&Ïœî‡$ÈÕ˜€wt2`±¦ö‚ùÓC`Rާ†Î§øÞñ\—åºwF/ns*ßÌ¡ƒ'Ê ceð­@L$þ:K•¯VþNþ;(cýfwŽ"¿!%¼ Ú`¢² ¢| gF'¶5;XGû¯Çl•©L¾{ðð@¨¡¾Y¸—7Ä-Ý„¯é.Õ~„`Ú=™É#ÕßdX‹¤ÓtmÝáíDZÈ|áO2Ž¿˜âQ¨Ž‘0÷<ƒ˜:±—Ê&âé©?óûí4È^Û}cDÆèWÊéÊb8°Û¤dì‰o ¡0LžVŠ]ra¾Â௽VN¢Qð9œ {V-tªÕ*æá,Ùqf3¾póÛvÜkVÀqìX±b¾!ݽ‰CõWÒê=3âdÄõe^J…Ú)¢ã¨›QßÝ,ëÒ–œ €Î»ÞÁlßÈùãŒYGí$[¹µ¤Á9V1u~o¥³1ìŽvwuS?Cð­»Ë õ‡¸S2˜ñ>AÛµ¨ì9dÉŒÑ[¼ʦ•[o]±²Ì ›<ÄsÚ ^Z«ùrÎ¥‹»“OÏÚ^¤€ÔwªÍˆö¸>,h(Å Ç ÞI5°RŠÏwz@,Ÿ!|:SÞþúvÚððÊÿ5qÜ¥Å.hO‡KÚÌàê"?hõ$Pè=ž¯ &}ÝD‹:¦À,˹œ£‘ˆÐ¤_¬…ÎYa܇#ó[Ùb`¯~¡Ÿz®(7Æï­£nÑc”Ö,*ŽÃ×AÓ¢Ä&cùlT¹m˜Öiòdv®Q]4¹#0°/­=µy˜· LíBØ%Pþ‡Eû‡¶B‡ +sÓbÓ g&—xìñ†i/QÇÊ¿h#«N±OÅwºEÇ’aüà°[HˆFÁÌOmŸëʧC>îÇòFà`íI¢Z÷ÕÊŒ¥ÆC—u핚Í)TõB«ˆlq/¸ª½¡ê¸dÉ„u ÍÄÉ­ª},Ê4×Íyæ±+4˜ åqzû¡C„’(˜Oßø„ÖcZ'âZ°L÷#ºµ-vS¾IÊGþvkœ sÁ߈·$-ƒ?*Ùòc@€Ÿ5Vú°`‚ê/ƒøBºª KÝ.Œ´¢+{UÿË>ÖñÛ,èw9YÐoïR€Ã27fµ©hÙÂ(ì g»xèoˆR>=Z{™†ÎG9ðÔ*í-ñ“þ°nË£ ^;ÕÙä%ãx–fE­w`]sâÞ¨$£-ãz¹h¦i^Þp­(×í%­ùλ,šm„ܼ÷^HÇ*ßÔ›I:ã-ß/»Ak²‚6¨ZÅÅ~sq58{ÓD5…-ÀŸ˜mVA Ó0õ°CÑM—ñ…¼-õN&Dp{üÒ½Úç Ž)9_C¯Ü ƒâ'¯"·òéÊVBYÕ!+=éKEÛì©d"{LX¾Ô˜P^ôϸ?ú ¿«~b„¾‚»ƒ¿òeñq{+ŒÓnNb5øAÄ¢yyl„;³Žî’­·‰o¶•ú¢P2ôÓµýi7dN7ÙÐægòÏ”ú½íóN‡T¾ó¹•É»†PtýHò2;Ô/Cöú¨º={¯hªÌ×`Ámì3†úþõ¿%tÝ¿%Ð<_OÚ ˆpmëõ*•s§â']X©9Sûª ÀK½\ù ^øno¾Ú:A&ÐK[O ;cÎàH]êÁ7¢qܹ$ #¶àà©GT *%£ôð«èæÐÐדRø+1ë~˜àŒºx…€eÂm¬kp?éi¥Ê-M_ÐÛ9];Ãæþ:³³2hS˜ñ´¨œtEYëœûâÍÌs3Dñ+Ãb_£OÝ«Ji™XîqáÝ[²iºf`ò¹§/ ˜÷=&…©Ê/Ák=Ó|)öúÅ6œÌXRl•M]¥6¥wKþ¸Ùò×\C“]/H¬0‹×*,WÅéjƒ`^¿õ­£#[Üu޽ˆuÑàC5¨gà$˜çç¯Ñ¯C^IÆŒ[÷)æSóÊãåEcW,¼Ué{ zæ-²QÛ†ÀÛÙˆ^idLN«fÎØàêp:Éñƒ‡›u•åjôtûÍçÀäõE¸”Nñ „’¤w‘VœìËè:[RNcM|y¼rw`¨bêÂD•“ã©fDàÛøSᥚ}žQˆü^ÐA/Ñ’nicè¼ üÙ&p4ƒ9¥ž$wSì™äãˆî5W!ªedwrVXU|þÇ¥ñ»P'T3ûgÉmÖk‰kÏQ<‰[c(øÈ‚Dû›’GØøè5ÌJ7â!ùÁm™jpzꔋKq_ƒ¼—ä§äoì:¨¹%eÌ÷bšAˆ–[(ýŸÁœ¶âøŠQ·Ê¼fjëãš*Q¿)Ÿ¶;4¨‹wÛÄûáo@¹%„¡ÍaÕ8V¥kè`‰å•B²0 Ç«› RÜÎÇC¡Ó¼<‡ÀœwÚ1†úÖlŽˆœa)¡ÈXXÙR¹å™TtÐ9ŠøËÙv r$ ›Zª«0þ,œ]Ù²ÀÙ€Þ¥Ì -}ñ#]»ÀøNðÄçÕ(ÏÊéázd#ákH$»ŠO­ˆEÇ=©«[¸þÄAsí/FANÙS »;QdŠÅÓÎ;ÒÂ뎊û®:¢pxžî%,vxbâÒ~_¯!£pïãÒ8uÑ1¯T+¡¨ä… r“W¸·ðŽ~(tÀ{Ò»øñ# -Yˆd\» ªj}vš£ãÛ°â±z/7¶´6’“îo27i1ŒÓ^ð/ˬ° V[,)Ñ'¾Ñ ©3# _³i9ñé—Œ~&¡xlàó¾‚ì)u ‘X ýèõT–·º%µÂšLvn¢,&deÐÙý..˜ÓDµ±^üöþmóK1W3ª]&êipH:”2 V¼l™íÎ VÜ>©†hYÎù.¶¢¯RV*U6‰jÙqшÇ…ü-1‘ªøï»x'™Æ¯«sðJNß»®‰ž´¡i¤Õûsìí³ƒB.úšÓ¨Jn°+÷=e‚LÌ)R„,­ªøÆ”T¾Z%Y$uÃÝ{llr§ÿï‚Ót3I½–péÉß~èpÓBŠw€ög4K׌3¯n JSE}ßúbG~F7¼‘¯]YÖö~êÃãÏ„LíéA(n1B«f^°DŠ~í¿J%ìTí e™[‹T ‰“ .†$–u´²¤ê%Fo[1TÆwñ lu?ÎeŸÖf´_ †±Ùužg“k‚ÇÓŽ´Û!P°"G °à"9”ëåÔµrUÒÜÃÿÞuEf ¥\óKd|²u‰àY„hòuÖ6 ŒŒ‰Ô`=èÎø ̺¤&¶ŠüœŸò‘K2#Ç*ÆóVÄ•6"ObBo–þ6ˆh„¹›¹tËŽ–Enö ¥J?'³”o¶ükþ’¬ÁÉC¡Ã€µ;gº¿­÷VÞïª\ÕUVì8¤ a–#Ê[šÚ0aÎηա]BD úÆÖ±A ÕýtY8‰×óÃ)æIuø„QˆJßDHCc¹ÿåòŒÖ¹ŠËñxoÛ¦>àæ[šèkê"Oü2k-Qyª°ÊÌï »tý«ŸzµOày9æ-,ïï4B¿!&Qß0úÁRÐ ¯.‡TëõZ`´ÄÙwmË*QTH‚úy6倽ºÐÂ6¶œøyÇdfy]VîZȺ.ß&ëïø…¡3æ?]ƒ|“²¿‚%„‘Ùrd©½G V0¥Ô±­®»y‡'8x•Uÿ]6§ÝNqÇá/þKÕǘÞi9½\zâÜ–ÈHý䇴™özôÓ›j( :)µd†­k¶ïÊöýâž÷ /”5sꤙßE•ô¨ˆ."êíãÛ‡ÑúÖRPètöÆÝU í#çb6õ/ ˜Ëó LŠs·óØÏF¢¬­Zž®ë5žb®dW É b“€r”Ñ9—Ÿ–aÐr]¤ZågŒIš· Ÿ³ŒѤe4ÙÈ­ƒXl#£ŽÇ-IfS×…2™Öwiú»4‡¥3»„ÛX}Ô\è-¾§ß¡zÍe<þ^WZ¼¡/¹‘7¯ó"7|³§Wþfðv€N‚+ŠzÜ 7‹©3Χ6¼ˆ„z¯ŽÜ÷‰•<ò\y÷ê ¥Ž’õT½QgºÐä<4”‡Ý¡àL¾®=ñuò,û¶Ï|U`µ%I9÷Gt3X°Y¹)Cº Hà“g² m#}¼æ•5BH•£brdÁ|¿&š!H•5Ê•®ýr?,-)SÙÑÏ¥1çÖÉP +P(Ný@^…¯‡…ÈþéÈ/Ò\â_¦Ðíµ¾§^åÍÔ/qßF=Mi‘‹Ü@tÜÃngo©¿@E\pÑØÃúú²i ÇÎEx˜[=)†½ôì7EJb¼±êO­ÇkÛùäJ`,¸û„© FÉNÂíÖ k¡d¶uʾ^ïÐo±›Ç…´ ¬3þd…’ B‘sA³Æ\SÓê–¸†ß‚.Ãô½GY´Ù©}PËÛäÝS-…-Yì8|ÿ/yÖ‚ŠQÌt9:ÑQæµÙ×vOçHífB£Ï<òûÓÁQ†ßø£rv„Ý•ÃSÐNŠl9ê‡Z¸@Kkx«š+bFÂ3×Úð^R¬Xx_Ó>JÝ¥¸ÃYÙH÷h¿õ¤ç^:˹Z‹VrlÝÍl¶`;+ȯ¯RŠô±ì%`ÛjÅ2hòðÔÆªæ0R©ŠÒ¶v‹C«gµý*%™?ú•ðg@m -ã+TÆ…î1æxôMj(Íë¾Õ$Z@A®V‡¼‘ׇãàe`¥6ñƒ1ÙáeÝ:(P¯†S´µ¥‡æ†o¿O–àæÇ¤F)ÁGråˆÁhR¿Ålu¯øÅà RÕ¿Phë¤~\着ô{XÄÎËR,ˆB äCq8(ÖãAoófiÆ·[&ÿL[¼è7†°‹Æb=¡3ï5`ñé ´úŽd×J„1û]jæ«¿"Bg©Éû©É_.f>9Ñê‘›P ¼0–#"8sæøÍ’1²ùB̽ÊptOïIRlÌý×ÐGùnìê ÈX_×HíË#î0~4=*+tÓu¥øBªÈ»þ¨Àô"ëôʻŠ(À_ÂßÕ÷6FËqEÖ*¸]·^\Y`[å¦ñq¡&&®GèΖ£ñŸ]—l£:j¥$hÕ.™ó :;¥ãb˜™áàqÞ¦ø(Â/q×4ò³ôêIFZBiVö5é¸v;Sæa}Z±ˆ¯äñó^¡Ú¶L×qcCiÇE÷g>œÈç§ÛfÈÇ=¸§ϑʦ+^‡îÁê³]€/Y_lí`Ú&‰ÆP¸¾z£}o0·b™»K´’ènwª‘ / W j]&ñíßPvfŒÁ–[¼›~DªÔ½*Šãû¾Uæ‡>Àè?•xÇÅèÁØ8%À£a9´uÔ–å¹ç1¡cAÊ)- K¨cWµ©#ÜpË×'ý%&Œ‡Š/Œ¬1¿D¢'ÿØkU>ÒWu üçîx¹ ¸Ž_K1 æq#]vb³ü× i =x|¡»‚0 ΄{Ù‹ß™7[·Ù\餦'ð\þäô]»ÓëRÄÈgv¸TÊ?¹ì‘€ ©ÔÞv¢]gvì?1©÷—Ž.Àćt£ÌŠê{ô®f¯qÑ-hKll>럯Ð#†Ÿ_³ ®ŸÕ×H%`a«Ø¿öewGæ\åMµ!ÛÂä±J…J_Ôc÷yATºáSjM¯´û9N€\T%Ù-Ûì'ºª4<ƴʳƒÇ"ï8DoÕì·£éÅÍeG…zraA#h„("‘$Î ô¢PäR¿&@fľ‘êWà+;TÒ=üÆ ß³È6Di;åÂ’`v~âÄÀ€úù>_®¾—JVûÒŽ«3ýŠêÆñùLC]3þ‚)à]Ož=åðë̽`wk†‰n GJÑÁ8…ôÎ>ÌfùAdTfV§6¥Ü@1›_ˆ‰¡ÿPÁçÚUd(:S(žTû˜¢«ŽzÑêîh|­ªˆÀo¼Õõ\;–½•H^Mm1µP\øfˆò6m«ˆs¬„¿r`Z@p“ÒG0/A^23¼ËxÓöÇêD5AÿcBþUBÁž†&Çâ†Ùø‹¶&vœDåMŸJÉ(Ôb æ¤õœ 1„®˜ÃháA<Ä™.|ož™ë„±®eeãÃeÃÅZ?áTÍ,»€Æ<¢!ƒ0fܳ9öëÖµšÊÁÉ»Šà÷li‚xm|¹ÍESÛ¨l‡ú™ù$Ø9ùˆßtZL`™“¸µ††§l;Ac¤ÒӦ‚1dÜ>˜j,²IbáhLU òq£f Ž™W«ålxÚá“ t~ÃäLX®!Úˆ“©£äN7®ì+'´9¯Rw+>Z¤|ƒc#Z®úªõF²mIaù†ež~_ï>h¯«ð¿3È53êûbM¨‘3·"©=?gÃÆÿ¬•~w UÚ†»rΔ4Ï«Ú2} Bԑ£1!s_lJÈ•.Ž®¹¬ÙæpÚÍp˜%Ër*¬ÛØÝH;©—f¹‘-u’oæŠ]yöA#* ò·:ØLä½ÞQn¹fÇM9?Cªg~’»?ž®T0f%š|«³¬Œ"p‚¶%RIÏXÌã!¸¡!z”¯õEÐ?u³Íñl1ØLV]këæÊØZZ©Å‡.Ĺ*¹ñ¦"ÿ†g,Extµe˜4u5<ë&Q°[ .ØÅ}¿ÅKöè{L(ú=sBc~›áÞ^§i'-ŒqÙÊ †ÞÐ¥sÏ+ãþ#_‘ödÚÔ}CÙ-O…ñÛPD‰Ü1N£5ºåòÖ I”Þ¯=ƒÏY–M&ŽŠ¶‚—h¤3´ gð¦¬LÄ#xŽjùxÚéÅ5ê=Bp¢æÚFÒv·›R·ÄJ‡ÙT-±Òdð”nØJ¯ì»=i9­P&_ Ö= ò •;ÜyÏ+ŽCÔ/S\’ú›I!9($ ôQœ×ßÛew/Vù£ªØ]“à†çA,1+^JþrôÛ£ž4—ËBDf•´U?“Ϥ‘”mDÈÄŽ )£-|FUËHeüöY¾%}1’ÀÇÜ€0a™[P‹Ð¼Ø«£Çœ‚YHb4ö¯^6°^L" IEDÝ/u^d‡™ ¨DÏ@·¸)¤¸¸Ðïà‡À…>`4‰/)Ìæ2¢R€mYbšªT:A[ÆÎó¨IÀ«A^u-Ô%åo3;ôøô/**a¸Ò™Ü.ÂLdÇ#©Wûu½ª2<ëúˆ" Ì6JYùšO õJ’Rîä{"Ì K½ê½§›«ýת÷´km´»¡uKE£†>µ„@ŸÔQ åшÉRÝ)MD†‡eˆÂ4R«ÕØC¨ZZ¥\›JpOM’‚ú%›(ãÑÑ–_ï~|)j‚_<0S½Ò@¢û®<óÄÀe†õ¤~èS©WE—OM²ÀÚê(IÏ¥6c«té©(´ÙPj`Q'ÂòÁt˜®kVf(ËÄ?ƒ£!Ó Ï-· L<ÊꥤçR}³åBÂ)R€5X)ëR(~0B¥Ì«öWËjH÷èÄ©zß8g¯åË”­’{@w, Â=ߨ » ÏBP'¥GÇwjEáð¶i=µ<ž‰}a4Rà¿I—ãTÐb7k´á7Žoþþe,0{†¦/ˆAtg<å^è2Ó $¼© ’„óÒÖw°Æ]Ž Ýº.Z°˜pç…û«HL2¡,d«3:à5½æóÇäMž¶%J«JÂOQ/£º›X½dÚÄÝŠÐÁ#ƒ¯˜–.kï #*ºüÅV±l7Ï"rø‹û¾~a8<ÕèËЃ¸­+Õ®«Öv tp1 ØÛ0ºàO~½\Ti¬×ã{ÖæeûR¿„‹úÅ\7ªŸUêíâÕ#i_\;Ѷ|ÑëqyÐ ô/j½šü#ëìªp·¾{ç ,µT!9 .ƒl)LÐ2ó„øíéÄnÿØhÓ—Öõ¡¥ã,=L]‹4.O‰CŒ´ÀŸãÅÊ{)sÿ𬀨« ¬GuÁ;'®É<<¦cý=ѠƆÅW>?Ö4ýa[›œž§I…’(l"œËå• o´MÁæ@׈óéÙ–üÁÐÈþ>¹´$’üðs©€ol¹œÐC3 »ÖDÇŽn¸)ú°øÈ;çŠò»@i¢ {_¸¬Œ²ÈG|¾;ò=Ü6Ôýù’µh¼ö#é:'é±Ó4¼¡e¸­ÃOI‘»ºoÚ.Ùý´ZQvt1æfêJÂbXíü›dõE…nÿG?Q¼ 0B9-µìý+4Ò0ŒÇvk2‡†J=A‘½õ&Ç£aðr²ÒOqú*² Z„o èÒ*Œ6Û„ñê$vc—ôÑøm81dÚw²Òµ‰%v¹¢ÞK–©žšÇ|¯y¤ %¤®3«U§³>¹h¶ ¼IɦCSA—ƒ±Ÿ…§…U%™ëÚ0†$×¶}1A÷êB’¥&¯ÐþR>þŒ¯Eø…ï? Oª/êµFë.]±5؞·÷ìÕ}05Ì3_@¸kYTgšŽVõ!Ýé?eÁ¡”k ™Rksñ‹ƒ±3ñá½Ó™ҕ럢2éaßýøl隇™xI™0QB ¡YDJ» ø‚ÏAxC¶<¯™ *âä]qƶ6×’¤<šñNtNà¢fåáÉ"!žH®à›Ö'J1¤µ /A"•³1˜­G¡£ÇÕÿ,èžÝê©dž2¨<–gœ±„åψҪ: íZ·¼¶jYÛqI}¡ûë¤Ç £òÐþ os,ÙŠÚ½œî«‚¬yŸb‹ž}Î5زßD Œ‘UÉ3l±ëÜ2¬)k¡gžä?(RŸe¹W 5¥Ù›ã¥ð(ÎÊ!ÊËxÝìG2ç Ûm³Rï]çvUn0êÛ3m9ô½º –°ÿÇköh—IòuC'÷¹ ôë˜ň{ˆ¼ý:e¦ AíÄ››ðµî¬*Âã~Æ‹¥úÔJ|ë0êÕ(2óÇZûLªº¦ÁL&¢¾ºj0» ŠÝ?qÍJûØÔ?]è®÷•µíTøaÞc¾r½?‰š¥aa‚T¥§¬¶¡pXžD6ž&ÿÆ´Kj|Ö&|»¹ÔeLC3͘$H¢N;ØÞ8¿îˆÅw§è;‹É{,*®¢pÔ€#’Ê=¥sŠewdÄ¢ª$AÂŽö+™çOöo*tñ{R‘M‰ÍX8|#Í ŠÉ¼)r{Ei»qó(–šÌ¸-•lsÿG‡šq ÿÇÏnlã#ß3˜àßFÕ KÊšú¸ƒÎÙDF‚Ÿ"oX|6w8Žð¶¬0 ymÔá>$³áÞAéxÔ™‹CV~ª€[Æ,É*QvX—>táßålƒVþ µ0D4ž¿ Æ•Ä$qÆYöœ‡´‡™×y­n‡:2ƒ(/3ð¡öÀd#iw÷¨…Žì—Wá‚]c¶\›€îÕ9ûn¹É-8EW”„§nÙ.áÙ=ÝD²ë®¬oë5 ~z²G° ¸Uà§—‡!‘‡xn"f(Ô¿ ØÀjwîʆO¿6ÈñäÍ΃—éÙ ˆP™ÿšâ˜Ú¿ƒ½µs”Uñ”ÛJ‘VÿáÚ*[ù–¥¯ö…ªíÖvÎÂ~%ÎÕšßQÃ{¶î x×Q ™ãÅLZ¥}sAiß8:}ñQµž¢)§£v£Ìæ 0eûã;2îJ›]éP²r8½¶¬ôåŠúùÐÄdµ•T°“’sÝ®`†/$‘OïvúÑ­ŒÝG1Då”qOeŠcpVk_ܹú£WïíöM`&GÙÄë üøÛz/v¢*£¹ý²VƒÍéœLƒ8öVU2BɼÜÚyÏv°'¸7pÆ|P8BMcåjó1å4îBáë¦fq¯ÛòǤ«ˆ UX°(è÷šˆÂ³1Ìv¶¡#XN)ƒAÙ*=“ ˆUgs¼x g<€× Q˜¨Ä…|‘æyzBBãT]…ãdÁPôõuàmÆõ>½žå° Í /k¶P) çC°N™ùÙô=ħÈ»:^S›X/h‘_¥vÚ_ëÆçü!…óË2WÁ0V$<þÌPæíú|‡Ùe©+¸í5-°]zMåÍÔ蕼›ÚÏ’çí&¡÷œk'V¨gé õtކÝ8'¬ÂplãíJ`bÿß_’rò˜“¸k  e N‘És‘YÂöõ“k¿êòd|ƒðÉÖÔN¦"@)kr˜_\åbâ–]¬p”`ìA•£°íM_Cï§%Ð59¼r¬Ü ãKVÕˆt„VuÀ?^t+Q/Õum%5Ø‚*áТȧŽÞÝErsÞÏ¥îãÌK芜­ñû!”°*Lf~¤ ³@ê”'ëæÌlÅê$Uc+;þ…´q»›}¿_â|Òà—µÄ+ÝÉìå¥{±ˆˆ‚eù¡%\à¡K£¿3†ë{ðwWœä5S¼oTË¢§=ˆiúêû¿xËßÂõ]¯૦| }Ÿh.vÜg&¢ìÒz•Fq;4ˆÅ*)Žõ¹ÀØÔ,Ê~\h¿AV~ÔÅD¿‡së¼éaåV"Ê]·èªšòXmg¿Êe‰²ŠW¸·n|µŒsO†0wa„Y®³†® C{qŽõ8wYÎàá}x7²¶ð§M”ö×Eð¾)­ÜÑ7€.SU^LÂo‘7y±qà<(Æ®eެÌËûå~]_QL"£ÌEæLDfÃê‹G*rü<)¹&wšÂS}'wàWÆÝ¤ ©Ašž>96 ¬*#= wšî1Û@ÆMØ‚˜B˜ð‚/¿nòGY­·.ãY˜qgÀÈ-¹q" ‰E….¥å2ʤ»[¢à¾Œùóh]6frÕ¾ŒDÜXàïkbf¢S ÆrÌż¬¹9ÈŠ'ÎNöÀ‰'Äh˜Í<†öú…ØJq "_bœËs¶ÎqçÌFPzá<‡6`÷pЭg½ûJ wà? o•Yã—;H~¸aIp_Ù[PùˆOÁ 9çÙXI¥>؆ÉÑt‡îí ñ7Ÿ;á~¬IuR~Q´'êî˜[Á¯†¼X•Fì‚«eĮߋ¤a¤QfMø¸39,®z„ÂF™y´;Ìàá–˜ïx¬ªÕwÎ4U#y’š‘ŸÀ¢ÿ1‚o›˜X“^tãž <Ü$¶ªTã铤ˆd>áÄVŒµF¯ÍÍöuÿ'_j™¦¥+ØçÊz𲤽HOam|¾/gÖœGøÍNפ©à‚޶‚¿·yNí@VurµE‡\5Dí|ì}%ªQ,l `¡ÝUä Þä<ÂG_ƒLxH»øƒ° YÌ×lKÝ«Ÿ´í.ç<'¤ ’œ8tm 㜯akö/R…5nò—¥zš34@¥øic9–%¬VvG81d…œÃï|ÇnߺäŠÓdä<Ó‘£xKº,8ãÈXæÛ; ¨úu* í½g–ÄT(4ëäP|°gË”^fÁaÞ 4&6¦€I˜Êˆ__„®0M‹¤ª¬L29k¢LBÁ/nô ïNòT9 ž §e@QŽ't=xu|ÂIÄÔ~ð˃oèpwîp>ÕT¤= i§á…%eoÙ™oºIêŒÙ1[©è9« CÅjŸ²¥Ôü=H^æKJ/•YI»õº_E&0×µô©d ¶–ïð7lW‘@ݪV™>£.µw0¢JKIAª´ÆŸ!_›wD¥Ã»ŽwÒœÎÔAóî™wŒypP`–7p%¢×» ÅçóûÔ&@L0¤]Æõåî±7ÓûGÿ•6§Ð%&ÏÆ:q ùY€[q`JÀA ¿cÛ¬åbF-¥6ÖU¥«[¤f±¶±ž@ŽÇù¬ÔA…oÞkŽD}ï'âƒ?¶:Äú¾I¸²í†Ö£àƒÐÂßQ­ÁI·tpSeûÝ8Öä`:²ÑhÀã”.’ñ%Tu÷lÕr‘ß›§¸S/DÃ=$tÃT4‹,úèL1&³ *Îf‚QÁPVî#_È 2ì¿2¢11Ý¥Q”R’Wlm &!&(Mbû–ùH5u’/Q””uÌ =pŠ…›ìÅ%'Ø »nõ²2×Ó9š«iÞ®Iå ÎÝú¿4HIGy‡9­ÆÈ¦ÆP„Ò1‹m¢/+F𽜆y<ˆƒÌòá$—/ -XŸZ 'ÌQ9½šP6ç‹ö|Ü·²Zëür22Õ@6 l‡\ìcáqGÌZ˜âš"?h*"ýç¯g'f` ¯ªjÉówuŒ 2N÷!ˆz¦ÍÊjo&(Ð ’bÍ%3©üÈé Ú–gÿÒ†ž²ó§7Ñev._f{…Þ ²|i03ZÀæH·çÆ {ßÞÎÙSÁ ñ<_Boà€)RÐt¾Îˆµiò áVüuvHª°v"¦ ÅÖ' L9OüÜ„ƒ'1\­>$t›m&Ä®z=R¨ZYLØîA!×¹žøÑ -¬ûØ,³£îÿS&Š­»Ø×õ¾º»8å IðÖQ”¶èOERª?muÁö]m߯7¿’‚d\šH­’nüëÕÑ࢈¾…j£yÍɯÛE¡Mϫą ÆfÇ¡ƒ¦º"0ã*'­oF{Pg¦üI»ê.hú ŒD„„H¬°éÖ¢ŸUè]¢ ?Zk8ø³D+›ß¾l;oöèrc-Ÿ[bœ¢Ùï*Î=ïXï=d©rœëá’@ÞCšþ¨™F"a±ÎR¼ýìtÛúí¯&˜`PßÕ9ž:5¬rC¹éX÷PfÌ5ÅÑ8dÞCßšècÛïÕî¶àôæ¬*Ü#èIôSjc’HÉCs­V—ö YCãuݯC0¦íj¦·ôKÇUAcòƊ繑òGijžÐq\6WüvÊç˜Eçϰ¸F™"w:m@Ý»»"`MA‹“ýäÛÌ~nëÀ¦<3a*Ç×}Î)ˆB¹ ¡ã^…pCd4öÝÙÇæ„>?EO/Åmµ£”ÆÂÙ G×£`Ù9ºµœï+%Ý4i–=|.ù«Þ˜[èzœBØ`e¡àF²{C”ˆ½R¾kr¦zãèl{€[6K6dÕxÿd z鯿ô~”Æhq½Fh.YÝþQå|+¡^د­%W… ÷®M” §íÄsL:Þ¼Z…··ôuJ ÷.€…I®-™E’á–zá:‡•xª‡vÁÝ*üÅ?÷—ÑåR¤è—*jB'nÂ8SÇ« akV|õ‡¦}uÛïæv–Hy¯Â²ûÞè“j~w­V¨ˆ»YI¯^Ü]‹°‚"i('ÁÌó‰À4+ôWÀH>¶·VØÞ q’*72f/ð??VóÌÀùD—m_2ì¿YÙÍ{3zöLHvJKì®n• ž·‹äz¤æ=HíU KZïÔØu@E q=}2ÃÜ¥krLºÀ{¶÷ßA£€,6¢!`÷ßaà«à"\ú(ŸiiÙˆm"8 ÑiÏÃ(1_Xš¡Ô2R·BË=1ø…Ä„<á^Òy[ÿ>Þæ?™)o³—Íéãš|jh‹§FSWêáÅZ(®GjPQÿA ¢‚Ð bÆÏ¸NÊŒyî¿kvÙ¯toÆÆb¢‰mòjä3;@Q3h–êS7–…uô8½YþÎU#³é·%>ŒSg1ÚÝW%`cPFøÄx­».ë¨!\‘© §”RÊIpì,Ùî$Øiåzs¾‹I%.ÞÜÈw±ÿfÇIjÆ¢.*·¢üJ¤%P~%¤ƒpbÞËÝÈÉËQñvþBjåRýøËÈ­mý>1ˆºçòÒ–Ö–½)$£ãĨxeÝáÕ÷Я÷äµ)7ñ5wÆGÒÃ1ÆêÂ>ßAϪGxu²ø0osì1ˉ] ²ßa˜Ltu ]­ýeÍd@*L€(QõUh"&©Ìõ=oKkË"€~XÃÒF>ª[`Sõõ0{üØñ;ÖÚ ™J•e!ŽÞ‹åÙjcc&‰˜ZpfÎ2ž³‡Tf1”ï`aôV7)PV]½–”­ÖÿÊ¡ì¯ëZº-‰ º^üyâ!hæ.° Õ‰¾ñ )Ñ6Ž«Î—]¬®A÷1­aû¢äUô®â0P6•©,¨ô©­hyo›ü ïM3ûqÀtbHǸñ?ÁPU@8¿=Â¥ÀMÈÏo -9HÇýÌP© Õ..8CÏ€´Šj'@jÿQ6žOéIJðÑ[#ð-Âgá]`®›Ç¸(/KP úP YyéH9(9$EÑSg§hWðŒ¸¬µ¦¤l98ôaö2-dKIk; ¾3º8ÏE¾°r`%t Î=n*öC$ÓïvϽþé«´2 }^/éÁõ4>ÁÔ–“µZ9œØoMœTÿH,Óí?`µ[©kõ¸ëé–K úÙ 3ޏ‰' Ás>BúA§´Íä·J¬cÆzN„_ãiì?XY® ~¯v¾Ö÷Ì•¹‚«vÖÍdÞcôŸ|j,¶UÝ.-™ ù=ï|änh¤L¿Mø¦¶èÕktD;±ÓƒÖ¬r??ž(àùý´‡:t³á¹*…'úºr}Òñž Þ·ãø‰ø2aŠQ³Še ³¹Föç9ØÏ _ðÎl9ʦ^%H-p:­K<žÄ5TÓ¾ïÐû_EB€êJ=vñ›/ëÆ@TPöØ%TÅu~úËÅr#æÑ;ek ¤"e)|Áöü†!—´`¦›ÎKkY9ö]aI:õ¡¦ÛÆårV¨¨yrº7~¼LÑ߀֚”)-Rà«ö7wá K)ØWNxÖ‹ÑR V˃è±âk¨í…G#äšó3DeoÅô*òŶt¹†&jœêókÂ2¬ pïj8Ü‚±š¤ gG=ÊA í©u¸–Ã̈w󳪮™þ“`ìÛ1lÂq†¬GÀöP`¬}¨îT}´Š–%ÕcTÑÕ‘ƒ$“«bâÈ­•&¢œ!ÙBf#tª ¤/ ¶ÖO*nÐg¬èäzô.8êò‘ÞF§Q2oR$íÅŸ¹½în1SË’ß§29Ž1ë|Pü8HÛ„Œ"pvT2ïcb¤*+טœ nÁ¾ÝÂKTó:)2¼²0>£4°¤D¤¯Œ%Öœ®ßý¿ýä\–¦ßš7… qû’Kû±õXžfñ¥åbÛòÑU¼B¸òèGv\Kf†öHÙ^+­›ÁÃùȹû¾BöHÈ™ñéÝêŽ\rÇÔsyòjD틈Ë%D:¨ÒÚ­•9x… gíà§ÊT¹l°ò¤Õɸù5—ÒµÆÃ_4º« (Ûžïù¹ˆ|#D9?¨a݃R-W&b>ˆ»êhlÊÛˆ9}²Ç`ÐR$ÉÛ§š„ÜWÂëÚŽB*•P¢ìÒ4}þ¼6€ÙتAZvaçî’„ q~÷îë`¦UJ,î±fàÏ %£¥y”6‚‰ÙÌóóc¯ ºúe®t€!D\“U<æÄgùËeð00gg7p‚Uá“"[ÆQÌac¤ Ð`ñâ •£™ßÓÆ,ª´kØÈ½cØCŠôÁU}ì‰9 Š3ÂÞ„J‘]šveE¿ÃNØØÙÍ„J>çc¤P|]Ð÷³÷JlÐN€þ%Pqm÷w,š‚ š—õ¯a¬»:‰<Í·<²Üú 6•}¢:>©ðø nÏô™Ç•ˆ`-³ÒdÖ’ã’vø¡ç÷ì±Ï€Íúv ûr$µ˜¬XZüy//_ý³_IƒúMƲzY‚!ª»©y‚N:ç9»:ÄV=>wŽ –Y -M¤gA®ú½â/2½ˆ?vÆûÄOú¬R8cÆ{ë†Fä!ÕžÊÌ”·'-Æùeà.lñ¡y—û¾hèÕ §¿£5ÝWÂ=¬ìÛ*¸=wáÕ¼¥~©÷8‘.ßCìàEÜ'A ñ"<â´L¯jl}º¯À ä²<8àn7b‚ÉJýz¼ƒ‘æ©Xšé¹`æŽT–”—Av\b[ÞvŸŽÇ{¸ÆßIÜ E³¬1O;;øBÇ ¦ÓÕ*¡ã æ÷;;cd;€«®¶&¥Åh×2÷,+©WFQhjB›vhAÞ¨ÃÓ„SçFë«» Ü6™$M ä«Àx·ßž¬ŠePW)¾ß¥#gû6÷Zy»#½;‡MÕ/ô¹R’Ÿ³úYð-Û>àš*=s0R©Ht_1ú°Nëú¼Y8PŠÅ?4mZ±Õ¥6§Î:‚—Ýܶ³ÄsÅÊ(«vðëÉL> GLóvaßoPOÝ’cÂ)È·Î Æq‰IxjØ3?(ÜzI“ÜÙ¥¹ú«”—F«@âìSÇxöw³¾°'1 «‰"ónZÀ$z3î/no¨I6¡EɼǓ­‘w|¥dþ¬ ™l‚Ú·é>-qá?Ö„#RöZî¥Úÿu·‹ôº0¶Œáò§ÏO¾×rl$Ô;š.îxLîò3¨$){Q”Júê¥h(â÷|(‡ãóEUÁ¼€ýäÉÎDp'knpO>"ɹ|ÔKÖDƒuÒ`ÞøI$¸8®yÆh’uir%˜Ç>ÝH˜²­££^+Ž dº .î¢OÎq nnN!²E¬~NrÿÐb¾·?>ýK}Hº÷LQ TŠu#G‹£Z .oÄúÓÒ5#øÚ‘«<í¨Äríñ|ò*H¼ĵ€•É’‡—ý,gŠ»#~‹¶fvÏŠ¯§ö¡ºXÑ‚CšñrôÐ>%–OfÖ~ͼѴz`<¡ñD›†`&:¡ôî àÚƒÊ:&³…•'÷àì¦X³Ìg `°ß´(_ªÞká†d!BÀy$"Љàd[vRW6—MÌ…çʹ=ëà›²;h…÷A0¢€Z¼;Ý9=[![˜ØÜ£?kŽG†W?ŸýÔ-§ºm[–¶³Å$VjDêĽ´aO¨l8:šÉªåE¬X?ç„Íi¹EÆ:Ë_¢NAÊ÷ãW$êDhPe!½à,²ôå¶õRnâbd (`ÞB¯öu°é'ªÙäÙÞ2éʯ•ʸ×Öøæ±ñG ýj TÉ‚¹ë'6ÔSÖn>­a|“ô1pŽÈìMÃøÌí3÷›/§*¯ ³;§%¹ÌP\öíÏ$°©8-{›72W¯ƒ}õb ßµ’« &7|5Š9¯ÜÌêb4`³¨, ¬*¬2€Q›’bxªöùé£ãA6x!5ªry24©c÷öÇL4$ñ2ÛF±«ëw;(‹>Ê`b:öÙé=“쌌.êßpî!C”ëY ¨ü%Í'½i§ºÐþN·<©¨‹nÄB’áI#ò?R}¡Õ€l)sBgêpVÖó¹É2àdàýyéŠZ“öϯ*§ê-ô¯ÒÙ´nywD/¡ dJrucXLæøó9äj¿ f„£**bv@ÁüW…{{ŽJV}~©T<Úê½–ÙþÅPQÐäpNÍ*–h„ƒ«×ïè+ ð)9¢Ù‹x>á=Ï\.$MÈUVöfÇí‰@‰³|Ò«jÔHÆhoV…m’ï[e6iÇŸTD,™L1'ÓÌØ‘Í¡S~›»ÿ?`.jÁ¸ß¤¸ÓŽiÜë<…z c:÷²á¿q¬Îc†¼ÐæÏþ†.†•§õb· é忎O+;‰q÷—KMp¾M+ìaB©¦ÅIØ÷2÷@бl ¾ægYHú3ôÒËí#Gú#R'°ÎCýgž1¦­Ìçf_6«‹›½¨ÄlKgR=OÌõJ†³kèöéwZ’.â¦/oˆ‹å,“ ªúVÖS@Eå"¹BªióÌBú̹=ß7„ÐTªù]ÅŽäü´®ì;bˆB‹zL€aâ~òüìŽè£’þöÃîïñ §{rõ}Ä—HZö Ðà”Í¡.ë t¾a<á¨gTöév ÜpMêkÀÓɶWÿ˜ ‹‰}ÈË·²yã”L]SY›„™:®!”iãó#C›õ&§odd|ÿ=l¾ç|ñ;Kç>œÂ’÷‘ S”/Eàºq_ýyóL×z©Êü ‹ö3ß”t ¡ ß`Ù‘ÍÏð+Ì|åÍF¢'h¬‚ǹ£fÙUÌ€?ª¹2ʾF%6r.•úúœœ/ƒ…º‘¾ªÑ¦†¶mûW¤‰ÕKîjC›ËK;x•¬·¯~È-À³ór«6¶c×b:šê".æÜx=UçÄYÛ°¶V:ñì‡Á©yÚÑ€à'2HÒº n澃0—øEÙ¤S®†ÎðØv‰Cr¸MÑ¿¤yŒ¥ÉE»ZÓNž¦_‘d,ÿ´Ôûç–¥¤õ¥[?e!­õ¤Iea¯Ã¨Žê&¿4tÖûmõnÕ5IÏž|>ððÜ}!¬‹ز¾—' üvû ˆ‹AÅm‘Fž§X÷ @ûqwœ%âp˜UÕlS÷ ­áã›ýRëç•x rF!°PÞÊôke G´Ý–gµI÷ Ø;«ñé±U;Åffdo¹M>­wÅèƒUî¨æ¯Bò ¸"‘:CG¤R#YE, 'ê#°Å#‰UeŽfp²^%•ÈRr=j£QиÕÛú/¥Ã†)9"bÉæ‡gçO· %Ûƒ²€Œ¼öphôu`ÕæPJqF6ty>´õÒK‡4†3Q­² {“㹞á AÝÝ]üWð€Œý¹.Êx2B4)‰=M£„äƒm'ãÇ_fÅAéKfµÎЭÓ±…Õ|ÐØamŽÚ‚Þk§µ)чE ·Àu¤åÜ÷_shós¦x“~ ’2m†Qhøþì/ï^ ]Œ¹ä·™…šeÁ@«¯°[­?êÛå ,Cùë™`ÎyÑoXuF0&­|àÜ ÿz×ϵÆ,B¸°·•Õæ}ø¢ˆº=™ ‘½¬ÉƒxÚÌÌé£qpðÀ*œqC×"ÏÀ†wb#VÏžtÄŸZM[ <—¤i¾2Þ³(9Ó °\ ¬ oØHlM÷‹wH/†Ôù‰Í»¶«-ü÷Eà}cb–•5ª*ôjæž×ר ‹ñà ÝìñH¨¡è»!,Ÿ5€w㉃4½™Ï¾fÄý½Ù¹"«OŒÅmqd{mãÊ*òÆ _4ÏW1ž‹ó±ú7C«tHžjÃpdµ?‘Zs›ƒšKÏê“'œrGHmy£¶(x;²^Îqol¬%ŠÒ Fœ²Œëñ´`×lúx8l¦ºsÛÔ>B¥ÇrÔÍ5*ˆôlfnë ­sÆL™Ê›kcnÅ™³úf³úϨÀ_Zo°Áz=ln7þ¶Ãº?na›WŒ£Ã§$ß¹³\ŽWÛçìºaŸ¦Ã'0¬Bš¸úš_§ÑJ_ÿ•3üÒU®Yd0DâŽ)•&×GIhZµ‹·„"ÂR1]BMÓ¬èû~kÜ€Ë"ZÌúìª6CΕ}ö9Sù9þ¦ë¢rŒ+ …ÀeDeÑÚs{éØá6»®ÞËŸëÒ†‚Uã•Z^Ö%ÀhèûT…“Ç]Ñ‚2¨šFä AÇ„1€æµXO¡î v ÀŠÚè¡qkÎJ²{ì4Å•Tµû£¡ÅúdO.å>·Ìâ¬É–ȉ»#¬ÉP5_k“]I*1½ ,61˜³`éÕpç¡âëV2¯;ò(.¤½BV·å`‘ãˆ(M½õB_ëUº€-­3Ž"@*0È#Ýe]¬G#XÙÑ´vtªã°3ákäQ£MŽÍ/(p x2QyõŽ^\ä) ÝìòŠÒN^3¸†©H8g¥ãËŠ–ë7,Þ¨RD§@šì-&Á­2£2iLmá'ƒxhÄ+Œ Ï ¸¸“ÁÁÏ?¿ó’éRw ½9EÐ,mî=F?µöXv%Ž4g,0:¿eG]½òOSfSJ¶ÅKuÿcìE1IËÙ÷³þ‰„ó“XÐz]гø\•“;#¾*Å_øjIKjTv[,V¦­R ÏRÕ[ PÓÐßì÷€¾+=¹!É ûû2í à¨b*ш0W\óÁ6> icЦ¶¡ÐXnqs§SHîá]ÿÚ%ÄGr4‡Ú«]˜á[ Rã,údk(\8dŽ"bGŸ!{7ɦ{IÁ0–¹#»„ç ʇMš J}~x&6×({ *³øþ?ð»”ÚÒûiàB^kR|N%ÒŒÞE>÷¤àœÀL;ÇqœX7ÿû­BôƒÂäî^jÅ–=µA:ñâB«V£bfâçUÿ˜kÆtfjey+r ®¬D W‹.Ps—æ]¤Ã‘Ñ¢pÔ~­•mìcÔÀ±°S2þÓñµ,õ¹Ëkî™…^¿¤ïK{šûP)=ˆpfîŠ iGÉÿ1@Sˮژ ?F¡…™ *ñÍ_ñAÅî`´híÏ’‘Û>5K‘µT¨ÝÐÉ[%ó*2šbAHÄoÅV^¸°îÑ®*#ÁU…èI¼F‚[ƒ¡+rôæQN Û9¯Å­Ûo&ÿûX»"2&…søÿY-ëÍ ë7+¨‚‰’õùÀÏÝ.pÜT¢¢kxX*3õ2H$ªäÔyŽßy6æh¡wšÚ’-LÞèI¡E§¼ïðx´L!ÿ<Q!L(ò]k]„r: k™˜‚“P×lº·¨`@ð†0Ë»¾è_,ãcg"³6|2¡›w»h!®9>xq<½QÈ©ÞáYkj³mbvÚšjfëÍô'ÿƒ)!’ι‚Üü%²©ëÿô^î-â˪*‹Cï-ìRƒw÷@¹îÛTë8H Ïe/`.!ñŠæ/f˜n#üÀ²ÊGÞ&ÞC*¼ou¢iãâ‚´-"¾å9²R÷C¨’a9wVï/Ú»ïT"5±>ZŠhŠ£½z¶#ëM,£"¶…€ÉèÓ; Â¾‰! -ïÞ-WЬAð2¼º!4ü=­¶û NËs³Tñc„Õ@X‘5!ù“…úsq¼êR°Ä€ªJ{Eníp<'®ÎÜÿ‹|t³9J÷îpv9^gÃÏ›q¾šæÂŽ R2Y”¼^lÚ‚ˆ¨ƒ˜9 »9”­cÖòPÛú£z™ŒV¾¼ê†n¢H@Τz5RâîÕÖ6Ÿeh6î w n‡<NÉí j5‘£P=uiJ„y[¼£]õ[ð:„ðÜB|W·ÒôþCbH“•™÷yá“XBVÔÍ …+Ò¡7-]M%U¢èâ>)ØÈÅ󘵦ÌWGgþ -ºqÈpaî‹õ#Õ‘ ´¸¸ŽÐc9åÒÑWÕ˜èz±!zÍÝö¡´5ܲpˆ ̓ ¹Ö>Sü?7½7ÁpãNÛ{úK£Óm±&óñIçB³Wì\ÒûNúZŽH«‡ºnž’L–[‰w¿ÒÄ_Ñ£un±45‹ðQõø¸¼Î]Ÿ!Žóª6rÆl³³’Š,¼B ¢í\ÐÌ~§üÔÓò±®0Â(ò\vïÍÁP7ö_XUC†Ëµ7u£_LOy‹ã&Оùœ%º a|,ø÷!ñ§A_Rj,óÁk€€€Iñ4ýac%£ƒØŽ'8üèk s÷½5\ØDÐøŒG²gêú…´«ª­~˜bÅ4·ï&ÑàV…êK1å9lB‡Zú/;а]eý¹žîW9~›äF¬fU„¾°ÐøHá…M"ù4gÉ`n"Œ*ïê´%)¡)GïÑ÷tòò 8ÒùÞ~ºL%ƒ—Ím§bG T\æ¸ßß—ò+• Û88!œs\oá‚;Æ:é8v"Gĸ0žy¾¢Z9býˆÎ·¢ò†ó’•s6šÂZK£ Ƴ:ëÔtúQ¥3œ¨‚n‚VýG®k¥^IŽ9)F; gj%|ÀC‹—•ºí¡U?$N>V¢ðl¿;6Æ“ÂÓ¤QI_ F»;rŸaû¿Aâ“^Ö` ,<óÒ±Ñ*$Ùü8Ó¨ÌÃl¾—¸j±îMѪßÈ4G%jï÷Îmuc¸ð; @âëf}5Ú\Æ*ïÉÔTA¾»qm ‹ä'én˜ÉxîÁôJô@37S>ÐxÜêl²Jg¡ëKt幕¿a°‘ÄÜ'Z¶'ÂI·+ ê)hb£üž ‹²xZ¶K*ùn²ÆÔ摪‰œ\Úip6ïi±O‘ Tpï¶Ç"U”ÌD}ý`ùF¦Ú¶ØTÕäXȺ®±m'ù²ÜýX+cqAs×a6oK:ïGˆMgšœ¢¯œp\ÆNÆýÐÏwO(×3eá`÷®Ï!/Múý«£Å‡diœÈåø°c@¸ÆÀ´ê«-Ê*çŠ}=2m¸­£÷Ræà({´^Ù™;Ǥ­" w éÖl G©›ž§Õwj#Ñÿ›Á‡rh%cêݲӦu›ŽsCSAaAÝLóêG=¯.•oÆ5ã3`#SÀoyÉ!]?ÀkÙ½–Vq’ŽŠÐ‡Û4)Ÿ•(­‡"¸8Ç/%9)1«Ñ;“bœíscóÀ?uf‚Onöç¬øèm.ýÖúKò¥7lA!oƼoQV„=Ô4ÂÂ÷´Z³¯å¶5¦¹w1¥o °Žßk7`€Cv¯2ø6ÂøQ8¡)ã+­ûñÒêÿ½Ô/Y¹°– Š¸ ß¼›K‡„{Ë‚{îrŠ¡ñQ4dX[UÝÏÁ±©¯©ÉÞD(È6`EÞþZ4w§*ÿ%šP+Qt êm8Íl¿vºpJÙ Åÿ<¹Óeÿ)9Ý4TèN+4I¤¦Ì'%iHKê|+"¦¼YõG×l÷õÕ?ŸÏÞHÞ*õTJ€x6TÁ 4 ÓÚNlmww,7·p_ºH²#º’î݇W¢£›^Šc³$ëlÚÑM}õ¸õ–a)4±¨–¯D´—IXÝí ™g ~aîoµ$@édû¯Ic5·wqZÝOvmÏ„;Ï4%‚,A2£·n%`üû¬å‹›w‰Ì$¤I/T'$ŽfCKÞ`ò;ÊgOI«³ƒ 1Øû+‘öä¶_ù·„ .LôV ¯×_Ž'ÙÏ `,E‚½ ™ò>“ç‚^Ý¢*õ¦7½ ,Q“9ð-/x, h‚£{pTÅ‘,Ïy›øŸ”G©ØÕY¶¦Ôуëe<¢ZÍyG©Õ­rÜh²¬Ñ[Š3,9ÅÓZ¿¦Ió®B—Þ¨õ¸œŒÒŽ«d|ãjÑK-tyÍÙ¢G«¥Šÿð6p%Y꫻𽶜OŠoTçàgÐ7äöc©Ø`Ó,~E!ÚÉð|¾ü`ólŽþ…Cj¡—6²{dbê4kÄøv§ôù%;ŠªŽ@·ï*UŠæfçÆ2ým†9`ê+Oö–´O-A}…­I›‘Šy\UZÃsÍ „ʪÜWm•ŒTå;ø|*s¹)j­¹Y” ù´k’N™…½Ðræï41i«tš;pÿ«²ÅDŒÊK ¹Á¿<—0Ä4Kè=·RÆSDZ2ñíoD}«€ ­L× ñé«ëéà6øèja &Ñ”€yD˜&ût›ê2°áþÈ'6ÜçG Ç8˜ž“uÌ5¦MW'Ëc÷ün ²)¥k4á…ôâ> fÝmb(eHS/aYðsW‚°ãß@°…ðÅI 3üÈE9z5ÄãÕƒ? ¡þ@ÞÛý—ºÓí€iÄ6‘ jW%áä2ýâslµe×ÿr+Œå(ËÈímçvãs­)õ$6.[s/)jd$ƒÇ_F]™Løé¸)Û endstream endobj 128 0 obj << /Length1 2411 /Length2 29253 /Length3 0 /Length 30672 /Filter /FlateDecode >> stream xÚ´»UXœ]¶5 ÁÝÝ ‚»»»CpV8î<@ð@p‡àÁÝ%¸wwwç¯ww²{ÿ·çábLSÖz뢊‚TY•AÄd ”Ù93°02óäT@¶Fv,Ì *@s#G+#33;<…˜#ÐÈÙd'nä äp9[”Lœß|ß,˜™yà)R@; ã›Ò`ìP:©yØYÔFÿe“3ƒ±‘Ó›hgni¤ysÙ{8Zš[8ÿŽÁÆÀð;ÒooQF€¬‘‰5ÈÍÉÚ`dg eT`(‚ÜÞ„–jÀhadc™Ô€ZuU U€”Š’º²* ã[`U{{ãÿpSUS—¢ˆ‹(ªI€ô)uUµßÕ€voüÍéŠjoúßyÞ »+H¨‰¨i+K°0ý®Àp::YþNû_Ü(ߘþP{s5sÙþ“@máìlÏËÄäææÆhîâäÌr4g´·ù‡Ÿš…¥À äh x{uÚÿiŒ‹é[;-€ÿ ð{*yK ð·“$è_JÛ·V¾9½ÉÿCì­οcÚüËàþ¯4FNÿøÊ++Ël,íœvFv&o†ÎFÎ.NÃdo¿@SªÄ\çPø·Êñ?iþM]ôV™ž—‘ÛOÌÈÎÅÉó¯Þüï²M@vN–NÎNÿŠ˜YÚ³wú=3K»d "Š2’ªj òo‹gÇ z뎣³»ó?ֿ㉈Ëó¸™9,<ìæ·%•°3ÙÚ¾±v‚ÿÝ>qË·>9ƒ=˜þïb[ÛÜì¼þ 3K;S³ß½7u±gR·³tpʈÿù›þÌè `@w ¦ß ÿÙ—ßb–ßâ·FøxÙƒìfF6N@K3àÛ ¼—“‘+àìèôñú[ñ¿< ÀÔÒÄùmÕߎ ü?ÑeìÌ@ž‰ß˜ü[õ?K@ýÏQ¥y;§¦ ;€)Ð žIäü¶Ôÿÿœ´ÿÊ%ébc£hd ¤þ?=ýoC#[Kÿmú_&šÀßl©A޶F6ÿ¥³t’´tš*[:›Xü«µÿ’Ë8½í¿ˆ¹ ðm,ÿˆÔ)›·Ý}»,__vÎÿÒ½­¥‰µÐÉ Àþ/7à[#þ‹ñ[÷ó0)‹HI¨ˆÓýßµùÇNÂÎdjig`åà9:yÀ3¿í+À‹åm±Mîÿ, €‰Ñäüæ°wqö˜á”“À$ò[ô/Ä`ûƒ¸Lâ€Iâ?ˆ‹À$ù±˜¤þ V“ôÄ`’ùâ~Ó©üAo:Õ?ˆÀ¤öq˜4þ 7fšÐíÿ ž7ÑôÆÚøz³4ùâxÓ™€lÞ†òo ;ûo‰­íæ·ÒLÿ‚oµÿ‚o˜ý¬oñÍ,ÿ$`û ]ÿØsü6¹8þàÍÄü/øFÀâ/ø6Ë¿à[iÖÁ7þ6Á·ä¶ Ëq»¿àqПBßlAvÂòÆÌþúÍ×Þèíöµš9ÿ‘²üô_'ù?â·ÑØ-Aµ‰å­,‡¿à[YÍòV–ÓŸ¦¼),ÝÿR¿üžã-«³…#ð¯.¾±svýåðÖ—¿à[_\ÿ‚oµºý5£7ï¿’±¾…÷ø ¾õÁóø¿ òï‡Ð?·+óŸù?Oç°ª³#ȨiiúöÎä/#gGKw]æ·«‘åMþöóïÿôÿWŠ?·ú_Þ¢¢ w/v6f+ÏÛAf«ômT\>ÿË×ä_ʮ巫ãßø÷S ºMàçg@&|AV‰u!E¾¹ãÅP<ŒG¥Ø‚Z²±ó)ã-¸âYd@¡<ÿ¿TÊ<¼4¯¾o‚¿Ýw-Š ,›—•Æø²±+Ó›F¾ ¾È"C™Œê© s~Åmd4û²™9Úì“©M±MÄõ¡1ž–öûHÖÑW´‹odzÅMKÙPnùS,õ˜Ž6èîs¨ø­sã­àί÷˜ÑF]"ó´¿ sB°‡d¡í;Û1¶À#ò…ž¾Po¥òÞaHPß;¬,¨ïÃè†9µ"‚}"',6—P}ÕƒÇvKéVÀI€CÍsjsñÏ‘£Ê<À«E›˜{àa»ôÖV[ H”8ZìÚK´&çM¶•òTI 1oªw@pãK •ĤfÊV=(p¤Ò_»Ü­=WíéØjÁ¿lÀÞÕΆÇÛ¥¶3¾Ê y>a’…—àý†ä7.Z­´FpËdŽj¦€KdÅ¡Ãy^z*¹TˆË  “…NŸÕM¬ú¥Ôî(±r [» ¶KRúýZ›»s`üµ±Ñ®‘™Pk:¾‚Ö$ÈO´äÌ-&‰ÀûŠkÎécªŒ³Q0`Ò\„›ž¬_EZvFþÐÂfA·…e ‹±Á'›3§²HÛÇà"vÉÞ¿‘êuVË)e%@Ê7cFÏ¥¶Ö¿}47¢£…œ¥?HSªïF³ZP96<Ù@ÓYu@¢X+¿ZùEc>üéWÜÕ‚ÌKfÚS<†7ÇC°“hLÔ˜ÚT‰íUѼ"ŽÇrkM{¶«H$‹`Î奌:DXšhEã»Ãc÷|íS!,AÊsÂRrf ̃:pzÙåm•ä¯lÀ²ùÅuxœŠ(^)júL8³©Ã€!]…Þ%}›6;Âdl„Ê«B‰­™_G¾Ìí*w·)Ÿ±oR› ò`T‘”^¾µ[u\¸æjºârn%_~_Þ/…‡(?e©²ce%QšNûP‹¥Šp€_íìqIa¿-p ñ\KÔá%@ðñ6ªpürÔŽ8JSÈ`¯+€•@¦^ ]0­§LÿP>7'à בR™«àP€‘¤€„<½·[‹)Ê!чIã™ÙF{Äñ™ eäÅŠnÉ{+CêlT[†ï‚ù0]³â2ƒ]H­Ël~?ÅÒ‡8÷hu7Dµ÷]Mh¸„ßK½ ˆ ™£ðVrc˜ø9 Û¦Çnƒ¨o%óûÜ/:„¥ò‡C#‚ÊøïÔrí_ó !³ˆû÷üÇtž$žEKw˵k‘º…´ýn’I¹—y,‹%MÑp3_ÜyßÜ/Ÿõò¦òî†b¢™ª7?¶ø¦­ ÝŸ±ÃÌ—qö[áLKÚ~4Ã|)Fo&|+}âlw ¬‰å/}AX~Á€ý0±| í &ÁÆ|êêÐGê=4[CclÝŒµ&ÄÏð5r•<ì5S¢ñÊ9„Y"i¼é˜Ã8뾈9 ±8"h‰Å4 ɘŠ×ïM›OÁ¾¥eæJM°¤]Õ¿³í8„}xi~1¡ 4ó@¿â0­FÕv`x¡5Y>øÐÒK€ÙÅrÔâôÍ&SN …q­[·h¶Î´­@<ÜúÓ~K1ùÚ‡—ÏÕÖ^uÇàƒ ÀÛ4ï-Ÿ2Ö4?@Þ,ÁÚmñpu›Á ¡¢GM걓J¾€¤¿G©uލjÔOÓ3¿¹‹ t4›ÔDÖžò) Ç*0¼·*ýEè˜ñÆ‹:{™fÑëda³ôœÊÇCÀ\ÑðÊ'3l¢sÊêšYŒòŒ1ÎF©î*¸Oošx‘¬¦˜S|­¾aˆ66–ÌÜ¡ÆY$=VauåóøN[fK˜|cJ2|»™óÒ^›ŒÔ£ýcU®È±šu•Z×-É*)IK¢Ùõ‡ÄÉ8(‹äí2L =ÈtøÕÍ’gÈ`ºoÐ{kÎuδ¸RœìˆÓÛæsLSÛz~º”ϯ§u¦(4k(þ-*Ù?¾~d^95ÀoýN·ÌÎÌÛ‹ô4›ÇŽP ÍoÛ¶[,Y¶á!ì)A@ÊNÌRßÇa-ÒÕ6`}¥îfÞåeøhhÀVY±‰Žì(BAÉž¦« ´m‰pµOQBßúé{HúãöS6éD¯"¯u>M'¶ø„gÇóœf™,C=ŒÿB1{¸]®Ÿñ(åôCƒß®Cû”H2€?¢ì«{Û] 9¢¡±kµ¬³ê<ëȦâ‘Ïٹሃ5å,Ú߭С¹ëF›àâ‹°5©Šô¾ˆ8BžIÁùBR€×Í#ïZy'{ó,9J¸³ö—U&l<¼§íõŠ‚>»ª·ç`ŽÃâHLˆ¼"Á¼~f×OpÅäU$c>;êDzNÅÖ‘Zö¡kéÔá}Ð.sr¼€+ ¤‡áiLq|ýÃÒ’ueg/ ÿÙMiìä/g'Q¿²Ê#9êbÚŸ™¯TrŠ„EúŠ?Êua–«½~ ®ÜµI^Ä'ŧòK;£ÖõÊœCBÍëúJo »ùo½+œÍl>ŠéÜ¿%7o3éü {ªNä»sú:D÷ÞO^ÖÏ߉ÆÌ%›ƒ(ì…aÑýC>ð™à¥ âíaÒax¶À‚…eeÜJ{/fUËvn)r%€*Ør[x(ÍKã³Ò ×cµEÒÉW¡#Pmäº7öÝ£–yɹSJá¤A™IÎ7ÐBç8®^^œÜ®Di /ä`’fMA/¨GÆŒmØkqy“;Åï.½˜ÌÂm÷áèŠ+å…. ¡”7 S ³£dÁv¬WòøÈ½ ?*BíɆr&'ƒÎ’(î4g¥ßáU‹)Ce°ØFíõkÒꄬžh˜â‘¢ÅóÕÛÚÿÒxÑÇÔs2‡6­unÈá˜C{ød}74 ]Ì=èÈÆ£A G»T fvûq{ÚÞ×qš­.ã·ÎÇõÒ-pY%Ô×~œ»#˜ê,Bà%˼a±‡CžÒìÞÒ73ìã²iÈM#PÓ•4Shì Þ”ó³«/=Ø}•XÙÿ´î°5ü±+OÌ8'aÍQ„ÖЖ­Ã)­Tå?ãËG]CÊrê#ø•Bªþ“|K#Ë}Y##’Q2\oL·™Ýj†ïÝûËÁÈfa“G5 :Qè*XôiY›9îmbî]F};ÞvÓýa+1‘B&ÒÇø®9†)Ú ±v]­y±ò »øTúýŸ´ÈÕ;ºs–Ö1ó&¹·«‚þ³Uà˜ôVÎí>…Öö'±S¾ºh¡î¥#{mï}nId'k¢mÕ6CN°]gÔ‹¯¶ÍhÆçVÍù(”ÄH u,çP³Þ«¸9Çù~D;€þ$ÏK›ÙóúH~ã³ôJwÜüó2¬nÁê±huYÕ0ô4²Ÿ7;ä¥]5Ç`©Õ|[Ξç–mÌûÈc£x×-&Ì(Sò4ÓM¹X&ÌZ¼ç~¨õÊÁ4*¥Î³ëtϼä°T—7½ü4ࣲ˰Nöpš¹¢"Ñž{ž¸wáyh>~¦Ç—;´$$Lù„òFB§½•° vsÌ@­OÂ+s$$ÏÃË8ð6–÷¬b“j P\¾¬«QŠ× °d\äGñlLS"MÞ!è7ê•ð>Ï HªÍiûU“· ‡‹]ªì)”ÜüËzœµƒÌÙT¯Œ!k–Ÿ¦.bךñÓ=öhÖëö ™­#ýÍQ VèŠp6©ÔnÐ;¦z)'´Q/•näKYœ²qJH^êïñº4{^„äÔ®ø SýË]ûdýÆ0QC·N8s™+÷êöŽå­ýÓžýQPƧHj4G`ŸÖÒ×é‡ëšæ#5letW,¡È[×ˆÆøX[ƒ‹¢ÄÍyÔ]µJ› ÓHxG¶$›Suñ)¹ºh’V4³¹cªÔZÚúš|‚ p³û,Þƒ!óÒùÜ-rÆåBL#ˆúñø'¢öBpÀ%îO åiaù‡vèÕžAßìÎñÕ/ä_Éyœy®o‰ÜV¼®ób×Esëµ_Òt« 8+6#®š‰œ#U¾P[j}Ã<ˆ.¶é¥õÁ.¦åã´,CwBéâ­wZû¢½+Óµ®ÐeÃ6–qA‘¯:šj}å¶=šIUüÑvIf­q€J@‡p ôó¦´&of‘ʪ\Ô4È`þH´A?Ç,Fv†Í—ôT/ˆê2ŒÎ‘µóÖýòàŠPäsðÔœÆùï>±3vêh…ï°¯nït]ý‰X›à˜!uüUÓŸ%ç?ùV»³ó£ci‰…iÐ šÈWÿ,§NL?ºAÝ‚ã¹l Ï/ù)á¿ê*ñÁÊî€lò´ÑÐ7¸‰PÁ ôw-ô¯fó/,ÂÑòΤ 5‰UæÐ¶-Âýê—åBÝÏηîž$X¢Òú0¬(»#ouÏ”·³+·»ÉúEš! šB¥DÄ"ª~'$6¦c×ù¥HÁl £ZnOG4¹wº¼˜Ã7¬!ìùq'EÝi-µYõ³j7×7ÁÚÏ0\[òéǽÈŒ_ݘʺûRЬLsþtU\åó¦x>¤Ü-3cfÛÎЊtð'÷Ú†˜Éг»ñºä©ž0N:œNÞÉëõ3BGÜv¼¬¿Óo¥mkExƒˆë³È“Rlcá0;Èdí‘Ñ%ÊÊ`ÙšjWìü¤Ï¸~Ú`>·ìÄBY¶È3Uߢ‰c:'ÈjæäÏ`:ç+§¤8ß©uyÁ£D Ž@Yqt»‹öÄ­l6ž{iù¶û¶ð1—†âV¤ôá²"µúò6H~cö˜Œ¹&“ž…^ÇY‘^ñï¶ÑÜf˜B4»‚Fí¢É´1„AޏÙÄsˆHÛíNNŽS!H47H„ÙÅ:úÞµ»öý¹cBÇ£Ñ?•Sôж9%  ³9.GÖëéJ˜|¿Zë WŒ¨DÚ²(€†¢Ÿï'¥ë®û™7û¬)Š2öþÞKxÛƒ@p»—-,/@»fö³ñ–à<³©¶Ì§¸SJ‰lnÚ;•ËÄ’#IFž‘â"ôuFí;Éõ_dþ¨_%ð(}Y–?Ê‹å æ¤µÑ6FŒ3ëÏsÌ]Ÿ°¨Î ÂDf[Þz±¶Ürü:Áá©€XdaZ2‰Gñ¼Éž1@[ÎCÌÊ‹K ¸\Cór?¯6Þ·87žñª]4×Ö°Ÿ£UõÉo„åR`ôjmrŒs˜xÿÎã$õ&|%ž>…[Dr–b@e[$·ýÍ&$èCžbAð†Ó± – yðO.wç,Ä}íD¯n‰¯?ë1'ß sO,‹n:óÏ-mö…-—5ÐÁ«·jÄèŸ4IÅÖq U% ò°š:75†+\áQ×=Œ¥ñï3À¬|eÏ”!ò ÑòïTèk]º'çÉýñt> qã«G®…$A20–Tº{—7”}3º’fqù~«­®Ð0¨9†@¾Ò¾‚¿GÉš½Eê2—J“V;KÐA§“5ÝþóOÀß/—[ݾ\Ç…°„=|QzjÑ í¶÷%‰3»zz¨™§nOL›I͆äe€îc’3Ý4£À/_†ÂÒ5AÊŸŸ€'üâg„D;ñòE¥N,†uj¢ešIÞ/:x·Ä°”€u–îº#ö»à®ÃCHàí=[ËÇšäÞJýg#³Ç1¹\ù‹€`C¹‚óB‚Û°4ûÔÀ9ü±ƒ¯TiŽRÒ¶¹uÔîÔF˜ôw[™×éଇYÛRäd¿-½ ;óÉ+ƒ”du¸:HòˆÚÛý´¦ … yÅi)’YœÊúȶiW!+¯CW,:ìù’Œ2Àì{¢]¯…õ÷s+CR•Øpxý¨æ³j¢0ŒìITÚ]aý+-ÖÒ¥…ß\Bž>pDKÕš­=Íý]™ð79èøîž\úDÈ úBIRò Pf¢³²ïšæß¢Æ:¥;ý³ðd§#ô0à¹::iâý¢CQÞƒ0Rfà{cà>æ'xw%DÅä $8´ì õO°JØ‘ßÀÙa6&G?Ÿ|’Ø\Éc9í§QCšÒ>Ô º‹´‹(aâ†õÉ=Ò§ñ¬D‹N)]uŸ ö×^>Ïø9ßJmätê®Ì•W‡'%&h?dÊÕÚaO®~bHmE¹nn1P,çˆcašÆÔB’·§³Lÿ£ |õÜQo"p†2T@~ÒX›¨®ï?jÔ qýî‘m¶'ˆã˜ ­¡32ôLžhoÈ¡*Àã?=üÕÛ²¼¥†e9¿vøWîy¡»Ë ¾ýGö:œ†¶¯ïùåàÂõó¿¦>ˆ}Ü64DCÎÞ¥N‚o6¿µó-òˆlßqIbžá|D®XjW¶¬Ðþ1áùKô=3Ûs6s«{àçj‘˜RèïǨÌpeK®Nt"§ï‡¨­qH«5ç¦ñVˆcÄfÝØÎ…ÖôZ_f(É#d¼”2‹˜ {C€‰¤z´«åiŠS‡¦‰Û¯ÝWLqDI2vjnB—[¬S úth¡¸Ÿê뿬Ħˆ7®¢1âù¿ø/>è1Ç­í1‘zOéäºt¯ÅuÖJ¹àž ëðIŠ­/Eíä*c/—AGöÆÞ©Làbú!}aؘ󘗊áGN)%é˜øJú}B`ûHx(ð3iļâ9U§tô3‚‰‰UØ\J¸¢Ès¢ðÔ$Ë!ņŸ«¶hŠ=«}jê9¤¿ÉGŸd3!?Î{¿ÉÎ\=œd"€d Ó¢G BÈ uCæ©E™›$Ùá\ãyc©±¾Ú1Ðñ:¶;æßí¾×€9âÙÊ>A~ BOv„hZ€…d#Ö˜•"HG1ÐþèÛûqS·€È¡oØ› à$‘ç#‹ƒÔ Q³Øç(Ák*T÷‘j›‡©LJì‹û½kWM8c¬zY$ý­1 ã~«áîß2/;‚W„Ñ›Nٖ왵Ž4¨a‡’ž>7|¬ƒœõ4LUæ‹ë˜ìmWÚWO!œ²rXrÀ[cž)o±Ò@•” Új!Ïò¹á<Ù0 š‰ÔSÍâDîϵ–Æ&ÉB…¯#ñ˜ð#4ì µÇ=uÓ‘2ÌkDª6K®ÎëWXœ t$·X¬qäB<#n‡¦•_¡=Zͧî-¢”LÔÑØ0Úì´äÍ)WÞÕè,ä¨FÏÍO×K…§Ä ê«åˆ…‘“6vh Rw>³‹ CüdÊ'°ê뀸q¹­‰øe}É«ïèh´à§3Õæ3½“†&’ºµ"ƒMIË$Œ ®®^¥ÜRÔß_+?/ãËšaÆæUTË·7F½¾,á9FÈÏÙO\´HÛûh‚þ½H !pÐ hC’LK5¾f NЎΣä{ø…+1]=ì'x”äág©ˆËLw0R‚‡ÿP¨íŒãSSsçê#°XJi €a)7Ä~M® òð.bʹç;‰Q£y<Í}XWŽS¥¿m:޶<™õÊò°NÖwŸjXBQåNœsèñÍŒ,¡È•¾x/(½˜.Ýj“`·ÿ$ÎZLÚ§~PE^r“Ó»j¶"qºp\h!¬‘£P&B*Æœü˜="´F$¦«K'ÕüfìL«±ÁI†kž‚*)ý#ÉM¢äwÊ’H4ÌlF”?üyXc½{Hdò›Ô~&ƒ¨•S+ìm¨ÂŒÿ(ÍÜk[ïõ…ÌÂ`sü48x‘ìºÊ&Fã /=ăëðò%Õ&nX,Œ5¶U|9 “(„ãÝÈÔæŠùÒäf–EK½õUæ;.Ô”&“ÎÌuJ|EÃ4ŒñF–eP!ít&ù×óy±š«5( £F&˜\·S×U"+4rè%Ý]ž|ÖuÏ)u¨_5;²‘L¤«ôS päÕe®ªÆûE3ûb‘XAœzÅB-«FÚ¸Ò™vuÕcÔušôÓ¼ÆÒî샆mÙD¸¦*ûŽ>/Ø—“n›/ŠAO Ìô£*_‡|ŽÑ;Àp¼3ý4fXïÂ/QïH]Mm¯>%§Þ¼‚Ê0•¯SEKË8‘ËjMO´¬úCŸ]JQe…)½”\ó;q#/•½.¯Ðî¢øOgj>%'¡ÉÝ3¦(|þö˜Þ\8ržB‰²¼ù¨”6ƒ´&mrõÉ“æ[ÆÔfZß'V’úÝÅU×¶qã Ö—¤e!J`”‚÷§Üv‡¢~ð1É&_òhÎÄ6ÁªÖÎ#ºC<|hS„—}Bà&7ádlußéx¹‚€?ò#Ü–g"¨–ƒ\1_Òn‹n‚/Ve¬6x¦X86× oØ™œ,bI¬K.·’Rº#‰s•yȆ~ù§¯!~¶×ãê—û·4—'Ènlh6YþUã2£;†DRm!^HýV•¹³q(Ã@¨!†pz²'VÜ-âõ|ºN.í«Å 4iÄ'•ÒvCàIÐó:gŸ©eÐU [løS2 t]õ-¯°±wëPìbîP¾Ç ­wÑŒúŽ,¬†JŽ»cžm.ê¹7®æSÙ>Û(æ©\j2$©i/[ã«IKã·B‚?RV!T÷ìQ€MÇ öÍ|Ö>ù¦kJZëÊ€™n{?ÑâcS3¶ÚCþç¼±ÅÇÖשâÐÏøÚ„ÒÝ&ÂФ‹@ϳ}Qi°?±˜Ìd¶sìXÍ—ÊíUÑ’³l6¾r³ïM¯éö<ºD‘YÔ+|ÞÉІžþRàãî- }ó#D–ÔžÆ ZôCœÍåÙá’¨qom[ø­ª\çÓLõé €“¹œn.q‘ßgþ× g‚”?µtA´(¹NlCÂ.êû¾ï0`’Œ˜¯TŸéYÓLLÏÁó Wžæ®w¨c?‚{¢è!™RÖÒ5õÎLë}[’·w:;mŠ©—mêïa´‹çÞº†Ñf1ûiù…¿-š Ö^’0Ø8MR$B³Ž(«TÎ9BµÀßÏ-Úèeª,ˆÖÁrlás´3¯Cç)Þ^8¬>ºlM°:½_vÒGƒû¼ØoŒFc0€çÍŽU!¾[ìý1»Ñ•CuƒØi_Pà^%Ó~]¾¹ïsW<Í3þ/•Böc?­@|óƣκ”R²ø¬•È©^¹ŽäGpd³5ÈVâš_OUž©™ÎßÞÚ/èäöÆÕbDª"=à?MÑK×p¸ˆŒl:>/+Êb8!?hÝœõýûÀ®£öÖáºîžç'ØÕ~®X¦Ó–yŽ náÑÚêóò/îAuèi{±L<<¹^ ŸÖn.”ʼn‹%z&pœÓz šx”‡»2ì7z¤vuÝßÞ—…;˨¨K‡Ø`™/š7rDÈ8•îï%:—ºFrúóÅ=Ü€¾.ïÇÊKCI@Ç×ò’Ÿu㮩¦Û„ÎVH=õF C4näÅL…–Áäx¢Ùøíqi )¬v±’J èGNnAîß#ŒD¶X(”d÷Û“ù·±IC_(öI¤«ÛÅ.çËÍnB4•M ª,žåýä°”½¥ó5³4ˆ¶€]OÈ_ʧv©ÝN1RÈ u u¶7ñ_³)Q:e×ç$¶~©8?ÍÛ&ûT”Ù”O7g³UºîM-t×Ñ¡û5·ÀÒtÒæ”ùÀª¦l§VÓIŠ@‡ÍRV*YÇßpòKƒ;g‡]/?Ëš¶¿R HV¼£Ÿ$]Ë¥Å/Œ›{ön3 kµ(S³Óá±Ç# ÂG}Ü¥Çu׃NóíŒñìÝ¢ Xc–óˆöž¦c!.Ðþìp0kxpöEr±”ÁôÛ8CÑ6Ë„ÉëmèÛÁ…ÖêMg¼Þ‚wõ;|ØŽSºq­²Ûâ*8M=*­_jÅk=ǘ2÷-PSqI¡ãûuçÏÒåÂ$=†ENëظıÖ% [lšÚÞçnŒg;Ý–!*æãå &ê;Ô"¸(S¶¢ >h|ih¼¢¯7i>šþi æLùƒ€ÌƒŸˆL??ÑÆö³ØmdßxˆGw„¯7Oêg«*´_§ótÝÅJ£ÌTã‚NOdæ†V½_½FßgÆøöñ¾›…„#Ç5õÊâ0\3‰mÝÏ¢À\LÅ”ɯ‘~X»„[zwËçûÞ}ØGÃW”…Û*4×áÀfÂú"þp˜œ­ú2²°nÚÕ>P(`R¥QI¢07ª;K‹í*sÓ /.š‘’}q+™­Áð´LÒòU«R¼û}UÖ ƒ¸îúÚÃÊÊÇ‹GŸñðÑr‚ ñk Dé¢ *ÊÀ±_ƒ‘¸HÁÎŽ:#Úí3ˆ´îÀÙ£®>¤=7ñ€iŠ€öÂÔîçöRÍpÝ»FÃ*†×>¥ÍªY:8°ð ¡v«krÔØZ30ä ŒÔ’E³Ÿv5¢X3;’GlÀ–ã‚û1({Ö_Sf#ÞKaíÈvzD“È TR=Ÿp—‚1µÁ˜?rû‹®§«ñ¬Ô0¾³´E‚”/‚t£7{1×Rê·XQo/m´å_Wf·>̃±É3˜‘¦Í“4P·Æ-).è9öÞaL §q±7Òþ¢XÑ/;BÏÁ—%6¯r=ôµ?ûynzB ‹íÕ ôÜLdíØça^ õ`‡AG–&nu'k‰¢‘•tX9:ýAó›–f3J ™«Æ‚€éU=€(¯†Z³ )8…Vñ=ªS¡UÓòÄ̓¡îèÊ`ßïf^¥é¸KBB[,wu[”Þ@b{|„õ!žÞßJR¾1ž)屟Sš1BQ¬š\b᎘M`ŠÂzGY$øàn*šÐF¹F†í]¾ Ýø™ÐŸMÞx®^£@eÿW„››åÁÀ)Ü#$º„ý/šc,²2©ûÙqò2Ë^f\(ù†ž£v Ë©ó+úaeI€O䔣ˆ-‰ObИ·q~ò¬åØúR/ç3űñpk6ŽŒÛiÃñy#uõÉÆn¾q{Õ“6Ö —ÌE Æ0š÷Äë›,œw-H=gÀΚ×~0ùë¼I4ÛÊù;³m¯^^ù RÆG†¤òƒ%Ü|5²b*á˜ç6'4Ö$.têRš69ĬL*äuùïZxð ¥H<$¢üØ–H$Ê“æ’X§O"e‘ëH¢õ…±ÐÐöHø »Ô#š’ñÐ;‰˜"SRPyŽ:Ý_”d ¹‚ÑdC3iõZ÷\…CmT- ÇÕpÑÑJ.b!J®ð&ï C%¼Í=„~îc¿„'Q‡(6'”^õ6ˆæÞýXmcE£/Ù«¿éLåä­‡3fÐË;XJÛ¶Fζê}¯¶·ëÒÌ®(ÁmTÉ?@jŸ„z &#>UL9Õà¦c%Õ-n~¿1Å­¦KŸa…;8¦©-$¡´Äþ±Ÿ<Ó2]Õ´9wëI{â–+º®¢ï8Ö[¦Ož8²0ÄNÅÇH͉7…h“5¢¥á•èX^e,PnЂo^®¦©žu2 ­¥>Û'¬yŽÀñ {8©Èé ò1}HôUM´;‡0ÿ]ë[*_QÂùLÈ——̾‹ò/udÙS7÷b(Ý«ú½õï<‘°E+°Î»ã ¼CÃ#8úf–¨Sd^•Lãã]UI 6;‘?hôÅÓ‡Ú%öŠüòl˜Mo"DÌ©(@mVÄ5»›%›¢…D8áînž¬>·OÁFYQ{Ó<‹àˆÕ_~i‡F” \dqéA„Â0É›¤*î³.W—ƒ6ŒøŸ §:^¨t'wý5‰Æ-{-]@ÑĆRb¿Pý9…Ú‹ŽÐx÷ë¡ê¥Ó)y!ãÒñ¨rzœõôfÏÍ–‰ôÝ2Ìñ"âsÒ*ßr*5gW^÷':Úz…iNmjÌA"}à v¤Î¯ªPN«qÐt²iAPtïåXžÜ§«®½š•É…`ÍE³úO¤>t¼$ûA  œ"Ör±¸ü~ñÕôg寶ìÈxow6Oy¿ãh™YsF<]8GWšÎ¬“.”Ó—uloXm:¥á]ó+Øvl3í`.ôGC„¸“#úºÜ‚sνøŸÂüjh38ä6?pU'^¦,ljtP½WÖ/틃µÃ…H ÄÒiŸºu'Ï‚ö x}6]DN4 ¡–Íõ¢À±\3Ü9tQŠ «p‰„`ðšw<ĵâݾ-¹Ô¼ÀôÔ£þ¢\•°’ç`dc=bÕ€Å-!94t‘^›n6òoÔˈóï¦ynù—ÉV.…̵6¤—eú$¶°® ÝÁ1ï×Öª›„jo7®Oë>µæ5‡?lÌäÓ³tðÎ2Ì…ä[P-;ÅÍfƒo8©D?‡g†–‹Õ„+JR0Ç:‘ ¡‰¯-FÂ¥mCÇ»´;6&³7 朜ªy=õ¬x7špúâç¾@J„ÄÀ[Qg$ÈoA0ÏÇq8U×x„GÚj\ÍýF­JÛ­"Ë…:“²YÞ±Rëãt ªÔc[·¿Lïj¸oû¬ßî^’اÈ9`Yí–-a§(¾?Õ«H}Ø£þaÖ¤fæ9Ãô`bäëLVË? ^kå…Ò¯}“ÍŽõJ1ïÖî¡Xà<8y”§E0¾hU©¶°ƒR{˜(bŠi ç,I°ÍÔÓ8p’l¡%;•¸ ò{Ú²ÆðŠoP ƒ‘!8ku~7¿ã¼;ÂÈÏ¥ù%².(Õ\ÇŠX_«òÚ‰v@6N»ÃÆ-=`0=2žçÍFÒ ¾äêüˆ#¾ðîìÔ! µ€H;¼ì»¨ZöNÏŽê¬lÚl"•ÚúxÌfhªF{Ö7Š/d>ãËÖ?_Ž´a`ͯڛ\c¥‘ |Y×E]°û~NìOŠˆ µ ³2;³™¸ýØW2åipÁ+ÖXŸ;qŠíNpü¥¤|_Ä*ÍÆ[Þáò‹}¿¯î½ñRáøÄEWìð±µX½Êä/ÌEWeæÝ{ãG¾\ãªrËOþQÙçNÙ>ñjHöd8áëS’BA&HÊý¡äˆgR³èݸ¾çùº ã¸6ƒSì<³ðp”øÑˆÕÐ;Rj6þÉÍçñM6h’•·_<²56q]I¯N éUÁÍ€eÉŸÁÖî»å ÷@Çâ*êÂí†×F,G,âw]™ lªžöÓ¾ƒ–Våjîkg/ý¦ÎÓèžîuŠ`oLy‚¦"£î”tR¥Å¹¼+¾¹Ìr!ÎÕ³›ÀÄo¨BºàaKÖu¼Ã˜Á’ïÆò6~¡1ˆ½’õ8²Ó´,) Ž{âv»¡[‰|ã±Ïo§Pò"ð FÄÚÄcC¬ñTÔO‘IC•êu÷ÿ–ÑSB#ÇÝZ¶~Öó¡Ù²OE02Cœ›C¾·..ÌÒá"C›Žwj&­]kIÎÛtGX¹¾ÿaÚ¶íh¦ÔŠ5õê&ƒºû6¯q«Ù஥ãØáÿžÆ€¦ÑþÂ;¸ÇÏõõɱ\'+Ü4 ¤‘Ø›TÔ["ÈœÄÚÓ"G[âß¶ÇëåùÐ8Aó%£;(ÞÖwb#†£ s­(F\W&oæøáñõe˜ÓòƲTu{¾)P…êaW:—k4NŸÑ‚wô¹t`#ëóKs¸_É/.ºÛ:"‰/-µªVëEÀ*öô…£  J¤xAcXG®¸jxÎkŸ—å4÷¾QøØ‰aBçXúç ã/•ƒèíÔ§HßÕÜb¥'b<›oªtUv‘}]kÇNZ¦Ô*dô±ôî)yîÉ7üëÎ`P‘ó €-ÐúT?Y~˜9xYýôïÆíü¸ˆeU›“Ì[;~]°Ä·Ùœœz·ð™M%Û’ßØôÙÑ6 Á«ñ9±ã½È—<œxQü½ò¶p¬Ï-ßú»?úÌG^² w¥´>”oP°§Îµ£RœÍÓ\È¡[”,zÝ™¢“ÔGíF¿WÊYsi|Ô:¶ä-# `ÏèÈõÇ<ß–ì–ž(WøæD “äB³úÞÆ.ø%äQžÑ ¬ý ¿ ÓűÊ;û°DºChñm†à4A ¦]IÄŽóàÓ°y7¼ëæî>~·ä3^zÈ ç¸‹“Of‰[е03ò¯reŹ´‚ k—ï­Ð G¯l.œÃL‰^§#FÁäÆH)°il ^¿o<;g‚ǽ°¡nÓ¹h’wg •EÆÝškž5øh]Ý’»ºTñH¢æG„ã.F~Ì:ø|„ ÇSl5W̥ƭ«Ý½±¾DÕÅ„«³ªâR— ¡i¿’ê{ðTßîñë‡Þv‹L:o­¶d¸¡§I§S \þS/TÕ=¶ŒÑ±Vˆž_Ø*W­._`¤«l¾F˜±]8§é´µKBÜ·„ mº³ÎDܶÒ}¾¶zH*l¿R_œºë›'Ø$›‘77k>Ÿg ÔHqäÑØkc± Á™ƽ›&—LÎéËF»UŠêRú6diKY·ø=aEÑB,Õ£Z¨yJ ý°Z0»'uÿˆ’hvÙXP¥/ã‡åPÑ5?Ï£JZ „ú³t'8L³YÜ­~Æ'ŸÆùêi0‘ï 5”ìècF"-8WÒl¾Îa Šé;Hûpf9›ÖˬË-Þx¬úë“Û°4 êþF‹3“ÏÏÒëßà¡-uÆìîüì ,²èµò!öy¯veh]¸—N7Üä6ƒ2Ua%,´è>‹À€2m§ÅLö’ê`ȳX¯V“œnÜÕAýâÁ•„Ô#¯«‰œŸÒ\P|þô¹Ì –1ƒ¹Ÿr—¾î½19gQý6àÙ í4pæ[ÇUƒ%¤”'YŸç‹–â“Á üM•«ƒàuH¦í}פ•u“‰Ñ/]D¨(BDÀ‡`¶·j=æ%5€mŽ”%ú‰*×Ý4Km“œ…è}xBK¼ª8µ*nYÁ«•õxa =ŽÞ@áYžÊ^È©fŽHÖ×zËf¸VN‰zK§®Ç’ç"kÃv:Ì6,ÕyãŠm´ã6¡öå½ô¨£x•ÆÃ’k p· ËüÓ°5P½­0þûíI¸w¤°uS3âí½S¶êªÙ­øÏäÎì4厇 !¾”šÖ– éT¯Ûm„2"ë_kÏõÒÊy/ÛÃæå)ø—¶ã¨†’ªØ£Ù òm3Éï¥iȩ›‘„B/ë4‚*½ƒï¢…¿½cñó?É<×i‡ºjQR´ •ÐÒ¨ËákV*çW‡Ü #ïmb'är6Y–ŸÀk•F< 6¥ JÔ„QÔðO)°´œ¯È“qþâ÷—Lob÷s½[ûþp(òåú ØîE%Ð?ky£~`Á0¾T—u)y½\Ѫ•¢ÆÃòë’•ÀûÞàÜäýC¾E ÝØT!Æ,bè½Ôâ6”gàg++_ÒqFãìv|¦.…„¨ì†b¿.¥’}‡á-£§t³WïyÕ` ¨þH |‹|£¯’8¢*iª÷Çgi†“uÁôމª<|’ùO=ÖÕC Ñ&Ú@h£‚š2›—vf—«¦ ¯—LÞÌ©Dûïî6Óõ ZÓYûZo_Ø þF9ÊÁ¾¡®ß2Ú7Ž¥NS<ׯgôm‰Ææª'»G·¬¡öî9°ÿŒ¨„×Ú‘}Ãö’µÜPF‰Ú„*Ž,¬òºù‘öiV0Q}F‚„i‘&ùÂî8µÛÉHˆÑ=BãîLQ­«ÔÕyéþ²œiÏÓ"[«ecô¤ÿ,…ái·CxÊV®Ã?€¤^?j©ó rÆ(Ž Øtå"K*\]Z³ pö3k ‰œæ=ë}(×}æ}H€øt¯¤z²%gD7wĤ]„ݬaòf=œ(§êæîÃ;ÑòXÁÞx†³“ °4j9tÄÝ›þK/Ou¦ º¾ºmæ¦2Žd˜'\.Õò‚Q)!Ó#ò÷4 àÒï‹U§mºŸ'ã3º]•…SÉaB–?_s‚n‡I3Ñy¹`“¨Ï™¹dTÿò‘b¡,i6Ãá'UˆWƒ`ÿ[¹ÏJ:¼B`Uþ ÷_#»ž£jÁ·¾áÒaõ˜åj€Qcœ€Æ.†™‡úGg©Ï¿ö3¾|ŸHi®Bwšê¸ Ï,£òÕ°:À:‘øÞdôÚß—lPçí&¸îkÕ Sk>ëhßfdûˆšÑ fî}žÔc葳†’R‡ÑŠÛ©ÙÒñxå࿉5LýÁ¦Ø)Th%‹l& ’§2.§½òRúH²Acõô‹k(½´Vƒ!O‘Sj"t–-šWZe±ˆÃþ§dÑIûžÍEë6œ ¼y]qåznYà€^˜>‹àvGŠQ¾ú¸ØŽü#ô ƒ¬KiÈÙˆ¦(¯Ï |¨vp¯h™;S ²®¦#MO™2!ËÔ îÒŒ—%«rZ)'ckùÜžm{h–CÀ…OÄFã?X2#8¦ÿ#ŠL¯.Jxµ•±¤"<,íxØv"Ç•Wü8nÚvˆÖ%-ºú\øÓeT)‹É·ˆó³¹ o©Ô,¶êî¨É.Bv¥2V–ÞøÐÏ95yðØ|6¼"eîMú®mq:’ß×ñϸrYÏa“ý\î9°¥¥!a15;^G4`áØÑ´’QÛMOH$.Q ª°êÚ{’8Ô¶\-÷Ÿí¤DêÏ%+°1‘›`,R MkôžNôšb1„JeìÒWÍO3úøÆ¹ÌÍÐbèfa„ŠC}« A«Õ‡”„vò%­ûÞÖè“&¾sÉY½IèyÍJM¢C‡ñ³>•û?¹9z& êÃ&„n7{FF·cÚtì$:¸/–µ;D–h†)’—³K¸¢Ö“¿Âz"1 kÝEGxùÒYs$žè¶Töc¾îÀP,Ù£Q›Ââ|07õî ¦ ›‘Ü‹2¦pI¡©£y^+ƒgŽ#@&Œ¯:§ŠI.–sQU·¶¬®¯Ï$g=% Waå´kÝ÷hï7dk]n³<Ö8Xwcss?¨Ú•iŒ~î]àž¡›lبËeFÅ<`¶äáçþ¶x's~TZêI æ½R*1íÐùdÒvykÿÿ9[\†QJ'†åõ ÑÓIQ"&ÝÓ_2NGlËü¶eÃ÷ á•€;ÀR€|֌ǶŸA cÝ£óÂGehü¦ûŒvºäØH6/pw*ýÉàÎ. -·Ãð ú /âËSM“ì©Q0agâg¦8õ$¬hFB1¶_"öÕNHÁÊ%¥ÖÍĸf{ÌîžÑÞ~S[p*ˆøÙYH/)À„å¨`5|Ô×Z~øj†:ÿ£ä~£ì&t¾ÁÇ<¨>·ªD’ »äã—_åøu캈t„9—4ôqõgA÷ãd÷S£nàE(„8œ6žA[&fì­3<Æ^SàP§B‡A•CŠî'¦ãÅ…¯'=ÛÁá’DX’WX¤ÐãÛš'ftªÉ¦öµyÃá×ðbŠw©à S>¢>Mz\A}Ävvd?£{„òòwË" 5Í׿¶/óÇñÃWÙ‰PP4|–ÌýÛ&K­÷«Zäd(¯órGØi⃽úQ[Ÿ íË k— (‡u͈U†>æ“ɵ›HŠ®]dw²­/Õg‘‡~m– zÅÁ0®V'¹å° C!gÏçåvŽed¸~$àMÖtcÏNá¨Ø½jƒK_:§fçÿªìújq3šŽ1yDÏ*%ì€ ¤}‘ "šu¶7ö7ܾdÄþ™áÛ÷óç(喝{B1TJ|‡-v¹9 ­î9ñsWíGO—ÖÌcX2_$D$09Íïfà¤w¨lÅ;ƒ3£øÔÁÉ”R´ÜæW]H7×̘ °'õ-÷mÇö÷øÝ¦b$À£Se¿·r¼òsã: B¥É°î†Ä°<Âg¡êâmhöÿ¯sÚEaºmÛ¶mÛ¶¹Ú¶mÛ¶mÛ¶mÛ¶»ÏÎI¾»ÿ*UIefŽaïñLxÃÕ³kyhÔØÙ¼Wñ·( ÆåÛ4m”Bè !*|˜¾ŽR|J‡N8ßrwgfšO®f‚}Ì.CUSI"a‡õF2[$ü·c…ùKªOõ±žÜ…±!ÆeÆ6Ç%%˜é)ÃôÛ}ÔyÙá:+êŽbÖš“3Àx…ãö)H}¿9Äz¥T“²[s˜ÞØD¬„s£µuˆÿ— ‰míIŽ ` HÿÞÿæ/`å7} €Šïd¹GɸÇÌ1v]+6F‘-»x³b ¯l©>°¦¥ªù¦¾^ð0'óäÎ}ú­h¨C“ṯ¡—#¤pú{Ò¯¦È`ìŽKòˆyÊk hy)•Z"$ó#FT¡a­¬Î5ÒÛ!"ý ¯k¿ ŸCò Þàn¯Ë”˜_Z²K°opÕÓe¥O»®7s 0ÔR°¼÷ i‹)§F¥œù/uJkbëtè~âòa&Ð1þ>eS‚J2Óz¡›_Τø—z0%e´×ºî³ÿ‰Ñª±‹»B’'y}_Íøî¬}ô¯.‘Û9@7¤[)‹ù½þÍoÙ|{eˆKÝsB‰ì³Ek÷q£¨6O)©O*oË!­•NÑ÷þUoÂ.#º/=Á'¨æÖìnì)}FÄ^üt«¦­6Ó‹@Ýêë—Õ¬^|´I[ÜsŽð§þïGbÈ6Éã ˆ‘ ¸/áMd ÁÊ.<)æEkõèßÜ“pìR“Eâ"¥«Ô5+t‡/<ŒÀ€d'Ð9’®±Ùmó`¸pžê¦çgËú>÷úcЗ9ÓÈ¿8—N7 ITÙta+†•†©Ýùµ#¼5%ײˆydD¸0ƒ…~ëÂþœÞã krÊ~¬#òý?ToªÚRØsiiÚ²á‘ñ8úŸ¼È[0Â{ˆgâ¤Z8SÙzÆdÒ÷Q3´gªÑ¬žbÎH‰-WôÝOÀ FÁtÙþ&¶´nÀàTþ©ÈùŸÒáirúRðáˆ:O¨\ I¯%¦·æCÇѺîç@ÄÀµ" ÝV£„ÖñEn§¿£J Š)öŒ•r$ìítyŬëýÖûýA–\/©É‹&Ñ¿M O¿qQÅ2 ݰLȯ0Ûÿl×eñ‰± =çF¶CËý®óO¼½Ô\‹²™«Og54-Ëå}ûĽ†òõ$úáæhOÛŠ+pÊð µòSÙlY8öeõ²~ÕúK{fHoAŠä°‹ìOòìÍ fPh ŽÔœ€‰ÁL¾æÜܶ `¬R<èl1¤`•ºÛ³½f*áXQYCÌ“ædlÎtm¯H”‰1û#¦ÙnÀ çµV[_êø>…¯*E…™ùuñzqÓ]&ûÝ>ꥱðpñLtô|¢÷Ùl9 ‹øºÊ$$t¨÷©>Â˳T°¼º@be˜újG:a̱+Ò`!_çe"5ïhÌШðUŒ]™ßD¾—öÐî±tŽ „e•Å7ImLpDs²[{kký€ñQïOúaÀ!QÇ¡ö7y½Ú•`6R2×Ù¼9 |ðµ[æ}{9–]¶±ùý£ïÄH(¹v!°½¯ö‹Ý78$ùž ²šé@zÝ~³õ'D FDþ©CÄMûL£¾ùÌNëAB®z0¸ÕÞ0ä×f’«TÆ(Sš#ŒŸ«Æ¦þ¢.ÉÑ+ñ`ï¤ Ö`É…G‘>?/_¶Á«Š- >“ê1Y r{TƒÆ-#áµtWýûrH›JôÔÇ2FƒÁ LÊÕÏXÍTàêÐa?«¾ã’ë¡«lš¥ÀçfXahgáUÝ44ôò ¿þÈ4³º_“©(^ª¦›ŸÎ¸ªxÓ“Í?!’2Ëó€Èˆå$ÎÅürÒ]ç²ìªô €;n`W¸Qœÿ±bUù›'ù Ê÷BmX½Ý˜·‹Å—¿ö_·ÊòR¶¾ß Od´ékkÔ0«Nâ9ø Há#Þ\&UsfìÅÌ»•,Ì <ºÒü3A ñÙå§ íóL~›í½@bèk4R=”šD²ã÷õ£”Êf‘˜$;\‘¡†( g롯Æ'zÚ´Ðá{ãˆUÿ¤Ú¢þ|’€ª&oy!Ï[ÕDß6ÜÞ2íYÃÉmy¡“ÏŽ¤¼‰dE¦ß÷`øý(2åÓ ®&'Œ7ê,Š}ž¸Üñ%þ *AEHÐeGš¿=¢jdQ¿ÇÀ=UO˜ÐN“œX*åo¡'iI±BÄ…7©ÏÑÁÄô¥TGª(€Zä¹ãCS#Ãq[ŸÔ¬ð=P¢_%jÁÔA2ªýrlzgµÊA`ËcYYD6B†œÛ‡Ó–¤“C ùe,½ŸÿK\b€éS…þˆÆ¤×®>óu¬õ¦œ.“ðô³{£Bç¥Úv!ÚßÄ ½ÛoòCDØÎ<šjšMT´Ԁ^’ ÒG üU¦4Ï}fiåyÝ€Y¦pÆ©ú›@«M˜Åås )Îó•@í­ªIÛöbN×Bpù‡(n ƒ˜»Fœxö¨žs¤°ÞI6Pm<þ–Yb©ÍÂËoOòcü€ÁM§8ÕÓí*7}—¥Qªg¾ãþä¥NÍçs´v¦·‚GçM¢ªÖ¶ØLì”ÎóÁÓ%Žù{;Ûsί¦w³K'´ÄX$vêz2Óõ˜§¿’H„e7¨eJ"%ï&`؇eÚœ—ãOP*<1k’rtGŽ»”;u->8sepGŸÕŒ!’¿}†dm:¸9wÌ¢p©3-n½ϰ9÷ï@˜ *™}ë©î=¦Û£5•àGä¢'( ½Lk@AC=œcÝkÀã?üà\&£94uÿ«>YSJ)eyÃ'£¡ˆèÏz.®œý+âsï˜ :=âØL<ñ,kl&àëg©™×]⺠zJøÝˆ¢y r‡eûÎÜÀ}a“w;Úæéì2§?M7Z´BÙf0!Îb²c§ñöÁa(:ãJX÷úx«Cc/ÿCÙÝQÏxMrCxžCv¯Ç*_Xôo Ö%t×=> IG³R¡s<3–h¥ª"­imm¬{ñƒ¦”l k`vÑàbµpŽ9î2Ž'beã*¶Õ¶ïîÜl€:‘‚]–¡Ø7š—5½µÉLë]b3d¼c,^qým½ýiôUË)H(å¯ò•mùòg…íj…ÓÖ\î\;ZA›ÏáXÎ+4ï/m¹Û?ÐQ·€.þ˜'|·ûbʇ¦J»1Q³wº2Ÿ0ÿâŽæ€áÝY”ÏWj±þ"[Ǧ‡3qÁy·Z%ìR}Ki¤{ŠÉf†…™üòÍÙÛ ó-ë–nÜët¤úk¤úòwA_Rÿ>ókf¿±–oäMÑæ|›ðæÄ§™þ8š¯tØ)Àm2¨ÑßÁŸÙ\o42•ºÁ'Y–‹éæÕ¨§Ï)vK×ûN³ˆkè,ÞQ«¹PÀu:Øÿûÿ½"›£™ðt«%3þÏ•;ðÔ¨.ïáÔŒ¯¨ šFãYÒ‚<$`ý>¯£È¯–$:fu¾màܶ)?\té]-%@¦[Ùåzen‚H>ß‚ÊõõGºã·²²Þåb—„&-áµfgÂù°¹‘Éû÷o§½ø1Þ3Òf‹¼[·ožÍ8~•- ØR•MÜ(:THm/µ„&‰Ã –Ýù×ïÖK3bª4íögR2É 4Œ¹5ÿ0²Çi*¯fê¥øÞ2 Ov²»‹gØS>k«ïGex‡¡Ê€^¤ÝTä Ì®' ˆP‚É\EÃÃîrÒn¯–W³àð± ºñöðZækÕ›à¨ê¿Ì°h±m!–o=ÝP*2!R9x§þ¬ìEÓµ¯ %cy“Ç£=©æÈv\³]Ž;€–¶¢^±O\XrNʳÄ«ÈÒ"vŠå§òK¿“Xb£+ÂYå5“mG9úÀå»Qé//Š,÷©ñþôäûÏtðXUœ€ ÅN¿z…'à?Žn Ë•"^Mo™É÷cöjbUˆŒÈv(Æ%áuøl¬œÀ­7$Xî äu$ã8˜Ôî¡ý. v‡BP|k¶ýÀ)PÊ$“=QX¶e샘å¤ú· –e¤"v!ùïßP7ítá\£þ(²rͼ>èk=¦ù—#%õ. %ôÝäT²'2néð0Óv_ïÎà1”ž9[X“â3FlÜé5¼y„ÂÁôÏ&Õ4þ¶ÂQüÙHÝ Q½/'I³žÃµç‰®?IéŒÏnßÜlõ¬1{`˜NRÌG_©ß”HÀU—Bjz3ÇEÃ$}^Z9¾ußí&­¬}FåÌ.$æ‡Ø;£tÉÝRýTÂ[\oôéžË½š«O¢¯C{ð—!TÞÒÖY­od?Ÿè?!XßñÝÄg´Ã˜ÀÏX“P+óè‘™¢k§(ƒ‰ëãRâæ»õmÈdM‰[îHùò³ìl&dYaH¿cI¦ŠËf·zñWq0­ÎaÖ8¤þ£O“7À¢§’¹p=eÚšò‘ÂÐÔ(]dže*ÁžüàŠÍq?u—cmù‰”„ñ2_¶™ÑmÌ®¹xY‡üÀ,Ÿ¿ÍZOrf9ZЂÈXSÃ'ô«k½0ΖÅÛÇ{¹ÌdM¡"‰øGq§-pÖ{B{˜¨œ 1–È&î™eÃkQ“\ Û°&õ#eMZÁ(Š”C-²ƒ„ݳáv{ä¥d€§A†zãú·(tn;H¦ÈÒùGýZÛx[­£7›`ðîÝŸÊÄiI ]2g± Âmº¥ÿ ¯OÕæBÿ9³²Î£žÍxNd®Ã%|il\ÖÑú Ê9c 7ª„Ç…ù_\‡üÀ–I¯šK€š2R-‘|å Qß×RÜ‹²­‘Hî˜3øJ°j½Xˆ&C‰:ÃÝž,¥?ÛËG*>ö2 t{Txv¿n—=ÏØ( 'T›)&d=¿^ì iõ¢pévu Õu˜!­ Î8ãDÿÒ”´† P#Ù;P2}ØJežµ‘ÐâÏ'Ç´(O3Ô;¶Çwm­Lç|žGÌó4_FõVúÖef9`‚l7›¬z„uaÑ?ìR¥˜°\Õç×¢Ú§¿­çú+/wç^ÐÓCßvš¼ý‹L3ðºyÖE(3‰Uµ Å›„rÛÕ‡W&6¶ˆUWØ\QO+…“þ¾œÃ%ÝØè‰w &vƒ¢„Kz”ÈwóV˜¬ü–ž¥`HJo“²¦@õ“ZŸô¨:p•Y1îÌ— ]¶–öÖÊ4‰©ûzÃm—À9ðè¬!p‹_‚¨ñ%åbh°Ñ|,]ž¿ÕNÙ„ÞÎLퟩ[~_ñ7_*î|Ú;ƒ€"QqŒ1MbŘÿuvÕÕ²7Dê•Þ©{MVŒmݽ+cQ¬%=~7IMþ“1è¶ñƒ4&óddc JóŠ ¥Ë“éèîx!-ÙŠâ%Øÿy1 ¼˜?UH6ƒÙÛ3î ¤6È|=ê.m]Þ8ãnªÿ"2„¸ª_¾1ëÐ÷} /ª¥¸üÓÏÂ*áO¤úÍAþû.ÚÚ«KëËû?* ²¦±|=•û´’*]팩åHØAVߺ+9[ÀÄ[Hñ0Àù¹ScìíøŸ¹Üù@1Á6x®¡Õ<Ç,ãè(ì€Þh äXÉP€°õ‰ÜháÍJímZºù"g Á;….,.Ô*›ÎTˬ2Ó‘>9NëÙ"p5ÏÍ¿Øók$ãë«<ïh&_\Ž(MÕ‰¿hY¹Ág‹Ùºô† <%ªS}íG}û$¡É.1Y×ÝW—Àj”ñúw˜agS1]’BËø"lRh{œËN²–ÇÞid%#[†žh÷SOV*׫ØR *õoÕÖ[æ«4±ï ¥ñ{ƒ"N•AäCµÂIO·gF&¥ÞÜÆs~pâ‘òk+ ¥è×ÎÀN°c?C¯”Ñâ³ü¢R~ÿû®èó¦IL*$ŠØ¸lU`Ý< Íâ¯|"»äëDA{w›`F¢EØÁ@\‘ïÆ6œì ¢È÷!™¡º\I"ŸBÌüôpŠ/ÀÓÁŒÖÖ£¤ »ÅÓÌ›¨³As¸5‡Ûê°I¢öÔæ©HQuu3?Uľ㱰ÃeªJÉpUA&§ôPç‰ÊÅ©äÊY•§5]üJ`•Oë0ê :†=èîz»§KÎ YÌuwÆ«XžûáÛñ8†5+Ê_lŽyt3}F3Ù Þ`» B™é(E]º dknºå’ZÁ¯[ÅgÍ–Ö”ì AË+¦0¸²H8N¿ë×¼°®;™”@ËÌüPŠ%‘âûòUý’JT`6v)Ä|JZòCÕ"Ö+ëVo4AÁ­AÚ©-…ò¶·Ñ é^Vòp†WÐEŠue>,XZØ¢!³4ÊEF!Æ$Ú–S-En¢Â§°IEP¹°Ê7kR8Ýà '7ØO‰…¬"爎¬r|‰QP-‰C…AÐЀÒ×—šÝð`5g~’Iòàûþ܇<:ú {²)!B›J¼J$¿á¿%–ó'ÉÖüxÀ´'úåHLç—ìÚୠƉHþCï–«æÃˆ…j%3 'ZÛ{Æ&¹/Ê'§§¬:®èÓ®1Ù¯qHådBfv¤HhŸó®•N¿aY‹Ñ/Ì"¡`PVJ9c°ÙY+¬Ï­è¶ÓÁ¸hŒ5Ã*ƒ¼ žÛ>yºÐ lâ±¼6]8˜«Û\ÄÌàÞ,³™ƒ|ÓI]XôU‡2žpá žl>žÙŒ/Ó$à/œÑátç1Dòê(ÏÑ.©#Z€œ½î§: ŠóÞÙ[×Õ"Ú®µ¸n~Û®ð— A J¹Ü™ »õ•…²‚O‘Oó“É<Þ0CBü-ù·ÈÐi3›Š,Åþ¥DøF¦}xÂ?®FH]Ø«µ}Ÿl²ÁÞà <Ÿºµ;øÔßzѵ(3ØAº4ØuÝfüSÿ¶­õš*\u0×7nrà \Ⱦ#!ºaoFЯùxP…†âÉ ñ¡6øŽý¼¸,%ÞzúŸ…Ì|éFdñ9c4·cL<­ÃÆŒiJþmÈ!nu‰MŒñü|O#ù<ÖÝæ'íëÈ?BЛ®#²qq©«øb­½<Oðwb:õNûa± !+"?.#·@O*•æa6¨û9¯È–#8]γTb àWáÅtÕ"Pm™×ÖË ¤Z2[GR¥f>aøÀ¼¢¬6M'£ø§Š7¡žòôŠ™€[9[óz.©{)ŽEë§sÅw†›lü®@æU“è%È'#ó¹ïŽÙöm’1{€ŠI¬£åÁ–Ç(Nûªcû‹\öÉ<,RùþÁa")kÉrW<4?Fv¿ áu隥Ïôì­ÔÄçsM­™4ð‹‡üÄšœ úö.¦ã(üiâ5h`‰¶¯{iUlt dz¯PÑ„ˆ¿^†aE°~Æ4B°¥dÔÍ’xá/k@! ˜Çúض qtgEb=æKÒƒ¨õŒfFµ#ôåµ-rlýé{&fnyåo•Eççl«:c¹ÓrbL’o‹r³ÌU~­å*8°_½:YCzZÈZ»ö)(â?ã„\éUTwÒi´‚pÛ VöQ)eéÇwî2 Íîû¬É[·Z PÄd«Imé`yÔ's/!bs¦Ú'+˜ñ*‚û-^_O¯æmî7Šê„ˆúµ§xˆí½Hà$ÞU¥6ñKlî[-ºpÆÆºì2Ø;+§ª0ŽI.³Oõ˜ŠäŠHáãè® “^…ÉiæüÃ52$Ãà“ pà#Žºtºp²Âáýnÿ½Ç„i~•ê—À µÅßñãy¡nÃu›«éíFxdbIÄ¡ÔÿQ´½i°|^©ßöe±ÏhNáJ7î&Ÿ*‘ô¾**Š=í$0*U˜÷íXÜ™"«hùãZ­t~U9u=‰A_¯#¦[“Éc…€]ÙXõ|Ó|˜Œûe:ÞgߤÍM£ã‡l×1tÁ(מ°¢ìÈÄVj)ìyùÒ]UkªÔN¦›ï7˜öVä©1ŽäMÀ£Üg\:Ã_àW ·9e‰ãùV“¯ÿ.X:ÿXÌÖdó&ø»·ÈR´ð× ñ/»ó0s­‘~ûÌV1{l¿³‘/Jþù(Œz2bTd²µâg7µbwQ9iuKnVòžÙPJJ…ª‘©/ÈX ÔnÙ243.¢²×8ß›5ü0¼®È-Ñb(+uÞÒÙ3†:ë%Slž WZ–rJ ž¶‘‘:e“‹ÇÎg]—âÏ}ßð…mÏíãù`|–»[7q6´õÈÀ¾{¶Žlõ¼$Ñ< i¦©ãî§ÉÖ^‡?/k‡ýÝ*ÌgBj oòªó®/ÙwF€_¤*1I;¡ò®Iy*c‹òäM«EƒÊ)*úÇäÝWŠ4Q¸½èëMbÓqÉ2ØN|RßÛÁ9!|Í»Ë!`ý°«Ÿ†À¾²7bõé!û0"iäøËF”u9k7¿#@'¤Œ•hB‚å+_½}d*e1+švrNyâ)FNsΒijññwþžTè‰P>ì9¸¾ÒJ Jм×C+*4T^Æ5ˆ¤¹2‰²g¾çTæ<…wï‰'­ä¤GD£ ì\òtR$ŽSêìWšqõøûÓÀ‹è®—Ø…»'«£q¥˜vô[Æ”mCÏVo úßÚtšÂìx©v x /Ÿý?´¥ªPñÕÔ2Ök~"¥®ñV qC£A‘ò,¥&è>V8ÞW¾ztÓ¢!÷)ÝLº}÷gƒ³Y Üë‡Mû‘{Nšôš´ZîM塨˜C(˜£ñâ¾I0F÷ÒÂʋתaÖƒÌ<õ}3ÄOê–Ý3,°ƒVóJ Ý^@¡…È>›¹Yï¶u…¾t .éyçÇïCpÝïU·nÔïUÁFõY2«,s+¤{Çv¯‚ÀÑVÎ;1`0'¿Ðpù1´ê¥¿˜ì˜%}w|³úС‘ʼÑbäöÍì®},]ƒß )½ÝÅ µfŒxá½{Qÿê–Ý7.8ç—SÌÅôÿ!GËinxt%PqtUA÷V(WÝj×…#4Ö4º\d¦@g‹ˆ z_ˆtY}‚Åê#RøªÎˆØJ#ŒN÷Dã.áЇnŸk<“SÅ2Þ„À3$Æ(T “OçK倣*I~«îwZ®—Tça¬[¯j"Ó<—#‹kÌ’®ç3+ÕïŠü ?³»¶1W8ÖÔ»§—ˉóÆX,[§3,±ªàÑå7fBØ›¤Ç$0;·ãêÁ@*àLëå /»ènJ6,œ¢)o xªx?âRÞÑ””LD2º=ÿL`ƒd \jY3"y;«Žõã •wôhçMH6À QUPšm—¢Ïb¾Ø¢o¤ÞnsZV>äeÅ0+¡dŒe›½üuéõÝìŽéU­2Uj‡}Ù—¡›^vðô~¸¨È¶Î-cˆ.Å5Oïšž‘jä†Öy¡Te†A-ø)8ÅEeoVÄž=ÎV³ŠË]BUé}ë|¯|O{äêp:ù`ÔËÔ;EVç­(ÀÿXBi<¬_•!sÇ’þsçCdó¥ÆÞ?cº&«>Q7‰þ3[Dwsöû XÏû¹MJ©mø¡"F6Èæ$Ùþ:ע¹þ”åRϸêïÈ;áÝ•vI[v…8 C=ηð¢è<:]B³ŸÈl7§GÜ£.²ßYuäA•‰7ÌY’²¯\_ &Ÿ±|q“ÏkEgxS©K¦XwÂê~Y篨L&Ó3ü}ØÇ§MÍ­o;°˜/º&™• Û(ÿ»H‰ô®æÐºZ…%$uÐñð»ÎŽ”‡;®\PI—§¡Óà|ûZ¹ëd†*ZvÆgø'n^gDɠꯧ£.#ÔÌr¹Ï_¨øˆâT7ëØ¥@vô(j»Ym))½¾~eââ™|3Ç_Y“"’ŸL úä•tIa«mÖßPµé¬mù÷܃‡é³Œ°òa›ÕjFru­ RðÜòi£ZÞØI@Âø%2ï/úÊfê‘99±o8·ñóÆåÛ#.qÁŸÒrtÌVo ÒyôÉ›'M 8‹¿`Å<©)4•Ê¢Ç3 QLÓ«Ôì„%„|ÌoMØ]„Éä?òºþ+˜üÛ: 4¥|@s îSh ‰L,8yD»•Å#¿ÁU qÏ¥\©á±H@ð¨¸åÒŸq‰oz¹Íëf*hâà )l³|×çÔÃBdú4%!OÿdùWåÜÙ;|4ÑâŒÑïKÜE–Ò+$mïnÍÀ«.®ù4³Z‚­ŠwØJó€¨@õLΕ;1]<óõ•cGïÇN³µfnò¥™q$¯š¯Ï^–ÍBrb Ë"+ëN“_UöÿGƒ¥è¿ëöÒïûºŸ.ë“®i_®”BA·ý‹Ñ)Ó iƒP1{­á—fA5]Í,•üpébÐHÜÐéhÖútþ`Â5é!'¤¨öÓŽ ´4†OúT“e!ÝAÚ=Q[î‹dà¼xc÷œª¿³¸=Rè²\® ÞÄq¾«8hQóaHï>ó嚬–¬…ÿ£TëLE(ÍÐLJاc‚¢Ä8Ä£yw­±£©|ßZ+¤‰œDU,vaÿbÃá‘•OôØ¡KÑmJ_RÀDH°OÕøF- ,›H¾Uú–ÒÆñv DÐ%.rî®À9“Xnð§÷!Úb¥…p¡&pÉmNBnë%ùOoW’GL{=RûDÔÒŸ<×aËù<¡ßþ«–†´ A4âŽ#N˜A·t'>ƒ¯­ªÀîËÒÓâå"R• ª­ÙÝ´Æ%eIÝúÆ"SÛÝú×¹˜‰óADX °£>À¸dó)@$w\MŽœÅ÷üÀ¶v¡^’[fûS4\5D¦Ï;Ëh}‡hîIP^]än’ŸŽ1q{¡Å‚=?<‚¤Æ¶-h‚@2ËÎèîðÉð¹@ÊŽ>€k¾èxt±(I#¼UèÝ2;¨„!†ÒòÖM¸ŽG9‡v>² ”ùÖ…ˆ³ÑX»Jl­KËÝ îú‹…T‘~µÂ<´Ëé?_JÌÖ Ó\j¢@£qÞlŠ?éS($cÉâY^Á? qÃ!'׊äÈ¿´©a?—Ÿ×|„šÈ U»ë¶‰Ò“@þ=)ÁF«Xcm¦õ-ˆx0q`oË;†¯:M,"Ý —Øc,“‹ø¹Õ,\3R•ŸJ““׿ñ—¾q(a¶™aÄ/½Ã»gKgYØk¨äNª…Îñ%»%c ñË ¨J¾zÑ7 •˜‘"Ø)9ŽbÏë#¥õ8¿"»ª¼Å…y„ö^•ÒöÃ]ýÀ&esQ¾sD]ãŒGϲ¹Cg}ÅËa›Â5©HFoo/ãd%ŽÄĘ\“J 9S4ùr·}l¥ì‚èÕ`ÇEB~3¶mG}‚¬BøAæ…ܘó¯ÙTͤ±BW˽Fd˜ûvËù+muâM¢ùçÓí4Øß±|Eåá ³Ç‹) ½öë\¨Z(õZ3jT½âOüÙ<Æ‘¥Žem†zÐ>âgOå e3lס† -4‚©_:NühKÒ0H† > >Ñ·{z$Qù^tóÄΨ¤¥.“ÖÐüˆàÉbY¿Œ‡ýÕDÕÿÜ[;(ë6ÃÄý¯PîEúWAÕ~ZÎ¥i?”gÊCü°êÞ´1œpšY•€+Ê(/1h2Æ©pÝÌLë÷.Çl¬”—Û&nN¦¬\ÔIðI¾vžÅôÍoOZXv(BÜZÌþ-bIÀioHáÄþlõÕÿQ˜ŒÂç(gÔ>xÉ£AUÔ®À¹ñ%¦ƒ„=f¬~søkFÏkIÙÁL1Ï9kNc6kèâmŠ¯Æ‰Ýý>OÆá™*ávv$è“ûŸÌAXÈ”&ü‚÷9„`-µŒîY¨L3+d‰x+q4#z\ú×:¸l ÃbÛýùÊ3yM\Â%FW…uºÑq=ÑzßÚ_¤TqÆ=फ़^63¤‡ƒYuòAZ›¯²Ÿ8ìóMiÕÀÍû×nIbh'¹é’r/-»³`Œ7,óÑ­üŒi›} fC(¥BüÊ ]ûD—!t &Vš>c£šó‹ÎͨŸ¦ ²³dÓü°Ç¾ÛÏŸJ}¤p Å!|ûÜêÎ6ÿ÷ó–¢Z)æÉºa¯¼9[·ÚoaÄ)Ðý)=Å‹)å¹¢ ­cb#þ–l:gç?+™@ÿСn™°Qi!®ì]’غ¢yFàäê¹À–‹ñ!`nÎô ›f_ƒSs[p\3„Ÿ€ í£Òâm^PIZBD` ´ PÚö5½ù7‹\åΆÐË)Mb,nóVí(ªüª¬€|ÎüQ‡J«WÉ6´Ð1¸ïn.·YïTXàrãIÞ1Ê£fÉÿ5'qiôM肋÷~—ëS9OŽT_ÀBR~İ…Ç’]/]NjÞZñs]N/dÕ1Æo2ñ±„Ã=þæi/ÊU"¾ÏpŽw·íxiÍ”›ÑWgApÝCµI“”Óy/J=ilŽ3@£I%âJøð÷ƒ(0ª IrñŽÍ>3M<Ђº«]AŒõ!tg´TKæ>½ÂÛ4Ì´O?Jz×r¥²V°ìÇ>yp2®Èζ®Âül—€y¨‹®ªr÷r¶âמγ.žRÞõ.—öúeš£àÓËÔÁÉWák}_‹Y D[ŽÒ ;jß×Ly¯< –Ñ'‰™äÁ@g¸O$þ’ë‹aiÞ­U êóLjb°c-¢Zã¶jãÊö–…Åyn#9ÐDbíÏ ß\þ¼!šBµ[¯wɳÔDi9Je¥b‹OëûÝ‚T˜~Y]QjÉFŠÏ{{Šâ•HÏt~^1¨Fõ`h°ðZÛM^(²H¤NÕÛiZ«ÒIì$ÍÜ[aè óðÑ6Ò€zõ.‘&––m¦ôk´mr[ ¯ž‡¤Ó®n§õÛ·ߪ²­>9é²Z´ôY—Áô'ö™EýaúŽiü´”ëË‹CÀ8%gÆ9›™yt5©¿Êï{RóÑ}6ÐúC*@î³™v^‚D%>$ìnÓit$ª÷ÇRÍ•{EÃ>7Ýš°3ä÷a#ØJËË%¢ãÇBs¢XÔ ïáC®¯Í àÔóq—ðå‡A˦„1èøN ´­&¿ÂËÃBm7,S:rærŒhþ5+6ÐK:7üè>œíqßP32)}¤*£WF?6 ĵQ&êߎ !ã )@kβ$q‚Cçƒç‡9g.0*#“KɉVºÖÁÆ8»€®å£Ç<4ŽX’'?R…Ið³…ú=_S óZèaá¢oŸÏG´Ô¹Œ’¦™â¹Êþ{k~LpV®ÁTxQßNå \ïžIàTt™e<ÌÕ òi到 $š”Û±\ ㎲vŽÞƒ‘Ÿ§ÿ Tê~/Ï ø‰8ƒêꃮ<“Õ'ÁµÚ@…¹àµ‚Ýõè㲡Xü«×2BvNXH':Û;Ò…AÒZw„¨ÕýQÂä´°¨†áiAj«ãVÍ¥cÍ ææ$Óä†#ëy6ºšß/Œ^ë¼áU¦ B{‰<µ’ iZz ³œ+ ´$U¨+å¥XWù½í§¦_*òuv oHuñZæTñ@"Á’¨L×e™ÝY/¨IçHÂlv=½+£ú4g'KåˆáÄâvbÑ_2Gà…bï¿üD¶ÑbY#êúù“˜[ sJ™:õNí÷ôrIŸŒÖÖq×=õò¢’t@êyt‘Ó~äŸ ‘4d¦Æ¬†÷kðEùã"îÝ¡Uu.FÜ*Ú÷¹}bîsU €Ž£–otožÏ˜$ù4ÈD#O—oZ7Ò5÷†Ê%×"Šƒ©ÉÑ–ðjD¬W×èkàèéƦIu@4w’‘ˆwÇXTŽÐìÃÛmÊ.ú¸¹{öBó¦'²º¿*¤Iþ7«²e=Z¼ÚêÔ«ðÃ?¦€†-¥ËHHG£¯)©‚þãfxг7T•Í݉‹«óÈeæ@Òµ‘7w¨«¡r÷O ãÁÁ¡ÅìÚh<ŸÑÛvLd‡?ß¿#O^÷NÐÕ¿½‡Xoä9G~XPÇ DI!ãGß´Î39üƒ}u°×$‹á™o¼òÊxóQü¹íæéôˆZ‰Ú6ôµ &ö˜Ü&ÜÈÏÛÒ1o7Š¡§ÚÊ´ûS¯¹¯@->ï ¸)º™5ŽKbËG2qïÓ“þœÀH­}?ª–o2‡Ð·µI[é»Ä3%µE¸øR%ð È:ó \Xar£~Áÿ¥R“EÓb÷·ê¾µ+¹ÚQüóÝ™h<¢‚·M_Ƽ,XBcþûÖËŽ<®,ïCÒ©‘($G_—¶ÝÂz`W»%I†VWj„ì<óÚZgõSÐçmäa3#ôq#þAÕ7¥Ü›µÂÍ6)ƒÙ8½B ð±Ý1CŒYÞÞj ùõq-MÜMîGÌ´¿—U>I¹V‡o¼d$%æ'ÖÅÏßb)Ë:!µ¨“àXó#ØfóýÕM÷ਮÃKfēРԬ'ý(c8QN„~Û§xÐ\_,Ëäz"¨¾£eS¿cfÃà ¼‡ÞL$BR6¾±vøå¶6ÚÞ.O|i Ó9q¦ä`ðûý¨ ºHž;mÞŒèIënF[ä Rº*¨È òÉN§ÇTzCôZ\XþBùÒ8@ ~gXƤd…;’!ÿjp —™WÛöÊœö¥22¸úþ¾¬á‹$hrO¾ýæô€ê@)NÄv¸Ç ͼTxÊž^ß3¾ÑbñŒŸDr¤ü†qð'sé1rò½÷G‚k©$ñ±9¿eU08 e2“óv´K’z¾%ذ\evuÓìë ­\Ø«Î†Ž .Ò ¡ò›%Gì÷Ùv)lGÔl¬åqÙpÉsÁÁÝ)EMî"X84øSÙÒÈ¡qz{\Vî¥-ÿ›íæ/¦ð^÷ö'|7²N L H·³"N÷¯¿ö„Þ Z4?åºw ñ¸8²ß`ýV—ÿ%•@ô|ôB»¤äç¨Ë@ЛÒÓDŠçìJ+µÀuoU€’ÌC= ,Éžzçä­„Ó&Χ/YCQ~šÂ#„´1—ÊjBÍÇÉä[+$‰µÎ,Æøž£ÆÊ SŠB_oªù5Mp ~ Ô»ÔÄ)Yw—$M—áÕBÂpÔÐâÌ Yôú®cŸäà%.]D=#õ7$02¿°@îgÀ+Ò X4íŸ]±F·â‹Õ€Î! Oâ¾$Á‘CÄ+[Î;VÙî üó¥zù†Ê£N˜b{‚0ÀªþŒiÖš—²À‘@qÏ:@ËŠ)’5¯‚ø×š™·iÎeB`¹ye³™r¯Tôp’@NÍ$$ìP<6aÜË-—“¬¥/\N¤ÿ|CO2 endstream endobj 130 0 obj << /Length1 1932 /Length2 21601 /Length3 0 /Length 22824 /Filter /FlateDecode >> stream xÚ´ºstœýö>Ûv¦±Õض§1&VcÛIcÛil³±m£qcûMŸ£çœïïßwÍÊL¶®}Ýû³÷žY÷ ù'Eez!c[C ¸­#=37@VNÉÖÚÀ†™…^ hêde``a`bb…#'±8šÛÚˆ8¹Žf#ÇØ&&.8r€Ðhÿa4º䀎*nv@f•Á_‚¢­ƒ#½¡Ã‡hcjn¤þ±µs³775süƒñ™žþÒŸha€´‘¥­‹ƒ¥9ÀÀÆ Í Ç·uùPš¨lm†@3+€­ @¨PUSRH()¨**S3|+;ÙÙÙÚÿ“‹ˆ²Šª@TH^E T£H¨*«üyVÚ|ð7¥È«|Øÿäùpü.'¦"¤¢©(ÆÌøçÌg ½ƒùŸ´ÿÃâƒà?Ô>BMìm­ÿJ 2st´ãfdtqqa0urpd°µ7e°³ú‹ŸŠ™¹ÀÅÖÞðñj´þU'ãr:šÿðçT²æF@àŸ qÛ­?Jùô¡wü7±B8þÁ´ú‡;Àü¯4fÅÊ**ʬ Ìm66FŽŽŽNý¿t@cÊDœìíÿäû—ÉþßiþE]ØöãÊ´­<¼ \þ÷Ä lœÜÿV›ÿ¾l#[sG‡ &æVÀ?ìþœ™¹Í_:9!y)q1ezÙÆ³¡—³ý¨Ž ƒ£«ã_Þð„De¹œLìf.VÓG“ŠÙ‹ØZ[°v€ûS>Qó:9ÚÚ»1þ߯¶´±u±ñøLÌmŒMþÔÞØÉŽQÕÆü›PJôŸî*¸ÿèLŽ&ðèjdÆø'á_ýòGÍüGýQ/;[;€‰•ÐËÜøñçá`à 8Ú;½<þnøo Ž™`lnäøÑêã÷º”‰-€ëê&ÿ2ý³ ¨þUê95¶µ±rMàåm?Z‚êÿŸIûŸ\âNVVòÖ@ªÿSÓÿu4°6·rûo×ÿqQþaK%okom`õ?6sqsW ±¢¹£‘Ù?Jû½”£ÁGÿ Ù˜Z?Žå/•ꟑ²úèÝýcþg}è™9ØþÇöÑ–F–6@+ë_&àG!þ‡ñGõÿð0ʈªŠk¨Ðþß¶ùËOÌÆÈÖØÜÆÀÂÆ0°·7pƒcúè66€óGc]ÿj#ƒ­ãGÀÎÉÑ `bk÷ç@ÙÙŒBTI,FÉÿH¬FéKœìFµK\FƒKÌLLF㿉ÌFà¿E¶ÏFsgàßìÈfÿY?8˜¹Ù™mþæñ¡3ÿÈüÿ7+ó¾íâ¹>$›¿Á3ÀÛÿMüÀrø›øq!Žÿ!÷ìèò0f–l·ÿ`sÝöÿ°ÿ÷ )þÙRÓŽìŸëû/YÙÑÞÖ¨nnüñÖõ79G{sW-¦ÙaþÐ<þõŸÎ% ÿÏØÿ-ZXØÖÕƒž•…@ÏÂùqÒŸ?33 ‡×Åýc“þ5·½õ/ùÏ®@#¸å[#ž@‹äÆào±ü©RHr.†ßåXüÒ±ËiSíø8¢9;$@¿fßtŠ[YInïD?›" ò@L«·–„ŠÉã/‚»ÞrÞøHbB£Ùj ªþérK¾¥$ÔGÒÙyšÅ¬3é­±­DÕÑc®ö®Çï,ï¨WI$Ú¥­k¹.…sÌMöVh®K(xøKS ŽïÑ‘=BË4³úyÁX£ÒPv?»ÐÊuÍÐ2Ÿ¦1‘ßÐ5Ãzh…h:‡ÑW DU²!1°qÁ·Y8\ñt‘>? f#I±‡$üàa„ÈÂp&zÑ ¤‰eÁJ°‘;!)Ye\ˆPn©sÆvÜ:@?‘VîÉ'ÆŠ¯h7ÜRê6uÀJõ²mÂPeÆ0b¢Ñ)R ÑJl‰TäÌ“ Ê3LR¦„qJ ÌËÛÉEzR¡®¡‰®Èϼƒ—!¹²_†€ºÓ4¤‹°fæ¯Ã¡pU¾¤«ÍÃ×QôÁ7SŸÐô`Ç âaøKQ&ç¤ÑIj®ÅA»·X jÎäÒGÞr›Îf—s ä'.&8§Lîøw”RhEšÌâÂrËXX’Φ«§ƒ½žT?õ9Z 7ã ‡n+èbÍWM¿éj¤'ÞIMí‚ñ}ùʲÈ^Ã?_˜``‡–¾ &µ–­$€œµÔCÅ¥ñ~ÈìÔ¾Àí:ßPꮩ@^‡yw5ß#|¥u–DyÜDÍ—`(y©¸{qAg1 YÜõ¼bK#²Åá°buÖ2‚®.En €»ZÁ#¾ßyvçaö˜2­A·¨â©ï¨×4 K8úøÆH€zdÞ=XÁò¥i=vŒ ô[xpLµÕ_LNÚõíLå^ñPã8FQ³!­S`ÃáS%*ø;IMoÕ1kp-è¶0„ß•_Øe¡Îé*md*•Ìœ=†~«NBör—O=0mCø«BI Kê"2ÂV«@à÷îB|ìø}ƒœåI yiÁìÙŒú¤qÉ»´›@)49(iÑ뢄ÑË ÁFÔFÜ6/ÞNzI4ÒÑÛœÅ4?O”gÊ`oñùV|þZ“­´þ§Õ©ÄDRw=vTÃA褗ÅÕœ#ÃW+”žmU3v“D².N‡y°`fê Ĉ¯5ž~÷Lm…4ýQex-,§VèòÌ“ÁוûN> Õî;'v©ón8瀒“ñM,”Úeá¯*Xø[…¹&Aÿ.Ö“¬¬Þ;\·ù¥ ÈQm«ƒžO$_ºý¥C¸)½ûC ðnR|ìÁ×'â±!¨FUÎW°Ú‹YÔ~¾Ñ¥š9 KºA•Ù­ÜþzghÓv c žA3Ôë°D9èáP]g¤¢oÕƒyåÒÖµqËÿ؈ª“iÆ;hM§Æå¦JË*þ„–g&dq!ë AÛ@»—ŠUϬ$ºÛ&†—Z‹z–w9§[ùÂßš† VF^Ï;'ä„=i+LÆK*ŠîdUŽŒöÉ“ ÷Ë$¨÷µÇ‰e˜¹<"ø¸š„=Lz¯(ÃòzjÀÉÈÚbF ¼@D5H‹máAÞ¨PÈ!] 'öâíþ“ï ¦¸é×m3²õÀÆÕ”Æ>®¼#$¦¦*}‘ýùyÉ“ÍOKëŸS¨3I—…ÁOßj„¥C§0+À¤ '3[œmVIÚj¼])64„›&¹’ô´ òFÞ.ZCrHöÒ^º¡cvŸî,$í#¾í]êèæÄ­õÍ¥cq̇B÷É@ÚÜî˜ÂÅâmKŒ}MV{°Ëýf)×»dÖ±Çè¼7þ^κ ì6rŽšMpA¸pv:…Œ†«išI°Ó‚ÙGxÞߪ9üjî»!›Oxä63ð6ürÕ‚NHH4Ç.1¡н·»K=Ù·Sgc§ð•!µxtÂPa9ÍBŒvÅs'3 îž®Ìd³-2|« ¸î^Ÿ„ë¼ó 4äØE{0{Ô]ëk=œ´‚Ž–k´ãQœ/*ž÷e}Ìž;® Ÿç»®ÇìƶÇÚÅuo4l ½eJo õÜñ¬”«:ƒ"3ìϰX]„C£^ÓÔVÂÄô[Í™.d_]VùF>ÕõOšnOj BvTxØV÷åÊð‚ymh«õªSÆu¶ W©8®ÛÄœïìÓ— Þp˜ 4Y2×ör>B’R|BÙ2bmà!¤á;§åö̭Ÿ-”Á) ™‘|þÛ²§Î©©àZïÔ tü÷#Õnþðk^lBNêEȇŽ Ã2¼€¼ôDfom5™wÛûY¤€º–Âx•èÕÂΡékžrævEä…8Æz1yL3™’J2M–„ßKk!TG¦ç®Á»/ó¦“zÆŒìèWÏ#S(F\V­ :ÊêÛxòíêCKxq5Cøx7JJÁ¥>йœÉð}”PoÔƒÈÛmcFsOò…¥ÈJ‰}5ÇÐ ÌDóдç‘ÛyŠÑ·ý÷äI|ÍAÞcšRÊCš¯ö;šGÎûÏŸýžÏ“ ûèD V;LÜÆ{ð)Ëž”o* WKž'ß«¿yÝèáìŒ%y&^át4‰ó`I1 P­îÏ.ÀwÂ{ï@ NœSýšâ¶è¡Iæ×X°Rªß¼PüUs¶ì±Ìž_ðÕxãp® yå Ž>¹ ~b夣¨ÓÅx¤ßDMŒ å‘56S‘˜cí"È5Îô(ƒÝ<—éórœMA³±Ëäy³2»aÞÝÁLZ Ix°» ÑÅÑÀCj}ìfwõÜ4tþ™éôÑ¢~5*˜±õ„¶uÝ¥Î?hÐ(zÊi¯.« Âá&bÒTŒ/É—N2~j ¨´¶}eb~F Îwº”ÉÎåéf÷ !X\F‡%ç߀ó‚Kl>â:³» rεëX—•Äã•f×1ÆG÷ÓÁ;Q`ƒ=åœr¼-|YÔ\Ì8'´R­»<ý20˜-p]ž­¥)÷0Þ‘³…MEFŽ‹gÞY7Ëkª‹Ä%‹KÆPT‚ߤ1”‰vðÞÜ»ÍÀÌÐÔÉ8ÓJ\Î;p€««hâ’MC°½öðÒ•¢%¢›ãB˜ˆÒ³É;å™@‚í‘·ËœÊw¯Ôð\‹ ¹^FŠ­Ñ!Ô¹V­ž{?£„š :üCÚù.Ïæb£±´8EÔ­v|nBaR–÷‚ÓÖBiˆB;î*yüŒg\kot:Fí¾L¬’þ~zÁ?wì{K¾bv²‚`vN‹®K6CLŒ¦:Ì ,5ήßo¡ìøÔ˜Mz‡tu HEÇÂNð,a™î9$¢‰¼ú5—°7´ÅoK„ÇDzêyü³¶‚WUš{ŸŽVE”ÓæŒ½WU,A3 å! ¯-·scC—güeÓög7gæŸd¹2Ôn뺑<Ïø ~ŽÖºQ?w 8/7Wò6¬@’ã÷+Õw®¯_y ƒÕu¨d»}Ñ)Û”ÏxÇëñ û½n$îõÓ/Jª„`Àl´¿ZŠ2AÈ+βÿ¹\áü39PÉÛK$½‡MŠ2=ñû)ks1Ø‘Íø$U둯Œ<™iøëݘM(E)ó¯2nEaë°Æ7íðé3߀Õ}I°CJM¿p‚×çKÔ/kΧ›ÛºFÌpgþÄŠ‹ ø#Ë͖Ϧö#)#‰ïSDÝå(D±ÍB¾¢Òpq¡ /¹X“ï—”Qñ?®Y?Ú­ù7˜oéM\؆‚¤í–!»€I÷ú2ÄÓ]è]RXÈ:#¤7iÝŒŠË-­Á Éùágê8±D­ïÀ.ÓqLJM»{Á§Sc ‘£³EózÓ_ä༽óÄé.Ÿ…ÛKÙ)Èj`i–ìk4.´s²ºoáŠÛa¯¡Ü¿™µØ±†Øz:³ä†MŠæ¢ÛìÐ}¬©R§¼"·cƒ$ßpÝ‘mTÎëÂÉ@Ì0;Ô×µjE)¢Q3;†0ãq ùì ·õ$×ÄåÖ9’ö{1ŽèÅÿA=êMîGpÚ^¼Yª¼$»˜ BH9nÅMæiH:«'ð)m`’Ä—[sdmùE,á/9ù)Åš#ƒìÕ”çnÆueöšµ §û˜buœbæ·qãÎhLTX4Ósb(Û÷m _l‚/eýLDšŠ\zâMV4™Ì Œ˜8ÉÝ Pïà½N+m ð=)ØÑÑVëùýýòÛ DDñÅ"dÊÊÒ-e=DþÉÛûû3*ZH™ÅQ@m^)žÛòsÜu½Ø¨íóá”}Ü:¿ÙóÖUJò1RE\ƽ¬7vllT)A¦CiŽ,Ӿ;;ôŸ0ûkRj$ „Z­luòÍ2óÑà Ú*2C¼BÕŽ*®'gÇ©»\„{­tb­\tfßpæî†#v}­ºo¨`dÕ0×CÉ=Yà$ózU¬ð¢­ëê+š ¬$ì#uuÂoy~,6É`eý˜äMŠÍzºn2,Tù0R4QDƒòß7ý=©^$9Ö•Ö…=´•TC ø>‘t#°m8š¾}t»€¨òºV“@`®¿•.ÜKSµIð»å­Û£Là0דFÕ3É\ÏÞÍNvsìÅ÷ôF¿žám–¼¯±J=ÊYVFÃ/ÕËŒ#Õ3fȃ”þ-CÜ ¬Kïtž¥þÜU‡£Íeÿ^S¥Eò‰s¦=J_'Åb%ÃÔr1J²ÊŸÂ YEÍóÐ/ÆG’÷%‹Ql€¥T>|ð~îŒWvÂ;^#´Exµõ›±D#hä5}Í}9„ëEÉ4/êlTMÑ~(ŽÌ›‰P÷¬\ÿ½Ï G¢(%Cô³ã%—J³ÿˆ¦WQCàþ£È LÕ<ZKP)~sñ=lG«)är\)A<"´œs¾n§°ƒ@ø0ñFÇãã×ùMô$ETo K¦ï“ÎÅÉýÌØlõâ]sT$Ƶ7Ìå?/J3/FaÌÙ’=Öº5:# ¿K"ôIÊ˨ê£éBh´£ßbć‹„Èxrê0ú†eŠŸ)õ;Y’¢‡ ÞoKeã¨k’ú½úSTeÑïødNÆiYyÁ²)BsÕê‡õòˆí¬6öey¥ì"èÑyû,èxÄZÝ#ÊNØ—AüDD¸c‰¸8вµ³l£~±‡DÀjnßæ19ôjÞ½•S{è¯U>ìÈé_ÝÒfïßCj9~öϺ'Pfê;Ÿ‘Œ¶ää¼y}‹­YâiÚÑŠ¸àE4(ðÆ™,Ï+½RÎù}Þ3s`½y·ˆå»ñˆ<y‰M¯5tCñB4ÿ…hþ”¿zšDf0ί‹ó=UÎé 9aZ¥ 7O¯q¹>/ëVÛb%¿¶>û*ÙM`… Z°²!…ªI­u¢áeÖ“}e1ü%ðªy2`…aûoÏ,7ôÛ¶ã›ê ²”ÈÕûÃeÏÒ mí »ábG9juðfSm²yì¼Éˆ4)dÿSþ8ŸÐ’=N1*Òx°Ì) 6ÝÌût’f•øÀi^ÞÆ‚åm"íD/Š<Õe{\,$|­ÞÉPñ{ó+CË@þVíG£úxrŠí-M¥)/wtÁ E"ãÚËY`[Æø+ú©£AeáKð³Ã¦ÄÊl±9jÔ"#"ô`…ôâ·¯‚?Ö 9WOD¿_´F’Ú‘t¿w]¾~©Œ¶ @+¤©4>¡jž°ŽE}Q€ÐˆÕÝÏØ@g‡@P¶š¼ájQå ˆ‹‚ù¤Æï ¹uÒpa Šdy9«EG†®›2òU ÛÎ0œ–á–9SÛ¦I'¥­^+v‹ Gl3:Œ2gl¶™œDEû%¨êtÉóÆåšìN ”<Êh¹äaˆO~’0”`ÑçéÊi²r÷uC:}¢~Ãëú9è9÷+!ŠÝÛ÷ix ÌD‡2“1aøM#6¯€ÞAÄõa%cf2´D@Ð@깜7°bhK& €ÊX³Û âf¼#Bìa »ÀÆ¡éÒF£¿¯öÀQ_å6˜wý5*/Þ\Ë "Úr°KÁX;}‹OÑ5Ò«ÉR2i ’ ©÷Eãæ“9]»Ÿº2†ž@6žË¼ÛxhIâ žùµÖÔˆ˜°¿ ±õ”z˜òâÓÞÜ$wpl–Œ…õ2GŒ)œQ»m+ö“Õ,õàz^¯MfµŸÒ?éÙ!ÍÊéñ 4êü{ÞèUjLCé GŠ2O×å«Ù“ \|dœä]Skz¬#)n:ó·2«t¨Ÿ©tGLgÔèW!ucyf…åOHUÕžT‡ÈÛ’17eÛŸ·ð{/479&Õ2Š RP½¶Ô¿þ.cZLkÑ5/jOræ¬m~È€¼À)œ%#ÀL •ho¨Æ‡¸íÍÁ癉™®’í(Ä™f±‡žH'¡&Ö@ý‘-€£‹¡F®š#¦Ü(¨^tô[‚RŽEÿ`AÀbýB#öE½¦KS7[ŠF§SïZ<£}ZŒ/ņ,ˆWøp ´ih?x§$#-Þk¿dõ’ð}kÚý&°CÎÕŽžÛëåö=K5³ŒýÀ›Ì(Žå^j!›"IÌ[@ÊAVº zp*s¹êçÐ3_üT„‹3XpŠ’%Oà/F£Ô)={æAþ¦jÕHùÝçÂH°ñv_Mµ†"ðÕP-„ýPè³ðÕç“Z‰Eûº"ä2Çù2¡[þ÷˜OËs}±W–‡·²XÚÞfyÐÓe¶ß Ê'|8ruE­Ï©ÊD‹Œ«Ì¼‡¢„S0©èHM äÚà :I²ÙXÄ@+‘S@2KÊû/h}g€3eæ×—bŸ\ð—o— jê“8Çuë±;õÑ" ýªŒ¶ |òWÒCVv„âØ–v‘ǃˆhV3L°1$ÀÔÖƒCYm`Ÿ’éøŸ,,åìo©°ËšÍ/( !ܧ ‚]ŒÇóŸ\xþéXfsNۉƯ9¤ò˜òêa)¶¢%Õvé/—=02€yØÎ@®ç…\ ÓgJ ~wD„O+m“‚Îõñ"C`Ê\¿Àm)êùd8ÂBWD h8}æÉà†—á)ôóŒLúªÉc€‚¼ÛC«òÝó‹bÓÐÓ¼uçï©ëPÕ.ãßéƒÊßJ|G¿tú\Bÿ¼öÞÁ¸>¥"E= {rÂ]­É‹H1áðŨ¢+„­Üt4.{è;ÕŠ[›J£Q «–u¬9 Y¦ctkV+dYéN*ˆCG¼¿Þû¾Û>áÚ™ü¸ËÝ[-0ð;m°D†å4¢y7åÙˆîd!öçUÚ«Ò(Nyøfu}Gì•[Ò*¾Eò6ðxÍj‡ga4ÄñëU˜‰neÐÞ„&ŸÂË"Å×ó£NöÛÕVõn ˆ˜rýîòoƒNïbUý@.)ú|‘-³0¸ºÏMiÔÆ8"2¥0‰íJòSåË6¯Ë ú³f0 …[mÁ{à‚A.{ˆ-c ·Öúø!Ìà¾åa¾Íä=ìºÍ2_Ý®9 Îäà Z\±^ó|5bS«ëó‹Vâ¶éÀdKYÿ.ÕΑÃ8(h–qŠÊÞ‘t—ÒzZ~A+¢î®vvûg“4¡w\¤ãIÄ”ÙÊJš‡]·hÓKçËölZÓýÛíhƳ›ÁÄO†¤8mæú÷QFq/8ÖŽljª'Ƭ zÛÑŸ¤^nºïEÊúÎF|vicf1±Kñø=¶Iq¡5Ãៗ´=íÈ…×úîèç&–ª‹jg¥ {6‡ìr‹wç!:‘»ÈÚC²ì=”WϬ¥ƒùüÐCo? ”èüÆh«ÛýÌÑ +a¥(ÿ ú³ü•iw l¥¬:à¶â"ú&ì÷T“˜AHþð© ḧn‹šô(ûè…FÑ i´«›’úß½ãÉÍWñê3mªK)\9LáèÔ|¯ÎDÂÍ<¤Yc!h’»iýùöáj y€{qK4}^$Ö¾·k5ÓpP²döòÔÊ›ûK$ò9 o< _™l‰ÎmõOÕÊ@ÕÕmr~ ]\ŠcâQj0…:vôLºKQ. ±‰€žnÁuLD¬|îT…N7cûAx39« :(v7œ’A˜ôM§¬–iÑ$~hÏ—ž±ƒµ¢Qr‹ɗVäÍBaS”håµI»Cu".±Òù"5¯\ñçcc0ãp¨öqNQÖ¾kjWQm/_]kþ'ï­•¥L¾za ´þí^A£‰ˆo““TtÄྕ!âï/R)ó)&å+ÖžÇÃÔ)k“$üM3£>¹”7é3 å“ÞKç G¶ÇBXج‚‚ûÉÛá·nBë÷ûŠòq*­Ù60˜üX¯Âìjˆ¹ÃfqÑãú²sìTÀ©Ž©V}ÑÙÛ¢WÒMQÇÛ >„œÖQ†Ieʼ çƤÃxH‚^–haJázu\ù^‡¬3Fº)hEÀMÐç&)ÅEÁõ–@²w)}Ñ$Xël0Kì_ÉêûÙE&Fá' hMÛ¯®” 0#ØJÇ/m߸ê>ÄK-Ø“.•7Ëk–ÍJ_2€˜±W‚’x‚njÌ™²åýšJZj'°e¿š?Ãʼ!J„ˆQ±`Å£Íí±;X%¯¹S<>‡¡!zêAC8Sf'TI?N&²¸ƒ¯®Iô• cƹƒšLC+“5…N½€¸¦H sø†¼[²òç0õk‡Äop{xð…ûó§Ûä«rX OïU«Ëã1^P¶þÏ–Ë{¤Á“µ^¹|Œ»ül*Aâ_Þ:‘› «å¥zû$6Ðä«™²SEAMÖ}ö¯‡Êœ4ù­¦øD¡ÇŠTaõpŠª* ©BÚFßv/êÛÙ‘¶ä´s>=càTþÆÙf‘¡÷Ný‹±–…ëXF¸#}“àÍÔ‘ ÌÐøØïU²Š.„[ø'÷»ÍXz3ÏU0ÃÇ=w$–¤î)(ÑÏaX¶>é¬çíC¡Ÿø¨À\h±î0eÕA$+RãT4k-©o .ä@‹»ÚöàV¿×6Ãúã#¤î§ŒºbÕ²xZvßp¯ÊëXvó`EâKpÒn7…ᶘ{“¼œ©«šfdçÐ\#‚ÕòõŠÃâÓ=ž“'s\yîó0úÌ7FÚîë–+×é…G2L°M›&K³c©ÁS1ÎŽÚ­ßoMÁtÎPY•ç8%7PÕÏ"Åo$ÀÅvôµ™D.Å6U]Rð†·:9ŒÕàw÷9#a(ÂÙ ¸ãM;ÑâkqïÑnvzEôÆISô%_>›'ÎlXîAݬtÔí¬±„F¿V‹!b–çðAYq“%ÖÍ Ly­_cKÃîÑ•‡ÈËÜ«(ô’hyT]Di¾ÓX¼qŠýLáó×h0ú4#UX†D|Èà<ô…Ì_T4è°BöPCOª–hŸ­eÏ®¼¢oòš”X÷âqØ&Š© ¥D¾¹{Ú¸zªËÓd£Øazæ\𳫞€|³Úb‡.ŽÅĈÁBª[®—.}»œö èì“ÙƒÜYDß§9ð‰H­F<ª$:EâÅ· è­g\w£ D312úÔ§Ïc‹ŒÆ"ÿ,k|ãû|™eëp¤à;ΆÍöRá>D±¦Ÿï föš;ïmcÅAæ…i¾PÂÉ­dJŒa˜Vß'¨ßRâßoMŠ*EðЧìÒyáB!Š&ÉžÀ\õúæ%{ôÔɨgíç5*Œäúa×Þ‹f …w¯H0leûÆÙ;…8GRaýºô@<#<þDq]mhÞ’ªŸnØ4Z8kµ!T‡Œ¨í`ÆìÝS@…½ A¶°p+éHâÅh­}ֱܛpwÝÜ¡Äôˆö†a I¾©WG¬ÐÛà­:D@Üüuý‚cU0Üùe>îechÁì¸bZ¹ÝÝÒ&³g9qÕ……I@’âç¢Ò×ã X˜Ð$É^ä^ÞþЂI0n›Z®¹ ;ìð5×<']ØÌWåTòÚ5€ü©…ËCAÕ²ÎÄDÀçÒðN~AÓ°ŸÎ¤Ëýº] ‘„lIr¶J¾‚üÖ³ûAiM©¤^0hV*ɱ áÚ®˜%Áe>BD#®pm1ªÙiFÂÐižS¶7PŽÄ¿ Ì_óñ{ \ì<Ä®~ #”o9¬ºVøR…hŒC‰ëU­ìQ° †ÞHCé%«ÌVÀ4?g7Çw”HÔh4f-<`©Èͳ'¦+QP±/Фέ+ø7Ø:=öYQýPILsÝÎ.òeûµ†¦EóhXô.ŶÝp«.þåá›n?î!í°+¾£Óð€9FË&1z=J†µl}Õô¹zu;ž›_©Á¤ƒ"MâSÇ:vbøï`ž‚[ñA÷™ša)/¹< %Ä0½ó};ésyCùÜ'U£ë¡ø¹TÃìg¿xë1ã:Ð<²†4“Ê(eƒ”¦“~.˜óç) {YÖÉž¹è—ôô‰ NÖŽמïyŽþè¬ÝÓËý5I–!gù ½M.hO0ouŽéjûs¯g¥ÈúÃÉÙÜq<ú¤DtÄgQ54+j'ÚŠº£°0w@2##{Ùß×#ô_ [®ˆìCjÔ4é‰S°“"]>–Á5¹¨®‡dMÇ÷#„}sÖ2æžÄ9íSü§óIrÄûlËØÜ>î†+â“äâ ¨.¿©ïf÷qp¸œñœ¸È PŸ]Š&¸ä …¹I扮äF¤æ‰ç3_Š»F}8BX¤Ð"?ÉŠ‘[ÁDxvº‘«wWéb »ÇR”ôûµäY1´ƒºæ­Y±Á–Öqsá~C¸$^„ûÌ-°ÕA¶Êbò\ê[EØbÂYÌ7!Æyv•DÎÌÑE!”¬¦£.jƤ|j#.5àëÄÄ1úîúçi¶x cŽá.Êã{¶ÔL.+æUM•…BÓ@™Ei­ÏXï‡-õŒC¢Mìû Mé-ûYÓ8Ü )͹E[ä…H¯™½·7!‘Zl 4X)ƒ$…8LÖ÷ ä$UðTÒr"µ…õá$nGÕ| §ц´~&Çz„égÙ5’‰› Œ~sq%né¤ 8òãE®iŠú)dQŠzaåy=ÈVH?_ê‘”I ¶¡î³c~ÓÑŠèÍÄl\ŸkÔ2¬Áyñë™ZOéiÈNà &.GŒ¥€às_ä’Èv@ÞÝÛ±b<¨×ý?¾ÝÁà»L?†­sÐ,8×ýL°\ ±óÕN0È/¯äsT´TYLî$$“Nom[gõ¬ö÷-CÏb•èVÃk™UI,u?hÏÓT)¡£ÂůÑm§yׯWWÎP#7Š7B)­F|Á\)Hŵ€02Ìíº°aÆ~(IœIü$[†µü½¶¢jG.&®“)³iæÁk°¼Çgàï± q¬Äôè‹•>øÁ—™Ô{ù—«WZ<˜µî/X”Vöš†'ÜàC§ì›æ`ÀùžOêÊ%µìK¢jf)8ñÝÄVçŸùŤVa<­›t y:ØFÜ7¶h¯¡¡†à…Û8°ƒ`Nt«aüŠÀlŽ((¿45qÿìæRÀS#Ê ê'lB"á(™öhäRkço.CüÈͽTÅCž»F'ÒJ¿Èb¨õ xVFn„ÿ?70âj˜ß R×X|Uº Ç r1SìòéøÇ¯Àâ]`•g^³ .߿ܦRÒA¹8sOƘû:º…·/å¼5üÔ¨åké‚-å·/Ò˯/} Hé:΃üA§¡¤-à5s%1¶üå:;Ù7û—òÁì§`畳¤vð0ü¶- 7ðFï‡!Y_‡×QfÛ’eâšÓï©;ÀûKhBU¬=â6gp¤# Å>}Q¯À+sõ&$ØxYºÝ§Ll‰YÕuGó×F4¦4*Y-ù‚¤1R—ÓLI§šd3”‘eسÛùO Ä*²õ芕¼ø8r·¿ÌPpó.{ÍøÉ°ùuÝÎQ¿›3 2)––ÈEæ¶ž½ËÉõ×-vì ¹L‡AÛÙ0ô¡dE>ú¥¼hÊ¡(0X+óRÛEíûaΧ* H@Øz [0ÍZÖ$j¿ƒ‹]ZÇö¥Uý ŠFÿ–’À2×î¾"7£Ôq;3]$ÙJÙ·*:·ifÐȦŠbŠ%¸¯"DÏÃ"ÄZ’ÎÜã—È/Ep~|ƒ·êGL§“t²ÃÏáñ€ ÉZ“¯-&=ÓtÆ9A÷TY-yèû–劺ƒx‘.‡"[?ìR¢ëõ¸±MÖ»³D,y![G#Fdô~×’a!)Œ&™gù¬_ÙS‡Hc$¨Êÿt¦u ÊÜf^¼Gû’ÜûsLóT°ÄE" “ë§çÌO2 äˆBk÷ŽÄâúCf€ft«Þ>Ö.ÞŠ¡Ö¯šiÇòF™]/sýýiÔqòZ= 8«+X¹43v J‚ãg_Ò ,ˆW¡A•ã`ß!ÊŠ›Q(ñŸá×®Pð~h´ˆnšj‘2E¡plŸðÖÙÓqtßwûA'q2¿Â5L¥@zÔ¾÷pef›pÄàßpXÔN×}Ž…ÙY&{¦xñÁ3 -øÞ@ç!ÑM_`¶]#¨"¾Ôrð%Âý¨ïsL@Ü%ïŠñ ym5VâL.m¿3ýÔ¶Exýs׊°2*èú|CS…Ó§L³¦3x c¶@â»Ø‹PwÕŸV±ÓY?+^g¿Û¼wØDC„>¹«Ôz8ØG}3;Ë`±'¸÷€o¾E^‘Wí‰ö uR=Z}:Ó‘c §øy.ÜŠî‹Qp/:™\©‹`²û¦AqùùÙrfäÏ”†ÉnC í¯l+?!w|,0åÉ´Z” ù rÛBZ‘Œç`úÛõ¬D>­ c2´eå{03jóaëÒð±t jõƒ ‰®ý=ô]C¦ÂEŸ¬¦m3ìqÿ(ëzøàwÊîÏ;¥cöî¹üĘàHøDöÄÕ;â-%‘[ÓDÖPüA2(¯kªåŸYëïÆùÏâLðºúÛÒó¹rˆö'è-@Bv¢cëRñOPj>õ^çûøT@FêjÜfpÈ THÿ¨!¿ÅÅAܺ< ²—:…í£F|¦õà¥úLBž˜ãÙ…?¥eWð¦}|~µvæûÃδ|äYÂÜ-ügB^î~ü†æ¼."œVºÌÞx3¤Ò^Ý‚âi‚›áy ”$´¹ˆ|ú¥@©¯>·ÄÄW¦Ja]–àOB0ܦ•ÐKŽû¶ŸýþØ1|žoxñ¦I{ °e=,Ç-̘o_ RÐ'\«®½¬-Ûê2#Çè+TíA†à|¤…=¥ùQ`MëÚ}øpQ ®:›6eY†£ópa·+Â`-îÆèzl&¯ÓàîµÇ°À~Î\×¶¶óHq›¨o1¾œ³Ý´ÄºþñéÌ’ÙWz޾’Uá’ ®‘Ëu©¯æ¾…Èó·Ø–±b÷6Íi!zFËFß:(lTÅ©êði-s)Žû£1Ü늚´vQõDü ·ÉáùëJ >¢íå>5˰p2"&ò5^<€¯ê"Ñ"ˆ±”)Šàq,©5·gõö)ç ]Þ\?Ó¯ú§r˜á\ž*¥Ü žì Tòâà7<Ûzø UJ‡[[Õõ¹£ZC¾?†I—OÚŽi»~“Þ¿w®@sä K2M¨¥©xq‹fPïV³Éï©P‡‡´^ÂlúzX"‹&B™ŠÄJ)æ}£žˆE·W¥HÉ ¥~Þ}‡óqÆ å_¥q·€ê:øŒ’ Pì¯ÌK;¹ÈcQ5[»ÿÅ]?ï:íêPí1L©½»´¹íM;4kå!#Eg iBuPþÄ:—žö¤^úÛý´iíðéeO{¸Ðlö¹¡c·AåRöp×ê:ò¥ÄÝwzÕ¥SZóß2Ýçá(¸‡ÌaûBFûŒåÌ:ø©¡s?ÎamW{n‰ Ô{ÜGo”ÙáÏrrbpóË×ì»z©‘Ìì§×'“%ØöaÄï­>™Vò> ¡Ô¯XÜFèxë­ÄHŸÉ€n* @¢Ññĵ%”« ¿°"Ô ‡õB‡yK•8Yí• L§8SΊù¢kCÞPjtÌ 1>¶™’¥@g{FÁÆDùEÑK¾0ÁV67¿w©…V]«ä:l |#þE*p’îŠ<˲ôÜÄ/ ¤úpd·Þ:žÜT}b®ä©˜i×Ówk,SF”Ë1b·Ê« ³Ïw§‹†ûý:êƒXLù»qAòÍQÕrË›ÉÅß3‰=\­¯dO{®ÚzgÑ«oí[A#O9¢¨+»ô5ÊãEn û¾ÉÜð;‘àéæKû§_¨B™#°û䎅*É u £‡»èÀ¡g*cêüLh8ÄÆ…l<)¹ã) òWŸU0í?o.[Õzn³ë$Ù´¥(Žtn¾«d"ò¹ºzâ’4Ræ¶>v-zŠÎ凘2mÐ LM<æÜ1DÚÃ\â"WȦjWÁ³iÞýÖMpÇÜh¤ÚËÁÌÓµYÉH/²QéÌR°w‰›Îç𔀨PlyÕ'¼s~U`èËò˜g¥úý˜ ޏ%|¾>°øQƒý¦ðH‚)G‰}l¯S¿®ò±e)mÙŒ øé¤ž”WT ƒ½P¤ÖN½'xÉk9¯@˜0k×RÎ¥´ääÓ<ûÚôMãúiîñ!tHý¯Ñƒ½DR[‡^}™e%âOm¬‡´úaBé6¥—JïsZD5%PîÛŒ3ì‡7µ’ìŸÓÄóß-d§iNiëUèÕʬáGô¬ÅKsgH@‰y}Ô”[¶¨Ö({ ý òü=Q2OMò±iÈ·ž0-*jÀ`ɆÌ4Â_±c=‡\a&jÌì9º7»£I5ÙâH¸æµbç~ @ŽÉLNĬ*Ážr·Uìƒ\µbÏ-PS ð¿š¯©Í]r!ÞW»‚}O¾¹Ÿß©¬kpNe˜ó³ü„^€ª¶kþóùñ =}n˜z(‡4?”Ygÿ¬½Üw.ü-jëe€ãÆÑwc…ÊÎkãhµc ùlF½¡T3ñ»ß N2ä¤Û7Üît\<.Ψ|Ìm}¦¶obïäŒr©K:%A ½÷•€ZûL/f xœ¤äu “Èõ©ÝËm¹Wcó`þNï„Ùxà5˳¢N]¾Î‘ÑÄÃd¾œÉq¶wa›;X–Àµ:ao1ÏÜÐgÑJðºírxaC¢)qóöö ÑÎHÉŽ3Å9¦ɱpÔ0Älí Å`Yõ´œTô2ΚDÍG/¹…=ÐàK‚¯'H`“É[Û…V–Óð›Eme¾:°Ù³’]Íž+Y$ ’d^‚µÜ›e>B›×ho¡àê†îNFñæ¥RõRØ»ÜWm!ïë~¬O^AD~¾/ÍòSÁ?ÒEAÝy•~qÖ,¬0{'¼ïÈ}Ê—¸ç‡ néÜÜA¾¶ašY´³ËñÅ»éskŽBØ£Ø\šÕY• ÇX§ÝñÐRWV¸Þͺ¿Æ¾Çß—îö\N2ÐQtÙò~ÛPVCÙZÄfþfg—Þð–À‘ná÷>÷ÃÖ=L/³ÑGHƒÁÏQ_6éîÞ\ÐÍ{ än3v˜~BqCõíÇ$­ö'‡ÌÇÕhL·RIÿ¥•=ðïŠdÔS†y¶LùªÖåI$œÔSGOéA•ô¶qË}Сû /Ä•’~–?K^œe„@ú’b/úÝÜ#¬Ëh˃sæ[.hÐñ\‹ˆ4"Yƒ"z¿Mõ€»©Û¿À[GÇ~­JT ÷{#Ô 0ôÈõÆP$‡5ÿr7ÐÀ@ [Ň/:‡cþÖ\# T,å,qìªúÚAC%9××ú„|‚ñ^)m9! G“oÆOÒ£ÐQl.B8v‰€P rJñNšò`Š@ú’Vá]ûÅ×§JµÅóG¹ñi:øÈƒxÓ’ôçb¬3N&Õw7ÈdöY.ïe¬ý|HUî–Íb5¯\œUyKßê¨jÊܽy‰B­­ÃWÜRËeÀ7 4ã~…;ÙÓr û±Ó)þ ª˜±ü©`ëÞ–hÙ‰úN,7 ?ßy’}逈½Ñâ3„î›N¡×&RR¤1aÜ¡—Ù0@ÇÇm 3W¤ò~Û¹­”Hß9„?=EYrtàïþø"¢i¨¬1Ÿ«ÓTæ_ÕéÆgÞÚ¥¿Õäb†èÜ—šæ]÷œ¡Òë,½W&ÿ:»¨ax°y€Üámš þcç×ðK2‡§, òÊøÈMQó¾$•Øæ0ùçÿô—=ß©(Q&Ý5à½*á+¥~:ÆV/[OŸÆ¥ßFËÈ ûL:²íJËMuq·,bˆoî×eYͬû%ŠkcòHe΄Íã²Ó¯sz_=ÎÌvÆð§="¶-½s²}xròPçÌd4›EƒÀ#yYã†1‚‘ ”ˆ†!Ͱ ýS] éÖI•É«íb–\ “î·ëM”‡t>±» Lï‡diÅd”¥†Ô•Ï_Wì%è÷}|òÌÚሀ'bGþzÓ°'}ƒÿ±ž/ïÁ”Œ«t@‰=ÒÉ>}fb‡ÎV@©‰®ÒÓ)† Kä?Úºäϸ\„ÄâÂ2á~ÉêŽëØᡞ¢ÔEyT5Å /zû,ô&üOפØÉ€a3ºŽ•«¡ÀŸWÆ—Æá+8?lͦÈoô[>”+I‚S˜ŠSì‹™ùƒc •ŒNóTÌHKô(]·ã;R9J(µ?§}¤¤“üEÇX„ão(NDS\èÔØ¹®WíwA,AÄ!~­nf·—1GïÍ­×ua篋ÕÅÉ6w|QMõ»üâ¾+DÔäâô– º¢ŽL³N*¶£*ÂyPŽ·äˆ.ƒ®‚zÜÉ!Oëu¦†ðÝGb¬Såßô/áR˜µ‹—@ã‘ð[µîðú$ÙpKIqÝÊÐy+hCØVïÔEÅï)·±Åœ Ö“Hé=• Hidj*$èžÔž´^Ó‹êóäz®¯ÄrÔ[ýΦ5ƒ g¡ŽH(@uù“D»TšÒ “¥öÜ)+çJ7śɾé»y1ëy€HEwØðåXÒ¾¶p†C–mþVˆÄ¼ž(?ýùµeôUØhž‚úJü˜—Ï ¯§ÑÌ­Uü‰nì06ÈI߯ë<–Ѽ5¡°m)îâÕsdÑNIdrÏ/ü›„.˜þÂnì¹5¿M#êêõ:;¤BÊ_¿ÕèÌr/G'DØ·¨ÆJ™ç^M.ÿX }+ ™®{ êß·“™ÙhÄÓlfÀ5¦¸ ãNñ*™*Ð]5Cˇ- Ò,Ÿ¹ãŸ©Ñdôýäý2®¹s#€GòU-:ÜÙœ£ò{×£«££A¨šÒêú‹6k'YÔž´­ÿorBM]ÎyLüía’ŸÓ _… hmê¼°#æb÷ö¹£å9yÑÓ$²J§" "ø¡mxõ°;Q>AOÈ\ÁV¨^-L|òºšFzyw¦A<0¬Z—÷DGÒ\ýeáVQµ0OÏîmvN' ú•'å” aOùZ$ î cVµ0k{±gòÛ’I8ßÈ7z%ð«®d,“V Q(Œ‡7¤ÔÊ+ŽØÏÌïš¾å½Öé?!‰¸øFà]@%¾³vÍsá¤`“£ÈE–‡ßÍ {mû­&¹Éýò L™¬7>ƒ™·˜s$N=ÕËMù”$H;ç‹Áÿc?díü‚’ ì~”Ψ=Y“õéŠqNQgÚé{÷ß~TÀ|^ÔÖ.2ÊûXfw!ˆ™Þµÿ/½Bèñfág.é¹1’É*°6} t½¹žÁc(®þ*‚[üx gçlÁEGwL'™) 7:ÎožÓLõý)-~ΈŸplÞ‚½å1 Ø×û¼B¾gé™û.ùŸbÒ‚Í6`ž´®¦ ï„C!"ˆ—?íÀA«ð²Ëš|ÝTô_žÌ¤äc¡³·éÆœo;d–äx^V’ZL}Ýn&ys) Ÿô‘—LðלƱ¥Þ~øI+3ò,³p8Ãq t ÂÒ\åEhî[ŠnªÝä¾Ê]ZÛ¤Uí£™HÔ¶>W B±:Ö÷nÀ¯7asÖ8õ2b°t³yï¾î¿;—v"ÇÞœÀgŒú3w>Z‰þ†ìñµF"ÿ%Nû3OO*[ëLé46—1õ¹VFhN¿AâdÙCÁ’‘Aá]èUâW8Ïï¼ðälUÙçª<K;@µ¥ÀdQüýíÝ>/˜.¾ ‹©áAÊr@˜zDZÓØK‘œËÔ ÔÊâíò y`[jk,™cžU"]Uûý•Ô7˜âÕDÅá±ìŠÔ?øý>¯8GF¬‚œu`øÕó°š,HÆGs‘ku?€ äΣÏüw>5(=µæX}¦z#¹¯Áa šzTÉ9âsþÐ Iž"¸Ë҉ܭ^›‚VîÂÒ„ASg‰èz¼6¦«0¤ÏwJO¥W{Ô²UÍaªj0\Œ&2Eg*°!áþ*D:Åm¯àÊJ¹à,!y þ“Q²·‡ çõwNÔ,ü3 ÞˆróE!a  ãhÈD£Ç½m18së¾Xf¦®ÎyÜÞË£«‘HÒWsOÀû6X‚B)¾h8vîŽû‰ŽF³:[8¨–ù±lAžI¹Òhw£)ÿj¬ÝrÔ„š°²!‚¨¥ (4*+p“,©VsbÂTMô4„QQë…qëËÞ„ƒi”“Ç`‰¥i(3¶Ó¬ [«©ž·œK8=¼yY]@§Ë>ç?¡æCÂñ˜%Vû0ºEÄéÜÍð*¥ÞdiïæÜæÛù•èíÈ,sêKŒbÀ¥þ'ÃrJàÕø Ï9Ct6_fvjÒ}ÃÉ5:B© gKá}F–K«t@¢Rãœ5%G¶¨;Ĉõøö+ „/ì>ï.iÇÕ¥^Îû­A–NnFZó °SUé>Ø×è}ê%F¢S—b7ä… 4ÖsrýÁÆOjß°Ft/s™Îÿæ=̾ʸ9ì,¿ÿɬöÉþäçRœ£fw!O$*·’oåØ/çWê8o2µ¼ˆQ«ÍÆnô¤BÆG’ÖГD° °ŸOV‡Î?¾r™"øwè•ãn͈Àc¹4–)„Çþ@ Íæ­a,ë¤&îMÚù¢³%3ÏJ 7‘P“EVDìøAOfšº7=±®­¥º±µi—üÞcC¼ðœ[_Y@ï/qh¦ãï–Õ½WÒ69±Ø/«+dì0|‰‹¨ªQNøÒ¹Û9bW¢_œüÄD8ë–KøÕN“©†ÍM´š‘OÇÙ°–Íì¿”«¨Û3æ¾ì àÌçÛú •e¶Ú`¸¨£ß /»þŠÜ;×¶'Ðk´]§Œwo°8aX)Ž¢«o|A„ÊTEÕ´ô7&Ù¼‰SÚc@?‰·ªç©èÙ¯þI¯¨Y°·Í(\eôõ}‹.`æû:(‹ˆy(°Æoâ5È$+V²®ÉkýSgjJóçbÿÝC_4i'©å›{’ÿx A*`m3Àsœºj£ãÇhjPÝ#Nç<ÔiâK—·¦iZþþuTs‚@ÑRÀÏÐf-1‡‡ÁÏi"ÉjÖÝÆäâÔ"!*˲õ6†¾Í®îÇô¡‰ìÛ0o"ey‡Æry©_Uް¸­wñxHòŒ¾Rm½+ófDã“97GØ/\v§ý®ú?¢c62 PŠ=xÑW-A  |ç{—ؼ…L˜wéähûTQ$«ÝsÈ÷1–›Yd_Z„ûzíP/ŸMhË‘Þa‰öŒ9‹[jj.â}ú?a0”YAàé=a$įš(4ž]³€‹˜Ý\ú-N4~ˆV — Ñ=ûÜqÖöIÛ³°Š_AH/¾­@1Ù«beûk¶GýŸÙ^ %$§eÖþCËØú\…íÍ/¬6õŸÚsš¼Ä„¡‰.y©Jð³Âmêü$ÿ̘ – gAåmy:½éóMqÅŽñgÝÏ'Xn5Pñ3FR@‚âoúY¯4€) ÅrC$Ò\m=æ&—g¬ŒŽPŽ`S÷•ª,€àLõãhRË,Jœdï¼ÊÙ¶±k‹ƒž­Òš‰7 ÏC÷ãd*Tã”7Rd)á¾Õ^Zs—`ûô¿è¢vrѬ"²„Í&ºáz”EuK“»¦ehç´ÆÓà“w×Írhg-½=Ù¦zÌ•W­ä Hª­>®f»îyá›ø'N½ƒc¼á­i®>w‚Dan ½‚²è!î¿É¿KRìzmõ̲áö%aÊ }‚¬|ýØAýDH:â¡ì#ü$ žŒË£S˜$ß H˜w‚)Ö¿@ö¥¯—0ÛCÙœ+Ä¿åüNdvúxNŒ!äã .¶ÜS¥¬ ÷±û¯/š”WÑØs7AÀÕæT'O ˆKN¥†D´;åuA©É¤Î„‚­Kå€WË}ßRØ(–ñÜÙ)šÎ§Ôªw ˜f– ·Rb×oÊqi.ÝB‘;Úí§×Èm¹­îµ†«Í¦£)û]E›~lfhQDêK& GR1ɸÝRp§']é¾—ËsÒaÎÖÐ~5(„ëéÕB­±áÅÇ7”ªZ‹I» òG‘y U+Ü›±˜)º¢ûúÖ(©þEÙŸB:‰û¶îŽòýºnOY¯×Nrz=;Øo8ÒÂ*ýFQþuË:ãDÙÝÖÖkd3P»ö×Ì—å ÎñwÉ4p…pX¢ÔàŒ¦ÖÒZ–s¥ZÙ,®e¿]ìÎ÷j–ÅvÎ,zm§Üi[H8Nþ G­;¾ØE„„·qM#€œsÁCœíG>]‚òSø?b•ƒA1èI¿ÇYŸÜz<õ¶¯&çðb¢”ï@zÏôÿ—^ãEÖû¤wfv^[ÃY|­TØ#PøÕþ}J¶Ð¯ ÅÎúÆùåÃÛÂ~xÕÞ>.ô={¿—WýUw­Ÿw¹H]ÒlH½N oî^þ†,¶†ÀÞV%a¾ø4–(L–±«¹É“Öý)ö¬†1EË8v¢9é+o|>‡8Î,M›Ì0'û_ß”›Kj2—ʶ'åÚ×÷îžf=îÕÎ>”sK&ÊP:" £sÑ‹è6S8®¹óN*)ÿŒiµ¿M©EàGåÔDºŸ‰Õ[Q3ïÊì|Ž"we«Ë(«wyúÊ–ƒ½™½e! “žšDNFô¨3ÝQ¦·»ù(þ÷®’=NNù"q›ê•¨Ž“Ñ02NtJßJc=š%wSÅ["å§ÑÚ¿xçb-âYu;ÈÇ™Iލ ²/1”Tþ9$^âÖÓûú@=s+ÒöÂMtÍÛX4ñ”Б)â¹GÈŸ÷ä„éJLÌüo=ÞÖÂáN EÓ0–zm8&Ÿ VÛmbhÆÉWýcØ£·ŒS³¨a3ë1>pßÿâž¿ðÓ½é´û T½µŸÄïøXh Qý+4vü#WéÙÖùgŘ07»nžÅsD›ÿaÙ¨“ÚwÊ·{±ƒõE+c¶aÚ"{}¬RíÞÄaXõ׫™­Ôé8ÑbüX™Š™¿â@eÖOIôk)v(Ùò›ÂìÂÔbt÷;,6óšÓ%i®é2^õuE2„î5*‘l¼¼j´K$ åÈñ_åFäÙrʨ Û;àåPšß®\˜òÿ‘ÎÆjP©4Ÿ³±Â¦•“ †M3¨ Lâ+ ííÿÆ„òÌå©g>˜ç dPW)¾ß¥#— S³~Ì)Òà¬áj(Ÿ !3ÅC¼·4õR¸`•™¹–þ•SqÃ^Éÿ¨”q9CáéT·ÙÎP¤¼“G/“âGâœÙ… ½.ååF÷榆Tái_‰X®Miålä07½šZaX,Ç«Pq(ü>Y~ÍàˆOr¦P¯À/»ã54ÿ§¢ ÇáÝ•ÆÞH-ad ÇÜàeňž$AÅk >¤ø.ŸõcDQã¡Â DÈL•_‰¡;Ñ¿ëÙûœZ2éámâúÜóÏš7Ë…l×ÞžœHi,8Ñãkô´åÝ—ÝûÔÎÝ™TVuçCw“–…êµr€‹\³â pe™+MVvEîM/œoò¦áÎYÒàà¡¢@uªŸ.²¨qõˆÖ£óãÅvä[‘EÆaAr£ŠÄHýÄZœ¿*Ù¤_I¨È1t©®?qv ¶ñaw¿,8Ÿ=›¡mQÿîðKzõó‹!šÎg#â:©6(¦µˆ|¢&;óõ¦–ÿ¥½šêô+Óšu$Œ*vÅtDùäy<Ž9ìî@*Â޹¬Æ ´¥.œ¾ƒÄ´©s Ÿ0@É!ó¸-g®^v|TLt!óo®/ŠÝ?2àéŒSau7û‘_&#SÙð–òwW[Üü7õfô½[P¸ŒVͲ&—2‘߃ú´‡ÛÐ"ÇEÊŽW€Bd+0x¦4ßÅ À…tÂOšÀ!ôó‹î÷æ.$°r~Ù¤)IÀÛ(Wë?¥Ø\³©À7ä(FWf´YŸáÏsÅ8 ß]»<Žøî5œCÍàháðªÜsME«æ¹‹\Ž“ˆ†}¦}¤±Gz³'VðƒJ-döâ°Û͉.æÁÇ]XD¿¼ýÙ¿+qÑC“k·ÙÁÏP+ „·+-¹1½*¡ÞEü—„»i=¦Ö|\ލž¤ÇûI\óg`ÑÊZVË~³—Ë&Ô,Up¿'õœ°alsj8ûšžÊ¬í6gBôÃ÷¹¹¬‹öZ|Úz¡m­z>®(a¼ ¼-1+D;D}ô%úkÌw*jdD#¡ð¼ä~ œ¿JÔþÚ3f¬Y”–âB¥ÅÈLŸl}Í!C?T IHrÒ#rŠn×!òo—Z9æÝP¢fГZ= Ž.'“}7¶&çȵøp›ÉÌQd§1_è0y>‰‚qîÌM³X²:ïm´6|žkÃ7¾ *U&p´Ÿn­HÛ£8°Ÿü%YËâ'I7(ƒ¢b Ngõ×k²=«ÉBXêjXfö3”ú©p.[äê Zg>fÔ&2NƨZ™9dùÇ7’Ç ¾=Ö ³ŸöšÇlŸ“Áî;–¹ùïXvHó½‰ê¡^‰'÷Æf®$Yÿ°´`ÕUBÊ%=·‘¯[#oþ`Ù3ÍRBµr±ËÉëñDptì7F¢RŸ·Íã¡ Ûs>ºÜ,ÁÓ{‚q*“<ÅSkDËjów$‘±^P[7C.ìˆprH{Y^ûì¨DD89[L7¯ ? ïéð(’†møw(éªSð™âÕ4³ƒ{C–»üû¬–Š3æóˆáÁǃ:´íbS½¸ÉhN ‘3ý¥÷¸Ž­Å‘Pkˆz+õsb,ùkÊkçÒOT‹¸©7Í }–g£© ›ÙÙYviÆ”™?ìÍíòaùô@ÅÛì°Ù°f5¸MRkAÈÅ>׊)Ns¸­“‚89²Êq¨¨Ù×ç½?ËözÙ¯p×B $LÀéŒêÊ×|;”ôN¯Ô2ÜËü×@þŸÍ\æZ„#·ÔJÆïU4‹ÔWBßæ¥Ê°ÔÒºžµÙÄWGøÙGé.„Œ÷Âü^·<°1ü³âc_lüùÄDÏsã°Ì>‘ÍcÜÿ)`8Ë¥qœ·>×{d4Úˆ¦¯{¾R…&ú0Ü+kTÆYw#†È÷„çí³.HItÊuŽêŒè1ˆ'çÀë¶7ùM„$ÿêË%~Í·viu:=—“꓇ÃÒMcGÇŽbŸ«xO×ϾËÔò®ØÂ¢2ÿ¨ä¤â?{ kÀã…KRðQÞmའL<'@2K1Ò„$PFXR„¬b6rßÇC Ú€TŽER…¸Þ‡Yœ[4Oß3´7e„:GÅ}UZp'$z}/·gæÙž þ| —°î£ ´¿Mbzè¬]'4^Ômª¿¯]ļ÷Âé³ b8v­ïwìë³ä¨wÉÊctk ]p²ó×.°Ã~ÿ4Çä;‰€ÇÆÜíDƒƒ"òë¦~¢±íïqšJr O §ÊDÈ—‡#zP%ôM»»B Ww¡_`¥ÑÖi㨔Z­ÿ4q†ajÐaOè-tám_^ÛEG:(5éè6&.\fú¬*(ÿQ@—ß‘'ïÝï„ 3ìwåëø Þ)öù—’k(ò¾ø;ð9ˆÌ>vK!ô®J¦°ì•Ò0²©jû1(~Ù¼37Ó„ ¶A>Ð3X¡“íobô[›„½]¦Ô ®ðû¯Åf^‰ÿYhe8#x«cwÐèÿôy*%k ó¢Ë¤ÉÊ—xŸýÑA+GˆájRëô<£z²áj¦‚éW+‘É|ë×d£ebÇ­W0† Ð?€ pÕÛ»2ûXO¤A¦Í,ûãÕú•Ÿ'©v-çp†ñxUÌöQ¾¢£ÈÛI‰¸bêøÓu飮YúA]óÂ58œ [j“¯§I­&4v:ÐDªË×vªù®nªä}º endstream endobj 132 0 obj << /Length1 1941 /Length2 23013 /Length3 0 /Length 24237 /Filter /FlateDecode >> stream xÚ´»uT›Û¶> ÅÝÝ‚»;ŵ¸» Á] ww-îE‹SÜ­¸»[Ñî}Ï=ûœûû÷É›gÚ3×\s®wd$¡$URe1%AvÎŒ¬L,|9y­‘+7£ ÐÜÅÆÈÀÆÄÂÂOI)æ4r¶Ù‰9ùÜÎEçwßw ^xJ€Ðèø®4{äÎFjö@VÑ_@ ääÌhläô®Ú™[Úiß]Ä@öŽ–æÎb°32þ‰ôÇ[” cdb rs²¶Ù™d˜ä™ ·w¡%€d0ZÙ˜@f5 @]UBE ¥¢¨®¤JËôXÕÅÞäø?¹ˆ©ª©K1ÄEÔ$@ €”ºªÚŸW5 Ý{þæ µwýžwÃ?îòj"jÚJ¬ÌÖ`¸,ÿÐþWnTï™þÚ»«™#Èö/…³³=3³››“¹‹“3ÈÑœÉÞæ¯üÔ,,n GkÀûÕhü«0.v¦ïåt¶þàÏ®ä,M€vNÀ?N’ ¿•¶ï¥|wz—;ÿobï…pþÓæos€ø4FNùÊ))Él,íœvFv&ï†ÎFÎ.NÿdïO )õß b.ŽŽ8äÿ¥rü_š¥. z_™ž—‘Û‹“ç?jóŸË6Ù9Y:9;ý0³´þÉÞéÏžYÚý%“Q–”PUc”{o<;FyÐ{u옜Ýÿ²þOD\ŽÀà`åå°¼7©„©ÈÖö=k'ø?å·|¯“3Èуùÿ6¶µÈÍÎëÿ¡0³´35ûS{S{fu;K ´øÿ˜¿‹àÿ-3:X@ÐÝÄ‚ùá_ýòGÌúGü^/{=ÀÌÈÆ èci|¿À{9¹ÎŽ.@¯*þÁ³rL-Mœß[ý}\àÿŠ.mgðþ-~Ïä_ªÿiš¿F•ö}NMAv6S <³Èù½%hþÿ™´ÿâ’t±±Q0²ÒüŸšþ·¡‘­¥Çšþ—‰&ðO¶4 G[#›ÿÒY:IZºM•,M,þ.íßrig£÷þ±3·¾oË_"õ?#eóÞ»ïçåŸã ÀÈÆÉö_º÷¶4±¶:9¸þv¾â¿2~¯þŸ|ÌJRrÚJôÿ·mþ²“°3™ZÚ™Ø8¹FŽŽFð,ï½ÀÆÉ ðb}olS û_Í`f²9¿»ì]œ}f Gø?ÊÅ `ù#ú ñr˜þxÌÆÿF¼f“ÿEœï:Íûòþ%aea0›þ²˜ÿ€lf³Àw^ËÀwbëÀ÷è6ÿ€ïÔ¶ÿ†¬ïDÿàe}'ýr˜ÿ߉œþ¹ÌÎÿ€ï¼.ÿ€ï¼®ÿ†lï‘=þß—àùüÏ­Rús\ý5‡,ÿÞ»ÿ9ÇÿªΎ k ¦¥éû=ì&òFÎŽ–îº,ïCÄú.üëþPþ{þÿá-* r÷bäx¯:#€•ç}lœ>ÿákò÷‘ú׿7Ù¿ðŸó ºMà—æA&¿Z¥4—úJ|›,ƒ¢äe:©ÀÔ’‰ƒ\JŸl'ÀÏÝ" ø·|É *É}âÓ÷Mò·+Ò¢üŠeóºö=±râÆTYxÛÈWÞ—YBd$GƒI= C~ñKY'í¡LN¾v1ÇtFk\+1@}äHŒ·½ëwÛøÚU2™^YëJ”[á,k3¦£ ºû"*~Áâd¸óÛo̘H£‘%ºÃü`ìhûî.T} ŒTõâõqªYEÑ1Y¸öºµB£7úfŽòŠSUüúßÈæ.¡©äqk “8„&®6ÑÙÙîf°ÛDÖ'շƤmɘn$X‹&çÛ,({HÊ¥Ad/¥j©¾×èµî‰2µwK?#Úß=X¡ø#.ÿŒ(Ý«ZThUQˆQÛ|³Ûk \„>E7øˆ­‘탟ÌR4^ìrW#YZ‹%㛫ºk“ß\‘A[jZsð©°F|ĉL)µ1È䪡ζë52*•e9ôÚù ‘ˆpŠ%ÀªÓó=œ_ž mzÌšƒNTßhØŠÚø¶—¨|ˆ¯CW!ߺQÖÄõû*_±¦Û^8bm¥ø´ …0¿ÌhYN/×þöÒ"ë)oPãn¯|5 'ê¢ì‚hâ§ž0àëÒSýõä'(su­ãÅÛ øÁ–o÷äõä(öó”Œ>\s}8OâRÄ)¢XwM0?ޚ̈ì35æÝ|àÏÓûñÙ4Sý¯¡¤ÚÒ¸7·ÖYX2¬@óŽt cÞ˜î1’!oG|ó[[K)”éÌ{†Û_ƒÕû*}¨Gg-rÈ©4%½1 ßü|ªÎXXñúQsëÜ&.,šošNL —,ÓX%÷yGPs_-.1æ÷ôqŸÙnzc¹rv¨)´Ò…lÃIQ6€ºÌryS;07­Ü“¥ÞŠ5³˜ë>0 м¤­@ ¦0¡f˜JFÉŸZsG÷0HÍ‹…ðüVÏ<Þ~üý±eÇò&G¾eG|Ùˆ EÿO~.¨4çâÏ„+™Ï˜íAÞ{é³—Š]œUÈ”ÛyMÚR (¯-zñª0ºút68î-›´Šäki“àòöïî°µo ûéÅ)s¾×öÖIÁbE&öDA?…С·QèmûIG–0єʲ‡¸Ä”ô¶J¦>& Çfž"s\2UÊRÙ.ÂófmjŒ HOr-ódIÝ>#ØjB3½0(Ñǡα˜aÛW"ГÒ%þܾ¦è$諚\qµ@ÍsK_ŽÏ¢%Vjºº!plÙ‰VMÉКµÎ̯Âóh*ƒ^CoFgô0À ¥0Ý`’ï7ÌTW©Ý/q‰ÜäÃåVá5C~½’«å·M¿Ê÷~.•¨…Û ÿ99Ã¬Ö ]A7Zfb¶w%cÈ×»Õ˜ÖçsØÿ ÜbèÙ.جʼnìU¥àújIš,Sשø´ÍµØ3Åf!hS\CP1ñ…exÚõ‘ðÞò&¿hBÀ Éšz½y÷L«›Ïy >{±Ú<å×}¯«¶ 4îT2çIß[8\i’¿¾»FºÇ‚®³Á×V¬Ë¯â8×6gN_î ÃÅ8|RM£'u†°ð+÷ xîëΆõÄ=lÓ íÆÆ‡Ñ§£YÞ]ÔLQÍOöÞɽ–E°œ"+0w2pp™ß‡JŽI -®Ç¬¢ÆÂmt'Õñ˜nÏÓiu»Gž›iî¿AÞ/\Ö¿k…7‘1ÄŸÏæ±±9xNí@Î õI·ªc(Ð÷#Kèk½‰ëQ#Uw—ØÖ¨LNÆü#|â£h}KöÙ%{£âµäE‰p–Ý./hwð’b ÿ õëîÈù>Ý·*ˆ%j\ï5eu©~šÞq‡øt,ëUEwDŠvaÂÕ›XäÛ`¯oVPM¶VέNW0,ô™‡Ÿ)2o§_âZÒÓmPvyÜÁ¤¦}^/‚VE$t™Q3¥ÐÎöÔ®3P'’\†Û(õƒFέ^aLR>WéxöQWÒ$­Z|¯Wð²?wI¾ë휧”u¥m‹4SpDGù%iܯrÿy‰Æ®«Á]ÂjE-öªìåˆvBŠ·©v$ë:GäR¾_Œð*í·Ø•ºù”î¦PÙ>F“XZküŽ#ÿÀ";`¼8kÍÁ¤ŠŽ&H*2UØœ½Þ &Õ4=Qpr¹q¹Oä*s ÛC‹`§÷ú(JÃÎg•-–Ë }€VY†_š$)RÀ,"A7I›¼7쟖å¹Kh¦4‘Õ5šÜˆ¥ç’:¿€†9e´ÉÖGü”Ñ%¤‹ëHš›ODæ0ø8/y‚3÷3Yì§þ—Ýû€NÐF¨tÁW”Âi¶® uï%Ñ&AÄg%¶ªõ;=>™„jõAËq¸üŠ.r,ÞãP¶mþࣅûp«Cå7?PZˆyºU>óMËíW_,‡ºcƒÚqš@ä‡Eš£ŠDáÕm™…Î|ÛŽùà-I¥pVSŽ"$ =+®-Ðõ 4÷/”wO•‰Ö5ò¸?[«óÙPÎðvŽ>×(`%8\”­Êú,KèUeédö†á'ȇ‡d£å/º?QŠ4UuW×wà{ݦȈ—Xö="je Ó¯N`øqœEÜ}X¼q=ê4¿Î$Ð!&@Àî*+o½ÇôièÆXæ±.6|.ŽÒ¯¯Âê²V-}ü2áD>²ýë-ÊÞ¦h—¯M¶}Gu9»ÿá:Ë@ã—@k¦X¹Þ–ù~p‡Æ‰2õY|eØ…Yó‹­ýQ€ÛS>³63n>C„(1<ÿ7ò|.Ñ‘·§ËÉÌN¡’¸·zÌð`0"vfåqSbýÓ2¾ ¾ÛgÕ† ÃÉ’ÍZÏÝÈ~ g~ó!l«Æ—~+r¸HpãHÞľL5(tnW2 Ž eáõÅ6ÂþÒkÆÉþ¸gJ ÷µánsHÍ d¢8"e#½mæ‘î¦"ë"Á~Ž£Ë¼ ‹…šåu N@îÍa X®ŒvÓ/B S ~g4”Mç_³åêó›hÕ|μª<«Üpù1uÃ-†1 „»^=œÄ&¹&<å]ÖÎtùÑ>ƒw¼5Û\aŠ#ËO\%nàaå÷A*³ro6"q¥8éÞ÷¥ß~†žRPüB±Ä  ãAê¦î®ØÇÃ@£ŠSÃD…@“ÄH~ta™sóÿ4c€Cât{ü»Û ?}1œ êJ»&ÒËAczw‘Áù|™µ>sãhy˜^Ú©µ6Õ€JéAìµþE°Ï’ÅG»…` Vµ4à§g6dé–@¼KÁ´Z‚iÑ<™øLÔUN ¸Æ»¥¶îÇ>Ú̘ÃtuÑm¤CäžùIœU)ß‚ ˆúîbi¬°lZsÝ·]#ºögx!”D:ùbKí3æ8Ü-ëÖsúÝ‹„êRÅ!È~FÙ«Á¯IxjøCðâtVA›¸r4Ü–è­Ü>òÍRSJ\üYozÜyìé…OÃËÞ…@NÆÈ|%#$u¦,Ï¡!ú½„—Wγå“Ï«ÕõĤ­d阨å¤btø…Á{:*³ŸèEà„‹Ö'Í|úÄç9È ”¬|-f6'¯{'M•nñ3o¢Z¤Ëe-o~SÛF­‹kôø“õH:ôŒ}EÅÑÚƒƒz€-"[²ïÀ‹ }jñ¸¦¾_Ü®YPmúi ß ‹ó2šN(^¼ä7HAÂe½`P` B­‹Ç$¥Yñ2puˆ1X-ü~HÓà Šë~â¡aW£Øw¾·QèÓØ€ÔX•œ6 ¶é¬ýi˜:®Š=o…3l8ž\nÞ7Ž›]¤G<Èiú„—,bÈ+¦ýV{-0¯ùâÁtÆ#=/c¿(C(@3Êj̇·Â1Nì&Œ9ø)ßg¨è~NUM30U…Köɑ䨸Œ‘Š ©ÁÇHrÄž ü•düÓR´Hzõ–'­–@ŠÃŸ€ýycC2Ø5›Ç ¯‰#G`Þ±$AðÛQ’áøxöFz•Ó>¶Î¾“dØ$€Ì&þ»ªÏCßµS`,½6°î!2ЗŒÎYÆÈ §;9){·ahÖù"ÞbžyuÅÈjÅ7c¯¥Ð82“ͤô³t#U¥¾tZx8æ—Ž x¨4ŽÑɨ0%›ŠE¶ç׸խ@øûK§,IºÙ°‹Mß„vÂT4y:ò?mš•D_B0a$±\RmH[bû²ï7·¢‡ò= ãR±³À·t@Ošß Š<íÅ:Ux{Ž?eƒ‹{ÆuUq°Ú·Qò¿V ‡ÔØÍ=tѵԹf¢oˆìco>‡ímzZÍQ6t=üî4ÏÁÃr8ªSòßíÝÇ£ƒr „ðRŠ„Èæ‰9CÙí‹\Z£ÕD¿£¡ éâÌKœ¶#püí½ì©9!Ž_Š=tA&l¢@Z°ŸîkÜ“/…Ekò¨Ç@-ƒ‘ÀDÞy’)ý*ýòRÃâ ;Ã7œÁÁËC5ËD˜B ­«Ôírü,û6¯æÇ•€Ä9Á‹Ï½D:»/°;¶ºä±àG&$vkÁr(;>[`Á\·%4(ÖõCCšÍB Ž=‹*¬ƒõÔ¢¬V§9ÍÚ¢?-Ó)ñæ2°oS®´7ÂtÅoÑ>é²”HÁA)òÎQb&Ã!þ “^ï·ývx‰¤`ù{$Šré±ô—ÂTÍ€æ\ô\›k\ÛC÷Ýa“N“éÁ·gJ$éØ'zž'²' LO˜€‘á>Ó(¡7è<ét=ß_[”é8?ñŸSÌiļ"KiÂ/IÄñx_«¿—h8ø´´ô'} xS…ñÆÞ‘ÿ”|—¬_]æ iÐ:ˆúm´ó©úóþwg $Rô¶H·f‰ÖÄ#±¥]HƒÅ:Mád¬[ݵ©´ž<,™Ê$#꤉c3¶MÏì$1MÞé§©ÆQf!]Õ/éÐ6rG† Ö,Tâ*äw8ЄÝê¹>¨FŒ4õðˆœ8‚-BÓä'O'ÑCÇXY‹‘»°¿v74ZDàNBNÜѯZu}%#Õè×ôÈ ²§Ó"à?1R ~Kº)-ŒŽÉ&xûtpJ2Kó”D{Þ~>•4ÿ^\ë¯Ȭ~”íÖe‘s–,Æ×¾Ð¨÷ƒ séü,è°ÏËŸû*M£nFCûùóˆfi¶K2ÉjAê+ßñ¦£•ˆk¦˜ æ&ˆÇß7XáúZd–&“kÿÌ('Üu;K§7$VSuä! o!Î*~ÒFÑ– ¯íîoó\Qü­­˜xèt¨·`®¶ñó·S“Ò‘0w3ô#ä3)r¶À¼˜SøÛÅU¬à›Çñ&Ùûf ?lÿ)ˆ…õ>,po&-å<‘82j¤u?IÁ"ä•=Rì“1) ä–D2ʉ»WðTp-‘&›ù.9—$fx½tB^7¶Ôãj6BL0²»‰æÆ¥o­21fÌÎI8™ÀÀؽ?ö/=;©i1“ÜK¼ÍŽó)ºZ,TrœÆß„Ñan=uc½î¡üé¼L¤Éáß Üo¸—wÁ7‚Î=d0aF¤à=ÍË4Ä~“µ<¤âv";g´W¡Fˆ®+ëž1'"K¾lœÜ }¡·¥wêÓGj ¶‡µwtÆîh¨;Î{Óx±û”V™²—Pàã)þ0Z Á½œ¿¬ÊZ'×…ªhRòBKë¤×ʈQÒ¹ZÔu|ïôŠpqšzñ’Újùý<¶j_züU‘êŒäRsgÜð:øIÍB"5u¨¥G‹Ÿ¶/uþ»Ì žs«‹‰ûàÃàKÑüÏ…,Á4ÝÔÁÌWê¦ÙÝ îs¦ÝñtÒŽ—à=ã6 8XMKµ·0R¥V›Š£ lÊŽß~ɉ³d6*7M- Êp EG˜où=ßó·íæåéa¹ž _Ô¾$X›(M^¶ï¢»”™h$u„~d¶&J™â¾rͤð²Ÿõë¸øQèIíV3RØg;R¿ .;qSœPôÁ7qÝ£³*ÒÁ½<:('"t¼‹ ®¢†È%*2”Ÿmi¬Ã»í¢ ¢SIÔ0ìÄÞSHÙÍÌíçH¼Î×ò“g°R†u…ÐÆÙ î(;¨äªªÎÆÚºSK­¤‚e)ñõA«IQyC·¹>¬ª×ÃÐbÂÔ2Cïò¯°tVmwÌY\Q( }[ê$ÄóÙ`Šê÷j%[’±m£½{?xÊq/]+ ;Ú¶v Ùm…~³cXû!ÅgqšàO×mÆ6gÐókJöÕu4Ç¢Ôç¢a4 -ØLq˜5U÷×Ö‚¡ÏÝöõãÝ+rVÑ£‚ÒusVÇmW<¾$}ŒòΖr²•WÍm)N¬K±™·6ѲÞYVÚ´J —®z&Z02ãÛkLÒÍGYsŘ`†˜:Øõj® ¸èλÏ! ’ùðþ‘òÁq_[DöJ4 VÆÉRR6˜`¼l•bJœ{jª9|<±yÚT™@)Å ½ã¯ÛhÔqÿëA§†[—ä¸ð ©Íè  ” ,&º¥@ÛƒâÜ$DþB¤”檳Kly[j#4ÃT™ÇÎAÛ1žˆº_7ËÔÓÖ¡@o ~Ñt‘¯¼ ],á!¿ãE&6QFݧ•Œ¶ÿUJ)l•ÓÒ5-/V”ku`Y8-Mö7Sº|HòSV[ÉØe6’tî[1ª}ŠÒðsuëáÕòw»ëº ŽAžóE½_jêÖƒoO“âDeW€ÂÌBÂ/ò‹Z\ÚŽav¹ù„úe°T­Déš7§"G/N&Ltö±hêʼnO¼‚ªà¼8¿¬ˆ×ÄŒ¸µ›¢°?#“áŠó‘²¿šÈÈ}ûZVy²c™ùëá¡ÔžÅà•]ü4TkèÙL±ÈWWª«€Þ izµ»A¸±û1l°¯ ‚çBÜ6‘bC”c:Ü=[“Ô~„ O €c÷ˆóéåžeç¶[•/ݲÙFBW+s;š¬?êr×vKØþ’1ïMÜ þ¥Q[2–­:;ömæJº PS-\Ú‡×JÑ Xs¤)$K¬ß÷µé:mclétsO°¶{IœO LoÒüè‰Ik¶{aíq<çFâT~cK~¶°'=P]£É¢B‰”HÁ¿õÉL¬—¥IÈún õÝ#õC+™^ËŒÏé¨ 008µ3ÂÎË®÷R@ÁH+ú¡6€ÿÌ7Çk Á‡pÀsR×–ýbH*‘Óô@BÛ-!ŠÂÆäBï2%£r–èÏU·bµã„±³œ5XÛ.²ô<R×ÿnOž«Õ†~ɤé›úHQŸ—•ÓʱÊd j=?ä];V&ü&c¿$®ABtL˜Ÿœ¹ìR::ÞÖêVP‚Þ5ìT²=ÌÕèá®úôÐo…‰š=DËIéÍ0k6Aƒý;$MZ¿ê‡ì¼4”ÐtB üi§ýNs ïÕSšŽdȰ vw°•¼¬_ògê®@꟯êÁ“š…M~)´¾ßÌQÆ»XuGº~8ù¶ yÔšŒß ‰ºåÌip  Ñœc3ñ< ‰¤a‚c6ê›BÀ)"ǘ4D1Pm»½›Vßœ #¥5ýÅ45á}Hdñµ·ÿ™€ê ü’ÃjiíG'„Ô/ß› 4Ð>A¢œƒ©ÃÎÚâ.÷æ„È(9“ÅÚÛ#Ô2ÌßóŒ¹ÀN-€/›ìnLM™Ô{P”Æ&g¡>¸cá²§R›(@o÷i[þb‰¶ßÍ:0û©à§/ë"g;e°m dE @°„¬×(›¼C‘#þÕ¸ŽP±ø“GÀä¾´_^æ»ÄÉä« ¿ ;yµ¡£‰>7O‚Áë°Š:Žn§ æž—Á4÷4%US á!{42Ü—–Ù]$9hÚývVù•*åuÏ›T&ÇÝ¥óÓƒsMƳÝY-(Ùê àf ±Íº,I?û­í˜Ðÿ‹tá˜Ûî×c=†DÇ}Ž¿˜V¶IûÛØ5 Ñc/@ÑÞm7–+~þÔzTÞV­üñ*¢üoú2TÂoŒÁÇhƒÐþëv.6æ^S¼€C½‘fŒÍ]U8 ›búJwNABã–¤ž·ìL´Þ0{'μЯXS>:Ž™,rW'tuà ¥Dèbv>c2å]¯êí Õ¥ø«÷O+Éš`Nˆ’7õZ=aPiù¸…(1ñ£ l`7´Å¶ÂÓÕcmˆ`(Ý6_nñNÁL<Å=mÖÈ„þü"½i³1ûõmzƒÃ_›)^Æ ±fË=÷Óõ}â"¾éIo˜â8-æòd¬Bò“LS‰ÝÖH«éIi( a>µƒ›ò·‹×ÿž=‡ÄÞb ‹¨Ó!c:"¾¡lÇw6ÿÆ¨à™ºÉ.pckv}+Á©ã7š½TˆHMU™—$¿1$2!Ÿ;5\Hvt—ÌñWvAnϸâ4¸¾MsN_LpæØžÒ…M[Ј!ú0CêW]/z “èÀìÃõ;êKéâP3|¤¾÷ÀSæ¥v6e ¿%zݨ¡Ú¡¾Ú‚Åò™ºz-wJ^IÙ÷júòOµd› Ùzòn¬8V aôì†%bšº^•;éáÃQ)ü½ë^§$õµõoí³>c´^G,Ë5ùŠ@u|W8Ëõ“ÄSÞÄ—bp•a€:ä¹W¶!ý˰”’¥4Ö–~« ´I×eíkŽÌn°®_ð&;|S»ÃÉ|Dš]çeÕâ$<ß®“…°82—®s΃Ç[²q]¶²Uñ\×G–¬ý]#<= ÕiúßYAiÌG3.{þ¥«ò! e‚B`°ð'BðyŠsǰ_€”_éQâîv`ømed¤¯8ܼBBˆOJžIBá?ØAL3$ÊÝÙŠÊ1ñq‹]Z¬ïB]”i\,hü0b2û‚š˜1ÞgaZÊ#~Á¦ÙU2 3Kö ªtµuz/Cæ€:Xnj²¾k¦'Zaºx²Ûøøw0ÛüÇnétYá–Õ™øßB6›´²Æ"Ķ÷>2òs0ZÕ¥Â"EÙŸ NÆ•@`1;ü“(jüÓz…eYo½ºiì8»0Vy[;ñ(qÈc‘ú¶¼bx<_9ž .P¨Â¹€xcÍ[Ü1’+ño1öãÏG¶o[¦jZ÷þ¸¶gΕ3¢Á±ò¦v4¯”˜Ýé±?^ÊÖÒ•¨Lœ±ý×õ@î;4Ð8·iFÔ‚ßwÆ+%èê'Ñ‘`”Öu”ž_æcû¨8_À+Í]ÑÉ~r`9s†¼ƒ{åÜ‚)(™á¨Ð1¯4cRgnB}BÊØù€’ ë0)C7äÏàÙ`k«‹.^3%3Š Z›çÆ=hªWùõ‘§uæTGˆ õ “mœ‘Ò¾ñè<—5Ÿ¹—äzß$PöÕ'èl¬1†òr[¹/ (â9—`,à‚²5"[™ x³ÊKµ³˜/_Yáü ÎLb"I+‰0¦à.IsÒ±ñMâ(0n:óÏÂI:‚{‘Øç¬êyHòò;ëᔆa’e?èjüÏ^$3a޲áN¹(<ä!uµºÍ á õ4·8Œ¥K «½à V@T”F/’dõ¨&Ž®Tèî£#]yŽf¦ 4³ùÁ <ú®{9åHÇЗ#ÊÐjÿºíîèþ±õB¸ú¥ÃL×sqË:†Úo,Z‹Mâ¸ÅÛ"ÉÛ¿Ôç{Ó3¥âAL:Ÿbˆyì d™y÷#ÙS½¶n9£¯|ñ >4Æj`fT™¦±±7_ôÍ©ÃPýĹtŸ^ÇoDsBžÙû ‡*âP:ÎKp·¨&¶ "ÚsιþAd0sœàä…^ðlµsLèß§G¶å¬1Î HÄ7ç(÷—¸#P;-¨)5Ÿ]‡¤ð„ÌuƉŒl"#ëÄ‚…‰¡Ä Pú­†ô cêL-¥‹§ÙLlŽñ=Äõ·>+ Gæ6ÞåaDKøƒœ#îBÏ/ÿOXy{ÍM=èÆ5¶¸Á¤ÙêØÔ$¯j²ÀÙÔ^vxfj X>ר„±pÖýhwøL‚]o/9²äÄfò:ÞÐÔœyáÂu*°;ë˜5 ÓEÜóݸ¦„‡¦êÖ5úaéš¡R÷"b‡¨ß±ý5Ö-lò¹^Iˆð”B–]ù;‘®ìsQhDEîھͬ=4>‘Â%ÄÇ€)õ°¹ÆœÊÐÖ¡ôɘr>LRÁ'[C¸h×=:ƒÁèIR¢8u˜Îô4ðçIOÒŒŸÏã¸nM?½¢.8mBƒù'sÀ<׊„Ëûâeb%hÞYóë}¨¡Ì#BM>”j* @}•úG&¯ùÈj0 ×ó«Ç1ÛÆ¯0g×’ƒv¿ðqU'ñô œ—.+d8?·*(¤•øC$èÄ•¢6UXÀ‡¦}'pc?+CeâU‰Go2pVè\P ­¢úFÄE%ÚQ¢hðÊ ÛUÒÄŽ&ŠOwÇåÙ-ÚÁ,î|®'{A ´dd8štÞk¹TÙé5^'’Ù+ˆöím®2æ®}ƒ·\°FnüôH,•æW]t+ÏŠÃîÕSDï1¥kÄïàqCÞ’º%âRa½Y/y­}­7s ¸)ð[6WrVƒ=¿C~ËJœw'Ò¢Õ“#DI2Ô!¦†ø€[“h[De ëá-O äèka…Þâe‡VCîYÚîlgæêÄÄ¥+ŒÓ­‘~ôgd,lýb긟f*ëÜžÁ ˜’èär ŒÓ–ysP-nœ¹yùÜ/4½C±1JðqLvH½»eçßpë=1ùVofS¼ë@éÕ^rŸ/qM‚#.v†ŠÔ×pÑ—fygÕ+Iܹ·º$J—}/Õ%hÅ»„’Q›¢5gØÝ+ZN}6k¿¸8@õ }ö˜XuFÉ?ÚèAË‘“šW:ëcíí?ܱeyÐŽ¬ˆƒ`úH骙­‘hR9’íü :FYšðbt-9<§‹p.Ièœ>fÍ”ö9¼xTn¢š}èV¨¾yäp·1âÔœÊ~4Êèa]4LðHØnïߦ%.ðÈÖä§8—Ž"îÕ”yðbGÛ;úÖô8³¹¡ç³ ’?¦± 1Š:L&"Á•µÑ&Èg¼ › œW(:Žè¢@‹îV£Úy”>N&Ûу§MÔ·°éÁ•06ò‚¨éI7–𭿦Èf˜éÕcû˜]~õ×äää¢5#†ub@ÍÔž«Z&[ƒ&FKð!ïvsl.øB6mA2¼ IÀàTBKKßûkà“þçÛ°…Äeî`u}DH+QÏuœë …|΄šnâÖ Ä®¶À=ÑÎǵZl²ÕÓ‰*˜âžÙŸ uÝj¶=ã…5´P›ºA Z™y?îXE®®¼5vï ŸxXÕ"âÚR¢æ.•÷±”çºãÕŸi-ç™^”,· ÝÝ,´{nÈÅÕ6.v}B¨#tZxaƒñ³¦Âœ©)í½û.Â)›êD·mË.×°¨œ¯UÄWõ΃-_Ãf↵>¦SÞÇô’=ÉÎ!M¦8ÂИ+ß(.uêÂf¤§¼^ï H-?“  ÌRZï)‰=ÌÆ0úò Áç¹T7EÓ*¹ö¡¸~ÿtãþ#½Ëþ,oõçh)!ŠÀrY†„“ا7ç… Ÿ8ak5¾žZ¨nW<ÉaLM9¾“Üh—»…¯·ºÐEVú¦(é ü„^Z*ž¯[pà7#ú].B)C(lb„§Nä^^ÄÒa>,Ùv:‹Ônm+TE„¼ׂ·yZÓ9D.\S Þ|N3ˆp"íô6¢ ÅsãD­K žØ™K7ƒ--¡ro1£’Òž´Çð¼þxëÅ¥Á-EÛIG'fÿ–¡K|ÍPñ’¥W_Ë`W<%M¾I.(´áDSž.‰½9aÚMÓ™\âÈ‹ è:Qå4Pœh½úÐ)|‹Ï‡Æsd3Ε’é5ñ«½–y6 ûÑ4yÇÝ@#^GÎgÕŽ ÚÉN ‡È"á¼Þ³i7£œRäB4³ØPÉ´/‹Çã0^s46ùõ’ÌÙXzß|¼€KþíQµE_poÝ2¦Bé“Ô›¤5 œÜ E.9–ØDÚÿ^qc}¬Í¼¯©ÌÕCrZRÖ¼ª”}Åç‡oÏüÚ ‰ˆ~ÜššäTyÊ.é@ŸA «ê„ÌÄ"g |>B2Ç@­— Vb-žˆr VtˆñSKöpЋãÓdûB<–V&}§#„ºÙa¤†ñî•t“eÂth/qí%¢+ ê ¡–²õ“Fÿæþæ£=j÷ˆ¢™­6®uPŒSg6cpä}Xb{£ÍÒIŽ n€ûâ«Yª°áí¦ØÛgºLpÕ{?ÝÔ³ öm ÓAj95hœóü?ì9®—I³¸™ÁGc9„6)£ã‡ü®( ÃñYq?]Ö˜†Ð»„¥U3SpC¡zoÏY”‘èRzn\Oß"”‘À:áÖ@w%p†m?–T:ê=É|k €*:V.Íy…îùzr,%œW÷Ïô|€Ö:sÒÓ@LÎy܄ӽ“W,ü‘³é4(Ѓé Äé€8’»%gX¥|J3«¼ÆäRyæÁècD0ÅOŸ‘ì8]kjXøùƒJxŠq‡ 3 È•œÚaöª}σ>¨Ö2s”@eÛ÷¨Ý µ¤0VH´ºa3=ip©™Ðçý¯=͈ĵF¯˜ Øi£•ÙÏÁ([l’ڰDzÛ›Þù°”_æ…ÁHûz¤ Ts׺b¹‡ç£œµðÒ/ˆó<êèÌèíßq/÷C¡`æfÜ*6q·oŠ­J%¡3¿&ä6¶­æí|8aŠŠ*%l ©!¡Ršvèjßî÷?À|Ò+xº ¡OÃÇVs_±cžè£X#qƒ¤áiÿ2%^ú-ü*߇ÁV±Ÿ‹HÚ¤VkkðÄÃ7=?S*Ãyª×/¸ã(-·F.¸XákI—Å(sÆWnRð2­®ê똼q&¸÷ ƒ.ùj¹Çîà&J¡ÂêÃÌøK%ë5ß¶]§(%Þ·Œ`¡Ÿãp}{fë)H¯Ôƒ(1ö3éøEœ/á£J½+F’BšA¡m'dUvéƒËOYq O2n„úŽõ¥Kª8h!cÈìCc,‘bÖÆÆ!Ź«ää (ÖicÔÎGäL“ä=/½Å?L‹_¥Ñ"ïÓÑ ëõ~¶—š.‚]ëÚÉØí¥DÇЭ P1—„¹Áûž*¼=†!uKãuK;Š3Ë‚rû©“\Î/iþNÉt¿þòdÍŽØëà¼âA”³µ#øWi_èwnQ5(dXªý=Ö³n"ª+uäqu‰´W7(À«½‘é‡Gƒçmùú¬àØ;8²B7ýÈ'óù_°¥&fu·?Ó2¥2ª™ð”,e5q­d)$kŒLÄÅÙlŸhK"gâYƦ6”<•Ó96öf™oY©!u,žùÄJÔ#…•ö9›Ät6ÐÉö/޶Ñxº$é|Ú¾ûHK¹”SI¥Vêza¡u£Ÿ€ ùµHŠkÑÞÚ_6x*„ •:bÛ•MŠGNyµü(ÐûL Ç»v›¹½Þ5Æ“þ"µ¥/æÑÃùlL¸3¸n«ÈhIŠë‡#À«—¥S(®Ý'Âô$fëT©b#>s&Yý)~a¼$ýW: –<ögâûO¿¹6x|†%¢ìi•òy3oí¬ž_øéóîs…àC1‘W–CažYHóÓ$¡Ezå¢i÷Lûé>˜½¡ÕŽQ2DÚ¿qX›‰Ë°žRw¨æ¸›-Ô·°‰Îtl¨å]²O VPˆ›á.:r~>:¶ìáÌÀChiIèîž꺎?*àûN}=C+Úk< ÷xÏHy¨õ¢F\º*¼¤+E“)žaµ8w9§‰ P:´… ƒvžÈ¼côhã$EÅÌkÖŸs¸ºÇ΂€ƒj¢Rõ'¾]ƃ»îP½«ÊÌ¥×rkä–ša¥šÝ¡~ñl}Õ±·ø5¹Ê¨>¯£ZáÎÏo¡êðª0f¢doŽÄŽGʤg¶ñcB\Žü 2œ7]‡-BÈÜjƒh½€’n•î3úk#—Ý Ç"žw–añ=}¯;J™ò ·›.}ík»~G}7]ÙË#Í!sÈk{ Ù×â »Lyþ•ë0ÕïôÅXmºãH³¢Ýj.ÖÉꔫ‘r„Ïq|5VF½ [$éUâÛ‡Ÿ|~tzW0´ÍºQ¬ôÔŠÁ;iù‘ÌÅ »T‰¤Ó?•  Pš¤É5ØÖLà™g2î“ØÄs[°²«Žž»eƒåAzL½Û™E™7ïZø \Ü$|l¾ç ß ¿q Qœ,rq°€ŸÄòˆC|¤R]QÏ:$exT•N«×òxýšÆ3²f2Æû$¦“ðÁ‘.i~µ%f=5Xpõàhl0¹õhÆv ‚Ù3¾d®¹~Ä¢n•‰=Ó{|´â?«A>ÞܪÅÞ¶û-Û®Zƒíil¤*{KþÑFZ¥}Žy–317¸9#±Þ{߉ô¤“Rsʤ ¿(mæDõ¯k?ÍÕx€Ï¨· T~­2Ø#šX)å>¶´®Óûéi‰lÇ~_!Î9CÒξš5òƉ°ÃmŰvj—Æ-e¿n´nŒšYƧ¶¢&~kê-냚GË}¤M–´Æ|ù»lÏN|›¤ôÉ48¬1÷1ªê`´¿~4Ò©*~å2!wÞ ÏÔ7a·¾ºc¶Ä%÷°™âBúýK}·›EÏX•db–Qx…N×qš*¡…VD­Gáâd¶û3ý…îo¥+Ð]X¢åŽ®uìsAXU®\ÒÍ<.ÞÙ««Â?ã΂¤ÇOû†°óøŽ°‚åðµA6̹êìØd%pHˆÌöÉjý:ÚÖ>ŠØŠoŠëí !e#ôÄ ¿7KjæH¡kÃ" i$zD­÷ô–´ û3¥+W(Ü÷`†’)E·¶?à#NÉžaMWíå­¿r… ýDõ\`?iglü,é‡ÞfÔËúm™Xù €§­øþÙ>ÕSóÄi7÷Ë~/Ã"•‚á(¥ÊD•VÄhîü7‹à7¢üÆyÉIºd…¥þ0XÍomÌË Âr§©ö$‡”ô˜ÛdFÇk{ãE*¢“ýÉž¬<kü)C0„è“æÉ–6i0ÄkÊZU]!/^ÚA"òçö+®ûßí‘Ûå. 2ÞikKÖŒ_CÈ3"Ï¿A”„»ÝÜ!ø@ßЪ<%XpÀnhŠúRoBãôÝ.ë\°j`î{®Äo$ŠlÄ¢´“¤À6ß4ˆ“ªŸY‚¸7¹Ž˜ª*Ñv 0‡•RäÊP(‰Œbä…§h‹îrR™ÍnõgÝÀӋ𼲌áÎK¶ÂˆV’gš2*Ã>±i1/ËX@jAb}(§â°‹åé¨ó® ‹"œ·ß¶€?-\‰}uƒŸöÕÈ7à,/Ს«Å³´‘âîˆS¹œLt£•¹ ‘H*¡æA±-úYȲò·tì¦ 6¼Óvá=mƒî6 9s¼!j/;´ãO-‰¶ØÑ;çzQè(Û' íeÞՙ爮”™7,ÿ_F¹â´éç˜`š=è†"Ò›K×ÿ;”¥QW6@ÌWæú±’ÜèŒíËz¦â6¤оÄÒèì{_à`Jà]¬ãψ+e%J- 3ÓÙž×P¡ó, ƒjl¥Z­>Öº1QÎgsµdf’'©ä-Atš”(€ÓKÑ6írÉ¢^Ã1XâŸïÏ‘\±ÆAA’ü‰1o'¦3Ñ&ÍcýîHââaÁnñ #fÎÖµjµg7Œð;iOÅ:3ÜR¤Š‘Žðþ°o\@ÿ’¦ggQÎÑ%ÔMîæp½à'‹hï‰n+äçñÌÇ,½ '3G6 ,îX­œï2_e~¦è\kE*ÿ2(P†_?f YçÌÿ™U^4cKRð¸¸>ï\ÊQ²d1¼½å9¸¿sˆ!dÿ/Wþ]Úï ¨ R=(5ß 76 ›]é%W«_ -¾W}¥ó‚¬§´fwâZ¸G°AÖ”Ážfù=¼Žœ¥èg“ú7ˆ™6ø#ÞÙh8)­—³ ZC0—òHë%r-Æk$q7$H#¯QËéSAĆv4,z.<8©µLÄ\Y}g™Í[ Ålj†ÏmÏ:4æª<ËÌÆÎçÇw2Ìø­©1be38 ìÙ§qX=W·ˆå(ð¸ýX²?!ÿŸ¥Æ™ÔYd©<ƒ>SwÈ,ÎÙµªËBº)¾$Éxd;¾“ÐÃHˆVùH^Ðký W©m:Çðjž¶¹sé¼øºïÀ ú-ÝúÓB%½ß_¯š60^6Â¢ÝÆ%m …¶Úà-¹”T®ð­ˆu=ë’’KŠ¬ãæ‰½í‘uÕÉ‘š¦QowÅ~V<6iÄÑ9pã•b1€WøoeZJËw.ÉE¢£­ „Çÿ,®tÕ< 8xôÿ×”&ò~…Êí`ÀÜMf¤„e3DÝÐ"ãªõb¨¡m¥ÂPv.˜)má+A @¦ßÐf}ÄDÖ4"Pj‚}'RÑ®NÙ fî±jÃôðp9¶ù×ådö×tÐTQ_æ ¸ Þ‘º!*lk«…ŸGysPp'î2pÙ^Ç»•5·±'襒s_¤qtc …ÑÝrO50S Ö¶4^\7Ô6Õ; ì÷=ÝŸAöZ;Ol¥mnŒU±õC3è0q£@ÇW#…¸Á ’—¾o@ÁªyY€¿ÔIŠp±žz7n¬NìÛŠú<â/‹¨ÄÝM4¿ãô=æü·É(E ýÔm߈J›®ÈçÇn süx6vZd |ç.RŽÂžcoï<µ@&P&ô±Wà¹Hׯ&­Ž ­ûVoû8ÈùaCº‡7Ì‹>]LbÛs7<8C¬–îŸ\ ¶FÓ#[Ä<Íš{øh,˜‹»CÜòAB:»¹ûf¼9ó£Òƒrˆuwhç W[OÍ»(ATŒ“…’ðñ7ã>¹ÔSh‚|§k…Œâjå„E$Ãè+nô £¯åãçhç›6dª—U41øú 9Ð1U=²Å™/%È£ÝÆßƒÐÚÂ=cfgþ¨û™Ö9|>î¬ñ¢KÝ:|nüò{?5x”;0H̱EÒ)Yâ=’q±i ¹C3eíþ9б¹dZ<XL{Úðùi¶QIâËä©ê²‘ÖøQsú°­¶ë Pçó¼‘öœ8ÌbÚ£ Ç0¨.ñâú(íF¤Zë“ûîT/7PÑõ³Òf-DeCQÎiÿZ®ùÊè eGïe¾˜¦‹²£ƒ-÷ÌÁbÛtjÀؼÌÒM#ßy‡Nßýh5™IO20”jvÀY=Ÿk‰–‹…P¥ýupS6õÛÞ^!Ï̪³…óP'éóLذ²ażûxŠY'3sqî».Ÿ>Jªz©ëx1c:qU¨3`0OÔ[¼Póq  •=¸¤ŒG”ÿÍ]úd½õîÙ—¬f¦¢Ê쌼¤»EÄ—‚Ù²ˆC9Ø…ÃäÈ>Š?˜ hjÛt EÐË{ëˆWôt»_Ð’ˆÃƒÌIŸ´D¶ z«¿›?©¹76𑟶£ME£ËÀdl|n€í(¿ñ§…£_@‡ÖíÛ/æÌvà\ø(¬°sFñz4°L ¨ëEjλl67N·XO7+š@—ôa™|[Ìßgf¬Õbk^ÀOMæô#ÆŒ«ŽY”î3L±¦"Y@¤Ñ1vd›LyXT›oÅû9Aib&%òI:Ù^+ÿл=)øëCBÏæJ OÒ¬ECÿL3öá«)áåÑЬþöïðˆöSñë™Õˆ©¡]Ç€*–æ9gœ¦Ú!TYïÀ!8 Uä¹'¨0“s‹`ãøŸ€oÜpµ¡m†Q4€1ަø÷DSÈ/_%÷´ÁÿˉÅ{ºYq„õàX,-² Gš­tÀºh01©RzŒíB%z'ÿ<ú£Ôg†[–üm9Œà_ÒÚèOp’q•×£9ççnúœ¡†~Ko˜[ÑÞƒÝ$(mlò(ª$h­ÉÍ÷òÉâä7SôFõ‹7Ç<ò…zz»2ŸÌÁZóœ¼WÒh1cüoü îð¯Ja@, ‡q·º™9ÐÊÿ²gî íiÎ1°WY\Z¥-]fv¼ª®µèÌC² ú*å7×Ïtâ³XlŒ¶¯:£ÅÊ}€BÁW2(O¨ÀfµCmT¾wÄÀ1b7Zï[½kòPb^K\++ùƒHÌß´£cÆJ­»,¬âF«¿_vŽÌ¶+éo¬Y´Êrf:J…>¹MU=Su÷XCÁk&•D[•¦§Ht…¢uÕ¤Õ6‹8í³¬4GÒ}Ð7qñéÆå+ž VÑAùÂv=r¦lô8sëDóX$Àµ"·äÒñ5©Ì–nUhß߀Ûõç;3¢›{Dx °ýášo’²z53+ 3“f·7<àXEn#°‰É/ÅHÏ–]õ.Ü£Æ_»¦µsr»õ@Ûâ©­÷Ú=ðªÅ0fN: &qMù¡0³“qä{_Ýo?ùEÁÝN ±M ßï®DrWV ê8öCé« W…4Ý,CO>û#E19¦@*D¼Œ­pDiÙ”Ÿ#¯.yÅ…¬òPñ£)úµOS:=vˆy¥Òa¸_k·@Œ‘¼Û”–@ÊØ;„Ž‘uÄéåqŠÂI€"uZ@¿¯Â5£K³uŽ5&1!|¡-I…;ÛYýÒ@†Ïtâböïí3|pÉÌl.52GG¶É¾àQ¾‚#l|=²\Âb¦M£5ï¤ÊT‘È k:Rý © zظCS[5«é*“ÃGù;˜fl-[³­À(÷·9)|Ķ£5¸Cr«ƒØÕ¸«¯›CWÅ^e•¿;Ú{ò«e·½É÷á]~Mà 0q)À@¸†™îàÊóÁ½ÓÕ]®¼$ÏòN‡¸Äpÿ¾¬­ôIøUa2h¡9˘¿hè °#Tÿ…Ï_ˆÙÁx> þu`ÂN´øˆHË]S×j®u‚ª:ä𔻣·(`ºÙ:.AOÄãú*Ô%zûU²OLîùé HOÈÈÖ7ööÀn°£³{_ SdYIplIj¥ŽG´Jœõ hä`ñK:ÕˆÜ Ú•žõ$¸¾Gñl lFìÅ'‰Ç_yë䨀¿4Ñ 'Æ4X‹+ôLƒhÉÆšÑ~‘½xUšÒÝÝ®1Ó€ŽHô2øL´@¬“Bk0ä&g;3ËÜqæÕiû¬Áö'߬äc×?ùÑd£Èbå”éXŠÛc½¾ÌL%`‡WÎÞ<.sˆ)†èºÕ¶IKíɹǶ ÖæÑnŒyê&àEØ1»¥¸¡µÙ]ð @ŸL(5åVíg6IÈ%ûŒ¶,͇Bl„ <¼‰÷;0IB|"šÔ7ƒ[—m\ºÒ ¥8 Ê>Dî^ð8E|a†÷¾hS~‚=¦|—¤Ç¹5ÞáVV+D?çO,,#þ$Ä6ðE½• g?<½ Ã]B^\ï#š×kîÑXÛ;âÜK¡Ü!k-_#£]ÔIjZç¤÷Vã´MaÏm–ïh@4µÂÞ……ñ7Žk@]~0ﵘ£úg&:/fL´&®¹Ù%gW¡*|›Ð¡¶Š°OJX4JÿÎCó9Y“ÿŽ„îpËåûë˜QDYm?&g^¹›èä”;€¡‹³ß`ßœ&aè’Þ]¬au ‡Ò© ó§4^óUè¿*Å%Oå¯A‹jÝ1žà²‚ªÖë§ž…iµ`=µ‘ L@n´Wt0Cëê2°›'Y:¶ƒ^—ëf’E|ȹ¹‚€û4D9“½<µÀ-½¯÷¼7ŒÓ¯«¿†·*†_Ô«…E©þ}C“ÆRyfQiJÁ[ì¨ý¸^ŸòÙ«àÁxé óÞÍ—\’]v ÝØI:n`¹Ù2ƒ=ƒü²…ÛºšÄ¹ê× ®ªCÅÑùjZÝä‚x“ÊØøHp™­ØwlµvCµº´–Ž-sÁá/š¿N Ü#ÍÔìÞgÜ×êr¸EDþ"ôÎp^¥T ‡,S`0óŒç¬[üüȃœÙ“®L÷ûM¶ òi+—Òõ™AÖ®%ï‘î³Å;C逼iô’+wsD—yâ †[™>vÒû&Lœ ×5‚ã8¾w÷öWã÷jµ“õŒ¬™«Éb5µ(Мß[Ee+•XY·²•Zß»m©-|Ô"ÿ•~ö"gÞr&,#?"®?×ðÁŸ‰>‰Ž»Þ„w—“}£^×£Ç#ÚÇ{d Nsé‰w‘@‚Ø“7»+Ž¢Õæ1ËIrŒÖƒ3)Þâ%êxìWjÕ‘ø²|)JIä ^*g¼ Ié¼û[Üãßìõ’µ•”œ,qýõàùzâ·‘MÐWcÓ <†ÓÓ(y¥õHì÷[˜Ȧ–Ä&á¾mQÔe™ØÂÝþ”¢_ÂØ˜ßY‰Ñ¢(È`B…w}•ç$߀Õö–ün)wh"Œ¹ê¾ÑMâ2œËÞ"+L1ÿìõåVKj¥Ë>}ˆÊB\ÏJƒöÞ#Ëæ¡æ1·¯`Cø`ÕÕH±fÂY!ØÝ­3˜/Kµ½SàŸÁ¨cY›ÏšqMôµŸý‡¡ÀEŒ½È*Q®2¤ŸûÓס{ TM¢•ò\œsŒjl8-ãkˆ65"a%,~׺eƒ¦Âë_'1 Ÿqï¨s¾Ì®ñø§j6{²ê>#íÍòV"ö H¦½\+m[•Ñj¤ºà»ñÅê .ä…)Þ”#@¤ ±Ë¼Í¬ð`'#1Óp/µ>{VÑ­“‚©ë Öõ&îCÓ÷¾¸>¢!Àʯ~0H÷ôSÏ3öì9ƒ{ OÝi7ô\†Ò*5«w9ÆóÐLš‹è"})8‘açAo*ôDrs–™­%ÝDgo½*ìÔNl«ûÊ—CÌ —–àEÓÊË·åp±ê@)ÇÈ{ÐxÓ‹|Ýûïy™•˜åtdè-L÷kæÌQÒ »ì†p>Äùü.”ŠÌ—s9<æ ûD57*¥#ºJÞ2\çæH’ óÿ™ë/Ptl£²n&’ +¨ùßÊ×ÉåÕe`ŠÅÙ Š¿öÿ›fCÅ‹-ºæ¹q(›kß´‹ Î\á±#OÅkD³|—æá+êÍ®¢QÎ$„FZV¦„ S³Ðxrd³áâpèVë»P.Źbt(±ÝýU~L}I1ºþš‘6êàq°V3ë¶¢ÿãyÿ@׈&¬RuîfaÄÞs<·hè °#Tÿ…Ï_ˆÙÁx> þziT¥ f§ðæÑíuwÿER™”¦–*˜}u;LçðG¶hŽQ£ž…›æû‘60U¦oåVtz!)lc…2Ê ™y»ˆíǪ†GÒ=µMÂ_Çw`ýZ~ÅÉTä8šÛ?0ÿß!!7lÙpá w»P7N‰âpM>i&«08/jO³2bꔑÃQ¤.eÃáÏ¡i«; IÛaɈrº„(6ù®…à ÁÊÓàu·GúA•ÒWÉUD7ü<=ΙW_7o2û)Ö¢K/Ô/%xËFú‡ÜFºØÆ;OÎ-†–K}ó ±# ©ògh‰tgÌÔ㺠ÿdéÈ›º¿I‘@5ÝÅ4BÈà…,w\)`j<,sC‰ú‚ Þ¡ý¶í¢.ÀüSšôøûÏÈrxÇk©7ú}ZnFG§ ³-šž¢yjf¸ÔÇ=(=Ý’°C+ì®?Q³ÜÁ¯d¤aù”µ;ôÂÿ]ñG¹5ÿÿ‘`Ñ€Ù0Ÿ&ü&yƒCøQ†6Îùº|½X@ï{4Wó6*✡>Ò®¾¥1˜F&“Ã/岂&íày)•*D¾ÂRª.¢”C ó¬á…aŽÅãT–ÿXÊ,gÄÓã™y/ïð•ÚH*D«ÏŸ<<¸yi°7 Û‚’–ܰÿÅŒO¼ä?qJT<Øÿü$»3Õ-TÚTVA £·é!Ï÷¡öÏ˜ÏÆÅ:«º[‡rÞ­¥|\$j’¤fNo»¸ì8?²ãy•×ÙœW„²·ÇÅ é¹;Ì)5Äç¿Ta$ÌBö ªa ³”B"À ¢ve}™…òb^ µ¶ÛWkziH;!{î5ŠXM½‡QPëšn” ýõ }à‚u² hxé±w߯e:¤CØ~3<ÒëJ>šeB´)ィóv¨2°SP7ýoDïxÁg3&º5² ù\Ð>€°NƒÐŠSò€ù¦ß‡É‰¸1Äj§Ùhœ”Êa+¯CuÃ?ŸBÿL@ÙÛ&8µ¶ tóS¯÷ô{ÝaÉ¢Ûê΃ip¦ 8ö 1W#¶_vТXf”£5LTLÝYö"Þâ5k”)$%Æ< ØZNØ6{Ò(íaÅ‚`ƒ.lN 7ô¤E?}+ ÎñʦzÁÉiºnX„bŸxH½œâÓáU«°(¹þðœ`g †Ã£q!ä´úÕj™GÜ”Þtg%½{­7¸cEÕ «¿¤O¦¥×wšP1«Aãº`M»±áRáºØÁ¢#25 ©¨°óñŸõó³áñfF¶G²úŸuÃÊ<Æ«ž3ˆ?tR~SÉ ö/'¨ãêÇ×<¡8±¡ÌOñÀAz_øŒùüs¦2W[(‘þ{0¿Æ€„‚l0å0óý¬æc+"Õs%)VÛóðê©8õG‹Qÿ4ù´ü¦3uÂÔ¥ýÉ„o‰@HEͱê…Úõ|¦ÇÜG ;S@¿¡oÚn|²‹ž4É¡zéÝ'f’ ¦@ìØ¨X»btýÓˆ]ƒp›«k°à+‹ým HEoA`î0Ä«.ÂŒšn^REÖ;_Å/‰7E´iAQÐØ{‘´‰!q³;覦Å@)mx[æŒeÅŒ+î=XÆMáduýhw…æJ…çBc°õ×z-y–;Y:Š&lÕš£%º£"{q}>*SàN2RœA>ì4QÀ›—Uj<7ÀÐ0ß°Á8`‘µ¨“;̽-Aó˜¿Àh›ägd­k»×¡blÍæ±œœd‹FýÓÞöÈ7<¢ý°«œ§nþ§*×—µº]ª‘ð÷rÿR¨¤È´HAÀÙöf”èDFòÂÏ 5 åýWhK¦M-šà®ìH#È9¢5ƒ¡! (¹igk‹©èÀkÑÿç¢]ÎzlOWêK⊅%ñ%þÉ·ŸßsOÎÞ¼ÕQeAa•-F& ¯Íkþ ë ú¸"Ü$.n† PC>óäN'Ð7;œÐw£>Ý‚:/4+¦\2ZÓfö»I‚hIÐ׎gXnÐìü©ä–Ë7°‡­…ióÌ×”s1­ào!ò5§]Nê·Æö×mÙlÐ쌡&‹˜ìÔ¢G¦[i<ËéjM2±Ô¹‚Ylï4sÖÚ˜ë^kã#2YSðx©?7Jw7~`ÞzjZmO‚ÃC -JXøå=m  à.Çé€Â’]8ú]¬D6>¡~B. ØÄÑ[JË7 âªÂZäh2øAhWuf‹âù|h4µxß;ŽXCísÒ9æ‹T Ü\˜0 \ŧ!Ïúõ6²ßAÌéôRI "ªAö9­÷]{·ç?£\ÍÎã’¶Qn§T&R¼/ÜšŠþ@]±Ù~-Z,é!—ÁûÌK–pBæB)„!É> stream xÚ´»eX\]¶5Š» Z@pwww×àP¸»w—àî®Á\‚;Áƒ»[pù*oŸÓI÷¹ïÃÅô±Æœk¯]ņœDI•^ØÔÞ(aoçBÏÌÀÄ“—··³gf¢Wš»Ú9X˜˜ØÈÉE€F.–övbF.@§‹@ÑÄ ò`bâF Hí€N £)ÀØ t1Rót2¨Œþ”ì]èœAf ¹¥"jïàédináò;+=ýïL¿£E2F&ÖöîÎÖ–#;S€ ƒ<@ÁÞ¤´PÙÛŒF6f{3€P  ®*®¢ TQTWR¥f%Vuup°wú,¢ªjê’t1a5qPƒ ©®ªöû§Ð„ßœ  ²ÿ®rü./®&¬¦­$ÎÌø{ f€ÐÉÙòwÙÿÂFBø jædoûO•…‹‹#£»»;ƒ¹«³ ƒ½“9ƒƒÍ?øÔ,,îöNÖЫÐø1®v¦ :],€ÿJð»)9K 3ðw„ý¿Œ¶ *AA ½Ë¿ˆpùÓæ_îg ð?ÊX9ÿ+§¤$°5²´sÚÙ™€]Œ\\†ÿè@ß@SÊD]œ~×ÿ_“Ó¿Ëü/t{ÐÊtm¼}ŒÜÿ»cFv®Î^qóŸË6±·s¶tvqþWF ÀÌÒø½óïžYÚý£“V–WU£— ž½¼=ˆ;—¼ç“"'€……ÀRq;SQ{[[jg„ßô‰Y‚xr±wòdü?smmgïnçýõf–v¦f¿™7uu`T·³ttJ‹ý7H…ðGgt0€Ž ‡‰ãïrÿLËo5óo5ˆo{€™‘3ÐÇÒ zAðv6r\œ\>ÞþSB`æ˜Zš¸€´YþÉ.mgfàþ—„äMÿ3TÿlTjÐ.5µ·³ñ˜Íì]@AõÿÏ>û¯Z®66 F¶@ªÿ¦ô¿ýŒl-m<ÿÃó¿<4¿±R)Ø;ÙÙü—ÍÒYÂÒhªdébbñ‹ÿRK»F_ØÎÜêÉ?*õß»É4¶ Kåï+€ž™ƒó¿l ‰4±¶:;8¸ÿ1A,ü^õ¿ÑÕE5D”hÿÏÈüã&ngbojig`aç99y"0怅àÍ iS Ç?ƒ`d°³w…\]|föN¿›ÉÁ`þ­ú—Ä `ý#qÅþHÜFñKœÌFÉ? €QêÄ `”þ#qåþH  ò$PNÅK\ ,*$PÕ?€QíB­þo‰”ÓèN§‘Ë#hÆ$lc'И]l€fy±þ[ÿ¯ý·„Ðäß;(™‰½ ¨§ÿ«acû­±µýSŸ™‰ Àhú—* ü“Äð?*pü¶;ºÙü[à j™‘í_Y@ܘýÉò0³tû+ío³½«Ó_ ó?E@vóß')ðov‹?+qjáé`´ûˤ³üKmý—bãjвm~Oô;ˆ»¿–À rø“›”Ë´þ¬TËÎÕÖø÷eÅü/ Ì ~ìÿ å´ÿ+Š™´2‡?fP #ÐññÝecþíö– Ô  “¥ýŸn±Xs°qýkÌ ã Ê]íA§…±Í_> í_¼2ƒVò'ûo èö­ì wgK¿@@þÀb¡u±pþÕ]Ъ\Üíÿ ‘çúgFAþ9ÃMìþ¦Ô·¿DuîDPÒ¿0°€ªzþ%‚hõúC (“Ðé_þó2¥ôû”þçbúsÝúŸÛ—dU'{k ¦¥)èÖí/y#ÐNóøÈ:=˜AzÐ×ÿþ¦÷Èÿ|E‹ˆØ{xÓ³¨¢g±ÇÉÊü{£qøüG¨É¿n$þ9¸@××ÿ•Ÿâ Ðh‚°4ooÂl•ÚZî+^8UMÎÍpR…- %“µ”1ÕŽ+–·E , hõϤ(²—“âÑóM°+Ñ"Ʋy]kKªž¼1UÚ6ò•÷ÅGÍÕ`PÌ”_ô¯è$¥>”É-Ð.e›Éüšð• >z$ÊÝÞõÃ2ñ†~•Bª[ñu5Ú½x޹ÓÉæÇ"^þâT¸ËÛf\´Q¯ðͬaA(ö¨ ŒCOšmjšÖQ·wZëeå0Ñ\ĺB+_q­PŽÊ~±qaÙǨœB,pç‚HKë´)C¹ÅHÆaï bÕ¤&Šeå&BÃ{U"Q?}°Ãæ A¸S]+[ºò«#kVÝ)¾°Qvt=ªZ•®d?¶Œá^åÜ®ìP«OÝ•l¢oEAx¹µÂ¸ß]8g˜?æ‰FÓ“…M,ø× ¥Ru)=Ï)ä=6HJ´–á} $pÞÉv0jh(ƒ³å€¥0>ú†ünMÅ(×èp!Gûî’a<žòB…€n2q—Ó¡ÎõêA½¼cÜšþ¦Û‚ö•ð¦ÛiÞOz÷Ç%4§™QŬz0”‘=s*Ñéû•~ Rò÷Êþ#ážWö7Ü„yÜ·£7óW *Ò™/{÷ç›íCÌeùƒüýZ¸ŽïmŸŠêªµ^CJ¬säÝH`yÀ§v”X£ãÝKü4°‹t~™"›ŠŠ¬»gÆpŽ‹Ì+ÓÈéF‚j*vZÑR®´ùþ9K |jys_à€·8$ìtMâ…m°hã×FÅðœR­™~ù&Ébµm|€»QêJOÛäÎ'Ñ­h†«´`‹šYh[’ö«‰¸Óñ“ šèGÅŸ^“ù¼ú¬%‹Ó$”sZ3 ªQ8ŸL*H âX ¦¯Wc ®?¡‘˜Õc4ʽ”p)«TÆ&[u%NRôã¥û]oev ¼„‰Òš.†õ£õ„´zðoYè¨ÎÚC3ÍVñ†A¹˜ùË[U~/,Ÿ€|‰ñÄB³ëYõÕ™O§Á«³÷,¾eOü¾òXÄ@?¹6qiB} ±$î$Dàz<ä‹ÑÓ%˜3Ã4wú–Hì¢m( c´ ûùì×;tU&ŽÄ©%·€wz÷F—þÙBºØ![ŽÍ±[ºr“\ud%;2'{ÙÉþðÜÛÜœz†¥iÄ|χÖÖóÔ&Æ- %¾IŠ­žkI¨œ>-“ -j§d}<¹»–!ïYFHƒ*»| Ü"c†Ï#_¨(v¶$Ó´Rágµ !« Tóúþ¾‹gBþÆ¢S„`€ùh§aüƒó°ç4zg¹[¿ëPw`éiÔ€9һϱíbäÒä:Ù±$K/$IòQÓ›*Wn\%ò%Ê9T5¯ «ß‚Ì?>ëeTqÜ}ûŠÂÉ8‚ ÿ‹cÄqƒà͎֜Êoêëc W./m¯>Ö© ª„ÏšÑÑ”@Ìþ™+Õús%©^b« l,¤ýäEZóÌGQŠ÷"'ux{OabB«¥Ö^·$4æèá™™Ë8‹ífîcðI1ñ.B†^ˆbðO?~h·‹§r cÅ›>Cy‚ìáN­:x¹vqϸâ`5^ Š3ÇWqTהƗ?ExŸ¿'!ŸÞR|¥²Þ›=—ÌóAAgŸ7íÀK³ófQ•  ÀgüRx£Öû êH!Îx,-åEœïº– ¶>á.K×Ù×?7`ëÑãKB›Êsô¡ÿ¾bÇG~¬(&r>lëø~ok»Yˆðû¯— `íx^Ùš5—›«ÇŸ~­µï ¶z%m994âµ@‡†#ø( ’ë9¶pn?&·þ$‘ý¹uì’O^Á) X|dÝ«gP´äÕìênyN¡t,>þÀN~ ð­;Î<6¸WÛõlP…'“£.VKp(ª~$ó^©ø¶ø; :œMÞëZn¯ÝÔÅcðZ ?e»0âWÍ6ú~Cù±è'#ðÚâr5°gËòh"ÈuÌxÕÐ;QtÌt*éÚÍ™d]3–÷7Þpå5Ùu¤Gè´Ðf1¿*뜢}¬- $ªcñù×|xøå Ånˆ8“ .<.2R°w7ÒYŽŒ)çƒ>G(ÈLà®±9ÚþøÚüÂ.J¿(+s"q™àO“Z§F£ûbýl°­QHÛtÍÙ­{+ðÊ)¼Ä¦¸'¯&4¨ÈlŽ"©Ð×\†Ä¥ Ù(Gnõ%ØÍ§öšÑ7ùËÏüYèÈö “dTŒÀëñQ«ÜÅ[[ÆєÇxÇÚNn;›]*FBn…¾­êeöQòò,WwÝIÔT¸ËÞfO@)ò@ K>ØwäSÅ©"†q/\Ú<5òæÀ,æ›Û»µQ}ÍÁæc‚ïVó1¨CíÛNŠãû 5•ïØ^‹†{×ÙÂÖ,š(j|œëÔàÍèKÔ2…Š^]øûMì³Þ¨–Ä_ü Šë}Yà×s4Ü%Õh§C¼í• g‰¸º€ëĄŢÙíþ´2Ùþ¼óìÝÚ´–/Õ_<÷Ñ[.PÍ"!„ª2|pÒÙ¯`Gã lº«ÙŸ_Vî›{;-±¡«³VY!¦¹–ÃYžXÑ4âªãžá‚¥Ò1‘ nꋺ˜ „7?±.ÑTÿ0xÌØ’¬aãë‰J:™® à(åò‰M±ÈI ‘.IUTLÆ]ß`Sl¿²û(I ¿Cná‹óÄÇ®Y—óMî"Á’7KyB´„F™‘4výÁ%×,Š@X¨ Óý#\£<óh˰l¼äjAÐJçY·E?7ävÉ—Úïò™oõ¡pÌrÐ?7Äçæüa9[BeÂÌH—1”ƒÒžçާ¹U÷ƒ8å ^ZàÜn8ÂÇ"^ÿÆm }|ÔÃÅÝRhý;™` Ê!Ò(¹'þòÚR óÇ~qEâéN¬‘– ð¤á ¾ ˜$p –ãd33à•½íYáK'§\7»fGMŸµaºµäz¤¸ì³ý7šƒbåP¥Q•'œŒ…š;m&Ós[¼ÐÉxy‘ËÈk|!ú"áhÖ #*Œn°Š¢PÝ]“ò¹rt;g–d_fÛÝ·mÓ¡¥Ùô:h_WžôE  ²:iÚ¢õ=¦lWy”³´jq…TrH78ýÑ!OÄ×,pÙà}–È|eØ–ú1¨¡¹¶Rߪ¡4¬ð€±‹ª6!eÒ{ ¦Í½¾2výQ<ø¼4DìËHºMÅÁÉÊ¡‚ïJÜÀ/ט’ƒsñJÁCy7k4œøíqEug ‚·¤Q2*ª[­0 „õ¹þ™,¸“'’„ü7ß0œ>R­ñ,ø2.Ja6áÓ§©…äº&RìòJ¬h £nS,'çÔÇ áQaö3¢öÚNؼO½z>fð"Õº•˜%`¶·|3ïúQ![`û=—†þâ~2uc³ØÆz±z½ä[¥¿|¢çøàxIµw¶âsX³˜Y Ã|&¸€‡ö|ô:âêk²x¢œ$¯F¸Æb|ßõwàÁ·¥NRj úlŸ´ˆ`¿Ø‚O¶ ‰ÁvÅ–H‘Þ0VäVrqßô©¦×4\GØÄcr=ôÊñ& =D¥÷›sÁ,¦é®íÜø×»Æv¸~bl¸ yó#0¥Êµ®Ø¸Zò^[ó”ç JôÏ1†:UÈn«E¨ÚKv°£·ØŠG×,=™ øy_2ŸÀW&1çF "$n§Æ-æ„Á å1îRTêߟ©¼ù{2”Ÿ*ŽÛ¸×X «G¸\lr &Ÿø]ÀೞˆäïEõMÍÂKF¾¿GfwîžÏ:øàq‘sªuí ˆ³"dŸulvË E‘ÿ¬F=–ÞœMhr;òYˬ[¡÷V~v‹‹]íÕ{¥ö}Ci›Þ —|"ÙÙëÃ2 Â;Iô‘­®Þ˜ŸÊ‚–/yJôw‰ZX!sµÖGbÕe}ÜMx­Ád Ù¡’XÉô}}U'¹ÄzMƒÏ„(›¤ÓøÙ¸þÉŸ˜) Th°tŠ8÷Cña2ZÍØ¿øÞ<Úo8FæWdF u^r으çßçÕy4þ¾8]x½OUàXÂ_­Ì {ïH þ¥ÈC kR6iÉÝžÿ 3ÍK|PNŠ–‘ÞïZ£¡™·S<û`]'–gÃôöúȶZÀÉ2)ù,¦›áûþëA²S’÷ƒTs¥Ú{à±…–}pÒÑ¡U´BQˆûÀÛþnà.6ý Òº±24 WìUW]Lûª™ÝúÐä3«|O¯Tš¿î:Ð<úüE*kPwƒ\©¾kܳe}H2sïVq磢vÕ¡%£ÁdÅIŒ'b}ä”§Ù zï$r£@ËLlLØR…ÞDüœ´_ô½Ê}œ™ÎÉCu#}¯>b(í«oý ’)`“¦zEƒI kŒ5­‚X…€)Ç”‡`ŽØ;Y•|öu=ÿè§"DB¶„W¡²‡¨?ÁýcóžFÏÉGÆàÃáÌ ^é »ZI d2Ú‘qG!j|–N¨~·’ ·S¿†MÐ8zÎå¾Ð“¥¼C•¼a9Ü3cT'O-¸Ñ°f7×Å9 Ô;S.ò½×çkÚ"1ªüu§%ÂÛžadïṡeüªá:,d_á†gq9›éÞÚ'+L6HFó„û¤áa»ùyÑb°’q¦ýõ×SL ›"‘óµ=ÉÃzµêdÊN«È«À2[ñ¾àKïê-Â|Å–N¡µ¹D(8ÂW݈Üû–ïW»ßœ†š¢cdlA„ofS¼ùžçV¬RÅÍ—úe0Ö€cosfTFdÐWBV×âxÍ#%¥r€ñ‘ ‘U(ØRÂĶîJ¨qÖSªLN›(çI.Nu—à.¼ÔÏ×1é=f’SͱS{ O¿LR뉖„=€×OÁ §8¤ÓTÜh™-ÎsräïKÛ¸Õx*]D{Ññ:©d³Æ’ Ñ0 ‘ýêUI’é_åü`þÚ<˜m1EÕnêö¡±AÜ S;HÜÜÛ šQûˆ²ÁÆO|gz ¥w–™Pqzzï•H0™oõúQ =rØ‘äaÖ6Ô–uÏœw‚nL Á#â¬Ê¼Ùß#%Jw¨kR¦Ÿ"áÓ_‘Áz£ùnù 1'#²X7"} zC?=ÆÀðkðÄÜ¿ ]Ö8æÆoK<­ºò[Kã«UQ<{<Ë º7z`0š·CW^6.Ì®m0êD´nV±Î%j=Þ}eÑn̸(†ô°`Y,ÜEåTl8ÆKäY=»òéÅ*Ôû ðÝÐ^;<Ç:›©mlÇÀ•i4Û§=[³#ÎÞa¶´Qé‚b¾³í‰K©¾ù\âŠ^’ðïNÑžÕøò¡=á—[ǃo½û`ä¶T\ÂXJá“?mñs7ƒ r$¼äé\•²`Á ÷*s àY3ç3w·”6…˜‹aÎbôy”×ÖÓüD±I÷ùøR`±•öò +µ¬ØIÂä×£lÖ S{ø¸ß–¾ÖÇ׌„ÓbXìbÿÒ"6èá¬y?pkéøÉ¶VÚú/Ú¥õÙÝi]Ä[Ÿ€]À÷ž"ºÎ=ŽœIå~PjЉõÄs¶Æ¹„y'×ÕTLˆ¼ˆ ƒU)]ƒPïpO.dänü#(ŠoùÖ H²ê§em¡hÑÅ&sÙtú®tÆ,C°ã ÷Ð#gAhúR÷õYRËö@\ŒŸ?¯i¼lOü÷à·roç®…z#4­q°_•9HLxÈ-í}7Ù†N›ï¬p± •‡YanÊ2†µ…ƒYAX;6c”5Б'÷R4q¹ã¬íHü&e›3J?9%ÀJªî_s~4$ϬÃz]£‹í2ÑiɹY‚Uå3ñZ;)…ÆÓ—-B°5Ÿ¹O›ûšÌWÓ£¼uªÁì·£µrY“WÊÝ+IydnÁ‘ö‘A8ìWªNWk¹u{‚ç9*¡AÍ`ƒ>õ+r.ÕôÎ{FWn,™EY‹¼ï›mâcí²<Ȏ˪¦õÞ$iPJr)§³»¼ùL¸Ñ2¸EÃ=¡úøM\¡Ö÷:lìli*ÙjO¹7Òhm9M{ãYíªLU,<ŒèkEÓøXPç-¹WG56ò_MâºD™Ë‰ö=CÖa ¢o± S†{…7ée &¬ì¬f)_¡£Ø©Û©°°;ðlØù2׬G»Öq¨Ìd˜ªfG_£”„C ³µò#ÈwGå/wôÇ[Xrã¿Á(Ä›¼÷ø ³ŠØ[š¯_•㼜Ïù Rn;oqÊ!÷ò{-Ú¤ÝÒ›£ÿ–û ã·!&ؤ’Ãey ©‰Á‘³.ÍYG«®dc¶ž\G¡e_¨ÔŽˆÍ¸ >®ã“ñ­Á¼ôÇ®êF)–ãó^)Ô{¦9*ê“›úöýR GךO÷Ŷ%nœï{¡R™¢mÄÑ‚æõn*É+y¦ÉÈ¥S,r÷¦Þ[ÊÎKÝ…½oB1`Šä#±39B¿Ø¿AÓØ\ç0ë&·|@õ€zbuLÊûŠCCúå½²+aÞ¼IPN«fÀÏÃÎêÔÏiWöÓH}̃§³;ÃLžuŠ2Zl2o¢×ÜÚøŸßbƒÏ&™»(Ä¡Àá g–¢›Læ&šº™Jgîb=”ð¥j;f¬®–"Ôs×5QâGÞhc¦û˜Lh©xŠlÃì‘—j¢Ñ¶ÂLÞï³4 ûa*ž$!‰?/ÜÈŒ$üŽõ-EÑ”c~чËU}·m%Põt ÙÌ¡cöL û¤üÐ>˜1¿âz(c ?~,yêÚióÂ+‚ æ&§Ür†IG¹TŸt-æhGÓ›¨ø`¾»Ø²R-õºÜÇýŒ—=æº0>ª±S«Ê ÿigo~g?ºmžXpÅcáŒI1Š€Mu8ÅíS©ÙXxT¿P&Ìãà%ÕšDSÑYÉ{é2g÷L¢þMXqÉrØK/¹àSÄ[¼t «WÄÞD½#BÍ^ýwÊGßòÕ­G>ᯖžy¦ ·}\®'hý®^J¦flN:€6¿%²‰XWüÿñ–DȨÙC‹!;*ìG )0ÊvåEô ‘Ðڦ㜽lýÓº…YÇ,;9(d¿ç¹yç8îðÀEùÆ+ÕÏâšý›‹#ëIŒÍ˜Ó–g•¡–è”™ý5T´òšZ‰ÚÂW+i,Τl çý•FUq”£¸z0NןU,’ºdØžgÊÌå 2±Õøª9«Û›~~mydG ùü$ø$¡: Âýån÷~ïL…Çs„ÔLêXX»Õ~+˜Þ¶yK·I¥{†õ?B )WõŒÈ©×% ÉŸ8Ìùëô¯XIdÁÙy0B‹±ƒól”²1mIZÍy]ÌéK‰éÖ°-ò¨È®,¸tZœ{(®Z»›+:·Þ)éš髱iòžèq”á‹•Î.;!‡-]àK1‹ƒF,P\¢†_°¼>YùØÏq4©ã¬ÙhKü„ñÓD©žÕŽ€Aü›0ÀÉàu]˜ð±C‹³°là‹\¡®&I­àÛ©'°g(ÁEUçÁòjXU!ïêÇ!´€d„Ø@Å9bëñ{{÷L2L“,%”¬ ÓÏ`Ëœ¸î¼‘¾­ÂÕË‘œKÖé ¯o7ÞŒ¼ 6¯—ø]´rÒ¡µ˜ë1~•ï¶m b‚:¬;L;.ο› »îûXÛ½#"Zx›—«¶*hqÕ•Àª½½6î‘(˜¾#‰¬áÒYh +=ØÍy`°é™iÐG ÿ¥P¸<¦½_¹Ûˆ=‹s¿pnj$”"ù I¢#Fu÷ý†q…êÚÒª.ÌúŽ`Z¨eWëòp`U.-¼Y¦~–%¦ÑËX"¥¬ja±„WY1‹€ŽO–ûÀwЃéý¹ô,²Ò«ÁcQ«…Pvp‹5Æ7Mó³¡Ô#<ŠßZ„vdó¶´â®®Ñ‰ i,ŽóiÕŠšTO‡ÉŒÚóÅ!'vG³„ëË)t®­f‹| EçÚ”ˆÄi •Ÿ³³̰!é}þ^à¬~E1¨^DïiŠ—>3Ë÷5z ®ftñGW~ >×ùsY:Fý \„w1§=bב)Ù Aœ|×e/xçJÔL?Ö]”JQôÌ<}Uåß·å£f°eŠY˜D»&¼ž6Â|¸©àÙàF”Sš¸(ûm'|9„FN±ÈAu>;ôŒ"ÌÿŒwîê ÿH²Sj’“ÉŒöò›«lµöº¸ÖÌ<Ü㥙ÅòÑ@¬/ ØÆ~îµz‚¢ØÇ8¥L¡iò×+ô'¿!m^1«›fnì!kšì}‹Öàî‚äE83Z?w|¸ƒäTnÅï”=³ë?}›R«M¯öÉ6°è%®Pêá¥(í.°  9öoÕ6Ÿ‘32¿JF’ψr׫Ó}ˆ:Ë×Ï3U°Ëû2ó,BF“ZÐ BšN~Ç~øÉœNóÁ_vê2ùœEŸÈ⣴c¸kž™ N꽕ø§2 .bŸymfoÝbÓ0*SAv¨w@—Ša)r5Dð1§bFœÌÒøub~x:|RT5étºÞ>!#û’øâK*|dó¹ÙqN]OCG;8&|¡–‰sEóÃx+ä*ø–m(ã²æFfª¥ &’Ù]OþÂeÎA,­ƒ-RwdùMgˆž´(ÏÁc¹kÃiŸÑqï# Î?™”þ„Ð:J¡6õ!øZH¨PßB3tÏcY\0”ÝŠ¡ÝG ¶Ÿ¢J¸slÆ£írËz¦0ÉùˆRÐHWX;þÔ7^ ;¨{vªhPËû÷ê¤Àö{±ß ¿"Õ–ãAÚ-]l²îJ乕Âäw˜áÕÖÊÊ4™ýîɸty‚î¸-FÛ.ǶœèL²®Ñ7R¢(lŒj›|‚Rþ&|e²:ëôá£d¹Û£ä*½ÜxîŸS BŽšÜ£¨Õ¶)ÔX¹¦_Ivmoê0L½B8pé ø÷a|¤Ò?©3>¡¾óVùR²TråÂbD±õÔ6MÕ°~?³0 ú ÌlÞþçs`ðü&Ó%´†blÛñiq[eq˜6—Ë`÷›(Ó@p×îÝ‘KÒú(3Õ·Äèú=÷ÇQ†'û¼rÚ(Òåýv¥]Òн;¸ù­_† ‡A>í]Dêã½ÀåÌ]ž¨Û®Òr5‰eŸ8v÷—tZ )»àÀy«€ž¯5Ùû<8Fl0ƒèm4çl9y Uo¨ 0±¥(3?ÆÚjÓ1¾uŠÐLUG0%Ï>Øo{RÑíWÌÒ©ó°é©=ÆhÀ Ÿö\$p,´RvEª—³ú~Y…qâž»kß9“ökíÂ1¢‹}õkƸ@º^†èo^u’µ)fHï" ´â ›AÞQªçø4¦1Å~ý#.ì¦&UY /Mž&‚cNŽÒ°j…@±G ÷ô‹°[[Ú‚«‡ ÔíÅYlªe„ ÂwN^¦/=ñ<(–3ò‰•ðô*e¨’Tô©‚ÒfIÆß15Ò=.i¼ØÊßµÓmÏ´Þ’Ai[Pû\4Že£‡š ÆÌ-žÐ%ùòãî~Ó•ž®N·2¯„Ç\äÉ‚©Ú™v(6Q”«Óêâˆ"± Â!ÜÜÛXÐ;7ä?Ø4Â’ØÀÏÃDòãƒ2.ÉüèÓå6ÑlVÆðJ.ÆqË•æHoÒ¾ˆò¡RåQŸ/¦²m}È7u°ÁþÅ'L²žáÏPn õ~õdTì(k™ãB{65iK“ú…ú±kGtVógŠrÓ·á­ž7Åe,ë#øÂä#O–drºª‚C˜j–¹ì—•Î\4X¨ˆüZ ¤3$˜t L-Z¬Vóôeþ C)zÓøÔ‚Éì‚Ìdª08Ší¥NÍGkON¡¥…WÛ“~z̃4”;8ÕÚR¬à~&h¼å,Ãâ*kï$ïL%S x¥/¸Ä¼o{?µ(X¾E{"ñ ù3 ³œ#ß¿ÚÓ+PùË`Òõ©;Zë%Öt8÷#@†Æ{a–AÁ„eù‰F¯GˆýÔÑâq…MH‚VŒ†Õo?ó°¡xs32ž˜‹XlG§§S³ÞYXË©CY$‡ßvÊ ‹Ã5r¯÷"ˆ— Qí$Sè춤LEãë8R5{™úðáâ›RJXÝ÷äóÉÀÉ b"ÎêêÛ öÙÜÔW¹NI3uiÙ«;ÏE.~ãîä–»šûØí:0–Šg0ާ´ý—›´ØËq%â¿l®zð•ǽ݄V¶Ê«îÀh(¯N·Ås¤{ÝØ«7o Â~ö*øˆJRiŠ£|³ ˜‚ÞÏC¶vÜ ËŸŸTT¶&°ˆÞ6@¸<—Ë±×ÆC²”±o>¹Ýï‡9)UgkóbŒ§Y€±áOTZ4ŒX –³¦¬ÌPË  p{GüÊ9(·ƒ¸ÀËü.<Šè¼8uÓ˜úÞYÞžàyÿ•i«$çBÛU.›¥MuMG3Íï˜ìϳAgG®KMê†'+H¹:C3²O“-\„È"‰~zv‡Í|‡Ô6…ÁIF«h!Oip޶9ô3a÷¬{¶J2jùf¢;-‰F˜À4ý…ⲃŸÎ•3:É€¹×,µô+S%Ñ-]%Qצc®y`ûêyQƒfì§Ãè²Sâ(ê”×ê6È"ì+Ñ˦è_ I×+ÃìØÌt3*%½ž\xÍç@x®…é%„À³W–:A;•SFÂÙHÍÊŒ’g-†ŒLëÁH­òmͧ3Xkf¦/Õ:§(‡+¸ Ë4 ÕNK¶3ŸGÃÞ1 ÏßѸ/Ál<’ÿmÇ2’‹ ¤ß›¾Òe~r•2öR›I+Ì ¯B)©«„Ãâ\Ù‰ëÀ’ä}ÎÉSˆ¹)cý©ŒRÒ‚`¢s(_¬™Š¨u¿XL!ä¹/7¡ß7H ïG“rŠ÷ !T2 ­J|«03}LyÛö÷Í|D±.!v«à90xÍì fR}¢†_ˆA耀zÊUÓŽ1w BÖ„IŸ·ª}ß()î‹ùÒ÷,,ÕüV|Ái³Pf–£šžLÅ$ñ¾Iþµ›0åiaÊÝoÑ€âì¶¡æìk'îÖ]uõ5PáRZòŠ˜=BÑó®Ö%â™&˜#m 7ˆUô=Ä­Y1˜„пSã{UC]Ïêðýŗ³^ÚÏ9rÓT†ÌüÍ™˜'å ךï¹6ŠœÀ¨-X`wnC¦‚×Vƒ>•!1Pô{xü@NiÄ¡,e¼³óÙS^Ã,/¨[•~Žd@œüRL*èQÜЈü¾ÄɔƧ8>d: Çl ¾XpF¥4­R‚zV8Æ^lKЦyåµv?áô9ü†½†$ ¼¹b;Ï ˘…|à&"¡Ž¤¶d)È?t툂n$”HC‚ÉyS4î [;¨‰n¿ Î^Ó¥%ÝÐ`®ùGñgÜZ(¯ÿ;üG\HΟ˜w\»ÒÚ¬¶7·2rvi¡6àF_Ã=¥ɽž'×<ú—”ªu°·åÎ-¹c PT Rê쯙÷†Š‰ß À ðð£Z!|J‘)ŸxC‚k¯L¼è¯px­ gUæ¦ÂC1Ò6þ~eÏÒüTžéûŠåøMÕ¯›P¡ŸgºõN‹ŸÜù[¢¨i$þ–FÖmÜ]¬\UÕ Û:ôYBÛ€ôŒ¡¯%Ëñ±Íí"“ ¯­nG¸Þ0/At¬'ÅíburŠÉ0:OÑŽk뢠u½aá^¢cª×-—ÄYë'Ë& üMpc¿Q;cÚÈ‰­×ï^^HMÐÇ`áÃVpöØ-z½àà>¢oÝÅ{§PŒ`f¾îù4Ù¼ÒÉz|˜y»)18ŠYè±OqšPLqªÏç‘"ÛçŒÐÞ.JN`Yê“_OÌŒ?{â%º®œØüäÁN–µHVç{ÓŒÊúîí€b±ªÖ…¸þ†ïÄØµ~@ã!ÛÁ×ÕékÜWMlêÄEÍ/Ty•N0‹X<7( ¯}±²RÍšÊ%O³bôÀ¨¬ý&Èc*+¦(‹¹n““ûÇ {«x$–¾ÂdÝ£ÐÛel2ÅÑPydà.Ž-as)¢$Iü “fl ›Ç–üLö‹n¢VEúÎú4y÷ ”‹®ÛÏ*°çÛÖ¦­HTF«×Ù!*ŒGbܦ@6Ûb´©©ºsÕç…*Í‰!ëÛhÛÅ ‹±«ô'Pàô¸ òÐâpJn{œ"™ˆ:ô}}+¸|Èã÷'tz‰”Á\ãÓ#yïôWpõå‚9¬Ÿ­~ôg˜ Ê«ó´ÌoIö˜t]²Ÿn¼¸B`âF‚R Ü ƒ#^†œp´Ó¢úÔ®ÓKP«KÓµp¡xÝ{å$¾BœoY§|ÂãX ŸÔh7œTˆz_–U ‡z‰%@Øš=Zí„"î@‚Ý »¾ªîÅÜÜBÿZò9ÒFçPÚ‹´j·ó|gd~Èg?¾Â“ýÆä£X¯­ÝúÎ6Áàö¢ïÑ,/Ë´h»xæ~Õ"}¹_´¥4&zÐóã—Ú¯\ÙC„§\ ÔdIpÇ8„nãÇÚVôºµÊÐóPÿª9+¨§¹ØªøG«p×NÇ}nÖļWi*u3*jƒ‰§\œOÅ#GñÓmc¶Žo §¸Oi²–\Ë÷…óJšYŒßçEx>§DÔ@ÅÆÒòÐÑ&‘ój~¡PÉN|š!6'G¾\N- Z9»ÓËH³œ6¢7ˆf[®ŒÐdÒÂAË+¿Ë¢TÞ¸³À®¢U¥Üš—hÔ0ç׫ÍÊ=ë˜Qâ¦ÖƒX½X§â0”}Yôà$º§Ë»èZµÒè–3Á¦å½-ŽŽÚŽf'99Y„[³×]që÷ —uœ·AEØâ=;“ªÜjk®Ëû‡¯u_ÜxYƒ*bDR½«Ò§³íúv¨Ä²m¼ÕOh&ô©hêò©nð¶áï£UMáîeZ~»wp( R5úê /³[§‡õv˯3ˆì‘ñ-7T¾“äŽ$%Ë»E‚êМho$æ y2í@E•ŠšïÔÁÛ š' ¹Z^@©HoñY.ìEÄ÷Œ¶6,iœ†×–¤¼òÐn.M(ÖÛSÚ³*½à™óÓuÕ‘ÿO_œ³§#%bÄÇ÷#|WƒÜ~6Oòw-¨xð]úídŒ—r£ÉÉ 0‡>,Nu\Ô³%ýÄŽ-RuÖŸ®-1ÀqeÁmÂ?Θ<$•ªüÜæp¬j—+5õ¦*ÐNÃúÚÃ,‘.$ðªNôÆ^™;_&òf=Ñ˰¤¦z—ŸJÄý¢D$åoÍÖ«½Ï\Q4r†.ŠÀ}‚¥éþÁ·•g׋„‡æ2„á6fbè¥Kñâ«”¦ÿjK «÷¬£ìØÏgúVêx~¾ÅÆ ±oÆÜæûA*«Ç¤UM»LõÊBoì‘2MkqÀöÔš\„‚íˆÛ:á­<‰·lø]W’±péI97Ä—Q¾Ä,Ý7¿·¨9*˜é‚÷NØ6OÈÄßðàæ®ÖR„žýw8l`¶z]—«X©OC_?gó‘\}Ý6utÁ0b†|‡;s¬H2ºïÚ#¬ëñÐvR\4ãI‚,òNåGܱ©7Þ‹¨Õr©{cÙ®;¡HýìöI ôÜð€ƒ¶¾¯xÀQÊÐòt)©,Šb>SM»ØV¶8e §âì-Œb—Íæ ½…š>)ôŒü]ô•´Í‚¸þGùºéc¹ÙT ³ ØaO ”\^¹òEvÈjf$Ë-Âငçò|…&±&¸åÓA(T›M5e¡ý¯®C›×}83'|ب8Wm`„>ê¾ø«çêgFéÄvÞŸñ l¥d£RgÝ1ú&ó¤>S<…].Hxs§š§Z¤ívÐÇ¢gÖˆjg£òդ뚉ȑ±øüàgøÛ”‰,¦;™cœÖY0 ÊG8ü øýä+L³4—”=§m¿}ýaA‚r§KxRûiã¾A¬™9·Dá…Ù_³ÙQŽÀŽS½Ã'{ÛJµŽ½ý¤Émdó àÇâCø9Ç»c£2?‰èÔR$V“%›µ{Á96þY˜=‘³ü0/W¾D> ‘(üd¦®fRR”¦Ïìâ 4ÚõA‹Í§JÛ¿to·–¹#ͺn'Ýj„Ë'GV=r‚†ÊAÛã{Bí4ÐhãÔ+?­ïS˜gv°ÉUEí9âø/H#¡²T|g4kƒ—':®Â)@õ(})@ìN¹Ý~›¶+D é|$Ô÷|Ôº$¤¤r²µvÃU\-j@…\¿Õ¾õ=Ľç%Þ}·xB÷·³·'•É›˜ïÜ?3"æ¾ U·G#dZŸMðs¥ïE©h-«Þ‡}œ#ì] òî;¯=Cû¶_t‰’¨æàÖwa—?¼÷låI[±›w­³!¡µÃÞKûÁÊûJÖI¾ðM!{}ÂŽ;ˆø§çw¬*Î.Å»r6}ö›—Ûë«©’5S_Ñ¡;>×}÷M’ ‰Ú©!†Bˆ+‰/¥C5 ëúödR6oqwpò¦EëÖ¨÷Ô‘~«ÁT À S9REÁ=²( ½Y&Á Ù’ŠeÄñoT$FÔ¦ Hk¹´ãÔVí´<ª>íP ¼…ô†píK¡ïÑ¥L¨^É1{2âÄÂÈæÓˆHÛ#ÏʆÒ8ž/§ÅÒ£»7mÓÔpz™7ç¡^³‘ØÚÖ:'±ÁJÓ_£½Xp~á¸YûœøIŸÞ #-pUL—ÎùÏÉhC'ù~€L{‹A‚…ßü¹©¡ÓlÚN-mú|¤¸Õ¶äÞæêq6ÃÑ 7fç~ñ›¹Ú„ÇÁFZlã-O+G þtaS+`hýÍ7hÀåÙ¸uÜW}¤\…à xîiÒK§¾·v®¥¢C:#OÎ ô(Ö†¶Á§Èl`S‘¡öŸ\zZBze½µ9ÐSb˜@HK!b e'}Ø VØWGꇅß)±ª‹ê½û]Le5פ¦qG˜ê^gîf«ã™L—Ž?÷¸ÕÂ[ãß[ ×þ!ÇØã¬Û[ðöÖæì6ÅþÒq‹ØUȃ÷@í/Ò¥@$s£ÈE}€¤®Š‡Š_xzKCB»’L G‹PbÃ|ñ4|r#•CýëKËOYŒ"ªÉM?sî} Þtá±¹”¹Ƽ0ßàVJB 6ž¹k©ì"£iõYùµ`Õ´Iý·lÔ/tü¼øÊw~#kÒšÄö9‚ØÌùÄMz 6#õj|™æˆ´¾³“Yñ˜irn³¹o¹>Nê¢Ñx|<ÿUñÌI±Ž¤ÃûéÉäÈLHÛLpüFÔ Ÿû!a\W Â7ëþ¾8­»«ÐÕTÆÿð4¥AœØ©a)ÃC¹†(¨ŸÀªÞµ€¸ÉmŸU+1„®óXOóa!