bridgesampling/0000755000176200001440000000000015107257542013251 5ustar liggesusersbridgesampling/tests/0000755000176200001440000000000015055304401014400 5ustar liggesusersbridgesampling/tests/testthat/0000755000176200001440000000000015107257542016253 5ustar liggesusersbridgesampling/tests/testthat/test-stan_bridge_sampler_bugs.R0000644000176200001440000001331615060242566024401 0ustar liggesusers context('Stan Bridge Sampler Bugs') test_that("subscript out of bounds error", { ## https://github.com/quentingronau/bridgesampling/issues/26 stan_mod = " data{ int M; int J; int T; int E; int G; int N[G]; int ii[M]; int jj[M]; int gg[M]; int g_all[sum(N)]; int y[M]; matrix[J,J] obs_corr[G]; } transformed data{ int N_all = sum(N); } parameters{ ordered[T] thresholds_raw[G,J]; matrix[E,J] lam[G]; matrix[N_all,E] eta; matrix[N_all,J] ystar_raw; } transformed parameters { ordered[T] thresholds[G,J]; for(g in 1:G) for(j in 1:J) thresholds[g,j] = thresholds_raw[g,j] * 5; } model{ matrix[N_all,J] ystar; int pos = 1; target += std_normal_lpdf(to_vector(ystar_raw)); target += std_normal_lpdf(to_vector(eta)); for(g in 1:G){ int g_ids[N[g]] = segment(g_all,pos,N[g]); target += normal_lpdf(to_vector(eta)| 0,5); for(j in 1:J) target += std_normal_lpdf(thresholds_raw[g,j]); ystar[g_ids,] = eta[g_ids,] * lam[g] + ystar_raw[g_ids,]; pos += N[g]; } for(m in 1:M) target += ordered_logistic_lpmf(y[m] | ystar[ii[m],jj[m]], thresholds[gg[m],jj[m]]); } " testthat::skip_on_cran() testthat::skip_on_ci() testthat::skip_if_not_installed("rstan") library("rstan") # source("tests/testthat/test_dat.txt") source("test_dat.txt") suppressWarnings( mod <- stan(model_code=stan_mod,data=test_dat, chains = 2, refresh = 0) ) expect_warning(object = bridge_sampler(mod, silent=TRUE), regexp = "Infinite value in iterative scheme, returning NA.") }) test_that("bridge_sampler.stanfit multicore works for one-parameter model.", { skip_on_cran() skip_on_ci() skip_on_os("windows") if (require(rstan)) { set.seed(12345) # compute difference scores n <- 10 y <- rnorm(n) # models stancodeH0 <- ' data { int n; // number of observations vector[n] y; // observations } parameters { real sigma2; // variance parameter } model { target += log(1/sigma2); // Jeffreys prior on sigma2 target += normal_lpdf(y | 0, sqrt(sigma2)); // likelihood } ' # compile models suppressWarnings( stanmodelH0 <- stan_model(model_code = stancodeH0, model_name="stanmodel") ) # fit models stanfitH0 <- sampling(stanmodelH0, data = list(y = y, n = n), iter = 10000, warmup = 1000, chains = 4, control = list(adapt_delta = 0.95), refresh = 0) ######### bridge sampling ########### suppressWarnings(H0 <- bridge_sampler(stanfitH0, cores = 2, silent = TRUE)) expect_s3_class(H0, "bridge") } }) test_that("turtle example",{ skip_on_cran() skip_on_ci() if (require(rstan)) { data("turtles") ### m1 (model with random intercepts) ### m1_code_nc <- "data { int nobs; int y[nobs]; real x[nobs]; int m; int clutch[nobs]; } parameters { real alpha0_raw; real alpha1_raw; vector[m] b_raw; real sigma2; } transformed parameters { vector[m] b; real sigma = sqrt(sigma2); real alpha0 = sqrt(10.0)*alpha0_raw; real alpha1 = sqrt(10.0)*alpha1_raw; b = b_raw*sigma; } model { // priors target += -2*log(1 + sigma2); // p(sigma2) = 1/(1 + sigma2)^2 target += normal_lpdf(alpha0_raw | 0, 1); target += normal_lpdf(alpha1_raw | 0, 1); // random effects target += normal_lpdf(b_raw | 0, 1); // likelihood for (i in 1:nobs) target += bernoulli_lpmf(y[i] | Phi(alpha0 + alpha1*x[i] + b[clutch[i]])); }" suppressWarnings( stanobject_m1_nc <- stan(model_code = m1_code_nc, data = list(y = turtles$y, x = turtles$x, nobs = nrow(turtles), m = max(turtles$clutch), clutch = turtles$clutch), iter = 10500, warmup = 500, chains = 4, refresh = 0) ) bs_m1_nc <- bridge_sampler(stanobject_m1_nc, method = "warp3", repetitions = 25, silent=TRUE) m0_code_nc <- "data { int nobs; int y[nobs]; real x[nobs]; } parameters { real alpha0_raw; real alpha1_raw; } transformed parameters { real alpha0 = sqrt(10.0)*alpha0_raw; real alpha1 = sqrt(10.0)*alpha1_raw; } model { // priors target += normal_lpdf(alpha0_raw | 0, 1); target += normal_lpdf(alpha1_raw | 0, 1); // likelihood for (i in 1:nobs) target += bernoulli_lpmf(y[i] | Phi(alpha0 + alpha1*x[i])); }" suppressWarnings( stanobject_m0_nc <- stan(model_code = m0_code_nc, data = list(y = turtles$y, x = turtles$x, nobs = nrow(turtles), m = max(turtles$clutch), clutch = turtles$clucth), iter = 10500, warmup = 500, chains = 4, refresh = 0) ) bs_m0_nc <- bridge_sampler(stanobject_m0_nc, method = "warp3", repetitions = 25, silent=TRUE) expect_equal(bf(bs_m0_nc, bs_m1_nc)$bf, rep(1.27, 25), tolerance = 0.02) } }) bridgesampling/tests/testthat/test-bridge_sampler_CmdStanMCMC.R0000644000176200001440000000706415060246656024414 0ustar liggesuserscontext("test bridge_sampler cmdstanmcmc method") testthat::test_that("bridge_sampler() works for CmdStanMCMC and basic sanity checks", { testthat::skip_on_cran() testthat::skip_if_not_installed("cmdstanr") testthat::skip_if_not_installed("bridgesampling") testthat::skip_if_not_installed("posterior") # Require a working CmdStan toolchain if (!file.exists(cmdstanr::cmdstan_path())) { testthat::skip("CmdStan is not installed in the expected path for cmdstanr.") } set.seed(123) N <- 60L sigma <- 1 y <- rnorm(N, mean = 0.5, sd = sigma) data_list <- list(N = N, y = y, sigma = sigma) stan_code <- " data { int N; vector[N] y; real sigma; } parameters { real mu; } model { mu ~ normal(0, 1); y ~ normal(mu, sigma); }" tf <- tempfile(fileext = ".stan") on.exit(unlink(tf), add = TRUE) writeLines(stan_code, tf) mod <- cmdstanr::cmdstan_model(tf, quiet = TRUE, force_recompile = TRUE) fit <- mod$sample( data = data_list, seed = 202, chains = 2, parallel_chains = 2, iter_warmup = 2000, iter_sampling = 4000, refresh = 0, show_messages = FALSE, show_exceptions = FALSE ) bs <- bridgesampling::bridge_sampler(fit, silent = TRUE, use_neff = FALSE) testthat::expect_s3_class(fit, "CmdStanMCMC") testthat::expect_true(is.list(bs)) testthat::expect_true(is.finite(bs$logml)) fit2 <- mod$sample( data = data_list, seed = 203, chains = 4, parallel_chains = 2, iter_warmup = 750, iter_sampling = 2000, refresh = 0, show_messages = FALSE, show_exceptions = FALSE ) bs2 <- bridgesampling::bridge_sampler(fit2, silent = TRUE, use_neff = FALSE) testthat::expect_true(is.finite(bs2$logml)) }) testthat::test_that("CmdStanMCMC bridge estimate roughly agrees with rstan", { testthat::skip_on_cran() testthat::skip_on_ci() testthat::skip_if_not_installed("cmdstanr") testthat::skip_if_not_installed("bridgesampling") if (!requireNamespace("rstan", quietly = TRUE)) testthat::skip("rstan not installed") if (!file.exists(cmdstanr::cmdstan_path())) { testthat::skip("CmdStan is not installed in the expected path for cmdstanr.") } set.seed(456) # Same model/data as above N <- 60L sigma <- 1 y <- rnorm(N, mean = 0.25, sd = sigma) data_list <- list(N = N, y = y, sigma = sigma) stan_code <- " data { int N; vector[N] y; real sigma; } parameters { real mu; } model { mu ~ normal(0, 1); y ~ normal(mu, sigma); }" # --- CmdStanR/RStan fit --- tf <- tempfile(fileext = ".stan") on.exit(unlink(tf), add = TRUE) writeLines(stan_code, tf) mod_cs <- cmdstanr::cmdstan_model(tf, quiet = TRUE) fit_cs <- mod_cs$sample( data = data_list, seed = 777, chains = 4, parallel_chains = 2, iter_warmup = 10000, iter_sampling = 3000, refresh = 0, show_messages = FALSE, show_exceptions = FALSE ) bs_cmd <- bridgesampling::bridge_sampler(fit_cs, silent = TRUE, use_neff = FALSE) testthat::expect_true(is.finite(bs_cmd$logml)) Sys.sleep(2.5) sm <- rstan::stan_model(model_code = stan_code) fit_rs <- rstan::sampling( sm, data = data_list, seed = 777, chains = 4, iter = 10000, warmup = 3000, refresh = 0, cores = 2 ) bs_rstan <- bridgesampling::bridge_sampler(fit_rs, silent = TRUE, use_neff = FALSE) testthat::expect_true(is.finite(bs_rstan$logml)) # Compare the two bridge estimates. Tolerance accounts for MC/bridge variance. testthat::expect_lt(abs(bs_cmd$logml - bs_rstan$logml), 0.5) }) bridgesampling/tests/testthat/test-vignette_example_stan.R0000644000176200001440000001477515060242566023754 0ustar liggesusers context('test vignette bridgesampling_example_stan.Rmd') test_that("bridge sampler yields correct results", { testthat::skip_on_cran() testthat::skip_on_ci() # library(bridgesampling) if (require(rstan)) { ### generate data ### set.seed(12345) mu <- 0 tau2 <- 0.5 sigma2 <- 1 n <- 20 theta <- rnorm(n, mu, sqrt(tau2)) y <- rnorm(n, theta, sqrt(sigma2)) ### set prior parameters ### mu0 <- 0 tau20 <- 1 alpha <- 1 beta <- 1 # models stancodeH0 <- 'data { int n; // number of observations vector[n] y; // observations real alpha; real beta; real sigma2; } parameters { real tau2; // group-level variance vector[n] theta; // participant effects } model { target += inv_gamma_lpdf(tau2 | alpha, beta); target += normal_lpdf(theta | 0, sqrt(tau2)); target += normal_lpdf(y | theta, sqrt(sigma2)); } ' stancodeH1 <- 'data { int n; // number of observations vector[n] y; // observations real mu0; real tau20; real alpha; real beta; real sigma2; } parameters { real mu; real tau2; // group-level variance vector[n] theta; // participant effects } model { target += normal_lpdf(mu | mu0, sqrt(tau20)); target += inv_gamma_lpdf(tau2 | alpha, beta); target += normal_lpdf(theta | mu, sqrt(tau2)); target += normal_lpdf(y | theta, sqrt(sigma2)); } ' # compile models stanmodelH0 <- stan_model(model_code = stancodeH0, model_name="stanmodel") stanmodelH1 <- stan_model(model_code = stancodeH1, model_name="stanmodel") # fit models stanfitH0 <- sampling(stanmodelH0, data = list(y = y, n = n, alpha = alpha, beta = beta, sigma2 = sigma2), iter = 50000, warmup = 1000, chains = 3, cores = 1, refresh = 0) stanfitH1 <- sampling(stanmodelH1, data = list(y = y, n = n, mu0 = mu0, tau20 = tau20, alpha = alpha, beta = beta, sigma2 = sigma2), iter = 50000, warmup = 1000, chains = 3, cores = 1, refresh = 0) # compute log marginal likelihood via bridge sampling for H0 H0.bridge <- bridge_sampler(stanfitH0, silent = TRUE) # compute log marginal likelihood via bridge sampling for H1 H1.bridge <- bridge_sampler(stanfitH1, silent = TRUE) # compute percentage errors H0.error <- error_measures(H0.bridge)$percentage H1.error <- error_measures(H1.bridge)$percentage # compute Bayes factor BF01 <- bf(H0.bridge, H1.bridge) # compute posterior model probabilities (assuming equal prior model probabilities) post1 <- post_prob(H0.bridge, H1.bridge) # compute posterior model probabilities (using user-specified prior model probabilities) post2 <- post_prob(H0.bridge, H1.bridge, prior_prob = c(.6, .4)) # "exact" ml H1 mH1 <- function(data, rel.tol = 1e-10) { y <- data$y n <- data$n mu0 <- data$mu0 tau20 <- data$tau20 alpha <- data$alpha beta <- data$beta sigma2 <- data$sigma2 mH1integrand <- function(tau2, y, sigma2, mu0, tau20, alpha, beta) { (sigma2 + tau2)^(-n/2) * exp(-1/2 * ((n*mean(y)^2 + (n - 1)*sd(y)^2)/(sigma2 + tau2) + mu0^2/tau20 - ((n*mean(y))/(sigma2 + tau2) + mu0/tau20)^2 / (n/(sigma2 + tau2) + 1/tau20))) * (n/(sigma2 + tau2) + 1/tau20)^(-1/2) * tau2^(-alpha - 1) * exp(-beta/tau2) } (2*pi)^(-n/2) * (tau20)^(-1/2) * beta^alpha/gamma(alpha) * integrate(mH1integrand, 0, Inf, rel.tol = rel.tol, y = y, sigma2 = sigma2, mu0 = mu0, tau20 = tau20, alpha = alpha, beta = beta)$value } exact_logmlH1 <- log(mH1(list(y = y, n = n, mu0 = mu0, tau20 = tau20, alpha = alpha, beta = beta, sigma2 = sigma2))) # "exact" ml H1 mH0 <- function(data, rel.tol = 1e-10) { y <- data$y n <- data$n alpha <- data$alpha beta <- data$beta sigma2 <- data$sigma2 mH0integrand <- function(tau2, y, sigma2, alpha, beta) { n <- length(y) (sigma2 + tau2)^(-n/2) * exp(-(n*mean(y)^2 + (n - 1)*sd(y)^2)/ (2*(sigma2 + tau2))) * tau2^(-alpha - 1) * exp(-beta/tau2) } (2*pi)^(-n/2) * beta^alpha/gamma(alpha) * integrate(mH0integrand, 0, Inf, rel.tol = rel.tol, y = y, sigma2 = sigma2, alpha = alpha, beta = beta)$value } exact_logmlH0 <- log(mH0(list(y = y, n = n, alpha = alpha, beta = beta, sigma2 = sigma2))) exact_BF01 <- exp(exact_logmlH0 - exact_logmlH1) H0.bridge.curr <- H0.bridge H1.bridge.curr <- H1.bridge BF01.curr <- BF01 post1.curr <- post1 post2.curr <- post2 load(system.file("extdata/", "vignette_example_stan.RData", package = "bridgesampling")) expect_equal( H0.bridge.curr$logml, expected = exact_logmlH0, tolerance = 0.01 ) expect_equal( H1.bridge.curr$logml, expected = exact_logmlH1, tolerance = 0.01 ) expect_equal( BF01.curr$bf, expected = exact_BF01, tolerance = 0.01 ) expect_equal( H0.bridge.curr$logml, expected = H0.bridge$logml, tolerance = 0.01 ) expect_equal( H1.bridge.curr$logml, expected = H1.bridge$logml, tolerance = 0.01 ) expect_equal( BF01.curr$bf, expected = BF01$bf, tolerance = 0.01 ) expect_equal( post1.curr, expected = post1, tolerance = 0.01 ) expect_equal( post2.curr, expected = post2, tolerance = 0.01 ) } }) bridgesampling/tests/testthat/test-bridge_sampler_Rcpp.R0000644000176200001440000000415715060242566023323 0ustar liggesusers context('basic bridge sampling behavior normal Rcpp') test_that("bridge sampler matches anlytical value normal example", { testthat::skip_on_cran() testthat::skip_on_ci() # library(bridgesampling) library(mvtnorm) if(require(RcppEigen)) { x <- rmvnorm(1e4, mean = rep(0, 2), sigma = diag(2)) colnames(x) <- c("x1", "x2") lb <- rep(-Inf, 2) ub <- rep(Inf, 2) names(lb) <- names(ub) <- colnames(x) Rcpp::sourceCpp("unnormalized_normal_density.cpp") bridge_normal <- bridge_sampler(samples = x, log_posterior = log_densityRcpp, data = NULL, lb = lb, ub = ub, method = "normal", silent = TRUE) bridge_warp3 <- bridge_sampler(samples = x, log_posterior = log_densityRcpp, data = NULL, lb = lb, ub = ub, method = "warp3", silent = TRUE) expect_equal(bridge_normal$logml, expected = log(2*pi), tolerance = 0.01) expect_equal(bridge_warp3$logml, expected = log(2*pi), tolerance = 0.01) # test dots argument mu <- c(1, 2) x <- rmvnorm(1e4, mean = mu, sigma = diag(2)) colnames(x) <- c("x1", "x2") lb <- rep(-Inf, 2) ub <- rep(Inf, 2) names(lb) <- names(ub) <- colnames(x) Rcpp::sourceCpp("unnormalized_normal_density_mu.cpp") bridge_normal_dots <- bridge_sampler(samples = x, log_posterior = log_densityRcpp_mu, mu, data = NULL, lb = lb, ub = ub, method = "normal", silent = TRUE) bridge_warp3_dots <- bridge_sampler(samples = x, log_posterior = log_densityRcpp_mu, mu, data = NULL, lb = lb, ub = ub, method = "warp3", silent = TRUE) expect_equal(bridge_normal_dots$logml, expected = log(2*pi), tolerance = 0.01) expect_equal(bridge_warp3_dots$logml, expected = log(2*pi), tolerance = 0.01) } }) bridgesampling/tests/testthat/test-post_prob.R0000644000176200001440000000332415055304401021351 0ustar liggesusers context('post_prob with lists') test_that("post_prob works with lists and with NAs.", { bridge_o <- structure(list(logml = c(4291.14352476047, 4293.29076119542, 4291.96372581169, 4293.02187182362, NA, NA, 4290.9761730488, 4293.32075269401, 4293.5762219227, 4294.02761288449), niter = c(104, 16, 52, 8, 1000, 1000, 167, 16, 21, 44), method = "normal", repetitions = 10), .Names = c("logml", "niter", "method", "repetitions"), class = "bridge_list") H0L <- structure(list(logml = c(-20.8088381186739, -20.8072772698116, -20.808454454621, -20.8083419072281, -20.8087870541247, -20.8084887398113, -20.8086023582344, -20.8079083169745, -20.8083048489095, -20.8090050811436 ), niter = c(4, 4, 4, 4, 4, 4, 4, 4, 4, 4), method = "normal", repetitions = 10), .Names = c("logml", "niter", "method", "repetitions"), class = "bridge_list") H1L <- structure(list(logml = c(-17.961665507006, -17.9611290723151, -17.9607509604499, -17.9608629535992, -17.9602093576442, -17.9600223300432, -17.9610157118017, -17.9615557696561, -17.9608437034849, -17.9606743200309 ), niter = c(4, 4, 4, 4, 4, 4, 4, 4, 3, 4), method = "normal", repetitions = 10), .Names = c("logml", "niter", "method", "repetitions"), class = "bridge_list") H0 <- structure(list(logml = -20.8084543022433, niter = 4, method = "normal"), .Names = c("logml", "niter", "method"), class = "bridge") expect_is(post_prob(H1L, H0L), "matrix") expect_warning(post_prob(H1L, H0L, H0), "recycled") expect_warning(post_prob(H1L, H0L, 4), "ignored") expect_warning(post_prob(H0, H0L, 4), "ignored") expect_warning(post_prob(H1L, H0L, bridge_o), "NA") expect_error(post_prob(H1L, 4, 5, 6), "one object") expect_error(post_prob(H0, 4, 5, 6), "one object") }) bridgesampling/tests/testthat/test-stan_bridge_sampler_basic.R0000644000176200001440000001247215060242566024524 0ustar liggesusers context('bridge_sampler.stanfit works.') ### H0: mu = 0 mH0 <- function(y, sigma2 = 1, alpha = 2, beta = 3, rel.tol = 10^(-10)) { n <- length(y) mH0integrand <- function(tau2, y, sigma2, alpha, beta) { (sigma2 + tau2)^(-n/2) * exp(-(n*mean(y)^2 + (n - 1)*sd(y)^2)/(2*(sigma2 + tau2))) * tau2^(-alpha - 1) * exp(-beta/tau2) } (2*pi)^(-n/2) * beta^alpha/gamma(alpha) * integrate(mH0integrand, 0, Inf, rel.tol = rel.tol, y = y, sigma2 = sigma2, alpha = alpha, beta = beta)$value } test_that("stan_bridge_sampler", { testthat::skip_on_os("windows") if (require(rstan)) { set.seed(12345) mu <- 0 tau2 <- 0.5 sigma2 <- 1 n <- 20 theta <- rnorm(n, mu, sqrt(tau2)) y <- rnorm(n, theta, sqrt(sigma2)) ### set prior parameters ### mu0 <- 0 tau20 <- 1 alpha <- 1 beta <- 1 # models stancodeH0 <- 'data { int n; // number of observations vector[n] y; // observations real alpha; real beta; real sigma2; } parameters { real tau2; // group-level variance vector[n] theta; // participant effects } model { target += inv_gamma_lpdf(tau2 | alpha, beta); target += normal_lpdf(theta | 0, sqrt(tau2)); target += normal_lpdf(y | theta, sqrt(sigma2)); } ' # compile models stanmodelH0 <- suppressWarnings( stan_model(model_code = stancodeH0, model_name="stanmodel") ) # fit models stanobjectH0 <- sampling(stanmodelH0, data = list(y = y, n = n, alpha = alpha, beta = beta, sigma2 = sigma2), iter = 3500, warmup = 500, chains = 4, show_messages = FALSE, refresh = 0) expect_is( H0_bridge_norm <- bridge_sampler(samples = stanobjectH0, method = "normal", silent = TRUE) , "bridge") expect_is( H0_bridge_norm_rep <-bridge_sampler(stanobjectH0, method = "normal", repetitions = 2, silent = TRUE) , "bridge_list") expect_is( H0_bridge_warp3 <- bridge_sampler(stanobjectH0, method = "warp3", silent = TRUE) , "bridge") expect_is( H0_bridge_warp3_rep <- bridge_sampler(stanobjectH0, method = "warp3", repetitions = 2, silent = TRUE) , "bridge_list") expect_equal( H0_bridge_norm$logml, log(mH0(y = y, sigma2 = sigma2, alpha = alpha, beta = beta)), tolerance = 0.1) expect_equal( H0_bridge_warp3$logml, log(mH0(y = y, sigma2 = sigma2, alpha = alpha, beta = beta)), tolerance = 0.1) expect_equal( H0_bridge_norm_rep$logml, rep(log(mH0(y = y, sigma2 = sigma2, alpha = alpha, beta = beta)), 2), tolerance = 0.1) expect_equal( H0_bridge_warp3_rep$logml, rep(log(mH0(y = y, sigma2 = sigma2, alpha = alpha, beta = beta)), 2), tolerance = 0.1) } }) test_that("stan_bridge_sampler in multicore", { testthat::skip_on_cran() testthat::skip_on_ci() testthat::skip_on_os("windows") if (require(rstan)) { set.seed(12345) mu <- 0 tau2 <- 0.5 sigma2 <- 1 n <- 20 theta <- rnorm(n, mu, sqrt(tau2)) y <- rnorm(n, theta, sqrt(sigma2)) ### set prior parameters ### mu0 <- 0 tau20 <- 1 alpha <- 1 beta <- 1 # models stancodeH0 <- 'data { int n; // number of observations vector[n] y; // observations real alpha; real beta; real sigma2; } parameters { real tau2; // group-level variance vector[n] theta; // participant effects } model { target += inv_gamma_lpdf(tau2 | alpha, beta); target += normal_lpdf(theta | 0, sqrt(tau2)); target += normal_lpdf(y | theta, sqrt(sigma2)); } ' # compile models stanmodelH0 <- suppressWarnings( stan_model(model_code = stancodeH0, model_name="stanmodel") ) # fit models stanobjectH0 <- sampling(stanmodelH0, data = list(y = y, n = n, alpha = alpha, beta = beta, sigma2 = sigma2), iter = 2500, warmup = 500, chains = 4, show_messages = FALSE, refresh = 0) expect_is( H0_bridge_norm <- bridge_sampler(stanobjectH0, method = "normal", silent = TRUE, cores = 2) , "bridge") expect_is( H0_bridge_warp3 <- bridge_sampler(stanobjectH0, method = "warp3", silent = TRUE, cores = 2) , "bridge") expect_equal( H0_bridge_norm$logml, log(mH0(y = y, sigma2 = sigma2, alpha = alpha, beta = beta)), tolerance = 0.1) expect_equal( H0_bridge_warp3$logml, log(mH0(y = y, sigma2 = sigma2, alpha = alpha, beta = beta)), tolerance = 0.1) } }) bridgesampling/tests/testthat/unnormalized_normal_density_mu.cpp0000644000176200001440000000116215055304401025263 0ustar liggesusers// load Rcpp #include #include #include using namespace Rcpp; using Eigen::VectorXd; using Eigen::Map; //------------------------------------------------------------------------------ // unnormalized standard multivariate normal density function (log) //------------------------------------------------------------------------------ // [[Rcpp::depends(RcppEigen)]] // [[Rcpp::export]] double log_densityRcpp_mu(NumericVector x, SEXP data, NumericVector mu) { VectorXd xe(as >(x)); VectorXd mue(as >(mu)); return -0.5*(xe - mue).transpose()*(xe - mue); } bridgesampling/tests/testthat/test-iterative-scheme-mcse.R0000644000176200001440000000752415106572257023550 0ustar liggesuserscontext("Iterative scheme MCSE calculations") test_that("MCSE is finite, positive, and returned for normal method", { skip_if_not_installed("Brobdingnag") # Minimal deterministic inputs q11 <- c(0.10, 0.20, 0.30, 0.40) q12 <- c(0.02, 0.09, 0.10, 0.15) q21 <- c(0.05, 0.18, 0.22, 0.28) q22 <- c(0.01, 0.07, 0.11, 0.12) L <- diag(2) out <- .run.iterative.scheme( q11 = q11, q12 = q12, q21 = q21, q22 = q22, r0 = 1, tol = 1e-10, L = L, method = "normal", maxiter = 1000, silent = TRUE, criterion = "r", neff = length(q11), use_ess = FALSE ) expect_type(out, "list") expect_true(is.finite(out$mcse_logml)) expect_gt(out$mcse_logml, 0) # Deterministic value checks for the toy example expect_equal(out$logml, 0.13248979618200290, tolerance = 1e-12) expect_equal(out$mcse_logml, 0.02353233284705807, tolerance = 1e-12) }) test_that("MCSE is invariant to constant shifts (warp3 vs normal)", { skip_if_not_installed("Brobdingnag") # Same base inputs as above q11 <- c(0.10, 0.20, 0.30, 0.40) q12 <- c(0.02, 0.09, 0.10, 0.15) q21 <- c(0.05, 0.18, 0.22, 0.28) q22 <- c(0.01, 0.07, 0.11, 0.12) L <- diag(2) out_normal <- .run.iterative.scheme( q11 = q11, q12 = q12, q21 = q21, q22 = q22, r0 = 1, tol = 1e-10, L = L, method = "normal", maxiter = 1000, silent = TRUE, criterion = "r", neff = length(q11), use_ess = FALSE ) out_warp3 <- .run.iterative.scheme( q11 = q11, q12 = q12, q21 = q21, q22 = q22, r0 = 1, tol = 1e-10, L = L, method = "warp3", maxiter = 1000, silent = TRUE, criterion = "r", neff = length(q11), use_ess = FALSE ) # warp3 adds a constant to both l1 and l2 and shifts l*, the e^(l - l*) terms are invariant expect_equal(out_warp3$mcse_logml, out_normal$mcse_logml, tolerance = 1e-10) }) test_that("MCSE roughly scales like 1/sqrt(n)", { skip_if_not_installed("Brobdingnag") base_q11 <- c(0.10, 0.20, 0.30, 0.40) base_q12 <- c(0.02, 0.09, 0.10, 0.15) base_q21 <- c(0.05, 0.18, 0.22, 0.28) base_q22 <- c(0.01, 0.07, 0.11, 0.12) L <- diag(2) # n out_n <- .run.iterative.scheme( q11 = base_q11, q12 = base_q12, q21 = base_q21, q22 = base_q22, r0 = 1, tol = 1e-10, L = L, method = "normal", maxiter = 1000, silent = TRUE, criterion = "r", neff = length(base_q11), use_ess = FALSE ) # 4n (replicate samples 4x) k <- 4 out_4n <- .run.iterative.scheme( q11 = rep(base_q11, k), q12 = rep(base_q12, k), q21 = rep(base_q21, k), q22 = rep(base_q22, k), r0 = 1, tol = 1e-10, L = L, method = "normal", maxiter = 1000, silent = TRUE, criterion = "r", neff = length(base_q11) * k, use_ess = FALSE ) # Expect MCSE to drop by ~ 1/sqrt(k) expect_lt(out_4n$mcse_logml, out_n$mcse_logml) expect_equal(out_4n$mcse_logml, out_n$mcse_logml / sqrt(k), tolerance = 0.05) # Deterministic value for the 4x replicated case expect_equal(out_4n$mcse_logml, 0.01052514482181162, tolerance = 1e-12) }) test_that("Function runs with use_ess = TRUE (if posterior installed)", { skip_if_not_installed("Brobdingnag") # if (!requireNamespace("posterior", quietly = TRUE)) { # skip("posterior not installed") # } ## uses coda currently q11 <- c(0.10, 0.20, 0.30, 0.40, 0.45, 0.5) q12 <- c(0.02, 0.09, 0.10, 0.15, 0.18, 0.2) q21 <- c(0.05, 0.18, 0.22, 0.28, 0.30, 0.35) q22 <- c(0.01, 0.07, 0.11, 0.12, 0.14, 0.15) L <- diag(2) out <- .run.iterative.scheme( q11 = q11, q12 = q12, q21 = q21, q22 = q22, r0 = 1, tol = 1e-10, L = L, method = "normal", maxiter = 1000, silent = TRUE, criterion = "r", neff = length(q11), use_ess = TRUE ) expect_true(is.finite(out$mcse_logml)) expect_gt(out$mcse_logml, 0) }) bridgesampling/tests/testthat/unnormalized_normal_density.cpp0000644000176200001440000000104515055304401024562 0ustar liggesusers// load Rcpp #include #include #include using namespace Rcpp; using Eigen::VectorXd; using Eigen::Map; //------------------------------------------------------------------------------ // unnormalized standard multivariate normal density function (log) //------------------------------------------------------------------------------ // [[Rcpp::depends(RcppEigen)]] // [[Rcpp::export]] double log_densityRcpp(NumericVector x, SEXP data) { VectorXd xe(as >(x)); return -0.5*xe.transpose()*xe; } bridgesampling/tests/testthat/test-vignette_example_jags.R0000644000176200001440000001707715060242566023731 0ustar liggesusers context('test vignette bridgesampling_example_jags.Rmd') test_that("bridge sampler yields correct results", { testthat::skip_on_cran() testthat::skip_on_ci() # library(bridgesampling) if (require(R2jags)) { ### generate data ### set.seed(12345) mu <- 0 tau2 <- 0.5 sigma2 <- 1 n <- 20 theta <- rnorm(n, mu, sqrt(tau2)) y <- rnorm(n, theta, sqrt(sigma2)) ### set prior parameters ### mu0 <- 0 tau20 <- 1 alpha <- 1 beta <- 1 ### functions to get posterior samples ### # H0: mu = 0 getSamplesModelH0 <- function(data, niter = 52000, nburnin = 2000, nchains = 3) { model <- " model { for (i in 1:n) { theta[i] ~ dnorm(0, invTau2) y[i] ~ dnorm(theta[i], 1/sigma2) } invTau2 ~ dgamma(alpha, beta) tau2 <- 1/invTau2 }" s <- jags(data, parameters.to.save = c("theta", "invTau2"), model.file = textConnection(model), n.chains = nchains, n.iter = niter, n.burnin = nburnin, n.thin = 1, progress.bar = "none", quiet = TRUE) return(s) } # H1: mu != 0 getSamplesModelH1 <- function(data, niter = 52000, nburnin = 2000, nchains = 3) { model <- " model { for (i in 1:n) { theta[i] ~ dnorm(mu, invTau2) y[i] ~ dnorm(theta[i], 1/sigma2) } mu ~ dnorm(mu0, 1/tau20) invTau2 ~ dgamma(alpha, beta) tau2 <- 1/invTau2 }" s <- jags(data, parameters.to.save = c("theta", "mu", "invTau2"), model.file = textConnection(model), n.chains = nchains, n.iter = niter, n.burnin = nburnin, n.thin = 1, progress.bar = "none", quiet = TRUE) return(s) } ### get posterior samples ### # create data lists for JAGS data_H0 <- list(y = y, n = length(y), alpha = alpha, beta = beta, sigma2 = sigma2) data_H1 <- list(y = y, n = length(y), mu0 = mu0, tau20 = tau20, alpha = alpha, beta = beta, sigma2 = sigma2) # fit models samples_H0 <- getSamplesModelH0(data_H0) samples_H1 <- getSamplesModelH1(data_H1) ### functions for evaluating the unnormalized posteriors on log scale ### log_posterior_H0 <- function(samples.row, data) { mu <- 0 invTau2 <- samples.row[[ "invTau2" ]] theta <- samples.row[ paste0("theta[", seq_along(data$y), "]") ] sum(dnorm(data$y, theta, data$sigma2, log = TRUE)) + sum(dnorm(theta, mu, 1/sqrt(invTau2), log = TRUE)) + dgamma(invTau2, data$alpha, data$beta, log = TRUE) } log_posterior_H1 <- function(samples.row, data) { mu <- samples.row[[ "mu" ]] invTau2 <- samples.row[[ "invTau2" ]] theta <- samples.row[ paste0("theta[", seq_along(data$y), "]") ] sum(dnorm(data$y, theta, data$sigma2, log = TRUE)) + sum(dnorm(theta, mu, 1/sqrt(invTau2), log = TRUE)) + dnorm(mu, data$mu0, sqrt(data$tau20), log = TRUE) + dgamma(invTau2, data$alpha, data$beta, log = TRUE) } # specify parameter bounds H0 cn <- colnames(samples_H0$BUGSoutput$sims.matrix) cn <- cn[cn != "deviance"] lb_H0 <- rep(-Inf, length(cn)) ub_H0 <- rep(Inf, length(cn)) names(lb_H0) <- names(ub_H0) <- cn lb_H0[[ "invTau2" ]] <- 0 # specify parameter bounds H1 cn <- colnames(samples_H1$BUGSoutput$sims.matrix) cn <- cn[cn != "deviance"] lb_H1 <- rep(-Inf, length(cn)) ub_H1 <- rep(Inf, length(cn)) names(lb_H1) <- names(ub_H1) <- cn lb_H1[[ "invTau2" ]] <- 0 # compute log marginal likelihood via bridge sampling for H0 H0.bridge <- bridge_sampler(samples = samples_H0, data = data_H0, log_posterior = log_posterior_H0, lb = lb_H0, ub = ub_H0, silent = TRUE) # compute log marginal likelihood via bridge sampling for H1 H1.bridge <- bridge_sampler(samples = samples_H1, data = data_H1, log_posterior = log_posterior_H1, lb = lb_H1, ub = ub_H1, silent = TRUE) # compute percentage errors H0.error <- error_measures(H0.bridge)$percentage H1.error <- error_measures(H1.bridge)$percentage # compute Bayes factor BF01 <- bf(H0.bridge, H1.bridge) # compute posterior model probabilities (assuming equal prior model probabilities) post1 <- post_prob(H0.bridge, H1.bridge) # compute posterior model probabilities (using user-specified prior model probabilities) post2 <- post_prob(H0.bridge, H1.bridge, prior_prob = c(.6, .4)) # "exact" ml H1 mH1 <- function(data, rel.tol = 1e-10) { y <- data$y n <- data$n mu0 <- data$mu0 tau20 <- data$tau20 alpha <- data$alpha beta <- data$beta sigma2 <- data$sigma2 mH1integrand <- function(tau2, y, sigma2, mu0, tau20, alpha, beta) { (sigma2 + tau2)^(-n/2) * exp(-1/2 * ((n*mean(y)^2 + (n - 1)*sd(y)^2)/(sigma2 + tau2) + mu0^2/tau20 - ((n*mean(y))/(sigma2 + tau2) + mu0/tau20)^2 / (n/(sigma2 + tau2) + 1/tau20))) * (n/(sigma2 + tau2) + 1/tau20)^(-1/2) * tau2^(-alpha - 1) * exp(-beta/tau2) } (2*pi)^(-n/2) * (tau20)^(-1/2) * beta^alpha/gamma(alpha) * integrate(mH1integrand, 0, Inf, rel.tol = rel.tol, y = y, sigma2 = sigma2, mu0 = mu0, tau20 = tau20, alpha = alpha, beta = beta)$value } exact_logmlH1 <- log(mH1(data_H1)) # "exact" ml H1 mH0 <- function(data, rel.tol = 1e-10) { y <- data$y n <- data$n alpha <- data$alpha beta <- data$beta sigma2 <- data$sigma2 mH0integrand <- function(tau2, y, sigma2, alpha, beta) { n <- length(y) (sigma2 + tau2)^(-n/2) * exp(-(n*mean(y)^2 + (n - 1)*sd(y)^2)/ (2*(sigma2 + tau2))) * tau2^(-alpha - 1) * exp(-beta/tau2) } (2*pi)^(-n/2) * beta^alpha/gamma(alpha) * integrate(mH0integrand, 0, Inf, rel.tol = rel.tol, y = y, sigma2 = sigma2, alpha = alpha, beta = beta)$value } exact_logmlH0 <- log(mH0(data_H0)) exact_BF01 <- exp(exact_logmlH0 - exact_logmlH1) H0.bridge.curr <- H0.bridge H1.bridge.curr <- H1.bridge BF01.curr <- BF01 post1.curr <- post1 post2.curr <- post2 load(system.file("extdata/", "vignette_example_jags.RData", package = "bridgesampling")) expect_equal( H0.bridge.curr$logml, expected = exact_logmlH0, tolerance = 0.01 ) expect_equal( H1.bridge.curr$logml, expected = exact_logmlH1, tolerance = 0.01 ) expect_equal( BF01.curr$bf, expected = exact_BF01, tolerance = 0.01 ) expect_equal( H0.bridge.curr$logml, expected = H0.bridge$logml, tolerance = 0.01 ) expect_equal( H1.bridge.curr$logml, expected = H1.bridge$logml, tolerance = 0.01 ) expect_equal( BF01.curr$bf, expected = BF01$bf, tolerance = 0.01 ) expect_equal( post1.curr, expected = post1, tolerance = 0.01 ) expect_equal( post2.curr, expected = post2, tolerance = 0.01 ) } }) bridgesampling/tests/testthat/test-vignette_stan_ttest.R0000644000176200001440000001041715060242566023451 0ustar liggesusers context('test vignette bridgesampling_stan_ttest.Rmd') test_that("bridge sampler yields correct results", { testthat::skip_on_cran() testthat::skip_on_ci() # library(bridgesampling) if (require(rstan) && require(BayesFactor)) { set.seed(12345) # Sleep data from t.test example data(sleep) # compute difference scores y <- sleep$extra[sleep$group == 2] - sleep$extra[sleep$group == 1] n <- length(y) # models stancodeH0 <- ' data { int n; // number of observations vector[n] y; // observations } parameters { real sigma2; // variance parameter } model { target += log(1/sigma2); // Jeffreys prior on sigma2 target += normal_lpdf(y | 0, sqrt(sigma2)); // likelihood } ' stancodeH1 <- ' data { int n; // number of observations vector[n] y; // observations real r; // Cauchy prior scale } parameters { real delta; real sigma2;// variance parameter } model { target += cauchy_lpdf(delta | 0, r); // Cauchy prior on delta target += log(1/sigma2); // Jeffreys prior on sigma2 target += normal_lpdf(y | delta*sqrt(sigma2), sqrt(sigma2)); // likelihood } ' # compile models stanmodelH0 <- stan_model(model_code = stancodeH0, model_name="stanmodel") stanmodelH1 <- stan_model(model_code = stancodeH1, model_name="stanmodel") # fit models stanfitH0 <- sampling(stanmodelH0, data = list(y = y, n = n), iter = 20000, warmup = 1000, chains = 4, cores = 1, control = list(adapt_delta = .99), refresh = 0) stanfitH1 <- sampling(stanmodelH1, data = list(y = y, n = n, r = 1/sqrt(2)), iter = 20000, warmup = 1000, chains = 4, cores = 1, control = list(adapt_delta = .99), refresh = 0) set.seed(12345) suppressWarnings(H0 <- bridge_sampler(stanfitH0, silent = TRUE)) H1 <- bridge_sampler(stanfitH1, silent = TRUE) # compute percentage errors H0.error <- error_measures(H0)$percentage H1.error <- error_measures(H1)$percentage # compute Bayes factor BF10 <- bf(H1, H0) # BayesFactor result BF10.BayesFactor <- extractBF(ttestBF(y), onlybf = TRUE, logbf = FALSE) # one-sided test stancodeHplus <- ' data { int n; // number of observations vector[n] y; // observations real r; // Cauchy prior scale } parameters { real delta; // constrained to be positive real sigma2;// variance parameter } model { target += cauchy_lpdf(delta | 0, r) - cauchy_lccdf(0 | 0, r); // Cauchy prior on delta target += log(1/sigma2); // Jeffreys prior on sigma2 target += normal_lpdf(y | delta*sqrt(sigma2), sqrt(sigma2)); // likelihood } ' # compile and fit model stanmodelHplus <- stan_model(model_code = stancodeHplus, model_name="stanmodel") stanfitHplus <- sampling(stanmodelHplus, data = list(y = y, n = n, r = 1/sqrt(2)), iter = 30000, warmup = 1000, chains = 4, control = list(adapt_delta = .99), refresh = 0) Hplus <- bridge_sampler(stanfitHplus, silent = TRUE) Hplus.error <- error_measures(Hplus)$percentage # compute Bayes factor BFplus0 <- bf(Hplus, H0) BFplus0.BayesFactor <- extractBF(ttestBF(y, nullInterval = c(0, Inf)), onlybf = TRUE, logbf = FALSE)[1] H0.curr <- H0 H1.curr <- H1 Hplus.curr <- Hplus BF10.curr <- BF10 BFplus0.curr <- BFplus0 load(system.file("extdata/", "vignette_stan_ttest.RData", package = "bridgesampling")) expect_equal( H0.curr$logml, expected = H0$logml, tolerance = 0.01 ) expect_equal( H1.curr$logml, expected = H1$logml, tolerance = 0.01 ) expect_equal( BF10.curr$bf, expected = BF10$bf, tolerance = 0.01 ) expect_equal( BF10.curr$bf, expected = BF10.BayesFactor, tolerance = 0.03 ) expect_equal( BFplus0.curr$bf, expected = BFplus0$bf, tolerance = 0.01 ) expect_equal( BFplus0.curr$bf, expected = BFplus0.BayesFactor, tolerance = 0.03 ) } }) bridgesampling/tests/testthat/test-bf.R0000644000176200001440000000463215055304401017734 0ustar liggesusers context('bridge sampling bf function') test_that("bf various basic checks", { # library(bridgesampling) library(mvtnorm) x <- rmvnorm(1e4, mean = rep(0, 2), sigma = diag(2)) colnames(x) <- c("x1", "x2") log_density <- function(s, data) { -.5*t(s)%*%s } lb <- rep(-Inf, 2) ub <- rep(Inf, 2) names(lb) <- names(ub) <- colnames(x) # repetitions = 1 bridge_normal <- bridge_sampler(samples = x, log_posterior = log_density, data = NULL, lb = lb, ub = ub, method = "normal", silent = TRUE) bridge_warp3 <- bridge_sampler(samples = x, log_posterior = log_density, data = NULL, lb = lb, ub = ub, method = "warp3", silent = TRUE) expect_error(bf(bridge_normal, 4), "class 'bridge' or 'bridge_list'") BF <- bf(bridge_normal, bridge_warp3) log_BF <- bf(bridge_normal, bridge_warp3, log = TRUE) expect_output(print(BF), "Estimated Bayes factor") expect_output(print(log_BF), "Estimated log Bayes factor") BF2 <- bayes_factor(bridge_normal, bridge_warp3) log_BF2 <- bayes_factor(bridge_normal, bridge_warp3, log = TRUE) expect_output(print(BF2), "Estimated Bayes factor") expect_output(print(log_BF2), "Estimated log Bayes factor") # repetitions > 1 bridge_normal_mult <- bridge_sampler(samples = x, log_posterior = log_density, data = NULL, lb = lb, ub = ub, method = "normal", silent = TRUE, repetitions = 2) bridge_warp3_mult <- bridge_sampler(samples = x, log_posterior = log_density, data = NULL, lb = lb, ub = ub, method = "warp3", silent = TRUE, repetitions = 2) BF_mult <- bf(bridge_normal_mult, bridge_warp3_mult) log_BF_mult <- bf(bridge_normal_mult, bridge_warp3_mult, log = TRUE) expect_output(print(BF_mult), "based on medians") expect_output(print(log_BF_mult), "based on medians") ## bf with multi and singular objects expect_is(suppressWarnings(bf(bridge_normal_mult, bridge_normal)), "bf_bridge_list") expect_is(bf(bridge_normal, bridge_normal_mult), "bf_bridge") expect_error(bf(bridge_normal_mult, 4), "class 'bridge' or 'bridge_list'") # default BF <- bf(1, 2) log_BF <- bf(1, 2, log = TRUE) expect_output(print(BF), "Bayes factor") expect_output(print(log_BF), "Log Bayes factor") }) bridgesampling/tests/testthat/test_dat.txt0000644000176200001440000005616115055304401020621 0ustar liggesuserstest_dat <- list(M = 1500L, J = 5L, T = 3, E = 1, G = 3L, N = c(65, 106, 129), ii = c(276, 220, 179, 65, 82, 68, 284, 116, 37, 90, 122, 251, 145, 261, 146, 6, 27, 204, 254, 245, 41, 218, 8, 268, 192, 74, 104, 281, 275, 72, 95, 207, 45, 196, 131, 297, 290, 260, 248, 157, 61, 274, 26, 81, 98, 165, 38, 124, 206, 88, 228, 215, 269, 200, 278, 85, 174, 106, 135, 93, 136, 293, 292, 143, 92, 32, 216, 151, 194, 57, 140, 28, 12, 159, 175, 52, 3, 102, 101, 77, 253, 182, 212, 31, 16, 195, 4, 189, 256, 172, 158, 128, 298, 291, 142, 240, 229, 210, 282, 236, 223, 103, 141, 44, 71, 9, 54, 79, 138, 277, 10, 267, 91, 238, 266, 86, 18, 123, 111, 19, 1, 247, 163, 34, 14, 96, 299, 205, 271, 201, 241, 29, 184, 25, 137, 66, 49, 147, 198, 87, 21, 188, 213, 150, 134, 51, 176, 237, 127, 243, 255, 202, 160, 7, 148, 296, 180, 193, 120, 185, 20, 125, 272, 113, 149, 139, 129, 15, 259, 226, 119, 263, 181, 230, 94, 42, 170, 80, 64, 48, 89, 155, 109, 70, 265, 222, 264, 203, 270, 35, 249, 117, 242, 279, 126, 258, 183, 285, 233, 110, 288, 289, 99, 171, 191, 50, 63, 5, 60, 177, 208, 133, 114, 199, 286, 283, 67, 168, 78, 132, 153, 56, 169, 40, 187, 190, 262, 224, 162, 250, 178, 115, 173, 287, 130, 39, 2, 76, 217, 22, 273, 152, 161, 221, 167, 69, 100, 219, 246, 53, 47, 97, 55, 154, 23, 107, 43, 46, 209, 294, 166, 58, 24, 234, 244, 17, 108, 197, 300, 105, 227, 112, 118, 83, 156, 164, 36, 73, 252, 59, 211, 75, 144, 33, 231, 214, 13, 295, 186, 280, 11, 257, 225, 239, 62, 121, 30, 232, 235, 84, 276, 220, 179, 65, 82, 68, 284, 116, 37, 90, 122, 251, 145, 261, 146, 6, 27, 204, 254, 245, 41, 218, 8, 268, 192, 74, 104, 281, 275, 72, 95, 207, 45, 196, 131, 297, 290, 260, 248, 157, 61, 274, 26, 81, 98, 165, 38, 124, 206, 88, 228, 215, 269, 200, 278, 85, 174, 106, 135, 93, 136, 293, 292, 143, 92, 32, 216, 151, 194, 57, 140, 28, 12, 159, 175, 52, 3, 102, 101, 77, 253, 182, 212, 31, 16, 195, 4, 189, 256, 172, 158, 128, 298, 291, 142, 240, 229, 210, 282, 236, 223, 103, 141, 44, 71, 9, 54, 79, 138, 277, 10, 267, 91, 238, 266, 86, 18, 123, 111, 19, 1, 247, 163, 34, 14, 96, 299, 205, 271, 201, 241, 29, 184, 25, 137, 66, 49, 147, 198, 87, 21, 188, 213, 150, 134, 51, 176, 237, 127, 243, 255, 202, 160, 7, 148, 296, 180, 193, 120, 185, 20, 125, 272, 113, 149, 139, 129, 15, 259, 226, 119, 263, 181, 230, 94, 42, 170, 80, 64, 48, 89, 155, 109, 70, 265, 222, 264, 203, 270, 35, 249, 117, 242, 279, 126, 258, 183, 285, 233, 110, 288, 289, 99, 171, 191, 50, 63, 5, 60, 177, 208, 133, 114, 199, 286, 283, 67, 168, 78, 132, 153, 56, 169, 40, 187, 190, 262, 224, 162, 250, 178, 115, 173, 287, 130, 39, 2, 76, 217, 22, 273, 152, 161, 221, 167, 69, 100, 219, 246, 53, 47, 97, 55, 154, 23, 107, 43, 46, 209, 294, 166, 58, 24, 234, 244, 17, 108, 197, 300, 105, 227, 112, 118, 83, 156, 164, 36, 73, 252, 59, 211, 75, 144, 33, 231, 214, 13, 295, 186, 280, 11, 257, 225, 239, 62, 121, 30, 232, 235, 84, 276, 220, 179, 65, 82, 68, 284, 116, 37, 90, 122, 251, 145, 261, 146, 6, 27, 204, 254, 245, 41, 218, 8, 268, 192, 74, 104, 281, 275, 72, 95, 207, 45, 196, 131, 297, 290, 260, 248, 157, 61, 274, 26, 81, 98, 165, 38, 124, 206, 88, 228, 215, 269, 200, 278, 85, 174, 106, 135, 93, 136, 293, 292, 143, 92, 32, 216, 151, 194, 57, 140, 28, 12, 159, 175, 52, 3, 102, 101, 77, 253, 182, 212, 31, 16, 195, 4, 189, 256, 172, 158, 128, 298, 291, 142, 240, 229, 210, 282, 236, 223, 103, 141, 44, 71, 9, 54, 79, 138, 277, 10, 267, 91, 238, 266, 86, 18, 123, 111, 19, 1, 247, 163, 34, 14, 96, 299, 205, 271, 201, 241, 29, 184, 25, 137, 66, 49, 147, 198, 87, 21, 188, 213, 150, 134, 51, 176, 237, 127, 243, 255, 202, 160, 7, 148, 296, 180, 193, 120, 185, 20, 125, 272, 113, 149, 139, 129, 15, 259, 226, 119, 263, 181, 230, 94, 42, 170, 80, 64, 48, 89, 155, 109, 70, 265, 222, 264, 203, 270, 35, 249, 117, 242, 279, 126, 258, 183, 285, 233, 110, 288, 289, 99, 171, 191, 50, 63, 5, 60, 177, 208, 133, 114, 199, 286, 283, 67, 168, 78, 132, 153, 56, 169, 40, 187, 190, 262, 224, 162, 250, 178, 115, 173, 287, 130, 39, 2, 76, 217, 22, 273, 152, 161, 221, 167, 69, 100, 219, 246, 53, 47, 97, 55, 154, 23, 107, 43, 46, 209, 294, 166, 58, 24, 234, 244, 17, 108, 197, 300, 105, 227, 112, 118, 83, 156, 164, 36, 73, 252, 59, 211, 75, 144, 33, 231, 214, 13, 295, 186, 280, 11, 257, 225, 239, 62, 121, 30, 232, 235, 84, 276, 220, 179, 65, 82, 68, 284, 116, 37, 90, 122, 251, 145, 261, 146, 6, 27, 204, 254, 245, 41, 218, 8, 268, 192, 74, 104, 281, 275, 72, 95, 207, 45, 196, 131, 297, 290, 260, 248, 157, 61, 274, 26, 81, 98, 165, 38, 124, 206, 88, 228, 215, 269, 200, 278, 85, 174, 106, 135, 93, 136, 293, 292, 143, 92, 32, 216, 151, 194, 57, 140, 28, 12, 159, 175, 52, 3, 102, 101, 77, 253, 182, 212, 31, 16, 195, 4, 189, 256, 172, 158, 128, 298, 291, 142, 240, 229, 210, 282, 236, 223, 103, 141, 44, 71, 9, 54, 79, 138, 277, 10, 267, 91, 238, 266, 86, 18, 123, 111, 19, 1, 247, 163, 34, 14, 96, 299, 205, 271, 201, 241, 29, 184, 25, 137, 66, 49, 147, 198, 87, 21, 188, 213, 150, 134, 51, 176, 237, 127, 243, 255, 202, 160, 7, 148, 296, 180, 193, 120, 185, 20, 125, 272, 113, 149, 139, 129, 15, 259, 226, 119, 263, 181, 230, 94, 42, 170, 80, 64, 48, 89, 155, 109, 70, 265, 222, 264, 203, 270, 35, 249, 117, 242, 279, 126, 258, 183, 285, 233, 110, 288, 289, 99, 171, 191, 50, 63, 5, 60, 177, 208, 133, 114, 199, 286, 283, 67, 168, 78, 132, 153, 56, 169, 40, 187, 190, 262, 224, 162, 250, 178, 115, 173, 287, 130, 39, 2, 76, 217, 22, 273, 152, 161, 221, 167, 69, 100, 219, 246, 53, 47, 97, 55, 154, 23, 107, 43, 46, 209, 294, 166, 58, 24, 234, 244, 17, 108, 197, 300, 105, 227, 112, 118, 83, 156, 164, 36, 73, 252, 59, 211, 75, 144, 33, 231, 214, 13, 295, 186, 280, 11, 257, 225, 239, 62, 121, 30, 232, 235, 84, 276, 220, 179, 65, 82, 68, 284, 116, 37, 90, 122, 251, 145, 261, 146, 6, 27, 204, 254, 245, 41, 218, 8, 268, 192, 74, 104, 281, 275, 72, 95, 207, 45, 196, 131, 297, 290, 260, 248, 157, 61, 274, 26, 81, 98, 165, 38, 124, 206, 88, 228, 215, 269, 200, 278, 85, 174, 106, 135, 93, 136, 293, 292, 143, 92, 32, 216, 151, 194, 57, 140, 28, 12, 159, 175, 52, 3, 102, 101, 77, 253, 182, 212, 31, 16, 195, 4, 189, 256, 172, 158, 128, 298, 291, 142, 240, 229, 210, 282, 236, 223, 103, 141, 44, 71, 9, 54, 79, 138, 277, 10, 267, 91, 238, 266, 86, 18, 123, 111, 19, 1, 247, 163, 34, 14, 96, 299, 205, 271, 201, 241, 29, 184, 25, 137, 66, 49, 147, 198, 87, 21, 188, 213, 150, 134, 51, 176, 237, 127, 243, 255, 202, 160, 7, 148, 296, 180, 193, 120, 185, 20, 125, 272, 113, 149, 139, 129, 15, 259, 226, 119, 263, 181, 230, 94, 42, 170, 80, 64, 48, 89, 155, 109, 70, 265, 222, 264, 203, 270, 35, 249, 117, 242, 279, 126, 258, 183, 285, 233, 110, 288, 289, 99, 171, 191, 50, 63, 5, 60, 177, 208, 133, 114, 199, 286, 283, 67, 168, 78, 132, 153, 56, 169, 40, 187, 190, 262, 224, 162, 250, 178, 115, 173, 287, 130, 39, 2, 76, 217, 22, 273, 152, 161, 221, 167, 69, 100, 219, 246, 53, 47, 97, 55, 154, 23, 107, 43, 46, 209, 294, 166, 58, 24, 234, 244, 17, 108, 197, 300, 105, 227, 112, 118, 83, 156, 164, 36, 73, 252, 59, 211, 75, 144, 33, 231, 214, 13, 295, 186, 280, 11, 257, 225, 239, 62, 121, 30, 232, 235, 84), jj = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5), gg = c(2, 3, 2, 3, 3, 2, 3, 1, 3, 2, 1, 1, 2, 2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 1, 2, 2, 2, 3, 3, 1, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 2, 1, 2, 2, 3, 3, 3, 2, 3, 3, 3, 1, 3, 1, 3, 3, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 3, 3, 2, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 2, 1, 3, 1, 3, 2, 2, 3, 3, 3, 2, 1, 2, 2, 1, 1, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 3, 2, 1, 3, 1, 1, 1, 3, 1, 2, 1, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 2, 1, 1, 3, 1, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 1, 2, 1, 3, 1, 2, 3, 2, 3, 3, 2, 3, 2, 2, 2, 2, 3, 1, 3, 2, 3, 1, 1, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 1, 1, 1, 3, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 1, 2, 1, 1, 1, 3, 2, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 3, 1, 3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 1, 3, 1, 2, 3, 2, 3, 2, 1, 3, 2, 3, 3, 2, 2, 2, 3, 1, 3, 3, 3, 3, 3, 1, 1, 1, 3, 1, 3, 2, 3, 2, 3, 1, 1, 3, 2, 3, 3, 3, 3, 2, 3, 3, 1, 2, 3, 3, 1, 3, 2, 1, 1, 1, 2, 2, 3, 2, 2, 2, 1, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 3, 2, 3, 3, 2, 3, 1, 3, 2, 1, 1, 2, 2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 1, 2, 2, 2, 3, 3, 1, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 2, 1, 2, 2, 3, 3, 3, 2, 3, 3, 3, 1, 3, 1, 3, 3, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 3, 3, 2, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 2, 1, 3, 1, 3, 2, 2, 3, 3, 3, 2, 1, 2, 2, 1, 1, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 3, 2, 1, 3, 1, 1, 1, 3, 1, 2, 1, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 2, 1, 1, 3, 1, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 1, 2, 1, 3, 1, 2, 3, 2, 3, 3, 2, 3, 2, 2, 2, 2, 3, 1, 3, 2, 3, 1, 1, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 1, 1, 1, 3, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 1, 2, 1, 1, 1, 3, 2, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 3, 1, 3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 1, 3, 1, 2, 3, 2, 3, 2, 1, 3, 2, 3, 3, 2, 2, 2, 3, 1, 3, 3, 3, 3, 3, 1, 1, 1, 3, 1, 3, 2, 3, 2, 3, 1, 1, 3, 2, 3, 3, 3, 3, 2, 3, 3, 1, 2, 3, 3, 1, 3, 2, 1, 1, 1, 2, 2, 3, 2, 2, 2, 1, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 3, 2, 3, 3, 2, 3, 1, 3, 2, 1, 1, 2, 2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 1, 2, 2, 2, 3, 3, 1, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 2, 1, 2, 2, 3, 3, 3, 2, 3, 3, 3, 1, 3, 1, 3, 3, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 3, 3, 2, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 2, 1, 3, 1, 3, 2, 2, 3, 3, 3, 2, 1, 2, 2, 1, 1, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 3, 2, 1, 3, 1, 1, 1, 3, 1, 2, 1, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 2, 1, 1, 3, 1, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 1, 2, 1, 3, 1, 2, 3, 2, 3, 3, 2, 3, 2, 2, 2, 2, 3, 1, 3, 2, 3, 1, 1, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 1, 1, 1, 3, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 1, 2, 1, 1, 1, 3, 2, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 3, 1, 3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 1, 3, 1, 2, 3, 2, 3, 2, 1, 3, 2, 3, 3, 2, 2, 2, 3, 1, 3, 3, 3, 3, 3, 1, 1, 1, 3, 1, 3, 2, 3, 2, 3, 1, 1, 3, 2, 3, 3, 3, 3, 2, 3, 3, 1, 2, 3, 3, 1, 3, 2, 1, 1, 1, 2, 2, 3, 2, 2, 2, 1, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 3, 2, 3, 3, 2, 3, 1, 3, 2, 1, 1, 2, 2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 1, 2, 2, 2, 3, 3, 1, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 2, 1, 2, 2, 3, 3, 3, 2, 3, 3, 3, 1, 3, 1, 3, 3, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 3, 3, 2, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 2, 1, 3, 1, 3, 2, 2, 3, 3, 3, 2, 1, 2, 2, 1, 1, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 3, 2, 1, 3, 1, 1, 1, 3, 1, 2, 1, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 2, 1, 1, 3, 1, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 1, 2, 1, 3, 1, 2, 3, 2, 3, 3, 2, 3, 2, 2, 2, 2, 3, 1, 3, 2, 3, 1, 1, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 1, 1, 1, 3, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 1, 2, 1, 1, 1, 3, 2, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 3, 1, 3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 1, 3, 1, 2, 3, 2, 3, 2, 1, 3, 2, 3, 3, 2, 2, 2, 3, 1, 3, 3, 3, 3, 3, 1, 1, 1, 3, 1, 3, 2, 3, 2, 3, 1, 1, 3, 2, 3, 3, 3, 3, 2, 3, 3, 1, 2, 3, 3, 1, 3, 2, 1, 1, 1, 2, 2, 3, 2, 2, 2, 1, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 3, 2, 3, 3, 2, 3, 1, 3, 2, 1, 1, 2, 2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 1, 2, 2, 2, 3, 3, 1, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 2, 1, 2, 2, 3, 3, 3, 2, 3, 3, 3, 1, 3, 1, 3, 3, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 3, 3, 2, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 3, 2, 1, 3, 1, 3, 2, 2, 3, 3, 3, 2, 1, 2, 2, 1, 1, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 3, 2, 1, 3, 1, 1, 1, 3, 1, 2, 1, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 2, 1, 1, 3, 1, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 1, 2, 1, 3, 1, 2, 3, 2, 3, 3, 2, 3, 2, 2, 2, 2, 3, 1, 3, 2, 3, 1, 1, 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 2, 1, 1, 1, 3, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 1, 2, 1, 1, 1, 3, 2, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 3, 1, 3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 1, 3, 1, 2, 3, 2, 3, 2, 1, 3, 2, 3, 3, 2, 2, 2, 3, 1, 3, 3, 3, 3, 3, 1, 1, 1, 3, 1, 3, 2, 3, 2, 3, 1, 1, 3, 2, 3, 3, 3, 3, 2, 3, 3, 1, 2, 3, 3, 1, 3, 2, 1, 1, 1, 2, 2, 3, 2, 2, 2, 1, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2), g_all = c(116, 122, 251, 268, 72, 274, 215, 200, 106, 293, 57, 182, 31, 128, 142, 240, 138, 10, 267, 91, 266, 18, 247, 163, 271, 201, 29, 150, 51, 237, 20, 149, 139, 64, 48, 89, 109, 233, 288, 289, 99, 63, 5, 60, 133, 114, 199, 286, 78, 250, 115, 76, 100, 55, 154, 23, 43, 24, 234, 83, 73, 211, 75, 144, 280, 276, 179, 68, 90, 145, 261, 245, 8, 192, 74, 104, 207, 131, 290, 157, 61, 26, 81, 124, 174, 135, 93, 292, 143, 92, 32, 194, 140, 28, 12, 101, 253, 195, 4, 158, 298, 291, 282, 236, 9, 79, 86, 205, 184, 25, 137, 147, 198, 188, 213, 134, 127, 255, 7, 296, 180, 193, 120, 272, 129, 15, 259, 226, 181, 42, 80, 70, 222, 203, 35, 117, 126, 285, 110, 191, 177, 208, 283, 153, 56, 40, 187, 224, 162, 173, 130, 2, 22, 161, 221, 167, 209, 166, 17, 227, 156, 59, 33, 231, 13, 295, 186, 257, 225, 235, 84, 220, 65, 82, 284, 37, 146, 6, 27, 204, 254, 41, 218, 281, 275, 95, 45, 196, 297, 260, 248, 98, 165, 38, 206, 88, 228, 269, 278, 85, 136, 216, 151, 159, 175, 52, 3, 102, 77, 212, 16, 189, 256, 172, 229, 210, 223, 103, 141, 44, 71, 54, 277, 238, 123, 111, 19, 1, 34, 14, 96, 299, 241, 66, 49, 87, 21, 176, 243, 202, 160, 148, 185, 125, 113, 119, 263, 230, 94, 170, 155, 265, 264, 270, 249, 242, 279, 258, 183, 171, 50, 67, 168, 132, 169, 190, 262, 178, 287, 39, 217, 273, 152, 69, 219, 246, 53, 47, 97, 107, 46, 294, 58, 244, 108, 197, 300, 105, 112, 118, 164, 36, 252, 214, 11, 239, 62, 121, 30, 232), y = c(4, 3, 1, 2, 2, 2, 4, 4, 3, 2, 4, 1, 3, 2, 3, 2, 1, 2, 4, 4, 1, 3, 1, 2, 4, 2, 3, 4, 1, 3, 3, 3, 3, 2, 4, 4, 4, 4, 3, 3, 4, 2, 1, 2, 2, 3, 3, 3, 4, 2, 1, 4, 4, 4, 3, 4, 3, 2, 2, 3, 3, 4, 4, 2, 1, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 2, 1, 4, 4, 2, 3, 2, 3, 3, 3, 4, 3, 2, 4, 4, 4, 4, 2, 3, 4, 1, 3, 4, 4, 3, 3, 2, 2, 1, 4, 2, 3, 3, 1, 3, 2, 3, 2, 2, 2, 4, 3, 4, 1, 4, 4, 2, 1, 3, 4, 3, 4, 4, 3, 2, 2, 1, 2, 3, 3, 4, 2, 2, 4, 3, 1, 3, 3, 3, 4, 1, 4, 2, 3, 2, 4, 1, 4, 4, 3, 2, 2, 3, 3, 3, 4, 3, 3, 2, 4, 2, 4, 4, 2, 3, 4, 2, 4, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 4, 3, 2, 3, 3, 4, 3, 3, 4, 3, 4, 4, 4, 3, 2, 4, 4, 2, 2, 4, 3, 2, 3, 4, 4, 3, 1, 3, 2, 3, 3, 1, 3, 2, 2, 3, 3, 3, 1, 3, 4, 2, 4, 4, 4, 4, 2, 3, 3, 4, 3, 1, 4, 3, 3, 4, 4, 4, 4, 3, 2, 2, 3, 3, 4, 1, 2, 2, 3, 1, 4, 2, 2, 4, 3, 2, 3, 3, 3, 3, 1, 2, 3, 4, 3, 3, 1, 2, 3, 4, 2, 3, 4, 3, 2, 1, 4, 3, 3, 4, 3, 3, 4, 3, 3, 2, 4, 4, 1, 3, 3, 4, 4, 3, 3, 3, 4, 3, 3, 2, 1, 4, 3, 2, 3, 3, 4, 3, 4, 4, 2, 1, 4, 3, 3, 1, 4, 2, 3, 4, 3, 3, 2, 4, 3, 2, 4, 4, 3, 4, 4, 4, 4, 4, 3, 3, 4, 2, 4, 4, 3, 3, 3, 4, 1, 4, 3, 4, 3, 3, 4, 3, 3, 2, 3, 1, 4, 4, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 2, 1, 1, 4, 2, 3, 2, 2, 3, 3, 4, 4, 4, 3, 4, 4, 4, 2, 4, 3, 2, 4, 4, 4, 2, 3, 1, 1, 3, 4, 4, 3, 4, 3, 3, 3, 2, 4, 2, 3, 3, 3, 4, 1, 4, 3, 3, 1, 4, 4, 3, 4, 4, 3, 3, 4, 2, 3, 2, 1, 3, 4, 3, 3, 4, 4, 3, 3, 3, 4, 3, 4, 4, 4, 3, 3, 2, 4, 4, 2, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 2, 4, 4, 2, 2, 4, 2, 1, 3, 4, 4, 3, 2, 2, 3, 3, 3, 2, 4, 3, 4, 4, 2, 4, 3, 4, 4, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 4, 3, 2, 3, 3, 4, 3, 4, 3, 2, 2, 4, 4, 2, 4, 3, 4, 4, 4, 4, 4, 3, 4, 3, 4, 2, 2, 4, 4, 3, 4, 4, 4, 4, 4, 2, 4, 4, 4, 3, 2, 3, 3, 3, 2, 2, 2, 4, 4, 4, 4, 3, 3, 4, 4, 2, 3, 4, 4, 3, 3, 4, 3, 4, 3, 3, 2, 3, 4, 3, 2, 4, 3, 4, 4, 2, 3, 4, 3, 3, 2, 4, 4, 3, 4, 4, 4, 3, 4, 4, 2, 4, 2, 1, 3, 2, 1, 1, 3, 2, 2, 2, 3, 3, 2, 1, 2, 4, 3, 4, 1, 3, 2, 4, 4, 3, 3, 2, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 2, 1, 2, 3, 2, 3, 3, 3, 2, 1, 2, 3, 1, 4, 3, 4, 4, 1, 2, 3, 4, 2, 4, 3, 2, 2, 2, 3, 4, 4, 3, 1, 4, 3, 2, 1, 2, 2, 3, 3, 1, 2, 1, 3, 2, 2, 3, 4, 4, 3, 4, 4, 4, 4, 1, 1, 2, 3, 4, 4, 2, 3, 4, 3, 1, 4, 3, 1, 4, 2, 3, 2, 1, 2, 2, 3, 2, 4, 1, 1, 2, 2, 2, 4, 2, 4, 4, 3, 1, 2, 2, 2, 1, 1, 1, 3, 4, 2, 1, 3, 4, 3, 1, 1, 3, 4, 1, 4, 2, 3, 3, 4, 1, 3, 4, 3, 1, 2, 3, 3, 2, 4, 4, 1, 3, 4, 3, 4, 4, 4, 2, 3, 4, 4, 2, 4, 3, 1, 3, 1, 2, 3, 4, 2, 4, 3, 4, 4, 3, 4, 1, 2, 2, 3, 4, 1, 4, 4, 3, 2, 4, 3, 4, 4, 1, 2, 2, 4, 4, 4, 1, 1, 3, 4, 4, 2, 2, 2, 2, 1, 1, 3, 1, 3, 4, 1, 4, 4, 4, 4, 2, 3, 3, 3, 3, 1, 4, 3, 2, 4, 1, 4, 4, 3, 4, 4, 3, 2, 4, 1, 4, 2, 2, 3, 3, 2, 3, 4, 4, 3, 2, 3, 4, 2, 1, 3, 2, 4, 2, 3, 4, 3, 3, 3, 2, 3, 2, 2, 3, 2, 4, 3, 2, 1, 2, 2, 4, 4, 3, 2, 4, 4, 3, 4, 2, 2, 3, 4, 4, 2, 4, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 2, 3, 2, 3, 2, 1, 4, 1, 3, 4, 3, 1, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 4, 3, 1, 2, 1, 1, 2, 3, 2, 3, 2, 2, 4, 2, 1, 3, 3, 4, 2, 4, 1, 1, 1, 1, 3, 4, 2, 1, 2, 3, 1, 1, 2, 3, 2, 1, 4, 4, 2, 1, 3, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 4, 3, 3, 1, 4, 2, 4, 2, 3, 1, 2, 3, 4, 1, 3, 4, 4, 2, 4, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 2, 3, 1, 1, 4, 1, 2, 1, 2, 4, 3, 3, 2, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 3, 3, 1, 1, 1, 3, 3, 1, 2, 3, 4, 3, 3, 1, 2, 4, 3, 1, 1, 2, 2, 4, 4, 4, 1, 2, 4, 1, 4, 4, 2, 3, 4, 3, 2, 2, 1, 1, 1, 1, 3, 3, 2, 2, 3, 4, 1, 2, 3, 2, 4, 2, 1, 4, 2, 4, 1, 1, 3, 1, 3, 2, 3, 2, 3, 1, 1, 2, 1, 3, 4, 1, 1, 2, 3, 2, 1, 3, 1, 2, 3, 1, 3, 1, 3, 4, 2, 4, 4, 2, 4, 1, 2, 4, 3, 3, 1, 4, 1, 1, 4, 1, 2, 3, 1, 3, 4, 3, 4, 1, 2, 4, 1, 1, 3, 1, 2, 2, 4, 4, 2, 1, 1, 1, 3, 1, 4, 2, 4, 1, 2, 4, 1, 1, 1, 2, 3, 1, 3, 3, 3, 4, 3, 1, 2, 2, 1, 4, 1, 1, 2, 3, 4, 1, 3, 1, 3, 2, 4, 1, 4, 4, 2, 2, 4, 4, 4, 3, 3, 3, 3, 2, 3, 2, 3, 2, 2, 4, 4, 4, 2, 2, 2, 4, 4, 4, 2, 3, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 4, 4, 4, 1, 3, 3, 4, 3, 3, 4, 4, 2, 4, 3, 4, 4, 4, 4, 3, 2, 3, 4, 1, 4, 4, 4, 3, 2, 3, 3, 2, 3, 1, 1, 2, 4, 4, 4, 3, 2, 3, 1, 3, 2, 2, 3, 2, 2, 4, 4, 4, 3, 3, 4, 4, 4, 3, 2, 3, 2, 4, 4, 4, 3, 3, 4, 3, 2, 4, 2, 3, 3, 3, 3, 3, 2, 3, 2, 2, 4, 4, 3, 1, 4, 2, 4, 1, 4, 4, 4, 4, 4, 3, 3, 4, 1, 4, 2, 3, 3, 4, 2, 4, 3, 3, 3, 1, 3, 4, 2, 3, 4, 4, 4, 4, 1, 4, 4, 3, 3, 4, 4, 3, 3, 4, 4, 2, 2, 3, 3, 4, 4, 3, 3, 4, 3, 3, 2, 4, 3, 2, 3, 3, 3, 3, 2, 3, 4, 3, 3, 4, 3, 4, 3, 4, 4, 4, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 1, 2, 4, 4, 4, 2, 2, 4, 4, 3, 3, 3, 3, 2, 4, 3, 3, 1, 3, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 2, 4, 4, 2, 4, 3, 4, 4, 3, 2, 4, 4, 4, 4, 2, 2, 2, 4, 3, 3, 3, 4, 4, 4, 2, 4, 2, 4, 4, 2, 1, 3, 4, 3, 3, 4, 3, 3, 4, 2, 2, 4, 3, 4, 1, 3, 3, 2, 4, 3, 2, 4, 4, 3, 3, 4, 4, 3, 4, 4, 3, 3, 4, 4), obs_corr = structure(c(1, 1, 1, 0.51900000000000002, 0.626, 0.38700000000000001, 0.23699999999999999, 0.67900000000000005, 0.22800000000000001, 0.23999999999999999, 0.70999999999999996, 0.28199999999999997, 0.59999999999999998, 0.66000000000000003, 0.45500000000000002, 0.51900000000000002, 0.626, 0.38700000000000001, 1, 1, 1, 0.39400000000000002, 0.58199999999999996, 0.22700000000000001, 0.22700000000000001, 0.53900000000000003, 0.30599999999999999, 0.53700000000000003, 0.52600000000000002, 0.72199999999999998, 0.23699999999999999, 0.67900000000000005, 0.22800000000000001, 0.39400000000000002, 0.58199999999999996, 0.22700000000000001, 1, 1, 1, 0.49099999999999999, 0.68000000000000005, 0.52900000000000003, 0.46899999999999997, 0.56999999999999995, 0.44600000000000001, 0.23999999999999999, 0.70999999999999996, 0.28199999999999997, 0.22700000000000001, 0.53900000000000003, 0.30599999999999999, 0.49099999999999999, 0.68000000000000005, 0.52900000000000003, 1, 1, 1, 0.49299999999999999, 0.57199999999999995, 0.42899999999999999, 0.59999999999999998, 0.66000000000000003, 0.45500000000000002, 0.53700000000000003, 0.52600000000000002, 0.72199999999999998, 0.46899999999999997, 0.56999999999999995, 0.44600000000000001, 0.49299999999999999, 0.57199999999999995, 0.42899999999999999, 1, 1, 1), .Dim = c(3L, 5L, 5L))) bridgesampling/tests/testthat/test-bridge_sampler_print_method.R0000644000176200001440000000400415060242566025102 0ustar liggesusers context('bridge sampling print method') test_that("bridge sampler print method correctly displayed", { # library(bridgesampling) library(mvtnorm) x <- rmvnorm(1e4, mean = rep(0, 2), sigma = diag(2)) colnames(x) <- c("x1", "x2") log_density <- function(s, data) { -.5*t(s)%*%s } lb <- rep(-Inf, 2) ub <- rep(Inf, 2) names(lb) <- names(ub) <- colnames(x) # repetitions = 1 bridge_normal <- bridge_sampler(samples = x, log_posterior = log_density, data = NULL, lb = lb, ub = ub, method = "normal", silent = TRUE) bridge_warp3 <- bridge_sampler(samples = x, log_posterior = log_density, data = NULL, lb = lb, ub = ub, method = "warp3", silent = TRUE) expect_output(print(bridge_normal), "Bridge sampling estimate of the log marginal likelihood") expect_output(print(bridge_warp3), "Bridge sampling estimate of the log marginal likelihood") # repetitions > 1 bridge_normal <- bridge_sampler(samples = x, log_posterior = log_density, data = NULL, lb = lb, ub = ub, method = "normal", silent = TRUE, repetitions = 2) bridge_warp3 <- bridge_sampler(samples = x, log_posterior = log_density, data = NULL, lb = lb, ub = ub, method = "warp3", silent = TRUE, repetitions = 2) expect_output(print(bridge_normal), "Median of") expect_output(print(bridge_warp3), "Median of") }) test_that("prints with NAs with warning.", { bridge_o <- structure(list(logml = c(4291.14352476047, 4293.29076119542, 4291.96372581169, 4293.02187182362, NA, NA, 4290.9761730488, 4293.32075269401, 4293.5762219227, 4294.02761288449), niter = c(104, 16, 52, 8, 1000, 1000, 167, 16, 21, 44), method = "normal", repetitions = 10), .Names = c("logml", "niter", "method", "repetitions"), class = "bridge_list") expect_output(expect_warning(print(bridge_o), "NA")) }) bridgesampling/tests/testthat/test-stanreg_bridge_sampler_basic.R0000644000176200001440000000242615060242566025220 0ustar liggesusers context('bridge_sampler.stanreg works.') test_that("stan_bridge_sampler", { testthat::skip_on_cran() testthat::skip_on_ci() if (require(rstanarm)) { fit_1 <- stan_glm(mpg ~ wt + qsec + am, data = mtcars, chains = 2, cores = 2, iter = 5000, diagnostic_file = file.path(tempdir(), "df.csv"), refresh = 0) bridge_norm <- bridge_sampler(fit_1, silent = TRUE) fit_2 <- update(fit_1, formula = . ~ . + cyl, refresh = 0) bridge_warp <- bridge_sampler(fit_2, method = "warp3", silent = TRUE) expect_true(bridge_norm$logml > bridge_warp$logml) } }) test_that("stan_bridge_sampler in multicore", { testthat::skip_on_cran() testthat::skip_on_ci() #testthat::skip_on_os("windows") if (require(rstanarm)) { fit_1 <- stan_glm(mpg ~ wt + qsec + am, data = mtcars, chains = 2, cores = 2, iter = 5000, diagnostic_file = file.path(tempdir(), "df.csv"), refresh = 0) bridge_norm <- bridge_sampler(fit_1, cores = 2, silent = TRUE) fit_2 <- update(fit_1, formula = . ~ . + cyl, refresh = 0) bridge_warp <- bridge_sampler(fit_2, method = "warp3", cores = 2, silent = TRUE) expect_true(bridge_norm$logml > bridge_warp$logml) } }) bridgesampling/tests/testthat/test-nimble_bridge_sampler.R0000644000176200001440000000335415060242566023663 0ustar liggesusers context('bridge_sampler.nimble works.') test_that("nimble support works", { testthat::skip_on_cran() testthat::skip_on_ci() testthat::skip_if_not_installed("nimble") if (require(nimble)) { set.seed(12345) mu <- 0 tau2 <- 0.5 sigma2 <- 1 n <- 20 theta <- rnorm(n, mu, sqrt(tau2)) y <- rnorm(n, theta, sqrt(sigma2)) # create model codeH1 <- nimbleCode({ mu ~ dnorm(0, sd = 1) invTau2 ~ dgamma(1, 1) tau2 <- 1/invTau2 for (i in 1:20) { theta[i] ~ dnorm(mu, sd = sqrt(tau2)) y[i] ~ dnorm(theta[i], sd = 1) } }) capture.output(suppressMessages({ modelH1 <- nimbleModel(codeH1) modelH1$setData(y = y) # set data # make compiled version from generated C++ cmodelH1 <- compileNimble(modelH1) # build an MCMC, skipping customization of the configuration. mcmcH1 <- buildMCMC(modelH1, monitors = modelH1$getNodeNames(stochOnly = TRUE, includeData = FALSE)) # compile the MCMC via generated C++ cmcmcH1 <- compileNimble(mcmcH1, project = modelH1) # run the MCMC. This is a wrapper for cmcmc$run() and extraction of samples. # the object samplesH1 is actually not needed as the samples are also in cmcmcH1 samplesH1 <- runMCMC(cmcmcH1, niter = 1e5, nburnin = 1000, nchains = 2, progressBar = FALSE) })) # bridge sampling bridge_H1 <- bridge_sampler(samples = cmcmcH1, cores = 1, method = "warp3", repetitions = 2, silent = TRUE) expect_equal(bridge_H1$logml, rep(-37.7983064265064, 2), tolerance = 0.01) } }) bridgesampling/tests/testthat/test-log_posterior_cmdstan.R0000644000176200001440000001677215060116372023761 0ustar liggesuserscontext(".cmdstan_log_posterior helper function for CmdStanMCMC") test_that(".cmdstan_log_posterior and bridge_sampler agree with analytical results on an unconstrained model", { skip_on_cran() skip_if_not_installed("cmdstanr") skip_if_not_installed("posterior") skip_if_not_installed("bridgesampling") if (!file.exists(cmdstanr::cmdstan_path())) { skip("CmdStan is not installed in the expected path for cmdstanr.") } # Access the internal helper from bridgesampling pkg <- "bridgesampling" expect_true( exists(".cmdstan_log_posterior", envir = asNamespace(pkg), inherits = FALSE), info = "Internal function .cmdstan_log_posterior not found in 'bridgesampling'." ) .cmdstan_log_posterior <- get(".cmdstan_log_posterior", envir = asNamespace(pkg)) # Normal - Normal Data Model set.seed(321) N <- 40L sigma <- 1 y <- rnorm(N, 0.25, sigma) data_list <- list(N = N, y = y, sigma = sigma) stan_code <- " data { int N; vector[N] y; real sigma; } parameters { real mu; } model { mu ~ normal(0, 1); y ~ normal(mu, sigma); }" tf <- tempfile(fileext = ".stan") on.exit(unlink(tf), add = TRUE) writeLines(stan_code, tf) mod <- cmdstanr::cmdstan_model(tf, quiet = TRUE, force_recompile = TRUE) fit <- mod$sample( data = data_list, seed = 404, chains = 20, parallel_chains = 4, iter_warmup = 1000, iter_sampling = 10000, refresh = 0, show_messages = FALSE, show_exceptions = FALSE ) # 1) lp__ vs analytical log posterior (up to a constant) # Prior: mu ~ N(0,1); likelihood: y_i | mu ~ N(mu, sigma^2) logpost_mu <- function(mu, y, sigma) { -0.5 * mu^2 - sum((y - mu)^2) / (2 * sigma^2) } # Extract draws lp_df <- fit$draws(variables = "lp__", format = "df") expect_true(nrow(lp_df) > 10) lp_vec_all <- lp_df$lp__ mu_df <- fit$draws(variables = "mu", format = "df") expect_equal(nrow(mu_df), length(lp_vec_all)) mu_vec_all <- mu_df$mu lp_anal_all <- vapply(mu_vec_all, logpost_mu, numeric(1), y = y, sigma = sigma) # Compare up to additive constant: center both and compare lp_cent <- lp_vec_all - mean(lp_vec_all) anal_cent <- lp_anal_all - mean(lp_anal_all) expect_equal(lp_cent, anal_cent, tolerance = 1e-4) expect_gt(stats::cor(lp_vec_all, lp_anal_all), 0.99) # sanity check on correlation # 2) bridgesampling's internal q11 agrees with analytical log posterior bs_out <- bridgesampling::bridge_sampler( samples = fit, repetitions = 1, method = "normal", cores = 1L, use_neff = FALSE, silent = TRUE, verbose = FALSE ) n_all <- length(lp_vec_all) n_fit <- round(n_all / 2) idx_iter <- seq.int(n_fit + 1L, n_all) expect_equal(length(bs_out$q11), length(idx_iter)) # Compute analytical log posterior for the same subset of draws mu_iter <- mu_vec_all[idx_iter] lp_anal_iter <- vapply(mu_iter, logpost_mu, numeric(1), y = y, sigma = sigma) # Compare up to an additive constant by centering both q11_cent <- bs_out$q11 - mean(bs_out$q11) anal_iter_cent <- lp_anal_iter - mean(lp_anal_iter) expect_equal(unname(q11_cent), unname(anal_iter_cent), tolerance = 1e-4) expect_gt(stats::cor(bs_out$q11, lp_anal_iter), 0.99) # additional sanity check # 3) Spot-check the internal helper against lp__ directly upars <- fit$unconstrain_draws(format = "matrix") expect_equal(nrow(upars), length(lp_vec_all)) take <- seq_len(min(100L, nrow(upars))) direct_vals <- apply(upars[take, , drop = FALSE], 1, .cmdstan_log_posterior, data = fit) expect_type(direct_vals, "double") expect_length(direct_vals, length(take)) expect_equal(unname(direct_vals), unname(lp_vec_all[take]), tolerance = 1e-4) # 4) Basic input validation on the helper expect_error( .cmdstan_log_posterior(fit = "not-a-fit", data = list()), info = "Helper should reject invalid input when mis-called with named args." ) expect_error( .cmdstan_log_posterior(x = numeric(), data = fit), info = "Proper signature should reject badly shaped x." ) }) test_that("bridgesampling and .cmdstan_log_posterior handle constrained parameter correctly", { skip_on_cran() skip_if_not_installed("cmdstanr") skip_if_not_installed("posterior") skip_if_not_installed("bridgesampling") if (!file.exists(cmdstanr::cmdstan_path())) { skip("CmdStan is not installed in the expected path for cmdstanr.") } # Access bridgesampling's internal helper pkg <- "bridgesampling" expect_true( exists(".cmdstan_log_posterior", envir = asNamespace(pkg), inherits = FALSE), info = "Internal function .cmdstan_log_posterior not found in 'bridgesampling'." ) .cmdstan_log_posterior <- get(".cmdstan_log_posterior", envir = asNamespace(pkg)) # Stan model with constrained theta and simple Bernoulli likelihood bern_code <- " data { int N; array[N] int y; } parameters { real theta; } model { target += beta_lpdf(theta | 1, 1); // uniform prior on (0,1) target += bernoulli_lpmf(y | theta); // likelihood }" tf <- tempfile(fileext = ".stan") on.exit(unlink(tf), add = TRUE) writeLines(bern_code, tf) mod <- cmdstanr::cmdstan_model(tf, quiet = TRUE, force_recompile = TRUE) # Data data_bern <- list(N = 10L, y = c(1, 1, 1, 0, 1, 1, 1, 0, 1, 0)) fit <- mod$sample( data = data_bern, seed = 777, chains = 8, parallel_chains = 4, iter_warmup = 1000, iter_sampling = 8000, refresh = 0, show_messages = FALSE, show_exceptions = FALSE ) # Analytical log-posterior on the UNCONSTRAINED space y_ <- data_bern$y N_ <- data_bern$N s_ <- sum(y_) logpost_unconstrained <- function(theta, s, N) { # Prior Beta(1,1) contributes only a constant # Likelihood + Jacobian s * log(theta) + (N - s) * log1p(-theta) + log(theta * (1 - theta)) } lp_df <- fit$draws(variables = "lp__", format = "df") expect_true(nrow(lp_df) > 10) lp_vec_all <- lp_df$lp__ th_df <- fit$draws(variables = "theta", format = "df") expect_equal(nrow(th_df), length(lp_vec_all)) theta_all <- th_df$theta lp_anal_all <- vapply(theta_all, logpost_unconstrained, numeric(1), s = s_, N = N_) lp_cent <- lp_vec_all - mean(lp_vec_all) anal_cent <- lp_anal_all - mean(lp_anal_all) expect_equal(lp_cent, anal_cent, tolerance = 1e-4) expect_gt(stats::cor(lp_vec_all, lp_anal_all), 0.99) bs_out <- bridgesampling::bridge_sampler( samples = fit, repetitions = 1, method = "normal", cores = 1L, use_neff = FALSE, silent = TRUE, verbose = FALSE ) n_all <- length(lp_vec_all) n_fit <- round(n_all / 2) idx_iter <- seq.int(n_fit + 1L, n_all) expect_equal(length(bs_out$q11), length(idx_iter)) theta_iter <- theta_all[idx_iter] lp_anal_iter <- vapply(theta_iter, logpost_unconstrained, numeric(1), s = s_, N = N_) q11_cent <- bs_out$q11 - mean(bs_out$q11) anal_iter_cent <- lp_anal_iter - mean(lp_anal_iter) expect_equal(unname(q11_cent), unname(anal_iter_cent), tolerance = 1e-4) expect_gt(stats::cor(bs_out$q11, lp_anal_iter), 0.99) upars <- fit$unconstrain_draws(format = "matrix") expect_equal(nrow(upars), length(lp_vec_all)) take <- seq_len(min(100L, nrow(upars))) direct_vals <- apply(upars[take, , drop = FALSE], 1, .cmdstan_log_posterior, data = fit) expect_type(direct_vals, "double") expect_length(direct_vals, length(take)) expect_equal(unname(direct_vals), unname(lp_vec_all[take]), tolerance = 1e-4) }) bridgesampling/tests/testthat/test-bridge_sampler_summary_method.R0000644000176200001440000000525515055304401025443 0ustar liggesusers context('bridge sampling summary method') test_that("bridge sampler summary method correctly displayed", { # library(bridgesampling) library(mvtnorm) x <- rmvnorm(1e4, mean = rep(0, 2), sigma = diag(2)) colnames(x) <- c("x1", "x2") log_density <- function(s, data) { -.5*t(s)%*%s } lb <- rep(-Inf, 2) ub <- rep(Inf, 2) names(lb) <- names(ub) <- colnames(x) # repetitions = 1 bridge_normal <- bridge_sampler(samples = x, log_posterior = log_density, data = NULL, lb = lb, ub = ub, method = "normal", silent = TRUE) bridge_warp3 <- bridge_sampler(samples = x, log_posterior = log_density, data = NULL, lb = lb, ub = ub, method = "warp3", silent = TRUE) s_normal <- summary(bridge_normal) s_warp3 <- summary(bridge_warp3) expect_equal(names(s_normal), c("Logml_Estimate", "Relative_Mean_Squared_Error", "Coefficient_of_Variation", "Percentage_Error", "Method", "Repetitions")) expect_equal(names(s_warp3), c("Logml_Estimate", "Method", "Repetitions")) expect_output(print(s_normal), 'All error measures are approximate.') expect_output(print(s_warp3), 'No error measures are available for method = "warp3"') # repetitions > 1 bridge_normal_2 <- bridge_sampler(samples = x, log_posterior = log_density, data = NULL, lb = lb, ub = ub, method = "normal", silent = TRUE, repetitions = 2) bridge_warp3_2 <- bridge_sampler(samples = x, log_posterior = log_density, data = NULL, lb = lb, ub = ub, method = "warp3", silent = TRUE, repetitions = 2) s_normal_2 <- summary(bridge_normal_2) s_warp3_2 <- summary(bridge_warp3_2) expect_equal(names(s_normal_2), c("Logml_Estimate", "Min", "Max", "Interquartile_Range", "Method", "Repetitions")) expect_equal(names(s_warp3_2), c("Logml_Estimate", "Min", "Max", "Interquartile_Range", "Method", "Repetitions")) expect_output(print(s_normal_2), 'All error measures are based on 2 estimates.') expect_output(print(s_warp3_2), 'All error measures are based on 2 estimates.') }) bridgesampling/tests/testthat/test-bridge_sampler_mcmc.list.R0000644000176200001440000003070215060242566024303 0ustar liggesusers context('test bridge_sampler mcmc.list method') test_that("bridge sampler matches analytical value", { testthat::skip_on_cran() testthat::skip_on_ci() # library(bridgesampling) if (require(R2jags) && require(runjags)) { ### generate data ### set.seed(12345) mu <- 0 tau2 <- 0.5 sigma2 <- 1 n <- 20 theta <- rnorm(n, mu, sqrt(tau2)) y <- rnorm(n, theta, sqrt(sigma2)) ### set prior parameters ### mu0 <- 0 tau20 <- 1 alpha <- 1 beta <- 1 ### function to get posterior samples ### # H1: mu != 0 getSamplesModelH1 <- function(data, niter = 12000, nburnin = 2000, nchains = 3) { model <- " model { for (i in 1:n) { theta[i] ~ dnorm(mu, invTau2) y[i] ~ dnorm(theta[i], 1/sigma2) } mu ~ dnorm(mu0, 1/tau20) invTau2 ~ dgamma(alpha, beta) tau2 <- 1/invTau2 }" s <- jags(data, parameters.to.save = c("theta", "mu", "invTau2"), model.file = textConnection(model), n.chains = nchains, n.iter = niter, n.burnin = nburnin, n.thin = 1, progress.bar = "none", quiet = TRUE) return(s) } getSamplesModelH1_runjags <- function(data, niter = 12000, nburnin = 2000, nchains = 3) { model <- " model { for (i in 1:n) { theta[i] ~ dnorm(mu, invTau2) y[i] ~ dnorm(theta[i], 1/sigma2) } mu ~ dnorm(mu0, 1/tau20) invTau2 ~ dgamma(alpha, beta) tau2 <- 1/invTau2 }" capture_output(s <- suppressWarnings(runjags::run.jags(model = model, data = data, monitor = c("theta", "mu", "invTau2"), n.chains = 3, burnin = 2000, sample = 10000, silent.jags = TRUE))) return(s) } ### get posterior samples ### # create data list for Jags data_H1 <- list(y = y, n = length(y), mu0 = mu0, tau20 = tau20, alpha = alpha, beta = beta, sigma2 = sigma2) # fit model samples_H1 <- getSamplesModelH1(data_H1) samples_runjags <- getSamplesModelH1_runjags(data_H1) ### function for evaluating the unnormalized posterior on log scale ### log_posterior_H1 <- function(samples.row, data) { mu <- samples.row[[ "mu" ]] invTau2 <- samples.row[[ "invTau2" ]] theta <- samples.row[ paste0("theta[", seq_along(data$y), "]") ] sum(dnorm(data$y, theta, data$sigma2, log = TRUE)) + sum(dnorm(theta, mu, 1/sqrt(invTau2), log = TRUE)) + dnorm(mu, data$mu0, sqrt(data$tau20), log = TRUE) + dgamma(invTau2, data$alpha, data$beta, log = TRUE) } # specify parameter bounds cn <- colnames(samples_H1$BUGSoutput$sims.matrix) lb_H1 <- rep(-Inf, length(cn) - 1) ub_H1 <- rep(Inf, length(cn) - 1) names(lb_H1) <- names(ub_H1) <- cn[cn != "deviance"] lb_H1[[ "invTau2" ]] <- 0 samples1 <- coda::as.mcmc(samples_H1) samples1 <- samples1[,cn != "deviance"] # mcmc.list bridge_normal <- bridge_sampler(samples = samples1, log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H1, method = "normal", silent = TRUE, repetitions = 2) bridge_warp3 <- bridge_sampler(samples = samples1, log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H1, method = "warp3", silent = TRUE, repetitions = 2) bridge_normal_m <- bridge_sampler(samples = samples1, log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H1, method = "normal", silent = TRUE, repetitions = 2, cores = 2) bridge_warp3_m <- bridge_sampler(samples = samples1, log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H1, method = "warp3", silent = TRUE, repetitions = 2, cores = 2) # mcmc bridge_normal_s <- bridge_sampler(samples = samples1[[1]], log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H1, method = "normal", silent = TRUE, repetitions = 2) bridge_warp3_s <- bridge_sampler(samples = samples1[[1]], log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H1, method = "warp3", silent = TRUE, repetitions = 2) bridge_normal_m_s <- bridge_sampler(samples = samples1[[1]], log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H1, method = "normal", silent = TRUE, repetitions = 2, cores = 2) bridge_warp3_m_s <- bridge_sampler(samples = samples1[[1]], log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H1, method = "warp3", silent = TRUE, repetitions = 2, cores = 2) # rjags bridge_normal_j <- bridge_sampler(samples = samples_H1, log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H1, method = "normal", silent = TRUE, repetitions = 2) bridge_warp3_j <- bridge_sampler(samples = samples_H1, log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H1, method = "warp3", silent = TRUE, repetitions = 2) bridge_normal_jm <- bridge_sampler(samples = samples_H1, log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H1, method = "normal", silent = TRUE, repetitions = 2, cores = 2) bridge_warp3_jm <- bridge_sampler(samples = samples_H1, log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H1, method = "warp3", silent = TRUE, repetitions = 2, cores = 2) # runjags bridge_normal_r <- bridge_sampler(samples = samples_runjags, log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H1, method = "normal", silent = TRUE, repetitions = 2) bridge_warp3_r <- bridge_sampler(samples = samples_runjags, log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H1, method = "warp3", silent = TRUE, repetitions = 2) bridge_normal_rm <- bridge_sampler(samples = samples_runjags, log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H1, method = "normal", silent = TRUE, repetitions = 2, cores = 2) bridge_warp3_rm <- bridge_sampler(samples = samples_runjags, log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H1, method = "warp3", silent = TRUE, repetitions = 2, cores = 2) # "exact" ml mH1 <- function(data, rel.tol = 1e-10) { y <- data$y n <- data$n mu0 <- data$mu0 tau20 <- data$tau20 alpha <- data$alpha beta <- data$beta sigma2 <- data$sigma2 mH1integrand <- function(tau2, y, sigma2, mu0, tau20, alpha, beta) { (sigma2 + tau2)^(-n/2) * exp(-1/2 * ((n*mean(y)^2 + (n - 1)*sd(y)^2)/(sigma2 + tau2) + mu0^2/tau20 - ((n*mean(y))/(sigma2 + tau2) + mu0/tau20)^2 / (n/(sigma2 + tau2) + 1/tau20))) * (n/(sigma2 + tau2) + 1/tau20)^(-1/2) * tau2^(-alpha - 1) * exp(-beta/tau2) } (2*pi)^(-n/2) * (tau20)^(-1/2) * beta^alpha/gamma(alpha) * integrate(mH1integrand, 0, Inf, rel.tol = rel.tol, y = y, sigma2 = sigma2, mu0 = mu0, tau20 = tau20, alpha = alpha, beta = beta)$value } exact_logml <- log(mH1(data_H1)) expect_equal(class(samples1), expected = "mcmc.list") expect_equal( bridge_normal$logml, expected = rep(exact_logml, length(bridge_normal$logml)), tolerance = 0.01 ) expect_equal( bridge_warp3$logml, expected = rep(exact_logml, length(bridge_warp3$logml)), tolerance = 0.01 ) expect_equal( bridge_normal_m$logml, expected = rep(exact_logml, length(bridge_normal_m$logml)), tolerance = 0.01 ) expect_equal( bridge_warp3_m$logml, expected = rep(exact_logml, length(bridge_warp3_m$logml)), tolerance = 0.01 ) expect_equal(class(samples1[[1]]), expected = "mcmc") expect_equal( bridge_normal_s$logml, expected = rep(exact_logml, length(bridge_normal_s$logml)), tolerance = 0.01 ) expect_equal( bridge_warp3_s$logml, expected = rep(exact_logml, length(bridge_warp3_s$logml)), tolerance = 0.01 ) expect_equal( bridge_normal_m_s$logml, expected = rep(exact_logml, length(bridge_normal_m_s$logml)), tolerance = 0.01 ) expect_equal( bridge_warp3_m_s$logml, expected = rep(exact_logml, length(bridge_warp3_m_s$logml)), tolerance = 0.01 ) expect_equal(class(samples_H1), expected = "rjags") expect_equal( bridge_normal_j$logml, expected = rep(exact_logml, length(bridge_normal_j$logml)), tolerance = 0.01 ) expect_equal( bridge_warp3_j$logml, expected = rep(exact_logml, length(bridge_warp3_j$logml)), tolerance = 0.01 ) expect_equal( bridge_normal_jm$logml, expected = rep(exact_logml, length(bridge_normal_jm$logml)), tolerance = 0.01 ) expect_equal( bridge_warp3_jm$logml, expected = rep(exact_logml, length(bridge_warp3_jm$logml)), tolerance = 0.01 ) expect_equal(class(samples_runjags), expected = "runjags") expect_equal( bridge_normal_r$logml, expected = rep(exact_logml, length(bridge_normal_r$logml)), tolerance = 0.01 ) expect_equal( bridge_warp3_r$logml, expected = rep(exact_logml, length(bridge_warp3_r$logml)), tolerance = 0.01 ) expect_equal( bridge_normal_rm$logml, expected = rep(exact_logml, length(bridge_normal_rm$logml)), tolerance = 0.01 ) expect_equal( bridge_warp3_rm$logml, expected = rep(exact_logml, length(bridge_warp3_rm$logml)), tolerance = 0.01 ) ### check that wrong lb and ub produce errors: ub_H0 <- ub_H1[-2] lb_H0 <- lb_H1[-1] expect_error( bridge_sampler( samples = samples_runjags, log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H0 ), "ub does not contain all parameters" ) expect_error( bridge_sampler( samples = samples_runjags, log_posterior = log_posterior_H1, data = data_H1, lb = lb_H0, ub = ub_H1 ), "lb does not contain all parameters" ) expect_error( bridge_sampler( samples = samples1, log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H0 ), "ub does not contain all parameters" ) expect_error( bridge_sampler( samples = samples1, log_posterior = log_posterior_H1, data = data_H1, lb = lb_H0, ub = ub_H1 ), "lb does not contain all parameters" ) expect_error( bridge_sampler( samples = samples_H1, log_posterior = log_posterior_H1, data = data_H1, lb = lb_H0, ub = ub_H1 ), "lb does not contain all parameters" ) expect_error( bridge_sampler( samples = samples_H1, log_posterior = log_posterior_H1, data = data_H1, lb = lb_H1, ub = ub_H0 ), "ub does not contain all parameters" ) } }) bridgesampling/tests/testthat/test-bridge_sampler.R0000644000176200001440000002722615055304401022330 0ustar liggesusers context('basic bridge sampling behavior normal') test_that("bridge sampler matches anlytical value normal example", { # library(bridgesampling) library(mvtnorm) x <- rmvnorm(1e4, mean = rep(0, 2), sigma = diag(2)) colnames(x) <- c("x1", "x2") log_density <- function(s, data) { -.5*t(s)%*%s } assign(x = "log_density", value = log_density, envir = .GlobalEnv) lb <- rep(-Inf, 2) ub <- rep(Inf, 2) names(lb) <- names(ub) <- colnames(x) # check repetitions > 1 bridge_normal <- bridge_sampler(samples = x, log_posterior = log_density, data = NULL, lb = lb, ub = ub, method = "normal", silent = TRUE, repetitions = 2) bridge_warp3 <- bridge_sampler(samples = x, log_posterior = log_density, data = NULL, lb = lb, ub = ub, method = "warp3", silent = TRUE, repetitions = 2) bridge_normal_c <- bridge_sampler(samples = x, log_posterior = "log_density", data = NULL, lb = lb, ub = ub, method = "normal", silent = TRUE, repetitions = 2) bridge_warp3_c <- bridge_sampler(samples = x, log_posterior = "log_density", data = NULL, lb = lb, ub = ub, method = "warp3", silent = TRUE, repetitions = 2) expect_equal(bridge_normal$logml, expected = rep(log(2*pi), length(bridge_normal$logml)), tolerance = 0.01) expect_equal(bridge_warp3$logml, expected = rep(log(2*pi), length(bridge_warp3$logml)), tolerance = 0.01) expect_equal(bridge_normal_c$logml, expected = rep(log(2*pi), length(bridge_normal_c$logml)), tolerance = 0.01) expect_equal(bridge_warp3_c$logml, expected = rep(log(2*pi), length(bridge_warp3_c$logml)), tolerance = 0.01) expect_equal(bf(bridge_normal, bridge_warp3)$bf, expected = rep(1, 2), tolerance = 0.1) # check repetitions = 1 bridge_normal <- bridge_sampler(samples = x, log_posterior = log_density, data = NULL, lb = lb, ub = ub, method = "normal", silent = TRUE) bridge_warp3 <- bridge_sampler(samples = x, log_posterior = log_density, data = NULL, lb = lb, ub = ub, method = "warp3", silent = TRUE) bridge_normal_c <- bridge_sampler(samples = x, log_posterior = "log_density", data = NULL, lb = lb, ub = ub, method = "normal", silent = TRUE) bridge_warp3_c <- bridge_sampler(samples = x, log_posterior = "log_density", data = NULL, lb = lb, ub = ub, method = "warp3", silent = TRUE) expect_equal(bridge_normal$logml, expected = log(2*pi), tolerance = 0.01) expect_equal(bridge_warp3$logml, expected = log(2*pi), tolerance = 0.01) expect_equal(bridge_normal_c$logml, expected = log(2*pi), tolerance = 0.01) expect_equal(bridge_warp3_c$logml, expected = log(2*pi), tolerance = 0.01) # check using dots repetitions > 1 mu <- c(1, 2) x <- rmvnorm(1e4, mean = mu, sigma = diag(2)) colnames(x) <- c("x1", "x2") log_density <- function(s, data, ...) { -.5*t(s - mu) %*% (s - mu) } assign(x = "log_density", value = log_density, envir = .GlobalEnv) lb <- rep(-Inf, 2) ub <- rep(Inf, 2) names(lb) <- names(ub) <- colnames(x) bridge_normal_dots <- bridge_sampler(samples = x, log_posterior = log_density, mu, data = NULL, lb = lb, ub = ub, method = "normal", silent = TRUE, repetitions = 2) bridge_warp3_dots <- bridge_sampler(samples = x, log_posterior = log_density, mu, data = NULL, lb = lb, ub = ub, method = "normal", silent = TRUE, repetitions = 2) bridge_normal_c_dots <- bridge_sampler(samples = x, log_posterior = "log_density", mu, data = NULL, lb = lb, ub = ub, method = "normal", silent = TRUE, repetitions = 2) bridge_warp3_c_dots <- bridge_sampler(samples = x, log_posterior = "log_density", mu, data = NULL, lb = lb, ub = ub, method = "warp3", silent = TRUE, repetitions = 2) expect_equal(bridge_normal_dots$logml, expected = rep(log(2*pi), length(bridge_normal_dots$logml)), tolerance = 0.01) expect_equal(bridge_warp3_dots$logml, expected = rep(log(2*pi), length(bridge_warp3_dots$logml)), tolerance = 0.01) expect_equal(bridge_normal_c_dots$logml, expected = rep(log(2*pi), length(bridge_normal_c_dots$logml)), tolerance = 0.01) expect_equal(bridge_warp3_c_dots$logml, expected = rep(log(2*pi), length(bridge_warp3_c_dots$logml)), tolerance = 0.01) # check using dots mu <- c(1, 2) x <- rmvnorm(1e4, mean = mu, sigma = diag(2)) colnames(x) <- c("x1", "x2") log_density <- function(s, data, ...) { -.5*t(s - mu) %*% (s - mu) } assign(x = "log_density", value = log_density, envir = .GlobalEnv) lb <- rep(-Inf, 2) ub <- rep(Inf, 2) names(lb) <- names(ub) <- colnames(x) bridge_normal_dots <- bridge_sampler(samples = x, log_posterior = log_density, mu, data = NULL, lb = lb, ub = ub, method = "normal", silent = TRUE) bridge_warp3_dots <- bridge_sampler(samples = x, log_posterior = log_density, mu, data = NULL, lb = lb, ub = ub, method = "normal", silent = TRUE) bridge_normal_c_dots <- bridge_sampler(samples = x, log_posterior = "log_density", mu, data = NULL, lb = lb, ub = ub, method = "normal", silent = TRUE) bridge_warp3_c_dots <- bridge_sampler(samples = x, log_posterior = "log_density", mu, data = NULL, lb = lb, ub = ub, method = "warp3", silent = TRUE) expect_equal(bridge_normal_dots$logml, expected = log(2*pi), tolerance = 0.01) expect_equal(bridge_warp3_dots$logml, expected = log(2*pi), tolerance = 0.01) expect_equal(bridge_normal_c_dots$logml, expected = log(2*pi), tolerance = 0.01) expect_equal(bridge_warp3_c_dots$logml, expected = log(2*pi), tolerance = 0.01) # check error_measures err <- error_measures(bridge_normal) expect_equal(names(err), c("re2", "cv", "percentage")) expect_is(unlist(err), "character") expect_error(error_measures(bridge_warp3), "not implemented for warp3") ### these are meant to check the bf and post_prob functions and not as a meaningful comparisons bf <- bf(bridge_normal, bridge_warp3) expect_is(bf$bf, "numeric") # without prior_prob post1 <- post_prob(bridge_normal, bridge_warp3, bridge_normal_c, bridge_warp3_c) expect_equal(sum(post1), 1) # with prior_prob post2 <- post_prob(bridge_normal, bridge_warp3, bridge_normal_c, bridge_warp3_c, prior_prob = c(0.2, 0.1, 0.25, 0.45)) expect_equal(sum(post2), 1) # with incorrect prior_prob expect_error(post_prob(bridge_normal, bridge_warp3, bridge_normal_c, bridge_warp3_c, prior_prob = c(0.2, 0.1, 0.25, 0.55)), "do not sum to one") }) context('non-standard parameter spaces') test_that("bridge sampler functions for non-standard parameter spaces", { # Test with only simplex ru <- replicate(10, runif(10)) theta <- (ru / rowSums(ru))[, -10] colnames(theta) <- paste0("sim", 1:9) theta_t <- .transform2Real(theta, lb = rep(0, 9), ub = rep(1, 9), theta_types = rep("simplex", 9)) expect_equal(theta_t$transTypes[1], c(sim1 = "simplex")) theta_t_t <- .invTransform2Real(theta_t$theta_t, lb = rep(0, 9), ub = rep(1, 9), theta_types = rep("simplex", 9)) expect_equal(theta, theta_t_t) # tranformations work for different input shapes nsimp <- 4 n <- 100 sum_to_one <- function(x) x / sum(x) ru <- t(replicate(n, c(rnorm(2), # unbounded sum_to_one(runif(nsimp)), # simplex runif(3), # double-bounded abs(rnorm(1)), # lower-bounded rnorm(2) %% (2*pi)))) # circular theta_original <- ru[, -(nsimp + 2)] pt <- c(rep("real", 2), rep("simplex", nsimp - 1), rep("real", 4), rep("circular", 2)) lb <- c(rep(-Inf, 2), rep(0, nsimp - 1), rep(0, 4), rep(0, 2)) ub <- c(rep(Inf, 2), rep(1, nsimp - 1), rep(1, 3), rep(Inf, 1), rep(2*pi, 2)) nm <- c(paste0("unbounded", 1:2), paste0("simplex", 1:(nsimp - 1)), paste0("doublebounded", 1:3), paste0("lower", 1), paste0("circular", 1:2)) colnames(theta_original) <- names(lb) <- names(ub) <- names(pt) <- nm theta_t <- .transform2Real(theta_original, lb, ub, pt) theta_t_t <- .invTransform2Real(theta_t$theta_t, lb, ub, pt) # The modulus is to force the circular variables to be equal if they lie on # the same place on the circle. The modulus is also taken for the linear # variables, for simplicity of programming. expect_equal(theta_original %% (2*pi), theta_t_t %% (2*pi)) # Works with one row theta <- theta_original[1, , drop = FALSE] theta_t <- .transform2Real(theta, lb, ub, pt) theta_t_t <- .invTransform2Real(theta_t$theta_t, lb, ub, pt) # The modulus is to force the circular variables to be equal if they lie on # the same place on the circle. expect_equal(theta %% (2*pi), theta_t_t %% (2*pi)) # Test bridge sampler function with non-standard sample spaces bs_ns <- bridge_sampler.matrix( theta_original, data = rnorm(10), log_posterior = function(s, data) -.5*t(s) %*% s, lb = lb, ub = ub, silent = TRUE, verbose = FALSE) expect_true(class(bs_ns) == "bridge") ############ TEST JACOBIAN n <- 2 theta_full <- t(c(.4, .6)) theta <- theta_full[, -n, drop = FALSE] colnames(theta) <- paste0("sim", (1:(n - 1))) y <- bridgesampling:::.transform2Real(theta, lb = rep(0, n - 1), ub = rep(1, n - 1), theta_types = rep("simplex", n - 1))$theta_t tt <- rep("simplex", n - 1) colnames(y) <- paste0("trans_sim", (1:(n - 1))) names(tt) <- paste0("sim", (1:(n - 1))) jacob <- .logJacobian(y, tt, lb = rep(0, n), ub = rep(1, n)) expect_true(is.numeric(jacob)) skip_if_not_installed("MCMCpack") invsimplex <- function(y) { y <- as.matrix(y) n <- length(y) colnames(y) <- paste0("trans_sim", (1:n)) out1 <- .invTransform2Real(y, lb = rep(0, n), ub = rep(1, n), theta_types = rep("simplex", n)) c(out1, 1 - sum(out1)) } invsimplex(100) p_y <- function(y) { y <- as.matrix(y) n <- length(y) tt <- rep("simplex", n) colnames(y) <- paste0("trans_sim", (1:n)) names(tt) <- paste0("sim", (1:n)) MCMCpack::ddirichlet(invsimplex(y), theta_full*10) * exp(.logJacobian(y, tt, lb = rep(0, n), ub = rep(1, n))) } # The jaobian corrects for the transformation expect_equal(integrate(Vectorize(p_y), -100, 100)$value, 1) }) bridgesampling/tests/testthat/test-bridge_sampler_Rcpp_parallel.R0000644000176200001440000000542015060242566025171 0ustar liggesusers context('basic bridge sampling behavior normal Rcpp parallel') test_that("bridge sampler matches anlytical value normal example", { testthat::skip_on_cran() testthat::skip_on_ci() # library(bridgesampling) library(mvtnorm) if(require(RcppEigen)) { x <- rmvnorm(1e4, mean = rep(0, 2), sigma = diag(2)) colnames(x) <- c("x1", "x2") lb <- rep(-Inf, 2) ub <- rep(Inf, 2) names(lb) <- names(ub) <- colnames(x) Rcpp::sourceCpp(file = "unnormalized_normal_density.cpp") Rcpp::sourceCpp(file = "unnormalized_normal_density.cpp", env = .GlobalEnv) bridge_normal <- bridge_sampler(samples = x, log_posterior = "log_densityRcpp", data = NULL, lb = lb, ub = ub, method = "normal", packages = "RcppEigen", rcppFile = "unnormalized_normal_density.cpp", cores = 2, silent = TRUE) bridge_warp3 <- bridge_sampler(samples = x, log_posterior = "log_densityRcpp", data = NULL, lb = lb, ub = ub, method = "warp3", packages = "RcppEigen", rcppFile = "unnormalized_normal_density.cpp", cores = 2, silent = TRUE) expect_equal(bridge_normal$logml, expected = log(2*pi), tolerance = 0.01) expect_equal(bridge_warp3$logml, expected = log(2*pi), tolerance = 0.01) # test dots argument mu <- c(1, 2) x <- rmvnorm(1e4, mean = mu, sigma = diag(2)) colnames(x) <- c("x1", "x2") lb <- rep(-Inf, 2) ub <- rep(Inf, 2) names(lb) <- names(ub) <- colnames(x) Rcpp::sourceCpp(file = "unnormalized_normal_density_mu.cpp") Rcpp::sourceCpp(file = "unnormalized_normal_density_mu.cpp", env = .GlobalEnv) bridge_normal_dots <- bridge_sampler(samples = x, log_posterior = "log_densityRcpp_mu", mu, data = NULL, lb = lb, ub = ub, method = "normal", packages = "RcppEigen", rcppFile = "unnormalized_normal_density_mu.cpp", cores = 2, silent = TRUE) bridge_warp3_dots <- bridge_sampler(samples = x, log_posterior = "log_densityRcpp_mu", mu, data = NULL, lb = lb, ub = ub, method = "warp3", packages = "RcppEigen", rcppFile = "unnormalized_normal_density_mu.cpp", cores = 2, silent = TRUE) expect_equal(bridge_normal_dots$logml, expected = log(2*pi), tolerance = 0.01) expect_equal(bridge_warp3_dots$logml, expected = log(2*pi), tolerance = 0.01) } }) bridgesampling/tests/testthat/test-vignette_example_nimble.R0000644000176200001440000001445715060242566024252 0ustar liggesusers context('test vignette bridgesampling_example_nimble.Rmd') test_that("bridge sampler yields correct results", { testthat::skip_on_cran() testthat::skip_on_ci() # library(bridgesampling) if (require(nimble)) { ### generate data ### set.seed(12345) mu <- 0 tau2 <- 0.5 sigma2 <- 1 n <- 20 theta <- rnorm(n, mu, sqrt(tau2)) y <- rnorm(n, theta, sqrt(sigma2)) ### set prior parameters ### mu0 <- 0 tau20 <- 1 alpha <- 1 beta <- 1 # models codeH0 <- nimbleCode({ invTau2 ~ dgamma(1, 1) tau2 <- 1/invTau2 for (i in 1:20) { theta[i] ~ dnorm(0, sd = sqrt(tau2)) y[i] ~ dnorm(theta[i], sd = 1) } }) codeH1 <- nimbleCode({ mu ~ dnorm(0, sd = 1) invTau2 ~ dgamma(1, 1) tau2 <- 1/invTau2 for (i in 1:20) { theta[i] ~ dnorm(mu, sd = sqrt(tau2)) y[i] ~ dnorm(theta[i], sd = 1) } }) ## steps for H0: capture.output(suppressMessages(modelH0 <- nimbleModel(codeH0))) modelH0$setData(y = y) # set data cmodelH0 <- compileNimble(modelH0) # make compiled version from generated C++ ## steps for H1: capture.output(suppressMessages(modelH1 <- nimbleModel(codeH1))) modelH1$setData(y = y) # set data cmodelH1 <- compileNimble(modelH1) # make compiled version from generated C++ # build MCMC functions, skipping customization of the configuration. capture.output(suppressMessages({ mcmcH0 <- buildMCMC(modelH0, monitors = modelH0$getNodeNames(stochOnly = TRUE, includeData = FALSE)) mcmcH1 <- buildMCMC(modelH1, monitors = modelH1$getNodeNames(stochOnly = TRUE, includeData = FALSE)) })) # compile the MCMC function via generated C++ cmcmcH0 <- compileNimble(mcmcH0, project = modelH0) cmcmcH1 <- compileNimble(mcmcH1, project = modelH1) # run the MCMC. This is a wrapper for cmcmc$run() and extraction of samples. # the object samplesH1 is actually not needed as the samples are also in cmcmcH1 samplesH0 <- runMCMC(cmcmcH0, niter = 1e5, nburnin = 1000, nchains = 2, progressBar = FALSE) samplesH1 <- runMCMC(cmcmcH1, niter = 1e5, nburnin = 1000, nchains = 2, progressBar = FALSE) # compute log marginal likelihood via bridge sampling for H0 H0.bridge <- bridge_sampler(cmcmcH0, silent = TRUE) # compute log marginal likelihood via bridge sampling for H1 H1.bridge <- bridge_sampler(cmcmcH1, silent = TRUE) # compute percentage errors H0.error <- error_measures(H0.bridge)$percentage H1.error <- error_measures(H1.bridge)$percentage # compute Bayes factor BF01 <- bf(H0.bridge, H1.bridge) # compute posterior model probabilities (assuming equal prior model probabilities) post1 <- post_prob(H0.bridge, H1.bridge) # compute posterior model probabilities (using user-specified prior model probabilities) post2 <- post_prob(H0.bridge, H1.bridge, prior_prob = c(.6, .4)) # "exact" ml H1 mH1 <- function(data, rel.tol = 1e-10) { y <- data$y n <- data$n mu0 <- data$mu0 tau20 <- data$tau20 alpha <- data$alpha beta <- data$beta sigma2 <- data$sigma2 mH1integrand <- function(tau2, y, sigma2, mu0, tau20, alpha, beta) { (sigma2 + tau2)^(-n/2) * exp(-1/2 * ((n*mean(y)^2 + (n - 1)*sd(y)^2)/(sigma2 + tau2) + mu0^2/tau20 - ((n*mean(y))/(sigma2 + tau2) + mu0/tau20)^2 / (n/(sigma2 + tau2) + 1/tau20))) * (n/(sigma2 + tau2) + 1/tau20)^(-1/2) * tau2^(-alpha - 1) * exp(-beta/tau2) } (2*pi)^(-n/2) * (tau20)^(-1/2) * beta^alpha/gamma(alpha) * integrate(mH1integrand, 0, Inf, rel.tol = rel.tol, y = y, sigma2 = sigma2, mu0 = mu0, tau20 = tau20, alpha = alpha, beta = beta)$value } exact_logmlH1 <- log(mH1(list(y = y, n = n, mu0 = mu0, tau20 = tau20, alpha = alpha, beta = beta, sigma2 = sigma2))) # "exact" ml H1 mH0 <- function(data, rel.tol = 1e-10) { y <- data$y n <- data$n alpha <- data$alpha beta <- data$beta sigma2 <- data$sigma2 mH0integrand <- function(tau2, y, sigma2, alpha, beta) { n <- length(y) (sigma2 + tau2)^(-n/2) * exp(-(n*mean(y)^2 + (n - 1)*sd(y)^2)/ (2*(sigma2 + tau2))) * tau2^(-alpha - 1) * exp(-beta/tau2) } (2*pi)^(-n/2) * beta^alpha/gamma(alpha) * integrate(mH0integrand, 0, Inf, rel.tol = rel.tol, y = y, sigma2 = sigma2, alpha = alpha, beta = beta)$value } exact_logmlH0 <- log(mH0(list(y = y, n = n, alpha = alpha, beta = beta, sigma2 = sigma2))) exact_BF01 <- exp(exact_logmlH0 - exact_logmlH1) H0.bridge.curr <- H0.bridge H1.bridge.curr <- H1.bridge BF01.curr <- BF01 post1.curr <- post1 post2.curr <- post2 # load(system.file("extdata/", "vignette_example_nimble.RData", # package = "bridgesampling")) expect_equal( H0.bridge.curr$logml, expected = exact_logmlH0, tolerance = 0.01 ) expect_equal( H1.bridge.curr$logml, expected = exact_logmlH1, tolerance = 0.01 ) expect_equal( BF01.curr$bf, expected = exact_BF01, tolerance = 0.01 ) expect_equal( H0.bridge.curr$logml, expected = H0.bridge$logml, tolerance = 0.01 ) expect_equal( H1.bridge.curr$logml, expected = H1.bridge$logml, tolerance = 0.01 ) expect_equal( BF01.curr$bf, expected = BF01$bf, tolerance = 0.01 ) expect_equal( post1.curr, expected = post1, tolerance = 0.01 ) expect_equal( post2.curr, expected = post2, tolerance = 0.01 ) } }) bridgesampling/tests/testthat/test-bridge_sampler_parallel.R0000644000176200001440000000712315060242566024207 0ustar liggesusers context('basic bridge sampling behavior normal parallel') test_that("bridge sampler matches anlytical value normal example", { testthat::skip_on_cran() testthat::skip_on_ci() # library(bridgesampling) library(mvtnorm) x <- rmvnorm(1e4, mean = rep(0, 2), sigma = diag(2)) colnames(x) <- c("x1", "x2") log_density <- function(s, data) { -.5*t(s)%*%s } assign("log_density", log_density, envir = .GlobalEnv) lb <- rep(-Inf, 2) ub <- rep(Inf, 2) names(lb) <- names(ub) <- colnames(x) bridge_normal <- bridge_sampler(samples = x, log_posterior = log_density, data = NULL, lb = lb, ub = ub, method = "normal", cores = 2, silent = TRUE) bridge_warp3 <- bridge_sampler(samples = x, log_posterior = log_density, data = NULL, lb = lb, ub = ub, method = "warp3", cores = 2, silent = TRUE) bridge_normal_c <- bridge_sampler(samples = x, log_posterior = "log_density", data = NULL, lb = lb, ub = ub, method = "normal", cores = 2, silent = TRUE, envir = sys.frame(sys.nframe())) bridge_warp3_c <- bridge_sampler(samples = x, log_posterior = "log_density", data = NULL, lb = lb, ub = ub, method = "warp3", cores = 2, silent = TRUE, envir = sys.frame(sys.nframe())) expect_equal(bridge_normal$logml, expected = log(2*pi), tolerance = 0.01) expect_equal(bridge_warp3$logml, expected = log(2*pi), tolerance = 0.01) expect_equal(bridge_normal_c$logml, expected = log(2*pi), tolerance = 0.01) expect_equal(bridge_warp3_c$logml, expected = log(2*pi), tolerance = 0.01) # test dots argument mu <- c(1, 2) x <- rmvnorm(1e4, mean = mu, sigma = diag(2)) colnames(x) <- c("x1", "x2") log_density <- function(s, data, ...) { -.5*t(s - mu) %*% (s - mu) } assign("log_density", log_density, envir = .GlobalEnv) lb <- rep(-Inf, 2) ub <- rep(Inf, 2) names(lb) <- names(ub) <- colnames(x) bridge_normal_dots <- bridge_sampler(samples = x, log_posterior = log_density, mu, data = NULL, lb = lb, ub = ub, method = "normal", cores = 2, silent = TRUE) bridge_warp3_dots <- bridge_sampler(samples = x, log_posterior = log_density, mu, data = NULL, lb = lb, ub = ub, method = "warp3", cores = 2, silent = TRUE) bridge_normal_c_dots <- bridge_sampler(samples = x, log_posterior = "log_density", mu, data = NULL, lb = lb, ub = ub, method = "normal", cores = 2, silent = TRUE, envir = sys.frame(sys.nframe())) # ls.str(envir = sys.frame(sys.nframe())) bridge_warp3_c_dots <- bridge_sampler(samples = x, log_posterior = "log_density", mu, data = NULL, lb = lb, ub = ub, method = "warp3", cores = 2, silent = TRUE, envir = sys.frame(sys.nframe())) expect_equal(bridge_normal_dots$logml, expected = log(2*pi), tolerance = 0.01) expect_equal(bridge_warp3_dots$logml, expected = log(2*pi), tolerance = 0.01) expect_equal(bridge_normal_c_dots$logml, expected = log(2*pi), tolerance = 0.01) expect_equal(bridge_warp3_c_dots$logml, expected = log(2*pi), tolerance = 0.01) }) bridgesampling/tests/testthat.R0000644000176200001440000000011315055304401016356 0ustar liggesusersSys.setenv("R_TESTS" = "") library(testthat) test_check("bridgesampling") bridgesampling/MD50000644000176200001440000001250215107257542013561 0ustar liggesusers6cc2992bf22a9a0c047038349059b135 *DESCRIPTION 25857b83019186977e75320beb02f55c *NAMESPACE 0bf794efdcabc9a42f1bdf01b1daaa7f *NEWS.md a8ab868d5164d7989c65e3dd816f620b *R/bf.R 3f6855eca79d51b9c3f79982e8c881c6 *R/bridge_methods.R 52913de8421358fbc76cf090de6899e1 *R/bridge_sampler.R e4b5d406bf569c0b78502f4d18d0cb14 *R/bridge_sampler_internals.R 383e10b6a06f051636ca8c262c820b8e *R/bridge_sampler_normal.R 424c74189c3c7373eb56a9301321d5b2 *R/bridge_sampler_tools.R fa636d580c9b9b75e1ebe1b90ff031f9 *R/bridge_sampler_warp3.R 284de0e7cba1fe9b2a13fa7168a44efb *R/error_measures.R 30ff928e26e6b385a7730ca49a84dff2 *R/ier-data.R 57b71a4b3c1a4e4d93d41c6ec9bb1cc5 *R/logml.R 41dc6d8c2982f75508b12c1b996f78ba *R/post_prob.R 1e3674632ce67cdb8d2ddb49979cab29 *R/turtles-data.R 1bf18d9c216b8d95033f0bd2fe2906b2 *build/partial.rdb 8493d33a77fb6f1c3db3ea1eddc7a8e0 *build/vignette.rds 0c51ed14d5576619c9f4c39aae27732a *data/ier.rda 0fe9eaacba1bdb2098f8fdde83f65c32 *data/turtles.rda c8af7b819cb641ab0f3f04fc44ccf1d7 *inst/CITATION 11e1edc27bc627fe625fa3c1c4ff0776 *inst/doc/bridgesampling_example_jags.R 7c47a0c0eb81bb3fb6a54274652a04ed *inst/doc/bridgesampling_example_jags.Rmd 870fb589ba559cd8838aad7fe1ecb230 *inst/doc/bridgesampling_example_jags.html aa0663f55cfb05d722364d1606565e90 *inst/doc/bridgesampling_example_nimble.R 7bf3ffd1675430b7a15078c13c6f6546 *inst/doc/bridgesampling_example_nimble.Rmd e172cd76d95030b5f02fbf41cc4c3f62 *inst/doc/bridgesampling_example_nimble.html b3c1d8b8689acd54e11dd62364ca0ba1 *inst/doc/bridgesampling_example_stan.R 0515f7a2a0fe63b12c21851f0bf32367 *inst/doc/bridgesampling_example_stan.Rmd 8594d8bf6b8b8b06d66f1293ccc34dcc *inst/doc/bridgesampling_example_stan.html bbaa77844464c1e409988917d48faddd *inst/doc/bridgesampling_paper.pdf 0dbe1dd3afdb67f4bf23e17e1df8c63b *inst/doc/bridgesampling_paper.pdf.asis e79fcc285f636cf10c06ed6f39cc8514 *inst/doc/bridgesampling_paper_extended.pdf 27e8ee7fa7ec55adb540e60e0e8ce93e *inst/doc/bridgesampling_paper_extended.pdf.asis c286e599bb243ccd9d84272d4055515e *inst/doc/bridgesampling_stan_ttest.R 5ef6c2058cdf9fe11e14447592d35eb0 *inst/doc/bridgesampling_stan_ttest.Rmd 8a44669cfb850bd85f7f347f349b81fc *inst/doc/bridgesampling_stan_ttest.html 0220a49ada629f607e7f31b9e89d8ee8 *inst/doc/bridgesampling_tutorial.pdf 0975f714b581ed709f0a23ae6cb5cb4d *inst/doc/bridgesampling_tutorial.pdf.asis 434644c66d15f79cf041d83ccedbac7e *inst/extdata/vignette_example_jags.RData 57b34d4773334a565b2ff3e61c04769a *inst/extdata/vignette_example_nimble.RData e05efd47379e0f72f294bb6071ac487b *inst/extdata/vignette_example_stan.RData f0cf681aedd2e8400030847494c168dd *inst/extdata/vignette_stan_ttest.RData 5b6dc572ad3278344cbf1c7e315e1539 *man/bf.Rd d0885d0fcedcc85aac9ed94d4e4394fe *man/bridge-methods.Rd 0870e3e2af96b40e9ef54f3f9121fb3d *man/bridge_sampler.Rd d094db60afed945869cd84d71edf1e30 *man/error_measures.Rd 74b21b12b56f243c9f06a3ec3fdfdf2c *man/ier.Rd 89434ad340ebd3a1c54c6004e3050c87 *man/logml.Rd 2dead54f834dfd03d9cf1034fbb0a947 *man/post_prob.Rd 5e2578b69b861ab357026bbdc1ace3b3 *man/turtles.Rd 9d667770b4162f1cc0ffb5c78385fbac *tests/testthat.R 18061a0db681122bc265eafc9bccc57d *tests/testthat/test-bf.R 72e7273a34b91a454bbbb36d6ed49cab *tests/testthat/test-bridge_sampler.R b3be89eda5691ae017ccd51259c2836f *tests/testthat/test-bridge_sampler_CmdStanMCMC.R 581c04d681e74149fbf4ff9072914fb4 *tests/testthat/test-bridge_sampler_Rcpp.R ea50896c3058c5462c4f7c2d3262e3b8 *tests/testthat/test-bridge_sampler_Rcpp_parallel.R fcb1f3604a295dd89622f2259cfb7656 *tests/testthat/test-bridge_sampler_mcmc.list.R 4f8863b686fe8b03352e96a147fdb6ee *tests/testthat/test-bridge_sampler_parallel.R 869c92370274bab3e50bd023bccb5cbd *tests/testthat/test-bridge_sampler_print_method.R 0c8e67cddb08ff217d19e4be787be066 *tests/testthat/test-bridge_sampler_summary_method.R da316e35d2154a8e1403d8fa25eee17f *tests/testthat/test-iterative-scheme-mcse.R 68e4318a32dcfe8942d600f89f4e44e8 *tests/testthat/test-log_posterior_cmdstan.R fb612e553f1a1a90e68a14fa3a093692 *tests/testthat/test-nimble_bridge_sampler.R 0b8afc08bcf4910e8833dd1765e93c3c *tests/testthat/test-post_prob.R 481273939529d147e9d6026d45954b2d *tests/testthat/test-stan_bridge_sampler_basic.R 4476552d85c0566f5b3ae3cc5d44e585 *tests/testthat/test-stan_bridge_sampler_bugs.R 31f0015003326c575b37147bbcd0b080 *tests/testthat/test-stanreg_bridge_sampler_basic.R 63591284f82aaa7f99b75c051ba57001 *tests/testthat/test-vignette_example_jags.R a35562bf90e0a6345a9910da36c73f64 *tests/testthat/test-vignette_example_nimble.R 8d21924773a885d6e26087b60de0fc64 *tests/testthat/test-vignette_example_stan.R cc4b8adc73a840e0c2b8a3146c7ac74b *tests/testthat/test-vignette_stan_ttest.R 401c56bd63239b0ea3d21295698d3c65 *tests/testthat/test_dat.txt 6e8d98c9521d5c6c0e7fad8fdfc5d801 *tests/testthat/unnormalized_normal_density.cpp ef671e9eb9ca452eae9d3a91202514ce *tests/testthat/unnormalized_normal_density_mu.cpp 7c47a0c0eb81bb3fb6a54274652a04ed *vignettes/bridgesampling_example_jags.Rmd 7bf3ffd1675430b7a15078c13c6f6546 *vignettes/bridgesampling_example_nimble.Rmd 0515f7a2a0fe63b12c21851f0bf32367 *vignettes/bridgesampling_example_stan.Rmd 0dbe1dd3afdb67f4bf23e17e1df8c63b *vignettes/bridgesampling_paper.pdf.asis 27e8ee7fa7ec55adb540e60e0e8ce93e *vignettes/bridgesampling_paper_extended.pdf.asis 5ef6c2058cdf9fe11e14447592d35eb0 *vignettes/bridgesampling_stan_ttest.Rmd 0975f714b581ed709f0a23ae6cb5cb4d *vignettes/bridgesampling_tutorial.pdf.asis bridgesampling/R/0000755000176200001440000000000015060243416013443 5ustar liggesusersbridgesampling/R/bridge_methods.R0000644000176200001440000001172115060266335016554 0ustar liggesusers#' Methods for bridge and bridge_list objects #' #' Methods defined for objects returned from the generic \code{\link{bridge_sampler}} function. #' #' @param object,x object of class \code{bridge} or \code{bridge_list} as returned from \code{\link{bridge_sampler}}. #' @param na.rm logical. Should NA estimates in \code{bridge_list} objects be removed? Passed to \code{\link{error_measures}}. #' @param ... further arguments, currently ignored. #' #' @return #' The \code{summary} methods return a \code{data.frame} which contains the log marginal likelihood plus the result returned from invoking \code{\link{error_measures}}. #' #' The \code{print} methods simply print and return nothing. #' #' #' @name bridge-methods NULL # summary methods #' @rdname bridge-methods #' @method summary bridge #' @export summary.bridge <- function(object, na.rm = TRUE, ...) { if (!(object$method %in% c("normal", "warp3"))) { stop('object$method needs to be either "normal" or "warp3".', call. = FALSE) } if (object$method == "normal") { em <- error_measures(object) out <- data.frame( "Logml_Estimate" = object$logml, "Relative_Mean_Squared_Error" = em$re2, "Coefficient_of_Variation" = em$cv, "Percentage_Error" = em$percentage, "Method" = object$method, "Repetitions" = 1, stringsAsFactors = FALSE ) } else if (object$method == "warp3") { out <- data.frame( "Logml_Estimate" = object$logml, "Method" = object$method, "Repetitions" = 1 ) } class(out) <- c("summary.bridge", "data.frame") return(out) } #' @rdname bridge-methods #' @method summary bridge_list #' @export summary.bridge_list <- function(object, na.rm = TRUE, ...) { if (!(object$method %in% c("normal", "warp3"))) { stop('object$method needs to be either "normal" or "warp3".', call. = FALSE) } em <- error_measures(object, na.rm = na.rm) out <- data.frame( "Logml_Estimate" = median(object$logml, na.rm = na.rm), "Min" = em$min, "Max" = em$max, "Interquartile_Range" = em$IQR, "Method" = object$method, "Repetitions" = object$repetitions ) class(out) <- c("summary.bridge_list", "data.frame") return(out) } # print summary methods #' @rdname bridge-methods #' @method print summary.bridge #' @export print.summary.bridge <- function(x, ...) { if (x[["Method"]] == "normal") { cat( '\nBridge sampling log marginal likelihood estimate \n(method = "', as.character(x[["Method"]]), '", repetitions = ', x[["Repetitions"]], '):\n\n ', x[["Logml_Estimate"]], '\n\nError Measures:\n\n Relative Mean-Squared Error: ', x[["Relative_Mean_Squared_Error"]], '\n Coefficient of Variation: ', x[["Coefficient_of_Variation"]], '\n Percentage Error: ', x[["Percentage_Error"]], '\n\nNote:\nAll error measures are approximate.\n\n', sep = "" ) } else if (x[["Method"]] == "warp3") { cat( '\nBridge sampling log marginal likelihood estimate \n(method = "', as.character(x[["Method"]]), '", repetitions = ', x[["Repetitions"]], '):\n\n ', x[["Logml_Estimate"]], '\n\nNote:\nNo error measures are available for method = "warp3"', '\nwith repetitions = 1.', '\nWe recommend to run the warp3 procedure multiple times to', '\nassess the uncertainty of the estimate.\n\n', sep = "" ) } } #' @rdname bridge-methods #' @method print summary.bridge_list #' @export print.summary.bridge_list <- function(x, ...) { cat( '\nBridge sampling log marginal likelihood estimate \n(method = "', as.character(x[["Method"]]), '", repetitions = ', x[["Repetitions"]], '):\n\n ', x[["Logml_Estimate"]], '\n\nError Measures:\n\n Min: ', x[["Min"]], '\n Max: ', x[["Max"]], '\n Interquartile Range: ', x[["Interquartile_Range"]], '\n\nNote:\nAll error measures are based on ', x[["Repetitions"]], ' estimates.\n\n', sep = "" ) } # print methods #' @rdname bridge-methods #' @method print bridge #' @export print.bridge <- function(x, ...) { cat( "Bridge sampling estimate of the log marginal likelihood: ", round(x$logml, 5), "\nEstimate obtained in ", x$niter, " iteration(s) via method \"", x$method, "\".\n", sep = "" ) } #' @rdname bridge-methods #' @method print bridge_list #' @export print.bridge_list <- function(x, na.rm = TRUE, ...) { cat( "Median of ", x$repetitions, " bridge sampling estimates\nof the log marginal likelihood: ", round(median(x$logml, na.rm = na.rm), 5), "\nRange of estimates: ", round(range(x$logml, na.rm = na.rm)[1], 5), " to ", round(range(x$logml, na.rm = na.rm)[2], 5), "\nInterquartile range: ", round(stats::IQR(x$logml, na.rm = na.rm), 5), "\nMethod: ", x$method, "\n", sep = "" ) if (any(is.na(x$logml))) { warning( sum(is.na(x$logml)), " bridge sampling estimate(s) are NAs.", call. = FALSE ) } } bridgesampling/R/bridge_sampler_tools.R0000644000176200001440000000251215060266335017772 0ustar liggesusers#-------------------------------------------------------------------------- # functions for Stan support via rstan #-------------------------------------------------------------------------- # taken from rstan: .rstan_relist <- function(x, skeleton) { lst <- utils::relist(x, skeleton) for (i in seq_along(skeleton)) { dim(lst[[i]]) <- dim(skeleton[[i]]) } lst } # taken from rstan: .create_skeleton <- function(pars, dims) { lst <- lapply(seq_along(pars), function(i) { len_dims <- length(dims[[i]]) if (len_dims < 1) { return(0) } return(array(0, dim = dims[[i]])) }) names(lst) <- pars lst } .stan_log_posterior <- function(s.row, data) { out <- tryCatch( rstan::log_prob(object = data$stanfit, upars = s.row), error = function(e) -Inf ) if (is.na(out)) { out <- -Inf } return(out) } .cmdstan_log_posterior <- function(s.row, data) { if ("lp__" %in% names(s.row)) { s.row <- s.row[!names(s.row) %in% "lp__"] } if (!is.numeric(s.row)) { s.row <- as.numeric(s.row) } out <- tryCatch( { log_prob <- data$log_prob(s.row, jacobian = TRUE) log_prob }, error = function(e) { print(e) -Inf } ) if (is.na(out)) { out <- -Inf } result <- data.frame(matrix(s.row, nrow = 1)) result$log_posterior <- out return(out) } bridgesampling/R/logml.R0000644000176200001440000000177415060266335014716 0ustar liggesusers#' Generic function that returns log marginal likelihood from bridge objects. For objects of class \code{"bridge_list"}, which contains multiple log marginal likelihoods, \code{fun} is performed on the vector and its result returned. #' @title Log Marginal Likelihoods from Bridge Objects #' @param x Object of class \code{"bridge"} or \code{"bridge_list"} as returned from \code{\link{bridge_sampler}}. #' @param fun Function which returns a scalar value and is applied to the \code{logml} vector of \code{"bridge_list"} objects. Default is \code{\link{median}}. #' @param ... Further arguments passed to \code{fun}. #' @return scalar numeric #' @export logml <- function(x, ...) { UseMethod("logml", x) } #' @rdname logml #' @export logml.bridge <- function(x, ...) { x$logml } #' @rdname logml #' @export logml.bridge_list <- function(x, fun = median, ...) { out <- fun(x$logml, ...) if (length(out) != 1) { warning("fun returns results of length != 1, only first used.") out <- out[1] } out } bridgesampling/R/bridge_sampler_normal.R0000644000176200001440000002151715106567446020140 0ustar liggesusers.bridge.sampler.normal <- function( samples_4_fit, # matrix with already transformed samples for fitting the # proposal (rows are samples), colnames are "trans_x" where # x is the parameter name samples_4_iter, # matrix with already transformed samples for the # iterative scheme (rows are samples), colnames are "trans_x" # where x is the parameter name neff, # effective sample size of samples_4_iter (i.e., already transformed samples), scalar log_posterior, ..., data, lb, ub, transTypes, # types of transformations (unbounded/lower/upperbounded) for the different parameters (named character vector) param_types, # Sample space for transformations (real, circular, simplex) cores, repetitions, packages, varlist, envir, rcppFile, maxiter, silent, verbose, use_ess, r0, tol1, tol2 ) { if (is.null(neff)) { neff <- nrow(samples_4_iter) } n_post <- nrow(samples_4_iter) # get mean & covariance matrix and generate samples from proposal m <- apply(samples_4_fit, 2, mean) V_tmp <- cov(samples_4_fit) V <- as.matrix(nearPD(V_tmp)$mat) # make sure that V is positive-definite # sample from multivariate normal distribution and evaluate for posterior samples and generated samples q12 <- dmvnorm(samples_4_iter, mean = m, sigma = V, log = TRUE) gen_samples <- vector(mode = "list", length = repetitions) q22 <- vector(mode = "list", length = repetitions) for (i in seq_len(repetitions)) { gen_samples[[i]] <- rmvnorm(n_post, mean = m, sigma = V) colnames(gen_samples[[i]]) <- colnames(samples_4_iter) q22[[i]] <- dmvnorm(gen_samples[[i]], mean = m, sigma = V, log = TRUE) } # evaluate log of likelihood times prior for posterior samples and generated samples q21 <- vector(mode = "list", length = repetitions) if (cores == 1) { q11 <- apply( .invTransform2Real(samples_4_iter, lb, ub, param_types), 1, log_posterior, data = data, ... ) + .logJacobian(samples_4_iter, transTypes, lb, ub) for (i in seq_len(repetitions)) { q21[[i]] <- apply( .invTransform2Real(gen_samples[[i]], lb, ub, param_types), 1, log_posterior, data = data, ... ) + .logJacobian(gen_samples[[i]], transTypes, lb, ub) } } else if (cores > 1) { if (.Platform$OS.type == "unix") { split1 <- .split_matrix( matrix = .invTransform2Real(samples_4_iter, lb, ub, param_types), cores = cores ) q11 <- parallel::mclapply( split1, FUN = function(x) apply(x, 1, log_posterior, data = data, ...), mc.preschedule = FALSE, mc.cores = cores ) q11 <- unlist(q11) + .logJacobian(samples_4_iter, transTypes, lb, ub) for (i in seq_len(repetitions)) { split2 <- .split_matrix( matrix = .invTransform2Real(gen_samples[[i]], lb, ub, param_types), cores = cores ) q21[[i]] <- parallel::mclapply( split2, FUN = function(x) apply(x, 1, log_posterior, data = data, ...), mc.preschedule = FALSE, mc.cores = cores ) q21[[i]] <- unlist(q21[[i]]) + .logJacobian(gen_samples[[i]], transTypes, lb, ub) } } else { cl <- parallel::makeCluster(cores, useXDR = FALSE) sapply(packages, function(x) { parallel::clusterCall( cl = cl, "require", package = x, character.only = TRUE ) }) parallel::clusterExport(cl = cl, varlist = varlist, envir = envir) if (!is.null(rcppFile)) { parallel::clusterExport( cl = cl, varlist = "rcppFile", envir = parent.frame() ) parallel::clusterCall( cl = cl, "require", package = "Rcpp", character.only = TRUE ) parallel::clusterEvalQ(cl = cl, Rcpp::sourceCpp(file = rcppFile)) } else if (is.character(log_posterior)) { parallel::clusterExport(cl = cl, varlist = log_posterior, envir = envir) } q11 <- parallel::parRapply( cl = cl, x = .invTransform2Real(samples_4_iter, lb, ub, param_types), log_posterior, data = data, ... ) + .logJacobian(samples_4_iter, transTypes, lb, ub) for (i in seq_len(repetitions)) { q21[[i]] <- parallel::parRapply( cl = cl, x = .invTransform2Real(gen_samples[[i]], lb, ub, param_types), log_posterior, data = data, ... ) + .logJacobian(gen_samples[[i]], transTypes, lb, ub) } parallel::stopCluster(cl) } } if (verbose) { print( "summary(q12): (log_dens of proposal (i.e., with dmvnorm) for posterior samples)" ) print(summary(q12)) print( "summary(q22): (log_dens of proposal (i.e., with dmvnorm) for generated samples)" ) print(lapply(q22, summary)) print( "summary(q11): (log_dens of posterior (i.e., with log_posterior) for posterior samples)" ) print(summary(q11)) print( "summary(q21): (log_dens of posterior (i.e., with log_posterior) for generated samples)" ) print(lapply(q21, summary)) .PROPOSALS <- vector("list", repetitions) # for (i in seq_len(repetitions)) { # .PROPOSALS[[i]] <- .invTransform2Real(gen_samples[[i]], lb, ub, param_types) # } # assign(".PROPOSALS", .PROPOSALS, pos = .GlobalEnv) # message("All proposal samples written to .GlobalEnv as .PROPOSALS") } if (any(is.infinite(q11))) { warning( sum(is.infinite(q11)), " of the ", length(q11), " log_prob() evaluations on the posterior draws produced -Inf/Inf.", call. = FALSE ) } for (i in seq_len(repetitions)) { if (any(is.infinite(q21[[i]]))) { warning( sum(is.infinite(q21[[i]])), " of the ", length(q21[[i]]), " log_prob() evaluations on the proposal draws produced -Inf/Inf.", call. = FALSE ) } } if (any(is.na(q11))) { warning( sum(is.na(q11)), " evaluation(s) of log_prob() on the posterior draws produced NA and have been replaced by -Inf.", call. = FALSE ) q11[is.na(q11)] <- -Inf } for (i in seq_len(repetitions)) { if (all(is.na(q21[[i]]))) { stop( "Evaluations of log_prob() on all proposal draws produced NA.