àèü¼¹â+,¥7Ù;õGë’§}& •“°på¢%¬²Æàr°5aÊ+ï_7WCqCñ8¦eó㺥×X^hJ‡É¤¹hÛà«©øÅ*â&%"íÈ´sà:×à»ù§÷¡ðHŠtiì_,¸­ùËwª„å2æóéï/æ÷tÈ„ý¯ã³}5[–.‰ä7Ð_ý…Jº97àÛ ¾| v‘ɸs$K¿êKª“ËmkqÆ—½ŒÔ£äXH´Ã›¼ÿ†óÈßöR+ÕÛѳ•®Ý?‡Äd(žaš"¼šöa†Nâ+;Û¾_Ñ>ÕÇí„`y ŸÓ¦»š›Ô°lóNtrû }­´BÄ$aùv5¶Xü®<t÷nOB.þ¦Éy›½ï°v¿FÑVb4GÔFèf—»GñB’7^è ÍõásF£ÀÅÇ™5ûÝÿÚN€•@v¡æÌ—¾©‰ÎÔ‡˜“Ëh G]óúëö„¸`ŒÌK]’§Q×Áö&â# r/¯ìyä³ä}^oMWU"öS֗ãhýÅ{ÔÏ¢øGœd‹› ýiXboª£6ð—[…[Úc3mâ<"UB¾g,¶™ðKÔÓ[MV-ô) ÛŽéÓ5†»îY‚=™?\/“ç\Ã'ÈežkŠó5RZ¬Ÿ.ed*>%IK[±^UºUVßçÄe"ÂYÝèZ‚óÀëëÁ`«£‹•°bòï»¶Ýß mÿ°;öÖ‚¦AR”mãÙC/žváþ2½YpM“@â*-®‹ &£?stãázœÄ,®êµ€–₟)Éôüu՛׿ÝeYžÉaê)ºWiðkWîé9\Òœþ‘:Mr¤þÿkëœÚ+a˜fgb;™Ø¶mۘ؜ض‰Û¶mÛΊ±Ÿ}ðž}¢»¯ªº«Ay,ídÝ…ÙÏÀŸh4¤N4ðQï¦ë:P xƒ_?_z §ÃkÀb±5ºàÜCu†‘õ3Jßj‰·‹+[ãUhré g]ï`> +y”o¾fL]³TÒ(xÛ½ê^ƒ‰ÞuÀ I’ÖwƧ²WO ï`nÆx² ¶fuF©8»º2âã•á  kˆ¼‚4„´b‚ûÚÜæÔeôýÝ:)ÞãÛ­ŽN`O ‡Ã‘ –TئŒ;v`© uî¦Òÿ˜:#ày]È[Zªû‡7Ö³ª=RØÞºâýé©¢ÔÚømo/t©@0yw‹¯þ¾ HY PT:ÆÐ  Sqçëù`0 :«#¾û­Ú®"O|°zÒ–‹²¢’eË»ÐáîDáÛþ®–ÎD<˜óqÁbû‡°}¦ÊÛøJ*¥4ð~/üÍ®æ>‡§,‡UÙ`gŒ ¨º‹Óþ¡± þn3©é ýU¢é¼o¤ä½DÔÔ_ð'ê¬jÖ’ü…L0ûÅþñ—t¢h y­/Ó)¤1]1FµØ®àmüÜ”Ðá1…$å"U®~aim‘¼ÙÂ(K!Fj&Õìsd‡¶a:æ5ïÝ˜ÖÆ:$‹› ü¥ÿëévÿš-Žïq²²¦lbÿ=aÐÙv ¯P!+dvXÚXÒ/­ÇXlÙv2Ð?tÅøH¬xû«¢€šÂûŠ i˜Š_æ™N\SA̓|¯Éð—,oÉÊjÃy¡‰0@g`ëàD(ik­X€ÍÆM€öZx&¶d1w·D²ea¶øê’¹¸îER˜‘†~ v›(Ý–q`±‹ýüÌ‹¨5@,®e®¥ÜrÂã·¨RN÷î&²œW…µT“ÃÑ=jf?îêÕ¤Ö=Öý(Üú—rJÅœb%ÝÀçÆb+‡Þ9(¹°GöÖt¤’â¦ÆnÊx4‚bÎËÔ.RZÛé&‰{éi‰c4!}ZA)T1Ž=?Ré°Ú;Å;>‚¦ù‡õgø‡£-ýÊæ8&ÏlNùdÁÁ›Á²Í3ÉÁW ×MápÅ$OË0…{釓ÒNë¦aîhÄ¢=¤ÒDŠŠ¤»ò»›i féan€¹Ù­_䮹æ,èÙÆ~6‚÷¿nïˆkl´'ö½ëÒàôô¦Ir_ÙÎçD³1XMûKusâx&ß-mMÅ»ˆWؼ-)S•H3Ä=ŽÀR²V*[Öfœ9Ê¡æmÈŠÎɵ>u¸ý'ZO’Ü3J”¡à]àýhŠ™|)/3-Á҆ɾ"ëÔÐã®íà°çœ“Ñ$•|Žjëî4™5ZÔF|…IÀÉÕ+6¸œ›À.6Gˆ‚$ÊB'€‘u”g¡dÿ ©mnÅ}}w¼ì…Hþf4ÀâX€Ã‰´ÑóçM¢)·ÛêmÖ?zØ.ÒàO§R´.9téIB¨a½»,ûDŸÒáMÇYîKª³ŒhŠÌ_âeå¢è8†7…9ƒŸ(cÿxiÉCD¼I†1ØtGØÛÃ×i¡p¦SEómØžÍU°©l¹ía«YÑJ †fA %p:gàþvµwŠí•ÀÍéOÑÔ«v0IAâp³éb[&$F$Ì v8ÐâÖŒ‡«ÔO6`­æéÃ2f°jäø[û^Hå.Oµ.¼è˜J_84ã×€ïw%æd¾äÉ o s÷u{8Ò{áWWbà Û_Ži°8œñ„/¾çfÀ*†ïÇ|ܹÔÈ‘Hk ø¥Óö;}øË†gP‰8¹ "\Ö ·^µúüç#—7êñba˜ôòëž86Mwì ÚN‰&Æb¾q|öA€Ùª$î¼Cæô@ãb¶ø_0Âp>Mêœ(¹Ï<Ë~¨¹rŽ™¢‘§#€ 俺)ƒŠˆÂ9ÿ}Õæ¨gœ±55FÒ“ÂçäQWœèбVèâT%ëÖדMTN û³ž8²×Ió¬­¤êþ>»m¸Á—†|ëU«,S ó‰<|d ”U³Ë-#šZÞó`i‰tÄ ”ˆ»\NŸù&ã&žÐÔi0ia¨Þ^¹æ2j~aT–·‹9‡OÚš¾ ÎaÑ|7OËÕ¡wç“é6!ÄT¨jïà©‚ †¿¶{Õ‰,_7×bzýBõþaÕ5ÛË¿ìRr…Í¢8FBÌlŽôÜÏñy”Ünýjèóvøç6gCd¥!¶#UñpYS©ÿþK€­ûZoeâÑákm˜¡aD›õtJ?æ&–p0û×AÔØ©$&¢ ‘ÜÔfØø˜ó¹¶õ3«ZPó ׸é¡1Î u_PÌ ™H£žãA)É“ª©× TÊuäRÿ{@ñ[FWjT¶Â}ò‹^,‹þg=Žïq1|¿Ý ’3K¶ìt›J9Eð\©‡ÛMÛ}å©a&Ò­Û×)Ðup:l ïìj;]SymLßÀ<Šô|k[X® ¶po¸ªZɬaF¢O Óí{CîÏ_‘@žhIeû µ¬î'4æ!®y|}µÛOó@?ÒVëù·¶cçèeoKÂd¾Ø´ìg‘JŒ‰i4q¼Ý,8|J/ÐÖ$)°àMâKÅwÔÿþˆò°Á…èh ¨œÍoVhÏÛÝT€uë œ Y×¼)캚$<ÇÖ Ç…#`jdÿn¦!ý³X#væ*K†yO£«òbÀ¡ª2£–æÈK €™Mû6Íò'ÜFYÃêÕ•c%Ž2pf Úf‹+¿G&TÄ! ›@l]X_ééýᎻÎÖC ôx¹~ÏArF©ôDµÓû®ÝD>•¸å%3±Æœ ÏêÌ—E7j€-ÿ:¾thMj:’ÒÅd½ÍÓ_Õ,º™c<´Ç4ƒÖ¸jÏÆRZô[@!pAÖ¶£ïZ¶l³´i_O·ŠR‘éo‹òHn?æ…ÇT>û c!³Îhê!µõVáðÑEÚ–Ûi)¬´…žº®<ÜyÏtL¶€?+¾‡òƒ†ƒÙ¨5lãJ¡¤ýÓEEûc øýÆDÓ _М‚Iv[Äúº€ŸFÂqòC1Lm)ü¿4Œ7`ÀéüBé|¹5E-±„æšæÍ¹äy¡XUËÓÆwºC\~/ + yúnéòÎe¹Ý¥È2àæŸ`—†ÚàÜw 6tœÑä»›ã[b¯»×é‹4ß\ï’¬y†d¸*xf{‘¸d\9‚ÅðY X5ïbG\"NŒC´C”cÜ:ZÕi1¯Éx£ŽÏ‚¿“þºÊ ¸¡×Md)n§0c爩Q=w˜Å¢ÿÀáLÖÿ»`8OæÄÖäÛO4Ý@cQmDåÐ $_É0"ÂÀgCzNÈ:H‚À†ò òÄ¥^ˆ+BHYÆ”eÆ‹=µ 8lË­_ýËZ ]ÓòÜ1^ÀÓî) Yí11—<Óq<*:z^†ž-4¿ÊQ«Ü îâs=w,OvÎ+|MãÝs§³f‘ëg! ðg¹fà`Dü0A$ÁÆTó”b"¢Á´&9&¹ÐòøŠ ˜;‘£¾‰¦è(…ÌJj´YÒG ¢ćq r´Éu$…Taó;ýOÀÜq(÷®$Â<ø"DÔu7Ô—gÇEÞ¬nàzö¢<:yÎïÔ›Wfª³iúŠ\ÖÑ[Äó]»ÀEš촪f÷])T8ZÐ/0.ñuç;Õè?¾‹A:ç*O­ñ¯9£ߪzw`Û;ò’Þ³)®¬]é ’ci`ù¾ÁWÚùn9"ÈÉâ8~ìxzsä${<sïÍ2% tÝÂï 9Êàî®ÇVÒ,•[‡9²äÒ±™‚…Þ§ÖØ(ôÀ/òp'â¯ÐŽr ÉoòïjãAŽ1ö²|šÊ'iÙ–ÃëÊNhW°[c§Ë~½ªØôftŠ„A”·ƒq ä‰ T?†Ái9¾Åb„KÇ„ø«Œ°¯šœ+ïÝ€ˆ?Ùì.¬™Fä|,l½²1Ãþ ŒŸüÀ·AÝJ(õL.ãªHGÈmô8hÑBºÍ,ltX‹u}‘MI[,i‘.pä5rCž>|Sb<ÒÒ9’Cæìf3e¬MæöÈ+ Uwãìê8uøfÆ`Ä[°ÿ4˜žë¶cþgÆ~ñädá§óÇ]Ú.ÆFÆ2ýcÁËýÖvJ¨©ÿÎ\íÂv˜Ù&É.ß=Ox[å¡(AûéóH2ŽvÎן1wøHžÇ{»û T¹ðÇp#+¾}{j0ã·ü´ óaÊ1õSÈFtŸ`ì>GY‚¸B>F²Qæ­ÏŽMg¾6ÁkG 9ýjömœxƒ¾¥®R¯„û%ÃZ13B+_Oó]g‚Û°ÊŽÞ×>:æ0A-yMI8ze9ðÎî¦_n˜òÞBjۊ׿c1<•8ï%«Êèä '¬Öˆ[(\î­‡Ó~u€4Žóƒ.ÃXt*ž;;[*u‰Õ"i3ã„^b]›gñ³Ôã!á6·/:Ÿf)ÞbyÄ‹nd ©ºç×±Hà‚Môbz›Œ­8%¬º¥JàØ°)=ô8 )LCÃ:Mÿ<š¬œ‚\¬Ô¨ ®ƒ.¶y} ÿz$# y<ßo„ë·Ž¿"?ù»ª%Ã׆¹òŸË·ùq– H’zYç~æ+˜«X5‘Y™@)oÿ‹ÝƒÖåº<@è ¢ãüNP1ò˜Îÿ¾ËˆøP4Ú 1ÍHc§ôàpd2Â6´üý¨&Ú"¦VþupIž?.†ÐǶ±ÞŸèÉ‹ÂçÍ…ß¹'àN _ö0†)õÅÖK÷ÂÇ}½"¯ý•r’1WªY¼xZB}Üé&ÅÆ«]ÐnP:®X:ÃÇRüë¯ÄÃ6§û»PMt$$/—aëQiË„Å#ùÄx“ „ònD8 b{äÑÊsŽ&ügHBøÆàqm!ß!UÕ÷)0ÀT¸¾`­™ÌÛr–ñÍBÿŒ’bú¤¼¢Ú"_yùªA´ÓJ™2Mz:é]ÊêëVÛ¥’C:®™)ß«&`_ys´¦åb…‡™a§Ø¢!>dp§X©'Þ']ú•²ß´O§YË÷f×S÷ûl.ð Ø¢>‰·ÈN~ekRÅ`²F¸ •Þµ=öت¸Ñ9æØOý•Fõû§žšé™p`ôÓ(¡ÿaiF$8•s|m%•С#Pß 9ÅxoÕŠïuÇ$OÁ>äKE‚+V|[…ÝÝ~n'*;ᙲ·nz?rÖy’œíÓ¡–µb . ®Ùl îlK"fƒ…pn濊Jiy×úL6a’épðï¥(=&ÃÿµÙœ~æ8ç*Nb(cáï_î3••kOÂt˜jêÙbÄ2æ‹ D“èÂÞs3J…J vÁra¸€Rà=;O ˜ŸDjH•š¯^†ì¬ûÙ¢æÆ^(cýo§¾8Û(œ}6')€¾ð¤:L¤{i&§ $ÃrO2KI* Óñ6ü|Hv|¼‘@жŽäÑö¿£ààR»„‹@–mWXË xŠGéElJÈ*M§úÔä`åvàøB‰J„£]ð½mÙ}Xõýµ *! ã@m…3$ ßlÈ=d§*ÀyB‚ôµ0ü;áp`f)»éܤ2¼‘æiDç.¯¯d™†)°ã—ƒÜšhxÖü7äà … |TX&Çéçøpã_4LÒU\¡&à3#L…Ô¯^¡rƒ:§ÍÎçíºV«™”N¢uÃSX‹ 'HgV\ö| ;Ù3B…Ç^\»š>|Ú´wã7ê<ä¡=ŠÉä*So?Y£É<…ÑéÂÈs ëAâµþÌ –gܽSAìõ‚ÐQ MwäÐà󉯴ýñ.†û¢êƒ“/Q°·(ÁÉÏ ªmõ fÀiü-'ùô/¿Ñˆ èÑ K*ÞYJdAðH¸À¾Ÿ Ú`Éwå;f0|íŽ&â‹L v• !÷ű®B—ŠŠùXDm<˜«ÃêÊ̵%Jñ`¿Ù\ÆÊ»Y‡¶ò”ØÂË9`lörã¶Ýsë׺V4Ê|I`¥lý·Sõ›ªû]ó hçŽÖ/,Ê»ùæÖ„x–GâcʹºQ:´^&ó`×|eÙ mqnéä¯ÕN¯Ô(´‡"`4Lˆßå]v×úB7pËQˆèOPÚкOèÖÆù¦’¼dîz=X•ºeꯖ’oÁnÌF„ýÒŠ¤".%î±tpHùk0îv¼¹_šˆ3Œæ¤êúŒ‰l–”+5/+q±óD¤˜Ÿ5C…?ˆ‹ìålâÙ¾þDÞe‘¿„±¾.X]F¿|¸¤¥s¿ëìÅihÚK-UÀú6‹újùmò²Ì.a“³š`o€øIÒ1òk¥P‘Õ—òØÎ~2æø5€É?5èbú¡ÁÑi®:BÞ§TEà;R›¿T@‡Xˆª ø+_3衺ÌAÊ.†èú£´‹> dœØ öˆ>øÿvnqÄ,Tô¹¶ìWßýÂk~Ö¦Òº¤§öªàƒ¨Åñ´ÆåÎnïø‹ ÆÕ0A5ÿ~è¼ç{Þ¢adTÀx¦0ÚþVnŠXûÆy¸üp9)Ч¬ŠÊ»À a–TÊ¿d°Ä/úÇñ5ºI>¶iíTƒ¿Âó½èo—lhj†·ŠåWµ˜º—ôˆ-UÓÔ%âGº Û†×p7’?OÉà’*"»€Šãòw «éú<Övt¡tŠ Õ¾ WÞ¯$H؇ Y|ò\Ydä*v½õùmx\§ê;úÀHf.ÂO¯.54Ÿ–³¦Ò ЙóyM1UÔ›Ü6lçm“‚^NÅÉÎdùÌ_iåî³OK4j?êq ïÁ¨3Î…·äo¹kd©«’tu¾äðóÜÜj)ÑTea/ôG³¥¿DõP„%ÛtÃô´øf™Ä()JÎ+(ïù&ý<"Ý#Šã‡ëñE:qn›Ò{p?/ h;È.š;úöq?+Œd®’*‘`WÂÏŒ´D!6?=nytAX£™ÿ·˜­Ñ‘æXi€á£¡[‚âÛžk\éÝ(î¯Gîe‰-£ï“~u.åZ—Ǿ'B%ü~(Þ´º„ý<#[¡ÄçòOß¶š0 O¸¢î&94®ÉÅÈMöõm°¾¹Ž 2¹¸WÁûSa¹¤VÅ7ç 9C°U $m1þëÙQ 8žU:’Í ÆA'@2dnm èNcþÕÎ2ñ~’$îàawÝ>ö‰)å†H.ÿ˜%Üñ®›4§y3D !ýh³¹; ¨‘)ˆF¶=ÑKNÒÏn7\$yAãLz7Ì #*ý#ðŠÃø¬Ôˆ ‰9ìÊ“u¿Úx)LPY©Ž±±î˜Šõm”në«%M`q”ÐFç¤ÖVô¹?Z1}‹ù\Øt¬×ª¢æ/IG9ÖçQI·Ï(V8£‰þM‡eÿx3"ý¨~sèYçi‘ùèrêeF ®@¢>Y¶ËC@uýóWÖð™7é¾Å.úßÖêeÓ^2iþ2¸1”Ðõì÷-(` +þççJúŒ–ÃÐ  A"¥#Ö•¿W~G­9æ<1V®Úéâ<eÑŒ¿†Ìeð¯ÐÖìOH÷†{Œ êaO VædR^úaÁW n¿³ÛO€‰È}™m×¢£¸NF!÷r´G¬ä-ËÔ%húÔEtõ»šABJòÒQÒ§U_‡·™Ï¿\Q+ n9*áð^W_lv ýÖ‰ƒp±OV”7¹/›ŠC˜¹øñUi¯­¦!øCmñŒ·Åñø bxý7ýü™åUâ?¸Çè&ÊyÞqsÿqýâÚ=®°ì-º¦›I«ã…?óby‡nU²³-»ÆÛ‹¢d3Å_:©ØÄ6 [\9Ü6¬Yk¨ ÜõFõˆ!CC±FCÉxúGÓ:JÈG$Äò¥ŠvìÂÁäA:z_˜ëU|s^¹SÖ0ÿ¥ZC`gY~z×϶ì×ßó=GáãDöÐú›Ÿ3+ÞL'‹û®Õ0 ‘邺&ú|²§ˆ*wP>²1¼‹´Œ»ð”È+#.aæ»CæR äÞÈiÄDo¦jkâ ãÖs…]~wëýÐ(–ˆ‡àËÕk¼œE—Ô(á^ʯxÊ4·:Èe³þÉÞ8"¡Æ~Ÿ6ø~¤8´h½îȘ³¨j4)Þÿ i‡À&Y%÷ Y—[¶^BE¾à'í÷ŒÒ Üí$€ÓA0Ñ0Ãwß>¹¯Ì8%E²ñK\Rð8å;ø›+fÒž:kâ™Î»ü:Bk¯?A×ÒÆhÄR¼…‹’Å¡šamj$*ŠÏAöº¯^¦€aY§ê`ÙšOMŽ:(3[´«‡Ž«5E#AÏhJ làÛ¿æñüdGØ“.·+0䆵бkJm·£i}U²n–{8ÄIÝ®ëdpá{Lã¢ò´’\S™@ó-ÐM¥ž Ð=Ú5íçµW ä‘G2ì¤VíÕ Ÿ¿&1I‹;Nw5¿ ?ðï#F‘ j :5´Û KÜ¢ðô’¶4èˆûGœ¸).ly¯ÇÙú Êêlûãð?¶0@†aÓ’¶ cÑy†$áûÀ v×É0ákú²r\ó:¬9è)ß~²*RIOç:¢ýûãÉåFÔuLPÛ2§Ìhí²º?ïŠuÛªüqϘöŒÕÒë ¾X«t/STô'IíGŽ2u(¡Ü¹Y{ÜÅktæ‹©GoYµr£<%Å]†4•h0H$2-xŒÄZ:¨ÐnžW&üLÒå¹Éñ+ð¹yþmMÌ>zQ B—d=k§fïCš@¤©KJiû—÷A<äeiàÄÖÿg 2ôí•qœ—ÂìíЩš!ÄýfÒt;ð_ùFQêGˆËà£Í„瑳pÍcr`³æB[v žCéƒWv]'uÒ~2ÒÖÒfL4Ñ2‹Ï°»|P¯þLºBuÖ½±ú'ÁÊMŽa–¼Á‰‡-ˆÃ8XÞŒVß&É{çˆþ/]¤¬K{Äú* »0œŠxÍ[iÍí”ÏÉJvnãØŠ±€ûëà#XЪ˜šúÜÊ0šY”ߨÇ*#ÿGkÛ£êlÞ Æ+QSç×ò½±aðGÜCÄRÑ…1+}š ‘./#l |ê—è«4àÆ–(¾zëW¿’ ÿ˜«Mj¥•†ŒpÑÑ+ó„ºá¢ B‚ï]eצ¤iÉ‹òµTqhwò 'Ÿ–·éÅA T»2})YpÍØ¡ÿ&·¶˜s^ÄðjÔæF…XÈÄû§msèãú9¾»¸åùWæÅ:‹f×ÔR³ÓbèCݵ)mÒƒ«e …ùs/ùбãö7,?­ÿX2Ó††Œx 87'|êÝ,ÞóßO¯¦“ }ÿ¸-ç†'S&¨à‹l1¼&PM©ô†‡M,‰.¶sõuólŽÌU.Ü[H™„Ù {ÉBo¥ÔŽéT’¸h¸ú™eÒÍo¤„ÝSi=þ šè»õpžE0X ±删­>ž¡T¦ûœõç ã†þx%›„ôXü‹®*›壌èÞ&¥ð«;Ÿ—ДRsR•èòÚ§¶}>“<2ŽT Tþ¾“>w<™Kƒ·¾;줹tû+Èã”Õ–± ¤C,YHå{„eX+BµÞê¬ÖØÌ'SØ\ÚŒI8q~ôwlCÆ–¬d,ñLj (˜£YÈSãÊX³ðé­ .(~¿ˆ3×ÄÌE3RÊô”`Ò¿þñ»Q³acѬb•nÀõN ©_Õü½°fæÇu(½`FûƒÖ£ä†èÄøÞ¥ÅÓ¾ø4üÆKy«‰‡îß4ÈLªT`Nû£uÄ`Mmæ2ÃvF[͙ϟS©Ú¡¦¨IÓ7yòP—HFºÈo­´Erʆ²UŠU€ßá}©;—zÊKcç³mÚ±Ãh”|ç#úh8T]¦¡¦µ“(…«åâÈ7©÷LÈÖ§Ï¥—ìš²n†SRRT6[QÒ§JDoZ_4[2¸sÜ«x‰*z†ÀÂŒ‡Á¶1A9K§8£þò3ÔÐÓVåQf¬ðHC)åÅfm¼æDûøËULTö³@9âþ­Z¬4ØíºVuîØøí˜_´e‘øTQ\ÎÌð€"ìcR…¶mSº”#Ãf9õ—>á~=ûÓ‹ÆÊêYjÝ]/&Dß“˜ÅÐAŠvE0nƒ¢"+hªÊ¨îÍã¾Ç3uÃ#™ñ‰æûWiL2{½|k×b•ª˜§Ð’Êf-„¦[n}÷ÒÄ"K‚°¥²ÄaQí&róè ÷‹ÐÓ˜Ó‡ßÓõ‰™ tdâZ^:¨ÌӰá˜õV·Í²Bè[>PU%==Hƒ&­{CjcÃîìàqÚ%ã·¤²w¹¸}yþÐ^Äp^©œÜˆ†à.¿ZÒöš´Nk’Èd'§fnŸK-qo cKË6¶lGÏ*Œ«ŠTT‰¹É÷þÙjiÀƒñƒVÂÞdI-¾pëªuè¦_Í‚ÖBx¯GFj@‡‡àÄöynNñß›ÍÏÆˆbŠT§‘Þ›»€×Tn˜2¢©IªdW‚ô”\~>;™k¾f–L÷«¼eXÉÙ§\1òø±͹èw#Ò” 2Z!¢h ÐÐ3*²ï±@¥J}‰ Þ±§-lGI*`té;­<Í":‹têwŸQùq*/9O¡&êŠ;“OøeUÓD–ùâ.×!oß>ÊIð“ó ðÃHøíN‰ƒðÖR·®n71C¼ÊC[`| (ëáÙÔx+/‡FÞ5?—]¢ã†7°H8øâ«Þy8Og.’Š׊,p4ôŽü¢ý :íz2w„ô ÊÒsDØæ„•lw(Gíc}S>‹ËïÜ¢IMXΤb£s…”M©Š¼LÆ‹LZðƒ fޝ yvŸ£ªÆPr]`ßÛs¡Ñ«¤ûZ7Vrµküjž“/Ž áÍzÐp£äHÿgZ_HŠšsã7æ@ÉËû€wÌ W¬yªùÄõáá¦ìY4Èœ÷L­etl9—Ý”ÂöaY^*&w@uU¹Ä9uN7Åÿ”ĵûXødª³£üèä„Êÿ#¶h|è.‚ã®aàk¨1ͬï÷ÅRáÀK2,u¦u©§C>zÿ›\4»’Dêƒh‹ è´¦SåÛIýI2rª;ø3ª„bœ¨‚ÐcjŒ¥Jø˜NÇ’¾k¨rkÊÞeÞµççÈ—Fi?3ßt¿}JØÜ4hÙÎbÌydõÐz¥“£…¤ùMíÓV Uà´Úðã¤é_CNóÅÿç¹Á õ¤ È,âżoç:¿ç˳©Å2…"~¼¥æÁèb`r„bˆågr„¬~ »Þ¤!úSHeÒŠ=š6Ào‡œÔ[«¸Ùo ƒO#ë²*nŽ7Àx"£d¨Z5Ü÷c å¥_ºË`ãé¢Ê(Ò¡óÑ/¢•Ìb.«#Ùj øyÖ¸/M„\Go¤À×€eß!oµŠ•ú¯\;©9Q‰_ÅW¢v9qQÇsb9XÄÂŽA?ÙáÒ-—ùÔžmOï´ƒ½Q¡Mv™BvôËêêvEcOºÛ ±õôŽ¥¿¹n—0 I"d7e%OIçŽÒN«ÿ7É'¯£^éÖ‘œPƒv"yŠXÈ¿Cÿ…®›;Rm³šMÒ6ÊoèÇ{·p÷%xdï6Úpª¼dR] ÎtºEŒZaOõ¯¼ßç§µ^MÎ)±ÊçD¥ ¶€Qû1Dê"M”ññ_ð-U±Ü°²Bç/s‡9g9aÂé® ÿü.ÿ%çá§ã7åaŒIÅx2\§×±»e^ |»ˆŸ¬ŒµŠ e%Q·íô;C°Ù=“/­õùº"d(/´(%ôÌT%"pØæ«%´:/^?¾ñ'ÕÙ=l'ƒ$ …ÂɱJ©ä n:ï¼±úh,Õ4u,€T¡4‰NÀdzö š/¨˜Ž¼‡Éujo(Ž]‘÷'‚åO¸•X-268÷ Aõ°T… E±Í¹æk’; â–©piö½Þ`Œî#¸ÎÿŸ ¨ÐhøêÙÅ$ÀÌWMÅ>XŒÎކ©J¦¼ïîuIn±èqÈÿÌzK¨s¤l?ï2ÝI÷´f³ÞªÞéÌŒ,|#åävUé2ϬRmQQJaZe“¦ºÕ™ Šà7Âæ‹b+áz:e»¸LÞ¢Ž3ZˆÌÏyĤB ”‰N˜f,†ΰ—È(5fÓúâíLþ\é&þôª©Ë¸Æ6Å]Ýë¢ë|)>ã…UéÚ‚ÕL™¹‡¨7Å6ª6T‚RAÔ¶…8,õ®ð  2ñ¼¡:­¿-º´ö’H›}t†„ЕóÄK£ÎùZѦæ E-ÛHÉr]ìâ¶P€¢U³ú—çá_„Ÿ|3ñÛ~ã”&_éª F ö£ñˆz¼ÎËI=&ˆYsTxˆ†'†8C´1ïÄ›Êe.Ý3¿íÉ‘g_œ¿a˜åÜM *•˜ãÈCÚ¶­ÑÛp;k½;*s!rQêe£XÖ !ÚH=ù7Õ›b*áîKXpÞ„b.‹„¶@¡œ6N>m#“Ä‚ŸY@®bÈÃúš<ã–P«ëjÒúÁÌÕ”Q~Ï_sšÆÅ{ûrøémÝr¥?½jšdÅÛõx€k^B¦`‹ûïžðÖ¼=° ”xŒ’MÄbñ¬ñYoÚ²‚±v¿­ò0²húkû8­¤5Ø‹Y­«žëÎìØçitG-‘8‚»éÖF«Ëw¼Ê~v3? ½sž ÝqÚ‡œxPÑjŠ ãñ£ÜeC‹˜›ršÇ ¶{Gƒ®†¾3J{6ýq÷¤}’½MéȡƤÿB³}®fÃ>“ý”úáy¦­ƒÏö1ÆVQ`Ô ñ¨òñN…ü”¼ÒiVHoŠHÿD•À6fþ#¸¥”¹€´Ù¨X’Á¥“„”KT͔ިí[ QC“Ý•ðî2l¨4xçvPj#”¡ÀY%Ž=2ì!õçaœà÷<¼m «9Ÿ†,ošåÙî—tãf¬®-[n6âÐËÑÛàÈoX.^O$û×ÁÞ‚Aá¢ÒY ÷Ê<¥qTÁø•^¸Š%FjŠ\²Ï^<ûMšÌœ'Q¡p-²äYËb l®œÔkg]cŸ\Úq´ƒŸ¨%>gXשY«×ÙQ]ªºå¨»XûÑAÙ±SÇö@žßË”Æäu Œmû<ñS))¨³‚4Ò(øNÑwÖò!hw ÆA2]‹çþ°³Æv´Ò5ƒgç\ù½¸pwKýb5: ŒóY÷ñ!LÞ·ïŽJõ‘° QU#ÀéŒOïÀጸ9¤Àî4oø¸™”< {õXç¤ë&1”(¶…‹>C,Vð{0XcFCÁ{ã¯$·Gšo*%ÞŠ“¥Oëqî‚B¦åBnð;íÔžg °TFÏõÒ{<Ø\»ñ0 sXB§ŸËß`†ÈÒ˜ó7CòçãýÈ"×ÈÔ ûóñ™ (ƒLË4,14O¹¼…yG†ûçß-Ì2½@œmÜ!>I"’x%K>R‡c³CC¥uÚCUßQë¥&¶Õ2CN²àÄæŸ½ }n-MÄ }À¼~jZÊÝÏ#ióÂ~¡.^”ìûÆ»°ýR„¼Á–z8ØlÃò2·º’›9JÿîÓ‘a—RBT>ºvSÓ©Nxš$¢uƶyeu¿ôò<û Ár9ÑE™Œ+`UNÙ¯ùÍ+Aµ£ÿ §ˆí ¬Ã,¯À·¹F›alòg§ˆ¥^ãiW®¢Æ­Ì–‰>"IoJ]\5"î$úxèåc>sÜ'ß2=#ÜÓ±0ÿr%<<›ŸL"¨˜Ã-Bz·I¨gG`̾©Ü‘i§&ÇÎÃ$hÞ³¯«Ó9:“í* *G”u(íg¡@EèŠ2ŒLd’¡±âŒº;©Ÿ°÷ÉdÑÝ»ª¹ª'ha @áüÓÿ6_צ endstream endobj 136 0 obj << /Length1 2471 /Length2 18853 /Length3 0 /Length 20338 /Filter /FlateDecode >> stream xÚ´»eT\]Ö5šàî.¡pîîîÁ=háîîîA‚4¸»»»K‚»—¯òôÛtßßw0 j.kµ÷®qê@NüI™NÈØÖ(nkãDÇDÏÈ •“³µ±eb¤“r2°270Ó32²Â‘“‹8 œÌmmD œ€Ü'3€‚‘ÈÓÀÌÈÈGÚ@Jc€¡;@èd ândPü>Ù::Ñ8‚Ô@Ss 5ÈEÄÖÎÝÁÜÔÌéw :ºß‘~{ Ó¤ Œ,m]-Í6Æiz9z€¼­+Hh ²µÍ ¬L¶& @UYLI ¡¤ úI™šXÙÙÎÎÖáÿ¸ˆ(«¨JÐD…äUÄ@5Z€„ª²Êï¿*@SZ€¼ Hÿ;È𷻜˜ŠŠæ'1&†ß5˜.@Góßiÿ‡ˆà5«‰ƒ­õ? TfNNvÜ ®®®ô¦ÎŽNô¶¦ôvVÿðS13w¸Ú:X@¯@+à?q¶1µÓÉ ø¯¿¯ @ÖÜhãüí$nû/¥5¨• 'Üé?Ä@púÓê_æG ð¿Ò˜8þã+ûé“,ÀÚÀÜÆ hc`c2t2prvèÿ#ý)ÿEqvpøCîß*‡ÿ¤ù7ua[Pe:VžÞ®ÿ{Å lœ=þêÍ—mdkãhîèäø¯ˆ@€‰¹ð7{Çß×ÌÜæ™œ¼”¸˜² ,hðlèälAݱ¡wrsúÇúwQsPŸœlÜþw¬-ml]m<ÿ?bsc“ß}7v¶cPµ1·wJ‰þŸ1H÷Gf t0€ö ›‘ÃïdÿÌÊo1Óo1¨ Þžv¶v+G ·¹ ôçéhà898½=ÿVü7‚câ›9Æ´Tàþ‰.ecb àú—Ääߪÿª–)5hÛÚX¹Œ&p ò¶N q úÿg•ýO.qg++yk ÕÿtôÍ ¬Í­ÜÿËð,Ô¿©RÉÛ:XXýÎÜQÜÜ hüÉÜÉÈìŸ&þKü¯LB6¦V@+=# ;ó¿4ª¿W”htAÛùïÝ ¤gçøh*,m€ŽŽv®T@P/þ‡6èü& `ÖQT¢ùß¹ùÇJÌÆÈÖØÜÆÀÌÆ0pp0p‡c 3À“ 4ÕÆ@·¦À@ocërØ9;yLlà~_Qv6ƒÐoÑ¿€Aäâ0ˆýq°¤þ vƒì'#€áÓÄ `Púƒ@~Ê+€AåeWýƒ@ÙÕÿƒ¸@Èàâ0þA fFÿA¬ ˜F øÇš‰DÈø/È`þ©ë7²w6°úËDÙä? DÙÄÜåÛoµ­³Ã_ Ó¿ ˆ‚ÙB ²ÌÜíÌ€6Y€dæAPu–APyÓÕgý2ªùŠ äj¡ÿX@¡mœ­ ¯JÓ¿R2ê´ýC Óö//&&PQvÔ v ½× hâôGÊôÒ­åÿdQ°:üsüÇ”ý™¹í_}guÉþ¨Iöζ ÝÖð¯Z™@Ò¿Ë*Æñ/Šú'ˆŽ“™ð¯+¢íäjû—ˆšóŸAEûç„s4²uø»vP¿]þ‚ Þ¸þÌ  nAPV÷¿ ¨oÊEò:ü‹Á/àO¿Ï°6hÆ?+úÿ÷°²“ƒ­%PÝÜôÁæ/9's7mFÐîÊ’ƒ~þýN÷¿ÿ9þò¶uó¤cåbб€ºÇ ê:hþÙ½ÿËÕè_Çì?;hçù7þ}Æ€@7 Üò‚­OEjCH‰XþT)$9ýI9¿†t<ÄrúT>ŽhÎ P À¿É/ƒ¢ÀVV’[×'ÙߦHƒ<Óêu£9©bòÆXQð‡œ>’˜Ðh¶½j@†Ü’_i õ¡tvžæ7Ö™Œ–ø–ÕÑ#®¶Î‡hæ‰7Ô«Ò–µ\H×Â9¦F +4·%¼vü¥©ö÷No±Q=BËgõóB°F¥¡ìº;Q´hRóT4Nt3`ù1¸½ÑCË­[ÆÇQјKAØQVí.4mqÜÑù5¢ëàTqÚ_çÃæ{$R.p¥¥›ò±ê²Úû¾H•zŒQt‰ÙاK(…Ä®_xøQ´ŠŒ¿”fí»eD›õD'Ò|@Œwˆ·y,³)nÍ|gúØ‹ò"vÓfàJÙå}“Ôçµ–ór”Y½E»Ž‹BÞžŠŸž¿§•ªöd*‰§)âKõ!¥'¹½7ÏáMÖÓŒG£Óê®`°I©pÖÜe>=?jN‰9H>iË|äYwS÷iXqÝ«~7Jd@šƒ\ù¸WÀñ¨r|ÓsþÞ™ÒÜÜþþñ¤ÖïÕ/]væý‹+<‚âX6wº3îênk2_úìªl2µ\§m±¹Îð´q#qÄw¨Þ„¯Œu`ZbÓÛJ¼Z\Æ39ß¿!¸󿝿žÍ_+ÈoÝÀ¿ØHš¿©öØra!÷Ôö£ ˆðÀDD9 %œ"è´m—îû>¡¿ÇoFV ‰Lð kf÷.MÓ»+k•Ðø]¿ñM µíº¤.»6“ ú•ŒaPsÎÖ)â@v© Ú­À‚«èlâœ5*2”¬Ð¨úQé(aÔ F+=<'XÁ 1P²Bxfá™òÍËp+!åGÌÑíÖæ32r’b*ïH¾ÔpX{º|Oç¨%‚„=ƒ:×\Úy$·yLeLröEì‹dQ¦Úë$ÔEÛ°–µ/k¥ ±±Xä±o³Ñ<”—°—@üÔŸëÖvÒⱿÛ'fÏøú¡(µn]*Æÿ@ó»<`jö“håËié“Í6Mc©L8 èïjÝÌtp`úàiÕ Ûò¨BˆÉžRÓâ?ˆ¾È¼æ§µucÀå—än«Ù|êÂV`…&Šgp'tš]ÖØl|ÅÚD¢SÑd(—g•T„#ÿD¹D ›°´Ós.- ­ÿø¾âEAZ^Ú‰ÀÓ*“õS€Q¼_Â@ÂRÂj^eXš,mH½CX·+ºÿìŠó~Ú ¾Â1…@fIç/CX=ÿNñ 39¸ññóë@õ¡c4êÈ-#­ÖyåÏþxThfºÞ˜|°ú60I‰?ó;Òk‰^(: ”ℸµ±àH5Rw½³‹î±;…!± ïqòÐVlqë É"M€õêí6VAŸIÝçêè¢q­UÀÍZ²íu%Ûw÷R†(*ÉÑ–8V•§û¼rËÍäêl¸$ x: hj¾ò« ‹˜O~øœÞ$J“pÁÜÅï•Á¯Qê‹¡b°„d½ò_E*ÔZ,µãuòFÀoëFÄÂæE—“ŠÎ¨ÓÖÍeuÌ8fÚ·£¤¥];m‡uaêÙÚc£©á—’'È7x—{÷RÐû[8x"+7-OZUyãêîž’²¦’ÎU:Ÿ àêÄ"¶¢1—uä=±OŠÒ¦]ö$C¢k³«s0ˆúŠ¿zv©~áTš×±î]õ3 "ˆP€X“õºæL`‡êY·|gþ]²èTäιÉ.”Ä’aÓ;!aË"8ÅQbSÉO™ ñâ¡ýÕÈ$œË/Lo÷RNk—“5VÙÑ,^*¥’ 6cgAÿ’k0°¢p 6eÊëÐñWGFŽNh"Æ.óRX^©\<Ùš·gú3[¥P(ë0ž‘hÏÓ{ —ÚƒQi‘+æ(5nzJ©4¯¥)ŽÍ¸^›¼ëár[¾UKŒ4¯Æ;õinMö)‹Œ¯ <‰XÏB®º7WaƒøŠîÖdý?Ôð7ïãÙ95(Ó¶Ê«»0ÑNglãi¢p­faÖ~­žÖtFϺÜã®î.[øê„¡Ö Fþ1ØPÄwr“—t9*´q?¤Bøc~ /¤F2é9pû¤Tvžá†çdggpªæLÙ-侈9´Ì{‹\W»~x$‚/ò­nÏD Eýf¥­«~­vìA«šMcª„rP_“kf. ÑR¨«hdÊ?˜öÅðv¸J,#gFÕÆrÉ›šÐ‹›þóáÅ qìýÏ "À^Ô„+}¬ƒõ$µçÉ“Gb] L»Ò‚ð6¤3·™Ý Æ®)g¼‚24Á¤~Å eߎ ½pÏd¯Uʲ?ä]XÈî_gŸÕëÌè>:f»ÛÈ\£ÑÊ$”òîûñ¤î½¤þIô®FñÚýÏ·: Dx¥¨nâ‰éÑ™™èCE/8 …{Ïø}J.g¨Ì8û/³À¼€Á“$é´ªdî4f ln2^ƒ·Þ@X’uFeå&(yÂêì¿ fœÉº B¾'r† ÇÝJ†…Dh½VßTQ<µiKK¾ô‹å—L†ùØø2Ôåæl¢N= \¡¾Ÿ²v™ó½8àå´ö`,>щÞ=Ÿïeg*üù I¨X—îŠÑÃ…î:´zÚc¸Óu_¨Joc 6»Èð%Ðæ-Ù*å¼³hTˆœ:1N¸å÷aWž‘µ¾øâ›/Øz¤æO‚_Ö5¾ÐÃIrQ½ {GhežAÁí,Z™S¸þ²Ïœ;ø%t47QÏÝ•=¹!xº…)ÿ¨v’tYI¸}:OØ#ï-"A¥ †Ôj-Dº®º6ý8÷SíÃá‡eæã«Œƒç+bÁ 7ltÃZU¢;6« Id2ÖBnN;Ý xî_Þ_¿‹ëuÜÚP®žú³ÍϹ˜í/`Õðy‡Ó/%;0  øŽFßm†‘@î rhe–*‰™xCz%_$áw’ÕmV[¦ë¿ì®&=»ÖHh6Ëù¼×=}6þl†óò\$Aß'dèXc¯Ë¡3÷¾D´óÅ"¹÷ÆðK=x`‘i+Ò[¾’ô´‰l&V ukL%"9é®W&Û®q½SÀ ‰%ºyªž¡K­´“ò2ówˆ–ðëCê2G³Õý0Æ÷q±®]åÎÉ&6AH†«d¢B¸!8ìØ¸çõ+—ª¿²B±dqpÂ1ìøÒ0pÉL~!öDÌLLGúuÉ*R‚‰ÌVÚoÈ3ZiÕ?P3W^IlŒÿ#–#Ù.ßò„…ì(í(ÃŽzŽÕÃwJ.2ã«`÷Äxé¶DmDɪ[+‹JÛÆKü;þK'R[]U‹!iû¬ýoPÂI¾œµ<ºì=Ä1àV+€áÎæ·Ägª–c™"NG–´#ñ$ûŽß`Ÿ¨Þž ™S´[WÐÆCòÑŠâú…"Ò—-”»Ž6J•¡¯ì y”xZ䦒Ô-"öí|ÕD‚sHÈ“–A÷]\¬ç“ÏÍÊ0Ž0Œœ·‘Ç{#ì~_a\Q@=;Baâ08²ußr'$´,‡;†#Y`T¿–ŠßHj„ñhÞ~K ¾‡â=q‹*]ÚSÒI31’XãxMZç óCùÑ맃$èÅšY ¯ÄÔG½œuÜÉ: à·ÅK3ž9ŽOzeÒ°“Ü ¨ºôeª±C'¾_cwjÉzRT§ xß°t ¾Ý^‚wyè£%u€L‚ƒ¸hLöSŽC+õºD¥"Î 8ËŸƒ“G E²R'vjA¸&Ïz\Q9HØÖÎß±?ÖõYbì Õ÷6E#¤—ŸWÕïUHsj$!tž¿ì'å#‘`•:×n¥@¦’ÿ‡¥ù÷2Ê7g±†¸SatËVM@>‘YÙ1XBãº@Þ\¶þbŠ÷cÁc¨ÃÄ„ñcnl¥:.ñç„ÛW¦cWq‘äÞ‰€[ÀÆäKÊ!_ÄàÚ<ëÑîc6Ïjå‘dIÖGÝ×%ô)z²ó]¿°Fè›Ü@$zËÅ…¹&7ÉF¨ }ég:ŸÇ¢¯û&ôÓb‘€Ÿ!á<á-˛ƕx0¿x Íå;Ô‹Çhi¶3Ž ô¢po›‘8ò§í™õë—ÅšlÎð퀟«Ëàn“ ´kŸžOdtfÐu·ÎªÂùŠšóKSÈ'tc¯}bµÈ¾—o™¢H'EDÈÙÚDc.œ;ïXîú ÷ÙcAkUuÃ8 ©Ý¼d­ñWB½p<_2*×ïÓ?Vq%´ï½ÿJç³(Ýâík-œ 1N¨ëç3&W‘vYc ö ãó–rÀÞøÖcCN½Ní«åyTµ@nÎ`@bRÂÿ‹mÂÉXhÇ:)mXÙYŠs±' 6‡T§>ñtº<È7_)cì, Ù5á´’½6-ÉÊñÄa1¹ïÕ"†'‹…Ÿ ÝUÀŸ®§ø){"^ ¹à£CλªBFß`M}ñ ¢~Jc¥ —~ÿV½=T©ÀšVcš?—õu–“;ÿŠØÏ¨ãç=ï:C/ê£Jˆš¸`w©XšrëV~d÷Žm“=Â9ŒüÔˆ`0ÜÛiõ3þš^¡} ÿõx"¦vU”ž²®Ãó8Ί‹¬·Â-uu€h‡¼Ð%-\>s—5Ýi[cëŽ]ÌdÒÝyû[>Âû=eÓµvê¥8K‡£Ì!´ aÄõ•Ø@¤¯2zË6C§jȧ€Z«½ýd”I0ýå‹ûüÙ©øGÚg¼;èX%õæk‘x}¬ØõÕ´3ø9@Ÿ¨œÅ<öÕ)Ù b0׉^÷kMvØ}Åxžµ;¦¼¢œ•Q¥î; pÜ£¨Ü¾÷Ý ~OÔŸÛU>´øŠµ@€{ÇfÙœˆî»Î°œËp[禔³£tí¬/qE:f}r«Tã-± Ðd]ÚdƒZIxC¡;ÈÃ7Ý’ W*Ot2MvÈß*N›/6}·g,Íý‘uš2hˆB¯ˆõ—°Ÿ¸Æ,œöu÷yIõ«(&‹ {bUŒ†yc‘íýç&}g}ïqÅw.‡3ç/ï‘!} SÓº¶ÄyÚ´—<\‰ÁœNÏ!cÖzW2J¯3%:Ž.&O‘¾Úx£ƒf¼?lMBhÑdôÁì¾¼ XyщnÐþÑ¹Ø ûs~fvlO øDú‘´iØi±µ¬Ÿ‰/¼õƒT0'̶RÚí2$ÑJ\XùFD]ÿ{åüùï$*õ˨ÕEѬép|"þ€ÎîÊBõ!½$Îf#rä4—Ã+¨dÍ=˜Úì$Ú*ŸÅ§Ü׃6ÒOY¢Å÷ð¶±WDø­å®TÙ îØ¾^K>LX·èw#“‘KG‘éx˜8èS,V35ˆ×a8[Ò…eû8o‡F™<÷SÍ–Y—¤˜CX_]s ðVùgÉlÏâÏâ¯U/Û1BYæ·H¦ùIÜ9N?Ñr€E@Ê_Ô– {Ùd½…¢9øuv§%Ã$†ò²Ò8#IO-í•aNˆdu÷‰a-ªý¶(m2c&Û þ³yB™Ú,eÔˆ!ŠÕ÷±ê½Õ¶›<Þ¶g—v8ÞʰÕñÌ"v{Hf™ |V?}ÈPjf‰þUZ½Ü—Û3¼Íˆ4²åy¤ã*š.|4îuˆÔì!\,S*^ÞÔ—#òØ”ÉvM°YÓŠá iž­¡§TQ˜Dîì|ýÄ“üv`ÑWí¡Hƒì¯Að½°«RpÎÞÎJ%ñ'ã—°¸¤o§{ˆ$'Ï9%QznÉõ¦5,‰£ú.í»/tj!õèy¼¤(%,¨Ñ5éÕÜpà<‰qúÚ§¯‰{%æ0™ro¡¦À­8ÊÆGÐhô¸¢NÁô»kŽ:9²<·°öb»Eb6è9vŽ>Š4›‹?É\ï$Œ:ŽÉƒ£{=”!Ÿkѳ)⢛„RàVÙCðµòâ³UÞMk¼àUºDa ÿ¨Ä],¢/XøyêÏW¹D– &”C€ŸÆ»RÔÌ6?OÊ*9Ì$d€paxk(¯ ¸âë~5Ï$¿äŒµgÂÇ^?R™êžº²O ÿ¬?n¿Ó<Žð=`u¶ ì–%â€ð¼™µ3ð€Íò+;ZñÁ„r^ÔÐuBÈ~ ÅmâoX•§«Y‚´CðÂì"FÞL±(û?ÎOùµ<ïjRw^Å—„»ÔºÍNïÓ¸8V㮌rZ†ê:Fz³süî“Di³>NÚ‡>Üôì|é`#ÕG[›ÇLó‰@¿Î!€jõ¤ámLNüê½ècU­h§ÔÃÞ_C°uÈ)dß=:©æý£žKî‚ó­Äq!gîòZ裟–P:‡Ç:³Oû†Ùþæ7{{´ÝÜú±xEƤQN¯ZÊXUð 4Øv<óœxw™‘Š—‚ªÅÞ/¦¨»üx˜Ñ=¬soèï›ÂO‘êüty¶¼ÀYæ6|BÈ’›0i»YŒrÎ- ü_æiÊ IUž›è NĦV°¤sÙØúó*£~y.{ö{ý`lä\‚ƒYÚ¥··ôÅ”"\X!n›öŒul<¯ÜYibؾÃB:¬8«²%ûÀñ2#ÚâΗ„ÃßáQ±ñ&7/ÄE3ê¦[‚ µ5¼ÛÔw®Æ—@¥Ôûccî³1GPUÊ~êסEUÇÁÓä„·m­åWzºC×uЀ|lñð›0ÚÚ3ÜÓ¡"iî`*¢|ŒP³„iê¾kæÔé >ˆì Äoù'„j⽳ܯÝåK‚_Ë|ccª,Â¥'ûaŠ×s?rR'=#õÈNÃÃãŒøK%š™î‚]1 °¤Õ%p¢ ]6pÉÂý" ëHºv ¼C&Í :è yÈÔíˆ܆|ï&fµe·ßB<úm‘ Ý·³,¡m1/ìàt­4'zój+‘>À£)ß ¥…¥HÅhó2á`§±Î=ÂàK< ^ ÕÖ8É8Jr‡<ÐX´e?æëw$'÷y-ÄÛA†N 'ÕõBû3cŽ‘Ü,5˾ò¤ù*07‹°¡¶ðÚ!íÕmDï’À«Ü Æ>iÉÍk3p´,-©Ú¥åûkžŠEì7×ëRs{†Ìk›:fPÚO²0OsÖð ú)™|U³ìoFâ÷†vÿØt™ á|4o¾ßq69uª´yW´,ÎÕ³ÏÃÙ «4—/¨·=Ùð¨»OÔ ëƒ»R¢U»Û³[²"ŠO2ô\‹™_½$×Õ.É·@J4zpøp'ýSà8y" æÒß{s2CÛFŒ~àpìD7ì§„ZÝÎQf¼Lç…9Oßs–`^çϵú_t›[C\Û ©‡Æ8•‹«‡d×nnq÷2ƒ+A—½âÏcø2ÒNhÀGñؤ³-º˜Íz.¦WX˜¿K1§a«~ïçùeÑý>­‚ðZPJpªsN²7³!æéÀ0š!Ào΃htJvdõé×[èÙp^Yâu噪xQ”?&TüãÈù³­7Sˆf¿¬á¸Í[í[i ˆ+ETXag1SÐGI‡ ßã’C_4ʰѰ)ôœ>—vÄXn_µ9&ÌQ•³H :® ¡|°>2Ò†!ú}Eħðxz#ÙŽ“äÏ›²‚Þ„üõYj\ær¿Ðq¤éðÃHJ×.xèZôùwð!¶ø’ %9YÛ„3Ò´ ¤+ÖÕ¤Þ^µ‘NêonŠ’8záAg„MÇÓî#]¾ÅÜ6?ÜçÆ1ö+Ý_Mc«7ït˜à/À:sÚcçŠ(L,Bj™5£ûÓ§r’ÂX!û¾ {°*˜škŒîŸ”HwLêÁT?s{q÷½È­Á›pþ–¢Òì*T‰Ë-›Z$ì†× DÊbOÝ4qþ¾w}a†bZúr”Jàà(ŸÿC¸9CkDûœ³3v$’ÖòôbâÜÂ2¢CPoåAÓj”/Œ\ºùI˜‚ù»œò¸Œ¬XkÅíÐgaIõsg²‰«x÷v ó!»x¢e£^Á—A¯½¥k\ÑIå› ,ê¥dT'kg—:R$ ¹½¹¼b#9xã’8öH¦2&”Ñ öÂËE@ƒ…¦±¶^µÖû%Þ·­&‰¢©pŽãÆl­~‹R5¨ÁÁ §®+=;FSxú(ÿ#:,5M7>“ÌÝhZüÁ8¬Ü5èf,‰äëšäÄ“¨a}šVŽû…W®ðGgRëÏ%¨Z^9>Oåpt”ôI°Õ®—ãS2·ÅWï¦ë?È^3ZŒŒzr¼!rÏw@kó>'–uG™,„´4¤½qsâ^éNja>$Ðb;ru<ÁtcŠÿŬýŒwž;Wsþ1 ¶ð •QD÷&™5’¥6 #i®éÂTŠáû[ºð™Ù"©n¦ WÏ¥a´ww5\ÚlÍY{áhd…ý¶. ÙÚ+X¥Ë0Éè6=ä\©7ý­¢ºŸÖ¢Ôm¯i; d“‹ÛÃ}Æ­Â0SHu‰;bwvÄÊîSø$Eû²cOîˆQa¼å6ýù ØŸd&ÁOFNޏ#«éZëF«î¨Ìoà¶¾ZÏK¬iÂܨҴ0ØÑ…ºˆ@½7O¡”„É~Šù®ß=‚E4ªI!ù˜±¡xT¶Á©4Ö¿wßÜ/5Á÷•*L²ÊÙp_idzèƒE+ù¬ù­Wz8Ïn%#Ú2JÀ¯šä áUm¤TÒò<ˆI®Ó+­½£DJî“ÔÙ›bi„¹C0{㳋$¦®DöA:]8YìØE””úJ˜árç"ƒXhe,®Ý×lîÖÌì¢ {#ꃜG1®&NvýÁÕÎí’3ÛÛAníÛö:X`¨™tBò’h5íOª‘Y1! fUzËeȞܰÔû®ý§ÁK Ÿhé„ü¯h ݸ`*ÔÎ&eaë°Õ$ =®QLrõy<4P5%¿Ç¦[ð &=ÄnòÒº‡íÌ¥„žäI\;?Õ742š—Bí‚\÷áDoZÊÅàþ¬¼ÃägñýXô­[ðímôÜÃÑôZ6ðÛ¶98§|Œ¾kSíJ‰Â}™G^›y˜j¿âñíQ»‚ƒd•l¯7ˆ@½=øŸÚVG²(— Ž`ü ¿è-DÉ8%‹îÑ×Å‹|:éß^侚aÂYîÏ7"&xµ“•ÄŒÎÌÑ5WÍjB`j„'xS®”Ë'T[¼ÅÏ” O½~ Vƒ!‚j)¶Ù‚Irãh –è0ûÄ–F%â”F€¿=-HXõð6Y´‚/Ф¬ý“¹ñ©Ò(«d?à‹ºž“çDI¢8¯3ûAÑ–’¢¦¿Óå©isBøÓÔÅõŒ˜ï­Èù¦`ÞLo¤ËIûµÉWЮőNm‚.©5T|œ­@ã|e´T’ëU¨;#¹Nw.M{ yWq¤âJ¢Ìàøg‹³^‹õ2qÉF)p°Ñ/{@þ™4|ì°¿•\xóbé˜üšlt¿ˆ£Pĉ(e’/,[í›èÊ3»4Úz©¼Ú°‘Ï…d´lå:‹ûWD^µk¿Fr^n¢ÈùÅÞÀ;“ì È·2ooUöf剬ýÀö™\12w®ƒvw²ÙBêÐW¼²–ý”UY¿Ÿ”`Ìpß(ŸžnôÒ§Ö€þ6é²…³õ ¨Z[ÞÃ5GBbg£M*#å_;D©™mýž£o#gûé|žCšïg_V{KèÚiQHê'e#¶èµ¡"W •3êôlá>î±¶­«õX*@>dPé¼³{=,w¸yÐýðD—'Ë„LMÛƒr–vz©œyAM;óù{:¶U¼âC߉o#´—÷yYÖG¸êØI-Áa*k¨, gFúÐ-’Ó/U’Ê 6Z$õ¶î¯7™O&U*p¡%O-N¢x ¬§dÄm>Ùbó9¶¬¤l†m+½#¨º1Ø‹ç+¹f¬û àÍm³(CÑÒ.¹¬í$ù/_¹]3_¢_Éxd×nY¨]¹¢‚jë€àÔjL{§gƒÇK!Çê/akÆJä[¾A2ÁÚ˜`wa…ˆ#j1àp5#›å@žãÏï€Ç§lQQ…h©~’'5³Šù (ãNd«ç–\çMâîšÝÈ")çªm%¸V—R°×ígƒ»^(¥8¨óe÷bÚÚ#'b)£ñH(_ÐiâžÓÊ"‹nsA§–Ñ´³Ë«À›†o£]»ÃÓöÄ-ÅÍìºyfÖ˜^ò®ÜwX¯¬‚íø6J@´$;TÊÁ±ÒIHf[«B“Ý“óö)ªívƒC\€ŠŒÎ„ÜQ¾WÏ{½É0Î×&Ùj1½PÆx´â‹";2è@Cpú¨cT¢„T"œÑ×òa¶ºŸ›”‡`Õ:µB÷à»ùÚPž{R‚8±z4öô(?çCÎa`ñWÏI*oß㾌÷ Õ¦o^è\’€ç<-€Áñ8Í Ͻ4ÄtËjѪ%­â›ËºEÒUš{=µ éÖ+€m”ÓÂ]Oªã;pÿÛbð¯Tãyþ&œ ŠüOÓÝ.ÁYØg5Í‘)˜âˆK]~Fzeň]ÔXaùÞc÷êºê%rppâNZßJ7eM£35«"ÀÓɳ?§$çy×kóaO ôÐöXðìÑŒä+ÁZ-«ˆ¶¿.ÜMvÆzfz4)ÖÌ›ž>a%^TªXúH‰’cé’U)YŽ•o¯0/­Z-ŠúD.>‡Rh.“¸ùgg&¥R+ùk½-‰Ï¥±~å¯èQZ>ûºW˜$ qÕ.7eÜ8ÞŠÃbFšö%s·l‘ÌJ»—Ýï« &Ø‚P󠯪#¦ ¢Þ“s>$D¦YHû!¯sjÌ_{´IûÌÍÅ4oÀ²¹ ’à‰ù ÝÏ~úÊè¨ÙÂføcÃõÊe¸ünÃ,,šx&þŽ&ÿgN·\› Rƒ`úuÄÎÁ˜áÈä­½?{EéÁI®†È"öy[Ã÷C‡VÕ•,·Ÿ»œ¥2ËßäÝú»°%üžœZé«-é9<;…æ:«k®Œ«íTl¦iÑ~ìÑqu]²PZ³fŒ D5œ"€+\#âÁ–gKY 锈“z„ÍedãëpÙÖЪ’¹ †Ù‡³YøUmõeää'8Ï{}¶4‚Dìv;Duã°Ù«îË2dWgÑeë¢éèÔ;}ñ;M›ŽËðùW[ø‘Þ=fƒõZtýØx ËåÎ*IØö3Ûœ 4á,+#“ve1yÓ¯€CMÔgÄÜgó™<‰1&|¹\11³ ‰"™g.êŠÔwµ-F¬T¼+Écrê˜+Hí¯çýŽ‘ èðP9”¶›¤Ü±[êõ,òƒI-?F(À©Óð\$PH¤ËÀZ¨'F…âNi%ÝÔcüL®ÉKDÑG˜>G™`C=ên !5 «7ÀmEq=.PzF/xJP¬{ÃÊNÊ€!—NSN›ÌÚ«tsŽ·7|Ý©\ô]x+dµp‰¡öõPËîПåbxo8;C3›RkŽ.ÓñÒ3 fN«qôBq¯ˆmÌ"5ÃßÐþ«R¦éó6ÔáßΞ1s.6Ûƒcë‹E``ëdxãbï¢ûzQVÄãêýûñ2 þ€c5¯ã+Þ®½¾ÿåu×aÍÙH·ÂîÍÿ"!áðÍ­fðh‡z}†ký²¢>=©j©L·6jêÓ:xÜÇ8ž¹k49èyëÄjŸ2SÒß9oa*Q~Ôâ§õÚh•b¾ÅYRî ~Xv«ýŠwâxžtžM±:ûJWS÷3g£Éi¼Zš«:7‚^Nº½“¯û ïá6qN³[WlIÌ)ô#¬h'=u5×O«$=ð×ÅÒyÙ5rh\Ž$¹!;Å.p‹ÕÉVBڥɦy×kûr Öî‹;SÓàœ–%8xye/Î_i‡ÄÝþìÈ?9a,ƒ¢·Œ#¾,j#ب=~dÕ…Aˆp]sPTmŽæÔ¨+÷¯V“Ãg~£)O‚^¬²”^©Î{à½M;CZsxßüÓ÷(À.‡ùÅ0ÚEÔñûáÊ,©É*‚£K³zYÊËÊ]سì|0n©d·tðÅX¿å${ÊKÔ^ü˵_Ý¢‡(9Ù ¬öDÿB{¢¸ XÝ­>M^ØŒPeEqÓ75ï\œUyËPBÃk@áL'èÉU„)˜2ÐÓÀ£í¦§ûÿ&ÜÄefygym tD0Eá /a[Û¢z!kNC¸B½NÛ[(°0Áî7 ßÐú²V» ©~ë\ö§™h×ÏôÀ2×ù:Óf$ùæcÔ<^òˆhEæ…è=Ôæ£é-Ó|#í¥$úžõÎ.ivÒ„C¢K Õ»J°ggDwŽÆÈ¾Ú ZÚ‡én€§o…6†€ô×-oa§Còh¦¼ÌTÓÃ@íÀ´NDöÍÊÌ5rjqIJÞì™'{§SR{ž±.ò’í¬Êõ¾ûáHA… .¿‰›‰&$¢ Š0§OÝ7JèæWQ"!¬÷Ÿàõ˶:§°.¿VÞwÜM¾ž/lp3,aqEÀü\èƒ `v¹'$€¥3ŸG¬GîM#Ù¹Œˆ¬| }Kî&öR,ÁÙ¥¥Ÿí>z“¥X9bbJÛ³ÞήM貆Ñõ£R×qK¸Rí¸ê΄Mèò‚pJÀ|Aõš×é²Yu5N…9PÐCŽS8›Ì¬V—y‘¯@ ©ä,ºëQî‡e×»ÐRµòžl,®³æf¦Þ 9x9ª^A±Û_…yx¬^e? ¡-EÇß…±w=½·m™~Ì&TÜ5ŸZ~aêò>_¤×¦ùüú<Œ–r÷ ¸‡Â¼Ë3…p“ø©N“|Oª\ÀKUƒzxäŽ@§>îÑûQ°QÌ‹½3F<§ÿO´CùÕ,ý"#¦Tê¡n7»Lì´ RH~”þ;š ß óœúsJ3i£Å§”#±¥äL] "üá„];g.ÑøŸ‚mDå¦NtÏ’Á8Õ|1_t¦”¼d½n˜Äìöñ*ôIºiј;cÖêËþâï+}*4µ,cóo°6qÐlÙ\<6-,P:qÓ“)çí‡e…C«}ÕÐ+-`ˆ'ýKy–ð·«PÞÆuü•Ò£å’tP•sk·!Ÿ•3Wš³%Sí¹Ò,y7jë\LñR²¸©wà-ß•E/øê˜ ™»„'b–2½’HÞó£ºìæþT¼-˜2j~ Næ(OÛ6±rAæu×]M–½“Ü­‡¢RÍg… ÇÀЪ ™3Ø|Œñk€1±M΄˜’н“Y"'Šªˆ { Ö‹FZj­ùÙL(nœÕEÿ¦s)‰(X7Íó¥ý Ç‹ýíìS /îØyáÚd^³Ã¯`Š®X#>xTˆÂt•^¨¸Î²ü,dJò­ÕoCŒºûÝõY=c`?J§× VÖ=ˆ–èd{´Uý'µ7³ûð•™5ïæüØ„6/¼p¢Þg-ÒøKG±Ð†ý$k™ƒ gV¦ÍzŽY«Ï“ÙmV“E.sGä÷ Óù9¶§õò.—õºW½{ßIJä’8—þãnõ‘> "í·‹Þ­ =¦šÅ)]) ‡nï¯DjÙêkàôŒCcMú Mé,‚úYÓ9Ü )mhì> Å*½CiC„~úL‹$X WËÆ0i4å‰2ZíßÅæÿÝWçɆv•Úšcªö14¹ÖW˜)7Bùmÿv§rî’+S8^×ÎÑs‹ÓkYh#“9>¢Ê‘^ö£w¢Þ­Q—±‹P®ï‰$"ÿ›¦´'åO­™øýÌôC%î¢ÕV%óäî®ü§Hž:JÔì³ÐãD{¢Rݺó>ô#ò6Ñí>Å駘¸n·y¬‰<˺¯Q8›ÒüEÙ"¬÷qdú=#i…ô~àÇåÖO‹Î2üþAe œ†Ü6¯ˆ¼RUÙïBîÁ/ Nüê ¾ûЄ3*Q§ŸKÃŪÒ|íÙwøp×Ì´‚è&uÓqr•Èû¨Mƒ;gÒ©ì\‘ýrgß—Yš]”ÙVìôáSÚ\.øqøÁ®é–Æ}˜§}÷8ù 㻸@Ðã =Ü{´ }„aF¯ ]ði_Gwòñ"Âóò‘ÑBä/¡±¨U45e¹ÅèAq“ øq0!yð&%© ;l˜¿bˆs:Kù­×3–û1 ‚¸³¨Â€ èád“Î_ª7„ýIгsW^ÒÓÒ!Î'\úeaéU !à:ú(œÇâ‚lQ  j·Ë¯²èÐò—´dtÙ¼¤Û§·üRnR‚ËLôÌU÷IâÎÝ€éÈöíäË­©Wœt_n›rœñb2|ÀåÚöq½@´c ÒÄIröZh]Ûà†½ïUšWŸ`uø¨Ñ#–Ñ‚«^Å<«¼†2ÁQ&ÓulI¬·[⑤¥Ú¯óà(*,äTÚcwpkäI|bcpBSu’uˈh‰²Îrÿct—¡òšIϨ>QÛJòÊRv=nb ãÂå}Vàîúñ…4+?«=J¥„÷—ßæ‚^.‚nr$ä¨1Qš>~Ö9Pš.ƒAŽH âÁþˆ†‹”þZ¹—l- –™V£¨¶~my›@—k'ȵò¬Á¢K‰´ÿ&{„æÈFIßVV@³Ù˜k<Þ– o_ô åƒ3z“zóv¼IÄ`8˜fDhYÉRДk+x'´ÅÕÙrí…'ïÌ3m€=B‘”%°g¶†ÕËá!÷=P.ó‡G °ùÖá üרi§ÕiXY5ìе»ƒÈÂïŸðŽåÜ¥ëíreÓ 8¾û ©ã˜ˆõ™ž¼7.Ó™éYÖíîž{ùH€ÞÀgÂew¸ ¸‡ágèqí`ÒÆa¢wäuqQ¶3íº"ߣTs3Óg:jkûù6õ|]UÛømo»2%ãQ ¹ÞÞgù§$3%í¨…J6:ªùrø= 7› ÏEï{<7汈ä4ŽÉ¶ ÝXÙ~¢QÌIþÌÈñ:¦O ã_Öq¿–îEfß_­«/>O׊ßu”à‡Aqd½Ì!sO<Ÿ/äuæi¡öd¹vÁY‹²r+Çz†…1Á{üʬé; ó!µ¢¶£Y‡PŽÖ?5i6ëÔŸ¤"2»»¹Çe½¦Ó²˜Ãí "2À]¾Âiâ).l’4§^œ._3\ž´®iZÓf¡¬ß¢!¤¶87 Ÿ ¨UÑNç_V ölMðùûø´À\¿˜¸ý¿Ÿ `òžD9þ„¨}©ê#ì`9ÉbÅ‚&|Ë?+õTºV¨{ªÇÔ²™ì)ò5s €ÝhìdЫ~!8¬t9ƒdgRWö[”ø¥ [C…”´¶Ÿ¹¬dƒh“á40ÇÊÆXé×û@–ÚíÚ㨒Uùk°ª½©$…ÇÖ‚;rÛö)ÂÁ ÷ñÒ©¥‡{”š]úa FÉYÒä@$De1˜c†ñ@›ê“ªd›C¢i«$d‡ÝBt«­ €÷{NŒ¥ê4Âw€ùT^…Røºýy‹ŸÿPm<±¬s×føéÀEEìaá‘]u®CrpŒÌ3NvÇUq ŒyÄÆ^pRÌPOhÑê“'PIš½õQ;/v §=ÏI‡ÃªW0ê9{|ã†YÁ{fe×§¯è>EÕGcËÈÕPx‡¡š> \î‘Ü-ìCxÕj¨š1ëVVe??±ÔÍS4Ü=¶»/òŠ+ï…}䕟UáðSÙ¢Þ;à‚3A¼`e2d øûæž\èA´IåqøÌâ£ÏA—š@Õð’³7žÅéßJ‘Ð9#ÚSĪ2c¥â ©éA0pŠt^\Ш%#¡§˜%bwÆï³f¼!ñjÕSõEÉì¶ñ0`ªÅÓ uþ¿5|[~{{toÛ›xaŸÄÁôÎmê>s»EÅêéûÁl 9JÁÈ;ýû¦õ­Ì.övÙH8kxãu‚­°GF!¬Ñé0i=MMÐ@Ê“Îd¥×/-)o Umh÷ £o&˩ޡ³|a#•B* y™¾¡LŒZ‹~ÓÆê}Ÿ :^è‘¿ ý× M,,)B®hÆ}n^E rÐFßFG²âðxn—”— Ég¼>·Q_î¼­”pUe£J“'ƒ´+ &| ®‚5CÝ– iÓaÃ&t>^»¼Z¶ïz§¶§ï›0ãy`´Á[ aCƒ%ÄY©£=Z;küЃ]W[·VäTÈxçf…(Û!a•è®—^®¾ËŒ3#o×”>¶øúÎÕ¯µ„Dí?I‰ß–9µ…h¡ÄyÞ£Ï霭™qq¢¼x(ù˜À«smg©gã‘c\¿‰Á|л£•ð• _Ú˜q¨fH¾™­í¾˜ÆŸ‰çç­q‘šŘ ò6ônûIó«®¹-µp`ÔñÖO—Ãp”Ö úm<¹åïÏ@GEøÁ]€ÖI£­%°³à)1—ô„¹‚\·\Ç;ðxFý:k.òÍ?å…ãžÉ%?×B,Ef='‡ïïD+d©G€¡F>aÚµ’{›^iÏZñèê—gb„pŶa”;·mŒ¡\b7™›\¿Ùœ{5®-x§‰8H•sÑ0XHƒ’‚œ¢ñÑ?x€z±VµZ78\$[RQ¸VPµsIØ¿–8DI·®Õ‚2  Ë’æ"CÃìÏAÁy¨‘!±u%¶'áˆçÀÌÏn'áµ:}ô„Mÿ#ð×OD^ÓùSƒÈŽuøŠ*ø <ÐF2¤€ÑÓX“ÙëÚ®&Û·Ë{ÐçÏÛÍ{ßný­e-¿_:ÕšrŽqØÀ쉉b FO’°þ F Ó÷6Wù'“\ŠÌÂ.ú>˜ 8–ù¸9Ç $’4¬š6%«Áh»1‘pEáœñoÝ)2³r N{‡Ž¹ ´s¹t¼hT'=Há©2zÅœò±HÈüße¨Ö¯#r—D¯ƒXÿÄÅ…>w걪`ÆɶÌ'nq%‘Œ®æ3d påé 5<#ŠGØÖ,³–¶÷Û5éVßõí®.Ÿ ûfÊŒçà.âOS|¢½>7ÍÐú@ùßȬ“LÓdv‡2˺Û@áhS`é!±C?^hza_ô½— ° œÏ³ó§þáäíœnížq̱žm¡ -¦’?ìŒ\°| ½ìIo̓«S݇è—^Ž?h°^Jï}ZñºB-Î…}Erl¬ÇófûÊ"®Q?E«Et|£s”'üEó®õSäÑ(ýtèÓ±A“ZlAœ ÆQˆíi_Œ’ë3r/ú_@BkÇ>VJ»znÀvªwáA¬ªWE±4rì7 ©ŸíÒ3 ^Œ&¢¤ìôñ¯,T¬«eÁî¦?‚Ã$ é‡h¿K)Öèea÷²Éwm!Î:?aþiô¼Ã‰µeÔlJ•8roE\¦p(B±Æ×QÉé±~„9¼Ì³X áÃ*²ñä‘ošk›UýéMád×fù·‰øÐV_K%#.?‚-W[ØÜ Êþ÷©C”ýQysÏ-KëB“ÏBâ®¶12‘‘-¹·…nâJémÁ‹™ùÎÒ2û¥E/jîx³Ò}@bøt:j¦“{õYáO_ëûùÅ ¬›[ÍŽ/DÈ/·"´Z@Ò¨Á® œ—¨.2A·$¬K¤…°bfWÆcW¡OÇŸjuÁÖÈœÎÏŸte~NSÉ8»4Zßš¶õ ´õU½¿K_è£Ú6ŽÑe(ÒŽP,†mÀ‰]Ü>é}2J¤êG’œœ5æ‰é5¦†eïåÀˆ°:·åÊsî çÐ:P‹ˆAêé¸<¡[±P†ÑL£–¼U-Šè\UKá_‰ÊË[ ™ûÿ»sƒkâÓ‚$&µAÞntcékqózt]Ž=#~à»Yz«pŽ ! éªÑFù»u®ªfŽƒèA?Pßí8ägw P™ç9ƒ–‡>êøQôt4ÕIü3€±_A|HgàlGla¥“Ê/Úº»ä–Y#&ºñéƒaQnÀoÐVê¸^Qåp½^<(„øIk¶™ ]FÖs1`ói%:7þÔTæ1HÈøX„%}®½Ù8ÜJÒD¢-×yÇÝÉë y5DÊPë WÇC¯rqf=2äËDa˜yoÏ ŠÙ:/–·³5òP¶xr|Î58¿Maxü÷]è0 àÌï’œéVU‡×SèŸÛ·Ü?årׇ2Ê-$C'–D'hel²s#0ÿй5A,+§=Y‡¥6M×£‘#FÖ·àÆ«Â©Øþ4¤Cü6ÝDùë€b°ý^.Ãà“Êñ¯KÍ66wav%0& {]™i"B­“Šd‡y¸ƒ,«´÷‡Ž(8ì<áC2{²ݪ<“±²r芌OË¡E&Yƒñ¡é™¦óZSâ•ö.Î32§3õPã‚͘öIÔ|üÚ}/Çä$Ž€R̵;p¯h º ‚º‡éÄ:†`é{˜ÀmõÙ'a¥9kgè5 ü›C=b%4b4³Ë7"ƒÃ?„ƒƒ Ÿ ý‘Û­ÓžÿYàa×ÅìüjkëžU‰¤`ôrÄSääôÞ­r‡ lïnSö¬‹LŽ~Ùö\ÍÜÛ’vüûQÓûÀ±#u¶FŸQÞg\´À>»B^®r3ÙµoÖRC²Êaòs3”Kã$"{èO#fΤ¬S9ì’ek/ÝÑŽ8½Àõ¸ñ7Æ£ÞHÁ­¿îÁ¦ rWLX`²‘ãœïá0O·ÜëÓp`ܸ endstream endobj 138 0 obj << /Length 859 /Filter /FlateDecode >> stream xÚmUMoâ0½çWx•ÚÅNÈW…œ„Hv[•jµWHL @Úþûõ›™´»Uçñ›ñ›Ǿùö´žØ¶ßºIt¯Õ³;÷סq“òûæÜÜT}s=ºîòùֵãìùA= }³vu[®ªU·¿Üyòªk×Ö¬¯I…{Ýw¬£n_ܯ‰k&‡ãö ýì—ýåàY_”ªOQEi?ÝpÞ÷݃2÷ZkXvmÙÑÉ9˜Š5õíö];ˆ$µ…ÀÀ„ªÝ7Ñosô– yýv¾¸ãªÛõÁ|®¦Ï~ò|ÞHå]0}Z7ì»WuûI›Ÿ[_O§ƒƒ¥ƒÅBµnçKz~lŽNM¿nóôòvr*¤±aeMߺóiÓ¸aÓ½º`®õBÍëz¸®ý4g"NÙîFîÒsuíBå‹`nlB ˜„‘„­=öÌã¸æ@æ )UÖ 9yŽ€IÁ(±JÅ5<æ§T`,© M%5ŠÖœR£h”ºäRê ®á1ÚûÌgcßÍïÍ yq(¬ ábŒÆuX&Àá &èq,–Ñ1Ç+à„±N97Î8Nüœsk`Ëq8­ ^—8%Ç àŠ½FMq.â†5„SâhzAìkO × Ápý$Áƒqù1¦7]}Œ©ÎòþÈ©ÿ»pÒ^`ÜD3F?©ìx”‘ׯ[ë±a ¯³1´ecÔÏfŒ—Àäµ!/²„1êg)câdÜ?4dâ­K^˜|É ÆÐœ•ŒáQV1¦úÔ¿‰±'²š1tæ¬?ƺ9ëÁÏY?í¡œõÇГ³þ„rY‚ÞsÖŸŸõ'Äg)4ç¬3Å;ÎYgD¹¬3¢\ÖièÃbŸ-z±â3z´âs ,>G|ÆZV|ƾ´â3Öµâ3ü´â3qÄgônÅgè·â3tZñ½[ñ¾Yñ™ê‹ÏÐoÅgè,Äg¬[ˆÏàâ3ø…ø =…øL¹â3z/Ägâ‹ÏÄÏød ,gz)ÄôRˆÿ؇…øO5ù[±T“¿“‚êˆÿàT¼V *ŽÇM2G˜çªZN(:‘pTãjy¿šë0ø‚î:÷qâï;÷~Eú²è¡»m¼O1z¬ƒ¿'ßX endstream endobj 139 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlöo` òKwÞ{Ò·óÊÕ× ¢¤_ny×È| #¥Ê:##Ï0)%V©¸†ÇÁ²£â” Œ55¡)°£FÑšSj­‘R—@J]!À5£G+>ÇÀâ3qÄg¬eÅgìK+>c]+>ÃO+>G|FïV|†~+>C§ŸÑ»Ÿá›Ÿ©¾ø ýV|†ÎB|ƺ…ø ~!>ƒ_ˆÏÐSˆÏ”+>£÷B|&¾øLüŒOÂr¡—BüG/…ø}XˆÿT“ÿK5ù?)¨ŽøNÅkÅð¡âxáÁÑ$s„y®ªå„¢ G5.–[ ¹Œ£¿ èö¡s'~×» ê8‘EÝlÓUŠÑCüjÝF endstream endobj 140 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMèßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø ®´ÝP endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 815 /Length 3364 /Filter /FlateDecode >> stream xÚí[msÛ6þ®_o¯g‚x;Î8vœ¤—´>ÇIÓ&þ@K´Í‹$ª•:÷ëïY€¦(9–í$×6“ÌX ,€Ýg_‚kÁR¦˜L3a3Lf’Y¦¥c¸³’‰”ÙÌ1!˜S† ͘͜ð̧n 2æµf2eÞKæY†šô¢Ðh1F¦R&®RáêÑŽ¹4nîÀt65…qÞH¦0{æ2¦1UjÁ—À5KÁ“Bâ^ájp©XQ4u†÷ë*Ði':cÒøŒaJi½`F“hžb …±ZAF‡«µÌx\!¨Á”Ì[à"Á·Li'ý†À –…aã\ê±ar–R¬ãˆe9‰+°t ¬C^§q3θb`qÕXOâj Öó¸T3q.³Ìƒ…B{°(°ˆ‹4‡( ê ï…E25UЮR²LCT0Ÿ‘ˆÀ KÚ”Ú=³"Å}†+„)diO€ í¦° œ OTxAƒA+Ôc Cã­54³Z°"RLë ¾ ¨°›a¤€²]*Ô@‰@cQ 4ø@Ù„ ¸¦6¬z᩸Ü@Ó™$³Awf5Ñö•I, EìY(Z¥¥F 2`¬E5²hK+†±ª£ZDÓšÒ€oA‹XO–‹Š7~ðý÷Œ?cüauT1¾Ç^)¸Ï!ãûesÌ~øÝ~ônV0~Ÿ¾[M›bÚÌYFt~XÌ«E=,æp–Ðð´•ùýꂽJáOØÊã†×Ç | Û™N+Ìò ^Jë™PÚPºPVVôþlqÒ„û'åồ߯êQQ‡•Òcþˆ?滯D¸!Ά {å]¢,˜O´†ðÆ$ÐÀ @²¶†À½9–Õô‰Ü">)Â%)L6˜PÔ1Ò&°ýÍl¨OÏF*„ ;IŠ0d„L2g7³¡?9WÿT©†R¢³,A$Ù̆鳱´×—¿þFÊ—xžéb<>¾†  §ÜLaœJîL1X"ßùþû°ß ¶ÃŸñç‡éwï¼ifóï8UÃy’—u½=¬&“Å´lÞ%U}Æ‹)Ÿ7ùɸࣼ,3^y]çÓ³bB$çÍd¼µb‡ÒßÊWÈèá“%Ùº -Õ¾TݪJûª^šÀªWéuõ*yõ¶scåÑbXÔìÞltzT¼Ü ‚¬4[X è5zÐ|y …ìåMÁîí}'S<›‹àØg}›ŠoÒôÐ=­F7‘ÕùlVŒC>žC¨ƒ£/“}€y’O§ÄËÑy9gø‹<ý“½(ê9–f*Z˜LZ£¶eb/™e¯‰Gö¤|[`“&Õë-öf–7çó"goÛ¡6QˆB—bof“Ä~ÙŒÑsÈBŽór8g?/šÙ¢ÙêÃyÈtbð0êáx¸µªQ²˜^¦F1à?åê“p­|^«âŠñÛ¢)‡ù€?˜«Q9=£gOqÆÍÃg øÆª;L\Û9ÌYšèMÝaì+þxw—¸aOH«÷é[F"Ÿ[ü—rº3—Ëî½òô´€é‘bç`ø¤œ.°±ü÷EÕãâ´ÁV\íë|^ò³:[ð|¸h >,ëábr:..xSŽGŸäÃQá¤.@ƒ!ùp«æ£KÌË9O•FÅ)¯±6ÂÆã¼k<_LÏòz1狆WgÕ´xai¾ù,+þ–¨Õ‚Ò6ÁnîŽáýÏ />ùQþx"èé#b†I×c†ö]Ìð7Ç ÿÙÄ ¿IŠ¿M̰éŸ3¬øÂb†ÎnŽwÙ&\x9·ì•]ƒ•_#Àœù3#€³_X°·Û5ØÕ]ƒÆ‚“îº@q·×EÔéìšB§y@¼X .ûëHvsÉ>›’m’âo@2y5€lœÑög|önrR7…Ÿ4ñÖÃO¦¾¤ðóÕ§>WŸ¢ŸS‰TauŸÞi[ÍSyÓ¶¢Ú!'œnõ„ÞøýãÞkå,~îu𦍏 "§bBÅŒŠ1¯SÒuÔQ5¡¶5¸á ÇÊB»ù¦]­^qeµ¼3ì8ªºò®meÈ ‹ŽjÉô´›¨¸2õ¢ãæm Ø šþÄ¢ËåÒÝày×fx÷1L›«L¿è¦KþñÑ<-åœw·ó+b7×qÚÍ}ÑÍ4úh®ªŽj´´5x>ÒQɾþþ¯¿¯(ÿ™Hãk8ê¡ôJ%ª- 2'¤Ã³ !øÚk5úZ |“ËÚ’(Vúu¬Sßm²7‡»RÒW?yÙ‚ƒh—zâI†V«À‡õ)$²F…׉ tHrIJ"ˆ"޶”o!lÛß¶…±íìÊÒˆ€O;?ÑᇔŒnyCï¨4õRжš´AhÓZwÀÇ:2x¨¥£hŒ­r G« ³J)¾!#‡'Ó‰¾TH¯7 ë± +à †…—ê¶D¢q¥±¡ÆA¡\kuJ¤P‚îu¸×=ŠeŸêj±çcÊvÆPú '­kÈ‚|á^g„;² N-FÃD’@`.Žè`D‘|Ș18ŽðP=}\6 åÜX× %ŒlÆzš*ԽʒKD9=ĆՎFŽl«±´Þu\›%ÐÍå¶Ÿ|²0)i6\i[i•¸jmQˆ­•±%j%Œëhc¿6Y°´P_R…¾ˆP¬‡¡pŒD‰m8Pò¡(iú9¸Ÿ])É®ôe ¾B[¬~©§ƒ3ZK0«¾ TÊ(²c¼èÐH|~‘¹¶?ÎG¶sË¥ÑÝÜD…2¬lwc2ߊX¶ ¢¾%4‰V†èj2#[XöC›AlñáÞ‹vlGûLŽJb6Ö—}‘ÙX%#5u,[áDl3ªH•±…ÀT”ÔF%l”©%`$‰„9,5«–RI¢A^`;¸ ü8 n¡¿5Œnëà—xM©Vh× %2ÉÌz-±Y´¼Œc- )b‹6ž0 óêÔvkĺ„{ú𓨢}‹“!Þ‡±ý9ø jHÒXï÷Fyb½-iõãµ·ê½b>¬Ë^äã{[|§þq÷éÁ/÷¿}òô°šäS!·ïWãÆù¾“FÊûá|s[ãmIi†ÆQŸ ÙOszû¾ ÝÍgŠòì¼½¥©oI†þ¸ÉÇåpgz†“‡oøM1yA™x)l!ÄcŽó¼¦W¿{|—?àù žó>ä#^ðÓ’—|Ì'|Ê+Ž4>ç _ð·ü~ÁßmEf÷K, bòÎÕ£…÷ƒp°óðÁá^Bº}Xœ-Æy} HªÝ–ÈøÄQá WpÈVqÈn…ƒíÀLÊ ;bPì Ê3:DjÐ`ù…ÿÚB3¬Æx§¤ <ÂD@â(‰Ÿâ°šŸñsÀö¦ïüoFçÓtòk5-ÍgE]V#þ{€v^âÄ7çuQðæj 4ÿï*Ôþ.PÿkïùþË£ž½m†çç09Jb‰ªŸj³êGüÇ`qÑÚ€à9?7;GŠUÙaÍŽE]­€¡Ò;ÙÝÃ'¿¼èÀp7€‘’Ý!9µžÀ0}0Ô*j sÿù>é*}ëŠvÕ7£¥÷­„’wÁàùî‹û?ƒ§Õ´ºÑõH·­(q9$ »DÀd+æn;¤”îyÑïžð§üçÖûž›¼<'u>|S4ÁÚzô¤«^–àÅï‹|Ì‹‹á8ŸG]zé²ußäm: OKßt19¡óà³Ûyòl¼˜ÃÃ1ãèdýç†Ó÷x÷bŠŒÆù°ª‹¥£¿ÇÀõ]”ûão{»ÿ>\*7ªàÝf­n}Øîôu›ö5›.õš®*u[è[ªõAPèA§Î_:cïÔuºGW4ó!J Gµ]˜íô*ó’¤Hš¹¸Œ1w×Î{{לCKÙðÖ{iŒ/Kið:tÉ3¶ï• àF#‹ÈµøD± HHŠ(O3ÀJ6­1:G3ø ö|Ñð£Z×@¹Ý^{ÖŠ?bSIŠ)8éþU¢S-ž”Øpó_ñòÜwW¼€¬x,ö€=Œñý}G|†ÒÿYôà¬}N6ý'ãñ­°WÙºÆoódùíãº]ÛŠ#†ÿÌ©÷ËzÞàÿƒüIÞÞà›Ð_+FøÎþÁ#Ð.?ψö÷Qõ|Z¢‘ìËßö‹Í’× ›«uv³Ø•=våmØÍîÎî† Ê»J¬³‹º]} vu·yøñ&h endstream endobj 141 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMêßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø YÝi endstream endobj 143 0 obj << /Length 858 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N7R!‡þûõ›Úݪ’çñ›ñ›‡±¯~<>ÏlÛ¿ºYt«Õ“;÷—¡q³òçö\]U}s9ºn¼w®uí4{¾SCß<»Q]—›jÓíÇOÞtÍáÒº‰õ=©poûî“‚uÔõ‹û=sÍìpG£ýì—ýxð¬ï ÊGÕ—¨¢´_n8ïûîN™[­µ¬»¶ìèäÌEšOúvû®D’z…ÀÀ„ªÝ7£Œè·9zKüü~ÝqÓíú`¹Tó'?y‡wRyÌ†Ö ûîM]Ñæçž/§ÓÁA‡ÒÁj¥Z·ó%½÷Û£SóïÛü ½¼Ÿœ ilXYÓ·î|Ú6nØvo.Xj½R˺^®k¿Ì™ˆS^wwí¹ºö?¡ŽòU°4H6!L‰@Œ@ÂÈBŒ€Öû@æq\s óŒ”*댌ÇTgýâÔÿÇÀ á]¸i/°n¢£ŸTv<ÊÈkã­õØ0†×YÈÚ²ˆ1êg Æk`òÚYÂõ³”1q2î2ñ‚Ö%/̾dchÎJÆð(«S}êßÄØYÍ:sÖcÝœõÇà笟öPÎúcèÉYB¹¬?Aï9ëO‰Ïúâ³ÎšsÖ™âç¬3¢\ÖQ.ë4ôa±Ï½Xñ=Zñ9Ÿ‰#>c-+>c_ZñëZñ~Zñ™8â3z·â3ô[ñ:­øŒÞ­ø ߬øLõÅgè·â3tâ3Ö-Ägð ñüB|†žB|¦\ñ½â3ñÅgâg|2–³½â?z)ÄìÃBü§šü­XªÉßIAuÄp*^+†ÇãŽ&™#ÌsU-'H8ªqµ|\Íeü A÷û8ñ÷û¸¢Ný YôÐÝ6ݧ=ÔÁ_ÁÄß” endstream endobj 144 0 obj << /Length 860 /Filter /FlateDecode >> stream xÚuUËnÛ0¼ë+ØC€äà˜”¬W` $ È¡ME¯ŽD§lÉåCþ¾œÝuÒÍAöp9»œQäÕ·ÇÍ̶Ë›E·Z=¹Óp7+¿oÁÕU54çƒë§ε®½ÌžîÔã847©ëò¾ºï»éÆ“ïûfnÝ…õRá^»þƒ‚uÔõ³û5sÍl˜¦Îhÿ‘ý¹›öžöCù°úV”øÓ§nèÕZûÀºoËá€fNÁ\©ùEâ®ëÛQT©h L¨Ú®™dD¿ÍÁ»‚äÍÛir‡û~7Ë¥š?ùÉÓ4¾‘Λ`þ0¶nìúWuýYœŸÜœÇ½ƒ¥ƒÕJµnçkz~lNÍ¿èôõüvt*¤±amÍкÓqÛ¸qÛ¿º`©õJ-ëz¸¾ý4g"NyÙ]¸kÏÕµÿ u”¯‚¥A² )`JbD>`´öØ2ãš™$`¤TY'`ä`ä9&£Ä*×ð8XV`TœR±¦&4Ö`Ô(ZsJ¢5Rê’H©+¸†ÇhÿÒg¾¸ôÝüÞŽb‘‡ÂÚ.Àh\‡e®`‚^Çbs¼N[à”sSàŒãÄÏ9·¶‡Óºàu‰Sr¼®ØkÔ4ç"nXCA8%ަľFðÄpý ×O<—czÓÕǘê¬ÿâ_8õ¿1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦xÇ9ëŒ(—uF”Ë: }Xì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&+–jòwRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\.ï÷@sGEÐ Dç>Nü®wï—Ôq8"‹ºÝ.—*Fuðgõá¡ endstream endobj 145 0 obj << /Length 702 /Filter /FlateDecode >> stream xÚuTËnÛ0¼ë+ØC€äà˜¤l‰ ¢€m‚8(zu$:`K†$ò÷åìÚQÑ4ËÃåìîpø¸ùö´¥u÷êfá½ÏnèÎ}åfÙ÷Ý)¸¹É»ê|tíøÃ¹ÚÕ×ÙáA<õ]µu£¸Í6ù¦mÆ;OÞ´Õá\»+ëÿ$ëÞšv¢ ¸}q¿fã f‡ã86JúJ$¼4ãÁ¿ä?!>OJþéú¡éڡ>P´uÖ±¤!˜_d‰ùUè¾iëþ¢M¼Bi ´¨›j¼Œè[½7HÞ¾£;nÚ}¬Vbþì'‡±'­wÁü±¯]ß´oâö³¦¼7)öƲþ5íåî@eýÞYË{C˜÷rs:—2‡w%ã2¾Üº¸³xi>ž„êÜ÷þµ çˆ\ý¦u/Ö©;!‹~ôÔ]ßYŒËà·Ò€° endstream endobj 153 0 obj << /Producer (pdfTeX-1.40.25) /Author(\376\377\000J\000a\000s\000o\000n\000\040\000A\000n\000t\000h\000o\000n\000y\000\040\000V\000a\000n\000d\000e\000r\000\040\000H\000e\000i\000d\000e\000n)/Title(\376\377\000A\000l\000a\000k\000a\000z\000a\000m\000:\000\040\000A\000n\000a\000l\000y\000s\000i\000s\000\040\000o\000f\000\040\000c\000l\000o\000n\000a\000l\000\040\000a\000b\000u\000n\000d\000a\000n\000c\000e\000\040\000a\000n\000d\000\040\000d\000i\000v\000e\000r\000s\000i\000t\000y)/Subject()/Creator(\376\377\000L\000a\000T\000e\000X\000\040\000v\000i\000a\000\040\000p\000a\000n\000d\000o\000c)/Keywords() /CreationDate (D:20251215191040+01'00') /ModDate (D:20251215191040+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) kpathsea version 6.3.5) >> endobj 142 0 obj << /Type /ObjStm /N 16 /First 128 /Length 623 /Filter /FlateDecode >> stream xÚ½•]oÚ0†ïó+Î%lêb;v>¤ªR ÛÔ (£¥Ó6õ"‹Z‚%¦ÚþýŽíÒ„¢öf¼Çç¼~ûÊ€ð#€Qxa‚1ÀO˜p <„(¢@©€80Wq% $a‚׿\x”£ %øÃc L0¼Áan"‚a¸™a‘0ïüÜóïþn%øŸòL{þíî·¶Ò©ç_¥¥4#àO?~Lï߯³|“f4:›ÉÕnž­ÊrQ¨­Î  A€kša\¥<¦ˆØóGi%(cžÿ]-õci8]îÇl‘/U¶Â%$.r—Ï3…A‰èÔ†..Þ€;Ü_M¦ˆ;γœ’´¢M/ÒÒ×Ðo§ýòs8ø6;Ð^ët­G`£,–¼–ÿWؤkÄž•ÆÖ¨Ë*º¬Ót%KÏä;$ =ÿ«Z–ðËî0k î8·‹‡Ð©Ø>œ‡çf7;½V™ñ³È¶·,„a¶h•›Œ×µJ¯‘ŽV¹—xë*Â3M ;]È'ÛÀÍeTÕÁ¡šžª&ÕNäŸRË‹Ô^$>é>ó:ÆE¢ƒ—8îåª+®ªz’n$îCo˜/ÎnuZè>¸eAïZËÍŠ:nh†ÚíOo‹;jÇICãxÐÔjávЩҭÉöYm ç}´á&úІû3§K¹Ð*ÏÞY"ÞŠ!#­’± M¶Ÿµ™ÖA«Ç0‘µ§BDÖYp³¢™Z[»n0oãf^ îšœztÇŒ°­1ϼG:8H±ýó•çZѼ¶ì©Ø÷RãœØuRQï•c_ûóRïf+³K;?Ôúÿ]œâ[ endstream endobj 154 0 obj << /Type /XRef /Index [0 155] /Size 155 /W [1 3 1] /Root 152 0 R /Info 153 0 R /ID [<70ED6E7C6809C4573FAA162378A8543B> <70ED6E7C6809C4573FAA162378A8543B>] /Length 421 /Filter /FlateDecode >> stream xÚ%Ò»OSaÇñçwŽ-(Ô‚–ŠJEP *Þ°^ Š –‚âoêèèàæfHÎà`phüšhÔÄÄÄDV7†nƘf}¿Ë'Ïïœç}Ïå}ÌÌþFf‘)®/• ‚ÖA Úe–õ–4´ ÀCnø.ëa´qM߯vÀØ‘µ¼ñM³²Ü¯z`“,ûÑãvØ,Ë?÷˜ƒ.ÈÃ膭°M¶úÂd?ß›”š÷{¡ ûÑáqôÊ~M{,ÂNèƒ]а[¶¶æ}G¡$Ù3‡ù6ÿaƒRú·_‚}°À0„CR×rx«¾F`¤á+¦`D*–< |*Òœ0¶ ó—øüµC¸$«øóphþZ³‘C7 endstream endobj startxref 247626 %%EOF alakazam/inst/doc/Diversity-Vignette.R0000644000176200001440000000664115120047437017457 0ustar liggesusers## ----eval=TRUE, warning=FALSE, message=FALSE---------------------------------- # Load required packages library(alakazam) # Load example data data(ExampleDb) ## ----eval=TRUE, warning=FALSE------------------------------------------------- # Partitions the data based on the sample column clones <- countClones(ExampleDb, group="sample_id") head(clones, 5) ## ----eval=TRUE, warning=FALSE------------------------------------------------- # Partitions the data based on both the sample_id and c_call columns # Weights the clone sizes by the duplicate_count column clones <- countClones(ExampleDb, group=c("sample_id", "c_call"), copy="duplicate_count", clone="clone_id") head(clones, 5) ## ----eval=TRUE, results='hide', warning=FALSE, fig.width=6, fig.height=4------ # Partitions the data on the sample column # Calculates a 95% confidence interval via 100 bootstrap realizations curve <- estimateAbundance(ExampleDb, group="sample_id", ci=0.95, nboot=100, clone="clone_id") ## ----eval=TRUE, warning=FALSE, fig.width=6, fig.height=4---------------------- # Plots a rank abundance curve of the relative clonal abundances sample_colors <- c("-1h"="seagreen", "+7d"="steelblue") plot(curve, colors = sample_colors, legend_title="Sample") ## ----eval=TRUE, results='hide'------------------------------------------------ # Compare diversity curve across values in the "sample" column # q ranges from 0 (min_q=0) to 4 (max_q=4) in 0.05 increments (step_q=0.05) # A 95% confidence interval will be calculated (ci=0.95) # 100 resampling realizations are performed (nboot=100) sample_curve <- alphaDiversity(ExampleDb, group="sample_id", clone="clone_id", min_q=0, max_q=4, step_q=0.1, ci=0.95, nboot=100) # Compare diversity curve across values in the c_call column # Analyse is restricted to c_call values with at least 30 sequences by min_n=30 # Excluded groups are indicated by a warning message isotype_curve <- alphaDiversity(ExampleDb, group="c_call", clone="clone_id", min_q=0, max_q=4, step_q=0.1, ci=0.95, nboot=100) ## ----eval=TRUE, fig.width=6, fig.height=4------------------------------------- # Plot a log-log (log_q=TRUE, log_d=TRUE) plot of sample diversity # Indicate number of sequences resampled from each group in the title sample_main <- paste0("Sample diversity") sample_colors <- c("-1h"="seagreen", "+7d"="steelblue") plot(sample_curve, colors=sample_colors, main_title=sample_main, legend_title="Sample") # Plot isotype diversity using default set of Ig isotype colors isotype_main <- paste0("Isotype diversity") plot(isotype_curve, colors=IG_COLORS, main_title=isotype_main, legend_title="Isotype") ## ----eval=TRUE, fig.width=6, fig.height=3------------------------------------- # Test diversity at q=0, q=1 and q=2 (equivalent to species richness, Shannon entropy, # Simpson's index) across values in the sample_id column # 100 bootstrap realizations are performed (nboot=100) isotype_test <- alphaDiversity(ExampleDb, group="c_call", min_q=0, max_q=2, step_q=1, nboot=100, clone="clone_id") # Print P-value table print(isotype_test@tests) # Plot results at q=0 and q=2 # Plot the mean and standard deviations at q=0 and q=2 plot(isotype_test, 0, colors=IG_COLORS, main_title=isotype_main, legend_title="Isotype") plot(isotype_test, 2, colors=IG_COLORS, main_title=isotype_main, legend_title="Isotype") alakazam/inst/doc/Fastq-Vignette.pdf0000644000176200001440000045711515120047442017125 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 8 0 obj << /Length 1683 /Filter /FlateDecode >> stream xÚíkoÓHð{…U„äHµÙ§íEwˆÓñʧ‚¢Mì4V»Ø%œÄo¿Ù‡¯q’GÒ¥Uv½ÞyÏÎÌNwé!ïù :2þ~~òàM<‡sæ/<Ìã0J/ŠxH÷ÎSïÂRÈ+ùI®N†"ÿM“——“€"â7ÙûuVηÏïײÈÛ ‰üÝ0¯ê¬™¼;ÿëÁ3†=ŒCÁ9Ñ” QB½€Æ0F†Òëu#ËR, x)kÀþI+æ°‡„R³™ ÂLÌ þHx˜…”E@P¢D^Àpˆbl`þ¨Ê Å~›™ÁrF9° $°æ, iÄ S¼*¸§åêºÈ€1JýT¶À"á$à}ÏÀ„ø°üÃQ@Ë[¯ó.̈𱻊¼Ó3aþw%S£íΧbíS°`} ìýêzù׺NŽèú¥l®Œj‹JéùÆU|Ò)þzÀCÕäm^•`áÿ•¼S2uWˆ#1U )aFÕçËÌ„œXôC!!ƒ-Èl’6ÞŽ'&BÆy·óZΕ}®ä¥ My9/Öpp°ŸM°ß¨EæK{n²ÖþÞ>°­ê»1+“ª•¡‚Êj£<+ÒæÌ¼™W³c½"žøO^ÿñBG¯.1Ûî%½+€ ~;híV;©„)™=U½²-œ؇‰ikUµåëfÙõÊj{©ø0á ùbuͳz¢6èù¼Z­¶Í´kYË6K-"’Æ{1ü˜@Iw©Æ> stream xÚÍXío£6ÿž¿õöhŵyç´ûÐõ–¨'í´»eÚ¦Þ)sÀ!¨€[ m³¿~±I %iÒžzk¥öïy7ök±†µñ«ëÏ“ÁÙÈr4‚Q€¢MæAx‰5¢y9«y8@؆·™v¥ŸÏ+V Ë2õ”Ó(ÉcùP-˜¼¹]Ò4©†¦§¯¤  yÁJyŸT‹á×ɇ³‘t´*¦ƒ‘ ª:* F£-«Û÷39w·Å±`~wúé>…–‰ÁfwF̪ßx™T Ï?ÕÞ¬žÒk›.òIÐ… i.½ž Ó×U|–%‹Tȸ¼Æ,g­˜P²6Ì357p˜Œöy û0|ÁˆˆVÍ š±>kÝú¶ËçBµ¥—ìvÉòPeÑ^'ϗɳô»¡ãè4]ÊZút¥h?©P¡> âK<Í€8[¦-µßn‚:ÀEM$~ˆ¥P˜]Éçñ@»2ÓÑ2䌦ˆä †¸bp f¶%›™ý ]#I_°ƒ£Ù©2 &c丫îH6À*~lšDï¶Œ3Æ W¹Õ‘ÔúI àdÛ¦#¬!Ъ>ñ5êß·u˜ìZñŠóŒåÕK Ä]ÓTLóeö<뀵qê¤'«¤ ß¼3Ökæ›7Ã:­Ò"¯{B<$¹¼Žþø(ªä¯««äë×S)C oåÓÇó²™RÕç!OyñHG^‰µòtHÂë`þx|ÝA§[ß®ß1ã~’÷¦ú•,ÛêÅó"š†´¨X™ÐüÅE“&6‡­îÑ\;~ר„£‘HBð®­ÓaóMÜ·³ù>YyHéì©€<¹}»üu<‘_¢¦q÷ìÝ^Ó»Õ·ðî÷Ö©ªµ­úÎ.ª¨ iʦó$M§qxÖßòÇtVÊ北ÏÙË×O`q]Tj³ §Í—5®äVfˆ/µ*¢ÅµÄ(Xô?©P™¿‡iÈó*É—|ùâ¯é –ëòÛ-ÝýâA-óvGíþÍ2·BšÒkú/ÍŽ²ðísâ3£%›,˜¤dvUŸN ²¡a÷NÕ™ó3Ëø]sÎ4=U­ü¾lNœyE“Ía6KÊrýp§ˆqϋٲ*“ˆÉ‡šà«9Q€JÍc¶ïÒ”âÙÈï°Q¦Ùf£þécŽä™^3b³=inÕõÛsv¢®3ƒ:øe2hpÄ3-Ì·äñêw­ÛúU3C Î.3¢½çƒOðßà6C @56°}ü«c"3‘ ÛS›ðQ/ &97A6ض£«Œ’nwvMÍyЍ³uù½}DÙIÑœ«Q>/ProcSet [ /PDF ] >> /Length 33 /Filter /FlateDecode >> stream xÚ+ä2T0BC]SJÎåÒ÷Ì5TpÉç äTßê endstream endobj 29 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/Fastq-Vignette_files/figure-latex/unnamed-chunk-4-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 30 0 R /BBox [ 0 0 540 135] /Resources << /ProcSet [/PDF/Text] /Font << /F2 31 0 R >> /ExtGState << >> /ColorSpace << /sRGB 32 0 R >> >> /Length 6518 /Filter /FlateDecode >> stream xœµ]ËŽ%7rÝ×WÜ¥½Í÷ci ¶àÆ€­¼0¼0ÊCÂTei`øï 2â³ÛRÝiÑÕˆ`yNdfÉ$yÃãwðøþñÃË?}úï‡+å» õ‘kœÿ\ªÿþöñ//óã?ýåãõÇ—à¼÷þûãëÇ—ŸóyüáÅ»QÃû4âû>ÄK*ýê›ÏóÕ?¾x×Âã^þõßþñ/áñ»—ðøþ%xçýã÷/Ç1¤êB{„˜Ý·SWÜK..ŽGˆÕõ¶äìb„üª>É…Ì6ÑÅÊu¨¼Úê’ë™ëˆnTngÉðQ,f£X­æóúòå‹_!ö®å1ÿÖ±÷©vÆk¶àG^Á爘NÙø‘\ì›­ÑEFÄàBbïbá:T¦ˆ˜NÙXÊÖÚ¡ˆ³Q¬Vó™Y^%J¬™%t@X‚\0(Þ…qa™‡ lrw1Q™%t@ˆ:Àí0K`1ÅŠ:>Æ2x‰³„ý˜ƒïr1Kß\ðlSåδ:Tf–Ð!ê´Ã,6ÀŠ:>rw.-|><_„Q»ÄzGdë„MµÉõ¶aÔ*wÐŽHµ8ßÙ&Ëiu¨¼#²uÂf×!lw;;"‹Ù(V«ƒùÜxÞÈU® G:°‰…2Þ”3e;E“óm¢ÜÅV‡ÊèÀu€-ÚላÙ(V«ƒù‰“{ŒþŒˆi‘Þ³\Šˆé”Mï‰2Þ”#e»Wõ ζñܯl™"b:ecu([k‡"bXÌF±ZÌG"’úä^C¤.øS­E$G¹.èÀ&ÊŽSö”iÎg²Iû•-sD Ô¶h‡#,f£XQÇÁçNéÞËuáˆ@§lÚ”I§Ü)‹ Ò6šó‘m*÷A[¦ˆ˜NÙXÊÖÚ¡ˆDX‘ƒö¡•.±&–¦ÂÒ(;N¹RfÔÖKq>°Mæ>hËÌ:°D`‰v˜%°˜bµ:˜Ï'¡…*±æˆ@6¡ðX0´)3*Ò§1ÙÄ£2™#Ø °E;`1Åju0Ÿ;ýGmY® EÄtʦ¶ÄcÁP[¤Ìøª>ÞÎ6þèƒL¦ˆ˜NÙXÊÖÚ¡ˆ³Q¬Vó¹ÓÔäºpD ›xÜjò”iìⶉýèƒLæˆ@6¨lÑGXÌF±¢ŽƒÏ{¤ô!×…"b:e3ec†Ò;eÆWõ©n¶©Gd2EÄtÊÆêP¶ÖEݘbµ:˜Ïþ£ä&×…#ØävŒ1K®”EiÎn$¶ÉGd2G:°A`‹v8"Àb6ŠÕê`>w2kñE® G:°ñåcŸ(‹*R݈lþÊdŽt`ƒ:ÀípD€Ål«ÕÁ|îÜ#¹&¹.Ó)›)ó3×@YôU}¼žmüÑ_™L1²±:”­µC1,f£X­æs'ääºpD ›Ž1fƒ²¨" ÝõÁ6ýè¯Læˆ@6¨lÑGX`¬¨ãàsçImÈu¡ˆ˜NÙL™Ç˜©5Ê¢¯ê³²)Ge2EÄtÊÆêP¶ÖEݘbµ:˜Ï{$¥&×…#ؤvŒGS*”EiÊ®W¶IGe2G:°A`‹v8"Àb6ŠÕê`>wî‘8Š\Šˆé”MùÆ‘(‹¾ªOœÈ&ý•ÉÓ)«CÙZ;Ãb6ŠÕê`>wúšX’\Žt`Sâ1%PU¤Å»N½oÌãè¯Læˆ@6¨lÑGXÌF±ZÌoo1‰5³„ƒ?ƘÑʌںï®¶iGd2³„Q f ,°VÔqð¹ó$„:$ÖÓ)›Pû1Æ µQf|UŸêºg›rôA&SDL§l¬ekíPD ‹Ù(V«ƒùÜyBlr]8"ÐM¬ÇsôK:+hmÒÑ™ÌlPØ¢Ž°˜bµ:˜žߋĚXšNúžq£ï‰²Ý«úD×Û„£_1™XšNZÊÀÚ!–†Ål«ÕÁ|îô’>'‰5G:°Éñ7ú(Û)Òì]£§Å§qô+&sD Ô¶h‡#,f£X­æs'7xäºpD ïyÜ8Ơĸ€ŽÑ]ËdѸS1qGÃTBÄü…§µÀ¡„ ŠƒÈ›c”!×cGÂTÊ£t-ŽÒ( ­R]‹dQ¸Û1‘â•Æþ´°ã``¡áÏ4ŒÐ$¸D **úF(”Õ¤ÙçGåm‘¸÷0‘ˆA¥À௰ÑX(Bø3‡ÓS½‰ì‚©„Do™Çy½%Jz¯â]d¸Ã0qÁTBÂü…¢µ°ƒ``¡áÏn<í=%¹ ¨”DŠ<´ë)PžˆÉ»º»¼÷'&R RðWŠh‚ °P„ðg7žó6‚\…S ‰6¼ëû)n}Pr[[ï®V²h®‘?ÄS óŠÖ‚aP TÿƒÃÇ¡å!W‚•’È{-7×Î^°åêj!‹Â½†‰¨”ü•"Z  ,!ü™Ãa`óM®*%á«\6¥è eA賫™,’kì¯"*%¥ˆ(À EæpgPƒË—T˜q÷®ÐKr®|2Cí2½"—æ ÏèªÈSª²™eñǤ¢¶À³õŠ“õŠsõÌáÎÀ0 —/oÆPa(ß]á‘~såòZªËü¾PæÒ®í¯"¿ ¨Ê^kÄc|m_,!ü™ÃÇ¡ÉE §A5z3W¹fz§—Ç%¸¼‡-¹²Gè9P žeñÕ{\릇@ÛÖrÅ¥¾ŒûÆÅOEâ¾yC#ØS–Ë$¼R’[móNÑå(S{W}UÚ¼¡ìð^¨{óFÛZ®¸Ô—qËX¯ÊCbLT^Xáî®ÚpÕžèà従YN ? ‚º-pZ¥AoDEa,†ø|Ç•»«Ç- m.Û3Z<Ý®Q ®ÚóY¢+6ì`,¡Xˆá·¨ Vã‰6—h–ßõùûrx‰®Q…bAòψ®÷äHÔ3LO"£ …\ÐD=2j5ªhSJø1Öç;¡¹$´ iä.LI®‡Ü ó¡8RÏ\º‡cs1hÉÛW¥} C#3ð]¬¬n#mmk¹âR_ÆýüÝZ–xoÞÐöVäâ¯Vå†Ú¼[£±xhº]“6oh;|…ê޼Ѷ–+.õeÜÏßÚ1ÔËÀË4 {œ}Ÿ%¨:¥§×e=èE,F/7ªøB2Þ¦YØÍwñ²º·µ­å•F['îçïóXúŒyZSao¤Úç°§>Rž/y±úyk‰°pÕ0G†(ó6U?V­b*ŠõŽ??ßDQë–©¶)¥ŠFüëó£‰äýå-Ë4ë2%(g%)a½.ëD3)iŽ’ýöÍGf}lÍ ˆù®KhuÛ%¶¶µÜÓ«Õ‰[zÕ”ãåµÙ4‚''JH)gJF«½ùÞ“wy¥WŽø]Þ)g›d¼M³°›¯LÄ nãmmky¦ïÐ'îçïÝžëeÝ™iûœÕßóNsBÿèoú\d÷vŸ«‚,¿›´yC#Øá+¼P÷æ¶µ¼ÒŠ„·Ü»½÷˪BÓžù™Æ2NŸ_hŽq~Ÿ«¾Ò.”³MÚ\ <ð¬¨{sAÛR\â{à~¾¿É_Ö—šFæŒR Œ3æç¹ËlS¢µCc®þÛóMö„4:ã”h­Õ½çœÐ¶–{ZMtâ~þ™-^V›F°·DÙiÌo³Ç;Á˜+Aë.¯”³MÚ¼¡ìð^¨{óFÛZi]Ù‰ûùg6ø/‹Î·J§}C¡|¨—U€Á‡F ƒŸë‚+ù÷Ë’­’)$ó—ù%kaO@XdZAxá pð¥ºsÁV)°¹¤"oØ¥_|_­ ¾zJã[$bP)0ø+l´@Ä€ŠþÌÄF¿l%Ù*6×Ìì9Ðàýemos¹ ‹Hyz‹›˜©˜ù lkˆƒB%vpPb!ûË®¡­R`s]TÛ°ç’¨r›;;"YdJÚ[$bP)1ø+1´°‰XxZ~áb=]6ˆm•›Kàöæê·z››x2YTÊÊ[$bP)0ø+l´@Ä€‰Vû_8ܘߎ±\ö n•®¢Ÿÿ[f q.t<õ!ν]…,:¥è-î ˜ + ;íÏØ-ì XÚráð|/bm—í¤[¥$j£,â\ÿz~àˆÍÓ %R¶6‘‚•’€¿RD `€E£½Az‹'?.»·J¿½øAY(¤.[¹B ‘v{-‘²µ‰ôñ*ýý<ƒèû 0¨ªÿÁÄJ¸lüÞ*6—«ï›2•tÙµÒÜÈëÉ"s¶6‘ˆA…ÏR™6ãíˆ0À"ÐŽ¿ ‡ÏnérÀV)‰¹‹>»rÙÌÒܳMîFåÌn"*%¥ˆ(À‹DA/ôêæT.G?l•›âØO[ž{UÎ.'Ïíù‰,Æ<\gû«¸‰™J€™¿À¶61ËB{~/n$¥ÜÚåD­RsÓîžòÜÂtvOyžÚ°»§<mØ™ÝD TJþJ-P€¶‚_8èÕ-a\Ù*V¢—K!°ËÜ­vv9eÐQÈ"9Ïþ*nb¦`æ/°­…MÌ0¨ªÿÁÄj¸œÝ³U ¬F•¹1ñìFJÍt6C(ó(–Bþå²kv«ü6Z bÀ‹@‡6\8(±ê“Dk3•«>KxvõårÆF¨¾ºÐɢɭ71S 0óØÖÂ&f`¡áÏn¼’Õ\.'rm•’˜û“÷MYssáìrêæAg÷Ôæk´pd±È?]NÙØ*]ß]ühu0¨ªÿÁAŸóÖ‚D–ˆA¥ÀæÁ»ËióÌŠvkÙÅLEnQø«HĠ¢õWØhˆ,!ü™ÃQU‰NF{;TB¢‡Ìc¦>29»§*ÐzhÜ ˜¸ƒ`*!aþBÑZØA0 °HttÛ…Ã[¼—"W‚•’(•²[è¥]NÚ ½tY î1L¤ @¥$à¯Ñ`¡áÏn$»>øv¨”Ä<Ñhßì} Êl âðžÎh Ãî1LÜA0•0¥ˆ(À‹F‡7^8ܸFrvL¥$æAW»Û9PfN9ºäÉ"qa"* ü…¢µ°ƒ`ÔÕÿà Énô ‘%bP)°y¦Ù¾Ç<ÎììÊFÏ.E²(Ü ˜HÄ R`ðWØhˆ,!ü™ÃóÉ.ú˜$²{Ÿ©d±žŸGÝYv‹~žrw¼dD«K‰,õ[Ü«ýL%‹ãÌ_ÖóY „ŠþÌáÆš?_‹\ TJ¢VÊnÑÏÃÛ„Ú]*d1¨ÇØ"*%¥ˆ(À Eæ ·x ¾Id71Sé2Nß)cÅ0Ϲ<^Hb~vk!P/°ÅMÌTº þÛZØÄ ,¡úžO`1ä!‘¥ @¥$ЧŒC ”­b‰.u²HÔ l‘‚•’€¿RD `P Tÿƒ®îY"•›ÇÒÒ*Ý‘([I³#»4È¢Pfß"ƒ KuÕ_a£" °P„ðgJ,¦$ÑÚÄL¥+ˆç Äû¦Œ©Pz‡J{]bL2û71S 0óØÖÂ&f`¡áÏndæØŠD–‚•’h•²PŒ­Qˆ­»Ébpf7‘‚•’€¿RD `€…"„?s¸± =…&WaÁTB"…N+¦0([-ˆ)zÚúS œÙMÜA0•0¡h-ì X(Bõ?8ÜèžRr(P)‰ê)cÅTe+X£Ë…,÷&R RðWŠh‚ j„êp¸ñ8d.{ß¶JHd)»Åìe¶WqÈ´Ã*f_¸0qÁTBÂü…¢µ°ƒ``hÜ…Ã;!ç$W‚•’È™Çb9Ê‚1WÚ‚snÜc˜HA€JIÀ_)¢ 0ÀBŸ9hÆÏ½\¶¸n•ë•ÇW¹7ÊlÒlï´á*æ>¸Ç0‘ˆA¥À௰ÑXÚâzá ÄJl­MÌT¬ÄÎã«e«ÕlIžöVÅ’÷&nb¦ÒM+ðØÖÂ&f`¡ÕÿàpãÙ-uÐÅ·C¥$šçñUi²•@l‘6ZÅÒ÷&R RðWŠh‚ j„êp¸ñìÖh ãÛ¡5D‹ÕpÝÇkȼ몆½€‰;¦ÒmHðŠÖ‚a€E m–z‹×Â;‡ß•+¼ï8ÖR(I³…w.ÇZx[ó‰Xá ÆÛ_a£"VxÿòFÿs÷óÓ·x…ö0¾*%1*Åê¸nOutÚpëœÙM¤ @¥$à¯Çu{úÆ‹BÛ,/$qÑÝ'ÝõÕÚ~¼äçå›Ïý&Ë»þ}ùaÿ2ËYÌÇiÿ]¿±ò÷ñþðènáß%†uK\‡¹}x{üUõýøðýËß}Xÿ²ç܆–g{Òs¾Ñ¤åÙŸôœ×Åçå:Ìñ _”ùå‹â/¿(ײìj”K&Ò_¾ÑÒšæ3ƒR‘véX?R‘v©Ý÷R¬â,ïåþ‹èÉ–ï¸rݤuGN²K¥*Y©î'F1Ä].ûn­\E+×ý©(‡¸ËeC§•«håºùåw¹l(´rw¹l¼³r­\7³¡â.—M_V®¢•ÿJÏc–Ul+xóáÝG—µ_äÞý\EY2E¾ñݾUV%‘oz¯ï<r.ü!ßünß"ëeÈ·¼Ûw”µB‰|ë{}çy®ã¼DíݾݯE]äÛß뛣¬G ßñnßš×r£í?Iœïïd¼Ö¿¿xSÏY¡–mNpÍÖÿá÷_xüן~üî§ïþôñŠã‰¶v _ìfç´j|ä‚.â›oøó·_¿ûøŸþüïüî§ÿ}ó_øµ³yÀxmÔæÀb.ì/¾¶ýÉÝàÒθ-±ÌŸX*9ñ;Ê"óñ§Ï÷w?tU1Ö±uÀõúc¿ÉÖÒû\×ߨ>ùM¶Kñ{~“mî ý1ÚìªßH±NÀš{H}}ŒuàÕÜ^’ ¯ºû4+-óû5üDh8EŠuòüÖ©\¨µà´©¥‚FýëÉ=U¹äŸFµ…>gØcæ ½£z-~"ªs/yå¨ö.{mù³&‚¿U”®¸ÁO„U+Eµ¯Í°ð[{aQkÁ hSKúÖç£ÚâªsW`ùÿ£zÌ3ÕcÂùQ­koEu.Õ`XÇ< Nù‹@QEéŠüDh;T¢¨ó6ƒ_qÝòŠU” õ#¬ÏGµ¬}%ŸFõs_Þ(ªŸû÷Ψ–uÊ4Eµ¬ÎA–už´ò¢ŠÒ7ø‰Ððz E•¬+~ëäkÔºŠ*JúÖ磚׮°ÏôV¿þ/ˆ*Òùë'£š»œ°æ!õâ/E¥+nð¡aŠ*µø­}s¨µ`ömj© ©”Pë—¿Ú0#¦9.œ_,åUþ‹¿`Lö3 Ì52Œq¿Mmý¶êlào›dñÀlà«ß¦RæŒÐlàëߦùB^><óðÔ¿—ÿŠ¥ endstream endobj 34 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 37 0 obj << /Length 626 /Filter /FlateDecode >> stream xÚ¥TMoÛ0 ½çWía20«ú°lkè+°°¢²S7tN£&Æb§­ù÷£D+‰²,Ű‹)Räã#Eš“áäjÄy1]æ†ÁŒÖ’ŒH!IÁ ã™ ã)¹¥Ÿ«îW’ªBÓÅ2Q‚¾ ò´ªuï k4<‚tÙÕ}½l»äÇøÓÙ¥ÒDpf¸Y0Î3HˉpYò²dYVqY¾uC … îFyBQHÄnB¾‹õOhýZb)%Ë‹2†ê—@^I‰'¨U¾VP†ZeékÔ JÈÍ’4˽IvlÎOÑ—ºŸcD…¢³O+ÛÞ×íìOd î˜ÊÐ!ΤžEÆJ3ð ºi;TëöX{´,™Ît\àtr¨-i¦sï› Òà"ôóªÇgW®n•Ñ`XتŽËÖâ]4#xçÇ ŒvÊ1å$•œ)™a>ä6â0¼„ìÂG(ò ‹[¾^Èmª¥¦ç)F„%÷¯ËDîœÍ¹kÙFþ}—6hÀè;×|:y;ÐÎtŽx<²ì€o‡ðýA©Á9WXLj,ƒ|ŸÈ?Pyθ‰_2ÌÍA6¾­¹Úa,Èæ$DßAE³¶±mòüxLíXŸ^e6o‰Ýµ«æäÀ+Š>Ü¥¡Y»cxzšøW¼^5·€îì0Œû¸ófß¡çØ_1©“…"©Ö‚…âUòq<ú 1èœ@ endstream endobj 56 0 obj << /Length1 1949 /Length2 22306 /Length3 0 /Length 23510 /Filter /FlateDecode >> stream xÚ´ºuT[ë¶>Œ»»\ZÜÝÝ]ŠCpÜ]Šwk±Bqw·âw×¢Ååcïsï=ûœñû÷ÉÊ3õYsÎ÷]ÉJh(T5˜Ä,@f@i#˜‰™• ¨¤r0udcgÙ[Ø™YY9‘hh$\€¦`£¤)Èà[TÌÁïŽ.vVV>$€ Ðèò®´˜y”€`SM/' €Þôo  r3™™º¾«ŽV6Ž@†w “—‹•5ø¯LLEúË[œ ojnòpµ³˜:Z䙕˜Ê w¡ €ä0Z›Ú[@–M .@KCJ] £®¢¥ªÁÀüXÃÍÉ äò?\$44µd>$Å”5¥@í- Í¿^5Žïü­>”5ßõåy7üË]IJSLSOUŠå¯s°Ü.®6¥ý/n´ïÌÿ¦öîjérø;€Þ vâgañðð`¶rs3ƒ\¬˜ìÿæ§imã ð¹ØÞ.@{àß…qs´x/'Øø¯µ hcttþå$ ú—Òá½”ïNïrðÿ{/ø¯˜öÿ2¸ÿ‘ÆÚÔõo_EUUE€ƒ©#èhêhþn6»¹Lþ–½?tÿ"H¸¹¸ü•CéU.ÿ—æ©‹ƒÞÏÌÀÞÇÏÔã¿;fêèæêýÚüçi›ƒ]m\Á®ÿŠXÚØÿbïúWÏlÿ–)‰)ËIKih2)¾ž#“è½:ŽÌ`OðßÖÅ“Täð²rØø8¬ïC*åh!rpxgíŠôWù$mÞë¹x±ü×TÛ9‚<}þ[jiãhaùWÕ-ÜœX´mœÝ€r’ÿcû.Bú·Ì °€Î §¹5Ë_©þž”¿Äl‰ßKàçãrXšÚ»ýl,ï$WSw ìâôóù§â?ÀÂÆü>äï éïèrŽ– ß¿ÄïLþWõ?í§ÿ{‘2¼¯P £½Àh‰Ä¢ ¿ýÿ?kì¿rI»ÙÛ+›:éÿ³ ÿmeê`cïõŸvÿe¢ü‹*ýÿÃÙÆUÚÆh¡j6·þWUÿ%—›¾½˜£•=ð½#‹´þZGöïû¾éØüµg˜Øx¸þK÷>‹ævŽ@WW7÷ß*à{ þ‹ï{áÿb `Ñ’’•WÔÿð_ãò·‘”£9ÈÂÆÑ ÀÎÅ 0uq1õBb}Ÿv..€Ûû([=ÿ ³#üîprû,A.H5’›À"ñ—è_ˆÀ"õˆ‡À¢øoôn©ôˆï™þ½û™ÿbce°Xü²X€ÿ€\›À÷Hvÿ€¼ûÀ÷Èÿ†lï‘ÿß#ƒþÙ,Nÿ€ç@N‹Ë?à; ×À÷“ÿ¾³rû|§áñoÈþNÃóð†×ßð?¨ú×Îõ÷ÂdýwGÿgKÿk€]@v@‹÷ËÙ?L”LÁ.6žŸXßWÛ»üýñ¿ï ÿ#Í¿7„x‹‹ƒ<}˜8ß»ÇÄÎË`ãzïÜ{-xüþÃ×ü_»ëß+ú}ôþÿµµ€@O 9ÒÒ<È\ Ô6­1¼Ì_ªhª–†ù´OXW>f)sª˜@2›(ò5¨90‹ö+HQ–ßÐ?%ȱX—&×þu½%¹ròÆBMtÇÔ_ÉŸMJl,O›Y+8Ki1°¼“’áH>¯P¯„s&«5±•  5v,Á×ÞõË>ñ†y•JiPÞºZëñmŽ­ ÇÅËsƒ¨ƒxqªüö€cÚ+¶Ä8kRŽ7&çÔÓ…¡GzM•HE¾Ty‘ÖïwÑìÛ9AD+éÿ×¢§§”弑Ä·²V•Z^ib3E3oi±]×-@àq¥!\?OÑN™çOÂA–¼`¿ê§7à½]JÁ¹Íhj¸`•H~õÁe÷ó%_ËÕ'5˜Ä!ÅgÚ‹›ôRNÄÏMGšo³ˆƒ^PƯԗ48èçá§€ª$Zß‹PS7^‰› AYÛƒx脜ØWâqm)=[Y{\û‡_rª–%?|(Owd»¸FŒ˜ÈÆB>R?ÿQ uŽ93µ¨ ä'KúìA;Æ=ÖŹ>â1Ç yEsšÀñ§uða¾A9¬û˜ïœß’l·™ «ž#9¬Õ(¾¾[i…@] ‚£÷Û‰ø~ñ%=•úMg'X<'A€×?³ÅÓwùë‰Üµ ¿y ¾=ôýÛ·¦†~ßm¸@—suT.-VTz=¥¸ü7l(¶6JÅJw/ò(ͼ/CÝSþX0 ×K'bG~pJCA{ cÍÎ5TBb–(4É\*|³¿Š¶øfvQL5ô‹nÎJ3ÚKA \OÝ'±ÁV8+REIyâÄÓáŠÁýx©4—0¼w>WáÝQǂ֖•7 8>î³W©qi0ÃUyÁT«8ü3Ôä–9ßç í–·ëp×ËȤ˜–gá@AÇÒºÙØ©ò²P…Fˆ‡Ê.,o¦C6ȳ ÍÑŸtŸ>ò¹òé`åƒ.¿ÝÛ:ïP…ìO§Z‹|ÜNFI‘Jç(gR,†3ø « 8¿*1OÎõ‹”EDiMmû¬Aja37É[YÅ£‘7®è%¯>­¡pí _Œ|ÍIÿ‚–·šíó1{õ^­O ÌpTÏ3k‘íU­±õ'%ÿ— ñI­¸‹=ËeÔßX¾¹é«Gûö·s5Ë…?ö˜OTàï¡Ã‡]´ëÌÕÜÄéH‡Û‡K~L½"ðÕÀÔÍòåR¸ÌöÞ¯A Ù¢Úq3ß$}$æáÌSk3jfçúÉK„¿S¹}Ýöƒ¦Jô[cD´!z[Š2ÆL¦’uO¯,#òøÛ’)w?H6 áÆŸií¡ÁžÿµðàV-ÃYDä÷¡> 8Ô† uñ¬tcª“ü‘ý)­Åš[ÑiÔæä.8ËijrRØ=²³ž&uµ®{Iö@÷# ªqx^ôW³ºH~+þ4sú­‹åÂc<ë4< *Fx;Ò‡¾×±™Re®n>=ö°0Ðl43ÅÑ$i£ˆÚuót!©ðuxIzÖ6lK-%žþ¹$Ç2 è?«â=}”­Ê #¤J nâ;‘]ì{Õ¨ý%ø€ÉÅü¡ÔxŸœ…ìEpìâ·›»éãÌý)ž ƒMïÖµ¤ˆ Öî–wЦ½¢<®è¹¡‹W¥ÒÆ~EÞ¼¶³.1žÙE°­¹PáÝ*­®èY­lò q5áȤéŽ@9°¦FG‹9zKÊU 2ZÊ·q'öÎöIé`¨ÎJBF ¾êËËênQÖî£\¼µ7ØÓó8ŠÄgÌÿ\ÿ„²^2'ÍÁ$ó=¡…å+¥D²pÝ¿}_ìYSs§‡g’ÓãsÍv¢€»}akߣ–AëòÕØmS!Þs’ ¬æÇP\ñvòÚ•¨‰é¤íh‰ìV‹ç™þ¥¡(|±Íª§Î4²%/_¨ã8O6°º,ySìëK­>·T%Ÿ×ÌM9þ õhݧ°TA‡3ZÆ3Ã#JÏkbf‘EËÔ¥HIöI›Oƒ& NÒ6ú!ÖPƒ|þܯ¿<é¦&ú &9·÷¾{ûN ãBˆb>–>iŸî]o:Ë Þ?ÇIdNb»è{'TªTË\ŠOV‰'\u>ohOdÎ~·)N¤¨±çOÎÜÄ©Î?à 8[•ˆX«ÝB»~ä ;¶£æ°¾M²µKZwIN:|û ½"ˆRTMÉoÞŠ\[ï,ߢµ ß¾HK°Oˆ' Ñê¥ão ¿G3¡ØÁ¡ûñ‹RNÕÔ°:G¹®&&¢bZê¬Ú"é(4Ãê’ÙœÁCùѹ‡ã¨ú³¦ëšZeeKGDrÝ"²|÷’¨?YBz†³2ð¹ZòүɢåÿaÈÃ;éÒÒ!†÷ì>šÑÐ]†«EÝàºA¡Â6Vï~Müâ`Ķ0­õ'µ NU†<*‚,:èOA!y) Ê,Kª¨]Vº¼½ÛÞ™$nKž Ü||Ó*ë˜ GS7»ø/ü; Áí/{¸åe†îY11]²æ¬)Ï|X]È*ôê—ÌÓZœ¢ á› ùv>'áö½ÅÃŒŠ»"–XÔ­ b,Ú¸;ƒËr[ ;¡+e¿Áʾæ\ê©2–ñÞ‡#?1¢ ÌòP-Z]¼?õ‹7ÜŇËÍÕ4mÂÝF7Te%ƒ¸Mü¹°NïújæÜÈuÔèä. ¶p>?ä|õ_©F6Ù¶¯ÄG°—(z³14 ÎÝ—A¸kƒëÙÔׇk¸w¾ÎZÍãÔɶªmD…LL¬\/[ØñÒÑ3ôgy,k/öIež'i'çδǔ"gåå"+sCŠnŸG:|=@>šÒ¸Í+ݵ8“‰Žƒ¨a÷$S(FN11üf`5p{î½ “[4ó{?€åY¾‹è“VT¦s×Óˆ`@sI!30ük'ƒ§šC{Nc‘ð;ÚéäÁ²Ã UtÄK?‘…ŸWÑž½‚~c­Ô¼:‡¥‘]\“îéÙ!¾@D}9ŽóÀ£ê9à´n}p±.E“ÉHZ¹’P£Ë¤” ç7;kàÍÊ7¡—äÖê…k8D×ãήUgYÛ>M4`i‡_ +X™ìW?ª è¡Õþ$›<4kZÁ‘Ϧà/¤$n×Ù]u²?ÃOßp¢O¶Š?•A Êt,öÓ` yÌ͈ñ¯íØešp«,ã›.Å‹‡¬YHJ³O§ wºžGo9x“οçpÙü)³™e®…$È–¾!™yÊ"îT3ئ¢Jf`‰K¨üÄ*‘ \b£–˜~_#c¢éê ¥š‡”çùî%¹©kØŒÚje£ä7C͉D “x)äUEL#qú÷—š_Ô…û¯#Á¢]é–Üä©]¾"ÆkT@ª«ã“8 `é²80T®ÒÔàóž— NAÞƒÁç}´ä¢‡oxï{̼æEû…I›b÷»â »e‰ÝzþUÖ•à Ë2ÀG«!übUãü†¸žóñߊ6U¯÷‰ðŒ ¼Uîeþk¢M·ÓF‰?šk×Âhü ‡d&±#â{ª“]R±=ãg‰ÖŸÃ˜˜õ"8ÇN.v®²ŠîD ² ¶–­²XÒßâ¤UÞà—wVòÀ1bÙeø¸§¦Gç}àN+€ZÖ˜Ù°–$*þ 5W¦øzéŸ`Öû=˜¨ÝT©t`[gºZš‰0œk~†ò+7cÔ.Èo„XË[1<¤A+õW¢“? Aˆ¦6~•öZÁÓ€CgTLæÕµ¤y÷2ÅþŽìf§94uß À"/x žª¯X‡Nt Ä¿ë^ùChoÁyÐ1üÁ5bîGÚü^¦–¨NK8#¤ÙïÏ"ʱ%x0ûI"t.™–ŠPsãsr‘à [ˆ£~pzfÑ©ûZ7§žÕ.Á û}ˆzïaÛôä‚Çùˆf`8eærŠðï» ­éò*[Bobœ‹oÇߥ‰}ƒ”ÜñØ y³Ð•Á£·ƒÒGx9‘úòf.žÛl*0Ãæ‹m?(MnîýÞïW™Ø…ܹ{6Šo}¤|õèÆÛJÆj„$_Nh‡ªXæW˜¼€>L)‡% ÅoÒ­C„m°ŸXç¹v¶zš,ü™yKßJà!.cS‰9 p†øq®Çÿ«¨u¤ÂîÆíBm:«VÄ~…x2ëÎ.Þ€…^/­[Ñhtµ—Ó-‡ÿŒtQDìø_|C|2þ5xP§g¶ ªMšöüªLÔni”m•xµbÌ"†‰@£K(Ú¡-*‘ê¾Ëƒà®À":ÊΗÒécŸíð¥O~]BtºS ¯d=¶¸ š ‹ ÉËD™xËQ¸!%Z-X2ØãΉVûñ&ä hó©çkìO»Ò„ðÃç~“zi¤»>xbcM+"%¨Õøà<é2m¬èÐûj•¨`WcKȨ5»CŠIœ <‚ðgÖšyqwÂãXTÂÿìç ´ ¡Ojòw|f„aùþ&ËŒÁ ÈÍ©ÕoÕƒ»ŠuþÅ£z†îÃzeÝJ£×]«öeüò­ùk¸¬HuN)í­G—íOjŒâ° ièƒl˜·äج ŒdŸû¼A;r´ÔÈýÃÑ|6¬O¦q,®…TxZõ_~=[×êê ™ÀY³S^øÔ\8™ È,[ìZØÅ#Z欶¨xצӎŒ;Sj¾Ýö~És/är2ꎄÉ&'FU üt©ì‰Ÿ0´ qÀå|ýDÒv` ·‰ðìþíh•¶4?7ï%'U—C‡­Êºî3£Sí§¤Ånot¸C¥7<‚ÊÖÀX°.õœšÐfƒ+TUdWpr )k —/'»ö³fWQÉKru#¸ígì¶çoëë ×4¶.â¯Þ†2|¦B õ=aý1éhÆ3&Ú˜Öa\§$lÜkËðbËÅž…Ãåâ@ù†[¼‡E˜E(äT©S4‹ò<÷ÁzšÁRí“k{&ìæÊ·ð¨•ű¿v©TT¤HægÊ•õ»Ü5æ¶GŒÍø%;B¶OÅW&dê‘o*+ÃÏ?ý6 CvÜ…í"Sá†jnÑ: µ­ùž+©\º)~ —ØÖÄ©gîU–hâÉ=x nëÓ;½QTËž<܉<Ï oÚχ5y*ù¤dɪYx;6!q ñáÚù¯²½˜¥ŒÃÏe¡06[I5`©ÿ¨Á´l<–úÄVé*àGÙ(û{y¤©§RZÞ®Ëð×Jn×µr±çe\¾uå0/Âå5˜]’BØvY8Ðô—µð<þúɪÀ=ÐÏëʹ ÿ"pr~Áçjm¸m7ªÌíUõÛ+£·Ì›0븩Cî÷Ó‰YAÚ-*æž‚O¾ †v5E·Hmá µ¨Õ#þYØ.™í1m)?‹@ƒ5Š?nH÷Ñ3 ¦ß™˜Wy6•ªRepµ 8v-›ÓJx<¦'VžQ¥4ã9›ç•ó‰%ìuòÝ6om^êf»h¨ ½iî]tF¼h©ÚiÅ Õiöò»ƒ>Æ´µ^e—çÚâÜ0mŽª­vÂoW›ˆá@¾Þùâ¸UK‘GcdRªG i–¤÷¡*׿ ò;tAÿüî&ïþª×¯O£ZæÂ{Iw°ÞÍ £œ©hjÜKk4¤þ\ÇPÑV½N©][ÈìÒ=°%}ÑD¶Ç¶¼­´}!ª•Pe "PtÍê;*sÄÓ£’§å„ô‘®JÉó×ì¶¡J׾Ǝµ¼¿ãØf Ã„¤ÅÅ’)¶¦¥¥š/F×Â&0ìám( ȧh-©‰æÔûR•AédqrœXà˜ ¯1nƒê,©¾T|ž9©Œ[QÔ :ªâ:H)œ¥HZeÆÜ#+?Ewxe~ÎàÅuK@¼°áÎD)ºôêg¿L®³}T}^˜¾w¨%s<™šCÕú¨H¿ÃR×u)Õ±*ÿ*6è”+ë—zÑÜÐ+nÇýq¡²y»a‰ýc—”Ä´Uæ– ß âÈ.¬H)F1×[sƒoÛõ5¾à¥Ï_Ëýv3Õ„èI¦Eú£sqÚa!/m¶2÷ë£ÇŒ=çYËÕô\r2±Åx:Œu“ýŠxšÎL¯b’ä8ý²³nœFÕ×Óšßä9ü‡eUíµÑd¬~‰pCkð²23%¬ÃÄFÐ!ŸÎ«„ ,\´ÅËíÚüÑpQ‰Ãéù7™Äƒ ¾Ä¨?½‚e˜†/‘±¼gûñO¯!YiÌuQ)úID<ݶ³\²77jöªP¯àêB(vYþq6üÚDÈgˆËÓäuÉìú]”LîhLøv¢°4Œ;ž’¨æšÊYl®—*Ï¥LE¾¨Ææ1VKX9qsÉbG«ì"zRþÇš°;LIç³4eý¢â|ÏRÍœdäÛ°°˜µ´7åĽ¡Ïʉµ•¡;s u5¨Æ‡¶\1½¾ð…Í(ìâIc¬¾`á¥éç7;µóâ_à½œŽŠ@’>ÉÒ™iôï—0" ÊÜ`媳>üiƒ:ý)ùm]á²?WOñê”°¹IÒ)D~6ÕÀ¯œ[‹Ë˜h¤éh­ÄC=üñeSº|ª÷›‰9û—˜Í¸KΧ¹ØÎ•ZŽM-k(£éPÔæ0a­í0Z o÷ó|î3ºs’á™/ÒÍËZ‚Mg±*&ìÈ÷¨-q·¸‡‚§y5ü9VáNv—Y%v é°Ç§8–’—3÷0­ðõj†ÌM]²ïÝ\¦ã¹=j'.>Ð]“#±tõ……ý“°ß.ü÷"¬Û:X®ÑZ¯`5e3ŒO3ˆ8 Ë膉°qÞÕzŸ¯ot˦Ü¿ãÏñ:º¦P/gì&/m½Æ5A{ù˜’¬]çJ”Ùå`BÑŽíì3Á`,{µ6¬lz‹æÏAtî‹Óg éÅ}­_»Û+Dh¾6sÑÎcÇ“w ¹™Ì"˜µˆÙ\®“ß5Á›³¨.ü~ð y€]áú©s§? šßfªrèGº…‡;#-ŸCºRåv”æqìS‹Év JöëŽæÛë`'*e9ªÕ\`žýx„å ObìN×ôqo Sâq•^µñ¹N)I|7{/7Ÿ¨÷fËùÖç(½æ…é³@Ôt®ý±’ëí@ńsUÃ0+ Äìµxl¤ž5C-Uò+LglÌ›RÖþWÍÕñ{‘«¶¡ÿg(…»éÛÖ(‰âd¬­<Çè~Oƒ²ˆDZþ–aô+¦)8Â1×$†‚›-†V kâ×L´º:o/S>,™’È:]öp 1~«ÈKž»¶žÆ`üÔiߪ6Úy2-§cQu¨è ú¥¬ŸÀ*ûÚöTâ@ó&®xëCIhˆ‹6Å#¦/ÑN›°ô6˜Ò&è]ã©ûè‘"r¤@Os;.uÍF=h |I´#pZrf1«Œñõä]êˆoF'Êñ\“ŠÖˆ‡ø‘¥Ÿ¡>â Cþf¶z+„á½ –i—0(VÎYÿ¼s½þu,‹dbvÊ~È|”±¦@Ÿ„ž²©s]l xäu\]×Ö3O§©ð4aœòT[|ÍM¾Ùš P‘0FŒå47™ lÆ.í,´;9Ý×U Eä$ QЦsûaË¥¥5å CEaºâ)w^P¢v@ŽýY\¼Ì 7²¬I“sèE˜åô\–'xàiiæ~ÑçóŸ.`»ÌôÁ:ö«ˆãR!9ÎvŸF×¼š$޾û™ æ:; \\.¬(ÿ'+™ºcSø¹>%¼âÜŒ”Ç2glùB`M6uÄ 'r{üÑ8–E dVËø>¤±1P¶ÓžÖFÁâ9å.ƒÊ×PÃòjíŽPJ 5­â0áCã¯Ö#™ÝV‚Ø´9 êðïÚy9аYüÁ¹+ÉÂr½´iÐ~A<‚ h»o·)Iå`ZÚB•¨$”\š]!»$M ·ö·Ä¬ÌXœš¾iܳ1z]ɉì5ƒÓLü#„0hz‘.¨ÜÚâ÷Àç§#Ç~Wßû¬¹ à®á s.°þS¹¬mØJï–%¥CnþgYn$†/ÍÄΰå×¢Äå­evŒê˜ob¯KYÆ'‰Ù˜Ðtô]LÐpõ¿|½bÇ5$ð®CÙÒH” ¾±[V}ÏS¼ì7¶×£¸n ˆùr–D…©Lÿu &µvsP[ù¡t{¶â%ƪ·5èàªÆ gsŸ1'Ίaeò}€zMœÚ€Û%¸c'Ñ·‹âŠJ2I9žr’컿Ö5U>ÖkKîcu3¹ê¶~H;³ Æ ­åŸ6íŽúrcbD ‡”àJÇ·@½¸5ëXŸZMOAÍïfÅ±ÒÆøãõ åU°Y½5& ‚ÏHÑR‚9f##jeœZÁÞz7YÔŽt¤—Œ¥oâK´€·Ù–14ØL‡ïù(ËbfðwyeÌRAwÞ /˜ òi$%ÿ­Ì%Öÿškn|ÌšP¼£8ÞZo¥ÊáK¤j¶wæ _G¹«NDÒÊ€•˜Ÿs²½p¼tKmŠeWv¦£æAP¤„½GGL,òÏi‡9ß}UCâOàM£_J’ÒEJÒâ·¸õÎWnÏè>C9tLàñùÑ_ÌØ>¤oø5ü¹„\÷©²Ç”K{s4 6ΦëÂ_‚ªŸ¥K-{ £Žûõæäçêcu0œÌ¤LIUÓÃÛæúFâÑuÂÔ‡Ø2ánA’YéX–×ú¤†¥6àYîå8ƒ2ž,2U^ªhèBbÅÁ­„¬^ÄëÑžÀc;;#£ˆÛÛì>s)ªpÀé°VÀ¼¶‰¢ÌOZr¾3}­u—-ʰ”##/'ø!ô ºÙ)EâöSÕ^Ä×ï–”ãe¯0[ù‘ ›µ—(皟ÂR•B8j}Ôô¸ï±ürÈd’BrÓßåªs1»Ý@>Afå:p .ÛWE¬¼)#´°•>Ñ)È3qÅ=šwLs$…i¡®©¤ëJ†¥Ó›ZÂÈG"‘òømÕ`¢Þ]ëÉÊžé°åè@-X–´ôX:SŒö¢¼!Fڣܩ€-”í2Sí££‡²²5I÷ö ÿ[f{Ê´“pí½Üàſť¾³nJC|VK¯§Ü¸|bÞÚ3ÄYœ//Ë·?ÇcÉR?üF¬BœB¾æc)@NÍ€U­!Ψhp9ksqûÚ2k,¥PÄ>™v{¨) ["%øtŠï¼‚·ÔYOÃd5DÐûUOÕ­'(Þ–ìØH\¦s÷eôU 4tj¿ÃD鉌qDLŸ¾õ-H ;eh (&$øMƒs”çô÷×òÛçN|u6[|ˆO'È8aØÅ[$nÓ&”f>FŒúöÊðéô¿UVýum¦ß·”[§Çpÿö뀧ZWø²¬EòçUÝŒY;‡±´K÷çþlw¸…!ñ ~ø² ï–“à¤? ò1kD²»9eÓ·"ÜZÿwk˜?ñkBŸp ýŽýÃëØ×;L5›:ÆæÆîOÔ? ‰D³2]èµ#‘š[p´¦T+¶¹¼/þˆ{Ž“>¨ÖªÐšúAíº)³ š’ýÀ5ß9SP뀱â>rÆ@A°ìs¨ùï%À\oÒùìVlà#fäÌæÄŠºåÕu.h å¤2Sê!ân`¸<½×“lm1º3Sè~¡(D¸´p„k©7¶<¤¿…1Ä´Ux¶å­@O(»ÛP D¿RÝ&‡‘t—O4ÂÃà~…ŽªÙÒê'²Û(\8Lž„Ð)hŠ-©»˜/‘ÜŸDÁ)ù_E-všoYp£¾ˆ›åáÝ.(y⢗‰jC-üòvãi8tãbVô[´r%³™Ÿ\ý†^)¯¦eEÚŸûnÒrKkÛ¨þ¾O~«n<eÊ»<•35²Êá›MÌ”ÕuAÂPV,'×NÈç˻迓ÿ±2ïÙ‡c¦ùô¸r0Uͧc,È6¥ˆÇÀA('pª©ËÐþ1;£q¡mZ¾7• ãYsÊ ÏD¡»+[à™#&É„5Éä³Û¢Cž/Yº=Ó²óصHÅo+ýÍQP€B•©H½½ØÝgÊŽ‚‚Nõ„å†Ü¤gV|D‚ò·Xâh³Ééd-\«—ê¬ÚÆh@Õå±çÔü XÄ®7Í,¯†V;ìRý¨L•sΓ ™JPƢ¬QYwK'OŒ´Ð»Š/[V¤)Üf¸ið ƒ3m@KÄBàS°ú!»pB^+ÚN㳊Aãr^Ñ[›,IæŽV>O÷ßlYœûÕ0r“sš‘ö®m.Ê1yÏŒïàׂ}¿yÿ_ &¸y]7¶hÕo ·Ñ[3§ŒîØõ PŽ@43]»'Ù%ó*ß›R;tÀú)ádS/®š9~âo¶aOvùŸŸ÷ä4 C‡#§ÊeXЉàe„› {k=eD?~m {á#mk>ba­!˜G+1àZMÍÝÙ4Œó„a”2¡tˆŸø` gpAˆiEE+Ïâ“Ñ5m6JD3‹ìFNôsd'!¶•Ö×½¥©-;y»1úÍ´=VŽÍøYâœéT{¨VLƒj¦œ ;Êd§ðÉc"­Â£.ú€Û+ s¶ÕW½;.¢ J0D„™»7!Gœ¶¤²x6ûm¥(sˆ*Æ5Ä©?î…Àr>¤¥sºä*pLÓ:ÝÓ½±?·“ÍøÝ°ÝN‰R¥»º~ƒèîwR‡¡|þŽ–¿­·|èðbyöö1ÄÂ…i¢N!~‡7ºÜÊ(€¾ÌŒ®¤dêØºÁZWtÈ‹j8jÚOd¦cJ½õ¬WJJO¢hcOü£‘ÔÞÔ8ûcz¡¬,ÐÌ6ÞÖÐÙ°ùúf3qžH é…iRv1ˆÃ­¡ï'ß’6 $¶ù53ö7ÙŸ!y†õö'Ò÷P>¬" ÜêîäEí·Æ¾ÄËoñ$õ(kðŸ?°1\sŽ4Ödt­8Z‡N…\…éí#³ö —淎ؔȂ.æµs]”îO“ÈÇÕägêíÄ1º.ŒÝó~ü—òÐh.z™Zª¯ÙËG¡i7¾ª²Ýá1>rð‡›Hñ˵]v Ǽrwé½ qîZíEÎñ:³©ÚÉÝ+\·±ä´G¯ÛdŸ7ck®¹!‘rç} àŬõ«)M”xÑgu¨eK*°?O°ÐbÂ?dwA5ð=.‚uæÐ£Ð‡vŒÂJJý„¢4§HW#Á6g4-ÏŸ¾ÐŸA]µÒÖ7zR.Ç;‚ož¶cF ²‰Ä–¡èA4ZX¤ó9’S !mŒE~ítKýÈÀ¾_A˜‚ÌëþX´£Œ ±À‹ &Ü\à“zšGfW$|©cØ+õ^Ÿ[¯ë‰ÇjUŸK¢„JK ®< â‰þáËGÐô/ÁýÙžj†·q7_bºFúƒl¶»5¤«æùÔK$ð¬Lí6 ¸y´£É=»!”ZíüŠŒ//'}îy#܉\%ÖîSË2Þ…÷ Ÿ5ñ骘¬·Š§‹I`÷-[47Œ›'ÜÓƒóé=ùƒä)ð§:ˆ”Ž8Ä=¿½¹Ÿ´CWÖlêtÝO†/éÓm;(M­6Yä]-ï ÓNp¹]s÷ÐêCsqêfLŽáB^ïyŸ@¤y÷z&ÅA´ŒfŠ@·|Ÿ¥QàULë#ä†èa»ÜµähÌ¡)‚ÁùC_Îùϱ»ãž>”ÖñÓìXö–U³Ü¥nqT†þæpJú3ܨ¢8ö„5hÿÙ¾åìÒ ‘³6UýÀœÁ½ žÃª˜(±I¬Q³æ9${"—© °jȳ€T¬­88¬e«›À±«}{º;c„]ðj„ºaÙCR~í½Ù ƒº÷ðýª~, ?!Úè[ªÉ„yFpΧ§× ;²iÓÓ|9ýby6®…ÔÊ.Y„ŸÅÓ‚R½Ÿ£Eê2°ÔUMÏV8C`&˜4äøÏ«G:Zp½C~lˆù#ƒi¨Ï=|À¨f3­Õ¸SîšýN/” ²ônï È,¼^$Žî‰6<É ÓkdÎé$6½ã¥>¼ò½‡–oSsõóò ‰*ðFªæi°¼¢ÝÙìFº€Ù‘ó`ûßÝv„c\l˜z>h¨ _JV0Èûj£ ªÁ°Åoa÷¾nvf>+­`"y¿åoâýîB¾ní«3õô®‚‘kL Ò‡}?›û¥0 o½çÑ=ÆÑ©÷jaû¡ñØ3ÌáVg!…@XnÛ ØyÖ¿?´c†ï³§Þø0·©&S¹žµWÔ½ws±dS¦ðgxâÈ4Pçs|’O4CÑqõ2˜2%Ânû@ù³L'ÂUŽ-rÇ—Àí³¶ÛÒ5 ^#ÜÞ7Nâ¬;ÁÜheöÔ¯Àªµ±D/3…À§•ÌÒ`êþì0ÇíÕŒqR~(ÎÞD¥ÖÀÕ©).*s`ƒðíe™˜ó®åžÄ2âŽ,¸ž_ˆäCÒO‚ó¤é±.†Côüø:dè¥ ˜<£´Ì7‘°ýà³ðÀËé°ðÖÈjd‡A µ¯Á,’“t¡w>ü/F2ÙˆÒ<§%Ø2tjŸ¼ÒâAÍfI¤.¤?¨v!$_fwòœÉÍ·ôƒoæ*´ºÞ¿‹33ÒðOÓ4Ó‚«ÒEz©¾w™¢é6Ó¥¥j_–„aÁ@µ(/„i³ØIš7pŶiE.6!'~ÄÉDÖÈ#¹P¨]Þ( sÛO<ì{Ò¤T¦ Ê9Çó$ÌÒ©ú“>`ÈÓX6È5©ÐÉdD¹‡D”cÁ`ß%tV¸~5Vtmn ç³fv €A¤4ÓfEwúbØ'…ãú+]0ܹ­ÿ|–w€z7k9h>'÷à`¿Ë–-·–l°è27ÕXRã‡'(>ðZQå³óº<”ÇE?Ìÿd'¶©Àü×ïÿ ¶;‚Ъ#™˜V6C~ÂãÕâ˾±‡Ís›¢Tl÷n£¸«hþŠžû·ÿ9ª´VãqéºPc%™wH9ŽWO,:¶tæ†+Û×Ox“9w˜ “E”éɘ¯håm1~¯OÞÌ&' eÖ˜œú!;”Ì Œh›®`+cÔk~¾T•ï1ä éŽmWW?i­‹¢·²‹í ÖªÙêzÝÃ(ˆJÉ0HNÚVážESóçÖ›$håÀœ–|ûM^­e…w`b¦§§”oiœ¨”ÎåNÍ$Ñ–/И'N¡¼ÅÓR5æ™/®ØðÀôqË“>[₌5uT°ºC˜(•X‘Ä70[¬Áß’zÝEHPÅhÁˆÙ‘Q™»¢§ñ)ý¼a6lð>7 Ç•V’Ø.¦ÿ8\sÖÔßõìÙÔ–·¹[²-]9¬É/h“g梯-äìõ]åx´y^u{à&:!j‹ãÀÇÉ'«o¶ÇhLG‡Â6ΚYÍ,—´å½Ñ)>öñ˜]psº*<ÇùnÑ¿~‚@®ZíÐS˜\¥Ø²0´ïÆ/£ÂWy´{%ºúŽT<¶20‹%|N¿‡:[¡?~ÃÉ_ì®ÓFùõ¤4 ²Î‹TìÙð’þCèv‚~âØÏÌ ÿ)YMfŠÃ‰„T„ 2Žã a›*ÔÀÈŸ=>ösp;?ú¸¢ D:«ªlš4ÚQËDñ+ùúP¹Ør?Z)ÂWûE~€mC2ÊNÄI:] ¡ˆºLÛótÒÙö§Õzγ´¸¹è}›eL¨ä·=’f$IkA?$]¢ögF0VüZní$kºÕ—9tNó°jÀ R[njXn.ijŠl*ߤ¸¹ÄâB¤`Û1kĵµÇòœ/¬¡Sç=8~ÄÆ¨Ã!»Ýö½»'—À šöx þ™£Þ?«[O›I>ûù{J9Û†Âa ¤îV3 R 㪾ður±š¦w\»ô2{„ÕG¨yéøtµ:…­ª'íP'n=ü‰©_‘ªùQBڴɃóWü ƒª/XåËî=¸ï2ð¾³í¢ 4²ô{/Ö˜† iÆuÊ,û…œ¸pïVX÷Äþü#Ú­aäâ÷”>Ö£áxBˆ”ó•ýv^²’鄯¬¢ á¼yˆ9™üøm¸%–*öÓÌÇ”uMøsòFV&¹Dù”mªŠ7²½`<ó!ç tÏù$Íûíês^+önè Ž?ï8>‡¿Ðr1¾w(Œ€—wUíǼ†ó£”Žuç äªÚ²º~1ôˆÌ ¿+fâ¨ýÐW®•ßÙþ Y%&çŠE#!aÆ™£J´½A)7ý?ÍX«ÝçÂÉB‹ü$]ÊZIF—t¾'~pȦÀÇŸè̾‡çæß²8ú+ÕXøA¡ µ`o¡ £›°Š=œÇzL1ñbêüâí®'Á ÊóÄ|hT€Š ¼¢èm~Ý#&?µx£ÃwÇü"°ÚeÔ¯)æÏ'àW§ôËe˜×gøhè–*})2¾? /_Ð^Y®¡¤‘·Ò.S“JeGjëbÂ+v@ú´Þ˜‡ÂTîm›Úcé] „åÈôÜ‚ó44A˵×CÍÇ’‚ 2ì©”è½-"¾)8}¸s %èZ™0‹ž&ú·Ø¿H·nì¡dŒ2ó9Ú» »•åº.2X-]ž,Ê..×{SiÂâ6aERRµOÞ±ÛûRCc8Zã{¥IŸ>Áñ¯v_¶¢3²Î€ôåD;q¥c–Ic B|òR¼ òWk\j&¿YóÁýp¦”?CŽÛ.(Õ´>ˆgBŒ»,0ïû¾côv*"B«½Ë';»ˆÒÈè¬Öy¼$䬣Àñú‚¾ ʈ¬á_X "CÄ0k†Ì…°³²–ͳ3ÔN ¿ ó¾1ï‹¶_ Ë7ýÜÜ‚Ç2ƒŽ²Å$Žê{Öd5d—y`‘Ô!6Š?©ϸ^nUêð6Ta²‘,r+ÖV“¤9rXrZ$•×$«O–òn|=#6*G^V§mó)“³¼¬5ÖN8â^ YA5Ik±JÕQëÏ\F8a£`¢c àqQ(ƒ/ ቘ¢”´µ·)—%ÛLº‡1»qm t¤¨ª$ßÓkö ý`'`©,Ÿ,¤¾Çr1´ÓãâuÙs f­ÛumàÓ›¡z»¶€TDj£¯™žp $RéU¬P1jòw•’’$‰”ëŽ9VÂ|™xíS+E ”zª.ç:ržU tò®öW7dëX gÔoç!-G±È$AALM.¼|0/í°i®ÃÜÉ#ÂÕ‡¦'fÈ„³œQ¦NpuCûÐ̾ ìVwüdŒeþqh¼!:JØó*NvZ¯;™gðD̦ §ø{0©Ç&ïx°Í =¤SyãI¿ù]«ú‰YXF­42èÅÐÈ·Œl+¯)æ5Pg•Ÿ{ç{ͳü9ƒ ¯ÙáʼnA.±×Mçðø4cp½ëó4ßûô Ý÷ÛÒ×eªŸu5±& é1B:IW÷ÐE=w®µx1„º„§ã#®…lCø9 º/JE Z—½Ú½7º¦ |sRm¨/©MXQ‚;?y…[ÓGõå—­4D¹¿1vú }kÔù×TNãT0› xé´`‹¥8ƒå,*y°œ–RGèGª½î2x_øVøËt>*É­ãUpt3Tv‚séË$ǺýV(hw÷xrT&­+MÅïí‘î{óÉüöXÄ©tgçË­ë`îô ÜËËç—çO¿‹%²ÐÏšTF¿o—êªC€Ö‡¿~ŸÃÕ,uЋJX–þVc'8wÌ?8¯CODûîŸéQ`EøÄYzy"[˜µ©Ú:›Ž½zqÐLY'ÌY¹˜”uÀí@ÆN ÎÊ¥Úíý¡›GKƒLb÷à eüG@98ÊžéßÄá|S f[Ï5ô3Ó7Ö97~‚YþòºIšùÕzÆÃÃ{æÆCÍÎÒ½øC·Ö.çìûéw“Å‘HåTÂ@3ÿ‰˜Å Ú·;£®i˜µ:³¬¢{Û¦ùðI’fžWUg U§ýÎçë ÍLŸåàOBËVwχ¢VÍ*›? iuh'þîÌ.Ÿ§n×)ÉX5¿æÓ1"v‘ª’tr„ßø&§$œ‡à¶š[(ºZÅ€8OæœËjüƆèÃ@”qÌ¥¼#­ åAƒåí-”¼£Ñ-ùN³‚Å#SrC§ÞÝÌ÷–«oØ5“òGöú9Z Yüx.òÊŠÑ=µ¹ÒÄ‹P?Wu&}S·¼„¢÷OÃý^¦?át|yæ§o*û¦/Ÿtþ°ÒC”埇fU3WŽBš¢;\·Ý‘’•µ‰%þù愞à´R cØË7wå%Rù# •ýõþĤLx"Ãhbú{)p¹6q+y¥9èY‚祄š ÁT ÑP&;ëÁøâ1(ú.jk™ÈSÃÔ…ÝÒ© û2GA™€c4?Ùò!ì$u‘týIp»È!w*;Ô°—¿á’審;ÕÅ çe _WL”—Tâþ:•`÷KP–)È¡?ò{‡ƒêÁ¦G¡6Ý30BdÇÂ#õ×½fQÔ3…ËrR¿å6%ÂYí+UMøÓ ec<ëw†ÃK»“ÈâÉ‹´Ø½é–ÐpHªµi¦ŸÆû?¢îý1Ò–pþ¬X ¼,R’Àp‚Ä»[0â»Äé<à·ì~9–†x´`L8‹{'‚uÕF©‚—¾§×xé‘M›‘™ª)ñªE5°r¬OI[n³~n ²; R(PìC½mì? kt~œá…2xkKÉkû–£g2Hâ‚Ðb»´c‚ï.O®wMñÿÌI•(ͬmÂÕý±~ßÛ TŽÅÐÊ•|Çq7@¢Õð±n†þÔH‘‰š?KLbóFT¨îYyý 4Ü[5Eh ÿt1²çk!O(S.>|¡ÑbÍÄ9<Ø×^ì̃&õl¬‘½‘Ÿ‡û-Ê@ËQ*û84=S.ì€J”xª›¯þ‹z3?_[ûúíªª‹HOL|`— "ÿòÐ1Ž6lôê}cI/¤W¼Ç)Óãw%iBêýõ<Î.b©»^Š8Ctdd™Mà‡²ú¿Eçog²/k­ÌdxÍ`zVŠ£ª¬4 UãGO={²ä°„añÊÏv‰:û®‡ý›_Y6Óñµ+Jªœéãeìáêç¸Ë_Ü àmfEz†Ú8‹,qÄØ‚…ÔQä¼RŠ`ù;~á¾6åø¶ÔH­J~·ÿŽÿ¸f6¬cÇ‚÷ …˜ÖG•|úŒ«Ê(c!Ù·œ ´ »¬îuc—øT‡JjeRQÞúfS&ª‡³Djaq£k²{š´i„‰Â6PÌZ˜½]”Õ «I@Yó‰É'9z;6æ’Þ¾#,WÈ›yöH$éÒÆvìzǶÆÍÄM†k›ícOéXÇ v² ¸ºÞ8 ý ÒPý]µ@Uù3ÆÎD`&oÈ1 Ïòwb•”ß1ÆZŒµü®×Ã<ÊßéV6Ƨ`OîmÜ fQÕ<Æ+òM;ï Θ/z¥³„2´¡ÑÀC‚ÀÑâb¢ Á¬Ýë@eýl9Ófbƒ*Ýøè (e­Ãˆ^º—]äËà6ç*m¢:+Ûß"É;†6ü--%®©‘¶FUÐÃ>ð w0 ÚxiœÖ Ö ùãSøÙ½““EŸá‚[Nä»=³8,¸“i±ÔjÔ“¥Gi;„º-ž8žŽEÅëè›—3çÜb ˆÌïCà°«û‹Fà¾ÿ ñð)¦ö²1•üüg°©(?FŸÿ”÷BÊ.¦ŽøƒXÉ' ÙÖúHQýÉûÏSžÚ fz£‹fÍÀkJlA²Ê n1Ç­S%ÜŠ#bB€e.ѹf­¦6mFïV„:n;hਕƒí§!¾ôDðêÕ™Á«*efð”¤Cë;¬ÎÎÉ6©x¿iRþŠ÷Ô:ÃZ8rß[]Ϊ„Å¡•&+–ŠeÊ‘u$tl­Q Ý =*µoÀ;É” ^(2äš­¹ïŸ+PŽàSfÓrë¸J¾›ë¬]—« eNÖÏ)-™Å• œ?½ÑW’]4ôh\Æ •KwAa9F×—Ouj§HOqt­Ë¤-à¥Ó ¼râO °Õö´eËx 2¥?}0 ¾byŠ—»›C¿P/ 59®YE£s¬µdG^Ôî&ÒÁ@Ãsn£ûÉ®NµÛƒÕú]Ò†w„H+`÷V Φ0\Õ¥SÅ]K~)™*å+Îñÿ` ïR ­ ™ Ï´};zþa¢%s›JÞ]ÞÕ⊢W<üXåÖAUì”:±b¹¸eìì^¾dc»â¤AK5F¨*ö-×Ô6¶›´jrËàÏ Þ’U#™C?K¸ëù÷ƒÉ+ßUšÀ‹TÝËEíV[Ë Š23pðy¤±1mL—îÛ¾(~§X©¡U•¦’⹓‰ä×°$²2‡„¬U0‰fßL£ê»‘‘Ö'îݽ{¤§n9|2üþŽ#A·¥ÅÅ©dŽ@({…Þäᬎç`†óŸ 7˨C8ÙV3·/_™¬³G ·ÏZ>W¾&TÝ—ÅV³ÌŸÊýªK0¤1,>èÍÂÔj=ä¼þ€Q{Py€£Tñ„©Ï›{âÛ`J†qgø!–éXXxvãI2 •›]väûwÂ÷Õ©' ¾Oe;t“_‡|_XÍírË€>þ•m&¯ÁÊæÕ–\0—.³ÏþÂQÌ–ê@2)¤ÝÛ=µiìþ²lŸ”,{©7æ+O‡Ø)^V†- ß5m‰0ùDýœå¼_تøyŒLdEDÑDA(ÿ~³ã±k!Ñi•.\Ó½yZöǸVõ‰H<3ëÒöœÿ¡dýÍ6×^Žx”™~ºŠ³8eö¿NÐþ®S Ç쨺Œ”Œ·ÒŒvÒ°q6“ïKùMq:¥ÇúðTÈG>5žylÚÇvIv:µL9ìÖ Oû>l]ñ¬Rº ZÃeú’L?î_e³ó¥⯗]\²I1¸(F˜l>s†JuŒæˆÁJTÚ®ú·\²œ¼Èhcf„ù >'—œ| T‹¾aNÄŠ—ËPX'Þiè»þkŸÖ‹JXLÒ/ü`Ïý:L;·i˜>‡1’=ð%Î.–—²±¡Ù_U® ¶êÝáþé¤8 Z²„•íÿ0”䮹5M¯–=E6”L|nÍq.0$r¶d²¢«ç88ôf÷4-mÅObÎâ¾Öf ÍÄüú _¿_sîÅ:X>'xì…Щ3¢Ë;õTج[ÃH¦B€¨ žU—þ»_è6Ýó?óЧ5¦{`D¤qú–ÜÝ{ ݘHsk% ¼Ü\“ËÇì;þž_ìâ£ÑJQ‘K˜‡å|A.GEÖÍd/ýöµûŽc;@/ßïSb]Ä8wÁYÈä}JÃ~†Eu¥nг°Üe)–Ò ƒ [ qü¢òƒ€±`™XÞá\@n㨂OÄþFþìÝ¡=ºhS s¨‹‰Ã6gÇ’t{3ê¿W:¾/¹DˆUHÊåw›hÞÀp‚üßWš&qÉ{®OoE/¡9eË¥çõB‚ž€Oåøóç Ž­‘–·ê †–\>Œ]>Wíʸ@?Œ*[Y¸3D¬ãðêx î‚î 3ÎÛžIN¡C2-«úÒS¯rM<ã:V]§­)4m(k ªP²\PaVÙ}g$4òpñþSæ…Ñ`;3cDJë¹âÆS>#M>0Eì˜Þ®ÄIˆœúön,0oZΨtàž„ƆMàeètBiЂõEe›ªd–͈™QælEsZQ“q™‹\.û6—9Ä\ŵ¢Fhýø„@€ïeÕÁ—OØg©]¼ˆ-c“…7£ñ´†…l¬¦ÞpF •²øA|”®ެ¶*¯…¤œ/9 rÂøÔð¬½0µQWŽ|%}ÛÕ»w¹Î4 Ùþ2 ìPÌ>µ¼8òÈåÕ¼W r™–Ñé=Û-Bïû§â„VižæÆ™TÎor$JPb 'ÑÙ‘#× ³3é #ž3êĈ@ùЈŸÀ]tu¦É€³œ´ë<]¯ÈŒIÆ!àF¯ß¹Ä­¤šÑ¼Cx1•Vá8¬ïÞnÖÇGõ‰+ÇÇ+ëîFûAÚƒ—ú#r=ýíÀ=:Ù B,ç|ìh‚ æ½¼ j]â£ß£h˺DìÛƒq>1¼# ¬«È63Žü¨°^ížZe¼Fv…œ‘~Ó˜!Q./〨ùÙ–¾f{=BòXR ÉäíÏ'Ѧ©ÈT3ÕxE¾.Ý}u9ÕúÆ¥' vÙâ° 5ʉ¸™6Ý#}öóï–ôl|Ý’½ãçYŸÅSØéþcRJD3Ó& ø0Mâ7ËÙœ¨êy™*0¦tã}ßróO0ÚÇÄnE|¯ƒÒkbØWƒí›^?DGúÛ§€ÿÑiP2FÁ:C#ÔÉÙï§(åè—Œ_›—ô\Õl&¾çYš9ã5wá-…õaU¤Î¬ýeg¹ZKiÐÕõÁ&S·…‰4í¤÷ûa×y6qc d3èSivB’a¸zøíˆø $¹{¼Ýš€£‚wy~»Ar`Ú&áNº704üÖò-¼),h9V]ŽŒí}êîÝ)€õ%þŽï—44ôVfªpÿ¾c¨H&æt±Õ&¸¨÷Ÿ9kv.ø €ZòµÃö_Õ‰K…Ç‹‡8)®çã¯_Ö°<Ó.;U!Å¡ÿÔ~ˆ» ~ôK€iì©—,ì©¶ÚrI9îTe¹ä­Qa#ÿŸ8"³³³ß[¶&ˆX˜ äÛbK@&άƈÔê]=Óƒ¿ÞtìÉ\8˜šc²û"a(~ˆP{—ÂÄú^{†CzkWV[ñ€˜ÉÒàgB¥ è·Ñ·À &R¨`#eû•á–ô6÷0ìt_ ãO‰~5ê…ëÚaŽ—-.DQ§;Lἓ–EFõž˜’Z‡Û@9û§©˜°ÑÎÀÎJ_µþjjËq Q¢¡–Û{;°ð­O°% sWrE±S÷“k«°…Tc·¤É nL«‹6í¬ïµKÞ«ÿYff‘K5/Í[ŠuÄá÷³Týä¿öã„ÌAé>¡9ë$¹W羆'…B\ëãíÈr\ä7ö(9*„)ïû=ƒ1 &µƒtN=—¼» òF æeõ’ç.„fÕ¿½Ç¿Éß0ZOm´œ”)»„Ìí`´–U @ùÙ&ìzœÁÖ¾ñÎ;£/cyÕ±À烙¿(ǯïàzš¢"ÒIŸypv(Ž?nX&!›wZ¸û¥“Ê.­Ì3m9#ìðN)ëv#Rg5óH¼xèÜÝ\ñ á ­90ÁtŽ0|z”ÎjÅv«úÇ¥is¨ ŸæPr˜ž«©·¢b¥ÑE7/ûÐd3Íå+‘Nƒ%?Zˆò‚‰þ@¢{YhTŽç~ î.“Ò¥°ý•–$`$þP9©yuwN+9WGšÒ‘<Rm¶¦ÕbÞÎ >ºFk:\‡ `bÉÍ‹3ìÞd-~^ýÜ~ÂV4Vp4é>çï ¾ÿåk?ÙLýªø±Š…>ÝœMG”Ç£tbŽÏ©‹ Ñ—û9"9[Y‡0hµt Q€°â§J ÙBéi‰­øŽ÷yÍV">*ëaÒ;§Ü¹Hùü-B9 jž\qe,4BiöŽúƒO˜ƒ gö¯˜kÏAÞ«5ú{Y£<Ò¸™¥´¬N©x˜ùìŸÌV„ö«œßPƨ(,dÍJ4Kâ§úvÊRxêÿ„oEu.Ô+4¨U™D;ø7r@öž°ðƒ&j‡ü®G>GÃI¨Æ\,y]³ßŒïƒ‚çä¡÷˜ˆáú I~MývemÂgİñ})bJ0Êà¬ã U††^²JàY?u˜PÊ«ÖÓs+ÀÓÁ˜°:ò âȸDk'ýèjÅY2ÔüÙõZc“;X­>›ÐŸ$2`b±ø{‡¨ËÓîwÈäð…ô9 ¦¬;ˆ{úÜÍJ@Çœò›+2Þдݲ}ÌqQ&9.oïÊdnìÖánšüÎiz'ˆzF¾8vBѬ 4:@wô â“Í­8O§˜YEà„Œ={‹¡˜¡mÏOSÉÅRèâ‚åâ¬9Ž›c†Ÿå">ÔßUYîÌ 7 BÛ‘* qú’Ò¾ô怋ÁÆñ2Cp ¡2Š…@öìl¹—t·«2M{WêÌ;2êr½ŽÂ„b|y“//ßBÏ< O…Rªu‡rB³¢¤,´ØÓ\MT¨Ÿåõ2š,€"8ae«Åâžèßn\“ÌÇô]­yݺgA‹ËæõÒ½Š<½3ÞQfÅ™\¾o¿KÏCø©¼ó€U{T›éJ õäBn»?¬UÓw}[ÅT<s—¦Ž!]8'Á¾¤,ó=-Að.÷—HñöÐÊÇóeRQêÉ9ä"î’±ëJRûçú‹Îº÷ª®Er/=á`J¿&ú¹ƒ`î²¢:„[’a7áJD/Q‹`ûŸW» 8§§š&ŽòfñÞ½º²7ãc®}Âv‡X ù]í6÷Ÿ|¯AImüà =†HÛÑT{ú8:J a° “ëÐmT[ô:-¥ñ*‘ÎGM6Ÿ±ÆÈ´‰äySáGÿ¤*N¥f]77][` …çc0çà1íµâLÿ7±`kà} R—ï0ï¹Í?úŠ+ÈH½Œô>2Ú>~‘vZ?†×ÏOÔp­Ž4ÿYŽÜ²Ý;êÊUV³™µÍ“a@Nƒ“lý1cM1/sæS+­Q%<’B Îç‘DD¶v‰ë¢ÉʶG"-2• _\ó,ãN¹X(9ÂÂá•fð¢lRƒW¤«–óÇBnM£Œ‘ct^³ A‡‰­BœÞñ t'¶Ñ•(g­ ×|¶ÂW ÞÕì/Øç3ÐVLÇ_wÀ©ËŸò1óŠ'©;ïÔ»øß[ôé´+„®ï(rhüV(ÄöÐNp|’§´%d}Rù?þ¢îµ endstream endobj 58 0 obj << /Length1 2470 /Length2 28854 /Length3 0 /Length 30335 /Filter /FlateDecode >> stream xÚ´ºeXJÖ5Š;wBãîîîîî4î4‚CpîÜÝ-H ÁÝ5@€ààëœ3393ïý{hÖÖµwíªj£"SÕ`³t6J;;˜Ø˜YùŠJêÎŽfNl¬Lê@k37;3++'•„Ð dëì$iòx@6 ØlÁÊʇD:ÝÀJK€¹@ 2Óôq²hÍþªÎî &s3w°èdm뤻H8»ø¸ÙZÛ€~Çà`búé··83@ÞÌÂÞÙËÝÞ`æd gVb(;{…¶Zg'€9ÐÆÌÁ àlÐê´4¤Ô52ê*ZªtÌàÀ..Înÿâ"¡¡©%ÃSÖ”µ2Zš¿ÿjÀü­Êš`ýï<`ÃßîJRšbšzªRl,¿k°I[pŸ@În>,ÿw°íœ½œüþ?V¶N–V¿{oéá¢ådëꔓü—9X„ôGf X@WÐÛ†åw¿æå·˜í·Ü?g€•™ƒ;ÐßÖ ~@òs7ó@n@¿*þ!±ñ,m-@àQo¤¿¢Ë9Y9øþƒ™ü[õ¯! ýk«Ò÷©¥³“ƒÀh…Ä¢ì íÿ?;írI{88(›9iÿOOÿ×ÐÌÑÖÁç¿MÿÇDø›-­²³›£™ÃÿèlÝ¥m½–ª¶ ›¿[û·\dž1'k xYþiýÞRàÙŸ?¶¿/'÷ÿèÀciaïtwpþí7⃻ÿ›/€EAOCUMŠáÿŽÍ_vRNΖ¶NÖv.n€™››™+xع¸~làÁ¶zÿ5,f'gØàâòX9»!ý^Pn.‹ØoÑ߈À"ññX¤þƒxX,Ò€Eæâ°ÈýAÜÅ?Séâ°(ÿñ‚cªþAà('€EóóÔúƒÀÌôþƒøÀÌþ pó?liñÄÖY8;€åßNÎßGÇ?þl¬`R–ÿ€àJÿ€ì«?ßÊöjp Öÿ€àð6’‹°ñq±:ýÃ,û§?¸û@0a‡? fæð{jþèÁéÿ@6°Á?b³©;ÿɶuvúG)làR\þ¨Á¾.fàó×hú#eû—ôï½ü1x‰]€n¶Îÿh¸t×?ðw±®Î àÅû½þÿw@66p§ÜþÁÞêäwÅÝÁÌÝæà8ܹÀ4A6nÀ?ÕqËy9ÿÃÃãÏ\€ãÿuû¹[8»ý³'à†{þ‚{æõÕõþgõù þ÷ÞUý}ýu0³þÙÌÿºØÿ 7g{ Ž­%øIÍ?L”Ì@n¶Þ¬àS• ,ÿüû?£ÿJ@õçBø‡·¸¸³·'+€‰|p‚+¯1ÿùZü}Çþu¢ƒOãßôZ -/8[„Ú¥µ„—¿—*šª€¥âc>©ÂÖ•O„YΜê"—Ìß!еfQ;+Êò½O rú¤KŠãð²Ñž\=ym©&ºkö^é=š”Øxž6³Vp–ÒR`E9Ý‘|^¡^)çLVGbÇ[€Öø ¾®Þ‡Xö‰WŒËTrÃŠŽµX¯’9¶Vl7Lï%tÂn¢¥©nHÐëv|ŒÙ€Ø2ý¬ia8î¸<œK/ÖdL‰È¯hÚ½,þ{,)Ú×­#xƒH÷ndb’Jâ kM’!®Wæ ^ ô‡I4ÈÄb÷ B¹) šÜÍÓK|WïôD5WƒÓ¤NVÓì)ù3e|ճ­;EZ½…½Rè¥ YÇò J¼ß²o<î·žõõÆ‘^vî›—M¢’ß:e÷2C…?ÿd‘G’âOE ü)Þ¨²EtÇbn ¡„ObÇ—­Ï}Qu&}Z†Ï T‡Ë™ÿ`V'3«Òë&µq‡Ð¼q@ZõéF·ÿË7äz{»Sû[4bÝùä:z/ÒÐ@iç5¯„42ÿ+¾5·¿¥*ÞNéû7åø9F•°dÕç”]6 «á°8ÆFøX;òé Kê«ô#L§±œ£;™<âΛ¹qì„Ⱦ%˜F2òhnîŸ,}Ó×EË×&{›PeäE·YZ?ùõKl]ê7ÊÍŠ›õÑÚËQ¿f?^¯È½äeÿJÆzÇõæ.ž7©A„³T¡ÆxU¶®ûH‰çJ½·¥·8P.–O´äñRM.*K²¡ýÉõiPÐgÿLG˜ÚdITFÁªuLQʰ ¶§žò•X¬¸º„WÇ/CËøÑjî8xÜZixÍȡlj8¹þºÌCjoaöä=k¯úý]f÷6«Ó¸^UõÇKj¯]ߥWY‘Ž'>÷^Æ%Ù§õ£*$èꩳD¶' vvR•ùlµf ä„ Ÿ+¢\§ä}$ä+èçf’žX!"“»¸²1È« §·q:"ƇÁìDr­B9ÂÙŸ!ŒŽ‹ ƒ£™¢¿UÉ]×<ºB¾¥7¤”ß)ðqtU½9'&Q›1_hÓ_lwñ@™Z¸TE[­¤”~°3¥-@wdú$\?°()76€Ú½Î8$‘3Î}H¯ï¶#®wäiAÇ#J!ó‚ 1e#Ø(J`ä&¼ ¥e¾“.ñ¾ì•)_ýZ-x¯¤Y8ÖîòZ “ÿvô0eRÿ—Ô³xÕA­^3ê ˆ/p ®è™<=V†ÏÒ!¤K?«Â;Õ4î`2ßÄõ'ò;?륑šk··~-KµÏÃÃoTX»«S¯Ù,äò¿48ZÚíºØ|l!lª‹¥?»°´Mvô¬÷SùNXÿ5Ã"„6Ì:™Ïø&[Ùt·DtdXÂ~u[ÿ ÿzº“f¸$±â¶§3ˆ¥Ïê=óbjÙBWöQ<ƒër8ÖpR7cÊâ`‚…í¬‘°>‚ pðQ—v¤Ä¡^.‹ð-s mã‡'ÚÃ7ަ渹[(HM õ6|œMsâɪ…ĹùbÙü9¹¢Ø_ñ¶ß£¶%â‰a¤UÐ)e`+ßPXvžA¤fçÉ„šM³e_·¾Vp|wü$ôÒùá닱•æ-,—õ‡Ft=W¦—oôë?Ôº†‰°ØNºÜ‡0lòdÞ0c ”/¶Xö”JFÙÃuUPn©½D4Ùûµ`BŽ)ï²ßíùW³gЉ¶î*¾6öß +û4eº‹¨—IùTÙŠkÄ Yž.]Ncb8d¥±® —úl£†r^DN™oýh Öé¦Qü~®`W]ÐøûY+›^ûçEN÷ÏÙݰJPßA0‡à"ºÁ«´<À†ο]%oªà–Üjm§OL$„tm‰å$*mnh¥‚3Ê©(Ð|‚zþ±-ðÀµwN, ˜ ]$ÁÙsŸ@‰bjîÙ(ÒXf¯éˆyû-¢ ( e¬©ö‰M0œ9oËDbr9®MEÍð‹˜̹ â{Z"È–e´»wïøÖÜdˆ¼ÙŽG«ëSv) ôü^ß`.nî¸ZãÀ³¹½%FÛPˆaÝ>we¾…å õ+—³^œdÛ¦áO€ÅʪEˆTX;s¥=`ÍHòdT~fú5©<µ­¶¶f_ß?Ì&xþ®*qfä.X]¢@[A?”÷J£ L\n¤Ì¤®Ôeûaw8 4P¸±(Ž PþU{EêdVʾ]_ØgJ¬sÓZïúNÊi9u¸}#‹»“Ã_9‡wVXz÷.á SñðJÃOÅÁ‘>ñCŠ™«Öå{ñ„ò k•‹(fP¸š€A¶0Á!6Ã$–oDd~îì»ÕüFùþ=ežç:Ž¢.>jkPUr~Žév‚²žXå&\ ºƒâ—Á#ï¸u~JÞÌ*DYç¼tP)‘Ï-œÈÞO??n^O’l¦¡'Ji«ŽP®ôsæÜ­Å3ß+ ®üX¬¢™PŽ*êBE‚/Ë`UwË2Ë âä!ì?® Ñ.‡Sjê>¸¬’ÎÌ„ž§S¯Üë,Ê(C4J¨Âæ²9ÆŽêÐë‡oþÔ¶$ %ÆHhut™Õ~1Â6t·FŠ·l^µr-a<„Úß…«ãˆsãàÓ¦‡G¤_+wcõª¹;ëiƒ>+Ð’ Üàyºjé=-ú.’#ò“ç[6Î=Ä£,ÈìôîYøêï±kÊO'Ô4›¾œPfæ ÙQ840’æ½ùV5è¬å¸;ê©§X¼à ^Ê–7н©#GŸ{v³sCÐÂ{Ú&2Žø”Ì3á$~h™ÖÅ®v¶‡êvfT³ dÄáR¹A+§ÍÏÚïï)RlÇb;E-ž4±Äá0çå–x÷ßò09ñ÷âY}µ“€+c!{JXj›£ÏuèE6Ð]–X  ½OÎb*#ìB&e÷ t÷$ÎZâE×N\ôÞñJ£¹Û“ìkô˜rC€ÐKm’;1Ì/ì:KÞP¿EUja»€]|·‰_xZHò0šî{å°xÑ+h~žSï_rQ3è/Ü8¯%¯‰™-D>¤½sû²j ‰è "+·Q`ä{!mû£‡õmr‚à¦Ë‚õÍœ"4Ý|GN®Å«.ÿÓE z«* @8›F¥ÿü&Ç7|à-RæêévXrBþqÁÝ%Q§H\,~Ç÷Ðßç>ªÃ?ÐòôÊø;=))K ±"²±™ÈÙp=‚’Ó’+P7@tãË)éó×u<$Ûv‰ÍXcž÷ì›qÊ7)ä<—”'É,sbïÂ1¹‚oµê‘üŸ™RPë4:]³fîÔྖ£y4(9 ·S©xÕºé ·‡Zsh\›Ã4­ÿš»LÜê$Ìñ9¤ÛnQ:"fµ ¶~½ÁPŽ·K«¤y‹ÙÇ47L=­‡~%¬r«xZÅä–ÿ¨êÇ'’ì¦/S½Ý0QÌ[À…{O>^3ô%ÀÚí+$¶&nÕÕ®ûåI=Çì¬ò]“†ˆM\B2•LÿõùU¡ăÔΫõMJÔPŸ„²Ç²k¾à!6«„ û†¸À™™%ÐU`N‡Ï+­þf{ÓåÊé=jéC q õœ"…ÍäçmYó©V¨Ãd:ä|ÞDKåÓ¹õ[€J· ´AM7>EN9LÃqøK'ޏ^GÕã”Ã:‡7ë‡;§Ó—õç ñÂvÄ#gß’^c‡}~Z½›” K7²q¼4Q7H!¨%¼K™Qó›NB‘˜«¤8(þÓmYÎâ隬äiK£«— £öïâ¦D^ýúˆÖr×Þ½}mª…ºGgŸVÄsbi1Ü|€#º÷¨Ió7M'š¸ª˜žrD>8"±wBžÁÐíɉޯ—åi»ËèšõÓ–±HnégúBÛ’s -ñ¤ÝVK§4èÍô­}t¥„D—XV .ùü?Æ­«2‹ö(™×˰͠[§’‘ô–AÒ®ð‡€Ôgeµj½p?4>½/èŸÚŒ¦lO¢äñ?ÞÜ‘xmø)EÞ§$n‹)µê½dë£4Àr×íÆ\w’€bÕ£©ÂluSqâ›ÛŠ Ã™µ\£YèB7VNG5p/&ðÜß§'ZLÅM`  Nk(±î=]¹„Æj ŽèéUÃ:Ñ"6§Ú‘ú¾®¤Þ%µÒFS&ò"³¨DX:Û“Ktʰ¶˜×_5òrûœ&«=‹í¶;E´ŒÂl·vŒÛ¨¼µÿeª©ùõë—JÅ»º©”ýÆ*—‹~âãÜÜ#uNÓ ìY ðkmrA;2;&Rï=ÍjzüËäµ\“Wz ·õ¹ÓLeÛ;™ŸU1Ö8LÒ| Á‡¼^GŽ&wwƒÊK„µ~{AÛ¥t bÛ&§‹Ü}øÛȬi+á*ªŽé+¿Ô¼/?ÄE,Ä Çd_èu& 9†Iæ è–ì\)IC²’*‰U³P.r6ýšÐ òsÔ‡¡ÙüÍɪ+˜9}ÏŸ{TçK¾ÅVŠ!~“é‚ß9›ï#à>dßqJS× ¯·éãG,ør®ø…St»¬®ª­ºÕ;ÄÝ”#“ƒ1ïŸØj¹(®ÁSp„ÏTÄžó¾A×­Œ×ýóœ&~‡ÿÏåÁª*ÒwÄ®¼ðŠm± R_©ŽòûÙ°9G)°g4±ë•¾º±pH§´Fâà÷JU_Éú´yã,u7æA¼ýÁ’ä1›ìM;\n]ê#}Çéýbu¨Ð°ÂGƸAI†-ÿ¦*ì#(ú=PZGÎ|}7ˆ¾lY¶_ã“ £;›á:·ÍtEàæÞ£æüIN"òìÑÊ.“ ßÈ‘œé¡o²¦ ¼`‚ø×•m>®ð³†Á °\7ìo,Kn#¿:&ª½/n|>šVÞ’db–}—L5”[‹úëƒØúOùáûŠÊúXøÌfòÂjg²¦"¢wPÁ§·Î»®|LSûÑ;=XÎ8ˆm ”"ƒùc‡2ÕºãmC£æ!Ç ëÓqn¡¼Î¦ÁÜÌŠ“ÂV'ƒ‚ iÊá&ýÍâ©ÁÏâ³Ê7»’e“Uƒ°7S9þgs4Ì"Âà݆™÷Ô Ö°_ãH;VpÚ\—~V¡Ub)-¯uå•ê–x.Íõ®khºmiMÆ>¿ÓF™ª™»4ëP¡#‰•é¶õÄ¥F}wU´òI3Œ@süPr°EUI÷]°œ0cnwÕÁ¦%_”®%#q݈â‡ÎÿÁœDÐy¬ú.Šd]¤.ˆ-{òsä×–•þĉ¶Lú=·¼§…™ÆÀN²;;QØ.ó­ù ËÔº//úHkZŒŸ¸ØÇG_ JýYø«Å RIÕÇÑ\û)üñN£¾ÍŠÊy†ý¬(õŽÚ60€Íõíémd^ï&Õ‚W†kŒÿ<¤ýÐG YmI%b±ý}û Ê2ä^êþnÛRý‹¢Fˆ<žCííÝÌu»VˆÀmM(Ã|¦xï–é¬Qî,zûÀJ®#¤ÑdL/\&ÞûàPƒ(Êuð8Ý—)UUÛ~õp“­æ¶×3ü›vZÌé‹Ã¹Ì‹ê%±±¥é*âôÂwÙØHFÛvëiPˆŽ‰EÅ;ógŨ¼«\6>ZØ|ÑrùІ8\j·pÅéGãa´¶ÒèñQ¾BÛX n#Nô¹©>## %©¤UåV<ä¸BmS4ÞbN+\@´o¬·v·ýÀ#Li £aÙ f¥Õ]-†ŠÅ†ÊA†Uµ½™) Æ¥eþKùθø2ùGhê{å8“7zÂ_¶ÉŒb1†Î lj6”£œèÆòæˆ?‰‘Æg°¡VºöN&è\jwö’1/v¡ís§Ó£%SfÀxkùÃã±³~ùNx·ƒ×åé.>½¬lk³ðÏ}IegqUú¾ÏÒÉC:Ñ%.U0¤ß—G¹Ê?b#æQ7­\Öi„”¨…èRÚc[à„a.”ZÇ…[a„}’ºq¸ì'R›ðŠh¢'kߘX‰–í~Ê&50µîWæîi35;5TÐTar‡÷ñ²{ ë‰Zf‡t=ÝÇï-Kf½¦ëQµ(Í~ãSñ‰DBNÍF%¼j†«Lu¨AEPVÞ „ÚP‡:²f÷ˆµçUB¾Í|“![P«%å•CëÓ§K@;úYï]µæ…êýü‹¿|ËT-òÐÄcß­ÐUAù\+êY&fvçrÖãÙúöŒ/È%:¥ß¾¯ª ƒ!מÆâÀ¤jžîÇ®D Y< †ÍD~e©r;PœbUɤîMåαò N¿‘|ýÛmˆ|€—'‹‚k8# ¯Ÿ9ÑÔ/õñ¤®´µoƒi©ƒ£(èÉ"ÆH³­Ã³y½ðª­¨Gîšü¤l°%pï}ë)f^ÇðµDÇ­6É†× Î™1Rç<:·©ž¦ ‚vb394ɽ*„õÝ|03Y‘sȯßFwìÑ£ÃÿÙŒª¿œ‘$šç¼zèÇ:&0‹Çd॑Qßb8œÖõ㭀ЅÅÄzzJaìNíÝcKêÆ ¦»Y§ â‡«ºŽ'q;¤¶ÆËiÙ‰]´Àa½m׺Þ4 ¦6D9‡ûÌî[ñåíDÉ4^£^„úe[ʉeB 4˘5´ðX%¥yÂÏy.W¤31œ'ES¦ªç]¹%úƒ(ÂÐç]úãsþ/ñtÓ.Î0¢=÷ÔÐ;˜ž„îᜅFÚ£éÛ{o"‰"¦]J DÚ™È:#N½ct³Û‚ êJF +íäOL´XmDX³B‰Å–:ï¤[?¤» UµFE qô ˆZ®îª—G‘¸éÌ+R7ˆ1¸Mrá±\¨ßä´¡s\_×ôfÜÃ#z.j†­)8<Šj—Ê­÷újWEÀƒ¾¸Aœ›Nj~]ä,ŒèRLhV r¥­’-îÊ$þ¥Ñm{¨ÔKñ^ pT’rš¨I$‘@PCÇ À Ú&3AëÑ‘^gÊ©O˜T‘(Óú3"z]\§‚nòÍûÍÌܯÕ!ßQ‘ÀÞº‘Öæ´é.œ¾ë=Sªh”î_Ü Ù〣éÞ¬k8µW‘æÕÊê‚dú)ùÛȺißÚ þùÀur„PòÕñ ’ˆyÇ£4ˆ8Úˆåg…œÉ!$½­³±Ï¢œbÐË>Æ—âDóû<õ} ŠzyÞSÍW,Õvå‰å| nÚ@O{*Þð›»EcÙý˜’àÜÓ¢c,±~«‰ÌÚtæâ¥ªã«ðj»Î™_.pDš&õ‰ÿePÍêç°e–©áÞXüÝɾ潘Ï*æ µœÊ¦¼R%\ÄÀ.•¼:Rþ!m”žU“›`´ÈhôÀv¾D d¥ŒþÒ«s´YMÑ}›ßÓUlˆå¾-ݽßÛ·GЏ·Mç³h5 tX+èìñÄ®QôO»,ýZOáã·Ÿ˜æÒôôã®ÇàÅ:êxZ~ ¹¬ Ê÷…6¿G€ÏÉ!} Ê÷¤ítýâ“q.9CÞAN7Z7W¾‰È~[k=,Rwìt£h]öó‚»Ùd˜“Å9¨‘$·[XuâšhÓ”"S±$™¼ÛlÉ$²Þ†X›o§k.A1ÎdÌ(Cóœä­ÐOl°Ç$9Ñé®Ù"¿ý˜w¼xלiRò­’ñÉ€µQÛ©)TtÚ.°<¼tºÌ2]"äÒszu–l`CÁÃ;¥YÚ)%ÔPŸ!褹„bœ§œªhÒwͧg–ÔawVó‰MØüíKÏýgm4¶æìöÁè¤T¨¥»¢;d¾ 78«4ç¬çéñW ¡/x)dÛÑ#“?sÛ2ζùߥ䀸ü`+°²1–ö2õD$ºŸÝRdù ™µ{—ææ!¦IÊ´:^˜KÍ›¡tÛ4¦ LÕ0D" ½Ì;Š÷w0üÕˆH!CŒÆD ðÃp[¥¥-¡Ö¦®[©¾‡ÖøOå ¾±xmüaŠøÕ(P§áàRå.Þz«•µ?¾±ŽºÒ‚ù¼ =þxg`æhÁL8bc7Š>fÎ_¡ÄÏ€÷ÓJßy¯kнQµÜ—0ì ¤‡!ø W×—Ú‹œÌ>G¹¹ëeÿ¢C^_•°zÂþ@{)êKÎÐ¥V†Ãu«Êźƚ˜ã~iÅŽB´vÜ»ò=ÊÈÕ´îñK¶­ôñ²#Ép(%‘°SœÌâÏÐóoko“bÐlæj{·’Ó•2kÇ'S“cìÞèsiÝ!‹á¾ôŠA®÷@MÆŒˆS;ŸõåE6Þi%Q“c?¹Ê¥'ìÁœýøfïµôHó«ôØI¶6àN [Hll©Nl±%¾4êNÛ³+FöêG¦©¬Y÷y§ ÆÓRßLÙâ鬴q™{¿&Yû½ýèvt69yåhüõ¢&ä´D5.ïÙY3…tÊûØ:í?:[qF¦ÍZæýÆœ&ÊË¥%lÍj½B‹ýê(O^oð)eŽâ† Vd<Žoº(Ë>Öík¤Î¶GÑΩM{”q÷5gˆZ„ºîž7uñäγî& ¹ma7Jyú„`tÄÓI(ÒÚ „âÖ¾QÇ~A¿ÖØ €…ï“2á¼O³$ñ2ødÛæ#";—ûÒç©pÃ7㯹ØM”MôUÙîb›eSS2ºŽ /ÛÁo¼ÕÖ7‚›¼V ÞwiùÓr ¤Å³©ÐMjS‚Íœókã3ÚG±4ƒ}5¹"Œs”ªJçOð!F ¢ãˆè~2-¢geI1AJ2Åsˆ3~!Ük/]—‘H<±­Ч^±F•Ý2oª)ºÁ{šàë=æ‘æ [² Ï!ñ‚ãk/¦á«†•„álç|á¿Ä»ˆ+¤¡ìÄØ‹ãJ³Ä®ü“דÎQÁAè¾…Ãq_ˆuË;ssC-„çÃç Žù¤åZ)ËÌ´£³h³—šlñz7:!ØI²_P`ˆýÉóLô¼þ9É®ÑãG]SÈ 9ŸxFÃ.n‘e !âeAÁ²ÁÑœ-+𣯥$“¿^ÇŽì/RÙ /"_3e…½ÜÚ¸ ªN’*“‰m‡êx(#CYÚæß»û–2Êe2’|ŒÇlà³FØÒÆnZúß+“YüLùdï§-昭 uš¤NJFÞw9û¢Nž¹ò9Eøç]ÖtE­ÑÜHDÎsÞ™^@BÓOÚFƒ3Þ(˺ð_¢.›ãÁ¬òúuL–BÑ S"CGíô8“1g×£€ú ן|í©aÉæ+˜5Ég‰þ9õÚ©Û.\‘y«Ð'Å%­Âùéƒô…µó®]-¬?•Ê“¢s»Ú }iv1jÌ_zöã8ªíÍ+)Š_F“cûÏpY ¾ÃÔëOè=p 3—$KèåèJûÕ.\Çè_f­_qäø|u4ý€›4\aÛ_&Q96ñââBås…_,‡óEHÒH,JÝ.‚Ü<¢¶ä0Dabòj¡IƒS·Æ=㌵צdáÃî¸x5ŠÞ w±¹˜É//WãĆøÆ5TÑoŠV‘\¸î¼•«^ÈŨ£*\g×ö®>Vº¡< ¨û&¹/,GÈ.÷e‘ Dß7¬×ñf³Â~ýËÁc¥IK¬\f½ù µjRÏÉØ¢—ÃÆ5,Û©ŸßX~É=·5õhEfºö>}q¤b«5w§Xµñ÷gRùÐUÒÝà‘¾¼6.#îQ”L€‡Úêÿò¸²êˆ^"1:°éÌðŒŠNz>*òf0^”èlÎÍl|çÜåóÝwž\¤³µ‘IÒ®™ð›–Rºs¼ˆc JõkÑ.3¹  Цe›!ô¼sîGû+JÞ¯ý)ÞËslÍùòîµò!ý\t0³ð…϶x‚R àW¦ž¼ V8·;NÒ¥`Ìõ~øD¦a­¿Õ Õ p{ö·™¶HYæôiì·S¸âÃÚhVPTkÐqkÝßM§Õ¢óˆ¤™¯¶âš0ÂxT š™ñC…¹-DµÏ¼žÃB,¿š ­…64Ìiº?N—|ìI7ùH¯¹–îÅöÃX‰ÍîÇè¸XpYÄ™R`k}zHûCÐó| 5ôÞ šˉ£¥Pr‘=ˈ‚Fù]ŸJmEòm–Ъѯ­w !R0¬“á +ŒþžLþ7?¢Jû"¿>z ar¥Q©ÄÕM±&E·1ñ;DùªZ—Yö’ßµE@‡,ÙTn}ý7Ÿwt§¤±R‡^mx×ßÚq«h8lpéF±ÑØF÷Ýzöý6Õ=¬D˜Ð2/”¡E¾8&x%¿ûK¦Úšû·Ã‡6CìW|²ö+Ú³ð6¶¸µ|Õwå…j:wÃbâbß“NI #Z Í[ÜÓ?yE0È=Š!:S•fA¡Ñg˜%úœ'âÈ]òàóë^yMQ)å郌ÌXD¡båikÌË­$ò~ùÛV¢(IÂzеú®o‰L8¥çþÞíŒ:t+ÃcŸª³½ãâòÂK÷ã= ˆ¢’ ²"IÁvêõPÀ’Êõ³#»ÅSnZÍë ÿ=×¥ÛÐ!Ù^rÄŒ*d ÜGçoºˆÔ’‰Ê8lç5ӿĴÑâLë–’Ÿ7G4µ ¨]&'>ri¹€ˆë/dDYΉèÕ4) Ö³{)> Ì;á{ 2ȨtÙRÄßWãrO•Ö¡OYàÆßruœ¬¯8 Z JÝ7Vµ’7¡¿‡Íάz”b­£j¦zi&Û²—g^ 1†V9–:7ê¹ ùàíS4h^ä]½µŒ³¸ëå¯ãм $œOf`øæø¾Š× ”M0¢éòdaØJC=Ÿ5n!ƒ#Ÿ«¼Ù‚@Ä’Â,ˆ˜³Ë¸x5Ô'¼mG*ææVÆ<«k˜n3ík}bk„F¥¼'ú­×Mq3‚ˆ#´`*¶½H5/ME4/¿ÝØ+9ü¤ÇøOzš¨‚÷h>6z);kaŒÉÆ·WÕ˜Qæ2ú|RÔ¶–‚o r¼µT³çA‘ç®Ë)|ä‡WP]ßý*—ÉXãºÀ1RIÒ|8öeý¨n[MÀãp´~¯„R3dÙöŒ:÷®Š×àx•ŒZÊÕÈ'à$;JíL”Ž0˜uZ s)cC¨íh¹‡¾âRšÉü‹^QŠ87ŠE”L£I£|Ãz v£á›6¿ÖSAh_µ÷JG*ý»^>~¡U³²OD>!EÖ'ß™žI?­Çže°YHðóØ?lXø¤¾}â¬=¬¢ãZsž›Adát[áîØc€}r+b`ñSg=Xú^x‰-?Ed¨S1†Þ®³æ¿\X,N’»k¯‚äUу q²±Ñ:«V|IÃ,ònå׋c¦®'œU´¹_§¤f ,X/ೕy:´eð:útÆÓ“„óåÄ* M‹ã•ßöÜZ󇕌ÔyóMZ”ÈKÆ—ÛÓmÔ}¾¥Ø7 fã‡åÁ~"¹¹çœ;C|áh5—F·€$ GНB)³Ó2‹­¥‚n\ÚðœÀAÄ 2Dsq¥¬¾„Àˆ$Èñ é™T2ãN*atwAúê¯Íõç8Â-^zYÔ©ëçÈ4ËÛLyA"Ìü8¿ÚÇ:öFtµj”ÍlF4pSÕëÝ ¿â ™éO‘Ì8 EÇ}®#‡³„™Ö/:Ãì¿âuq/Im©[É6mÊËJßq XêàáèhÏó¹'4ŒtÃ#%ní>ßêfrÞë¥XÝ’h,Šj X—÷û6î®U½Úà³"ñrÉ#ö]ÁG2†`O|é†Ð7€C'SArh!Ùôr„Ø»)nSš1YlQ]»¹~ì$y@>Å.ÂU*kø €ÌXB-{Åw=cŒYAåBp}OqUüô$–â¡ê•Óæ Ë Ãáç“ä/—.µ@Åw½ztŒÂ€G_/3$ÆT¢j§VæM(OžV79VØò齕¬iik"ÛVIîGÔù±¥k‚ŒÝYvØÛe¡_êÌ©RTC“h‘Ô,{ÞÙ¤Êÿ"‰Úǹ²ÜŸ´¸^žÏÂÝç\Ú`Î;©Å‰LÙÙDy}BêÏçkíϾqš%›ºë6yÜõ˪/sÍSxÒÊŒï»ÃÝŒWeIÅ­ ˆ°LQºûŽ÷¢êz߃j1ÇŽ&p}0Q>Ïr{ŒCe°AèM*z)¦À>|ùøR$Ú”ò@÷j[6>­mxÕf£ÕŽIBäÓü˜÷@nçh–Ø[ÀÞÖÖð ióíí0 ·ßìç½ï ŸX6(4Á^œL…¥U7,©O¶e¶÷u¹ëQ<Þùþê`+ˆtÐð“Dyô. ˜Dgìõë`ÓÌDŸ§xPd’€=r ŒJÿR¤À …9·Å^˺#ûYÑ8oõ§Ëqäw(Ð蛥ÄÌC6± õÝ31Ÿ¡»én.ötÈ1¹åTµ§Ù™Œ=«›P2È‹•Å¥Hm%%®>ïüJåTârI‹ë€y !OóÅ=Y‡éIéå¡ÜóÈjðí/@ãøõÖŒh›I>K÷Áê Zà Î0çŠß=2!qº2˜xÉž¾õœöhÁœ Ô½[ɇ»«[kt6¢Q#r†ä½Ð^}@ÐåS3A‚©ï:kõ¥Õlð`ÑìSê+ýÇ¿Ö3D¤ÿÅj]5F"‹ñ1×L¯]/V‡¶©Œ mê”+w»Î¡F»+ùäɦuð¨J7à)Ä‹Iºõ`¦þN` ¸ˆrÕáÖ(éóƒvúò(U‹Ô¶@ô“yyÌì¾·òÉ€æ»ýêQŽî‘Ž"AMüÄÖ8äRkབྷ TÉäu·lbº‘Íäbµ—bœwÒ¾+‚–|àãk5É;¥†r)ÍäB‡åaêiCÕ•\æj}û˜ë¬Ëªå&‚{€Xuì6ªxkY"œ *aÛ–â¥/¯„«3,Û(ùÚ¦%ÎÎÇ­!í²}2ÄžÓxG±¯‚öÆ'ýØÕÐøÐB¿Ö¥î{ 1éZþ\:ߟŒåEoË4ÝáŸc5 Oñ].T„:+Å÷eœ^1?s«¡°–«z¿·öâ>ƒ~Ùû ”Eã"zýl„„~Xª/z‹ãÎ&•ºšÉFŽ}™oØRm²êä1K#Ú¢›`üí°õâY‰ìÞ§q ·~Ûóè4­F"[Ѳá\±:ÁRÑx…‹ÍgàþÀN„ÓNþñK ã¡ä|¾~÷Þ¡A}´Ê)«¯›ßh ·sI÷áñŠë×su©Ï5nWQi¢ÃQF«õSe­OiÙÍrŠÓ)«ÐRóÁŒí âÖ3:“÷UpJCY›˜kŸ¨ï ±}Í ƒw¢bS0á?'—6x+Ã"a¼Dšu˜ár9aøS}j“' ›üŒ^œÙ¡·W-×üéEÀÒ¦²rôì9 Ù™àœ³› =Ú씣>Ê=_Á$õA¹eÅÍ+¤ÌàÌ„g!û˱^þÔ+9~L•aŒÿ¹d^ÖHI\l8¥—KÙ 1gàÞxÝþTÈ ·øSYqi8…ßP@áÒ¯¬¯ŸÖŸsƒKÝŸƒ·ñ0¨hõÆ£›i¢k'Ã_Á‰/hnÄÇÃãË,A3køzž ø«à^0sNó™t\ä b?ív™áFvH¡/¿-tB i¿‡Dï>:}XÿùÊèaøú~¢1éf|$UâvR-̽äûÜBWªx—=ë¾Ò÷HB®ŸhO5uk–4 e/FðnQ!Ð 2º`Ûg/5úZ°ºï¶ÍÖoXª‘ÚƒL\Žžqc ÂH'Ô..µ›§,7(•ù…§›zµzÎ2†s´®Q‘6H~xyï-p_ˆ(,)¥ø [–†¤®î5=†ˆv¨Ò€xØýÅÏ,LÉÝÛjrãyYå3ͳtØú„cÕ,óïfºOáúÇñ㠞׫ÊÛlµýÞ£VM‚$È/<ÈwÜ›$jÒÕͬ‚SK|÷]ä¹rÍ3l/ÆÔ£>-¥ÛŸzòyÖy¸s¦’½P‰B½(•ÃSZVÎ}z )×½~vÉ[̇L¸Ñœ sëYÕ2"-W`{ E–·j¸?§F\ñ~ä†X·‡$ÇÁI.]7äý>c"Iqp®é­vxHœ<‚9#9™nG~e­®SÅnjâ91ZœÁÇè6Uø¨ÎMõm=üe+(›·ÕÊÉ`æœÞ#“;fàA×qhŸnäL5ñùfqy0Ñgq¹¼|7Õ¬J×>—ÒVµ»(ící´Ÿºÿ™]7vD >¡Œ|”U0ÃéF…0Þ;5±òP ¨;ÜÉkÌõ.Àpd÷z»Â‚OÚí¶Gs>^Ðp+?¿°:ÕÏûÙ¹R/ìcSÉ€ØK!H}I U»Lú\â× €†œèmH,ÝÏÖ?¡Ëé®ÜmßÍâÿDp1žê+?WCP–b„Wc5-ôxV‘“QæP¢¨øÞ2 æþ‚²@”"åÙLÍ…çWÞä»^1«…ÝÔœ„{Бµt{YÚ €iXy5çþæÅ¾k~âíÿÐýt¡•Øà޹G+[ŒdšÞ™2ФŒ译xõLøÇ%é´Ò€%]Ër,± ‘ea )™1‡ôiVÂJÀK&ä*1”…ï}pý‘ÏÓ¯¶o+ÛËØ Ù6æd, EÇ{Y6+º1™×,xèžTg̹FH*sbt²wÔ8g3ö°R¬|Xé++^ViÔwä–£›wdL®ùö‹ˆxí¦Ê <žCÛæFæ¹ úèí[ ìËèÑ®'c|R)Wá*ëÉ£s‰Í§ÜEál¬³^8\~4¦ö¤ê8‘~]þ­ Çâê‡@WO‹Ù_ÍÝ£óPÉûËhy¢‚+}ScƒŽm¿:•³y'ª ¶Ììœ5|å­8æµ!^U·•&hPÒü& ŠÚ0X3Ä2­uš÷1‡æTXžL,Ù~êúi6üé.ËVo§ßòÖ^ž:­3:õÖD'q4šYå—KŽ¥°nñ>òÊ*éàü±œæ/7v>¯÷ù”+½½A>_m§È~Ö1ë£Ù¡<±k ]¡ ªZ¡ç‘a.°ÍMU¸;6}> 4|oªÙ¦×Ç’§¤ðŽ»äþÐà§øÉÛ¯d‹¢0œ[‘M™aÚO=t–˱ˇø¢¼·¶>Ò![x¦ß”È yžðbfýÌCû(Ia}ó·Ì#|bÃÔu>ÊC‰~‚×Hm¥¡¿À_ÀW~©úœ`ûü± §>,2™™~ ·h@(d—ú-žœd—]ždï£`a®E ‘i¾Z‘¨R*‡RíU™‚|þA¤Îùýc2\üô\ïLøéÌœegKï0|L¦Ç<ƒBçV÷ Wk‚sB*O„c‹LðŽs:Ze­M„,ýýú›t»Êò_õ9 &ÅÊ .kMÊ#=Hë#œàÐHK†nÕ@±Ñyåä‡6vßµ]’n“e¼Ñíáû9Èegý\HISñ$"½IÖüÃK/Әߕ—f¯E&ö|ÖÎ2˜„¯Š–(ã¶ÄFs3_kĤǮéÅÿ¦ëÑˈ2 q ©Qsg„â¡¢$!ê-C-Ê Çžs@­t§«”aÌ&å÷—üöც”JøK*‘ÊîÞáE%•ë-Ó3ÔOw!Ml“Ñ ÎK¯uŸçWŽ™n^Àƒ6 Öw½Øê#Ùï¬X#X¢oç¶4Oµö'M£ÜTv^ ëª}Ša¾~u¾à‘-£k òöT—¸·èÔçL˜¬N¤=6Ó--bî÷W&'¬˜ PÕå9É©=$—tÎ>\ÌÇáÃöç@¿]6~q|°Ró,*Ä—»Æ°ö&¨1éâ;vѪÅ}RÀ¼].û@`E¿h>J³çÝp›BþŒXã§ûoÜí1mÎÍYÞÔ ®Ë~½ÏIÔðnðv¿‚hMÞkÔåd’«–¯ú¦p³ö k¼“SæZœn¼LŸï·Í‰žè¨×KJWn¦!òmT*åƒ “ô°Äñ£7BFiïˆj¯,‚R”|N-´~Õù‹¨ooê>ódäU¿DVÖE:Î4‘ü°·’éù©k>’[’­4utAz’ð2'ò¢ó[ôÑ2xÍÜmå†+:ñt)<ìIl"~,W¢\.# ­zN")æLaÖ¬ë“GÎW'«~¯åF‡°8PúQ=¶F5ãФÞ#ÊæmÕÍ|:a ¿Xì_'ù˜±RôàA.Ìöaå§~5^|UàRÂ}}`:9“x¶ ®Aÿ!(Q·?gÜ¢jlŸ9a9"Q²»ŠKC,b†¤2—&r±­zÍO›v¹ÖæFóWf=“†íBŒÖÙvÛ[ˆ¥½_Èç ‹´FÎØ²¼»ëýbÄŸX÷k}Ô;ae: ¯Vq­$ÑO³ã'#º1§Ô¸×ÇHu¶ Êš–è6¥CÇAÞZ<5Ò<#"ÇÛ—:#¾nßb(Ú®‡ÐÍ;ü5GO™ëR[ãBía¾ëEOÐð³ÄcœJÜ’%œm¶ö”¼o. Ë ,o(!{%ºt=RÕËâX ®¦$#„`uü.¶ö‡MHÊû»‰Êœ%KøõØ^ÄèùÿkãœvEQ´e;lkÛ¶mÛ¶mÛ¶mÛ¶mÛ¶q×}ØoçzRIOUk¯îÊu¨'sßs)ñVnÕ¥§] c w1êËõ¥p>¼g(²ß%‰úb<{DuÐVL-qÐÕ•ÑÓ>úuyžÃ>Ö0+ÇTî‚ÄÅìü‰”&dä)‰h‘RÎc»£‹G8¾»"eJPìþ+8S¬VÁ·Êð%ö’pf‹wk 蘮ðþg/ú<5ñõSJß»W´UCK +ºÚw5«!~®±RõkCUHÍ~mCãäÉ—¹Ç†´ŸSƒ¬Åhì.P²£„ÍH'á%i\Šè¼çR4/ÓJ=‘}‰QÆ‚® `GöPh€NÿEŸ('Å$jú¾×Ž>_b£¾ÀP<ËCå„ûd'Ú›µf0p[Ñ~FߌkóÿAfYòr e7<±òê]«1c÷a~ ˆ*¦S@Î…ÑM¨Š¥hp:Zø´Yó¹"Åxš%ŒÎ»íïù×v}l.´S¤Bö H»6/¬][¬…Ä@'cóm>oýgK-Ð÷÷¤.º[Ü.X|«¿ Í ßäwX¦dC`]Hˆ¡ØdÄåìf–P• 7º½BpNȹrÌCì¹(sÊ·î–¯F,Äk±O½Åñ_«.‰/ë¬ÇŽ„Œÿ´èøS^j¼/±!ÞT˜º`ÅCb,}aK®¥¯[¸ÐÔ^¸29jÿqÊÕx(÷ƒ²þzÒ¦–ÍHÞÍRrÝ—ÝL}¨ì™ƒ=ýöƒ}Â0ͯ”ÿ-}×½‘ïÅÔ&K£ÇÎcÒç¿ûxÕ)ÉJ,°9Ò ÏrøHB•àÈKd+îƒ ÈM§~NñF9)gÕ ýaÎ@¾ ÕAre5¸mTª¶VFûl ìï€=%iþeøB,Ùͤ@Ñ¢ßp|¡DŽ0S&1b~Ns¯ˆÃŒ[A™gã’¦OFîI²,&¡P¦k®4ø¾>t8(U•©+5Üè0y\¶BïõL§é ‰$aÔœ_4 a#y¦ËŒš½O‹Øš¹´ºÎ=¾’ôdaIå´ÊLNÝÉ2 9 Ñ,6ý4Jt¬Wš”-F™NÚã ÎÚÝbíKB]AÕÍååT9/kˆ/Cæ©Ü|qOÉ}\E½˜Ìš*é¿á¾ÇÛDÌrFþa`á°±´ú=ϨQ¨‘—r•2%û–êaEªÀv«÷ø¡h9W4ÂFºêzNz÷ðnÙ«¦ƒh…ý‹~I«XY!¹ØAtºÔN˜‚ÿ÷Õˆ¢·M­b£ñ‚¹»ÄÏR²@¤ø¥r0«Tn©ä %:)ò™l†Øc@yí.T͘‘¾”r!X‹Ûóºéã…ÓÒÄ*?PèUNrèxct£[¦­ùRë§@üæÞhð¸v’ ³2†ú0ÙYØ•ç8¶dàîœÔÍYÀ˜Þ$ý³—Ï=·$ƒáœÁõºX§tfªõ:h”r2jS=Ó…!é2܇ðÂËT…¨6¹v¬ýùÞu§°~æÍx0V=[î´×öÌ‹¸öýù¶ówp è6J“È)GÖÎ -Ù9N 8R6”sö]YyѬ]fÓQÚ¹}ôvå‰%©µ3ЗƔØÛUŠáP£Œ:Z÷›5ßz†¯ý^,WKoË3·‰ŸS‹úçøý75a€Íuè¿!èÔE7«[+‰™iJˆJ –2íÆ¡Õ€™[­,À¸eÈvG%Ìö^à/É»‰;òáf÷Q5 2µ„¡½s.&yy磜KPÌÀ 0ê³’·°Û»L×ñ±× SŸ°¬¦—#[‰¬7>Öœ 2§.3t®Ö9Ç óè‹g/íUvÖ»œéö÷ÎáÊeí n£3/j&¢‰Û€@㓜(šÃNÛÀ_ mS_<°T€¡msse6WÇzøwkLÕÁˆ_Àbß. }ŽP@mslè”(ÿ%Ûá¹`QÔ˜]վ¡}ìóÜ@Û *‘(ÉgöýzSûú¨}˜†ƒó;_³NK¹ê[žÚŸšxêø(ÔÄÒÒ–1_»Ÿ{¬Ü-¾ù‚ª•cÿñÕ—S÷sc8çNO~¬\ÿÇ22…1Š¥0oÓÁJ–¹h=šS}ågínHìK¨3>ÞäG^Ê£v8΀¦5ÈÖ±ZJrMD ¯é}ˆ`›:Êk]m^”vÖøˆ8±>ÞðÜý&N EÉïD“ûm@Y—5é¢WD$¹tSt¿·S )¨)°ÆaúS!X)êoæb(ÃÅ«¢Ò’õ‚ÒgÞ'ÏÖq¶»Tì3u£¹ 1!ïe”ÂLÛ39g8hÖáêjŸïøGr aÄ’©6<É÷oຊk_’yŸtUëKGGš rv’íR¤ßÚÑÖ¶ÐD–*ET‚…éÝYç¯v¬ã¨ Ïd³³v„ùR¦­—žD%ö=BþŽ­5®§Óh0›Óÿ„3~Y2ÜÚXµÏ#tåҸĕµÛûp¬[ùêQ-ÕýÓ&€OÚÔйfZ]}ÍøÕÜg‹ÐÌ}¼D= 9Nºa'¾¶åŠ$d±:XÚ6Dö7ª!8}$ÅB£Åj³^.³6«9o)\+z)7Ì_ÈaiÖXŽÄM #\àœß3JŒØÊ[˜¶©ÊâÍÃzyVÁTÙ%éÔg˸s˜gÚ¦­'zèL%¢T°i¿ù-áÅ•'ÌãSþjÏq´6ëÐÌ¿j¾uÉÈÇ@‹ßÿ;óO+n,¼v·sIÛw“Qþ‡‰[Kñ9:ö~(¤ÚPT´ÍŒª\·— ê=«Â<Ô%€Š³­Ø‚äMuc”è±`È6@ǯԯFàû–HÉí,IÕÑÜ{©Dë]*:›ëŠÊ#w”suÂTNNÇÊ‚$îeÉA|§`1Gß UÚ4k0¹hÆAxäÿrR} Kl³¦–jôOKäo7ÊÚk‡&šÍ"„^ÒÔ¥bœÝïø›ê»r†rÔ¡ÿ £HóAZÍ;íÏXáûçs‡—.¶?ªâ@`Ò+?È2M[!5ÍP¾eµç…üK {lþÍ´q½ÀÍ8©Ï.9=ÂDò$¶ÓMS­bIØ5¶mÛRô_ì(°ÞøGxët3zu›ü†¿aãb¸ð œ¯°#o31íXˆÂöæÁ¿áæñY5Ç}1å¨Yméõ‚m­Y‚I™4HõÛé±}áˆÍa¸ß¶ˆw¤yU=)°ý(•¢îΦР†M*Ü)ü‚z|Ù«éì†ï7^½ç¦#Ló4^F8>>| ‰hÄÝxŽT ŽÎ›(ç¥#GàH<Øcž¦N‘%3¾Æo‚S‡K· +ÑhUOnAc¸ŒdˆýþÉΫˆŠ´‚B±Õõés‚Òc;Î}‹Ãz E`. ¸qäÿŽ >¨¥ÑÔJ\#+Is >°LIÊzìÆl”lEÔª…Ü]ƒ[W€[ÅÊ ©–‹‚›a›5L+^ò¾3¯.Oéã jŽöV.p[ ìk5Š ²â/°Bwí•,#+ècµ”˜«ÿ°³¿)Ý«ÑÃêÿC=Ý­§ÖE`"müŽ=ñæ¶•¥ÈC2´á2-qžg[<ÑMÒÓêÆðUªaÇ«_ÕvÞm(ž{Ås祯…`—ý8Kü§ê‰cÄGw%ò m^á׌l÷ÿœZqÞ"eeŸ_!C3TŒbÎëP^ÿë^÷üÆÚA‡Ùkz#øc»ìÔr¹*¶œ]iÿé m±íŒEþ°žröKà.ãÇQú!ÎÄoïì‘k˜ãxÓˆŸâ¢B t˜`˜«ãlÇã|áW>„{À²–h]ŸJC¸÷ ìã’gmŽfÅöüêíø²gýÁº(¤2žÅû9²ŽQod”BŒ l¢-rθëDòæE$‡ý}I«üÜÞ%è–ÖÙ%_p™Ðç$\}¸/ÂÒî‹©²¸[lëÕ¾ëg^H°õeÇÕËÇÍÛô䨧”o¶ŒoN-þ»“5J'ݘ^3zélÚÊt7Iʽ×{¤ކçtzÁó•ǃ.ž9}Ƚ’§Fiågx­YžáË-\±•x»Î‡°H¬IKƒv.Ʊ$žóaX#¬(ê£èRÒ4²S’£ú,n60Áˆ. ypráoü'ÒN÷;Rp¨EEÁÂbyÕWöî«O^®B‘(ô¥ªàú0 ;¤Ö$¿lÚ¼wÀø‹uŠ#÷¡À¢ú+D?Üwòv霼7Å@Þ•ÝpêTV…» \KÏÞ$;®ÊHÝóhØ?²úY|ñN*Ï×Pg.y«€”X–Ô"¨h£“æGÛO÷]`«Ð¥CÜpXè…5ûÉVÁ¦Ð- nx¸UèW—ÙVlĬÏßõ^ë1n@îËÁ¤èvG˜ÌD3 Ѳ(ÏçíU»¸øô—OÃ'm‘*žƒøû…[SºÖÝ’'͡Ì}“s]Çla½ÛÕ?Ì {Rî Û ™ ¶Ãj+ý-`•9€b…ÕVY&÷A'èÔüŸŒ!ͤÁÏ3K"–wwišb[ë3b‰‘z’py>º¯÷ñ {50Ä‹¹g™âßþFO{Y·P»6Ÿ&ÀöâÿÄòÎ`á‰w† 5ß.5 {Õ•1@íM—ºË\Ã¥®_åX]½¿0ókVɘÌÔ^^ OQœê B56ã6+–ସݜX¤/¡Q_Ä,–¿Y0zX>1š‹®üãòØÚÖœs`ßèCpèSÄ|ÎDBùøiI‹0U9CäI/õówj½¿­]'ÂÙúÅÊΤ«Wóé™GC Öƒû¿aj Õ|éæ¡«¶K Œ"@tUˬ~®C·Ô¬Ód1I®„ÇÄ jÒ”³¬OQ·ˆq—W&dqÑX9ÞFQá’¢<ý÷bpkk=N8Êvά’±Õ‚^´_îvçöɤpÚ—xu‹¬Ã~"\ì[fñžäWº9¹Ê¼aØBšu%Ðû`»H‘‘è¼êç»y¾OþÁ«ä¹¢/¥Žªîqü¶?Ì„óQ©ÇƒLJ´Q`1ƒâÑ`öK͸"½hgbõGl¹”-ªfc“T’Èœ¢M9Žþ±Ä¶f3°Ð3ŠŽU—Âòe†ÑŒ—\ÎʬûÖs][ØP“^”êK[Ò_ÈS™ÍzíÇð÷?t`· ~˜ÄÃ-{î>«µX´|Zø}ÆZ‹e§UžçAŸ{Ì¥'suJ“C¸•½Âͧš#"üμ˗„v|ö_µÔ$e"wì8ëQ¦zŒbÕIô%h˜pïQjŽ@þÝ´ý-ÁÛÍIAq_1*­Ë ×êØ†rÁŠç‡i V’b3é{šíŸC4$LÎFIÏÁ¼XÒâH¹±…H£Úå43Lc;N_u5”¼C5 I=(eønA3u¬á'.ÆNÖ¥nJhT¢k\®á¨%‹ ízVmüÑ Ý["M@eçu[èue„+øúÙhÓQÑ3Íùî°_;W ¶3™jÂVPœÀ๗°þZ¨B’`‘æü¦3˜O•çÉošME`gæ™þ•Z®4z5&ãh3d:ë?àÍÜ¥4Abçô¦hÛ‰PÃÀë!е@ìZ)õvžCŒÞµº\ÈGY”9÷q2› c®òe2z¥áfZ*¤¶%š«COpsm`€‰£Ï(¥ÃW¢!ü Kî4Q]\a€Ž’× s‚}4oTß,Hïí—Ñ1’›¬)¢3\?°(¾S÷úacôþÎNo­œ­$oAä~tÝ£…Ô_жS{âž’úØZíßÿ<¼M~ ¥Ô úàá=ÙŠÔÌù:/_Fâ]:zf¿¥Lr“:çDŠÓEܬQ‡„ßîÃ,h± ¡ÌáaŸvÛ©>ôs†±=\€òGh¡–X0r£6å"Ãù2>kŽR¡q ·t¬‹5Añð€ƒÞõ:Zó n‘›_d ç‘4ÓÒü$åõÝ)Ø#³hD£S ?K/LÖ2¾ƒñBüŸ.…ƒkø>Œ€§°ù› ]ÀÐ!àko“³?GH²ü«ŸGNÓŒ°bìz#ýÌYëS»J SS…¤Ýë'#·8”ó#¹J+ÿk§ø|¯YRÎȹ5¡eVˆvD£Õ»@¢•­qÌ/ÞªZ½¶llFû¡Š‡ÑŸõhç.=M Êo²y–eo˜U&àqXq ~'õä íH¾Ü‡VM|‰©®ºa±£5bwh06ÌÏ^™nÿèò,~@ˆÞTuά°œH¥y&CÅ>þ¢îžñª$³ fÚ'þeáCdÈ}ÄJÛìÆ~õ, ©œñ²ÿ‰ßóz:¡¯1òe™)ÖðaÈÁDNñùDñŠ’¢6s®¾Ùö×±„$D¬UpíN‡x°”ZŒÂû:BŠ¥ÀSþιh>|áóy™D¡! ycõK—¬Lœu0Úç/{P¥7iWÊI›öoÉ|mg!ŸÒ‚ÀIrm©)V?С•ôf‚BÞÌÄÂ󾈾r áÏ®¦#hÙŒð·v‰ ë `òŒ>dÉÔâìņzéZÅûAÔA<>'­÷Có$õ¢ò;‡8Ë(“0ˆ¦•ë…€$¥‰|¬Ü^‡§öðŠjæºT5Åi ¦éšÏ0uùå^¸ êÝÎã¬âÎõ,\õ æ bò(òÉo¨)-dmkiØ;Mãö˜Î‰êo`µÈ‚  à·c˜Dö)"z‚yGÙãôA*üŒ²›xú`ÑÄÿ¹²(2¹µ• °VØA¼¾¼PGÔLëЩ*…­/þ3 i( …¬€s@¦­¡F'ÌÙHZÀUÈK~ôµ"{dÅÈn`ƒyµèQÂíá…¡0=á2{‰¯á-8+ª=DØÕ¹¹š÷FzÒõr2öú³7Ö³ù'hF7õ!+Ï©¯¢^Î îq±v¶zxÆIš¡_¡sŒK™UpaWϳ1 À¡ÖõCúŸ jÀË#ªLw2~té–ì›ÌÐ På²Vúœ½"™<‘"®©á*›ÍÖͼ]µÇL|·í»¢©Ø'â7%!ìÙ}¦é7W’gYñû5ÍYdœ³’åu¡öyL\ß·>G{5!s6ƒq˜B—$æ`[Ó'Kn:ÄJßz 1L,J†@§ÞÏt8c‚^<ÐaÅ€+7¯Ì¬0½ªSˆ,£«Uêþ:9Ê_¸,x7!©ç¦hM ÞG§µŠÎ4KÑAEM«Ÿ*2뫼‹=öËåPân`¤î+é[¶Kôºæ¦J2|௃µ@›©–aTü5s¯]ŸèûÜ¥»B·~v×—Í{p‰ÒÃçnø/*'6Ó¨SA÷>†U€V‘¿3Öˆxø½2mïä¡ f µMŠM;íl C?Ã뢄¨’VŸ7Ûr`i|êë åÏ%À2EUá{³áPÖ½ –\|©6úÏ­<à9Ô Ó™§z»{ŽþñÌfÊ dûüÜ{Eƒýxl[4äL ú0±O|êóWØn¸/(C RŸM%Ù:š3×O0L•ct×ÂøIß;Íq0×J4’#ÚMìÖÔPJ&·@&®TGyù€¸¢·v/D{ÒÆÉÃõ«åÀS&ýà%Ê”©ýÔ«þ²íbÊ8®Mµ>Ž3÷–²Ïú¸1¤nh½l+è~C~sñ銚’Ɖ|…Ld­õ³¥ÚÐÉmÑ*»÷V1è|z"n"‰‘4ì]æ9%Q5-ftá çe9VŒp6ÕÝz|Çj3K.|›P†1O(#å=L š§\!´ÝÝÍçFîgZ 0W»¡´ÅjžyÐxá` ƺ²ø·)äVÐ>a¬éM Eúó[«ð*ðîâÍA÷àÜÀoÜòKæçÖ;OdúO¥P¤'J“X¹á/" üyä´œ©ó£3 ‡DapÚÄ0|iqÚÕ÷Ÿœ¥ͪM.yÚ]7×YÉÓ<²YÊóg9‘¹)¬¬˜¼FDQ*:˜‡u”×VÒâ/WO˜ƒ·ص®““H¦àÁ‘v~÷vCAfˆ1$´Y±r_&Ž`jNgµÒ²"°\b9Ò’_ÐÉ’í¤‘{Ä“|éh¾Ÿ4‘[Y¢ëe˜l#óýŸ É{|²øié– d[º÷²­ë'ºá²>ÃGi,¨ŠgN.ƒ_CdpÎaX c»öDDzWÝÇÕw7DKj/ß§ºwX«†äÅ—Zĵ,A!æçÇÔ‰«5ÁË—ÒYe³"½ÊS…Šs=[ÞøðØü%Þ6”{–Né¢j 0ž&ðøÊj`Ѩè-ò6 ÄüG.øœC¾Í ´yÛ 0,ßÍ*Œ$ϼ#Ì»l}Â.0°Ë6’¡àd}ŸOâò„’}‰rgùͶ ¡5°§˜)’¨IÖàµkS«\î<¦lmÇbÛ•µ,Î><ëèXlüèµ ð~ÄnZBηhvÇÁ˳¥j.1‰œàŒ´GºÓó¼/èçkjŽH̾”ù»XÃsÍÊÒgî]h²< c=$ä2(42Tem[UM2’\óÂ0—¶+\ÆšCIÉ@öAe·Q>ÐÃ@EÒ Èn¯)˜Û+qól€ŽjÒ»#Û\5©t¶ó73u¨rß¡B•›&âàš B0è>h}‡ˆéFl¤HÖ!ìU*‘¬J'§ÙøªW€­93UÁé…œ[µöÑ5êQ ßž|¦7|&•Uqt=¡S×Çä ½{KÍýŸÄb’¢«©œMÍ—$˜³d ÜUð€¼X:GŠ´³ïÔj÷…JÚ7÷E û׿r¢`‡IÜÌ7'¬(o…Q£­2*JsÑ•ôÇ¢›]Õ}È8H«žr®”‰%«,ýÂZöÖhÈ,2ÄáU Í£¬#©'ßÁrD;óÍqý¶äŠÕ¸l¡¯7Sü¢·Ý´-,Ë´“Ëí욘®…J]ÞŽÁ¹TšV›`*¯3}•$Éí(ªzŸÍ @˜ëIO³â…2(ý­]ŒÔS4Ê6gÃÖª€ÆcÝçB¤¥OO<õÉ…¼~¨çHÕª%V±œÄdÐ_³_âŸ/rŒe¸“D¤µO½ÝæuïÚÊY¦ºÆ»<³44ãÀÉ“ý¨¾‘3ÞŠ"B™èË¥f ™©Å/Óa鹋pAþÏL‘ë›,0…ò2@²²ÖÕÄ£¤u-!SÚáY¡n2…¼U׌՜ê ?!ŒJ«-Ö!ŒÝ]Ú1žã<~äüm_Ú$¿ßÇnK·7ò>ÜLãè¿4A§…ÊÄ" ÀàoLŠdf£¤/ªŽ¢Â'Ä´ ×ÉæÄÔ¬P'’®+ör)%ªµV&™ëʺ¡”³'2BØ!z";¦7¥Ý¯H\nGà›S[µ³žž>&ƃœ>Ä+¿SqœÉSsÛ+°Ÿ›ÕA5%æîÓ:äÿë„¡ c Ñé|ýp›6b‹kã¸R\jűQ¡ú÷ÝBó0›Üý[ SzG~=ÕØ[î%] Ï›&ÊtäÍ P‡üæ-¡£óY¿ÙEV¢ Åe…6äà’ÊûîZ+8nNfÿvçO‡!i—¸ð¡q@@¶Ÿ¨¦ÈËØøÂñ©n!3Ž‘ |µL0 . &h±`Æ?½„ªL•–à+SrjO¡Èj}ÐÞ>U¾ª‰^¢cß!ê“4tP…§A±ênôÑ-`rýÓ+l +–ßÏTŽT–!Y´#ôS.½ÉLÒ¹Ö¼‡ïñ‰š‚ŽÒæ©ZÀæC­1@8òg‚lÿ’òèæI÷3£YP¥1óŠÌ’fê¨Ó¿ÊÈÚ»·ªƒîÙ‡µÔדÞÅHŸÌ\•¿þŠ mlça@!öNq¿‚.{ d½ñ=Q iN%•rðýnÈüá’}tLãi#Ìcð‘2­Ö`¦‰ô%ï±ôDǶ¯ö/A%H•Cß­¤l´9ÆbÆà4ÏöÓ²Ÿ#Å­š­pÌ2>gˆkª=kÍ7GOO?"="ò€öx6IU›iû± Ç8ƒ¾"YRnϬ¦ÚÊÈy왘bE̯¬`¾¡o*vSTaã¸h˜1r26ìsíŠöÃÄVìõ„1yiâ#F{ÙâV3[_8Tásc¤3_Ç»‰êïp]Z­ŽÅx€¬·³G¢HÊ ÿÑÕs›¯®Ðl{ŠÁuÜäšÚ'i Û/Ñ z1Àm-mW":æË k’c>êûôý|ö|_rpòåÏVýþ.]A8s—æ7ÅH‘cSB7ƒ=Ž ƒ_h8Î ÿ•}‹†s¿z%õÆg ÿ2ª{À?4ý™=O(¿±úèiƒ~ø pR¦§¤ÿô}¾ «—¥ÜÆÚ…Ewÿ~ñ]ò¬ãoNƒfýÂMn:Ÿ~Øè¡Ix¡KSÂNÞB+ß‚Jè‘–ÑKf¦õmñ?ÑI3Þ`ÎfÓoòx1n˱¤ÆÎÝ+òÅpýÑ´jÔ,\dð’@ÔˆÇS螪ª8¯q°zÝ«@™uÁ¬ËÎ7MhÙÍ‹éóÒÓðPØ]¾Èˆx6ËÛ5µ< ¦im•,G1a‚h I¼M‡PpE£!’¹šE5ŒéÁš;ÈýøïÜÇáÞFÄä¹ Ò î›-•A$Bf æ»®àQ­ò³¢\€ïNÆ~ªViÙ¶Þ%¶Ü䃰p<y*Ž'ºR#1µ¹&ºwOô.W‰ÿL€¡¦ò1ÕûmiŒHYžl9K?½ˆ9·Âµ À+>1á=8m¤Q/Ü›üaç"Ÿi«bލS'‘ Xr ~ê¼äúq¾h›V˜0wö¢,:N1ÍY™žìò´áÎÉ!¹ï mœå0è¾­JlŸE ^¯3¹†ZûïP±%b`ýÿ÷¬䬈ÄþMðÚÞD‚ê>Œw32„°°üAžÑ >o…˺E·HY1W[7Ûã³ Îìé‰8JYÙf!躒Ó<—ÀχõÊK?†rÝ<'YVRCÞmʺúIåeŠYçI²Rmðõ.YE"Ôf]×'g[n©h˜·Yø¨Ð9¿Û#¾RäSSàÑA-DÃ#ÃÞ m‡CJC·Iüçó<vlRs`iŸ¹\ ‡smÖAxŽÿB.”s_@‰<¦ni‰·ÃQŽéÙ1éY’ÉmŸÒ nŸrÙ¾|ùN/ÅKÆ´N\c÷àT ãH®Ü„„|éL]‹©ñéü]ôa4$ ç¶%¥jhDìÄ„­†ÑÝmé–ÆŸMÁ]=½"ZNdp’̼N](W ïp·ž-žã³øÈ”¡J˜•ÐP¾" Åw®,7ã{¨]p|fjú¦ŠʰEÈK@’£þ¶L¥‡ÌÝïí©&…Í­éTøÆ3AÑZèEð¬[—¦¦Šž™”/ܾŒr‘!hq¸ÖœìA«fM{Úºi  ÉúßZQßLáEîHÍÐîˆ*…­us(Y(Àm;!Xš‚d…)ã,B˜’ŠšƒNñîW(3‚”5C&%¦9:] ‹©ë®u;?Õž%S/ïî[bÔT);¤À,Œ¥(ðömÍé&Z¡ÆúïƒÉú ¥ÕS•£ùˆòiªC­WŠfÅf,œO›¿JÐj¦ó¦A4óiÖ‡ú·LüÍž®„D¾¾üzY³Rq.ä1KÁÄZ󹱉”ͦ¤ßáî–œ>äŠô¼åñG¼¤ÓÅp=“ä”8êÛ±ápoÆÌV}ŸÑþƒ§†‰S¦sóL|Ë0'~òúi) aý/)ÕÏ¥3]‡á`å»2}ø{Š¡ðŸ\¨‘)²nR!—¸ôŠÅbµñFûjï]§¬fÞ96È.×Þ|ŸYcôg¶ZÅÒ÷îÐÊ<\7óÃãV2pe?åve¨a—N7œ¬£öOF«Å›³ñüÀù¢ÁPpêïòž€Èm7åE‰åÏ‹ª±u+EäÔí=[öLT5eÎN h¾Çùæí4³ûŹóAŠEXº–Y´b'R¶Ì ¬cX=á«#3*ù°{>…T`>$)A?° õÕ7A˜mÏç€æu« vÏÊ@ü˜~)‘ð¿€g¾ÁssÂ3î’·?ZÔ÷¨c¡AåÂw¯Åø%ÜO\Ábq;u2N¥Â¶¦Š6µsf”îñí…sÅÓëÛ¬½L>Å´+­!Ÿô2ßÒœõ¥ÎmHèõ9ØeÏqúlN¸`LùxõÎÛi&Z_yŒJµi°ìpÜ/Ò ë…}Û7¦ôêpV¬ð7÷=£÷„ÑË©²ðdó32gø3Qƒ59Á Â@T§†pY ¤]ƒ&©ŸLµYB]ª!æsëÞ9Œ£§2J!)Ï!åyüß&[ë[/ÃÁÁ+rKeFsûHYA8¤©‹6:žà$Ècq©”ÉÓOÕµõU&®ŸßNDèœëQtE(CîX–ë¥.xmoÚW8!5àÐô©Í@{ðÌr#)‹¾x‚ä@æ,ï©ân—„¾o¹ìÊ6ؽ[¸>_,âüîî?ðp8ÙÖ`nAè&àfØÜ{M ó/á)øŽ9 3ü;Üxe Gïµl Îó  rª$Ú‡‹çz‘¨Ñ|*E§ÐfQ€%UèLReïøŒé´ \J˜ jÿ†5 '/`Óo?r”c]†BŽÁA¯›mÐ2]=‘˜8DWO›ààœ j¼ ×õ“e¦[JhIig YÌ2ð¼9V´Jå<µÂGÜÊï{óÞÈÑ=5«ž!ÀªVGjpmma‹å%­³ðO晄Â&ý VÑÏrôbN£¤7yi2!ÃbŒÎÃ*´Ò—yn³8B¯X÷ð¹ S°1?,.PÈ䇤œRÂúä+ð^™Ëñ× ¡Ÿã/ÒìSÅ´“Òâ+ 5ßéšÉ é”Ïèa ·>R.|Gt ÏL0uvîDƒ7©ã1Žq‹ `PÜm7ª)ŠyèuOvö‘5¿bñNgèЄÂ³i7Fò,çÅžfþAþݵaE«DVš7b‘NFxÅ¢ùöôT.¨ ˜94ª)Ñ®'*2çìÛ"4pcâAé+E‡&Ïøû»Š‹E×,šþžÓĘ¿$ÎȬ]b:,k-P~˜–‡*³ò%Ü£ ¥Ã±ÒÁORn5á$5’¼ã;øKź¢@\ÉØšz"O³¶›xÎk,¸É’ÁàÕ}¼EÇLJ¿Å»IE ƒæÁÀ¶¤¯?ëØá@˜ò’Z¾ xÏà[LµµŒfÆFô)PŽ0×48\7Ò¿?Ū EãæK¤ †#À½ÒSXdIf„¦5MŸªçE”_\¾àgS00û 9¬2åQ@²¦%ˆ¹üìÿzáD¬¦7Ûµ³\,´]O’8ørvÝ—*§áªwÎBœq¨ùäÿ2P„¬VÊ—T{#ñ>ã6«á§,è)½.å»S{\Ý_¡— DЀ+´&ó+êÑQXƒ*¿Yì:*²³Äöã Í4¦kÌnÂý˜õn&RµÎš]å%',rïC„&Ùÿò=ÊœFR>dZù$=iò{it¹T±wÖúq“·Èj’’57Fà™Ñ;°äŒ€cc¥íÏk]ï/­LŒÐø‹Wx¯ôv\’}¾I(“ifÍî*¢n‡x‹ |Ů엙ïÑEîżm£âù¯ÿ‹·~ë€ÃWKüüwªIÕgHggûÙˆ?–^lDŽçUûhëþ¨é§H‘“ŇDŒœÞïÓ!›;æCÏoqÒ­¹èž¦³µ}¯sãÞb.&÷Ù»Z3ÆG^kÁjm7t*ü¶\¤4áû<忏J‰%#öÊ4- ™€ Ìý¸§^ÃÉýèdq[‡Q_ƒ’-¥àŒðþPgß°Sñip¨F‰ÙÊŠäYïUb²´&*BJ]y¥C19dôG»ÄÖ[¾‰Šëk×±ìç‚•†x¬‡‚$nîa­ÎÍ©Ñb¦Û†Û­ª]˜¨ñ²ètT,~½qyf ÈsÜQda»àa!5B©cl­L¶ ÷¨3Ýé%#åÖ_N!¶PÖJUÛ›m_O: ýüoûd–Š-ù<5XØãoiAºáÁ`0ÑŸ›ðCº`1Œ¯èPį$Ÿ])´S÷'¬ ŒgcÁõ¬¬ˆ¹‡5BÉÑÜ¿„ãI— H9CöƒKPªíš4n³^DŠtéè%:ƒ—åm “#ÚÌÔQ‡ð˨ïÒ“ÿ9E§~ÕÎú«t—ë[Sþ¤ɳ¶™½N¾ë!ëã€Ô &fS h!• 3ld€.¢eçû`ÅÕY R©˜j«òaÃÁdm6ë½מ(âçœIßÿUVôj¨m’{¯€5lv~¦á\müŽ^‰ƒíqŠèJO׈·Õ1ySäÁ2¬ªÔP RÎ}7&’!»šÐ¯u ˆÿKÛÓ÷¸d&3°YF5ä“¶4gÁìtªpœ]HgÿK¤ŒÓ endstream endobj 60 0 obj << /Length1 1859 /Length2 20537 /Length3 0 /Length 21759 /Filter /FlateDecode >> stream xÚ´»eTݶ.Œ»»hînÁÝÝ NãNãîî4¸w·àNpwwùÈ»ï9{Ÿsïßoô讞þÔ³æ\]£G©’*ƒ°©½1PÂÞÄÀÂÈÌ “W±·5²caePš»Ø9X™™Ù((D€F K{;1#À²(š€>b?<˜™y(’@; Ó‡Ñ`삌Ô<€,j£%{gƒ±‘ó‡hgni¤ùµwðp²4·ýÍÁÆÀð7ÓßhF€Œ‘‰µ½›³µ%ÀÈÎ Ã(ÏP°wûPZ¨ííÆ@ #3€½@ ¨PWWQHª(ª+©Ò0~$Vuqp°wú?XDUÕÔ%éb jâ =@R]Uíï§Ðî¿9=@AíÃþ·Î‡ãßpyq5a5m%q¦¿ç`¸œ-ÿ–ý_Ø(?þ í#ÔÌÉÞöŸj È—‰ÉÍÍÑÜÅÄhïdÎè`ó>5 Kg€›½“5àãè´þCŒ‹é à¿ü]€œ¥ ÐÎø7HÂþ_FÛ*?‚>ô ÿöAèoN›¹œÀÿQÆÂÈùŸX9%%9€­‘¥hgdgòá2¹8 ÿÑ}¼¦Tÿˆº89ý­!ÿ_&§ÿ.ó_ÐEì?Îì«—‘Ûÿ^1#;gÏÿàæž¶‰½³¥3Èù_3Kà_ôÎ×ÌÒî¼°‚´„¸ªƒÜGãÙ1ÈÛ°cÇrýãý7Ÿ°˜/€›™ÀÂÃ`þhRq;SQ{[ÛÔÎé³üà dïäÁô7¶µ½›×ÿÃ`figjö—{S&u;KG ´ØÿqÿP!ü[g˜@GÐÝÄ‚éoÁú寚å¯úƒ/{€™‘3ÐÇÒ øq@ðr6r@N.@¯ÿ4üO … `jiúhõqAø'»´™=€ç_ê$ÿeú?M@ýϨÒ|Ì©©½Àh†À¤`úh êÿ&íÕ’p±±Q0²Rÿ_œþoG#[Kÿéú¿\4ÑR+Ø;ÙÙü/›¥³„¥;ÐTÉdbñ/jÿ¥—}ô¿°¹ ðcYþQ©ÿ)›ÞýØ,ÿn_.ŽÿeûhKk; ³3€ýðƒˆÿ…øƒý¿xLšÚ²òÊÂtÿwÛüã'ngbojig`åà99y 0ô+À‹å£±Mîÿ4 €‰ÑÎôppùÌìþ.(€Iþ¯ê‰› À¤úßχÍè¿%fð¿EŽW3K×+Ø9L@»‡°0˜þ-²ó˜ìí€ÿaþÈáø";€Éé?Ä„Îÿ®÷‘ äfÿæt.ÿYYLžÿ.Åý!þåþ?‰Uú»¹ü35ÌÿfúÿìºÿȪ '{k ¦¥éÇ/θȜ,Ýu™?ZžåCÿñú¯ozÿ£Å¿§õ?¢EDìݽØ?P2°r,ÛÇþÁÂÂÊåó?bMþµþ3n-ñ_òßݺM–æíM¾[¥ý -õ/˜,ƒ¦àa<)ÇÐ’I€Zú6ÙFˆ'–»EüÐäŸIùÃ^NŠWÏ7%À®H‹"Ûæm­9¹bâÆTYhÛÈWÞ—E\x4GƒQ=0S~Ñ¿¬ƒŒæP&'_»˜}:³%¡… >z$ÊÓÖùÃúûý*•ìkYËj´[á,K#–“ †û"A;áâd;8èý+.Ú¨Gx‰vÆ0?gTÆ¡»s¿\ßCðûÓ6ê¦vD0IÇ0沑˜Z4Î >ä&+—;ÞJÛrŠ4gXrÉ&¨l,Wâ7Qí AÚVÜ¡d;ùc²Ò¦ù(ÕæzW\ÐÆ>汌âpXÅ0NRE›ñ:†H¿±=^º—cŽú{<6½%Êä†hEîù ‚£q†°*œKjp>AâVÚГpClYaúò'Š;çe¸'mC¦¨'€qzî:_ÝTP9Scޤ.„²ž¤‰R䘶7A°Ÿ+Pš*-÷½”öj"¬g³ù ötCô-¯ùLN9RAÊB²kúÄV`{¥n´Ù ><¯¬•õç™LÍLˆ×ãê§>­HÁpø¦¢>ÎŒiÕÔ›¾î~fÊôä6¿²ëgÀ\a²‘áY漸|ìjŽŠ jöb5Öû‹KÛ<¯û\C™§¶vEöÝyì\O¼ lÚ•îY*ÕQ#@b²±Dô1·ÒöŽmÔ(TtqWìó²=­è—ó²ÍYó¦¦4…-áj™`pŒ$|ê~ëÙó ‹×¤y ¦UEÈ—úöúwmóˆäÀ#Ó'ÌðCË®Á VåÆ?Iðcä৸"ƒcê-âò2èogj÷JZGñJÚ ßš°לI+™Ñ!ßÉjz«ŽØCkÁç7Eð ®". õNWè¢3¨eg°\[Lð’s–:ýêßÖDîq*T³¥/¢£ìužŒáÏ'%Œß7È[ÇS„˜ÿ˜9›Öœ0m${—ñ,ƒ¥ÿ\Tb[”{pª¡Â£¼,¬ä¿Ú õlª[pš¥ÿpæávžƒ~ϸñâ³#0¬ñ®Í/»¡‹ƒ‰Éòb¾›®ë8¡%U8ÅïJþäÂÁï_U¢öã{µ‘o dóhoÎÂ’)b²åýg©D|'Ïôúš@xB õ›9Œví¨èJõ-â»sÅ÷6ÎJÁ@"|ð™+‹ S,8^yÜj6é”n¥;÷¤>!<æUú5èI²Kw õeNjû¤J¿Aºü×"Mˆ(nLlöÛž”{óËù6ss&{wíbœ×(b¡3‘ÏiÙ#°³*ŠÄ×x²:ÚõÒ‡r ÌEÌý¯`äK¼«çè-g•_ñ\Vvè?ŸÌ©$‹h]ã)P‹?_Ü¢<û@d쥺ãÔ²z[wŽßð®(èYwq‡~º• ŒÕEarÄí"#V„Òò/(F™e‚@CÅ9Ï5à!ëç P(s‡¿8÷Æéø]Ù_ùØŽ#¯ä;R™ìŽª9'À¹Gdª4A²’±ÔN³ 9”!Ùž#ÒïäIôÇØY¶+$ñôI8·½^Ï…ÄLøµÂX`†U$ܶÈdÙ‚ÐríÌÞYûÒ0<mœ—êg„écü–LõCë ÍcáœiØñøYtQ$c†ÓÙ»Z=ƒv—+„¿ °Ô™ƒµpï¾èOP! ¦Yü¶F²æµ”Ø ª­C™Ož_úÝ»y,Yv.³QG¢ýÎYa€úOðÀŸ\Íkå)-ã>!7!ƒ Í0ÌŸe×ã\N=OÔa~*ö$üíÔÔYnðìï3èHqn’Ô;T±'ê•Õ!cÊQ²)“ñãï±`a>‹Mòx[QT5ʳ÷‹ê}GkC´Ån&ŸÃ35Zô_~Áæ°ÐL5ck÷¢YÃ<Á²ÕY8›×Nѡ℀çV PªtuʉÐs^å±1hƒ!j¸í%âl€ÕƒÓýS|<!c-†çØê4áÇ7è ¬;˜zÈËïÀ..é„eÊ„‡“& ¹ÂãI¤R;8 ×qœÅòÒE2>G8B•]#ï?¿÷ؤŠÍ5…|øŠÊŒYYS[ö§–ͧÉx‡@P¼V\2Õ+ÅIþíPÕ˜ŠR+´æ]mÕ ‘eœÿ„Ç„3Z­Z,8õrã sBàð+¡¤ø¸$X¦kìˆi°œ‰§Û™¿q2JÐÆÄŠZó Î,ÓJ¾„õoOàý¡:¥i.™ Y›I -LW0däò8%ïPõ߯¤HRL›ÍÙÁ?)R+ïfÔ71Ë]ô&°&-¥Ð4= ìJ Ùî.! ÄÁ‘ê‡@ð#:ko7\Ø‚£X_Î|íá8í|=ø£¥•d­Ú;ôiißNtù}¥d%Š^,l-»Û‰¶[Ȭ¸~Šc7oŒã—Dùd~˜ô/ŠŒ}93α,ëz¨‘ŸñÜ…–R*¯Òxdº_!]õÿÔ€U­û¤>Ø8/[$„+â£hqckÚóª>j<ÝñÑ}p“˜¸f~ª=tÖ¦zt¥žô$qcBÃc)Æ>”ène£óÃŒ…ýÕ´z‹›>«½Ø8ªÇÊ|GL:¬àŒ¾Â>)pîê•Ìíó9ÍÛ¼Ý8{ Twì |Õ¡ª—<©llüÓ9&±‚¯GÀ5–3ƒDW‹jÒúFÓÔ2<õ#8²Û m8û¢ÕY¤š:8À(¬w²BüÄŒJ- .ݪ­6˜šó´/¯{'¯"PØ•³é<"sbˆ¶H8§õå·n;8¤iÅz?<5*÷ëô½È¯Ä|^í ƒ-R¨†¸(;ÑŇnÅr(0o0bK’éW†ìþÖæW|Y Ô9?ìàüál£Àkàd Æ”/B¢áò6SßææuOP‡(þ.dm®.rK­")âþY d›M¢i*lïgI×s–Sulñ+«Zªµ9Ñ'V¯º8V³´Ô¯—m)<ôN“ùO*œó‹s &G­I.1^ÒÖs`ű]·žÂ¯G¶Ãþâç.t~̯ԵLm繓h¿S/»wÉiOûÍ‘ T5õWÏaÌßC|×`A$Ó:ß¼GG}ÑÞr˜3qÑÙ±ªBdb»®1AÄeãLõ:ËBÕ_-ߨT ƒAJ¤¼¼P‘«è ,y-µÜ¸5»÷/¢·~™â4Šeõ}¼¦£Â!‡ÐÞo¹gPú2ˆ)ÖÇÄë•"0s¶W,Æ:«¨FÍòŽ´/œøŠÐQ^²þg€¬{W‘ih”ÍWmÿV­¶¸N¨0y) ?VÊö‘³½/êŠ_º9b{ŸÈ6 P®O áñ4FSù B¢@/pKÑUÃŒ¹¿ZwyWSd3¿|iG“¦Âj}Tùqî†y>îi‘¢>÷çÅàTJÛqs¼g…“ôÍfùm{¦n™¾ôDþéúZšˆ™\‰‘ÿÞP A׈1]UÓ-uг_lÍÓR÷Ùœ'¨úòÔòæ&¯ûc.÷ÑЗb•…‹,S ëz‚9@©`Ù ‡ï8Ž#ur½Nâ€Çeo1íÙkføPsÁ.–?ûøÜ”¸6ºy8ᇧ® >GnKºÙÍÀ¿ÿ*_«øU €»V58ø•‘Ýz¨Æƒ";©ÑE(S^×…Xôöˆ$\š÷ªZJœrz%צ ²zW±&–è‹*Jœ³‘ã‚6l”]‘¯*n øìŸØŒß¿(ª?Ïü\ç­øšz_˜Å6€5ÿÁÂôªŠ¤+êKµ»ÃÇ óòEô‚¢Ï<Îú}%n½ X]gÅ[Í0µ#¬ÊV§tÛ0öå&¹H£:?n`4Xáz²´-B ñòeÂ`‰c¥åÛðÒõ}(KþŽ×á‰DUf\z¹C¢ÅKÓÒßytW—íö¦Ïi´ÝŽZ¿Æ†Ì¨áðÂü~’]Ncí-Å_NV¾c-%À ÞÊ‘¡­4 Vx’ò"ãJá4'ëÁãLË I/¬XÎUW @œ}nâ4üâҥ͟c‘E¢TøêBì ŠÃyÕh*q·Ù8.†×³Ç‰5d¥¡Yt‹a ›T þ©Í®‡œºâGVÕ<‰H® QϘÙL]ù·0Ø]9”L1¦ß9Í(}{C3½>KtÓívÆÎs»‰klÒ¯ù5faê’e£gäÃñ²&(Î í§ðTµ©ìºãr¨÷ÈU࿨'xkxäÂjš Œ=Õð¬¹4‘wá÷ ë wYŠ}Ú‰ù¾ã¦ï(kD%ïüPêæîÑR“8y×¹Ä l½Ó‰¤÷:ŠÔÇNÏ•èÀ/[‡Ú!»