\n", "E.g., rounded to 3 digits (use verbose = TRUE for all proposal samples):\n", deparse( round( .invTransform2Real(gen_samples[[i]], lb, ub, param_types)[1, ], 3 ), width.cutoff = 500L ), call. = FALSE ) } if (any(is.na(q21[[i]]))) { warning( sum(is.na(q21[[i]])), " evaluation(s) of log_prob() on the proposal draws produced NA and have been replaced by -Inf.", call. = FALSE ) q21[[i]][is.na(q21[[i]])] <- -Inf } } logml <- numeric(repetitions) niter <- numeric(repetitions) mcse_logmls <- numeric(repetitions) # run iterative updating scheme to compute log of marginal likelihood for (i in seq_len(repetitions)) { tmp <- .run.iterative.scheme( q11 = q11, q12 = q12, q21 = q21[[i]], q22 = q22[[i]], r0 = r0, tol = tol1, L = NULL, method = "normal", maxiter = maxiter, silent = silent, use_ess = use_ess, criterion = "r", neff = neff ) if (is.na(tmp$logml) & !is.null(tmp$r_vals)) { warning( "logml could not be estimated within maxiter, rerunning with adjusted starting value. \nEstimate might be more variable than usual.", call. = FALSE ) lr <- length(tmp$r_vals) # use geometric mean as starting value r0_2 <- sqrt(tmp$r_vals[[lr - 1]] * tmp$r_vals[[lr]]) tmp <- .run.iterative.scheme( q11 = q11, q12 = q12, q21 = q21[[i]], q22 = q22[[i]], r0 = r0_2, tol = tol2, L = NULL, method = "normal", maxiter = maxiter, silent = silent, use_ess = use_ess, criterion = "logml", neff = neff ) tmp$niter <- maxiter + tmp$niter } logml[i] <- tmp$logml mcse_logmls[i] <- tmp$mcse_logml niter[i] <- tmp$niter if (niter[i] == maxiter) { warning( "logml could not be estimated within maxiter, returning NA.", call. = FALSE ) } } if (repetitions == 1) { out <- list( logml = logml, niter = niter, method = "normal", q11 = q11, q12 = q12, q21 = q21[[1]], q22 = q22[[1]], mcse_logml = mcse_logmls ) class(out) <- "bridge" } else if (repetitions > 1) { out <- list( logml = logml, niter = niter, method = "normal", repetitions = repetitions, mcse_logml = mcse_logmls ) class(out) <- "bridge_list" } return(out) } bridgesampling/R/error_measures.R0000644000176200001440000001006215060266335016627 0ustar liggesusers#' Computes error measures for estimated marginal likelihood. #' @export #' @title Error Measures for Estimated Marginal Likelihood #' @param bridge_object an object of class \code{"bridge"} or \code{"bridge_list"} as returned from \code{\link{bridge_sampler}}. #' @param na.rm a logical indicating whether missing values in logml estimates should be removed. Ignored for the \code{bridge} method. #' @param ... additional arguments (currently ignored). #' @details Computes error measures for marginal likelihood bridge sampling estimates. The approximate errors for a \code{bridge_object} of class \code{"bridge"} that has been obtained with \code{method = "normal"} and \code{repetitions = 1} are based on Fruehwirth-Schnatter (2004). #' Not applicable in case the object of class \code{"bridge"} has been obtained with \code{method = "warp3"} and \code{repetitions = 1}. #' To assess the uncertainty of the estimate in this case, it is recommended to run the \code{"warp3"} procedure multiple times. #' @return If \code{bridge_object} is of class \code{"bridge"} and has been obtained with \code{method = "normal"} and \code{repetitions = 1}, returns a list with components: #' \itemize{ #' \item \code{re2}: approximate relative mean-squared error for marginal likelihood estimate. #' \item \code{cv}: approximate coefficient of variation for marginal likelihood estimate (assumes that bridge estimate is unbiased). #' \item \code{percentage}: approximate percentage error of marginal likelihood estimate. #' } #' If \code{bridge_object} is of class \code{"bridge_list"}, returns a list with components: #' \itemize{ #' \item \code{min}: minimum of the log marginal likelihood estimates. #' \item \code{max}: maximum of the log marginal likelihood estimates. #' \item \code{IQR}: interquartile range of the log marginal likelihood estimates. #' } #' @author Quentin F. Gronau #' @note For examples, see \code{\link{bridge_sampler}} and the accompanying vignettes: \cr \code{vignette("bridgesampling_example_jags")} \cr \code{vignette("bridgesampling_example_stan")} #' #' @seealso The \code{summary} methods for \code{bridge} and \code{bridge_list} objects automatically invoke this function, see \code{\link{bridge-methods}}. #' #' @references #' Fruehwirth-Schnatter, S. (2004). Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques. \emph{The Econometrics Journal, 7}, 143-167. \doi{10.1111/j.1368-423X.2004.00125.x} #' @import Brobdingnag #' @importFrom coda spectrum0.ar #' @export error_measures <- function(bridge_object, ...) { UseMethod("error_measures", bridge_object) } #' @rdname error_measures #' @export error_measures.bridge <- function(bridge_object, ...) { if (bridge_object$method == "warp3") { stop(paste0( "error_measures not implemented for warp3 method with", "\n repetitions = 1.", "\n We recommend to run the warp3 procedure multiple times", "\n to assess the uncertainty of the estimate." )) } e <- as.brob(exp(1)) ml <- e^(bridge_object$logml) g_p <- e^(bridge_object$q12) g_g <- e^(bridge_object$q22) priorTimesLik_p <- e^(bridge_object$q11) priorTimesLik_g <- e^(bridge_object$q21) p_p <- priorTimesLik_p / ml p_g <- priorTimesLik_g / ml N1 <- length(p_p) N2 <- length(g_g) s1 <- N1 / (N1 + N2) s2 <- N2 / (N1 + N2) f1 <- as.numeric(p_g / (s1 * p_g + s2 * g_g)) f2 <- as.numeric(g_p / (s1 * p_p + s2 * g_p)) rho_f2 <- spectrum0.ar(f2)$spec term1 <- 1 / N2 * var(f1) / mean(f1)^2 term2 <- rho_f2 / N1 * var(f2) / mean(f2)^2 re2 <- term1 + term2 # convert to coefficient of variation (assumes that bridge estimate is unbiased) cv <- sqrt(re2) # convert to percentage error percentage <- scales::percent(cv) return(list(re2 = re2, cv = cv, percentage = percentage)) } #' @rdname error_measures #' @export error_measures.bridge_list <- function(bridge_object, na.rm = TRUE, ...) { return(list( min = min(bridge_object$logml, na.rm = na.rm), max = max(bridge_object$logml, na.rm = na.rm), IQR = stats::IQR(bridge_object$logml, na.rm = na.rm) )) } bridgesampling/R/bridge_sampler_internals.R0000644000176200001440000002424515106567166020647 0ustar liggesusers# Helper function to represent circular variables (such as mean directions) as # "gapless" numerical representations. .gaplessCircular <- function(th) { # Mean direction md <- atan2(sum(sin(th)), sum(cos(th))) # Shift th so that it is unlikely to have a gap. ((th - md + pi) %% (2 * pi)) - pi + md } #### for matrix method ###### .transform2Real <- function( theta, lb, ub, theta_types = rep("real", ncol(theta)) ) { ### transform samples to real line theta_t <- theta transTypes <- character(ncol(theta)) cn <- colnames(theta) names(theta_types) <- names(transTypes) <- cn # Because the simplex transform must be done on all simplex parameters at # once, do it before the loop. This transformation follows the Stan reference # manual. For simplex variables, we expect one parameter less than the number # of weights due to the contstraint sum(simplex_theta) == 1. is_simplex_theta <- theta_types == "simplex" if (any(is_simplex_theta)) { # Select the simplex variables simplex_theta <- theta[, is_simplex_theta, drop = FALSE] # Simplex dimensionality simdim <- ncol(simplex_theta) cs <- cbind( 0L, matrix(t(apply(simplex_theta, 1L, cumsum)), ncol = simdim)[, -simdim, drop = FALSE ] ) # Get the break proportions. z_k <- (simplex_theta / (1L - cs)) y_k <- log(z_k) - log(1L - z_k) + matrix(log(simdim:1L), nrow(theta), simdim, byrow = TRUE) theta_t[, is_simplex_theta] <- y_k transTypes[is_simplex_theta] <- "simplex" } for (i in seq_len(ncol(theta))) { p <- cn[i] if (theta_types[[p]] == "circular") { transTypes[[p]] <- "circular" theta_t[, i] <- .gaplessCircular(theta[, i]) } else if (theta_types[[p]] == "real") { if (any(theta[, i] < lb[[p]])) { stop( "Parameter values (samples) cannot be smaller than lb: ", p, call. = FALSE ) } if (any(theta[, i] > ub[[p]])) { stop( "Parameter values (samples) cannot be larger than ub: ", p, call. = FALSE ) } if (lb[[p]] < ub[[p]] && is.infinite(lb[[p]]) && is.infinite(ub[[p]])) { transTypes[[p]] <- "unbounded" theta_t[, i] <- theta[, i] } else if ( lb[[p]] < ub[[p]] && is.finite(lb[[p]]) && is.infinite(ub[[p]]) ) { transTypes[[p]] <- "lower-bounded" theta_t[, i] <- log(theta[, i] - lb[[p]]) } else if ( lb[[p]] < ub[[p]] && is.infinite(lb[[p]]) && is.finite(ub[[p]]) ) { transTypes[[p]] <- "upper-bounded" theta_t[, i] <- log(ub[[p]] - theta[, i]) } else if ( lb[[p]] < ub[[p]] && is.finite(lb[[p]]) && is.finite(ub[[p]]) ) { transTypes[[p]] <- "double-bounded" theta_t[, i] <- qnorm((theta[, i] - lb[[p]]) / (ub[[p]] - lb[[p]])) # Finally, give an error except for simplex variables, which are already # transformed. } else if (theta_types[p] != "simplex") { stop(paste( "Could not transform parameters, possibly due to invalid", "lower and/or upper prior bounds." )) } } } colnames(theta_t) <- paste0("trans_", colnames(theta)) return(list(theta_t = theta_t, transTypes = transTypes)) } .invTransform2Real <- function( theta_t, lb, ub, theta_types = rep("real", ncol(theta)) ) { ### transform transformed samples back to original scales theta <- theta_t colnames(theta) <- stringr::str_sub(colnames(theta), 7) cn <- colnames(theta) names(theta_types) <- cn # Because the simplex transform must be done on all simplex parameters at # once, do it before the loop. This transformation follows the Stan reference # manual. For simplex variables, we expect one parameter less than the number # of weights due to the contstraint sum(simplex_theta) == 1. is_simplex_theta <- theta_types == "simplex" if (any(is_simplex_theta)) { # Select the simplex variables simplex_theta <- theta_t[, is_simplex_theta, drop = FALSE] # Simplex dimensionality simdim <- ncol(simplex_theta) logitz <- simplex_theta - matrix(log(simdim:1L), nrow(theta), simdim, byrow = TRUE) z_k <- exp(logitz) / (1 + exp(logitz)) x_k <- z_k if (simdim > 1) { for (k in 2:simdim) { x_k[, k] <- (1 - rowSums(x_k[, 1:(k - 1), drop = FALSE])) * z_k[, k] } } theta[, is_simplex_theta] <- x_k } # Note that the circular variables are not transformed back, because they are # simply a different numerical representation. for (i in seq_len(ncol(theta_t))) { p <- cn[i] if (theta_types[[p]] == "real") { if (lb[[p]] < ub[[p]] && is.infinite(lb[[p]]) && is.infinite(ub[[p]])) { theta[, i] <- theta_t[, i] } else if ( lb[[p]] < ub[[p]] && is.finite(lb[[p]]) && is.infinite(ub[[p]]) ) { theta[, i] <- exp(theta_t[, i]) + lb[[p]] } else if ( lb[[p]] < ub[[p]] && is.infinite(lb[[p]]) && is.finite(ub[[p]]) ) { theta[, i] <- ub[[p]] - exp(theta_t[, i]) } else if ( lb[[p]] < ub[[p]] && is.finite(lb[[p]]) && is.finite(ub[[p]]) ) { theta[, i] <- pnorm(theta_t[, i]) * (ub[[p]] - lb[[p]]) + lb[[p]] } else { stop( "Could not transform parameters, possibly due to invalid lower and/or upper prior bounds." ) } } } return(theta) } .logJacobian <- function(theta_t, transTypes, lb, ub) { ### compute log of Jacobian logJ <- matrix(nrow = nrow(theta_t), ncol = ncol(theta_t)) cn <- stringr::str_sub(colnames(theta_t), 7) # Separate the computations for the simplex is_simplex_theta <- transTypes == "simplex" if (any(is_simplex_theta)) { # Select the simplex variables simplex_theta <- theta_t[, is_simplex_theta, drop = FALSE] # Simplex dimensionality, this is K - 1 simdim <- ncol(simplex_theta) logitz <- simplex_theta - matrix(log(simdim:1L), nrow(theta_t), simdim, byrow = TRUE) z_k <- exp(logitz) / (1 + exp(logitz)) x_k <- z_k # Sum_x_k is the length of the remaining stick at step k. At the start, the # whole stick is still left sum_x_k <- matrix(nrow = nrow(theta_t), ncol = simdim) sum_x_k[, 1] <- 1 if (simdim > 1) { for (k in 2:simdim) { rsx <- rowSums(x_k[, 1:(k - 1), drop = FALSE]) x_k[, k] <- (1 - rsx) * z_k[, k] sum_x_k[, k] <- (1 - rsx) } } logJ[, is_simplex_theta] <- log(z_k) + log(1 - z_k) + log(sum_x_k) } for (i in seq_len(ncol(theta_t))) { p <- cn[i] if (transTypes[[p]] == "unbounded") { logJ[, i] <- 0 } else if (transTypes[[p]] == "lower-bounded") { logJ[, i] <- theta_t[, i] } else if (transTypes[[p]] == "upper-bounded") { logJ[, i] <- theta_t[, i] } else if (transTypes[[p]] == "double-bounded") { logJ[, i] <- log(ub[[p]] - lb[[p]]) + dnorm(theta_t[, i], log = TRUE) } else if (transTypes[[p]] == "circular") { logJ[, i] <- 0 } } return(.rowSums(logJ, m = nrow(logJ), n = ncol(logJ))) } .split_matrix <- function(matrix, cores) { out <- vector("list", cores) borders <- ceiling(seq(from = 0, to = nrow(matrix), length.out = cores + 1)) for (i in seq_len(cores)) { out[[i]] <- matrix[(borders[i] + 1):borders[i + 1], , drop = FALSE] } out } .run.iterative.scheme <- function( q11, q12, q21, q22, r0, tol, L, method, maxiter, silent, criterion, neff, use_ess ) { ### run iterative updating scheme (using "optimal" bridge function, ### see Meng & Wong, 1996) if (method == "normal") { l1 <- q11 - q12 # log(l) l2 <- q21 - q22 # log(ltilde) } else if (method == "warp3") { l1 <- -log(2) + determinant(L)$modulus + (q11 - q12) # log(l) l2 <- -log(2) + determinant(L)$modulus + (q21 - q22) # log(ltilde) } ## for dbugging: # save( # l1, l2, # r0, tol, L, # method, maxiter, silent, # criterion, neff, # file = "iterative_scheme.rda" # ) lstar <- median(l1) n.1 <- length(l1) n.2 <- length(l2) s1 <- neff / (neff + n.2) s2 <- n.2 / (neff + n.2) r <- r0 r_vals <- r logml <- log(r) + lstar logml_vals <- logml criterion_val <- 1 + tol e <- as.brob(exp(1)) i <- 1 while (i <= maxiter && criterion_val > tol) { if (!silent) { cat(paste0("Iteration: ", i, "\n")) } rold <- r logmlold <- logml numi <- e^(l2 - lstar) / (s1 * e^(l2 - lstar) + s2 * r) deni <- 1 / (s1 * e^(l1 - lstar) + s2 * r) if ( any(is.infinite(as.numeric(numi))) || any(is.infinite(as.numeric((deni)))) ) { warning( "Infinite value in iterative scheme, returning NA.\n Try rerunning with more samples.", call. = FALSE ) return(list(logml = NA, niter = i, mcse_logml = NA_real_)) } mean_numi <- mean(as.numeric(numi)) mean_deni <- mean(as.numeric(deni)) var_numi <- var(as.numeric(numi)) if (use_ess) { var_deni <- tryCatch( var(as.numeric(deni)) * length(deni) / mean(coda::effectiveSize(as.numeric(deni))), error = function(e) { warning( "effective sample size calculation failed in iterative's scheme uncertainty calculation", call. = FALSE ) return(var(as.numeric(deni))) } ) } else { var_deni <- var(as.numeric(deni)) } r <- mean_numi / mean_deni r_vals <- c(r_vals, r) logml <- log(r) + lstar logml_vals <- c(logml_vals, logml) criterion_val <- switch( criterion, "r" = abs((r - rold) / r), "logml" = abs((logml - logmlold) / logml) ) i <- i + 1 var_r <- (mean_numi^2) / (mean_deni^2) * (var_numi / (mean_numi)^2 + var_deni / mean_deni^2) var_r <- var_r / length(numi) ## Compute variance in log scale by match the variance of a ## log-normal approximation ## https://en.wikipedia.org/wiki/Log-normal_distribution#Arithmetic_moments var_logml <- log(1 + var_r / r^2) mcse_logml <- sqrt(var_logml) } if (i >= maxiter) { return(list( logml = NA, niter = i - 1, r_vals = r_vals, mcse_logml = mcse_logml )) } return(list(logml = logml, niter = i - 1, mcse_logml = mcse_logml)) } bridgesampling/R/bf.R0000644000176200001440000001672215060266335014172 0ustar liggesusers#' Generic function that computes Bayes factor(s) from marginal likelihoods. \code{bayes_factor()} is simply an (S3 generic) alias for \code{bf()}. #' @export #' @title Bayes Factor(s) from Marginal Likelihoods #' @param x1 Object of class \code{"bridge"} or \code{"bridge_list"} as returned from \code{\link{bridge_sampler}}. Additionally, the default method assumes that \code{x1} is a single numeric log marginal likelihood (e.g., from \code{\link{logml}}) and will throw an error otherwise. #' @param x2 Object of class \code{"bridge"} or \code{"bridge_list"} as returned from \code{\link{bridge_sampler}}. Additionally, the default method assumes that \code{x2} is a single numeric log marginal likelihood (e.g., from \code{\link{logml}}) and will throw an error otherwise. #' @param log Boolean. If \code{TRUE}, the function returns the log of the Bayes factor. Default is \code{FALSE}. #' @param ... currently not used here, but can be used by other methods. #' @details Computes the Bayes factor (Kass & Raftery, 1995) in favor of the model associated with \code{x1} over the model associated with \code{x2}. #' @return For the default method returns a list of class \code{"bf_default"} with components: #' \itemize{ #' \item \code{bf}: (scalar) value of the Bayes factor in favor of the model associated with \code{x1} over the model associated with \code{x2}. #' \item \code{log}: Boolean which indicates whether \code{bf} corresponds to the log Bayes factor. #' } #' #' #' For the method for \code{"bridge"} objects returns a list of class \code{"bf_bridge"} with components: #' \itemize{ #' \item \code{bf}: (scalar) value of the Bayes factor in favor of the model associated with \code{x1} over the model associated with \code{x2}. #' \item \code{log}: Boolean which indicates whether \code{bf} corresponds to the log Bayes factor. #' } #' #' #' For the method for \code{"bridge_list"} objects returns a list of class \code{"bf_bridge_list"} with components: #' \itemize{ #' \item \code{bf}: a numeric vector consisting of Bayes factors where each element gives the Bayes factor for one set of logmls in favor of the model associated with \code{x1} over the model associated with \code{x2}. The length of this vector is given by the \code{"bridge_list"} element with the most \code{repetitions}. Elements with fewer repetitions will be recycled (with warning). #' \item \code{bf_median_based}: (scalar) value of the Bayes factor in favor of the model associated with \code{x1} over the model associated with \code{x2} that is based on the median values of the logml estimates. #' \item \code{log}: Boolean which indicates whether \code{bf} corresponds to the log Bayes factor. #' } #' @author Quentin F. Gronau #' @note For examples, see \code{\link{bridge_sampler}} and the accompanying vignettes: \cr \code{vignette("bridgesampling_example_jags")} \cr \code{vignette("bridgesampling_example_stan")} #' @references #' Kass, R. E., & Raftery, A. E. (1995). Bayes factors. \emph{Journal of the American Statistical Association, 90(430)}, 773-795. \doi{10.1080/01621459.1995.10476572} #' @importFrom methods is bf <- function(x1, x2, log = FALSE, ...) { UseMethod("bf", x1) } #' @rdname bf #' @export bayes_factor <- function(x1, x2, log = FALSE, ...) { UseMethod("bayes_factor", x1) } #' @rdname bf #' @export bayes_factor.default <- function(x1, x2, log = FALSE, ...) { bf(x1, x2, log = log, ...) } .bf_calc <- function(logml1, logml2, log) { bf <- logml1 - logml2 if (!log) { bf <- exp(bf) } return(bf) } #' @rdname bf #' @export bf.bridge <- function(x1, x2, log = FALSE, ...) { if (!inherits(x2, c("bridge", "bridge_list"))) { stop("x2 needs to be of class 'bridge' or 'bridge_list'.", call. = FALSE) } bf <- .bf_calc(logml(x1), logml(x2), log = log) out <- list(bf = bf, log = log) class(out) <- "bf_bridge" try( { mc <- match.call() name1 <- deparse(mc[["x1"]]) name2 <- deparse(mc[["x2"]]) attr(out, "model_names") <- c(name1, name2) }, silent = TRUE ) return(out) } #' @rdname bf #' @export bf.bridge_list <- function(x1, x2, log = FALSE, ...) { if (!inherits(x2, c("bridge", "bridge_list"))) { stop("x2 needs to be of class 'bridge' or 'bridge_list'.", call. = FALSE) } logml1 <- x1$logml logml2 <- x2$logml median1 <- median(logml1, na.rm = TRUE) median2 <- median(logml2, na.rm = TRUE) len1 <- length(logml1) len2 <- length(logml2) max_len <- max(c(len1, len2)) if (!all(c(len1, len2) == max_len)) { warning( "Not all objects provide ", max_len, " logmls. Some values are recycled.", call. = FALSE ) logml1 <- rep(logml1, length.out = max_len) logml2 <- rep(logml2, length.out = max_len) } bf <- .bf_calc(logml1, logml2, log = log) bf_median_based <- .bf_calc(median1, median2, log = log) out <- list(bf = bf, bf_median_based = bf_median_based, log = log) class(out) <- "bf_bridge_list" try( { mc <- match.call() name1 <- deparse(mc[["x1"]]) name2 <- deparse(mc[["x2"]]) attr(out, "model_names") <- c(name1, name2) }, silent = TRUE ) return(out) } #' @rdname bf #' @export bf.default <- function(x1, x2, log = FALSE, ...) { if (!is.numeric(c(x1, x2))) { stop("logml values need to be numeric", call. = FALSE) } if (length(x1) > 1 || length(x2) > 1) { stop("Both logmls need to be scalar values.", call. = FALSE) } bf <- .bf_calc(x1, x2, log = log) out <- list(bf = bf, log = log) class(out) <- "bf_default" try( { mc <- match.call() name1 <- deparse(mc[["x1"]]) name2 <- deparse(mc[["x2"]]) attr(out, "model_names") <- c(name1, name2) }, silent = TRUE ) return(out) } ######## Methods for bf objects: #' @method print bf_bridge #' @export print.bf_bridge <- function(x, ...) { if (!is.null(attr(x, "model_names"))) { model_names <- attr(x, "model_names") } else { model_names <- c("x1", "x2") } cat( "Estimated ", if (x$log) "log " else NULL, "Bayes factor in favor of ", model_names[1], " over ", model_names[2], ": ", formatC(x$bf, digits = 5, format = "f"), "\n", sep = "" ) } #' @method print bf_bridge_list #' @export print.bf_bridge_list <- function(x, na.rm = TRUE, ...) { if (!is.null(attr(x, "model_names"))) { model_names <- attr(x, "model_names") } else { model_names <- c("x1", "x2") } cat( "Estimated ", if (x$log) "log " else NULL, "Bayes factor (based on medians of log marginal likelihood estimates)\n", " in favor of ", model_names[1], " over ", model_names[2], ": ", formatC(x$bf_median_based, digits = 5, format = "f"), "\nRange of estimates: ", formatC(range(x$bf, na.rm = na.rm)[1], digits = 5, format = "f"), " to ", formatC(range(x$bf, na.rm = na.rm)[2], digits = 5, format = "f"), "\nInterquartile range: ", formatC(stats::IQR(x$bf, na.rm = na.rm), digits = 5, format = "f"), "\n", sep = "" ) if (any(is.na(x$bf))) { warning( sum(is.na(x$bf)), " log Bayes factor estimate(s) are NAs.", call. = FALSE ) } } #' @method print bf_default #' @export print.bf_default <- function(x, ...) { if (!is.null(attr(x, "model_names"))) { model_names <- attr(x, "model_names") } else { model_names <- c("Model 1", "Model 2") } cat( if (x$log) "Log " else NULL, "Bayes factor in favor of ", model_names[1], " over ", model_names[2], ": ", formatC(x$bf, digits = 5, format = "f"), "\n", sep = "" ) } bridgesampling/R/post_prob.R0000644000176200001440000001300015060266335015574 0ustar liggesusers#' Generic function that computes posterior model probabilities from marginal #' likelihoods. #' @export #' @title Posterior Model Probabilities from Marginal Likelihoods #' @param x Object of class \code{"bridge"} or \code{"bridge_list"} as returned #' from \code{\link{bridge_sampler}}. Additionally, the default method assumes #' that all passed objects are numeric log marginal likelihoods (e.g., from #' \code{\link{logml}}) and will throw an error otherwise. #' @param ... further objects of class \code{"bridge"} or \code{"bridge_list"} #' as returned from \code{\link{bridge_sampler}}. Or numeric values for the #' default method. #' @param prior_prob numeric vector with prior model probabilities. If omitted, #' a uniform prior is used (i.e., all models are equally likely a priori). The #' default \code{NULL} corresponds to equal prior model weights. #' @param model_names If \code{NULL} (the default) will use model names derived #' from deparsing the call. Otherwise will use the passed values as model #' names. #' #' @return For the default method and the method for \code{"bridge"} objects, a #' named numeric vector with posterior model probabilities (i.e., which sum to #' one). #' #' For the method for \code{"bridge_list"} objects, a matrix consisting of #' posterior model probabilities where each row sums to one and gives the #' model probabilities for one set of logmls. The (named) columns correspond #' to the models and the number of rows is given by the \code{"bridge_list"} #' element with the most \code{repetitions}. Elements with fewer repetitions #' will be recycled (with warning). #' @author Quentin F. Gronau and Henrik Singmann #' @note For realistic examples, see \code{\link{bridge_sampler}} and the #' accompanying vignettes: \cr \code{vignette("bridgesampling_example_jags")} #' \cr \code{vignette("bridgesampling_example_stan")} #' @example examples/example.post_prob.R #' @importFrom methods is post_prob <- function(x, ..., prior_prob = NULL, model_names = NULL) { UseMethod("post_prob", x) } #' @rdname post_prob #' @export post_prob.bridge <- function(x, ..., prior_prob = NULL, model_names = NULL) { dots <- list(...) mc <- match.call() modb <- vapply(dots, inherits, NA, what = c("bridge", "bridge_list")) if (is.null(model_names)) { model_names <- c( deparse(mc[["x"]]), vapply(which(modb), function(x) deparse(mc[[x + 2]]), "") ) } if (sum(modb) == 0) { stop( "Only one object of class 'bridge' or 'bridge_list' passed.", call. = FALSE ) } if (sum(modb) != length(dots)) { warning( "Objects not of class 'bridge' or 'bridge_list' are ignored.", call. = FALSE ) } logml <- vapply(c(list(x), dots[modb]), logml, FUN.VALUE = 0) .post_prob_calc( logml = logml, model_names = model_names, prior_prob = prior_prob ) } #' @rdname post_prob #' @export post_prob.bridge_list <- function( x, ..., prior_prob = NULL, model_names = NULL ) { dots <- list(...) mc <- match.call() modb <- vapply(dots, inherits, NA, what = c("bridge", "bridge_list")) if (is.null(model_names)) { model_names <- c( deparse(mc[["x"]]), vapply(which(modb), function(x) deparse(mc[[x + 2]]), "") ) } if (sum(modb) == 0) { stop( "Only one object of class 'bridge' or 'bridge_list' passed.", call. = FALSE ) } if (sum(modb) != length(dots)) { warning( "Objects not of class 'bridge' or 'bridge_list' are ignored.", call. = FALSE ) } logml <- lapply(c(list(x), dots[modb]), "[[", i = "logml") len <- vapply(logml, length, FUN.VALUE = 0) if (!all(len == max(len))) { warning( "Not all objects provide ", max(len), " logmls. Some values are recycled.", call. = FALSE ) logml <- lapply(logml, function(x) rep(x, length.out = max(len))) } t(apply( as.data.frame(logml), 1, .post_prob_calc, model_names = model_names, prior_prob = prior_prob )) } #' @rdname post_prob #' @export post_prob.default <- function(x, ..., prior_prob = NULL, model_names = NULL) { dots <- list(...) mc <- match.call() if (is.null(model_names)) { model_names <- c( rep(deparse(mc[["x"]]), length(x)), rep( vapply(seq_along(dots), function(x) deparse(mc[[x + 2]]), ""), times = vapply(dots, length, 0) ) ) } logml <- c(x, unlist(dots)) if (!is.numeric(logml)) { stop("logml values need to be numeric", call. = FALSE) } .post_prob_calc( logml = logml, model_names = model_names, prior_prob = prior_prob ) } .post_prob_calc <- function(logml, model_names, prior_prob) { e <- as.brob(exp(1)) if (is.null(prior_prob)) { prior_prob <- rep(1 / length(logml), length(logml)) } if (!isTRUE(all.equal(sum(prior_prob), 1))) { stop("Prior model probabilities do not sum to one.", call. = FALSE) } if (length(logml) != length(prior_prob)) { stop( "Number of objects/logml-values needs to match number of elements in prior_prob.", call. = FALSE ) } if (any(is.na(logml))) { post_prob <- rep(NA_real_, length(logml)) warning( "NAs in logml values. No posterior probabilities calculated.", call. = FALSE ) } else { post_prob <- as.numeric(e^logml * prior_prob / sum(e^logml * prior_prob)) if (!isTRUE(all.equal(sum(post_prob), 1))) { warning("Posterior model probabilities do not sum to one.", call. = FALSE) } } names(post_prob) <- make.unique(as.character(model_names)) return(post_prob) } bridgesampling/R/bridge_sampler.R0000644000176200001440000007436115106572100016554 0ustar liggesusers#'Computes log marginal likelihood via bridge sampling. #'@title Log Marginal Likelihood via Bridge Sampling #'@name bridge_sampler #'@param samples an \code{mcmc.list} object, a fitted \code{stanfit} object, a #' \code{stanreg} object, an \code{rjags} object, a \code{runjags} object, or a #' \code{matrix} with posterior samples (\code{colnames} need to correspond to #' parameter names in \code{lb} and \code{ub}) with posterior samples. #'@param log_posterior function or name of function that takes a parameter #' vector and the \code{data} as input and returns the log of the unnormalized #' posterior density (i.e., a scalar value). If the function name is passed, #' the function should exist in the \code{.GlobalEnv}. For special behavior if #' \code{cores > 1} see \code{Details}. #'@param ... additional arguments passed to \code{log_posterior}. Ignored for #' the \code{stanfit} and \code{stanreg} methods. #'@param data data object which is used in \code{log_posterior}. #'@param stanfit_model for the \code{stanfit} method, an additional object of #' class \code{"stanfit"} with the same model as \code{samples}, which will be #' used for evaluating the \code{log_posterior} (i.e., it does not need to #' contain any samples). The default is to use \code{samples}. In case #' \code{samples} was compiled in a different R session or on another computer #' with a different OS or setup, the \code{samples} model usually cannot be #' used for evaluation. In this case, one can compile the model on the current #' computer with \code{iter = 0} and pass it here (this usually needs to be #' done before \code{samples} is loaded). #'@param lb named vector with lower bounds for parameters. #'@param ub named vector with upper bounds for parameters. #'@param repetitions number of repetitions. #'@param method either \code{"normal"} or \code{"warp3"}. #'@param cores number of cores used for evaluating \code{log_posterior}. On #' unix-like systems (where \code{.Platform$OS.type == "unix"} evaluates to #' \code{TRUE}; e.g., Linux and Mac OS) forking via \code{\link{mclapply}} is #' used. Hence elements needed for evaluation should be in the #' \code{\link{.GlobalEnv}}. For other systems (e.g., Windows) #' \code{\link{makeCluster}} is used and further arguments specified below will #' be used. #'@param use_neff Logical. If \code{TRUE}, the effective sample size (compared #' to the nominal sample size) is used in the optimal bridge function and in #' the iterative scheme's uncertainty calculations (making MCSE computation #' take into account autocorrelation in MCMC samples). Default is TRUE. If #' FALSE, the nominal sample size is used instead. If \code{samples} is a #' \code{matrix}, it is assumed that the \code{matrix} contains the samples of #' one chain in order. If \code{samples} come from more than one chain, we #' recommend to use an \code{mcmc.list} object for optimal performance. #'@param packages character vector with names of packages needed for evaluating #' \code{log_posterior} in parallel (only relevant if \code{cores > 1} and #' \code{.Platform$OS.type != "unix"}). #'@param varlist character vector with names of variables needed for evaluating #' \code{log_posterior} (only needed if \code{cores > 1} and #' \code{.Platform$OS.type != "unix"} as these objects will be exported to the #' nodes). These objects need to exist in \code{envir}. #'@param envir specifies the environment for \code{varlist} (only needed if #' \code{cores > 1} and \code{.Platform$OS.type != "unix"} as these objects #' will be exported to the nodes). Default is \code{\link{.GlobalEnv}}. #'@param rcppFile in case \code{cores > 1} and \code{log_posterior} is an #' \code{Rcpp} function, \code{rcppFile} specifies the path to the cpp file #' (will be compiled on all cores). #'@param maxiter maximum number of iterations for the iterative updating scheme. #' Default is 1,000 to avoid infinite loops. #'@param param_types character vector of length \code{ncol(samples)} with #' \code{"real"}, \code{"simplex"} or \code{"circular"}. For all regular #' bounded or unbounded continuous parameters, this should just be #' \code{"real"}. However, if there are parameters which lie on a simplex or on #' the circle, this should be noted here. Simplex parameters are parameters #' which are bounded below by zero and collectively sum to one, such as weights #' in a mixture model. For these, the stick-breaking transformation is #' performed as described in the Stan reference manual. The circular variables #' are given a numerical representation to which the normal distribution is #' most likely a good fit. Only possible to use with #' \code{bridge_sampler.matrix}. #'@param silent Boolean which determines whether to print the number of #' iterations of the updating scheme to the console. Default is FALSE. #'@param verbose Boolean. Should internal debug information be printed to #' console? Default is \code{FALSE}. #'@details Bridge sampling is implemented as described in Meng and Wong (1996, #' see equation 4.1) using the "optimal" bridge function. When \code{method = #' "normal"}, the proposal distribution is a multivariate normal distribution #' with mean vector equal to the sample mean vector of \code{samples} and #' covariance matrix equal to the sample covariance matrix of \code{samples}. #' For a recent tutorial on bridge sampling, see Gronau et al. (in press). #' #' When \code{method = "warp3"}, the proposal distribution is a standard #' multivariate normal distribution and the posterior distribution is "warped" #' (Meng & Schilling, 2002) so that it has the same mean vector, covariance #' matrix, and skew as the samples. \code{method = "warp3"} takes approximately #' twice as long as \code{method = "normal"}. #' #' Note that for the \code{matrix} method, the lower and upper bound of a #' parameter cannot be a function of the bounds of another parameter. #' Furthermore, constraints that depend on multiple parameters of the model are #' not supported. This usually excludes, for example, parameters that #' constitute a covariance matrix or sets of parameters that need to sum to #' one. #' #' However, if the retransformations are part of the model itself and the #' \code{log_posterior} accepts parameters on the real line and performs the #' appropriate Jacobian adjustments, such as done for \code{stanfit} and #' \code{stanreg} objects, such constraints are obviously possible (i.e., we #' currently do not know of any parameter supported within Stan that does not #' work with the current implementation through a \code{stanfit} object). #' #' \subsection{Parallel Computation}{ On unix-like systems forking is used via #' \code{\link{mclapply}}. Hence elements needed for evaluation of #' \code{log_posterior} should be in the \code{\link{.GlobalEnv}}. #' #' On other OSes (e.g., Windows), things can get more complicated. For normal #' parallel computation, the \code{log_posterior} function can be passed as #' both function and function name. If the latter, it needs to exist in the #' environment specified in the \code{envir} argument. For parallel computation #' when using an \code{Rcpp} function, \code{log_posterior} can only be passed #' as the function name (i.e., character). This function needs to result from #' calling \code{sourceCpp} on the file specified in \code{rcppFile}. #' #' Due to the way \code{rstan} currently works, parallel computations with #' \code{stanfit} and \code{stanreg} objects only work with forking (i.e., NOT #' on Windows). } #'@return If \code{repetitions = 1}, returns a list of class \code{"bridge"} #' with components: #' \itemize{ #' \item \code{logml}: estimate of the log marginal likelihood. #' \item \code{niter}: number of iterations of the iterative #' updating scheme. #' \item \code{method}: bridge sampling method that was used #' to obtain the estimate. #' \item \code{q11}: log posterior evaluations for posterior samples. #' \item \code{q12}: log proposal evaluations for posterior samples. #' \item \code{q21}: log posterior evaluations for samples from the proposal. #' \item \code{q22}: log proposal evaluations for samples from the proposal. #' \item \code{mcse_logml}: Monte Carlo standard error of \code{logml} #' on the log-scale (Micaletto & Vehtari, 2025). #' } #' If \code{repetitions > 1}, returns a list of class \code{"bridge_list"} #' with components: #' \itemize{ #' \item \code{logml}: numeric vector of log marginal likelihood estimates. #' \item \code{niter}: numeric vector with the number of iterations of the #' iterative updating scheme for each repetition. #' \item \code{method}: bridge sampling method that was used to obtain #' the estimates. #' \item \code{repetitions}: number of repetitions. #' \item \code{mcse_logml}: numeric vector of Monte Carlo standard errors #' on the log-scale (Micaletto & Vehtari, 2025), one per repetition. #' } #'@section Warning: Note that the results depend strongly on the parameter #' priors. Therefore, it is strongly advised to think carefully about the #' priors before calculating marginal likelihoods. For example, the prior #' choices implemented in \pkg{rstanarm} or \pkg{brms} might not be optimal #' from a testing point of view. We recommend to use priors that have been #' chosen from a testing and not a purely estimation perspective. #' #' Also note that for testing, the number of posterior samples usually needs to #' be substantially larger than for estimation. #'@note To be able to use a \code{stanreg} object for \code{samples}, the user #' crucially needs to have specified the \code{diagnostic_file} when fitting #' the model in \pkg{rstanarm}. #'@author Quentin F. Gronau and Henrik Singmann. Parallel computing (i.e., #' \code{cores > 1}) and the \code{stanfit} method use code from \code{rstan} #' by Jiaqing Guo, Jonah Gabry, and Ben Goodrich. Ben Goodrich added the #' \code{stanreg} method. Kees Mulder added methods for simplex and circular #' variables. Giorgio Micaletto and Aki Vehtari added the \code{CmdStanMCMC} method (for \code{cmdstanr}) and calculation of the Monte Carlo Standard Error (MCSE). #'@references #' Gronau, Q. F., Singmann, H., & Wagenmakers, E.-J. (2020). bridgesampling: An #' R Package for Estimating Normalizing Constants. \emph{Journal of Statistical #' Software, 92}. \doi{10.18637/jss.v092.i10} #' #' Gronau, Q. F., Sarafoglou, A., Matzke, D., Ly, A., Boehm, U., #' Marsman, M., Leslie, D. S., Forster, J. J., Wagenmakers, E.-J., & #' Steingroever, H. (in press). A tutorial on bridge sampling. \emph{Journal of #' Mathematical Psychology}. \url{https://arxiv.org/abs/1703.05984} \cr #' \code{vignette("bridgesampling_tutorial")} #' #' Gronau, Q. F., Wagenmakers, E.-J., Heck, D. W., & Matzke, D. (2019). A #' Simple Method for Comparing Complex Models: Bayesian Model Comparison for #' Hierarchical Multinomial Processing Tree Models Using Warp-III Bridge #' Sampling. \emph{Psychometrika}, 84(1), 261–284. #' \doi{10.1007/s11336-018-9648-3} #' #' Meng, X.-L., & Wong, W. H. (1996). Simulating ratios of normalizing #' constants via a simple identity: A theoretical exploration. \emph{Statistica #' Sinica, 6}, 831-860. #' \url{https://www3.stat.sinica.edu.tw/statistica/j6n4/j6n43/j6n43.htm} #' #' Meng, X.-L., & Schilling, S. (2002). Warp bridge sampling. \emph{Journal of #' Computational and Graphical Statistics, 11(3)}, 552-586. #' \doi{10.1198/106186002457} #' #' Micaletto, G., & Vehtari, A. (2025). Monte Carlo standard errors for bridge #' sampling marginal likelihood estimation. \emph{arXiv preprint}, #' arXiv:2508.14487. \url{https://arxiv.org/abs/2508.14487} #' #' Overstall, A. M., & Forster, J. J. (2010). Default Bayesian model #' determination methods for generalised linear mixed models. #' \emph{Computational Statistics & Data Analysis, 54}, 3269-3288. #' \doi{10.1016/j.csda.2010.03.008} #'@example examples/example.bridge_sampler.R #' #'@seealso \code{\link{bf}} allows the user to calculate Bayes factors and #' \code{\link{post_prob}} allows the user to calculate posterior model #' probabilities from bridge sampling estimates. \code{\link{bridge-methods}} #' lists some additional methods that automatically invoke the #' \code{\link{error_measures}} function. #' #'@importFrom mvtnorm rmvnorm dmvnorm #'@importFrom Matrix nearPD #'@import Brobdingnag #'@importFrom stringr str_sub #'@importFrom stats qnorm pnorm dnorm median cov var #'@export bridge_sampler <- function(samples, ...) { UseMethod("bridge_sampler", samples) } #' @rdname bridge_sampler #' @export bridge_sampler.CmdStanMCMC <- function( samples = NULL, repetitions = 1, method = "normal", cores = 1, use_neff = TRUE, maxiter = 1000, silent = FALSE, verbose = FALSE, ... ) { draws <- samples$unconstrain_draws(format = "matrix") parameters <- colnames(draws) lb <- rep(-Inf, length(parameters)) ub <- rep(Inf, length(parameters)) names(lb) <- names(ub) <- parameters bridge_out <- bridge_sampler.matrix( samples = draws, ..., maxiter = maxiter, silent = silent, lb = lb, ub = ub, repetitions = repetitions, method = method, log_posterior = .cmdstan_log_posterior, cores = cores, data = samples, use_neff = use_neff, verbose = verbose ) return(bridge_out) } #' @rdname bridge_sampler #' @export bridge_sampler.stanfit <- function( samples = NULL, stanfit_model = samples, repetitions = 1, method = "normal", cores = 1, use_neff = TRUE, maxiter = 1000, silent = FALSE, verbose = FALSE, ... ) { # cores > 1 only for unix: if (!(.Platform$OS.type == "unix") & (cores != 1)) { warning( "cores > 1 only possible on Unix/MacOs. Uses 'core = 1' instead.", call. = FALSE ) cores <- 1L } # convert samples into matrix if (!requireNamespace("rstan")) { stop("package rstan required") } ex <- rstan::extract(samples, permuted = FALSE) skeleton <- .create_skeleton( samples@sim$pars_oi, samples@par_dims[samples@sim$pars_oi] ) upars <- apply(ex, 1:2, FUN = function(theta) { rstan::unconstrain_pars(stanfit_model, .rstan_relist(theta, skeleton)) }) if (length(dim(upars)) == 2) { # for one parameter models dim(upars) <- c(1, dim(upars)) } nr <- dim(upars)[2] samples4fit_index <- seq_len(nr) %in% seq_len(round(nr / 2)) # split samples in two parts samples_4_fit <- apply(upars[, samples4fit_index, , drop = FALSE], 1, rbind) samples_4_iter_stan <- upars[, !samples4fit_index, , drop = FALSE] samples_4_iter_tmp <- vector("list", dim(upars)[3]) for (i in seq_along(samples_4_iter_tmp)) { samples_4_iter_tmp[[i]] <- coda::as.mcmc(t(samples_4_iter_stan[,, i])) } samples_4_iter_tmp <- coda::as.mcmc.list(samples_4_iter_tmp) if (use_neff) { neff <- tryCatch( median(coda::effectiveSize(samples_4_iter_tmp)), error = function(e) { warning( "effective sample size cannot be calculated, has been replaced by number of samples.", call. = FALSE ) return(NULL) } ) } else { neff <- NULL } samples_4_iter <- apply(samples_4_iter_stan, 1, rbind) parameters <- paste0("x", (seq_len(dim(upars)[1]))) transTypes <- rep("unbounded", length(parameters)) names(transTypes) <- parameters # prepare lb and ub lb <- rep(-Inf, length(parameters)) ub <- rep(Inf, length(parameters)) names(lb) <- names(ub) <- parameters colnames(samples_4_iter) <- paste0("trans_", parameters) colnames(samples_4_fit) <- paste0("trans_", parameters) # run bridge sampling if (cores == 1) { bridge_output <- do.call( what = paste0(".bridge.sampler.", method), args = list( samples_4_fit = samples_4_fit, samples_4_iter = samples_4_iter, neff = neff, use_ess = use_neff, log_posterior = .stan_log_posterior, data = list(stanfit = stanfit_model), lb = lb, ub = ub, param_types = rep("real", ncol(samples_4_fit)), transTypes = transTypes, repetitions = repetitions, cores = cores, packages = "rstan", maxiter = maxiter, silent = silent, verbose = verbose, r0 = 0.5, tol1 = 1e-10, tol2 = 1e-4 ) ) } else { bridge_output <- do.call( what = paste0(".bridge.sampler.", method), args = list( samples_4_fit = samples_4_fit, samples_4_iter = samples_4_iter, neff = neff, use_ess = use_neff, log_posterior = .stan_log_posterior, data = list(stanfit = stanfit_model), lb = lb, ub = ub, param_types = rep("real", ncol(samples_4_fit)), transTypes = transTypes, repetitions = repetitions, varlist = "stanfit", envir = sys.frame(sys.nframe()), cores = cores, packages = "rstan", maxiter = maxiter, silent = silent, verbose = verbose, r0 = 0.5, tol1 = 1e-10, tol2 = 1e-4 ) ) } return(bridge_output) } #' @rdname bridge_sampler #' @export bridge_sampler.mcmc.list <- function( samples = NULL, log_posterior = NULL, ..., data = NULL, lb = NULL, ub = NULL, repetitions = 1, param_types = rep("real", ncol(samples[[1]])), method = "normal", cores = 1, use_neff = TRUE, packages = NULL, varlist = NULL, envir = .GlobalEnv, rcppFile = NULL, maxiter = 1000, silent = FALSE, verbose = FALSE ) { # split samples in two parts nr <- nrow(samples[[1]]) samples4fit_index <- seq_len(nr) %in% seq_len(round(nr / 2)) samples_4_fit_tmp <- samples[samples4fit_index, , drop = FALSE] samples_4_fit_tmp <- do.call("rbind", samples_4_fit_tmp) # check lb and ub if (!is.numeric(lb)) { stop("lb needs to be numeric", call. = FALSE) } if (!is.numeric(ub)) { stop("ub needs to be numeric", call. = FALSE) } if (!all(colnames(samples_4_fit_tmp) %in% names(lb))) { stop("lb does not contain all parameters.", call. = FALSE) } if (!all(colnames(samples_4_fit_tmp) %in% names(ub))) { stop("ub does not contain all parameters.", call. = FALSE) } # transform parameters to real line tmp <- .transform2Real(samples_4_fit_tmp, lb, ub) samples_4_fit <- tmp$theta_t transTypes <- tmp$transTypes samples_4_iter_tmp <- lapply( samples[!samples4fit_index, , drop = FALSE], function(x) .transform2Real(x, lb = lb, ub = ub)$theta_t ) # compute effective sample size if (use_neff) { samples_4_iter_tmp <- coda::mcmc.list(lapply( samples_4_iter_tmp, coda::mcmc )) neff <- tryCatch( median(coda::effectiveSize(samples_4_iter_tmp)), error = function(e) { warning( "effective sample size cannot be calculated, has been replaced by number of samples.", call. = FALSE ) return(NULL) } ) } else { neff <- NULL } # convert to matrix samples_4_iter <- do.call("rbind", samples_4_iter_tmp) # run bridge sampling out <- do.call( what = paste0(".bridge.sampler.", method), args = list( samples_4_fit = samples_4_fit, samples_4_iter = samples_4_iter, neff = neff, use_ess = use_neff, log_posterior = log_posterior, "..." = ..., data = data, lb = lb, ub = ub, transTypes = transTypes, repetitions = repetitions, cores = cores, packages = packages, varlist = varlist, envir = envir, param_types = param_types, rcppFile = rcppFile, maxiter = maxiter, silent = silent, verbose = verbose, r0 = 0.5, tol1 = 1e-10, tol2 = 1e-4 ) ) return(out) } #' @rdname bridge_sampler #' @export bridge_sampler.mcmc <- function( samples = NULL, log_posterior = NULL, ..., data = NULL, lb = NULL, ub = NULL, repetitions = 1, method = "normal", cores = 1, use_neff = TRUE, packages = NULL, varlist = NULL, envir = .GlobalEnv, rcppFile = NULL, maxiter = 1000, param_types = rep("real", ncol(samples)), silent = FALSE, verbose = FALSE ) { samples <- as.matrix(samples) bridge_output <- bridge_sampler( samples = samples, log_posterior = log_posterior, ..., data = data, lb = lb, ub = ub, repetitions = repetitions, method = method, cores = cores, use_neff = use_neff, packages = packages, varlist = varlist, envir = envir, rcppFile = rcppFile, maxiter = maxiter, param_types = param_types, silent = silent, verbose = verbose ) return(bridge_output) } #' @export #' @rdname bridge_sampler bridge_sampler.matrix <- function( samples = NULL, log_posterior = NULL, ..., data = NULL, lb = NULL, ub = NULL, repetitions = 1, method = "normal", cores = 1, use_neff = TRUE, packages = NULL, varlist = NULL, envir = .GlobalEnv, rcppFile = NULL, maxiter = 1000, param_types = rep("real", ncol(samples)), silent = FALSE, verbose = FALSE ) { # see Meng & Wong (1996), equation 4.1 # Check simplex computation is_simplex_param <- param_types == "simplex" if (any(is_simplex_param)) { simplex_samples <- samples[, is_simplex_param] if (any(!(round(rowSums(simplex_samples), 6) == 1L))) { stop(paste( "Simplex parameters do not sum to one. This could be due to having multiple separate sets of simplex parameters, which are not supported. " )) } # Remove the last simplex variable because it is superfluous. last_sim <- which(is_simplex_param)[sum(is_simplex_param)] samples <- samples[, -last_sim, drop = FALSE] param_types <- param_types[-last_sim] lb <- lb[-last_sim] ub <- ub[-last_sim] } # transform parameters to real line tmp <- .transform2Real(samples, lb, ub, theta_types = param_types) theta_t <- tmp$theta_t transTypes <- tmp$transTypes # split samples for proposal/iterative scheme nr <- nrow(samples) samples4fit_index <- seq_len(nr) %in% seq_len(round(nr / 2)) # split samples in two parts samples_4_fit <- theta_t[samples4fit_index, , drop = FALSE] samples_4_iter <- theta_t[!samples4fit_index, , drop = FALSE] # compute effective sample size if (use_neff) { neff <- tryCatch( median(coda::effectiveSize(coda::mcmc(samples_4_iter))), error = function(e) { warning( "effective sample size cannot be calculated, has been replaced by number of samples.", call. = FALSE ) return(NULL) } ) } else { neff <- NULL } out <- do.call( what = paste0(".bridge.sampler.", method), args = list( samples_4_fit = samples_4_fit, samples_4_iter = samples_4_iter, neff = neff, use_ess = use_neff, log_posterior = log_posterior, "..." = ..., data = data, lb = lb, ub = ub, transTypes = transTypes, param_types = param_types, repetitions = repetitions, cores = cores, packages = packages, varlist = varlist, envir = envir, rcppFile = rcppFile, maxiter = maxiter, silent = silent, verbose = verbose, r0 = 0.5, tol1 = 1e-10, tol2 = 1e-4 ) ) return(out) } #' @rdname bridge_sampler #' @export #' @importFrom utils read.csv bridge_sampler.stanreg <- function( samples, repetitions = 1, method = "normal", cores = 1, use_neff = TRUE, maxiter = 1000, silent = FALSE, verbose = FALSE, ... ) { df <- eval(samples$call$diagnostic_file) if (is.null(df)) { stop( "the 'diagnostic_file' option must be specified in the call to ", samples$stan_function, " to use the 'bridge_sampler'" ) } sf <- samples$stanfit chains <- ncol(sf) if (chains > 1) { df <- sapply(1:chains, FUN = function(j) { sub("\\.csv$", paste0("_", j, ".csv"), df) }) } samples_list <- lapply(df, FUN = function(f) { d <- read.csv(f, comment.char = "#") excl <- c( "lp__", "accept_stat__", "stepsize__", "treedepth__", "n_leapfrog__", "divergent__", "energy__" ) d <- d[, !(colnames(d) %in% excl), drop = FALSE] coda::as.mcmc(as.matrix(d[, 1:rstan::get_num_upars(sf), drop = FALSE])) }) samples <- coda::as.mcmc.list(samples_list) lb <- rep(-Inf, ncol(samples[[1]])) ub <- rep(Inf, ncol(samples[[1]])) names(lb) <- names(ub) <- colnames(samples[[1]]) # cores > 1 only for unix: if (!(.Platform$OS.type == "unix") & (cores != 1)) { warning( "cores > 1 only possible on Unix/MacOs. Uses 'core = 1' instead.", call. = FALSE ) cores <- 1L } if (cores == 1) { bridge_output <- bridge_sampler( samples = samples, log_posterior = .stan_log_posterior, data = list(stanfit = sf), lb = lb, ub = ub, repetitions = repetitions, method = method, cores = cores, use_neff = use_neff, packages = "rstan", maxiter = maxiter, silent = silent, verbose = verbose ) } else { bridge_output <- bridge_sampler( samples = samples, log_posterior = .stan_log_posterior, data = list(stanfit = sf), lb = lb, ub = ub, repetitions = repetitions, varlist = "stanfit", envir = sys.frame(sys.nframe()), method = method, cores = cores, use_neff = use_neff, packages = "rstan", maxiter = maxiter, silent = silent, verbose = verbose ) } return(bridge_output) } #' @rdname bridge_sampler #' @export bridge_sampler.rjags <- function( samples = NULL, log_posterior = NULL, ..., data = NULL, lb = NULL, ub = NULL, repetitions = 1, method = "normal", cores = 1, use_neff = TRUE, packages = NULL, varlist = NULL, envir = .GlobalEnv, rcppFile = NULL, maxiter = 1000, silent = FALSE, verbose = FALSE ) { # convert to mcmc.list samples <- coda::as.mcmc(samples) cn <- coda::varnames(samples) samples <- samples[, cn != "deviance", drop = FALSE] # run bridge sampling out <- bridge_sampler( samples = samples, log_posterior = log_posterior, ..., data = data, lb = lb, ub = ub, repetitions = repetitions, method = method, cores = cores, use_neff = use_neff, packages = packages, varlist = varlist, envir = envir, rcppFile = rcppFile, maxiter = maxiter, silent = silent, verbose = verbose ) return(out) } #' @rdname bridge_sampler #' @export bridge_sampler.runjags <- function( samples = NULL, log_posterior = NULL, ..., data = NULL, lb = NULL, ub = NULL, repetitions = 1, method = "normal", cores = 1, use_neff = TRUE, packages = NULL, varlist = NULL, envir = .GlobalEnv, rcppFile = NULL, maxiter = 1000, silent = FALSE, verbose = FALSE ) { # convert to mcmc.list samples <- coda::as.mcmc.list(samples) # run bridge sampling out <- bridge_sampler( samples = samples, log_posterior = log_posterior, ..., data = data, lb = lb, ub = ub, repetitions = repetitions, method = method, cores = cores, use_neff = use_neff, packages = packages, varlist = varlist, envir = envir, rcppFile = rcppFile, maxiter = maxiter, silent = silent, verbose = verbose ) return(out) } #' @rdname bridge_sampler #' @export bridge_sampler.MCMC_refClass <- function( samples, repetitions = 1, method = "normal", cores = 1, use_neff = TRUE, maxiter = 1000, silent = FALSE, verbose = FALSE, ... ) { if (!requireNamespace("nimble")) { stop("package nimble required") } ## functions for nimble support .log_posterior_nimble <- ".log_posterior_nimble <- nimble::nimbleFunction( # based on code by Perry de Valpine ## setup code is executed in R and specializes an instance ## of the nimbleFunction to a particular model or nodes setup = function(model, nodes) { calcNodes <- model$getDependencies(nodes) }, ## run code is called repeatedly and can be converted into C++ run = function(sample = double(1)) { values(model, nodes) <<- sample out <- model$calculate(calcNodes) return(out) returnType(double(0)) } )" eval(parse(text = .log_posterior_nimble)) ## trick for avoiding R CMD check NOTEs .nimble_bounds <- function(samples, model, which) { if (!(which %in% c("lower", "upper"))) { stop('"which" needs to be either "lower" or "upper"\n', call. = FALSE) } cn <- colnames(samples) bounds <- numeric(length(cn)) names(bounds) <- cn for (i in seq_along(cn)) { bounds[[cn[i]]] <- model$getBound(cn[i], which) } return(bounds) } # cores > 1 only for unix: if (!(.Platform$OS.type == "unix") & (cores != 1)) { warning( "cores > 1 only possible on Unix/MacOs. Uses 'core = 1' instead.", call. = FALSE ) cores <- 1L } mcmc_samples <- as.matrix(samples$mvSamples) if (all(is.na(mcmc_samples))) { stop( "nimble object does not contain samples. Call runMCMC() first.", call. = FALSE ) } # make sure that samples is a list if (is.matrix(mcmc_samples)) { # TRUE in case nchains = 1 mcmc_samples <- list(mcmc_samples) } # convert samples to mcmc.list samples_mcmc <- lapply(mcmc_samples, FUN = coda::as.mcmc) samples_mcmc_list <- coda::as.mcmc.list(samples_mcmc) ## get model name from MCMC_refClass object mod_name <- ls(samples$nimbleProject$models)[1] nimble_model <- samples$nimbleProject$models[[mod_name]] # compile log_posterior for bridge sampling log_posterior_tmp <- .log_posterior_nimble( model = nimble_model, nodes = colnames(mcmc_samples[[1]]) ) suppressMessages( clog_posterior <- nimble::compileNimble( log_posterior_tmp, project = nimble_model ) ) # wrapper to match required format for log_posterior log_posterior <- function(x, data) { clog_posterior$run(x) } out <- bridge_sampler( samples = samples_mcmc_list, log_posterior = log_posterior, ..., data = NULL, lb = .nimble_bounds(mcmc_samples[[1]], nimble_model, "lower"), ub = .nimble_bounds(mcmc_samples[[1]], nimble_model, "upper"), repetitions = repetitions, method = method, cores = cores, use_neff = use_neff, packages = "nimble", maxiter = maxiter, silent = silent, verbose = verbose ) return(out) } bridgesampling/R/turtles-data.R0000644000176200001440000000260215055304401016173 0ustar liggesusers#' Turtles Data from Janzen, Tucker, and Paukstis (2000) #' #' This data set contains information about 244 newborn turtles from 31 #' different clutches. For each turtle, the data set includes information about #' survival status (column \code{y}; 0 = died, 1 = survived), birth weight in #' grams (column \code{x}), and clutch (family) membership (column #' \code{clutch}; an integer between one and 31). The clutches have been ordered #' according to mean birth weight. #' #' @docType data #' @keywords dataset #' @name turtles #' @usage turtles #' @format A data.frame with 244 rows and 3 variables. #' @source Janzen, F. J., Tucker, J. K., & Paukstis, G. L. (2000). Experimental #' analysis of an early life-history stage: Selection on size of hatchling #' turtles. \emph{Ecology, 81(8)}, 2290-2304. #' \doi{10.2307/177115} #' #' Overstall, A. M., & Forster, J. J. (2010). Default Bayesian model #' determination methods for generalised linear mixed models. #' \emph{Computational Statistics & Data Analysis, 54}, 3269-3288. #' \doi{10.1016/j.csda.2010.03.008} #' #' Sinharay, S., & Stern, H. S. (2005). An empirical comparison of methods for #' computing Bayes factors in generalized linear mixed models. \emph{Journal #' of Computational and Graphical Statistics, 14(2)}, 415-435. #' \doi{10.1198/106186005X47471} #' @encoding UTF-8 #' #' @example examples/example.turtles.R NULL bridgesampling/R/ier-data.R0000644000176200001440000000201615055304401015247 0ustar liggesusers#' Standardized International Exchange Rate Changes from 1975 to 1986 #' #' This data set contains the changes in monthly international exchange rates for pounds sterling from January 1975 to December 1986 obtained from West and Harrison (1997, pp. 612-615). Currencies tracked are US Dollar (column \code{us_dollar}), Canadian Dollar (column \code{canadian_dollar}), Japanese Yen (column \code{yen}), French Franc (column \code{franc}), Italian Lira (column \code{lira}), and the (West) German Mark (column \code{mark}). Each series has been standardized with respect to its sample mean and standard deviation. #' #' @docType data #' @keywords dataset #' @name ier #' @usage ier #' @format A matrix with 143 rows and 6 columns. #' @source West, M., Harrison, J. (1997). \emph{Bayesian forecasting and dynamic models} (2nd ed.). Springer-Verlag, New York. #' #' Lopes, H. F., West, M. (2004). Bayesian model assessment in factor analysis. \emph{Statistica Sinica, 14}, 41-67. #' @encoding UTF-8 #' #' @example examples/example.ier.R NULL bridgesampling/R/bridge_sampler_warp3.R0000644000176200001440000003161515106567454017703 0ustar liggesusers.bridge.sampler.warp3 <- function( samples_4_fit, # matrix with already transformed samples for fitting the # proposal (rows are samples), colnames are "trans_x" where # x is the parameter name samples_4_iter, # matrix with already transformed samples for the # iterative scheme (rows are samples), colnames are "trans_x" # where x is the parameter name neff, # effective sample size of samples_4_iter (i.e., already transformed samples), scalar log_posterior, ..., data, lb, ub, transTypes, # types of transformations (unbounded/lower/upperbounded) for the different parameters (named character vector) param_types, # Sample space for transformations (real, circular, simplex) cores, repetitions, packages, varlist, envir, rcppFile, maxiter, silent, verbose, use_ess, r0, tol1, tol2 ) { if (is.null(neff)) { neff <- nrow(samples_4_iter) } n_post <- nrow(samples_4_iter) # get mean & covariance matrix and generate samples from proposal m <- apply(samples_4_fit, 2, mean) V_tmp <- cov(samples_4_fit) V <- as.matrix(nearPD(V_tmp)$mat) # make sure that V is positive-definite L <- t(chol(V)) # sample from multivariate normal distribution and evaluate for posterior samples and generated samples q12 <- dmvnorm( (samples_4_iter - matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE)) %*% t(solve(L)), sigma = diag(ncol(samples_4_fit)), log = TRUE ) q22 <- vector(mode = "list", length = repetitions) gen_samples <- vector(mode = "list", length = repetitions) for (i in seq_len(repetitions)) { gen_samples[[i]] <- rmvnorm(n_post, sigma = diag(ncol(samples_4_fit))) colnames(gen_samples[[i]]) <- colnames(samples_4_iter) q22[[i]] <- dmvnorm( gen_samples[[i]], sigma = diag(ncol(samples_4_fit)), log = TRUE ) } e <- as.brob(exp(1)) # evaluate log of likelihood times prior for posterior samples and generated samples q21 <- vector(mode = "list", length = repetitions) if (cores == 1) { q11 <- log( e^(apply( .invTransform2Real(samples_4_iter, lb, ub, param_types), 1, log_posterior, data = data, ... ) + .logJacobian(samples_4_iter, transTypes, lb, ub)) + e^(apply( .invTransform2Real( matrix(2 * m, nrow = n_post, ncol = length(m), byrow = TRUE) - samples_4_iter, lb, ub, param_types ), 1, log_posterior, data = data, ... ) + .logJacobian( matrix(2 * m, nrow = n_post, ncol = length(m), byrow = TRUE) - samples_4_iter, transTypes, lb, ub )) ) for (i in seq_len(repetitions)) { q21[[i]] <- log( e^(apply( .invTransform2Real( matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) - gen_samples[[i]] %*% t(L), lb, ub, param_types ), 1, log_posterior, data = data, ... ) + .logJacobian( matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) - gen_samples[[i]] %*% t(L), transTypes, lb, ub )) + e^(apply( .invTransform2Real( matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) + gen_samples[[i]] %*% t(L), lb, ub, param_types ), 1, log_posterior, data = data, ... ) + .logJacobian( matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) + gen_samples[[i]] %*% t(L), transTypes, lb, ub )) ) } } else if (cores > 1) { if (.Platform$OS.type == "unix") { split1a <- .split_matrix( matrix = .invTransform2Real(samples_4_iter, lb, ub, param_types), cores = cores ) split1b <- .split_matrix( matrix = .invTransform2Real( matrix(2 * m, nrow = n_post, ncol = length(m), byrow = TRUE) - samples_4_iter, lb, ub, param_types ), cores = cores ) q11a <- parallel::mclapply( split1a, FUN = function(x) apply(x, 1, log_posterior, data = data, ...), mc.preschedule = FALSE, mc.cores = cores ) q11b <- parallel::mclapply( split1b, FUN = function(x) apply(x, 1, log_posterior, data = data, ...), mc.preschedule = FALSE, mc.cores = cores ) q11 <- log( e^(unlist(q11a) + .logJacobian(samples_4_iter, transTypes, lb, ub)) + e^(unlist(q11b) + .logJacobian( matrix(2 * m, nrow = n_post, ncol = length(m), byrow = TRUE) - samples_4_iter, transTypes, lb, ub )) ) for (i in seq_len(repetitions)) { tmp_mat2 <- gen_samples[[i]] %*% t(L) split2a <- .split_matrix( matrix = .invTransform2Real( matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) - tmp_mat2, lb, ub, param_types ), cores = cores ) split2b <- .split_matrix( matrix = .invTransform2Real( matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) + tmp_mat2, lb, ub, param_types ), cores = cores ) q21a <- parallel::mclapply( split2a, FUN = function(x) apply(x, 1, log_posterior, data = data, ...), mc.preschedule = FALSE, mc.cores = cores ) q21b <- parallel::mclapply( split2b, FUN = function(x) apply(x, 1, log_posterior, data = data, ...), mc.preschedule = FALSE, mc.cores = cores ) q21[[i]] <- log( e^(unlist(q21a) + .logJacobian( matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) - tmp_mat2, transTypes, lb, ub )) + e^(unlist(q21b) + .logJacobian( matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) + tmp_mat2, transTypes, lb, ub )) ) } } else { cl <- parallel::makeCluster(cores, useXDR = FALSE) sapply(packages, function(x) { parallel::clusterCall( cl = cl, "require", package = x, character.only = TRUE ) }) parallel::clusterExport(cl = cl, varlist = varlist, envir = envir) if (!is.null(rcppFile)) { parallel::clusterExport( cl = cl, varlist = "rcppFile", envir = parent.frame() ) parallel::clusterCall( cl = cl, "require", package = "Rcpp", character.only = TRUE ) parallel::clusterEvalQ(cl = cl, Rcpp::sourceCpp(file = rcppFile)) } else if (is.character(log_posterior)) { parallel::clusterExport(cl = cl, varlist = log_posterior, envir = envir) } q11 <- log( e^(parallel::parRapply( cl = cl, x = .invTransform2Real(samples_4_iter, lb, ub, param_types), log_posterior, data = data, ... ) + .logJacobian(samples_4_iter, transTypes, lb, ub)) + e^(parallel::parRapply( cl = cl, x = .invTransform2Real( matrix(2 * m, nrow = n_post, ncol = length(m), byrow = TRUE) - samples_4_iter, lb, ub, param_types ), log_posterior, data = data, ... ) + .logJacobian( matrix(2 * m, nrow = n_post, ncol = length(m), byrow = TRUE) - samples_4_iter, transTypes, lb, ub )) ) for (i in seq_len(repetitions)) { q21[[i]] <- log( e^(parallel::parRapply( cl = cl, x = .invTransform2Real( matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) - gen_samples[[i]] %*% t(L), lb, ub, param_types ), log_posterior, data = data, ... ) + .logJacobian( matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) - gen_samples[[i]] %*% t(L), transTypes, lb, ub )) + e^(parallel::parRapply( cl = cl, x = .invTransform2Real( matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) + gen_samples[[i]] %*% t(L), lb, ub, param_types ), log_posterior, data = data, ... ) + .logJacobian( matrix(m, nrow = n_post, ncol = length(m), byrow = TRUE) + gen_samples[[i]] %*% t(L), transTypes, lb, ub )) ) } parallel::stopCluster(cl) } } if (any(is.infinite(q11))) { warning( sum(is.infinite(q11)), " of the ", length(q11), " log_prob() evaluations on the warp-transformed posterior draws produced -Inf/Inf.", call. = FALSE ) } for (i in seq_len(repetitions)) { if (any(is.infinite(q21[[i]]))) { warning( sum(is.infinite(q21[[i]])), " of the ", length(q21[[i]]), " log_prob() evaluations on the warp-transformed proposal draws produced -Inf/Inf.", call. = FALSE ) } } if (any(is.na(q11))) { warning( sum(is.na(q11)), " evaluation(s) of log_prob() on the warp-transformed posterior draws produced NA and have been replaced by -Inf.", call. = FALSE ) q11[is.na(q11)] <- -Inf } for (i in seq_len(repetitions)) { if (any(is.na(q21[[i]]))) { warning( sum(is.na(q21[[i]])), " evaluation(s) of log_prob() on the warp-transformed proposal draws produced NA nd have been replaced by -Inf.", call. = FALSE ) q21[[i]][is.na(q21[[i]])] <- -Inf } } if (verbose) { print("summary(q12): (log_dens of proposal for posterior samples)") print(summary(q12)) print("summary(q22): (log_dens of proposal for generated samples)") print(lapply(q22, summary)) print("summary(q11): (log_dens of posterior for posterior samples)") print(summary(q11)) print("summary(q21): (log_dens of posterior for generated samples)") print(lapply(q21, summary)) } logml <- numeric(repetitions) niter <- numeric(repetitions) mcse_logmls <- numeric(repetitions) # run iterative updating scheme to compute log of marginal likelihood for (i in seq_len(repetitions)) { tmp <- .run.iterative.scheme( q11 = q11, q12 = q12, q21 = q21[[i]], q22 = q22[[i]], r0 = r0, tol = tol1, L = L, method = "warp3", maxiter = maxiter, silent = silent, criterion = "r", neff = neff, use_ess = use_ess ) if (is.na(tmp$logml) & !is.null(tmp$r_vals)) { warning( "logml could not be estimated within maxiter, rerunning with adjusted starting value. \nEstimate might be more variable than usual.", call. = FALSE ) lr <- length(tmp$r_vals) # use geometric mean as starting value r0_2 <- sqrt(tmp$r_vals[[lr - 1]] * tmp$r_vals[[lr]]) tmp <- .run.iterative.scheme( q11 = q11, q12 = q12, q21 = q21[[i]], q22 = q22[[i]], r0 = r0_2, tol = tol2, L = L, method = "warp3", maxiter = maxiter, silent = silent, criterion = "logml", neff = neff, use_ess = use_ess ) tmp$niter <- maxiter + tmp$niter } logml[i] <- tmp$logml niter[i] <- tmp$niter mcse_logmls[i] <- tmp$mcse_logml if (niter[i] == maxiter) { warning( "logml could not be estimated within maxiter, returning NA.", call. = FALSE ) } } if (repetitions == 1) { out <- list( logml = logml, niter = niter, method = "warp3", q11 = q11, q12 = q12, q21 = q21[[1]], q22 = q22[[1]], mcse_logml = mcse_logmls ) class(out) <- "bridge" } else if (repetitions > 1) { out <- list( logml = logml, niter = niter, method = "warp3", repetitions = repetitions, mcse_logml = mcse_logmls ) class(out) <- "bridge_list" } return(out) } bridgesampling/vignettes/0000755000176200001440000000000015107052017015247 5ustar liggesusersbridgesampling/vignettes/bridgesampling_tutorial.pdf.asis0000644000176200001440000000012215055304401023604 0ustar liggesusers%\VignetteIndexEntry{A Tutorial on Bridge Sampling} %\VignetteEngine{R.rsp::asis} bridgesampling/vignettes/bridgesampling_stan_ttest.Rmd0000644000176200001440000002073515055304401023160 0ustar liggesusers--- title: "Bayesian One-Sample T-Test (Stan)" author: "Quentin F. Gronau" date: "`r Sys.Date()`" show_toc: true output: knitr:::html_vignette: toc: yes vignette: > %\VignetteIndexEntry{Bayesian One-Sample T-Test Stan} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- In this vignette, we explain how we can compute the (log) marginal likelihood and the Bayes factor for models fitted in `Stan`. This approach has the advantage that the user only needs to pass the fitted `stanfit` object which contains all information that is necessary to compute the (log) marginal likelihood. Here we show how one can conduct a Bayesian one-sample t-test as implemented in the `BayesFactor` package (Morey & Rouder, 2015). ## Model The Bayesian one-sample t-test makes the assumption that the observations are normally distributed with mean $\mu$ and variance $\sigma^2$. The model is then reparametrized in terms of the standardized effect size $\delta = \mu/\sigma$. For the standardized effect size, a Cauchy prior with location zero and scale $r = 1/\sqrt{2}$ is used. For the variance $\sigma^2$, Jeffreys's prior is used: $p(\sigma^2) \propto 1/\sigma^2$. In this example, we are interested in comparing the null model $\mathcal{H}_0$, which posits that the effect size $\delta$ is zero, to the alternative hypothesis $\mathcal{H}_1$, which assigns $\delta$ the above described Cauchy prior. ## Data In this example, we will analyze the `sleep` data set from the `t.test` example. This data set shows the effect of two soporific drugs (increase in hours of sleep compared to control) on 10 patients. These data can be analyzed via a one-sample t-test by first computing the difference scores and then conducting the t-test using these difference scores as data. The difference scores are calculated as follows: ```{r} library(bridgesampling) set.seed(12345) # Sleep data from t.test example data(sleep) # compute difference scores y <- sleep$extra[sleep$group == 2] - sleep$extra[sleep$group == 1] n <- length(y) ``` ## Specifying the Models Next, we implement the models in `Stan`. Note that to compute the (log) marginal likelihood for a `Stan` model, we need to specify the model in a certain way. Instad of using `"~"` signs for specifying distributions, we need to directly use the (log) density functions. The reason for this is that when using the `"~"` sign, constant terms are dropped which are not needed for sampling from the posterior. However, for computing the marginal likelihood, these constants need to be retained. For instance, instead of writing `y ~ normal(mu, sigma)` we would need to write `target += normal_lpdf(y | mu, sigma)`. The models can then be specified and compiled as follows (note that it is necessary to install `rstan` for this): ```{r, eval=FALSE} library(rstan) # models stancodeH0 <- ' data { int n; // number of observations vector[n] y; // observations } parameters { real sigma2; // variance parameter } model { target += log(1/sigma2); // Jeffreys prior on sigma2 target += normal_lpdf(y | 0, sqrt(sigma2)); // likelihood } ' stancodeH1 <- ' data { int n; // number of observations vector[n] y; // observations real r; // Cauchy prior scale } parameters { real delta; real sigma2;// variance parameter } model { target += cauchy_lpdf(delta | 0, r); // Cauchy prior on delta target += log(1/sigma2); // Jeffreys prior on sigma2 target += normal_lpdf(y | delta*sqrt(sigma2), sqrt(sigma2)); // likelihood } ' # compile models stanmodelH0 <- stan_model(model_code = stancodeH0, model_name="stanmodel") stanmodelH1 <- stan_model(model_code = stancodeH1, model_name="stanmodel") ``` ## Fitting the Models Now we can fit the null and the alternative model in `Stan`. One usually requires a larger number of posterior samples for estimating the marginal likelihood than for simply estimating the model parameters. This is the reason for using a comparatively large number of samples for these simple models. ```{r, eval=FALSE} # fit models stanfitH0 <- sampling(stanmodelH0, data = list(y = y, n = n), iter = 20000, warmup = 1000, chains = 4, cores = 1, control = list(adapt_delta = .99)) stanfitH1 <- sampling(stanmodelH1, data = list(y = y, n = n, r = 1/sqrt(2)), iter = 20000, warmup = 1000, chains = 4, cores = 1, control = list(adapt_delta = .99)) ``` ## Computing the (Log) Marginal Likelihoods Computing the (log) marginal likelihoods via the `bridge_sampler` function is now easy: we only need to pass the `stanfit` objects which contain all information necessary. We use `silent = TRUE` to suppress printing the number of iterations to the console: ```{r, echo=FALSE} load(system.file("extdata/", "vignette_stan_ttest.RData", package = "bridgesampling")) ``` ```{r, eval=FALSE} H0 <- bridge_sampler(stanfitH0, silent = TRUE) H1 <- bridge_sampler(stanfitH1, silent = TRUE) ``` We obtain: ```{r} print(H0) print(H1) ``` We can use the `error_measures` function to compute an approximate percentage error of the estimates: ```{r,eval=FALSE} # compute percentage errors H0.error <- error_measures(H0)$percentage H1.error <- error_measures(H1)$percentage ``` We obtain: ```{r} print(H0.error) print(H1.error) ``` ## Computing the Bayes Factor To compare the null model and the alternative model, we can compute the Bayes factor by using the `bf` function. In our case, we compute $\text{BF}_{10}$, that is, the Bayes factor which quantifies how much more likely the data are under the alternative versus the null hypothesis: ```{r} # compute Bayes factor BF10 <- bf(H1, H0) print(BF10) ``` We can compare the bridge sampling result to the `BayesFactor` package result: ```{r, eval=FALSE} library(BayesFactor) BF10.BayesFactor <- extractBF(ttestBF(y), onlybf = TRUE) ``` We obtain: ```{r, message=FALSE} print(BF10.BayesFactor) ``` ## One-sided Test We can also conduct one-sided tests. For instance, we could test the hypothesis that the effect size is positive versus the null hypothesis. Since we already fitted the null model and computed its marginal likelihood, we only need to slightly adjust the alternative model to reflect the directed hypothesis. To achieve this, we need to truncate the Cauchy prior distribution for $\delta$ at zero and then renormalize the (log) density. This is easily achieved via the `Stan` function `cauchy_lccdf` which corresponds to the log of the complementary cumulative distribution function of the Cauchy distribution. Thus, `cauchy_lccdf(0 | 0, r)` gives us the log of the area greater than zero which is required for renormalizing the truncated Cauchy prior. The model can then be specified and fitted as follows: ```{r, eval=FALSE} stancodeHplus <- ' data { int n; // number of observations vector[n] y; // observations real r; // Cauchy prior scale } parameters { real delta; // constrained to be positive real sigma2;// variance parameter } model { target += cauchy_lpdf(delta | 0, r) - cauchy_lccdf(0 | 0, r); // Cauchy prior on delta target += log(1/sigma2); // Jeffreys prior on sigma2 target += normal_lpdf(y | delta*sqrt(sigma2), sqrt(sigma2)); // likelihood } ' # compile and fit model stanmodelHplus <- stan_model(model_code = stancodeHplus, model_name="stanmodel") stanfitHplus <- sampling(stanmodelHplus, data = list(y = y, n = n, r = 1/sqrt(2)), iter = 30000, warmup = 1000, chains = 4, control = list(adapt_delta = .99)) ``` The (log) marginal likelihood is then computed as follows: ```{r,eval=FALSE} Hplus <- bridge_sampler(stanfitHplus, silent = TRUE) ``` We obtain: ```{r} print(Hplus) ``` We can again use the `error_measures` function to compute an approximate percentage error of the estimate: ```{r,eval=FALSE} Hplus.error <- error_measures(Hplus)$percentage ``` We obtain: ```{r} print(Hplus.error) ``` The one-sided Bayes factor in favor of a positive effect versus the null hypothesis can be computed as follows: ```{r} # compute Bayes factor BFplus0 <- bf(Hplus, H0) print(BFplus0) ``` We can compare the bridge sampling result to the `BayesFactor` package result: ```{r, eval=FALSE} BFplus0.BayesFactor <- extractBF(ttestBF(y, nullInterval = c(0, Inf)), onlybf = TRUE)[1] ``` We obtain: ```{r} print(BFplus0.BayesFactor) ``` ## References Richard D. Morey and Jeffrey N. Rouder (2015). BayesFactor: Computation of Bayes Factors for Common Designs. R package version 0.9.12-2. \url{https://CRAN.R-project.org/package=BayesFactor} bridgesampling/vignettes/bridgesampling_example_nimble.Rmd0000644000176200001440000001606115060116372023752 0ustar liggesusers--- title: "Hierarchical Normal Example (nimble)" author: "Quentin F. Gronau, Henrik Singmann & Perry de Valpine" date: "`r Sys.Date()`" show_toc: true output: knitr:::html_vignette: toc: yes vignette: > %\VignetteIndexEntry{Hierarchical Normal Example Nimble} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- In this vignette, we explain how one can compute marginal likelihoods, Bayes factors, and posterior model probabilities using a simple hierarchical normal model implemented in `nimble`. The [`nimble` documentation](https://r-nimble.org/manual/cha-welcome-nimble.html) provides a comprehensive overview. This vignette uses the same models and data as the [`Stan` vignette](bridgesampling_example_stan.html) and [`Jags` vignette](bridgesampling_example_jags.html). ## Model and Data The model that we will use assumes that each of the $n$ observations $y_i$ (where $i$ indexes the observation, $i = 1,2,...,n$) is normally distributed with corresponding mean $\theta_i$ and a common known variance $\sigma^2$: $y_i \sim \mathcal{N}(\theta_i, \sigma^2)$. Each $\theta_i$ is drawn from a normal group-level distribution with mean $\mu$ and variance $\tau^2$: $\theta_i \sim \mathcal{N}(\mu, \tau^2)$. For the group-level mean $\mu$, we use a normal prior distribution of the form $\mathcal{N}(\mu_0, \tau^2_0)$. For the group-level variance $\tau^2$, we use an inverse-gamma prior of the form $\text{Inv-Gamma}(\alpha, \beta)$. In this example, we are interested in comparing the null model $\mathcal{H}_0$, which posits that the group-level mean $\mu = 0$, to the alternative model $\mathcal{H}_1$, which allows $\mu$ to be different from zero. First, we generate some data from the null model: ```{r} library(bridgesampling) ### generate data ### set.seed(12345) mu <- 0 tau2 <- 0.5 sigma2 <- 1 n <- 20 theta <- rnorm(n, mu, sqrt(tau2)) y <- rnorm(n, theta, sqrt(sigma2)) ``` Next, we specify the prior parameters $\mu_0$, $\tau^2_0$, $\alpha$, and $\beta$: ```{r,eval=FALSE} ### set prior parameters ### mu0 <- 0 tau20 <- 1 alpha <- 1 beta <- 1 ``` ## Specifying the Models Next, we implement the models in `nimble`. This requires to first transform the code into a `nimbleModel`, then we need to set the data, and then we can compile the model. Given that `nimble` is build on BUGS, the similarity between the `nimble` code and the [`Jags` code](bridgesampling_example_jags.html) is not too surprising. ```{r, eval=FALSE} library("nimble") # models codeH0 <- nimbleCode({ invTau2 ~ dgamma(1, 1) tau2 <- 1/invTau2 for (i in 1:20) { theta[i] ~ dnorm(0, sd = sqrt(tau2)) y[i] ~ dnorm(theta[i], sd = 1) } }) codeH1 <- nimbleCode({ mu ~ dnorm(0, sd = 1) invTau2 ~ dgamma(1, 1) tau2 <- 1/invTau2 for (i in 1:20) { theta[i] ~ dnorm(mu, sd = sqrt(tau2)) y[i] ~ dnorm(theta[i], sd = 1) } }) ## steps for H0: modelH0 <- nimbleModel(codeH0) modelH0$setData(y = y) # set data cmodelH0 <- compileNimble(modelH0) # make compiled version from generated C++ ## steps for H1: modelH1 <- nimbleModel(codeH1) modelH1$setData(y = y) # set data cmodelH1 <- compileNimble(modelH1) # make compiled version from generated C++ ``` ## Fitting the Models Fitting a model with `nimble` requires one to first create an MCMC function from the (compiled or uncompiled) model. This function then needs to be compiled again. With this object we can then create the samples. Note that nimble uses a reference object semantic so we do not actually need the samples object, as the samples will be saved in the MCMC function objects. But as `runMCMC` returns them anyway, we nevertheless save them. One usually requires a larger number of posterior samples for estimating the marginal likelihood than for simply estimating the model parameters. This is the reason for using a comparatively large number of samples for these simple models. ```{r, eval=FALSE} # build MCMC functions, skipping customization of the configuration. mcmcH0 <- buildMCMC(modelH0, monitors = modelH0$getNodeNames(stochOnly = TRUE, includeData = FALSE)) mcmcH1 <- buildMCMC(modelH1, monitors = modelH1$getNodeNames(stochOnly = TRUE, includeData = FALSE)) # compile the MCMC function via generated C++ cmcmcH0 <- compileNimble(mcmcH0, project = modelH0) cmcmcH1 <- compileNimble(mcmcH1, project = modelH1) # run the MCMC. This is a wrapper for cmcmc$run() and extraction of samples. # the object samplesH1 is actually not needed as the samples are also in cmcmcH1 samplesH0 <- runMCMC(cmcmcH0, niter = 1e5, nburnin = 1000, nchains = 2, progressBar = FALSE) samplesH1 <- runMCMC(cmcmcH1, niter = 1e5, nburnin = 1000, nchains = 2, progressBar = FALSE) ``` ## Computing the (Log) Marginal Likelihoods Computing the (log) marginal likelihoods via the `bridge_sampler` function is now easy: we only need to pass the compiled MCMC function objects (of class `"MCMC_refClass"`) which contain all information necessary. We use `silent = TRUE` to suppress printing the number of iterations to the console: ```{r, echo=FALSE} load(system.file("extdata/", "vignette_example_nimble.RData", package = "bridgesampling")) ``` ```{r,eval=FALSE} # compute log marginal likelihood via bridge sampling for H0 H0.bridge <- bridge_sampler(cmcmcH0, silent = TRUE) # compute log marginal likelihood via bridge sampling for H1 H1.bridge <- bridge_sampler(cmcmcH1, silent = TRUE) ``` We obtain: ```{r} print(H0.bridge) print(H1.bridge) ``` We can use the `error_measures` function to compute an approximate percentage error of the estimates: ```{r,eval=FALSE} # compute percentage errors H0.error <- error_measures(H0.bridge)$percentage H1.error <- error_measures(H1.bridge)$percentage ``` We obtain: ```{r} print(H0.error) print(H1.error) ``` ## Bayesian Model Comparison To compare the null model and the alternative model, we can compute the Bayes factor by using the `bf` function. In our case, we compute $\text{BF}_{01}$, that is, the Bayes factor which quantifies how much more likely the data are under the null versus the alternative model: ```{r} # compute Bayes factor BF01 <- bf(H0.bridge, H1.bridge) print(BF01) ``` In this case, the Bayes factor is close to one, indicating that there is not much evidence for either model. We can also compute posterior model probabilities by using the `post_prob` function: ```{r} # compute posterior model probabilities (assuming equal prior model probabilities) post1 <- post_prob(H0.bridge, H1.bridge) print(post1) ``` When the argument `prior_prob` is not specified, as is the case here, the prior model probabilities of all models under consideration are set equal (i.e., in this case with two models to 0.5). However, if we had prior knowledge about how likely both models are, we could use the `prior_prob` argument to specify different prior model probabilities: ```{r} # compute posterior model probabilities (using user-specified prior model probabilities) post2 <- post_prob(H0.bridge, H1.bridge, prior_prob = c(.6, .4)) print(post2) ``` bridgesampling/vignettes/bridgesampling_example_jags.Rmd0000644000176200001440000002477215055304401023434 0ustar liggesusers--- title: "Hierarchical Normal Example (JAGS)" author: "Quentin F. Gronau" date: "`r Sys.Date()`" show_toc: true output: knitr:::html_vignette: toc: yes vignette: > %\VignetteIndexEntry{Hierarchical Normal Example JAGS} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- In this vignette, we explain how one can compute marginal likelihoods, Bayes factors, and posterior model probabilities using a simple hierarchical normal model implemented in `JAGS`. This vignette uses the same models and data as the [`Stan` vignette](bridgesampling_example_stan.html). ## Model and Data The model that we will use assumes that each of the $n$ observations $y_i$ (where $i$ indexes the observation, $i = 1,2,...,n$) is normally distributed with corresponding mean $\theta_i$ and a common known variance $\sigma^2$: $y_i \sim \mathcal{N}(\theta_i, \sigma^2)$. Each $\theta_i$ is drawn from a normal group-level distribution with mean $\mu$ and variance $\tau^2$: $\theta_i \sim \mathcal{N}(\mu, \tau^2)$. For the group-level mean $\mu$, we use a normal prior distribution of the form $\mathcal{N}(\mu_0, \tau^2_0)$. For the group-level variance $\tau^2$, we use an inverse-gamma prior of the form $\text{Inv-Gamma}(\alpha, \beta)$. We will use `JAGS` to fit the model which parametrizes the normal distribution in terms of the precision (i.e., one over the variance). Consequently, we implement this inverse-gamma prior on $\tau^2$ by placing a gamma prior of the form $\text{Gamma}(\alpha, \beta)$ on the precision; we call this precision parameter `invTau2` in the code. In this example, we are interested in comparing the null model $\mathcal{H}_0$, which posits that the group-level mean $\mu = 0$, to the alternative model $\mathcal{H}_1$, which allows $\mu$ to be different from zero. First, we generate some data from the null model: ```{r} library(bridgesampling) ### generate data ### set.seed(12345) mu <- 0 tau2 <- 0.5 sigma2 <- 1 n <- 20 theta <- rnorm(n, mu, sqrt(tau2)) y <- rnorm(n, theta, sqrt(sigma2)) ``` Next, we specify the prior parameters $\mu_0$, $\tau^2_0$, $\alpha$, and $\beta$: ```{r,eval=FALSE} ### set prior parameters ### mu0 <- 0 tau20 <- 1 alpha <- 1 beta <- 1 ``` ## Fitting the Models Now we can fit the null and the alternative model in `JAGS` (note that it is necessary to install `JAGS` for this). One usually requires a larger number of posterior sample for estimating the marginal likelihood than for simply estimating the model parameters. This is the reason for using a comparatively large number of samples (i.e., 50,000 post burn-in samples per chain) for this comparatively simple model. ```{r, eval=FALSE} library(R2jags) ### functions to get posterior samples ### # H0: mu = 0 getSamplesModelH0 <- function(data, niter = 52000, nburnin = 2000, nchains = 3) { model <- " model { for (i in 1:n) { theta[i] ~ dnorm(0, invTau2) y[i] ~ dnorm(theta[i], 1/sigma2) } invTau2 ~ dgamma(alpha, beta) tau2 <- 1/invTau2 }" s <- jags(data, parameters.to.save = c("theta", "invTau2"), model.file = textConnection(model), n.chains = nchains, n.iter = niter, n.burnin = nburnin, n.thin = 1) return(s) } # H1: mu != 0 getSamplesModelH1 <- function(data, niter = 52000, nburnin = 2000, nchains = 3) { model <- " model { for (i in 1:n) { theta[i] ~ dnorm(mu, invTau2) y[i] ~ dnorm(theta[i], 1/sigma2) } mu ~ dnorm(mu0, 1/tau20) invTau2 ~ dgamma(alpha, beta) tau2 <- 1/invTau2 }" s <- jags(data, parameters.to.save = c("theta", "mu", "invTau2"), model.file = textConnection(model), n.chains = nchains, n.iter = niter, n.burnin = nburnin, n.thin = 1) return(s) } ### get posterior samples ### # create data lists for JAGS data_H0 <- list(y = y, n = length(y), alpha = alpha, beta = beta, sigma2 = sigma2) data_H1 <- list(y = y, n = length(y), mu0 = mu0, tau20 = tau20, alpha = alpha, beta = beta, sigma2 = sigma2) # fit models samples_H0 <- getSamplesModelH0(data_H0) samples_H1 <- getSamplesModelH1(data_H1) ``` ## Specifying the Unnormalized Log Posterior Function The next step is to write the corresponding `log_posterior` (i.e., unnormalized posterior) function for both models. This function takes one draw from the joint posterior and the data object as input and returns the log of the unnormalized joint posterior density. When using MCMC software such as `JAGS` or `Stan`, specifying this function is relatively simple. As a rule of thumb, one only needs to look for all places where a "`~`" sign appears in the model code. The log of the densities on the right-hand side of these "`~`" symbols needs to be evaluated for the relevant quantities and then these log densities values are summed. For example, in the null model, there are three "`~`" signs. Starting at the data-level, we need to evaluate the log of the normal density with mean $\theta_i$ and variance $\sigma^2$ for all $y_i$ and then sum the resulting log density values. Next, we move one step up in the model and evaluate the log of the group-level density for all $\theta_i$. Hence, we evaluate the log of the normal density for $\theta_i$ with mean $\mu = 0$ and variance $\tau^2$ (remember that `JAGS` parametrizes the normal distribution in terms of the precision `invTau2` = $1/\tau^2$; in contrast, `R` parametrizes it in terms of the standard deviation) and sum the resulting log density values. The result of this summation is added to the result of the previous summation for the data-level normal distribution. Finally, we need to evaluate the log of the prior density for `invTau2`. This means that we compute the log density of the gamma distribution with parameters $\alpha$ and $\beta$ for the sampled `invTau2` value and add the resulting log density value to the result of summing the data-level and group-level log densities. The unnormalized log posterior for the alternative model can be obtained in a similar fashion. The resulting functions look as follows: ```{r,eval=FALSE} ### functions for evaluating the unnormalized posteriors on log scale ### log_posterior_H0 <- function(samples.row, data) { mu <- 0 invTau2 <- samples.row[[ "invTau2" ]] theta <- samples.row[ paste0("theta[", seq_along(data$y), "]") ] sum(dnorm(data$y, theta, data$sigma2, log = TRUE)) + sum(dnorm(theta, mu, 1/sqrt(invTau2), log = TRUE)) + dgamma(invTau2, data$alpha, data$beta, log = TRUE) } log_posterior_H1 <- function(samples.row, data) { mu <- samples.row[[ "mu" ]] invTau2 <- samples.row[[ "invTau2" ]] theta <- samples.row[ paste0("theta[", seq_along(data$y), "]") ] sum(dnorm(data$y, theta, data$sigma2, log = TRUE)) + sum(dnorm(theta, mu, 1/sqrt(invTau2), log = TRUE)) + dnorm(mu, data$mu0, sqrt(data$tau20), log = TRUE) + dgamma(invTau2, data$alpha, data$beta, log = TRUE) } ``` ## Specifying the Parameter Bounds The final step before computing the log marginal likelihoods is to specify the parameter bounds. In this example, for both models, all parameters can range from $-\infty$ to $\infty$ except the precision `invTau2` which has a lower bound of zero. These boundary vectors need to be named and the names need to match the order of the parameters. ```{r,eval=FALSE} # specify parameter bounds H0 cn <- colnames(samples_H0$BUGSoutput$sims.matrix) cn <- cn[cn != "deviance"] lb_H0 <- rep(-Inf, length(cn)) ub_H0 <- rep(Inf, length(cn)) names(lb_H0) <- names(ub_H0) <- cn lb_H0[[ "invTau2" ]] <- 0 # specify parameter bounds H1 cn <- colnames(samples_H1$BUGSoutput$sims.matrix) cn <- cn[cn != "deviance"] lb_H1 <- rep(-Inf, length(cn)) ub_H1 <- rep(Inf, length(cn)) names(lb_H1) <- names(ub_H1) <- cn lb_H1[[ "invTau2" ]] <- 0 ``` Note that currently, the lower and upper bound of a parameter cannot be a function of the bounds of another parameter. Furthermore, constraints that depend on multiple parameters of the model are not supported. This excludes, for example, parameters that constitute a covariance matrix or sets of parameters that need to sum to one. ## Computing the (Log) Marginal Likelihoods Now we are ready to compute the log marginal likelihoods using the `bridge_sampler` function. We use `silent = TRUE` to suppress printing the number of iterations to the console: ```{r, echo=FALSE} load(system.file("extdata/", "vignette_example_jags.RData", package = "bridgesampling")) ``` ```{r,eval=FALSE} # compute log marginal likelihood via bridge sampling for H0 H0.bridge <- bridge_sampler(samples = samples_H0, data = data_H0, log_posterior = log_posterior_H0, lb = lb_H0, ub = ub_H0, silent = TRUE) # compute log marginal likelihood via bridge sampling for H1 H1.bridge <- bridge_sampler(samples = samples_H1, data = data_H1, log_posterior = log_posterior_H1, lb = lb_H1, ub = ub_H1, silent = TRUE) ``` We obtain: ```{r} print(H0.bridge) print(H1.bridge) ``` We can use the `error_measures` function to compute an approximate percentage error of the estimates: ```{r,eval=FALSE} # compute percentage errors H0.error <- error_measures(H0.bridge)$percentage H1.error <- error_measures(H1.bridge)$percentage ``` We obtain: ```{r} print(H0.error) print(H1.error) ``` ## Bayesian Model Comparison To compare the null model and the alternative model, we can compute the Bayes factor by using the `bf` function. In our case, we compute $\text{BF}_{01}$, that is, the Bayes factor which quantifies how much more likely the data are under the null versus the alternative model: ```{r} # compute Bayes factor BF01 <- bf(H0.bridge, H1.bridge) print(BF01) ``` In this case, the Bayes factor is close to one, indicating that there is not much evidence for either model. We can also compute posterior model probabilities by using the `post_prob` function: ```{r} # compute posterior model probabilities (assuming equal prior model probabilities) post1 <- post_prob(H0.bridge, H1.bridge) print(post1) ``` When the argument `prior_prob` is not specified, as is the case here, the prior model probabilities of all models under consideration are set equal (i.e., in this case with two models to 0.5). However, if we had prior knowledge about how likely both models are, we could use the `prior_prob` argument to specify different prior model probabilities: ```{r} # compute posterior model probabilities (using user-specified prior model probabilities) post2 <- post_prob(H0.bridge, H1.bridge, prior_prob = c(.6, .4)) print(post2) ``` bridgesampling/vignettes/bridgesampling_paper_extended.pdf.asis0000644000176200001440000000020115055304401024726 0ustar liggesusers%\VignetteIndexEntry{bridgesampling: An R Package for Estimating Normalizing Constants (Extended)} %\VignetteEngine{R.rsp::asis} bridgesampling/vignettes/bridgesampling_paper.pdf.asis0000644000176200001440000000020415055304401023051 0ustar liggesusers%\VignetteIndexEntry{bridgesampling: An R Package for Estimating Normalizing Constants (JSS version)} %\VignetteEngine{R.rsp::asis} bridgesampling/vignettes/bridgesampling_example_stan.Rmd0000644000176200001440000001607515055304401023452 0ustar liggesusers--- title: "Hierarchical Normal Example (Stan)" author: "Quentin F. Gronau" date: "`r Sys.Date()`" show_toc: true output: knitr:::html_vignette: toc: yes vignette: > %\VignetteIndexEntry{Hierarchical Normal Example Stan} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- In this vignette, we explain how one can compute marginal likelihoods, Bayes factors, and posterior model probabilities using a simple hierarchical normal model implemented in `Stan`. This vignette uses the same models and data as the [`Jags` vignette](bridgesampling_example_jags.html). ## Model and Data The model that we will use assumes that each of the $n$ observations $y_i$ (where $i$ indexes the observation, $i = 1,2,...,n$) is normally distributed with corresponding mean $\theta_i$ and a common known variance $\sigma^2$: $y_i \sim \mathcal{N}(\theta_i, \sigma^2)$. Each $\theta_i$ is drawn from a normal group-level distribution with mean $\mu$ and variance $\tau^2$: $\theta_i \sim \mathcal{N}(\mu, \tau^2)$. For the group-level mean $\mu$, we use a normal prior distribution of the form $\mathcal{N}(\mu_0, \tau^2_0)$. For the group-level variance $\tau^2$, we use an inverse-gamma prior of the form $\text{Inv-Gamma}(\alpha, \beta)$. In this example, we are interested in comparing the null model $\mathcal{H}_0$, which posits that the group-level mean $\mu = 0$, to the alternative model $\mathcal{H}_1$, which allows $\mu$ to be different from zero. First, we generate some data from the null model: ```{r} library(bridgesampling) ### generate data ### set.seed(12345) mu <- 0 tau2 <- 0.5 sigma2 <- 1 n <- 20 theta <- rnorm(n, mu, sqrt(tau2)) y <- rnorm(n, theta, sqrt(sigma2)) ``` Next, we specify the prior parameters $\mu_0$, $\tau^2_0$, $\alpha$, and $\beta$: ```{r,eval=FALSE} ### set prior parameters ### mu0 <- 0 tau20 <- 1 alpha <- 1 beta <- 1 ``` ## Specifying the Models Next, we implement the models in `Stan`. Note that to compute the (log) marginal likelihood for a `Stan` model, we need to specify the model in a certain way. Instad of using `"~"` signs for specifying distributions, we need to directly use the (log) density functions. The reason for this is that when using the `"~"` sign, constant terms are dropped which are not needed for sampling from the posterior. However, for computing the marginal likelihood, these constants need to be retained. For instance, instead of writing `y ~ normal(mu, sigma)` we would need to write `target += normal_lpdf(y | mu, sigma)`. The models can then be specified and compiled as follows (note that it is necessary to install `rstan` for this): ```{r, eval=FALSE} library(rstan) # models stancodeH0 <- 'data { int n; // number of observations vector[n] y; // observations real alpha; real beta; real sigma2; } parameters { real tau2; // group-level variance vector[n] theta; // participant effects } model { target += inv_gamma_lpdf(tau2 | alpha, beta); target += normal_lpdf(theta | 0, sqrt(tau2)); target += normal_lpdf(y | theta, sqrt(sigma2)); } ' stancodeH1 <- 'data { int n; // number of observations vector[n] y; // observations real mu0; real tau20; real alpha; real beta; real sigma2; } parameters { real mu; real tau2; // group-level variance vector[n] theta; // participant effects } model { target += normal_lpdf(mu | mu0, sqrt(tau20)); target += inv_gamma_lpdf(tau2 | alpha, beta); target += normal_lpdf(theta | mu, sqrt(tau2)); target += normal_lpdf(y | theta, sqrt(sigma2)); } ' # compile models stanmodelH0 <- stan_model(model_code = stancodeH0, model_name="stanmodel") stanmodelH1 <- stan_model(model_code = stancodeH1, model_name="stanmodel") ``` ## Fitting the Models Now we can fit the null and the alternative model in `Stan`. One usually requires a larger number of posterior samples for estimating the marginal likelihood than for simply estimating the model parameters. This is the reason for using a comparatively large number of samples for these simple models. ```{r, eval=FALSE} # fit models stanfitH0 <- sampling(stanmodelH0, data = list(y = y, n = n, alpha = alpha, beta = beta, sigma2 = sigma2), iter = 50000, warmup = 1000, chains = 3, cores = 1) stanfitH1 <- sampling(stanmodelH1, data = list(y = y, n = n, mu0 = mu0, tau20 = tau20, alpha = alpha, beta = beta, sigma2 = sigma2), iter = 50000, warmup = 1000, chains = 3, cores = 1) ``` ## Computing the (Log) Marginal Likelihoods Computing the (log) marginal likelihoods via the `bridge_sampler` function is now easy: we only need to pass the `stanfit` objects which contain all information necessary. We use `silent = TRUE` to suppress printing the number of iterations to the console: ```{r, echo=FALSE} load(system.file("extdata/", "vignette_example_stan.RData", package = "bridgesampling")) ``` ```{r,eval=FALSE} # compute log marginal likelihood via bridge sampling for H0 H0.bridge <- bridge_sampler(stanfitH0, silent = TRUE) # compute log marginal likelihood via bridge sampling for H1 H1.bridge <- bridge_sampler(stanfitH1, silent = TRUE) ``` We obtain: ```{r} print(H0.bridge) print(H1.bridge) ``` We can use the `error_measures` function to compute an approximate percentage error of the estimates: ```{r,eval=FALSE} # compute percentage errors H0.error <- error_measures(H0.bridge)$percentage H1.error <- error_measures(H1.bridge)$percentage ``` We obtain: ```{r} print(H0.error) print(H1.error) ``` ## Bayesian Model Comparison To compare the null model and the alternative model, we can compute the Bayes factor by using the `bf` function. In our case, we compute $\text{BF}_{01}$, that is, the Bayes factor which quantifies how much more likely the data are under the null versus the alternative model: ```{r} # compute Bayes factor BF01 <- bf(H0.bridge, H1.bridge) print(BF01) ``` In this case, the Bayes factor is close to one, indicating that there is not much evidence for either model. We can also compute posterior model probabilities by using the `post_prob` function: ```{r} # compute posterior model probabilities (assuming equal prior model probabilities) post1 <- post_prob(H0.bridge, H1.bridge) print(post1) ``` When the argument `prior_prob` is not specified, as is the case here, the prior model probabilities of all models under consideration are set equal (i.e., in this case with two models to 0.5). However, if we had prior knowledge about how likely both models are, we could use the `prior_prob` argument to specify different prior model probabilities: ```{r} # compute posterior model probabilities (using user-specified prior model probabilities) post2 <- post_prob(H0.bridge, H1.bridge, prior_prob = c(.6, .4)) print(post2) ``` bridgesampling/data/0000755000176200001440000000000015055304401014147 5ustar liggesusersbridgesampling/data/ier.rda0000644000176200001440000000777415055304401015435 0ustar liggesusers‹uYw8–ÝxÌ BihèÕx‹7iè<YES);Y 7T4$JDF‰×¬¼çA©ì=Ëz²Gö¦Ÿ«ûœó^ž®ß®ï}Ÿû;>ßÏçsÔu9¨|LnÖ±Y4“Fçâ¤qÒ§§#ÆAã¢ñOGº…™ýô×ÙÓOÇA[y34K†ŠóawÓÔ°”"о°%ߘ¶€1'Ÿm³°W=‡nÙ_8ÃGÎKvh¬8*² &lW¬Š1„õI™üËL@…¶E„•DÈ`œ°¥eT“zq=5ÇÍ£úè¿Äç(ÿîzΫžÈ)’Çùäü×t±£{ yŸŠôPOöÀ}Ñ^·`ßTþyŽ Åøô£ê‘>lç˜WrŽùþµ¯ž*Û^ÿ£z†Àû¢³x’)¾…ïþ(<­˜0.™ µ=°EˆçÁ11+ëaÝÃhŸ`´_í̹Ó>˜ÉK>©Ç:ã=.&§^盿æôØ?”n!L.éÒu½ÞXGÌßoz û4Lñ&|ãyÔž¹d_1nâ¬öÛ _Nû‰òíbÌ+©cïËæÒG¶9¿ÍÃýpöæ‘í;Á‡}ÅîŒ ×ãsÌ7âÏaðXÖ…š“û€Ï9ëDBtþÙ@ð²ù‹èÀæwÒ‡ýÞa<ïo<°ññÛ=ýá-eÇ/M5 Vm±=R K5¡’ LÿôµúÔ†0&MòìúNæás¼?îƒ÷Ã}°¾è;òÇ68b~˜tI¾¥Ãí{HæÒ=Ì¥¢ÃLý0ÓûïÛ÷aåÇWu¤kä̾bâÄ—lþ#ý±¿fú0è†|EîÕg)Ùóûá<Œå³é½šôAù¤ãÀõ3õ5EºÜAç 1¿ÄçÈ¿Ø'ì÷ƒAk¼ŵšôA¼’}gê >¤;ñëŒû4}ŽùÇû³Gì;v¾ê# uÄd€çÅæ›K¯ƒWQ&ÏÊOç+ í7ƒeãϾâ¼Gtõ·‹gñ¾!“‰ KÚáÇ£åJÚñ_Á3!nÛSªU Ý.oµÍ=C²0¢H ªæ~˜¿+3M.yuÁŸÁãukÏ 2é;ÎéJ[›+žÕññ퀭?·®É¹´d˜:Êñ+ÀÊåzÿZ;Ï‚#nåo¾OZÂ!§”Ê.¸´–îÓswý±YéÝG+I}Ÿ ¦ü>0åöÃ~ºl}cžL<¬ÖØÐÅ >ñ4µ2[X•>[‘&r¶¾UÝ%/|t؉Ì×ܪÎl“‘–0‡]þ'^·WΆyCòvú^[A_ñ¹¦;L½}m°æ%E:™ŸT–nƒãö{Þž… üóAÙ"ÁÛëaÿßjF“Fð‡m®hí™Ó¾NX^'ZÞQT{Î×χ#ÿ–\ö ŽV$ܺNÛ¯rûz4÷F36º¥€É޲P} Wìü„CPÃג϶DêËIbps+{Ðf ˜úî‚•'k|»Bx*‹Áݤ[u`+hazNŒ}JýôSѪ.€ŸÞ×%Í!«A®ÌmÏÂ¥ÇfØ{,Î=èz<ÉËל»2´Ûs.ú!™{NàãÚþLL¼Ö¯š„y¿ñ8„ÃA©1µþûðƒò¬]Ã`¿cMê˜;z• Gõn›þwOCí@b¬ HºÝîóÖ¶Œæ¨©fÁ†Ô@¯ä¢y°ÆÆù½½fIòr;•A†g@~¡V¬.­ª5αYÄûÚ½KýV½µÜ_C¬lõ Eß·ýÎñ¬ 0(;5ê¥- ÊSÿå]—õ㬵']j¬ï‚^¯?ŸO9§1iÌÂekÒ„™|zÁ§•Îߢbã÷£`ª}ß|¤Xý rùw2¯+wÝ‚aP×È!dåˆó@ᮑ¥,3 Ç<.Øý\æÈ^¿ðާ^Jßψ¿ˆ^± –­ vY1öP5­ž™×6À á»âiê ¨þåcÇÉ,P‘çsçŠÈÓ¸­È âÂëÚÓ]F𽄜:¶?.Åy°2f×Ýà#`ùÕ(åêúyàín%©‚ýœ 9:Uç‘`ƒÃÄ‘Whn¨UÖö¯j܇ü‘†7,*º|ûŒŸX»~ËQQøÙˇF)Ø¿íHÓgŸ7°y_š@…l-(°_h&\CðGO,ŒÛMÝoÿ@±åëÈê ¢ßçqƒDÉØC°cU‘³O,lôrP¹"µéé@xëq0åx’V*ÚþÍ4ˆ€…7{-íÛ˘ ›«5Ú`ÛÆ³EÉOï19ô\-BÃd`ož[Ò£d6xwµ3¿=ì0üv§Ò꼪 ©OñŽÝzEõ2ŒfÚ1ëž(i2Q óÆï$oøEy­ðM)Rß`²/HòYè «h X¾t9ß öW?‡NDʆÜÅ<ιf˜o:×ïXþ¥|×SHº–gLÎ3†S7Éï׃·—.ҸƠð¨8‘ùõ¢‹Ú¢–ŸM/OY íÍEš´…ðð>TßlŒô¼™ýÕŽÕzuž+¬ £Ožv(dï`Ò„Õ“ä–¿‡é.-§B­©bApà~µZ-Ewƒ›0¯ Jr%½$t3Á‰ø 8š‡¤ÌrA¿†ÝníÆtrÞ^¦ý<ÿÍ=ùá¢áôÿûW,ß;ë»Íÿzê´‹ì‡ñã}Ÿ€%ÌC_°oè7H·ßxÀ¯½ÀÙ«5 Ý´¤7‡ÚÀþtåÌtÁ·°Ïa¾ÈÛÚÔœ=&Wƒ¬¢qæ ~/zµ¾!´×ÊnNÐxOüFí¯NtÌz­¯ø>X ²&b飡‘ îÝvþV§ ¾<ã…±ÿñ‰æÁÁD¡ÂVÍ &w{ø·ç 8ñíQTžWòa¬xf„t‘Æü? ÿ’ùØGX´l¿ôìªÌbHt¯<Ï .ö©!zS:5€Ñ•9–CTÈý¨w¢¨½„è„|Lðã{F|µŠ¥×(Ä"üŒûž1à7Äù NÆ×ÊÛ‘¤ëô…“žrÜWÕ®`}à”l¶¡ßQòûïvït¦9í˜l!!¶Ê56–¥ì¼ë{y‚|uÿ„ÍËzÜksa®–üžŸc¯àïÎâcW?¸ú[k+|+á7ƒ •4%øÃ°?pïó8è¶6t\aÕ[+\`pw¤Ìµ¨Úz®*šÖŠHƒAùRÝ‹FpL_ JÅ#ö¥«·»pî€éJ&2ð}oÄOGS Ø&¬ó™æä ¯ú.=/ U» ãùÜ@kZЙéq?è`stvÌæ—sOãý“¹0PéËéæAqÒï…ÞI´7(+tU§õ)ƒ–®íyW‚z»l¡“0õl^p!ûµŸuå<¼¡ö¹¥lî6DøÀ}¿¾“µ {p÷#80¾]^9í¯B B.Èãptxáþ€^ò–DÖ&w§ŠФ¦¢;`ëîþâ=øþPþ}¶ß.0ôoy‡NÅJXŸáa9kA6ìM޽ôVá4¬R”w’*l!¼×Jí‹Þß Zoæ~7 }Û ‹wïÖÝMÎßž¬‘zšf `çižî犠jˆ5<±,4ê /Þ›@øLÜ~9@@›D¤øùþ]óùy ×§¸ðIÍìj.ž¿Òƒ÷¿9”N°çµèÜqK?8¤:¡qø,‰¼•ß²˜IßV7P4ç™3lÛêõw‚ÙÏ©¼ÇL{qê?b^‘.`K¶Ñf½(ø¼›×Ø:^ƒðuFzÂjƒZ.J®LÞ±ª¨È|&§w^7¬Ÿs6·~ë]X~®‹ÃI“ÁédD ¸¾ó XÍÒKBù°ßA×}ñäö|â·VÙòGã&:`<w¿DqªPO5l\®_¼4zL5í{@î[ùû¼òƒtâ?Üû®`®Ë»ç¶>°kÓi<"ŽFÍ^éŒû08zý²S—m$øÑ9¨»l× )`Ê WzlíÜé›5EérøcßÁÁZ‰u‰fV”‹lËsÀz1éÔý`rÄ8’«ËÅ÷žøíIâdñÉ4±²&×ÐÍÉÔ·°CúæÓK³—3iæIüœþ è•ÈcîŒnX6çË'éP_üMxµ‘ð:P¿éå¾Ï¡ø Ž]Êåÿ~ v‹Ú…d;ÆæâÎUê¦(&’šr¥ò;àÍmATnéóeµÏDçf~è™<©–q1¶8[uZéGÀŸþ;ý÷;¹2yÌÃ/ñZk$òßýë°~ÿ£c®Òϸ?ÉŸì¤E*öÜbò'®:¶É¦ Ìvõm%8úc¥½2<™û+/NGrÞ7ªtꂪ|­9!Œ°<×È +]'xQ; ëk,g«<‚ƒÏßse|Û³º³-¢ŽÛ¸?h_¶þë‘#–T?¯BpdH©¶Ï ÷ŸÉÏt…ßtÙ¾Iò4ÞÆ4‚Ë›«]I_¼/:§êü¬?¬Åç¹\¬Ù³çø¦³ÛïC 5ݤH„“Á®ÖÕE“¼ñÞºÌ)£‹h¾îÏà쎩’±÷gÒ‚v2ä§þ"}Ð<Ä—;Á‰ð3¹ý¹x]}çÿ°ÏÅ{`](:Ñž.Ø?d¯_zj>ùmŸ™úbÒÅ¥Ã*T×Ãa­‰ÞêÊ—0úDr]7‡}º[eïíÉ?ÆÁ묎ƒ¡‰EÉùÞH;6 Ä(øŽÂ£ŽpgÌÜZwì—Ò 9¼F' ö Ù›½ûÕ£~^(ÿ Òá% Óo+8|žøû鄸#¼`\è~á}?÷1/7æïñ ~Ñï@‚›š—BöAùìê2µ°žB¿þF£Ý™þáaKá›N±1¶6;7ý<åMMÿˆüÊ¥røÏšÚZYÛ£á“Æ6ƦÆ63é.f6è‘ÛÜÞØæ$zá²²°7ÆÏÖÆögÐŒ©ÿ–Nq÷­bridgesampling/data/turtles.rda0000644000176200001440000000171515055304401016345 0ustar liggesusers‹Ř+pQ†·Iy4@›v7ûLvÓÁ€©ƒa¸‚™b[…¨ÉDy•2@14¶ht ,ht5 ”ÝÍ÷‡’¡Ý݆ù{³wÏã?ÿ9w3ÍòÅËg—–eÕ¬údͪÕÓéjYÖ¤5•®G6î­o¬]½kYu;½ÍžO§øbùºðùàû¢ýªñG}^–gÑõ·~UõªZß~ñËÚU½¯ªë¿ê縮²qÇ•ÿ_×3œgÔç£ÚWïqÍoY>ÿ»ßeÏUÕ8ûÙ—½/ºŠúRµ£¾_Šê•Çß~¯•íÏöóïi3½õ¡qþöKÓ|ž]/Œ·³øÊÙÜ1v¼½ôñIbæž®œúú橱ße×{ã¾É6Þ{33|dšOrCãdV+§}þvÑÌån+ƾ–_¦EÜÙ,ÝÖã³NåæwŒOž€µÉê¤ÁãíeãßÛÎ7Œ ?»Ù<ü%õ‹3Af~ê›±ñ›#¿Ïóy]­ÔçÏîI-î[èå W uFäó³l‹¯~º¸èæQ— o‡ü!º¸góë×J^­-ì[Ô)þ>yü,üÒ'ãRxºÔãÃ_v¶ê!¿Ã7@'OºâJ/ü¥got ÔOæÆW\î<©ÓGWÞæMüÑדnò“nª‡¹ ñ È¢—#ÞÌ÷,<;ê§æ‡¸Mòu‡x„ùÒ0.:I7é"Þ·ôGO—ça.ŸcênõMóâ1Wʉ/ñ]êÑœuá1˜gê·ñÓ|¶™Ïü:ªŽHs¬9ÁÞ‡w¨:äG|Íu(]èCÿ^šWöå?è y¤{LÜA<ú©÷;ô‰á'ÔçHþè<˜3ͳÞWä ÐQ~‘æUs…Ÿ§¾Á;bÛä—Nz?ÅĵѹÛëó‹±W½Ý×ý¼žüT7~!ù;ôIü:ø'ÄëP›zeWºw¨;¡/óÏúõté̼hîÚØwàIWñ§îù™¾®:OÒ/·òÅè«_:'œAÄèLböÎO[ûÔ™`ß=ǼÀ;AOÍq÷$ïñ“Þè1‰æTçûþÝïðè×JpÂêÿ?=±µÔÿ€ÉŠ8T‡Kâ8:„©ŠhTÀ±' 0½3cBsf 0Wö>pFD«$\àU„_€ EXQÚ SÙ·Jr0~ûíÐÍÞìG´¼Áu6'êÃ>^]»·±z}ÈyjýÖýÈ&°ö8ý³»»{|8ËêZ﮲h³q¥·Ñ[¸¶žú§w?2üaaor÷bridgesampling/NAMESPACE0000644000176200001440000000253315060116372014464 0ustar liggesusers# Generated by roxygen2: do not edit by hand S3method(bayes_factor,default) S3method(bf,bridge) S3method(bf,bridge_list) S3method(bf,default) S3method(bridge_sampler,CmdStanMCMC) S3method(bridge_sampler,MCMC_refClass) S3method(bridge_sampler,matrix) S3method(bridge_sampler,mcmc) S3method(bridge_sampler,mcmc.list) S3method(bridge_sampler,rjags) S3method(bridge_sampler,runjags) S3method(bridge_sampler,stanfit) S3method(bridge_sampler,stanreg) S3method(error_measures,bridge) S3method(error_measures,bridge_list) S3method(logml,bridge) S3method(logml,bridge_list) S3method(post_prob,bridge) S3method(post_prob,bridge_list) S3method(post_prob,default) S3method(print,bf_bridge) S3method(print,bf_bridge_list) S3method(print,bf_default) S3method(print,bridge) S3method(print,bridge_list) S3method(print,summary.bridge) S3method(print,summary.bridge_list) S3method(summary,bridge) S3method(summary,bridge_list) export(bayes_factor) export(bf) export(bridge_sampler) export(error_measures) export(logml) export(post_prob) import(Brobdingnag) importFrom(Matrix,nearPD) importFrom(coda,spectrum0.ar) importFrom(methods,is) importFrom(mvtnorm,dmvnorm) importFrom(mvtnorm,rmvnorm) importFrom(stats,cov) importFrom(stats,dnorm) importFrom(stats,median) importFrom(stats,pnorm) importFrom(stats,qnorm) importFrom(stats,var) importFrom(stringr,str_sub) importFrom(utils,read.csv) bridgesampling/NEWS.md0000644000176200001440000000242315107051752014343 0ustar liggesusers# bridgesampling 1.2-1 (2025-11-18) * Added CmdStanR method and corresponding tests (thanks to @GiorgioMB and @avehtari #44). * Added Monte Carlo Standard Error (MCSE) to bridgesampling, see: https://arxiv.org/abs/2508.14487 (thanks to @GiorgioMB and @avehtari #43). * Fixed bug in simplex with small dimensionality (thanks to @FBartos #31). * Added a `NEWS.md` file to track changes to the package. # bridgesampling 1.1-5 (2023-06-01) * Deactivated stanreg tests to avoid CRAN check issues. # bridgesampling 1.1-0 (2021-03-01) * Fixed subscript out of bounds error, see: https://github.com/quentingronau/bridgesampling/issues/26 * Deactivated stan tests on Windows to avoid CRAN check issues. # bridgesampling 1.0-0 (2020-02-01) * Included citation file and references to JSS article # bridgesampling 0.8-0 (2019-12-01) * Disabled use of mvnfast and revetred back to mvtnorn. see also: https://github.com/quentingronau/bridgesampling/issues/20 * Version 0.7-x introduced a bug that prevented a rerunning of the iterative scheme based on harmonic mean in case maxit was reached. This bug should now be removed. See: https://github.com/quentingronau/bridgesampling/issues/18 * For older news see NEWS.old file on GitHub: https://github.com/quentingronau/bridgesampling/blob/master/NEWS.old bridgesampling/inst/0000755000176200001440000000000015107052015014212 5ustar liggesusersbridgesampling/inst/CITATION0000644000176200001440000000156215055304401015354 0ustar liggesusersbibentry(bibtype = "Article", title = "{bridgesampling}: An {R} Package for Estimating Normalizing Constants", author = c(person(given = c("Quentin", "F."), family = "Gronau", email = "Quentin.F.Gronau@gmail.com"), person(given = "Henrik", family = "Singmann", email = "Henrik.Singmann@warwick.ac.uk"), person(given = "Eric-Jan", family = "Wagenmakers", email = "EJ.Wagenmakers@gmail.com")), journal = "Journal of Statistical Software", year = "2020", volume = "92", number = "10", pages = "1--29", doi = "10.18637/jss.v092.i10", header = "To cite bridgesampling in publications use:" ) bridgesampling/inst/doc/0000755000176200001440000000000015107052015014757 5ustar liggesusersbridgesampling/inst/doc/bridgesampling_tutorial.pdf.asis0000644000176200001440000000012215055304401023316 0ustar liggesusers%\VignetteIndexEntry{A Tutorial on Bridge Sampling} %\VignetteEngine{R.rsp::asis} bridgesampling/inst/doc/bridgesampling_paper.pdf0000644000176200001440000135054315107052016021644 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 5316 /Filter /FlateDecode /N 89 /First 751 >> stream xœÕ\Yw¹’~Ÿ_¡·ážLíKŸ;}ÆlnÀ€Û6 Í=<å´P‹»* ¦ýýBRÖ^v¹ºèËS(W)Š=B)gŠ á™fFf˜ó‚Y&¸ÖÌ1¡8gž k Lep‡IÍñ„`ÒÍ„dJŽG™ Ïj¦5†içÑ·e†É„cF\÷Ì8‰ëY¡ “œYã%“6HǤdŽ{Íðˆ“-àÐ.0 Ðþ“–yqð¨Wçžy£L`ÞÇöÀbÎS’À YPDiÃT‚ʼn²,¸€ëŽ… qSà‚ãL˜K+™æ„ïFÜ1Óáž ¦1Ç”Ø0#´˜·&i¼«Fa€)t.D +èYJLŒÐ& h W8  =+ƒn1Ìx „æ@œAÏZÑ-ô¬ `0èY;thí36èÙôli:´èÙàÃD„±Î1‹žÇ=[Ž€a% ·èÙjZ GkÔXZ|×hÁd… ‡žæ-®áX'ôì,]AÏÎ;ËzÆ$<ñð8ÂkZ\ôì -X[g5óDë f²XsÉˆŽ‚ÆÜA"XZ{ô<ˆÏ£ç@uX É9ÝqpšŽÕp°'¹–þ¿þùOV¾¬šÎi§é€,@üG¬|}Y öºM=°âµ§uÃ>àÖUÓ«Õ¤“®vΫ—ÃÓŠ•oÆÕän¼< ÅgN¾]âþ# Ñž³ŸŽ£î]5û÷ëU5hê{Z°ýÑpйºÏ~©£ú3;®çýÎ`pŸ=ÕÝÏ;öÝúÏÕhüô8ª:åãNS±{Â$ ˆÎãǹ}Ïùã_ûuÐ9©Þ±¯usÁ.ÓhT±ËN÷3zÅc/ªo_‡£Ó1»÷qTŸžWlÜé_b>ç÷Ù`8êwzõŸ8aÝá`ÜtÍ}ÖǼ{l\õªˆ¬ûìaçf}Öéb´ûvtùàÙ³gèº ÈÃÑðôª[Êýö17ãlÀP7…À3ÇW?a,vÇ'uÓ«ZP[Hb{`ü0͉aÒOÆMÝšù«™Y<ʳó‚<^ ’å‹HhW^¦E”S±…8Š­kÛDJçç\j••¹M÷µHÄ¥!Žb«E¾Ÿž×6ß7é= ZMçé}#xnÓóF¥û‚§û ©5©µ •Ncå.ÓÙ‡–0­¶d9 š½¹›[—[ŸÛ<~†KäùAÖå6Õá…ÄË­mGÇ4 ý13àÄÓºópxá©WLAÒ\‹Øø@ŽðBËVGÕxx5êvüÉu³Ü‘ á2Ïb€¨Ê§Ž†ÝãªAßåá㧘|uM,ýóϳxXFƒI°É¼.2¯i¢Ôf21ãÆå6Ó‹Ix’–çV¬˜¿Üåüe&½4iÕóØWñõòà÷§‡/þÏ£—±Òå“AwxJüS¾­{ƒq=½ð´›Gi±8öã*q0¸0¯ÁA'?"@^ÄÎM™Æ-iØ·õis¹svóŸ¤rd<&M༹ÌÌ“X  ZiMooÓ3 [è@5—àÎųt䡛躗úÕ_A‡©®‚'ÂFG&ä5îÒB:¼½pùKUŸ_4ŒIè¡eºW>,•OËýòeyT—oÊNù±ì–§eUž•çe]~*{e¿”Ãò²•ã²)›¯ÃòªüR~-¿ABúi”†Iù´×9“ñü0QÙJ¼„‰Ð|H·ŸÖ½ SÓjJH¯:ýj‘žA£ÕݽÁ9$1N_Öã1H!.]ÄIyÜTýß`·¸ÙÅ!‹ò]žº®–HïèhÿäÑ1 öReJ{Þ¶:¹¥8™Å®³\š%9¹!Éån!¹öÏx±òº‚£D"I¯úå'…œ{ÓÃt¦k´d`úÂütœl2hôˆÏ£Z²¥8 3ºìÉ:·>¶rÞ’uìS×¹r%Äæ=HK[2Ù£=)ãy‚Í+ñ©|Äv"L·w‚ŠpS‘ n$ùt:!ù½HôË'‘ð)Ÿ•ÏË0À«òuyXþá¤|›Y¡;ì ™!ÎÎêò¬þ‚CÈD°ÇE 碀O>Oød8¨À+0|êáiùÇÕ°©N?özÕY39T‘›Æõ5qÔŨªføêºüVþ¹†·ìkñtz0¬â,½ÈY ľ)k¡£[YË.³ÖËý‡¿ÓhGsRÝ·šsÂY~™±äc¹ «•ÒÆg¹‰ÉÐ$Mã[¤ýô¾ÃQ{3WÐ#µQ*oø“ùÝÔK«-8yžj-j=y¦8+Ò=UN,CoùëLïйO­SI›Ä>LêSOÒžØè6» í[•2QCh[5Dç­""µ²J™¨ˆDRF@Ϭ2¢–~±ïÙñVñ«™çWÌñ~}1ñ‡õ„kß”¿sß•¿—ïÁ¿îUS•0ÛáÊt§àç#XíUÙ1'n£×£îUÿ¬W]gžïûý8ÿ´®FÕ¸—§C¼,ˆ€–Õà´3¾(«?®:½(²„ÈB¢·BN|šHŠœ¸©¸ £+BLY†\ö®Æå7‰’x6#Uª~¦0®¾`T’2ãA:‘5uïtIâ”V£áœØ‰6Ö ±ó@ótWP¬ƒVoAð´þìDðÌ‹‚MåÜ‚[åŽZ–;Ož½9y˜¤Üœàñ‹‚G. ½$x65"}Э~U|éè®ÓÞ²÷¤!É 4ÐÉ›üú‹Æh ‹N´+‰Ž8EPàoÅøÕìkù Ž_%*¡-¬xÛ©%‰o&ŸàMm€¯ŸÀj)D¥âúiíâ½@úŸ~Ë:ÝÌ›±~^F;£ÉûÕy§<®ÏÁÁ'åÉEÕt¢FŸ•ÉÌMœ|6¯×[n]Å©‰)ŸµÜµ¨Ã#?-rÓ­J^:Ír—Z;tÂK ä½)3™ ˜i…}üö`ï÷ýß0Úññƾ™5Ë|eùŠ„üF|eí¬«emRÚÉZ´ÚdiÝŸö7(}1; ©Ý% Œji½–Úõ‘ê€d𹕗í %×K«/#ýS‡ k?cHk¿°®}0·.=æ»´ôï÷ßî<Ã`'ÏæåhX”£j…·ìoê¹è [¦aižÄ+ãbË£¸™ýñ™ké(=7ýsp!Ç|P‰u>ÙYBt‚ú†üø71Òlz°Ð³$2CtKb:½ …œV+ˆI¥<þÚã8#; QhÇS–‚¶É (N3Wp¥) NOZˆ QRº·[#jÞ|Z”óQŠ ¬p~66i– –u‚tÓÄñyÛ‹˜lŠå¯°Mü"O-ù,O= Ÿ½yne+-—Ùê·¯ßï½Çx/çÙ*ðE¶b©kÉ—ØjSûÄ*"àèSëֶГ•å’QÆF縄q™­ÂMõ¦¿©»3±ÿ[ëCÌÛ6ÆL,'>ËLÆÏ>gý¼Ä7âAF‹H&é `ÏàG‘rІÓ &õÄî ÃÉâ ”±¥OVÖ%4gn÷O¢)2a­G`¥W`žèqô./(nð‘ Ž‰Qõp–xfêô¯ˆc®§4u§wZÃhm~ø4äÙ0Só:¾W\× ñ·)GÌ+˜J¦»Þ‹UüÐ ó ?,ÐçÆñ7ynŽN«QAGÅ‘Nð6ÅsJ¡|÷û{ÐNá$¥¥)‡2¸êõèÙ_"Å©»é WŠá)ŠV\ÑU¶ðžfxå |nAŽ¡ø¥¸¼Mú×&‘a¦æ‚ê9ò—‚ê)ƒàsOÛer‚ çrz grr çrj ‡ïsÜ>燬Y1äMâ ­ý+”9ã‘iJ9Í¥r–+' Ú\YjÒ”T\¥^Tê%g³t›4KMN•¥÷²õ-BNL…œ˜ 9áÂyns‡çNN˜Iž8<'pr¢KæD—̉.™]2”eNtÉ“9Ñ%E›(\µR»MðˆÇgn‹Õ›ê¼/Þ½>ËñÁÆ~¥*õß²a6Mòd_•Oq"cúd³„Iv(’º—×f)]²„Ûúâ.áÖ[;]¸`×Hl˜Âå³Ð–Š»󔶠˜öwƒ ÀŠfdج/™ lFÜ›u°9Y$‡!†•*(yòCÀ¦-¬5Ø‘*D¦é¬XϱÜQЬ¦xnúZBȳ;[µ½Ü…Š[2­ ÑÎ6ð¼üµ<Ž9ÕntV³™ÓÏmÕà4]Ú”Wóþ¯½Éÿ¥ T°¿”5K Ñ:ØÔýµ~«ê‚Ó÷{¯cºàdcªSËT×Fgù›&DLT1Û¦ãöhÛߪ^oîß_x’Ï\å7ôû=~³ã-‡s°D{_Z2‘óÁâR.mšI£Z[8H´NÙwë:ÙtJtF7–-¤×ruQ[V´ºâðŽ•D4Ë5E 9¸…R¡˜‰»@Œ»ÃQuSRŽö5dŽ6 C鮡"N`z£—ÒÜ <¶ÈÑë™ešçoº’ù[Þžõ^•ž{¸ÿüíóW1œ¶÷¾c9ºYªaaS«K~§~¦\Á¯IÑy xF9ã×>¤‘ŒJ 0ͧÇ*ê(høà:öÓBehÚ¤þÝÙU5çj^…ÌñÏCðM[mÞy±i•yT ¹¯óªB®Q@Tñvð>³@YKÉÞ¥ÕÝ8Xº¶x÷òíɯ‡±`csbZQ?c–êÒîT?3[C³ª‚Æ©tZCcc™nÐó™Úô7­£™f’¥šÖ‡¥ZšiEÍ6Õ4c=ÍëL(dgTzGŸ«­$·×YtSPDm¹´Æ,¥=Wjãº*~‡âš½èl³òÍѳ‰u›vÆK÷.šæò§²<½.N‡u1—‚´í-|%ËaÃsa بR{÷è”­7ÖÅ ïÀ´“Õ[èX§› Öâ::§ÿñiÀ— 0™­Ö‡k,‡CFâN”ûž³ðV¹òÓx\|áN5w‡^q~↾Ø(P8  îôÁþGG{¯Š£—£!mlŒóÈ2ÿwô©ßíw·˜€ä…†U«¹,ŽKá@®\j· ¥[JÉ¡çÜMEjƒv—Œº[¸3}PÈ™¶> 4S B‰‚ŒØÝ‚='#…-?Ÿú—$ ]Á!¸Ù†\T?„EоÅ;¤N¡Íÿƒ ä ?o@´éÛÔߦ…<[1è·ë‹³þö LA‘•ÌŸ‚»B¹ á=*~§!ÅgqìÚÃøå‹|X®)(ccÚcZìö˜¾Sã6Ú—g2½pGøõë×âÓ¸é4ãáY’À_”*k.ËmLMbOs¯‰6¥ÑÂ.µßŽoŽ!`ÈèÜ6ÖC(ìZß ôƃá׳N¯w÷+ Aß!P±¼:ı¢\Á®Q¿Þnòv“ÞF›˜ÂFO/Sú5>|ÊéŽ:ƒb4·_«í"ŒËø!Чñ;e=8­®‹‹¦¿Íšð´+¢Í;*ò¦2 LäÂï–¬ªËQ=hÆÅxØ E§[\}&E)eØ‚!¤sд…dDÅ­3! uv.¥w zæeãPùjhW±ÎÿV®ëö4£…‹4B!A¯%hHï~’¡óàoA*,«©2ÛEÒhIE™õåqë"(IBPD%,WÚý¾SYÓï> /Ål iK ¾½•0®%yÃÀ-Ä#íýý@•NAÄüŸ ¤‡t—ÉjÚ¥À˜‡t œ‚^­õ—‚ö‘ý©è+d…ˆI³¿I@Éí$D¦ÞlRÍmuúÁÌQ#k Z··MoˆÏ±Et‰„T Yà}’ÅJÛŒ¶…ܹû·ÂDäåV·jM® ¯¨7±+!ÛïÔ½føSþ¨Xñ´Hßû¿sºA.Ô6,ÄRG’BÈÀAŠnÈnG‚vµD·–x% [ÑñLlÿ†(þãúì¬U*¬ùWüfÌÙYÀs{öŒ¹-ý4Å4§I_Û è}!î;;ïƯ—` {û âÇôy„ 3;ô–!¥ûôk ŒÒôùS)‰Ÿlò݄͌¶Ñî'Ú=7vÓ×wÒFï°0ïÝtJ+w…±¸),RDÜF;dÓ~.*,ûW¬àw]Ó^—´í‹6¸ÐV0ÚÉ“s·,¥‰iOJÔÒÞÙd«Áþ7ÑÇ|Kendstream endobj 91 0 obj << /Subtype /XML /Type /Metadata /Length 1850 >> stream GPL Ghostscript 10.05.1 bridge sampling, normalizing constant, model selection, Bayes factor, Warp-III 2025-11-18T11:10:06Z 2025-11-18T11:10:06Z 2025-11-18T11:10:06Z LaTeX with hyperref package bridgesampling: An R Package for Estimating Normalizing ConstantsQuentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers endstream endobj 92 0 obj << /Type /ObjStm /Length 2775 /Filter /FlateDecode /N 88 /First 794 >> stream xœÍ[[oÛF~ß_1om:žË™[QH6M7@ÒN¶»PÅѦBlÉä6ù÷û}ÔeщRÓòCLRäÌùæÜÏ™Iñʨ"*U‚²Á«•·I•¤$DU2^eUŠŠ¸XcTv‚«ÅOW§¬57^YçñdðV²Á §ËE5¯cæà¤lŽÎÊÃáE9|Ä9”ó¯¬UN^Y§\t|å•K“áµ+B‚AyDÖª |•”ËQ7ÔmQ>bzëŒò)âg•/øcSbR&^%΃(V$žP]À¢…G%‰Ø€ŠÏQEŽY .€–·*‡õ‡@ZÞ«@ÇböföAEãùMTÑ6ÓŠ>€&¡&P¶bTŒüF,ØÎWXv2‘¿x…‰1 |Lž«Ü¸ ‰*5|–¤Ræ*$«l(")*[®"P~€`A8GðƧrJ±}.”`U ¹Î'|=JS”9 *‘,'„Þä„Wü´0,R°6ãe¤>xJ›¨…ÊFÎf¢LTÀ&ÊÒsyüçc¥ ¶âŽâÌ`—¥ˆ\&ª®+9þãûïÕÉ?WóµŠêäél¹ZÓNŒ:U'Ï'x ‚7O¿~¼œª“_®Öç³ùt¥~ø¡údŠoþ«ê7ÿþí?€›µ7 1¿:?W¯ÕÉÏÓk^óÑËÉr rÅ×ygëó©úúÙ|½\¼½:[ÏóoÚÙ7À¾õ>lSJÞkã¶(ÕÄ­À ›‡ ˆ²ÄËåôÏnÝÑãåìí»©ZM..±äwß©õS59·XÎÖ\|³Ã—|ŸÉêÂ.RŸ|èQüå’«WÏ6¤.®Î׳?'ËÙd=UóÅòbr®.—‹ËÅ 7og«õröæªÇ®Šô Ä”t¾)޼ʆq/.ûk²¼3€@²ž.g‹å­h|ì‹Ì{«Ë6š½RÀ«õìbÒ€˜.—‹åM}æCM´w²³bºõaá÷Eñë⣚~ è§ß©Ç“ÓÕl2Wëo× ¸«žn GŸó!g|ØUOÆ•m s[ ÊÈ2 ²ô@>R¿ÿþæ|rö^½Y|øê+õj Œ³9„ò¿ÉÙt—IvQ4ÂÀ &¹ýŽi•fC£rFÙ-ÞüôüÅ‹›$ýI§mö7d-®²cÏ>’n‹$V¹†öMæ“ó«Ùª£þh>_¬W Ïpƙ͚«7õjëÕÕ«¯W©×P¯±^7úøš2瘢Aùbúv6y¼øzü%” A6‹Õˆ.×k¬b=®WË3xP"ýñÃú',ÎøØ|ðtA†øÖO-g¯¦äåÉË'OÁÊè5Ú:ä—ø¨>×™¥ô¸.E›¼ëŠ:ǾOÑv¥þd¶:»Z­ö˜wì{½ãÎé¦q÷'ï;ÚGgï狿Χð¶dmGâñbùvº¬|5 ÷›»yhÝÝ–Z¯“cütNfK·ÿ¥Nž‘ùg™¯™²à#æ H®´C¨>ê O‚Ï_]½Y7ì}>›¿oYݨÕ`‹^#+ÂæŠŽP»œØ r¾Nl‚_-×ààBÇŽÎßç³hŸíçð‰%œÒ ±\@2™6:w\l’¢F²Úa † Â(àöHU‚í{€8T,&Ë—¨YuØ×Å'e]ìè*÷ pÅkgsÎA›üû~ÀEI:HR¹€D—Évpš‘8+  ýøÆz;8q0VT98ð¹©FF·Ç $fh‘«dLS$ÃÝÁhCÐM1䬖#cs!"<äklÙhV€‡`;e 72ë~2ª¦µ§˜µ´·Âb¼}€Úöžõt½G…lC{Ï⮽§µ¶÷ì;t08·#X~çvR2›Û1¨}]ê>K4ýmÈ_®šÊæü`IF'£Iê¦àœ.lÈ`´˜2¶ÙÜŽ Â6PLë ¬ÉMÐ1ªÕ¤ãb³®2ïÀyÑ9ćNPt…kÆuB}ØZ¡ZÑlµ2uH[[Ž.Óâ®±y„6€aËåŒð„2…óq¥`øq±!)ÐîªÃ&¨-ÁÀC°6ýÎÖ3²:”Ò=0[Ë­/ÞrÝ[.úÚýŽm[Ì‚„Íiäß¡³­d©×áAØVDܤT\\c\ÆÏ>¥ÀÖ”®Á!´„ö;gÛ‡}UwLlšãF|Tažƒ³ÊP$Ö±S/¼ÆcÛª‚ˆ ÆCç XçrÒÜÉ Ød öbìÀy¦)ݸϓ+jË`óºFl‡®5×{C&F3T‹ZW´¡7@ƒìØ¢ˆ/É5Ú˜ã±í5Aó¹Ïbáè\ƒ±ÙÓHðîÈI„3…ê56X©p_ælûꂸ•³×O™åÇž(´U@|NͰU'ô D8×~Ä=¡¶Qw Œ¶öÄotU¥vO¥vO¥vO¥vO¥vO¥vOk„åFÝÍ.j…þwº¨›–©|IËôËkH™®!ÙGË4BñÊ{dÁÁ©Pyf;v{;8¶á¹Y܃F‹-÷Î[8o3ØS‰È £¸b¬ËàÚ&{ß èßî`÷ÅêØCIðèÈ'³ óáÒô?¹k~Tl sÒAC‰ÌpdûDŒ€¶l¨²0‘A¤ì>°¬(<‘Þm½08*ãt[pH <×àÞ©Æ–Äã-´‰;¶ù3…zK3TÕìm6݈¡Fº­hë^Ÿ­Í,ž«Ø\k5 „º'êž\ÝG³5غ_lëž®­{ªLß7×:_¬óÅ:_¬ó¥:_ªóÕ#¶nÐÛº;nkß‹éÅæºoÏýý贵Ǘz{|iÄ€u°¦Õ*.ÁT3Fw&¼±„ÑÛŸ‡ÇJ¤9DÓì×%˽ãfñÁØØ¾ 0Í܈/roànݯ³bt‚9·àèãRÇÎ!×癳qŒ£ˆUömž 2"·ÜéDŽÂmXE<È'E´÷ ü Êp§UÒ€+QÓ-¶à‚eÆwx<­Æ Ï?±Ø1ºpËØ‚áÈØPymzÓ+:ŸïÛn]î¶± äSä¶“Y7Ô50lh%â5Ï5Rº Ê!!ê8¾±ò8vslefG`À9<°(ÐEFïÜÎSœ^:p<ÐÁó˜÷NÒÛ2ØäƒQF~¡{^¹¯K<­ iÞÑø¶ˆ‚ÂuÐ ØåíÐâ‘‚/&‰”ú%ÜéÚ@cQÈÎèC€æciú=-´‚RNäžê˜JÄV ª¾N¢"‚…ø‡MPPnVVl(Pyù°ÝhŠs ®kŠ"­ˆy¨%Â:,”Zp9mš#0n_ÔʰÃ8˜brKÐETö¨7ØÍ…ÿ_ ò°ÝqÁ9ƒì¥VβÜÞD)G¦ƒ)fhzF-8ï¡ > stream xœÍ\YsÇ~ϯ˜Ç¤RÞ¹¯”“*’e:–,“’%Û•\°@€Æ!“ùõùzö^$¨ðP¡–{ÌìÌ·==}Í4ePL04Ó'ÃŒ8[¥Ã‡°8”—¸L:K¨…¤?Li—£d*EÅ´PhUEªh˜vÔX´ÌCEŽe.<ºÔôV`¦¨™ F1%3º±Òj\(fµˆ¸ÐÌçpa˜uŠŠ,³ÞS‘c6j*ò̉Hí攡v"sèž))˜³À¥dÎK Å\ðT¤™À£¤až>WI˼6Tä˜7„/x›Þ Ì;KÉÈ‚ „J°`5`(ÉBthG)ÐPFІE"³PP•cÑ{zݳˆJ¸…Tú EôÀs)4(§ˆ^ÂZz OU4~xh䀤4(-¥§7@X©5•b(¥ TŠ>¤3TŠ>d Êô!nƒ>T޾%á3 úÀô z€!=C*Ð’ÔDReЇ6ø*"»ÔNÐúÐ¾ß ºq‹Ž pb#<•¢C߯,ú0šZ¶èÃX¢EÆÑ [š€:Ê¢+0¦Šx×Jâ .8†ß"­¥ïpèÃzª*á ”U}Ø&낳*Þ—N{ª‡>œ1T/ñ½¥Rôá5jHBøË·ß2~²ÇFƒÉ"güÝÍþ¾¼^¾:Y–9û׿R…ýÁ"?œM—Œ¿xõêí‡Ã¿¼~ù`øËépv6žž'‚3~8ž/–ƒ9n9½ó"_ çã«ålžæhªôà¬#ÁFüduºLýRï²Qô÷a|¶¼X°ß0ÑBq€çè½ñGqeA:ú5žòG¾þPy ÛPÐü ¸ˆŽ»Ú7¶{ü§©½Å0Ý4æ?\}—Ï/ª[ü$_²¿òÓù`˜_,ÇWg³?§“|´ì>™Ó;Í£ÕU·Êꪩð)_Ráþø¼}{Úܦªû½{*O—ùù|09/®&ƒ~5˜çÓª­úæ´º©ÛiîRÙ|v¶.«F«ËËÁr Îɯ—ü3þäÓ³øs’ÿ ¼›ÄùF‘`㇓Áù‚™‚Óö÷g×à²o ߊbIRèöŸ¢Âáx’Cp;]²9½\æk3âh9˜Œ‡{Ô%Í€×ãõŸØ˜Yh~²Ì/NZ«Åè­I²6å~Ü;þõý:Øÿ:3ÎõgœÚ0ã\oÆ©ç[„Tës•'ü W·5W½»È—ƒ6™¥©ˆ écD‡Ð"j¥GcÓ§q—»’²~GÿÃÁÛwïÑþë£ýžXó}"ËMTkrMîHg¹_Íjð2¿¸#͈{]ZY)מ…¤Pù¶Û ¡ër æJ›£È†jqÔ?æ§`*NLj_®ø’xŒ_ùMg>ÿÆé,вdê©Çf•ƪ٬Ïÿ7£ñå‡̦5®{ýòðã›ïÑÝÉ/=¦‹}¦Û K£èóœÜun{è!ÒEt¾}̺5üN﬿kÌíÖ•v÷³¶Í€ÆÔ×’ìé îÍ×¢8è§:¸ƒÖë¼+±-ÝÒmÍ‹ûü;þš¿áƒ+èœëüÕ`ÂOóB-6 ²Pxp‰&¡äFãéxyÃ/ÇÓÕ <þœ@Ù¡ÞìŒzÍçùi±«ÙœôÎÆC:ç£I~½X.ò%_Œ/Ç“Á¼Íôщíâõ؇©Lh—>¥Çû•î¨y¿ÇŒ»²>äãŽ2öà§£_Óäê¨1/úÌ{wÛÕ·û]-ÇØ¶¸Œ{ËPµZµ-~‹Ë]d¥•Ä·Ô¾†60K ›]ã‹£&7&†ÕÅô0p]5Œ 'í:GËG;ß‘®ïøps ‚Öÿâ~ɧüŠl¬å˜L³Ñˆ/ø²”º+ÈÝŽÔæ6# ¥ÌË5Þ«TjÍ{]ÖØYêº;¥.üÀ5><ùéýÉÉ>:;îZS¡Ï†f“Ð]w`Ü®lïœdœ£ðÁ.G)¶Zoz[)hõ&º•ÁÊSë±p;ª³ÆèUÏ+&§3¹Éô¬*CmXp®:}Uñ$µéºý¬1¥]•¯»böø)òáx>\]’ äg<çy!X“ÜñÑøsÎG³Õ¼{î-8w:žæ|Ægø{Õø-—_M †ç`êEþ9ŸB¬^'öžç9_Ž'gøûç Œ~Ãÿ›Ïgf·b»‰a)pâÓ—õX½bªšÕ;Ü·+§«ðEöÅÁÛ7û?Ò´:v-NGN÷¦‹qóà–ï{vgÁ ³‹Ž®”;wpMq[sMÁ SŒ@l°‰ Zc_Œ<Æü–ñ†vuaÓ˜Û 6yìygvóp—^ÍÏòyÂB?@8H7²¸Á Kr. (ùS1ó¤k•‘™7@>]M&Tõ;`bü8Ò *ÆÌŠé,*:£h•ò¯SõzäO?U÷¦ÓÙò~ДZǦ…Ê„1[°i²`m b'sÚ~ØŒtYŠVØŒÈÎmÃJë2£ÕhÁdAÃfÚSœ5÷@*½|Vh0N3çlƒMÛÌøGÁ¶qH18ð·±›9ƸbˆÃ×ÎÈ9š§8£2ŠŽ>8½˜JyÇi—Ò댬TebæÔÃNÔ{c“Þ€åB.