´˜ÂPö–©§‹²8ͽûhL(œïÝôvðÞÿ"u<­EÍ‚„{o˜t##íŒñg¦&ÅrHèQÀ¯Úº]U:¸=3dƒöch@ZUkÐJ†%Þ ókã˜Ý^û›ºü7/W£0ÿùlŠQzĺêaqìŒôe L¬›­ø‡ž{‚QÌÇg9#„Q^âÏ¿,–Ë‚Díâ–ý/NU޾òE—«¸{ny|µz¿éB"Æ÷™E›»Ì°ËüeN¾•›áÉ6ufzoŸ×Ræ4<”Ç\:¸€„‹Û¸ ¦–Nu[ÇT¸¨Wë–•Êzö锾Bñ\'«LÅð°=Nà†þ&‡1RÁ’àÛë}Ô(S\ÁW×qó†T£¼rÌ¢úGÁªä Ïâ$­ ™”}ÀdµhPõ¥[£–ëÏü°;IÞ1L±5Í&«‰ 1{µ|Š&Ö×@±Ô†ß O0ûÔüIÝ´kPÊ'*FV/¿+_|Hˆ†x@¬ÌJÓt"V¶Æ‹nnÉã Xưçs…Ë7çÙ(™3öô?Èk³dË5?×G‹×8ð\îºiôô’õ&ñ=é»<Ô1é²0F‘•nýkÄÔä‘D~bŠ$ÒŠê+ ·½¯G·¶»ªÈ Ï­l&IP«D„æ 7†zîV ~ánû$— SôŒ×—,“iYi¬ûû€ª3r—ÆÑ!°ƒ3)â! ÝåkZ;«ôÃa¼ã<—á»|…”Z(Uëò¶k{V¤ŸÞßåà±IR£tY×´•˜f¡2·<¤¾ÜhÕ‡ÌøÄóš`¤ÛuŠè˜¼4é—é§“$çÑ‹W9-ª½›å}À6_‰Dÿ¼F~Íùº Ý£Lz<£a éÚb/9 jÔ RññƒÞáƒË"ÛÑ* îwYóœ{»0[§§@^.ƒ~·`v­&Æ–àš°`?IÅíå4ËGMV+(+4ùU˜‰aêNÕfÞFÏ·0~s%½Ÿh¬þ !Qná\ æ“ ÅB´^ÿ‹×õ°VÏÑz.Ýè–Pƒh ]91o,-›†î‹ææ}és¥´-Å\ æd±b«ϋ9ÆoúòÍo L|¦°FÚ±jþ5¾Y8G…Xop»üù“âOä›eÊN´å ?¯üæo$ý‰:ܪáã¬ñÛÂî,üåV<8˜ÏuqžÌÓ‡ü5A6«Ä}Ùóèb`7N ³>©Ü¦k¥Q” “Ußì*§]®}v7ðd>·vÌ=$â)Ѹ$Ü"a±M>i«ÈœÝ8ýêÐ`a—PÔ·cô‰Ò‚@€ˆ$&³ÿ]' Ud¹…Á׃W°‰Õ~” çLüÎcÞP,\«roÚنד€ž¬:1©8ȉE¹Ì1“p(àà5®(¼n4æT‘É Mg’\–TQ·ìu®¯6kUv+©¼Yõ`ä£@4YïjþÄ©c@¾Wès)çK{銴3O[šŸ÷¯ûN›¤m„a  º땸ºZwkØÏƒm#3cè™`ÎËG¾–¶œÚßÇ7 Ø" „Máî~„óµbZ{v¾Åt¢zÿüĆo6v­ÿ“7y¬9ú֙ϧQïÇ1?OAóë9ö2 6ôøŒ›º‡ÍÜ+lÒÂ9 bz«HË¡ôÎyO‡p<-_UK¹QcwÐï!Îd:Û0vfÂBzå„q”êd‰¤æ©H¬Ã?s`…á'i?Uä™2ÉÄã\OcïÔ‘~5Þµ.„ÆŸÓâL˜òâjvpY:=©ú\ƒ÷CAc ã‚%)ÅÜø0t,f Býºß(rnMÒqv:ËÈNnUyÀ‰ñ—×<%*´ŠJ@iËrYR6Ü §<àÓiÔ^qL,`}’¾ ƒI‰'¶°õ÷ãŽ+žÂo,SG b+_¹51‘ØÈ/B@V”™sʆMB®Õ?¤ê€4#LAF8L¬Óƒsé«f.™l/Ï8çòv—rwTmÔ*8 ¸…aóÂÖÜ‘ãt#"L¯ðÍ­2,ý¡×+ÀÝ{œÐK¾Ö`Ì’­9A˜˜'® )ÖNo yÇvýÅ$Ýü[±ÔSÔ) ãùÑèósÅ£}«Ìª‘ƒSânÑÔËIë&§á'8Ïu ˆ®_9tà@ŽñÓùd»#%l`Çþ>²;3$¸6ø+/ýÂ\JÔ°9*™ê3aÔT³ùçCX2±T I•‹µ¢‡m§×1ò3?Gþ·é-Š ĘW×ç…­µÏküKåUüóC žg;&xt‹/Ë÷6ºƒXöæ%‡ôXüVº³Êb—¹œ¡²ûæT ÁD³Î|Œv‘(ó¶ Që{ëµ²ÉIq‰óW‚ÞP(~;ܨú#´¾ HñÜØ‚·î¦È;M“àY"¬áY‰—äô‡òCœ¿+c©²¼ZÿX°…HyÌBÑBwËi‚ žaùr'ðßX!…G[3è ¢ïd}Nì4mË;¯3’ˆÉÆâR_‰4ÀXCé_ˆdWÚÈ倃Ô\j¶E2ý`9É|Ñ¿ ®±S ·à\ZptºòO„el)é ^Õ”]Ô…ú®!@£\ißä(\¾!™¨9K¶2â^$íñZ 9;ÜëôÛb™)µ5k±|ç°ò"Óµ,:q{8_ÅÞ3ÞÙ7«4°š<]lŠ6+°…ùsä¢å87+÷3kô¬×/oÉQ]Rü؈4®?'ôýnáóÊ‹Bgj½Ïo¶…ó2¼1SÓÇ"QÄ»Â%!o|…øYS–;§T[FCýËóeu îEÔÖ’æãa±¨vÇfH‰û°/×ÈôLn»‘WÔh3b&Ô.DU§½Û3s$FUthŠ´ã¶¾åÜFÀ€,üA5‡g“¯TDQ«>3ö¦¬à·ïi˜ä÷äe:óS‚/ýÛ·Â_Ð_¾Á*‡Ê;9`þªòˆá›ÿ‘å“ ‘Šê Î÷†Emæ„¿s [‰§V\Š—½ÃÌùt$tªt)„X^“$˜y †ïªœÑmw{„†$áxöÊç|U‚Т.íf¯#6?òÙ9,#óäÎj˜!À*EE;O8+šâæ+ª ÅÅtVa‚ë ¥$ ž¾ j,¼•Ì7^·zÇkƒþ”È.{Šè¢ù÷`ÒmV­õ3*˜YÜVLí:tÆv©8¦ )b⵸ U'Å[O$÷À€}ÔŒm sBÇd UŸÌfÐ$"ÿÖŸñÇø¨A›¼khŠ·›]¯À ƒ?}QšþÔfÁ»·\l‘¶k ö0¨LéLC¥îßLä*ÈŽý³I%´­$æ52fLeFU¸Ž¸^Ç%'ï°Þ²ÑóÿF­vÇçä·Ñ §hj,÷ÍHR#øâ5QÈ…É>ÞEüìàÙcàÝw^ˆžƒÏZ'ç'MÎåUg]Qöu芒ŒÞ¬p6š½ä›±ä›}7?ÍÏuì—T#·ŒûàbÕÌüˆçŽ}ƒntŒ–õwMe`ö¾LØ×&t\O@I2‘Ký¾Mq{ éLô~6ïÍ6õkj®ZŒ¿ËÚ~€Âùmpc–Fró ïûç£FbH2µ¯o¬!U§‹Þ7æhG°äwj¥öØMÛ´þïó´fõ«8è+§a—ØÒôqÐ_ýžžìD’“k{"" ¢Á!aŒŽ£UÂ7-6£C“óz•|'ú=júÔ‡#* Ö™Pâµö¦ÛþÜÀðh  ¶ÉGÞÜåšœ¯}÷ªÐraM%Üí{ð«ßk›Bá‚~ãµü,âGÑU¿µÉ]TðÂzÖbX_z«á°6ŽêS²¶{ƒ^µäF{†—|w|ÅyÐÙt»¡Ñr quIeYÌÝ\AÍð$1H†O‘¿´H5Ò®-€hýˆÄ:r>BSVõL¼$âµÙ±½]ÏͼUbþRõÇÆsKbÒâËɈ{WåaÝ,87ø@/èÔû01K"?6ÿžôŒ¸I®%žF§ù4]-f*}áP¥ @±g-ŸÎm;BÖ³Ÿ­ã‘Y¹(<ΩÖ9§Â—º›ÎM{(yýÀÉú¢ /å“‘Äi%ß ÅKùsï°«<Ó‡Ç Ñt,¼@ËÝ¿#šq$±•Þ«ȄÔ_Jüϯí@ñ•| ô[jøs3’à. yÛÓ£‚Ĭ{òï#>Çý–R\[ŒÂ›àÐȶl×Ñ}Y”WXØÙ Cx0…/ïTœ“ o:j=h(ÌýYR…,mê<%ªXÛs$9±òøø­ÅH gûÙ IðÛY÷‘R?YÃz™ŒjSp|꞉ÄÊ4±Ö0±$ÖoÁÔšRé?DÑ »ŒË ‰ùz¸CñWк›í¤Á“1Þ‡ãU¶'¯#iv©¾§ô[}<–LÓW=¶´5U¿·Ô)¶ÓElšŠõj¦¨ê+ýP0YQºÀÍgQjׄ¨¬—‰I5¢øD¬žIàÑôB~­ L—>/: Ñb Š_}v®á«®c²äðxe;&ÊA°;¦íÄJ¾%R{íWÆ^íqÄzNÁÛÆkê²5‰…x2)TŠí›ŸºÕȇEëМšºy(õõ&h¬nG‡ÖPç¥Õ ¢-e(¼VÄ÷x¾tÄ~Ìç4È¿2<×|¤ )­7ï5f赬 »@€|ìåòZÓÆ #ò5Ñ…ÄvUlsÈas§d]¢sâ‡ÉƒÓ‹¹¶Z¸1iù3c¨fNâ]Ⱦ# %EG€·È¡ £]ÿrT~snedž^5—%;¼£!‹dßxÔæUi”ÿñï²då¬Å﵈MÕ5ížDÓù¶Îás»W! ì«·kk½r²î9pË”«•÷À¬‚Ý6D:ÌI´&ª»XdüêçˆpAÜmŠv4÷ ‹ø ÃþÑ2}´X:ΨÁbëf°T b¦@Í´!&CiJ&£h¿{µA×þe3ß)çÌi8 \ ÿþÕ"Ÿ;ŸöRë}{èæ7E¹KH±o2U¢ ,j÷8Ü—.7©pÈËH Ë;¯‡h›2f«›:ÑV´I¹äúÚï7Z)5Héî™þ÷mf^É%ÍÙ¸pl§zv,j)m°¬ÙØôṺŒGôìÂwܾlĤ1ºéƒ?Ã^‘Àa8;ëg<,휛dÁu™cŸUŽÜó »M©U‚ßÚ<Ìe'ò+NÅ8¾ÅÏ´ðÊQ´¸^é?{žB ¦o Z,jsš=¥ªyÔ>è<©ežÑî‘Ò¼së¼”5ž¹—äz„Þ$Qõ†³x­zÅȇ’[3'ÄQÅ*°sÆü‚*èá^}™©H5U×./„¶÷›O™njS] ñ„Ç.;UÆz"Ùk®H}íá‡y4g-õ‡ÙU-À=„XO­-;ž‹7îÖ&Ä(m¢ï „\8tÞ—En+«Nl!Ö5b‰´>j™~è"E ÄË‹@7¹\•1çCµ],8Ø,³Sç’ìý¬ì¥ÕySÖºÏ't’-®ZçûHò^*‘³@Rýcw,eüãæ &¹@ñäý-)ÿó>ÂPÎÔ·s§meŒý–5E˜ =”¤ÚÝVò´öL 1œP“ ÑysÈÆœù¯¨Išõ½z'óü'˜Ü\ñ9›ß#÷_ûßë§" êñ׬zÝ»CìGDÎ>Ú”›:‚}¿+páã‘`‡'X‘›R Kàð[³Fúêta_.=a䃬wuËë¹ ùp&ËV°!S€®ÓÌ´ôA¼“dã}efZè'Œc®†F*¡òÄ1&”ç/\X9¹J‚ÊßQuv-2Ô“•¥-Ãk,¬?—o£tb›Š_í°M¤{Ô¸ÿ  ÓbW[h¦/ =úMkR·¨©DŽcòè×áÓÕn–~C7ʬøš1Ì Ãß§gÃ&Ùξ¹4žf‹ŠfZNYv·ØŒàª€ëa §²ì3“†ì¸|¢DIš ý.–6±¯úÉâì 0N§~>.'ž·`WÞ´‡Á£¥Âò¢Xæy˜–מ ÈKË"Ø íæl¡Ì„¨AWÄôs˜¦è Aù¶k´G€C<5ç^si¹ÂÇçM`ƒ ºÎT};‰¦•¹v¯^úÅ,¸q±Àx´xUü·Ø >7{£‰ë¨JÅ5Ò÷Fù]ÅŒnÙa<[)„yºéµ‰:ÝÄ|«ï‚ü Ó ùòã›p0m"¤ïÕWúI©ÁæSer;Òo~|î fÏ6›È,Â[­žU7ú¾Îë›ÚW©>$JfïkëCa`§MpC rÓ»š27Yah!~‡ŠŽÑûÂÒÍÉ ôóÅÒ}ìr¶K±é=Ïç=-•!î¶/+òfÙ!ÞNþ†ú+Ô—¥Ýî¡%9§ÐÖ‡Õ}©2Ü£HG!H”pQ¯NO|WYŸ*6.ðÿðžÜ ÀPTCA§Ì\ƒGçñ¬¸ÊÎ}?»*<ò©„^XŸÇÎnøÎyp!Tô¢ÿe‹AèW6¯Ø…ùeÿ['ÊtK~ÂYºâ‹çVî¡““ç@OJz[_˜¾lP/ÑKç´(0o*r’£¡)/F‚ÀyŽÇ;„6KK|r%R.ê9æ™ñЋ¬Þúy®·˜Ü=èÇR[~{y½âé; ÁŽã‹J¦ÛƒvgR ù³Ó<‹jÉ›²¦÷«¢Ãí¸†=C ú-Ý#ɡ܌ÑÕ‡«ŽËT´¤Áù¼òH/Z+fW¤W°Ú:I!|Ûyƒ ß±©B’œd`bE¤¶á1«™7£ÝUŒn+³;zæ7¥¾Zû½`¤€fcžªÀ#P;LÌy‘U¦÷€½x;N‡W&âY ïC…­¢f%@’ æÎ §€x‹ÿÕp<æã oåÎQ-낟”f +Q]§l»pG|ö ¡ÀL0/Z;åðžêX‘ưx*°E*`'qõ*ݺ…O•R¡4¤þùŽ´N[F†óÓ]ÎF:Vi“çj¹$¬kP˳ñÔ…nŠ‚bVèEæ¨ÕÍÏ4œ;°èEGyÿ2¤/ÍUÂGýg°z3CÁµ¢õI…¥q/n7³íBÏæ0ï!|¶Çº»ß¶tÄU¡ïÂü®W£f¢Üåljb 4eçÁê3ªùùm¶nBhŒ „I¡µë¢&‡b½ÚåCÙJE…Ô™K­ÁmŠX×ù®Ñ³¢3Õš6J§k}I9LæpÒ- mjPڌǤuZ°Y²”ùXÔ;ÎÈ áÈ+C[ç%x‹]ÈH«ÚtíUX½ÚÀëOYŸ°\XJ„Nwlü¨D¢aÞ9c–èÕçUßðYTT|âe^Ia.m'¡â+Ì(Lˆfxˆ¸äð£íÚPqðØ‘I½_¬×mŸßßo»#]PD&Þ°-ì74/‡XGf¢”Vüšpy@ËÎ’[¾€¼³dñ»(3Ú\ÿ²>ÂPQÜyä BBf¢÷øT@Ú¬44ꨡ9;ƒ¶ÍQ`O[Ë©IqùY l5ÖÙøúœT_='|÷îwª[,¡Ï¼™Åþï›&¼Ñ6¾QwャÃp£¯<-cµ€UITxqdøXÁ&Î@ý©‚†¦\ñ ï¾Þ‹aæb©X\¨»MÓž‘6=~›ôÑ&6?Ô7ÒwÉÅ7 8¨rp5“j¢ˆuDêøi¨Ý¯üvw9ÈlN>•Ê¢†'AÂTµîO¦ßÍ(kÚ5}¹×¼|>Cþ‘êFŠlLÔxëzcÂÝë7 +é‰kmSA(ïl¿—9EäpÉËzo''yà‹‚j» ¡¼÷&੨Mk×ãø#z»<¿È2™Ð3TUòúUè™,˜iOl@z•Ý`ˆ<Çò»ªikÁ΋öÔ=W\ã8Ä">EIKH)§`¢xÈ©FsÒ»4jœ—Œ€ô4åg»¥ñãôr¶Å5¡À"Cæš¾Õ«ÃSÚHòúŠI¸o31g…ñ®( ý'ëc;‰ô`ˆÐÌy³…Ÿk¢ð>9µL´æðòCµ€sÑý¼O·­m"´®B! sOGÎà{íؽ~’´3J¨–¯YÿA¹¯ÒöÒrYßÙš3÷ÀˆˆK lyU(°”aXèˆÌ=†¤èØÞ-)U9iŸÈÚ“‘NͪÐÚ8ö… v^âmö/TXfˆ›}¶XOϬ¬Ód“KË’$1“űçùòi6åD‘ŸºEYKL~ÔlçW#IlÊÓðÍŒ½†@21jEœ¬/ËýÀ—¾ez¡‹è…º›~°äÎí׻ך {»è¦Å¶¹Ïx˜_WhY:ðl­ûöÅ“úQÔÇÅ~¥™ãhÏß߉´ !`ƒbÒ[n¦ºÏ® XëplªçªT>—p«Á÷Û.¿Êl_'`Óš½@>t7S=žIÕ•jõHÐÈb\ GÃßX“úË7¼ì–ð¼´© »KË"P-/C:Ë’.Ø”ÞH£’ãÉIŸW å š2ém:°EY8Ì«ù6ÅReä Åzû.ÍÅÍ$Ûê®þ9Mp(¤ôRh²/¾Ÿºb&FjéNY_[IbÕ˜n™±;±œcÒ²¾PýGsi_^CµÆ{`<Ì>:SD¡›žde|¢~BÚ$¯<Ütxlf;¹-3‡åáùŸÒ ¬\ ë<ðÜÛ$¡Ç㛵§mª2²cmÇåÜ%XX•kÿbÔxýWX÷¶ÜÙ2wá5L ÛÃWü€g“[‰2s›erø`»hŽèëóvíÀyμO~ðbœÈ\g«=³ë7ª0¿°!á¦äT²5¤ÔnÐg¨‘ðœ3HÁ¬ä2Çkõ±äšãóqð´u~Íí«€¹CK"=¼¦BFs)†ùÜT ‰X=àáéÆqrŽmä'=B§É rAV®á"Î'wß(žM{—iÄöû5‹êç Ù~‡Üò’;EæBÍΌȇ38`ꀞ6^èˆJ0w<<2m³w7‰uuJ¤±Ðÿ©Iƒ›Ÿàç ÓM~Š=/»x‹×Fùioâ¬üvcø¥k;§§c&eeHr¢·|l®ú÷î;º€KÄ6bQtßWóçV2“Cm¼›)Ý{â¨ÒM6jjåÉõ%ÈðWä¿/›9rÞm5WðØŒ•XoÐ+•¡R¦Ê$—¿»Ôgoz›Ë¿Ër »iî¡!À†eùù™)\LJ_é§$ ^ŸÉ‡½¡F•Þ&…ÑÊàé·é Ñè6¸Ró`—'ŸÝ V+Õ÷¾Õ4Wæp¸ú ®üºYéÎÙ Ý–Ú%Š©!ªè¿êÚV»T—ðÓFà¿jÔÍS¥Âú×á$i[X>ÝÚyÞº³–àô—áÕà’?Üí²jy®¥ª›h„ËõŸ®s¨Á ºž:Gt²À×éOX¼á7¦®‰Ð`…¾’.ÁL[~yò®J¼ Ãó40ß4í›,ûœNJ¹ƒîŸµïE“îJsî ÿó,¡µÛÕ ·§êÒª%°úQê힬ð`ㄜº)Sµî‰êì^ö˜H¨ ‘Ná)™šJÅþ}8€Ï¯¸iWv >&¬n®hðY1j¾WÙÁs>Ã?*<µþJãÆ©oŒGfª…{oŒ‹°Þ¿DK(]yðIID¨Ç§?ê]ˆ&Q,ïÚ†L«¨¬,@ê˨c_ÞèWë™Í Âv±*3©k Ùm%—î€8+üwû:CÙnÖŠŠaú•ðX¯Ö´V…ü&ÒBŸJv´ƒÒ¬Vro|Ùp×XjAD§W«1°Ž‹7Cñ~{î<§šÐ Ãgñ[sUk;Ì+"ðg<8©Ÿã¹L4vcü•¼÷¶ú¼•OÉÇ—Ý}é¢z(]¬œŒ¨r»è_L%‹ä}(5¡ƒyCïéD¤ºÛ'õÁ%€Am :”¡yDf¥ôG¦­ OŒûbÔ¬~&×3ˆgá[è4ÀD5“‰´óñ"qoG¹J…`Hj嵘AÜÓ]±Ø&:{õŸ‚k—IÏà@` }»t U£ï™»>[ýÕ¹d„qå—)·êÓÍ RiÅiŒª¸gþ•ÔךµÈ%rgy+¡éÂ%ÅøÝø"³IÄ‚!þç/[Gµ#›<àº)ºÝŸ˜í»5ÎÒž…‹Ýü‘®åç>8å»e-“1V ˆ9÷lV/ù$6Ê¥ß?›½çË †bCî8¨„žõ–Í¥Ï,k»Î9ÚÊât»H á¯Èœ‘LÆs0Õ9rÊVäØÎ.[-Ò³…_ƒÁ×>½Û*¢³’iÂ<W( &„ áesÌ¥y]2z$SB„9«O•>Åâvz',Ⱦö¢êá:»L@L²lä°Ikï?VWŘ‘ÊDÍæ–¯Œ²† Tbè—ùi»"T]ª¶?ëҲDZr\/ù½²ý'sÏØ:ÞpM¢êÎ…¤úêSÙÇ3"jžB´¾ ËJ© ñìÐgG‡Ò‡²mN^(¬úµjäEùFåŠòÙÇBìOšJaæÂŸÕ ¾ÿ<îÝOc’¿ø¼›sgVrÈi‡xÞì’ðØ¢¤ëf,Kê%’1­†£³*—ŽÊžA•(KÞH'Ûqó2ÁÔšyG=伫ZC"‡ÛþÎÒœÛkþ›°;‡‡n×¥öÌ}CÎàxý UŽÄ’Ê7gcÐuÚ¢ôKèÏëQO·6r—•…OX#SÈPId¤^fV!GCƒ&\UŸ¸¤\³õ ²aœd¥IŸS›.WõÔ‡ÛØe'U¸—wÌZ¥¸IþáTÎZ¼EöÕ]34ÎÐâÁ(P¾(%{÷V˜Ìfâxrg4Š8¡ØBæøóì-‹@k+¶C…Ö–_ý&‡ñ^4EÎȸÃÅØ%£T¤ /Qa\9aCŠåöäœ|¬'ºíBJnãvm¬²¥(÷¤)Ñ2•Ï.¸^¾—à>|€æFÜmä±£™.“¥Žõ%KíñדnŽSÕdܾ*b7oˆ®¥fVEŽí¿Ñˬωc"É %fG3(·q"»S;¸7³åÀ7Š¥á³gOž>Š$õCXvp8÷„cߟT[™µèIèÍá1ˆ‡V}3Bm?›Îô%ù3$l (³¿Å’ûè×ßãç•z¡8¶[ói÷qd”¿6£Ø ÜåôÜå.…rë!vͳ±Ûý³4um¬§qmo* _5ûØÈ²ÑzÇéágÛלN«Õ±eèox~88±{,V›;û 2Å*\ÊÛÎhžHtE°^o«&d‚´Â¾IÍÕhµ½ç!°÷·›°áêæ§‡Oð_Qûª­ïn2¹ÃϘÛeàl%|Þ ºk ý§¿˜Åc+1ÙPšõ“ËË{ &|rÆk©Ž¯t¨{šì-)ª‡Õ`y²ßæÀ+Ö)cŽÞ‰t–\´ÙMZmv—ób}2S7›ô‡¯ÎýºAu|@§ãŽöögX¥ÄuÁœ“XNÊûßÊà:¿Õ\Ësù°¡ó ¬hÑÞâäîÿVæ{9 Cµm°Ò³‘®[Ê%„Âûþ5ö}z[i>þ¤f• D®.~ ¡ß%Ûƒ²€Œ¼öphôu`ÞYØè§¶È þÛ¢ 2¶ˆ³{¯|ªQ“‚’}ù”'9»)W_ r‘jô³€ »Ó©Y)8 ÔÇiýcjJ;ÛÃ}°úhƒ…$þl* QŽøÞdSƒ ÉÉÊv:ŽAð ŠÌ2 ¤0x`,61˜³`éÕpç¡âëV2¯;óÛ8 ÏÈ/ŽyL´A²¹¥Ùª7Ú]Úi5ןñ6ëD¨Þ‡Ú'Ÿ÷ÕK@ùT•¸vßD„g¶%+£®îÆP„OS×ú» Þ‚Ð…†‘ |€]F†U­™Žº¼ r}IúbÕƒaƒJÆÀ!zʇÁÖ-åÄ/#Jîι>A¤Â¿#–¾©ù®1¨îe¨æ»{¨ÎÖ+ÒÓB¸‹3ÿðÁ›fGYz: ð”•×ñPÛUoà‰9G¢¥ûfhzà’âËMŽ%³³¥°©b½Xd>È`®Ø¦E[°ÊËã¡gÙUä–¦µçµ«E\Ÿ™"#?¥ '‘Å`—+°#á·*JluµNœ§[øÇÅ/R¦e.l¶Ü£%!b°¦2Ëa¨îñ6À._Æe›4ÃS“Iã­Œ$ÔPi^£Yªg.m’×B÷ m?*°z*V8I1V0Ž·'x¶äAâÞŠ)LBüJ¬¾i ¯Ë{þÄÈ+Ü}ù»8<XC‰V)·£¬©g‘㟗P'Û—â¤ÂâJÄ78øB1fUšS¿Ç̽®-‚1»|јé|u—¶WcËõ¼n«qN½`áÓ±’{‡ÁŠÐaÃÜ`náô„Œ¡¨S;çÔrÔä¢mš/Ÿ–Ô]SŠü…/ǯ§”×Ïò~ú÷íò4}ü°pÏŽ0“°m €ÎÖOß.--Æ>ïìc+&ªäiZ£›í»ÆØ»‘ 0¢ÏÁÎ(Y•±8†­_š“« Dûý‰ö[жâýYðvêÛKÜ—Š‹äØnYµ“ïà««¼²®/'t㯌ZîOLòm×¼OMyÈÃÌ#áý„œ ~ç¾ÿâè`cФØxòœŒ6b³6òIÊonQžæÿ+2¾yÞºÊŦßÕkPG…v…y΃±ô¢Ãð!Ç2C%qpa}o¶ÆÙˆ†×ÒÅeh÷pI’xRãÙ8'ý2ÕôŽ]–s–É,Åd±tñ¢Î¨fP=2pŒvà º®•=[Š$Ê›\´ñìWÝñ”¶DsYKÄmÊ€˜Ââ&Ì´q¿(þj¦ŠïÄIÖòÅ„_•Ø(‡‰{‘%±_@8ãL¸˜¨€!Öo":nÒêáSJ”f÷ö.þ½Ëµ]ð$LÙ…í÷1[#êcnQm@Î Ä/ÖÔð´«¿F»±°ow†´ÒïÁÜ+›*]õ ‘Òª <ƒ ÚÔÌ?±¬ú8]œ¬WVacüÎÂzüݾü ;d—û[bz}]=þ­_®«djÙÔi~>æ¼±`ÿ®9Æ"ÄñåôƾW‘Ôf6O µA)Svo{hÒÈm:ÒÚ…ˆ6˜§@‡ÀAôË•hÂmæÊÏL?ô•ðÓ±1}I3áà—­Ó°–š^n“(…™~æÉ÷ÌðêHv<ÂÑhÿÀ÷—Ó¸m¤t²<¸e t{Þ”\Z÷SèzJÅö›‡ß‡pb©Í0Pü»-vKu¦ó«z9¤ºbª°O@6° ‹†¿§[PÇÓE8$ÓìÂfòCT~Ó ô•‘SËÆ7xÁ1_b /ÛdÃÓCåozqŽé‚ê®v<¤"Ò?E¹~_—]7˜d¤ÌÓ™D>¨$´Ïk<ÙñiªgÁ¤‰ À.³]£èã?mK.œzÛ7–;†î$TãõÌW• °æ›·§C<»aH0³:ïÚ^@ß#ˆbä^iš" KTe‹ÃiÙÀñ£ÜRÈNŸ™‹iJ‚8 ¯¦%R¤¸å/IàKm€nZÍ&*Ý W–ä±q›€04/6p-IsÉ,Év¯×˵f{Åszhÿ餒iœy γ0Y¹MQ)ßÖ¼g=€…®eÄ"ª‡ÍÙúX[ 5rmRäÑ Ð¬~=§a3ê\Êi‘ •‡NµÔÖÒs™µ³rÐP(‚8ýZ¤”FÎéÑWDSsÝc¡¿7N61#@t‚:J'\:[>êu_Ì‚«:ú¡^dèÅx2^Ô¿Å>.6Ä0 Ôê*NM†¡–:27Ǥˆ8çþ­Å>L]"^ £æ‘Š.{K”‰þûÍ5›lìç-y’Ü{ÄõÐø.¿¾XÏÛÃaÖžq'¬A(˜I6á¼Î™"[ÄeƒFz”UYaAM€ý ˆÎ£¼Ø‹t ˆM"¯µâ9¹(*‰o—µª¨¤j²Ì ùÄΊ-öÝ•+3ŸõôQa¬¨;©: æ<ß Ù¤Tl“%)Ð/L"‚7Þ:ab(™¦Í¡¶ºwÏE%é7ó öUŠ„~“#,FdâÄ=ô™¾8ÊN4ë ËM'æÉ4¢]Âç–1IŸ°[³u …NQW„~·©löù~hŽÐÒsël^tȱÔŵ-ÍÜ[ñ Ì_—üÓIøA‹jåyD²–†‰ðÖ[îsû³*ñ‡j‘D á1Eœðû!³QNË©aõq4„-KÒ"é¤<»?ïk‹Ì.Ó:°xlu0™Aàk2ÙÑ™“|¯>©+a|˜ó=Oªá¿yÕ¸s× ±¾æB(™Y~!üc»èh_1ïU´(b?Ñæ!U[¼¢l˜jÊiqNâ…áúXI×oøH™d§„ÆóϤKU.È EŠR¶Žp.×ÓÏÓm~$îPÍ +ß®€™˜à¶À,ñ+蜠r×%¥~YPŒÂKÿçÂp'#l·Å,š§…©ŽŒ"‰Vyþa3|­DhjþbÝ]ÙÃy |ÌiR†sxÇ„t¶uUWݰ܉‚8Š w\²§AãåÌÈ•@´9UÐ3‡mïBÆ=)f„0šy;ÿÍ”ÏøHf¶ŒÌ8>Tð§4ì­†“}2úʳ)ûç®§pÄÝÑ^à87W’k­xwì¦ÄDZ­¿˜–ìJøAäC‹DbѼY“£š:çQÅK?4à&†?yã°²‘áPNâeÚE-{dÀ.ÌH®³e¯íÙU˜=j÷É6¡"¤ÕAÍ’m&ðÏÁB×’ ¾iNj¶mP `mHˆY¸×Ñí€ ˜5æË§óâÛ ÂØS Ù´‰³4¶‹¶±FÒè÷”ÁRò‚ë:DØÁ¯ê¶fU*ÎqÔô¯øG]@3¯sòóÿ4ß{Õ’¨eø· rüȽŒO j³ËBÖ1‘ûD'œÖÅ+H*ÅÁÀBzÒN,™vI F¸¶›"µ`•“^l%„|s›nê×ßœj¹£á0BÊxòÝÐ-†2´&È’]Po—®åüw‡ 埭Qÿ¾ÚD«ž¤þ-×€½3‹z T™ý‘hÎLêÞüÓzÐ —Åè‚e1˜)öS¢±¤íŽæ=‰Ê2®‡Ü#!x {`à55Ú6«#=‘íÁ8O’®ÿ¹QGdÀù%(ëµáØo¯ ª³t ÜñÕ´('—¾Á‘dQ,€ÑÆè‚+TÅ䇰ÇCKåÖ’ýP%‰÷±Kî‰A!èÉššjSÚ µmă»£î¥5›:ŠÇUÇ1LŸ£g“ͯ,˜û§'¸¼ÛÁ¬Œ2}0/ûœáªÉßÇŸÑÇŒ³ /“ž‘sCÔí¼]Ï9Øæ»Ч8û"ʱå|´,¯oÝæÊ2ZvíR³'Ð)Eܺdé¡sn3fM­˜á3¦A‚ÿ° c[Czê*Ò Z,áâÀ3Ð˳¿bpb.îàXÅ¢ËëŠöØBLM¡G“ùxID2äÐÖØüãÈEDò#¦$á§hÅÓ ì\×q±á­ü½d*úQj™Ö§Ê’ýG3ª&Ês¡I-oi9›Ç÷³;üɲ¢ø^Ï€Ž?OsAZb•cþ™»¦\À€Ôó¦ˆe¾™Llt"Ž½ê¿¾+˜Mü;ì WR¥Ü÷>}+u"ŽpaDµI±èÈ &1YûÂzAÎP<­OôD9“&ܶƈØ^J«ñ í( ºŒ®6‚—š¹A³íi,;÷ qøØ¥(Æ©&F—ZVâaãÁi7ΡÉIªlVJFßTU×k/†Ýéý¹R¼Þ‰-ÆS[+¾gW¹²š^ÑïbCç–Tþ‹¸Ž´e;þ—A/nwÇzì£)5ª©þ AGVa—oœ’5§ÕR/k&òÖw_”ŠMÈ-o`×ÜoqFR¡Ç ÷…i>ku¿ÀCb#dê°È:µâmâ…[vZÃz s ØW6å§_­Æ›ãº#˜Dž¥²—>RËRwä ‘JRžánÂÐØ«GÒ«©È"Ÿ,ë_VO‡‡cAÝ‹ä®]Õé TäŠy¾uâ— æöZàŽVWm!HT•š1˜'†iD+ ¼œÙ'–‡qíÉIîq ŒÛ>OšfR§¥{ù<™5Ü.åïdù®×·ÔWì¥+K1Û‹õißÚ.ƒ…dz_i·rƒÍ;Q›CÊ(2È=-%û;S‡<áÚÍ´ÜŽÔ|`ȶâ÷èr.<{>[º[4¥ð>±¦¬ëµŸoäì#ÃKù_´@ TëW;W&ª0æŒrª:ÞÀCäÿŸÍ¹É5ô*$Ϲl€nM°anˆWÀ ”˾öànd«)Rº¥wõ¿d ”°ÈÞ7«Ûj«»5Ý` ÃÍ÷pZJcþçy§ºëV£€«¹TÌ–<€*Ø„_LÛ☑Q2þëU{Q¶¨cøÖjB^cÝÆ"§£w#jµÐ¢H¿Hš(£5ûDÿùìÈ2^åŒ.ãó5K [ o2åFäãœ;0º¶Zúžì¿@÷Ÿ5 :é’«Ìñ+OÕJ-X·'`}q.2›Gî!Å|=ÀŒvO1kŒ\ÊváS‘©Þ†W~&BÛÖßûªÝ#ù=󈸗¨8@Æ<øýþJPèÀp †}ˆ¢Ï`žsDåU“TÞä:ü÷ŽeÕ̧6>¤n•Io’MV¼«Ð¤ZÔÅ8;Â9mþ~ò‹Ë›äÞ„ÇÞ“+ö6ãI2ÓìP8v{ꊲ‡Ì…5~~ã;3ÄíªÖŽøsT(c¿ endstream endobj 62 0 obj << /Length1 1926 /Length2 23027 /Length3 0 /Length 24254 /Filter /FlateDecode >> stream xÚ´ºeXœ[¶5Š»[p ww îîÁ wwwwwwîî<¸ ®—ì}úôî>ßßûÔSõÖ˜:Ö\s®RrbEz!;# ¸­3=3@VNÙÎÆÐ–™“^hæbmè`a`bbƒ#'q:[ØÙŠ:yœÎæcçß &&n8r€Ðèø¡4yä€Î†ªö@f•á_@ÑÎÉ™ÞÈÐéC ´5³°R¸ˆØÙ{8Z˜™;ÿ‰ÁJOÿ'Òoa€´¡±•›“•ÀÐÖ Í Ç·sûZ¨ìlF@sCkS€)@¨ PSSVH(+¨)ªP3|Vq±··sü."*ªjtQ!yU1P ¡¦¢úçQhûÁߌ ¯ú¡ÿ“çÃ𻜘ªª–¢3ãŸ5˜®@G'‹?iÿ‹Å3À¿©}¸š:ÚÙü•@eîìlÏÃÈèææÆ`æâäÌ`çhÆ`oý?Us '€›£àãê´þU[“r:›ÿðgW²Æ@['à'q»¿•6¥üpú;ÿ/±B8ÿ‰iý·9À ü4æ†NùÊ**Êl -l¶†¶Æ†Î†Î.Nƒ¿dw  åßGÇ?9äþ¥rüß4ÿ¢.l÷±2]k/C·ÿÞ1C['ÏÔæ?—mlgëdáäìôwD ÀÔÂø‡½ÓŸ=³°ýK&'$/%.¦¢J/ûÑx¶ôrvÕ±epvwþËúOõÇòþ%afb0ÿYŒfÿ€¡-þ?b[ý~„³þüÈeóoÈÌ`üG"æDvÿ€‰þÙŒŽÿ€yþ9ŒÎÿ€4\þ Y>"{ü²=ÿ‚ÿ¹7ŠΧ¿éß›õ?÷_XÅÙÑÎ ¨aaòñ¢õ9CgG w¦©aþÜþõLï?ÿ{àÿá-,lçîEÏÆÄôÑQ\fVV®°°ûü‡¯ñßgè_ûÑUÿÂ0è4†[ùagÌûÍ2¥9¸ÌW¬`¦’œ›áW%¿¦tÄJúL¶hî P Ðÿû× ŠB;YI=ß$ÛbMòo˜Öo?[«¦oL”w }å|ñÄ„ÆsÔÔ2ä–¿–w‘PKçäk•°Íe´ÅµÔÆOD¸;º£X¦ÞQ¯“ItËÛÖó ÝŠ˜[0­ÑÜ—Qp;ñ–g:Aß1b" û„Vhæ òƒ±Æ¥¡ì{»QôÔÑSÕJ6§(„÷>OÊÀvÔ÷Ô LÜè™:Ê)dÌVóéU,^AQÈa×É%± L_o£±²Ü-$`â· mΨíLJÙ0Üà‰1O'þh7'ï#ª²#y啨;¦h­Õm;fhŸê•zA°¿{°DöGX…{W¼W1¯Ô¬&!?µ.°Ýi \†;CÓçÅRÏöÁÍ f³S0ZîvW%Zùi—Œk¦â®EzsM ´ÛQÕ\„K…1ä!JdÈH©‹A"U u¶Ù¬•Vf«*Ï¡ÕÊoŒD€U(Vߘ\|ZóLh×eÔv¢( nd)nçÙI\¡ð!ür¼ñÞ‹üSTo ê s®þ•-ÖF‚GË@ ã뼦ÅÜaÝ£—îÞd_E£*gGÿ›A8A7y7x3å´YO·®ÊÚ³¿ô=äo¥/Ž€ÜAx0žeì_§(¿Nb¿ÌJë!¶4„³p¥!¬D€©Ï źk€øq×fFdŸ«jC3îçGÏî§ÒLô¾…kIaßÜZeaJ3Í:ÓÉŒ¸c {'•‰r>x;âšÝÚXH ÏeÞÓÝ® ×UùPN,˜çRhˆ{c½ûùàUŸË31ã ¢äÖ»M_š·Ü4ÿ2)Z±Hc?ä@’-~3¿Bÿq ‡ýÂrÓËñ9g’ŸL3}-dV‚¼ÑÎÑ©Û4—;µcÛÏ=YBþ½Dƒ>‹©!Œ‘?Pè5m<`8…Å ÃD<2Hî,Њ3ºNâ‡HØ/îÂGµÌÓݧGÞï{=lùñåãÖdƒ£|iÎ%_ð×Ù2_0ô;Ѓ¼Ò®ºÙ«‘Èwóšµ$–ß¾ëÆ«@ëèA€io±Éß›'6kËÕQ'ÁæÞÝaiÝ@ ÒŠ’ç´Öõ׋Ab…¦„íFРv‘im‰ÇW0P˳F8Duw—œJgyŒb3ÏØ®ªd(l–ḳ¶Õ'‡¤f8V¹²$n_àm4À^éiãP™L±ì«à©‰iGw“uá TϬ»š£ä¹¥¯ÆgQ*6_ߨvl…«g¥©MÛŠælÀqi(œÚ½…ÞLÌë¢@_vƒN¾ßn4UÙ t¿Â&p“ —Ý€Ó5|#UÍ%lŸ{“ëÿR&V»E;:3èÚUI3Qnlzp-mÀÓ¿Ó”6às<ø øÝÀ³ƒ¿X‡9Ù¯BÆñÍ‚8Yº¾K;ðy—c¹o–Eœßº¤¯rú+ÓØœ1Êþ½ÅM~ñøgKD+ÊÍ–ýsÌ~,}`ä‘èÂåFˬ_ï½Z\¬êz,TДSé¢S$mÑX•qþæþOâ&4í-žö>eÇÅöE3Ú iú±_5TºQçðKk¹GÁ‹ßö¶¬¦ïaš×©·¶¶Ø {œN">/pï£d «oK¢Û{'÷[<oet° ­CßIÃÂf¶Ž”žAX\O™…Ûi~ÕÄc¸½Ì¥ÕïŸxn§¹?Úy¿rX=Ö n'"¡/‰ò¿œÿÀÂbã:³?²s¦ãÕK$Þ©‰!C;Œ,¥­ó&l@‰TÙO\a=ùIaükÒ?rÉ'¾§Y³ ÙgÇ.áÔç{^”{ùíê’V'71¦`µ_ogNë\SxÜ?¦°Qƒ×¬å•:ÚYú@ÄÂ{ЩŒW5Í 1ê¥1Gb±o£½ž~Za ÉÏúhÇ®;ÖœX$€Â*_Y_óÜÛP:`Ê`»4ÍvrÝK"‚úJ3zÒà ÄÉE°þ“Xg(ãÛxFÞŽM=˜SÓ˜ãè)ÇŽÈ›Ïó÷V·åæ>„ù€Óè_Ô¬lT0D°7­*‹ã¢Å´8JŸ`­Åg±¼û¿KS ¤síØ~’²$ŸP,z%–QÖô7: ^è—¥—‘<}Δ€jú¥ñŒ„pc ub$ÖïjÀÏÖšš¬OÞ­-Aô"®%ødܦ2éP®?‹žÑ|”圴²]E† KÈF³oeY÷®1µa…·¹x\…í‰uÖ./Ò€ å˜])¸˜‘fj­ï¡‚Š@d^+âv¼ºü;Z–ÞíÐðk6k0Ó'_vß2·Z¦Ú˜Yjž©oA4¿—LFài“ð'i¹‰Ð{x–!ËïÔL“\¿FÆóV4Ù²O6ñ–ñ`~Û"Íó¦aê§;nTó´‹-˜Ìid»™%û¶Å1:¹aûóyÀgvö·ÞœÑmŽ4„TßD<ÔÏÍ Á¦”Žæ"¿CT˜3¶ÛIŠQ=¹¤¢¤&ÈÝ×ìöÓ×o±Zt±‰Ìå¿‹C $i¬¾eO|W±|ñ~2Õš %µ§]ZÞ‰G:ÐËi w2ÿ•æp·¥—r|q‹äHÊe KÇLéûòQƒóíÖc#©i‚›“kwêè¿Ö§XRÁj¨wÅ‚¬(*ËæQGN*4‰ì7›„ëÎàÆ=’/dø¿ކøŠî&ØfAñ&úê;Ô©eEœ’}y*IRV¼ŒŽÑ»4 ÞÅ3]î]:Z-þ*]­·ÍuT€ù.Ô‹4uø¶áyU–?°AÜ^'bÓ³ÒÁãÚùâÆ‡£±Ã*10…À 2?xð+ªOágí÷Eî—uõãl.]ÇÜÚ-G¼»:YF–$_§|AJÁ‡ C¯ Ô‚¢³\¾Jíæ‘Ÿ÷úõÑ›£+gžC”ûظ“›º»Ò L¾ü ×åŠXÅ_ç¿•¶å`Ö+¾¼ü2ÔÄ•‘=ÃiÎZ ؇÷åïQó}34‰F+Hæz®Ö"Ú‡È7™ACý)ì@É÷;¥ùü®ÕPŒcovÝ*¿gB¥÷’Oã5u»ÆvýÞÃCæ“Ö[nŠÝ ÕÖgYõ*”?ÍIw"„Nu¡Þ$Š”Yt»³––¡ÿ’Gr‘±äоuš›6õ¾Z¹¥jÀä |é¶È•µabxˆã³jæª.÷ów¡ÖÙ5¹y­ZÏjÂ|þ¹ÝÛ8½X#YG"Y*ÿÊemeXtDFU&–jAä& «LQ)]ÌóL¬õÓ#s2l`îËd—}À#i|+‰,)EiÏ•Ÿâ¥ht¥}Õ‹ª?8Ê8d‹3ÎЈ¥ݧšÌ $ÄùiiWÈd!‚šp°¦Œ§Qyým'ö Ô’rÔ°ïž|–€èÌÚdω1OZüÈ*k©r`çÁççéÓNÝ|6ƒbU¶e)Ïaæ¡ù(ø÷•gÞú=Þ»Rív"æÒl""N4æ/Œ~½»l[gƒ.?OœLmЮgÑZùïÏ4>a%»Ã€û>J½½®ªŸ4o\h¢Ó{J¼ï†¹y³!p"|å…©Š” ç9¨úA²×CnÆÛ>~™· !49€U#|ì'Æ‡Þ ÂŸ½¨mêP ÄŒó Za îSê¸I=‹ë¦‰õJábæµämTò#é¸/‰[où±MŽz¢¿M•R¯÷óÈ*PÿÉÇAÀ:Ë6 W?¦ã7= ¹ÆÇG^(°!Éjí'­°Ðú+2›_Êž°#©XY.Žbé<»±þÎ'yúÖ¬êlÅ'IFâ˜m8ÝLЉCkƒg~'ÆÐ#úiŸ `ˆ^¢¿ c„ '›À®„(\"FË:æŒêÒM­ô lÿËñ}X[²±vjÙó·ŠãukÚ$ÿT¶¸Û-ï6Ý‚]™DQß2â{Ÿti˜›6Sí¯Ã«˜åjÞj‡”̃kä`exá/hJV#:#é¤}S¼B5kÒI¡õÅŒè`ì=m; ˜è §4ìpü¿NÞåøtþgz}‡ç³òݵþnÏï™Ö(CÒ¯qPÅ>>/pé§82¤TåX&êª ‚ú6­ìºµ÷Õx­àOêlògR*ô^ÞfyÿÀyƒ¦>Tïqöη H™’®J½Ÿ|^·ÈO•×òg´^y žÞ&ö¾vtŽhtqå¼…Ecä0bq}LÝQû9_]£Ÿ‡Ý˜:O—2¥v&ðéêrs÷QÁ<5üpæmįöÉÑ΀Š*"ò9y°U9€Å¹XÍÙ;{ô¤n0ß0[ Ý1oiߌÀG’ç ¢áЖdâ{å+ÎO’¶ß‚ÍôÚ}ÇB0¥êÐJ©\®ç3"G*4·"{Vš^ P.*ÑÚd]Aeßêï)Ûv|UÓdÜz´ReÄ®Š8¨m=‚g[~•à¼%EóT0 ŒŽ¢û¯‡f© 9p¾&wÄ]° Í7œ±5oa°OD& û-cÂrX‚Š 2Óš SÙ‰ ›ÖªÂ…”qv>·9‹â2²YžQÊm°ã%ÑYþÊh‚*ªYYé+,SDu#° ®¸øúse¸vtÛ›­»´™~R†UÊ. •ÔЩWÜ=Ç®œâ e¯¢>×h?7-ø-”ŽÏ"]É©¥‚iHsa4Ò̤Ñâ“«uEùyù´7œ¶Ÿ¸wfL˸L-d{°ƒ“U Ðû:·O†Óðƒ½|Zi±PönrdÔñS玊]íç¬X$bŠTt©””–,dеD¤,OHñ]…ˆ;Ö;õ7–«w1#Àhˆ3L“gár*’f|oþ國dįl3‰ÁÌaO /?æ\Ë#|&såO¾îj}ì—¸dø>ÒžŒ9.ýõX&ÇåÉçª|æÑŠ-öHŒ ô4Ô Nàâ¼ñ‰^ &Çž—óëde[ÿ™‘Rn’ˆœ]qøkhT™é,Ez SFùÐCšÄ¬Ú:**SøBoz(3ÔμÃõ^¤¤ÃiXÚÙÀkfüc–)^ÅËO ÌŠàåÍrQé\ðe4c3e,ã@û:COB—Èï7éÚȉið:²“m1yóâÁ ¸›0 ¢Ñ²M.ö+³zߦsK3/µX­4Z5ìõžy÷¹¾J‚%@/“åœT8ÞmO×¶âð¢cóÒîTuÄËýtQ#,I ûrõåíâIä¾s•3šÿU…ü‘£ÝÑ0˜Õêv³«ôÕ 6®óIÖÞE~º~È‘_yõ™í¨J2¯M7 ÁzðõR™…øÅ%Ï…ñàÙb’H P.h~Ãr™Èœò²úY¶ý ³NNǾÌ$ËN0%4ùû}n£ãìãûPŒ_jU2µO5r¬ 2=/••*²cùüâ“¢ÙrÏo|1«=æÖh¹Ü‰ƒµ3lйí­0$\ÛWkªàÏy §… 2 >>§¡ª¯/5°:·8/ .¬ÌÇü_M @ó…‰Ô]Þæ;Ü<0îqÛN¤õ}ád“ÙêR¼¼bèeæöÐ`C_»Ñ‚ÉjÖLGÏ¡_ª ýEä×g~æ ÙÑËŸ¦Š<‚¦.DÏç!kG)帖¸‰—¢Éê({vãæÁú‡Í‡*Ú Ïùž®±;®”R$2íAÿ:{®Ï"Å€øG…Ϥþh¹:÷Aà˜ÛQn;¦Î¶Ï™£Ï;Ú™èä ˜•A0ÇêÔàó”à ‰ƒë3ë9éY+—9öÒ™·6OR¿²‰dpKmð>^)öÌ £²ÐÄ„t{¢†Ø•Å~^é ‡AáÖh¥È ;îõ2ÆG/ Èt1ˆ}Xü]›N'9$ágå"*u8ø*@¯¥öÛ’÷Mõ݋Ą#0¤áû¦ œ‡Ì1TÄüO±ƒ!ox%Äw‡8í rEB®_Wxe0§ô¢LÆ©Ždf5Wœ7ËD³5_U“»‘Я窗ÂXAS¸îÚ%)ãssÁyvîÑQ»uÒNS7¼Vßtãâ™ U~°Øí¦P+U5$A±±ÁÚïI­š?ÝÛêQ²ûÏA|_>1ö:·{‹•EhÕ§)eG\Œ«{²O" Ó‘èh lA«“!úÙeÓœÁî[Íw' ‡èóø¯+Þà‹k$)1ñ@³¶"„›Ä0zئìÅ/y•««~µÎ¬DÔî3â æ5QÇË¥pOnéÚر3|f®½W`™ ¨(Ø¿g8èzW¢L íë2²h0ûbþu5@5'`@cÍ¿ˆ«€£º™4íu ,ˆÒG´ˆÒt*½Ÿ‡ƒÉ¢;íŒæ²À$äIÃâdÞ¯ßÀŠ?ÌœH0­9L—$}¢Ù(„Ç¿§Õ¶„œ5 V¤÷æmÈ©WÈĪÁØ™Ä-D¸ø¬œ]€Å©ñvçmƒŽïgŒÂVÆ2*.¦¬þ3MâÞdYüĆBE.£yµmB:ƒÊnXHS˜¨Åšš“,ŽˆÇ8ÖÑG\x[òHÞ¿wQíCÅÜâ Cÿ¤’tù,Ç­zé4º@Ä ‹ ÂŹ€Ð‚ÿI5pÍç´–¤}9é–9ƒ˜Ó}ÊJû‹>sCp›2U^n“Œ(Á~^ž.F±ë…àeÝk‚•Q5¨gËnöϽÀ´Ê6KG2ÙÐ'‡ÁŸAAWœÑV‚z¾LYM©ÈOf¤e-çÚHQy=\{…,ŸÔ‰õ+S…àúê^"‡B¯‰0N»ŽÏ(טBÂS›]„/åÉZðˆI ]‘s ŠqÚnï™·…+»Ø §Ê†‹tW¾UÜ'd\_ ,4ÇmÀðFoŠ¥ÌŒ‰ßŸ¾\ú¿%ÈË0}/ôW]@‘¤ÏPrä#epÂIÐôlJ'(×óë?öŸix[Â=ïHZ±d»kû£×B¤äú«ºÐO˜Ã…ž QžU5Žê=l©\¯}WèæÈõ}¥w§4µŒÚWËôç[V'äiº­@°êÏ3w›:â[U6Ý_ä1¯ O×lÊÑQOoÑÑskþØÔ †kÒ÷s9|Tç—gA¨·¥jM˜×•ô›‚€!¹Û²VË-ÿêjˆjR¥üÎ÷²W œøp\äoüðÃRXߨgÁa¤0h^Iâ{3ÇÀgZÅ«‹mzRåÒ͵S(»Äaå@¯=&°ÀjíAÁ7 ÕJÙ2*ÁU̹gmÿ˜¶Xj%• Ë—†úké…™‚96柢„ˆU?¬yur¼vgkä"šµß;¶O‡ø°ÞCrYÓvqÎÏq;v÷Y¢üQ è‚ßí²ÚpГq¬S¢‰ sRÁ9ó“:G,*Ìi:ó+Š«(:js+p)r!’!&F>ïæH9ËùIŽîf[¦UVÇFÑ‹p_ä§QáŠ)Rw>¯ð:ѱ¥Û¦Ïá.¯|Ñ«µÀäÔ«þ& ÿ2(päÏV¹aH²ÒæâÖ× ‹.éöe3&³ˆ±s wrMw©nüéÞöˆu§ßA÷¦Çìæ mÆ8\ŽÓlÆáÞ¢i’ûd^8‚ H¾%fŸÊIžî¸!™V¡»~„ôb™_á¦/Ÿúû‚ð‰ÑBV¥pYgÛ´4ª9-×Î;Ë"æRkG0¤|*Tçà5ô–gÕ Òêñ}Øó25i/NÒ>ú¦ám=¨ üÄÅ¥_oÇ lMl„&ë¯vþždíG7n_¢þå®í$R¥²¬—1ÿ"a{7<"W#ZÒ=ö‰Ê}t’“,}ODh .¢ôê)`‡”F,—|©.¬ÈÉöQx^':­¹˜<˜€¾5ÙB'Ã]->¼X¤<)õ,$Î݉±üõ2ŸçT ÑÄJòaýÆ35“´<ÄÇÜ–¸Æ¿L±) ÐJÿm…  SªL¿¨l{¬èXF}Êd~SËÿ‹P|÷Ìœ¶öIsþ' ŠP¼.ÁØÙñéæ,½ewÛ·Z¶O±$RÔ}Ö‹n¸ûß×úmËâÙ²hZ`(H3ÙÌëÜú E çl™m^!gX[ÚA7à-FQZJÖî+Œ˜ˆŸZÝÖ.Q/_­3øSÝcn‹Ʀ°Ú%¿¨Ý“Š#þåÜáé9ƒ,Q–GdXÈfþú˜Phfa¸~ZÖåìÈM‘¾xpgÂràYø’WÙ"4½‡Š³<žŒ÷l޵îÞ®šÅ¢”©/#n_yî·˜,T–ÅN½Á@¶ät;~5œ¸"TŠ«E:žö‹¾t=5õp ,¥ÜÇ7[#æ[6 „CЬU+a¯b¡ôŽˆ’þdïð=Ø‹ÇIUó܇ûaivä凷ýʋ ÁYõ»?˜¹ðIXîæ&E Ñ–àârIú0œ¸ð÷¬{U*VxÆWóýl½ü7½;‚Ïê½µÁêèŠãݧŸGÑÒ¬õ·ß"[Zn@Ž3Ç ËªrŽIbä6,V“í¨$,‚–Ó‚‚¥»¦ÍÆì“­qz˜Ñò÷c£ ‹{î]·Ä÷tPeÄäË‘”Òų›J0šE]ú Y¹²©v~I‡„è‡ÎƒV* iK#U'H<áÌß&¨7®€ë·A‹kçuØì†Ú'³fœî£nd|$šò…Ñ©Ocñ·=¿a¡¬Ã·\¡Ö鬡æÈ1w'š:×9“ÉÛSÎgvÈ'«(œwý)‡Kû]#j5‰\¯Áf½4kÝÛG×JpP®’xFN*.ÍÝ(¯#(]묭sð圿B5ŒnºÿW©±Ž'xM¿¿éu…ä¶Šqf÷íÙ–™V4^Ô@Fþï­é`É9Q§’æîcfÞ‡gy%ûCúQäˆr@aú²1Ïöƌٕrc@Ø£óÛÔ£ 58ü®5Ö¨Ëmà‹)ü)ßµ¢a‚>×AÕvšâ|® Og¢·¬hþo&·æ\íX/ɘS’]a†6Gõ ºˆmè²HzÕý–ÎÚÆXËÛ˜~EG†ÂòùÅ2Þ·ën:¡„HDmã å Á'õ‡O‹½M£½ô„>Ñ…Í‹¥†îIV÷‰ÈÔhÂø ¼Ãv+qGÖUÄ1Žæ°mX¢ÃÝã¦>ᆤ¿ò&åÔ5†8Rý–qŽ_Ó_ÝÂù *@aÜÇ•d©AÇÒ“x»úQ—{8íןœqU]§2* Pªºøe4Q`§Kð~“ÓØ’eŽè?$«~ï©u§³8쎳?»ca{‰£""²à±uÙrœs©c¢@ƒÕTý§©`5lœh7øÌ-daDA~-ų¢Kû>Ó ¸–†‘Á3àX³)¶¯fÆ¡v“!Û|Žc&Uëí‰ï vÏg i”½ˆÞºâϼZ‚ÄâÆ2áyÉî™–÷õ+2{6-ö¬?V³µNßCä;”æ¬×½’Sßô&^š¬TÏÌSW2¡7:¦„çTÀkZOnj¥¼Kø­hã:Š­U=ÅÄ:Ög>Ô˜ÏÝ"¤sRóšÉùòbØÚϰ}Dü¦­5á‡áN1ù,ß@NE/qÕ‹)šºÂxͳZDð»®áÓTy¹‡ðÒ¯­‰F Õ=úŠ´Àr®¸²ƒl+ì2í,J'ìSG. †úwÆyï”òj…7åÇX·•1Íù k䔄áehUnwCÓ&z^ú_]V.À–æPM[]ÐNÙÁ”†¤Í,½î+ÏÖÒ¦¯^Â/ˆ‚ùý“‡É’ åúNżꑚ؛‘ç2ÙZSd%má —øŸû âîHKÆœ†9Á5DÍœŸέļnü´î}¥/DÝÎkµ¥·!ýâiýh¼Tž1ùµ„ÔÑ jWL~½‘lú~²ÉuváJ˜Ëü±w9Ðk%¹ÐòìW‚Iƒ@Bçµ]0¡*!7Á¶wï2b¢7º†âÿìtÐp²džÖd¶íÜýý¢ì+þR[ã>IÓˆÏöŠKmäÃE5ßÿïŠ.4qìªAU(Q–¶LN¼§H\‘>³CÉgÖªŸþ(‹°G˺ƒ|î`k•ÍGz{õu: -mã•ä¿=ååðæ™2oŠÝÊe3±M¯kÜ'iZdI¦—ÌíÅ3€ôŸ'ò¼Ö:å¸\^Í)®?1âfg„\×rÄëÞJч^·³ÒÚ÷ »"Q*µò"Ù-C—jUåLjz|ÊBlÞ¶`Å¥þáaná@ü@OÎ+Š0Öœ j=ñPí!ƒiîúE9µŽÌ ›•QŒÓ9¥XâjªTOËSŠUw‘Ë8ýDTŠ#›Ý¥n½~A®N`؈=¬À;ÊÁ_æðmÁ†°ÅD¥„$ƒ“¨ðx7­¤í7¹íÆËþåú˜’Ñ}1.ݽ¯JšÓh“ù“¤'’S˜Ñ´š³ƒ;Óq•à.r‰ÑFw‹U;'uj¢[ÄYÖIðY.n;5w)w‡“¯W«¯ß}4oîÉ\]깉ÄQŠ"ñע4eS¢SûýÕ¬XVúÝ$§BD4IïjÂöTÁgqûw(–L'dKQC´2iîÚ€k¥‰wô )>ïXá«GyVc ÷ߊç`÷‘¹½ê¦Õ<¬ßoõà|Å:àÇøßIö’`ìÒ`¬ò×¾ÞZÃ!×|^ ÿ‰WŒaâèÚkD¦É…Œ0ׯ6ÈÖb¢d_\ÜÜ[ª¢o¨¹X;ƒ~O²\äxöÛæó Ë~]h•$è©ÞK¶B÷Ä3&Ü1L´kÒ&šÒþ…géFP˜„]ÃÞDn%~΀ï $Ú’×ÂÀ‘jÇÏi½º¥™ìRR…¹"œŒµ>¡†z(mLƒº¾•¶ÝEá¤Á­)’ôï"xíåúÁn_I6‰Í §×º¡ðî'ækô‡®!B”u-á;àœDÂSñ ú¬š˜Øi‘RµÐ¨'(†ŽžÕÛC¡ï¼[äç¿_cÜf*õM{çÓÝ[m7 –+«hWnLxŸFôÔ Àkå Àe!’Ðbox Õ~^™Ê$˜ ZE(áØÀ|#&Ül"~ÅdÅ­|0zr"Àžfm¿#U×ç ÐA4”xô·$•öXýjTK)º²5fc$´„¾óÀrGgYÀ6¯u¶nX:!ÐÑf&íÒºG”êÚn!e@Éáhuwñ™ÒT&ÂC¶&²5Ù­KoøÞ—VEóÖêÜ÷ þç õ%ËöHÑ$tÆs_€þçLµÝr,CVÜCzsª1P_B',ùž±KÄNÐñÛå嫌`}ÓÚ_úÀ"AÚ”I?‹{³bÏßm[t EQb³àcg%`µ)I’é”F®´~Ì3ŽSe¦(+ÚwÝ%×;uä·ûs6©ê÷dz ¢g’ÞXÇ7€´›•‹g"[;ôRjrˆk‚ºZÜÑ}5,‰ÄÝA)þ5vØÕW…¥¦ÓÜ€¹O•)Çkrúåæ2ÑUƒ³ôù‘ žÊ ³ªVLô͘àˆ^‚F”*£%—u½Ì ÷u‘¥0_2r²áå9@w.Â÷¿ž¡Eö×Öû¼1ÏÉߪ¿¼G9<ýºªÙ“ÂaÊ[h6ê zñÒÇ{Ñ&÷à#ä ï†6;ì¢|ð4ªX‰kVÕpZÅõûôB;zóà7ƒ:EÇðø‚IÛ(±Ðlxz¿u~ÍÝó6ªÓë݆ÂUí’ì7·¾gH ²’W à¢ãKù%=z±‘•ÏGkË]Œõ™ÄÜIû˜V|À|@äY‘ æŒÅ!ÿôy„vÝOg>C›ZBß&ÒC(×£î5¬ ñr÷8ç¬êxÆÂóêAØÒ‚rÓ|CGyºí°RbvY®w-ØfÕ;àÂÖĺ¦Õ†rÄx·oÐø{’ñ ¹PâO(ÿ8ZÌÕ™&^(PïbÁwüòÞ[Nt¸/W¥‘>—¢9þZÐ8­eTòßP`çGp‹)*œOÒ½¿0í1T2¥™k>û¬SyïÒ'?ùe8ן7ñ»ÔÒj¢dêC¬ÇZ®*«¸8Þ€bcZýžŸáîÚm‰Ý^r?!I<’fñ ÔOÄ$À\hÆÕ€ÄgyÞî]à„½rúÆêúË:Ë&ß}µIÅzÏõ°Ø@8±N¶ˆa—’Q¤ò'8¹ÈØ ëÊŸ TWF$ „ãn ¿‹|‡eЫ¥•i†C›‚¦‹©‡Ù¬áØ‚îºëócÃáîìí¹u¹)óx‡¸jèu7yi¥u[=oo?šÆ‘V?4uÅ>WW é[¢ñ–øÂ09Ììc%sOuň´¯&Ÿ­vÚ±¬gÓCN—¿{q¶­gjøö ‹Q«6ãtÌ[ßl.´ ZÞ ³Ô󣹄^ófý ‹ºõùxÿºn³H5’åûÕ6{Á•Ö&—´zf >D*ªï!ÖƯ×c<Æ–¸5\uW/8’ßì%EUÜzæ¸9 !yÀg`¸¼§ó¹5IŸ“§?´ñ(úF •øŠnw<ß Ö/°lNΫЙŒ,’C'ŠØgªw% Wx|æ Ýþ‹ Ò™'¯Õ*{_’€´ëË—ØrÐh¤ÎÿÇ÷1ª‘±ló©bAv'}W3àpÕŒ»Ô ¬• »¼œ¯xï¤2ì íË.ôÐ"ðrþ¢¤J‹ãU,c×Je×Ó|`´½EEšÿ¢x½VUÔõókBÚ8§‹9ß`¾ª à¶üt±³AÔz:*ÍUßὄi£þK¯ÀÝ\WiŽÿ¨ÈZ\KLkÁ›E°v¡Ž‹þLû6h”«âaˆHvH€6»Œ¡z§:-Å¡÷±™{Muܶt¬©\{cŒñ¤ÝÃFæ‡Ú‚Ëé~ªbl˜3Ôg$8½…/0“<<ǾOîªÃšR«g1Ô·gÁ#0r‚³ŸÇxj'?í¯E±V&‹s½)q«¹#äy[ /c!Ö1ÈU¦0çÑÆHÍòH¥KkRµyñxn Ê—ïóŠs'|T¼Á<¶ÍÉ:{øX¬´ŒZ¦¿=Éö~†ðⳜX¢ì}8 .ù¥ 8TÆ»–^ :¨^î™M!A? ®œs¶oÐ[š]ê ,M›,ßáTæèÞ÷t–‹¡v4fíN”žÐv²`‹ 挪¸·3Œœ2”ûèX5­ÌÍ×£½u´LÄ•{×Ú`^z.eY#Í–äAÅž07èZæ´¸W–Ä“fço¥LaV¢Ë溚JŸpº×Ðçrßÿý™j4ri÷§*Ö‰˜ê¨–ŠnO¢*:sí{brôf¼þ0®àRõ‚=”0‡œvë [ÒŽL¶ÄÚ¦hšóMwVæé$3ùÛ‰KÉÝC¹]~8í—V ï|*•¯H:RÀ°ho@ØÜ/–FÓ9üŒ¯ŒWþš;.–cœ÷¦ë&‡Bdˆ¸ p%U—¼Éƒ{‰ezE¡¢h/'QŸv´9¡=ˆÓ#¬Hôé—Ë—‘b_@Òƒ'öFñT©öŽHS>¼Úl]Þ"Py!|¿qþí”v]To¸_&÷É”Bƒ¾Þ®pÐôÐÚ¹©ORSû3f9–U쀗•íœ XèCÛ½¾AaI´|ÀÅú±$2’Ú6ÅöŠ×V.œÈœê›Iä¦/gñ©W£’D§oæÃå„3v›Þd•xÂͶ“q°ìdÙJû+¢Y'T¡â…Ês«©ëç#ÏZS=|–ýæäuC'Ì.oIïÜË  Ì#ݲsùú}âÿì¶HKe¾À¶ÖlžüåÚÓh²¯µIì—/f¼ÝÒ v0šÎûPÝ *@]¶GºY6YogÄš-pÊÖA¸ê±T¸ö” °¤ç&Ý6ZD'¼º5°1€l°šSÿ² F3ÿoÁ:™›vª [›ŠÏ }Ž/ WeYk Dož&› Ø€ ¸° € >¤ùžõ¹Ýðm6HˆÆJðŸšU7A°-,»K§ '4je<¡ætýô¶Èvƒ Dƒ‰øù’Rmçðq„èhàñ꺚7É`tóË¡˜ÍѤÞá~±0ÖÆ2-º5\j 'ó¥T·Ñn·B=Ýô”X¹ Þ°:ŸÕå^“Ô-r@eÕ:‰€u•r¤0]ä¬g`ÕåL?9”Ù•X(5xqÂK¶ý‹¸L8•ô2pyC°ŸõLb°²ºŠ\#Í5û âdÁüÆ ë,¾ æ ÈŒqÄÂr›JUJMY±²1”ˆ¯^Å¥\¨JK&3Lt§^ôiü&Êe»Ìû‡D:Ûv‹ºF#Ñë÷üìÏ|Çúõ]=ÍÜ„œŽ];A2D¸žçm#ƒ`[n]Vë?øØÁ¾}`ªäYE“8=C½Ä· `Ò‘¬Íß~ó"ÝbJÉÚþ­ƒÅjÁùKÕ"7ûe¼‘{WÊJcc­oÄÿ{ˆuøê“ªâ ïà[òîãZSýãËÊÉEHn>WNÿ1”VWŒoͳ%–ãwõÉ >bŒ•g³LÎ11"†Š '7[]o—€"”=1•}²H%3}„é~Æ>ÿjÃ*ºÖ„í²FN´Ú¥^ܼ¬ˆdhvEFNÃCî9­+kë»3KK5GØhωұØJ²äùÆÜ§3/ÒŸLéÈw¥4J]ê®U·á‡µ~L/òÙ¿¢×q¥°ÄÈ]†~ç ØÊxa•CÄl1FÒtšÀÒ¨©uåŒwÕÏùD/=33`æ¶JÁäÖ';½Û/»Á»… Â~Ù;`(Ùû>‰ýPîÝuXôR›c¼‘Ú2¤ŸkJ8´Õ¬ø ü|„ÂÆüzžˆÐ~ ä©ìUóÚpöî7vtœ'nøU¡ô ÷=þçb#Vs²T‚W–ˆ“¾"Bܱ¾»9ºMiëÄ-ytÚX¿r|•™Ùrh]KÜ'., ™†)0N‚ê+‹ {ƒÙï[3ÐÑÁf4K-ÎÔSØ–XiJ¥î3DTàæC<È£]X‰¾ý&‡ˆŠP£JŸ²…”ü .T*ë4V+u‹s õ'ÔÕ&¯ND˜ˆêK—F*`åÅŒ²vª}ƒ”i‹äÅG¥,¯¯U…©·Ú‹=;sã0p»Sœö¶ÆÌJ\!ºL¼ãRÝór#&’”ßQÏ¥¸gÌ}m%L8v´Ä/\€÷Š_(a{2¡ôE¡ï‚òš:m‡¸@Vq§i[µ ‹N¡ м´â"RíeH×Zk {–h‚^§œïCWË ¥iä¬Öïr°™²Ð©E¿HyæùèÓwÈéâÍâidªøì¡3üFÙÿªˆ 4 …‡äÑbà˜É•o¿Õ¥÷[–´Ô¦(ñÙ4¾:óŽ&ÉÀ'ަÏ4T üB²NzxÙòª„ôˆkæ}˜ÝVQŒb•D°3IÐ^,ëà=¨³›±²À¡!÷€7+WÚä7#´#<Äw`áÆa{óÝ##íö=ó+ ÷}•Äúêù˜IDÿÌùÉ …»xhR€®¬ûF‘Av™ø½Ž)¸ât'"ëyÊMÈž_ÅI"•XFJ÷Ø8¿q»Ù»l`¸01²V@¬øàeñ|Iƒñk²í Õë¼hahní64¢?Æ)…t˽ƒ÷[¦¬ßcÅPo쎳✰åœu„,4Ö¶Ÿ9Ç‹(ángÈ©ë€+±†°W¿síïdw׺'è! «ä1_»Ç­«S “¾ç+ÏZD$É’oSs]Çœz>kë#‰yÊÞ17˸۟×çÝWx!må’ëöSWäY¸q=ùãâ%ë÷å—y «ÜÛD1A_žZcE~ö¬sRÃF`úËY"»"vB {…ŽAN”¦%Ý¢ŸûK_æÞ€Œ¸ÁI1]ò;±à²Ó4WÓƒÎÔTIÆ;Zדcb¼ÄâÊÉbt’âΈ¾ 6+èRËwPÛíâø*éþ剼áÖIµÀ_6üÅä© ”’z*ª+ST¸ýi¤ÓõºµàM\1ìô;0?µ¾ºwuÀ£&ìÅ,¤-ÕsÓ¿ÖM-*ér\{Ö×"žG Å8Í@Øe.µ(G׿fIxO–Œ'X> Eå¯ÄШÜélaýø®M æÛDîùsÔÔÈæ6áÆ-÷Êc*2+¤D÷ÇëÂ@†«Ï|·U©u¿­º©yÛKÆ)‹þ”W>åOð²§xá»1Ô:ZKáœõu¬|†»íÅüÅO¢…º‹˜èyr;éU—•92²½›”P(˜L„ä©„Êv_ùêós}„AT¾(µ=ãü6…ׇRCÝ4-=b¾™&I½¡ Âlb< Ĩó¦´žK\ûÊP®mLwüÆ×±‡±ÓØ6ÄEÒ:¥z÷&Ú%ä™4b)ÃZš­‡ó;9Ù°û,nSÿ0lCªýAÄîÁmÔä7KÿCLïýB-nöÞ“¤x‚g—©bÑì×Ï Úð6?ÛGtXC *T'ÊùŸh/]é’!Ð%ÀP3é…ä%Ñê; ŸÕ"²¢ƒãíPpóƒ×´®nÂ{8¯mÎêÂÛ(-2VÆb‰4¶tJ—©7Å¿;»«qV£ŠêC¦…1Q:]ö׸d½:û¯å[ñÔ\Š2‹´ñC¼H/ë°©;ÇXe$T_“²¿–Aùü*b |‚[Yµ®}<ñr9»§›”©[–Ã;ÂÝ9·N=3y¹F}öÑâµ¼iæÆ±¢É:4ï6Àš¢™Ôæx q2šUÞp¥‡2cÍ;†$¸d‰j¤“ǹÇAœëF¹°Ä‹cÀ€Ü ‚–Üä­Ø¾ç8³œ>Ä(\apqÀÛN\3“|SH­™ ñcñ#w.¾\QÌÖÏ~œp Œ´×.©¡P€É[¥É|Ô±óXàR/i”GPVTg€ÊFEoÓ,¥ð‘(tcN7\ ÒšOЧE‰¾j¿öð+tlMLL\ÝßUwÒ`òæqûÒÍæšæCâìì*‰ýÉ’ðMû$®Uì8[%¥p¿Ç‹M»üåÇ{2`·é!¯ê{ x`²¡~ð8Umøü]±?•Ó3Bàg͵:ÙD³ î¯lvÇê ''fàMFÙjr(~R^°*ñ¶1"LÑox}¿vÓË 6¶63b}ÛOmKrÙÝ L¹ð·`Ïj<©eOõ=ÒßA½Ô± çMZSw$¡ÎéшMGƒuZ^|´ýÐ9D“û¿ÎÝ”ŸÇâXṵ́ZV*3Û-š¼³£i˦·’O‰í\˻Վ;@£¾tûvXË“!Ç_‘ÉbV€¼•ï¡ÜG(Ó*umÁy˜|³\MF ‹ë5·Òyßø›ŠZã{P•2¤«´~šejW>ž×é£'¯·E±XJ•¡6dÄǃ•ë¶íSé²@2I£wkå¬{òÝ6×Pf]ô!5}òš¸’pŸö–ƒ+Cº€Ô»qóÁÕ–&^F¹9£*n«œ²õøš8^õ®d’{og®|±¾ÀXâ/¦–³c¦^xmÄ×øõƒÅ²o Ü0 XwiCè¡\2:$·à°;$ ®IvÃIXIéD'î9A2÷>×Ü âŽ»ûû ”#|!œë kq‘¼Úù–V1ÀÉZ˜B¢%dó‹/sσi(jÃp`£™^Ëß³S<Ÿ’tn=nþ;Îèíá¨ÕZË=ÚTBåNôN÷a­¶á.K ”Ð V$5ë†cñ®ïÛÝWï½3ºÃÙ XµØÐuds?Š ðài*ôù­ÐC½E>ORùZÉ‘#,hÓðI¥å¢ºùŠŒH÷†½ e„ wú:,ͪm¿æ¬0~Xy-¯¼æßìõEü8¹Ûx.WUƒÕ3<‚ê„ÕlÓÀ …¨2¡«H†Þ˜K~gnä#IKrt­ ¸Í½± Š>%ýR*ýí¥8KFÏ Rr,Ü”4Ì-`¹i:ƪB$„Xé^r‡¡dp<¿Þ€ÚVÔíMf;ÎS 5}å˜?b` Û¡X?*6ÝpËNl¼íw@ðÐ9 ‹~Œ›5eTï_lá›·°ÆšF–„i¨. ý$Ù“õ˜Ë7ù_pf¦ôÊîi@¡J[ñ— £ýM_#´¨{yL,.¼"ZhËɸ®‹)ç(–d;z‹P¡tèi›³îEì$¦çÿ bâÞ•¦uâ×7ûxÍ.e¹kýä£bÕ½Ç3c?Î×ú²bìãÔÛR󀘠;ìƒélý ÏßîÅ+ðDr=> tX‚Ù|x𗩬hIšg£]šˆÇµÈ»tÛæöÜù£ÃÎÖ„,5hXYLcíº,sA”‰l«s¢ò¬íR¯g”¾¯·òÅh8vîŽû‰ŽF³:[8¨–ù±hÓdA"öÑ` N¼É°j.?N z£esf騿ë^§rºsBÓ/IŽ<­§î?‚÷GzóÖøvÕãK¸g¨ÐÇb$$ý¼Whêñ7$™ Vf¹ÖfY¥<Ï8G´¸#ƒÄÙî´û¯m_»j˜ádöÁ‚²þ\³Ü[Olf×GŸ²\‹s¾^ß$aö<¬‘âSÑÛ’Ø‘=ÞŸ;œà×$ÁöR%½Oßãôos”Å ÁJŽPÔp:5¥Áeó1žÃéFÏóAç··ÊX ˆMm¥¹[ŸVp€)}~¥6¼‰Sá…4HÎQÚèìdwïì²gÙsxã­×‚'ÄJáƒÐ =âÝÍùÛ ‹Çl¡ö’§T6Ú=Ç™ýH&fô|Ø¥ºÖà´¥3ÖA#©ˆÙí\å<©Cth_½˜€œ¬öˆRc”)_Çl$Œ^ÃÌ(cÍ<9QÅŸ> ‡Ê—bð ~ã`T«|áqÙ¼~Êê+z¾1z«˜/&$w4‡‡½°F`ÚD–?áC»ؼ¯.«îŽ}𛂛âR?‰óƒÒpÁ1(²‡Õb™ŽkÕO<Õ©òïp;Îéçt_¡4Ìé£qpðÀ*œqC×"ÏÀ†wb#]¯ BÄjq™ÇQ›*Üäùyvwpû_{͇O^:0.tOc>; »lb\Úß*h —d›S'ö¢ÉnÑó· ÙtϦ”ìÃì2ªqNe ò„’jŠî4?S0-µ€'zm =O–ðŸ `éô7Ê<’ P˜Ð=Ï &«ê¤?pNx¬øWÅ0_žŸv¾%”)ŸúGƒ…õ ®á¢šúöáÒ¨ÕsŒ+åʪ×åf¦RÛÖ£æ½ÿ¢8ðFG¸#GKè¡–¬‰|}e€ ŠTÃ`/“ßß(0äò¬{É Q,U˜Íj…X¸Ä‡æ—¬k›ìò1ÅhÉ£`BÛͺñÒ8ÏeUÚ"p ‡2v»+AØýW.αæ—ÒÂéoUA-OÙóxód‘-Ã×7^vVáU•—ûÈÆåPò+†-©S¦Áñq2Éš¶Ì°»>P§ j?ÂS2Xh÷ßÒ“=_  »E«_vGЭuã4[º!;=ö|AéVKY·$½bŸ…ÀFëïHo]ŒÚ$!Ó £¢n±àécE€ Ñ<É$È‹‰qÆ#[~È ?çt§h“m»bñj»¥&7ÕŸ40ý1áærŒÄ­û%ídÕjR»b ):RÊe0:´#ãa GÚH½Ø}ÄfÒèG'XsƒªjaéÙûÞr†^ù‚]>êo]q^rï©8­ÜÃ#=Í1mΓÔL¡F>Ãψáα˜Ã_iqéÞ”îÝ$ ¼Ñ…Ÿ²Ø >>lKÆ®‘¿Š)Û C¾C ´:u4fŽâþ1:tHa5#QùjbÌÔ㺠ÿdéÈ›º¿IŸíDÒô™Æž¥ÇP7—¹mg!2Ê™èÚæ÷Ý”vMè7(n»Sïȯ³5,FÙr†Äq~¶ 4[©Kcm®€ô>LÈÑÉ͉&ÜûSY,×Í47ÅÍZ!d4Êl›lï¾L䵟˜•ìÚFÀ¬RRÔhÌ÷sóÕô‚H i bèñN€¹ ¤4ô´€Šô™dcœ«kXoª‹Ê{ªªT5ϯÖZ~Dááñ2N®vÇrLî,pó¢7}Œ”²i˶oIy¡Ç>œäè²í™ë ØJ„H¶A7fÝåaN "¯É (JMC·¯¯ùZÐq|kñæoôÜ»§ˆ‘½@ÇÙ3âw:jþƒ€«fVøHßKŒ3ùQ3Ç.¨>䓤vQ$Ýv2R­JÚÕpsÓYœpÛà(Øéñi­'¬~ %:« çŽfË<ÂõŠèéeÀÖj™:ºóK²C¼Þ9 Ú2aòœGZß-ˆË#Ÿã7:[\¢š~s-zRÛ袹ý\xƒ“!ã²Ú[f—üo Ú»{žÀmì; UJ"¢ÐFÒÕn`3én¢Ú)‡£‘e ü–¦?˜;ݲmhÞ¤eya……yrp’9‰Å¶GV D-Òí>âÀ¦B öbžìhB·šx ð<µ–Q~ñüFUpÎæ¸ 8\£eÆ&Oe=Q‰A†gØýËÔi8îÁXFFÆ ["(ÙH“7)›­Ø?(Ù耔ZŸÒƒ²,¬$Õ‚GÞnØÙ2ëí&r£·_¬ãšlÚ ºE--l#ûŒöQ§yŒXÏ2zzLÔ£Á-Š Z|¼ùåÛ¯®ÆäTH'Ì¥‘’è1ÊNv €î4ðCΚš›W»ËFËÓjÓ—¬V©ÆwïD$Çr4¡q_åQî¡0;krƒP¦éz„J}Ämüië{cæeEµfÊ>ÒU¯ÇìÄÿŠ#úг ú÷!Åžl—i{ò¤Ýš×@èÎS:(À£¿„«kµì×ɰ¦öÀ&@Hów¡øFðŠ²øyZˆ­o¼.p•håVËMˆ›—†_±C¶ûì›0p–‹ÄR¤ÁoæèŒ )š›oç¿Ûn‰ÈY¨j·Ã[™«ö¸9§d:’HuÞ@¡æàHÌ9ðtt ù ñ¾ÆÑ4“Bs ýYª.ò¿ãåPÝà½È‹õæÞÉ$˜N#>wÄ,ÞP!M¨o„£ìRœ&Àìp‰ÊÉÖñâGfJÚ»+mÝMÌ@Eô¦#Æ:‰_ændYe_#[ÐVÓ3¶ç«¹­C’x7ù±žÀÕÙ$} r'ÄÆ-%±íV<$ŽÎx©qô¬Ÿ*eÚ]üRÇ“½(ü¥¸d$tÜßÂ×xßLzCÜ›©,Ûé„$ëøí[§VFýjÉÅŽlJ•ársÓ„‚Üü_onfCCÕ3“_”ò¥Š©9EˆˆóP-#%fõÂŽÌ?µn…dñ…VµñÛÏñëÑ^ Æãñàäfj¿«Ê>ÇS&Ž+Uàú?â—箣SõAæ^ÓÍím„T¶«;}{CÁ)G«8L•qmÏ—Ö©k(ÓèCºFÔ u ^1«ÈG2æÅÜ$7•=Ž™P€>\‚4ñM»ÑrÌæÍ+`•°{›)_$NbCžžò!´_£8æ¹~›L -Pƒ><å¤SæƒÿÕí²¾/mBô,Ô–Â#jå|]úi7ø@á±5†Âve<§›Ø-z™>“'û†qÜŸnË.ÇîH51ãß¡·{:ÆÌ~õT ‚øþVó†ßÓñçvOÓJüâeo^ð`y×u–´³µjT'ÚO±:‡øެ ê_s °àß: -+€ Έëù¨0=­‹Þî‡Îô^ s)œRâchÆ1$*P»oA…ÒéÅaKÒ`¦S–Í«m£õEŽ}¶£~ëâº×ÝÖ:–qHc}³ê2"ºožUÖUÌë»îp[EÑìeÐêÍœGìbÚ1ÖÍ”¥LÅÎY),nRoYPL|úölõ)Øù#;"yÒöæÜP"ÀЧoËÂýÍùN%ˆ‹®uO‹•7ÕºÉoíë<®?iÙñ„Þ´Sc†YNw½I°>ï6ÎÛEê j c ËÁ¨x–×0ùþ/;“üAw]ôòˆÇQ{ÏèǪ¢‡˜fZS¹ê, œàŽ· Š[í!¨&ì ¬C„¨ÏøÎÏ¥•w¥¤¿2è4D¼# S2?V>ŠÒoÕ¨mkn^K¦+“²™˜Sò*Kbu3h`ð|nI«äYN7½ÀÀv‰4ˆ 2™ñüwPFa‰/`å¥`34XÝ"~g7™Wnǃof¼ È•;ù›Lñ¥úûˆšðzBì)Îàmà…=Óeé¸Sé0©<•?´ún²7øí”¯"ò]­•œ1”r[ÂBµô†JÅüЗ}1ïÍFÍs7N¾§-Yš'ÀîÖYŒê™¡?e‰Gk*ÚoX>1íºöBÕ œj*@¦Ä¸çÍÚI†#t¦8AÁ0‚Kåc_Ýv²ø1MÿµF|„ÔC˘yž½mè8÷$[G’“ežÈ¿S”Rf6\B(×@GV¯øñ ,`1 øÐtÂDzHma¾Ó\*àA°<âtïçή¤Ö#Ò`÷¨ïZ¢TZp÷§˜úGúJPØi±s4¤E›\''†>…œø,Ę̂_·9­ðµ±kbéÉ'Oq†2¿ÃÆ1ÑïÐRmxòÊÓ}žR‘SI€eŠ•+ç`öE`õ nÀó³ÿ±ù×±û½ßÌ)ô£µLq.nkÙ“f‰™Ã®Sç6Â_#xðéS[èûç<^¡ØZ„‡±ü2„,wx‹ßzžpÈêdl'«@‘.¶CèôzúÍN»úB~¢6ûótªëþ™¼ßÓ.¶GÙ‡áB8E@aÿy—\‡mˆ¥çà&›«)æ<©™Ý)aþë2`-¢µúˆ S`á9Eq9,6zZÐEú{•ÞZG§Êï”Ú¡½kOÇÙJšiÍ ò㎙;œHðDŽPž"D'Xù®¢“³`õÄOåGèqõ£yÊ©^«dÈ›ÎÉAÔ»þØ…´khã™1úÉÚÅ^¾—òk X—>©µàÑÙêÀ1/ÞS ¾¡u!úÒêS«Äa4°’ qÒ ìvÙöÝ­7³QÕêsæVlßF¬­ùÒK.µ$ƪ½~ûÏfhÈ»ss;Eõ1OdŠ¯Ð æö‘aRù8–JPKk&tÈÿ‹Êeu£;I¯5$XiÂb´õÀÇuÂZÿOP™Í:/¥šÊsW— 5wŽ;±±íä¤Só‡ ¨UKÝçŽÙ½Ñq£ MiØ¥efÀú>¬Xàɨú¯°|(èá¾Hô«á¾„3àˆû¿e± !x¤^eÎ1Ø7õQßÿ!€eì–0ÌÝê.6¥ÐðàÊüºøy›{ñ—s¶j’·QøB}JÃÎY“áv}øñ>ëÑà8ÊÄ0ä5L=Èx’_ ³Å€ñxAý½]aq%~Áú"Å/¶D:»è,<Ì2} É*é` ú­æÞÏâÇiFiV#’ËæHæ­Âò¼Pµ ¤KÁ„-vÄ«hG4gιg¶sïýøð]xSÆöx4(oU»ƒ\Æ—¼ê;=ñcÎݲ•¢èG¦‹Õ ¼½>¾çøÌÀ^AÌÿÿÕ«–`Îc—‚[ûþßkKÑaì EÄüþ%-¾Ø‘`èÊ%æ×æÐ2ÇŽÜ`õÛÏäžÚ\5 ÖÇå¥o“ñ¿%óqKa!‹Msø©wxyÅ…±’Ðö¿ÐùúÁhZgPá$d÷ró¢ÌÛH&õVå-ƒ,0@ÈàSÃñî °ª«Dh“œˆ–k‡PF×¢ädEÇmþº(ssí»$„?èLÄEkWϦÂgš^º¶Éï}sì}À)û-§É€=נ݈ðÆñÍ9]²Úæµ0ÖÆ—q71“!¿ÛjRkzêëi‹qÇOü^›/p¨}8BOÂóKùù Ǥâ<2Aðf i™ˆzÔÑ-Ô5øCm«~;+Eö§˜¡ÍñÝÏ~b¨î_ÖàÊã&¹å!aQ"ã›…†áóâ&zéƒUØ6kŋРÝ^¤ØÒ>T :ôŠ4õæ<”’ƒº˜¼Ãvœ “6ˆµv4…ÇO&íÃU4¡¸> í4ÛfèV>ï¤Bæ ÓÜõÂÅ·„„[a1ŠkC/ÒVcþØ?º‹,ñv3[Áªèô ÂÎ{§wµ’ˆ/L[Ó/Â"@ÉÚbÂhøÆ¦sɺM:q®'&hž~R`ñ~rL䟟ßn8*hΆëZXç§T˜v¾Ãž…màEmg#k´ùÛËp´æÎ)¢1zóR| ºÖãƒÏžÚz‡N͉(–·¢AV‹µzªÜ 5î…S¾¢cŠõ,æÒm N' ù|Ûk©¹¥Œ å» 3Œ½ðøµôV{4Yî ßò ¹âŸ{‰½ùÂZg§ºìGÀêC'X¸LÇkßÄ]þc²ú ZùÏ£SØÞluJaÅÏ[]Ár:ø‹A1~¨/tlÛ´äywMP'ÉЯƴò©ÂÙä[R0’6 ¯Wàhì2$‰z ”ÉlÝáïB¹æÄž¥`òäh扲µ™æ^·Ÿ±8?žûNXËð§Zˆ]¥ícÒRÅO)GÄT1ÁFÅœ84‡ÌM1»ÃÅÆä+Ê<¾a) ­ËØ\ž…4JH:^âξ80B4MZߤÐÃÄBÓNSä~nÀ»µxx ªê~|’>ÆÛW=5.ÂE¶g“Y %Ht~&c/]8fÏŒ“—úx¼Å#z„1øíJ˧îc1#CÊɱ®#­-±Üh»/'y’àÄÖ›ŽÚ7•&j—L³ ô`þ–äEd9_§8D÷ù׬0ÃT5lûçó)¬ÜÖ§D²R€àx$M{{éDog¢pŠjÌéÜøQBfÒ¾1(àªcº’`ý9ÿ±`[”)B*2‡@FlêSŸ¹Lq¡{!ÖÚß#ÈeT&µhÀ^£)Éå8)‚¬úX›ÑÑ CPIE#ës”ˆ.}bÙèùÓÍ BÀJ]àýi'Fí[Ž'"pºM¬Vö»áÑÇX.MK6j^a+¢Æøñ ,1àÔÈÙ Vêzןü›\J»{ò‡dMI¢ Q §ã_¤+äÖÛê´GÕ/øI ªúO9W8B|-Z0E¿ßXù;i%¿B-­(¦°Þ\&ý ÓÀ®’/v>.¹y‚jÇO¹m ‹lrÙ¬óNc¶F„××7»ý2œ™gí¯ Î"Ó)š¯gÛ‘deO_!©ÒK%^Ñx€:mØ2.`u,2f¥Ÿoù wU@iͪËyqF©þ}C“ÆRyœÙbþ1u<ƒ€.ôœÃæÚݨÚí(¢b€%¥QTÑš+œuˆÅ6^Õ„2̯X<ÁöÔÁÒå_ä<¡@_jK6È_ÌšÏòwnš¥*£$ø¶=²:½ÝÇáE@Ã>²^õà/áìçuçv”ðdâó¤P _.> stream xÚ´ºuX•ݺ=L—t7‹éîîînX4,º»A‘Fº[º‘îAºS:”ø–ï>gëÞç÷ïwy)Ž;ÇóžÏ|X×¢&WÕ`³™¥ANîLl̬üE%%ˆ•Ihíá`æ `gfeåD¢¦–pš¹Û‚œ$ÍÜüw€Š…;8ÁÊʇD :]ÁNK€¹@ èn¦éã dЙýTAnîLæfn`7ÐÉÚÖ HN‘9û¸ÚZÛ¸ÿ®ÁÁÄô»Òïlqf€¼™…=ÈËÍÞ`æd gVb(ƒ¼ÀF[È `´1s°€¬š@]€–†”º@F]EKUƒž\XÃÃÙäú?\$44µd’bÊšR 6#@FKCó÷¿š@'0kF€²&Øÿ»8ðwº’”¦˜¦žªËï5Øž@W7Ûßmÿ‹ ˜à5pª•+ÈñŸ:wwg~///fk7wf«5³³Ã?ü4mlÝ^ W{ø§+Ðø0N–`9Ým€ÿ*ð{Sж@'7àï$iпœŽ`)ÁI`»û¿‰…pÿ]Óá_á7 ð?ÚØ˜¹ý“«¨ªªp4³ur:™9Y€ÝÍÜ=ܦÿØÀ–´ÿ"Hx¸ºþî¡ô¿.×·ù_êâ ðÊ ü̼þ{ÇÌœ<Ü|ÿÒæ?—mrr³uswûWE ÀÊÖø›½Ûï=³uúǦ$¦,'-¥¡É¤<'&%X'fwo÷¢×“T"/€À R)'K £#˜µÒoù$mÁ:¹ƒ\}XþÏ\Û;¼œüþ¯ÝÊÖÉÒê·ò–Î,ZN¶.@9Éÿ‰›þجîVÐô¶°aùÝîŸiùmfûmËàç rX™9¸l­€àH~nfž@€»«0ÀïoÇ"$6€¥­…;xÐÁ‡éŸêrNV ß¿Ì`&ÿëúŸ ûç ÒƒO©%ÈÉÁ` ´BbQ¹ƒ‚îÿŸsö_½¤=”Ítÿ-éÇ™9Ú:øüGäEès¥S¹:š9ü—ÏÖMÚÖh©jënaóŠÿ2˹›G_ÌÉÚÞ“LZ¿O“xlÁÛßO.7ÏùÀiaïtspóýã‚Uø/¾`é³°(ɨë«ë¼ý?#óO˜”“ÈÒÖÉÀÎÅ 0su5óAbÏ;À <Ò–@ïÀÂìr§œ=ÜV W¤ß›ÉÍ`ûmúâ°ˆÿA<‰?ˆÀ"ùñX¤þxX,Ò€Eæâ°ÈýAàšJ¸¦ò¿/¸Šê®¢ö±XÔÿ pM?ˆÀ¢ùW¤õûéüAà~ºÿF|`ŸÙ¿;xñfn¶àMs°þ‰ç˜ÿnmîjf~xZ¹ÿ bû—ÕèþŸvŽÛÿuþíëgñoÄîarÏÊÿZ89[ÿâÇ –ÇòßÌÖäð{þD€Yü!Îý¹x˜9üVÑêOW09+[Ï?\¿Ý ¿+‚C¬ÿTû­ßÇÀ¿CÀLmþð«oããltú+l³ý ‚e·ÿ ‚×þ‡"7x‘¿ÏÅ?X)Ç? ð§6¸–ø<ý‘ÜËÉÃÑü÷ÃÉú/l`1@X‚k‚þÊbc¯ÌùÜÃÙ | ýÇ^r²ýõ?w’LÁèúϵøïPîl¶ ?ûÅ VÒÙÁ㯅±-.Ê€etñï!ó¿6Œ lýKk6ðêþTàú€žIÍw³õþ+Lä-.ð Üm\í8x¥î^ ¿À«ñø3¥àÿ¼¸Y€\ÿ– ¼gžA°œ^pÑ¿8°ƒ»úüÁRûþ‘\Éèú/ÿùTý}ÿÿsµ±þy"þÏ‹Ñ?XÃÝdÔ±µ¿þ¢d>kÞ¬à{‰ lÿùßÿýGê?Wê_Ùââ o?&N°TL`õx8Ø~Ÿ+î€ÿHµø×+Ê?W"øÉý¿ø÷ûôZ -/‚,ÂíÒš#Ë¥ g*`©ù˜O«p…uåa–3g:‰ð%óv(€"E!­ÁŸhŠ@вüF)!N%ºÔá8/mÉÕÓ·–j¢»fJD¨Rbã¹ÚÌZ¡Ÿ”¾W|¡ ?–Ï-Ð+åœûÔžØN Ð?‘àëì~xÏ>õŠqJaXѾ–ëU¼ÀÖ‚íê€éý °‹èÛL¤ûëvBœYŸØ2üiA$î¸<œso7ºþÛ´MÝ“¿ôÖ«ÊQÒ…˜M}N¤,ÁâÏ¢9êçDÅæ™$eïr q Ý bmìÓgL¿Õ˜@³ŒúUi$7Ѭ¨5©“˜Þk¢êKC7‡‰ œÚ‘;2–÷ÛØsÎFsaÑ}VïN1 âÌíSËíÎŽ´óï©äæ”x- #Ìý,†O<äÎ3Çf'ÇD5µ\;’F×­úkA9'ì±AFºµœÌŒÐ?”Øm/ÛÙ¬9¤¡ Á‘žÆü¤s“SÕ,×ìx)Gïçóärè¯H†)dÝ®ÇNx7kËÄuJA¬,Uš VDÛžKº¸×bÛÁmgyëL^Ëè®sã*YuHâx¨cÖtòƒGr÷«@Õ”K¾ÕÃG’ßìüÄEüדWëí°*й1_UÈÅvç[Yþ°Ð€ö‘.¾ ãSQmµ®òKD‰}Ž’'9DüŠ[Ï8)†ÑRÅÀ´‡MÊãü ^’8½ä­¯¾·Ö½¡àžZºØÐ2·þ'ÑÈðí(”þÒz8§ýZBbô<çy©ûXÍfbÄ•Ûdg¨µ¶ÉA¾FÙk#=‹K„€žý@+|Õ%G´O…Ž%éwÍÈd_\üE4% TÖ}§óŒ9J¾ÍÆÓ.èÎ5h¼Ãó·¨ (H`‡š½Y~_€tãN~dU‡Õ¨ø\«¦^Ÿb×ýqšöz‚ÈŽŽÈàI.áclþç÷q¯Jý˜EšzsG>Öé]¹uÖ#2.i>o¸[MTÍê'2”Ä.N*ôˆÅv±¾PMÉ]»1ùOÆ&öÚÈqç¤ DÁ¸[+Ù•‹ùñ˜[ F4ßÔù‘RöÙ‹ûôûÅÚFCÛbÙ  ¹ë̵ XŽh^šX.SnåR„©ÃÞ½ê"Àu#(~óÌWüþ=„cVüúÀ®"^ôiatGˆ ˆky¤àü}aƒ,èÈËKú¢9¦?20ãzËÐô@ýÂ]„|üÒòý½½ù¢@±£@‹óçOúîÝoRG´l9«”ØT&4bÂφ‘á>9QîøÊMÅ'½’qnQ¸GŠÒ2£õ‘ä @÷œñCä1i‘±sÑö;üùaB êA½¹‘)å¾­ÈDéË-3«ÏÇâ°cΦ° ÍÄŒÁÜW¦2ðëÃØl›_ ¥9Å6Ðû¾]Ÿ&QxI•—„çü`×Ńàš$HÏ(RQû޼ZÔÚߥ¦gΆ¶¡…›xK•p+,+¯¯JMéz HÂr¹¨ïe½s¦7–ýÌò-󃣺ó@;½OúCJùÔ™ä2»èú]¦MgO8[ˆÂ¬â“ˆ½mÊ$tz¿±VßûÚš÷ s^Ö¶v.{ýK…?>ØÁÎ[ŠÁSü˜5ÍSî­µcQø–v^ùœê†Luv °VÅ~ǯÍÆg36ûúIA€3Qú n7ĵJûþÞ'žÉFâc„bB~TµÇ䛨¬Ð.ˆ†Ëº=ˆã‡~å@FÁéèb¼P–q´}G—¨&»zÚò®ëÜn¼þHDæVu ð’F˜)[dˆQ)5¸Â]—ÎÍIÓ#¨‘÷Š1·n Ù´P…#8ûCêÃ0¶,Gyùò’íÕŠæ«ÿP¯L#áÍ„ÕMµ$>q |Ì)BÄâÂSg³Ãƒ0øŽä¯ÏÊ<ÝÖtõàzellÆ¡ ï+%Î’|Aº\º_ú÷VônÒ+¾œBp%;8±BY‚&!Ýb«ÚªÕ;gfûRVÎ~I䓲Æ_£TÙ·õŽ*r^Éø,Øï"$ëmS.½Ôax&ÐÎŽ&/<[Ò¤7É´l2î JrPÜíÿªÉ ,¦…ƒØR—Ý &_ò •&}£gšáÛELͤ‘ŸªŠQÇEåÕÔÖ`oŽY" íûAšÛ§€b%ªZR½¡ `€TPÁ´R»ßCÙž±ó ‰6ç8°«ªÿÐgÀY¥Fª0gð™Oä±ÊBËçpZ½…¯Vp¨òË $~*—˜²[F-4¹&I«À²)©èç_­ÏÙu+ˆYæCŽubj]¦a4áåè „{°nf¶ýbThHõ×{@…uëL6[©JÎA2mÎ5âfŽû¢Ne<Ë9Ðâ)Dw™ÛÊÍtµ!›Ÿpn”«rÑ0|¸2C4Òäè€{(0:]%×Z9ºÛ¤Ø*A4ްÖÉ;j1"fßö¡›gÖËPª-œ{·œ{ÿ,žŠ#Ê÷Åâ‹ Û:ºEý¼{ÑÇq 7”ZÃî…Ù¨}%.½²¸Þ%’æãÕ͉ ÎÒ‹¸œØÒÅÛÕå;9¢¹÷ÑPÙЧêc¦·*³­š®VYÌ! ŠwÑQ=– nj’»VÜT§6ÞGÊPÚÔf—G΄oš×ß&%:µ%ERÚÔ7›™|žù`· ƒÉ*CY¬3ÐsE€{5ÒJ«»Gx»;è¹g(5d&æZûa@öy@?Û~FõÌ_ «ö0%% ,h޶AýûàQ·Q;qàù›GM¡\E1Æ:†¼Få>¶)­šËÀä·©LÝ£vö-ÓÞùa>léa±T¸ïtùµ‚EÂÆ|9äH¬-I”îžû!3u[†2ðZ¾9*˜ˆ5¨dÝz ÍúÇC~t…N–å\ e¾ðKD|ñ‘k;̯’<®åi> 1r^é—ï ¯«A­L%¦nMF3¢¶ùÕ¯®Š9åªZt¶e$UßQÓ4'–LòwyL™WSËlÂ})1c …Â…äŠÉ÷”=Æ ׇ+ÎùxAì¯QqæÒ›É„÷sdwƒýN!ÿLú­þcü½í£N%ЍR³Æ]©Ž¤YvK"u#eŽÎ”19¾Š–®ÑîõPˆ  3m,)~º‚Ì í·åì:7?N–—vH"s:C÷4ŒJÂÞgÿ]ã··¤°4{ÞŠŽ#Ý¬ŽŒ%²&¾†ÀóšlþEH4; +úp ç‹¡ú‘ny;ÝlÚ!_oþ©³'j÷ÄmVpôk‚;Ͻó/Ôöš¹‚g¦äìó<fO­K‚Ý«ôkëÒþ–ÜL’>Î3^ä¡â¬‚h^$<ºD¦ŽÍ-£5Oì§ü]üÖG‹x¨G‹bÕøÅ[Ù@y{ÖR>‡ƒpa×O\Šã'ÅNJÓl_?–o¾÷¸Í2¼ïÆx—¹~×ÊšÏ:¢k¦ˆçOõFñ¾GzgÄé„—;üeлú'ëà ¨­«©êGèúqbÕ;(Í´fèNx’ Ê”H­à}ô«à!Á¾ùŒºåÀ»¡õ”bÍùnMòg޼&óc­Æï”´¬"´Ÿ˜$Ï×°-BËÇßô?]ïöíH²ÐOþ­µµFÔXôüÕÀeœ8ìmGîªԆqàŒSˆªpÛŒ”pϯ/@Y1DJX²(üÇ^›½#òr4Ûy³~|wáfFIq—Š1ÛÄÁ“–ßÚkóï|‹B™ÛÓJ¼,E¾ ŒE;}[)¢×÷D@{ôWÊ–BQ}œé}­­ÜLˆBƒYx¶ß-J-S¢w¶…¸ðió¹¦-ÂNz^ïI™Äæ,ìq“³dú³ÆØU?iÅÉÆý>‡A?97üÉ ÜœCwonÕ»Lè€g»ÎNl÷ļïïjBG¯”sÜÔÖ–ÖÌG±]ÆÕ&zê|wO”Û^$$&(of«½a»þ‰ÆÜÑ¡ÊhÇnÕ€±ÓCLçn& û™²‚=à„ŒépãáV7£ãç|EŠ(þA3…$?ÑaqmZŒ’¾ÍݦË/ÓÜ\Íó‚´Ÿ)’‘?‹€¯È“ŸæwŠ/¿¾fH“ñg—©æT¦7vDÿpfƒò  ?wÖ˜—Êbêh{…¨q}‡Ì)8>àè"¬:¸´ãó3ò Ë™‡f-½Î®rt³NØðÜß9¿˜Sg¼J”NyöAüEå½14Ök £³…JR‹Hôhi7,NöJ[?$ 히glØÇÏzOíâ Mëc/0†ö¨‹›[¿^óÕãF£ÝÏ(;åóØ{ßògN½R€Û)¼YÙ5KŽïGߨþ_m®é#Úsµ0AŸ¥C*‹‡z\·¬ðÊëìqŠÒ µHò¢c¨^œ2;G»}± ‹¿pŠfA0M¿…íI)Ì?Õw$[ì,¹õ(ªýµ?mgãAG?¹##eÑêCù•rú>)j¹¯ ¥•ÔUœRãŒòUQä¶'ýǯ"Ú¹" ó7!߀õ˜óø óÛùò§;æ,®Ä.†èÏßo"Ī‰ê˜‰yûlmHu:êê o¥G/Ï÷ª·ÙCi©:Û^öàý{2¸†~µ9CxèÆE©hÅe¬%ºAjƒÞ,€Z–ã¡8IÇ…ƒ“4È|^÷Ã!)\wØÒ[?`Nm•´%ìÄT!‡Ë*5ϺýÀõç¿Öå¬úïÅŸà#Á+#á‘þúÒÌ3Î>kªðx.p!,]‘”_¾žå×~lÀ–&¯1Q¤¸H S‰|b}N¼)³¡&•¿O"øQ+EÒU±µ¿æ†£=|”c‰ŽTÖ†šr=þÑŠ ³G¨®¦W܈ˆ'¬‘ië¡Ú«3ОÐáiþ^¨…žôì42¦<’c”õm¨§`ˆÔƒ¥ÏtÅ )gkR¤[…£'Rpüã¦ã”wÜwrÚ´ŽCïµU&4kšÎ+œ…˜}R _oEXR(nlR"Tìk!2Ô+ú"¾hJþcŸäé¹VÙ-×Ò½Ø6ªBç&ÇkdžÇívæ*x}¿³÷U£³Õáäê®g­M! Õ›~¯‚®Ácò ¼3”x}U °úš·‹tÂÔR.,„p‡ºJ3V;$4kXŠÙäDa-õ’òyHvÃÕ:+ÓÙ50š¯]eå>ºn «4Â2Q¿K¬×Ž’?@p%Æ(̈ÊÕ.j7»›Ý!é,Jú¹ˆŒ³ÅkÅŽ§pU¡T>ÄÜ|wý¸ÇÔ‘î$XvÄ™Hy±«&”+t‡!Éú&¸ÿArZ?¬ée½˜ö\ôKÖµiXÀ©nW¢äµ\’·—ÑWÓ£øºñXÇ—Ÿ­†ñÇ”ïHùÚ'Œ`C5 Ǻòo4ò 9Sg+W9†OбBâÕÈ¿L®Å¬ÌV7DRíšÔœ;6ÌBþ„ò;ŠÅßx”¶RÍ&¤üáåÞD­:˜žˆLf+#~\ÇcÉ2¢h¬XG38y-·û¹¿&Rff[Èa½1KÞc¢çaÀPTøA¨Ékn‡º‰úÍû!ªÇ¼Ås@M;…²¼}ÞKJé½îš×Dc3"NòȨÓ골z9[Ö7w«f—Ín˜¹‚§Û4XY5¶aûïHŸ/Êöê3L=8÷£_£;KBn­úª~&ž¾U :†!Pr-Ífgcq³I$³¯¼ÙKÏìOZ¨ÊG1>s”(aÝšQh“0¤ËG }Z®™ñ˜-,213èGÚ®ç~·¥ËÈT(“]Äç±H­Ö´i?æñüÄ«a4_vÑ;fOà\àÆÑYæý%r’]öƒt!]$чûˆA‘kû:³mLcG!aÕE2 ÷+ ¤‡Èšqg+o0vrÀcÔÙ„ÃHM!|©J ã5Mae<·FjÌY7-"ÍZUTØ¡ÎừٺƒFOk¬‘<ôÊ Ü(:Oï<ºÇ!+ÍFøX*W{rdP7éúeô♌_¶WP+èæ¤srAjl‡‰CÊEJ»æl-TÖaþ?Ÿ*–¯[®¾™H3%¤“/‰‡9$ˆÒ&uR\VEøª3æ÷ºÙ+v¾ä%œêÖ"]yº˜ËEÇוM#fæ˜ãé#oo° pÚàêÌ¥÷ò ¯ó†‡Ò=BüÄŸºÜ9‘&}pŸïFZ™Õ~+JðCMgÀï}"ÜŠ•£NFY›ñ¸™?˳BÓÑë­ŒåÆÙøï$ª„½¸h‹ôEJÍ2H-Ã.y³üìÅ>`¢T.ÿX“Ü“‡¿?ÞŠÔ ñ*uóqÐ9ãÚçç]Ñ[£ËHÜè[joÝ®ÏG>L>œ(‚' L!..éPú%Ø!µ]‰aÅóã žãå÷—ÎrªË0ù¼ŒbzgÃ@ö­^VñaûÜjÜU?f2~Ø•åéÊÆn7t·Ëuç$Æ«ÚÌÈ4ì3ƒê~Ö^< ò =ù"ÓÚK6ø§ ï)ú(µ TiAÚmS°døD‰Pb'K[Bó-UÊ)~i×¶ ±s¿-·Zß#Ün]'~DE‹] ¶àêXžîk)æÜÈuuŇ½â£úp¸«1Ìî$ æ©BÛL‡@aÃgŠºÐ¹'M›†è,Fs'€AŸ~öE‘3cY^ú•Ë ½?¨UB¥¢ºó å¸·µï×åÌÖÿ®#IA–C5‡l–çm‡­0fqw‹Š;¬Ïˆ4Z±< 'ΆèÀÇ+h µD´ƒ6qs§{‚¨#„W–ܵø‡§*Ú*_1¢JʲNl€Aó"E2ê×͉ÛD‹~Ö»õ¨¾±,d” «„¬{·K#ã˜n<›B‰·%6w¬8ZãAi{ßÊø"”œˆ,–ó£S ù=ê,1ÏCKàª!¹’œM=YEývÔ›nÐù¦ïèä î-ü^ár-o7åañˆÏ0´rö"cÑeä·¾a¹ßv!Õ×õh±#­|b¼ºGåä^F/®8^ÎÂZÑ4ï+"5½câ,ÕS-§*ü:¢Wª-Oˆ"‰o\[¸žm÷ÍÏ»º=e·3¸ýѦÂ˜Û ïØabϺàž}ÚOj § B–³æ•°Y. WÛüλ³Ù4³h6z£û«^A™Ÿo/4ó€™k~¿ Q3D¦1«†jfù“jèB32´0@Mµ8C³ìdK¯ÃST‹Žw«;[ÊÔæÞ¼£ÂHšØ´>ÌÈ2˜º –ž!&é#upÏ4z²a37Î×$=iÞÑÈ‚{[ïF¾«dè#ŽWìssl æÙJV`‰EONÏ~&ɘýX–Öèý6[4‚®›áI‹L[¹§»L=-ªäçáuc6ÛuåºáJ­»l˜ãò¾´ê9‹pUÊAO²}¸‰“É›o-Ó~x“±ÇYd¹1j’ÎnQ9n;¤wA™p±Q­R\§d†øJÞOióF¬h°ÕËz—d_¨p…ØñàÐÕ¤0É«tü ¸p'º£ÄSe‚0ó÷•PÜŽt+éòLº¾ëh%m4ýH¾ê¬²?¨¿…NÝ-®ÐÁÄŸ½€@aw’7°Öº‰;am:–'LêÚ3ï_ºÆäñüø°=_]þŒQœ^´¬ßÖ¼“×O2l$‹¦aó¦xócì¾á~q0ËÇKÞÚJ¤BºsÚ­LÙ‡üµ‡•&%­š»•%½.>rÑú Þ®Ü¶¹¦ØÄuÁêØ$«ë$âoJP}®ƒ)̃š½Q¸+?Š}Fz(a’ê’C;nKP!yÏ<Ÿ…kOÛí “”pÉPv{TŸlâÔÅqÄç4kÓ–xë¥Ø¶gé¾À±+{&Bi­d¯u¢QSi°§<4ìÕø¸;pç-ó}ðsÔèž s´eNÍ"–Ê›¶¥ßŽQ:Ž%œ,ì³÷ä©^‘mVzQG+–>ùèú¼7¡®½²l´ún+‚©ÛöÄ£%æ¥âWÌ¢Y±j¿dtýôýêîa,¤U‰j\æ)E,vïf)„ô†žÇJ|{GmÛŠÚä>caW,Ÿ@}vÃx¿°‰mq¡Ëq”ïÃÉBûmtë!i`œB¬rñzáÆW€†/–d±ÙPÌü|±xA’F¦Œ.~Fd}TWÉ/˱ÁÐÉûÝÙŒ÷Ÿz"Œ#Ó'ϤöƲ…gŠüZ¦1§Î.Ø"j^æüÎrÙå[$ТžˆoqÓÍ4ñU’“ldòµ´] †Œ6.™7%¿ç1d¤’­øíÅ~Ê”ðż]D›iŠÁƒDn±`Ú]šR‚@î1t8fŸÉÝÞ¼ONo˜«¢êá²2Zާ1u¨+,ôê¬$SD¥†–ÍÌÉM¶7`IÝšLQQʬþ¿F"O–^áq‰ú²·ƒØÞ––ø×ÆJÅÆú’Àó®’S/ÍtßE“by¢Åñ„èAÐc¸éMŘÈÔ¶¿7eÖ7Šà‰rÈ~îOI¬¤çŒœåwmæ|¡9[¼i'ÈV%Éi|º¥ë ¶³ýßÑ…o¦ÑÝ*âvk­J‡HšoÕÝJßM¸¼²¢ˆÆ|ðH8„£&—¢>¹ù´&Ú0EWÞý5âéðpºéÐ!å©ù9J¿}÷`eiK‡›Ä¿„N:Ff_ŒÔ\ŠõºæšñÄ-“Ù±Lõê—.¿pó?{ª¡÷SÒÑb*Öµ¡Þµ€ªÇ ½øð2Ãh‹ØöøVV{ÔÔ»Øä«”ÍØ¥š·n_,Õ/…Âwg<²#˜]”ß¡H°"Ï]ËB×8JºÝ܇]x-ï=>¬Þ—e.%ù̱U]©ž88MEÇêï À$²Óh§ãv÷½,¥u‹t›6lu¢G±ËïÆš#Ñû‘óYÁ5]GˆˆÂëÓ ì¯A¶nÔ(s¢-¶±ZšcUë­auMìÚœ¦•È7‰M4|+VŠ€{9m¿öI‡¨‹·˧FX¨vÑ·²~,” —UÇ#å5HÇ,L‚S?¶ÎI0Ù“<ÅnÇö²Sχf!S'†áqNÖm‚Ñc…Óm¥>Œ’ç¹§ïŒÂáBñŽJ£%dÜ£aêÖ·ŸI.uE<Â.æË^ÃÊÑÖæØÐØ7×覶_#¼ëqÊÍðîþŸŒiì³ ¾'µ6£°¸ÃÀT,¬´R7ßÏúqÉÐä¶i¡¾ÍÀØ–Œ2Fßè<‹Ùô© rI“î†í»6!ˆÚÿÝôU™EÃq«~,©Ú=^'×?g7õãï5?bRŽLÓ?‡¯'jŒs$lë&Dp‘”Z®š ‘"éµ½È,-,úS©Ü£jib†žœ¿K±°cöÙË uˆ¥ oiYX2‰0‡0ûÎt+CN‘bÍ“$8Ì'Xwǃ2;çä¸ QkÚ²PÁÖõ¼Ø¶£íòP¥—)ÚïGÅ×Zê™q®Ø³•=“ekÃiÝ!³„—Ê«´T+G~.3þEŒÿ,ùúv4©õ]îJfŒZ$eÏ=œ ê¥d|•sõ/ÍhôqÔ­#íZJU£ªáNøÐ)48úÝ3óãp.S´"f÷Y‘,l¼´p'K¶%åBñë þÑyT L÷Yï•Üäß 'Ì}ijÇÒAǪ´ûô!™mj+‰Dˆ¥Õ’,’ü:éBw¡u‚¨«‡´ÒÓ~E@´ÉÅPûª$ëLÄWFÂюmÇæf»0’˜913>é­´)¯2›Q¦|2UaÞ­ÉÎ €|I5b§¶MA1ÕÐìpû²qpñ4+5Äüøûh!\úzÊ”Ï4Ý/´†~T´ú5´Î‰‚)_ÃnfÆ3w9ºïª¤rŠç/>de’í@1åì®å93"1Þ´Ÿ)n ð¡¿eó .ü¸TúA$±“/u9SÛŠ:11?Û߭ⱕ/EL9›â#¨ Á׌Wò@‰WE§êªRnQ­]šÐYû¤°Ì‹bÜ/Lz¿"3¶Ð‘§àÆpÜ8X@Øyðñ–“ÑBZ®©`gJWÏ6£}1>œúQ9£w5´ŠÊ@ó/CŸ$töíÞÊæ8KÁ©ðˆì.b* E^/6JRŠÝ3k#35dŽ ºHýâ6<à¹Z÷ õƒp¢ÿ—†RCÅ–'¡…–tmÂ-1¥E½̤c—èºiRá~íÈ GÙ2Û}Ú›5I6’«•Ûã#µn^hÍf¼´Ñ‚^|ʇõ¾Ò(…ÂÒHÍP—¬w:&Ká+žÑtAζ ‘nr8»’üç Wt È»Á#ûp ]3f¥”†¯Ðé´>K|~Wߢ¦Ùœ¨Ý–áBÕÙ… fí4-e௡Q>õí»IŠŒ96…SÁŸßH;­âkÌ»oÜ~ ËT œ>I¢Ír•‘uô)l¦ó‰”›àLD‰=)€ÿÒRVOKîKí…ê$ZpùÞ5¨ æ×ù¦Ïç÷NÍ®•Ü¥|b%&n5˪j]‚éqÔ³Ù,ïnàR—N(cù:+…UÜwÉ,? ©âF-HkDÚ=¥*uø»E{¥CÚç!v—`éÌpT©éåŒ×‚Æ R´ )¥»%1úЊí>¤ûŸ”*5âèŽxѬŠÐ_)£Y3Âð]NßjhT2ŠŸ+æm“Æ ÂÁÙoî¹Ø%¡ªFJ|ç…ó@lÍr9n Ñ"ÅySc\‘CçG‡&’}zj~}ˆï@Ù=sÍè•”{åÍ@OAC|(¼Õ0aMzZŒ—©€VTÇ` p”úú¡! ă+Èš'Æ{gþ=ŠwN kd+Ç-×ÎOשe9ô–¾)8’‡`õz¤ÕüœË[«BøKbÌÁÆ›Ó\ø"_CbŽÁA+K×Ù3ÞÔÕñvY–”ÈÓàC ‘xZbw'+¥êômŽ"±Ð×Zd  ßsЊÒ"ÄÃÑÚun{Ö/,!µ=%ÐU™ÐÚÒ{k'—æAB˲ o ÃÏÞôô­ëŒÇn™Ì–]뱭ݲpCØâ½Km/oÓQJ:bð‚f=zLæÓzX›Ôª Ã~Ü(FÑ2ÇöCx·eeJÙ‡ñÛ)oÿ è¥y+.מ9qªÂý‘;m\ÍXI#yµct÷ãÂÀx^ᜳÝ)+9[5eŪÁañÉÇÇáò ÊLúnÝq>bˆ+(¢¤+úÉa£ŸˆŠy§§d|§ÿcwÎå,Z_Üw*ýÃ…Zn—;’²•/DLuÿ{K1B±'É?ð‡=‰´¢ÊëÀ¶š¥¸TÐKÚL0ÕVbNŠèFM'ÅB°§¤R5 J·¯Åv[6|³¶U»“>!bTfÅã:#8¤ eNòÔ?†•aر )ʘŒØ²ž5tÖ‹q‘q Ü7¥ò:eâ-½Ä©„„¡í>)3hn±ïASÛpQ~¹† Uð‰NìØ~=î¸ù‰ÑÁÿ=S‚ô¥µ €jcTYw¥ïiþTŸrÇ,È#õ¨FtØœMK\‡óµg K»ÎF—¢ëmØ·Žã4Ì3d»x åGßûžD½‚?Ó?gMsßP>Sd¼jƒYˆXD§Wµ`Ý{š?Ü÷ª]R[q7~„V epÂLvö^~Pƒõ¨Pœ˜dùô°‘tBñc]Ú)=w6•–§Áë7ÊlÔß0ã’Hr¥K¼‚Óq®æ$Û‘è ¾DÿõÖˆH8„LŸÇ›zM/©èO¹|aäÄ–áŸæ%ÑŸ¨W4à‘ßvHb,›&¨\Öo»$„oË˦^&¦}®x9ªt;ˆÀmr‘ãW~µ]çÌ+8&K“*áéW³‡:ïQŒ"Ð „™»—––(X‚‚˜Œ´ùük÷² Eü1gš š¿Ÿ|Á¢À“½Ê@‘·úFV”L¹¦Ø/F«=`0Ô|Ÿu"uFüâL…ç¡f¦Ð `­‰'ÍIMš|s}Q:“ô4¾=4®[vR“w› ûð9¥S!QsòC DLùË)ý݇óˆÑ Iœf—yñ')µ½@´)±Šð ^lbý®•V_8‹a“À~醥¨B±š½:ßäsÄ€XÏR¾û¥UY†—ƒzÑÕ*¥PÝ@tž}êal¶AÐ@÷ôúZ áã…)NTZût—ÿâS#ÙÏ®Í!O o~5‚`ºWFét4ñPÂ7£s|juV02»Ê¥ _Â÷%D_B[¶Jh =ò±Zy>(Ñ$Ÿ<ÞKû2é᡺«×i@:tšãò9Ö?RbäÙ—¹ ¯Ó'l ÔF²î7&›˜Íd/í2BЖ±6Ý‹¸Ÿ¼VöÅLhé:Ê •d±JçÇà Ïu¢ÖÃTÌi¼r$œêÕGÌC5Ãü¶çE½w¹~Ž€B‘ãÉÌ™Ö!ÿCE‰5*éçÓ]S¦D7ž•—3*CP™™*RØ£èÏ/§Kïbw› säšÚ±›]Y¤ÈÕ;ë£5ºŽâú&ÈH, O[%ɽ¤ßÉÛîØÊ’‰ÎÀøQ[ù\Wc¿×B|Qí¢€›]ÎM[¿Ñöä/öh<—Ïl)Ôï@ì’¯Œ³ƒ!d‘: ’û_ZÒܺ¡F‚£é50ë±õÝÀ§åj°¯‘ûqï±Y_±GÛØ€7 ™ww§@¾îœ¶ÖÕ"³ìïÇ3xÂÍ—b.&Îl ï|þ ‚‘7d¨pã.ân<öÛ…›£œòrÔp[Žèa>ôä6ÜüdÇþM¢)2,òs‘ùü¯heöpRûm:¼|f`;pxÊÚ˜/[¾ZšÙ³—Jò¦‚ÛuÈ!¤¡%[†½R8ÿî›NVÅÖø3TõÞ>ÅÕgÂÆ“¡'yïœÖ¶¯×•*Îä¤ëߢ0Šz#Z½[!„ñB eUâîÖè9±¶*úõÄÌŸ –Aê~/ÐÞ0UþzWxí4¯µ¹óq¦½xb{¸(À܈ªºKÝJÍÜ/5w …­fåZ0ëâ? ë$õZ†»mî"T:œoî.Vüód¦\“¨/ŽTc«*XÜÞb¶£·4×Ò¼3<8·˜Z~õ7‡¦·ò[}ëS2ê§ÙÚ}Ä@ê$ò)_JŽk7ެ‚ŸB³åM…Ï ídÑ9…ÌÏÖéYñ,×Û‚Ö§¼9øX/…Í^¼ôü$P|(ê¸É^UIQ>êã Î6äã¥ïXóð’© K_Ù€ÖßÁ.4U!þ/ý ¨\ÂêÎ_MŒk^ŽŽ* LJ}w_Ÿêa†¾~2ú5¿©bäÌÃÖ¨g„jtêIݹ—ƒì*“ÊB¥¬ \*Ü‚N«@¤²|3¡Њ³OÉ^h£sS½¯ÈÂZ[ƒ…›þü£ÉØ€c°æÝÒÓª_É1"r‡¿œ›®¤)Ú¿€Fàæ®$õ<2²æ¬Ô-’Ϻè5hbfzÛ³QÎä£#™8_½3CRíi$3k1e¦ä'›õà¨ôfÙ fý ÞKÌt P<¡x€üÁåFÙAì¤Zc\ëù³ì!ìýˆÌÑ`V«½ô:ŒÉ}µÓ†‘µQVªêo 1‘ïàï$ˆÓcFå¿Ù¬,p(Tçr B›ÍPÅz@vZÒ¾û,0Ú3Ïjýé%Rzâ',;ó/Y¨ïgÏ'9M¼0joʯ%ÌN£ÝØ"v~Ì»¢|öÉ9æI¿7Lo<ÍÝnÜ€i Å6lù^”匨-Ž /oYnÂç¶yñZJ$ðvû+n*sè|Dêg¾{ßF,Úýs`]|"'b¥ö,z·`8ÃöŒQó…ôŽá?È. ýcŒóÏJJU­ÞÆ$9 Åx¼7¼d>^T¡„÷8 öPVc…¨=íä,‹Wê§“|P”Ü©htà \¾£Ãìaèõ%Ñ /«ªùÀx|ÑY‹ ¬ï„¡Ç}»%j‘Ë|Üó˜êŸz´/O4xH“«7ÃVq'?ÃõZA`—²Ÿ>Ú¯ì¾þ³Dç3í‰p’–Žîztø{ÙÒãXï£SÝo2kÀãqTÖúX×Álzÿ>¥Öœa[Ö—Ÿ³© îPd¨˜üö‚lIëú³ÚBh gÔ°ìi¨éâ“y &‰WŠWNúÎ5q›º‡éä>éþçü ÆðX ]^:ùƒr9xzŒ‰E‚¯).»E|‹úA¿¬x,ƒLmôQj\tØ*㫆d{3†##áÉnMncë̈š‚œO®£ÄÒKcÑá±Û˜õa4­­#뙼.Sb±R 9XW'©ß»dÝ”c;ìÝ5Ýuu/‹GúLZ¸1d0íð†fØ¢ø/^êÄã¸Q)é7Ïût§ÜœÇæåë¿ID{:V!GÜ‹°W[Ý&=Ñe¤ÒœÎ ã]Ãå›vi;ð–Ûù¨Kšï!è÷œHPöXPgÞv8õ>Ñ&€óPÍé¼Kþdêòm6.½î_D÷|ßZêÄaÎtQšR-.0[æ•H3¬¡Á¼Wh›™D“Ø¥ìºSž ?]çtAUmbx“goUX#¹,Ò’·0X*Ytĸ^X倌¹8B÷¬ÇÛ/QËyÏÛø•ùZÒD9$ ¦*<Ð8ÿ3ä…<÷Ž¢}¾Ìå>ýä{nE@6ø[4zóøÖvJ¦"TgeLκ_øºì=üˆÉTBf†Ý—³Ò¾Ç2Œ2¹ÞŸ}OÆ N2Ý÷­@h™F4ÒݘÜq8²)`^Ú_MÆ«ã¥.‹q3R`×9à¼"/g¬ƽ¢ì=rzc¬pWUq¡®yÒýÃK¾ŽÞª¾ç‚˹³"Á ‡¼ñšÂ yÈb2ÔGØÓªgImâ&½w6 5ÿÕñ"6B²Eƒ5ûÝ«Ù&^w×–Ön…~n¡»%¾6º‹ˆk¢µ¨u¦÷ÛKÉ~ž1Šˆ£@Ü׌ÆpÿrfàI™B¸wp˜¯ø÷…t¯« ^´£ŸêðËãþã½M¨à ‘¬^O¢¬zn»Naª#Õ’íŽ]ŸSyx‘ZÁiBFÿã—í1ã~|?¯gfâDýq_f’ð¡xŽ*±“Ì©!Ô¤dÕ”8õš€Ä)9¡MGÈ"¸Š9ä%Þ†%ʲÊ@‘Vu‰¿@NÜÙ“Œ¦®Vs%—ŽE¡›­ØÇüa‹GÜd {Faº*¤Ø=Ô oìWCå¤ '~­2SVÍ{lJ#œ1ñi‰ÉÉqnÛÎm ÚÄP¤Œù±[¤.-¡„«èQ~¡¢O‚–ðèûYÐ-8 au0sþ‹”½W%8 à/ß+†Ðž [uö~ˆè½¡[ìVÒMd§‡ÅàI;ÿTË—êë“#äžIGl;–=•³r+Fü–ß)…®U¤- ÒÀƒ¾ýÈ>ÝD[Ù³H ÛÚ€Xø‘·Ü¢¬GT](Ûi)w£È 9&¡k,ÎFfkØ5ëB€2ÉÔz•R±’ÒgÅ›GRz-&QVkÃ(¹ÑfÝîù…ßæ‡rdŒýÅÌŠ Ž7“ UûÅÍ…òç†c®tot˜Å¼i)T˜ïm³ÔçÆ?·¯D/+ö•p÷•Öš!ä—ÙŸyļ>\&ÿ¼Y+ÕÃ+YŽFx‘áT—jPûš•ìËMHºnéY¡1LuŽ©t%\‚2YAjäê“cùËòÑ›ñ×·tS­hvŽ{…~úd½áG  FË‘¸›,göI¸™Ã•y u0#›'ôx„6áÞµÁJ„lSÈ¥_¦s+°®#Ry¹J£ŽX†üœÜUòMGÔgPuvÍ¥2Õnºr€ÍY¶|¶ƒtVG2ªdáþÎJ$Èåsvok<¿(šDrŠ Í¯áEU~xò‚¡–ä¯áúLª,›öi: 0÷”˜Q,>)»Ò¤ýYAK8øŒ ŠÉQÇÆ³ö!Ã50öí¸í­ ˆtÝýêæî=FsõønvEc#þµ'¤êZ¾Z’¼€~Ö×$²Ô] }Ÿ&!NcM¦¦4îºï9ˆþä°p$ TSï\ß§í+,…澡9GŽ„ôÄ…ÉdÁ@ÜÆtkçóëboh1„¬ç¯®ßVç*‡g0†æM /X‚Œ¯ËpMƒ¨â I µ¡õ^Kš–š4ànÐH¾2õT·Lm¶07\cŽz¼e“tõâMÙm}Í/vtìúfÛqÙˆ $á/àO~À‘”]A8@a'â”l±äxô—ÒmÂÚo¡u>¦Ì-‡&’ˆsà—aù-úô¿BŸ|±Ä0¯èÓâ&$9Ð|Ÿ¶ˆŸÃàpl$uÐ$+ùÍ,»nný¹ƒðàÎÅd­mv“7­·œ47þÌ#c /߈5…÷<õ¼•–Hó ±^nI\•ÑJKtb*½×“œ!ÒuqkraUÓ—kìO í³í—„*ÎŒ•Ãîß =fùîVÈל´²/Jdγ(3ùÒ›ˆª••I|ÎìmgÄ¥E1ßpœàõDbwïó\õ©: °Õç?å1zñ”›“Ly âyv@RñPŸNé»/äaÛòžÉàÇlój’•ØÁÏlS•¶|øA)×|´J†=Sˆ8oaåì>³dþvE]a–<’Ÿ—Œo‚õWÏ9 á"©¯‹’\×UÔ0_kÀNÊ×=ú´_âÇ}ç];¼çg×=wYÒUg=‡Á‡ØAu›^F°ÍšsÈí‚kƪøÉ±zádOj”Ì-ÊN$2±åëŽ_›ª(ƒ‚…8í±w‰xdÈøJEü'÷œ$ "Q–Äž¿Öüº¦Â¢©cì€Ï޳v¬_Š®r[!¼‹Îp«J”%8 ÉýP–( l]­âYJüSvE:íµ¸¡X•´mføP!‡fâî¦ê”™Š+rÌf?­³Öͽ®l4o4$Öò[ [²®ã,!ìÖ½;þT¬c™íú–ô•B¯BÔÌ+ò$XòÁýz©'Ñ5yU 8³7ËÐlÏ _q×_Rs`oZ{§†+UW×Å ÛÚ_ Êñ­•†L,]0»ãß6d|z¸£Ò§+Á„jòÿè6ÉÍxø‹Lÿø{Ä;vvçi˜›¨F&(ÜôÞw¯üñ¼cÔÔ áȨ7P¥Éᜃ†¥ŸÎÕ;uöX/3’ £ÇÛžRRu–ÌeuŠ÷ÁíÖhø•~Ã,'UGÍãôài… 1(–ó'šÄ CWœÊ>Ý‚6i Îîc÷QÊ5wŽ;±±íä¤Só‡ ¨UK‚BÌv+aµ8¬¾ˆh̦«kJGæFÆn† ÂÙ–ŠnŽŠŠEXRöõ¡˜F`&Z$_È-."†qïGœ‘uÙÊ×¥C Xui;÷ê>[߇ùVŠ‹j;r‹«NñU“D.­3Ñ8²=ì €RfžVkÅ»É>}5îŒT:œ$¡ÍÐyXî „,Øa¥|Å s‹òYº Òá“‚Ìßû%æo·fã•Í@¡ Q‚dðQ>§Â·²¨í/Ô9ÞšÛ†(zÁù ¾¡Ä±È[û‘× òÖnm’v>­òûÛÅ9Æ/!Ÿ·Mø!ˆ¥e”®¤–ð'†œCiÂtÒ—…ÒÐÎÐÀ X<«i×G "À@C2˜^‘šÔ𤯸¡uq¶äÛ‚Ãõ7À¯®ñÃÈ+H;¬ ÖlÚ„}‹”¼œuÙQ¦ìÇprÅ÷R%Tòh·Î…]/N«Þ¸¬ÿÄÅëÅ>‘aÈ{‰Ö‘Xìnãúsö).!¬@°QœdzèèL"&ö»16ª£š”1è\d/#‘Q¡úôž5§þÌw¼íO>Ö™0Œ2’ÏLÕ§Í·ÁÏ>–(ì ^Ä›²M[¾VäÑwƒ K]Ê·DÆsI3Så´î4Ue)ΫÓZ¼q'#ßóO• µ©æ×KjO¿¯rEØðuít—úMÇr x(Ò0QŒ¼ò•ÄÕ b˜*\GþÐê»psËp–P¨,Úi[Íw¼V¬é¥5ëõ˜…Yµ‹‹4—{é_ Ä6…'À» Mf¿ÚÉÞ0£TİmÏñ|ãÐ(NÜ®`ü"¨„àûKñ½hÎ:xr1>âµa¡åÕûþ#ð¥ñy[!‹èUòÔ¼ç;ƒ³Ÿ 8å|Óàî8ËàÊNX˜ÂÏX‡?%äD“Þxþ45J}ÎPËe~`ëö9»¢Z¸”u ´-O?Á2Û™Áznt}KÃ)|@;^'@i ÿ é]¨ªä¦ø°9ô‰çT‚£`D–¾ nÅé¡5ÙþL'}é.»äFˆvÿVËt-rRyFœ"‰è/¯0ÕG¾»> 3²8އ•%@ã7öôí¯ì‹+ýAÚ ‚l¹÷ª ³Þмk5tf6Hn• i5¨ãÖqßb»¥¯ ¢ªª—ÔbÔÑ=Â6ÿ{oý»krÇygªún‰"È&Cºx5÷KJ#ÍÖxäñŸò¢Ô30;"0ÕÜH²Ø²úíU‚çŠq¼‚Ī®–l;P™&sœôÆÁãBŸ€=©z!rÌõr—(¿;*LÛøÉNŠÇPË®<¢òk„(Ÿ I÷c2D')"üy¼¸‹}<*ùIô¹êfifj. WaîbÆ[Ÿ„Ò‘ß)Œ=Z9x‰½ˆÄ‡:JåÍùgp÷”ûøK~Hàë*JJ®ß<\®îûcƒ.¡.‹C”ÂFž¶v!3Ûó³ežè±Q¬á´£îç·¶B”¯èµçÄ•üýï´|€üÊö4®zuJÓ·ø0øË`?%sæÞ¨¿msÿ.ÅN)7éÝlv˜<rxtHňÔј+¬x²•ZÊYè´˜ô¤¨Vd|2@¤gm»ø¨ Ø–¬ ž:€Ïœ,ÿè#ñ/R‘¹­H<ªè‘*o<Üšc$µH6IÄ\R€E÷sÿÕŽ\&’Hþy¬G·¿CÒ Zø^Qˆ|®6ìg›#iNâ ùõ&üu‚ËdM2æ7㉆ä¼=†ã`x2×´•ÕbÀ*úh,eÄׄáC(]¶¥µ7P1OX·rþ7R@'ûâë¹\½Ö¢áo¡|¾?—u 4ø4ê! ðÌÓï@º]šP±SU6®jnƒü ÊUÑF¹Æ£ £Gæk‚ð/¡Ã8‹¼/:dz~DÌŒ·k@êY-ÎôÄñÈ œä35sÞyÕ ƒÂ-ÞÍÊ"UN“zÙÿH˜ÙpnµÑ³âneôÅâ…ü·ÖHú¼{ OqI ÷·²¬‘Z‰«%>úe>);{ì EV¶ž–<ù¸Îkp•#µ¹±Eº¼'•ÌÚ4‚ƒR+ZìI mž8"|™•Æð¿ë?[ÀþE¶ÇX^X–ÚÕ lƒD^äüZŽøÎçy´Ë²ÝÈ;§Väƒfõ»lâ}ª_£ÍÒ^õ`ñ1`v" k“N«ô@Þ5¡‡'^7˜™×ãTHÏ1 ÷š4Ó;ªs.óˆ>;3h E¥‡ªWº%䋤“VµèœbÀ¬ܾձ›|×D–uqL6ÕàžsŸjyXhœ±‹´g6»°žéa PzDyLëš>«JJË웺‚t KÜ|ä&ô#EQüš€xa˜ ߊFYä¹p[ü üýñ0½XcÛ´|xœy^—¥7ð¼+dž½£-É|‰ hG7 [ÉêN§t°Y]‡ÂõþÚŠÞƒîø’2³KØÑ¦¶`7™¯BY‚#5û‰D3Sñð2ÿ]|— %y€uÄÝ&Ÿø‹2ÇóU[,Í*9p¨¼ª ©‘ß0XiXÇð \?˜rGh3²RÞ$i¦rÒÃÆ~qؾ+ü—ØBÚß—´ÿl A7Z/5€£¢²³1Í }¢'4?ÔTJcj€M/Ö÷ë}®cš"ÔµÄú{¾Qç³ÀE4 §¾oS‚‘ùÊJÒgzqw‚÷¹¶à{]ü%ö *’9 pi~y¥ôö_Ü1…úÛò÷à9ñuÚè AëÐÌmq¢äµR‚–Ø‚{ŽŸR-SБ¡DÊu€Yúwêx°gàn)c|ÅŽÒ]F‰6WðHaö´¿?rIî‹N&ZAyG¡¤Ñþýy€ÚãßÜ9ûþ†ûƸÕßA9‘õçÒö>‰ÞO*Þüјˆèý9j0:Ô¾’mäèÍH˧Î4î¤$Ö¨/)­«6}Wá$ª'âÁüˆHwУXzö—t@Z­j[¨ÑuØv ìw\G,Vi‹røÌÅÞ€Uý ëv¾æ2¯ØÖH+Ž‘ÈœÉ=üžœ“þhêìdxä“:ˆ íRß¾®·V‰è2’bMøïMÈaùèÐæA§Å€yWÚ×›ÜPofœ?Ö¶½­L8Gd¿P ›2ù•2%èLZõŒqîQ3íÆvÉGT¾Ø¡Ga£ËŠÅç/ŒtvVÎ3\¦ÚF<,é1p‡"k/ß}“MŽë‹¬4"Õ°íUPĵA ¡µÓifÝ–§Úª<âÂqø§â÷po­(C ¥ßsPþ>Ò"kqãz´ì„ìLœ‹+ý0 YQà]à ݤÐ2Ö;FϘÍÐiZ[?Ì-Ù³([¼âŒGeê×¾­…²‰ÇiB‰E'O}¨´®îÙ#fˆùÙ'a¥9kgèÉ!uûЂ.z nÉ»õÆHdjÝù£¸»Œë.$ìŽëMÚùŸ÷ÁÛc.7,ª"×G±`ˆP0ñ °¢ÿ°ÿÆ;}ŸáùÚ p§ >3ˆ§öè’àëÀz(°ôd‹¢—-z峑(äÎV*Ó$v$ßV ë Š¦dJ¢nºóB·©%º£=âòVë!Y^yaÏÈP•øà9ôð’LH’îNSª…÷ rÝ‚®ä®OoL¯[VÄðÊÈW,›]úãîˆo ³T¬‚9NºðcŠÆõ9Â6§ÒUsÿ" Ð¤/éáÿб‡XßšÞ#vpð ]Sþ@‹{$m”±&«PëZR ز„LÌI¾M«©¼ 5Ìa{ž‹¶”vï"!ÆÑn$ÅãVßø‘68X'·˜ /଱ÃHu”n<;zfb %,ZfêŽU€‹m¬ƒ«'ãªË¬C2ËÆ øÊéCgOïÙ!”{ôâ+ùv:JylKw-:ªzn¬é/íúÅч¡AjÐÿšGP¤Œ©áËI×GW’½îÎÄÙgo$ ÍCE3RÕÅ«>?MM\­•C£­º®ÕI5í‹,?ÏÄÓÒúze­y] Ñc£ÊjŒl.–jöê§»ºoï´Ä¸ ¨´çßÊäéDÂ_çÓ¿t:ÆÈjs,¯œ›" üNÏ[DKëYIÔ‚|¢ÕlŠP n4Þ»Ç0ÔiÇ-÷ÏEEp>ÏùF4gž2ÐÅ…’òó½eI.ð—£½GZqÛº4uÎò3mŠKÀ³1h!†8 ¦MÕ¬tµË Áí…Ç”)œé<žxH`å•^]ÔHé.güÂUw&¦ Á¸®õæ»–,·P¾.nËÝ¡XO>¢«=š7ƒÒXÉW¯®ÎX«Qlîzó݉e Fá .j¢Ëóºèeò©­[6ɘgô$`Ó°¬ZLÓ~£¼‹cм,ÛÃŒù èZ÷O»¥¼/mЬH¤ÕñóGh_—,ÚïêÍüdŒÓ[‚t‘)&ùÁ hçè Ä;¸ m$šÔ4UîD[yÐâëÞ©²Ø×O3±/S-Ÿem‚Jnè*æQ¾JÍaQhÓÒòÛø†1ëVkí¬(´Sé1åõ‚,¥ƒþN©'d™§ˆ²ŸWœ„Ü|$«ÊPäÔ¦IÛƒHûªÍ£‘ë"žó…‰h^ißõRò¤õ¦Hû,×Y*‘¢¨Ãç …'ûOYIÚcõUÌö°”¸Ì¤ÿU]ÿ R•I=0šÆPþ¯;w¼© cÒnÎV̰‘ý ²v•µÿ«Y‹D÷Äè5Kå´¯|â[³}ŸQðà@}ý‘…½èûž&ÉÕ/ô ¢K%?zZðÇ_e ÛÎúÓÎï ž‰æf `œ£â _ê_vÐ;¹/h¯•®\—Óžµ±5sÃt(î}¹òvÑ/¶ ÚGÉûh+)P´@©Ÿº™”+Ø÷kW:¡Ü%‹-õÚˆRiÝá°0îìwK—.¾ÏN¤oYÅ_;û9ÃV³â²â/lé_ÇÚíûÖ¬&U»ºð褄ÔÖˆh>Ò¸xPJDð‹Ë`æ`¥Yà¼Tc.põ¤„©ÉŸ—;2¨ ?Ý·‹ Çæ#uò¡÷¿¬äÓýsɬD7®”êV?œ¶Ä?ée€êVMì/ž¦nеÉý8Få@ØóŸD+Þ¡¼Óñxµ1ºE±ƒ%DS íœq¬;Ÿô+R“çh@öèÅÍ4Ûȼ%º¡«åšHôfƒ®’pˆ±V¬+rÌ• &_k±+€Ð“vO#!ã–QCÏÊ6‰w@äinŧíd´Ý …B6Ú²8˜F<‘Žå_v«$( /jŽR­dHW2Q(îÏŒïÙèíE—‰M0¯ÂÎäzo0c´`Ä 7¢v"ú\˜2Ü„”S¹».ÎS/,W ^ñP¨çjj¯àÕ‚ÃY©Ò7-[áàæ¶1╉ÏÐÈ[Ãòi'æÅ/½"0Ž|6ß réqwÈóÒMÏ»…Óö )&¢}QiQ+œpÂCEÎUºžél²·@$Œn€æqã¼2à ž F'öQο›ü zYº‚.ÿï·c-²x^“ïJü! Dîâ,«Ø?HXÓ*÷IL`¸NMPm˜ÚüQxò*líò;4~ð„ãÉÝ´_9ÚŸ‰|²Ö5,†.ÒŒŸxò‚+yòÓ‚,oE¦©É¢âÔ®&8Z¿lÈ*ñŽWp5ÿ4—ó?Î,M›Ì0'û_ß”›Kj2—Ëc÷ŠáÉtUZÍÑD¦)SíךqqópW@Æ« v¥ôt¸PÎdÅDÍ·Ô¹}s0Kfƺƒ^½ßÁžˆÏÒçûÀFµ°ñY¸â‹'œò\zžT*ö%¨LÂÁÔ×s*k,oWy B°6Š×¤™îX¹3|ÃäJ¡ê ¹Rˆ ­­ñ$$JLÝj¶ŠK×™»Åmƒ(’ëéâ»r¢º3¸Þ¦Ó¤šƒˆm²`^B;Bnü¯j›§Ð­´±š•Ì*þhnUØŽG%|á•9Û ZÌçRÐΑÕ~çúÌUEF¾&Ò°`ÂcŽÉPð->{6Äèl˜ù.:Ⱦ#¾ä·ïÂ0ö"S¼ý‡ÍÐÌ!3°1oÁ:PöÑ2;Ž! DØw©%HâMñŸ¹89Ê'^ШÆk=ÈãàȰ'7ºvPhãöÁÌ9L¶hÈFUz˜)r}ž½ž=Ÿ?C_$W˜RVNðÄ­˜ñ]R+Ñ_¹ê‚]¢ÔÌzÂ’H¾nŽnkl\W ‚à@’ÖГD° °:»[ÝÎÿ*}ÆxGƒª‚î½8©»0–R°è€|nc‹-ÉÏ—Üé#Tÿß6;Jïßï# T¶³€½–1¹2Êúæ’>—oxmí¹É£Ì˜Î¨ðŸàÓ髆Ÿg{~‹˜é;X öâs5vÚ›)©e¨\Å w\á €\)yÔ äÖ‹¶ßÊ2DÞhzÜ¿Mo r‰Ù#VYUj/úùÈ[BBƒ2ò5~#ÐfYX&ûÆîf…€ÞÿZ»Òоh%AZºEoT-ƺ»Ós6·`ü~ÅŽïVä4ËÃ$x?6~+!Ðçô{$8²…·,¾Áßü’͆Ҫ^ØuÅÏks9ÞOfx3a…œ-\s%êJEƒ05´ƒ“GPéb$‰=­Œhó)´fal©ÒÆçŠ Óf¹ËÁãUÍÅècdÿ³K†ðf–äœgÇ×?0Êî‘k¼skmÀMÝÁ\ÁÚ“ttíÖ«  ~ø©.‚I^Èð[^Ǻÿœ†µ]b¬·,‡z¢ãC{_~~Ó¬)UÇåh¾¬ÿI$âÞ¹:Ñ®QL} dlv3=>õ­y9äçT¾°%^Û¾+"ðÞŽø¹'ÜlTìó€\"(Ö"u>ÕŽ4N‘ÙA/4˜Õ;±±@e€l3—O¬Ñ`W µHZ}æ)Î!´Àˆ£ ܲzmE4f¦ñøLï£å*tëU`Fg ù>{ãŠûµ“.9xªøY{'›Ñ¹ý»M0s^bÝ¬Ê ƒpáÝd «YÚ9ÂëqG»Ë2P¥îЪCû‘ßòˆÞ«`õÿä%5±nov]ÙZÕ@È˦ÎeO L²—ãª>žð•;w¨ê:û_+ðªʰÇ9gºEªÞêÂYÃ[²ªÁ­+ÑÉŽ„öÿ$;L……«$Œ‰ÒB(÷Ô«ŒuЯ1ÍÒÔÛÙûËjk{º©Qk6ªG ŒZ@±ûNÉþ{h¿î€ÿE Ø`ˆ˜¸“¶24õ tžÖ¯k®‹¥éûãŽ6z\j:ëâºÄß‚|ôE¾ ø¯®ƒHõYÖ­(æ×«¤ÏXiÁouGˆ¶³ÃÂwmMÞ °èº»{í$â]²ä ¨F ÄIáxšõ&©éü½p­WZ•’©ýg6|–´³µjT'ÚJ(o?.³ú‹òÅÖïå²¼ßQyÇÔ~±Ú%fxî>ã ÉÏ‹¾TתÞH!1ØK]sjÏ–ög†+Áºðà3ßÕèì²PBMo¤ 잊=,·€„އ˘vD‚4Åò]r¬—}“M˜{ºä·=8`ÆpÕë[çü,‡”tÖR.BC+óa?_&ëN•8cç¥Ú_ù¯C[áñ€~Ðbö¤{…^µ@'‡"Dò0‡ü#JšŠÿ݆圲µüÜòjM¢Ò1•O¹?·Æ¸êÔoçåËè [§åwî— +^ýó¬Ñ«“N°yU9qž8*Éî$ r7¢6à'± §HŸÿeÙ­§§½?M T×gºl‹›5,hN&I'×åUsîù'±Þ:wfϺK ¹î½Zü»ák\ë^áqa†Ó:AOÀnW¼ïö®?Q3#5GîÞê¬$ߢáaûcc¢¥9fœ0˜flß±ãF&G1ž8È£S"¹x߃“tðsìˆt[TúÀL§+C¬É)ö­®ï^{­mtB'}UæËÊ¤Ç :SBô Æ¬NN4ZLÜÕeÔ óÆÃßùœôX# BùÖô2XÃ.- —šqAîg‡Ýí—ý|(U Œd×záƒ!÷Ñ›‚;*Zs¥JêÈb®mNð¿ãƒuLIDÔ±…&Ô¸soþ­5¼.œ@_s&ÉDм*Æ» }]žÇ§í=™¼v%vÓˆ†ëý„§ •M‘`‰ðÃ^ÇÔÓ³¶×d›‰G%’ПYÖ¬…Ú"Þ—Æ}#Å@u q[Õ|IMÙáæÜ®r¦ùí.Ö\äl0^ÊÒÜÅÙª±­6&ÚØ¦÷‚^†ÏT|¹»>>¤øÃ!øêtzO‡yýjÄO“—¨*±ÎDïø±Qkü"Ôv2Ô‚ôˈ«¬Ë'Bïgs݈e„]åx±¸0±ÊЬKú5½9ã‚ë/¥åµ^+6ž(&"úlvðDQá(*$2èô\¤Å'oB¸Y¹ë:Æ/1ù¡5éÉòN²„4`8Ø)VIª†¸1Ŷ¤®lñw*-_ýʰ>¢ Ýjœ?ÑÉåô0°~àCV²(¦=WâÈ1°Æ™Îb'y{Î5–0TX ó¸¯š?þj`;'?&SGW¾\öè 8uœ« žÐóA"ÙLIT½ìǘD2&jò޹߶uZ£)(§X;ö¸ÏÞq]a€áåõÙ¾g_`ZÉò•Ù~øè|vX‚gëC|a¯[Av5#R‘°/„°`‘]Ø¢bT){(‹Bd z²Qw»‚²Ë~å2ô_æÍ˜¸x}Y#›§f5]Á$Y)á jÉ“ÚÕph ‚*]Ö‡,%Ó €v<‹´õýþ÷‹©?{ÀÆ0˜5øN/Z« ÷ûæ=‘7ÎaᤱGz³'V ›ú(zŒ™FýæcØ¡x÷ ÿî›úKBp´V»eñSd;¾ê'/É0=ä9Ò¸B~æ Î0° o ¡LÎmÛt¼uŠZ–Ûžé…t@JUÞÎ%XInn©ÐÝ)¤Cb¡•à,‚Ï%Q9d µ_¥¿Î„$ml%{ñàÛk×rèâwšŸ¢#lþˆLúH5℞ˆtg–*Ä·è]Cxæ÷û/R¯Z½8å]yQþ™­'Eš.¯&ÅŸè÷{÷S8È4öP—åŸ=ž*§ŒT ÚgZJãou)€8]ñÅÑ„œÈïÄcGŽK±.­\o8ÎDˆÃ0n6>D<oÔÑ­"Æ+ï ¸Çp¡n×l3zªðÊÅaóx™óˆK3Àz¦U–G ;//@+›98Û¯Æ=UÝtG¡/³G1©k=VÃq‹Y¢O×vk6‘mºœ–¿Gˆü!qÎ;óÁÉ.d}‹FËÊ%Ý„TÕ†N_SÒšñ!oh7·T°T{ÂÆñƒÙüF`ùUÆù •á‰ZV¬¦r²3Ð_@ˆ™Ï'Ž Y(.Mi¤Rs´‘ýRïÉ‹töϤڷÒ ß:,PG£÷l©xV)†HÊîvÎ}½z¢qŠ3G@¬Ä¤>Ư@em“Öcáý®D6Lø¼FƒšC0 „óŠó>§½iÃl+Á¨^b2…UÖŠSœð}-èɦóYw±7HüTò(ߢg0'—Z•’P³)írßÿæ`¡«Ë¹ƒ…Ç(`î1ßè9WþC`ê',ɉº>¹XÀßZ¯‘õ šm[ĸå:ÑéÁê ¼߆aÛ”º6¸T¢ä×îºY«lþµÄ·æ\ÿpƒájÄ4½ã6s RÞeÿÁ|Ѷ£Õ•VÿÖ0·ä§n"Æ–‚nlø{#8´òÞšQ8¥éQ)Ãuad¡›ýiÎÛzfIkÚ1XU\úæ„6™äC$¨UçÏJ‚QbUòQêŽ*ü2'ýÖÌ^ëš“Õ+ãûYw§1ú§¸FÕ×iT¶Ê¦ó^[€L@Ò±¹ 7O½£àgå?^ÈÛWšMðhNæ}¶ÛwQKÀ΃ª÷ ß”ú"LdßâÿŸc²¾å=¾à”f¡³<ÐȪ;¬‚ŠOÉÝ’u|&!(iõ¬AZ(à9`+~ë7âkØ•®Ù½»ØAÓï*ÿàz¦˜,²e™ébÆ4Ý ˜k,7Ë/·Ä±­ÁÕ8Èζ˜Pý‚0¨Ïålîâ%˺öÜÍd¨šèžéÿ{3Ué°ŒPV-,K‘n(¥‚WýnöªP a‰_½{ÑNgß™JS,•\=I–o@­túp Dz‡ÛÈ^‡Õ¶IÎ*Ä9«¶Gpé^-Xéwgß ›È0¢«Æ]‡mÃWf Ê8Û\ñ iÁ¦†béäÚTµ™¶o¡sá:'ÔÕ ×+2˜Z)½u» ¡—7~ÁÌ=ô•ÐPçJ$ü0GgÀð†ë9–ÓÿB Þ Ô…q+>îEIúöŒÙÅU{ÎÀê\±¾tΕ"À”äµÈúéÄ…òË6”ñÅV4é`p{ m '2ÿ`5$g·_ƒÅ¦Þ$c ,Рceþà‘I’\ìZÓÌà¼bK„×›ªó©î NÞͦN_’=ð äŒG †XZ„ǘ}à¾`ÔÚ‚5Ú7ÞŒûµÎâr™Šó£0$fWbâ}·?r$(aR{× V)7ù+O´ÑËÇŒPhÁ%†$ólo£!²×0@ž¨sñlñï«Vf_I°¦á5(hމ}VÞØ!®LLÁWÂEpiçD5ìݱ¨À·Eüó²lÖ¥m×ô0}—§ÃÙégW‰kêï¥v®™¹KÁbÓ—ÞµúOÇì¦5^:h@ÉIwý$Í¥«ÎË}vþf:™æºxZËéB¾ÜpÏ^ ®Z 1Ï9¢Ñ»)E'CÔC¢S^‘m^Ä!êËTëüšõo QÕ‚ŒJg„~mn ¥|¿ØòØ3!¦ íf”ð%k%ßî ߨÈí_—pCê—ï JJèñ¬ìÑ—9 ½/(0_¿ J=†©í²òçÛ³Âv™zœíã—Ÿ]ÕÊàʧt’ÄVeÉÚ=4 ããÇ@=4½»%4§W‘ý¤t’jãÂ,éR¿ø¦¼¼ª§A˜îèЇ[b,쉡÷G“Ö«|SYP4$,µU·ží€oätP”~-k(ñ‘éâdpÇ$NÙÌÖ©{‡t yÂÁ,EûòÄÃi]SƒH/éùwn=˹ü}¥îtψð&äÖLZý(8/®ñÉø¼þdžȩpgS…ƒ>?Tœý«h?IE •w8/ï­…àáÜ?ДÊòBoÁ18g¸ù,A¡•îyi8™gä€éHCþF8¸µ/ IÃ[3—Œ¶%†ájòÆœ´ë[«}³µ_ë\J/™5ª«µU¹Ø6ËÐ Q#ΉÕ$ã=/‡Y#„J=ïÊ)T ÔY"ÏÌA‘üìÚ84¾fÙ¤\­Q.|8=t›.qÑu-ö¯3å¦H…{Þ8pÀ¯ºÓ’g9qÜÅ÷§4‹eh_¦øè<âÊ_„À=ÞaITï°™ÛQò`i×°9zã=x¡×[}!Ñ–¨çy›Xç=ÀÚ\ÖÖ+gQ)!T¬ú[žÆ9á·Ý~õlÔß¹Lœc·”§.QÔ3Wm‚"{`FÕL ÕúîtOIeñ„ùW]ÇÑŒ©Óý@¢íµ¿·GÑ<S hCGÚl¹‘ ŒJó8 arœ^VR”A»Æ.SÁEXů_¥:¸ú —]æ9+]§Ü”;æÂÁš1sE=R t"L!ˆ7ydJ<”+³ò-¹‡ /Í€/’Æ •;]æ£ìq½çzÞAWmì.XVTãx6&Í£„:ü`/HO¥ÿ‰•çôCIëHpÜÖøH¢¥]ê“>79ê€ÝÆtëz‹7 ¡¦°”ºCŸ¿ì“ñ?-':p\¼Áa{Yä±wêf­éãùÄ~¢f'ÂQç0%Jï³@í{1e± õh×hÙkÀ; ·i;¶—ƒøY§E}›« 5¼åÕ7*“ Ùf ç33W V«Î)u=ZÜ:iÙˆê"¼e/ÚJ¤`»ÛiC¡b—5˜Jñ®‡×Z;ÅvŒ=l´BÇëdÏG¶•_~˜p5ÊšâWC¬Íi¦¡šòubÎä"™!;õt‘À¤Û–+Í÷ Ææ¢Bôc[·‹ä$)3È/l‘V­!R^0%/Ôµ£Ÿ>^L´/¤ˆt/ViQŽiB]·qÉy[å,NЮš¤ìX%•„€|Ù`~m³×“߸QH@(Hi^Å<1ânÒ¥oØè0tʼ09­ájEµŽ ”éÝìù¸ÄcôbõàÔêlëZùœE“ åœY9`Ó¯ÖênÏî4`m§?ÌOZ‡'£©Ez¯®€]Zjb;U‚‰íε„Ïe:ûÕ\™åÏ{è aëêÆÐÙPÓ–?º¥¬%CâªSkl²þ“èOt¯9!H¿ŸÖ4b3z 6T±F/ •æŒöÙþMà(¨†¼åø¤}„hDŠ‹Ã¤ ¬E…1ð©F¦íC÷um0çÝbß›‡MŽ€K0#¡G â.6Ô 68£å6 TàŸÍ'þ+@çs—¥ÐÇ×¹ë²Ý ë#D´Íé<7”ìÚ+ä_1xGxyw=ùŽÜç·ïª°¡/]Õד-Án/â(à‰³<^O&@frØ9>ÂsC|úEjå.­iˆœÛÚ¶¤5B.‘ àbä ,ñÃб U¢|`{£¢èù9W6A p•?Vœ.RbŒ¯ã/i}K˜~s¨™YeÞ˜ óÄ0’ŒŠä?ŠdËC?Mv–ëýž>xúV`Õv?þü¦÷I†«&=óî/ƒì¬•ç”—sÌœE6%¶IDªK²ÁÉ~Û° `âl­²~:ž-¤»bñˆ…òÉ/ä|$=Œw+1çŠÁ[ü@Ö$õËÚ3º ºÈ6! ²õ—ƒÿ•¯oÐmÌK"“öñÿƒÄcL=_¨ò寮h,Ýý–ódµ>Ý9‡©UÃD> CRO±ÂSCÒ4ÿˆ]씦óËÌ<ªã=÷bAì1v§›U†ôrïyô6´x½MõÉ=Åœ2Šˆ:¢–É™¤î¢+CM-ËÚ·¥VÇÊÌ À(ŽÚVï}œø™Éý„š”Þë½%¶¨]•Ct-_Æ0<L >–t_5¿††=ËpXÐŽñÈÜ“’TqðV8¯3”Ñ)j|TØÿ¯Æ¦`Ì[iáÛ·ñèþ[ ü˜ðH¶Žè]W©ä¨ÍÍ X}!Ó`|gºH‰ J™‹RçT†BŒ=¿ EM׬”#ÈÛ⥉>^;17 Y1\ª?¼ûßaY¶X½J¥pè°lÁ5÷:«¿¨1Q} ›¡ô‚|<Ç g¶»ÖÓO¦2ìP¢ípàJ¢†ûŒá,^–‹C¾xÒXí¿^Hú%¤uyÙ®G!ëÂ!Œ¨¡”4ÁôC”×<Ü¢×ÅÝu(ÌrÄ(߇©TD°£l4fã]‚Yèv'×`ÒÙE,Éæþ¶ºø!gÇtå$IG£¦³a’ïì ÁÍ\™:º‡¹lʆèÿI‰‡š‚bž:|¹pK”¿8¨»U+_žM#3¶·_\0¢Øˆ`ÔR¤-1Â9©a8X§~积+Sí)6à³Â¾v&® p!0Å/ýþÜûÉĤ¾›PéÔãÝFнºV€B™Tp ÛkÇÑ*á'¢&/Û€€£Š´¹SÄ*ç¥'ö^Ñì—É2«C,gÿJ •ÇŸ¯PÒZÅaÕnãätkQt¥êÔõk± â‰Ç©Q¬Í~ò£pÝu>1» "×3ò¿¥±šà#Iµ¼ËMI•cïFþ²Eo\øK÷T'шGÜŸÛr¸}ž¡Ä—‘s&¦ë×FFé•§üÖA2T}7:=()_gCt!Êún sÁIó[oˆÓ|ý¤•×ÔŽBK þKšÊHRcÚ4¡Ò1Èu½…î “\Wù< £ÇE@)ÆÎtLŸž M¼ø]CÌÒŽz„ 0éTÊ€èéã ÿ.èÂÓò/p[SÌ̈·çYŠÛ°V*©kH÷EoömŠ…yc+ÀM5ºÅ)*t4þÀYýÇö4ÍÓ¡¿­CñÓ  á Là ÙÎÅAõËü/GÄ¢Øa'ŧR£w5¹Áøê‘ªÂµ™˜@©íåùpiÖùdÂàl)Þ…}[¢yoÏ·=ééK„Jß²¹¯-c;%ªVé 'òüQ[ú'ël(ÍC‰ÿvaÂÍPEìW QB—ñeÀDöýùtf–ÿ5Ìþû¹)ý&Y0jÆIÔGC2i.Øa“Ê5ëEŒ­¦A¦ô._Þ«á3Ôs– ‹÷RAx¨òFË1^±Õ wk½k²•TêN[€ß—YÌ Ú¼¬ÞІ ΋êÝCÞê´àMÓ'­‚¾¢5SŒö‡®ÈCÔ8„_gÿ¤<0êÓvX.-r4Îe…ž€hªÉ®ûÏÍuNl$n±^Â?|º²úR‹æhq;"ObK7gY:®Ms×Â9 ¦(ÄR#àÖ*á2xƒ±ª gEeÿb@Ù™è:­¯ Uh¶}f8êÆ Ÿ»qOØ’ Eš¶»\C-Ei¸:kÒ¿º>ë,{y›j¿Tcõ.»óêoxé¹9õЦ™¨1èYÇ÷(;Ä*{˜ô‘CóI¯°VÐ’LîLϳQ>X>è5‘Rre9=^Xuèì)ÅNWp9ÖËûnµÀüœšl€Äæž—&©Õ•ÖúzU‹ðÑ5H_k—€=÷Âq}x¯Hå¾ýD WíçÌÿ>Û`æ”gbPÚú¡°peít²0”ºÀÖ¦.|kÖ,‘œ¼Œ»‘õfýo¼d9½•þU¤ÂÚŠBô>ˆµ7Ô™Z:ýìÌ@”˜¤¶€=ì#ÐÒ+ÁF›„Ä5Qö@ŠiQýì)6|}¬:ÁçÖÅeÚÕM«¼\q…l³&rZ*Ø™´oJ2üT•Þ(Æ$A®h”%гó67ƒ¶Ë4%-Oï¶žx̰{ËFí¯¨@zFo)¥ ÷”¹@÷PEY«’y nÛó9ä5G­¶7ú¸JÌ.?»··u!#¡á?ZKsûu¤ { ]T1ü.âåÐźëáíOØþ{xU—þˆ¼GÓE|ƒéÛc„v‹Ÿ§*¢ó¿1ñ0´ÛÏ-ª­ƒâãÇ,„Ì©j/D;Ã\¹æøûä°¬6p³C_£‚ÖÌÔHHœúŠýs³\8ê+ƒ1ÜBU$‚&ÿR˜²;kÜ" #–…çÂï鬡„ØZôž >˜xGœ‹]~Þ$¨+±Íµ¬_îx|´O¡’}gëvÂ"ˆ€c¼Õ]¸ (·ÑBòØ ÈÍÜŒB?Ê»ñ;Ôpb®;@'F<Ýf^ÊTkäg¯ÛµË4ðÕê‰v‹ŒØúB„ŽdR$ý@"Àê§ØÓç½ùŠ­hCq3¹z5„7€ÎL9ƒ(ìÖ멦L¶ªþøšëmÖÔÑ•ÄyoWrÝÝG,<2ô6EØ}Ô²¡w˜5ôøôΊ? µTé5,IOŽ8ïWïY$t*âÛ‹K¿æ(›³cër-»B§ÕɧJ¯ìoî® sͪ³ùný,Kªáö?9—½IµÞû=W–j†g?Þ†/ ¼®fÿêXm+!chW”¤•EuI‘kàŒ„bñ¤ÕbßwòÝíç+wðQO6,\©ž nÑš›Ý¾ { ©}³Kª‰x£ž¡CrR7ކ2Êl7_0¤r%Ú¢SlÛ²øë:“ï$`äèwLÓá)C‘ËŠhIçEmƒâS ŠÀ ýÕ5±„ô ± ÎX@Jws±ˆm íX?œMºhçщã“Ú%¶É4“‚sYÖßxóŸÓh+tœð&X‰½rzZtüN‰—¤?Œá8ÚlðÇžŠƒAÓPf{Ç–aôv‰°Ë endstream endobj 66 0 obj << /Length 859 /Filter /FlateDecode >> stream xÚmUMoâ0½çWx•ÚÅNÈW…œ„Hv[•jµWHL @Úþûõ›™´»Uçñ›ñ›Ǿùö´žØ¶ßºIt¯Õ³;÷סq“òûæÜÜT}s=ºîòùֵãìùA= }³vu[®ªU·¿Üyòªk×Ö¬¯I…{Ýw¬£n_ܯ‰k&‡ãö ýì—ýåàY_”ªOQEi?ÝpÞ÷݃2÷ZkXvmÙÑÉ9˜Š5õíö];ˆ$µ…ÀÀ„ªÝ7Ñosô– yýv¾¸ãªÛõÁ|®¦Ï~ò|ÞHå]0}Z7ì»WuûI›Ÿ[_O§ƒƒ¥ƒÅBµnçKz~lŽNM¿nóôòvr*¤±aeMߺóiÓ¸aÓ½º`®õBÍëz¸®ý4g"NÙîFîÒsuíBå‹`nlB ˜„‘„­=öÌã¸æ@æ )UÖ 9yŽ€IÁ(±JÅ5<æ§T`,© M%5ŠÖœR£h”ºäRê ®á1ÚûÌgcßÍïÍ yq(¬ ábŒÆuX&Àá &èq,–Ñ1Ç+à„±N97Î8Nüœsk`Ëq8­ ^—8%Ç àŠ½FMq.â†5„SâhzAìkO × Ápý$Áƒqù1¦7]}Œ©ÎòþÈ©ÿ»pÒ^`ÜD3F?©ìx”‘ׯ[ë±a ¯³1´ecÔÏfŒ—Àäµ!/²„1êg)câdÜ?4dâ­K^˜|É ÆÐœ•ŒáQV1¦úÔ¿‰±'²š1tæ¬?ƺ9ëÁÏY?í¡œõÇГ³þ„rY‚ÞsÖŸŸõ'Äg)4ç¬3Å;ÎYgD¹¬3¢\ÖièÃbŸ-z±â3z´âs ,>G|ÆZV|ƾ´â3Öµâ3ü´â3qÄgônÅgè·â3tZñ½[ñ¾Yñ™ê‹ÏÐoÅgè,Äg¬[ˆÏàâ3ø…ø =…øL¹â3z/Ägâ‹ÏÄÏød ,gz)ÄôRˆÿ؇…øO5ù[±T“¿“‚êˆÿàT¼V *ŽÇM2G˜çªZN(:‘pTãjy¿šë0ø‚î:÷qâï;÷~Eú²è¡»m¼O1z¬ƒ¿'ßX endstream endobj 67 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlöo` òKwÞ{Ò·óÊÕ× ¢¤_ny×È| #¥Ê:##Ï0)%V©¸†ÇÁ²£â” Œ55¡)°£FÑšSj­‘R—@J]!À5£G+>ÇÀâ3qÄg¬eÅgìK+>c]+>ÃO+>G|FïV|†~+>C§ŸÑ»Ÿá›Ÿ©¾ø ýV|†ÎB|ƺ…ø ~!>ƒ_ˆÏÐSˆÏ”+>£÷B|&¾øLüŒOÂr¡—BüG/…ø}XˆÿT“ÿK5ù?)¨ŽøNÅkÅð¡âxáÁÑ$s„y®ªå„¢ G5.–[ ¹Œ£¿ èö¡s'~×» ê8‘EÝlÓUŠÑCüjÝF endstream endobj 68 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMèßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø ®´ÝP endstream endobj 69 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMêßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø YÝi endstream endobj 70 0 obj << /Length 858 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N7R!‡þûõ›Úݪ’çñ›ñ›‡±¯~<>ÏlÛ¿ºYt«Õ“;÷—¡q³òçö\]U}s9ºn¼w®uí4{¾SCß<»Q]—›jÓíÇOÞtÍáÒº‰õ=©poûî“‚uÔõ‹û=sÍìpG£ýì—ýxð¬ï ÊGÕ—¨¢´_n8ïûîN™[­µ¬»¶ìèäÌEšOúvû®D’z…ÀÀ„ªÝ7£Œè·9zKüü~ÝqÓíú`¹Tó'?y‡wRyÌ†Ö ûîM]Ñæçž/§ÓÁA‡ÒÁj¥Z·ó%½÷Û£SóïÛü ½¼Ÿœ ilXYÓ·î|Ú6nØvo.Xj½R˺^®k¿Ì™ˆS^wwí¹ºö?¡ŽòU°4H6!L‰@Œ@ÂÈBŒ€Öû@æq\s óŒ”*댌ÇTgýâÔÿÇÀ á]¸i/°n¢£ŸTv<ÊÈkã­õØ0†×YÈÚ²ˆ1êg Æk`òÚYÂõ³”1q2î2ñ‚Ö%/̾dchÎJÆð(«S}êßÄØYÍ:sÖcÝœõÇà笟öPÎúcèÉYB¹¬?Aï9ëO‰Ïúâ³ÎšsÖ™âç¬3¢\ÖQ.ë4ôa±Ï½Xñ=Zñ9Ÿ‰#>c-+>c_ZñëZñ~Zñ™8â3z·â3ô[ñ:­øŒÞ­ø ߬øLõÅgè·â3tâ3Ö-Ägð ñüB|†žB|¦\ñ½â3ñÅgâg|2–³½â?z)ÄìÃBü§šü­XªÉßIAuÄp*^+†ÇãŽ&™#ÌsU-'H8ªqµ|\Íeü A÷û8ñ÷û¸¢Ný YôÐÝ6ݧ=ÔÁ_ÁÄß” endstream endobj 71 0 obj << /Length 701 /Filter /FlateDecode >> stream xÚuTËnÛ0¼ë+ØC€äà˜¤l‰ ¢€m‚8(zu$:`K†$ò÷åìÚQÑ4ËÃåìîpø¸ùö´¥u÷êfá½ÏnèÎ}åfÙ÷Ý)¸¹É»ê|tíøÃ¹ÚÕ×ÙáA<õ]µu£¸Í6ù¦mÆ;OÞ´Õá\»+ëÿ$ëÞšv¢ ¸}q¿fã f‡ã8*éÿh$Áiƃç}E>.>Å¥þtýÐtíƒP÷RJ(Ú:ëŽXÏÌ/šÄüªrß´u&^!3PZÔM5^Fô­ŽÞ$o߇Ñ7í¾ V+1ö“ÃØ¿“Ò»`þØ×®oÚ7qûIŸÝžO§ƒƒ!ƒõZÔnï‹z/~ìŽNÌ¿Zìíåý䄦±buUW»á´«\¿kß\°’r-Ve¹\[ÿ3sÆëþB A ÿ‘Òã`e›¥ÿh©HµÇiJ } ðØ*>`Á°!×â†)à±dÈH×UA^U¿wýE»”ZK5•h"uS/gÀ b€—Ï#Æ)p̹1°á8ñyÝi œr<¶Ü—8Ç-pN¶(ÔTš1 PèUF9aÔ×*~•0†'šuj¬E³5z4új­gǺ4»¥QS—ÔkÜjè sÎEý°à8´-¡_ǼZæŒQY°\2=Žþò<"N¡NL>«þ9ùfÔä§Ñ“ç†Ï@Š£D9{&&ÌgÌðñ‚nÃIè0é䑱Ӊ3ä ûhxR¬ÁŒáEÂû‘"7Yp/hJXCŠýKHƒ¢¾ ï½…¶„üR¤3əߪ¿$SÞ›{cYˆšörw Ç²~ ï¬å½!ÌûG¹9K™Ã»’q_nÝÜY¼3/Buî{ÿXÐcD®~Óº÷êÔE?zè®O,Feðf~£ endstream endobj 78 0 obj << /Producer (pdfTeX-1.40.25) /Author(\376\377\000S\000u\000s\000a\000n\000n\000a\000\040\000M\000a\000r\000q\000u\000e\000z)/Title(\376\377\000A\000l\000a\000k\000a\000z\000a\000m\000:\000\040\000U\000s\000i\000n\000g\000\040\000s\000e\000q\000u\000e\000n\000c\000i\000n\000g\000\040\000q\000u\000a\000l\000i\000t\000y\000\040\000s\000c\000o\000r\000e\000s)/Subject()/Creator(\376\377\000L\000a\000T\000e\000X\000\040\000v\000i\000a\000\040\000p\000a\000n\000d\000o\000c)/Keywords() /CreationDate (D:20251215191042+01'00') /ModDate (D:20251215191042+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) kpathsea version 6.3.5) >> endobj 2 0 obj << /Type /ObjStm /N 59 /First 449 /Length 2921 /Filter /FlateDecode >> stream xÚíZmsÛ6þ®_o_ÏÄ;@Þt:ãØq’kܦŽÓ$Mü–h›™TH*MúëïY€¢(%²“´ÓO7cA °Ø—»+`iÉÓLKf˜´’Y¦RÇ3J²ŒYë˜Ìf˜ÔÌ©”IÏœÃ`ʼ0ϼQLi–ƒ…,ÓŽiÁ¤LK©±X+|gŠiͤ‘’)ˤӞ)oï˜Â¼Wb¢‰+&5„d£À'ƒ| ú,Ãx†!¯™ ) #ÁÒ§Œ$+‘1Õ5´6Xª­šÐ[¡˜%‘"eôiŠg¨¦ÁϦ½À·K³,„ƒ±`á`-Àx@×é'¤Îf¦RÈI™³à# pi™K’TÌe)“ÌKKÆ2¯ìÄ·É`dƼsvâóžôŸ÷ª™O‹ÌgЦúÌÑ"–’~Þ²TT@–*lˆ÷,ÕÒL¾ÿžñgŒ?¬ÏjÆØk =eü¸ìÎÙ?`zÂÏ>. ÆŸæWÅ„ÖUWT]ËR¢›ðÓ¢­—Í´h™'ŬÌïרkÁÈT¨™©ó –7XG것ªªÁå5ü†äÙкОO6äÊ ¶¼èÂó“²z;á÷ëfV4A†8çøc~øZ†ÒiڱשO´óØ·41 X&©§}‰ðdlËö{-–uõÏDí‘í©Ò$iŸMebÈ”K¬ºC ý׫!d¢ÉÅ¥OfPK%™w·«aÆj¬]äå«ßà¢p,Ÿ¤N±j9ŸŸï ‚Ào§°^')¢âv*ãRl£»ƒJk‘dY¶Iu × FS޽Ÿ#ÀGcßeޱ¯CHÆ>ÂKFß+þ´©§Ï `Š˜8:fü¬øÐm;íV°(³-J}M¸ô¼!y¶œ »·˜]ž/÷áK"Qv¢š"ïjÌ`xõˆÍ;Ê»‚Ý;ú· [ !÷Éï„ü‡ÿÝI=»‹ä¬É‹bòy £žž=x™Ø‹¼ªH—³ë²eø‹:ý‹ýZ4-D3 aÛL9«÷UâVʲ7¤#{R¾/‘•~³ÇÞ.òîº-rö¾_êÀªÞìÛ¹Í R¿ìæ˜9eaÇu9mÙÏËn±ìöÆpž2“XDýÇÓ½Í%ïÅ Ê ÿ)¿¡9…ÌÛ"xTÌß]9Í'üA5­geuE¿^ý>¾æ‰xÆtðŠó‘}d7¬æ/Êê jËõôQyyYÀCÈ•C-¿)«eË2Çß-뮘—ðcø¬†õm[ò«&_ð|ºì >-›éòær^|à]9Ÿü&Ÿ6uÅ/š4X’O§p>>+!¢-[ž çÌŠKÞ@6ŸÂcçó|¼^VWy³¼™çËŽ×WuU¼åÓœøµ‹|ZŒƒT}Yæ“)tß\iu"Tº3¢?­ü8µôùŠÜ—?_ü—²!-y|C?ÔÚoµ¶ßÔ”¼Ü—eT·•R‘»ÓIîÏ'³[ï½ÑÞáãß!P󚜚jÔÌ©)¨y#Œ ïÙ@Õ…ÞÞ䎟¿ AO¨©³1çwÔ,‡¹ º}“¶ÔL^Í e{‹:æSuNiãÛ±ŒùÀþ÷oÔr1ph7©Êa¢ê•~ÎÔ²ÿþÖ¡Ž£%]¨MµNtßZ!pMA,#Uàl3=æzŠ4M²¾%й@û4÷¥5âá?iW‰ZàVâEJ:©0ê4ôp©€EÎ*¢HMâv2¡» QÄÕHdÒõóýXXÛs׎V|zþD‡j.FÄzmhß‹ ­CÆŒ1ð±¯EØŠ¢0Žª5ýVØMêH¡3 Stf³ÚÑl4 öC À‹¶Þ)Pã¾0=¨R€†Ög nÄÈú÷¾Ààì-øJáü@€;0!Šó­íû©Î0KèúTiêL Ë@!%~ b7¶'|Ø4±~èAóÕ’~Ä8ÚZíß’°ÐFC/눆F#u?šQG2í{Š5mœ76 ûúkª0ŠýÐ5Üja”¢C}ú-q¡‡sºÖ8‚®Á‰ËAúj¼ ®êÁ¬#ø*Pi7°ËB‡•*x&¼&óý|äWö¼•@kÍÀ›¨ð‘B¸áÁfiortoÕoÍ­ &F[R`詌|a= c‘—†çTökª8§árÔ’²±¿ž‹ÊÆ~lƒ´&õƒ„^fh3K¡?±È_²×= {ëHGŒM ©À×7Ȉ}… M7hzLâxȈ=>^…œÖŽy ý$Z²4ödzўØï[’~¾u÷8*ÚiS.p7‰‡¼xóxþàÑžüöÝ““Óú&¯¤Ú¿_Ïg ˜çW-3‘ò~8‰î£*Åö΋Ңö#¥ötëoé¤|A{˜/åÕuÿHin_fxzÜåórzP]á2%pꊛ_áÛÕý"$`ð¸Î:NÞã‡üÂOxΧ|Æ ^ò·|ÎoxÅk¾àïxÃ[Þñ%ÿà÷¢¦Ç%¸[7>ßÀ¯ž=ýåÁ€Ø?-®–ó¼Ùª‹û*TJ$ ÔÙ&ÙaàÆh9†à €pÌ¢CPüÄŸògüŒ?ç¯Ë€™ÖsÜ“¦õÍM@ºä—¸ªñk~ýqq]T=htƒë‘Ãí è-èAw¼ØkH8_MYÏ€ìpŒ½8Kp·ó¼½èÝuS¼û½üË …£vZ7ÿ™½H¿f/^¼úñä—ƒ‘3Þ¾(À•wÍ_´vç^œùœFÙa…nàì]1 ñÿ£hê1N|•7œø;䨗K*R±¸B@o" 7°»"2# 6½ñyÆèsÜl’ë€üÈÿØ@} 'O;}Nꪾ3Q[ßסÀ"œnm¾/Ö¦‹o‰ÂûˆÃ£!cþÂOûX|Á_—¼–e¬†\ ‚ÂEˆ ê½-ºq?ÆÓvìÎjÔDÀZ¼[æóÈp´Kt(¾$]+ÑCy©hvFxUÂ#«åÍÂ®îŽøP§é#1_¶«ðŸ]ÌcÈ£¢ƒBLùáΰÿœï›O·~G J¥0§Åµô‘=6½º8YÓç,ÃFk"º=T½™1‹‘®²'ZÀ°“½Ár,"¤a³Ìé¸Gý^ klúÜ‘?Æ1'æl–б»à°<ænOÐëöÐëKâ¾µ§xA¯²ÇºÆ•fX©nYÙkòU±û ¹b£³Ï²‰+7 “ p¹wTO÷ŸuyÓíÑ?5:÷.Ë«eS$rþ!Œ,€)=g£GÌ•=£®­Óø<—±Dêˆ5ÞéޔݖÄ1åù¶fãÒ¼ô[œ!MnKC)[‰mic.cÒA\ô=Û/Òv´® :o?uÄÃgºúj=rø•Ÿ­7'ØëÝjç® ¼ù+øó¶X»äÏ‹¢:ÂÙàòÿ™¡î¸ endstream endobj 79 0 obj << /Type /XRef /Index [0 80] /Size 80 /W [1 3 1] /Root 77 0 R /Info 78 0 R /ID [ ] /Length 222 /Filter /FlateDecode >> stream xÚÐK.`Åñs>¥êý~Ö³õhQZ"1H$ ±#¦‰[‹%˜˜˜™XßÿN~97çæ®$ý%)ÉéúU$C‚è„¢¥r´]P€؆nØ„-¨CôÂ.Œ[¥³80}Vá7Æ!hÀ0ô[ïQ”`Ê0hU¿£˜€Q«yãLÂLÁ44afaæ óP…X„%¨À²ÕjÄùëå1Òª]|ˆ´fßþDZ·ß*‘6œÚÏù‰'õÌégæü)sQË\~ÄÊB ÚpÇNW_yïæ^ÿ “D endstream endobj startxref 154740 %%EOF alakazam/inst/doc/GeneUsage-Vignette.pdf0000644000176200001440000057100715120047446017713 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 9 0 obj << /Length 1708 /Filter /FlateDecode >> stream xÚÍXKÛ6¾çWé¡23¤H=˜"‡mÛm#—¤HiIÞ¨ÑѬÝn~}g8”dy7v’¦@°ÀŠ¢9ÃáÌ73ŽK{ç÷ø‰çÏ«{ŸËÄ1 D¨¼ÕÆ:fŠ /ŠB&yè­2ïµVš÷棩-–ŠGþy^ç‹¥äßwæÒ MmÊ›®è®^<|®„'Óa ÒH2{K3žD¤ò%ˆÖµÙ ò7í‡>ÿˆ¢h‹!,,’<—"XŠ´GÚŠIYíË€G,ÅK%ÉEc‚áÊ ÕÞå *ÖœAÁÄt¹‚G§`D]7œ.W0’†k¼U»iw¹:I« NŸsuèómŽwš«…Ëa˜ÙÏ9-‰`ÂôÜz\g­ïà— mÍïèk?<­ýÅ0‹Ù²Ðiù´›OMMâΈf Œ£¶ÅÄÉREb\è©* ‹GÒ©WÃ7ä+¤B*pŠ˜k°åóÜänŽ{ -€ɹ8^Ú€‰¯,s"S,Ëøèìš*\jSÖ!ðmE GeiÛtÝ¡.[\i’ÐàV\SHÝÕ&9À‚Íhw)¸.,I–‰½UsO€jë¹4šúø>±”û'zHàsQ,æ WŽg%®ýà[‘ãx\Žj¼&9wĦ+u/Á6{Œ6ǽ+Ì`Áøø>y:ý©S¨XÛt§Nq«‰j`ÞÀ‡Ö†ÃÕ#£®™Ž /Bˆ9t»µ+ªˆ/Ò·ˆYwMÆîz«cšC6>}µ(¡*éõz(H¥ïÆL8‹“d tU“AäQáÃ*O çʤ€0à—F¸š&‰«—ó0ÏV÷þk"(J endstream endobj 27 0 obj << /Length 1937 /Filter /FlateDecode >> stream xÚÍZ[oÛ6~ï¯02PÐZ%ER‡¦@‹­Y÷ÔmY÷ІlѲVYruIœýú^dKŠ-ÛrEÌ‹Éï\x.äqÑ(¡Ñõ3T·6ñGÈv‰üà£fÛ3¿_?{wóìÕ{ßadsÄñèf>òœ‘‡¸(ŒÂÑgë‡Ë1s˜õ[¤e<¿×£ª"¡»A©Ûra&"‘š^"nErù÷ͯž€mC£1&6£\ÓR[Õz!`’RøÀDóÞšÞGŸ‘×ãXçÈ%®\l¤nÍlwβ*-¯dÑB>¾ †~^ËU"~š¾4Á^d3WC)ÜÖÌWJqÕaÊa5ó®§5£6[·“Y$]vNç ϪU1Œ‡B‰=‰ÃóÙXfá@EH^ì8\[Çá3î˜ÖBá®c–”N,Ý)•ò+d+U=£¥¢û긮dÞou¨ñAㄦyk<.žNñ£PݬuãJØ® $ f³6GlÜ4›UEÓwº…ø6QÒXÔœßÏsñ­—ÒëÙ"cMŸm»ÔAÈz§%ô‰+—뾃å|8MÞ4ÁY[X7/¼Ðlþpý‹¡ ½OdL¹ùÂå>Ðò`1çÜ ËÈ÷±.qÝŒñb<7˜>1‚,Ú #˜îA'ýèl †¡Q]´ÞíC§‡x'5(ów¢Ã4À¿zOX3XcådðË$Á\4ºYÕ)Pq¸N²“‹¢JÊ ½t<«Ô@í¨ fØöÙB…AØó»—’ ÒeéQ©‡iF:\ªs97K y4÷Zêô`ZŠß*”86Á§«2n3·÷mL¢Éœ: ïÀiHãN8à6ðFF!mé`bëcsŸ7À°ìùìH2©iÇDš³4Ùw-°!l%—ØÊJýe–&÷º§€Ž EXwƒi•†ø€N%’Yþš”"Ó¨FÚâôHN\pu¯Íð>ý7…ÕÚÓöÆ·KºYW¢\k¡Ð£™”:•3e§’íZ[5Rl‡›øiô€=k,c…Š]ÅlaCx¦®õץϔjaX—y0+õ"­ÌÖNO*¨gy+]ÁŒ²\\ëÞ€ë©T[Õ« ­c+ϯW¿”2˜óÚ¢D¢|¯Ù£e³™!dûðimžWéL²¬ ¯™lÀ.¹;¢>³©g¿MŠLÆ|æH»ó”r(|­­FAx{ɨe2‘z±ЦÒ=hAŽÃl—9mº¨uódè g> ˜×Þ\KhÈgºeŠ?[óò(Þ‡(‹Xþ˜ðâPy´½ocÝ ¦ÝÌÁÒT€¾ŒB»lއ“p»ÀµYA/ëx–Ey°ZÄòus¯§³<¹õ@7T7èlè*­š¤ÐcykïÕ qm5[Šr‘…W’­‹ÆIaÚ§^k¿º©kÎj¶‚u\4DѾƒœqúƒ3e>¼Éëô­’¬tö!ÞÜš0ƒ[oï]é›ÂWi䨒aƒppœiPšLª÷‰º)ÉkFí'ÐÀ ( uwlmQÏlJ†4Ô@‘Jõ¶Ìõe»Õ‚4[Æ3=0Q©ˆÀ ¹v…„2³Og";qÚ»2À;#\g5°ï]èÄ&„Ôkz}|G’<ªÒÒ-³Œ±Ë Aù‡žyàE¥æ܈°QP1Oµ 5“E5-D]„Ét«sÊ •—8ZÜâ3K/ò‡A:汯ö<óüô*Ž#/6¼-Dz*ƒRìzèŸðÆßYÁ9¦¬TǭǪ3èóÄIˈ÷èâ( *á¼O$O¯ i§TÚDðn!¥þ{Ók—$æ± ´ç*ºuyÚ§ëS¥»¢eµóBž"Ü€ W»,<$ÜfÌû˜d&ˆ}êÖ‘Õæ8íT›ÍíYvë;°ìOM«<'Õ ñÓU uÆßuÞ*¿<Á|tNèu÷£Bßúª‹0(rÝ?€©_æCýôÅã$0œ¥˜Lïvé鉨j(*ã2éKYÇƆ#ü)ý¥ÏsŸ@º–¾Ï5Jy×¶KxùÚëAÉP$ÀDZN$ÄÙ¼¤Q"†ÕÿÙÙ¿¨,þ©Šrq|6íÛÇ£ý„1 cŽ÷I0=ÛÕ>Š|&êßAd5A¶¹XÁë=‹óïÅóÖ!êw"K•1¹‡Z=üVYuvžå<¸ZËw´>Úÿ%h!¡“å“i.îz¯”G ¹À²øì¢ÄßÉñG"[NVYœ–ç^²ᆤèáõ¦®¬zñ¿ÃrÊù)%HV‹`m(“M½®Û JëõæI˜…ÑÙ—Œ»8”å-õj µàäº#ﺷî{(DøÁÿ"è–¬‚á§5x·13Ï.§µçç›gÿ©>Š endstream endobj 32 0 obj << /Length 886 /Filter /FlateDecode >> stream xÚÍXMsÚ0½ó+<ôb¦A‘lËrh'Óž’–ö’t<„qÇXÆ ô×wmÙÅ’€2™Ì`e­}ûVûV`ÅW°rÝÁÅ“À'VˆbiŠaS„SÏ;‹²XùËÊ0Uº†ó/s¢\ðÎ-ü•¯úׯà}vίtªŒìe8U`d—± ¢0Ï0 dãp®Ü©ŸBÁ’ÈÁCO³U®{¶©žõúšIÕeêù †UÇ^$#x8ja],Á n"¸ÇºÁ&Òê ù³|š©zaÈÂÂåSÜû5üz~eUšeF:¶F­:É9Ÿ°AWÂt¥÷“Iê6AÑê•Èø<‘œ¦Þ<€ds[È yH*”¯^¢hP9E‰úEªH·]Š2dž—0ÝÔ³GI@@uË·k¨²mïã–ÉË0aØõ]¯O5ªÞB¡D0]Ëÿ~ÊG¹Ù¸(u6¦Ô›ÇPµœQ!âíÁJŸèˆŽ2œ@°Pæ€ð€¢ËjÈA¹Ëã|ì×bÀ<-›bf“‹ìk–ç˜/#qÍ"–ÖäbâËUžÀÅè¬`¾QSBå¸5Ë×ÈÁ)–äÍ"š%wV»îTÚݦs<ƒ„/ã´Y77˜´§‘‹º‰J#lÕ…4Ö8¨M³`§³¥Ú iß„\ü_YûÚé$íûq–Ï9Ë´Ê èíoŽ#” ®ÛYƒ-¦õLÊî4a‹Le¢°ñýñ«¬iY•e}©,/SsæŽ÷-Ó‰Xm ÎØÒh½n‡5áU¥~dð\?ž0¿|ÅÛªÒ[)l%ÐjРÛà´‘p3ˆÖ\"?Ü¿QæÛ¬áfAK‹ô4hëMzö{™ŠFÁIëØ¯û„›À–ס7jÝk7,ƒœd³ñ©|&,f‰àAòV:oõ©¾‘\R¸j1wíŽ9\m£%_¶>è`qX˜îS±,íi³¤Õ$Ç<ä‰;JØ#KÚ&  ¯uß™ o¤ü>ãs7æAôÜî}ÐIð W¤¼@»÷›ò&ž­ÐÑ{küiv¦´?R¼0žybcd·Žó4륳;á¿õ%ã1˜ˆ™ÜË›,Gîp/œu$Ö¯^\Ëxê«‚¯mÀÿ}Å©ÿ¡éi–žášˆ8–Ôk>—ÃÎ_?Ý$Í endstream endobj 24 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/GeneUsage-Vignette_files/figure-latex/unnamed-chunk-3-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 34 0 R /BBox [0 0 524 263] /Resources << /XObject << /Im1 35 0 R >>/ProcSet [ /PDF ] >> /Length 36 /Filter /FlateDecode >> stream xÚ+ä2T0BC]S]#…ä\.}Ï\C—|®@.Z! endstream endobj 35 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/GeneUsage-Vignette_files/figure-latex/unnamed-chunk-3-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 36 0 R /BBox [ 0 0 540 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 37 0 R >> /ExtGState << /GS1 38 0 R /GS2 39 0 R /GS257 40 0 R /GS258 41 0 R >> /ColorSpace << /sRGB 42 0 R >> >> /Length 1837 /Filter /FlateDecode >> stream xœ­X[o\5~ß_1/H­P¦{|{-‚B%U…ªt ­º$þ>š‹ÏñÙ,í¶ä!góÍÍŸoc žÁøk÷ƒÿ=ºýñÉc¸¾Ý†`þÞ^¿sõ—'Ô—_|'Ò ÿìž=‡/wOwov0øv§?úͬ?±5ù¹ÙïàñBáø RA®P æ‹Qo Üìáx÷!žïóßÁ«µ{Œ0¥sZûŽúaÁ)d ;.¹ üvw9 jÀ’&ëAL©®ŽÅ`;f^#¦¸ZœšK[™š3<5r˜š3,…ehl¸ŽbalÙØPÀ¼êι`««ÁÉ@Ú¢ÕÀálÀ}±Ã€³AÏXÛj`p2H1¬gƒÖ0õÕÀàdÀ‰±¬'ƒGO.c®ðÛí.`¤¹3¬1ÚîxrI§µ¶¨*m7@jk€˜36†Ã,iØ ¤–m.s„…²¢k±îúïÐwÖ>»ï@Û¬]…ÊðÍ)/± ©µ·=ôÎË|7¼¯ww †”«„=L’°d Ð0w ’0Ö8´G¤½è+2-¾Ž,¶Y»„…öðÍ„--± ©µ·íúÁÔ|7¼½/½N{è0I8`ïCÀÀ@œ0gðåìHÚ‹¡` «¾I˜Å×Å6k—0Ö´ø¦¨{Äc2kkÛ$ SõÝò¶¾ä†¹ª.ëUPe& !%¥+ØÎw m•ª#äÚŽ=/~4ªšº€óð‹ [Q ¨©µi‚ÁFý6\~JUÆP¬C²-â’DH$JIæÃ׏ިk_FÛCïLÝwæ-}™SaÓ4GANP¢p” µ’ "G9 )ÒH‹„eÃGÎH¶J2ˆÜä°s¤› ëzúÌhñhI“CBžãÌ—²$ƒÛZ{ÛCo¼ÜwÃûx$>þPÖ;kD®>.a,"WÌA{J–µ}EÖ·„µ¬úb#e¾il³6‰ô†_²ÃÔc²‘°¶]ï¼ÜwÃÛÖwì„1C׃ã0 lìzÂF@!H¦ˆ½¨¿!ÝM’Øê¤ #m®h`³5A”L⎭Kòð¸´ÖìÐ!õÛеp 2Œ°[²‚,S”×+– œ²œ9®Õ´‰—k™0óðs QÕÔ­I÷kcQ XTmsh•Íð›¸ÞǦ¤$µ·(a“ KÛrNÆ ­êIº\ ØyåÒìZÒ»°û9ˆcź v=vͯúZ£¸öD¬‹VÙ¸ßÌÕW_ÓܽÒ¥!“ÍÝ ÆÎXâD?öŠ5»@ÖSÝ`¡ï£á~FУ®ô½M×÷›¹Žƒ.Ëñ²Ò£!Gúp9wzšè'f eÑíœù9Xé›Àh¸Ÿô¨+}oÓµÆÆýf®¾s¢6^³$žÃ$hr1‘µÊl']ý´®ñ‚¥,ÚŽ1.~4ª™š '÷“«¨®}ë2 ­³1¿™ëØ9ž¤C€ù{·¬}my9×±õ÷øÊ6p"K}0é.]¿º“¿Š@põ :*ÓñQHÍÇ!t¸:ÀƒðÙC¸z³ûòJ›ø°§\¿JR×ø‘®r7¥ª®¼¸.o >ÈSñýáѾS|'Y£ž+c­ñT»\Û7•ñª_*áMa,úsçê^ºâUw²Òo®Áç¢ÛÕ›|®¹‡~.Áç’Ûõ› |®¸‡~.Àç‚{èçú{®·]¿)¿çr{èçê{®¶]¿)¾ç©ø¤mQ0û\¬ÿ²îýd È ýæÉ×?ÓE<µÂOú·&#pìŸÎö§”eˆŽ´óT;¼ª\O×t~„YŠùã‘ÏPr¹ËÙ¹tGÈç÷"•$ë8BégGà‘"P—«âa]÷‘ºƒ§ÈñݬQÍDú(j?&I˜šÞ‘ŠR{öàû‡<Øß\ïßý ¼‚›ýŸû›‡pÁüýÇë›ýÃçpõôC¤O0<ýxÊ5!'[®EŠõÐ团?žþ¯^O=€k“Cšaµ)½}qøóíþ××/O"gvÃbæŠ-UŒÍ¿þ|æmyÊñ§®ÍwŸõæÀôq§Ù7‡YÒåMŠëh×(;“›½Ò[LXÚ¢ïöá¾il³vI”ß°Ö%¶!µö¶‡Þy™ï†·\’>y8èµâ½3ð¾Òy>eÏzX==Üåcžå&?F!³œ c” Í3àza÷ud±çà‚!/¾œ¤± Í30ôÎÔ|7¼çø¤wêÖ–I±ªo®v&}^ïì¸{o³øÒÚýþ)ùöÞr0¥£l¤Ø¯…5mÎøéöÅoûÿ¤»ûd°m endstream endobj 44 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 47 0 obj << /Length 1794 /Filter /FlateDecode >> stream xÚÍÙnÛFðÝ_A¸@¡½¯" Ð6‰›šÖÈKZEIx(<’øï;³³¹ŠÛiB€vö˜sgfgÈœµÃœ› fFÿÌáN(ù‹'-/>^xQ,y¨7' ÞPÌÂõÛR8¯ê‹wð¶æ@n>¡÷ÓíÅõ› v8÷bßÎíJ3ô}/Фs»t>¸·³X¹É¢/’.¯Ö³¹ }wUA°Q-“*5Ó¾ÝI–˼Ëë*) NS÷[ØmgßþzýFúg^ÌbŽL¹ÇÄ 0÷:Júžˆbç¶D6aEÊÂ2(1 |E³;Ç‹Kåq!m̤Y÷eVÍDèv³¹bÊíêSÜyƒ9•M$­ûª»3AÌ‹¾‡TÄ9IÓlk¤(g"rû¢Ë·EF+ƒIi–ÖE_V­A¬–|΋Âì'EŠ·¨M‰"0âc‚{¡2˜Ü©@¡ÛäÁY’¢šõUþ±7§ÒºD‹-ò*Á[÷€§’î[ƒ×m̱ìKR‚ü-θ»˜ÍZVÔHôó1ZÍæÜ]·ƒ3î¢81H4ÙÒ¤YÕM9Ð1îy0Ñ‘EÇ @%w²‹ØmµLkÃI ™·u§I!‹Ð5ÛÛ$oZÿb>;ån4ô¹Í–ÜòEŠÈ—Ä÷._^‚ê¾ðÝËôn©¸„]~Äov ).=Ql‘GD4½ŒÝ7³n¨Ë7eÝdW$t^µ]–,iR¯3‰ÑJ2V^  ½}B¯î)²³ü¦Æàn30ênƒ@c#sð†Ï3cHØ#¿DhʃVòîkÊiQWûdiЦÔ~j¿´ÏŽlæµÆu#P?cÔ¢+vZH*·® ä/%@Òm²uÒ,Á‡[sfEëòbZ,MÈ fiij¢AíÕT·MÖfľ¥{¬…rž/Ç~îGÌ­ûnÛw'ûix ʃ)ú2éoÕ$å¹²R0Œga!C¥¢+Ê$Çî…ÐE’ÆXcŸ‰í%v­ëÊ¶Ææ1¨¹&ø\¨xäŶ†g*b¨¤•)¢N#šiñgdÁ†œdÄ‘»' tH—\A¡ñI±jûÜǑȋÔ:L§î¾fü Ë!uœº<üå¼=|Ö òâ&Ñ]_`÷K´Dm•òíѧ öµ†U«L;G]MâÉ¡šÄ%£±eP ‰CšžÑ4sÒE±ËË3ÓŽNäxj¢.˜»ÕAK··ú"F±;æó¦ƒ£<âÃÑ#W6\ ‡Ž{¢ÜñÄoWCWÚš/,i‡‚ãÇšûY$ݧöÐ…ãóÇÖöö‹63/v 8R2´ªuJ\ºîÇ{D`[Ôþ@ù?®àWyMú©beúh?²ø|–WÏžÜZ|s—ô/Ðx±«ÄI¥ø„^rï=$3ÿóŸ÷£'ÚÑ&$„e .tÚQ‘`vùúöâ²X¾J endstream endobj 29 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/GeneUsage-Vignette_files/figure-latex/unnamed-chunk-4-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 49 0 R /BBox [0 0 524 263] /Resources << /XObject << /Im1 50 0 R >>/ProcSet [ /PDF ] >> /Length 36 /Filter /FlateDecode >> stream xÚ+ä2T0BC]S]#…ä\.}Ï\C—|®@.Z! endstream endobj 50 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/GeneUsage-Vignette_files/figure-latex/unnamed-chunk-4-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 51 0 R /BBox [ 0 0 540 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 52 0 R >> /ExtGState << /GS1 53 0 R /GS2 54 0 R /GS257 55 0 R /GS258 56 0 R >> /ColorSpace << /sRGB 57 0 R >> >> /Length 1734 /Filter /FlateDecode >> stream xœ­X[o\E ~ß_1/HPܱÇs{-‚@%¡*M¡U·´ âß#_æœ9ÛnÚ<ìÙýÆþ<ž×>ž ¯Â»Ýþy|óãÙ“py³Cˆ1†ùysùÆÅ_œß">ÿâ;­áŸÝ¯¿…žï0<ÝaxµÃ1†owúuªÏÌúE­É×õÕ.;§\Ã7»­sˆ€Q‚ÑïÆÙ9Þ.µª¸½!F((gˆöóHä@˜€b ¡z§.U»—EN‘î@j[µÇBë —»uۆ̶Í=äî—sg¿/wO6{CXBÖ=¨D{s(•½‘ÙXK¶ÝŸF”ªþå°"PRß+ 4ÖÖò"§ Œ w µmÚ>Bò5¸¹Ë×°mÈvÂær÷˸¿e'B †rq0Àfk#]25†"B«Z…’Òùz„šyOBÜÔ¶iûH’Ë8¸Q¶x±mHµ}î!w¿Œ»ñÛÖR›ìgïÐHWb#AÏ’òj3d -A§dªVÅèv(¸ð˜QÕ4\ tguLnÒ~«žÎgØSÎ줹¸CãP3ä¢~&ú)p rH9K²7 ³¤Ü ”!-(©ÊyÔªªú§Á+]NÍ­0«:§KÝã;Þ¥û癨j «I|ÛO’2FYQ·P¤äÀâ£B*‹´Ë žµjª6!öÁ+UVíV \zücR÷Æx³¯‘H‹„Gé²€ý:PDÈz5Ë)J2#â&f–ðÒ*ë<fÕTm @mƒWXáV ¨ªÍéRwÏx³¯qòÈ•Ciâó~¨(ÿÃÈR”Õ¤^19°!ä<¤™qð ˜Õ±O2Àâ·ó I¸U¶xsHÍ=ã;z²aùK.$Ù`¿â¬K¨ºh§(y “ÿÖ¼ ä!+@èÿ­öTOqîZ®)' a³g¿EÏæ2l>göï!b•±Š›¹Éý߯¡×ÀuëX. S’\a@|d*’/†´K½4x ̪©Ú@– Äy9æaÕ€©êœ.u÷Œ7ûú±š¸«A­q—¢e—$Ũ‹'ËטX2Í@e‘V½pÆ3`VMÕ² ó2ÉɺU—þ!­‰IÝ=ã;Z¬2²„tnªŸ”ÿWÆ"1^bÑMìÀv9ÖEšÅqç0«¦jˆ/”6¬PU›Ó¥îžñf_ÇÙy`ÆæçûMÜÝÔùܵÝëóäÂB¨‰#K7'á'q²>5–¾¢€áâEЊËC!%q-')h.öáQüì$\¼Ú}y¡SÜÅD]”ÔB%*•îÍå*—C¸|ong‰Lá–ûr‰QÚá¶•»ôð~¼S“ûás>lrSÓû>šJÜö”&]{J7²sãêòM;÷­.ß´±óV}Ô…+ZÕÉãtýYª4Øå0%¿9ûúg¼-€oecÊÚNmèt4bÒfCOÇÓ+J¾¥óÑô”ºüAnéùh:Ç*%È–^ï理ÏèÙb<7§©ñŒšÃOíËF’¼™’¾¯h.ûõÑ÷'!ÇðèêúòêÍßá¯áúêíÕõI8åýý×Ëë«“ßÂÅÓ9}‹‡ÿóº®j!‚Tän”Ö  $ò×uŸ´êi¥Ó°õ8X jѳ¸y¶ûúê÷—Ïo˧G.ÃlrÓÆ¸5ú[Ç#k¦)[÷*iÎV!pChE{NVœøH‰RüqcÝí’,SU)ài%Ñ£ÔCÞ“ƒëÈl›¶°ÜŒÁÍ( |Ø6¤Ú>÷»§ÆÝø-…ÊGŸ@BiÏî>»Jöùÿâ–ÚýØà(…ô|œÄ™± ’´×]24Ÿ€Ë}‡;P\ªvIUÞï nby¿7lšO`ÈÍ/çnüžOà£nÞmLŽ(/åäÈɪ®Ïë{7îÁgKÚÌÉl§øçÇäÛËÁ˜²‘b/pjì–‚¿²ülÿòõ¿á§›gÜ‘rwÿ”–%l endstream endobj 59 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 63 0 obj << /Length 1535 /Filter /FlateDecode >> stream xÚÍYYÛ6~÷¯¶/2²Vxè,’i’n·@¶qó’†,Ñ2 ŽŽÝuúÛ;…”dýˆM”9›-JöDÂâ¿æIœÖ¬®6todËóÅév&D8Ú˜`j90$=\/YÆfóû]–úJb¡¾DIRó:e\wŒ0æÕ[0q˜Ž¥TVa®v°üúI‹_˜á¯¬š=ÔÖ DÛ&KAˆ¼ž Ë’')J!Í–“6Ü´Q”¶3Ä>yk-ÿiªú,p|1öÝ—ÃþŠY@‡££¢q†ó‹·Úo¬Œ šÔ^+ª-ÙŠ•uÁËç²ñ¾„ªÏD—* S6[Ï¢"¯yÞÍÅG‡¥Õ£ƒj¥\û-µŒŠ´(gó’ݳòR-WÀ°®wg«'}ÿÕø™ø?aE6[ÓI*L/w’<Î’`×I²çxL½×3O»—¢hzòõûheóó^äök6øëÈ%½Ü¦“›nÞ¨¦æóyʾW¶jTƒ‘*@úVl°ã9Ûëã¸SW«~ZDΈbç˜ITVÊ;ÛÚý–D»6ËIó*Z–?À!á’M_‚ê¾CKàb}ŠÅ’xžŠ¾ëmÆ]ŠÚñ= Ò@ªyáÅšúöæç-t·½T/p°«{pâ{Pµx@ï}ÁÐÅô Ùøæ ±Q Hˆ­‰ë¶€PQ¤ª™àåð×ÀT¨EÀ|’¤VÐ…Y‚©]ÛïÂ9}4ûh4»U #†]òÚP9Ýðžm3(+Tï.,y{£Ò›C„¯ø{&×HL Nù~µC L$Ôv`â)±úï"ï§£ÿßoWš endstream endobj 60 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/GeneUsage-Vignette_files/figure-latex/unnamed-chunk-6-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 65 0 R /BBox [0 0 524 263] /Resources << /XObject << /Im1 66 0 R >>/ProcSet [ /PDF ] >> /Length 36 /Filter /FlateDecode >> stream xÚ+ä2T0BC]S]#…ä\.}Ï\C—|®@.Z! endstream endobj 66 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/GeneUsage-Vignette_files/figure-latex/unnamed-chunk-6-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 67 0 R /BBox [ 0 0 540 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 68 0 R >> /ExtGState << /GS1 69 0 R /GS2 70 0 R /GS257 71 0 R /GS258 72 0 R >> /ColorSpace << /sRGB 73 0 R >> >> /Length 2587 /Filter /FlateDecode >> stream xœÍZK¯T¹Þ÷¯ð&(¢ÆU~oA ÒDI Éb4Šs™ ¢a#åïGU_ù´Os¹4w:RœÛ_½m—í² ‡gÛðïÃ_ð/DŠŸ’íô®>Ü„„w‡o>þõéãðêã)ÆÖïÇW“ýäù-ìçOþ¤ÔþsøîûÃÏÞØü|{ø¼ëCx<´ 3Sî!w*9HlÔjà1ˆ/ ó.ýCx}jF¤!Ö¯6#RI§fijfÀxgŠ=’IvøöðÜÙœ¬/6¾ãE Ÿ ô3Qzp¬ûn†x©»xwqÏw¼¨ÆðOÜ 8VÊTfwInT³±G¡866ÐÂféTãÆw¸ T!æ“à*0 U9 ."ƒ8mož>—Ò‘úÈ!GÍfÏû§Ïùv.ò¥ñ>íC`í`IÊÇ…’™š–¬Î%g’X,I½R餾6~J”˦ë¶!í”B¹nºIhÄÍ6I»ïÉ÷H¡»‹ûÕáñ®o„kˆ”­šÈYßœsµoÔ[¢V×N¥yO€Ò˜šú¯”8pË$êPΡm¢Š“ŸŠŽÝÔuÛvJ13®[…zßl¡'à{ò=RèîâÖžK³ ælZ(ƒ„—A]3SƒÛQ&2Õ7~×q˜º™¤3®#¥±Ù2i÷íüÄvq£-¥RK¡5ÕZŒ…¬ ’zR÷U(‹ÿV?µP)“×u*B¿aÏä€3õä:MHšÛÃo•ƒ/`ÉtÖøÎóðëç¨öOÑ”®MÍO„©×À¥—Ð’Ç•5ŒD¦7nÕ˜\Vç+!ë*æzU(æi#f>ëáAoõ*“pDÍ8ÍeÏ[tqà‘(Y¿K <ª.æÖOF(ÖO¦çVUtŠ®F®§skL«°j>'á¹Þë5F¾Ý9Ë õ¸&݈JÓ½¢ª5Ô¨¿-ƒõ6y•rrü†=“®Ô³ë[µa¯lk:|{L¦³ÆçëL\§(.*k÷ò`ªE]ÙØejÝ:¶Ñ`'HŒ”›ë9€U Ùöè¡”§UX5ŸÎõð ·Æz\Iºþ['B5ß"Uë°j¾}'°%хι)ëŠèz° Q*ö;Ó+‰ŠL«& Ÿ“‹ð ·Æ:ï³j÷ôý´@¾»L}¾–ÄVKɺýßUk×wõÿ… ùNSV"{;~U©ì^f­œuéïK­ìü­Xv¥XžýL¢ŸKlå²K|¶\vùY/»ø©^žã^`)˜§Ä¬˜§Ä©bž1ŽÄR2K³äÛ*RÀ¥"M±ëò8®™uíØWV(•“à"c×l 8\²Pj'ÀÏ”Í_?Óo+›Sª4Fà44±Ž %‹.ÃI%p.$’ûD:SS.ÔùÄïñÔuÛvJÕ]zꦤ=9m™´ûvþŒº»¸±ˆKµ}4ÝŽ'‚Vh¥i¢²±i¶Í8²E§ujcãwÖ᛺@0mÂNÈ”âÔL-Oðk~ë1Bo mH-R‰ÊÏØˆ&¡iW¤–t’iPÌ!µJ<&²kƒ’lüÎZe»ªƒÍ8{÷R³¾ÌLþúP³>ÌLþúN³¾Ë8÷L£üÙ»¡X’#Ùhœ¾»1©ZVØçÑégnõM7’¿óus§v·Ã×^[.ÖfÎ:R{õt¹zn:v{õ|¹º^™Œ3õr±º0.¦wêõÒl¾J&Ï;“™-ëÊzeâüÝ Êzc2ùëÊza2ùëýÉz_âüÝõÉz]2ùëíÉÿ&›¥FÝ?ï›Î2’•×÷Ìç$vt¹o>§j%ì}ó9éEºw>gi:ú÷Ìç{ ám›„$ÍŽ"ºShñ7·µàÖØòJM®*åkuÕ-_¾Ö¯>ô¸n;ù½êtOv½³ÝÓòþšÜÓ--Ÿ]Ò:»£å³+ZðO7´|vA{Éþ|iVDïÀùÝe…µ–ínçþ€’ì8Ù½vøîÁŸ†Û¯nÞýÞ¿n~¾ùð0<Ê1<øåýOn~^<ûRö^üBõ±3f» ¬ìÏOIüàW5zièÒþܺÞ(è£)WË­/?¿½ùçO?Ü–a66³Ý=i}×ý{zç¸äD´¤òeÿdMå²ÞnêÞõBë¸Pôئ»H¶Þ.Yl¹Û©#;æŒh·ÑÎ ÿGºŽ`ÒN)zc6us"Λm “vß“ï‘Bw·ž¢î="öçθë@¾.&½&Ü>‰µù뤬Ý3{!5íºÙK@ë8ß{Øu'2ÛëH×›è©+l­#0ùˆËuwq¯#p¯™wÛ’^"ë=‘y6ï~Û>™qW÷&]õöˆÿõ5Ç¢«/ÁœÎV#þ%´¤ ‡†ùäíûw/߆¿}|ùãÍgã=üèZ=õ endstream endobj 75 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 79 0 obj << /Length 1202 /Filter /FlateDecode >> stream xÚÍX[oÛ6~÷¯2°±ˆ!Eêl/ÛZ¯Vt«±—v0d‰–5è‰Jâ=ô·ïP”lK‘_‚4SÔ9ß¹}çPÖB kÓn~™nÞQS#¹Ø%Úl©„‰7±F4› Ûš]„ÜM´/ãÙŠOtj¸ã¬y%&ÿÌ>ܼsX¢Q'#‹ôôOxhYx Wªû­— “]õ(õã*à¥òA¬ø! “"lY]„’ßÎý¬JÅSö)va²®¶—‡,‚SÈîëH‹Ë‚ß>iÐv‘AÌ®²ŸÅU’6ñzõ¯3Î':|BÆwQV•ò*†‹µ’ øWLYʃëXÖÀ¨Ó-¬åšˆ¹†2t?`Ç CKDe@ðØ ‚HDYê5~–K…µºJåºJäÿÅD—@E+¦Ü?T%[æ¬ç À¯÷—i'Ê0bŒuµŸª’iwŒ‹ûÊ´c ªÓS.dÊMî ôòVVIÒnnr&ËÑ:c”C˨‚Ú¤Ò®Si«TR6þŠM<£Èµ\Àš²¿ª<Ž|OðýÙsL¹l–Ht¼ÌKÜó¥+µ ô­xêsuu‰U”*9$l†Ñ]Ížt0붉,Ãlí…<l}ÃØõêzÉB–eµ¥—ä1ŸGÁ˜i"nD÷ÐÁ Ðn!î{Àþ0ʵh+‡¤È# „@rAò ˜§Ý¿¦0ZgGgÌD`ëLáý0ÑMî%j-2õû~úûj%#h·¦jUWK.ò8"JCåW3Ùû±bM'™ÌUF—^Åë& D„‚„ªH:;‰ö¥¶ô“Þ±r†±¤p“ƒÎÎVsÅx¼«­¨‡•'×*”m \RF9a5nuv¶ào¢ô͹ŽùC>àÀøJéªr}j fz5à ©ûó\ÊõÊÞpí0F­þn¸¤è 2s°!Ý¢J¯î|y¹h¶Uãõx•™XçüšÍ`/G¿0”Mrˆ~+Çz¼<@ÅÈ´”f ÓÙQÄyø¹ 'ãõ µ'ëG0›ƒ¬Çž£¹øãéin†w‡lp:$|¾¸JÔ ¹Õ£ŠHÄüâ–ÿuÓ"«dÁ‹Á¾}ùðê„_JKï!*‘àõz\wÀ$8‘й„¸Ø—4Œyß‹:}õȃnÚî(Mfî›ÈG7Öêߪg'Û¾{>Û/8zt\ÇÞââVûÄ 褺-[ªß‚ç¼YTðïÜyÍQö𑾒!RŸËw¯*+ùvyaCrx\>:¦rUÙï%¼œfÅ|QðûágÓS¢ÌPˆáiõdí?sA^IýCž%ó<‹ÒCÓû¨“àž‘ê=bÎæÍOfèäÙZFÿw¦\~¤xq¾òβ‘s±õ<+ë/8gë­ò<È‚ð⇌û(+5ËÏIG­p¯ç¬[z>ó°P_#ú©A§:ô­‡²ór¼ßnê»æÍiµïU(dì·³ÑÎç)ƒÕ/š~2º!Ç¥ðIWÞÛYÖ·Zfãæ}´߲џð×ZjEt@Õ·°Ÿ¡)¦È°©Æ DàMí¸Õñúílô?¼*² endstream endobj 76 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/GeneUsage-Vignette_files/figure-latex/unnamed-chunk-8-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 81 0 R /BBox [0 0 524 263] /Resources << /XObject << /Im1 82 0 R >>/ProcSet [ /PDF ] >> /Length 36 /Filter /FlateDecode >> stream xÚ+ä2T0BC]S]#…ä\.}Ï\C—|®@.Z! endstream endobj 82 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/Rtmpq7Q9z0/Rbuild127b866401ac05/alakazam/vignettes/GeneUsage-Vignette_files/figure-latex/unnamed-chunk-8-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 83 0 R /BBox [ 0 0 540 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 84 0 R >> /ExtGState << /GS1 85 0 R /GS2 86 0 R /GS257 87 0 R /GS258 88 0 R >> /ColorSpace << /sRGB 89 0 R >> >> /Length 2646 /Filter /FlateDecode >> stream xœÍZ[o\·~ß_Á— O8Ãû«V­M$´A¤ŽÜÆÈÚŽ”¢è¿/ævÏZ^­”-ÐíîÇ™o8$‡ä†×ûðËîkûûâþ›«—áÍý!ÆæÏû7ïMüêúñõ«¯¸´…ï¾ý.ÄðãÃë†w;Œcør'_òQ²|Qïüuw» /¾¿„\!÷;”( p @Ö  ïsóޮ͈0ˆÂüÉ͈PÒÚŒxÐ 5Þ#îwTZ6øóîÚÄHJ\å†'…FPhRP¼*Šû‹‚aVØv³ª—¹­Ú §êb‚<¦êO y@ÁIAñ¤0 w˪ xr8#”:9¬˜j…Tl<ö†(7¨Úž1 ¯bE“±!—œj:)(œF‡ÖV…“%„Þƒ“ÂW×TZøÇý.B9DÀÈ!ƒhãê–j@5Ü΋ s Ô¡ðÀ¬%¡Q@êPc œzÀ„Ð’£7¬2ôºÊdZ¸†Ô¶j[I\n"q±­H´­n“»§ÊÝøýf÷rÓ7„5DÈÒè o¥Ü7\[ƒ¶X­'¬$€)Ê nz ˜¤îHÛV9Tùàé±p ‰mÕÖ’Ú ¦…[3Ï·­Hµµn“›_ÆÝøÍ=Ö=Œb×¶X W” Õ€˜9±Vž…†¤¾: Ò"oØ®!µ-Ú^R`Ô…ËS;.¶©m­Ûåæ©qg¿Gõé–XBe‰v„$ °"ωZ  éÝž ¨§2i‹¼2Ï€XÕ.‚Ra4ç• ݪµ*ušT½1ÞìëYBz$j‡Z´ñZÐ/¥•£©eHY6¦ °›‰§£Èî5Œg@­ªªÈJl¼JÒ"µª@¯uºTÝÞÆW⊼ ×ÂQ·_qgjæéß"¯ µ6ûÍ•´)nÄKŒrì·Ø=Åq§ V±§¿YOë2™ú œÙ¿sÄjÐï™MCU1O éÏ48ú’v4ÙoñOúLqCöF9ú[íI{g(Í8… ¢ÙÓßbOêRl> göÏÖ™A@…‹|óЂeý:Ê”áhk0²I ´€b‚šŒg@­ªªd^ùWP6µª@Lêt©º'¼¯ç˜]Dp„Ò!%i¼pXÔ@Ô¡‰Þðd'W -J…Ó8—6N%Œ§@­ªª è¼Bœ˜U¢ªušÔÜSÞì«7Þ'éðúùi}<½žsfÉ›©4 :š8s×w®ÿ‘ú¨)É¡­¿)—¶Z<™Î•ÖÜZò2•/Ù´)LÙ´kx:ík:mK>mŸÍ§MßjS_j¯Ñ3j¯qͨ]ÃSj×XSj×ðœÚ5֜ڽö¤Ú½^“jj÷ê%gU8å¬ #‡ž+œ²äH‹‚ÂY¡UN…“BŽÒ$W08+d‚:)(üLbýôµà¡Ä:¥9I›umô’„œ¥a ɱ‡”3 9⹜rãåj‘^Ö®"µ­ÚVR8·r.gSn[‘jkÝ&wO•»ñ[—ùÔ;n‰µ©¤Š?-óŒä´}mMr$ER_šò©¼ Z¸ŽÒÒ/’qGWÕ´ÑÕš]jN)qã´6„q8âÜk?Y_Zæüft6É<Ѐ,®9 0iOœØÏyŠg}ÈÖ¦¼^ekS« DUët©xc¼Ù×s¤)UIû¨ðàïç’Á’ÒLcŒ#Žô,"H£¦p«yçó†s‰mÕ¶I²œK’f¹mE¢mu›ÜýRîÆo‹HΚP²¶ÅKôR¬ƒ9˜SФ>$9–˜ IJp‰mÕ¶äeù|H)‹mE¢mu»ÜüRîÆïsd!9f^Äš÷Sœ(sl¼ý79lfŒ¼ý+`O3&N9\Z91ž±ªªZya1^mP‡[U ªZ§IÍå;ú@ñ‰tZ äò$Å}„Öy&$DqA€KÌ‹´r^j<bUU¥ Þ9ŒW+Ì̪>©Ó¤êñf_Ï2#ëàŽS b+(ZH g^ÛF ©NÁèÊ×¹E&íÈ™‘ñ ˆU]P¥ @t^¯PŠ[U V¥N“ª7Æ›}õÕ42›O…ÃVS-ȼ~SK€)´& C« tÝ&íÈY¼ñ  í€O,Õyµê-V¨U©Ó¥ÑO:u뫺Ÿ“¨UòËÞÎs^í@-ä,'_ã9ÛiU¤’•ÏùáÅ Êà)c<>ïG·ª@TµN“ª7Æ›}5÷#ñzX-3[ ²Î»ÂCX›Î»ÎK¶Í('3•bæ°1ž±ªªRP$+0^)¼NšU:ñ¥N—Š7Æ›}=˪—šœt:/ªûµ ÊoÎr‹÷râV R%.L:$bŒ'@­ªª9)¯HvbV¨ªÔiRsOy³¯O={=rúôðå·à’Ú:¡ñÁÿóg¯½`˜?m Vû{øÚrÌ~oyy39´¬Ë§øñG nÞ†±¼Üȇ@¾QæT¾$¾­¸Ù‡‹?_ýéê2ܼÛýáæ°sæÓéÿMõç]$™X<è¢/tÑ'Ïjçá!Û^_ gêûÍ[ÌôøbÒù)f~{1ñæ)f~zqùü3¿¼¸|~ˆ™^L¾y‡a¹wÄf(¦àH2ëçfL*ç‡òñbýY:Ÿ¼yg³!ù+ú˜p5GÙ]vÊ-›Nf#vy8ØÐÓéô‚¼(néùtzÏœBléåd:aãÈÙÒë©Ñ|–Hö+–ùd¾ñ0ùæd¾ðpù|ÿ1ßw¸|¾þ˜¯;L¾¹ý˜o;\>_~üo¢™819”ÓÙ†Ì×çÆs"™ÎÏçT‘–çÆsFvÓ4Ù4ÉjD>Qº|$IŒkHm«¶•¾ÐpnN|·ã¶‰¶ÕíróT¹¿ùˆöì ’¯£#pìÀ;/6'½4<< ¹ùó¤ÌÝã½w÷’¢yLn=l\Gè·E^Âo´p©p…n[Ñ<.W¿Œ»ñ{gͼ‡ÖüQ®^õ&šçÝïÛ'3îìµÑ²Å¼À>åÌuö%ÓÁj$ض¾7º¿úðñ2¤.þ¾ú×þï·wŸ_qwÿ¢CK endstream endobj 91 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 110 0 obj << /Length1 2039 /Length2 22918 /Length3 0 /Length 24162 /Filter /FlateDecode >> stream xÚ´{ct¤Û¶vܱ:fŶmÛè8© cÛ¶m£c£cwl'»¿ô>÷ž½Ï÷ï7j¤*Ïôšë™«ªÞª"#RT¡2±5ŠÛÚ8Ñ1Ñ3rdå”m­ m˜˜é„m­LÌôŒŒ¬°dd"@C' [QC' 7€ÃÉ `ìôáè`fdä‚%Hm€J€‘;@èd¨êndPþmèŒ ?Ô@3  Õ‡‹ˆ­»ƒ…™¹ÓŸ,tt"ýñ¦H[Úº:ZZ mLÒôrôy[ס€ÒÖ`47´2ØšTš51e€„²‚š¢ ýG`g;;[‡ÿ©EDEUM‚ *$¯*ªÓ$ÔTTÿÜ«m>ê7£È«~èÿäù0üã.'¦*¤ª¥(ÆÄðg &€ ÐÁÑâOÚÿªü£2Àߥ}¸š:ØZÿ•@iîädÇÍÀàêêJoæìèDoë`FogõW}ªæŽW[KÀǣРøWcœmL>ÚédüW€?[µ0Ú8ÿ8‰ÛþKiýÑʧ¹Ó¿ ûh„ÓŸ˜Vÿ28ÿ‘ÆÜÐñ/_YEEY€µ¡…ÐÆÐÆøÃÐÉÐÉÙ`ð—ìãhBñ¯g‡?9äþWåðï4ÿ[º°íÇÊt¬<½ ]ÿ{Ç mœ=þÑ›ÿ\¶±­£…£“ã¿"¦VÀ?Õ;þÙ3 ›¿drBòRâb*ªt²ij¡“³ýèŽ ½“›Ó_Öâ ‰Êr8ÙL\¬Æ’ŠÙ˜ˆØZ[Tíû§}¢}r²upgø/V[ÚØºÚxþ·ÔÔÂÆÄôO×MœíÔl,ìR¢ÿcû!‚ý[ft0€ö ›±9ßT1å˜éø£Þžv¶vSC+G ·…)ðãÖÓÑÐprpz{þSñŸ–‰`baìôAòAý+º”©-€ë_âJþWõ?ÛOù×R}L¨‰­•;Àh Ë oëôAÊÿ?3ö_¹Ä­¬ä ­”ÿÙÐÿ¶2´¶°rÿO»ÿ2Ñþ)•òÿp¶p·pš(Z8›ÿ««ÿ’K9~^ÈÆÌ ø±#‰ÔþÌ‘Õa?‹?g€Ž‰ƒí¿t\4¶´::ØÙÿR?zð_õ~4þOµU%maY šÿ¢Ë_Fb6ƶ&6ff6v€¡ƒƒ¡;,ã˜ÙØžLT6ºýE½­Ó‡ ÀÎÙÉ`jëûg#Ù9 "DÿBœÑ¿€Aì߈ƒÀ ýoÄùTÿFìõ#®˜†£˜F£˜ÆÿF¬QŒ?æok&FFƒÉ? €øÈ `0ýd0˜ý²,þ?2[ý~¤¶þ2}$²ùüHdûø‘Èîï:?lí ?N#+ ©ÓßR¦ÿ‘þ‹ßû~¬Êáð£*ÇÀ^ýÓø£YÎCæLnÿ€)Üÿ‚ÿI Å?gâ_#Ïø7WþçÉâ/¬âä`k Ô°0ùx¢ü‡‰œ¡“ƒ…ÛÆyeúÜþ÷?ÝÿH@ö÷Qóoaa[7O:Vv3'€‰ƒãc,Þÿákü¯sû¯³âƒÔÿ‹ÿš Ð h »²hkÌô5µ9¤ÜG¬pº’Œ‹þ¬ƒ_S:b%cºK4o‡(Päßê—I^d++É­ë“ìoS¢I„nõ¾Ñ–T5uk¢$¸kè#烋(&4ž«N¯)·ìWÑMLu,[ UÊ:›ÙßNP?áêìyŠfžürB¬SѾ–éZ<ÏÔ‚æ`…ê¶ŒŒÓ…»<Ýêôû -6Êð»Ð õœAAƸ4”]_²þ I< áJÕUê€÷U«W÷$®?¹¨O5ºI__Ãe3ž>zU½"©Æ'¹É­dÕÜ•åNMg_žçŸM!Ú¹²–òÕ°q‡™Ò¼®h_~i´ö@ˆyç·"H¡¸•‡V].W4VkOuêPpKÎÕ—·(Åìp_[ŽUëÌÁ ¹ƒé_½“þ"CÛDº 9Ô$’{]:sŠÜîVòJZ=ŒËŽ~Çý¡.¦õUÒ ÝêiA*]Ñ´´Ú“xûlW²‡jTŽ`<–ôõN6È>êÜФÊíAb¤+ù8ûxëÆ¨ë<•êQ8ÙYËZûÐÓb“|pï ×%·)Á^+m´r¶èˆZ³ðÆ^•4i™-¥÷nh‚oÈUBZ éoÝá\´8NŸŒ67¯Õ¢S¨ nã&e¹c8xïåEoyÚ³‰eBfÒº×e,-Äꃴ¼çüèP_¶%>篰uFÔ¯I!ñ+‚ù±uci^¥?»udÿsÖ(â úkÍè•ì(«àvYmeßZU‹[ £KYo ü¡9)bÔñïÄc ©ô7 \,Ïä.ªÚÌD8„€ëþÜÌÞ6yõèqâå«1+cžƒ-×S¾0d~aÆ¡¼ÈÆøÒyqvd:‰oqm EÄ"Iü ‡>VýÑçt­Ý®n‰–vÏÛôu;ñ<.VíýÏj:í«×ã÷-¯‰ª´Aè„?Éî†OÎ$îD`Ofµ›¼žJ ¬ ‡c m哼t§¬¸{B¹19)K¶D¿¿Õk³‹Uq¹ÏÞV`‘Ž5| Náµ>'§>×=&v»Á¥×X6MY `ž²øÒ^XYúÒpKý4O2Œ ¢)ªbÖ¿JYSLÒ~²éyNÈ£«¥{g¯Š­öÌáýlîwGý•ÛoxRMzB÷Så …©‚õ‹ÍïÐhXs1àtó[äÉ3ûŒIK7ÙÓ#J‘é$Ä÷ImWù]ÊR ‹–sÆ×gdØÅÑ#VÜ»}=ÍÊX‡´E@BÃ'0GåN¯Ô©q;¬.é‡ ;.=³þ©Lûn¨Œƒ¡ÔǯR6^®˜Üð«pâæ¼$© SdY÷æmw£qL)­2‡ w˜šóeLni)œ…n©.ÙN[ éëI hOíϘ•vË+Ód¢Åb÷aˆç¬\jhmîœ7[¨5ræ}‚C“$Èè+¼—ƒÄSêç%7hžœ†q =‘Ö ³‡hî?¸ÁºÁÕjý¢ÛTfÏÔC \ò1.|üM]H|ñÞäôëïá»MawOg¹ý¾¥¬¤è¼bІ–JÔ$¶ÈaºCÑsS-`OÆQº#À†Ãjø¼¦YA_cŒ#ùm7É4Ê︺êEÅö…³?ìÉP¤=’c"’_Ÿîƒn‰ˆÆ_:¢ô3Ĉ¢·tämÉlTå Pîõný¢ù@5a¼~ÚPÂgXºT*kšF¾±Zü0eKèAEÛ¿ÄC±’kôôÓc0pE1ŸrŸB^£+»îN É(¶Û¤.&ú<ˆ÷Ü·‡Ž1)DÛˆÜfÄ´C5}o²dͩӇ áRçù£HÇ^Sc`G ¯©›bX‘뵟謬b1öU-óò^ù05EÄ|2‡3è 4ÒYa5PWw…†îî!ÈŠ9…_ØßH'òX˵¯êeü0‘ÒVŽË•8ƒ3üãP„¹›ðN¿þÔ|Áúî!4©È[CïSrïx®Ïú«oÎ ~cªÀÜ¡“7Êseè­PB,þW¶­ÒR:8SýFO!®"²€13¢2-úP¢2ª<²R):WfŽ5DgÇöïÇõ©,þ{Èð@˜áþY„—7äMýB$Á —j?"ÝÞ¬äÑjù¶b!¹4}[wdD;±6Fr_Ä“Ì#À6sügêc¬=Ï æ.œ¥òñ 4¿ ì´É_;|cÄÆV*èËc8q@Ûe噜ìI®aa0MŸVJ\ráá~¾VO¢Sò;œ‰zV-tiÖªäã.Ùqå0½ððÛvÞ“|©"DàܱbÃz7A¹.~“„é ®¤3xfÂÍŒé+κ” µSÁÀÕ2§¹»^Ö§+=A:Ÿw½?B8ÙºVôÇ0±ŽÚI¶rkM-Ap¬bîJo£·1î‰vwuÓ:Cò­–¸Ë õ‡ºS5šó>AßýZÙ{Èšc°x-’C§¸Ö¶be˜A5}ˆç²¼´Öô5äš9Êt;§ØGŸžµ½8H«ïÒœïu}&\ÐV‰¾’m9`£-’œïò€Z>C9H:SÛj };mxxLœ°ùÜj´g¸Ã-gntuQ´z(òÏ_—±æ ¦CShží\ÁÙDLd: ÑJלּiËÈ%S¾ØgXä§•'΃y³yTÊ#~ü¹-›šóðuȬ¸¹¨”ユ¸×6M‘ÌáÂ=¦ÿ]ñˆbº­·6뜹«C§ÆÿУxÿÐVäqenZbºáÌôŸ#Þ8í%êXm›."¼êgû|*¾Ë-:–Û¨‘Ón!! « µc®»€õxÛ‰“­7‰zQÒW'0Zœ\Þ½7^f>§\Õ«.°É³àªù†¦ç’-Ö#2§¸ªù{Q¾¥nÎ3ŸC¹yÔt8ŸËÛ*”TÙbúÚ'´Ë:ßHЊm¶Ñ£»øu7EXZ)òÆ­é¹ >ÁxÛ!²rÄ£Ò-?F$XÈY jzÀ‚)š¿<ò ÙªÊ'xšQ”ƒX…«úmûxG™YðtEp™wYÀaágr7Í©h…¢(œVL¡g»NDX™.dYí^½,cç£\Äo4ê­ñ¢“þðnËc`]^;Õ9¥ø–æÅmwÝs’Þh¤c­yèfPi^ÞmŸu<–¶8ï²~i'âá»÷B9V—Ñj!íÆ[¾_÷€×d­S·IJÜps78{ÓF5‡- ž˜oTA}.¡eé倡Ÿ. y›Ëz>*!–y?Z‰•§°C5¢ÔQv£Üß¿¡¬JÖndIó$Nfd4ìg‘xì†ù*Éh¦¾]“™ëb-º§§Ês‡§ç¢sPˆÐ>g#bN;ŽBÜ ÛÚKvÄ–ÂÔ|¥@qTNt¨\' €¿ ®š{=‹ôÎ[‰¦Wo|†2Ìc¢…M„P ñÆ]EÐÞñ>âitxI׈ôKÔ ¶‘O¯ùC×#Ý IrÕÃTõJ—·»“À*™ï—‘5œ$J‚cINï!}\ÝIÖ¹\“ûe ‡ b{i}DïFÞ]Tô¼ÊŽä¥eC'*ÆŒ!bf‰˜K´FŠö M€þÖƒ™µfÆË›k¨³Ò9m÷æEÌ ùv4ȵ{ˆ‚N,¯DÖÃ5“x:žDŸkÖã<0C"*oˆm]AJôY-¦Â‰x6_õñÈ·]°:­Kç=ÑÐúÐEq¨e¹Ê²Çgßòý¾ü>•;B†M±³SÜU¿&²ÖÌ£9´†TðÎc’“3УÃRs‰c:AïûU䣞!9.”';¯Hiúy´œlÝq`TÇÝñ¢‡Ûw¡ˆÿªÃ‘º×Š“Ð3ˆúUkó4—vEŒö13ßF¯oÛ`îøäï ù}O …n°ÿûÈ›·ŠoZP~ ù°$^“Ü{/~ÊËÒ´ ›ï²>ùÅ}l%bx þÜóf§ˆý';z[´D±AÕÕ>ia{6–@nEý`©š#ïÂfžè”€ïhrn®–8øìÜÞ¯w/Ÿƒ@0ÔR¶LÚ¨EI÷=%4IãØ¶ôˆ.Ëj”z NTÆ|òû¦7#IÛIyJÎ:òSÕFTì_¹FbF8çñ5/NX’]Üud»è Ÿòí^É3Ýé£ò„O pXpùÃø¥`#íÛA–ÓW•ß/¦aàVJ4S2yÊ“-†D¾ç&ó\M6þXüðÄNv]XYüŠ`>_qJû¼º„±öb[Ó]AY[à c›>"4ääÝ¥Q$µÔNÙyû@ÕÅþÙ'PüÄ·ñ˜úª K€ Ö 4Ž‹kÝÆ©E¾e§bÆ’‡tº¸ŠÞYN¡ { }Q˜VIÄd…%…Ã=|K‡iö=ÿ 2ˆn r̲ gµ=ù´Ç aŸ»úNu»<< ×îu†ÓÄÊ«T9ÙVS ûQIp[üÓÔbpHƒiO#MËú"ƒ±$/·¶l:s\uT&”“4åгöúôVõèÙh›,Ššô˜r '8tÎ6—HëŠ+•”ÄÁìúð"¬ˆøìiBÓ%'~^¼æéÏÒt°Ïß:ê¿âktm‰{QôÞh‰¾Z¯Ç§Boê&¾9¡2tcößUüßèôë ’ÉžR97‚æïiª†4y°H ¡ý}í´v Ëò¶þhª‰ÍŸÆ¡)¥èi!Õù3ûiRh¾·†Üf½Òâ ½”D¨OÝMñ>C>™4áî€eͯf㨚Ð;•Müò°@zÃø¹kzýkañŸ¨VÆ©‰4ÒÏ\ Íë”7ê3ŒQR [²ð…Z„˜;ƒ[œ¥ïv“ÚOA2 |ñ{Þš†+ò@Â,íaÎÎQTñÐu‡iÈSí{H¿rÊ”Ëõ!–KØžý-ɪæ˜Bgj36ì#±0—á³±-Ë—µé©s-C§ŠQ"I2U8ÐQ‡b+íFÌÌÒDcÖù¯nG#k­µ‡Â1<Þ˜›Ê ‹þ‘µ1¿¥ëN@”&„øÝªÄ‹[Úeωv×™Nô¾áÑàWšŸ·¡~™Æ©J­ð(WT&Ç·×`óÿdîÁKk:ö•!^«ºëNÜÓs i4—›o:‹@§¬[ûµw'-Tg¤' ]R;lù›£Ó^ð±è”" |P Í`Hk…'ÑÅ›i[‰"Eʧ‘A˜«–“Ý—-Ê´sXD•*İûL÷åè d1B‡Véâßy"„¶wÛž¹ÐÒE{ŒÃ¿õw«P–_Z“é¨`.Üß©ÄÒ8›ø {Øû06X ý—!Ï©]AœDŸö|— ÓÏ"¿m¢¼¾›‘W{‚X„%5c^VÊ ²%“ëƒC­ŒóëCžé7ÊpÆßo4Û§'ŠØŸ…#ï›ÈWa…ÒÐZ}wQ¯–ˆO8ðS¯!ŸŽ g^Þ À ûœ`-Ðýù+D§Â˜qžOCS I…xXÈ7N$•ÜþØ ¦ëjGw/ý‚¼Ó ŸPmŒ¤ŠßíoÉ›Mçt¶mC'¾“_9=ÐÜwjŸ31¨!ráŠhëf–°˜'gê÷G|³ÏÚ‹L3Ü~´-Í+e†Ï%R ¤D”®ö”okGÐ.¡¼RUè”X³‰ÞSŸr|X)êÄ£KÍ:DìÖ½º’BGñ~·d»#_q9šë®ø‚[."Ès b¥¿Ósv¿|ÂÍ}çsvzi -ûVkSûsI3¤4š›©H÷ËƒŽ´G–ÓbqWðWîöòT±Ö(WºJ8¾:ÏfŸÿå,úv‡&B„&Õ^õüõiÐãä„%žïÜÔ§'[êìŸé¸ŠÄZ®‘gmçÓ¾!&Ht)Ð%-bå”@᢮/†[\6PºêU¯:Î*§XÖº’ñiŸSóŠÐR¿=ÇÕz@ä r"ìØÓi¤$¤’jOŽ—×øuµÈóJzzdF"k–—¯È2ŒÚQð>Aj¡±ð©vN$©ÂóX×¢<á;œŠÅ ´ã›šéÙèìÏ'B›H@00øiÔö‰°}Ù,3”¡‹Ê%²©Ft'(• PÀl†–ºŒR~ɼNM¬fd´´Ÿ=3‘‘à‚–Õ¹ü®Íˆ+ §à„äÚÂ̧ _’™Ã¸Õ˜é²ÁkE-‡Iº*¸åäE\@¬Ä\âº\=Y²ˆOô“üùF¤³Tèì§„®çÍAŠi‡c¸r 8Õ £ÏkÎ#áÝãf r<Õ1žõpëÁ!çü»’õ«F|ñK7¦ØE”~P?"èÏ×’OгPê.R½ÂªÉaqeÍ ÝvÉÈkh1è“Coö=ã!Æâ?iJGî>Ƨ÷(Øoß¿¹Å>i@®Ö¾XòŽ Ã¤tÛ1· o4̇-C Â6NNÕŒsGm刅¶B yª€—lvýÌñÞà‹³]G¯*ÂÆ WT࿌þƳ@¹Ñ»{“un@µË¤Œ\Z³þa»0W¸oÀ ™0ùñ’™EøSAbí@ý\Fºzœò›ÞÀïâxR^Q¤o«¸+•áŸÂ‘o–ÀP€Y?'!¯¹Ÿ,˜ù NZM= zq¬p¢íë«Z`‡\÷I)S‰­˜âllg¾;yã°wBTä9!äê¡ìA€Q_n!]•Ι©ê|g9ˆn žœ3£®ë.ØIä¶B}‘äs$§Ç¯3û)p˜Qå&Ù¹AG C)™ÑÕu*ãPvɦ,!¾¢IÕâÏj|Ì>;ñŸ˜²)~ÅgßœnÈK@Ip(::4þr»ÊFŸ@³I樂 ÁëµüLo唿–¥>I<áToªnHßXŸ+¿­þíb€´Õ=ä¡o鯭™®‘·¨“;Äâþ˜t ûW@¾ a$ &ýÎÜJÔJÝ6M ´5èIIëÇÅÍË… Í.¦.…ä.}ëB<:¶gøêØoïµ-¾‰zªq_´¶|g Qøˆ‡£õ¦&Ü3Eíî’éà@&ûÒj¼?bŒýÓ Ûï ?Ÿ©AwþºµÑð*0ùÄ8ÍC?>¯±ŸY•>®K™¥—²*…£Á¼EðúJ=„+é1.,/>å1ú†ÔQO"{œŸh3µ¿PjŸ—p°—’ö)sK'Ö¨¯Æcñ*8Ë2zMBZÌ=·,€òäVÆöeh6 a§(«XöaÚf&¯ÛI˜Ä‹%v Ét Án…fí…°vÖÒ„–6÷(œN31?}Ò¡ ¨~ ÌÚbðs—/u›=+ÒÄ]ˆøùµNuõ0…Xb•Þ.b"= ·é|·H»%<å4iøkï ïÙÙšš‹—ÍðXïÁAI]áD¨?Ÿga@9Øô·/ •–¿ehÔE°á5™*7o} {dãp/d s’ËÌh'@ð–Ô¥‘‰„ìWóŒû²xV]; c4D,‚cZ|{$Û8O0¹Î!%ž›²ìÖòó·_*“ò² ¶ã%1éèñc‰¨¾lâ<õ#Ün\³ ògLì¼Æñ†² Z†LYgOùr³TðŽž"œ<v¼z\-Å4­…ß’Ú{‹E dG*¤9"aŸüªkZfÚSµ5Ög¥bdGn©–9ߨaÇs»—B2,Ò">}¢kï”t4ZZ¾OÁ+4þêÖ½GæA÷±;ÏwJ ÛSzÅ:Y®‰%t2ø;D´Ú$Œ‹˜¼ü·NmJ¿‘^j£&8ùUÁ¯J‡—ýG§•{¦0 ±Í-d!Ú‹µûH¿ÝH:ŽÓËw>€Éèy“¨†å½bu"ÈLY¯¼@*[>VAÙ 1ßNóÿxÆÃyƒ¾ŽQ@úé¶ëù›íš,ŒœÕ$\á›d>Bµ·ƒÚ²|T÷ãÓ±u™©Z<‚µáõŸO*¿¡Îè‚©=D/Ò3ÃóuT´uYáG¹}~ÿA[Iõ@4òmñ¤Ÿ¹­qÊú_jÈ>¨cÊ¢V-ÂÎåóôƒþ…r‹TÕ­âú÷BþÔ¹¯­¥›q1oEZáB‡?£=çQš(édŽN.…È÷ Ò7bolÅØÈn4uU;5Ȱ)üB¶Ѻœa$vU}ÆýŽŽØAœŽþM.Øã7áX@RË>gZ ýÃ]7\§·f9%[З¾ýó—PBBÖõ"Ӕׯþî÷NRÕÀ &ÎBâäNý‹|„z=.ÁþvP‰ö"3ÕË/˜¸w†.Vû?¥k¦ðDZžÉÞ˜A }/%U]wÚì(ÀÑÍáÁ3ñ™‘¸á…5‡P‰i¶™™€ÀÙæ[œs[á´‘K©ÛO[‘Ľø^÷ëf²Ÿ3߬pÐ l6ËóüPg{íó< ª¦çìŒ-¹þŽÚkI“Î]£ ¨¥k>Vâ%mdÂ(T)”²éé·Êýí0Cçë§ù*DnñØ9 µÚH3j¬ÕRZöì .·@Ùš â=¿PÖÈØVy—+>û¾Šƒ…<ý.þ"¯)ø¿˜ZÚ]äu¾# üJêJNªëæÓþþˆ¶,ÄÅ‹ì0‚e_ŸTôInè*éø\[­­GúûpqÔ}m ñúÛw¾vú»±½JxVEÔbÅÂo9KO&çLrŠ?z…$QTV`C,nb‘+ç81—ÚO=“u¾…YZô&g ¬3øE˜¹f´.\&ºÁ&ù^8Þ' í#]·œ›¤·õU¿·1¦óˆ{»¶­x¾#ËIýåªËÙÇ>M °Œòe»ÿÞÛšN.µÆY_‡jÉA.ߌiþD]Ê_Så̦; {ƵádB•-*\o¨ìÍ4Û ìD8¿sUГ׾%rl)~sºrÜvð™Ä³ahGø‚-àRj ).w_ª%­1å;ùF~Dö‘ˆ9Šóã;£FMnçÍ=Û¯·è<ýöl¯ÛEÄ’’j~h]Òs+ñ€ÓFÑÖLB'ßϪ‡ˆsAë‹z”—äÚÍl}²ÇG+sªÚ ë嘠—ÖWcÜ_sDò˜À1Pª*pÊ“e£„ ¡j®‰(<”G’ \hQYZ\ Ü:G›V½&|–Uæ?ÂpKUjÌE„Ëøb¬l¬D¸×¥ ìß!eT"òwå:¿õ®—÷€ý–뎣Ê?Ì\ø<Ÿ¸EXÁüÎ/`Y²= £ÄÆå™Lu*Ònñ#/9\I‚K™Cù»‹Óª.¬•²!ÊÛt³®É¢ÁF§ün ¨6¥˼jóÇÀ•Ç/þ…ùì™¶IWRçõ1ÞŒ£½‚uR1>5ŒŠ¸õ¨8Îà¨É“*ýBûÌZ$.¥2vÂå!jA=óýOò¹lÂ#*T$;0G·AùÆSg´[™ãQ$ …¨Ì=ÙðOƒ©³ wñ‘n?Bc'5c°üáÆAp^b¡ôÇ/-÷v\OjÍ$Œôˆl#ߧ\¸Î=_FId ×íñÇØ zøïïY&;‚ë8Ãë"§4—;VÑe^%K ªðfLÄP)à·Q!K­J ¸'#@×Ä8Y &çe¢}á}1Jg\p—aRdžU´¬I–ñŒ5ÑD›§ïOØBÒñ>Q?-‰Ü`fDÓ—Œ©{µw‰ʯò5]i:!hÀ)ïH¬|©Ò͘œóðÉZ iÐ$¼DïÏG=7_3ÔPüM8É®ó@ÛT;wËTT›îù0 ˆ|•€m¢f¹]ɇ¶ÁhÓgG:Wù•p8ÉzQFÊ}¿pÊG¡¤È‡žÍÉœx|Žø„ó 9cÏ ÿ:ò€‘ØG?µßÈ'HœXGaX5cÈxAʧN(Ù¾[ÉhZê“M{PCŠŒHÃþå1ë‹Y¢çP=Q3ãÎôÂãCÊÖ÷àÚîä9€×'"XþªñïoØ-¾4[é Ípˆ??9™S(ò&¢Ã¯øè–:NC¥Fug²&ÚYu2BtºqúÉü\KlòÔÚ_•UùP4ã¹ásxæÛð»›̯NæòX[5Žàš]{Áîš]WæY“­\C«šÁ§ëRTú;ÇžqJ%³y p0t눎 fá0W©ùË"°r쟽ákS°e [j– (]ù¿ä‚ån•.ë@#ºùÃèƒt_ØV“ò»¸¶ˆÍ-¤¬¼Ú„›sÖ ߃`´ªov…C»m0ÇɵÒpÞ»AÉòãYà X¦¢Ât0NÄ[ɾ×>×è”Þ„òg“7”Š™Jò;b %T¿† $ˆuˆmâ.|Ì(ƒL>HfÄñðC´„× xCÛ;Ƙ3Þ2Ó=KÀDè'f>‹èï  æÿ¦™È8º“­Ž öú<º_ý|;_©ÖÓÄæ¨‰á§µ¶î­ÿ>x‚Ñ3L[S=sê÷ÜTºÏÏV >Ï:Š/I÷¸•‡{ù³` ‘÷\Þ.­œï3êÂÕ'êÊýºÚ‹[ ¾áøyÀ’:rŽ7¿W m#ð¢#£Þ¨#iÊ`IAó™ :èúJaC‚LLÜ7ò»±¹a¬°¨œç2‘ ã-öbàI*("Õ«iQÏôIgì#âì¯Wôí8óyQ)ì}´:ÍÄÕ•šœË:M®j'\õ$ò9@5ò)œÃ ú¹lW«2Ãï$xêk4]WÑ`´Ž7ï³É™ô~y ±¿nR¨øöa¿ñg¹RgUãYÿÅÈ^ª‹{ O±RŠÀüÕð+Ú¨ÇN§Íúÿã ¡¼~󌴤¿zÉ}_ç^°ao­Œw‡?”{ÜFÙ$ãÝüË#^k‹ýV=GݳíOR_Á°ŽLûOb'fúøÎuH̺ò úøŸÐ ¡XÔ´Ì_–'‡¯Lß³s‘S4mË"EY{C‚,óëê{v¿>í¢Ìá5Î~[Ë 0sü*N»kQÈåbž8%k}¨ˆža4°>Xy¬’¦%‹È¼3ÌÛú¢ÿF¯‹>2ý¹¶<¢‘‘•:ÊeO™àãæÇúú2Ø–6Ò_Ýßr ðVi/ã9нSáSIA•y«„%î©À…¦Ùy$NS—‹Å0Q:ûsâ ¬wð60ËB§In%WÔ<Âm²I ¯×ŠiE_ƒºû¥OBF¥+|{K,8ãüµÖQ2œ÷•“"C”ª>1NK‰MGNZ؃ãšSÕ7b=+Rq:V°dЋ%ÕèìÖV:E/?ª<*=‡=Œþk¬½ #×ñصsÕéã-ÃnˆJb`–%×dMó;ßj‡2Ö¤œFP°d˜Z0EpÌéíÿã=~šx®E#ï¾Å®z7'<[¤»,ýrÎ4Á޶¾ŽžqÙptüÐ24$VîÍ’‹ÄÞªUïø&ú»`…0£š Ž A¬®>Ì+cpcƒx¤í$ýKþÐ]ïÙM¥DèêÏ8kOKÞÕ³ãæDd»­CÌL¥©1™dXœ¹¦ðéw(׬¸ø‡Ù'Ë=зèµèS’2Õ|A'LÊ«$À;/ØJǾA«ªø`Ä"rî äHÙažü Ð»ÚµkÑšV4rAä@ˆËž«7ïFIŸÓßò÷Pt ÇI@òCI!ö¹›”¦Ü™3*¤+•¾´´MᔇLµ®Š2/‹)ì*·ÆÇwC|9G˨:è Å+3#”²N•:¨‘E›1†Š«! sgÑ ëéARí¬õ‘føu"õI‰ªO½IXZ[UÜÏl¥Ç„æTP"D)Gº~§Ñ W¾ž¸ ®¯† Ù`Ì`Gº‡/£PêVwÕJ ˆƒd»cF2†+¾Ÿ°ŽWò)jxÜÖaÝÐ4ܪŽâŠNÆÌñ°z'Âã¡N@ˆ=3MDTcùÍíHye¦‚zL–Úš,-œJ5è´»ûCfS¼”.‹òæ„@è GTEæfÖ†°n~¥%æWÍI0ˆt­T“÷[ÞF‘t¯@›õ0‹]Wg^2ÒÁÅhˆlţbCp` 6 S•¹Ñ½’ÛTD¿×ãRs–Ùj13þJ®ö±•Œµ=®Ù`MÕà‚£À4ç·¿àÚ(Èt/¯4¥€F“UÕžMvn ÏæÅ‹ùDƒgmNhÅ•§LT²à.Ã%¾@C‰ˆp#0hŸwT—N|üꢀúÚ‚‰÷‰Ï¨;W™ˆx¦§<°¿ƒ+Ðl;w•7¶– @¥{(A+Áù@*c‡i»7ο8ùÀ"Öîƒ5Fì åÔ˜;]WàØw^ÒâV“®3 ½zIêÿçµ¼räá"S[OÈ“åUiâkz¤']!ŸuÞ &_FchëH3qß9\rïé#“J¯6sÚDÌ$3]ì8<Ÿ‡ßÒdd6eÈs"+› ¾œ¡ëóJ\iËIS*QGe{cŒXÔÒtJˆÈ–×Üj`¥Y´ºÍÐË•og;p…,•¦^Ú‚Ìs¬Žv“ƒ&¸UÒ·©Ÿ‘î?¬ûÈtûF´Z§¡¶¬-h¼$e~ûy²’uq»[ÎÔ¥wåü.×ÔèAVŠÈa¶®±j/±ÏÁ ÚbR¶1¡ýY…¸Í |30ÑéÊñ,Ìé‹ês¯lQZ^½#ÿŒtËñ¯ž›Üøœ¦Ëùm ŸérmPø9a+õ Óqâ‚Èp%É}ˆI¯UN×¥ÕË7;Ã2ÿþ63aX¿vKÂz˜Ü­mÅ®%¿õ™îGÕ;ÍÀ{ŸŠØÆ\›*ÉŸ…œµYêš»Xj]™±Òyœ›îš~ÆÏ:¨nQ·™9¨%E´áªL)/±aI³½ÙEl;3[ÑBä9K@ ¬_|;ζǸŒæÅ64¤bST=O'1B¡Å2¢Æ¨IÊžÜSOÓZ –”‰‘8ªåxêé¨>íú˜Wqa?¿%UË-Ä[¨¶üV…eµyý·œù—¬Œ/ÎU¼B®Ó]µVÙæñþ=œ¿³Päœ[“> !÷`è74Ë+Â8‚æHÔ“À„Ï9/ÒΤ1 !ðR¤!Q‘C„„½±’HY‡è¯}³67— Åêá“O™*«ó°¯êVpà;D—‹¢%«ýºÿ3umCí´„pŠñ‰Vc&ŒöÎÿF¹R4VV×{T?9BNNð;¾‹ÈÙ'ÒzJÙ–¬dHÖ­MídAFõÏ'Xä Bp…,¬~c7^¸[NÔÞNá_¼ÇòèÓrf†AÊlËúÜ?¹ÅL-K¦OeqcÕù =:öèrtïá=ƒ:YiÿüŽÞâP ¤»TzUø*»Éư9ã2èè ò¢K½ý¢¿«^HÓtÃÑ«s/çÿÎ!´Âªp’ OVæ¹²ý¼‹ãM~ÛÂÔz Â|ã®Ku}ù•Âù†¢Xë:,:îÛiô£ …w°Œ±ipáÜñúaFkà *¥ílžcÒahê)»dsl•j!(,¥š ‰)!µÇ@ýZËC¾¦É! ×èwjÏ¢óÖ¬îÁ=R›<3e“†Œ´ƒ—~ty3•µ¢SÏzÚ œø²J”0Ôјhž­ØÁ³X’æ¼^4¾sÂݶ+ŽçÑ98V¡ƒ»òµ0Ú¹ÑÆN¿¿nˆ¡v0dÿîñbއ¤KÄL´4ºÃÊò2½Ù⟪¿£<¯;Óµôþ¬"mˆ†¼€W"Ö«ïžzKtYû…¤n€ŽúÇðÜJUÃ/) $Þ«,»c€ ‹Áæà8KïåÉï©O”êH˜l˜•|Mb#ê «L *XÈöGr¿^çp}4œzZé+£"ÞNÔ2‰ÆRòÊé¬12ó åÊh[/±v0OtÈ1ºI]½‹18€ŒX¯@;Ñà C¡–MÐô¾N5?¸!Hʵê,ófŠú%Ô2l¶nÔO»)º#‚0î¹›ÂlV^‘˜±‘ªã7`dmùž»šd”¹0ž·q£nr2ü¾•e‰=ÁQ3ñ¢¡Â àqþµ yå*XÆ™QÖ˜×cÐbw²‡»áÚ¾+Z.óÙLZO¡úbgóÚ­Ó•†š·k=æ¹ÝÝ܇hK«õ·èqÒ°Æž^5Ç÷B%3¨n·Ç*qù}6ßÀÝ…Þò™iX¡ÜåDü«ÅÌH´¡eì¬(¨ËYøäS“2iDß½{ Ñ¢ à §®,åùrLpaÌ,.Ì\j¯·ô-žÔÜøŸgô¥?¦Üü_ˆ =ø»èÓb]@§yð=Üì‰Ñ~k:È Z}àèö,“"ÂsE m˜’ÂñüÏW¤q<è§PFžw¤²Ö7ú¶¡Â­ú jzor›_|Xïâv?ûÊv;H3i3îéÄhF øP+p¨ôîîàŒö¶Ð]]R™T¿0î‘°L/+u¨•yè¼»²óùùì'eƒ·àU ×Û{,Wv’9ÚcŽ™ÆE¶7í/“ÉD+ƒ…%þhY*]ÇÓÀ¨©+rAJИ.½sqÀ¶e›jý I%E}›‡Â¹(G<1Ù-‹òp)ÞEÂ×ÏëÁÃ/RËœzf Êç~¯¼0$,kø•§}íÈw ýwö9¢Uì¢ýÔóJõjwˆn•£ìÇ¬Ï °Áßnpv» å®oÓûàzº¦>Ëã´6 ‚š± š¡¦\&çwoÁhI]Ó§ÏTâÀ×¶#­-.úXw|û64wå†ÐY{ _דxÞ5J¿€VgHI Õ&Üï·ñ–+£Ý¦Q"í¢>Òäöä#K­ä†Aouœ D“ Ýq!›ÂpåLÝÒ¯‚v{ï@±3ZÅxð—Ke3¿ž‹™1§ÿ™öÎ)KÉ%—4sI…«4‘Ä-ï'µvÏÌð«Èd°W8²Ü.©ÜO ë´–æ¦A>H>’`z)ògŠ•¹ðÖ¯·™ kTõ2xÛ7B'&/—pdj]õ(Ø,rK×FËׯU銴z/|Y›Ì¹'nM,ûåÏíÌMñ㪪Öd‚A%LÁ µÔ’7'Bž9Uy”Ûe“VÙ=lcC§Ë7Žä”Ї Ý'`/‘üû– ¤WSÕ K·¡ŠgYX‹ê ?åN·[챑ŠFR^8˜džæµ³È[ü8‘D„-D\k²lËÞ)¼ëM£{LŸåíOŢ•Ïô púKæ×)JY}åÕo6OFN¹¶.Þl>?7!`é-ûGõ݃¿KVQ²ÖçΪÅH–$2RD±VÙ¯Uî(Í]CWÝ?ž&JX“>¬5J6ª1W¢²óÇPùóBúב™¢ºY`lE¦ b0ˆ7w$AfõîÃf12Æ=}G'Óßü¤¬(0R ú–”¨›·m¿ÁóÌwÆžvTœÿÐU­ð#©#\×åèkFP Ø€æ}À¼»cŠÑZNïÕæ…ιVñH1ˆÂT×C@±å$FTÄÀLïö"ÑZëÃãzo:3¢©¸ÚðóΗ\¹néFI9ë9øäÒp[T¦n¸±©ááq£+TÈÒ¼Ÿ.œwzÝuýûl(iÖZu–¶Wx;¨ó»\–¥×àRøq@ÈÑ·/ƒeLËK=Æ5+ª‘TíéuÖ4ASi,?ã°Mp„w?X…|§ܛ³<àzœâ©]©‘š‚ÌoÛYÛ1i þš·DÄH{æÂz~Ê7ñóǰ nYk"ä žþfqmx”Öˆƒ MƒËîáÉîQ>¦ œ¤àC>Ä+Þ'¡fÚàR ÿ )bFIWûKb6S4KΕúäÒá³!a1‹ƒ€³Ëû§>00c·WMÄåZÃ#2ƥċþýËè”ñ×UÖŠáåsˆÆ&ô°F¦ª‚f³¶üéÆM“E߃=¯ƒ“Yn=­ŒÌ±ÖByI’„ÊÕnnèãWêäN ärw¯ð1PŠR„‡eýB¯p‹ÆÛ²Ë ^Cv–ñÚõ7dçˆR „eÌoLÉu5qgÙ¨é:Åѯ\#%)&ÝFB˜"\Žê· A=*(3o+-Š AƵ™²‹¬ßuÒƒ{Í“ðoÜ)ºd¤Å¦*­ÎrÚ®/z«‚hEž¶ÒÑ+\Ž3M"Í¿|ü Š 6# ã µÎdÊyÿÒT©z–d\:š‹ÂýR£ø½çìé6õ!+®þxÄ’÷@²^FlÆÐ =ÙÈ@W®ŒB"`ÌœBšfGý²½ØÏ© /#¹OÍqÍz¾ÔŠ=‘Úÿ‰’‹2ÖKó!ù2‹=¶DóøO¾ÛT[»×‡ó„ºØTÒKFüP0®ßXXbðWêâå~Ýc>Ol^Ìɱ~gä |†)F»c¨õ("¿Ø½‡ §Í«³÷RÙƒjfïɆî¢)f„c+‡[jXš‚ÉâSÕV*îÌÜäÕ*°Î#ªZŸù³[PC$*ëÊÒêÇ–<éë¿@‘ÝžŸÉÍ¡p>^¡>hÓk/†W€^|Ú”‰NŽ<ƒ£¿[ÙËäNñps†NoÎΰ¿Èr±Ñè÷aö⢎Ïß1ídôÏo+ƒZglP2#!p¨ëì×éÙ …œí-ÒÌ“=æÀ„<ÇNŽtÙß»ŸUo¡SHdJ«Èã• sõMᇺrgÚj8•Û™‡%i„î6ËèVp}øú•_ñ8RËñ~“FZrÝæE€®ë6\ÿRVD^ßbÍaÓ<ûDÚg0µ‹ˆŽe8U}jVú…”N›Ey/Þ;õÚc5µUàE\•‹/‚xzŸTSë:©Ph¬Ú§Áfõ•½t“ì¥>õZ GN”wBEb(×Ctmðb=ý53ß_F÷ò‹ZFƒ´Ä=7R¤¡ò~ehÌŒ~·?<°ÝE·7!.¦tÆTÀÞoѦöê î–Ÿ`iØ-ÖîgŸ?-@÷£µ±¦P ¿ ÂO&ëb„H.凡åhÞ@‰ç6Ípë¥ã5ó]ÂEÍ|Ò¢õL}GøÎ¬5j{JA)6ÏàDÇí12"è3}r“3õÊE¥SCm©K”O}‘‹CaÛ¹ "º»ÄxÑ$’c1éÝ£&ž²l.w>6í0{äÓÕDâS´ÃëVUO€ÑÞ÷ü€l ¦‹ÒGAf¼@Ý{CqúBϰù+ "ƒcÓ»®O™¬´eÔÕBm.ͣDŽ€ykd0ã W¹t¬Ú`eæ® “¯?U ð@ж"mÒ[-ÜEu¢[ÓÄ…³„–ýÀFò切Õöƒç=8`PöÂZ&Ô Øøàþ)Êšˆ²»zÍqŒ¤Ò Ô+Q_бlk“ri!bÿÆê©Šõ3f÷1e4mÊb²öIJý]$óïäî+|Õt¡îÊ[Nzåš šŸ¢+÷êfÀOUò  ­ñäÎKc[x8¢Ù±)§åæ7 2ÎqZ Ê¿¯Á| Ü'V_Š/_jYµRá9Rùl'·w>„¹ù‡¡ÄMÒ; %ü”"HQ²†½Ly¢ÃtHžÅ‚+#¿øÿ¨Ù¸ÁýÁ6jÅDjlY«‘C!——”ñÀ®ói³ì¡Î ”Œ¤ÙÄ÷Ó@ñ?>âÈ}T{bØ%TÐRÅ Ä ÔZŽ XštþŸðÖ³Ó zÑånÿ6q¥6Ú$Z!ç+°ÄþXÏú¬½j‡·90ƒ OÖ*íg¨ÁP üYX,eÑÔ`ûÌ0g‚Ci¬ek€e^du+@ãÒQþ[9×)0‡Ú!-°nÙë×0ÂXc[iÊ[¢îâæöa³M“ »ñ›ãí·æ}‘ߌìà@ú9šD“Ë¿~š/ ‘ÚÆK«P@'¢ é‡ û©Éuá} ßIlOÓb¥h2Ùw YEžkØËΕžä£šojßÝu¼Å¸«Ž˜©zeûÉËÑÊ2¤´×ÚS‚Ì!_±Xt飜¦å>Ñ÷¹dè§š0Ø€àÛþ 1'1ð”žxdj¦9ñFbf£„’EÅö÷I¤íù%Ø´?¸sýBÏMœó„Ì¡~Ö#SY0Ÿãç¯P꺛¼Úqüì¤]ÛÑ^CŽûøÝ+Îöc‹rlqR›MJ§žóÇÙ9ðx6#†Rbª·@ŸšÀ*ë B8…D²x¶á° £Ã‰š5Óé#°æ€uOÆpSÁÍ›¢ò"½nm½¹C”¹þNµ3ùÍW¢(p$0eV1(èhÔ‰—¯šæ"€ØÃÇänãÀá$ ¡smȦ^VŸãÀåè´Ø«r{¹v–ÖCØþÜ´ž|¿cv(ØJ¾1µ7Ø)̉U¥Œ»bj2¸1næ-F~:Z¶Kë–¨Údlý®"þGJ <™Wp<]…¯·v=I³z¶]lꆑЇyzE@ ©á\ÿZaÖ\^jWc²b˜ºÇ‰~ÿ7Ä%üaBwNJÖ Dĸ¯¹§ÔJ×ý×™Ar”éûߦìÕß±ÅQ}¹ÛïZö[<ÑœYi÷Ñö»¨î¦»•5ä-] U7IÔbçVÔÏ}*Î#†ì±”•¤Ì¡…{§YŠEúº>ó«1UBoL&)] àCðì—ÝÌgjçgð@ó"¿n‹% òsüÁ•Þ®ùÄiª¦¹È{›55Ãâg³<Ü€à(hç:QšÐõác"µG„œ‚K'×a‘èÈ`8G5¶¬dµ9[BÀÿÚœ.Ó¡Ö8š5`äÆJŸÝç'â÷}b½¯rJ”Æcfkë~ÕáTI4„¶—’µÐÚ-[Ë “H×k.yàG‹¹ŸÄÑû¶LcĽþ95GÉàŸ˜)»uRĽ:î9MXP@"d2;2ëjÇ5ía4 m9zH©†\¬.RèÐv• sÆp\¶Ö$•÷«›>gZpà‚…«SíjóÕéx§'Y¯WûÑW¯-˜‡;~šÏ6 `€yŸü«‹´ìJÍÀÃl`PÜÏï™÷·!Œ&¾A UNÿŒh=3^ƒÅïwQˆUV²=2ë­ehdb¬Ì9+= §ˆN4¢2Dümñ]nE(²vÔ–%=‘ÙgQ›8”ΑTZp–ÿ¬èÝö“v¶vïßÿ>Oî|Ì)î1´œ`^}ÞKÕIìú–(Ùâg2¦Jõ9²OßI¯¹ÅXØØºîgYœýÅ%l7ZãUC^/•nÛ5ý»|¿È©£„Õ^«~æÀI”Lœ&͵ÿqþöÁyAò’©ôÏŠAXU-ñ“™fÍ*²™jZÓÄhhÅ5–)ª¥­2bÐGî4Æ·ÖÅ ©õôÐ{Š]L•Wx‰?!Ù±é¤a™×þv€|~P±Ißì|k]Ÿ¹g¨!`~¥Ó ­i¬ZOxO×tÖ·Hý|®{ NÈQÙšÎ{?`_™Ò/lÁo&{é­‡]9¬4øÈ#ƒÌrÈ^\~pÏÆjx9îÃÏ/©1iÖàc‹&›_{*Ë«©ˆ¦T@Aøþ#+Tªö2öß ÜRžÂ¥ÀctNÐï–¬?ÂU¨·'ÔP·¶}Ð)^çBiXS0}¯&Z¥ö ƒöÖÑõñKÐ[[¹ …[ ¶b/37¹¼ˆñ+6CýøW¤N¿š~Eû"®mä@¢5[Û/…ë[2zç½| …J*twAxí²GW²’Û[{26ϲ³a­©Æ_•~e_†ñ’ñ™,&ü5žW_¤LOá”(ó†ÞÄ¥É|ËKúäŸXsÞ¯¾ön¤½›öÀ9Í·û&CKÆÓð§ù&Z(×1bHøkÆžU¸C¬ž¼KnùÄ3STlí±HƒÑ¿0‘}Áuåi.êh.ßmñ÷ò+u^­7>L"±ë›7d¶jºH{¹}ûÐ')GuK"TÛêÌ=Ätムž/Í·½±tØ&¶BÂñÄ^ïW£LRQÊo­³%P¢àtåµï‚î§óКƒT‹!AòÜ]@,: qÜþëG¬ª}Q›'ÍE™ÙJ=|1¦ .=p ãRcÿ¬£.K¶¢Ü²iW‹Œ*é`Hj’†œnò/üjŠÙIÙ¾ño^‡½ŠùPÜ·/'Ð#òmùjãCJêoq#›€C:iǘZvR‡ Ì­»Sè^J.YÇF¡…­.ð7-«lY­ÂMhc“N1¼{¹UÙx§ÈÙ b£¤g†9ý¯{ì|…‰£J?vÚV·þN‹Ñ(“sC'£¸(zƒVI;×Ù<´"%Lÿ2 kÆFNÕ´‹r*ìTÍÚÅÌ3àÓ^7ѽ0ÉùêÄEÔyóËlÈmuu¼øü l/‡­ìmî?„šúªMm\ƒ‘ÈÙH©ÐõÊi´'á‚Ð’à-‡Ó)ìÆ¥ŸÔ˜g‚45ïHó¹IY«¸m):ƒqéìRHV5­Ãe¶E¨4Y‚žº—~Yúϵͳs­ç$£¤LoÄáÊgK€,{9ÙlÐNâþDqöz¿ÐÎe°þ0ñQÞ´ÏÐ3h{ˆA´C“¢àIC–T'¦™×´¸ãÈL°O/#iãBÄC·¥°Aü•nc_»§=pÿ[9ë©÷?®ã¦f‡“á·tÅÍa‘&;ŠÎiC Ö$zD²B×Ä2ÛÑcuùŸšUie9~€¬ÚHDדoƒ¶ŽßÙŽ?µâ.¬¤à®–°¦œúQ]aöÆUú‰feø²é©±‡‚I9* n[˜ÓèÉŸè:‡-FTSeh,jKrr„sóIoØ£(áí·ä¡ ïõ¥cÞ‰1òÊìP#‚o­–EÍý ÕLÈ»Pø„Í5@â{éíC/¢‘–”A*ú Eùœóo—/#>¬õù1Œõp!ïú“ml.×çÌx;%›xíx[Ðå†1Erð“æ¤7þùYPïLxí·œã„5WF[€”tÊkÁ……ç~Ò]vYNX}ˆÎ™Ïi{F’ðH˜Ð7¹/7ŽÄX .’ GÞ!frèR¢«–ãÀ×ÑîÖûí¥Žù/ï·cÛ[óŒBAøÒHüÂÃñw–þŸMŸ"£b:fwÑ9†t½áÞ]c,ä’rߺ®TnãW?ÿ·JóT±å RõÒÂfÆšå«AðÍm¿™¿ˆ®ÒEë+€Qt0tÅ?¼ ùißašzù,È÷Iö͜ӃÈ7ú Š>_ɞ؞e0©°ví“Yõˆžw¬½Ný/,¾|g≺UÏ¡ÉñÙ.|“,£`¾x%ôm’QEuìÆyæÂR”™ãUZà $Ñ*ЊëSÄ(ƒzï¥ðóQÇ™„)žFÉË^No: ,ÖøÐny’U¢"¬Q,[3Øá“’ª;Ü:ƒÏ0±9ú8eɨáe‰ß†ÆÑ°®’SEŽÂYžA÷ZqMÖ|ãò™èÑß5N+M%ó¡}nD¹×z§ˆ5æ—!Ë‚ôª^Ó6·¨¢Ú,2ÒÞ1äÝgBÀhQ,ó™° l”»ÿA:òÐYêñ>\èÖ5¥o×Õ»8Ëp¯,~"F¥* Cx8“SïCͯhOñ=C1½¾èŒþMõw Ìk?×Ìi Ðq;‘aÞçAL`6î)À/®ê«ŽÛ”³?¸b\ÄRý`ñ>¥9ìÚÀvúÒæuqUµÃ¢yx&cºZƒ°.Óí¶}ϵnµI€Ž[P.›0ÖÔ^jq£ýÈñ(,uIeŽšPæSE'·}©ÏØâÔ :`JÝ7–‰tµã!Äî܃Â0{j’ùNvNÃèÖÈ/ŒXÓa˜Š(§Êê"ÁÜ@ª©³æ¾¾6Y!ÞêgÂJû”7&Ï4‡·ÍÒqÂE Œïl •y쌎٧·›v,d¬v+,4»—VRðf>ÿ¼¸`1iK¸¾+?ç§T2A¬ÜrL¬'PޤÒnÚI‰]ÿ9””VŒ§'k¼yÜŸåË*Èl‹tD–-Òzéc“б¾»Øñtqw*°am Dª9‚›äŒ+ú×,(À!ƒ9 ®€ª…TÖ:³z„yöÕ#vdÎæîÙD™Â^PzÕ»vÌ€!å»?,Ï.ø«]¥QÀû 8´Qr´÷¢èÈcÐH›­òl¬¹%ì»aîY3º¨êEæP;0ØÃs3pL’MÜöyügñ4_Î2‘DÙv÷­ÂðõOtYÔ#Gì:NÊ£‘J@¿r»ÂÁtØR4ËÛ$çnF?<¹·r¡"#‹<ßÉ»ͪØ]ŸsQš&ð “B&”í…ùxs@+žf\ 'Ö\ò/ü|ñ¹óO„§õoÒzÙEêYsäï–Ò"æÆôÿ“€b9›œÖm"áÚws柒IÃŒO‘“ÿ“JŒeVÜŠˆçâ£aƒ‰7…²­!t’™GSE+±Ypí¥ Ù1å*Ä™dñ õ®ð¤»dAš“‚€BîÊ š˜Šñ»9b[|øÊ}†ò:ÇÒ5&)–›Ÿ²uWìüaò„B& ˆ5ˉ¤†íÖ÷K*ñk{H_µ;s†p¿Ÿ‘cj7žcöåMðrÖP (\ìk'ƒCPTʼgïdhù˜ŸdÙèþ-7Õ%5DÓ4n³–".<ê‹þ£{z\ÛaDéšÜ­$óà{iÒÎ=M„(4NЫz$üœn¥(Pm¤ä;5ÇDVq.ÃCáž¹wèÒ±x öÌrÕË%`ØC¨ýíÍf”ÿÔ™ÇÉÕDýVÔ§L8dÌAl»n4ãÈ¢ë(`“‹Z!á¢cŒYãô[Â!1$ž¡ë€ƒ™¼Õ˜ã$aWÎ#½]ÏCZl(çxú›ãþ¹Ô“2û³|‘]±IQ Þ‘“]_lë…§¶ƒ]ê3Ìfåe‘¢kõ0äߘÃLâË×I ëà›]C â–YOÅÞl…‰ÜêN¥§Üq9ÛL†ãæJ°E×:M`¬V9ŽÅRŽ‘rø©€÷ Å&yXb¿ïjÔ‡7“ rðgÆJBe}\Ë­ϰÖñæe¸¨‹áo>¨ø‚–´m´2LV,'+O%+z6âÅ(¾oÆÍ.$”ÿ/„;ô1 ÁG£¦d‰Ú›^©.ÉG„:.‰T‡¾Ü\üŸ„!VÄ !i=K‚¢‚?&ã²B8,$7FaÎu•¶–/¼3Š 5*ª†^·¦àz‚ÛL^QçÉrâLõæ÷ a EIx_?¦5ÔÃÛ·¦Èó# /ØO΢4jI¿¥´cõ@þ"ò•¾( ÿÕ²¦ †%ÒcB™ÚM†-/-_‹~ȲZÝmàå¹×cx»Þ{!DdŽc®ì?àRœ÷þ³×4ÞçÂÈ$–x“¡´)qLŒMweˆ®jkõþðÝÔî1†^ €F†Ü rf°5AÕ¤iõ®-Èé‡_×ÞÍþÎw0XSð¾/lÈ8~rtGW X'ò{g B?|5¾S8gº äÓaA~%ežƒ#,½M oÐb¿ÝßÁpà`ðCWNªî¡ÝK½ÁšTq8»4vtŒ³ŠÛé†îÛ~s²ÓGž|kèJIÃJ‹}ºgª4·J™øˆ |emöœA%í£ß;i3Ê(ëì¥×gápZw%—{IÚ|L›î”-ë+2ÿx²\¸98÷ÚXzË«ÓÜð¯(s0‡ØûꋞԙßôwåõOf-¹6qô2Ê­ð@‘çå’ª~}"~ÃsÍ6(ÓâxpC uñüó:QÓA7€w’kNKRwŸ¨ð¸C­¦8ó)ÓÙoNÄÞóSµ—Càáä¤ý¢ŒUˆÈ&‹·ýÁ±r4·QZóôá|÷{@õ¨›Ö@=ÛØ¡XÚ–ê5ί‡±Á"³Z.òX1gyé~ GóÔéí`ÏИMh-Û;m#,Sh †‡* Í~Aï•ù>.º¦æµ¸ë’9¯6Ô«4pÐÔùs>büDTQc}0U’µBT\‹å‡Òáj»Ù(q«ÀÄØ¦›²Ô´nŽ}9ic râσ>“³úV9˜ÚòŠÉ…üF8ÿ¹nåŠà Ø[ù‹l û£àÝhº[§)Õ»§Tï¾b™Ça®5‘gÿE³¡n¯1ŸÐ„¢¼/OLaÞüuÔPSY¦áßé‡AîNë| ÷Õ¼fÉU+~]ögjZ^;åSGþò FØ)wÞ+*`¿Yò½ïúÁYWã)·úÀ=‹?’s.jÌèÿæQýÁNå “g¯Õ¥‰¾´£H`îuŽò`ˆðêJ°ýd´«‡8ñ±¨’4ƒlw°NØwÑÎù¤2” ”š:ÄêPF'cä1¤%œ%GN§wV= zöŸ7AE0eöîœ?_¤ÊÐÖèÞòƒøs<=¸h¤_Ì2.R>çè„r*þ4¬žà¢•KŸ[ ëLºé« bõ9«­‰`ÅŠç0³.€NyÏ‹/yÛ¥!ój±úä15Øèõ,NYåì ß#‘{™€^GjP­å5cøÍ)u çP®|3Ü'Z×DHÐoÝI(Y ßêg$&¥_-$ð·xòÇ©þ 6mîÎ>ƒv uºPµ…ç¸û½Íóo÷ºÛJµRÆd0/[OƒW’ˉ#Ï0ny¿ç´'BA6—ûÞ}ÿ²ý!®tŽIÝÇí0Ã=·0ŠÅS²ÑRïuÚŒ+n˜1Ï¢–;—ìý…­òáv†üa`èn›ŸJù­oã3m6û,ùÓ¬ ÈKÕ](ö†9Øû¾zã¢ûÔçqc”¾å•ã#þC õ§6Ž…(¾Gôf”ì[h¼¦Ÿ–tû»þý'cɰÅT¸¥ýp¬= ¿Å5Ôæ¯“P@pŸ˜—6þÀ¶ÑÍÂ"ŽA„TÛØÆ¤èôS$F =>³wŠpž>¨µ©UH¢ ·.¢Æâ,L¤ðHò«iXüu`5öaDÇ̓‚â㯴<œæ.¾£¥õÅõ˜M†50é=ÆShÚûiŽMorpÊÏË’µ‡Ñm§±ó›Ò«PèîPмÿKÜæ¨³Öèÿ . endstream endobj 112 0 obj << /Length1 2562 /Length2 30573 /Length3 0 /Length 32065 /Filter /FlateDecode >> stream xÚ´»eT\]¶5Œw‚C wwwww§pww'x‚CpKîîîîœàì­<}o'Ý÷ûû sùš{í}ΩEN¬¤J/læ`”p°w¥gf`âÈÉ«8ØÛ33Ñ«-Ül, LLlðää¢Î@cW+{1cW €ÓÕ hê òY01qÓ$ö@gÒ `⺫y9™TÆÿ%Wzchoae¤¹ˆ:8z9[YXºþŽÁJOÿ;Òoo€Œ±©ƒ‡‹ÀØÞ à ÏPpð ­Tö ¥±­9ÀÁ Ô¨«Š«¨$UÕ•T©@UÝœÿ§QU5uI:€˜°‚š8¨ATWUûýW hªß‚  ÒÿÎ2üí./®&¬¦­$ÎÌø»3Àèìbõ;íÕFª ð§4«¹³ƒÝ? T–®®Ž<ŒŒ n.® Î ޶ÿÔ§fiåðpp¶€^¶Àˆq³7Ñéj üW€ß«³2Ú»;I8üKi¢ä’»þ»0®¿cÚþËàþGKc—|å””ävÆVö®@{c{S¡«±«› ÀèèhFù¯Q7gçß9äÿWåüï4ÿ[ºˆ¨3=[?cÿ^1c{7￸ù϶Mì]¬\\]þ0·²þ®Þå÷šYÙÿ#“V–WU£— ž=½¼ˆ{WO׬Ǔãp1q˜¹ÙL !·7u°³Uíÿ›>1+O®Î^Œÿw°mì<ì}þ?æVöf濹7ssdT··rrJ‹ý9HÿGft0€N §©%ãï„ÿÌËo1óo1ˆ?GG€¹±­ ÐÏÊz÷q1v\Ý€~>+þÁ3s̬L]A£Ú.ðÿD—¶7wpÿK ªäUÿ3TÿlUjÐ>5s°·õ˜Íá\A#AõÿÏNû¯\n¶¶ Æv@ªÿÃéÛYÙzý§é™hWK¥ààlglû_:+ +O ™’•«©å¿¨ý—\ÚÕ4ÿÂö¶@вü#Rÿ½¥lA³ :¬~_zf6ŽÿÒÆÒÔÆèâ`û—DÄU bÿw½F )EeeÚÿ;6ÿ؉ۛ:˜YÙ[XØ9ÆÎÎÆ^ðL Y`agø0ƒÛ èùϰì\A.G7W?€¹ƒ3üïå`0 ÿý q€ÒýAœFÑ?ˆ À(öqÅÿ8™Œ3€Qòb0JýA¬Fé?ˆ À(ó2(üqüTþ ŸêòSûƒ@UküA ª5ÿ¸AÈøe0ù7bf5a!Ðîù·HdúoIJ7u°-âÿJØØ~KììþÄdf5oöuü ‚Ú0ÿY@ñÍ­þ$`ý Ýÿ²gE3·ýcðÛÝÁÍù¯€ ‹¿ ¨ Ë¿ h=­þ‚ ömþ‚ ~lÿ‚ bìþ@fPjû¿ ¨‡?ƒlìÿ*”T™ã5È×ÑtzÛÍÿ°ÉÆü?ÒÿƒÌèlåðmÌ ¶œþZPNn®Àÿˆ÷{'ýKüŸ™™A,üÅ3ÈÛ几Ò]€vVÿ¹’ì +Ï?E¨r±5vù‹LfP¶?IØA͸Z:ÿpÀjÚÕÃá/P ·¿ ˆn÷¿ ¨¿Fäíù…÷ú ‚èõþþç¹ ôûÚøÏ¡Ïôç øŸ›†°ª«³ƒ PÓÊ tÃô—‰¼±«³•§.èÄfÉA?ÿûŸþ$ ÿs±ùË[DÄÁÓ‡ž 4œô,Ü ó… Ô)h8ýþÃ×ô_×ï® íñï‹'ôšÂ//8˜ò†Z§6„—ù‹L•C“s3œ~ÃÐ’I„ZΘjÃÇËÝ! 5fR:ÈIñèû²/Ö"}oûºÑü©bòÆLYhר_ÞY\xô‹ƒzp¦üR`y õ‘Ì—|í¶™Ì–Ä"€úè±(w[çc,ËÄÚU ‰^yËZ´GÑs#¦³-ºç*^;þÒT;¸ëÛ#füGãáešY£üp¬Q™wŽÝ{à‹Ÿc¨ö2y0Ä©6VÔ`t£\ÚÀÈÊ-$”ÉzðX½òØŸ!#'‘Á ]:Ü‚ò¥§D)sBŽqëѦ—~q³^ûj ©­§ŠŸ®ö¦Úñ¤ÛIz«d†[´ 6zò#xð~¦$dæÈÔü’çϤ»u{Øz©9Ô±Ó…Ý}¨_6‚þDdŸyÒÉ1ZþrÎ(/Γ‚8 .R«¸…Ïhj‰&ChÍ©Ãqùí§Äah)@$JVä]ö|¤nj•ä¬b§³øÆ=lý>ØÁ‡oÅ·Ú\ÝÃ[à—¨ÍÍöÍDÈZóŸªh<>„J8¬¹r‰J ð¼áXpø™)aï” Û ´–ád§ë…&®¸ ûÕÆjI»ýÞ@c‡W&-aIe•fÞMô,–mh'#Ò-Cî½5?1ïx‚Q§ÚÖÐþéÒ¸Žr®ÞQÂ7}êÍ’êɱáØ&êîšcr…z¹ÍêåèçÙ¤›é×/YÏŸ0|Ù…¹ˆ$ÄMʃáß™)R ½)XT%‘a;Qìmi/ö” çâ/¹½VP… Inh;=õ*ãyíÿ|/@a¸$$)kÞÄ4¢'®—WÙQMöÆ ¬–[݆ǮŠã‘¤¢û‰g>w<ª )?°¦oÛaOŽ…P}Sê&¾·0{êÏÔ©òpŸáŠu—ÙjP£Š¤tüšÒiÝuåQZ éŽÃ±—~E\¼~ô ²bêg"s½( ËÅù,åú÷ªÇxµ®^×ø9öŸö%ᮡ _ê ;>úAóãÞÇ•Ž€_OØÅi ö³àK7òg dõõ‚éŸÈäÇÐÇŒ“¾ùþË Ú0žV—‡§ó•åfm ú†rA@¨ä­ðT.ÑÐaâ¤Î³ø‹È·ƒJíz¤^AoàÒ»‚’´X1(n3ÚÜÁ6ÌrÏ£8_Àd®¡Ó9‚¯ÅÒà÷g"Ÿ†¥Ê—E¦öŠ”fSéÜá;3ë]G^ˤB¾º¯Â¡4?oxŒÍý“-ëÝäÞ£?’â!fù‘˜&séP²Œv‹Ä\,‹X®ïªÞ`ˆ §[)ŠËï:ZЃÈ»ÌýSJÚ²Žâi–É1¾À·ÓÅ!.ö&ÀšZÍê èÀò µiD‰nàYjç0 Ü1QÕF>Q¢ Ù™`éælµ FÀ×ÉV[r³Õ͉|RÊ'ÈÉÎâÉÎÂÃÞöGÌoJÄFK-§–OÇT¸%5ký –’õ¥@2Ôxš9ë¦ñ­œõ‡ST1ÿkk䨫)9¹ú4»Ed-ª¶ýë8éú±rÛ>fói›K?š%ÞÂYI†Q´^ݲųޱh›wGmå¼d[ʯµø6> gà#òÀû,ß=¿ –¬@@á"þÖ}ùXm‡Á/‚W]晋 J¿D×7›|Õ¸~³‹À¥«it4ÛÌT–¾ÊpI ×&0z &ûUðŒá·*ozÑç|åóÛ%¥Ÿ¿…‚Ñß—¨éî9ë[&QŠ{0†,8gņGè°A½y¢U’ºr±­Æ¦QšÄD’@p§:WáìDùÍ_gÚÒ{Bd[ìsÑûƒL׎²X$Ä^mè†5…`“õ¼÷Ä Ô¬ÄÜΓ¸"¹÷w„ŽéõïÏ0êDÁŸz¾îó*û½bpï LÄf*ßჷ„$¥ôu({˜Ù*´ù ì+ÂDžaVíD!ÿ”f9ÙÙõAŽz»bÌ9å?Ó’Š™ôÿsÈv/“$!'WßãoÒ>ÙþŒÔ9Ž Õ?àèTxÉÓ.…¼6+êxÿ!ó•‘e ­ÂbJo­xö :`š×Ý"ÞÍ»ûÌQå+KU ¾{²S ‡ÍøÈm&mÓ||K³i¤¸›½e¿¨X ìðEJåa©úФ‚ûwJeïLž‰s‘kÔb9ñ3¼Ö+}ˆ`;ƒÏ3é÷ ÏW/¨äÞµyëÖ.Ò˜†ï%û2¦Ã:*¶¨BovlǻɷÑ}w;Åê-(Ó:ÀäØãçH3c°™È¤™ 'Ž+ዘ?T)yEDÏ%R檭»IÅ,ÌÚq«HaKÛ.wˆ®xÁ"îif Ã=VÉ `‡ dætÙþ~æbös©*[”ª°)ù±pó#n·ê±û<Ò-£ 3=R¨É0W6’³ÛLËkŒÑjË;”&ÉV0Åd8ëÌ]A³iç½í°âNëþØ%„à2ìôòY/OêýJ/¼¹pÒŸcI4 ÂÞÚÕ’O˜=hú‚öÐx/ýµÞ§R1 r~Þ>Æ;uµÍ·€Çk´ÿI«ü#DÍj±R`Nôˆåêã‡6x MÉp•e‚Îç˜(ýkn7‹·Ã7$ëÔ ~ŸCù±§% ñ‰Ó6¡ V,ÁB„âçÖ\ÊŽ’s752ð*Î/u1³‚øÅŒŒ±¢ïwB'>à¢Úk+†À;Ü#j¡î}`i‘®6"Ù²vÇŽ^ÒcµÕvè*Ôc9}OÖĶÓéǪm€áì—8ÊÅÓ&*¨&® FC´­™„Í.Ñ¢Ñ<ÐǃñA„P*£ŠÜøtÊ%àŸËºå|.µ UîúÁ?Ö1‚ÞÄ}J×ù0ü ã}øW€â™‹06‚)EÃYuÚ 0Z=9ŸsRr»F‡ßd,û "‹IÉ kI¿ŽŸ¹¼¡U‘ £˜@lK}l¹µ½‰u|Jë= ¹ï©¨"Hrø`;·Wæ“¡i#¦ÖU•ã†Á÷C¦îÿ´JQ5™Ï”åeK”èÀjæ»$WlÙß’? oÅ€À«þŒÌpùdµÏŽ@EðmìbtIá%§[ªRD¼ó p‡·–xE‰z&Ä gï U%z7éÅívê=8lâhv0ÔEÿÌ‘ƒ˜ÿÇ^A êí œ¨ïKIoÂÉ=K6wNfqº ;™âzÿ ¡õ£~QA6ã• c®Ö¡&NoŽãx³`’ÍM¹jcÚŸy£Nm¯ÞDë‘SéÏV—+¨&D3Ò…3%í¦RÍö´áfr^aÒè_PÌxóbç°M§ëßB=Ã<×e—]Ñ’—àõ­íˆ(\­?•x áÅèWð3YâaDT`«øÕŠv{¡÷žSÂÄ®³‹—/_ÕœÙ@…ç¹÷Kê+Ó5ølÇq㓉ÛIx®A¼‡¨+ÁŠr!Yk¿5Oâ2ë‡Ì÷23òÚÁ£G¹»Þ·GÉþ›[Ÿ‰ÙÖÚé¦ 9ã#K¾zW¼”øÒ_7ÄÕ¬;ê+Ó†°ä ›Ú^ÝryßFÛ¾§÷ø%Óµ…bÏy¥ „>‰ôrÀ±“•+<]N-x%ºd¿&ô|JËgñx#b]æÆèÉ@9lˆÍâ¦@ºŒ]©jÑúd§ŽàÉœÎí*‰~{Oª#íÝ‹U Æ5[·¾× îü”òTyQ-³–)£1èÁÞ×&îDÊ¢lnoñäcœuQLøúcê»”%8™ð®­ÂÓàwò›Â/›ivå7IQŠRöü8o2 Í[ï WèÖx1ÏM¨M5/ÄæˆÔ jfoõ:‡F'+he{Ío]i¿'ó‡ÿT· ™Tx6:¶ÉœyºB0qe+w¿J =VÖÞ´›îvÞª ¤œðÌ’Ç;Q.5¦¢Ú˜Û[ï vE¿®¥èƒŽ'ãZ–Ë@*ŽÙ€}þÔZ·Ú¹ÍËùÚË]#8ØyV°m Öck€Î¡|Üš§n3â‹¿Vrî•‚n>³ŽÄ-܄ٴ~ˆ$ÁÐ÷öFåbÕ~Œ1ý=¨ì”ÇÏýó-Uãgð›Ç æ®nvšÇ)ª€J5Ni^÷Æ@i¶·‚Ÿ2XŸomr̓‰{gðahTfOVhÌ{V"è=¥< ޛ—àÃú¸±p톻WŽUh„à®9„ý¨´<³Jø0Ìc#šË ‰uŒVQŽWöYî£p^ ø;æ¸n}êûÐI½IºîÖtQ Ò;Ü’05AóhŽZ¨ª§;–GÆ,dèrcÒh:ž•Ñ—êô+öí´ÅFH2. â`j^„´À‡~ »è‰) ´,ñ¤o„ã!°¾ôMø>bਓ?s¢&çt‡´º³ ôýœ÷ƒp«7Ï]NîÄ1*rÕ1p™ñY2‚3‹Uî>|T,I°8.™©æB-…5o„ ­Ù0R; >‡åák¬µm^–ù Nõìš-à>yyþ >¹ÃÊK<½çÊÍ€˜ß«‚!“ah}qF\%ÅÚÁÆJ¯Av¤ +¦f3¸Ó<·¦¾øâ<&°‰D2ÞŠbñ`¡É IË8„Ô&ÑÖþup¬¬)ÿÑXÅ4V¡¤©—ÓEe\61p•檡 ЀðXֆ҈ͼâTv¦Æ)˜ŠáWBY]I²ÅÕEÚS©Û¨ŠÌNH,Ë? ÕËè¹l¶äùœT»¬¸9|—Žãî´$Yjë¸AÃì÷ðÁäÈD=¸WöŠE€¾ªôÓE¬‡+*©Ò¶šÑ GŸ«ä×AUÝ«í@hîY‰¬p~ 7ÓÓkXbÕ7XâÔ¼¹õáHL¨bö&B¨†¯Ç^—U‚³=jòL=lœ“Y‚7ó߉IãB,)‰ñ#2ß©,欅¨ºñÌú0/ #Ù*q™8´(7 eÿÊdÐ08súêØ£Õ¸!˜È¦2Á•açÛŠkÒ÷aK` ÃpãøWG´‡b©)k`fKÄ‘rž32m–{ÚO@5Gû% nêÌ»¼YKΧۦh/Kß4œA©§ˆnQ’'´ oêÒ÷Ö(Z©ÌRh 8±½ú5›ádŽK;Ÿc|R_# ÏGíÙEëè•< ÷Ë^w‚[Lv×xX\=i ­ ΣãÀ¬ø+P—I×WO×Q ׈õÉõx؈†´uÑ/Tûɶ4«ÒlŽÛü½ÙJaïš wúãw3ci]w¶^Gƒ?é3CfY¾¦}E˜û‘ÞÓÒÒ—çßÛ¹ ª§B´6 q4ªvëJÐËj–²íkiÌš ºŠE Gq ›[–¬ëÉ>Ê`úï¥6O`+Û¬'¨*‰ƒ¿¿ÐÄýu…b´?­k ¿¢*25ANkŽñ‹büÞ½)ƒýG€U…Å'Qþ×z,-a½{6Ów‡V¹‚5˜gL~ÇÄFQ¯^1ðÚT÷6í+Aá|^šl¤šÖ*ü¬¶a¤åc‘ÁjÞ¸ïyF9ßK§éwsÈ~…{ƒbF/øh)Û¶´Š÷Þ>›Ì€^† zîðÑvÓbgý÷ÓO¡¢êò§>E]ãìòÓf¾€7F,l‰w_)©3¾»bÆÞwÌœ‡?á X‹7hÙïÒeöÂγmgói98{ +ÀÓžžÍE;†:¹_åÄ—xâe¼æ9ª ¼Vã¤H-Ľ>y¢['“…ÞY˜å.½ÜUkä ŒW*g}CˆÖ‹’ü,ån&úU˜! ¿Æ/„˜óI¾¥ …÷‚Áœ¼2Ù‹ˆÜ³¡§ƒ/mêCºé¡Ÿ„´Ï9¨Å×¾a•»µûfZšÉÀNŒÁ/F ¼=.‚”Íf¾,q áûÎU)½øœáLÌÒ¨Èÿ|ɃòFË໵ŠZ RJuÖÆ3xI_l#Þ1aH×el·Ss_þÜzÆRÁÞƒ®•HBXŸ*ezÄ"$Š Nô_QÍ‘uäÍcþmÑܾXcFÚ"³M¹Ö±™tÖiZyD‡úájbÏÚ$}yE*ØŽ ÌÂ(Mñéí#µM—XC"¥¢O˜•¡!À q ¸¸%üÞÃ?B>+›äÒ^G†#µ×ro+™B/³áãñÕÛOXÀ%›fvÎôVRe!Cæ»_=¬³Õ)Ð5µ¦hÄÚño^Ü´EðýÛœv¦a›Åß( éøòpÉîÛĶêuž–¥.‹e® L֨ؓ3S°Õ$œ¸¦xrqž‹k¯½EÙ),Ff»¦µÕd4Κ6ù±Ùʬìä`‰× 3é­|Ý&hQ>È= ëd›¯Q"U_‚í„Oy­ÚH}Þ<õCRÊöiÄ%iûtÓ¾üÔ(„Ó“µd¸ #gkÔÖ±Iªƒãâ›áæ]›•>†Øä2^‚Ö_42ÌhG“…úa<ÏV à‰?z™¨¥U®ª¼{õ ¢°mþt’ê„Þ)ÉâíÈ-ÈmÉjBàßqIØ}…»MHUýº¢‹ÆØO‰5³ãÛìÙ\¶‘ÖŒþ§Óí_×Þ‘¤9£H̳«Ù8^±ÈH;«¬áD¨ð­=ã˜Àñ.oOHUˆ {4Ýbò¯nçò'€ÇO×/ïqRTÅõÓ5xrß§kšÝþœ=LK‡4°=d)/ÌÚ†Ä(Û÷×ÎðÖ&±mc; ŸIÜ%Á\óìVÞÉ¿»'Ð[2á%¬½mfÝì£ÓÝ÷0ô`ŒÀ¶Fr®è†ú‚_àáU9ÔÅl‡ià>«Ø0ßqro8×ö±àM”Tsß,#íAå2\dÜP@ã’U{Idé±Àj¬fù¼¨ý:¨E¯ê7;Ìé‚"Ž?÷ñýô§Æ—RïÈ ²a:¸jÙš%ï‚Ï?í ¢>eò|‹MùÄGŒhµc ‡Œò Ѻu¹á#VcZ¹zÈÓk•ñÏ$Û@¯íAgÄù:†D6ööÆ.ÖÑëzdt—V‰þœÎN¦>ˆ ‘/ÑŒ'ªèÙ%#ÇÕ{&|êÌڡ`ûŽ šE7–|¾ÊCj–·^Ñ}Çž^îtÑ]q]œ€Îcñã;‚°é”^ÄvG=¬É=N—æyyb©âþ÷¦E´ócTfNã .(M¢¹ Ž uczv,Œ¶€ ŒIž|J(X"é€"òyó×Ã+•Œ}³:ù‡{#¡9Otiÿ»BÝ !H!†%ئï´!®‰öìÅ X¨® xZ·¿û B ~ÃÂØ_½3ÕDl×Uÿ£9ÛÌ좷ê÷¢¹@«A†ª[\ 1·}ÿUžA¼LÉbíhÚŸ†C7”á·_oÄz£)F{Gq¯ÌúãóP²óâdÈcP0 Ú—€·Ã èx ÁÀTâ{{޻Υòh4RªrO¤1“ÕX»’Ÿ·e“JÉÀàŒjº0ï[ØVþVÔD<(»——N’ùÜ´è(rÎÜeU²OûœÚÛ=¦}&Tæôy>n°æ£üS£að±¼—›¥;A ŸÌ¸¦‚ší{ò­:#X!xÞ¢…Åfs)çâ/vðïÎmQ\x!õF†óGò#«àR?¹ÎP:¤&žË&:GìV…blz‡eV'γ¦åÛ#©~·Æ—X…G×­)žì†’z,ÞÀ!¸ˆ,í½,ßWx7ê·õ+÷QиYº-0 ºÍ8c¢öøñCƒÜC­k½w¡Ml½½«Ÿï&JŒq*npì¸p&v•U9Zµý„4:â¥ï¨IgÖ*T`"ÿc²·Jí´š])5¶Õ–Ñ7Ÿ¨*7áXHzŸe糋p¥l-1©o3%©¤fCˆ ¢;¸1málæ mˆU£.výðÊåÃl¦ã FØŸö놮ï¹d¨òãkî+L>c³LRÛ@«_)zÿÊ×0"S–ÖëæŬík滥}Èèg3‡üÝ¥Mìæ4¨¡Ÿ…™|UV–±AÏõÕ§:í©XÒâÍênaóãZ:š-:Ù¹jnL##B¨*¡®£s üٳˢUÀœ·Q‡½Írí±Ê˜³{å½_Ü¡Y¥Û¢ŠÖÑ¡þˆgÁÆXìm¿÷ëú¶{]BèJá~º›î‡ñμ&ÕYloRöðƒfKO]\c å¢Rpµê˜t܃í\Õã‹D|yÓ1UÍ{õ¾8é›KH™pñâXQ[á1ô¯4£»¥ªˆhæçiÇwì1áÒ+À[©3<üÇ+øÖ¥…ªÇOç_9p¤?—±Y^±—J,¼RÕá>Í¿*ëÞñÕD-‚²%öu…ÄÄz9C¶ÜÊÇé"3:awÏ)BiîN«F'Æ]¼V!;è ½%[@Y©# Ó½w*x([„zynÇØк)ÓÿRìÍ'…ß4|Ë›~@·hWi|=¿³3áÀ +T V éX'm*Úƒï¢¼í´‡ƒÚ²nç¨Ð‰þãhÓ ³‘Ô0BŽÞ°Â)ÑVK®(h-߈»÷ºZò -›û£žê†˜UK.½?Ú\^fcÓÇu[À.lKÀXÇ(ïÒ™éñøµqDÌITŠνèLfµ5ú!Jy@,¾Õ·G3Çê%»uŸ“Ž¿†¦:¢|¶!ò#gÃfåtˆ6™!cr#G™š×ÞQ«’üÊGý¡înpÔ`òµÅÜ7”—‡„(¤_ìÑL$ÂÎ  ©jÍ{¾Æ?üZarÙ÷ãª"¼‰àtÆp—LþÈ1ÁIËpÛ#µDÈ‹eýceÁ0oر¼BRžÊÏ>³Þø©SXâã#ZÙˆ, \¨ðpµ´r„çamï\¤­p}M…Í–bžU UËî9(x’ º•êÍð8‰‚v¢¸¹F‘ãeć)× Sä^ôçïEÑúX2škrÐ,"ð“Ÿc7ðÃ㙃e¢nq”гÍÈ:)Þ?6ÁÛä.ãå±YÚ­'ž~!•Ù§;áÈÚy9òågÜO]wXªúóû~YýЄšhí}%>ôRÁ>"PŒ°½Šâûì wS¤³z‘¢†â\R®S·õœbÙiÐSVýZ€C5ŠE…Ê9\B:ìOä×¼˜cNn^Õ«ˆ€I¢sµ¼,@Þz,øy ήï†9(Ówu+væœÌÕÔ©#Ø(®ž1ù'ć|펳¦}þ;Ænñä'T±››Z.vF¾¥' kÑ­ú¶ýÆiæ³ýSƒC ˜^T¹c«¡ŒŒ¡Äéåî(f9<-ßÙœ—ÛÇò™ëUcÆŠäÎÄÒ“D,˜¶ Y?b^F07¤„ŠFû™¢_^ù•g¹éº$w@}Ü9òg‘À>‚›ÉóD¿£!F—¬8Ø:Ãq±~ k–ȶz9¯ŽUÌD£ ×è·ïÔqëº[/8ÆAµ=¼mPûWÆÏ攲À²¸ì'ɬ{׿@`(Yl»W233|Ýâqv4ASÎ|w"†áÐþ¥b…Rb¥ÑÚl1 ¹e]dÐã”üi@,ŠIÑJ~&ß{2^ÎVMeW†{k 'ÊÁ€W1ë30Dód)+TjLJ—È1–ºð]¹éÜšâZ« R8 +B±¿e·¤"Vˆ‘ÀÖØvVÖ—Qo²f4ñD4'ÃÀ7©ïh@òäýDÍUvo^\¸±°Ár©&´ÔZàÇ£›rä «Í§$BÇyWiÇ\ßh•MÕ»Ë}Å¢ìFS£`9Z_<;î·Ur#¦sÝ>Añ¨S~ªS|èq~ÆL¾,Ë^eøðêmJnòŠ™Œ•>V‘ó<Žr¸Ã"¡ {FÙªŠœóÒemÿª. WŠð^ &D“ÿ} 9–MBŸýŒ,DäCËE\^3-Š~öðT~òŒwªoÁ(2"áTVÿ‘ãÔ=È24®8o‰­v;àf‘˜KÞvS"è,ooØ-£7ÇPsTŽwÃaª ° v¸ÛB¤À˜gdcg®H¼ùI!¥ Ìñ Oå;”å©gµ"H”¯²løgÝÇk»¡„`$7”!iŠ- F( =?0p­ö2JŽÛl÷&¿OmçzŠ¿çµSôáÚâ€=cTRÈ{¤•OYf0\¿c×o›¼ÚH7ÕòqÕœ7"[Ö¯ØZÖ?v¼îÆüÐM nï–ZµåAiy÷~†Opä)·íAÔ›#À‘ëu³«ÛyÅœé#ÙÍÑF¾†Ù=Ž"}tI&±W‰6ȯ‚f’ 9ÐÙýL[xo¼ {¯|8£ wòº5‹«ß4éVë@!õéRº‚2šƒC­ÂuêNÊÂn@,øbûÜóƱ*¹Å»*’ÈzO2LÍ"7"Ø 'j¿c?^‡hø@|É?ìG¾Øè§í¢Œ¥v#qÅ[$}?.]Ï´ØÎ­m­åþ »­£AŠ‚ï²ì>/§›¹ÿ«ÍdɬÖ~hÃϯlÄq6ä‡BEŸú¹ÊUÂ$“z¿G§ené<¹ÐBûJÏ~ªÆñùdW¢iͺzíYœÿgYöX¸U¥¶QljÖb£J\Un¶°¼ÈGׇ®sñϨ̓»_Ä™°Û ˜2¶5¢™ã‚ÛúÙ/I¸âà>ÙÝ.|¥˜¤‡#µœìÛ–2™j„8üDŸ˜ç\݆³º]öâÕÈ Kþ]oÉ&E1¦…£®´o/¥ïݦÜu©èûlÞrêþ4ŸÕ@¤¼>&ëA!¹Z‹E¤èƵÎO7"öú”ìAÅ3¡bbK€ä'H)_ÆŸþ¥¾§Ûî[#0°ïæ•ë&–­í'M#b½Fn(ÅÕemŒƒëyƒŒà›Àu%=õDùpriZ¸n5EÖ8öÞ`J`¤ xÌR»jÜE•FqlÚj­šC Ì<.Æá'Ž•ñsó÷äÀ>Aꨕšúµá›ÃK°'žÔû„Äã›9º»Ò%jðþ AÎ뮇¡ºñw½BhYu"PU˜ŽàlÔù\Lþ<sá!2n zHêGŽ?Îʈ&O‘'T…¶Ö§½Mƒê㩜F¨(ƒçÞŒE[µY¿GÒ¨!ZWíŸc{ʪ}«'ò9Ðv ÅÔ½{›É«UæR>²¦’A˪WÑ?Ý…LžäF1þú&|¸ÝéŸUÅÈ ‘j£¬ mSw ½qcäÌÛÐh#ÇÇÀ Z®êÚ¦ú†:›/]A%¨A"âø€!˜ŸN•Iú´ÿ*‡3’rÕkWIŸÜ~¾)¦òO7+}É2¸kI]Ô–ÞaI7âûèCú-elDQît­ÌF.¹¸D ¡)ÍI¥sd’ÃÐ¥²‚¶­aà«,ɇî¨M]Í ôë±1 -ôBezU„žLüiABy:“‘çD'*¦L_KóâÇÒï/ñÕg[Óû¬ªú²Äô‚ïªf‰nƒæ<âo0ÏOøßöc2=Ht0Ãí{«ó\ãÜZ­0µ×ÆzÐöäQ»&lŽËÚq³»Ö‹%FˆÎºÔ½Ü|B'™b |ç¸r~= h*,NÄ·”ÿ4ÈFÀZ…Zï¹ú© wò‰†«9®ãv_%‘‚‡/kÇZ¨Ó\Z}ZœÙ죦V Ì…_èÃ! Å& ç@·«D„ 7ée5w¢B]¨î\3¹¨™†oÏê@ Ö âžõüxœ¶‰Jš™¬`sHVJ­ ð¼ÝaEŠ.é1‘<˜Õx•5öºw\æ›Ð_jë¥[ÑUÛ4ë§ž_óÐ\Á"D,Ü"#œGGˆ³iµ„Uã·«^Cö†èK÷CÊȳÈ˯µ4«£¡b÷ ¬3ÆËÃ6–DzrÍÃ0¬p+çcÃz0W©Xu[ù®&„?W]qÝ„¢Ìš¡yV®T¬ŽF” ×JªÐ.ó¬³_¾°öúã=wj7x/¡ÄËsÚãK”–8ÌÇCb®P Ï‚Qµ¢Ô *u>ê{7Ñ.jz’‹+€ Ó$#pQ˜R œÏÂ÷ç*話-²0G$ž âI^}å.¸;™Z,ߺ”\šyn\ÍŠMÌË ƒMb<•í¤EDYÕö7CU‹Ê̾²(41ªÙÅs{᪸œÖ·Fì¢]Þ1×/ë…ì`E"Õ¹Õ¢A¨Œò˧×<䎗¨->TÄGƒí&ÌßÝøn? A›Hþ\ýÐP-a‘áÆýÃÜ’½g1gøËr~½IÇ;†i_¿ÒíØaaƾp¬ Ï2ÎIÁ—kÌ̱›Ð"—?£~;1ô™ªœá§Z¼+þ®¿PJÇ‹òèøP´N™¤ÓaOÆ4f¡³‰Öír²ýi;ÌääCâ‘“¡ t}SÖÞ´bÆ’t1%Uw)£÷>¡9ÙPµ~h_cÕŠV/fzú²°o/úáRf%O`‹àAAû3Oé& ¿VøhôùŒ]º4¸Ì×+fºTñèÅceèeNN\…O’›S.›‹p]8ÑV‡‹‰¯ü“½Û¹þr,©x8“­õ“|¬ rdø_°GÈã4]jÔèÍeMo“#×J¸QÉÂÁ+p `i°µ‡’¥.C‰îR0Ñ‘[c¾&‰Lj¿:×3`ƒw)QWþç6y;d¢ü©?1ù”ãxwÜLe!×ãH†÷ÑËj d²»&=T_1êk ¦›_¦|û#ï>Ûq?ÌN±ä³]Çr^T‹ÕÕ5`3VêV›(ÚT—}$ìÕi“z¡òUp “ æ)¢­»?Í`§3„ä.– ò䙆ÝÀ¦ÌåJvË©g}–XUS¿¹N¡NBJíu¹Ü? 1p•ÉÚÖ|dN"'Ç,Ž$ ÂcœÉ\ª 0Ÿ³a§ÌóÃÊE CÃz('áÖÍœg»x^íš,ÅcNydh9 E”Æg—ƒéœÈåÞ¬ºßéLjÛJblŸ]lÞ´GL]jàA_^“ÝFH›ϹիAß_Iø ¹¥[Z·D½):êê©Îù5q}¶>ø:ˆ®bl(wbî§P‰à3…õâwˆrb.ÕQÚ⓱§öþû€Ù#…[ÔkÑÁä'xZ\uþÞdî‚ÉïkëCŠ•Ó_Õ¢-?*zj³£6ááÈÈqçg~1-sw7„QªC¡¡Në£üR ©ÏU¢“m’šòß@Ä>>®ság—ÄíûæÂÛLkGÈ1ôäñ ¶¬¶ÑS âÚ UeÑ.ÇõTIΰ=v6Ôa/Ú6Lø–ɻЬãðãFwÞ¯Úê…ÝrhK,\ÿ€)îc}£|¯MÞ†øsjhB«Õ{þâ¬û|;Ý-Ò­E9‰qŠ6ùS’µû V9û°tˆ¹~ÌW1¬z´‚ D>Á/6óp°M™%jæèÞHõ7EyËø$A"÷Ãzf¾ÙÓÁÙû7’g6é›0.5P?Dçi ÞÁeˆã¼ ôËÉ<‚'2&»—Š%ufÆ‚C¨’Ópc*¿ð8‘™ï—ÐÚ5ÀCNƒ™5Z3tUTøé Ñ“û+ŽëÛIúvÌt9M½Žc‡J[ĨgEëü–‹nzñ‘B¯Û ;D s“xX(p“‡ºXÑ Ù6ò•tK/ 5¥‚{þÆÚõÛ§Ül£í„~)lzÂxbjýÚ³±ºä²½bÿâþS&ç¥m]Èwc§bÆ…ØÄ]2FY&²×C#Wdê1S]Póé\7Ÿ¿Áà~)U±(&þ1Ñ Œò‹q¨êî‚| n†n÷³pÖ ùé„ÛÓ÷µÜªB§B`¡%€9VyÂÚ¥þƒ™y¹‘&ÓA‚£ÉoIM¥­U@P\ä¥Ë)wÊ÷>8:|5é(4ºvÞ^!c«¼3µ ðÑÖÉ/^g@40Îáú} ÎüZ^þœZB‡`üù%Ìr›<ž,—Ñ‹9-jÊ7AÊ€]¾R‰þY–822û Š1øj¦p66 D×Ð3€Ãä÷»¹ø§E@ìJøñ—,çÇÇ<Å5Â|2 Ã{ ~ãn±MñÉaã_,™R¡©ÙÆÁË6Ûè þ‹ªáì?ÑMÂðæ£¬GÀkÒÒ“çXΓK´Œö*ª‚¡H®ýãOæ~È¡ße9ÆÀ©M¶a‹¨céÞ«$þ´wʨ-["›ÐD€oX¶,à Yȳí,"Íç¬y‘×ãÌ^jbó_Ý ûq¸ŽšU§ž‡sYŒ;u»ŠÙ!@­Zý>„ˆ N»–Y 7 —άƤù\fºÇO,ç:©a'µ}kÊ|È©A¿9Óœh&BYÏR!óá……i4|Lrˆ$ÑÝ'!‚ ×BšT¡ž¨aŸÎRˆC‹}·ÿQ‹wi=ÇkÕOXª{ógœ—ÉAÀ(Ç$ìÝëÖ•­-÷”†3Œ>(¼5C0­˜G\ôõ»ÉµæÏF©‘yîI1'´öF`ãP­q: ùÎ5PÝ;ß1Jš'ž•¸~K£n_WÏN@ÔÍ[J†j `ëåÚXõJÃr¾]¤ ÅHª'2™êÑ÷Èâ+û(Æ*ä«Qa*D¸\ {u>3Å"xï[Lq mmÙ` ¤bŸ„ äÎGº³jW%jºC¤6ß絸M¨ÈÛû`¹æß¶|ÔP~Ç_[Ù¼Üä;(:nΜ¢³‹»€‰1ÇŠ®å33í@a¸ˆ§þœW:Jd33”&”SívËcQ_Þš…· ÛD±ñ…bS»&] Ygg‚¥aé•Ãgý9æK¿ª úû)LùÌ!ä7KQ_EM1¥ÍÏá àÚuÍŠß^²UŒ<íÎÖD#Ök¶‘¯q‡ Ù.'ìÙ­šº†ß}Çjªñ‚31Æ,ÊGyå)`Rfš…çþˆàæ«qìá0pñ½²«ÚðX‘ëÈ/¥ñÒ7Á=ãŽ~ 4ƒEm÷•p0èW?ä“°±Š×=°sWç´ æÝŽ«¯ Álª‚ªâŸ\&KäÝNõ†J9ŸP¼{oDg$@„nŽ›ÃT_Á#q„èIÏÞÐÌ4S(Ï6N3ž¸!+R0Aõ£Y!ÀÒͪëS¸+-÷Bµå.»vùhZ›=ÝF+ CûšT=-ÔêR …Ú÷Ô[hØÁ[(™‹ñ%R£5GQD#]V zAm/!ܧóËÎÕÁ܇r}\j™Ewp_“XYãð½æäIí —ì_ãÂà¤=Üþè5ßT åºñM}bÊZJ§|Ÿô2dœBŸÊ€>”szYñ5(©vj¼£vÞÐUÞmÝ…'„LÄþ²üy¥¦ÞF*ɈÖÁ'G™ÛeóÓ=§•”Òé¾\àÌ„"ï1¥K²Ð)uÑ ´û˜íG‘¹×Òª‡V¼·N†k½šÐ@tbN‹¤eÎÏ(„ØCŽÇªúâƒ4v…ÀéëÃãPRûÌÜN¢5(‰_í—¾vG)@@Í7„ÁL¶º(¦4Œ_ÈtÓmÞ¼2O;Æs*ÙÉW#±m·jªy¿äWŸSëÕžFMáá)'MË÷qÈöE&ÛÏË0ïñÅúMò>]Ž¥ÊÝOM V¸¸m ¸ÆúgŸìx€¾»aW¤e˜ó0Íø†ÆÔÀïyQd§ ñÕšüíè1ÊôYÃúö;`仫6ÿ <ÁÒ'ÑwH^k? \iZÄñ”ˆ¾ïî1­”®.fû8tXÈ8‘^ð–HfäÔ-¤£É|FRµ%sz}öjÔÚfã—J=¾œ)øIÅM¾§µ’æ8Öç´£“z;F Ö)˜ˆ¿?.£<ïþ’~çcF-õš)Vþ탻é:› b <6¥WvGn>cmaìf:ëaÚˆÀr /¹ ÊÌxVC vÔ4›Ä%K€üÎ,zÁ™¢ìk«40O¡CÑÆ<É Á¦P†À‰&»±¿GI‰ïÝÄ…tY€hrò7Ù²«º¦#íÃß„¸n•M™Ì‰º ¿ë§°§<BTÇ×R ]¬Fgf{ÈÊ¢|ƒÝû¹Já''â÷ºgêÖ:ÊlMzw„[r9_nͯÆáZO>ä½ù?¤g·à£¾D8×nmó—¿D{\Þ#WLúÃ<ÒïxM±û·Eö^oÀiV`¡¾1jRm¼¡$Ïy½ÍÜ,B&9à犌æ æ­ÔnÙ:I~Ù-,[²Øg÷Î"Ž£¸Zo 8½³œ­÷³¿TÛ“Ÿ ¦Ú"-8Õî>q»ò€J¤ÿn&z¼•¶æÑOß™¿Y’OÞI±ó=÷Z¥yX©Î{?h¼ãDùM˜*-^šj»-v"Dw`€1L|'áÚ™Ž[—²nË3¼‹îe`Ý6Œrt— Wµ*!;?–ÞZ- -›–¹Lö:]j®Ö2N+úx/ŽÞšòB:ú„M|iòãqÀ&¤FôÃÞ’dæ-ßði…0ðFiUî߈ö‹t»¼Ôu3“èõ™Ýóí7c¿NƦÁ‚A¨‹˜²O¤Y©XN¤™}mövgN”ŽuÂÎ_äëškކ ^)‡N¬Ðãt c¤Ö¥5ý¯¶Þ.wÝ ‘ÚC+µ<‰Ïw¾¢^¸OÁ öBÔíV-ôÎÞjäàvhNO߯>”ùû ã5VµcóÙK‘S@XñÁ “O¥ŠÅ¿pió|ež¬1?zp #]ÛLž÷Ý÷ÅÖ¾N.*ÁWîˆ5Â&þU‡›2Ášrüž0G®öGŠð¬—Nƒ[µÍôWSG¢õgw=¶Âý 8 è:ÈžâØp[xn΢c\X ÞŠ «°;õ›Ø¸‹ÁäsG#ŽDË&SƒZ¸Í/ÍiÐLŒ,ޥߵuwT¿„˜Î¢¦Ü±/¢î;®9çZ¯K™7š × _ Q¹Š‘ò!‡‚JÞ¥+Ò}–‘A] ªÇøM!*öEú5ûO*DÈ“?‹•‘fNó¯ñ›}|ƶ€ (ueßnðüHz`%ˆfkfž¶`Ë~\e3¿ßÏ(tÞ&¹Lß‚-‘8>.ËÕyÈúž·È„cb°QC¹Ó†·?ç˜zc¿8 åÔs´R¨îMhLÛƒ‘{mjó>¹lÌ%!#¼Ý‚IUR–èŒö"§] H—âHì/»Ÿ™ýð³jº!Lñçiµé;Ï ¥g!¯PàUh’4žì©±ßÚºØ3»Äûíà«l1S‰Å¥wiÕØ~©ÆhÌÈ@䟌a¿]ØÎ¸É%¢)ßLî½kªÏð"Ø %W3«úÀÄ'ÃàÿÐÂôöì@Dlyž `_´Õ‡¬_ î–qƃÁÔ}¶v ®½™_‡ýCfâå§;OóŠ8èm'Ø…³vsƒ-ºç©…ÏŽÃ]–¼»ê§š×X¡.° }/T„–¥£Ê­xÕß}™q—FM®•pp/åˆÿÌÿòòÖºõý½Î8ÎgA#Èéæ/æ©TÎ|È Vߣòat¬#w±Ü£Qè*¢Åú48Çñ4׉pµ/wÇáCF ø/ÑihÎsÐÂT/_+Sç'Ú|†}:V`ïñ`&G7v£®l&!PíaePjퟓ,,ú*á¬x«tT`1$nâ©??õù5l¾¦RZ%O>Úp æUóhÇÎåÓüpJØö­etŒÇ„È®ÞögÔº@\XÀö䘉ڞ1Î6÷ŠêÙv T¥5º²ªaËÒéº×Ó˜·ùÙJÉM’&f<ô›ÊC9yO§‚݃³9õˆdÀ‡ô‡™Ü9IìÄÂ+-èFÐ5Y$C‘^bŸÊükPÖT¤SDdv{%NJ‘…q(Î3 Ká1t-ž—± tãÈ}=¾ó#Ɔ=ï[Ò.2Û)Æ|6FuÇKxjù¡-:4£ÐÌh0VU‘]ÐiEnCûHMèÕ‚žû$}‹µN),ùb(J‰hÜò4¾6qW¨KÝR‚eìïÄj=à{w”A¶¯ &ÓYÄÁrÃ@¡èØc6Ò³Ò§oM³â§‚VèËF«¢¾ çž0S;T°,QöA¹×Ú—×ñòó´Bð]©æ±Ý`"º­£¦ÅãÆVßCBÉ÷X¶ý,L%ßÞ¢ŠÕÞçNò¢½3@aHD—÷ ïceC¶<]ÑVìJ×ÿÔÏj¨´{kºóÜZHç³%¿#$WI—îá7;„lZC«xqTcL‚8Je޹K°Íþæ•Ûd§iµM¬÷G›qAP I/¹Ø>ÕoBi6Ž-§ú[‹ùlIÃR)Fâ&Œ/\3t錫8:³áñí럴…`÷¢ôƒÈ-ÄSÓ!!ÞÆuˆÍ%åw¥äýu╨gàÊ&æÃInbƒVvvèêˆîEbÞ‚n|®gýû×¢Çí³L3íýsɤòPÁ3F‚áx†åz\î¨Û•!2 ªoœ¾Ð×é¶âRÌ–ˆŒ8:–o‹9™ÌLr +μ[ýùz}÷j*ì…Ñ;#Is¼gð¥bBÍ”ÂI˜,t˜ ñ¼‡V“­4,~y²°ˆE]Ðý&¹«=Î’¼b„xšr\÷N5GB Bêso¨}á΄×Ä„@ž„é ö³\uèyöuÉ·ŸJˆÑ.ú×XÅa L`Ìñâ£Û­xöˆ“‹‰Á³5ìuJvB¦zÚú ÏÁ–C+-gÂOlßïenj øB]MbÞ¡§KûÝ¥ˆ{7þ†To‰ðð´•: „W AÞZO³XçŒù•ùÿÚ¸‡-Q´ Ñ¢iÛ¶mÛ¶mÛ¶mÛ¶mÛvæIÛ¬Û©×yõ»#bͺÇ|æMúÌÿôbz®dÎ$CÿâÛYT¯@M@1ƒ‡"Í’¥èER«½s”8ޤJGë³ÁJ .üøiQb=Ýå<…r—fæa#ºõ&•ÌÒ6;± ×û”3¥†<¼rq⢎4Û5oa'õßd ¿f^¦£ó(ßv²ð<±±H á^ Ñ'¨0::û½Ê³…_‡"ήoÉ ~#>þFùIQÿÏŸn€þ»ÐN±J1—¤ñ¨ÈÃw}t­MÔ!“õ’ÎrÐ&HaªÕ¸»³â$Ÿ£nÄÍi:ó‰“ó,‚?8¦[Sû‚Õ"r—Eƒ +ÚòtfCíÇ÷Rºh94x šwKõʸ•¡±–‚J•Xçz™‰7 dJ|ƒþë ñ9ù4‘† ÀÝìJá3VR–²i×M ÑÿB²ŸdXÇù¬nÓs.þ ö¾<åóR»h*_.kãžwœ{fàñ×kº«°AmcJgÿúwx2ÜóGd^þ.Û'lÄõÇæ\ƒª Ñãbr£ãÄѺÇ!ÛÆùf™ëYæ^áoúì&L|ñ aF¢1â¡5„6å­§MÊðùαTe8ÖA_‚¾B>öâ}úé$“ÉÀc_@$UöEIiD±QyûB +u-yÎK“†ÌÌ“`Œ]n-J`"Lª#àm§}ïMCûF]&é$=2î ÄPûYìÁˆ…F[!ÃhW©‹Üܪ¢Û£W'^47¼ÙÚ×8‘Hš……¸R¾Å^Ù_ÇþÙ·œ©öcyªoêàÔ᜺߯HÿÀ’\,áâÿn…Í43m*1¥èÚ%EÔG˜¥Þ†š« f1#l­©…ð}@}áADwrBg/ ”×~§64¹÷õWÄv†|%o’¹ø(‰§äõ=UÝ­˜´÷‘~¼#–¤KH• –ǦK:=V+TŽˆÑa¬ß'æÖ}¥ä!Åú¦1~D*ÇÄ ZN¶>vf¸½Z¨u‰v˜Em­a =@v”JN® Q…;8[Ê—/rÇ>ð¶ú­ŽdqŸbeצu½Ã#amØeåØÐ¼×Û”I¤ü²¥¹®Es™Ë È1dåla~L˜íØàËê7'q]fðà"A°Áª|1ךkBí]òkß åMöm»¡¹×…’?kë$<ìž{Óémÿk—½Õdù‹~gªþ™‹Z` å¥›Œ’ò0Ÿma4¼hqi¬PR¹ÑD¹£©&ʶ9Y §Vè~??l4^+?¹Ý/iœÌ eÊ›>¥ÿÃO¸ÉKÄu“ôèøTV¡A›)5dô bV*îr>Ú—k3 Ò, ßlS°A&WÅ_®~žl„ôÈ´§òªYlpYÓ~Q§VyüR™F›ÊuOC¿˜Dº¤tàÌZÅxx7ñ%Ö=`ýw6lvø^‡µËEïl‘ˆo]ýt’‘5‹W¬ÀI4½ÞŒQœv‡œ#y êÆ±UiûV8»‡wëæWÀˆÑÉAbè>,§=®aÂ=½|y¹ ÒîPÆ?Ö¹Z€loþ¦¹Ûb‚™ýa¿¬#ªŸW`ÃÇ¯Ž°BÁcÊQùÖn¤)D4iÀ6²©ô‡ ˜Gò‘+bçÉ0÷Nyøˆ”wN®o@…¿Ì;ã¨*[ÑúžÈ!¸:a½+Ck¥uw,Z„&ÊHࢧÜl[\¥“p}ò„Ú³jJ×늼ŒkyŠ_è‚UÔ:Q5£µ:ïÑ3KR€4̇ äq Iß6Äê³'OµJôBu{›z’ÿxV>Q€[¥¯;ERÔr°Äÿ"±Ð¾7rh“ƒd®ñqë6†¼¶ËRQú”±(5È´Z#¬z\¹·Ïm‚°Ý´´”|²né0ô)ÄÏs²«èèÍXÌMxìö+hK Q Ib@cÆÛÖ†BeòΊè iêãæF§šHqLmJ®9*ZŠyë<  69ðKœa±¦¼ÃEXQM~åœú+¥ðuXÊ/èf?ÕÜŸÓd”Ó+ƒ< ǤÀZœ‰öj\0rÚi"šCâ«aÀŸÞì#ÿr0þTv^Ù$Ô¯¶uÂ>só)FŽ1ÏÝŸûñciN+Ô4<"²vüûB¬ŒZC;Ö8¾o^} dcÜAÿŠ9¼#tÜÔ)¤Þ MûwÊìuŸÏìï:¥ä%–#Û’¥ù%c™3^Ȉ—ðzŒ{{î“ ƒ0æMȨ~J|SAÑ®IðTU'‰\/®DȾ˜³~ºû_Ë|#x°ŒHî^2^F O ÏÝñt~yÈf´#LGòJúó,±Ï#¡ßq¡†<±ò“Ôw@èåå)ž¬w\0ØÀ‚Oÿ"jž!˳i«Þ‘2)7Ä8À3¥­R?k_Ù\µm}zo(bÇ­¬ÓÕ^æØ¤¯–Ú“Q¾*ä-y4E(®‹ àˆêÓÒLSÁ퉰BêØNk¤Å|¯8®DRa E(¥X4vÆô¨ô˵€N€?Û~_A}¾ể¡ùi´l•Ë&?ÀwPؽÂ)¹ËhU3FTìÕé¤#$R&|»„Ê*Œóy5yruÀ¼~©fu©äòH*0Ê_ËS¤Sþf Ôiö4~nÓ¸>ÁÆÝÇ~QÀ¬½ÑuÍ\1a±HçP›ŽèK&*¾ë=ñMÕí èØ$›7 ákŸ0Lwv™‹üo{×ÞýKGƒÉ¦{£(…fBUL½:ǰûIŽ@ ÜËÃ1Ž|J—} ÆÚ«Œ‚3å¸sLÒÝøhÁ7@<„4‘âŽtšü,–Û ï }•8lÐ7$?_C(ÿ1†¤—‡¥­;ýŠ%÷”ö¶¤½ÎtLXþ©©W“âUþšÊ#œ‘zGôg†âKŽñ\ÍjeÉrÈËn«åGsð2/¿d±|Ü«êF‰\·,:uO£RǬwuȃmkRºÑ™"²¬ ?BŒo2çt›M©{§’ö§Ê½] ÐÙX‡T(ªµÎÖDex§“\:—¡Œ)v{Ñ_Ãß·o>RÓsž™²äPçˆ^-®žŽ¾¸»ÓGÕĸ@¹ÆòÃê°€°…G «8`±¦ßdK0ø/7,£D^)æÃSð^aáñçxÞØ0S8ù+í4 ¯Ôtl€4ƒ7ˆz†ö±\àe"…Ôߌõo£é*+®VYŽ2‘%ÁqÏm.䔎Á#5ø£Ùn º%‘>=[ûƒo%–Ü~,d ÿë]ßñÊ‹i½f8|Z^[GøÏÕ$Xe}T&=M«žñDQ*¾;Θ“/"‹¡¿5¶Á$òÛ^ŠÃ_ÁÂW&Zí KPÐÞïVcŒý9\ÞÜó¹Øp#ŠËüúÝ©aØê“fNRSš~ÝPæƒ9Û,¤:¤óÛƒÜçéãGÙqøîŒZ£.ÐÌ Ñ7 /T×x²ÆÌãpWåeÁH{›Re(Ü2Ƈ°†¹ _u¼mÔåâ6€&sÄù)š‰wÅžš/ºÜ$¤¨€ŒŽ§Ô§¡E»‘aaƒ .[,­ÙKQiAÖ¿ÀfËÐÒ\Œøm¥ª¯¤Ö¢f&ïµ×“hã·_xÀ½BüÞÄ&^ªÛFÓoÚéü!’½PÊîimâ¡{Æ?W¼%¬¢sÛýR›Œ^ }VF’}S€…ð‚-g–Úw#"0¨»?½þÞN²/O‰èFœÚ²åœ¿íbpŸÏÛõ‘B.XR!¼_”ÙÖÊËX@B8“GÙ˜"žoËDo­HDà&б¿áTn\^Á¨Å*¾gÛFØÁ`èa¤ƒk‹¾Û5Ò¥Óý wØÞýkz¡\9¾Ú …™9•å}éY ¶,ç6†!Åö!å«l‹zö̓&]MÑE}_™—rëñµÇÜLÃ×þ5¡Áù î/ÈT{¶­XÈæzìót&°È†Yצ™Ð)N?:®÷¼(Ö¹Ãq5í ÜLýšç¦DÝGoNŠX)™¾¤VRšY6ÖØ÷¬WK½îéTÀ'äLæZ€JfÚ‚Ó…ÝaõísÅʿƋ?IµoÅ©ä0ó™";rj?I|àˆwsÔ]òâg~wš&-B"èy•ÝÎM‘ù.@ë<¥ºe¾;ÐsÇ‹‡š3.5³ø+Ê¥sºÖ…h˜e0e_޹´õið1²ˆÉÿ?R 6ˆ>k ë(¢´Yv—5!‡ZSÜû¼ë§)þŠoöÌVpÚÄõí/¸t­‚µlÎkaýW°g[­–Ýü+é%¸ASÎÓüzëRé³iž?& šßùÐ䮸bjñ0þWÂà‰…Â×óñð”9F¥ú­Ï{ÏUï…»ë­!€PI4<Xä½?¼Û~¸šlÊb\¼Âë“z§È÷“ãbô |ßU|Rk¦|Å -ôÂÕ¶ :ÿ±-ì=ŠÕ¥œÒúÉý@wº3&ÿkir î‘öÃmBV«ÍUR£Êà+” ¢=ÞЮ{µ¹ó ù¡Hâo<+ÁZ|֫Ŷ(“Ud³¶ ¦jBª5XOB,76}(%wòŒ1h7:‹‰hå¹;G(üšP”ˆ2ÌŸ¥µL¿#¬è#}/_ùêâˆÁ)ôG~‹3æµ÷ÌcÁ‘bˆ’™ëJg•êßþßË8©ý;‘‹ÉäŠÚ¼³8˜ŒS¨#«|]ù1‘¶â2²Nõ÷7±yÑßòº†mê¿ý à;&ljfW+»mO„âÔ ‡vQ¨ĺ Ø/m¼¹@‰‹4cJ‹}˜ÜmšçßÜK/G7!%)ˆ·òã=ßP…ˆk‰Õb~×ÛVhdÎèôêùýrð^y±Ú-p2¯,´´ î-™üãÁzÌðübôJU³çok×‹å² &$ú KàiÜÞ´97¨"É­â”åãFd䊣?µæaø†€CÑN[kUˆiF~$¼þJ÷ùÊ áŧÒ8‚¡C>¾?Ïà ÿ$0ë& É!³i#úxÛu‚‹Âªº³Ï ˆÝ›SÏù_Åâ‰Ç»Lq ^Ñ¢» ¥ChúÏq†Ø4ÓŠ›Öc¬|K®Ì¬] ñ\ˆ‰c˹³%”Æ]iþóõ[¨Íþ?ä´'wyš Tü87½‘wƒX÷óö+„•uð~Ïä²<.æ…šQávƒÑ¦·1OR9@÷Þ¾'¸‡-C&ôAïŸâŸ3C鸮{Éfyž,‹ûóÜâj—\Ý•–ÎÌND¹uP"žªä"¤ ùsž3`®1èáwN˜ð²@•”…ÆEðÈh¦‚mCRÙkÜ•qŒð#,”X^0Q.Œ¨à-?Ê,¹ë.!Êá÷~—‘ö7݆±ôhxEe£¾»ü+Ɇ«øª}õaj®ß)S–/e+»°VVàœ;(z» §2"›±*.&d&þ6f­l¬ø¤P1Žzö>s#åo79«ñït­„oÅæŠÅ»í®BEüA|§]R‘e4„Ô— ªólDÛX È¢a·I{1äÇsÔ'¯2å¶î5ÿ£¦áè6ð¤œÏ¿`?ª4VùNÑ+·ßp‰£â²ŠG÷žL=''§Añtø‘œO.½’„°”&é6tØ#0W°á‘’‹©‰…«Ô½ýiÒüÛ­FT\mþúa+ñYU\ZÓÌÑ´8O§+B@;{{»<ÑK‹öðq'µ_v«.£"bNç@"’ï@ÿÇ`Z¨>ZßZÔôºÓyK™Ý.­SÐMÝ>À§·‚:øŽ‚„r…a޵ Ö’†¯Ô=ß¼ÙÛâºâ}”=ñ0}Ý"jäú·ü¿[- ++jk³¸» Ý/P‚lPÃûµÓèG‹dÜ'°.ÎʹŸ0–é‰Ç=’ÌåÂ: ÒûgŸÉªÁtJ®‹µÛ¸Ø)#qWi!ò5ƒGóÄ#&m(æ2sõ¾³b\‚ç¤äÇsf;K¬~â×Ì=ÈÇQøÑ1’ÎÐ#•ßjýŸœ‹ú•™4‘Q¸÷t ^ÀЋœ1eÌ+Z½jw_PKéù{âÂÈꈃ³áDÜà\-@€øh®”=7r±à}÷ƒØ³C]px¬qnåó§ïëLs¸ú×ø¡1,¯µŠó˜îÚ‡GÂ'Ît(BU·Dö³»cëÉMÝ3„Û 05n¥©‰ô¿”% š§ùùz% vº¿¶gð¦„ÊðìˆççMa¹ª3,Þ¶—f_§ú}ö²íÝ[S€[2hÈMMósLý âlWnõ^UHì¤>>EJ¨k©@IæÍ÷¾“ã«ñ¿;îÛCs«7 .–ÖšmîtÔ£ÔD.•'Š#µ¹–µI_ç­ñCÃÌry¸¼-.Ò)Í™e (kw˜´ñÎ)?‘· ˆFà5uV¾V‹]Êë·"ÖD¢§‹7ȼ'â%]~>¯6Ê8× Ãg_L§ž0ÏÞk°¹žÊúËsQ™çÐUBŠSPéŒ –’·i2ÝCvÑ[á^Có,“*Üm¿‹ŽQns”C€)A$™»3O˜×o(Ä 9/„<l¯Ýµ €WHß3Ùÿb¸"Ç/†þ­åı¥5}à–ÇAxãÇ÷2¸2`¥€»ûêÄ:yï00'ƒÛÞë‹*ùgÃn[¤´ÒŠ&uЇéuåÑCDö1û‘ ‰ð,oû¢Ì  â¦/°ƒñ30Ô§Ž{^ÅÌrWÚÀÕu|¸Ç‡ÖŠ YV¿£›fˆK®Yì<@ä¤T3vzB·íø¸€IÉ>级6o$ÆŸ£U^ä™Ã2zÅñ Â jñµõØÍo÷h†0þœ±• ì™^FIôc¤u<Ï%KÃROb§_]ÙM±¿RðJf.Í·æI·Ä‚çžòÀoÈ+êEÒ"Fç¨yÿž×N…µaÞ^¶œ*]Sô»M¿F5"gfCŽYodáj1¹TÝÍÎWD]ƒIVȤÙjFkK„QØYÿ†ÀƒÞš…¸ÐiÇSÓ)اnºª¨f©EÔE \,àFd óQW’Þ:°5\²òK62ß>©Åº~Âjî70PÌÚ›3󙶪Ð'RüÚ¾9`În\¾½…˜Bˆ=+/þÓa+í7ŠÆUÂZ45réJyvOò4ùkö>…–Ö"=»þë Aw>ëvAä{¯ÈPýÞ®Ž½eNDV$¸†$¢V¨O6ß:: +6‚WIdƒC™Ú5(þhfÛXú&çäKÙå½N¬·´¢ÓÀMM•›ýŽðäùþ®Ü:9òɲ’+òc%ÉX«ÒeØxö&»ü;g­ú¬Wµbøz_rïÙ˜L#PÇ p1ÞÁ©òàtê<äŒWu5CQå {`ô8DÊüW²ùoƒÅ‹ ‘ ùŽÃï¯ IK,–5t(Öoó…ãób¦m ðÂÚÀ¥£ˆð6ÖñDø0bšÍ.äë®æEí㪠§×½ÙkóhO¦ /k¸£“ í%éì›aäϲbzQMçIDõ±~¼ÌY(ì Ó'ÁKú‚µ´]ñðt}ø¯WM÷ æÎ7êxBrôPÙÓ%œ¼Ó$L >mØõ“-ü‡¿øŠÌÚUoçêË”¢|Ðþ(ìØþ~ý8芹º›Ú°Ñ§kÂg¿Œë@Áõ¡n¾W%bƒÔväÑ9#gPßX½U8rôDŽ=À%¥·ÈD~WkªƴЯ0…œ¼l À$"oÿ ³¢Qa˜¢V.H ГÔ³¥‡µ ³ƒC»_¬“fGé¿U5%¬‹ƒBÆŠ]z´jOc—ÝGMW•JyåéÞ=϶ù½€hÛÊѳ¯D‡<¥×ã’9y–¸÷ BXƒìà¨Õ_p»ùÉ…4wÕbÂM)@¬‰˜ÄûγWFqU€;—­áK¤‚¨Ü°90D-“õ‚Õ¯z=¹Àå<šî„”RkÅë»Äß´%ª]ì …~š€Òø† su—±Ë\Ú¤Z÷Ûtxðd+zä^ƒŸ—‚ûã;GZ$][¾—x~£d\wNY@ÉÌ…ViëÊg4øjï&ÿÞ9ᇲ™ÃßÎ4פÎkö¼$Œm©Rµ E\ûYXbÂÀ??¸ïÌŒô‡|%ÕÓ”êWؼ½žÈèߘϬA‚R©;~]*… þ剹¾IÍ÷ÏXm û^EŽØ8-4Ï=omÆh‚ ¡Nû§ô­[Ñ8ƒ³P/;æ%ÔÒøú6fã$8¢J¸UP§–L• ”2ú| âöiÂd¬t¥Í°‹ù³I{•rÄC% vÏIf“»Õ.›Ô¶Ÿ¤ýȮò¬Éæã:ë#”šˆ~”i‘!„~'J¼nœéŠ«£×?ïðO’ b Ž„ìI3ú_ª?ëS?ò‡õB¿ÿªÁÞ_ˆ•,óî5^Ž­j“5ʲXçdèI"Q˜Þ)×$‰wák‘®í´ÀâÙÀt[Bš±O~½#¬6ê;z?YB%%²y;CÈ9©™ég+ÐtY ŠµI}u”¦[(2´ô«·ÉéW‡bÈóêßÇÚU:t瓘ï t`¸‡Pyã+T©_` Ò½¤Âå7auîöû!#s%R/0•QÛda=Ü&0˶ڸ¯¿ Ø4€¾dèïûTÈБ¤Òž”O'“7d‡ü G2;K e’ ©ÅËë•4Ž3"3%5÷~É™g’Óð›Ì›Äð,mï¹–xp[å9²Àà‘n2¡³£$MFt+›ÿ#)gMz]ühXù¸>«Dì;ÝF …_ F „}gìl麈7»%mBJâµ ƒ™ùÔ´û@—ÔPhÞ^H_ÁöÐ Ö…˜‡:of‡AÇTÎÒb×™èùyóe@ ˜~Œ—ýÁM‹ÀIÐ SY\5j9l¥(Ì"tèŒ ðVÏn+˜xµëÉ2Ça¶±]2­vŒ^¨CSoÇ3Îña…W`öêbò×Zˆµ SÖSh%6ž{l0t払aÕT]ŸZzK,j æ²ÄyK¸Ê|ù ô%ÛmT¥#‘!zñ¿Êsú;Ü%¦Nþ*éŒSvõá˜é“é”M©ˆ4‡Ï¸Ð9ýy«m2ƒfÌy CO=¼¶pçSÓ7„YÒŽ%šúªÿ¯í‘Rß4jPì£Z°‰pX¬£A˜Ãl4,«;°¢ƒÍýÚ¡Ø£a|*Lâ/ý5PUåjôwI[,G€ÍJÔ¥Š?N‡»Ð%0‹XØ ãºXsì®–‹a‚ßî:ձŽ4Æ4_3VÓ]‚”fÑáa¡ü?RòÙWüv¸Õ‡™~)×Iœ£ë”W”I×ÕUÓÿ6ChË€Ôu^.Û¥Hä—P¹3y¡ÏêÃ}¢¡Z'Ôûò)­L±i³—Sç¦Æv:Ÿ®^¥sÕ$R¢Mžm וu ‘õî÷£iDQ\ï•Ædøãf÷¿_XÀ›yY*¢:ÆüD( ßßu÷]‹»%Áv2œn­ëKMµEÀwìÃp­çVNe95¿É(þËpU[<8^Œköõ­ÚI›oo~’ßó XtOïLÃáîßô«T¾?ãAEñXJäÑÞ…?õ‘h‹Ö3šT{›ü€oÂøŽ„nó'é"_eAq%ë. ðØ*Šú`g0({¸‰]„$½L$XÓOÀÆ”hå›™’âИVu ÀÈxŸÈtk2üyèèÞúeJ¾‚BüDMÔ9‡ôçªÚ~ÇTß_:a“`b2Nú~Oü¬½ÊcDlyäÞLøƒºËëÏóx‚Í–HóæïÓû#bèS—+‰,çÚÓ¾ øŸIŒê_¢zH±Ý:ü|@ƒ ÀCõÈu•ì¤RäÛ›E0èŸÖ‰¹¥ lpTtdD ëÚöòê¯ÝQóÑí×lÿ¼#³ùü¸–³VÛNµaÆÈ©9}x¥¹'ýq†oÿãä>­*QOÖO÷؃´«ï’d¼ØÖaKh˜ šqÂÏ»L—O­(ÑçÂLÛ2Yë+QA‡·÷ÉR cì-JVÆ(î…ù§‡F±•…Ût2R'¬6çœõ¯Õÿè?‡m¥SüÁåµÙDºù“×?ÌÆY2k ¾YØ]øS±ŒëÛ•ËŠGö?º”›ÆžÄ®_šïôôðC”ÒA ;ÍQÆWÞÁžÂÔ¥-l‹¿¾MW©ù/ÌŒ7ÝR²—ÀÿJÔHd¬õ„8ÒœJ#NøÊ]”óxáµ; `¯`®ªcÞé%¥˜¦8go%¤æFXa£.‹¨¾ËzA"rôbÂÎYâ#ÿIÈ›õÂÖ@yàÑWƒx`îYÉá0¦BqòË£,)<Óf$±ÓÌm°Pשsw£ñ®ÙE>Ž5*tClF¨Ã Ÿ­à¥ñ$×éçžÞò(w¼íáMñ²Ž¶útþgJƯv†e‹Q^‹Á>b1h‚-öç-­ØØ%óš^AŽG&é¡}–_¡gOÚÚ…k/Q &m@½£|ÕùˆEÿíýì)‡ÛñÀúÖ¶€O±Þ^M•J3^‰NÌ=˜b0pG°zH¬Uêpje÷óî¶“sÌP‘ ùjDÛVWåQ^®È-–n˜ê'ÚÄO0WUÔäT]Ù(<1ä¢þ¤ó‹¢–vRwþ ërqç:}8ÏLQ…B aR¸ð¯ìœÆ¿?©L˜]˜;ò?)ðu·²´ð& €¯€‘·R0ˆå^ÒM ¸\ÄØEv9 SPr‹ù¼פ‘T8‰€·>ÒñŽ/ÊÊEZ/zíCïa.ûuÎò5Ú p6ágê''jü˜Sya´ÖÍ}^Ué˜ú]^ÞSu÷¡ÎËÉÀtÛ†ÀkçK¢t@y5vY÷t3ïPÒM i9ˆuùT…4‡4°dµ;”€­ÙÅÿX)Õ;]3ÍÔ­àÁ¾ÂÜ70qôCÌä `ýsM© [±*ÓLˆg%¹—[‰MM͇SZ§NºÀ7%3zWVÐ#[ñÓkÃ|§ßÖêçtíØmåÂõjêÓ×8žÄÍ݉aYØíYƒÂÍT4\OÚ ‰^£óâ¶“n!vî¶N§?Dêß”—JÑ´²èz¤z³mLD;ñÒ·[û{£ãWâÊJV?!v%t¸q™¹·àäw—öÌÅšw‚ê3ý‹ôaDÇÁšÓa›t[PÜɸ’Z,¿tÓór5„Xìøè¸Âñަº= k˜gÚÆßZ¿úa#üè±dbpRÀ»Æ8ßþÒãI³@[Ic `£\à”»i\³7ï±á§‡Ãh-j1šÔ|¸Yd¬(‡øµ¶²±ÛÍ$*»ÄîZ‚ω&¹B̵뱕Œ¬E®;­køgá«´‰CTM/œ$Ôeæ“…k·ê&¹ËíÍwÇ̹»%mžñ‚¸*·‘:Ò²h#Þ·#ò´_³š¤Þüòwûß{"`ÏäSDYi1||%Ö³õ(žqj‡ÊŒÐJ'¯(#´*CÔÇ’ê«E/Ÿõ I†rzÁF¦Àاð)6Ùy8„kÒ%Éß( Xý2+TÁ¬Ú"Њ“ï*jᯉY¹¡XÑÚ†ä}Eº~z1AÔ›Ÿç4ÌÕŠ[0 —ŽâP O£Œ:Z 1^ɸ†5~DsRF|MÀc<Ìï¶“µÌÔ\Õ†”t&Æ"qˆ{ÙôÁó—q€µKf|",ƒ+{Þ-ݾ¾×,?Í-·g އT&˜Y,êz³×þƒªøÎîw–ÿ½Ã}¸ËÇÓþrÈŬ§z³œ¹q´‘tBÐÍŒ'„"*x¼¤n£\âLܨU•7çfÊÀL,¶ƒ¿KÄíefÃô d§|en9t Oë©2ÓHS“H[çÒm§_h*1µ÷Œcâ‰fðÊ é°ì¢ úPõÞF‘‚;bO’ƒÜR⛑ööö¤ÿ¸$Û¤ý-ð«±N)V2ÝT"ÿÂkíºÕM:x›°øÕwR&·’Í3¾ë±Zæ÷ú\ÓæÊI_×A˜Ÿ>B~Í07RfãrJu„Àxy©& »Ý}æ¤YµSêÆ‰.ïé¼=¢ÔeŸÐœÌ9° 8œ­ÒÀ¨?p¢Ègœ«NÊÓU4?ïlyœ­_%†WL£q3Ò Q{í}äà‘šUÌ–cDciœnÛ*gu¡;ú„\2L[iÊâ¸é1Å«'È ÚI‰ŸVhŽC@I£A cgIÞ/’k[Ë|/h¿3³1lˆ`xm¯Ù†ãO£|°“'’Ê6O¯lèÍ Ò¶O)€oòà)}-c¦èjØ~èÒ|´š¿©DmòÄËç¨)8èeIý]Ĭ©Ä¼ÄP¼JÐÛñæV®/V¹³ºÂ÷³ÕZb§ÿc’ûCÖ°M#‘€?¦ ç…S”~ˆ>ÊÁºP"f¯ ì½ÒÄÞ瓤}Kx—;V<Ês”BE¢Ac}e <çâ°ñê1HÃ[Åþf%ùuÓÓ·%q$çmieCq¡ç>NÕUNèªn„Sqd¹1©¢2?ó<î-ôñ¼Ù[ƒu»ØÔ¬çHÔÃ>º`^•×70Õ°ŒJL]];ÌÔj‹´„u6å5 ¥•¼ŒžÕ ôoÔd™”¿w«&<íëÝq9æ¡"“/ª-W›?1²sÜÄwħ¦Õ3äaí Þf®RäÚÛÇ/ ÀŒ0£,Ù5Ü=UãÁ{ÕD±,ˇjš’(€ñ[GP÷¨4•Ã"ø},•8û<Ý6áÄ>{q EØ–é#Ù%ÐÊ+-¶#sÙ®?æµ—O<ãêGôhãÈÔ£¦ìÆ ôÓL;P÷ÏN-…ˆÈÌ/ã<‹Á˜ Eáúä ½¡DSHK½œb…¦¥—EøóWýáL×_>CÁpœåÑ¢^°‰fÒ,p»5ù8ô ƒF¼H‘U †#Ï-ɪZRD^%o'  ˜iþஃ„í TIf-¦jd«EC$ØÀ !ÄáZ“‘&ë¹èn£æƒAÌÿýì0Fnàü_$“ ‰¦8¦-ãKz”¨†Âóm#’«R/%.8ß^.XX¡¨ð÷ ‰6íö`ˆéŽ©Áó“9€3wÒÕ©æ;é´‰‘x8!_²Frõåà@J¼—æ3n­ÀqöZ®¸S{lWjËpV1wûÇBÂj ÀŒ6l)Ý/8cXM^héíqïÂÅÔFë'áõæ›À Éù‹sÈóÙÄŽNu^a4ÉRâòÇííeÁÄCäÝ>’½‡•Äó“^|KäýTºbÏ æö¦ƒÿë ï^ýEwà]lí,ò;RÖkŽB ;ž0•;£¡3•ב+Ó„™œÑ¤Íj‘I’†ñÛH)(½€:h/Ò_6gnc½4$Î%£T 3áÝ36:ÓÑŸõ=7+z¦åzÄújä²]¿›r ñÅþÛ“t )È«µ)e3p²€3,Î}¿\Ey‚`%8+¦ÂågFÿ"JRŸ<ø '»UäÝÖV‚ T9=F ÐüOÊ& ˜ÊdêÜì%ÕhE§ÔUö‰4¿io›Ò³5ìo¢ëšÕ¿Öm~Ð[h¡¶Û:@zkEKC×ö4ÅÍÅ‘N<ƒ$§zaAš´>$x3Ñ ç®§Ñw^4Ùsy^^:6—~½r¡¸j°;Kæàh‡Ežv„§™žû€'êl}æl˜©ÚEg¯¥ VÕšO­{’ÒñM ó}2F¼ CæXµp{(´|"3É€öý,kæ[Ô³×7þ=î¦ð¦â»Áû:ZÜ[ž?°*HçE9£xÚ7Ó¾ÜH`eÁX>ÇÌJªŒâË›V V-<êK¨Ó’/ÐÇ?Qáê ‚½K’HO¨ùûðA¯Ú¬bkZt»|þÚBȹ¥ØtµGB53ª ïð…;“«˜À7sÞƒuâe´‰µžÏ‚“k(út¦[jL&Ä}X#Ä? +$uÃ3vQ^¿ÞÌ ¶jÎÆ@›þ“4‡‡öj+𩬞íÒ=B)?§PˆûØf>ÀÊŠæ–þɦ œMå.gƒŨšÝ‘Ó%kü!\TRÄè¤"6é²µ5ˆ[àÑà󟌉Õu–x±?X)0Îtãxª茔:r³íêDáŽÒ¥¾ƒàúe¹––ë6Í+‡š¶LÕñÐÞòÂRX_I ÕmÎiÝ´ôZgwÿ®æœšà曦ÀÁ6n_+=êB»¸ƒ÷}yêRÚÏ]úmì”ÞÎ4¿køiW{’H´†±ádR‰f–:¢O‡À¥`Aé_É.S¤}j‘¼õü²Jä0#”ûˆåú,ɹ×*”/ŒÉ>ß‘¶gì°ÒÃøžˆ„sÇó£Ì^#¥DøTéë2 v :æ¹½ùâ©ÿ`¯p„äµ2rµ«q%F¤f}4°ÊÁÛ6&|*ëŸÂúû9ˆÚK]3õ½Í—Ix±D¦ÙK„ÑÁQÄͦ<<íѱÑP9XC6›*ë' ‡‘‡Ÿ#ê½wzôÈ•ãDS§ÿnLñy endstream endobj 114 0 obj << /Length1 1859 /Length2 20537 /Length3 0 /Length 21759 /Filter /FlateDecode >> stream xÚ´»eTݶ.Œ»»hînÁÝÝ NãNãîî4¸w·àNpwwùÈ»ï9{Ÿsïßoô讞þÔ³æ\]£G©’*ƒ°©½1PÂÞÄÀÂÈÌ “W±·5²caePš»Ø9X™™Ù((D€F K{;1#À²(š€>b?<˜™y(’@; Ó‡Ñ`삌Ô<€,j£%{gƒ±‘ó‡hgni¤ùµwðp²4·ýÍÁÆÀð7ÓßhF€Œ‘‰µ½›³µ%ÀÈÎ Ã(ÏP°wûPZ¨ííÆ@ #3€½@ ¨PWWQHª(ª+©Ò0~$Vuqp°wú?XDUÕÔ%éb jâ =@R]Uíï§Ðî¿9=@AíÃþ·Î‡ãßpyq5a5m%q¦¿ç`¸œ-ÿ–ý_Ø(?þ í#ÔÌÉÞöŸj È—‰ÉÍÍÑÜÅÄhïdÎè`ó>5 Kg€›½“5àãè´þCŒ‹é à¿ü]€œ¥ ÐÎø7HÂþ_FÛ*?‚>ô ÿöAèoN›¹œÀÿQÆÂÈùŸX9%%9€­‘¥hgdgòá2¹8 ÿÑ}¼¦Tÿˆº89ý­!ÿ_&§ÿ.ó_ÐEì?Îì«—‘Ûÿ^1#;gÏÿàæž¶‰½³¥3Èù_3Kà_ôÎ×ÌÒî¼°‚´„¸ªƒÜGãÙ1ÈÛ°cÇrýãý7Ÿ°˜/€›™ÀÂÃ`þhRq;SQ{[ÛÔÎé³üà dïäÁô7¶µ½›×ÿÃ`figjö—{S&u;KG ´ØÿqÿP!ü[g˜@GÐÝÄ‚éoÁú寚å¯úƒ/{€™‘3ÐÇÒ øq@ðr6r@N.@¯ÿ4üO … `jiúhõqAø'»´™=€ç_ê$ÿeú?M@ýϨÒ|Ì©©½Àh†À¤`úh êÿ&íÕ’p±±Q0²Rÿ_œþoG#[Kÿéú¿\4ÑR+Ø;ÙÙü/›¥³„¥;ÐTÉdbñ/jÿ¥—}ô¿°¹ ðcYþQ©ÿ)›ÞýØ,ÿn_.ŽÿeûhKk; ³3€ýðƒˆÿ…øƒý¿xLšÚ²òÊÂtÿwÛüã'ngbojig`åà99y 0ô+À‹å£±Mîÿ4 €‰ÑÎôppùÌìþ.(€Iþ¯ê‰› À¤úßχÍè¿%fð¿EŽW3K×+Ø9L@»‡°0˜þ-²ó˜ìí€ÿaþÈáø";€Éé?Ä„Îÿ®÷‘ äfÿæt.ÿYYLžÿ.Åý!þåþ?‰Uú»¹ü35ÌÿfúÿìºÿȪ '{k ¦¥éÇ/θȜ,Ýu™?ZžåCÿñú¯ozÿ£Å¿§õ?¢EDìݽØ?P2°r,ÛÇþÁÂÂÊåó?bMþµþ3n-ñ_òßݺM–æíM¾[¥ý -õ/˜,ƒ¦àa<)ÇÐ’I€Zú6ÙFˆ'–»EüÐäŸIùÃ^NŠWÏ7%À®H‹"Ûæm­9¹bâÆTYhÛÈWÞ—E\x4GƒQ=0S~Ñ¿¬ƒŒæP&'_»˜}:³%¡… >z$ÊÓÖùÃúûý*•ìkYËj´[á,K#–“ †û"A;áâd;8èý+.Ú¨Gx‰vÆ0?gTÆ¡»s¿\ßCðûÓ6ê¦vD0IÇ0沑˜Z4Î >ä&+—;ÞJÛrŠ4gXrÉ&¨l,Wâ7Qí AÚVÜ¡d;ùc²Ò¦ù(ÕæzW\ÐÆ>汌âpXÅ0NRE›ñ:†H¿±=^º—cŽú{<6½%Êä†hEîù ‚£q†°*œKjp>AâVÚГpClYaúò'Š;çe¸'mC¦¨'€qzî:_ÝTP9Scޤ.„²ž¤‰R䘶7A°Ÿ+Pš*-÷½”öj"¬g³ù ötCô-¯ùLN9RAÊB²kúÄV`{¥n´Ù ><¯¬•õç™LÍLˆ×ãê§>­HÁpø¦¢>ÎŒiÕÔ›¾î~fÊôä6¿²ëgÀ\a²‘áY漸|ìjŽŠ jöb5Öû‹KÛ<¯û\C™§¶vEöÝyì\O¼ lÚ•îY*ÕQ#@b²±Dô1·ÒöŽmÔ(TtqWìó²=­è—ó²ÍYó¦¦4…-áj™`pŒ$|ê~ëÙó ‹×¤y ¦UEÈ—úöúwmóˆäÀ#Ó'ÌðCË®Á VåÆ?Iðcä৸"ƒcê-âò2èogj÷JZGñJÚ ßš°לI+™Ñ!ßÉjz«ŽØCkÁç7Eð ®". õNWè¢3¨eg°\[Lð’s–:ýêßÖDîq*T³¥/¢£ìužŒáÏ'%Œß7È[ÇS„˜ÿ˜9›Öœ0m${—ñ,ƒ¥ÿ\Tb[”{pª¡Â£¼,¬ä¿Ú õlª[pš¥ÿpæávžƒ~ϸñâ³#0¬ñ®Í/»¡‹ƒ‰Éòb¾›®ë8¡%U8ÅïJþäÂÁï_U¢öã{µ‘o dóhoÎÂ’)b²åýg©D|'Ïôúš@xB õ›9Œví¨èJõ-â»sÅ÷6ÎJÁ@"|ð™+‹ S,8^yÜj6é”n¥;÷¤>!<æUú5èI²Kw õeNjû¤J¿Aºü×"Mˆ(nLlöÛž”{óËù6ss&{wíbœ×(b¡3‘ÏiÙ#°³*ŠÄ×x²:ÚõÒ‡r ÌEÌý¯`äK¼«çè-g•_ñ\Vvè?ŸÌ©$‹h]ã)P‹?_Ü¢<û@d쥺ãÔ²z[wŽßð®(èYwq‡~º• ŒÕEarÄí"#V„Òò/(F™e‚@CÅ9Ï5à!ëç P(s‡¿8÷Æéø]Ù_ùØŽ#¯ä;R™ìŽª9'À¹Gdª4A²’±ÔN³ 9”!Ùž#ÒïäIôÇØY¶+$ñôI8·½^Ï…ÄLøµÂX`†U$ܶÈdÙ‚ÐríÌÞYûÒ0<mœ—êg„écü–LõCë ÍcáœiØñøYtQ$c†ÓÙ»Z=ƒv—+„¿ °Ô™ƒµpï¾èOP! ¦Yü¶F²æµ”Ø ª­C™Ož_úÝ»y,Yv.³QG¢ýÎYa€úOðÀŸ\Íkå)-ã>!7!ƒ Í0ÌŸe×ã\N=OÔa~*ö$üíÔÔYnðìï3èHqn’Ô;T±'ê•Õ!cÊQ²)“ñãï±`a>‹Mòx[QT5ʳ÷‹ê}GkC´Ån&ŸÃ35Zô_~Áæ°ÐL5ck÷¢YÃ<Á²ÕY8›×Nѡ℀çV PªtuʉÐs^å±1hƒ!j¸í%âl€ÕƒÓýS|<!c-†çØê4áÇ7è ¬;˜zÈËïÀ..é„eÊ„‡“& ¹ÂãI¤R;8 ×qœÅòÒE2>G8B•]#ï?¿÷ؤŠÍ5…|øŠÊŒYYS[ö§–ͧÉx‡@P¼V\2Õ+ÅIþíPÕ˜ŠR+´æ]mÕ ‘eœÿ„Ç„3Z­Z,8õrã sBàð+¡¤ø¸$X¦kìˆi°œ‰§Û™¿q2JÐÆÄŠZó Î,ÓJ¾„õoOàý¡:¥i.™ Y›I -LW0däò8%ïPõ߯¤HRL›ÍÙÁ?)R+ïfÔ71Ë]ô&°&-¥Ð4= ìJ Ùî.! ÄÁ‘ê‡@ð#:ko7\Ø‚£X_Î|íá8í|=ø£¥•d­Ú;ôiißNtù}¥d%Š^,l-»Û‰¶[Ȭ¸~Šc7oŒã—Dùd~˜ô/ŠŒ}93α,ëz¨‘ŸñÜ…–R*¯Òxdº_!]õÿÔ€U­û¤>Ø8/[$„+â£hqckÚóª>j<ÝñÑ}p“˜¸f~ª=tÖ¦zt¥žô$qcBÃc)Æ>”ène£óÃŒ…ýÕ´z‹›>«½Ø8ªÇÊ|GL:¬àŒ¾Â>)pîê•Ìíó9ÍÛ¼Ý8{ Twì |Õ¡ª—<©llüÓ9&±‚¯GÀ5–3ƒDW‹jÒúFÓÔ2<õ#8²Û m8û¢ÕY¤š:8À(¬w²BüÄŒJ- .ݪ­6˜šó´/¯{'¯"PØ•³é<"sbˆ¶H8§õå·n;8¤iÅz?<5*÷ëô½È¯Ä|^í ƒ-R¨†¸(;ÑŇnÅr(0o0bK’éW†ìþÖæW|Y Ô9?ìàüál£Àkàd Æ”/B¢áò6SßææuOP‡(þ.dm®.rK­")âþY d›M¢i*lïgI×s–Sulñ+«Zªµ9Ñ'V¯º8V³´Ô¯—m)<ôN“ùO*œó‹s &G­I.1^ÒÖs`ű]·žÂ¯G¶Ãþâç.t~̯ԵLm繓h¿S/»wÉiOûÍ‘ T5õWÏaÌßC|×`A$Ó:ß¼GG}ÑÞr˜3qÑÙ±ªBdb»®1AÄeãLõ:ËBÕ_-ߨT ƒAJ¤¼¼P‘«è ,y-µÜ¸5»÷/¢·~™â4Šeõ}¼¦£Â!‡ÐÞo¹gPú2ˆ)ÖÇÄë•"0s¶W,Æ:«¨FÍòŽ´/œøŠÐQ^²þg€¬{W‘ih”ÍWmÿV­¶¸N¨0y) ?VÊö‘³½/êŠ_º9b{ŸÈ6 P®O áñ4FSù B¢@/pKÑUÃŒ¹¿ZwyWSd3¿|iG“¦Âj}Tùqî†y>îi‘¢>÷çÅàTJÛqs¼g…“ôÍfùm{¦n™¾ôDþéúZšˆ™\‰‘ÿÞP A׈1]UÓ-uг_lÍÓR÷Ùœ'¨úòÔòæ&¯ûc.÷ÑЗb•…‹,S ëz‚9@©`Ù ‡ï8Ž#ur½Nâ€Çeo1íÙkføPsÁ.–?ûøÜ”¸6ºy8ᇧ® >GnKºÙÍÀ¿ÿ*_«øU €»V58ø•‘Ýz¨Æƒ";©ÑE(S^×…Xôöˆ$\š÷ªZJœrz%צ ²zW±&–è‹*Jœ³‘ã‚6l”]‘¯*n øìŸØŒß¿(ª?Ïü\ç­øšz_˜Å6€5ÿÁÂôªŠ¤+êKµ»ÃÇ óòEô‚¢Ï<Îú}%n½ X]gÅ[Í0µ#¬ÊV§tÛ0öå&¹H£:?n`4Xáz²´-B ñòeÂ`‰c¥åÛðÒõ}(KþŽ×á‰DUf\z¹C¢ÅKÓÒßytW—íö¦Ïi´ÝŽZ¿Æ†Ì¨áðÂü~’]Ncí-Å_NV¾c-%À ÞÊ‘¡­4 Vx’ò"ãJá4'ëÁãLË I/¬XÎUW @œ}nâ4üâҥ͟c‘E¢TøêBì ŠÃyÕh*q·Ù8.†×³Ç‰5d¥¡Yt‹a ›T þ©Í®‡œºâGVÕ<‰H® QϘÙL]ù·0Ø]9”L1¦ß9Í(}{C3½>KtÓívÆÎs»‰klÒ¯ù5faê’e£gäÃñ²&(Î í§ðTµ©ìºãr¨÷ÈU࿨'xkxäÂjš Œ=Õð¬¹4‘wá÷ ë wYŠ}Ú‰ù¾ã¦ï(kD%ïüPêæîÑR“8y×¹Ä l½Ó‰¤÷:ŠÔÇNÏ•èÀ/[‡Ú!»´˜ÂPö–©§‹²8ͽûhL(œïÝôvðÞÿ"u<­EÍ‚„{o˜t##íŒñg¦&ÅrHèQÀ¯Úº]U:¸=3dƒöch@ZUkÐJ†%Þ ókã˜Ý^û›ºü7/W£0ÿùlŠQzĺêaqìŒôe L¬›­ø‡ž{‚QÌÇg9#„Q^âÏ¿,–Ë‚Díâ–ý/NU޾òE—«¸{ny|µz¿éB"Æ÷™E›»Ì°ËüeN¾•›áÉ6ufzoŸ×Ræ4<”Ç\:¸€„‹Û¸ ¦–Nu[ÇT¸¨Wë–•Êzö锾Bñ\'«LÅð°=Nà†þ&‡1RÁ’àÛë}Ô(S\ÁW×qó†T£¼rÌ¢úGÁªä Ïâ$­ ™”}ÀdµhPõ¥[£–ëÏü°;IÞ1L±5Í&«‰ 1{µ|Š&Ö×@±Ô†ß O0ûÔüIÝ´kPÊ'*FV/¿+_|Hˆ†x@¬ÌJÓt"V¶Æ‹nnÉã Xưçs…Ë7çÙ(™3öô?Èk³dË5?×G‹×8ð\îºiôô’õ&ñ=é»<Ô1é²0F‘•nýkÄÔä‘D~bŠ$ÒŠê+ ·½¯G·¶»ªÈ Ï­l&IP«D„æ 7†zîV ~ánû$— SôŒ×—,“iYi¬ûû€ª3r—ÆÑ!°ƒ3)â! ÝåkZ;«ôÃa¼ã<—á»|…”Z(Uëò¶k{V¤ŸÞßåà±IR£tY×´•˜f¡2·<¤¾ÜhÕ‡ÌøÄóš`¤ÛuŠè˜¼4é—é§“$çÑ‹W9-ª½›å}À6_‰Dÿ¼F~Íùº Ý£Lz<£a éÚb/9 jÔ RññƒÞáƒË"ÛÑ* îwYóœ{»0[§§@^.ƒ~·`v­&Æ–àš°`?IÅíå4ËGMV+(+4ùU˜‰aêNÕfÞFÏ·0~s%½Ÿh¬þ !Qná\ æ“ ÅB´^ÿ‹×õ°VÏÑz.Ýè–Pƒh ]91o,-›†î‹ææ}és¥´-Å\ æd±b«ϋ9ÆoúòÍo L|¦°FÚ±jþ5¾Y8G…Xop»üù“âOä›eÊN´å ?¯üæo$ý‰:ܪáã¬ñÛÂî,üåV<8˜ÏuqžÌÓ‡ü5A6«Ä}Ùóèb`7N ³>©Ü¦k¥Q” “Ußì*§]®}v7ðd>·vÌ=$â)Ѹ$Ü"a±M>i«ÈœÝ8ýêÐ`a—PÔ·cô‰Ò‚@€ˆ$&³ÿ]' Ud¹…Á׃W°‰Õ~” çLüÎcÞP,\«roÚنד€ž¬:1©8ȉE¹Ì1“p(àà5®(¼n4æT‘É Mg’\–TQ·ìu®¯6kUv+©¼Yõ`ä£@4YïjþÄ©c@¾Wès)çK{銴3O[šŸ÷¯ûN›¤m„a  º땸ºZwkØÏƒm#3cè™`ÎËG¾–¶œÚßÇ7 Ø" „Máî~„óµbZ{v¾Åt¢zÿüĆo6v­ÿ“7y¬9ú֙ϧQïÇ1?OAóë9ö2 6ôøŒ›º‡ÍÜ+lÒÂ9 bz«HË¡ôÎyO‡p<-_UK¹QcwÐï!Îd:Û0vfÂBzå„q”êd‰¤æ©H¬Ã?s`…á'i?Uä™2ÉÄã\OcïÔ‘~5Þµ.„ÆŸÓâL˜òâjvpY:=©ú\ƒ÷CAc ã‚%)ÅÜø0t,f Býºß(rnMÒqv:ËÈNnUyÀ‰ñ—×<%*´ŠJ@iËrYR6Ü §<àÓiÔ^qL,`}’¾ ƒI‰'¶°õ÷ãŽ+žÂo,SG b+_¹51‘ØÈ/B@V”™sʆMB®Õ?¤ê€4#LAF8L¬Óƒsé«f.™l/Ï8çòv—rwTmÔ*8 ¸…aóÂÖÜ‘ãt#"L¯ðÍ­2,ý¡×+ÀÝ{œÐK¾Ö`Ì’­9A˜˜'® )ÖNo yÇvýÅ$Ýü[±ÔSÔ) ãùÑèósÅ£}«Ìª‘ƒSânÑÔËIë&§á'8Ïu ˆ®_9tà@ŽñÓùd»#%l`Çþ>²;3$¸6ø+/ýÂ\JÔ°9*™ê3aÔT³ùçCX2±T I•‹µ¢‡m§×1ò3?Gþ·é-Š ĘW×ç…­µÏküKåUüóC žg;&xt‹/Ë÷6ºƒXöæ%‡ôXüVº³Êb—¹œ¡²ûæT ÁD³Î|Œv‘(ó¶ Që{ëµ²ÉIq‰óW‚ÞP(~;ܨú#´¾ HñÜØ‚·î¦È;M“àY"¬áY‰—äô‡òCœ¿+c©²¼ZÿX°…HyÌBÑBwËi‚ žaùr'ðßX!…G[3è ¢ïd}Nì4mË;¯3’ˆÉÆâR_‰4ÀXCé_ˆdWÚÈ倃Ô\j¶E2ý`9É|Ñ¿ ®±S ·à\ZptºòO„el)é ^Õ”]Ô…ú®!@£\ißä(\¾!™¨9K¶2â^$íñZ 9;ÜëôÛb™)µ5k±|ç°ò"Óµ,:q{8_ÅÞ3ÞÙ7«4°š<]lŠ6+°…ùsä¢å87+÷3kô¬×/oÉQ]Rü؈4®?'ôýnáóÊ‹Bgj½Ïo¶…ó2¼1SÓÇ"QÄ»Â%!o|…øYS–;§T[FCýËóeu îEÔÖ’æãa±¨vÇfH‰û°/×ÈôLn»‘WÔh3b&Ô.DU§½Û3s$FUthŠ´ã¶¾åÜFÀ€,üA5‡g“¯TDQ«>3ö¦¬à·ïi˜ä÷äe:óS‚/ýÛ·Â_Ð_¾Á*‡Ê;9`þªòˆá›ÿ‘å“ ‘Šê Î÷†Emæ„¿s [‰§V\Š—½ÃÌùt$tªt)„X^“$˜y †ïªœÑmw{„†$áxöÊç|U‚Т.íf¯#6?òÙ9,#óäÎj˜!À*EE;O8+šâæ+ª ÅÅtVa‚ë ¥$ ž¾ j,¼•Ì7^·zÇkƒþ”È.{Šè¢ù÷`ÒmV­õ3*˜YÜVLí:tÆv©8¦ )b⵸ U'Å[O$÷À€}ÔŒm sBÇd UŸÌfÐ$"ÿÖŸñÇø¨A›¼khŠ·›]¯À ƒ?}QšþÔfÁ»·\l‘¶k ö0¨LéLC¥îßLä*ÈŽý³I%´­$æ52fLeFU¸Ž¸^Ç%'ï°Þ²ÑóÿF­vÇçä·Ñ §hj,÷ÍHR#øâ5QÈ…É>ÞEüìàÙcàÝw^ˆžƒÏZ'ç'MÎåUg]Qöu芒ŒÞ¬p6š½ä›±ä›}7?ÍÏuì—T#·ŒûàbÕÌüˆçŽ}ƒntŒ–õwMe`ö¾LØ×&t\O@I2‘Ký¾Mq{ éLô~6ïÍ6õkj®ZŒ¿ËÚ~€Âùmpc–Fró ïûç£FbH2µ¯o¬!U§‹Þ7æhG°äwj¥öØMÛ´þïó´fõ«8è+§a—ØÒôqÐ_ýžžìD’“k{"" ¢Á!aŒŽ£UÂ7-6£C“óz•|'ú=júÔ‡#* Ö™Pâµö¦ÛþÜÀðh  ¶ÉGÞÜåšœ¯}÷ªÐraM%Üí{ð«ßk›Bá‚~ãµü,âGÑU¿µÉ]TðÂzÖbX_z«á°6ŽêS²¶{ƒ^µäF{†—|w|ÅyÐÙt»¡Ñr quIeYÌÝ\AÍð$1H†O‘¿´H5Ò®-€hýˆÄ:r>BSVõL¼$âµÙ±½]ÏͼUbþRõÇÆsKbÒâËɈ{WåaÝ,87ø@/èÔû01K"?6ÿžôŒ¸I®%žF§ù4]-f*}áP¥ @±g-ŸÎm;BÖ³Ÿ­ã‘Y¹(<ΩÖ9§Â—º›ÎM{(yýÀÉú¢ /å“‘Äi%ß ÅKùsï°«<Ó‡Ç Ñt,¼@ËÝ¿#šq$±•Þ«ȄÔ_Jüϯí@ñ•| ô[jøs3’à. yÛÓ£‚Ĭ{òï#>Çý–R\[ŒÂ›àÐȶl×Ñ}Y”WXØÙ Cx0…/ïTœ“ o:j=h(ÌýYR…,mê<%ªXÛs$9±òøø­ÅH gûÙ IðÛY÷‘R?YÃz™ŒjSp|꞉ÄÊ4±Ö0±$ÖoÁÔšRé?DÑ »ŒË ‰ùz¸CñWк›í¤Á“1Þ‡ãU¶'¯#iv©¾§ô[}<–LÓW=¶´5U¿·Ô)¶ÓElšŠõj¦¨ê+ýP0YQºÀÍgQjׄ¨¬—‰I5¢øD¬žIàÑôB~­ L—>/: Ñb Š_}v®á«®c²äðxe;&ÊA°;¦íÄJ¾%R{íWÆ^íqÄzNÁÛÆkê²5‰…x2)TŠí›ŸºÕȇEëМšºy(õõ&h¬nG‡ÖPç¥Õ ¢-e(¼VÄ÷x¾tÄ~Ìç4È¿2<×|¤ )­7ï5f赬 »@€|ìåòZÓÆ #ò5Ñ…ÄvUlsÈas§d]¢sâ‡ÉƒÓ‹¹¶Z¸1iù3c¨fNâ]Ⱦ# %EG€·È¡ £]ÿrT~snedž^5—%;¼£!‹dßxÔæUi”ÿñï²då¬Å﵈MÕ5ížDÓù¶Îás»W! ì«·kk½r²î9pË”«•÷À¬‚Ý6D:ÌI´&ª»XdüêçˆpAÜmŠv4÷ ‹ø ÃþÑ2}´X:ΨÁbëf°T b¦@Í´!&CiJ&£h¿{µA×þe3ß)çÌi8 \ ÿþÕ"Ÿ;ŸöRë}{èæ7E¹KH±o2U¢ ,j÷8Ü—.7©pÈËH Ë;¯‡h›2f«›:ÑV´I¹äúÚï7Z)5Héî™þ÷mf^É%ÍÙ¸pl§zv,j)m°¬ÙØôṺŒGôìÂwܾlĤ1ºéƒ?Ã^‘Àa8;ëg<,휛dÁu™cŸUŽÜó »M©U‚ßÚ<Ìe'ò+NÅ8¾ÅÏ´ðÊQ´¸^é?{žB ¦o Z,jsš=¥ªyÔ>è<©ežÑî‘Ò¼së¼”5ž¹—äz„Þ$Qõ†³x­zÅȇ’[3'ÄQÅ*°sÆü‚*èá^}™©H5U×./„¶÷›O™njS] ñ„Ç.;UÆz"Ùk®H}íá‡y4g-õ‡ÙU-À=„XO­-;ž‹7îÖ&Ä(m¢ï „\8tÞ—En+«Nl!Ö5b‰´>j™~è"E ÄË‹@7¹\•1çCµ],8Ø,³Sç’ìý¬ì¥ÕySÖºÏ't’-®ZçûHò^*‘³@Rýcw,eüãæ &¹@ñäý-)ÿó>ÂPÎÔ·s§meŒý–5E˜ =”¤ÚÝVò´öL 1œP“ ÑysÈÆœù¯¨Išõ½z'óü'˜Ü\ñ9›ß#÷_ûßë§" êñ׬zÝ»CìGDÎ>Ú”›:‚}¿+páã‘`‡'X‘›R Kàð[³Fúêta_.=a䃬wuËë¹ ùp&ËV°!S€®ÓÌ´ôA¼“dã}efZè'Œc®†F*¡òÄ1&”ç/\X9¹J‚ÊßQuv-2Ô“•¥-Ãk,¬?—o£tb›Š_í°M¤{Ô¸ÿ  ÓbW[h¦/ =úMkR·¨©DŽcòè×áÓÕn–~C7ʬøš1Ì Ãß§gÃ&Ùξ¹4žf‹ŠfZNYv·ØŒàª€ëa §²ì3“†ì¸|¢DIš ý.–6±¯úÉâì 0N§~>.'ž·`WÞ´‡Á£¥Âò¢Xæy˜–מ ÈKË"Ø íæl¡Ì„¨AWÄôs˜¦è Aù¶k´G€C<5ç^si¹ÂÇçM`ƒ ºÎT};‰¦•¹v¯^úÅ,¸q±Àx´xUü·Ø >7{£‰ë¨JÅ5Ò÷Fù]ÅŒnÙa<[)„yºéµ‰:ÝÄ|«ï‚ü Ó ùòã›p0m"¤ïÕWúI©ÁæSer;Òo~|î fÏ6›È,Â[­žU7ú¾Îë›ÚW©>$JfïkëCa`§MpC rÓ»š27Yah!~‡ŠŽÑûÂÒÍÉ ôóÅÒ}ìr¶K±é=Ïç=-•!î¶/+òfÙ!ÞNþ†ú+Ô—¥Ýî¡%9§ÐÖ‡Õ}©2Ü£HG!H”pQ¯NO|WYŸ*6.ðÿðžÜ ÀPTCA§Ì\ƒGçñ¬¸ÊÎ}?»*<ò©„^XŸÇÎnøÎyp!Tô¢ÿe‹AèW6¯Ø…ùeÿ['ÊtK~ÂYºâ‹çVî¡““ç@OJz[_˜¾lP/ÑKç´(0o*r’£¡)/F‚ÀyŽÇ;„6KK|r%R.ê9æ™ñЋ¬Þúy®·˜Ü=èÇR[~{y½âé; ÁŽã‹J¦ÛƒvgR ù³Ó<‹jÉ›²¦÷«¢Ãí¸†=C ú-Ý#ɡ܌ÑÕ‡«ŽËT´¤Áù¼òH/Z+fW¤W°Ú:I!|Ûyƒ ß±©B’œd`bE¤¶á1«™7£ÝUŒn+³;zæ7¥¾Zû½`¤€fcžªÀ#P;LÌy‘U¦÷€½x;N‡W&âY ïC…­¢f%@’ æÎ §€x‹ÿÕp<æã oåÎQ-낟”f +Q]§l»pG|ö ¡ÀL0/Z;åðžêX‘ưx*°E*`'qõ*ݺ…O•R¡4¤þùŽ´N[F†óÓ]ÎF:Vi“çj¹$¬kP˳ñÔ…nŠ‚bVèEæ¨ÕÍÏ4œ;°èEGyÿ2¤/ÍUÂGýg°z3CÁµ¢õI…¥q/n7³íBÏæ0ï!|¶Çº»ß¶tÄU¡ïÂü®W£f¢Üåljb 4eçÁê3ªùùm¶nBhŒ „I¡µë¢&‡b½ÚåCÙJE…Ô™K­ÁmŠX×ù®Ñ³¢3Õš6J§k}I9LæpÒ- mjPڌǤuZ°Y²”ùXÔ;ÎÈ áÈ+C[ç%x‹]ÈH«ÚtíUX½ÚÀëOYŸ°\XJ„Nwlü¨D¢aÞ9c–èÕçUßðYTT|âe^Ia.m'¡â+Ì(Lˆfxˆ¸äð£íÚPqðØ‘I½_¬×mŸßßo»#]PD&Þ°-ì74/‡XGf¢”Vüšpy@ËÎ’[¾€¼³dñ»(3Ú\ÿ²>ÂPQÜyä BBf¢÷øT@Ú¬44ꨡ9;ƒ¶ÍQ`O[Ë©IqùY l5ÖÙøúœT_='|÷îwª[,¡Ï¼™Åþï›&¼Ñ6¾QwャÃp£¯<-cµ€UITxqdøXÁ&Î@ý©‚†¦\ñ ï¾Þ‹aæb©X\¨»MÓž‘6=~›ôÑ&6?Ô7ÒwÉÅ7 8¨rp5“j¢ˆuDêøi¨Ý¯üvw9ÈlN>•Ê¢†'AÂTµîO¦ßÍ(kÚ5}¹×¼|>Cþ‘êFŠlLÔxëzcÂÝë7 +é‰kmSA(ïl¿—9EäpÉËzo''yà‹‚j» ¡¼÷&੨Mk×ãø#z»<¿È2™Ð3TUòúUè™,˜iOl@z•Ý`ˆ<Çò»ªikÁ΋öÔ=W\ã8Ä">EIKH)§`¢xÈ©FsÒ»4jœ—Œ€ô4åg»¥ñãôr¶Å5¡À"Cæš¾Õ«ÃSÚHòúŠI¸o31g…ñ®( ý'ëc;‰ô`ˆÐÌy³…Ÿk¢ð>9µL´æðòCµ€sÑý¼O·­m"´®B! sOGÎà{íؽ~’´3J¨–¯YÿA¹¯ÒöÒrYßÙš3÷ÀˆˆK lyU(°”aXèˆÌ=†¤èØÞ-)U9iŸÈÚ“‘NͪÐÚ8ö… v^âmö/TXfˆ›}¶XOϬ¬Ód“KË’$1“űçùòi6åD‘ŸºEYKL~ÔlçW#IlÊÓðÍŒ½†@21jEœ¬/ËýÀ—¾ez¡‹è…º›~°äÎí׻ך {»è¦Å¶¹Ïx˜_WhY:ðl­ûöÅ“úQÔÇÅ~¥™ãhÏß߉´ !`ƒbÒ[n¦ºÏ® XëplªçªT>—p«Á÷Û.¿Êl_'`Óš½@>t7S=žIÕ•jõHÐÈb\ GÃßX“úË7¼ì–ð¼´© »KË"P-/C:Ë’.Ø”ÞH£’ãÉIŸW å š2ém:°EY8Ì«ù6ÅReä Åzû.ÍÅÍ$Ûê®þ9Mp(¤ôRh²/¾Ÿºb&FjéNY_[IbÕ˜n™±;±œcÒ²¾PýGsi_^CµÆ{`<Ì>:SD¡›žde|¢~BÚ$¯<Ütxlf;¹-3‡åáùŸÒ ¬\ ë<ðÜÛ$¡Ç㛵§mª2²cmÇåÜ%XX•kÿbÔxýWX÷¶ÜÙ2wá5L ÛÃWü€g“[‰2s›erø`»hŽèëóvíÀyμO~ðbœÈ\g«=³ë7ª0¿°!á¦äT²5¤ÔnÐg¨‘ðœ3HÁ¬ä2Çkõ±äšãóqð´u~Íí«€¹CK"=¼¦BFs)†ùÜT ‰X=àáéÆqrŽmä'=B§É rAV®á"Î'wß(žM{—iÄöû5‹êç Ù~‡Üò’;EæBÍΌȇ38`ꀞ6^èˆJ0w<<2m³w7‰uuJ¤±Ðÿ©Iƒ›Ÿàç ÓM~Š=/»x‹×Fùioâ¬üvcø¥k;§§c&eeHr¢·|l®ú÷î;º€KÄ6bQtßWóçV2“Cm¼›)Ý{â¨ÒM6jjåÉõ%ÈðWä¿/›9rÞm5WðØŒ•XoÐ+•¡R¦Ê$—¿»Ôgoz›Ë¿Ër »iî¡!À†eùù™)\LJ_é§$ ^ŸÉ‡½¡F•Þ&…ÑÊàé·é Ñè6¸Ró`—'ŸÝ V+Õ÷¾Õ4Wæp¸ú ®üºYéÎÙ Ý–Ú%Š©!ªè¿êÚV»T—ðÓFà¿jÔÍS¥Âú×á$i[X>ÝÚyÞº³–àô—áÕà’?Üí²jy®¥ª›h„ËõŸ®s¨Á ºž:Gt²À×éOX¼á7¦®‰Ð`…¾’.ÁL[~yò®J¼ Ãó40ß4í›,ûœNJ¹ƒîŸµïE“îJsî ÿó,¡µÛÕ ·§êÒª%°úQê힬ð`ㄜº)Sµî‰êì^ö˜H¨ ‘Ná)™šJÅþ}8€Ï¯¸iWv >&¬n®hðY1j¾WÙÁs>Ã?*<µþJãÆ©oŒGfª…{oŒ‹°Þ¿DK(]yðIID¨Ç§?ê]ˆ&Q,ïÚ†L«¨¬,@ê˨c_ÞèWë™Í Âv±*3©k Ùm%—î€8+üwû:CÙnÖŠŠaú•ðX¯Ö´V…ü&ÒBŸJv´ƒÒ¬Vro|Ùp×XjAD§W«1°Ž‹7Cñ~{î<§šÐ Ãgñ[sUk;Ì+"ðg<8©Ÿã¹L4vcü•¼÷¶ú¼•OÉÇ—Ý}é¢z(]¬œŒ¨r»è_L%‹ä}(5¡ƒyCïéD¤ºÛ'õÁ%€Am :”¡yDf¥ôG¦­ OŒûbÔ¬~&×3ˆgá[è4ÀD5“‰´óñ"qoG¹J…`Hj嵘AÜÓ]±Ø&:{õŸ‚k—IÏà@` }»t U£ï™»>[ýÕ¹d„qå—)·êÓÍ RiÅiŒª¸gþ•ÔךµÈ%rgy+¡éÂ%ÅøÝø"³IÄ‚!þç/[Gµ#›<àº)ºÝŸ˜í»5ÎÒž…‹Ýü‘®åç>8å»e-“1V ˆ9÷lV/ù$6Ê¥ß?›½çË †bCî8¨„žõ–Í¥Ï,k»Î9ÚÊât»H á¯Èœ‘LÆs0Õ9rÊVäØÎ.[-Ò³…_ƒÁ×>½Û*¢³’iÂ<W( &„ áesÌ¥y]2z$SB„9«O•>Åâvz',Ⱦö¢êá:»L@L²lä°Ikï?VWŘ‘ÊDÍæ–¯Œ²† Tbè—ùi»"T]ª¶?ëҲDZr\/ù½²ý'sÏØ:ÞpM¢êÎ…¤úêSÙÇ3"jžB´¾ ËJ© ñìÐgG‡Ò‡²mN^(¬úµjäEùFåŠòÙÇBìOšJaæÂŸÕ ¾ÿ<îÝOc’¿ø¼›sgVrÈi‡xÞì’ðØ¢¤ëf,Kê%’1­†£³*—ŽÊžA•(KÞH'Ûqó2ÁÔšyG=伫ZC"‡ÛþÎÒœÛkþ›°;‡‡n×¥öÌ}CÎàxý UŽÄ’Ê7gcÐuÚ¢ôKèÏëQO·6r—•…OX#SÈPId¤^fV!GCƒ&\UŸ¸¤\³õ ²aœd¥IŸS›.WõÔ‡ÛØe'U¸—wÌZ¥¸IþáTÎZ¼EöÕ]34ÎÐâÁ(P¾(%{÷V˜Ìfâxrg4Š8¡ØBæøóì-‹@k+¶C…Ö–_ý&‡ñ^4EÎȸÃÅØ%£T¤ /Qa\9aCŠåöäœ|¬'ºíBJnãvm¬²¥(÷¤)Ñ2•Ï.¸^¾—à>|€æFÜmä±£™.“¥Žõ%KíñדnŽSÕdܾ*b7oˆ®¥fVEŽí¿Ñˬωc"É %fG3(·q"»S;¸7³åÀ7Š¥á³gOž>Š$õCXvp8÷„cߟT[™µèIèÍá1ˆ‡V}3Bm?›Îô%ù3$l (³¿Å’ûè×ßãç•z¡8¶[ói÷qd”¿6£Ø ÜåôÜå.…rë!vͳ±Ûý³4um¬§qmo* _5ûØÈ²ÑzÇéágÛלN«Õ±eèox~88±{,V›;û 2Å*\ÊÛÎhžHtE°^o«&d‚´Â¾IÍÕhµ½ç!°÷·›°áêæ§‡Oð_Qûª­ïn2¹ÃϘÛeàl%|Þ ºk ý§¿˜Åc+1ÙPšõ“ËË{ &|rÆk©Ž¯t¨{šì-)ª‡Õ`y²ßæÀ+Ö)cŽÞ‰t–\´ÙMZmv—ób}2S7›ô‡¯ÎýºAu|@§ãŽöögX¥ÄuÁœ“XNÊûßÊà:¿Õ\Ësù°¡ó ¬hÑÞâäîÿVæ{9 Cµm°Ò³‘®[Ê%„Âûþ5ö}z[i>þ¤f• D®.~ ¡ß%Ûƒ²€Œ¼öphôu`ÞYØè§¶È þÛ¢ 2¶ˆ³{¯|ªQ“‚’}ù”'9»)W_ r‘jô³€ »Ó©Y)8 ÔÇiýcjJ;ÛÃ}°úhƒ…$þl* QŽøÞdSƒ ÉÉÊv:ŽAð ŠÌ2 ¤0x`,61˜³`éÕpç¡âëV2¯;óÛ8 ÏÈ/ŽyL´A²¹¥Ùª7Ú]Úi5ןñ6ëD¨Þ‡Ú'Ÿ÷ÕK@ùT•¸vßD„g¶%+£®îÆP„OS×ú» Þ‚Ð…†‘ |€]F†U­™Žº¼ r}IúbÕƒaƒJÆÀ!zʇÁÖ-åÄ/#Jîι>A¤Â¿#–¾©ù®1¨îe¨æ»{¨ÎÖ+ÒÓB¸‹3ÿðÁ›fGYz: ð”•×ñPÛUoà‰9G¢¥ûfhzà’âËMŽ%³³¥°©b½Xd>È`®Ø¦E[°ÊËã¡gÙUä–¦µçµ«E\Ÿ™"#?¥ '‘Å`—+°#á·*JluµNœ§[øÇÅ/R¦e.l¶Ü£%!b°¦2Ëa¨îñ6À._Æe›4ÃS“Iã­Œ$ÔPi^£Yªg.m’×B÷ m?*°z*V8I1V0Ž·'x¶äAâÞŠ)LBüJ¬¾i ¯Ë{þÄÈ+Ü}ù»8<XC‰V)·£¬©g‘㟗P'Û—â¤ÂâJÄ78øB1fUšS¿Ç̽®-‚1»|јé|u—¶WcËõ¼n«qN½`áÓ±’{‡ÁŠÐaÃÜ`náô„Œ¡¨S;çÔrÔä¢mš/Ÿ–Ô]SŠü…/ǯ§”×Ïò~ú÷íò4}ü°pÏŽ0“°m €ÎÖOß.--Æ>ïìc+&ªäiZ£›í»ÆØ»‘ 0¢ÏÁÎ(Y•±8†­_š“« Dûý‰ö[жâýYðvêÛKÜ—Š‹äØnYµ“ïà««¼²®/'t㯌ZîOLòm×¼OMyÈÃÌ#áý„œ ~ç¾ÿâè`cФØxòœŒ6b³6òIÊonQžæÿ+2¾yÞºÊŦßÕkPG…v…y΃±ô¢Ãð!Ç2C%qpa}o¶ÆÙˆ†×ÒÅeh÷pI’xRãÙ8'ý2ÕôŽ]–s–É,Åd±tñ¢Î¨fP=2pŒvà º®•=[Š$Ê›\´ñìWÝñ”¶DsYKÄmÊ€˜Ââ&Ì´q¿(þj¦ŠïÄIÖòÅ„_•Ø(‡‰{‘%±_@8ãL¸˜¨€!Öo":nÒêáSJ”f÷ö.þ½Ëµ]ð$LÙ…í÷1[#êcnQm@Î Ä/ÖÔð´«¿F»±°ow†´ÒïÁÜ+›*]õ ‘Òª <ƒ ÚÔÌ?±¬ú8]œ¬WVacüÎÂzüݾü ;d—û[bz}]=þ­_®«djÙÔi~>æ¼±`ÿ®9Æ"ÄñåôƾW‘Ôf6O µA)Svo{hÒÈm:ÒÚ…ˆ6˜§@‡ÀAôË•hÂmæÊÏL?ô•ðÓ±1}I3áà—­Ó°–š^n“(…™~æÉ÷ÌðêHv<ÂÑhÿÀ÷—Ó¸m¤t²<¸e t{Þ”\Z÷SèzJÅö›‡ß‡pb©Í0Pü»-vKu¦ó«z9¤ºbª°O@6° ‹†¿§[PÇÓE8$ÓìÂfòCT~Ó ô•‘SËÆ7xÁ1_b /ÛdÃÓCåozqŽé‚ê®v<¤"Ò?E¹~_—]7˜d¤ÌÓ™D>¨$´Ïk<ÙñiªgÁ¤‰ À.³]£èã?mK.œzÛ7–;†î$TãõÌW• °æ›·§C<»aH0³:ïÚ^@ß#ˆbä^iš" KTe‹ÃiÙÀñ£ÜRÈNŸ™‹iJ‚8 ¯¦%R¤¸å/IàKm€nZÍ&*Ý W–ä±q›€04/6p-IsÉ,Év¯×˵f{Åszhÿ餒iœy γ0Y¹MQ)ßÖ¼g=€…®eÄ"ª‡ÍÙúX[ 5rmRäÑ Ð¬~=§a3ê\Êi‘ •‡NµÔÖÒs™µ³rÐP(‚8ýZ¤”FÎéÑWDSsÝc¡¿7N61#@t‚:J'\:[>êu_Ì‚«:ú¡^dèÅx2^Ô¿Å>.6Ä0 Ôê*NM†¡–:27Ǥˆ8çþ­Å>L]"^ £æ‘Š.{K”‰þûÍ5›lìç-y’Ü{ÄõÐø.¿¾XÏÛÃaÖžq'¬A(˜I6á¼Î™"[ÄeƒFz”UYaAM€ý ˆÎ£¼Ø‹t ˆM"¯µâ9¹(*‰o—µª¨¤j²Ì ùÄΊ-öÝ•+3ŸõôQa¬¨;©: æ<ß Ù¤Tl“%)Ð/L"‚7Þ:ab(™¦Í¡¶ºwÏE%é7ó öUŠ„~“#,FdâÄ=ô™¾8ÊN4ë ËM'æÉ4¢]Âç–1IŸ°[³u …NQW„~·©löù~hŽÐÒsël^tȱÔŵ-ÍÜ[ñ Ì_—üÓIøA‹jåyD²–†‰ðÖ[îsû³*ñ‡j‘D á1Eœðû!³QNË©aõq4„-KÒ"é¤<»?ïk‹Ì.Ó:°xlu0™Aàk2ÙÑ™“|¯>©+a|˜ó=Oªá¿yÕ¸s× ±¾æB(™Y~!üc»èh_1ïU´(b?Ñæ!U[¼¢l˜jÊiqNâ…áúXI×oøH™d§„ÆóϤKU.È EŠR¶Žp.×ÓÏÓm~$îPÍ +ß®€™˜à¶À,ñ+蜠r×%¥~YPŒÂKÿçÂp'#l·Å,š§…©ŽŒ"‰Vyþa3|­DhjþbÝ]ÙÃy |ÌiR†sxÇ„t¶uUWݰ܉‚8Š w\²§AãåÌÈ•@´9UÐ3‡mïBÆ=)f„0šy;ÿÍ”ÏøHf¶ŒÌ8>Tð§4ì­†“}2úʳ)ûç®§pÄÝÑ^à87W’k­xwì¦ÄDZ­¿˜–ìJøAäC‹DbѼY“£š:çQÅK?4à&†?yã°²‘áPNâeÚE-{dÀ.ÌH®³e¯íÙU˜=j÷É6¡"¤ÕAÍ’m&ðÏÁB×’ ¾iNj¶mP `mHˆY¸×Ñí€ ˜5æË§óâÛ ÂØS Ù´‰³4¶‹¶±FÒè÷”ÁRò‚ë:DØÁ¯ê¶fU*ÎqÔô¯øG]@3¯sòóÿ4ß{Õ’¨eø· rüȽŒO j³ËBÖ1‘ûD'œÖÅ+H*ÅÁÀBzÒN,™vI F¸¶›"µ`•“^l%„|s›nê×ßœj¹£á0BÊxòÝÐ-†2´&È’]Po—®åüw‡ 埭Qÿ¾ÚD«ž¤þ-×€½3‹z T™ý‘hÎLêÞüÓzÐ —Åè‚e1˜)öS¢±¤íŽæ=‰Ê2®‡Ü#!x {`à55Ú6«#=‘íÁ8O’®ÿ¹QGdÀù%(ëµáØo¯ ª³t ÜñÕ´('—¾Á‘dQ,€ÑÆè‚+TÅ䇰ÇCKåÖ’ýP%‰÷±Kî‰A!èÉššjSÚ µmă»£î¥5›:ŠÇUÇ1LŸ£g“ͯ,˜û§'¸¼ÛÁ¬Œ2}0/ûœáªÉßÇŸÑÇŒ³ /“ž‘sCÔí¼]Ï9Øæ»Ч8û"ʱå|´,¯oÝæÊ2ZvíR³'Ð)Eܺdé¡sn3fM­˜á3¦A‚ÿ° c[Czê*Ò Z,áâÀ3Ð˳¿bpb.îàXÅ¢ËëŠöØBLM¡G“ùxID2äÐÖØüãÈEDò#¦$á§hÅÓ ì\×q±á­ü½d*úQj™Ö§Ê’ýG3ª&Ês¡I-oi9›Ç÷³;üɲ¢ø^Ï€Ž?OsAZb•cþ™»¦\À€Ôó¦ˆe¾™Llt"Ž½ê¿¾+˜Mü;ì WR¥Ü÷>}+u"ŽpaDµI±èÈ &1YûÂzAÎP<­OôD9“&ܶƈØ^J«ñ í( ºŒ®6‚—š¹A³íi,;÷ qøØ¥(Æ©&F—ZVâaãÁi7ΡÉIªlVJFßTU×k/†Ýéý¹R¼Þ‰-ÆS[+¾gW¹²š^ÑïbCç–Tþ‹¸Ž´e;þ—A/nwÇzì£)5ª©þ AGVa—oœ’5§ÕR/k&òÖw_”ŠMÈ-o`×ÜoqFR¡Ç ÷…i>ku¿ÀCb#dê°È:µâmâ…[vZÃz s ØW6å§_­Æ›ãº#˜Dž¥²—>RËRwä ‘JRžánÂÐØ«GÒ«©È"Ÿ,ë_VO‡‡cAÝ‹ä®]Õé TäŠy¾uâ— æöZàŽVWm!HT•š1˜'†iD+ ¼œÙ'–‡qíÉIîq ŒÛ>OšfR§¥{ù<™5Ü.åïdù®×·ÔWì¥+K1Û‹õißÚ.ƒ…dz_i·rƒÍ;Q›CÊ(2È=-%û;S‡<áÚÍ´ÜŽÔ|`ȶâ÷èr.<{>[º[4¥ð>±¦¬ëµŸoäì#ÃKù_´@ TëW;W&ª0æŒrª:ÞÀCäÿŸÍ¹É5ô*$Ϲl€nM°anˆWÀ ”˾öànd«)Rº¥wõ¿d ”°ÈÞ7«Ûj«»5Ý` ÃÍ÷pZJcþçy§ºëV£€«¹TÌ–<€*Ø„_LÛ☑Q2þëU{Q¶¨cøÖjB^cÝÆ"§£w#jµÐ¢H¿Hš(£5ûDÿùìÈ2^åŒ.ãó5K [ o2åFäãœ;0º¶Zúžì¿@÷Ÿ5 :é’«Ìñ+OÕJ-X·'`}q.2›Gî!Å|=ÀŒvO1kŒ\ÊváS‘©Þ†W~&BÛÖßûªÝ#ù=󈸗¨8@Æ<øýþJPèÀp †}ˆ¢Ï`žsDåU“TÞä:ü÷ŽeÕ̧6>¤n•Io’MV¼«Ð¤ZÔÅ8;Â9mþ~ò‹Ë›äÞ„ÇÞ“+ö6ãI2ÓìP8v{ꊲ‡Ì…5~~ã;3ÄíªÖŽøsT(c¿ endstream endobj 116 0 obj << /Length1 1852 /Length2 21900 /Length3 0 /Length 23107 /Filter /FlateDecode >> stream xÚ´¹uTÛݺ-Œ‡âNpw‡¢EŠ»[‘à î.ÅÝ­¸[q(®ÅÝÝ Å]?úîsîÙgßûï72H˜Îõ¬¹VÆÈŠLI•IÔÔÎ(i3±1³òääUìl@l.ë»H%@¦ŸílmßY;!þŸ¸åûœÀvŽî,ÿ·°­Av® Ïÿ‡ÃÌdjöwö¦Îö,ê Kg ´ø…¿›ÿÇfX@ÐÍÄ‚åoÃôò×Ìö×ü>oO{;{€™‘ÐÛÒ øþèédä€Þžÿîøß‘`ji~—úûqAü§º4ÈÌÀ÷/ó;“ÿvý—hÿ9ªtïçÔÔdã0š!²(Øß%AûÿÏIû^’Î66 F¶@Úÿk¦ÿhdkiãþ¿Cÿ#Dø—-­‚£­‘Íø,$-Ý€¦J–`‹ö_vi°Ñ»þEAæ6À÷mùǤþ÷HÙ¼k÷ýþ±ü{}˜Ø¹ØÿÃ÷.KkÐÉ Àý¯4àû þƒñûôÿò°(*Jk**2üß²ù'Ndbgj 2°sqŒÜYßµÀÎÅðd{¶)Ðí±X˜Avà÷€½3Ø`fçˆøwC¹¹,¢Mÿ 6‹ÔÿA|<£ÿƒ¸x,&v6ï úo ë{8ðß €Åüßà{i˃ïÕ¬ÿ ¾—³ù7È`±ýÈÆ `ù·Fl樂þ ¾—rþÈþNÃýß ;€Åãø¿'ªô÷Vù縰þψÿëºý«‚í¬š–¦ï_5ÿ"ov´tÓe}×:Û»ýýõßÿéÿ¯TÿsLÿ-[LÌÎÍ“‰“•õ]¼Ü6Þ÷°syÿ¯\“Ý|ÿœ³w-ü7þ{í€@7  âÒ¼‰@UJcH©Ä÷É2X*>æ“ !-™8˜¥ôÉvB<ñÜmr p³_uÜ~}Ÿ$P‘U¶ÍëzKbåĵ©²ÈŽ‘¼!ª„èh޳z@†ü¢_Y'9Ý‘LN¾v1çtFk\+ @}ô÷g¾öŸQìão/“ÉõÊZWó`] gÙš°m0ÜÑ :'; ÁoX1‘F=¢Kô3_óCpFeà컢ëk`¦ªoŒSÏ*Ší ŽÉ"´×uÕ ÿºÖ7s”W̘ªú¤_ñ|îŽZ¯V¡0‰Sxâr ƒƒýv6›¨MtcR}{LÚ–œùšP‚­h"q¾Í‚ª‡´\ÚŽüE@ªöˆº¥F¯u_Œ¹m¼[úÙþöÞ ÍyñeTéNÕ¢B«Šò3Õ±ÍwÐDkà⇑?8ÙÞy!œvŠÆ‹?ÝÔH—Ö#í’ ÌUÝ´)®/É€vÛjZsˆ©ðFü$‰Ì)µ1¨ªa`ÛÎʲíü†HdÅ`ÕµéÙ>îŠGB›‹æ õwºö¢6þíÄ%jo’«Ð£5˜·n´uqý¾ÊWìév¤ÎX[)~í¯Â X~3Z–Ó $µžzC„c=å j<íµB¯_#ˆRý„nüD3aþÿ§žêÊ“¯Ìì•rŒ'w@n?’"”-ÿ"ÞÉ1úÉïXÃ)}„¦úvÞ4ä¥oPSınš¾|5™ß²OÕt>°ìå‡ÿÜϦ™ê…‘iKã]ßXga˰Í;Ò)ùb>t©æy9˜ßØZJ¡MgÞ1Þ¬ V @UzÓüšµÈ¡ Ö”ôÂ*|óõ&¬:U`eÃïGÏ­s8·hºn<1-\²Lc“<äý†¥œ ²¸Àœß×Ç{f¿îåÌÙ¥¢ÔJ_ ÝA¢j°stúi–Ë—Ú‚µeEè–,¥ðV¬É”ÅŒZŸÅ"(ú’¶ 0˜ÂŒþ5ÃT22XþO 5Ot£Ôüçð¾‚õÌãÇæ]Ë.,Î|ËŽø²QÊþáOܰiàbC¢UÎÌg,ƒvÌ`¯ýôÙ ÅŸ\U¨T;yÚR h¯Ízñªtõa t69î,µŠäké’ònoq´¯áúÄ©rZj{ë$±¢û¢‰vÃÂp;h ¶ýd£Kµ¤lcâTE䋨ËD”ÆsUѺ|{¿ybTìð4¡Òm=I„&ˆËý~âïB”]çhiŸe°6Q„»-Ï„ùr ö.Êðe«ómj®€E^¦þ¾HìÝR6…#]úpår–XEàÎLúQ¸/¯]ðb­;­KM®#Ë’ãY…’³²SÜÈ™oqÔkÕ*+ÂB.¦€:ú–2‰€ÇâÜ@”©ßSHˆÂö+àÜÊXdÜy4>TÉ_ÓT›y1‡Û¿ À3nÃ/RtM2²»HiO<‰:H=ìÒ"ö7Ðp)…ÖÙÒô])„2Ƴüä`!3øB³W…¤{¨S }ê„A0Fþš‘¨ß{‹)¡6Zêõ¢•©êúþãF]H—1PO¤ú‚¸þ|üùœ/îoÓxÒéXŸ3÷Ùj7Qtr$;DßK Å1hï^ÖQ‰·l ‰ùóa9'Y´5Õ¡Hab?o™ŸJ°T|onðvO“Ä=¥ü®@ªãF“m¿Á, “Žø·cQ¸¯Fr7ÍL7á9Æ-Íw“í(m%ŸËMìÃ¥®[ªA¬R'ÛêKEÄÍLézØà<d³±–õ÷ŒG,=+ª^õ ;ˆJC…ßQäqAø¤av ã5¹2‹¿O5~²³Ö f?DR ®‰25‹"C*/y§þm…E–ÌÁu¦ð]ö¶ÃÂ.î:tJ“ ØÒÿqÃߊž’ÖFõȬ¦¶öa’§b*Ûq“ŒöçVw+&Ùý†Ô¾¬‚æe@Þ:@ºÖ¤€6ÂòhìA¬â ZûJ¯°pîû yj”8”øF"yhr@Éä´ôXk=¦Äµá8%…$Ÿ!oá•(zL›ÂŒiÓ$fÏiÞÄ®4>kÞl£q;YÿÀ³§á[Œù™—‡óÉÌn‘’¸—zÌðpðt"Æ^• ®Q¥¤ß‡¾¢Ÿgf07…1“õXa¥š™ÁÒŽ*_¯¥¬Ië­ŒO0è»±kŽR–bT o:r;¼uG#’uÑ@¹ŸˆC…=F5;F‡èºxO¯Ï=±Î ¡º ;ý7ÈÂaÎã£RzŠÝ—WÈŒ`+ÄI%sï¿>”Hw,&—ÖÝ^³qj›.œÈž ô}iàÉcnç ÚQ<óÞ4hŠ5ÖHU­[÷¼pa…â²-“¡GúSGº”¿¾á^›&¼3xƒ–^*ԑ㨬•–²±Æ {U5õóÁcêÒ'_¶¢ "¡ 'áä˜6©ÓAüìÔ­ó:“ÑĪúD‡°…Üß5ô”zƒ#Ÿ~ŸÕ¶ÓŒÓOäÉ^\O7ìY Ãñ”­•!k†(5þÆj[`ý%þìÖІ1ïºj÷ª2…ÂeX?fúµÐ×$¶úéadxagÚÿ¨—:jamÁ´3¬Ñ²?‹`ù—K|þÚ.”?ÇLî|¬(âcæú¨?Ö?Ø -v7 <h4‚¾Fü©­²= µ´$Í<¨Ì½™ï.l —È{ñ ÃÁ,!À5Ù%óTì–ë÷ÀذÆ%3רpE´Ž™ý¤%ªõáV# RSÿB܉xšƒÍ× ¨Ïê’Ê"dÛ·‹ì£L@? kêÂ+×>Ý.Ñ9†°ûþ"#éŽpŸ›ó ÓBË•=ˆ;™ÛDè/$p"Íkjþ_·Úý ýØtG»ºœ|ÚŒ…ÝëMÆÏC.‚X8L­k=Û‘ïŸM[É9ë°UN¦ÔÞ[D2DšÄ§Ò¼xìEQçÂ|Ç£ )¡94Ð&3*‘.<¶¿V}È{v#÷kþl›YËPyzsÐ¥&r$`Äæ%Hr¨àú _AmB²FÓ†ãú½ÕŽyŽ>ñRymjÀR•,ËýúÍþ´ÂŽ‰Ì‘]sµfömÃ¥ðܬ4n Ñ/>Ö„ ¨™<¤ñ‰É€§úÛ··(Ô±{äQ¨G#‚ÊÞ}Zƒfun÷’ea·[¤¼©øù»Váøª:‹¯‰8”nTH7œyNåÕv7üGNô55CHU‘}ºo¬‡¾Y ëˆ§-Ô?˜èŸ¼êsê3qª3^÷H.SÜ"  Üvrht~–ìzcBï"ñJ×è3yñß‘cÜ Á¿¥Ìÿè[Ålf½œ{eåÊöä“ùDÖ5™ô ÈrUdJô¡ÿÓ÷‘”·»ŠOR‚ƒeåf½CT˜B/éS3c*ªùˆPuåkTH#æÃ~Ç7q%qHY„nû@…Ë´ãÌÚ{ž¼ŽŽÆ(DöΩRô-Dè*ŒÖÔ:®¹ë/ÕOàå@qëó'¯vd¤Žäúõ+XÖ+ƒ{žb’ž<<_Û5‹Yʈ&-\½9=¾Ä¶o¾Æz·ÿ$Që.gìñ{!¬Ã –ûñѹ&ì×Óíiƒ­go}[/K%ökˆw.¢À>Ò+e@<,AÅêk‚vÕÕŽXh'w•Zg…ÅXüžvDZ2W ÿƒ°g30ó36Q{‘DÙ¾ G¼†þT‹ %è/Cg™½8‹„ÆŸÈšÃRV85¢føÜn]×g•¼¥íq Ù¤Rf´%-š/œ¨˜]ú7·Yc1- ,J9½|Êi{EÃ!n¡Š½_¬ §Ýrç–Û<ñÍŽ'á#*©¹¡¸|¦:^´6rÙ|ó(‡Mº 4–'Å¡H`fñºŽñ¿ë\È–^uu}È Ð.¹¿ÍÍGÑËÐ[§"6™÷í”='ðsä@lÏ$`†¬GÌt(éÊß:††êÁ:˜¿ÛgÄ2In½Ï©£ZàØ¢`ÕSMu¯ Áß\ScChÈ~Mg¾nB2f’1ËoîW¶ƒÝµàe’<½V±ë<õí î"^ŽÓ¬èšP¤ëeîaÛyK‘6vÓ™ oPþÑx™±¢‚l6plÉ×PocÖ¥Z£eª¶ùÔ?LݶqûâÂ^£xgœ©œØqøÇßÙ´Mâþi*…/À6•ÓÖÑ@ãäÔÜru²EêÐmgšEîÃóÓ63zÎ]…c$ë·Qzæî0¢P-e îrþ7ÝÄþ˜P»ª‹ýp—éñ]‰ãÁ{*¡¦Ã“òÑùÔÕÅ»e*ir.h¹Œ'ÝuÏ.H#|$˜{ÏÏöFw;ÖñŸçÂ^ë´«:I\­Fï“åÔŠ›]¾ œzÏt!²®â¬×½®:©ÅÏÌ5üd'/’3–ÒÛ×{­.ø¡ª{_Ù^ebÌO×ò¢—À›Î Ñ0ÏŠ -³û£¦n=¯øxA-¨~΄œŽsn]͸„– Ðû½nk¯"ò¿ùãdê´"ÖŒÜü^vVXiKO9lX’i†;ÉÏ8øÐf”9­jG¿õmo4ÙT]ØÌœÂètø•ŠþÙØñê/ü"Ð žNåc¾€³´fZ ߨòxÙ?)°C¼=k93oþLÇqûX¢˜êJ äµ’²NÓäQøKUûýºÿl?J‹q¸‘ :?ÇÂOx¶™wV'Wí ‘8ï$¡‘½ÇÄtÏÕ¤6õ¯ÏåĈè"^ÁHô$Ñ€âÄsŽŽ1Ã8! Ì+X?ÔÑ™¤¡&©Vq*ÂIýñû©Ü˜•ì±ÅuåüãÁù‹M†Pª[Ì­¶¦dÝ7#r…Ÿ”oÞnÎ~K÷¢]IghsDñ7 ÎYñSš]ôåi„ óð¯aÛBº„†v?›üPóñ!õbrYÌ)@¸ž_4™äˆ—¡« a½Í­‰‰;‚ük½^GYY!¶ž Âà"û‚lå¦òñ ]ðÉFÿ,þãÿ$r?>a$mšìDöZ¾Q•ä ££þc7Ô1šü˜â=”í-ýÏî­ön}Õ§•í ”N%j§·`ÃÝ BÁñz­½X °|Wù þ:yë•H#“NÏ‘(|‰ÆýåTáUó¥=\í!Üa Bý˜ Ýèó$Q Ý~bzáábBÈÖg"eÖ› &ÏÞçÙZKðçÒ6üÕB§S|lPÀÏŠ˜1\–ÚÍìojn¼Åã˾l೩ӧ¥AíýÑ<££vòç©ÊèʉSŸxo'Wªhÿ‰Ý'¸tQy#ÝÜllñL\Zöߌ»2ª„¿íù)šÊîÚ•$€Ôbµ×ÂÖ:”„—©íß}Ÿ' o;Àv¿ßèÏE7è'3W|òµ]N,ßjq»ˆøÙÿ(dú[ÛÛ͹ÛõB-@}œeøN2&÷*Wa¼Ý2ò2—[;/ýŽ­GXˆVÕ#œ·TžØì0‘{$ñ”L ²Ï`ìB(²êÔº[ß$×9ÒÖ„ØéÌÇß!9? 4Üb¹ õíU+»4œÏÝÙº^þ,ô!\EÛÐZKyÜꚣ&aí¡£‚ÑÀ.ÝWœŽ½4]¼xIòŒdLŒöÑ™ÉFZ^ÑESð0‚x~Ó^hÞNP9¸è´/ßÔQÕå-3wô¨òouÓ(öB Êöö îßBˆûKâð†Öñ„~–6::ak[Rò+>.œù] à Ò?[!òˆœ¥qö÷Wª1ê=NW¾Áîpµþ1¼kŽ%Sñ»¹DQ%ÙáÓ Š«/› ^†MH! ò¦f'làùOì {Çž "OØ—ûÅüdãtéuxx\†"¿Ttð¥ÜšÚÀ™ÊrqüÀïF dÊ<°ñK‡h"Ùa6!qYÏ~' ¾«uNë¦*3ÕS?•Z—)¤ïH N,> cdW7Í5>qçæÿaH!áÜ£Áj%Ä`heÂ&<Œî±8ÀqÒÎ<øÃPңͨMc3U›[ÖÕq6ž}šî{ª ¢”·5Þ¥4¹©̪‘@ŠìЛCo¦œ¶ú€rÉ÷ÍcÇÖjI¦Æ£"UÈäj¤´ð|“Šã®álÖ*¢.ì±Fÿ|襕!wV‘¤;©(;š¥½Q-‘¯òüînËã7²ž]Ùûü‹Ü$\¸Þ³3€:g ªÿ£M¡ZÙR?(³$$Ôfœ‰D‘ÚõúõháêÜ’Xn0ü±A ¼bAž…hÈï[a˜Q}_¢ ÿ9ÌVÌÙ ŽØŒ?H¼·Úc>UþÛ‡öƒ*b£ÌB¬I<ÕR¬õ_ÞváCû¦¸¼,«·eðXóTs§‘öÑœ«Xæ•»‹ñdI?@Ù¨P> µº–Ê J|hþbÁæE¬=!"é5ÃßQ|}6#J  žZ8]† C5ÒÕh_;޶çðSxØ¥f•œª“¥€Ðƒú–BÍλ÷Ð,G³Ã&Äç7n'Ë@¸|éj`hx×É:f<ø¨Wº€ghⱚ:ÑG‚Ë`ŠsåâÅ0ϯ±ŠµÛºæ wiÖbw1IòoLí=*áhSÈP‹p@zJV'åxç¥ vÈ”µ|Œ*>XkQ0¨…vþAm²²ÝiÓÚI‘¸5¦ô¾ƒ¡í¾Ët·þSbk‚;Üaÿzy%û$¬9[ß½DJJ»ZˆpŠƒ’Xkí—9´½Ñ¬*+êUbÓ2ƒlù£‘¯6Ç&¥#ú’ËêþALC]•¤ìÉMˆÞ[@Ó4¾uhÿ•Ídšd—)/‰(»”Šª0zýѨußC-Cì~d£„Ë@?ȸŸWpþÀ†Ç†ƒ ØÝ*À-šÃÍÙzrꞥȩ̂¬ë„ñ²z+;ª.i‹2?ÉöÒÍ*4Ò²øE~MO×{ÂÊT=§÷™!3‚´€Ø¤*ã~lÂÄh•œ·õÉú³hÙÖÂiXVŸà»®úÕ\rÖ[L9àw…hà¡ W*ˆX îó‚ÍùˆÁ©ÝÄëÐæ‘Ýß¾ È) ü´ˆtȇ„š2Q¡s¡-£Ã²àêü,vŒÚšohä†m›qENa§Pw. 4Lác~õÞÀš«ÍùÎ0¨¢"ÁXi%ƺ±šüXD_Ñ4ÖÂ_´õ8ä\À4`½àIÍÆ(*` WcK~ŠÉ' KœîÊ*à€•ýeýºƒ¢¶Ä__Å;s)gr¶à8£c°ç `t?`$Aš'hYž ú*±;ò¬R°n4wëÕS¤% Ï+6‚ö §Dçì%+ÏKÔ–¦kò=‹ÐšK°“{ˆ*zlãºcUÎ>°, „Ljü2 ÕêPÁËqxŸåX½Æam‡ælùüg݇g𰆬å(æUwÚ·óÞé…Æ“ùký•D--f×!ùÔ ™ЧO¸û€]95rÉùëÔ¡¢V¨ôäXtÓ›©C“gFœ‰OIv®‡¶9|ëâ>m ™D¶ëøky¯ŠW„i®6nC³Š_<Þœ^€µÍû9êÒ¶äÙs Ú½o°Œ v?NnO{Ê݌ٸ˜[[ªý$É×ß"1ŠQC•b*òÙ1茟·ÇÒD°Ê|ó57î§ÝÅoÿü¦s‚=G:TJ;¤[ÐÆWÓgf}ì¡É,ÌšÒˆVNúH—]’»mr{9#JYüÀÂÉZÎ!XʤѲ,&/Ùn{Ôˆž­S^Y4ËËPì?•U+ÍTˆô_>zv¦…5üY»¾×P­Œ­˜Äa€ë­kЇؠÙ+p‰ÿŽD£N °üS„DYymëçmŽ©)jy ¾/̃í›7oɈVþAWøÉŽŽ7n1̹3¥ Ÿ¶ C 5ðÌ·º.®;AN,´ÖW³Ú žl¿L`I˜p«#©Ü%Ä&¸a²­³V­`)(ÝkÓÚÌÌe»Žƒ£üÒwKûõ5|v-Äg#Æ2ÑÃÒÀò@:î÷Y·.ŠÝ¯°¢"IlF‰Ê¯ÂÖÐV,22ër¡}…þ£.Çô1 2…¬ôhÍ÷¤MK×ÚŒóYÂuÇoVÄéÐÕ€4¨Þ‹ˆ9fG¦ýFæ.DÒ7Ë>ŒyvëØS&g~u* B” ¾ö1%2·P¦‰¡Ï…iåS« ‹g¿á(åDúì3]BR—K€žIé˜gNA¯'dyl¡Y‘LßjN/NBøôaâáÆU Þ Ã_UɨîWš¼è™U—§†w1 Õå9­ 1~sÉ]~@¥™÷T™<™îõ„íùOႃ{ß×®He½ƒ‘Gs¥ƒŸªûf­1<‚gfœ¹Ža^†n–®û©ýu§›‘ñô›C%GWt¶*švxyHJ Q×á vzÄo19 Mép(þr·Š¤ýH”VÞƒÈiM+Ë$͸ҧÒO5)+ýŽ $´ˆxäÝw>úÏ• Èv’Ç0ý2‹4~‘ÄëØ3¦bóeËZ”²ûãoœäès5Ô•ú~ˆ"äý˜±4^RiÿÎŒÚlÒ£q«#rÊß5|‹-'CSÚ£ý ñm¯ïŽŽ±S Qs5¡ ýÅÂ!’¯ƒ±rþ Wçî'Û­%—‚+µBÑ­CôOìò<]‰qø¡&ù 1^8g„æL‡£ful¤*ƒ²œU!¼7Qæ–M8èeÆU¬Sc:Í'óC àT(>o˜-S7T€^ý½oª,²? ð÷©Óü!ãÁµ ôZçßÅ;u©)¿ÆÉA(2i ,'ÖôƒÑœ÷Y`˜R«ŽUëè×e1‘tŠ¡T½„sõúZŠè½ôAva†ÏèuÝnª@¸ÁJ!ß¿$C‡s)…z_²‡éFÔvôüö×þ>[þ ©~!OpÖðÛêN'”ºÒ‰ÇoL<`GjndÃ%‡{ÑF’"Ò.s…o ÀF÷4P¯º¬™ãJQøhN›UvŒfP¼´ïN7!*6¦²ÈøuívĘ6ZÁ -kœ™Ç®ç—ã]|GËÒÁD~ô0{‘Ö¶^§õô>ùÔÇw«í×vîO÷œí…Îb2èL%À^ÄýdN¢°_Q²ÑýÌ„éoö¸šXì@¹7Jó}÷¬÷¥–4¦¬ðëK,'û÷ÒB”D–QÚ[ o\7·K¼C–&©´|ÇP¶Ø=Xè8Z•0 ÍpøÇé/N¿—9–ë)xÞJË×=Õq”ÃiÕÄÊZò³°ÛÌ”OMIpû×PmwZäƒ9ŒÕªFêÙvɰš§‚n}ß Þ´ñÈdü»Ÿ¶>_=x†å:êÙôÂÆŽBÍE©Ëú%á¸ËEcÑ ¯æùÀ…“Vme>mÕù‹õè‰rD;¿a¢Á«áSƒÊÊ'¥­ /L½·væ•Ël¾Î쑬-GbÐÇ«ÞÉx”zM‹hî^Ä “3fáá8è’íIŒrBÇ‚Âô­É;\_Öo}E“Ü]ú)ÊRñp{åÎÌæ9ŽY;O Šèø§Ë†_‡–VôŸ Ë7­ð,ßz)H{“Ää^ ˆ®£Ñ÷,A~ñnäÿ,á#ã¶mëyQßѨËÞ÷ˆpܨç‹~IPúØ ¾eÇ»étÜ2ôâ#xµÈkYØKm¯Øûwi³'RE¬Ã¼ï]A.œfi—2š%îÞQC¨²¾ÖBÄhN —¤ž?ÒÂl¶?ô‹6‰oñ±¬ÙQ“ìcÊ‹®Wƒ¶BôNÕŠœ`²LtçÑ¢ î[ógº|¹u[šq‹Í:».R¤ËŸ;¿øÉs¡"iÄoÄ¢`Ρ —h+qÕ2•Üoɸk;€WeÉô}º’Ž­­dó= gÉ1}pÆßjœýïšZmÌzÐÄË÷#é!cÊ"5g|CZÓað$aÍK’ƒÝêƒúryJ¾|ç:œUFO_6âV‘É Ie‘Z–RQ·ìuj¨1ku6 !‰¤•Ó˜-›.êc ;`b×þê§£ËÜæô}¶‡¼îš@_׌Œz"¥ù˜¡¬L?·ÓSé3*/D\@+­D |J¡¾d7éŒüâ|[È_ˆ†+Ùiä¹­4Á©õ!æZ.Ðbx }Ê'®ÃM=}žÄíé÷[6æ\l Ê-Ö¥Bê]ˆ!î~È0ã×ßì±Î½(Â)ßÉd¤Â9Ìý”«†+µ´Ôº#CcN®\¤¿•c¯»m¢“F D·¨Rà-Šñx7±ð}—ïÓÐä:— H¾ÓóEÉR„„VªaÇŸø•7Ó=ù¡èG£úóÉ€— ‘1`gSŸ×yºðኜfÁö ÉMcN¤Ëi.cê§Ê Äß®(½m€"Ó¯X%Y“Žˆ3Éx…/Ú#˜A@”g›¥üvz.ëqsõ,}„%ĵçnw›­v-¶°_22bžÈÖ¥‚'†2ƒäNHì¤=¾jþÀ4)6lI5¸¬8hõÉ4uIZ)S·$…dŸ¯ ¥Öµ×Yò í5 ,•ë{³|hé>D,™ÀS£våÔQš|å—XúˆôÛïÞ†kˆf:§§¢i·ú‘GßYDÜ>kX¢¬¤²¨¿ž=?H,¯ô ôZ[~õ{̱¡ÍúDvÙºcêàðÀ´~DpD3btñbï/rF®¥yÖ»ˆˆD]žÑü“h$q¸eBúbÛ@µö5bz[Qp7äeß#w"¬¢Ú•3¿2ÄÖ’n-‘°O´L»ôñ7 „ w¬µµtéöl7 gV¡Ø÷pâ:MÊo%ýUD-±±¢ý½/²#þÅ©2 b~Ù¥ó¦Íº ©Qn6|ñÑQ:|[mÀB͵´¼¡|âÆ8¢“Ï”0¾Œù‹vfé ·bgkà\Ì×ä=N‹ùlš QÚÔin˜­ö¨ñ4rÝÁó"d–Ì߃:JÍÕëÁÁ2Ê,>i‡‹ ŽÿU"ÅÅií¢œX®øØÆ ÕqK‰›F3"iú`g½0Ù¬B»“;ÜžêíCcrB—ÄxÔ äWxdšÔO“™í€N‘ï*¾ªœ¾©f ÝptM/Gø© ò¤¤FÉÒ¡·ÏéF]ÀtF+h¢Àb¨¯ÿ0à—®‚° ï씾¢×,pQ@Nôã\B‹iNžÃ¬…äÕ²øU¹›•r…õÔH(¶+âp„³4êVÑêûÙ±;ä7…¡Ô7a{7HÐÙ°Ûn.T0µmuÝÉùlm| x Ó%Ü÷Q”ó¯¼Ù¸7™¥Èž’Ýa5GS;@Mèß#Ф"ö% }?.}yŠÕ¡3&F‡ù-}LªsÐM=},™Zr 4 Þ’t j:þ”}¦ K@}…oÉ{éö'¢ #Wß8a†_ø¤ïÚ¬8ïiìSê&±Êð̆Ç銫øý*84Üz‹Díìµ:F—ˆÍîŸ_²á!Bí©éÍU‘XœN·Öé-~4¢ë‡šN|™ÔÑKT î`Dƒ÷?X©ôˆ¥hdÙÆW6ÒÛaí®a.².êç@2ºhÀ–4Uîrͪb|¬–Ã|å`Ýw…uC·‹[÷݂’e5<•÷i\á¥*ǯ…Á#yk|䦭=Î.Sn6:þ¢%¦„Ûߦ߰NT ÷Ù"%|SîC34ôñ‘ÿDg)òa´€Ã/æ þ‡&a;J$ÂsÌeŽ Œ6´`¹‹Zâ; ¸e”7_ýC"ÔvG ×>Ñn¤zã΃ˆo^„¤:Dpó•Ì«|Þ ϬPÚ’b£:ã]m»6>s;© ÝêAŸFzÞ¯¶4èÞB†¾5ç:èâi²ó\ÖÒêÂNºòÛOZ¹[¼ÎYìù8UãËë,=¯|ÓP]ídJyS\e>QéLÓ: …¯•Éšå䔬?º BÈ(ñ¥Z‚­%zIp"9Ðû¥0Y~fãÔ¸<ŸýkÁü÷¤‰‘íg¥GõâÛÁxç³C@‹-‘ç• *ÕY]¥3ô4güÁ‘_]t,s€ aíâS!ÁŒŽŽåyøRGæ`EûUd_žSi¥j é~Üi»mø–þ(†û»V£ÐgÈâ#póš3ÌûÓ}˜À˜FãÕXÉÉÓDDŒÌFüm.•ŸÙ=b·¾ÆÐŒ2”AÒ¦4 Mšâ±nþdCæ–èÞ•{½®þÉ7ë’'QQÌ2º¿Ým¢‘¥Ýèxúþ)æ/L.œ²¶à2´È7éWÏ4ðaåc)~^V«˜øóøE\ƒî"ù'N y)$&|½ôíwqâ«<.L;bÞ”%^ɪõÎKjÿ|åÚmjì€ïJ/‡ëZo~ÿ!.lø« WýYÆ)ü°Àê~b»\$òŽUÐw|ï”'ô_Y8E§ö”ß‘¿(œÄœQƒ6®v Å&­IÒ+‰äƒ«¡¯Ž”1;‰o¨™=•¢8 Ë“–1FD†Ï*Tåè6žÄ¢mZ#DֲΙ¢ruù„P’©c¢ô)ú´ÿ¸}L¦ŸŒÀDqõ¿r«Ê‡JH,c®É ®ò{Õ¼Enb蟬1¨)Ë.xÐ Ýkó%÷ópu×HúÃL2Ë׃}ºG÷r`|ø4X³GÊð”*çǪ)‘@y”/…ÍÞ)¯;yöÓ–eƒ?¨èŒ âKÏ㌠+¬°½Ž° ’Š´k ÏT±JˆbºØ{¸ùD<6[ÎJÂ?çøea/»ò=þXÜX¼ |²`ï+rZÒ»¦ÉÚñ%@Ô±ÛXÂÄ‘™¦½Rìô& ÎÁœ0öXiOŽ1ØTTXêUÞêŘNjÒ2|^´œø‹3›­ÑìÏ"åŠTßýMþç þRht9Dà†„•&®Ì7ÞüíTzÜ>–a3é*+k— á4}c ªwq>90Þpbñ…{Çlˆå¶ñ˜ ˆËQÎlê\”ûä¤ÓÃÀDY4Ñt6ÿâÓCv5Y¨¶zþB „†Y#äRYéܲKšêÒf)ý•†ÛÑúöì>3¥ŽhüƒêOõÉ}®úïC"o†¨ }áø'…W:ÑîuH#êž‘ÒÊgÛF0m-]ú s2Êöó§ÌRùÏÛøçñ·ù×LɽÆ_Z#Ì—¦]ó )ê®ËXuשiþ¬ìP[/‰Ê«ûB˜«dlûÖ²r;4Ýž›öR¶³Í©c+B³¸Ân¦"‘ßåSÏzUy-VaŸ®q2þŒ¬Ñ8&a‰d«Â±ÄRг©y•k=;R rÊ“—ß%(+s²Þ¬ôdjÜÈåÚ€¦³"z— ŒÞ…uÁg^F5œ³ùXûBKô‡Ì7¢r9ú¶`aŠ ƒó¬\s³ó¤}{Å~º¬ÆFT+鯉«;}²ñª—33Þl<˜›oIglŒ{{Sªic_½NÔé“Å•¢z"0}-ý ›.w˜ð˱ÒÞ­´­ÊrÖ†ˆ iG;Q2„óPÃÀ‚¡GÓ û\ZU%0@\®©ûk ­‡§6+ô©ËDH¤ès†Œ/H¼êv—|±¼áÙ"Kå,ÈÆŠj¹«Rê'@ g¨ !±Q«a =;¤˜f’ÓAM†SL÷”m+.D—¹=5S04œñÕ}ž8Ë’ùXƦã {·ò-¸»œ,^ù¶lw~Ú¿RIàá7ø$’ûOg·œŠFK"<Äþ5áÖ‹ìõ)ƒHجkÖÅbP½•ù9eaß,ÙW®SÔȨô!wê×^äíVd›_y”8ZÙ„æÞS‘ñÔáZ7VŸVl½C¬mOÎæ¯Ÿ9 µk©püÍœÏX…wÏIIƒÖã™liüž_ÕÝ .`0Ä~.М#¥ºæÇâ*eI»ªÊ£JÚ‘þ83Ž¿ìç2õɨ]¼aÒì°!°‹PN èT³ÃlLFF @3Yä—-&’6-öké±-ó] ‚ëbK«W~Á5[~}>¤˜¾–2¶Ë§M-Åšf¦j ÝQvŸÛ¸ÃrN{·Ô’)*’É¿`¢Xº;¶}<ºIÆm®Ð‘IÅm¬åZå.¿ftÔ†–8%YÌûózU¨-öâ,_O⓵vi4 ¦½7ÎŽ7^?aÊ©*úõ_гVwMZÏ)‡NÉ À‰ð¨©ÊþŠó`hµ&&×Ϩݬlœ»‡i¯w÷ cçÒ‹5hHåD¾HÇ%ÎFÔNT-Dˇå"ì*Üuù”Gë²™Õc‡ Rk—î&°cßþ#å‘sãõ%ä8'»÷Þgìx«Ý’ª záC•Ά´áD¿‘“»D‹€ÝÑ壔¡àXA]ºêL>%ï’†AÖóªfÍÒCœŽ_ÏÌ´ Q[yù¸>=Åãñ㱤kô•^ÛBÇ ËK{ÁDö&ÉŠÏh©x–Ü¡ÝpLOÔÒlÜÁ‡Ç¾;ÆU†ÈðÆ}Z‹mËØ²Ï _Š`*‰¦L%0h‘ BVUïƒÏÔŽœB^Ê¡]Ö…ÓPøiÜ{kà«%«ï¤üÏ%vfn¿Ž™Ë*##ä·Iej¶` GBaZDÝðËæ^0A»4ùYe«ß åošˆ…rPðtöIŸî±?¢EÕŽaöé#D<²Æ«O™|‡¥’™8Ø$IË2CÍV"^ñó O¿ÌŠþÉ•`àÅ¡%̪Çc(«¿-°H$¯Wïð»r8r Ml!’ßþúµÈõ†±-·$Gž1ÏãÖw7 w;ÿޏqG`®ÚSùúì 1[’Ö}-ó Ì´`”à×§Ô™,xÜVUL2ćª¥@\©ø¯ÏŒò¶ËA¾žJI­cIäѤ µ`cÂäÏÆŸµèüÕ™ÃÊßyU“¥ ÷ûB™Ûê¥áaÝž7·\ ;PÜ«C'ÓñЛµò/žö,E0]ì D4lðÑoo$yÐþd£Ñy[FŽ`·Ò Ä¡ýŽû͆[™?7 î³ýGWn£œÎe!ƒÑS‰¥œbi\·%™¾ˆ¹tÞ¨ïR½}Úú€«ëàrw‡jn—|½ã ­â9é6eV¿JŸÏ傲AÚ¢"¦QGØÞLpÝ7¢/ *YÂ,hv./…K£ü¦iËëiô—§xâ#9ÓußN \ÃÉæ³>V¬m&ͲºN7¼lö¸†.aŠïe:\ȨO }*ã "æŠs'ohËLÊùš+m¶xËÉ´É£±rLþÞõÒ=¨ižù›4Žf ›Ú1çÁÛ}ŽéôÂæŒ Ý_¾7éeõuC/-%Þas Ëš^ÑkIyE#×1S·+Ø]Ô#­5ÎÔç#)“«m6¹•ru[k¾RPÙØîE œç.vø·êìsË•ßïÏ»ÊàÁΑß1-i|ræ1]˜C¬@r“•´µm†É®Äì3~3GdŒ4hÐ4è`Ÿ-.ciÒ¦°ÕÇ¥Å(’V˼!gǸh)°,xé*S ê:ŸYqRÞÇ>¦rd~qÖhÚš ™š”$´Jl¶>×>¡|T ÏÇ‘Òw>mæÅ³q ƒu«_ÙZKé½dÛL-9R’þƒÅ q›¢ˆ]°7B}ð8ÃÇǵpzÑGSrÛ—RaOÓZS¯ð1æ^mã#e0|,Ç%RÔà7Ü1Û-ÝsC–‡M–W›ó8 Dˆê\¹øWIÙGîÜDLjí¡ÞxÄ›°ä—/bâó—ZQŒQ‹ñVc4Âûü8¯©òso7÷‚3è«Þ¹/NFbÁˆa8_&.;(=Oçfêµ~7|,^0â/îÇoßÂc°a}œ\X¯È9ÍF¹Ò³þ<8DÇy«ì•)•››f¥MM7¤Iù‹Ði§œ’D!ih‘³Ù5v©¿w¡·x«E甎I¡X_Ûði­`¶3S"ØQi!‡KtãÜ‹¤ŒS´-Ôw.‡¹Mr)çâì92ìƒU]àF³¹a‘WÄ#’®•nËå"‘[§X!ûjÝé|ÖþÕ³ºü“~§f÷‡\óìOTkd퀬Ý#œ“m ;Ó³Ë÷ý9Ì5ø¹‹´‡Sìï%¿´…¤4§ k‘å§x™óY*¶¦ÜÇ%äߌ’!%ÅœZð\kH/€Êpž3Ó÷œ4ØT“ ë¨t÷Ž"&dëtxYÇ&ô<ŠxmHÛ1?&‘Bç§óÉyÙf[Š õ®¿¦ÓjÒÿ “K½æ!JBšÖáâ·&on²™ˆ§ÿk +z2Û6X2ƒc“z¡ í1èÓY”¤Ê)µÉŽo8ÑöÔDp@ Õ²ý妣p1‡ù@-^C—4ÔâI£þr8â¬m(Né y8ôŠœ€‹oꦉ-a°¯R^ØâEê‚»!Jú0ír*d‹·]õ›ÑEÌÿãáÃÿñç¤j…¹=víöÐÊ$ÓmWЇ†˜{/_=µ_nësº ‰¤Ä~ϼF92þšë!+`)ꙃ‹¥¨Ž%À=7 lº×ß’âψ€©Ñ±D€g£ùRгåÕ\ŒÅe…1ßoãÿSŸÒ[—Vøêq³¦Mœ£âU¤¹®Gs4¥Þäü´x=®É›Ç£¨.³3烬×-­Z ܺ`´¹-ó +ǰlVy¦MµåUˆìpèš{$(T³O_ÿ"ƒbxU¤¦TP1w/hGÎO·|”ÉÔG8ióM3ݽS’øßX¿åЬ‰Z¤Š;_ÒÀ]åÛ­Úç8_@DˆÇTu‡|/ýŸÝ¶Ç 4Ù¸–Õ?dÏ M¦ŠšPÂDAÂQR»ÁÂv~, ÇŒOúõ *fÙ•Ÿ˜çº#Ôu×™ø²TƒD¬ÁXLÖU¥v §@‹~å=¶›G¨¡N«Ëvûy5vø×Ôµ$Kí© #Þ˰Á|JlO;õ{‡Ï’±ØÃ1)ÔÎð¸‘>š–9ühkŒ®d'ozmzö!e$šÞþx=Çö8eçË6ÏôÇ^ú]gþŠ/”p0AÇ”X!Á€Åé’ÌJ]ÉQ%5u7°€wú E¡D¹ìœgI£/容ôçΰ[Íø®›W…ùþ‹H µƒÉaÏJ[èì_æ*©»–À‹uÀ­œ`s Ûl‡¦Òî<ÍcpÄ Ñ‹ §É좾ˆØÌ’’™‚þOtqà0ųsS›´%•–7À¼änÂ#ÀŽWiÍó/E-æÃô†‚‰éñµâžXíù¸GV©ÚWd»)×®‚¬…´«¿(Ž0ÞYµ"È®úTQù1‡*™rzFc?~peêÊ "ôàJä{’øË¥:!ñ½ä[ž|‘NtÄöÓ£˜£:K»±­tþµcÑÖFatQi‘¡–©Îiν§]ÔžRã?ÑFpÆo Œ÷ç`{FòÐÌÉÐŽ{2²f¤Š{™77¾hê•u&h›Õ1ô±Å篠£±(»ÿz; c Ü8°'²øTŒÿ¾h¡Ï`Ó2¾ôS 5i{)Ãßê>GOb‡Êéÿà4âó§’%û˜ås$„Æüko-#.Ñö¡³~Óñ}àØ.ðá]þÏ=5ÆÜMÁ'D?)FZÅ&{6V¾b’2åF[úel4LCÚä~ÌfKÏpÔY¡¼|Š¢ªULã†øñ쀵¤«ÕX“ǟÆb-Ìv°^{pÍgçµèhRì Õö˜)•ا-¯”¤e|÷k¹8þø? ù…15<šŽ¿çÛœš©X둜'(¿‡-+Z’¤øŠ6læ§w2Ûê‰á˜ÊíPÞÈ«%6¤@2LjúÓÊðOžßZ½†ËŒÙäåÕ!ŠÐÚúЕŒœzp8®zñ'1•”‡Òy‚Ü“£''Ë^Jlð0}žR®£ý¿Æ9…è6ÕUàƒÏ&ü+ o[ßlÇ|ŽCÀS \Ô!¬i½àÖmy°Ò9»(°OP·{0Úª^î°ÙRRô<«¹­îØ’Ÿg†ibXT êßïû=³JŸ+Î3ÒYÕŽrv(qÔ꯵ª*ìRã¤øÇ„‡ž¢Øxû%Aµa®Á¯³½{÷_*§ÒœœŸƒ(Õë(okHè5ïê…N-k[ï%ÑÍ÷þ_¦Hâ`Owu¼Á²Ê¿9}.láý'C‡S_¬¨*àeÅœ¥ˆÖÓGË¡ý­“Á¹ÒäøcÛ÷ó4 LÜ!¤ã=òŸ UàÛIP'8aÔKvè1ô»ÛÌŸ5ì£Þ¾°–LaP«½[:Kˆ¸òÍ[@Çš†Ø…ˆ0ÝPÔ ÿ(Ëóå\Í„Z°}ÀßžJÞ¨]ŸŒwß´¬~Ô¦»qT&ÄE JúŠû®Ž™0Mï§¼œðñ?l]‡ùÃWÊŽ$$X[4˜,W¡Ž EýâÌÍ"hÓu¢;&\ú‰©°”"%½EöþËlXA¶lÖ¿Lp«ë÷“¾Öxÿá¹I8 »[‹›GgÄQ·¯$‹ßXýÐþ*%^^šúUFü‘)Ô=>·Öö†…Ô=§¶dYqà;¯âÙæ(a $–˜©,ò<^E'*ê°›MÊt~ÀÛN v»…Ë„ÑQZGýšÙDÐF¾þô)°¡SÖvõÕ©m/+×ôàΫþ¤K[CØIZWÔ&¿_ãJR‹ÐðäìËc‹Âš´ùð¾¹õôqUmÅÎy"¯&Â¥ìJ+aÅŸ,­/²ãð[Â.€/ÍÄ Bˆ‹üÇÕÉ …ƒ3v›ù†:”#G3`y»*¾Ó›TØf2w§gþ Š3†ëD­ëƒ,LHZ©Fµ¥„Œ(cLU‚}ó7ÏPP‡õ¥½ÒÝȬk¡BæÂÎaøúˆi𠦋ݰ@<Ä _+é#˜¯ß“pÇK97O%‹ïT÷óûưü]þ^§ë„Á žèO’cüư (TÚ§µOž$¾…ÑâøŸw7ºÁ”„~'³ÉðË–@Q;ÄÈGèV»åÚêP&=RA+ä‰%­ÛmÓ3·Ž‘ä×±}Љ›b쟃b š”.Ú/[5N^ 3-’Š3ü²@zÛÛÓb»ÿõÉÝŒÀr„¬àAÀÝ……A Û³‰ KNö˱W§¿/Ëk(Å'Ã.mÏÞ1’ÆPü×Ñøm°<@nëÐÔ ÷ûþ+•6,[y ýïý°J³Fžˆ„ÐeFDÏQÚ¨`‹Ã¶˜¢+®)¨&Ž“¨ó4/G¸ì€ªô’‰ÞOH`ç=’¤"RÀ»Ygq÷¦-é¦l7W¸9)º§Ö' ¯‰ö#cŸÓQØÐÀ¥«};°ùÜ|ã­%ïcHã²CútÇ¡9¶Œ6•¾ƒâ!uý3Þr…6´Ó }Ú¾˜²ê\©ðÂJÁòù8åó¬”!¤j?£ö¾–ŽoP¢7›Ú¶À¯”RYï6F1èèßQ”è xjV®jíCe¥.z:ýò²¦Î=†ÛðaWº†W\ylr÷5¯ˆƒxgò5›‚pqµÄ’Ú!´®Ct äÅÃûFQþuË:ãDÙÝÖÖkd3P»ö׫ïð’®² šx\¾ºÇ5/WÇÒä`Ö¡c³„=I2ÍÐ4‡-pÀÙ1‰“Õ;R߬n¿™6âÒÄH¸·—ê…¾÷žÅ$SÃ4H£HÄ-y$€­$J–Ëß™²æµ¾àÇjï¶•e§7H§ÑÙ_è±]‡ÿXö&Ó—CIô8—ÈF03ÄR–qÝ䲇.1ÚÐßß5†hØ%Úê @|Ã2¼ýƒ&$°Ff(.WNÑ&‘ØV×ø`r¡<{%}ŒÓ„ó~ð‡s%‚¢ŒRbËêáY„íYn²œÁ©Õ!cú9¶kMÜãŸ>Y#Y ×Ç[¾‹Xëm5‡Ø›¡“~™} EÒ¤µ×3ŠšÒDè„C¯¸?–ÞÍ^ 2Åê2œ³B#X˜ÔÝšpñÉÄï×JÂQè,o®IâØN'åíûÎÁ&Ír*­¦Û‡2vJàŠ%BYVº†W%jè$!Aƒ×=yK2ó7óÁÉ.d×Ý­Ï~q*‹˜`üj ´l6DâÛµ·™èT˜€rŒõò¾÷×Ý\uzžZ…¼và·–ˆÁG.òí(‡ÅÛ«cæÑÈFÙXÿ þDkýv%¸#Â1þ‰lÁž-³dº¤Çw»‘e&§Ëš‚ä´7òUô¦ðUK‡J­+’$\ÊJý¨ z¡D"0hH‘üüp~Œ•vŠ¨Ã¤„kVTmI‰ø/w­¯$þ ""԰H¹Dt«µ•Ô ûÑæ²BÌ0„b“¿0`éÊåL`KÑÝàåN} £Èøe­ËŒB¨‘ &h±*vØi_ÇfRŸß´2=v|,è ÞE´Ð´¦âPC!› ­ A€Cv©Îæé\^PŸº¼æ-}Z«0ÈZRª>Ð~«6²ÇÈ©t è—aéš©sg o1€‚>k!ïaÇèiÏ; üØ82 £q¥dÍÄàoTO Uö ÍK±gV}Ó@Ù³[É?òï÷Û71Й懸wãwÖoÝüeý¢X°ç³'–΢éWn%ë 8ª¾aâæÔ²>š!Û`àqŠ~ÀÐûV’Âûµ*,ÏžŒˆ3ѳ‹KV [ÏMˆ1Á à‘º²åw‰¦Ï霭™qqE®Ð®Ý´÷l\ÜǯJÙ6XÔÈn0H„y%òœ7ïÜ÷])6`í~‘†uSÑ,¥YãÖ!m½kþaØ”rTt|ù„‰Ý`bª@ͳÿoÿÊöbp™ÀÞ™o;Š.'¸,I“xfhæY%c 0Vþæ#+ǘ¤–—ûf°T ‡©7¾aûºtD/4jí!œ5÷9swÊ"ÙÔ™ÿÄŽË(º-ÄÀå&cüøå£»R9S(5ÂËENâ(Û½×û¸’\?ÔÇå« µ*U•i /ÎLì^_äÆã•mû."ãy%®Åâ³KŸÞR/–MÍj£Ü&Ö…yŽœzXXG¦IäGws¸v†÷ò›Õ¶M‚Õ45Ǻý&-Ç÷Ðô¼…ŸÃîd×u‡ã×èÇ%ÀIi©ï3`­=ëí «ce‚Ñ‚;êÆþ (£W±Iß2˜CëHb®ÕT‡ƒ¡RËPG“R%‘à®"ò*¸½¸Xc]ìÏq¸¤LË·'Ö´³cc˜ï½·åsUúœá÷†×-ëëaëG8¼ è*¨ ¬”*]H–žÊ5¾``˜•<­è ¨w{}¼¹ é×ëÓD–oðzH~»][~ã*üé(û\†ÉFLr_~ó?:©|4áŒ'à 3 »v$`‰¥š\¹­Oþ€%eÈ$S­ö»ùÙ…-è&&5¦¡²&Ô6 *@½º_øhy?©G¸Ó~<±Õô¼µ3xFŒ[n®ðÎ#íÖœ?>qNn‘*ônñ\žƒg>v-ôÃW{AÛÌéä  ñÀÊ`~K@˜÷j¬w¼±Ñ€CYúùàh¤Í×*~Fpt"\ÚGÝyˆ GÀוf Ʀ÷CæmÞ J9_õÕ3äÑdšs¢l^7ÂÜñ§3Yøî'«çGcÔW N‰ôÍ1©<1.¤gG0HÌŠqV#×ElñT[‰LjгWŠŒƒ0§¡^¬¡ôsÚ¡7õLÛ ØÐp–·õw(ó‚‰l“†˜p¥„øg7Lxñš&پƧwNÝiIÖ!¾‡œ1lVQzèÃr­Öï{ÔqÛ”çüˉÅ{ºYq„õàX,-² G”hÒÉñ™ÈÕKF`hÝ ˜(´‡0;&;´ÂbUäÄ‹#sŒ8Å"S7§%ø&¨ŠFI PK¿[¦Åœkಿ?¼wSBø—´ÒZ匾“¼ãµ"ûÃS#”îI̱™ääÚSU"Í›ž½ãJuÈ:ñ$›ä„ 3_þ^r9ÿrN“ò§$RI‚ÅÃ6~5ð’úX²‡wÐÚ¹W²:Öd€äaÕ“ïÇñâU£•Œh^3Þo2žwçxÏUy 7núÀŠ›]ú-N¥¢-¥,{¦)8iu$ CžYóãáJíb2†SÍž+cùEPåÑÊn"‘ªÖpŸé™ÓÙa [cü\™˜¹!•Ú$ÆcÇLÃ)g&íêU+÷͇ŽL vhuѽ’fŸAˆ¬‹dòI^ç•÷{ NiÒ4ã‚€˜ ^82ÊXïQ#XMZ5W#Yõ`vÍÓ†µˆb& 0Ÿ ¨Ë=§7Î ÷ÄíA²U0W‰¢”rþ6{vJœ•·qJìïV² â}Gð¶?¢ÐxdEu^»>²»‘rðN4j¾eñï¦}ЕHH—ÇJa¾<÷shžyªË;Á&ãÉ “O1”“ãQw¯pÖ[,X”u—ÕÇ æð #ô7ð‹chA“ì6ëýPxòÀ‰11UVXFŒÖì£eôänF½ ˆçoÀ%¿ež¸ð«nElÈó2u=éy~€r› ER$\h1=æÆþ:Z7ñ¾+mTM˜08tö/n~M±ð=ÆÝdŒ®ŒCä5óßçªÄJOB~³}PˆË“'´Ò?œÚ…ÆëÜ;ÿ›¾“OG¶Ë,!Ð18PìkÇ=ƒ£U 5tY©¢Mù ¼ñP£[ð/DÉõ1ÈǯH¹_„êÍÛÕÀ]̃3p‚è¤ ­£—žØãrÓR;6l@K‡’œJÄ´/Ûs‘J¾+®c£ ð¯ßŠÏ C§¹8›½åîjä¤ÙÄŠœÑ‘c¤× Öý$™Æò·/f& -ïr;€Pb½ £/OWí‰rÆ]­5üö—WíËzVKó·Yö”[4Oß3´7eµògÁë<~âð?ï÷ñ9¤‘ì¶ÀÀ™ílD‚¿¿¹jSŸúËçj!FCsÆÌYÎ^W{ÜÜ òî1û†ÒëÉÕ´êØ:­ûIù`Ÿ µ»Ê§dÛb= ÿ²w•/»w&«Ût”÷O6WSà!1À  ï;bˆ.vkë ÌŰu˺;.QøJ…C¸ÑÓåRuu“JŠpk×ÜA`úé¸Yg#P½ióÉ`Úl‰­©Ë ¯g’”Gñ§lË(—· Íhx5¥[ oM}”›ÅÓT£¶ç endstream endobj 118 0 obj << /Length1 2674 /Length2 27953 /Length3 0 /Length 29503 /Filter /FlateDecode >> stream xÚ´ºuXÔߺ>LHH7ˆCƒtwwww CwwwƒtK#Ò R‚t‡tw—¼ãwŸ³uïóû÷½¸`¸Ÿ~îõ¬µ>Ì@N¬¨B'd 2Šƒìœé˜è¹²rr ;#2ÐÜÅÆÈÀLÏÈÈŠ@N.â4r¶Ù‰9¹Îg°+Ø‚‘‘  ´:‚•¦c€ÐÙHÕÃÈ 2ú(‚œœéŒœÀj ¹¥ì"²÷p´4·pþƒ…Žîw¤ßÞÂôi#k›“µ%ÀÈÎ M/G¹…–*Àhadc™Tš51e€„²‚š¢ 5=8°Š‹½=ÈñjQQU“ ˆ É«Š€ê´ 5Õß?UvàúÍiòª`ýï<`ÃßîrbªBªZŠbL ¿{0\ŽN–¿ÓþWmàÊJ»š9‚lÿI ²pv¶çf`pss£7wqr¦9šÓÛÛüSŸª…¥À äh ¿:m€ÿãbg ¦ÓÙø¯¿ ki´sþvýKi ¦ì–;ÿ»00οcÚüËàþG #§|ee¶F–vÎ@;#;°¡³‘³‹ÀðøhJù¯GÇß9äþWåøï4ÿ[º0Ü™®—‘Û¯˜‘‹“ç_ÜügÛ& ;'K'g§EÌ,m€¿«wú½f–vÿÈä„ä¥ÄÅTTédÁƒgG'³cGïìîüõïxB¢²àQäà033ÁC*fg*²µWí„ð›>QK0OÎ G†ÿ3×Öv 7;¯ÿ+7³´35ûͼ©‹=ƒš¥ƒ PJô¬Á"„?2s 3€tÝM,~§ûgZ~‹™~‹Á4øxÙƒìfF6N@K3 øÁËÉÈpvtúxý­øO„ÀÄ0µ4q:x³ ü]ÊÎ àú—\Éÿªþg¨þÙ¨Ôà]j ²³ñ˜ÍäAÎà úÿgŸýW.qy#[ ÕSúßvF¶–6ÿaù_ÀßµRɃmlþKgé$né4U´t6±ø‡Å‰¥œÀ£/dgn¯É?"µß»É<¶à£Çò÷É cbçø/x"M¬í€NNv®T@0 ÿU/˜úßÕä´T”d5iþÏÈüc&fg2µ´30³±Œ<ÁsÀÌÆðb´)ÐýŸA0ÐÛœÁ.{g€Èá÷b²³„~‹þ…8 "'€Aôâ0ˆýq0Äÿ &ƒÄÄ `üƒX R8ƒÜÎ ÿoÄ Ž©øýTþ pj;€Aý߈ Óè߈‰¬4r2±“oc ücÎeü»1ù7bëL@6àµú_ +ëo‰­í_qÁå™þÁ=ÿ‰&ŸáŸñùÃ×o½ƒ‹‘Í_.`bÌþ¸€4³tý+Æo5ÈÅñ/°‰ùŸˆ`½ùïëø· ¸P‹?eƒi²ð°·Úýe–YþÁ•ZýÁäYÿÁLü©˜ܲÍï)ý£ófû2 þ¤bDzO÷¿,àÔv.¶Æ¿ ó¿JbsúS48&è//&&p£öÔàöFà+Áhö‡^V¦ÿ‘:þë,àìŽÿ\Rÿ6eÿGf ú³z¬`bím\þjŒ ,qø̪ƒ |+ÿµ~L`é_Ô3»ûí7ºþÅ<ØÜÉÒý/p!ÊbwàláükÀ:»þrwãògfÁþ¹«L@ŽÓ^3׿ ˜N·¿¶8è_50ƒ³züÁT{þ¡Éèø¯ þó8Rü}ÿsÑ0þ9Ÿþç1å¬âì²jXš‚Ñþ2‘3rv´t×aßL`9øëÓûä.¸¿¼……Aî^t¬`ªèXÀìq°0ýÞxì>ÿájò¯†.(ð9ú¿ø÷m Ý&‹s ž`«´¯¡å¾b…0ä\ôÇ•8üšÒ o3'Úßã‰æm’Ššý³(Š@²’Üz¾)v%šäÁØ6¿ÖZ’«~\›* nùÊù¾GÍU§W Ì’[ð¯è$¡>Î-Ð*eÊjMh%¨Špµw=Ä0¿¢_¦’èV´®äøÏ05a9Ú`¸/ áw¼_˜è€t~}ÀŠ‹6êZü8mXŠ3* kßÓ…¦M“V ªyØí•Þ|ñy˜p&b]›!›…·¸F0Gùô}±qæ‡2¨œBlH§‚HKëô CÙ…jh†a¯ "•äFŠ%¥Få†÷*„(Ú"~ú_ƒàOt­ˆmiË{ü­­Yt'xÃFÙÐõ¨j”»R üX3‡{•r»>…Zywfgy- ÂÏ­Â#øæÌ1Ť“'MG6>ï_;”FÕ¥ø<#ŸôØ !Þ\Nd„ïHà´ýÉÞèk@C¼-;…ña2Æ:>«<ŠQ®ÑÁ|ŽÖÝýX<1ô,B¿n Q—ãîÕÊ"Aœ#C%üšêG³÷®óš8—Bþ-'y«tn‹hŽS£ Ùu¸(#»æTÒ"ûR÷Ëý@Å”s®å½Ç»žŸÚðæð^_Í©U’Lx‚ÜÈÎ6Ú‡˜ÊòùúÕ÷5ñÞÙ>ÕViÊÿ )±Î‘s%†ã†ü2±­ÈïVâ Ž#P¤}cŠl*"¼ÞvÏ„é™W¦žÓ'„…ý¦±ØqYSmø³ÍjxR6ùÄÒÆÿ>OqHØÉšø ë`ÑÏ›qÌŠá9­èr½ºÖk@d eC.fzxîŠ~áŸÂñÛÜ?ò¦"*œÈE9Æ3ÏgË]·¨ 6h V—G|2§9s¡Ëy'¸cçÔ<ê¬á<üZáÏ€/Ò¸cúê½tW 殢æŠ~æ{ogqêiDŽЛ*?Òmc†rØ?é@¤—Ðxj»«ÍSëòn+¥ }[d×Îú(!¼q…ÜWZk¡ÝD‰O€–g?-v©ú•àíÒu²=ÔJËØ×ÉK=-“sxŸD×> žâ¼-jV¡mIúÍW$¢NoU…UÏù<ú,% “Ä”3šS *Q¸Þ&$qÌP“W˃1WÞhÄûfu˜_d_J8•”?ǦXu%þ  }ppl¼QA‰s,¥ž4~֌ψÌè2'YC}lu/ëE(Ç”½äO(`€£Gí/qž5ã`•‹ÿ‘׺îà9=Ûä' gw@eÐÆ+7eÛMR ‚Q˜…Q7R¡ª¨%Ewš^øÈË6©Ñø2é‹Cÿ¥ThÛj>‹13#+¾Ÿo5™Ø}JÙÂ’ûP{3¼ ªq¶a õ=dÅçÙ)òDýJz š]V+ÄN˜hI$?n•Kðˆ»-xç¡–)ÂF·ÇÃ^ðÔý€¦[…®“t³î2…€œè7NáÕÀ'‚Ç.5^ ‘™ö™ÐŽäT[s°¡±È*µ Ú@-†F' iPz?/–ªÐ_ŠõµðL'庢õÖ¡–6tH0XÉYËÆŽ(gÕ“=+”Ü'«Hhˆ†Þ¾3Ñf̆N!(>žpíBðOÉ·>„{òç9Å3÷”‹LÉ‘¼w¾„zög#]£×¼ÊµŒkr¢Nø§h™ Aön«"8\•U`¢ÌåÍ7 :–B ÄuÒècÍû€óMxo©¼R¨ª·v%F?J73Cu$€€Â¼%Œú¬Þ¿LïžÁæ‹Ëô¨ßõYå ;í|ªÆJESÂ4ü0ç5ãK°‡w9=ð°L&ؽØm£ò¡eþ¸( ²qF‰èÞL´ZýÚ$|eE:†P*:½-J dJÜ󾘡%uB– ÊeÃnþ Pó>Æ·Œ|:%ÛÓ~iD"@X+1FÏŸâHlÖ¡iÏFò‡€úâü|â5EH¡¡yÌûä7Ÿž?‰ŸiHl³ªs‰‰Ö÷ïXæ×xeø9ZèUtm:ÆF‡Äáé¸XgÞ ´ßaÓs`+¡v^˜+ö%‚`> ìœÌ… ~ÔoÎ.¹€7dà>ë¨]Ëçšåº×S˜\w´tREÕ^¼hqEƒÏùÁ®ÇümäŒð‘XÇ]"òÕ¸o‹•¡×ªBsÆúøU­gýyŠ»>&‰þìRGÏþZ/e6A7“à=—[szœqzÉÅ ÃêÎ e²½Ï }!ÈT_Ji«4½xÕ£[òk;l‘œ˜’J{óÖO4ó(WÝ`¢÷øDíwi—Þ¿,y2|7zé.íÒÕž,é™6ß?$€ôÕxXõÈ‹èŸ2ët£ | Ml!‘%¥¹è›Ä\“Œ6ž¸ÔÔTkÛK)ЏŠ[ª ÁlâC*–¬U®ðr¢à÷ðT2#Ùƒ"vŒ,áó[›ÅotgGÒ幜ÝÌÉ«ß7íhñ}«k ™ Y€µ\B¿Å:EÊâq­¥žüøQ¸›ž@èE\Þ;¿Áêf"j[-ø$º-< ÷};C壂¦¼Û.\õZ2©`BÝhûXåùCJRÌMl†ßM÷[b{ ¿¶/I}tV“Ëtn tÍxTÂݵNñÍEZ×’Þ–Ž\ÇMÞ-cwtSŒ´ÖºPœ¤M¬wK Ù–‘u´\¾±°H¹H=rGÏõÖH¸M‹öW]‹qž‹½E7\Ÿ©¶oòo³õ\"¤Æ7_ú4Ôƒ1Í‹VÑÉG{n»éæº'ˆõvr5`rx^Écóa[åÿ„Û–‡ŠÌþ!ËbŠÞE!ora˲íüþ§ëj Î"€Fà}—d/òhÆ Mµ…J˜GLNîŽÇŽô‰lÃÅ“´2 _)ÍŽµQãµäu@²µÉ»~’øîÝií¾Õi‹wÊÛajÙ³ÑX3&E³¯Ñ,J™ñ—̽!µp“˜za¬É¶9^®¦ts^¤híòtz¬oßHù}k›æ˜4CÞèY>š¼§x~ A¬ß'‡¸d½ªBñËìøûw’ã”@s'+qÚ-ËB.W‹¤²¶{úÐþA•º5¥µT\zIbåN›íÃüºÔõ“&YFVõAR2)Æ´Ñ$Š ìGR’ û„…5qLuus*i¬l³ZÜ.pD?r5/tKžîšà$3X?õKIâÆ)%"tg‰º3Âê솵V/JŒø,šÊ_®ieˆ ʸ9]|’Ø®¾©Î¿ȶšO©¾zwÉÚWŠsh±ðP®#Ha§Á gºÐ±’sÐ^8ÎX[' Ñ{ß׈FìΕeìÀ)?Í\èrBq÷ËÊa-Ò~„ßûÞˆµdûÓ)¦(L»hvÁu…Pì\ Zx¨ÄkµCË«¹hZ¢²¦-] ¡o)DkÞ„fæÃûÀ‚(É-{‹K÷rÃ' HR,ßœè‰O5ªyÖÛÐYoç½< *²Ó½¹ßËôÎ',èž}oÊè*»V`ÊèlÅ#K§K›—ûF]/9{;å·*BÆ0ÑC`¹3`±÷ cðm¨÷žòÅø#ÌX •1¦k«÷¬yc¡lßC0dÌ0]ÊÝý¬/ß o´n Ï8qFåƒ,v÷'Â4êÕ‰4âhÉí—8ô vÔB*µ·JoÉ,œÆ­Î¡¨VQž0¬èÛNñ !`úˆpÝqX¬k¢2˜:»û,uÛÐy¼mÐ$ØÂS×G4U™;º˜Í݈ù$ì%˜"ÝCäË^6úû¸Ç»”ð)çÌ«ƒ¤SÕÓ!Ì ý4ŠmcªöîÓÖ¾­ö°k~ }KÞ©¿ŽÌ9±á´dÄß sS8¥9è~‚;)±-¢Æ.¿þèÏ Ñ8âli\Œ'ZBìyû9ÂvãS\ˆ!U't|lÂúep¥¾ªŽWϰn‹%y’g MÝ.kEcЖÅ@iáf˜õ™7ŒÚ4´MpC£iáRh`Ovq#{QSu%>¸?‡‚ï 1n¢x6ÑÝc˜èyL/­wÓšÆüB^×'… ­t‘Së“KDháü>óÇš:†}8jòj㎡ª »êæC£y2¤qrW_õ¨²ºØšQWx&ô2Ëëfl鿳ÙKP3Z»bDVÔ?èü®½g¦—;Èjæn1ã¿n£‚TæÜðQvãÚÑáE‘K]àNºÅ6YZ’V°yU5Àp'îÖ—:…Yõg¾úè¯ë°_ ÝPµ)õD6߲߷-×cËׇ:ÜnðÁ!‡3\étª·ýØF†°qƒÔvBšà©àÏŒ@Î…š¯ß`w·Òwáåãbé>Ó’«^Yԟܲ+Æ¢ß.}~àêà{À>w|]Ð×÷³Bªê‰í è‡Õs¨Ðч⑇.ü­÷*ÄŒMˆ ‘ s©L0l¼SR¹Š‰›vKzûpp4:ú'¨f´ Âfm»¾•rYjù[íÕvqê1–BæN §NuNwªbuU Ú]%žæÙvëþ§›9ÄÅþÁéc‚£ÔVʨŸHrW^æ>O>b"qáå*D;š•Ê.§fFýk.ñ’#lyãZÊBí-HbAyWg9/5MC— Tƶ[COÚÉ|s\fÏé‹òm]'Eú©ÅÆúŠ3¢iÑ «¤Fb±bk‘Œbtã!ÂÅ⊠¿8fß"Å\¤<‘º:䣞}d#å4³àË¡b!ŽG4T–?(9ðÆÝg`Ö~~:mОP{PEòq¾£d]N+‡:|û˜ok$¢¼H7„B{-AÐÀüú¿7ÊdOܯ,fG”¤_û¨#šE¥Êå _ûxÀw+ A6¹>ÐØ^œÕ³U; à¹÷Ÿ¯ üô¢ Édlšâ|ìœaD*w% ’}“îVä˜;hé{¶%zg¦§ÊU‰—r ‡bvýS*ö>,,”¾!½€çxÜá³¹IN{læNp9†»sv úñ±¸oúñ®5sBÒ‘±<êSÂDòÙý³ÿ\†&~«Ï'PzÛR ×ý lûÁ&½ÄÅ—+v¡.•{Ú…ÝùÃ9‘¨!òM©ð; °Nò´ ©4 ]u0ð¨>˜_TŸ¨uôg¥¢¥-šXó+»È r݈äî ®X2œÜÚ‚«Bz9—vºô¡|¾b8€t™ãX¼dºâ8gV°géªM/‚¾ë÷ÍÝôŽ—Ù ¾ì‹Ì¢ 5E\hÛ™—µÚÜõ K-n;Åv&ºï„Ìkd¶Ÿ“SÕ’²+`O0òö8ïkvs,w¢û/µÖ9£ÃÇ,V§G6'£V ªðVN ;LlSv –X‘’_E¬Ñ& o+é²´<ÕlR£DæµÚ½ô!{-¹Œ¢Ô‰Áù3l¯¾Ï£4„a<™ c”Zp„¯(A¬Á+mµ7Cº°7}÷:׌YÈ·k'µ”§•JÕ‡®yVû´-×–ñx‚8.yšøyš:YF¬x_bÊb`Î% £žû©n³Cm<1¥ÚõÄ-A¢Ë2 CÈ97{¡žk§À2£¨Ô^\~[4²}^¾Íhç§è ±v6Oºm´³½PÇÀnxJ¹RƒÌÝ™fÇhà }èj&¡Õ¢’ Þ„ªQ¿‚ƒ óÍ8D”–Þ¿¨<ždÉè¾ÞÛz§c!GÇÖaÁ¢V¿\Ql>’_Êy¾ƒnIN°Õ¿,OÛZDÛS­³™4ApÎ:Ø·3ª•dˆ{àñÃͨ–—!÷-=Sçô»Õ6ùñ1Ñ׀ΠóV ð©Œ=}C±à3lô8Nˆ2u’ÑÜGšÞîÕIÀ‹Íº]»)ýZQ~ß“”±>Þµ¿a O¡™G‡$®Ê ba>Ö²Õç’þ‰Y¯·gq—Æi,ì—ãèÁ{^o ?üHÉ @Wk ±îK¶̘dE¦ì—ÈÆ’~éóITu'oëâ÷ÂA`;0 Ùút€°•½xɹšR¬º+Ý¥Jü‡Ûh| ö刦~t+8ÙË)å7ü5Úõ ƒ YO«5)[øKq «$ÜOqÒ¼ Zö­åþ€8úâ,öi›Câ7>’ šúâGÇô«äF5Á}{)ORcÔ½K"‚’ôòäÍðý_æ+ÈW.C̵Lª*KuþI2s9?\°ó.ùðÌ‚_w¬Ô6bcxUŽ-Üöà›>:¡lÆVÁ í¨Ä!Í]ø^ @úÙŠÒ'žÑC4¯ù’ë ñppŸ FvgàÆÆÈtœ±·Ÿ$Ìc ÒÀöŽÖ&|уX§Ü)rM,„GÅF:þ9£ÖádmÂÙʼn‹NÕŠ[g'Qx€ ÊWtò é6ä«£„躧9mr¾É¢Eî©‘BŠú[chÓo²È2U#³§T~çh5jEͦÍ$Û7Ìi­ÃÒhF¼­³âhÉFZp/ßì­5e4÷ ò~ÑI¤.ÊõH§0èÔý:mܪè îaáʇöX ? æŽ?"¦1¤>ÌŠ*F/‹%ïæã@¶é°3ùû.«lH,)iÁÕúºÞNâS^-ÏâœçKYÇÌ6ŸÁ˜94b'g†õ„#¶Ç£0µÅ‚š˵]ø%7Tk¦‰?®šÁ#×rê°ÐêÏà?SÒ‘R[FL}Eï†àë ç4Øø-–[³ðm(˼Œ~®~.Á‘ª ”É'õ½ñöÏ8;¹4z¸ÞYg™Õb½ NÉÑw  u3…A@ÕvWf@îœ|§î[:˜›X¿ÜvݵQ¢å„‘á~7älüÕåí9ßÀ&«v‰ÿw(Ì[Æåúw™1ÝÑ>[Qáü›²¦d$·'ò;¹wë¯@ß‘<£T=LpJµŒCj(Bdu`m¥‘j'i–ÕmôÎ}N¤ôëÉ 8§ù }üQÝ"Jv{\›dh&¼ ŽÔøÃÞß‹”ìË)Þaö³ VµHj¿têÐH/Oü½å`õ;ÂðEâã õŠDûxïstdÜ‚#®ÙÃb‰« ~*^&Ô†v¤ŒÏj[VM²›¸&Ñ!±K@(õBÈvû¯'A¨C¾)”;Jõ]'„˜|цõ‚arÃ๥wZ\Îg¦Ö¡Wã.v݃á?JÙ€áJå&Š…i‰5“^ÊJÜgVXaÑxø‚›oÎcÒzKÝ“—–‰`*E‰\$4JñkY¢*óó7<.jP>—†Ê«q´?åµGJL úóªJOÚVöÁÄì™:Á£´ŽI»Zö!ªòd—]j-ÊŽ5uåW9—5ÐŽ~A¸¿å/òA.&ÙäR·'›–Û¾ÖxöŠEÀOsLJmŒæQªCé ÑOÖ.¾@Ê?‡ÿe*W~Üî¨ë-¦ìz‚:¦ è¥ÉðÃþ(K#_‡“ëê§—ÙZ<˜¶ôô ϪFz§gãy³zez)‰;EÅ(×u,§zx³°=Á…·ú&wHgÀɱ-W (Éš^›ðìZ¬€¼|F–õìûÅÂÝK2þ—²@ SŠ2´qG]&LÁ£!>tÃ5Ncæ· Ü1S‘‡’ »U׈i&R+É~X?U•5îwDqlìžêµÙ'³ÓmûÂkW_ -ržÕš¸Çê1ࣨ"r¡—N'„ó$†:ÖÄzª?!òBî‡cÅMòëÚ´ž‚ Bïgg|È…ã^ˆ8,¼ù¿&{ÞPéacKQ¦fD-ZŒáMãŸujù_°UŸ`¿dSÃÉX@&°ûNejûµÉ× ó85Û‘‘œp|AÓÞW£.¯ÐÙp\“@¡Ck™¦ÖÄÃ>Ѱé¦7y4ƒS¬“ eBqª  ûÃpòî—/g@ÈQ‚’´ÿ=Ñ ÈB£­Ž6˜šû¸ÇÿVçVN™¿¸;wé[ë š²n¯s:¤y Éj<÷'7•;2sJE¼šÍLH¾Þ‚P[ï§îÛ_%“éÐ!#SAïÒ½å"$å7â¾ïZ„›B•¨¾“Õ÷±£_٦Ƙ`¡bÏåè*)°–ÝŽ mÈ*¯Ø¢6²ÿ*ù]7§›*öj/˜ÑQ£•ÌnÅGê9EâÐ*h±ø³Ñu*±îÇõšlù™#Ó´×¾k†ÄéR.¥×ÕÚ‚)’}–hJiB?ø¥!ý¤t"sïÞÍ ¼ö‰E°·öøÎ ýš#"Ná\ÀS¾·n2¾#+° 4›%Ÿ®Ìþ¦d;˜g†$Õ!›ëÁ‡¯ðPê¶üÔBÃø%Ú‘—,‡ 5œé¹5Ž;VSá½5YŒú¥D…ÅS`„%a¹° _»´¢o¿:mö4«Êw¸ê^.>Tn£¤¼@Ç*'ƒŠ|‚ŽçíÍZFí±I®Q¥-‹#k ýzø`æË}<\ üÉbª ++úÁ÷€H¬ù-M:ˆQJÃäN×硎hD«†Qá9¦ø„§w¢”Ù„Àøç¨Ák—Ø“Dþ^T=?£V†›½Þ®³žÁ;.X5>åàMþÌGQ¦O5”±o¹,ÐöÑåÏ#³MÕ|o?„¿÷Ð(É7pÛØd ÏBÝÓá]h™™¬†Ú‘cÓ*‹î™ÿ0ÃA°¼àëLz?ªÉù]*ÎEÂIe!²ðjÅD)K+šÃªÙüšüYxSÉ!q#ág—„ÚÜ3ÂpÈú¬Ö”^…jhêHö®ÙÕ)B¸ЧÞû-Ú`—h1ì›z…xÑû´ ìVàù¯mÄ!˜®/ºkqZ°—1³Š'¨^Œ—­äZÝõ¡š{Ôƒó>©dñ5ñík3’çžÛrr†Æ 1kÕŽ{M/áÙ-+cƒØÆátßTth:Í5Zê3õ'ÏŒEöRUŸL=B¾žÏL“/\þð±Šõû¥f긷ÖÂA­eÕ³ÚCHªÁÉ ûY·Ì×Ó,‰("Ke©ÿ ñ͗݇Ե‰wç Qô=ò黟AA_ ,©V“Ç#{ÎršmÖ€ŠõnŠiü¸JF«³ÅƒîéhÍøsBõ^ŒRÔ*‰3íE–lOËŽÛSd ­žŒœ’îÝj ;Ž$r/v¹C½nhCÉÉq—Ò&6HÄâçZqÀf)Ög%9Ô³¶‹öP\Š»Å:¦»€ý-c“ÉJØÆ™C5ó}.ztn‰f]sSOÊ~ͯÀ/‡|ÞÜiÂ÷S5 ÷QÛÈ*ÛŸæl9w«v?ˆ/ÈW³DR½=§“#3E‡ Ÿ  ŸÅ&/„~½†!Ù"“RW2ÇÉ<°Åö~ù£oNÞ8J¢¤×4%r‘Êp+>Åy~»‚£Š7çK^•ÆHàÿ‘ûéc‡3{Óï˜)Ð*µYÐ4]rÆ9 ¿Àý§œI’ÍwJh&N¯WÚ¥òåú^qIä¾Ñ¶M2‘"®.S‘³…J¼}ö@”oPr*9Ø—²}ø|ÔêO{÷F»Þž<,áÛ¡¬Œ¶·{¬(‚9X¡O"“ô0IŸÊùºfò ;¬6Æo‡yÏÑàVÙSâøèE â‹ÞJ4K#›ŽFpzmQÆ'Á}³Ï;æ…Tyį̈¹YÉ‘¾Š<ºÌÎ’úsŒ¡]j_@t¡4¯y2"%GòÁ·Ö‹\‚NM¨ÜÊQÌîXŒ¬¡Hˆó2,L|™¹µ.‘¨èýšG µ@òøGÀ%oÄA¼Tž,œxw å–YÁ ŠÁΰ ¸Ü ’©ŠÏ²V³Fühå û­þÍø0‡Íã¡…>Ö-Öû:š\Ô SÇl`€¦ úm7c§d€Â#B|5²[ñPÝIS׳{W\@[î2ävé¦xÅ!â$âmÂâÇ`óÔ›k!]Çí–¼Í;ÜoCMŒd>_=1WÔè=£¾Ì\æ^Á=̇Â$:À9|ZQ1—/fö49'œ”©;ÉD¬—ÎEÓ›XOÌ} ¿Ð~¯/ÞE§øîÓ ÉÕ'umSŒ:Ç—ì!5ìÀæS'Ê £¢²/;WsÎUÕnFò©) ¤!ÅoDÌYÑ›¦êZ>7zzѦϔ熺ìT;Št{ ŽtáÅ^¿‘=ÈhßÖµBܾ,³,þd'øy=…m *AßÕ» )øPVO3ªêµm ‘ŽpÃnœIH€Ö#)Ò¶–ÖÊ~÷3uæ©hc­}mÃ&ÆÜQá+¯ƒ@Þjª¼îBßæ¬uçK‰à(£ËÌͬ}'’@¬˜…ý³ SG:šŽC.èê6g&Ѳãë:11‡Í¢ý» DïBNê€tE zLéÞj‹¼~´K#%º9Îáp‚ûKÈ5ßœåÁí|œ7OA}u3ÈšZS*5N2whþófñáâq-íMË(´õiFˆ~WÑ™Œzæ“"5W}¶’ êXqœHÚ¹ÿó2308y¸=dY­ï¸§¹‰i×5´Øà K~ 7Ç?×V›÷<0ˆhÞ¦i~-Ñ+ÒÚôg"úªâmô¾@ŒHüÃ,ºÍIF0%lâ¶ëf@¥;Çf—Xù’ïmq_ÆŸ’0-{Ú:š9››ýïË•7\mÇžGzì]¬"ªåõ •í ¨º#‰ûo’ú·0È$[yÕ°éV' ÛÎå˜;»1Xf%Þ•âIC¼Ì_:µ¸U(¾A­ŸÃw(^•⚪|iº qâ%´dm,øö«ØG±üøZ9ë®;Y¬Q$sXJ›Ðfpòu¥›÷ŸY 2ôWÄõ‡ý‚±é /o4¤À}†êî¶CÏ3$Êï»æ±Š6¾8o_s}wñŠuøá]1#ùJG‰`°ÖŽ{Éñ0·wç"jó]“)Z×?Sç|vûŽÒȳòðìê‰W'MRKä ÊN2ºDȯH›Æ±¼ª-"|kìzp|•4r~^ðJˆSÌ‘ ÜÕcÜ‘)ûeÅ%š›}#o ûóí!ZÀàó¶¸þvAݵC.Ý=,«GZÈ*üú‘žÊRÉ]£,îó'Q~GX\Ÿ´pS¾xÞ¯DØÓôpë–Ôöv-r¸€'*ÔéÒ³d*; ×Ú£WéÅ‹,Yô'áÝr¸¥E(‡`ó1’ª;‹„ì§Ú6¹¨{j«¥§£¨˜:ý+ Xkùnì*:QÁoF ¥§™Â„ L›˜ØjX¹ ßÝ‹ÌÎÌ¿¬ž¿cYáßu?9·1Å'öûÊ“SÏ¢È 8šІBÉtG_Çø¢{¾+Z¿‡3¢0ì°2!^×êØ@Ô`’u—9…5”&à˜Ôšxÿ*†>ÖQB€î–Ë¡þøŒ»%(#žru¨: õƒåÉÉž¼ÕècRø–ìUæ¨L4IÜ‘…¿omîwœØÐUŠíG©£T’mMÈWêd=Ðèó”*C˜õÍ gcG<Î(Lʯ5VÇæñtŠÇYhÐ!4šA/´ÃW¼jlÊô4?+hÛ}ïý¿BDÌôÄáùPè'—!.òY£Ú"Þ`bkP®ª^kôN½Á]¢{3ƒ “%sŠ?Ö „¨vÔ°¢xç¦w¥…¿)°vç~LI¥Oæ|æA#ÍêtGT†{/‰l §êb~»„|‡y&¡ôÔ©½†`{„>æs«w†V/r^W!³]gýAw¯³ˆý¥&v}˜¦è@šÅ–ë‘æ×MêYej¦ƒXn–Tu­•ëÇŵ—€ºÃày¼wwˆÎ£Á ôC ùw´Öp}[l½ì²ÏG•«€!Ýœf·â†S”Öý ©{…M™Ôd‹Àt!2Û·¤–* Þ[èçfW%€žÍÝ´Áu;TRÎ㨮»ƒôîk†3ß ·5‰¬t7x:f‚ÜœÏ½/:oö’›i¥hî–¨ÖæÈÛ±üg’›¿3*•Vý4ce2da+[•ZÌqÍšçT˜ûñÈñjì'¡^sw€KkÈ„„öŒ+w]$µ.®æOÓG¡ˆvºjH)!Ò¿>¨ªV@n÷7È8öð“JË„]5ª0«rœ‘FGc*Y|½TUÒ+Œ¸ËõòZê‰ÈSK›(6â\K«²鈕úç€dÀD¤=o´»Îû’ßüV¬eÌ o(öSÝ„ÙXÿú"†Z‹@L‘„¢U{ß7©SâP~YaÛmMt¡ï¡èŸh˜Êe®2$g,b5#·cél¡4˜2tƒë,dK8„åÒUNίNË%Íwy»ù§‹{¼íÛ†•ôÚÌ̋׆u@†üŒt|Ô Ã91Ï/Ц¹×2;_=¬¦A e B™Ù”þàνçÇO‰fØÅ‰¤,“P« ×q;ƒy&<ßô¹aX ¦r Ùw‘*x{ahH}ŠRX`1àÉq ‚Â9¶LpÄ~ÍûYèGö1ô°+ ‚#‘iY—…ª¥);|Ðè½!\ûépüR8”*Dm ±ß¢Pµ5U8j¶ÈXç]<NÆ'ÕfíÝ-w½ù ‘˜ˆEºÓ+Dtø&`›Üûwn™‹œü¹îùÜO h$ p1Cµâj({Ðù2*”?& ®¸ÛÆc{ô§õÛ¦·ïÖJùJËåí¦|Ÿ@—’ SJ•Ì€n=J 0[ÊHqª\–“dîq1üBÂPƒ™?üqö‹à;Tôa•¾¡ççu]@ynÈwR‡„C¹vG°’o>¨¾ (a¯ô÷«ˆ)ѶǕG†‘4á{ «‡²Û'jiÏòÆ,8 Œ5¸[%ä6¨§H¥ôB ˆCuÒÉPU&K‡·' +Q –T#=Ækq”`~Ã%逕Ú»uêðºæñ:Za»ŸX¿Ë]ÿu˜ž\&ùWß tÚàI>«…³/ÌêÐ÷Ççç¾}ó·ËJÑ•…ç'ÄKËFŸ¼æíÓ)ŒB¹‘>¥e©Ü¸îã•Äù¯Ô Zè^Œ±-`Õf–Íú…¾iŠ z!VøÖ+_PœqXÞ/á¸ÿñìû¥yòîÁ“õcUkÛœ´ÏÚ`Ä;=“MQ-·&÷±r› qåôZm½<ð©¾÷YJ¿HV¢p(híeWªÆ¦™7¼]§'Í­ð*η“é—ŸÙb©®(‘ýÄ…ð匧PX«q§ãjb’×mÄx__Ä]é¨fQ©’õq²Qºq¤#fçšïžuB3/'ù‚IîÝ}9òöÒi†ÐŒ\ !÷;®\̾,Eñh¬îá6X”‘¯ño¦ÃÔ Ë¿’µ#Pý?þ[-ÓêÇ÷ØZá\\_¢ËÖq9!¨çõ/¡èó—1Öp;'õü¿¼H<äÂïPXk\‹ ¥¦Ó}vJÁï¢òŒu Ì[}”Áš‡Éh° ¢J<:ØlsÌ[ÖO<Ñ—L ê§Ovѯ ‘2™’Z}Ë÷i ­0Å>®8ðg(´L°fO¢]ž!ãÙó ¶É:5‹ЭÕ(ƹÏæ“ž>¨æM€FöÅïÁîË̇Wþ¨ ÙÐ=Žümï.¹/03Ïpé×:bǯPDÃÙ¶÷A:”ìn§ ±|ÿÈæ­éÏŒnx@{H€™7(¹wHç_ • ­•ÐÏÐõJ‰Î·Òá*ʃˆÇ7¨…+{Áê;*5±H·•¶íݺå*bèáAkòc®ëgz8®¬kÃÍj|_žSŸÙŽW8û¶HrX‘ ï}\nT°«xGÐ|ˆ©×©€X û“Œˆï¸ïðßó±T{ŽÀ5R±kïr×O-­)t¥íƆûÿð£Ú|H<çdEá/ÞJRõy/âSœCoðLÓªùŠMgÍaË@A 8Á"ç´Üz«Ï•fe ãuÀshMúˆ¬E ÝÊ“ç~c0°pÈ¢Û‹_‚ÛŸ<ÕlÞõ“EçQÀ³ì‚÷ qIwâ])‡èp/Œ ™üMcWL-D§’b®…’Ó3¶w µ+FŒä-ÚóˆÑ²óÔ…p@ùi‰¼h¸i|aZšú¬úhçBá<¢2Í!9Êʦ­³Ï~~ØÆ¿0Šdɘ7÷i•(Áv´óiD²1Q㽈[•„ÅÓÑúk©ót®¶º‹Ë7Ž×^äG¨•Ø©¹¥\ûš/þÀ¾ð¶oÎ$eúc6¬¬_Üe(>%zLlY<ŠGÐSÊ,,ámDË<5~Ýóy\`¼uOZÂ7Ê/Þ‚õo̳gIÊ6~ÉÇ^^KѶˆØ/ 5Þi*m¢™Æn† r S|â‰Ô„vžà~90‹î£(·Ýî^¢ë}ƒù‚®(Úbül°ÅHrÍ“H)!k¶q‘ ¹üÝOÆ<šX=l¤MÙúÕn£4Ne>s÷&™¯ëúíBã<ÆÕ¾÷öÒäñ)%׎‹ýjV6f-¡eWüªBJ´N @ê¶Pän ‰÷Ÿu†ázïàÁÚ?4-3 !hhœGØì‹`ܘoE·t»üÛèüô ±©5ðö”DÖÌ<“Àï8ˆbï€`¬Ý5êì€Ø_u¡*â|Ôs•²–U%?ånÁï³>é-‹}’X† |ddÒö«ˆ˜j5ËO¡n'¶é®GÒ8ñÿSN‡™éLÁ¹+”Œ!Ð7ÁAÛÝv°%²d]Lì'¨X¨œ©›oŒ¤ÏG>)°õQ±Sf;ýrÙaeËïáœà—Õ®ousßÈüþØÛÞbã§bÅIN\Ü ö&ŪwŒcJ5q)äWé½Û"Õ+óù‡áå8‡õ#q-©är¬p¸våbYîp¸ÆpwöL†KÏMNèϳêÊ¢ÂB*“d²pá´»}6½o×¹±XìŠ8·^9›³É3Ê,VrŒöÑâ@”va[@åáŒfMþšÕ´¡ŠšŽ”K.¼ct©á—¤ËE+š…làé­c×Wœ•ç.ÏPVDðòfvìÂWGôIàø²v§ Ã wJÜnè_[ÃùAäQ¾Jí8årb½’/- tyÛëö·êÕ›†ãy;ï÷éö5é.û‡m£3ñ›Š»ÛGÖfuw…D.A+ÐG÷|³ÏíôNbŠ .aÎDo¿ö³¨Š¡4ǧ_Ài~Û””ÖOðÎ *C'¨g*¯-„ÄÌÊ1\JòY7 äÍ6(|U§Œ¸‰¥g²o¼±yÃÞeõ Èá„Ù ¦“âñjÖËÞ1-¥¹¯!z gg6é¼îæxkãˆÃO™cØ„(bm –î±ã.åJÙŒ3B@\îGcݼ3ÙØáÄMFÔFÇ•vØ<êp+âŒz&Þ9ÅMÉšaTA¿ÿöIŠõHç£üñW?Ç$]‚¶©x/òkH#TÛ«¶{üxw\_Š3ð“ë´¿¥ ã–ôqt/œlþWŽú凔YUE³þ£c’›}jÖ»ÊÒÈæ)/mzá+á‡ÑÃRÂ~ïp«XaC=Vòµ5»ÀOvâÅèxUøe[ó[oil{z·J”‰Ç‰Gæ—ÉÐq¾B"KïèÆÿ¼O¿¦€S@×”UQ¡T6Ù–4ž—y)ÁÜ÷{Êpv~^7ÏG´Ø•ïŸÂ‰#H´fº=Ly1ÓÑ"ÄØ^‡»Ñ™ÛRýq%;Ý`™8E-Ê&½EÃ;s*¼Æà8Z:U–Å¿¢§œsO}0ö~¤¡öt°ãóg€¬áë˜Î! B$Vã©…¿¬bH¼µ®ý¶ÑúÏ«P(µ[šRüØ¿bî©U‰ú¯¡#ío¡}7ª¿‰@¸w¼dºÇ†mP¤˜”qÛÀM†E‰ÝL!{"ØFèÇm Òåy%½¨@!?Œ º&Ñ8°óbÑŽ˜½YùIüùd?W¬˜™øÜ¨«Õ¨Ž&U˳ýúÌ H(ZÚ¥äcsÊýJî% û…à‚Z}ô4&[—z_WyI@Ó<б‘ív†ÒX$ýÉŠcÊ!v6zÝišwx5ä$œ½èa‡ÙçnWÕ¦„Ãh~¼ÞÓ.µÂ‰òX#D¿7¦^˜J¢–MÑUAµ¸"©½†Bí'¸JΡD H1À‚‘£â~V…v/ìuü˜†½!¢tö:–ë>Þ†1¹µ›Íø´¯t¿‰ö)àÿ¦©íK%s‚:`ŠÄ<~­ äÑUÅxs—N¦n8? EG;à“ùžimpqö ñ6̷‘kÅo1ÖîüxïIÞwîÆ¬Ó1c‚íáF‰ÃWºêìo»¦™x™yä|;ð–¼I«Àgqjµ¢nôœwàE´¶;$ûîL“ÿÅÿ÷qôu![½®ºþ t4²ð©®÷y*Û0<õöÝÐÊ6>¯P1î17Üß"#㺒ùû¬ mPzépã¥k°!™³-»Þžs>¯}ô°KÇ5<—{ÜbÇ­íô'¢MkÉ(“Ê·*ß28¿ö±PxI8TÌi]o’ò'¾ÇFyï~¦)Ñžs³rsM®#þýMùNv%åØÛûBXØs»§;È&ã¶ñ’'{jøLyòd –Ät¥;‹¹XŇÖÅ÷{™~ŽañÁ•M“3¬lUùM±hp¹ÄDÊ”{LžL³¯Øëq¨¢,.jc¾ßÔ„Ù°Z=.‡e¦Í«¼Dμ/®ulvÔĉRx[™ùEñ%¾‚t®· l\ÀþpëÓ)r¿-’#ÖÝè/nª×ÿ¼ý†ëq-§0¹Ùv‚ŒTT9 õö­2š²Ä3m­ ¯Pƒ´'¦Þ²Ñ(^oÿÁW§ô½Oš&î<¦}?¤àYHpMÒp×2O^ƒ(RoFe扤?¸ó\GU°[$I#'8[„—¯Lå½›f±™µèÜ7ÁXÓ|/‡Ãé~u…„ÓñE©ôà)·F¢Xt²ÆWf-u{YlºcI”÷‚x#Ý•? Ÿ~Àþ‚¯nrÉÜE²q2t» ¾ÏXœ¡C¢/t:^ Û#Îx®þõÞ‹ðÝñæEa³ÿKœî¬Òpa2H²ñ §ùŠO)kÆj¨‡Þtà–¬¯ánB•%ë]Ò9Ó×ÕžvÀFbNÿÏlÑkæ˜9º~Îqò© ÍñuqSqÊ$¦š#¯²ü¹(eãÑà ­àȶÏqK¶UïSÇb£t  öãLTTQ!OX³Ñbr\ÞLú8LPDƒ8,‡¼ØzWfbÔïBÊb®Å&0L¹m‹œ³æ¾œNëÝßPµ+Êèê‰YTc˜éêÈ.tö› Ð6tݳJeF¶Àð%I”FáàÉx†‘õb`y"/$²ê¡9̧ºl&Ú"kqwÿ¹áÐ3,ÌÆCYã¥ÅC†Ò7Ž®ÅX‚)$1ÄΆ>€¡Nò’fÎÈ7ÃnaÒÿg÷Í’quF\Yb{M;;;ÖJXal+~íùõÍEü´ØÌhSB/è7÷盥òí>Žxi• !OîÒò€Ûñ®‹DÞÝ|\‡áHU«`­‘…Îàô‚Mï>[B_¯²ÕgÁ{ÛEƒÀ[îå É88GHÜʤaî»ÁepÒbPe9ï?û¥ÎËúªu|83E$ö'^.7Q-óíçRß´½á¢ŒÌŽ'-ie†€9ÛÞÔ£®ëׄL£ÆÍgÍÐÇ©n_|ò‚J~Þ–×Ìæì¦3@dNHçÜ^Uô”R6)7Çæ¾<6ËÝß#FpÙ Ò™LzWŸA“õ\¥¬ ¢6©öD®Þß×#ÑEé;§™¹Ð!Adïˆç[xîÜEŸr%¶‡W¾ÉÙ]”{×ÝÊćÌ:R^F}øtJ{½t@â–íqI<…‡é«`Úyq%X H—¹¶˜;tm<‰„é¢#øÇ¯~U}%^f¾3³³=(îê±[ùv¶@oš©[j¥^¦P1O™/€¦Ûe†Š%qsí 0ìî bøû^ÖW³ª\” †*gð)›UcºÇåvçn´M²°(.6Xܵž 0¶‰ 4B´]]íªó˜ôå€aªÔ/ýx¦ÓL:ÔüYád… ·naCAl°\ÝmÏ0]i§¡·I†Â6¤ÙäJãå´K*éSû½TD¾ó†à=œ›£ý~¤P¦68Ó¶ÁK¾ºÛz"%v2}œ™.Jžô&S×0mJGTòúš©þS(ÕGn|ã ÉR'‚¤ý~g®p‰Øñ¹-fƒ)€kªÒ ˜¨ñú‚â#1E %×±‰¥siðâg)I6Ÿ–€ Ï0'^&ñ—FË1š•ˆø„ÎP¨ ê%YC² ã5°—KíÍž=¤KyÀ%J¡õfp±‡ÚÑ~ÕV­K;.îõöB’kBGãvNˆ°¸!HkÕ"L”dîM“RÁK3 ®@»…òŽF3Ýn-[ÙûìÒ2ªæC‡Ü\×dožPFÛSÔ]ЀÛUQø-tûœ÷~ð|Döôoe¦|R(xZ¯ªg¸¤íÉl½±†-ËA".ó{0’±³+h¼ Žms›§ä–~h{ÜJäÛFµ¥ÙñÎ(í $ì¢Z¦%ÍöqeJ&!M¢Ž½YO‡ _vð?ʪû$px|¾ã§­@/# 4·¼í©ÄšµbÜ`Îýù˜º?º£!Ån%„ÎÆLLvœ–Üc?"D×nð ŠU¶Ë/.Xç` ¶*¯ÓÆø*5s"âZÆÚޱ›ÑÎÃåh[+XƒOw(g1û.„þ!þÿ&$ã=KlH¹£¿XkÐá^ "¦ ü÷G[Zê󟺠X ìYÏd,É ;ʵ‰¨†E÷TzÛ|ª2¿\)yÔ äÖ‹¶ßÊ1˜=Ã8Ui¶Ê¶VRÞbñ2ñßÁQë]Î;OÕ€<÷y ¦²30ƒ†!pB¡Smˆ1Î;à-æf!ô\¢ôµjŽO¥åžmZ[°MZ15Yü_[ÉCF’Jâ¢(é£13æ¸5«0æX£ScÄ}§”òÇèEüW2'Avý­«¨ë£¹ S¤F…uCtö5Ø÷£«ëexÛ`°eR*ñOèN1¢jïc¡‚Ub/õÛ°=/˜/È©_xœØ4=(¯$€sšƒ%4`š“˜Ã9¾ì&Fc‘gî7¶»…I¨wû2ºg• oS¥¾€‰™XŸz¾³ñœOÈ&‘Ǫ“<œ×k¿î~=žû{µì<àa*Ù¶p›bÆ·ðdæÐH\è Ný26H:È‹¬lh|Ò³†|’3Ta™ÙîÉgëJ4k`*—ÓÞÜÞºGQÓA&nn¹‹VÄámkaMZ-l)‰8søKïÓù¶ÎÉë¹Á=zY¦k,4{çÆ‘œ+X4µ º»íÎñkqÊüõÆ.ŸÈ¹èKÙÃkR^äVÑâ9WÇœq†Ö¾û„)”€¾B¿=r½{}]©-Í÷ÓØº.šø›ÿ#ü¢W dÉF©ëK—j)¤míÆ: Iú³¯ðNƒÇ¦uúEçÀ€jÂ]Ó; ×÷þë/nª‚žAÉ"ߘˆðž7|Âѵ[×rÌL>Øê¿ò#g™‹XE‚ì•‹-ÃÏ{l¡€Y|mFÙuPÆ£Ï@•¬ÆÁÌiR† íe\Téÿ%›C‚¥(2e¯–|°/3³\‰Ôøvdîv]ž"MÐ2˜¾|[…u ªd[ÆxD#«›Òä©|!s(|Ê­ùVÃDñQˆe*Ô)|¤R¬©×…w×,¿žö üdÐÀe­“éÐEI”âÿ³ç…iËX$Ñš"ø¦áƒDÑ ßlRCh6˜µƒҤᎆnßX‘Ú¶×c1°;ÇEÖð“ÖD1ØEäÿrã{¢5ã6€~÷ŸŠ¢$Û ÎÁºJª" 4íwð2“?ÜârnVßڇ߱HËF^Ì, Ý¥Go͘™±.¯”TAšH‡µ7s7¼ cžLw <è‰ÀbqrÑ Ôé¬Âjcþ’†sXâõÂ|k ¸gùîX‚Ól PSÿÉ@×Aë2ðÄ[!|d kºÿ¹ÍC!—üÎRÈÑ8Ùà|®9¡JÀׯ2müâ½IuÉ]ƒ¡¼Ñн`V0}nÄqù›Ì{^@Ü®õ „Ü‘F%öÏ!ó œÍyœ DÁ™]P`ɱ< þµu$öØàÅ3BÂ$VHÒ}S°<ßõ}2£@×j1Þ9 f}áÙò)Vx}™06Çú%^–,äÚØT¿(´ÎŽ~û[~=¹8Äí·ÑwJäö;M‹Îêþ}1¯šnŸˆ}µ×,%Q]ÆÍ›¦;uzOú{ýúOÉ[~ Â’…EÆ-‡n@ù§ '»VÊ5öQÍ ór@ôÀ¿‚Ç卸÷öDü<è¥BM$:¨¼~+¤ßÚ¼»d>ˆîí°Ñ©Ýµ€›+ŠgH!†3‡¢æT†QYó§ó^LfüðN2kÿZôÅ?½Ò_Ó Ë$°ÛÎ<ø‘Øue)gÆyïX–п^g„œ…ý¡üª¥LIöð²uõÇ”ÙA¨Y%Ë™ì-¨Ü˜˜çרCWØ|«Ö>]"›§=œ·ÿ©’âQU÷ƒÓP Œ[}íct™+F;-²Þ¼¹îcœÈ=À>qü‹@hSX$j8êÝ5­¤®¯û¡1`1O¨ÎeVV}£Z™’Ù…UÎÝkßÕé­îÇ)ýÛÈb-¿&œ%GŽ c÷4`íÔöKM*[>f¡´`=µ‘ L@n´Wt0Cëê2°šu@“e¸1úȳZptœŒ"‡ïÚÇ•S­j?‡yÔBKägÆŸ¢«òœØÿÿµ%‚=w8¦ü2°\ÚIÇb8ºÔDÑ*†¢Ù€Žs©/+¿…V¢ÍZˆ^É3ü@`ߚ‚'šN×µR®aüž{¾%™ß¬çþIÂüÖú¤õ쯯Ža ×Sãç ‚Ï3¢³ô'J ×ÂÜFž©£T>»Xýû}‡mçÔàTMT’Ã?£Pöxz¼)”¸¤Ê`ó>`}ôˆût£¶{_–±Àcфě¿ˆå\NRð8õë<5íQµ×¼}Ðô7ñÁ¨šü¿k^ˆ(ÙÔ£©;Š…K~ù¥ž¯ÍFu5êÚ­–‹ÔŽbã䇻ý{ò6Kp¦D‹˜~Èx/?>oȬÕ#i½çÚˆâhpÀÉZ~ ػũó-Ñý•S¤‰úp;™í;I`;çª"‘»J$‹E!“o8Œà¬­ÃM8ó{SK>M[úô˜Æ:IŠ~,´ŠC eô 9òÈñ€o®ð6Z0ÚxnYš ÂpÒŒ”꺉í§-°b”Q+ EÖÅ•Ip–8ªf~°—­#JM:É™ñX+aœŸµ åKéºÙ·PƒˆÝ“j…²(jCd¨ÎqWO-êràav+"É`#B?ÞµK¼°‚-ˆä£l…‚þeÝiÏèÌ®ô°Ï” ¤Zƒ+€B;¼À'OüƒÌ‹é-KÕAF] »›„³Èµë¿ÅåsÐ àÓ·½Dc÷¥Bɧ7<:A_G*%ÏK'iƒnܔϻ ‘ZÕlÙ‚è´s=5GCĬs;¹+d 1‡Èû} ˜\Ä4BÈà…,wþ'?ϸ¶Ë|^hatNÜäaÈ8÷ü»r[©|5Si”ñé 7beMJië ÐVA’í /•k¡¨°ê¡‘í¬}Xô÷$vu²9Ÿdžº:£C­Ž@ô=jŠéyañ4=³V±#Ï]Xa|¼á,–+›€ ãHà¾c$Ì4¥Ã´sÅï^©š©"ú¥=ÅGµéÆÊ-T6Cœiµ\ËèÑðR>Ïö×à|Çuì2b3ŒÑ?ÆY×bÛa™FÚûí{sÚ¤Õk}Ǥæ<€ÖH‘ïÝÜ»§bÝwK7|ÜÄmGPâêóµ=j¾ö¶ÓâÜùT mWÊTÁâÓ"l°4Ñòa  vú¤ë4sÝ —hyã2ÖB>°’ØâŽK&Zêõ.ÀB¦ÿÔ•9[ÆéÜGhÝ ˜(´‡05s¸EéU1²PÃóR¶‹:DŤïû8š)ÝΆm5P>cìNˆ9–G<B(8ER ÏsdUÛuÃàJêãòtƒ· ¥#þé;º U«ÞµUî^§­Mw‚¨8~I¸õ&ù[(ÛŠž¢êZ•?ÚR2@üEõÍ>XjèdFbqCv€«A&áGE ‘¸æ$ïPçò;:AŽÇG·×»V~½5Þ;n1Ü)e²‘Š,bâq /¯]öI×C‰—!3AÁ¥ÕÆÙýõÝ´Ÿ–~Œ’£(æ*0¿¶ Óh•Î(Sëñ{+úÒœ¶ÊX !dù_9¶ÖÓÑÜ¿’^Ò%K‚"_qðÓŸw-ÿ0b‡‘ ã’/·ÞUv¯$^ÞAþºG{¡SÓ63 G‡¹]zܾ ïæ¨€\°:6yÅ«x%¥¥ø¾Þݺuˆ Ó 'œÈÁo?Ò­&{Aû½ûñU‘²sä(H¤ `˜»•зÞ=õ&FÛ“£L`X=£ÌÛÿO1]º¿@ÈÃ©× ’ÁóÆu2"…ÏEš{è*žIt›ë­Ï»»Â¸‰Ü|³ êýßÍDgÔAòýýÑ´KEPûxÑL08qÎS3Ùa8o< ë 6 3C$Jm ZhÇ·œÜòˆICß!Á÷Ë’!1|ˆ”-Z xO ZN4û¢QÊU·=vÅ_Ó\?˜$ÙÕ°—Ÿ±69OÌ·†+"7EÕ ²âK½×þîP9É:y‘-±R†½† Ty§»ã1cTÆ¿ylCoLœÒ¦ÅŽÐÔ™v-ÅìßÌä’, 3¡s o5wèzÞ“jj¿š•'Õ 'ïâ¥Ó”rw+¥UíH¿Ƚ{MÕ‘™;6K¦SÕÂl"Jªî„\?üùi„ 4,5­*L§ËíÂ`sÆ@t-ÅOxêq“Œ„§JV$ ïõ°~Ç0hBª A,å ¼¦@ôZÝt€ú*üîGª=®Ÿ’ÕÅPX;ùØ]-ÈZPhÙöH¬åo1¾R>\ȯté³ü$^hˆ¥F–ov™3–¢+çS+ÑœýÖ’…¿r_²)úŰBõz"k¦ÍvŠB”<ú&%®›Ú^@JØÁ¥U⥆¼º%Y¾Q°7[õí’î öÖ=€œ¦à,/_wèåŠ÷=eCˆ› ‘‹M€`”nϺZÜ¿H½2‡œ¨£‚—.o‚ù7BëpC }u3 †éƒ}q Vñ¢›S¾©\Höñ¡É‹ÿs%–iã®&9¾ ÎmP¯í‰ðÔA«ú@igÏ<íã8ÓvE®?op¦Z§˜³jcœäÎãQv3ô@wAŽB»Â1<ðÍ)¬‘Ò#‡*PuXyðØÕ<JýDœ¥ýÀž¬ìIx`¡bˆÂ4X[NøÑ€K”D„ä(˜Ë±j„öγ1úZÞwæ ›ÔQÑÓOtú©Fƒ¡h«¶Dr,¡ ‰W¯’rÛÏ^#k$ò°!2… Ëw9Œ¦v×8´ ºçb'à-¨¥Ulÿ€ Ì)ô£µLq.nkÙ“f‰™Ã¯3ÑDâõ£´Q) Ê]T ØÞ†a‡zt÷FõP¿WµÜf(ÉB¨r•š” ¡?ƒG+iŸèÿÒs¢ŸŽèÉóvßðp»º#ks-–K•äì~'ŸF@ØÄ6š·÷Jšhî…:5Õ¿LíýrèT.[´Ø ±ÛN"¨W'¨RÑÒ[!›$U¡¡£]Ïû†Àü³=ê®] ŽÿT'Aø@“ËÛá74Qí}Í›³ã»¤ÑÙuÏ“gË’ïÝüÛ¶A¦îkF}×H¸ø9%K©4QË"oJê¯çÌÝ`+Ú—,÷ SíÅH)Ví<—àÉpðô8ôp1Ñ¡<„Ú­”½·T¤h~äR´ P…#™AJN›¥5¦ÃF ¾e±ÀTÀXzû5 Æ¡-êñ{Œ!/hΠ«§N´2eDˆ¥gõ77ÇÊRŒ³¹¥¬EûKG·¡­¯1[Žïþ£hö4‰ø–=E§ºîseeû/ÖC§¸+<؋ﺬDµ#“Vá'^B« ,œB×t£h™ÌfÝžÙØ€éL£‡ôìãS¡N‚ÿ}†%YÆo|<Òà“¥TæJ¿T!ý³ûÏß>|ØYëåè$Mq¡@3g½•,ËÕàÒ”Ó…-hrhÑêzS–*‘Üeƒ&Ìþ"T‰eàªv³Eœ›UNyÞ§­Ôz’T£'+ËÆ¾5e“ $TOk¤ygc7—9ƒ)z‹¨; ¯ï#…§ô›2þ›l•ºKã3.uæüÖÑ—tl™ù ý×'7êm¨~'8y¹Áè:‰+—2ʃT‚>SwÈ,ÎÙPšõ“ËË{ &±^¡¿B}4ÍE6ÎÚx?pö0²}ÙC^ûlæ]Xi1æ@ÞlŒk ’8Xp+’aH’:œ§¥Z5R®ôÇI÷Ãßi“1øÃB{ìWF9#¼Å8ÛÜ%ŽO MáÙVá%IpÇO„Õ¬3Ž”L$Ç–5ÚɺݹE@Ø(]¦hœ,ñ–¬T³¨¹Yfä÷ž*ÍÇpZôrÏf÷»»oGó—õ’1Ыעíä>G}}_v)á,Òé°¬ó«$ajp„r?$·ÀœX.E¿ ʾôòõ§ŠA份ºõü'dõ-Æy÷o4ÒÙÏÉòA†Ñ»Ýó]÷Ä4Cuc‡U‡œþØ2E{|Yg^êøO3Uk©ïÉ$i§fe&dþÆf<'Y4¿3gÕ\ƒJ½5Of?*Û’nÈÌ›ÿã}:{AÊÎß&뫜ô fÖøÒp˜ÌŸÚy(ùœ¡5¶˜ :ñ¬ó Q=1Tàw8¢ãjÉBŸ5“Œ©\H1õÖ J+Ì2…O=ˆ³}XGJŠkèÛ:ýÝ£«p9-]ùíý“ÕhuFö„˜É’Ür•ꜱî—|ˆ®& Ý)sOŠèäíûxUÌ>Õ¢¼:åÂ\Ùü;_7‰§{!¤µ¸^ó”Zµ¾{l8”lµ¼•²ä >Cé-~/'§Y("f¥NA†Ï’‰ßxîóe¹-•D5ÌØ:Õ¡ÑÀÿ:ب &ÏÑM ryÝ8,”LgóîMn êË cÛ¹EZEów]6Œûäg±”ðÅ ¨b4¶Á©¤ ±pø%@awmƱ޻¬R ä~ÂÇ»+OjSÖŒ¼Í¿ï Æš˜L¡A \3 ²¥¦ÙoŸ"!„‚ê2]I»ÁÌD…þ{ó%1o(ýß‹U ª£ÃA)œAI¥®NOôä§ØÖZdÐKlØ™3+ò†ÐIá}MáÆÄ )£#sû2…<´e»‹fi¥(€#£¾‰ §oìÍ)s#ÂÁŠCfw†ö–|¢A,Æ•üÝ4]N˜áÍ7¶«¹©úF3øÓ­€ûÉÀ€»äÌìåᘦÅ2W ~ñÖßDŒ—Í||˜)MÆ÷2<;äònv^¯þ:xh¦æô¬èú(@qçÈ÷CèWþ-HÓ±°qXt„R]ß«^}=š+×Írhg-½=ØåFá‘& üV˜,èÏõ“•Žsœ¿DÄHXÌðdWqÇ3á…u¢Ê†|,µ Ï7Ç~‚e­¡óXàu´œ¯ ÎëÏõìƒ\¸Ø×dŸR¿ÞÌð+¤Áø³°m%¶¨ä•Jo#Ås·š¾Ïfƒ//ÀʀαôØr?‘ ÝS oÂ}?©¶£ÌK*þöK°•éo•¢Aœ°wyœaWù§uAÃÄnDÜ™aw0GFqä6VDW—Ó–QxrܳxÍüñ…Ä <[Ë}öm UŽiMpþ“}M_ ¤(ëù„b|¶J­Ó8WuW†À4Ó2„¤Þæ"B•:C zxæwêQÏ^÷O+‰QDÀ|bÎùc_m¥ýÎ4xœËPkx{„¢OíÍ·ÍÀ O2Ø‚+Ô/ÃûZ]\ÜãëÜ/äqŸu0÷·¬Ù:འMÀÞsDÆÅõãE'âó©Þ>îDÚÝÉOO#ÌûÿßNò'•ôÝ Â0jJüG–Ð^ÑQ‰’ƒ[¤1…ÇýwwŒÌe} Ün¢éƒqûÌÙߪµUrm¤Ô»ŽáKŒ¤L̔ܙ¶/«míß4`2ž¨<Ñ“¯f¶Ôaÿ.Þ'of—üv3F¾yþé‘È6Ïû?ºA×îHöñ~É%Ò­‰Ƀ#5çŠMÚ˜Âò´Øåäj´ò1 uy*³˜,£ò×ËÉžÛé'*ô[¡óH3ÛpU,ç @U:ñº$ý–i:AjË•Py­»×逕V°î}µ´|î!ß–žê¨³ÊÓ1`^ÖQºä¹¦+•©"¸ÆC(e”L;•†¸kõI3?¿öÒ×âAêêà”¸‡ÂhÈ’t]ʶ’6ý}_#jSŒ3ÉÎsZE7‘rAÚ/&D¹a³³Š”¿ ªvÀpá¯7FeblrhÞ0ñ»LXcPÚäqglwUéÄÕp>h†Ýä_€¤]nG\* Ëû4c'iê< ^&wQ½ežz°±*X÷eä •“ >¶€ÎÚò)¾Rõ]¤ÿ°32@W6¾…:/®Ôs ç<ÿAýRÉå£Òèk9sL‘RýK¬oÖH´‹Ä|=0û üZ‚Ê ^æ€v§9âŒòý“£¤MJfÕB’ññZ€,ÉÔ³° °^ûã85Ûð  r$¢ÞÈJ¯½’Jd µ>¤øyçœ8ÙªÐ=‰~L’$ Ä!W|¾ªÁ©!/c.É8vRí‰yOTBH¦Õ0Ó[ÏÎc±¼ ûÎ\øMýÿY˜Üh~•|ØNé}Ù;Ñv”©ü¾Á!l:8«¯Õ_÷Š Õ¯Ub\™ÝÔHž_7#¡fiË_õ/ÑËPÇñª–¯€Kª9;aT-_Hl[èÏtæVå/îDöivq¢†)Î)_ÍÁ¹çw]?þMæk A‚S)ÄàRÑoÙ¾ËîÒÆí)Ψc0+ÞoÚÌÀ[­>è€šÅØ‘ÅpÆuÂv éõeQŠÂuS{`¤[óÊdºñ‡ÞŸùFî?g¥g¯ã®cÉÆsõ„²™–ta–cô(fö¦ü}¢q ï€K­¸Ô2“„=š3Cd"ËÀ–lUGô–gÒjzpÕš·<¦û×ÿ™š”²àžgâ÷‡‰_ý™G‡ý/Õe2Ã{úNKÿƒh\Sí½øÐeÏ]÷„nÜè jýlŒ{) 0õ+zª%éê(ݾº……‹™€> ­¯ÿ¶UÏ1¢ ‹E!ƒ>ð‚þžY´µaÛ#Fë v\ˆg+à°0¯V: 97—2 gÚpSˆ=Å7>o$J¦°êhô‘-ì Þ#~RC*@ùÇò>[‹BÃArÅõ}7Œ¦u_ÿ÷à^Þœ­£H]‰×‚M«énOmÒØÔŽßìC‚EìÒðVqØìHÍî:r3T·Hª¼¨ˆßüSï°ôAݼ$/¤è|¬¿ŸÇ×çä» aƒÄÛùSY羺<Öõ"©a M¬ã{ 7Â#õu6Ö:ö(ð»ÇŸ”¨'ŽéŠ–¤ybiêèE1t¹'*Cþag«xõ‚ŒÃÁ¯Òì£ï€*´\Z0,ÌeË‘l»à ZHÈuàòz<è-åÔe[¨CO°`†ÔÏH0c¯±d©’ãLE¢ãÚ1ŸUDeY$н—J\0šÝ¨b4oT¤fM*è×Td§ Ó>:¿Ë?,Œ—Oúl4PB»ëÈÜñ“fª2ìØ‡{ÄžHôãå(]èTH¥ÃÏYmᵤÊÈ„/ûloXk©<*h?0´seb‚øE;ÄJPn‡Í…èLT/a»dóuQJáEQw»yÈøøºœÚÄn€Hf|.à‹ÿ„$,GKJ“–­;ÑíÓÔ_²¤èêíP—~ý;jÛØ­Ý–3úþN/ºH)ÀžœxL^Þø»Y{{†”ÿŒÎB£¶^GzMð1?¾ø úUW\ùDQeQÑ¡t¶Ëì[rˆ˜:\ \nÔ†=3àFs§3â-;Û+~ôIW#úóâP~,o$V^σVIãq(’é‰<„…ðQZ{:_sÉjÉ%Yâ0Xâ|§ '`Cêq¯HÊ¢o«9ŠW% ¨z‰KùÑ÷¬M§H­OÕ4´|9ïIÎÍ·#Vʽ/âyn!óº?R¬.7IzV) 7:Îož S k ðZI¿‹Z¾WÚ–9ä%ep—[ÚTØ_PkXïÕgRšïjºP¾É_XßÉœÀ£§½SÛ"JY¦IðX—Æ¢»Ûf‰©ØW%ž~·}ß'›,i%…•HÀËk¡mí1õ ñDÝDÈÌÍù–[ <ò\ßõ¦Ö 6!ÍŒ™øž—<;  ¤®½…>wÖz°mèxܲÌâ´GA/=.ÖhØ'‚ÞyïÜó+ôî\X;)†]¿ï(G6ÀŠüé³j^Öa·h²A<ŒATB—½eÔ“mlGä:Ï0výúïs¾æ‡æ–üzv ½cwÖ~ŸlC@tb Ò´šË{51lp]s,©ž.DiIS©ˆáÌ›šQìSòµú|nÆÏ|XºÓ ýü†Â–9V j>‰Ãâ"²;ÑGmÐÂ#³Iêø PͬÙÖB|“FŠÈ$ŸÞÙï qe³ÛÙABìÑ åæŸ?­ò&^¦Ö–T4Boï–„ƒöó^ z%òåÖEsx?ùsxN[äײá[TëuŽƒòŸì»`­æú†z'èYe¢ïÂÞ'ËŽX¢¹ÄbÖwᬘœ…‹øwTèÚ:_iÌY<{È›Žå µ¥ôùüf“} >%=.ýŠǃ1–a!Å%ëŒYnöB£äF1^º”À”Ó,P58@ÈeùáÛ|õàÆ]1½ƒõþ½6ÎÏD¸5U2õÿLZ`ÌõÝ­à&•§´¨ÂµâØ®"-Í·®Æ¢Bµ‘OºjÔè,*@ê'?½`ž®f¥¤¬§›w0i2"ð'­) åÄ*ê¢U84vr†åÙµ?J›&¯3ÕAP°sŽE¹É”ƒ#¥³œ§ú²zŸt=°‡ ‘6 "˜ÌD‡}Vø[jÛFl\^tZIU x©¢}áˆx?²W ðc)åVvl’éúßÈÿVðázôi#A¡ÿ¨Šh”´xXogU¯:šÒèÚ·ØpÏ5â\e> §u¦'ÿ—N–R¬qk˜ª ?¶Û òªçòNŠW7ÛÑú¶ÍÝœáâ õ$Ë^¿¿]åa¶ZgtÅï>‹‡Ò3C:€? ±qªJ-¦¤¦mO‰¹ÀF]IºT&ÕÉ’18Ë3RÒ¥Zš.¼JÁ2›}΄³±ÃКüÇu%OäuŠ6ÛÉ'±­Ãâ¢#Áø*!É`€u«±x«¹äÀ%Ùo!‘®´ÔíÌó.º’ïû:öÔÉœ 1ŽÍ&D…yW}ØS¡ùÔjËBšµ™·þ5£“²Ø8E3³ 9T.ùyæptÏ’º&wí^âAÜÃwqú²oñ«ðþ´ñP~±s€kí5\O(hr˜'QA»6–¹àˆ®$D*`È.ž^ï‹ *în‚ئpˆ'x ÒÇdšž}òVu²0èïíg—»5¨Æ=TrrF=œÐúSÔÀGÏÒâ‡aÅ®,¶D Pƒ§qÄÉ Þú«®›=·M‚·COs¹äº'zg„ÍØrÂayã1(ö2\Üa(ŸîG‡@Ìu.f;­­'T²"ׄ€Vÿ>u’?S×¹wdGGý/ùM1[€õMÅv÷|+»kLÆ) “=7Ç\w¡Qéßp²«nXM_j«_ÈlCQ’„ò›?Þ‡Dàpò¸8ÿOU÷T¨âF ½r®"†LB‡’‹V>ùit7i(ô\ž"@E¾-,`§Å7'â)þd{%ÿÐÒž«•âpã)dŽx­rCª´W¬M‚†Ôöƒç}DÒ­%^™KQÙþ²Ë[ údOå·ÊŠ¥õŠíп5áz²(mýB§Áˆù™¢ÿé4xèüüí)Iñ8‚B/¦xB|A亗կWvWpH©IÉ5é 5Êü> ñÞ‚ÑÅóêûϯâq€qô  2FP¥1©;eƒª\õGæE8úqü ìIó…Ä›ç*!}0„…µ2IdÑMϨ7,é&•#ö½Tê;̆fÍm’¿›‡ý÷8a:…˜âÖÊPЪZÚr>­ÿ7I × ô}\ôÑ¥\vU£óPä ­E²Å_Dm ÁPþ”r¹5ÆSå‡>pÓZËÿ(ÔÌÀË P…ˆº[ë¼y†…lzYvx«ÆÕꋹfKéûÐ-Çè5sR»¡o°ƒL˜¦Ì°àÒ§Ï‹—̉9ÿ«â­~ÑÌø~(ó P> ”ŽÕ`¼` ­ç Œ‹Üø?p'ôœ¨"pÉÑÿeÿ… »‰¯XðÁ”ÇôëFÖ”¡ñy§h¥xKYÇËhÒ^æÖÊŒ)­oÁ ¿º³D™ÊÎlVrÜÒMÒÎÀXKî åÑvþá9Üûÿ÷…¯@aŽœp@ðyúéá* ÛJ{Í­= endstream endobj 120 0 obj << /Length1 2156 /Length2 16183 /Length3 0 /Length 17486 /Filter /FlateDecode >> stream xÚ´»uX[köŠCq§xŠ»{¡¸»»‚“àÅÝÝŠKâZ´Hqw·â®—žùÍœ3sï¿÷É“ì¼Kß½¾õ­¥ü ¤Ê(l þ ”ƒœY™Xøròò`˜•…QÚÉØÆÒÀÆÄÂÂHI)ê4v²ƒÄŒ€|n' €¢‰Ó›§€……‘ Þ”¦€Ïîy “±š»@cüP;:1~6v|SAæ– í›‹(ØÎÝÁÒÜÂéO vFÆ?‘þx‹0dŒM¬Á®ŽÖ–c)@†Iž  v}ZhÀ Àg …±lPjÔUÅUT’*ŠêJª´LoUíìÀÿÇETUM]’ &¬ &j0$ÕUÕþ<ªAoüÍ joú?yÞ ÿ¸Ë‹« «i+‰³2ÿ9+Àèàhù'íÿp£zcø›Ú›«™Øö¯ '';>ffWWW&sgG'&°ƒ9“Í_üÔ,,®`kÀÛÑhü«0Î Ó·r:YÿàÏšä,M€ Gà' ð¿”¶o¥|sz“;ý‡Ø[!œþÄ´ù—9Àü¯4ÆŽùÊ))Él-AN@1ÈäÍÐÉØÉÙ`ô—ìí4¥þA @ÔÙÁáOù«þ“æßÔEÀog¦gãémìú¿+f rvôøGmþû´MÀ GKG'ÇEÌ,m€Ø;þY3KÐ_2yai qU5F¹·Æ1ʃߪbrrsúËúOâãe°”¼LǸŸ´dâ`ÒÇÛß‹ån’ ýš|3¨ ÁrR|ú>I~ b-Ê@›—ÕæÄÊ_W¦ÊB[Æ>ò>„¨âÂÃ9Lêþòó¾ed´29ùÚ_9&3ZâZHêÇ¢¼m÷Qlc¯Édze-Ëy°®EÓ¬Ø6˜nóèí„óãíN¯÷Ø1‘Æ= tSFùÁ¸Ã2pvÝè:ô)ùjZÇúï>aóy9b…TØÆ·Œ"£pæñ"m Û]èÛb;ù†" ¾‰u¬@ÓÄêfÏ„ÎôH&Ÿá?ÈÈ4à)Ögµ÷¦I—yŒPu‰ƒìÓe6ŸÅO‚cVÎ<|Š©ZEGŸË²öÜ2¢,z¢èIPââ@å ’V±Ló‡èÏâWÑmÆ®Ô]ÞW‰½^˹χ™µë1+øè”?ÂRÓÓ‘æ¢âtR4Í¥Ô`E¿Ð<†KJElìÎp{Sô4PF뵺+/EP+ž4wYN Æ [Rã Pþ³zÖ_•Ç* )¯¸â6ìDŠökÁsSªýt<¬]óÁ™¹s¦¶´´¿{8®ó}ñMWx7 9Â¬|+žÃ—´Óš$>µ$—D+ß .±Ôš0mü^7ÉŸÍR?¥#>±¡Â¯Ãk:™[õÙåÁRÞÉÌ¥¢ÂúÒ3HÊ,H‰ðªfÈcÝ…ÒS×—1Ø?¼ßuýwà7²^ÛFÙÞ—‡@tSHÜÑf4•àˆxŠfŽï²TÃÛR¨VI­-ø†Õ¯*Èm‡ð¥õ9u™ð/ÌÚÓ`§ ˜}¹ùÂZ·2;¾J€³™sÖ°è`’b£ëa&>ò°‚(nzXn¢J€T)ŒÈäìõ«×çõøä­èÛõµ'4´DåH þŸÒC]ÜPíé =ÃÖÈ’öÌVX¼Ó©§|¾”ÑÕÑI9g1ÏRÅþ8&˜/¿àÎÚ†tl¿p»«sÅ{ ÕæÁüøÝx ø¤ÇÀ¾ø<·¶ã½^q{–’â”úéh¿},œ*Àø”«Xõsš¨ŒÌñZ›¶©t&"|•F7#"”tj­â††ðJ’§ô„ÄišìKAjk`76bAiÞ†(¨ÿ®;0$A"ƒ/¾Óâüh5w •QM›¹PACJ‘R‰zžH.~~³çTFÞè²òYQ ÞIƉÈÓ&“CÉß$PÁ7¾?~>~)¿:4U›!¸Á!´ÛËojÑy/uÀHñˆŠJ0³†¬óúó;C¿N‰ÀyÄу‘ÓËÍÁ#zLÚˆu­õÖU?ªJ+š L }owF „Ä„­Æ‚Žô:Òg”xêÃc•Xaf>]܇CDr­”ïœâ;¼NXÜ¢»÷ù˜‹`|–zxŠ3`ƒf;È&ЀÜ}ºž1 ÿÁV Ú¢%Ç^_ª}gO1yÚ©šsž{Iu¢×+¯‚Å@©éωßOO`¬§ˆ©ÑøEaivçÑ—›‡Û›LåbÐO ¤*ô%zC \4®'Ã?2åCéÁŠ)¶-Á%~ºÚü´v¬w wß^|¶zuò¹…æ,¤!Ýy= Á“i× 9UòYʤ˜„+ÿJ„ìYIä)nãÔƒ§!K­íðŠs?nEnLŒ5_Þ*'ÔÊK\aP‰Î¥R•½Gô.‹ Qœyš¼V&ývu¨X%IlšfDÖóÒÙ§øaJ{ãz#XäºëšŒëÇMZ ,ª˜ã—0òGÿ‰•éLµz7ùû0kêØal`L&©õI$,-üw@¯tô÷:½5{ÉfrÅÅ£3Ö€“h¦»vœþiƒ “93¹røWu‹èUŒÖ†ÅÛbIõTR“}àkT§xOyt`}«t©ÃUêmQ± «úÞGꈟªÂ6÷þˆuቻnX  ýéšo0YúboÒ§“[?õ‰²j+*Ýt\ÔÁ¡jïDé½øÔýÙ¤ñØÑ×h‚ïyC»&y÷[=è^ð>£¶8.…“œ5MÙÊôŒ,èDdWTXÔ©Š-³Fhß{N‘°ð-w–lÓ‹-2:h¹p‹ñ¬#fÛ€î¡Vè̯K¡ÐA%V­+;`þ¹¥Ñfžl*P çï ͺÈl:Z·~i:ÁÇP~`lvîÂÙnðlg¯'Ðw©ƒ²qЇ˜â‡B¶h¥F‹µnœ^òýOè›úŸâ¡3¢( ‰‚Å'´éŠ+–rzÜ“í‘2ÒÄ®à!}„Îö˜(Z¤ù¤¹1ÊUþ…»)‡X½Ê-Ü#ªV…¬Ž[Õùcëo³ÆOÔ:ŸˆÅÃ×£pô<¯9¡‰1¤ž÷$Ábiqir3‹}‘xñìROãQ™Ñ³ý±äk G®³,çuÉÏ׳b aV%[ü[ôÖ¹ˆÕ.