°\|pFU*›E±MŠHŒ¹¦u€¨3A+$ÖgÑ¥"H¾çŦœÈÈ «±Ì‚VDžñõÖÙ dšm°ÁÊ­||Øtp™ð¾Æf -Í=<¶ “Á ÌE#¶ñ› >¼¦u.3Zå“:dR˜ç‡YLËw%¸h2O lONI›Y}«$m N;› 8‡_8í`tÐBj.B•Äøàtܤ¹ µÔ¶aÕe¢§õ^Xo˜«Qd.%%,…gÆTG¬±%•/dÇ´. !Q?‚—P 9N+Ùå5­QÛêl]ÕI; ªkŸŠÊ›bsCq“¶1T¯Ð¬Õ;´¶«N<-6—×`«Æ‚JZ8Ów,’Œ+ÞV%çÑšq¶åÙ•g_žCy. ÐZq.ÛѪ<—íé²=]¶§ËötÙž.Û+Öõ‹sÙž)Û Õ¹l·\]V%‘ˆ-h%pН²U”ñu~6T^­IØ ðœ"o¼%7þtI¦|wr˜/Q¨YW¡?Å]9oç³!9¤¿áòÅ!$¿^&O¶â•·ƒó kêþ}ðëþKòc'"U-ƒ5Q¹æ*U~X+"µë2É"LAœ#G²kÒhŽ#Ù5msHä§zý£ý~Q«ùy`ð‰¡1•HÑZJhCNP<­™»òì™–¦~ž>‚îË e½ªœžA‡M^=£®myPÛw…/d'»Ç÷ù þ’òWü;~ÄÿÍHk ?ò·ü„¿ã?óUPl6™M˸-EÅF|DÁ0>š4Ѱ‹›«‹|Ú éÞK‹üþÇj¶ÌÏN'©BuSÔiBfËVÐdÅ?ó?ù5…ËÖ(WU¥Æ´N¥R`â¯ÇO¼l¦V?éÌ]cfb‡˜™¾]¡Èê¦6þZÖŸT>ƒÄoÂÕw!nuq¡îœg–tq É™Ñž!«}&Ün:¥̦&lpêAœiE±Ò®§/p_¬¥)²#ßFR¸l´µNÃî¦ÕråAZF—ÞÓ#›·ƒSþ¤ð58 QÔà‰Àin[¼E;•ÑŽ œŸdä“QîvpŽ’ñ å,f‰Õ§VC¾Ð6/NÚˆIpVdB^oÒ hxÐpËý±)X«ú©Æ¦%l\ýDØîˆ@ι™–*ó°Ú¾dš³nFT똑`}xl›8GtÙ*D4$\rÜJlƘL»¯š1P\P`54xé´*ù4Cª¢†úÜ6¤eÜQk’53íéÖ#ëž›>£æ58PYºðà6 ª’›èµ¥¢¡œ%+%º¯\£ åA–í¯v™…)CXÝsc“ÌÞ†œW->¸5ãS†]ô™%} •ÌíádŸ8á5:L´‘äáI·Qk¥´ÛH§¬Kq-"d›I†’q6•îAñ÷‡™šÑ敌}Jµxp›˜Îhn·Ú¿Nf”h¢\H ô\ÒûAfV>zHùvpJaXiy =‘äݽÀ5¡‘ï^~<úû|¾Óù¸ Ñz=bú»s0t­PÈ|•½›½ŸŽ‡³³nSù…›$h‡4­^©È åd(ŠD’(“䨥@%×е¦iv6¡{:(’e±“-Ú2í‹¢2c‹sR8@Þä™RŽN?Šà¢êl¡Ûf·µÛ¶c‰¢Ô:½Óò·Ñ¯í¶î½çrßå`¯ âÏG¿Á‡§9Îçoò?ßž¼~wǶJȹuÃ_3˜wU‹b7õÓýŠÞš~««î“ÍuÖk¯¼îÛ&Ôâõö½I(KjÝ÷µíÏ[Æé¶ˆ‹k".QÜp¹]}VŠ7œ0þþø¨CÚ[<úëÅryµøçËñôf5ŸdÃÙ%¿9™ß¯? þ–Û%˜Ü ÏC) F¿V&nFY~ r]Ëcû;cÎóÁrü9§0ÝlºÈfós æÓE¾à§7\e‚ßÿ¤„öNf­Ì(YPCŠôMÌnÇUMëR“:,˜áX¦-Bº¾S)I®\½¸{!£Yoø¿—U½¶™“[׸EaHŒÂU2䘌݇ó+vé ÀÑ©ÀÑ—| lf6 RÀjßÉÉKò‚Fy²˜ ¾ÀJúîyÁ‘•eY£0 )ÚG·ik\Äø„­‹ƒÚd”€[a3˜Ò›¯aqº…M‡Ì`Þ>¶¾Ò¶›b%mœ“5¶Ê¹|ºm2ôoŸ©bâк]WÒe†a¥TïgÅF`ȹ¬Á‘œË{ÛYiï½ÉŽ¿¹šÏ~G÷Ig] †Ÿçù?Ï'——ûï_Ü_go3²@h󃎪Æ^ÁOvfǘîó~D7ù΀LR²wÔ™!­kc¶£½Qç&#¤Ò²L;çê m•«Xý´¥})ý½Þ!°eKE{¶zÁ*Ê(`;í þ–ã/Æ£Q>ϧ´~ô[ZpÀeM¥w¹+í5F"_A¯ºÉ/évg;_˜uS„Y/1™õ3‘SBg'U˜Ñêl;™us¨ÖM5f!²^.2ëg83ÚzÓKšfý4ébõ~-?›mHÐfý m¶–¢ý@¦ìFÊz æˆÞ”ÕIüI™¬È/";‹_®0Ó¿?P_5‰$E¶NJôx8ÞK©}¬—ÒÇê\¿”ÍÖÎåKXæó±v:! „N* …:…UI…ô5X“vÈZy‡Œ‚¸”•Xä‚–™„5l¡¨b„,Ð¥)ÌÒÊÛÜáÿ@½|endstream endobj 271 0 obj << /Type /ObjStm /Length 3620 /Filter /FlateDecode /N 89 /First 840 >> stream xœÕ[YsÛF~ß_ÇÝJs_U©TY¶ɱb­ä3)?Ð,qM‘2I%Îþúýz0 q(“‘·bÐÓÓw7z¤“ϤS™rWY©q5YW› Á.JÐ/>†; B&‚™ôxß…n‚ÈL)‰9`µ§G:SVŽ7X(`%o3 =r8zËgZhƒAÈ´X+ðL;Å jfx ð23JÑ@eÆL:3žÅ –ÙÌ ,(ƒË¬ö4ÇgÖIz2 °ã ;J[à Ê.k()S §P+)54'qÐXCcŸa ­ˆö Ga í4‰ÖÐÓ»Q*-AÆF‚bÊp½ Ö0š¨Ì„‰@ôˆX ì&(zŠ5,4ÂV`×Ê` +°†%Ö+hDŒ…ÕÖþãÇ3öx<žÌgÙïQtxv%§¼ÚtuéêÓ5”W0¾¼Št•éªÒ5Á žHðD‚'<‘àÉO&x2Á“ žLðd‚'<™àÉO–ð>dìÉd˜QÚâ„},%.ÞO'g§Å°ÙñÓýŒ½*¾Îô§Ÿ0üëº èn[tWiŸ*íS¥}ª´O•ö©Ò>UÚ§JtÓ‰nZ¬Ø·Ûê¾µ¬ï[«oÚ·I|6iÿ&íߦ}Û´o›ömÓ¾mÚ·Kûv ŽKp\‚ã]‚—d@%š(çWÐËo•^.Ôéåù=èµ7˜ñuvòúððàõG§{GP=öl|69Ž/2öv8~<ž —?ì§³ù“ËÁŽ£\üi1;›¯ç“itƒ4 v‘Þ|œÇµ Q!R.üvx>¿$–ÙÈ’ÕêúaÁäÙ‘DZ'ƒëƒbxqYÝbEÚü?Ù3vò¯Œf4;Ú .f™5œŽKï-9ààáèýå“ýᨀ3­Ó÷×ÁUÑ!Òá|0ž=_Œ Záh8›BqCpÎøåt^\½+2õ-ר•6DXÛJààÀKvÛ¤'ÛZb´`Í­ïÆd6ƒÊâ¿´—£Á|:ŒûÌy´¥¼6úPãS„Ô`”ZÃ( q]rc)BïNþåàíOŽN_¼zÕ[ˆ`ºBZBOÛSŠ fVÿJÙ©ÿ²é¿õxí_ü²ú½öÌU¿uÿ¿ëÍU:Ú…Ø…=þ£’fÙÔ5¨cMמ@ÛØ!;b¿²öнfïÙ€wÅt8ûÌ>²ƒ)û8œ£âÓ¼M P~.拟1.œ±³Éh2Æÿ¯®ìœOF#)Xñåf0bŸØ§áûÃÈ.ØÅ´€Aœ²Kvù×õe1fCöö™Ø¨˜ÍسñÍÕÇb:^ŒÙ„MÆ»f×ddãÂqT.{ ¼&çìzt3c_Ø—›É¼8ÿ8bS6c³âjXâ4~e³Ñ`vÉæl~9- 6ÿsÂnØÍøkœM¦ûƒýɾ²¿Ø‹é¤f†I*KBCq!@‰-""~ÓyѶEm«[£GôÃÑàk{Mëõ©´NˆtV['ö.±[Ã3w´ýõ//ß¿{õ_½ =U]ó®ªW«©º¾‡ªß®¼]eíª\{.o½u×_ÅÝL½Û†äÛ•õ¨«œmuƒžE}¨´í¢®[¤Y¤T“¾ZTÌæCoiQCƒÚÍi*¯”QlCilùÔ@@WèL-ž,u¦)³m÷ÝK]¼ØD[&Sl*ÑÝ>‰7¢¼ÁÛ§¥ˆéÝûßÉçN"ô”ÜäÞB_Æ7£M=º žÑ ÒØ<– "FÊõ”ÌÕ*¬ÎMˆ!äB^ ÇŸ+Œct¼cÜ`äAö7〛Ùn)Ei ‡ü,¹ýjä¬Ì’Ô 9íBnÉÈiÏAWµ@ΞS±e#äN¨´¿ú‰€è”ªd—:,nT¬cUw:³ª;ÐI,gúXÖ*ï£z‰ÊÉ„ŸPáÂTc•‰j**@€!‚ªn$nLÙ¥yµÿ|ÿÍoÐÕ£Ã=_‚îÁ~…_醢¯_ ²‡½ÿÿù³Jt<e<5QÞ.|Äü²˜ZF˜f”FX(Ám%Qq•‘TË'v/íp‹·=ó¨ î4½Èò»™íñûÃç{(½oÊ‘iËÑŠð$tÂÞN“Ö‰‘—e>k”x¶Wëoÿ Ë2¼!Pñv!PU¸q5˜_Æ€c4˜Ï‡gÅ|rÍ®†ã›YCÔÌ"]×)Ã3g]„ß’²Ê,,³õãû&ëâŽd})X¿î==|óï(Ŷ!X¶-XfE¡¤2‚KÉ}%«¬üìêOÃ\±Jf5´¾zZÝ6ãí‚ïeB!úaï´Ò® ¾»¿vÅO »ÿ3²ZG»fÀ!m;¡ò{7ék¦y¡) ÈáFU&ÖP>¨öÒ‘ ÞQ@<7FDx-a¨Ä~! Mfõ*ߣÞpðòèðÍ›(x¡¡Œ¾­Œv•»HGÁJÎb&ms¾e¡Û\[atõˆ&§¢=´—æÐŒ-;ˆÍ‘_½1 äøJm?ßrÊéœS#<.äiõæÚ¿ñÀ¸ics³D 2] ¶yDC"¨»·Ä­ H¾ ÜR@¢Èç ê¶¹DÔI¨Ò÷ÓÅMpDp¦†œr¹‹MºßŒÜ­6NcÝ@m ÆÔøõ!‰Ê%TS*ÈuLÙ9jiÇïBª]«ƒõ&Ö!‡ݱRØÜ¹Ø˜œSC2…*ÆíÜßœ•4m‰œ·$;Aîù\"Í ¹J]¿ ä’ºJÑ£†ü”?®´-!dBänÍ"$ܯDÜd¬Íµ,›·êr°ÄVî<Cò{²–«*×vÅÃÈÑ)¿0±%ÉÛoªäl·`pêrF„Øa¶ä6/&¦¡®t° ·Aý\N'’5˜hV¨p“†añÿ&Ôî¨â‘sä÷jÁ‰ß n¹©n ©ª„ºn„ÛJ×ÚlÄ[ßlwoGÛp¦=Üç®\¦Ãnªw¸Ïåù-ÎUét®*E!t¬‘®ê窪•¶u­q®Ê$ nv®ª—× ³œ iKAgBÎÕºì"à¦j¬  ¢,¡ Ëðßæ6nEoáÔÖójm¦Ð&]‘#!Ó᩟EQuQo5©½ñ¨Èâ÷Tl¡ã¸9Á¡¦eÇ·J¼ûäÜd¿9¨k[CžMäá»Ðëû~@Ù´¸Ó÷5.k:€cRÙz8~{²õ¨{ó:´~)dA.Y"%tÌ–”@è­AîQÁGxi…^"§5I³ äV,­¢Fÿuq¬cD|NÂ'œƒDÓ§Pö­ fÅ-ùŸ?}*`ÐÉ‚ÿFbŸÁ.-¦ÞÏÊ:jÛ«÷ÕeÐÏZ÷jÙGôq0ÝÒ²Ô)›&w½í€ßòî{0±õZfW¾ð?xžé0endstream endobj 361 0 obj << /Type /ObjStm /Length 3164 /Filter /FlateDecode /N 89 /First 823 >> stream xœÕ[ms·þÞ_Éd‹Å['ÍŒblj3Q쑜Æm'ù*³‘I…¤Ó¸¿¾Ïâp¸ Çúäõry¹øëh´œLß½_è³Ù›Ñ»8ûïï‹ÿ¹O‹1¼íÚ­Ý{Œmq i±ôÈgmÅ•ä1í7Ú n ùlÞŒ—“ß@~3›.ôl~>Â6ÓE³ýòn„ htû!¸Â&n«:†Ž¸ý™Æ°Ò¶¤£ì­PhbŸfàî™ß‘MZ%Ö\Ü…[…¢¼ç z£ø(?8gA|,pÞ0¸Wl1È¢I:@5±Z .?!-÷‹ƒ¼Á±Ç†UN&Þ ÛIYŸÔÑ?rêü5»è ‰=ª:ú²Æe(Úâ¿)Cù@Vâ½Çé-ÙâÏýttòÙ£ãã§Ôâë)èÁdz.d`z4]Lú=ú¹EB:Uד)Õ“üÚºá¼ÛRƤjM··hV\^ŸŒ–Ÿ®©fk:ÍlµfK=#ßHkÚ[|uˆ®iç+³qE5O LEÁ]DUÖ°W¯ÕÕw1Û%tÎêß?l⺠°Y¸U¸Œi³¥5žêùç—óÙÐ{ÑY—ã³_ÇçÍß~™O^7‹ñ›Ë LÐí5‚Qµ=6¹(Q-/Œ‰Zøâ=u,_ƒþ&1°%Âæt’PNf`µŠ8èppç{°Uã¿ÃÖÿûǶË1A$cHqU6B°r¡áйMueúî›eș쑸µÇ„Ü®E%hüyЩ.^’¼G°µÉø‡ŽlÔ{ý [—xp;T>Öž‰ÄÞÐ ´–XêƒÀæ,èˆé'ÎIÈ$ÒÇ×Á9›ÄmM²§Upõó Àu‰ : ÿ‚ÏÉFbåݯr¸56ËFG(à8‘öî*?àŽ¶ND«aÔ” ¾¼ƒ!°Œ¹’“¡8 Ä|[LÒÙÞÐO×Om –Ú­ U%´i –’©i(×m†ëüÊa„6­íQmÚö~Þ¦Vßž‚©”zÎWÎ8Ü>˜z…Ø—+Õ¾±Çjt¥‡Hþ5¼> #T׺·8þñãgßÝÜŸ(çP®Rùø^bExC¢xåä¿¿ëüy½qýwè¯÷&ÊÕnbñš¶ý‰íoçQlÓMdO±}¾åGt¦K¹íýˆâšò#"/ÈÙ-·a©Àté\Û½¥²½¦;ýˆù=nÄCí‹ûÅËñ,“µ¼öŽ"ªR"-ü×MÛ9h9ZçÁèÝÜÝ\¬ã‹Å¯sºƒ‹•¡`‚Øóâö¡Þ?¢ö­ßùÁaîü‘Ø£srræKVGÌ}ßåJV‹Y¬cà cH·ÃÁ¬°¶EDÁm‹ÿÝ—ƒ/÷ Ž<4³ÄŠ:pQÀò!ÀÝÁŠhʱÈœÃÛ…=pޏ8QWà8ÁÈkY£ÁÜäa/éD½Ì1Ìúà2s·ǰÿä8Ú \4å8Úƒ'!r9[²6™‹ 89c›„ÁÜr=6»Âæ`äËðÛ`ÛŸ¯|DËq›U¨þÖÌêyêõ0ÃÆJÜ0ʇ¢ £—u$ Kÿƒ7 KåäÝ V'q,G+°ON–À·A¯òÁ7Øë±‰Ážzp` önËãLnubŠ17âû8Sëu4=:¶¤Årt´vœË‹òÁH0Úû!t„¹Ae¡œ ¼6ò‰Q?ìüåÍæŽ –xheYòØðÙšâŽd á–oYœ&Þ·%1[ü[Of#÷î,ýv“!e0"[ŽÈÉy½,T³|ñ‚™¼iÜyçÑ8®ŽgãÊ‘ ÓÝmœÛpIÅò ÏõÚô®ÇÛÖ´àÞ¾öà»|íq µØœÄõØõoÚÝ#x9I„dˆ‚š’“à´æ¤Wm/¸¤åXæ¡£‹×cË]^aŸ6dáÐÂ62Âv™Âà†%.ÁâAÆÆ°r†€’iïöj•ßZwÈÛ»ÐM+T>ÀÓ¹•ú{ƒ&Gz ÇTOòéØvioX;Ð-ƒ(‹gÅ®À±…â’o 8†èùè°“<%{p»^Ó _A¤ákù¯øX‹µ´³â70Ðé7øæäÿ´~endstream endobj 451 0 obj << /Type /ObjStm /Length 3072 /Filter /FlateDecode /N 89 /First 822 >> stream xœÕ[[o7}ß_ÁÇÅrx¿,ŠqR7]4‹Âî%»‹<(¶êëHYIIã¿çp8ÒØ’ÉÕ^ 93¼’ߟ7B ç­°Ú tÂ;‡Ò‹Ê ´Òl…Ö!¢’„¶†M²Ð.iá‚Ú+´ Zè€\0B'‡îÁ £ß8at`c/ŒÕ •€ŠÅ€ÔxÍOI˜”ù& «"*Q ‹F¨hamʨa ÀÀQ¡WtÂ&ˆ^8ù cT0¾¡’¸2¼Ž‚xà&âAO¯ˆ'á5ÇHVxËî‰{‘0FòÂNš‚ð‰“â­Ïž½’J±WA; Ÿ•–x²Á[´ÉF„€ÿ\¶"$‡³Q)¾Á6kÏ^AD«ù)ŠÈÁ\N"l­ËçÇ„1€W$å*F$£€EY‘là''’7üäE X·WA$|C%Š”K÷$2¡z•QÁ®{p¶Ø-Cž#rÒØmEÎØ~P‚ÅÐÚ£fI)šÔÁ¶Ø9ÔB ô¡’Á<¢2vš€´Ö8lo@"Ú…hÇU -H‹ËYiA"Þ`±{Þ`£5ÛEÖ €Ìa¬* 7IôTܼüç¿ ;d4 A+!øyúþúšmŸ!Éï¢ôZèk¢L n“¼$Ñ[§$ ûULÿÓA.œt8›7ÁŸdHq¸leƆwàœÎ’¦Á£çŒ—Ú÷À¹$3 ŠƒÀQÔWÙÚ½¢¢s`½TáŒÖPÃ]Z²«ºb<Õè]ëÐRÚwuh¡®¯ƒöé:ƒÈuê0‘é:€b ûÈzZ§jƒPµAp[¤bTúß—þ!ÜG*n¥Ý=TJpA¯I!G飧‘iq¨zZ#LÒk‚±fœ•–¤ "Ö–NaË ámŒ’™à’“– Œ[a‹<,‡CÜd(öœUàð| ¸­Ldh{¯˜h'Gið‹ÑëoôÔ6n£=ßñÕNÛÅW=^Â,Ãìûh×êúÙwÏž÷÷¯ž¯?Œ—“‹Q_)Û-J9¤ ¥ûJyþ~ÜnØO³Ÿ§(ú1³öÙªªÛéÿ,ìWþ»¥’!÷öùwW•0E,JŠ¿XæÚœ±ÿ#Ql1 ÊØÔ¥ÝLeU¯3°L@¾FÂu°W×zð· >öLÝÙ [Ìx/¤{Ë^€ÑÙok{aóŒï ­y¯`‡}ð‡M­Tf§I½„ÛଓpjéüÊ@gÙA˜ «tÇFåŠ}Ya ˜ô1°m“e::È2³ý8 % ÈZzÆŠø°ÐtNRÃÏï°3¤‚au¸'E%Ÿ‹æç³ïW .–“Ù´}õÅ›åòÝâoM³œLoÞϯåÅìms3ºúíãüõï_¼{}zó¨M–&¬÷Óa?Kôæ(˜/æãÑròa ÌogÓ…œÍ¯ðäxº/š×7 ö«9| ðû¡Ö°†¤$c6Eéx F>0#i¤†‚5@”ÉH ö*øqP“åà2¶ "¨g4L–䆷aíùº•µk$·K> 8Å:Kƒ_C(çåDy׿i>ÁæYÚy°BÀë@e\ÀŽÝÜû´29ŸIÇ,³)KFø4‚ºùAÁYzÜ8§}±Þÿ$p>iìÍNoD—àbtàU€Ã¡‚ü£/u¸jð<öÑ?°Å@•–2®à "Š×ó'ûô¡Â®¢ˆfl]2þmÀ«*1^ž¤³G$ŸÇÈÙ¡‚³Ôê@pgœÇ¦Î“3¼×I«8Êg3}ÇñÀÀŒ ¡\>m†fvD`¶yëpL®Áú\ƒõ¹†gjgÞù´e ÖçüÏ[‚Ùºz¿…mr?˜Íû¤¡Â6pŸðslYZ¹“ª"5(èu÷À{©ä T˜Ž÷~ òüо„¶’×KšeˆË>huÓ\ÐCÔ•^&Þà2jœx×Lþ¸Æf ¸(l·a4¦º•Ië ŒÖJÒÃ.SôS´4ôB”*@âTÝSííkÍ¿Éɬ±7é¿÷pª ÞZóÂ@Ö»ž)ÄØÀ#ÃÚYF LËÈÉ+ZB·{z ÇŠnrL“×OèWõÆmu¶G¬PtêÕ­À'S7r×ýsQÐcY€ ¤O9ï2ˆ™°Mè`¤Ù÷ަ„Né°Ç[¥ƒæà¶ùᮤ±~WDËÉ´0Yf’Ž`ŠYêpU2mpª…tsaðD¢{fð²r4kp™wƒ€ÛOÈ'½ßu'ç ùÑÀl Ü2˜%§‚ aO†øÓã+J=¬„’šò l`±ðúXv`§ ýˆ",;b*ûë{Úç{g™ürzúëÙÞYfüK‡2è:Ę̈Ïe™u‹Ú3ËlýërÍnç‘mÖ¶å—©’]ÆÌ4»rÎö©—ÇÖµR½Œ´öYÝéu;ÓLÝÉ3+ùdm­‡ªŸiVGRJ šoƒÙ’oÖÀë|³ÍÓÞžo†žä›î0r ढf’aÂB’z_>¶L f…“ÂÿÃc»Ÿ!£laó’èÑÉi£¢TfД€{2®„/5oqyi¬’TŒ9ðÞ6íidÝ/áìõòòòòæÃ᪄9ÈVåf›Œ´%‘pæ"<ÄhWkX§‰üÿ¬a•Me†vdšULmZN6ûþ]Żڿõ7ý ’yÓ}YÇÃ6‚®Õúºªp]£XºF±te(]£XºF±tO›mAþ̬èa=`èê®q¬U/Í$CÃì„ÈHŒÝ%dµfºŸ°¡·0˜ªPò2Ré=ü|»zFendstream endobj 541 0 obj << /Filter /FlateDecode /Length 6656 >> stream xœ½\YÇ‘öq`ìÃþ‚~¬^°kó>,øA2lɇ+‰ ^ïCs†Ò$§) G¹~ãÈ#²ºjÄeCê)VeFDÆñÅQõíNÍz§ð¿òÿË×jw}ñí…¦«»ò¿Ë×»Ï_üÇ×®ÄÙhïvŸ]ð#z§µ›uÒ»hô¬àÿ__üÏôd¯f§T0iúnPsÌ9Ù4½€Ë:[ÓtÕï¸~ ¿Mv9†éï¶9g§#þV9›¨âôÿ0ð6OoöxvzzE æÊÒøëïô°!ìr½ÿßÇDÒÍ@:2ðø ˆýõþàP“óô)R•UH–):ù¨ósÒ*×G¿îÌ­n”fwÿ×ÞâòVkÈ™ŠAÇéroArx|¹f6Êÿ| ¿½2Ê„ééþ`£Ÿ­JÓ3 ÖèéDü‚( ÛF…éwB’·(`åŒvÓ[¼ìè*ŠÌkå­gé–]úæ îÆË.w÷[n®Û*Èö!¥9šhwЬsûŸtÂNG» ±îÿº“B{¦l t¦žãE¿áý‹v7G1x=ý¶­%w¸¹%]Ðîx+®3cÁÁ.pº(t•maÑ:çXù–§ yoð4Z™9ºÝÁ™98™Í¯hU›A½ïž’Ì•ÇÔœQr¼Ct!W!*k ê)žUN~ú=^íÕ@å\ŽPÛés±‹Íé쯴2k§»ª±,wÎ*k¢ÚÎ)RíÚ‚6fÃdÿ÷ Q²>0U1'Xûû½õUyB›ô@¾·Å‚¨)’O9*MÚc´²µÄÓ; Þš9)7žñoŸãôiµÞ”¯‘½S¥ÓÉJÅʆÁiO¼‚rplÊ1šé(ÖX;0¹HÜ \~AL: &7œÍwE™mpÄ< Ó—,ûæóÍpT×ì´ÖÕTè:kTRï¹Y¿½ùYÒ'¾—ÒÏpØ+‡_«ÂOÓ_I¹@È \w´­MI.Ë‹¹p‰‹Áá¤éyýª´Ÿƒ±£´‹ËI¦œ¡×=˜”äåáƒÐª ¤é/ûlÁ"‹m}ž®»Ö—ó3ÜÕÍkºžL’7¿D‹Ó _Tc>ùV2樂×~í¤@òQ§ø‘'`+gî=*çûQqTá;!‘¹X¤Àä°™€Ë4+†Âÿ€|þîñÅWÈlÚ]ß‚:æ´ûÂüçÇvp<àíîõ…7¦ÿùêâ›mwyÎÁ LÌhè;Ÿ¨€€OKràoŸƒW)$ŽFNer `ÀkÄN™Bx¼,:뢕÷´cë´3ðv€XëDf:µop­!0¼%ÿè´ƒ C+%€¡œŠÎÑ9Aû ÊÍ/вh JK^/døy|µ?ˆr Üó›"tXÝM ÔÜ3èt|ðÀ('°N–E®ÄƒÅ"­Že ÀR¡3‰îw4J%©w¤l`T6ÂOp¿ÏùVКéxË„ZPÁÏX!´C…´Ã$ >Î6ç<@Œ¶Ã‘$­²©ÈÈÀñM§ïx¿*úšLŽL_યÁ†¢<˜z“ajx÷–t°!É,8 ¾šåYî`:< Æ~ÉFË馊`:Þt…ºâAv[Â@Õ2 \‘r®=åÓÓ)hP~¿è´oêÂS±:Ô:’@KSŒsYårMèíê­ß'Rne­pÂáñšQ.ø;_anD@Ì0÷ŽcNmu°Ì/ |£€Ôñ[b‚°Ó]#Q*½Ø÷)d?;­¥…<—œÕ—"ÐÞ‡8ØŠPùÑ:ñ7hÈòÿ)?æFŸzd˜ JˈæÌ;Ç'@®…š0 ºÄ–›q Öï¾»§ôÖ’.“ ­Î;o0õÉœt}‰»ª„‰ ÄÓL –W$5 ˆŒ—€¸¿°:‡<~nÒ9‡½ ýD[ãfÐt ú“Qµ>J*ÖÁnK¥™ós „b|¹€«H)I¡µ®“âÜ_ÉŸÝ]lÁÍzáš«³i6>Žlþ‚õ±&ëѺîº¹Þ Ü&‚¢ÌqŽýžtÑ ®Pù§b4øç÷‘­¹›[^Ð-ã$] ¨&}GéÌ&Ö¤Štê…Ð ÌrÆŠÜRï2zæ!Y8JÞu}:tøFŒ%)íé°o¹@r·}¹§•Å!Õç|HQFq‘xJ8ñb10c¦ß׈g‹ëŠ® RVsbk6sâÆP~KF Wv!Õà"Õƒ¬vj}]AÃSÂ& V|' cÊI¨ð¾xy¨tŽj/‹Q½¬uìÂ僿Úúƒ…gªkÞaÌÇÊÁf*n° –—AO1ä­—@—C&Þï ÒŠÇô[hé«…ã¦R¢ Äi‹óÎ,ðQe@ØÝ-_…ŽB™‰Pí5ª»ô""ïhi‡€qˆÒt¾¼uëo8ó»NÏÝ »MÁÓQK±Í€—WðÙRVdr݉~P5¬ÖµRÇ… 9ûºýÝ Ö”^! 1SÅ…<Ÿ¡û,+½)ÿ ̧ìœBµ–RºýA”„…×´ æA™T?'G¦¥7*^Où1§ÇüéÇ}+„ÕʹÂ~;–Œ ¡ dÙä?wC)ŽÁM8L©AŠÎ²öþDêk•fÏ”!!±‰; U :ùCÙ ãuý fù„ºå5ЙK‡¬\½e­ÇnÚZÃýø®¿fq`ý¤X371PvÞŸ_:Ô­×ÑFvÖZ Y·‚¾±‡ÒÜ.ÈÂËØß Þˆñ‚XRÇ5h¦¢ÊÈ¡v¨J­ ¯<ŒçZµQ´nÖ™}ÙCÖº0K7-Sã„*#˜å¡;ó¼/\ý˜Ñò§l²<*ÒK-¾PϦ¹"1Zmܺ4~J‹ðs[ÄÉË\oÝ ÒÏ) ËNeïB£Îö3A]/5—â¿Ò÷üý3Á*ÿ€gJD9ÍD-n!é$_zg«øV[ê–HÓƒj B É%í¦?˜Á—¿jÛ«˜x§Ô 2ö¯œðNí_Õ?ïí_™v³uÁ ¹”y¿sÊÍÑ'†Ï% 2×Ô•ç‘XÈCÁ•9]ð559KüüF¬MÏ­Þ]¾ÿòb/o¢&e0bîdìâëˆÀƒ±XŸ+äPh—›¢[TaPI†·6—æ¼¥£) Ï_¡0:†ôpШžBµ¸©s‰¸åna:-AøéF 6,O›ÃƒM*—Ò$=ºµ “”´ZÝSR£t­Äûd¤Â ºßòÕÔªãÉ/U¿y2K´ƒ¼ƒ³ˆ±£ýµ…™ovcâŽS¡ö;ñT”A,î8r”+u|\—4¢z#¶«£O–ã8 ¡5ýžÈ.ùÑáö“¸. :a‡¾Z1;ú÷“¼Y¸©Þ†.íl“ô‹B´ÜÔ¶4Ðo¶Ê=Ja{sp$‹.6DT?„Ãz`m`#ÛŠþÚ)_3#@˜$–3zØ".nù$tØU[_ßå]œq Ÿ³ Úb˜w8öÁü ï(iŒ¿b¼?—ð·]׸ðà U6¸¦&øÒ!‡ÌCþä™×ÿ¶äz\PBŒ¶/¾ßƒïU”pm,>êž©œí32Žû„ìëÝŸ4^=7Hyœ‚ãªS ÄžP¥Ãx zn®Q%È¡€m—{ݼ°+ãÖÈNtôk¤£§ñ±1ú¦c°õÓr)«0ž–„irZ€8W_H… (Š£jwrd€SBñ¨V9£õC˜ÐKM¸‡…Æk„/ôL02xÁŸ´}Pb¯QÒŠã.~W#°;Ép¸ÎEêyñ§§RšŒuµÚc§|Òƒ»fƒÑz=s]œÔ T)ˆ¾—KÍÇÉ訓«=+ [µW@Äs}ñý¥XŒÝx0Ö,ã1.‡“¥ÅMAí ¡8€’d 'U®“¢"Io1õ«ÎÔÍúWeo:ÞvwXB-ò”ïÀ‰äO"ÐÔXL"»9S§< Ú‘x^Ì _Ïþ¤˜Åâ¨4„îM»ð~áO³izþu÷`åæ("Oœ!;²;;£JÂ/%¬Æ¬š„(Š"‡á!¬èE„÷ž+z «Üzè3/æ>Ï`ÿ”ˆRÞÂy„JY‡]`“ilQ<9bÜÜæ°°B¬iE v## é²%µQÖáb‡£naX ¯–‡Rzš¢ò¦Uª1¼±L8g{ßå ö¹é–vÍ»µƒyÄœáíÒì ®•j=p|Ë +y7¥Ì%ïªß¡k â±ã:Ib¾ðnyŒÚêœð—@¥K[µ"/‘°tzÕ`®8ÐQ›ð*Zð³¥+¥ÔQŒZ =àJRJ8]f7S¸(ºó‰bÚ·ô¯i¬@“"Jýd= ¾ùÀ’ý=kO‘£ÓÙ‡iãÍ™GcÙèPyÕº dW25”<è}Ç&¾'ýÁïF`¡“ V/º^À‚vÎÚ±ëÕk?Ó2Œ•fÌzz^={)þõ~ˆÇ:d¸½Š‘Û«.scNžªÈ^0â‘Jz²ÞMC´«yÜÒdTÚ4Z _UCEø_Y/ŠÊ²d¼¦~ìñ-/‘È]Úe®Ü™·¢¤`ê$¿¸¼Ql8CÁœ9mXÇ-“ç´Š 'ÞmyG¡|(ïe!5vŽüŠGÆš½ÑCÑAôRk=gsîpVXq+nÞñ p·_È#,K©E?·P÷ñmßڵn“ì쮺€3»LaYÚ-P °¾nÕœC^h|w$ýíè.f‰)KL…pî­‰ö6“µk~e¤è£Í~ÔõO0{Ê„ŠK—’¬Dú2Ålƒ®.0¸³¾ E“sçkqƒ*‚üÝPX­¶Eéca:2—¬a äâ¸ýJ&¿¬ýÖ CÔ~7†Þ[uO £dBSs‹²>æBýý®:³Îinª†çmú3Îô;mIÛ‡Sú‹T[8õÂéÂ_<ùâÜQŸ·Xpu„“w—ŒàEx·wKs(ôˬëI÷æøÍ%Í%ÅË®oëÑå²GyX¯‘­¨²)ÏX˜N)O†ö—åg¯G/Ç?#KpÑVý\¯{ãSXÆØU¹£öƒ=}­u<žò²2·1ó¶Þ½æåèÛozìÙˆN¥Ï¦ÜRo¥ÊTRÅ,И¶ŠÑb…^ãÆ³ƒ\KL4EÕáe¯ „GãÜ®üJc/ÑÉ;@̳êó£%ÜјÚi­.PÐöoÉÒ¹;_èÊõ“'Õ'q?ªn2â$™»ð§à_—¥!|¾LÐO^Æò¾;¾_8Ozèü¢YËwA+ϰtÍ*g“i/^»"NJoTÎ At¡ZßOé³—‘ðQ,Ç‚X>ükkyœÄ“‘+™÷Ì<}Áˆ¤Ð÷ðìOôîãÖ÷I16åDÕ=™èQäFQdó ‰–QÎÊC¿Ñ+glÛ$êRí´Q̲Ü_í$…óËRAÏMÎfÒ<•IzM|ªóÔÎÝž¥ÄÃd¨0œÌ²C#ëÁìb@€ŠiZçCÒƒ_Å;pÎæÞ|k,fjëüJ¾Eš}–oñ$î“@¦21vK‘˜ÉåCµ9P¼]Ʋ9ÒkeÐR¬ DKqL|`½¨Ìv'Q¼×Á¼*`Í[o€¦èC¾q¢çÿø'Ž#-‰r}å<¾§/hôömL‹ñ×·Æ3Îú)? uobŽE;1 <Àro_]ü?k ºendstream endobj 542 0 obj << /Filter /FlateDecode /Length 7852 >> stream xœÅ]YoÇ•~g‚Áóˆyê;oj_ ̃ì$N ÉŽ-9Æž‡+’¢Qº2)ÙVüçç,ÕU§êv“’¥Aà7ûV×rê,ßYªôã±Úêc…ÿ•ÿŸ¾8RÇG?iz{\þwúâøÓÇGøF›¯¶Ye}üøé£µ7Ût}Üfë¿8ú~úz]æÝôfs¢¶>çÍtoƒ¶:çé寄­ÓÖO¯á¥ÊÙ§<]£Ñʆ¿ŸXkàÃéÏøR)“ã´Å—v›¦Ïñ] Χé­ aÚ¿Ä‘‚2JO»7ðÖ)¯ât;Šðù_α…ÍÉúà£M¢‡Kü9æ”ýô¼}õ»ÒÁøq~uY/¨_e´qÓŽ;®c”OÅ4þ$>½¦…蜌ìüTÌóŸMÎ)…é "UrG¡þ‚òÓw›dØÚO»‹ƒ&—MšÊ fÚ=ߘ¸ÕÉà~´ÖLjqÓ^ÿïã/`ßmÛnCÞØøÇgG“ñ›Çÿ8:qNŸX¿M!àëï§ýSÞ e­æ> …d Œà÷òýô S>{•—FÔz ûoçÖ¯ˆ¬ÑÆ4íN‘¬¶Ì{`²‹VƒÔÖÙò&D‡ñRžX´>Rwð§gÐ6xXlé >#»É­ÏÚ4Î(¦ºù«¯óø6)Ðð)ÿL‹½_\mê/ÄÆ‹ç%úØOãLOb»uúÌ úa¾SÎÁGìûO¾>bà¯×uÁ°CEXã¶Ú‚20f«Bfeð—ÝYcÅß/냫&{gLyh3YÔFÌê½§“2òY?6Hd¥¢J’#^··Ïv¶çc ƒÑ3å¿{yÅÌêàA[iT0¤Kêâ—öÑä­³¦JE§nH][uÀùF¨”6Ð"ÎLO«bÛI=rÎTuÀÏ(œ¸ý@zÑÝm‹îÙ>N[Õãc»ÊÓ• {qJ[ë0òOÄ`J·>Eý^Âm ®dfÞ »Ç3/Ú1 X`ë 3KQ®ì ·Jkñt†Sq° Y5|«å¶ÖÛnðS ÛûúŽœÚo’Ù„ª#ЦA ½¢h¦O7¨LvnúVhËÏIyñðwð³ÏÛã{©%ÞÙø±Õ’%ÎË+"Câ•r ö&j(N?ãò•Á¢±Çy¡F"óî”IÖ´ÝÓÿ¢<nÿ†ÛMÊ,}‡8·ÎëCaù%ñÀ Àª×<áÜop Z3ûºqOÚ‡W,ËZ£zAR£ „Ój0•L`ØÏͼ-½Ïf&u ˜2ªŽ ”ŽB£ÍÖÅ¢Ó ¥Au{þj'} £kaA/ÅxÀ½™#l½ ”´éçóU~¶AK@@ÁÊÏ 8'PòWÍ”I‚1žYAò¿ Š„³¿pº”u‡å3p‡ÞIÚ0³c?ÀÝ’Ùiš)Fu)XPN{~ œ¶¢w¯ËwÐâM{}3®¢(¸ëæ\Üj„K[º³k®´­T4}k᜵á¥ctÚ€Ðë¶ÆO…2Þ±^‚…½E\a@äZ.I³ƒ± -æ)éÐùH²ÒÝÙ¢Vh[Ù/Evòª "YöN³U#ooò융ÉÎT]ö¨oN´OÈ=ÆØáÄÁЦh%HÚEËé, ´EP í K¬ž<ç—öûÏHÓËšé ?¿m?Kg©k}²±¤…À:¼“±».¨ÎÏÝϫп ujg¶àÑÌúYx¨¯…Ú1A£·Ž‰Kja‚ÙmUö« ³ô:¢NÖ5 :ucʨ³P‹>84w§£ºôª€…#[*"P~j,‚Û€ìÖ¡_Wº¾á/vD ,!!¹—ü'<Ú 0èwïì7,Ñ :p‰1€Š”Öñ'Ó¼"¥KÛj˜o·¶«Åñë(›j¢^ÝU”¹?Ú¢”ɨTw?F$€Ùç$`CÇuJ¤ÜOlàX±z§Ð°ÿà!Û˜·¨-¤ØÌŠàÑÙ;Mf‡e¤ÆtbˆŽ[V„vÈ»¬v¬.†¬•ŠeÞÔ5Ï{<Ùo°ox¨ýuóK¹C¬–s½ÀýµÚZí:¶Ø I”+&¡@Wv¦c-²´YÚØn€¯Ò/vI íW䝸äqãq"VÓfÃŽ$04V¾nø-CŠ7ñ¸rÆ%é¨ï˜Ip£´\ÁOÂBô†’7òmZ‡nöÔ]2¤‡kPnwY•‹g¨ qç¬3_G÷ÎS&•Τ„+Ôg^‰>üdsâ-2ëUÌ,{ó%¶­.$I"ó:<Ы³ÑK>¼ ÚNh6€㟩XÀ”x»e„ª!R†r6{=1Õ(?+Ñ*ÆCz‹rÞ,ßþÍÁAG‰ ;å ö;Mƒ±CGÐÌWœLkäúï’^·ÖDã”|"ƒ“¤]Ñ™ÅýàM CxÆccÜTŒ-‰ü®N?³îÏ€]  ¦,W²"†•EÓÛP*ïʪ-š»Ó™£FwêïœT‡u¨Ñ«®¸–Ì\"à›¢Ã}eŒÖðbå’¸F‰Â¸žlôŒ“¥àõ†ÕµÊf¦,cƒ-†q5 "Aišàí:‘I"¨oÉ ;ʉ•·U VÚ8Ãn½N¾ÛÖjª¸¯ÈÏj+±’æG6?ãîG;l+£;­¥öø¥ÌWƒ êú8IMùru“xÄÑàð['½*ùÝiò‚3…ÕØS‘zv“H¹AÔçA‰"ŠþJ #ž ŽÉMcºa!irÈ2 MBË»”VÞ _@HÑe üìgÁ«%¥¦óàÛžµ#öHˆdM¡ ‡z}£"‹k VÑìsŽï¸9™—ÑÛæÎ¨ç3)뤖¯)zƒ¤!¢!5h2Ê`˜~lñ[–çdBîÛŠ ^å æ”`••kí334ÐæP¹[t±[k€è0B÷ž`Éû/kQHu¯~¦ ™Ò±ÃbÏÛò‰(¬wåÙ­)Ý›æzH)âí§l¤˜ê“ P„V9ã|6êpc|Êk®•pÄT£¢Æç º­²Ö,Ië/UéíØ?ƒ†iME®]S“) ®©Át³f' ] }{䣞}Ç'sˆ˜eÔ`(ËÆkÙMBËçrhßYs0ÀÎfÒ ’åö¯ù=*”uw¸¥J€…Pot;ESy-´S%øwÇNùm¾îTà‡ŸSò­÷6?ÿî@H(J“P7t· ˆxoYŽ¢¸¦ÓŸ*c0±NMÀP.8œÄgÿ&¾daAïN#Â.­_£&*QÌ {FFìMMip—^1¢¾f¬…*mYÁ·›š¢\Ud8Þ 6+ôA¥-b©òóVY±—žK§K(/ ¸Éxá?Ù2ƒný’¬ j“d9‹…+2øðJúæpÚ8aŒ¤ZÖ”8mŒŒQ»î:@–J'¯QO€éˆ´©†¬€ôUß4I“u‘à%³ŠP »,;&£ð5&šV Ó9·@TÛ…Úš«=:UA{Wì{þI3Ã#‚Nλ‘\†ó²¢…³Ž^u=ÎóßÑsà|Û›¶D1}'›ü%Dÿ‚tE(ÎJç`eØ—X/ä­öU¾­¶ D“–ª?¦Y~žmjYC÷¦¥`¤mb xÉÿ]ƒÍE™DéV£j°¹0RZöHv2dFœƒRÀû¤VU=£B…dq*t&ôö:—QvÄ4†Ã[t—L–:3-ΘƒÙ—&ræ•—;/âOoy=1[ ¡÷<,B¬'+ŽR—#À.RÇÁœðèsUzôañcXŒJ™§RÐH¶˜ÛÐ(ÖyTûÍbX8Æ÷µzˆjLJP©1íú>5&Ù/GEâHÐótYŒÐZÊK C!h¿n=€Þ6/ÃÑ>È[ƒá·§Ü/q±P¼¤”:¨KàºÃNÀI~ÁXîô6ôå ~O(ˆ ‡°žoaoŒ¯A@;‡ý)q*¤æ²ù`s‰v÷vSƒÕŽa‰[ƒbp5Éy»hJ©?çQýØ!L7‡@ƨjgÉ–Þˆ—ǽ|@zvó3(Í0Bq˜FŸjîÕ®Jñ[þ9õ€§ÌÙ"j²¿ëa,2³D4Ü›KÎÿuUBÏcÄ&Šƒ|yl0X»RŒ¹&GK@÷À ®NùPð­˜èÓ^gœÌËt)Â7\• ²:=«¾éT5v ™‰÷ϹÀC_2Ž×ªy‡2A¬NV¦wE-Ó{ ˜”Ð=Õ¨mæùHÏÇèÏðYÅ8w…ú Fò°­æø°ÄæZ v)< ÿ¥AŒ°5Þê‘r"eED(ô¥í5CꀷW'‰w…ä ™# Viß5~ÚðÛ¾ÅÀ…i/%ÃnÛ‘´`Ù:tð±>/iùkÙD^Kžýl-0Ž(¡Ü0à4àu*£)p¬#*2çµ›|úž·(¤Hf:gmgDv"ð±Y+ÍÆòÏ;Š‘–6¥Ó°dÃo]TQ–é,éQ„«‘ ÂO3ÙüFv·f³zG¼í´×^%Òº„ ãžrTâË"‹YR¬:úÐej‡ÝDv\£EyÚ·Bœ FSQg™zÜÓÉ‚"+bôƒ²¨~ øF§¬tØ2X¶àQú|§Ó eÆ8Yñqçj[ KvIß,RðuÊCf³¯éIèCLI½eßÙš‘½W£ø`ÛÂ:Xî•îó”;QYv!“5ÂG¸šghW$êù]ÉuѶ«DåJ‹œb<“åp·E®0! 7¬µµaØ`ðG¶f& ÆšCŠÍy™bwW½õÀ¦Äp%ìzYR< ZbMñpôÐÆÞ)zX·áÿ£þ­j€Ñ”Ìs–1­ïˆST¬UfYD/ŒQøƒøoл]ÐÂæ°u¼2}õob€Yu¹R®k༞ — ŒCa™W«ázÖ·¨Ÿ®`W‘¼˜§Žá®.ß;Gìtê…Z€º‚”ž4FÑ»2¶J—vºÄ7*c Ûë1æ°²è=¯AÛ •ÎTA¼èkÇh‘,v-ã'Ë™ö.LìïˆÛ MÏf~±}Q(s±ÊÖÍ ãdiÌX«Q>«M¹ÜT¦–fcĬ]æÓû2ù»Mu­æÈqÎŒa¥Ä!,ºÍke_¬c½µyê]bª‚õ~µšst¶Ñþëug`,¯“'¡WÂ&¯:­vDúãWÜyÒñ£Iögóbg}Pî»è ÝÌ=–@b‰F1ƒPÑP?6†U|¤‚fb˜é‹Âæa«bu¤Þ©²™ØI- ümª}1£´ç,åûOFÕ^&ÚÙ¤`BéN,Xøó†—ýŽè‘ÄÞä7Ó˃ âäk—üÀ¦€­¤g0.¾ÈÏbÉ^Ÿt¾Ãªv«K$ÑÈJ:cW¼IÔ ;ád6Q°ÓA]BDOa¥Î÷ºœÕU¢Îgÿ¤Í­A ñJžN.44B9,TãTàN¬UÈ„DOÇ©v÷йž‚¨U¹oëòŠ‹eŽ1òî‚¡óz:€½îøÄâm<3ƒÚG€½†.ƒIëq' Î"°>Jå¹>è›§—ûÕÐ D–},ÐHˆ‡äÈ“yZ½ý¸õ‰s1£be”Àœ;Aæ@<Ñ.hø3—»e<؉¿†äç¹ÑGN…¦^& à—Ú:?y“úˆ06å¹~¤pÛn&…+°bù¯æiú»PÓ&¡¢ÞKþïN¸оK\”å:‰<êrýô§f7øòE¿+¢û LÅ‹,L1O*D]êýØuL&¼¸IGEs^@%[(ÄUò‚F#XÆ™xØÅ'5½Xe9L2 °V Xqõƒ£Çÿõ}¶Àº„B’Zo9 †©Öœh*±@»³òoÍ}ì‚óh„ГäÇF@ò3òÃù«èý!)ŠUWa]©º+ª2Ëí-Õ™Ô„TJ"ê"|¸¡êŸÆ{û¾Úl­„vÌ~«Çc…˜½ÀY,ú*WߥÚU{8·ˆ€¼AÐx:S$­2g¡‡¼àbA»,:ëKpßa'†³KCÒ—gÜëE!ð¿ëáWã1ÞåRq„ëÄäD”¸yF˜Æ½Ä¹ÃËœ½ÏÛX«h–Ëy°1¦¤ÖýlSÓò¾>Çœ|ŸoÐ)hŠ›Ì'jÞÉ#ã!?$‘CÃe)¨òý‹B±^!g2b/;=ؽ‘ÌrÍ èÀÅŽä¹ =¾—Îl%èt_˜`Y "é5òÿ™ Ãt]ÍüÊìT¯°«‡(û¬…ņ8ßB7 Kpô€ÐgÀÕŸŸÒÂ Š†|ëuFé[¿<%M¶TÇ»Á4hØ,ÌÄÁLL Ó,xîÆ Ï]“÷)9 dØé!½ÓèŠ}»×ðm å4{ÃÚ‰^ôïáK·Èþz=w‡MËÒl‹{yÿ÷‹qßÏ;3âçŒëéFkMgWþcCèFûw¡ÏO6µHõØlG‘sœ<Ÿ•–pÏ#f`8‘XIÂP¦œ©`G«Ñ”¥Z‚~Úõºi‡åú•iÚtdíÒ¾ƽ=Š£ô`X¦àËàÚã&ÎÄ5ûpSû}§}^IðçAöè³e'p/NçÈ^„u'˜;вÅ×Ë e÷{Á‚æ.ÓÛ‚ªn‹¨ã<Ðóð,¦ÏAÿØv¡¹"^!óµàˆ¨É_I$ Wóî\ŽŒÝlÛxÿ9W´Ùþd2ìQu°WUú¬s°¬÷x΋ܦ/YÿV)¬^4’oFÍ\ÑBˆsƒA‘rsÇOù-èÆ[¥¿×]'5w‰«MÚ¡}¸lÀƒÕŒé_‹nˆ"-Äm¦oz?îðn3¿U¶f©†¤(´Î]j¼W5îã6. “ZL®kàOcEßótzùUû‹aB Áb„'Á )ѺCíÏjòêâ¼JêÊIQ “'Wæo „IƒJ69ºÊè¶{s°¤ûnެ Þ025ë‚`^çþ҇ȭ^€$víªY™"JCC¬×ôL6ßnj!)¢±´ÈèX±[æFÞnQªçœ8%€t~^÷özã5L½Õa []õñúfâ|ã ªPK 9àŒ1q»­3…ŸyMRšÚg|B”qÍ3Çmz(Äಬ_ *]Èq67b¿ñxÀÅ–âúYÞçÕ^5¿æ†GÅP±rI¤3n:¨“æW4„r^~7ÊéìÕ 4•W „õzHY•¥;¯„)\“–41e)…<çòPaù'‹ßÅN=kbQxÙt%Á”«©¬ü°`dØ´7Þsõ= GÇèʪu.WyeЗážE%c§¤Ä av ÷Cÿö‚åÁXø­"ÆFBFíná‰òzqvxfĵ[ɾj”ðkòîÀÑW¢´}G*ס6V^¯í‡#t d1ÕÆß .È/ð=‹¨4åwoO‰¯¤áø(A¦z^³­¨ÛÉ@˜¹Ç'…’ž¾‘ÓâV¨­§Ûžn¹KU“óUhXò± ꎯ‡B|Û¤ ƒ¦ÃÇWíñ¦=~Òÿ  ª'mŒ¹~FÍ‚s¶A2åMÊã—íqÛEÛ¬"À£p¶LŠÞ^·Ç}{üG{_lpÑÏÛã/6¸j/?mß¶ÇÏÛ㣺N,óeq¶·–¦ÀR„m:è#ˆð¯Ä•SÃÁÙ˜©¦L8´C°î«0Lƒ×¬ù%ãq]Î'=j½JBë 9Ô€Œáë×~øÆ/ÇíD)ürUoÊ1Gº<¬\Pð¾®™Xe5isÆh/ý?qZñœ—éÀg_.ÜÜq¿ˆ¼Ä|¤ô¼*3YóóUˆ ZWþ0î z²•Ãë•PáµbᣘxâÜ•@jÒÛv¿€p«ö‹«Ê÷0ÀL`hµj¯îã¶)èe¿ Ð= èú#“_4m¶(æMC&l (xóRŠƒÀîXTá#Ý(‹Šä Ÿ–·) è§…“õX¡1»æ‰b7 ,m(÷õÈ"äy<åȑٻàÄ-¿"Â+Ë//? ,,Q"íåØ Õž6A7À¢ÉËíà"Ð ~ºûòº«ÖÛýrçÁh ‹=g7¤.€Ö`φjøYÙxÏÆP£ŒWŸñL ϼNÐê"ª³Xµ£M¦ÂLaX—ƒ¡\;AQËÇ OÛõ›,þÝ„9Eé=ÈEw„}¼ŸSCk3”óaz0—·Ðé‰ QqÕßî!’û+ÁMð‹TÞoÕû" ù¦IÕµ€/›=é ŽÃ¥â˜òòGºª.Ç4¸*Š]‹¶šÁb»é:\«ô`úª’ÃÑtr–öJ48Ũعph˜Ý÷HŒ·ìÈÉ+ ɱ&é¬î-ý5ÚU«kYóȲxIÑ™¸Í,Škc5‹aÝ,:³`õ¯ðÀ6Ci,2ÈH·ØÄå"´'˜ÿÀ“± 6?Ê ¤%зÙXNiŠKƒbAï„(\t7téiWÎÃ>à6øè=–Èãö‹†¬,Åvi$‘Å16±ZßVRAGt»dœ˜²°&2Ó¾kAQa-‡{Õ†ëZTnµOËòŽõ:ä^ÞÉcýy'ÄoC±áE û”‰‹X×a0Ìæ©¦’u`ñµ8ÐìbÙ†ªkf“£¶Ëa5V2*oMlê¿RÇÜ*žs2”˜ºÂÒ‚´0¯Ë–=Ëés“zd ÈÊPÖywmäªÈUÝ–ÊIKÊò«¶ ~z”N¡è&_ÜYXùñÏGêøó£¤Õ±AÇ|qd|„ßb}suôhý>~sì¡m ÝEù"HòDtâ:~gÂËuüüÌëÒ°0ð± Ï"wf|b±p><û%Ùwçøö$‹.™²=QÑ‹ˆ¶ÇLjxÇ$ªcfqÐ l¸&l_bëXN-µ>/{¯ÍüÏ”(1MŸ°Ô¦?Sk¼žÓÐÊãµ.T÷‹úý§wm}s’é£ڞ²2~‰(”WvU§¼ZYø /"¥Ø.Õ!›ò³u!Qø­<jÝ5à|zö šQ;$cªgŸs04W \h^ébêœR†å\ïq&*;ËÿÚ ø†Jk[ÿˆ•öA—haà¹&F§‡ÚĺÎ×Fú¥ “ÃL gð@ ¦ÒcÐåOÙuA‹å¶×¤>tÀð‘\ªkÐKÑ”èˆdñFw$¥Ia9Žfãêc.¾˜å"ç‡`ô˜»ažÉaب¢g’&‚†O÷uêt³¥03ºØÈf¹¸¥g²“‘*e.ó˜6öc–e\ve:¢œÊ‚œÑ—;¶¾É³¹@Âa†Qóú|V²¹ÜˆD=‚Ù®ôy>èCb€åƒO¤xð°àRÌœNM.y£1°Pv1¨Ä5®Uê©ס L€l¿3XRïøœTyÄÓ'Šò³tê꥖ÏGD<–Ö 0BªÌ2Aƒ•dƒ®îYè Äß&—Ý>×y¿”»µmmªMùúèÿ"KÅ[endstream endobj 543 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3280 >> stream xœ­WkTS×¶Þ1½¡ŠZÍ[ÏV+žP´jk=õ*‚=*ŠZ!ò‘’ðy?’Ì$¼‘$¼T^)D6¢VEÑÚú£žžžjm¥½¥â=mÇ]›.zï]i{ï=?îûg½ÇX{®5ç÷Ío~K@9Ì È7`“ÏŠÉ·¥üË~á þÂ|àgñ@G˜)„™• g{¾ˆ.ÍE³QÔJ(då}əʄ¸xµ»tÅêÑäáãîóÖ[k=ÝW®Xñ–ûÆ$™2!:R—%EªÉÇ!÷=Šè™:ÓþËúxµ:yÝòåéééÞ‘I*o…2îÉ(žîé êx÷Ý2•L™&‹q÷WÈÕî;"“dîöƒzÛŸ¾Š¤äTµLé ˆ‘)åE±òM ßd¥¿j‹:5-=2*3: F·;aÏÁ CI+)j'µ˜ ¤–P»¨=”õµŒ ¢öRû¨`jåK…P›)oÊò§¶PïR«¨­ÔÔ6j @í æQR)ÊJ¢¾l ÌX3£lÆ7Â<W‡0›ãÂBßà¨rV÷½ÿK¡£”¾Y 1|Ó_JŸÒß0tC\×žÒ Î\Ìù#„Ÿrƒ'L%«XܺUJ[õ†èƒZÓÔÚe<8ÔgEõœÍG®( ½"ìß$–ŽNŒxIùe4ò¸;2öÅîO°säiÃ¥›ð 3â÷¿Êb/ü¡Õ#wúäÀs7*¶®“`'ü¹õ!OÚíÐ(5GÃ{P‡rR“â! ^SlãçY§È~;Ñ|!Ÿˆb´hÕ·ø%,^¾¿Š—Œ®CóÛב;‹Sp€8d–¼ó…0 ]ÀÁÀÑöcÝï7¾½Ð!?šxô „¾ü„ü˜XuÙd<6ãæW‘—pÜkÜGÜG3 ´Ú¢Bv×Þ¶`Ë_`ÆËñ|œ†Uèu슠µ£Èõ'S‘>+§²t’"ìöÚöÕ°üÚb‡ã¯߆oàCxÊݼûim/|_˜ñRÃáJ¨¦Eoh‘Øð^-²òsl‚Ǻ}$?dÆbä':£êÊí9ÿð7ô:òðþ;v‹<"•ôÒØoË0Aµ¶A…ÎLTüoLýù>qs[gs0mÛðlì¾ooHø¡Óg2ÈÖ¦óQ‘‹¡4ñƒ:ä8Âêt™‡AÎDµ§Ÿ>Ýn¶] l =©z7•Õ}#Âëþ;‰ºô}†~è&yZ5“ yƒ0„& iäåò$C^ABNÈ__/ž¨'yä%uGÁýð ÎÚÿÁΨ±ž)Ú áP§T´¡$j%›…,_‹'Ô¬=Žg0œÈ…g‹­üË킎û(à¾=áÿlǨ0=¯(‡Í:¦¨’ã»J¹(¤5¥&WÒžØ]Ø_`+Î…&0,;ÌWÎ}”Å–×3€QA±Z‚tœ¬4@ÍI¶¼ìøÑr£MqêHÅgwß{pýPÛ‘ZÉÁŽ¸Ê¨*é± cp¾§oxR¾-ÍÀê³ ¥&`š ¼Qâ2ޚǡ Žw¶ÓÝ!1î2Åw9Q¬Æ¢ ÛVŒµ|wºYýò«päè€"è‘ðíÂ7•šù9œ€ß¿ ®8a¬†£•Z¹N ‰n8¢Ÿ¬]y^—§]i¾ä œö:2:^ãDrÝ6m¤À>C‚}ÑM-žp:–R­= š¡¬ºâÄd;OÅwáI|CåÐd|‰¯9DTSñO‚,ù¥ÙnkqþrTçx%é‚´ H‚$}’arM?]Z™ZÐi tÚ ¼ÜíM”ïxŽ)t»´jP@ˆAn6D#× çŠ¬²ü&û9Ž•×=D¹nqN•Ê~¶pÌXÕHô,«ØŠÂÛפ¤9¡•“j½]·qÏ>ˆ]µ>á]­míæsí©õ:=k.«2œæFKèI—h°k(¼Â¼9šø`ølWŸ™Mƒ½ß°çD¦h2åòô©jÁÌ`ÑâÕ[SåQê³Ýhr«i1<‡s¾íºò›àoO)Š»‰±z€³¨lòë°Íú·Ï‘òZö Bc²“$ÁâŽÞžã`…3ªYÍAØcçxH¶,;á *b!Ñ”ÒCmÂR+?Ä -äýx'qe½¡òÖï‘>`È™BBru%y “¬ÁJÅÝhyaã‚«ÿmï‰E…©ª­¹i ¡q…YZ}©¾®ÂRL‡ª)A!ψ‘v‡]ùëà]î$É8ÌÙ6AQ#g4Wˆ.ñžâ‚¼àf¦+ýÑÆ–õØmõ 쎗½M–-lCÕÇ@~v©.·”-JOݶâà%³'³G×ÌM@s¾=Y­Õœ`]~ÞJ´tdr"^ækȼ­ã=¼® ±Ä˜LºUF¤ï†RA§Ò¤jÒ ˜t©è}=g°Âû0 µÚÇk:i†"½Òz°0|§žFê‰Çå9e¹fX`‚²Úò”Å烈øÌ®£‰Ô÷À#è²ë¨?2Êá$ ”ÌÌ}ßdóöOŽêç-H‡uEUÀà<ÞÆË°ç³ Hx¶§öT§$ŠFÛ~kا±hbL¬Ž‹U„tåÍ9ÝypÌV\®éª³u4Ÿ…6°f·ÊÈ®±Dv¶w uÏ'öwBþ5$7WêOÄ!'2BÅ>«H_ýÇjb^êûÁ|2J²´%GJ$ª»Ò¢Éyͽ.épÐ_4"ú 0ß^¬–¸ !2Y~äP²UðQwЋBAôì[nÙ"äô™¾ÚXº26¿èH¤0]-gÚÍgÏÅ÷ù._…EìÒ]Ò!üã?ŸZ¼°"ϧ÷­H}VÐBü‹„BäóHœbH±«ªõúÚ"kæu2 \†îz1¹+¿ZRSU]v¼L§Ñ–@>£¬Ïli©ohjÌîŠÊŽÓ$ÈØèSûË$£Y~Žhˆ>­–ŠÖÄB6äö÷$.~O »™þwòùxø.òƯfØÊŸÄþpsð" ß½ ûƒa‡¿¤‡‹?íÍ ‹9¼ØCÖßã<Ô“áyV%‡Ú¬¨{‘Ô{!JB^®ó²ù4ô¯â±æ+·á>óãkð;,þrÊ£Þ|E€³ÁWÓ¼Amô¼ _ŠLpšd¦DPAl‡ÒÊÔÓë0Ÿäû¬j´º‘4CfiÑa¤4<]© ö©èZá-Mcñ€ÎÈÌËÎޱîmd0k¿ÚŠÐ˰e³?øá?ÜÎܾ¿2‚V¾C”%ð¿ˆÏÇuFFÄÇGDtÅ÷ž³vžgñvìK¨yýWkѦ¿`8GŽtñywð¦KħýG¯àê2Œ ùCÓNM§KU³ÉÉ1êw‘~›ë· ;šÃ[Jl¡ÖÂ'©%=ùÚ ©õû!Š Iß²n3žy¹±º“Pž:í¶ÚÁQ½ÞÒÈž:5~¯¨‡(à>~Šœodô+;%‘×bŽ®1+*ªòÊjåÝÄ 4]{€¸­c¤ ÿবֽËÂñùüObIßd´Í@Ü€‰ØTG:7ÔgWQm³¶R׬¤2shüúkoa¸å7Žrt¼Æ‡¨z4ø@¼Ý¹ŒNxÓxá‹Ñ&äýð'äÊÚQåG®LAþ?FÈ °Üz‰çî×vþz{ø„0á?mÓfÂn(Æ ÓW•Í¡1û’ÙŒ'oÁ‚£ä;™ÿ§{ËÿéjÃkˆì kh±• ¢%d6³B>)ÅR‘FU’{¸¤p ©ƒgŠZ›>¼ÕÚdj¸tÞÔpaÐÌÁEÍðù »,Z·emà@vS»Í2x6¥9¾‚m=Ó]N¼Üãê¥Q{2ü7.—à•8$?—8ŠŒ™¼íÂ:;¬5Ít¢¨ÿ &oÜendstream endobj 544 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5356 >> stream xœX XçÖž’7\G¥Õ Ô}Ç¥UZmë†+E5 È&[Eö-9 VÙW06¢­R­´¶V»é­µVÿVë½-­­^{†~ôÞÿB—ÿ¶ýŸ>÷ùÂ’ÌÉ7ß9ç=ç}ÏÈ›~ŒL&c—¹,õ˜3Wúw²ø´LÛO'²}¬Md·«ÉaMîØ§š†‹Ã†aÕÜ=”‘Ëdñ)—…íôˆ²÷r|Öqý5Ç~ޓӂösì—„øEîòµwñŽ ð ñŽ¢o‚íÝÂvúEÅö~eQ@TÔÞçgÏŽ‰‰™å9+,ÂÿEi—ö1Qöý"ý"4~¾öÎa¡Qöë½Cüì­Geý³,,dot”_„½K˜¯_D(Ã0 —„. [¶wùŠçÈ•Q«¢WkÖÄxïóY»Ë%Îw½ß+»]ý7l tÛâ>sÖœ¹óæ?ûÌsÏ{Ù2Ì3Ì+ÌxÆ•™Àl`&2“7f2³‰™Âlf¦2[˜iŒ;3ñ`–2[™eÌLf³œ™Åx2+˜ÙŒ3ãȬdæ0«˜¹Ìjf³†™Ï<ˬc\˜õÌBÆ– gF0#žÅÄ0£™§™@Ù@Ɖƞ±a’™¯edGûMïWÑï±|¼^þo›*Å"E’BT®WT>bW²]œYÿ=ýÌ;pÊÀ„ß Êôp°×àvÛ¶Ÿ )ÊmúÏa%à Ï~z„LjG#Ù‘“G†Œ¼ËkøÎQ;G]½jtÊè®1mb¶m÷}° £E\S)wt;ñéåÚƒ‘ÚÌôX¢ïùaLzãyäH‹‚ìWÚv+À"0ÉPŽ2Ü2¹x;ù¯|Î’~Ë\^tØOI§)Ôìå\ðU‘÷ÕláC8B×Ï÷wÆ@™[﯊|I õdÂÚvŸ¤n¾f‹ 'âü+?ѽ”W?éérP‹,:}zï믾Gç«pBý‘ÛÐÎ=Xp‹ÌÈfò.5¸š}Tµxë ße¤¿ŠL%Ÿñøz²Ø¿Œ0;Ö>OX•­Ø™aŸ2Éšpá ¹Xa<>=û[2‡,˜?žŒ"£ÌÄ9¸àóoq¸@ dOFö¿Ý¯U˜UÕ'O•[à 0ï- «ôwðäá/Øvw$Yн×T¡EvD}«¼;¥{>_9ÑÂËËÜάª]v$Ì"ÉnâƒSÉTÔ¢3²h‹Ê2ô ))¬S¥’„wŸk`^¹ÛÛÍAø¦ä£ö‹ïÜxXpnön$Ë ©ùP\ jU4Ud‹'šÄÑfÙcš-#õ_%Óygܤ¬‹n‹x8÷Ãg8 …Y÷ÈÓ®1A»TçY²ä—ìõäý>5Îb üLGé à®tº’1dâ2µjuu{0½å#ŠŽ.š¯ 8BKóÕük¾œXÜ„Sh÷ †ÌÀ!ÄUE\Í‹]8ýÞ<îÞàS± ¤‚{€WÀöU{ægÛ­¡8hµ`éiß1èD£¸kxo¥†Lݽ˜,Ž8bk§ò럗T­Øè­|9Å{ºàŠ¥è¨Ä™`ZSBx®UŠ)ŠžÒãò=ùà xTöþ©Ž?G7†²ÿ]ý¤¤£Eu,èÈàŠ  ”–újZê¬_ª”}Oëap«ýʼn{œÙ3,7ö@z5ØRDçU>Áò1OHi~´ôÖ®rŒ¹åÔsK† }êq¾IvŒæÝGb[5žç,½LÜÈ€ÌÞGc몚+ÒËã S~-Tw­ÅÏIµ‹%sɼDîˆ\Ì{Ÿmm«TíõwÂ9eUTW¥Â~Õ:=”B Gdù™ bƒ¶ù˜N‰LÓ7šVŠó)0î#PòG»ÂCùyŸ…u£© ¤9SC˜5FU™éTyhµªùS§à`EëχÀæ>›Xt$)•NNÚŸž¾ìÔì›4Ѧ٠G¬’dŸæ`®ô¹yª‡¨@9yZá­VÖ®ÒÖÚHû¤ÕjE_!ªƒžü«gΗ·ÒkCŒX½6FîV{z¥ÁJØ}f5¥¿p­q®—pÒãiXWgOYË΢ܦ [`7åo+[¼$Õñ2‰W,²j)kiâÞX| ï eÚ¬ÿ[úvHÌÎÎÐeKÅqŒÄF©8"iÃh ]ûŠã]z&f&íÍL²Óìr^YÉFƒ¾±š9SdUHp¤&ЫÍûÍÛ¯_o«¤Y̦ ²3Õ6+q€\ Àþ|Q2¤ÄëtI™Bú¾½«fSòtœqªS£qtn§6S§ÓiuªììĈà¼ÅÕU5j¿MXãf⼂J–Œýj6NÆ9MÈåÒ–x¾/N“ÛÅÇÒMqOÒÅWS)È4´1Ò¨\UB´Nž«ÑÅ¥VÖnöªŠOú_+E$2'ô€NÕœxAÏb]Ï“)e`WÆ‚ƒ…ØØÝoŒ^ ±²ÞðŽÑõê­-Rìzb!¬R!UCk'Ìâ@*ëD'¹¸NœÆç‚Œ\E ìÈ¿”ÉäeE«ÒøUuÊ»¯$M=lj2=Aº]L>T â@enSx+Ó¢ÝÈpà•¿…žQ£Ô…J§¯×î`£+v68Óˆ>3i±'ã¿}í.´W˜N¨ÜYtþµóŠ,‘õÜç½×{$R¦&CG¼Kådu³ªéb§±Z -Ö´“ëe+ÛÅŒv9ZºŸãS uúú¥ðÿ*ª&VLëù{a’^wìjÁX£?e¡Z¯?| ÜP©/§ì*•ïbм0XQ½È«aëiìj³²ô:ˆæzž£ð.È0£[¾hΩ䢆ó5F¨kL¿±½]åÝêvhƒ$Ìž›H†ûGŽ8§ŸzRV’ñºìÄ UøšÕOj1Q‡O_T5ØZô'ªÌG_­¶PâË'ƒô[iÞMjîjîÕkÐAÞ]ƒç1€8‰DH2ŽL&þÄí‰î¥Ëž2„¿@zÈU~ ¬kò{Ãó£ÌPåúVΖkmïX×IeÚ›ê†Ç7¹P‚›’¼p«sDà&õb*4ñëÞ¦‡‘t¼Q<¾'iÂI(-dà#åãwKM…Ö($¤¤Æ†Ûu4öpµ¹¤­Å¿u¹#‘ûN˜¸D}üø'š0Ÿî^ÒŒVyŒíÔªï.ñø¢_øûÝGÈ̸KœT=3¬]Dù{€O‰]<Χ•«a™­"*ì š°“l?ŠsÜ8ЉÇdM·1ò‰ñ¶GáþLøE(‘à…ß?jN*P5”Ö(3dgÒÙ0‘Óï;|¸¸¢ª6ö¨·ÚG«|j}ó=hR„M/®.ði TÅí‹  ¤¨®Ù]™á9×+«p>çõ_lhˆ(Êòîâà>íù‚LW+oQêz þ·¬BzºøÅ-–ä-È'ýzç<«þBOIåÈñ.šxþ}QAaþ{’ ׯPÕn}š-ªÍNËÊÈ¢"Œ¬!“¢šý=ΤÈÖÃ{¿àì)¶´¨äPu9&ŽcrÓ(O踔Ø/¨ÙZûÔôC«UÅC $ë÷çdå$s½¹»ÎYòêËz³zoöÁ¯ˆýqñoí´þÈ»ïÒyà{žØLòZ/Äß]Y²¦ƒ»‹Æ“ûËO’dŸžûxuôâ?©–¿`ÂÚŽµÑ¥Vu´È~lÿÍç–Œw$­¶•ªÝT„-…Ⱦ@ûu ÍJU‘E=ÉJ1Xñ•E¤~ ÓúÌî°-„!ãzâL þ!͆Si ‚Ñg€©?qƸi z?×XŠKEï1¸¬ÇÛßûi<[A•Ì@\þ@V„r¼‚Ëù¤c6+e€Öœ Ç}öÖ•ïž`Sð‰Þº¢œ@£ci«”á~TÈñÛn–oÐB°d-‘KO÷©+”¯B‡ñä!®§š¨Ôl«áŸÐNד¾”“q¬´ ÀwÐîœEvíÐGÊEQ%œ­IwMHIK_ ”.f+›~ù·’B”ví|ÍáûhsWL[;c‹%¡¦É\uº5¸*ø€pòtÇ*à´½¼lñ–e>j !1)©{±vqâBé–I'O €Ã_½ƒ#[Ͳ›Ø]$¦,Æ;t8…ñž;À0šÕ9Ç<ñ™]/|QÿÖeø„»±ìm¢"6N®Ïo=¸áÕŠÓ5)Ǽr…Ö–k`î8‡„dm§cAx`¸ÖO›¤‹Ñei3²!²¸8#TZÃIe€ôÄ?–û œÃwY¦‰K”uº±ZHHHWÏ+ 5'J"“føoi¯=ßö ÔiTó‰a<ù€€ÕËpÎ4}‡Š"º)sä|–XÊK«§¤] oÀÕ–¦Šó§èˆvŠ’tZÈL¶ÇoKv£ô,ô*K7d²K‚”8i£M*¹²À /ÈŠŠÍmwi”aæ¢e0ž Ù½®ø@UÇ¡“ÕæðúÝ!{b½æ²⬮{8m~NÆíòL R«è°b.¡ØjÆù7q¾Ä÷yíâ=.n;RÓt:‘Ô¢cñ÷wÐîÝ=ÜvîÝãë_çßÞP^’—'`꨿jÚ$¦×qÀ³¬yô§ƒ=.ÅñT¬]>òzuë¹W¨’0g×FøeŇÁ^ο>êèaSYÛ›»Þz† #‹“âU@J0Ç|s“J?ûi×ÉÀ˜µðÜ.eäM~-D¼ž•·ß· ŸÃ!ç;¿…&OÆ ÖBÇ_ŠHä~_E¤Ãæ*‹Fˆ~si¥¤â¬!Z!†ó†›¦ËOåçéõp€ËO*ÈØ?q±[mÚt±­ÞtÂaö MHK“BôWM{[&þtö#R.=¤D_é%ïž,nâ³È„‡,“œ,4CL£œ’ áÜîúÈc¦#5Ív\šôºÄàÍ‚wÛ ³Qid°jÒ¯ õ?Z4þˆ¾ze[gÔ¨È?º.ÎbêŸÊ?dïÝ8v«ì¨6¶^IMÐ@hòöU$s´_ lTêÏ0ÿ ¥åP.endstream endobj 545 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8653 >> stream xœµzt×ÖõÙš Å+lÊÈ”Ð{ %B ½S{ý w[.²%Iî½È²å‚llƒmZÓ!B€Ð í%$¹ã\¿¼ïJ¶ ï%ï{ëûÑZZ–­;sÏ9ûì³÷”EJ ˆ®Z?y’é§ü@?¨?X莵¿ÉÛ“,¡·z[d Wm͇÷CÇßF^}) :A›¹0(8*t‡·O¸ã¤é“ÜÉÛd»É³fÍg7eÒ¤Yvó]¶$|©tÙÎå®+"ÝVF¹¯ŠöXí¹Æk­÷:Ÿõ;ì}7ø9øo Ø4zÛØ„Þãúl3aâ¤ÉS¦N›>ôý3gõýx„ÓÜ‘ñŽ£˜^V5”ZCÍ¢†Qk©ÙÔpjõõµžAÙS#© Ô(ÊMm¤ÆP›¨±Ôfj5ŽÚB-¤ÆS[©EÔjõ15‘ZLM¢–P“©¥Ôj5•ZNM£VPÓ©•ÔûÔ*jµššIõ¤æP½©d*€êCRRVTõ6Õ—êGYSbꊥޥ"¨þ” eK  2©Ô *Ž¢©xŠ£*ÚA½%P z zQ[Iy) J- xÒçÇg­¯-vXœ´kÙ &Ê¥Et+³‰)}kÁ[•oýÚ3 çÅ^ÊÞ£zßí£³m•ô¶íÛ²¾û†÷ëÑOÓ·^aÝ*úNŸwΰ+ßíù®GÿÁýeý_ÚäÙŠm×Úž9pÍÀ]ϲ´tЋÁ³_ü+׋³ã>ä"¸_$Jší6Ø5 qòdhäÐ;ü‡u Ÿ5yá|žÃzÇýËïn‚PPíb= ÷ÁèßWâ«[ ÀÑ%h#¾þ’ÆCd–þ´øÀ—Ù)[%欴 Œ‚ÊöõB~ÿ.‹£íúºÝuÔ¶FÚCå¨ wØîZruºY¥—B8$*•)2,Âsm0‹”ÚÔlH·…|}É>5c¤} Àüa•ÚKcZUFŸ€²”² ´mðLœ°}Ø’”©[5õÐ' QaÞývut5”BŽ6=+ E^6h NÖ¤iÓ@a ÒhSm´WH¢[_':’½3c§‘±jßLj|Qö­‘ä.:ýtÁ³þb…ò=X¤¢ë5Y‡8ÔWô´áý+¶ÎÀBÉ£$öiÙ¥ p•ùvâü.×ÑÿRt]#ó–tTÒâ—ÞJÙ‡\˜??H„l>øË·³®aa¾d¾Éâ~"GeV½U¡µôO­–.Ú4k¸„ÀLfà'é5wÑ®»BÞù²è‘¯pÜo à~˜ýe,z õùùG$æpvd]À¹<ø`è~8°ŽWî¯>x¨¼öÃ>i•K• ¬#©ô©³ÔÉ9p 0¯+†îÝò¿ò÷ئsgÒë€äÝ_é® &y_§ Q›«ÕR!“ǧÉ%x.ÇËÐ')¹  ÛrCúÎH{“By€+lW»š UJÙ²âä…¿·Á›è®øEÚËdo{árW™Âé¹{%ȶj÷’ÛÇ­O¾àýB ýÅON¢ïYìŽÞÇ“Ñj4ãG$AL.dÅË@ž¨â’ñ0»YXÌj¼y7:*ÿŒÚЦÝçàÁ$2lÅOð<OÅ.$Ýmx£Óó¶­¡ëW—PñÝþâ§è#¾7{‘ÆÃM8¿œ%w–ˆowøt7Ìnu›¦ ªá¨²áÍæšCçÐ1­_ƒzýò#b‘xÌOØB"~:\#¤Œ±(Œ®=z¸ö(0WÎMÅ–¸ÏÇ3æ»{êZ‚%qå cÅ#ØÍÿn\2ð« B~û 6+ü)‹)–C×±A$ÃRKƒ( Yîºf’›MuØvਠÙ6:Ê9ÞUT‚t–¡¢d,‰WƒgЬÚÓ»ÊÎÝçÅÏ„ íóXÿJº«ÝHí!Bs‡F¡µh=ˆ&ãyüÎ_íX3Xù=-ðLô)\’]´omÎt˜ X¹Æ{kDðúu#¼øÊ®œŽ1Dè¬wßEÅ„¡nó}ϱxÉ¿Ï!JJ{N²?­‰w;ÿÁ@Ì ƒßÅýžŽ@ ©À—вO_Ëh‘?‹‡Ðà$ ‹ó vfÁêˆF½¾¼{õVë´„“æ.>kDõ»hдՀƴ!tƒíŽóª¨å‘…â á ðG$E¶] ©{H?Íó{_b@¥¡¢é2ÿ1Üd”"êl}V„ÆCõ†b,a ¢ $µì8ÛÝïVüÀnZ~uñÕýþâëèô ‹zÐXb‘™-Åþ é½êCšh†CÐlî‰ô|e^£M tðàë, ¨4œB‘!LPy¬¾Ô_Wç_뉯/ï¥q.¤‘íH˜‡Œè`g˜ hÌÍö9lÇÁ×4Tþº ´7H ¶À£®&ô¥ÇAAƒ©îÓ?äv<#Ñw,7evÜ[„Æ€Á¾s$`+ž“éù÷Ë¬ë ¡Ÿ (Cø'ýÅÚÈêÓîÄÀBf³ûÜÞ§¾‰äªôD`â!%J‚mèhHÉËP«ËÊ84¥eû]¨Ê v郟u,`WB¾Ä·Î#Û5›Ìû¼¥§4TµÜG=2&ûk8uR¡¦2Ê$?›:U ñœ"-1)MáY㱤zVžKí}Šƒª¥ñƒºùWq$?©1I‡Bü{f~yÿOCq,ÿð<[ mvÏ&²‹$h½7=ã3Bg^ª Ê2­Þo󴪣je^’´ø¶À⤠åxk:JgKýÙ_MÆ#ÿ-áøÕ9¶x5~OÁ®ØMÃSÑz‰8ö ܪÚ}†ôŠÌ€FêPÍÔ ~¹„”Î燳h˜C+CEªYv£Óé7¸–Æo?Ih¼\sùw*tM´¬×RxTÂu “Oh·ÑŒƒ¶B¾Î6jò®s•F‘b>žðø˜£êjzÛP<ý'ßúƒ~®’©¹®Aƒ?aô‡fÀ¡6\ôgß"T+ÓK[Iƒ¼V-‘üÀ›ìd ϳ4Ò'g&íG¾n¼˜ž¶mÉ‚i‡Ú8ôM×_n€bŠ¡çÂ$4ŽGž„ý5µŸ2Vè¯]ü6èIMñkónrU¦Èæ¸<`NWdUôMmWd Ù.Ä´ç›dÇ{áfמCè9 óž+eåü£ ŒòÓÐ}6§¢dßE“B WªÂ! ¶k¢;'e“*/"!I™–&{gÛ` T'/ ÀÕØVí…R®•½2‚Á]`ž•ôyH—ø£áÙdÆiR  ÒsÒs *r¥úÓÈ‚ßi´ 4ú¾@£Ø‰[ì7Ê—Àio®-WUc.Hº#Îyþå5ž_ùòZžDMn·›á×Ò-…pžÜÑYé©r$Óy*xšo¤„xB^a•šTìßжôˆ± Á–”„%…@pÒDv†Õ¨ÒG‘ÏrP¦ÆOÂ96£P]Z¾Ê¤ª÷‚ŽÜ#PµYØU+sã3äyY‘ÓqªÍ8¤KÍ'Kï^Ñ™‡4بöî\qòù~Èÿj“§M6åA“™Qø3j´yŽ›Òe¦_Ù€¶37 ™>ÚˆüôU'?>¨·n½¾í1šqé ÇÐý¯Ùt÷j×CÀ”Ÿ+¼-9jO¯ •Ë|ÓdpÈ‘&’o¯w“ÇÞ-ÅÛ€™µØqY€.ºª¦TW•ŸZ¿]-©n8œGtÐáSS$^´x߱͊+>Úº œ™ÙOCÏsä&á`sÙ!&ÍdGÒãîpÚêÖpäDë]4+“´bé ä‡ó3X´ÍÏÎ>vô¶I ‡(ü¼a=ìèVÙá1‰‰É)ø"n³A—ÿr!â–áò̤œxH° ð ÒÁ${Mþ¢ötÉ^Úv¦ì7lÓè2 òyµ5£vמ=‡+«Œ-E‡L°Q¨BH‘7jâ;aQ®ÌŽ'®'&1>U¾j®ÍÜŸ“L²0ÓŠŠrtæªeÊØ ŽêàÎ" jÕ¡5?aÖf<îµmÝZåN“|¯ÒÕUP ­ÊÊN Õ¦@èkëÏ}õõH›lYA _RRl°I·ïRŸÔè‰lØ«ÚÕ@”&¼–1“ Áô0=òjí–q±DÆõaÑ—]:ÎL(O ´Z]X}ˆ/jÝru`·Xýfž .Ž1QD¬³È†2Pçï=y"»@cH¥g•›v=¸—rM ÓNO_pïʰ&¢ß´PJfŽ%ábwÏurñ7¦ŒòØP‘ì½8"ßÜuê ~½ ¿çê"oÅ$rI¢¤þE¥ùR‘IV¹êKïñRBG÷„üTÒ¶U窋á5E£FÚY£ª8šØ¸D•25aVÙ`!Ò§å*ÓIV5A×Y è7Ùèk¡Ó!°Ió•ÇK7-^©Ä¬E–Ó³õPÌTE‡GHãœZ½œo9uª’³â×’ Vÿ¸É`Rz›ÇLvé-È¢wZåœWy7pn yÄ3!¥5Uº’]_ÌÛû!î7S¸/'~‰ßùië€:Ô;77„AåJ.pÂò/`ÄüÆ©ûÐt‰Õo£ºúÊ®†¯¼-DòöÑl’^A6Ç๯µŽ‚ÇáfS{˜ØÂz8Ü­/‡Ã¡j ߨ¦‘ü¯=2â3^mó@›ž‡Tí}lÔ—EÝ]Õ¤ýÂìU>‡¦7»Š¯ìîL£ÞpƒjøY5BÛ>…MÊW©#É>ô¯NU¤ªP¨UÉt”ýI%JèŒTµ*]Îëxj““ VeSYeþ0] ‡^„ú¨¶*}Á¶j|:Aýƒ%óèNÌ”£zkâ““.†šAg2ØL4úža70/rñ@ NÚÉ¢:‘^ å?9<%ÝÇLŽûIæ¼C ƒÕ$,ËMÖ¤&)åÉJÎgødH„-à¾+¼)à¸$êRiUûŒ*QÎ/„ížè1‹\ðXbN—ã%x<ž†Ýˆ¬›€'¡Åh9‹¦"'ƒ¿cÇâß¡B”F|q÷[4lÎÁ¥xðŒ‰+tÚL¶hÚ½l½Y\|ü­-䲈¡¿ûä“ýÚ"H)âÒ¢â!” /ލ®-ÒU6yÕoüøýC8LÏñ¿‰¯ÿ™‡¸†DFºÓí©BçM¦ï:ôBˆ"Ð%͡ވºýìÇQßáÁüê#‹?- T¢ŠNø@„¦Â­Ž@yªéä»U õ§ïU ¨°®i‹¸†\khs>Ý_ü« …¢Øið¬¢Z]WddçWÔ4ó-Œ VùņJ’ÂƒÜ Ò¡¢D·7¨EQÌ“K—®7Å4…VHw7f”šŽ@«’¥¥Ê ‰.H(Î-˪(I¨óˆp–»¹r®õ®Z)0/þÐYïiØ)‰òFÜN§1bM´Ÿ ¸3 Ú€¬PÏ_ŽÞhˆ;º¹†ÛX³V¾tµ_úN#6Ž/±#=vpOÓ~­äŒè>²€é‹¶Œ&ú©o|qÉ€ÞÖóµë“ψÙE#[^< 5öÿB׊Y¶¸(šAÈîöã§hÐtœ=72—“žô;²˜Íþ.nÁ‘j¥MÌewDú¥‘oN>XT[^¿÷¸Þu]ž¤%’E=}ƒÞ4–ùØ9¡±ÄM,76dæÔrâße㊠'>ø¼ ÙÍ… Ö­e 1žÂS‡Ì<¶àF°$/íh—ьøIuÊ®”¯ò\B­Ì¢- gÎË8¼‘[w\qAÕ¨ÊME·kw4»ö,µ&/‹µV[̸ã‚÷2ÀÞºõ#ê!_gËîÌБ”œ&Ò¤ø;>Ìœ÷Çm/—_4ÓË”—q¦¼\Ï1‰/;Ú)iúŠÔp(áŠÒu…PÍTEé‚‚¢"B6 :uíÓ ˆ hŸ`QVXV[[YYKtµÉú¬r4¿IÐh@ÙP¶AØ>¡}ÛD‘æ±B4½¨…RË\eyÈ œ!˜ØqC9wQ‹ö9$¯ÐbÆ„;= w›Æ:ÁXaizti4(ò-ÄÓͧª…´ ^]¾zÝ(õ„tka4«š•4Ê ú‰ëCZí!Ê62:-’|¯F}FSNÄm­ª¶ó{^ ÏcXŒ–ب4©™D0¦_>››}þh«¦Ü$šñDìÁ*M\çÄ+SåÊ "âˆ=‚­løð¿ï¤$‚˜þJ³ÝhRš1,:æƒqޏ§­çø~ê&úÐxb0¹¢>A¢N«ƒhfк˜±·j›røÀ6÷ƒØÜíÂ$‹BôqûröM]B¿NÖ1 dþ7½Á*¦—·!R¶}›°]Àßa ›ªk¿PwA›¼Æë3è6UyÑyÉ ¹RŽWtì´Áö¼F^h¶Öµ§À`>†^LBÛ.Ý;üÌ$f=QlÇo6Y‘Š(MFF!™çWÿþÙ‰ù âðÿåã“ÿ+ÖŒûv~žÓëÇ.·_?v9ÜYúßò;Xú[˜ð·!$¥§öåî5™¥¿ŠøqXÑÀÏU:_ˆ¹"™$pL‡› žÆÇ«Ò•™ÄÅï: Uæ.1£ÃEãÖ¹æ”C¾·þc,阧ó2•–H4í¿üþ5HOÍ÷BŽí6Ú$mbúd¥ Y|† šÝ‘ÙùKÛÎߚν°¶ü7{Åœ¢V¤eᆠõÙ€,× ·§–Œ<-M®eY”äÇQ§ðTÀž€çyáE¸/¶ŽO ’TÁÈÓÓ2s~Äg¸£¨G>Â==cmóo㚨g³ec-Û<æ·qO›ñàßc‰"*YŽ4£ƒ:oÙ,äÇ£h“B,,.â$¸Õ‹ ¡,""ã8\ëé¸Hˆˆ h’ òI‘:”¶VðŸ ^<{òLˆœù¿±•UARiP^Z³KWUÉ!‡wk¤ú €ˆ°0]È®½¾†ëzvgô߇覓b´ò±‰, »üpö`V¼›WüûÞá…4¶NŠQ‘`+¾«R*!n î‰,E?ÝoþtWcb¸ŽsSʃ †ñ­Š/«¨(ÞufCëü ¸×f,à°èïä?¿ºN›éP¾µ )·¾Þ’êMÛYÍ^kq÷‰  ) n,ÎÏÌÎå4KµZ·"hµ³£D.'»JcR2Ò2òoÞDôëˆQšNfŽ×›Dû”“hÿlüï´·ÜR|; Tê4_¡¡tf(Ø“ü§Q o#‹}Ijž|}ðjN5$ÕpIi1‰QÙ±%ò7áÒ‹Àej{‹»?ý}Üw4Xd…î£5§y¨TˆjÑö4.]G܇á|šOCÙ¬¾#MjʼÜ%Dޱÿ8½ˆ6î„ûI¾¿_ÞîÈfö×0yI9²¸´ÄD‡ÿòû‚Ôx2}•¶²œ¤¼ÂôÜ\­i¡Tßn£콋²ï yt……[©·|®nÿaV±+¬!nü§Î…à£ôÉ-óö;qŽÃ×åû¿¯»”qn2Ø_a=`­!êÙYx gà\Ì>^†z]Ë1gv1ªlT®=̃•d8,‘­ˆ·>ÀÉôGA ×dÜOš4øªj‡­M8·jÅTðÆŸÖ‘KµU1E„&s~&×ð-1#Íðm—kð£'+òšLÞ®£—/6Zy‰œuú5ñuöÕ 4 qgÃ3[$š| [aËù§ØmIC~KUT•O²T ®â³ãM§y´oö¬¶ÌÙ°J‚7`_™É@‡ÙŠ_ò´¨- î95 Å916%y™³¦ýKk.#"ä+PÏŸ?5X·"‹÷Ÿ£Ï{Ñ_Œ)´½dïTŸþ’dèÎÔ“cGÌ[3ÏWYkÔék8B,g<|± ˜–ÒÉ Êu!Î’€m;¡ªdU˜2’U)*HdÄ2Y”pûEwš–ŒÆƒ:»|TrÆGÒjÔæ1Xæç<éÉ2$@V=çÈ­áÎÊÃÊ;ŒyW’áC×I†Ñ,všIÃÎçvšôJÑ©­p¬K¯tY»oŸGòÛHî3c’¦Ç ølÇ2 ]!B þ-Ksè¨Çh¥õ¿k}ä§mFù€ø0ÞmgQ¯YÏ0µÍ%ÆÇ›C›h¼>¥Žˆº·¿|T©ÈHQjM•D$mX î°=˱ž^Qxÿ§‚>?…JHÌGÂ÷£ªýáGLÁgðÛÙí»ÒvC sî³ÖËW.lZ¸ÞcÛNË~Õt¸ .2§œš4röü Q§VG./¡)Ô@\Æ‹uÓíG ò|éKdùýÝ_e<[¹Èò˜ÜÍÌHW½=·&òP¬¶ÿѦYÓ~z÷tÝ…ou¦¿ññ½ ~¸)ýË#‡&Ø ÑeÖÆñö¯‹vÐìæög×–ʤ1IK»}ƒXâç!?’}¤ÇôS6lrráÜœÂ]á#÷ûn4²àÄ¿žƒ–ÖŠÓ îû!ÛÁÿ|T_*oª>²§ „ú%Nù~é+a;3sǘ©\·ãëºÿ;¯g (¨k6ðVÿ8ðbwÌÃ}dZi}ÿU$i…Ÿÿùjñ“È!K\ÃÜóS’ÿ@óW·S«¼êÐÝP«¹,už&;ËTp> ­ 7´ZÈ÷jïÍædeçA>SU+“ÉÓ8Ü/‰²4ùFT¬´ÞÝs 4 ³5Âö•¨«˜³Â× `ÓQ¿=5qðæÞ‹å LÞKé ’“i=£ûôÿ !2415E¥lã´Äec|qƒ}üì_Œ¹»hÕü C\36Lá&qÚ ¶Óî¬üé›3û꛸KkÎÄ|_ÃùSšûL‡'jaƒo)Nƒ‘¹×\×p†)—Íž¹|Àê‹ö­* jÜÔäµbýª” `f†?=~{wãñ63Ñ4•ßn¹ "­Éµ ÀƒJ£!ú½ÒRSÄȶMhœl/l_ˆn±EÝê°ãQ—,’ðßãl—nŒ•tüEÛ­Iñ^“ÙýNã‘ÛÉc¦ õÄé€õ]t¿¿ø~Zû6¦ÈRåéèZ”ÍGeE%)Ýl_k£Þsh…!6±„«Ž)M)=P¦?zÒ\qîÕÔ¡³FãôRÔûªéÍİÞž­Š®öŽˆK”Ë9•Ò$+%¦×e}uþSI¾‰n´LVjzªlæ<ÜsM¥Ó¾†Òê*Ãþ7Ëþþ?å§°&!]‚û!k?´Ðx@ ö èmÔ¯ ë"iZyâä%X¼–ÛŒ{$`!qHsópŸØò,~ûþò\`2ÓµYó!Á/¼EÅ £àä34í.šýLÈCY4‘؃'ð3ü‚Eð¸|æä_&‚yMèzæ_OozHjOãñ±va GÂ)ht,co:JÇùšŽ—C y=ùûÿH1ó&1ßeQÏáShËEhŒŽ¹«fS3‘¨«5±vxl©Ä­N=œ¡5ìuñÉ·B~ƒé‰?m$"ž=øäÐzÜè³Û~­³gZ*ØdŸ Ì8ÌlÂÔª…‘ן÷óŠE–ôÓ;­Ÿ®‰5§¢£•¦C ¹:´:IIÀ`šîòÑfó¸¾K×wY™£2þ—ÿ…—ñPlMK†mi¶â{Ôêe¦®wâÂ\u[€ß"Ææ?Nƒ÷`–u¹†gßî=SÙTÍy(“ ¤ù1¥©Œ×Ób†®÷[õ?Cñ”endstream endobj 546 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4944 >> stream xœX Tç²îq˜éÖ(*c ¨™Á}Eq‹1FÅ0Š*¸Œ²öEPTv˜©™aead‡7ÄÝx®ËU¹1É1j¢‰ÙŒI5þä¼÷$77çÝ{Þ;ïôaz–ÿ謹ꫯ¾B˜õc$ »lõÒÍ3íLo'Š#%â¨~â»R ÛG™éº7É` šeþµ…(Š•ƒ1z#—HöÅgä)\æïëa£¶›k·“¾Ì´™9þ¼i6³ììæÛ, ô óßéd³Ú3ÂÏ'Ð3‚~øØfCðNŸˆ˜Þ-úED„|0cÆž={¦{†Oó]dzÊ4›=þ~6.>á>aQ>Þ6ŽÁA6k<}lú¼Þw[áf³:ØÛ',hm ¯çF?ŸÏ þ¾ž ÃL_¼,$Ì1<"ò£¨•žÑ^Î1;W{¯ñÙåë¿ñã@7Ûév3gÍž3÷½yïÏŸ0 ŸœaÆ0k™uÌ8f=³™Èld61®ÌÆ™Ê,e¶0Ë[f+³œ™Î803GƉYÁ¬dæ2«™5ÌûŒ93˜ÊX0 fÃ3ÃKÆŠ±fF0¬D+‰Ž™Aã͘1±Ì’$×ú­êW',m“þfænV,ceÛd/åZVÂ.g/sã¹óýö4`É€âw¢ß¹5Ðfà¦=ƒŽ ªt×|žy¼ù›Áùƒ_ 1 3,[UD³v’&¦™wwƒ€qe¡¤±û„T êžÃÇ•„½ ©‰I1D×ó½UrlZâbà¢Ôò:Ý}ÔÃ%8vvàXÕÌçQÆ’~ßî­êÍm­®UßupŒ½Ð˜ƒËXÅ£;ehþƒR«ÙAœWõžÊÊꢆ ›*Ý”ŠVع%™3ïö¥VJ,¾ Á‰8gø® í¶êþïùILÏç„1AïGhv@ ´ô #±ä,ûm¶Ç•€5jù’D)Ê-XŒ6rœ %‹Žþœ 7·$Å‘ÕuMžwñ }±¤ òEß•µò0ÜõpüA]ÐÆ ¥.V—R\)d”¨>eM™NÕ@´·24Ï/s'pd:Ë…!…{U ~uÉösŠgÆäÖ°Ÿ‘£Cï7T¦ä§À~àÂ!9BE$l4$ËÒÑ"¥Šôm硸*œ8¡yO­_…JñÈ»2 sag.nHnÀÿpq¡ä5ÍöAúZÍ“¬Í—‘w¶vÞW^Pofƒ×ÃÍ%VÒ 'pƒšÕNÜ:iRçËRÐ$}/Ðü—ŒWÞã²è)ØÕIP¯R´Š´ŒVý™À ìüÍ®K¥•]TâË¿ü²Ÿµyù½R]÷ ­‹z¹ñ™Ð›*)6u+hõ r¯´É°^“ÁË@“£FyÏ3"W³†ï ^ßAc_ÒäU¯S‹Ä!‚¤\<' â@>3?=ë&p¦ Ò†AìÐGéLOaW¦%jµšÔáˆ(°\vQïÖÌÔj)“íÐ{õ.»ÉⲞ¹ayÖcÈ)¢~~g,ÀÉâFAR‚¶8GIEêícAî—öxƒ+uv[Ÿ³£{ÐT™´w·!/P©c¡õø…‹%»wí s[ôm4#¾íü™rÍ¥dc €kO¢­Ñ¢û/¡8Çâ(qÀ#þcØþ³òŒ¼0JKÀÕõ§„ÃöÙò[d² 1Oí^}¢ªº¨édtAš^Y‘Y­ËîA­çb•?«–§‘¬2~ÄTó7¥"êS‹›¸½8“ŸÆNq lóÎÚdpVþYƒ’Æ‘ÖÍkAR,^•â÷¨å±?ÏËÏÌú¬ÖOã¦M¡±Ü¢î‹e>äjr“R“A“š:ÏÖj2²²AªuÖ@åîÞewY´#ÎÄ’LÜí ÛÀšV¶þ¼.Êದ°—ؘèŒL販^¡û‘á2oµ¼\wM ª¡UsªwÕò>0‰ïq}ÇŸ‹»Åñ<¶ýI@ÞªžWÛ~I¦hO<Ô¾éÙHœüº—°l_’ñ*EìRؾ‡Ë$<¦³'jÏTvPR32ÈA C½UA^ÛãÀ¼/Æ¡|âô'Bñ*eK<Á«å‰Ž{É,âÜ8ñŽäîiD[Á&€O ŠYF-Þ1A”¨âe[dû0š•oèÃh¸&ð¯Õ·ÂAmj¼V«",ÑRŒ–üŒ®í±-r[€Ór°Þ]¢!;½$j¹Sá¥þÁAÑÞ›¯«._ïü=F“.ˆ¿Ñç‹ÍhÅ“$±<®,"iS 3…ãª"µÚà´ð4 = fbáNÚ"šàüïõÆÆÀ^]Œ>È ¥ lj‚ŽÅ²žï²÷ä¦ëB8t$=«Eb¥ë­Ühxôzù{— M#P6â .Œë J{Ac:~†©ÀbÅ÷šù­,®ú'‡‰oþ@ÄU´×oqËÜ=’L3›Œ&V_OÃI<×àLiU‡7̈=㵑Jb8èθX^¯ªlrª Šƒ8ó·V`炘zAŠ»çòq¹Z]Ýóÿ I!+¦ô|žsP§= Ö' »D%>`¡X§«0”ôP\™ ÷Is¡”ä n¿óg{ ´Ç4•i:-Dr=“)&Ki{p>…ôiÄo¤¢•:Å9p¢*ùþ–³ª]F×cŽÔÏ9sÆ‘¡dÄSp.Îjþ¥àX4¤ìÕ¤ìKVEms XIWŒÖ¢õ9Õ)3}½®©èTyCCn%`ÐKgŽ?÷ò †%”Q˜g8XŠýÅu¼½úyí¨–ÿÏNÿY ú‘Å~³Ë22@“¥ŒKŒ†hΣ6ºüduQc“oëÂÉ„ñ$2Ší{d»§}{׈Õ/PŠËQ OžX*~ÃCèÂφۭ­pûéSX±c¬˜­"æñ|[ø9M­üq]w„°S±GU'éë4)šHæÂ bÊË Ž—–ì­Ý«NósWÆäz-¡ç·q¡ƒW¡W5>ÝL°_ò¾µ!à@ÚÒ(pæ6wØ£º®Ü9™xcErCÅZ˜ ¡´Ÿ¥èܳâêàä¤É<Ä]'›(ËÊ«P«}½7‘ádàÖ¶¶«7 _eŽ÷zµï3´³è¢:KÅ Œ]y²Ô„Ó+ÿ”JUºv}œ„sc/U®f?户ùßO??Z¿æ&cM • Ž]—%M&Q2K¤dÑ=ÿm®<Š$Ëy6Êrã8àõt[µü¢Æñ ½èíb_ÙŠ]Y 9 rˆÜ$ˆL~ŠÏ:$È!#ňî•ü¿ñYê_5š©ÎoÓÔü¡ߺüEØ{öýY*Úÿ7qÿeûõšâ=‹þ“¸ÿ?,Ée_ongç¶e{¨rÏ‹˜.;œ9*…ÿ9 ´÷ £ÌÊ‹ºå‚¤t”Y„ôíE‘ð™:}•¡P_GMô¢õÓìX ¾½…Æ–Á¨Œ#ö=¬ˆƒ¸Cö­©mÁƒ–ã‡à×»æ Û8šŒ"oþóï˜ô›$s_z|X—AzNæQ\*ºZáÒ׿|KU‰—¾’äáe)ÞÅ¥ü+ry kÊÚI£ã»øf¿Z?PÐ\[Ûl*˜8£ø•QÒJË>Ú4â”ã=þ•I2IÖ’„É“td&c’÷þ $)Dà}aCñû çágè ÂíÖ¡ó¹Ïîä”ÂihŒ>î^° FÃ|ØvInû§;ïê™ ÉBK¡â;Rüµ[ÊCNhœ’”‹\ÆåÀ=êBùQèÐ]9Îõ䕚m1üB5y;üò‡(·aMO¢º¨G× ’N‡Ž¨”ŠùF{pÚž„Uû“â’ía-ˉr¡þ|së)”qS€o8dÇþ2÷ ÛÕ3׉-­n(>{Þóhlº²²´î°¸'mNöŽ>NËUd;ñ}yÓáT²¶¢åPpŸVí> %–c“U^6E¯ÕÄS‚QôÄÅäÀ1e‹œ!“7«aüØP·ô“ÛT§²ËÊ ‘k ¨r÷ô Ù<óÕZäÑéþ_)©aèzBÆWõE%‚è@C|ßÔs×£ÿJ˜"ΗŸÐdGiµ±•ä§ždjl$b¦fë _õÎÛ_þ9oËé&r¼!ë=÷5…ãŒÏqˆE'ŽxÿîÆ1”FiÀ·óÈ~ø‚L rM P+ÑŠ­H9¬©¡ü9ák”•eiLÓBjœÊ%Ò5ÙƒëñÐìÚ´Ò€ÛqûT¤•v²ÅyúôCYÊú¶‹9t”|³¨o—ÂD20Ü9£ÓSiÔW–Ò³_ð8ë–°æ½®÷pˆRñ+Îùî9š«z=Äׯ38¤Ü”%®Á¡68ÊRÑƒÎø œ”5g).¯Qž­I+‰ðM‰ @ο$¸¾¾´¼îºç SùÍŸK2”Š·ðaö‚FGañÃð;ô(ªo?£ÒÞfÂ}2H¥è‰¤ö\̽!7x7©O<º¯îÃ1‡^:¾û‰`É„Þz*3q¨ä¦ð™)­â >ç0è©#ò 3ö§G¥k³59œZîG²(Óæ<ÌËK×Î| ÔìBùÆ•S‰Ù22È$k‡KyTÈøDÙÆÂÙ,!ûvÑ•ÚF®÷ðâczî'›`ÁƒMOL³ç61œß—\5ÜçY _œõrÚêï¤l ãï«Zà2÷“]+‘•ÇSÝ9w¹+ÏæírwY2‚b™ÙL¡5çñSì‡Ì—É.纺.4×ö¶¹‡¶ñSFÙÐÚ\‹ïš 2;ùH–&¬‹õßëí±ÃbÀWX˜k8­\MD…·wx¨Ó9Ú¡‡ãÌ/0›&à6`.‰'c&}@Få÷ö8˜¦»„¬º;‘zñÓàÁßÁ§¿^)qOWåî†õàÏ9‡ŽŸ§4k'àoF©'ÃRF:¹ß,ßãeq6°rï¸Î}~¾¨¬=oeàM+Ö*øòù¹­MUå'+¡ž»еðý)« ».oÕIGjy‰sTŒPR¢uTX|sÓ¿Û€ýîÞ.i¸¦¬Ø÷©ú5|]­†/h"Síg'Eƒ¶žÜÞÒ&œªi»ý¾c•_x .˜:C€f§6„ŠÐyº}og(†P¿aöÚ¹öËœ?±êý7k_ûÑ•ÙϜܗApï' ¤RÈ?ßX©2ï¾ ¯Å£éßEõèÝQ¶ÒîBTSÚÓìOôLŠI9¿¸eò¢ÖŠÚªúK÷.݃¯hž‰V$ŸäÏ$V„™Ñ¹¬ÃQY»£Ì¿Ð“®\©9)9IÇÚ{¡xš¨e¸An’|w¿ŽmQ…þ#âEx}ÆÝöÖö–['© íŒ5úž *q‡àå¶$zmÐlpàBr XI7›’pã ÆdÙo ùžƒšœ8Ö‘Ÿ‰‘¤'§$§@‚uLQv+¨:Ë“©©@Z21ŠØÐ6S,7W0›W8°?Ãü7-oQ[endstream endobj 547 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 880 >> stream xœ%QLSgý>J_ aÕAÞÒfîõ9Yâ¦é@È\EI˘H«&JHßêhËÊ+ˆXa™&ºÙ$3i“-Eĩ˲à ÖL7FÇu⌠q?Èæ2xßËÉžóŸ{ïIî=9ç\Œ23ÆXc¯r¹¬–Çc¾ô,–ÖeHϩİœ+{ÔbŽJÌÉì“å\8ò4ø×€w-RaÜùöûö`KGÈWß °µ–-¯R¬¬µ¸Ø¶™-°XŠÙR?òy¹[Å ¼ŸÐ̺‚^/tüòrƒ ´”˜Íííí&Îßj †ê_y̲™m÷ l ßÊ‡ÚøìŽ`@`_çü<ûD§éI³ý-a±UÁ|(€Ò–*'WãBèy´mD»Ñ&T† QÊRŒ¢LäDGÐ ÎÅeø,~˜ÁKÇu²Iì‡Ê1© ŽÏITÒS²“.¤HlÕ©¾Cý5$¨âQ/Q¤¢4é¡&ÁÑŸüänß¡‡êô…Zû¥¬ c¬½Þøy`W¬ó=ÿÙ£'ƒçÅ„6ùå7K W›‡“i‹çd!ô¾‘bendstream endobj 548 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7535 >> stream xœµYtTÕºža`8F%dÏ HSÁ‚¢""E!¡†Bz/“^&“ÌdúügzI/“žI!! $@(")Š PÐkÃë}÷^Ñ»OÜyk½=IP|×{—¾²² dŸœýÿ_û÷æóÆŽáñùüñ«6l]·x‘÷Ÿs¸i|núîaA*6ýÄ ŽƒI˜4Ö6}îÑÉÜÌPý}(ò~ž€Ï—*,«’%9©±Ñ1éþ»=³(œüµØñ²eKçû?¹hÑ2ÿ•‰‘©±á¡IþBÓc"CÓÉü·$‡ÇF¦ç /y>&=]²ü‰'²²²†&¦-LN~Áû”ùþY±é1þ›#Ó"S3##ü_MNJ÷ßšé?ò¦ G>­JN”d¤G¦úoHŽˆLMâñx/¬LÚñrò*É+«S_M[“¾6c]æú¬ÐײÃ^Ï ß±12 *0:fsì–­ñÛ¶'=:ÁÂE‹Ÿ|jÉÒeËçÌÇãÍäð–ñáòfñ6ñfóæð¶ðæò¶òæñ¶ñåmç=Æ â=ÎÛÁ{™7ŸÌ[Å[ÀÛÉ{…··‹·š÷ïUÞ"ÞÞbÞZÞ:ÞS¼õ¼§yÏð^ç-ámà-åmä=Ë»‡w/χwïÞdž/ïAÞTžï!Þ4ÞxÅ›À{‘4ƒ7–çæo&#Ø!¸2Ö0vhÜuáŽñ3Ç×Q1Ô'.Ü“sÏß'ÆMüzR˽|Vß7æ>ËýÓï¿ðÀâÉ'¿é›ûàÓ–?ˆEÖ)3§œœšãä÷øðCòiÁÓÇLOxÌÃýó“Ïô0ïû¯ð3“žÙòHà#Ïzx¶ïì ÙíœÎgP ´Óí­âŸ¼W€¶¢q¢C´1z¹Á JǺè:h2ÕƒZtÍÐ?éK1Tº” d5m$_wXŠåï¡É~([èÂËÇe¥„È » Ltt™:¡öéÚ¼‹­EPQ¬iÎ^¯gB…·Á$±´*µœJÀQ ¾6G }¸Ór7·ÀÍGÑhÀå¢U"‹ÛZmq¶¼©¤¶÷ƒ:hÜ“¹a/ž( gòcu…IímŒ>üMzÔâT‚*ôyZZ)‘<º ¨LCiI³Þ^ËTïFcáõÉV÷Îe»²óiÕ‘Øæˆ†¬tibvx~ è)…,Å,ë¶Ð—+x€ª‡$¹T—­•2/áãzµA:±ÜžWUTn«´ÑÃåä{øGKœœó¡¥( ÈY[ßÑý¡Eìb”CeRÓɨK‚Xˆ2Åy«¢&Õ’; &ÆfhÒƒ”:yN&ž‡_ð{íVëV ¶ªÊeq±å.•QÅDB¸.‚<"fôù¤àN(9aVdØ™ïq ŽÀŠÀ5[tqzñh3µF¥“n© ÚH?Z‡›YUN9«gMšrp‚™uÚœF#;üáG‘ü'¬dµFïNA‘™­W uG 7·s¸¹??ìNs·i]•*Ægp A×;n´ß3™»ùEŸ¦ú~ɸ!‘cŸ ZB÷o8×$,ya62ØOˆâ EȧáýÏà#ê½Às˜OãsB©œlË•žÈÕ^+cð´¡®q¾‹Uª•k¦ Ûe úTˆf¢ñhüíO×ö­r0Ø_áû… `²YMNÖÊ\FmãÐKÂo¬Ï¤<öÜ#x ãÃÙG6æ2*º,à¬È#ú6ðÒÓø~,Â3ñœYooøÝDäÁsilÅU¢ˆ(Ï{ýõHÐr‚é8ܼ¨#{C2fÅ0I[wìÙ ”ÏàÞ Ïà=ö¹`ðèà kf­`¦Œ»B¯y!ýúÊK›Ê‚AŒÃp<ÎÀøÙÌB4 B|wØ©ZE ÀìÀ+ð¯= ÔÒ§N¢™gëÐâkh sñë¯û>êÇ}?¢‰ãE©ËÄ–›i²#¼ÝƒæïŠ ¸ ø?(R&(uª@LeÑØ˜ÂæFh6g¸g„ÍE í«Ój«7—1ûÐ[n]Ø1“÷™ˆæ¡Gÿp$`gHtlSpjOQêï ‰¤ªdætºÈÞvöê›@õ:7LJJðĤט‚ÔÕ;€Ú¤¸i7±&£àD;B›ÁµŸ ÐKWDÊXÒZ ~éí!Ú„¶ X”Yþw,bðù߯Õ)ŽvK€õðúÕ=xj`X2—Ù¹ù•Ð瀚u|—džñ Ö6þàúÁà‹¨@ÄM`)Wè_Ò éM˜ŽYŸ ûܵöj÷¹ð¢M*Qò”I èõjÐQ„zV—ÉXa¦ßDï¶À(.*m>è2Õtö+ÙËZ.@{«÷%Åè!âÕ%¾"ÑçëÒƒÆPè}Š Ì%¬¹ÂH× Õ¦z5d‚x(Z˜«€œ|Te¡TÚ<?4Ô:R&ñÏeâÒ„UÀ²¶Rʇ[&¯F—®–}*<ïÈ“äj¥díèV j+-Ã3³ IjŸoÐåhèœW¤©ø+„çPÑ‚MþÃðjš.[—Τã~³V»~G­\`bº ÇÔ}pH×ë%£ˆ ¤ŒBø2Ø‹Í`4—}˜/w¿u -¼ØïžüáMÕI4ù­ÝW¦úþ„‹*z°Š—<7+c“娔>j0R•ùÅ™éɹ{6žŠ~=Ö‰|ú>_Qæ }L¶FÛ¡m•–ß»Í`<RHRµÇÖ§µ$÷êÊI¤h/n>ZÕ%9 g §»ùÝæ‹ûÑB8NýV!<~fnXFP|Ø@K»{l­ë Óƒž·º]Dl¼°MRIlG‚Ú´*½{2â]D/Lõýýý´Èµ³#³ýwãî"ª»KfâU±íÛ{ ;¾,~à{ð|AûJÿeäÿõÕ•Ïúø½üÐSÑX¼}³ ž |‰H-:Cݕ׸lZðqµ›Ÿz%cr3™L>–;Gé¼BXò¾©¢ô²½Ãu|idµ¾Xš¨‘¥A•Q¡(«««j?Vöh*žKœ·ÎÛ‚,‚²Ræ¬ðå¡ aêL±26?(m’—6[Jj¡Šrç8¥©©Y1{dvÜîFQû¼§‡ÞC‰Îzô¶‡?8åOt]¡'„h2šöw4áÆšs˜ÏàãÿâDìDGzïœÄ}&¼|4嵬¼G#÷21ÁÙ@áÉBÒmR¦¢n¹97É^ÇoH.Nõý}u\”¹´ X™+ßNri>$€ÄUe/ª&9§¸°2%'AÞ‘sã‡ßù°’F|n½¹”D/ópô*HW&iißo›d’Æix,çáK­!Ñ뇣p »¨ˆ:JD{ðzeüÆ$zmÓè:ÜŒ&TbêNìÝÔÇR%ó+¸y²bàù7ž7ô¹Ao(½XîÈ«¬..w™hsi šbk9gvìc-U-Þ¾üqμ6&&1ô91ÃM:}ÜŽyø\â·}é5|24Û6òÑ•@û ,PknÛÆ$&§¯jŽÈDh澋ŸÃêê‹—ð4.ÿÝpðÔîÿ×p8ÊÆ!ž°ç˜t•LW(ÛÂÈwkeM­ˆûFóv›ÞšŸoÐèèÜ-‰ñ @%êZêMµ¦zÆTc9Õp2¦gG…—[#=_ŸŒù3>Ƚý”„±êÜêRí™ß±<»®<Ç%se@4µhÅÜ'_zißíKƒÉEƒ‘5ȹ ‰Wê½; ‘z•AGâ´Ú¢µÚX£ÓN»Šê[œÅÛÎåаZ€B“›TÝ)-Lª§À4¿1Û’àÐcKs[ ›úä£/nÞj\³2Å ÒfÐÙ¸»Žy÷‚‡ÃüAy‡€;B&h/rì¬ÝØå@Ý®‘m ¤"ÑËI¢×SùÞRM&º­aÍ`!Dôž½ÐCNa ,êœ@¼Æ¸Œ÷‡åE`2›Ád¢F–uÖB3«‘¨6a hU*}!™wðCCm…1…ЧÄFNiŠÀÂ…㦣p N莎ªU¹Çä ¥`ÔA²Ic†â0p£^’Ôpùzñ;}óEàf[£ÃHE{;4ç2a“T ÕɈݨHîXu(µã »µÒE»;KÀt—çïÈ^³(‰¾¦ªÆÖÈZK5°P W7¼î¨)©®nð;½¿¯Ÿ°Ò&g ¡*M (‡gwcEg}NÛží!¡á±ôæuRiL®×Þ Ø¦zøhÏ¿mï‰ÄÞˆ½Çý{s~ñX4cÑ ‚¶¶}å¶´XÜÌ_¹9x*||hŠ22@!Æ“n¬¹…| ð¦ 1 ´"ò9(êáß:óëþÀI2š,Èoßu¸³ª¡®˜.o/97ZV4:Z•š»:;4Ä¿ä$oiªgÒDÎ fpE]Ú]&;ëÿz‡œN‰.HLI?_ÙÁn`Ê µ*§óåYZîÊòÛÁUk>Î:KFæ#áºÈ_®Ä4£WbýÆÂT#sfhȘÍjÊ@L°ÊºˆT žúå‚qãÚþë;Æ#`,ªnê?pêP}°#O¢JÒ’ QüO÷~]èé‘5âZô?7Œ›ªv¯Þ»7‘V^ ªÜ°3.öÿƒKÊŸrG{ñÓ<ÁOrílmÙa³“5;ÀI±à, Ó!E—FcŠ¿ë˜ÂÆ”ÚÔÄë 4…j9¶Eùepr;ììPn­<ÏRvBz‡Ò¨f¢ B5üˆa{Í„8‘³Ç¬Î32¬Ö´ $ÌëÕ ,z‰»U€”Q ó!—Íg3Lj–‡Õè`ÍÞßqÙæVÑ~²ÑeÍh’=ò®Í_ÔÿÙ•nOZøùWg‰(4~ʼnxÞ2¼g}–5¤÷jšÔYQØž¯Öh¼}gõ´µÀœTRÔŒ KãùP òé>$yÏ~zé¼@z$4-4hõRùj0 3­Èh$)ÑÞX±¯™ÌPYu¹õ9žŒ.bèãûÐË®;'PZF±v-$C„]j޶G8@N”]o~÷íkhšç,1>7ÿ[Ï•æÏÝ—ßsŸñBá{Q.Q …Ê™Faå)ýòœÂyALrì©{ ‚›õïÐw@)U&/Kß¡ÈYs8à&I“@“*µW^l§o·Ÿú >¤n®?²Oœ3sILeRGG_{¥ÜSàݹŽÕ›Ô4k°åCŸœ”¥®¬¸úÕ­ï:笒*p ^6 ¤Fn¦ûÛk]u|4é<2½×Ø*@«(°àlÓÕ>”Ä%nH+gŽ," oÄàéY)»CC¶•†>Õ|YûNßiÏþã‡ÈߪuFS»4a*™=§¾­¢±³?ª)`ÙâͳW1Kð¤ ü¬¦$€x#q¨™è±~ÉxÜÆ½!D½/SÍÕ¹]æ£Y\†=Æm_Ð{{b÷ð³63ýšýuõ>bÒUyrYR™¦Ê Ô\b›ƒ—ôqëáõÙþ„—òòýŽ–6;íA“zï)tÿ14¶ïRãG1G}µF :-—µ-*< Ä +Õµi;µÍa ÊM[kúÉϲ”÷²^n0ÈT#ë¸ög77«Ž»½þ=d>/à^G§E)3RönÉLÙ´à!Ö–ßtØlê U¢¬H‰ÍIŠÞÞ'9ûç×/¢ÿŠf” Õpjô8ž‚§b_<ÏÛS‡Ç¢ñgvòÐØo½è¸RÒÙŒ¦5ö3EîßêhÙ®U!d0~˜Ö”ü£Wšø˜¶còyªïß~S0|®£E5ÒªäØ„ø„ô²¬Æ6O‹‡öàn¤ùMt\ÿаlò‡hgóZ×"\ÆE‹þ|ɃÆa¯:×)ÍLÉMÌ.’» tÌÓ¯îÝ•¸3qm(içÞFI{SeMmM®=/3W–£¢uv°a>ÕQóõ[=Ûœ{!”zn3ÎÆ¥ÏÏnG÷žlü¢¦›6éMã1x]Þ þèx½"¸níM%@YÍf+ãCß3viÕ¤ <Þd8óendstream endobj 549 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5012 >> stream xœX TTgš­²”< B’N%ÐÚï‘N4&­¨q[m—H5Šà†Š""kKQTAQlµ¯_í+KAQûŽˆà î[HÇ5éd:=jZãôL2INæä™d~ ÎL§{ºûpN‡·|ÿýî½ßý`³¦Na±ÙìÇbbc7.^4þã\z›ž=…þ'›±|5mL9 B9:Õ1ûÙÏž¢g>‰FÂQå¬P6»TasWÕµuv÷‹äK x™Yâ¨}‹^]”Š?G-^¶léü¨W-Zõznz/5%/*6Eœ•ž›"Æ¿äDm¤òÒÅÒ‰[~•%ç/_¸P"‘D§äŠ¢™«ÆŸ2?JÂgEmK¥¥§E½!ÈGmIÉMš,9zò[Œ 7¿Pœ^+HK/ÈKÉÉÏJ9˜.NIKϧ䧈y)9i¼ŒŒü,^^¡ˆ—™;^‡8¥˜Çb±ææÅä' DâÂ7SŠJÓ¶ddfñø;²srW,_ùÌã¡akÈgg=Ábű^`me­`mcmgí`íd%°~ÁZËÚÊa%²Ö±²Ö³6°6²Þdmb½ÊÚÌŠemaÍd…³ž`U²l`›Øf¶…meÛØv¶ƒõ"Æ5•u”½‚ýå'”ãžúôTõ´™Öÿû1ñ+âîôªKgÜx\꘹#,:ÌnÿMø>1÷‰[Of>µâ©£?‰ùɇO¯}:È}ü™¹´>Œþy€^`£¯.V_åÜ»ÀÕ—iÄ %¤UÊjo­Óï Mfï1{càö€=`k°úœ­&kuûÈýbÈ•ÁMdž.=@)ÅFȉ}ÝYÇö¢¹N·ô ЗiIÉzþöD JÔî†FWРêFÐ8G¼} ?fqâ&q ©={°= ’ 8M!-å•ǃŽP¸Áì6™vÒwݼ¿§‚_¤—Wì¢ÂÆö¶-hgŸºÏ3mâZ ¥Þh”ËÉu«”UI·D2"¦2eÌ24ƒa£wßí?:B}ü;ß}°n4ZƒÊ@*óÄ¿~cëÛ7—ìbñsÃhѹzôÚ§h:uéúÓñÙ…U ‘ª7‚‚RxÀZ æZF“ÐŽæO@G¿vƒ3Ä„qU<ƒ:™ŠU6“j†VK tB—¾N†>o«¿Gå{Àáò ¥ŽFª2¯%ëˆ@O¢¹èŇÛFWïÙ›™Æ§§ÔgLà¡”Jyq ÿK<|Uªt±^®+¡®Ê¹Žææ–ÚêîöV‡ˆþ`V|<ŸyLšNñÖíåg±±âC»Ì/ÆntÑß´³ÇÒÆ^䚬fØ —$ä£å!"05Å;˜ ­Q ŸÚë2;,f²ÍE‹p±KCýzuå T: –¤×‡Ád²×]G“Õâ+aÓÙ•J£®HM&3³÷Æ0«€`V‡„ÑÛþŒ[ÿu½›ŽáZõvµ<55¯„,?Ëõìnhh¨éðõT^31á%˜pz²|{ñú”ɼǜÝT bYªÝ}ÖêH[ƒ»V‹Ò <Y¼6™‰‘%u©+Ö±K1Ô{¶åý¦w(o›­ ꈡìÞ=ó3˜9ÊÉn˜kldãݾÞ> \5Æl‘,üS…³h ]Òpè>ú¿¹ÎN³ë 5¨si,*ª¶è €Ë-üqZ*e ‘;¡©Á †F*¨wè¡4µAÅ<ö(9Bôòú„] „wé°Åè3‡šºÚ:òÝ%ÒDÙúØ‘}ï?øbô“FŒU£ü{áL§Ã¸ÒÞ¼æýX.Ó™'˜™¹ Îlü­ÿ¤õúEÊ™ÒÍ?þ× ,ySˆ|}“?`vz)Ï€ÙíêëAQŽüvëDoEe……zòMÆËÕJÁPV’¼ã`©ˆ=ågì@á G©ö C½ýãZZ¦Ñ4F-®ï7ò@åG(e\E­ÐÛ8è.:õ75<¸6B}…@+)Ñ„JµýÃñU¼­Y bY0ºÓÄóÛnÁxCœ³ËLu}9ÚØD]·rkNɆ &Š*ÍJI ˆ¡¨²Ñ¨Ço.t–峓NJG{®Ù-¤7£'í"ŸŸCÜÆñƒ+ :µâG­awI+íè“ <Œ~}P”1À>vÉopjl5×î ñZ•AHªŒr#&²ÌÕÇÍj…ZÉÓ‘˘÷e{t¥9$öšÂÑKè…û ï¬H:˜—“KJVqí0»<'Þªn¢§9wÓwnÌß”™ß|«êj®à *˜”ÀÀ½h€.¡ŸäZ«p'dV”jÊ”¤A«ÊÑIÕBu¾&?6h]ÙuØ-ì=ê»Üuª9lõ€ÿÇXÝü°¿ ƒèôAvB¨.¦RŸ“nƒ}Ä+Wr/êòµ´»d‰© B^z^¦æ~KÉ¡¨„*¯Ûå®ÄJiÏ·*ÄüÒÄ=ƒ—?ÿü>šÖ‚uàûºq:V~‡[Ù|¥¡ã¦ÑBÅ÷¸‘zI£˜dkä?ÏÖIÇØTõ0rlÚÇØxØééÛ\wmûÂæ5Õ—Jñ!KÏdMÊT3.S78©sFO‚ÞPfÔ3Sm`„tªÖhãê"Qâë\Pg»JŠùé£.EjIör}¤Fn,VÏý™Jn¥INm5«à‡Éfñ º1ªƒMÌîD8J,x,¶Z<ŒÊ1+êîÑùíhÎGµöÈô›šƒÍøÎŸÌ¸„úeH= ±ÖW]·{#]u¾êz°âYT'MÖ)² Œ×ÊêšZ}G“ò6Kçå’š"½BÄŠc¡ç/OTL`ó¬>nRªÆOôÔ#½^nPCiä¶Á¬cþYÛç=ÿ¼½8[D.tTM6[öՔɄ3þÏn£j*—0„dµN¢ä6rüÞv{c‡“¬:‹%ê:d©A¡ˆ=©ãm)Lˆ$RŠtò¿SÇuȃ·×q¯ÙœA+õ]‚`A}¶­C⦱ö\JÛþ?eþ¬ŠøËü5Õßg~ÔÆì¬Gk¾d£J6qG ¥ñ%‚|¿°Ó[iu¹I‹Ùd2a2Ë_ÏŠãó)¹FOà‰có|ðšŽÝ¤ ¾dßù’ƒvŒp[EÁ¼<‘(//(jm [ñÀÖ3–ú¯¶ûÙgég9ô¦±}\<˜¬`"ñ:ó3&‚yžy.úâêÏ®Üh¸ô.Y™Ð™3ÄHû™‡Æ¢Qëõj=%MÌÄ!rà·ÁzÜ0/õͨGÆÉltÊ1%¤Ö¹z_<±a wɪUrÌà¸Ü¡«'š«ãuìæéºn >æÙ•°Õz#—y2÷eæ`f¿¸óMÿ-FäýÔ“¼!2s(þ6 °»Í_Q^OúeþŠj «ƒ5RK¦“Úå)‡R VfˆÛÙº½} å-ä6&µí„bc:³"zÇÁw¯ô¢x4«S²¹°…~=0zïƒFvÿ{ú6‡NE¸ŠËÏ®„-ðféÊ•¿ü¥:rˆØA†@QHùú=–DÊ„3s’˜gå΢¶Îú¶†î(%o]··qóÚ.†›¦Ù]´œbÌ.3>w77¢¨Ã©þs':.Øffª$fSÈDc0)õh­Ÿ^XÊüìoÑä[zãØ+\0[<˜5&pÉF}‰ŽÜÊ”2K´8úF3;æ_û S«rÔÙªÙ>Eú¸E8Œ6î·…4›íAKUz)½jCsÐ,@?…÷0”›`f=ZdzÄtç€Bïà³½TI4=ó®î\,fÆ«˜å/Ëð$R@€ÃCHLÇüF¶OOna º2µ Xî6Úɪk^Ä>ôùQ oF³Á5¡v•X—§"71f>3• É &6>ôÍyvßeÔr•CWÓÓ¹•=Ð,)Ň0¿`8Ì2æñ%ÖÝÇ‹R$š‰¢}p> stream xœí\Ks7’¾söG0ö°S!–ñ~8b”¬-˶D¯7ÂÚCIµh‘lŽš’,óÏofUH ÑE{áðÁP± ÏÌ/¿| ÿµ/F¹/ð¿üÿã‹=±¿Úûמ¤§ûùÇûö¾x.U€GcQî½ÚKßÈ}iÕö½õcÔvÿèbïçá‡t]4ûÅmŒÞ«áž:©eŒÃåB¹ÑHm‡kx(b´!gÐTRhàïZ+øpø>BE?ŒøPaø;> ÎØ0¼…¦Î ëKÉ %ä°|O°ÂRG>rŠoè´u06u`=œáŸ} ÑoÊW/°+é”mç7/kuAý %•–©ãyŒü)›Æcöé[ZˆŒAñÎÙ<°­b Á _ÓVãqêÏ ;ü´6[Úa¹ÚZa0Q…!OÐh§†å›…ò£ Ï£¼vÞØ”Çÿsô5œ»vüص‹£‚ƒ?:Ù”_ý²w`ŒÜ?Ðv Îá㟇'ËÝØàë‹ÀyÙî“ÅŠzDHktJ«á«ô4?¼Š”À‹— üwpÒI…b¡,¼'Üðòå·$1j'‡G @Jézì…0žR·Jò‡8/½Õ†R áE^³™¯á37ÂAøá¤œë&u¦£^ñ—ߦç8ð||\Îq«|<&üÜŸc;|Ú?k´çÇ4\Ñ䜺҃ ®*è¬U48m®=­¼Ø«`:‚‘dû|Vk6ÓߨËi­Š.©ÝðôŒ¾RÆ®|ŒeÞ.pÃPèt£4:‰ÙÏ|¸_ñ» ¤ өцN"ç³V^:5? §}ÒûœðKåírÚ˜áË2 Nç@{xK›ý c€N¥iÑ!%pz]Ô-w·YW êêCœÖöí#ÖKõUÚïoƒ £Xà ›¤ÍI4R÷ }¬{çG«­šºžV"„‹=m–r4°ÓÛß#8©bŽ¢ ¡µ0'í&„1BX‚‘NW ÿ¾ÈSѼs0 €nó)¢n£ƒ¯‹H¿# A'(Î2™öA¢À.ËËF!îÞÅ+|*A|"ÀuùîÛyÿX¨pA*í}†|B€ ! žš¬>$Ñ‹Z‚Œ/`A KzkFOUcW³Ã oSuü+=O ðva%l[D5잘±c9°3Šæw#×ÎMN/ë…LDA«Û5X\5W]\‚Ê€k…Õ?HKÒ òNcqài‡T=¥!íý°jE\áí-Ü¢Ö‘‰[Ði#]ˆSKäâ5‰Q@!½î6¯JóKšÄpB"fõ !-ð zÏs$!¹|¢9–æ/¥¹)ÍëÒ\vŸ²w×¥ùªûîØ}÷mi®Jó‹¢`ïKSw›ìݳÒ¥©ø»å(oá‡0å#T ÎÑù}0cô2áX‰í€½sØè%Tf—…E¼)8–Í4`..à#ÉLIø†PÝ€£VNoÔ4Bø-¡aR€f/_þ’*@9ÏÁœÛ©׻þÍ×#«…$[ÈØ ÏÞ:xA€Áý3™kzŒºß¤î‘W0ZZL{øŠGmü\ B†O/9-G ÿ`Xt‰æ¯9Ka«ÍæUxÇÍë»ÒäTö¬XÚŠ>§¡®|Ÿœ$ðÇ8° v—íéÙU)ìèô _Ó:€„¤UP”(m>ˆC@Ò0Oã¬02ÆRV|¦KÖ㪠 ŒÀÿ4…±Ð–É@Z%ë9#ÅÆXO´£µ§÷ÒÍÝ?cñ´`އŠˆ#ÁúÞt•Á|eJøàµ-̇£vD-ñ¢ÿ[›0*ÚY6¡"  ë@àÏI×$]ŸøµÉü ÎYd6žýÊýÂòÚ£ÂB Yæ¾Ã!:\—ˆ‚kpÀWZ¶'ÊæÀoX‘Cï;p¿¢n„Ó^¹ kœ…/_ŽM  ïFs>Ê”äcîäþðñ"!PSÖ5 ›®½w)6ÂMã )”vÖ”1ÜðˆqŒ£´9º#ìË ûÒÄጌ/hÕË—¹;» ý¦ ¥„ªV¹iÔ;Óüi7ïÃÆó:ÌpøþSŽêr•”V[‰‚Ò\aÔn†µàš5žüîÉ J‚øÖTàO€¶â]-šX³óL8.§<¢ÔSö† CÇL/^0¦ÍÚHBtZ´<´¢ªR ïQðA«`ø ÇH!#xãQ¥5àÞZôe5ö1’BPO ÓRkiœu¨˜xbÀhUûÜdÍxïFNa* Üô²œÉ©ÙMNb}OÔ YëœN@ãˆ(7œbý—$Þ›½*  Ìªˆ'0ÄhÀ@& Û>4æL2/-÷íQk@ i!}¥’¸Á­J*ƒð A%(’¡˜A“8MÝ‚ŠÏÖaLäsÎüýå^ôñãºòâ&¼Þ²ɶO'11 µ¼fŽÎë²3O³Q¢Ùg¬QHZg\Õ_ò§Á…ÕM(!J "Ç>1”¡ã!0ØI‹`¡³´‘€ù™¢žìÝeîC…L®×DíŒÐžÃÜiz×HY™‘erÌ-lêyéy=²£éCžì8ùŒÀŒa—„l`¨Bãmkëi1µÿOÈêEK”­*ûìxÆ–×åáY?Ú€{`9Ð…µ¸Ïñ°ãú¿- À;8+Š?^•~Ÿ#>[ ޳$'QH<ÕSpt’5EA ³4â;~e<[M1Á’ÊâÏ‚ß![*8–tÊî†cå;p,Aro@öu ȳá "gÖæ)‚DØX9… VyÐ ÅYÆÑñÄ#~8%È‘éÚtŠjA?~xÓšÖ?Çíf~3“²it’Ƽ•wØ'Û´¸”‘)ç& §#7(OÓ Þ…÷.B‚":˜ ZˆÇ‹y‡~-S¸"Â…~TŸš¦©˜`ª¨b~Y lZ¥ª<Àåyšbz8d e Ö3~°ÀjwñëW©™,%¯È‰pj2e8OboÆB>æ Áäžž±I¼ê›‰ƒÅÌIŸdûã¼LäÚ‰àór“š'îçböÕag5tòEM"aÛ$.bŹZI£éø¸Ù­2$ó^ñ™6¤YJoä[»žóC*·“`óÚŽàOª†‰§S¡%¢´ ˜2é Ü̱ÉîÊ“¥î„˜)‰‹;( “µíM Ü4qh…Rn‡R | 3ÓÒÇLÔsL×Töä¼xik݈‰ÊUêeÒÝ ™˜úî,Ø”@˜-•¼Cˆ–¡®RQÜ(°;-êÂóä#£®’Û¨Ëýí¿,fQßùâÃ"ç~¢36ò òdÈ}XöŽîVõsú&Àá÷»©?YEð@Eê¸4¬ G@jýò»âyeèÌDwɱï¯E˜æå™Êùÿm1'¹Öó„“Ó;Nòcؘ‡eC—8¬ªœé¾LŸ•i÷½!Œ6Ú–76eÚŸtUµÉ—ôÛáB'|±`4)s–´adÖ+N—pÀdðU¦äx&[þgú¨ÍçÌÁ‘”8ß0 ¸.owÝÓ8j–û¬€×ŒíYCaGÅ-:*êÌW9ò ~Lê tü÷&võÌV ” Ù ¡¥Šv"ÞjP•'iqKƒtlcàTÕRÛgKpóˆ$ÑÀ&š]¢®…âÓÓíÞzO¦)|›$›)ü÷LS2 Äš¿ûÏyˆ%8'£ó6Ü—­Kqm>å`„`‘–Å2É,—këuÞß&#Ý .÷Óý,“cZ¦L£=?IÓ”˜®¸EšãÁÇk}Þh;OãCm¥¶ÀÔ#~ÌT« "4bPlhXˆh«+™j6ü…xzùŠ…¶ª+B0¢AÐ4(a¦Bv¨D.Óîºùk¦…)B‰IïtãL ‚á©C—‚–&6çÒ>R§?¤¶vb”Þìëö^y^Ü×Á±æUi²2º/Kó‹¶IVòQi>/ÍÃÒ|Všc÷]Ø$ÄéLž=}Ë ñÜü¥4OKó¸4¯»£­»ý®J“-ˆÍaÙâM÷…UwfÿYš›Ò¼ìÎìCi¾êqΛ¿£pЈ0±«åc¬î@#÷‚—êèæÓ”/ÆhÍ#ð,×|^,Ïi z+Ìù={Ú!¹LŸ©Î;*_Ü«è÷<ÆÙ@@I;UèKOúì-Þ°è8zª¨˜ìaªÕÂ\˨D\b§+t€œ>b¼NùáhÀôñ$ý»Ùôý¡&.OKC´+XéÐ2ø¦òÞÂ=hïôå›âË|zrèçí¨‹ æ„ ÷e.ÊRª²£ò!…L}ÄÚBV°¼HÉ}p8¥ž)óÕXIcÊç+5*ÕMU”Ò”*Ê®Ë*ùï1` ôš9%L–Öì~Æ'ã·ÎŒ F½J£Ô‹pÎfn›ø·þ§DÕÄësQR^¬”¨s˜b§VS0>ÀŠ’šüJö3ï“_Á@‰rÿ>ù;Ç1nIk÷ò+2Ú%¶‹Œ‚•osÚOyP ÚV À‡[ ‹@OF<þ\ ¨Ô” ÇrŽD(m·ärÓælòMI¤ÄììO©‰©˜¦Ú(´ÕFR,§&acrc¥˜;¢|>)*B¦]»µ§‰µÿ@-0Jõ«Šy))yðPj—Þ°š"CÃÏûWðÀÂÓÁhI8Áþ\TC…È«íØPöf;åHËÃQtÌ7 ŒˆcœyægÞcúŒÀÂÈjmSÄ£„ (RóãbŽÃ…åÊ5ó.TðçÌ©rF=a^ 6V&˜! ǘ´Û‰Á˜(JÁ¤1<ìøóuf=ïá}iöÝ6vm§‹`ÚØ›;`Ó 6êNÐÔsØ¥47Ru° l˜l+ ŸN•ÖÒœ…ãʇÆ`äjW^;3+÷¯H‹UìòëpxG/¶•ê&øøww@7–:ž¾Šˆ èÞàãÔ 1†êÊæWLßäIÀh¼êgIÈ÷}YÝY!ƒ ¬ºyã_§)ú\DÊ]&^VË®Apj6ÝÕ4;¯_nòzှGne@¨Ø[~çʨœ>ûÂï4¯¹ù:ßÄD)¥Ž_ Ee$iÉó6 ’r¹µövô¦MÝ¿ÜúÀF–-Ý÷†³¡J¡‡U†x«Þ×’hoR° oÅ}¼…·Òë)΃35`éîRÙU•ÿ—`ê+H+@§@%ãÀ•î%Ôw‘ñeCý”±XåÌMµÜï“àâ(W‹¢½°Ï/*Ñ^®vìtÚS˯;ï*ËeSÞ1§±X‡å eÐE §»/¿ã^) NêxøT'–…9[›Ê\rZBÚ[,¹NàMåöŸI¯›¸y[Ò¿m°42.Ë`MHÕ/à cVd]÷Ç.¼#30öÝ™¹”À%¢¹»õcõÿwcæ=ó&úF›móg"ˆ‘lCë €ch‘s(OþVì&¤,0cØ´ ¼Ê5ß¡iq6© ¾‹ww¿R)®½uhÚ”°DDƒ¼ËÍ›¢RiXï¼ål—j…,Ö ®‹;­þ5†i™‡»ÒЧeÈM;“d2j‡„·Rlž·H7¾í–tu4aŽp^³à]á\ÅVõédzY•æîâÓ»sd‘Jz;G…S´Ó­3@%(±)žU{s'¿‘¯îxž®”ŠÊ6óõþîVÑù®Ò«îP;¦}÷Ë1É9ÇtË®Îyãüí¦™°~ÄK\–tïõ;?æ(×åÛmH¿ÇàðÚK]w{™zCÌ<üšÎCãeœ©c陞ã—sE0÷ëXØ ù• q»îÿmÒ€H9x¦ûëô8Êкæ®uͣśŒâI¾ŠA{Ö¼ð$/ œ~V:É•°-n)¿|’µ÷cÁ¦4­”÷ÈLá‹,í|–§_¶?x’{¹ÎÇIñÆ-â&Âxäó€ã4vp¬˜X¢¢¼¬E+Édc¸ŸP0—‚§T)Õè<’ðºï!1ЯAÅ0é¨X…scc*ž Ž›Ô.ï¶UŠªÂ]TÄ¡¹°PñFJʰ`ó`r´$ŵ¡n º¹ºçÄ–UÁ0’¹ÛMéÕ²äkHtb%¶å±Æzú͌ëà,?Ö÷ÍŽ‹8Ü&¥¾Q½k“F4¼¬†¯ ÉÂT/Œ¯Mb|ˆ§ V“säðYýÒ'â²Ò!\š?–¸/QWo'®xYÃ4èý'qýCˆ«Ÿ‰«úܸM¼Ñ*ÓVm”íÐÖɲÈ1-'uÔÆ¥ªDî`‡ÿ~ŠÖŒ’ϦràH²,¶’ìT=¥ð¦û)­d ”Ö*‘ÓilÛ@¢0´ÉõüÆÌc‘™URÏ÷ )Vw5u¥*ëÀ¢ÌL­Y,m<(/NŽ_­jûÖнŽ;\Wù¤6«ˆóôûw¯Éº‹Š?d$e£Íô4†ßSÛ±=Z[HEURý²ŒÎ$-Ùìùv"ù¤bžôc(@§üpÄÏtß èFoò½F+„ •°(G&ÿ÷½åþ‡ß°gU³kÒÓþˆ"é?ãJ|{ó>—¬U7p>[±R,YþYÐbœEo4A ˜yúœB”ÙÝcö2¿”¾².ü’q¾ý]{»¦˜iï‹B)] šy¬œÙñÓz»ˆP} <ÍÖWw|ú?;²Þ¤UÁ¥ÛqØFOûY›“òÂDkë:¬Lø·ÃÞZ=XÍ4+¼XhêÜÒöˆ XfiI×5uÌ&S!u† ÷÷‹º.2_/{Àšý¾ä‘å+–)Ÿ3Uýûz,SÞÞ|ç™òT€,1Þ]»lô«ts-ÿZè¼sT>-ARXy~¾^I…Sqþ§¯/'þR*ž?O§ÃíŸê¤WèV,VKQ½Ç©wüŒO6Þ…»'ÃDâ4£ë!ܯ¸ÏoâÝòK#)\96úÁ­:Z1U!Tî:XQÕwÃXÂ-Õ=rþƒ»Ã1ì ZÞ'줦öþ¦p]…endstream endobj 551 0 obj << /Filter /FlateDecode /Length 6873 >> stream xœí\[s7r~WåG°òÌ©Òò@;v´*Ù±%9»U«<‘%‹äÑJ”×Z=䯧/ 3CR¾l¥’”q€F£ÑýõøËÑ4ª£ ÿËÿž\Þ›ŽÎïý垢¯GùŸ“Ë£/žÞûì±ñðeLSRGO_Ü㟨£¨Ž‚ c2îèéå½AûÍÓ¡sˆMç˜Æ8EøÁÓÓ{žo¦qJ&%«†·Ð¶Êk—†W›-´§É%;œŠ.ç5Nð?z8ÃjšÂ‡wôC;i5ì.ñ»NÁÛ8¼¡_z Ý/Ä€¯à³Ÿô¤†«fèÿ|úð`mÛ™Þ­qcôž©þ’&™&˜gxc˜h“F:x’ÉØáå¦ÌwµÑè3nø°Ùš)ŒQ DZ‹i¸?6Ãw ¯¼@$-8hO#Œ¤B†m±BÀE bRSÈ=¢w©0S„ŸzšÛS óaS¦ÒäžmpñQÇÉšaÜluðcHnxöì)¯NÁ^äe ¢q‘úd¡ h»®ÃÒ®…a”ý¯ÉOÐ~QÛÿ޽“®¼ ¡1`>ãis´šŒÃ s ç‡Ý¢þÐm½Ÿ`³aš¼õ)BŸ3"ÐY@¬ªi²ÜÛ%Xôðùfk‚µ8ð\)‡-âÐÿàn„ŠZ{ž#m’ˆÒ öOÃ×µðÌF¥Äò{´pm½þ1Kš5RÒLÔcpå`EÔÊì—B–?ÐYœ¼wÄí)š¤É¢A›°GÊa÷‚—Àg71Z ':D‹Ç#IìO§×£3“šyv¿È_Σw®jST‰^<ù ÆÖF œpàݤ>:舓ÅI©‰{Iã‰ÐG[ \ŒAñïN‰Á:?N9ÔÃl`³ ×™7ÔW…hå)he‹†°p¾ÛD½á¼ßç ¤@h`\:Ðïë¼oI&¼o4ÊkþÎõ¯¤'ÛÏcY' ­Zr‡§ÝEo¬mŽ8,Ž[¦1á<‘š„ƒK"ye±ô_mÊ9]>C…zy˜öWUén… ~ÑkÒòBœ_â×&¬¿bB<¨9Ii¡ÏvÂ~d»á¼7øû¯žÞûþÈ ¹so×½?`ù’ûâ?‚“sä]TfÑdüS`ji¾ªÍωô-Ú;­}‡=õóÖ¦aªçd¬MU›¢C\üúÙm?ó‹âb‡i±)(Ó‹x\ã<5ÇÚT‹ÍP›º6mmFÙ·îå'»ðšl†91ùu¼‡c«·àöQº>ðVIy&üà«ìÐ*P»(A¸C±J´àÜk¯ν@ù+®‹ü׬áÔúì¿zSšüWƒþk˜3†VJAÀ” óax[õþ{¡‚"ÃUûp>ûø¢–Μq€¼Ê‘CŒ¢"AÉcã³YP­&@]Vè{Ü»2ívÊѪ Ã4¨LöˆK_oœõ†èåü و«8¢€¥=þ¶[?Ö2Þ5Hÿ´²bÅ19ç}š€oÒ^Räød”@ø …¾ Î+@`w"‚5g<²5þ#²ˆ.è¸8š?'ðÈ}[¨Pb 5øohà«Ó|'tCÒ Àó)BPØç¶!µŒ¦È»ãHÊE%(#K7YmÖ€Lo¶°£5ªS–B _wŒ3'P®r^é ¢M¤ðSl[M<…©WA5®%¿ìËs8­ËUípŽC'ð³›S-$@ÈÅˤ H¦$ïßáhè°ä¼ÍþÝ)Óá¥céEžn–üéÕx.Œ7Ãtœ'$+<=ÕÿâK.À³èü¼®@êšå W&Ž«–ëíÁ=.4í7u£³ ‹¡µo6eß¾ä!`$ñµmö>`´iV(Âÿ¾‹.ä,«%½f€(ëÜ­ ëÖ(ïé)ÔD tOúÑ:¼ä@ð«[|+دÇbç ?¬¸bti½gb'”[öm€OmÀF¹8DÆŽ×ñCÜlpûÀ}܉ ¯;O˜áC7káe‡l'è°«Sg‚\jf–xÿ‰xS¶ø¯›,¦07ì šÂ³exiAãY÷à›Ø¸P‚oê.ÐUÆ®S6ü쌋¸œúÒÁšÒ€÷ö Z35G. f eíkóUm~¾ˆÞ¦Ûž@ošEü÷YmþX›ï›b¶Ÿzr|‡ÚTµ9.uñ³ôk &ú à\V®D¯@aÆ—4ð%›š„DÂ;€àÐ&zªf”lÛŒós‚#” úF¸Ô÷sôã_‘­´šA2†U^Æþ†¿Ã4KlbßñgŒrIĪÿ÷O‚{cÂ…g"Â%1‚È@œ¿$'åZ¨U;ŸÎ„¹flëcnBÕ¿¬†LXƘÐ7y\ cæ¼´tÈyo¾‰»½ÜÌ™G˜Ñ¡~SG~€)d*ŠZÀܸ¦½R‚PÖ]&6EW è×a.œÄwÏ 8ؼaßZííÍ`iv4:tFâ(Zǵv3Smp¡acÚ¼cÜgÀ ©NÉ„è:3ktŒ&Ä Âzµ ˆ2Ë[þ¡ÞSzt90kÇ-ôÇZp’ÄE¡‘N…pIÆÑyÝÈÙ±¼yÊ…Vâ)%Ád¬Yoh¬áŽÕŒ a”{€À+³&žtµÙ¹¨Øðº¥‹žv\¹,àªéK®R+nJ—1¨tw7Å-t·`Ÿ} ù£Ñ© °oõdFЮ]èôkÔ6z¢ô%ãÒD²3¢; ê-Æþ «ªo‚"P-þög›yYªŽVò]嬮`‹OÈ€ÌVV˜-¤VÄyš©¯ƒèûHö ,Òˆ¼6¬;Ù^÷ÁaÕgA÷}%hãø Ö™¬ÄsH=so-yÛÅ/)RVÏù«ŠVDî˜bEšÁÏ#1ÅIBåÌtPæí¨º‰€ãÀA8Œ!°U‚~±ØŸE´êÐ&ŸÊq gÖ0Íf’m Åé¼{¦cÖ Ö_}Û€ÄÎËØL“˜}Rêöí¢H®—)˜ ™Ùx~3‹^CÉm鎆¤²=()˜ãž ³°äCZ$!Nü3‹åNb{ÏÏæYZ—hGe+ ¼…¶nî¢ÊäziC¦£7Ù™!…ò`©ÿ˦ä„ÜĬ3_PØyÙðh@×Zåù•ð¡3¶®Í(#îµ€hä×ËJŸ°ÒDõLçð—LÐgªØ–Ô¡¹¥â9d›U‰(”iÜÒ Ý¿T“ý$í pœ{Ëi» ¸Q{‘ ºÏòÈ{PÖ|T>ô&Ð׍РšÑ±¨Ùå¤EŽÔKý} V„ÉÌú´6Xr»R2üŒÖãÑž1W*u ¦Ü΃¯çÓïMBc¿;1à^v,{nb_W™BºÊFÆ›²rBzy\Ó£QEÀ¨´jœÆ•²‚IÉEÐÛFÌwØfBmBä»rªB ýùf4ú$nµ²!—XjQŸ \iÁ!rsÍMæŠ×È$GÓLGx3 Âý}_9~ѯoö_Ëé–³äà5`ÏÌÅšÜĶo¡KΕKx:pþ‰—q ß2O•«sä­ˆÅJ«üáƒX=åägÉ%W¶¼(¶Q MvÐGnÚ’áËÐVëh› §­’‘Kg®ÅŸÈxpÖìRxJWì]x€ÿÄ 6ž~°»¨VJä>ûR¬ì1Yx˜©¯¡d(ìÖ !O6R ¨ª9ºµ¨á^dûÄÐ_W {Ô)L mêv_ —k„™ç&…–ס¢³Ϊ¾½Ïí8™Æ\Ÿlfe×ä4ÿ¡âéqÊãÍÈ*+áËE<ÒÕ]ŒÐµ‰vü™O’Ã3õñöD£rj¬”6XÃäde¹?vÑ’Œ×O„ð\ ð ¾/iv«àÅÊ.:ëAîÀ)r¨‡Ä)ú©6›×z« ô·•.æóY-ŠðàÙüm+ ôÃâ  Õ&œ3PÕ˜9–†@êvÞ_*²û’;cÊàT¶Ê#ô‘¡;© 1|ee‹HÊÅpPМ»"A‹~ú¶†Ð¨BÄGƒ¼Íew!±éHŠ®@8ÓfMK¶³ðV*¶å»6`þµvV¨³ÖÒ7yå4axÜÆÿ0lU¬59o„׺Z-ƒW!)-eGXÄ© T–ip”›rtý%àfûAÞŒˆÚiTe‘ÑÚâ\>éµ_ž»Å'ÈNˆgÚ^nJðz±ù¦6EQd5?[l~Y›kó¸6¿­Íq±/ÈŸuhl¦PøÛçæµyV›'µy]›ãâbÜóÚü¬6 »Å)^/v8_¤ì_ò)ÕitZ5/Bu¼**¼¬Í“•¯¿"ÿª4B•ptĸØR‰ŸÅ³àý'[ÏÞ/ÐXï÷аÀÊ%*Öoꀪd§Uc…“ù #oßñ à°wéÔ›:Œ’'.UöŒâ«hBBp–VùË|žp¡ï(bzìðm®ÚWSðíÊEÉ•æoª(wǤ·N W}¤—㦰Vv´£µA&‰hXYbÂŒŒ™£:ˆú¿KžËæþ€æ%êêŠ×( ʾ‰€çP3_„‘!"YÀÆ{^Þ“|·ðeÁ »¾HN¦ ™sò¦ ‡u!eóg’ÁQéÌŸHòì+¾”`”—ot{_Cçûvn[ÇÃ1tó†°Rb›Ò¹B —E|m®€z¸¤zB¶Å‰ëc ï–åøÖÄ),¶ì Õò(†ÁêÿõyQ¾¤JbÀ¬'¬^H äü¨¢;ˆÊ`ýbëQ™šÈÛ èÊNn¥`ž¬ñ}È_Si‡mr}µ!gÙƒþ”;k"~â°njn·÷óDP4ƒœÃûÊ9XGtÙ)ʺ©˜9‚Ÿ,gÐŒ ´´Ã€3`kYÅÒ•%x²9mYBq%w" [ا›BÉ\ÁœaR-«™‰—#‹¸8€û¼±½exP]›ÕÞa…(h”®N¸K˜âð˜ämªKr]g"Û9 â'eG—p­œ"—¿`5—í’ò ÷ûÔÚÏ‹z8þUØ´3iêVòIEõI^²i¥0õZ‚ê î—µæí*QÙŽäf< uô§ET²êÄ%=Î÷ËtX¼KrsQ‡¥>hw:L%8l®¿½¬Ã2¦‰ Ý{ŽCàþ~/üЯ7¥H-ÇYp“œ =³kÊÇËfŸ)ÙËlø‡A°Pà¸ÄnšßȉDl9¬R„–bA ç]%ö”äÑøáó 2z¶oµÜë$RöÆó]Ôö|¾q ùîî]ÒöÚùª7j6ñÊís€ 7ë«z¢ø:I½&x±„"8¨ãÏg¹ ®/’..}ç* PǾñ­Žå-#´­‰! é€PÜšG@e*^>YÑuwÈ'âxq÷~`Âj»Àœ¯žcg¼^S+AeÐO\.‘÷áóÓS4Ô1@mù‡<Ú"&}zö^Q%Óß †B­½%£#qßûz˜e­d<ä»Bm‹û¯×¸J*XlF‘¾'¼ž‰L–Úqå?õ8Ë5~§ÌF0'|† ‡ 1ÃCfBke‰äì㈫ Ï«õɾ¿êŒI"„wûe:¼â *zyí@öN¹ ÊÌ®àB˜yKc<ù‘&:¨Ê^©D/VÌ„æ•êZ<aÞí¾kÊêäìÇñF[àjNr×?õÈ-ðOË&1BžìB¾å·ß·ŽPCð•½ú}ãwË?ûP›»Ú|[›?צ¸!nˆXßImŠ@ÜemŠè[ªMQ³µ)‚k׿ê*‚yp¶eòÁu„`¨Ó/5ÖŠ}¿™ëŸ9eEg…Êßýˆ¯k<úÀ}1­sœ¿Ç)tu¨Õ6 ÓО^—G‹ÖÃÕ8zsm)ª¥ è>÷®ÂŽpŒšœ"€¼™sôÏ0P”&|Ê Ñè/6Åèî…ƒÖ¾ÍTi;å©]2-Êèe€–"ð¢€_XÌÞ;[â[bìèeAùvX-¦#FzräÛžJÙá üE §ìº‰ Ì,›;kÑÍ5gs'o ð zBêŒÌêÕ.ŒÍ¥Àî<EF¥¾æ’ܪF³Û˜€–°` É ¼åª ¼« -ÉšÉ+ïO™ê]îlñfæð}*ÅŒhSèjHö—Z…B|“̽ؔ å9…fœë´6ϘFgyT|‡ÌôÖŽ¨ÉOjäú$ÿ„ìU&MÍ+˶L7NFܤÜF)þóÛÛ2Ð8¼T Þj÷»Ù²>#Ò䢣ú8ÁÎü²ãOWUÿaæÄ ä»|âNÎÁ2² Aò•Â<ìrײ¡»?ê©ÐŸkP_I· ã]Þh‚Ú¸rÔæqú˜°XÚ‡‰Ü°ßÁ£g`µÂ*çß¹ çÖ‡ ÆÅ·?_÷¦G zŒ3-~õ‹ÐH”ôŒ‹_E àÍb_}ÛÄañgÍ£è ¤%ö7»úïz¹_…³ð…”W£±jgéˆ]~ar%Æœ\YZøw1D Ò]ï¼b:ä†8Ì&± 3”D¯˜õ¢VξÎ=@MBh °ÔÕˆÄ8M–´…u5ˆàÈÎxJÞİõ8©‘l:ùÕ)¬2š¢â»¸ÇLB¢ûlâU×bv^š£â[¦1Lû<äˆ|þrù¦Ø)EÃý0Y ?ߊ^}§`/ÞÆ•¶v'žÚ¼áúœµùÂDñ©»wk½3•?ã ôˆ–ÜÒy¡Ö|úû°Þã ÇáÓÒbkio¤ MdG¾= Â ÉmdL¤òø5Æ”Á®O3Âè^>&JÝ‚(ø‰.ÂD3¤‚ðþ­µZ/^æ§#çÒlÏï}õ/ØÒ&©8? ÇÁûò²†¸&åüÖ7x÷ò°H΋Q2zâùZôß¼j×ËÎä]¾n@r¶rÙú°~…œÉƒLk$°]ÁòâóÚ”#N”(ûÄZˆ¿›G¸c~x!õ£,Ž‘Go[Ïxóî}má¬J™OÇïD®2¿ÑÅÅÛC¥ø:S˜þÞ¡R‡7}”î2ƒõ‡Ï –Çuå‹ ©Áíl‘Ejg€%Þù’Ó̇ÿOþ_K&|ZÔýξÄÿ°äà‡ÚAÝ—µùBŽð$&wÉAúû{ÿ Þ)³wendstream endobj 552 0 obj << /Filter /FlateDecode /Length 8731 >> stream xœÝ]K“ÇqŽðºùLø¢gÜõ®C*$…e1¬lGXôa° ,(; – Êÿu磺:³º{w³ eöV×3Ÿ_fV³öf3àõßË7O†Íõ“ožzº©ÿ\¾Ù|ñôÉ?üÎEx²/C1›§/žð+f“Í&…´/.lž¾yra·OÿmSVm³ß»à ýÓ«'¸x¶öCq¥xsñn»ö¡””ìÅ×ð<šà]º¸M®·f?ÀÿØ‹çØØ CòÅ-´ðÆÖ\Þàs[Rôùâ-½-4ý0„â¹ïÁæâŸæRbHÐõ<ýÕli»q¾;ö9Fžõeímpþâðº3Å Ö_àO;” sz.š\M ã1¼“c8³OÑšqKÞP'¬áâ€/¥„\`w‚Ù;c ÌÞͱ¸ Ki`±´–ö. ö&â½³°ÞD³ófˆ1È÷^ao~˜sëXµ`\猿x)æsÜdüUŒu¼PþûÒf–°7!ëü ÌÌxÐÃÚ`ŒwÍ•ìB¤}ˆÅ›/_ÓG8¼A$·Üƒ‡e_ðï«—Ü¥˜¶nŸOo¶6ÂRaößnEáxÖ .f<_ê9ÉǕÎJÎèl}À¢ÍÅ—b‹30=ÑߦÍDwÙÈONt¿ÝÅœ÷ æÿ”H»“2ì8´È6ª±iÝž§ÙS VØOÙñwmëDÛ+:ÞhCQma/{€¹óáÀÜ_Њ›hã€òÐaP'ûzúÉŒ \‡s‡aEÍÅ îQì Ðá æhïšdí˜97(eMÙƒèY÷ËInÖÖir? ,âLËX8Å}t pù*rŒO¾ Á „ ÈA\Èw>‡Å8·¯Ëö¥ Ñ/MFô!4 jqµÀK°ð‹RÈUæö†õ”žOÀ‡¡ögOëÏÄDìþüágàŸâ)ÿü|jðf»´|Ü"8Ã:üõÙˉõ,jãëIú~‡4JÆtb£Òœ•‚å@\™ÃàA¶Ɖ5+»O¶)„“H]<4œ„o‡¬%ŽïŠEfB²ÙY!•D?x4£¢Ä)‚pÕr²SÒ;W ­FY”3z¸ôúÃ9e˜#Ø>„\ØÛ»Õ"œMN¹1×W,‡”âÒiƒÈõ ä/ªÖ=/2#&c#Æ’Î-uOÊÚªwþØK£_â<{Ú9â‰ùµíà“²À¼Ýá @€YäZ$òÿD"ÿùÓ'¿^’ ›˜`©ÞfHø^É›wÏŸ¼Xµbõ@£‹¼Š{DK¦ì_¾ŸÆK¡3=æ€@iì?9à1çAœ%`‚&¬@µ.•F]:@žIâ¶væ‚·¬gÑ¢ S`áXÕùØækù?ØQ2%jä‚G-É6¨Èš5J†QGÎq Jå¨:Òëú¦µÌµÉ;2N+;AJ»Ú]<ã&`8E¶{ÛsXSvC©V+¨M¬¯êoù´bF[-0& ó’–ʼnG³}c@p¥ó^þt’KÜ 'oc†#ù8dÁÜlæ­17¨-ÍÜJušs›²ÊJšW  ËÍ™ú#ë½|Ÿ~Áüº$¤~Öë@ýllÐbywˆÞÌ›ë[X ôð'p#ùÄ€¶61³÷›7O˜b ˜êÿ¿~òû² t¸Øa‚µàlÞÀl~Ó»YzÕf@V€#b=Œ§÷FIÞÛ` ¸¯¿~òôïG±'öDñ#°å1îþOY3ðWLuBÁ´Z"#Ê.¦Û[ØÑÿTÔ,¶ÙŽõ†83ƒÓV^OE3ªÕËÙ[5צæ!–-Î'Y³Öz`ØúÍ®ì‡b¶Óz6D»·n£Éû7DSÊæ5èƒ]î3tÙé=g,Jv=âyŠÏ!X–€qQñ—‡4¤Nñ½Jå-«#RG‡‰Y Zðê*¼þ¨gãµ5¿fe³!—þÍà<D‹K¡ßоD;Üð£ÒoM-ú* w|Þ€; ¨+ù›»ÕޱséÀ¿h_ý` €¦ˆ´(Ñî¸Ou´wîeØ ¶ÕšÙçmiëšÇFdx9zÊ(¸5Ãσ] FÑ£Žè#Ø6'X~ÜDÀHgù-Q¤îŽ0Mº¢W~ðλfÉù¹!W¹¥rŒ˜£ yÑ_FCÎàUC.:„c©98Kv|L-^}Ívg¬ê`Éò9XAƒ—¸#G4~µ÷yÏPš"-J°É•=E;º# “òœÅ{ØtVé? °•!:_¬}ßqvX@K‹ì–ITÜ}·³8ãnåþÍ,ÓL” oí²!°îb®›“Ò˜˄îQæ$â=…°4‰ã5dŽw[ðQ_H(Cµ¹å^š€`529ºýKx<øCpoàÝGB©p¼É«p< ó6È·ˆ“#„ü%ÂþjêL¡ñ;±àAÛÇ~‚‘xF$þ¶ă8ñ±­@CuѸö‘PSا5¼ønÐÐ#hnÓ4Ë>Ä)™QÑ^M |cз>$¼¹Ñ?V#AeZ=XÙ­@Í$û꡸/ô‹&Ä¥ Ïãr®Ã`#3{}óÀ|ŠÜ[-ru¼á.iM*l2³âs¤úkyÑcS‡x¦è ®Š¢'7j&ÀæÅýÌ9Q:ˆ½Á Vå—,S‡BÐ*m,tÜià7zVÎ?\ÎÍ2*î6„]ô ÜËÓ–‹àÒ¤ VAµpŽý}î#öù@õÀ-ì“R~øþ(0Sìšèq]¡ÜDA²{Uœ! ÌtøšðɘKšÔˆa1"æÆÌ$g0“fÁNúÈ(‚2|è/(¤ 47|:è»À©§ ŸÞ×ëò6à·Hؽ» »‡Uv<]Åîm´ÁtÞÒÒY9ßTB!×ck±ÜðÓÀÁ{!/PŠKmñnBï'„øú%,ƒK(Óñ½‚¹´Ï8ñ¸j½³H© Ñt=f7à÷ò`Ö…qBrž™ÆÌM:dÉF„bÃBª`$Œ;T0±gD-25±Aœ`XLÂWyºÓ,¼áñ+ÚìÿRåŽ}s~Óà]¬h¬¢sW…ää’Ãü‘ò$=`’8n9ˆè ¼ò¬Š3åâÕbê¤@>Ä ÄÒEæîJ¯@ЫÓ$L,L?zS¡Äut  âµèÂV"2b·ÜÂaBÊ®êйÏa۾⠆X(lÂùî@&ƒm7cg‘R1©‹’?.Îc¾ÜÎó‹íU—›´ŽäÁ¡3RSâÜvÞˆ×.[¡J˽K™åè?éx °ûèÃ*6Eš„ËuÂæÝCËt0Wh0 ý¶~µm¥2’<´mùþ‚ñϼõyL²Cع¨¿ `¶b¢ž!f>w3Ô)Ëgî°H@NðOMtdÌ¥. tJ`†ºøÝt¨‡“>™ð9Kæ÷Aðy„sö˃Gê³Yذɮ>oÇ|À¹Ý‘üœUq ŒÌøý(JÒ]”r+,F@>õ[±s¶Ý! ž®xMÃÚÆ,›R§¢qà^à‰ÊqglŒCs«ø…qØXhÄò®_NÛÅ1 ~`ׂ,@SÃlÜÛ²Þ;Œ-LÐ-dHŠZ¸\jJlôo´-ôz ̉)}߅ìdæ¤àG±†aÃ\¬<í…‚aƒuÄ‚tcTùþþI–$ƒµW"lºÇ$ 9af@Áº1<¡œ¨Rp7&ÄÔ ]Ä*³½RцìsQVS âÇæÊÁÚ :ªBlú³é´$Û°ø%;®iâ—bÅvŸrº‹j<ßY÷8»è¼¿¿‹¶ÉNKi"+0åÀOBo@ÉËånÕ~V) SþI1ÌÇžb=“9o0Gh4±hmà3 }Må4ÙR¡Ó–# ²ÜˆÞ3)e‘½ªda°FmÚ‡‘\pc×H~|KêPŽ9Ù}±S­¼äç]]¶æŸg¢>R‡“kìÛ=b ¥Ã4J÷`7ƒ^ÄIɤ¦¬€Ç©vò J*¿žÄ©"¬ösYáèèwM(³½AÃYSæ±tzÍuð. Ž>Gå©…*XQ'9µÔ&.[XG8œ…³“) aØWæ¤ØØ°VpóAQf“VXîU—Ãcpwr'õ;a$*o'9K]á©bHœì·Âa“Re1âŠûˆƒÓ˜¯Ëhg&iȾ®™êÀŒc•#³‹†‚”´x?ÑÏ·èú¡yy´®¡ÈŠãäÝRœ Îz§ƒs#ðÇHæèŒ±ÁdèÕVDñjÛl ‰¨°3¬2’nÆÓ²k^RøæéTªôÏÍ„»Ü4)Û¿"øðfÛµÜYlÐ6S7 à¢bßÓAbÐB Â&³(Ü8Ü”CgpV‹KšYûé\¯÷ms?{DlV€–öÆaixôká b¶õò ¥‰NkáE¦0@ö®Ó¡à+~rP^ wl‰2rrÍÑz‡ïY·ÿÛs€i\m½äÇŒ—X”Ñé¾Ü¶ÅŠ o JÝ4œâš;˜< ¢Xö ³mÈð²oþ-ï3ƽa¿Îò‘sù„û…Ðj‚ŽÕÿºÍ¶>Ž´èÁ½;ÓSªÔ…«à¡Í¹$x¾Ã_¸e÷ÅCÁn¦hV ‡;=g„€cèR¶6­ý$d«-ANŽ „ gàë>àEkÝÎÖ Î C0x襑\*säžœÇe²UW­„í?`À Ôxꋘ@2šë)·™¡:+º7ƒÍpAs9 8=š‘âU=JC|Žêˆ#fÆ.Š#|` È$"^2'ô‹§œ_¢È£'\ª*šÂëB -ƒzr"2¨ÑÕ¼ÑvúJ3'xWG¯Ex ±ñ⯗¼²Ñ}–Ž  ýBÆFÀto‘{2ÚdbãÞàÈ>!>x ÂÈjÂßF‡zFhiX½#På{hã7h …Ž Ùè„jŒ8ØåDÄÇÞ¼U¥Ê=/*ÌNÚW–ïߤ€bÁKDÒ¯¢¬OEþ…î²§"d%¾EY*úc4/h£@!åÉñ@W/',^qw§û´j‡$£§$’ˆæ#pù)Áâªü{Ë:#í£o ˆ ›½oŠW\’(C<ö°läË%%$ð}),_O|ÐY¡»qšÚL’tTão~0'ÒóXZŸ›,ŠfÑÕî\¿R¶VýÞ6v:yp¦9ø,ÅÅÒåcÑ1FL¾Ø6þÐŒúÕÐbÇùd.DÏŽ#Õ kG_¸ñ®tk?,E5»ÝLføTÍyfhQ€xµ\íåÕ$ôFàAþg& ÿ•ï…p-9<ãzùZŸLâÔµÚÍ—jTÓVݧ¨¯‰ßzºZþ–ÛböÜË&Eê˜Pø´ø‡êiHfª˜2ö ånÓzŒ0„@»®sÄ‚òü3ä" Cœ©ÆMýÓõk¥)o6KK¶åý!¤fY)w©Ï´¯¥¨DéúN\â3GRWŒcØÜp·˜L´BƒßÕiØ.Ló¢™q|;eéwš…w9-ߟ}¨›…ñáï¶ä€›Ñ%¬òt#¦~âÍÒË¡çåij{—ØSò×÷K•,²+(?¡Z{Ih[?ÃTO¼}XËžqÅÙ(j›Ü×±“Áöiã„ =ÐäVòŸ'żvo¶¥09Ó<Áx%¬èÛÇŸ!hËx³Â7¢tcª¤XIÎåO@æD÷>«T)Ñ\8næï `N\ï¡s,¥„‹Ÿ Cäqrœ »š(à°®¼‰Õ>‡¯f ô›8¦r“è’ï–-Õ¬GƒÏ­u2Þ·Ë2˜£ðYáôÌ,ºí¤Šž1O‚Ào¼ïì~-/`™ëñj²Žw-©ù;ϦD!ćQaæ­›e#Ë^X¶Øà©~¿Êh|cÎõÑ‘. ²S‰S,Â.ǹ®IíC½˜(ÅóüΙգ@AòC âš‘l/Óÿ[H[ÆÇ»LÊ5ó´®U Ê¢D˜Ä÷eÓeŠCw՘ϗÛF¿?ã×0eîq³™=zư± êè[DG¹m^µÔ¢ˆ£¿Ë½.éܪ r¬dU“Pm—zL¤éµÔ*Zê © vàÕ^jebm ¬(iª±à+£…c.¨F¹œ¨7à-GbsƘõ½¯^q˜—öÈ)ÿ#è~c#ºW‘·ÿ~q¯íoò>öÉüø¯Š“-º§Ï¦µKK˜>f‘²åj5dƒ… ¡à×c¬}5Nó§ms“E)#qøeœù³šm|'8‰ËòD­šxAÂPæáJ»/ü'Ð>MS='ú’'©6I³´'¥‡27&à î+x˜Èdÿ±r‰¥JºÐ9ŠÍ:Wi…³¬ˆ» ”Z!¯Wn²ˆ š©ÙuÊùZ²“>íÊÊÛ5¨DATHrI³<-ªÖÉÊП\ŒKõ6®iÈï&#o%õ_™›å&ç:¥ aÍÈs±ÕÎ$š_Nž¼æ®J*ýPðánKáöõÙüyÛŒx©ÅZü-ö˜4/Üᕯ*¶·Ì/ê8ÍV<]ü $³Z è©Ì0îecEû ^UÜR$ð®’!nõÕWâ«`2Z|¨†:Úé5Ò æ]˜r¨I$?þï¶xÛh)óxBý¢iô­'Ќ׵ù®>/ÚëN¦ßÝ_d·¢ ¤Ë+"¤Áì)¨»Þ6y¾,÷OOܲT§”øÆue-j™GmÊ—¿‚¸b-®äîöåU /VKTÀ‰bfV™™8håj\eÖ5&­b2ë¨ïÊjjæƒÇÈ]ÔŽÄaqë³ñR€Èàí÷ÛVµ|ÿ€úbèN22>)³³5iZ0f·ÑÔÙkù.\ [F¹]Žú¤a–*Îá.ºõƒÃ?d§äìa–ñÎÝbÒ4††ÃLß;839ÁâÀÔ„£Ù§¦ÜÙ{ 7š™]¢1c¶Þ”a‚BϯycP‰ƒì8Ë|‡þp?ôÌ5­¬ ë}¿5 ÅÙ³£Šx‘â욉La‹ß‹Ö$âAÛ–5b9íä>2 蕵íA;Á6êÕëTÖ8SD €ä~Qk)à)æD¨¤`Ü™Ï$Cgóì)aD4Rì+ÇQÕ©²‰¤܇›räaïRõ儜j}6ÉÚ .tY›?ç0kF!ÊÿܹP(Ù\\±\x1yÜÇ•°Ê-ˆÙG‘?éQñ9èçùǼ_ƒ¶ö?ù€Hœ9o¸‡@)=K‰‡5s¶TäW“ù¹ÑîÔŠ¥=+iåa€ 8ÖˆŸZ)L2‚51B Ó% ݽϟŽïaã@¾‚Cf(ÿõ鞪kú‹ZøžÎ‚wéŽ\±–”Òz>Ô ¬f^ïë©[ gpçEvãxLN—0`YZÉ£“÷˜  ·3pðš_ß%Zeœ’ŸÒ²0ï¡Ñ©·Ñæq´~;áN^1&í5÷’[Ó’"ø'-Š£¨R¾Ÿ^ó;•¥ xk²û–[£ê&H&ûg5¤‘39·2Q„ñWnW0æë¶ƒ' Ðº´z”¤,Ù±>×M4LŸßJ”³F[;”µNoÕ DnÑqXɆ¼âaBé=!ÜBD‚ÿuZI/×y!Úèé/yª"^à4âFŸ×Jú¬7Æûj¶ ˜:ƒõÖøˆòñ:€Y9Ã<8"ÈWâð+¹#ç…¼© Jß‹7[ã',qC2$óô¿1`O,ðªlù·?H§¦ãƒm&/ÌåÓsɉä.’ü_~OÆÆàÊM$|B¥†V*öÆTn`2˜Œ? ŠÀʺ`õ6>júÕl=€ÊœýOY2™µK)®ì}œî»Ð)Xõ€LwGJÇêíÀèg·¬c¼Õ´^Š…¡srl š×Yï ×vŸVtÆÓ w#Þ.ÑÕŸ+¾º‘ë²×•;¾¥n¶µ ŸmÛ…‚Ó' Ÿó.w×¶œ#lºÄA¥’-::³ k7¨ž>2!à»ÎÀ29¤Ð!:-u@…Á…ÏpÿUwFÄ{šHvO_»·#:Vèr«D¯.y¡ ͦ/!þNQÌüÚ–}²MÉ}l^O ¿‰Õ»w¡Âk'LÇèìÍñæîÉ–Î{­§(ÈóÐEÔi£ £a—ÎK¡0˜÷Ÿô*ø>YYÅR$´I•¿šê®+ÍcEêrêGظ»_þðlR +·ÇÌ:çiæ'^Äf1}©á1õ2TÁŒM °³Æ „ú,Bkü‚ ”BkÕœn`Å€´x1ˆ5_ÙõIõéJéâ ° ­YF]^gÓTǩǗt$N'U~FzuWr@k-ü±Kþ}—al) «¢mó› \—&Ãk~“VoDRÕUÕ•áËv°Ÿ&*Ä6rb!$«¥»|”^Þ Õ_CR[´ ˜]Œ¼[ ºÝçßy+I…ß>ù¥À$?endstream endobj 553 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1613 >> stream xœTmPSW¾×KâÍQœ½]ZÙ{S¶v‡"Ò«ãnPÚZ~ TH,)D>“@ˆŠ@¾nÞ›B ˆ#_QDAAi©,¥N?¶–îØÎtílÛí¶ãìNgg×sñøc¯t;;ýÑîLÏ3çüxß÷9Ïyž‡$bV$I*2Té/íß½9åÞåq)&®KÖÜÉXzQ±ÄÆøW¶¯E¾xT·U¬!(’l´ù3ŒUu¦²’R³RòTJ‘´mVnÞºuK’25%e«2M¯3•i J•Ö\ªÓkÍÒ¥R¹ßXT¦3×-—l/5›«¶mÚd±X’µúšd£©ä÷º$)-eæRå>]ÎtTW¬Ì4ÌÊ,­^§ükò‡ £¾êˆYgRªŒÅ:“ ˆXC•©FûJ±®¤¬ROÙÄ^b?‘C¤ÄN"“xžØE¨ˆ,b•ôx"†ð dÊ +Þ§TÔÇ1i2…¬H6,?":ã–ÖÂŒHEI±Q”ø-šg<½Ð'èkÆËʪ,­‘uɃÿÄé­­jÙ¥XxpñÍ\þ£l§Üª–º¯ #0oóa×l솎Y¦¼ûF?ℎSŸ¶ð' ÇÛÍúã`å›85>÷ÓEœ;ƒŠŠk&I1€ÖR¨?ÊdÊGPöPõ¤å*<€²ÿ…D‰håöp¼æ@Siç›ÁÏIȂР]®ºù€ Ž x¾ùé»í ™r ôE÷”pÎÂ5×/ ëCŒ»GצæüC@Ö³Mƒ*œˆešÃƒ,\œ¨‡Ô6biœk†|ÚÛðýy{NÜjbù ï±ÀQp9µL'¸eÍ¿Ï =l»7èo÷Nê/ñÃ@£Â6´1x®þlõi®4¬oÛÛ™Û™ë‡ ºCxÅŸú3ì°ñ-àdN@gÐ+„¼lœxÕE…gÑãQòu¤@N$£Ä¡ûûz ÜW­-j!ØÖ‡(Oôݾ‹î€7Ô½Px§áÇááÊþ#£ãÑ3SgWk' ‚Ó í¹Ð6vúCØÒh¯t˜Ùõ¶Cü³U;jrBŒ~Ó:s{ö†×ͺì®V°Óyï9"ìÓèUÆntíF»Þ^UjЛŠ[L@– Nކo¡Cœ$‰Ð_GÑÞ9R<‰â(tsi³,ŽnÞG÷9%:À;m¼ûMÂkò@·´]~Aðû».|.Q´,±uHñÌu¿'¿¶ªsìgf¯¼u" ôßáɺã͘)ÏæŒ/å¦Ç/€àþñüE´ŠZJü™ñ8'¡`*ÇS-}nVàXüæQð‰7üçç8«ín—L¡®ƒ[ð&&»ÁTo:V~¤Ì*•¥™¯¼ÙÕ‰˜Ñ.2?º—!j(¦ãÄÛ$Ú=жEÉ÷ÑjÔù7Jä‘î„ëheú,–ãœdü0^…_<‹Ö£Ô…Û'{ëÀÞà´7[¹üg69kÁ:¯q°æ´mÂàs·Gé¶Q¦}dPâå> oôî;Ðè¨pµHFYÄš(JºõQ™£ä×WÑì—:|“©;o„º‚¾.R;m½(ÑšúÞ·÷[õÜ™ž^o¯Ûn囡…6õ6Їº[ÏçÛrA—Ç–äû $Z’v¦þ>oÄàupFÃÑÃð24 a½¶eöÒ9W³Ð h JŠ X”€•€iÖ›ÙÁO÷ìX žáNOøÃRôœ?žÇ;Ò-Å\cuùÑB ‡ñËÌÈwW¢y?´¡`|Úïy÷K.-J†ÿnî+”B¢çQ*…¾^ZÉD‘WÔZ­¦$\qáõÉéi—c#Y|ªO²8o§dñ¿·ø °à>ýpü7ÐTòÄGeËůæHôÍÏÈ!åîå„å6CËm¦à2?ö¿\¼³ïû„^š•úÎc?JhL`EÖV;k¿R=µðÈúÃFÿâÄþËÍùE Ç:,eÇÁöÿûű¿ŠÙr*VAÿZZ—bendstream endobj 554 0 obj << /Filter /FlateDecode /Length 6571 >> stream xœÕ\IsÇ•¾Ó¡ƒ§;‚]Ì}QÄ J–DK™‹s-IÝR¢ùçç-Y•/««Ð€*ìÐAÉFV®oùÞ–¿¨N(ü¯üÿèõupzç—;š~=(ÿ;z}ðÅ“;÷Ù¿tYe}ðäùþD$}}ì²õO^ßY˜´|ò :ÇÔtN¹K*ÁOŽïüsñÓRu*Ûœ^œCÛé`|^¼\® ­”Ïnq,ºœ.u§àfq‚=´RQ¥Å}è”Ñ‹õküÝä\Z¼¡/ƒîgbÀ—ðsPFéŦúÿž<ØÙÛª_ïÊú.…À«þ¾³ f÷¼XYG°Êg?CÓ(¼ã©cN™:[å »^|…¿úœc4‹û´f¥`Ù‹»Ü%é¸x„?«œ}Ê‹íþW=í7(•²æéËÏ'KÑéqN«<κø‘„ùÏËa@Ø~z¶Ä'¯œ±‹n¹2Ñt1¹Å³gýY¨æê\îàåÕ•ë[\/MèR iñné=üFI.r³\Û¦ÁÔÑãgÝÏöùråL†Iò⠾⠳ðt.hñ~i"L;)g’¬|T:8ž—b‘>þX\Ä%ôÖÚiX3ße‹·u›GbàËJ[oÅø™IΘÅú¬Ü¤ÊÍeÿ‚=´KÎÉ¡×4^Š&)#WºVêˆêʶ·xYÒ@ñÇbìÚ­Õ¹\IRZ'ä¢`¸¤4Øb 60î'á­0¸Åx NEXí%{×st±¡Ÿ„Ž”ïUžù9¶CNÆÑ½®ttrú`¥mç]6|¡_U¦ýתTÈij6h­‘;ò*..FÜ«AÆ$K‡3콣혠Ââ³B¾ÎJz ºóÊõú× Mð4¾xK÷íXH€¸|#8T’0Þ1ˆ<8söW–ââyùŽþ1Hާ•´Ò6Kޏ¤árÖ1ÑÞ¬öÞ"\•€@˜Œ»˜l5ìøhé Ò€•Ãõ+‚E˹quð½WÔ¥H9ð¯$=`J9ÚùÒkX‘NpÁS<ªí’ ý™Þ·tÎÍtÁÛÊÑiå~zlÓycMA«»+’‹ÙE¦Éw£?XÕ15Ygh_=¹ó·;°5RRçó:M„]Qj6À²“;€ia9¨ØþI ©årm¾¬ÍÏkSצªÍnÜ!iáD†f¨M[›±6ïÕæ«Ú¼˜lvµù®6ÕäÄ~ò³—“Ÿ¹e=࣯2Лm¶«B‹$‡3‰ú¬ŒîBLyGûn‹¬ÉÙõ‡üT ÔèÐ/+!ÉD $ÓöØJQŽ·l³M©Q²çåK+Ü”Š1,òyGÅúB¨Ìǰ=‡ZMûY‹øÉ üô…5E±:ßh:ÀCnq!ð_–É‚,´I²ò‘¡(‰¢Úõ'XÏ||]ÁÀòÀ…ª#ñ`\›Z¯„NÖ(†-àsË(§›mQ(ÐË‘È/ ´®Ô'/HShD&òçMýYnžõƒq•”Òò»¢t+jüÕ÷›|tõ‘h7lúÞ‡çõŽð’<Ü~Yt³E—%e‚‚@£N¹ÅÃF£¢^ÏQƒ<ÆûV€·B¡°,Ûs‹u ªÌXÏ>•þÝòD"LØù¨B*Ë…u_Tuz9Ù|S›Ÿ×æ½ÉæQmž×æº67µÙMözt”£·eb’µç“‚ûUmžÔæQm^N îí丧µy¯6œâ§É¾b½ëÉåü<ÙátrŠ‹É)¾˜áý¾þ²oe—ûNçÑM§ì`H岩ÍãÚ<©Íß&ÕÓ‹Ú¼¬Í×µyö1šÊ…ØE0ýzßa¾¨Ó¬ªz¿,B©e6¤eB¬S ¿üŠ Uko¼'•ç–4@ôú9I»ä,N_]bWf oÄùW~–‰AKánrt†”TŽEI¾s4g!{¶l‡÷ÕXÅ¦Š¿²­ÿ´ÅÑrRZTk©þ‹öòõëvU›“!ù/¡ÏPBâဌlA_° ¾¯ ··@!×UJÍB»Sp8æê-Ý—ût3àñQµ¤Ø ݆­NÐÀ !)Á"€l]Ńì/Æ®7=h5Û®ä\ m Õ„fQ)=&îW^;›´Þ‚Ù²]“‚ã"-hó®îwÚôò Ï{@þ?°Àvyd›@s%*)ÀqÂD ÝÅ&“¿¿®;g{ÊZDv­éD5|æs"“N÷ì#Ý¿S`ù=¼Ž+lÃêô?ó‘(µLŒð®6ÅÊD‡_Ç0e$<°¯ŽñÖ@uòŰ]g/Èñz;*æÙ ©•±®K±H8@åô³ut€}ßµ˜]§˜4ã/.^ŸÑ I±+É‚œÅE~Ï)™Œpµ*¸:ˆ5,‹ÅA´Ä§ÁÀ€íwù%™>7wû¼^‡€Ì…:LÔ‰h‚ý$]l4JJŸ½'ò‰V%9…4è_V²#Eª4ŠÏ  ÁâªpýI)e­I\¥ DÞ¬ýŒ?ƒ£({‹íÄ’nO¨ƒa÷VáÀ×ËÆ%TŽa#dÛUÞ ëÛú÷² *y¦¢Ã9wˆ`|MG vH¿þ~˜– Ú/°¤ìZO‡võ¸èœ‹O÷„=$è#ÃI~¯öm—]0]çõ †×£-XbsR¯:Æ”›5ü6½†2@‘Á±sn$‚ËpÆò¥gôí ñw2¸LHDi8|Ï\•r>NºQ *À~¨ÝºQC#^ÐYš´æ_Ö‘ñCë4ñ¥@B H#™½®Á÷WÃðà‚ô¾†s!QãPéÙÅÓͲQZeîw¨h›»¾¨¢ox0´ömKÖÐ ºÊ2 ¾ç¼t´.½[rõ?úâøeΆ[L 6!•ÈaáûeM®L²FžíSTnÅæ²AwÙ™X³ m®1òMaJ/¼S÷&›o¿©ÍóÚœFìzO;ŸÄ¯ÛÉ϶“ãŠÖµy4Ùámmþ\›lvìƒ;±vd ³.8—‹ HU›f²™kóÞÇXÚÂÍ{ì". ëbÐhL°Kk[|Í €",‡B®ÝÅŸQ5û•À¨..‰Ê‰%è $ÃÈgFC€ò ²Îž/kÛøv…v¼fÙ‚¸EðŒ|x€¡sjïóA;¯ßV†a©K^BºVøh3~%Ô¸t6,¦ƒ23†¯dÈ—´Ãìuj1¼-mLeˆ¿ÈXÌËj©ó¤“8®7²;hLaállÀí åvWÂJì…”›°Í€œå6/øH,…?