„ÌšyÍ;>~Ý&(ÙQñÌšŠ¯*QÂÙ}û‹Ég²0N^ßPÃSXyŽUG‹8éäj¢˜ŒÍY£sހʢþ˜dôq¯Ç뎌ð÷z! Ø;ló¡ùeòqËÞžéOŸÚª…CÞs h‘Šõ¼²BJºÔíˈ^°Ej-ó1QK§zÍs¯Å–*òƒò·VÂÆä׿Ô̳п˜n6¤º5Ù'ϱܿ0LÀ}vÕ¿º Tv·¥èÛÒ \»‹ãâÑ¢nLEf^¯¨íÄÁ84rŽ¥HÃtšE8útzZÓY<ë󎺂ùºÀHµñƒ­,‚}ÏâïBP ä72†çª1ÄnIŠÞšM‰`5tàóñO®î<ÁËÍÉÉàQÏ·›Í{6wh™ñ½¬u%y E*ö®õjÏDÁøj£«¯y©qäÁ žCo®‚¾_÷­ßÂR¦¥H_7ÀÄãÓ@jÚg¼0µžŒšÕ…ÒW ág7£§ƒ³1wÛ•¤€ÝÈ1WD¦Û_´žÇ õõdñeÏDaß8QOÜzdwYöyÇ Ë1…û”ý­T¿td†y&y-Q—ú2£í¼ƒÒ`jêÕ,„îþàñ1À*ÑŽI*®MÅ3ÔBD8:/„¾Ûòž. î˸ td¾R`ÓåÝ…±”ÿ`f·C,Ô‡-,Ÿ|ð< ŠmqM˜ Š ˆ•éý «7Û‡ƒºV"ê«y«¨]üŠW‹›gŠÎ š”lÆá ’±nRÐi ƒ­/;CÞÀÀùše¢@L‘¸ÖEêŽqpiT,a½÷ÎT×ðgÞGF]™-2EO• KÖuºBÈ-ÄØd„ýÞ>›ü#n©jTâ:¦å9B©Ñ˜¬ê­Óö¯+[¯ôlî«-?ûŠ×fH­•$ƒ\ëgâ"p¼ í3èÅ|ö…,·ZÛ¥c-d°/kRqÇO×£àçbAÜ ®q–GzÔç…"ˆZ§Ã³)h«ÖìóûYh•B⋯~`VÍгÄW9SEš§†ÏyœÄP“›û !@!¸:“ó‚ïRT£IgÒNŸ®Ô {²há;Cq4=ÚýÉR «æ¾ç„ÿ×0û-mæn~.žó^;š¿ecI¹\ÆOý¶µ*³—bÓÕ-LURç(hÈä{ƒÝ;Ô}EÜnµï¯&(Ÿ%Aœ]ø «Åå…«³«lçjò@ ­Y†q;$M¦Ê@95•-ÞõJ%áz–{ñ¹Õ¼³Š«zP|CN{bmŸÈ V©êq>+ì¯^ûØì×)—¯âýôßÐ8’(—ùö´7 N&º²}¡N¾ºeéŽè!,kà ‹Ãæ o“™ÊÉ¢S?#g*¡¹‡æ¢6×_ ÒýóÈ;‰Ï]ÓðzwÇ?^[¢äÆØ×k ÒEîÚŸ¡~g†d»4Š% Ìœò¬u±Ëmð3Õl›ÓTÆî³_¦P€ {e0OÙ‹äé)¼Ÿ¸+,ûÔ.ˆK{ ¾<a³ w¦ŸhPÛ4 s@´ÎQ¶"Ä{&X‘¢æÑOìÍÚ£>±i “®ËúÓ40éóüXåP·6=o:×2d,Í—z¹Ó‡ÿÌæƒ¥jšêøóçÍY$nÞ:\‡•ãkáv¡ÀXÖN¬¸“B_,¿Äämg¢2eÝ.q6Qh‚ˤõ^\°J~1-3lìì §%Ï>—GøZ"Ê 5"¹E& ® ¹LÈ:ù¡àcó®:Û•ñ2šÿÑxÿ¹À "„^Sð×—XIí÷ÐävWx)8y×Nvͯê…óî­zps¶Òà}m,<‹H¶{©zï\ xT‰í¦vÛkÈ^YÇ[*HCß±^¬×Ä<ï¹åü2Ì{%eBÈËÍ%aª x!‹J…F³Å¡èüävšSøÖü掓MñS]JûެpF÷gÒÈÔ©¥¹Ñɪ„Ýrù0h» Iã癨é"ka )e‚%DªòAé׳ƒäœž„á5çÀ1fô4'ÉÄÛX°ÛÌ<Û‘¢tÑõ—_¼Ù•òçgKuÁN=Ülää ßôŽ8\ =þþ0=x¼Mj"+Azf†ah5bK²5¤Ž2šýz‰xúÙùCø ÷ ¢9Ë1ÚeƒeÓÜÊÂ&ìjYïÊ—ží0ÜgQk=3¢µðHª°¤&ž½YX劵ð9å+PxIEøq-QH•ƃQL4b—ðá0³í3{*/«˜÷ô1]áèD¶ ËNw¢ÎU×ç=jLÛ¬6Ty?6 NäBçïKÅBßI+¯­I0.YÞò—P¥û‰&ô.ÏóÚɘ'±ÔÕ@žª}$p 1=É_"—ž+½ðâ®}´C+}´w§ ¡óÉ~1JÞ>ÖϨöÄË4†ÂªäÑh ÔjÊÆÂÒ\ò]PÙ\/åy¯g wHð–f²‡xƒ“;Šƒw¿?ÙÚ-Õ3.c7éºCž(Uî×qÅqÝnLœüh ÓÐ*o À aëb|_ªGÒ)µnBoS›ãQ®ÊC+6|åŠìº1_0–ÑÙìÔ‚¹ùÑ ‡'Sìj_±+íwøLy“*PÐJ‡?x[Ûâ‰ü ¦óo}haÌ+TÂ~É'ÄÁƒJSû.¦±Ó‚lN ú"™bHOZÖªf†‘˜BuN·~€Íû„< þäj‡Lç†gàfåš’L‚²ºÀ«óe.L’½D\3t?»)O»Œxãೊ¦‡tů\k·MÈD £VqHü£ûRô n'yÅL}Žn@RRµ dûÕ: þ"a9ž¹cGžø'‹áÄ,U¦ã`-ütFêÎzWQcú»ñEѺïã è±ÜÙ«òcB\6… Í3EKníHs‘)‰ÙåA–íÅç×åc; Úe"Ã-‘«9Wðƒ_w^rÚï›2Ì¡jš7é$Å~wÒfÕ#4ÖÔiÒ^ËrÓBÕz# Ã: >Éíh!ü‚õm™ô“\ì÷irvЍ¢ÜˆÛ·dgt®¬ÆÿdÁòŒq&o·iq>ÝXÝò„^?@BÑö²²HC8˜7íX#¾ŒX'ì7Ò; ¼9ƒÕÖ)ÉEÒ4k ¡]°¤pó°¶ó+Äðx¹mBïuõB–¬ ¿Æ6ßé&T˜Þ2ˆÀ|0!e€- TcŠxÞÓ"¨ ÜQrZm{™×ÙNþ­ 3Úa©q.GåEÔ Ó8Âó£’6ýT&1F>»gÏä¶µ,3°£¡•—tâpÝ‘¯ÚëISŠ…j‹‰L»Â~±£mXjQ•:â»XÇ•µY Fü«áiÄM”±YRÅ„,gb(½4qè˜#yĸ²v­ý´‚®H¹ê`‚ÖöØÄú‡¢¬¶PYÃ×<ˆ¬è#FubMIŸk;¢ÍŸ´V÷Ï :¿§=[{e7,&@ü?ƒGÕõÕKáÚA2ø°¬ß±}Ô^êTK‡wzʇxè’Êk¦0%8Ÿó±‰¾Ÿ Zh6‡=JÎÌ!žê’xa¤û®­3«jœU&IË!}Ûs¥kÖ5PÁÞ¨pHœgîAôžåÒ“KdHlž]Ç&­-‘À‘¸°K_Ç‹hðØa(:Ò1ƒC)0Ÿ3&=‰ê5ør‘ á¥1Ã*ߤ=¥oóÌòG-Š(–)Ìž%z:ÿ~!uöè9»Ñcà'Öí ¨ä‹z£ðjºžè¶:⤧—¶ó0V-îAãØE8ôîW¨šü¼‰¡FŸR¿Á¤-²ŸDPGÜvÒZ¥ T1@×{ØxØßŸØå”,‹©¯u›"ß÷·{]øõIà¥rÅßÍ.´™Ÿšåe2 }¬©Ð'$Ψófl;–‡ÐtXPà )“Úßäk º;«ñržß7Rsµï\–G¤|°¸ Ö~”»…:²!µ8D…Çߢļ1C¬¯ßM©’ð{ e…{¡^l^·}¡|J<øæw/Bö8“†;y•mëHa$…ŒbÊa°\='¿t‘$F¸O„Þþü‘zdÕ*E ¾ôôq] òÛk݇υ¤TÇ# "XÛ„ƒŒï|]¿²÷%D¸'´ÈW™ëÞÀàXfËÕå§UsªH=™@Ú³îSïg۬乵ñÙ-ìÕ™`±.ñÊk¢ ºäîa·Þî§7º¦ Ô<WYá§;VIõ)ïÙbB™¤c )£ (Ó~ mµRƒ“èad+ ½w•ƒSÁŒ:ª{Ö}‘)™rí0ì†%û®ß€Í¤šæÈ|–õ$O”giæÖy—‹ê/|¡: Ü£\Jf(‚-–rI·8à ÙRʼÂîpÅ„‰»w–Ë@ „Òb ³ÞìJVÑZ›ß3Ïì'å¼û~ìù¾W,ܱeæ²¾Ê3× 1ïHú—$ÜO[à=by¸Jdü ™Î¼b̤lÝãÐRª Œ>c-@3oDœŒn<‹t€±‘`(¥²Ÿ‘)\ê¼m–_½´[¦BMÛÔMwç ôŒŽ•‡‰Kµ¼©5v9Tã#ü³›úûÙ¤&Ü—SZ¥…P9“!{;ø°Œ¹šÇÛâ¹ü°Œ2®=Eí|ëd–Ò6^è»ÍÂh{ß³—úЉœ‘B&K—_9 .Õ÷;éú0É÷-·Ääϯª†ðÎ(k^»l¬æM±×18º°rãñç>Ñoý”h¯LY«Ô9{¾ý´¦dtÓªØåâa‘£"Hœìg <¿Ý$+Ÿ!ivø!™Ùƒ‘ø ‘ïÀÙ# p´­OP±{p¬‰ã¼é*‰Ñx³Œ]K, ™÷ÞÍÇí¼î#è÷æGÆ×z[l5×ÃV¶óÝí–HjêQ—þÕ#…I9p'ze¹ü² ¾á³VgçsݼUd÷–1ÆÔŠdÍC©£U=ñ«ä¯æR)];FvZ!#kzd-Ïr ÜikdLºtJÇ®¡ÆÇH9²…Ž>K,&žŠ*ÂX •Ã4D¿0lÉ6¬rÁûýþƒLWñòÔl¡FN ¥.éq7ÞÌKe¤/DB™@'ô>Zrî –Èe¹o9Žp6ÝGD뼕ø'RÊxsÕÓdë«ÈÕJ¶Ì)÷^\$4 Ÿ6Jò`Ž3/ÓĹå˜rŽç "™i0Û>—ÎmôZáSŸ5Êr2r”c)õ"‡)+µëõ®jSÿâžIl¦——cÙÔ(0ËÏØ)ß Éj|­¥¶Cyq4t¤û=]*u׺tRw„µ×j¸DÇÈä Ëçt²,7Öß”­:ã5¼=üþKA#¾¡³ˆÄÃtØøê,X`_€¦"–w̆´J ùnÀb®”ì]–)žvv´Y³ŠjÞÅî/ÐÈö^Åwp[¿îl©Û ¹g‡_ú¦Ê æÐ6ÃêèÝMï (Ú®×e¥Lµ%ÖA¶|Òù[UQjùí@&_(Ôß—y_S')QM0^Œëv í‚òÇõg“¶ƒZ¢¸ÂAvƒ²iŽÅõÎÕ€®H-On†Uz'ÅmÁŸlî®lè¥4«UFÚ á.¼Ë —uŠ-F4K~²¥{ja“ª““+ÿšx'¯gãòëåq n?_Þ]sªahæËnóÉ ;‘£UPWuÔ:Üæ”Ïõ” Ž ž%ë·më§”ÜÙü£“mÍÖÃD±ÜÛHpØF¯,?›m—Š·ÏBùˆÅ;H·Kj7ˆQœ  ×þÌÀÈþ°б¢vl' Rß '¿ªÑc‚S¾úy#‹êÕ'Kh°,O“‹o'â±ýô4ñk$’ šW›lˆ¤›dÉò þÄ»ŸÒn|Ý¥‚ Îl¿¬…îL˜øJëTô30(÷x›…0…xЇ\tó™G„lÚÝF˪œŽ¡v3-‡bó฾)[Œ 3yöŠ¡ŠÐ@Ú\ »s¹ù‰ U7ÌGÑ/ ‚!ï4¾1CÁ‹´h¿½…X¡64GVÙY_ :cîŸê®Dâ©üšGdzª,×2 ö„Än÷¿ê!ïeþø8k¯ßíwÛV‡LízäÕ‹Y7ù„®¼?Mžcu¹ö)¯ÙÎĵ{\¦{Í}J1­ÓŠò‰1ú¾W⋼ÔkÓó0Q‡ \ùv Z×7ÊÀÍ[¼£Ò¬­×éîeŽw¢¡Xlº]a£D¦‘“%ÉàØD`Þy~W®òuÈÁ/Ñ6gnìcô-dè㪶êï—Ú›$Ý/ˆÒÀîqýiÁ)}I¡‰úâAÚð¾è¤†KO“ó%¹NêúK|™Û¥†«-»°Î™|XÎY”±šôhû3cN±ÈâŠ6 ‹ü"Šþ‰¾©%W¡u «æe×YFÃÝ´" PØ¥ÛM¶h’+­×Æï¬$wÊ«.’‘9cÚjž·B¢*Å¿Y´{•©ŸÃ — MŲTº½f¦C_R“õ颜½B[š ±Ðf^°·æGHÊ@ Aøö}zÚ¦;]ï'GÂWmTê:9&&ÂÍß¡rÕã~~iC2öŸ nÖ ¨?ê7%I³êONt6µø-v~Û é7ò/¯YÆ÷vî8øØ‘!ÞW~©K.Ò*¤Kƒ£·'༊æœ@p¬pA-ý±öë¡ÕŸþƒú,M ˆæË­aÙ{ƒ´güV:µž HÖN ¢a¶”?s-¢Bô•‹Of`¡€Š ò ¤/ÀÄÞÐÞÐòK €ñ@ØzÛ•‡P#´Øgï<ò´ÜàïÚµ´¬BbêéÍÙMt†/µ,M¦€äºÉCIÿ; £ÒÙŸÖX;Ýó%ºé÷¦úIx„Ïù&máX¶ð Úë1¨»Fæü¨¬"IJ3¢¥U’™Sä4¸+ÝX㩈Ôô¹÷a5q¯ºÓôÖv FÈ}Š8-wÙ]N‹l ïÔ^zqª?Fû¸Áƒ‚?áÅ ÅÂñ)É–Y úŸœ+áž*†ñÀuy,RÞ÷ú2® Îß<ôlè8KÒ8[˜ïFâE͇Ë2¯öJ…¤ll †º°­7øõzûXháäÊÏ2 Ïù;6']À6£öàK÷q8br",P("™P¿MÉ—¦r,ÜŒbO"]˜Ÿ­hñ®ëÞ„Ð=¥ï}Æìg” 6F‡ºTÊoD”$É.\ÙË嬹ä'UPTò!¡}„ Z»¸.àÒÏçX^³×5>¡Úœ{9v,½%?m%‘¾wPÃLw‹(±OÁ{Â'uûyÏß7Ê–Ï»¿ÜÐ2ªdÂöµo&¾¬­- ]Q@ª¼Ë௢äÉðÕkÙI‰ºéÃÜÞ•nÉÍÇPGþüŒnS5òí^ÝiÄTdï'"+)ùòôvóVŽ\ΞˆîN"At*¬‹TT &Ç1QÖO@¹}þ§98ä8‹ï5ê•-ÕÒl•øƒ´[@ãΛ–¯çÊÈ0}ìUé“i8TÂ.¶`£êôýg)ªTº‰‹ò>L5èm@’¡*ÐÊ7hh¶=¬ήnî¤[é£÷Äe ËÌÙïä±S?¡å’Œi !ÔNpëù€e*L>—OÆ3·8!QiX¨U÷ðB_¥®žÞ·á6‡Š·n±Èða焃ŸŽr²ó\'ƒV1 íGÞšäNÞ#¢s~&ùœþ¥<4SªÐÅwŸÅdÐbp±zŒÄ(mqJ¤=ñAâ¼ñ]ûcš»-(Ù&9]Š! ²žm±¯Ä§$œ¥„ýÌ*_º]¨F}Ío Ô›‚-]CpÙ†‘ømž$‡dõ©¨Ftt‘Àèᮣ‘Õ~Xû®œùŒœã9t¸ˆE‚©µ¦4 êáƒÚ6m…´È× X6Ê·óÉgù ™ðJùÑ^M®ÀÓó&%É0쟉£ªýX 5ْ•C×Àjú!Êö%$-¹#ðÔB 9K„›†Ëb4îy†13Wš£!“ÝCçƒ\‰npÊ•{Ð…Õ/”­Ör·ø•IçâÁj3ÈóŽªõYNÔ-V«£ƒ”ƒ ƒqý1™€ í@èça6Љr2l€ÝÞì¤Þ§wðt·5?¡A.¤™€Hü»VuÛY‹¾Àøß‘x' öl=¶ûÏ'Z½Û˜ø@ªÔl޲¯á¶À* ¬wL²2ˆLÔY‰‘º¶´C‹N¹¯craD »«Êö§Kw_uF£S}SçÑ“§ždˆçêÝWŠ©^ÎJ„ø‚àÊ›™ŒyI¼•vBÐPƒ23LýÝù¸XoFFe²­ölp†Y½ †–¥úO¶©”¾–Y\VNCo ÝÌF0©vZ&7;‹ö›¼O< ~Î<»°2Úï 5­õ}h¨:«x±ÞãVHÉ¢ãwE ä96#œ3gÿ½·ùî j¼Ë9‰jPQ$±ô‘p™°’`ÿ»—¥v2éÎll5Ò¤¾ ºÕ´ SM3µ!‡(ˆN9†á´I$HQW²+ÌBßF€gÁöáè%Qt©i7ÁÞ6ç9îÎñ¥‘ùÓ“Àõý]ë)Η_yÎTl!Ñ© +SÒ1ùºà k6ºj˜˜UȶúáÜЩx¦{%t>‰ÃÛøð& ¸´m,c']³-|„Ä!&BäÁ{ m9E0ìºß£ÿ2qòõäˆt^ÇþIä0q^‰ £l#ãOóÊkÆÏí`$c3“â[¾ meÇ~4첄÷kÏt÷ñPxqæˆv™¿HLÍ’-ž‡â!;÷¥¡Sä5ZëÑöäŒÒD¹œÆ°±SÉ0ÙÎ¥éfæ"vr¨rV)¬G‚Ô×ø’OÁc’cú÷Ä9^¿“‹”ú€ÝOÑPË?;ƺZÛnÌ/()Ó kÐ0/Hév¸Nˆ©¬üsÐ[»óô?ÿŠ”]‡|86ãŒàåéølîÁ:ÿtýƒ‡4<–!OH-·b’¬V>±‹ÖôãûãYOÊ(^Mg9í6iÊ5hBM+üþÉ—ÐmƒHËÑs¯Î(ÇjeFwí2§ï•{^¶vÊU{!™¼I<¡×²{gŠJ-[³^‚éé&Ê·D¾jÊp°6À½ñYÛÅr!NÕÿõ…qQâxÖEÿÕÈÆ„QwÚr¾õ0«ÙãÚüžbF,×®›a¡ÀbßÙ¢Dì$7Z–šbXßæVcbˆ_$Ÿýå6 }©G9õÙj7õ.AQ8 zõÙZ1AÆå¯{ô àâ./Õ[€††uÎk ÇoÁφ۔§á$ˆ±ëx-ùË/u_>ÅôŸ‘Ì9÷äÚ5t®t8“±!7ò/|ö_6Ä•è—ݸ¢±€+Œ´‡n˜EcRw¹ü…JÊÁ©Èú¿cÈw‹8¢"U·°+oYî¡Àßæßû)¥æÈòÆÌ{öø\Ù›­}ëÑú>+ü»N {Ûî¸`xšó] 6€“)ÿɨDe»Âq%u¸cî“gvÓÙ¢"©–3è}&úC:=8Wl¿BãÝ@§N뉖s ÄN×ê„ožKãÀôn?ã)²ø¢IâǘT,W•H¸áÎo´Pâ>æâp>+¤aã³ë]Ï8CEnº<± X¡¿O(nEœŸ1£ úÝDDl¤‘=ÂtÚø½†êc„Þî‰ÉØÂ½ÑH ™X®Î «¬ßØËxCùñš€Jb)¡@ÎHK `déU‘UŸ´ãÌÊ<]˜¾uЊtÇPÕ²–6‹5™8ìp0Š 5ÕœT×=M–3s~¥¬(0©” ºe¶)=±ŸÃ̓ð%›4,éÚ`NïT@Y&OÏkÔ…¼¶4º¿êdÀ6óüDÙ=S•‰ÁÎVd£‡ò¡W²ë©d͈¥âùBˆbtÜñìIè2‘MIB3nÕeU1Åh¯khËØøtæÒSô@@ýއ©ð{Hn×, lSbú&w¡QA›°²@ªõÛµ#ÇgŽwK?ÈŒ >kš­ðŸmù1&lv43ÄÕÍØ·^:$ba 5pZeÎGRáŠ"¨àósr!I™R8óC_úTßú²Ø[\ßþ¡»íÂa¬¬ ]Ñk@¿Úôã±8Ë •çWcð'Ò¨¿’µ“`Ns.ÞÂ.¾–‡‡l|m WM×q#:]˹%™NS;è}ø¡¤¿´Ç×þÁ7ˆ²ÙÏd|`à i‚xÓ)—Y6EßöN¢ÕrÕÿ“«61t·L' –tS£·Yè¾…BÁæ½|MlÁc¹}$¥ôÏýoÀSÝ ·9©X“´8É}k–ch‚ò’,ncç +CÏ ”0_·3oÜ„Q9?á|‚MV°ˆlü(fí\þh@ekiå° Í§¦9çRýÆš|TéÓ—¨×—e ì ¥ щ£†wÞšs>W˜?K¶~r5xP8XîF“”Ù'†¢±jÑ‘¼ÓO[ž×{\ƒ÷°ÄÆv²÷íÏeÔ'?>0“|¸ŽTý‰— ‚þƒŽó{ä éɰŽËLÒy¸H+“ÓC&Mºª©Ï÷9;V ‘ #M Ea–;ímÔh[ÆtT½Æ”=+ %'A#ôB;þ´_Ä\Båù!^V “ׯZËßH?<¯Eõ}¸óþYÙÓºBÓZs+2÷ŽÛGߟ{¼=Gö’~­cZq«k~·vü›euñª0•UïÃ͂Θ©>_õÏ(XooŒ‰B;œ¥ÿ¼ÿµa}Š‚:sQg¾Òôå_ ÿž/­é¶~äš–âRE™á®™1žrd0IvÍ·Ã{Yß!éh€TÊ×:ø¬NOnî).¨ÐŨ7¡þSÌ Fh¿°š)]Ó;Ò`¶´ÈÒ5_ÞËJya¹„œê8ü~oÿÙù(8× ÆUšæûa‘¯dÅøíb~î¶c” ƒÑ‘ØEVe2­wZ¬32ãGk5äy}æô•}~Øß‚äæòÖê~ªUåºÛ ý®õ·n§Æõi~‡ËbÔkIç†s¨óö:®a¡íânÒ>¤HK€ûŒËá¨ê‚Ä9ºéŽ&Ó…ö^ÈiÓƒyz/Ì/&Щ‚%µf÷ä02êeœ¸eðx}8ªxÕ)»9ç‡ÎHYvE@±Ð(ƒvÐr·fè:é,ò"ÆpÒiUýÒÊ(·wÖlùöÚ§züÐ4>à k.èèýÜ;wÍüã››&é©6»USÚYÝßuI$n]§ÏÚ-Ÿ;²­Jª<`büQ –ôìçr‰˜0†š–zš,v3³¬9Y;-/ظáÝUíe¢“…©Ý%·é> gbßµ+aE€ ÿ óm_aï‹¶ FÊ)*õiþ">ü›³k£éšGÜùoU3œºâP¶I(fè`¢;[?¦Ga¶ÊÞú;Ç&ñò 3då÷¾Ý?!?}Ëɬ˜säiA ªØ+W°F°õÓëyNŒ>¢çØE4Jý®…DN¬V¿>ÿu…HC8‚£·¬üòdU{|é·ΚûÑ Mk:@]+LöܤŽ>µÊv·ÈÈÿÂc,5\«É½€Èë.'Oéåͯ¾d¿§Võ°¢ŽY=0étˆ%Ö¿-e‰¥Œ5‹Ø}v}¥u ã¾’Ä!ö-Ë«F.èöSˆÃób“cÍ8ο?ÒcÉV Ë*ðvëĺSòRäx"LJ6ï8^bž>Èš}–ÜÅÌ’¬‚¡ùö޳\Û‹8 y¶››Æ¬È¡;î¾™Ã÷—¬%§; c;—o|*Ì“  *5ëa)'c4°k³ñ¤äøp.x·œ6p6‹ž:ˆÕXÞBÍ™Ó#†Æ»ÐPNŒÀq‘ÂëŽtm!jG e£—W×ÃZI{âM$ˆnØÓUõœAoóÙÑÜŠ$>ºÚ¹µÌ+®7oúÔ1Æó±•W±"q1vÉ/ò°o;K•[¡>z={vg8i”|ÄCà°<áòê~0õ]µÃNÝ,,Øßü}dܰA3D-ê®\Ít¯0nðþùKŒ´ä* qÕ’¨!F¤{&G‚Ðú*]+J…Éñ—f†!ô¯!EeÊ™ÕË3ÝE#HÆg©MfW»f'àx´ä‰Â ßÛ³ì§tÄû›as4ìeûK;ì‰âFEŽ^ówºžó~n è½Jé/éh]|A‘ëÙâ!Mžj»ÐÅëíK9težd&¡9˜f—:Ä®ú%í–NS\‹1ð„/ýfüÔÚìæ„3z12휲Œ©uú– ‘æzݧû& ?„/<ŒÈElDÍõËŸãm÷,ÙHI`¨Gå{/`Ö¦yùÄ~’´}4S˜—éÛ×ܱ.Ü/ HxÍQ§@:Jý¦a¢ÿDg#Øçu¼^NÔ­“m$Øç´õ,õæ¯1üˆãU@œè¢8ÇYªû¥ÄÉÀé13—nuÚt(l2Ùßj›D2Mr¬aZU!¯{úº—B«•~GüèX&ßåaGut°9[{²¶ÎFÃS6y&e}/°eøt­¨p ZÄl±¶ÍìRßÄôÓM„ƒ&LF¾ p;À–z× @OÑSX†·æ¤îßí¡lHK¹œÅÑ`ÕÜxnŽlÉÿ%¼FRÃÒËš(¬SwÎaDîÓüaç9¬yZ„ޏÿ![ƶú² zi„éŒøTaŽ/œúñ&5âûpéù Q;^1¾R‰¯&(ï]^² DSOãUr§‚ݨ]Ðìâ$² ‚OÔÎDpƒÆˆ Üt¾Â¦ ONÞ…Xð†~’"eR+¾ È,àYüX‘sHßÌ_J~d[&?+…ïà8~ê1ù õÿñƒ6F·£&S߇X‡í`À¯ÇÁþL¥ ú€ð˼ì7‰X AI be:RŒ”ÉËŒ1ŸH†" pW'zââÏ–Ö¦Ò§‚ùÓį$Xó’‹½s"äñÈÓÍŽò ½ù„®ŒòjÉ†Ëæˆp––€B•c–m~Q¶Zíoÿù]ÇR§T”_戕³°ËmfPó˜ÔªpáTfR…1ÜÔrªÕå¹òƒžq”†¿i•/´Oî~» ¨ù,ÑÀ‘ëgêæ«y 0P8·ŽãdÝ ¾4˜6=ë뇎à@–À‘nc$LgH.Õ´TÂ2åVë^¡ÕNÓµçF‘ WÃÆ/_Ñ ¡ÓÂÃVQ_®1ÙÃdÄ8-`†æcPYŒ{c½½KŒnÝÌÓ”f¯u»À\˜ÀŠ$룬9>Þ­èy„€kíò §Ãt/C–-À§ôÞ_~ˆ¼5h'›©.$7´N›(¨(2pñ\eÄ#óy»CU߉æV}VMéÃm·$¼ý0|G÷V:-©“‘ÞjX¨|áÐá•—“¶K™‘É<™×ä,?­ò&Ù½)úaA.¶u~–&Äên4—˜ôÉ_·?wêíuÕœ÷¯HÏdIN.©OÂWç,ë*ýDëv•Þç­KÈyEŒ¾ÞvœÇQÚæ}2%°È=ý˜M5+¤í3×!\çÄÓJãß)z„äìæÓÆËå?Èç™ÚÑñî4V¨ôÌYB|õkJQÌGÆFʰ(=l–ëXÓÕ\ï}«béhÊw™/1£ÓªP½Bߨ_¤ˆvJ ÎÉ‹Bp|ø——§Ó³üW%¡Ôf»ÚÄ ”1ÃóaZ£ÆãÊêúÎV¾çÉ"ÿÂ=M¥¼ù!„-¦§à¤[èqrÎ(Í/œ/á_ŠÀ@LkF—šª‘ž%DÖWÉ4‚§Ù,yq£?®eªzºtÒI %ñ»¦ïÝ‹7]"AÏ4+ 3î‘~­!»ÂÚgëæE9‚aZïs;œˆÕ‰·ÒhøQ’Ãt¶V!ª"GAMMÏipÐf–VfUŠG”°š‰ìxSk-ñ»e0iuXIá~’$‘ÑRJsHšû^T"{Å—aØMçµÿªÿB%qµß|š¨›–§Ð¸â¸%‘âÈz0ŠëZ£ÓMAÌýÚÖ´|‘–ŽñÁgÈ! ¼mÓ½ã=ý­Ä§@¬¢gÞ4ü©Ø¸bGj×n\H/†‰wÉúø>?ë…ð›ã훇ý;¹v—P’‰¨66ă?ŒJ bƒÒÜíVŠ[-E›¾*úT”aU5—–R Ø‚ö†ý•8ôSfXì™vs)×ó ùÑÌ@} ßiùãî|ca ÅNˆ-©é4àÒ±‡Êóë¾ êдLnè0¢‡“ØíRˆ}ºŽ?Þ+Olai±)ð›è¬q`~,mY¶øå2oWbdQ¿Hÿ—»ýU®`Šà„üc$ ”ø BеÇûß’ÓönÁ{ÐK'JØóÛŽNž7©$ÝYîxÈ}H /'ªôûtMó[±ñüq=1‚V U3\›‚’r•¬>sœ5¼aÏ`̈íå§E#©Ûý%5dìà*¿&ÊO¥8¾Ì¸¥ñ²mÖw9•UVŽø/õ¾ükéТŸ”c3(¤:ù¬öpK+ºZYàa­A~läì½T:÷[@K/òTû´¤6¼G‰‰”{ü¶)çL¢ÄõžéféP0¶p^º+aêÄC-·tƸ-‹ë½˜mÛãÍØ&²è™yÓÒ6.‘±=WƒzÚPu.-€/°"”ݽž³[ToX½ŽŽâÙ§Z;È`ãáˆSà%SAȱ4÷ãÒ-f„†A ƒÉ“¹:ìc‘¤õ*‚æós®U Eµ*mÖïÒr?aÚnÃnß~lÀë(¤¾ L}JÖ7Ss"*Ó !™#S…(^9¾vM/…NÊ„Ö&¸¦ë+ùaµ¸q‡öÁ,DQÓG¦ŽŒ® ¶lß‘FaVC›÷øí¼CA_Ë —úÍBŠ µŸ—nÇ5í b“ˆ‡`¡Å®d I=lŠ¡ Ph›!IIÐ& %›þÿÉ6ýÜ2j  P ö·ƒ|À‰¢NÔ­~4÷E¤$Ø¿éTnæ+×Ý|râN´Þ‡„h¼ÝèÜ'ÝùÇÈs¸ÁB $ëfÔzà|¨PÐ(ÁÇnµ‹DB¿™â¶ý_ F q¶§8ä¯ô• £:Û©½¤é;P*d_±ú·ö@%¹[ýDdÕw&lÛveØjÖíü7 úD_Ôò¢jÆ»x…gÊ!qO4öv8ˆ ¬šµ>­„¼N1Jۼΰ"|>]Ëïg­°«;£9Ú5=dÀ! ¬ÍW_Ä ãô§ê™ºì­˜©ò‘õ;yéRn¹Ü1c†âîxöl†1Óã¸IÕi¢Ä;’køÐIÀpƒlÑ*H< J© Ånc¿]{éšH §&¡UKH婾îiv¡âgÊ]¾³0<¾Š£Œ2 6ã±ë/0Ž -ÿ€SÊGû°Ã£¡^ ÅÌhÑUáïOas„F÷m©>÷°kÈ׳NEWF4Ÿ–aŽãðIKx†Ò"–™61òͼ &íÄï³’Å3Š^ìŽ6X‘,IÓ¾ŠP ý<ݺ˜'ʇ¾Ck‚(¦»å±æª—ûŽÇI”¶&4nÌÝÓ ­˜Ö)ÛÉ8îÐÄ ÅSebŠñÓÖkÔ±qd$‹ÿêý¼"(ÄöakŒrsíÑ  ®5½²2 \œGÁ´‡=\í5Ü FãvWôŸ·”@ÇéÖQQ­µY[3:·Ä²VâCèT51°A 2_øÖüH"ˆ:Nÿ󵫯6Éze1}¯Ò~nAŒJXÞž}ï(Ï´N!+1FA¯AÇ6©brY0µc"á'yñ³Áx]SKbc§¤-]¼”˜Æ:œò%|‚õµAÎÕüCÛ!¹ÏZ#F!- U«§|úd2f÷“:- endstream endobj 122 0 obj << /Length 859 /Filter /FlateDecode >> stream xÚmUMoâ0½çWx•ÚÅNÈW…œ„Hv[•jµWHL @Úþûõ›™´»Uçñ›ñ›Ǿùö´žØ¶ßºIt¯Õ³;÷סq“òûæÜÜT}s=ºîòùֵãìùA= }³vu[®ªU·¿Üyòªk×Ö¬¯I…{Ýw¬£n_ܯ‰k&‡ãö ýì—ýåàY_”ªOQEi?ÝpÞ÷݃2÷ZkXvmÙÑÉ9˜Š5õíö];ˆ$µ…ÀÀ„ªÝ7Ñosô– yýv¾¸ãªÛõÁ|®¦Ï~ò|ÞHå]0}Z7ì»WuûI›Ÿ[_O§ƒƒ¥ƒÅBµnçKz~lŽNM¿nóôòvr*¤±aeMߺóiÓ¸aÓ½º`®õBÍëz¸®ý4g"NÙîFîÒsuíBå‹`nlB ˜„‘„­=öÌã¸æ@æ )UÖ 9yŽ€IÁ(±JÅ5<æ§T`,© M%5ŠÖœR£h”ºäRê ®á1ÚûÌgcßÍïÍ yq(¬ ábŒÆuX&Àá &èq,–Ñ1Ç+à„±N97Î8Nüœsk`Ëq8­ ^—8%Ç àŠ½FMq.â†5„SâhzAìkO × Ápý$Áƒqù1¦7]}Œ©ÎòþÈ©ÿ»pÒ^`ÜD3F?©ìx”‘ׯ[ë±a ¯³1´ecÔÏfŒ—Àäµ!/²„1êg)câdÜ?4dâ­K^˜|É ÆÐœ•ŒáQV1¦úÔ¿‰±'²š1tæ¬?ƺ9ëÁÏY?í¡œõÇГ³þ„rY‚ÞsÖŸŸõ'Äg)4ç¬3Å;ÎYgD¹¬3¢\ÖièÃbŸ-z±â3z´âs ,>G|ÆZV|ƾ´â3Öµâ3ü´â3qÄgônÅgè·â3tZñ½[ñ¾Yñ™ê‹ÏÐoÅgè,Äg¬[ˆÏàâ3ø…ø =…øL¹â3z/Ägâ‹ÏÄÏød ,gz)ÄôRˆÿ؇…øO5ù[±T“¿“‚êˆÿàT¼V *ŽÇM2G˜çªZN(:‘pTãjy¿šë0ø‚î:÷qâï;÷~Eú²è¡»m¼O1z¬ƒ¿'ßX endstream endobj 123 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlöo` òKwÞ{Ò·óÊÕ× ¢¤_ny×È| #¥Ê:##Ï0)%V©¸†ÇÁ²£â” Œ55¡)°£FÑšSj­‘R—@J]!À5£G+>ÇÀâ3qÄg¬eÅgìK+>c]+>ÃO+>G|FïV|†~+>C§ŸÑ»Ÿá›Ÿ©¾ø ýV|†ÎB|ƺ…ø ~!>ƒ_ˆÏÐSˆÏ”+>£÷B|&¾øLüŒOÂr¡—BüG/…ø}XˆÿT“ÿK5ù?)¨ŽøNÅkÅð¡âxáÁÑ$s„y®ªå„¢ G5.–[ ¹Œ£¿ èö¡s'~×» ê8‘EÝlÓUŠÑCüjÝF endstream endobj 124 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMèßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø ®´ÝP endstream endobj 125 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMêßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø YÝi endstream endobj 126 0 obj << /Length 858 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N7R!‡þûõ›Úݪ’çñ›ñ›‡±¯~<>ÏlÛ¿ºYt«Õ“;÷—¡q³òçö\]U}s9ºn¼w®uí4{¾SCß<»Q]—›jÓíÇOÞtÍáÒº‰õ=©poûî“‚uÔõ‹û=sÍìpG£ýì—ýxð¬ï ÊGÕ—¨¢´_n8ïûîN™[­µ¬»¶ìèäÌEšOúvû®D’z…ÀÀ„ªÝ7£Œè·9zKüü~ÝqÓíú`¹Tó'?y‡wRyÌ†Ö ûîM]Ñæçž/§ÓÁA‡ÒÁj¥Z·ó%½÷Û£SóïÛü ½¼Ÿœ ilXYÓ·î|Ú6nØvo.Xj½R˺^®k¿Ì™ˆS^wwí¹ºö?¡ŽòU°4H6!L‰@Œ@ÂÈBŒ€Öû@æq\s óŒ”*댌ÇTgýâÔÿÇÀ á]¸i/°n¢£ŸTv<ÊÈkã­õØ0†×YÈÚ²ˆ1êg Æk`òÚYÂõ³”1q2î2ñ‚Ö%/̾dchÎJÆð(«S}êßÄØYÍ:sÖcÝœõÇà笟öPÎúcèÉYB¹¬?Aï9ëO‰Ïúâ³ÎšsÖ™âç¬3¢\ÖQ.ë4ôa±Ï½Xñ=Zñ9Ÿ‰#>c-+>c_ZñëZñ~Zñ™8â3z·â3ô[ñ:­øŒÞ­ø ߬øLõÅgè·â3tâ3Ö-Ägð ñüB|†žB|¦\ñ½â3ñÅgâg|2–³½â?z)ÄìÃBü§šü­XªÉßIAuÄp*^+†ÇãŽ&™#ÌsU-'H8ªqµ|\Íeü A÷û8ñ÷û¸¢Ný YôÐÝ6ݧ=ÔÁ_ÁÄß” endstream endobj 127 0 obj << /Length 860 /Filter /FlateDecode >> stream xÚuUËnÛ0¼ë+ØC€äà˜”¬W` $ È¡ME¯ŽD§lÉåCþ¾œÝuÒÍAöp9»œQäÕ·ÇÍ̶Ë›E·Z=¹Óp7+¿oÁÕU54çƒë§ε®½ÌžîÔã847©ëò¾ºï»éÆ“ïûfnÝ…õRá^»þƒ‚uÔõ³û5sÍl˜¦Îhÿ‘ý¹›öžöCù°úV”øÓ§nèÕZûÀºoËá€fNÁ\©ùEâ®ëÛQT©h L¨Ú®™dD¿ÍÁ»‚äÍÛir‡û~7Ë¥š?ùÉÓ4¾‘Λ`þ0¶nìúWuýYœŸÜœÇ½ƒ¥ƒÕJµnçkz~lNÍ¿èôõüvt*¤±amÍкÓqÛ¸qÛ¿º`©õJ-ëz¸¾ý4g"NyÙ]¸kÏÕµÿ u”¯‚¥A² )`JbD>`´öØ2ãš™$`¤TY'`ä`ä9&£Ä*×ð8XV`TœR±¦&4Ö`Ô(ZsJ¢5Rê’H©+¸†ÇhÿÒg¾¸ôÝüÞŽb‘‡ÂÚ.Àh\‡e®`‚^Çbs¼N[à”sSàŒãÄÏ9·¶‡Óºàu‰Sr¼®ØkÔ4ç"nXCA8%ަľFðÄpý ×O<—czÓÕǘê¬ÿâ_8õ¿1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦xÇ9ëŒ(—uF”Ë: }Xì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&+–jòwRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\.ï÷@sGEÐ Dç>Nü®wï—Ôq8"‹ºÝ.—*Fuðgõá¡ endstream endobj 128 0 obj << /Length 700 /Filter /FlateDecode >> stream xÚuTMo£0½ó+¼‡Jí!m0U ó!å°mÕT«½¦àt‘ˆ€úï×o†4«j{ÀzÞ̺v|t®võåïð žû®ÚºQÜf›|Ó6ã'oÚêp®Ý…õ’uïM{¥ ¸}u¿gã f‡c¯¤i"Amƃ§}Ã>,¾†%þrýÐtíƒP÷RJ(Ú:ëŽXÌÌ'Ab~‘¸oÚºŸT‰7h ”uSÓŒÆêè]AòöcÝqÓî»`µóÿsûÒyÌŸúÚõMû.n¿Šó?·çÓéà DÈ`½µÛûšÞ‡ÇÝщù7+ýd½~œœÐ4W¬­êj7œv•ëwí» VR®Åª,×kë/ÿbÎxÛOÔÔ0ñƒ”+³ðØ,ý ¥F Õ§)1<öÂc«8Pø€Æ\ ‹6¦€Ç>!Pp #]QxQTýÙõ“v)#´–êZB¢‰ÔYL½tž/Xˆ^r<ާÀ1çÆÀ†ãÄçu§%pÊñØr_âd·À9Ù¢PSiÆ0@¡Wå„Q_«úUžhÖ©±ÍÖhèÑ諵"œqëÒì–FM]R¯rCpt¨¡3Ì9õÂãж„~ðj™3FýeÁzpÉ8ô8úÇóˆ8Q„:1ù¬bøcäÕ7£®~}õÜðHq”('b ÃÄ„ùŒ>^ÐmØ# &½zdìõÄò…}4¼)Ö` Æð"áýH‘›,¸4%¬!Åþ%¤AQß„÷ÞB[B~)Ò™äÌï Õ_’)ïMн±¬?DM;Ý豬ßÂ;kyoóþQnNçRæð®d\ÆÓ €;‹WæóA¨Î}ïß zŠèÀÕoZ÷ùZº²è£gîòºböT$Z|U endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 817 /Length 3557 /Filter /FlateDecode >> stream xÚí[[sÛ¶~ׯÀ[ãsj‚¸“Ngœ8·6WÇMÒ&~ %Zf£[H*MúëÏ·E‘²¥ØIzš™fÆA`±—oK‚€‹™bJ0Í„qÌ0™Jf™–ŽáÎJ&bælÌ„`.M˜Ð,Qht,qñ@ –Æ KXª-“´N2 *a5“† {ÞB&‚)HP÷ ³RØhÇè™TŠ+$iK’”iŒKA§!.Õ¸W¸Ú„)Å$˜Š™”¸!Ñ L@"5€*Î ©kf@Ÿ$–¨”BqC6bÁ¸Ôá*Ä1îÁ:†ÒWIL ªL!ß@$ôJcœÅ½<‹q.1ŒTJ@Kq…^ŽLLc$:L×ø9«R@¤•I™´&਴I p†*0>] æ`abèE¦Ä Ú¡º€[’W-€ÌGÁE‚«–‘‰FïÆ_¨hL :ð³0&%?§–AÇäð((pc•€[€¢µ–*0Ø¢¾¤ <ΜqäzÄAL¾‹¡*É º‘…b©PCft<pCêR0ôÜcDÄÌb@µ$&žŠ¸ÀpAìÈÙ°B A]6y°#yw©BTR#éLÌ¥„º4R#„¤&]R_v°\H §§Ôíh0©Ša ð±›JŠ\IíÖ ~ü‘ñgŒßÏ?d¯&ÐãwŠú„ýôºüøÃ"güI6ÎüÖ|V糺b)Ñ øQ^Í—å0¯0k|ÃÃ|Td7çïÙ« æ¸Tž 0¼Ä8RÝ“Ìfspy…yJòŒ/­//O=éž~ÀŸ-Okÿ ˜½ð›ór”—^R|ÂïñûüÖ+áoH³aÍ^%.Rˆl#“ˆ‚]%‘¢ã(vdlóÙ"¹G|Q5„Ž0i1ñÒÁµ\$<<;ÔP_^XDŠR•‰#-hžÉ(uv·z«—ÉEÈ1ÑÊ•JGO$”8ÂäDÂH"KiÖ''­!Þ~ðãž??ð’ù3þëÑ}ú¿q^׋êÎGóaeEYîçÓérVÔ¢y9æùŒWuv:Éù(«o ^æYYf³q>¥ ÎëédomÅ:Ü_þö;%8Lý(Abœ-'““-ThLªÝÆ©(ÁÜM¥µˆœû’A$4{Tw0 ½«îÐãF6s–’ÓjþRz3M]J4¡N"YÕ å”¦ž0û:Dð'å|ø,‡ç0ïï0~œ¿¯7§äFBn3#Hs”°¶_Ú;e ÀZñ¾qk£?Ñ %7 Rñ'É£å0/ÙÅèì8¹/"$iö áYÏуæÕ-"þ0«svãð‰Ç.2?ž~Èþú¿±ø.Ž¿ÝÃùèc$Çe¶Xä#ÀM*õäøöËè<Íf3Òåø¼¨þ‚Nß³çyYA4S‘ФÒµ/#»R–½&Ùƒâ]´¥z½ÇÞ,²ú¼Ê3ö®j#ÁªÆìƨVPßqQOÐsÄîÂŽóbX±ÇËz±¬÷ºp1$éŽG{}R”tÒ$5Š”M©O"seUî#‰ßË'ïòºf~{6œŠÙ˜ÞÐ:~ o¿¯ï>«¡7¤°8Jvu‹­ÃlçXtû±¯øý[·HÉ’)sÒ¥oô f´ZóÅì`VëîÃâì,GdRãkø´˜-ñ·üír^ç“ü¬Æ‹°FZêUUðq™½Ëy6\Ö9åp9=›äïy]LF9ŸfÃYù´ÌAƒ!Ùpˆ ç£"ª¢âž £üŒ—͇˜)“IÖ6ž/gã¬\N'Ù²æóñ|–¿±Ä¯Zdü—Åu²ÀÖ×Kk/ŸþA$rŠwbý9 B_ÈxÚ|K_$Aè]V|5 Â$_Q‚0é¿,Ah{¥w·^ºl%È-[òÈ•^›vä,ÒÓÏÉ)Vmæ+þ¹œb>žSÌ·œòEsŠÓ_QNqæ_–S¬¼ÖÒãÒåÆî¡ð1ês„»ðáŹo â‹$³ËН&A¤ñW” Rñ/K.ù»W%ø¢~µÏ;¿ZÞx­œÅ¿{Çñm*ÞS‘Q1¥bAÅ„ŠœŠ×øÖM×QKUûÚÞà#ß%{‚ŽÛѧT,[kŽ=iÏÃñ7‡Í ëÏ]²¬å³Vx]û¾K:n›g¤Í©(»-g}LŠ–ñ‡.•7£jIÇŸ^Rm{ ú“-ZcÇWbƒá¬ïx;¼0h‰YËfÔR­5œ·ƒÖÞìéZ¶T˲ IÕÞà•AÚÿöÿ·üŸ ^9‡|vò å}“¨Ha7ÓD¦)E-¡4ØÈ”äìÓb{¡ÓjÞw+Š$‰Ò¦$Š^Ÿ§uê»ê¿ìðpJíd$W-ã„t’¾Õ*èalþ`»YE¢#çé”6ÂQ„Ñx¤Â6ýM›ÛpW–Fx|þDgh«U¶â ½뵡M- 4qߦµnu{W´ €¡U®áh\aúÔ›é0E¥:Ò+‡tzƒ¡J/Á •#=|‰ƒ  XŽ)A5ÕÖBÏç” G_&^K’jF‰H†{ڱĂ"…-I Åh8XacÎvD§uJ{{´­˜ÐŽyŒ{X´3n]KÀLxÜ&ÄÊו¢—¼ïIjXíéH0N`ȦJ›¸Vk³FÈ®†4-ÚRèÉàä+¥U䨵A!´¦T†–Ôãïǵ´¡‡|œøúšÊ÷„BÝ—ð§’FIú•x„>£$.ôï0yl¯Ô– kZpDÅBúÊ?8BSÉZ‚Yð¥§ÂŠBœO ‘ÒÏDuêšþÀ/ŒlxË8¢3(-o¢¢#1tôducÒ¤19L?Ù8ˆúÖ@œ!ÚšL)ÖýÞ`ßfŸˆflKúBŽJR6Ô×}AÙP¥—÷HM¡ÊÆD‘úõ°*rhh!H±Š7šJD4±$8-mjK½žRI¢ÑN4  ÞðJP¾¿áêG7uhMÇT÷™¾Ä‘ ¶N‹A~îéPóXŠÐ¢ m»¾:¶­ŒP—˜¤I¦Á$´ûŒÝàã¤ÏÙ~l—§§QÐG YêÝÞ`O¨7%I?ÙXæÕ°,X?‡õTX?ýý惻ÿ}ððh>ÍfBîßœOF ˜dcl¾Ê›þȾÆû2¡Ï¹tÀGµèxCE«Bà Ú[Ùâ^^ŒÏ›[H}û8‹5à÷ëlR fc,øc¬Õë|úœŽa±Ö Bšó¬¤åÙ ~‹òÛüg~ÌŸóŒŸò!§£ ñœŸñ1/ø„OùŒÏù‚/èƒ ­oC­$~¼ä¯ù’¿çö‚!w â’åþv€n>¿÷øéÓ xÿ(/'Y¹#lhïÓ™0|]!Œd£¸‹P¼Æ'ÞŽíb£D›~³Áç¿ëχüÌñ#ì ´^x¼N±€ÎkÛëî.xgø+ð‡…ýÙ„Ÿá«ð<¢oZL±b߆ë"/‹ùˆ¿]Uµ5êU>-‚ÔªxÏ«IVÃõy™ç¼þsŸ¼ã’_ø_}ÏÈëxæÅo¿<|zÐ ÝÝžÁ×:D/ÞÂù¶¾gl’ö£7½RôZ³ÕAኌ°&ŒÏ?,ÎqfæA}âÒ£ðÿ+/ç}ôu xüøþ‹Ç[ÜG ˆ)8q:PÐiH@`º¨>ªÙ6“.q?FŸ¯«èª`ú×ÛëØýð·gO¼„Ýç³ùGç$N!î+:çH‡õba×V›´çxÛZ-¥ü”™ÙŸ—1/ŸÐ+ŸÅ²jXáóÚé%3ÓsäùÛe6¡Yêçg˜œcúò™—˜¤M0ü'}Èó Î ×l9=¥¯´ãOaÿ1¯™Ê‹É²ZÍçÑ餙Ãïò0û3w9ÃÉ´j8/óõ$¾$Œ“ë¸óéË—‡·ï¯Ý@ßâÍ´ñfâß>Ý›ûB_ÑŸÁ“àË'ü)|¹z­žDÝÌy‰Þ¶O¢wžEò²OÏ—Еn•·'x«^;k-‹˜•g±:ê&åË‚–LJøk⪉ˆ³É­Þr}>2}j÷AÂÖ`“õÛüïÃ3tÂÈš—=¾ðVè~„3Âæð0£ióïgݰ[?v.ºáÎ#¬|ªt”·3 O®½P¶yœž\eßa½Û°ííª7ü9h¿ßt§(«šbopþ kn°e2À×þ¶aüqjOÛîÐihßr<ÿuØGV[¤»tÝñ¢³©®ÚTWºžº²£®½Šºêúêîxúoªk. k¶ª›\E]}}uw<©7Õu›êšd«ºéUÔ5×WwûvSÛtS[¥{ÚÚŽ¶æ*ÚÚëk»õù±¡¬¼0Ï”Ù:ÏäU”uÿßy†DÔÕWuÁÕôUõ½ä±L»ám‡/é5pÀ)FÕêÄtsn¸98ØœûivôþÝFBÄöíϪQš~2áu éþ&ˆRíH¿ L?* ¿c ß™øZ³Í.d3î ¶"é×]üØÔµCÍ®¡2h˯Q¦ÏG·|äå|ÂО ô Àn·ûØÖ-ë=ò9ÚHì±°âlî±›ÜÐÜcÓO©Î=ö¬t·ßì1ÛœTÅiþiQo[Ql*äÛíýÌÇskwÅH#½Ñ­BâéoGJ±ÑíB¶îj³’Ô%kÕ ñ$ÂIoÿƒ™¶l2øOM3Z endstream endobj 136 0 obj << /Producer (pdfTeX-1.40.25) /Author(\376\377\000S\000u\000s\000a\000n\000n\000a\000\040\000M\000a\000r\000q\000u\000e\000z)/Title(\376\377\000A\000l\000a\000k\000a\000z\000a\000m\000:\000\040\000G\000e\000n\000e\000\040\000u\000s\000a\000g\000e\000\040\000a\000n\000a\000l\000y\000s\000i\000s)/Subject()/Creator(\376\377\000L\000a\000T\000e\000X\000\040\000v\000i\000a\000\040\000p\000a\000n\000d\000o\000c)/Keywords() /CreationDate (D:20251215191046+01'00') /ModDate (D:20251215191046+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) kpathsea version 6.3.5) >> endobj 134 0 obj << /Type /ObjStm /N 2 /First 13 /Length 113 /Filter /FlateDecode >> stream xÚ346V0P046U02ä²±áÒwI-.) …ƒ¸ììÀ‚!•© úΉ%‰9ùé\ú‰é©Å F%úþ¥%9™y@C#Kˆˆ_b.ˆ 6:¢Ü7?%U?´8¦¨­ 5Ï1¹$3?OÁfþ4& endstream endobj 137 0 obj << /Type /XRef /Index [0 138] /Size 138 /W [1 3 1] /Root 135 0 R /Info 136 0 R /ID [<16CD4C053F375E1C4957396064E76606> <16CD4C053F375E1C4957396064E76606>] /Length 367 /Filter /FlateDecode >> stream xÚÒ»OÓaÆñs~…Rb¹« ½ 7± W¹´€W(ÕŠ\Mœ%ÄtfdáèH\ a0aÀDh"‹ƒFÿy¿gùäyrÎ{¦WDä¿'â‰z? IÁƒ"¸ÅP®"•¶R>Xƒ4” ¬Bdà ¼?d¡S¥:o§*  âó[½©ë´Ô•*¿­Þ†*•Ð¬Õ TÃ-A ÔBÔ«„S¶Ü*]ß­vÀ•øW«ah‚fh»Ð mЮ2’•dŸ½è‡{*ÓWV@·JêØj܇^ˆ@b‡>•ô¡»÷~Æ^ŒÃ€ÊÖ”ÕÇ0¨òáÂê ÃCG€QSùä³å Ø€I˜‚w0 3°Oà%ÌÂ+˜ƒyX€$¤`Qåóž_R¹ühiY5Ûaé©jþÀÒ3õKÏÕÛ Zz¡Þѹû\'_ߢŽSêÙ®ãGÄQ(ØÞ[Ø„-ØväÜôï!Óœª÷'áê¿}¹<^8: endstream endobj startxref 192408 %%EOF alakazam/inst/doc/Diversity-Vignette.Rmd0000644000176200001440000001557414652702266020014 0ustar liggesusers--- title: 'Alakazam: Analysis of clonal abundance and diversity' author: "Jason Anthony Vander Heiden" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4 fig_width: 7.5 highlight: pygments toc: yes html_document: fig_height: 4 fig_width: 7.5 highlight: pygments theme: readable toc: yes md_document: fig_height: 4 fig_width: 7.5 preserve_yaml: no toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Diversity analysis} %\usepackage[utf8]{inputenc} --- The clonal diversity of the repertoire can be analyzed using the general form of the diversity index, as proposed by Hill in: Hill, M. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427-432 (1973). Coupled with resampling strategies to correct for variations in sequencing depth, as well as inference of complete clonal abundance distributions as described in: Chao A, et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol Monogr. 2014 84:45-67. Chao A, et al. Unveiling the species-rank abundance distribution by generalizing the Good-Turing sample coverage theory. Ecology. 2015 96, 11891201. This package provides methods for the inference of a complete clonal abundance distribution (using the `estimateAbundance` function) along with two approaches to assess the diversity of these distributions: 1. Generation of a smooth diversity (D) curve over a range of diversity orders (q) using `alphaDiversity`, and 2. A significance test of the diversity (D) at a fixed diversity order (q). ## Example data A small example AIRR database, `ExampleDb`, is included in the `alakazam` package. Diversity calculation requires the `clone` field (column) to be present in the AIRR file, as well as an additional grouping column. In this example we will use the grouping columns `sample_id` and `c_call`. ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Load required packages library(alakazam) # Load example data data(ExampleDb) ``` For details about the AIRR format, visit the [AIRR Community documentation site](https://docs.airr-community.org/en/stable/datarep/rearrangements.html). ## Generate a clonal abundance curve A simple table of the observed clonal abundance counts and frequencies may be generated using the `countClones` function either with or without copy numbers, where the size of each clone is determined by the number of sequence members: ```{r, eval=TRUE, warning=FALSE} # Partitions the data based on the sample column clones <- countClones(ExampleDb, group="sample_id") head(clones, 5) ``` You may also specify a column containing the abundance count of each sequence (usually copy numbers), that will include weighting of each clone size by the corresponding abundance count. Furthermore, multiple grouping columns may be specified such that `seq_freq` (unweighted clone size as a fraction of total sequences in the group) and `copy_freq` (weighted fraction) are normalized to within multiple group data partitions. ```{r, eval=TRUE, warning=FALSE} # Partitions the data based on both the sample_id and c_call columns # Weights the clone sizes by the duplicate_count column clones <- countClones(ExampleDb, group=c("sample_id", "c_call"), copy="duplicate_count", clone="clone_id") head(clones, 5) ``` While `countClones` will report observed abundances, it will not provide confidence intervals. A complete clonal abundance distribution may be inferred using the `estimateAbundance` function with confidence intervals derived via bootstrapping. This output may be visualized using the `plotAbundanceCurve` function. ```{r, eval=TRUE, results='hide', warning=FALSE, fig.width=6, fig.height=4} # Partitions the data on the sample column # Calculates a 95% confidence interval via 100 bootstrap realizations curve <- estimateAbundance(ExampleDb, group="sample_id", ci=0.95, nboot=100, clone="clone_id") ``` ```{r, eval=TRUE, warning=FALSE, fig.width=6, fig.height=4} # Plots a rank abundance curve of the relative clonal abundances sample_colors <- c("-1h"="seagreen", "+7d"="steelblue") plot(curve, colors = sample_colors, legend_title="Sample") ``` ## Generate a diversity curve The function `alphaDiversity` performs uniform resampling of the input sequences and recalculates the clone size distribution, and diversity, with each resampling realization. Diversity (D) is calculated over a range of diversity orders (q) to generate a smooth curve. ```{r, eval=TRUE, results='hide'} # Compare diversity curve across values in the "sample" column # q ranges from 0 (min_q=0) to 4 (max_q=4) in 0.05 increments (step_q=0.05) # A 95% confidence interval will be calculated (ci=0.95) # 100 resampling realizations are performed (nboot=100) sample_curve <- alphaDiversity(ExampleDb, group="sample_id", clone="clone_id", min_q=0, max_q=4, step_q=0.1, ci=0.95, nboot=100) # Compare diversity curve across values in the c_call column # Analyse is restricted to c_call values with at least 30 sequences by min_n=30 # Excluded groups are indicated by a warning message isotype_curve <- alphaDiversity(ExampleDb, group="c_call", clone="clone_id", min_q=0, max_q=4, step_q=0.1, ci=0.95, nboot=100) ``` ```{r, eval=TRUE, fig.width=6, fig.height=4} # Plot a log-log (log_q=TRUE, log_d=TRUE) plot of sample diversity # Indicate number of sequences resampled from each group in the title sample_main <- paste0("Sample diversity") sample_colors <- c("-1h"="seagreen", "+7d"="steelblue") plot(sample_curve, colors=sample_colors, main_title=sample_main, legend_title="Sample") # Plot isotype diversity using default set of Ig isotype colors isotype_main <- paste0("Isotype diversity") plot(isotype_curve, colors=IG_COLORS, main_title=isotype_main, legend_title="Isotype") ``` ## View diversity tests at a fixed diversity order Significance testing across groups is performed using the delta of the bootstrap distributions between groups when running `alphaDiversity` for all values of `q` specified. ```{r, eval=TRUE, fig.width=6, fig.height=3} # Test diversity at q=0, q=1 and q=2 (equivalent to species richness, Shannon entropy, # Simpson's index) across values in the sample_id column # 100 bootstrap realizations are performed (nboot=100) isotype_test <- alphaDiversity(ExampleDb, group="c_call", min_q=0, max_q=2, step_q=1, nboot=100, clone="clone_id") # Print P-value table print(isotype_test@tests) # Plot results at q=0 and q=2 # Plot the mean and standard deviations at q=0 and q=2 plot(isotype_test, 0, colors=IG_COLORS, main_title=isotype_main, legend_title="Isotype") plot(isotype_test, 2, colors=IG_COLORS, main_title=isotype_main, legend_title="Isotype") ``` alakazam/inst/doc/GeneUsage-Vignette.R0000644000176200001440000000707415120047445017340 0ustar liggesusers## ----eval=TRUE, warning=FALSE, message=FALSE---------------------------------- # Load required packages library(alakazam) library(dplyr) library(scales) # Subset example data data(ExampleDb) ## ----eval=TRUE, warning=FALSE------------------------------------------------- # Quantify usage at the gene level gene <- countGenes(ExampleDb, gene="v_call", groups="sample_id", mode="gene") head(gene, n=4) ## ----eval=TRUE, warning=FALSE------------------------------------------------- # Assign sorted levels and subset to IGHV1 ighv1 <- gene %>% mutate(gene=factor(gene, levels=sortGenes(unique(gene), method="name"))) %>% filter(getFamily(gene) == "IGHV1") # Plot V gene usage in the IGHV1 family by sample g1 <- ggplot(ighv1, aes(x=gene, y=seq_freq)) + theme_bw() + ggtitle("IGHV1 Usage") + theme(axis.text.x=element_text(angle=45, hjust=1, vjust=1)) + ylab("Percent of repertoire") + xlab("") + scale_y_continuous(labels=percent) + scale_color_brewer(palette="Set1") + geom_point(aes(color=sample_id), size=5, alpha=0.8, position=position_dodge(width = 0.1)) plot(g1) ## ----eval=TRUE, warning=FALSE------------------------------------------------- # Quantify V family usage by sample family <- countGenes(ExampleDb, gene="v_call", groups="sample_id", mode="family") # Plot V family usage by sample g2 <- ggplot(family, aes(x=gene, y=seq_freq)) + theme_bw() + ggtitle("Family Usage") + theme(axis.text.x=element_text(angle=45, hjust=1, vjust=1)) + ylab("Percent of repertoire") + xlab("") + scale_y_continuous(labels=percent) + scale_color_brewer(palette="Set1") + geom_point(aes(color=sample_id), size=5, alpha=0.8, position=position_dodge(width = 0.1)) plot(g2) ## ----eval=TRUE, warning=FALSE------------------------------------------------- # Quantify V family clonal usage by sample and isotype family <- countGenes(ExampleDb, gene="v_call", groups=c("sample_id", "c_call"), clone="clone_id", mode="family") head(family, n=4) ## ----eval=TRUE, warning=FALSE------------------------------------------------- # Subset to IGHM and IGHG for plotting family <- filter(family, c_call %in% c("IGHM", "IGHG")) # Plot V family clonal usage by sample and isotype g3 <- ggplot(family, aes(x=gene, y=clone_freq)) + theme_bw() + ggtitle("Clonal Usage") + theme(axis.text.x=element_text(angle=45, hjust=1, vjust=1)) + ylab("Percent of repertoire") + xlab("") + scale_y_continuous(labels=percent) + scale_color_brewer(palette="Set1") + geom_point(aes(color=sample_id), size=5, alpha=0.8, position=position_dodge(width = 0.1)) + facet_grid(. ~ c_call) plot(g3) ## ----eval=TRUE, warning=FALSE------------------------------------------------- # Calculate V family copy numbers by sample and isotype family <- countGenes(ExampleDb, gene="v_call", groups=c("sample_id", "c_call"), mode="family", copy="duplicate_count") head(family, n=4) ## ----eval=TRUE, warning=FALSE------------------------------------------------- # Subset to IGHM and IGHG for plotting family <- filter(family, c_call %in% c("IGHM", "IGHG")) # Plot V family copy abundance by sample and isotype g4 <- ggplot(family, aes(x=gene, y=copy_freq)) + theme_bw() + ggtitle("Copy Number") + theme(axis.text.x=element_text(angle=45, hjust=1, vjust=1)) + ylab("Percent of repertoire") + xlab("") + scale_y_continuous(labels=percent) + scale_color_brewer(palette="Set1") + geom_point(aes(color=sample_id), size=5, alpha=0.8, position=position_dodge(width = 0.1)) + facet_grid(. ~ c_call) plot(g4) alakazam/inst/doc/Files-Vignette.R0000644000176200001440000000133115120047442016522 0ustar liggesusers## ----eval=TRUE, warning=FALSE, message=FALSE---------------------------------- # Set the file paths from inside the package directory # These files are smaller versions of the example databases previously mentioned changeo_file <- system.file("extdata", "example_changeo.tab.gz", package="alakazam") airr_file <- system.file("extdata", "example_airr.tsv.gz", package="alakazam") # Read in the data db_changeo <- alakazam::readChangeoDb(changeo_file) db_airr <- airr::read_rearrangement(airr_file) ## ----eval=FALSE, warning=FALSE, message=FALSE--------------------------------- # # Write the data to a tab-delimited file # alakazam::writeChangeoDb(db_changeo, "changeo.tsv") # airr::write_rearrangement(db_airr, "airr.tsv") alakazam/inst/extdata/0000755000176200001440000000000014007007324014437 5ustar liggesusersalakazam/inst/extdata/example_changeo.tab.gz0000644000176200001440000000441314007007324020667 0ustar liggesusers‹ì0Í_example_changeo.tabí\Ksâ8>kÅœSKʲÍëØŽ€ „ MR™KjO»—­ÝªýÿU«î–Á/‚±!“T‰a‚1¶$ô}_¿d³Í~ì²µÉÞ3õüfàáAÍäe)/Ûý+‹j½ÑoÙÚâÜmÆùær·6¸x\Wß«Åö_7™ÚÂjó©Ùncwkô=½ÙlÍŸÏ”yx\gÊfO«‡ÅZúz›½­`ûý7»nçwųøe·Vóþþï¿-ìü9h} ¿ÝvÎÜÎè&Ò¥Ëô&JÜÖ¢u Ò†‹´åp{{kÝnÚoÀ`øczG›`Á¸CiSÎ7|" ;Øm£¹-<\«t8?ΕCq§uÂ/è|Fc±Hñ)èvÈsß {ÒGnhÜ,GD]•Á›|<€ÒÀݺM:è úØRKt®|:”°tŠáÆøHùÊ|€Ì uHóèÆÌÛû–& O'ÍðÜð®zÏ[|ŒÛ62õùdÈ{¿•©v¨x¢’TMuÕQ¨ÅŸ+5Ð)­ ¼Rã@˜~„Y_ö±' ÏF#aöÖbbMú—­E:3P°ñ@kÖBËÛ ü|Bz€ÏXÑÜÊ£4Ô|+o UÀiÐ$ìîvE ’´f†7âr„GÒ¿Ûâ ã¯ÆóDZœÄ“£m$'äp:£M I†-Ñ¡agÉÐaŽ6íC9ÓŽÇ&”áÑYS ûª9¡$ÌÆÏ˜åDÙó°-I‘%Š¢F9ƒzæ¾› ö8’'ɲ7§çÞŸÎ’!™í‡˜3"³‚ñä£ñZõ¡U¿(âÈã\Zí­ÌØÎGé÷rœ1U“Š™s!u+Ó2Îð•§<¹lëSlCr™ãVõ)ï$—üu9£wjKtð>¥œ\š>÷t¡2ˆý®'—XN.k•'×9³ËúA(OTâñw,cý»†#§j¢ÕÅ{®EÌ5j[v̸–¡8/à-²Éî¤)bŽBŸ‚1¸Š1`—é«~\çãoiøEÖÃ>y‡ *¦ucpžƒQ`Æ—2±Y>ÃýIcЧþ×p¤Ž\òã(½R `§-ép?S0R‰.›‚ õ|ÄŒu`Æ—2ãÅv¥““¦ ûZÄmÀû¼9äÌ—æ(+m^Ùêa bŠ–àb=³i°}˜Ñßœi &ËÍx¾ic t×eÉø‰üÀø9J©ÞrÕItˆ\3â¸Áö0Sª9VÒƒ‹t|ÄL¦_*&ˆáéy=.Z— 4¬M4– üeL>‚7‚8Æ·yÙú2²±~^]JA¥ŒL5l™R+ƒ¶(£Íá6²À#® ­¿(… »\¸fÆ¢p\Ö|ò²¹°`«ŒŒÚ”ÊçË|é°|˜é*ed®£îK˜jÒzY&ö Z¼û8âà RR/ç"BÌÅgX|ÐNõz¨tªF‘êÓ‰S8ˆÂ#uà…šFU¼Í»xãGãmÛàíW5ÙÆåk%¼Eá\t—eh\6è„÷Yr.â}j ¾K_çÓ&1ÿ^ÝWñôzjéÿ°z*í)-Gb‰ ÀV` 09dõš ª€F˜lN.zc‰ á¯|”wK.¡ xô+orså À§–Óž<Æ2ìà¯BÃ’åéy.®•Òè[ðÅtÒ\N+¯¡)÷×ô~fNï¶àÑs¹ƒÜ?Bî5´[È]g«ÌìNùîÆ›ŠBÐöðÜR?+Þ ®TN”ù;ãÞƒ‰‹Ø«:>³‹JdžëxÀ¾¦Ž;€]¸Dð1{‹Æàïƒûá1x+pOÆà€—êJ†#á±wÞy g¬Ì¹gEËçv²Á‡E-ëhÄüYcð${ÆŸ³Sbvû¦Á)_ZDq“ùZ—4æu™Ny¤ÊBîÐE³SÖ:h÷Bû„pûxådö²œŒ®KäÕ4ùÓC‹ÐbZs€Ö\ZSµÑœ:#äâ(—©™ü}<\‚…ì\ò¤ì’ÏïãP++y”ÜÏ%Ÿå‘]ÂÜ^Éãùf„“.¹~LpÉ—€–C+åÀCø‹\²9ý••|vG|r”|U%÷ñÉãåç]2寑)ãGdÊXɔ㲘CùúÓfÊñ]òÃd'.£±~‡ŸËa'zN4]kpâ縸Œ|Ux¡¸lù6&¬Aÿƒ¿¨$3} c)aÖ ])Þ¿§#¿„¡“¶Wœìaß"Äî€}áºó—Çí¢ÅáÔoG«Š?7À2E€ý]Wý6€ýÕ'%€m `,Lõ>Åõ”Ÿž¡öØm˜³¶û%ªaYÛ];:¦í´í5d¿úOªí6~ºŸ¶Wwé°…çn¸×4xîËxn¹‚Ã0z2B›ßåi ÿúTÏ­£ªº»ö´¿œdXV÷(xî«{î~ê߯һݯP· 5uë î¯¥nmîmôz uß„ƒºö¿VÝÙn¹y ‘yPw u§AÝ_KÝãÅøeú³®îÊÍé@/¤nÛa㯺ÂÐ al‹0¼³Ÿ ¯wÉT~Uˆ`²¤ÙIÝS^;¨»{OUµØ©{°ïƒýIiÓ£“ºÿÎWícalakazam/inst/extdata/example_quality.tsv0000644000176200001440000000403214007007324020377 0ustar liggesuserssequence_id sequence rev_comp productive v_call d_call j_call sequence_alignment germline_alignment junction junction_aa v_cigar d_cigar j_cigar stop_codon vj_in_frame locus junction_length np1_length np2_length v_sequence_start v_sequence_end v_germline_start v_germline_end d_sequence_start d_sequence_end d_germline_start d_germline_end j_sequence_start j_sequence_end j_germline_start j_germline_end consensus_count duplicate_count c_call CGCTTTTCGGATTGGAA GGCTTTCTGAGAGTCATGGATCTCATGTGCAAGAAAATGAAGCACCTGTGGTTCTTCCTCCTGCTGGTGGCGGCTCCCAGATGGGTCCTGTCCCAGCTGCACCTGCAGGAGTCGGGCCCAGGACTGGTGACGCCTTCGGAGACCCTGTCCCTCAGTTGCACTGTCTCTGGTGGCTCCATCAGTCGCCACTACTGGAACTGGATCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGGGACTATTTATTATAGTGGGGGTAGTGGGACAACCTACTCCAACCCGTCCCTCAAGAGTCGACTCACCATATCGGTAGAGACGTCCAAGAATCAGATCTCCCTGAAGTTGAGGTCTGTGACCGCCGCAGACACGGCTGTGTATCACTGTGCGAGAGGAACCGACTTGGTTACGGGAGTTATTGACCCCTTTGACTACTGGGGCCAGGGAATCCTGGTCAGCGTCTCCTCAGGGAGTGCATCCGCCCCAACCCTTTTCCC FALSE TRUE IGHV4-39*01 IGHD3-10*01 IGHJ4*02 CAGCTGCACCTGCAGGAGTCGGGCCCA...GGACTGGTGACGCCTTCGGAGACCCTGTCCCTCAGTTGCACTGTCTCTGGTGGCTCCATCAG-......-----TCGCCACTACTGGAACTGGATCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGGGACTATTTATTATAGT.........GGGGGTACCTACTCCAACCCGTCCCTCAAG...AGTCGACTCACCATATCGGTAGAGACGTCCAAGAATCAGATCTCCCTGAAGTTGAGGTCTGTGACCGCCGCAGACACGGCTGTGTATCACTGTGCGAGAGGAACCGACTTGGTTACGGGAGTTATTGACCCCTTTGACTACTGGGGCCAGGGAATCCTGGTCAGCGTCTCCTCAG CAGCTGCAGCTGCAGGAGTCGGGCCCA...GGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCATCAGC......AGTAGTAGTTACTACTGGGGCTGGATCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGGGAGTATCTATTATAGT.........GGGAGCACCTACTACAACCCGTCCCTCAAG...AGTCGAGTCACCATATCCGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCCGCAGACACGGCTGTGTATTACTGTGCGAGANNNNNNNNNNTGGTTCGGGGAGTTATTNNNNNCTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAG TGTGCGAGAGGAACCGACTTGGTTACGGGAGTTATTGACCCCTTTGACTACTGG CARGTDLVTGVIDPFDYW 93S8=1X28=1X23=2X26=6I1=1X1=2X8=2X44=1X3=1X12=1X1=1X1=9D6=1X22=1X10=1X5=1X11=1X3=1X11=1X4=1X30=1X11= 403S9N5=2X10= 425S4N23=1X8=1X11= FALSE TRUE IGH 54 10 5 94 393 1 318 404 420 10 26 426 469 5 48 12 1 IGHMalakazam/inst/extdata/example_airr.tsv.gz0000644000176200001440000056730314007007324020302 0ustar liggesusers‹R`example_airr.tsvì½]›â8–5zÍù)ýTÔXþæ"/”22UÔM?ýN÷™ÓýôôÌ™é™ßÿzï-Ùò`lG&d)++’cŒÖòÒÖþÒÿåÿÿŸ¿üã_ÿòÇ¿þyñßúñâ¿þò¿ü×ÿø÷ÿ\üçýÇŸÿç_ÿù×ÿýË¢|æOÿûâÏôÏßèóŽ?þéïý·üû_þñÏÅ¿ýå¿þýïý‡ýÔßþçå9þãÕƒ?þéOp¾¿þÛŸþ NˆÿþMÿûßÿüÿ,?üÏåáÿû·?þõüÿëOÿþ—Åßÿã_ÿç¿ëüý/ÿø·þ‹ü'«úæáÿþ±º®ÿþçŸþëŸöùÇŸË_«‹4¯WOÀën¿ÿÏÍ÷ÿ¹ýþ?7ßÿ·öûÿÖ|ÿßÚïÿ[óýÿŠƒûÿÈ<*6Ÿ•çgþé×|!¸”J–?…‚’K$<*Ÿƒ'/_øü¹ä¢<Ò›¾‹«òàòqù³|¾<ÿr8ž^¢<OŒÿH?è5øp©à­øU>aÿ…'Ë ÁÂ'âçÇÀÊÓêæŠN pŽŸV>„ƒ9/K8 ¼‘®ÅHx‹À“ᑊӷÃhàÓ`¼ÊKÅÇÕ™9Œ“4lp8 øŽò ð;>ÂcÊÇ‚†ØŒýŽ×/iTËë…Zlåæ¼0ö/‚ÇYùØûƒÇàñ—èž ¾Ÿþy ‚?[fD³:áuLéâDXb“˯üé vá¸;ûPº”|8_y:òbwZËU¡öEÆ7‡Ó:ÛŸþ2ú´ü ˆr–”bxÆŸŒ>,–ÁÂO~°`plù3`Ëò á"½E¼ðýò=á"ô–å/JÇ[5 ¤R„g!oO¤;'ä `L@+zóý$”ôxÅÕ·˜\F“{œ¸Q~„·˜ wâ‘p8“DÀq $Ý:Šß§ýaú/@í÷_Xd´?í¿‚š¥$c€k)É\ Ò oBùJò}Ñt@Mª%Ü6P×&ƒ–äê#ÈÿvÜîd!ÎÅ¡<½Ú˽ÌäJ½ŸAÝÃRÓ½¨`¥¼Ç$ïŒåARë{.[„>ê{ˆúž–o‰Kg VþôÀ{ æ/´©ðlõ&ËyàªÂ+ÒWœréÉüSð9rNÖf†á¿Ì9:Ía„iÀi¤9ZHpÎ1 /ú¨¦z­ EG6ìAŽW…Ó´¹„0ðÃcwLm\á°ápaƯžÀº¬í¾±åKm÷AÑAÚã!Ò>1[1fD¯RŒëVŒG‡Ñ!4 ![Óû²úQÍK´Óå6;{η{¹ÎÎç³|ËŽÆD/E<É}ó )â<²Lô$]0o‘6-tTðeù,xPþSòÉ"ö[ú1oËœ~£œ VWð•9^L5fx%å)9ÍßóêwüÂc›;B²më6B–á=¡yé¾:Ź(ŠÓ¹x=ȳ%à`z{qä,Š0Ò¶€—f8(x î{åô³„ ùiË‚yH¢žåÇLnÎç¬(ý¼:ZKr/)ü܇EB°,Ò< -÷<:á㦔{åÿ¥¼cd°°2XvVñv·JuR>ðþGL^0Ô‚ßLà?['®ÌâÛ©¥–'Í ïGøX¦2GB­“ÂÉÇ‚îíüxZ„hˆ‡Þ§–gÁ×’†KK€bmÀ/ÁÀN[^ïŠW ‚Ò°*)åVIéQý–9ûø>‚)ES®ÉGÒ—«Lgû¸|¸töñ#ƒæ™ˆN"ìdº}<l¬È\Ë-?–‡ïΕ} ®moY°Ü÷zíãxšë&Én:¨[xTÈ{‹çGÞŸØk}.õ ’@¶;µSŠ×,ŠŒKšÕ.é@»‡–Ì$m§¾]šÆ9º1}{]y-Ñ¡é˜Å¨ª’QYe°Dt…|m'›}¬RgßI/ì¯ÃqÐ$Åñê•’šÑ:œuüÈ 9@æé–+CMôß6ªôñõx”èǨ¬cHÍó=ðR½Ö1Ö@6´­bhP¿\4“/ïÇ_¯ÞÔÎ}<Í©œûøùÜǃ@sÊû#¸Õ‡ºY_bÞ(²ÿ9x+·ó½Í-eqKš¸­ÂNz‚ÅâX%¬tm8Z8ÿ*Q1 oknW=2mïó`'X`©+ýì¶ønØ9X¦ÁBZÝ‚¥éãËtà)åâp–…<ø~w>×Ù®êëƒ:CúEà,|K±TÐj`¹bB~åòÿÔ_ø‹(h·9ýRlkN©“c$xš›&ʱ°¸ƒlrGv¸£,îÀ‡Hí¶ÒìÆ†•hÕ ¡!î⎼"ÇXgŽùкä¼~ôht¸‡ƒ G-·Ð, ¨ÓèI] qOå·‘ïI=xÐhÉWPP^¾ã°5FrhR™MÎslå5ëŒç¬mÓìЪ•é”jÜpmY„1¦NÛòž¢KÚÞÄ!4•‹V£ƒº³uûFÎØj°Q¢¼@¼« £Ãú€f4¶ë>­ÎØ~\ì,sÛ˜¹Ñe! <Àð5^Ý-c;.˜G{2”‚ 1fžVãö† ŒQ€°)ÇuyI²~ ?ê»Ú!”prü r<¦ßÇ}ïäø!ay:9ް 1 >L“™XKï|™XÎBþ&’¼ž É/îÞw’ü´°<$û4ÎK<½°‘ä%YõHr!Ä'#ÉÐ>ìu%yõë—ýÁy-¾·&;¯Å³bç`ù½iòGz-¶ÉiùÛ]r,ï”cŒˆB0h‰øx9VC¹Ã¯dá+Jê+¥ÆBtŠXÀ)Gr9¦æIá K¦Èñ0uîûy ³…dì}ÿøØ9X&ÀRIq–V¶ó$9<ÈñÛAžev>‹ã¡–ã€26èÜ“±±Ä=_àЪ±t€It!dA_ÎØÊ/“ou<ÔÂÂkÐxJMIãé9ú’f±ŽýùåÀ¢ÿOUÞ†~âÿ˜'¢–:ûùñÑu°ÌK»*ŪO™h?íçB©]vÜ¿ïN<³íçò”âN¬ðóFmJ¼ð~Ü0 ýeBùÏåØù¨ØVìzçÜhãï"p1sy-ÇNT”‘¸B‡QøýdÍ(86™„ßh¾Å,(Ã"ÀÈR³HX,Â!¥¹–ÆÇTn+®gCH’1ü‘¶b« äQ:% þØäQô]8Q“Ê;kò@?LÓÞé“a-$iFÖGbÓªN:=Ž£tzakõ².ÙNÿÐÜŽë"6æ† }ÃÏU¥ ×kÞðÏ‚Y Ç0ýÅѤ¿wÀÑÔß¡p  ‡jÀ12«± ‡Ä,8lƒ¹<ÚË0ÜMÁµþâõ·àà—à˜ôB_ù>—joo¾ér¾o˜ÀÝ÷3€Òþ×0¶òæRÓ•[†ú®baT¾í× DuïÑRœSè*u-°óbUó’ÐûíR–| ¶)î/—¤ì>³€qž„°É kU|o?o—ÅMe¿Ÿ«\eç³ð³ÁLÕÃÌ»hY©„Ô§ÃCEK%PnjZ!!•f£‘B§Wú»ÁU*|¿°UâR‰j¯²WÛsE•}$<)™ª)éì^)yÌœ¶OÐöÚ7Ý¤é ‘cê¼G]ÚÓ¯«ãvÏùv¿ßîäi-÷¤î‰QöÄ¡‘_ýlhôZ·›ÆTh–ä,$wI„‚ÝêZ—t‹\BTgiò™$P utúôuùë5êMáÝŒ\»É²o@1¼pE_¨._ªyøYwR¬G§;íœ.<h)€X%,@òIíêF B]ÈíÛñ [eÚ9ûËüÔ µ«ó£n;gRܰÚ2+Àfúé*¼ý·§3÷Rµ½L¡†Þªáô‘=zËÛ”·)ƒ.ðÃk²ˆY±LQ ËÄ7”F“€«N\G‚q-ÅͲÞ†v{¹Öȧ³ô¶N݈¯êm'î^|®ÜÞS°ê¹½û›çöþæ 9¹h«ºþ…„{|vŽû¡ÆöGj¿Â,•<Ëc¶Ö‰sèÄ ~KjMW𹡱ˆ+/X¿qªíã¥öv$Õ®,”zäÚ„FåfääÀ=\"+Ï«ªq'-Ø ñ<Ø$ñbto°°Ó¬#Ýìq6Ônv:>¿Ž÷ØÍCu¼£NÇŽ;Ÿ®ãÁr& ›·%|Ý•ð´’ð{ã uÔ'á?¾~ º¬ä W—)©.…³1y§—†À ~ƒ†ÂÆ·ëCQÞ=y„s|ŒnY¼·/²}¢åîÄcÑÙEB·¦¾Näp…“vÁ©%'ŸjÅ>A×nŬÑÖ'áá 3[!–C£æA¯šó>õUS=fƒ­Rëà]WGÅωù<Îj;…á°|ÕB) GKÌ+8DÇ Á’mßW'y.òÓæÈwÙö´ V¨Ê± ,VFüŸ¡°û¥‚¥¸ëÿñ f»Ã"–&Çv¨7½Å ³X`^‰¿,„&xÉ̦››E¸‡–忆M Ëq£[LÔÆh$õŸ®µýUþe·l$/©ËÖºv9 &,§SV ¬HŠìlT¶I*4I¥™w5=E+OIX^nÙ›Uª 7áMC“”„´s`º§†Ö øÛ4·¶˜½máqvqO–+ØôéÉðØz2#TZ nfôäñ1sLBJbT2Ò=NPí£,äë¹rYG”Ü‘Pn‡×ðX‡Ð—¿Ù*Éär¤`—J¼bVy¬3«|ãÉÎ *zÄSv¸!ú¸Á®øÆ5ä5>Àhõ\¸ êŠ'.ƒºâÙ;±HMÑ¢7<¿NÊnS`™à¯&ýGÒL.´ý2U<í­ÁÃñý·îxÆØ|PõÞº]À®c…™ÏñâÙ0„+ÐFÔ î‚ÜëcÁ‹óY¬³MiíF•Ó"¡Ì9²DÃOzçmÏØµºWÿ5†§—Ÿìý¾Sc¿FúAPׂƒ‘ËÒ"ÂîÑvÇèó¤C”f¥9&?4à DÜfe‰Úw6V‰¿ÈÏ»t¸aKÌÓ™L·¨'*ºq¢›hÒMjºÑY[tã²¢Î]xWË“ †-ü~™eŠrm Ë®wpmS³¬^sb™²¦hx Ž–ãÆf 4Óµ9zñÃцí}ðô*Ãt¨´2Ü¬Òæ‡ÇÌió$öö:-ÇÅ}†í8ѱ;dùù°^Åi2íùõÉûK>ãØô MH‡ýª?êµþׇ´nû_±Ÿ(MKzu&t;‡På’è a”·Tíäf’]„v3äÞ-)Zt7ËŽ}^«õq”ÿAüîütýœb\}Œÿ½TŽæÒšnçÛÒ‹HýôbøœbOA¼É鮈!pb Ý)_eÆ¡{Ó1ªLÈöíø#|í0t¦j0Å2ï–?¢Î  3ï¼þ¼RüBµM‚h»§KNkÜ&Aà\:â î!—ºüV°a“Bç!êéNA„Ý´)B«¤®j¬pqQKAÑxàïeT#V¸X—¨4Y)¦«¨¢n\Ñ“¹ —ðBm÷²föE}“uðéÜÃ÷AÔôI|k¸è⟠1[PwƒÙÊ6­²ÁûÀ òB¨Ãqwäj»ÞTƒ ¤(S¶rXè2vD‰,ë5J`WVÈYöXÕ(?BÕM±DÛA’.%‘Yû¾¾¯îhª1ƒÚªçV[r’â—ë{ea:Qmƒk‰qÛ|ýÆ÷ú‡"÷Mîõ¹Ás`L^ Üi`Œ¹Þ";ù µµðúË¥IWÃvFŒ ªc¿!»–‰”‡4vŸBo¨ë§!s­-»Áç<9$×e—†×¹£úVA÷LÔÜ^ù a _D“/0V¸¤šMvEEʤ5®B8›Yöèp—^D‘—üKBg5âGjàAwÛ#·'Åøúí=¢±vÕæ´ÁKV“Ï(\øÐ>®QAͰÝ~REã%¤d´­c?cákOõ%ëø>Îȼ›œûF„ËGEéÈÆd£ØjîÉ"Ô ä¬Çþ˜¦N6>E‡Ät§’‘©HŒƒ—ʦ‹Õ1³c‚©.øˆóˆ’Þ‚!Ñ GÞ'j]_÷¨\`<,ªÜ>3¥ÑÉ,¾‡çëâý1Ä6Éè>£“øæ]OO¼ËNâH–\ƒj%ø¦h9Mþ5ù‚“ûnFÆ:iN쌊è’4‡ó(rÀWþëçÞ{ß²SäGRdŠSd§ÈN‘'+2£ œOIj¥ÌÙç·xïât&0¥+Û%â¯D£:¨Ÿab¸2³Ö®Öszðh9$Æ#Q·öÖªÓâqwÂ[*³Úåƒ"³âq¾ÑU ÇEEš“'ÃoHkJÂv6†Ò ´`Ã'Jm]vËôøI '­ƒ&oꆗˆÑHCœlôÚ]1´>Z‰©Fï\HŒƒŒÞ|{,/ÄNu?UûI‡:òæQµ£nÍtì:̰÷OŠ•Ð ¬qO¶Ãq›,‡”^C)Ó†#¬¸Æ£ÐNEäHƒ*Ò¢ .ð…ÐH"7Ec8’DPVÞÇabw|‚ÓZ ÁàS”Nñ¶Ö0’Õ¬À/t«_ZÒçCè4¾|Aþ‰gDF«Â-|ßÄß"7ü0ü9í¼1`ø‡ ½…WrËñ{ŸA(cêƒæC‡߃fÀööÍ¡¯›DÔ%±ÃÕ>¥*Q †(µÿ­[¡âm—ä)’PKd¸À¯pßI¡Y o‰äµÌ¢û) l `Fô` ¼z8 M–x‰ÒìÚÄiĹQY 1(A_^Õnßzø/¿XôþiDYÛwüL(›;þÖ;þGÛéóD}·ýÑhÍâbøš€üg{UŠwu§c–åç#ÖÑíÑn^Â6IXÕŒžbßÔ5ãƒÄÔQ±ÄNÄ+Òš1Õq˜icYNËövHA¼Êùœå£È_„^T¹-¸•ÑæmÖÌÍ($nÞpó†›7ܼñˆóF¼ ¹ÕçÜÝ–ÛN ôu³¼ áÂô“Øá`ÀÚóÆf×àùÉê^ï|­šÃa$Ò—q ¿Ãh1Ç#/•—:`À$èÄ@"Ë}(ñ ‚‚…yZ®n¶uI½?ü›.Àé]¾%\1v#"7޵Ãÿmã]ÝR×Éj;B…¥‚.J”xAz“ƒ»eµg[Rw?V‡©8ØÆ°ÁTÝ»/È}ÐR4|ÙÝQžÖr¿ÓeÒ̃BðÈgE”Ã>N°ità7D6vn¦½1Võòè™RVãξ¥¡P¯þÉ©êð;UÃ(”fÀxá\ ϽŒ¡ªá KZ¡Dw7?V‡9U5·q0Ï .Þ-©êïäYfçÏLó Æ &úöh‹›r@²[CN}LÁ2 RShPß2RÃÕz½»zëN–S¢Çý!£'"-§ž%¯$}r*®SRšªI Þ¥†¨¨Á G¡ý¡’®éÏi¿ø¿ÍX9½Ôß<Äßò–ž®ú–¾ š¹¥Ÿ7'­“¤µ2Tñ’áP;oÑÞÀA\–Ö{¡]”†#xfaËõöø^JëöBô¤Ò¢ >°¤ƒª¤=«Õv¤ŸÌ£Ô0l\Ý‹ ·„Ö…­ld¶H´{6ª¶j 0¹üë›}F119jUz$ò·<:€F«ªïâM/nßôâ²F÷š¼wßëÒº×ÅÝ÷ºhB~„Fœù«z«ñæë‚F_Ò†gÁÍiôjô}æï½Ðöhtê›V°ås`$9øTïmDÛÛ‚ÝhŸ÷ê6ÓM5{Íjê2Y³Ûvu­Ù, —¿½_æ¢óR4V\І¹A*EÞ&Ì`×CšrR5ÍÕìu·…¦ÏŒLûWMé'ß+'ÓqÈÛ8há¾‡Т—bw<*¾•Åyí ‰ü'¶õF-Û–9Ã<–EŒåÎÊòT@c¶*šfÚµ¤àG_‹ãRx£ Mû¼W¿^T§¨6;„Nªá4T‚¾Š¤¼®{"½Ñ´ØÓ*‡Ãd»·CnÒÆÓC ‚Êç¢ü#óÓ:ÛƒÛ7-]>i)Ó¸•™·¬S[GX„× ¡½YyÂáñ³µ‡êJ)¿œŸÈ/“…–ˆ8ÙÐ*F¸&℃€ © ¢h¢B‚ÀÐr®W”’Šâ~eÈ83îá‚3œ©Õf‡¢‹â´qÀ.)%T/Gª„Dü$›’V§ŠzÅ(ý‚Hˆ+Ûj ‹¦ÌÍ…ã¦*MGÖm}M‚Údµº3ß<¶³š¥{]ñF¡}Ã{<ÖYÃO iËU‹4:|–¦kXÔXP¨Ð]ƒ4BÿüxX¸Koêo,µƒ[^èËó%XZ.N°ÜSê7 xÈå}çûí›Ü9?íd¶^¯6§ÅÒx…ÃTûÐ×ÀÌÓ˜«Km"Ú"/5$zÏ;j(„©t¨¯Û±Ä?ôŠ@{©mEi(—ö2ó›2AË ?ŧ“ò­å³)DÛŠhË2öåîY@¸YàégºYÀÍn¸{`ËZПc*V»ßN· xÝp 7¸©à™ žjAÊÌÛÝ,ð’áf7 ¸YÀÍß~ðWìWoÈ>Ý£¨úíéù ¸ g””‡iýO¸ZIxšs ; ¾Ú³@ÏMë âtå±s°L¥£ôüžJØ/ÝœüB¨Cyôö°–Ù9+2©v° <R^ª~¬ ðHò0lÈ34$yöTöˆÿ>–?‚á}2["úÕQTÅÉô{1g†öRô±@“±RôýQÚ×]ž§ãè^vüÜØø¤Þ-7·•ŸÎÙÛB¯ÌO¤1²Ð7:²‚"Eâ n!4%q˜¸*¨Äš›Eв°#Í ö"\kŠÅ^,€‡ÜÜÍDj8'.nPÂN˺j.5cñˆx ×Þ.©q§oôÀËraÜCpÃXe3VRc\It‚»‹››³½y‡¾Ùácð6¿—ÃfZ_‚‹Q¯‡·ð$ì*ñ™ÁJÓ®CIŸû¡é€šTÓer ¨¾ØèýЙÉ¡QYÚõÅV½mÇã¶|®Xâ¼Îp „úúKhm¬±7n‚7œöËY&•Ÿ¼ü7 F*å{Jß ~GÞ™XýZ8y.`µ(´o Üô KÕ× †“Â0ÚhÇ©»M”¦¼_ öUqòþthþîÓ€ª]3W€êñÔŒZÌMÜ-_çç³,dq>—ßb¿ÏË$ï´GnÕ›~N*aÚÐø”<9°¤é¯ÒÖ¥ØÃ´€ßµàãͶ3p?kàóP4­K\S›“OVû}t§yZR; þ‘$þ¢é€šTz7|îW-úQ?#9@â7»ÒˆÏŠ•:¬Ìæ ;©-xÐôÀ+BŠ Æ4)ú^ŠxÔÔw”õ¨|Lø˜¡¾Ç]þóþõðÕéû`[À°7¿á"Àש/üÑ:×™¾ ˜vN×÷ÀÉû3‚通ÍAÓc¦÷ÕÿQü|äyçüp8l7å“Ù9[Ÿ y(;ËAã§`¼{—å=ð–‹dòb0{QßSy:¾ï¾ßañáÔŒ-Æàpœ¯¹ÆRǸJ)šÊf¶Š»ÖŠ’÷ê{g·§Ï€¦ƒé#¬÷6L}ÇÜÓGm÷ãnË÷êœÁ~Ç¢8qìØXÙî°q}\yߣ†´CwF¯iºÃ¦õ4à %ÁûÎÀû·‚«Ÿ÷Ÿwg'í&Lw'íÏŠ¦êĽåšù~òžÜ/ï}ÁÕh#Š„9yÌ3ÌÈR½… k¡Å›ÀKx‚ÂðúëO”wªCrêþt`: &UÊô ®9mÆ«û|äußtÑÒù"¬›ÍAšØ*n ç1ðÌ$½aU¬#­v„ÃæÀ”PæÌ¥°j$ù†÷d;¿G‚œNª‘ÜË«ä^¸|ýfz·Ë–8ŽŒB_B/ýÓ"’”¢Õº@JRªµ‰gú|A7Nœ¼“Ç‹qoÃ1Œs‰;y¼äh«óx{ã÷x°@á¼…&0Z®Ýnx™x^ôÒuÒ}ñFâ\ß)dà—fÄÅÀ"Ô ·G@¬%ÿšx·ŽôgëÏŒà¹ñÏ×Zƒÿ8(;ü&âwE컦ýüª‰a~ß’J˜”Sì7ÐL¾Øå*[©syP&Χü|>Ë7¨}õ—:©¾œ@ È*NŠ8¬Üz楋0Ô›4Çfùô1N.°[]y„,’Nék¼~Uï¢ÁÚY ƒ…׋ì,¼e° IÉ`öÒ€×vЏ¼4à÷)Š ‘»… À,KAòSG› ·1ð%I?ð²$¬ áhŽõ/ÜܨÚH7—‘µ4`‘ñüà>£W ›hrv„f»&g/”}&çS£é€”%öW€º´8¸¨ lRd´4²\ÈS&ßån{^¿oJiOÁóãyÐÖ×µm%Ö3(bp,.b¬¤…úYk„¨üe‰{‡´¤Ýç_Wlï¤ýÇÐ"_ð[Ö©¶Í”+:;®…¹XLÓ’w55ê“v;ß2j¯œb<0š¨I@5ź¨~a¿¨ VL»"×™–»ýyÏ÷ªÚ ³éC°Ú°ß!5'\6¥ÝÏ>Xí~åù‰PÚÜa/\¢´Öbév»¤„z'í#NÚ$4PNÚ¿‡´'_òŒŸœ´·¢F=C$TÇ ³Ó'¥!Säø„K‚þ§gÌø–ötÑnæî¤ý™Ðt@Mê¢?¾ TWÛGKûŒä *©õ>“«=çÇòÍ{õÎef¤¥E¢š-‹ o…kKùÖ‚ª‘Í;§ ùAä¡´‡i>>1gµ1”޵£ïM_9~Qx»Â*çv14\¦^Íaµ×=œ´?š¨Ù¬ö^ë¼ ”~e¼Õ>9@Ú+¹;ïei¬ïÔÛñ ¯Ea[í~XD9[’¯=lûÚK OšF;ÚêP凕«=ê({¼ñ‹hå”ý¦õ !””‡ÐSþ¦¯ Ç g|Le˜Ãh·J_°?˜¨ @5lô> .éý >‚䎑ïg*z}ßr}ØÉʃ½áýÂgÔžå‘×qÆ„¨ëÔ>Vò¸ÍC‹*`—Omë:[mÃßNíœ.óMS’kÚóh|Bd‰¢iŠĘE5ÀHR½‚ÁQ°’¸tËS©¿<§l% /ÛpôÁÅEdj§ñhŒO LXEÞŠz×$“\ƒhH&ˆ£øÅ°ðA’q“»¥èË^s΢³MRšÞÍÅ.ðüpÙƒíÈ8©•>Ï^ÂØØíýõ®wæìª1ŽF2n ù³n}û#ê°š„UÓÓÅê–i?¾å|AßJ¾:…½¶ÈjÃ÷§óÖ˜ Ÿ‰ë4DU5+z¿¸Ä_õDàõ×â¿én#âÄãIuXÍ窿ú§+šîvÕÏJ̵)¯ÇýáTœŠ*-zÚZdW»êÜK$?†-bííºK©Kozêø%xêCì]J¿ìî(Â#Òtâ.(˪ŸÁ %Õâ1è±Ã¸;\ŸÇ¢wAÙ§Ôa5—§¾«Ú?Ò¤Ÿ›"è©ß«ƒÜB¶|Î÷™:¼öªjo.LyÖ·kTi¸Ã>QM½—`f¥]-ÛýÍj×M².~ݨýÍh 3„ñÑYRðplô›…& òSé,+&Ä¿ÎõÂaÊŒ¶žSçô~X3¡_ÌH< ¤hçœR9&±"E­ÎIDhü4 (¤=®©º± ׿ÃZ\×”]êT4ø.˜çÆ›®Ó ‡¿(⥉Όˆ³¿òË kS6—†0̇‘uÂkHýÜßæêAÁúºúlü¼a }–Mèo¥Ï³½uîóuFãÅnc6  ƒTbq£ÛØ}60XÂÛ¿Ã`QV[Y¬‹\7úJ}ÜQÛÿfçmø7Ô;x3x¥Úf›¶çÆ ½a#n¦·ûõ¿K³©73?"J’Lrp½°R¯}Ø 7¯Ô:b‹x·´:@Lº`¥NÆ1dÙP#1^‹õ&‰7Ù¼b1cNù¼-ª1 „ñØl îÝ&å«ÖÄ“¼i`èÛ&vÂHJ=CKÑ¡ &ÉJ>œxßI¬k\l•˜#:áM¤©ÄÀåÄúÄ7å!Ö÷Û#Ö‰Q[TYÐäÈתm 5<1hŸt¸VåU³¥9-X˜£¸û-eN¯)ó’”9ê(³/¬N™?îfWN™ŸG™{ÀrÊì”ù.eöÑ0Oç‘çÕçätü/‡Ð]Ü¥ì½õÕUÎ ‹sBßanzEžº~yV—ïøATS×¼ŸpFEËí&1î ÚUyþ‰úí¦ïð蕈™à¢Þ­!›SêY”ˆó)õ `I©7¯–R/QlAˆSÕ¥ÑßàSŒòkنǾÖ]ÿk€£×9*˜—G•4‡ME^v™²I»!ɱ<¾å¿-äIUäc(Ñ”qjÒ­­É%o“‹ ¡ƒ*8ºHUYwíÇ¿j1ó œRý·6œDR¨ 4`”郧ä¨âýà%é $bñþ|l-QŸz¸ŒÜí‚<n“i˜Xñ? ;*8¾$$ä(Ü›â5™‡}9g˜²{ø‹sæÓÞÓ‘Uœøc=?–B“½ùtÉ~݈ÇsøÛqC$Ñ"’4D½ü AIìh©>òˆ>òHZ*ŒgK¬|¥•qï®)x]—8ƒqhä Ç<Z à 7œöZ ”Š–G&{§Z@cÄJ==ãXÒDÝQfs½‡‘Ë7n£ÁصE`&Í o yUžP·]‘œK¯/$ìõdv(³´¸×æþ‚]ÎÅj·;WÙ{±/v¯çüÌÑFccž‡V˜1ÒÖyh<*ñ˜À‘ <éégƒ¥>ºP`͘9.a)7ËŽ}áë/µO…kr««È`fÓ†°´ÖÉfýÎj~ÜÎxð®á$–HbÑãE•(¯‚ë+Å5ªqDà‡SοN¥‡Ú1@‹>dc+KIÞ2ìqù©~ád½°þÂþçT¨ù0mZ”£êÁu³Él³I/V×3õŸûÓç¤îi·Û y.ÿf…”‡“äû|ïói‘ê $az‰R“Þ³BéßBßšPjW|BM¾btü oßo5(牤µæHq3UjõëdC“m(­EÇëëÍ–ñsÆ|œ½ÉÖoAU)h-©/ £è#1‘”x¥ãEø¨´òæ¢ãz§= ¨ÃjVfac5hj0>¤‘½¾æ¤õúR°ÁÆz³ßö«L®VÙ¹Èì^_~ä – Q Ø£†Ö'‹0hµú‚keE1VÔ‡¼òtÆÌ¹—>ÀÁ{©Ççu/MÔ ýî^ºI÷’zz÷’|ßœ¼ÞX—¨& ôªŠÙrh «Z*г-6óžà–"6cð‰(Dë7NwT«N[*Ô1­ $VHŒKDü¤#]MÕ]B }äØÈpØÓ5æbdXز3œ>Ù™(#;7àº*;‹˜Cc–S¨†1æïCc4ÌèÙ‘gjí²9·¢À¸]’µ¶Kаü3ê©þ„À0toôKK= úvKY¶ÜŒYñ;YyØRÿU,¦ç‹ÙD–s¨ìt~÷õ¼9•Ae[hØ.“Ñ*{Ìh/çïïï»ãáPh•ÅvZ"ƒ„›è‚ØF‹–A[Þ¦ÐD+Aç÷E­õ?«ô¬œAûÃi­»»Ö> ¬µÚ¢ý™6›¨XM”Y®©£zdVð{èÂ[t ™Å~œÜ^ý2+o±/ذO|%²ëüRøý«Ö5 /™Ò×.Ÿš&³þ ‹æ•Ù‹è´n칪oì«x™û¹ s2;AfÑ,}è ­²ãdv Ì¥Ì\EùìyµÊO;ÙØ×¾^¶ÏlhÊ.YPyo}p —|²Ô¯Põ%eŠ”"œIé~()mñéçq»~6dŽë]›±ÏlŠÉèéÂOi£ÏR´ƒn2ú–ï“ÂÙÆC8§Ðí5Nx°¾6üC¸ü§ëйD÷‹¶]D™?9#ù!±shÌ`$[¡¿­ßp#ùn˜A½³ã®¼èîZìå¾híÏ¡,¡3›Þßÿv6èÁ$RvCe—E6¯± ã¯W‚lNvm²(*¬³Ss8MÍsƒAlE+#{ªewÝ‘];á+æ/"óâîïo™SÛ9Ô¶‹ªëÝhŒ†];yÆ]ÑÖ«óú}SªmiÚnýÄ#¿D)·hæú¥™ «Zmã…•Wù%–¥Ö¢_¢4oL\¿µGΗ×âÐì¨-([‰fü…ÐäHøº\ÒwG!Uè+蕯Òy7JT N£ hEKXpŸËS©TÌš“®­y!@)D5YaŠ ´¼¼ NWM+lì¶@ZOiS†-oͼä®ÂÙ¯DpÃÑYçš—K¼Üq^ßð%f`»¶%vÌöô÷RÝÑ3BS ÅuŒ~þ»žÏÓ·F€ß‹€|dÈpµÀ,†qÕëCàùYß9úöšEÑàð‹‚ê¿øæñTÖ+ˆà1 ëvž š;nçç€É ê4‹”¢a²ò¡âW70„mY¤àA}?rU¬Nçu¶ƒ hÿ+ÃÀ·ªx‰‰{QÇ;ZÜ•¿ÅæuìŒç›N¦xd€A1PWêƒ-LÁ\-¨Ki`j¬Ã–&Ç-×CIf «p7Ýp-¢ Y ~YW'§ÉN“&;Mvšüšò/ùû7óÜN¦ÝwöÜ Šyh&!›Ôýy0}šÜéMêá{Ãä@íiÐLIg‰—:îò´©ú‹bˆd4% õópÙÍ¥ï‘ô"¬áe´Y¸–Ížœ.rædóG ÆsqVå‚.#˜Ód³4eë~û¾Î墇ÓÒÇÁÎ!0Õ‰kýzïBà.8щ+wÙy¯¸ÖRØš•ùKrj¥°|„AI™¥§,X´Üµå3å‘ ¦PÕA°RP—ÝÊ| ¨Üâ ¿(¨ê:IdEA$á¶ êB<¾Kz¢—ô©€HÐ_…uÏÈ[D‡„L›Df¤„"nÝC ))·žRðŠªT©lJÀ%ä;ÔIZWiß¹÷ƒÒ¹sg€¦qç^ƨïÎ}L˜œvΠ“ {2ÖP8©ËA^¬óúýXjgµÎÇõ»§ bÛGà³O¡.K'éa©#gön®Ñ§6Ž áG}„_>AÙ a)Êhí&El|rI$ôi¶VGº­BY#Ûw‰ÍÏÀü¡â!jõ®I7Çß~[ Vê”tJý=”ú~PœR;¥þý(u?¹HÇ›èü wþ‰ÁÜSô™Ä.$\û ¹Øzò§ú±oÇÎÝûPð9&!`'—Ióû(wï08A¼jÿ.\j(ª—,Êã ÙdU+±´jø[þϰݯÏ:édVƒüõ]„ i™Xô€ìbn †∣5")p£Åu¾œ¢éˆVÍœ<:\sNƒ/@™Œ&‡!¬I¡‡ã®`:!X 2IUM|·"‹ŠÎ€¸#„þ4,ž©Å¨ŒÎ!¥•ž;‘ð¯ ëKgTÛq¸h¼´ôôóœþÇ•  ¾æ8‘J1}aÚË;Ð |=¸‹&ø³õgF0õí} ÒŸ©Âé‰QuÈÜŒÖÞfoÞ‹Lãˆ1š<~Xšî²íú,ŠBb_'­Ù)m¦ ÷潖nÇKl´K:†ÂéÐHú.„å“iTé¶´t;Þxýº­ðK7t[^'ð©"—i„Â-BÑ4ÝC(ÙC(ÜM¹©ÛxUtJB2Tªi`óH5yÄmi7 ÍëCxÄ1ÎJ££8~¢ ÀUçÃáÂk71„qºmJ‚Û²^Ä©¥÷BÕÖ™`³tàxZž¿KÈ8…‚Œ%Ϩh…LÞ–ð‘Vóø±ìMòóêX(Øwiu|¥.;Ø@‡’Ú<«‹Žq|0ô„¦ ¥Ài 5xh_¦Øœ†~4rã ´è˜ßFïZR3ˆCvžr*@ÇÌa•éber9„Ô¢œ b=Ô–}-âNžñ3°åEße%)—ˆ;p&PFLDKL„5¨–’ˆaJ"G(‰¸N¥)¼=oä_~9°è%øSû‰ÿs­ÓÚ¤¹¢ f[‘f¶¡H—áµçŠçDØÍ³Ì¶ÍþásÅð÷Íd͓ܞ/*¡§hXMK=IÄ0A$z61•‚i{ŠÀóatîj~ãÆÜ=á[“ èß¹6;Dë”}9WÌåÓfaÑÖ´©EDÝ#"äþ¾0;ˆk³CÛάµƒµ3e' CyÕкNèÁéNíoCuYû'ÁÖ£ý}à]['<~NûŸlpü× (Ù‘¥ý¾–|KÚë) ÑÕ05ÁÔÀL,¬æ}3°*ûMÖ a–nŠ77+|wUq³Âsãçf7+ü0³B,×êý7+|wUq³Âsãçf7+ü0³B´öÖ›å|‘f^ÚÄ!Ë&‰åUyé/ˆ›ñ…¶ªTܵ¼Ï꺪ôå’Ô´‚æµêEš‡.ÂwwP¡‰`[’fB³9Y\ÄôÚdñ°ºÉb¦É®PgG|Ìd1 ~š,VƒÐULU3F¢ç¶üÖq+èìéyÅÌþò[MX}ùr•ÃS<#ioÒõpU¾ê§k¶Jä|<Ò®M“kú’¡½W¢ÓšÇÄÏ!3Ã,ÐŒ5ŒAfø±¯Ö«ÜªíZû÷·sÕËE·Þö¡clks‚[ÂìSàûn 3ëÙ#ükøyÆüІƒ@5w%\²Úog]öh^ÜöhúP½Ü%_\Þ3ç‡6¡ºìË™[/ç^óü9ðsÂüd¾œûà¯|9Ûëæy_¾e—·r~,ç Yä©mÚ܇·XVºñÍo¥§î¿~ÄdÐ[,ÐË]Þ§*rìd z×ú²“@(ûÄD ]ëOK6—5Ü,Ûý“Á“âç&ƒg™ FÁ?ÔWÃì 4!7ÿ…$РrÓxæ7_gÚ5ÃèM×6fÚ™Ås“…¿ü–Qq¸0Œæ†Ñ’ê¤q %'ˆIp9¾KtôDh: <)¡¨£‰"æ…QŠè­R/¨°¯¶4ñtšÂøñJßVBw?Óq–Hó—f.€‰w¤ˆëø˜˜Ë‰´Êb.Þ™æ-(© æÒô¨#’Ê͵¯n¬°’úI6Znó{ÖìÅ·6•„F ~µ—ï5¤,íVS{fÎhÏ øH{žAÎ4pÊsÐppæ"4âÍÔ¾(ÎÙùx’Åùp^Ëuv/NL-‚<ÀRßrø­’‰¿`¦“yµÝ/´h` ÊþÆ¥P§å!´ÛoÝ¡Áç›õkä„z“ÀnêqÏ‘ˆã$µ`¢˜Ó…ºò±;~t8“À¡6 —Ài›ðùàÌEÐiØ'x}*ʧLfò¬u:‚ (’‚å>4Õ a§`»ÖªÔéR©«uú›êÀ¶ìåK¥`‡êtÐÙ•=’¿f_^N½Íõš\xm ¤až¦éYCÍ ¦ëôOÕCgZ?–œ‰’Ý•å8}¯’ì)$@ÉÞ‡lRµ?ï÷|[I6–Çz´9qC¿i[/¡»-ÚT›â6A`]'¨ÚIǺNÖKö–8Õx§+DQûØèä[ƒ'à{á%ã«J‰¬ëòqìÌëgAÐ3—VÛàôH8ü¹œ¹H€Z½ßÈ#Ûî°;×–y Ïâºý!+ í0iJu)ÈASª¡ãqïuè£RûûÚ_íߣ7§ÔèQE ÐæÎÄkô ‘»‹‚\˜=ƒRÛ½9¥~t8³ZÕMpZ/Þ Î\$Àã‡5?¾ŸvÇÌöül+5ƒ êɨöŠ0mêtŒÍ)&µ~; cgJ°¹Û:Ͳ¯_ÞvN§‡ ?¾#Çй$qŤo½jú…¡Qñ E¯Û¡ÝIÁc"èÀ™U§»à4uú>pæ"è4—E&ç³,äá´?lì­>Kr–’NyR³¥†È¢¥ÔaÏ^ŸYôuí”z•ô%ã0 Z> Ì6ÅD#I“.]·’z†ž¨Ôá KœR? ‚œ)à\ðqä”,¨Á±}#•z" @©»=ßï÷«\Õa½“v!_ÚÑ9cäûÛ¾?†:Éz ЃÍ;¢Ê÷u•z»^ò“Sê!T4+½Û «äxRÇ%0Ό˨ñ¾àÅ÷ïãYtàLç’L_'§F¿wù>¦’€¼Ô;¾+ru>Ÿ³rA$ù>Ú¡ŽR@RØìÙkêt¸ u€2Mîé Dw‰_Oõ†fXQ‰_€F@rB‹ñ ÉhzR¸·&.`\pèeÍDEç"Œ½™fB¡Ì„¨§8¼ÂSQ§ø)”f"Nü@b!añpj·€¹8Ä*À HFeJxì^oRØßA rœVqnQ"5+V!ðlÊ ËP)‹~˜õ\ZÌ‘‘åè…¥F—£—È6¤êî6ׇî£Ñø4Dà›cU‰ÀCÂUº˜2ê¢uú–=£Îќӣ.ïu>稫žQçƒF]öŒzNs„ÖG4‡ÙÀ×a[”C˜3uÜ®O Ü´-ÑÝ9L'¦ÿ‡Ç!´ïHÓ»#Hèvð0íœÀÕì3ÐØ€º‡T€s aϯ*ÂCt7³ƒ¥ma`ìakûá‰ì°À¨eM¢jþ}ö0¿4yWM‚p´´É/‘V¸DšÖ„­ÇލUMØœfmŽÍÞˆD4U!àH¡®=̹5O“{Ï­Ð2Ⱦó´¸Ç8kx"ÔÙî­8œE!e!Î71T«è–¤ð©B#4Ëã–­í-Úåâqy$¶ÒÓ¾çÒÖî v°Êß—¹ì¡v†Y…e»9¯2±bEÞYÛj{íôúñ!tðÌfjçýðØL2µ'Límqȶ;h¤' ¹®ôZ7:sßtøòpÙ”lß$6[z‹„ò§}ò„ÑŽ×Iöõ ¦û£#R"(lM<“‘WC#‚†œh%íHt+":á= Â@ Ú^㔎I險ðùB3X`GAÅž Ž8Þˆ‚ŠJ©¥¸öÄÐĬùJ‘­8Qã„;!žÅâ^ï,ýÉ<®ÂŠÐ©ÉkéùEÆ0Ñh ‚1¨t›ÐÒÅÿPè:¨&Au¡$†¬óTóØå³¤¤Àëq£ö‡l¿}?ç§<“;ÝJûœÅ¦³“m©§(í­4¨£ –ÔQT?ôü>KÿꯖNô‡qRttþBƒ\ÂÝiôû5®ÉÙ Ûˆ¾ÕüÚiþ‚{IHPªÅý2Py`,PDÐûLU—lUdÅÎÖ{´óý"ðÌvƒÌ@HL²_ÚøAËØJÙÇœ÷5ٱ׊…~Î×Ç“ý¡Ê€'ÒUUøá¢Š¢pÊk’ÕªÏò¶~»2p3Àâì šch©üE¨¦§ƒÏOœÞ³ÕNíuÉå™Ëö,À¢"ÌýÄ”^FiCþÙR[ýuéeŒÆ>冇ÊÔ±ú™Xæïï Í@)4æÀAÙ'ÿ84äŸ8÷¤ò/Ð/)°ábÐ… g©°—äè¬Cé˜nMþÐÙå¿ÝXÿi£ØQ’û€¼®$£A}(%ù¦è:ÑŸÕe?Ïìíö'úóD¿ÝûƒÊVU6Íq}ÔÙ4 òf ¡Ý÷pSKÿk´ÔXª›\4!DqÁâÆ:àŠ˜BÓêr&°ÓY9?D N ,éñíCõ¹¦¨œkI$z¾ÌIaq΢hUeÍ ´ÔÂsªšâÚœ **"»T·ô„p‚–v)Ðn¨(5žæ»è»ˆ.™>¦Z!âh’‘€+¶)„¡¢8'¹Ù÷Ó…m¼² r e™ņ²\Æòš²<)œn? È~˿ݭ}3íybÜ$07A`«ã¬Tüw. ¹Ygë“äç“Ì6r—qª}J|]ëdö«ƒj»cýJµÿ±ù?6[û)NÕ UDE´r¨Ëª †ìã~ž.–Š¢‚Ey¤Ïg®/ÖôRN!¬ÕìÅO0龜z`z!‡S¹ ¡éEZ;Häo‡ÂM/§Gnzù¡àtÓ‹›^~ÓKôåîrÐæ=Å$=e²‰q*ðÚ¹ŽÐQ„Y(Èœ¼¿Ä.Žýœà:¨&A“FªËsÏ\¹K³Z|w.Ê?Y9Ýìe¶UíÜ%¹,ü˹Ká‚* ¬*ÝDÒlJן»Äøù˜áö¡\³õSs¾6ტO ëN7“Úz“šq4ˆø˜À‘g\ZtR†^Ú~”&ÿ FURÛ <.…N¢”ž«IüaDa—VE4!báes=ñkºqÂsÌnø ´ý-¤¼DYÑ‚î%I_¿¬E7ý¬¶3$ÂÅl©›Ž #0·Íð Þ˯wÁñ_¢ºÊ hï¡q *¸Í§¡¥µbVÌ* ºjÔ³ãçÀ™NK­/‚ …»Á™‹%Ê›B2Û›ì£UnöÐXÚ~ýR±¥ØŠŒ’–ý~ƒE°,_èl ‘nNÇó“è4¦‰Y #²@PB–Ð=#ÒÜ”˜p4·nëôºÖi³Ù‘´[ý>‘ð‡Ó‚Ñþp:ýxØ\w𠓧†ÌîáØÌuƒLÞw»·×¢ØóƒÚN»íN)#ÓA›ÒazhRD0Îìʾ6b„ºÙB%ÖÐh¡ÔèRFƒ0E±Ž;]ÙÓuü<‡X?†QKQ<×Tx¥z>–äÞ33<å _Ù¬b5¡Äp£:zaÕ~G <— <žáö¡:pfPë^pZæöpæ"ʵ<ÈsiOg;~ØK¾:¯ß7F®½z,Ë"ò6u•¸ ™ö"Üè™:,`73(çZÝ}WÌ}™~ ›¿¹Y-‘3›ä- ’{²òÑ÷}t·¥{BçÇãÙm  g£ú28Í0éàÌEt~ì÷fGºBÊóÙv~@+tRÝžcì¬Ðêweà½Â…º»Ïs ØoÙÕ›ÿq„úAìiAÿá’ˆb:¾Dó4¾ "6X>;Ýž¶{—9{úÑtàÌçýèé[Ö0©'ÙÓSH€öôoÖEQœÎ®Þö {šÁ>GOô‹ ã§öMIí¨ö1“$&£:0ZÝ2ª£õyµsFõlÒ_cP~ÈKçeŠTŒ7ªíâ'gT?:€œ©àtS@.€S¹®ÇÕ“H€Z½/¶ûâ`Ê™J»ŒêÀc´×sœcL1ò æåak£x‘b·†Zíëíža¿:(a-Íit€°Žaí^±ßÒçëÇ0¬98^‘2ë'“ôCK+Ž“1Ök´ÞìzÑ'ëdzÝ>@ÎŒbݧ!ãS< “H@bÍ·r·;­åj^ò€h±sš¥| ÐX2h‰u€½%C2¬/9A"yˆ¿lVßÃ&\q.úý\)æ³moµs‚<:€œ¹´ú 83'‘µz³Îµ·ú|^™ "iµ·4­aºaÅtÑÖiH‰M_˜KQÅøKÁòósèôc8@°÷µìG`«I\™®Óݨâêôã­±?@ÎÎê~pæLþ˜DŒ*:ªxPïíä¨Àví]•î)ÂÞÎ ÐìË2½aËåÊÉô`"ÁC¨÷ÑÓ•P½9~üBûÎÅYL‡/Œ™&áKøÄ^‡…ÅÒ3 œŽ¿ºÎ\^i$ÅVÇC¶)²s‘Ÿ÷¯Ç"3y )Á°Ky ¬j¹›šjE¬‚ñ`ãèk‰ >O> 'Úr£;Ñv¢íÀq¢}C´³·à··çíÇp\ AmèÛöy½à“æpˆ8ÇõóèÀ™Ã!rÍw=Cd (ÍúpÜiÏõ{Ñtˆ0×ýõ0¥LÇ­Ô=ˆ0‹ˆjÌ›.«{m¶Ü¿>‰Kä‡êŠKN¨ŸÀ ?‡ÍÃêô÷‘éÐÿIJå8©fM©Ž6¯ë¯®Â| ›c\]].zâ&9ÓÙÔ' g<8Vñ:8mêÉ$€ž®{©ÎU2ˆ%Öƒ µ§»6Qw½X.bƒÕk¹ éöK$„“é¡“¾¢f’ý™óð¥mJìÞŧù«ý¡æ±”àÃtàL]Ï—Àiù¯G€3 À¦ÞåÛcù§<6?¼gǪ½dêy vï‰L#ÔÈkHuhê³wu‹1¤WSQ HµßñR³l½}¥f¼ý ƒ¯×¤—¼@/Ù+Õã‚D,ÞO,ÙO,ŽÄR8Rˆ¼DRÐ$‚SÁE©V]2É™ÄYyÙˆ»¢뛎qŒ”õWÞÓk×Vk?îKÝ«û\_T„‰iE˜8K®!ØU„gÑÁ3ž† ¤ &ކgF"€q½ÝïY×ÅÆî_­ëÍKÙ†v{AX>ŠlGHI|í¾¨>¶)e<"Q)ÛÐw/nYØþçßâôª 8ÙnRŠcøX’ß Ôó4üŵ~_%ç”í[Û-;…xP8<“ái'†Ì ÏŒD ?ðÃ,ï=ço•€ëºF؇ÆÈA’æQØðháµÊell”¢®]$ÁbÙpþ[rØ:¿ëއ·õ‡*`A¥ÔÅ™Z9»ûQtá#AtðÌ!ÛàÉë—f°»§d{£}Ú»ÜÚ7F—8†…¯e›¸íX4”ÛYÛÂÝSKñÆdà£p³ŽpGëmš¥N¸‡“ gd}ÉòbüB✵Ãäñ”ácAtðÌè0¹\˜n0Z¸§„ûmW¼KŽ<ÉUÓa‚¹#èçŽ 6ó±#HI{RGHƒ;&ÝŽ:ÂnÏêËf p;ÝÆ`Œ" H|IòÎ6Arš£{Ý£Û=›Ñ…§ ßC'ÛóÉöxhG™éööT" ½­ŽE¦·þ’–½]×[?ö¨¯ˆ1ºÃRÅ£Rº•%Ý€¬*iPº=²´Éäg7lkÐ1¹åò‹÷êLî;n{Œ3cL_Ö!é†KLÌ£l;»}g|?œž¹Tü2>Æ×#ý$ƒß|¦ÉýÓÓ¥˜E’ë]’<´a¬¶‚KC×_àæâØð¶@Ÿ/x{Slb „qùK˜Â¸åv8.ߎ Ù¸Ñï0‚o©/7w¶àää¾H3Õ¤=–j+ŽlÜÓ†`”$c«/Ýæ‚–!õ Í[ì‚·Ê6»äôZ^Qߟª‡Á=Büóe|nªÂ=B<\æ„7@kªÂCáæ„ø…Zì' ¨Ø9ÎHª‘f¥9´Ä7-…7°~/ųTâ¸ü‘h™I’AŸñzæ–ãÁ]!öïbÿóö´?;!vBì„Ø ±âo,ÄÒr ‹ÃÛŽ„Xö²n&!V£îlQ 1·ïi›`J¶…Xvnhqõ†–ŠØÅ/ßÐꃄØÎ-«%·‰‘Ü©À˜ûÿ<Íûÿ¡r’;RriÈk‡î}’{°…86$%•Ù’›6äÄt©ý (µ-³,°5œqå ÐRë•R›bÑs-–èoEጵÀá¿I)r¨tØœžOnøiFdâ‰r7tp¹'l¥‚ðzB!¡aÐ\ò§Ûõæ5þHíã§}Òiß »q&.k_§}NûîÐ>Ð7[û|2¿ö1î¯+{•MË(à ©1’†«ø °ˆFMå¬ß,4-”Ñ>iŒŽtDY*(3xZfuÆPM¯ý¸)U–UÁ2. a4…þ|MPiýÑÆ›†prü4ŽŸŽ1mE~4sIðÒb€j%‹ÍR\ÏöeÒAB3f¤‹@vº ),º¨ž%yð¦-(Š&îÖq,ºFãÕ¸çÃN‹æ-éâŸD‡Ï|¬zÚ~|¬<­qøÌHÈ×:œV™N•Ý­¤:ŸÎël§Ë 7Ò­ÞKÁ:ÝÊX£,Ìl®SËÉ%îFÍQЪÄo¿üâ9ÑÄ'©‡Þ‰ÉSJ§%‘…"©Þ„s‚}>ÑNf?†ŸIø´4»…O#·v¢fO§h¶<Ê ÉåQœÖ«¢¨5;ª4›õjöÒ”•EU›`lèoƒ}l.Jöêð¯—hÆ-ɆcòǤ2« ú¶˜^,01W´¼SœŠï¤¨¦?.ZtWôšâ*Êp‰oÈ%ÕÇ%eqI4–YB“ _£ëÇE¦Ò+.‰ ÓbKb ¢±A}pŃÑë(øƒêþÀÍF W€²ô` V=˜·êœ×¼¤φ¡Ãg>­r‡&>íjˆ1øÌHÐk¾‘ÇC¶Ý)ù&ÕQfU럺H&9‹¨'pÄš6vhºÝø¾îl‘.  4N¡å{§BÄÅÒ öCÜìN°ŸC‡ììhûz\åã žáÀaÃï ”p@—4H5\°QòÒµy4 ä/i¼÷D,nˆ…1 ª´ÆÏ2ÄÒI>˜-„ÿëò?ä“¡)\¹ŠaÈ*ÁõT̨Ȅ\úö0 ½äÃ+’Â^­uÈ„ËO\"éB*}Wâ JѲ‹ e–žwëtø„V‹² [@ÜÞKã1j Á\xYBp 8úЧÅîq`éêóÀb„¹K[›!m”,Ôøøú -tNg¾+6;ST˜R9È#‹–Ô “Òî±®,®<@³¶l)³‡]Ì(:†Í¥ƒdÙSYœÊpŸ_eØG+ó@J}we¦H.è’¤öca€Ö°rQÛÊÌênìä£vðØ9X¦ÀÒ’Þ,µSz¼Gz4ð ÌbµS ÷¬Û­eå…f”ëR{3Y͆’1˜É©UgœRjoi%G¤ÅjqØõCgŸ÷ùÖYɦtNPÜ’Vœxf~¥ä¾Y´ØÞWôÁ´ø)­äÂîq`yF-ny1šÛŠÖ΋ Z<xlzv(v¹–«õa·ÑZÜc%ÃV°“($uøii0Û æHKsm&§Øˆv @ÎQ›ƒŽ6G’¢Å1ÞÔf ¿"'¾Ì+R©Z›•Å%y]›IVD’=D¢Fú‰dNƒ0 t:á‚HÇ¡%7ù&‚|x’04 #Ìê:‘TŸ6ûZ›}ÿŠ6óŽŒÇh&hãÕ‹ÀõŠÀó`w §ÍìdzÜÓu Ù°¡Ghóà±íz‘ÏYQðs)чR›×`'WUrK]gÇ<ªef_O¿¨Ûù_}S\G-‚0…ÚÇj:ß¼3¢Ö–I¾4gˆÚÖ°º1±ÜÒ”ý¢²§e7é! G*»pÊþðÊ~#§ìNٲ߯ìX@Í[Ý£5Ë÷bwàÀtl}Û‰Ûù£0¬4²@C8DhúÂY5-EEK Hâi¯2²‘¤É€ÌÑ\º-"Û©¢B¨nª¨}‘lÕ`#Å/¾¤ïBú\2ˆIÉÂ?h%ƒ\„âçžlÞ;аcFdlº‚ÏÏC³y¿/Dnø' ?Ǩ! ?éò}Ã?ÈR_Š¥4éÔ1öé,bl9Áü"ÊC«Â0=ŒP'Ój/O³4ìèÂE¥‹¸§Ãp(µÓÉÁ,À/¥ýWð}Ñ(©"¿˜¨ƒ&þKÁ`c³M8½_lФOGí\ØéèÃCèà™AgÛ¹s©ŠOÒâ“9§æº¿j>×0³Æ@IÆYFDQwýF…'âM>É6Ÿz[l6%{iI6»†ÞËãáêhÂ<ÐÕšpÀkšðL:Íž¤ÙU²âCƒØUñJFû4»ƒOŸ»c*`iøúÈJÇýzUjö†DÛ4fb¦KSTý<=íz6ÛÄÔ¢3¤n̺e²öUWÛŽàÉãn·tL­œÀGåäˆñ±h ;4ÛD ý<›…è!nõ”R`ˆ…èñ"š>}¾7k7A<ˆ¸¸ âù1t„› ~  BøÁ—ØMßZ\zµE¸ â™0|q„› q‚€m ·Ëq“„×3IÄ_rqX¹IâA,P7I„ž©ðTÚÜ€Ç<9ž‰€ù êÀÐ_æ úV>h³«Lì·¶H[W–2¥`³Ž`û">gN°‡ÓIá™ð4¢ª7ÎÝÜ ö+‡Bèà™M°ó~xZ~˜ ‚=”À(Î[õv<ȣܶ;-Xîû¦Yn¶7w‹[’½Ä¾Œ>*64Ë]Â^Å^½zŸ¯òÌ)v²n÷'Å/S=Q£ŽÏob³ùåÀ¢ö§ò‰Ÿì'þyÂiúsìà™ßOÇ>¯>™ é¼X½ò Ræ #<¢èË<é5ÁCØ~¢éèö°ë.lã_±ÁC¡^¿~qŠ>Ü€ƒ½¾ :ÞˆÖàH(5·§» uzýà:xæ±Áûà™ÑÓ=ÈÏ碧sÑôt§´Ugiƒ{¼ÜqÇk{u†`‚³k^îì´úõ«ìáw;ͽp©8\€ž¤å—âr~<~‰^?‚žyô:7½ž°¯'õúíø¶zß³×mÖçäŽsÈ éõqƒ%ÝvrS#„¤c_¿Yr½-6ée–9µ¶×ÒB÷ åêBÿNPëõøD’§¡“ëIðØÞí ðÌd^O&ºCòýÙ¤’–\GŸØÖq» °¬}pŠLÛØÊÎÿ#¯HXyE(YZÚ`c—*ž.{lìd³üu:{¸…&à=øe9á #}<á÷ùmlÿÅ×mÒý:xf³±Ñû¡áù{È'²Ú—oÚnö›n" ó ŸåË^›ù:ñ¯n+F²æö#;üœï¾zN¯ïYQK MÀKðJ™ W ×Á‹kùD:xæÓë€gF"ODîå9[Ÿ Ù“ø—ù°{ôÚ[´}"KlöåýÕrÈ4 ßÉ52HâV!H1áäúqåzX¿=prýÐðürÄŸBª»üä…ªK?Œ>H¿ýÕÛ×/WôÛYÛßT¾;>íÁòí\Ú€ “o'ßÚ¥ø†4’ d«ÉNµ6‰‘ì=Ú}’}tfr;ÍÖ@ÃçVÑ ø+„‰^(çÑ~dQøPÓ–*ѽ¨¨=•÷) ÞS‘ÙŒûI¦Q•~MA«ªÈ3‡†æøØ4¸2Ý©t§òÃòQ–“²þ=”ªŠbåeŒ3Cé™!\6[S…üWy88K~¸¨ht¥“ü͘¡ÒÁÓà >;ãRëBì|H_ú0tðÌå~éÇš+æ1å'AÍ¿Ÿ‹¢8y‘wLù¨ðs¶4¦|‚OÆkÈvÒÞù΋±j' ªÊ(ìÚó~楧³Síá·|…/ZÁ˜¤LYí„×ÙY÷ûÓýH %Њ0­®ƒjɰÕò/ň-¢O:NÑ"L[©€«¯ŸK vjz›´¼!÷•‹ÇÅ0&ÇT5µ{û95} °ãq°#ˆCË~¡¦÷@[bw,¶üÈ÷|_ZM}pcp/¼ ¦Á‚‘šú¨¦1n?ƒõ0Ô?õ’š¦ÛÃù¸vj:hšÅõ~kL9“&M‘ð휚>Ì]<'X‡)8´:ÓînÛt8´€Ý®xÍ^¥<RÓúx€¯›åÅE’ÛÙm`œÆ‹¨åª…µ>CW-ÊÐÓ´£§ì³÷å5X)*Êôyj…CÉåP—‘ Y¤ÑÐæ8e•4ÝH’Î€Û ZYŀ̘¨¨ÈÓ§šhëC.Šq#qT^Û‡„|!o–~“ÀGLzlø€3îM‚ðŠ èËA6Ö¤DòëÜ äŸæm_QO¦ÍöÙû¶õ´•eëk^eËÙ¨u‚‹uÑiA›+up˜wûÿ‡øU£ºu’Èì¬Ì $ÒèêQ§Ô%7gñS°pÒlü7ržÅ9”Úß-@µnì/þqpûJ”¼ÝÄAÃA]‡ƒlâÐÕ`q‚84 84œS‡ˆöjn€v¦Ôþ°/Šâ¨ß3¹Î6ï³%ËE’1’’åG¡û1 Å“rË·%ÿ¢£õ›Ž–m"žC% ©Õ¥ çZ°_ÏÂ4œ‰Y<ïôèØüØ~>—‡¿Ò”¾ÂŽ$*>pHÆVY°LÁÃÁSPÍtyóúqúÇ(ù/¤‚É ô8ŒÃ¡åò)»ž’¯…–æ›gû•,Þó"gJç¤Â1MÒ"¢%)!Z´‰6„Ç[¾ÓM­¿Ò­€*³mh‰¶ÜÚù²˜á’2Â옳½ÅûÃ{$‰.|À9tü’ä ¬ƒ/ xûR×ÐãÿÙ¢p¡UíÿµR•™ ´b¥ÇËþÒU„šß–üµ0kvl’±AA­ÁàÎÀ™ o³öËv¯¥Ý5ÑÓˆ)0¾•Ÿ$‹ëÖßÞÉÉê)„6ËWÁW\£0òyE·¯FÌúÂḬ[cS;xoœGÄò×éQƒ’•N£t"-¿¥ÉÍ¢Äýùðvt6²ýËû¶|ð¾Îv¤a¤\¹ºí8*âV²Â"(¹\Du£ $+pá6§šÅñ,šÓÅ8hûÍÉR‰§óËìËp*¸DŠ Ž[â±Í DZéFÕ'}¸†÷@®‰Ý]µ´/u ×%Üä[{¦x$=J·£4LÕ§QªÞq5J“›E‰ûvW˜b÷bŽG.ìÞ³:®ßž]¾D‚Нc*Þkê %Ÿ aÇmÅ6¾NO\þ ðy4‹;¹g ½ùmÞ®ÒAôÅ{9>wÅ–" .Ù¿ñ®GYMSJŽ``7ÈR'®- ÁíÜ€XkÛ¦†²OoÛèèšÛ6ÓÞ¶iŽƒ¨ºX‘±9ãÅ›7j‘,Öîä]`ËšÌ{‡•ÚÑšc+¸ÇU;î+Pê츧BÌ’ÂG¸}»4õ>¡ó°Œ‚¥KÐ,Ö†(r,ã'™äð|Ønß×:Ûn÷Ùûqm«Üµy!æ¶F"„¢ƒÝä5Ž –Ï¥¶ŽZZ¶ÝëxþósóÇéX>k8„â©ÍœŠ±tuµ‘{dã»§Ûþó󰌃Åúç`ËÆ·Ñ:ßnÌf­‡M‘WlL <KF;¢!.N-'N¹.ïidhÀ5>ÉÅájû#:qò\ÜÖàS aåb 4mm¾Ð$\|"eÃóòý¢èa™‚—{°4Uޱ¼|ðàåb•ùzÈ×òðÜæeA9Éé ^N¨Æ£MÌ!;Ëh\q’˜“¿^_–œ˜?ÞjÝ1ÛÃ@â kØì@Ÿ£S8‰‰4 ñ$×åùÙøÑ6ÇŸ‡e,ìÁÒȳ» –ñÀƒKÿøp(ù…Â-6¨ÞŽ"‚bYÄaG¯°ó¿k.¶ÚŽjC¨€yAdÝåâHýÒ«ý%\l{:ö!sâU§cN8u.‹7• ™MˆŽÆ J!5>\òÁ±9 çÿèsÉ?¸ü”?Ž û“¤n'ÿ J€€ $ç5kÒžÝÕ9áS´´=%²è)¨颧¨zø¿?÷Aüý_+Ãã2"¸¹&|=Šß>Èâº7 =·âÐJÉ`º.ñuY×B;S¦»¬pÄWHCEéÌFVPâVß´f7Ì»pcüVŸBÃn,ãÐ|â67ö:hKÊÝî7«l¿Òë¼åƦEµw¢W{Ç[N,UBSÒY]{ösˆõÛñíè5ƒk–cÉÉ–têCSÅØ_M³a7¹!²m†ÿ8±>ø¾tZÐ<ãp¨}×!œf{/{1´äËfïYa 5¶ÛªÚ޲xE`›‡y·Èu9K:åv!±ˆõØ%¸µ¤Ünƒ‰ôù»z]ú†=À¨%åôÝâSpÔÆ¶²êòÚRÌ¡ž=Ñ“[õËgpùæ{Å|)^ŠQP4 ,j(øÇk¡¸ `BðP<¿fÇòM¶¹„ÍÎMH@óž Û3""§µ›œ›:y@ðÔ£t>Ð3BÈõ¯_™§ÖËìƒ×ïºgÍÇ%¯kò ÎØA­à jµõ½»cƒZËÿ#=ÝÐç¤tœVrH›ÌJ¨Æ7š‘ÎJ='‰Y£³Êì;Ϭ—Øk[Œ,4;÷wf 7ÈͲì: ¬'Ü{‚Ñ#1Ú—e$š™±·!q¼àªäÚmÑœ«bÞ=fkŠ0OXŽòxÑâ\a‡!ל»Dñ˜ˆ0ÞĂ’tãçÆ?~þuòÐÎtÀ_šSw•béØšŽ‚B׊Û[Øfø%ÅùÁ†U‰\:®t ÌJsšµëé÷U%Ö+ûmekÀ©*¶4þ þ4ˆßî0Ø@ðñ°|?)àŠ/0L_A¸Q6äà¬Äªüʰèßµ£ù·åÌ¿èjñT]Ž ÿÆ™ ×ì„B=…Aûªû,X…ö$j߃>¸æÍ9|‰œÇ‘¿÷oò4Jrb”t%õÀ(É&JùðŸÊ•m¢ÔTzoÑu'4 *pX½ö¯‡.Ýh]è¢ØåÚj¿IÉêiÕX8Hc~±Bäý”p?´()7n5Ñ ~±túI%1ÐÛ-î)ÃÉÇUÓ(eEÓ´bÁBéòשõEj¶H:5l¼ç­m‡°¤à»ÚV¨Q0‚ÿlÏ'6>yŽêÕ婎å!{¤cyªmyCÅ3šOV㳜֯ï—°¼Kíš:uÌBòš/¥tMMµ»&—f=”Ì u؉:Ìß…¯â”Ûl¹zÓ¡Ùà”s°68åïCö~@s Añ•  -—€vb!hý9Zõž«@ûl£¡eBoÍj·7Åq·ßgózØëÃfóö¢03)¼~Gÿ¿ƒ9j8/¸<. ¢tïãÎ(%šš”ÌxÎgè ªŽ‹“r»@­3“¤\$–£”’çÝ?âûŸ\$.´Ð ‰Û¬—脨ƦÄqb>Y;`nÞ!oÏ@n/µß×"ñˆ|ó‡õ ­ÊœÎ/ýsSó§ -o‡ª×¦^ëýj¥w&ÞWÐAK˜Oæ$è%½±0ØFÊma> °ô“ S}T?_üjp‰ÂYÝpøJÙ“ãO¶ ·»ÆñåWƒ;$–?„¬í· gA«6 #VƒO2Þ2ÐÈÈì\ˆöxÌõ¦Z B'% *AŒi—Ï[«XÚ6ÌaS@ÂüÕB´s¬¢_Õ½zy‹–~5¸Hfà_· N*=ÏòN†A/X;À7ãÁÈ`ã¤^Ebý0¼GUé1ÙæÀíAû|UÉ­C U/ߪ*}†Ñ`‰Xz¯w½Þnz{TEa ¥ó­ÄMKDWÔ¦‡­%¢Ü.tå#jПº CŠ%"éÉG‘2˼|t‰ù1òrb!Ôð2À¡'>ŽvGì9\Å—bäÑìâWƒGEÖƒ6 ´Ëƒ.hÍuâZÐ>Ûh0`¯÷/Û7}åÊPJ¨zÙ¯ŽG»ÐRå<âÎIP4Û@ñZ`Ε"…åÏ©*Ń ?F\®ŽßiŒ¸t†i-ÔXÓá’–\@«\а!ë¤íxt›™ÆÛ)ã–Ai Ð^ Ø0}°q)LR¶ÓøK`’Ä…¬£µ jkƒ† L+66 ²ß†ä3ãò1è@ ç)—'«$4BbÄöEg^È\Ò¶¢ Waqc3E¤mQÞü«¯JWsËAüÌ1Û¶· $\bÂou~á-(¶¸e:D-±|„ë7îÅùWBë1ƒÙ5 @C3‰Ùg› -»cñœi½’¼˜ì9?6³N#§¤EË"mõhaÕ£È eDú©G”à_. –‹¤3Ä+Tò%=|JClm=g0F;;´~ ­ŸC~‰fãá-®*_iÉ!~¾„Š¿\iãb6î{ù6‘þ‘¦òE$ûQ’3Ìú½{ù;í‹` ǘ œ'JÂpéf’ny¿ÉÆšÍU’Ä¥üۦض!kvØÿ$dßFtbÖ=Ïr*žå9(¿ëÄühzlFaÓ§v‹MÇ£Éæ#M€X[n×»mq0«]–5Ù:à&®A˜/\׸ûMK—=µRŽ‹ýrׄ갈°©‰ë‚ªb»ÉæíWüÃö·¸Dø†“d£=|ð ÉaÓö‰ñ2ž¯ïLÍ|=€MƒÂ§àëq&€/¥}Ñ»M‡¯Å2-à[‹´ˆó8m±uâ´–:SgÁlq3”»Y’u¿7Aøýg¶ÿ9cëÒž¬ÏÝߊƒ,ÒÔ)|4PÅ›¬d½î‘uOOùæYà^ô =•G]cÓõ²§`èQ&†ÞÊÍFÊ]f ªÒ² äɃL," æÁœ˜zQ$yÜhß²&žtëõ¶Ñ,)?Tö›dÏ/ú¢Î²ÿrªÖ6‘Š6L6ÈÃk/¾Õª~øZ‰"Ɖ„óé2ÞþoX=6c°ù ôi±q?ÝÌßcM€ø{¯‹ýÞì6›ç·ínµ©<ì¹m¨¸À\›0î¶©Iid˜í™À£Rn§XúÖ¥‹Mé-!K"j„ŠÅâÙs÷EÛè*„Ý,‡“hBlS\§ÕDšµ²ž¦ïAÍ4nv›&YO#„Œ1¸Ù寺8nÖ¯«žp=/‚yÄ'´¥½[;Ø ¸ŸØ)1$yþ•¨‹ÆýËYÚ.Ä´ØšS„ ?!Ôè=ìG†Õc3•‡}›³ÁÀK=ì‘&€6ûí–SÇ­¾dsÖF’\Ì9W„º4»’¥èQ>o»Ø$ŽjV&l“]ò°º’Ùá—§î‹Ü3‰«ÄœmX¸” ùMS;Øa«¤ð|ýXzl¦R´m·±™JÑe6æ¸Õ’ø÷y×Õ^’®¶³›t½°Ó&*W; ²Ph äfŸ³Ïo:¸h¥çkì™$®ÂYs!ŸM{5ž†¯ã§@xAä1ôØLÌÒ¹Åf@ ÅÒcL,½~)vÅöPžâ±+ˆó"åqìT“ÌÛ½´ªuÍÑìZ/ˆ¥1ɲ¤è°¯Ygÿ¼Ä¯ž¢/ºÁ¹×‚ KÅ-P_¥ìyOKÑAUuãúÎôØLÊÐml¦”¬Ç˜z¿#¯þ=϶ý\ë”rB¢Š5 ê(Ö Ì½ˆfˆ2ž¬ϯóýŠÆ“t ®².ã(򾃵Ë-Š^3N=ra™[’±´ÒÎèEkHzÈÔÇ›eü>JeLl“l€‚?ßZîuzš9GÚ"jÊ{kߌ]Ÿ&Á±ñçÐ<Ë  ¨‡j$TMïCÕ¡øi´ì‰ o$‘ 5ûv³;¶$Á¾-×/áÓÇ3*òI®§5 ;;Rÿh¹òDÿ‘­.GPý•œ¾‹ƒ†ƒ/ãµÿk|zÏw§‡êV¨ÜŒë¨Î‰9#}úO0™¢‰¦kªT*òÝv#W«—¦t³XR—Ä€¢²ñ)žÊHz+h>Ät ꓈Nûó©VáïÈÓü…2!W ûUÕ)U…àY¶ãT¬êP'£ù‰šxF¹”=T#¡jF]‡¡:Ãÿ·ëötûâ(3ÛZàX¬õf ý2ÎÍ©‹âNš½Í½Œû¹—á|†ña”€ýûyöB¾½.þñì1/|‘ieÛò”súɃÄBJ»þOéäû<ûÔC5 Ñ÷ :+êO@ôÓ7ÙÕÛ÷µ^­Í._ëç7³ê$âÌÃ"ɃôD*tû6ÏGøBÏ™L‘ý“ïžèïŽ<Ñÿe€z¨<ÑÿA¢OôêûÛ‹'úËyɶÆõÂáлn”Y47wyR=Ç+7ˆ§‡j:å¦+Ñœ‚Š—…±$Û§dûÄ5t¯ «¨”6$Ù>9#Û2‹ÍÙü0ÏþMØÝU\Þ >„^ÅÑð·zö8Jù:”=T“°ÿi¨Në;£ØB±óù÷2Ó»·¬´­û($Ã%û'Ôd¸-ñ„h‰fû(¤ ÿ~‡áø9 ~l=ù_¬(å çü§o”ñ®ÿ2Êס졚Øõ?ÕÄ®ÿ„Â;Ï»šÿ‹u1àú‹\D§]ÿå€çfiç<ÿXÏÓwïù_áât¤9±æ#C‹Þ®X”ø@OþÅ(_‡²‡j2ò?Õ§w'4öüùѦk®ûbõÒ î&Edɨ¡Îœúæ´]ÿéš1Ò5OGwºø^ø|Íˬ*0†5>úf°«4ì'ãжÐ{úNùJ”=T£ :-õŸŽ7V€éZ!úß:É?ÛeûMù¹æUôñט‡Æ¢DÞ©É¥y ÿ¨9ÇU [Ÿ¢¾\«ô‹µÂÕk Oÿ—9Ðð”æœAôÇà¹Vˆrýr¹põø—ÌõõßÃYœ¢7å›/< «QX9/«s\VŸd"h–ü¶?³‚*s÷»Þk½Ë[Íæ¢¹2«ß|ÕZ½ ñdz*ÏÉÞ AVì?=Ï_¾ÿ§D.úuåÉásÒHïXå¹fö«§Ž;ÁÓCõEb¾lu'Ðs&3ÖsÌv_%pnöšFÆöÅüôT'%òrþ’äüå¹<ÎxSl_Îçq*¤¦z¢—šC8Æ‚ŠÓ£7 ©·ÙˆC)Îð•¬æé‰~=¶É#÷äÙãÏãé‰~w¾æùPõœùQD?©Ñvëýæzíìvy±ª›ìÐL«ò¿ð¿ÁFPwjŠ Ÿ8?Èãà¿%ã·8?i¨8KîŠbVd9? ÏþpC½¾yïþRoÐàÔVÛÌ\˜oÝèPø iAëïÞ}ø$NÅçÇâ?)Þí< =T»ý•ÚCÇßz TŸd pûÕnÿž™|ó.÷+­w½nùÁ²¢<9Õr­j­YWoqËü ¦‰)§›®Åz•ýôYë“çüçò‡wé/Ýê3ÖF6P¥!˜|VZBã›\Æñþ.”=TÓ:ÃPõôœÉ ‚ÎúݶÕ)6ºX :!õÕ CÓp“ Snt4| M‰©­é9äßOÈŸ³_å ê,ù›–Ê«È_»s&`Ù°>6:úUüÊù+)[æf>‡üÕcÈQ::JúU÷µš/Î÷¿ŸEJúî9C5{œÃæ†  Ü]~‚ÿIºÿ»LñÿœÇŽoÁ›áëðÇTPvùã ŸÀ÷€©‡k\§„úa¸zﺮÏ3øýÛíVRfå3u,ÖÏZ¯ò÷u¶súN°¤~:DûqZzÿѲ¦ý%‹øIÛéGö}@ýtJÏ?^”¼O5ã ËûÅ^|¡Ã§ÅH\åx D-±Òµõ9gCžu6ìšJýêè öÂ’Ó‚‡>óÞWCFgÎð;;î =}ûÀ~ Çåq~’ã9Šo¡Û‰^ÌëÔ{‘8U'¾Ä§¿¯&sLˆýÀ¼˜9îDÏ8|N{Ÿê…Û©|´)Àcׯޭ6à±~v´¬úEÚ‡aù(jH5ié’‹Y§ÿ=1wˆæ8Dß¥ë¾ Êº¬<ËãrÑ54{‘é°%¿$‘C¤”erÆžPrVë0Öʰþòp0{æp´µ,Í>™>BUeYWPb›H*·*$(ñ¯òDÆð XÕÅB¯`·©$ l 0ð9Ú3T|.¸KØ p€=W:Z¥Éà”¨NR•æÃ§'ÑICU›@Û«¶#3@ÖñS<˜B‰g0ÂM|;L-7o:È»|œ%ƒGÅîX”‡¥K‡œû°@d¹–ñÀ#?ï‹Õú é{ý~\gÛ÷YD} DL½ ‚ JCRRšŽt’PÙj·ÌI”ÿR«bjR–Œ¼ ñ<»eN:9ô\³ÓŒ|MýmŒÌJ˜®œÅ+´†ÓÁ»&bä°n]:Åäjnö$ðe(zXFÁân{ÄÃÎô °Œƒ·{}ÐÏûwóºË,7W]$ƒ01…@¯™1§”ƒÞë#Imä#d§‡Ìö˜9]ÿŒŸWž™/3„;†ŠŒ}RÙÝäŸö•ýÿeØyXFóñYX8eß <ññÎØ2¡ã±ÐM>Ëe!–ÄÆÔÝ·Y*T²qd½äšŒç˜Û ×c‚‹£/ž“MÚ0(Ý1(s–‹MÚ¬’%[\ŒKU[ºÀ‚©,ˆßÔ°y–‹Íḿ0Ó0YŽ9g8tHük.µác«@ÑáBb…Ъ/4œa.^Sq¢îùPjÝóÓ!6pÏáÖºç:OÅ7Sq+DhaAˆ ÇÙ“3n â1ÀÏ pdÇl³6:ÛívÛãZ—T¼¤ŽŒ1Ixƒ*öé‡?ØgC*äè5zw¹_sû®ê÷Ýî2ۡ׃åP|qÔ$!Äp°2ô‰wwŽ¢‡e ,•€= ”ó”Gó­À1ï ;?îe·«ƒ‰õ8hÙBÃ!ÅdÖ%äBÓ³ap&¤?G&K>ÓU–_Ãͺo>²k>úŒùèKîjƒolGŠq¸Æpxncr™¹Çôމ »ìÖ׃·þã`ç]åÑÂÅÉ䋦~q3#ß <ÒívHïÈôq·×†yÉQ@„1ñ-¡`JÜœpÞGùŒøME+aR¤9R§£NþGOؘÓÐc$LÁÖ‹Oú¸>Æ\ûªœÉIgr0 ko.Ü®©ëÈ;€¢Ç„³µ7h8˜ñUAõRecôš¶Œ¯2 ãã ­µlk÷¨á7(sU8ªŠ­%î˜nnÉvÂoçv©kÕ‰OΙPr¿bm¡aZ’˜ŒŽó"l¶ß-8ŒÊ P‘Ä÷%žä3é® ´&â,m¨è0xQMÞ+@üUÕåÃ5XâÔÚ,1‚Ž%>À‘YâoÒ£4 ¥Á\é:'ä$J ÷ËQšÜ,ft»­\oö»õýÖ ø)¶ÙÑéÔ",óS†GÔœÝ\Rö¢›Îg§wâ¥0.]ð%µ‰à†ŠÍ£lû}£“8EÃvdÎ(²‚–ƉÉø°ÅáôÙTñ@*»6»"³»õÀ…âÕ\áR[·¡òèPøC .œþK¶¯•sdíÊhk»ì+H–K`þ@Ov­í™˜ªfo憯7º2Czºa_ø}>ÿ¶ä#Â%Ò|;Á›Ñê¦1â)vc{¢§ šÕZê>…næQUŒ0!PÑœGì'>hQ€tˆ¹ ˆýùZ@Æ€]¢ùl¶ÅvÿjÌ!¯g-ÙaQ…›jǼ®3\T““¹OÆ%#2˜.f-,ôûë¯ÕcP®¼ÊÕøöpfàí'ûÒ¦*ë1”[µè˜;š'eòÃÿý¹â§àÿ˜ŽåÝýŸ¨d µƒÜ¤í;ßHÇ7€Mt,÷[½)?d•g[GÇ)Gƒ¨*üNZ„\’mBN+ý9EŒ0 Ìg~—„[BÎå…ÉâÇÆòåîÃÉ3.°ñÃ@èÒ¬o'世2<éÞ%hI|à. µO<¾løÀÅá°z•f¿=¶|`"ÝdÐ^ØlŒÊã’®ì’ã]àtýöú;öŒ{±­ÍjšqeI.åÚnsF3ncô€'Ü{ÄÌ2á‚Fîõ`á¾Ê·#Ï xinÌÃy´ÛQú[Gu |d‘Ø ”hQR®è«k|÷”{¹µp3íÄ{þh…”÷[úݵun@ËÉ,I<ýÞ~‘x í­GRqc &ò-Þ‹£>"»¢êοäîü [q§-úlŽÛ²Ùœ?ˆgK´û¤BêtA‰pæü‹ÍÖļѯ;ÑL‡âÁúò8®r»u‹~•á¤~–þž35l.œÆ3h.šaäk%íìÊ¡SŽ¢òFñ‚j®÷x…K‘H\;9×bîÓ}_eê›}:ĺ7û èÉ<zž÷pCjŽÂÀ*Ú€ôĆûžó}oýòK>\k}ØèŒ|ßõûl±ø¯øM]/ÂIÆÁïÈ5Êpÿ¡}"D·‹ò_´¾ÀÛÐðˆz5»ßœÝ"qïoKÆa+k"¯S/¢Iê§õ‹dóã§:zgú∠u"é.›ž „Ç3´¼~q·˜y@Æb%ŠS€Œ‹Ò]6¹Ð‡½tu,ö­(Uî‰ôDœ.¢ÚéV˜N ó\ÈçN…é’Mðüσ(úHWòÕ¡‘\‡åÒ`°ƒB€` éúTµÇÍ2…jÜ*±€T‘º[UãëÁ&Ö}Ñ«Ã^uV¬u+U },æ®8/j AÚÕ¡±DvDÚz¾n˜í&’!|¾.vÞÒ}˜ä‘h•2…Ÿ$;bP8~@¾77ëð󀌤ɿm@F2ðõ`ï÷»““|\X.]^NNrÎOb`Ç—ª¢–Š‘0L¼LÚñIŽ7χ_‹Ö´Ie­gŠœ i»pHwi­!)[äcMÈ3dÚNƒtjde6ºa6Ú^Ng6¼V¾(²ºX X€ ¤•b)#ŽWjk*î›y÷¸ØT`ÛŠ Œþ_ã€a38s6:oÝ«äijöšäÅcm£t è±–ñ…l̃-áðϵ-©9GOñr “¢7×µÝd#ÐûÖø3!’5œ…”¿ôoDÕ#6 ±•w'ë¹Øã¦»~‚¹`­÷zW¬l¾ÆñhòòWŠ]5ᕆóEÎ细.ªÌ ’;àŽÏÏÌw Wïéò¬EþkèŸjJϘ< À>JFž«4 yC°%휆qô¿ðôÿW ê‡ØÅô?@ýåŸûTsAÇ:]ìÞ Gÿ…Þ¾”ÿÊŠþC¦AñÆ8)‚Vo$¢ŒŠ%ú«ÌV»ËçZ2@ÿ¢Gÿ }øõ½×yºu‹v(@ æ¨YIbð %ewS¼ÂÁ„ì~à;û³6‹_æŒÖ™ ýj~6§¸²u3ÍŸ&ù7QûÃRß*0ûÕØD*É€IûmRÚ/oµh?fð$öËPoªŽ8š–åa—ŠïC ß„c’¼I½™Úç4jăza0o?ç'|[¼p—ÞYA¦¯Aç@üvÙé{ÂÑC1Š&‰ë.a߯ÒW\ÒoÉ·Ùa³_½¼e-Æ ‹ Ê‘ã!:³¹ã͛Úsƒ”³õJÞ%6¦t=’\æÕtî:Öÿ˜¯þùÇ“î%BŸm%3›ð£lbáO7I·ÙÉÈ“ë}áå¡I®-(Æ»ÀWLäZP·¡Üë¦;+–i‘æѬ˜wÚÓç-n¥È"Ms]0µ Ö¾?›êäµßí³¶ϬŸÆ¬ëÌúäogϬÅÝ2kLó ’”è5qô,-½šz½¦p]-½–ÿ%Ëzßÿ Åú1èUþYz•šcÃÆb' ÆûoŠöé5x þv=‹Õ—ÜÒÓÂåÙu-.e(FE4ÙLoó÷<ËL“]ƒˆjB ¾ž”g]XÉ58Öõ«+E–s2bJ–ƒ[Rl? ÈV«Ì‹—XŠæè!Hgk ¸+>èiÄæ8'/Ü^Š‘.,g·UPŒM¸` Î+LQè­>´c]¢ˆ9ÙXd‡’Y—³eGw Ëñml«¤çÌ*¾ÿØ™¢6ó³êKmF;f•ú„èž0};jmµjƒµ —ºa!úzfÕ0eÍ£N—¨ÌCZó@…>€Õšó%‘ ˆx2¾YâÄéINg並ÆçK1¶ÌúŸúq؛Ү”>V￯î=>vîÿÁîñ? ¢§Û1>m3°Õ‚¢zòºêèž)³ß½i÷QÈ•æQTµŒñäÖR‰´ âæ ¥GTâWõÑeÏAùo@â¹}5Åð€ŸMmutÌÝœÂKZo‚ß._ŽÚa4Òžë”"ÍJ °ùÂæ-ëÚOÎöÿ,®¢ióïõ“%,¨“£Â; 9U-¼ÙM¾™YL —çíQPPBŠÑnòuÛ~k}8ä+ë&GšR¤•¾rzÂW¶.ÏMîà8©ä'Ÿô•Óçbi朩(Ùv{4x §ÉÊiŠÊج= ¡ÁJÄÈh^δáuLBÓÆREYíÀã‚‘âWÙžáë„ë,3Nn´ÄW‘ê‰ô!Ùmî×îºDs[dðòÒ8ca—ÍŸÏZâ OÀÓjˆ•¸ÜIµVd›NŸÁŸÅù“7roò48F¯Ní[7½ôjÜÜÝ>1zô™øÍ¥—>8†ŸqøÔ~ô)|š9dã㑦y¿ßÀç.=ï]V-ƒ‡sò‘ƒ¨sj.FË¢9:¥¦oÒ•ot 2É!ñaêÒ|Íé }CÿP‡Ç¨©ÖwRSmp“&`4%î]i 8ÔÑ=-¼õ¼¾ÃÞÏBÏ#3W ÑB¦[q2“Àbëí]éóݾüº¬YoíÓ‡‹vczjDõvÍZëvgúå,\,†:»=?lƒ™ï£Ûꢰƒ•uHY:b[Ý„¿x}ZOCƒ/qÊ“n´½hû|“ä;FÏ3Wtцó.nfðÑ?YïõF¤.T¯…2À n½åñ¢ÅÍ©íÿV·PN1®TP4šn.è-ÝÊBýø•þ| j¾§'ƒhë§ädÔ,êî›\ ×hÄù€$}oNÚçáè ˧€ÉÇ3 øDÒïm[t>7I:å È‚z&ÇË®ûÜiÑ¢SQùåo,AÑQ¢£ïï"|Ѧ÷@Ñ!uÊàÒØ“ÕW¡·r}:Žš.aµ3Òì¿\>r»ÝýÜë½ ÀóÀŒ¦£^ti½x«ª1âÖ%bÞЬ×zµ]ëm¡¶ÛMÑ9=Ï!lDȲ þdœ“±vÄ®´¹=}º|…ûID!ޤ?j³;~Ï/ähOÑ@Yñ ŒU—Ëp|¸†H Ì7HÏ=Šž¤¯ç“'…¯ÒÓõh?šXºƒLW„¥Bߪ›·íûv+³uþìTèUóÅ îD!8Ç#L‹f-€S<’ÊŽXù`Åcw:èu¼V?WûßáN߇Ío·éNöŽÂþHê[6dÍK}@™ãþ$ÏÏÏ3#¦v£ÇiÑ·ƒáÎØÎl»Cád#Œ A½9ؼjÊÇkèÑlщ&Nç(&æ 'tß÷ß³Ýc0ó=xÑ 2aºd­ ¬µ¸ ·zÑsýZÕ*FÍ÷æ }&z™ \göŸ;ÈLæ:ä|Øî‘\W¬·æ9k ŠZVRG?‡#Nã¨dè`Ž‘%Vã8™Å~Çï¿>—žÕ'Ò³©,I]JÏò¤é¦ikF¦› jójÖ))ÆYÙëôÐô<ÌÂtK›î#ÃÒÈíÞõíðsõÊó¾dæÍÖèãqÛ®^Y‚(:¤öŸÑ²ã5‡az =:@aa43‹^Ä0}Þ…oo0³9aTúzsR73³ü²çV/¹²UV) 5Auû$Ò:¸¦%.B¤â±ôÑ÷¦]7ÑZè ‰ZÌ"Œ÷;íLëwùòâ)ûnzOÙŒž§lOÙ_BÙ‰žG õúÇ=hÓôUȾ”ÝJS:Nê©þj_$~_Äðyèy`FÓHýèSÑøèúÃ1àao Y H|ìÕÒl¤~ #&A[›Fvt«qÁûfôƒH‘š'z™y±V?~ÄÿznV—‘áè±Æ5‘Jn6‰´ÅóN7,¹Ùµ.'¬SÜ™ixzðC†Œ·zÖcà'¢V»½ÖÅæ°Ó[)wÏ6„'œý*ñ8'µ: •vG0˜Em²,W'”ÁFép@ûHÞÒ)´Ç&ë+öhF¸4ùm„mÿ8ž¬}’Çàç‘‹L#Œ8€Ì$yz·ÃÏ‘ÄËÓ{ßåíHb\ˆáì»Í¥;.!š{œK TaÖÅ'³l“OÌòˉYÙm€Ò¬_a¥åSVÀ‘~›÷H|áL+f®T8’?!pLXïîFî“ïþOÏÓò4Žs˜Žë|»À1øÄÊÏ›ìX”œ¼_oÇâx€À±Ä´ú?hÓ¯$œ0 Eš²ìJ:µZ‚)ØQ‹¹—½âL]¡¶KÔé# €$mò6¹úäÚ—¿Ë§fëЃ¹=’bøq"qº‘œçµé;Ï3I41Æ¥SӦǀÏ-=Þ¶ûã:{ßæë¬×À4Ìx:*–yv’óÒ¦ÄÌ‚˜9æªñù@Õø@§<]‚—A–…“Æά4L§2+m¬q±YmÍ ÖÀ0ZqžO§MŸ]”²Â¥•Ú9piÚ(F’mÒJFø4º; ÉGÍמ×Ple:4Î6Ê&®ãPìúÊ0ÑA±q8¡9H‚JMñJUë2¬‘MˆJ^ž¥…üú-ÑS¸ ‡ ŸºžÑ2ŒÒ·î «²÷ÿ¤pÕ÷ÿYܾ¹ ‡e,MÉ™aé Ò·À2xIJ*¶Rîw»ÃQoÕ¸YrDðB&äæ–$áqÝm>Žá)'‚ã),¡ŠçÉÙÝÓqÛx ¯¤ˆ0àU§^i”›v&¡cñÄžï;Ë|ÜÐ9ú°ŒåãÇ`¬í~Eý£µ.Ôs‹QD•ƒÜácè->¦ `–D’ïS|¼XÿŠv±çãˇ!ÕÖ³ŠÛIðÇ+>ÔIø¸Ù;Úóñýbça™Â?nÂ2µ|#ððõá°×‡ümož{þñòjÿ8˜sw›³Fžóë¯ÍÁòÅÖƒ‹h¤Gá’YåÌvÈ4„|¢S´çæû…ÑÃ2 –7a™›ož¸Y®w»ÌÈW³¡ükÇÍ nræö•ƒ~êq‡„º¾³\sóB¿ý~Þyn¾ÐzpYÐkpD_¬§Ó’½xñØyXFÀRsî)XÆòíÀ!òÅJÇ}í,'®.³¯ú„¼´™Ìܪ?µ ss;Ñû$G+yüîéøòżzF¶·B”†C™fXˆ¥×.îï¾ÿ<ì<,ãüãaXºêÅÿøVà‰ŽTþWèb{Ì×»¦,–KÛ¡?¡Ê’eÛ?Ƥ«¦{þã÷´çãÇÅÎÃâùx">^¬Yüêùør ’妳ÅBÓÅöê:?ÏÇ÷‹‡e ýøl‘ßHýøFà¡k]•÷=·õcWÝ×+ÒYG;nW÷J´ÔÏïGŸhq¹åP…á¯ö´¬ ¥ñuôË“iÇ× »£NÊ»7Ô¡­>OÑqüüξ_BDzmMÆYÏEt,q­ÎÚ‘†ü” PÑHbž 4ª³/5õêh&ºùu!þ H=‰ÊÇ‹ò-nÂw=P|ÿD˯õÕ¹Ü*éÛ¸øJ?¼iˆúú͵íåMgpô8~ë h>4¨c—"ñþºÇûÁ“èõ?ú$2®O ‘§{ÃÎSûh]¤J•P×üs *ãagYds(Oïy/õ›k̉©#a™xQrøób#$ÝÍ‹€›ñC1Eä䣛š¬Å,Hj®†h@4TÁB„á"¤©…]²Ž7‹ù÷YßÛ?ì¥{¶~ì<[{¶þÝ`ë ÅÖ¡cëõ[×·@Ê´eë®õ[‡«Ÿ 5÷÷…¶Åá «–±`Õ2Å¿‰Ë†#§MÚh‰[8IEý0ôº÷êaSÏr–!1åÝûvàKd jÄQ˜B{½?èU]Ï"–iIÖн#Q,ò(ì¤ì•ÜÜ,i!ÿšzA d‰@‰gË^Ê^ô}]¬MeSê³hšAÀËV–4,Ö¦¤Ïš’®hZ X i+ÐVæƒ"#z_G!m˜î™O³å¡;Dú‡_·@ó ²ùœŸÂ4 æ† À4ñ­?^­[ÿ4p½[ÿ±°óŒ<™¼Ý„E×°X:¾%9x »ßïwG¥³Lw+ŽDR'çÅÂÊÛ1ÔkëW‹¥û©ú?hÙ©ÚVça…бS÷{ÔÔ# ¡+ø Òw¸,âœüô&Í‹YÒºÖLÐu #Ããò-]š¿oÂÃÎÓü§ Oó‹§yOó÷MóÉ&ÿ)–ŸGóÆÓüƒÐ¼ñ4ïiÞÓüå4OÊxú@T¿ÐÅÏuà=ú èÂüÝTÿW{ôŸ‹§ú»¥úqÀÏÔá C™M˜8?UØÿâʆ°57öÙeãqÓ«ô ¬&Úò¨Zvo9aÐË™ƒ *‹OíïÑ» ý$hS÷r6¯©ÛUÉÏè‰MoK"OæT3ßË!Tòç¯3Oöø[æi>—¼eeÍm™êr‚j·f*0µ6É[³ ªhkƒæ2Ð÷EÞCÈ|)y_ Ôy!Ö"ïûÍ“÷_AÞ ÒZ;î±8J—îÙØQº%^a‹(…S%„}!©™]TôlÉ=üsÄ©Ã÷ÔÌ´3]]í«øbóÝ„¬‹ŸÔÎM’Н¼µ{¶[ ¿‹.¼ÝªI®éîÖl"&öeÍÝ ŸŒØ@b›  ¥æyÉd¼æ°1ãðWã–Áñò&Mig¢†o/ 9Tbʲ´§Å> –•‰k¢¦±S–¶$'„[ÔÝa·ëáSú?óÈÎÄ –-aã ,¸koG¦Ë(¡äè䬸à .Ý ÷É PCPè&ª…ü } óÅPÈ>€²PØ2ù"Ç5c ×±Øè÷ã{aÅ¢ñÔ14KÆD°!á¹¹}…ò¹ "f눓²,‚NÃÖ8šÍ­°œX"KÒDH2²ÀÃt^õk•Ñ_‹]6?gdc,lB«úО>ߘ$Ã̉÷ðÚ(y4ìäå^Ÿ“Jö<ð§¡óPŒÂu/á8u#‚8Fw¾`4-1¯Æì×ùŠ‘m\„ÖÓ%¯8X¶Dè˜ôå€=Þ*ô”K~n@=Hà§óá!äûMx ÑÚÎD »1gí牅Çn}ÏÙŠnÚ /ÅpXcáÈ<Ã.íUœ¼ `*¼ómÚ ¶Ã *>FÂNÚ ½^Ù‰ìì˰ç!9€Ÿ¯C |èö»”ÝlÉ›vm®ëHX7ükù’ˉ÷Ôú¾ðµ>€þo@ñžs“}BL¿'j2ôMk³›ì`ŽÇlý^ècV¬òcUîÔŽ$!?yž®Z2Éã¤îA’.È[&š¦Î#N¹ ¹_‚¸=æjÉåb–ZÝ¢fë—Åî¾xüΉ¯»]é—†/¾ –ƒ 1Óü"7="Ož’‡!òû§‰¯@Ñ#4!—ÛA¨_Ï>¡i͈|Wl¤Üouñ¦wDãŽÈÃùÜÊÒÔý/L‹DÔŽxIà‚;oÓ\vĹó6qjKR>Ž%Làµ#ž>kõº÷~Ç NRŸ^¸ âˆÄMEàä‰ß?=|Š¡)<ñ³Þ¸é:ã·{âãÍžønW¶ûõvõ¾]Ë]V¸àî­j%Å2Ã…—8S¸p>8õl v®M”2…Ï{Nx¼~5ó7ÏáWÞý¾×Pæ‡Àæ8¼>½^{ÿã ñù(z„¦âðüBª)ãÍþV¸ÙМɳc‡ÃCš£NzxZ%¥ÉâBM0!2š j½ÅûJJ¢ZÞ™"~ç$N—ŠkÜz ¼µ p ¬òJJø´ô$þP(z„Æ Ôw§GhZs ß«ã1Ûl>””E!–ƒJÊb6ï)Kð7E9Ï)ñFåÁó÷åv¥T%™É¾|†óÊx%ü¾ÙáKPô@¨%xŸÔÄ'âïiÌøûíXä«cQÐhàcƒ¿y epR Ü̳¥-Œ„Œ">Tµ)~>Ÿ%𿋿нßù””ÿÔÅ-\þôW3ÅC ê¹ÜsyÅå‹ÿ1§¢œÒJ`Y=«›V_T¬N“,ŽÕS$¨ôY=ÑÑJgõ¿ŒÖÇkv8*6ý—­ÀnŒãŸá–ÇOð~ùCÁè…P“Ë{Mœ¡2‰9—^Þµ>R¢¡Ü[ºJ`œy°öÌiød•dè†RÒ bšÕÐõ̳ÆPÊßy“±‹ù˜Ãå°¥™Ž¥©9œ®GǺ W4­K7¬K"ºÜäpõiÉ“¦¥Û¦¥#V¡ÍH¡ì–n1#ùÀN>|]m=ŠÃÅÓ¢Ká§0"ˆ+`Kã ¬âáQô>…<ÙAhZ ŸÂfT®•ÌõA)A…(| ·µ>!5:¶JùTìjñ«§¸ñŸû cŒE5â¸j£²KŸähœ’ð¢ 0^mÞM}‰;+ƒ@úyŠ igeh´÷~Þ¿üº¨^Ó{÷ÎˆÐÆƒ¶pêTˆOké3_î˜w¾EÐ8„>Ì{1VÏ™`e˜Âù²ßJ[Gt4û^æK@™/é‰Ì—¥åð:ñE€º£¹ø'_ÒÍúýeé9ü ÛâF 8h:4zUóqœœD9….?Ó*4Í.ÞžÄFЄš•B§ê0øí$>‰9 †H¯´<–¯dοof¾”$Îe ó’ÌãeW¡‰ÚÉ/àðÄ•àð¨ÇáÚÍ3å9ürÓbÄ$ÿ¤Uµ™CcœŒäuü8üü¤cOì­Gh¤wÞE¨W:•n39p•ÿa'Ë#_ëUžuRbHr¡¢OY烙®þîjD+}q¨’Y¹é?Ôaá]ô+7èõdv /æÒ­çÎ Ì'¸èÕcÏä£Gh$“7ÿœ@h"}s“;}8ªBëB[.:t–¸ˆržrÒÙè- È;æ £SNúBo~›W³¸'ñO&ñ~Ï­)HüÉS„'ñÇAèo"ñY1¢Ÿ‘còpi™Ü 0yÕu‹ZÔ†©cò9’ûL®~¨ð¬Íy¼maœËª`"5âí=²L´ü¹Å+æ„¢GhBÃ4ÞEȾ:–ɧ1(æý\yaJ"/öµF%‰ÛÖ‰q§]w<î×1‰/mëÄå,é‘x”­Äá'››ræ&UentÁ5 Óµ­)~ °¶†+Å ÷qžR)F¸ZÀ$ìæ£Ù>È©ÇûA¾0iØ—d¢+IFÁ [ã‚qH$+Ø eõ±™âgkV°Å6BçÂöhmÃÖ.µ3+ c³f¥;feÖ€ÏRˆð 9–©ƒ§dù$ è §ÇOø0Ltc@ªÅ Ó¡Æø!v+<|Œq`ä ±{ßò¬<þ•.ùv¯³ã&Ôw<-DêM:y&qZ÷¯‡;P•~Bó0-§b Ñ$È–rþâ ÷B#1Ê4ÐÚ6G›’p9Ÿ¤ Fä–ø›ü>ðó`Œd\Îw`tI÷fƽdbÜl[>»Ú½œWiòíÖìYÞi ‘c\Y”LmG•‰¸ópáª5e'KM†Qµ?ð¿Bê¶½ˆª¸[cXÂæG ¿Ÿ³3OÙkeçËÉ^)»cìiˆ²Q_ØÄîÉàþÀóÀŒÆró0½˜ÚÍ,= |béýî„I«d†}é4HÙÍñ·x9µ‘´ÐEÒæìR/0*PJZû‘´ï¯ïAìiù²e²:Ï[9’Âù™ ý¯ËiÙzÒž—ï=Ì(`:Îs Ì„Þóð‰—åv¥_Ž:;îšÞ3kË"ʃÀ9ÎÍŒcç/·4¸ÉhÚ÷üåfiwò+ü9˜Q£XñÒ6¦–»t%wÉA¹K7å_ŒM×ëK\ü-Δ*‰Ëè*…F³¥L²ð¥¬)²úE®²;Ò=}˸ü«oñ!õAþL׎$°Å™ñ°ýU÷#ߊܨØß¨ÊvXµ«E/3¨ §aÝ35¨ ˆÂgúv~‚÷Gu$É/ÆËÝú™GcLÀh4‚nW q3Ì3U:ÂÅ~C§eô6[g[×$&ñ²FÅ"âV°-±cÀª^H4Š—8v&Ê'Â’pÓ%5Û»N¦?ÎZ'ÛŽ­8¾J6 `7:v…kaìvÈ-Ôú’0\M¶ÍÀ[|*ØßÞ 2Æ4*w ˆÈW¡q3ÌD¶Z2n0­ß×Ù®šô²,‚y.ˆwðˆó¨M¶œ…Žsô$E*4è6™ÅAG ^ï~éáÉçÑ­öt{÷t{Fÿ†ÜÓí=¡qßtSÏO¥ŸÇ¹A–¬òEeDªaDl,ÊY_UiO«›>ãÄ@ï,Ÿ…Ùbl5ÖFVã.¦n[•¼èWÕÐçIk¿ÒF>Ùj÷ùmp.@÷ëqPƒç¡K ˜Œn™Œìš ‚ª?JìZ,¼ø% 3ÖXhP"¤Ü­ˆ‹vÊ|Ì0ÿFKÛ=ˆ´…å ÿ€Õ¸ãoÁ«yÇ=v•¬ø°ð q±éqñydøeó!2ævdZ\lXím!£Î!£nAFžG†)s a1³®£û/_Îˣ៩bŸ‹ÍûfµÓyØŠÖ%O#)‚º9#=‚&Ð’9¦Ÿ¨Pêú8££3X=œ—ÿGM…DX„xÛ,Œ£"@YºA7åbÑo4$"ÛFŽjãâx.’Ž™àýœõV½þ:_ج™©–s„¡]ÂØ†¨?ð•¤Ë§+·Z¦(Û¦(+’€g\8Ò™"=×'xéìÐf¼°OÀI’¶é¼nÙ¡îÚ¡îôˆÇ²Ì_ÀQ Pu»ä» æŠ+ íJS3íÀƒ†Õð¿ÖÍ0ÁG·õ¦¸¯6|5vˆ-=0|’ßõ_Àïu\¿9Uè») 7ü™ÒT7§ ½¢¢e*¡Ó[èYV³‡È‡ãžüÉÃòIúOüÔÒÞlâÊí[Ñп|k€ŸEIø‚ŸOÊÿ[”?Ä/Áx€êÕ °Ÿá¿éxå† ÍËïã_L¸FäÕ÷Ñgà·íJÓXNv zÐ >†T’B›4ɘS ;Ž>ÊÆp€?õïú60‹ /¿­{`è0¸8Ýn›½ºÊìeÏì5›=çÙ\²Y€ÁŸ°yÙ³yyÖæ•quó†Ý œs¤d•UE–¹ÁÔu£½Q½„Ob>¼„ô!⛽ÒÓe0µ˜êË!«™ê¡Pó+Ç4+G>€Ç­ 7C=SjЫ,Ï-ŠÐ/tn7<‹`ß’·c·IHCW3aXæq¯WËMrÕ‡\I(h\½'ê¶GÉ|¶lMXwÙ$h=MÙ$b.æU6IÍç±^½¨·«ù|Ð2=¡ßNèý=Á„~!LžÐ=¡{B?CèVÔ™†ËƒyÅå¢Áåë>—×Îy ·\–\ pyºY¾Å¯u°»Á(¿Þ¿Dp4lt0|‘˜E ® Îè¨5—Ÿð=wÜ jIu{ˆK¼1`S$5{7úPþöëþ˜»ÌtâH©Ü³tƒ¢Ã»%»&&Ð ”Èv˜.yÑôZ7†*ä›7_ʼŸíù|“ÁŠ—a#;ÃÕ°BeÞ°;!ñOïãÇç>4È@*ºd$ñÞ6oùïÆlÖú9â冟sL©¢Ý2W½>‘›æHÁÒM×b¯¨Fž$]£tm=üä€õ4RŸ¤+­Å¼fºpä@‚µÓ°|*§ùhÕ.ÌA›oi³§øûy›‚˜SÓP‡ÄØ$ »g(†ÏEâ ì©]JE{yŤ®ù¨yg<‚± ¬1UåÞ ‡ºíGL¼'a¢[eR­û|:Ôjâ8‹Ý·sz>ÌÍÈô¼Þ3ȸÈçÈLÿLÉ}¡÷{íšêZ®³#Ñ2Êf’"ÈÅÒõaŽÂv‘bLíèè­àæ˜hå2‚çÏ’ANs·S°Ú¿/ž›?6!h›¦Úµ`¥›4 b„Oµ­‹=7ß3|™‘Èt2‘¡Ö·¸Éãá§Îx™ÞíŽúÈißÛÊeNyªl’ R-¸déxÞ- ç&y)ÔŠÀΕ KÆ.gÊ $n=¿9yNÍÏwÏÍ—š$ÿº û<>[KeÜ‘~sS)ö~ó]Ãç‘‹Ì`²7xº‰L~52“Àn.v»g½“ûm¡ßÙÑúÍ NÚ^äAÈ3a£v+Åwn 3Cß ?:“{£™ÎއwÝôƒ%5ÿCGi·ÒqÑñž¹’=™a&÷)nTôü2ï´\¤ƒ·¦ÅW0IgW8kû¤½8Ý*šLg¯¸y>ÒÂn?ž>_ó•á«)9AQµ{,˜D¦÷ ­ ¬È°9à:*##$¸%8ì 3àÏFŽ,í_lD˜n&NÎÞ.]mBº8æí,–mí·Ü~ÈÜ&2Ó ªÿ™/†SÞÎàòm¨æåÐ4où aâü¬o­V˜×cC¡þ8ÍßH(n˜bzY¡·ûÛJìk8 Fñ¥¹`“^ [<0ݯ‰ËgÜÕãaâü¬/¸«§ÆËCq3`Ñ“P`p Á^ p‰ Ì\BštI MKUؾHQKˆIŸ­|4"YÒoô­ 6¥ú]×5~~Ëw3³êI]!|¤Ëü–.£Ps:‹f…ëzfÅô?<Îêl´àßukß+vŠit‚SPX…öZ7ör€áÆîM~Ì6[£*+ìhêÒ#¥wËâÖüÕ’f¹=PÓƒQ’bhTÈ AЗÂì÷ï×Àóìe‚ߥÿkJ=ÒžÄ(v€g‡YwßxŠQPT™ m(Fê×LD+;ÊG8n3ç΢sUUÉI¥ ê̹Qtœ Q¬#4êUñž¼zš½È<(D«ªvç§mô’Ÿ´B¦ Ù°•„àïí»ÏC1ŠN®A ŠvÂ54{ÀD³ÛbM+õkùON4[÷ ­?+ºþl#ç‹ÞÜl/A×mØË*ˆ7É{x»r ? Z‰ª¶­(Tú¶¢š¶‚‹ëlEÛâl`lV¢•˜“T[ Kºg"ºm"øG~DÁ™hÅňÒu]e6CCÂtm"æM6| æ­){#né iÝÒÓÁÔ¸¥Ïu‰xgxý Ùuêø#ÎK›¹dO@!‡¡¸ `z÷….ŽÅû³õb´7 lW3ô"Fg3…Ù§—¶¹qì^ ÐиüŪ ZÙרÔX,Ûø,°îCAMÑÄ‚ûæ7™{n›C8%‚Rv©ID4#±—¼döÃv/´H¦ú»ñò¥¶§ 'Üóƒ—o¾Z^ˆ¸_·lRð<cßNâV+WìæÄ…ˇ?…ÞßôV[!"!Î]ð4ê½ãE\$í©ˆ¬®]"o!æ´…\›L*ŠyöïáZ=ÂFhVŽ™ÓœAm$ƒÉÙè“r­õ—ÿS?îqâ9ø>Aý×C1†ƒ»üòX¾àÁb+w»ì°Ýg;ËÁ!õŽ—,U$'8H(GŒ(8t½ÐH¦ õ‚2N2p¤Äköâ3s/[¥•µ`—¯"!ëãƒxCuC3°°‰cÂq.ŠúaØÑ…6Gô§ëN ¢‡b´.| è×–Ÿ] 0Âoûls8vRîl©YD^ï’Ú›ÁãM(›,jñmlÅ…Jžsz® ¡Hm6YWËãïÿ‡w´°eŒý,t;Uظðrj&vxK– ã&OÞǽS=cu†®Ÿ+-ÛŽ+¸`è ëçÕVî·»ç÷Zgƒ°’üT¹´í̲ BæCùJ}O¥<„ªø•>•sem)òñ9Wr±6lßð×^vwZK²º•s›‚n02(wíÝ= fwvwOž'Ú©ˆÖ44غ¹ÂPÜ0å«ã¦Ð[]¬ßžßgKá†zKÁ=|K¢Å”iø¹‹®ŸÌ{i)^;QˆÝå,v7ë‰}:ïÆ‚õÕ=Ó â¢ 3ÒiòÌš™>Ïì¾ÀóPŒÓ>€Â&™]¡'\ 0!hh ¥Bóí³m—N霽`'Y,ópÙ‰¡E-Eé ]Æì, J3›÷$…èû&MsÏ´—-Ë|XX>Ý’ÌGÅþ ÏW¸ãÛ{Rð<£ `å¶×m†)öJ(n˜Ü[½×ècc6 RnCÎîbõJ'æpmyjP§‰MÝcAd¯©)|¨ì2¡Ã ötÚ(-#µ[Ñ«–ðMlî /Åè¨X§Nb‚&6×LÜzؾR¦ûKqtÜqûšôtûš¥ ꨷¯Y 7îÉî5| #å]Ø ½ ü.ÎDÛ@&E8ñ`³¸°ÑS¸”„è)òÞì}âè¡íÍVjíH(nÞì1;Sþm•§Epª§M l?ÆÚ•ež Ðð¶ÓÔ¦&ÜÅæ £:ë´i®Óª2uÖdtÃd$ë×-Â5‡WðŸj˜ }‹ë_é Å&ßòO„wµà—éÿây|Õy+P«C:ã•qÐÏ’›a0ŒÊ-˜ÖÞðf»3Q@øŒ’/û|»nðm\ñíÿýqïu@l"òXF têÆ‰`·§.p`¥Ç®çÕþÍ+?9»ά…!²›b×LÙµºØç»Õê}»?" †ê2W‰¶ä*3[†¹â3´®Pø…˜aƒB4W¿¹òµòMQõœ@µZÒ¬ok¾¡±¹(–¹”äáœ?´dúZvõl¢Jð Y¶˜#7‚È>YRНh´¥?öáÏïIöÎöæ_Éö=à<Û{¶ÿ+Øþ÷Dl:¶šl¿`ûºœƒ‹–ÛÇ® £ÃöâûúW¦.d{y_lÿàdÿY®ýÕ(y×Þ“½'ûÙ—<¾øÛ\û`õ;Þì½kï]{ïÚ{¶÷lÿw»ö‘ ~Ën­¶g{Ïöží=Û{¶ÿËØ^Èßa±ó醗˜)΋sF‰™Õ(äND'å•fúQºáÃëÃON+YŽÛ¤xy(F¦VPt˜þz(nÉ/›òébŸé3¼m‘QN­D@ن튙Í™[%3”r˜ÌâôáÒ »µ‰Ï¿ãü¯î:7mwYz Ÿ–áM¾ePì.Þ˜n˜ø"™;ÇËC1 ç0;(Úy†·7õ¼`Ô€o<Èç77îÙŽq¥ÃÌO”È$®é}]öMãEDé§"±ðÔ çPÙ›/r©}Ðטjä«%ÑŸ{$µ~0^äßʳ÷ ž‡b$ÏB1–g¯˜xv¥EQ¼Mž%V'X6èÌʃÿ,>,D”Ç~¬›ÛsŠdµ³ͧGOJˆ…ÖbÈJ€º‘Öb´íŽÇ)ÂÄY‰rVâJüvÓJðPce"ìølÊ6‰ê’,c` Ð4´Di:ÆaØ´iG¥%îŠÒ4Ò(é€í7Ñ©¶½3ûÓgUÇ­>qÑSžRº˜4oä`iÞÈBd?ð# Ü|ÏX]xíåÀµ×ºqí+¼ötÝkÕg¯}—D “(Ñd}íQ“GU!ø\’s$ª¬ÐÛ¹ö‘h}íe€zßÏ×ÞþtÕ¾ÿ<„D“y¡ßt¶ÍK† ¡­RjV+É’ì* »ŠJØ¥ÿ峡gy~ ´¡ýW°0Ë2/Þ]é»Â½l¿$‚ù!Aš ŠÅ5árÆÞn«š‘33Vu‰£ã˜*Y`ÐòšW•½Õ©Û)‡¼à¦5J»¤›®5Ú¥Ú5#a5ê2 T d³ÖÖx%l©Ä2™£ MÃÓX½9lEÇ­V—á ý o{Œœª,FAÒl7øÉÌ5hxú„ÛÖ^où0êµ:jós’9â<*mGk2„ì~„S#î*ÏÏð³®¹pÜ•ü|Bðs¦ ½Ú¾dï³eJ¸F9¹pýKo «øÑrlÃo±}U¸8ÇåB¼(ìÓój`#ohwÁ<™˜Ã`IÝA:{ˆQ§=žÐ*ëGÏ™§Ó>Oÿøõ}·ÃÓæ®xZž¼ùUÿæ7Wßü¦c9æ^yú*wÂÓw •çéiyÚN¹–§ÏAx–§ÓqØhÒtT>N臭ò>UCR>ÇÕÑWÇàêèW§:ËÌÁsµçjÏÕž«=Wß3W'ú°Ž~^$PY¦¬,S7•P㢀Œ†1Àô#&h©Ÿºb‚J æ{Šoü¾ž5B­9§d?ÙuPôT}ÑSA&µFÇ,…\Ϋ¹>‰›Dé h“Äd°T¢ôyp>"‰{ÀÇô¢tuí$}5AŸ½/ß›m³g;·Ú‘l` vi5æ*Áø¿v¶uàhÖ)Ó1Tj~w”Zy:u<=oiТHn EÓ¬©/zÒ¥a”úf>'=³ß«_?<{ö ìØ3ð×3p$›‡Û—-Íâ ¢½lÖ4aX¼ƒ``” 6Y°ê»žë³Üų¸â39¬Íç¥åz¶6Ú›"› æ­/Œ•^†ÍšM ™<ø.-vëøhú¶£k»Äß1ô¢¬N®²ÕNãá›’Ž‡o=\%œ4¶Ø|ëØw‚†(!ÇÎY²Í3uuìÏõäŸR1”‡)'!z’|Ý SG¿øbÈ*‚x4Ô º ˆH?îV@p@øDr M±BÕDŸD6Ñ,Cê ´¨A@T H#ÃR%rHû—VœrueÏ2lÔvì´~{Ûé FÙd‡÷ÙÂꛘH9©KêlÙÑ7V€¹“A–ÝEjßÃùP0æEÊExqù -Ú"Ê¢n¸‘ ¯«Ìç®ojÀì¾à©VÉ,\åIØm®ôûûKvÎ@uʬ“<,²!£êZ$%fÂÝãOÀÓnê­‘Æefò÷[φk"ˆE²¢>6D èkC4t-×A±Yó1â9e|êŒñUîuø-ìì,xIƒÂÅ…Œq &Ƙ ë_„ücå1<íñ\ )•VgFUõ+³X2R.rrÈ|QÒjÜ(kŽ3×xºN]ææÓJïæå%w–*کˉNÂãú*ÕW¨²)ÛãŒCÞN æR››(å²;ÿêRaggFh¿šù½“ÞÍ; >M6¸õæ½3 <ã0hy½|©ðã-z)¤¨¯+”.Þe ÕuÅØ0'…âkí±ªù™Q§¼.®Bkö™’?KÇ´K â»ú}Ü{ô²EÕêK6£Èqv¬? 7%~н3zg˜y Fa`ëæš~p›3z)¤Ä¥åÏÇ‚†§Z.µãü‚rm@£PZEtiØŸæG%¨T&Å–˜4í3©LþY=ûReí§D%]­Õýêõž>ÅU¡ñN6¸•ÓS§,aO‘.†¾˜ùàõƒÁ)ˆòþŸ šÖ àç›Ãá°“òõí s¹Ûå­âhÒUwD¥ÃœÇóšÙSÒJ:ï‰ "&Ê/9>*]æ%ñ|·>:üþCþ8üÍÌ>e“ÃÎ,ƒ«€µÕŽØ‹wª¾A[rȃ>#0Ňúþ„OBô“$þ]üðh8zˆFA4@Òµ^Ñm ƒÀ X]ì…>õnÿòæ:´Á'ŠePE”ЀÂE‹Â‰À;î9ØÂBp¢ôÍ£$÷›´mŠâÇŽÅÉ[IÜîâŽÍ`³;·†‰©a“=SÎÄðÿÖ¸ŒìÐ$n†,KYËR•eéF–ŽênذôâÚ¸U[âî±£]aŠâ_—œ#fw˜ 9F=Ë›‘$.G0D²CLà‡ ~Ä„£'ñÛI¼CÞmˆè (>‡ã~ ‰Od3RšŽû·ãñ˜Z¾?ïäj-Ǫ‘rìêH\þgdO4ŸN]O $ßE.?#m¦ë!+#´6ò€+Wˆç‹8we,ø-Û•¹µZ”Þ¼h BI¸åFéñ t܈X,úÉvñf¾&³Ç?ÙN’>IGôKúÔOñ.N›Vû+ÃxÉNòj-GteÈË:´‡hÊåd¢á5%G™âEMkXNöZUQ˜Bwf¿)/ááx¤=`ê(™šr£ËÝA¸ì±|Ügù•Ó– NÀòå¡äûÖž Õ±Þ}Kü‹n~ÄPDàŠ[%ç­ÚR 󇌽!ÌHÉ^ô Äkm~¯Ï`ˆñðµö¶?ûáè!Gâ]ˆNRöhm~"ƒ _mß×zeo»½6»B*mùIé±É mžê¿[.–)š.%H`éh󯉅/qéÊÿÅžú”‚!׿á Þ,v¹œ7P ÐÄö0ŠÂYÖiö5ý·†W GÑØðêÀŸ6D/ß^À ^-Ÿ.‡<;¢¥jù Íÿ”/C^x´èôž¦àj@I1­DÊ• ˧ÉC£¥ÓZ: ­²$ü«ófíÎ÷ þwàè!ò þ ëäùí©•37QÈØbN\gc- dwtµ.Û~6üV\iÜêJµˆÈFelj¬Ýènj,wMœ¹Š‚R›hĆlãsP§ø0ب4g¼"k–¿fb\:¬’¶ZñÁ²lN­²UºçdTÞbò±àXù®ÂùÙ£Ò7¥”GOaÉØioVbû>¸£FAä¸`J *Š9ïãögðÐ_‡‡þ};9×á07ðq·ä[ð5ÉÅæp(e}0®ø1˜cœläZ‹Ä ÎQ9w$¡Êpªë‰-BÌw—„ó$¦—„,ÒYH²w`SЛ=BŠB½-°§Kˆ¸aCê&ªÒ#j¼¤í»ãS@=»ÑDl#“ÿûsÄOâÿªø¤}âÿ¹'šÎõ¤ê?C «Çc àjúö®¯|3c &'™z»ßéc£N=µ¥AOq (¿$mñ²póaÓªwÓóa˧Qe)@ÌI¯4(Ì^7¿Wž—/2í6t¦‘œ$y«ƒ"Z‰„¤ñ¼ÜÌ5ô¬{‡ y<Ʊnű=<ÜK·°îmP˜Û% úX˜ŠuyšuÁ£zΉƒ›yß †v˜7B_I¼ $ xÄqy?‚}zÖ’<ó6†žÖ\Gl€0+Ot r:Øû»wšÇc]/—ñÀO#ýÝ &w¿ßöæ`vyíïRƒ» (YwÉî–y¶87-é.ªRY8FO&"^"Ýyt£L©å/OºÛ w¿TÆÆ#Åhî`¦‘!0g¶Êlz'à{Ðã1 Äc ÔDÀÛÃnö=¶˜Äà$GÙcR$mxî*ýrK¼:ÒVî±oð}õs{ö½ØXøz…¬Ó²¯î4Ç8<ˆd§Äc ÔĸÏï\`ÞdÜ% ÔI/äÜÈv!]Vmô"à¨^ØãÜ:B¬þyþ½ì†< ÍI4H±‘6ÛFkm/7ٖ³Æ&¨à \VnŒËþ £ o/ˆ3t‡,c3l¬ÑØÎ↯ ›3ìGjÈñ©d9¹;ø|Ž–2R˜î‰MQ‘lTšÛ‘Ó¯ 5« Ö6ãF£öŸÞì,F!¢jçÔbø4Ëþ8G ¿%K-|JCW*ÒläŸêgù6Ðúý P¾5þ|=@ßš­ßï£Û/?šÎ™Ë.¿´dËhºwù͹ËÏLÎëtÞ·lýË_wÞ·ÇÓ¾ü¸R U{ùe}ùeëò¿5.Mª|ùëη—x\äL™}Vh³¶%qìÚã'U­¶s’rû{`.Ѝæb@`h¨D®ò;j~Æœ ºåÝA‚!OO¡Œ_i¶æ£œˆ¨Ñeß $Úx’`˜Ô5"²~ûÃpGÏΞ=;{vöìüÇØ9RÛèûOÏΞ=;{vöì|_ì,T²‰×Uçi¾„xÒ^Qݪ#ÂmnÛæÑ³t¡›ÖwQí°ÚeíŽE7iC¡ø8ú£k6:§‚AuÒºVÁ˜ ØÂº%Cü€K†Ô ÑÙ"Ü„thÆ¢ä FÃ7©äÞilK”´’¡ýPhyÎ$Íkèo4ëòÄ-MO/ǪÅÓáÖ ¡sèU¬ñÈzpF3T‰G'Ú­Á» œ©Œ uvЯF¾lßõæp|?®³mÕàtN£a‰ªÃ¸h¦\¤œ_œtÚ›ò¿T•¿B“IŽÃ¶f¯Ñï¹ hî¢[’ýŽÔý0¹¼_&çòy—Ò®m@K7Wlœb!8xÃàš[™ÜyÝáC°÷IèFÑ4ì}¢ž~DÓä’Ý.?fëwòÄÎv›céˆ×]úƒÒýTV…Egn×’:ȵț¢ü—G/F ï ×¡?Ñoj~vü²3µ“y§MÍ8ó2¼_“ºi^l|Úa\yX‡¾µËB`;±»l ¾ü4Óç4¬ 62óf«’§¬J³p.íw2˜dÝléK±+ÅvKx“b>¥Ž»›µÜPL.c†[àb†  s´ð€§™á±0ôøŒÂç´ßíB>οM7™ÀÀÙ{³Õ«âysØ™ƒ1Å¡©q‹¸¹&ŠŠ$ýŽÒ˜˜¹ŒD³ jÖOCVГ?˜¥=í$Ñ¿òÝË'mý¤ô"àŒÕ×¾ÚY¢¹«­²¦2Š´ƒ®Ã}œý1r÷Ä _¡Çg>mydŸé´î‘¦¹û¥|úÈžöK±nêÝá|Q OR4ïªÝ1’y»…ó|‰QXMB #Iúrw¼QÅûñ¯¤l3¹=`§àÅžÒ‚L'~=!²ê)û‘!üWA3=[ŸçiÓI%¹š €ˆz½s4}ܽE˜ (?{[‹BÄŽ­[ ÷ãÙÂuøˆªœìíh²^”~vO 䯗ý³'ë?~§{ÿúáÉÚû×÷ÍØÿúÐvÇɾ€¶}ì…Ë¢•´„è…¾¶1“v¾¢æh«ª3éáæ2lšjоd»¹Œº¥+,»JN‚MÑsPñé°½³aªNC™~r’²! ÕO‚Ü%ùîR6:$1{>K{íôb­÷Úx־Ġ¬G£qxÖj…)ð~Sc<kõ“ö´p¿(zxÆÀÓ :và™®ÙéxC@RëÍ{yÆcŽëf;¾ˆ;P\e#Ehgd5ít&ÚÎ6šP'ôlÂ$ËùPTõ+\‡•¥Éh[Ÿ43éÌŒ¯*öo5m»Ÿ»ÕºøsìîÊ•¶F…Û9Í{4…ËïoY¬Ì‹æ2U #û‘EÙûƒ­÷¾üåX4 ¯ÜöÌÍt´>‰aÚ@«Ç WÖå…)kòÂéKÿ=m¡mÏÇ $ci{¼!`F–Ξ_ Y¼Å®AÛè^B:‰ î$ Û®D¸î$ ð%žUß’Ô¾#´ýLRû8 _ñ¢@'“°ü~QØaNé„¡(¢Üu=éˆ1ál­”­BÉ…ºd‡!Ö‡¸7*q¡ÿ ŠwïÖ_æâ»múW›™:㟩¹u½>¸¢ùÁïáß? “À#ÿ½ð´Ö„<}Qf„‡?Ú¯²Ýìvï›·íû®Èê¥"ÁÊ ÐžjéÜüU•+DËÉÇPƒÖàñ9ÄvòCzN~¢Ó·õ?žÄ/½çÑŽjë’öTèE¸—ÕMé$žÔ›ž¹ï Å'ÏÜŸÉÜ-x:^þ4Ì=Òþ?{ï¶§6îD _ó*û÷ïùäs¡ HÓ5tœ»½ßÿ!>W•d|¤íî@Z™$Ch¶Wy©´ê„Ì-õ:ËÞs™Ã¦›¹Ã,¡q!²0-‰ãlŠJvp¶X³ã.é³3ã9ûq8ÛxR¸ =g{Î^àp4/?¸• ÞƒGv¶'îgã‰ûžáñÄ=‚¸YBÓ+£OcîX¯ß_ÂGfnïr{j¸+=<ž¹?U&‰÷ïÿñ98[:#³¡W225gKËÙrg«Ï±'8%­)â¬]`ƒ·¶²øâU€g‡Ú“êãìr¾°«ÀÁ‡bfúîƒnn~M~è³ÁŠç¼ð|Wú¶ŽðÐ¥ ÄM¿GÒ÷tCúÞ¶ïçó1“¯§“>äÊÒwÂ|y˜sWw %è‰Gci‚¥—P‰‰ã‡Îã[Z­eYƒçcê Âv£‰ ¢OZ<Ï6ù2^{ß|áÑ›5| þO /5>¸8ª–a4‡o^#ïóûGÑÃ3»÷ÀC?šÌîÓ Øý|Y^ü`­òL¶²£,Hy_†7ÃJøk¯`€q|%Ã;P¯?BOÚow|þ&G–kç7¨ñöÔGÚÌÅ?Šž9Û^ÍÏŒ†€m¯ÎÅ[R•i©VŠ7ƒoœu) ÃlT/¨dÑ¢ÞÔD`/àiè0 ý Ò¤½1¿ç í(¯¨ŒÇð•OÄÓ+*¤¨L1RTw«¨DÛ0ö E#Iñ*’eÒuB„¬)’5ÒECXÑrè¢iEÁC&F&J¦GÈ"4Dútq¾WG4#´tgpeÉVq·c´sò‘¤$Lá!$:À;,Ù£á‘Màgã]ï¢7 éâ§[Óö,ñÎÀe­Óðè…6&ÒÞ!1ÀyRÔï š±áLÙ‹±Áuº4;aOaR¡öRDDè½Á]9£*¿fÄ«JAWPÃPà<&“0¹"›”ì~3&!GL×{RH²\¯åv½w#.—" R¶"O›Õ‚—‘(¸5©O¸\sPG9ÚñjQüsY¯¦ Ö?WÙÉð0›RË\{©¬Ã0Aí&àŽf%þf¿/à<$!IT„ìižóhÀÒužeÙûút¬ ØÄ5† ÃØß›5ÔéÒFVµö#|E ¾ 8AqRŠÓÕböÿ–ËO¿ÃL†VT‰'#/Ó7Ô­¬›~;†çø{ý¾€óLu;!™¡ëhÀR‰“qvUú ‰~YÊa¢[5ú®ô DªÞ/ÑoR<Ô í â¤l»úZ©oÌ~>Gž~‡˜ { Q| Již~ïô^ÿà<$S )½Ü6$“uãÑ€[ú¥¹dÇúL2 _››ÁÁa~ƒEµ'HLôË—65ƒH¿I‹~ãâ"EÏÍ™¥Î”ð‚Z;Ây¡9Ð ü\âuF;2xQœ!4Æ8Y^*köÂ@à7öqʽ¢/4d6øz c’ô•ô™ö+(ò`(¬€ŸéL-]¡J}É¡Œžhw†6 Ñ2<ÀfØQ§ó§Å“”oI¨*80kYÛäÜlGŽ’Ã§¹ è‰Õk^®€V¹ÿÇàV¿ÿgÃ>ðC$ÿ¡A³ ˜§ 8Õ²4.858\Çtßy^Ó€èŸ>i}–:ÛÊÃñå­Þ¢OP[ÕUÊÀ¯q­E_BÑ;Ö˜5a>¶\€S- š_­º†–m¶áÛÒ3û#C>L‘F%Ñ.êêú)Ú½qnfžÙLÓ$œÚ ÞÓœÌ>§i`¡ãé¸>¥§=&0ò¼¡˜&2nã…mfOa=\ÈOCí²{y}ýã°Î‡óºþÖ¼Ž?ÀÝ'"%\âFØ(ʸ‚/‡uü&ëQª¼ÞÊ©¾…/nÃí[ðÅ'ùäy}fœj”nqúL}NÓ |½3¸ìëCv’Ç—*¯cê±V&ÉXD3%ã,ÿe{õøî—‰+òÝã(2ÈñIÇ*‰Sv¯¯îãQœt0–'ŠÉA ZÂë•Õ)éÏŒ¾ûµ¹’A÷êniä«põt?ݧ œ:i:ÝÏfH÷‡S®×F¾žežeïg]§{¶„Ä,hö¤MA `,UÆ-Æ·Ã') %ˆÐ©_µ ó¶I_ªU’v$tQ(ž —Ü|P ñßt!à´eEšËÐ+¡‰"“±á”¾*–G¦‡ÃÄ]¾ŠÖRüÊϼä?³•qÜ–§i8•IÚ8µØ}‡~FÓ@ >ÛŸÏ磔ûÓFoNYÞŒ­bÝ;ŽNŠGaR£u{©Ácj!ÄTW¡´æäDå\ø «¯ó(džÕ‡X­e 9žé¥>Â-èÍ¥¿×Y½¿öÝÓŃéqšLë×pš_§™Ñ4Ö WÝÅ¿œÖy3² ´ÎQ  šê»€øi›Ò±½I¥–Héme&Ùi~z÷”~O,à)ý/Óãä)ý+(ý’ý؉畧ôÖ…Ö…±Á ›KÕuƒìð"OéwJ_¦ÇiN(˜wâÔ©­W%˜±”>Ÿi`óªÓ¹øU¼ú´Û›ôpÔúBéœ(=N9M=ÈØ2 ë¼@ëoàu^VÅXY” úX^oûê\ý'ø³'ö!nUo”á-4M±bC_kœ1à5£BÙDõÞ~±ž0îLÓd_ý …wáä¸}´¯>›i ¯nŽG}Ò§ÃñHýRY-±óŒSÁh7‡=Ä^°wPsØôI d@ƒ„ˆ=h»x>¼âóó¼^51³·ÈK1ƒvï½Ò%Ÿµƒå¸Uúê©I­4˜JßYþQ ZO#wŒ°Çi²>Óä÷œª?žJ÷ó™ê3æ,å‹VYf2•ÎÕÆ Ê0–EÔ_<à9+×y–—…LÛÆ4³M ßÎyŒ÷¿Bžx²äùQe\‚žœ(8%8¶Ï¥i2î™ãŽaõ8ÍæÐ÷ã4oPu6Ó@‡þpÞ®‰ßs¹ëè@À‰¨3¬Z{C¥Y†v~´´íÍ” 6ÙÉüòô>(¹~FˆbíÒ(¤nHˆÓ¶uÂ]ÝŒô~e’²çŠ;ÆÒã4³HÓƒþhNŸÍ4Ówky<¬íœåã.kp:ƒY@4Ê ÚæŠÙ¯jË0`ö¸Éì8õ÷ÐV§F‹ù]Š÷Øxfbe´]늫`…^:®f/!W½;Êø*0=N3ä@öãÔkæ öÙLƒ†I7¡ÓÌ)íÍ\5º Sdx% 2X"©·gtFÛb½è2=´Oêµm;þœÎM™ú¾ Î’Þ/Q•EüSÔ˜¡Ò{ £g;BØ3ýœN|¯àn3jæfæ2 bzs> 0õœéSuâƒÉoÓÀ ™üdö[}>¦Çõ©øÀÝ(]Zfa9ƒ±4d5^ÿ¼‘ü„ÿÀLjjòz¸Ã]´ ½Gù7ñ¤]”ÐöôG¶'Éö襀›ºâjºJ«Ó·X¼MÚXv×dlf»«Q–&¯Xš"-7®b OÙuSx|ö•=´}L’%s0n¹·¶‡W¯a{ºJø«®v‘eü>(K&fI#3bZa’kàv1É_†¯‡ntv è…îúrÐ^n€îk §8®up¶;ÍÉîÒS¾]ç°^¬hØ6ºÆÅÿÓ "Ⳃ"¢E@Q«rµˆ°•ÃDʸø9Ìf]I]Ü žõî$übq ™dM <;êN_¦•Ãá1×)kf®ÿYò¯w¢‡b†O-u¾ŠqÓØÔÓQ®³Óú$·ë}ɸQÆâ„ue" *õJ!8èL4(ºû Ù!p L\0î"\6Ú¶ïßò׫†3ÔjLËjÔ§p®vëÛ5ÎÕmÄþ=ÐFèÔÝÖŒ6Ñp¼¨«¬IžÌ¹Ñ+; ÌH¯=è|ö=}¬Ú=ýxyzM¯Ç·…åÖ›¡0¦“ë¼phßßvk¢×(†Ð%ü•„PÝ_üKø Æ•ðzv-…›XÊE.kä»ZP­h° QD,Ì4§i¥@¿1s‹z·ï¿þ{õîî ž’ƃ¯¢Ì,ÔËžxô Ôû-ï÷¹ñòPÌâÙV¡ gÆRï­£g«÷y¦³ƒY7<[N‰"<ÈX­½9z¶Q‡c›@…>øµ!’+ï ×_:Pž\‡[ˆÔ.x@(V4"ˆÑM®Á‹›¡CGß^‰©ÜÚ@¢Z#?2üw¼@­oë\¯ój÷ª…õy­,Îâ´Ú¹*D‰¶A­ä¿rÈâ@Žù"iåà þÜäžZ?ñV•ôO­B­}xy$¾ µ f“ ùrŽ žWòý—çØöšxx˜H}¹jsh±—î.Å Ò@ŠjÔk‚40`”Þ×ïi'P“‚,J´öàqÔ n !ã¬N®!’kŒóq Q_,ŠW‘6PiÒ÷cûzz»cr•ž\ïýŽ–÷|G{r½(î’\Yq-ŸF±á~¿ý¼cн/ÿUúÐt;2™Ò Â'–¸\®ð)|4º½ß{|^è< ¨0kŠ ·ŒÅPo‘åzW†¹¢2ÌÕAÀ–V&ˆÊrè›Ô ¢Ù¾‚xÛØÓì ÒžÂ+ÒL‰†O¿n ªi!4[­{öÜú'ñjÁ员îÉv q{Áb¼(ÅžÌëþ|>¿Ô¯­\àÿ²5«û±AK†…ä(UàÕ,‚`ÕÌŽý-Ó­ç×?p¿v»±ž_ï/Ŭþl†m¤h $צóÊ”‚®Ìž\‡ëzºQ ^žÚ,)ZÍü }py$&Së\HŒƒEØ55Ål¤0`V(ëbIc*x¼ºl0+Ǥ‚Y9µÇŒy9¼’¡¥âŸ|s?Ìz¿Ä (auž-‹¦ë!¥Ãq ±n;ˆ•-øJù=³ìÓcÜÛscw‡H<˦®3‚EÂɰ£‘ïBÕæ¼}9¦—î”"þ—í!à…½ËØ*Öe¡í=lª…IeNˆ ÖeËÜ@˜ ÒµbV¶¾-~þñ|õ6önle5ÆSRîÄèh ¼~Ýsí7¼¯çÇËC1G:AЉe\·\ ˜½ßÞÞ磮ķ ùÕ%„=:Ahëdë¹+˜ÄÄ®è\Šð³>3<3¶ŒÐY¾É ÿ{0úBÙvD‡Â;ÁxÆÈQ£Èx;²UÎ\À+œx;FÞnW9'ûT¼\å¯T †ÌH…{­ŽÕ™Â0z>¹{àá›ÙÜÓÅW#ëᙉͯ9à³ˆà“ å”—·59àdz®:àQÝçY†IÈ[AUëû.þ·@;*P~>Ÿ–žÇ™|!¼YQ¼¾k'–¢ˆ7¦ À£ÇÕ¤Ôyœ…^ =>óˆ&õ¤ ŸJËØê•ɦ¤-Çõú˜Bã¶sñGé*[Ò¿EÊA ‚Æäxð¾WMÕåoik!ÊßA»Ãû.Zê•gí¡>šý(X„´ŸLJ¹Q¸:Ó§ê1N@7k·ê´=+Ü3ˆž¹d“&<-6ŸìhO4t´³½ÁIôÇìX|gÃÑ¡‰$cË4¬-W¶¬¹Ú‘ëé&+tµk§nß×Ë̳öÀÐX‚Ö—¹º¡Â(µ–Ÿ®™x¡äAàôðLƒ‡¨û <³ %“ #•Fç$” ú}áïÐMåIP‚ù‚ðJt¹WÔ«ƒ' x¯® %šÿþqòÊaæ¤éà°>B—± ƒqh (x-ülòvùÝØéÓG*DÏôïnxZ̉”=Ù€²Oké‚«ÓÍVžu;Á;± ÞAÊ‚°ÃÎïâov%H(õzüáîÁ¡,ÈßÇæXxE šÃå”IKƒÅpõ,wÏh<ïqß=žž¹S½S*›¬ÁS%ññŠÉDC@Åd¯åÛKNÃõŽrSSLX”aý€g,HƒºÃÍ]jà%Å$FG›á|½€sñw'awþ9Gjª)ä½9w§òôr|=äÇ÷ú|Ô0e¦L²8>ýNëÞ¢‘*sRq òø ƒ•I«V'Ú?‚dïï­œ ¦l`Ã]-I0 ‡5·ì=1_ÿ8 zꞃº[ðÔsNf»'2÷f—eÙ{.åñ°ëÌñ^², AV]õñw‹qÓ$«{ÿ÷ÖÇÇ?~¿l}‘埾çUyâ~`=eß)eÿy²·’uS_è‘\²c«SèÉz 9i傼 C¯œ2:Š¡ýØ]iÝž·¿OÏÞ_ u×ô”Ñ÷TCÀ¢ÊƒÞÈó&C­{·Í:Š*£ ûoÖ,ªŒ‘ºŽ,èW¼¹ÚÊ[¤’o®xCðY÷¥{ðVŸ!ø$ñ¹pzxæñÀûÓçJ7™lÈág[I™Ÿ_ä±YJ ƒ¿{kâCHÞn¹à<„ZÊÕÕtñüîkâ‡oµá]ϱŽì"|NÍ*tOJô¤ðÕ zxfñ»¯ÀC/˜Eèžf¨œOc–à˹ÅÙ*)Q6 ³¸6«&Ë®ÝÊ.œì‚­ZB? ì¤MÙ›×ó¯£WM†˜ª`ôf:² ÊÚ¢+á˜$¦ùO§lŸÕý€ zx¦ÀSHð4õ“i”=ƒ!À8r(~?¼oõFoÇÍúBÙ‚²JìDrg«¦ÒÍp€#¶XØÉ P™I.’I–¬ýóÝì¼£=ØG#P;K®èú©KêþçÈ$¾ùÔã!ëá™Åûî§%—Ló¾§õò>­¡‰ÉQê,k5ŸÂ.‚¢§ûkÔj>%P0á ÏÛÛü•oÌñ9ðÞ÷Àr<Ô¼pAÆUGŸš*ÂóxßÕæSÞû¾{=<“k*+öüðÌhXSy4/‡\eZg*o5ìN\ë)±Ìx-ëÞw°¨ÍKж—¶õÔUœ-Úœ½~S¿oàìô½õ\ö•±ªÀo1MeŒÞ5ÜžÌ0ßÛ‹Üâ·„çst§ëðÌ—Í=ƒ!€b¢ôñlPåÎduÐ_þË~Å@×ËUÛþS p(Ɖšm»Ò ”çphËÅõ”î4ó]L†yå3´­ª·d‡¼\pfÕ»ý¸…ÇÁÐÃ3Ñá¾ OM ŸæpO7p¸_ËI &Ûl›ML¢Œ¯z⓼=£2FÂf”SÒ äÏ?¿¡…É·&lÀÐêÄYiZ¼ÍxWÀöãcèá™A!駃­ÇötCÂÞ¦çÃ)߮߷úxh)$ËŒ$íŽ6QkžHÛXš#®µ ü±Í¸/vœò ÿÀ³„x…­¼R.T! =_»šÉÈóõÃ`èÕ‘¹Joªð@40íò®ÇóõtC Ò›í!ÛKy2æÔ=Ïlf ‘>â^µ³·©=7ßô27_§‘üÏ3÷@³Âó‡¿҆ΠÆ¡¦oÐD3÷„™ žº¿DOÝ3å´ái%N¤î©†@ù#RïåYêÓö”vS7Ïh~YG“’¨Ù$SHp8üòŠ -žwêÍÎÚæïdm<ü"ø øî¡twÚÂ;آФîj¼ùF\ñ™ÈúevƤ’˯nlÓoÀfFÀÁ ™Þ™Cvp™€k"ñ‚“œÏÍ’ŒÛ‰f"caÔ‹'!á¯1ÒlU¼RIàGAñ'‰ÁWÍ6é>ºaümÃßÄä¨z<†Ø)Š@+»±3¶;Òffÿ{|·)ïà}5ˆžñðt¶ƒ§s2ÁÿžÅ ê>äÙ»ÉôÛÛa[\´SEêfÀÚ,‹ÓUOÁ;4,¡t†¤ÂÔxôÂÒLz§ÀëßjûËsöÐí¶rû,<îîÒµ¦Á3œaz0¸Ü¾+÷£`èñ™C3)å‘>|,qߎό¦€¢ÉQŸN®S‰)ünYéÊ͖Цê'–…­üíFÅ;c8:8Š÷€c7nÖ¨ç(¹AæþÖ”}hà]ðý.?Ÿ^ƒGÇXUÅæq³ÅçÞÍ~=<óÈ#mxJÿz<30öyó¾Î2çÇÌ´kn f0{’¯2–F¬›LI%…&‹'¬¾?›·'á€ð„Xˆ° ÖE4noßCå™t€àG)·râµÁ¾Žr$“v²gul¤§Ì?˜¿ü.éÀ–Kö6Êäò·÷ƒ^¯S¢L[¡¸JÃÙ/šYœÅiÀj´7G8btAv¶sJ7“6oJýƒÏ›ƒîBepcÜ'«±h×yéüáyóÏ#æ/ÿTÞl\~ÌŒ¾7?x³ M§Ù¡äÍbCž‰”!iFYÓo«¤ÚîÒŽ4y±•3À” `Ñ‚3ãgF?^ÿÞ‘i Œ€ŒàLÙ² Hi»ÝP&OB>Ê”V`œ+ý\áL£& {Lÿ§*&`.&€¯T¤qIÒ°há¿k·SïiøýÛ‰Sõþ³Ë^EîÚý{GàyúœDŸåå×ã.ÿp ꜞtnrM;uð5a0V>'Î í3ÌþAotù/ÿáü,zbUüIì +~Èðƒ„ý$†o^ÒÀ-¾ 3x}Ü£ðŲÁζ’fØ*©¡èŠðãp=;{vöììÙÙ³ó}±sòƒ/·{¯7|ha–RlZf´KJõ‰/ûAÏ_þ±—Ÿt‡úåOGi¶ƒ€,’ëýÓH{X =D=‚­‹s-TÆÔ‚A¤ôêµÉŽ©÷ÀóçZbòÄJ§T³{·ì‰ïÖk·÷„ž¿üÓ.¿MÞ…Ë_fñŽÐn?²@êe}<^µKˆ¨®"NC7ÅÒ ®Ñg´Ú…˲t9 œ*è“·è3ü±ÉÂÜÓçà/ ~"nFÕÌôiÓþwyÌ=}Þ zþòÏqù«°ãéó*HŸ'½Å|UGŸeÅDŠîgµÉªnÞëÍ1)ÏŠcgˆí+4l1h¼û½—ñHUÃNU’5˜nk5kÐkP…+èìÀ\aPsݨp®¾¾jj¬è2q’öó2è ¬ù!8Ý·íd j·m?\­Ûö>ó¬9Ùél]~ØÌßΚ ¬¹Ù¿žOúŒ‰V!H ·r)ȦUQ*£¨˜âìjP[Ų"¹N9e©±Ø7-¦¦ò,É’4XÖøW´z/1Ý5ÁÁÖÀÀû®,ûÊËì¦5 ž3ï¿0&EÔÀ_ÛÃøùÔ§¼Þzþò¿üi7 §·3ñ ¡J G"~‘µ*+ü‰}ošeX¥ÛÁŸÕt×Ú,=zþüËo`ÏŸž???£Ýê?}ª™†š‘?4Úú³ä`Ÿö~Æ~ Ê%U+Ðð§Æ”!<ÜÚ^Ra²’êÞKÖMÏ›6¿ô —}©¤ä‹ èÒÌþ$–üÿ~žXø$þo)›Ú'þ_/wªÏ»y笼y¯ÃöáÍ{ÈyîÏÅ©½üµö·k§€„ò­ÇLž·ëíû‚ÁŽ>vùU˜E $ÀmZ/÷û¸ç(•JàK£Š" ì” D©Ç"‡YX<(>‰Û¤,VÏ `NœuMÕIœ ÎrÒ €ž£VvU¬w§WßO`°B‡O-7l§£ÙÃ[‘ãiÛ™×=^yW÷~ô—ÚåwÑ-iÜô¶Ë?H ué,Ïô®š)À2¾¢P—ÈD„*¯¨=rÚwC̽2 ,™®+ó;ãXy2h½,r­ñ ˆ™}0™²'yÒ¼ÄüåŸ4I¨\~›gui~$FºÖ…Ÿ›åyv!Í(KÒÂNÌØ2IÝ]¶"T1楮Ð…ÉÇk2Ö¢ÍHÿ ô•+Ïš¥Àu.8J€·+Ã]Ðí¬<±xk>ùÛö ó¬95«—l#–„†›ÂÉÔë#%õ;ü=¨Ð ÃûŒè“E6»ß´åÕ°Þg@©Âvˆ;²ûcý_t~»ÙåÄ.‡ß<­ª‡‡Wp†£žê$Ï9öéÁùwïDÄŽt_èùË?þò[ê¬]þqaÿ@BÊT ÿßÕÆÔ‰›Àˆ!zpUk%§¢‘2µÂJSÀ؈É_ÜR¶ùÍ“«¦áù³º±€Â36Ø>zÖ=}eÚ¢§Ì?˜¿üÓ.%?Ê^þÑ[úë@â–þMóõöP ½‡…«¹êÙȯZEú:šé×7ò—R¢_‡±%¦ß15îði±3fÞžÔü‰…•Ý;óEú÷ƒž¿üsÐ']~|ý¸þÔ‰Ax)Ïgy>Ôzœàž²I»{T;¯³Öè„Q*hp¥Iu²ËÍë³'Ñ¡^Œ±¯¬¨ÚzNõ[õûBÌ_þ9ˆ³~ùGÄá?ýÎà ‚IY8#»Uïh®dÙ&MÆ}uŠñùýì9sðßIT¬3!‚Ô5òÎæ!æ/ÿ œY^þ±s÷‰œ™½×ÓäYØ;x/lå{rlH Jgpeò^´=dëË­©*¶¡?&M9„4Tõ¡1Ⱥ1x `€õ ’¾× Î¾9Òè0ÒTÀ³«Ùœ(ž‹ÁKÐa¹mõ ±Õ¼Òa¿ À»oÒ7´Ôë@éƒ;ø# Zwð< ¹;øè®ÞÁ÷ƒž'Ð9œÎÔ]þ1e¡Ã€\¨óËf½ÞêÍ~›š¸&P >#[*„«…ÞPÁ¿‚Ê=;zñ‹UÙ! þ„ÅK]µ(w¥ÈÑ"c¢*Bûf1B÷!fð4EÏŽ0<4 Û›¾Ò™œé#Ðos_nw‰©ñÎÞTívwö††Ù{»£½šÏ¯°4–ƒÄ-{3-{3;ý;®fO¼Ý©ª¤!dq§*ŸYÉÕבsdqÏày¦žÄÔµ¼UºøÀ¶3ÃAMâpÖoF¿`=•k¡bÕ«ˆ_Wå~ŒE–‹‘˜WUÚ7›š´r;ã XžÓ›°Ö5J‰ïm¦_Ú>­ÕYnec¤jP‰±ä5†r„Øæ+D¯Õ›²òç`ŸþüH6VŒP×ÐØ¦XvËÛí¡éNÃSd§R‘á)Ìè PŒ}º¼ßuÛ­ÖW3EßBö¯®Ù[Í1S]ž|Òø.EÇ‹®OÝÞt‡g0”©oQÇbS#ˆùpºÄU´ªqÇ€y~žÅ“N Uò¥Ç©ÆI^§Ô¼g{`h‚GèüæÐ²jèaNâ¹Ç {]‰²çzÚIÙ;´O_Xýé%3ÌÉ¢…6"vï`õžI+"tóºy+BVfæ¡öM_‡Ø›m¼#ËˤÐf>µ‚Á§ãÞzþò¿üióòî„5È©ýXý˜V+D9s°«ÌJ— †¥ˆÎ °JZÄ3ßî|aíÐõºœ4Ê ¸s¦’yμ#ÄüåŸóòWÇeÝêà~¤ÍÁ•zÔº:(˦’u6ÂZB+¬Ö¤¬â¹øƒFXì9É—ò“iS]5Õm²“65‚¹‰6›»Ì Vj‡ÔøÂÙ;¤Í9€ªÝ·ýp]½oï1O›Ó.?ލ»›£ç ^’2p³ìôž¡«¹B]vå&dq—ãà&? æXhf«:ji»Ç_ HÜ]µÒ.”îÙŸõÊ0xlÓž°$s’x)áy>àÂa'&T>Ð Œ &X#¸ä/ØÓ–N6Sš¬L¹ ªu%N ad…p­Hp1xÛá—ㆇ¡y¸oF¬KóPÒ] ÆT â8ÂIô«vVWd·t^šîSخިKÒùb¡BkpöC·ÁÅ~º2Ñ‚§puIhàÜQ,>¸‚ÝJ£ÁjÝãóW~æuéKDÏ|Ò«øÔ{ÂŒÃgFS€IižCÓƒ<Ï‹Ï<Éü=ß®¶ _AR0‡p™(»Â×1t1dA¥{LJù¾Å¿Š7„Nð"yÛ»Ÿ«ìÍöǶd>é. ¼Þ“’=|.|Úl„M͸<_? †ŸIøTù¸‚OÚñk"_O7àë³|ÑG)÷ééô²‘æÂ×ܦ ÇÔ‚¶ƒ°¨±weS„±Y _]¡l¶^­ÌÙS6,¤´³ë1'ÚNÛd&Ôì‹»ƒ¥aíø þÛfkM¢ì¤5S†{þ~@=>ð±½zñi0øþžÁ€¿)îüü®³,=ëõ®äï%éÎ"u".üîÕè;Z0j ¾DöŽItæ(šÄ-$oÑ"ï@Fo¹'ﻸ×=y{òöøxòLÞñö—8+OÞÚ|+ü/54hãÅ1¼F3’·¸p·ðÔý@pz|&áÓ%Øò¾*>Ó©{Sê>lö§cvÞè÷LçÙvWÓMX u{˜ðÑÅÞÜÍ‹,…¨T[}Õ÷~Öÿm#Oßt8ßþHSQ§±ˆ–n8XMáïy‚“+›| =>Óð)Iú*>¥Ü=Aëžl ÀÙë æS®÷£ó¼x®älAíÞ(2™d" —5Â^ÙqA¢ÚìMP%_ñ`…t´unµýÿ~`ºþ2¶Æƒ¦ÃÒÔñAÓ¹¾öHáUh5cØzÛ™dµ‹ýôµtðé þmø|1]W¤^|ªŽ÷ºžl @×ÅÞ˼xÍZåùñìèš%Á¿lÏ–±Ëii°ºtÅ€øäB”—Œ’õÅà±I€¶ãEØÎ(ÑËgþþÀ´ýU¼mRe±þ "%iû7—íS DÏLn6‘w/>o|œª=Ý€·7ú ßv.pwz»¨Ú8ØX,AAÞ´£ëy%Á"ixÛ ŽÈè.@jw5ØMÚN~<Ÿƒ§í-ÊÀª / ­Ês(wµi¼LcÜíÎDÀ¿ÛÝþZZø|=>“2·{åì|¦©#ÓMm¹>œÇ#9ÜÙ¶š¹-XP5ç=úµÉŸ MÿØ ?¹"D»à=Yzʲ¹†Ö?šþƒ–nw…g GR<§âÎfÊ®Nñ”ý z|æJÞ®Û%>óåÌ` ¨lÏÙû&Û˳<œOz]B. /›‰ždAÒ,h!ÁÝ7É»/É6¿WG¯Ž ‹_Á%ÁcS¾ µ0:MüøøB£èìf©·)'é÷å¡ðDþ(Èz|æ”LÈóî§LN4ŒLžÎúøzÌU–™L÷Çc%2Éx¤¼ð „î!A£gEmE+‚ LRb™&"°e8í:œh›¾î3Oåƒnxz,Ø>âд»‚€´ý ÔÉÔîwðÄbï~?ˆŸÙYGX•ø´½óÑù$MYÛÈí.{KÍÙ˜—m–Éj> ÖÆÒÉ.‘›3—Á}!í‚«yT6ô&éW¹ug¡çì)¥¿Ôíªì.JJwàø1X0;]2I¼dòˆ z|fÊÛ®ãÓIå“$“馜}2'óö~8N™>÷uÉdɳ¸?m›-‘¶kï4ô5ôK&Ñ.=f/ž³?®°Ã ”ÖÔðÌ´£ÏxŽ ¯Œš³}BɃèñ™€O+ ÙÄg>ΞÁ³ß×òlóI2s\WË$Å2„~ÔIg‡Næv•’b¡Ì\çì`½óÔYšžÀÙº‹³zãpé4-cM ‡©ºi¡)(Ü ål ÿ’9éŠ9ɶ9aN}cÛV5'J¼ÇÍí¥Œ²Ë°"DQû‚¤Ñ2í° rc=Fù_ù˜‰æÜ¬» ¿˜¢ ÂSÌç¦xdh=“O Xâ—xÐ.wëG0ùl¦€Ý¦Àsõš®wêí˜c·©óû¦±„+šÖÂq΋ ‰]4Ñ…¹©.Ae–"¼"pƒ¹Êá¹8F”Ã]Ü0EӲЎ+Ògp€cMšYˆz`”¯BœÃ@CÁW —6~™#Ö¯ìUz/€ÙjJ-íÍ.5î\µ;ßÔtïå?ˆŸéÉ,×𹬠ãð™Ñ`mлÜåŒÎ0¿±¢ÌðUœ±”'C7>áBØ…GÏɯ¶!LvÏë7/Ë ±%¼"ˆˀž%F»Udðà¯dOØ ¢ÇgæìÃ2ÌYâ3”>ÝÈ™?/Ç£y?ŽçÓºÕ%Nëo²j·@á öŽM®è2áNot²ÐS£Æƒ¤áþ¬Ak2DC¨Hºšr+)ž(C…MÚ–!Ù€ ûØuWUl ¿Ä(²-eÍœ¾’>Ó~…Bs1d2ø™Î¤!„öévQ„‹¹Èt†ÖÂàÿÖ¤h:k+:C²êp”`Ú·Bã9Màíð)d½¼},¸÷&àUã…ù°³¤ð‚ÿЖ‡Ñã3 ŸW÷ã3=:Ù€·ÇÓé¥ôµuZò6È"Ë$C7;XvˆéÂNw Ëø'ù׌*3‹'W¬+e|}ÞÏÙÃÌIZ¡ÍX§!<6ÔÝà=—o<ûy8»Uœé9á¾AôøLç¡‹7ñ™A8ŸÍ€³wÚä'…•™»Î%gCýri+ÈÚÜöA©³¶M5,G¡±%öAI(?\ m·û $Ûå³Ú§mý½i¶x×Öe\šõ$M{6Wû6¼¾-|6ˆž¶g¢íðAé{’«=Ù€¶ßÖZç—‰hNÓÆ¸%›¾Â(ÉÒ7ÚŠÆËȺÛÂ" ÞæÉj­np·=o{Þ~t^ð¼}ßøxÞþ˜·½b¿âa¼}ÅÌ>MIF¨µ›€Ñu‰¦ë+3eþïò˜W‹n*ýç/þõ7€ë©t >ƒ¤æR¶˜D¥ÓMgÜè“qTšmŽŽJ#‘±U”®’,æØÅ•/£6—2¶HQ°`‘ë-Åâ‚]W uqåËxÁä“MïÓUÓÚ´µ6:1c( KOj¾%´]wD‡ ‰¢ÔG ¿Q­!ý†Ì‹@“¶FóÂëíÌ« lÃ[1"-%v~AÛ1”,OÖF6Fd.V… F©µ‹=Óacp[Cî/¼ÑÞYðbЏØ3¥nªŠUaÿ8@2mDB#×ê6èc+H4ê6PµE$t âN$aåVÜ@k§ „ƒë6H8RíB¢“JãàÅê9Ø'A#:}Ø®ó÷E¼Â’gN¥ÑÜyªX-°bšCy4ÿµj–P‡ö‰Ðz¸¼xQä ¯c[P…w³”a1õ2 ¡E)Vp—ü"OÓèĤš2Ló"œ¡(b¾ˆA\/¦d¾<ß6éÖÓ·§oOßž¾=}ÿyúf2~yN=}{úöôíéÛÓ÷ƒÑwøã%nëŒñ7Ó·ôôýPôý•xyúöô=ˆ¾‹wD_æ}oâ—Û:ÑÍJßú¾èÛ{ßÓ1òÞ·§ï¦o£ÇÅò\p®’ןc”¿ÎÿJPŽª¦ˆ¶XÀ·ýˆÂÅxâxúøgáUGË“÷“·ìÀ`>Ú ^Ýóà ”“ØÑ6_´mÈ×0ùÅtPw\R7$èqGÝË…ˆb nÖh­Þ~mn«ø7«'ÞýþöÜíÝï{aðGUO¾RüÞ‡"Ø–“CÔúÖM³Ä+IfIœ‹ï7ʤªSƒ6•²i: RUè›ìÐtØ!!~ üHÒÁÕÑ·_¤±nÈ¡´FˆE´xŽìÅ¢"ÇQ$&,8ƒÐîíu#¤âÝŠÂ:é[ü?O,|ÿ× yqOü¿®4lvÉǾár¹Žâ…\æÃ²ƒ\º@-Éåqpõ(|]<z™™¸¹ŠL#ߌÌ,ð#7Ë]–íeáÇŸ渮5‚ 3Æi~¯Hƒ5/ÛÔ¡ÿÌ€¶i~ons£ l¸ ~ëŸÀÌwà6#œ!ËcÁ­²¡¦§š."j=Ìd°!w2MbÍÌ“àfÎ÷çóù(åþ,õY—-ºÅ¿@º#ÃÈ!¢Œ×>FØ1‘’]„•4@ܼð’‹G@çHÍ¢EÍLþ'~퀚ïÂii?T[u1ue7:Bv§™9»xÌÃËcïL?ª™iÈTeŽ+®4©ß#é ðe¯OúœgÙqm^ßu¦eGäLs¡qbX˜Q²W 7·F†1`ið¦adXAÙQ‹²ã¿Þ%C‚ÓµFjì²+ü±©Û•qA,Zµ¬-™mI:{ªu;6vÔ ÙümIiªL{€•5C’Vl‚ç …¢*›nCªµ:– Cã¥OS˜åL¿¥]”1˜§í&I*„¶Ç‚«Šý˜N¾V.iý£ê=·ÿ˜ª·ÿ×CömPýp¨y@¦<Û ÈEи )`Ãx†5¬k•gzm‡Œ‰%'êRŽJ+H8dê]–Ãx•yy¼ˆqÌcH88Ë­ñbZþêÜá™·Ûd0&nh1•tb¸/²‘f\{g`Þð‰%Î;ŸÂkcvý=ÿ§ô€L„¼á 5Ox< H8;é<˵É^w'GÂK‰Ã Càý&5 (£x¡ñˆq8ŒÇÁ‘b!rpÔâ`&ù;ûù«¤»9XQŒ3]3Õ6Lîiné0]å`SÝF]³uÕbdûV(7ánSyè¨áðð#™FËbdËbt7vFޏwG£Ô¾Í¿±ÚmþH ýAÞÕÛd²ó;là]ó²[oß3×ï;Ë»ÿºÉd.ÛŽ—õ•¼¬ÚŒÊÊLnÓð„pIyÈØË ì—¥û\«äŒkD[_úÂ㔮ᰞ†/]éuõœ˜ÃÒó¸çqÏãžÇ=?*G»ßoæe‘ Ïã7R‚‘ŸÎãÿ+Vtiº»=¥ß ~žÒg t ~¥ÛRú¹Né¼à_žÌCëŒCæ4µÂúˆ×/ˆ]T‰ºŸ@>5»ÎìLâ_yèóªÝŸj‹_±Âê9…Üs 'Û‹7=ÎTóBîBâþ èãPó€LŽ3v¤~Ld ØgÜî³,ϲì=¯ÅY)õ$dițܻ¬!½J @ÄÐŽ0Ö²M‘;Ú6úkžz=õzêõ€|wê÷¯ÿ¥bõ*{YñWÛ„4ý¸fB +Ui6x¥úÌ–`Èdð-.SSÒ÷âT®™#%kZƒÑ-k¡°’ÖZ4mk{ƒGŸê¬…Œš¬ÅhÚ×ÖRæNºÃÄ<¥ðȵ¦~\áöš=1'Z°'¾¬Õs»³ÇÀR½³g„ÈQÅ@uÝÙ÷†•¿öÓ®½U!àÚ;bðµ!&#¯ßSýzXç6™¯’,JWÀ–¢xT8R@ÑHTK@æ+j’C1IÁ¯ †  7 ­#ýßøÕSä è%ý”Þˆ¯™J‘ü)ñ´x'øøk?åÚ_ îðê¥Åë-¾¬_^ÏÒÒ"¶ â£VA]¼˜,¨0#(Ca ŒˆŽd1&ú?–w禩.bÔ5‹€ã¯XúÀdŠö"Äþø¯.+PƆSd}ËaÐA‡- ߧ¨‡í ŽàØc!«ÑWbaá¶&€ýAh¿¡+û i±û Ú&P•’q{ÜóÀ!CÁº´ç†Yî¯ m…4 ÒÆ›†Ófì_kñÄù‡¼©zîÝÛªÞ»_Ú?ׂ`wÜ-˜˜&]|ªûø”X¢O¯bb›w¼lLRámpbº¾y×->¥Í{'&W6ïºkóÞ(ˆ+11eÄÊ•:&Ãyv äÅ>Ó§4ÝçëL¯óÜœ¶›íûÇÃPÿ6hGíû9ŒäúÅm‹7^½DÙîòSœ&ãf”Íæ Mœ™î ¸píåpR@àzÕý ó PG™€œ°,HÝtQé pŒÉg^¹Öq(+Àj]ãŽE{¡].ãÄZ¼oº]¿4ø¥Á/ ~iðKÃ÷\˜Ì̯½_þ8Ãø¥áAóKƒ_þÊ¥A<óÿb5Viÿȸ¿Þ ?ßš%²±'n°O þm)Ï^3z~Œ‹K¨’G3 ñž†> 8É$LÒî_”»A˜Œ_FB9!G}ȶÇíñüþ¾‘Gœ@,–0#˜Kiœ¼¥ä ¨Q1 ì^ºd®‡)&AGv*dƒŠ+AÏ­ØnºóB:½ô«Æ¤+Æ„a-/„虋™†¿'û ¾ °4”݃Éß“„¢@Q™+T ïǬ÷+Öƒïª[4v1Gx®ð´ò+U[ùÍÇΞþJ/ý6¤ª·ý×£võ¶¿s༗~§^úxÈ­—¾kxéñÒyÚå8_çbã?JÏšîië¢ö§‘s»m• úôn¼(?°:;žÆ [Ǽüš–gŽ•6Ñ,Þy´Í?º dþÚ%Aß#³ø%áAóK‚_fYP ïcY·y]ÝyzѦ¹Ï4d˜Dvî§m{†›&Ú Z¼@ðgó˜Ì'Úôc‚é–#D›Qƒhs€Tž C¦ó÷õE´Jdä ‹Ó€ÕYØõj-õ`áçÐDŃY8±,¼.Y8X¿°¸»KöíÎù7aaú`Mê^3t2ÑЇ¤ËNíXæÍi`óúæßó†ÿÜ<&sp “N-}¤r>rTγÔRô[ª7›Šr¾L œR sh×*j4\ø¼¬NÃ˶kE?YÂ+h e”Ñùím”3¬¾+ —‹'ü ?Ù­«‹6ðSᙎéw†ù çp† õ-îùOÎ;ÃÓ0©³m&øüÈæ(ȇwïk}^«LëL¥;äáóK¬ÖŒ\ß¾`™‰[F5RJ‚æ l›Ù~}³³ÛÅ›r}ʼ_|‹ Á7ÁñÂgÖ[€Á×ábkÛ‰~q¥õª÷‹ï7É~q&’¾“‰Ÿ6šz°f©Îóº_ÙªqVb^ñªÃ)NÀ[ŽÊy¸íIåÁZýøùß²–„G)'Æ 1pwJ^ GRJj€‚@@€B¥@7aCÓ°üàšÕ˜ŠÕ؃Çë†Õ˜KÚ°1¡ˆÑWt„"äаᶇ›MS-7àzš@|ºùÆŸ¿êÿhz2ž/€X-g&cˆ _¨½ ÓJ‘Û ]ø/Û££ ±¼½ˆ]Üpu‰$BÜPØdíàµPåöùK<‘beÌ0p„qEû~J·è¿‹ŒÅ©ÀïÄÉŽí(¢©äF ‘,ø*vQD ŸŽ}ì˜GÑFäëL¾î¼£~ÓfÏ ©ÑtoÅðÂàa KŽuÔ«ÊIè=õûÎc2‡rÒ‹I:rRúÈÁS“o:'áäÅNH·3“Œ‡óÑÅ‚X¸:ñ¦¢#3‡WÆ£óõïç÷Гð@»Áõ½?|蔄GRjÅó°xbË‹³¹'ä{Ñc2“/1©ÉÛãy<ä!ÌÙ¬7›­Þ¾KGÈ4ÿœÅcØe«‹’! È/ý¡«øÄ0SÖ>VfëStX.Ô€ ¢´¶$/¶¤;mIÖX™ö:°mÑôñ²b?î‚ê†ý° …ösI…‘”N‰[´"ûýh9´¿•u³Aømh6=è18º^³Ñ®i¤2Öªmv²¤¼ä‘r5c.~>ñ ¦W_A¤zƒ¥yƒÏ}à‡0ÑÁ?R„i Ø´Œ&7‹ 7ŠÍ[ûÓZç©Ú–ý[±QaŠ3_ø²QÌ$˜Ÿ\màŠ 4vE&-žŒ‚®ZÆýáýðü9ô®4xP¸’¨ªÂyQYêDþìœZî©ô^@ó L¥Ò ͬ·QT:T¤ÒL¾žwÙë±Þ ;† ‚y£çkA2*ÚͰ“E‚óȹ@.m÷|÷›ª–"ë–¢Fš ý–¦aÊhP§iH4 åL¿ ö*¸s¡ŸÞÆ¥’,Â^ôn‹P‹0•*2Ìc²jÊ·4ó€Ñ)º)è`Æs)ï#Ð&"ãï]ü]»w稼w¯ÃtýÞ½3¤ON0ä™Þ­ ¢s*3 }lv‡ ,ÜN«ŽY jÜØâ;|;|;™ =Tʨx¨z¿{ €Dé7ju˜[1ˆDå¬VGwéæŠ‹#|<žàè~øWíð?„©çþ½O¤<@°EÄUìöþ6nH4[g:Ë&·;|AA-‘²À&[5ù3´N¨°µÓ*6÷Æ´,ò–ÊÖoûÃÙÉ=óçWH•±+!î.*BÑÈOPHéNx¸[÷üŸùzPþ¼:rXG‚p+¨j‡Íé|²5ÈŸ”õ&P/°\e«~•´`É%ô®¨Èc/Ñ-þ‡q¦¾,«DG*Šæ"?ŸEÍ<^¨úJ/>£Ý†"“xuPž3˜+7Å µe}^¨üòøf€®9@êÃø>‘zP½/”¶ò6ªÂèÔªA ‚ºÉr ~èa:)h¢+@m‡_NéªàÖRº³­„-нlì—˜¸JzC÷ÉþÍd?ýÆ~ ÷åp8´&Â+õä}@Nêÿèñ_Qp77ö, y&³kZaj¨(”¾s†ëRâ/¡3cÐ㟶Ky]# €`£«Þ©L“ç Ò?¾Ç‡ Æ­Q•)cˆ—k5eÿ7FñÿÔör>¤<“@(sžš!|ÜòßΟÃ@þ,þAü Ìžþ ©†JPŒ‰Y’ËR¯â•e/Ûü€ø3Dþ\µóþw§»j(wŸwáŠb.;|¥´j7;n`äÄÝ=ïÍû¤[÷^\Ÿyò ÌÄŸMÆñç0P?ÏÙæ3Ôù3JÙª—?E›? ·3ÆÎ* þ\Wê¦~x6#ªùS° 5+â0ÙŠüÒµè°bÜ3ª›nÝq}Ê­û‡‘òü9?+íP*LWº cbôƒ@þ<tÁžÛ\cá)&‘ (• !4Ž¡Š)qÂèRdLÐL² ‡\ÙÒîî]_,©MJ±ÁçÉ÷”?ïØ³ZÐÅ+íH9;¢+I˜8#ҒΛHÍ¢©2ðbDD‹ˆ*iÆÖ.l‹ ˙˞$ü·kI&¦á7xõv‡_7…GeÈþ°{޶ö‚›Ú¯0y‰÷€5|’ÌXꋽ˜«ö‚‡`,öô|m•T¸›Âüa<'w'¢­âEÃÖl§dZö&])#bÚ^pà>™€Oí&Ÿ« k\E þAóxL£ìJÕÇ%Ÿÿ<¦@ `ž³£6vÌõëú\ñg9FûãŒi­¥7Dúƒw]\†½½EâhH^÷gC½ßë½'Üa¶‘E< \U‹‚CÑV³²ÊÕdÂeO±çÛ;ÆÌã1 ²PÊâQ–MÄc Ôæz{:l/§‚tK¾Åø8¶ ¤¨&Y˜†qo“Vø*´Eü ¿Ç0W¬I·|½ûïeWî“T§|€@)UÚOÇ&©’CcíG“| ¬<¢Ðf:w§ªµ1²‹l ñ*’áAÁ5„+‡ÝòñûUS>ÐýZî‡ÀÄ®í‡LÅTŒªš -Θàûq߆öi³ŽoÕÄòÿ,ÅÿÊÇ,)—-¬úU… hO8«Æ†v.Üè?D¯¶¡½k?” 0HRD´0-àêò*MIa$5¶m'­ÚbÔ‹w;\O çBåá¤M¾ßà¸Ü?À†)q¥sJ$Ü\u;{À%báÌs–­pPABòc©¨„ Ωƒ`B3ÎR/º»KòwA_À>­­‚»­~Ù| ßŽ6©ÍèCú\ëQä ´ Ô K„Ü9†€;I7zb«Û¤\Ë2hiP‰@Z€¤;ί—õ›Î Æ=œ_ª X,è£Ðž6T "@V?ƒ ¥×ü£>TžA-zš¢ý‡š:Œªóâ¶«ú÷÷ï'ƒæ˜„€ƒU@F½›à-h;Ï׿d'„ÔˆŠSÇuWAX£Ð¨•BÀÉE…¨WùÍ2ÿx—ñðÔ´UZˆê\õ‡’tJù¹xª“(u#:_I6QÑt©ÑE¼Œµ«™ŠbD«þe-A_ä"…¦M[KÕ)Ñ´©®å” E§dWL¦#ö&M‹rá#•qû]xž­DÌŒã\öÄ/³³xmRËü:eÀáÖeÀÙà¬Ê€W@ýÇMùqõ M­[T¨ÔŶA«¿` hŸm4XÀŸo›êÌd*7©im. OÀÆŒ²ˆe!»,+H¹mvâ¼X‚»ÿŠ WÇ4ÇÂDúøöãXÓZ5MÈÚ%ŽöQ®Î ”û­»€æT±KM!8| •5,]Ú"®ÛÆ~ ­“¥‹€¶Hn4ÕØiCž ^TåÊB"¥ìʯ™›ó ÈÄŠ‘¥ 2Aå‚—ð‚"«Ål™ ¢ïVŠÂ*àa`$ÕPÒ›Äk‡÷î—4 °r=›‘†Ëª>±åSY ÁŸ’Z¼î ŽƒeƒcæÂÕº~¡k]¿¿`Ü$äºW„>äº_<-øÙæ Åîí¸>äÇ2©>«ü´ÙŸ²b¨ÄÚ.„)h¥ˆÒ0º¬¬ ÎqŒ¼xa;‚Áv!€´9X5p­ˆ‹½Å+-nÔïè篚1€„+n«ŒucUEKM +n0•…ÿmìîT9°yÖ8µ5QŠ®*EÅÚâp±LÀGÑnŒPÓ–V] ’ÖZ: 1ë2άí7—¾ n!q‡ªì¦Øù*dÒdZ髾 â'1ÓÕå?jÚ/ãݧÑS¹`õpÜš©57 ph‡=ŸÖÖ¬ÊϼÚ?6Pùx¸yH&B⨼’IŒ=pôÙÍÆÔÍ7%û jä Rn;ãÄià&9$ÙºËK޲kæPü?X@›[#ÆÐjœ(XV¦…çCæ)ØSðß{¿{ ¾;H<_(8üñÊÏž‚=ÿ½÷»§à»ƒÄS°¬1ÿ[§`y±!ó­x{÷ \…êéowÏÀwÉÃ00c ‹d{Å®å9Ò1[5èØ´é˜WÇù²•£ã‚›ã ƒŽ“]tÌÞo¤cÝa\/w‹ŽM('°WEb ¢v™F$²cl/xͦ0 ‡¤xi%˺)é:%gGðEv$ÉŽTÛŽ°ÝGvd.v$)n+¨ì9Q¨˜Ê¦>2e”øbG—‹vÝ)v¥Ó,êÍtÿßQíþŸ «úýß š»ÿ·ù0i{1ªÁÉ6÷ …‰"L,'70ÑW1Qa"«˜è&3pro&ˆÅÄý«ÄDU1ù0ãcä8uœϛLïûó1ß®ÑÀ³Ê`˜Ï˥鯕 !}'ö¥‚™#uó -è\‘…ÔßP£VÐ8q=¾‡ !6*ž™Ç«‚í)D_üê-_έ.Ë‹EâEv+%^Fú™¦«ü¡g€&èk°9…Y!ÖøLñ¶Ù¡Ä F—Þ}…¬Zå Ñ¢ÚeyÍp³¢õï \QhÕFŸÄhJo¥“é³< Ñ—6þW&VNáöÁ¨Õ|»ù¬òÈ(Ky@4½¿=‡¿‰}“®¤¿1Ü>òS³6ùAçêx,\î“Æ ½8&Šì,wŽÄ8àIz–[·<´Ü“rˆ»ý)Ç¡ðź¸— Ûõ(…Ô? ?pUã|¨§Y5´”ÀM&.þ!xÁùQ™®+5¿ƒÓÙs¾ç|Ïùžó=çÎçë³yŽ|s€E™#¿ ½H:MLÙÔN•_àSáü«³“=“Ün“I˜Ô©½ŠI™=¥>gäØ¿Yot³–õæRsÃË!"Ø$¬•Üä›X…—õ—VkYX±¨—µê/ƒu´osiå¢ßŒZßu‰ï ô=IaVÕŽˆàÁà;'²/o…/gÖÊ¿£.û9¸yLæÐÊÛ˜¤s°ï8ÈQ+‘çâ—”éiW²o@-Gc˾I›}“ºÂG¡36Ð_¡ÀÝ®v’oÓ[#•^ìèÚ+)/vüEbÇ(4½;üÈbG'ä ±ãôˆñö,¯ºb¬va§ëI÷®Wd©š® Þ¦€9]\ûfËØë„º€¯@o“ÆZgé.=·Ýj«lª𱵂¦Q4Ä70t›  Q]®ÔÕ8’ò‡è9ü¥ä•8’Öc2MÙ0MøLüx[½OădH†¢É%’G£!û#kRx1ðzZº»Á'¼=ú |ÿ\†{ŒA°É5_‹æ?¶wÆß¨ÇjVL–n¬:V ûë&¬>ÉDſևü”幆Á×ùñhΧÓÁЌַ‡|–’¡ÕU6f´&ع„c7“¥KG„ ƒB`:báñGÑ"X®:¦´Šuºúýæ ÿ&›Sîà@/3ÔÄ7q˜G×GÓOñçÖ¹3ô¥¯õ4žïOÕd¾ïǪŸç««Ä¾ŸÓDïy¾Þ¾gºØ>dùz_ý!Ó¾_†‡VVQ)è¬Æö¢ðÞëd¿Œ`7ñ Z!Ù'm²2õd¿äàÉþïÂÓcåÉþO‘=ßì„ùÏ“ý;+k]ßË)X„ò´Á/•.xoÆ/“sH9±6žAPÕd¶ÿˆÍ;°šAÊ™ÏDíß俬7‡Ãa«i:d~L³Š”#¢,Hù²GÊ0m·Æ÷ÿ‹0Z„XXÚ«äÄ:ýñ;ñyŠ‚IîÖºÄþºÔ;Rê¬Màz?1}&n©õ>yñ‘Àô@Í’ÑX›àÛTò'%ÚÌh}£÷»×܉ô©>k™×S y& m@ÕRpšà#)JSñ_Ø|\¬âŽ$œxAF®…r®åW»ÀKkt¿BÑ+pÙµ~íJŒõ+$#]6i›1HkœdãE:uôÈ}±¶F¦g°.ÜX{Öøáâ¡¢Ë`“1.%/&†þ€³Cì|:íL̺sq.DÛÄÈ{Ñ´$ã½…"# %žÓ=‹=E«'~é"~I©ND‹J½¨ºÇ ŪÆóáf â#ôJðô`L=n‹DMnÆh!Íf“fŠާMmð/4΢ù“8ôÁЇ*ñ† žà$‡êð4ø³²)2‚C& ‡5xÇ?²0?~ ŸØÕ§¹£ÓWwtÊê'Wj­h§4l—}»)#ÌÒ^@ÚÈYSF`j›7ÂÀn#iq7ä˜tnÞ4nØ.¶b:wÚ¢é20ŽpãCE*m¿I»/t¤ e ŽSNxe¶C#òòPÜ §Œ´åÂÍnÃ'ìƒøŸÞa_‹ò÷ÃJÍŠÕu¼+ò»o”S>ÃD°gô‡1iŽ©L÷çóù(e¶F9…cß—8¦TH‘rÈŽ ¡{Wuþh*8E³º @d@vLT< ]ÿhOÐä/Ñé/^æ´8Ü âêÎú;Ò꛺¯W›»b„øä5àR™ôMéþqõXMÁê Ç÷cuÑXnÄê“L+œ²õ){ÑGȪ§NZç9Ñ=V:ñeÆñÃ0«6È-X¾ òF¡'i¥xŽ$t`yÖbùdîtèY~¨KF‚;bÜ«ÒÁÀ~÷¡V-tXc, /ÚÑ4–žXìYþAõXÍèÔW±àíÓ{Æ9õ3š:õúUŸr½Îe*7ÇsÁñGýfÎÄò æ,WY@óœq,[Àëéî…³¾¬;ôPÖTÐ}¸`Me+¨>¶Té(À6§h}Õ =Õ×ör´‚cžÁbOÕµuÃØ¿4ÊJ€x]”ò¢ÎcpÊW¢ì±š‘ÿK§UÏ^`¼¨3Ÿ‰Ðg•n²|§2ἓ™|9¨ÝöÂÿ4–sÙ£ç@»õ†¬S9E´ ¾½½‚N´?næUš "kü&ü'CÁ(XÕé0]¬ ÷n¨îa µ¾tÁÑÒmúà©ÎŒäÿ¤êéÿ¯Ì™A#1ü4ò•ÀzÊŸHù ¬†zú¿n¡üYM8sx=çr·;nòíF¯×™>Andv|-h»ˆ_\„Ö!’Ë Ø5f‹RQuÿAã W5öç«»P,tQé‰;* ^ÿ›ƒº3Ó¢¡Äƒ’rç‡nŸÃ„1Wîì~c®óhÿ¿š^ã]ýÔc5¿«Ÿ¶±ºÊ÷#\ý9Mi_Ÿ_¶ïùq/ÏÅûÏé~ɬâêÇ…ƒ­Ë"‘%i°¬»ú Ô]ý‚ì1¢ ò~ ׯÚõOk±|ßÞ™¹€ÍÑl„lh§))KÓÊ•%›¥"ºŠÓ²â§7• ]‹=þÂdëk~¢­)h•òL ­2fz…æoGëóî|Œàn»}9NR¯áÃÞÊw¦Ôzd÷vÓ”&W©¾6´Ý´N‘Ýn»Ý4=ÛM8mwyåÅ2[7î·F=P¬ú¸¨:QPQuD»hêšR0¥N¥`:b%U\ÇퟎÂùÇΣ2 GÛUTš=•é°#%¿ì!Wóœe»üRRÒ€¤wfQF•ÆÂЃ€5¸'y„ðƒMòHØ"¶ÅT—¼›P?ÿ—.knA›‹uÝžä.F °Ç†TKD@±½cóœÐ˜$E9ðãðûÕGº{§étJÎt:¥?Iáv…{K–5~Êh„#Ôñ$–ÿ‡%ÿsŸ: ·Ä˜N* ]7L†ÑQÁ`^•rOÎ4p..v8M þv©e²(¿@¶¤ë>°Ù˜£±’ æK‚„‚=Ä‚Dtq¡í˜CZ|ب‚…îÀKÀ”@¿‚‚¶“Ū%¦ðÍѯÀÓöÐÛ\Ñe°2$¦½6¡<ñ¤”'š{Úþ:ÚþL<=8óÐv•—›àÐó#À™Ë¶Ùé´>su©„G®«;Æ>E’±4\Öh›%‹¨ú ±t•BŸb…´Í[´Ížêøêi{ðmN½90"anøVg*z°¹O¸çªZ’MÛÕ$Ì|ñÌpÇxzpæ¢í68 :¿œ¹Œiûí¤ó,ÓïyvØïõ&ß¾íJo;ªÐ6oÑörÁí–qñÿ ÎÛb6U’‡å›w·‡™eQ;%E»'ÜaÙÍvW¥PûÞ.ÜíÈÝó¼}ïxzp¦€Óô³{Á™ÈÛxûx×i‚óp÷‡=K†Ðï–1>XÏxêTÞ„§Fõ }CÀŽãf“S}ؼäµ9¢”ÈV$w'iÔ©œ¹áͨwC> $òò¹9éÝ+hAØò÷ûmžx.¿›[Þs¹çrçò\ÎÖém4’Ë5ᩯX™)ëû25û’Mû‚kf‹š¨Y YF‡Y)ËåÊÙ”ì¶)Yµ)Äå†[~HO1~»¾(|+ Qî€)ˆ ׋‚í›Ò·Æ.…ãr|Èg ð!Ø5bë Ñ eɦ'ðÙÔwØ™‚Ó |º!¿öÇ×ÍûúxL×û‚¿wú5-¼àjö+‚ÄÁçAÈ-øWô/ÿÅaܳ{ûGâþÁà/xmÀmò![fL¤‰[ àm} ¾˜‡Íų†hCY‰Œ*7«ƒ.W‡àYDBùÕánøÄ¯~uð«ƒ_îbu`›Ý{¾¹:Ü» $GÙ«vöªÚö ›@¢ üg{£X¼Í 3ªFÉ@ÛÊâwÊ@sh?OÇ>ˆæwZ>ž*ÿ_ÇêC³Ó ¹ÝO9Í Íõ!µÚ,{ŽqÙå *D±â+D¡ÊßThœÛÀl\¶_âèPQþçѸç OãwÏßAã”È^8æŽÁ…cðmƒ—ÉìÌfÔƒè†w0¸XŸ7ÏmýÑÞóžÁ=ƒ{x<ƒfp¾~1«±:ûÝ3ø'H¤Çu!Œã[Jiîòû2j¾'ƒ? šžiŤ½ðT¨}<3“jKß}”bR˜ÑIŤa¤aR§oL£©U“.±¿­­&¾ÃV WïùÏØ³÷@ƒRvµÆî ]K4|TãÏaïoïŠ? °ž¹ò!»àIݬ‰©D>ƒ!Pg§Í1µŽx–çí|È0åïƒ!ƒÓ˜·|+wÙ¦¸CúvœqF3:Wi(ÙÞœ×Hò¾±íI9¢$îe›´wñ~ûêI{ EAk<†ËjÝ eà§Îìuû ä#aèᙥV?Œíî@G=I†æ`l¯¥¥R©<øn¬hfžD éMf%¹¾@X\Ác¹¸«Ä{q]+Úσ¡…g^^e+€» OÖl4C´gD{/éå’æöåtiåUB:Ž›¹P§ÊóŠGa31>Ñ¢]%VÆMâQÄ6åÅ{]K[fßv+ÚwYiXµƒ0“«‰Ø¶¢ýLZx°´{áY6g>ÈÒNI²óýåÒ±´}È¡ì Ú}Þœ]ÚáÊ ¯Eló×sz\á Aûäajáåµ+|I"À0zRû{ 4Þ‰·œüÈ Ž¨Ó2Ë5 áhÀŽÆ÷s¼¿ØsƒX…wÖ+ 9H_¯iŽYw¸kÀÃ+J9¯‘ É! ™ð„9º©„>iÈD—_@«É$šdÂ3ÆsæÃµjÀrN£è­/’>)‘ÒøZƒF²”jö&/îè,øü z0 gøŸÚÏ‚`j}¸)jÈS£j‘™‡ íM"SYäw#³ü…b«5/ËOòCö¾Ie #;¤Öœnæ'•b‡É ÌìÒŸŠ 96X|*¦*T1Äu¬©Ø‘üýóä[ÅÉ Lç´%¡Ñ#“EÛ+pÖ0q/¥ØÞ sŒymÅù¡´È, Î¥q݇ åIÎçéð£8ïŽÛ‹Ìe~¹dÙg4¦µÛš5J⯂–8è )Ÿ&Dqv;â̸—¿¡ÛZš5=¸*ÎxÑø¤¬ÓJôˆ3]8NVú’iýATÂ'¸è£= ΉÆà'1sPœqñƒxÁ™§äIšw±Æ†¤ÔÖþù >ÓýÁ^â†AÝ, 5„Ô€Œ«¥KW®Ø¯Ã×Ñ€çDÐÂ3žÒ@†g‘n÷ó‰Î¹yÛ”Å;AÙANjíu»Ü'+·¥ÖàóÀŒÈPû«ž&÷®Øx?«Ö1Ö­Z?;‚«Ö§ÖáöGV¼`Õz ™p{§\,Ñ)Ñ2W)ú!hA»œZ÷^[=x\-Åð…ó)_¦[hÛÅ?ðÞ²†_„Ò­\“/ãôEñ­O&­döxïã“´’ýL¾Xɶ’}‡d{tžìô·¹©ÛqÒ×!!½¸ëÈêöØA—¯×Q’þpA»ÇJ(µP_Ó1ÂÚYêVB Ï|݆g¹ ¾ùD@Ý–üR<Ÿš>MÝvrFûŽnÜâ Wm¹ < q!Г,qÊ ¾J®ýõ»G+×#Ýl•ËðÕ/_¡§ëf-‚些Ýhõàq!´ð|<•“{ Gö\" #»Ìm,nD§äj˜{™¸²V t9€d>…‰ ¹²Ùz›mc+Ø#édЭVD8§ZX©eíëzŸìLJгÐÎcÖ Ïb~‘ùD@Á>f‡ýþ}#×ûî§xŸ§“dú\ÙN'°/¨kUÈö°'ÛO¿%§À*öØáÎÍ]mä¦ >¯r»ùøÀ’ðÁZxRì.v”¾,Yí€×€¥ŒÝçJæ×ƒLWÆRñ)÷‚Œ²ºy[¿çª²51þ0J°]­«"z}È<y¢ªÈÃÞ’vN .”&õW^ÄzOÂmvøÙq?,mp~á•8©ÓmâX‡¥89ϱ\ÞN;Â1 Æ|¹­QY«såö.ÉŠ=·d¿O;ç`iÏRmüUÜ-:ùã¬7צß·þñûíÕÊì8ž `—Xð-\•9SWxB§6Rf;fíÈ~ Ä,³ÀÈê`4vžÌÞ 2&4ž98‚ëTÐÈÂŒ¹dÌz™`â¯ÓJm º©à8ЊV-ôQiËm$ߢok+·£—¤—)ж&ðf¸ºr[ï‰âÿï ^üÿ¶Ÿø?+ÈŠ©c¦ÝK`Ô´K¹îíÞ‹ÜŸö²S¢.Ê£ ÌýVV ªp«Û‰›ÀŽ–ư¥CQ…»¾…@nÄ!½K…ù*Œ7À 2™-rº ‹±$-’¨ ¿[Ú˜WRaO'˜³²>~øâÎ2€ïª3Ä—xº«CüQѳ`Ì#Ó`,yv/Èhs•Ëf1€•Mr‘dCõ<Š!ÌÜ&2r2t¶Ð\þkŸ†Vnos„¾žã:jÇÀ·¤Ü²—È*ì£fÁ˜ F#š«£aÔNQØ cÀÖ&Ë‹3<×û?ù…EËPX°mƒ ]˜Ž´Šl@¡ ý»El÷l—‚ß?¬ÆŽš‡áÜà`˜™/*ÏÑu– ѤWcGu|úG?ðí¨ÿxÁi±˜ƒE#Ö«Äb¢¯&C üΧCq=Q²¡ÞJv“Yê¶d˜éâ÷8Y¢ƒ·¡Ã¬¥ÃÒûq:€s ¾ÓqÄ=¤Q5ÒÈixETrøfEë¼éuº¨–‹^®È:WÔôõD$r¦[nñU¢î»‡æÙºÚÁûÁÆ.ïŒîå€*G÷u¸ÊÑýLˆY©#µ:l¡£½¥6Ý}{ÈÔaDæòt€ 5…Z»X›ŽýbÿººZ3Åë°n_<ñ=ðf†{mÌü$­°(ãÌàh~;ö!¸ûЪå\ }HϿݭ5™Çp oˆÂêxcX]sI·„Z¿Ä£"fÁ˜É4§ÁlÀ˜í—˜r!Õ¹ØÁÉ@4¯cú›6ÚA9 4>»Ñ¼²Ö{oÿ=üf…Ö í×ÛVhŒ¿Uh½4ï÷ÅñþÅB«8†çç W9ÙO5 ´³²ÓìØþHÄ,³À0 %Y–Mc2È ´ç·4—ï‡VÔ˜ç¸y¬c‚Brƒ¨¡²‘ö”½Gû$ä5QdÎ׀ñíé{§ô¼ÕØ^’à÷Il,€Çþ€(]ï%)K/Pf„÷ßö³R%ì¸ÿHH-sÀÈJ0– ݽd ,ÛŸ_×Y»úW¡¯Pí&Ý á `ñzŽo ýÇ`ènü}¿xÙ/´öç‘…O×`5–#üj: }5œ$Çεf Cµï¨žRÔï©Éùdúôh˜µ{vlñ¾ „u™:ÞŸK‹Ótœ¿mœª<ΔìE©Q¨¹Úí×ù%‡ŸÓþP9«ÉºKáj.õXõ½V#ë»:éò¾.J{¨+:2°¹¡ c¡îIRF?TŒp·}+><ȾaaVØ?PØ»%ÏF ûËUÁÛ× +ìÏÓöЧ…ØÆ5¡”#ñ®–xÕ'ñ¬”ø€œÓ$ñ^!ñqŸÄßœ}çnãÝÚî+ñÃÒñb¥ÃJü3áôµ%ÞAâ!Rù£Ô=ÚýJwGëšy0I°®™¯ƒ¥ÅÉÊûŸpÍ|ß&ß[e05°Êþu°´8YeÿÊîñøý´ÊþÇÔ dÒ*ûSbùb•Ý*û\e÷ÐïÜ/ï}.÷Û6ò¬KæÑŒ=+ï_K‹“•÷?á’‘¿ÃÓ}£­²[evŰÊþ8YeŸ¬ìñÎõŽÌ*û–áH ¼ „í¼à#p /xÉ$ÓkDMU«#O‚°ÅiN•ÞàT*ýB©J R²˜Öò ÓÝù|>p¾Þ7;„ºLkæBÁV/j¤3jŸtÚ‚Ö'+wåÅûcÔún6S´eßÂÄjýH†ÁðÈð<'Uæ¬uzÌët"Kk=õù¶ªþlXZœRõ!œ–WõŨ•XŽy~I7ïÐ[æxHûTÝ»WÕ},¹ÝRõZuÁÝ…}¿ÞÂÖŠúõn˜û¢þbÅâ1°´¢nE}@Ô1Ì=Œ(ÌÝ({ˆÊ®ºÊ”Ê!î±Qö÷S»öº—nßø}Õø}Ò.f•ª†o²Z¦©®´Ë>š•*Ô š‰ÍFe0×qAbOd!4écÄd^ÎÁJ<¢Ç{Ý«Iû?U˜?Qf!4é€715êñU`ý<œ¾`˜~'{‰SÿËõŸûU~Ij`Y™Óáp:åçýi{ÞËü´NóŒïAå( beðBïÅætÎùxø–þ‚dÖ Î]–ù¬aÚ»îÊó¥ÃÑEïÂsIñ™mûâ],§MòÍ“¶Ør¼-x{ènÀ›áôYü&z‘NN’.Mޱ4j$¼ÖÅ×–ÿz0kXZ˜æÁtKÙ;0•;°wÁôÄ@?|þ¾;×û?žä¥0ñ_eZ÷ظqÎÀ¾\(/ñ’)kŠ»çêÆÀ¥ãÆ-ôÜc„>ðÈqvš¥ÅÛ£÷Ý6~,=¸Ú¢ÝŠû³iqzuç"ï~4QÙÛµ{×?~Èo+8yTb"ŸÐäÃß‘—’ñâÐzª™‡—dSè·"æ)½ßÌ‘¹æðtÿm‚¨L÷Îé–Iú‡>"±Ø1§ƒpa”à;•&­ Hd’L  šQðTuq%ÉàäÍ‚ ×ã ,‡¤ÞUTš߉ä­ÂD]I©vpuø@3 GÝ€&ê4'öÂb­å©ûb~÷AÖ¯ #nh ¹X@}À[0’\|$-JóPÒÒ=€Ò€ÒßÒâ´@_ü¢föoç O—Ãn//—Mz)÷W]5ã'¹×ÔJ»^kƒµp7Ôa3AñDrïÇí"À‡Ÿ—Ÿ%éø°˜ó›Œã}b®y£”Í2Ùd™ 1‡Ã Ä/¸š=ŠZs"˹TI.¼‚¸Ÿ\ø•Ú_K_üvÂ)Üy‘Ü\²69 8Y‚Ž&ïpÖö‹yÛó~±šLL­%KhxƆL<9’VËgi¹¶ÁûAºj·ßo/I ò·×Ë%Ý핼¬Š_6—’èoGß:”‡ôÀ·î:ÐA;&Ñ BÝ[™¡ûÝ-þzÔBžp#ìzäâ»\Ó×ÓÓ-™±Ýg’ã4°ÂþÇ&I —=[+7nÔŒ÷°ÿqña½PÌØ&‰l^+L¶9ž“±¶?Mj1ÓöÛ_Q˜“œøË5ù0eÉ_UñWôñ—7ø‹kOa4çE§Q¡dÜ?¼½€k%JbJ‹Ó¢Àý5å‡Ëe›æ¹¼l/çÃ9—éy“¾½Rl憤œEFö=SDfJ72‡¦•⨠sgæ•“D±~ˆ‹•„¯?áù¹Z>­l+äñŠYÃc°öÀ¥„»*Ö¹Áû–ýH[¿ÐXo‚BÛW/«€¡ÈbÚ>á†`xè÷œíº‘ke½EOƒ¯Ei oÑõ$«‡ÑDoÑ"´@oц_Dž«\œÅÿµÎšÞ"/s]rÿ{™´ýEí€|cv|òy(ò~Ç_ìŽGv•vVäëhK¡Ã¶:`+ ×2oÀ³³ƒk—vÅb ½&‰|`EþYðµ(-!ò( üÝ(-N y~Òy´êÄOoéá5{ߤ‡šÈû™ë‘Iïf~2fS ÿOTZò…aÏš"ÏÒßÙ~gE~$½P…KGx ×K<:7ôêH]IaúÍÚ{2Ë’÷^X¨°¬ÑþÞ.n¶ˆ1YX;ýã³ ´(ÍB©¡æ½(]³ã'Øé Ñd½°ÔÓÚÈBÔÏŠ¿¾¾òõæ@vz@Ûª1ù]‚0²Vx cà_)‹"°„¶PÝòa‹'‚=îºÇ~ßVÐG®ñGˆnÏã×ҕỂԼn\Õ;õsíôð…yi§?©T|”¥Å/JCJ~7J‹Ó/ÙNÊ|_Ü¿ó&?ÒüЈ­/,ô(cNol}¡ßnË|] ®·øy5 ØÊyÝËFó7îc&Ú-ïkGq šÖ9màFË<û¼Š–´rþ4PZ”—ó!”:ï›æG_„(ç[žïßN— L^N2;d»†œû”*y˜ùn[ÐYØt/¡ÀøÂ¦GA:‚î¯7û·W+èãø„µ‹ðĕɫPªQ®NиN‰ƒÈlEá²óÝšçχ¤Ei)K=oª…Ò™>AÏ¢èùù ùþ¢ Qn¹Rû†¿%ÎiW4ÊãÌwšjîó¼ò¶$°Î(–1F5O´š§õ–~NüÓªùCi€U󯂤Eɪù'ª9ãᎷj>r퇠 aßI5º)YžþÀ]6\Âüô#f7CŸJ‹ÒâΖÒC>„’ñµLó/B t¶¼ïvj}÷ù¥8F*.G^Zô´œûyù^3¶%Zµ<-P`Àš¨æaO]šTºÂªùH‹NIšºÉ‹†ïÂÝnÞ;‡+<Þ»"­mþ|HZ”–³Í›~ñ^”*¥Ÿ¸º-Ð6çò|–‡ÓQ›çP ~SÙæ.ÏùPÚ¨®’¦qŽÕß¡6@ñÒp¤¢/òÝþ‡•ó± t¸88G Gí[Š N Ã:AN7Ž,ÄzÝs› ú4HZ”•ó>”ºFûÝ(-N ”ós.åzÚì×ïy~Ê/§2A䜱ܥÈó¾QØm*²BÏ!F‘Úz eˆúÜù¡ldËXˆžy¾³Ý ×"¥^yá‹´`ƒoÙòPRñIPZ”–ôA”®øb&ÚçËÐ}­.:¬Ežäf¿;d¯5ûÜq‡-Q7ìòý£[Ζhë=ëlG.<Â×ô<é¾0}7+†ÂÌ1À)^.c'Ö::$-JsPêéA”Ê÷L¶Î—¢ˆùn+OïùI—¾¼J™ë‚öUŤûGMg‹£-UZ(¤û³•_;T÷ÕÙþmã<Ú„‡ôðwɹ˜l+pd^b×<¸ù ñ«x¦ §l…ož.çÖwþ|HZ”ßÝ2m#tZ`Ã¥l«ÖoN®óãIíö{ ¶¹ExÝ*•ÕBϱìn'Ÿh ü\7ë ?翤Ç4ë(oË=ÂN‡,'šŒS7G3HØ‘ ®Á}i§«!¢©–u'&ÊëÂ&c‚.ï^ }³^µé?xý¸bS%ÓhÏ…÷6ëØô¥‡NéÖ1µ†f,‡`¥Wqœ© Ê—>,­²/n¨k?Œ _wñ·&ù·Qâ½(-O lØ!÷»,?NÛ÷ýúpÜ?§‹<íWe3lþ^¬ìÓá™ÎL¿ê¦ ºv„AÙ *¸NNÍ8ÀÞ÷<ȼð_¶s1þqC“ƒ[í°–F¿ËÐ#C?°þ¡5GØéÌl~8§ÍßeôO¦ªÀ³“¸¢“}¥"m¸sôìÁÕá}]h‡jÁPeÞz]ëÐyX-J‹ÌC(õO"Ó·[—¢L')/éåü.óˆ¯ÏüpºÔ:ŽgòNý¢gš†›ªÍ¶K>úçuÚ©££gÚ`{ù¶ý¹Â”}´ã†sÔïÍ1Jc£9§*Ä9ݶ¦í¢$á¼$¦^ñ¹ân*ðAâê çc8&δt:ð²Ò33ºÓˆ^Br½n‚ÓÔôJœ&v?€.Ò^à VôÂÏKóƒ·È„µJ]Ý­fÜivˆR˃æ¼°¾`vÝ;{¤š6LÁ©OÀŒx9Ò†çÏ‚2 ”† ߥòÃOe>è+±-ôø|Vü-“øÑݯ㈺à1'c™Þ, k‰Fa¸b.E¦ÇŠ1£xÐýˆvKÁìŽUñ.ÖJåÙëþÕªñum‰†F¯âwP \æO\ö«qø6Ü.vÜ?"v•9¨´=ç5TZž•‰n•ɰƒ}\2?åÅÏiSÉ1™Æqdä´ÏÀoª±¯ó„*Ó8A Æ6¤˜Çh@“Û#­¹=ò³»¶bì Æ‡ÝnïxzªÛÆ$ÆAÎÈwmŒcÖ”c¶rZrâN%ƒæ d3°[rì‹ïÞæêP·r\b‹N(p-Ñ™šÚóðÔÈm¬{äX·–ø§zl½¤Ee1C¹Be¹ýÇɰƒ6oäá=Ïåéu´9*´™jѺäDMiöV­fDFàÐ]ßö~kks¸}ÑÉjóȵ¯Û¯V?´Ê­©üèÿ£°³¨,!Ç5TôK™ÊSaG¿Å¥¸ˆÓž,妻y˜Æ2$Ôä¡ÛÐâ¸ã´ðŠÿ£@GØá~Z‰k}{ÖÛ_ü÷ %æÕòU2‰:™”Vb\6©ÙJŒðsÂ]ª֯ĪÁax£ðý†7âoxg4SéܧX6ØLµŠ‚ð¹Ò·Hux#¼‘†7â–•|‡OÆ©=è¬9è‘ëôÏžÕá%t¸–ªX™®IÝ»ªÓ.ÏÎ'¹ÙeyFö½WÒ¹?GAw™‡1vàÉô n@ñvô2†ëÁ\ø ÷–x÷W‚{+Ï‹s–d,ª>YùÚk6UÞE4V·‚°m/Š!Y'Hà#²2¸¿»~²³÷8£ ¿©ë(<×Å nʼù§|h]!£Ee¾æ7P©ÇÕ-`{O…dØ@Çqvlo]!襆jTAÒPæN¨´ÃÐüOÖyhûOH´‰œ7+Mˆ«§¤Žh¬ì:}#j1œÆ jÙuˆ*\&ŰÐ?¼aËIŒ/”4SÅmrÌkÅJ£q%tÄf_ Í Dà¡ ×4Ü‘®I»¾xá= [I_nnÀGÁ ¼‡)õPh¯–%ãu³dú© ò)˜4ùbøèÞBé?í¸ÚÇÊb0 •k`P<3UVGBŠ©‰¹Ã»¥å3ÔpX*ÊY˜ùa%ž~!–+¯™ƒhÂßp‡Ô4ôÀÑq^ðÓNyVAK Z>ã©S˜6è¬K>¨!ñ¤Àc2aÃ70BêY!}Ð,³•´Š­èá} Ü *–»–9—ûÓ‰oÒ©qí „bk±*u4µ”±UÐÓ˜,ÑëèA)¦Ð‡RN»CdvÇ?(¦O¤¥øPÑ¢MʉK–z¾vMKYÐLÉë¦ç=–úòŒCzƒ§”Õ2h38f¯ûGB ªªÎùF–ë{æºÿ²‹˜©qÎâ, •² x¤*m VÔÆÓ‹üªÅ}6èÊë‘Ð&jܵSÓp³Ý]ºŽ£1Ò*®J«0×Kü(=EÜðC?ä0?GNîYÑNËT8‰Iš¨4-duQ/-dWK¡ÁSø<Þ|³ÒÈ+Ý*‚Óz4,¤ÔˆOªRêjm[ÖH.>ôZ%‘úá1Ú¯!Øòû-…¦>à-LÍhÿ2°Z æÕŸòl<´ƒ@esº«/HÐ÷ü|ÞË4ÝÊýEä¹ÊÅE–Ö}êãenH‰Ñ~ñ패Š^øX}š^ ¼•ï8= Öþf5~Ç$m_àÁá`ð ÖñÁ"†¼îg¹\Ïáýûb®Æ×K"Ye&0-P³€º*í gq Tõê4e_ÔÍñ¬øá´Û¿*¹ãg.ßäéPoæØa Á3â7”Ýc&z¢êÒŽqsPÄ4Bi:ÒìD¼^[iE2úf³©Œ§gn&q¡hõ)Íz/R_ ü™TÒ¨f¾ÇݪÔV0K ÔÒ6ûu ju÷õä €»|s<¯åE¨LžÅ¥xú½]ŸÚ)› „M›ÝéÄÅayjüÍÁn ìa§šK£ßÙÉ*ûâ+xe3Ï¢Ÿ«ê+;fnc´c†)½¤wÆç›·×o+ ÓÕÁK²ê%¤°ëFz⥖+¹BßiƒËªÆ€iå}P=¢>Tï0Å;³90Zåít–<Õ-Ã.¯‡ƒ*¡¼CëG²ã=xˆmÃ’<Ê|ÖÐwRÁ޵~>dÅÀsÑÊ ø¸Û7l“¿gkÉôؼ”@€©Pø.ŠæÄ_(òÖÍv¿÷÷´ºñø`Z >Êý~¨Yî÷ÅÈî÷ô 7o‡¼Òø‹ÌëîwÒù8ßIyY³ã[ñŽ]­0ôŽq!)2ˆó0ó݆àC±V`†¢R“¿§¹Ø:ûY¼Û þÈ>¥à R¥Šj¦âúr:'¼ÄqË[Áj„-P »p²> zìÿÉúÉ.œÓé=]Ëe}Qò°/=ô!mòÌíwÎ3ì Öl&YLž¿¢r€ƒÞù`ëM:…¹–¶Þk’A&CÅ<Õd^§¸QKïu–Æ4¶ñJïõÃÏä8½§tYÌÇ(I&q2&™j“ n¸ˆã´1ƒ›ŠRÇðfÀ"ϨR-éðô¥µ›Èé…I­P·œ7=Ý$û1CÁ˜[¿`̆°!Ã@ÞŒ§ÂÒ û’®Ä %.aÀx¯pR'5„So¾ýrÔ]—›szÞŸ6›õi8¨­.oÂßWPyŠ%ºdµªúI2ê$ŒÛ±.Ö©¢Rݱ~­Þs2ÑűÜžÀDUè;fŠbÁ~Ç!2í(“æ â›¶dåŠ9¸bÀ­ˆÕô’¤ì½PÍ _ù¥d97,ÇdµúŠAÒ6G‹â¼”"à–¦8ÒE(=ƒð’Ö¼Ikø,PO¾ŠŽJ´VuZÓ|­ °Dh=W3b3ž ! '# ˆ}¹¢ ÇÕÞu{RâWP‡9I‡AÆá¥“ºÑÀÑj &åÂy¨ò ›)jxé«wÕX&ôÀW‰Ô$Û"µšF¤n`jDêËÀjg“™ë9j„ h9¿Ðrä ºçÓá¼M÷ûÏy~>½ž¶çtóŽ=ŠËr‡fnÀùú›š‰¦Dbb¦š"èÿ~½Z"ÍHúSn1ÔUq.ÁyÄ|&À®Çî¯v7d_¿›Åú$gVP@¯j;Ö'#g„ÕŒ›DXp*Ó$÷UÕÿØ[ﳚÉõ‡&#N_e'£/1@ÓNFv2²“Ñ’“‘k&¥gˆÄzãœìDôhŠe'";Ù‰ÈNDÍDÄ„doÜ=g'";Ù‰ÈNDv"úk'¢xsá,ÿÓ‘äv"ú:Ñ4íDd'";-½O=óDô]¾mßÿôDdWD_i"²+";ىȮˆîšˆ‚Íæâ}d® ǬR —ÔBYüƈ­\x@ÌmŒ14q:R78Dm Èk8&¥N¥Ò/â±1.™þÀû²xp.5ù1€Yà÷˜û¨Gw9úïãf«š0‰þÓ„m)ëÂvÌ¡è™ñ´XÍêojéêõŽIX}E0›Ÿ÷r§—â°©8¼ÉS~y¿lÒ}™cB=æØ8yàÕt>ÂR‡~+Ç:ÿ†P ÅÅlz:R¬¯ÝèýÛæp•ƒVç­ÎYí°:ÿŠø ¡‰!½[OòzH‘‡›G.WÑMèü°“D?€Ü²M „³’/„¨ü0ïI˵ÚZ­×„2äÔ„ú…i‚6þQªÃiwØï¸:øëQ¥ùe#ß [³¯½úð7ŠÍF€_n ¸zãö³à™—Ë-‰Àì`Ñ\—å~ïŒ Ÿ>ÉÃÌÓ»åVCИUÜ ³€õƒ@-F(ÂuƒUÔI©6ïÊgÏ<«;«|¥YEØYÅÎ*vVyîY…ñß¿áJ6Ù.i£ï#òŽSÝ Mu©c\PtÔŒ Duef•šG®€«6ŽÐkC=Ití!¬XÆI™JÈÄxX䡚 üà$”iÐáJPOeŠÍqèèoC†Ã·( …}”äø¢k‘š0ÄjÕd5'rá™*}²zãy/‘_m*° V¬‘5»U×¼+èÐpž PC‹–‹x2:ùFm™/>þÆó¾/鯣šþ‘¯=FnüðP™ORRWºÂ{âÐkˆ>•ÄePöªx@ ô¨N/,ä±Õ‚*â:¤¦…n:!V,ÞÕîTlƒâøKèf;=iÁuLÝHFð’¢ÒÍa.|¨<\',q6nA×ÍÿýqbÁ‹ûßR0õÿWÅ…¶ZZ|â@^¶ÇÈÓñ³ :ïÆ“½¬ BÇûÕo€‡˜i®ä{~y_%dªz¿|ßVz<Æ9cH) àÃ0K§!£®iøY…;&¤£.ê(#-~ë8ËÓ3ïìÊr¹…BJg]’„ß'¤´fbHC Qƒ1pÚQŠe´¨a>HÜQt½‚v>×BCÛœ˜ g†é’Š Óä‰4Àr•Tª² b¿Çxõœÿañ?æñKP™²ñµ=Ó:œ4r&#Ú7ì@× û_öϳmhmGÇUІ·XÉj ÚG“¦`ÅkºÏ·§}Õ :Û¹Úm¤8Ô ‘3ê¹yœùµÙ¦„ 5ƒgÜ•ç3Ý:òV~ñDÒ™ÜõñMþè5"ªÉA5XÉï²²ÉdÜ\½L”&*òyÁç¤v!¡G"/yÜÐj÷¶¥N…hÐ&hEÏ uDT/ 9îxzÞð:tÂ/—LxÊTXM‰)Lo·“Ü4¬š1–f|2R¥›ôIÀzFÈþó8”š[á®Åw‡³Üm¡°*—ü\v£CSXh|½ÌÁsæQÆÜâ‘ ~üZlbÀV±‰S‰Ñ‰Q˜ÚN„ñ*1¦A/·züô©+umsEþuÅdJ2+$Y@xut—ä¤Èúº²7|zuƒÔ§¨ë‚`}þ´º¢E\á`ž»?Xð>hQ]ç\æ—|/I]cL)5=RV7iuÈ,”•¡¸Ö•Û°BL1ú›l× «¬ß6Ž|%Ú¨Ê*駇3ªÅÙTVÕÃ5̼g¸QSç‰Ò6‘Ôÿàâªä‰Þ{.I"ûI¢4äj€$¸H)IBtRÔ>†VpָьÆ-jÜŒ†CŽÊ-VVï……•sSc´ZŒF%¸ýˆuú}  ôO°5ÐC+¸·iµÊž8Œ»÷NhWâ|Úm÷rÏ×—×ÍRú X P·Œw  p4cš€ž÷0D„U˜N6®‰¥pMJ?ÏD^$zËϧm>棿%=nEK€¬; ßÕ¶ŸG}`EØ­%ìUv¾›ªýyÿ&³ZÀd–×ùˆ»§cMf^#£š>ûKºL¢ ž2V¶ÀSAAæ(ÞòËÕɨ®™ÌŽQpïãLæN ˜OGêªr< XVÁgá€þˆumoâÀ‡q˜-6Î/Ù{–žOû=D¹Åw™Z'Ø…Ë®0­ºšÔƒ®b¡Že«É®O›„ba‚-B´¦]²¦]Ýd8MѶßâClE÷Ç1·¢û<¢; –Ý¿]t]ˆ"^BtÃÝkð3¸[tùm:ÉD·½·õ&>–?ˆ>ÎqGNYé÷ðÙÎáQ1m7ûHt–ì÷#¥ûÓ€eEw͈‰98L€SÄóý:ÏåEo½ù±Éß@åe‘ñ]`¶8s!˜˜yà\ ãàVpW$µŽÉÏ¥f¸ º!jm7aÜ_o]™?çFÜ s´òÄh[Qí° ë2[k¿D˜ÃãŒñåÀ²8Ì6pÉ ÜŒt˜®µã¡Åtô”Ÿ¹Ük­-ŒRÐT‡º÷Ij²ò›Æ+ch¼&Ù0(¨ñ÷÷ÝþÛxA•ôs›*r„ ÞÚ¾‘Ýí¢§=Ì=Ó{7¼âƼ½º=èæ¯;ø1Œà”“×ÎþÛ4q½©;õ 6bÓí¡€³â:Q\;{lʨŒª?u¸Þ m¹é&aÓm5í|S½Ú+MXÜfó!3¶ØB½ÍÆ]òšªe'¦xvïæÀAP½kð:@l æ†%B×÷×ÐvW,„TeãuèiLÇ_;Û±„ÅG[ÂÝ@'ù –p7F=cHšø³!iòs,°Á²b=‡åCÒî¶°„óVHZŒ)w¡q8$‰ M£ÒÑiŽŽNKPe£±Ñi‘ôÜöJ÷Q“E–š‹"FÃ:VñhÊðö.¬ÙY:¸Ù#[”‘MwƒºÊN³)ñEÞä åΜuñ \—j1·L{•ðp5¾È^¾ ï§u\»ÿ†æŽÁ݇Nwp&R­Áýð`Y‘!²•Ì-Wlñô="{/´+¡NçìrIÏR^.Æýæ õ4ˆZaÈÜ›Ö/Í]j7ÃjÝ_ª˜57ÑñgX‰Ç˜ÉLÅ…nGhS”1˜É.¤oà'õ›Ùnñ_ÝÅá vÏÇÅE<Ö".«ý¹ÚÆý…{æZÊKìÏ‘,¨Jª?è3¦]X:Y¸Àòž,à3ÖU{ª¾dý-ÊžCRîÇï³<ÉKAø8<¼´g‡ÊxžìI -z’•Ìe* šR:¦ë«‘ÿÂuɱÌ@ñ±È3kTþA×rÜu-3Ê¥K¨Ôs!¼Ý‚ñÎûþº.ùç /õèk.‚‰0\Ûdü>¨ràV^JŽw¼K<¹1. Al‘5¥jd²Å^±ÎŒÂÆñ2‘ :ƒà •-¶”Y£Ìß°õ¼¸~¯‹¢š»¬ç.:Ý¡ý™HÚ–•؉[w%ËrYÕ¬/q§ÄÞ íªxn/åûá§uFؼ±¶sÅ+±…"õ^té*é÷?tÕ|±fz³2ªG8QdaÝ»Œ¯ÅÆ;í·.˜×ÊãˆQÄCð4·ÝÌ•ñì‰ÔsÕ]ƳÉNÚå$?ÈH:üFÒÈÅí*†¸ÑršöS‘uðy$" À: q‰„ë xŒ,¬U5QmÒ©U,T͉M[_xJ’á}8Þée¬¯JÇòÀúœ9ŽFsO…‰˜Äïjr´¦ëaXõùee”q8Át¾±–ž,…^yÌë0þçîú4Œ¤iH•¼W uv«Ÿ© -N ¤›Ka”‹Ãz—x¶»\.ò-=C Fu8# óðââQPË ‰Áw)#™Ø9(ÄIù×à),òÜ T¿8­¬qí¿¬’ߦ}#Mÿ­ÂOœ6-8ÝÊkXRɃæZ%6$-H󕼤®OiqR`JzN±ÄÛ[¾>ò¬©änåè_ñ¢Â>Â†Ž‡ ×u‡Úà^aØ&Ñ‹QÇ£ŽŽG»øðÓZä7‰¥è6`…>Ê@ÓIU¿r“^Äé{9‹Ü³2þl@Z¦ƒÔcr‚Ô²É'Éør¤(dü‹Ãk®.—tóžËËq{(e<Æø’8Çf#>Ë™“nCǹNjw–5åÜdÀ绨ã…}Þröí}K¬0ãð)𝕧 mn["J—ïü™/äǟH Òl{ü:H¥ëeH‹“7;Ïò"ò\åâÂÓ þ4ìñJ/{^îf¡ÓÐqèùÔ4Ç#Ì›¡ÂËž2îuÍñï¯ü=¼¯k9Þý¤¾!o•. …;:ºÉéFñªëíÑ}Æ$y³k!ñÎ+3ñ)A5«‘zU#õ¾M™Ñ\˜p-„[9xlŒ®’˜)E¹DWQK5¨%ÚÔ23toâ©SGàWž]q#Æ„½„Éÿ8a'PÚEÝÝ¥nDÂ5$Øq0Ô9¢Pg%8ÒNáZ§l~Iüè++ð’7WvI;ª´MÍ¥ÞeÊœ¥¢ ÷rsQ5Ò¨{Lâz¹$÷/•ã‡GÑb²”‡¸r\Ü‹ÉLÈÉC,Orw†ëÞ¼_6P<ÄN˜»mÐù :§ívL€ú‡i‡.X^k‡.õÆ™ã±Ã®2Å Ëz4Ìþá1¦(·ʇnõÐû«=È­ÅdÑ=<·\b2˃<rTèÍ~“òóóʃŒ{xزϴaí:‘ÁCÜÜÄ qÚõ]ó"3þþ+p¾²J/¸Î‚è©c%þÑx"²ºDÓ"»xî ì.Þƒg1™ƒ ¹$z1Y`o"ä Á')r)sq9¾ÊRƒ}ã´p‡$8ÐÛx~™žM¥FÉm<(À^Ê÷ëóWàEçm8˜O,ÎòÌäú6ÞߪÆ¢Åd®E|+®x–E<rPãuVFï뱛Ĺ›¹ y-ܶ×Â]y {J@cźzX±× jëÝå'qIԸėUc~?yx“<”ÊÄÕ4‡é\U=<ÏR2õ¡wÌQc÷JP[?@1ØçãE¼‰Ú§˜^œÅd&˜³ÑÀ¤oozPÛ4È!¨í]©³RG©öòœÖ‚Ú ©ŽAñ¹þ°b¼Ãõ°6Ì«cØU5¼VÌÒo?^Ýzv{x9Ò~ðÄ@þ$nÒò¥ÖSüœhZLð`¢Uy²,O„íâ]¦žóu-Ö ‰Be¸<È\oÀ6tÊ]µ¡çbÊ]HžŠ!ÛØKßv?Xe¾ÍxB“ªÀ%– »£ß‚UˆñLë¼w(³vNP)ýÿýqbÁ‹÷ßöÿg#àZ‹Élgr-)¤¯‚œ~ñLfB˜òsºß¶ùþž¤Ž€cF¦£<ÉЀ‹¾×ÜÒ+,h¿åQŽ199Ð/Ûó"ŠDv:qp¡tß’/²h@«Ä2.Õ‘ÆSáY—İ©y4æ?8‹É,L´þÞôdLt#O‚#‘·˜˜—žÎï2?hsYG"SjtGö‡ìôÄ!&5/DŽ;–²Ÿ^²øhõwä ‹æR½Rp·ðÇûµŒ£ÞÅêïƒg1YÀ]¡5¶†Iõì¼À¶)c`Wkù¾?æ§“l¶a?“á¸6ìáÚtVPµäZ×¾°Šxûú3·yãG²ö3µ½Pø\õÌ”àø^7²ÝIz(4Ÿ“‡Ñå.& ìîM„uy­ÝÈ[©.¤Ë,¤¨Î´$‰öø¢®8ûóc äÖ_•|?¾‡ë¯l/™ƒY>Jê»×YÞ4$©0Sñ-×VOÍãÁ˜7›6ý¨(V ZHfû*>‰$5‹ùHfNIÓﯯ§ãq>ªTVIÓPÇ ›d£³"Î<÷_–B»¨º½I®ªWÀæ'»¬tY${9Üm¯_: yÑÙ¼‚Ó\ \%¬}È‘³Ã»Å+¬ËâA³˜Ì7ë˜t½Å³\S Ç ™çùû9?žNyÓeá”Å+z¢+|Óß©2Šª°.^1^¡ÎøÊ ¼¨95LŽÉïxÃl"ÈÃ[`‚¢ÅdžU<„É2r< r4‹MÈæ\yÝÜ#sý9fmƒ˜ú{@Q H”ãX¦Gö¥ â%Iަâ]è‚3ÁŒÿpòBa$#|äŽð›å+ª,ië£xP-&K8)1Éf4û˜ 9–×<ì¡å$JÖµÒnžãRÓ¼¾f‘ÎÊ«â)<ªRAþâf³ši¼~Ï¿¶sb9Æà cÃyÓ®PIíy›ñZ¾°Äjñƒ£h1™I_[ôO×â‰CŠž”›ÃéU¹<å¥CöóòXWÄ\Ñtƒo¢YyŠ %Nð%71±-9v¿‰ýqcc+Fº·p ¢pñ}õª…ËÁb$s<q»÷´¢xPÜž“Iü‘­—š˜Ty“˶M€£(ÞéZAiux•( ±´qµçý Ý€)éiÀ„m™ÀC˜jÇ­( WdÊûn­âqÔ!ð`Jí: ð^}ˆUlÛ‘>Š“eÂ(z0¡°ŠVñDÈA”ùñuK>cΛ ?w3•ƒÜ(܆'ºØqå¡(ä×År Î1¥ÜuLâhû퇟[“xcð ®wŠ/jæ¼ë§çnÞ¹6ÜøóÒð>M‹ÉLÚm L–ØÄ›9mâäªïd£¶¦ç$Xßxp/XEÍ\hæ .C}ãkQnúæí.yË®yU­¦Jož§» fÉÝTè¿Õ.~xà,&‹:+ Á£Ä¤raLµ‹'AŽÎŠý9ßœS™^ÖGiìâ¼ÅAŽM™XÔqSøºl&C5e wÞî‡ox iðÌèЄ7Þ+³ oÄ"$ú"poVÞmw+ÌûÚ2þkcÚA‹ÉrR܇IGªï0‡'BŽRœ^ùù|..õ$syX7ЏÅÐû2ùØýÃóÛ£YÔŠ4NÐGÁŠ_‹ß|Jö(LdjUZ³Š×òüš”¬"SÏ‹X…üÀ‹ÂPŠXEw\hJчQ £ªQ“9V´ÃBÀ%n(I7T˜‹$±‘xߤPŠ'GÜ0¨îx"ˆßHH®×_D2™S¤M¥ð?U^,¡ô*®Æ· Î|‡ÄLIzh¡ O¦5£Û¾Q-©pÁ,„T¹ÎR%±D›Y¥\{/žó?,þÇ<~ úßíáhŠw¤4Ö&£ÚŠå¦ÞÄ™NþÉ¡î Ý’õ›hñ´äu´H‹0ÙìN´8çò.ZpL v †Ãhʹ†F8p¢€ŽzOY—¢…–l£Õ‘¡%¾Î6ð¾´ýh}M "¼Jù.÷y.O2¹<çb{x—ê}“æï«¸˜¼æ˜XŒ3„ûË/þïÇúƒgàå~Áw0|!‚Çô¤‹/Dúãð{ ßÈþõŠÇô:Ã7ÊÀur}è•:°:HŠ÷ÄwX[$„ï¹­Ð>L7„ù 61C¶ò Ã3\|„×Bû~Ÿyµ‰)ÆÌD½£ÍYižâuæ«&óÅæ+ŠIï–ž‰pOXÛ.`ÊÐ÷+¤†ðªCxxlä é«í(MxEmºqÞ‘'5È;E¼ÓVñŸÀ†¯¢›Vã-eIÆŽ‰£èäecá@3Qbf"O»ÏÁ“δ¯½9ýôà8^Ðz¡lÙ©KÁZ Úupk‚ö•ð]nþ‘tþ`þ‘WæŸÆ­®î‹ð@”rÚÐTüMÅ& |#4Í 0ix0'¿ÁìàFz¢gx©x‹«'¡@ÿui)þw{zòõ”ë#À,„ÿ7ôZÈó`-D³Y1›¸y”áQCý586f$/6«£rF•ÀêÈu‹ƒx8%™ê}µ)‰«ô÷ïa)³3Ò‘6 ÍH/vFz@|íŒdg¤Ñ3R±a;ßùƒÓ’Û˜–ØÀ´¤ú¦%¿œ–¼bZòËiÉ-¦¥ oZJßÛÃ}>»ñþ‚ðÙ íËÑ3ÕŸêuäÈE9rGN{¥ô±>»‰^ òÙ â|—Ïîy ¶N»éSÔ]N;©zß××°ÓîÊ5›(]¯ìxí¢ä¦¯Î¿î§£×ýtfvéúéü†ŸÎ :>:Ö㣃]}ø¥òѵfž`—Ÿ¼tE´žU¼wÍ<‚¶ËdsE¤†‰.ðKz‰.U“èø6eŒfY*RgEÄ,fAü–ªLúà86JSYÿ>Ïb%Ë !>Îb63ÏææÌÓZýÇ(XÉñ Ö fgM´ °FÁnÀ[S°¯„°p>fÂi,z®®‰²ZÝG”öš¨˜pk"–SCŠÓ,Šü 1ËÀ$âÓÚÄ¥­$WPz³È,Žh†ê_Á;ËÙ§¶ÍTßjbúKËÅs¨|pLá½!ä$ûõURÒ\!…¦€Zå¸sÑq—ÐÉÇi*éLS~úsï×"I¿ô4¥(Øï> 6šq–ºä_0K€_ža;KÙYjÔ,•|ìüäêÇÅßÝÍù‰Z?9åÜ䎛*ïCï]Rí)=s“»~ûU¯`ô·ÌMÏ!]cœwvrzf„íäd'§›œn/žhrº¾pÚ,°p ¾ó_AÕØ[<Ìä$¦MNâ>é°㇑.±àäÔƒäcLNm`Âvr²“ ¶–›œãÄ3A™Çã')·v”…&ªh·ûþëç_²Šzºm »Š²Qv¢²Õǯ¢>d j‰ *Þ­Ïç˵qÒ3HÄõABÝŠBÆ—7†„”ǃªÆƒhŽz§RµñÀõ]A &»^Òñe)Š´\”5wŽÔê©ï 8 Ikm<¨QT­„nØS á¶àƲ.x â:Jðä Á{X€íä4orêV«ÉtEÇ&VÍÙˆ‹òÏ=X}E`fJ÷òt8¨,O7ï¹<œNï—âG¾¥ç÷•Šï9z1+æà–Ë"ßÌ2åÍÂÜÍp>ê‘~œ™™›üV¬³b^«HŽ.á‹õ#ý¤˜8¼U¸ [i°áî÷kº^É«GULC?9–À†´¢/ô—^r ¥ j¤E3o5Ýs}Z˜UB”¤'®éhˆŠjLDU}DEˤŸ¨èÆ‘”ƒÐSÀh„÷ñ°Qk¡l´™²fªF²×iÌW¢:¤>•Y°Ú,s ¹a•y`ð, €Ñûé`LëBªLÉË¥Òi7q¡µæ×`ÏÍ(k•zƒhåèrdnÙ×­ÐØ‹ß@=2'.ìtxGè¶Ê¦óŸ[çÛãH-\©[EèÃPMÓò†áqæH­ßéoüÐú:ˆÒc ée³`Ì£n(·ÁȲÉúz'ÈXhl«hg|ɾB ǃÆ1dx9k–|,$–mÕ  Œù˜4âS5tŸ$6êh,ãɯïÇÇÑØ6gá}B»Ýè½K›³õZ»­±Ob6-‹˜cY­ª®6c±aïûM¤2ÍeÖ±aƒ<È Ùƒ†˜AÒPXð4ØE¶xÖ‡¾A(°~W_…ÌãúŠO >]_qjA@jd)}\²ãã¸Y;x„êB’è§½[üªÄÂîX#ˆø kK\sm‘§wòð»$¹Òá/GR·'PíþæµeË]$ªû™]Vky§¡;¾¾q¿”µ^txÜ?1¦­™h ïwö Õã_ž ãB´¥Ogy:äûTîp“~šo$Ó±YΨpo{ŽßÎÃÖ-éK'1l*úÅ3hV®N"[•Ô?žóVõGr÷àÖá´\Rå º…´™#ÑS5ÝtèWývÿ!ÏêÿS¢kÑZ^ÿÑêì,ÎÑÿ…i‚úÈ™<\Dž«\\¤l¸­±‘Fû™Páv7 †þf~ÐÚ#,Œ~ß)ž…–Ë~ˆòïuä?’ÁûÛUáä¡XZþ%ÅCË?|ÂcáùÒZïÜã÷á-hŒÊ›³Œï—ÿà…ÅFÿƒ2Êd–þ@rº¢\EõÁåSáµú¿¤þ7ÑX,¥ÿËÒDÛÿ듼ä©ÒÃ1=¨šË'€ ØÑ1ˆ ¼=ÐÚÎ¥¸C?ly€ŒqÛ!#Žn9ŠóB„Óß™âs¿ñ^_ƒ™æ™éà; Ø„©BVèR_:ŽHQt«Ô6€B¿ßœÉ`Ó™ ê­ q j/r•¦¼ü!Myy|MùTLí °Ì 0€ÖGÎËÒ„vSOÔXúrÙäÅIlÒÚ Ä>ü×ǰõs"ø7ÀÍV«xäûz¨•–ˆ xÐ3•%p¯ÕÅ-ÖbUaì9Dv§`+¿_­Sh ¥2'ªí¾… B:ÐnÙì‰à¶S¨Ó”Úú‡ž h‹Ö<´ZÂßÖGÌKÓcḻ³is}Ië³CЊ Ð3AߊÀÇ?õì#Xxî*Ä^׃+‚h+/ç[Q7ëTÀ; †AÞºÙBCðÓv*xtqùÃ@[´–Y(ô£5à,Ê&£õq4Á…?è‰àu¿ßÈT¥ÕTŔ׊a˜Å|©F~’‡YÐL**V~«Í+Da0+ƒÀÁé êLÿ:c§ƒ¼£à)Ò<¯O„KJ`0kFIWoMgá"Ó[d“ÀjÉŸÀÔ¢5­Ae¿‚Ö"Ê¿}¡¶—C=HLån< ù…àûUà=¤²˜z×á `Pòcùv§{%H(ÿ:ÉG× Õg‚^j¦k!„xé„›Iör’ß®8p¿†ŒEï/ÐφÔ*þ2¶~FÑ@Chuæ„lýei‚¶þ>;\.XràryÍOéIVU"]ÛÆõaØ !>4ˆ…àШeðGؽÔÅ¡áøPñc½R! ¢rB“É&4S9^á›ñl®ÍßT5ˆ+îq¿©>¨Ý½•¬:<"š›yØÔ÷eG˜èlò(­^÷©1À³Ã©ô¶ÄT?ÆÁÆ|e~ÐíÄÈvl¶\¡~Lar{&&ßË<î†ßÈýI&âsBS /1ü’äF1ü¢µ 0üRRóKé5é¶ž»LJš¬3‹–ŽX7M¯ÿxÉ,"“ å§½ ¤—Þæ@BшNƒÓYs©ÙĵÇpʬùà9%ô*OþAºp:ÁÍšOô¯Ðéì´‡Mâ­™áMñ_BSTøjÀýˆþ£›OG©\W/ˆU¥WA£ï}Ü, 3a ÁCc÷s†/d°û./§7™–ÚšP`#ØeIÎÜ,¨Ä˜ºTI7©‡5¢Øb˜»C%dºÙNþ·­â;+¬£™!q7;ÔT·œ[a}ø½n†y0duÖÑÀbÐàqÿ¾Ù첺ÑZˆffT‚¶OZ™–ÖÊfuPZ#0T¯HkôýÍ;­­´ŽŸti^4?è$œµX—Vï…9VO, ÃlCµ¨éÜM»±À¢7•¹|•—¶¡k= °là¶LU¿ÇTõ éƒC¾ÜýSu}ð ¶z:’èîA<•^kPƒu·Û¿OOëM†<«§–Åa5÷j‰¼%›¶Wv´è]]¯ÏçbI~ií‡:ʨ×Ô±ÊÝ̪ ÖigCÌe ¤°#‰îd>¶wÄÜõ¯d÷fUõ΄p­eœÊbVª."û=v‡Û䨑ý§€³0,4Y›Ã`ѵªÎy£’TB?C¡s–…¬¡¬¦:we¯:¨®h«ç$h¯º=žU?üû„UÞ¤ 'ªHY «IÄbÂ* 7à¶Ë–°ªåˆ¡JE™úƒÄÔ»’òZÑæª^þÿS=vÿi— ™dÆÞYct/ÜÐèn!ØÝ¢UÙYfl‰C3¤wbÈ×}ЂÌn/®6Rê°.:yy¶ûr%¦ÁrÏĦå$¼'ò©M¤›Ä…›˜*¯~ÒrÉêÔmcí‚:cø.j2Ôyœžð¯p—¾‰Wk쎤‘‚âAÑ%¤ccÅ¥Í×äàÅõgi¯ó–Åa¤³M0›bºöÞm]žŸN©¼äÛ2¤6ÔÑPÃuòÖþV°ªå=Cúcá7  ´”uCiwn”_åŠÕÒÆÂ‡¾ NDKãIðe:É¡cÓZÇÁÃga˜:P±†2Kmªã`4°Øw&“¹<Úñ®qk+ÕoûdÝv¦íÊ § JŽb‹óD¶9°ñ/߬Ov<5à°7ŽQv¸*‘‹ùdÝÿýqb…­úß²†~âÿj…Ðì…YÁ}8- .ÁÐÊ ž*¸£Á=ç›Ëétº4×Ë][Õ²8g, XË–MZŠë£‹Öõ°¢#g-ëzkcü+¹wŒQ Ζ€FGã2Áì…ù­Þàúqdˆ¡Åa®ÐjZEy&;kÇC‹J{º¼òÃ!/cbrD±žq¿V2ë¢q A±Ã¡Á&TÁÖjìø­R\Š(:u…À —0k×Ð: + ÃìxXòhJ-]0XŒ‡½œ9?²æQ6Ðý3i…@2º‚nóïZšo{æVMÇ[;N÷ãM€3ÇÀ¼ã ¬iúh`YqºÖp˜G0Z2MÏêí|Z§ Ó4̃Œ±à€xÕ6N#Ü× K¯kol€û-–ëŸcõ/K^#‹j‘Ÿ˜ñÎôÒD]£ 'šÀ¦ŸqZc‹wb‡‚G;„¦†¨¨ÁÅj`q‹j”ÑJzO¯«ÛaÞž2œñB7lû[{°Swxõ‘¾„‘>Œe5ÒŸN«¸‹X°Úß ç4Oq֧Ë.OMä–—üË~AP–›­~ƒ¿žyšž¡Ú‹wÕÞÅà—8Å+¼ì6^ÃD1·0‘ƒ¡h/¯1V<Šƒ'÷Š¢óøíòÑ^òƒ-dÙo!·$@ôRO¦|½ž”¹2ó¾ Îu yf¤í X :!uâqÁ²z=;·…C郘¤×w@K)¸Ø#ïüNz€' Ó.*,J7Ȭo´Öa`=Úëç~Ûᮢžì\°ž!Ì Pk­µi­(®sñ•õFÜá/äXhZß,|]¨…BÂfSÇ, Ã\©mÃ`êLwvW¼]îöÍbN¡¡¤¦Nμn¦B»ØÃàÚ‹€¤‚w·§ÉÜn~;w CU¬žv¹!±êO»š%’aÛÕ«b½¼ëe*„ìþDج´.àuèàP>;ÁÏ;ZÔÖ×ýFžÏ»w‰V,‹þõ~¹ ¬Ÿ'öosÃ<Ì|¿ð´ô•r˜Ce"´W£ŽoÀÁ6ÿmíÕ±Á/Ò%úv™n} Ø«ãtÚ!þZ–(0Ó„aVÃx`Ah÷¯ëËq¿¯* F¤±…éÊü¡DL¬m— ðÿ…á {%“açoã«#×ÊlcFÏ<6Çø=}] ¹lÈ×ãaeaX(/ŒTu2 €Å’²§ã!ß]Zi Ô‘­ Õy,À’\N3Bjtê ¾Wp€˜vûŽ›óóñéµôÓ¤TUkZ§ÃaUñÖûýËš§£¹/áÑñfa°½ˆžÚv‡Ž›…a‰°ª ]‹`ÆÞÔh`©Ùtwåy3bìSì$Û+­.Z؈¨*¤4=½"­>?¼å¶háÜÀ%œÀ‡ß?ÃÜÀ“mªÚ’„–…a®ž" xrJYÓõt,°¨§ùæ²ßdÚÊp!yÒd±^ 2Ìp…„+·´›É0Üþ‡ê„ºvVˆåa»‘T¿Ã(´ò:ž*èÈ¡IRÒa鎨E«½–«õ±>n‡ù¦k…Cé`Qùe4´˜ð~Ü¿ç™*+¿$䈴íÚS(À׺+qõ±V@L^f€* Ø:û,_É_tÊ]¼€eÈèÖOJ}kUœVô‡‰,\ƒ”N/ƒ+ر –¨ÙH)CYï}N•,“úÜ4½×'èû¡”Jó‚Í —’ð!EÄ+> psYðf)È/xƒœ\åDtA&Ž~C#]ž‰ã=èÎa=”4åãBSFõX´µ@üÇÜ-û}rBc­"™(IF>9`8M†\ÔýتrřӨüتϧFøáúáêÄêøáô0Â|5Þ Ag\.ÌhÁV^ŠÀmbœÍ჈<~7<£Pñ¬CÑcºƒ.ƒŠîª—{)$»ÞÕ^HkÞÕ/†ªElbCBÞtÇ4ëHþ}ˆ}(]0wy/·‡<=œSUL›÷\nU®¶Åp1™Ìn’»rúy½(Dx;m€ cÞ 0ÐÂD‚•»~ÜŠI_f§€ÑÔƒâà’öWàGà§'–Ôlún8Qi1°W§õûFfzH¨ð£Òî…ªG¹—ùAc&p#h°ÙØy…²@>¦·ÄÅgbœ üÎLnÃh?ºç† è¾èÓ‘¼ X2€ Aï”j¡Å€ žV‹Ø‚«+ˆ Î3V@¬½!wJj‡Ðå’²í_Ö—új€¹¹Ÿ¹QïzŠÁ­ºFÅ*ÁƒšÞµõ€û]ÔkÃ)UÃi¼B{äà™‘ÞGÔm®×?Ï©Fy•vô ,U‚³®Ä{IÌÂCbH§`*©ÙƒÞ7nNm89 D ³0^w#|[ËÝXçŸâfnäèÍ»‚¿± ¦j¾÷¹}>}Ôü+xÕÆS k:Œ?>:ù'GЂ3œºJ_g–’/@m~Ü¥¥fƒ _³Û™“»™ ü°¡Ö‘ Eèj>°¦C±FÇŽçGè¿ïŠ5KýPlW¸ q]¬Ë­"45n‘ Í Üyâ´“„¡Æ&¡DPxƒ¤ÞB;ï¡ÂT…§‡“ôý²Ú­óH˜å•þ6ä‘èã‘’t­d<©8UÏ„oÕdÝOnÈ"ûµ81R\/ë¡¥x¾½»;©öÁ©äã*DfïîñQúx®óàuh÷ô>¸F@Ü@@èÝSU×Û6¥]÷°LÕ±p‚ræ)ø>´`Ʀetª ]ý û×ûåûúY™®uè )°GZVúôrßt]Š©·]©·~°Štlº»¢ žC©•TóÊ)±Rmye‹×cþýÃÕÖŠm)¶›GÛ+¶Vl¿®ØîîÛØˆ­Û[Õ[¦Å¬\H"±…K§Gl}‘‹ü²„تæàVto¯ÐI^§rFp—¥kñ¤}:r@m‰Ø]Ib‘ÒÞ»’EH*ta´XÄ›ãXèûÑØq–\GT¶Y$ûX$úLÛv˜É2C½ÑCý>l®Ïa„CýA²Z;_k³ QZ»º Lhà,×É¡ö¼Ú;/{Ðyº5{Ž–TWëlT¼‰õLcg§”dêýœ˜¾Îúh˜ôéúL^Î耇Ÿ«›¼±Nà©L^†¦nL­D}’áB‡£¶Ñûó´Ë½D»©v“dÎ0¼Ez›oSU v’»·Ôáð…%nõþ-:° JY@mÐ 9Vï88!¼úÌÏ\æ©ñÉTžNW; â†`ººèrШ`Ÿ€1›tœµÆ ßGßû³zÉÿˆ^ÊÛ< “HUÐqZÃsŸ¾cxÀŸQ/Góq£õ¡ôH<¡^òZ*¹AÀ˜³wëå81¿pw9œögy½dn€+{tøÚF%ã3Ê™‹¥ë]–Ç™¶§×PÒD±ÃH(üáÄØa©Xûctš‹Ršh)•5ÓÓ_«ì#¤”×¥^®¸Â¯s…·¸‚ @ÍZ`òKä)•%ETEðʆ(¢4ªhSÍ„ÂÌ‚âñMO>4çƒÓÈÃÈ€’•Ò™Ršaÿi¦çh8Wâüšæy.ß·—Í®°²/ŒN÷Æñ’ôŽÑUTÙP¯õYb<úp½–f+x\½¤!¸þ[d†å=®õÁß Àƒû[LÅÞ·Ký1<’ZD:"øUÓõ¶'°ËŽö?‹’E`žÞö#0Åt'š®:ë@K}r¥B±‹B7]טª~ÓCêè2ö¦"è'”³°hËJ­Õ•ñ™EOƒU'„Z*,Oëèìh‡RŽÛpæ÷¨æ?Õ¦UõÐý2‘YƒÀ ŒäÄÎjét-ÅHD`vâÂX8u°€¼™elY³“….Ï#ÍM:!Y.¹uõõaó©¾A…ò[ Z†½DÛVkå%𾽞.߬Õ:rëƒN’Î2îfPþ²f4—½¸Nõ8²¶ìCag˜…U~ã|¾þŽƒ·­ök™õl[…»Vº·]sÛ Ë.{­Ê.{"Þ~?Z»¦A4UÝó£„Ýæ¬ÑºJyè´­ÙD½'®ý[p¶æZ/Cjêg &°Úú É ´·´¬„‰Ý@Cx>¡~v!4bê&ÊÆ‡ètK1¥¦oÑCÍRL1†¢¥˜ª"ƒª‘AÞVL!o0_gœ>F6rë`ô`Ä%W%̪µÁ5¼îgNµØ‡Çî?m/ª7NI§5~ßZsB7f?zVI§+i£RA9»à„ØUu’ÍÊ7ÛÝû s"Úª*VýÌìP᯸sÅ-ü]Êðjoçf—Ç7µvª˜»rZa©%¿®ª1Ö*5 ©íT¥n]ÕÖZmÄ{Àwƒ ›§Ä½èr¢µÚÞ©áýX³õà²ÌEàJÕìN³õ6œTÍ}ÏO;õ¶;KSßÅI ñd¡®ùåe^ÐÔN¦ ×2®Š9Ô½·ù¡èWˆU!»–kò+¾šLbÕ¯~ç[}ͱ„ÇÔ®õ%‹ÀTjZ9 »à,Ds¯N°Ô/ˬ8el”×ë-ô‘¬MgEÉOåA`Ôµ˜~ömŸÿ°9PãfO¼zxƒ¤„MºYCÛÄ÷æG$£þÃu)”,s¨/êË›[üSœ£cà+sÏS°IS-˜2ê„2Šªâ<È|¯½@§¨(%ö’" Þg¤™ jfØ ‹Ú}k»-?rÅ!Ñ÷RÞ'erÇ­f>Ј]%‹À,0SŸ×å’ê½NÚP'h¦ÜäùûþÒØ€Oò8ƒ2'…kt?l…2-x¬.UØž )fˆŠéõ,Ëß7Ù‡¤;}EÅDGµÞ‘ßËr~ÿp(Yæ" KLMFà.8)sTbø}­VµãB–(Ifg]îëey• êá²D»AK5ó;O¿…š!x³ø’Š)ë”àmJ(C ÙC Þ«˜bŠbrb>Y¼ aBU~ˆ—àq]ϯMô3AÞ¡˜C[ð,ìQÒ^”–ÇËÖÇÃÐ]Ç„žUÒÙJŠÔWîw3‡s%ÔkšåІ‚™L( ²)‰´ø'4e÷0OKô™À|ŒÂ§]wÊ%Mt‘T7+£¡( ¿Y•ô6ÙÁš}ðtÔ ŠªW‹Ê SÙÚ°£%)àUQ๫ùÁø6êþ±@²Ì7akLÞñpÒvÁ¬5Ýúþ}½³9÷=Là}88 ƒS°Î ,úíVücd˜%˜Æ6%²™^ÒÛp¢—4=\6Û\¯ù£€ RXÊ›üÏOi¬E³ò”úXcÏä|¹JYúm³ý€œûçWÍà´àNˆžº °µ®ÒG´K¡d˜Š@½ t̺¿G6Ç myN¥JNe¬Ï ;[½B]gŸµŠé¹­&ÇT) ¨ØS¡˜q'¿3ÞÆÒÑ s¼k-'\)˜ò;8§Ëm &'F¨±Œà†J3‚—‚‰- ^.TÉ9B0µ¯ Oƒˆ@$A\÷µáŒ‡k| ož)šòD?T[0;½KúC>ûÀx©×)€4‡ëbà˜áz¢Qч@É æ;³¿÷§ŽÀhÁçJ_OÅ©CÌç&ݾ¯SŠ‘²]RïV‚uö|ã u´›42eõêŸý×Ãç¼ öãD Mþä_÷—O&m”ETæ´à¬MLa>ò‘|ÄÈ2 =Á :øxû/ë6 QQÂJâJž’ôŽ.›rÚp{'àö­ûâ²+Õ£h4Äâ~@:b± 8ú€· º&…’•ëér]kD^l—1ígaߪcºV|·–XùÅØ5[U”Âý*Wg†ºøb¹iU¥L*x/ª³é‚ÂL/ªHG„™®<í¹nždíDSÇF©2M=Ì0e…åBç 2pºb,×þ¶³Áбc+ÆVŒ­®ò|W%ùT—|­e3.,zˆ§¡!ž¼íøWɆŒÂõJéøåQÔG3Yi±¼Æ1ü¯3¤nÄ )}uT1Ÿ ••V2%ÌúLŒÓâŽÃaý=`À`z™Èx%¸ œJ ®BTW‚ÇFÉjñt-†CTî_ƒÀ”ƒÑpbK€].ezÉ7iþ¾2á[;SZ•™P.·VX¥ø-iŠ.i4y@¶Ý¸thèè0ׄaÕªÈR¶W˜ûYLNºÏ"Ñ _AY+09²ð B—E7ò+Ú^m—…Ý’`œ„U<J9`Ý*@)žSãeÇÀ ’©r™ç'y©*±@Yÿ€–æ=¡²Pµ^‡…êú‡@ëw"ekq_2Œƒãp¨Q%˜ò;úâŒär±E6ð‹‹å¿FÖúëG£6\§Ò®‹c†ëüZ%+˜3s‰À¯ñpB*ì`à—ë}lÐøNÑoZ ú ÚA_}U«’YÆzé ¯¦T×â 6?׿¯RÓÚ¶5Ÿ=Þ¼Bd ~- ôY¶­û[Óö¡@²ÌE€b JȺä 'æÎ*¹;ïO²ž;ë¦-sŠ º`V•;ëã–SH[NC%ÙúÇi—XÁË8#òäpÊ|¦ë%˜þ‹kK >J™”.€“ó&œ¨˜ûµL/Ò(fDþSæèe¬ ÿG¨—L;Oá7(×:¨—.ÿ¹ßÞÜo’š¼E5K/ÅBˆ–^Ö"sT ò¶^~hÏ#%:-w…ß–+^)·Q§IUü]ÞkžÞµT„ÿI ›í2“Öó,0Õ Ý·ñp0›À*Àçcg˜‹@FTrŒ’bN ãã¦zìY¥fÛ³ùÄGJq/™øH2ÁÓÍYÏ è#縨Ñþ£É$úc¯˜‘_öâ:S<¯°¹2úçàÔýÃhÝ3úÿ$`V~gÙ°5í%L.ìxdþš­/ª¯göý=Žåþ 9~_¾û¯.¥ÍÈ·@^Z‡Ê†¹×® Ë˜ÞØª"B, Â2™Ê_ùQËS»þ•¤ùÝ®ƒ¿×s@ç'E£p~·ç`dµ®ûF÷‹ÝK¢dõu.­¨­™>‚pjÁþø~Ôæm ÎU?1ÑT±)Ÿ®‚Zj¤ÍÓ¨ôX ¦p€fѬJ4ýôwðããü­Ã!'Ñ‚·TSÐI(X1J5e— x¦ýlÃlà%€¸ÀFÄÔ¥fÍõ·†/$5`9lô½…Ð ŸÀdEs!Ñ4dJŒ‡S7}áeÓ—8ÖöfPnh…e”vªIùÇ0XL÷OÈ0I`{zD+¿åŠ 1Þ*!«t¨¹K°K¯|X`Åu:ñ”X1@!ÑØ¢V}ƒ˜Vs:Æhƒ÷–<1êªÀ"5T›9äôÆ«sdÉÑ»U”:|3ª†”æÑ>&„V”ºh0IAÌýU·ÿ÷lj/ÞËž[ú‰ÿëÕÝŒj£~ LMÝ] 23êo×õ‹UÝ©ª[†^éû_wÉŽWÝÕ]PB9)÷gþ¦rÌ.ˆ’z…÷ƒ§ÕÕ‰&“ AP]ý+²$ÆU[õër«¢,¦,½Šõ¾Ãœy”÷Z]¦*@É­¤¥Û -ã8A‚‡62î¡ù+qPî 囩î7ïíímwý†i\J‚”%%y/%¥¡¤¶ÿkÕ‘<°)ÈʆŠo>ß@U±hGÏ£qØÔÔ«Á Ö$0jÜš¢7ü`¾.â°Ù&|}Í>Þ²IY-ÂR“eO™ÄR Úø×” qPæ0)*¹¸)„RóÃà«Ì2BŽ>¤$YõZQ„L ‡Pšþ(Ú8¥Ès,›¶ Í‘èÖQcø¹Tô^81È2RÖei™"—h¡¨ £Æ¡Š$§„>e6$ætñ#þ–u˜ÖM-íe•-­I£{”–½DI~ÛJ¹­r”_ô$\Á=…ã¡lÜöóÁj]È7Àµ·ýŸ¯GiJí,Ý (9.ã1(ÍN Èô]aøoµ=ûr!*Vgèe³'EB†s˜‡Ð\&ŠŠØ©÷Í0WŒš%¶'7XÍ*Ð`è#tÃd‰˜·Œæ·èã³ ‹@ZÒ yCâé´5ã¨i}SâÍù Ù`™h°Lô± þ°nÓºŒÏ’"0_™.H<.ã²"°f™C.ŸßÞŒ`ãè†ÌŒÃÅÆä84“ÖV`€"vÚæ¤Ðu7hºp¡,9\Bû²€2×–¥±Ü±Š3µO¿nf®y'Ôñ[à@ÁÀèµjjò2ÕZ à^"BÏ< N*~ žifõ·{2x½Ëÿ—N×ù%eF—Ž?ãQ€Þ¯Ü‰T:Ú{ü1ný>|°z{yx=<^½Á‹M<ŒpG+Ü›>áŽ+á¦ùÎF¸Ý]áæk¬´î{8s¨f\åëc¢ùøNLá‹Wî'ÁÐÃ3 ž¦7¤ÏÌn’©DÀ“wµÕǃ:󶛄s½n’Ô$u× &v¥J™‹^¶âÿð¥×ëÁ>7EL˲6G-ð,ÂJÍ©×îô'¯×¡‡g½Î;ð4ìYÜÚÓˆ@µ{hò|:õ*›z¥^È Ì W~7‹lllö|)'¯÷ÿðÀKöÀµÂ·{ DÏp¨ŠÞ£ˆÛÈÐ$Š)áÉÌ+öó@èá™O×r ÷5£|#S‰€¾‘wuÜÎåᨣ,Š7µs|#haCùM´,B–G¬éÉlEz퉨/?#cSyvŠ'™àÇàÞ|@¯Ù_¥ÙÝhä`ÍöÑÈG€Ðk¶×l7I=KQ¸3+ܺO¸ëH$'…;Zb$²G¸ùj÷ùñæ­íÇ¸í½µýôzx¼rµµÍ¥xÍ´©æí'1¶_¼±ýPzÉö’½€yßÛemp³J»Ó«7¯´;´ƒÀàÎJƒ;ëÕnñýôž{ƒû1n}op?=„¯Þ_mp‡¯É¿¢3ÖÜÞàþ#5ÁKöCÃógHö/3¸W|ùÑ×+ÛÜÞàþåÁ«÷CÃóg¨÷ÜÉö;Tá\¤Z¯f?²d«ç½ß¿$äåù4á‰!ô’í%Û¤“Ð0†ÆÛËà+Íîdûã=û×g>Äýï3ŸB/á^ÂIF çô¬¼¿ä1n{ï/yz=<^¹¿>#ðŸ§ã\¢-¼h?‘h·ÑúO¨‚퇆çÏí”Á|2˜ˆþ…•“ëH«+žnonÿ¹ÊýŸ”¯Ü ÏŸ¡Ü_(ÈŸWœÛ^´J s p14ÂZ÷ ƒs*¿{Z2ßðù1ôðLÇQâ6<æé‰ðÌHPíµ9«B{ñÖhZÄE’³¤· c‹Ôñjg8ØšJ¥7ú®ÿ[ïÔh‚á7þ“åƒÔ¼G¨™O·E˜àKéUö{üóꃤÜWDö»ìûðÕ Î³‚9~E¸¤ci¸Œø"rjŽRp1•oŠÌ¦ƒ›Më„e³mš„ÿŒZC¤_Cžh €–_Cüâ×/YCP¸Yô/$±*â×ó÷ÕîÏÈ÷^¦‹¦ûê‹iŽ{~álO«­'È´ _ÂLª$šè z©¿Zª¾CÏxšI<J‚Ö OÆZ>!E<æ4š¹;™9~;år³| 3èxé ,| zÍ&Iñ&€^T]d£‚XEAôÉ™­wMIôÅz!wÉà ‡"¡L£$*ø ˆ€—Ó ¿ÕX†ÈÖšQÆCIÑÞÅ O ­ <|A2Oz ¾Ö°×ÜDh# )ÉvÅjsˆ*dßJºv.UTÕL ´å“ZŽ«!ž1¨ñàŽ™†„5ê'ãñRRIÈudPcœç¸ðú/¼ÕÙ;/üð@·o«ój»ÓÐ1…^,·£欗&mœó¤®æÇš}p™óÿ„DG˜~ Ú¸£Ä1.å2YĬ)ŠÉæ§úÆÕ wñ•†xA…¡^½*•S›É®¼¸th³òâÕÓÚnb„Ÿ>\µù@A4°, £?\›åCFwÚ—‰EI’€Æu«ŸMø‰0IÚíhÃaeÏPƒÐr0|¡àyk‘•¸-ƒ/£À‰29dhB]Hä­½;p·¬”tH¡RI–kü‚fÅ’ÕÂùØ+øà1¢†q4\Õ{42Žž7È@*“´ ˆ“×x7 SÀÕ=èýöWlWœÎ›Õ®²EyÁs¤|;¶h,–&u±6E#t#D(»aù;MÊļÊ|}ƒì®äq§÷w"6uéòÇ ³cŒœ¼•Ö ¥*_rƺ1Þƒ›ÙTªv6UµµiE×u‹, ÷äã¼myZG@”™|CãQþ«.Ô¬’Ÿ92?&ÃtØ>t .}è<Ù}è ¤þ–úö ÁòWzŽ+5=Ûð`ÚöY›$íò"Œò„$E9j¥ š—n’v¸Lqã )é/wæñ"ÊšZ—~ÏW2 m‡[šm·4^è*J£i×A¶¸ÙyHãª1‚­ n´Y™2þåî6”YàÌ:Yyuh„K' Zí‚Q/¸–˜ÃtÔ®Âh­ õÒà*m‰Ìb(i÷Cä #‘Ââ*{m&|…[Aߪå•à’ˆY#Ïè%aF ÝøZžWpCžO‚®ºCg°Þ.^E’¾÷Ó5¨ i{W€"ûuŠ¥:#9Ðo°_òÏÕÁ¤rŸõñ­²d!Æ–Pë^Õ:ÆN$,‹ 8’²òRkÊ‚35‚JwÐ÷Ò‚(Éi›²\ì‹ýÖËûP¢áyîäÉÅ+}tÌ*Ñ^ÞQ5~!˜¨I@]È˾šq‘ê+ÈE:z¿Z¯Î•¼oõ¹’wõQN9׬`y6åyÏl™8‰£¤|³¯C”÷°#ïì5øþãìå} Ñh†î¯f~½95rLáe£à í5Õ\òî&=x}&4=P€jZì- .HÿTó}Nr€¾çûݪ(Ôù|Ò{ý¹ÿ<ªU¥ï‰Is r¶¼`¿³`¦µ‡Æ¦²…X_o lú-øäíðvò­ªú½n.Ñh1‡Nn?ZË)¢ŒÈbнµ0®K_¥œôê\V¹ètËsݨŸ·Êþûªù‡ÅÎÃ2 ×árúé]°Líîýþ,Î屯ä¹Pb³ÚV•ñxb[“¤´½£Ä & »Q«0R‹CH-N©‡`>—8h;Tþ9î^އÞÒZÒUBä5}'®Ýb|¶c¿ûTOGeºר´­åѨL‡µ¸øÜwb¥ßZ]JÂå²H¡Ìü¦±lhq…M-†˜år‘QžFig ×í’óìíßsþæµxè M™Gº›N=àiJ[šl»Žo?.v–9Lã‹°TN ¦ñ8àQŽ?Ô«8Ôy§W Ó8¤öœCm^SŒÓEÒÒbŽ©rÔþƒGh‡]»øU‹·­9ˆ7¸“Úú×ñˆÕ1M4‹»c"“¶fû9‘¿;¯ÄÓ•¸ƒ >9 •é°c]¶ØŠcyŒG·”®š.3Èa69 ,OœAhG1¥-m™",§ƒßY°;¶qòýãûáo£@À5Á¢R·K~ žË6®'xÛøq±ó°Lƒ¥›ËÑ‚žœb3«‹õûn…½ò>òÊ6Nh zjª›Ã¢QO’@þ4oöÂf4´ #㘣qÌ:Æq´.ÒŸ¥>Œ8èyÂE¶Zs•¢¼ YEñÚ{µ¸k»•|×µØÇ¿;¯Å3XÇ5,—.ÆkñXàA‹Å¡PÅù Š•Þ Âk˜ÇQÎBä¨4”£´e‡}ö1L$`Iù–ØøŽÛ’ÌD˜~xûx¨¥Õ^ÔÌq¼AüÍÿ›±ó¨Ì`_@e‡ÅXØÑ:®ÇY18nyðÛÊ¥­`^Ðc*¡L&}wý¡Ü¿þ¸ËórìšYpúB¢ºRÔØEÌã?3%ÆË¿E/ÌSmåk¨ÔÞŒÑÂ<v4•í$˜R”U'SÞŒï‚Ey”5lå*¦2dWTÝ49º’YÜÑæt½~úQ^CWv:V„;GUk®˜Ü볕Æöü½ÿû ó¨ÌáIîCe¦œ·±°ƒ"¯×ê¼Yv»¼c*ƒ#9¼”ó·v`—ÌÒ:Î0ýøbÊ[(£t<µÃE*ÅzêÖ“{òÉájiE—LãÉøj[w½nè]ÿ Øýq°ü1åKíJ <…õÞ$–‚ìu"W2Ë2ÓŸ>‚>ó 'mŽI›ûjCb0‚ûÄ9¡0ߥÚöú±öCʇßàT¯zaDŒ™)ç¢ß‰ñgÊô¯ö. Š–é2}Ë‹11ûbð(ÓÛÊQÞ‘nöEØ6Ýì‹h‘öx–cÓ#ãbòEº9ÈïÚ«òÐûYâÜ8d|£ÍuĦßóz/†§&û›þ÷açQ™Ãb6¿¨äÍ¡£Ý#aG%þܨ¼P§ó¶ã¾ÈŠ,g8T<*åV”òÞZb¼DyIa>J»Hºþ‹×Ÿç¿ÿQ16_æàŠË± “Ss™È®O1ŒÀô߸í¿;¯Æ3©q–vÜ$Ãxð$ÇkõyÚ‹V+cÇàºiÊH ¹É¼×:^.XÔRä;…f4wé²yÌãŽÞ<|WÃ1À×7v<ª'˜Ç@=*3©t •9¦äM‚EúpØ÷BÝ츨`f TÈZ£ñJ‰.•¸¥Ð1æa0NA¿fÞ1šùkzܧ^¢r Â<ߊêÂ)Ï(Ñ>ÿâ  ó¨Ì"Æý¨T“¯§ˆñHØ1ÿbÿ~Æy|J·Å8,ÂC¥y7”8é(1ÇL8öq0T©¢êí?Éêg£¬å“v„OÕIÜ%ÄÊž)€¤èÇD ÕC A‚·’³G¨Æÿð¤49,ðøýÃ…X#…;¼‘}¼‘MÞС•OÂ{À5…J¯ÃoÃUª „ ÊÄxñøZü…ß!*Já5¨»¿ök4cÿS®®-ŽªÑ¦ýèY5 `K æÓ‘—kTƒ'DÕ#6±Kµ~µ³£FìæksÓ”ùb_J—’…:®7G¥ÅþPJ±Õj<å~ÿ¶ýç¤û`Œ³òaÊá!w²<–¥Þs˜Ì «·-™MçO°Ç˦Ñ" Ð:oÍÊTz8e~Â?ºF­dB^˜«‚¶¤ó…—à ˆSBšWð¿¶—eÜ:à&èù…à)aõˆMBŒ\Û Ä†(~SüïCìKéB½•JÝ×â°[«Ãùíü~êMçófun6§L (‰qRâÓnëQ¯¦Ü $!-f¨s‡«÷õΈíßAê6ñ0SH™^-xÜð)+îwu«±^BH-BŸ˜BJyŸð×fÝȦŸ!ûLhz ¦uËòoåþè> ¾‚èj߉÷ÃZ¼¿Vç¢P§ÚªÓfµ·>ž0…Öyð(†$7;ƒQßÐæ¿áç ³@öAêã¸T÷`‘,bÖŽ‰þóó|CÝi-£µ–žÈ=MÑ_ôdÕöÅ5G¡¨…ø•è(„§…YMÉE¨ˆÃcÔ]öѬ×?(5½Ò¥Á…iˆ'X­?ø$¬ï’Þ9-c% îj2íÊÅxÈ\¹˜¾J.®ƒ8X.GÑ$ˆj¾QCâGf²ÌF¬Zß ]59슷f3긡ùi5RZÒ †f±°e'8¤…aÀ4Š‹Ù)§E83³¾Þ¢!Ö¹¼7è£lÀT4÷‡ì\*ñ¢Ñ"è’ªi&ÜŒ–jÝÜÑ}6‚nÚ=! .Ã=Yü‚ÎŽzgj«ßIÒ3ìöbð´kíA¬cí̓^­7Wa¼ª O†¤iHV•/€äèö$f'ÙâÇò×^ˆí§Zo¹/ŒÚô%y™Þ#ØÅº2ÅTîP[(fæ—c›¾0\¤8¿|ñKÞÓ*Vbûïw¯äƒîr¨ÿĸº ³P8ìÝjBΫänU/åO¥i)7~q ÒuÇùD)Ÿ…”f~<¬Oëýû^‰ÏÝþ­)åÆç0É–§¥¦ÇICÉ!85¤œÒ9̉Ê÷d(åiWÊ¿ì·1Åp„Y…È„OáI¢"p Û EzIr‡Ñõ7˜*ÚÄ6’ÜN¦þ 8Ü¿/‘hÙ+´ GàþªòC!ÿ*B™ã1îsØ s„9`³éÃŒ%¸þôsx "`â†e‰Ù÷ÑI‹jÛˆO7Y&:ÉW4e‚ {·´ÆáG‹áNMþ’æÔþð†~_éïö¸ë»q²º0­—;à‚ϼ…ØßvÜõsvúëð¸çöiáa2hsY·I9ªƒ‡#Ôm<¦æ.Þ 5 p†´PdDç¥òFPå“Eߨ6ŽËG¬üÂ3ðÿ?§!1¼eì‡ÆE”'¦¹É²üÍÝ~Áb‰­XK9¯¦DXšYãäÇ,xƶݟpÆ*F»ýþw µWêÊÔ~¥ž  ^© ¯Ô·•ša/©k*U*ô¨ô¦«Òq¥Ò1гQiÈEzT:Ýþxåï>Eu'}¡pü›œaJ¹ñgr‚Á!éo‰Ah Âcƒ×:oÝë éÏ7Áå°¶OcøÅØyX&ÁÒðo4aiüä^X¦ÃoÛ–Òª£†­»*Þ˜A:`DódâÜM„Æ&¼s$Ou†Mp L9#¼íÞPùŠÿn=~9&PÁ';e¸ B™Ï»åxÓ‘c7MäåøåÙîû¯Âî±`y:9vÒ]Xðéq°LÞ$òí(ÿc_œO$Ç,,mç-K2Ja] ³"æ¹4ÍËJ²mmrÈ>hÿži£Éª.œ_uÜßúÏÛÈ¿P”»6òƒ‹òóÝý^”–§eS;ŸÔr¼D9ÞôÈq]=OsdŒCBµšjÉ1É?lëåØËñß{9~HX¼;rœl‚¿÷wþórÜã…D\¥½6ø…ˆ¶9B,`K޹WãLJÎÃ2 –NŠ\ “ =AÇd%vjµÚœ ¥w'×Ì‚"Î1ÈÇ9 iö‚ù‰Mÿ1cÆK°¢œGvxLÛ¼Í1ÔŠËj¬š„’b¡ðÒÃg™°®ÄØnE"Õ©ˆÒ‰$E¯‰DZ)xáúfj¡Ô}j¬´‰y÷Bá‹ñ”,wdžŽ'/èçÚ4– ª®·ü2•„_F઄ ú+á´` ð–ã1J#áªé-7.Eµ„«Áåæ7½åØoÉEÀÈw@%Üúþ.}Ãà\”/z;¨sq>7Ç·Ó§¨'FŒÃÌH/c¥*ƒhC ãæÙ”™oÍàõò5 —¯YÚ×0£à)¾‚ªiÂØÉ0ìÜØ¿›ÅE–GæåÜQôœíП5Ì–(è ÆA!?{ÿÁ<ÎÊ—´Ë8å×HI+é-FÊ ÁOX¾kÙà*‰«·¥±ýñO^ê-ÒK>Y“Ï®I>Ý$Ÿ¬È'pm¯ÉG•dæFÂÚ(Q…˜4^±YDÝ4ù«]BµŠôˆÇ¨Úâ1l®…¼«âñPøyù/ß=67·¾0h½ ÎR¾óƒ:ŸGµYƒy ŠÍk:G¶d1²f5 £E´­qDKšEVš“4³"Î!G…e0%Øü¸¥Ñ,[´¬n˜Ì &ÊL4iÁÔeÛ­qܪMQSÏÜbM³[¶x'zï|Õä@³#Óz8×Dw·§-¥£1ûXv›bŠl4a)¦\Š©ÛÖà!rbu¯‰oS7Km)&'ˆt„H¤£—ÈÑhòžDfL%úS®gn»±Øµ4c.Õ¾†æ Íx@½jOPmW¶-Mæ(g©Úïå_ù꜋m.O «·,#›Ø< ­ƒ0së.!½ðé°|Mô{‰pó†ÌŠ<7mW3ê Í¢åÅq{<Ÿ¼ò0ò†„$Ç•ÃÚöù€Ÿ0ü)ß&އ֡ ÏEå *YO*‘‡Æ!/²Ò ÃÒ¿Ñl‡´Ã–a}U3Ê6 ±ÛgàèÆ6" ÝŒuTš½~À® "£îú?D¥òµÃDt$þ‚b(øz­\öá[¥e_;²EÜ¡'ª ÀÍc×™ AÓ(ç­æ$):RJS=ŒHï°ÏÛrÊvÊ˽—{/÷^î½ÜÿérŸnwq{¹÷rïåÞ˽—û?\îµÿü =ddz¨ŒÜ7ˆ«.\¬ºI\I±0Mº'YÑ[« ;1Ö 4PÊÇîÈP´E‡­6 w“£¢æ¨¤ª`árt8W2Þ6Ê„â+•ÊÄ#{8Úòº›¢ývÊÊE4:Jr Oû|àÔx"«$’÷´×r'êY#`2ïÑò;à„ªû÷c®ÎçBo0#ܪ,%{Ç•cð“ÿäÎqº\þ&ÝðqØX –Fÿñ7j0%Âàì2¡NSN ¤²¤´2„ðåÍ|Cê¶Vù†KŠŠÆ H¿˜Ëoއ@{öí5Úk´×èGÔh¾~ýW¤Ý= ¨Ý& ©Ü-8~ž6ôž¤gÛM`IHôƒüC?“`Öë6Q¹Ø{÷Ëž»_7¸‡Û3T:)è I¼ ½´·1~<ŸcŽGr›ô“lr‡HôaâŠÄŒø¸"q¥–H<,PÞ+2›W¤ÊSÁõü&F¥w‰N‘}qÈ÷gu„±Ž(Б››‚^ ¨È‰¬ê¢Ž2Ró°šlƒ¹.Uaú@–Vñ­›“ÀÏá9NI‰ ¯F²h85àfª$86Úsmø:T1$} @­ë£þ¸e–ág™ô1}ÅH-0]~(©òÔ]UhwáÑj˜h”÷bn°ÐÊð ? ûùE‰£†_È5]—÷ ’!¸çÑ3†ÚH9Ëöïk\ë£Z£#áÒÎNá~Ç Ô0œ9Ztð ØK¯8x0¦Q©²#Ÿ6°wÈh¸ÚœvëÝ.¯òò3—0²&rX$9d n]“7NaŽ:N «)bªm¶€r›/xšVCyWu ð»N?"¯¶ƒùGÔîë‹g:–/}jë¶ãörûhˆy0&®}m0ªÔíñr{?È¥Ün©ÛöF9óϱJÒ´ ©ËkÈ!n7ä6XDM¹…6"¥ÜÂtô%vßæiVŠoGo?m^½ÞÞk,)ãAÄúWí,¢3é­õ>ÐÃÐ+ïCbçÁ˜ .%hLc4ÈhèîÔqfnËÐ ¡Ò…£ã<·E¶d7î‘]lõ¶S”]fd÷Ã1s~îo´çkù°ã>¬Û†Y–¼Ô0 =L.O*w•TÖ]¥'u Ãσ£xD´…™¤¶U_>··G2¤ÙÞx`wõ| Yoå ¨¬sñyÐòHLCÂf¾50¾„»Åu¼àø]ç»­8 •W&mBµ„ ½eK0lc×{- ÿ]s„L„jÓ òò‰mÛ¶9›mØiuôº:Ø ¿UitÚÏ`Å:ºšxY}H°<S‘0þY¸¦ùDçìxAVWïjwT«†§e•1jÄ‹$“†ªÆ j ‘¡ªšÚì`‰Æ!±7BYí:e“·cüš_¦Õ&;ðVR8¿GUNŒøÞ+ª›¶¨:“¸®‹ê‹¿•-X^TgÕRVÉ/€–*æŽMÕÁð¢¨0?a··¢Š­=Q©§‘q@Œ(²z*8Ú¬4g+­Ô5FMM!ã€j%2œÆÕR×Xý,ÞWÞfÊ:}Øàhç´YÃ{£õ!ÑòH̃DÕ¬h£u8¼¨¯ª(ë³c´¦I›,ÁÆB,„žiÃh e ’U2_Áp--VÈ"`Ö¤+«o§ïüÊüB¯ª_¥ª£u¸ªz«Õ«êS"ñPªJV+iM*ieFZuWZ“JZiþˆ•ÖMÖ®´fêãFÞbî¸Sä —øÖY-VFÓEX5nÄ>ñÞŽ}H =S‘@+žÐ4$ÆÁKÎ×µ>èsÛù Ö«uô™² ¸Mÿ+©,é¾bÉ–ÿZ×½Òôe¹U–5äóèaÀL“Ù¡¥öO"—”hW)‡)nv ]\¨.Á²Z¶ÛèÉÆk§ñ8ï•[Qf;©Da" „z¬KCg§(ùCYØèV ÁBªEE <¡[-çm…4™ïoZÜ…sAý‡gDƈÂ-|ßÿ"{ù¯K¨¼yù¯K¨P¦üÎ^~Ù¼üúúå§€^±æå‡K(&^þ> m_~”P­Úùs×z½}ù‡ Õ¹«ÕY­ÎouvF6q[†k4¥fÓò›i$Ï«¡ TaK…¹‰²Çm;œÔà’© ¾Y!0îö% eªò ÐÒ…°ùfCêJšÜ:O+\½Jö>¹w<½YUlÃÅ/¦MX†‰1 S‘^¥â–¹ýôpé½F,}›XRÒZ §–T:|A§² ´I¡#Dq÷¯ß—¤º5„’Qýïˆ*†1Ⱥ:2#Êm¹€õ<:ò`p{ÕŸ¨úí¢ß ¿´h® U~ÃãúKh‚‹Ê^ëCñ©a¢Ôj•Ÿê|~3Æx4jŠþØó!¬šªÙÙRøE<.–è-‰ãvRÚ2XpL9k¤¥ñrõ(—èyƒý’EÄu^š38J%ÙÇ uéÓ௾Ê_Ìð†·™^‡£9ëב/^GÆ ÛV¦™Pöëˆ_Gü:rcá8/¥êVûNÛ_¿ˆlßõ{ö›¿†ô¬!›?l/òâ׿†ø5ä ÷"a ÚèÚZÙµ$²k‰î[Kâj-‰Ëµ„UkI\®%QßZÂVïâí!Ö¿˜xÇ–_Lübâ“gtlE¯ÿËŸ"( IuA—H§ü…æ‡ê®T ­æ¬¬³$µ¨Ràó”èä/(gÑ.Uµ oGª*;åCâé´’è” U!<êR[mÁ»‘‚<°ë]38PI‡n8ˆ·žªCpZ™ËÒX ªD ø…evUˆ_ª|Ëæž_„ÇuP@ÈU˜Ѫ$ë:f …ypØ|âϤÄÒk£ß¢ ‚h‚p1THøÙÇ•ÅêtÞ¨ÝiÁ¿ÕZÂÀ¨-·ñì(¶aîÈ6Œ¶#^Xjõ™ÙÉ»Kóºjè.«^Ìmï§ À¼,)œ~œTqr'Ã[H·F¤3ç©I-ø"šóZ¢ÕüçU™ð*îUÜ«¸Wq¯â«âñ&ߟ–“‰´¥ª)ÚÊÑ&—¾?KP1QíñÌn%Œ:*F­„Q¯€•Ça, ·‰Å¡ÏÍ2‡ЂwDmÕúClµÎ·ëÒîêyÂsÈ¿ç |Z«ä°òÿ"áþy±óïþ!>ÞŠÙ¾æ§nðSv^]$§¶ž4‡œê+u޶CÈltEB6â÷Z÷†À0ݨG$T›+‚®‡´\ü®y¾Ç~©ŽÀßVÃõúË»­$ø¹¾ë Çs-ðy)ðÛƒÚ¹®~ic’Q¿Œí¤Ý¤Šk^”ýä§É½ÌŽäµ…Q± Ú¥€Wo-}Y.ÉÅe LÛƒt8%³§ò¼¸ $oŸÑçç‚è[ý‰$Æ+…ÿ f ¡Œ´ãíbô3ªà²¶‚q”+ú_;ÈiE¹ŸtWH'šSsWPQ ïea-øF!M¢†´‡Qe&¾â7Çð5ÂÚÞ±±a Icœ„åkO²¬D«S)ÊãDLïÖöÀuu´ðá¨_¹ÂŸa«¼gQˆ^x_÷òÖ„+¸áý; ºJyfÐYg®!IßûéšT{i¸Tû…÷õ䀕äm¥Þ·«ójs‚ •Ån›ê´Yí!»s?.¢<„ÆgqR>Šœö;Y9䌚£/++Ìa|Œ§ŒÓEðò1kÆ`ãMœ"¯ïC™†F %ÚÁaI‚6‡A¯Dó‡NÙ2À”"Üi¡4õ=ìÌ Ž¼À?šÿy ä4 .ínEKÁ݃™É¿.å}»Ïóýù|¦1Ägu&î’&sŸa% ‡ÃM‰‡gbÊaÄþj ñÝ4›pU|jök%þ‰·Ùš¶ÛðÚ®ðè ¦ÿ¥¹ŒÒîÉwq¿¿éXðáKhÓÓñaX?ä¿Û®y5yˆÿó²? ¨^Åïªáí'ÿß8»~>r€ìïwÅn¿û\mÇãÝ_oÙõ,X~c[–Af%½Á‹3rß8äAûœxl§tàèã í{¾ãò]a)þàÚiÛ÷ÑëkrüÅâÿÌê =~´$±u™â³‚.!~¾Tö*Þϸ>ÿ3ÒÓûož LÔ ®øø[@µ#ãu~Fr€Îo÷Ûýáð®öç¢üµ+?í3·þè FÏYLfJÛ~Ù´íSŠÒZ}Ï0BËù’è3ÓgŒûŽÿFÛ2¯ïÃ=…4òEÜáI)©xÒ®ðx4]KzŠfÐwwP“øgBÓ5¯ƒžäû"P³8èg#†z«b/Je?ËB©Bû]ÃAE˜\pχÔ0¬á»)ÿŽÐeŸ\sÏ—ûíw Ÿúyo°MÔlS¶‰Û´¨Ø&]a5Éäea÷3LSE^7QÀxë)}Oký0)í=zÒp‚ÒB¦îñ5Ãýbåâoç׌vå¢É>¹xj0=P“€ª2m ®Øô¥¨O0Üg$–¼ªímöÓæ ßµÞ¿ëÊpMWpÑDiÁ}½J]Ï ¸ ²Z¯L@Ö;C«=*—}hd½8Éá›—õ£/ÊlÔ æ¢ÔEwºäÐÀ¡Ü¶©²>Øï5ä ö@Í"ö oümw<ºqÆŠý|ä±?¾¿o÷»Øð….äçþm¯\±ga)òaD~ø¸ ¬—¦Ò{È¥çI)ñÆ zŸtÌøð5Û§©×ûÖF±‡ct¤½è"ôä~3‹>)}‚šhÆg½zïEþùpõ@MꢤPWlú !×ùÈž+ïgµÞa>¯¬ÈsdÈ£M¿,xeÍTJtÆÃK«Q†1N0 )“2@:Ÿ½…‡ÏÜküm;>E+gÛ†WLšCÂÕÏ 2hõWtZÞUópFá/Ó5(c®tÐÌ%쳑…ý(ÄaÜë\ö¹~W«³vœP›i³j{…=YD”BÃLˆæ„óÒðË(ÄÚvÇY³~ýüøl°hs-âQ.bˆg5‰’ÒˆÖÉáb‡|$À…f´S¸g ï”9{¼’ðUÚÒ|`‚ª `_ä3ðÕ˜‰ áàðDÍ2t‰)U³LIñݼAY–Ñiá& OöÚf^5Vi¥écM¡ GwM''¨PÿÇk5"Ež½DI-Sä/·æì²1ŽV3n ù·)Àü“õXMÂÊè»Åj°Â×nšQ‰ò³RÝ4à½/-øÓîxЇÝ~·Z­ÖGJ–_Æ•ÒC¾d€ŸÆiÃ=¨§6±%)= À__ª|Â0Úšt2å3¥òÿ^金þ£ Q‚Μìú‹À«V–¸þØÓ•~é•þIõXMÃj€˜w±ªìùû°ú"Š`UÔáxXmv%¿=lÅQ¨Ò²7eQË„z‡9`ã¸hXôiùÔ"iMU‚^˶$¦¡J¼jjàdÕ¼ì~zH5©¬[t@ƒêTû€[6iNöq´Û&ZÁ™LÔù¾¢W¯O¨Çj²Î7°ºÓ «ósRÇî)(yÕżûx8¯÷oj¿¯u>\.¡·<šôñ2(£¦Ô/¢´)õA@#;¨* LeǦû^,ó«3;`ɂӕ•2n68¼<æÍÒp¼‰X¬„¹>ͶKšxƒ‘hòkÑ[½ÿC°%ï6´žˆLãáCâJûÕJn¾õ‹ÂcEbÉÎüQÓæ¹t#ß›ù”Kvü:a&hmÜtݭ¸U “•tX¦{$ž¿D|pžÏt D¸'àèjÉŒ˜vµ¤Ù¿¯—x*p=Dã!rM÷AI5ù(ˆæ%¦P¾ïl}ëêýý¼=ŸJ ~W%Pr[ÛAvMÖžfXÖš895 ¬xöˆ/ø2—o {ú½ø÷ãÔ¶/®Lo=k\ˆÁl# ÄVL ¹ U]ˆAq#Ë0å0 ?Þb¶@B™•ÉIÜ’„Œ,šb©F=ZÂÐÖkG á¡èØùfÂŽî·*àenL!ˆE— tNã²I½iFvø¿•†›'þÏ5Ûÿê¸öˆÄØ6á|V"qÈ "ñ°Xþ&äp´ÁÁüïâ`"¥#q@1–.×çbM‡´8Ð6‡Ûv÷}ÐxbµÚìΫ|{Üw»  dš¶‘±¸ÿŽcwº^5>: „f<t óÌtªÌh¦5£Ã)u«¬Ç>…à`iúØQºy ²Òxk˜ú”ƒ¼hÍDðñ¾ú*ÝVƒÈ&n’Íî€ÑL µ1yÕ¯ÛR÷q Ÿ4]ŽÉ6Çdgÿ‡y Âî‰Äy|ZáfÓîíèûñÓ†è6{aQ= µn'œü:‘ž/G®¡Ö‡ÇÎkô49^ï–H úF‹nC¾ÞnŠü¬>VÇÓ"!åøÿÆ+…fŽ8£$‡¥ ‡45´âk»§þÌò˜F²0OIöSù,jøK(Ù%\,ÁcB#Nx˜„MyW[uJjÚÙfâ¢GžÕ³Z¨ŠdH9óã«GHOEieˆóJ”9ºP¸³åë3yóYf6 ˆqúË åÜ~`S°#˜µÑTlÉ‘@‹q¢€bÇÅfëÕþM6Y)ÚŠM¾*²".RRU”ÔÆü$ËL<‘kM|¾ACt,(kñ òKQ2¿1!-û¤#תǼ ÇH=• õ$QÏœq÷¢s”ú5›Ð;EƒÈõ¦M¸Ã†9è(È’†³› o.<—6=Åu«s©l´øâGŠè‘ôÑÀµ´d2ˆ///º ‰ÝDÓjÉŸèMÝU¯îcN‰±O/`%;X)ÚüáJ‘sØê¾äs­ð¥¼ªûƶ¿„ÕUÝ×}X]ÌCq°‚c¿ðªËXé.V_D‘’ï«ýáx8ìlöUò°9Ôfµ=•öt¹ $IùÇÒÀÄÉ„Í4>Øðmô-BÛ?2{|e`w¡Ý"$îd¿À,"9cÆ/'E’‡Ö÷㦹Nj7JUq áö¶«X°H!¾±œ$ßž£×.øÑLŸ‘Ý7y}™ÔzR£e"/Ö&ã…Ód¼`ôAš om´fDþ#­(“cú’"ÿÒõ¤({¬&`EΣKX]\\ßÿ˜¤È™)ûýf²f¶ê¸?¢üc}¶ÉïØ© +¸úÔI~‡¦µø³›KòrAˆav%ù‰÷â?ˆj·•ÚÅÔd·^â€Äìc<snx`^ü\P~1Ê«iXõíîZ ÆfÄÏGtRßEþ¶·­jöXü¤·uåMüƒ^d +wn€7ÃÙÝaË™„ 8K˜øWê¢þ§Ýâ§Íùýç­ü›&1ð_T ±RïÚJ*ÚSš¬4žÂÚ^KxF—É}¦ÿ¦£þ·šÜòÕ//^<~ ^è'auË’·ÊßÂjš•?3E0;~»-¯Õûîø©·°„èʬüCßÂma­k3B°Ö•£¹¯(àmÍ}ðó0ì0ŒÝåa `°>s¥§ÞÜÆ98Z;=<`ã7„«²õpä–Ô6€70¸åD·úÌ}þ²¼/ ÓkÈïų†ÓC5«Ü_„ÊÑþ±P}A@í…ZíÕá|^mwZµþ8àWŠC/1e“èщbj0ÌVAv-ûd±leÖSB=£‚¨Ät¯¡ ñ‡ãÕߦ óJ?„n„¹j¥¢"pö¬”g@Ÿ­±N|6¯~'ö>œ'Ôc5+£ïW°ú"þ¬±?ì±îõX¾ºØç»­Û÷¦i[ wø øi\>¶4SÛhø’?y[§k(†ïRPZ™§çŠ~ê"ýä™§g[”–rN‰&ÊÁ¥–„³0é@Š ×ME $j˜Ì×™h˜¦0 Smàà`LÖ¸2«¹Ä·³ºK4† ¹õѤQm²óF?á‹À¼T¹ƒ#ÁéÓ†€²Úp®«Úð°ˆ]DCy4† RÝAÃHñÝhŒ†=æbµ9êüV hŠ¿±m˜$´)¹NBnÆ«Zç ¤Á˜>aq£yL ôF< {†«&Jï¶Í~´_¸ÜÒ’å4ÏYJCMüÑfÝÖÒLY†!­ãÈQ$vì7ÌÕg% XÚœ(\$~š kG‡!訅2l±)Üx¹«uÍiø‡‚ÜÔ„¼=;€¤ªÛ|F¼*õ¸Üß¿dîÃØy¦!F±õ`ç‡ä €Ë¡Ôy_Zäî Ó€览Zó´L³æÓò¶ƒüuÙ( ÚpEÕ´;gúÑúç›ÜyJ¨}Ác5[4´ pû¥h3RFÛ}û²ø÷wà嘂@Ó%lpÄwHç8A:w¬·*òb½éÄúM˜ýŒ= y€u@QC>—Øí ^k&Pð Eo R0 W (³M WnÃÚàüêtøRJh=œmðÛïóÙº ½„—Ó1ümû;`òLµ9aßF VÓ»lÎÛpâ>¾X•*u³8W6'‡Šܾ§cP@é §Ý¿×v'´dPç9ÏéfØu•~_çGáuóŽM xÁ¹ÉgÝÀ÷6šòÆçC@昮¡åv˜aß~Njc¢­}{\¤ù¥{²ˆZ š˜‰8\pqëÎÅò{+YØ è5.Ð7ÐqH{QæÐpÒÐJËΓG`¹m"ª¶ÖãEsœ8Vl}Zï׊ffœ9¨'Kaè@Óì„ò †óL"¸;KÑL ¹îßKÑŒ;¢É^ßãà¾iïÿqÑÔ)•°Ä³3¯ÝÃXѼ:7Æß²¿&ÀTÑl¦ÈÖäfNï¢yNÍB|¾)u>++š¬Ü­§9ƒæþaMêxÒÐM0'›Â zÆ º[>ZÒ†w6ì|õýã½ðÒy‡ _¡¤Í¤À³™lobN“­?J9öè5”‚:r~NjCwxÛœ„jîÑ“œaŸ%ÔôÆ6éñkð‰R5ÓŽ½o¶[¶n´Ž¼(šêzH¤‡}¢)õEbÀõ3Ä51°Ý¤"àˤ¤ÿ-ð)Z[ ’Á4‘U¶M:N$} ææö“AØÃvs#ðS(ë ?Á~rMy‡h&/a•Ñ>¯ Ò¸gGrñžMãž½Œ¾à)`òª9ƒjZ(ç³B@Š!Ü'e$í¡Fö¼ù4­;9N5¡vœØ?¤ÖivÎ ªÖùaÕf-vÚ+‡¦“'3ÏG¦Ë36Õ·/Ë'B;;†FÔ9Ë3rÄ9våMÍŽMYn­Ù1l-Q³ ‰)­)(Ë·àä Ý;L(“ѦèLá3g0tÝ*,oé>L4»F`l–þP8ÉÒUEùM K”“,]˜+…2ÛÊÉz”3ą̊™M©œÝ¤üt{âÑ®=h®šÁW¸vØ­QÄkŽfb¬‘-­¦wZ`¢U!‡ùx¼ð(Z0´ £­¢} òm%piiK‡‰øncJÑ' òÈi¾ >j2Ã{éf°ghÈK2»ðûôs¥¨Ô„ áëh0ǽ,±r¿° šTÒèXcÊ¡.õw=z V;¿fÄÍÜË·Ðû› pž@ÌdÈn s¡^uŠO€Ÿ"^p]·ùi­ßÞó*] ¢Š©$G#—GEì´ H°…isT%ªBÁÄÃ@¨aÊ_òÝÉô—G½ç @o¨6‹û´YŒf’èh³¡ÍФj‰¡’MÑjê_NwM‡.¬'^Ò%@lyø4gßk7Tr¨6»±„´ù"P} pVm˜ 7G®¡wEž@/ÍS¤Ù_²ðm¿Ƥ“©:¢sÌ$ðÑÍQ¼¯ÎÅúP¨óasÎëI%º0°'|J=ß«ÁTÆ×Ž{"ÌÇÕ–7 àÜ(7!Á⃸Õp Ɔ4i›óRÕ#xUgüÈkrøùI3Y-D–”Šö(´%³©’ 'ÍåSxa)ìHŒ46­hR§t»\(ò<+z+²]‘Û²f!}œa!~½ÙÂUÇ‹¯hˆ{*I~ªz†*AL¢—ÓÎJù„ÝÖäÛ˾¥»ø g À9ÓzLÃ"þÛe!‘?¤Añ[«ì¬N£½èД#cÀjÊÇlÀYù¸ÉÇ“#èÁ™N¯•m àTOg.”(ëÕn³;òµ8¥ÊŸk§¹oÈ!o‚a#°¤ÕÝ7 aj*m«æ¾Ð¤€g3‚•¿³¬§»oºI¢TT£¥Ý 6Zª¥%­ÔD*ÙC*‰ƒ¶ƒC*\©i!¶R ½+Œƒ¦Åk©–W¹¤].Q <…ŠK²Í%AÝû+;A’£ N…ŽÇTþÁWKÐÂ2ÔÄX¹Í…S=\RW¤Ú­~hHuRãÔ@ö©ÁŒÀU–ÞuøðKŸA/Õ“¤úŠR7²Ø*pÆôõšLêãn¿^mÅZì•Ø×ÛóFlN ĉ¬™ÐdGÁÒ §*¼ˆ3±™/͵ó¼cwö“‹a—ô²æ†4à›ÓÑ-à ˆ!³_ž4–Œrqšm#yï^À X…¸`Ø9U/%J‡ÄÛöÃ-CÓOÃS÷àºç$þPõ0 %Ñ#7Þ¶ïïï5é1ôàÌlÛ7Áé_?ÆÙöãI@¶=\·¢(NûÃépØïœÁº@€„GY‘åQÐÐi˜ÔÄZƒ;"tÃ`~4–¨ÔËn1óöüOþWêaT‚Àµ ßšàTý¾@Md€Wz/Ì#‰Á×"èÁ™Û´¿Ný‚J=hÚ«Ã{!´ê/ÌNå¤Ô¦RšÓˆ¥(-Ò2¬9šäú8œ‹RªÏG¡Öúð©×o•ë#`E9ßѲXæ|ÙÐéØÎ»¨üÐNƒ|!å?â€d:è:>”Úü³ñ:=Hðm’–äÃ"„Â.Íê‹0cD b#íi¯ÓÏ„ g>u Î5‘—~2‰ Óëb«§õN‡ãN©7ḨƒÌÖ¡÷eŸ”ætGª—hYS%úÅì.Å[ð£wæ ž¼6e~!q œ‚® $Ȭñ²ÁÁ3%¦e7tQ¥¶×Ö, Ä)ß'¥Éœ‡¯Å|yMDS6QCS‚ ²™¨F„ÒN®*…é9“x‰è~†7ZBaŠ~ÅÁ¡0ÁÔìˆ*€• `b^0v„¸nð~‘¿Íœ‘ 4nú_PuÓ?$FOyÕIgÝ«.Æ_u9åª7%Öú‡hèuØxÝå“o§RÏH¿À|ë˜ò<ÐÝ`W¸µÛ¸s¾ˆ±1ÇqËÔ.µm: Ÿ:„aouw'Õb/‹Ý¢Zbá$±Bu”’ls¡Z” Jh—X¤%ÕÕ4÷ÐòªL.þEmMˆQ}óÁ*KºÈi9 )…Ó( ¤59è5ÐH O¾¶."»!ÁéYGå uD!4ãEm§^AâoL_ FãþüåÀ\½?;67TQzU¼¢ŠS,Ëë°-ð ¯Z‰‰Ir«jN0Íd¹5²ÛBz&²yr¶Á$Â-Ís;u„Ø #ÌL ·ÉpUY‹y•éçÁñ£¨5Ç“*J‹shQ—‘³t¿0£"Ž+ µ.e‰¿¿æ»÷Ëì5P}:€r¿bn†Y•ì(ØtìÓN†ÄE^.H/^ ¦CãÍÒ¯º©#¼Ç,½0æ(Ïv´eÄ©X/©Ÿ ržÕ.K `–iÛ ;ÂmFµ}°k9Ôöµ·ìá*:]7]QNÀj¡­ÏH’5M„Pס¨–]žëj‘@V$†øÖÞhŒ-"ühI»bÑ—À÷c1)Z²=:ƒŒ…„Dh®iåš<¢2yÈð¨½?„ ½VÛ~(haѹhC[:dcˆ ÛPa‚¹°zEÕÞpÀDûC—1îÐøàÞž5œ4ºuaûû¾9äm亷ò,(gÞ-,ÿ¾2ÝöIá”·Tw Tp’sŒÇ=G*ñÕ#ãu*×ïJP]ó°–"\A'Ô‰’ÁzFPYg7]‚~¨¾ˆ Ø)é¨>vBêm³Úœ”8ŸÔê­´¹Åi¶mj ëÄö¼£Z§ˆ„1Çp®ìs4«—¦É·Æzô-†BqóFìלã^„CéYœÇæƒà#¸1£žàÈh"Bê[`:àúœÂT3^;;¢×¥^¯¾b]Ñøº"þØuEÿו¯†Ó¯+O¾®L&ˆ]W>¯®+üù×”äí¼}}÷{•Ç!¿Wù£àôkŠ_S†¬)Ê^Eœ>ìýºòPBÔŠãúuå¹áôkÊS¬)ÿéõ„Ý»žp˜p–,âV¢“ß_¾=Ìz¢ýzòìS.£øŸ\Oü>åiÖ”Û§˜ £'ܧ$*:-?f]ñû”?a]ñû¿®øuå)÷+s­+¡øqÔÉ5ÖO¡üŒ4¿Ið/g7|%3·°Œ¾ÏÈ#ñIÓ™C1mgÿ¿Ýu…eÙÇ/UNmôÂÒþeÆk×££ë¡šUïêÒ†Ê]ZÆCõE))ð¾Zï õq|[Õê¼Û—”¿Ì<ê'™ þŽxÁóxÙ}hŸ´ºIf8˃Q©n„¢ͯ›ßDëUðÏrÁ>᥷$ß͇‰&ýàz¡%‰gjVÝšrªK9üauaEp°RWTžú/|EòxX}–÷´.„>ç»ÃN¯U~ø(Äd:¼ãè'ã›Úò6´E`¶¶ÎÅ…ß"S%—}³=áC¬³ êiŸQ½„*é¨3}fþ¶ÅzÌ–?›ÖÛá)ž§å£$(B–³ª\϶ êúØ|àRÚf™8%—¿—PŸÿJ.Da¸Hxs÷Á_OßÙÊï>= ehq Iìu séIWQ¢V~éî#|‚¾¿ª‡¡ß‡µSgYº(Ñs÷!uKq`UTDyœ5÷!™-XõàÄ^ÉØ?¹|Ũþqg’¼}ü|ŦöÂp…Ô0PãAZbm¦¤ÂL³ÍÀ I§(É{­ðªÀÉ=.©ÔÒ’I[rÿµÂÙG𕸈ˊxp(ô!d?*ZÛáA+<‘„h…‡-ŒãÑM’h®"Ùð Œÿ d‰d#«Ñ ;IÙêS!ÝGø,7Z&x˜puð%ÆQÔq‹^!¥y Rù½‘\âzߌð%6bîn=b£ë— ‚›|ZF)fŬ ëà¡B=;~œIà´¶}à4ÜI÷3 J”ßòýAçÕv§Õy_î,ìdo˜Åtµ­Ç¨Ý.™[QVµµÑZHª£_–Æzg¸wª¾§??žCªÅ#H5:®Í°Øâ7ZËì'É’RæˆEK­edØ$‡HuwVý~.9&_  g­î§eŽßÎ\$­þX•" “¢Î›Ã¡Ø­Ï›Ï7«ÕAR@Ú)BPêfÃäÌÆs3·Ñ\˜Âs ÄÝ uǦŽ>–Ú õ`*)Œú[$i9®h¼Œ¤á2˜\3Á¦fíÔ '´©N ¾?ÎTp:6uœÊ¤ž`SO#èôá°Wê¼ÚœŠR®«œlj°Ê¦æ¤Ôa[©Kƒ:«[‚BP4©#0©“J©¹1©Ý ì>úçøJýÞ<¹î*ŒÛ%À¯#…éÕD¥;&õJõÃí°¿@Î4pruÝ–žCª'‘¤º(¶ðc½ÝoWŸïëܺ? gs¦4Ë.H5‡dÕ/;åqü;rjÞõ~l³Íñí9¤ú1Œj¤.¼}! ;؃í³x?:±Èú!÷.‘§@Õƒ3Y¿­<÷‚3“Kd P¿•ÚmÇã^ˆÃ»R•Kõ{YÄÆ}Ýãß5k 8ƒd¶Hh*kÓ+â4:™úôîë;Ø$1`OXön§ÐïeÂÞ+òpjð¥øypæ’j¬yêg–Hã4 TÅZ6»õi·SŸjåšÚŒURÝi m¤±–jŠ4©¾iä«]­WªÕºEä6Uˆiú8l“* ­0…ËD04alÞ¢:l¢³»áa/ìɤº…Ù—©Áâ÷øà<´Wä‚ÿÀÓÿÓò×ÝR= ÕZï§âýós'ÔQwǽ.¥šÅ»½Äq-XV”R CŽ7&v§uÁª«àa)!$8I¬íÒ ç1)8ëJx$nÎâq%ü=ÛðTj@£´³HÛâ2Êóícy h™øZ=8s˜Û×À©t{šg{ Ð܇óÇÀœÏJ›ží‚èÙ†’¡8hˆu²ÈZŽíĤõqpl‡(ÕaG©“7ËçPêÇð‹ðø.X|MòfŒVéÉ~‘›Ží'”ïÇÛ)ªœù¼%ä½¾ÊüxùžB”ïÝNëÃÊø¶·ªá-‰‹0±’?.âw^¹‡³J#”0G*ºU³¸xÓIi<}š !Ú¬ÂkR³J_1Á+áæ^¸CÏ4|ºªÝÁÇ}ÁÝøÌH’îÕêTlõv£ŽBìÕYlVÛÊÿÍM¯’Ê*³¦nG¤Û®ç$B;Û4+IKÝë;š²)¹9¤^¶ï1ðŠöQ= ý¸tÝÕÝ”moo?<†žÙìíKðLoâ:P´wzeÚ–œ÷µã„ìí`YDyí[yÜjÛZÊv¶hÛÔ¸;Fw7XÝK^umuE{/?¼­=œQðIØ!LÊ* AŸhðÁŠjeçíð…Å^µŸDÏ4x3ú"Ø\d]aI'nÞ, …´Õ\eh à†UÓ› mtíSä Søx+bj3ÒÝÔtmü=ÈüF"3„]«­-}´0ñ\t8 An:EXàRÅt¯©«l‘´ßÁtv¦Æ!qä[#´é²!ÀÖW¨¨Œ»në æ/QÖ×A\‹îšÑx5nùù°s>ð‚_#ø< z|¦áã:˜;ø´´y >3R{u(>(£z#ŽÇÕùtÞ¬v•Áœ”Zyx<+bÞô/8%¬!Ú`Çà`¦©¾Øöió–h?¤›«<ó¢í€lv?ðåèpÕ}…NdœÌ&ÚíbFîåûYàôøÌ%ßnˆ°ƒÏò=• (ßû½Þ›a¼g¡Zò¤_¾¡°¥¡Þõsû¢zsqZ¾ïRoq§zk\ÊÄD^©ñê-‡ÒI¶è¤{nw|=npkmY¸VÃEÄÝ  ”ú©êÍ;…/c4û¼:š0vô7¼ª O¢Çg> ÆŸžpa+x8U³§Q5û­(6ûÝá´:¨íAç®fƒ£$ÃÆ«QP„y«^Ìꮟ¤4»— [‚NsiÚ¢-÷Ûןäm£ƒ7gA'y7xÊÚ¸Ú **lBI’è0Ãë"ˆ§”†#͆Ãn2ˆÆÂ«‘,äË”¡? ›ÎèÃÈ+²½SxäM«]jÂ,È mÉ$e4!{¬KÍ0HÉ«è8µ03à„ñ~‘ÛÎ$Ïêè…Gu^GÚÐé+øà­4¢–ÌWõ™×q£/}Zè<,Ó`q‚ƒMXæRå±Àƒ—oÛóS~>BU‹UbN#ÂXÎ0E#kIq’€âÒØîŽc˜+ nÒ~N—=R—Ù›—âa÷3Ò‰B`̯…Ù<‘eß2QŠ£—{-~|ì<,³hq –>Cy´µø¼_Ëc\í‹ýömãjq`Ç<.–y5´8]„m-f˜³a‡ jq©×m1N¶Á!>x1ÀmÝŠÎC¸i”7×ÓÜÏ®‡/!3®h/ÆŒ‡e,høöÀ2_„p,ð ÆÇ÷syà+Yìßµ[9E ¯R˜4ÜÊ 6Æ#)MÕI¸L±?^„AA˜èRÜQâhõùz¿O‰½oÊÿžFˆ_žóŽ÷Bü°<Ÿ³}c[– Çq%Ç1ʱî‘cVÉq‚–±‘c°Œ³9NÞþùWÿð†ñmòàYBùEeìášóÀ‹%f3Œ©ÃÆ_ÕÃTæç”€/CÑÃ2–ŽS‚½•£1E™Gʼ»ÃQ¨c±W‡ÚDf¦ÒÄ”÷¥0„+lÉ,µ©sÌV÷a‘I„’–¦Èd s¸Úºü}¯Šµ×å‹:FUuuB: J2—LÏ ËnŸWãÇÅÎÃ2ÙNS¹KŸïx´<xPãò?Qªqþy8K=vË"ÉYD ÓF;×{l]T|ÂéØºÔ⬣ÅÙV©õotY<c·*„ÿE1*µG¼1mFÍd#Ç/aäµøñ±ó°Ì`w`iÇðÆ[Æ£-Þ­Ôa¥Îy¾Vªp-ãp © 7†Ó¢³¨aC£P¬½Æœ ,„m%åÛaóá•ø&mu{E} iá)8‰0ë™”ØiUd*±ÿò©Ï©‡e,-ƒXµÞ¦ ôxàQ ùû{~Vïz¯6•@4?Ü6Éè‘hã5g¦€,Ãqè™qC¤ÙëáŸs´€ky±pD5Ýé,уé$x To¢»VXý¨©^" ÝàB"p5dE#¼¬”´¹ñð‚ªvI¥¨GÑ÷«; GðXáÇp6§]K“ÓYö`=M,ýA–R•þ‹XéŽ&å¾úÏ>SU4Âc…ƒ”D#§Oa]7²¬¶)(5½‚ÞcãÁrïÿså |­JxloÁÓ*‘žÛE#ÿx*enÀÓöbŒ†gF"”zý¾þØ­aVŠØ”3÷*„îrŒ B ¹0Â\9^P¦$A£€$ív7ŠÐÒf ìœCIPM¼ªG†¯Ÿß3y]¼Çîo­ìB..”uÎ-Þ7ÇÏ’t¯¿WÏDxjíþ xf$Húê¨ö¹©ÜnH:ØÞAZÄ9R ³" Û7ÈaVc 3Œ& Hè€Ò´Î»ÿîE| ›°)õìEüYUâ‹qõðÌb——æw<Õ¨ÚD|*PÄ?Ê3u4¼ñ„\)É%_.Ú†x‚ùxé"L¯h8•i8DÃe‹aê*Ãt¥áb"«(n è°ˆOÊð‰.]¿†ëËd’É$4A¦ÝuZ˜«\ Ÿb¿ºÍ-„î1ÄÞHs+è;]2™4MK&}AÃÝ~w|°\B«¥s!g}¨7ðëèÁsBèåz¢ÍÝ©‚ )·=YeðÉ;f.f$ɵZ½Ïo+¥Wçóî¨ht!‡žý zó£C~'Ütëgð:Eƒ‡^†ð4øçKóó˜¼0Øq‰åñ·ŸO€×b7Ûý›w³¤=ª%­GµT¶Ê¥€FµÄ¸D‹h ïPu'=U¨èí2…ýZðK×‚Íøµàů¡_ üZ°KéÞfs­Ù¥õ€·×ݳ¤v=€ôpžØõ ZðlÙ³p™èÕ•õÀ/~sà¿ øá?°9H¶ïK1d1ðÞ~¤7Œ4éjšbóø |¾bFo?aÁ] 7^m~+„žiðÔ~ýxÜ”ÈÉŽý©D „›ãQ꨹j;öA°Ñ±Ïã"Íã¸5/ÝÝ×¾ý#D‹02ÓƒòU$›ÕzóšØnÀj‚b‹&É”Uliˆ…ÖX“XÚKõK˜Õ^t)5~Ñ5ÅÖ >)‡OªÃ'eùD7Ö|Ÿ¤–>Á[ÑÖc¼H¬ô8ɪ‰²¸È'}·b_„êIèC«- 3!g%á~MIxZ½bÏe¾wTÔÀÓÊ•­ØS‰€æûVÎj§òó9Ï•Å^ƒbËðÚàw~mðkÃl缩ónãÓK‡qH|ÁÒE:^C'ºh UÙfÔ„ôRîëÆžAÏ$x¬ð÷“7M[&‡ò-«Í©(W…u±×‡:£4¦ÖÌ©©CíŽY»p,FÉŽ«ITQ)ÝQùHGjKöÊé­ŸüWBpÍ ïËrqi¸&¢¶•c&}¤™Ù"¯SKUÔ²f¡¤E]ˆ»%Û” Ë(­)UÅa”ÆsºÅ(´u×”}F}¤®òZy8x^ã%»?'é†A?­¶(Ì„œÙ!ÜÂïš(<„^³¿Ì Ï»¿¦ôã‰ÐcÐkcÐcK}øƒcFYãÐiÌõ°ÎCB»ÝÍ(²ÉI!$'Ù\¦*A(Ä!µ”ˆªô"×¼‡nQX°(í3I{¥è1îC+EÝ…h¥ˆ»añï‡ô+ŃȌ_)žB¿Rø•â\)²í.Ü3ïÊcxF™ÆVðEðIGQ½Þù²¨=-Àx0=<_­ᙑT§f¬?:s^Ê?Š(‡ržã Ub  _¯0Ž¿¯ãï›EÅ1å…ûº°‰ he ¦E­Ôxá/,n˜ø{=xd½\Ï`â_ÇØösÈõD"‰([©R°7ªnüÆòÒ<_…ôë Xæaê¶s ‹y»_gy‡c91ÊöÅîo|óÕ¿ÞÞ~Ï›/ïIP´tÏkoû~Ï¡‡gÙ¾ϼVöD"˜A\Ø­s»=4;ùÁNò0êµ²yù_W®aT.Œ2¿<ˆKŠ×7æé³{a•…Ø;ÒŸÕ‘> B/×3Èõ0Gút¹žD„+9”¿×‘ÞìäÐu¤'×éó)õÚý£l 7ÒG_3쥹t½äö+Å/Y).BÕ‘¢ûÐò+…_)üJ1ÇJ~«»…™Qþ0ú#V .S¹JüÞâ1äÆï-žB¿bøãÜ[ðÕnuòAƒ»<Ί¸Ôâ19}Ðàñ¥èK!ôð̱R|<3ÁL|,Wl"wƒ! ùJzƒÑ"hé5Çot=5‡¿†,?,d“dÒ’ŒxD€ Ã0¸h " Ãð¡!å2 ÎR!ä•ÿAá磵?AFÀÑ(Ã÷¤šÌy,ŒVæ­X -ÕßIñ¨LÄ@2ia lFÃßÜ%ø¤%¹q?)]2©™ðèsñ¸…ó%‹‡ÜDCÒï¤o‹4ªÒeög}£x#æ+ à;÷Ο£Æ)<ø'‹dÇã0Ç·90ô2ÏÉámF@ ح·ROÅù,Ϋói •—!Èi Yê`:c?~°qLnT kÌ`ÚmÜꕜQ[þk`ÃÒ.NÒÒ.޲fúLúvx>®±gu¤•Veé",]Ädi•ÚEÒÒ…"m*–èK”ªú©8,©DQ”¸~·Ršr‹þ¤B\YÕ5i¥”¦ä…5|Å--ûné¹0êÞÒ½HáÁ? X¿AYŧ¬ø¿éø¸Ï†½XÖù(ŠC)¬ï`£fÌ8!p aˆÌø)ð„[×þ˜»BÓŒ¤”9( ÝÌø)Ja1¹ßïJs´`QKš¡KA?ˆ2'‹«W8ŠÃ]QGÕ.;)¤ÝW 5t_EE_¨A¶ÚKI÷z/¥œ½”&˜‘®ûþÀ‘¿¥@"!É EHh$šY«” $%zÎn¤DßF Ͼí Ù4² ;Gâφ¾.ºfD›lè«É¦Í_Rkï‚@[ÅwÞx^ÝõŽA§¡ ¿):øçËã0L"·88éûqm)ч>ÂÙ¯Vb³Úž@XiU–ƒÌ†¼ˆƒ¶¢‚— |ö{Éhãи+ÅÆ/<…äÄ8hº²í÷½Ê*¶ˆÙUW+¾¡€~/=Ô#ªp¸}¯2û$ÏT¿ F/,íÍ éfüŒGpéFþ5H}ÍüU`y=¤§¥¢º0TÁ½q^Ûû€9]ŸÕê|¬¼²8ÝÉ_bvÆämôδيr°^KM-Å7n¹0áÒ¼­[êliÁÆ„î[iX*p7áûTd'oÅÞC S8k]P´Å›ËŠu=¸ÞŠ} °<sâ0ƒ;ZÝcùkû¾ª­XF40J5îµc¬xw€m[–'8Jõº›l“ã‚2„†J*ü”ÜFY¿‹’*û"1Öy º&ˆ´‘%Ué&;ÔevH‡š „WP…Ž)¤Ì•BtÛìP÷I*{a¶¥{ Ý9ØICiáþ»ë ZïþËt‡?†^iG+­ã¹µ84óØîWÚ» -•v½Uê”—?-*mTZ­‘í"Žéd˜u†YÎÍGC'o`|¿ ·}ÂñUŒ¼¿3+ÒrÂe‘ä8WÕIJq¶RcÛ]¸ÁE›ÐBŸpÐì´£Ù|-ÙÍÁ!® ð†yZ’^S,B‹‚PƹÞô#Aä]^|€xb.ŒP5‰ðOâ&^r€WVJÊŠpRS& Æa„I!Æñ”4i;D' u(C`"™°^wÔ%I¹­ï1Ò/‚_f”0Ñ!ݽ¬=u8!ã5j.Ä&Ñ„³$E1è«ñÂS’NñV¸ÖÊyø÷È1Åá.‚†›I¸9ÑŸÙЫ$è:Œ¨Q ’¥©(‘‚_@©°L^ã»Qš%îo‡Ýqµ* ì:²Ùï«"?mVûÊO‹,!JË]+€¿9!¨Ó ûر³ë²´Ü¸h…«a†,xÍ<ÃMq×–G—Y4Zr^\ëqé§`²ý'ø‹È‘rˆU•áŸAå6 N‚ërmݰ4ÚOŠ"þ¡ëö‰G–Ì?1k¦2!ð¬>iä“h›ãÿDí9¨ãWê³öî©eí͘Q…ÿÏÞ»­'®3Ñ¢×¼Êþ~æB>û¢/B¬&¡ïÖzÿ‡Ø®*Ég| ±‰zÎtŽÆcxT©ªTõlÿ]¯M:rða©•U`@,ò6XD žÁ‚BÕ‘ÃÒê„Ãa¶Ã‚[ö5ÁµùÎ’›`Ézð q>IµÞèyj½¿lÖ{ Dƒ›2,fÓÓwÜHÿ›Èt`\õlÞ[h¼øÀDª¡“b0³O ã<”©{,Ý Ð/ÆXÀKGqwÃ…9©ïڋMüþ"­¸[q·ânÅÝŠûC‰;{z]ýýÝ VÛ¿RÛ7ݵ}iµýû‘³ÚþCµ=è]à ×÷UMßý‚¾«º¾{™¾3Ú%Hú¤úÎô=Ú…Óú. O)EçQ…OCRмQD“£lÊísÔgϤu„Në NQÔŸoˆ©èÔƒšãIÇ‚3E¹¼Wé$¢„Ž›í‚ô»æ#¦f„&—¢æ™&´Õç«+Ùn‚ ðˆÔ»Íñ=H)@שÒû44o‰©³e/ IR'(…Õ¯àó_Ó¾ŠÛ!*éÈxpåÑÚ« 0;Ü, Ã1añ* ¡ó[ö"½¹>׸Kû²–ûÍ.-ÚÕV»·¼UÂüC±­FM¶UeÇŠÿz0ÇõÒ;êþª!qçùß“ø}K­ŸNCHÌôÖ½|XU¼¿/힤·ÿ<Ÿ® ©ë¤Î§+b$ëÞœO—×’é˜w‘p?²¦É(%ÓÂk¸®1’ÆÊ®;…HÂs°TãÆ§y°Ä‹õT›Ò–BïöZ¿>è/ñ¯Gê¿O*¦–ÅáFd#´s°„CU_oá´ ¡Ng<%*IDrº¤ªÆäÎêFØÊ(ujÙêzÈÅúŸFkþB”ÖTsµK %¬¶O;ØmßWyó“¥µ™%º0ŸŽ)kv¢­iÇ"‘¢´;ùVZ§–Åa% -á¹®·:¯]¡i]Ëß¿oäsÂ%Vpà~êñ­ªnUU™©¤Îö¦0ê+. žÃ¨ªWsXÃß\¾¿|©ª6…°f¥ªjZŠÐ“xceN7UõŠëÿè¶ãç·bßs‘ßÀ/ºÈGÃÐâ0Ü5!xÒ€²º®Ð¢{Vë$9•ËåØ*ñ¨ Ú­TË¥ò/*þ+£-Ø>´Ù4[VêÅrî³|=Y¡íBÈ9p „ ìt#õvO žaU<ÆÝú mqë5Dþg¥ub¨Y†àP¸qÈîí"­·C Òzx~VÏ·bï_LS BàÕô5öÕ.n!´°(6¶`TŠìák6—0_Gryõž¯Ó·¸.¯¼Ä!oá œï’¼ÊþkÔM¥ÌIkçˆ,È+%ZÛ¢®„×B&³U ¦€¥þïÖ'©Kâµ):à/¯±–¡õjîNÛÕü5H•®æ€e£#E4™ŒvÄ¡´ ‘œÖò,OïççwªLÀžó vó¹A±Ã…颷X|€}ëq' ½.,4ª‡Øc©:c—MÜRWß bpPž± >iöu-ºPkv ·ù.ıÅñ•šsœ`dž‰œÓ;iQ˜JYˆgóžaNVò:Ï$ñŒje¤áYézW­Ê\!^'”Áýäb—$ƒÌ®f„4\Ths¥¾¨¨º*_¶d^a³vði„¡ŽXQ(z€VŠ/ðšPLCëŽ0àÓjqŸ¹Á¡Á–/êœÚŠ— Eb£ÅØ(ó—Gs¨<3„ŠÌ¨nÌ7»¹ñF¤tz¦}§CÊoGw›WÓÎo¦•+ÎüÄ?`Ž0½ÁôATZÊU{q@S£ˆþŠÆ§ò^¯x`B¬ý« ³lZ®žéÁ|*õp5´R\Ñs„º’MŽ·ƒgÿËn:ùMwZÁއpÇ‚Òâ0Š[ÞŠCç`ÇíÐbÒns\ïÎçó‘ó7I»Uœ8èŸÑìu$9w¨Ó×[Pó£j¬£Ð±~÷çO°¿c=Ñ¿=®7È+3UåBrM¤§ Šð¼:ðÁp6©‡ Åâ9ÂÆ)F$ˆ'¦º—#43èÜâ{+í‡qùiQâ•^-Ú³Âp®½X¥ÑÈ?)J½Uúx‰ª¤·Å¦õÎ’ù¥GWpùÏvKÿR¼, ÈÜä*ý{Êu<ö©°r¾Õ}åœØ¥=rña¬bUn+çA)Vïb»Nhˆ¼¢HEª¯N€CAÜpÕÐV.øýw½S ‘›b<ƒ„§Ä¢j\ƒR±´¿h|u+ø2’"=Æ<*A'm-×UtDJnl¯iœRµ½œœ ²À½ áÄNÅštÄŠœ\é8•zã- .è»/@F[hÞ¾‡‡“åøí5™é|ÑW$é¨v;ËIà¼à•`N…Òùƒþ®·tMpyí/Yd^?ëadF3µ"‰~I0K×ÿxÀµkÓ‡>(È´a åŽÐ6b4ýé Ú½IýEåÛét^+þzÞ÷é;•<îürÙÀÀ(mÜ„AÏü€%^¡D.¦(Fœ›Ó¿ÙSáŽÀYx+xBÕÝfÏÇrm­Â-Üã¯Rµ¬™”‰ÚÂQQ’ײèìÐñ Ê$w/£+Z…jÄ-5³³ú27Œ-hc…VÐn³ #æw% …äxºˆ$Q‰¸œ“ÍŽG“ã£í™Qð(ItðÜšaˆ C„]Nqj †X‡¾ †aýr¿Å0e+'ft};ò¢~¡wÏê*ªþÀ°2}Qª6ê¶ZØ|j£ãP›Ï^NXm¾ îïmÎ&¢¤ñM Ýfz¯îD0§ãñ¨MÄ[j-NR¾Uú7­óuúzì˜çÒïÔb0ZH°ƒæ]9Àb8Æbäó·`» öÅöõR‚PÕ*ÅpóçuÃìRâÅÔ-©m„ ue¿ìRž‚™K¥'òqLµ-äVhfˆ¬mhíŠßZËSD•îC¦^Örs9K¹Ã"žççõéôþœE•ô40vpVq%Gׂ1p²Aé ú™†Ö¸R¸[GÇU§¹`R6eýuN‡¨fN!rÀP¦C=%À~:­YŽÞÆä¢ðÃáüãËEKÇ0•±ÌcNGU³ûR³ñêò—…x'¦åËý¼ÐYÖàš "f¼„9•Yj ?¢MôÝe˜¬n¡_ÐcDX *ò1hù¸†Þ×Z¾Í@‹Í lr—¿›Ì©ï‡ÍX PÏåBù’ã%›îèÄ©›îÄ!(´OsȽƒ_ÐèÐY @δ»îÄFþÊC›T/õÝ«“}¹;­.V¡o¸Àµ CÅSªip aT¸HÃÆRè¼ýˆ•èi#h±A¢zŒn›z¦¯D£Hôú]¦º ÷ä~ŸzÕ‰†®§:¦B-LŠÛ‹pp.+‹4õ:e:¦‚½N=xNU¥Ùúåõ¯×U¥)ðóTZ镜¢+Š´ÑÂ(‚Á`A¥óQb=UúV¤~‚ÜA«Òã¨4†:±) õ•@Téýé|H}ivÜ%©´ÂæPˆƒ»1µHuD?Ü(aÁÁ JrÍ\ƒ—õz¤P¾îAÅ;éuXÓëp{ñܵõªoºÚ)P%¨ì7C»l™1y.úW³·yÕ}f£[MøJ-8£ vQ³kàpcQGpÆ")ö~\k×úrÎ*áõpÇT¨šên5´M©È4tTqA¦#="Ƈ~UÕZøíæU}ÖÉZÐ×îH/eTZî¶Û))“6ÿ#5+d⟠µ†Ið f’lb’øì2ÇÓÔTÕ¤ñ¥Eñ“-£Ä«v½Þñ6»7Šu‘ÑÂ^ÃõªHÌZ Õ@¨ DÒU[òrŒÀö¨ÁŒ¤¤¤¯òùý’$ŠƒÝ»ã$$×ÜÃ}ýaaœoHþwyxÁ )–3zÁÂ[AH¼íÞ„ÉáPå ·ŠßæØeG ÁÔ>Ñ…Ž=_‘Q³;Þ›kÍŠÿYd…[ñ˜* Vç‡ëü•?E¨ÆÔù1 ‚NýiÿÆÕñEžżÊ\ç±í‹­(ŸX«ØSãï‚ØC6Ó¥½®ìŠÚGrÍÝçÎþýÏ{|#NË2÷ϼÁ~ŒÑ/ç[xa|¿äÖǘ_-Åpì Æ(†¡WÕ„Þ{þ}x_+ôóÕyL•+2òpN(ƒp’¥×Ùx3Ì_aL§sFðêe4_>€x|žVçÇàT ºÜXß8A0‚sÙo„<ȳ¸ì“ýóÛ‰«‰à¬bØM4Oˆ9Õé¾cJ‹~½AÚý¬$ÖêŒzAúäØ7?†¿ùïO‹­gŸz|çôã1<×܉> ¬ÆqZÒ´Î4ÿdäëð´P¥ø×¡jØóìÇ#zöçd/M¿uÂ}Õ³wW¿qÁªâÕ‡ N=5ÖÑgáÖ³[wûï³¢öÉFö]“xe'úNàßœ¨&‡H¼ìÏ3©›Ip¡Q&Ù^YGâ›À›"F Õ Þ4#·¼U7Æ1ë`Þ®sÁÓJü‰¯»êÍ!œÌåEâG&HɳÚ7IÑéw@áhæ‡ ^9šïxfok^¥ÃÐáwp¯”Oá|Vç³§ÓÓQ,ˆ|T¤i†ç\PKcf’”§øyRá:màá)Xl ¿µd’~<ü3Bxçùíæ2ÿuùÓ Æ!%_ˆ­UýaPµ‰~ T…' ªØ“ X±³½lOÛ“:è¦3§·ä`ÖNâ9èIe; =¹:¾Ÿ>²ªéÿjrO~(ÜÁzˆö@sŸB?¬û‰v쬯£¿!¯EùtªÙA'’ão²Ï ÔÆ÷ O ÕPWÿTWÓ¹Ãâûã„*wLpÿt<Êäýr”•½WØh Â:~êô¯¾S’zz^ôô©Õ찅´ BÏjBÈMÕv_Y¡o‹`—hÉé! ñÁÇ É‡•R‡¥þ<Ó™u¡gVég ¨…j´ NT­R?PéÇ$u^_/ékqIŽòYdr¡‘$6ýõYÂØÁge¥_U¥žŠñhXA‡¤¾!~¿þóg÷ÙÈl+õxš EîòMvÚðcÓf8 Là+NlѧïÞÂÌêÇDµPÉi‚ªUäÇpêG%ft¡]0l±Ýí_ÎÉéüû°ŒÔûÔšR÷wotê}¨ÏaÅèÍJ;÷¸ÇöŠS¿‹ù›m¢s#ÛàM雉Öž4E»ì½™šz|!žªÑBö7…p†@u'‚€ÐŸßŽÉŽšçìøZîÅêLŸ|zÿààþZWï¯-ºôÌl»ò‹ûkSñhÛ•‡B_¯Â÷ÄßèßË—)­:_èÅ' å DÛG_î½u„P âxpðCqm^ñ*üðŠÎËÛÉ&s²ñÏ?R/ðbLÅЉ€§áˆGªVUø4N÷w¤™((|XŽÚdmÒjœ6ôþ«6Sì`EBÆ“ÞðSH+2kTïÕñ²é¼IöI4Äoé›:çè?¤1¢6ã#óëäùp^óçËfsâ—äÅ(;ÔYº¡.Çtã_ÎÜwøÐ͘Aå¥ šþ %š.X×MþúêTÃ;©úƒÛ_Šî¸”r.`Û-´Õqi ™^0«Óû³5 k ¬)°¦Àš‚¯7;&WÖLH4¬)°¦Àšk ¾Ü<¯_’«å!$‘˜ŸRòÞ|$ֽﴞқ8$mâPæÜáÁ»€LBd|ÄïÝ<]¸Ás½þÇŸüeùB$-J½Q* ü”jÖ J£Ó"5gµ}ÕÉÝôo¹—§ãá}³>fÃQœ‹5=(Û,•å3 ÷‡…Ù(æu1ÜÏp6Š—þÄ!ÌFaåp¿»¾([5¿É» ;¯]ZJápš¤ðó}xµIáwõ.D‹š³ìæ]'Äþ™ø -BƒÒÒ\D¨Õ›ï‹Ðèt/>y~Þ?ï·ûˉ¿ÉÓ©˜µŸ|ÅŸZà» ÷öK2š:L/›på¤ÿº‹äÆnê¶ûqÙ'÷wçC*ñÊ M9ÊY¢œÀÄ‚  N™AD,ÒŒ—hƳÖiH3‘ÑŒÒ'š`È*4ä†`²$çBçb ì"’gìB¼ð³ˆ×bA¡“ºðî<€»ÜÃÌ«òšCÄc!su»x|w7+=LŸãáOþ:G7•§"ÆÔp8éJÁÅ;¡6 9,–ƒ£rJ–lj,(/$;̇ð€ëÅÚòÐBBæ.OA,ÿ–® >|!¡U±êp½€§ ‚½y!AÅE…ý¼‰ý¢‰ý¼À~^`?åïq±­°A¯j‘¤‚؇òÃ;¡ÿÇ'qkÖ½Õò`p>«\ÿÿV.Ýü?NÌ_:ÿ·TýrÍž§>Õ¸Aà5î ÄK4k”­!´Ä¸Ví ŒO §~•ìã‘b­!öÇ$yVêõ˜^Â8WŠÓ$A4ž}¼×Ч+ÂŽ5±y§Á\Œ#ìò3aW=(&¯QŒk/ɸ&B}#ŒX! Î%} 9o9Þ|¸°{Kvµæ½®½‘«*ÆH(֣ˊbÌN«ì”½S*ãt%0Õ_ÙG§ÆB¼&RžÖ¹¾ðãvsN_–À®&RvpèCíì{±N,£bìžàãJ ÂÐîzÂúLÏO¢˜Jn¾·ˆÍÀñ<Ãì¢M` ÐÄÚÈB—ú¿ë?®uòos •2)&ÜùQ@ƒ¹¸4Ç5ó i³-¨O¢µ34-NÃük8åîÿ0œîA pò÷føìår:^—Úv¨•Aâ†Ià”„+ðKå÷rŽôø7B]g5?”‡­ (ú¨™·1Í‚ëe¡@#*é¼À‰×Q}AÁ0MF´9¨TòªßÞÙF¢Áx¢9Å:3¶ݸÎäsÓSDšd\“ ŽŒy”?\ñœaË8ÍzÔ”Â+™¢’”+lŽ2¢ÃlâÞÄV:tA‰)øŠ¢ ø5Åœ»žð–^Û Á+ â8Ç\>Æ4{ÏëÈÒ‡>¸Ëöà¿E®'rW|ýë6a¼ŒÀéÆa£öoÛãé¨vÊX‰ã±f"œRåÑ@ZçàÆ0²¼Ðý€ÁÜ![ŠôGØÌÞ¡™„ÑÂcy ¿h+Nû –Lð¬ôC“U!Ðu09F8” Ò%ƒ ×Ëv¤ŸR:1 ' _)q-8*<å9G¹ª™óLFo‰6"£¥À›N7e> Ïý%H‘/ é bH^^–øÍ(¿Ei‰‚.#»âz™§kX°¨Lá!ùO’ë”Ht¶L ލ°B„ÛTÉ 8Pläü/»˜êÒÀlÙru RTpíCK‹Ê¨˜åZu<ãÅοë€ÐY''ÿf@ðÁ‚ÐsZ›“|rª3@„¢„p3 ôuá¤ÖÑB¯!Ÿ‹: ¢ˆjDÕɳ¼Å¢SD €Tå»!`ƒ*‹s*ÇRžwr½æ›5OuØDl°ÆG×yÌTÿèúG×ü¸øŒ¬6È+<Åú¹¡IófáJó†ÙãØßž1S„ûsM£³|Á *R½B›û@O®ò¡sìÐ…Ÿ– þªÚøfóòo3[éç%²Þ ü3¦Jã’\—E†ß°‰7³é&¦þXéç5¥™%~Vú‡K?¹Ð÷’þ`7HÿyDéÍ%éÇx?Ëê}Œò»It0/Œ±¸‡ú3¬JÒÕ”ßCå¯ ?>(´0Tøåwûü7 ¿lã©löe»pÈv. Ã%9UáoAëÛ|þ[…‚øYáŸðß váw"SíßQýšÓïxE£àTÕ?,+ 3Å®7†pÄŸMðl-€µÖX `-Àϳ.ßxÉÇlƒ?“Šûs÷ŸuÜ¿'~ÖÌ1îßvÉïÐç1e¯ô7Mr‘=è(K¢Ý‚¢‚%òÕu€ËNÌ£uaæáЈ+…'™ª†Ùš¯I¼*1¯)îQm—æù¹ÿ×Tž›;þŸ¹Ã[:Y`F²>²–È1´ä ZÒgW-™¢VÖÈ:§¾¾E½½#ýY_ŸÞÕN&*‘—ÍÛö}FFΡ·îG`¶ã{*55iw±=Õ堪˩(G•‘à ¢Û –>gÂ.üÊö$ÅQŒ,̪¯0_!ѧô¹?wè@á#HÁ­Cñ,püjŠF‹"wxa–,6²ë7L[²×ú÷áe¡.»™3­¡ ß:CÑ`Ýg¹Ù?¿½¿©Ãûf}„è‡küÞ0UÕäöùxqÙíeàà–ä5˜nòêoPWwá³j‹¶>_ uÔøê*k‹`žq…ÎvÆ»MàþuUuŠÈ*Ed•"²B^¥©1YAO|:…ϨkæÔzumÂeÜKz,˜òKú*XµKzúxYu¤®‡ªºê3Y÷noW×nƒºÊgùþöövæÉå5¹¤N-„JÝe1Øì™ÀƒBàžÈ”êaÅËæOãÜ9g ^ÀFLj6ܰ¬ÐººY89ÖƒD§7\%¶ÉGe·Þê·ð-DK_Œ‘+Aë`ŒŸÂ3p 4ŠLÇþ—Ýt¬/Ùù-žp\‹ÿºøo*¬P‰Ñê G;応i"'â=Qxex Cø2ðåÈ‘G†ÌójÖhXmèc´ÞŒ~ENIý­q‡}¥€µoƒ)m2ff¡+ZÍÑ94…ŠSþAÇ”7¼%ÔpAÆ8¥ƒ•aŠà”òÂ\.˜œÂwÀ»?[5QÞ?RÒŸ‹¹ð¼Ï ²º¯ù˜ÏBYœŸÍkÆì¿ê±Î°™+}dðà=?Ãï?3ElæZ|†áSÿ|Lá\… 9ÞË—çÃéô&åû!9nµz»+l×OÂÔ`xqâ³\¹CŠ*0z±òM Ã…ÉÌ.ÔÑÁx¶ÕÂ[­ Þ¢¢ÜÎ:’ëg«ÜS»ì­rÏB‹Uî;*·ûÄD[åîJ+|’ ÓCÜ0Ÿ@ L,«äTàNë¾1”ÛYFV¹g¡Åg徎Ï(Ê=” ¨ÜÉñm½;ï_Ͼ;í%åfnâ®…;ªê6óP·V8Wt{]Ø-ø¼¬nw#• + GŠQ;ÚV )·1Cd |0×›HÆð¸À ÷Œ0´ø Á§âa—ñ©9àƒ„{8@¸ßvû$ÙÓ·:øñå’ 7„ºYm¶½FéNk† ¶W®i³ 9EÛl‡WœîP¾¼œ„ïÎkm:>ü¶ðN'áËÑ<›\gc†‹wqÞï`hñ¹K¼¤ŠÏ(ñ’T@¯›Ë“¼œä«Rg¥ž×%¯Û‰, ©K·ãb±^ÁívRåö o {TÚ•{·z•ñw7éàeBÓfžZÙé OÀz~-:ðb“Ôß Í'=p>@Ð¥B”øU‹lÒ_œž€/nYX)­×¥Æ ÂÍîõpsÑ`&Üì_Ñfçù÷ßKr?m¦8Žæˆhâ“ênÆóН.j3¾?ü:ªÆ!E}Ýë7r™KSÝjÊJõkpÂ\WQÒÛÊ*‡=h8$ÚÂÍÅ~£w•UØŽ‰Xƒ4A‡Ÿ;côf&Í“‹6g²\¦Z]†ßÌ(àƒ2ïN2Iäûóú˜êsªÐ{˜ÎŦ{5\™Y+¦}^6’%2-þqX¢C}¤q¾a@Ýü]Êš¨[”vÜD^Žˆ„¸á%oœ…‹¸6^+Ú¼¿ÛLâíu’–RðQD& }qM_ >_ Ï$›ÎÐ힘‚Ü=‹ÌdêÛY*ÈŒ‘I?ˆ;?¤/=Ê]ú”ÓK²)Vy0/Án{™ÄÈd³2ì7™DÿJ&Ñq°¹zÍOGœ§wú=¤hJJÀ7¡êË.§1;zvÂèY`Æ ‰´$3ﻯß=|,òx;½'§z=ŸäË:LSgòˆ.ÌÇ+Emöt&1‰xIïƒLâ ýæT¥«Žsð{ÿXmî–B£«hº%>:"ø4Ç#®Íþ’E¦µŸÝmezÊ@Z`S÷£u`Ò;ûËtðõ&–S§µâ¯gµ'™¦¤¢kªÆc jNt¼pËyEØÊâF»6%!4õ¨ µ·ÏÏO Ì–¸Õ ÓV¦ï+Óµ á×d¯ªbËf5XZ5°2=+`f)Óèsð‹í`:íÎ j¾¤E¼kmUm·¸/Û/F´Á»ö›D;”¿C»ùpW»õ®­l[`f,Û÷õ®ƒ-‹£µê[3P˜\†´„ȲðnX!éˆ,¹í%oooûsúFX¢CÔˆˆÓ±©»Jüƒ_Ýð—›xÀFñôßõÙe¨ÏA½¼cë]¾•ç.9(ibAðuàmððt"~œ|úPyv–Žq£ñ¦“ßt­fOR Ì@`êît30ZÁ{yÔýÁÇ´âé|8÷‘$*[UL+†Ð‚ ž—°øà¹Õ¢j­5uôð°ÖÚóQ±Óû«’í>o/¯V²»,̠ظ´¹I`´_“EoÓebu´­Õé ãh%òQ¦Ñ±RþÑ|êezܼ'ò¸ã—Ü·¦ÈÇÊOâÛNLAyKŒ§ýê,îÉ¡`oµÀ(H„2íÖÔ›ø9\U™uƒH¹FO jŸ&pc|¨Ðu>ðÕ±Òr F²Š¦jÚ¹“^Þ&Ëo€‰ÕæÞ½™)óä€RhN£ bÓã(óð±ÁOøžŸy²YçÊÌ|h2 9ˆvâ( .n‚I57Hk?.%ˆPçÔ1úÕ°Å%Âi°³<òS1¯Å?~«ãûÓ<œé„z„µrzp šjA¸KÉÒ–T¼îç¸p®Ó3/ Q–ÓFïçs‡HG˜âcC<èþàc¤#ÙËÓûF>ïO—Ó‹‰N;QªÑáŠö•G¦Û˜ê:jUî–çäÍÞr'HýkÇËF4R;Oï»—„¦頺РÃ/¿zI¤PF/©4Ɉ^ß¡§JOéÓBèi3%uíKˆã§ ³eN,â®!JܤWл!áÍaЀθ@Œ2>phð$²_áo´­ð16_")f•“Iâöu…+1Aß­Ì¢Ó€#̘„ß’~o vxK—éøóçê|âV3vÿU':u†O«Ã¨ æêpÍÿÌD§yjaKÕŸ –áÀãX­7ù|~§¸´ˆ¨Ó0ƒœÁ-×+MÕ p–W•¨t€»Ã£…Cô° ¯>Ukûá8~7‘–]EškàÚ‰$î#Ò²@Ù@Y%ª’G”Ƀã9Ér WNtðè(Çé|@/=î„T~á‡×€ FØY= Ç¦º£‹’Õ!õè§ÇýO‘MR(qyy_“{ÐÓÃæ¿¼ð¥?"(÷`Ø ›‚Ù_Pù±r`yú˜º9ÆÒŽÅ`@KÒÈ诇ªQÉFBHÁe>jk÷qr>¬‚» XŸ/vVÁ­‚›‚‡Ûèâîl äÖ¾ U…QŽY–£JŠ¡l™.v–!°dM°äiÇ1‘ÞÀCL$Ùï1‚½¿œd^±ÄÓÓkk1~€‡(Çh8®}œØÙ%ë¿ÂÊñÍñ4x©””­†4E­!¹ÀÜÉHrìZ5ž>t–A°TÔ5X†ªqoàAùQʽ\C]^²ÍÔ8¢fyÁ…mj·ÜÈZ乸ÓŽ"Çù8Ç÷•c^%’*I]%’@"aޱij]Žu6çsòà[vÌ:QNX >~\,Ñ7R”s†¯Ñ±fº(ÇléÕB/¸ðGÄ«tá·—]øsÄÎÊñà„a•bD£R--»—x ‚ó…§Ý9ýzÛço¦/uìf± h)íĺ µ«;PãÖD¦ÁÝ±Ú È©fŒ„xÔšš±C\mM@í^¥Å8Ø Cð[S{P=B•!¼0và•‰ézØüЇÍ;zØ¢€¢ ¡þ·;ÑýTùddPèõ® Æð°ó·óp±«x5ŠG¸OÅcÚØM–ikºÖífXÊÅ!=]ì¾Àƒ¨ËÄÁ¶‰Ü''I.6óQËaŠ€9Šö<Ú CC»âÄ/7Áˆ´³¨MTt0Pídš‚ZPš‰øiMV£'A§’Â\‚7 N‘/\nýDž´Ü ; ËРt¡¸º.¢JOìê­Ñ½Þw0 Dú"y1(£º0‰è¶¨2suwê,6]ØÕªÊÞú(i˜bW¼*K¡I…5ïH ÍPM³ŒN¼H'.äu:)M'eT×ÔR³H5«2§W(¼s¹D!™QîŠ7QHLX•yÏË¿©òå?^õ`H#p¥Ë~ØYUþaªLc¸œ_ÎGhs¥·™®æˆÌü.æèˆˆ»Â"zÈÓ·x½£_ï^k‚+æÇ€á̘ûÙhó±õ[ïüÛ=<ëÏ; ˳÷÷Î÷ÛÑS•<#~mò·45:içð ñ G·Rj|éÌ¢ëVWåbº ¿B„㙯Za8±ºÚ'©r».x¾™ ú ñ•¼ŠlËTnºox¼Sú²€^. ãaX”„+`$áV<—“Ô õÀPwCW¼r[1,}ÙvÐé3ìt܉äx’Òt cíV{ÚUwÍÔ\ôÎ_ÞMÙ¥GÐ釾è‰ãK\hDRx&‹ô#>ùüØ ›³R‡—%l…ýJ0ÌÓÅTÁ,˜ia±W ŽâÅ=–ÐKÛ…YìÕ|g°Ý\¢÷Ÿj&£#=wÂ[Ã0U@­a°†¡Ÿa®…¸dœšQØ4…<¿ºÂµQp©¦n\®Þã<Á*n0 ´*Êù+øK\Âð1:ÛVW˜‹½18 Å»¥)ƒ÷/Vf‘mEW$¶âr¶âðeüjWØŠR¥ãÊ&ŸŽ,Îê,ñkè/H—^jñÆ“ÑÄVy£Qл~þ—ßvôí¸±Ü±½&ê`Á,ŒcA€®áih–Z³0nõy^ CfËû˜…¾°ce _oNëãZ].‡Ýc¹# ¸Bï™Ý› û1ìì4~c$PÃM$ý¸©Ì»!¼Þ5Áþô¯ëèA‡ŒÆJ¿Ô£ £ ×q‡ÌÀsðCÂrŤýgKÖ¡©Ä8B :Ž£¹pj&ùö)Ч`.Œ?fÍŬÍÅM0ZsaÍÅ6±ÑLÍÆÓv÷jWß©1xšÆlØUFú$k2¦f2&b.¾xuáö08ÿÂ* ùǯ?ÂLð‰jÊc­.¾ÔLLRk*¦f*&´ºèk.°'Ùw®*žß'|hs1qÔX‹z¡“µÖb9 H­µ°Öb\k±£(Öõ†S²NÉb¨&‹fÃÅÂ'c1\,j°._ýݾ=´Å˜zÐÂ.0.eM†5SŠG¶ÀðÄ?¾éØÔ¾¯Çeôu"‹á}ðÈ¡™_Þ%›+ûðÀHsñLe,ÆoI¿ßb.j³v§ÛÄQ´°Œd"Æ…e8ðØŽópÚCƒûòÀ(hǹŠ'hnƹZT”ycÇ6v}\”/ŸÕݪ˼‰L ^ 7d¯dÀ-}šF¥æŽðm£ ¨L¥;]´ÎÆÒjÛKì‘DAÔu$Q‘„O8Q]Q¬~'CŽ_áÓî_ð?v‚Â7úpá) >Gê»®Q‡ß¦ËÁ’Å=÷÷@Ê\öcâ•_öWß/vVÇvØ ,¾¯÷=vyNvyæçí锻裯LQ¤I¸ø¯C;þj7»ØbÂÑ<üëëW…º2 ~b힇º¥…ù1•KÅ–¸€Nq,LâCd¶?ãø“Šóc¹½J¿æ(uàɧ¯uŽ{–OÑÛ°ùfB¡TS÷WE†Ÿ¾‘¢EæÍ+PÛ°y¾ØY1ÌD|_ÃæO`/6lNæÓ°™­å~õoAL*ÄyAÒ…¦$?/UNI´ª†’’.kMCmiÚY|LÓPVh(4 ñ™™8pE¯CèxÑoÌãö@ÕN£=£O«4õ оl8.¸Ðë-Ôµ%¼Ð~2í€¥Ž‚¸ŒgA íyî;H¡4õÐ!†«J_–Ÿ‰¹·daÉáG¿¸ ¼4{c´LÿÐõ½\މWI6ÚÙ˜1vV͇9ü,­±ú_à1ü"×—ËFòd¿=â4þ¾pããÑ/=QЄáQÏWÙ_æ†ÿ+Ø™^s°­ÙÏžág!z2ÆïË+‚8[K䯢h¦&w=1¯^â³k@ÕýLE£EÑÁèˆ 'ÂâG ï³%{ öuí¸åk†ÐÍ–o·*MÆ$ƒ²±ú¾®°  ‰”ë­ºÞ/’otÓÐäwQ¹YAÆ]Ýÿ‚Â8.‹R”u¸‹ïàÕ¢;ay%ÔrÔíc;~M·ƒß[ÿ¯?ÝæV·ç¤Û·ÁeuÛêö#ê6–Ðxì»ÅÛÿý¶âó²D>U&®šDQ¼±6®/íx‘vY™mÍâ-0SS¢=è—QMV¨&[¨¦ŠD  ,õœÅZ.ú‚æÆÕà.¿I¼‹M£{æ;!edbL¼Úe¢U½g‡ïáâ]A…¸*bh`¾ì¨Ýgj½¾À Ì{>=U[z¡w?ü¼Ì2"=÷(œãšðkÂ7bÂÉ•}å|ª¸Çø&†}zfQâÝ…_ Ô»¨£¢{Ô×âô¡ÜÄž-›¼™<»§a,=vŽyœqÊ&u•ý$ýójÉݰ³° ¥4R± KV¯3¤X²7ð ñ¯ ì‰L.—õK^,RÓO§yr¹³ˆÊӠ烙ÔðJ­d¸ý»M.wc¡8oe‘¼ƒ+Ãñ sà€àÝ2æ”ëíxÝ9Ћ-tâÌÿtÚ7>,òd1v–Ìÿ1¯Wý ±³b<¸V2/'/ÂB‘µÃà`I_à±V2¹˜‰Ø&é?$Ʊɢ[¹&hRØdœëˆ\j÷÷Üo‰˜xZÁójwضºJI%`’W2ºëãþ¼±ît‡j8N/²jœ±úCâÙ±îô¥â^ØYXÆ wWa9ŒâN÷C&»äˆþôFòuæNCÉ*NÂkÝ}WØ+,-ØO Í£öž“ýöΕåV­Oã·zŠ–Á±Ž*,ÕB‘aÊÜxŒuöÏïû=?*Eeâù.}¶ë´H³g¶ì”B,‚]:W£Ïþöôú‘GŸÅgÚ,´•©JªFB™ö\ïßð€!†G¢È#^æVƒ!—F˜‘ûFé#3aÆ“Œµ^š;ô@½Z´ wD;¢vI Ü)(õ¥‡´à"Ç‘·0EµÈ°§õöä»^q µ‹¼3&Ù9"8勼¥ÂE>} :*m W•¶‚¸YQZ89UAh®)­¨*-Ü'nPÚ:×và†ÅoUôôЬIõSéNXŽ)¡p²;ßăMƒ«Hÿ˲¢ ?ëfº¸×>лaÜUCÿ"Ú*ï°Xƒ 9œ\Ÿ½ûÑø??ÓçT•NüÃÁáéOà5Ä–}y~ŽŸ:ùÎÒ9t 4䚆ºXþ»Î>Aä+°O/60å“9ΜvZ×I'yEŸñk`ƒ<}0²vÙ£|¡†\¿ì1§€__™M¢B{x\D| Yaœ¢W´ºÉ™>ë< ifÅÊ·ûûÌݰ*_Þã€VxÏkèÕ$cÊZÝî¯ÛfƒdúCuªä]t» ¨ q~ÙHyRõ|:ÁöHßÏv3fû#=½=ÑÉ÷¹»æQ¿°Ñl€Çg;$צ{¡óQ,«fnö>)»Ùøè@¹G*ðÎ >üo]®çbZ± ðTܱl‡c€u à„ÃØ×£$ ð©;^-·wr§‚¾ a¯;yª Oõ5ÞBÏÛ¸Ée7e›¼W¾ÐQÓ1À¹ÁðW­TÐYºÞò¾w5õ@å‘’|·Cs³r|?:V½‡yÝÅ`¡Rú&HÁé~VÉñpYëÜq”í_1-¦TXÏCÃ.ðƒ“à).úÏ^ÕuFa tÐþ¸+ð—ÝEX+m~oÎËÕtÞ\MeF Eº-@†Ò¡t”ÈHƒA1I¤Áá¤Ñ× ö€U •¹‚g¿AJi¬L ,'ŠÈˆ"éqA‡ÜD”†kY¬Ûtç ËMõ§f^5Hi¨ƒN{Ñ\ ºjzò_áψàäWôU”Z‚Óª³¬Þ6®€À›ÃÆ!Z"Jù‡Íaã -²Zˆ(•ACVs ¾~é»[@¥ý&:vÆ]‚迚~žWðW³v~vm}#©^ÖÖÃÁ¢9ÚŒâ%Žåž´—9̺Ú9€¨Ä,’øà’{\”çÀ4ïv³=(+lBHï<§¶Ípû=wëíÑ“·òðs^gß—PO’bÑþ$ÊÊôIþmªBí/™3¤ãαœFŒÔ´@˜¥Pç ŒPgq¨è§OØI³]„A›Ö |Qsw+*°€ÜÊÔ]xyä ÕKpuÝ•©;F5Áª©¬Bœß‡ã ¨Ì”FOh—­ÊöÔœTü÷áç ªÌšHŒË IßΊY/òaå©‚Æ£T³u¤zñŽNéâmG©tñN¨‰(èTÂå}”·ƒGz3)è­ RWìÓù”)hÄ~™®u´×ÃðÁJgé0÷øŒrr讲•öWW¥‰Tg¡j tv…Ú0sTYz'Ô²1òTë:û$^¼ÝU‹J«Vþ‰–šEºN_[°ZÀ‰DŸyª²Æ½\Ì™Cž¦ËW4¬T%5‰»+Ó«û sè;)ÃÙª³ÆSu¼¯ñTUõ œâ%~¥'iš@MDgçì© Ýcw¨è©Þ÷o{³—.296Çij•.üE}AMQ'«›È:~®² n4¡†:Y0/ñÎJ?U·9-§Í‚Rð Ø ¸QU„’\oQÄž<÷Ò­…•d+ÉV’­$[I¾$‡»Í¿“A’?+cfÍûiÒœgœ“y­ª*¨ò-e žñŒgÊ\ìšgXu¥Î y¦JmÇà`áëâ{pÓmJtHÒÞR¨Ö0€±_C¤*21 d5­¾1Ç>]ølÃRM`³¸¡u7AŠù¸7Η˅cV7„¡Èt …ói^޹ß# wt›·U⬠` ¦Ùs«…e¥ò7u¹ÜU¡aÁó7çj!„¿c‡ßáB6¤ÞÉ á·Eã…<ЦÉd©¹ s¤_L ¿‹Ø¨)E;(Ÿ]`ñ°Î*¤(ØAð±8‰­¢+òìŠjKð„k*`½† Frã[™ˆ‚˜7%ŸN—Ê+ôׂ' Di2©&2)â´9`E²t¥T®ÊîÒL]©Óº ^_ý‘©ùÊã d.üO°¢ƒŸ\÷AýûšÃ\@BvBB ²Žú—}c#QßA7H‹o‡Y&òÈϧ­®=‹Š#NhÞ•o|cóÞ“vc™oˆU¾,†z_•k°ïÁ Ü $¦¸7‚á‡TãC¥o­m+woêæ¼ÁÌh#S=ÍUÕ´·“ŠX…HjZ¡{Àéàô¥*ùCC…ÚðFð@Q\Ã…÷áA/jfÇ5f7vV‘¸š”†Ðä¡UæÈA¾Ò@‘ÉWD&ÕÄ4¼zjLË:ëîVÚÉÑA¢ûàV†/Æþ`ì‹êŠ/!t£t+ò[¿ ¡\º3„T!S¾VC¨¶éc€{="铞÷ûôpµ?6—Ë–0ûØ!?0û9<Úƒ¯­Û¾™Þ°YÏóÒ[nÁìd3¶ [: ذ•çÊ)µ»¡Ý…Ÿ¾GúÇ™çoÙ äÓ“ÿÛŠþ·©E3­è?ŒVô­è úÅ‘·´žñpõçÝjýÄDÂjýCÀhµÞjýt´>õëÃí¿~Zÿ9#¿ž…_BA¥9eZOPÙ% õD͸(þß‚MZ_,ˤõVI¾ F‹Ð@­§De¡²ÌBh\:€Ö¯÷§L?y9îÞišÆïSi5‡IãY7†aé«’’3¿—”|åa«páD©’¯PÉMX~]¹rÜ&;«ä%“òp¯äT&ÁÇ¢Ó„>¢’ÇVÈg…¢Eh§½¡¦,ë0!LòãqºlÖïûKò.ßÖ!÷àÀ-/HâƒïVÝq¿îŽ» *_ÀQÄÓûª*lÞß‚½Uñn×?že*¡¦MWˆ :…Xt¥«;FSñZ%b~ÓµÚ>l-B£h;iw#Bu?½¿¶§jû»|>_D’¨DÈ}ÕIg^¦íNâü°ì ;XL^Ôv˜<mwQÛƒš´û2p_?¬´w!Ö5#;à?Žæ\qWÂl9éN.bW£´{ˆXŸ6Œ›aØT¼ï:6‡þ#ÊãR”[¦×¤:]`Tyr)…Wp#P*7…VÂÄʺíc»j¨5×íªa¿¼ëQ›S×R݆'øAe«üÚ¬g:ô§ê6$HðûJc¤ö¤§â·ÂP›¼…TM>lqÉ#+ÛEqiï»9ßí5Éû;ßÃé€Îwúi—ôÐäY$§šó½Šh{B®7äFwN9@à@Ûb|“ãúbº0:q@]n½s!·éI¿ÅîŠÈ.úÙ•·Ì]ø°Qß޼lÔo±J…ñÕ³ç›X$Èi ”Á_#8ÖEq®nøq­LOG Ì`®‡½3 ø Óo§-…¹ž;ÑNŒ­S¹ipª¹A%ÐÀ<_šóë™8wz-§OÔqn'D•®Ç¹Ùÿýçɪô-$ÂQüøâ2 {" ³‚S¥ká+EÏ3˜<6]f´€õpðA›ëƒLdrZwê8±KÚ°Á•㔢Ô´© ói=8ÔÒÁM–ñÂyvQ•ëÁæäž«Ê7®À¦š•Y a‰a,ÆWå`XQžx˜áqCSÇ=†(ãÇÓŽóÓQª’($ÊÎÁ-ÇMØ!`%YöA%¤á½œÏðÞAˆÍˆ{œ]ŸÍ·ÏfÛ»Æ"0£ñ˜°Ì¬Çª¨öNdÞG@PZû‰cÏ+/ ±y +AuVmµÂÍöV¤¸>Z°>îs÷–¬“FúÊ&#ÐÊ]J)Ô’‚Vħn|Å—jRK|UWúdFVr‰'(_™[iȪ4Y3åä¸"ns+³ÊÖܳ@Îà33Ï‚(†‡ü9YE»ø|Q »JM#\•EÁCW‘šy¡g À½VøÌÚªà6°v\<ëåÀ–Ð B6+3§%<μvïð`Ô¨7Nû§áú!N]|8ý—á²ÀEÁÌ3µ%¹²põSÀFxqâ04®W[„ û<¡Á-‰üÔ@D!,ü¸lüíþãw¾20«¦âÊ@ŸÑ•lå3Â] =He^& ‡ÅUó&SP=>¼ø‹æí+ýÚ&Ôð‚%…)Ø*pTN`ꢂ|§K†aÉ$¯p—&Ê’3Šñ ŸÆ ¨>úBû!„¾Êâ蚃o¯Ì¹ƒ/L«>úã«f ˆ—f’ôÚÿ?NÌ_úÿ7kÚ¨ïøÆ>àtŒ+xѕܲ¢ _á=¯á¨~fPÞhªhÔ?B”Bµ‡@§o|Û*‚Ð9²Œ<¤‡öÈ,+3ƒFÍZghhkMßdÈZk£@•ª`­¥YE5ù'4¸FCd†ÑàÍhô†y!Χ³LÔù||æ—÷ͳÊY& [&îSüa&màb\ÉÕc¥3߼ά$Lj9»3[† íHß$4Ï21,“Å0/5©îÔ28q«XG°(a‡P?ÓR('õCØ"Kõ¤Ž^J81•ú§«ÈHÀâ"LíÅÂw+3«·IôñôI™RA{d¶—–T†®^v{TÝÕ®Mæö(C‘O}^ôy0@^¤·(Ò[‡: ½qÅ‹ï&ðPø”4YV½Zè• Q¹2W‡\\êëuáWçoø7U'õF隣zÄnrT§Z#aWµPSc{v]„t^°¢d'úƒ½ò´Þó³Z«]úÈá}³>B°L‘µ–›;\bÙݬ$çÙÊ!³¾±2n1ÍÝaŒ » DÌ@°ãÖRzã9Vå†5ÐÁ háàºP– ©ŸUô~|ü=–¸«jz_XòÞìÝHôÊè-­ÞwÒ{÷õ|C»ö«v©éXÙýjô]ûmÔh¾ÚO ‚¨*ü¹°CÖ`5O+ÀÖòª÷ÎÖcU+p•ª^‡d½þ{[ \ÝD§†˜]X+`­@£€´±êìÌSëýíSàîÚÅÃJý—Hýf©_Z©·Ro¥þnRþb;Ï»¯Ü‡FîýªÜ«¹g™ÜG¸³@Ë}ú±¹wÖÛ8¬kÿÝzo]{«÷Vï'¯÷³víݧ¿>ßX­·ZoµÞj½ÕúÇÖúÃÓ?µ ô âÁkZ/jDåãj½ºJÎûh½¬JE…™¹Tàà‘eì¡zÊ&öˆ"{x£T¨nZŰÐÓ[:nUøÛ°+èLøz ÿ(Pvþ‰ i…ÿ¯9*€Ü$üýÁÖ¿O ÂZhÉv¨°Ÿþ jf·„ÅŸX,»45œTäè&б3aîú¹.ôýô‹o¤7•Ì€³p*fÀO_ËÌ[Ào®‡vÀÕv€†&Áïk>¿hçm'; :z²ÈU$+oþv€.†2™À‹ÈÉ$ÚÈ4‚Ïߤýmx]•šÞÚÿEðÝQûï‹ Õþ;h¿dí¿lãô'u§·ó%ýö~UWYãww¤;(ê}Ý Ð[Ì€›´+€ŸÛ´`5ñ÷PüCÿªöçk€p÷&_®jÉœµ_ÍD9¬ö·iÿ\´Úoµ¿£ö“C³`⟻qÕÌÅu´À:ÿÖü0ðíοûÄÿê;uªö‹Ö±Õþyhÿ7!hµßjoíÇ>@Ì쎿Lü¡MÃ¥ÞöÖŠ¿+þVü­ø?²ø;ëËÆ½VÒ'ñWVüç,þ÷‚ÏŠ¿ÿ¹Š?üDsÓw­ŽÑK»žü,ßÿÛ‚þ×wðÞ.ÿbùÃ}ô·òGùÇÏ݆ý#þNUüUƒøçûyÝô%+#þ.îçm¨ùÙn·qlÅÿ›}+þÖ÷·âÿcÅÿŠëWõ÷Ö»'÷ïüâþüÁäf¡Ÿ{ÁgåßÊÿ¤å¿gÜßï#ü÷ùçä°~­: ׿²LTùUAÙE6TmÏ ¸‹ð³¥˜í¾Å­¿ÎÒa£ô|èm¾Ö1‚Aß‚¬5#¤fÆ1·‚}Å äJÞÐøAyñnZd£ «†€±Ä;øŸ‚،ΠKuŸ èèÖn¼u´’‡Ÿd&(Ÿ…¬¸Eu–DÖškn4»ÏÌÀʘk Ì d ˜Ï|mÚâ@îóûy÷û'™iÚ»°Ëk~´øÖå{z¾¯ÑÕpU”¹ª®sU"WyŸÈ¬þüÄÎaÁ~â+y› û„l%§j¯$!r‚"Q÷J"iÇo£ $è’¾¢ð!Mälø,Ùõ@³¤ô©()_Y»¤L5«ñwÈd€ôÓøÞ`/Dò²ÞŸÎI¢v<Ÿ×˜ÍqwMï6šÜ¿€H;EegfV»câÿxÃ1#ÛóÀígÎ!Îdçdzj¨Ÿ5„úÓß\xìJ}?_­ý"?y‹¨«nää­Î}BÒ'ÕBT IvùQVÚÙXMŠ’0}ê¸ß²4dš¨YQŸž¨÷{!xê¸ËЍ“‚cåe`\u¥]{ݹ £‹Ÿ q¢Ã“ºˆ{ñý.¶ä|û­B«ßV¿­~[ý¶ú=;ýÞÆAàZý¶úmõÛê·Õï¹éw´V"YH¬-P‘ô¢Û¼»‰àíbÀ›Ä Â=…ïÓxª•x¼@<•+,Cð"9$¼—(’Crúrª»~Çýnň.óÞ0õ×ï1 ë*“AÍê÷Èú-Ȥß}ÁΟ‰:£~ïaŠcbâ:î|zÞ‰óáä1n­ãØãs£¾‘o|x“®XœDóÊ,Õ Æ!2ô $í˜ë,Kû ¥=¾®ì|MßúseWe†Â™VÙ'§ìý`²Ên•Ý*ûmÊÎ<}Ã_ÍDâ½µçœ.Öy‰·Î»•x+ñÖy‡šuþr9q«ìVÙ­²[e·Êþ8ÊÎøþuëYe·Ên•Ý*»UöÇQöð·Ü<Ç#(»²Ê>eo„É*»Uv«ì·);V»¸ÁLä=ÚwþYÇý§È»uÜ­¼[yÿ Ž{°]]­Uv«ìVÙ­²[eewŸ_½‹Uv«ìVÙ­²[e ewê)¾6܃·3”WªnRv^b¥jbe½ûG¢UdB©ÎM‘}eJª+”ü¤õ|z¦é—ÓF)Í‘S’îùTÙkMëÿuú1Í¦Ž·ÂzƒØLY«þ#«?þÑ€ŒÕÔñV°ú+ÓÔq¯Rõ¿±©£uÊZóÙ˜¿Ò¬/aî!4¶ JßÎ+¾]uè‡SúáãÐæ-Ð4´uó7o›§LId¸ÈRd­(³V!ke[^OÖ,r¬ÄT%?e*ò‘PU¢ B{™å^œ¼½ME‘¦DÃMéÙešª†F½F8ãHTzÇ)9׿}<}Dk~‡5eM †­ Tu9Òf,ÏQ6:ªH¯QÖÑý]9ºëß½šöÌ@k îb ÐÔéíúßvS?÷šëO"œ9ä%ÿŸ¬Ä•%ɸ‰ Ñ‹×QÑÌ¿ ñ¬ÜM¸²«Š€Æît~K¢š–OnÀÖX` €5Ö<ºp×ïÉëû—edYB„5Ó1Ÿÿ5ÖÌĸN±¥3_ý?±3Mþ–”/òWhýÇ«ºL^U'/¯—!ä[(ë·o&¬(VTÛP;"*ñd|ŸF²rL†k¦¢ØUVÔC Gx¡– _4—¾¨Ç êÑžØ4•ûÔ¾-i‰é‹RQbFDlydí3qÔ¬æ¬ù9 ð[ß@?° )Î3Í÷Šþ½QhŠþGfàkôsq=渖[×f@eóKd>Žé?3 —AHßM}-çT©FÈ«Ì}Áœ€5ˆ® ~õžv»ãó\¬Á㚃{ÓÏÊÜ™5Ö<¬9øt$`Gsgæàjz83¥’Ñt ÍAkzXlQxs ¬9˜ƒ9PÖXs`ÍAsàdS]Âð£ÿ²·«ƒŸjìêÀškìêÀÔý¾H_Xs`Í5ÖXsðÃÍA(çãlÌÁÃZ›IžjÖXkð™5˜Y&ÙY_þø»¹Xƒ{še3\|'jÖXs0þ’¾kàŠóÓÓÑš„ï^!X“0?Ô¬I°&áÁâEþîïŸèü½æÀZƒ¹Å‹–ÖXk`­A³5H¥çßÑ"Ü9fäŠg|² „I/àBŠI° k~‚IÍ-uÛ"Áí¾H`ë]èÿ[ ôOÚ$(kP fdn„Ìšk¦jüÄ?ÌÖÝÍ#Žÿ$´BrÂæÀ®r½ž‰9°+kfnÂ$<8s5QÕøó´º\c¶¡µÐPãŸ:­%=\¦5‚ƒ½Ã¤Ì¨,¨ÌkTþÁæÀkÏ!|®>}`ªšƒ¯…Ìšƒîæ  kÆ7جÎ7ž‰:Y7½×…ÁeŒ&Ì/ÌD$Tl뉦¤þ3È ÛÅ€] üõÿõDù|Ko<ûüKͰæàsPëd=%ÓpWø¬i°¦á‘L*>þx&æ¡XnmÏ¿¿iµ ¬y˜ÛjáY“`MÂ#™– ²œ©M`b­þÚ’µ 6‚dm‚µ ?2‚”›ƒ`ëD§>ý@|»°Xs0GÔ¬9°æ`8«'›>ø2aAe©nY¶æ`â¨ÙôÁÔÁ6k½[ÙïeªI„`ç³Ã•þvÖL¾uií]üx‹pÿåAª½;váΨÞ:rW»Døn“`—óCÍš„Ÿe&¼L+bä<³¿Ç÷ûšƒŠ´ P–µ¥åÁÿòÛÞ÷Û…e¼eô–·Ág킵 `½’ЯÙaþ¸²…¹`>›ˆ 3«V Ng+†0ý70&‚é]̵ñÉëß{ùò0+†yJÌlv1ŽØÒîb¶†á1 C—ÃŽMu søûuû?Œ=˜…A¨æ˜íµ9 VÍÚƒIÙƒ™ƒI·Ä–OÛݳ5_"-ð~6¥07ƒÐŠšµ“²sZ!Œiâ_îh#5wÞËÚv8úöx‘µóCÍZk &` FÝ’ ÷oO·HPÖÌÁt„Éšk¬9¸Ù˜®i¼õŸ÷Õ_»@x,‹`Ö"X‹`ÍAôûÍWÝÕhÚÂbÓÉs4ÖLÈüd3À®f Œ`§rX]ü~{ÿ73@¢òf ^Tô¨«‚!›…hBÍš‚阂©® ¾l®rjxº›„Æ•òóñ¥&AØ•Á'&aZÛÓ¾¾Y˜4²æáFó€êïÌ8p´ý8øß4]ó'›Y*¡~ÌÃc›k¦e&b¾%|Á>g”}áæœÄ ¤“5Y/4¸N­A˜jÖ"LÊ"Üc›¹˜…¦5‚Û}à>_ü•ÝŒð•âÂJVá¡LBjÖ$<¼I˜Í*_0NVÁÿÍ7¿ÿØU‚]%X“`W Ö$ØUŠ='Ï– ¶‰ }ê4L‚]%L 5kÞ$|×*ÁƒR¢!¦ OÍÑÓûÇéwÕ¤!Èê”VU©Ò˜´ƒh,‰Æª‰Æâ§5*§1\óúh?á0ò9¬ –Ób8Lñ •HCÏäxé5ò¬ÀaºãSSP«9r–,µìtÛaåÛNÙ\´àØMjP^S§ûÃz“:MYk.F6ø¯·¹è öBÈÔ\ðs²V;©ÍÅû"qçÃÏßa™|Ó³Ò¶¢¡*•n8®o–™ÁÈžÃãø© { s¾1hu¼z¬ÈqjÖÀGkÀ¼Oö*‹­ï?[s`Í5ÖXsðÃÍ[¿Ø6©Í9wÀm h†¹ƒOQ³Rÿ8">­@Q§¼Á/ê­4R¼Èß(Â&^&7/,àê⽘ÝèI¶²HØÌfÙìIVجH¦n§²j¥2/P9×Y I3§ï@2bF7¤$σÐê •›,B¸tŠEhň„£7LŸ:ÿw…¬«M5kîáüë Ñ¿urþû€9ÿ‰:£EØŸ ›\òÙaop€â N;Ž·qŠ>?‹õ=žoD?³.¼”œ%Qúç'Ì;¸f QdÊvPs7Õn枥Zî¨åÌ×bÎóe»à|¼*_%æ?ZËë“Îf åpsiµÜjùÓò0÷¾wŽÛKÓW¤é^UÓUƒ¦gÓÊ``¥iM÷qXYƒ¦3ÎN~<MÿÙ¢nôù¡fEýÇŠú4töäðôî ˆùÖrë Ï5«å?V˧è æ…mÜó‰~Ê~ñ–É™'ëd{²žËñN"LBt†ëU…Hõ¡y€è|¬Ÿâ˜Ñ „Å ¿ƒ6ÃýÈ%=Êégè:yX¸Þ*ý%}Û•ËãΩ )?ƒ2ù¨^&Ÿ*ŒÂï1þ¸–¸õ7É&YYá·Âo…ß ¿þ#ülíßÝv wÒ}^¡/¾•Ò‹ûOKù®RÈÉ‹"‚´¬R¶-Òó)_uÌ@6Ä r¾JÚ»ÉIƒðó«ËHY TCÌ@SìÝ/öLð—ÌÉnÿŸ?'æ/ýÿ{›QXv• *†U úZ<HÐ÷BjmÂøa „Be@n õ{!øi½ã»rJqvX”ƒ%:îsà“ˆ;ÙNVÏ¿oZ*€›]±ÐÁa ‹XÊãd;aÌCú«…_ é;éO¸`©ÎCŒÇÅ~C£ý'ó÷±|+ô}…¾ÒIè;ëŠz+ôVèoztýGÐx'Óx·¦ñ›wŠi['Ê4¾½û¿yó­Æ[·o5Þjü#j¼¿y=¬G Ô[·o5Þj¼Õø)i<Þvmc5Vã­Æ[·ÿïð}ä^ß\%?©ÝVˆœG™ÓQf5ºz£E™‚²R¯ /„*ŒŒ‚X¯/¼Â?âW™ð ¬òW¡V¬m 0nàH‘²™Ÿi|×rûÕä+áûTA¦Š •ôéIzo°›Êíß©Ü{$”zç ²¶ÂºßmèR 7ÜlóUÖÉ>øEõúá¯ò«‚öãGWº÷ßüNv/WeÄʾ•}+ûVö­ì?ì{ëÕÖS2"n–}¡5DSVŽ!ûUš–uC6ê†ä7È~ƒfäê—Vÿâšf|¶ l’ŒfÕ¿^ey“ê‹.ªßŠØHªß½›Tù….­ê?Žêßx¹ÖEŸQóYÞ&ÍË¢.+£ÜFôG#F˜e¡ëëwyT'«¯Ï^m4¿Rv¹‚—ôú5‹òÒK?î_zn÷ò°}(•")á¶¢|¨v¶Š«NcE>(ü+nn´®.ªT•ÃÇi:‰ë±ß>¿V|£þõ}V-xý×s@•ª«ÿ×Ã×.6GЪÿÈêOïpõ¿vAþÏüæU+UXôíï>ÊÕ¿Ügšy(_ˆ;Î+U[ư ê›tE\³ ­-Ö¾Ì24¬ FDoy|·Y† "h-÷ F¼›-Û•çÖ6Z³S÷Fë­C¶iËšSnÅ–ˆlñ® r¤ DÛÚÁ—'•üž‹°k‡¹Z»v°âG[ˆù­˜HÖâü£LÃ]OkìâÁšk:.šÍCqñ0Æìsù¶[ÿ™…xððÒ£[ˆá³ÂZˆÇ´•–þó±ž8ýû«D)9a a×E ‘KøL,„]CX 1s &áÁ™ù"ên!‚íKü›Ï` Ñ$1ª—…˜`øúñ×7ÂgÖBLÕBü´„'œãγ‹»x°‹»x°¦Á.j)j¾Ù>ï¸xà“³t=§»xøbøìâÁZˆ©Zˆ[fj䬜çrßgZ²Öág®&ˆ µÖ:¼+êµ4}ñ¸¢s¯¥™Y›{°bæ$عÿúáîù·û2Â]ÿ–ë]NrU#¹a¸Ð¨ÏÞJL0>Ñ+ÂÔ‚WA”ú@6+1A­•xx+=÷t?d`)Ú¸ïÿÎ?jÝ0A=±ëk¬E˜¸Eø¢uÃýÌCƒÃ#WØ”ôÜÌÃìÖ\$³j"3AY"3ò3'³ ÂfdV¤^m¡Àd^e²*2Y“y&-p* “é2#¶ÉÑ¡†gr¼‘«U¶˜œ9$*§?Uƒð¿ü¶‡Æ-Ãæ²Õ:\W¥èsÄÚ¥è+лIоÀü¬]Û.è?ŸƒQ· ‹! /„Lm?'kµ“Ú&¼/R¥v>\\ 8ZÍÝUQÉQßWÆá÷¹$å™ XiQ§÷ÌÃGà;¤š¤šÉwһמ±DnIóo±ªh~ˆÙRÍ÷IóÃ8Õ|/¬îUø#woVó¿Ró?]XÍŸ€V÷§£ûf=ðXÚ˜· »ê~³¯¿9;›«ûV÷­î[Ý·ºÿStßor¿ÎxËë¼m!mC4¹HÚzÐQE%‚Œ¯ÇÜ`1‚Œjd©¨²T¶³Te,•†¥¢>FžÃ1‚š•rLªÎ$^`é˜)á¼Úuæ&ÈÚ_ü,´Â·@úœ €®`c`ÇÏ»RJƒúÌȽ õ1j?÷A·³Ø¾§Ÿád‰^ïXöͦ¶R‚7¾¥:”Õƒù®“ ½ÃjBÏó-Ç;&ü+ô2Á­ÐÏ\è¿ A+ôVèozö *﮽˛kUÞª¼Uy«òVåSåg~ô«òVå­Ê[•·*ÿ˜*ÏžžÄÛ~.*ÿ°"ßcúÀ¬D~y|Vä­ÈÏRäi¸@?‘Š"ÿÙôbVŸ à2#òå ¹È{k÷ïï§¹ˆü㪼uå­Ê[•Ÿ¯ÊOÛ•÷7çU°ûA*?E‰x|W~,‘_NA+òV䯉|*ï»ø;½y_Ïç¤ó“” ëÍ[oÞ ý# ý÷zóÁö¨d`UÞª¼Uy«òVåSå}¾nâ¯Ù g.²R5±òó=•šy£íˆUÍ”üdC%Gq‚g>þŽØ¯@ï&M™"€VäGyýçS@ºìˆ½ìÛwÄ–FvuÛ ‹6À¼Ñ×í„õwîêy?u½—Vïg¬÷·£gõÞêýè=úòÓÕ|G¼¨Ëi!ñ|ä‘îšÏ5_TTCõ÷KEz4¿ÆÐbÓ©*¦®ù­pÝ®ùˆ•$æËÑë'1ÐjþÃk¾£%;̤? ÆþÆŽiAYöõugÊšîûމՄ¿¾£éËcÿõP ÷sõ3ÎÚÈNGÕßôòô©~ °¥ìXÕ·ªEõ£’â~‡ÇîøFòªä«ÉÏ*sœ@GóQòË•9²°™j«ÒûltÇFwltÇj¾ÕüVÍœèN´{ùH&¯ùßíç «ùóöóï  Õ|«ù||êmüUšn’mRïcÿymf°xòjš/‰¤ª@RiHʯ’TÜR:& $š¤ª™¤½*§ãçߦóýd¥ ¥²¬|5bCdå[AûF—Vç¿DçŒ×ÃOü‹:Γ°ÇFÝõ«Lx>Ä'˜G¾Îƒ·ïBzÖƒoá¡ÚÌŃÿ^­ÿðÊ>²ï|}R6Ú¾­ÕëØIÙùiý<#ôãeeg¯õ6Boµþ‹³²nÐ_ê¿)8ÊçÍùJ¹ýÿßÞ¹­'®kMû8÷2Y?òÞ}`“„$àlϾû¿‰K–ñcl#Ùµž•žÙÎy«\–àìžÁ)UkgÚƒöƒ9{7žºq‡u÷ÃÎßs~‘䌃‹ø/©êN$9šð¾®€àýï]@ð~ú¼çÔóõ÷Æ-2_+æÃã?¼€`þô™? ï„?ûp'û•Uô«lVšo֨ЬñO™]š•exOyƒ²´ÜŸñ«]Ú3~ZÀ2íˆölîMÑ{Íö&kêM–ô&½™é´€ÿ[’þìkìMVÝ›…NxcAÎd'1ù×΂˜U¸¯ªV†.] V¦ËíÅ[”«·hW¾«tQµ‚À}ÿ¸áïvÂ}çb?ÑÓ÷ǯÓ) ƒ÷®\b^?wò8?g<þL<œïüGþTr"yZ•8×P¬ ˆSRRÜ/OÄ;81ïIvã´ìhÎòÉæ¬_¦¬'|<‡ø±ÄC:¦·¬ºãj¿þý¶Uƒ}í§‹ûhJ¸ï^>à¸×÷?gÜ‚épo¤¸¯Ý'SâþbíÍó›—â¾ÎÛ[t8¡â¸€{qCù€{à~¸·þ‰/•D¾Ë,òòRˆ?ƒßWž³Pø0ø þDˆOâ3OüL>I‰o\Ët.·[<×į½ßjón=SÅM~oȼPÓ6ù}"_Õ ù³@þ]™Žµ<š<ÌÜ›ëÍÉm0÷ÓB½ªÞ¨‡»ê§Žz²gûóÍŽÀ=pÜ÷ÀýÄqO‚SÀ>{à¸îû‰ãÞ ß—«ÙäöªÂ¸î{à~ø0g·Þ¾©>‹ Ü÷ŠW¸î5À½µ~ûøzW÷³¦½ö÷Õ.@{д7I|_-¹ùb’à98ôè$ýšüüRäGEhD,"2óåðK%«CÌ8åóÁ|˜ÏqßVÅ7Â÷Žs±øÞîóÓ}UÁâ·÷ø¯LÞ X¨G‹Y%:Måk…+ÞÏ‘÷×'Á¾*³÷$0OÛ¿' -hwÿ”þúkH{¸{Ð^GÚ{'ï R~ïwÀ½A#bmõ2÷À½Öæ¸îuÄý–kÝknž{Øõ>þrTlÕb{Rñå´=“ʕڳ¸o:ïÏ Ë‹¤{ØõžEW`AÓÞ?Ñ?¢m9¥dÿ0ñcÊôOüd™Þ u÷¥]ï³è·F%ú«j×Hšëåk"Íð¥lE« ôwCò/ÿK Òý‹]Þ?ÈoïÈÀ>ÝÞžƒ|™Ãú•mðíX.§ØžÉmˆyÙû>Y#пÒ&øæYÎä7|+æ?‰×mã½ïɱbmhJwœ·ijÙ{úUü\3=5öh z4¨êQak¡A/ü§·£±AYÞ›0áMxåüÿ½¢¥&âýH¯7hƒÝ¯çüpX·dâ›×°jà|ß_„– r‹ÅïRlañYlñ¿¤Å?>ù—ÜÝO\¹‘²8…¹<™Ä䟱ä“ljï<þ s+Ö3Çoâ•1!|↸g¨—ø\Æ-7æiÓïìM1®¹ oÐî½Wu½Ÿí½[âšLã±ëû¿Øç®2Ó×ePl¼–þ½µgïmö¦)®³|mãå*–÷×ÜïÙ;[xv×°ÆÙ›ÄJ  Û¹”F{™Ãðs­ˆLhLùÙbtÇ)[öÚ㪠îÔ³¤oéÔ7¿/´#LÄ,ÄQÔe›Î z%}páD®-Ù–Ñž/*´KZ§M¬´"=YŽ$½¹ ËüûFÏÔ¯,_õ‡/e=d¯&¨?õâÛ»'¤ïRìLHÿUK}/¡¶/.-' `räOý>ÿ(~?£ðbìí“SÈä“kíÍíN{÷)iê7¼\yã °ì{À°Ÿ4ìàkí÷5O5ù£!{¹@aÕîÆê‹BðÅ¿yýŒÜ$c6räÆW þ|­x¢bøžOùÓ¼oä¦K±³€ØK› Ç1ö®·ŠÓ51ΉòfòAíp qŸ¬×ã7?>aÜkÜ áÙ~^Ï…ëådW *€ëݳy5*®ƒëMÓ“üá#³ÝXŸûC¶ûr°uW΀ÙÎû¥}HÛ_Ñ3¾‚W»ŽC[^ÑW¡}ŒmnZU¬ïe×Ûª× í +´÷ŸÉˆ‚:£½s±Ÿ( ¦äùtLaÅ•$S’ÍÇʆ6qÄĤHfäÌ÷¶±C÷uÕe;3m9ÿpЗÛr¤Û¡¦ú‡V°º€à¼RœWó?W0_¾ jÍÇ1»Ýµ,ÞØ@ÿhGÐkz8zH¯¨£¿õ=ž%»Ú¿6Þ5Yߤ¸ã•¿Aí.e…®¬›·Æ¯ÜñÚºš€~7è׌ÔÈÉQ‘îxM‹]¾ãõ8þ¯|dÇþ×ïͮޞW ®¬î±ªV•Ÿv]Ñ£Í+zì6\beo²+±´œW5šEËý“À¡Â!FC.ÈÞQ²<]Æ._=]¯ p?Ø‚ìù1ƒLRÖ;¿ +p)§"­Ä­óϸÉÔ©Ï¿Ü-ßìÊ ~åÚ¬á½yÙàÀïÖiIyÖ4žÎnŸ4 ßf»èµù(ñ?¢Öü蛓%~y¶Wâ·¯Ø@Ä_´+ˆâkA|?y-ôIhÞ }/ }£úQôÓU[âs£Ÿ@¿nÑÖZE;s[jZqñÞñDÍ+".£Úui”éRVìÒó«°,6âÞᯜÇÿŽ2-*;”ÞÛ¡û>¶/”ªØ¶ßÈöøá¡åŽÏf9– €§pﺾŸ’Á½ƒðs!ü¸îÝ ¿è¡|`ÔôÝ»R˜ÐîˆfwÀ]]¸{ìø·­†{Ô÷Š& JMÊ_€—4sC kט1¢(é£YÁÝj÷.,)—)Ï’±K¸ß÷–Üï„»ÃgÅm«Ÿk§»ÆwF%°W•ìÖf¹‰6“µíz ¡{¶h‰„kWì=ºöŒCº;;ZcRg¶clÛuš‡‘ïÖ:bþj²Þ]T r×±jü<¯mäî„Ç?ò¸î€;à¸O îöÎzÿ½w¸ë÷ÎeÜwÀ½îéšªŽ€7ƒ¥ûú¦¼{O`ÀëãÞ[— €à•|£{çgþ% W îÆæ'ú²ÀÁïVy8ÜáÞ›àÎâ_Ç;Ê÷¸îµp·%¿‰¶ž¶Kå|BŒ[ß,”QÓ¾³`Ñ®`%Â÷7‰­Ä@øQÂw’DZFæ¶[¦|_¶ž1|?å;áçtK¾Ÿß\¿rx†}¸ Ñjñ}@Ï46ñŠ"~ÿЪñ@üæÝ4ÅK¹Èº>m~@xxxÀëø¢|¯÷ÝñùüÐ]çx‡Þ5Áû˜+¬ë¯×;E^UÜwá~9…ÏÝïݯ#àŽ\f‚lG.¶«Æör™ Ý·$üúÝAwÐtݧ@÷ì «ïê«úÒp×î‹ܧ÷Ê‘ÈaNWe™‘Hóç3ÜwÀpÜ'÷ì~b?öÏt7z×dqKª:V xÞ\RÍÆ2/o‘ê¡{¸ë÷J¸îúÂÝú'îSUð.{ß|˜O²UÕü Ü{‹pæ:àÉáŒäµ î#<|U@s»‡6H4ÕÓšô@kÊ ñðоçÚ*ã:7×Áqý]îUxÕWðïWІÅUàý>ÿîÆhïݽºÀê†kç6gðŒ·jÜ ñNñ®‘ñ.’€ŸáÇËàín|÷2åˆ2zɦÑ@¼¶ˆçÞûwÙX¾‰ 7ìÎé1ùõYuCöòu|¢õm,{˜¢®B J=ÌDÙs=L¥WŒÿŸömp½oyÏ¢o#°¿>ž/£¦K™ªìýx%ûÁ~UÙ¶ÞÓJØó^Æ9ñÂkBÿ?ñéü0‹£Ý‘ùF§Yïä®§×kÂäõ:V Îä‰ßs^_Á÷¡ït5èéãøZ KžCÅE~°<7h¦OÅ“;Ä9üe™øFÄoÐ(ÅÄDÑÞ5ÈÕáH®,ÐbQO’´@]ƒåОTj!ÿײdSG;̼Öh1ÓÚÌ9ñÇæùóç·0†6ŸÇY› ãKÉNìöõ™Ûk;ù’‘<ÌIæ#ç6a ®Ãm‘õ¾#…xçÿ:RŒóG®SupÈÊ$¬b!£˜˜µ‡ó‡ó‡wdÈÐÙŒ·ó_Ùse§2Øwå³ûŽlxŸ˜}ïmä}uüc²MáŽlpÜ÷j¸[ÁßúûÊa3€û£Ù®L.£Û`;Ø®ÛãW MsÔ±™ðe÷ÒneUm¼S½{ŽïÿÝ}®kR°ÅBÖSøx°^yÖŸù+Îüè|ùAƒ¡úôn›­–æì ýÉ´F¿ªòó ¼¶i³gŸFuŸNî¢Ñí Ñí“C{X5D3´swöûƒI.*Ƴ*Û”%¥ã?ÞL›Æ?ä(y2mJ“6?$­IuwîÊн\¢ LºT©@÷‘+6 qÝA÷»èîËhÅHØnƧ¶J‚óiÉ3Ñc» áãûLãvø?d‚ÒZ­¼ãd½&b«úOžþ:Æ6™ã>˜ñúñ ¸ÇïjâìÁö¶Eƒ³Û•b»)O…Ó¿››ÛUyH>PÅ¿ñÃT á ¯/âå§ÕMhœí÷îw§0á‘Ðh‡x$4@ül¯^B“Ùžfýr2oß<øAp×ܽSN Zèʉ¹wY°E»ŠééÞv¥Àþ@¬‹}…I'ç^3X³æYŸ?î4^cùÅÖ7ÇùÕñðï:Aþ˜‡ ·÷›ó?¾z³]-û>Hø¾˜Ù1²«DöØrVt¯œ_¦|_¶ß ßOùÿ×Où~~sýÊ] —&h`ÞB¼.UâçxmÍ»¹£O ’öp¸+kße{ۊ陾ƒí`»`»¥ìÌÌòôó¡>ÙaÛµC;l;Ð>´«kÛ­Õ·ÿÙ¹kw=(1IÛ®@ê¶ƒíª°=,³}ð]ƒ™ñ~¨>ÐI¶3wÝà^.Œ;à>5¸âF§‡çíÛåÒÖî“ e¦hÜ?í¶ƒí*N¼hÞÉʱŽZnL ð³0ïÕ%àxÝ1ï–"‰;Y[ÑW 4Ø–SuûM%Øv}Á.· VkI•encú8xsîAw8ò’*‚™a 6àŠ*!÷!ðnÄû¼óX]‡C>ìíÎsn#|¤D6 …ñíË4æÂ*,<¯ã-éÜ5œŠ4¼¼+ÑðJ™x€Ÿàuy76kW›û™†gâ–íúä3í Öup¦K>óˆªí@ûmƒ3<ž±ŒD ˆ—åüÐ) ¡ßÏvÃiJa~ºŠéW5€~ ïoC±Ñ&$Yf»÷½e[ºøøa<Õ“ïªù‘ZV5ð}|ïñÖU3^¡5œqGà("z>˜€ƒŸY ÀÁƒð“&¼“<ôÑ“ð›ÍóóJo¾÷‘ÐDà»2^—ªïàû­GjóÁy2îÍÛLJÊj+“Á#¢Qð׊†Yx^)À½1°±ö­ª½#r€î û÷´FÀ;ü;ð>Þ‰—LÈè;)|¿‡ cð¼1x5ŸÖ€àøáFhÎì65¼·;lÞ×êç3 €×- i[2€WðýÚ4"ØíÏÞ«vî‘J`‡sïÆ8w€`ï v{©©a·Ùê¸þTß°ƒëÚvp\×ëzoL`‡Çwg¸î€;à¸O îÎÎXo¶€;à¸î€û´àÎ^QÃ:*Ø> Û±ÕŒ~UÛçÁv­·š!ôÕY¾NܼGª£æ]Ǫðó|Oæ=Ù^rô­NÞ;nTàÕ¼òUàxÓ™‹{77¿¶ù¥$ÜçÄvíw!Xt.ضëÊö“ûžW‡Þ‡ÀZ1‡Lw#`MPó®cÕøÙ^EóžÙBleÿ|Um2“;ãMÊ“P*zô:5$Û÷Ûánwƒ{÷2åX2zɦ÷p×î^‚u’y3Hsæ§@?¡ûiäìþ†2ö·€„õ=)¢±¿dSg?Œ½æì¿{';¿¹Ui®[4úø2ûçz„ÀF®GlÀup}¢Ãlâ‘ÆÏîHãwÀ}ªp'Áï+lÿ¤ñÚÁi<à¸_Id4»AW_K:AçÎt„Bp¬sתj€ûÜàÞÕ¹»Éû0ï«hãL‘ïZÙ@ð]Ǫïà»ÒæÝaßo,†{¸+÷Úî€;à>ÜcÞº:Þ¢Çc÷®àáÞ•ª?}ÀkíÞMô¾ÝMîzPb[ôÈö…&UÛÁöölÇß<ÒÙùk÷­Ü§Ó@»&”èÆöÅDÙ®KÕÀöɳ=eø3ƒy÷¡ùn³àhbàýá€G0£_ÕøÉ^ï`Æ\¿ö¤Ô§¢dîAu“ Mñ&-6&¥ò mÌHüyRT4f@³¤’æK3Џ_íÊ Ø•´¡+Y®+ão’±¤sâ/Å ¼sâJ~p¥ÎÉt¥øÄU¸ÿwyßâ 7äÌw~m-Œfègj—üšv-_c†/e+ƨXM@¿ô+aŸþ/)È¡ô;û‰²3ôÙ×é }–@ÿûéÌtC Ûà¸Éç|3I®Røî’Kùe)¦-Õ?ÿü´Û'b\ |ÑOrs¼7ÏÈ?“Þð­˜÷äLvÃfÞzŠé_Ë{7|v¶å°¼ïÁ{ð¼ŸïwæûÁ—-Ê*Z”ÿzòެíO~çjÒdâ*>I²=ÉJ=¥=É =IË=ÉÿšKOÒbOògWxÏ*ÁŠ É „.W—+Ãø‡Àx:•¿2d„¸%¼É2¾.È©ªWÀÜQ²:¤ŒS¾«HQµ‚`|ÿAŽ(ˆˆtî rn+¶rŽœñAÊxÎä8Ÿá„Nïm=–HwåqÜ#ÂïŸ)ö¤Lw%ãÏ2äSRæ’™Ü{'e¿[‘ë,ŸìB®cžß¼'â?ñ„§îL²6—^îƒûà>¸îÏ…ûVà|†Ü÷Á}pÜŸ ÷]¶²÷ΰܧ}‚ƒ‚û#sÌòûà¾ÆÜ'Ib_Ã~ó_rŽ·2ø7éëëá øþàøŸþ½ÝÛëVy¤>À?ð?›ÔÇXÛìÃ.OÒ´m?×rÏ–Æ#Þ‚™ž-ö)-íSZÕ§hù>å­wéÓì`pß4g”mRZžÿ£™ù?Ñjñëòþ ÄLI#1ñcº4•ó~²I3óÑpÓœ´€œÎåkBÎð¥l…« è¦Uì¿ü/)HçiÎŽÅÓœÁ×i-§9ñ=¹ùiΔçF|ÿU:Ñ)nìtÏÐßú—9Šð_vª“¿"‘ƒ ~yºÓ?¿Nn44¹ëŽIÏÌÊïæëùûZ£G-˜Œ^Mh´à-°’kˆGÈ~îŒê.rP•/DÍí+ò… Ÿ)°;Z–F廃Xq €b$É~ .Bu¿FÕý*n<ªhÍ5fó­A·DB­vm(S¦K™²”¿d%ÊèR5`¿ÿ¨Ï]n*vu $HͽúòB^ÁxÛO6k¸ÜÂE¤x ñ [*F>ìÉï×PöܶUCÆàÓíëúDo`Ñ5$úUÑAtõˆîì^Üð;mÎà.¢³2Ñiú_ßx %¢ÓÖl(´"Ͱ)FôŠÝFôR™òD»dõQ¼j úä‰îÉZNuâK,s´'ÑŠcT“]>•ï§É•¯38Ô·ß/kP ®!Ô#@Pꞈâ{»±y9­?öh¾`×Õ­P2À·°—ÀNø¢ª©še'Ôxõ,;,;,;,;È>Ëî…Î{ðsìJp}2X/öN¦jÂúB%¬/Ú•L#¬Ã°Ïëg‡ä*ÚIhÞŒv’¢dýzÕ‰TËëgˆ›Ëëç¼eÕ$Ìúd]øõGƒ~]¿ªìó»vë¦öî¾V~;Ô1Þ8Ô›Ò¥Ly¨c¼PÔµo´wÏ¿^ùŽTå‰N«ðÀºÛô6¨fÓu%z]Éî°é­ˆ¢—‰nJç‰>Ž?gËíæºÐLcÒ<̓FL$E»`"HiΛéM鬺£L'ò¾Œ"Ù‰ñŸ”Ñ âþ௜7{‰,;=Zlè¾ £Br§'›iþSˆøÃ,i§¸U¢l«·Ò\ì)@n%Ì+JTÏŽVU*Á|ÔŠý¯ý)àjí0¯)È`~þŸ,ï6˜w/vöp–žžžöÍO'òn~?9Ë[~ÌOûvsi‹\òäofД ŸH 'éîe$=p€àø“¾·µìÝ—‚ÀgEbTÜ™]´Gà×ú•:(ÈtP0 ðïÛ^þÑðïXÊ~àÿ€jþC$@=ÿm±ï„?ÉoŸì_žËÓ¡ôó[Ê×Rß(Q¿í6òæ;‰·FXö6ž¾°O ¬ˆýR_fAÁ‚òM;êc¿¶v}bôRv£ŒÕö'}#¡·›£?In¦øn-v.ñ„ ØìûÏþ…ù‡ù‡ù‡ @fbþÝÎüX—Ñ<û­ ì·Æ~ ö»—ØöµÄ¾é«Eû s¾ÔêçÝDÔƒ¨QhÚÏ3ê±V®wÚC P¨T`ž*à„Û¯åqèÀŸ"ð/r#Ò4ð¯”:%?T`V*PH~âÝ•9¾Çý“¹Ð~¦~ØñþÔ#ä!¹ÿ è_¸Ø@ÿ… ¹ÿ<èk€ÒÿŒìPÜÇ;Ì’¯™Òß(ÿ¨‚ü$7å¿LÉožÉOª9\½¼ÛŒ?Œ?Œ?Œ?Ð?3ãO֯߻úá¿úÆ¿¦týÿÑK‰ðôW•þÙð?ïÿ‡[ø:€lØæÓ¹õ: @¤Ò2ð­×mˇJ%¨½à½é6õ™5Ö+òÓp €‹ Ð ¥ª ôOý›²èŸqøÄ½_SºQÑK‰ ¨€ª* é½_û8Ú[,ûŽÎ,ûN‰öXö5íõ]ö]ýìUÜ͹%3"]ñÿÈ´_ÍÏb)uÂ?Ìþ¬ñß:é7™P`‹w÷÷áWlñóPòÏÀ÷÷9ð£0øóðý?ÀŸ‚ŸøÿH¨æœÿ%ð1éç×;z>üpü?À? ð+;Û“½±×ÝVÀ>°ìûÀþ¤±ŸÙÚ3ðý#ô¡C€éÄH'°¯ö'6Òin¾þ¬%F:§dþ1Ò óÀHgÕvþÁWXnмç§7à‚ÞH{Zciñ U#¢ÏÚi3h‡–¡•|q¤³sùn¤}Ï¥ìö©&hßöÕ”ï‹ö‹]Eû£ =‰o)ò㼺̧ݱ톸h:Pâ¿8×]¾HÅp§¹äB`øV,Ähxãîç%ú†@ ÁŒ…`ÃŒýøBÀ_>¥+Ó#Ó„€ª…Ž‚¡JÙÈ•« !€p1H€oÉEC²ÞhÒC®tцBRÔYÌù»º×.p€ \ @¦{@ÖÎÏòZRôˆéÐ.«Š¬×âh*žíXÊ~ˆG¬&„`BÐ8J¼ÊUb+¿{„™Û9y/&¾u²â1Ùáì!ÎÓ’o!´L·r9ãý³Bß9£ß[>9÷…ùïÇÓŒ`_ƒûèÁ¸¿æú{¥ Ü÷Wpÿ!q/Ï,ß“Äw*‰¿­ þeÓ8?~ž$¾Ëí}™øînÿöƉth×Vħƒ?ªSÏöLü;*ÖžøCT¯] âφø‚á$‹|î\£¾Hibº§›@T;ýá¹oQÃÛíuúT§?)î÷éôG­ÞNÜ÷ÇuúÅç?ºÚý‡1ße_¯FˆtÌ×<ÝóÁ|m҇ឬÜïï^pÏ€{Íp_U1à¸î›poùÉ\Ž®È÷Ø÷ö»|ÞW¦eáðFþ½„ò| ¿òݥƘ·¨K Aަ˜G£FùÉc~A޵þŽ>þ€{à¸îû‰ãÞXÙÁkó>F2uÃ=F2{à~ ÜOc$Óc/?ô½Íg­M#ëdó#Øüžm~—ŠuµùýT6ÜWžû1¯M¹m‚Qòû1ö ÑÁóŸÙ¹/ˆx’N¥Á„Ø?LjçAûgÃþ^""¯Fƽ¹:kLâOÒêÏ÷°úÀ½¸ØWá¹~î{à¸î'Ž{‡íݽaδi?ñ=3 =h?Ú‡ÝiïJÚÛ­÷Ì$)í=¾UfBûó›GªÆu6ëS4ÇéL•`1yÚ÷ïíJ´í[xûó[h<šø6‹v›fâc@S·8š@>?ò'2 >/¿š÷Jž¦ÓW ˆñì€ûzp_ëßX»»ÝöO›#î«*Ü÷Àý¤÷O3ׇ‰êÂû_ä ÈòD¾cßÔùî~m¿„M-{K¿&äáýÁÇÅO”÷(ï¡Ê =Tõ(AšFÄMj±G/ •4âÕŽûíÒ ,iи2 d4%FŒHzi¢ø{äßð?;ÞD⟕ˆÁ”]E>Ǽ³ þ0ûd–Ê”ÃÊè%ËaE§ªó=sžòo=)H§Í»û‰žÄæ§è+¸ì“IZÛ» ´9áÓû§8ëÍ3µýä!†ü¯#P->cJÒ»ñ¹çü1òõHòfiOü3ö-þ…ä|sÇW¬äÉOÜ'R | ¹q&¿AJ'›—ýñégô¾ùA~äùçC~7üغM òƒü ?ÈòO‹üöŽížÿ@~äùAþùŸ¬v‡÷ü:ÿJ™@~ä¯"¿íÈõ×iâߤÔýþÍøGêã‚ô¿Ç÷^±ûé¿ýAÿ±}¿‘ÌñtÿùÕB·–ý^–ýF[ö§÷ë’xćHö›ü~Ý ë,ÙÉ©ïcÞ´ú„>zzÈ 7²ÿÖIN•œÿÎìW—ý†pÞéüãÏPxü[íÿu ˆî—‡±ðý]ƒÜÚáÏ= jì¿@ø Ð[nˆýÃþrŸQÀOÖþO€߇“_Ýàgð’ü ÿȯ[âþ§ òƒü ?ÈòωüÞÛÛ÷Íäøu{?Àðw¿o¨o ÿ8‰ÏjçŸ|ÿ£ñ߯_Õ€ÿÉã¾ßÞÙÖ÷ Èÿ†\zä×§j—¢üJ&Ü?¿­ÏÏëÄþežý=…¿ÍØ? ôO~À'[±ÅäÐÓ¯ûU0ýNrÌ–&‘»uöìa‘³ñ×3òé¿d ?è¯%ý¥×7öqw/›.³ýÑ­?èß6­Ê„Øôý+wvXJ®+–þô„k}<9Íø+üLþ÷'? ¥“Ðô×þF<ícMwÚÇÞEþ—¥Yî?ü³Ür•FÑð5_%é¯@ì?†ë·â5_£—5_²ù±¿?ÀþG[°_¿ªþJÁ_…E_2'\¾ùºMûL€üpýº“àW ü3á~®ß¢>[îzd?ûupý¹2ýpýúÃ0×o$o )@_ûøËåw#Yàü§H8Ðô×Òû÷5çC÷Ï+ÿ&òüýƒ¿ÿ;¼?Àðß¹«O|Î §÷4ç|ÈêoóÞgêüÃ÷ÿÀÿ4ð?aßïîèÎ^ü ?Èòƒüó!¿¹:®·=oëü:?ùA~¶ä–û„ç›rf䟂çhÕ@~__ò;;F^¶³&?{¼{ùu¬Èòw#¿Á_íñô'›•s~z¡‘碃.3>‹yÃ_ªþ“‡LÚжQf| JŽvÿÞ? ð¯¶÷OÊüÿÀ£÷7ά¶'•úxÛÏ£uœuê£CúèX5>äŸ^ÞoÑgïë ä¿0à× ü €à× üñýbîyOûoÌ{Ìõ:ò)Øׯ1üáúíàÿh×oÒ·èópýƒ®à×ü ¸~oûâÿE“a¿žöqú'µ×UlÓöO—ýäü¸PØ{5g|6÷·a¥W/øÏ’þ éÈôW˜þF<áiMwÂÓÙï7χÇzÿbëÎÿš?}– øþUÅ£ù7]MÃ~{ÿê½4ö/ Ó?˜-ýµõýWJúƒþªÒÿVßoHDëáýÝñ|t´ ?{€÷@ÿÁKÖ?ýGªèúgè/à}»÷w“Ï>*öÿþdóÞÃY#9U@ø˜hû«Ïã²aÁàÇt?ÀðÏü“Ÿîßö¦|goò[ÖHÿ ØÅQ±‹‹KÅ—³µìÜDN.(áÝ™vnÄ;—×Û6(¶mÔж,Ë‘H|g²µâ_¥øûåøË·V¹mÅ'xÛF ôÿïò¾Å•ÀX³øókka˜ª–îŠ*\/_„†/e+©XM¨BϪÀÿ—äÐIºû‰²X^Në(d‰*|?çLù3ÏCƒoÌCÙ4¤6ðÁ_‚~)?½LôôåS ùøçWãRr&½ažˆyp%ó¹tXÉSÏ:‘e¾a<yæg“ožÅÀzâÞ¿údµzùþ©'Gõ=©O;s‚Ž@ýhêWCæ†ò)L}•« êσúÈÞÍÔç¬w ä7Î/”!¿•’߬"ÿ¶‚ü—¬Çæn_’¿ö¾.öåîÊ7ó6‘ÿ^¿Ïà÷›Éß?íûôøƒ–ÿvÚ3Ð~<Ú_Ì:'=ñîóö#ž¬<•7ë’ðHtêí‘èL˜öðö£}iΞ>܆Ïå&ñA|Äñ'G|s}‡ÈïçCü¹ç÷ >ˆ¯^~ÿ€t‡úα|—.Èòƒü ?È?YòÛìyû¹Ã Z Ëdk™Ö¼wâ»Ð™ñχ7V=ùqƒÖã«¶¨*[¾j |Ï„§šÓgÕsúL±´B’|볺ôq“Y¿¼X/}Ñ?¨ðýLt.eÒ,vëܸGƒ,Jòf1é\Öµm#Ѷ¬±mo¬u¼µ‚Lkñ(šZ‰ÿж­¡³¿ï›b™Š°·dwÀæ±Uýð÷Á]ôï^ì'×ažé úåí¹Äçð¶Ü¬68«}© 1ßmG0úÇ`'c÷ÆÁ—÷ÏÜç×y|¤„o‹ã›˜Uüf—›lÇ;¬ã7 üˆß£— ü¿Õæ·“¸oEîî#ëT˜§ºxp6ér §ƒ1|ô’ Æð¡«†Ožá¨êO™ú—\ßÚ¼‡ßÇFê3$<:PÿŽ2!áõAýZ껓Jwlvx ݧøçŸ¯6ñÅ/?|¾2Uñ'Oüx„&ݰL]¯ov ¿³µÞè¯j ¼¾v ¼>È?=òOt5×X®ÂF¢ L}¿¯õ{.¨êO€úœá†ùï!†¿úéßç~©šáŸúi†"š¡ÆQO†4 ¿ZäŸö‚nüjëóÝ ¿,nÍàgÒ ôÛwoTì^þ«éX*¾œíبªci¹cZ&HfÇ®ÜIU¬©]ƒø›’íÊ»!Û®¢E‹ø ¢]Ù¥§øß+º'=Å®âC|¢lTú=©Šv„O©|YøŒ_J íª 5@ ú8©ªK±““ª¾¢ÌIUGqR•Û}äNªâZAäÉ&åãªø³ÒƒJ–ÿ2‡™ùŽŒ¾ Déü*¡é+»÷`•½ 0>×eGA€ @ „¹ ‚ÍBë¯â,[‚A€ ÌLÜývj¾á7.6k EG´r nt‹M[ã'–CgVZ'ˆDÇÒKâÌŸœéXVèØBX.qŽ’®’1$ÍǬÜUÙŽ­Lœ«—ˆ³"pó ÝKVfΘå«`Ž„ô/¢ bù ërq§b?ÑSX\5ø«òÈ[’nߟȯ9F¼ PZ*Ha‘{öç'‰lùž|ˆÐ±É›wpғΓï#‡ÿå“]À¿y~óžˆÿÄ×j÷{`Ñ÷ʽt¯<ëÎë(‹ÿŒ‰d£\4öj {5Jzµà +ot‘ü­ úºðª/Êåêz ÕÑÌ굂Šý‡¸à—IAÒOô P,vù >¡Ež¯Å¯ø:/INhiu`Æx Ýð­äÁ¾ôûÞÉ;ħš[ö‰X‡üëì¾óäxïŸ)Ï?ëœ_Àá¸'vÅæýÑñø|×=¿ïHé»O¯6hp‹_ ~‘ÕŽE9³È¿=ZcK¸¸˜EÆ5õ´bê@»ß½dMvøò]勪ð»¿ô÷ÛýÎÅ>?¶û/v?½ÿ—Ûs9)”:ýäT­ó­¬å'ÒÝ›2×q“7CJ€ÝÒØ{ÜØ¾ƒž­½³ß|o·úôêþÊm¿=@Ð÷ úô¶_%`ov€½ËV¿vóý€½z°‡«W¬‚€ýäa¯·«7×öçë+@Ðô=@?]ÐÛ—ÏKŸ ç• *š4þ‰åš4ñdkÑKcfHe“ÉÆ ò™½”wK~e7&-~iL^ÿ¤+£rWFP‚\WÒ(ß•ñ·TÓ•ŒfWz˜ädýÝIWF ]Ùpû®½_¹0[Q¯øWóŽ’e¹2~ùr\Ñ©‚}Ï ³4Hš]wqè\ì'ð…Ù‹¾. çS•ërœF~ÀÉïÉ.VjËà¥#UÀK‚$ `¦³8âKɳ.K»ñ"°xŠŽXÎl÷OÞA¬æJ=à[F89= néÎÞ%¿³×oÞª™Ï¯ßÈär9˜¹˜«Ýiÿ9€@ ƒ™Ë·ß¿Ÿ»ÝÔ[¹|S/Í·/_NÛ—Êß±BûŠ;..íËû7èyˆ_önÔл—pþð‡ì¯ÌXpÔtg`¦wå˜ð9ç¦Þëå«“†qJÙŠD*VÒÐÿ Áý7õv,öe¢?Loêý7õò¹|ø_ÐîsFËwøÐ¾ï÷,¿\ðw»‰ˆ%†Ò¼Fº]\~¨ß\ò{x³‹-7uÙçÚŠÿÅ-B#ª‡F—Û€X¯ürÄ ·Ü’i¢h"ü¿”ýòÄj‚ÿ=_ôÂÿŽÅ®ØÔá¥Ä³õ†Vîy†Üë3w/Waï†t·‡>÷nðv߯ûúé’ûm&K.mÊJØg²5YÚšÑ ­ÙêÞÿvÃ@,×—7Œ’™ÞÉï Ëäee‹QV…ýíS ê[ -n*–©Ž&ã”ì*MT­ÚñΦ‰wYî@‹Ùä9“ü¸‚´$ôÓç²qƒ+én™•{5˜rˆ¤‚ Gä–ÎÄ?‡ß¯krüÇLèeB/ÙšdCÃÓ>džéNª†úwlk„}Ízï]ñÝ÷›ç;wàxo‹÷Â|goh7–)ÚÍ"Ú·h¿w"¦;ÝæéNcý½4›ÏåÚv hÚõB;Y-é—¥`Ï mÙ°€—ü]îÅRèetø÷Ûè *ÄpàO• ü½¤+ïÉâù'5 å;ÖtÈEٞˊ~¼>ºà>Èâþéž’ÊèýTÞO¹1zO¶Ä,¬¶:’íõ‹®~²+›Q‘ÂÿäËâ±b±÷Ö,Þñã#ؽÂìÎòÜ ¸?< ø¿q–k°SÄ}S5Á~E×`µ‚A¶Ò÷vïîI{ëß~ “) H@E)[GÍjB  NY¦¡Ïc%À\oèÏ6×µQ¾ku\T×NC ÀU$@ àÌ_v’Õ®,új¿ýê~ ˜ÌU$ L(rC²"_H$ ˜¥¼›«@w ÀZÀd$k€iK€jkNH¯ÖÕQ®ûF¦­”k7u P³š€ÉK€4ÌñÉâ,6~ŒKn9f™IøÔÑsöŸÑ?-‡Hò0#þ(=&~¼'c$7Qóü\[œ÷èýüuƒäOŽqŸÜ‚÷ßœ'ÿ‰Øg‚-ßÍ×~ÏcyðG)EØMË)5S„Õ?hƒ:·(Â;–Eu]a~㮊ê:öðgý¾±ðä»g=¨´þU¥ë¤¬^F­äUü¨ZLèAÿÖ_$ýèf=è\ìÌQaaÐxTØRâÜMœ¿íWŸ&¯Rö—O 3NÄ;Äï™ÎÉ>pµ(ðþLw¯À{Sœæ‹“Â\|§¼ì»ûòV€àø>€?yà“à9ø;]¨•\A«êP |šÅÄ-]I›1Áª0Ô?¸0¢²%ã¿ò&FD¥ëÆä—¹n Jyp†Q‹hÇÌP¾óÔÔ+þ½¼£dy¨Œ]¾z¨(^AP¾ÿ˜‡¦¹ûàÛŠ]:ø%ŽydöÂûM£_ÆùnòåWÁÞð“§ž~þºQ=OsDŸ$:é_E’W'¥`‡”ƒÓx:cŸ4õÐp³bM7¸sM·Ø¦AýJ “£á⻽ң­uyª@£° dV†8K*V†ê¬a÷±oøuÜ ÇuÜŽÕk 걎Ë×r› rm·K±å:n”YÇý.MtÉûübîY ¹É;¹'ûÒðgVr¹Ã÷Îà÷Rƒ/.Nð8OËìýø)qŠï4x|sµ?°5`_Ñš€½Æ°¹€€=`ìñAO‚çuÏé$C×@Õ`ƒ±Á{+ß™Ènšï£T° *X%*x]e[F…¶¤i[²2'˜üÇÅ?ÊC  Ã}A©u‚VÃ}ñ0ž'/†€4Ç<ÿ# j ‘Ú“dÎ2?²éðyÁÿë)þíäž ò}™™IÎÇ„ÄîqÉäOfÓ)OòHu9?v͇†r"a•DÂå3œ…™Ë/sÚ§LQ$ŠM­c.qÛÕÀ,EB§B&T’‰š~µ…°ú ¹ˆ\¼†h)¥»½ö/Ìó ãZÐK3óÑȃ.òP. ”Ae˜­(¤¹ÔÍ× ®_38Åób–Ñö+¡ k- còè„´+Vh=V"ž!ß* QSh!€)÷\3T–«NZV,¢±«×( *Ê Œ2 yÍ ÏzL%ÂIè-ŒŸÔ¹_W yóXI)Ìô3© u–‰~®Œàù“þ֛і—P‰ûT¢y§ˆÖ—ÇÈÜV1¨T*qí"">Jæ’ä´èæ çYÀK0^º(ª%^½–8R¯€Ð‡™ëC’÷µúP>@3Uór"ƒT„ìÕÃÈûj›7÷/Ää’ŽW ˜\R¦€P„Y(ÂŒ'—ÈêðëÙª­:Lõˆ Š20i³ê,Šù …úw@œÿòÐè&ËÊ“{ÞŒ×%’¥q‚ µW,á:ò ]²Ôóƒ·ûy[}>‰¤É’&ÉRÊ$KjŠ0yEðOþAûDiy»B8ûUä¿ RÒK!))V@(ÄäBH©ç kl·ßˆ”)!R‚<@)+wi[¸`À. P\0äG”Ö§}äj ¾LPz:æAUqˆ?±ˆ¿§Äâ0WqðÅû¡ÅßúK i}ÊÃ2ˆXˆ£fHÉÛ‡a [œU´¸ìošïï¨ÐßQ¾¿ãGä‚Ý×ÓñËe2‰ø‰AÜb1qâ¿-=ÝÜТaó Íšš% +ñ·%šÿ›9þ¯á—øÇ±æ†fÕ ]¸~à²`,ÈYH,kgAÌ‚FÔÖ+ƒ¤.%«CÒ8廊$U+è_#DAø»4¢s±Ÿèé¬ǯÓ) ƒD#¾Ÿ8¡/á-ÞKΊsÇ3€¶]0åú3†á%Ü'éCΨ6NÄ;8òJ€ÿ%Faç¼å“]¸0ÏoÞñcö7\l¶‡W Õ‚ð¾eùx~"€÷?–îÆêïe­Ýkýè®Ý[–tÝA÷Þèno-ãø©ݧ÷íŒà¾Ü÷©Â=>ÀÙ¸•ï$廑å{TÁ÷Ë Ë_ •|¯;bÙÞ·+«w¾Gpﺹ÷î€ào¼ã¨ëÞ õ~·¶fîK«ZÛw,­‚î¡»úK«vøæ3ª3àaßµ<ì;?IÀ«`ßÝý‡÷±Ó™îÙw„ïš»÷à¸+çÞãÙy{äÞÛ¾zšN¿ˆht†|eùààù @ÞÈüáFÞÙ>û§“–GL£5äÓòS…¼*1ÍVKú§3Ýaᵦ;,<è>Iº«bß÷ûg¶Òð°ïZö€Ÿ$àU°ï&%Ñæ1«¬ì»Ît¤| ;è®%Ýù–­¨‡7׫åIuôðÚQ¾r#Jý(?ã;Q‚òC‡4ünOIün÷úûË{”¿òÁ¥AÙ•¥…å/Ђ¢h¼edS¹¦ŒŸ“kJÞx´Ü”õä:2*ud ;2*tdwd”"‚‰®Íÿ¼ø#åþ¥Q¹kZí6Ü yca3ÛùûÖÂ(¿¦vÿã»÷v._ž/c—²‘/*WÀïø‡CR{€ß¥ØøÅ­‡åfÀÄ—\7‰ r²§°Ëùmp–Ç\÷½Jø[Ö¿d7bþ OJ€Ü‚8³—01Ûî6o< › +–‡†íÈ‚ßùjêÚ{ZVüh3m5¶i Ú4¨jSáó܈ŠmÊ¿[ÚÜ£E—ØØ£,ߣãÀrÆ!Æ¡ÜG½Þ£UPçíG ˸%ß¼†Uê@}Zû½ýMŨg9o|ò9Øù^ð~âÛôøÙ”ÅNò޹LñžZxóDŒƒŸB<†¼iæÙÏÀçÙmñý߉­Èîà²În½¯HvOÝåûôG÷èº'‰î°=ºÝFÝQºI6y‰mw‚îümLt{Ìû Žèž8»a»õ«Ø=Wv«b»_{ì»Án°ìÖŠÝ»¯ßŸ ¾ nå#“Ð tÝC Û°ÿ‘бïå÷€¹‰³5¢ã¼÷£ï­_ÕðÉ\iïm­ÖäÓ»Án°ì»µb÷ÚÞ>¿ËîìÖÝc– ì»Õf·µ‚ü6¨ýý¬Ã¨ ø ï­XÕÀï™ð[Qïm¬"Xe7Эۘ÷èºç…îxºÛSnÉÒZ¯wžš±7ð­,¾++¶¾ïÉâ[:ï3”C~³»øvwŸÎ’“‡óɉ~U¿çÈou’74¿66Ø vƒÝ`7Ø­»Íù>þtgwvëÀîæ2Ý`7Ø]Ån›ïk* p²1Wï^¶Í7k~k™{/Àoð{ÒüÎxï3ŸCC¹eKwg¾¯üë@}H«úòšÄ7½ô^Ü´UïÕÀæaÀ ë=ÖÔx¯bÜGåÆK¾9ÙxA©ñ¢bsÐ\s0ñ¿·x\:ÛxE°´ñØÿíß|èC·2åp1zÉ®àBݪß=ó›òo=þ7$Ÿ¸“ß·[î~æ÷×…ßüÐ~§¼/±žò@$ÄM÷‚tƒo nÉ9ñôÌ#yìùa¦¾+¸D<ñOÞ!þÀŽ)ïœìƒxLüüøóÛ€÷É-˜õøÍòŸˆw~¾Ë½ºS[èzù³ö„=Žqç±èÒ¨4ûèÒ¥ì‚ V×¥)6X â耒í›ìƒ*Ø[²,[´ª`?WØ ,‹÷ÝZä;9iH°Í?p“¯ÖýNòb„d^yh¸œáí–þ¡Ùîj+…\ŽüÑC(  ¤‘LGgþ¨ªö~µw¨¦×-õY2Ÿk€öúUƒÌCº^äcÕÈïìŽO´õþÁUïÏt`Èœ¼©dUÞ_‹ªüó ÿ=ÞßÈ&?næáÊ@x²×–¶€ðG;@ø˜¨þxûõÚ¦þ·°¤<7¢‰L-üQ¿jP€y(@?á—¥¾@ù˜ÈÏnÇþµò¾•4ý%|zÀñ+éø+v¥Y,®— ޼Wš÷7:þtÛ㟊ý€éw¸'+f;)0|_JÁù3¦áH)°žLׯ\ú=~ý†pÿÉFáJ<…÷ߟû@Õ óPƒÜ¿—<é¦ ûüºFo¹¡ä™¼iJþ¢©Ì’_+G9òW” × ÿ$Éïdº"‰ö$ÕÛ}’PÑ‹üóJüólÖ”üHüA~Èï¬tâïߎ|7$[º‹‘¯¡ÙŸò'`ö| _#äÇ[èØE=½aßì°ÐK÷‘½Ur¡·M`€ñþ”2_ëÅx?°?1ìÏa¼ÿ}¿kùU ûh'öÌGÔï·÷áçë¦Ë¼óJ~&±Ì‹ä  ›¨œútYß ?Ž Nx[Ô™~Ñ›ìJëÒBëòÈð£º]i ÊÉ›I¶kk×ø9¹ved¥v­íÕ¸53½•z5…GTèUH ä×Ô(5ýÝÊ”'ÌØ%k"ŒÒUò'|+á9IýºÉ!î&rÀ‰mðÿzÂä›b÷}þ+€ðý®|€Í¿fŒ²}sfŠsýü÷úŽ€gܨ € ȯ(" ’ÈW{Ûceþ½7ïÚ¬.ù[š}õ2ò·7ûêW äùõ=¥Ñ 6_þQÛ!Olã‚F—!OlãòëEþIoã`¬É›ÓSΤd ²hÂî¢Iõ‘ôÖœŸÖvnubÌqG—5¬õ/—©$£–ìzίhÕ(W Àú'wb z“ä¿Éé,äe0’ð‡‡ûù¼?žÑ!Yùÿ/cõ÷4Ûÿn‰•ôü8ݸ^(ÚVûy{~ʰ½díè¯`Õ`ÿgFÿÔúóü^ÜÞÛ"ò‘¼7ÅÃäorº×˜ë»ÁÞøø§ú©R~«ØÏö“Hù×¶yšÂ^´&åׂ!sJùK%«Jùµ¨È?òß»™ƒŸ|UÙí: ºd‡Ê~¦Yû_jæ(ßÌI­ÓfæLŠ’¢¼K®%Ê40'¿Tç  %Š¢´ã¶Š|iàø™2RN»7’ÝKsÝKº7îŸ|÷R‰ZÑa<‚ˆ¡ø/žï° Ó½,íÞ(Û½U"`,¼* ¨*Q=rZU)‹œñ+&LâAzÖ€ôUi¥Ý‹-5 »¼Yƒ"1¢ú¥ù¥×ˆ”‰Á®?þZìN&q!gAXŠ yclq㱚¢ÙJZ(éNšÃ½ø5õJøÒµdY¾Œ_¾ÀW³‚þ`Àç“=wÿ¶b—|?>YÉx ¿áWÎÛn3ÃISK>ˆß9œž/õAªù—¹ÁX^NÈÛ‹sêàHuðÿ™?ÙïÎ(‰„Õ´ÏD­H„áׇ ‘¨AL‘Ð\$Fª D"1Y‘°VáÛ2#åï˜CH‘Úf´¹©{‰êŽnð¡ì6Ä´z‰F&õ #—ïöèH‘ B$”ŽŽn+vutćô—Õ ï 6‰xÐUI0Ì¢ ˜uO‘ÊÜï¶Nxo_éŸûÀ~ û¹aÐÿ*NžQSH$ Rü$4z”êQ£ŸùPo¿ßž[·=HX• t]z¬GÒª´ŠíŽ£ú´vÙqPh½p|7úËkŒˆºWoÑ®|íЯ`þɣߴ%ö¹¤is&|˜¥x útµ˜§Ki¢4<Ôí—w ôúT©ÞmHª·,¨ªkHõ*ïÞ„ôAã7$4Xé@:¤é@ºAéòËÇÊë£#x¬¼FˆÝt•‘>©•Wg·útèHVžõçy/²»oÖJ›4ªnRXùqË×™û® ¸?yî×Yù˜ð¶ßlç9ï cĈf÷²ý„Ÿ‡Ÿ‡Ÿ×ÁõÙøy7ü8…Ký¢ù¾ý|M“¦n0‚Ÿ£|wøùÇVÜŸ<÷;Gó^‚w{¢“•óµ9ÍÍÉGŠù@8ù[¼jÑ'Oô^<ßDÇ~¬›7Ïùy›G:¯»›G:ö+éæGOæÝ+[~62‚éº1ýŽ’é`:˜^ÅtCnj©×Éšì–osËiT[¯CNƒWp]q®OjÅÕf¦¹Ó/£¡Uàhç缕fvM]ùÚq_Á ‚û“ç¾.7Cú½ÚùO©3d°ò±ò7nDó?Xyµ*¤Oéä¸íµ‘Âý‘†¾jÚ[]éÛ÷Ë^?CJ­ =F(AÝè¯É¥·=ü¼yN$,vcT…6èmD.< íÇÚð€ÞqO+yõAôªzÕ½UÉê2Nù®DÕ ‚èS!zåÙ#ë÷ãåDÂL>ïÖÝt{Î'%ùz­›0¾ë$Õˆ 4WîÊ©©¡9¾ÓBoì_òå ,‚Ô±óV¤AÚAu?F™~äÝ)®²Y ÊDÍ"î’Š 7±ƒi3F²iÚŒìj3F…f¤ÒïÑlÃðŸÂù+üá”OtˆÈ¡Ô0ÁÍŽ½´(Àí À £(€€¶D¸NJdàŸÅ¯ Î ¡¡¸ìýã÷¯ig…šî5Û–BÔ•¢†,EºE×;ö®œ!êí2ÀX[Š€µ0ÌÛwÂèT²ú¤hŒòµIŠ”¬ .†HŠ’‚tîÅn˜I5ü¦tÈLÃ;—]ô óvyÖ‰˜m”'£ âœ6b=ÅÕß½¶ßì_Ûl­Ý‹Ї S#šÁðåk!jVB!ÿ5ÜûÄ€_,Xo±í®!pæ Ëàt‰–¼D3³êÊóÑÛ8H˜ò…øEã—ã¡êî .áB¡{#áy£K÷²B¸Àx¸@“ëÍHtX”¿Þ­^Ýa´'QË‚6‹IªÒ¹LeæŒY²zæ(^5ˆ@ÿ"p)H÷H¨S±Ï"&‘P”_àBàHo—aÔ,ÖíeI iŠD¤œ8r¡ÁŽŸ”¾„›|Éàp¸q"äpþz‰ý¾x'Çÿxu8Ï“¯“³0¦åµóþcwå}gù_·ÂxSï`ÂúâÒ¸Quã–I"-4Wš7Ò¾ùëñ5-¸V²ö ÄC”¯‹(QAhÊË7›_¼W-çµÀäðæà6šyoð©"#ƒùkÉ仦ÿÆ&ðw^S‹ÞÓŸâÂ*Ó“QcO¢'ƒªž”ÈC"*ö$ÿnisC·4$Ë7dö*òÒ4Q¦iÊ"¢×²+ãG@ʸåß¼†ãcü]~¿S±Eèà Œ÷Ólæ‚î¥ÌdR´;2©áŸ±¤äî§H¯ L³Hò¢]_&ãœn=¸Ä÷á«w|otëìÖÙ@6‚[§UvÕºõÌ( òmWiãõn˜HºŽÝßßãÖï(Ù8n½®|WÁ¡jAr•ÝúÅ®æa­»ÍÂW§$o°ì¦\àoãÏåó¡3NgŠÑŸ&éL‹’Í%鹂à½Ò¼ïÎTŽïçÓ"Ù­~Bc® ýðžâŸRx}8/~å‘Â+SAp~òœo“µ•HâÍÛ9ï„ûŸ·«­šq¾£ŸçÁyp¾7?¯Éj«îɯ Æ7€×ð‹Åbà ð|+À[ÿÌЕ€w²€_¶¼áûðçÏÄûê$€?Òõ«Lüî÷èøZ@ÆknâAx¥¯,ßo1ðþÍþýü‰'Ë/¬¹†ÆWxÐïÑdñ> ß²|zâ^1À+lá1¿úý¦k ?š…â·Güh~Äñj"þüNȞü—żQ‰ù¨óéîÇÄ?ÿד˜¯Ûý˜¬û­.˜Ÿ¬“Ÿ:æíÊ'ÌkŠyšW0_vòã ÞXßWTÄ?ñѰŒŸzZ£@?hÁø¹3þ†´¦íîÅ=&6Öúok~iÀù^Rùú¦|´—Ÿ:çûJåU­ 8Î×pžßõú¨DÞ —/ÇgÜ¥ßq”bß'Ïw­ï€2èçÒßô°ƒ 8¯¿£dà<8Î×úx÷‘|ïâãÙæmÏ4Èi°äªsLƒ%Wà} x×qÉ•¬Â¿}³…âx ˆâõD||*Hdñ@<ÄñSDüæíõ«‘*!~ºŒŸú@ ‚x0~ÚŒW9Œÿ|Þ5Çc±U;Æc±Œã±Ø-íý—ó³RÁÃÏïÚÇ4 àxŸ>Þk,¼Iâ˜fÙ‰ócÅñŸäů¢­8¿@T΃óCq>†zhô׌ƒy›½}|¼©`ç§Îyñªü½ˆæAH^ Î怹ÎáºskäbÛgFVáþ¥ÍöðŒ#îÅÁhõ /®¾ÕÉ\ÕÙ÷¯6÷0Mƒñ´ˆ0^sÆñj!^{Ÿ_cm‹ìDùeáœ>¶ý N <œ<('?ÌÃÉçõŸ¯¯wÆG`¼nŒÀx0Œ¿…ñg„0Þ ÉÛgØÔ¢ðñê2¾)ðñ`<ß3ã OConØ—ß°ó;/ ø®(߫꾃ïàûpÓ? C7ÎfN%7˜èSp^Î'õçÁyp~(ÎÇ,ç×õÎ~}ü•ZU€!1õu}dúTü‹}¿\¶7©ørÚ›IÙJ½)*séMÞœA Ñ¥7#£:Ög3(6fÔИ¢íù?!5ãÿþ L´ dŒþC,7O¦1Å'ÊY`ý—÷ùÐëš,Œ¥ä>Y¸é»ÿïíHìù¿Æ<'SËFì\/g;£—¶vT¬.t ›ñ/~ô%U褋ýDÙY‚¯h…,Ñï'âœofdû¹X’ý†Lö !ñ;&—‹4Äïį#^Œë¿5V~:–†åÉ:¤²`8—¿0§N, äÉð¹03ýIü_çÉ~"˦¥ÚÝé÷X¾­ãfIˆ–ISªË9Œ$´--$’ $8må€ü³”“'|~ _p…9Àär€+„¥ÍüèÓÅ$WHÂ̯¼]øÃŽ=lnåÛuèõbŽÚz½8éOñJùþdMýyYmŒò P´´%þ¬™ÕÆ&9ëÅlh\Y¦qÖˆëJv•*ªV ˜ï8)HgÌw.vÕñwaCc±Š›ÚÿšÅaÓ‘Ÿæ‹Ã^²8,¯ÒâøÜ„êü¯éihµ<ìL@Ðt]{ ››µÿó¢)ÐÛOtJ4T\Ò·D½Ö-¼m{ºµ D&3ÖšÛoèT¼€`{¿l¹/“é\ì^Ù.ò–<Û3{Û™ô¥ ëN ð,Öù6ÅÖ“ó'0õÁË–ì÷o=åð¥ž,öa1¬êÃÚb 2¤}XÖ²Þrxñ/㯖$µ¼Ñ3RÞE2¼‹jš°ko,¼a¢ö›(2|õú‹ÚG. °Þ³eOÿw¥ Q{Çb_‹Ú-_¢Û”á:ñ$¿s¡º•OçýäAfbÛÅ ¾ÁoÄÛÒ{1â3ë ³:`7œ§eÁ½ûñSbø;çw\Žy§bÌÐqvû*óÊc¾-U€y`˜ï†yÛÔ“ð.;ù‘ #¯7áaäAxF¾óý4N[Äð­nËgQÐì‰ï­]ŠÛÿÆ e¬Ì*‡lÁùþ×X“Ÿfç¾s±Ÿè× 9|nWûŸy~«ÚUÿ%½n’öñú·l6¾hYÞ 6 Pw1ƒÁýVžÕMOßäë²»•'öeÙÕ01 ?z){ðõ©&x?„¯O Òy¾c±[Í›1áS'ŸŽÁ×üüø»˜“·’G¦ÎÞ:óà^‚7Œ'£€}ûüòD¬'£iÞ\‘wò1÷u‰pXš€ûúç9#WÜŸ!÷;…:† tFE~ðkîV¥.ñÇ%þ¶?âÓˆâƒøÿŒàp(æ›)ó"ó£ æ“”ùgʛ˔ùæ™ù¤òŒw¹}}’mŠxçAñÎÐÿ⵪ èOú‡3Ñ×î3ž*øßjø ýt˜Õ-ã)5ë£ð9‹lÿzùèøûÿcª øOþqÆc7Yý*ÜËwÆÌx¼Ý³ûñƒXÿÑ!b}„<@¾^È×4Ö'›¿¿÷\>\¾ZȇËòUG¾¦.ß ÿ–†×‡Ë|¸üî.¿ª|pù@>Åå›I„¯•Ów™ÿK¿îÌûŠ9}`Ø×ûú…;«ï¥½î¶—Îõ­lK6d[öØ“C~ÌH•AË×/Uæy ¢5æ ×y -ú·~iôu•ÍK®Ì|eK¾€%Ÿ&«aÉÇ´ägZÃØòÇê úõîÄ4€"B3!ìPM`&Ø×3‰±÷tkv¦ÇTÝ!e›RKä^Ê?V5sÅñ•"þ”¶É9¿­ÏÏèFþeü¡ç|¼Ï‰üÊ¡büˆg:à_(XM_)ò+»CZØ„þ¡·NØYK{<Ãw05ÁBãh_?Ã?x)íƒûúp¿6ã‘»«ó8ÛÃz¿T‡ú÷8D¡¯ŸÙ¿ZÉÅ¥ô}-¡;÷ÐVz=×\¿¤|d¡²^ªØŸ¡×öýIb_ñõ\¹dSNõyóq‚&Èx%?àºòU@~¦v)aº•ÈòüJä{ ‡ùT2ª!né§á†õ²‹B+P`]WÍ…]ýL¿ »*V 0}Ðõè«ÿ»¼³Þ4-alakazam/inst/extdata/example_quality.fastq0000644000176200001440000000203714007007324020704 0ustar liggesusers@CGCTTTTCGGATTGGAA|C_CALL=IGHM|CONSCOUNT=12|DUPCOUNT=1 GGCTTTCTGAGAGTCATGGATCTCATGTGCAAGAAAATGAAGCACCTGTGGTTCTTCCTCCTGCTGGTGGCGGCTCCCAGATGGGTCCTGTCCCAGCTGCACCTGCAGGAGTCGGGCCCAGGACTGGTGACGCCTTCGGAGACCCTGTCCCTCAGTTGCACTGTCTCTGGTGGCTCCATCAGTCGCCACTACTGGAACTGGATCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGGGACTATTTATTATAGTGGGGGTAGTGGGACAACCTACTCCAACCCGTCCCTCAAGAGTCGACTCACCATATCGGTAGAGACGTCCAAGAATCAGATCTCCCTGAAGTTGAGGTCTGTGACCGCCGCAGACACGGCTGTGTATCACTGTGCGAGAGGAACCGACTTGGTTACGGGAGTTATTGACCCCTTTGACTACTGGGGCCAGGGAATCCTGGTCAGCGTCTCCTCAGGGAGTGCATCCGCCCCAACCCTTTTCCC + {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{]{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ alakazam/README.md0000644000176200001440000000447615120041577013327 0ustar liggesusers[![](https://www.r-pkg.org/badges/version/alakazam)](https://cran.r-project.org/package=alakazam) [![](http://cranlogs.r-pkg.org/badges/grand-total/alakazam)](https://www.r-pkg.org/pkg/alakazam) [![](https://cranlogs.r-pkg.org/badges/alakazam)](https://www.r-pkg.org/pkg/alakazam) [![](https://img.shields.io/static/v1?label=AIRR-C%20sw-tools%20v1&message=compliant&color=008AFF&labelColor=000000&style=plastic)](https://docs.airr-community.org/en/stable/swtools/airr_swtools_standard.html) Alakazam ------------------------------------------------------------------------------- Alakazam is part of the [Immcantation](http://immcantation.readthedocs.io) analysis framework for Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) and provides a set of tools to investigate lymphocyte receptor clonal lineages, diversity, gene usage, and other repertoire level properties, with a focus on high-throughput immunoglobulin (Ig) sequencing. Alakazam serves five main purposes: 1. Providing core functionality for other R packages in the Immcantation framework. This includes common tasks such as file I/O, basic DNA sequence manipulation, and interacting with V(D)J segment and gene annotations. 2. Providing an R interface for interacting with the output of the [pRESTO](http://presto.readthedocs.io) and [Change-O](http://changeo.readthedocs.io) tool suites. 3. Performing clonal abundance and diversity analysis on lymphocyte repertoires. 4. Performing lineage reconstruction on clonal populations of Ig sequences and analyzing the topology of the resultant lineage trees. 5. Performing physicochemical property analyses of lymphocyte receptor sequences. Contact ------------------------------------------------------------------------------- If you need help or have any questions, please contact the [Immcantation Group](mailto:immcantation@googlegroups.com). If you have discovered a bug or have a feature request, you can open an issue using the [issue tracker](https://github.com/immcantation/alakazam/issues). To receive alerts about Immcantation releases, news, events, and tutorials, join the [Immcantation News](https://groups.google.com/g/immcantation-news) Google Group. [Membership settings](https://groups.google.com/g/immcantation-news/membership) can be adjusted to change the frequency of email updates. alakazam/build/0000755000176200001440000000000015120047446013135 5ustar liggesusersalakazam/build/vignette.rds0000644000176200001440000000050615120047446015475 0ustar liggesusers‹•“QKÃ0…ÏÚnº0œÓòì”ùà‹ˆŠ¯a¹5­Mêè›ÿ[p’™lk 2ŸšÜîýrNú6!