ð22º¶¶ãXpãflz|M&Fp¾U#¼%“•‘Ó`&JúÖ4òC„  =X]߉Þ,“3±é½>çî±Ür1£Å‡¿UÍ#ˆg‰Èù¦»a4Iw]¥»iã ÃkA Þ”ûËÞ ¨KØDo¦ñ-¹„³1öj¸ÇÁ©ðMáD¥ ­Ô§ |M3"‡ÿ¹L÷\ñº‚çËvÍØWƒ?\G·=»§®ß‹+¼¨F€”{PŒÞNoL¹ÆãÜØr±ÓÒPó0v׉œQ°#ù›…ù•¡/ø0R†Ö¤4R><ð¼ò©Žj©|à q(À‹Ã»Øæü¯0ÔtÂx!ÀÍ ØÌ;VŸÚ±ú€+@/$Ð +:[?_ÊxŽåÀÚ`/w9æÅ {šÿ“Р̘ ‰õ\Ø¿«Uÿö~Ûø$ I>tE 5Ê#sˆv-P¥œ}¹j¦þD!PFÒ®X]§5‚3-Z¬ñ,ç¨ !‚¢1%`Ás!O6“òÅ‚Æètc4"@×è71 k¾¨=N¸äR]sc¸ö£\Bãýa#L,E09óƒvÀãèÉã"wÀÄé×V’»ƒ%k@Цi­bdXá.““ŽÐ¨*ˆÈüŒ}H>»É˜îX,‚µf¥™($¡Ø·Y.Ÿ»„›Ü‡Ñ‘숅•ßëÏ7‹õˈ¾õø‹ªsñÏÉ/0ó špqCg#IõÃrÈ3)91”gÂÆ_Â4É>HSàÔ€Jî“¿ï›ãX¯²c铚b½mÐݼN¤£ÔÛ9Dq×ãit±´iJ“úÕÖ0íç¼Ê„4„ Œ‹ƒbg{*R–^so½ŸKÄWöë8æúZ&½_\@ð+°ð[PFƒ8Œh>/*}KÙ\ýhI±äµ0Ý_ †‚ßMâ¬Nß @  ÿÅÓ± 1L +‚3«—°ý§ ¬Ín²ï¿YÊÝ­¦Ñý÷äįöpñ1! 0;Û^ÿÈ7gB >mNÆ-iëk-ßwù×Ü"í6æ8orEšV¸ ŒN<,_bG–;mÙâƒÖ¯Bƒ3§â6c]F—!ؽãên™öªõècåÈ(= —`a•-ûÐa{Ra{²ŒAæ2¶Óh÷"Kš’½ÍjDJªF˜”®æm”]ä¢&{zƒ²Î)÷†ÉOkV¼„+GÕð9á£@YcR¦±?×§ÂèßîZ´TÌ4œnë¾<柱ҪfÊH®¹¢ˆž÷m­Sð9à,Æék;Ž ¦…÷Õve¿„7Ƭ9Dn¨&Ÿ³£€*ë(§“'€zHâåŸ)'æ ašÞ­ê§$©Øæ›_‘¿Ôe[ã;¾Ó¥n§†+9™h’¶’âïðß- ³Ç>h=Jã‚•÷mI®rÙ«<‰,´E¨K’ój…IûèHPDOŽÈßáè?=”³ 'öe5}e†ÇÈ'ä%ÿ ’Ê2,Ï™‹(H¶½Ieã”0‘ÐõymÞ›lþº¯)²¸ÕfoU83“‹&rÆD!¤Ha‰b—r6¶å »!%¬ç “RÂDMÑ©4œ>&ãK».Fw`-¬ÑLûu‰ PqG] çþeq®hW´ÂÀÍ«R 9 Œ0¸ fll_ ÛZç˜ ÊLdØ`û¦ò€ä;îMy8ª+G5Zpˆù¥vÆEåŒÎ ‹(#å¼.ŽsýTÿ†Qü˜ç,0×â9¯VEë–[Õ|¢e4÷½N'çC4©czAæëÚŘÂÅs19ÅU%š×õà|„d5š‚óoÎedÕX5ó­KV`«þpÉ Œ‚ï<ÌKVô'ì$܆ŸØðuöXD,ý Î.Úâ'™«XÇg5Ì^‹>&—v<îCÒ–4Œ-váJ^"½4rèX´Õ6Ú-7l­#t¢ù±zAèŒz !ÅV½°Í³£^Ðl!õxÌÓîwÓ“§N¤\,@°XŒxDÁR®T¯¾Ë“$P¸OU{÷VÔ‡»Ò:@ï1°öÍ‹IöV¼®MáqïÕGp²EL!¼è›ÚüÃÔ‡E{8ùö\ösP5øM£ýxõÙV¸öIÑãrrzç¯ö° FÀ¼T—BÆ}^3 Ã#' ž\‰÷N謢·nG<Œ"Ä(©Òà…¡Ìšs,¥oSDÇu¾"x»øý”M „½·åšÃ`;°ÀâérxƒEƦ…Û¬©±¡u$¸Ç¯ qDhÒCšÒW9Ï%¾r"t¦ÂÈqŲ‹ÒA'l{àdÍ&gw`žÕ°Õ&¸<³Ž·K¡®…7nÐYw«/“ÝB<Î^ÿû2zèÚS|÷2sFœØLò?wu}Zü½RN¯QµËä“:”dêlå;Î?¥€YþDšÅÈ4c)ü'‰ú12>`ÛÃGTÁ´Â>­<$„ø–ŸíŸÍEçg úƒEÁÆ@égJçD©Ð#Ù^žRÍ[’«Í³/ B—d›RÞïhO˜ýñXV?»|ˆNnY…6|§›×2ÄëFD¾çÞ1E‰lYQa«ì5õi~…KXc¥°¿¬w;ì/ Ì£ƒës”j¸6õÑñ³—ÏžlÌYµó/g´6@øÜq9ßÔG$ ñú\×v£ d&z¥RÔµwk¢íT²óÝÙ]Å€Á¯.¯K¸¹qjÊ¡ôïpèר¶ÔŽ•Ú‰"ÎyóÀ:L*oOˆc½Ž(R 2b tô[Nž.EpŒEì½?ŸVÂÓ{ œ´›0ÍéÈ8 —™ºí^á<”žwaøœÕôo(BLoèô¬ˆä'£/¦Ù|Æ0»QõžÁŒg78þvŸFÁ*Î=O£ ¿Íä¦cW£wQçs7ï¢ 8†ßE Ú·©hì`¡4ŽÁ©òfè†Ö¥ý ˜'PÆ»¾±ó&Š‹×yÅFY7rUŠ#U_ÖÑC®s˜/JqF Ι&`Ε:§tç‚¡°€»Ö䜮¡:àeí_âo”¦#žWX !ÉÒ 0¢—#IY)ë©â=ã¾µDfª³{uÃßaÔ÷›ÇÜö»ex~ün°óÌIÏž–`ò×q,®Ýd©œ×»¿"·{R÷<%(ŒË¤‰@Emʶßn©HÁ"I|ÉU8S„dnDM=êÙjhÙR”[t>/£Lûxç`‘L:˜ªÎ–ïH ™ˆÄb®Ëvð_œòè»¹Ò 6ÿvT)meÒlÈx½#³‹.€Áñüà%ªªV•ை?n©ð{ú_¢w_ÊoˆSxo÷;–Ôï`3hE®#éÐ sãYóüV!ÙØÝ‡ßµDt#ÜÍ”&ÜTüñ@¢çAîïh²•‹Y™t¸´¸€™5±o[ŸéPd+“ƒwÝ*53W$èOmà2ð U™-QF&U4[HÊ W˜¶ØNªäs“òœ|I¨Éç^IF+‹Ÿ(Ý))Wñ–FÜžZs€jÚ×Üüý‰_Î6*’<×®4/9`NûÈ <,_Ó1áŠnü’‰ÐQo¹´ ³I~|ܘÿX†6Í›L¨žÀ{.%‘¸’ùÛ§‘ÞYóÈ\ñ€ƒ…Ù×z¯Uð -ƘZ'sY-¾Söë’å½Ch%ÒêªòÌpMÒXFýn\0éŠÃg‘BÍ7Ý“ˆˆ™®5Ü" w[о@š<Âúì Œ‘ëíTÖaSöo®‚¬]ŠaA*ܨÖÕ˜ÔÕ\hÍ^3ðp/‡a™×ŠD#Ñð¹N(º­šo¶¹‚Ò¯/ûÃú4¥Žæö³„²&ìš1íÛ{éA¢™÷*„ñËÀÛÚ|U›ÿiUjÓÔæ'.H 1¶”Ð2ü·;ÿ>ù},endstream endobj 555 0 obj << /Filter /FlateDecode /Length 3312 >> stream xœ½ZKs·¾óß°åÓlJ;ÂûÁS(˶¬Èò‹Nœ˜9¬IiE‹ÔÒ|ÉŒþ|¾0ƒÆp–r•])ƒ@£Ñýu÷טýu!z¹ô_ù÷ø|O,6{¿îÉ4»(ÿŸ/žî=þNª€©>Š(‡¯÷ò¹Võaá­ï£¶‹Ã󽟺o—]4ÝÍr%z£÷ª{…Y'µŒ±{·T®7RÛî“"FbwŠ¡’B»€¿¯´VØØ}N“B¨è»ž&uº/h.8cCw‰¡ÎuÛwt’JÈn}ƒY#¬ðÝ£,Ècû³W´BÇ ­Ã4ÔI8¥?û¢íÞÖ]ß“(é”ê7^ksžä %•éÖYðxFÙÊÔøŒm½L‘1(.ü˜é¹¢±Š1×=O¦ ÆÓ)Iž¶ûç2h[Ún½¹wÃ`¢ ]QÐh§ºõÛ¥ò½ ŠüQWg+¤Wuú?‡Ïáwí¸Ûµ‹½‚ãOö:—‡¿ì­Œ‘‹•¶}pަêþ± ªtF²‡ÆÊîd o ø4icpVW§Ó_mÄß& hgM÷†IÚâ:Ý-ÝI ¥éNÊiœйœÒŠÌ¯™ßt_%˜Ä¨p’À¬0Øùßz:W)m–º§´1 Iø(òœùз˜ßKÜáœùðAó']åè`Á<.“f£”ÝQGÑ%„Çv{´L·PzLwt”îê…ò2ÀNŸàR'—\‡³ÁH¡û”¦a鱑Ãûb9^pÀ­‘» <)$IiK÷Î8PÞ8)ÓQ–è'H¿YØt„ÂÈ""ãhô¦ï¾Éám” %lRüïˆÉãŠ/¶â‚­8##\6p#+íc”[¬$”De]¶¯sÖà6ʤôE©&[Á(\抹ÿ4e@M‹ÏI—è„0dÚ(àÅ;Â&Âe£‚ŸàL÷ݗ$¬$FŠvk¡¹%h‹ˆ#ž0Xñ4{•€ì­6{³HÖÍ…¡á1ú¸ ”º\JŒùpÓ†Iý \¤$\YÕ½g¨aÙ˜ô)Ž›æ'#%!•’öï$.ã|8‹YÀ1LmÊÆ UwÍEVfÄp°#50&FÄn£\ý“ª>Ç|Ÿü®ŒCü-3¤ì¤ÑâÝBÈÙÕhž]aJ ©Ãê¯Çû¥ª×9‡e(ÿ%+‚ä5+‘, {¨-»g<û,é$Ô]÷ÀîÙùŠ?“ˆ¼‡`‹ÅT¢·õÏo—9BL€ÑJ€„P¤øKÂÑ)Vé˜sɘ¬I¤·È½çÙ‚ tÁ<}“‚HOk¶„’†G­I™'e8a e Zqé¼±LŸ‘VžÀØLÓê ¤Nò è|ÅŒÌìÆ•zS C0Br•>Z1ìº.àûŠZZk)Q= §²µ£ž™†îg¢µ)ކ4×ä:Ù“ ×gË¥Q%R)T—n’ºˆ‹š+÷ Ñ¢cðˆ Ϧ#êë-ÄV™Çùºb?Ṙãu-•ÛZTN2Û£dú#U,Œos™ö¶0‡‘Rüð¸<­qyMODO98JDù75œ™ð)Á¿ÞN¾‰ç•ÒžxÁb¥@_eáC%g©YŽ—ÚYŽ õ ørïs„†ð F}ÔÝ‹Rù£Ø™øÞç\Hö]B/ÂB Ü U–q¯ß²ä€ P='»¿3ßLêÿÝ4k}V¤¢ð=+Âb°!úc¤¯¯ªêÝÞå7ý.[HÀ¾$¦|I™êÍÑÑ’ r¢q¨jw~Zjì,´ªÈ»wÌÉàºÛrÒùfžŠµâ31ŠÈJjë|š*11Q£w¡5e$Cg}¶~ö.ëN6%«‡@^žðž^¥è\‹õÔØ}SqÇyÏ]¢U©…Q÷|K¯‰M&Þ!HG›dº`‡*2®™øüþrΈ»*ñ¤qªzÿ›z£ëêò-CÎ)KÍg$¡L„DTIœ –ïlC (Á±†°‚äv v’ZÏMŠ+<¼ûá) bhû»W¬oa”¬hæP„Ftó×5Ò™’螊IÛkõ•é~²œãˆËÞú‘¡|:æòi½€+9m8­=ãu3] ç-Õ&)mR´ËT¾Ü*5pž vJÇz<œ÷PIK+gtüHEƒw¡¶ÜIÈtä«v;¬vã…ÄrV8²¾Ò;dÃð‹â$møŒôãûCZ›…îª#…_ÃtÙ©kx‘h0Ú¡šN7§.0&Û>]äÕ¨/Ý/†±(o"Gpª+Ó+Û“##5>J )‰RY!-H 9»”R3¦qžhîOµ‘ög!ʪ–kÖAíháš6° ¤Œ!Cêûy¹z32¢r"²k÷’ØoI’@‚v²ht(Gã ’AZ@×”UF#Ö×ùí È\.(…nYÿÒ4³AêUn1 ‹±EÖ ÿÈ"+™»ÑÞR[™]{Á÷YÒ0ªB^oÿÚôتKÓ„a´¸I®NöZ…Iõx»ÛvoÑ\ÜS)ؼ­´t¿*Ww¬l>²ùdËèi—x¶ÄíØÊÖÏE7ÀŽ2'L"6š^{v„ì@ü„6“ê¬Ði†à›€}T¦qýg)´´”»YÅkdzsIo©iN2bÐDe¦Ín1ÅÀŒs†?YŽÍ&Cà]±Ú ”’y¿Âú4¶t ŽI÷ùÒƒeQBØ6•tq;´I³ ÓUR ¡nîõY%%qànèXzðexCLŠQûü4uW„ VžøZ&⼦53ÇED|•f=ZSV·X÷ý*uÎmF *d0ó·ÙMP‰‰ “ZºDÅÏL' N¸]Ï QõYØ-{²é|*Nˆxvþø#ݦiÛ*i`oÞ9³( 5)šõ‰yGÄ^sÖ›¡mEºyÉ;°÷¹”°Ö¿F[ö¦Ç:Ÿ‡ê³ “h¸˜´u˜}{zhø¾wT['LÁ ¶L/m¨¶©Á :*=ÝÄ©[îœäFàî€uÍ¥éÈ¿£é¸,*Aʳ¾û™ùîç‘$^åmèØN¼ÍkÚ‹ûöùÂtôœúî ¶ÍÓÝà›<+¥mM–û™¾ÓY_²lÿŽÎr4gý;žA_sBr<œávb{(â²)â ò̘MŸ³\ut‘ÎÂø’´Nßž~šA»æå(mòÄ>Ù)Úœºq'ÿ>´9®µéö5nÏ·½Ô¦&ž0 ìZ/?¡ê«†Ù³ç¿Ë €ùö¬½å €ìƒ/ ¬•”žÞÓ²iË“Ç5ówÁ{¥$GÄ‹ÂÕæ^‘Ÿ%=œ6§ç7Q«‡wÝ\%Óg4Æ›ü:3|taâruDØÝ‹…¤&V·Ñ¬ô·­*sÀ¡Ãb?'û;ZþêÒò ¢6 DÐü -,¯Óá±™ªJ¾4ï^Òf‘Š©D1Xeä¦õèÓÊkœ6*Ýè³Ã½o÷°7}©¾|àËv×mzæŽ6.¬ö=òeþ¶}’pkCªáãð´÷ëPÖ¡¨Ã~vA¨CW‡ºF‰¯ÃÇuøK^Íû:¼­C1+×În;ݱ­Zø L0R,kèÇùÖ² ôtüÃw5Ê_,ÿWâ<ªÖ(•Œ|Þ›tgL~/Ào>¼¨Ã«:ܯÃdzÃ÷öuøËìL‡õì,[»­Ã×7׳pc€½¬ÃM>®ÃÛYìú:´³ÛNwlû`I=‚³­ó¦]‹V [«hë =EÚ³²”Q­ÌI递Jð”`ÿ’’ º1•ɶ¨e¥Q)ÓëÌÃ|åÕ€*ˆü%Ñ‚ÙY«KYþn¿þÏl~ôÐÅÿðÅÞá_‡ßÈxÈüÿHf`1åXúÉé[ŠfÖîi:Q8íeÓ¹¦ÀRôKF“™‚üE¾ýØ‚cDz7 µé{Dú¦ž>òÄß÷ ìé˶n’‰¾¢Î†¿(ó_ÑÐcoúºýg<©2Ë¥Æ$Û®ý\µ?sšÛºŒ%?}·ˆdÙ2fE¨õùkUzê.v#×ûî€<û·*:î’¿ÑšI¡+Ñ=^æ§*á™' 7É“\ì=)¨‘~•‰Ùî ù‰ KÎ xþö›Œ¦âIüZå×x.`DT1ŸF9ïÉ}½¥¡¬-]µôHÛ,ø§YmìZ w¸$[çZœ¾Ê*i`úåxÆÒnwc6ÛÔ²ŸX'Éš“o‘9ØBþk²æËY}”d'ì7)ö`©RŽ]èà)XêïKíº©ÃWuøn¶úÎ.`UõóÙÙ/êðr¶~2aëZ»nêðo³Eó¼Ù6VÏf‹ññl]>¯•òÛ½ÿk¥À¿endstream endobj 556 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3122 >> stream xœ½VitçÕ![LÀiú ±šFㄆ/+˜¥%¤4eI0aqc“8à[ØÂ–WɲåUûÌÜ‘<’,¯ò"[Þd cqì„%!$)¡å„¬& $]Hsè))yÇÿè똮'íiÿ|?FëÜ;÷}îsŸçʈ¨y„L&›¿iGòö ³—ŠwÉÄÎï–ƒtà4 1rˆ‰òþP‰î@G¾‡ê!Íí„\&«2 ›ŠŠ+Kµ¹yúø} ?NÈÆ/+âW¬]»æáø• kã7è4¥Úì¬ÂøYú<.K¿Ä'ek5úÊoCÖåéõÅ-_n4—eéÊ–•æ>>›åáx£VŸ¿[S¦)-×äÄo.*ÔÇ'eé4ñs•.›{ÛT¤+6è5¥ñ;Šr4¥…AÄ=Yº¹,Q¿Å°5+[“»K›œ¯Ûûð#Ëâib'±”H&þ—ØCÜO¤©ÄCÄFâ b3±…XIl%VÛ‰$âQ"–P‹††ˆ""2RÖ1/~Þ¨<;jqTMtV´¨È›3ÿÐü÷ÈÑÛrn{g,ܳ7vUla¬3¶Od”â)‹ª LÜyAŽLè÷Tິ¤ÞQýj«£Ø’+8t4Si×r¬­H{ÁQáO»ú N±îDÌ!ý¬Bn‹öŽ{Ç}ãÂHãK/Oõµy´Ë¸¯š­·ì¢µÒ>»¦ v€ çÿî,Bûîvºíó†>Ï(Tï¥õm^–²¡¤Z­™ú˜”›BïËE/òRHþ³%BºWRJ´¤ZòÞ£( ©…bÐ}j©I²QEkü(æH š>I¿[÷¨ ÖÌÕ³fR|G¡ïšk ºvUŽôè7Tà+Ii©ä8–s¨€q%g{Ä©¤Ó¥n»ÆéØ*n6ÿ1~Â5øŒf1¸.?ßäò“Ф:O°u=)tÑ3Ï_û Üü*[}%I]ÈÖêí.îÉÙ––º·L­œŽÇ¸L†ÑÄ,.ÊÑ0ú€úDq~¨no%cÂýËÙ«Œ%Ë\£8Ž|9;©@w‡2î©…Š¿}âßÿuØý…à3cæ(‘¯XWç ùvZ)ªëƒâO:eWN£äÓrñAñ§”«\à&=Œ`u²P[­®³`<ì‡2 7nÉÁÏiÛõ]&º_?dŸ´Œ[ÎÕA©-}âž´kWsí Ô8†©ÔK?ˆc-À‚“´58½Ïwu«=Bk‹ ôiÇÌGDKÇnž« Uè¡!ÅŸÞ˜Ü'H® ïw~ µl-0jK#çnâ=7†0d£š°x_X†ˆëòé(ò„óÀ7º[yß~ö— EPÌA9äB¹ XXñvÀf`™JÖL;‹­ŒY¿k}Þ& ‘b_C‰@믠…ôŸþöÅqQäë?’n£õóùz/x1>hpO Þ8ŸÝmwr\]½zûÆ‚ci  ’r¤LéYÉ(%"Jºýô“©ÈÉQºÉ0œÝ„ÃÀín'•b´Åaôh— )±(ØÄQh‰â‡¤%Š!´7½ê‘Ô‡–3Œ!îEºÔÇTbÜjU^¶M†Ã‘uGØÕÒò1Yª¨ÛÈÖÔ–X«õ9 ³ÌG›øÞK+§-˜\o„Q$ŒÉ5&ŸÎoRÂpCÓ‡@¸õyÌzÐ@l‚\7&gej8 Ù­xËo+·±ÎJk¤Êhé8‹v5_Õ·j&ø¬{Æ0ïÞ†ÑYÖÍõ…,Wl¯õݼ‡÷Ñã(N*2¤Žÿ.‹+f¬ê¸ ýÏy¹8 &Qef¡šã8Ã:Kùv‚mv-SN—KwØ ¬{33Tùùæ 7rcßÉ7ÐgÑõï 4¤ÅNmט“¡‚L gÞøüÅwý5ÏÕ¬Awø]ÐÆó¼ÊíjáÙY'ô»ÀëîÀeù Á³(J,Ë΢ùr±Vüšòo†ó „ã2Ø,.ã#Ëà è]œCh%#ŠÓσΠ,SEÿ|æÓýÛÓÒ@UÉ^ý©Î GúÑ>c·®<£zç¶3)W®ýñ­zVºƒ¨²­ Ê^}±¿”‹õè>ÊYbËb,V]Em5[°Óßø²«…ö ÷ Å$ßK<±fiâÖd“ßìéè«l)ãÕáï4 ùêоgͶ'C³ zNZk—®ƒeäã_V½ôùäÅVŸzó æîÁ3]—šÕîÞç9BJ ”Cç(Ð,+Ë3å™™?ð<èTíÇ5‘߆d.£âkrñgâbj/ë8fr¶„Ð@ç±ó›†ž’î–b¤;±ß(>Zÿôƒ“(¶Ñgs9¬[gWJÜ}hi;#Ýõ6ºó«Ö³lÞà­ìºn´1({} y1Ö£*ªwV¼:ÝAh‰¬Ý$Ý%EãëN)ê£Çþ„½‰Ök±²N³CýÜòuõÅ@îß2ˆˆ!ÏalF ÝÔa´ê‹¶^ ¯ÂFgsÏÂ-èA»Ï~ÒƒÒ?”µžê ‘Ó#çäb£¸‘rài„j²ÞWÝÙÒåïóÛGrr3M:­Úì×öíòÁ•¯Ô´·›h«U“ {@Û¦o«K¬8ð¤“[?~Å|î?†æ¡XI¨“…¼) ðC}}Ã%cŽׯN]°„L=ôø± hÁBÜ&5SÙ¯ù„K½ct0 Ù;Q»ÍâLÔçÐy¹˜ñù¢–í©§e$ÒC÷w6Á% ?û6&­N¾+F‡”zãW!´((†d_‰AtýK¹hL¥›6~„£­~ŸS°Y9GµS]—™™ó dƒ!hzýøW_¡µ€Ö’(QŠÅµ'HÙÒ|é¥õhVÂÕÇŽ6z:ÕÒŠ µe`ÏEÀ<áGñï ¨ÉKSo\òò$iëêRI#=t?]ýfé ¸ÏÏíÏL©åk½f%4Q…5:‹ÈBckäèÈè±3þý)nZ‰†°GG±7ehó×r46-§zL=º¢ü²ÜÂnS_xp0Œ+í¦æ¬ý–³¿Òò/œ}˜ÅÕ G`Œ˜]›<áèt#ôÎ9äë"5ÇžN!ú"ò^”‹ŸNo¥fÀÎáL¾»|xÿ–0)6þ^i¡Á•5šA‡öÙ/—O•Çý¢¤á)0‘ë¶$<¼tõ ¤hiè€fu“˜zÎabÔZ)ý[ƒdTv·Ãçåy¿O=ñZP?¾ïklùwþÝŽt±'5´n,ß÷t›Æg5Ú\‡Z "p’|ÿâûW‘üåŸßcâš¡Jmk³[à]Ø'Å^ v–’aÙ€8 GŸ¢VŠs9üÀƒû×o5ù.LŽóí<–'£Á×Çç·ë¢[›-µÆŠšB=-Ý?%–Iw|‡TÎa¹z&ð÷XŽà´‚pŽí»…åì Ênb,/ý_[éá­½ûU~“`†:ÒXc-Qã˜~þœ«úa˜ëg¿Ù5ž’I•rú¹}múàùt?:C¹;À íäì ».%5£Dí¼ú„?–AʆêŽÃ‹ö¢Yé?u}nYÁ+ìðßUúŸ¯ÜIÿ/y°ë ´ò›fC÷ô=xáùþ7òo¬âeª¹·û…ø[„†IËvWål%àäÁéZ¹36ìÛÆæ°H3Ùq‹&¶ cÈ«"oB¿š÷aƒm$ó˜'±¿k!“ÏpápGÁkÐÄøªT Öæ-`Á™öz)kf¯`ýXa…~ ”7]õû™®j—µT- ø?r‹BÜÔ ¸+xû_$ñ8K)ÝhýMÙ5%GÛ”yeÚÓû0,ÃàµÑ.8<­hÞ ´¨^F£Ï/¬h.9ÜÙÞèóª•è zú¬ì8Â쾈XJêP˜wE£ŬDà|XöŸ£†K[˵Å:>  ÷EÔJõ‚¨5]1·ÄŸ~Eªendstream endobj 557 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5953 >> stream xœY\TÇÖ¿ëÂÝ«bc½ êw/±ÇÞ£X±EP,ˆ]AT¤·¥,e—Þ‡ÒËRDcW,Ë¢¾¸Ö_4E1šÄDMLÎ5C¾÷ͲÈn¾ø ?ÚpçΜ9çþçeÒƒ‰D’%öŽŽS§è~ýP*†õþGœ„ăoíLÓÌDÈLŒÌLr†ñæ‚õ8ÔÜûSb‘("&k‰Ÿ˜ÌÃÍ=Èjû”™Sv“oS­¦Î™óÑ«iS¦Ì±²ñq•yìvñµ²w rwõq "o«õ~»=\ƒÂ:_™çäo=y²\.Ÿäâ8ÉOæ¶@·Ê+¹G»•ƒk «,ÄuÕr?ß «Õ.>®Vzc'é,ñóñr•YÙûíq•ùRµÌÆw±ßÿ€e²å­¶ ‘»„î Ûm¾gµëÞµnëÜ<Ö{zmðÞèóá¢mã'ì˜8Éyò”©ŠiÓ#gÌœõÑìás¬GÍKQé5Ôj-5’ZG9P£©õÔÊ‘Km >¤6Rã¨MÔfj1µ…ZBm¥–R“¨mÔ2j2µœú˜šJ­ ¦Q¶ÔtÊŽšA­¤VQ³({ê#j5Õ‹ú€šG™Q}¨T_ªµˆêO  Ì©””H9S,5ˆLYP–”˜B ¥hŠ£zRËI(*ŒúUä+:܃ë‘×ãÅ ñc“¦¦ŸÑŽôeI_‰#f²{ZöLêeÞË­wÏÞ½¿4[cVß§OϾËû>ë·£¿I—f¢ÌMÍ]ÍÕÒžÒ#Eãžg{±«Ø$öû7öÕ ±ƒ‚]ôbð¦Á?X8X´Xη¼;dÜŠ!04~è¹aŽÃö {,Tö*‘æ hŠêO1h…‡lìaeš7òE(Ö÷éPY(QJH‰NHˆA‘ŒO-*å^ÓeÕ¨a¿¹ñU¿˜Â,ºj„©›yûT£2þ5]Z‹ ÷Eeñ ÁH¼DfÓèXkŠ-èÎM¡Mã¨1¡Gí`éç`- dQñnn1!# Õ¢"þ$ns6Œ`:]DÖÝ/C¼3,£¥'_Þ;|îB‘ßË÷H:çÕéæM4ž§ _m>>“~¾9y„†2ú½C4à¤1ÿV í6²½3„Ó,  ¿®´÷Üåe;ŽIÃ?özå‰ó¨¹»ús8„V ïTÂ×u(ié#ãRi0½Úþ@»í†u9o‹ X,…àè¯;mݳvO6NÐÀçÑ%-ÔhÅ‚x“'ý„M°É¤±x–~?z@ïs»à™¬ýýçßÞ¸qûÎu»)“ìÙè–ˆÖ¹Ñ-ܼ*B…l ªñ KŒ‰OäR’PJ¤ÌS½£b3q8KÖ‚íðJ ?a0ß´?=ˆ¢cƒo ÿ¡uà.ÄL™ù+ŒƒÿÚ~õâë">#<=¢1MHU¡Û Ë40Y7»•M<õ¬¡”½rùµ{—Ï¿ÌnÙ|÷'g8<Úä¨ËñØFÄ€èÅ÷ …~Ó~ü`›S˜·/}QŸRäú§°v¨ÿUXiî÷:YE<å(X±å¨ÒÃ…»rþõ»jÈùLFMÀRÜÿ»qÐãæ©æ*½¶J2Ÿj˜K×EÉ¢[éå¬ÃÖ9slìn=}vKûÅý“ l9=‚5àÜy¸ÁÚ“Úí䀿¿Ð°>ï¬+æž>“×È·Kô„ȹå¸B"í€`,Ù…"š¢Êrîy×ãˆ] β‘EÁuŽäîJö'ìóà:zÒ |t«6§LÔÂòǃ¥'A«Ùï®ü}¸´ÀRy b*+Jê*¢ŽÍÞ¼2l•#/ýü ~)܃î>éCÜfmA]¬sfRðXܵ‹§îSôZ ÃÈŰÔ, £ßkû0ð„Œ÷Ø>Àà‘JOÃ&½‰~‡qó;ˆÒxkK_Á9Èeƒ2å²,ßÌ Ð'Lmãþï¿,ò ÈàÒÂÓÃ÷wÁM+Ñ!90IŸÂ9«œQ(‰ñÜ 9n“ß„?SòÒç-q_Dn²w¯ç”íëóȸIJ¤üÄè"“D YC^IZs×âv!EM`8­ñË3¼ôú³*¯,¦3u`ºNhD‡µPK`µ\Ùê*´¿¡ÓY½ Nwî°Qþˆùب蘾{ô«• ~i4¬êH.t/I­E– ‡y!»FÒ=ããzá—ÚUü‡]…ÑE-TG΃õ¬ª5½òG<÷?÷Ã}_,N?­ÑA+,.94žÞ¼!Ö-B‹ÎF|ä]e‹î^¹x í-ËÙ@X~•öÅc1dëÊf_#Ü÷=M?ø 5pIy{š*ªJÔW碈¹ vÌà6Ž1ÔÐW¸m´ÿWøt—TZ¥dˆd| )&Ö¢ë €¹ûôùs›§XÂã # ס4Ò‰Àó¡¥É¯ôÇ—oܸsùxâ(]Ї]›K¯ÂŽ«æõ—Cuµñ“Ëëî –þ JXÊnp9}áÒ‰ç?=¶}£ƒ³ó&~ª;›‘r8¨1ÏîÞioˆ­Wóª‚êÌ´lÿªø}ˆ)­*¨¯ Ý¿!zkªÇ>"ß½|b&.]4kg©gq(/ÅTtDl°Ïä^$Ë‹²qB£hfæ›Õ0¾iûº9ììæ:.2Ç¥r*b–Ñq(Å¥+PŠ*Š.J­@é(3½(s½ñ5vÌ¢ã'Êò+øš’Ž©üÁ¾°¥åsÙ‘Ƥ'åFå£"¥Â:Ö‹žŠäê˜OcÏ¡›èSÔŠ>ßw¦ðbeÅ3ÔŽÔáùvy›É±6 ì*W+¶=¶ˆ-NM“#&šV†¡ÐÄ´äŒÄ.þéÌ=Q§& á«k WèZBV¿‡Ó•ÿ¦óü/úNºSpnéßæDÙj]´$ï#` )wèg'ÖnÛê´n ¿„G/öoÍåt”ùfá#Ü‹ÃËþ;-æIKÏ> z±5úU† `ä‚ìO¹W©:â b®Uÿíp#éùˆFôIåãRö†û¡S®¡ÜØ*.ª>H¥Ìïέ‡/ÍÁõårbßsh†°ú>c¸Q¶˜â6ÜÇðg €NK_ )&êàJ?¿à`?¿Ê`µº²RͽëWÍÏ߀’®7t‹·@«NøRŽf0›v®ç·5³n7çR—t,µ,µ4µÌ«KÒc‹NM_™]Ô˜ÇñÑD\'šž¹ó¤ýºÛ±¨B~×ÿœùeŒô•u™Kk:my®åÌmèU<Ñ;›ËÎO¨x§Ñ-ô}Eb¸O·«iC–xѼY+NÙ~HúŠÌÔAEÉLw&Ž8Óƒ;]ñF0évÅ4º›F`PÇD…#×wWo"f|QTº"Ô‹t”èƒJC‚‚Ã}þˆŽÂ¨C`v“>~~¯wô´Ö›ÐZVàÉe¡HL›Œ„é$Cì›i< O0…7z¸Úx»¥C¹ÕH‘õd[Ò_Ü#)×T,ëP9ÊkîNÒŒ_h…ÞºOÝM‡HŦ4ÈQb¼ ¯ã6‰[HWÊ?Ñ{2¹ñð±DÚÒ~ôôѪ¢p;+%¡ïxáþŸ&ýÇ)‰’ ô4Ÿ]‘{ü8ÅA¿2OÄHz!e`°ÎÒ9ª·¤"¡8˰âðŠÊœâÂìnÕÂ'$L¾p™…Õ£`0îMÆtÞ2®~C0y C€@Ûç²óí Œ…ÑÚŸîݽõ!ƒÇÚá^óõÕXè«yM‚–H\u½ë34!**‘sµ):4%"5$ù1²²Äâò£Ù‡OpÖS$†˜iºûPz¼ÊvGü…ã£Nš;êµâÏ.³±q ‰HÉè®s9x¦Em—nõãp,}åÜ÷¹Özê:ú‚³Ñ÷q_ÜkÞœY{ÕÑ¥ªªRuAbalW|êôþ‹ˆyôùŽé˶®³uÔßÒBúUÝ ó‰ö5íà¯ÝMŠÉ A ÙÖCêKèSæÞâϰ›-۶ܳFY¡[¬(a_r·ÿm]}󬛓ÂÝ?˜÷ ¥¸¥8$)òe¤?ë€Ã¢:·bÝêõ«¦ì^:€ÏÊÊ!mSZ! VxM{±ŽT‘Á_?{ÎI_ ÛÛ¯Ø6èxCˆ3»æáçÁÒ¯[áïl‰¢$":!1!žóñ ˆP¢—YY(Wy ä.Wø£0&¢8¢$?;+;‡kP×–¡}DAFFV„DuH]RUZQ\_‰Êºˆ”Ò=+Dõ·@Ö*> Éll$iAåŒg^ü~²0eo$gVbiÔÃh>¼¡Äçzp~t JL”3xn ^›â×’N'·~œf}ѾQ ©ÄÉ¿Aƒ`ɺ#çø]Á 8@¼¡]Á•z>Áå’0ÔX–™µ/—«kÊÚ¡=-rMJvjvJ6ƒPj&"iy5‘š“RJGÛÕ³xa…ÍL[‡%f©„fBçÚK$Uûj‰mð*ìpF‰<›JKóë¹,h†‰°Xs¥¢,=1:‘ä§JÂtw2(8”wéêvË»„¤k`´ÖQw-¯»Ú{ÅÐÁ.¶?Ùz¾õÌ?\Ú¶ÉÁÞy1ÿoö‹º“-èóhÖÜ›}4ÏÚáÔ–pÒŸ…¬\»hȸçÓa˜?{òâ¾Ý77²³m[µšË×¾}viÕêå¶ëgwòâC8-ú'y•úþÑ÷âRþI ×ٌӹ‘(ùFg8bg‹4EFˆÕ ¬²´R]ÐwþûúÃÌiƒf9í¦vˆ| ËΑPËÆàþóÇŽG±È--¤$3++•2Õa2y¸WÙRÒ9YÔ[Iè ‹µ°xôlKúÉ4 ¡{q/=y”Á#3YëŸÝ{|»õÎqu¼„¯õ,ØLz«”Ô”ˆ3#P,ã¸Áa6§çu°5p»`òWrÇWLÞGø³Û`x$·Áˆ6QSk[ë¯äK,,y;€ÍÜ—žE ¡#öÀøPB¬¸öeI1)‰(Þ2´$¢¼:§,?“ƒ¯aïí½²eËÞµ66ÍkÏžm¾r›±” ­;q¢¼®  ÜßÙ9ÔŸT‘ „¥ìiݶÕuÝ¢ùŸ¬?Órøò}ýLõ‰£e ……e>»œCý¢:ƒ¶éÖ£[¢Ã‚£X°‡—lÁRŠö"%Ot¡r/)Etå÷ žÀ5“'žº"õ;åIž4)dP86ºì ,*ŽÏ +Àý¿Ú–LÐËÃÀÃoKòs2Q1“›Xà‹wb œ‡{ŸšÚ´…»°øþújÄÔfUäò}¹^&a~f=)êÿ¥³b9endstream endobj 558 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2714 >> stream xœ­V{Pwߤë _—ªÝÅGÕö|·jµØkµT‘¢¼!@B^$@HHB¾I „Gx!‚XS| ôêë®Ö^ë]ïjm{Õ>笭þ6®7s^g®7sôvgvvgw¿ï|^ß/ ÂX,ÖÔí1Û÷G¯[xXF-`Q ƒ¨§Ø|úȃ"ü˜Á†Á–…3*æ¢î9¨bÊŸ±Y,EuýöÂ"© 7‡+ŒH^»amsY±nóæM+#Ö¯]»9â•‚,AnF?"&MÈÍ*H2¼ˆøÂŒÜ,¡ôÑ/‘\¡°hËš5b±xuZAÉêBAÎKUVFˆs…܈¸¬’,(+3bg!_±7­ +âÇZWÿx³½° ¨T˜%ˆˆ)ÌÌð1 ›ËßV((Ù%NËÈΉ‹Ï;À+Xa±ØlíÇV`‰Ø6, Û…½Š=‡=íÆ6b1Ø^l6 ÆŽ²"YõAs‚œìäàÅÁǧ,šr&$ú‰Mx0nžº}êÀ4Õô”.ÔO¨¼T˜—Eé¿c£·céøâà' K{˜ž%=BV tJãñgòÆ¿C Úå —h \K¨Š‹VÆ®©‚Öö—ÝC:†FÑ4˜Äoìë‹EÃÎhB<kˇdä–‹‹ÓÊãA‹+ìÐÔe0t[ë@ëÀm•PR£Ò–‘Qô1­j@Îëªh·œ0žµ¡þIð¡Q/jñ±ü±(Œö\áhz½T_¡/ÓW^"“_ÚM$µ4ÅÝFó¿¼¹ã-$zÊõ‡OáCü«çßXL<œýÓw!àÒÛô8 Upj› 7àh~HÛ%ØüÛ‹èé$M†üŽþ§ Ô 6¼‡N†¡m!ïÀªÈdz:=— ¥>{ŒÛ}ÄBˆÅ¦n£!Îݨ+ÌÛ¤åô‹ôœ¥×^CÓÑ¡;h šKÐct=‡ûz˵a î>Gö^š8øà›²¨Ìb:X@ò÷Äç%JÕ¨ÚQÂ[Jö P6ºŒ®qê:G?x¡KßVvX¤Oc@8EîcžþÑs¼Û²’+SS ™;£3é—!MÉTÞ^Œæ~ÓåeÝD3Ñîëlj#µ“%ƒÐ1›–uwµˆÜÊ-’K‰¼Bqð`ã'2wõYå9%Æõ°’&Ë“¡'°˜Fœp ?–o•esùI{®ä|sô²áØ8qvˆAz:Ôžì^~§ÀœÐPP—n…!ܾ×à…’N"ôÁ<™½î£fûXhZÀö÷!.Çä0‚ÅÐhldÐÀ»š¡·Nk+#Ó!E—û!δNÏXR!aXné ±½ ÕZá:’”Åï΋½Ø^ÔÅïÁeu¡Øî]ûüN÷Àð\¾N *RÞmÝFh3HXÛ&0„;*@NlØµç­ €pú$½ÖÒ<:-~­ºp½iì<鎔XÀÆz“ õ[ëm¼K=‰²©õßr$©ÅEy€GÁ…–‰žwÝ“–³Zð‰ÄK’è¢_N3Øk ««ç«IÀÍõ Uðªdö³¥±ˆÓìoEïŽ ví <©o«FàO0vzð¯}WûÑl8¿Ä!áfçä”8” *¢MáAÈKV DIüÜTÀãU'݃]·{¾'ë꺠w—ØDIG$Œ™ $/«yÊ Å(%hŒUø¿U~ï>›š pÆ)`„Z¼Sæ,”ÉTååDþ@¦¹p:r9½…~’žþqúõ ¾~gé䎖 ƒº=ö6׈}‚ù+%z½@M¨ò¤/ç^¡¶v:ÖÚfri3§F :½*5.MÎ\˜ë˜D³’žoÎ7¹`Ž–6f0õª¼È‚‚;;o?ã*…"9‡¤úÃŒ@åVÞÈHßà‰±”/Ðq‹èô¯7û6 å®‹Æ¶qb¼}xl¸UÜ¥dˆV«‰W^XrÀ÷óÜ“ÃGQhÏYrø½‹M}Œ¶zôN1³ÛRúˆ—zÛ‡^–„±Ã;h&}M-â  –Vèm•‚‚\bõu¡…‡ÙÞds@-8ôui…´ ñ¢6Iß ·oÔ—ÜMÏæÓ¬Ä*BúÌ”5?Ñ'!;ÎQ&ÔT– ×É yŒ' °´XÝÐŒ÷ˆ9\^JÒé‚ßÝhG+|„ý„Ùi=€‚)mñR³X`‚¦pj›¡Œ*ª¬¬ª"ø=ù 9 A/=Ko¦9‹Þ;øy¿Ûêô²¨’Õqü^BS…©½Åâ;Þ-içqsøGb>T½f~}æÓ"Esª¸û¿x‚f¬ãü šé$nœaXéƒþ2[ #öȼr{‘Û7—BKMˆ˜?Oîg£Û4µ÷æu¸…£©ô|Ïb‚¾ñó¦—<¼ö_½¼QÓH¾ gLcpÎêÆÞ®w2°ËØKC”g¬†«¨7lÞØ½¦«°µL•«åkª  §Yh‰nàÎÀ];ó}¥D âj¢,©˜Ï<§¦ÏÕ VûG¤å8CX>OÇE#±.œ^ÐÁYr51J7t@øhÈ_>†­"ù²ô2#ï`U ¢ý„ÌçŸv‚…²î£„{l¬=Çd7Á„7•Cµô*%q0E`К¹)ͱ ;6Ó«Vå4ä·óIwÚqåXEŸÚýUÃU¾ ؉'¦Ñ=åÕßtýÐldö& &¦.cÀ2 a H4Ä!:Y¯Ñk &\Áh¬Á`°ÖîîLÞųýùo ?dº×ŽÏÐzÔ£Ù£$oˆgÙݼ«%LV{ЗðSo|…XLd.iK@GÈmÐÜù(áBbTdúâ{Ñ4•Å„þ6µÎÿ$§GÜÎÏÎÍå;Kû†<žA‚®þg4G›²/p5˜êÌd³½¡‹ ±€t²sóÓ3¼¼É¿÷ÖíNâK*”‘£êÂ/Åybi<š&e„ë0š­„·4^oÓê÷|ô+¶ÿ>u?ЙM½ufXw´@oc•¥’̆L]dBº)3 µø‘žõ^Pv“+Fp鈧÷ÐA^y–Ò–ÂN­ºÁcnµôÝ¡ž ´{§ñ¢!¬…YÐ^i®$“ Qw!Át(° Rò}úá³a5jŠqzæ—;Ñ2´ï[´ðN7ßh‚uëÝò¯àÌÆ:0ƒSªWèéYÕa•z1gºQ½­U¯·4ça³¶Œ™*ªÃw¿7áëö´Ù‰ÿ¡¢'±èçsš@+«L%ÓèÈêe¨utÛ°ùŒ¸€ô–ÞÉ/>‡ð_>Ͻx8-7—(½¾DÌ Ñ;ÿ³õ™ìÔèEZ¦S¾4ަyÑ|f˜B)ßqÎ^ù£§¯ ¥~ñ )8 Þtn ½n)½!2¥‡7rsa§\eƒrF§ÕNК´F]Ò\ •8?íù8u…¡çýOÐ"ôıSÒ]:ÍÓ){‰ä=1Ü#B:jM&½‚A)ØÑÎdv-Ñ<ÞÒÔè÷‹úŃ¥'OͽŒÖ÷0¦– õz¹†T¤§g½ùSWiH1g¹LÓ‚¥…3¦bØ¿fÉOendstream endobj 559 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1517 >> stream xœ-T LSW¾—Û{vuX¼J£¶eâ#“ñ˜N@DÑŠ ¢L§¬€PZk‹ DE§€ˆJ4 Lp™Î×¢ƒ¹á@¾àFTœÆù˜&.úßë©ÙÆœä¼Ïÿùþï;,£paX–¢u Ìð˜—F±Òhi ‡IÒ»By%]9ìªØ9…¹ƒcØÜ }(ñ즭;£Mf›%#-ݪ]æìŸJ»mÀ”)¡>Ú@ÿ)ÚH£Á’‘ªÏÖêôÖtƒQo¥‹,íSj†Ájûð$<Ýj5OõóËÍÍõÕ×ùš,iÓ¢øhs3¬éÚDÃ:ƒe½a•v¦)Ûª§7´¡ú~£MFsŽÕ`ÑêL« –l†aÜ"³£Ì±Ö8½!>1cÁ¢Å óÏŒe˜‰Ì"fÅÌdü™ &Ž™Ì„0_2C)Œ‚ gŠ˜¿ÙX¶•]ü\8[Êån+âÕ¼‡T¢”}qÌi“kÙFé-'”ãÄ@äôyÇßFà +y8‹Ž’•üDf˼Øädy‚‘Rrà:iP'+…÷qR1\«q5®:§Ât‰YËõêš|4šäLâ!·\š/tcUó±É%¥q©&Ž\¤GÚ ¡p+]ëã ” izØ F€âuÏÌö€}š×õ/¯âǽ ËÄ]ML¤M<˜wô²gEü¼à)ÄGCâÉ_b;4ð0½¼»8&bl$qÓP¬$©B:ái+}MsLkkòާÞÀ †a †© ½áºXKú2ÍîsütDF½w§à€•v‰•ûíö½{Ïž<½£ —Î,™NxŸq~±›/UÚ+öàrRö+ì†9—àY7 #sr¶XÏÁE9œútCàÀ‹Tç_âôTšO•«”Zr®I¯.³r2ïqÒ¿²Ÿ¸ðØÒšJ?¡#.Ù»R¾ËÔ74nëØxkÃâZkíº* ^/DE†zÏ8Ø‘¨Î kÑ÷™îa|C`$ 9XÜl8£Ys¼ӿ>eÏœýø¦p³÷êóîfÛ7gÕJ9:§MN:æ'Û¨ "Ðçj3qŸŒU 1ÇÞÔW¶Wj^I«ùÀ£â¼²íج"ƒ„ÒOfm<Œ9¢V¾›ëd/(øÝDîÝ%) ‘¹NņÕSI¨m±ª Ù«q9>Œ÷àŽ˜l†·žSQQþ|"”•‘@rÇsE€%a»M ÷vâïðnܳ½§¨g-<÷ Fm”í>py_#|¶šŸUö,„õUÄeÇÜF§àù)Õƒ¡µ®ƒæàïCendstream endobj 560 0 obj << /Filter /FlateDecode /Length 7379 >> stream xœÕ]YodÇuÎ3‘ÑOAw vj_ø!Nì(,Àö~£9\D‰dÈY4úõ9KݪS·ë6Éá À.]Özê,ßYªçç•Úê•Âÿ•ÿ}{¢VW'?Ÿhúº*ÿ÷úvõ»W'ÿògàË6«¬W¯.Oxˆ^%½Š>n³õ«W·'kc6¯~„Î1uSÞ&•`À«ó“ïÖgµUÙæìôúÚNãóúzs m¥|vësÑåj£· þì/°‡V*ª´~ N½ÞÝâw“cpiý†FÝoÄ„×ð9(£ôú®›úûWÿ}p¶Ói¿§Îl³K¼ëW›d૳ëÀ)ç5, keCÂÍÙl·6åµùÍæÔè½þf…Ÿaø|‹{ÈA)·ÞÝãÞ"4Óú ÷¦³2&ÐæœŽ6¦õî†GÆå2×­ùÓÆ˜#¬­¶Ñô]q XÙ¯€¯6EÂz¿95q«4N4Ïy±{ûÛzS©,fÛ_™-Pܸò—ôßðØ”œÜÈõÎÉú°~‹4O†¨'Pî-§Ö;ì£u°Ññ=—¡<¹Sv})q_ö› M^¶û,ë_´ÛçKv^^²Iq}žxò§6rÄÐÔNO ‹ÇD7£¿ÂIiÒp¿õ&˜ç,£Â`ëÀ_  œq'ŽyŽm¸6ã†ë»¸µÑØg3 Ö·Ho½Í9À5´Õw¯I®,Á—œ“‹t;ÈêÉ8Z††*P§Ún½Ë†§—׬@JŒ'Ù/2P!»è™ã”Opã[ 6‚L½Ú õ}v~ù&ÂÑAò…¤]7¦½úa¬\˾³' ;zêã-ÎûS~ýZìiC¢k}²ëwby”ô¨²³¨n`dÚNJ­êº*RNPy•¦¼Ý†HãÍú#ÑÀïpÎk:¨K\pÐrï7ÞÓ0Ô)¸ß›y×Q nK[P%rÚ³6×NÒ‚z+еxUDfŸA—”ƒåHÔïVÄŠŸ‹¥¯ÊM9ÕSbW”³ÁYÊ|7¤±­ƒÉŒŸøTÌ-EãŠw¤`jÞFJ6Iõ†ôŸ‡ƒì±ƒÉ¨ÕØXª¡zÒ°°në÷¯NþtÂ&Õ¯îŸkJ]vp¨¼ŠJoMhO¿› :,iW’0’…ƒYÂR±Y»»j©PÁ[ø[¶ë¿n’.s#åë˜ xR×§¸=cÇzîy´É[—Ó*€¦M)óyÀ¸ŒæþD’i8Q´r…µIG ò©›QúÍ6½i*b[jÝ>Ì•VW' ÷òýÏ“‹…d#ðÔêöÄàWÚ'¹9ùËò¶òfˆ @CTdµh[ß®r ˜ú5·‹Êdò îºh¸~ºér´€e<‡}ÅV—øÑ³Äõ6ÙC#zoˆ‹¸Èk¦qÚ„(ð¤V0šlJ·¬Œu>ƒ ÈМá~˜™oÚ¸=F5üÇÊÆ€ê× À¼°ð°Ö*†B–Y3̉·V;q\9iÓù7åN`÷K™ ”ÿò\ZƒàŒç𢮠ÖVÙu&±†Fd­Ž·B¾þ'^ÕÂTÅ QYÅ ›ì«Ÿ½Éaº0ÞMª,Ø‘X1·Í^²bùrŒ{$ÑÄÚƒžð«àÃ6iìø®È[å­®(è·¬˜“¶k½9 M@”õ© ž†£lÉVe 8ÀDèg´‘~3‚T§ÓiH×ú'«e˜Íi‰šo$+»%;cÀÔ®7(ÊÖ<Ö-B7¼aêVO½ÚéKpzxú:·ø„ÓW,÷Éç·Kç÷â`tÿãóûîünáü^ž_ÛTŽæ­Ü¤‘PÖM›ü9dSŪhy+ bU¾+mÕ‚'ícÞÏõª¿œw²5¿jÍïQ¿8tßÖ¾‚¶BóT›¶5Ukæa3 ‡]´æik:9é7 ”@{5ÜC¢¦KZ†Q3·¦nÍ4üª§%RY‚¾n‡}}kªÇæMr;x¹E˜¿9yõÏõí‹©‡_Õ°ïg¥¾6Å„a3=ƒúnØ«ÙaÓTêl= ¿û4úûÖÔÃf~M_ˆþqxö<$º“ä}:ýÍp25\ØË= ýgD÷/&º ¤~ÍÃaŸ•èiH?¤^”„|:ѵ$ä蓜W|=¼XÓ¤!ÉýǪèKišGÙ[IB~’¦y{çôøiDÄ ’N#J›/Oô±z C2t–ï¥êů¢cÆ5½˜újHÜ1Ë«/Dý0<ùøk’´{:õí £¯V;n\ó‹é/(-úêÇnåKÑÿQ% $q>‰þª²,‡ TŽnM5§?íûvöGé?F4cœ¾ýÇ”6’Ò#B>‡þcJÇájaNÿ¹7ŠA_ó$¿ß´TâkŒµ#¦œMê)„=Åâ3lùþ=ouv%>M‹ï^­ÊÏw”‚к ¸bX×… ÉÌÄ,¹=lr5‚m3æ+ºTL‰ÚÉ 6oŽòw"ˆÙ“É(¤€OÁ:7ÝcwŠóßñž)öÉÁq“l!iÞº>Q 3˜ž‚¹Qr8´©A¾)Ž¿ŠM·\‚¤÷]ÙpÎþ²ì'ÉÎ}‡7ÖåTjvM¦´DzéJìpe»}z`Êê(ë0á‚ðG—‰tA»–A©4xÃT¯ p”.±?©¦dH5Á †BÚj’ð_ˆúXHOŠíJBíù3ìØuãÂûVo]M—äò-œ,jg3ë¯%y[lÆœâëŽØ5|-N¼$3%FyÁz]SAEŠ‹éP¶d.¥$ðæ—3Ñ;RËȰþ¸9µóÌæ€ÎÁ!k>ãö!€˜Në!_³é™…ûBÞÚh+õî‡&ùÍðëÛÖ¼~ìë¾5ïš9|šC¬T¹™¶4Èp=!A—Ô*naÁ.¦itØšVÎPH#›š3» -g,•;`P^i4p§Ú»•Ãå¦Ìé+J•p^€Ë_ ioº(ªÒ9mÆnPÓR¤!¥’à†ís•K:Œ•ΡL¨Ô™¾÷ÈF;7‚8­ƒÝ+[ ¥“_Roªh²‰#ý"ë7êÀå\€“qIa'÷·…¦jÙ†M4ߟ5›û0;7 ®½œù=8E/õ #$ÐÚ+º|™%$;®=Š&uÙoå±bd©räºÙ;JÆÂY}½†M‘òr}%öõ)-kÉ„‹2q6áÞ6¿€ü^ž07 mÌ+¸‚mH]Þ½ö,FˆS%]ÜùtÖŒ¥È•òråW5*/ð Z×o›K æþTÊd·fK¼´–ÀjbžÙ®7M¥|…EU A£|j«=óšÒI–îQ:.²ïSuX§ãè¶’Ó*ÈÎ$zœIŸágºïl—åþðuj+ÛAuš?Z_ ºj@=ÇZG½–?“RUé ë_û¼Y,ZD ÁZ»àâ¡ÅJ­ý†NÀ œG[J9΄’¨üB´ñ= êCL†m,¼Zv±‡M¶CÌŸEЂr$]Ö–(ßÕ|îÎÉ>€ ׋UV‚‘¡cƲ€å¢´zƒy‡4ߘw‹Z‚CºÞ¬õh¸ï óòŠØälè¤öꮡ9z/=‚èM5MŒÆ½8ºT”üÀò·{!O}‘ê´å#$®u‹WP]®¾«€‚M¨<6i•¦Ë•™|Ïî@¥oÁÌÆÉeº(‹PÉÀS]Ü.ÍöÁÚ°5Tø?’®› ïkóT¦x¥­ vf¥ÝÖ:8Š]´Ûõ[,UûG‡ñÄR€åá4XR ªØƒËðM* Íy#†¸ÃÀeBç×ïx9¸ fP=©Xp¯"J¨˜ûn¡Ê|Úº*ÆNUæ °Ú ¡H¢Ç97ÂßÞ•HPE¹³—}Ï£ža <…NyŒ=v¤ä…Ó…p¨wäçU }©\IˆÝ;.(¾;#0_ãSD£Quu¢\E‚%a0‘FeïÂðØø@4(£µBt›×y¬`“K\Jdô¬æÛª:îÏsÎì ‚Ù“ªï%T”ð÷j¼Ù¡ë×a^ŸCž‚,t°ýœ$àÖ»«äº{§m8 ð0éiêÎ<ï¸\Ve0KW×âî„®Äx ð…of×ktÞÁ èØP`Aœ†}…J_|Á hmÎêóOq[àœY$ìw2°™*Ñ? Ç«Šù] ýw²*\¾v(…ÅÎP4¦™°¯Ø'Šp_‹1ÜæåƒÓ^T×0»¦(½éÙ\——àcñ×"úv;Ïå‹¡¢«±x {·Ä=¤F'[l•pß’¥Ö§Ã&-FâcA™_RX.Ç50|)íëžcVm§ƒ—,»»C¡àF{àÉmž£'>–íµk±ä‡ÜbòCfº8aYk}¤ø¤¼´÷ï…ÀÍÃb|ˆÞÜÏŸb$ÚÅZp¯<4:U–í|ñ™Ý0XVªlÙ7-Ù…Úðï¶¹6V›¼>‡Œâä+«×2z 5”Ñ÷—À…P¦È™´KÝ?öÊfFÕûîæÞþ5‘û¿fÿ<¾Ù1+‘â˜BaLˆ ,M'¹“ û®¡÷i @V {k¬I¾t¼m“çGsÆ×]ÌsH¶€I;áŸ?>aþÞµG" ïwX²ÍÏÆÃBifw®C­ÉÊÞa.×^œ«»GùV$ƒD¦…^Žá!C¹ ®^dš(Ф WÐ&°3²Ûj/‰ÍšÏ‘†G¤’>ò (ªVcqüÎ ŸRz.NÛ%Ä‹?¾«F$ åäö~¡ð^¤äã¾0¸·@îy`$S|¥K& ç”I5&2f8÷B7×3/¼•*٥ѩlˆ±¾ašƒ‡b„ø¤ÑÛ.j+Qaò6>ª¢y˜ ›–®¢ð½V¬Ì,ÂÇB+H: ·Bž`æ"vá߉½á*Ê dA”Ʋ½†iSÿŒÝp¯LèÎù®!fá(õ™}šÐ©¥-™dê1{L‹Ÿ † (x=`™#! è€L)íN3¼OBG3TÍäüuh»ˆ±qK̶5-07ð%Kÿ´š0›%U,<‡5ÿ-8PØT% ' ¢˜—_Å>J;)J»ÙјµÌÑyK/ðÔ„‚ 5úؘH¸N¬W*8(jsð^wšLÁÙœz®¢äƒÚ²C™ô8+7§ø„lqï"Õw—3??c£ch‰ùY©éÂÂÍÙI"……=MÒׇ(šö²_â…ïø²M”ôƒøÞ½Æ9š1&žì+káà|ï˜?˜”È5û€,G¶½¦=¬^;5×Ýò‰­Èý‰¼×ÈŽŸ5ñ[xŽúh u¢° ø'U$ú—6ð­”;>™Ž»º½aE•Å$c¯5a´¢‹BŽ›ù‘Ö,ÐÊo¹§d¾r;ŽM!ÒfêëÓdñlpÇ¿™œžY.Z¼Ä¦'g¹«S‹uq:ޱÎõ‡ˆÁbr)gùU ”Àmöu1(ŒÙRu‹ {òלK…•Œã(`Pi¬5“bó:­¾,ÐÐþëøT°½¦m ŽŒ€á b¸™Ñ÷Yñßp‰KRésƒÂ¡Öx`Š£ÿ4Tˆd9Š ÉÊŒ"Eäfø4Ó ó/D¾J¬{Ù «O° Œé´&*\P†ÚÄRFBÍ]kÞµæek^Ëa#uàð1zûÕ äS<¦éÇ‹s3ó q*ÞnyÛöҹě½mŽÒ‹<Þą̊÷h£^ŠKs(‰…À«eX¤øåÎYÛ¹T¤:¿*ñ9ürJ‰¥>dÌVx1dŒä2viæq B‚–¼ÅÝ»æÐ³v¡wÇ{Æ•ÆÇYDGÄÝj —1«›Öác[f!òXr1HĸM('´åÇQpæ ç¿#S-í86ÙÅ·û£á¹§<ŸÝ¶<gÂ{´¸òL"n‚ûuv´~G´lÀŒ<ø¥VªH1…ù/‘åéºÖ a{š :’EéjÑ,ÿëÃ@;ÁìvÛA¼%²íö Ö0ó¥¼0Û®>©w°Œß&[ÊÐþKH(ýv‰¢Š–ýA½({mgˆÕDPIÉ è/ý‚agN1X–Om½šÂß;ÒÞüÿ úØ æ“2[HV¬Xèê1 E@gsÙЭîŒá[¾Ç”òB\dÁµ”8ª nð޲â¾ç€÷ºj6áP^W…wW8E›cé³Ö{Qêç?耀R«ÛPÃð=Ö/Ç^ž'³òÐ7†®D/ZOCˆ °hp.Ñäö)Â*msŽ®w ¢{ŠÊ\;¾ío7¥ €ÇCƒF7Å·˜i*l×™¡x\˜*']ªÀ褙9Aq–·\3uìfAáŒ{ uFTÔmÍwrF9ô:ïDÏ(:Wç¹ä ¶?²‚Ý`d&J%A)­‘ÒF DodžR¬k§b‚Ò|ÛšoM1ì~8ÃÙftM.€Ñ¨Xó’~/F›”KœΞ°Ìæ5ÉRL¦»2ú¨Bò-p¤sx|#ÇíˆfÖ±’˜:œ‘8æ˜s»'ËàuZ[®rO¿‰2—È|X¥Yo‚!lG9õ`‘À/üÈë8ÆÐÓ|b#\¢dBФå…ñ#‘ ƒË‹€Ú€êàñÖue^tºu:o™à¾ÞzÐh8¥ÒFÛâ§mjþÒšoZófØ÷íð~-˜!QtP. a?Ï  Ø¢ƒjBzpk ×jsz¡€*²«Ý% 8„/Å7|;N»Ràðÿ ¢Ë [>`6a±øýX‘CŠß:$i⛢øŒ*zÿ#Œ °îù3rý{‚ƒ&ØÜ äò€;z°kŠàFt¿n»ý•QQÖü¶×Ñ)ÓÓ/8ª¡j"ìS*“ –äÉ-"~ô Ë­‡?é.­3õXtyKœ!ãž÷¡ÑK ÊUîð¦aŒZŽBß™­3œ,+’Z61Ðø´… dT(ö›Æ^ 2rÀeçîñ`mB¿qZŒœâž×P¥àÔúž¼Œöî|¶¡:ßMá¼Ü«™û=¹@: ~¶ €Î–DFð»ü,ôœüLZ‘5áC¡/…éê:â»}¾¢H^‘ thî/¦ˆ¦D•ÄB£Ú*ÌÙ!È|*)â9P¿ÕæÊ €¿ÀÇôÓ/»á/†Ôq¡Ûq 3׸y¬V›ì5â9wÞÁršj®x¨ÂRg+ ó$Ÿk|.ƒf¸Šî\\²ÿ™(g¸¦1÷+˜& jØt\eñ’ÿuÑÍ·a£/u/G‘,ƒé„zËÝ•œQ3e»¨÷ª tr¨í@.\ši;ð'H¬oeVwYUw¸'—Ó¾›(È¿äÌ0rYÙUå¿`9;››µ)È#\Öå_‹›ètÉêÍ9ÕòˆeÁ.š‚ENÙÃê]Õ–z q¾”¬¤P%(Ë…oÑÓúk6lS¯†g ) ß|ÀVTÎtsQºÁÃuu_ï¿b»æ}É[`ü”F¿bjF.Î*Óë¹kÆ&K‘õÓ@J½é[1 3ÑA\NµôiÖ1ŸÑ $œ—›ï`ä°€PŸJÉúÛýrë—¯Ç9Ÿr.Ã9by!p„àÀSö95ç[qÑ€­]ÿã"ØÄêšæÔ©ãaV¯ „ô'o×DòþªÉE¼†À䆽¤C%ôÒ¤X(Æa\#™ôóÚJΉՄTô‚HðýÆc8›j¿Ä¦êNÞÍäh‚‡3ñ/ˆî ¸ÒJé?­h¿ÈÔàD-øH˲^ŸÎÆcâ?‰æ£H=—P~Ê6MyÞNÒ‡òʨY;Óë*ºƒOUèô&WØ‘¾â;Q<@ÂR7r• ÄÄêÃr(ÄëœJ(„š»Ö¼kÍËÖ¼–Æ®2¾ÅÕ59%ÄHj)õKz+G@8\:¦$Ž…„°ÄÆ® ô0¶sÝšç­yÕš›Q HD’v­y»E’n†“ÝÉf,ÒùŠ‚X&±˜ý^‚k¼[„¬"²V½§R „®Êµ°Ï·h£ÑÅ÷  ¼ë²"q䜟Æ&p!7‹+ƒWí¦¥$|dF§b|á?ý,\¬wB¶dŸ‡i¨9N²Têzë!û&#gßé–sšS1÷Š?YãüúG±Ôq:æÈ?ü€ã°Ì€~²âPß]–7a€¸AŽû@+ËäUê9»f³ xUª‹¾äÁh ²¯åM”ÿ½5Ç_ÿÞš÷­y1TbØÍP³<ÈæP4¸-Aÿ†uËWÀq'Õmùvü¡©g~i)ÚT9pØï5½=ªrõÀkbíáØvÞp¯tÏÌRN‰ ¸)? wPLwBd?òìü:~ÿt2ŽšÂ%Â,pUÄ ½ïå×É€xæFÉ™»À•'¢;ì¿05c)âfÝ)®ÊRÚÂr¥e /\‰Û<\Ç;çÃT³ ¬ÐŠÅ%.øO”ó1pyQL“û }3 sëŽO¥6Xܵ þn[ ów]qð"yk#?IÚfÉm)oÐ  ·ûvÆGß‹ o5s\Vœ¬îzQÞF50ñÒØ­Ëƒu4ab>¦,ðF®¾˜‰b¾ûí"ß%þõŽ¥¨Ôw1Ê ìÞõ—Þ¸Rˆˆì?àWÒÊOÕN-o‚;PÇ]–äèŸZ nô*pËíçí‹ÿÈ߆Çâ_Žd—þÖNwk]Ÿ[o£« `ÃÔÁîsZcÛò+1KnG¹Yfª¹k‚ð‡Pj‚íÜüŸ©K®í›ሎT"¶D?NQN‚ÌðW@|ÍZ/*JjLÂâ?†À/äëªáG2å2ž,ó=•œêéÇúúœ.LPR[0gÏf<«ÕÑ/ÇÈ4ºÒ‘k…£R©-–æ!dJhʼnH%;õíd¿Tc¬ÿ(ÇI¬›ˆjKè̹ÏFA„Ûṫ”}àÎnüW!^28ç|¨œÒCåë1™"‚…%dr[Ci*×"H0@·Þïéì©ñýÒ<‰!U+N"(¹æÌ ÃÒ/:ö¹gújóÑàä±rÔøÀÁö~qÉ׿®5ïZó²5¯å°¿6sı+ÚHø-KŽ16=@Ó„É|ZÁð™9]ä’ra”0ˆX7•SÈçRvÎ9F†Åv»)\†27»>†¢W p½T~že¦hÝùÒP+.×=3ÅÎ䨣š¦œäèÃ+;­ ¬Ø~|ዹÓVFåaZŽx¨îE.Í’ÑSðî0“Üåpñ&þîá}ÍÀÛeX DžUg‹˜ÿ©ÄF—ªz˜QãÈÅ#£ÄÝÀµi2øÓ¤:Èsv{^ŠIˆþ„‹Þ³#åºþtò¿gªY7endstream endobj 561 0 obj << /Filter /FlateDecode /Length 8748 >> stream xœÍ]KÉq¾Ó†Ã@§c§Uù¬L>H²dK° H¢ Ã®!49ÃájÉiî ¹»”þëŽGVfDVeOÏ’ {ØbMuV>â_D}{1íÍÅ„ÿ•ÿ¿|ûlº¸}öí3Cw/Êÿ^¾½øåóg?ÿ£± níó”ÍÅóWÏø7æÂ»Os˜÷Ù…‹çoŸ}¹ûÃ% ™cö»—WÓ>ä<Ïvww£q&çÝÝ¥{o\ؽ‡›SÎ!åÝ×piÍäb‚¿_9gᇻßàÍi²yÞíñ¦Û§Ý¿ã½}H»{¸tSŒ»ã¾)Nv2»Ã¸ë§0Í»/x ~þ7ø„ËÉ…/ÀK—Ä_ãŸçœrØ}Ó~õ'ÊDúùÕeݾ¥q'k¬ßxàúŽòS1_‹ŸÞÓBLNVþRÌó ¯mÎ)ÅÝïh«’Ÿñ-4^œÂî/—ÉÁf›°;Ü®V˜|¶iW&è]´»Ã7—vÞ›dñ<ÚÓ¼ ôÄC»ýßÏçî¢Ì7‰çñ‘ï%cÕÈ8Ѹ‡„‰V»ýfùÍÓLÓ Ë-æFOà±JrÀƒÇûÑÌ»´¶è¦LY“‘œÑ;bˆ|ä ç'ä”Þ"sÂ묾}‡ÔâÍ„Œ wSÎ1,ç7çÛQØ0 …n†C7LE_J£·” 9ð ôpž&Ÿ¶hÒº}¶ó2ÜW»¶©zNËLew³Û}‡™&ØÏÃ%Z°|¬Žg.â yîu›är:H©÷D#ÀÁ¾¸É[ŸÄïDÖð“R fN¾ÑYÜ~ÉfÃ+gÍ%ð•qûlÍk}Yh~‚=:ÒèLÿâ¾ä…èäf)y%ç|u)‘ë]ÞÏðÌ/9Á9Ëtÿ²qÎñ-îàl€l^Ð:f7+®¾k\=’¥<0œÝˆ3nÚT·(Ëx¿nþ|”å÷.ÌiOÈF½­üþe wÐl¥ø>¾j“‘÷y¡³‰¬Zµ¥|ú@:cù%íVIô_GùП¯.qMv6i÷ü2~ÆIJ]Ìšßyǃ C¹ºÃÛ˲- <ÚïPz˜Ç™:õAƒàÞ~Oó˜ ¬´œ²OÞ+ïdƒ›Ô f®Ñ-;þ¢mÚ=SRœ ˯†K!coqÓœqÎx½>{›}Ü‹³ƒi ±8¤Í-™A Ã-Óý¢1;q­w`Í ×¦ÄO±¶NÉ•ž‘QèÈç8u›<åDÊX hÄbå$àn(C“-;‹Cf_¨ÆÛŒnG`ÄY,¿$8—A‘$Œ~÷igƒ—»r½M¦×<0H@&¸gæe;mœbÇÓ8¹ÈÜÆH㸻ì½âlmª°µõ†_9§ÄgÉd°Mè諭<ÒF#»:52o 1£nš\ÿØ6dÀÊ?4½+鱞ŒÔîGiI¾«ê)ĪÈ4ž+ÍH´å ìi6vØô.êÀ&gÕFɉß4U¯Y˜Uœ:ZØxd¸ƒíc;âÌ0J~S1ÚêìóÅ1ÄzqÎÒ’¬ðPÜo VÛ´´’EèK„°$ púÁ¤œ:/»zí ”€`óvÏEPí5›ÒQä£úÊ‘¢³bàJ’*øºâ’²6mØŠ$Ž>eÜôxçÂãý0s’Wáf°ša'““ÚçÈwáe5¤¾ä Þð~2Šè‘1K¾â©œ¹LãiáN%À¤kÄóR±ß.ûA޽ ÉÚ.V‘{ú°,—bõU\W]€©D°pæU†É •/¡«²‘ènQ”# ³dw¿¿¬ïþ•ðß8äWü°5ü.d¾ ,2ŸØmÌ v‘έnQ±žx :î+ О¸H] †O¢8¼i2Á—Ùi£jÛ“Ã@°&OږĬõÁÕ·?)€ká:%â¢ÿ¸Sy[~h€âäJ¶Ÿ¸á€g–)=‚ôí¥]&®æ­Ö"õ¿+JiÆGUº¸.’¶]EНy¬húèÊdÐ ;¥?hÓîo—-®±µàÁŒ#s¨Âìç–rjê`_ïÌ`†ƒªœúIfв$­~Kâ¹íʘ €ÀQ¸’&g9FZÖºg ä¡|+<¤dFœ%5Bµ­e^㩜5³(¹S4¿z»æ‡C¶=yÁ`\™sç°žàƒ ÅLÊN”šæÃeG¼R|ƒŸò)~…Áí92†2¦ žŒE ‘åߤ…Õ‰‡òФmøc™\î"ÜK$¼V»a-i ‚àB‰åà}“Ì4±©ã-Û¥¸dé~4#¿JH”jj—¡­2dFò¶z’¶xô`€,OМ³ÿ°8ÖáÂż)¿Kaä¶y¼Ù3Õ-OwI?¾íåm'Êz\A*ý)W^`),/8êø¾Üî¢x‚ ¤¹U¬x´ÂŽt@¤ü¨Ä—š“Fº3~Û¤h`ÖrÇ ¸H;Ëî'iá Hä œÊœÅo9ôI´KÑ÷ï Ÿ–jÜðˆÌ#W7œæ9–ÅãùHƯ`¾£ `¶É‹«+§­¥œc¯| „‘"1^#E™oÀ áGˆ×ü]û𼘙I²hñ÷|;õ°2eÓÑïìYµi\1ë›ÅEëìr¾;ÒC•%Ê]¸‘$N Óš‚—Ñó¢|áZôqgNÕ Ÿä¨_¢gZL ×›+ïcR8ŸˆU‰„;³D™¾v"4S uƒNlÁž(y®½Uz:Ž£°lNð÷bå¸f3Íjd`È WBÀÓ˜'Ä> á´•Äê2ü„#’û-""¢+¦$øK—”tA¡ ³C¡‹¯X°2Ò&€p!Ԥȧü€+ü\mx™e(*zÞJö4—ˆÏjšuƪÑ$>àGÖWùÍ¢–"LíK¨Yœ´äD!,†æÑ¦Ö‘ÚC¶æ¤*ñ’Ùdwj˜-ÿ§9Y‡>ÅÎüzQæh¦™”±4´EÄéVDXî„ÙÆ{ û˜%¥þlÂàâ|J$²µÅµéU¼å‡m^dq ð"ܳæüÕNëÏssj®qI]‚a¢»°; 9ö9ÈDLµWþ.X³I"™&ÏCTÈñ]ÓFqðPçR—=jEáêêÎfÊz^~R®3“€VÛ†.§ û¤£×æ‡5{« E ¥™PR‘Ä¡(k äê7”gé(#T‚GNI’JN›–Ê›.K;¬ø-¥ euÝQw±à”+ÙŠ&FPû¦î5 ¶±Ë5£¡0Ú×{à]7æ8|£Er´.«œ&‰“ sÈ =¶‚AÓk*8- véá×ß,S>Q&%%›$%»ÜT”4?ðÈh ˆpÒA§ªS}]¬7–¡‚BŽå4Q'öðݵ £á»ååZ{}Bz±Çã.S=¸ã}Â`µ¨WY ‚»Ç ÖÑ‹f¦iç˜÷hQ®c "ÐVQ¶à‰LÌ-f·û¤ŒÑŒR† ¢Õ^À”Õ ¢”O_7)&^Ó;H˜eOu÷’m[žÈÅëCÈ`ÀÀZí5lNg1Ü2'ʜЌ|!5ãÑØ˜¬éd,¢~,©ÄO˜¬råfsÂá^–Ȳ‡Ò"GÁ)L´üép`ã‚9;Yõ4ŠÅ¢Û8üQTÇ–0E?:ÿ×EÚÚxhãUÆB1ª†èñÐð;ÏHÉ-Úz'Šêßu Fè&žP?ÀÀ¢;tvl‰eù¼•’OFUV‰è¯­¤Ïp¬¨‘é2³þËX[’¯˜Ý]bQNŠññk `Ú"3.Âg™±S…éá.ä Jr¡W¥ë~d¾vÖf6Ê] 㦺øË«€k™‚¶@¶  +äÐjÀˆs,ÙÌÈå€JlÔ˜jˆ…ÆJ8cóвA#Ãé”…“€ž†|œ /üýŒd[d?°7é“ÔŽáÆdŒ‹à¡`"@Ú7|Ûw°'¶•· «U/?òëQž)ÜÃo@4ŠðQˆbÒ }ÏSŠy•áØŠõU•K-íP–V/hE6Uù••ô¹ˆ. $*ûÌÝäδ@–R²ñ|0…NT6À€&ÍÜ’¼n2k2È^¼åQÜ΢½•Hqg­¡’ ” ÑìA\j GÉñÂ-Ñ¥XýÐæÑ\ùðDz×\÷G×#ôÇ ÏÇSñ‰ø i‘\Á=Ç“q+„`‘Ýß–ŸD]]‡œ-•åìD*P\Ö]Ö›H—Và/x…nf±FQ×|P¦|.,ƒ¼!Œ‡·š á2tˆ€kôxÂ-½À®I–t|lÅEÆÙ¦ ˆûëÆDòÍ2’"Í®a!ÍŸºTlo».®)¥X0™•ð®ÁÌ‘²AR¼n¦Ú˜™*CDŸ ±­ÐÌÑËr¹Zh‹7Y+•klh@Jâ—§€hT%¥IZ¼BÃt»äBÔQï’—ö …¥¨âÔø²´xXÅhü˜¹ñœÃª’µy䛞ð²æL­øÐçàÔ–ÜJ¶ÍAÁ‘¶jï„·£#] †æÓc”ù>Tww¼a!ͧ°išýËœÏtÓCäBzᜓé[jRVªHMKzÓñ'Ê °æÔgÎY#Y#µGª’Ÿ™FަÏ$ Œ/A¸òZÆÐáß¾V¦0Ltî1|‹Ó9T¡x› »DÖeE%샤Rf™¶(ÚÎà ÃÍ|Äݸ¶[#ÜjÁ@0cë„Ðpî4D\¦¾ Çêp•XVçEãÐpÝ‹èøØÇ Êt†ÙÂíöUã ºPJÓUŠ1ö}ßqz±ÖŸ¯îˆŽ·k®4¥ÌÖʃ Êvdªÿø<"¬$VyJO] "/Æ8UoÒ¡’¥Àúù®ê³³ÛÏ­% ÎÅKñ@Ëåûvùº]Û%JË¥ÃÿÚ.F`E'q¹<¶Ëûvù¶]Úå›vù³Í2¿ Œ×Ò¡e—æŒÃ%}ó‘wt¦ÊMÃ] núìü0gs¦K4“•Øé-`|Âf.âÍŽ0ò¼Ž\LC½Gö™À…H&a¾L•¸ ùDzc{“.`a¢FÓÐâBtù¾]¾n—gÒ=ð}»<´Ëûvù®]ºv9 `V€8ð…3?`oĉâÑÀS])¨¶ÍZ Ÿýþ”aEç<ì#ÔbµóÊá$D“üV{ž›p;\3.¥.Qå’ ¤ž#˜ $ãØïþ¼mõt r|5:.$K³'hÙ9ÌÒ_?·7®×5}‘q¢þ¿TÛØðsçU[Ž~Ž`çKNîËy„›ø±–-äùI3ȘLYp•ì¢í5á†˱Pám4RÎs—ô# ó8À7 ‹QÊVúÉv/è“ 5«YL"F:ÈèwŸ,'äŒR§mõž=†­µÚQpLp†³_HècÍÀcrÃ: šheaKîÛc€¶|V9—’ÆðûC6ɱ™¿ƒí:F„'P©:œ}2Q^-¨+ÂÔ}õÕí±tʃY‘Ã×›¡Ö:ˆ"áWʨÝææG?Ã7E2ª‡€XØZ°lŸ­3†x©Ëì´ÐAe½htþ¾‰Ãùm&ÂTR6Ì ñ¬ø®+8Ó¤`ÌA Eêb8UðSLÐ^yä\N¹€¢òÕÿ(¼Jò¡.?ôÌÆ:b„h,…u\jŠ«Ë³6δËQfpVª¥¬/Xuû0Àáv’ÅÚ™ 'ˆ+qVBõ«ÝÝ ¶ÛåG“yjùcóÜB S§æu `áކїI»$‘‚…r\KQ\nÅ£E”úÝåV”úFÎa+bĸ£YW% vZ§…IìÉü¹¨fëBλ*ÃEâß{`-ÍB+„ÖJŒŽ;ÐÓküÉp>F’´Änù6†ÓOTnõj üüt!©·›R Ϫz䢽Ҭ1#›b‰¿È[IýBgõãŸÜ,WÊ<.?¹±9¸<ðËÒ –nª“³ê´ºJŸÓÏÍ,ͯê~¤dÕIÄàÎOCKùäÊàÄò5–ø5˜¾àëWÛ@ìqšŸ‰«wlµ` •ª<¿ôí¤Ž7X»û]‹ùŠâv1ðA*"‘ Ý&p•Õ§®:XÄôНCß8dS¢ëžÝ4O°¥ŸÖ¤—~†]Ï´†¸iÎÐ÷ÙF%žþôE¥bœÉ”õëeW®ÎÉâçô_êpÒNb–Âj¯µnT8•b’#õ&Û¼â³\h®Ñ7Ŭ+æµ›©îxóŽ.wªûÖÅUY¦¶ìÒÿg67Ù Û¿Ë]î é¢~2Êcª-­Zc§S=ñ _q´.S/»ºúŽ ̯ƒËœv|Éýç;4äLñîVÇÄŒt;гu(-›‡@êãÝ·CăЦÎÓ ½–° µ­âʾm¡A8;Œ‘oÏ®5›]0oª~޶ .¡ùÈßâÀÓï¿CoM#îUG× "¼Ö­; IÈèBKú+ ú›O~éó‘Âç'Ãj"¨Š7ú¯ ®$Ji«ª\ÈüÁ›äUô¥G‡Š¡·¡{ šG4w…%ØêKû‚¢í·´Wš)†C»°´Ú”ÂüD¹€î.6꘺ºø„Ñ!è[Æy²¬–„‰àÇ@68´ŒBð =p·ù3røðK2ý‚n6ÜS½âqóÜ9¸1Õ•b%ÍÙ÷íÛɸLy°¦áŽKãq{½vÙh8q¯‹_S™ü eÀOœ!®°Þ.+¬÷<×?øäúò›Âs‚£ŽBÇ<ðÔ0$ «J«<‰cy¢ÚŸ¡W8Z…îÂ:L—”ÏÛ5ýÕæNm¸Ž³½ÀHÀpt:»ÿ¥o¤QË!Sˆ¿©ØÕëª>ùZy“¡ÿçO¤T¨?îfÏ>Y; 1ž-æ.ú+éÅýØÊû0ÃÐIoàí‰0*î·{£Žhþ™ÿ¤6ãàmú~Ò—Lb‰A;¡Ç„0aÖ(œÊ*<‘J…¼p„y#¬—CßáE¤‘UÒ 6P¼ b ´¿„Ê–ã–Ö-ƒ(CÐõ"f¶}Í´÷¾Î¸í~óò¸y÷¯ír)wh—íòÃæ`7òÙ-¹9r× #Â;åçªp?wi²è§eøY7q/¸3úd DD ä £Nó=R£>ñªÒ«¬K•O Æ›¸®è{´3—H±£9(àõ ³§£>6^ÇU?´ íÕu²ÑÉ¿óüíòžƒî"WÅ PÎ-e9(nÕ¥IÍá dƒ¹Ü¾:v¼¯-¢s¥þ¾êΓ=iÛd)ÁÒLŽ£ˆx|àѯN¨’£Ò½Yžíû[¨†0ÿÎT¯ñ 8Uº¬&\l&\ü&\d}Ó.Ï5ál†-wH¥o1æIHïËÖ%ÿ”½ã2Š|ñ›¿ŸãëÛœ%u»ì_+¸Ä¨´ÿw1Í6ÌBà˜¡˜ÐÊ=ޕט¤¿ï3„“±¥¶x‚Xõ¼ŽrP²ô(,Ú§e”gRÞû¹/`§õ¸LÝâú°QZ&ú|6ÄãRè»bo=<:nÕ>äKÀ¹{wŸR:7—ÝE\yÁ?|}2³cŸ]‰]K]1ÜÅV F"ZùñLÖÝÈUNEŽ¡>L3S‘r<1Ø¥½GhIõ /rs&¦ýö'8ºØÀòIA–b–~€¯Å@%=qÂd£˜²ÛmÎKÊû!HdÏú«eM2Ð JŽJF°Oì)Œ·í0¼€”?hÓµŽjBôõ²~h[IFq÷é–onk';š`½Ç6òB|èI|ú»k£XÆ•¼Éö…k…©uͯ y”Å:”—,Jl+ q% ‡ø¬Óاñ‡èá¼ö·°­Hž²²w´&EŽ»—f)åë2°Sc6[Ÿ-ý^2%µ+ï((‰hG¯*y‹‹AorJ2„§QÕ”Ùl>rj©2B̺ò¡Ám¼Gñdh‰g:2KÏ“Ïö?ú4rGã«ÎQåýƒ¯4wö…·k›“`—>'§úÍ1RX|‹KDÀñäj*:ç.'f¢ÎºT`%KÑ'Kº/6RaR×ÊNÔUõu÷pС’¿´5kƒB0ûAôøq¿k0ÜSk-–ê¬10žv¬ƒ6êðË#O*A‘_Fg5Z®ƒ$»î>€Â>{gv£>ªus²ÓÉ_0M‡2K®ŠKNç·$¨ èêzð ×ḭ K¢ñ‡òRà6ÌßkÕX!U£î/ê°SxŠƒ®£â“è"Ý&¿%,.iÙ”ñ<€>8n4àHšGùR¯dÑi|]%¾í údEüôzizçú’£ÞK¦&®3kºóXá8N.i¦óh‹aÁ·G:§iŽ*¾­£Àl†Ü©½QñxZU\Hš.:ú.ŠŒRôýî¸Nµ³èøÇÀeEËçw…ÁÖXy.JK«¬*<„ØS0qÑRGÂ'væ]¡ÔZ’¡ûæ”Ûˆ× -ºò…8£ZP©ŽŒ‹AA§‚ ø»Ôwv×4æÙÆ=Š€^gŽõ*S:»ïøÅ¨9ÖZ¨” Ÿ `ýtÇÓ‰§a~1Ê,¬^+|œ}î4 Íòyš„‰£zÊžþrîz]‹z|áðÈ·oQíEN5=pÖ·Ðx}Àl27½½Âöíñ[ñ½´å‹Ùø™éOOeã7Mì<_ä„î̉gñ…FMÕ¸-ìý)œMíÏþ8¾Á> stream xœÕ=É’I•wÍ7”qÊS%á»û`s†a13@6s€9¤T¥jÑÕJQ%Ñ-8̯Ï[<ÂßóÏÊV©1°>t*Ê×çoßâÏÓÞ\Lø_ýÿ«¯žM·ÏþüÌÐÓ‹ú¿W_]üäųþÎEx²/S1/^?ãWÌE6)¤}qáâÅWÏvÖ_¾ø NY ÎeŸ§ /¼¸~ö‡ÝËËi?WŠ7»{øíM´¡ìÞ\^Áïi Åï®ÅÛK³Ÿàvwƒ#Ì4¥)ïèE?Y³;|…ÏmIÑçÝ;z3Z~'&|ãd'³{«¦þß¿zö³Ï~ûŒ!.î?Öî§XØýÏev{Sìîø×Ó” ®tåJØ™R¢\óÛ.fœß»âõŠ?ÂuRÉ%<ý4Æ›}rÝ¿¡ƒ”â¢;€yKô&ìè|¡””,ŸÏïKλƒ|~Mç(”Ýï鯒Ky÷êÒFòî‹îþépspŸ®ÙÖŸ“‹™î°þÜZºìì4Ù§@×F8fLúð¼¼\ny…Mî^*–bŸÁe #¨+Ù…ˆÛ€u&¹ŽK{$Ô“ßãky2&ó!M) Ô·ugœ3YcwQ‰n ø©Ï‚_Ý«‚IŠ@Ô©Ì»}×6s Û‹.çËËöfÜ`‹p ÿx4–Ãä­ÛÑï’}ª¨CkÒfÝä]´uj¤‡± ‘ðœˆ9ð1Å‘™¦¨¦8|CPsÁXyJ9„O!aþµí£»°+[Ü>‡pqeÜ>øbùðñ•ø ßì¥àf½3tø#B§äèw¹´páÀ€Ožcp|×iš`.¾Ÿ½ßÞñ@`/ñ-µÙ}äg ðÇ(à €µá¯ ÷’‰¸ð¼ XäE§*°èmØ–É2æ~h€kg×Ó.9f_¼%úoÚÌL#(w@NnáØ@Ô·<{„uä䇻ºïiDÖ_"쀪®¨¡ ‹øb}pâç5ïÀŽø¸ìÀ àÁûFØ=ÒÔCÝð{ ô5=0Ön‡â£Z÷ý oÖó0± .ÏÏ$t¸[ r'žñ¥x Kàã[ði# _gà+¢À]üШT²‰Ëç1–ç\÷ÓÁáÝ¿ª˜29ëñ›"´ºBè·=0@ÜMÝx͇{†%€UÍ·—q‚sew„ç$€£êÀ›©D¼Ø­å™ÿØ ¤OÓ» ÐDÜñK1ÂÌ7±DÎH°âúb°lü`Ñ+‰Ë Qƒ‰&x—ä1º3£úÈs¤RÚ)a¬®¸ÒöWxa 6¤ÎIØ—Jh¹Ü¯árçbù†õïøvˆóÃî Å‘:¢Ùñ ¶x…suó WÀÞ×ãÁå Y'F¬¯©Ã×ùrv &JzI7Rüä%!4:‘c™£±Ôy~yì¸Cå³8ZÂ9.ŠF@bÇTÏ­åć&U^;Y¿Ö[ô’Hï“øîª4KÙÄxö@ëÏ  !"ÄЛ&†^¶>ˆÐµçs±' \Ð}HË.ˆ7Æ)X$ |+š¤å/]òÛêa‡´8òb…´ŠQâDkÍÐq„ò"5ŽBJê¶ Óm°E­‚hKŸBUuÙ®¸žÏfùK“/I åþ…•%PáXV‚zfD,)@æ†E5T´à7¼c«)íG€N‘ÆrUßÌHûy]o-G¥n}Ñèa-.xw„ìaÖ™$Sñ±â:*ºi%¡)oËë{`S^•r"§M&+‚¸“â¥MþÀ³€ ô$±Ð¾!â ‚ÁÅO—Ï• õÃß­¸›©ì£Oóýàö`G`”Òtõç{úPÉø¢ý<¶Ÿ€!Á:P^óîßÛÏ´o7_»o?¿j?íç]ûùƒM]®.ÖÌÛGn†ƒ?‹+H»ÃuÓòÖB–$ÇXDÎdPµâBsûÈËd¸:¡=(B…Tû¡ Â)€häk_"}DRº¼ÒÖÞŽxŠßÁM›AàŠœdßFÊo22h*Dß7íçÓÙÍ×›ÜD°›wí§{”Ç ®$@¡`Ž€ŠKJ3GhšÙפ½–‚›"K:"¼üýßCoÚK²ö`Y’Œø.BÞ»ðZܳ+[oë]zë³Õ‚ÜOZOIÓ«~¤Ì0PŒUØÆSH$³ÀpCö®a¹P캳̇i Éµ©„N'|RƒH4xÛŸ#Ðèç?¶@û@# ¤¼8.èó5þôц)}¦¤²a«¦òíj–²•·ðž/:#‚JI†œ-:Àñ#(ÙK¶r¨‚*¯4Y¼HW@r¾¬:>p¦ã‡&Šë‚eBñ‹Êd¥k@_¯4Þâ{H‡ºŒ"@éÔ¹EÏ&yéËìÀÖf){Ç&‹Ì®5í*ȳr€é‰^¥³Š€ú{wqpˆûŠÑóUç÷<¢€‚).å-?­Šê»HÈAppÙ‡wíØkå’´eÐ o«t+¼ÙäCÏäOj€•ß5“ÿ®HÐL`x×øýLbRä}IÕÅ@ª^€‡ ß&Gá÷HŠâ<°RñíI; ÝbZíÇ=FP(„Õuè„as–Ž…m+•I$y0iiñÙ¬'ï ¢JJÐS?eeSUö‚ôÌ­ GË]ó  ¨){êÕöŽ„Æ&GaÚ;>yŸ¬²¡J‡|6Æ}Òö…Š I—÷ô‡•äìT¯SH£žŸNÆð‚y¢òÝŸ“Žî¦KøP@h‡Y» ^#yk¥?Ox*›—ðž`€&·0 4âéŠÊ ÿÀ€ÄŸ/I!:‡ªS{í"[ -â2µÿQ‚rE ‡ ‰b‚ÚK‰èUý.¤^wJV=°ô9¼lTs#ˆFþ^|:F;»*`cä5ëù©%þåLÁnØ ¤}‘«§TʲʑŸÎ8´VÊnxú'·Ü¹ìÊC<ŽÚmZ²Õ£˜÷c†E²p¶:Ë" “SÉwv®yGò.>•Ôe ñd=Ør|•œ.°ʼç)ÈPó£R'¶BWÆÀ{v }-ñ$MÏè­p Q1Ž3{ÞŽè²à‰yoœít5á">Jfðra›u‘/[ ÀïD6¨m0دè±r~!ÈÅþä¥y9à–4Ífñž‡ã;îÄOã!p*ïúfy÷ÃûqùøûíñÀd¤¬ˆ—ØIÜ(º5‡Ž/ÜnZ}ÓT§–ÚùæsåWPõ{`ÊÂ-׸B\ˈn÷K–>Þ¢Ûh¦À_’Ùm`‚_Ö­Õ ÇóÀËöaû¨êA)û[ƒš¸ô×ü´qw8›žÊëô ½˜©'Óê™ ’/Ú„ÉF$FPî%æV!YŒq¯Ö6X=\‰ñ)†,rr‘ÁÈ*Rw=ÇËE!þ¶îä³ia"Òb_k›RžybÉÓ:MËYМãœí"í}ÂLC.”AŒ=+Ò¾¨R§U‚½×&m,I•#·òJ’Jæ,¥àÏfšŠ ¾Ý´BtÄA ﬑‘Ÿ.Û¨GAt—£)ºZ‡p Ãêš_ÉÖ«Bp4 ¿Ü¤†ÅPô½¥Î+Eî›F¢B?½æåfV½$¢X¾Ä%š¦²Åžó{¨ÇõÄfö e‡Lo™cjÌ¡Àœšw‹ã˜³07t¦Ú¦× 3¾grõ ó¡†ú–N[b‚ˆ>SLÞ¢”µä ü¸ž_g °˜­æ4B²aŒ¬°[A²úe®»Í·Ä ïšLcoxZW\eÄ`…ù.kK îülJ  SÙ€Ö£â@¸ Ä61?÷‰Òï5O«Î:Z®TØ<¶À¤(®A®Ã#ÿªÃ¬ˆH˜X¬‰ã»Ìj’†•ShŠs³]n¦÷2ò™ž›áQ²Žù)J™–p{lŠž—Ñ‚‰¸÷Àà;ˆÑÕ´  *£kÒvX(¬n÷M!|þêk0† $t Ø`Ψ"è¡·1ê±"(wÝöÿ›KÍ£×^1øIÕ:¸å’¢Þú´mõä⣪͖'ÿO΃1a&üRH=…Wá~¦á˜ ƒ&ROwÿ‡ÅZ$´<9XÅßT2ë‹}UÃÎäº`pɆ¦ ¨ïo¿'vë0¼\“;—P­ x„r¡ˆùt@Œ­Ðõa3þI5?äÓPìJ~„Cý ôÂ=…%@3Š‘!Õ€~¬l\IÅjÏk*fNJáy¸”ÚãVœ ÙLä*e¥)X«Í~²+”…xºæÑÚyÕÔŠCÇBÁj+ÉS•u¹¥Ü}ä‰1=ýѸ¤Ò/ñ=Oo—ó°°µ÷uHIƒ©o*4&w–×]süìI×%ù‹=Te m†áèµó3ÕWjº0µØÆ2¦Å]¤Ö¯¶o2Ë•ŒÎò31uVK‘N5o£­åkÝÀ›ÉƒQtûE]ÒØŒ–êB_ãv5L«н†0 /‘¦r-wóÞ9Œ¿+;øÜån`?6çÈÏW»¡•!¬’êPZäÈáeCgÞ•5¢OþÁIPsØ f ‡‘|\K­2˧ÊkÂË™N± {©·Î~oWÈÁùˆaIÐðë||•»‹à2þTÑXó‡J8Þñ»hÞ«ÆÖQäAJá=ñ D+‡ƒ´›f€éÍÑãPk]ñw4”ù<KÌd/d¸²jóGá¿TN‚Ð lÖÞ$ÈæNMuû‚%#Sl®dgk…ÒRø Ü8`C®Ï’’ÌbKg‚ªe,ñží­.[ƒ®]'” Àwé4ب]©h ,çøýE`éc;í6RRhQߌ±ÖÓý?&«+¥ÑèXtÈá-ï?”8ö›¶É¯úÒ^2É4†(v¢ä2ã!ˆæ¸à¡œ‚½‡bO´Û+øËXŒ²šlÍ51woejÎ{Ô²¢F¿’Õ +Œ¥q“:Þ%?¬sòÂ’]ÌXÃ@÷)¹Ù3—9Tì=å>êt|ZºÌ§:ñÒ¥`Ã5ûªÑÍû:‰q»ŸHŠc’œð®¶œ‚ñ ”'LòèÓô[É N2p`ÜÍLÒÊ=ö"´÷Ðû¡Ùç 3\…ÊsȤ•¤„ZIØý˜rƒ¸z»ÏÞòœíú®ÍÁ®atƈˆô0Çõ¬«.á¾¹àÖ¥Å]…ÄMÀAMZÊ(j3 ê8Ãܨҧ[na* ùÊ…÷Àȹ×ÀŽšg|²­ Ú©÷r¾¥<ÏÔ%£^nEãµ¼Ù@R’.Ä š‘4D¬õ‹›HjŠ$7/FªW7À¶KÝTfÇေÐsÜ2ÖAH¡…”{M²fÚ`4L|ÊQÎâ ðTŽ¿¡£)+¢Ââ=´Ox‘j¼Lxë3ؾ´ê¢¦ÉoÄÒIIë"`¸8\ @†È/罋çõóòžcé¸uÝ‘ üT¸08Õo &žŸÆ [/ã<ÖDÇ €ém•)º¤³7½GGÔ1D R‘NzÚâ\Bo]aôj+¿å•±,Våa=ðs¬¨=ðOŒ^ÈÙ Ãuܶ1m9‹i¼ß4;n»¾òöçç.ÞQ~ÉÌ^¼”‘ ÆÖºÝG›µ¾©qªT&ß}ƒÒè~!\­}o¥Ì®J *OspÔ¥nwRuïí§JA·¯ô¾;Z©GÔºØg‰j×?A À‹©Xé¸ÚP[f«¸S[lpá¤vŽ™sa˜§‹´/iÒK¥´76\80Ly-ËÌ}2À#¦öû ”G sÑGzÁΣÚ{ dGÁ¡•Ë9Î8HKÕŽ¢YÇÙŠ±[X"´ÐN[o¡ŽŒÐzFŒï:É>[÷…ZNn›æÚ‹€z,l|•“ÛbŠiÝÝPšÏu1"6²Øš.õ­“U_K_,X(RuïKΦPŠ—£J÷´nÚˆÅ|*ÿ¦Î{ð[hgMßÐà–÷B' âl%‡¡á=¯¬ÒÙóOñ_ `ÞüäL§Ýß5F¨7}• ©%jè‚ëœÍKÕ ­ nû%ðÓ¯l¦ô«Ç3E7{ó¼\j†0ÿ‰z™‘o¸fŒ;#S·UIÍ☽åɰ±×çÉØ|ÜAä(/}•eZw!׫µTӤÔÂ$½æc—àq±ƒâJ¸žEH_ŒÕ¾n† E/Åa=ê÷VKsyì{ž.—È5uäG³ClŸ—>ƒz¾ï_.þ×2«Š ¹©£pÇÕV|\m ZÌÐ"3øM3ƒevï﫽k¥Wƒ.¤]ô‡Fw²!ïÓÝ[§Û²éð³PÓæÍ_?{ñ¯X ë gÞØˆ…u³]RŸ;8L¤ÄÜx,¼—ô.ÏIvåDÝ¥çædÜ­ WÄdÅM¦&Á½ì®—²ø4d^íïs›<ÔEÐ4ŠÅM.ˆób…ݰæ§ÅXWíS_;/ÇGc'·­ó÷­fD~0å'? ±7U41ghú¼°IÞ×jnoÚ†…£@¹œE”¢of¾¯áù0xо® ¶)Å‘[èº1æ+Rž™±ÎÄ©‡3™ùš©:8vsö‰Zø³Ò4òÉÍ;ŒŠ“ÈÇóFÛfL5 \$åA&ù©¸:m#¨x¹ü ƼUsŽ£:³¿Yhkº`c+©‹uâ"°´ON’…14[_ˆ{N¾—Mx$ HÄÓdéÐ Hùˆèùžé'¡>0“OM’·iy&ˆ Jýe°S‡{—[îM®º­nÊ"Ö)"(ËoëgK–>û›½|™ ß6¨¹¸µæ/\`ŽšðÙÝÔi%µåŒ1•n«@ÝßÒ ŸâÚ¢ØV ¸%ËĪ꣯ª`n³I§v²EÅ(ðßÕpº¸|F4ÍÆ}J-îÐG’ë§`óuêký<È8Ü ¿*2êŽ#BýbMõγG9î­_LÙ¿l§6R•`øüm6R“PUH*bô‘·€†Å€”Ï ‰¦‰zÍêYÊ'VML®–´cL‰Œ˜*k2çþ~†H¡MÒ¦ æJ²¯e ºw!Ø¥.…žåèI>Z(¶´‹Ì“_ó\>MV¾'{H,ÿWž ©îhz’#—¬N«øY¹X{ zÑëçV×$/Ô«düv7m]C õ†ÞS™P´ ïãÅV1ÚU¹p‚G]¼ÑØÒ|•ÓSœ¼«+³†TWó•±±"ðÉ ™£ÚˆŒ-lĘصj×g(†7Œ¬ë2Sœ™hJ/¤`-ŸöaÎ,ãáîì9)çä9}N¥aÎFjïë¬8§Ç)héßÚÀ *þDÌe ibì6Ê×( Â+¢„p>ÇŸç ©ù8k/£˜à#ÅTk™'|d0Ô‰¿­úFS«€¤ºŠ5Jˆ*„èâ|+Epàf¤—ÊÖ-õ\ˆ”µÄ̓Æ×ºœWŠn-«>ŸÍ–ªçæÝauFö°­°¼ÿ¿Gs0ìÎkM"U‹@°Ë•ú‡m.óÈQA ó±jv½+`rµÅÛÖlƒ˜¶ª˜iv][€‰ÙýVUýññºhÑ’QÖ´®Ã1ô=´a8fÙÑ÷Ŧ_Õ#®•!G­E•Zx*jDÏðZlC¦ë̇=pk2%Ut;ò~S•, ŽÖy9GŸ]ZOwà_ØÉ÷¶—CëŒÌAó»Wmǯ}(µJ˜%}î[§cñö‡%©ï¥ŽQƒ8Ó÷V"ý”Å ¾$„3ç’Ïô³m˜%nÏ=WŸ=¦ç]-sÃ"‰ØÂ¸O¸ùh™ò­M Gý¦µ#ûXùmÌc•Ö˸Ҏ€‰ŸNøVD¿€æ+Mè”ü˜u¿!¡®èNˆt˜BQ¸òÀîSÜÒ¶:Õæ‰©\¤¾¦ `Õ{ÓJ±䊞ŸF£]+.a½ØHs‘åÂ'%YLÏ™¢k%=¹ 5j˜ŒóÀjj_tôBH@íßpÎSæüí‘[³23t%Ò 88”þio0#Uo¥\qêègϸúÎ¾Ý ìp‘ g}»{Ù×sÕ§}qåäÇ”øºä ô­.ç÷}sGÑ®Töÿ•Á ùí·:ó¨ ‘òRü–û%ô¢4¿µvôñúAݫ캸ÞT´Ra錊¹DÖÆ>î´éÈcÝ…^-ƒ>tm©Ù-WÝPžÃ°ÁÇ’”±àó+žKäÄ•-ÝDÄçÉY·T¾ÒÕnkÄfòxÛ.;Îqæ÷ÆÛµßñ›xê¿·?„Ì®ƒ unbTýügÆ5N+š×!k èºN2þ+Ü?B¸®O(‡LjÏϹc)‹ð¹;²XCådÍýÜ}‘CN½¿™§Z}Š×!îV}fÒÑwûo†ðjKàê{N¢Ÿ÷vÙ½öÌÓu‘kxŠÕðƒÏðn&‚GƒN­–´|!QöÇBµ¯}š+¼¤túnÕ_Zô|PÐ%ð]´io¾ÑùË:‘‡¾ðg(Â8óíVª5ûó*MMfH•™”a8M¾¸}x†zÂÅ× ÿüYÈd`¸øê™ þ––'wÏ~?.l°Æ‚•"›y–}J ó[ AçD]ƒÁð{­kàßs·æx‘÷“C¼xß%\\9 ”Êÿ‹I{$tóÙÖ^ ÐÃö¾{`€„ØW(Ho2“õ¹FläÂq\à¹ÉTÞÐieÙWî—/ŒlÍR×±ðüûòùýŒ™H¢~Fµ*„ØÖ öû XHÜ!ºž‚ðÓÃ5U½m}0æª`íK©¨J’-Yw&÷ŽÕe¾0jÓ!SrªŸÇÉ ر¯Zcwº\Kçu~B*‰Ž„PÞs®¸ÍWKÌ<ÄÖ¬ÇÖ:ÏDeàXó7\Á@j÷Kñ¾§ÙgR ׇ-ì…ÄæÖûŠyL©è"É3üÔ–-jgï™S€Œag5ÝO¬ê8W`>;w‡Ó;v`ƒj‡¶A;û<ðƒ;_mÌIçzFªªåÌÃï V%„*R°îç(Qå›óð7 *ª¥P‡9À¤‰&lèð’ßÎ%£·ù~h ”ÂL°ŠöƒéëÊIƒ©™ MS¶YîíáJŽ5ˆ(Tc2i¹†DÉ¢Ad7 %-6xdš¡Ëý1 ú(LpA¡4?›Í ¸ìŠTÒ“˜€²+Rßáíñ•š§~öž·ì&ã b~ùN€².`ÊráÌ"Ž‚±T(¥º_Œø5HÉÒhÝìÜä»­¡Ò”@Åâ¶ð`Û€dû…äD®Ékä^’0™¾J ŸÞ“Sˆ=ˆû¤^ü^Ò°è ëvP†Â˼¨JšTÒ¤°\¡Ø5¯q8ýçÏ’H|Íšf˜ÕM|#6GWˆÞuJ] ¯UÀ±mûZ…¢Òî^—hÑgå2¶›ªÂaÚ`ŠÌƒÏaöy÷8!*bðìñ–O°õy_g² šq6¶ ]£)y¨g­Ç>&Œ´?:ñR¾ûD4ó»ÚÛŸïë,.P%-!”<²@^ý™`“DZvÊÕ\,i.‘¯t(¿­ÞÛâ–ƒÒÌý•Õá×5`rOj4‰ÖlˆÞ@=¾îÊÀ4Q!æ›&û;hY’9WtŒŠÃª{¹¯§69È­y՜ÈÒ­Žì¤™ïº&/e°7¨¥ërÝ4É- a@!Q£ÐtHKb7òDâU}jf ÷úöyÀ{­áçÉ›~£í HO¾T˜çTiQÖ€8&S¹X—·T©€¢"²H‚¿çˆZ0·œ£V¥tî c߆,fÄoŸý?¤Ãoendstream endobj 563 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1511 >> stream xœUTlSU~·-íÓÔ ˜ „Çk%Î_)sS tVp°À¦ˆЭ϶skËëkËØØØV·öv[ç?»Y1â/ êÔ˜!$ˆû4Š&`‚FE$"’xÞvÇâë:þ¹ïž{¿ó}çÞ÷K†!„–._Ÿ—›™> Ì& §Qæhý®åt'ð§)`Ô‚Q×ÁéǦ+¯OSšîT|S™»ÔL¦–idÚ™ýÌ{ÌgÌ)æ;ægæ/fŒÉlb%KH!)%.XæõÕˆn§K²”æ.È­P‡¹"5`fªf»Ö8uZÑ‹.÷¶Úº êß"2#qÒF¤ì$¤“$Iyt“]¤‡™–ù§:æ>ÆÎ„™wÈC䀿6KÓÖü¡ÍÑzuDçÐ}©D²”ù­é¹ÖOpc¿7ª‘ ‹û©uäZûi±>KyЈÏ  x´ŠOšÒrLÚ*Ëá>ŸÎ üÓtS+Ûá y•Árê*>Árüdò•¼2CÎéÞ§Åh»F­†,¼0z9¥|q€`öQ-fž3ÕB0Õ öòÊa¤‚mS©~ç†ïIqúU¤í¬V鿆­¦¸œlŒÛ«oëŒ%Ñx´Íì|¿äX!j(ƒª†A)ÂéØƒËpy[´Aœí CC}š›xk¾…šWPçf:S¢ €.Úx”¦0Öt.¹«¡§¶3ÌÞ¢~QUŸýŠ °ß†'è‹ؾçå#þTxgêml‚ÆÖDkY®2gqºëÜHd›b$èÃyÊ›8O«¾ê¢iÐ@gU}ü•yä¸aèíp&?ÈQ‰g*[e;nXùÊF:“/Q7œn¿ò&GËoî²”*õö8ý[ƒZ ª¡ CÔ¦®¡m€†ô·`6¨˜ Üp‘‰ÚJ1Ä 4TжŒie KÐHü+nþÍtbÁlx‰F(Ç×Ęܷ?ëhçÏã ä¿ÆM ¶:RæI©.¦Oš(‡QÈ6²Oõ®-=üIùÏæ_6!SòÁsiG[ËNØl_,–6ÿß7Åû };¿:ö@gÞ‡”,?%‰´¿š±€$Ë¢¹Ö€b ô*°)ˆT >WßáÞ7.q†öKoô’/.?{Y{ÃÓÛñ½½fß÷H~±Îµþ3ûI´Çz<ú5ÿ=žÂoñÛÃè>Œ¥ï¢©ûSu8‡ ½5ÑZÝ‘­L×ö½žÞýÞ`É‘â¥ë(¡›‹ùÈÊÊTs}î:ÏC¯¤æš‚2Z´œàï“Aµu¦ÝSœ®Eµµõ´VÉãh³ Æ©ìÓgÎÙq¡ôkÓßppÏ)|N=ýÝÉ$Ä3-Ô ­u%kêêùlzÇJjê:7MËp]ÜÕ0´t°‰Nè2ß"±ã´OŒW;g®ˆet.nì^y¶Ø–p´¹5IDÌŸ¼0´èúh_nò^Èûš²·<(PKÑãë×55A¢lsG´}÷±“=ÝüU¼cm€~6‹¿]Wã5ÞÆ0ÿ 91endstream endobj 564 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 372 >> stream xœcd`ab`dddsöuа±T~H3þaú!ËÜ]û‹ãgk7s7ˤïÿ…¾ç~Ïäÿž&ÀÀÂÈXUß7Ù9¿ ²(3=£D!ÆÀÔ H*ZZšë(X*8æ¦e&'æ)ø&–d¤æ&–99 ÁùÉ™©%•`-6%%Vúúåååz‰¹ÅzùEév StÊ3K2‚R‹S‹ÊRSÜòóJüsSÀîÔ“Îù¹¥%©E ¾ù)©Ey!©%‰ Œ@u1012²ôýèàûåS»ý{ßw‘ï}[ÏW¿pøû’þ«3ÿâøþ\ô{ÄoÙï–¿ÿ^ò[æ·Õïðß¡ßå~›|_„rßM¾‡ÊýÑù}RÔ ÛmCêÎÄe线voêùÎxèÚÑ›æžì>Úý¤ú„ù^—>õîèn¥r¯¤°”H—tÃnŽï!? Dƒ3/Yü;âðÚïK2³ñÉq±˜Ïçád`–»•Öendstream endobj 565 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1853 >> stream xœMTkp×Ö"#. 6FÁnÉ®R7…2@R†@SH…  Pá1–elÙ’eYOËòCÒZ{VO[[–%[Û²‰ cl¸ ÐÌÐ IB†´0i“´ÎPg¦¹K×ÓéšáGwwîÞ;sï¹ßw¾ïBT°@DÚ!—ïysã†ùùϸܪÜsbàUÿYøèàBX"†%ÁU‹>ZŽ£Ë°s)¶<#ZDMíÁpw_r‡FkÖVUéeÇ6lÚP. e·lÙü¢ìå ¶ÈÞ¨UêN—+êdr…¾JY«Ð µì ¦ü´Ro~|äµ*½^»õ¥—ŒFãzEmÃzNµm>Ê‹2ãi}•쀲A©3(+d»4uzÙ[ŠZ¥ì ÜõOþ;4µÚF½R'“k*”ººSJ½Bø„Ûô Ói‘H´x¹òÀ³K–-/‰ÖŠŽŠv‹^E †‚%<¢§„ˆ DÃÄbnÁ¿Ä邚…Ï.ôJÎpE\'Lq"89÷_©¯—ež6 =€’’$°¬ßðy»!€"­»®Þ :²´Œ4 aµpeI©°ô赘¡Îƒ8•”tAŠI0|éÜÇÅ´•aLŒÝm†f@‰ÑuÍaW8ñ@šÊB–Í d™Áù@ȸӀB Š[ÀB$¨f›YTÄ}ÍŸÈã—ó\qžøgÅÜç\¡ÔxQ¿µ_]f?¦uõ¥öwMÛZN•¸Õ îGƒ¥Ð~æÊÀïs_~F…2Þ ô¢ëo¼óü~•ÑÖ]‘ D}ä(ÿ.$†À o©wZ©ŠÕ†pñ’‡Öé3¾Ì©á—¾¾w—@Dã1FF¢1>Ê×…Œ•U5'_S}…áâ»ø™YÄÝðr7§°.O|„ ñ\(æÞàž—âÅ’¾øz|dïñ B]%ÑHüÐ ]ÁnrŠjSÖôx.öý²!ù±ƒ¦ƒU¤¾ÒYa’¡ŸKLBͽ£¾“lŸÛænkÙ粕¸]Öã5`‚v¯Ã›Žôe` 7Ät§Ô*å¡ë¯Þ¹úy´“œøÃ^áíEEæ,yÓÎåqnj9w¯Y¹ÂÄýæ!õu³Âð\A‹oÿ¯2ôÚ²2Êf;¡^ ˆGÜÓ(Å»§Gþ²küZ’øXXs†’} “¤æ¥ŸWÞì.±0F°B=¸vÛ”FnÖš|l2i6gàAÇè^Ðï÷Ä€Eqh &–5·ñГ¸P2ô‰ãu[›Ê¡£ZtXQ)þQûÕ=ŒÅÍà´t¸šh²¹\¥TÒšÂWzØXôå‰xû  Î&÷¦Îe¼*‰÷æ¹5 âÒ@&<A”´¨ËšØ;H¾dn¶‚è’šŒ=Ù— v“È(~.˜·NBT{)ps&uüÛŒ |“ùôùè øQw´µÐàr‘n7¸:ã/õÆù²°ûF{}±Ðy*3ëï³%Ðù'·«ì§ZÈ]ü0m¶XÌM%5ÚÚ6- ÝÎËÃÙ@Ê§Š­æ›Ä›òøn>•Ÿ÷—Â‹Ä þU)ãîhÍ{8žd€ôÆnbë¹ðë»u÷á㸯Ã+?QŸ­NSùáñ[p=O¯ãKù5¼˜AEâ™Ò‹l€è“л Ñx}Ô™÷¤ÕÁK¨f+RÜ„÷z'¡o’êlòÁªz¾P]¦>z´z õ¿úà›„?é Q=7FðÊÈÅLàÂYü4 ±~s…ºá§T÷O!õÜ÷|ëbîÏxT(^oÒè»m©†7aûNÒvåÌ!¨„:ƒA¥+o>®ÇÜÂ>ðûIÞ=3;%Æ6üµÔëˆC/\þbælí¤e¿‚™ñC¬¢U´†bsðx:…ˆ^”0²L5ì7; uü²JùFØÇ2ʬé';uëA [þX~ÀU§Û'š‚t'íoƒvÔáÖÖ9²©¤Ãçfi@6§ÝÙp¿áÊ—>›š¨M;©fÿº]מþâªÈÛ ˜F7î|eYpûÉË–ÈÊý f.ȡڤ†æã”à†vi¢+.4·x™˜“aX¦ƒnmQB«Ð¬ÐÖƒ6óié`¨_ 7òd C3LkK%Ø… `îFEäSfÍ’Å"ÑÿÊòendstream endobj 566 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2335 >> stream xœ•ytSUÇóš’¼ªq‰´ŠyePKaÀŠl²ŒN te!mcÓ$ÍÒ4¥4iÒfy¿ìi’–.I)”ÒªXJJ-´œŠŠŽØáŒ‹rftf¯‹§åòŠxÛyÝKå¦<”—òQ~Þý$˜¼dÞu4ã£oß8tè‘¡Ò­‹æ•Í.eÌŽ5:Ð’åX¯oŸâ’¯/þnž>K–¹¢x ¹–qøY hC®Òä<²ñÐ,$û7Z|9ûìãí̧¯¡”óðwúLÁ±,~ЊŸÄ¿ˆ&®Ž¢£È0J¡®+(—(¹Œ®Š›ÞlŸŒž žƒ(Èóʵê²Bɳ9ëÀN×Áz3Ú—t w÷]úhP½›uš×0vµÓT¹˜.¨Ù¢2¨¡Ül‡ä¼ rµú©",²êÜÜÓ‹IüÇ~ýê¡k®ÓÈ ˆ@;´„-Òx ,§U­ÇPÚø¥Þ€Ýc·mݳ«Fâ°±l•ÓâªbY MúhO48êí`Z½ôªòÉxè`8jT{ª«$¬«Áî°Êæ*Ÿ(œÍL~#ïúÄŒukí>'æâ.üÐqüÊ1ݱ#bƒLok»ðñ©3þ©Q(uϯK°p hÜ^ÛâS =páx,ÐàvÖ­õFçuµ¸ö9{ᙎøÇQ¢MwÝÑ>6Rï`YC•äi,À'ð7¿Z¢=mê+Eé*4­úRõWÎf{xœ~;8ÁRƒ³Ò¼ÄˆSWãìeXa€* k¡8dˆÙý.;za»Ú æÞjfm'ë‡wàm4;6ü&š–@ ¢ÇhÑÄQ(¾N¡·¹ÄmÛ:ž;ï=‹WÜ46¯¹ÒÍ6B3Ä£‘Ps“Ûúj¹€ºbƒnO¬Ý뉹ÛOCÝÒ{æl—Öš%êÝóExY)~° ?¤ÄâœKÊO x+úeÙ·šk 1Ö=ia#¨tuVÖÊZÔ¸ýiÜ¢) m5f“ê`—¿¢Óî#‡ôîÊÊA^q·®S¥ÒéTªN]wwgg·DÄ9±7ÎwrŠ…”çøè0÷½ú¼‹¨ ßíóA€ŽØÀ2'37‹•à*!ì‚2Ù+¥*¹ËÀÚY‡ .aö}ÇÉ’H¾×Bd•Ð8_R(;)?Rþ¾åБDÂd ›ÙèËï­v6»¦Q±m­e½•qUXº¸ï𠜡 2Aº•Mxîîç£EÛÅmÐf4‚É$¹ýŒÐ¦XŒxíôÒ8§ˆO¡+qŠd0U?…F["ÐøÕ¡ n "èG ·ÿÕ×»û<î)ipj½¯à°eÈ™b"èÐ[Ð'ëYVmµ€åŽ@æ¬c¨¬)×kRHЋBÕ½eñÊ¶¥ú’"xyòHãÜ&B>‡3ò¹4Ô#Æ…¨Àu‘û%­®Îj©÷¸"â"LŠÅârA}š%l ‡<žhT‚ È#Ã2´ -jŒxÀçô3¬/B ò†Ñ´!ÕØÛä¸=DBœN£ÙæpX,äRjK$.&ŽB%&žæOs¹âx}c½ÃêгÇšÕ;_„—!¯gÛë[o9ü"ÐY/Ì7„l°¯ÝÇø/_¿ôÉéßn{ WwíŒT“`Œßι“ßOÄI’|ÿ¥¿À¥Õ·L^åi,ØÁb›·*µ¶Ž4´ÝÛ ´6‡"’€o$Byß­N îöð½à ›¹ü[Ï¥›'ÿ@tØ6Ûêí»m“¹€ÒHôC& ÏÅ a›ÝV_ELüÔúœÕ° ŽåËÜ6¸–¤^ÂI™eMàŽxc^Ƈ’þr| ÎÂÉC;†‹N}@œA½’¾`D’»’—ÄîIáñþ -ô endstream endobj 567 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2673 >> stream xœ¥VyPSwO ¦Ïji­ÍìºïEÛe{8ÝîZ{¸Z@ñÉ $„$ä~É77ä„Á³U¨GÕ®Õ¶ÖíµeìhÛîNû‹}vgŸÇÎn;í_;oæÍ»~ï}¾Ÿïçûù<6+m‹ÍfsWegÿyéí£¬ÔoØ©¹ÓR¿åÈèß7‹¦Ã,ÌJóÎyëa40ÙD ±¸lv£ÖŠv®’Ô*¥¢ò ’_¸øÙÅ%Ìn ɲeÏ/à?½xñ2þJ±P**Ôð³d…P, ™“jþI‰HH*ï,y¡‚$k—/ZÔÐаP –-”HË_¼ý–üYÁÏÊ„Òza)ÿUI Éψ…ü;XÞÙ¯’ˆkå¤PÊÏ–” ¥5µ))T—ŠÊʘ¯‘…ˆÅbÍ®©•‘ò²rQåÆªjñŠ?=œÁbå²Ö³6²6±6³^c­f­a­e=Ëz•ÍÊa=À¶±mg=ÌðÂJcM°›¦±§É9s9ÇÓ Ó®Os3¸ßÜ'À¤XrÆ 3Úï?”¢Òofè)"ÁNÍ9ï¾ÈA…h)Ïö ;ác`%“‡޽Ø`g}áFÍUäšJ0Ë;(ÙÿÕâ}§Qk5ê(\¶LP*LeðÅb-]¾"<<†îƒ ìƒ-ƒ«–oÉÖàÆãE»·B9HIUµ¬P· ¬˜Þki Ú]½^\„NÊ Gf=ê C4¤mxZ½‘ }h$ûˆD ùèw_¯=»"· X\CÔ_X º{xÉÍ[ú¼Á£‘ÉÀz¼¤Lg‘Y ÄEÏÝŽpdx|l°#Ñüer¾xQ·© ¨°×T—½‡ßî$ÒSZ]bìzìÃáÍ=…þpš“ú}j´Ô+AŠ)š®p¿üôšžlúׂ[C<¦l§ÞÐí1Nê` Ô)*%Š2Y¾M2xÍ%ÝwÔáÖWëÕªŠµ×~^BŽN=-óâ­¥^Å"íç¾ÞÛ\ÆÓSs˜æ?”D/u°/0ͯKÍç}Å~4ÐH,æ¢ù [n°gvª|"cíŽf¼šNŸþW¡…:íÄ7—6š¤ú Pgæ½ùÝ)4/à×;LÍ6K“o(Øör`õÚP2êô;ƒLáô]Á¡û/rR3›gV®Z X~ãàø‰=S]„¯ÇÙ ìxQßöÇ‹éyÚ»Œ{|N¼÷êXr`áVIêIM!˜§ß åØï×øàÀI· o+WÂAˆíó†;Co óX¼Z­Õ\gÂ5Û”yÅ€‘úh¢½uÀÓCxzÂ']‘ŽKžxà x°žV-×ËŒ 5^zg"|%U•Dó¯„ìã7ÐG78©9 E_p;þCÑÓܶ)ߤoÜÕîô‡A‹Ãah£‚³ÕD™©F½V QwíŠ÷ì9XÐ] z]µ¨ ד`­¥ùØŸ¸ Ú{L^஺•¡Èjzn3dRPŠÀ?Œ‚‹)CòÚR(Ø/9rjôLO<C³>Fþ%z9‘â%Ø—.sRÆÔtÓ1ÏíUŠ ©TÖ[pCX¼?0z&ý+:“΢Y6½`¤gW’/ikJ+3åB2›Ì.sw|ÐŽu+ƒõÒꆒ¼Ë–“hþ…K§Âx*à%ò†z…Þ(3L–Ô$OŽö vü(±{ò`r`ïDVê J==ýp§Íˆw}å|ò]:z3×¥j#ëjdby›*Ö»«»§³nqx›hÜÜdÖBcfþpù›_þØTÈÅÅÌ0kµîx·7ì'|q_Üïÿ8£5ègp)Ù³õIÍ×üW&‰ëâ}€…|f‰Î¦Ö‰Ñ­dxJ}~NÓuD2Ò[Âà‰6Eeâ:I"¬èîëMôâ´ð‡çxM9ùkr@M.«½?ìŠCë2jj¥•Â!éä)4mÍêçÐ÷΀£™Njö®Ÿ—}3Ýa/ÞwþèÑ#€uÔ•jŠÙÿ‚dê»}ìÔÖÔ7¼ÖA»ƒ±ŽKÜ*·IM;mfÂÚlÓ3v¨i¥<~—'êÄãhÝô”ø­Ï¹R°‚±>‡^™a5S0a¯©Åïp·{ðIôÌ®ZØ^nŸÝf , 6 AgÜêÒ ©æG!³J hÚãç'þÆMÀ»T°–Û.Ø µ28êˆ*§ÅApÙ]ÎÛª:¢K ýSá޳Ñ䥉4~sÏîpe¹-­ZK5e%ñ ¹Uge¦:C`ÒS`5+qzþ­s–&&&l™!ut ewÈ…ûF{¿õ7½£€<0ƒÙª£4V5˜±uc;ßííñî¡¶“ÌÞm¾IiÁ5…u«Û¬3uŃö€;FØ]®6ðÃ'E¶z‡ºÁãÇÆ‡1ÐT‹n“ Á†ÉÛ›ºâ}]#²Ámë·ååáëó¤Í*#–ŽÞÕ%nÎg3fþqAx–¡Œ2üL-Ý2Z-0µd­:²?6ÐåÇ#Éð pcÊ«ÑSfn¥ÌJª¹i½BP˜Ìë¾çußÿñ®×Ý\þ“puú<ÝŸÃ<;–èM¶0 êo—™È愱®qµ©¶)7ÃÜh3ý4õbW3~9¢ïSº:ÊŠŸè¥á/Fô«yåÙ;pÃGk#[`;ä¨6®2ž,HBHëEL\çÿßqÑ›;ÑJÄa£Üå†y°F—m¡¬V¦RC‹Éøô¯hÆÙXQEƒ¤V• u‡CvÆ'êûRK§¯]îe~6tù?æ¤ÔèKžú˜ðÄbX¹EÅYÏË>DÏD >½:rí/ø¹©Ãèqø;†žËúc ·ÓTË"šÎÝÝ»zƒT¬ÄŽï;{.È ãÔ™Whl£v³z+AÛè+<:Ít½cï®o–zOœ¾t°Ï×¾òâ+´^ÄŒ³™‘³èl‚=öÚÏŠ,¥å¡ÙW–ÒOЋè~ZöT’žñ5ÊBKP7jÄéKôÞA´ã4í4`'¯Ø \®Í'ô"^!½}ÍÉl“é£oG?ö2ï/¿íXÛ¾Òí>ÕÁî>ÑñùÕþäi*B‡xCê!èlà, ömQC5hJ y§> ˜Ø{á½=]d/t6<é`¨hl‹„°z)3*!W;8ívp1Òo5zŒrØ¡W¸íVœN«yu¼Ûâ¢a9?§,‹ÑÁâk•»µõ8ÜØ­ß×äµ´é@Í8RSSe(vt—à:¯Ín¬™ÒYTgª&μ} bŒjC„&¤qoèx¦MLÕZÕ^ß IúðÓq ‘h„§c œÉ9 h=X›Ëˆƒ×¦˜´ÕtŒ§gî—‚‚ùÿR¹™K]îóÄ.h±…(,¿?íùŽY3X¬¯æendstream endobj 568 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3789 >> stream xœ­W Pç¶îqdºED1·ãÓFãT$×(^#ã5T }€aÀÙa†Aöm†AÀQAv¢!Ñ5‘¸%5$ÆDÍK®z†ü¦îýø’ºõÞ»u«^õT×tu÷ùÿó}ßùÎi 3z#‘H,VmzkéПÍÏIÌÓF™Ÿ—ÑÞÜgVR°7ͦp"~fƒéãÑs#•HT Y«ÂÂU‘r¥í.ûÅö>ô´Èv‘£ã;[{{GÛ×Bü"}¼Bm7y)å~!^Jz¡°u ó ôSª†_Y.W*×-\»À+$jAXdÀŠ¡(v¶±J¹í[~Q~‘1~¾¶kÂB•¶›½Bül‡ö¹`è´*,$à®Ùæîã¡òŽ¢Jv˜ð%£yZƒ¥—±a@Šed1?“#Û±³'õpø ŽºOײyñ'2ÎwkŠëNñ4Kæþyî~/ñ‰ßÿ¢“¹š7ïn:Ü•³¯Ð\ÙUK—ÉÝK»ƒÅ¤rÈ‚JºJ,ÓJ—ïG)]~#îááR2?fïÏHI%§¨NÐUëËꃞ<Ý\b„̇22ã û˜ö¨†>Ȇ³ÃƲΚÂ#”Ãõ”ÃVž8"ÁYwгAjþÇàrþÉÅ *Ù¥Oi”ÝÔfÃ9è€~hŽÌ·’FÓ¿gï)‹ ¨SÈ^I ž+,ÀlÙ¡Sd¸*7–“I\ƒÌÚ¼$Åhž}PÒØ‹i½R4›—òeP˜®†øxA“¹oŸ2Aûsâ C =€#¶ §wÞn ÕªÅã!†ŒsIû®$ÀZÎ7Â}á‹¡WßO2Š3s“€‹‡Ô="™ÀÆCJñ»YY•Bnnaqnn›w‡¦fˆ¥ÖþO;C?#c«ÄÔl—‚ PäíÒÃq®¾ªåë–-d¥æ©ó€+ƒ¼J*±ETbãL¸T'ÁQ—qZƒ7›gð8×DæâF…,ÓÞÛnš û–Ô°dÌ·ªösÇ?º$œTlg×(üýÖÁ­2*ˆ&;¾õi]âm³3ÿ”gv±ëÆ•‹3Nt xƒ%vCŒ]µƒH汫`þõî‘‹ù¹BÖ2Î-°0±kSóºD|Èi߈‘µ¦;5FIëu ½ÜO[Š=ü}»nû¥¯¯Ñ«jŒ•ºÚê½åѹBÓÁ^ I<éë(*Ø­êuêÕ¡/ûÅm… nñE\èok>^%äúÕøµWp3ç;ñÅ6Ö{o|Œ?´ N=ü<ÇWÏÆÎOOŸGûÜß“è7"ËÃC²ÜÀ(~8·'ß5°GNWvø‡)OËcâÌÄz¹ÛnUœ¨}ƒ‡JÈ.­¨kêÐ·Ñ <¦Ð…”‡—ÈÁ”ðzÀ®]‰AðøŒ8–Tù{)œ"»æÏMý-©ùM¼Á<ÕT`ÊâL¬\­/È€ª¥¢ bë4%ñ4ÐþÌ´ô$[’>™pXšVJ…Ÿ3¥º!«J0±êÝ 1t‰à‘WÞƒM¹:_'{LY½¸Èø"ó² …PÇcJ£c•‰ Ïþ½ r( Š”<úmeƒ¤qåw¥æÑæé|ؾ %$qᕱÆ}Eýéµõó‰8ŸHÉXòÌßçàDœÞˆ–EE‰ NKÏLQ i1aËg·É¡çàÌ/zûóßU£øgˆiôÃýR¼>d«¿+'€•Ý¥s¥µaC¤óOÆÿ4 'öuMâFíþ[-æŸY§'çxPAÆÞØ0÷¨]à>ÕQMáÇÒ»h˜ßlh¬nj3ö@'tFÕ»r#iùÔàÒaoÍ;/5/¢–Sõ.Ü‘éd¼™dá‘™M³y¦û±!G]˜¬IÛ¯æ-V«ÀÜõ!í!íð ÔsY5|>ÚÞ¬n9dz–’³Æ+ÔÒ$&ÔÐveÙÿã·Rt*++²Û]m­eù™9‚j_z$r•{jj+*kNxÕíXé°ÝV £ƒ®“þçjf#ñªÃug¯Öar¤¾S¯î“âkx…6²Ž@õ»ùyù-‘ÇÒ«{ÐáêѸCQ5bI‘Iß••¡NO‡xNUœXQRžo(O<ì÷N†—»Yá[¾ ¸9Îk^ÝU#×ÇŠÑ‘©ÁÞ:EUœk‚·/¸s«~qÁÉhƒ£z®õ·• [Ü`.pyùðcUSnM©N,7‹jû^ŠöOØK…§©€ë +ùZœÛ¾Â}Îl§ö^}Yßuñiƒ®¹éñ/»»«„L¼+ûsÿ?6yìnBh…Ò!ʤèj~Â×)kƒB#”Áòº˜šF}]@æ‘ÍT¢Ÿäï§-ÿƒž“P Åð4ބܑ{L43ìHÔßZG"ºü‹ÿùýrÐA/ûó–~óÇÀ:ô“VQ<¾’Ÿ"’…îCãÕÅ·t`¸¯I çþó èZ×™³…;·ý[pþ“giK!Zý¯.´¡¨ÏJñ4jyø!e›ÐÒíŽýW”ýê  )JÑ–L9DÞ²ÈqjÓvº'&ffB:—®M+(ëîÉ? àT´5â:@+ÎzðÜ z<ÓŽŸè$æ©íRó:Œå±CVRC4$ˆ¤;e%P¥TBt‚@:I'› JeÐiŒ^É Ú`€ªêlÆã ¥QÒ<€:[%àE'Ÿ úÄó›eUÛ€L÷ù aΚ9à ëµ/vþ­ýµ/ö¼O-äVi÷ƒ¦‹Ú8Ë%9Ëš²˜‡É§à.õø ðYáúŸ¯„Ãp!Ng_´ VÂZØ‹’\bf¬I¹Œ”×C¦V QÒ5)ž´ák5Yá‚·ÏŽ(;à‚ØZª„k¹'¬¿:ÉNÉšµ· ·¡yk9k§.j2¸Ž?=¼o’¼ÿ•?H±wóe¥-¦²’Ó§ú>€ï8;û µP«åönÇÒJô ¥Gß{’„ºþs»hmv._ò‚³±$ãD2‘<›”Lç’È)fQV‡k-2ulêÛI{ö§:A<µâ5²!àê阆Gù°FòÅÏèýw)¾‹·ùkÝ[g›×ýwl[©{_.9h0R‚ÃÃâ|ì~Þ„2œòýŸn¬¿<«J¼fì;_r_.:õ‚í²­NþãktUuMÁ%ÑYBËW´ÀÕ\N¹:Ô+!^ Q(5›3öd¦fR£Lȇra@œd2{P/^’š…Áçxˆ¡ÚIHÈÅ'>Aظ”¢G:åÈ@wŠÙps=%»B]Ø$ÞxdšÎ®4[ðO,H;œÙøƈüÍ"ä1uï;R´5÷ñÅÇSZètesù›ÒÂ4mºFéûDß½îIÛ)³n¥Š¢”\ è¸DHV‰¤UARÙmÎ\¡¨ôhÏM8 µîù{ʲÝÁü3·‡yî ñQì€ ðF³ò¬6ó]Úý9cUECShq¬*8e÷¢«öȢͣ{8¹%¿Ë·wÅú‰Ã{4O1~uçx¤õæÜ•¢€_óp#¯ÿÈÇõÝ=Íg¨´« rMF $s!†¸êŠºÂ£yt-""mm“‰‚TãÄu÷:ß+>Ñ&?v¸ns8iÎ"]µÛÝM) O.ñ; ¨i¯QÙ¦9G¹½_\é®W zÚúvÒÃ36 Â]>òaŒÑ›û®SÄp+´æG|~!…ºŠ#y²HPdEf»ædæ«Ë8…,X4ȲK /”(̽DM“C¹l&ˆŒØEX>%Ü;: ­HèdgV£e×Ùá5ê-iʧðÃn)ÞÄßø“µç»á*÷üÞÓ;Ï÷/<*”ÇähNû’ ÛÂÁ…#£Pº%8þÁGg[âË…¸²Ì¬Å½Yx—-ªƒFîÌ…ãŸ_ýdÇê­n[B§M|Že«Ë“Ëö½ or+–½ãèàôñõK'û.vú†{×éÇÝË]ÌýQjž†xäýp;uëµéz·¬W!–[¾ÛÎahf“ÇP¼Çc“+†ºÊ 2U…ÖÐzŽÎ`Aǵã²vIß «t0 oñ¥:ê‘Q°WümŒloõD”Šƒãˆœ/­¦wb‡îØÈöÆÒ;ÕôÎÐ"Hð¡Ôì8ø2ïí¡€d:mÆD‡«ò•TDZ1Û·èöLnnk€B0€>¥:±6±bŸŽNßÛÇýÑ ~¡àÑòŠ ('3+±X$Ï#ˆ›6ãX|®§½¤8+ r¹ÜŒ¼”ø·wîK¥°Û0²ˆå]²§½ÄY –£—è¬Æ0Ì?{¥3endstream endobj 569 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1561 >> stream xœM”{PSWÇorIréRY¬w«µ½ÉZe­¥¼T¶Å­.e‘®”–ªDJHLŠ1<2†üb(ÊÃu bÈÆ\S¶ŒVÅ J­Îb[Ñ©E[ÚJ}M_¿knÐvÎÌoÎ93çw¾ßÏ÷ÌPBJ ˆ2sV¥LNbù™þY!ÿ ÄÉ_y`A Q»ž¯›Šõ1¨ŽÆu¤h ÊäÈÔh«t¥ªƒìÝÄ…‰Åá’$KJOO“%'&¦Ë–ª•ºÒby¹,Gn(Qªå†ð¢L–§).Uªy¥Ä`Ð.JHزeK¼\­×èT“]âd[J %²UJ½RW©TÈ–kÊ ²•rµR6©3~²djÔÚ ƒR'ËÑ(”ºrŠ¢¢^HLJž¿`aJjZú\Šz‚Š¡¦ROQÓ(–úõ45šA=CERO† SÔߨÃÔ¯µà¡0_ˆ´¾Q%’ˆrù†)|qz~Ís °{„Æ_ÐÉâÙÉ[kÌõ‡ÝeäÆ3¾#s˜”,%ó‰(ÎTm·ƒ…©wšÛ\hÁ$üž›Âceà0 œÀS4 GØË€^b#6 Þe™@+ÿøèàøç{ºá(\¨h_¼÷mÇ2È€lˆÝ–§YY½˜ðâݡްVï ɃhÖo5—•=TÀ($^¸ƒ>æáNÉF¨žÍ)ħG¡?8Ê||5ðéè•¢%ië5&ná_ÙVË/¹&Oõi5¬b^IXŸ¿ð£±±ký§ÝðݾàcÂbîa×4Ÿ‡YX¼c‰*W§(\ý* ß©ñv5·Ã~Æ[Õ®VoÝZ¶è3õMŒG)ÊP‰VBß"ÓK˜2}‰O~XÅõ}¸ù2Ü„cžCæe³9 =dôhŽØ?€8 ¡`¯+èê › dqqÒ›/Ï—þß8u„æg‘J–¿LÂdÀj@ãW¸#ÆÀál„÷˜&ëîš*b!Iä{2;Hòþ¶ÆÝMï54‚ƒ›Â=‘ꎊ¤¨ÿ…c%nendstream endobj 570 0 obj << /Filter /FlateDecode /Length 7867 >> stream xœÕ=koÇußÕ¢¿/[ßÛçÎÄhÔM ÄBŠÂ)‚+Q¢dQº4)ÚVüú³{³;çÌ!)‘.øƒÆË½ó8sÞ¯ýödÚ™“ ÿ+ÿ>ûd:9òíCOOÊ?ÏßžüÛÓ'ÿüGc<Úå)›“§/Ÿðỏ v—Næ0ï² 'Oß>ùzó‡S˜2Çì77§Ûiržg»yO£q&çÍ»SwÞ¸°y§œCÊ›×0´fr1Áß·ÎYøáæ?ðá4ÙýæÉÖ{s²ua—bħ_óü4MÎã½Ð82\‹çtïÉ&X{ò“›%:ÀÛÖ؉ç(h€o3ž_ñfÞ,gÏ~±¦|̇ä{º¨·}A(æçÙm>ÐÐÅà7>åɳ‰›ïêcqOûòBv›gõª>­ožItY7%¨7û·ðþm.Åë¸9“`£IãߺÞyÝÏLÓ<%u·Ïº‹WbÞJbÚoë9„+w ôè§€7¿ÁÇeéw¼¡É—RnâøRæ-—‚ Ô=ãØ×H;Öã2¦`RÀ« O¹éëS±¹½=#(ßxA? Žu¦æ[—©Û8àCÀWwvUùÓ]NÁ2ø{â4i2&!j ™f?)¨ ¶ ¶Æí2ƒ£\²ñ89q˜^>}¥nnÅ~¦eã&EÌ–ˆp5¢1üpšËðužÕáy¾¨Ã¿Ôáuîëðm^ÖáEw²«Óv£5Ëž_gõõWü–ì”o.Z§îA°Ó—bŽÃMûªpp/ßVÖÁ/Lîwab/ï7çf^fJFQ§X[bÞ5¯á²|W^çþ}¹ql{²ì _3JFo*÷yQÑVE#¯lã™íñ&>ð´p¸ªŠ°ÁïHœ¾^ŹøÍžxÞd“C&Uš˜Å”fë6¿¨ñ"õôÉ@Áør¬`8×S0òŒB ŸÄdwÆ8T16ÿ‹’§Å ¦9­˜Q¥$\å³ÓmßÔ[•Òá9A d J¡æ´ùžD+ <7[¥¶¼bà`ÀÀzÑÌfs¸Sóu“†¬Obã‚jÆ·¢ê—•w]Ü…LÞTl¬Ù.bæüf¥)`sÜÒ¢¦Y'QºËH`S;?»ôLû!¥…öiø¶/ëð¢_Ôáu—ö=@Xè² ÈèõdŸ¯T¹lP!\ŒÛd;ÙZàŠ‰˜{¡\jp$`_2!M dÑME© >¯²R©¶+Ë@fƒó!³!¨fØÿ‹D péHåøH……yä-]®w'¹!È)€¢ hÙåyÄX^ð^³…ê@5À/—]ÏŠ½ñ®f™tN† cç».O>4D¬ˆiž‡^¬œF@ì¯ÄQ¢1'üŒ×^³ÒèчEÉD=ƒO;{k%8ÄÚLv>yO[¢ùXÊuÖÌœ4]2w´>âz ¦ äÿ5‡¸fµ¨"Y¿®–RE0=/k]s$þA/'€_[êõANSmÿBsãí²9­^0c™Ý¬yk§xfVL“q<[6#Uûšù#œ9Q!‰"¿¼Z:¯›æDR{$éïäDfÊ;Ò¢À\p—Cž×á_ºLI¼+xÙû.«ºªÃ×ÝúzÌ ´‚Lêx™É€þÓX™•ì¥3qÏl‹Í`ŒYùÊGËLk ¬|+[Ã7LÒl®Ö5ŒP:$ ¹æ9ünceð†ËV©ï{9÷rÆÄözaãgü8BJ†"¡£Ùb¤Ñ;‘æ¡ÔŠØÆ¼·¨lárU9·6i´Áb€ d\¬eyëÓHþƒú€p˜=‰qxœë%ÍÅÖ3l6­+«w+çuaf@X @§j‡,) tiÖJu9°üÞ~¿) wư ph§,¨w•«žŸvYÂvÙºfuÂè8tíaÌ\vß&ÎûÓ³¢ò….k˜wYð°[ØæªØ“ÍÉú1’ÞÎ7AA,Kžu¸÷òioã@>)ûI<-zÀí¸0µ{ó4©¯°í‚ø{%dbZ(.,tç¬êï7•)^Êá(Éå¢EÀOæ`2fsUû«$“lëlÕ|Vi˜¤åzXf3Š&YB1ñ„ê/mÀýHröuBÁKŠ¥€^´ÆTX'טÖÚ ä+‘¶Â:Ç‘/±5"`zê ëg]ü2 Œ‚"(,<ɽ—à ,ä)+ÚÜÐRÉØy´H‹ðB-\ÖmRrGünùÁœZzâVpIöYyÙwH®vÊò¦´¾¾J´Å3ìZÍ΃í”àF¦9ñ „ל¤,~‡×bb–¸ ¨ë£ÁýkCw% IURá~?$ £‰Ç¨®ØKt³š[Âf/^)›vèÈY&ŸfA *·`“Ô¥Ð,…IŠÈs3ðO6UŠü;ç%Ÿ¹ðñî[Èä˜ßúW/*m2yÓ#õêŠí¯*¶HrÀŠb$ï‰&¢·ˆõ?Ÿ<ýǯeàKìcaÄä‚8fD %W†öÂÉÕ8¤×°¼%¢[ñ`V›v@€äp3(ŠË´=¢¯ r¾¯•rΖÁTW¨ÅDECéx\¥¼ˆÖ Ò’·+ŽY½œä0ÒRá‹`¬(g>ÍŒd’í|uû=3 ï‹À·g `E/äE0ÃQ<³1Ê4*!<²BË©,¨<ˆÜ!F×кÒËq2R¯¸2t„i9ÔØæZnªÇ‡íœ@l›žsD0¸`ìG0bЄc‡Ï@aÄNHþ[91Úµ*ìÚÊb?¸Ë\˜L*²ø«Š˜"r³p±Ò°Ÿ9D£w¿þsi¢kyÙ0›ÁÖtä0´ÉÀÿ¦1Uà è³/.W%ƒoÙ “º{†RI]ôŠ÷ÉWþ¸2 wáÇÊ3oÒJäÛK^ÃkÀïÐ…K›D˸oq÷@b—" £ý•‰æøh/PÜIÃuâo3aùe‘}ÚZ¶¹ÉóØ‹(úyëï)nxTépÊdFj÷6¨À*Õ®ðÕ'Þ•×r(./¾n57—°Fò!Lƒðö€¹8«üó*å–Ñ!4^¡¹^ó».›cÕ[\–˜ättWK¶¾+^P§Õ_¡k"²¤€ª’B³9\/“祿ò#:#ÕG>ÞóuõÑ0É ÔÐzGðñ”8ž0-'hÏgZ['ôv"¤àL–ޡòi'oTPòß"ŸÎÞ™Fs[ÃCoírҪݥqã ÍŠ™×<Š¡ë6ǾA–û‰a`Z x:Å4ö寑s=¯=HŒºlxO¡Ä÷L/Ẇ4ʦВ\|htk‚@%‚A.Z'$˜ø*»Ô*™b¹«và,‡äQR=[Õ"!Uq8¢ù6­±q›°{<è¥ïA9¯š¡Hi¼"G²¸C¯ÐoïáÚ¾%X&`"êÕw«a\;æGÎÞY€”+ˆ öoÚ¢*(òAÈTB+*ÈýìŸ+>Rƒá?ýX›j AÃé·ªg& g¬QÏð/ûþL| à)jr_À#J™{@~SÛ_ÖÇ­ò_<7UûÿáTdË}¼h#^37¢mဨåZ‚ë«&„ßHãitB<\œlZ‹nOœÌ˜i^ÒV9n³"Í,#­5b² ɵßJúÕqQC¬wâ €wξòç ÷©Y<L@dôˆÉDÄHÏoº“Ý™ò“ì·6‡âÑFÉaÅü¼_"t'ʦ”ô[L~7²ŠÒÛDÒ•=PbÒYËÛ‹Ê.J˜7—"šøi–²_3 þV,7 ¤95Rùñl7Δ†kóhéÞÐEçÚ7Ĺ/Á:?¥ŽösÇeô±ˆëtN×Δ¼V)cÇ b=öBP.Ô·ôR–1ã$·É^ûŶKOè˜Z.É~j©âÙ«MZ³E×=Þí®9[Ê;¢öm­º+:HÝþµPŒ '‘¨°æÌÒ«î'ê-E罌Â5Ù®H•^cxÙ‡åR‘J$ʈ`Bnþõtà8÷Ï/{ÜÄ·¦y–#§Í¿Ôác¤®ÃÏê¼?d°Þ‰ï±3Fm°e]Ъ;qÕC—E¿pàž8t_øì´hT¼°æÎÿtºM¬‰¬ðQ Â{ù´wî{ä™Üq‘Ïî‚ç³î 7wÍpÓè½›÷Bö%t÷´ï úg?CÁ¡ïÇh±ý3b]íÌOiC·jgGNʱ¸³E¢||ÍO±l_kýº€œ ªæ~U¯Ï²J’«ký#«–tåî­Ò0ýnNlÌ›cqÀÄ?>¯‚ð­¬Ò¶è&ÞhŸNÔ¬¢–ž¾q§ÇqßEYü-9ÍRº‹Ûi“ýüä@?Ž5¨‚ÓIÛª§~~ M(´{s—¾I܆ð¥J(”½ð< ck˜´ËqEkA'Ï»Ôó|œ EQ“§VÄèNv±â:ÜuIW0 åËé:e@Kù†«uùÙ9ÃêþÄřԊþÿ^ —8bŽp¡HÝ•+²=JŒ-ÔÀGò*ŸÐ'WÕl$F–"Xˆ¨‚¾ŽEYDf,»¨,j×LÜԿ¾çå¢6Àåã2#ÜdvÖ: ™5yÒ°j€‡tÊnú"ô]¾ì**}üð˜vü¨¹¤÷Åoº0ˆ(÷ˆ²kruÔÌí‰Ò]I ^–ÄÂÍ.[þwd'E“´#ŸîLž›Œ»mâX83âŸTURÌXäÓÓDuÊш™Ç:$ˆc"çÐ~"êãw³÷Ôa„þìØÑIÑóM½W¡Rf0dŒìëð}ö5‘ºX㜵øVEºÈm,œÕkQ”Fu…Yô§+Œµô§³³é5¨#ÍaX§â3ZëA.S³Ù›¤HŸ=eKÈÃÞóó´Vß6µßž®´ysª•<Æ{ÎÄ¢*¢å|“§Ê®W°®v]¡¢å>ºú.Ê Ã9¯B(î¿ÌÍ0w½fUOB¿£(JWV¿cøÀ¦Éœ(Tý+”E÷;n_ðÛ†3kö×®SíTÉç­l 0à̺= „ÒÚ$oÒAjØõ~³<—-H/åQ›-‘þƉ›ÜF;Õz±:b83vL²"pß“É$b™ƒ\ÔÕŠŸÃ|™s׉¹ºÌÇìþA/”ﺕ ¢øaÐvC¼¡ BhA,òo”CÚÆˆn*„å €Lwötj 9V–ÒL¡*­aËaIíýº­~@—•;Žª’” Wr`~m!P!086åÿ¸KªÞ˜=5ŠØ—Ÿ¡rüÇD:Š,€ÊsÜu¡+4MÞøØåÛ³¢ l-;=¥$X+}¿#¢€……M Áiž/8Û Ž ÈŠâ#Ñ2O7XYéã–(G‹¸xb=xÏê„hp É_ˆßûW„6†.Fêͪ jC×ê§ûIÁD@‘´&·>Ôε>SÙ¶„‰tli3wkb¢×·ká9žK˜¦9Å[ÊÔ°$4¬ýX{øpÃnñ‹ÉRÐW?}FJîkžŒÕ‘•M÷{²HV*L–¿?Zm-Ȥƒ´YˆZo­¸2§rK§ô» ˜ÜOg˜)œ`¿`‹ßü ¡7”LÏà¨Ð˜˜¢·pÇ®î‘M£w®%« Ù˜¼3ùÓ¨±È?Ñ`1PNBŸ%»-ºmõƒ5µŠæÿ-ºÔ‰‰´2º­ý&HQ¶„/ßž?œ†õäÎØBnó#ç%‚õ‚oÝZÃh õ!«ýàyࢠ?ÏÉŽØ•b÷)™“5j†XTÚ4…,¡kÞÏâTë3O\ÄO¹õI‡S׌U-ˆ{=˜Øàè%¹¢ÚÇ‘6/Ô *Ô…;_«.‹GîÈX6”Í7xcä‰ÄŸ°¤aã ”yòÛ^mð-ú¥!>¤5F.÷…‰¼ó´—´~Uxæ”JÏ¥á¢:Íà/ç¡ÊQÊ’'3İ,yÕfu¤Ï„>­Û뢨r:íοÂ.’—2•ÚÕšìßßT(qL^5r ¬±_`”øÈmzD ™p‡ƒyÉÀÎXÇX»»éDHœHrd¾j¼•n#œÙ¥ÖwÓá]Ècï…K¨ÿÃ[;§u-3Òÿɼì¤ÎÚ‡í£€ ]ž|àÃçöð÷.cŠØÏÇ7ùÐý$ûŸMˆÅ9Vu,:½åD_]‘Þ‘qö¹ –ú5M¥Ñ5k€Á /á€y–&ªÀÀçf‡4wDÒkRt[½(ê„®õ皸°¸õÙÁK®ü;4!Ä[‘¤­=Å–Õ÷E¿æÓ SDÿfšÇ…›W´»Wó8ÂÝtP¬Û¬;i½¥ƒ•1Íœ¢ŸšpÍ3£@Ø/8gÌ€´þœ®#:©}×Üî*MW®>G®x,û›ÚÜtAdEŸ0ïe_>Ò*é›ú1†gÕÊ­Õ…?Ô¿7„ŒºÃdãQ“†ÕGS LWª6µ’Üž;º`™Þm}ãù#·öné5ræÖ-ÜPs¨#©–{m3Ì£–{ì)ä¢Év-ã¦{·…ÓÙ @÷œ°~Ouq´ë’¤Â@4‰ÓaÈuê|Ô`qÑðW³CÔË5¤rsD{ÁiwÉ/ 7M¡-¥æ(¬ÅÀS=ø†ë®A·›÷àN†m-¿Œ¬HMsóùâ…/CËÿ†Ê2õ˜ .o ú!]®ne_ë7©Ç66úµ—¥„Dt»k]B÷Û ºVêýo·¬˜6sNœ/É€L§ˆø,ŸTÛ":p^„AŒ³‘T*Â3¢Ü[4^õ¨»¥Ý힤Æp­n¦6ØYÃýÌgš`'îÔ{§J‚TÒÒQ2È%5È,Ðê—Ý~Ξ°9C#/€¤²ë\LÓú!ëô×4D¿q„Aø§Ë{”ìxÁ±ð£o‹¨,¡² ÉX8ÖXJ캂¿ßU_}çqŽxê½³4zúÀk£N 1ö6<Ç0Bv¯–tª{ö}iüvG}ùÙ……åè[=AÆ5‹­=Y?[1 ýN§àT¹ÁíPbŠEï}á¡i” êËjœ ¾›& –JžVïŠü²¡ú>Ò*žš>^d»+ù5îu°ª<*lË€™îÓ+U•Z–ß…GüÎ ªjqs”=Ò;À(çŒ]#¦íÖÀ{Í%Ô΄Âû£^©û®Çª ‹òCëoÖÝ‘.Ó`bºJ—*¿-éR1|DºTØy_Òwfp3¿a,CêEÀgêÉxŸvz°ôÀ.²á‘6Å#åµ+S\ób›©“HáZä–H„¹6í²N‚ÿ¡²8Ñ¡L¶CVŽfZ%p4~ÓZõ{lc¾e±E]#Tk·t¨6£“Öm3:_váýÞÚ×ÞàˆLµ¶|ÅÜû•ucQÙ¶Ý"'?^ƒÑ‚·Õ–ooé@N™™Åq® ŒnoÝWŽx±v45¸C 2qG¯y¹@L£¼’¶t%}›XüAæ"pþ›GýA% ‹ ê_O{aûÙ…í²ù¶¹Þ#eì`8(f; ¿«8=pVå€$!Í6§QÊi×}…Ä”.Göâ'r9WK$?ça¥~_—Ò)a‹páOˆ’¡Š]Øæ‰ ïÁi±çþ¸}ò +&¢àÝ<`Ú|ZfÖ ¤kštŽéAXcjK]<Šð\”O¡ÝJO8·Ÿš/6Sª²W3|\ROÝsR1¥,‰]Ëì¶®4Ä>E¶qsV>Ql0/WE^Ê€tæ­üóy.x‡É6õé»æÎø¶çÍïqÞ¸|¶ ”¤ îÕ՞ī/¸H{@ê?&Ê+V«\Ôû¿Ôx´É¬ã÷>D'7[ðÎÄŒ„È«‚]I]<¢s\ˆea?XÃ:~<6üFàü»&q€E¸”~ÐlInú7sÄ/Öw$1¾$¨‰”ÐA³€a"xC¹ï™5“S™- @Â(ç^ÝRwgôÌ+‰Í$˜¥ôÌÝPJQÞ-i•“ec-­ˆp»G¨6f+êš™I§Ì*2È‹¡©Ky0ŽL–uu”0ÆU"HœÐ–OXð=­¼þOþÙ§ªendstream endobj 571 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6035 >> stream xœY XWÛÉL•bGAÛ ¥î¢­»¢÷\pÙ$ld{’7a‹²A­ ­Š­¶Z[«~­ÚÒbµVºx‡^ú?ÿM¢¶ß÷wùþŸÏ3wæ¾ï=ç¼çŒjàJ ˜9®užkøÁŽ-à_À¿&܋տ”ö%š¹Ìf¿*=Œ·ŠŠ‡ ÷W(¡@«r Ž’úùø†Ùì´ŸiïI¾¦ÛLŸ;wöd›öösm–xIý<=mÖz„ùzx„‘_$6.Až~^aQÆ% |ÂçM›1Õ# tjÔÇÁp—É6~a¾6Î^¡^Òý^{m–†Ù¬óð²1ìsªáË1( 8<ÌKj³6h¯—4¢¨…Kß ^²Lº<Ô)lEøÊý«#÷¬‰ò\½w×zï >¾~.û6ùK¶l`>ùå)Sí§Ïxó­1³çí?˜¢ÆPë)[jµ‘G9Sv” õµ‰Om¦&P[¨‰ÔVÊ•z›šLm£©)Ôvj)5•ÚA-£¦QË){ʉšN­ VR«¨·¨ÕÔLj µ–šM­£æPƒ¨êe*² †PC©a”%5œb©ÊŠMùQ/ Qä ¨TºÀZP è0àÐ]xuà¼Õf̾]¡gÐ)t?sú¥­ƒ^ô¯ÁÛ7š/5/}ÙáeÅ«…¿ Y;¤ù•1¯<1ôú°ÄaÝ–®–? Ÿ6\ÇŽ˜5"s¤ýÈ}V¬FZͶj²úÕZ2Šå6êîh‡Ñ£û^uym/·èË=Ú¡çJu}ÎB~Jßj65_~0b@‘’ƒýû¿¶Šßæë d$ôÑô*h„z(SžWœ2·ÕÓΪh=CŽ:SÙŽX+¤Å“2TrHµpNB·¦¿mÐ éð¹Ü°(š^ ²œƒg£Í,–‰Ð tÛÌ‚¿zÞL«†Þ@Þ7FZ¶¢uHÃþüÉ;]ïåo_Ïáz— V’;¶«‹U'á$ä+Ϙ¶á RPê´‰†Ï¡:¨>Lç•¿ ¦Âîå±AŒRdyóÇÉÌ$ôÕœäíb\ò§7Z)ƒ6±EŸ?iÊûZÔ¨†l¿@×.{<Ò’GÆB»â[ìNEvU 4bŽMXç°~ÑX±Ÿ+Óñµ‚ê{¨ážD~,iû#‚-ílðp<ôÇñh²|ò ápve·‡6ìXH³ò ét#tj›jNŸ*l€Nhò/ñ+÷P¹‚xÃF©{Ю]Ànã-z4YËÐGë†=½Êî´Ü‰V¢¯ØºwÏ•4óÙ…é˜Â"§7ç¹yUÖ‡ŠãJ@ ÅŒÓÀʺ}ƒ£ÑH4lÂ÷xÐæmá{¼Ä–Gºh<ÞÐçkY)»Åý¾×çJÐ÷ ô4æ>oûXØÕgÃþG×xF„– 1h<Ú€œ±MÇKŤ»"”ø«ÀÔ;¾6žÉSÑ#¸àZåsbc¡#Œ‡=0fÓ²­NŽû׊=ö¬Ø±:AÝ=TvCÈEOÙ·œs|Áƒ°`‰-{Ç£—šOžk㥽sþ¼”Þ…;Yˆ‚´ÁÒÝþ[€Y²æKd†˜kŸßü¬mÎ&RÝz‚¢ zt¤N€lº‘»NÈ÷õ-`û¯¿Gñ‹2ïŠZPžYHЧ…8âEdS6"4Š{èï4’™b:$š/™ÀMEI" G‰=è6aF'²àížèéµ§_è³E±Myè $â”´B¡LpityiyaMm@Ûzµaœ?ÒxÌðãŒ:_uŽC…²ËX}ý¶<¯‘”6ƒ”Ö®Gm¦Ò¶“ÒJ{÷ÿ–&jM¿D@y¾†z#ýýiû4M£)ºéGyþ³L…Í’ùO䦣Ìg… ¡) u)œ±° 2-o_&¨;âN Ñ#~{râSÇ)‰‰)©’2I–éšÕ¾·]ý BÊÃÅu’£É§O'’—Eç&i#Á‹yÓbÇ…Ü=ÏÉs•YñÀÄBR”§£!Q“¥Ræ2²òò33›÷´ÉµáCZ®_i¨ /ûñÉ^R’ùv>t2µåÍ_#*{ŽTÍ©â!%˜È.&]i×£8=?V/èì庅}‹ûæ·š,—'¦p®‹ýõÎçíÀoÁsðLì†w£Ùø-äúàzC‡N|(¸Á7˜<È)£ÅôñŒÌ+œž^%—ÁØ 3Á7´ORK÷¤Ç{‹×ÐØO†¸¹xCjDµhÕ™Ïÿ´ϪàÔqªT²§"È,%RbK¤ÄRæ”~¾Fé„è3~,«ÇãК Z9ÛwìD9#½«i<ðNØ™+õ—¯qA›é%ŸðåaÕЦqIêôÆÓîêò<Íâ.+jTçÝäÊõ"7¹ ì"p3n³œþOýkM?OpÐç¡Õˆƒ0ÚAA°„ P.ø»«ø2úožDM¦%hþm~ð6h>;cÛjÇ9©-g9ô'@~ä3Äx" «À£Í·:¢)ù8¼åÕËHÕŸg¦§³;Ä=[c$†/z&X6ÝBÍ?aÔšÛœV/Ú#w‚Ýäã{Œ›ÒÒ·Õñ>†ò}ñó9©DÔ”~ZÈç*4 “ÒóšrËc²R~”^PÂ+„hB¬h-ƒm>>p²ˆCŽ4™‹unMÞGvnfö2Õ’Òèʪâ’Ê÷L¥¸ªòdN50§;½Þï£-+©ÍŠÅ©+ü}÷‚'3÷QðŽ<ãs8z®@Ç$~ÈN\à¾Ó½îÔ¡)YœEßñß@Â?ä¿d»Þ»¤:dhm |$&±ÊÍt,:eaDB’<)5ßíЇ‡óÿ‚Q‹hdA&Ñz\|P–sdÖ{!Ѝù‰ôSĆU->m¼ž^±9þm8ݵ"84NAŸ'Dï¢p69Tä£þìÛƒõuuM“ãò"sï8 ùI1‰²Ô”Õ ¬>NÎQ¨!Û4yšrà /EˆÒFgØkZñ!¨m~À¬UxÈ–•áÒmëû˜Ëjb.«¡j•µ¦Q+M—‚\‚´‚ÂÃúÊmÍ-;«âpr³%Ä…i³ºBÕB@Õ ÇL5yB„ë“”ò6ZäÝL"Òs„ø›ë,!*¯¨®­£è(áãñÐJÊÝê à;S¶„x†ûï‘l7ðªmŒ-% (f7±z÷SAgóŒÐö®­B?³) j¦²J ¡¶+"”„r/zÝ Å M0šÑO[I7„o tZÖRˆÎ—«ªt¡Ž©Œ, “FÅ»5{¿ó~Ë»ç*8´’ŸŸWy¸é²ÚZOûË%÷{iS€¤,-!-É'Øì”éPÃ×ÕFcåÞ#ä)þ5vZD,2!%••¥‡ô—–}Ÿdƒ‡böÇ Äí‹kÑË9ѦˆNá–»„¸³zî;ÄçÙßn¿V!%.ã—%Ϻ8NÏ7Üö¹õq¬JiÖå.¤_!‘7 ë§^ ÚÉ…Ãú/[á0þBR‰RLFð‚V%•†ã?Ω TÄë*Ïš8NV‰ùZZ¥BÊ_©Ì¸ŒD XçAfNFØNÐñZA‹]$G<Ž·esò òÆ&@4‡ÿ%’á9f:QVïáFdF°3P„ëû™DR3ÉF19@†kèr&¶/ ã\ñPb`^=d#ŒÈ%]Õ^#Èå­‘¹ÁnÊì—¸íŠô$³Æ³"¤9¤Eñ¡L{Ö™ÊãeµMú3Ð Ç÷Wyib@ ‘LúE65ËíÌBrã!60‹‡~o‡ÜÚRz˜w5&½˜tü¿G±q曬çë…HÖ÷&›¤‘±bHët¢“ MVÓßð7Í˧ù…ýOÆgœZÁÁb1ßNWÁÉ^×͊ʰâT.&tõÂŽ`qÿ"Ú‚ßEPå[ŒH~ÕàףزL(ýÁå[€Ì§ØâWðÈŸÞ BgÑñ´<;5+1Ažœ¦û›¡8;`OUXݾåhfTlšÚ]¤ƒspÁC…‡3D¢Ã«û¦WlZX¯°/ }âÝxš…דÏ4<»cwdgºÙ£ÈÃßâ/X;,þå!9²½õè²]€å8‹ß´[ S|Ej­™]ëùJˆÎÖ`dFÝÑÚ’›«HËåÒˆ —2!ÅQÚªÃÅ•G½ŽlZ8wæHnáOÿÆw£´)U4èP—!6u£ ½BÞ]a‘Mïý‡ÇÞÇb1Æ>ÿlVÄÓrtÊ”jŠÐ\ÀÜÜÈž'Æc sñž*´¦ëvJ®TŸGnÖ¢¡È‰ÕÆè´óíõ«·:‚êâ ÄÇÚA©d”A#ËŽ,/(Ê--ŽÕ{ºÉ||¹à²½$xNvtZàZãSt@¬PùÅó+ò©Šrñô†ÌÒÇÎh8òÓ™›M‘'¼+8—ú0™LHRfEV¤eæä3½iì ø®¬J]w¨B\XRU¨¦&†…ÁÄéâ6ìÀÖ¢!ÊyÎnS&,i?W”ûÁ=±éý‚‘T“A¢Õ}«ØßKwÑ_§>´Šþç/#VÀv_‰ £Y £¤4#sD »…¨%„Þ=h ¿ŽÅc [¹œ“B"XéóÛ·ªKU' ˆðºÃ4àV¥e[>Iç²5¡’0i``¹T_SQQÑ"Ãõ}ö:Açetç²Eð³Øù%!—ásåìå/ûÎ$».=R•ª1†–R1ÚL—ÀÁød¥2>™‹‹ÊÍß·5ºdë©))šm?naûŽÌTq«ûáT48èNdŽâˆŸJYç §í‹í0Qò¹Iœ’hpœ1NEˆñf:’4Ù*•&›Ë?œwäKëo%t´¸óýÓÎý'BkĻϹå­*diÈDãošz±·ç<¢–’nü„ ݰ7tãSãÁˆéÀ´7œä!  åjsAYdr•FEo}7¨óV×ûßp–=}“:PZcêH_4é6n4êQ^7ÊÕBÙ\öWZÉ: ¹%Õh"ñÕ«8œ¦J ô$¼ñƒc¸½QC:`ôíäŸãì¥Ç@aaÆ@¥*§$#W]‡Ü¢$°Ï5æUƒ•Õ fÁÓkB’ÂX>„þC PkUÍÐZeëï€ö„¾|öY~0b­äñ#*TÇŒ©Ú„}ªò9‰Ç ÍVßÝm;v5¸-_bÞ½‰ Qm6Ij¡R“LÌydL\bc„^Ÿ Ù PB´æ¯ÐßípHÙñookòÂKû^7D†@!òç¿g ˆ²@ÅÔœ†j¢ænrWBg8 ZjzôÇ—Và‹Rûû¬²¤'§ge üV¥gš ÚÁ¸aâþÉ0‹Pm7­êP–…‘¤’D’Jvé"QåÑï_ úþŽ´ì0¾DÔg§.œ;¼wÙ_ññ9wÿ«‹GÞû Û׸¿ÂS³ a»GЖø÷<fÃ|ؾuÿ.ÆòŽò;Ñÿç¥â/M¦öÿ¢ö%"’ŸçðñÊ y6 DúN¨2¶pqž›ˆaYkòo§‰ˋΉ+YAƹRNâ~½žÍ LM"ØŸ­ì„È÷BýýV™±™)8HbbV1ZÈgY!‡þô¬hurXk Óp$[øÛV…­UÚ÷ Ž]"÷'a΂TMGÒ¥,€0HU¤)’‰ï±ÅêÒ_œK(¾KˆN£ þlE hÈÔãIP$ÉSÕòìdñ»[Ñü*ࣀmCð<VÈÓÒ •‘«“r5Ýבà,wòaŀ̙ço€ÑÐ5Z´€ô¿œQ’? P*H&e° úñA}gùÑ”P-·7-EñL@EtyUi±®sSëü7°ùf›ýÛDýcL£OÑLº=+n—ýõ•üš°o.E‹%@«´Ä±$¼Î]䘖J,±’IÍJÎλs ú0¤q¯odpppqp½¶°PލLý¼.Þ¡o)+¥*)]¢ñRźD˜Zo'þo·½ïï®á¥qžÂ~÷yÓG¥¥Š”2.69ÑðV?6;¦(‘!'€Tô-Z{I‡ª„è(ZË^ÂUk e)ñKD ‘ëY¶:TKUø›¢ò¹áÚ¾aZÁñ{¨àž@³pE~Ï÷÷‹*6ÂzXê>Éyê\G¡+¢xjÞ&XkH$š°a?-I^åæ’N6ïqSˆ:û,Y­R-åÖ®žF Kâ`1\„³•Lí-ŸÊùü+¢¯MÐýL¾ýé©rM£á;ÜF½?öê§Dþßù=hÉhЏ¤ q1)‰Ë‰í`ðrÑãhsñ ôZ#zòm<Ó íí·µ¤æ”Õ5Ôì/“¤’cLã*®]®%±·~òòqsvlãÕx»ÌàõìyKƒ“ בaÆT¢Aß_ÒkA´­gIïHËÿ!iû'¶§þÄÇð!ssÖ[Û…í+‹¬®.-­®-ôã*›/–ùùyÑÊ);¤^b‰›¯"P!U( Ë_•IJÙ¨¸ƒpˆkÝ?ºl2îäã91󆛸!U§%94PpÀcFÏrÄ ¡=ݽœåÿÀýå7&•šzŠFéyÂé‹7„ÕÈ•• Ê™¤…²Å\¸DÔ•þdÿ~ýYÊ §Üè½^ý8~;±Ù‘ñJel"‡ô{³x‘Y¿ˆxø\þµgl©EŽ„0öü]örH³ÇsnäçgääqjµJE’„RW¬ÛáFŒ¡\NÂ@§Ü»Ÿ síñO–z^Ê_º-èÔ? Á4Žj h¥ V‹ð0çË‹™ Ñ>ìE|@FùÁóùšì¬[P@œŠ·Èð#°S<ž ÎÖ2pkk‡ù\ è2Äœ¹Î˜h‚ü_P…™}î>+¤„+Új:ðøÃ¿JV.!ÝžnjL-ïÌVEVùÆÅ¥%Ê8… wŒ²r>¨¹x²U¬V§§C&“™’œ0k16_]éÑ\_\UehÌ?Yö›„?! þ'²)OOÉÆ,´­ähZ Ú€^G£22Ô†›d§f$ÇOwÄ‚ÍÜŽI¡cÇ,:‡½‡‡ô¼MÜdvfF6aÕú_ ù›ÆdNrP÷ɶÖt ¤þgjô©Û¶+ÅǓۯõ<äŒ-¦]Æü1üóä„›Ðëì“{Gß×Ô)cj¸DyhÑŒ„ôˆrb° ‘ L4‘4pv‰ùKõ¿Ç5Àendstream endobj 572 0 obj << /Filter /FlateDecode /Length 4889 >> stream xœµ[moGrþ¾ù›øbÏ^Ž£~ñå’à‚\ à;ù`š¤hÚWGJ–•_Ÿ§ªz¦k†³’'0löÔöTWw½=U=þóÞŒvoèŸö÷òÕÎìovÞY¦îÛŸËWûß?ß=û£O ŒÕT»þr'¯Ø}±ûóX}Ü?µÂáù÷˜›Ëbn £óŸ_í¾¾=˜ÑT_k°ÃÃáÂŒ±ÖœÝp z²1ø<\©)7;<¸áš&[c²)Ã#fŒ³ÃñÑ]Í)”á5¿™¦ß9kÞÆ;ܵԚbëÿzþ¯»z¾ûŠví"D®{M£Ã_WF÷¾8?bC×ûÿÜßcã7[S+?ÏSw/éÄÊþæ§9úœÒþÝ®ìÿ}‡ Ø‚#÷&á¿!Çýÿyç\Âû8I“ëhýþU§ØœFëö·2ưÏ.†/¹¢~¾Üy[ÓXfÂÝλêÁûìÆàgŽós[%AÜ1yb1Qæ€ÒX&œã¾­ÇãËÝ$?Þí&qùqÚËÄe~në\î¾Ûý郦g3H$ÚªmÏyì„·Pð7‘~=üåÁÁjIÃ_‘¦SMõÙŽ¼æ‡_)ò_ö¼ÉŸÏ¯}A4ËðÍp°Co‡oóÏ¿æ×K±°ª¿™©¿9\X0…=‡¢On™SÍË‹™×†glt´)·ØTKöûçÿ¶{þë¯aÞ°ëYÆ?Ã+<¾Æ¿wtÇÇù‘X27³¸Ã„SŸ7^0›™tZ°Þà‘¸>tÒ-óÐ$^(Ž&;-tµ”õ ?ÚY¢¨úö©Ä³ÀoŸüΞùÔcnv®¸4""‘Aò˜Lvs€& añ°³"v Ì c  À)#jí”$s¢gŠ­#NQøÈl¸²©C¸ÊËX«Û´Ö’y·>„¸!ÖúíÓó¦ã¼YêùE𰈙$†Aº›I°¼XMlÄd¾úXŸ8Ô"x1Éí/pb±Àg9PÿbW2ŠËˆáì4/áçîVQ·g<›XÍf—êd.Ä<À¥òàÈùŒ­1^†1yrIì°SY¶h|ñÌ:à"KmŒ9‹~­Ù‘_©Ðú¹¿œØ‹M.ÖˉÈòŸžŽ>ŸFÍÌ‘þ؆|øâ©‰(ÇÃBçù F±©È€P-OŒ2íÂä_Þ$2g¦°ö9G ‹P1Ù¥ý…øs¤w 'ðÿµÕ’yÞ>‰6›[(Ø×­-4±áFÆ{Û×fª…õZ«›Œ°o›¶‰ZÉ.H³UiVë3hKtìaI …zN©Zó’!BÅûê¥_)¶²n0 ‹Ñ >ÉØf™LœçYüXŠpmã/8£±qgbŽgçòÎi,{ÌÈ\ ªáoi‚³6ÑÑxâ†1†9ˆ+HtãÁ Sc’Œª8 MÆJ±¡‚ç;ÒU–·ÿv¶¸ÏäÍ`ØÜð;ü¸™#²x)A(wÙÔmíe7›)žñqÁ€]jØ#^$3½ñº%- •oæ¬G+ôo)¼Tk㒙󧑈0[%ĉ‡"½àh,©SÒ D‘@ý¶­*¹a'–«>Ū+°ë‹ESDŽ/ŒZkH6!i .NÃL\‘¦ ”_¯˜ìêðwý-Q_¥Q|*ByPÌ:ŽŒ Ú7-ì!p“×7â/C„f$™ÏèÝ€%‡K åɃ5‰}ÇT2 Z‰#Ÿ›Ù£ÔQk…©eöBc}ÒK~Æ¡PÜÖÁ­CzïÉìœãˆ:å•¢ ÏN ð˜Òè2žiC™Ÿ/wÁÖ<Æ™p· ÎC¬™ öÉÃþ(+‚A£ø‚¥jdœ"x G_Œ—µyÅé‘P¹5Q•‹ØeÚÕı?Ëš _oÂ(_|RB"Ï8"…}€P b9„^†ö,YpLñˆ:|,‘þ#@£`3–ôL!פ9…ü‰`T ¨†CJX¡†QŽ À¿ª›yÎÏmUðh”@;ó´ë™’=¥™ýÄÒ'ÚÏ´êôL%H6Q¨ Ù'Ê´·‰çüÜVýßB iÃCCÅO ![€Íþž"4Š+®”kœtºEr.W­kØO žòFÊ Þzq>‡hâÈù\ctÖîy I%ÏOñ .r°Í˜pŒ™ðûôL †øÙ*só&Ô ž K[f–ýY%BK8±ÏNAÙën,áS8^R¯¬9=³zY®‰BêÉ'Ê´³‰e–EE½?Sµ¨oÉéÈw*êÖì?­I:^êÌ•hXFËe½ui…)¶†X[”FäR¿ÿVEaÅ.©-¨l•(/MÚ0ÜŽŽ±:LŠð@ÍÁ#G1åWL±H¨›“à…XÀÈ„;Ú“B"Ò䊎Ël;›žõÙrŒžM¯SÄN´á=Žá¬áA™<Ô9+Ós‘ߦn®Ôj˜Íy~žlo¢tÛë”f(çlHmÕn|“dÝø&Ù'Ê´·‰gÖÆ·™<ÊbÞ6%è(Oæœ%œW{¢ƒ¤J,[9 eä¥ZUnôù&%#¬Éœ A¾^ã†äGFb_hî(]rG _Ÿ5þ‚É0mc·}x¯v~Óš”K€ïºTí$îë.Ìñ’l5YÀ‰Ó ¤áx£U:rãÝ i?„Ÿ^À×#5-˜ç¿´¿ ,/ÔȲ²Ù@‹¼v¿°^Ò¡‡r›—A)Ç»®«ßÁlú€ýÓ"(M¡zÚOF¬“mwÊNdr*bmrÛeEÍÿV.ìûj’ȳë ÕÂ×O|}H·+Ú}— kö•*ÄsuàÖ¯I±”Æ´gqį.$rTJyÔµyßxÕôq7p™Zy²Ï»nû§>¼éÃ}øzs®r¤7}x݇ÝenûðÔ‡Û)b]=çH>/¬}Ó¾®N@È%šàšFj}üÈ7OšW]îc¾ÑÔ­Ý8¤š”¶7³L~ÔÀ I<3Êô#ƒAHVè€ÛcÉ-®rž9ªð|ÇYº¥U´T™k:ª„CBïé‰K>šÚNsʃ$y¹ xèæbMBÅ “ƒ°Kn•¥âå±Yì(Þé´¶mݘéæï Þv#<³’Žw ­4&A ‰`m‡çÔë4ármdSÎÜÎ7(T²/Á-‚‡·}xµé~Ê^lúÜ“äµvÕ»MfÛ>W¨8(óù½ìxöSs_±JMd'éS€0£íD¸n‘r輊ȸˆq¾³Ú³µp—÷­ qFX {šEZN™Ñ\+j+ ÓºÀçXó9¬‘ü²’[«“³äŒf*V­ÓA’ýn½5›YÑRW£°‚éRXA{üÍmÏc |Ú¥©}·ë¹&rÆùE@๙w¡Hmú'ŽüͶBÈ{sš«}¿5ª£Ðmí¹˜¦7 Ã_á>Ê‹¾ÚU´8Ó[=Óƒd&(šÎ€ËæêºL {r3W$ª©ó°98y¹l .ºï-¡ªyÕCÈMÛ]šp/32¿áû>Eû‹@n/)AÛñR£ümÝÔOOKéê+êÓ2gÝBfˆYâ 1o{?‚"©¨ØáÇ9©œÚEJÊëüB2÷¦ßªù1¼˜ÄÐ}ñ‰ÂT3¯‡§ìúðE¾êÃë><öác¾Ýdv­çnÖÌaŒÆý¤òG¸ "õHߥÊU #j5÷FYˆŠ¹8ï@Ew8À]~<Ä02”T¼ª˜.dVê¦df•[¹·ÊÚgØ‘/@>ðuʪÔ.L©þ¡ˆÆŸTLŸé·Æhë¡‚v Ï}Ù‡Ï6‡ŠƒêºÜ÷áû>T#Õ¬Q”±/×Hsžõá{ $çáË> }ø}þÔ‡?èìÒUð³ÿïœÅlG¯0»N·W3p]]Ä’Y$ìûU±Çc6-Á™üM»[áL©®ª«q¨®ÕX¼¡ÆV·o `ø mÑZ„jÀB”µ?k[dç³9|½I¾ìÃg›ÃË…šãæj·}øãúµm[\÷_mNPN Ò-ùMPùkü? }?OúX§ëÖŸS N¡&*]ìÕဵdÇäUá2‹Æm²QTÅ‹÷3Quhƒþiq[¦Ö9ÿ‰Î4ã¤`të5ˆÐËp¶ >Å}[Á.\¾>‹3ÚúS‘ §G©´ù«ûÙ]6¯åè»4[:øUõ&wI}ÔŒòY册ùªMPãñráK(þ+{ùN2dÿÌúìâª8¢ÉÉÆ© (­ÛÁ°ú´@ÑT«W©Y!·‹Ý&"¬übù•’ ÑM­Œô—P÷“(ËÆÁO‡yß1¦âb^~Àu†ô¤×—/í >Ö‚W2ÛõÿxNåƒ}/·ø*íLëñضW…ã¢ó½Ù3¾“sI­ðô5ø¢“К+g®žôþ úg›të®lóðséh÷å:ž¾ø1Gqxî,NŒ_íþzòcendstream endobj 573 0 obj << /Filter /FlateDecode /Length 350 >> stream xœ]’1nƒ@E{NÁ Xv0Ø’5ݸH%¹,‹Ea@¹}þüµS¤ø–žÿΚ‡§8]ΗiÜòâcÃWÜòaœú5ÞçÇbÞÅë8e¥Ïû1lOâg¸µKVœÞÚåûg‰9Ä!ñ{{‹Åg]îùU™†ÂÜÇûÒ†¸¶Ó5fGçô8 šÅ©ÿW‰OÝð<êKeœ«¼½2ÎÕ¥¡(ã\#†•2h†;e€lkeœslep3¯Ú+ƒ«øCe0Û¶Ê ÝvÊ í ƒ2@¶½2Àh•Ále8(㜴@Á»°à1C¸ }gWI¾öTW¡oÍY¸Jòå,\%ùÖ†púÖÁ®B_Ï«à*É×®’|÷†púÖ!\%ùš‚ÀUèëy®B_o/Và*É—-\…¾µ\+úî7àõWÛ2ØZ½¶(uÓÆÝãnÙJSü[Ïe^l*G²_ϼ¸?endstream endobj 574 0 obj << /Filter /FlateDecode /Length1 5620 /Length 3612 >> stream xœÍXyt\Õy¿÷Ý·Î>ïÍ›}ßGû23ÚG#k$YÖ†dY‹­ÅZlcÙ–ecc)˲ªø±C¸ÁÙpÓ³´4““œ„s¨IC ­ é)ôœž“JhhÒ–"˜Qï›E‹mæó–ïÎòýîïû}ßýî _8»¶—ô¡û ¾ôMLÌØBx|Ï]÷ìÎØP€ö?ïÜ56ù‡‡Î ¾ˆ£wâÌçà>½wN>–1E#¾,Üu`"û¹ ]ScDzÿ^çsÿØÔ®¬ýd<0s8ûûó’ 0Væ›ÉÁ€/|¼¼|û4²áp¥G\Ð 4àg€¾ƒÓÙOÉô§ðÙßÑ@@K[Ó`SC~ãØ]{ÇíÅ¿ð¬,“÷R:à~|z=M{ÜED¹ yÜ~´ÆPy™00ä"°Pãs8|GHþv’ «Í§†,|–TšvgžYE΃?­Ó[T$b¬I]å”I©,zòY¹ŠEˆUËÏ$gq0s$¤TÀòA%«S‘—Ûц£å.ìTÔ©ÆŽ`¸ˆðx´åe1BX{$¡£²kbº5uÙ  ÿð¹‰2}~C^d¨)˜Jš+·oyö¥Æž¨©Ó×ò…îW—kýp¦nOO,OtÈù€£ ÷xGQoK%/‹ôì'`q{ÄšöÔt%ߪ¨u¤*­=˜¡‰•÷Éw(c Š„c„Ä #Áq«0P;‘ÆôΖ³oŸûÚµÅÄ–soŸ{àŸÏ4=ØñÈÁƒŒ†üÛ¿qhúÑ‘ ñð_~òÌhÿÿ{aiù©Ñ¾ïýñûû´ØÙûÕ+{ýd±£÷±ÏK+ËèeÌ‹„²>=Úœç,7$³Æz9~ôÉcg9Áe2¹tlžŠy{§ÚCÏÕô<þXçžf/:;v~mªˆU0Å(Xò¯ƒnÆP?tO×¾°*ùQ°e`ÏC+ï£zô (q¬$¿?ÉÈ"=ëòHvÎÙRâAd2,èËË¢¨^cµ˜ªš‡º[fº c‡ÿj´³ªn¬µTÁ*8’±lêÛûJ¯ÿ»g“›ƒw4¨3*4­Pl¯oö5ïnh?¸Å×¾#b±yl¬Æ¤6ÙÌ›P°íÞÞ— …õ¡æ­›íF{šy n-6qªL”DmFùh1Z½>ÍÛµò‰‡ó[››,ouVžf§ÑääÙ`ÛæÍÁñÅþàe1ÜwÆâMÄ\cl Âo¹²Ð¬õW‡öc.IsIU²˜P_’¿ Uz4'Ÿ>Ò4?YÇçm*K-mí¯˜•2q;FëDWADbVE¯Ó-êÒ¦ÇMç”$áEN‚bLµmÅcïŠ4L/ æw'"FŽ&x¥:P»­úè}®øpmU_}¾‚‘1èÛZ“ViòÙøøìß9õãã5³Û¨Œ|Àá º~p¹ÿä@¾7ßà 6ÌÝNŒæ<5…ó¾*'CÙúH—é « "¿½Î+ÐyFkÕ‰VžmYÚ1ñÕþ`ÙøC£]'ãŒÎ!ñÇ=ÑøÅD=f ³×ઋ7L9²Žvôuœ|füð•…–¦FBÎ(%=*™dæi|.ž˜ß…yk,Ň1Â%¬Å|–¢K{\ë¸72Hˆh!ƒ–¦ä³öæƒÝñÉÖb#§y´o:~àâ¡êÚé û¾¾³ð tÏѺ¡˜› ˆ€«íX_‘h•‰W j…ÜdbÇŸ?~ø‡'š3 óçŠÚwUH1ô­,§©c vMoi^Ä &z}¢âÔÉeL#Iœ&)–fD{Èâ ;UWY9Gñê«,ÖœÑ)°÷i4’†îólžÚâÙäU°ˆR ÅÉ9cywõ8£5 ^ç'ï±rIlr‰N¯`Ö2Ã#_î )Õ ÁpM¤Î¢ûÑ?€è£Þá±– ©³b¢ï5ì) á‰é©¥ñ«ÔYZ\æsxÃC'ÚC-¨ÑjS©]Ã%-ņ];J7¶Žv¿ë ¹…»ÛvÅ,è°Çáí/î<¶µÀ¦ç‹ìž"BF¸êkb·•úâƒaW¬²Üdj/¨Ûé÷ oê8Þ[ȱ®Ô íqV¶w;*6'Gªë ÖT Š ¶’˜«%\E/àêP¶NßÚt  í­5"Í(ýËgj€±¨µ$6—À¦ ‡‡É•†–[·Ï¶»L¹0ꎑ„w`[r17²¾´µÖí¾ «ùÔÊ2즊ˆ×íõx²î©HaÀüÃØÍ>…‚šê|é\õŠ˜Œ–Tç…ªð‰ë÷ʵÔY8‰½xA TÆ ™ «ºOqØmO¶8  Ã1´Çà*¶«r”¼çå×Ôä©'g{óY™RË+y³†¡t…›[ÑßÜ $Ãýæ>¼6×¼ éÙîg¡^æXÁm¶xŒj:µp3 °—åMn£É-rJuê¸_)7KD#FÉÁ?¤”·ÒÿɯàÝ2%‡pþs £&õBʧ3è` £o‰[Ù7ÝúÏY}Q¯áútÇŸÖ×§ NÌÎe€z-£;Õ$Šªfš$ö .Ñ4U^•!Í[ z›†i µr0Q¢)ìnkñößÝêX¤§ê&AÞ:‚pñAˆ“³G·u™‹‚¥‰<+µ=—7x^Ÿ/oÄÏÊ›UÀßèøŒ¼Ù ƒÙ)u$Òªù6Fó¹ú/ôvõÌ“‡|o´jæÒ ¾W\¶ÄöuµîM¸,õûº6ïK8áoöÿðtÛ¦{ÿî¾oÁ÷¹Öùñªðè|Ç–ù±ªðȼÔW¤Î¡kØçƾâ6sÿô¾âk#ÁDCÜ»Žhá™P{Gwáø_H}Eyº¯h$Ž7Æ+ÌðÝ»_<Ù¢q‡=©XNe付 Ü/˹{òb!±}á©#M'&k…PciêÑ­µ“sYÓ=Û†5év±J㥉‹ͱ¬ÁæM%‘jÏÍ‘ò5TWÙ”.