éGˆbñÀÀ@ †nf¹TÅl!…¾{•+EÆPú” '_gòƒ*-MR/ç\›÷°"×îxOŠ^4_Q[mcÝî°_HÁʪ(©2 ㊯-µŸ±gë*ý—ÛL- “ª¬ ãJ°¢6emœ8±4¬¶8‡&'8TŠåÔ®CÇJÛ¡£Ž‡¬ÚÆšƒsâU(6§»¡íëÈ|¯P`ÖºÌ/Nøþó|èù@ÏÉ3pÅÄûÏÒì7ñc6wËž¿ÅYF%)á_Èù5›¢º3hX›Ô»°ÿÏ'€ívûÕ%Z¬¹öD¾8ÜðtYñœ|ÿ6hÆalakazam/build/partial.rdb0000644000176200001440000000010115120047363015250 0ustar liggesusers‹‹àb```b`aeb`b1…À€…‰‘…“5/17µ˜A"Éð¸F$7alakazam/man/0000755000176200001440000000000015067210306012606 5ustar liggesusersalakazam/man/EdgeTest-class.Rd0000644000176200001440000000340115065014027015702 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Classes.R \docType{class} \name{EdgeTest-class} \alias{EdgeTest-class} \alias{EdgeTest} \alias{print,EdgeTest-method} \alias{EdgeTest-method} \alias{plot,EdgeTest,missing-method} \title{S4 class defining edge significance} \usage{ \S4method{print}{EdgeTest}(x) \S4method{plot}{EdgeTest,missing}(x, y, ...) } \arguments{ \item{x}{EdgeTest object.} \item{y}{ignored.} \item{...}{arguments to pass to \link{plotEdgeTest}.} } \description{ \code{EdgeTest} defines the significance of parent-child annotation enrichment. } \section{Slots}{ \describe{ \item{\code{tests}}{data.frame describing the significance test results with columns: \itemize{ \item \code{parent}: parent node annotation. \item \code{child}: child node annotation \item \code{count}: count of observed edges with the given parent-child annotation set. \item \code{expected}: mean count of expected edges for the given parent-child relationship. \item \code{pvalue}: one-sided p-value for the hypothesis that the observed edge abundance is greater than expected. }} \item{\code{permutations}}{data.frame containing the raw permutation test data with columns: \itemize{ \item \code{parent}: parent node annotation. \item \code{child}: child node annotation \item \code{count}: count of edges with the given parent-child annotation set. \item \code{iter}: numerical index define which permutation realization each observation corresponds to. }} \item{\code{nperm}}{number of permutation realizations.} }} alakazam/man/alakazam-package.Rd0000644000176200001440000000352415065014027016253 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Alakazam.R \docType{package} \name{alakazam-package} \alias{alakazam-package} \title{alakazam: Immunoglobulin Clonal Lineage and Diversity Analysis} \description{ Provides methods for high-throughput adaptive immune receptor repertoire sequencing (AIRR-Seq; Rep-Seq) analysis. In particular, immunoglobulin (Ig) sequence lineage reconstruction, lineage topology analysis, diversity profiling, amino acid property analysis and gene usage. Citations: Gupta and Vander Heiden, et al (2017) \doi{10.1093/bioinformatics/btv359}, Stern, Yaari and Vander Heiden, et al (2014) \doi{10.1126/scitranslmed.3008879}. } \seealso{ Useful links: \itemize{ \item \url{https://alakazam.readthedocs.io/} \item Report bugs at \url{https://github.com/immcantation/alakazam/issues} } } \author{ \strong{Maintainer}: Susanna Marquez \email{susanna.marquez@yale.edu} Authors: \itemize{ \item Namita Gupta \email{namita.gupta@yale.edu} \item Nima Nouri \email{nima.nouri@yale.edu} \item Ruoyi Jiang \email{ruoyi.jiang@yale.edu} \item Julian Zhou \email{julian.zhou@bulldogs.yale.edu} \item Kenneth Hoehn \email{kenneth.hoehn@yale.edu} \item Cole Jensen \email{cole.jensen@yale.edu} \item Jason Vander Heiden \email{jason.vanderheiden@gmail.com} \item Steven Kleinstein \email{steven.kleinstein@yale.edu} [copyright holder] } Other contributors: \itemize{ \item Daniel Gadala-Maria \email{daniel.gadala-maria@yale.edu} [contributor] \item Edel Aron \email{edel.aron@yale.edu} [contributor] \item Gisela Gabernet \email{gisela.gabernet@yale.edu} [contributor] \item Caroline Sullivan \email{caroline.sullivan@yale.edu} [contributor] \item Hailong Meng \email{hailong.meng@yale.edu} [contributor] \item Burhan Sabuwala \email{burhan.sabuwala@yale.edu} [contributor] } } \keyword{internal} alakazam/man/DEFAULT_COLORS.Rd0000644000176200001440000000273515065014027015251 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Data.R \docType{data} \name{DEFAULT_COLORS} \alias{DEFAULT_COLORS} \alias{DNA_COLORS} \alias{IG_COLORS} \alias{TR_COLORS} \title{Default colors} \format{ Named character vectors with hexcode colors as values. \itemize{ \item \code{DNA_COLORS}: DNA character colors \code{c("A", "C", "G", "T")}. \item \code{IG_COLORS}: Ig isotype colors \code{c("IGHA", "IGHD", "IGHE", "IGHG", "IGHM", "IGHK", "IGHL")}. \item \code{TR_COLORS}: TCR chain colors \code{c("TRA", "TRB", "TRD", "TRG")}. } An object of class \code{character} of length 4. An object of class \code{character} of length 7. An object of class \code{character} of length 4. } \usage{ DNA_COLORS IG_COLORS TR_COLORS } \description{ Default color palettes for DNA characters, Ig isotypes, and TCR chains. } \examples{ # IG_COLORS as an isotype color set for ggplot isotype <- c("IGHG", "IGHM", "IGHM", "IGHA") db <- data.frame(x=1:4, y=1:4, iso=isotype) g1 <- ggplot(db, aes(x=x, y=y, color=iso)) + scale_color_manual(name="Isotype", values=IG_COLORS) + geom_point(size=10) plot(g1) # DNA_COLORS to translate nucleotide values to a vector of colors # for use in base graphics plots seq <- c("A", "T", "T", "C") colors <- translateStrings(seq, setNames(names(DNA_COLORS), DNA_COLORS)) plot(1:4, 1:4, col=colors, pch=16, cex=6) } \keyword{datasets} alakazam/man/Example10x.Rd0000644000176200001440000000425315065014027015025 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Data.R \docType{data} \name{Example10x} \alias{Example10x} \title{Small example 10x Genomics Ig V(D)J sequences from CD19+ B cells isolated from PBMCs of a healthy human donor. Down-sampled from data provided by 10x Genomics under a Creative Commons Attribute license, and processed with their Cell Ranger pipeline.} \format{ A data.frame with the following AIRR style columns: \itemize{ \item \code{sequence_id}: Sequence identifier \item \code{sequence_alignment}: IMGT-gapped observed sequence. \item \code{germline_alignment}: IMGT-gapped germline sequence. \item \code{v_call}: V region allele assignments. \item \code{d_call}: D region allele assignments. \item \code{j_call}: J region allele assignments. \item \code{c_call}: Isotype (C region) assignment. \item \code{junction}: Junction region sequence. \item \code{junction_length}: Length of the junction region in nucleotides. \item \code{np1_length}: Combined length of the N and P regions proximal to the V region. \item \code{np2_length}: Combined length of the N and P regions proximal to the J region. \item \code{umi_count}: Number of unique molecular identifies atttributed to sequence. \item \code{cell_id}: Cell identifier. \item \code{locus}: Genomic locus of sequence. } } \usage{ Example10x } \description{ Small example 10x Genomics Ig V(D)J sequences from CD19+ B cells isolated from PBMCs of a healthy human donor. Down-sampled from data provided by 10x Genomics under a Creative Commons Attribute license, and processed with their Cell Ranger pipeline. } \references{ \enumerate{ \item Data source: https://support.10xgenomics.com/single-cell-vdj/datasets/2.2.0/vdj_v1_hs_cd19_b \item License: https://creativecommons.org/licenses/by/4.0/ } } \keyword{datasets} alakazam/man/baseTheme.Rd0000644000176200001440000000115015065014027014767 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Core.R \name{baseTheme} \alias{baseTheme} \title{Standard ggplot settings} \usage{ baseTheme(sizing = c("figure", "window")) } \arguments{ \item{sizing}{defines the style and sizing of the theme. One of \code{c("figure", "window")} where \code{sizing="figure"} is appropriately sized for pdf export at 7 to 7.5 inch width, and \code{sizing="window"} is sized for an interactive session.} } \value{ A ggplot2 object. } \description{ \code{baseTheme} defines common ggplot theme settings for plotting. } \seealso{ \link[ggplot2]{theme}. } alakazam/man/getPositionQuality.Rd0000644000176200001440000000265715065014027016764 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Fastq.R \name{getPositionQuality} \alias{getPositionQuality} \title{Get a data.frame with sequencing qualities per position} \usage{ getPositionQuality( data, sequence_id = "sequence_id", sequence = "sequence_alignment", quality_num = "quality_alignment_num" ) } \arguments{ \item{data}{\code{data.frame} containing sequence data.} \item{sequence_id}{column in \code{data} with sequence identifiers.} \item{sequence}{column in \code{data} with sequence data.} \item{quality_num}{column in \code{data} with quality scores (as strings of numeric values, comma separated) for \code{sequence}.} } \value{ \code{data} with one additional field with masked sequences. The name of this field is created concatenating \code{sequence} and '_masked'. } \description{ \code{getPositionQuality} takes a data.frame with sequence quality scores in the form of a strings of comma separated numeric values, split the quality scores values by \code{","}, and returns a data.frame with the values for each position. } \examples{ db <- airr::read_rearrangement(system.file("extdata", "example_quality.tsv", package="alakazam")) fastq_file <- system.file("extdata", "example_quality.fastq", package="alakazam") db <- readFastqDb(db, fastq_file, quality_offset=-33) head(getPositionQuality(db)) } \seealso{ \link{readFastqDb} and \link{maskPositionsByQuality} } alakazam/man/readIgphyml.Rd0000644000176200001440000001216015065014027015342 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Lineage.R \name{readIgphyml} \alias{readIgphyml} \title{Read in output from IgPhyML} \usage{ readIgphyml( file, id = NULL, format = c("graph", "phylo"), collapse = FALSE, branches = c("mutations", "distance") ) } \arguments{ \item{file}{IgPhyML output file (.tab).} \item{id}{ID to assign to output object.} \item{format}{if \code{"graph"} return trees as igraph \code{graph} objects. if \code{"phylo"} return trees as ape \code{phylo} objects.} \item{collapse}{if \code{TRUE} transform branch lengths to units of substitutions, rather than substitutions per site, and collapse internal nodes separated by branches < 0.1 substitutions. Will also remove all internal node labels, as it makes them inconsistent.} \item{branches}{if \code{"distance"} branch lengths are in expected mutations per site. If \code{"mutations"} branches are in expected mutations.} } \value{ A list containing IgPhyML model parameters and estimated lineage trees. Object attributes: \itemize{ \item \code{param}: Data.frame of parameter estimates for each clonal lineage. Columns include: \code{CLONE}, which is the clone id; \code{NSEQ}, the total number of sequences in the lineage; \code{NSITE}, the number of codon sites; \code{TREE_LENGTH}, the sum of all branch lengths in the estimated lineage tree; and \code{LHOOD}, the log likelihood of the clone's sequences given the tree and parameters. Subsequent columns are parameter estimates from IgPhyML, which will depend on the model used. Parameter columns ending with \code{_MLE} are maximum likelihood estimates; those ending with \code{_LCI} are the lower 95%% confidence interval estimate; those ending with \code{_UCI} are the upper 95%% confidence interval estimate. The first line of \code{param} is for clone \code{REPERTOIRE}, which is a summary of all lineages within the repertoire. For this row, \code{NSEQ} is the total number of sequences, \code{NSITE} is the average number of sites, and \code{TREE_LENGTH} is the mean tree length. For most applications, parameter values will be the same for all lineages within the repertoire, so access them simply by: \code{$param$OMEGA_CDR_MLE[1]} to, for instance, get the estimate of dN/dS on the CDRs at the repertoire level. \item \code{trees}: List of tree objects estimated by IgPhyML. If \code{format="graph"} these are igraph \code{graph} objects. If \code{format="phylo"}, these are ape \code{phylo} objects. \item \code{command}: Command used to run IgPhyML. } } \description{ \code{readIgphyml} reads output from the IgPhyML phylogenetics inference package for B cell repertoires } \details{ \code{readIgphyml} reads output from the IgPhyML repertoire phylogenetics inference package. The resulting object is divided between parameter estimates (usually under the HLP19 model), which provide information about mutation and selection pressure operating on the sequences. Trees returned from this function are either igraph objects or phylo objects, and each may be visualized accordingly. Further, branch lengths in tree may represent either the expected number of substitutions per site (codon, if estimated under HLP or GY94 models), or the total number of expected substitutions per site. If the latter, internal nodes - but not tips - separated by branch lengths less than 0.1 are collapsed to simplify viewing. } \examples{ \dontrun{ # Read in and plot a tree from an igphyml run library(igraph) s1 <- readIgphyml("IB+7d_lineages_gy.tsv_igphyml_stats_hlp.tab", id="+7d") print(s1$param$OMEGA_CDR_MLE[1]) plot(s1$trees[[1]], layout=layout_as_tree, edge.label=E(s1$trees[[1]])$weight) } } \references{ \enumerate{ \item Hoehn KB, Lunter G, Pybus OG - A Phylogenetic Codon Substitution Model for Antibody Lineages. Genetics 2017 206(1):417-427 https://doi.org/10.1534/genetics.116.196303 \item Hoehn KB, Vander Heiden JA, Zhou JQ, Lunter G, Pybus OG, Kleinstein SHK - Repertoire-wide phylogenetic models of B cell molecular evolution reveal evolutionary signatures of aging and vaccination. bioRxiv 2019 https://doi.org/10.1101/558825 } } alakazam/man/countClones.Rd0000644000176200001440000000537415065014027015402 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Diversity.R \name{countClones} \alias{countClones} \title{Tabulates clones sizes} \usage{ countClones( data, groups = NULL, copy = NULL, clone = "clone_id", cell_id = "cell_id", remove_na = TRUE ) } \arguments{ \item{data}{data.frame with columns containing clonal assignments.} \item{groups}{character vector defining \code{data} columns containing grouping variables. If \code{groups=NULL}, then do not group data.} \item{copy}{name of the \code{data} column containing copy numbers for each sequence. If this value is specified, then total copy abundance is determined by the sum of copy numbers within each clonal group.} \item{clone}{name of the \code{data} column containing clone identifiers.} \item{cell_id}{name of the \code{data} column containing cell identifiers. If \code{cell_id} column is not present the function will assume bulk data.} \item{remove_na}{removes rows with \code{NA} values in the clone column if \code{TRUE} and issues a warning. Otherwise, keeps those rows and considers \code{NA} as a clone in the final counts and relative abundances.} } \value{ A data.frame summarizing clone counts and frequencies with columns: \itemize{ \item \code{clone_id}: clone identifier. This is the default column name, specified with \code{clone='clone_id'}. If the function call uses Change-O formatted data and \code{clone='CLONE'}, this column will have name \code{CLONE}. \item \code{seq_count}: total number of sequences for the clone. \item \code{seq_freq}: frequency of the clone as a fraction of the total number of sequences within each group. \item \code{copy_count}: sum of the copy counts in the \code{copy} column. Only present if the \code{copy} argument is specified. \item \code{copy_freq}: frequency of the clone as a fraction of the total copy number within each group. Only present if the \code{copy} argument is specified. } Also includes additional columns specified in the \code{groups} argument. } \description{ \code{countClones} determines the number of sequences and total copy number of clonal groups. } \examples{ # Without copy numbers clones <- countClones(ExampleDb, groups="sample_id") # With copy numbers and multiple groups clones <- countClones(ExampleDb, groups=c("sample_id", "c_call"), copy="duplicate_count") } alakazam/man/countPatterns.Rd0000644000176200001440000000257715065014027015761 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AminoAcids.R \name{countPatterns} \alias{countPatterns} \title{Count sequence patterns} \usage{ countPatterns(seq, patterns, nt = TRUE, trim = FALSE, label = "region") } \arguments{ \item{seq}{character vector of either DNA or amino acid sequences.} \item{patterns}{list of sequence patterns to count in each sequence. If the list is named, then names will be assigned as the column names of output data.frame.} \item{nt}{if \code{TRUE} then \code{seq} are DNA sequences and and will be translated before performing the pattern search.} \item{trim}{if \code{TRUE} remove the first and last codon or amino acid from each sequence before the pattern search. If \code{FALSE} do not modify the input sequences.} \item{label}{string defining a label to add as a prefix to the output column names.} } \value{ A data.frame containing the fraction of times each sequence pattern was found. } \description{ \code{countPatterns} counts the fraction of times a set of character patterns occur in a set of sequences. } \examples{ seq <- c("TGTCAACAGGCTAACAGTTTCCGGACGTTC", "TGTCAGCAATATTATATTGCTCCCTTCACTTTC", "TGTCAAAAGTATAACAGTGCCCCCTGGACGTTC") patterns <- c("A", "V", "[LI]") names(patterns) <- c("arg", "val", "iso_leu") countPatterns(seq, patterns, nt=TRUE, trim=TRUE, label="cdr3") } alakazam/man/seqDist.Rd0000644000176200001440000000427715065014027014523 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Sequence.R \name{seqDist} \alias{seqDist} \title{Calculate distance between two sequences} \usage{ seqDist(seq1, seq2, dist_mat = getDNAMatrix()) } \arguments{ \item{seq1}{character string containing a DNA sequence.} \item{seq2}{character string containing a DNA sequence.} \item{dist_mat}{Character distance matrix. Defaults to a Hamming distance matrix returned by \link{getDNAMatrix}. If gap characters, \code{c("-", ".")}, are assigned a value of -1 in \code{dist_mat} then contiguous gaps of any run length, which are not present in both sequences, will be counted as a distance of 1. Meaning, indels of any length will increase the sequence distance by 1. Gap values other than -1 will return a distance that does not consider indels as a special case.} } \value{ Numerical distance between \code{seq1} and \code{seq2}. } \description{ \code{seqDist} calculates the distance between two DNA sequences. } \examples{ # Ungapped examples seqDist("ATGGC", "ATGGG") seqDist("ATGGC", "ATG??") # Gaps will be treated as Ns with a gap=0 distance matrix seqDist("ATGGC", "AT--C", dist_mat=getDNAMatrix(gap=0)) # Gaps will be treated as universally non-matching characters with gap=1 seqDist("ATGGC", "AT--C", dist_mat=getDNAMatrix(gap=1)) # Gaps of any length will be treated as single mismatches with a gap=-1 distance matrix seqDist("ATGGC", "AT--C", dist_mat=getDNAMatrix(gap=-1)) # Gaps of equivalent run lengths are not counted as gaps seqDist("ATG-C", "ATG-C", dist_mat=getDNAMatrix(gap=-1)) # Overlapping runs of gap characters are counted as a single gap seqDist("ATG-C", "AT--C", dist_mat=getDNAMatrix(gap=-1)) seqDist("A-GGC", "AT--C", dist_mat=getDNAMatrix(gap=-1)) seqDist("AT--C", "AT--C", dist_mat=getDNAMatrix(gap=-1)) # Discontiguous runs of gap characters each count as separate gaps seqDist("-TGGC", "AT--C", dist_mat=getDNAMatrix(gap=-1)) } \seealso{ Nucleotide distance matrix may be built with \link{getDNAMatrix}. Amino acid distance matrix may be built with \link{getAAMatrix}. Used by \link{pairwiseDist} for generating distance matrices. See \link{seqEqual} for testing sequence equivalence. } alakazam/man/sortGenes.Rd0000644000176200001440000000255115065014027015051 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Gene.R \name{sortGenes} \alias{sortGenes} \title{Sort V(D)J genes} \usage{ sortGenes(genes, method = c("name", "position")) } \arguments{ \item{genes}{vector of strings representing V(D)J gene names.} \item{method}{string defining the method to use for sorting genes. One of: \itemize{ \item \code{"name"}: sort in lexicographic order. Order is by family first, then gene, and then allele. \item \code{"position"}: sort by position in the locus, as determined by the final two numbers in the gene name. Non-localized genes are assigned to the highest positions. }} } \value{ A sorted character vector of gene names. } \description{ \code{sortGenes} sorts a vector of V(D)J gene names by either lexicographic ordering or locus position. } \examples{ # Create a list of allele names genes <- c( "IGHV1-69D*01", "IGHV1-69*01", "IGHV4-38-2*01", "IGHV1-69-2*01", "IGHV2-5*01", "IGHV1-NL1*01", "IGHV1-2*01,IGHV1-2*05", "IGHV1-2", "IGHV1-2*02", "IGHV1-69*02" ) # Sort genes by name sortGenes(genes) # Sort genes by position in the locus sortGenes(genes, method = "pos") } \seealso{ See \code{getAllele}, \code{getGene} and \code{getFamily} for parsing gene names. } alakazam/man/testEdges.Rd0000644000176200001440000000276415065014027015035 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Topology.R \name{testEdges} \alias{testEdges} \title{Tests for parent-child annotation enrichment in lineage trees} \usage{ testEdges( graphs, field, indirect = FALSE, exclude = c("Germline", NA), nperm = 200, progress = FALSE ) } \arguments{ \item{graphs}{list of igraph objects with vertex annotations.} \item{field}{string defining the annotation field to permute.} \item{indirect}{if \code{FALSE} count direct connections (edges) only. If \code{TRUE} walk through any nodes with annotations specified in the \code{argument} to count indirect connections. Specifying \code{indirect=TRUE} with \code{exclude=NULL} will have no effect.} \item{exclude}{vector of strings defining \code{field} values to exclude from permutation.} \item{nperm}{number of permutations to perform.} \item{progress}{if \code{TRUE} show a progress bar.} } \value{ An \link{EdgeTest} object containing the test results and permutation realizations. } \description{ \code{testEdges} performs a permutation test on a set of lineage trees to determine the significance of an annotation's association with parent-child relationships. } \examples{ \donttest{ # Define example tree set graphs <- ExampleTrees[1:10] # Perform edge test on isotypes x <- testEdges(graphs, "c_call", nperm=10) print(x) } } \seealso{ Uses \link{tableEdges} and \link{permuteLabels}. See \link{plotEdgeTest} for plotting the permutation distributions. } alakazam/man/getMRCA.Rd0000644000176200001440000000357515065014027014331 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Topology.R \name{getMRCA} \alias{getMRCA} \title{Retrieve the first non-root node of a lineage tree} \usage{ getMRCA( graph, path = c("distance", "steps"), root = "Germline", field = NULL, exclude = NULL ) } \arguments{ \item{graph}{igraph object containing an annotated lineage tree.} \item{path}{string defining whether to use unweighted (steps) or weighted (distance) measures for determining the founder node set..} \item{root}{name of the root (germline) node.} \item{field}{annotation field to use for both unweighted path length exclusion and consideration as an MRCA node. If \code{NULL} do not exclude any nodes.} \item{exclude}{vector of annotation values in \code{field} to exclude from the potential MRCA set. If \code{NULL} do not exclude any nodes. Has no effect if \code{field=NULL}.} } \value{ A data.frame of the MRCA node(s) containing the columns: \itemize{ \item \code{name}: node name \item \code{steps}: path length as the number of nodes traversed \item \code{distance}: path length as the sum of edge weights } Along with additional columns corresponding to the annotations of the input graph. } \description{ \code{getMRCA} returns the set of lineage tree nodes with the minimum weighted or unweighted path length from the root (germline) of the lineage tree, allowing for exclusion of specific groups of nodes. } \examples{ # Define example graph graph <- ExampleTrees[[23]] # Use unweighted path length and do not exclude any nodes getMRCA(graph, path="steps", root="Germline") # Exclude nodes without an isotype annotation and use weighted path length getMRCA(graph, path="distance", root="Germline", field="c_call", exclude=NA) } \seealso{ Path lengths are determined with \link{getPathLengths}. } alakazam/man/phyloToGraph.Rd0000644000176200001440000000334615065014027015523 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Lineage.R \name{phyloToGraph} \alias{phyloToGraph} \title{Convert a tree in ape \code{phylo} format to igraph \code{graph} format.} \usage{ phyloToGraph(phylo, germline = "Germline") } \arguments{ \item{phylo}{An ape \code{phylo} object.} \item{germline}{If specified, places specified tip sequence as the direct ancestor of the tree} } \value{ A \code{graph} object representing the input tree. } \description{ \code{phyloToGraph} converts a tree in \code{phylo} format to and \code{graph} format. } \details{ Convert from phylo to graph object. Uses the node.label vector to label internal nodes. Nodes may rotate but overall topology will remain constant. } \examples{ \dontrun{ library(igraph) library(ape) #convert to phylo phylo = graphToPhylo(graph) #plot tree using ape plot(phylo,show.node.label=TRUE) #store as newick tree write.tree(phylo,file="tree.newick") #read in tree from newick file phylo_r = read.tree("tree.newick") #convert to igraph graph_r = phyloToGraph(phylo_r,germline="Germline") #plot graph - same as before, possibly rotated plot(graph_r,layout=layout_as_tree) } } \references{ \enumerate{ \item Hoehn KB, Lunter G, Pybus OG - A Phylogenetic Codon Substitution Model for Antibody Lineages. Genetics 2017 206(1):417-427 https://doi.org/10.1534/genetics.116.196303 \item Hoehn KB, Vander Heiden JA, Zhou JQ, Lunter G, Pybus OG, Kleinstein SHK - Repertoire-wide phylogenetic models of B cell molecular evolution reveal evolutionary signatures of aging and vaccination. bioRxiv 2019 https://doi.org/10.1101/558825 } } alakazam/man/aminoAcidProperties.Rd0000644000176200001440000001343215065014027017041 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AminoAcids.R \name{aminoAcidProperties} \alias{aminoAcidProperties} \title{Calculates amino acid chemical properties for sequence data} \usage{ aminoAcidProperties( data, property = c("length", "gravy", "bulk", "aliphatic", "polarity", "charge", "basic", "acidic", "aromatic"), seq = "junction", nt = TRUE, trim = FALSE, label = NULL, ... ) } \arguments{ \item{data}{\code{data.frame} containing sequence data.} \item{property}{vector strings specifying the properties to be calculated. Defaults to calculating all defined properties.} \item{seq}{\code{character} name of the column containing input sequences.} \item{nt}{boolean, TRUE if the sequences (or sequence) are DNA and will be translated.} \item{trim}{if \code{TRUE} remove the first and last codon/amino acids from each sequence before calculating properties. If \code{FALSE} do not modify input sequences.} \item{label}{name of sequence region to add as prefix to output column names.} \item{...}{additional named arguments to pass to the functions \link{gravy}, \link{bulk}, \link{aliphatic}, \link{polar} or \link{charge}.} } \value{ A modified \code{data} data.frame with the following columns: \itemize{ \item \code{*_aa_length}: number of amino acids. \item \code{*_aa_gravy}: grand average of hydrophobicity (gravy) index. \item \code{*_aa_bulk}: average bulkiness of amino acids. \item \code{*_aa_aliphatic}: aliphatic index. \item \code{*_aa_polarity}: average polarity of amino acids. \item \code{*_aa_charge}: net charge. \item \code{*_aa_basic}: fraction of informative positions that are Arg, His or Lys. \item \code{*_aa_acidic}: fraction of informative positions that are Asp or Glu. \item \code{*_aa_aromatic}: fraction of informative positions that are His, Phe, Trp or Tyr. } Where \code{*} is the value from \code{label} or the name specified for \code{seq} if \code{label=NULL}. } \description{ \code{aminoAcidProperties} calculates amino acid sequence physicochemical properties, including length, hydrophobicity, bulkiness, polarity, aliphatic index, net charge, acidic residue content, basic residue content, and aromatic residue content. } \details{ For all properties except for length, non-informative positions are excluded, where non-informative is defined as any character in \code{c("X", "-", ".", "*")}. The scores for gravy, bulkiness and polarity are calculated as simple averages of the scores for each informative positions. The basic, acid and aromatic indices are calculated as the fraction of informative positions falling into the given category. The aliphatic index is calculated using the Ikai, 1980 method. The net charge is calculated using the method of Moore, 1985, excluding the N-terminus and C-terminus charges, and normalizing by the number of informative positions. The default pH for the calculation is 7.4. The following data sources were used for the default property scores: \itemize{ \item hydropathy: Kyte & Doolittle, 1982. \item bulkiness: Zimmerman et al, 1968. \item polarity: Grantham, 1974. \item pK: EMBOSS. } } \examples{ # Subset example data db <- ExampleDb[c(1,10,100), c("sequence_id", "junction")] # Calculate default amino acid properties from DNA sequences aminoAcidProperties(db, seq="junction") # Calculate default amino acid properties from amino acid sequences # Use a custom output column prefix db$junction_aa <- translateDNA(db$junction) aminoAcidProperties(db, seq="junction_aa", label="junction", nt=FALSE) # Use the Grantham, 1974 side chain volume scores from the seqinr package # Set pH=7.0 for the charge calculation # Calculate only average volume and charge # Remove the head and tail amino acids from the junction, thus making it the CDR3 library(seqinr) data(aaindex) x <- aaindex[["GRAR740103"]]$I # Rename the score vector to use single-letter codes names(x) <- translateStrings(names(x), ABBREV_AA) # Calculate properties aminoAcidProperties(db, property=c("bulk", "charge"), seq="junction", trim=TRUE, label="cdr3", bulkiness=x, pH=7.0) } \references{ \enumerate{ \item Zimmerman JM, Eliezer N, Simha R. The characterization of amino acid sequences in proteins by statistical methods. J Theor Biol 21, 170-201 (1968). \item Grantham R. Amino acid difference formula to help explain protein evolution. Science 185, 862-864 (1974). \item Ikai AJ. Thermostability and aliphatic index of globular proteins. J Biochem 88, 1895-1898 (1980). \item Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105-32 (1982). \item Moore DS. Amino acid and peptide net charges: A simple calculational procedure. Biochem Educ 13, 10-11 (1985). \item Wu YC, et al. High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations. Blood 116, 1070-8 (2010). \item Wu YC, et al. The relationship between CD27 negative and positive B cell populations in human peripheral blood. Front Immunol 2, 1-12 (2011). \item \url{https://emboss.sourceforge.net/apps/cvs/emboss/apps/iep.html} } } \seealso{ See \link{countPatterns} for counting the occurrence of specific amino acid subsequences. See \link{gravy}, \link{bulk}, \link{aliphatic}, \link{polar} and \link{charge} for functions that calculate the included properties individually. } alakazam/man/extractVRegion.Rd0000644000176200001440000000350115065014027016040 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Sequence.R \name{extractVRegion} \alias{extractVRegion} \title{Extracts FWRs and CDRs from IMGT-gapped sequences} \usage{ extractVRegion(sequences, region = c("fwr1", "cdr1", "fwr2", "cdr2", "fwr3")) } \arguments{ \item{sequences}{character vector of IMGT-gapped nucleotide sequences.} \item{region}{string defining the region(s) of the V segment to extract. May be a single region or multiple regions (as a vector) from \code{c("fwr1", "cdr1", "fwr2", "cdr2" ,"fwr3")}. By default, all regions will be returned.} } \value{ If only one region is specified in the \code{region} argument, a character vector of the extracted sub-sequences will be returned. If multiple regions are specified, then a character matrix will be returned with columns corresponding to the specified regions and a row for each entry in \code{sequences}. } \description{ \code{extractVRegion} extracts the framework and complementarity determining regions of the V segment for IMGT-gapped immunoglobulin (Ig) nucleotide sequences according to the IMGT numbering scheme. } \examples{ # Assign example clone clone <- subset(ExampleDb, clone_id == 3138) # Get all regions extractVRegion(clone$sequence_alignment) # Get single region extractVRegion(clone$sequence_alignment, "fwr1") # Get all CDRs extractVRegion(clone$sequence_alignment, c("cdr1", "cdr2")) # Get all FWRs extractVRegion(clone$sequence_alignment, c("fwr1", "fwr2", "fwr3")) } \references{ \enumerate{ \item Lefranc M-P, et al. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol. 2003 27(1):55-77. } } \seealso{ IMGT-gapped region boundaries are defined in \link{IMGT_REGIONS}. } alakazam/man/plotMRCATest.Rd0000644000176200001440000000324315065014027015360 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Topology.R \name{plotMRCATest} \alias{plotMRCATest} \title{Plot the results of a founder permutation test} \usage{ plotMRCATest( data, color = "black", main_title = "MRCA Test", style = c("histogram", "cdf"), silent = FALSE, ... ) } \arguments{ \item{data}{\link{MRCATest} object returned by \link{testMRCA}.} \item{color}{color of the histogram or lines.} \item{main_title}{string specifying the plot title.} \item{style}{type of plot to draw. One of: \itemize{ \item \code{"histogram"}: histogram of the annotation count distribution with a red dotted line denoting the observed value. \item \code{"cdf"}: cumulative distribution function of annotation counts with a red dotted line denoting the observed value and a blue dotted line indicating the p-value. }} \item{silent}{if \code{TRUE} do not draw the plot and just return the ggplot2 object; if \code{FALSE} draw the plot.} \item{...}{additional arguments to pass to ggplot2::theme.} } \value{ A \code{ggplot} object defining the plot. } \description{ \code{plotMRCATest} plots the results of a founder permutation test performed with \code{testMRCA}. } \examples{ \donttest{ # Define example tree set graphs <- ExampleTrees[1:10] # Perform MRCA test on isotypes x <- testMRCA(graphs, "c_call", nperm=10) # Plot plotMRCATest(x, color="steelblue", style="hist") plotMRCATest(x, style="cdf") } } \seealso{ See \link{testEdges} for performing the test. } alakazam/man/polar.Rd0000644000176200001440000000255015065014027014214 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AminoAcids.R \name{polar} \alias{polar} \title{Calculates the average polarity of amino acid sequences} \usage{ polar(seq, polarity = NULL) } \arguments{ \item{seq}{vector of strings containing amino acid sequences.} \item{polarity}{named numerical vector defining polarity scores for each amino acid, where names are single-letter amino acid character codes. If \code{NULL}, then the Grantham, 1974 scale is used.} } \value{ A vector of bulkiness scores for the sequence(s). } \description{ \code{polar} calculates the average polarity score of amino acid sequences. Non-informative positions are excluded, where non-informative is defined as any character in \code{c("X", "-", ".", "*")}. } \examples{ # Default scale seq <- c("CARDRSTPWRRGIASTTVRTSW", "XXTQMYVRT") polar(seq) # Use the Zimmerman et al, 1968 polarity scale from the seqinr package library(seqinr) data(aaindex) x <- aaindex[["ZIMJ680103"]]$I # Rename the score vector to use single-letter codes names(x) <- translateStrings(names(x), ABBREV_AA) # Calculate polarity polar(seq, polarity=x) } \references{ \enumerate{ \item Grantham R. Amino acid difference formula to help explain protein evolution. Science 185, 862-864 (1974). } } \seealso{ For additional size related indices see \code{\link[seqinr]{aaindex}}. } alakazam/man/translateDNA.Rd0000644000176200001440000000154615065014027015423 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Sequence.R \name{translateDNA} \alias{translateDNA} \title{Translate nucleotide sequences to amino acids} \usage{ translateDNA(seq, trim = FALSE) } \arguments{ \item{seq}{vector of strings defining DNA sequence(s) to be converted to translated.} \item{trim}{boolean flag to remove 3 nts from both ends of seq (converts IMGT junction to CDR3 region).} } \value{ A vector of translated sequence strings. } \description{ \code{translateDNA} translates nucleotide sequences to amino acid sequences. } \examples{ # Translate a single sequence translateDNA("ACTGACTCGA") # Translate a vector of sequences translateDNA(ExampleDb$junction[1:3]) # Remove the first and last codon from the translation translateDNA(ExampleDb$junction[1:3], trim=TRUE) } \seealso{ \code{\link[seqinr]{translate}}. } alakazam/man/MRCATest-class.Rd0000644000176200001440000000330015065014027015556 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Classes.R \docType{class} \name{MRCATest-class} \alias{MRCATest-class} \alias{MRCATest} \alias{print,MRCATest-method} \alias{MRCATest-method} \alias{plot,MRCATest,missing-method} \title{S4 class defining edge significance} \usage{ \S4method{print}{MRCATest}(x) \S4method{plot}{MRCATest,missing}(x, y, ...) } \arguments{ \item{x}{MRCATest object.} \item{y}{ignored.} \item{...}{arguments to pass to \link{plotMRCATest}.} } \description{ \code{MRCATest} defines the significance of enrichment for annotations appearing at the MRCA of the tree. } \section{Slots}{ \describe{ \item{\code{tests}}{data.frame describing the significance test results with columns: \itemize{ \item \code{annotation}: annotation value. \item \code{count}: observed count of MRCA positions with the given annotation. \item \code{expected}: expected mean count of MRCA occurrence for the annotation. \item \code{pvalue}: one-sided p-value for the hypothesis that the observed annotation abundance is greater than expected. }} \item{\code{permutations}}{data.frame containing the raw permutation test data with columns: \itemize{ \item \code{annotation}: annotation value. \item \code{count}: count of MRCA positions with the given annotation. \item \code{iter}: numerical index define which permutation realization each observation corresponds to. }} \item{\code{nperm}}{number of permutation realizations.} }} alakazam/man/plotAbundanceCurve.Rd0000644000176200001440000000413315065014027016662 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Diversity.R \name{plotAbundanceCurve} \alias{plotAbundanceCurve} \title{Plot a clonal abundance distribution} \usage{ plotAbundanceCurve( data, colors = NULL, main_title = "Rank Abundance", legend_title = NULL, xlim = NULL, ylim = NULL, annotate = c("none", "depth"), silent = FALSE, ... ) } \arguments{ \item{data}{\link{AbundanceCurve} object returned by \link{estimateAbundance}.} \item{colors}{named character vector whose names are values in the \code{group} column of \code{data} and whose values are colors to assign to those group names.} \item{main_title}{string specifying the plot title.} \item{legend_title}{string specifying the legend title.} \item{xlim}{numeric vector of two values specifying the \code{c(lower, upper)} x-axis limits. The lower x-axis value must be >=1.} \item{ylim}{numeric vector of two values specifying the \code{c(lower, upper)} y-axis limits. The limits on the abundance values are expressed as fractions of 1: use c(0,1) to set the lower and upper limits to 0\% and 100\%.} \item{annotate}{string defining whether to added values to the group labels of the legend. When \code{"none"} (default) is specified no annotations are added. Specifying (\code{"depth"}) adds sequence counts to the labels.} \item{silent}{if \code{TRUE} do not draw the plot and just return the ggplot2 object; if \code{FALSE} draw the plot.} \item{...}{additional arguments to pass to ggplot2::theme.} } \value{ A \code{ggplot} object defining the plot. } \description{ \code{plotAbundanceCurve} plots the results from estimating the complete clonal relative abundance distribution. The distribution is plotted as a log rank abundance distribution. } \examples{ # Estimate abundance by sample and plot abund <- estimateAbundance(ExampleDb, group="sample_id", nboot=100) plotAbundanceCurve(abund, legend_title="Sample") } \seealso{ See \link{AbundanceCurve} for the input object and \link{estimateAbundance} for generating the input abundance distribution. Plotting is performed with \link[ggplot2]{ggplot}. } alakazam/man/checkColumns.Rd0000644000176200001440000000170515065014027015516 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Core.R \name{checkColumns} \alias{checkColumns} \title{Check data.frame for valid columns and issue message if invalid} \usage{ checkColumns(data, columns, logic = c("all", "any")) } \arguments{ \item{data}{data.frame to check.} \item{columns}{vector of column names to check.} \item{logic}{one of \code{"all"} or \code{"any"} controlling whether all, or at least one, of the columns must be valid, respectively.} } \value{ \code{TRUE} if columns are valid and a string message if not. } \description{ Check data.frame for valid columns and issue message if invalid } \examples{ df <- data.frame(A=1:3, B=4:6, C=rep(NA, 3)) checkColumns(df, c("A", "B"), logic="all") checkColumns(df, c("A", "B"), logic="any") checkColumns(df, c("A", "C"), logic="all") checkColumns(df, c("A", "C"), logic="any") checkColumns(df, c("A", "D"), logic="all") checkColumns(df, c("A", "D"), logic="any") } alakazam/man/AbundanceCurve-class.Rd0000644000176200001440000000331015065014027017062 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Classes.R \docType{class} \name{AbundanceCurve-class} \alias{AbundanceCurve-class} \alias{AbundanceCurve} \alias{print,AbundanceCurve-method} \alias{AbundanceCurve-method} \alias{plot,AbundanceCurve,missing-method} \title{S4 class defining a clonal abundance curve} \usage{ \S4method{print}{AbundanceCurve}(x) \S4method{plot}{AbundanceCurve,missing}(x, y, ...) } \arguments{ \item{x}{AbundanceCurve object} \item{y}{ignored.} \item{...}{arguments to pass to \link{plotDiversityCurve}.} } \description{ \code{AbundanceCurve} defines clonal abundance values. } \section{Slots}{ \describe{ \item{\code{abundance}}{data.frame with relative clonal abundance data and confidence intervals, containing the following columns: \itemize{ \item \code{group}: group identifier. \item \code{clone_id} or \code{CLONE}: clone identifier. \item \code{p}: relative abundance of the clone. \item \code{lower}: lower confidence interval bound. \item \code{upper}: upper confidence interval bound. \item \code{rank}: the rank of the clone abundance. }} \item{\code{bootstrap}}{data.frame of bootstrapped clonal distributions.} \item{\code{clone_by}}{string specifying the name of the clone column.} \item{\code{group_by}}{string specifying the name of the grouping column.} \item{\code{groups}}{vector specifying the names of unique groups in group column.} \item{\code{n}}{numeric vector indication the number of sequences sampled in each group.} \item{\code{nboot}}{numeric specifying the number of bootstrap iterations to use.} \item{\code{ci}}{confidence interval defining the upper and lower bounds (a value between 0 and 1).} }} alakazam/man/plotSubtrees.Rd0000644000176200001440000000552115065014027015573 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Topology.R \name{plotSubtrees} \alias{plotSubtrees} \title{Plots subtree statistics for multiple trees} \usage{ plotSubtrees( graphs, field, stat, root = "Germline", exclude = c("Germline", NA), colors = NULL, main_title = "Subtrees", legend_title = "Annotation", style = c("box", "violin"), silent = FALSE, ... ) } \arguments{ \item{graphs}{list of igraph objects containing annotated lineage trees.} \item{field}{string defining the annotation field.} \item{stat}{string defining the subtree statistic to plot. One of: \itemize{ \item \code{outdegree}: distribution of normalized node outdegrees. \item \code{size}: distribution of normalized subtree sizes. \item \code{depth}: distribution of subtree depths. \item \code{pathlength}: distribution of maximum pathlength beneath nodes. }} \item{root}{name of the root (germline) node.} \item{exclude}{vector of strings defining \code{field} values to exclude from plotting.} \item{colors}{named vector of colors for values in \code{field}, with names defining annotation names \code{field} column and values being colors. Also controls the order in which values appear on the plot. If \code{NULL} alphabetical ordering and a default color palette will be used.} \item{main_title}{string specifying the plot title.} \item{legend_title}{string specifying the legend title.} \item{style}{string specifying the style of plot to draw. One of: \itemize{ \item \code{"histogram"}: histogram of the annotation count distribution with a red dotted line denoting the observed value. \item \code{"cdf"}: cumulative distribution function of annotation counts with a red dotted line denoting the observed value and a blue dotted line indicating the p-value. }} \item{silent}{if \code{TRUE} do not draw the plot and just return the ggplot2 object; if \code{FALSE} draw the plot.} \item{...}{additional arguments to pass to ggplot2::theme.} } \value{ A \code{ggplot} object defining the plot. } \description{ \code{plotSubtree} plots distributions of normalized subtree statistics for a set of lineage trees, broken down by annotation value. } \examples{ # Define example tree set graphs <- ExampleTrees[1:10] # Violin plots of node outdegree by sample plotSubtrees(graphs, "sample_id", "out", style="v") # Violin plots of subtree size by sample plotSubtrees(graphs, "sample_id", "size", style="v") # Boxplot of node depth by isotype plotSubtrees(graphs, "c_call", "depth", style="b") } \seealso{ Subtree statistics are calculated with \link{summarizeSubtrees}. } alakazam/man/stoufferMeta.Rd0000644000176200001440000000131415065014027015540 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Core.R \name{stoufferMeta} \alias{stoufferMeta} \title{Weighted meta-analysis of p-values via Stouffer's method} \usage{ stoufferMeta(p, w = NULL) } \arguments{ \item{p}{numeric vector of p-values.} \item{w}{numeric vector of weights.} } \value{ A named numeric vector with the combined Z-score and p-value in the form \code{c(Z, pvalue)}. } \description{ \code{stoufferMeta} combines multiple weighted p-values into a meta-analysis p-value using Stouffer's Z-score method. } \examples{ # Define p-value and weight vectors p <- c(0.1, 0.05, 0.3) w <- c(5, 10, 1) # Unweighted stoufferMeta(p) # Weighted stoufferMeta(p, w) } alakazam/man/permuteLabels.Rd0000644000176200001440000000207015065014027015700 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Topology.R \name{permuteLabels} \alias{permuteLabels} \title{Permute the node labels of a tree} \usage{ permuteLabels(graph, field, exclude = c("Germline", NA)) } \arguments{ \item{graph}{igraph object containing an annotated lineage tree.} \item{field}{string defining the annotation field to permute.} \item{exclude}{vector of strings defining \code{field} values to exclude from permutation.} } \value{ A modified igraph object with vertex annotations permuted. } \description{ \code{permuteLabels} permutes the node annotations of a lineage tree. } \examples{ # Define and plot example graph library(igraph) graph <- ExampleTrees[[23]] plot(graph, layout=layout_as_tree, vertex.label=V(graph)$c_call, vertex.size=50, edge.arrow.mode=0, vertex.color="grey80") # Permute annotations and plot new tree g <- permuteLabels(graph, "c_call") plot(g, layout=layout_as_tree, vertex.label=V(g)$c_call, vertex.size=50, edge.arrow.mode=0, vertex.color="grey80") } \seealso{ \link{testEdges}. } alakazam/man/tableEdges.Rd0000644000176200001440000000352415065014027015140 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Topology.R \name{tableEdges} \alias{tableEdges} \title{Tabulate the number of edges between annotations within a lineage tree} \usage{ tableEdges(graph, field, indirect = FALSE, exclude = NULL) } \arguments{ \item{graph}{igraph object containing an annotated lineage tree.} \item{field}{string defining the annotation field to count.} \item{indirect}{if \code{FALSE} count direct connections (edges) only. If \code{TRUE} walk through any nodes with annotations specified in the \code{argument} to count indirect connections. Specifying \code{indirect=TRUE} with \code{exclude=NULL} will have no effect.} \item{exclude}{vector of strings defining \code{field} values to exclude from counts. Edges that either start or end with the specified annotations will not be counted. If \code{NULL} count all edges.} } \value{ A data.frame defining total annotation connections in the tree with columns: \itemize{ \item \code{parent}: parent annotation \item \code{child}: child annotation \item \code{count}: count of edges for the parent-child relationship } } \description{ \code{tableEdges} creates a table of the total number of connections (edges) for each unique pair of annotations within a tree over all nodes. } \examples{ # Define example graph graph <- ExampleTrees[[23]] # Count direct edges between isotypes including inferred nodes tableEdges(graph, "c_call") # Count direct edges excluding edges to and from germline and inferred nodes tableEdges(graph, "c_call", exclude=c("Germline", NA)) # Count indirect edges walking through germline and inferred nodes tableEdges(graph, "c_call", indirect=TRUE, exclude=c("Germline", NA)) } \seealso{ See \link{testEdges} for performed a permutation test on edge relationships. } alakazam/man/getPathLengths.Rd0000644000176200001440000000261115065014027016016 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Topology.R \name{getPathLengths} \alias{getPathLengths} \title{Calculate path lengths from the tree root} \usage{ getPathLengths(graph, root = "Germline", field = NULL, exclude = NULL) } \arguments{ \item{graph}{igraph object containing an annotated lineage tree.} \item{root}{name of the root (germline) node.} \item{field}{annotation field to use for exclusion of nodes from step count.} \item{exclude}{annotation values specifying which nodes to exclude from step count. If \code{NULL} consider all nodes. This does not affect the weighted (distance) path length calculation.} } \value{ A data.frame with columns: \itemize{ \item \code{name}: node name \item \code{steps}: path length as the number of nodes traversed \item \code{distance}: path length as the sum of edge weights } } \description{ \code{getPathLengths} calculates the unweighted (number of steps) and weighted (distance) path lengths from the root of a lineage tree. } \examples{ # Define example graph graph <- ExampleTrees[[24]] # Consider all nodes getPathLengths(graph, root="Germline") # Exclude nodes without an isotype annotation from step count getPathLengths(graph, root="Germline", field="c_call", exclude=NA) } \seealso{ See \link{buildPhylipLineage} for generating input trees. } alakazam/man/makeTempDir.Rd0000644000176200001440000000101215065014027015271 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Core.R \name{makeTempDir} \alias{makeTempDir} \title{Create a temporary folder} \usage{ makeTempDir(prefix) } \arguments{ \item{prefix}{prefix name for the folder.} } \value{ The path to the temporary folder. } \description{ \code{makeTempDir} creates a randomly named temporary folder in the system temp location. } \examples{ makeTempDir("Clone50") } \seealso{ This is just a wrapper for \link{tempfile} and \link{dir.create}. } alakazam/man/isValidAASeq.Rd0000644000176200001440000000164115065014027015345 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AminoAcids.R \name{isValidAASeq} \alias{isValidAASeq} \title{Validate amino acid sequences} \usage{ isValidAASeq(seq) } \arguments{ \item{seq}{character vector of sequences to check.} } \value{ A logical vector with \code{TRUE} for each valid amino acid sequences and \code{FALSE} for each invalid sequence. } \description{ \code{isValidAASeq} checks that a set of sequences are valid non-ambiguous amino acid sequences. A sequence is considered valid if it contains only characters in the the non-ambiguous IUPAC character set or any characters in \code{c("X", ".", "-", "*")}. } \examples{ seq <- c("CARDRSTPWRRGIASTTVRTSW", "XXTQMYVR--XX", "CARJ", "10") isValidAASeq(seq) } \seealso{ See \link{ABBREV_AA} for the set of non-ambiguous amino acid characters. See \link{IUPAC_AA} for the full set of ambiguous amino acid characters. } alakazam/man/groupGenes.Rd0000644000176200001440000001314215065014027015214 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Gene.R \name{groupGenes} \alias{groupGenes} \title{Group sequences by gene assignment} \usage{ groupGenes( data, v_call = "v_call", j_call = "j_call", junc_len = NULL, sequence_alignment = NULL, cell_id = NULL, split_light = FALSE, locus = "locus", only_heavy = TRUE, first = FALSE ) } \arguments{ \item{data}{data.frame containing sequence data.} \item{v_call}{name of the column containing the heavy/long chain V-segment allele calls.} \item{j_call}{name of the column containing the heavy/long chain J-segment allele calls.} \item{junc_len}{name of column containing the junction length. If \code{NULL} then 1-stage partitioning is perform considering only the V and J genes is performed. See Details for further clarification.} \item{sequence_alignment}{name of the column containing the sequence alignment.} \item{cell_id}{name of the column containing cell identifiers or barcodes. If specified, grouping will be performed in single-cell mode with the behavior governed by the \code{locus} and \code{only_heavy} arguments. If set to \code{NULL} then the bulk sequencing data is assumed.} \item{split_light}{A deprecated parameter. This would split clones by the light chain. For similar function use dowser::resolveLightChains} \item{locus}{name of the column containing locus information. Only applicable to single-cell data. Ignored if \code{cell_id=NULL}.} \item{only_heavy}{This is deprecated. Only heavy chains will be used in clustering. Use only the IGH (BCR) or TRB/TRD (TCR) sequences for grouping. Only applicable to single-cell data. Ignored if \code{cell_id=NULL}.} \item{first}{if \code{TRUE} only the first call of the gene assignments is used. if \code{FALSE} the union of ambiguous gene assignments is used to group all sequences with any overlapping gene calls.} } \value{ Returns a modified data.frame with disjoint union indices in a new \code{vj_group} column. If \code{junc_len} is supplied, the grouping this \code{vj_group} will have been based on V, J, and junction length simultaneously. However, the output column name will remain \code{vj_group}. The output \code{v_call}, \code{j_call}, \code{cell_id}, and \code{locus} columns will be converted to type \code{character} if they were of type \code{factor} in the input \code{data}. } \description{ \code{groupGenes} will group rows by shared V and J gene assignments, and optionally also by junction lengths. IGH:IGK/IGL, TRB:TRA, and TRD:TRG paired single-cell BCR/TCR sequencing and unpaired bulk sequencing (IGH, TRB, TRD chain only) are supported. In the case of ambiguous (multiple) gene assignments, the grouping may be specified to be a union across all ambiguous V and J gene pairs, analogous to single-linkage clustering (i.e., allowing for chaining). } \details{ To invoke single-cell mode the \code{cell_id} argument must be specified and the \code{locus} column must be correct. Otherwise, \code{groupGenes} will be run with bulk sequencing assumptions, using all input sequences regardless of the values in the \code{locus} column. Values in the \code{locus} column must be one of \code{c("IGH", "IGI", "IGK", "IGL")} for BCR or \code{c("TRA", "TRB", "TRD", "TRG")} for TCR sequences. Otherwise, the function returns an error message and stops. Under single-cell mode with paired chained sequences, there was a choice of whether grouping should be done by (a) using IGH (BCR) or TRB/TRD (TCR) sequences only or (b) using IGH plus IGK/IGL (BCR) or TRB/TRD plus TRA/TRG (TCR). This was governed by the \code{only_heavy} argument, now deprecated. Specifying \code{junc_len} will force \code{groupGenes} to perform a 1-stage partitioning of the sequences/cells based on V gene, J gene, and junction length simultaneously. If \code{junc_len=NULL} (no column specified), then \code{groupGenes} performs only the first stage of a 2-stage partitioning in which sequences/cells are partitioned in the first stage based on V gene and J gene, and then in the second stage further splits the groups based on junction length (the second stage must be performed independently, as this only returns the first stage results). In the input \code{data}, the \code{v_call}, \code{j_call}, \code{cell_id}, and \code{locus} columns, if present, must be of type \code{character} (as opposed to \code{factor}). It is assumed that ambiguous gene assignments are separated by commas. All rows containing \code{NA} values in any of the \code{v_call}, \code{j_call}, and \code{junc_len} (if \code{junc_len != NULL}) columns will be removed. A warning will be issued when a row containing an \code{NA} is removed. } \section{Expectations for single-cell data}{ Single-cell paired chain data assumptions: \itemize{ \item every row represents a sequence (chain). \item heavy/long and light/short chains of the same cell are linked by \code{cell_id}. \item the value in \code{locus} column indicates whether the chain is the heavy/long or light/short chain. \item each cell possibly contains multiple heavy/long and/or light/short chains. \item every chain has its own V(D)J annotation, in which ambiguous V(D)J annotations, if any, are separated by a comma. } Single-cell example: \itemize{ \item A cell has 1 heavy chain and 2 light chains. \item There should be 3 rows corresponding to this cell. \item One of the light chains may have an ambiguous V annotation which looks like \code{"Homsap IGKV1-39*01 F,Homsap IGKV1D-39*01 F"}. } } \examples{ # Group by genes db <- groupGenes(ExampleDb) head(db$vj_group) } alakazam/man/getSegment.Rd0000644000176200001440000000720615065014027015204 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Gene.R \name{getSegment} \alias{getSegment} \alias{getAllele} \alias{getGene} \alias{getFamily} \alias{getLocus} \alias{getChain} \title{Get Ig segment allele, gene and family names} \usage{ getSegment( segment_call, segment_regex, first = TRUE, collapse = TRUE, strip_d = TRUE, omit_nl = FALSE, sep = "," ) getAllele( segment_call, first = TRUE, collapse = TRUE, strip_d = TRUE, omit_nl = FALSE, sep = "," ) getGene( segment_call, first = TRUE, collapse = TRUE, strip_d = TRUE, omit_nl = FALSE, sep = "," ) getFamily( segment_call, first = TRUE, collapse = TRUE, strip_d = TRUE, omit_nl = FALSE, sep = "," ) getLocus( segment_call, first = TRUE, collapse = TRUE, strip_d = TRUE, omit_nl = FALSE, sep = "," ) getChain( segment_call, first = TRUE, collapse = TRUE, strip_d = TRUE, omit_nl = FALSE, sep = "," ) } \arguments{ \item{segment_call}{character vector containing segment calls delimited by commas.} \item{segment_regex}{string defining the segment match regular expression.} \item{first}{if \code{TRUE} return only the first call in \code{segment_call}; if \code{FALSE} return all calls delimited by commas.} \item{collapse}{if \code{TRUE} check for duplicates and return only unique segment assignments; if \code{FALSE} return all assignments (faster). Has no effect if \code{first=TRUE}.} \item{strip_d}{if \code{TRUE} remove the "D" from the end of gene annotations (denoting a duplicate gene in the locus); if \code{FALSE} do not alter gene names.} \item{omit_nl}{if \code{TRUE} remove non-localized (NL) genes from the result. Only applies at the gene or allele level.} \item{sep}{character defining both the input and output segment call delimiter.} } \value{ A character vector containing allele, gene or family names. } \description{ \code{getSegment} performs generic matching of delimited segment calls with a custom regular expression. \link{getAllele}, \link{getGene} and \link{getFamily} extract the allele, gene and family names, respectively, from a character vector of immunoglobulin (Ig) or TCR segment allele calls in IMGT format. } \examples{ # Light chain examples kappa_call <- c( "Homsap IGKV1D-39*01 F,Homsap IGKV1-39*02 F,Homsap IGKV1-39*01", "Homsap IGKJ5*01 F" ) getAllele(kappa_call) getAllele(kappa_call, first = FALSE) getAllele(kappa_call, first = FALSE, strip_d = FALSE) getGene(kappa_call) getGene(kappa_call, first = FALSE) getGene(kappa_call, first = FALSE, strip_d = FALSE) getFamily(kappa_call) getFamily(kappa_call, first = FALSE) getFamily(kappa_call, first = FALSE, collapse = FALSE) getFamily(kappa_call, first = FALSE, strip_d = FALSE) getLocus(kappa_call) getChain(kappa_call) # Heavy chain examples heavy_call <- c( "Homsap IGHV1-69*01 F,Homsap IGHV1-69D*01 F", "Homsap IGHD1-1*01 F", "Homsap IGHJ1*01 F" ) getAllele(heavy_call, first = FALSE) getAllele(heavy_call, first = FALSE, strip_d = FALSE) getGene(heavy_call, first = FALSE) getGene(heavy_call, first = FALSE, strip_d = FALSE) getFamily(heavy_call) getLocus(heavy_call) getChain(heavy_call) # Filtering non-localized genes nl_call <- c( "IGHV3-NL1*01,IGHV3-30-3*01,IGHV3-30*01", "Homosap IGHV3-30*01 F,Homsap IGHV3-NL1*01 F", "IGHV1-NL1*01" ) getAllele(nl_call, first = FALSE, omit_nl = TRUE) getGene(nl_call, first = FALSE, omit_nl = TRUE) getFamily(nl_call, first = FALSE, omit_nl = TRUE) # Temporary designation examples tmp_call <- c("IGHV9S3*01", "IGKV10S12*01") getAllele(tmp_call) getGene(tmp_call) getFamily(tmp_call) } \references{ \url{https://www.imgt.org/} } \seealso{ \link{countGenes} } alakazam/man/IUPAC_CODES.Rd0000644000176200001440000000171115065014027014653 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Data.R \docType{data} \name{IUPAC_CODES} \alias{IUPAC_CODES} \alias{IUPAC_DNA} \alias{IUPAC_AA} \alias{DNA_IUPAC} \title{IUPAC ambiguous characters} \format{ A list with single character codes as names and values containing character vectors that define the set of standard characters that match to each each ambiguous character. \itemize{ \item \code{IUPAC_DNA}: DNA ambiguous character translations. \item \code{IUPAC_AA}: Amino acid ambiguous character translations. \item \code{DNA_IUPAC}: Ordered DNA to ambiguous characters } An object of class \code{list} of length 15. An object of class \code{list} of length 25. An object of class \code{list} of length 15. } \usage{ IUPAC_DNA IUPAC_AA DNA_IUPAC } \description{ A translation list mapping IUPAC ambiguous characters code to corresponding nucleotide amino acid characters. } \keyword{datasets} alakazam/man/aliphatic.Rd0000644000176200001440000000215615065014027015037 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AminoAcids.R \name{aliphatic} \alias{aliphatic} \title{Calculates the aliphatic index of amino acid sequences} \usage{ aliphatic(seq, normalize = TRUE) } \arguments{ \item{seq}{vector of strings containing amino acid sequences.} \item{normalize}{if \code{TRUE} then divide the aliphatic index of each amino acid sequence by the number of informative positions. Non-informative position are defined by the presence any character in \code{c("X", "-", ".", "*")}. If \code{FALSE} then return the raw aliphatic index.} } \value{ A vector of the aliphatic indices for the sequence(s). } \description{ \code{aliphatic} calculates the aliphatic index of amino acid sequences using the method of Ikai. Non-informative positions are excluded, where non-informative is defined as any character in \code{c("X", "-", ".", "*")}. } \examples{ seq <- c("CARDRSTPWRRGIASTTVRTSW", NA, "XXTQMYVRT") aliphatic(seq) } \references{ \enumerate{ \item Ikai AJ. Thermostability and aliphatic index of globular proteins. J Biochem. 88, 1895-1898 (1980). } } alakazam/man/readChangeoDb.Rd0000644000176200001440000000407215065014027015546 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Core.R \name{readChangeoDb} \alias{readChangeoDb} \title{Read a Change-O tab-delimited database file} \usage{ readChangeoDb(file, select = NULL, drop = NULL, seq_upper = TRUE) } \arguments{ \item{file}{tab-delimited database file output by a Change-O tool.} \item{select}{columns to select from database file.} \item{drop}{columns to drop from database file.} \item{seq_upper}{if \code{TRUE} convert sequence columns to upper case; if \code{FALSE} do not alter sequence columns. See Value for a list of which columns are effected.} } \value{ A data.frame of the database file. Columns will be imported as is, except for the following columns which will be explicitly converted into character values: \itemize{ \item SEQUENCE_ID \item CLONE \item SAMPLE } And the following sequence columns which will converted to upper case if \code{seq_upper=TRUE} (default). \itemize{ \item SEQUENCE_INPUT \item SEQUENCE_VDJ \item SEQUENCE_IMGT \item JUNCTION \item GERMLINE_IMGT \item GERMLINE_IMGT_D_MASK } } \description{ \code{readChangeoDb} reads a tab-delimited database file created by a Change-O tool into a data.frame. } \examples{ \dontrun{ # Read all columns in and convert sequence fields to upper case db <- readChangeoDb("changeo.tsv") # Subset columns and convert sequence fields to upper case db <- readChangeoDb("changeo.tsv", select=c("SEQUENCE_ID", "SEQUENCE_IMGT")) # Drop columns and do not alter sequence field case db <- readChangeoDb("changeo.tsv", drop=c("D_CALL", "DUPCOUNT"), seq_upper=FALSE) } } \seealso{ Wraps \link[readr]{read_delim}. See \link{writeChangeoDb} for writing to Change-O files. See \link[airr]{read_rearrangement} and \link[airr]{write_rearrangement} to read and write AIRR-C Standard formatted repertoires. } alakazam/man/ChangeoClone-class.Rd0000644000176200001440000000172315065014027016530 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Classes.R \docType{class} \name{ChangeoClone-class} \alias{ChangeoClone-class} \alias{ChangeoClone} \title{S4 class defining a clone} \description{ \code{ChangeoClone} defines a common data structure for perform lineage reconstruction from Change-O data. } \section{Slots}{ \describe{ \item{\code{data}}{data.frame containing sequences and annotations. Contains the columns \code{SEQUENCE_ID} and \code{SEQUENCE}, as well as any additional sequence-specific annotation columns.} \item{\code{clone}}{string defining the clone identifier.} \item{\code{germline}}{string containing the germline sequence for the clone.} \item{\code{v_gene}}{string defining the V segment gene call.} \item{\code{j_gene}}{string defining the J segment gene call.} \item{\code{junc_len}}{numeric junction length (nucleotide count).} }} \seealso{ See \link{makeChangeoClone} and \link{buildPhylipLineage} for use. } alakazam/man/gravy.Rd0000644000176200001440000000267615065014027014240 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AminoAcids.R \name{gravy} \alias{gravy} \title{Calculates the hydrophobicity of amino acid sequences} \usage{ gravy(seq, hydropathy = NULL) } \arguments{ \item{seq}{vector of strings containing amino acid sequences.} \item{hydropathy}{named numerical vector defining hydropathy index values for each amino acid, where names are single-letter amino acid character codes. If \code{NULL}, then the Kyte & Doolittle scale is used.} } \value{ A vector of gravy scores for the sequence(s). } \description{ \code{gravy} calculates the Grand Average of Hydrophobicity (gravy) index of amino acid sequences using the method of Kyte & Doolittle. Non-informative positions are excluded, where non-informative is defined as any character in \code{c("X", "-", ".", "*")}. } \examples{ # Default scale seq <- c("CARDRSTPWRRGIASTTVRTSW", "XXTQMYVRT") gravy(seq) # Use the Kidera et al, 1985 scores from the seqinr package library(seqinr) data(aaindex) x <- aaindex[["KIDA850101"]]$I # Rename the score vector to use single-letter codes names(x) <- translateStrings(names(x), ABBREV_AA) # Calculate hydrophobicity gravy(seq, hydropathy=x) } \references{ \enumerate{ \item Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 157, 105-32 (1982). } } \seealso{ For additional hydrophobicity indices see \code{\link[seqinr]{aaindex}}. } alakazam/man/rarefyDiversity.Rd0000644000176200001440000001027015065014027016270 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Deprecated.R \name{rarefyDiversity} \alias{rarefyDiversity} \title{Generate a clonal diversity index curve} \usage{ rarefyDiversity( data, group, clone = "CLONE", copy = NULL, min_q = 0, max_q = 4, step_q = 0.05, min_n = 30, max_n = NULL, ci = 0.95, nboot = 2000, uniform = TRUE, cell_id = "cell_id", progress = FALSE ) } \arguments{ \item{data}{data.frame with Change-O style columns containing clonal assignments.} \item{group}{name of the \code{data} column containing group identifiers.} \item{clone}{name of the \code{data} column containing clone identifiers.} \item{copy}{name of the \code{data} column containing copy numbers for each sequence. If \code{copy=NULL} (the default), then clone abundance is determined by the number of sequences. If a \code{copy} column is specified, then clone abundances is determined by the sum of copy numbers within each clonal group.} \item{min_q}{minimum value of \eqn{q}.} \item{max_q}{maximum value of \eqn{q}.} \item{step_q}{value by which to increment \eqn{q}.} \item{min_n}{minimum number of observations to sample. A group with less observations than the minimum is excluded.} \item{max_n}{maximum number of observations to sample. If \code{NULL} then no maximum is set.} \item{ci}{confidence interval to calculate; the value must be between 0 and 1.} \item{nboot}{number of bootstrap realizations to generate.} \item{uniform}{if \code{TRUE} then uniformly resample each group to the same number of observations. If \code{FALSE} then allow each group to be resampled to its original size or, if specified, \code{max_size}.} \item{cell_id}{name of the \code{data} column containing cell identifiers.} \item{progress}{if \code{TRUE} show a progress bar.} } \value{ A \link{DiversityCurve} object summarizing the diversity scores. } \description{ \code{rarefyDiversity} divides a set of clones by a group annotation, resamples the sequences from each group, and calculates diversity scores (\eqn{D}) over an interval of diversity orders (\eqn{q}). } \details{ Clonal diversity is calculated using the generalized diversity index (Hill numbers) proposed by Hill (Hill, 1973). See \link{calcDiversity} for further details. Diversity is calculated on the estimated complete clonal abundance distribution. This distribution is inferred by using the Chao1 estimator to estimate the number of seen clones, and applying the relative abundance correction and unseen clone frequency described in Chao et al, 2015. To generate a smooth curve, \eqn{D} is calculated for each value of \eqn{q} from \code{min_q} to \code{max_q} incremented by \code{step_q}. When \code{uniform=TRUE} variability in total sequence counts across unique values in the \code{group} column is corrected by repeated resampling from the estimated complete clonal distribution to a common number of sequences. The diversity index (\eqn{D}) for each group is the mean value of over all resampling realizations. Confidence intervals are derived using the standard deviation of the resampling realizations, as described in Chao et al, 2015. } \examples{ \dontrun{ # Group by sample identifier div <- rarefyDiversity(ExampleDb, "sample_id", step_q=1, max_q=10, nboot=100) plotDiversityCurve(div, legend_title="Sample") # Grouping by isotype rather than sample identifier div <- rarefyDiversity(ExampleDb, "c_call", min_n=40, step_q=1, max_q=10, nboot=100) plotDiversityCurve(div, legend_title="Isotype") } } \references{ \enumerate{ \item Hill M. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973 54(2):427-32. \item Chao A. Nonparametric Estimation of the Number of Classes in a Population. Scand J Stat. 1984 11, 265270. \item Chao A, et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol Monogr. 2014 84:45-67. \item Chao A, et al. Unveiling the species-rank abundance distribution by generalizing the Good-Turing sample coverage theory. Ecology. 2015 96, 11891201. } } \seealso{ \link{alphaDiversity} } alakazam/man/maskSeqGaps.Rd0000644000176200001440000000172415065014027015320 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Sequence.R \name{maskSeqGaps} \alias{maskSeqGaps} \title{Masks gap characters in DNA sequences} \usage{ maskSeqGaps(seq, mask_char = "N", outer_only = FALSE) } \arguments{ \item{seq}{character vector of DNA sequence strings.} \item{mask_char}{character to use for masking.} \item{outer_only}{if \code{TRUE} replace only contiguous leading and trailing gaps; if \code{FALSE} replace all gap characters.} } \value{ A modified \code{seq} vector with \code{"N"} in place of \code{c("-", ".")} characters. } \description{ \code{maskSeqGaps} substitutes gap characters, \code{c("-", ".")}, with \code{"N"} in a vector of DNA sequences. } \examples{ # Mask with Ns maskSeqGaps(c("ATG-C", "CC..C")) maskSeqGaps("--ATG-C-") maskSeqGaps("--ATG-C-", outer_only=TRUE) # Mask with dashes maskSeqGaps(c("ATG-C", "CC..C"), mask_char="-") } \seealso{ See \link{maskSeqEnds} for masking ragged edges. } alakazam/man/plotEdgeTest.Rd0000644000176200001440000000331715065014027015504 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Topology.R \name{plotEdgeTest} \alias{plotEdgeTest} \title{Plot the results of an edge permutation test} \usage{ plotEdgeTest( data, color = "black", main_title = "Edge Test", style = c("histogram", "cdf"), silent = FALSE, ... ) } \arguments{ \item{data}{\link{EdgeTest} object returned by \link{testEdges}.} \item{color}{color of the histogram or lines.} \item{main_title}{string specifying the plot title.} \item{style}{type of plot to draw. One of: \itemize{ \item \code{"histogram"}: histogram of the edge count distribution with a red dotted line denoting the observed value. \item \code{"cdf"}: cumulative distribution function of edge counts with a red dotted line denoting the observed value and a blue dotted line indicating the p-value. }} \item{silent}{if \code{TRUE} do not draw the plot and just return the ggplot2 object; if \code{FALSE} draw the plot.} \item{...}{additional arguments to pass to ggplot2::theme.} } \value{ A \code{ggplot} object defining the plot. } \description{ \code{plotEdgeTest} plots the results of an edge permutation test performed with \code{testEdges} as either a histogram or cumulative distribution function. } \examples{ \donttest{ # Define example tree set graphs <- ExampleTrees[6:10] # Perform edge test on isotypes x <- testEdges(graphs, "c_call", nperm=6) # Plot plotEdgeTest(x, color="steelblue", style="hist") plotEdgeTest(x, style="cdf") } } \seealso{ See \link{testEdges} for performing the test. } alakazam/man/plotDiversityCurve.Rd0000644000176200001440000000446015065014027016767 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Diversity.R \name{plotDiversityCurve} \alias{plotDiversityCurve} \title{Plot the results of alphaDiversity} \usage{ plotDiversityCurve( data, colors = NULL, main_title = "Diversity", legend_title = "Group", log_x = FALSE, log_y = FALSE, xlim = NULL, ylim = NULL, annotate = c("none", "depth"), score = c("diversity", "evenness"), silent = FALSE, ... ) } \arguments{ \item{data}{\link{DiversityCurve} object returned by \link{alphaDiversity}.} \item{colors}{named character vector whose names are values in the \code{group} column of the \code{data} slot of \code{data}, and whose values are colors to assign to those group names.} \item{main_title}{string specifying the plot title.} \item{legend_title}{string specifying the legend title.} \item{log_x}{if \code{TRUE} then plot \eqn{q} on a log scale; if \code{FALSE} plot on a linear scale.} \item{log_y}{if \code{TRUE} then plot the diversity/evenness scores on a log scale; if \code{FALSE} plot on a linear scale.} \item{xlim}{numeric vector of two values specifying the \code{c(lower, upper)} x-axis limits.} \item{ylim}{numeric vector of two values specifying the \code{c(lower, upper)} y-axis limits.} \item{annotate}{string defining whether to added values to the group labels of the legend. When \code{"none"} (default) is specified no annotations are added. Specifying (\code{"depth"}) adds sequence counts to the labels.} \item{score}{one of \code{"diversity"} or \code{"evenness"} specifying which score to plot on the y-asis.} \item{silent}{if \code{TRUE} do not draw the plot and just return the ggplot2 object; if \code{FALSE} draw the plot.} \item{...}{additional arguments to pass to ggplot2::theme.} } \value{ A \code{ggplot} object defining the plot. } \description{ \code{plotDiversityCurve} plots a \code{DiversityCurve} object. } \examples{ # Calculate diversity div <- alphaDiversity(ExampleDb, group="sample_id", nboot=100) # Plot diversity plotDiversityCurve(div, legend_title="Sample") # Plot diversity plotDiversityCurve(div, legend_title="Sample", score="evenness") } \seealso{ See \link{alphaDiversity} and \link{alphaDiversity} for generating \link{DiversityCurve} objects for input. Plotting is performed with \link[ggplot2]{ggplot}. } alakazam/man/estimateAbundance.Rd0000644000176200001440000000551715065014027016521 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Diversity.R \name{estimateAbundance} \alias{estimateAbundance} \title{Estimates the complete clonal relative abundance distribution} \usage{ estimateAbundance( data, clone = "clone_id", copy = NULL, group = NULL, min_n = 30, max_n = NULL, uniform = TRUE, ci = 0.95, nboot = 200, cell_id = "cell_id", progress = FALSE ) } \arguments{ \item{data}{data.frame with Change-O style columns containing clonal assignments.} \item{clone}{name of the \code{data} column containing clone identifiers.} \item{copy}{name of the \code{data} column containing copy numbers for each sequence. If \code{copy=NULL} (the default), then clone abundance is determined by the number of sequences. If a \code{copy} column is specified, then clone abundances is determined by the sum of copy numbers within each clonal group.} \item{group}{name of the \code{data} column containing group identifiers. If \code{NULL} then no grouping is performed and the \code{group} column of the output will contain the value \code{NA} for each row.} \item{min_n}{minimum number of observations to sample. A group with less observations than the minimum is excluded.} \item{max_n}{maximum number of observations to sample. If \code{NULL} then no maximum is set.} \item{uniform}{if \code{TRUE} then uniformly resample each group to the same number of observations. If \code{FALSE} then allow each group to be resampled to its original size or, if specified, \code{max_size}.} \item{ci}{confidence interval to calculate; the value must be between 0 and 1.} \item{nboot}{number of bootstrap realizations to generate.} \item{cell_id}{name of the \code{data} column containing cell identifiers. If \code{cell_id=NULL} then the function will assume bulk data.} \item{progress}{if \code{TRUE} show a progress bar.} } \value{ A \link{AbundanceCurve} object summarizing the abundances. } \description{ \code{estimateAbundance} estimates the complete clonal relative abundance distribution and confidence intervals on clone sizes using bootstrapping. } \examples{ abund <- estimateAbundance(ExampleDb, group="sample_id", nboot=100) } \references{ \enumerate{ \item Chao A. Nonparametric Estimation of the Number of Classes in a Population. Scand J Stat. 1984 11, 265270. \item Chao A, et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol Monogr. 2014 84:45-67. \item Chao A, et al. Unveiling the species-rank abundance distribution by generalizing the Good-Turing sample coverage theory. Ecology. 2015 96, 11891201. } } \seealso{ See \link{plotAbundanceCurve} for plotting of the abundance distribution. See \link{alphaDiversity} for a similar application to clonal diversity. } alakazam/man/gridPlot.Rd0000644000176200001440000000075515065014027014670 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Core.R \name{gridPlot} \alias{gridPlot} \title{Plot multiple ggplot objects} \usage{ gridPlot(..., ncol = 1) } \arguments{ \item{...}{ggplot objects to plot.} \item{ncol}{number of columns in the plot.} } \description{ Plots multiple ggplot objects in an equally sized grid. } \references{ Modified from: http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2) } \seealso{ \link[ggplot2]{ggplot}. } alakazam/man/translateStrings.Rd0000644000176200001440000000242415065014027016446 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Core.R \name{translateStrings} \alias{translateStrings} \title{Translate a vector of strings} \usage{ translateStrings(strings, translation) } \arguments{ \item{strings}{vector of character strings to modify.} \item{translation}{named character vector or a list of character vectors specifying the strings to replace (values) and their replacements (names).} } \value{ A modified \code{strings} vector. } \description{ \code{translateStrings} modifies a character vector by substituting one or more strings with a replacement string. } \details{ Does not perform partial replacements. Each translation value must match a complete \code{strings} value or it will not be replaced. Values that do not have a replacement named in the \code{translation} parameter will not be modified. Replacement is accomplished using \link{gsub}. } \examples{ # Using a vector translation strings <- LETTERS[1:5] translation <- c("POSITION1"="A", "POSITION5"="E") translateStrings(strings, translation) # Using a list translation strings <- LETTERS[1:5] translation <- list("1-3"=c("A","B","C"), "4-5"=c("D","E")) translateStrings(strings, translation) } \seealso{ See \link{gsub} for single value replacement in the base package. } alakazam/man/junctionAlignment.Rd0000644000176200001440000000673215065014027016575 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Sequence.R \name{junctionAlignment} \alias{junctionAlignment} \title{Calculate junction region alignment properties} \usage{ junctionAlignment( data, germline_db, v_call = "v_call", d_call = "d_call", j_call = "j_call", v_germline_start = "v_germline_start", v_germline_end = "v_germline_end", d_germline_start = "d_germline_start", d_germline_end = "d_germline_end", j_germline_start = "j_germline_start", j_germline_end = "j_germline_end", np1_length = "np1_length", np2_length = "np2_length", junction = "junction", junction_length = "junction_length", sequence_alignment = "sequence_alignment" ) } \arguments{ \item{data}{\code{data.frame} containing sequence data.} \item{germline_db}{reference germline database for the V, D and J genes. in \code{data}} \item{v_call}{V gene assignment column.} \item{d_call}{D gene assignment column.} \item{j_call}{J gene assignment column.} \item{v_germline_start}{column containing the start position of the alignment in the V reference germline.} \item{v_germline_end}{column containing the end position of the alignment in the V reference germline.} \item{d_germline_start}{column containing the start position of the alignment in the D reference germline.} \item{d_germline_end}{column containing the start position of the alignment in the D reference germline.} \item{j_germline_start}{column containing the start position of the alignment in the J reference germline.} \item{j_germline_end}{column containing the start position of the alignment in the J reference germline.} \item{np1_length}{combined length of the N and P regions between the V and D regions (heavy chain) or V and J regions (light chain).} \item{np2_length}{combined length of the N and P regions between the D and J regions (heavy chain).