¯MA"ˆÆõv-Çq¬®¨½"ùô­±:MÔˆ•É8•£é^yŸx£i]EC梕.@á"z­ëY·‚ê0®WËGæ;Kú›Jô2’–3òüú¾Ê¼D™%¿c[w<ê™íñn®‰ Â)-£9w´µ8/ƒñžm[ã¨jºk‹_m0é¼×'‹ÓÂ{¢>8èpçÇúj#c­ ^Ô(ÔzÖ¤aô&½à)±"A§;¯¶WâÒµò{bŠ|T§µOÞ~!߸Üës- 1Åjœ¡"CódÜv¯š§X%ûÅ\ ¹!õ½¼úFE‹ÁkÕ±G‘;lnŠ£}m3„*³’_Çû%’äø!½Ö§d㜌£TF Û9©cC/nÈË\¿¶VQÓ™­XëÜÎ3¼M4Ø´tÇÃédt™ªn(Þ\›mÂ>Ï­æåÑmµ{î'ܹ'ÿ»k´Ñ7°8’‘ÐDpõ[ÀhšÒ=¥ý¢´s 0(ûs .r‚¡BÈn$ש’J}ˆ”† Ý‘gR ÄSHiÙl¥>¢H\ V7Ï¢_ÄËÇc¨ž%Þ àuowÌF›–A3:õ'ß—v–$«’g8.9“³P¿ZÇpr†‰¤™ãˆßrJ,¼f%9‹`eÒŒB¸îµáK;a]n'¼¶ÆóÉ–l!=¼[f jd…€Ãîåä›orÑ÷ÃZÈAcêC §Í£“‘¿x”i›'¸ÔG*AAá%‰»Rᢂ þ^T JÑ2&õ ìÂ7DÊuêÔFæÆõh#óâí>Ê«ü~Ìp8‹– é5^¯cˆòcti™Ù©%è9NƒR?f5^»Ý­ã(ÑÿÑZ·ÓêÕÒ©ç4ZJ¡SÁ*’—¡!Ѩ¢ð¾\™,"® r +ŽÇuðÊʇð úúík¯ö&žáLA‡3ˆi5Ž ‰»ÙFNgE.·8Ý…Ò½0te\®B³Ba.Äs=•ºÿH-öHãã «o%ŠPº[͈þ~txtU6o(ÚSiuTõ”CNcÕ¬‚¿š¼þFjûÏZ9EÐ,µûõ7ßšžþ×_ÿjIÓ˜hõãØß ìÏ•™!“ w”„‰€?«_=oX+»£H!˜y³M ©¡‘‘’ÐX ¢UË{ަé·Þ|}7nð J®U¼/¾q^¼ÊidØMþ"Õ%­f‹h7ñ(uw¡uŒ¢ÜrvÓˆ^$NÒÏã~È Ó¹ F—Žƒ©/o+ñ£Ó¹þ2÷”*Ý8¦Ñ¬¾7ªŸCŽÂ¿‡I¢“x„xíGÏ¡wÈr–ü&%£º©Eêßéýú:ccN3ÿĪÙVöû<û!f‘y£¤Ã» é“YŠøìÑ ½ÂÄË£µN®uš•Îî°X©ÏñÖ v¦¯é7oÄWVðÕ%]±MioFPÛÐ0Èpv C PcVå@ œÀ ”@8``V@¥ÿÀÁç'ŠÝh~>XÙ0°î"ü%†þ-à!·ƒKT;˜ ÝຆÈ0XBã`;¾ïDƒabøÐK "Ãëàü•ëè;éç%z,IãdeúûKÄ+ø·.ÐM\.lŸ£žt„ÐãÀMxÁb œÂçq‹-ý‰CÂJ<óôS/Œªkÿ˜2“»òÞÜ?J÷×ϼÒòñrr‘ûÅ&‡Nÿ:½Â•endstream endobj 575 0 obj << /Filter /FlateDecode /Length1 13768 /Length 9179 >> stream xœ½{ xTUÒhsoïû¾%Ý}»³wBö&é¬,Â*  ÈЈ:*P7GÞ¨3£€thpTDqc~ÐÇùG32ó£3ï‡ô}unw at>¿÷}ïÝ›ª³Õ=§nUª:7 ÐA'p0±qJnHWÑ7ˆn˜»dβx»Ð @Î̽u¥?Þ†³Šó—Ý´$ÞT.-¾iñêùñ¶+Œðâ‚ö9óNMYÔ P¼;K`G|\wQÊ‚%+o×"·xéÜÄx[?cÉœŸ%Ö×ý‘ÿ–9KÚãm½“/[Ú±2ÑŽ ½lE{‚^¿@ÝÍÀ? ,½\xÄs ø"¶Çp<Ö/Šô#|djâ×T¼•ðT2>^Â<8 Kà!xû É»ðóŸ#WМ”t-ÝEEn$·™;λø'bbKbOÄöŠEâx´-dà‚"¼G 5Mƒfœû.”æ3ðjf/ZÏø+q/É#cÈ ¤‰´’d)YF–“ÛÉ(ÕçÉ>rˆœ!Ÿ‘¿RžÊ© å¢sé]t ÝGÒ3ôÜ®‰[ÎÝÎmáöqïqæ|6ŸÇç[ùÕüÈ8¹]ùÎÇ•%ýmýOöÿ!6,V»9¶!öZìLì Q#¿9ä!Ípòøs|ÿ{áxíãäñsø ¾FÿeÁq#Ç>Io5È÷xä|:i&óñ^@¡ü;ÉNÒC^!GÈkä8y›|@Î’o)Aî‡á]Ž»`ïð$ÝI£ô¼¿£ÿ›Kã²¹®«àZñmîãÖãû<Îå¾ä)oãóù)ü:þM'›'{L¶MvTvLö¹Q~cÂG\ó xqïÐ×ø n1쀉”ãþB? aòsz™ü†&“×pµdn"7‘ÖÐr äZù°*¶É¹@­`T´²9èVšÃMçÓ8-¬Äýt½—¶Â¯É+p™ŽFK»•;AwÐÙÜ6þa¾‚|ëpM :ò=TA©@݂娡nÿ.›Q¦ä®È–Pxÿ•Œr I(÷™AúÈDjGi•Ó ˆm#éÃr îÀOÐòéPÊŸç6Ò±ô3ì[ [ÈkøŽ‡`1=D~…z)Åý¸‚L$Û¹|XK–£4Ê`}t  =Oƒÿ&wîÜ˨›:xNGçÂiÚŒZ˜é0²ít l ]MúÉx‡>%¤ûÝW%WúH77ºÉeþ8œò8Ók(Í<ô´gÐGLÃ)pih5¥ £Ùhÿ-èlj~Gî ‹a!y‚û/ò­‚Fhç:h=y,ö_ŢĢ7©‘—)A–%óE¨ñ¯ ­ñ&ùþœì.VçNq—ÄfQˆÍ–écga Jg4z· ¸—FçÄNf‘I¼HxQ¼vÒ=üYÑA´D€÷EÜa±ý$LRD?Y.jÈ$´ðYòçû·òø{øUü›.£×¼†'á÷MžÅ¸•Žr‡Òœ‰¾g!ƈ<(€b|» ¨F¯4Ç& èO[ÑK·[`9zÞ§`tc„j@yÌÂçæÃ"ìïÀu;¬ÅýlDðüÞ§/Ч9®§¯Ó[éBø>åÞä"ä8Íßϯƒ)“ˆWŽZòásÅS¸Z&xÐûá.E»¿ψ¿í?‰óýyX^ _Ëk É÷¼›È"US#•#Ãå#ÊJ‡äçåËÉeef¤§¥¦‚ßçMNò¸]N‡Ýfµ˜MFƒ^§Õ¨UJ…\Æs”@v]°¾ÕMkòiÁÑ£sX;8;æ êhú±«~(MÔß*‘ù‡RFrþu”‘8eä*%1úÃÎÉö×ýѵA/™1© ë›jƒÍþhŸT/Õ7KuÖð×9Ôú£¤Õ_­¿uAW]k-N×­Q×kÚÕ9ÙЭÖ`Uƒµ¨#¸¬›8*ˆT¡ŽºÝ”:d*êÖÖE]ÁZÆA”K­›3/:qRS]­Gšs²£¤fn°- Áê¨!$‘@´LT^UHËø²· þîì#]{ÐÖÒΠΛ3³)ÊÍifk˜B¸nmÔ±æ‚óZ'7×4Ý7xÔÃuÕ9úY³«ë>tǤ¦Á£ÃÍÍ8>KSë[»êqé(Ć)~\ÞÓÜ%÷à’~ö&ì­âï׬c=­‹üQU°:¸ kQ+ªÆÝ…É«…·;r@<î:×Ô¦ ­ô›çÔ&u[¡kòê½®ˆß5t$'»ÛhŠ ¶[oHT´ºÁ•ö«cRM"gµ†ÉW%KGÁ1hQÿ\?rÒÄw*e¨½ºæ–"^ÍŸŠÎC,ŒªjZ»Œ#X?{>*K5ý]ßZ@°ï›¡=s=òTãwÀªÌN®šŽÔ£¡P4+‹™ˆ¢uŠjlÇÍjAø‰õŠÙSRqí±›Ñ¡¡íò!í!ìi»8d˜O£ Sgtu©‡ŒÕ£êêªúë»Z»æôŠmA¿1Øu´®eu­ínðDë76ãK, #ÐZ)TwÉúIݲ~ÊŒ¦F<­ŸÚÔƒ©MMkussÓ‹)ÙOˆ ñþ²¤¡Á‘z,$€ÑãnÌ)!#pO˦cÖM%sâ99fáÐ0nò„ISB5KW­XؾbBûm§ŒÇt‡Æ'Œ¥Üçúup  h¥HU£0Bޱ±1fMÆØ2 #×th:ˆ!äw¤gZa¤‹R±WŸRÐÉJN*{T…•U¹ÜX†°á$³¯KôpàC\‰Àz”Æwp‡ Špá=Ös{bÏAì9ˆ=•\/îe.½o¯+¥àÛ*7·DÊ=ÄmÀ#›•(g'ʱÌÂrs¢ÜÄmè)÷ªTØ&ð-bâ»mïÕXp@ª K•m=Ûöb¯ÊÅmG®¶#WÛ‘«íÈÕ·ˆ κ û·aÿ6ìß&õo"M%d&¦JT¶÷쉬T©¹fîÌ|˜›ÇËéÜ =¾ÃU­Ü4œz„wpS?(áÙn”ð:itT_*Õ—JõJ©^™¨3œ;û$l`˜›ÌMÁ<ÁÇMâÆJåD®R±lÄ6+'pc¤r<7J*Ça¿Ë¤3c9–«—Úc°]‹åhl³rWßSëË«Z†íÙ8†gjŽõ×"µÈS- ‰õ<ˆ°áœÔ3ñ:„“œDI¸Z¼kð®âªð‰ÎÁ‘p\ïJ¼+¸ ‰´#G¸°ôŽa¤ ãJa”Ug£z0‡EPpaÄ~®ò"Zd8O6>—|a^Š'Ì­|˜{m+–þDé£0ëóq^º¡Çë‹T©è>Ц“‡N"œC`OGa¤£0ÒñÓñùt‰J.Ñ}‹ "phDé8ÿP™ô´!wÐ,¬7{2°•Ïd möžCL¤'ØøD„'Æ’1$ã à\ä6q¥T3 öqª2ô¢|ÉCÕp”{#ÒM(ÍM(·MÌB(ÛĹ8R™ xa‚Œ;€w&ÞéxgàÀ[ÀÛ7jó¢ö6ãý Þའïxo@mX÷„‡èìâ¥ÅëŠ,~ºxOñábÅ!:ïVÚQƒÝŽ^ÓlRº«ŒxÄ™ :ò?Þ-áŽHØqÏÔ]˜©;6S·u¦îÑ™º¦™º 3uõ3u¹3u½¤-âé> é6‡t7„t%!]qHWÒe†tU&<,OüNÂÕ.p@ÂÉdzT¯AP¢Å“ô}¾/…^žôøîz•XÜoÝ/ÊYçK¾<á&_v¼'-^¤¯ò8L#»@AB‘lÅqÅlEDQ¦¦ÈQd(ÒA…OaUš•F¥^©Uª•J¥\É+©”Ö^ñ|$Ä"‹Und…œg˜—êFÊpë=®U›\šCÏ•»B×%¸ÍTQ•ÛE]nžq¬2Ëv£LŽÜªÕÈ4òk@‡MÁüìA2~€ßï¿a‰Ý!ÜZ)U wiÅEÃKÌÅE4kȽÃn¶Óu?Èíß:bblw@ëBn“ÑÏ>GF¿…Ü:5ØK1æÐûOò'ð\¡Ý>ÅDÃçæBn.&¤¹&9ÿèåg¼n·—oñ¹\ý'‹ƒ²¾Y<ÇßÀuB”`œô‚âYß Ã¸4Eª¯œ_i¹Í}«§Ózûaë£îŠÖgÝ/æîW¼¢ï¶îsð¾­¿”oSÉ"Ü“¦GÜôöa]ö {A¿sØëù景ÌôÒ#îÔ\!55 2ÌÉGf‰%™„+Ôª²KzÉùÈ ²>Ô…§Q mÌ^–Íeg–kµÖíF!YÁtà÷ ½Ò \¡Rhf O {„ÃÂ9A)¸Kæ r6¾Tþ´ü°üœœ—»†gröb’,ˆ„Æ÷ÿ‰©f9 …Ç÷cNÚWÙ×g.ËíËmÁZeøR*ÉìˆëÊ\f*cÿHwãw—ŽæçACÔ5¥!š‚‡Ùàÿ EâE(Fp‰—öš•Ô¥ÒÕ -Ë‘Tƒ¤V$=^$±ˆGØÈòÒ"ÇÕÏLÖQ\” \µ‡¸›$[–¹4iÌfµ” çš^~ïñÎ4b}cgg[·_et¨õs·O|ºg™Ïíö½^þ‹1/ß4á¶KÍ]ýäÖ¥k^2××Í/S;Í&µÁõÔÜþÓ‹ÙI~e26–O·`úlv&ÍAÝOGKO‚ ’Ò­³0]iŒ¹V£Ñb è’ì¬mqåÚ\.»-äUpDãOÓ¶hzÉÜýi‚Ê/¬E²¸$<+TšdÁ€’§rwVp*hý6kÄ ª4X—ZÏY9«+sÖƒÕÁ”pAÚ+¸M*+Ã.ãgŸ±ÏuÁyia°üÿUÚ„2"S©Hž&/eTÆ ó2ž<—ò29 yÅûRúQÙÛÊÓüYåÙ_”&;ŸO d#55¤Q3Æ{™&kQ´hæ‘ù²ÅšUôvõíÞÕ¾û½}¯ö§ÚI¯x±GcÌèÿÒíµ3½2å-o&&Ôج€Æ–Ðc¡)Q!L› …‘¬'>ê%òØ?öŸÝò:ÛxË—3ÌýòÓ‡þ”ÿUÿ©7bßýþhìâÏ9Í_áD]9öôÿø4jg-jg'û­,™?iLÖ‚,ª¤L%zY.‘É( (½NÖeôä:<§#àUÛª5*fo† µ3ù‚Õ ZUÁ¼±Ã§òw²ßWâÎN:ÄØK6î euÆÕcü~yŸ´QPAac˜)Lj¾ìþ\bšùµ´0½4Dí µìÕcžÊŒþš¦@–øMßš~wOšøÕÞ 2Åuu×ÃJ;„I”9ÆáZ —§q£øóï¯^ý~ÇÙǤö²}ìã{ôcþ«ËK˜µÿæØêó·ýìÜšcäÓ¸lwœ=»#.ÛN”m.z=øá½ÈBµ}«Ðj:™Î¥oÐ7,o¹>5ê:ëùOç—¾ÿ±ë\IYIE´Ô;Ö3Î7Ó3÷Գطֳѳ5i«÷e™a•ý`ÒQî¨ùxÒq¯\ùºÉí÷c1% /˜4Ú©îò@–¡·î%_F9)ßa%K­‡­'qsðV—µëÚæX>¾¯) ï‚ä¥PÀá~ÔÀ³ï±[åh¤û»ä4Â"ÊŠ‹-WÁœŠ\Áç\ù­ýËçg½[eÑƼïîü8vŽ޽KÔÓ]nÙrÚMžzæÍŠBƒËd2L'žã/£-ÿ÷^ܵ‰">àg eÁÛ‘Ôˆv¢¬Sv·öÎüÚí¾ÐïC§Cj‡Ò Ò3ª¢aOò{)ÿ@`UÊzI$â&h¹)HmÉ’ñçw ËqÊUJum1¢.lâwŸ”Lóш.×±-³½gãm®âUÈ;àŒg—ZÂÌFÿ$ÅÙ0Ö+û/HþŒ}h’§Ãñ²e r:œŸW³:¢Ï yP¡Ù>y2}„¥4wÞ‰ÁÙ•Aáº]˜ˆÑ™3D[‚–æig÷/eøí—~i×·ÝWhsZ•–ÇÜr¹_ÚúºþQÌ(Ù^§˜=®[´Ý®´›Íα¸nëa>ùç±µüZ´Ìt($ÞH~u™•žN¥~#\H½,\J‘ßœ¹$gnîÜÂ5º;2—nÌì,|*ó¡Â™; zõTɼA›ä T2™R à å;ýF‡u©÷nÉüê[ÒÊr*'r’‘ì'~µÚ¨Ú¡Šª8ƒªQ5[µGuR%S¹‹‡ ÁÍÁÁh?<<¼䃮¢¬9CŒUòáñÆ>Tº‹¾Ê hµ*YÆÖ7Ôc´\ç¼G¼nñRO–² WügW ½ØÊVæ±"S[È:sì¹èˆK]ñXJŠ\†ÉªÐÓ`B]fúÅÌ‹Ðâ"saÁ`×ÁÝ÷Æ)Îe3Çÿ•Uÿ6ö¶tû}î¾|y÷‡÷½½iÓ[omÚô6=ö¤ä1L­Îž•™’“Œ“Uuå!û÷ˆ5<òΉ-œ8úz÷‚]f£èºHVÀUàŠ¸&»æºVº~áRXtÆ&+ÆR¹VÕ$“´ö$×£6Œ¥Üë´—<òR’\§U9DfãóS!=ÏËü¶F+±º’'­‹›9‹”Æþ0ËY•ß÷ 1íÁ–±‹-×Y±0`ÅtóëÈXæ(ûìÅÉØï¼·Ofú䓨¤+d›f‹“íòCøfVÜåNh‰µÙ:lwÛÐ<´MlWã>nb{Øì´=j2œ€[ˆßd469£Ë5˜{Æø¿áúG9~h(¿gü8÷k1“ñjC^㮩§Y‘°a¸¡T_faF"†CÊœ¦-Ñîóôdó餄ÐiImж¤•Š•I²EAR¢.išB–§>RНçFõ#FŒ¬ ·X—×o&Íï™Ï›/šy0Í3g®×›Í}À–ê“B0Œ¨÷>o µ$/ÞYh,¤…õ¹……y¹’úël?WCjê+kj"•œ\¹7mXNFr’œ(²†GÊ¡^ž%pnA¥âÃKJRSmjÞï°G|ÅyöN;µ_IKöúÓÓX;­O9W* ×_YÁ’_¨8\q²‚«pÊÚí”ga%¾Z 60 ‡ãû³2Œ[4žõšË`ðFÛ¼Õ²üúÑn9­™Šá^.ÙkO)ÂdêÈ^Tžï1¹‹Ø´YrÄþŒL§K­åešÔL>ÝGdr—Úá#²,qjÝÌ5£o6†CèŸï¼ZZÐux®£J jñ¯À#(ÄOq­Oˆ§¼Y^Ã>â(î yo¼dœô`)q@Z,6) —òŒk‰wÐ$ù ÅжbPÇuááÏ7/®jJ;FÜX2j³Ôm ‡Í¯ª—ªù9Ù#k¤î/ŠSpmÓ:êêëëÊÇÍèßϬ™>™Z×ÞJª?T3=9s^¼q-\ ¯y³–0Z¹dt¤ÔlçíV‡;NŽk>¤ŸÉþ¨øP#¿Y±ÐDÛi;¿P¹P½H·ØÔn™ïPÚÎ ¨ð€¥Ð À¤apUJ¥Þ!•­8 ÄyЊ®¨—ÞqšñD…dòÒ,ÅCÕIùyùE¹LÞK¾ØëDKd‹hc¡¾þ–å!V¢ûgV%9yÍU'oG'o/í3ZõVÇAñ <}±Wç5y¯ùsÌ®[€)-¢±[žJ+C¦^ñûˆÅà­ÔX)Õˆ aÿ7‘d³¦RaÕ˜q‘ÝjrTX²X VFq4bÆŠZ­5Ⓢ(gð…ÙÇ‹¡W3aÙü@~48Ë Çú0=ÿ+1ý=±Lû|ÇŽÏ=Gb‰éðbŠ]|í—ÿqî©íçϱ³Æí騛TLwr"•ùjCY:BqÎ$2¶èæÔ‰üfÝJr{ÖŠaš?Ȩ?Q|¢ú4ý“ü?É¿T+]\6w»b#·•ÛÅÉíIÒIÌ•›ìr%%ìq¤1âpª¹ _Ct™¹†r[R9¦(ú\A£ÎÈ^¾òTyš`P¥»0ô~¯!¹1yvòÒd>ÙU0ø8ÆœDxà0Ö–øÅïëb?~*ëÉÐæD­ç ÖCZŸ0­ç‹ìN^Õ¹¤q4bc;eWìX5°Ë®O†ž®v­ºãƒŽXÿ«Ÿo|‡m¨ØÒA‡¬§N=±õôé­ŸæÚ¶Þ8såÉûcâË19ÛNì£_ζSláC'ßÛüÐ{'1zìdù,w&‚¶ˆõ=ÉV5ª™W›ï7?&Ê¢H’>bh|Ç‚>_ HòØÒÁ‰y¬ÊêtÚ¬O(•Q4fLHÉÈHM „4z«ôG92…ŽXÀª7ªSRË!$WW^a+÷Ê“’p8+FŽHûˆÇ].õ•øÀZe’‚*‹ÿqDâ^£ë5íï+·©“^¿‡ø Ô⡽Â:]îÞ€=œt-Ç“&¦áRœ-E¬Â¤ÜЍ”yg§Ñ†-DµÌ×ZÑ×Z5†Ê$6J†½Ì‚•¡Aî#ôqÌ6`mé‰ï`;»g0«\újÿŽÆÆ˜[(.JOKI‹\ãî`i¬Ó‚6%/|ߦ åõy÷î©3ûÝ7ß\§´é˜+0»Á­KŸÝ1irìÍõãNoy‘ %£¥nöºí®pziY¨8œ‘d°8ƒwŒ¾ù7í«ÞíÝækæË«\S;!7×_´ ¼xË?ÆÈ\Î? Ùp<’rÙCt·‡>«Þ¯þ½ú”ú‚Zv«þ^ý£ú_ëßМÑÈJ¢`„'+"6%Ï+”b´ªl&ƒÑd¶Ê\ÚÌ^òLÄä-OIQ”r­àÒX×ó½äùˆ5;[©ò§ o@’1ÉŸ´,ép’ £Å—{sXʇFtA:_’> Ç“ƒ”à™% ºÎa³³°Û£ÖhÜ*¨=ZÄÏÂÒÇ®2°ÃMÖë?'¤=Ûmä 9&9âÒU˧½1ܪ3:uþ,ßòâ6) bÊàÚØæîL[¡_ç2tÂø®U4—uþ“19ÞˆrlæÚ =±VÍï·Ó ;q+ *Éks•Z­J0Ä?zi<½ÒÖÎ’RïOIütb7XýB9¤«ÎrŸ×kPªÊ¹Uà4~?€ÃÞKŸ‰¨2&¿ò¤‚(zÉ×{3F͹šÔHérXú†/ù[¶Yúà Ï[öcÉðºÛˆšD˜³õ_õ´(w£ÙÂËe©Þä³Ü—||ZÛðU°áö³cà4‹_$¾îHŸÓ‰_ÒÍðkͯÇ÷î:v{dŠ__0áÄNI ßJÉçíÛkšVQ¯¤ŒM“½¯ÆO€4^„wÉ;t7†û3ÿ˜ìÙgò|ųʪ‰j—f¹Ö¦eÿ BÉdÅ”‘}Zt#Èÿåo›~ô"ô§Óº8àe W(U ÐhA§¶qþ¯æúsñðŠ„y&Ÿ‹«DqÃìWò0ðËøÿ_'ñ"öj P‚ kji„ýÅû¿&=bÁf‰; ›%úŸv)‡6/ÂEqHGâ¯Ýøpm!9XÝ 9°:á#ø9¼ ‡ðôþöì„“ð0Üø“n6'rØÝsp¶!üRgâ™ÔIÒÿF½®yÿ—¢â6ó—•ìWªþ³!+endstream endobj 576 0 obj << /Filter /FlateDecode /Length 10272 >> stream xœÍ}K“ÉqæA7÷¶·:VÛ¢KïŽñ@®HÊD­Hb‡¡hV `zºA4ÀYHfÜ¿.Df¸GfÖ£»1¢Ía Ù™ñðpÿüîÙ ;³ð¿úÿW?<6×ÏþòÌÐÓMýß«6¿|ñìol†G»2³yñæc6&Ø]Þ¤vÅ…Í‹ž}·ýÝ4YbñÛÏ—Ã.”’’Ý^ÁÓhœ)e{{aãζŸàáPJÈeû~Z3¸˜áï—ÎYøpûOøplIÛ>t»¼ý>Ëч¼ý?Ýãöî{ŠƒÌvÿžú! iûœJðù¯¯ð W² :ÀŸ.‹ÞáŸSÉ%l¿o_ý›2ц~|Ó´® vk¬ßî¹á©ú©Æ·âÓ4S²•¿ã¼Äß¶”œãöŸ‰TÙ'ì…Ú‹CØþñ"; ¶ Ûýõl†Ù›·u€ÞE»ÝaÓÎd‹ëÑÞf*Ð÷íñ¿¿øgXwå²»XvþÅëgÛpñâ=¾`7Æïœ_¸tÞìbΛKv9F|ó»­Ebè€Ö1 ø¯´ý%1J1®ÒeœuDŒúóõ5>÷%GkpÄ.AO†™€..n÷ØÈ0À‚ÃLñC—lÚ~¸¾kÏoeƒ?»¸ô¥ÀŸ<0bëÿíØÑà¨õ¡¤a0~+›¼¦ ¹`€÷Äc$¤Ï1 …ª>þt1ý|û?Å”%_€œ±fsiÝÎ;|ˆü¥à^-—‡Ê7À@Á×’)a> J]P? äqJƒM&o?ˆ÷o†"­²97‹ ŠOs Ž8ÑÇÿ4Û—— ÕÑ$Z(|ê`‰?ñê$àÛ&wŸ›¸^¿E–ô°<¸ØI†Qß½©-Ã|÷÷u6fÀ¡Å-ó{Iÿœ36ËæÍKbŽÿ!^Þe›Aä;wÓ,]—‡qy)*ôº)þÄòV—ê «‰ÆµA=BjØA ê9Ø™5s)1¤JC“ w`; Û¬K?Qöž‡ }nßÜ}÷ñy ¸ ©Áâû]탖WN…©0„¥ŒÐ²šR¢fÇ5ux9öxiÜ.qÇü^r)ãÈJ5GæŒ9 ÁâbMpÌ<îSr°Zë ¼f¬ƒu ĦÞíJN#ŽŸ®àÄRä‚/ >DRŠDP’„_Bï9X”b{…ßEc ¬½JåYøí¿"Wõã” í=ÿŠ-Û I¼ü[š81&¼st²ñîÿÆwaÒ{R7ÀŠF²â¿\Êan˜É„drÉ wÜ‹3Ð ¨=ŸÀ:8…såÅ?µ¨£´¤82ñq±–M¼fþˆ€ìo%Ñ'rvšÏïÄH–U4sys9è>™$×W3C†1”qhÄ£÷dÅ0Ò|´Š&6Ø]‘*YÔ,BÌHò\vˆûÛÉ zÍ="_®,áoèШ˶jþuÅ-{£Ñp/¢mÁãÐ3Ðà`ÌöO[ÅÓSã;ƒ€Zâz7-þó‰P¸$ß¾xö»gl܆ÍÇu£VëÞѦuÖ슱›˜Ì.€yCVí?¡¥˜¶ÞØ|ŸbˆCÍ£¥Õßþ´ˆ¾.…üÓwÛÏ oÙ ÿQˆ*ÓÆÆ!6ûTIP£×þÀoð€(¢ÒP2&0Yqͧɜìµí0»ý… å¹DôP1MÄoH—Áêæüøeò!€¾0º‡_±>ÉÖW¾r~Ô6;‹ÂD@6Á¼“í{¢×j’õ‰ñÌ€,î±&ßX]ë|Ѷó¬´í”:AJ/YºÀGÐ,i°¹ó&¢;–SäO N`€àpì²±Û¸ å5 7MjJtÔ5N=f³Ç…ìæf¶ f¡ÝGnMãd¯yJoEÙŽ«v0.ØðþºÙ~!¤p1xeíÒ 3`E®¶,뀛ƛÞwþ*x¤7uºøe³8…ÁÉ#ó6¡Ð ð5òÒ“9OØ H·tž`I¯“Y¼œq'5'ìdm)ÔñÈo_lÑgцÑìÖlKÑÜH‚&*ú‘5> õõ#AHð`IßM8¹„‡ÖîÀ'›PL9™fXÈ¢Tb u3àekAˆªôŸØ—È`pJ… ÷0 •‡ Hd´1¸7@qtÅŽ-›Fƒ)þHºígç{mB\ߘ×´5o/èòJƒÜô$7 xg×q]Çpd52ppŸ»°ø¢[+í~¤aÔ† âñ°­Zè¬ùQ2*;µ/û"9÷¸?µý5ðÃXˆus¡-Ô¾RÐK1‰Šª1 ªš—¨µ—xðªi(©ûxó‘vQÕë_Xwa\€Å ]+Ò>!’±W¸¤g?|ÕÐ;/šýÀðs«qÉ.´L-&£¤L6>†1C^³¢^k¤Àöü 7]Åž‘ð"ä¬): ÂÏ‚¯¾Ô‘–jGÂoܬ]×D#¥îXû«cÿKch±ÿÀ8äi.k›¦ /Ȩ̈£ïuiWƒŽbÀ+‚‰FÁTRÅ’n£Ï£$ÔY¢=3°ÎÒz݆µª_&…Ø$dæi,¸Š­5f7p r§_}Å.šy9NN«ŒÑ4ZRÙAøüª é_.¦ Õ9邾°è9ñÀ‚ÅÑé);ëFüÛ¿š™$;Ÿ›ì½Ào0Ý×±lŒŠ¦ÝòㆊfIî0¬¸¥+‚Ø…|0Œá­Ï=ƒ8 þÆ ú~”iá)¶·Ö<8-Ð:hÎc—>±¹åÏ´Æ)S%Å‚‚õ“θkÛwj'–ņ6žWö¿Z­ŒY¬[gJ-ÔžØÚ¦È Íy_ãÒ¾îýÖ H/]è ‘º0‹W©xŽºÜ£„U6$¦]‰? ŸæÎÐ&úÀWäúíÛc±•+…´âëÞ_²Ž¼lQþ²Ô<}ètÁ§Y2º× Û µÂ³ÂåÀá°´¦á»nÁÆåX4Ln—±R>Ù;¤ ¨·ÜùwÓ4”\0ë ÖÆ5Ö¾ÈDÂ"7eÀ±*oä&e¤B?c,ÚùТ…?¹  Œjqf¡à 8~±>r¯½Û4˜~+ìîTJõúÖ²„'JE›ìЖŽK¡n“¬i„ÈÝþœN1œåím$0f]4šÞðïÞ,¯°®’–Ü–«¦!4ØS«ˆQzsY˜îSw×"ü¤»Ë6ÛmÖ4î¸Û–G“ÇßKÑxWv¥ù¼cWhÊ% ÐÎö,¹áÝDµÅ}–z±Q‰´}Lø:ÌÔ4øæ ‰ì2ðJHºƒÿ#V”ÀÜ­²ÂB÷“#TŸÞ"dftÌüõÈÅ® ÇOtßÄqu›HÈ@ñá11Û` €E†º!ŒÝv»ŸJÜŒÞÞ ‚NÃÕÛs˜‘ëÑa‘µx/ëWnkÒ ñÞ׎ÎâýÓeÓàø:2oÆDä| DA$Ð,œkµ¥!Âq7-'x9+æûEPlL‹w%Úß‘-˜§c!<Óù¸«ó“~!7Aû4G$iôöà-3í¿œ+¼3O{>?Ó,ø¨ 70‰V@êKewÇæòÉnÀþ‹»6y7¤² ðF¨™îR‘·–Ðôh.ÔªÖo#ýãïƒQy';€‡F­/£–ÇmnÊ-ª_àbg0?ÌöçLÒaˆuXAO©`rˆÝä ú£ï¿­ÑL«‚ðlNLn\°À:eÄ…kÖƒ§¯3µC´zö€"ÑóËF½í0¶è&Zý1¸êÝbÓð‡båÜÇLòåuˆpåF þ;¥múew»XfŠS¼;H‹Dö`º…æ-çÕ….I͵IÀ¼qŸb z²²q=ò¸âÐÆB,Ê‚½Æ¢9¦³F~€Eƒ²JÀ“H.OfÉûŽâºi·qî+¥e+œ@””ËO¾œÛŸ[@ðyÞ\ߣ4ÅÍ\¿zf²˜”0YÞn~x½—Ýà§'7Ïþ° oaÞ . h^N5UáÛÎ6<>ð @:Ó¢ÜÚh{ÂJ¹cBOX0¢Ààß¶ë ðž×šŽKmÛ ÎXÅÉ«P Ûœƒ7à>ž‹7Ɔ3ðÆ§‡Jí š’{ Þ€N0Ë4 ²Ÿ|ȧÉTQ˜k kíQ%Òçÿ³ïLÛ‘n Z}cuŽY01œ‰ð LoP‚@"Rgp´Ÿž”Ò´”O}ØäPÐãg!½e!5>U½ BàÓ™ìÆ¡ rip£opc9»‚ƒµcl’T{.:Ð ˜´L%Ë¿5#sŒÙ¡¼t;0á æ:ÂÇÆ¦ú¹œ¾‚AúÉEy?ëIIÎ`ÅŽüñsŽaða k°þØsŒX„u³á)L€¬*ÑîPÃûlÿÆutZ€(! Q.Å« ‚ ˆw†p >Žäm…6zÄXXe¡#õÍÓ+T\³‡)ÔÇYz$‰vÁËãèŸ ØÍKÌy€þRo}5úÛâ}…#ô?)CŽgõÉÙDÁÂÒC4©0 Ž™¶‡Ÿ»N²…–³61-Ëm°2}WÙE€ÇôÎ_ÌàxÍi|r>ÀƒÿZ¨I³KÑž ðh«j5'¼ÏžþdxÇ*—3ñ}rÍÊÐæøN_!¾óWïâ;p#°·ù;À÷s}mÂŽv †R®Òõš÷zzÁß@ "Ø`Pk/¬G„!£½ ÓÒœ :hêí†Á®@È­ñ¡“D”§¡S°2`N§uB:aà,:á†ÜÊ&דּ£H~Ó/}×Q¤ŒdA¯1F¸»2xp9J‹Q=¬°· ƶŒIEkAÚi?µŽ[ïd¬tÑ Èæ“µþ¶µ½*¥[ëÃq.“;‘hÁªoĵ¶œÝ¢S¶îñ)%Ù«òt‘’ÃSJb½jo¼æïÚ¦ÞRݸߵ´ñ’1NÞ&ó²í¼ð~=ŃߵmŒ„—Áàˆ®Û»W8 LèwœT mjú†oW—ͯmîèšAÎÎkE Ðh]".&Œ›–Óíct5ršÅa´ñ$§¼ìs@`Ægø|ÌAV’ôeÅcñ¼ ùwé½ÌHáxD|‰RÚ9TZÒ.7¡ƒ•5Y®Ï‡‹ßÊ'÷SJ¦Þ°‹ à ‰F¤À2‹Ý_´œãOmÑYäMJõ€•ÊY̦>,FÛ •›ÆJêúêéÌd0›zšù®_=m´_z‡Ø¬ÓùŒN0^ÉâЪ¡€|X5 (çÕ ¬V äSF4$”%¿Ò"@ªT‚Å­×ÑŠúfzï8<ûœû g{ûÔ¹X@€¸_›‹í¿:m.&&Ú¢úþÄ„ÆÀ?ÅSþ©÷nûi[RïöŒigãŽL{Í Š»Ø4õíláDÛÙ m£Bs®ßEèÉn0‘¿ÏøÇ'áhyîšÓµ’²*rS—@iMA{Rý²ÞöF«bŠˆ©#ªEw*&»ÂÞÝð1 d`lú¦+òÕÓ¼²&Éœ;ŒQsÆøZ½!à6¤Âf7%´g{ ¡½ UdÊ”žÜ`¢d—Ë£éD-¦(ŠQUºË™ùD¬ T>ºƒÿÈ å¿kó›?Cö9Ä ÓÀÏßÅ,¤ÅÍak¤×&Cæð£A»Äg©MúÐ`Їyd¬£©ŸNÒÀé4¶‹uQ$žBÐF;fŠdfý ¨GlÍϧ1‹cÑ!4>ŽõÒ¥"a” ì„'›ñ ‘»‡¨{šú°»D"¸ª> ª‚&ÒO«>À¿3-ˆqÛ»wëÚC3úö˜æ“üæ1ÚcÌSYטœbó¡* |r’rª* J@ÅôÉL ¨¸ÄtSªf¸u5ÑÈÀÅøUƃ„ü×÷äv8}ï­O/Ãø¦5hôøjÙ½¸Èv¬Y½´s¹ÂZ¾÷¿áʬoV¯ÖâY{,çL3á<ɪK0·œt¦Sû±—@öɼþyµFtåðG‘<‰ðÞSÁ½L ­ÔðCÔ§YÝW*Í ˜GêJA¬¦Ô0èD³W­w1>Yí÷…ÛK½Á&]e¤‡7g–ƒK%D]bÕÌ2ÙAMœŠ†ë«ˆ•)¦"ô¡é#iy³þ¡xå ëY‚XZPb☌‡5`©ÏîP%/îr©„ú¦¸úC@é3ã•ÜŠÒù•Â+F´nv"Æ!U„mD¯$è¿1ƒK* KâðÈbs¨ºQG|Ý L' MðÓÈ´M£ªÆ0£ F^_µ¸š’¶j2¦¡?•oéôÐÕ´Åýn …-®¹‘­^¥Ue¡"ì|nU…½,9ûÐfå,«ùA¦˜G¯ë7¦3aœíZ±®,<8oUUÙÊ£ Ì"ÉlïÆÓl¬::¢ˆÁÛ`òU 9©³¸§Á¹Õãµ½N)ÐFí7È^FÄÚiRÓþóà Pà™±~=î,X…õš yÉRp¾/Ä‘ ÝaÓ€×O C>¿X&#ê±öhñHr$ç {à£rÀ'{hu‹//öƒžô¸:ë‘·êl,Ú l'9Vêês…¹x’Š„†¯°Š—×ÎE½¯V×ê‰ÍÄü|T«8“`¥2aíôUØ]MCÛíòôV–ó¶T\Ƈ`Šcn»â`)@—ÜI\"]è²²YÊ?“ÁÓ?Öºf°¢©<ÄZÚ•9P_m錱é¸VBwúñºtZ I»ý¿ì®¢8®žŠD‡š»²¾]QùXA© a¾ñdM Ѭ9/Ÿ•Ä~¢^|€-SË£ŸØ–™Šä‡CgàÐ*Ú™¶ÍYrI,Æ›t¼fTûEgG\ ¥: ’6#ÀîÇF®=­æSE5NðîM'(uVÚîWG~Hn·)Ñ $ ÕP)¤4VC‘níË¡lŠÄÌ'–C‘¶<½*¶£aXg¥HggiÆÇñãÅÝ˦¿¤a²çñ{ ¢\i¨íâï&àb¹çnöçèå¨ÏžÓ‡y/íb¬Z׬¹â–ñZijÖÃÊ+Â]->-¨YÛ §šgè¥í½1¯¥xßN aåz^°Fš•röÅc¡˜©î®?·]‘Ñ9JÁ¸ˆ§žÅsÒúä!bà0ÐSV «©N–ßd»‚J$ß+ ðŽûóÅ’;Wðð³‘ÛO?…nºñ¾Ä„ÚV›Ç¢öl;po¸‹q´Ãà¾xL˜õ(ZSÁ¨…štÁ‚´žö<Î8³A¨–ké?5Fñ®+²¨}v.—ÇK&ÖÎÄ’½K!ðUh®çìµåÁuç O²Ô‰Ç#k¹S ÒK‡gØ·3OðW0Øì ´=^,RFÏ©]úœ´Çž™éqÏ;9=ô§==࣯!{˜&@Öºšäx ÀXÈß'2]‚æ †µæïŽt™ÐÀ@ƒàæb:6åÈـ̡U`M‡ 0¬=‚èÆ!a7´†ãTÝ!èxíªÎÕCЧ½¢§9»¬6ˆ¡X:)·“ôæ´2C·Ýƒþãj…‹Ê9<#‚ÚO-Ò´ µ.ú†ãÿ‹Ȩ?ÍXfzW¡îËi‹iMD^pS-,ß×ý Î¥¾“§¬5#~:,M:Ôr‘~6éCRÒ…•´Gåf9çìϼùªÉ†ÆRjñKí\Šô<ûx®ám¿ Ô¨?¯´T»ß]¡å'–ÛÕb*PVðÈB®}$(6“79 X¡´Ÿ †ùó>®»Ty‡‡V Á,¦VbØŒ¹K‰o¢òØ!cÁl}pvY4ˆßãùnæáeGjÛ°’ÉÚ´á»XÊÙ5'×÷]Æ ˆø™…ÿŸTá‡yt›É%,¼äD:ÐSTÞiŽ,ÀƱ )Bòu|7,„­¤W‘ÄbÔŸæì*) hÉö•ÛÅ`ÛnÛ7Œ¦ƒß~O¼åŒÁóMoº'Ál¨é²Rƒx‹Yë¾'š'†#Ý©µÃ+6dŽÑ:k#®³úæ zb.ÇÉôtæzÎsŽÈýFõÖÐe1g'Ȳƒ‡Pm>›nL–«ÐÄ'Öˆ3ODMàò§Çá‚xÓ%f.ˆ;—,ZïèÃ*ëâ­ór<Ü“vh‡W,’Sn&›(Îa‘ŸrÀ;ÔxZÛº°6Áv0e˜jêR r¼ñÉÙå|oJðqJìÙ°^Ïg3ô€¥¡9ã Io*´Ÿ<@qX¬§ÿTrOWÏ×)²s¶â˜_«ÔŠ9÷4Å1Û²âˆ'—ô9{\ox‹Ï¼‚Ô £‡¾\·”ÊåÇ,ïðX˜‡./b¶§&‰ˆgƒ÷©Ë‹à´VßïZt+àtÞÏÉàýî xƒ½å°~à§ïVÎxOŸo<°ÃžÞ¨Sÿ¾ÀÛ”ð•Àå~¼ç•¢‘P LöI™Nï5~û¥úǸZÿˆ1( QÐO[ÿhp{ÌMÿr¿®¯ØÀJ 'Ezµ^XÇ ³ø›1¼è„ÒKtÜgÖ&òÑUoó¿^Y¼h-ãrÆ©ðõCõµ€`+¼íúÞÕØÀT]ßÓñö{1ù¥Æ»“zf'ƒÀƨã)@¶À Ð7ÿPCÆ!•%IÀ©%ª ¸Ä³Q1S¶i¨UÌÃK€‘Ç-Þ¾3Ìè÷¶ìo½ìi¥lÇ—`vXÒ©Kp•pšT"ýl9tÇß;þô¥!n(Ôáž;Á<^¹u'þ¯ø¼•¾Ýr$ö³×²ñÔa‹C’Qèóì±CÜk[¾MB¦u×aÔʬA½E.Ôæ-ò¥—Ö@+.RíQ¶Õ¦>Œ¼;#¡KX¸@AT"uY7—²¸„[qO~W$"Ø|¨Ýàé,ªícSaµñú$Ùs9Ý,•»‹Wé©+óDð¥[ž§ïøì}ÀÔåM5!+ù_ª ÁJÎõ¼#ÜŒŸpýRf™Øƒ/c*”Ü=¼Þ/—…ÏÑ=¼£&Siƒ™n:7‰vˆè&œ6’;ºƒ4»tÏ/e/­ÝÑÞ±36Ž)kò¶dQI£•ˆ~ÃÒd–²êç5tõöå¿d$ÃâsFÎH¼{Ùª‡V #eÒ¢Ê>-Ž… ^ŒÙM›ü¾7Ñú›ÕtKô]þ•¸\o,wHi,wp±–;`^éðä·¼bý>ªd‹Ÿ“ ýZÙÐß•bŽ3²†ÒÿòÒcrOLx6‘‰:fŽuwÔ]½Ç'—ñúKuÙÜÃ]3xw@ƒ,ÜæÞÒ²×ÙSæ¶<ð•Ü¥I‹^Ö4V.PP ?DÒ|ÎõjúØæ¤ ° x£K¶j© "Åyå"¦<Ɠ̘P:ÝW©|¯<ßáõSäZá ñ ?’i~%T-¯" Þ«½X°¥d"‡·}´j/N"ò‰Rˆ<|6»¤Ý¥8v¾,÷¨ÍKRå@âš1óBç7‚÷ÄGJ9žs†JÞþBäl‹ 6O¸xP\ñþÿj2(2y mMW¢´õŠ›b' É÷5ÔkÁO,vsZ³³NCXU%ÈÛÝVü•ÐŒ Ë|›s³‹©×.e–÷¬ºmúû’° ¥s ›Ðv9*è×¢Þ{àLx™Sô®õ½V>1Q÷–›ˆxiþÄ<ý¢Ò1‰è-'“à°Rðiò¿ÜjKéõÿzÇÍCvòò³Éb'`ùz«æ–<çÔ¿TÔÒ&ÿܘð”›3ÅzŽwæ<ï5¾Ž1%¢Ú”|Ó4³:jGŽe9!DŸëug$+>¸EkïÚÁÃ5Uog®wé±6ÊõUcmpGãhiÜ™}Hm€¾ïc™ýYo;Ç;’¢/q@‚A)_¤‹3Y±wíûNžñÒ©âèÚȯºZƒe¢Ý­âTÐb€³uIæò]c]•%C—*j›^¿L#QWóv ÖSaï4Ö®œHÊ?¿qvè¢óù×V0u¼Z‹¡<¨¥tҾʨˆëëÝ ­4qѺé!ihf·AÃ|¥;ã…EZÀŸ½„ž |èR,š3{YüÞ€!XÇ&5ŠäBì…ò¢÷³z±z1ùIÑ—îØ‚A»e…Eçƒ*tžcPW^-¨×ÝOܳT'Â}=K„ ÌU½íÛO°äO>fj³³«NžÚ1$40µ”õÔêì©dÇ䬥XÛ +>ÖRtת;?ñßs½?Ý[Ú^[¯[ôTÔëûxÄådH|˜¼«•Ó7N±4ÐuÞ’ƼåÛÖ$@^š±` ýËçfM7Œùþ¢‹tÔªšóí¼{#˜^è%˜Š¡œ %߽ȦïyXú׆÷†T·EÿP!#¦õ‘‰BHz¾×­•iy¢Zž=!µ÷C–4þ ¹³äŽ$ì­îˆ¦œsàWå›:9TÏ!‰ÚÌõÅ”„G×çÖÅÞ^9'*¥Å¯ÝëX0 ¢‹„³­È­vöñަŽhõdk|®×Œ[†Yt„0n"Â`C½ÃBäÓŽœn ~j™Žõ÷®ñÅ„X¼b¢åTÚ6 ¡ý4ígj?_Š`-S. ˆ`d]R®[›Kï2½t‰À=9¬¿h@÷AbÆ$KVÁê+ ˜å3ÄûïÚ:Q´«PAù/ªY•»œ ÙSm¾€)Ýú_ëçÅŒÆU}åyíl§7Ì!¡™Me°ˆUQÏH`æG†¡7%$0R€[ml5MN¢Pëè!}O%h¨6½¼Ò jpdjIÍg¨gûƒÐJÒå´™¢K ðN½\ñ‡v1­ÇºTiÁöCŸ¾ùL·Ó¥ðc3Lüꀵ/&­öà’źs»´Dùÿvµã/Ïå¶ê˜CL\È7…óµç€™Œ }e<»‚{k@ÜrÁ&Šœ•Ðѹd4§ˆ™Èîš&QÔ}ÞÆ#F«y¯5󥱈PH‚%/W¼“jAcÆWBÏÄa續#x1ß|ä±EAìÁÊx:q`¨[)hT«nHquÑWã¿°@ʨb½˜üÄÍôígùCD¶÷gny(5Rì¯x𠨺Á^»W„y-@H(Ã…ÄiÜx£o3ªÛîl“óÏ„¨!sC%ׂÄÕ+±n® #ó\Ÿmvõ´€ “w5샨Z….°Gøœ:Œvm £±uŠ.‚½z~]Cáƒï˜cåàvtš²‘6'dQð<‡×ÝÛ“vÃ_3*²Œ>Öä$VÉ•ê¿"|Ò$ƒŸ¾®3²J:Å b5nàRød]$W ¶OôÀÀ¦ëF3¿à70Âö7míï+‡]+r\ÓDfSJ›¦XèhIã\ ˜¸ß_P4ÕDµHJ\_Hp£œöíØ°QÅ\lSî@Q­5mB€oUR?!ò­âèZY+WšÂ¥h(°#Ï*€8yrÖq1˜RMÛ= N.‰¹¬qí²Ö¨ûw¸E4~é½,èÇG97ì|•:ï+êù“‡¯ØÎÇþžZVàô¢–ƒ^“‰¦…X¿á§Ãic¾ŠDäëf¿s͸¿áö€æRŸIVc-¹Ãˆ©eùî[)#Ö#Ò1"v-8mÞøó†\¨+þØÙL@”â­4ªV¥Q8ŸYºñÀÎ0e ‚ê¯â¤Ö_`€Jÿ%QEèØøo'×h)õÒ`doaA]¦²«YººVyS}°L}ô¼-隘 z~b’§5[âù|–Vïm²ú¸‡2`ŒjYGG,ýÒ©®Œcã^Í/È"øZƒÃZ"x¦|ä}¦–`IÏ€µHû¸3èÄ-’Þû´Fyª?VßpÞkÅÀμ!?ôwÏþ …P.©endstream endobj 577 0 obj << /Filter /FlateDecode /Length 9617 >> stream xœÍ}M\Ir˜!ߨ:éØÐ©ÚÞ*å÷Ç.ȲdA«/HKC€w £Èn69KvqºÉ™õÁÝñ‘/32_¾êê!W0æ0Å×ïeFFÆwDF~w¥úJáåÿ¯?¼PWw/¾{¡ééUùßëWõòÅŸÿ« ðäUÖW/ß¼àOôUÒWÑÇC¶þê击pýò[x7¦îÝäÖ[xÿåÍ‹_ï^]«ƒÊ6g§w×{uð9ÇhvïàyÐÞÙ¸»¯Ü]냂˜Ý-¾¬•Š*íá §2zwü€ÏMŽÁ¥ÝGú2xý=>vJùìxle”ÞÝãÓ”sð†þ_/¹ZÚ~woý!…°@½7à‹ápÆl¶»××~ ÞîNŒœR 0lNÖ‡Ýg±ÄOðXk§m€Aê—78žø"Œ·Ç³‹~6 M –µ²!1BÊÛŸhá^k«åØ„„˜Sö»qX»Ö€Žúô~™\ÓNãóîø€³d«è#Ψs4ŠÑn £€rOqˆ¤Ýî ‚™¢awz(#ÓËûŠãëk‘ÁíÞ6ÔðF8/7Âè|°&,tC@»œaR~¶H¼`¯}ªoœ=Ðìo¦Û¬ãÁFϯï4Óm?¿?8o³^FüE]ül8wH.SÆ3—§C„ãîçø3ÀOÏ?ÅSþù‹ö°ÎYÇÄp$u ÍaD}µ¼[ |žIú•ÒyŠ9wˆÖ(xÔ¾Ö  (ƒ, 8Þ#Á(“€Ù* §Õf#×O?±Ùh"˜:ö·Ä¦Jë”f çC ÞØÕfÛ¯ºÙrþõn§dŸÚmg¿ÆfƒØ¶ÜØì”Ó°ÛæéݶæéÍò³!{ÓÎm(ŸßB±aUÔ Bn‹øUÖ‘´Ñ@N}9>Ù,ÅÔë Iö® »ï‘’€îc/Þêß¼NPåòîp½Ï–Qù’ñ§@;¢lPÓîø &ÇCJNNñ(4¬×ÛBÍÊ7îù;XK~’ê§{ (>³€g ŨAx”ÃÒÄP”ïžxØ Âô¯«ÌÿoÓé±mg>v9áR¥Ä®ÓÁJƒf|-8‘‘æMÈ«öÏU¯Ô$ÿ®0IÌJômÓÄ·¼ 7ﯽ§uHUò™øÔZ ŒY ›(HÆ:¿z*X ”âšPR·(Â’Xïd8!½oGm†«‹~¼î4²ÊÉE”fí ±»r%?¥BÏòû²扔xUï#Ìxø`¼W…‡£Ö[;ŠoÜÁX€¨“U@IÖ°Ž ÉNæòðò|ùî¿,› ;ºšpŸ@ß*_u0ÞÐNDS¥9Ý™$‚x ¶:Ad<šUâß V= KïÓ¨ïzÈ@éØ&fG"&8¾»®lô¹Á,l ú hð€$ ö¬ÓÄÖ¾W±=Õ#×¢í›."÷f[Í¥h’ê¨kFQ@iHžËòÞý‘’V ~A {âœ$àÆ™ž&¾‘‰>W.~SÉøC”éÝovטoØc¶7ÌÃû6X/ÉÊfx¹oÛËb·m‚ƒt¢ÝÊÏäÆ=4+ÉòÄw€‚Û¬–8M•´ç)ŽTñÈ£ Ó0ÚMÊ Ì÷uìÓGò<|ê~sÝv4RTÔK¡<Éôd÷oÅoVõ®ª9˜æD¼¶„‘Í4š<¬ï¦½pwÛ¤H·MB–;Ç¹Þ 5÷T#N¬²OºoÅìŽû-J#°î»²s6»²Í4¶œ‡Ðm“rÞLÍFÈ æ’˜¤—où è–ίк=×ÑÛ´xSÆ'†„OÇúì[ål0Â%µ ñ„dÝÃÛ‡ꇸÅ?[UŸq®~¢ª^‰×ŠÊ­s›JFÜÔw6à*ëNo0K^¼.ôšB°ëò:tëR9{ëÛ'VÓ€3Яl°±=üQ»NFYÀ€×•:¹³yÏ£€\lPÍ"H£‡Ü±èmsO„j?»xIpÜáhƒSçØ'ðÙQ¨Ã»ftKÀ,i•Gû‚ Ò±ãR d̺ìÚ­° V}j?ÚÏÛöóq*SÀ‚õªe£µÃ«=–-òy0± Ï.w‚—=¨Ÿ»ßÃ^(×É{V4o7¨– ¤D‚Ž´íãavßó˜ ÄÎ`Âÿûka "P*äÝïàNæ@²p:JwöŸéŸƒÝýŠ#p!7~‰ˆÁšE¤hRÊ÷ÍlÝ0°Ñ5qƒp‹…MΓñÈ0yd@¦ Bñ›*z ”ÚÀï¥Úc+Œ\×yÐäÌ!t\oŒ¦—OŸÖ—(6È´7ýãB–ÊoÙ}7 D[êjS)Ów ù{þ—Ä732,:­K¨°×Û¬ÀÐbk”÷@>-6P@ï¶íÒ-1ʶ„hÏ®0„ç.³@;&Šh^a ÑCŒa°AÿÞW1±}o€}UËb°`ƒ YŒÃ„KBÞuZö9(4@Ðo¥k7Ý/óŒÂ6Zî¹eæÒ»Ñ4ì2 Âç»9‘~Ô¨sÌ# â %¤1³éu4ˆ`¨^_õ:èœÁk4HžX#0ß4»‹·ŒÂ„Y-‚.GÖÿ(”™*•1AìSRÄÜ€ÓÏ2_q­hW‚÷ØéÅ¿yùâ_^p2Ë_=<7‰e:ìñ*wÄè0“õëÝß oõ‚6 ¾Þ³økÈs!p03X‰àØ4-zèÙúÒõvv^›,õ–a6Šól®7câ:’¾ |Ä0éñüss•7" %7º¸·`˜8¥%|Ežó-£Éi9²”?ÑáÇ©4éNü8'LX"¦ñ;Ôœ(d‘ñwi`lÉ*Š kŒS¦‰\6ôÙ¨—TÞùå—7"·þ…xûÕ°Cl·7ôˆ œm¸Šæ)X¿ñbjÛ„™tôÒõÝQà;¦û¬Žq &—×ÿ¤™ ³ÁÁ¹ˆ`¨ÖÁÏHš½³ÈÏa°ˆ7+‚³§Ú\zŸªåóª±ÞCÓ·l§º`µ 1—ðŠp:»÷¸xžÀ_?¼’UKw~lÀœ‰¯$G ê#vͺÀ!”aSœ¼QxŠñw\  áMØ>Ž¡${@Þì¡NûÇ×ÈMà¥ë! Sà[f4Í hÚb±úLŠÜŸƒYé<-ÓE…H–8:«Ç¶˜„û”»¸Øc)©„œÿ¾µÍÇ€vɧ[žU»¤““2u|ßóÛ^+}A=0ÍÇÞ1F"¼ÊVQÆÁSŒadCá )•…cا›ÃU]¹N’ÕÙ7jRF7-[ò§¥ίØhFµˆ/ º >Öñ›ÀF±B¨±Vt:zðÉ8Ÿg0Qrt¬ên–9]—‹­–j‹,‹Z¹ßB?Žé…lÉíœtÆS°ÑM±û;þ,f»å rÒÙi†žxÄÈ$W@'F©¡å}bµˆV’®~°DpnÁR‰õì¶JÀ{Y#Ÿ‹¯úü;îÚ:†¾_ ë}¾­`ê$sŒ`•íì­3ÉКQ÷"cIdD}i"C~€–¿k&¥ÈY¾ª’ß+T-à˜?ÃâÊLó;ÊÙKÙ&­ s /k3|c4hÏëút{œ° ĺŒ/–9`øE–ÁË‹Uä{]•š—…)Ö¢¬r˜8æÛ„yy_rl,*Ï¢߯ÍZ¨•èÑ»ËH†2É—LŽ1Ì $œÌլśFu1Š7ÂQ ‰P÷j܆=„ã÷ ô2»0‘£:xéSÛÌÅxÇëYÎÜ‚£Ú¼õ:;H$oPU‹ ˜ÿôð±&¦Åà-Z7Íbš€ÁvvA¸å‹*0tr²1-,¥‹òsŠlË$_‡ë‹Dס G|‘ É#Ü• )Àì&g×ÚDüòÁƒDCÿ•ÐD'‰¢ÂF§;JÿäuóòÑ…›38ÙStÃ6<²“ç ;÷8šMf;*Êó©Ný'¡ þÛæJŽÅ:%®÷#QðÓFMROÁ±åŽýD{Ÿ„hb30eÚËÞ ìóQ)¸2¨ù[^3¥8îGñ6‘ÀÐs²\̾itßpªòstÂ[››Ý b~mw&®ô-®‰Ö¶wVL:­¼ØÏC‚Ëç>ð``Ylø/ͼìêîz…5Ñ"[<º XïGÊ!QF†Š÷p‹P¹m„cÅÎ àØ!‰Xôr,+Aé'Ç[D+¼Ò…0Z¹Œ$þWÅ Ä‚HìN¬€T‰J-þéĸ¡ìÁ-Oކâœ%¤Tl;ž¯·í„é´ÄïuÂÞ iÜ[Wc( mn¤É%Á] Q1±7’M0Ò“ù]$aMKX‘é9ú†Æ28U›Ñ·©lyZÁü ŠÒ}Û Æ#ÄhA¥%+ŠíKKè; 5 ³ð¸> @¸‘…w …D¿c䬷œ„9cHäKðôÀð‰7èôê&^*“­Ä{µ=™·ORíÁžø›‚ÉIšŠ·MEÉ|ó¼ä´sv–-µ¢íͱkYã(òåé‘ê 1iXLWÕKÞ9Rц²šØˆtå‹â–·Ñçáð± ®|¸iÁuÒ˜fWnôo}NÛc–d¬p[Ê• tÙ‘Ð!wãwx\åßÅdœÆÓ˜U·­”¼”¡<1a„gIm6`®Ï$±%"Eþ}q„VÊÌRtG1Á$­äñ©½wC1<[‰fô¦ØŒ[¤­&«Üs>T:ms^(°÷êCä€{FöHJï(cA¢þIfsÄ"ýa¨Â§”šçxé3ĺåèr«)cY±ïJK€ñ÷×34,`øÔ׫̽cI{LZ&(Šá°Üsñ5šfeÛÏJ›c‹@ÊJ¦ã€Q…NOÒspM¢Î]2ømx±ºø0ïF4A®jVÐ/¹!Â4^¸Ýδ*«ÆÖíÀA¥lñ(B‡5Ð18±u¿sQ—+äUì’ÂŽè¹#Tã©î¡hMã¾i‡ÁI©¥¼ep§Ý…A^xùi<‹S] bùÅX­à¥²«R—WÖ=(õ%u^'`9Û>œ½û2Ì€ï‚.qeðÿÎÇÄ´܉³àq†Íò_‘¸y÷ñdñ`†ë¼ ·œŸ³~‹*sl˜kÿçWdRؤj §8?«E«¥œÞ´âHSGÞ#÷%{ê ë±ØŸ…ý²Âc »ú þQÖ°¬hàBâÂiœ4\h˨ê5d×x,è—7ú~ß¼§CSÓãFñ¼®l˜>¾bHгø,[‡‰=†³ }1•¹Òú½7\Î4ƒßï­^ê·ñ´t0¶¤ô¨°¥5J>‡ÅÇ^á¿É Ìù‚>’Gä±F% ËÀŠšÏd•ÇdlxPga÷w?Çßîàuñap‚wooù9ˆRPEŸëÝç÷ ¨qÀªèýƒÆaÉìgÐq‘/—`»KÁEùîÈŒëbÆ‚¥¸‚ð,&$NíñƒøòÃu7¸X–²Èô¡C_…¦¶GçG|ˆ¦5VÛDÖe1ÅgC,Ðxà@©Àã!nÀ—p£U¦“ÙH°æˆõ¹ Ê؆,?Oâñý´‚Áh€ â^¼üÏçŠ6`ÓÈ ÅPãù­„1p>¿šð×TJ„eùºY§b†±C<Én[èËw—–-é÷ èsÊ€Vîc]Ê«ôeÑC˜9¨¸å,ªU 4¬Öæ-3î’èÁ;HÉSìgR>"lžÙçÐ[Uì~âQêZ޵}æçl™)‚¢» ÝfrA3§Ù,H‚g¬¢ÀæKѪô“+ÀÃI`ÏmÓ~©ŠqU¢šë¨/އŠn8껯ï E´}B’q0)7Y+MFÌ}ÔÍr“×3N+¬ŸËÅ( 4  =/]̈îËXÞ–&æP›¡üZÆÌ62)r!oš",E¼ÀæÓ©Š½S èüæ7ü܃¹m‡ÌÊàO*Ø[Ö ë5Ö²Eƒ‰<Ôk¬jžƒ“ž?»š¡T–ùØîC6—…«‘säÓVÆ[/÷ò÷]ÄHQ½päƒ2Ãg¯‰‘Û€…òn7?år÷–¿ cºuj‰t¥©2Ž-´Æ~–"«ÐùU&×åð\1ãºèõçJÑò¤¡,‡Å%rY}gdÒÐ9u ×& óÓbb1¤%±;Oò=t¬Žé VÉv9 f›Æíeq|î( z(&¯Ö•ÀZoÇ,HÛ.p„¨Ý·×õ¬Î©ÅG7Ï™îàGè+ÕôkORöfJ‹=³>—Ø¿¼ªuÉ`fÇpó˜ ·hÈd¦¥£ÄórX´Òœ¾v Ã%NíW–(>fÄìkµnD‰ÀQRÇV©ŽÂW•\VÚÐ,':ÜAÒ_xÆšˆõŽ1¯º4ÔQOA±.êcN¡òÍ`zý¨/ƒÇø"h EZÄeÂl2.þÔ~>´ŸÚÏcûù¾ýü³©{}8µé¸&R”>Ÿ3[Ø{Š+lIÖ _M¡~×~Þ´Ÿwí§8¤þ¿ÛÏÇöóØ~~h??¶ŸïÛO1ØÃXç¯Ûö ÝÑ'ªzºèDVÕl¿Àx‘>×5kpýN¯ÜÇòt³¬_À<ÆÍõ”gßTÕ)§Å~-Þ ÐùŸÛ¹¥+Ò óæ¨Ò|öÌiôe}—œ'é&¥è¼Íq^@%wp”EH‹¹fvvtý;£OFâ÷ưýГ‚Çœº˜´é(ï VèãöÒåÙP¥<8ûÚòàc§GHªFÎ*çÀ(6úí£X·b@}×c=æh:‹” œb,w· <¡·Ý„AÔ…æ@Ïôo¢Ô˜ú›Zf•2|u·òBÛ!AìîªíÓÕRCa¤æþŽÃOÅ=‡±¾ØréqkÊú¸ëúÒ¾}x¸Ó#ÐfÃÞëyªnÊã”ØKL Ö¶:ƒm¡âp˜u<æ¸/+<M ãiÕN`qØùiŸøy¦Ê8Y+e’¡U¼a±.a‰—-=¡*X2ó+Îlô‡¹á qËäÐlœrâläh„{}^@FpŠK÷‡oÏÓðcY%H ,ìÂßAŸ«§Â7Ð…ßjØ;zj¥«òfñ-¯XoŸÌ¡²&¿!ebÙµ2Å×Ë)à¹È))~ß3çÂ5ù›%A3€‹ÞGIxO’ë§)oõR”?ouò#‘t~v‘nÕóàPá^› 6C‘„„ÆP·e,É8|Ñü)Yù°=Àš»*èulu``…ìWPWc|í‘ï*W©FmˆRªðEëÌ7²8x³• ¡®1[剎9ȹ{%7´:£WMze«Iocªç‘»Ž8*~ ŸK¥Ð¬8\!+±×!‹R¡˜‡¥§…œ:ÖL”t«‘Œm‘¼iC‡CŠ©?Àˆ‹ÑdëTÜlo´ÈºÈ2Œú ¼uµÄÌD6r "¸%Ñ1°„< ‰ +îR‘,/ÖX‹d b¢›`½†5ëôÓI¼y%‘Q^.‘Û­ HdÛCBùí7‚2QËi‡§¬jã‘p+›ÖŸ+5ð|y~*}^•w>ÝñxØÊa\ɻ墓¯â§ÀZð̯ä§xnÊzÆO©54sÝ‹/ì?IhI}㉹aF84ÿÿ ¯›:¶µ·ûT]Ùòù+Û¸HwØÂ¾"c¤k¬î+ÁÛÕ))§ŽWFk<ÈÐë²CÙ^,‹‚µÏEdv3\"Œ¾À>´ÞË}}p¦›µ)·?ß^‡\b»+kæþ `^ú$<ÿe]ósÇJv4¯iãtTý¦ƒ†Ä%½Þ]u*d^ *¸u Þ–¶¾Ô"Á{Ôß\óÁ"¬ŒÁÛáû£z­Kå„n5’ZrŸÆ3Ù`ø+æ5×w§óÌ›W§KU‹cØÒI[œñApœÞÊ×`確Õz£øIDt*ƒàÑ=¬ÐVC¯Á©ý´«;Þ0ôÛl}Ë/àÙn4ìË–§ ,ÇçÌóÁÙjÍWÔû²Ÿl\Á˜Ž£¤ç%<ÑÝÆ¶ös(6%'¯sç"³ éòW‡^^©€!üòäœ[ÑÅI·?p-%Äå†2h¢A›&pÁ¤è‡öãJªÆ¸þš„-HjwËQ)]ÜDƒmPG4|šË‰Èò”ŠE †d3:¶¦ˆ.±K¥štù÷>‹Ø‘ÿuq^5˜uÔEÌ`1uóxŸw9¬æ± §kFÛìðÔp¬(SÂààuáé j•–»åÆ‘­˜ýTÜ ,‡eÁ2N!pK o(ö²Èˆ¬ŸB@àè‚ADTS~Š¿)ËM™¯sG¤ÅìW¨ÄnÃq÷ob¼wb¹HøÀâÑ€óSî0)Cž˺„iBÖAT#œØ–݃¥¢ËÝ`©“XPé¬|¹¦ûÈðÙTHy™„»ºY‡rƒÛÎé€%£rGÞ·áƒïÀÛ kòß“‰¹[Ùï k -)1‹•{¾QÉS{áž!UÆt£•¸å„]Ã’±©ù]ÁÝ÷מú¨y ƒÀ‹\'wÌC—šË¹—)Þ·×+ÇøÝ›[V¶"% U·ýoå(… @ŠWfM‚Y5uÍí°é¸¼÷¹Á§ŸÇöó¾ý|Ó~¾“ŸÍd‚ xQr5ÇÞ°7åǤ{‡å£ÔELaü\ìu‰t–ŸÇöó¾ý|h?oÛÏ»9À›AV5À —vˆU"I‘@ °=hÈ¥A10`¬ÌEâ‰m{ SsМI`§Þ0e,^QœþR¹[ÿDD‰ÏB°. Pß–Ól*¬ƒM±‡E÷%¾FX7ÞŠôh±St1­¦^çå;'â~Pªaéa•#ux®Ã/ZozcYáu£#X€“{÷Ò§Š-ÒÂÒ ˜’’Á ËÕíË÷…;¹Þ>85víh÷‘á±¹ëŸI0žôh=®D„wQ• V#ÐÅY°Š"!æò¬ˆg:˪Í{¼ïl*…Ò)„ª¾ÆŽIÜÆdŸ‘!fXÀ}]ÞîtK/YɲQ¦“]𽑈¹e¢4šu-ü?•.#3á$^Bµ›ð©å¾˜eéíå…õLÿʰÎÊpG6(’·±@Žàx V÷éÃCá?íJ‹'üVbNó#“¬Éåô’_Š9…¬í ­Â Ü5joéúñ¢ˆ‹éô¡™NË8¨"âC£cù¸€ní–Yˆ>ãkïß3P9O¤tlbR‚Ž35ª—Ë킌/îQiNËnE@ÙuS_ vdEêJIpl|S3gØœ“ïš1ª4Z%¯}¹=…–Ɖ:‚Ç;×VÌo‡3•kS«  ßÎÅ]û)ÍÐAQ‘³ñ//þxaendstream endobj 578 0 obj << /Filter /FlateDecode /Length 8303 >> stream xœÕ=KÇyF9lŒÉ!ÈqÓl w½«,8±­ A`™€vCîòSšKZ¢œü÷|ê®ï«î.ÅU‚@Žz«ëñÕ÷~õwÓÑì&ü¯þûäë«i÷ìêW†žîê?O¾Þ}ñèê'_¹OŽe*f÷èé¿bvÙìRHÇâÂîÑ×Wû|ýè?alÊjlöGŒtsõ»ýãëé8WŠ7û7ׇéJIÉî_Àóh‚wi#†<»6Ç þÇîoq°™¦4åýŒðÆOÖìO_ãs[RôyÿšÞŒ†¿ÄÇ~šBñ<÷d'³…Os)1$˜ú?ýËêh‡y¿Ž9FÞõ¯nët“ó0ÉttÅ{WöOð1î4Ø Æ›”öŸ]œñÇ”ãþt¿§ÛÅóÂà)F>K}íI{í\ÏR2¼(ßÒr²ŽOPavC‰Æd5ã ¯§ж –Žfÿ¤’KÀSÿó£«__ñõ‡Ý›½vkÜqòa—¬=N±àÝÿnÿï°S"€ûO¸¨`³uWÙ…Xoõp}íñ[¼²lóäÝþôr™ã%Ÿ!OeBxÃ]ggÛÑÜþ×ÙÂ*p©gœÚg$£©ùrj„uiš|øXÀbG—’Áï÷ ½>ÊÎ8h‘Kì‡'$²ï»kïŽÞö»¾¾^K îÛöô9‘[´¡È­Ô3É…lûS´^ß# ç P59šS—Ïð†œq°¼ºÄ“½-^“ÄkBŠä`{ˆ5ÖL.òÔõ§$”mROáXJ±ón_·Íœž\Ûì(Ûý®C4ƒ]`‹ )ßt¬Ëd ­ ¨?Ñ`åVä`"eãL)ò˜¸½ƒ‹ þTv ¯àac´-Éyp_8&z¸“ƒŸ Ìjöÿ†#b)Èüç¢ à•àùBq?çÑ@”{:0œT¯5¹”÷§ {@ÀñÌQƒ^óÆ&«RB.û3€œÞâß§|õÜ#Ý™g*p]ÏNâ¶yÅ)E@ÀHo˜¼k$1„À_¬Ì™g|jk1˜ ]æ;<%æ@›e¢³ñ\SžãiZð¶–“>œ‰IÀ¡Å"bCâçwiŠIÞ>ÈkÂsçá‚ÃŒÖÌwsvy~}}p‡’ýþ|×d „vŸÇˆMÀÈÑyÐXd(Oî]´rû‚î߉éhûÀŠ:ëY–É€·ÏT3Ÿ¢ h‡ÎÁߊ“¨(ù– @xÛÁÚÐÉܦœYœOmaê­{¶(PŸÖtÏHvp/…D=ÅêMI§®ê#õôâJÂòÄb,C /dZ)§Ì{˜BBïxb²¼Ó)T6ªk¤ MÙ¸Ž‚pÞG•ä¦XÐ[ÓŠK{ñØD@åÆvg€ªB°ÈzÊGÿzõè··¸Tå¿èaB¸P|&‚ ‡ ÿ/’î#àøk:üÁYÆI_`Iƒ¼hy ç€ùOðæ—(ðàWÚùS|êÁ`að0gñP !Ó¥ø ŠdÚ¿~!§{6¿¹—‹?¿åÇ ºð2ðɸ'7rGæRÅ8Š÷3"€fÎ*2ðÇÈh›ƨ&ySWßß¼øàÔo¶óø]µúSCmKˆ¢’âQ•àk{$äÏsb„ ÈrãQUC«´wÛø¼Ô¤ÏLì4ä†ßDj'Ì %9…yç:Y—Î18¹â&CŽcæÑ¸i[…TÌì$LX^D&Ú³pÑI)6‚dY¢¸)(º"‡â3pÙ‹<äpìy(.§ èú¹°“ªË@ÎâÍ;>®ËE>]+Z%€þ%ä$ìÞR °F¶³Æ`frÂz©7‹˜MrËeŸgÁõªý¯*/:Ë=UQ0†ºh*1™YĹ`ìÿ±2 Ú_‹¢×þ^ ­*¥`(V¥€”R HݽڀhŸqÓøsáã]•áŦT¡À ̼áIñwÜFœzׯŠco«4ºUcœu±ÖÄß•˜›Ïd¬HÒΓÐGÂÃÍ¥ìšð„ʶ%-‘îpeä=ú¶Xnfk„=g‚\2r‰Žœ¶(×û†9­°5hûo« @T¤ùŸ· *öy§ Äøáý<þ›ç™ø˜ T÷__#J¡9p{@;­Š#ÛBo‘žR³µ³uîMöJ_ku¨W3ÏoØðÉÖWͱdÐa{ÕQ`ô VA@ð— œ0þ2NÐ÷bÆ31Šâ/#®btk­ÙÞþÙñعDj¸&e2Y­… YÉ0¡Ñ²L&‡žù!Ц >I=b¶Ú4THmyt»OÈúöÕ´&#-‹«·Ý}âIÑÿÓ;}ð1¬2´€p2;aÄ‹«\d¶ñk™ÍPêdöLDÅ/þµk ¯ÓKë…ðr<&­£€Í¢ùÈLLr,Ò5ƒº°ÃPÂW}†@ýRö±+Ý> 4è|ïµ²}˜Ï¢¥ ®* nn¹@WÔ Jh±¥í` œî ¶†2´¸ŸÛ¦€îƒû_QsC-÷•”=F¶Œ)©¨§K>]ß²@y*HÂÙÎBøýN¨p´Ñá„Oùàî]ƒäR˜)5Áw4qMȼÎHòåp¹`ÈÃþ\±«Óø¢õ^&vl½oCg™[ï[g•x;û²_´+iÄëËjí­e‰úÑ,’oňNeÁõˆ ù! Wn‡ys„ìAPou£1œ‹@²Ê±0T}²¥EªÏ‚|¯ÑÁV´ê3kk¬Áx;_cì©[^Î6J ž›Y)?0>•p/ßÍ› “†KÕ îÌõ¼þ½Ì»qóîN)š*04¾î'D躊ÛMAµdÆöm²ÐZœ)¬L-| F\ ê-.Eâ8z“ ËÙ¼ˆ—í•ç„ÉwÞÓaþ~¿ß”7GZ4é"©K8hð:g‰IªB@«V›KÌžï1™.,…'²8äï¯ñydHä‚ý‘–ÞkŸïš(•n‚MÜÕÈHä"Ùòûk¸|!žD¶yºàŸó1"®ŽE&GÓp:ŽùéHj†¿—‚ó×6@Î ˜,MF*#òjÙ2)û‘ ü-‰Zª4[I«ÀcC}–žxT¼$:Þñ ˆ±cpÚ³ŠÕJ®ª;\›ùå8-îiòßu'ªwÛ9õÁLžŒ×†Kí:ØÖÒ€Î,…<$¸iDDÒèþ´‰÷¼Á¹s3êöµ"uVŒ·¸˜÷ϤÁ!îŽÔÎ8f’¤–Ù"ìfˆ“½Ôª¶¹6iÎ0_ÌAJ1I}¯õ TºŠ9ð«‘ úX“'Ëú‚+#Ž<»m‚敲ø†Åö¬‘˘/° Bfœ‰Ò&cu¸â,(ÿüì=OŸJç  í¢tÝ$ öÚXF¢fó­› þÉõÆÅY§'(Åýo¸rb.DÁ£“K˜Æ+adlŸÍ7a‚”ø'IRÆ‚RX±1¾×íiÎÿ°¡î ú‘3qÀJÉÀ¸4‡/–AÅ@"/ ¯ÅèÆ®ôñ¸F.Œæû/šõ"ðç>n<Š2áöPb]B2,jWúø2,\˜®ŸÆ r®Ê‚Æž÷tŒDÎzvGOj·äß;»-wš‹PÆèÅ2Œ­}Ж#{¦HÄÚV›aÅ^äÉ(tÇ3 ß98 ( A%- ©¿¿žÄ5AiLù4(xvÛ–P`TÝ–y·Ô²º|¾i¡“;²C¿WÂ…›Âѧøÿ%ãè/çôQ˾0  >ãDŠÁJ:#ÄÞ(DòêD`¯Åê8ãm+ó¬L¨mèd!¥Q+ô™Ü´'mìpr ªþ$ÁfàóOC¿p23é‡ÜVôõÒ{(™ƒq¾Dq„‡åþ6Y”´ ˜ydMãþP¢h?«ô0†{º7ã§,ãŸá𩌓gBúäŸ+fÿi õ @rzU¦Þd6´R†Ú´ÊÔC˜c8„²Ó>)mðàhžÌO„GŽÀŒ^á—¸‡8Äo9¯¼'aƒoÅOø0NÜçn¡¿/b^Â[TáüÌ`)Þ@ΣÒÙ–òœÇµi‡«òÑÌÌ€žhî÷=ÁnÊs»C ÝEý8€®ƒýjêU A2©Œ^Ci+muÔÏð9ªÈ›§™2ê|Í]ÙÌî)7<Ô´V þ÷‘áWŽ_¾m?Ÿ·ŸçöóÅ¿£4®ŸµŸÿÐ|Ó~žÚÏ7íçëöÓµŸÿ°)h‹9úh\Á8\r6vdÆi÷‚.Yñ?[É¥åȭˆÅj€3U_ö HlC†ÿµå ‹ýX<åeô¡÷ó‘à d¶#=Á{̶×D P¤„Ô—R÷790?HƒÆ|.0¥Nqæmo¨ wuŽYuf‰¶ ¡i™y+<^Câ|<­Yý–}JcùŠI´4%g…'B9GJ¢åd)§ã€è2ªLëóƒÝeÉàÈÊëS“åX˜¼«÷׳úRì}óX„κ™…«ÊiÿXd˜ÈŒ­çó•I¸×”¬x¾ï¹ÊfïCÂ8-ðÇÞÀ¢Õ¦2gëRr…ÌÖUÎrPOgB7œ•lŸM+“ FÖËþÄTghÈ "S%sŸ’²ŽGЬ‘ÔÉ’÷Ä'\ ^:æe JÄ&o‡€v¤ƒ}„²ƒ©‰ÉPýOî§2Òº !0#§oùE4Ü•™ð®Ýòüb.ŠÙ›BÐþT©Í[ÎSü5iö&جÔg‘21V,Z@Ñ£ ëýªw¯3IË™{KÇrF ¾%?ðÒx<ؾ˜B±bVÃÀøm™ê3q£ë3‹¿,qÍ{r%"¾€÷ÚêªÊÙBѪ†]¤-æ#ã>)l«òßz²aˆðC±=ZȪÒÄ4¢ª† ޲J¥°XyV“i2Ĺý.ÒO°GšDàCÝ•_ ™D?±èóÖ³Õ€*VÍ©À)Ì(ëû¶½6@´ÎiÌgÑS3Î ¨fÍ–¥ë#MÁ2Wލm%ÏV¾.UÛF¬F'é.£ÂÇÍv™ÕKL”ýQû[ì•–त‰°GŽ¥ùÈŠÒš ºìãXÑš¨9Ì›•FúT°ä’;Í>Ú5¨¢o.‚¨ò%Æ£i9¡M9[O¬÷—žPÈÍ wpª£બ PBá)i9TßÇâªB±ù¯Ù{rš!¹ŒC)RȪfs€l+ßÒ»6/Ñå%Á “ÑæÈýyÇäÍxY«#ýÒò lvvÛß“r0¼3{VÖ¦•‹* Â¼$DlSÐçXõëÈ =Äõz"‰à‚¡(Gm‹wÌ d”«º®Oª{»OÐA—*Õ"Í^¦§uî[ðPi؇ ™ùsÒùVx9½ŒæC“l`¿.Fæ ºKZ—±Š ÒS[MЇ0“¾m¯‰y…Ц…ÕOñ¡òta6ÄqJ×®KÚHÜT‹x}‹I~8­÷¥ÂÅ=ÓÉ­ú¢¿{´øÃÎ¥r´viÔ))¥>pl„{’ªØR„m?9L¤cIÝn4!›Ãì¯<'",±K©ë±«?{›>˜‡€er6—†2ÿ¦F14Wt¿xIÊmZÚ,,}‘VÙð.Èþ û …:¯É6ÐÓÇ&àkqäSÆWã)ÂK>r¥á´~\‰¬–7|!φHJ0é8n¶×…Bgr.Y«Ò¿#±}ÖÕ€7æ kú‘>ë%êG†»K뙩ÖU0á¼kÖ•´žg7Š9‚lÞbŠ mƒêáKœ˜pî«`¸b“+{ÎO¯—œÂ›îÕÜd&¨7;kšÛÐ|¸—Ì}kÄp<«Èjs27ùÅõB­²¢:F(\&v)àòéÜ´TÁvÎy4 ¹aÚ'tKíZN§ÊU¶“%_¹»Vêr½HYÁM qŽŠ6» w ¨ëƒ*ÿ&_Ëi Âˆ‘‚ô{mÀËÌíbÑó®cÕ`CÃò©-†Û5‚)@èZ¯4¥¦ÒÅј枖LáêVI®ø4^ê°5¿6àÝâ@jé˵¾Ó Zë™(Õ~âñ]Ëœ›½ýQçpÄ\Ñv¡4'p+›gÍ#&}Q‡®F6ºê˜¿¬k¼O ŸBËýO*)‡‘WÕ™SK€a%¾£#øöî`oG­èd!¿Š’ÿaÒB>.áî0ÇBW¹@mE/ðªèH⩪MñÑû*°ñ¤íoÑ£š·ÝIa$G$Í-¾Ì¡€6lÅý•Ò®6hUWuÀbØ ¢±ŸðzD&_é´ÕHw)v•5å Õk€ß]oQi$½våÞ$ÃüÒH°ã]2:ŒQ+[l2[¥-}’;žÄå¼ò SoÀQwI XÀ‹ù>=ré²’£¬Ge/^ÏjµÊ'Äy}_»ÈYJ¦KžØÆw oä’<cF˜t+I?ðëF¡•¤¨‹6AëÂÔŸ=—Ô85è˪„K<{J-Åt“J ¥¬âá‰ýõƒ4 v좊¶þ$ŠwDÌPô:-«AWôDXçp7‘n+Ý΂ïT.oI+LŒ´€œEY@Ϲ‘\ñëuB‘íÝZÛ(IÂJ¡!±ÝF4ä¸SÍÛhæ8Žgë<”y°j_#"MÀðûŽ'¡¨þ„›üÀÅZ­“Ð×zà[\g¹hïê>5f8lU´IB‡vo|ÜІs~ÅlÛ`µ¿15•€%8‡}:.ŠKh§×¡–§ –, ÀÚ÷‹‰Ð•ë5Æ7ïc¸vœ ¶í+±½Ú¦»v×®‡uãáÄŸ˜c‘x³j  ²=8}eèïYÞç™×Uô…F熫r.”V$×bV\L½QAK–¼AÄ„^Ú¦ÐTÜÒ0‚+Ô£@"(¼¬¾³;^Ñ•¤©.›móüÑè†C§íù˜w^÷å|â.>º!Dç[u©Ôb°—YÔ‚¾ãžîp°Ü8Àï8Ê0C|Ç{§ìÚY®;è°•o0ác;Ÿ°kÎ3¯&â¿aß~¯ ù¼Z•úMÃ:a€ŸDà@:—V18zñ¶÷ R2åfçÁ.Ù>­cEËCõ,¡ùò'š¡8ɪEô Ó$åV„ ±à!¾jŠ?VPã«”å%[†Ë"Q©;ÞÍãÇŠ!ý=ëâ‘Í -qaÚê ã¯½¨ ©^òˆ”G‚ŒÛ8;œÅa—3ƒnµ¼uÜÿ±ÑýgkòU0*2U(/b^ðïµ*Õ»`Ã1§Å8B½‘®ðB¸^»é`¼éõ²qßZÖжÇW„¾* ‘’åözi=¯"îˋڌ]”é*ŒXl0’ó†.œ+¢2J§•h+–UïVSÔ°ï·OÐ¥ò¾ Ò}O‚J;÷G+j"„û@»·º Œoof?Ö7K•±Õe°jþÈÍ:®7;ÕKw†2ù·*OOªKÞcÖ£Lt^úÉuí¸/ýG2J-¹ˆ˜·s©£••Щ3ª‘]ySê»?½LjÐȰüww°åha<ÀþoøãL]ð±¤ö½–Ÿõóú Hسk¾¼ÇMc©£“Úð´”Û°>Üíâ¿þüÝomI5ƒŽ4‹:“YkÂ2A|¬&nd9K5QÄ­l*vîËѸ IaÜÊ4þâ2¨±¸À…$_õ\ –ß%€ñT¡ ¢8Ù?† céôÎX€[È“x#,4Œ(“)~ä& *‡Œ{.äK €žwÏî`Vkwß\M»_^†‚J¹³“6ï¾nÐ7’v/¯~3ŒšéÅ—o Mù˜<65‚ÍX èïÿüݲ<&#W\ž|ï%1Í -—ÜÆ2H?,³pOÖŠrÀ¥èŒøDŒërÀUËráÃàj@«;ilaLËÑ.§Ó {ŒÌG`&¦ì ZiÓ#»àe<ºØ¢M}§–~;¾.1Ë« ÁŸ–Ýÿè2qðÏyðßõéZ!X&%óõðÕöªæ—e{8t€íC™`9”¦%ïÞÜ^=ýXÃyL§Db]auöÕC®X¨ô[­8@jàÈ$uf7³Î NÄŠªõJÇЦ4ãÃ~âõ´ˆ¨vÚ#b‹ Zìó޳v8‰‰K ³Ì@—Æ É8˜?ßÐúÑLo3™T°!ÆlìÄϽò hL⊥Ö_0öc4t3ajêÎ|Xj½¦ë­}ajCó?½RÀ+Ëà€pœ?ïÑQ©?}£5yú£Ë.ÀÏ*J˜-”u#ˆä°ËØë‘õªùôÕ| Þmj.Ùáç‚6ÜÁ7«ãk™ tÕ,Ÿ°%ËP%&X‡Î± Ë/—JÑv—¹› ÈuËåój’ÊðÒ}×^_dr‹€±ŽGuª’ÊAY:ÛÒgଔ„2ÿJ9×q,f}ŸŸ^†¾ÁÞÖÎ N~$"›68ÇÇÚ¦ùÕ‡ä ÇQÙÜ©#ªZÐÀn:¯L×¢2§úÏä¢ôÕȤ÷êÛç[ÐùU÷MŠRŠcˉJGç3(µrY)‰)1Ð3ˆÉOIÜÄ\…àajüþGä©Ç](ñ»’îÂw'4gêt)lm’ÆÚ÷Š”KiM¼;ƒ×x²Úe|@ÐÜIúþDšcoG¹SÛEY§krå ]U wXµ¥vò€Õü¡©ïkCe±ˆ˜ô¹ËâÇZtKÈ¢c nªf¯¿â1¯‡úYOLo耭g•íqD›•Ôk÷­8D˜¯Î;²ª·[éŠ/pUP¤í*Õó<‡€…mr7‡qôûr7ååBeñŒ~ÿáÎçÎé´Œ!® H¸x—›¤=Ì'›WÿËžk÷Òv•Éoìõù÷ºþF2áÜg½’ ¶çaö”õö¤ÒÚk(Àg†^ŒîЍÔBð Àtï}ÀvG Ð…BÊUëý§Îtï-š)à‹õðö¸¦÷‹kÑvpËEÞwóœ¸aïÇyˇ.3Ä“RVÍ&®ñ¦yÊø1îPíuã™*ByØÊÃêU œáã¿ìÊ[ßd-ý×E¨xÏ®³R¹s$Ø;íT>ä o^ˆió»i ÁÖ… fMxyBùÁ€ê´‰yúÄbâ¤ÒŠ“Ÿ?Oç­ÚÏ;:»Å¶O³(Iþ¼e¾“AYfµ]n0Ú¯ånßœ‰¦MD•ô±üˉ. `œõs¹W„qýÀ®>‚Íù à­oá¡ÅJ£Ðù’#,³?¶ þõÕÿE–Mendstream endobj 579 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 726 >> stream xœEÐÛKSqðsÜ:ç—‰]࡞À DtZaVJyÉKF-ÎÚÔ¶ÓîšîâeßÍËæugó’2!ãT`T,È —ÜŸ>ôˆÅoãì¡Mƒ^¾—‡ï—ï÷Cò ‚$Iº¶¾ª¶T™.óã9d<7#ž'HÔ'*A– ²äþÄØ üà8¾{·#d$i¾ÖÛgÑwwix®MyAÙž ¥\iEEyW¦TVp•:µ¾»]ÕÃÕªxZ§âS–«ïmïVó–ý‘+žï»TRb2™ŠU:Cq¯¾ëjzKgêæ5\Ú ÖÕ\MoÏÝTéÔÜÁÅ©ú‰V­'"£ºŽ ˆs„,õ !'s3òâ£Ù‰bñ'oˆä®øCÄçÅ=Q†çð³QQíD#¸½ý0‚…°¯ÒV«ÇîdÝsÆÕäA¸‹Ž-Â*¥pÄj¦j¼N¯]H!>I?óiÙä4e±ÅºÏÎVErŒnºm·‚Õ"@˜G¨E˜ñ¯w_†I4ëð;ûG<¬ûñªê~“¶¹¿Pe0CL?Æß1whë¢Y0Î#‰•Þ3‚%^Få´!¢÷’ŒØÉÀ¬9Ãè5ÈÃCp ¤…†.¿iÂNS0¬ÁŠ£ÆKo‘奰gÄuÏãDÙ‰NH£¤hÈßâOßwS.Ë8Ƽ¤p¡dŸ±­vÌÚOùŸŽÃ3@˜¥ÂAÜ~‡OÑhÝ6l¸fZ¶¯cbGøþð„ÒÙ¨”ÉJ±ÿ“®–4B˰«Îiþ‡€#û›BV¬ |PàF¼Ê¬¿ß‚·uo=ÚÜtüÒBÜÐ5监Ԉû™exñåÛ”)1Z³TÆJ¹RŒI½¶Ó(î£S¤‘¦¨˜ÀŽ’S4 A_À‚öðã÷Nx„_Ð4`BªùzRÙl¦¼|)ë0AübùQ÷endstream endobj 580 0 obj << /Filter /FlateDecode /Length 159 >> stream xœ31Õ3R0P0U0S01¡C.=C Âɹ\… Æ&`AÃˆÍ ÀRNž\úž¾ %E¥©\úá@i.}0éà¬`È¥ï 43–KßMßÙÙ È °±Ñ÷VÐÊ8çç”ææÛÙqyº(¨-> stream xœ•YxWÖ!4ŒÐ¬ÀÎ8°ÐŒ B ˜ÞCclƒ-Ù²ÜdÉ’e«>U[²,ÉEîL15M ’]0„lH‡Ò“]ò†ï‘ÿûŸ$@J–lùä&Í›÷n9çÜ{Ç<¢g‚ÇãE-X±nùúõ“ãoÆrÃy܈ÜŸøy¨€ûõîR©/ô僾=ËF0=q“ÂÃý¡hÁçñÇqf$-%U³-nj\þ19fòŒÓ'Ä<7#f^F²$-)Q³"Qššœ‘(ÅoÒcÖ‰“Ò’¥Á[f¥J¥™3'MÊËË‹MÌÈŽKRæv™“—&MY›œ,ÉMÞ³H,’ƬLÌHŽy`nìƒ?ˆ32s¤É’˜âÝÉAsEâÍ 2³^dKãs–äæ%æï*HZ±{eòž”Ôµi{×ïÛž1vÜÖñ¶OŒÝ9)®p²üiÅ”g¦N9j柟›5{ÎS±ŠXMÌ$þL¬!Ö£‰uÄzb1–x‘Gl$6ó‰ÍÄb ±ˆ%^ &‹ˆÅD<±„˜B,%–S‰åÄ4b±’èMô!f}‰Çˆ9D?¢?1—@ $¶ƒˆíÄ`b1„ ‰¡Ä0‚Oô$†bñ'‚!X"Š˜‡sƒ?´ïò–ðN÷˜×ã  ÿtÏM=ßlÜ"'’Ú^q½P±Ô‘¨iQÖÞÓzŸì3©©Ïÿõ}õ±uýzõÛ×ï‹þûß°u@ÃÀ÷Z<È8èöà'§ ¶ >4øòÞCÖ¹D?Iï ¯ Múõ°MÃ.G¯îŠ„‹}xßá+†W ÿŒ«ëÇÕ?¼èçq±—ø\O?½“”g}¢&àfáDÒÛö·f»›<w”5ÙAðÚ¶ý‹7îÌïa€Ù\lT`3Ÿ”g‚½âPÉv’›ÐyÁ–ˆžŽÜ©N±v57œ~ý¤P'ÊóE¥Æ"£†Å¶hüðšŸw³¶_äsè aÏ9W&¢¨/€XD}ÿ%ìûÁ>pƒ”h;¿Óõ—O>¾þ·—Ö/œ8gÔd6è§Àíç^¦›HO38Ð"Eì¨æxØ…ˆŸ¼"+±$_h$ >£#óËT(ˆnix¸R‘yßð*ò[t.-ˆÈ¬ûÞÁ>¤§éþÒ<².à3U~®ÜÏûÇðîm²šÊ€™ò»ódÚU)£Õ¨dºÒ´ý UÛ…bÑh%Úˆ˜kˆÄîŒü ö÷»4^‘:H5l&â—¥jÚ¦?ÁYØÕ °Gç…œQfViÊ9à«°7Y|"’øá¤Pêv\âÃù§é:I»è àc°/Œ‚OÀžs¯Æ­Ýž•ŸÅ6÷îß&hʽœ BÉ#GÁt:äרªäu¥Í ˜Ý?–¹›^{«óM@?¶q"&?= [ñ®Ÿwûîä†Ñ/0+Õo“ï3(v–2JoÚñØë!¨ŠÂIä_{þ»+gŽyªÙT”"x1`Õ>QsÀˆçHw36"‘@¢Ù؈[Î\»óÕ/߯™»K«Ž×(ØÌe«×Ç*„Û?ÜéçÁ½°“†CI£V_´”ħ«l±UÖX˜ªŸÌNlŒYèÐ×ìK7(J4”ì€;POêsJw•]£õ´™+ë­Œë6Ý‚Wá|/*Fræ=… 5ŒgŽ%“ÍqÆ\éêv*¼ ƒ\¢eT/P ²î<6mºŸžá¡;P˜Ÿ míÞï,®º›~r˜’ZuN@5ÕøšÎÎÊññË Öì¶Ö? ê>þ}ò!Uà@?,òó¹xn\÷"ã@OOœ½iÆÍÂo Ù¥ïƒÊžC£·o®¸¬bt>ƒ'dC‰úEC‘r(¥d.euµÅ~ –yi÷9àÃzþð·/ÉkΨe÷Õ‰m³]›k`?Ußr’Ÿ˜Òå&ƨUï>ÚÙe?dm,X(giµTª‘—ê™qý?×òà\ ÍÃIÃYaÏÑÒýQDf2 …r=S8IFèGän¤ÒË€(…3/ˆ/ü|ùÝK(çk$:F1w¡®PËÁ˜-U!ÖÃ\?ÜéЄ‰ß&>êæs-¹í ”€š þpM Û@ø|ò0ÌÀrÊýã5"Àƒ$f…’ø€ÿª”¹ˆ–OÐÊS¶í^ ¨¥_UYùKÖ&ÖÖbm±µ¸®Dãðžzä») •p젥ㄽõ8cÕ/ ®F²9¬ˆB(“  cüç ×H!Úá”ý9°‹Îïà]T8¡Ð‰€’EQ[BFÕ“h:zo=|O°?lAhAhÏ&ò,ºeO­õ@X j·z¸1Œ~ƒÏy›×?"+/“cÐ+#‰oªT_U_1:RAЧ/ÝŒÑøs§©T`„ÃøKßQà0xËpˆzó79ÚÑ|¬Yj\c’š—ƒÅ`9…IpÌã^7ãtž…´ã e’‘ ä9Ÿ+{ÑTÜ < ¸:¨PV§ûðóÞÃiÁ³t“òг‰ˆfgú¾òNë¦ÎÖÊõOëj¹ÎgÔ±/è‘£ qÔ²××Ý~¥ËÕt”©Î< }PÍ¡’£På[»öCZ“¦/LÉË*ÚU’ ¨) ‡ÞýÂö¡¢pI8B'Iï°!*$/M †½úGA[ý#â~ˆü =…Æ£©‚álA*œLÇÞý/¡þ‚ÔÜÉ $0p­ˆM!Gé‚÷ïú¡à~Å©äÎ`mÆÜÿWp>{O§/ÄàÔ ëñÓfæëÓ+èæ[oòá .ÝÏ«¾Áb0Q!´„¶ŽD}PIÆ }0kZ„ ø Û#V6‘!hQaSB K˜®VìZ¾Ç 3ÚÊlnà <êZ‘,Mµ}W«øØõóŸ½ÑÂ<”Þ;— í >—y´[í–äè4…jFšœ³P3·v]ê>BÆÕôNÖd4L€’ÔcÞöŠ£cÁV´ä4aäS—'ãh_¿íc¹Z³8W§Í(ÙÊ*f¼°øA鯩ö·BÿD¤†ÏÂa3’c8]é¹%ü¿©ÝçDØýîim›ò–‘uXlûï;>¢ ñón\‚íØ÷¸Žnó€¿Ã:¢hÔ·8ÑHðù,(€C/Üh âB¯•³Y»¶æ'jÅœÃß³•]tCw÷Ù«€ú<›­céC~ãz΃sPDÁŒ"­>“ÓZk?ØÒù>°$t+ „Þuß9ܰ½þŸÃ] òëÄéR±$Ë—ÛÔÚØØÊ ‰÷Ì43a8!_ƒWC±µÏhdÄpAÁ–ïç:B‡ÔÝ€–ùÜ®G3çÞÏ´V\´7'+%i/4ª8Ø-&œlkve,½(iÑ-pÆ„ì±2æ27/T„îŸût8épÀï{Ÿaÿ±ëNfcðkRT‹£ƒÍ•>´ÔâÁãnv˜=Œ&l]D[?/ÜSmØüÃ>˜ÊÃr—º^‚cᜢØpùÙO¢Uhü[ðëÈà- ùdð¬È!)6rH2»,uå/ßz7ú6š$ÈXÕ;œ›L24Ÿê%‹ÏÁ8Ú#¨-C#眵è[ÅôE –áæ]'Þ­ef{Þü»C Q«‹>ƒü›øÖQˆÿŽ”¿KP°é|<T×#Êô€ð Åm“Õ~Z’ýp :(bÖÖŽù[ÞTÿÎñŽƒ€rº)j£kj"r µ¾âjå×Õ²ãÀ¼Vï¹ëv%©ÔŒòè¾ €´âL©®9'0Jí VZØ€–æ†I{ã?mŸá»›9õûD®/ Nh>_óEfç*¿PM^‰¢\ãR³?Í©A=ÀBðœmF"4L£S—UbËk: =p6<ˆçM÷x-ïÜŒ@ãCÐ.{µÔSµŠr…ZoШÔgi=ìg.Ç\° +‹ÝÅmª–)@&¼]äÐâ sdy {ie)ûýjÔgR#S\¡Ú–_ï,³šÌ ì1QzƽV(«,öTÔ—µØ“­ìŒÉáøkô7Ë*Õ6`ºªÚj¯Ú®¶±cºá³þ»£pŽž¸û ã" `“Q›Ž¨_—Eã~Ј©,÷0>"Í£i¾îƒ³»áœZÞ n=~h8†t¦†Œdi²a¹5 «Õ¹ZQ±‘ ñ4†T¦‚ÔÔƒÀÅÂd6‰û 0eî_›­Õi>-a}°7ȃ{àH><`¢Å+·*d1_ò(eEžï%ØóƒŸN‰;w$d¥ìKiÊm/7“… {7én m²›lÀ|Éñ|M"Þ¯£(.ÊñlèæýÂÅñ¹tìYØ­ËaÛP8ˆo\¤Û¤Í©iiÉu™‡::ÚŽ,™ÐÍ{)°É¤ ¸Ç³¾»ÒZÞ_¸z>÷öÝþ´­ÌZœTM¡7?¿TY\ÊÜ[ÿëÒR¥^J„YmM¹Ëig>Àº}¾z‘ϵrChH/ƒ¼'ÑüZ‹Qô_Ÿøþ ‡ëáNyÐçô’ÝŸü —ÿ c>¿rxêd4.­´ÀÿøâAÆýp®‹¶Ö—‚¬™ªh2µãÐŽ-‰•³™h¦>W½Ô Õcº¸ÁèqÿðM£˜©/b5©êõ˜±°¯ò‚#¥YlÒ0¦X8Ê\Ýf·ólùIàdÍ™UÚË_2»ï7†ýü?Õò¸ §p¡d¹Õž\Y©J£cä’íóhäÆ\È TvYÓáÎêº6fѽi‚ ªd OWÓȇ!…b¸šÏ½û8mr˜Ìxß@L3´†ˆüu¾Atx„(pË +7Ý—@,ºpðMèêæs}àNRŸ¼ñ1ø”úúù+¸U9 õ\)©•Õ5ûê—ÎÆÔ;sä þö·}sÇ ¨i2Ljô¢\¥- aˆ:·È*P ì f§ý0(>hSä€mØ %ù›ð ?–ß*¬ ꊪŒ/Ĉ·íL›ñ¶$=0è ³ÐäPµÓ€½UYÍ«DÅ ºƒZ1Õ Ó+ r½¼t—fk T…ª\l…·æŠ¹î4ûv»ý ãµ:ÈDcOÁ§,”µÞÒÚ’m’2¿lh„4wžÌüõ&ìÄ}Ú%ø*ýÕµÛÍ›3F6Åüª„µZÜ.,fMyžœ­`Sñø;{¾†1ÿ¸óÃ+â×Wíg¾zµêSÐDÛpE¡ñnJm/­¨o¨iuiË€‰9ÔÑmòªëXænQnB²ˆÝ“™aH3¬Ö)Œ8ÍÁ˜…Êáç¢04ÆÁÙtD•™Ožç†† B1™°ô S÷ˆèâ"­Þ×+@ B°$¢©YÞbÙÂUÒ&r úA€$¡r ÛýpªŸ÷Þ—°»ltúˆŽÞGJ€Ò¨IM@•¡Ðë(¹CQïµXæåÓçmm€ênß°~üÄùq‰›½'¬³ÌéÅõªZQ/Ú 6OùxÓWp(ø#r{éµQ™;u9[C<†‡ÏØÊïÂ:|òRø5}þç­¯ øŒ¥F‹«‹”’z šëš*OumÞ¿=‰–àïF4öZü7°ð ùÞºÛˆZµ!;#™ù ¢Å@äÈm•ש:A>ÌVþÝ~ò¨Ív¢ó" >«_¸gÔä³é†XÊí˜/; àm(àÃw8?m²˜ÀFU5d$èUF&m1(ÙÞhñz­ ”„ÿ¼*GÙ Gwѵ¼‹\ŸcàtœÎ‡r¸š<G ^ N¶ÿb¶›Ë@™°Z^•—¥ÉQê˜=hˆ`ô]˜Ô.2l°ŸÜc(5ä3§º¨ª±ÌWaa:á0Áº°þ@ÿÜ"Xã°¾Ã%Xã¹a\ïÕ÷MèÜ#EÿYŸ¿‹SwùqH£ßEïð¹¡Ü«ô«š¶{²B]RäTA¥´õ´ù•êîmgG;[«¥X‚ÿ}ÈÔ˲tŒA¥Ï7ðËXd@½ò<fUG—@"7RD?ã]X p`1»+­n\.šr¼¹[ÀùÓooùXÍhŸÅÓQ.Uu“µÖab¬µf§¥ö¨øêsðøpå¹énj•›^çHnÅòüÖ;§ÎWP^ÔJïל“‚`õÚ Ôý"œ] .sƒùŽê¯]˜"ÎÚ#Si‹±îQE•ùÕm¼{ŸÌmKN§¥í<¤¬6‚ó¦Û‰9ÝÂÒN»Û ª©º‚J™¦ÄPZÄ {(1_UªÂÊ p碃gPr´§¸w£Tu•»¶º¸¬ÔÆ"Wè_8pc÷Gݼ÷9Ÿ3ã¼Ut`%ú“ïÉÂ@úÛµáC4ö •¸‚HU¾r_ ÛR ë隊² àÕEN­ÉÑr§ w?Ta¾RZà*)ӲЉ9w -/Ö(ŠAA3å‹­œ ·"¬ßs7ÐÀ]bW:ž¼–{àù÷z+Ü 3àP»ÕQÜ”«Ä›“„*Ñóèh¢mʹ)LKÒ¹U-€j´×–³ý˜Þ= Ä}£âÿ}‹žÞendstream endobj 582 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3341 >> stream xœ¥WyPSçÚ?1p8*"µ=~xÛžC¯¶ƒŠµ­Š—*qÃVÄ…%!ÈFbX OØ‘M!a1 ¢RŠÖ-µ¸­`½WÛZ—–Ïz{í´o:/¹' „^Û?¾ùf2gÎ;ç}Ÿí÷û=Ïá0†àñxä²ÀÚÞ¦[_åY_c}Ÿ…ã­G~ówÔ;óÀ™Îů½´húæ%T0 \ >—˜š¿L*KPˆ£DJ÷P¯w½"¸Ç÷9 Î÷tŸëåµÐÝ7V G„IÜÔ"Al˜’[ĸoFˆÊ„¡#‹EJ¥Ìûí·Õjõì°Ø¸ÙRE”ÍŠ§»Z¬¹¯Ä »‘î+¥¥ûš°XûP¬³‡žË¤±2•R p”F ‚ <$Òe2¹"N© ‹OˆŒ£Dâè˜Øé3fzΚ½ýmͼÞ‹Þ÷XBAÄZb±ŽXOl 6ÁÄ&ÂØL,#BˆåÄlb±’ø€XE¬&ü‰"XCŒ#ÆÎÄÂ…˜H,%\‰­Ä+ÄâUâ5‚!ÆîÄt®”„¡$>å¹óŠyƒc6ù‘ÿ!ÿ°ƒ‡C«ãÇCä8²ÕéœdN}TÙX籑cÆyŽ»8žßéÌs~ß9Ü9ÃÙä|w‚ã„r—B—kßœXi­u±Ö‚³ð~èEk{ùV?ÔE? éZº5q§€iÌÝÎ,!“¥½ÓUì§Ø¼Ý¾Bï‘•ÐÒ* »ù’?ö·8Q·–ÁqÑNÉnW£m׌Q»HÎ_¶]±ð>ïE5œ?1Š¡‘ë¬'Ø;ÎòÀ®Øu`r@‘+ƒ#°ítóÁýž‹W¯] œ;'ÈÏåL¤Y¬`áíEÇûùÖxë-º LѪ¬Tq£¬ÙfZ žŒùø5¼ ¯BcðëÈ 9Þÿfà  Ò³cA®c3ð„¿ëÒ€š³ðW4 Mÿæé·µ_k±k [ h€ Ú¡®Ææ+,Èóy}ô½|$ zTÒ¡dsì‘„OBüÇhÿîOØ!4,Q"b¥JþP»AÃèÚ³&ÐçθpõÜïÌõ_å·<òŸ§»Ç ïp/ªæ*ô‘•¡k N(u } Òø—ù¦'ž„'<ò@äãŸTV²8r˨’û•M\ŒR.Æ-¤/zJo yѲ¿¼÷𺥯¿Ó'ˆÆÝlá¡\VJ@ÿtå[D0ùÂÆÌ  êŒûkR»¬ˆ ÞÂ6;µf”Šì@j†ãßËþ›ÙW¨Úîóí ß° =¾Õ×úÆBÊìÔÌFP‰\Ë4^ÒMGãÊ3؃»³Ÿ&íß};6S1ÑÌ5Æsj&Ó°»L ””jÖËI²–ªÊâÆ椨 \ɽë9ÓWÅF4( gU…­.ƒvjKãÇùb•žÉ“šFƒ™mò©‡föe­²Ž¡Ñ<;;ñ¼’ÕVª™E œ’d°3ÚÖ×XCN½!ºþíÕó½mrHKRë¢sÝ–•(_0×X‘‘u =T³?ˆGHÎ÷Iû@S3ƒj^ü^@κ"¿Õv´ð@'Sk€j ú_ÏË# ïL/Rq~|Ð!ú« ¯°ûÖ·`©¤6¡~osÑgLc~5”uûØÎ5,^¤Ãn¡0Zr5ðqy?13õb3´ÕX­-2HÒì‚âxÖ÷* JØ¡ŽJÜ»ZÞzôÄO‘«žµs夠Ms¼Sçiûñ­ÛÑçt- ‡¹é[`s8£+ˆ?Ìùî&5pýkç°¹Zhc±ÙI¤zÆÞÖU bÑr§¯;Ž5T$28ÑI+yVËëÿ§-\p Œ¿­éæ¡.½_P7 W’V„Üxÿ¼œk£ÙªŒ¤=™¥Y,r{§30–ìòWm‹X“‘•ZJ[´ËT÷u÷½³Ì™»ûîÃu›Z­ã® êk|týNç5è-`¢J M$Q†L`¦]H)ÖåiaŠZ“ŸZ˜ZÎþ²áõÊT=%¾*ÉPZ˜Ÿ_È ¢G§ÈõÙ” µµA[‰)×¢k`jÒŽÉL‰õš<ÛÄ6Tí­1$—d峪 ŸŽôÂ_¾p«+ç¦LU£Ù«ÖfçädÛõ#ZÔ‡s¡©úøè 2Òˆ!ËCûa!¤²˜A,Y‡…¦2˜Å¬S÷*h‡rq+2 íÜæò¡™ÇÑ8ô2mA|Ô’Gg«'js²@EiªjZžžAÝÂÎÐHEìN¡IÖ^\¬×çÙÎ"cï¬Õ‹oÏE`w…qgcͰñ—ùèö%º=Æ-”ÅD ›e-í¦æ›•ÏÌøK¸J¯ÛêÉ·nûÍ™.Ù z(¦êâ«â´ñéÙ þêw¿Œ$nŠfNQÖhªëK«Ë ™‘sÃEúm =R“ß9®Aší¶ ,¼›ß£LŽ@åè$ýôÓ¬_û®|IÁg"ôyzЕB^Þ½ò €jPåqJxÞëÑKhò½‡wφ™›§‹/s$¹µä2÷—fâêbkŒ†ý¥9eÙÅL«ÉE@]ë†KSÂ#¬<1!74'R§ÖA,e#ö"êîE\D? »t÷¾+]p•º3ÿ6vÆÎó/\yekwãﻼ©éæqwœIî?¾»ÄPÍ,n¡Wu~~Ò|¼¿ßºycÐŽ,¾ààpöò…/ÎßûîlКÕ¼Ÿ!„VØQ²ò_„ áðgÐ=#ÏóÓnq:`OkÅqÒXMfŽ&â‡hUûØŒ/ȇEɤ¢¸JÁIÝ¥6öÝêãµ[7ñ­è1]vˆ#D$$³ø1™ á!(cÑSìIWÃíQÆb+™ÅQå×ôì/á¦ÆêM4ìM/Òc·{ሟ¡ßh©í:Ú¢ãxsq!‡fµ'Ë SÎ_÷ÎfӂŰVUz^ö<±ìvPw_*2ì*пïÑÞÅïOÝù‡FÊ¡¡«üÌsWCu;´R\ÄBì¾ÙÝs´÷í.Ü]Ä46ŸÕssüa—\¬ŒOW¦°Ø}1¼á”::ÀXËìÁ+^œ3.Ì8‡©óX‚øœj%endstream endobj 583 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 544 >> stream xœcd`ab`dddwöõõt²1UH3þaú!ËÜý;þ'ÃÏ`Önæn–I?– }/üžÇÿ=K€…‘±ºqÂTçü‚Ê¢ÌôŒ…Sƒd a¨`hii®£`d``©à˜›Z”™œ˜§à›X’‘š›Xää(ç'g¦–T‚µØd””Xéë———ë%æëå¥ÛLÑQ(Ï,ÉPJ-N-*KMQpËÏ+QðKÌMU€¸TB9çç”–¤)øæ§¤å-)Id```ªb`ˆbìb`úŽ…a£Æ¾ŸÜ¿ã·Nÿαxë¾­Œße¿³1ÿøóƒC´fwo÷dŽåeós+²ê³ëå:Z›ÒÛÊ~×KtuÅ»»usxwï_pdùå5÷ä'Μ0½{Ç ŸU¿™ƒ‹VÍêž1¯¿{îD¹åÏ÷/\ÜÍ1qZwIYSIKµ|ÀoåîÌî"ŽßìïÊ/ïZ7gú\¹RG»î–îÒî¢)+çN]Ù=Ÿcuñ¼Üج”ÄÀ“9¾s}Wºü]tµß'M[¿oÙÿ}ËVÆ=ßÙ¿ïýÎÎüãÊ Ñïöj»m]´“3;È™þ)ÿmÔÄñ[ãŽë»ÓOV¿¿&÷ô;÷ŠïÝ79þ°üfgþÙõGoÚ¶}{7Çþ™Ña5Þ5Þòuá¢Õ~åÙ¡ÉnñyéÝYÙKî™ytöy>9.–Ê|N$ÞÞendstream endobj 584 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 548 >> stream xœ=ßkRaÇßwÇ_£a+t[z. †ÓÁ(#„b7%ź8¸Ã´Ô#úÚ™¿æt™§½ìÔR›N篤 XÐ]RÝ] ºî6è/ˆ÷œìæË÷yxžçû| ÐŒ¡Îëóß½|ì.HÓPš“ÎQXåŠ\Ôâ Oh°ôí,Îüi’šZÓyqwàåb©xh%ˆè%ç‚3 Š‹v¹Ý—féy§ÓM_‹°ñP€‰Ò>ÙƒÔ"Lû¹@ˆE©ÑÊÕ B±+ss<Ï;˜HÂÁÅW<ÇWfi>„‚ôm6ÁƱËôu.ŠèL„¥GŸ:Fêå"±$bã´[fãQ&¡úP⡚ 3H chÀÊÀkpnB ´*²Ú³ƒ[àÎK‚Q> üþ”§)ù&áMÍî÷“8c;ú®Ë$1B=Ü´É'Eìú;L)â‘—LMÜC'3Ö¿N}'û}ÜkZÒ›ý®4¥Ž­¥$1›ª%?džf£¾×.<˾°-¾M¼¼×!ã_̱]­ˆµm±†«†R;bUÎÛäâVëé Š-)œËŠ9C^ßPìŠåWq[ÀO°%“[K­ÖÊ»máWëŸyeüŽyCX-n…’PÀECª±Ö¬lὕèd•-ß*Öë­j§V~·¹c-ï „÷•weýJSCJZ”gLd¨;AÿsJ—þÞ²‘G¿ué@þGSì(endstream endobj 585 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 715 >> stream xœ-ÑKLaðoi©«© †F*²ì…áa¢5$š(A*R4†J—²B,[ÚòØJ¡¥íWv¥´–-hAŠXš/&.†=úàâ…<}‹â埙ÃL~“Á€: `¦©­¯¿rf¯*– 0éd–T¨‚r»dÚ-ɆZÔª#»w!ûQdÎEÆ#@…a¾Öfw3´¹‹%.ïP¢‚¬¨ªª,!O•—W‘5Š¡;ŒV²ÞÈvQ#«4=äu[M±îý‘ó],k?[Væt:K–¾Rc¾°·¥„tÒlÙLõQL?e"/Û¬,yÍh¡È}gé~ÖÚ,vK1d½ÍD1V€š¥ïŸà&¸ êÀa­œÔÀÀ±_R G²d$Íkt1‰!ÍOš— tÓ$E˜JpÐ]T¬y!'aX¿àŠ zzǺ½„I.Ë–¦†Bãÿø8ýüp&!¾£i”øØQzôM«Ô'tà+*œåƒ¸ ßã'èêæö6ˆw†^N‹pâá“¢©IÏ ¼¹Š!ÿû³o*´³«Ö-¸gX»µ×Ê<šÏ¤Ò)¢Aþ­bÑ!ÊG…œÅ× Ë†â69ßá¼¢ÈOFybiûÃÓ%ˆ'#ëô ÇŠnÉy+ r´ž³ø98€·¾5¯í¼Gùó¡¸{8äwùˆÁÖ{ ­w{ã ÉÉÄô²bš’Û3Òÿ¨ø6ònª”Ç«u龨`7ÓÓ×?ãJ-¦SiB¦ÿVè\Õ­MØÂB˜Ÿ€á¢D<2x¦72l·8:[6> stream xœcd`ab`dddsö Ž4±T~H3þaú!ËÜÝýóæTÖnæn–îÉBßË¿òÏ``ad¬ªï›åœ_PY”™žQ¢c`j $  --ÍuŒ ,sS‹2“ó|K2RsK€œ…àüäÌÔ’J°›Œ’’+}ýòòr½ÄÜb½ü¢t;): å™% A©Å©Ee©) nùy% ~‰¹© `wêIçü܂ҒÔ"ßü”Ô¢¼Äb ;³8hO3Ã2Æ.fFF­ç?:ø~…}/ÙÏø]ðg óÏ ßKDg/é^º´¨»Zþ/[uQwaá’îÙò|?…Ö.ø!5ŸñGêwEÑ¥•½Ý“º9æÌž5~ÍÄæ~ùˆ Âç}ܺ|êÜɳ&ÍœÐ=Ÿc~õ¬ªæÖö¶f¹ßJ†=3û×õL—ì?ùx÷Ž953*«ªëª:§ö´Ëõ4ô§öÔýVz*Ñ<¡µ¿¹›£ªº¦¼|Vëävù}eûÊöW¨&æ7V6×´Ô¶u—s”Ï®™3yδÉÓåfN^»pÆ”5 ¦O^0½«¶=£«¾QK¢jvÝœ¹³fÌéizÚ5A®kZûÆ®| ‚;¼Øendstream endobj 587 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 729 >> stream xœU]HSqÆÿg›ë(6SX$ÕÙÁLg_¢…–bf¦D˜åЃ®<=ž©›kmócsoÎ̦N·b!~&©I VVJA]%]„7ÑÝÿÈ颩]ÔÍÃû^¼ïïy)dˆ ef^ANêÖ#î'Ä2ñ ¬âÂfn„Ë!\qo³9 ó‘¸<—ìAr‚0ÝvgrÕF^_^!ÐWµ'´¥AI¦“SSSè£Zm*}†ex}©®ŠÎÓ  «‚K%}‰+Õ3‚qûät… T§%%Õ××'êØÚDŽ/Oßú’@×ë… :Ÿ©eø:¦ŒÎâªú¢Žeèm›‰ÛšÉ±Õáé<®Œá«B!‚Ž©LD¨e ,”‡"2)‘% ĺL&:UxÃ÷ŽâLÃWåxPŒQ¯+½½0è±A£æ”rÇuôA;tD{-½ÕVƒÉA•IÚ“J“Œ–Ð|Už•¦ÁÕjsôµÑâå_K8¶§×N‹Ëy«…âÎé ‹€´šÚ§»Ýîú4*Ñ„Æ,[“‹Mb˜z‡@n,†&®…²ùj&®))¤ÝR¬t8v¹àý›Ùÿ¦÷ú8?óàÒåœô¼7yß³ËÑà L9ÆË7€lhìr‡Ôvý…ôB œŸú_Œ`Yÿ”æÑÊÂâ,o»Sš[Áå´ýTZøf§-‘±kFŽÍبþ ‹]}kÃÝ/ÁOÎ13Ù±Rü)GR¬ä|ûñýù»)Êá±w¶@+´µ5Ûó3Ò Å@fÛ¾ŒwÁãUMg@=ÿt÷9ëgÙéœ×¨p¿5°õ”Ø–ýz3^íöÜi7xìí¦¶Cö}f—Í&2Ø«÷4Ù]Ðâ0SRäoÇß~‹ÆJ–æ|“CÝÔà„gù¿ôBRC ÿozþx–Ëqݪú¡ÉÏ•³zVðÖ OŒŒP**L‘â EèÅKJendstream endobj 588 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 937 >> stream xœ‘mL[uÆï¥^ vsIÕM¼½†làDÖ-á¥s!Ñn‹fc pBV ”®ô…rË¥í¥”[Úž¾Ã J¡lÂâ˜Ùp@¢chÇ4™‹¯1ÌÄ7ôÃܳ¨ñßò7ÆÂ—'ç|xžóürHBœC$™«¬ª©SlL»ÓÏ‘éüœôó"ÀÁ|±-Ó»òD'Ž®—mGíO¡Ö­¨q!"ITMV³VÓÊ2ïÈKåMYÙÇìS(Ê‹™ýr¹‚yU¯6k›T¦JŶªõ*6»´15Æ&­šµnZ¶²¬éÀ޽Ǖ¨ô%F³¦r#¥˜á´l+ó¦ºCmîT73GŒ–9®Ò«™Í¢%›ª4êMVmfªŒÍj³ ñk¯W!ˆâE¢„¨'¶dÙ1ñ9y='”³öH2¥–Túß™¾¹&BW3ǤQOÀÕ£ïvrtm»Æ 6Jû±™‘ÁmÃ[» ¬å¼“+ûe‡¼à¥„AÄ>}œNÌ]Z¹ð`äöô1„©dÏ•j\‹I\ÑáyÃã‘XœNŽ#çÆ¦o^~ï ":»ŸÆJ™*×Ü_¯‡nJðû’ô·¹–ŠF,9Sæâ²Ô>*Û54ün,‘¤‚Q¿?ñÑ2*L¬R¨;wÆ ³T8ë¼<Tx\”q̰ˆvÞûa6ä ¹Ç;ûh›Çê±¥·O&c‘¥À€l úéR¨(<PQúí»ÝF;xŸ×¡m)ÔËÙ”$_|·ö÷ÌÓ r]µ&Jç§W¤_ã//–ÞÁÄ€#Ø…0øýñ±Ooýöº„V­8Ghà1Á@ œ'hÂÍþÞn¨ùÕÅñ „{yÎ)ôÈL_Ü3å™…+àôÌ2úq8Mf›D)? »ÜnÁí¦±_?vKñ®£oíÐ~e[hAƸûÖG¾oØ™=PßÙßn/¶à={0ÏVë*5à€ÓQÓ´Î*œÌ>\À_>;Ó}!|î ²©•k,£]3¨ˆ’ «88±^“ Ñ“ó"T‘©—ŽA¢Ó]Vú¿ýÙ€›˜„ñ8-¡Ÿ—'ò'ˆÿä·³hendstream endobj 589 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 657 >> stream xœO_Hq¾s:c˜J‹¤Ü]dFáŸ)ˆM"ŒUR8«…‚¶ÂkžîpÛ­ynnnê6Ém?§Û•º¶é´†‘ehYhF‰)Ø‹Ï=õVB¿“{iîåãû¾("ÎBP•ª5šëªv†?ò'³øB‘Yhâƒû ™˜ÛWäîhx[6ÐC!ï8þ!$‰ ?OA$‚ ðIv:À"Q0õ§pO"Üìh_€çÆl/|0…§àù?õßjmÍêp×Ú½ H`3º-Nƒ[ †0/ççÆCádX1µ;½0°— Óå º>|Ã('A(›_^\ØÇ)î>#ä›pZKšÚv£w—‹„ÂÃa<‡?4âÍAuÝÜAš/’ÿ–NNdÖ9ðJ鬑Äû¢ŽNŸÙP襤TÚ“¾×7&ñ_Ò:!å3pÜZ¦W÷¾Â¢±°Ÿóx‚~ç Â¨nni˜½?úzfdb4–nëHÁíWp;…¾ß‚oˆøvÞ'ÿKÿ+Š…RaQ°ªg„Â=X KáÈ*„-á¸<¹;½³´õüÝÂÚ À>VQ7{¯ºêqo§¼·¾§Vå¡Nßp`­îÕïñØ:ž£8,®Nʲä?›Uæendstream endobj 590 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 401 >> stream xœcd`ab`dddwöõõt²1UH3þaú!ËÜý;îÇë¬Ý<ÌÝ<,“~È}ÏüžÎÿ=E€™‘±ºq‚s~AeQfzF‰BŒ©A20T0´´4×Q020°TpÌM-ÊLNÌSðM,ÉHÍM,rr‚ó“3SK*ÁZl2JJ ¬ôõËËËõs‹õò‹Òí@¦è(”g–d(¥§•¥¦(¸åç•(ø%æ¦*@ª¡œós JKR‹|óSR‹ò+¢˜YÖþèàûñåwÜæiß9–mþ!°™ñ»Èw&æÏpŠöÏîžÐÝϱ¶`zYX}ta‹\¡rmH]HMˆdWK¼¯W7GBù’]ÇÖ>\v^~ẩ³ºgsìßè©ú[¢¸ff÷ôÙºgöË­ûÎv´oj7ÇÄiÝ¥¥ …muòÉjå!ÝQjwrîÏÞØ½r‡\©¢£­uwgw^wñÔEÓç/é^ɱ>fqBVjRЉœ[ßù¾KÞúλRŽOŽ‹¥2Ÿ‡“aÁ˜*endstream endobj 591 0 obj << /Filter /FlateDecode /Length 8302 >> stream xœÕ=ÉŽ\Éq^.BC['„>VÛSåܼ@’5¶eÈ" cŠl²‡É¢ºIÎŒ¿Þ±ä™õ^uu“3#CXó:_fddìï—j§/þ¯üûìõ…º¼¹øã…¦§—åŸg¯/ÿéÉÅßý§6 í²ÊúòÉ‹ ~G_jové2ú¸ËÖ_>y}ñÅæ7W0eÙmÞ_mÕÎç£Ù<‡§A[óæÍ• ;§­ß¼ƒ‡*gŸòæ%ü4ZÙàï[k ¼¸ù>TÊä¸ÙáC»K›_ⳜO›[øiU›Ã\)(£ôfÿž:åUÜ|ÆExý_žã›“õÀŸ6‰^âŸcNÙoþÐßú-N¥ƒñ3|m[7¯i^e´q›=OÜÖ(¯ 0~.^½¥èœŒœü™€s‹¿MÎ)…Í焪ä"®Bóå7¿»J­ýfs´Ãä²I› ³Álö¸2q§“Áóè£ 4â®?þŸ'ŸÃ¹Û ݆¼3pðO®/6ñêÉï/¶ÎéË­3;ç¼ÅÇ_lž\%  ˜n³JGá¼Þ¼ê;„•]¶¸ÈFÿôj &ÙÍ4²ù€@el2»è „çD6x'Ï(Lyâæ+^³9¼Àß@MÉmmL›÷òdÛ eTp$HšZ)ø=ÃË>â O´“ƒEíMÞÁCŸ’‡·^ÐÉDT{K++åð”`lŠÊÃ!½ÃÇ)çà#­§aÿÊ ‘#6M²tL¸¶ƒø" }Ñ—}«ÏNWÉÓ5!퀲ø|¿(è¢ Ò¤´N‰AJŽäº¸Aì[m-`CÐÐf¿ ¯ßÒ^²wA’Æ“]-Ñb™“]®Ð¾íÀ쟡„ @çÀÌÞ­T#ƒìú†xnçåܘͥ:õ«ÓL‘v ¸ÀÕÑ׋ø.AG Ãɽä•ë4Nc&îÛ‚|äË­¶;ïyzÀ¨×¶žÊ–‰ž÷$M²3@ò{‰hÉBD°åœˆY|NÁ[<[œ0ŽÄQ…0À3Á/@UœØÞòðV:ÙÃúdóæÐ…¯<Àk^åü^Pñu²tÚ»· ¯¤M\Î*¸¥SÐz—ÊŸB4I™ùZ§,11þZ´ÙÛ¦AÞÂæ ­"•ßÁö´(è¡Íø©Ó]~wÒˆur`7ÿ½é27ÒVnÞÅ]4sÿ¼É„E!¾SV_ÿ÷Â{qÄZO‚ÊX#E´‚³>`”<øw›ü áÞ÷ãxM<‹´)dó+!wö<1ÒŸ–’¢¨ ³“xÛZØ•‘ÙÇ¥$)ƒ¸æ%O¯TÈ,£³U`Wá©]ÚÍK:àõQ‘tÜ0e$|‡7Ueþ¤T6]¡…gÝPÌ£&åû|é¢ y&¸“÷h²B…³I‡tÒøfÊîa|wÎÄJ/?9I\Àå°î!Z·3 ¯âùD x“D‹*>å0ê:iq²´%tC·Ÿ ›ñi[âàÅÔÐÿŽL(ôæÆf„³¼Ö–n|×ùI¬A³Á:žÍÂlVÚ’¼ºÙ*Yˆ‰$kމÈf.D‚)¤•`u&PIH(¦Ì‘ü*S³%7Jûã8%;YŸ¯‹!j¢³­Ž¬Éï;ëÑïüù“‹ß ¦Ë›;PñÑ^~Ò//¥ú2Dë%—¯/<¨è]0íÉ«‹ß®ºQ6/yQ h`¿ `qìF=¹_)ï2pÃ^!o-¼®= ;ﲆahö`ØHÔ] 7ôZ° ’ï^-êà/ ãáu¨†Y )UÔ@ˆlŠDÇá" ©ŒDéˆu«ÁŠÙü G0•¼¹²¶d¬èwW•á¶ÂkèlßÄ ¿ÚHwDùÔKÐBúENüjÛ¸´~xhÿi>õ€ ߊ ð?Ü?cÃLªŠ'”/O'ÔÝZôz@…þ³ä‰&BˆÕ Òm÷Ó zI ËeÞ‹ßÇ»qÆ%†Ok2oéZXH¶‘«zƒ$×òä$¹†“äêìÎYÍôú¾s]wð«í5Ú>“(ùÄ+^Ú—÷褄‡`«:ø1¡lÑ4ñFDU ÌHš]\h~‡2,g—&–|çg]$-jJ½óºû ?êûY€Êï4È ¼ŒpÑ-­€š7#P?êt»¶ H×{–9Þ¼Ênqók>mÞ›áH¤¹~t$ ÍïÝ|”+€®A¶¾ÔcüÊ;·ã+`~8`§Ë'ÿvñäoÿåË=XQÙK@ ™)´Ü?€ÔÍ`jƒPýÑ ,ˆ8 ŠW˜ðuØ¡´XItJY^’8Õíù_]€#ÞW_úœ réÛžœâÔôʨ0%@Xàø™QÅ~|µ 9¸…€ñ“Ïgãv."5ƒÉíM}gýåÅ"úOd&˰Εmdi"`[Û¾b»td@~G·´WõâQv椚s ÆÄšsÛ´“ þTi¦ýº£ÛÕw"Ì€å,ÌÚ;q¯„{q1f@O\°àGÀA¥ñœ-ˆª¼—\4ú ˜ÉiüÏîDôsŒÞH¨fÇÂ…Ü£7hŸÚ²I ûÂv\EïúŽ×EïÒQI¯ûkáƒiP™¾ÿØÐóê•û%µNña›@· …ßð¢Öƒâæoï9B`ÜèWOp=# uµAñ®WEϺä?­5Né¿=½Ð‚NN\*„òäñ p¥ýcôØï×ëêàñg²ªà%óp®±çq1“”Ö 'î³of) Þ—^ã•Â1×H°¶6Úûµ[õ›…ùývT’ÊR&<\ÁýI˜ëZî(=j«„VV×%gé©Oª<AOG ΙëïAÁ=À·øÈc˜¼ÚáN ŠXãi§1h@šÆx¾z5æS©× ¬Q"ƒë¨ud5é㺅?µ–Ô飔¤Kî~% vFÕØ•d}òh%é“ü~gNÓ ŸiíDè2Y}ì2}¯Š1Xû`ÅØÞ¹G1f}PfV®_žv6&'4V‚”¤_ÓŒîÄçwëú}l«€¸f¬tm$Sdºs¸´»ìcÒB¢:¥My%)ñÞóâBeKš±¨ô²ñðbøÕ£h¢þjhÀ0;i-ž±IY¨©uq‚ÀßÇ™ã¶íN›Þ™·=†ÛFY,} Ä#d•1ÁÂ^z bTÀ4…àÿ|°”¥±sp ÞG¼Ô¯AØ‚;µx˜ÐŽB@¹qŒÓ~Ž%Y&K@ƒÃÞ¨ì¯ç“œôdÜ`/8pFT~°Áñ±ÁÌÊ÷É7LsðéS§lÀsB¹‚mô§Àâ/ï5OÔ#ÿsq--“öηåø<ÃËÿŸâÁk^ôhÒ°˜höÌ£ÄD3f¤˜x˜5³f´fô·q«¦MP .ßY|¶Ì–OËÖ'’*ÙúØŒÕÍON{7hôÇždqNÈ”Óù¶ÜlœcË B‚E|P.Ýë ¦÷ìqyá^Ÿ<â¦Si§T¹l÷”Ï9Ñ 3 †´N™Ó‘¢ vÈìáí½7›1ßÔÙb…VAóZDn+™Ÿ³|Þô7œû Ø•ÙASÚ Ž°0Å ñ˜VšY¤&Ÿ—HRní = Ur .3¬'aRFù[ÍΤ&dìâ2þŠÍ:¼dÏŽò¨dˆ‹ó¨½µ«IÚ"¥JŒs¼¢œV0›Æ{ Ï®¶`:Œã!á¡{cüZHíõ€î8$eíÅäIsÂP ÑË(§37e̽ã90…ëAYÇ}¯…:)UwÊ•ÀàJ· SÓŽyc'’®ªåÜ2%˜‡¥ YáGIß=!¶  È%˜ ¢În~-Çð›Ú§)‰Ê*xÁ5ƒ÷Þ¬èrI'4§„¶#’[)ô‘Nd=žÊ·öiç­oÂvηæL©’omÁÛy@Â5å­'\ƒ¸NN¸ÞZÌ>ˆyÊØ’YÈ%ñ:Æšxm'^[ã0#„X±äfÑ´w6‘áh à¯h€0¨6?I>k,¼ÅãOÐ!k,úŽG€9D¹mô¢–h—1oF{Ĥ8°³Ê¢‰A·5S­d^ÒQÈ“{Ñ NæÅmÎäPÁó´º$PÚ_Yþ˜ÿˆ–ËÁØ«6ˆá##•–ICsý¿¼]¯ZÖ¿6qb»CK| PÂõ$eÚÏ—aOÑÉùȨhøŒwštMC,a.Áï5)ÀT²kiV%¯PèÍ›Jki•ñ+bE6óÊ)ÜòdQ—¯Rúq Ç"C¡…wk”¤Ñ·E9‡ûgÎÌŹX`Ð×Ò¬AöqºÕ°4¦’w<8S<%%È^ÊI¯^½ÂÆ\ÚUÖÛóO ®IÛiÏé‡.û¡(KTæˆéö·< –ÇÈúÁ?ÇÅEˆtP‘꾜Qú¿"ÕOV ŒYÙ­¢4•Q‰©¼¿#+NÖÔdC‰_WO|~O"Ÿx*<@¼‡<ÐOL­§¼þº´$Í÷¬:mعÜâ?ã¥bMD^V%“Ç5Pö·ªãö2EX¾yÍ;5QÅcl#z ý±íÊI’\Vx2%ˆw2ª­³˜pFæš¼=$1Ä…œYdN…1øðè+\×ÙâƒïjÛ„§Ó)MÈÒBÀ1pqQMEg4¶§çaœðÞ¾™+š[Ìw\^X-ã “TO’aoÞwmFUqtSÆ>µ8æ¨rQÆ–UÀ .vŸs‡=ÚO­3wÛìd¹Ä´’1@‹JÄ [–òÊJÀ½êmJëASU—‚òèÝKV­$£F³ùˆ5€põ(:«f¤:üæªé@R¤¬ãtçX¼[‹É9&MŠé,“E¨ÍnTtðAKmµâ„IÞÛ³œ2àOI‘…%!Ra®˜ï“¸úw<µMþ—Ñá½á‰|@$aLÁCl(: š++üŠÇô̸†ì¯;»þžÄLvÊ­iª‘_ëÔ«Å%ðwœì9+$tWÙäëNžÇÁª?Ãã‹qÁU×О2Ź܉%ðn—´p!}‚wÔ:\Æ"•l?+戲Ë‘šŒ–êh€ ó~š—ç¼£út"7¿À*qƒ„òþU7Y %5+¥ÑÒ`®`m0Ä´û;†á«+´Y}Z¶ìÐf ø^l5¥ì£I „ PÈ{ÖŠ¾±cµüÖê;¯yF®élô&J£étMÜÂEclõJ­LÅ€òÃã/›žÕm;L2UžÓ?zß-Ö&ͦjŽ[­Ô½ÔF؇ ®r8XFþC±ž¨–ÕžÒ”aÚZ£E¾”—%T¨ÇðAÙ€¬fþm×ïD¨o?7[¾ß^Œ)XÞÇ$´gíµ°‹2&å힣µd·ä86º@K÷§„dœ³v\Ñf $Ÿº>ìŒï¥™'kà[(£ÛJKY\ûB¤¼™mw %RþOçÓ¨údrгP3tBÖ€õ²÷õ Wñòþ²FÍ] $É‚»«!Žd-)ØÃQ`z$Mƒùeª… EÛw|vÔwc¦Ið:£^¼tÁðUê艄E·`]ëÜR¨6ÆJ9µ’ò¬Pm;Ç©Ù1¢7¦DÚc1Êž‡ˆÕ¥Áñ„dP¯r#éô60vÇ‹cYùJU'³"Eî‡0¼‡ fósÌàùxh.zýÁM30;÷Š€?ñ¦IaŠ”~À @{E(×FéŒ×ñ=T .ò!i=DÜŽ-šäÍÑc2L–ý˜[žþ?<Þ“( :8¹ ñ„ pŒ1MæÚ`¡QdJ{ôÏߊ–Z¥UV\-nlXÂÏ®é—Âm]o½dʳÜx¨1ÏK¦ñŠåD…nõ½‡!í+ÙØ¢Áý©/¥Rªû¾.©U:[ñ~ÖìÀÁÙ% Ìü…"ð3¢ÜC\ Jƒë²3À~掩Ü4ã5î‘ñn ¢$c/mÌðo)äʯÛ)-:WÒl»«gç¥z6¡Øgor½jA•R|cŒ@±çqƒ¤^+ͧŽ<(ëh—cð@¶ºyÎK!ìƒÂA)c³ò†ÚÛàâÀµd(p1øÊ­»P8S÷*LH ¾hwYû;Áú|sK•Ùw<“ Þ)’?Áü&þ|¨óÞQ˽ué~Š9>è‚L¡6êðÉó%îàyR?YüO ëÉ÷À§xI>†2áˆl6aê›Óˆhm¶âë\wBû{Xĵl êE‰m¡®+b¸ÉÇJDb/B87rn’i¹iÎQ ºÀ&$¡È—NˆL±ô„mücÓøVTö¼Ê|íSúÌÈ w]„ÞìˆuÀååŽw9Óx nG=V„õ08êÑRžýzÎKƒZý6BZí16“!D!­hnÀ"F8H!Vïvgg†jóæ ©æØ” ®ìì(„òõw92AŠL îy¹ù]L=ªˆÞÁ®1A^㬴«âUô1Û „¡œàŒ5C6_wT)È´]àí«Šhôù…'Mˆ¶œ0”,ºêqê‚6á °0’,Ïçµîøo¼aÝÂ΀­™©̺°0œcnˆ/ê¦pÕÇ¥]h$P€ÈѤN»Ð·qVÎG!8lõ†nÝÔ›ŒÕÐ$ê’ÝDxAcNê¶X°^SåciÐ43½9$ø­¶\¸=\mðó‘FK¦»K6µ(°!.½óž¾£4!Ä É@ÉÞvæ}Û­¬¹ Z‘ Ï»-õ0TJ îævP´F…>Ý~›gHQ=º·.›-5ô|r:­tœ²`YÏi1RéH¿ˆRÁÀGÃq,fDý(ÉCͬ°…רà×FXsŒ¦ÍÇNAé˜ð±ƒˆÏõÜÉzDzXÈð—ºòy}ˆõÇr+<‘¢zÍ» :O±5|:›?",€“Ye×ýóãl/N™uw@ÏÝh&O ‰4ïaÜßâ• A”‚Œü ý„¹h8C÷‡ôDØ o÷<5G™Øl4º ¸ëA-˜n8|å¼®¹ƒ[÷*ÆêOyí˜ñ`vÜóO5™èâVñ »* ñJ öc9-ƒs€ŠÑÈ?ˉ¾™0Çiᔺ’Þ$|M8’˜9ìñëS(u½#´âýFZ¡Ûý;†$«éäëÕóýNÍB²Ãܲ‡¸0>“4õ­\õs ÀòRô®˜]XÂ(̮٘¤0Ñê:ƒ’`§!ëuíܺrS_ÌÆÈúÙãFÜ¤ÐÆ(Rxh¢ÌahìL.¾ÅʤŠ_&&7‹ïf°¦K´hL+©Öì^ªÆ!=b±æƒ#•æÈo¿.‚25!­“ºÌº<´Øsל‘aÒ ìû_RݱϻŽÜ?ëVòaÙð—®ÍýT<¥/ðÙê3ºð‹±i)gû寗 ¦ÊçA¸‹ÝÝ’7jÕ@É»~S(mÉ‚¢8Ñ">Å‘¼ìNÉi+ÏÂn9UrtAÈÑì©„†bÿtМCY aó’Ù»6ÿ¬¤ÖëþºÁû"+i±ù’ D¥’°½˜z¨›é@Ce”Á{<ý5˜»nF‹ïD´µ¿æ×ÚõUk“ºäö¾*ƒEg¹61š.פ ¥û›ƒˆEஆq˜_ §ðD¬Þ3L&*4š¨p~jÈÝ6ù.I-9>”<à´SMÞ¯t¯¹Z|::HßúÓÐàüHeðžG³iÈ î"Åx×Q/gœà²®»I$Iþ ’ VZ—I0êC¿žez ˜ëûåñÎ5Ýo/Ž^QÊ«±ÉEÑÍ¡ú<‡Ìóî„E(³D £=F;‚»zHFiZ÷;ú‰ž'W¶c†HyÔ µ|5Ham³P%õøUña––““EfЩT­š4Šô®ŒJÚ$ØLƒ$`»ÃÒ7r&Óéþ´m`©Ö]û€Qd@Pææƒ/v?.ŒæfN[l²¯ík|S‘ ïèÌ"xaÄ”/Ó.õQÑ|¬åÊo®½ßïpOìµ€ê¶ ÛÔ&ª€E[‚h-àvÙ©X웢oåô¥¼81k‹AU ­d0†jÌb. °C~úÄÅJÍ»×ãk[TÉ’÷õSÂþ&ç3N¶Ü*_8Pú—Ã1¸Ò0Cì2!ß a$ž£®jc‹Ǹ´vX>DOÄë,îh‹]0b2cÏ›X:ãü×É…åÀ-†—ÀDt~¥‘ÈC½ÔMÏöþY#)&@*Ø‹”o¨©ƒIh|ú^ ÷u¨˜y*Yêu€È’肆)c1ßÓ솚ÞqŽ`[šÞ„·¡ƒ4Þ_wi4F`íåkðV‚‘ONuJ˜ ûke%o$1*Ênhe §{ÈàÆ#7=YßÂ1×D0@B€¨Àrãï÷ =P,v Fç€4³r˜®G%È.±KŒ¬à¤,‡¨Ñh¾¥+ƒü)´è¦/ˆŒf± ž²PöÂIz…1øžÖr]î¯!5·<Æ?‡„棤ĥ4iº °N—iûv™6Ôþó¾Âä&‰ké^ÐhŸ†ÈšŒ//Zkà J ;Š/°M®5¯1\ùðiÀOHœÈ¡)âì-3hÿŠG`=Értoo© d*®p9‘'¹ç)`q€žƒ@¥¶IÍáCJ27vø¼\ñå…1ÚÒ¤š>Z†û·D¡ýVk9RqôÝ— æh]~ßeò‘¿£4ºÅøSŽk"hއZ¿q-ùYËÍB–ö†_S­Ú1(åÖœ¯ñ.l|ìv0ú;²+ÁáEs~äc¾ÁÜõ¹Cgñž†µ\b‰ñ°£±ÒB|¹±`4p²DÝ×àð7\ä¯Ù±†ds"†í10@ RNiñ듺Õ@Èèš 1íš`Ã@¬€m?‡d˜ôøþ“Ï¢¹Ggh#ŠŸ–òÍì]ˆÇøÂ𕎅•¾’BbËÇ\ÿ¼ÈT ]þás©<Á«Š/|À抛›—=!=ÿWü*ƪ–/¹þ°ØüEÅØ™ŠÝgÑ=ç_Ñ`­O„Gp„›òŽË]b¹>%Ô¤<]˜Hw çŽnñË«EïvÉt[€Êv^rpáÎ| wÙ8g40mÁ—ëÐ^TÏQKÑZຣJ&½ë •ÌcžQr¥æœøã¸"¿€:2À;± I¬®¢jÉ5ò ¾§hƱDº*–ó™ê¹èoE ¡LI!ÒU˜¾‘Fý4Þ6-\ß,EdŠOK Y(㥥*5¶Sé­ ؘ.ÊéyTk·Œ SÖ}—2SËöæh´•™§zJ_ˆÞµÉÆÂÚ‰Ò#¿•;]UåÃB±×²%—Ͱga„?4ÇaŸI Ÿ÷€Ù¯Z¹Šdœý»¥Eø(ù#¢s,âãò¹¼ëÏ;ðà)i—ò¹ÂGäsyx汃cŸï ™-7&ÎI6}rìܽK»Ü¢j̱=9å‚ÁŸ TMmÀ%3ø5X+ª(4ˆµ×&l\þ{ÚS„Ba^¯nÃ/HÆâ…ukKÕ™tÍ›Lq¶”V`Ÿc‹Ô¤àòr' )ôi»@ÍŠhHÔÙ¤þ¼EKÓdëý"øÚsÉMù ¶¶$oŒ™–£.uå÷ò?Èvöx%MS8Ì\†4[Š!5˜9˜ö.H²b”1UNÁqÔeÑb{ʰèH—é89°Ý¿Š÷ž¯ü¾+ÃApü;¯é,¶+@ îAdrÃÃeÀn‰ÃÀ gI“ˆÅA(Ÿ“ÜêïúQ¼š{¨iÌš(õº16ûÈ»‚4‚¿Í+–$Tb­üÎõà±/©© Cl%1Äãi¾ì?KúŽÀµün$Ì`wVt|{+‘„h%À©èD–‘Ç&ìxSÜÿ|Ó gThÔK“hMžuŠ$Um”ÑIºµI Ô`ú!MlGYÆgôa}ò[d‹©®“‰ïLR°Z–çi:&j”«¹tµVB3™¸$/áI‚šÊ›”!S&TÖ” :Ø’—QHð¥XõYªšò˜ÿ æ.€=™¹sO"û‚WϘƒ$Þ«j ï©>(ë¬fËÒoÊà´|µ&ˆÄðrþœ­P_|MeÐ:Îò¡½%À—[E²+'8K9¼@ªSX¥ÃÛ=©kR­ÜÙcØ‹©ö˜bxúŽÁ¶#ÕÝ ä0&c2Q’Î@ãȢ<@Ç#Pr£oè3!Ú–vzyóû1%~æ>õOœŒSÐ÷½¢•È8û†7€·pdP, m—A1êŒBMt@Ÿˆ°š)Ö-â7f‰ëBÎÞ9P¤Óù‘ß­Àwýš7錛ϒ¬äñÛ°oì§zО. óΕo¥4 #Àj°ñ) 1`‰}„¶KÊJ×1™ î}¶»U0×”†S¥H—On·’WT!±‰#Ùõ]i6 ‚uñˆƒ±ª\ ¾–ë\¯-JÝÌ ü) ë³hû¦fâÔw›h­’Öº-ðFs/tž>îœÀÓKÆ’dyËÏÆŒnɪm¾²ü>dI¤&—¢Mƒ¶–L;I Š9-¹¢Y‘¿¹ø?„D{êendstream endobj 592 0 obj << /Filter /FlateDecode /Length 10516 >> stream xœÕ}[¯É‘Þú•üö©iè´*3#oô`¯µÚ «! ­-œáp¸#ñ6ä\LûÁÝqËŒÈêêÓglxWXL1NtV^"#¾ø*+êÛ»íî6úŸþ÷ùë'ÛÝË'ß> ,½Óÿ<}÷Ÿ=ùåïCl(:÷­‡»g_?‘ß„»ã¹ÝÕ\Ï=å»g¯ŸüñôOO±É^:œ¾z¿sïµÆÓ ”–Bï§7Oc9CHùô ·Þsë§oð2†-•†¿O)âOOÂm‹½žÎ$Lçvú-ÉZÜNïñ2m¥œÞ¾¡;•-náôð=JaË[=ýBªøóxA©·” Þ€.Ss-|C®½õ|ú‹ýê j*”˜÷ý›ÃzùšÛÝbˆpz†ç=ô§®¿q?}Ï ½Eßøs×Ï{ºŽ½·VN¿ã©jPé.Ü^ÙòéO[ÂÉùôðòb„ zl'í ¤Oyë9´HëaÚ2 ¬ñÁÄÿíÙïpÝSñËžJ?G\øg_=9õ§Ïþüä7ÏžüjÅŠ¶óŒ'fÔîw€³ŠCºK9¶óVïp†à¼•»÷/îþp÷Íçå'¨>ùú . @Ò[ÉçXïJ,8æp3þ­ !ž·Ô7œiùv¹Q_Ò¹¶mkw?âÍ~‡ÿÿg4ïß~Z#_ Zç-,j•zÙÐnäF·u°ʹ–ŽÍs4sK…ZÜq§ þ.ÏVn¨P+¥q€û¡îưåÑÎM%j©ÃîN9µ3Àl䱿ãïQ„{•„û6j·T¨Èç½àˆcm<ª@-ÔpŽû©O½àC¹¥B­ôzi ÿ·Ù“*ØJŠñÀ r>k|K…ZvÎû…±»a´rC…Z©p9è¸Ãlå† ¶IöŽŽ©Tmå– µBºSÁM\1ÄŒVn¨P+9\nÀxRÒX£[*ÔJ­G΃ֱ„9¦›JØRÞÒ~à¤àŒ>´¥ÛJÔzÍzy;tÚ¸Ò³¥›JÔRF§“ö[îœjØÆLßR¡VÚ¶7 þÐ/ÎþÜT– Æ…‹M0R™ï¼¥B­¤p¹i0§0"ÆM•/žÔs.[ÈL FPs*¯ŸÄ èó§äIp‡ I"IßÚ¹µEV%  {°JʹŒõ/"é*½$ösÖ_aoI’àŒvÏ’$÷Jf‘™XÒÏM% ÷Âø:.iç¦KåGP‰¤ˆ$›CêÒôF‰»:±¡H´;eÓ†ÆTE‚ÃA“Þàî-<_yŒ“âRI–Ö´YÒ¥;Gà òp,áŸÔÑ—ÚèŽ,i"in€’FSÍ’¤§µB=Ç…'+’vîÔa MÆ„XhÒ± Q%@h%8(i£F¡–kí «‹Ü2Þ†‰`7PÏJÄ Ò«H$IK %£›HºŒ«aÐL, ‘Œ¨ÄŽK.í yUš EERÏxó„·ìA­”Yë,‰‘­w†‘dg(iÔ-– Yà­(œmr󴱕JróDiBI‚ 2™b¡`T³H*o£”Š6v6‹i&YÂ[¬$œ¯¦ܬ$é·U‚†‚+8aè Î$cG8~2òœØØz"Iak²z•4¶vôHb+ÑV¨etðIzˆvKn:Ï-K ÛÆ kªƒ¶Br22=UMÆ€£ óÏ$6ÿLQYZ©ÍS(ÚÜ$AË%óÇ VЀÍ:i˜†]Д614l£ą̂µaû¸¥âÒÉh 81·ºÜ­…l¿¢í'!Ú,Ù~ÅßÊ}¶G¶ßЂJ2Û~Kì XRÙöúÞ1{7š­fš –Dú[i¡K2Û>9Ë.í ÍbÎP0³!Ã$IÜØÙvP¯„v …<ö\:¶ŒxଂF¦ß[ ШYš¡ ‚D?.´i{I¡y¬˜ŠwAI#˯´!£4ˆ#IÚYT@,ÿ.d÷ËOÝÀ7›Ùü­1솴tí•ìÞ w¶{#š+­¿›ô¯dönªÐ’Ù»é,| ?å5Ò²úeA{­}Y:ÚuY^4X2{gM2g&-ŸWKj•íÞ¬ #'Ûý4HªdöÓd1ÀPsVî™a“>:H̺ýÎ@wò݃žc™í0Ü/lû¶ #¥ÂËNE`ÛŸ{'ót¿ÝqTgD³Î% ˆMßÜFD“%Ó7×™#ñî'â‘雋ŠxrûæÆͱ雫‹hµäöÍFŒý8¹ÎeF´Úî½j`ã7Ï‹¨VÜþôκ¸ýéÁeŠÛŸ^>¢Ý6".»ý+"š-:Ob‰x]Ìa|\¢ÎnÆ. ÎdþÞb‚qfŒh¯Œqf˜¤ÀË g†R ¼%ùpKWq ɱe¶ ÛA*.´cÆ·Ñæµð© {D@I9{‚&°g HŒÍ¡”PJâK¤ip¨%]E>h)á\2BïBCO() |ò¸â…aø ¤†ÐlRÁJ*ï€ øPÒyLPÙ"²Ž(©s¸DI˜3(wTø&YÑ›ÂØ˜2{¿(ánwD"'- ZÆ6´#Y~ê‹×dt'Ƚp!s^%… uÂü˜È°ê*é´ƒ,]ˆä•\Bþ óǘX4—;t†èX£gbñæ¸ë(´+OÄÅžþððþÝý6y:G‰,†3/Ìb¬"¡N\(MTQimQÎ?+5ï3%¦4I€©4%¦´ëŸïñTzlÆÈÊ+ú«…»Æ™"+DÞsöú>lOïS@ûìýtŸñ:“ˆ'W ‡}")ñH(EmâIyz±½">hæ†*©˜yœee” Ç¿þS €Ñ–ÓRÉ¢U£§¥’E«EÚ6NI^§ná’ÓQÁ¢#ƒq:6º¿vˆ #HN$~~p•'ƒÅ?“/Ä䞸f (&¬è…E4Ó‘& 3 džj%¢¿F”óÆÿ¨‡÷L Ï£KÊ­)ha8¤þþ§o>|óÝǹɌ*À`Ц{â¥Näzz\–:‘‹çD#>:¡#-Ó!n¬ßœjâø3†`ï(BQ®‚¸¶£S§®¿~ñðæî×wæ Ûž:ºúmOãî¸vs(Ÿ ŽCíˆ~k¿P*ßhò¦µƒ¡=ïo)pÇ6š¹¡B­tNVî1 Nÿhäq/ž?«¸à˜1üÖ¨|àMj³ï¹îLäÜhäq j£f‹F¦Bx²Fn¨`+a »3ûeËJýÞÖ¡v¢àÅÝ )„¶ÑÌ j…ø¥~q«„¸wü·u¨â}.Œ!£TF37T°•¸÷܃8G×1xÖ›*Ô ‚õ‹Biâ||rS…Z¡Dk¯ëR·av74¨.Í?Œ¹½¡m¤­^ì ’ ó3mㆵ.ébƒ 3ÜÚ´Ü[*Ô ®ÕÅxq rK|CƒÚh`ÄíB“³WÔfn*aKÀasÏ“M>L况A„ÃÅ ÏÃJû3ýº(“¸£Æëüý£ ÔB«û2-ÞìÅmϧ‚)3l uø }Q¢\°fÄ˃Õ5‰'ÎÓí™cÌ x‹H’Qü" ÊÏŽ¼ 1¹ž\îÀAmLç(™¦€Ü+KSDÐ-K‘!š Ùå6‰ùäÒŸÄ„|s)RbB¾¸4*1#_\ª•˜‘—Ž¥Žùä6yŒ“OhXV—˜¢÷™_bŠÞg‡‰)zp dê²@–d&âè«ËCSôÝ媉)úêòÙÄ}v9/J„yiq"–žŸ3ŒÔ91KÏ wí4a^g ž˜¥çä^ÓôÄ,=K4•OÄÒsò1ÒýD,=kP‰Yz&”6HÌÒÓô j˜¥G?³ôÑQ(©ŽÃ¢è=mÌÐ{*˜¡ÏŽ.fèÁ1*@}Žu¢è³#f€úêÈ`†>;‚˜¡ÏŽfè“㉀(zf —LÑwÇ7SôÕqRÀ=8Þ ˜¢÷ÜEŸýÌÐ7G‘3ôÍÑhÀ }1¦ ˜ GÆôdü“°"è›ãô€ùyÏûóóÅqƒ°IƒÆôžcb艀4$0Aߨæç=— ÌÏgÇw¢Dè×I‰Â& ¯Ñ¦À}wÔ*0IïéW`–¾:Š˜¥ÏŽÆbé³§zXúàØ``’¾9Ƙ¤¯F*sôàxg`Ž7á_' ÄÑ{昢÷480E_Œ)¦èÁ “¯þ7‰\®o–Bb]|u½!_Ý@ÈW$÷êæ„{us•…{uÓI$ý:åY¸W["鉞²¥#–ž6´-/³ôÍ›³ôÅ› ³ôàM‰Xz²}37bé›3Hæè›3Y¦è›·j¦è³·|¦èÁïâèÉòmGŸü&c޾ú}È$}ö{•Iúä¶3qôD¼ÚŽ'ŽžˆWó ÌÑwï9˜£¯Þ¹0GŸ½"Ž>ûg{@$=y}sdLÒ7ï오/Þ!2I_¼Ód’¼cQ˜Ws¾DÒ{☣÷>9úìÝ$C¬JÏŽ° ÄÒûÈLÒ7ýIúê0IE“ôÑ! ’^8]E#@8ÀÌÑ7‡i€9zd˜£‡€Hú~&é»ÃXÀ$½?¿À‡å|…B5`’>;8LÒû£@,} ³ôÝAG`NÞ£K`N>: Äɇ` ˆ’¯ÇbŠú\!›ƒΊò+4°‰¢¥aâÛ=®FIÔó&Év°Jî•ÛÄø"(›>!PŒ©ºÃ•*Iüo¦ P"/TúgçØ0º—|Iœÿãqn)Ìà¡­Æœ_j™d²Õ©=º3•¦d*K2ï7%¦4SÒ©4%¦´ë§ïùç2è \#k¼Â 7Ç ‡O`ÐQs_4D•8ŽùH ؽ-´êК úÔr úÔš úÔr úÔ úT2}vt0èCÇ1è»Á8ÏfÐ’Nèú_ ƒNùzLŸÈ '4.†›#sã*É™ü±Nk~—1`Q¼:ÒJt–}ÍÐù ³m\k:¹Ø°+ÔñÞóðæù‹»_ß…cùcÈœÐ{ rƒú–Â%ƒ~CÙØæU3%GÈÜR™lóª KYÙæ«Æ6¯*MÞrXÙæ«*“möĤU¼{l+ÛüˆŽ9ÉÝ )¹šäß-c›÷·BlˆŽ`°f·•Œo^oF€¦ÇA‹ÞR1¾yU Œë$ho¨ß¼[Ü…g+7T&ß¼³ŒK=ß|UÃøæ]gûÒ“*“qÞõ1úÐ…q¾ªaŒónòÑ5çIÏÞR™Œó~Ã6Ãx>vSåˆÚÌŽò1Ø!av”Á²DèÒ¾þ‹©Pu&Tè"a*T$B Ê’(:B|²$)ÍÉħHúñœ,QºOxN–•å ,©B¦¥¹8]˜Q”¼óÉ’(,0Ÿ,ÉÒAa>YRåWÂ|¢$+M,Ì' <ñÉe]…øz² "âØ3ȽS°DïÄÄ' áQ#>QÒG÷„ø„Ü·Á ñ‰ÁZƒ÷DNúÑž(À!‰ŠÐž()ãN2(aîËhOÌv7a퉒4z#´'ÐiyP’“ó :mVŽ“YO $§ .¬'J0$´­¤'² å4™ôDIœ!™樃»bÒMèóAz"òzNO(””Ê/„ñDl¸ij Œ'JÚYÙL"<¡TiQØN(K‰„ÙN(8G’i)Û •žÑ¨„ÙN¨1Nf;¡ …ôj²PѰ‚ò–ÌvBEÐ{ Û ÄžÛ •(9!ç˜í"o”ƒ¶(6å?™í„šÂ)Û ^?’†…î„&'Í_Mº:¥ûÒÓÐÑw)M)t'éƒJ˜î„^«&ÊJwæÝ(—Étg¦™: †3.J…ïÌåÎJ]2á™·¾)%*|g&ÎTÂ|g Æ” /—íM¹•ð¾²°qJwfæTÂtgŽ’¿štg&²EX ¥;s„ÁŽÝ™9M&KèÎq*Ä•îÌLsx¾3§m£ð™Ò÷¬:ÌwfJÍ»’™Äwfz_K)2á;QRÎBΠ݉‚Á)ßé%Bxº1ßé›cõw¾Ó÷NøN?á;ý(…ðô3!„§Ÿ-!<ý„ áé']O·0JxºÅSÂÓÖWùNgÊw:3Q¾Ó™’òfmBw:{T¾ÓÙ¬žÎ®•ðt¶¯„§ÛJxº=$„§ÛfJxº¨„§Û­Jxº­Œ§ÛõÊx:Ï Œ§óÊx:£Œ§sBÊx:G¥Œ§sfÊx:‡§Œ§sŠÊx:Ç©Œ§s®Êx:,ŒçpÐJwšÿV¶Ó¹xe;]P¶sÄ ¥:] QªÓÅ¥:]0RªÓ,¥:-¦)Óiao032¢Ó‚ç :-À¢Ó‚ð :-P+Ñi±|ïÑ9!Áà9'h4§áŠAsöPšÓàÉ 9 Á šÓPΠ9 šÓÐÒ 9' ,§A®Ár,,§A·Ár¼,§AÀÁrL>‹\’¼§¡ÍÁ{"¼'K@™Ð®ÃR ̱7‡uñixxŸ‚™•ÔdâÓPô > iâs‘ñ9ñ:ðÁã´Ú„Ù²2JÒ™ä3INÌ$°¿‡Åqœ‘œåíª×®"ñ$§i™„²a!Y§é´¦Ä´,=Ÿwœ§¥¬¦Óš§µë«ï½i}&ÓIÏzþÙˆN—ë©$c`üÅ¡–†Þ¦V-œI9-•,Z=ó»eNK%^+ói3¯5$‹V"`½h©dÑÒ9-7ÆÏä;ûJü)|§ ÓÑÏ^¾¡Á¹oð‰'†Ý‚ëY`¿à8d)Ù¹ÿÑ+UÈrösÎ #œ¡paKÔç_¿~ñÝûG4'Ÿúßs™ÊW\œ7T¿ 7œ7¥+„hfžã»©B­ ÆØk€“ý–µQ>¬·¡€Ü`4rCå ~UxO"ªa‘Fý ‘ck¬£p6 ù¦ µ‚+‡‹Ž¢mÏB·T¾˜µSöÜgÂÄít´sSÉÊ«¬7+ô0%ÍþÜP±â*;Jpû(#rKÅÞQÙ«0º~ïk«\Ó°Ò*ûAÊàú˜™ÛJZZe½…¸³‘Çþn¥U.—1Ï¢ ·Tfi• ‹ÚÚ,Ïò¨‚•VÙ™¶?¢SÅJ«¬*è÷¬và +¬²›4šòYÖâ–ŠVÙ;_Œâ–ŠVÙ{@LCZuHnꔣ°€˜ð5á≲ò 2Gí /€É<©U ¥'IW>ËSÄ>aDÑ‘B¥G¡ ƒÛ£®„ôQW€| .7töG¥ KF¥ KF¥ K,F¥ K>´Ò„å'£Ò„å0£ÒÄLsF¡ Ë„F¡ Ë–¸Ð„¥S£Ð„¥\£Ð„¥e£Ð„en£Ð„ew£ÐÄLG‰™"Ž2–EŽ2–iŽ2–ŒŽ2–°Ž2–ÔŽ2–øŽ237U&,}U&f†­E&,E&,OE&,—E&,ßE&”&Œ1Ð F*Œ “w&”—Õ%Œ·Õ%ŒÛÕ%ŒÿÕ%Œ#Õ%ŒGÕ%ŒkÕ%ŒÕ%Œ³Õ%Œ×Õ%ŒûÕ%ŒÕ%ŒCÕ%ŒgÒòFEòFWòFiòÆzòÆŒqy £Î´¼„±k£¼„1p£¾„±t£ÀÄäñF} £úF} £G} £ G}‰É*ŽòF<ŽòFNŽòF`ŽòFrŽòF„ŽòF–ŽòF¨j} ã\µ¾„Ѳ£¾„Q·£¾„Ñ»£¾Ä$€Gy ㈵¾Ä"`Æßÿ†ùf¥¾„¿µÔ—ðÝ“ú~R_ÂR Lø‰~²¤À„ŸP)0á'] Lø…©;ʘpë+õ%¼ H} o&\_Â[’Ô—0cÓòε¾„³Y-0áìZ L8Ó×noh ·´À„ÛcZ`ÂíC-0áöª˜pÛY+L¸-¯&œ[Ð Îuh… ç^´Â„sAZa¹)­0á\™V˜pîN+L8—¨&œÛ” γj… ç}µÂÄpÏZ^ÂÜ·V—p^ªK¸ Õ%FÐÒ.Šhi i´´„‹FZZÂE,--a1M+K¸°§•%,2ja <µ°„ °ZXÂa-,áµ–°`> KXÀ…%&&к4Œ²†+FY 㬄á“QVÂ0Ì(+a8GËJe% +²Nª†¸FU Ce£ª„·QUÂÀݨ*apT•0ùP«?0êLØu& Ž:ÆBc#3Âà î(4apxš0Öxš0= MÐ…&Iš§bdX-Ìc?*HfËÊhu„ŸHÓnGÈ|@ñÆ3Ä«õÂhã ¥)0rVi¢©!ÿ´¿[F>ï4%NKËH8­)qZ»>ú^6]œµhó˜ Jø&ÃÉéªksê­·­^~/µ´Í­ ÝZjT0è$Kë§ø«§÷…€ØVOÿHÚZÃûWþNhl|©­}ðO祫ýýž‹ocÚN"F˜W‚/‹M¾éö¹ÅÓÛ¯åºi%l[ÅŽÿËRmœ5 œ~¤bã¸LõôÀ·{B¸yzç {ÏÊßR5»†RN/©îõ¬ØøÓ{ŠE!†¥X·/¨ý— ¯8s§ï} s˜\ }DÅTؼR §g(l˜*–te,_Z[¯¬×Ï©¨7ûJ¥ËIµ6ð…¼Ooe5 ø9ýJ§WÑ-ÏN:]`/È¡sâýÄÀÿ¸Üä_¬öùÛ§üNtŽ8ûTÁ|ü¥2P/¸jtÞÑÑòïó®fbmi™M‚'FK¬Ã†Ð)Rÿç$=8Kurêóýèô=ŠtpÜw)Ð^SEãâ•)½÷xzM+Óê†xE…Ö Oç;Ó6CxÇ–€Ð mò¯h«1-¿ûÊ~çfžG‡±1œŽÑ!$_Ž~ê~éFù=ÏqÁµ¹R:ÿí¹u¡ŠðëT±xÛí˜iO/D!áözéöÉÃ\É¢€ …ÿÙ~LˊɘÞr{ ó4šÒ×zŸO4â»*·Í¿Òéz´û´(4eç°Uˆò-‚Y„ŸW¾EUøy—E$zd¾ÛIØÞü–YÛÀy ·‘¼C`ë&íwȈ™úé?üð!c@…ÓÃ7ó£ ®…¿öÇ-‹kwÄÀ{”^=ð.ëèàCH›ãhðþ‘/=¤í(z`R¥9¸¶!H¡%Àîm[çù½¼|g—ìòWvùËÃK×Â7vùÆ.?Úå÷vùÞ._ÙåÙ.ŸÛå[»|Í—˜ùŒ>ðåG»¬vùÖ.´Ëìòƒ]þO»LæƒáÇ›’TÊi—©wÅâ«ùm‹õ ÷¥E4çrú;·¯þNĽó¿F±ÿ¾„¸{Ùo?ƒÅ%:)ñÈâxN¿;¼|w¸¿:\bw)–ÑB¬jE|ùÂ.ìò;»üÆ.8ü™k÷­]¾>¼t oìòƒ]žu]_Úå/ÙâîùÝ[œÄ5øÉî 7át|ùÜ._î:·…_JÝþòp³:…x¸C7¯ûöL ãõЈˆšˆb<ÿ|²¨écà sÏ/ä;3ˆH(ާ¼ )ß-ú~N~̶¯ìhzÖÎ}‡mƵ|šÒòiÊ0ãÒ˜ÄëÓ zB[˜jÒg_ЈïÇgd^–8O`zôÍ—H¯ÇŽféyÎs™9?aZè»9øÅ„µ?}ŽS$öq±ê~³#,}Ÿ%6µÕSƒ$ç¥ÿØL¼£jYX&ÏiiJ:§äLD¦*¿ÚÁC{ 1Š31Ì[‘/¡ÙÆ,žåEq€ÑMÑ„ÕS4«mÿ ˜•ç.ðï’6ɱr@t–(±™?$‰Þ¶ ¿·éPóÖ@“U~kwqâC[¢7ÐHŸýç'ÏþýOÿ•7X…¾Æ°çOç·¢(%à3ºK¸Oˆ÷íâJKÇÔ(˜ÉÖKW[ŒÅ£~‚éôËÒ•è÷£Ø‹ªˆ±•œ.R%IÂÂJêèòCwù•ÜŒ¼Ã­t|Ì¿”l¢eO× «Mt¯q w»q¼vß‘â;„’*øV|.…›}=å:Ú–E ×’ûö ú¥¢)y8ñ Ã¡,þ-g¶’ªÈ2ó‡®ÖT”[Ád‹~É ¼0#<ýÝ!Úö™¦h?šåõTK™0™Þ®˜ÆD@ïk»ãõ|uÅáÒ£†L´%X;Æ3‹é†'_®­Ô>Å#ªºÏiî€ JÌàïYøx/ºuKû¬ý°ï.á,q>Òš–uQ_“×?Û§Þ È|q¿ZÓ¬wŸ!þ[7¸ËÏqÏWsçþl¼ˆLpãJüHB¶ï%5ÛM°•„)ùÌNUT7CqüÍbĉÙüºÌú‹‹íÔ3ENgþë®–™¬»T˜¤´?Üz«SÍ»f6¶ÂgáX¹äiضÖ¸~¦m¡õ”`Ñ]£É?¢ÔcLìPê÷· ô‡§G±ážŠ€ôdÿdéù×âW+ºno•o ¼í¥Ë§4åR¸z¸y®äm¸8ý—·bŽhÐܶvÅË“c$Öòõ8ð¸F¢7æð]:ö½]¾>¼|°Ë÷vùñpÖ€‚twY73-OBŸ(~ËljWÚ˲ÜQ­ŽyOr¡$®ˆ0LÝÓ°ÐHO6¿ϯ¸i5eåÔn!æ{ 1NÙ#$÷5Í=ÛI%¢éckÂ÷åtî%¨"²ëÇ‹ÖÐdgá²8G®8Næ+»|y˜þé0Q|°Ë×v騢W‡½?4€†{»”Ùç%Ò|jÔ9‡Ý'3]âçÐN\¡ÏxíqŒ(GL¾¼öÑ&"æú3 O–\.ä « ßowùöPú§ÃÝåsíx¾?üÙ± ç…˜ëðµaâKßMs±Y]7M#=£ØñÙ$žü¹ÆG^ì˜vñu¬Ã»‹¯r²m”óOçÊõ1ÉѾs ?(ÕÒ飵i‡ÿ||z˘[Â{áUÜbZ@œà“ˆ¹ŠïÁªÁ90(EÇsöäó»™+¤ÕGØR]r#¢õé,(†FpwwIµfÂôBþxÃmïHö ÈúiùßcÛDo_ê'd¿’Ü5„Í£;~C•û6¸žÜ­ Àƒa]ɜ±‚Úÿýs_pq8§‚9ý1$ø ¹ …œ¼AL˃"#ˆŠ^¡ d5‘9·ŒVEg`¶¨„†tBŸÅÉÖèô÷¢2‡[©¼µÂryxÛj®uäómÛQß´æT•’W÷|TÖç=^®9o©kknÏuƒ»ò^áƒô™ðþÕ4t.þ'í ÿ(™Û¦¤ß?“Vèû—»ð"ÊŸ‹ØÐý¢ýL,õ·æðßÜŠ4Çàí•]þíaÈÈñ\èÅ?zC¿òŒøpÀ˜±C5„~œ¯¼;”?8–^cöïsL˜|çÓ¯í2‡Vz[fjð‹Ý¾¢"†½îQŸ#V?>"Òµä-$®ÈcÝåÛC©Ã}á¹ÆtÀðøiÞò´ápzó”øIÈòƛÐp`ÖsÅ ©äýñŠ+¸N…¡× LnñðÎlöÖíþÇáíq&t?Ùx¡+OÃGmÅ V¹xì›{I¾ø~ý{hpúÖ³Cj>ÖÈÞ'Ÿý•ÌÑpW¾YïGñƒÔ9]ûZ§w ŸÄ¢Ü‡J æ…€øœ D‡XZøƒ¨–%ÂÐ¥-‰;%g%.;:Ϊv#¶ÛC)*xÒ *ÄW:I4¬´3vxxgÏ£Þñ&‹e9uh£s„ÆÚjkL»2aîßyw…W~åÿ÷>ä¸îb‡ˆ®²ˆ4Œ6¸]š9„Ñ|ƒººsÖ#i4¹û#iÓ¢×ébì–áóŒ¤s©ú~>ݶ_OŠ ‹–9íUçtŸž¼–Ç3¼®€A^Ú¡5;§ejXˆjYÑ!-ù‹†‡™õ1VИ¹NNOìþV&¼!D" ØZ•cp‡¶¼4àŽÑùc3{ LonqçÆwî*÷«~,\‚ÕMPò­ÙÌÂ\#ÇÅŠv@ŽîI«~…¿[h{hô©ž&¦Ê¿ëíùp±¤Ë+JziÉÌ.+W³çCu‘±å—Óì?š‡ûÕ4º ½‘„Mó`éCI|ߓРßL*@¦mtò¾n‚½è]#:|Î[ÞÚx@|¯O`áûPizeú~ùѯW„øËßç¼r³ü­!z<è-tþÍo¦Íè ƒêÒ‰ÍlpG/}Òâ¯ø8ÎÌIè'ù襭»{®@ºi ýÛ?‡)À¹Gô@w÷MËkÒáéÿ.G§aé43R@Ñl‰ã–¡Q•aÕþç“9“°Égt¸vºõããÝ.gÄe½ÎÆŸ^4žVuÏQþÍ~uÖÊåÿ/£¤OB]åj#£q·”<ý›ý-“Gk![ÔSóÖ¾¿C¥’ÈtÚ¿‡-糘!ïÀ‘4:$ôÕO¶»ß>‰•Þ“¤×3R£÷µ¸d¿@;$½c°[¢q&d£òý‰¿ÏVäÊŸ´bµõ¿jÅÌÒ~ª].³?ÚNºs¯,Á2tÌ5 ÕÏ ¯l­ÈoV'xñd‹ª‹¤êF<Üaؤ‡ò^’ÙÎ%´‹L$‡ºšë¸`Íf÷Œî»ÞýóŒyŽ{ç¡AIÁØ~I±)€”’SQ1âñðA°\Ïpí4¥Ï^¦±•^<*¶ïí° ?–äSÍ1ÀÊp ¡$*-Àyß+Mz}.,Á“*HîB0··ÂTzãþog§Â¢ ®óéé\= ÚÝ7vÖ‘Ê%ª£ôì[Ù~º–§v+ªãWQµSårú=¡irJuüK,krê9ƒ}vÐH˼|V~ºQ óöszjqܵü”ÞvíÅ7uíå‡O´–V€æa=ʹ.?ÐˆÂæliN÷•w†6úpÎUêÆY¨{WÀ%Wøó/çC*;¶ò3œuD` è1éU÷”óx¿k°ðÖq¨xH„æ¬qmÂ[ÿ›ðÏ:Wõò[ΚÛC¶+tôÌb®LóÿúÂr%=k‘—”Ág(þy†í’Ýé²±Õ~ÂaTÈ@ô:û°üÓ–¨Xw‹U]ù ÇQj†}¯ŸŠ÷°¾~µœv±‰_+[¿H…‰ {ÂÀQÊœrë!·ûÄ6²{¯ç]@'¢$K¢ø6On=wÄÁ[6½qÆ(‡{úV»ö¤òá;éCßò¥Æ|îé¢5í|†Šv¸s¯,Þ=ùÔ‘:ÂÙ²ø×z­?âr¤|ü¦áxÁ CðÅ f‘ªûå+Gí® ý´Ìv‡ö‡i϶>ˆŽ ÁÏæ²æòóSÄÅ“;z?Eh(\ÿ…”UWäEºC—üfº#s¿Þ4EëØ·Àæö¬³âއw ¯ÞþÑËãendstream endobj 593 0 obj << /Filter /FlateDecode /Length 8245 >> stream xœÕ=ÉŽ$Çu÷±à³]º¸Ú`•22v:H‚¼’` cø@ÙB±{ØC³§k8=\Æ_ï·Df¼Q]ÃÂ6x`NvT,/Þ¾å×WÓÁ\Mø_ùÿÍ«gÓÕݳ¯Ÿz{Uþwóêê×ÏŸýüÏ6À›Cž²¹zþÅ3þ‰¹Jæ*úxÈÖ_=õlg¦ëçÿƒcRƒS>¤)Ážß>ûl÷ùõt˜²ÍÙ™Ýxv&Ì>ï¾¼ÞÃó4ùìv·bÈݵ9Lðy÷G˜iŠSÚ=ÒÝ4›Ýñ¾Ÿs .í^Ó/à ÃïÅ„_Âë0Í“Ù=¨©ÿãùï6gÛ/ûÝ[H!ð®ß^ÓÚÖxIkGnÉ:s°9ÒŽ|òóì×å”íÈæd}€Á[3Ùø,¸‹èá—0 N9ï¾ÀÁ)š40"N,xzÅ#ìähSÎ>åÍ>pBëíç;±ywz¤c§8[øL—r>ÂhØjŽÞ:º;Árþ˜Sö»,mm>„ ±Ç¡9Æ™`h Aèï×CцҜ&gålëI?S|C°°0C'^¥{zàs:H¯áDz»{Ç;‹ðòórN_owG\°"Áý‹%N4v2€-7bë'Üï +dî57㸱#4ÂIçåúh–[^>˜¸ûË®®ù‚Ë΀Kq^pÿ€óMpyóîŸMpeŸ0E8Ëwtl8« p¿r´' Ëò󼺩<»àpð:Ç/çÝ®WØþF,ø|9Ín–ïñûå {cÞå™ÏóXhlT¬GÎÆ#Öeï o²™¢¼ê‡Š¼´¯ù“S¿ãËñ¹Üßz}D7ŒÆ0ITxÊHŒIr[ùÂ_®qspHàn À›pH6Ä«ç¿öü>ÛýÛõ¼ðæ^¬ yç@¼c"ňþÇGµ!œh¶^gÞð”¦ÿ†ppnDÂÍâ„€¾4X€¤ 1bÝ^T4Ë×àæY®w[vW~ç 2 ´€ ³£í—Ñ‚ 2(,Åé"{¬øßgŠ_ÐltÄÌànÜýgáöÎKn?çt0qN¯«ŒéÉp)¦¼Œz_¹*÷Fw ¥—áïê{“ÆÉÑ€›|cIñÓÇÜYCÚ<uu‚c…(ÐÌ ¯@\„H¾…’‹ü7ý5-b½fGGB›ìAʊ嘓 ßr&Õh¼ vE€µ6›‰¥/ðOá5ŽKj¤®"Ø÷Ä3œRJGf)x«¸ Oí µrË “és•ûÊÙ•¤7÷íõpqÝ'° ‰·òbŽÌpL^¼c˜YXX ¿Šlây ‚ý¼@Þš¸S=§^óaˆL¥Æñ†GG`¢R¨ýVûk:™KΩ‹žD;nµ%›ß>ö§g¬‹ú«7遲ÚÎÍW!%['Ñ2ï{O˜€–€Å„ŸIÁP@ÊDèd8˾3>ãLÚI€Ã¦‚” #¦Y³<ÀCÐ`³ ¶í½8 sm…bp>©Ño…VËHK£W¤Iâà³›ò¼5™N Àdš“éø z/ åo²ÞÐk“ú%ëW¤+B.ÏX$;P·)’eB÷Ä®€f¼ºñ\ð8¤‘p¿Nó€€Pu¨Ô:0ž*øŽ7UÞÑþÈ“´(ôÀ&T‚(÷ þÛ-I”ÝkÉEóÀ¯§¤Ðy5mˆ›a•¸qìË)†ÎñÔõÄ€«@pN;V?—Ù‹ö1Iîülž­4ÒËïÞÔëg…» ëïxBêÎZ­ {½Õf y.R{ªR¢´>W­­bÿÍõÂx¿ª¼•T°%â`§Ü |z%²³Óä|ëåœpÞ >ŒÈV%ÖŠ+- T€ðÀGà«â%·ØÁØK&¨œ¬I±#u¸y#,;”í Ð£y?²6…yƒKz´Í^ò*hw~© È‹Už>¿VÖw!)ž ÝÅàVËITDg&øC†Û%:ó BÒуa€…åÃâsAþ20ø&áþ<ûƒøÚޱʼnœä¦Rç‰ÉÍÌoqµyª<€hRèJ}3lcm[¸mÆgYµëÏ„«BÞåFª¦äµB1¶­A©'¡ ¢ »«¤.^*Va qð´˜ð±|y`y!(©9m7?… ޝV{ÇRl)–úOü;˜\C΢e4²Éñœ@! sF…æ›F3Î8ƒ­¹Š4<)ünš˜ulOÝ·­¯ê£˜ìXé0 “â]ßÔÇõñ±Ë>úcv+û^GmT.BX^C‰<¬(B8"ðZ•˜Þg«ÞS5Áö7Œ™b#¶'DÇ;^#&M§r· 4F­3Nø‘ÿL8Ûny0j‘•£ø%’ö%,o™àøºŽUFðf2À—¾¿^9sËÚ O—^ŽVS1¦1VqÐ…‚¦ÕíkçÕgˆ·P±‰­'Ø£—èÁ²t°Ö}9¹‡4 îý¬âõw]lDòº>Úúø³.Š;{0Þf¥i®föj• ”ïa Œ&Ï"k$-•®<ͦ^jA¶=;°{Ð –MõIöu÷íÛúøåSoOõñA²‚½ŸQ ¥Ý/ë£é3Я\e¨yÏ xFÍ»á%!ÆHã!léxG˜ ôã…‡ ÞIèß<úsÚ@ƲHßN,¹aø; 0Õ›Ûòø†ÇÆâ›Þª ³„ö#yóCÃ,Ï…iÄ™Ÿw º„FÜ °…ŽKaFí‚åÃ'©¹e`7€Ú{ÚJ4‹¶òœ5ðiαØ•iÄ«Ñ뉻*+_¼~K¡2@>àVS@=Wðg6Ð|.À]¨£Ð럫¬‡NKÆ,°Zá&é VÆNy:× ^CSx=QËâ_‡±Ã…w£ïI ol‚E_• ù(KwïÞ•CÂ\¨•ûÕuÒõ˱ã$Â|¶Š3Tl AzÚï$£z¨Z¼¸üe`qÅöΤáÓc‚²ÉÅo›×~‰ãÛð2CáY…w¤y„–c:¤1Q­ N“êÞŒáŸS:„±œ=8é y,³¥Ðzâñµ›´2}"¾lln8{7P~Þ Äé Gж²xÖ2.Ÿ@mcÔ>À±1ÉCÌDúžÚ „ï$@ØÌÈ5H Ò'©Î¾^,°µB 6>0MDšr¡‰;^yßQÂ’=m2½ºs¾DóTíeZ¤¿·²½}αX¸à¤U†}˜("&]â(Õ‚Aç#¦K]@˜ùB.2Y»í""Qv7²Ì%……à=¦K‘}’hù’‡ n7ô˜KðmTd“`¨³Ú ¦ìcß3ÇõóêDa 5Âz®‰ütÏ~Æ‚h˜¶ô©ã­TªC«þÏ„ç)ß¡‘*'ÖF7Z’OØ*䪘Ñ%ÑètcèI¹ÏOüæhE†pÔÓl)u2/ú~÷æ~sÆ€Cc¶îŸ×Ý·Ã(ìf"€P_¶$ÙÝ7Uذ(!ÇÅÐûˆàË(k¾X >ÂÅ×'°X…Qúy— ˆßÖÇ»ú(lê¿J8ôHIpa•ßw'{3ò´áí`M—y.õ´qP·uµTÑ«}ReŸ:ï´FHžäÏä½Ý ¿—pJ1±Yw°¾•r÷UA“²èN;Í÷Mu3t°Ò~s »ñ´ °ìAÝÎz`óH»Ó®œdáýªˆ ÿ? ˜ 9hš|–„ð9çqªpC¿ae娡ð“jôâ˜á­ç°ZòÆ0Ù®@ MbÔ6°æu¢]/ÓÃKd¢m€ó¦©5­½µŸË$‚þÄ);x^߈ÒÞ˜Ûi®~óºEkAiµmdl¢Íq*ïû¦M±º¢áô+áŒYv ¤G™àÀ«Oƒƒ" Íÿ”È÷Ñ Ý¾&qجÓ|2v/ÿ€Bñ‡ =ýÊ›ÑäšY¬X¶î;q,ˆÖj6/xÊæ1÷¥:¦Lf¯DNt?7ð]ÅÕMÎ(gòîrK­—K :ãtܦ•&Ɐs "„Å‹ªlëãc}ü¦> uí…;&3ñcK„dP~דoë+ù6 ŽF@7l£m-]ÊÖ}ˉÍ)— LAK'ã ñom¡(|Yoëã]WÙ!ºÇú("A[°‡èÌGË•„ú¾P; cüS¾.5 ˜R ½³*HV¬‘‘~™Tëa±Aºr÷"-&É奺%²×Ý·oëã—O½=ÕLJ§ˆ7  ¯âAÀq%‚&àˆ/1säø O¾·h?Lá‡'%µÚfsDXIèKG–s#žœmD"á&¦þÀ#|^Äʳò3Ìy2†ñíµˆaˆ ›®WúQï§/ h„9£¹I͇”/CÃ%'f6Xí•ý²žPH5¥]!ÑåYBä ?W.Q‘â|Á$´#í >q¢fñMµ^Eû™W“=Íkj¹Ø?*“87¼ÿßq4—Ý}qâhž-ÇÃ7Š`î}ñ•Ö*Ùòï£$Ê´¿M‚bI7Ú‹lÌ•“.ë­tþà[~}ÖûÄçRáÂb*j¿× ìñuEe]°ú–y÷&ú`úºØ…ø]q£E;%f;倨às˜Ü9’Ç ‡—™ò6Ô5‹¤ê;¸!‚°Õ ÕrÏ'w2Ey¥Å…ßÛך5†óýiS]¡q×E.)WFÎiO)X§ëu­mTŽ­¥J›[…Å36Ï# ž±¤$ £‹ÌGȲyäùÐn|]…‰,J`°àÚ"kO[RTF™']J%dŒØô_¨_òŒéL]/i.Pã„VÕ™ÀÎrMdq-!‘E\,&Î÷Ãç ãîíÎ2N T¥›_Pl%Ž*S %¿›ª+ìöZ¸n£ëb³4c‰ñŒp\Ê%gŸdwø59A×Å>Q}!µéW¬IzÞ³$r”ü]x}Sç'LnSðÛÌÁá:ÓX*ºäÚ"mú%OŒÌµ›Ë³H® á}d\ç‹›ÀËxP—µN÷ï¤M]aÍ oJêHãÄÂIêÍ:‹«#í E-àXCƒR|XÀbU¡Añe¬‡yUæÎ¹ËÂ*p‰ð‹0Ô© +f^K|%ÝÄÉŽÃêì•ÅWì–ÚßUn}^·¡ƒŒHÓ¦A.I…mfÓ²}­z‰aÚ™,ý's£_ó3­` ž8ÈÑn(—2¾&³M¥~YÿL¥>ÌBJ–Žãkøíî'┤“£Aè${½å£Ñê7õ¦¤œc©³7KªÑIŒ‹ºÈ¨C©å:m s•þ…¨5æÕí¤,Veͫ،/™,éÀK…΢ZÍ2ZpÃîð-•uÈPöªÈÒ\ Eˉ‡~x™©&׿U"–e7©Æä-7O³ôgÏÓ|ŽÃÁTóä$ÅvzGsl‹‘+‡#Ä3½#¦çÊ[LÔÅa¿†õ[= d~´+[žrzÃKÆ ãÁÄÛ@¢YŸí$јEò”ìËõäã^ÌäÎÔFyLÏf¨%4ÎLÞï¸ÙÀLUɲ41ÙÏÎR©Ü©ºõ‡– žkqM͉…)lV®–½Ý¦BZÐ|%»|*øÐ€k4Ç…QTÙüM£Ìº{Þq2çl°³xX ÿÅs᎒û¸Z)Sç`MUò4Õ`¸ qÊô‘¾©§dÜÑMEªdŽ2í˜Wá“òe,â½5i<÷lÛjã£Kcö:ÊþÔf6Úã5J܉hSh#W™Ö”ªwXyJ•a˜¨5yòu{Š1¶â ©%8Êž‹äF·ã{úÐ× ³ã ºæò.¯œD ‡Lm¾ç50aõ¨#¡›¸*rk®ã¸XmšÖft”t޽x“Õål«×&X)p>çâ¹^EËñ+êQ‘V•u!¦…$tW¨² ‡b­Ôn¥Ç´Ä QTý?îãçr ‘DŒŒ* ÙF£þ`ï•£Š—†˜©L òê Å`ŽÜ$“[ɲ[é )˜ Оqç0¿ —)”ì”±2‡V”-T¶"Â̪VíUqMiL8ÅΠ‡Å©Ø/Ù'-MØÉ“)áG†¼Øæe¨Œé·‹ª&Ò~¤ ¡š,ñÎZ[.Ú;õYƒ¿Ï9i“ES¶õÔafØhmýá¥v)F›’L"o:?R«µ…I£€ô3µ¹Xl<ýŸ5lsÖ÷ëYYÛ£œõ½]pmŽÊÑ’*(BõKqW£¢²~¡Oød‰Š—2™¥a›?