} \item{junction}{column containing the junction sequence.} \item{junction_length}{column containing the length of the junction region in nucleotides.} \item{sequence_alignment}{column containing the aligned sequence.} } \value{ A modified input \code{data.frame} with the following additional columns storing junction alignment information: \enumerate{ \item \code{e3v_length}: number of 3' V germline nucleotides deleted. \item \code{e5d_length}: number of 5' D germline nucleotides deleted. \item \code{e3d_length}: number of 3' D germline nucleotides deleted. \item \code{e5j_length}: number of 5' J germline nucleotides deleted. \item \code{v_cdr3_length}: number of sequence_alignment V nucleotides in the CDR3. \item \code{j_cdr3_length}: number of sequence_alignment J nucleotides in the CDR3. } } \description{ \code{junctionAlignment} determines the number of deleted germline nucleotides in the junction region and the number of V gene and J gene nucleotides in the CDR3. } \examples{ germline_db <- list( "IGHV3-11*05"="CAGGTGCAGCTGGTGGAGTCTGGGGGA...GGCTTGGTCAAGCCTGGAGGGTCCCTGAGACT CTCCTGTGCAGCCTCTGGATTCACCTTC............AGTGACTACTACATGAGCTGGATCCGCCAGGCTCCAG GGAAGGGGCTGGAGTGGGTTTCATACATTAGTAGTAGT......AGTAGTTACACAAACTACGCAGACTCTGTGAAG ...GGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGA CACGGCCGTGTATTACTGTGCGAGAGA", "IGHD3-10*01"="GTATTACTATGGTTCGGGGAGTTATTATAAC", "IGHJ5*02"="ACAACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAG" ) db <- junctionAlignment(SingleDb, germline_db) } alakazam/man/makeChangeoClone.Rd0000644000176200001440000001451415065014027016265 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Lineage.R \name{makeChangeoClone} \alias{makeChangeoClone} \title{Generate a ChangeoClone object for lineage construction} \usage{ makeChangeoClone( data, id = "sequence_id", seq = "sequence_alignment", germ = "germline_alignment", v_call = "v_call", j_call = "j_call", junc_len = "junction_length", clone = "clone_id", mask_char = "N", locus = "locus", max_mask = 0, pad_end = FALSE, text_fields = NULL, num_fields = NULL, seq_fields = NULL, add_count = TRUE, verbose = FALSE ) } \arguments{ \item{data}{data.frame containing the AIRR or Change-O data for a clone. See Details for the list of required columns and their default values.} \item{id}{name of the column containing sequence identifiers.} \item{seq}{name of the column containing observed DNA sequences. All sequences in this column must be multiple aligned.} \item{germ}{name of the column containing germline DNA sequences. All entries in this column should be identical for any given clone, and they must be multiple aligned with the data in the \code{seq} column.} \item{v_call}{name of the column containing V-segment allele assignments. All entries in this column should be identical to the gene level.} \item{j_call}{name of the column containing J-segment allele assignments. All entries in this column should be identical to the gene level.} \item{junc_len}{name of the column containing the length of the junction as a numeric value. All entries in this column should be identical for any given clone.} \item{clone}{name of the column containing the identifier for the clone. All entries in this column should be identical.} \item{mask_char}{character to use for masking and padding.} \item{locus}{name of the column containing locus specification. Must be present and only contain the value "IGH", representing heavy chains.} \item{max_mask}{maximum number of characters to mask at the leading and trailing sequence ends. If \code{NULL} then the upper masking bound will be automatically determined from the maximum number of observed leading or trailing Ns amongst all sequences. If set to \code{0} (default) then masking will not be performed.} \item{pad_end}{if \code{TRUE} pad the end of each sequence with \code{mask_char} to make every sequence the same length.} \item{text_fields}{text annotation columns to retain and merge during duplicate removal.} \item{num_fields}{numeric annotation columns to retain and sum during duplicate removal.} \item{seq_fields}{sequence annotation columns to retain and collapse during duplicate removal. Note, this is distinct from the \code{seq} and \code{germ} arguments, which contain the primary sequence data for the clone and should not be repeated in this argument.} \item{add_count}{if \code{TRUE} add an additional annotation column called \code{collapse_count} during duplicate removal that indicates the number of sequences that were collapsed.} \item{verbose}{passed on to \code{collapseDuplicates}. If \code{TRUE}, report the numbers of input, discarded and output sequences; otherwise, process sequences silently.} } \value{ A \link{ChangeoClone} object containing the modified clone. } \description{ \code{makeChangeoClone} takes a data.frame with AIRR or Change-O style columns as input and masks gap positions, masks ragged ends, removes duplicate sequences, and merges annotations associated with duplicate sequences. It returns a \code{ChangeoClone} object which serves as input for lineage reconstruction. \strong{Note}: To use the most recent methods for building, visualizing and analyzing trees, use the R package [Dowser](https://dowser.readthedocs.io). } \details{ The input data.frame (\code{data}) must columns for each of the required column name arguments: \code{id}, \code{seq}, \code{germ}, \code{v_call}, \code{j_call}, \code{junc_len}, and \code{clone}. The default values are as follows: \itemize{ \item \code{id = "sequence_id"}: unique sequence identifier. \item \code{seq = "sequence_alignment"}: IMGT-gapped sample sequence. \item \code{germ = "germline_alignment"}: IMGT-gapped germline sequence. \item \code{v_call = "v_call"}: V segment allele call. \item \code{j_call = "j_call"}: J segment allele call. \item \code{junc_len = "junction_length"}: junction sequence length. \item \code{clone = "clone_id"}: clone identifier. } Additional annotation columns specified in the \code{text_fields}, \code{num_fields} or \code{seq_fields} arguments will be retained in the \code{data} slot of the return object, but are not required. If the input data.frame \code{data} already contains a column named \code{sequence}, which is not used as the \code{seq} argument, then that column will not be retained. The default columns are IMGT-gapped sequence columns, but this is not a requirement. However, all sequences (both observed and germline) must be multiple aligned using some scheme for both proper duplicate removal and lineage reconstruction. The value for the germline sequence, V-segment gene call, J-segment gene call, junction length, and clone identifier are determined from the first entry in the \code{germ}, \code{v_call}, \code{j_call}, \code{junc_len} and \code{clone} columns, respectively. For any given clone, each value in these columns should be identical. } \examples{ # Example data db <- data.frame(sequence_id=LETTERS[1:4], sequence_alignment=c("CCCCTGGG", "CCCCTGGN", "NAACTGGN", "NNNCTGNN"), germline_alignment="CCCCAGGG", v_call="Homsap IGKV1-39*01 F", j_call="Homsap IGKJ5*01 F", junction_length=2, clone_id=1, locus=rep("IGH", length=4), c_call=c("IGHM", "IGHG", "IGHG", "IGHA"), duplicate_count=1:4, stringsAsFactors=FALSE) # Without end masking makeChangeoClone(db, text_fields="c_call", num_fields="duplicate_count") # With end masking makeChangeoClone(db, max_mask=3, text_fields="c_call", num_fields="duplicate_count") } \seealso{ Executes in order \link{maskSeqGaps}, \link{maskSeqEnds}, \link{padSeqEnds}, and \link{collapseDuplicates}. Returns a \link{ChangeoClone} object which serves as input to \link{buildPhylipLineage}. } alakazam/man/getAAMatrix.Rd0000644000176200001440000000125015065014027015241 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Sequence.R \name{getAAMatrix} \alias{getAAMatrix} \title{Build an AA distance matrix} \usage{ getAAMatrix(gap = 0) } \arguments{ \item{gap}{value to assign to characters in the set \code{c("-", ".")}.} } \value{ A \code{matrix} of amino acid character distances with row and column names indicating the character pair. } \description{ \code{getAAMatrix} returns a Hamming distance matrix for IUPAC ambiguous amino acid characters. } \examples{ getAAMatrix() } \seealso{ Creates an amino acid distance matrix for \link{seqDist}. See \link{getDNAMatrix} for nucleotide distances. } alakazam/man/seqEqual.Rd0000644000176200001440000000221715065014027014657 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/RcppExports.R \name{seqEqual} \alias{seqEqual} \title{Test DNA sequences for equality.} \usage{ seqEqual(seq1, seq2, ignore = as.character(c("N", "-", ".", "?"))) } \arguments{ \item{seq1}{character string containing a DNA sequence.} \item{seq2}{character string containing a DNA sequence.} \item{ignore}{vector of characters to ignore when testing for equality. Default is to ignore c("N",".","-","?")} } \value{ Returns \code{TRUE} if sequences are equal and \code{FALSE} if they are not. Sequences of unequal length will always return \code{FALSE} regardless of their character values. } \description{ \code{seqEqual} checks if two DNA sequences are identical. } \examples{ # Ignore gaps seqEqual("ATG-C", "AT--C") seqEqual("ATGGC", "ATGGN") seqEqual("AT--T", "ATGGC") # Ignore only Ns seqEqual("ATG-C", "AT--C", ignore="N") seqEqual("ATGGC", "ATGGN", ignore="N") seqEqual("AT--T", "ATGGC", ignore="N") } \seealso{ Used by \link{pairwiseEqual} within \link{collapseDuplicates}. See \link{seqDist} for calculation Hamming distances between sequences. } alakazam/man/maskPositionsByQuality.Rd0000644000176200001440000000277115065014027017613 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Fastq.R \name{maskPositionsByQuality} \alias{maskPositionsByQuality} \title{Mask sequence positions with low quality} \usage{ maskPositionsByQuality( data, min_quality = 70, sequence = "sequence_alignment", quality_num = "quality_alignment_num" ) } \arguments{ \item{data}{\code{data.frame} containing sequence data.} \item{min_quality}{minimum quality score. Positions with sequencing quality less than \code{min_qual} will be masked.} \item{sequence}{column in \code{data} with sequence data to be masked.} \item{quality_num}{column in \code{data} with quality scores (a string of numeric values, comma separated) that can be used to mask \code{sequence}.} } \value{ Modified \code{data} data.frame with an additional field containing quality masked sequences. The name of this field is created concatenating the \code{sequence} name and \code{"_masked"}. } \description{ \code{maskPositionsByQuality} will replace positions that have a sequencing quality score lower that \code{min_quality} with an \code{"N"} character. } \examples{ db <- airr::read_rearrangement(system.file("extdata", "example_quality.tsv", package="alakazam")) fastq_file <- system.file("extdata", "example_quality.fastq", package="alakazam") db <- readFastqDb(db, fastq_file, quality_offset=-33) maskPositionsByQuality(db, min_quality=90, quality_num="quality_alignment_num") } \seealso{ \link{readFastqDb} and \link{getPositionQuality} } alakazam/man/pairwiseDist.Rd0000644000176200001440000000347015065014027015550 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Sequence.R \name{pairwiseDist} \alias{pairwiseDist} \title{Calculate pairwise distances between sequences} \usage{ pairwiseDist(seq, dist_mat = getDNAMatrix()) } \arguments{ \item{seq}{character vector containing a DNA sequences.} \item{dist_mat}{Character distance matrix. Defaults to a Hamming distance matrix returned by \link{getDNAMatrix}. If gap characters, \code{c("-", ".")}, are assigned a value of -1 in \code{dist_mat} then contiguous gaps of any run length, which are not present in both sequences, will be counted as a distance of 1. Meaning, indels of any length will increase the sequence distance by 1. Gap values other than -1 will return a distance that does not consider indels as a special case.} } \value{ A matrix of numerical distance between each entry in \code{seq}. If \code{seq} is a named vector, row and columns names will be added accordingly. Amino acid distance matrix may be built with \link{getAAMatrix}. Uses \link{seqDist} for calculating distances between pairs. See \link{pairwiseEqual} for generating an equivalence matrix. } \description{ \code{pairwiseDist} calculates all pairwise distance between a set of sequences. } \examples{ # Gaps will be treated as Ns with a gap=0 distance matrix pairwiseDist(c(A="ATGGC", B="ATGGG", C="ATGGG", D="AT--C"), dist_mat=getDNAMatrix(gap=0)) # Gaps will be treated as universally non-matching characters with gap=1 pairwiseDist(c(A="ATGGC", B="ATGGG", C="ATGGG", D="AT--C"), dist_mat=getDNAMatrix(gap=1)) # Gaps of any length will be treated as single mismatches with a gap=-1 distance matrix pairwiseDist(c(A="ATGGC", B="ATGGG", C="ATGGG", D="AT--C"), dist_mat=getDNAMatrix(gap=-1)) } alakazam/man/charge.Rd0000644000176200001440000000324315065014027014330 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AminoAcids.R \name{charge} \alias{charge} \title{Calculates the net charge of amino acid sequences.} \usage{ charge(seq, pH = 7.4, pK = NULL, normalize = FALSE) } \arguments{ \item{seq}{vector strings defining of amino acid sequences.} \item{pH}{environmental pH.} \item{pK}{named vector defining pK values for each charged amino acid, where names are the single-letter amino acid character codes \code{c("R", "H", "K", "D", "E", "C", "Y")}). If \code{NULL}, then the EMBOSS scale is used.} \item{normalize}{if \code{TRUE} then divide the net charge of each amino acid sequence by the number of informative positions. Non-informative position are defined by the presence any character in \code{c("X", "-", ".", "*")}. If \code{FALSE} then return the raw net charge.} } \value{ A vector of net charges for the sequence(s). } \description{ \code{charge} calculates the net charge of amino acid sequences using the method of Moore, 1985, with exclusion of the C-terminus and N-terminus charges. } \examples{ seq <- c("CARDRSTPWRRGIASTTVRTSW", "XXTQMYVRT") # Unnormalized charge charge(seq) # Normalized charge charge(seq, normalize=TRUE) # Use the Murray et al, 2006 scores from the seqinr package library(seqinr) data(pK) x <- setNames(pK[["Murray"]], rownames(pK)) # Calculate charge charge(seq, pK=x) } \references{ \enumerate{ \item Moore DS. Amino acid and peptide net charges: A simple calculational procedure. Biochem Educ. 13, 10-11 (1985). \item \url{https://emboss.sourceforge.net/apps/cvs/emboss/apps/iep.html} } } \seealso{ For additional pK scales see \code{\link[seqinr]{pK}}. } alakazam/man/summarizeSubtrees.Rd0000644000176200001440000000431415065014027016630 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Topology.R \name{summarizeSubtrees} \alias{summarizeSubtrees} \title{Generate subtree summary statistics for a tree} \usage{ summarizeSubtrees(graph, fields = NULL, root = "Germline") } \arguments{ \item{graph}{igraph object containing an annotated lineage tree.} \item{fields}{annotation fields to add to the output.} \item{root}{name of the root (germline) node.} } \value{ A data.frame with columns: \itemize{ \item \code{name}: node name. \item \code{parent}: name of the parent node. \item \code{outdegree}: number of edges leading from the node. \item \code{size}: total number of nodes within the subtree rooted at the node. \item \code{depth}: the depth of the subtree that is rooted at the node. \item \code{pathlength}: the maximum pathlength beneath the node. \item \code{outdegree_norm}: \code{outdegree} normalized by the total number of edges. \item \code{size_norm}: \code{size} normalized by the largest subtree size (the germline). \item \code{depth_norm}: \code{depth} normalized by the largest subtree depth (the germline). \item \code{pathlength_norm}: \code{pathlength} normalized by the largest subtree pathlength (the germline). } An additional column corresponding to the value of \code{field} is added when specified. } \description{ \code{summarizeSubtrees} calculates summary statistics for each node of a tree. Includes both node properties and subtree properties. } \examples{ # Summarize a tree graph <- ExampleTrees[[23]] summarizeSubtrees(graph, fields="c_call", root="Germline") } \seealso{ See \link{buildPhylipLineage} for generating input trees. See \link{getPathLengths} for calculating path length to nodes. } alakazam/man/alphaDiversity.Rd0000644000176200001440000001060415065014027016066 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Diversity.R \name{alphaDiversity} \alias{alphaDiversity} \title{Calculate clonal alpha diversity} \usage{ alphaDiversity(data, min_q = 0, max_q = 4, step_q = 0.1, ci = 0.95, ...) } \arguments{ \item{data}{data.frame with Change-O style columns containing clonal assignments or a \link{AbundanceCurve} generate by \link{estimateAbundance} object containing a previously calculated bootstrap distributions of clonal abundance.} \item{min_q}{minimum value of \eqn{q}.} \item{max_q}{maximum value of \eqn{q}.} \item{step_q}{value by which to increment \eqn{q}.} \item{ci}{confidence interval to calculate; the value must be between 0 and 1.} \item{...}{additional arguments to pass to \link{estimateAbundance}. Additional arguments are ignored if a \link{AbundanceCurve} is provided as input.} } \value{ A \link{DiversityCurve} object summarizing the diversity scores. } \description{ \code{alphaDiversity} takes in a data.frame or \link{AbundanceCurve} and computes diversity scores (\eqn{D}) over an interval of diversity orders (\eqn{q}). } \details{ Clonal diversity is calculated using the generalized diversity index (Hill numbers) proposed by Hill (Hill, 1973). See \link{calcDiversity} for further details. To generate a smooth curve, \eqn{D} is calculated for each value of \eqn{q} from \code{min_q} to \code{max_q} incremented by \code{step_q}. When \code{uniform=TRUE} variability in total sequence counts across unique values in the \code{group} column is corrected by repeated resampling from the estimated complete clonal distribution to a common number of sequences. The complete clonal abundance distribution that is resampled from is inferred by using the Chao1 estimator to infer the number of unseen clones, followed by applying the relative abundance correction and unseen clone frequencies described in Chao et al, 2015. The diversity index (\eqn{D}) for each group is the mean value of over all resampling realizations. Confidence intervals are derived using the standard deviation of the resampling realizations, as described in Chao et al, 2015. Significance of the difference in diversity index (\code{D}) between groups is tested by constructing a bootstrap delta distribution for each pair of unique values in the \code{group} column. The bootstrap delta distribution is built by subtracting the diversity index \code{Da} in group \code{a} from the corresponding value \eqn{Db} in group \code{b}, for all bootstrap realizations, yielding a distribution of \code{nboot} total deltas; where group \code{a} is the group with the greater mean \code{D}. The p-value for hypothesis \code{Da != Db} is the value of \code{P(0)} from the empirical cumulative distribution function of the bootstrap delta distribution, multiplied by 2 for the two-tailed correction. Note, this method may inflate statistical significance when clone sizes are uniformly small, such as when most clones sizes are 1, sample size is small, and \code{max_n} is near the total count of the smallest data group. Use caution when interpreting the results in such cases. } \examples{ # Group by sample identifier in two steps abund <- estimateAbundance(ExampleDb, group="sample_id", nboot=100) div <- alphaDiversity(abund, step_q=1, max_q=10) plotDiversityCurve(div, legend_title="Sample") # Grouping by isotype rather than sample identifier in one step div <- alphaDiversity(ExampleDb, group="c_call", min_n=40, step_q=1, max_q=10, nboot=100) plotDiversityCurve(div, legend_title="Isotype") } \references{ \enumerate{ \item Hill M. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973 54(2):427-32. \item Chao A. Nonparametric Estimation of the Number of Classes in a Population. Scand J Stat. 1984 11, 265270. \item Chao A, et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol Monogr. 2014 84:45-67. \item Chao A, et al. Unveiling the species-rank abundance distribution by generalizing the Good-Turing sample coverage theory. Ecology. 2015 96, 11891201. } } \seealso{ See \link{calcDiversity} for the basic calculation and \link{DiversityCurve} for the return object. See \link{plotDiversityCurve} for plotting the return object. } alakazam/man/padSeqEnds.Rd0000644000176200001440000000244115065014027015125 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Sequence.R \name{padSeqEnds} \alias{padSeqEnds} \title{Pads ragged ends of aligned DNA sequences} \usage{ padSeqEnds(seq, len = NULL, start = FALSE, pad_char = "N", mod3 = TRUE) } \arguments{ \item{seq}{character vector of DNA sequence strings.} \item{len}{length to pad to. Only applies if longer than the maximum length of the data in \code{seq}.} \item{start}{if \code{TRUE} pad the beginning of each sequence instead of the end.} \item{pad_char}{character to use for padding.} \item{mod3}{if \code{TRUE} pad sequences to be of length multiple three.} } \value{ A modified \code{seq} vector with padded sequences. } \description{ \code{padSeqEnds} takes a vector of DNA sequences, as character strings, and appends the ends of each sequence with an appropriate number of \code{"N"} characters to create a sequence vector with uniform lengths. } \examples{ # Default behavior uniformly pads ragged ends seq <- c("CCCCTGGG", "ACCCTG", "CCCC") padSeqEnds(seq) # Pad to fixed length padSeqEnds(seq, len=15) # Add padding to the beginning of the sequences instead of the ends padSeqEnds(seq, start=TRUE) padSeqEnds(seq, len=15, start=TRUE) } \seealso{ See \link{maskSeqEnds} for creating uniform masking from existing masking. } alakazam/man/getDNAMatrix.Rd0000644000176200001440000000200115065014027015355 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Sequence.R \name{getDNAMatrix} \alias{getDNAMatrix} \title{Build a DNA distance matrix} \usage{ getDNAMatrix(gap = -1) } \arguments{ \item{gap}{value to assign to characters in the set \code{c("-", ".")}.} } \value{ A \code{matrix} of DNA character distances with row and column names indicating the character pair. By default, distances will be either 0 (equivalent), 1 (non-equivalent or missing), or -1 (gap). } \description{ \code{getDNAMatrix} returns a Hamming distance matrix for IUPAC ambiguous DNA characters with modifications for gap, \code{c("-", ".")}, and missing, \code{c("?")}, character values. } \examples{ # Set gap characters to Inf distance # Distinguishes gaps from Ns getDNAMatrix() # Set gap characters to 0 distance # Makes gap characters equivalent to Ns getDNAMatrix(gap=0) } \seealso{ Creates DNA distance matrix for \link{seqDist}. See \link{getAAMatrix} for amino acid distances. } alakazam/man/testDiversity.Rd0000644000176200001440000001116515065014027015763 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Deprecated.R \name{testDiversity} \alias{testDiversity} \title{Pairwise test of the diversity index} \usage{ testDiversity( data, q, group, clone = "CLONE", copy = NULL, min_n = 30, max_n = NULL, nboot = 2000, progress = FALSE, ci = 0.95, cell_id = "cell_id" ) } \arguments{ \item{data}{data.frame with Change-O style columns containing clonal assignments.} \item{q}{diversity order to test.} \item{group}{name of the \code{data} column containing group identifiers.} \item{clone}{name of the \code{data} column containing clone identifiers.} \item{copy}{name of the \code{data} column containing copy numbers for each sequence. If \code{copy=NULL} (the default), then clone abundance is determined by the number of sequences. If a \code{copy} column is specified, then clone abundances is determined by the sum of copy numbers within each clonal group.} \item{min_n}{minimum number of observations to sample. A group with less observations than the minimum is excluded.} \item{max_n}{maximum number of observations to sample. If \code{NULL} the maximum if automatically determined from the size of the largest group.} \item{nboot}{number of bootstrap realizations to perform.} \item{progress}{if \code{TRUE} show a progress bar.} \item{ci}{confidence interval to calculate; the value must be between 0 and 1.} \item{cell_id}{the name of the \code{data} column containing cell identifiers.} } \value{ A \link{DiversityCurve} object containing slot test with p-values and summary statistics. } \description{ \code{testDiversity} performs pairwise significance tests of the diversity index (\eqn{D}) at a given diversity order (\eqn{q}) for a set of annotation groups via rarefaction and bootstrapping. } \details{ Clonal diversity is calculated using the generalized diversity index proposed by Hill (Hill, 1973). See \link{calcDiversity} for further details. Diversity is calculated on the estimated complete clonal abundance distribution. This distribution is inferred by using the Chao1 estimator to estimate the number of seen clones, and applying the relative abundance correction and unseen clone frequency described in Chao et al, 2014. Variability in total sequence counts across unique values in the \code{group} column is corrected by repeated resampling from the estimated complete clonal distribution to a common number of sequences. The diversity index estimate (\eqn{D}) for each group is the mean value of over all bootstrap realizations. Significance of the difference in diversity index (\eqn{D}) between groups is tested by constructing a bootstrap delta distribution for each pair of unique values in the \code{group} column. The bootstrap delta distribution is built by subtracting the diversity index \eqn{Da} in \eqn{group-a} from the corresponding value \eqn{Db} in \eqn{group-b}, for all bootstrap realizations, yielding a distribution of \code{nboot} total deltas; where \eqn{group-a} is the group with the greater mean \eqn{D}. The p-value for hypothesis \eqn{Da != Db} is the value of \eqn{P(0)} from the empirical cumulative distribution function of the bootstrap delta distribution, multiplied by 2 for the two-tailed correction. } \note{ This method may inflate statistical significance when clone sizes are uniformly small, such as when most clones sizes are 1, sample size is small, and \code{max_n} is near the total count of the smallest data group. Use caution when interpreting the results in such cases. We are currently investigating this potential problem. } \examples{ \dontrun{ # Groups under the size threshold are excluded and a warning message is issued. testDiversity(ExampleDb, "sample_id", q=0, min_n=30, nboot=100) } } \references{ \enumerate{ \item Hill M. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973 54(2):427-32. \item Chao A. Nonparametric Estimation of the Number of Classes in a Population. Scand J Stat. 1984 11, 265270. \item Wu Y-CB, et al. Influence of seasonal exposure to grass pollen on local and peripheral blood IgE repertoires in patients with allergic rhinitis. J Allergy Clin Immunol. 2014 134(3):604-12. \item Chao A, et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol Monogr. 2014 84:45-67. \item Chao A, et al. Unveiling the species-rank abundance distribution by generalizing the Good-Turing sample coverage theory. Ecology. 2015 96, 11891201. } } \seealso{ \link{alphaDiversity} } alakazam/man/ABBREV_AA.Rd0000644000176200001440000000072615065014027014404 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Data.R \docType{data} \name{ABBREV_AA} \alias{ABBREV_AA} \title{Amino acid abbreviation translations} \format{ Named character vector defining single-letter character codes to three-letter abbreviation mappings. } \usage{ ABBREV_AA } \description{ Mappings of amino acid abbreviations. } \examples{ aa <- c("Ala", "Ile", "Trp") translateStrings(aa, ABBREV_AA) } \keyword{datasets} alakazam/man/DiversityCurve-class.Rd0000644000176200001440000000524315065014027017173 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Classes.R \docType{class} \name{DiversityCurve-class} \alias{DiversityCurve-class} \alias{DiversityCurve} \alias{print,DiversityCurve-method} \alias{DiversityCurve-method} \alias{plot,DiversityCurve,missing-method} \alias{plot,DiversityCurve,numeric-method} \title{S4 class defining a diversity curve} \usage{ \S4method{print}{DiversityCurve}(x) \S4method{plot}{DiversityCurve,missing}(x, y, ...) \S4method{plot}{DiversityCurve,numeric}(x, y, ...) } \arguments{ \item{x}{DiversityCurve object} \item{y}{diversity order to plot (q).} \item{...}{arguments to pass to \link{plotDiversityCurve} or \link{plotDiversityTest}.} } \description{ \code{DiversityCurve} defines diversity (\eqn{D}) scores over multiple diversity orders (\eqn{Q}). } \section{Slots}{ \describe{ \item{\code{diversity}}{data.frame defining the diversity curve with the following columns: \itemize{ \item \code{group}: group label. \item \code{q}: diversity order. \item \code{d}: mean diversity index over all bootstrap realizations. \item \code{d_sd}: standard deviation of the diversity index over all bootstrap realizations. \item \code{d_lower}: diversity lower confidence interval bound. \item \code{d_upper}: diversity upper confidence interval bound. \item \code{e}: evenness index calculated as \code{D} divided by \code{D} at \code{Q=0}. \item \code{e_lower}: evenness lower confidence interval bound. \item \code{e_upper}: evenness upper confidence interval bound. }} \item{\code{tests}}{data.frame describing the significance test results with columns: \itemize{ \item \code{test}: string listing the two groups tested. \item \code{delta_mean}: mean of the \eqn{D} bootstrap delta distribution for the test. \item \code{delta_sd}: standard deviation of the \eqn{D} bootstrap delta distribution for the test. \item \code{pvalue}: p-value for the test. }} \item{\code{group_by}}{string specifying the name of the grouping column in diversity calculation.} \item{\code{groups}}{vector specifying the names of unique groups in group column in diversity calculation.} \item{\code{method}}{string specifying the type of diversity calculated.} \item{\code{q}}{vector of diversity hill diversity indices used for computing diversity.} \item{\code{n}}{numeric vector indication the number of sequences sampled in each group.} \item{\code{ci}}{confidence interval defining the upper and lower bounds (a value between 0 and 1).} }} alakazam/man/combineIgphyml.Rd0000644000176200001440000000415315065014027016046 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Lineage.R \name{combineIgphyml} \alias{combineIgphyml} \title{Combine IgPhyML object parameters into a dataframe} \usage{ combineIgphyml(iglist, format = c("wide", "long")) } \arguments{ \item{iglist}{list of igphyml objects returned by \link{readIgphyml}. Each must have an \code{id} column in its \code{param} attribute, which can be added automatically using the \code{id} option of \code{readIgphyml}.} \item{format}{string specifying whether each column of the resulting data.frame should represent a parameter (\code{wide}) or if there should only be three columns; i.e. id, variable, and value (\code{long}).} } \value{ A data.frame containing HLP model parameter estimates for all igphyml objects. Only parameters shared among all objects will be returned. } \description{ \code{combineIgphyml} combines IgPhyML object parameters into a data.frame. } \details{ \code{combineIgphyml} combines repertoire-wide parameter estimates from multiple igphyml objects produced by readIgphyml into a dataframe that can be easily used for plotting and other hypothesis testing analyses. All igphyml objects used must have an "id" column in their \code{param} attribute, which can be added automatically from the \code{id} flag of \code{readIgphyml}. } \examples{ \dontrun{ # Read in and combine two igphyml runs s1 <- readIgphyml("IB+7d_lineages_gy.tsv_igphyml_stats_hlp.tab", id="+7d") s2 <- readIgphyml("IB+7d_lineages_gy.tsv_igphyml_stats_hlp.tab", id="s2") combineIgphyml(list(s1, s2)) } } \references{ \enumerate{ \item Hoehn KB, Lunter G, Pybus OG - A Phylogenetic Codon Substitution Model for Antibody Lineages. Genetics 2017 206(1):417-427 https://doi.org/10.1534/genetics.116.196303 \item Hoehn KB, Vander Heiden JA, Zhou JQ, Lunter G, Pybus OG, Kleinstein SHK - Repertoire-wide phylogenetic models of B cell molecular evolution reveal evolutionary signatures of aging and vaccination. bioRxiv 2019 https://doi.org/10.1101/558825 } } \seealso{ \link{readIgphyml} } alakazam/man/calcCoverage.Rd0000644000176200001440000000222215065014027015451 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Diversity.R \name{calcCoverage} \alias{calcCoverage} \title{Calculate sample coverage} \usage{ calcCoverage(x, r = 1) } \arguments{ \item{x}{numeric vector of abundance counts.} \item{r}{coverage order to calculate.} } \value{ The sample coverage of the given order \code{r}. } \description{ \code{calcCoverage} calculates the sample coverage estimate, a measure of sample completeness, for varying orders using the method of Chao et al, 2015, falling back to the Chao1 method in the first order case. } \examples{ # Calculate clone sizes clones <- countClones(ExampleDb, groups="sample_id") # Calculate 1first order coverage for a single sample calcCoverage(clones$seq_count[clones$sample_id == "+7d"]) } \references{ \enumerate{ \item Chao A. Nonparametric Estimation of the Number of Classes in a Population. Scand J Stat. 1984 11, 265270. \item Chao A, et al. Unveiling the species-rank abundance distribution by generalizing the Good-Turing sample coverage theory. Ecology. 2015 96, 11891201. } } \seealso{ Used by \link{alphaDiversity}. } alakazam/man/alakazam.Rd0000644000176200001440000001144515065014027014663 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Alakazam.R \name{alakazam} \alias{alakazam} \title{The Alakazam package} \description{ \code{alakazam} in a member of the Immcantation framework of tools and serves five main purposes: \itemize{ \item Providing core functionality for other R packages in Immcantation. This includes common tasks such as file I/O, basic DNA sequence manipulation, and interacting with V(D)J segment and gene annotations. \item Providing an R interface for interacting with the output of the pRESTO and Change-O tool suites. \item Performing clonal abundance and diversity analysis on lymphocyte repertoires. \item Performing lineage reconstruction on clonal populations of immunoglobulin (Ig) sequences. \item Performing physicochemical property analyses of lymphocyte receptor sequences. } For additional details regarding the use of the \code{alakazam} package see the vignettes:\cr \code{browseVignettes("alakazam")} } \section{File I/O}{ \itemize{ \item \link{readChangeoDb}: Input Change-O style files. \item \link{writeChangeoDb}: Output Change-O style files. } } \section{Sequence cleaning}{ \itemize{ \item \link{maskSeqEnds}: Mask ragged ends. \item \link{maskSeqGaps}: Mask gap characters. \item \link{collapseDuplicates}: Remove duplicate sequences. } } \section{Lineage reconstruction}{ \itemize{ \item \link{makeChangeoClone}: Clean sequences for lineage reconstruction. \item \link{buildPhylipLineage}: Perform lineage reconstruction of Ig sequences. } } \section{Lineage topology analysis}{ \itemize{ \item \link{tableEdges}: Tabulate annotation relationships over edges. \item \link{testEdges}: Significance testing of annotation edges. \item \link{testMRCA}: Significance testing of MRCA annotations. \item \link{summarizeSubtrees}: Various summary statistics for subtrees. \item \link{plotSubtrees}: Plot distributions of summary statistics for a population of trees. } } \section{Diversity analysis}{ \itemize{ \item \link{countClones}: Calculate clonal abundance. \item \link{estimateAbundance}: Bootstrap clonal abundance curves. \item \link{alphaDiversity}: Generate clonal alpha diversity curves. \item \link{plotAbundanceCurve}: Plot clone size distribution as a rank-abundance \item \link{plotDiversityCurve}: Plot clonal diversity curves. \item \link{plotDiversityTest}: Plot testing at given diversity hill indices. } } \section{Ig and TCR sequence annotation}{ \itemize{ \item \link{countGenes}: Calculate Ig and TCR allele, gene and family usage. \item \link{extractVRegion}: Extract CDRs and FWRs sub-sequences. \item \link{getAllele}: Get V(D)J allele names. \item \link{getGene}: Get V(D)J gene names. \item \link{getFamily}: Get V(D)J family names. \item \link{junctionAlignment}: Junction alignment properties } } \section{Sequence distance calculation}{ \itemize{ \item \link{seqDist}: Calculate Hamming distance between two sequences. \item \link{seqEqual}: Test two sequences for equivalence. \item \link{pairwiseDist}: Calculate a matrix of pairwise Hamming distances for a set of sequences. \item \link{pairwiseEqual}: Calculate a logical matrix of pairwise equivalence for a set of sequences. } } \section{Amino acid properties}{ \itemize{ \item \link{translateDNA}: Translate DNA sequences to amino acid sequences. \item \link{aminoAcidProperties}: Calculate various physicochemical properties of amino acid sequences. \item \link{countPatterns}: Count patterns in sequences. } } \references{ \enumerate{ \item Vander Heiden JA, Yaari G, et al. pRESTO: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires. Bioinformatics. 2014 30(13):1930-2. \item Stern JNH, Yaari G, Vander Heiden JA, et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med. 2014 6(248):248ra107. \item Wu Y-CB, et al. Influence of seasonal exposure to grass pollen on local and peripheral blood IgE repertoires in patients with allergic rhinitis. J Allergy Clin Immunol. 2014 134(3):604-12. \item Gupta NT, Vander Heiden JA, et al. Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. Bioinformatics. 2015 Oct 15;31(20):3356-8. } } alakazam/man/countGenes.Rd0000644000176200001440000001255215065026552015222 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Gene.R \name{countGenes} \alias{countGenes} \title{Tabulates V(D)J allele, gene or family usage within each locus.} \usage{ countGenes( data, gene, groups = NULL, copy = NULL, clone = NULL, fill = FALSE, first = TRUE, collapse = TRUE, mode = c("gene", "allele", "family", "asis"), cell_id = "cell_id", remove_na = TRUE ) } \arguments{ \item{data}{data.frame with AIRR-format or Change-O style columns.} \item{gene}{column containing allele assignments. Only the first allele in the column will be considered when \code{mode} is "gene", "family" or "allele". The value will be used as it is with \code{mode="asis"}.} \item{groups}{columns containing grouping variables. If \code{NULL} do not group.} \item{copy}{name of the \code{data} column containing copy numbers for each sequence. If this value is specified, then total copy abundance is determined by the sum of copy numbers within each gene. This argument is ignored if \code{clone} is specified.} \item{clone}{name of the \code{data} column containing clone identifiers for each sequence. If this value is specified, then one gene will be considered for each clone. Note, this is accomplished by using the most common gene within each \code{clone} identifier. As such, ambiguous alleles within a clone will not be accurately represented.} \item{fill}{logical of \code{c(TRUE, FALSE)} specifying when if groups (when specified) lacking a particular gene should be counted as 0 if TRUE or not (omitted).} \item{first}{if TRUE return only the first allele/gene/family call for computing the frequency; if FALSE return all calls delimited by commas.} \item{collapse}{if TRUE check for duplicates and return only unique allele/gene/family assignments per sequence; if FALSE return all assignments (faster). Has no effect if first=TRUE.} \item{mode}{one of \code{c("gene", "family", "allele", "asis")} defining the degree of specificity regarding allele calls. Determines whether to return counts for genes (calling \code{getGene}), families (calling \code{getFamily}), alleles (calling \code{getAllele}) or using the value as it is in the column \code{gene}, without any processing.} \item{cell_id}{name of the \code{data} column containing the cell identifiers for each sequence.} \item{remove_na}{removes rows with \code{NA} values in the gene column if \code{TRUE} and issues a warning. Otherwise, keeps those rows and considers \code{NA} as a gene in the final counts and relative abundances.} } \value{ A data.frame summarizing family, gene or allele counts and frequencies with columns: \itemize{ \item \code{locus}: locus of the gene (IGH, IGK, IGL, TRA, TRB, TRD, TRG). Note that frequencies are calculated within each locus. \item \code{gene}: name of the family, gene or allele. \item \code{seq_count}: total number of sequences for the gene in the locus. \item \code{locus_count}: total number of sequences in the locus. \item \code{seq_freq}: frequency of the gene as a fraction of the total number of sequences within each grouping. \item \code{copy_count}: sum of the copy counts in the \code{copy} column. for each gene. Only present if the \code{copy} argument is specified. \item \code{locus_copy_count}: sum of the copy counts in the \code{copy} column. for all gene in the locus. Only present if the \code{copy} argument is specified. \item \code{copy_freq}: frequency of the gene as a fraction of the total copy number within each group. Only present if the \code{copy} argument is specified. \item \code{clone_count}: total number of clones for the gene. Only present if the \code{clone} argument is specified. \item \code{clone_freq}: frequency of the gene as a fraction of the total number of clones within each grouping. Only present if the \code{clone} argument is specified. } Additional columns defined by the \code{groups} argument will also be present. } \description{ Determines the count and relative abundance of V(D)J alleles, genes or families within groups. If sequences from multiple loci are present, the frequency is calculated within each locus. } \examples{ # Without copy numbers genes <- countGenes(ExampleDb, gene = "v_call", groups = "sample_id", mode = "family") genes <- countGenes(ExampleDb, gene = "v_call", groups = "sample_id", mode = "gene") genes <- countGenes(ExampleDb, gene = "v_call", groups = "sample_id", mode = "allele") # With copy numbers and multiple groups genes <- countGenes(ExampleDb, gene = "v_call", groups = c("sample_id", "c_call"), copy = "duplicate_count", mode = "family" ) # Count by clone genes <- countGenes(ExampleDb, gene = "v_call", groups = c("sample_id", "c_call"), clone = "clone_id", mode = "family" ) # Count absent genes genes <- countGenes(ExampleDb, gene = "v_call", groups = "sample_id", mode = "allele", fill = TRUE ) } alakazam/man/calcDiversity.Rd0000644000176200001440000000346615065014027015713 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Diversity.R \name{calcDiversity} \alias{calcDiversity} \title{Calculate the diversity index} \usage{ calcDiversity(p, q) } \arguments{ \item{p}{numeric vector of clone (species) counts or proportions.} \item{q}{numeric vector of diversity orders.} } \value{ A vector of diversity scores \eqn{D} for each \eqn{q}. } \description{ \code{calcDiversity} calculates the clonal diversity index for a vector of diversity orders. } \details{ This method, proposed by Hill (Hill, 1973), quantifies diversity as a smooth function (\eqn{D}) of a single parameter \eqn{q}. Special cases of the generalized diversity index correspond to the most popular diversity measures in ecology: species richness (\eqn{q = 0}), the exponential of the Shannon-Weiner index (\eqn{q} approaches \eqn{1}), the inverse of the Simpson index (\eqn{q = 2}), and the reciprocal abundance of the largest clone (\eqn{q} approaches \eqn{+\infty}). At \eqn{q = 0} different clones weight equally, regardless of their size. As the parameter \eqn{q} increase from \eqn{0} to \eqn{+\infty} the diversity index (\eqn{D}) depends less on rare clones and more on common (abundant) ones, thus encompassing a range of definitions that can be visualized as a single curve. Values of \eqn{q < 0} are valid, but are generally not meaningful. The value of \eqn{D} at \eqn{q=1} is estimated by \eqn{D} at \eqn{q=0.9999}. } \examples{ # May define p as clonal member counts p <- c(1, 1, 3, 10) q <- c(0, 1, 2) calcDiversity(p, q) # Or proportional abundance p <- c(1/15, 1/15, 1/5, 2/3) calcDiversity(p, q) } \references{ \enumerate{ \item Hill M. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973 54(2):427-32. } } \seealso{ Used by \link{alphaDiversity}. } alakazam/man/writeChangeoDb.Rd0000644000176200001440000000150015065014027015756 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Core.R \name{writeChangeoDb} \alias{writeChangeoDb} \title{Write a Change-O tab-delimited database file} \usage{ writeChangeoDb(data, file) } \arguments{ \item{data}{data.frame of Change-O data.} \item{file}{output file name.} } \description{ \code{writeChangeoDb} is a simple wrapper around \link[readr]{write_delim} with defaults appropriate for writing a Change-O tab-delimited database file from a data.frame. } \examples{ \dontrun{ # Write a database writeChangeoDb(data, "changeo.tsv") } } \seealso{ Wraps \link[readr]{write_delim}. See \link{readChangeoDb} for reading to Change-O files. See \link[airr]{read_rearrangement} and \link[airr]{write_rearrangement} to read and write AIRR-C Standard formatted repertoires. } alakazam/man/bulk.Rd0000644000176200001440000000264515065014027014041 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AminoAcids.R \name{bulk} \alias{bulk} \title{Calculates the average bulkiness of amino acid sequences} \usage{ bulk(seq, bulkiness = NULL) } \arguments{ \item{seq}{vector of strings containing amino acid sequences.} \item{bulkiness}{named numerical vector defining bulkiness scores for each amino acid, where names are single-letter amino acid character codes. If \code{NULL}, then the Zimmerman et al, 1968 scale is used.} } \value{ A vector of bulkiness scores for the sequence(s). } \description{ \code{bulk} calculates the average bulkiness score of amino acid sequences. Non-informative positions are excluded, where non-informative is defined as any character in \code{c("X", "-", ".", "*")}. } \examples{ # Default bulkiness scale seq <- c("CARDRSTPWRRGIASTTVRTSW", "XXTQMYVRT") bulk(seq) # Use the Grantham, 1974 side chain volumn scores from the seqinr package library(seqinr) data(aaindex) x <- aaindex[["GRAR740103"]]$I # Rename the score vector to use single-letter codes names(x) <- translateStrings(names(x), ABBREV_AA) # Calculate average volume bulk(seq, bulkiness=x) } \references{ \enumerate{ \item Zimmerman JM, Eliezer N, Simha R. The characterization of amino acid sequences in proteins by statistical methods. J Theor Biol 21, 170-201 (1968). } } \seealso{ For additional size related indices see \link[seqinr]{aaindex}. } alakazam/man/readFastqDb.Rd0000644000176200001440000001045015065014027015255 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Fastq.R \name{readFastqDb} \alias{readFastqDb} \title{Load sequencing quality scores from a FASTQ file} \usage{ readFastqDb( data, fastq_file, quality_offset = -33, header = c("presto", "asis"), sequence_id = "sequence_id", sequence = "sequence", sequence_alignment = "sequence_alignment", v_cigar = "v_cigar", d_cigar = "d_cigar", j_cigar = "j_cigar", np1_length = "np1_length", np2_length = "np2_length", v_sequence_end = "v_sequence_end", d_sequence_end = "d_sequence_end", style = c("num", "ascii", "both"), quality_sequence = FALSE ) } \arguments{ \item{data}{\code{data.frame} containing sequence data.} \item{fastq_file}{path to the fastq file} \item{quality_offset}{offset value to be used by ape::read.fastq. It is the value to be added to the quality scores (the default -33 applies to the Sanger format and should work for most recent FASTQ files).} \item{header}{FASTQ file header format; one of \code{"presto"} or \code{"asis"}. Use \code{"presto"} to specify that the fastq file headers are using the pRESTO format and can be parsed to extract the \code{sequence_id}. Use \code{"asis"} to skip any processing and use the sequence names as they are.} \item{sequence_id}{column in \code{data} that contains sequence identifiers to be matched to sequence identifiers in \code{fastq_file}.} \item{sequence}{column in \code{data} that contains sequence data.} \item{sequence_alignment}{column in \code{data} that contains IMGT aligned sequence data.} \item{v_cigar}{column in \code{data} that contains CIGAR strings for the V gene alignments.} \item{d_cigar}{column in \code{data} that contains CIGAR strings for the D gene alignments.} \item{j_cigar}{column in \code{data} that contains CIGAR strings for the J gene alignments.} \item{np1_length}{column in \code{data} that contains the number of nucleotides between the V gene and first D gene alignments or between the V gene and J gene alignments.} \item{np2_length}{column in \code{data} that contains the number of nucleotides between either the first D gene and J gene alignments or the first D gene and second D gene alignments.} \item{v_sequence_end}{column in \code{data} that contains the end position of the V gene in \code{sequence}.} \item{d_sequence_end}{column in \code{data} that contains the end position of the D gene in \code{sequence}.} \item{style}{how the sequencing quality should be returned; one of \code{"num"}, \code{"phred"}, or \code{"both"}. Specify \code{"num"} to store the quality scores as strings of comma separated numeric values. Use \code{"phred"} to have the function return the scores as Phred (ASCII) scores. Use \code{"both"} to retrieve both.} \item{quality_sequence}{specify \code{TRUE} to keep the quality scores for \code{sequence}. If false, only the quality score for \code{sequence_alignment} will be added to \code{data}.} } \value{ Modified \code{data} with additional fields: \enumerate{ \item \code{quality_alignment}: A character vector with ASCII Phred scores for \code{sequence_alignment}. \item \code{quality_alignment_num}: A character vector, with comma separated numerical quality values for each position in \code{sequence_alignment}. \item \code{quality}: A character vector with ASCII Phred scores for \code{sequence}. \item \code{quality_num}: A character vector, with comma separated numerical quality values for each position in \code{sequence}. } } \description{ \code{readFastqDb} adds the sequencing quality scores to a data.frame from a FASTQ file. Matching is done by `sequence_id`. } \examples{ db <- airr::read_rearrangement(system.file("extdata", "example_quality.tsv", package="alakazam")) fastq_file <- system.file("extdata", "example_quality.fastq", package="alakazam") db <- readFastqDb(db, fastq_file, quality_offset=-33) } \seealso{ \link{maskPositionsByQuality} and \link{getPositionQuality} } alakazam/man/testMRCA.Rd0000644000176200001440000000246515065014027014526 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Topology.R \name{testMRCA} \alias{testMRCA} \title{Tests for MRCA annotation enrichment in lineage trees} \usage{ testMRCA( graphs, field, root = "Germline", exclude = c("Germline", NA), nperm = 200, progress = FALSE ) } \arguments{ \item{graphs}{list of igraph object containing annotated lineage trees.} \item{field}{string defining the annotation field to test.} \item{root}{name of the root (germline) node.} \item{exclude}{vector of strings defining \code{field} values to exclude from the set of potential founder annotations.} \item{nperm}{number of permutations to perform.} \item{progress}{if \code{TRUE} show a progress bar.} } \value{ An \link{MRCATest} object containing the test results and permutation realizations. } \description{ \code{testMRCA} performs a permutation test on a set of lineage trees to determine the significance of an annotation's association with the MRCA position of the lineage trees. } \examples{ \donttest{ # Define example tree set graphs <- ExampleTrees[1:10] # Perform MRCA test on isotypes x <- testMRCA(graphs, "c_call", nperm=10) print(x) } } \seealso{ Uses \link{getMRCA} and \link{getPathLengths}. See \link{plotMRCATest} for plotting the permutation distributions. } alakazam/man/ExampleDb.Rd0000644000176200001440000000417015065014027014740 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Data.R \docType{data} \name{ExampleDb} \alias{ExampleDb} \title{Example AIRR database} \format{ A data.frame with the following AIRR style columns: \itemize{ \item \code{sequence_id}: Sequence identifier \item \code{sequence_alignment}: IMGT-gapped observed sequence. \item \code{germline_alignment}: IMGT-gapped germline sequence. \item \code{germline_alignment_d_mask}: IMGT-gapped germline sequence with N, P and D regions masked. \item \code{v_call}: V region allele assignments. \item \code{v_call_genotyped}: TIgGER corrected V region allele assignment. \item \code{d_call}: D region allele assignments. \item \code{j_call}: J region allele assignments. \item \code{c_call}: Isotype (C region) assignment. \item \code{junction}: Junction region sequence. \item \code{junction_length}: Length of the junction region in nucleotides. \item \code{np1_length}: Combined length of the N and P regions proximal to the V region. \item \code{np2_length}: Combined length of the N and P regions proximal to the J region. \item \code{duplicate_count}: Copy count (number of duplicates) of the sequence. \item \code{clone_id}: Change-O assignment clonal group identifier. \item \code{sample_id}: Sample identifier. Time in relation to vaccination. } } \usage{ ExampleDb } \description{ A small example database subset from Laserson and Vigneault et al, 2014. } \references{ \enumerate{ \item Laserson U and Vigneault F, et al. High-resolution antibody dynamics of vaccine-induced immune responses. Proc Natl Acad Sci USA. 2014 111:4928-33. } } \seealso{ \link{ExampleDbChangeo} \link{ExampleTrees} } \keyword{datasets} alakazam/man/nonsquareDist.Rd0000644000176200001440000000364415065014027015743 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Sequence.R \name{nonsquareDist} \alias{nonsquareDist} \title{Calculate pairwise distances between sequences} \usage{ nonsquareDist(seq, indx, dist_mat = getDNAMatrix()) } \arguments{ \item{seq}{character vector containing a DNA sequences. The sequence vector needs to be named.} \item{indx}{numeric vector containing the indices (a subset of indices of \code{seq}).} \item{dist_mat}{Character distance matrix. Defaults to a Hamming distance matrix returned by \link{getDNAMatrix}. If gap characters, \code{c("-", ".")}, are assigned a value of -1 in \code{dist_mat} then contiguous gaps of any run length, which are not present in both sequences, will be counted as a distance of 1. Meaning, indels of any length will increase the sequence distance by 1. Gap values other than -1 will return a distance that does not consider indels as a special case.} } \value{ A matrix of numerical distance between each entry in \code{seq} and sequences specified by \code{indx} indices. Note that the input subsampled indices will be ordered ascendingly. Therefore, it is necessary to assign unique names to the input sequences, \code{seq}, to recover the input order later. Row and columns names will be added accordingly. Amino acid distance matrix may be built with \link{getAAMatrix}. Uses \link{seqDist} for calculating distances between pairs. See \link{pairwiseEqual} for generating an equivalence matrix. } \description{ \code{nonsquareDist} calculates all pairwise distance between a set of sequences and a subset of it. } \examples{ # Gaps will be treated as Ns with a gap=0 distance matrix seq <- c(A="ATGGC", B="ATGGG", C="ATGGG", D="AT--C") pairwiseDist(seq, dist_mat=getDNAMatrix(gap=0)) nonsquareDist(seq, indx=c(1,3), dist_mat=getDNAMatrix(gap=0)) } alakazam/man/maskSeqEnds.Rd0000644000176200001440000000331215065014027015312 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Sequence.R \name{maskSeqEnds} \alias{maskSeqEnds} \title{Masks ragged leading and trailing edges of aligned DNA sequences} \usage{ maskSeqEnds(seq, mask_char = "N", max_mask = NULL, trim = FALSE) } \arguments{ \item{seq}{character vector of DNA sequence strings.} \item{mask_char}{character to use for masking.} \item{max_mask}{the maximum number of characters to mask. If set to 0 then no masking will be performed. If set to \code{NULL} then the upper masking bound will be automatically determined from the maximum number of observed leading or trailing \code{"N"} characters amongst all strings in \code{seq}.} \item{trim}{if \code{TRUE} leading and trailing characters will be cut rather than masked with \code{"N"} characters.} } \value{ A modified \code{seq} vector with masked (or optionally trimmed) sequences. } \description{ \code{maskSeqEnds} takes a vector of DNA sequences, as character strings, and replaces the leading and trailing characters with \code{"N"} characters to create a sequence vector with uniformly masked outer sequence segments. } \examples{ # Default behavior uniformly masks ragged ends seq <- c("CCCCTGGG", "NAACTGGN", "NNNCTGNN") maskSeqEnds(seq) # Does nothing maskSeqEnds(seq, max_mask=0) # Cut ragged sequence ends maskSeqEnds(seq, trim=TRUE) # Set max_mask to limit extent of masking and trimming maskSeqEnds(seq, max_mask=1) maskSeqEnds(seq, max_mask=1, trim=TRUE) # Mask dashes instead of Ns seq <- c("CCCCTGGG", "-AACTGG-", "---CTG--") maskSeqEnds(seq, mask_char="-") } \seealso{ See \link{maskSeqGaps} for masking internal gaps. See \link{padSeqEnds} for padding sequence of unequal length. } alakazam/man/buildPhylipLineage.Rd0000644000176200001440000001775515065014027016666 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Lineage.R \name{buildPhylipLineage} \alias{buildPhylipLineage} \title{Infer an Ig lineage using PHYLIP} \usage{ buildPhylipLineage( clone, phylip_exec, dist_mat = getDNAMatrix(gap = 0), rm_temp = FALSE, verbose = FALSE, temp_path = NULL, onetree = FALSE, branch_length = c("mutations", "distance") ) } \arguments{ \item{clone}{\link{ChangeoClone} object containing clone data.} \item{phylip_exec}{absolute path to the PHYLIP dnapars executable.} \item{dist_mat}{character distance matrix to use for reassigning edge weights. Defaults to a Hamming distance matrix returned by \link{getDNAMatrix} with \code{gap=0}. If gap characters, \code{c("-", ".")}, are assigned a value of -1 in \code{dist_mat} then contiguous gaps of any run length, which are not present in both sequences, will be counted as a distance of 1. Meaning, indels of any length will increase the sequence distance by 1. Gap values other than -1 will return a distance that does not consider indels as a special case.} \item{rm_temp}{if \code{TRUE} delete the temporary directory after running dnapars; if \code{FALSE} keep the temporary directory.} \item{verbose}{if \code{FALSE} suppress the output of dnapars; if \code{TRUE} STDOUT and STDERR of dnapars will be passed to the console.} \item{temp_path}{specific path to temp directory if desired.} \item{onetree}{if \code{TRUE} save only one tree.} \item{branch_length}{specifies how to define branch lengths; one of \code{"mutations"} or \code{"distance"}. If set to \code{"mutations"} (default), then branch lengths represent the number of mutations between nodes. If set to \code{"distance"}, then branch lengths represent the expected number of mutations per site, unaltered from PHYLIP output.} } \value{ An igraph \code{graph} object defining the Ig lineage tree. Each unique input sequence in \code{clone} is a vertex of the tree, with additional vertices being either the germline (root) sequences or inferred intermediates. The \code{graph} object has the following attributes. Vertex attributes: \itemize{ \item \code{name}: value in the \code{sequence_id} column of the \code{data} slot of the input \code{clone} for observed sequences. The germline (root) vertex is assigned the name "Germline" and inferred intermediates are assigned names with the format \{"Inferred1", "Inferred2", ...\}. \item \code{sequence}: value in the \code{sequence} column of the \code{data} slot of the input \code{clone} for observed sequences. The germline (root) vertex is assigned the sequence in the \code{germline} slot of the input \code{clone}. The sequence of inferred intermediates are extracted from the dnapars output. \item \code{label}: same as the \code{name} attribute. } Additionally, each other column in the \code{data} slot of the input \code{clone} is added as a vertex attribute with the attribute name set to the source column name. For the germline and inferred intermediate vertices, these additional vertex attributes are all assigned a value of \code{NA}. Edge attributes: \itemize{ \item \code{weight}: Hamming distance between the \code{sequence} attributes of the two vertices. \item \code{label}: same as the \code{weight} attribute. } Graph attributes: \itemize{ \item \code{clone}: clone identifier from the \code{clone} slot of the input \code{ChangeoClone}. \item \code{v_gene}: V-segment gene call from the \code{v_gene} slot of the input \code{ChangeoClone}. \item \code{j_gene}: J-segment gene call from the \code{j_gene} slot of the input \code{ChangeoClone}. \item \code{junc_len}: junction length (nucleotide count) from the \code{junc_len} slot of the input \code{ChangeoClone}. Alternatively, this function will return an \code{phylo} object, which is compatible with the ape package. This object will contain reconstructed ancestral sequences in \code{nodes} attribute. } } \description{ \code{buildPhylipLineage} reconstructs an Ig lineage via maximum parsimony using the dnapars application, or maximum likelihood using the dnaml application of the PHYLIP package. \strong{Note}: To use the most recent methods for building, visualizing and analyzing trees, use the R package [Dowser](https://dowser.readthedocs.io). } \details{ \code{buildPhylipLineage} builds the lineage tree of a set of unique Ig sequences via maximum parsimony through an external call to the dnapars application of the PHYLIP package. dnapars is called with default algorithm options, except for the search option, which is set to "Rearrange on one best tree". The germline sequence of the clone is used for the outgroup. Following tree construction using dnapars, the dnapars output is modified to allow input sequences to appear as internal nodes of the tree. Intermediate sequences inferred by dnapars are replaced by children within the tree having a Hamming distance of zero from their parent node. With the default \code{dist_mat}, the distance calculation allows IUPAC ambiguous character matches, where an ambiguous character has distance zero to any character in the set of characters it represents. Distance calculation and movement of child nodes up the tree is repeated until all parent-child pairs have a distance greater than zero between them. The germline sequence (outgroup) is moved to the root of the tree and excluded from the node replacement processes, which permits the trunk of the tree to be the only edge with a distance of zero. Edge weights of the resultant tree are assigned as the distance between each sequence. } \examples{ \dontrun{ # Preprocess clone db <- subset(ExampleDb, clone_id == 3138) clone <- makeChangeoClone(db, text_fields=c("sample_id", "c_call"), num_fields="duplicate_count") # Run PHYLIP and process output phylip_exec <- "~/apps/phylip-3.695/bin/dnapars" graph <- buildPhylipLineage(clone, phylip_exec, rm_temp=TRUE) # Plot graph with a tree layout library(igraph) plot(graph, layout=layout_as_tree, vertex.label=V(graph)$c_call, vertex.size=50, edge.arrow.mode=0, vertex.color="grey80") # To consider each indel event as a mutation, change the masking character # and distance matrix clone <- makeChangeoClone(db, text_fields=c("sample_id", "c_call"), num_fields="duplicate_count", mask_char="-") graph <- buildPhylipLineage(clone, phylip_exec, dist_mat=getDNAMatrix(gap=-1), rm_temp=TRUE) } } \references{ \enumerate{ \item Felsenstein J. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics. 1989 5:164-166. \item Stern JNH, Yaari G, Vander Heiden JA, et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci Transl Med. 2014 6(248):248ra107. } } \seealso{ Takes as input a \link{ChangeoClone}. Temporary directories are created with \link{makeTempDir}. Distance is calculated using \link{seqDist}. See [igraph](http://www.rdocumentation.org/packages/igraph/topics/aaa-igraph-package) and [igraph.plotting](http://www.rdocumentation.org/packages/igraph/topics/plot.common) for working with igraph \code{graph} objects. } alakazam/man/progressBar.Rd0000644000176200001440000000053615065014027015372 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Core.R \name{progressBar} \alias{progressBar} \title{Standard progress bar} \usage{ progressBar(n) } \arguments{ \item{n}{maximum number of ticks} } \value{ A \link[progress]{progress_bar} object. } \description{ \code{progressBar} defines a common progress bar format. } alakazam/man/ExampleDbChangeo.Rd0000644000176200001440000000373415065014027016232 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Data.R \docType{data} \name{ExampleDbChangeo} \alias{ExampleDbChangeo} \title{Example Change-O database} \format{ A data.frame with the following Change-O style columns: \itemize{ \item \code{SEQUENCE_ID}: Sequence identifier \item \code{SEQUENCE_IMGT}: IMGT-gapped observed sequence. \item \code{GERMLINE_IMGT_D_MASK}: IMGT-gapped germline sequence with N, P and D regions masked. \item \code{V_CALL}: V region allele assignments. \item \code{V_CALL_GENOTYPED}: TIgGER corrected V region allele assignment. \item \code{D_CALL}: D region allele assignments. \item \code{J_CALL}: J region allele assignments. \item \code{JUNCTION}: Junction region sequence. \item \code{JUNCTION_LENGTH}: Length of the junction region in nucleotides. \item \code{NP1_LENGTH}: Combined length of the N and P regions proximal to the V region. \item \code{NP2_LENGTH}: Combined length of the N and P regions proximal to the J region. \item \code{SAMPLE}: Sample identifier. Time in relation to vaccination. \item \code{ISOTYPE}: Isotype assignment. \item \code{DUPCOUNT}: Copy count (number of duplicates) of the sequence. \item \code{CLONE}: Change-O assignment clonal group identifier. } } \usage{ ExampleDbChangeo } \description{ A small example database subset from Laserson and Vigneault et al, 2014. } \references{ \enumerate{ \item Laserson U and Vigneault F, et al. High-resolution antibody dynamics of vaccine-induced immune responses. Proc Natl Acad Sci USA. 2014 111:4928-33. } } \seealso{ \link{ExampleDb} \link{ExampleTrees} } \keyword{datasets} alakazam/man/collapseDuplicates.Rd0000644000176200001440000001465615065014027016731 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Sequence.R \name{collapseDuplicates} \alias{collapseDuplicates} \title{Remove duplicate DNA sequences and combine annotations} \usage{ collapseDuplicates( data, id = "sequence_id", seq = "sequence_alignment", text_fields = NULL, num_fields = NULL, seq_fields = NULL, add_count = FALSE, ignore = c("N", "-", ".", "?"), sep = ",", dry = FALSE, verbose = FALSE ) } \arguments{ \item{data}{data.frame containing Change-O columns. The data.frame must contain, at a minimum, a unique identifier column and a column containing a character vector of DNA sequences.} \item{id}{name of the column containing sequence identifiers.} \item{seq}{name of the column containing DNA sequences.} \item{text_fields}{character vector of textual columns to collapse. The textual annotations of duplicate sequences will be merged into a single string with each unique value alphabetized and delimited by \code{sep}.} \item{num_fields}{vector of numeric columns to collapse. The numeric annotations of duplicate sequences will be summed.} \item{seq_fields}{vector of nucleotide sequence columns to collapse. The sequence with the fewest number of non-informative characters will be retained. Where a non-informative character is one of \code{c("N", "-", ".", "?")}. Note, this is distinct from the \code{seq} parameter which is used to determine duplicates.} \item{add_count}{if \code{TRUE} add the column \code{collpase_count} that indicates the number of sequences that were collapsed to build each unique entry.} \item{ignore}{vector of characters to ignore when testing for equality.} \item{sep}{character to use for delimiting collapsed annotations in the \code{text_fields} columns. Defines both the input and output delimiter.} \item{dry}{if \code{TRUE} perform dry run. Only labels the sequences without collapsing them.} \item{verbose}{if \code{TRUE} report the number input, discarded and output sequences; if \code{FALSE} process sequences silently.} } \value{ A modified \code{data} data.frame with duplicate sequences removed and annotation fields collapsed if \code{dry=FALSE}. If \code{dry=TRUE}, sequences will be labeled with the collapse action, but the input will be otherwise unmodified (see Details). } \description{ \code{collapseDuplicates} identifies duplicate DNA sequences, allowing for ambiguous characters, removes the duplicate entries, and combines any associated annotations. } \details{ \code{collapseDuplicates} identifies duplicate sequences in the \code{seq} column by testing for character identity, with consideration of IUPAC ambiguous nucleotide codes. A cluster of sequences are considered duplicates if they are all equivalent, and no member of the cluster is equivalent to a sequence in a different cluster. Textual annotations, specified by \code{text_fields}, are collapsed by taking the unique set of values within in each duplicate cluster and delimiting those values by \code{sep}. Numeric annotations, specified by \code{num_fields}, are collapsed by summing all values in the duplicate cluster. Sequence annotations, specified by \code{seq_fields}, are collapsed by retaining the first sequence with the fewest number of N characters. Columns that are not specified in either \code{text_fields}, \code{num_fields}, or \code{seq_fields} will be retained, but the value will be chosen from a random entry amongst all sequences in a cluster of duplicates. An ambiguous sequence is one that can be assigned to two different clusters, wherein the ambiguous sequence is equivalent to two sequences which are themselves non-equivalent. Ambiguous sequences arise due to ambiguous characters at positions that vary across sequences, and are discarded along with their annotations when \code{dry=FALSE}. Thus, ambiguous sequences are removed as duplicates of some sequence, but do not create a potential false-positive annotation merger. Ambiguous sequences are not included in the \code{collapse_count} annotation that is added when \code{add_count=TRUE}. If \code{dry=TRUE} sequences will not be removed from the input. Instead, the following columns will be appended to the input defining the collapse action that would have been performed in the \code{dry=FALSE} case. \itemize{ \item \code{collapse_id}: an identifier for the group of identical sequences. \item \code{collapse_class}: string defining how the sequence matches to the other in the set. one of \code{"duplicated"} (has duplicates), \code{"unique"} (no duplicates), \code{"ambiguous_duplicate"} (no duplicates after ambiguous sequences are removed), or \code{"ambiguous"} (matches multiple non-duplicate sequences). \item \code{collapse_pass}: \code{TRUE} for the sequences that would be retained. } } \examples{ # Example data.frame db <- data.frame(sequence_id=LETTERS[1:4], sequence_alignment=c("CCCCTGGG", "CCCCTGGN", "NAACTGGN", "NNNCTGNN"), c_call=c("IGHM", "IGHG", "IGHG", "IGHA"), sample_id=c("S1", "S1", "S2", "S2"), duplicate_count=1:4, stringsAsFactors=FALSE) # Annotations are not parsed if neither text_fields nor num_fields is specified # The retained sequence annotations will be random collapseDuplicates(db, verbose=TRUE) # Unique text_fields annotations are combined into a single string with "," # num_fields annotations are summed # Ambiguous duplicates are discarded collapseDuplicates(db, text_fields=c("c_call", "sample_id"), num_fields="duplicate_count", verbose=TRUE) # Use alternate delimiter for collapsing textual annotations collapseDuplicates(db, text_fields=c("c_call", "sample_id"), num_fields="duplicate_count", sep="/", verbose=TRUE) # Add count of duplicates collapseDuplicates(db, text_fields=c("c_call", "sample_id"), num_fields="duplicate_count", add_count=TRUE, verbose=TRUE) # Masking ragged ends may impact duplicate removal db$sequence_alignment <- maskSeqEnds(db$sequence_alignment) collapseDuplicates(db, text_fields=c("c_call", "sample_id"), num_fields="duplicate_count", add_count=TRUE, verbose=TRUE) } \seealso{ Equality is tested with \link{seqEqual} and \link{pairwiseEqual}. For IUPAC ambiguous character codes see \link{IUPAC_DNA}. } alakazam/man/plotDiversityTest.Rd0000644000176200001440000000376115065014027016625 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Diversity.R \name{plotDiversityTest} \alias{plotDiversityTest} \title{Plot the results of diversity testing} \usage{ plotDiversityTest( data, q, colors = NULL, main_title = "Diversity", legend_title = "Group", log_d = FALSE, annotate = c("none", "depth"), silent = FALSE, ... ) } \arguments{ \item{data}{\link{DiversityCurve} object returned by \link{alphaDiversity}.} \item{q}{diversity order to plot the test for.} \item{colors}{named character vector whose names are values in the \code{group} column of the \code{data} slot of \code{data}, and whose values are colors to assign to those group names.} \item{main_title}{string specifying the plot title.} \item{legend_title}{string specifying the legend title.} \item{log_d}{if \code{TRUE} then plot the diversity scores \eqn{D} on a log scale; if \code{FALSE} plot on a linear scale.} \item{annotate}{string defining whether to added values to the group labels of the legend. When \code{"none"} (default) is specified no annotations are added. Specifying (\code{"depth"}) adds sequence counts to the labels.} \item{silent}{if \code{TRUE} do not draw the plot and just return the ggplot2 object; if \code{FALSE} draw the plot.} \item{...}{additional arguments to pass to ggplot2::theme.} } \value{ A \code{ggplot} object defining the plot. } \description{ \code{plotDiversityTest} plots summary data for a \code{DiversityCurve} object with mean and a line range indicating plus/minus one standard deviation. } \examples{ # Calculate diversity div <- alphaDiversity(ExampleDb, group="sample_id", min_q=0, max_q=2, step_q=1, nboot=100) # Plot results at q=0 (equivalent to species richness) plotDiversityTest(div, 0, legend_title="Sample") # Plot results at q=2 (equivalent to Simpson's index) plotDiversityTest(div, q=2, legend_title="Sample") } \seealso{ See \link{alphaDiversity} for generating input. Plotting is performed with \link[ggplot2]{ggplot}. } alakazam/man/pairwiseEqual.Rd0000644000176200001440000000167615065014027015722 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/RcppExports.R \name{pairwiseEqual} \alias{pairwiseEqual} \title{Calculate pairwise equivalence between sequences} \usage{ pairwiseEqual(seq) } \arguments{ \item{seq}{character vector containing a DNA sequences.} } \value{ A logical matrix of equivalence between each entry in \code{seq}. Values are \code{TRUE} when sequences are equivalent and \code{FALSE} when they are not. } \description{ \code{pairwiseEqual} determined pairwise equivalence between a pairs in a set of sequences, excluding ambiguous positions (Ns and gaps). } \examples{ # Gaps and Ns will match any character seq <- c(A="ATGGC", B="ATGGG", C="ATGGG", D="AT--C", E="NTGGG") d <- pairwiseEqual(seq) rownames(d) <- colnames(d) <- seq d } \seealso{ Uses \link{seqEqual} for testing equivalence between pairs. See \link{pairwiseDist} for generating a sequence distance matrix. } alakazam/man/ExampleTrees.Rd0000644000176200001440000000144215065014027015474 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Data.R \docType{data} \name{ExampleTrees} \alias{ExampleTrees} \title{Example Ig lineage trees} \format{ A list of igraph objects output by \link{buildPhylipLineage}. Each node of each tree has the following annotations (vertex attributes): \itemize{ \item \code{sample_id}: Sample identifier(s). Time in relation to vaccination. \item \code{c_call}: Isotype assignment(s). \item \code{duplication_count}: Copy count (number of duplicates) of the sequence. } } \usage{ ExampleTrees } \description{ A set of Ig lineage trees generated from the \code{ExampleDb} file, subset to only those trees with at least four nodes. } \seealso{ \link{ExampleTrees} } \keyword{datasets} alakazam/man/SingleDb.Rd0000644000176200001440000000122215065014027014561 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Data.R \docType{data} \name{SingleDb} \alias{SingleDb} \title{Single sequence AIRR database} \format{ An object of class \code{spec_tbl_df} (inherits from \code{tbl_df}, \code{tbl}, \code{data.frame}) with 1 rows and 32 columns. } \usage{ SingleDb } \description{ A database with just one sequence from \code{ExampleDb} and additional AIRR Rearrangement fields containing alignment information. The sequence was reanalyzed with a recent versions of alignment software (IgBLAST 1.16.0) and reference germlines (IMGT 2020-08-12). } \seealso{ \link{ExampleDb} } \keyword{datasets} alakazam/man/cpuCount.Rd0000644000176200001440000000051715065014027014700 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Core.R \name{cpuCount} \alias{cpuCount} \title{Available CPU cores} \usage{ cpuCount() } \value{ Count of available cores. Returns 1 if undeterminable. } \description{ \code{cpuCount} determines the number of CPU cores available. } \examples{ cpuCount() } alakazam/man/IMGT_REGIONS.Rd0000644000176200001440000000132015065014027015017 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Data.R \docType{data} \name{IMGT_REGIONS} \alias{IMGT_REGIONS} \title{IMGT V-segment regions} \format{ A list with regions named one of \code{c("fwr1", "cdr1", "fwr2", "cdr2", "fwr3")} with values containing a numeric vector of length two defining the \code{c(start, end)} positions of the named region. } \usage{ IMGT_REGIONS } \description{ A list defining the boundaries of V-segment framework regions (FWRs) and complementarity determining regions (CDRs) for IMGT-gapped immunoglobulin (Ig) nucleotide sequences according to the IMGT numbering scheme. } \references{ \url{https://www.imgt.org/} } \keyword{datasets} alakazam/man/graphToPhylo.Rd0000644000176200001440000000443415065014027015522 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Lineage.R \name{graphToPhylo} \alias{graphToPhylo} \title{Convert a tree in igraph \code{graph} format to ape \code{phylo} format.} \usage{ graphToPhylo(graph) } \arguments{ \item{graph}{An igraph \code{graph} object.} } \value{ A \code{phylo} object representing the input tree. Tip and internal node names are stored in the \code{tip.label} and \code{node.label} vectors, respectively. } \description{ \code{graphToPhylo} a tree in igraph \code{graph} format to ape \code{phylo} format. } \details{ Convert from igraph \code{graph} object to ape \code{phylo} object. If \code{graph} object was previously rooted with the germline as the direct ancestor, this will re-attach the germline as a descendant node with a zero branch length to a new universal common ancestor (UCA) node and store the germline node ID in the \code{germid} attribute and UCA node number in the \code{uca} attribute. Otherwise these attributes will not be specified in the \code{phylo} object. Using \code{phyloToGraph(phylo, germline=phylo$germid)} creates a \code{graph} object with the germline back as the direct ancestor. Tip and internal node names are stored in the \code{tip.label} and \code{node.label} vectors, respectively. } \examples{ \dontrun{ library(igraph) library(ape) #convert to phylo phylo = graphToPhylo(graph) #plot tree using ape plot(phylo,show.node.label=TRUE) #store as newick tree write.tree(phylo,file="tree.newick") #read in tree from newick file phylo_r = read.tree("tree.newick") #convert to igraph graph_r = phyloToGraph(phylo_r,germline="Germline") #plot graph - same as before, possibly rotated plot(graph_r,layout=layout_as_tree) } } \references{ \enumerate{ \item Hoehn KB, Lunter G, Pybus OG - A Phylogenetic Codon Substitution Model for Antibody Lineages. Genetics 2017 206(1):417-427 https://doi.org/10.1534/genetics.116.196303 \item Hoehn KB, Vander Heiden JA, Zhou JQ, Lunter G, Pybus OG, Kleinstein SHK - Repertoire-wide phylogenetic models of B cell molecular evolution reveal evolutionary signatures of aging and vaccination. bioRxiv 2019 https://doi.org/10.1101/558825 } } alakazam/DESCRIPTION0000644000176200001440000000735315120174005013544 0ustar liggesusersPackage: alakazam Type: Package Version: 1.4.2 Date: 2025-12-15 Authors@R: c(person("Susanna", "Marquez", role=c("cre", "aut"), email="susanna.marquez@yale.edu"), person("Namita", "Gupta", role=c("aut"), email="namita.gupta@yale.edu"), person("Nima", "Nouri", role=c("aut"), email="nima.nouri@yale.edu"), person("Ruoyi", "Jiang", role=c("aut"), email="ruoyi.jiang@yale.edu"), person("Julian", "Zhou", role=c("aut"), email="julian.zhou@bulldogs.yale.edu"), person("Kenneth", "Hoehn", role=c("aut"), email="kenneth.hoehn@yale.edu"), person("Daniel", "Gadala-Maria", role=c("ctb"), email="daniel.gadala-maria@yale.edu"), person("Edel", "Aron", role=c("ctb"), email="edel.aron@yale.edu"), person("Cole", "Jensen", role=c("aut"), email="cole.jensen@yale.edu"), person("Gisela", "Gabernet", role=c("ctb"), email="gisela.gabernet@yale.edu"), person("Caroline", "Sullivan", role=c("ctb"), email="caroline.sullivan@yale.edu"), person("Hailong", "Meng", role=c("ctb"), email="hailong.meng@yale.edu"), person("Huimin", "Lyu", role=c("ctb"), email="huimin.lyu@yale.edu"), person("Burhan", "Sabuwala", role=c("ctb"), email="burhan.sabuwala@yale.edu"), person("Jason", "Vander Heiden", role=c("aut"), email="jason.vanderheiden@gmail.com"), person("Steven", "Kleinstein", role=c("aut", "cph"), email="steven.kleinstein@yale.edu")) Title: Immunoglobulin Clonal Lineage and Diversity Analysis Description: Provides methods for high-throughput adaptive immune receptor repertoire sequencing (AIRR-Seq; Rep-Seq) analysis. In particular, immunoglobulin (Ig) sequence lineage reconstruction, lineage topology analysis, diversity profiling, amino acid property analysis and gene usage. Citations: Gupta and Vander Heiden, et al (2017) , Stern, Yaari and Vander Heiden, et al (2014) . License: AGPL-3 URL: https://alakazam.readthedocs.io/ BugReports: https://github.com/immcantation/alakazam/issues LazyData: true BuildVignettes: true VignetteBuilder: knitr, rmarkdown Encoding: UTF-8 LinkingTo: Rcpp biocViews: Software, AnnotationData Depends: R (>= 4.0), ggplot2 (>= 3.4.0) Imports: airr (>= 1.4.1), ape, dplyr (>= 1.0), graphics, grid, igraph (>= 1.5.0), Matrix (>= 1.3-0), methods, progress, Rcpp (>= 0.12.12), readr, rlang, scales, seqinr, stats, stringi, tibble, tidyr (>= 1.0), utils, Biostrings (>= 2.56.0), GenomicAlignments (>= 1.24.0), IRanges (>= 2.22.2) Suggests: knitr, rmarkdown, testthat RoxygenNote: 7.3.3 Collate: 'Alakazam.R' 'AminoAcids.R' 'Classes.R' 'Core.R' 'Data.R' 'Diversity.R' 'Deprecated.R' 'Fastq.R' 'Gene.R' 'Lineage.R' 'RcppExports.R' 'Sequence.R' 'Topology.R' NeedsCompilation: yes Packaged: 2025-12-15 18:10:47 UTC; susanna Author: Susanna Marquez [cre, aut], Namita Gupta [aut], Nima Nouri [aut], Ruoyi Jiang [aut], Julian Zhou [aut], Kenneth Hoehn [aut], Daniel Gadala-Maria [ctb], Edel Aron [ctb], Cole Jensen [aut], Gisela Gabernet [ctb], Caroline Sullivan [ctb], Hailong Meng [ctb], Huimin Lyu [ctb], Burhan Sabuwala [ctb], Jason Vander Heiden [aut], Steven Kleinstein [aut, cph] Maintainer: Susanna Marquez Repository: CRAN Date/Publication: 2025-12-16 06:11:17 UTC