øÚ¬PØ!bUIìmòp§Rì–×öi”M«­#‹ÚQ«Œ÷*¹)Ã'”NËá8‡‚’–ú˜mdýVoÑNôÖ|&FÙoõvŽÀfJ;Òž\1øšLÊ‹¶d¬,k¸¤v}˪¬@­q2ʼM–Rœ—KÊ.Š+íµbU:œ ˜6m»~xÀTæc‹èõÅu'oG5pIèätȶ;ß7¥XnæH\Q󿎮 ºÎæÛH”ò4ÍySU(‰racÄPŒIœn_#¦+ºcÐä¤Ü«}%»i¤‡»l¬=íò¦Èátˆ‚ÃÞ¸¢Ó{?ò Êûäµ³³†Â Þ²B´ØE…g"ŸžÖéÀ†¬õ¶o €¦aN‡äv'ÑzñwQÛÁ§\üPCiôj>‰äÒ¿Sò3Ùw\Žmq » Gñû‘k™.¿$¿9;‰ï÷måc°ÞH¥¾ý_îåaÁiM9¹¨—‚£:—4@íÄÛk¯Ka¶-Ë™¹ƒÎd…†4û.‹J­Ò˜p´ŽÂ|¿º­h>ì<íè¤èvj5ꢙÄQ×ÜéÍ‘¢mV<¼=ÛÑÑ`î§q5ºøÂ“.Cë¤ã3%mœ"t\#/™Û/•Z†°Ò¸»S©fÝ„¥š+ëv)e—Úê/”€ä^‚O=Ïô(l}œ¥§ œûÌ^¡Mc¼çž‚HÑÛšñ(œ”¡ù‹úøóîãÍuÏ“*ü ¢èлG^*Cprýlèÿºî¹Ooº:tgóÞuôº{ ±ÄWÝ}/ñ/ëãÆåÜæwÞÖÇ»ú¨ò´{™Þ¯ê£È1½ï.ñ —Ý0Ït­œ¯Œ;Xf‰aص܀‡žT“#c˜%ѲÚç–lóùuF5xÆöyÖ 5@þ¨A…±öNE[ŽÈ'¢.È2 LüæÁ’œ½ú)Œ8 EþZÎ+`ø°">å5‡‡õH|tz–ªˆ›¼3Ï™ÒYŒ€j­ ë1,rä-Û·s‘: l€ÝÑVeHêÍä­ìæm=q·k<üM‘«ýŒŽô)ó¼ÿ~,Š"bfÑÐâ¥ëMåûìmÈ””-}zÌílœ}ãq.EÈŽšoÁ*ØÂL¬ò^½Ñ^ðl¶±ç¤ïaTˆ~AæPëTŽ\8>¬ßU7Šg2E­V@Ì„{ÅeUóïD/Þ®ƒV¨ÔÖœU¹ŠòÇ Sa]4ñ}Ê=;ÏÚ=׺Þ{m­ kŒWÄ@ªCwí!Û<­”#wÚü6e¹œÌ‚WÃûÃûú:&\ÍlùÙïV HBùoê K¥ð¿¾« Ðc!D nPDÌ…,·»CoÐÊ3z‹ŸV¬øpàä³;L¶ðó?5­q6œÃ0ĸ%}a)G¬ºö8â•ï˜-XÁ\„à(ùêȘSŒòºÊ¡™Zï£a©iÞûÊÐÕK5 >í(g?È&‚0Hzþß¿«Zfv&&.ƒ¢ë½ò¶>¹°΄ÜŒ•?Æüx›]XnSXå‹ìU-SÓQf#GÍ*…ñE#k~ØøG–5) ·Z_ço®×âp™ÝñXå ôÔO0´uÆ`”ÒäªÎ˜­Ut°b@ Rk÷¯‡œT36iͲ¡L îgR#¦}€t›ü‡H7p»Àw±-Pª(Nócÿ\¸yÑöD¸y9¤Î Ÿ±6JçΫÀ¬$´OÐ;*|ý£xÐ6ýŸ½:u4Oœæ‚Ëbí¦W*¶)P*.ÜÔê+:JT"I7 ¦Ç™\¤~@ØQãžVíÝèF’Ê#TùÃÝ2z™ªz³`Û¦5’WUÂónÁ±Ò¯ŸÃ$ó‰4@‰°ÖÞÇÖG$Rn·‘ÂâãYcÒ¡Ÿr 7¾À*™éSüÕ±„BÐØû´åmï¦tDÔÉ·DkWèƒ?<¯±j^Qx"þU,Re“Ê-Pí4{Aˆ¼ õµ¸­bO´aé$.0ц+ʸ%nÚëï-=Wü’è_Ü„r*NÑí›=ðô‡³|A11ÇUû!n±y™à± éã²®Ùdà{ŸõwpTЀ®aÔò}“-R¶êºÜ¥nûåÀšzýêTö7 tƺs¶`àÂHðw?-tî3s4[sˆbÝ'z¥³Çž&¶¢hIìjƦÂɨϺÉDcü}œøÓÎqsïŸÀY‰µh©Äç°:`•ãcÍ}in×ÃàïÝ&OUm-ØƒËø†Ÿý»Yý·uMUŽ/ékN¼H>'L—²•…ŸØ¥à&äÄ«~ý°aƒj¸{É]Ø9kœ3£hnQrxZ‡óži(ò|Š2càÄoÑç(ÂT•ùÞéCwu¬Æj|‹iQGš‚b—cïköê¯yºvàÿÁvh?ò÷Õ! *;kõÓN>‚Á¼8Ôíò!ñ§’쇘€B½N÷™$.°¤#H‘·:cìn’+~S›Ò@¸Ý<} R1|ÁØ€<®iÿK¸—4sèºî€Û£o î®;á91³LÏiõÓN¿;VµÍ!¥òí3ZçLÆiäÊ$©† ¨É¨nîÇPÇö6 ÏM摎F†u‡8\Ñqé9ŸÉ­ÆU¨AM·å1þý»[} -F“¹âÞæÒg,ÑWF²œm@þÚS£O7ºÝJÛªÙÇ祠fô\uõCW¦zTÀºš¡ñ¾.Hä(tÍZ;æ²Åù0¯~æu»¾¥À¢wà¶Õ¹u­ŠÊÙmbÂo»]$}e5ÜŸ0Å`¤\æ*f»/§¦ƒ¬eQ§8«2 n ¤h'½~£%Õ§¸Ý¯¨‹²…ß¿íéZmÞ]1eêîfEÙ?rÜ¢§P=­HìZõù·ÅË=ø'…+jÎ6\› Ž‘Ñ£Sàö <ƒC%{I†ÃéÇÚYެ.ƒ ëûE]Ê=ÅÚ—â3F«Ò!K\7ThiÚë^s!û•ßåS¤Ê­šÓ!ŵÖêŸi£@@©3Ót…ÑӉǢ»Šrª¤ŽáßL çB7Šù_Éß\AÔ7Eb,{I¿eI˜'sFehœ¨ Ù"p"WAñP¹tïX†>v×q] mYI’»@'lª)X`„ÊR}®z |zçMXX˜ëèê ì¬àIWï!F24å5òYAcÝÐd€Mªß|Êi5i ãgà];PDÌ á_²“»/Ÿ&ix~É#®m$t8cÓÔzÍLÜÍüuz=ˆ;/¾a>ø#ƒ¿ÀGô&y~oùñÓ:à¹Äò¹ì Ëš0°.‚²®%™Ø|‚M²—ÚÌïîE€RgÛn¼)ƒäì4ä-µ‹0S[ÞÊ~·b˜4~/4ÄÒ_|6ví²ž¨Úæ ?NF¥†Ë~è*‹SÚ`UÔŸJ¨¨Úb¿ôpØ’`Z>Þ6ª0¬ºˆ^±ƒ†%/y§¾÷%šbºÿ¾Ö kË4N œbÛÒ‰V±ªêÞö*½¸dû‰êÒAuT÷£ØØίòø§-ƒQÒ$Ð>vG §Ì4=ˆ—Ü%yPíœÌÕ^ýó‹é»~y¤êRÏ8z6CŸfƒ·íÁ\> stream xœÕ][¹u~—ù ¿¤;V—‹wÒÆØuloŒ €í òà Œ–æ²ZKÓcÍhmA~{Î…ULÉ[›¶ÿ¼Û;m€ª@“I)ÛëÒüz[Úâ·¥ùª4/Kó¦4¯Jó¥ùUiªÒ|¾Ðã¿Çh.Æe4jþ±4¿*͹4¿Þ­Ë6ËeÓ~RJ™ÍÅ¿=»ø§?lYÖë¾4JSõ¦4¥ùÐ]Ë2Ù/»Ÿ½ï~v_>»î~ö²;ðQ®gî!fÒi5nËÓëòôPšß•æ±4EgâéuyúB¾»6ÅÀ—¥ù!©º×íáíJNT:_!/&íW ñ³e\—¹œ^ ¥9•¦.M/»í5UfÜZ—í—Ñ÷ÄÁsb"¾ºÊúc6–´†IÖä“=¶“ ަêE…@2˜ì³ÏŒSMÛoHM"j/gõd¢Ùq5íì@ h¸è´v¬ÞrǸÆ”›¶°5Hð`-zgH¬‚¿6ñq Ao8´šU„Éø•”à1v§“QA2àñ‹NÙ¥Ûã;"IGPœùKe·*ðë(6Ü7i_ÒÕ!ÅäHt샊Ë¢qžÄ ú0@`VÏ)F¿=%Ñ[%%¯ñ©šgÑÊÍ?53§)ŠWßóQ©í;±¼W&Æji° ¯ t‡l4Ï62;8#ÙÁè49½°âWÔÅ ªNóËqÞ€½ 3½›€Óf¯&o`ûùEë0Ï*Ù¿AôŸÚTßŘS´aûZ¯Y]$þ1Ñ&]-ÌËݲmß,|·‡ûzù×í¤¹»›Û²Ë÷yùaÖ±¿)öXì&ÎbolšL0W39#Ó}/„„º‰ÆxÔðHÖ)Ò Yeéùñœœõrj«¤K"‚½u&ê¥üH°–x,Eô?LJŠÚãòÆYWmœ “fa(_¶YP&ùíC¦Äÿo;Á•eÏ„Ì÷bb/éu3»ZÂnw:ÀºÎN æ ?ùx]I»ýª”nÍ»U'Iö¢1,Uú*Κ Væ±¼¤6Z‹BN/¥™gøÈyo¤Ò`ŠƒÕ9˜È‰)o7ÐÅKAðE^%m½m™²Ý!=ÛnÝ¡·l°å¨˜ƒFé N¹âÏË }’«pÏãX0°ý§Òä°ö‡1¬ÉªÇƒ½¿%¦ Ïëf¡ÚWlóÝn%B 2à1²* ‡c­"®2I0¿kšHPžÀ=³Eõ˃W] •ô#Â1Éõ%ú8b.· U@æÔvÑã—í’f_Uô÷je`_5"©b°g‡Öx᥼…ˆÎz€Œ’ŠäX ²ƒÑ¦^Õ¯J‚°×Üâ„l£À@4˜Ø$ú G ¨Œ ŽèaDxF|žÀf& "„ÑyG›ígÓ›{~f‰²¾G9šCð«ÎåX‡Û¼ýЇBýiÔÆ0Ô¬E³[£ 4²J€Tï «ßóÌa­¶ vx'ÈüPú´Š“FCQègÄÎ`Ë@…q·[w L,2` ¹Õbûh•YÇ vû+/lø_E&k7[mP«ð;ºÑ*«ô_ñ7köDXjÊ=î_„k öía˜/Å‘RœÑS ‰Ñ¦{%éZ:Q¸€§40X±¤L`Ç<‰¼pGöp”‚5;ŠÉÈqÈeøžØû¼N ;ß\ý6åMÀÎq`L^½S÷eeó4à®Ð½u‰Ò±8v–I»j™V®Æáš˜˜¤n=Ô»¨~Z'£ü‘Ÿ»*¥¸¦¯H¦¬¶m°vyɽ ­¬5³% ö‹Œ“‘¦·­ä¢ñš€(U¡+åÉVSû¥`sZm»:¾ŸGZÀ_í@§uøÑ~Ù˜—Â(#m°z :;¾-ŒÓ3þ|ˆ«÷ 0÷° )ì?í§! Ùn®x›,ÈAU’V9žJSrçT¸óyÞ:XhÉ ¿Z¥±ƒÐ"¼¦ÝØf°{ÌÛEá¢ð7ü9*ªbb0ÑEúz²0l [L°û@Ì^‚Udå•MëtòµÞ(€æÖk® ¿rzvJ&(îÅrd`6¬þÂÂ_ otà&¾Ï×_¿@ч§â18b@Laf4k¶zµmFKLO>CQ‡Œ3ÈýöÇKðÊJâ”6ðÅ2µßgεsTÄ3¹ãÌ‘èíMÒ€ ¦Õ M_Ý(÷;¨U©Ü_žðUf§ì¹9bLášÑè~O üR¼ÞÀîDw³×(@2\ôQ:2ºvÀ½*KE HUÎFikf˜.L Ǻ*Ýsoˆ¡8Vöã“*‡£*È¡ˆq¶ð­Eœª;RØíqü|ÖäÁ˜ÐKe&ޤËa›QkâÄTüž*˜aòve¬ÓŸM)òèHa¯/ÜàÌ2FÕúñ Ôª\‘» ê%D¹éÆpƒ)ˆ¦-qÛ•—ÆüpË]ô5.η}W:–ëlŒ«¬ó‘zhÁGµõ Ö3U³„Ö¾ë]=oƒÈL¸Ê'?£o$„ç†M󬵗¦ùð¿ôŠÌ0X[C,}Ä»5Çî‰e½¥f@]ÃÖß ký9|ƒ$ùL«‘ø½.²Ï] šÿx+E­g']0Rª•!SÂQ¿Èø \.½ýõN¡¬ƒ’û}Û[Íãȯ°íKoS„–ƒ€d±DÕüdç~×@2’Ç㛼0µÄf$ÿWH•`Sg™Vöò<óNªðª\fúÿh³N"Æ­ôWð—*ff= ð‡N'ÿ„•Ë¢Ed› :/€#ÞGòN=j_Ñõ®¨x¶º´ ¦ˆ–¤~äôM LÐM:£|â§èñý0òC#%Ú’zl“K<56:Ë Ÿë-¡éÞF‰Ûÿ&‡z£85(E¢"ħh åN¼pêõÏÅ ú\àƒ·Å| ¾»änÑ{î&a÷ì m`V(c58«EEçˆâð ùß’’KˆB$¥/ ó.S­²C"æ^IÖBç]±aÇ{¸ÊV‘'¿m£ù2®»_æQÇqe"(o§V.VbAü€´ÊeŠ éöç ŒÖ9ÓUÀVú‘¸²ÆÎ”žÄ¨e'ƒ´§Qk’Äà(¨¹›å(ŸVK¨<ðè(12Twl5%‡Qƒ ²4÷<¢U¦™Z=ÒQŠöñ†'„”×™ìèÇrg(ÙW‘t+›BäW±©´Ðë‚ Nóge‹yåDÔ‰$g%8ºÊÒöЮJaJäþ¼ånÃH™ËiC÷Jè 4ªÙ+ ÇeIÊ|’“™X¹Á ÛEJðï©áÝxiîYPxJ52“éP‰îHCÑBÍVåöÆEXÀ:°™;r D¼’f[ÉÛW\³¸VI­ñfØkBcŸDô˜(t.ðñ] è‘dQÆ@@©e0Ó 5”/¸7[¢’“@.ùwrÑ_óDæ©h¢ï6I¹ºË«–´Tí÷Lȉ´U‚‚/Ì5BÏš´ÛHA .ýLlÁË›ÕnKwôv!Õ²$»´F²z`‰¤w»xgO–ib…ʱÉÕ§I5Q×h"f÷LSmT¶A¢X¤Ð̦á»U‹¶râä«D€üާ­A=Uö„ÑPfD‚á=w•¯­ÆÚñm…¨ÔÛ·jdùR“(¨9IÃÄÀä …wE€îVê#¶Ö«Äùϱi‘çŒ#xJUV¿]—¾EïW+vô`6¹A íÌXH%”çYÙÚÒ0‹cE©¶xÏ‹+¤%ÁÃÅQØü –và´ˆíËàÚ'Û„hÌHDÍe¡~à ™“(j+ª;XròTkCÑF·|ÂZ.f·9Z*Àmòôؤ·[;餧°‚ȆAO¼nx꣕¨MdÀo’|¡_2H< )kÙ‡žµ,š{¤SÙöSÍL•V þ¾•ùjZ …ËP—®ÐÓÔð쫲7\53«ò285ÓÒ*ÛJƒ/ B怖S–èå2L²`I’&ï×Üœªˆ|¾¡ÀÆœêP×cÞü‘C/ÄÈWžÈ 8Šs-V´qóúVô Sku MFë÷Ëlk³“8è%ld0ó’‡"þ<¶!È5[·î5G’ñ’ ÁL½íÙ;Žjh˜å"“6ÌiI§ƒSZää@+ë|ÓçŒÖ‰c©ËŽ9•Åw•ÿ@8ÖsU½xL Èã´räâ“ =åX§uÁq?0ˆ i©"_2ÎÈÙϼ®#´‘†»·ü6îz]:ÀÀ2™/ô²LdåÃð+ÎÄxÜYL-Œ<™:ðxÊ„ä«J–C¿Y}«î*¿•—†!$¶ýYß°ªf¢ÚÜÊ–`ú뼦 dY&™’äH!OL1P£åˆ°Ra¢YÌ¡ÒTû¢Òi O-©Àh'€œ|,í°ˆƒœÅD¤A¿EÕÆ¡BæOͧì’d,ñEcâ#`ã\‚¥¢õ¦*žÍikM3ÉÉfâ·OVqÀyA×yv]‡y­“È«°ª½Å— ÖñHÛÝå±ûÜæ%n±ÛuXß Ì§Ð2$æIy«³˜ç%»âŽí\õq¤¡ÏD.5‹à>”žØø.ö°t­eqXÔe2v[T× , ÑñºRK¤£”Te£à¬:eØ&y…Y³/™eÉÚ/ü¨Bmû¥T§›¾0˜ YQ ‡2Ø™øø-@¸æ´±È:ÞpÔ/ØÈR€'Ï; F· JrÕ™êGób5Å­É5„§ã/à}2 ŒžW&íµX¿iåÛîò¥i¶Kµòf°ù{–Œ…œ€a6Vae¼ååÊ5¤G€‘w€_H]Ó¯¡—otâ1kAÖhΣšrŠ¿­…eÏòšÅdÌdÈϧÙUp^¢²².§ýîjƒÃ«KAÐÓÊ$0á{sv-~ku_L­b½U­0®µJÄMÁ»H㈛ŸtÊóûÚ´äTT=kFý(lL_Ìî—”+®æTX#õÔFP âBÈßþð1E‘“aÀ=Çí’ý8›€×k ªÉtt¹ª4F;0ܤüΡ©®#ÆÞÕµ/“cth(Ù› šF.õˆ®ö÷—ü6¼+ZR@"S¨HXJúŽjš:sx˜RTû-u±ø]ÉÙ -!ñ2ïµ·œ¨“¸\‹!ShMÎgÅÀûÝZ¨-%-#%RGÂa¤ê[^2}r¨nQÀxf¸]È×]ß9>™ù¬ïÉ(ku€òö6-)rÜ×A®~©ãýöÌká-òØùÉêµb`ÝN#é|ÈCÇ39Û^¨ä-÷æP”xÖð·1Sÿôª Pˆ^¥Û<0±“Ó%–.ò?M ®`½´· ihënÒZåíœS9‚ÚËûSRßH£B6ñ]]<[‹‘STÛ3È]^ñv®s¡GaG–üp+bZâ~þq8uÏqDHé66ì4U7 8CD „s0ˆÛ^ò žŽØweT0Z‘|)%œ7S˜Í®Åõ–Ÿ;,z೺ù`lßy¡yù\fIDœ†­ªÜO¸ëMN>Ô+èhj¾p ô8EÄ9¢Ë»U¦‡0U-Ýû:´– ªÍ‘°A¯J³=¬KŽ_õꊸ˜8ˉ’¯¦ø‹"_/;G"”Ão]ûÇ¢‹*GÊýðF™#±D7%7Ž­ÔGÀT[jœê×´_@§âJS\p[šâ~Wò³žR³fò¶dO¨Ø«ƒÚ~ÛÄË\´à$6á;ž¦Rü‘“÷nšEý'½Tྻ|oJó®4_ïÖ;®Jómw%ñä–׫¹P®:ò ¸Ž"d?uddn „ž¯…¶!QºíƒdA:fÎWN· UrÓêèé¹6BE×KÛŸš»6îL6˯VË—U:¿r¸¨çF%¬º]ä¤~Ì?ZÔß12Aƒ «òåü2¨Ž÷…Ìê¬t™?[]Ϻ«²mËr êKoð¬2‡&€‹Z…X8Wh=>ã”+qh0}WèPã-ÊN•j¤ÎLI5bžÆ5Õí¹Z€‰“áÐaÑòR5Ð=»ƒþ±ßÌýˆj <ÿÿ¨zdµù€ª„XÕ9œƒÆw!ŒPñ‡G€ÇÝÚÝ?Ö"‹±S° ÿ^ÝSðùJ8e_«:öžø–ûÀ±Un̽¤6<œï,xü^¹aƒR÷< óñ®¸’G¿M Ue~´j¹ÞGs½OU¸ShéðãII[I‚³LÊŒÆAø¢ƒŠh‘.ãã ˆs'e;…3EõWvªÙÕgdd9å šà/•j|âã¹Ãic öùýê(ÏâVI®[¦ƒ9ÖêXJ|‰O=U‹ýz7—jzA/y"Uô†«þQÇx#à³ÙVóøy%ñH´ðÌTý¼–ˆà ”; þ¯âˆ¸æiv¨e0†çkG5‚oÀŒ9Pþ‘qÄä}µjè6®a'ÀoÊ…Q£ ÒÚ‹{ b[ÌX„Õ€q›jeα3h8 •4뀔 ÌÛ¸²h1;!´fÀ'eá$„ä ±3&-¨ËÛúݪ7Yù{î/W‰÷—»¶€-_¨±–,‰/e¶àˆñ€ÂSÂWu”>ÄØÓã°0ÚëžÜ:=´×/#«Ïœà\ðÚ¦N½®Ï"|Ô.ÔÀPÀÓq@—©­ ZGÂáWU}BI²w„Ê neƒrÙÊ~Ñý°XntŠ l$ã½Ó)h½¬ÂSãT`kì‡[Toï©R¹Ô:?R¦™ïÅÄ[øÎy¡BþT­…(¡?z•ȹ[ÿ°öh®oΜŸéûYU¬vtà’iq1}"MÞ©:Yod|ùzP?<wl¸úKÃÓ›b%³BönRºèc©äqÌ2vñž($%OwËÁDTlDf‡4ëGÓ¡Ç]ñì3ÍW•P ¯YÕ+Ýc3â2›i·æiÀs÷˜ÚCU%$h…^mÙt._¦|@ÞþTzâPf¿êRFؤ!bŽ·ààé†E™|sUä%„­êJ§8;"ù4öŒUÔ2!ýPÇ@ZÄ$äÃ)qY©«õ „ïvrî¡ $£9ú»àRwy[p‹°õ%BÅÈ*Æ6&g=:õ¥n,VÅʬÆ{¨]{ÌÖxÅæ£ß­n¿¿½^‚nQJZ‚¢ ‹·,eîšžzS>ãÀƒ0~xìçLи‹Xšˆ8ÅÁãz­ôtý_+.x4t=¸-QJ˜XËU$¼®Ä´s?U’xºÒ©ªÒ£¾èL—Åq­2Î)ÔGŽÜGJþ :Âïš:Ƹäc†7ÃßÑ% ¤šjÔG‹²t›‡¾å§~¶M%6t”Örô‰ˆx{z{VñäÞÓõð©¼øô\•ƒ²ÀáÓU9€¡×ãyÞâ /é\´ñÄ{6œáûŸ7|Õ®ç+Åsć”›[ÏÎrÍýžÜ”r–Ϥ< 0ňW÷-ÁÀç.Õ'§šSӔ˕–`iQª ¹PF&+K`ñ®?¥‹ýêÉè^Û^çlRù¸ÔúÂ’&[£h6¨ùpõè~¶ÛOº¥VT][18ƒy¸dBHä®—y» –‰xHÿçþè7Ï™§C}u ]v6¥$û)(øyN¥"ámkkÄú}ù‰ƒÿ)MQtÁ?’ëÖæ›Ò<”¦(+ȿҾü®4×íp¹tž¾*͛dž[ˆ£ ]ãEAkáÇIáúI=Ê4/iCX‹oÁR° ±²­Ë³üè ýˆ‡ø… ñ{#·¥)~@ã]i¾î6_•¦ü•‡Òü¦4¯º/ˆô-ÏŒ¡ŒućÇ:ZKÏñ"€A·6H(˧üb‹åríÌP²„‡ÝK\~«&O¯ÎsÆ¥¢˜óJómiöiæ¡üHÊOÊÓÏËÓþÆŠïÿ’‹Øã?vŸÞ•¦øšÓ_Ô!‘2ûߥ)*}Þ•æóò‚(%F¢®Hô *ˆ¨ö8·Þå¨uåÙC©~ú ÁxÍîáë?ÔV½è~öI…ôÜ^¶+*Š×ßKQ ÷MiŠº¯~­Üã[… >¨¥â"\ƒ9ÒÑÙ–çù µ9®¥2ÏuºQÝ{®¼À`$À½çñðÚ³§v–Éðx)“QwŸÞS_jg ÙyùßΊ©W¸4ʤqJCÏ'W)UlZ;Œ3J@­¿¡¢*°_ÿ÷Pxæ'åéçݽ¿ÐÃ_WËϧ—ßW?²Â«uR¹féÀÏãyÇÛ²Þ¢~ð88á.‹•_¢vD29/V—å=? ñ\M0s‡,ø•Ù\ƒ#9iã;¹6ë4•FmYgDwÁßç‹õ‚‰òHÿV½†çphW®qú€mU[Õ¢$ŒÊ—rÚ|Ørkß”¼îò¥±ôóKdyW¸ )X: w±[ã Cg©Ö»©e’Ù”üîï.Йl9o^»l7ï\ÎDx/v¢òRÄ/z÷¼óÞѾf8¢GÙO#94ûh—SˆüË6ç¼²T±Íkáþ]i^–æu¿‚ruµœUƒÕ©då·Ïþ¼ñ0 endstream endobj 595 0 obj << /Filter /FlateDecode /Length 318 >> stream xœ]’½nÂ@„{?ŽÎÞºŠDQ’0ö¹À¶Œ)òö™ EŠ9郹›­óÃéxšÆ-äëÜ}Ù†qêW»Í÷µ³p¶Ë8eeú±ÛžÄ³»¶K–ÞÚåûg±ƒ ~o¯–JløSù¸Ôͽݖ¶³µ.–í‹"í‡!e6õÿþªšÇóð´V°ºŠ'°O°w´D aŒ4G7Ç2QÀÒ±J°rŒ‰FÇ:QÀÚ±I°qDfdnôÜÆšæÚÍõ.QÀ°ÑDÎl/A8†ø‚La®x® D$$xFø”øS‚La®x® «°¯x_EWe_õ¾ŠrÊ‚ê!Ê õ żʙÕgVIP‘©ÌÅé‹ymÀwäÛ~-7t÷uµiã'Á•û¦ÇÉþ¾še^üV€²_ÝŸíendstream endobj 596 0 obj << /Filter /FlateDecode /Length1 10988 /Length 7160 >> stream xœ½YyxTU–?÷íµïkªRU©Ô–}!!1‘ aÚåÍùE ?‘3Íš¿¼ceªfÈÍïéöÞþŸÄŠèe W.Zþ³ã ¦@é^´¬waª¿1`1wuv,ØþùÛ²beiV(3xœCÛ…åÌ®åÝ×§úgMÁ¨kÙŠù©rèe©ÿòŽëW T¹Ø+–½×t,ïLµkŸÂ(måŠk»Çʧ¤ö•«;Wþæ–k ±üÒ÷*{ôì1³}àdòÁ|ÃûRš˜™ü”= úÄòäÓøõ)P‰ªJ8·Ãý0ìÁ|®‚Ax‰,#d.„·I:ä!^ Ä` ¼L’É×a!<Žý»áØûAß, ¶n#ä X1?6$…L(ƒMp ÊqÔm0š|2y[gÀLØ ûðûß?µŸ1%ŸIž¦ã˜°åõä”ä!ªaÖn€çI€~?Ùv¨@ꀇàø-ü•ÜL&»’=É×’…­.hÆw-9H>¢‡˜MÉ’Ÿ'ˆD²pÖv¸Ãñ‡ð=N€Ô’¥¤›ÜC¶S"u3uÙÈÚqÄ!õø6À ¸8#ð7ø;ù‚²Ózº›>‘,Iþ¨ W)­¤zðÝŒï6\ÓQ‘r™FÖ’{Évò•EͤZ¨ë¨ë©Oé&z.ÝK¿Á\Ë ³[ÙAN•ø*y4y2ùØÀ WÂjX‡«{^ƒ3ð-¡q, RM®Â·ÜO!#Ô4rœ¼Fí%ÿF>&_³K©) •MuS÷Pû¨¨?Ћéíô}ô¿Ñ_1XŠ}„ý„ ðJÌKlIü!Y‘ü(ù j€>äL54ÁÕЫ] ãà&\ÅÓø!×Fà¼$¿ŒÂ7ˆ#q’"2ß&r9YH“Ésø>/Óò5…Œ ”²Q.ª™šG-§ú¨·¨>:΢'Ósè!|OÑoÓgé³ Ë˜ SÏL‚­Ìrf'¾»˜=Ì0ó*[ÎN`›ØYl»…ÝJÏg_gßæÖqÛ¸aî îK>ÌOáWð[‘;/¡Ìþ.|’‰ÔÁ50ŸÔy0€Üx„t@?J×r+Ò¸ÂÉ6z]O 4<¿BiÝ ka =I¾Kï…wPR–áX}°›©7»¹s3 ½b$+™þ Ÿ×“îv¥9v›Õb6 zZ¥T<Ç24E §Ö_×îÛ£LÐßÐ+•ýXÑqAE{Ô‹Uu÷‰zÛånÞ‹{ŠØsázŠ©žâùžDï­„ÊÜo­ß}¥Æï‘9Ó[0{¿Õ•óSåür^ƒyŸ?ðÖÚ»j¼QÒî­Öõtõ×¶×àpGD„C™›#TÒÀQ¸¬cm—©GmÔ鯩:ü5r¨íX6½¥¶&ÍçkÅ:¬šÑ‚säæ,–è„ÛÔ ü n‹‰0¯]ÊuÌm‰Ò­Qª]˵ùk¢¶>±_<—«ÝzAc” Ôutö×!·5¤ŠíR©c+–›½8,µ±µ%J6Ž!Ѹ¤&En§¿Vªj_â*üÕþ®þ%í.ÌhvŠÎZGMk¦µ ;D‡\ÈÍ9b_WáÃÕɘ;QJ+|öu©ô?nIÕÿñ¸Jî7ò!¦3Î@¤™ü“Ψw¾<‰‰-“¢Î2èŸ_†Ýði%¸ÌÅHÏeQ e†DÙÀ¤Žh_ó92ºjRĵ/©V8œÒÚ«[±{¿þœûëýÞþ¯YèýëÅ5c5\@ÿHY‰ÑçeÛÏå{d`¤éìþ.‰¿=µce¿½ö‚ ,KÐH4GÍÑ¢Æi-¾¨·+bÓÅ´–ý„lk‘äÆÔ¸€è«¯ÂæIÔ×àüXÈÍÁŠ,æòr¼u8p$+Þ~oÿ¤ýÞ:o SlèìoÍG›['¸g[ÓÎg;[[/Áqò¥qyœþVaÉØKäp€8v*ÈiÄe§µLo‰öÕ¤EÅšVäŠïñi-ÑãȸÖVìUxžRL×.¶Ñ\„4fa¦85J3ŽC´ö÷§J~_ôxZ¿¤c©rŒÀ+ıŠÈ ¢1Ò7MnêóûÒdÌ}~’Õ*a:EúœDÅ ä§.½áñHm©ŒpÙ/„pùÏAø’Ÿ…pÅ#\‰4WH_úÏCxÂEWý4Ââ…ODjEáê_áË~Â5? áÚG¸i®•®ÿç!Üp“~áÉ"܈ÔN–žò !<õç Üô³¾üÇž†4_.!<ýŸ‡ðŒ‹nþi„¯¸á™Hí2³~!„gÿ„[~­?Žð¤¹UBøÊó‹iQ¸á¾ ¿8äs/€\òBñœÉE5ù¦ó»QÕ]RÍEC®qÂÝȉ¥À£Û¬Ç· €ÿLéÆó‘G1Jî4æ8ì Ëz:»KÇF~òA®g£na¨ÂP‚!;{¢úÈ.¸ÃÃhXLnƒ^ [0܇9Ÿ{ÃrÛ0#ˆÏ‘^p’É¢Šñ\avxìJ•ç1Â|Ðóžýã£Ä§éˆcXЉJò0y€‡<rž ÂdçÈ2O;6= +1ôa å˜'‡Ó‹<Ï“0¿ B:Cyþ£0×óIaŒ"ÞB1“ߦcIÔyŽ»ôü‹{‘çy ûRM{#1é›'ÝË<÷¤ÇÈÎaÏÝîÁ†»RÉ7~zȳ<2àYP(·OˆQû†=åØ>KTyJË|ž÷iO~(&,级x² _ñdºån^4 <.÷=žK°)Ý]ºÃQ²—ÜYäþáÀdÏs˜Åå˜)ˆ‘_hbä±´!<i"S}X`JÁK~xP’sŒì;¨—r˜9ÄÉ9.Fž>ªzZôHwÀÈ zJŠ©”˜RD `2ú†·Ç8Øhí©²W'ÊëjþQÔ~Qœý;qGP-¢{Ý­èb&én=ßø¦žî5uVgg7Îè=гrÉBÙÕõ×vbhÞÖƒG¾y^ïþ%+Çüø`û¼ù]RÚÑ]é﬉.ñ×x÷÷,ü‘æ…Rs¿f?,¬½¢eÿB±³f¸G쑽üóªW·]4×–ós­®þ‘Áª¥ÁVKsÍkû‘æ6©yž4W›4W›4×§O}­51²K²xk$FÐ2¬b¡A™%näz¾Wq½j3Ùİõ¤‘ª¡˜©Bµr‹°YyŠ:IŸäO©Ô-ªE|—j µ‰ÞÄoQÝG ÐÛùª'©]ôü^•¥M)¨‚U9›çT£¤&„kÃl€ãx¨Õ*ChE³œšJPªh^ÐÚlNžå6‰ÍœQRŠ3}* ›ÔͶ«ìÙŽ&ýûÔxy¹ÃXâhªí¬ùÔU¶JümådóÔ¼ÑÍy£ÈÕƒ <'+qå¢ÎHŰ4Ãñ A¡¤:¥‘ah¬µjóZ½pbsžÍÖêOlôß§÷ (ÌøÅ!ŽÁAä !5Bá‚þ¸ôì q»0b—3k…‘²º­m´­6)H1þˆ_Aü$N,dÊ»d ±¼ŸX÷zâéľ×}ì±³3™}Røö2æ…³4ÌH~ ß`è *áÏbYVQêUijW¨¸A¿X±DÏ— Fµ‚N+â3n½Ú]‘MåE*WPEY£žgW(ÃæŠ‘~Ños{ø;OE¹KT•|e¥ËÌG²öd:'¤E\“u¡2Ç¥~Cv€Íó 5™:zf´IÿõÔÓñcy>TUJ僧܀`·Œåy£y£Sƒ­¼°à²^1\:Þ’Ä ¥:ØÓÓ|`õš}Ä—ã)8Ý6±ø0Â=#›è+%]¿~=´‘¶LkqÑøÒK‰–èÇsR:¾´d\ПÁs¼).²Y-3vÂ)´ÄŸ †¤$X2®t¼‰hW7]Ý:àë*Z>¯°™œ`QßrÃí>åö;Ö³ÆP§²r‚mYVÅø?ܸýØs;ú_“3i×]§Õ¸ò‘eBŽ=wn󔬿ïohŒïpeÐôF5Wí–<{ëöÇMä´¤+[ЬÝÍÔƒ.ƒ!:¨O×3ŒVÐSZ…A¡ ,œA)8M$O1€ÃhŠ‘Ú¾yëdH+§ÆO7é?E,§VÄG»r ÀÂh3[¤uZm–<\g1ø·ì³<¾”µ»õiú[ï>Èä)½Ÿ¢Ÿ§©¡ÕñA$z3™Ê‡2 [ÌyRØm£Â‚×eÐrn ¯ã´n—*CK…ìÎLež>ÏÉÐ9ü™›}ÇÚÎÓrZâï¨ÌÚªQC¹1ÅG—5 Xg B$¬#âжqA‚œKñ Ú2‘E!™G³ÍZLŠ-ȵâ"£AÏs2‹ ~êÅݺçŽÖ0Nä •ŠWþêPâp÷ÎÞ{ßøcßÜýGì¼qö.zÿ¶IáÊÄ&â‰G®.IŸÿ³„÷Lòª‘ÚÚà•O' w­ê¾ç¤uœF8󧎘|ßLòuBIíî )“ï1.võÇ«DÛf–Ô –ë*á5Æ2z…½L•^ïÖ÷ŒØß#(ÜòòÇAš&HΠ"À­Z{Ì` “4szs6µ%LLF¥+ # r~‡ApÀfE(Ÿ74ŒoôK ã(e ¢ÅÛg¯Kü{"±nqU)éßuýÓÝ“ßð ;øÉþÄˉþ%ñ_%g†HÝ·Ÿ|Cfœ!‰·þÓÆß§|À\à[ìÝ €¿@b¤XT3 ¯fø”õ iQ#oÅË‘³g^AhJ&ñÅ¿aäw;ƒÛŽÓ_÷›Zw}{ ýµxe1(šH­dqË" $y\à›ß™²™qyW‚*I"Ç[üC¯¿þþû)ž‰L:ûkÔÖ]bS)SÇÌf—º¯I¿!}ÙL YÂÇRÇŽ]Ï:XÈ :Æ¥uøx—}XÖ£Óe˜”%&ÖëYãËPûnâˬ+2´!ÝzOYFf½?…õ™QýW£§¡ª2^Y%!/mŠ˜"¼’nC[J»‡:`ªŒÚ0(Ì­ƒÑèRÁ’ÂU¯'c"\j¬ºÈcÞWd´˜yN6ÒFé¾4Ä,˜–BYé/Úʪ¤ø"Y,I'ÒævÆqŒV F>XÌà'ÖO~£×ÞöÔ³&WÐÚ9qõ`çÁÚ ;,^C,ú²>§nÕM‰¿}"¶S·U­¼þÞB¢)oÙK»¯¯¾áá•§~wdÃŒb·gß+‰ÈöoÊ[>ûæ40WÌPPJAC(êy#zaGX^ ‘JjŠý‚Vó º7¶gÉ€Fx U»å««×Ê~u¦2~Z²$(W†Ô†eHé/ƒ ¬C?Ç  _ )6 À¨'%äñ­Ôƒo¼AÎR[â×%XrU”ÞöÝÕ¿N<š¢í v>z9°Ã"ѳÙ0`¤ŠUºŽ‚t› šœNM@ëp8ßöõl9§Y©½*^—™$VCÀäx–gxš§ÐyTê…"B¬)Œª"›¡de!wÚÈé-ÑS~ŸöyÑB›y*B¨×:'vO®pêÞûïÄC§¨f’¿{{Ëý‰Mñ¡½–ЊÖÛšë‰ädMï¼xýóc‰aÎÉ É÷'î¿.ÈÄcšZìÝ!ÜçÜí¡Y-¥cÍ­Qg1‹jÑ,Dœ¤Quˆ>I^¤O¦½+¼§xÛó®ÿ3Ûg~ÕIÃI#5W`}™ºVwf9ÇóVŸÛÅ+ÝVU€ßáÚí:ìzÇŬº€‹u(Õ¼uÞb¡Ì<>äpCoúvµá“ÚÌߌËú.ÛØü¶”׆9ä,ó2tuàG–¥XÂ2œ'hÐõ&½YÏpê@FZfww¤»6>*‹6H4Z¿Ó‡U,F‚]´AHÉ¿$ü²deg­'«Ú`U[  ÇæKIþøb-AaGŸ z(&Á¬„:øvY©QÿÝì;n¿¢À¼Ÿ¿¼pFïħŸû¿*<ùé÷°ÄÏÔ/9}ÙäG;ÑVZ_qWÞ4—=iŽP¤:\Swó~òAJ®6 cF‘'pÂUbáaî$G1œ™ ™{¸nž5«)³]ï–œ4»JéäNPGNɳGàHCW™Cg­úg !My¿•²‹TNRî9ç°IŽ©ß0æñZ‚%²aß”½]§§åv¬#“ËrÓ’ÝLþàU3šýh|:õؼÊkuɪÅñW‘X¤»:ù}ˆi„<È'yâeŠAvÀxŸyÐ2˜Å…3¡R_¯>³>4+svhaæ¢`¯ºWÓ«íñwgvºƒ»Ò÷ä˜hd›Ëä™ÀiI³¹ì–\s^X§Z,¥*¡Q2Ù&û‹.·‰gÜy;³Uù¼B«§xÈ÷å;=v«=d›ò¡°³Pë é'@(ÏQP8|^¾FÏÄË%8âåzÌIVž/™‚rÉË•NÒ¹`•,`SH.´  åÓz| ò>BçàÙ‚Íœۈuif»xu>ðeh5BHé#Á€BIrpŒÒ .qX]©ÓBj§—£‹¼,‰çŒm(˜/‰ $®ðþ”˜I®©‡HÒhF †ÈB fÏ‚ÁKC×Þ±eb÷ŸŽüméeÔ^68á¾…‹kÃM×½P½ø½¿|q’'‡É´9³g_Y›‰š™‘5iýào¶Í麴¨¾I¬Ër˜Üù9µ÷ÞñÚ{SOÉ©Om<”Š.þ隣• tPN#< A±÷{щWŽŒ¹ (Y²ÿ*9hh@7ƇÉ:û6{,åwØ’_P vZÊÏjò”ǵèïU‰ÆZn£9­ÒàÄ9Ð’GÀ¢µèhMÑßYÑr~ç[´vÌ2´•È 5a>Î85^9ªŸ–g•Œ¶ÙöýÙ*Xbð—ï9´o_ÐR¨I7{. ­›s×]ìœÄ[÷ÄkËL*BmSëQ'î‘uÎ’˜D†blG­ûWñš~Ë­öÝvšçl\™±ÁØb\Ä_G_Ço5ÂvвúööXõ Ðh©·½dajØYj3» v‘Ýì›fí›ñ³¨U:· uð‡5 WɲYìCê;¬gÚ›¾EÒ©Ê+žúlé´m»âwQG—5>øjü”$#sá/Ì ºTÖh!^x…÷r 8<…Š1×W5#EµþëJé8Ç=žXЧÀÀ¬8;ʘΎҥ{ö$š÷í“p| £»e}³I7ÐÏÉ—ÚyÙÈ•_P(©ÓK/½Äûö2lTá¾ð9“¨‹b^59A(X]T½ˆÛÌÜÊî†=”P T-3™ÝÄlaO2§XaRøÚ0/Ĉâ@JÒP‚bÉ•qÓô21rËaš^n¤…§Ñ[Ätޓĉ°œtµÄR4GÇ2JARÎ!ê9"Yˆ Èç@µOøaüü –|5Æ~*JbÓé©|*ÉnœÞ+¨ˆ‘¦ˆ ëÆþ`pŠ¡‡$½87î…zpnd–×gã!Åí¹m•I¾Œ"t’}"±ìxb “ÚuöuDˆ‚ŠäGôkLî i°[Ìßí ƒö=Â^;=Y0Üo¦i3çvò·Y•Ƨ¥Ùô!#AwÛàt+C6‡ E’?à[=fy¤û#ºòòÑó7H˜ÑŸ;g;„€Ú‚ބ֤£A§çXböI—v´Êª ‚Έ‘ÂÎÑç|dÌåH9²Û!;Ýèpø¥{é*B¶dÅ’%£JÐÝà©·?¶ éW¯{jrÁ­w¯¼Å1”þåÑ?~KŒoº˜¦è;óoÙ³üáG>ØrÝ['Hñ§ÄI.aå?:^&䪉ZF½O}/}™¿²—°p ¹øGùׯpHQ„ïÅj¥ ì‡”’ú7Æœú…81p?ýŠôX.,° @·\¥ÆÊÖT¢‘"ÛEŸ}ÿÏ…¶W‹©Aš[ Ðz#d0ýÿsÿSÞ”cùß§/{“IŒ½R,ýu?ࢇ•þŸí†µX ÂÚ­•4çs6øÇÏÿ1“éO íXÙ0–šA'S.yüz@—`…²8¹ØŸ˜éâç´ _&ÿ]üí`®…Ô^Ø‚i¦311Œ`¨¦Êah¬\ˆa{žÀ´Ã$¶šœ„ ØÇ†y ·WÎóÌÅô%¬SA¾cóí=wµ®ò+0¤¼zêrúÆ-'»¾éü.¤ºKø;çúÿæžr+endstream endobj 597 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 348 >> stream xœcd`ab`dddwöõõ441U~H3þaú!ËÜÝøýÚOVÖnæn–Ißß}ÏüžÆÿ=Y€™‘±ºq‚s~AeQfzF‰BŒ©A20T0´´4×Q020°TpÌM-ÊLNÌSðM,ÉHÍM,rr‚ó“3SK*ÁZl2JJ ¬ôõËËËõs‹õò‹Òí@¦è(”g–d(¥§•¥¦(¸åç•(ø%æ¦*@Ü©¡œós JKR‹|óSR‹òKB˜Yê~tð}ÿÚ8ÿ‡ÌŠïNógþûCMô9Û¼©Ýs§µv—˳mø®Ö?³»·{’äìº)uÍ%ÙÍr)¿YuÙÊ›º+'uÏ“Âæù{NsFGcwdÌš„Ã~W›4±½¯µ³½»½S® ZªË"c]»9r;—,ìéž×7]žOŽ‹Å|>'ãÌ€ƒendstream endobj 598 0 obj << /Filter /FlateDecode /Length 9267 >> stream xœí}]Grå;w°‹ürßööbúNåwæ~ðÌzFlïŽIÀcÑ¢Ø-Y$[CŠ#s~ýžQ•U·n“²fÀ5ÐÞŠÎÏÈø8™•õ‡Ãtr‡‰ÿÍÿ>õd:Ü=ùÃ'ÔÃüÏóW‡_={ò‹v¾‚tjSs‡g·O´Ž;¸äOõPR9µÏ^=ùâø»+4Ùr‹ÇwW×Ó)µVŠ?¾5»àZ;¾¾òù]HÇïAœZKµ¿ÁOï¦+þ~‚GÅãoHœ&ßÊñDb8ÕãoI«9¦z|ƒŸaÊùxÿš=åÉOîxóÔ8¥©® TÿìK„VCÊè€?C5-|Ã?—V[:~;j=eS.û´_ŸÖÝ+iwòÎÇã6Üû˜«šaü©úF&âZõ¶ñçfœ×üí[«5?VÕXØ‹´—§tü—«Àl—Ž7wg3¬±ùzœCöÇ›o¯|9¹ê¹£´rAJ¼ä}ö9Ö=d»ì!·“ÇÂ?ûêÉѹ«gÿöäïž=ùŠùáyKéñ ÅÛ­eÌô’¯¨â[§Üo^þåðâs÷á’OnÙe» lðáð*~Žÿÿ ¢úÛ'>Åt*ák‰§œ¯ž„RÛ)¸NyùäéN©Añ(-µ­iÛ¥RˆÑÁ9”ŒÕ*ˆOîäK9DpΡSQwuݤÊà¯Ègá¢+©¦tˆ-EöüªS Lq“1앚À¸A±¥0U7¥ʪTÃRLÁ–š)¶TŽ‘jnJ-”U©y¬¦”ýäžKXù ÜkcväÞñÚSîÀ¼˜kÅ_N¥Bz(‘ÿ0))!yC¢ƒÏKå.É01ºHùô>¸Sñ‡4%@¡àtJ.ÐWLÈ{AWP*ô:Åy(*( µ²P&Ѝ妢Œ÷®yþ-9Z^(ÐãMœ4ã ‡Î{¥O ]¹ ËÒ„’òib3¥×BéÀv*jE¡„*„]j˜ÊŠC-!x'4ã}¯äÒÉP"*%¡`ìsðàEÑfÐ`e3à…^L-ž<Û©K­©V/^@„âO ä…J>UÀŠè•¢,¥¹/Ú º€wI³›´ØÎy¡í@ú`5R/JP Ì Û/¦¨”@iMq¢uT ú—áNÚ0ÄìN¼˜´™8+xt8±ÊzÆ$†j¦xÖÊey$‡#âÒHb0"ç¥#²/Í‚RrøX'UaPt¹Á‡^¥pj ÝœšR0}Vʽd$’.dåf®J©½RñÂñ .xí¼”SÂៗZX&¬d†£nÊ0±±Rì•0•„ dp!)Z;E–=o*ÕS:%RÀ?K–ÓÎY[¥Ïw`™ *Y>Šð«XC︔¼Hië^”ØkÁÈ8Œ§€Ú9X:am x‘´óT¥sè½ZtèTâŒS/\Q½ó§€f*x‘œRT*˜1kYMäN/\^ôyb3àEœ5¼Š"Vð¢zµXÖ/Ül)&áWmK-Œ‡3N ¼P-û‚–›ïµ ™R¼ˆ2-0%H0ˆK­Pd-4%zêvj¥×Bé ž60CÕŒ® йèµ`~¡ y3TÍ€gN΃â{­ì¹y7&µw˜sd-rC íÄ åFáØx1i+0žeÀ‹P”Ò(iÙ‘Ú7„Ò¡ ­æ¤í`3mfÐŽ«(Hv:5RXLJîUÐÁ„ÁÑfehKZ«.µÂäX:ÓB%Ž`jI)Mf@ ©•àà$2Ù‘R’RJ¯áG×”—)¬7 Efûs%jÚt>µ™‚J¤„^+° fŠ>&šÛR¯²P0kU©‚¥…YÙ£ôZôèÓrÝ¥ˆŒ® Á[´Ã+Y~™)PÝjš…Ë,' —Û[n•*";Zj¤ 3cG+½Œ5µ N¦®Ìqsj‡ÅnNÎaXõæ“xþaù›ÄœÖ;4Z ÖƒpÆ„8ÝÉ4 ÃY7ÔÀÔ6®ªQC’ugMÍŸqy ÒϾ‡[lð1ÍzΗj\+bHÁÝý†iŽ  Jåü‡”ºÖîéA©ÚóÔkr:b”)(Ü@°‡“Ì©#Pœ€’ €¥Š´u(¿)/(ަcÀ$P8(Å8õäÒ‚µä‘^¾ƒ1©ÂÕï€MšõÔa$Î0p€@‚  ¤£GPœŒ¾#Lð¥Râ %R:P{›L°ƒYP"ÁCÇ»X¥F·Ö!±,d¨5s±‰J²n°sDD}#f…½ÁÈgQ|,èS§ú/±@hâÂŽp¡ÁDPGHÑàL8¾v4¯K=B“æ Í‘ _„Ì7!N…Ù]A7×rJzA5‚)Úp\´F\—”uŠn/ŸÜ>sÁœPƒ¹—ÁÜc0÷Ì=sÁÜc0÷ò1˜{ 惹Ãc0÷Ÿ'˜ûz'˜{*;ÊžÞN?‚4ØF.îDÀ…qg¬©l)ÃfWxµÃO¦Ãç£J‚qkhÆË¨¸gùÅ6Üe¨êò₩ÃWëMéeSÙ˜ eÝŒ^<µ)e6\¿˜;ðܪ%Ìmfh‰Î§½”is.5ðÀÓá ‡‡åkÑŠæ¦ÃJëQ}Q"vц1=†_Mœ±ÄX`Þ‹E,I Œ‡šØ:†ÄEw ðj¸“ŸÍ=Ô[‚bº,Í}†(± tˆÌÅ{‚âÅðqŸ½¹…Bvšý¹e'“(àÀT—2[%§.V(âæ@y¿ôE1# ËpX‚H§˜žÚË2©L¯LÀ“–‰{R01y¦$‰¸D'xD€µòlèÀR'¡LE[u®LÅTÔqe(Ë„jσ2©ŽP@ÑìIƒí÷nYrA1±žfHlËéyŒâ2­mL‹,IÌÖf…J)ÓÙªT uÄf<ä£#Fƒ4EɇE0Y– _ŢȯUЙ¥ˆ•èr “ p}$%7´”@Ë:4(еkFË"á*;ïŠJ•È¢« 4UÄE£Kš,è*™zôÖ,€$[ÐM(Âÿn]"®iŽfÒ°?2¿/˜l±G‘LŒÍŠb¢“±k‘ œÆ{1}âÕ_“Dû¿EçÙ}*œ€¤¨‡ßLËB~‡oŽžÑ[6þ‰»‹dJ`%hWÖ†Vƒ "³²Ù¢ PŠ„@ àˆ^MïÀ$‘IÙh3+‘IY†_ÛÀ-‚ÿDæÕZwŒi$…ÞqTdZ6¨™••døÇ@©²…Ò!¼›“ðµÃ:P4gÓ‘(ÂƒŽ AH¡uø)ŠŒ[:Ä Ák‡¡Bá–C‡ªÒáX‡³ÒÁk‡¼2bÁ‹eÈ”è,Ó ¼ÀkPCåŽÀ£¨F5(,­JY¼°@´£ýHõaØÙ‚¨éÌ3È’GV€àdáGœ(Û]=:‰ÂÛBÚ$^éQŽr*#éçæ[• !º0=žRÍË&à ʸ5ú¨=jÚc ö¨=jÚc ö¨=jÚc ö¨ý¨}½¨=}2°{a@‚¿e[â^Á Ø›½-Ï^¥V9Šx¯1 å£7=—wdMè¸PæñØwkׯz°›ž!ÓMÛf¥¥²¼xÚK™6çR|w8<Øe9C]~TqÂVž:E¶¥”fKi=–‚⦠pᇱ¯Ëó1XÖð´Š[¶R·»Æ{ Üî$›RmµõÞr¯—m©ó3åM[gKfØÛ÷©=ñYÚyÖÏŸ O§Ãhaû¼Ô¸ºñi`&n!,E*½Õ³g­aúŠ ±ÑÂöy©qû‰ú5óíŠÑ)ÐWâ¥Þêöy®aú¥øW7ú9{^jÜ~¢~Í|»ŠŠ—Óù½Õ³g­aúuEP¶ÏKÛOÔ¯]ßÅX®8JáëæYkX>ðÃÖÍãRþö“ô:æ:Lî èÃ¥Íóg­1zÍ̲µÑÏÙs¯qû‰ú5ó5G¡ \L5ýœ=k Û/OŸEÓïöy©qû‰úµNiqƒÆ‚'âhã6ÏZÃúX•btæìy©qû‰úµº»8t#õrjØhÍæYkX-âK-Æœ=/5n?Q¿f¾š Š—;ez«gÏZÃôK@?{^jÜ~¢~ŸÚ›RBE Èí Ù¾ð¥ÈÑç³ç¹Æó'ƒ’äñhsû¼Ô¸ýDý>½ DÛ)ªB½Õ³çEAEUh´°}ªüiú5ó£ Óo™x­×èçìYk˜~™j€ÔŒ¶ÏKÛOÔ¯™ï7™~™“Gœß[={Ö¦ß4ÉSoaûÜkÜ~¢~í|GȽPàŒ~¶Ï €1##Â1_?˜õ)zs]âØW†â=ãù¥Íóg­1z͉{‡ÑÀæq)ûIz5s5I’™Â÷¦š½lŸç¦×å¦Ñæöy©qû‰ú5r<ç¬?€vCÚ‡?Ø>k #Q|龞?/5n?Q¿V–5Cb¥Jß»62³yÖ†Ïr—‡}8{î5n?Q¿f¾#+Õ)šôVÏž—À£SæÐ¤·°}6!Ò§é÷#®LhÑÉ…y¼,ïš·æq¿-pË[^¯üû×Ïß¼¸yûâðÍëÃÓ—/^|wøýñ³+fó½ ÇûwoÞþþJ®!\®Ýãž•õy†ÇÉ¥…ÇÿõæÝ]¿&O¯| ó•ûÌ{÷…VwàkZ,C37|Ê%˜SŽwïô>Ï©67ßNYk¨¼´2Nåj;†_^]'¾H4µã3¹'S[ùzÜ|)¥ùv-¯µäV0­éørÜô)w’N)ä²\‡ÙbIÇï´—ìÜñ+¹Å³„R7rYi-¾Nþx#MÛÛ2ç NK.¼ÖT¨µd OhB¿èQ¯]M‡7,ï.÷¸»²fá¯ÙƒkÍaïÆ=¨oerÑÇ žŒ[G_óP°$ßë(K/.ß;Å”…kÙÿ‹róxuY(ç pì[>~iÚ}É[_+øZçB}«Å)]›Ò•aÁ;Oó8ʤ;äÝNSÁbœ®®3w¯ÊÃÌ‘¯Gfé‰S–Ñήڹ݊ðøÜìþQä‘Î|KlœÃ,ï¥ ‘…ß\+ƒ}7®€}i+.m·8Ë×ö‚Y+Vß+eÍ ox…nƒ@s{Ëo— úùf]^ûõèâÅúr×kÙ\K¯ù"m„™~öxjd~žï4#¢B-`ÂÒ8˜î"/Ð¥6MS¬ób‚Ñ›°wK=02d;[^Þ(ØÐÈû[ÞmË Þ^üõhï… D­¸Þ <7š¬¦Cîæµ ~ct£·¶W‹®…Õbˆ#ŠÎñ’J|7¿fª~—ÍííÆZÂ,Íý»¡†§Êô©zJº ¦Äp),kÁNÖ+½ÌÊ0ŠiFaÄteã̘×W ‹U˜ÄÌ-¦ ¥DǭάukÿFÇŸÑã%á\†ü³A^äV}ô†ßk[m¢…ÞÞ¨,WC¿MÜý\[®SZõl練æ”Ýögúîk™õäV³%Zæ¬J,+SW£€Æ­_»iJé‘.˜«ƒˆÛwC’§¢Í`‰ÛµÒϵ͈Ӕ`U¤ ýyn3 »ïWj- G× ·æA¸³5 :¸sË@a{È2Ⱥ|¤e _ZU™ñ2Ï™@(Ìàô&ìâr^]­}n„¼µ èpÇ2ÈRÅÿ€e˜+ZP0‹A)b¬Ûü¢CkÑ}™Evb%('~f;l—nžßøûZÓ{ç6"IaåMÁx„å†wo[6‚¶µ ‹Æ©>Íó}JÊãp6®€[Lké7@Ìú‚û×C+¾Òšœ™i#±ïDj åx\Áô'Íǯ̅ì÷ªNáøïCÕWÊ;ÄØZÕ·Úu¨I.r_ÖSFäů¤{­†¼Î¨]ï–èþ8Æa¤Ø”µjxóR;)àÑý—Ã#­qî`µ1¸¼’«º¡À—œˆ½¤¿s}J#-¸eŽ\Ñ2#ö ]ZÄTõ×NÉÜ`oz|¥ ©ó®- ¥- i(Ô~WÍ·>EVa†óÇÿm„]í˜+3`dÏz’™9©nµÇ2gÛªóÖ0M±*†˜Õ·òm‹¨ „f#¡›WFœçqjVŠçʼnR·úXC—¯çW=†2ÓùÎ ÕŒj¿ hOT=·œ¢ëƒCÃÖDßïMÁ.»-®Ãs%egÎW3k&®™Œ#6:@Ž£T‰äðw«®ûÚe»…LDÞÁ„ýf†ünææ/L˜Yôn´æ›«å³Æïߨ‚MÛ˜¥·µÁ#ó-öI¢¦L¦½(Kbö|U¢Íô AH~¿ûó»ñóíøùËñó»?M ߌŸ¯ÇÏ÷ãç»ñóÍøùrü<ŸÏÇÏûñó•ƒê- æºFnÚiŽ‘ëÔ¾?uŠðíøíøùfüôãgø)/Oi‡ŒµàñÛÉéb¼Êi¿Cò•èJ†mZE:oæOÀwýÚ$I~­S¡%^ ~ÿi§*ú,«ß^Y×d ÖOA/«m¦­2˜ê fÎ~7~¾?9~þb÷çóñóÍøùbü¼Ùíí›ñó»ÕL»÷ãç«ÝŸ¦ÀëÝYœvËšñÞíÎíåîxŸïŽw¿ã»ŠmTøË]e5ü®†N[]üjHäËZ<×iEå4Ü´ª9O=£Ð5_•a¤&j¾ö}e×àLÆÌ£~'&Û3£N •Lü7Q¸Ûö>—?-…ÿf„]{Mó­_;Nù+èh¦V¹ãÚx¡—ÊO ÌîÂ_ôã£H‘ìïz”£>0(fG´º”60{û¢F­P²-ì–¼½€Æ,$[Óa£)¼FÚKŽÏ"O ùÄk*óOû±ÜWÚavi5ÒÿrÕߥôŠßkEšG õý=þi׬.‹Z§ódí<%Î’š½´Ÿ¯&¶ùæÓFä#ߥR¹.[§ÔªLRþÔ§ÂO€Ä¦zýüÔäZÜ“1¡n®ê Þ\of66ç.¥M¾6g²\Àï0„“!MË -œŠ™TH(N9ç´Î73!½s`;à9úÚaUç¿o,Sä%….mÈ?}À¦ð²¾ÒÊvƒál¦'CÈgV%Cù¶&Túø×W×|ñˆ(û«­V¯Ö—/¸%_t…½Y`óîpW 0ø 0_=áËfrÜRÀ[\~Ðp›¯tJ‹¼aÞÄöºÐŽ š!5p{þ¢¿éÞéN5IEviYmqëqähGÙ1¸‚ÆŒ¼Ý @RÎg8täûÌÞÄ6'=gOÿtÕ· . Ödð¬ÿ¿ «W{r>Eaó:cúÖEܼâw61¢ï/F‰]IƨÑùGF@|åîËx™ž?s·Ì+Š¢óe—w‚$Á7ªuÉ9hãœ&Ä4›º±2n¶ºxi[dèý´3)róz¬~‚ úª"ýÏìaž¬nm«7òð  [ç¦î®%)Qs UòÉI>hKŸ±D /G.ì´ix=¾h•Üò=[XØ6¾ú£sžŽÝò᯻†þÿT€4øßUÿð~ÕÖuüÅäü_ˆuq.ÿÆñ-Wþr|ãÁ¡êúƒÎî^ôÔÂÊ켟?8=å3˜"wË»EÈÉ·ekvÞ>šæÏKod\S± ûIG¡ä[Ân3#9 ¥£9Ï€U)Í{²øÊ†ÃßÏ ™˜§o´· H›@(ê¶«Jftµ¯d¡Ž91ejÒ^É·*/ù§[ê›ù~µeÈ«=y»Ý|~Øå ÆÉ2û5_"Ï<Ò¼¾àùèå~=í®H>ç`v·îtS~Ú&»öví5ÒMö<~!.›cx{{ï7 Âj­vÅ%¡x™ÊjÇû7W;¡o@É%jv~FeË`à8= –(¶Ãªþ$ÚÄåj‡BvRð;¯ÆF²ËºùÀŠÚt’iêg«TbÿL½ašM6꾫ÅrÞ§•-¹M:çËççg¶nl|pÍ|y¬å•¬'¯.™OE,"+%÷7kä£î~`JPƒQ¶÷ÚBÊåCu,Z#9 øˆ¢'^ý‰IÑÍŽ½Öt–ãç;S;Öpå]ÖPs®'­>ÓŒ˜\Û‘ÀƸFØ ÊÅŸIà~8ê<«:NìÆÏõ.pg0–´­S»œ¢îru¾´DÙkä¯ Þ,×÷Š^ÇÎ7™|û&¬«˜x¦—òJ\°ŽüxÍRóee£wcó׋D_>w´ˆÌÜjq¦ÕûÝ)›˜ÂÚÓ;“ïßæL®yùQLá#N1iæùõ°iÝüëaÅ/`ó‡åaHMe#Æ#±{YŒ»!œή„9¹¥µñ´‘ƃb,3X‹1¯ä©—O^bòŽ'GÖBLjhֻݓÈ/á•K.ky^%IlÞ÷Â,ãqåÂÛG ³Æeo¬}ù¥Q8¼•,ïÍWS>0?«cª6X£,KM/;ºy¯DBR+¥f'~ R†šè0'·ÒH ”4„Œa“ö[oÑó‹l1÷pâK«Ÿ‚3óUºœ!9o5øŽŽW³® ×ÂP~é¸EPq*Pú no=Á=í¸F±S(Û<€=ß$Ž8ól÷#³~·ÖØv~X²U94‘Ä?ó»|Å]r©kÀ,ßð«áϘ}Êà_–ÊPÄÂZü6ƒD”}¿E ËF«ŒPÄ$(nlÑž^<¨‹- úÄ‹Í-nóý,A C -bðð·üª+K\OGUM ½¼:ð^‡Sš_Âú4]s^:÷RWÉÅ•ý^ûA©ˆÂ?5ª§Ää’Öó±/8‰Þ;®‘U,{иGšÌ{¢ª5’ùßú„Àc8Áz¡·:Ÿ¸F²¢°þÄmðÞlÀ¼Õá/mí-òÑÒ¾——ùš·|·13f05ÿêhÏCpÐÒŸ»ˆNÒL~ºLñ?©\bÒÒZf¿V/…Ük«Õx9Œ”JέOÞ+ÞiÕ/±P™’†ßÏ}ôC;ãÔšª_'‰öžÓ*yØs^ÿðäÙÿüâwE1By­ìgcBÛ7±*Á:ÇȲmZŽÉijÃ’ÍˤÄXûÔ*9´ï‡M=“Ïæ¥åø}ZÇì6ýÿZ ë+\çÞ[‡©šQˆ4/ðj³åèåFr{Šêæ‚’Ÿ½F›c]j"pâ%Üö%ÕH‡'½l‚®Êf­ÿýª·ËÃÛÙiB[‘ƒß+1ÒµßZBRÌÉu·òÒÌá„n >79«¿•·l]NÇß^1kŸ!mO‡8ïfÔùéÎáó×j® ]–\5OÍ_ÞJö®¢ï.Wñ|içmô‹°se¯?"½ì¬¥³7fKÛšZ¹¥Ê+ÿº»TIe:9QcS_‚'ç.¹Ü—VúÁMJ?ˆ wö™N1”Mœª_ hÛ<³z»)7Á»\2Øñ­Ö££Ñ·Ô8ËyB–u[—Jâ4åŸC6£ [¬,N¸›;wmåpnÌû&‘¸—Ê~èøÎªŽÆgWòæiÎá¡àš_W˜Zz`ÇZC¯rXí»X½•·ªÄóœí0'éüò*›¼Lƒ±/Xßis“sÀ€âÄžn…ŽŸÒ¨õã„näï_jM 6Êo¢Á³ øx_þì}ûBåEQ+NbÒ ÈôñzöšÂO´ì“@œÊYªïìå9§[ffÃÒ„ ÷w«}J“7â[nIîNøÛÛ:÷_ }£«Áã‘V¢oº½[]˜pi“K$hýfáònß´^FsÎãÛ6Ægh8óZùí;>_’ã±cÂW+ ’ăغv) ürF:ó‘ËY3ï;åþA²õ;ÛòZ"ûߟmŸÔP§í¤ äØû4m•în¬„Jkù´‡äßäòFLßê±¢á—qµµ·<íùXð Iœ7Ú_|Z½0BÐýWFWRªóÛ¾¦äøÉŽúö_ôùjü4/Ùüßñó³ñÓíFn|ÛÂ-g6õH<ï4«åì›dÎE~øÕØû…AέcQEb*o!a¿Þe•2”UÛ¼ºÉÐt}ër/ßó$¿{òÿEXÐ_endstream endobj 599 0 obj << /Filter /FlateDecode /Length 316 >> stream xœ]’=nÃ0 …wŸÂ7ðŸ,%€Á%Y2´(Ú^À‘éÀCdÃq†Þ¾/I‡ÀgŠÔ£©âp:žÒ´åÅÇ:Ç/ÝòqJê·ù¾FÍÏz™RVÕù0ÅíIŒñÚ/Yqxë—ïŸEsÐñÁïýU‹O_~ªEqô¶ôQ×>]4ëÊRºq”LÓð/U·Šóø> stream xœ½yy|TE¶ÿ©»ô½½¤ÓûÞé¾éô–}!!!!iB6V!$H Ã&C˜¨ ‘Q€à†Ž¬*M@i`pE>ÏQ\ÀÝÑ'¨ã3£o #¤ûwîí`~<ø™{SU§–[uêû=Uuª hwÓ„¬\žÀ{Mš1¿©-ž÷}@¾šÑÑî~ðo¥O`Á'ô¼Ym·Îÿ†Ùø.S pÞ:oñ¬x{]@©µ¥iæ†oŸº ø´b"™Ã1Ô­˜Oiß~W¼}0£Öy f4õ·_l?¿é®6~…2Û¯Á¼û¶¦ù-ñzõsÙÛÜÑÞŸ]¬o[ØÒö‡{oËÁü7¨ß[ìQаG Àv‚É@ìC ‰itbì+ö8h¢ócÿMã×Å@EËJà(<[`È`ʘ›à™ÉTاId"^ D`4¼Ab±·aüÛ·Ã+°ö‚ ¿™F¬]K¼±%˜¡Ü +bOC Â}pа׵ÐÛÛ‡µµ0vÁnüþ?ˆ‡ÚËèc/ÄÎã±ÏXóvltlè Êa–®€—‰—þ(Ö (Fíƒ'a+ü ¾#÷ý±ÖXGìdì  °Öð]Fö“/è=Ì}±Çb߯¢ˆDRqÔFXÏ`ÿ{ð=J€T’¹¤¬'¨uµŸYÉš£}ˆCªñ­p?"pŽÁ?àŸä{ÊBkèvúÕX~ì@ £p–âLZ ßUø®Å9&2’M†“qdy„l ïR©ÔDªŽº“º‹úŠKO¥Óï2w0=ìv“L=;;;fpÂ-°–ãì^“p~&4öå ^RLÊÉ4|;Éê ÙJRãÈQr’ÚEþJ¾$ß“‹K©(#•FµSë©ÝÔ+Ô›ôlzý(ýWú®n/!kë#$¶2΃ zú4¬NMmvŽ™Œt,HPÊLwWaÇU¢­¸»Ü]#fv¹«Ü­hLŒWJ±¢¥«> œP‡8ÁÍ8b¨Þ> ¶Ô×Á~²Ä~©Ÿ®zìaNs¤°ƒ>l”> §éW7¾.ÜYa‡*ê‘4ߣãêÂG‘¸úzl•3 )¦Ëf[úuÎEsRQÈ‹÷2ûÀ.껺â9>ÚÕeï×X<!ð¯¡þ‚H ¢Ò9Nªêôv sÁ# Zõ"¦ƒÐ¤/[Tòá‚«ŒÚHþJÝÂCnáâë#\‚:‹ý÷!\z Âe¿Œpèj„‡¡¶! áò_ áá7‚pÅ !\y}„«PçJáêÂ5× <â—y5£PÛ‘£%„ÇÜÂcoá›®ð8Ôù&áñÿ>„k¯AxÂ/#|óÕODmo–žô+!<ùF®»!„ë¯ðÔ¹^Dø–„Cö0\pç¿ ¿:äS¯‚\ôBñž) Fƒ*òSË¥^åÃbÉ5M*±Á:db.pè6kðmà¾Q8ñ¾E¤^t¢;’ [AMË¼Ž–öÙⵑ†_|õ4\[Ê0äcHKfN² Âðf“`1†ÕÅÀ H;1$ô0|èY 622¤d\7¬.‹Béz'BdûŸp}hùò0±âmú bíIù0yŠ< 3ÁEž/Y‚7¨Ù¼/8ÏÕˆU;¡ C'ZŠ ÙÙ“”ëz™¤ƒ—!ø’ò’ëëœ ×ÙœEz\¯ø# &JÂ\(ÑuÔù„ëÎ[]/cدڌˆßìtÎs­OŠÍ=®uÎÁЇãÉ"'~ú’k~°Û53GªÝ¡v÷¸Š°~RHé*(\ùÎ3®,„'˜ÏpŽv¥æüŕ┚¹±SoHër8×»†`U’³Ò?Ãa²‹lT²¥Ç;ÒuEœî¾ÁÂîù;š@Ž7B–„ jÝÁ¿78Úå Vùý(Oz[ÁÝ ãr¹4¼Äø8³s^Çkx5¯â<Ïsò\O™Kv˜ì†2„e÷>^Ƴò2‡ÉóRáóx†§xà ‘ØçûE;1DÈîýQBá%™$É"äù}ñ¢çC.F”©BC‰17SŠðŒDßðÁˆ Vš:Ê,eºRmQUÅÿ5^§ýï…8Ãݸ,»œõè¢sÖTþ‡ñ§}F-åii£jïëh›3Kru=•-ÃtàÕ£³ÙíÞ;§­ß÷56ÏhÓ¦–p›§¥"<ÇSáÞÛ1ë:Õ³ÄêOÅ^˜UysÝÞY¡–ŠžŽP‡äåïk._ØpÍX«ÆZX~ÎÊÅΊc57\§ºA¬nÇjÇjÇj5Kc‰ó¬œ=¡üŽv´NÜÜp L?¥o}õ²MÜñ‰DCªN±ëðÖîÙË“É ©†S1\7 Šj¹¦ã˜åØ©¾"(+;÷—œl}~)œ§õhýy³oíQúB—¾~ÛÏ·Ñ$Òñ2Ç$±C2l -`ª˜Éì\çmIK’VUŸÊO±Îµ.µ.u¼he!™$2µUàV\§¬+11Y¯È׳n×"!Y%ü–+4-HVûïv&§T{D=Þë=׫9ß{ÊJúJÊzµº¢,¹ˆ`ª+*Òb 9ÙÇŒUåÕú”:uä.@¬L‚F ¼#ܱ4"t74èÊHÁà‚üA>O2'ã<( ¹:£“%FaäÊ?½{Pm÷²ƒÕ>æ]¾ˆ.|¹¸êÅÕÍ…3m´úRð ѵ-•?aî²õkF­<Üq2zá™ç–T·Œ.È™dì&HÜ2¯bIoÌOdù\‚®^`)T&U;ãðôõBYoY¯ °'øˆ×æ“{YŸIm €tbçQÒÈP2«Œ¢§0²*Ð2‰°•‚Ù¤Õp”àöû´ƒë]våI¦´³)-mœ¼<úŸÑèòÙe$¿kÛ]Ï?¹>«ævÓÙ½Ñ7¢Ÿü1ú÷Ï“âs{HÕÏg"µçHqôTôÓWþHs„ö’Å>†RL %Ë)Ÿ@(êeLÆQ2Âr<4(¨EJö{ZÅ1t„˜_$Ý üsŠ©ÛÇ&V«¥‰Ÿ?WÒwF´P´ m‘døW´*3Y¦y51'›håD+ä“×mLìcÆÃ>vðÃÎPÑ6bæ½¼ßZg½V‘ûå\5¯üB¾Zm sùvÖŸoH ƒÔÝI…ÚfU¢HÉ1«’‚}EKGÕÞµ$Ë‚æ{.NR/Z¯hÂq²¼>‡;Ñ2ÖçNL Ÿ1%=J2 „¡]!@¼&œ:Œ‚V-‘¥)‰S…i@¾LFÏÖLÑhËy¹ŒÑ€tV#q'Ù¹Ìh@êªôh<ÃVlìQ”N›4g?QEÿëDô“aËÈè»\¾­}Ï“²OüsÅÄì)Ñ¿E/Ý’øêÌŸ£ï’2›(‘™?úÇ{n;¾yËý%û>Ñ:öÚ·YôINFfº *+;G{Ɖ'Ø#?GlW £ÑËŒ+ú)ÓB9dÇe#3Èü†Y;ÇT”Á¢q²È,J…³Ù@”Û$Ó´‚Õî@GaŸÐ\..œs%cúÎŒÕ\#â‰&PR†š€,4}ž±”äåšMFÜ´ùãë\M0GV콫õ̸ôÎìå¡àÈ û~²ÉÚ4­öÉÉO÷§ži.™™`*Ï¿}vß[¨,ê]û‚>ÉŒE­í°=”µÝJ6Yvð»,ôH^»Å@Ó™ÓÆ%8 J;g·›5~¡ý”ÖæTøÍVºÜ>aá2Ië1½¨sɘޢ¢~½Ñ"PÐ\^»VÞ«2*| Ök|D§MÔpV̱@ „P ­4%ø Q‡‘Ü"ó†È„Ëæ D<×/Ú„ÉìÉ$â´EÞs ç©1Gåk £NiÞ£Y¸ü¹‘Ù÷¯k»×º'é‡ÃïüLtï9˜±á÷gÜ»cþS[?Y}ç©WIÞWÄF†°HìjbS Z¸)äóÓ¾„Át5èy ¥–kå*?/Ò¦Uð6=ÉÔµ`Õé#¤éZ~]_áŒÇ”ë;&.S¢“ÕO•Élõ•!E«w?—µ85vÍýëö3Y ¶PôË4µgaß&ÑW­‰}ÄØ¤ «¤ -ÞÈ?jÛî¢Y5•ÈŒj]¢ÑR… |ÐFF)_¢“×èãöøå§]x¾1ãQ××QSyVHIÜlr¦É8Î$8œÂiRz¹ŽíŽŽ÷Œ×”èu°V…ŠÓâ™äô³6J&ç·Z}þ÷„m qNû W»xa@F¸Å½I3°à«Àð4K±„ed.ŸV£Óè5 #Sy“í)>pƒÓG’œr3ç¥Qí# jMÀ"#Þ‚¶€'š``OMK½›ÜÞ·7ˆ´ãk’ÑÁéh÷2i+€<"m2ŽPûOè4—¾gÚøàÍÙ†½ÜM9µ‹‡Õ¾ý–Xþ“¸”‘Ï/ÝÁS=wâøy#Ÿ~æÕ†‚êâ‡3Ç94ÄCd„"åQߢª{öu‘OÄ}“†ÚØ'Ò/ï‰P %ði¨05›(4J»ÊáÏ«ÑÌ–ÏÑpE¼N%§í¹\ŠÜ©Q9‹Ó¨Ì`ñbª87Õ«Óp,ïð'›q‘w…Yâ²AêDZ¹ø)‹{ªÙä"âJ3àâòùÉ÷¼·bÇÌMCýwünõ°öþcîpjë+}tÖìÊÀØ;_)ŸýágßçÈ2nJöäÉ·T¦à®“œ:âîMX;¥uhnõØPUªUïÌJ¯|äw'?|Šúgü¼$ÅÒùÊAAÈÁ¯ñ2Z!7›m¸ƒ†|ו#ñX_ɱ±•-_I'¢äWŠN;:?+àä^<ÍyCòsc§˜ ìYÈ‚lˆ†¦ýŸ¯@/Tûš}KÔw¦ÈçòµÙKÕ«[Õ»’i…zHrJ²‚f–û YYiŽ!š’&Ϧj^›’ì dgk-^óް庼ÚàͲæä>%ÌY}ÍÅDtà‘a]?ËýG Htf_^Cœì1L­ xÊGù2¼2$©NƒŒL)aSù4âÔ»ÒÀn´¤«N¹_™F¼J’‰2Ä(IçHÙNëg[3°ûݧþ-q=øj²SDêÿçšñ C<˜$nÐŒŸÛ¦öŒýôñ?_Ct¿&Ã'æÜòQxó”â“on¿&úøEÿ¾e M!-»Î]úÔ]y¹ÞŒôü©^‹þõ|GÙ4ÏËugg%ßzìÜ;kø;£„ø9K†JœCFÜX,’\7‡«¨î+¹LtœäÕû÷K^–ÈmGt"ãŽX7²öPúN~»™ ðn‡V-s¹D™ÚéP&«)¿Å–¢ÈÔd ÁäD«'e•p¤a଎i;¢cÕ|9Lv`m>ÆvÊGXFĪömFo¤ÿ !"š"aw>[’g”¼RÞ)dÒv¨õP¯m÷V:\éÅ8š¹§ tËo^Šhß¼¸6»xÿâwß霺÷ðÌÍK'o£÷®(Aw´/út÷ôü¤}ŸŠ8­N£šØSx») É Z9.X³M~˜<†7Zy,¤A'3Zc5š~æÕZ"\îʸÚ>µõ¾×{¥^އ¹æÌ(± () * F¼ ©§Õÿ—/‘¢èâ yŸ:ô>(É |Ĥõ}2ŽåŽæ(Ž•)4|.!&Œä:e.á û©È~ƒWt=EŸHCy--¸Í&­£‚„:Ù2¬}d±-ñÃÿŽ>ù:5dmßP·%z_ßž]Fÿ‚ú&T-ɼ¸‰Õ¿ÿJôíoD{$[-¦¿Aî]¾ÌИÃ~„¼Ž¯—߯ÚißáÜéß–vЮ ñ´)9¨>¦HF÷‘‘V…ΩHÌä23YiÊ̲¶l•ÚŸPêó;¬YÙ«„…å‡SÜ9s^{Å,ë•\÷øæ—î Ø’”Ú¯ÆçIòù `ÃH«T ¨V%xÉ>â·ñ~¦Ò Wne—@Ï> stream xœí<]oÉqïD~@ç{˜µµ£þþ¸Øìàr#H`ýècEŠKžÈ]Š+êNòßSUÝ3]=ÛÃ%uò=¨Ôê©®®ï®®Þw ÑË…À?ùï³›±Øœ¼;‘4ºÈÝ,þpzòü…v0ÒGåâôâ$}"A.¼õ}ÔvqzsÒIµ<ý&ûPM±"À§ç'/»×KÑ‹¨c4²»ØH§lì®–+€…°ÑtçlÊf){ÿPÝœ!…ð"t{úÐ%»õ Ž«è Ý-}éL¿f¯`Ø %d·­P¿:ýãÁÞV½+mûà\¢z‡da¬ìÞ/‰ Ë­‰ê „p‘P)}0‰T\Ä[ØÌJkÕÛh»{šáµÇ ÔÔIàaЀ†mŒÞ+ >Ô°yKKŠmˆÝeÁÁVÉ|#Qõ"¨í/à;-­µªS?°UÖŒ«FU‹5ÀoÂ(ÉÛ"½õÙR¹ÞÉ º·Kk{%´ëÖ›7i ÿ}G¬ŠÑY¸¿>=ùÓIR@»¸{ªâ)«{@´ð 6é"jßËî»BÏ}Z¹»&¹@'FYÈî¿–Aõ1hŠ…Ô¦ãŒIR1^¨.kX ÁálD#ðQH»d{yê&´¬@|µ‰ï—yá»õ>Á ãî‚‘¶»FÚ‚TÞt* ìÝeHøGjŒr¢i_!ìcˆö)"b6îEE¼ ï€x×sñ4l#éÏQ¾ÏgÜŠ‹èVLB‹º ŠcLìþ„¥Ð(<íøÎd•Á×¼+àº9ú±€ ž#üE_Pð‡&âM÷Md Z䊽D+:ý÷“Ó_Ïmî¼¹Äûæè íŒƪ7Mðö!‚ç©ü8€®ûmùlUF?‘†/›~j2¢-å—ðÁ†0à‚·ü²€›ÞpWÀ{Ž!o>t¿+£¿+£²Œ¾õÁ>¬ ?ý?ŸŸÌgÕâó#ìî§™(Ø(‚ÆCé~UFÏ †]oš¢`[{ÏY6î缌^𢠾i2’n xÖ\mßœ°;†wÄal±·­½Û¦—eÊyÙö†Ì‹õeûæÊl¾©êm;oÓ#Ÿ@ÏS‚Ì_ ø-_í³Ÿ²Ä [‚©Ášç2¯À4˜i×#ø¼‰Ùó2ºmÎÝ6çÞ5çÊ>oÚû¦ÒŽùYöB‚Ä›ð³Q~³\E£%w ‰KæïÞ4íð}sô®Éõ¾ùÙ®9aߤáCÓ…0žžµû—q‹àë&ië&&X6ÊmÛ$ø/ÍÍ]ñl xSÀuSÄ_<$á*΢fÁ€…ˆ£Ü`"¹hnöú˜HÚòS“áÿÒT‹mdÈΚȮŽ!ãÒŽ=mö0I~[@–ne‘ºŒQP}Ï xÙ;S†a?൅ٶÓ-]0QMµÅ9m®š|¬ìºíÈÆ ®€âxÀ™©Â½.à=§¡%ËÊüŽùó)cܹ|˜†J:²²ÚVáC™Žªcêø»T‚3°Eó22ö:LÊ4帞gÀlâ’ÎU": øJukB¼ "U òÑþíá@ïIì6g5?úLKéRÝ‹ÎøÝ:-'q“›Îˆúª<–ϨN2’yƒkxa-Hx5Ts2A[$ž0xé»ÝE‚«qòŽ×‹¼Q*ÓL‹ÜuB˜·g‚1Ý.£vÉ Ûà4Œ®yÝc¢ŽNÊÀwˆ˜p˜¿g”þ s æØŽÓÿ3Ž3&¯_ã”T'L¼U€»ØT8P'½óv¨b íªÐ†®Ý åb+ª•6ºW^õ³[ÖUWzž ™µ+Ÿk€TèbĽKµHàP ÃÔA«°þ…ÒÒ2 Wl.cÆ„¸Æm¬†}¬F7F%R \{P‘Jš –"Sõ0RWæÁ´˜iD’¦–*vµ&Þ'p›F-ès…¸ØÕ6J c‚c,¦nºå\™–†¸¾fücÊô1S*eF=Èhdåmܪè9œ‘“b‘2J™ŠU>+¬Þƒ¬'UJºŽ&pšøŒ† ÎØ ,Y³´hÌH¬£ùêµC@Û31\ïQg—öqÖL¦¥KagLÑiôXCÎF@åöuÖ'Uòy*Z#9o¥!èz˜ÊËèá²›ˆ,[úNz?ª,YåyBì@DdhшäÄÖD•QÉLòžVcåa܈ZhÓð!rpŒÉx*™&vÚ®;~gЃ;вGÍø=ð ø€šŒç1#÷‡Üõ§zr/€äáTt(hлœ.Ž¡ Ô‚1‚‡‹JRz!`k¡A-t÷#þ?0•- +—M+›Í›‰9بÁÀPüøi2ä¡vMSLÉÛeIÂó–x^M–†dô¡[ -lιCGe€ïHXÚYSq”nDhG A8 BvÐæ"²<9º¬wK NFbaY%#ÙU?¯Ò T* Ù’Œ(¼Ì²D眎Œ.‚ÁàÍ6Å<ÚKR<ð’Ž… &äz•ILÈ´Õ1¡áq¼õ¤t1$Kþ€Dî™÷N¶’Ân+ZLò¼(ñRW®tÍbð휾¸÷‰(3ÉF&GŽ&_ =&5êÑvœ_ÝÓH`Oˆ%ûää'Bà¬Rœf4< r°2<-%\Ý22m™ÞZÂdô¨ ïGUöê°f‰ºŠég ÓU ÉYzé¨`Šø=š5!…L¼šÀiK¾A‡0 .Æ›îz'lDÌur²û*q­ßR’ Ñjdö F£¨³ßíH':/sÙ!s-U@ä/óoŒ?`WBé¹$‚ÑOF€2#w»Mù*çžy2øžL¦¯Dm"k2¥¼¤&ëúÔÃM™#ÐO—Ár’2Ý/ÙUù¸äaš™H®]J¾ÏÅ›x`”Qä½Å3©:Ó·*UbSvàr­Áëát™—uŽÀÙ$y„“ ·pÜÓ26—n–W<' ÌL˜`râJ’\"¦ÞL1ð, $* ®’~…T»êúw“¾àé|†¬‘ÀÁ<ü¶iu;¶' މ E:¤O,ýûër<’qdõŒˆ.Ê,ïƒL›µc¤[ íL/ÜØQÀÌ¤âÆƒt¨:¸ëù!‰g^#ºAG‚«í¬ª(Üxœ0é}&´Îéx# PmßÈÏñˆ™lp\ÁWF±Þ/Y¶7Ò“”v‘ްð¡U)¦ ™ÊsÒ˜}üCÛmŠxDêOyµIµ‹+á~Éâì"Rs× º -8o–<=adUtùÙ÷Yˆý=¶! ë¾YJLöá¬ú]AÜl3ƒÓvosp³l™¼$&-h3eC<öE0#°`<öi(µÆ¼Ãx@2Ýæ˜òÆ"«uœ(RK<ÛÃÌÓJ¢dW§™#U;ÖU—0qFGÒÓ¬L̹Ów:Ê*J£XÎá²Û–c&Sof çéÀPûD|^Êùxš6hšbÔsaê:o[øœÖ¥º©ºjz´K‹@~‡ÁÆ:ÈU/SpƒS?T©Ÿð3àP•¿§‹Å•RØg»ï¿ÏEo««n?Àê= üÇàZú Xá0ö~èuçߊϣ¸ñà‰´8ÔSžxÞ¶‹Ï¹®æ]áûš¬•ö Im&Áó4+"Ÿ=2ä“©ð%eZ“D ‡ytž&ÂÜ™0ã@_=c¨)ÚÕ\Û'C}X‚j™H‡‘Ùß <„ΞpÞ¤Ùx'ÑΟ6—UQ8£X1Å{G£8Ï‹;#Ø©¾fÞNÆyªG¥å$ÒS 3§©Ê+5î šj¼gšŠèS»CY{e°ÞV¥­’¹–ÜwŸ•HÚOð\ùÃviL¿{Íâ]ÖSÉCßñÃU>ÿXøú “0üÁuCUÂT =­ê̦ŸUºqé2W|˜vÉÒxS¡©Ð‹¸B4ufYNvéZAH9c<3)‹5¨Ã¬»‹Ex„žnð¯ù°Ðª¼Òކ±Z3SÑ›IªcGnÌÕbFêUÁ¦ì¢¸÷³¶‡Dà1";]-³-g’™á׈èir[/m¤¿í]9}‘¯SâÌÍõçu%cÕK{øÎsA§Œ=¦êÅ£»’Ûg£à\f TîJþ3w³Õc’§03'+3¶Ïè3lVœ™æjUiSÓÈÕhʳiè4Ó»Šºx¨e»×U• µ<¢ÇǨY°f² ª“¦Q»ð.ïËJÃë¿ì”*a8ìkwf(kQO›Ò^Ùƒ?¿š`î‚Éd[û»ì¨ªm"C(UÉõ¯UL«]çå©ÁÔ”é@|\Áƒ§šìV­ KܿɾaLn«:bƒTþ³A®_ds‡£^¹êž–i­ƒdpŒàßBÒìÊØ#Ê]ÐÕÞiÈÈÓ7²¶ò©ð àÕ7_M3…Ƀ°HÐç+걪¼¥yð=kåbÝ”¬Kó¶9—µ[²¾SÖVÊz°¯šîš«=¾'4ðv2ÖÝÓîþÔ®.ÖýÍzùÚ݉ϚŸë&lŸÑ ßý÷LË•´«¥¼•ñúº)ŒõÃüsönN…ÌšçÙ«‹‡Èy\+ä«åÊ©Pw£‡ãm~íÓJÞ#²£"üäÕV«ä )¦ô¬UîCSéŸÙgÌYë%“”úL¦Ý¼lŠçgõ¤¸i2—±\5~Õx¥ðw§ì ÓŒ§Iûˆˆ™“|^@¶Ä»¦à™›àÞî—7:>¹V/˜Û´mzÚãm!·Ÿœ5·ÑÞ\EΤ=™z2w¥Ss_FÑ¡ÍÚê5a¡òž ®­ ÁÀRæœÙëžu-›ÀÞ§Ì<:|ZÁgSýœòŸiÉÑžð§Xöl‹é‹Öl5&âMsáÓ2áEÿ\À¯k¾Ál3ûUQ‘Û¢wMmÙñ KxÓdùMœyù·XSãgìg}Ó¬CúhµüÛ#û…ãÀ ~ŠnL‘)Õ}S>3¦Ít µGqô9ð—ÓϦxZ?ûuÓQ<åµÎ'Óð «QC¥*sÝTž·Ì%/ˆ9Ö‡ÚöWìqÉ® žç¦€Œ¬®Ä²ÐÆ”¨ý~‘)*›Ë4’+Ü\ ,“›ÙSŽÃÿ3ÿ’ÂŽ§°ù{™¡ 5Ý&ç"»’¸NžAÔüŠ’5¤Ý¬¥ˆïeU NU¼§Ïm•F¥&¿F«ÉWv´‘i 骛¼™¶çûi-5§³îØÙ‚ò0aRnÂad|UÊb]Þ›TŸÃÊo›“U7«î¼m6¡µßPðâf¾ûÄëçê>“7:Ñ^â´ua­/t©±7Ží&Ä>6šóÆ–·êæ§cûKnÎr²â´-•þJ·îa£[ÚÊ´øzPìăêòåÑUÖÛbFk¦ß“D,%Z£}…/™‘Ãkª¡™Í(7~æ¦e›Þw³‹”QÙyaúXÍmþE4K†Ù¯||âÛç¶»d‡{î Wü·¦ë¼( ËÈëcÙ£ƒàþÿlŸ?sG~È‚amgԌƙÇçOÓ¯Žpê!Ú¦©K_øQŸULÙ+ÉLJ¯Á—Mg‘ ädabÒ+ÑQ~• ò¯°ØìO°gñã‰X|s¤XHj06‹›e=üŸG®O¾›¿rU s½ã÷¢Œ² Èêz’Éø;PÍ >Þ-ààäœIw1¤¨! DÍt4ïMÊ!„’RÇà A“(eÎø¥0AÅ”îÔ™ØaUé†üÈBÌÓùCµJ† !–*W#§[²(!•KÙJˆÃU›B™ ùt²BQSÉtÁfñ™mJ!€ðºÌh¹ç(ü´Ø!"ã•‚¨k’ºG¦‹4z!#ä½¹±ABªå|N»•g—†>ªz1±2{6Vé»ñw÷TK|`†ÂêY$Ý™qÄ^o =’ûa¯Ù÷‰Ÿ©U Òfh×¾ÇÕZçÒp~xÕûr†9©£Gu÷ËaŠÎF˜çWÿ˜$F„Éý’™„l¨Ø¼EÅh¦ŒÆ ¦I©W)â›SìU¶Ú8('α¨ÒôK‡bJLåeȱƒ…»†;ôÓþáT^‰\ õhbï¯ç£Û‰c×ýՇㆇ_1ïòd|4ZáP4¸?: DÆþg>ô‚ÿ¦³OÀʄ̖¦ð‡¾ï¸ÎR³Óã,!—܃$ç* gR®‰ãò®û×e°=h·ìîÖ£Ê)î %Ž^ y|„§òfIxwoý_Õ’L :½¥ó@„àÁŒuèÙà% 4ë½:©ÊAÁå½c|0à_U6'pˆñÀ F“Mž2o“ùšh­õ•½¥ˆ/½³•»;Kèƒä&›zÛ” 5 ¾Lò)q†Š’L­ÎU¨–ý²uÞ§Ùž:gÌÛã+>ØFó½N_Z¡ë9ì[>¾­§æÊ¨eòÙÖneô<Æßó<æ çýÕ+µ™1fwé;¼Kw|Êô/C>2tÍ ÝdÕ‚,íóD÷U°%§*='Û=£”Fõ¢ñÀ62ÖÏÆÓu“Çlô.³ Pbˆ,Xí9C¶ = õï'jK&¦ž±ì°©ØR»qŪ*wàvU-ÆÊí²WÞ×!xÏø».)‹Ì·ÜF¸ò°ðTEÛM±£g%63Ó­rì3¤Ä_ ¸äQºdû4l„ÎoŒ"VwÜ)4É\êÀ¾¼Kä YoòŽÛ_b| ¡~⡨ÑÖ)ŸñaIOÞÂÔ GŽO|9…‰?ü/K/sFendstream endobj 602 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 765 >> stream xœyHTqÇ¿žûv+ÛYh©Þ¾ÊHÈÖÕŒ<:<¢pi5ËØ<6}¸îÑëéÖf¥Ehý(:„.d….ŒÐ.¥MðeÍò@;P‘’"2*hÞò³èé?ß™ùÎÌg0 ›‡0Ælº%;;q6‹”W`yå61qK4g2%ò©NAtÙ\¼Å&Ù§MRŠR>Û]ä¤s–­vIò$ÅÄx½^£ÍyÌèK¶ÏN‰æ½ÉÎïŽ b¹PÌïr»$>Óæø¹3sšîvzÊ$Aä-îbAt!„Ô©®Ý’ٖД…¢PÚ€ÒP<Ò(ˆ( % RÔ…6ákøŸ\£ ¥‘zØÕ-Çû±¬™u1,­ÿkV½gGÀª‚;J­ªi–¾ !,¥ÿTô«•zYÄÇ Œ‘s  öŽÓE[­yN‰Ø>³ jÔ}÷?Œü ;]}6¦Ö†R+ß@zLõã¾o2;ÎÈ3Ц£¥°œšXÛÙª¢¡7A4p°úDqð­çð Ãɼ‡)õqDOs¨¦P Í%BÎûþº†ƒVVWöûž?~ü{” y™"{h$D¤ÒˆM– ZËî½¹mèy[íÃÎ×{Ôk?SJôŧµ)V_Y0´Ð¡û #¯Uà3M¬ÄÐ…û­÷\Ü©äÁ’àù&¢ÿ5Ú¥¿ª2\;lèÅÏG¡XA7ÁSÝtÚP”ÙêóX¹«;_Þn'úŽÆ|³Á¦¦)ÕT•O’4‡’'ý“—Z{9áƒ:x)'bI¹Xq¤ÚK4¹…w›àÀå›Ê†×eÃòçÜ9M ÔÈ ºÜ¹Í¤KÓÙÞ55(/hãîL¼g½kR²&6j½x¥¨1ÏÐ’¬xRu«º§âú…–SbÑdì³Ä%íhxµ‡;ÿ=sê\+Ñê¯?•q8¥Î å„mñ‡ÏGè?gÇU`endstream endobj 603 0 obj << /Filter /FlateDecode /Length 3156 >> stream xœÕ[moÇþ®_A plÍ˾¿M»pj­Ñ$BûÁ Ê’hÅ")“RýûÎîÞÝ̇¤d»H‹|ðdµ;;;o;óìñÃD´r"ÒÝ¿o—'b²8ùp"óè¤ûçíròüôä«ï¥ 0ÔFåäôò¤¬‘iU&Þú6j;9]ž¼n¾›Ëè¢iî¦3ÑÚ½WÍŒ:©eŒÍjª\k¤¶Í- ŠmˆÍJ íü}¦µ‚…Í7iP}Ó¦A݆æoi,8cC³R çšõ*í䄲™ßÁ¨VøæIaäaùË‹4CÇ ­ƒ ©áp•þìcˆ¶y«~H¬¤Sv,ßp¬Å2óJ*ÓÌ ãan)ãYºÉ‘1(Êü-‘s–hc®ù6«*ŸvÉüœ°Í¿§Aƒ²¥mæ‹Uh:vª™¿Ÿ*ßÊ ’=pvÑBž±ÅáŸN¿»kGÍ®]lþôü¤‘zzúóÉÌ9™iÛçÒðëæ4K]¬öå€ »7×xØõ" Ú6 r‚£ô¸ÉÖ24‹«ìNB©^§^ûÐ̯ËJ0eHù>y¸›Ï®gcpV×S‹)ƒ)ÖÓhHH9PJ6çe/j¾$\wb*/CQ–ÕUŒØÐFgŠº^7/óR!ÁYÊì &6^äÉ W±8™ÉÖiMY#‹ñ„Œ†3Glƒ4†èêAÉW’èÔ‚M áEÈöš29˜æ NïàÄAõ†Ó¹ë³[*hEÙͯ†_ñ!^x?à j5ÒÄæ¾7¡ªe¾ÎÜ”qfiIl- c!b—LR„¼«„94è¿2RPà~½Òù Þ¤ò9(:ò És$H^ ùÉ-’s$—HÞ yÍ2ÛL9«Ï´ƒÿñvR·‚«È~™½ÎìªÄ[r’“²Ë-F¡M§-§t•}ÖCnd±-)×@RíxË”k¯1p²y„ñ^C¸€¿@™æWÿI6 nôtXÖÛÁÐC)Û*-âäôï'§|Ý|Ÿ•à ¸É_¦3«4˜¸×’OÖ¾Bò É ’svôɤ¿8ÆlwŽäÉ $·¬K$‹ÝA/±;Q&¯\!¹@ò $œfÏìHi[VÈ[$[Vô –<çõ'‘THj$ ’–°(ÇØ/û§ã ’/©¼Ý®ù3ŽÎpô“6Î&zƒäÉ9’K$y‡ Ì6ÄôÍçd¼íš¯‘ü™å»`7&ç|‰¤DòÉ`ã?MgÒzYɲfù¿a°f¸=¦±+–Æ=ùï!YNõköæ!·ÉK$%’O†<`û,0hùœµâ-=¢‚«cÇ¢ÎxÎr#B<ÁÑ;wÅÎ eq®Å¶ÍWH’+÷«Ð[$;Ù3­Èð”§QÓ&„]¥ÓêÙ£‚gàpwl‹»Û¢KÂã*ct!wF.¨rUJäR¦V‹tr]5„U9ø @¾ËnŽ¥å{ÃÑ«ê¿w¥Œ¯µZS…VJןð9žpƒä’û.©™äK§ÝbàË×2·,‡åX†ÝÌ78(É’—8Jæ¾c—íËÉÃrá6t.—ÒVì²ëc™ð=›Õù¹ïXÑ IÒãSÜxF3Sr%­}«ÜЦxü{Ë^ žHêÌvÖó­;‰èƒ[$oÇNÊÛì+Ä_×lÞ²x'­*Ño5wµ¨Ob‘£w2ïÅ| AØ>³N9EšØj§"E!:|ƒ a¥M7ÁôZ*H§ó„f–nÛi˜1_ìðÑÑÒ±ƒ>Ô~@%)¯ rÈ‚ÂDY©p'pˆ I5`V\Ia¶m5²F†³Ô;`MwFéÁSÚªr˜I¾â4$-ן‹Î^]pã·|4g•û…ˆàf±ù5ù^Òg— ä°=•.ƒ¬0î„> ¬V†=Î~ÔË„ùeou’Û6,É»ÜÖû.XG$‰éŽeVu†œ§B¨d&¸Ð.æ”\òíØoxÈ)k:% ˜à’±©!ÊÃìÿ Ø1Ù¼pNØÍ‰ãß _ deUñÆê¯IÝMy+ù¼Fi4|Ž,“r€:U@¢­Š®n[f?q†éÝÜá¡@‹t(éÀÅ LŸÓI=¤Í5Á¥KŒÛÂ=ß]ì©aIæê”Idä§}Ö¦979‹ƒ ²Ur=¨¯‚¨²k)úD¥‹û«~©WýŒŒñ(©ÓI•B˜‘rƒÔ¹w,3¾&þˆÆb\òÑÞVm ÿ€ä Ë„õ[v¹Í*P€—rGc†vø5šO"ùZ’à¬É– Hz$¿D’¿Kë&kÿc”•B8–/¸7,¤‘ìÑÒ 5¼Bä.öºÌNoMó›ißòÞì¼åY­#«¬2ä;z«æ°iµ7T¤ƒY%¿4>(«ôirѱN/8UZJ‹ÌYJá]Î*V&5(ë+Lô¤ø ’‹Af nà’A–tÛ˱ç-*U‡iïTu”)pHÔR8ü`@ªª®™wF Rî0ôÉUdçì½ÁNCÏÅWN´ª\g³eý¨Jg— ó^ÁÛxÃÖé½—­Nï´*ÙÛ;oiÖÏ’Ãm#úὓì:ÂÆŽzK~×Zª¸ç=u~†µ™qŸ $%L ø™„~ŒÑÙÆôR®z‡ä‹¹%KîÀ"¸ç›Ø²^¿ ý~€x$ÿÚJB`P?-qÖe0‡ÈYGŠ ª¨K KÞ7ïà Æp}Ö\go÷ÕÐnçx.ÛàÒ%%¨(ª0®gd“錥¡º%Ê&Ý…ATTɨÎyI»ÛT¦¥R N½Û3ô>Pj±º ÜýJåòÃZÀá˜Y’àI XgïqFâz°;Ó¼„j.äÏ{U‡n¹´h@•=` £rÁÖ=GÎðÐw ëiv´äXC3&}Ô!ãÚ‰ÇËàÛ¹+ôwSΑOq˜-’g½ ³”Oò}î%•ì’%õFþ;çÿÛp9™»f'ðùÿ >=ìVa\ç@øòWO…½2ß/tÞ–­¹DòI‚¿cµNPᯑ$mÇŠ]FšbcÂì n±Ó*èÌx=mæŸí÷tŠO³®-”ôN¨I.L!É•2CÝ*$I¿Ez3¨ž%Í[÷¾Poʼ/lX²²Ì â°IåÓ›xN?a'Å/¼fwçßÇ~aSÑÑ£7!ù’سò {5 Æ©ˆ<ÞHž©<޶HZ$’IÅ’d •’I?|Rò×±Ó[å_²$1Ð[v”p¨ž”¹·¬Ký×1S\±úDÿ‚Õ¿8FÖ@‘ª÷ˆì ÿ²²aÕ»O§œFøü«Ó£@àSäpu+‡¨áK.õm÷+ÖoÇš!¹&iîÙ8ŸtäG¢ž\±ñ9²äÀw_j¼‘\ô7,ɧ–ßXß@A|ÿ8ø,¿ÆJ ‡PÀ$¡éA¶nô`9 y)‘ï¢yÕo‘›Û‚ äOÎ×;/qÝôäN”ô‚#ø%1tRÕÝbõ™f$0‚|–»^”³ôåÌãP²´Ò÷÷îCɰ«Î­Ø'€cù„¢þý“ZÍFU}²Œç¾Ó×@kõðÏôµ å3}§uY#¦ZpÓ`&ÕšÑ^’ëI™¾(–ÓU«[@‘üI|1¨ö=е“ÅZQ˘휵 ­5ý½Â¼<^fø†š†¸Âš4èé¹4Bƒ+uB¿|›ûìF5]´Féˆ þ\ÅW/¬k¶Ã¢C*ê°8üe™ð> stream xœå}]“\7nèûÜüˆ~ì©ÚióûcoåŹ‰“­lÝÚµªò°›‡ñH-i#i´ËÎæ× @äéžµWN÷CÊåšC HAçôŸwæ`wÿã¿ïoÌîõÍŸolƒîøÏÃûÝ×/n¾ú½O9TSíîÅñ†Hì®Ø]ŽùP}ܽx³·éöÅŸ9— ¹ÔC1^¼¼ùÃþ»[s0Õ×ìþ<›\¬û··wðlL¬aÿR¡¼¾µ ·…Ö˜lÊþ©ãìþþ=Â]Í)”ýÇF™ ¿S¾p2ÎØý‡©ëñ››|qó;³Ë0ý'œ¿‹0öº ɦCp;]9˜¸sÙúC)»O¯vÿ¶û"xýPoŽ(»‚=§C²Äð#þþÿÓ9ĪsM˜¿ÿd~}…©»÷HпÛÅàËðÞÝ|;¤˜lB*fAŠ.Jœ¤Ù™FªÕ(Œd|>$¯1:Huƒ4„#KvS!D©8zè6›pð3SÍ=Ù|iÂJñ`V,‚i,¢{žaŽTzA"ØóC¯Öâ4ªëÁ.£b˜Æ"ºyìÅ¢ i†®¢]†E0=C¢›°B‡iXÑ9ü;!1LaÙ_á—s>ØUX;=vsÈL·Ù º,“M±u¡TgiŃü/%,çö 8‚£ûæJ¼¿Ý}Mà@±WãI¥ÁME@B¾àúØ Á4Ñ!Ö€ecV¬T>줟¥ÍÂ){P¤°“>×v§ y^‡÷3ò,¡jÐã(53XÓXD7aEøkâ4' ¶‘—µ!˜Âb:½6É€=®d€£«CÛ6Qˆ|’µîëǦ=(æµ¹,ïíÚ8"n,Ñ™rˆ®£:Ü|¢'oKªcLcÆ¢}Ç*,AìÞM°¦±ˆn²`z\°eÿä‹`‹è¦Ñp‚A ¿ÎÉ‚ÔÓd¶ø­o ˜Æ"º†e!ÆŠ-¨‡ÐædAGm b ;c1La1ÝÜ—¯¿hC\Hã! H <†£—¥Í7ˆþP¡÷¸¶™€—øòŒÕlÄM6)®Ég‹žwtº¶™B± à/ªpY›ÿx®'t¹Ë³À‘|E¬>á.>) ÃÓi­‰ãÚ «8 µzk›(§Ôb.éamwŠYq.Ëûyblµ &Œ†ÜlϦGKt³ÔìâóÚät0‹o`˜Æ"º +$8šOò‰Öޤc1La1aÕŠ»(EÍJ]h‡èXÀ³Õ0c1La1Ý‚åy}8¦‹`G?vÃ1®dÞNX&÷ó»ôE0=.¢kXƒÎm1®£/»IªÉøŠOl;‰ô¸¶;kò8ŸÒcî£BÄMQ SA4/p¨Q2Å„”æ½8Ðs¿ 5Æ!ª™YHÓ`ªïY'A!˜Æ éNs[ì5#ÁñgE"˜Æjd3¿j5O²ôañ=Zc'º†å]8ä‚Þ ðh@DVS1ñD›(@ ›ÐôÖ¶P°æ^…·ž³±‡œ5ßÞË(>k›)„/H×£”>×v§8^‰ï [õ1JLH«œR ŽÃfpà×±¦°˜®a1,9Àj‰ÒÁ¤½ÇQ?›6S<Ü$Ò*>×v§`ý¹ ïgäY²ã}·Kª‚Gªe–'ôԉn–ú/ÐWÈ÷`Ø×SÇbH©-—á‚oZ²i3Èg@b9dÄè}®íNÑ׿¼¯7çkÍw£‹ƒKœÉ‘qˆ×—±ôd`ÝŒ#g8Çð„Pf,†é¾ˆnÆYŒÑW²x6cLc©ŒÃ’"ØÍ¥!Ûm›(DÖÉ€§Íq'=¬íN1ëõeyë9—ÄÁÊ€€/(UñYÛD¡øZ QI>k{P¯Äw²cÛý`×*ðå°“‹v.m¦˜ìÉcXÙÓÒîÇ+ñ}ÆŽsM>k¡kgºyœm¯äˆYgégi3…žè¤ujk»S¬ûÀ%yk{I³ÐbU®e‚Ä.—6Qh;]«ÒÓµÝ)ŽWâû¿Ð?D85¢yÀ¶@ N¤ÒâMmñÐÚfà: ! bpK³ã¯Àó„_è=”ÐÎ2ˆR[àß ~ L!Õ;%Áb §5:÷ÔŠ d¬K› Ôl hrªcøk³ã³G¸8ßóRLD·%D”4ùÂ| 1L˜JI1Yç9Æ‘•ƒ_›Œþ F‚Ö±ÝÍ­Ž=IðB<ŸÑÁ þ(jÁ˜à{ÕŒ‚`²ÎL¥u0ûD5!`B‹„†.¬m"ЕJ‹¶†2ÍÍŽ?ëàåø>§ƒp¢O“ºØS]CHi ÑhVPJ[µœ“Ã{9Y­µMJŒkù«±šSSðg^ޝš«ux7£üZ±˜ϰ´™@­[…ˆ)[a²4;þñ <ŸÑ;KpZ¼å!C¡¦Ì’¨RòϰÇÔCSºÀû=¼ïаÉú²mΦ¢më:z\ÛLÀêryƧäH]ÀI«òM,¿Ëã&¶c1La1Ý„eªá[òÑ—/ã–|ôE0ÝÑÍ}Á¿Í}µµ[úb˜Æ":½ÂíÓø Î0égmŃæÔ5š¥Ý)æE¾,ïóë ¾'p¦uP•¿È“`J'™Nc©“XÇÒ'±Ž%'±¡Žê$6Æ…¹’8qŒF·ŽE0Et +[‹YXWè âfD,ÓÒì0…Ed’n%MH †:c1La1ÝÜÄ—ebhSêþ]°¦±ˆn£`IÄ(}õˆQ¤)£Œ°Ê4zõûî$X™ß),¢›µ¯¿1"zCDV|m÷÷?BoˆHk{~[å:¼Ohވк…bØzb{[¥½£Æëܱ¦°˜nÂ2sGBCÞx…`kíeܯȈ ò‚E°iÜã®Fa¶ˆŽåv¼0õ“Zåvã'Š·´™BË'ŒL¥ÏµÝ)Öµ¹$o5g¬![ .y|ËGø®m¢Ð|!"ÌEñYÚƒâx%¾'tÑáMMT9 þqJit$Ii0’Îht:‹ß‰º#´ Íèdi3Áƒ°±ø¥X¯ÞãÒìø¬9ç{^Šà~-ïCCŠ¥Д öQMR.ªØ#±®íá¡„=Rï`i.¾ñâ|e®#k=”§=nÚ== ”®îôsK%Ë/ÍQæhú'ÄrÆgÊþ¦v'PM¬‡˜“µÙñWà óô®eÐù±7ûÅ¡w˜èI›6ß J“®¥·µÍ×–ewÊÞ¹ƒà½[:Hð_–£«E0Etï´ädçìy§Ã]Ú²ó ït£Ïµ½ìºWáýŒ<ÇžPÉž`õ;<Á’;<Áê_•,ùª„`õ¯J–|UbèQŽÓ:ëÛ^Ѷ~m<°˜nÆÊåP&QK"IÄÝ“RJµ ß@‹ºúYû¬9$Y¤µIøjÍð;dV­Ñ¦Ý)}¹ çg´e#$¹SšË™»“0Ѓ2÷Û›ƒÒÏÚ& mø&å>Öö X¤yQÞÏÈ«ig[ppÒèçüE0åâÖ®ÀÃÑYQ¬ÏŒ³¢XŸá³¢XŸgÅa1|¯¥üô¸×R¾<Í.LÝk)Û‹|–]ð=ÿ¯ôÊs.KŒ/ŽsYÀoÇ´¯ÖX8;ÄT,°ô?%“7MƇ5ŒìwÒáÒìø¬-ç{BSFŽ¿a%T*ë5°Fm`¹ñ=,Á²~í+ÁΑ,‚i,¢›°Dƒ;–Öà54x`) XÞSý¹`Ëè‚Ô@‡¨&$\:6±ƒ²–U[ÖµÁDZ‰ ¦åKe•–§ïD(i¥^IѱÀ@}…F8Ó¿&£=ÏXn=ßÒ G¹¥¬~K§$1néD†ý›l1o9Dìk›(æ5-žô`jwŠÅº.Êç\ÖØ&ßoÉSÒ|~ð ›&ã×H´EŒ×v'8^ƒ©š©³®ë&Cp¨~pYšŒ/Lñê2xa²iw‚ã5˜žðš‘Þ[K>Wªôó1YüB] øÆ:Ç+‹a ‹é«S–Lß™HŒô¥äÞÏÚ&ŠámÁ¯ Öö `¹ o™sL5´`buËq°Ù¶pdëâà²iw‚ã5˜>£9à¾9eÔåÓ¾WfÍa˜Æ"ºY¿`Ÿ‰yZ=€[HãÕŒ4N¿²jrú•µï§ß¥N¿c¤%q”.3 -ï)³[ÚD¡t*Ãù«ˆ -Í¿hó9+]®Xù£W4ÖhI-Xm6m¢P\ üÍIø,m¡8^‰¯öW5®Z—Ú‰Dôdm…ö=zí3–ö 8^‰ï3<Þ†Tú†­cÉmÝ­¼ %Xã¶®caÔ¹˜4?uï7æj'BÅ“»þBåÍÝêaá÷. ~é3Ò‡0AusŒôw¢ÝPÎPjÓ¼ÑÁÚf6àË3>µ¾ÜF>tGÞ‰0bûú2ÃÓM’Œ«P1g 2ƒM›(Ô”°†Í™Â¦Ý)a^”÷3òÜJ*À"ä¼È“`g¤>dlßzŽÍ¿À# °´™BÍÉûVë*}®íN±È󢼟‘§œfEÉÇiVì€O³Gf‡ÌCåÜßyM#;2°*ïI°ˆnÂÂSž¤ƒg$–¾¦­†èh•Sû ”ÂÊ¶Õ v|ÅjÆ"˜ÆR3&‘šG·l?‚X‘¾94aÅþ­£Åt„Űb<Ÿ(;$gÛ*Kz?k›)„~A«WFŸk»S°ö]…·šsr½0eȪ& ŸµÍŠoÂZ…,|6íNq¼_5ß û¡ ó-¢Qk›(ßh[]°Œ|iŠã•øÊ|cÅý?)¾­&o{¸×M›)„oû²·;ésmwŠã•øªõõ÷ØI¯03ì‹ÈuÓ& %g_-Wz´iwŠã•øžØ=†ÖàW3ã¬gµ×5+]«T×,XD7ùC×ßH -£ÖûÙ´‰BÏÉÌ´)©ÌíA±øÃ‹òVs6 cí72ZÔºmÚD¡øšÔÞ‘Öv§8^‰¯öÿ¥çôŋډϦMŠ/~í©Vá³¶ÅñJ|Õ|3Öæ‰o­í>sðYÚL¡ù¦öÖ‰ô¹¶;ÅñJ|a¾øý]X{yÅP ôV¡/Îc”·m÷7„ß-=¬mõzãuøžð‡½¹ÑéTúF§cÉNÇÒ7:ƒ_âÛ̓JQMam7=#ÓÎ<2£¥Ý Ø^ž±ž­\#Ñ!ì 3é½ÓµÍŠm¹b®~ô¹¶;ÅñJ|ŸÑœvb“ÔM;éàD0=Z¢›5"ïöΤ`AôL…ÛÒf ='ˆæ³SsXÛbUžKò~Fž¬×L’r˜£²³<¦±ˆn–'~=zÂÂ_î(#^ÛD¡çTæÊ”7YÚb•ç%yÜk(Wð¶‰c@|MÍÿW0æ·m¦¾’LÛcFŸk»S¯Ä÷„þô>\,ôöÕ†I#!7†B0…Ed’Ë‘®£'\¿ôD0ÝS#{7­IäßQ3i¿\¦d±´‰B˦š+Q,ÍŽÏZxÎϬ ւѽR§j¿ igQ2L•è&Yb–§LË’Jl̽ŸµÍjF(±„yô¹¶;Å"Í‹òVsŽaZBLã»$L6í0­_Ìm§òµS¾»oo~þ0VÌýñoñ Ä%üëkn_ÈÛ¶‰™vHm¿r)=¬íNq¼_5ß„µØVóÙãMÎèum3…â›|»½•>×v§8^‰¯šotµ]=@¨¹f½ÓµMŠkÄ_IŽÂeÓf‚ã5˜ê•µü: ‹o€J§K›)´„CËgKŸk»S¯Ä÷”Ÿï2…“V«t‘qx3ª1ÇX¦×†èÞMZ“ÌÔlýxƒ'˵´]/^my*!_Û ÜûEYž—ž¼=ØI¦·;Öx{p`é·ŒˬþàŒÇ’lr… G”&ºHLäÿ;¯µMZ·ðC¥“.ÍíA±.È%yoW&úõZˆCÝ]k@Sq ôýêr 1L˜ª!at,üõ¶0XŸÖ®EcÿiÓÄ0Ab*B"PNwSÁÁŸÍŠ~7:Ù´‰àAØäZñ&at°4;>¯ÉÅùÊ\c¶€¯èÍF›6(žÉ´o÷–æÀ?^§Ìs\þ Ýõˆb¬í~“#£ »žÁdnª§Ëób¥Ý-ðÓ‹—7ûx÷ùû‡7»yùêÃ÷oo_}º}ñ§›|qó»‹8ø)‹EFõëT°”Šôä¸Óld Xµî4C&¬Œßò‹!k|%¸#1`Â5A‰!Ö¸ëXQ¾à²LZ!‰~®„V[ÓŠþL@Ø{»Ùáge­¡• T( È î(m ó–°l +‚VÁÑÝá0­Ï`í`\Sõ‘Ôôë·Ÿ¾³û·Wo_¿ù~÷Çý7Ÿîß?ÝÂÁÔ¸ýo›Ê5Åùtë²ß½~zF09Tú¡äçÓ€Ÿ~ñÄîŸnÁAç5ïß¶ÇZLÙ¿þ|{ǘGµûO÷àÛ|Ù¿º½ó ƒ ¿¾½ øýô÷ÿïÏý‘zÿ=6 */€tOøÆîªÃÇOÆ ÜÞ…€´û·ønNö¹qªºrÜÿˆÏÎØ`Óþ;°@8t°WÖ”Q,aü­1¦ñ¹õVXaÐG6&FÓ ûw؃5av†\üþ‰zóÅïÿ¸Gx©B–!ü&gPËOÏy¦SÂw/Óë´¿iÂÃ_–ßß7pSnÿ_j<¯+¹NŸ!¾wä~à¯aB¢ÜÝ@ýþÐkIÕã¬ï@ AŒWY–AmY@¸ûÃP÷kºcÔjØ„©cpÆ ö¼ƒ>%¯èQj1€ruƒ¡`ò\øþë¶öµ–’XAc©îÌr¾a½²tÔ¤xÒ «zxýæs¿ÆÆ&Xn!B°öEšÀ _[Êþ±©zE-µ{zF™Òjá í_ŠZÞ¿¾WÜÕ2£ñøý¬lwø ' êÎâ'ª£U}@¬KàYƒ©ÏÏb=lÄópÛÒx0.”œ6"Hò½’* ×Â4 ¸°™Ûffø‹ã¤/ò³'HÍ@Ú _èv<¾m«R ¸™‡½·D\ML§dàõ‚,¹¹›7 &Õlz€^2 wCçg%®67ð>áÜ2Ž­­ü@ÀãkŸ°I?QÇhÈod ïoÛ/kF·ÿ;pÆyBw1É7éŽ~þÀ¢ƒÔ^è¥ðÐØ$6gÁgiðËÞ 8Í%Ї6þZ­ož²ëyëÜdðÄZKµ"½¦9€^h'øØ6 ?ánCw êßßœôll8ÐckŠãMðÉi¯Ž«±NÀú;éOSm"JɇN‚ ´ÅŽ)©Ð`Ž®*[;ˆ96ƒéÓ$ƒ)…f«÷§G½?¡ã¯36ÝU2†ôR‰1,ì_MKewâ ú Mðƒ¨ 4Í 2ΉM&&Ds¨ `ò)d6MwMô)ë±ýxÚl‰JäI­2›4¸ý ,ÔD'õŸôº¥Uí»Q?G§'‰N+þ£vO“YA¯pp*j5üv5š>mW¦T&–§WÃÍQôÒŒ·7!¼#‹“O®I¶Ò9>hÍ´4h¬¹œZšª}Â[µwÐBƒúiV¸óy|IßqdÖ‚mëèUdC%;#;-ó·³™wÅÕ®Z±5Á…ÉÈÄX.óžô]ÛMm²û¿Ð,IõË&,»KÇç!¾=m”Êlõvp¯¤Äž?e0p:´¬å²a#•ôÛy;e[Õq©Rï%,ûã"üÅÁã<[Š@É‘|¹@-Е¬Y`4¿ šk¿™nÖQß*/@„=øöI«‡Ozݤ©pRÜ ¾˜…¨zÇÆ„3èë¾…S¶â®¤"…ûïÄgØ%Ã}Q0w¿Y4k%ÎæyZoNƲ˜¤eöè P_x¯Ú>~”Ç'yüµ<~uòQõðV?Èã_äñ³<~jàTr“ ?äñAåñ½<~%‘Ç{y|-GyüOyTcøN¼ýsÁÔ%ìã³èÕ™o6l4[_Ê™ —×|[À[ è±ù¶HžíÔæ ÏÞãÙÅjS>TÆ€ ÉçÂ}åL~M´˜ÜÂ38ËøI!‚ìʳ>~”Ç'yüµ<~uòñA?Éã+y¼_¹­Zûƒ<¾’Çy|”Ç÷'‚2eO‡“¸ŸäñõI+{wr¼'Ç{šñ«“PÅ⻓&«ÜÉYû–ã ~š9̪rþ˜ój°9$mû>ÒÜáÇ|®dÍ ³‹4l»·¨ä4Òk0÷t¿ôçØ£¬¶µ[ Ð`xÖUÞ¤a†°ÎŸžƒó `ÎÑÐB,ùŸ-DbrTJ8;úXé$Ãò`ËqÅ£…¸»Ù¤Ïñài<µ_ßÞEƒ3Jû¯[o0ÌnyØùJÅhžœdˆñÅ&ÕÚë  8Ÿ´A@äò ƒdn9éoèH^à”°ÿ×oi,ûß*‰¨çS9š»«š“ÛÝ9üƪÏ$‹ó‡n¼Îû¿ÛÄÃÑû:ñ1CËŽGR5ÉRì{¯S *¾œÎ6!†÷Ç6Œlå±=J©t†:S`êQ'žx–òŒ1@ö¯_©qS>­=ž9ß¿Q„rãg’o/‰M,ñŒûWñ¶æwÿ‰† ÇO-&:bûC“$?®§ªˆéNÚŒSÅ\ðpáÚdítvPyw̶;ÇÁæ›¶º)€ZýëoE¦¿m` Û` ÛÚ%×þþ#‚"¾Î;ò¿&9:)œ¾Ù Ø7ÎùÒ“ÂöÐÖ¦!çS¹ý™N/<ŸùôòRtm“¿ö ].mÛº8©,Z†‡Ð¶„_:P‡%¶øóòø©èNåŠE"ÿu;’ëzp?!Ylem×d1ÚEÏsž{ÎÃןOgp¿P®ØYLÄ—YK²Xm[?UèÅìð½/³œd@ŒÁ/ü5K¼ìðèžÁ‚•}Áîë<öºyJ/6‰—êšÆw;ÉÉñV%.îI+ï=±$f‡2ÔÕëã×AÁ#ŸK->L¾¥Ó}7~&õù’G°¹gä}ωȻ92&ÏÍ 6‡¼«Ij×\•rü¤r,”ˆ`jt¯QͽõÞÎy¨{Ú[] sz¼åþ)ízÎçë ì)sÈ ÜU®âC%ݲó-Õüt°Å*na(µ`êt%´Éĺ枓úvàñ¦e<*„ºà“s1Ë Õ¿ífÎeC—K<”cEžäEúh„5º—ÇÔ9®ù=_âU8Å?Ωý†S!$£{Ah@°3 Rír:÷Ö“öiÊ™¦ùìµ JÇŽôß’ŽM¡Ä.9‰AïE°Ð(ì÷„[ÓÞ[žJ› uýnq5x{.4™/ZzÍD‘Q˜ïJ£¬¸Š²;ò-P<›îâݾ僻¦‚kø9°‚y›veøö6[üœîºì)«b/eÚÁ©o.Ô]–ºøÕšâç1Î;¸Rï7¢°0>W] ŸÙâÑWZb.¢šåD[|Ã0Óú}¸\úÐú>îL˜öDÃóõÆÞÚþ‚÷½|›‡eŸÅŸŒ‰•Ÿp0âS%JÆC £[_xöS[^]–z4Áy­ OD GÒé²½ÕëàË6 à¿—ÎÏ\Ì{ö N! î8ü|,lw¶¯sÒݱÚ{üÖPûI’ÿA–v{‡bì¹1´X…L@ ç»Óó˜,CǨ&`¾?ï’lJsÞõIλ…*úÀ;<üÀ7æEÈ­‡w“ZÛžn{rõWx$ƺï{T4¹åϹòNíÞxãšÙ¨¬útIRi—ÔíäÂÚîß7×à试‘vgp஥TX[ñ@ƒVPÒí­·‡åv $%¹M ž¼ËÒQUhâw8xðo¾Ýh°E¸¨$Æ¿*ƒ›ç{â¦ûO£ÖI"ÍR°öÐX¹Fƃ(ÄÃgê-æÂ•¦]ÓpA¯Š×îK¤ÃÈÞr¬Ÿñ’nsÝËÃÑùÚŸ]Ñ´MÁþÍg6ü“‰àão«´‚.ª0û[ïƒÐ–îîçn¤Õñt{Foúîk˜HØÜr2÷ôXçÌσìƒúℌ·øê¼ŸeÄ^TÒRM*p~üžØ´-íHÏ©Å2¢5›=´©­ŠÐt4Óz?óÓ¬û¤¶ˆë§Yxãg7úÊÃxֱϦüÏ+WRÕ°7µý„“|íbmJòÑþ†áZéV{VÖ:Ç 4§ü´"üÁé^ t¦ÈfÞ!É|3V×çÍU2­S¶ãˆgýüAçQmUg¬Óé×4ìv yEsÔwÁ¤ì9»SÑÚëa@ºôã±CƒNáMó hæ³Å3MyîtéL“Á¹˜`èlW294Ý©­*«•Ǧ-Ûò˜¾²¿XAޝa^AƹÜ ¯ò=b+Ú #Ž›ë1hÜó¡nÛ~Xr%ÒcUtÛJ6îívÓ)çã<þüqž:ò$ùH‘X+ ™Ï-¢¾xdµx¼pχ ø»œç.17õ4­C¯ƒ·íòµûƒ©Ài]?=>ˆ“Ÿ«p²Xü|î­è›24ŠðÓòjkš‹æ±Ió0ÖÒ%9#âTpWÓ>ûÆTöÙªB!a°SåßP´ ¨û™+ îä-þa}ÂHòv&Sv`Î ´×)½ðøáDíò6t}Ñ6Ÿ! ßöwLœêxyk08ŸS&¥e¬¼Êý‡Õ`xjóö¡ã€Ç&t8¾E}þ×:ˆ7% ΂&ËðOY “tÚí¾Òô5ã•lË}ž.§=w¼×l~…”v“ÊÐÒv:¢­Î‡Ñ@ZíËR"ŠcÂËm¶O^ å ZÇaŽta{Ó×Èý´Í6Ê~…s²Ò?ì™rÂ'1-=Nuå¤ú}êÜ곩9@qÕ/˜ŠN%š=îœ9œK4çš²í[ŸÖ]?ÓSúY‰æ) Ãz+³VϪԚª8=›pëõ¯g/mÇ^E©¨ö¨&¬¬I•À*-öóQ¬JGgªõFë’mcèsšÊ5¤*A=ä%¦:wǬ÷’Óï¤t.f¾°U.V®¹ö¯² üj€·Sj>ؘwíGäbíÅ–§"Rž¨µLºbï/45t÷Ë‘‰Ÿ¦zNUÝúX9ÌRÝâ—Ôá§\ªŸçûç×I4´‰‡™Ãÿ¿í? lÍq3WN9R­X×2ÚvUÅ».Úmì <Ïy{4‘ìäH7 ¸pfœ=¬m&’iñÛ/¹ØÅï[vøó‡ÙTu±ËÆ;_ìÞ9ÌØ~t°XrNÿ¬…rx@{jIe?­;pÚz9H¨Yç,×í?ÞmyWǼºbàµ~±!Z<‹Ø©&\»ŒwDˆÅß?s¿}+ñ—ʾÓX];Xžvn˜Òi,§Ôò}Ÿo«ó“ñµÄÝ”ànhI©{â3~ñ%Ëos#|¢~úo´:ìßаˆ?ÇgÏ·0âyG¦‹ÆÙ•µÚd+›˜MÐÞRÊë¶ÐÞŸùejÆa›;õódÙ·!´>T5‹/­Ç×rsXG-7%‡^ú*ø¾«Ç/ÀÐ[ö˜YŽÄ¥öÖ{n_XìçÞ.n7§éÝXðD…>.UþÁõwꙢ/,Ð)‡ ¾³E_8âwww»Ú_>º'7n‡¼­Cv¶*ñäÑ’ ™ …K?qíZíª3w•²‹àw²A„ä-Â"åDÁI„xÌóõ~Ç×½¿¤ÃÀã'bÇÕbÅ öç(Î,ˆP|ïkŽð«3±oä°a¬¸tÃl#p¸ÿéI¡|O碨¤ÜEH|GabÆõ#\¨Qcô™ƒ‡4[8É@°"„¿ÎYkCÞp„8r”ÎôQý´PãŒ$pßqy–YiBð Èß±væàdŠF­†¶L%¿`r-a`Ò2¹[>þâë}Y07Á®B¡óQåtÀ0ÀbRî§Ê–AÅÁÚnc»9tš‰2­(Tý‹èaGmïÏ¥\/VÔÇÉ6çÀ'¶"ü\ÜÐ_ؤ`IIÊâGøGžŽ‘X9Õë•L/nµî^ F;FÂ>cóÈ>åÁ#Û„{ˆ€'P œá¼›-еïµPøØ÷PöqŒœ$PýH£~Ô²RR~hkPàé?hìd€¯åq31˜ÄWÈð£r\Iþ£šÃ[Ñò˜ŽRôz7.Cå£_Í=)Ó}¦r_­“‹]$à-µ_aGܸß*åhÞÀY¬eû |V߈ðPÜäzY `¸-‡o »–=^ûSJ1fKköN@(—¬íâègœeûY/É÷ËÐPl5˜užÝ[{¯o¬ÄS}Kâ¿&稻endstream endobj 605 0 obj << /Filter /FlateDecode /Length 6215 >> stream xœí\K$Çq¶}ðaì`@—†`ÝÆv)ßRò€`ʈ€Zz;Kjfj5³ärÍ?ïˆÈ¬ÌȬªžÞÒ2`ƒæÖä+"ãñEddÿe#¹ø_þÿåÝ™ØÜœýåLÒ×MþßåÝæ³ó³_|¡|¢ˆrsþú, ‘› 7Þú!j»9¿;Ûʰ;ÿ:ûÐtq"À€ó«³¯¶;1ˆ¨c4rûm#²qûõnm!l4Û+Öåf'ÿPÛkì!…ð"li Jnwø]EïLؾ¥‘NA÷[6á×ðÙ %äö¾™úçÿ1£m?íw¯íœK»þÆÉ(|p4™ºlßíhGV~³Ûëh'%}1Úá+îÓkÒöqaoiûN:kÿœvc$ß pש&æý¡Î÷æeØvB„ˆBÛ aÂuÊÒ¹rãÅnoÍ<ŠÛoØ$×°Ž F ·½dûN”Y)µˆ`#|âˆÚ\]GÓL´ÓáîÓÜxx¸:(·¯v{XaðÁ¦õbô^Ἰ^ÐÀZ/¨ Œæ‹äNã@g öfâ% }L1pJãëélâtb(ClשƒŽĦ,3Þ¤ÏBzXö;f{x(ÞÞà®dð°­‰ÞÛ´º§ ±w Ñf`mµýóNy"¥›MÓâNTqrÙFÇÝÆ@HÞ¼Â)*ûpeqŸÈ%k$§oDýÅ  "é8ƒñÛ©_RB¤-G¯òÑJ:Œ²¥­œ“,}¨Sà_÷ôG·ÙK=XUêõ˜ÕR褖2j¡ çï[FÍ-±7J2˜^k ´=$ªÞ8]æžTæ¶AgzHinÒ$@s«¥u¾ëÔ(MÊaá ùßÔzÐF‘/InarŸô1‚hù$|8I\àÆiqÛŠa³øD@R^©EcJ˜$fJ‘ á¡6¿®Í«Ú¼©ÍëÚüSm>Öæ¡6ïjómmÞ.Nö°hOƒœSrÚóëÊÈoåxF žÀ°Ë^ÿ“9gú0ÞWþ¤h×Ä0ÓseÌsV΄´‡/hÏ΀Ñû78b¥ÁÃøÌÐë‰(j¾«Í¡6—û²æUmþç¶¶%û¼#v‘rØØoÏÎÿumkuØCm~½¸ÜÍâ~þT›Ÿ×¦˜–pÛ_Ö¯ûúõE ÿVš™«ýÄï׸¯Í׋Šònqßצ`+§ƒûŸ?-ùÿ§uâiÉÙiÍpšï'µ;'D!ÀHr·:€Ã Éht†ÛÏÈAEíqî”+î ø$hI`c0ÁYŒ¿†)"7v‡ŽÊ¸f|HnÁKÝ)˜Å‚Ëæ³”¥¿+"M aGP'­DµÕÿÐ~°:ÙâÏÉ p2*õbhÞ êa+*Dðß +)ÓAdæ\Tgíí@7͘1íÚ*¶kŽ,:ÈÚn„[[_²iùŒMs?t¸OgäÄYzçÎ6¢F"H³„pé#áÑ‹Š†Ól*‡ !‹äq¿<ñUø¥ ‚.ã-Ãq MÖxŸ$]Âô¤‰6"ý¤Åns?*?»SÜ(3B¯—àOçÍJóÕKŒâô„éà½îNFæ×•_µù®6Ù¦îjó°F¬Qˆýlq؇ÅauØëÅa—‹ œŸy†À­ó}ýÊÌ7³ïßÕæÈ½Eƾ¾®_T´Û¸ö¥…¿[œáá'ÝNʃ\Ql–ZÕ8ý“i]›åŽºµ©jÓó¹JÓö+ÌòÓ’{[Ÿ•|Å3²$Z"iÁ^i`š5h\0F[ ’˜Ïs Ô•;º2Ü4©n¼Ù÷<„³<‚Ó×ITâºÃ;ìbŒÃ)! 1²ÛÊ¡]å5~v¡x¤ZP´W¦x[Œù˜Bk-½âþ ·Õ¸DèÓ#Ótx¿>?ûýYÊÂÙÍÃÇfß´€ÐJÛµzg)¸)C”SjKë¦S¤PëÀÈ8ñ!íÜ£,ÒÊa…­±B}b¸b³BòGÓÃàA&ZÁ© ÛëiýËÙi€"Ø [{‹)ÍgnÚ€·”×mz·›².Ãno4Ð2r¾CÿkÓ³lJ{pdN¦ôRÂVR‡,´ ~]ƇÔ$6á2‡}¾FM»¥|gk’JS¶†iÿÍ„t0½ãšÇ’^$N°TMÞ.©PðÖû´YÂ0§fËz‘ñЗ™.õ”vŒ¨mæ8=A~áàÌ3 §æD¼,• z–1+Ù!B¡‘£ËT’4Ì©DÝ>_[;«åéDj¾á'ðµ<Œ‘-‘¯²™É¡ NÓä„nn®ëNH 3ÔŒy>)Wù.ËdŸ‰kÂRR 7×;+«¤wmîuLÓB|Æ÷2æÕ"øÅ÷he&”™®Òñ¸”¡3&uB"óÃíh)&'‚nsbé^c¯€.ûzÙésVzpÒ˜ƒr$IÂ'¬ ¤'¥4{ïWCèÅ냕›‘)¶‰k{vb"8˜&Fcä0å`Ç{‰¼·`žè®†â(ÙËUæÁA³ áÊI³+€Dqc÷oëj‡h–+½’ó,™„°¦"Ɉ¥¯*PÛ€+d–>Ó•D1ýC“5ïá•==ò¶ƒI<)Þ¦áÁp[m3 V)›.û’•Y´L¸ŒÚþ„ô|{¡V—LBGÝiwFÍÕIf7©‹ú#Æ‚Xóœ["”dàé_á–(g#Öò™º  Å€„¹âIž“ňx7ÞsÄ¥6%1¢Á$FAKÜ6>™Å˜6¸/é¿õ<‹”›ãâW–š`1<›ŒØìáÛÅÉ®û>#—òŒ ˜g7JûŸkóíâl,¾\ìÀ’»ËÙßf—‹i‹.A¨¨†ìÚ¾ª§(kó5ÉñóÊ–)¿²f¬M_›ª6ÿ¥6¾[–»vÇþhþìÿ¶ÜµYµÿ]r×¥óž8ÿ´ÀéÚ4µŽŠV‹¬;ìõR½‰w)â|²¸-î*{ñéèù°¯åÁ܇Ã9V‡ñäMrªt-~Fœq“®9²w“/¢I»–±¨Q ëÐø-L®xkÿÎf•ÌÅÙ¿I•}0ÔÀ–3–<úb½ºt á•$ ïd—9ðXvþëÐq]àGé$— u¾y¡c'_í,Dy¥°è"ŸoP¯N›´*Ò­²Õ†3-†&=òÒp2N­Vë0RR."ïn_®Çq“¾\V™ž#b«u®­&‚†¶¡+Á™Ä+Œ:ß·»’7ÀÀCA°·?P+Á…¹ËOð%‚D”œ¡žœ®ç5U„÷_¯ÒÌÄ~H¢àOè £zU˜êS­´–査 ÎR”3ïÊÅn$i"¹kåu¢©Ç×ø9º#e1‰Í ##0÷@ñ¿¬ï2, ¤ü$ê}}ÑJ/˜–$ÕËÄâÝÞŠ·"Ñ ½¶²L;":iUû9ïYØæÜÒ£Qo/{ˆ¨x ã1ú‘”™RêÄÃ)Ô*Šl&YÇŠYÐÌø†x\«smÖšV)qbœöèЗƒB¦H·ù¤€Ÿÿ²vÌ¡ ÖÆUކi™ÂŽ^]™\pñå÷óŽ´g£<Ý>¥Ûôߎ93!bë>JYIè1q.c°Û/1ö¾º~ 3Ê{‘kú_P» YÓn<Õ.Ìæ~&o¤ƒ…?±%°xÁ¼ xäpжßõ®*U/øm(a‚ì¬ßÔ‚R½ÐÞ³M1’>"QŠ& ^Ž#]µi0’ÞŒ{]÷1F`^i=„=¢\Ë­éë<3Þ3Ùy’_|alÃXï±Ît2ï˜'þXi •/°ÏK˜LR¹H)†ýêlÐ NU]Ý¢@ž‹¥ÿ§3´ßEG€˜EÞ"@azÍ×N*em}ÍJB .ª¡º¡Oº¯©ùiípžNíßÒ> Ž‘ºÀzª@ô›×KÜB2˜ÉoÓóõ§ mÉÌÊ[’ÇöükG©:$€– XÙÕæXÁþ㕱#ý{8z)5¾nMæŒðGcòù€$Ç»#W˜ñ(n„]é&Ù3Ô3€v¸¨àfîsû÷‡¨Å „ Ê ²G5A‚£h´œýpB Ÿ»uu'K,±Ý–kí]«%…Ýto[ò.[­ƒ¶/%<ªʽ=K)€Në(\J)8¯˜¦Bã«[€*ÌÕlš1-£t#šwKÂZ@\LÀÌC ©'rö̬^ÕÈbŒµøjªáXAc QHPJx"¹œU0€$b2y¬±Iš§X KÙû·#Ta(QyîU«?¡Øc9Î* ÂR ä|ã)Õ72;’ž3 4AMuÜ’SS6{µYiË->wd«HMÀ´<Ør‚gXšsšn‰?`¯€u"¨’¬¦EWvp¶Š tãZ|ñˆ'Kâ´îG‘^0(Ó}XaV¥Cq”‹J®ÝC<¤ °-*¶<¿×BˆÅUåü,ëK,–¢ª)m—¦SGŒòëõØ®Ÿ„˦Á ΕÃz‚Ë0Ìë¯{ÍÖäæH {ð^G¼æ¾“ø^Zì¨öU>ózÈ¤Š¦$ûJ2¼³Ê”9wù92àY©û+%±q˜®ëRMëi4GïýqEvú#,•öF=äd²½aí-ôXí>u*?ŽøÚaá!ÛJUÚ8+'mÎ;ð‡²ÈÞëÏvç oèËIŸp¸a¼»ó~ß„ Ó½Gs©ÃÊÿn¼ßå$Žtº:6e^kã“Ü©û»,b©0M©T‚9Áά‡9ªëóD­ïqì ©Æ\/DË,ôÊ{Ö{ív©A³ÍlBMW|Ûô-‹ñ7S”`z1ÿF½2YÉî°”Lul²„ÕÕ)tX=W®½;NÓkít˜ ¡h®4¯¦âõ#áªÝKì½P²„ÒWéö‰PÙ{,˜MÇŸÅ=ͦ%„l†,‘áLr[,?cÔ& ÊJv¼”:-8< &Ä©NÁIc ±PE(Çëô ÐÊèy¨×2Àlôš«ûôó‹4À~ê ú—EztO›×^Ëo9E(â¯oµ ŽþÉp Úó¿KðkºA˜¡ ^׳%^™+†LO»‰Å«zO7m%Å6Øs²•¢Å›Ç4_µ­Õo”Ø“Íñý‡™°‘Öƒ´ $D°5i_pÛKÞfÒ¯WlZü½´»”³=â ü jëIÞ$"Øâ ~…Ž ­mó"’§?§Ÿu3¾Q@.`‹@C5ÝÓC˜NZ7û¦ûϪ”,Ô#9Ðy»ÑªDŽ.U‹¾H5$Zž½BÀ:¤åçs3»«0Á¨†HabŸxÿYŸ:h…Aþsö¥žÞ&ØÖöõ1ÇiÐølÀä1":oBÓ)‰ÆâÑpèåŒ6KbL@×,Èu󷽘Ìà pOu²r·ÅbȱršÌR²²†¥1NÏí5fëch‚¡k+Ù˜Z¥V,›ZEíO\TxWKŠ™›iÔs¼g†ËQÝ á 6’F ÛxÕÔC{ÕÿÀv¶Q-çúæ™ÌóóãqnÚ± ¡­wìm“ßò·ÕG|õ7·™2âʹ'@ >(ŒîOPÞ „5͘“ew1+ŠÜÖXU²x#iüpªÃƼôW¸ì ™”«—¥zŒ¥Ò0ü'þ#;i{&˜>’¥Òmÿk·t«œÆî²ßá’ÓÎ…ÍÍ#Df öïÁ‡ÿûYß-ñs°›»3e=üÍ—/·gXÇjöð4wò!(ø" #ƒ¹nS×öôxƳΙdW‰Ù^ão«N&üw”tF“NeŽR˜ b Âð™0^µy¡ùŒÆdË¥e$öN<R dJh °Ï&äé–•RPg¦GK«®Úîô›!¡?iñév]p:—³& ‹"ô-Ÿ$/&¬/cðŽ$÷ŠUÞ » X”ÒÆ¥·K‡×{Ú\f& ¼à]RR¹à›­<€!Ãܨ‹í’e\È Ç«ÒÜ”õJp·ÎèŽOòw%ƒ%9W`=T·zÚ­“`2ö JoË¡ÒF‡JL†\Þ÷ÀLoö~–á³,çæ9rþå.º<Åd§ôþ§‘.G¹ÌY+b·iB+C9TZ¨Ñʲ—Ãâ×u!Á©Ñ†^ì5rm2ø\õq?ÜÒòºd'!vˆÙð†ÖM…a *¥-ßM*r‹xçÑ)#n€ÞF¾¯vtŒÏpà8-¥ïú9&š¦+ª“âªeºÛ"oéJ¹Ÿ~êgrÜË`¬oWP•b±iRºCªÓŠâV–VÖõÄíÒ9àýÉûìË­ÌÏ`à,mzÿ }@Ï‚oõºµø];i$7†LZyïéh˜â¢qaû:•ò›ôx¾˜´ìž”‰IüEApTDò/ó;¿¹†0‰kBmƒOÙI¼©ý³ÜšéRž<ͦ¶LÐ×Ðï'‰ §iM°m&t¬˜dÿìM°:]¼(#é÷ˆÛlNu¥—Èu“Ìù{T~/t6çù‰ÇÃ>A3øC‚È VÒæ7J"¾kÖä¾9/ÉΧq$ ¬µi—ÄBk!*ŽÛßÜ'¯c<3<ðyîˆUK¾Ì¡‹S3û±,«y ¡ñÛ¯ÓªBô±èð¹ÇMd ü!~à—)´±1æã!Áây•æ3ùaƒ„dÓ“]Møk L fc=_ÓSßäÚ1I_.)ÇÅàÙ‰yK*í5ªõ2D’ÅÛÒRo»,y„V0 ‡F÷Ðg{«ËQ Ê™3× c¶ìT¸¥HÛwø»k|¤‘ýýÙÄ«oendstream endobj 606 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 802 >> stream xœ5mHSaÇŸë]Û ± &Evï-z#L§½¨EZQV¦DJY-½m«öÒ¼ÛL—ºµíÌ5gf9k›Q¡S’ŠÊ"ÌÞ ½QĹrûÐlù|8<çÎÿœßŸ"²4BQÔôRMEEIe¾z2Y$ΣÄì4q> ¶‰§A: é²ÐÄ›Ùx"-3Ñ0‹ÐuÒu¶Ôl©·tzÛ§^­®I†|.¿¸¸0‡+P«‹¹MFÞj¨Ñš8VÐóF­LŽqæ/ÔÿY¯ËÚ¼<‡Ã‘«5Öåš­º “*9œÃ è¹r¾Ž·ÚùZn«Ù$p;´Fž›º4wêSj6Zloå4æZÞj"„L3 Úò Bv’ݤ„¬$«ˆØy¾ŸÅ㊣Cîv •ŒtEq4tbhª•!.sŽc"t„ú„Y4šÄ,ÕgyWâq4±oSÂÇRÂE‚Âytº8t±©]¾$~pìì-?`z‚£á¼!WÔñ¶7ƒ|>—ËÙb±iAY×Ðó"¹,æLàÔ5ÌÂu“µ8¦Â)Ç_µ¯ê´ycov{À ­í»ü-~WЂ ’ïæíáØ3P> )cõ ½Ôí•–nÙô©ïuçØÖ‘BH!IÙ¿U¹9àÑZâƒß‘ ]ñ3åÅ› ´} ¾à"Œ K‹|¥zÞýmp–«$#ìg¤Öÿþ}Kùw÷¿a¤X$ݸPwb0÷±<ÒWÙ?kð· m˜¥@e´z{ÙÉÝÒÌ$c²B‰½?©§˜‰Í˜Ic¯¨QÙ‚š^x¤|ÿ¾­od¸qï=&Üà÷vÝÝç´u@ Ãç·žßÜ_¬e”g—vn¨¾ä`ïï¹sj¼~¤1æŽ9:OEíÀ+W¬ö),é»]Å4uyá4¸Àíñ44¬šãm/xÀþKô¾´?ô^%.ÿúóPVôni/›ÁÌFÒ§ò†$xendstream endobj 607 0 obj << /Filter /FlateDecode /Length 6728 >> stream xœí]Yo\ÉuÎ3áAøéÒoj_ì8@ ;Ž c€‰äa&´DŠ#‹bËMjf4ä·ç,u«NÝ¥ÙSqb~˜Òeu-§Îò¥Ê>W£>Wø¿òß—oÏÔùÍÙŸÏ4}=/ÿyùöüWÏÏþé?´IðiÌ*ëóç¯Îø7ú\{3¦óè㘭?þöì‹áó 2‡ì†÷—jô9Çh†kø´Õ9w&ŒN[?<ÀG•³Oyx M£• þ~i­ÿ†•29#~´c~‹ßRp> hZ°¿Ã™‚2J»÷ðÕ)¯âðŒŠðó¿Æ6'ëL€M›Ä¯ñÏ1§ì‡7íWÄ¡t0~¾¾º­›·4®2Ú¸aÇ×9ÊOÅ2~#~z èœŒü¥Xç%¶MÎ)…á÷Dªä"ÎBãå‡ÿ¼Hˆ­ý°»Yì0¹lÒPèl0ÃîÍ…‰£NÏ£õf*Pûöù¿žÿÎÝyì6äÑÀÁ?¿:´¿xþ§³Kçôù¥õc ?Á;pJ)ëð``B›³¥³ÖJi—zZN¼@Ǧ£iØ·#„õÀ>àn¸jÄiÝ_ Au¶YrÓ:(U'sɹáEA²&­LÃ"‚\Ùþnm;þj’5° :ÓJ[ÕɈӣ6‘ÉõÅðüWË»mÍw­ù¶5_]¬R˜(ä< øŠ9j€/1Âj¯V™V,œÊb ÑKB‘„*g YÎ**üÊ{?aX¢2 8iU°^´õ¾oƒ‰¹DßBýì]èæ5às#H+ r誎¼»Å&¥5Hú-õÞ0ã +ÍÏõô Áé46ÙñžR²ièe XÜi5©3”ѯÛ*dW¹¡å粤¤ìãà ¹½îåö¸|L9ž_j;zÐÌ1´IRÑÁÙP JÉüºIÈ5w@ò~sá=üäc7,e<ÈîîE••ÛFG1‚ͯ%I°‹³¾EEgúíž?:"Á%²¿Šx¼ôÍFòLOžÏÏVQ Æcr]™XûWü»PNpu`ã5üË _~y±*ëF-•/ªñ¿Q3Î¥×ÀúiÞŸâ˜ðÇ»ãMÆÓ¸à†›;^cPyør VÎ9ø‰@ én Ct}QIü¬ÊÔêºÚ‘¢Q@0¶–­Ì´î//‰WˆOžnÃê•}Nîí}‹ž·hmYØODϪºÅÊwÒœ_1ÉAÅ ?Ÿ`ØÝVt#µËþ]RæQ©%ñ´ø4Nâ™ï4ŒÉ΀<ÜH …–!ä¨FÊ”wÑ<½|¡ôàgàâl+ÔdvBN:ôæµ×ï`Ì=lxC¿×¾/ÄŠßŧWðÒ¼VÈJPœ†žãW`YYZûá–œeôò‚6JZ¶hÁzÿIÚÊÎõ1 ¦·ø—*¦¬(ƒzÔt˜âþBÈ€”Q>ÌR°KÀÈÀâ|òRn_Θ¸Ø®ŸtÂ…¼dµU“AŸM™,›îÔäþ†YAé,X¸p¤ uø²ÕçÕ*—; Çè¶äñDW“ô”FÔsÓÔ뀛¥§l¹7nëfì5K©REÃ#müD^£Ý}C>R¼PI€~Dk¹-=EÍ,( Ó *" „6€ºÇÇX ©žöUìÞ × è$eL'ŽßÏÀ†Ïޜӊ@lãí™)šbs‹©áßEP~ ÑìÄÁ@¿ÿ¥| æñ¹ Þ¡™¡‘SNshV¿cÂ)0Ê;`+'oˆ§üŠmjèðŘ„I|60Ÿò8˜¯« ¸ë$ž&„> èå;$ß ÷^8K4­|äuJ×cÎ\µËi'$ž·CüG¾tìå£_ô°°q²ì·7Źg6ƒ%eüPMO’‚·ÄYà¢ûl?­1YF öwsÕ›’³0vàGÃŽlˆçÏÿpöüg_ Ÿí™" *Qó‚_aH5HÌÉüâÑñ{à`™f ‰_=PêˆJ’ÀÐGTÀ4·p)YD¬þ$/ëál:Åß—Uè0i}«™=xõQŽQ'Žœ<ƒ— ÷íxÁÑ 8’2uÕ4hZÐ6#6·®Î‚>ÍÌb兀Ԥכ Q 1…‚¶g(ÑÒ펟tÆžÔ¨B¿¶W‚Ë¡6¶Ôé&>h·¥^vì@ÜŠ`™µ@Y›ÔųZ u¯›L {!Æð±¸B·ƒÍ.,[÷(“‘€b—%v"·ëÂpšFçÉ>5ƒspR­yhÍjkçByj¢)4 )ÿ±}ýeûz×¾î[óКo[sך·­ùÕê×w­yÕš¯Z“ü‡Cý0­' ?´¦²¾oÍg­Ã}ûúº5oZSŒ°kM¬Ó—­y×zì[óðØh"@¼6~ÙšW­ùJ¬gXÝè»Õæµ\Ú’jÈÞ¬ P•ºa}ÖºÞ·¯¯[ó¦5ß¶æ®5)®TÚ¿X•ìËiúËÊŸ Éþ1 ´‡4t¬à¬q–A¸&d{ÄãR 9#A±£ œó82]U€Í´­1ý¿Hr~¿¬:€Û¤MÕÉÂ+“VEÄÖg`Êz<Þ§ì×Lì°t 5 ªâ?k ñ± oB¢÷ ~¼¥(Q6ZZ·ÛUvÒ¹;ìBFÓ]d–„²@‚ά"ûòqædX gþîþŽit`vÀþvä@Jo›i<€ó"Ö")'`9Ì#šªDêm:AN0XdKoÿì1oz€°@Æ ¿MøI½ã ¥3 ËšRshk½1½ß&2#kôqù¿Ö#”!¥þÀî¿CçâÍÌ ¦¾ðm™û¡™À1å0¢‘-O«L›xXmòwŒ6Vé )qsZÅÎÀ˜RìÀd¤ÙÊÝÖdéU œuSý‹U÷œts^KaÛÉ€§pÂ$X½š‚B¨¨ßWãßaâßLü(Äx»ºžoGŒ+0Qà½ÿ§ˆq. j&Åà> €;ÂÓ/W›{¯‘ ÚQƒŽ< Ë‘nØÆr€ÙI+a,(Zþ†?çÌ`Û"½sN{Ê]v!1¤YÔ6«¾"ã¶Ù:i/8[ª½9V§1E“„uýÀËKšKjµ J‚ùõ=”¬„œEÃ$”DœýD%¤ã'·Úk`É‹æ™+!2F'á–L‰¶2Â\õ°²ËÐ9 {7³X¤aŠ’UbLmmO„Ÿ˜:³¬6 "82d#ª#l{pøg¬Ö8 bbo ~ФÅñØ;mc‚âË.ãBDK TQТƹ1u±˜s‹È™s!§¡Â ™˜~XŒaÈà wZ£Ä¶À?tÏ¿šm{VKÃë9Á]ãü¶×õÂÖv,ò‰ÅoSr璘1BÑ“w‘°–gÛIZ¡•”¼œ¯béŠ.ä«eî| kªyµ¢ ;¸Åû¦/—}Ùtèj<»pÉjÚ@VÿcUÜ¿òÊ`s§¥Æ¡·¢ÜÃI®ûÓFôé<ÀyEàD¼ee^bi˜Ø^y½LqÏ<#úUÞJGt®‘Ôí$YmöÕåšôW7RÒ Xr³—@ÚÖ.N°,ìJptê)½(‘`íë.¶ tÁ*2°óª+Á”k:|t(Åܪ é‹|è\Ä)mÝ冥ÀÌQªë6µ2LßžUåà ™ƒ–ÁŽõÚcÌzùY^E8GG#ÀΪÑÍ?ï¼ëºðŒJrbkÎmôšl‘UáßzMÙ{™U1Vr½ˆÀÔ¬Š[fU&uÁØØÊm \ kHm÷óª:VÝåKíü¨ƒ/.‡±­6éïô'ð ñ|ŠOÖ°Šõí*inVw.öøzu»¯V&Nê»U“Tú›È}Òc£á±Fp&±¸÷!þOñG‡GþWÉ(ÛðïFCÑVö“ÄG0›Moðÿjb)•×\+>kzõEGÅ5Ò{=Æv¹§ÇÆI+ò?wÐT¹DôW¼¥…}c ºŽ>ELbûf ͇…ÔÂgÛw—|¨‡£°ÛÜûaHR.s‚êí2n ©ÌŒ‰ëluÆÔ*™Eçö€íÑY™Ú[óÓl{FbŽcëöË1èÚ!@ äèœ[˜Š2G×X'E%CÝ­ ¿?€Õ騄ƒûKTæ|WìbÆSõewóÔðâ~Cè/^Ì÷¶ËÚŽ!D]ÿ‡¶ÄUö¥æ,Û²¾·H@ê±½#ÅáES!k³;ð3²k[ë2ÓÍ€T‹5½æ\ÆTs¿õ˜êö3ð¹p¾Ž\MŽÚõPµJл:Ûz'n*À‡¾;^½Rö¿îXÊ‹Eº/»,wBÂ_ibÍîý<’¸™~–5Ÿ¸]lö>1ß·°³%ñ–$î´„ÉÖs¾ÊÉ^º`bÍ"®:¿kFRÍoã´«>“@WZñV€'Ön3KõÝÄ…á-îØMh¿ÁRU±è@s`иB¸²êš:`-ùv ¬KºÛ{µ®W¬}÷¢EýXáS·ÎÁêÛA¯Ôˆûù}Ñõií3ÕFsöûÇMÉöáÂ.­€=0`.  4i¼©ܼH¶VøŠY„ÊŒÂÛf1Ä«F}ÒCx‹–5O5¬±8²$ N}9´2Ô£[¥ý}Ì}¥œE%âò$£‰rö-:ñ€ ›ö+érÞ—Óú{Ì-‘ßwÄŽ˜lØqÀÐøV4$•g`ÈÑ{ªïQå\_ù%„G1e *娵EM•5"D àÊM¯OÑ]¨Ë•Òàð…=ðâ\;o†€æQÞc 9ÀÈ»ÇiðÏѺÐãêS]’@š÷v+†ë*º‹¨‡·e»ÚcY†¼¼ÎVhr^X´'©âèÉv¤ŠðÁ˜üÖ÷TÛ,õï ŽÁ÷æ‹…¢&»!ë9š³ý\†Ì6Å·œÓ1iÉÀJ©Ý‚’/’nŠw„´LÕ$B»FÝ¢Z¦$Ð,Y?»ÑÊÖ‹KÔêY Eƒµ*çßsÙ©‰û˜ÃÜSQ¶¬ æèk=žÎûPŽ<Ê¿FÕbµhõ|Ž]4W÷98W\ñ:­´\™îÌ?ÑÌDV™ÔÁ¦C¯ËñáêœÊÒƒ‡øjÆ—…`ooãÁ2ê‰WÕ•£;tò*\‰ytvFÙÌ:Oàq¦:1XÛÓ´dˆ/›”1SS)þ]eÄ š:àÜV|&’Áå1¢(S~TGk¹dã8Õ°Ìv4=@’Á/5°¤ëý'Ú_õvMG£‚º3®¢Ó9fÉ5âŠäÛFRfÙÈöbùÕó ºÉçºÐ8DCôN¼8ÉRÎðz¡ð:>£ÑSM¼ µQF½,¢Æšez•k2üx1¹öKh¢||Œ„¶³ê2º'ÞpåèãfùµPeíþøì:á“Þª®®è§tZPJð„c‹Ðtrz0‚¦c©šü%DY¼pÇD1Oyß ¢ä)ÄTWgú`Å7;{¤NÍëÊó¢ŒÿÐ8šMˆ ¶œ7È#V;gm‡jwBøÏIo=þ¶^r Ôs¶Æ„g$,yÓ°>>¬áb&¬ „JN´ã ›r~’A:Ì:ôåXBZÚöùí9zDoúaÁ{ÏkÂÌÅ^„‡¸x&aö þ»ÊzØŒù¬…©Ä“,åBžˆ8™Ó ±Óö+;S_†v6†éͪ"P7il<Vô¬ŸBÄåOqSt~ „nvv]+“r:j¡¦[ãZ´ÐÏVšˆ7{Ü ?GÝ^‚˜öaáïÍPÊpÂæéì*°«mñ)3{·pÎ[o€`–‚µvuŽ2bÄìèŒö7¤xµ÷žíJen¥Êk%•dfξðŽbTš›ˆ/Çš1tÀ8ôéOx”¬Zÿ„G[öÆÄ‘)õr+Jå[ެWæ¡€¼B´f/8õà²ü(µÑ}¯>ªÁ`Ö¦‡õ„ˆÜ4’žòÄÕ"q©±ô[σœç&—w½HF”¸ˆt¯È?¬ja dªV…J̓ߑ‡? ¦gðŒw»»­Ì;ï\=d*—{¶ÙXh ` üZÚ°ÎËžgúE‚Hú ÇX”1ˆZQ „k}»:Øzl+ u+­*éÔJÖVÙ `G%•”>“²ùuŠ´cVCÇgOÕ%S1DÁr:…ÑÆ­Žš$¿ @,° ©ËöKzR›'£©¡ T',·Ž®G•2{Š`6\Zô°Ÿ))‰÷ eq<~d¯­íˆ‚Ó ˆ«iIÖMâÙm"Kd!{:]³›Âú=åÒ¨ƒÊõ&i”p,yz}hÇ‹J5øfÂôœ™ÇÇ¥qM”„&¹ò El–+=`~ŽÙˆý½ŸÈl•? à÷ÀƤ,ðE÷ýÀÃ08r’gmÍkDÈëÐôcD0퉙—l^R©8/+|_¸0AyÙ³ÐéŠéz@î÷¶£$éeÓO”|A >c¸2Q¹©=MƒB ð +Œ%±qó.cèŽÂ’VÓ¢r·¨{žÇ1³N ù™ÙÇ”'jUŠÉJSÈÆžy8…!˜Uµ¤“ø*f¦T¯"— G sãû¤øg¶¼u^Î~ e:Xk¢8µKPÁø031$ š'?FHïƒÐ!4oŽŽŠ¢«¤®©•>-‚†%F—ä™s ¿)¸¥1æ2D…¶pUÖ)K"µƒTTû’GW^!Y›§Ô8½Ðiu”Ã[îãKuѶ‚›´ ½²Y WÊ”ÒFUø;qx!ÿ!&:ì8\ªM(üDÌ)zÌyÖxò^íÛå3°ò¡W8©J:$ßIêU«Kc •„ ¦;¢ïi]ŠÞ¢’¤¨K”÷MÍÝ• ,­ô€50Gôò“_]µÝõRß6¹ O(€kÒû¤Q ==S(XIR:UÛúë°­ÃâI¹U„^0•s>X©neÔOE']M‚9^˜Ra–âƒ,Ã[°ß´Ù²Ò»ú³n©uýöªrbÇä ý›”Áôî z¸ôL ˆøôë"!¬JçÒG°Ì¡{Éþ_‚S#µA+œ^@-wÏ#»’/-‚=]¶î‘Ï£ªõëÆÈ!ºlןÐlªˆ‹Á¥B©ÎÐûªýž¾#sc}ì4ÜÓ; >½#w®‚‚…ŸhGDêÎq–Ï–ò½­ó„]‚¢•v´·AäY®˜ÅÎF)9õ¨ÒÜ‚Ðמ=ÞÍþ1c<ê¸ðÀ` h{ù[_÷iWØ/»|%zpK—Zi',k^W—]c0ôhíQȱ–°•Ï Ÿ;å $¼ÛÉ$ É‚7’Ys>¯­Î&,¼)éÌáÍ «û86ã8)'æ8ªö>EWWq¸ðãÒÆ<6´1•ïõ¹ Ï Ò£vRz¤ð#€Â¦Ø(Í_uÂËψŒR2›þH7ùMû¾2÷ô¯Ò±uþù#èÙŽ`]äi€¹ÒE2KóК7­yÝšÓ%5]î¨Òi'Z—}Ý·æ¡5ß¶æ®5o[ó«Õ¯ïZóª5_µf¹æAím=?´¦˜ù}k>kîÛ××­yóØÚë5â²5ß´æÏ>)}PBË&j^µæ«Ö,ô¡öûÖ|·Ú¼nMÖM&aMKM´/î6͇]Üm¢¯¯[ó¦5Å;±Þ‹ÖþÅÅ´')ÎF÷b\,+ÿ4Ä€V< UeN»™ÌmD¤¯Îœ*Æëu3‡8‚•†B¢x'çì•so­Å•6}Škîb”9²ÜÒ¥»Á’jo‹^MXγЫÔÝÍ!(dÿß;&¾æÃiNFÔvt~ûnÑVÀ~ö@ר.޾æV¥I]à"ÒýÁM°¨x=,£C²˜öË’*Õ:öJ”‚fŸŸý,œK…endstream endobj 608 0 obj << /Filter /FlateDecode /Length 365 >> stream xœ]’=nÂ@„{ŸÂ7Àö®ß‚„¶! E¢(ÉÌz¹À¶ ¹}fH‘b,}ìû™os8¾§ñZnÞ×9}æk9ŒS¿æË|[S.Où{œŠº)û1]¤o:wK±9¼vË×Ï’KäáÎoÝ9o>¬1ýTß›ÒÜçËÒ¥¼vÓw.öU÷Ë<õÿžœ»wœ†GiƒRªªðn£ÜwQNÅŽÅ®Ž°&6Q6D% #ú(=±°%Z”€F Q"9¹rtåàÈÉ•£+^{=÷zìôÚë¹×cŒ×(ÏQ}^½ž½-^Z½¶|5¤1%2&2Œ12Ž2Ø7E0F0Ø7E0F0Ø7E0F0L5M6M†}Scƒ“ £ KQ&b%`OÌQf`@Ö ¼y ™ 4`0Èd ÉƒA&ñåA<ÿyÞ¯ìyTeº­kž®:E/lœòßµ.ó®*~ ·£endstream endobj 609 0 obj << /Filter /FlateDecode /Length1 13180 /Length 8798 >> stream xœ½zy|EÚUu÷tÏ}ßgg2WîkBBB.î@4Žp#‡„ 7DD9Tð@N !HaY„Öû¾Ð]W`Y›ÕÝ]2ó>Ý ñÃëÏ?ül÷Tu]SýÔ·ž³fF)Q#¢Påªô,$^Yã!>nú˜™ñzÆB„ð•q s<ÿ½÷SÐp!jÚ„™§_¥7¿‡]Ì9qÚü ññº6„œ 'Õ¿ñë+Ê.ÆÜIÐ K`{"¤šõÄIÓç<Ðù¾W [=mƸ1ïˬlú˜frkå©0~-Ô=÷™^ïWí‡Ì>sÆýs:ëç…þ™³ëg¾²ì¾L¨_úÞbN! s™Fd£Ó‘¡Ø'>žÑ»cW˜sHûUß>&$-*D§ÐÃh:ˆ$h7”ƒhÚ‚.à)è¾µ¢± ¥^4jCÑë8{M@ÏÁø9è4Úˆ!|g:2Bï:ì‹-€zÊcÑòØ3(å¡•èʇYסöØžØaè†îF{Ñ>øþkØKÑúØ‹±KˆCCaÎåÐóNl`ì Ò¡TŒ*¡u9:‰}Ô§±IÈ‚ €ºíèi´ýý/Å­±I±†ØÛ±/^ª‚{nÅ_Ré•±í±¯cQ@"ˆ’à­uhzæ?÷)Œp)žŠçà x#‰¥¤•^Á˜£€C•Ã]f Õ€À1týýˆ¿!JCÍ¡ÎÆÂ±ÿAr4V)¬¤5À½ îu°¦ãX‚3p_\‰áÇñFüI"w“j2<@®Pƒ©{©ùÔ{ôýt ³–Ù"‘G¿‹‹}€ÌȉîA³ÑbXÝiô6º†~ÂÌåÀ>\€‹ñ(¸ñ6r ïÄÇH%>…ß&{ñŸñWø|0DAŒ$™Ì!È>rš¼IM¦6ROP¦¾£{3„ÙÉ\–øØÏ¢c£k¢oÆ b_Æ~ à;SŒ£Ñh ¬v&ÊAÂ*À}ví :‹.ˆ÷WØÚÑ€Â:lÃYx܃ñ<OÆOá—á>)Òò= R¢%fâ Ud,™Nɤ‘²SITj$uîóÔ‡Ôuê:ÍÐzÚH—ÓýÐZz:½î]ônº…~‹Égz3ƒ™áL#³†YKcÞa>”,–¬“´H¾‘|ËÙì v-ìÎàÙ? ®ú,t‡KðX´ vc'ƒš€»ÆãÕ@ãLŒÕR‹©r’Üpý¸u+Z„ÖP÷¢±©½è#à”i0W#z.FNf3ìÎR”\ÔyGBI¡`ÀïKô&ð·Ëé°Û¬³ÉhÐë´¥B.“r¬„¡)‚QJ©·¬ÎÓì¯k¦ýÞŠŠT¡î cº4Ô5{ ©¬û˜fO8ÌÓ}dFNøÙÈH|däÖH¬ñ¢ÂÔO©×ÓüF‰×Ó†G­†òÃ%ÞOs»X$–ËJ(ó<|ÁSj™TâiÆužÒ沆IM¥u%0ݱÀ!KMGÉ…‰›Qß1‹&Yà!Œ(m¶yKJ›­Þ±ò•Žß\9´º´ÄÎó5ÐMêá©)“:ÑCŠñÞñµEÐØ:¡4æÞêfjLM3©æÒ&7›½%Íæ—-·«7K¥k»t6_Ù˜ú¦2€à¡ŠxµN¨Y µU˜–¬¨©nÆ+:‰hœR'·Þ[*4ÕMñ4K½ÅÞIMSê\4¬ºÅ±•zÇ”Ô4£ÊêkÄ*VRSŽYð°úc©}RûÏÞ²8þüÛ²xû»§äâ¸3ç€a·À›¼ý€ÎfÏ8ñ%^ 6OÈêóPÓ¸<W †eNzú6àÊ×Ìøúin¬ºIƤ’8quSJZ¤V›°†ºâ_×¤é ¯ñ¯§é;[èmÿG÷–1-Ÿæ;$…¾Å+Ð³Ü #¼Îâ$ìoCigÝk)íÒuæfCsÖ€Êj¾ÙS m(9e@’VVÂx]MŽ­hC%ÎcHŠ¨Ñ£ ;E`µÉ%ð~¨¤¦@C¥´OL\&ðЧÉÓÔo|“§Ì3 ˜‰ö‰Oè¨oªI«ª't¼1Rc¿U¬¯©é ó¤ óÐâå|Êý{çD÷IHûâ]{CmÂwö8§¹7¸ÚðÖ÷zg†ŽÇâ¹NøêKîé¡Mîñ™bÿÀMmd_‹;ú‡GäîÜ<Þv^r§Ú8 õTç@wRæîD§8Ì“ú"Z·Ã¹Áݺ\ÎÒ@OHÇñ^¼ %ám-¾þî—¡Ë=Ü/”·© ÿîpE0Ó׆Dr+‚›B_h Û*  <ü<»œ½‡íÃf±ÉÄøYžµ³NÇi8§àdDZmxK‘[rïCE˾Ü„cÚð‹ÐHÇÄÆG9š#â m±¿´ |bhÃûZ5B /IÄ’¤ 8o:qÓB‰;4DÈIœM æê¾áÃm´ÂÔPd)ÒõÖæ—•ü_Y]·<ùÿ¾,ØÙ¼ Ä¢y¯³\C(Äœ5·:á‹ñkÎ\Èê‹““ ›¸aæ” ¢«ë-­‡T×üP„c=žCSfvúñþº±ã& Ï1õÍ3½õ%ÍS¼%žC îÐ=Aènð–BJïª>4!R_ÒÒi½üÃc‹g×v{ך[ïš]|‡ÉŠ…Éf ï[{‡îZ¡{¬ð®Zá]µÂ»ÆFÆŠïÖY:¹ªøþ9À Ü@«šû Y Q_MIÞ%h¼¹°K(û„v0[9ЬˆyƒË8cXÍ8¬R—GͰäÉ]åNMÃËûíí¨¨½¨=3£ïüH²+ýØgóK}Œß¤²‘邨ÎAI#’Ya b=Ì*s‘–†L  ßÚ‰% –Ì&­†%¼'à׿ôÐñº\mñ&­Álʦ" ëF,Žþ5]<¹¨‡›v=pàé é/2[.о½øûè?ÿr\;ˆË~ºüv D?ˆ~þÙŠ×⺲8vÖÖˆ<èx$¹B·ÚMòeúú‰zº'§P²H!S«Tsuz½N¥öèô,Ò›eæ°¬ 'DlÊU*§®§š¦ÃžsN¥–ͳÍ@yž„r>Æwígö¢]~ú¥kíZ]>†”ŸUiÉ‹4gQgCf†à ZÜXJü” 0·‡q°A,µ@†ÝtIìqVY£8DšBM! ÕêM€EVn8ÇïM°=oä©Ü¹ÙY´Ñ@ø„Ä@‡nQä®[6Ö®Hß>\íxºWVjåä³Xw=Ú~0ú?<}këõ…›ž«ˆH)êÅèl¿ž¾úZôOg_q:Œð³qÈ{ˆÃm8;¢ iVA³›$+— ë=óAG>**ºöFf†>Ü÷ÈÖzµg^Ýê_wŠú¾I_³ë§û¨ïŹ  §]Ì“`vEçÒeôfªó>××r¼ŠpIÜHëTëBëBÇ+ƒ°šv¨¬<ë°‚®fÜju‚^Ö3÷\>AÁ?Èæ™f$¨ê%Äro÷kíšïÚ/¡¢ÂŽÂ"õtY ÖB†jEötÐV…Oë—ëTA$5ÌVZ©x9ccw²`®®œ"¼¬„õB™ÏÒ ¬D%Ðp÷_ñ‡SKr†mZt¬ÜO¥Šçâà÷_Í/;²flÞx¥º:†u3g WM]´aí€ÇÞŽ~ÿìþåõs3GLÙ+â’ rfc¶¢Lt&âJ­Kš›*ÙäǸd™%Ù ¤~Ì4„•ž6ì´a̓Je¦=œÈ°áL¥eS DÛS-ËK›AÜ!Ï*@²Ë³º ¹( ÊµŽ+švÍM®!ÉMϰú‘”ñ;} ~ ¢‚ˆ¦¸ €Ãáu‘Íg b³W:d.Þ˜ùíq†…V`H%3\K“pv7¾ »pvVsMŒ¬  È‹M—_QËŽ®Ûd§Î§wøMõ}fo©o-õ3-‘û°ñ³oËSÊf=ý÷l>ÿPѬ-<Þ€ñÓñä=:uÎÅ vÌ<ÿê±åòîCoD£‚Œ42ö)3‹¹ŒœÈ…E ìÌf¼‰¡Ü UKñ*fž©â¨•N­Ö(éé¤=Rq¹¬T&)Ðdjmi¦Õêöìä§LË1øÚ öÁšïŽ!°{KM\ãõD³OïWùì~¹Iš…”MÖiÕÖ5QYš’YYH­ƒŒ³I²RÈDã"ÏE$F›½iØ›€´_l`9Qj?/íÂ9ÚÓüÙ–O¢ßý뛋÷÷r¶­?ý(†^¼¼ÿe\d.G?=¾nWô­èÙh4úû=5]}òĶ7ð~\úö_E¾[Y/æ¸G¡ˆ<c6Û0 !ÊJ3{ù±Å⺠u.­/¹‹ é^ÓÚÊœø©¯ˆqcì+ê º2# éÙf8o R=g°ê­† dõËrˆQÉD)cœ:¹…µXä&eš,¤Ûl8d²ZmïÞ|•1¼ï’ö&ÆE…ù" |…EÍ/0’ˆèhxþ°Ö‡ólË^)ñµî%Þœ‰.W¥âƒtzGþ°œºÝ#Ÿ$ªëï<Õ+é®'†­!Û„u›cß)3(v(9¥½VñѦ|3%QÉ´6€Â’2ªŒjÊMê†@æ ~â¢8™µùgÒAÉh⸤™R»¦ã’P¶Ñ'5·‡Q;4zÃÙ»_Ú·ÏoÌTº î¾Å#{Œý`CGiž^ŽÉ:)·d"9»AÄ´ ö%õ6=Ù½IÁŠ·Xvs{-TN»Í@Q‰ÓÆ*¹µÛÍš€ƒ¸kmNYÀlu€›Éæg/ê h{~þ¸6Y9ŸÂ(ó#•^ãó«jÀ¯¼È¯°Q~àWȤ‰_àWþü* =2Ź•• âʳ…•“°e³äïÌ5³ïzýÌeÖƒ®o¿ûÖ½ï 74nÙîé;v^\38û ¶áž ìÑràÇvæ42¡ªHŠ˜ÈÌš¹ÐÏeçrœ^IôÀ±Z§„5*dÊÌfÁÆ2Y͈wc]AhÁ$ÀÒµùù8ÎL°I¢™4›Œ`¬r‚š‚ÒòÖHöˆ¥¯J=æÊ\5ó¥VætÇÅ¡|þ³5Ou %Ï6ô¨ÞúaÇù¸ÿp²õ¢ì˜…Hçe1xJK†0¥·!’ž‘)HÊ… DI!(/ö©¸9h£y‘¬ªrÕÕ ô;ãã DíÔ Îédõ2â4Ë™4}š&¤ÕÙÜò€Íêr¯âgÿL>. º\\‘6®Àm‡TŽE{å€ Y‰É윋ZTͺÛ:ÙÞ•Y£°°M(œ£Ëþ~ýÎE;w-X½7Ueô:ðLÑþ‡£?}ó}õ£ ¯½úöŸH×âü©÷ÆqÕ8õ§¯ñX}EìSÚòï@‰’("ó7sOØ^pSŒŠ¨ƒQ¥S EÄÀ…lx€ü%êþ#uÎþ1÷‰ôC÷ÇÞ«æ«^ù9í9¹—cøDõV“31vÛÄ;¬Ìi’ûØÍŽG9hŸIís0V™‚Õ‚Ýw[ 1 X­þÀûü®ÚNɼ$î÷û¢Í}®ôÚ[|/ˆlûM›W†¼4C1„Á -qƒVÕiôƒ†–(| öD?x†N?v9¥fÖäF•+U^M dœä¼ºS :`RrÒ<«ͪDn#·~‚@°¢Î…޲±_d:“Öórušß0n~ø® Ã!vHæ°ù}†~-Åny°ÿ…»ì¥Ë§Þ=tZÿgž=[›[^ðXZ¥Cƒ½X‚ .Žúç–-=Ü„/Æíž(;°'VÐ £"™G%ç$„–$CƒdËÄ`Ñ8I,r™µÙ"$µ9pš%dEV»ãg"‡4®? ÊÛb„AŒ½q79‚5ª0Ôðò}÷NºT™rÔ™±8ꟗjoÅ/Ðé[F {zÄ3‚<-¯4‡gMîx ˆÓ D™bQnÄÁ^Ž$$”L úÖb)PXÒ.†éLGá™›¦©°hP{Ü< úwùQ¸è¤ë2'â~¬^`fÞ;5(’Ì:%2'…Õ†|“R¢“Ya~•R2ëXZåVÕ ƒÕb}¿øŽú>®î‹Ú߇ê5b2Ý'1 šß+(ûðoQ«6Ñì°Ê‡yZZ[6ndŠsî%ä9‚ï~qÝñÔöu»oÚ`²ž.GZ4$âP~eªœ¦Uœ†¨¤Z©"À Û¤•q6=t²êôm¸¶gq—íHTt¦ãŒÀñX{Slj[s‹6°ÛûŒÏMe,N]³z}+~,w¡NRäàìŽ-þ9àŸ§3Û¡¤D÷F¤DÆ)1!'u K$˜a9°Š¬ŒÌ•3ßP –¦Ú°ùÞ¤äöCXT}˜Q—«Dó»k…—„ˆ ÓÆ ÒÆc‚ufÖJ±–㸩$ÏGÃøÍŽµäÑ-g¯“5ó¢ ÕL­»1úÉè3qžûŒö2OE  =‘üy6læ|\ÀZm]‰VáÕR¶œ“ñ>¬R¨slØÎÂà3‡ÈWžv†YF e‰™æPyP$°#á€a,H·€cÜé ü}K5äøüÚ„$Œß£v±ß˜D=”ßÓ”[ñÏ"§2Á7Æ·ô@Ü^6T€Ñ+ :¹–‰ @Œg;U1ØKªüD‹ÆÛgùæYïQç´bEôÿ]ˆ^ì³\òðâ]s>ý0óÔËïÎý{ôÆ=©Á+—^¾‡3ñd,ÿéóß/½ïÜÖm«‰<5@ÜÇFˆÛ«"¹ŒÜJòä=ùÊþÊ»Épz,9ÊÊ*[•g•‘‚Rë‰Ô´TA”B3T\žt¿J[®a‚Àá²°qÃw‚*Å@Õb£„ŠŒõêô¹=ø0^z¹zDª3í\ÉÕ5›o\eŸìm=u|븋x+ÞôÏG„³ÃâØGãlûgFYèµHùpñeÉÃZm v1æpŠ’äñmxåQU^hF:—g‡òC^zNyv—ÀçvÜÓžß Š{NJsxt&JiJ5‘"YÄ2á¶2ÚM‚ؘf"ed¬ƒ bÊÃt‰xºìq—}캧|ÓA9ˆŽ` „½O„¶乕˖ÎÙ4aõó{W,yvãö葤!W?xóëeMöèèÕw¢^¸€Š¬¸·råÊ‘õ³; V­|èÑ Kg>Kv$W6î¸òÉc+«ÒSCáñ;NDüêãe 2Ò/ö1­…8R‘}‘4+“ÌM’jf³ÆºÚ¶Å&-ãX>Ëd>¬aè°ýœEÉ’BÖ•ihÃwGäJ²/IÌSÞÂŽüEqiÏ4º ŠÛoµÉõ˜Òùˆ?A RâÑ‚”PVD~9T½*·2l£ƒÈ§t;é‰cˆãÑ¢>î1‚+âÑ›ŒÂÑxÎ]ÑÅnjÒ%/ù Mxë_ÿ¼ŠóçY=÷î§$ëÐÓ¿[¾mõF‰œùÈÀEѹ¯’y˜L š•7®fEô‹Ž T¥·Ç#f9¢ù#§ô½£§»ã:£ßzϼ‡jÒɹu{ÖÝ¿t…!và ÀÃ#9)~€/}@¾ ¯¤™r<€”Pô ®X¶†[%;OÎj=/WTË'²“äkÈJj%»FþÙDmd·Ê÷]Ôóì^¹šãX'·r&ÙV"çhé, 2>°"À ¹”Æ”œPŒDÁ ÂÉäË©À³Œde„£èk2"½Ö(Gx¥Âª\7Ê’l¬¹fÔ‘ŸoƒÔù°Š–8Ò\á˜gÕ ´öUií†Ío•ʤX¤­µNcŠ–°RN*ã„6™Ž¦)hF ùªEîìª4 “Ì]ZÅinW cDà/Át4L"N(•rñù0Âfà4§Ä¤atX¸3±°ˆ;6nvmí,T;[/ÅÙðÁ^)xk؈~Œbã§ÑÅïDD÷½mdN\¿›Þ'¤ŸúÒ§¯÷= ^Ñê*¸En”ŠÒÐÑÈ \C?®Ÿ´š«‘®Vì±ïvî ìJ>f—b¦„êŒ,ÁéfiIÈi•éœ2u›–Æ8¨4SZjˆ±e(TeoÀaMÏèL\kϸµãÒw·âm!ª]ä8˦xƒ6—\›èÓø½.¿miå*©U ¥Ï™àÇ{bD…Ž=a|ë CŒ8„(#œ­¾YÄO…zäAO¼`ä¿1Ëc²pTvxWáÌè…ÿPUz-{+â§r·,z1z³/ã’ç@Ô;"5h¥z°œô8ÞŽ8dÀÛ#ªj¤j¬FÓøiÃ,mlÖŠ8H¶ÏmàèÝ>Á`ü´³Iánl{XÓ#WOF=™^>4kÃüõe¡<“¼¶à8óAô­G?‹~ýâÛÇ£__Z<íñÝ#†ààß6`ŸèÏŒ‹}"üG% /z'ÒÛ.Y‰WʉÝÌJ¼Æñ’‡‰pjÚh¢4ÓM‹MDmÒ*é• ­K¯ÓÙž ”‘Sö´I½Äë¥\º6< ¢¡èLª@ãÓÛ|²L—5Ñ׆'æ§ÌìvvÕ!îmçÑJ׈(¿¶ó„:¾ív)>ûvYâxÈ$ˆÎ ¶´Ü©ÌBR7›…Y÷m‡}NâøÄ¯ø¬D=æµÞ€þÜ<À PW6–y6ñ¯û_þý ¦Ïa†Šæõƒ—ý)zý•7ΟÄi<óUåýÑ¿ìÜ}3úNô§èÑ¿aòüž˜‘ÜÏûx6žõéÛÂJ»(þ«O P!ú<’—”e¹]ádWh&K§hØ|N§Rö,6QêÔ(œÉ$-Tp´€d%ùt–á3?M¯„)àL“gX^È: l(iw¢­·=äè¯äY{õ~oF<:†7¡[Ò$`|©ãÌmY¼J-(§ZÀ6­=­]ô„ÍqŒƒ¹=Œ [}8WÍ#‹ 7y <æPÂ#›ÓÌc#ºíWv°&ŠâÒ «°x mìvF}33Ü>6Cë¡ÇªÙƒG×lâ'eM›Y…[{Ë<\ÀËv3ÿyöDÃ\³OáÒ&¥øk“LÒo.ÜxâåÍMoLé·ë1£C¢R:Ò'âi\Š%õÞªIUÜVQ±¥c³#¢V($ÅÞHÅ”#«7>§Ç—Pü GâƒØÆVD XŽUIÔfά2«\Bø ëpùD¹Âë“Ùœ^«ŒÐfï4;•`&$v‡ÒË‚ £ÚAøaÕ~_ÈNó±‚mXÙ-JÕ\þî”S° £µ·koýÐužú˜»­g?]NZ"95³§$>Sÿñà¤ãSMyâ¨-4s 4m’Ø«(±lxÕö»Öuô W§V®ÛÕñ9>=kÀSo §CDðu©—è ·ÓqZä‘<éf“î Ãã–$I0ÑÈåËøòÄòÀðÄ ‰ýóó•óU Þ9‰s|sü»\»Sô’™T:MlF»Ùa1¦Ò‚jùdÎïËõ_‚RF'ë-t8õ,íLÛš,Og¥* aQ:Ÿns[L–€¹wÐÏ‚¶L•; éi֌̖[ç$U\÷çk $ˆ~~ºÀœ¢³/xy"t³DNˆS‰ßè³ùy•›GR?Ëc*xŸI‚’Smvƒ…Çuø•’ Èxì÷Ie8•æ‘$™Këà±ÕäˆssüàP̺ýâ'œ'Üüá àOŽHDÚlbãQX ³ÉEWH Àßp¾’Ýã·ô ÜÿÈš>s>;öï©}É^Æßû‰ “Kƒƒç.žüÉßœcñQ\92cĈ{JMÎÄ„¤~K¶¼²nä¤^Yåƒ#eIV½3=¥ôñGÞþdùø¶l…l…åFœéÀ‡ô@µ^0IÁ\H9«Áø¾èwp¾ßþy¡×õÈÕj~*Û…Í. ¾¬„*:­L°[ûø3B£ ^ŽŽÂ¹ë> ðß>ŽMßß_¿èÚ¬èÇW7F¿èüCÅ}˜à n%uä[JGM£^¡{ÓëàÞÅ蘋’<ÉI‹ä¶Œ½Èù¹¥÷Iÿ-;)Ÿ Q1\éQnW-TDñÈ9þ/CüÿX8—üò?9„KÑùtðñ'¦hÆ@Œ&³åæ«0‹)»}Ív«äB2•Zg—kÁ¿tk Aï‘rÿÿ÷þ×.½.æâ¿^¾‹Aîrá/ è67/â»Õ1àI#p%A˜Äß?~~YÑM¤ý ©î—ímu@t¢‹¦ƒˆNŽ´b+ ¡¦s„yq"5? ÔüÚëg;ñ-ú6Ö­¡Ë?‡èûQR1¤3åLæ‰Ï¡5Pn$ùÈ €@y9”¤ P΃T!´Á8¡ÝAöŠãs ‚4 sÎ~Ìp´™}ù Ü Ƭ“ä£qP&Ù‹–üÅÐVr“žCÍ_­.üiã =èñùÞ²s“~¨¿?ÆýUéÍñÿ ÔÏuendstream endobj 610 0 obj << /Filter /FlateDecode /Length 6094 >> stream xœí][ÇuNÞ‚Õ—‡žXÓªûEŽD†eÁH")F»ä’ÖîµËIÿzŸsªºêTOõÌ,¹VœÄÐk{êzê\¾séÖO+1Ê•Àÿò¿ç×gbuyöÓ™¤§«üÏùõê³'g-U€GcQ®ž<;KcäJZ5†•·~ŒÚ®ž\Ÿ};|µ†)£‹f¸_oÄhcô^ Oá©“ZÆ8ܬ•ÔvxEŒ6Äá4•Úø}£µ‚ÃçøPý0âC=†á÷ø,8cÃp M-œv7¸’JÈa{O°Â¥‰< ÿâ)öÐ1hë`lêÀfx?û¢~¬£¾Á©¤Sv¾¿r¬ËkšW(©Ì°M—5òP¶ß±¡·tƒâ“Ÿ³}n°­b Á  RãqšÏ ;ü×:h ¶´Ãörï„ÁD†¼A£¶?®•ePxµw¢õ¸«ÿûÉàÞµã×®]\ü“‹³Aúõ“?žmŒ‘«¶cp;<¡]§[{^÷ñ4] ‘r¸ Úxíð%^ÛKƒS¦}!,°Qbï<2 Ma’×x”»¶wyj¼ý›rûÛ+bÄs oqº „pqøÓš1%6˜úbâ:×ðí]í½Äiu!B=€^Öû¯lúCeÓ4™rÂ¥CÁ(Øséʯç2qJp±}Îi„ÛäÓ.w7ikf¾ÆÑ a†Ýz¤RáMt%ôj¶Ý³‰*„U ááœÏëáʵÏ讽ăޒ8Áb!-Lfø$Ý‚”!$æ2–3Wp£µ>¬6Ê"Ó$nz[e ±~ÊÆ ¹Ôj#G§i ³‹p¯:Ñ|T>ú6cþ‰Æ õðYe–ž ÈH´KRðíðÝ€Ý#ƻᰠ”ÀÚ釣³¾w\éFíL™çƒ´é ŒJ½ƒ`uÐò^Ï*’l Mo§ êÖ ÝôW‡/!5OßTœïIÎ÷ÔÎoF¯¥›ÿ qrŒÂ™Î%»Qi+]ï’¡‡ñݳƒB-Þãì?Ô»ìœÝS+A‡‡{69ŸÆ€\Q[@5 ìU:QØKóµ 0Ú¢@͈&ÿ-Þ¹ÃÅ”5=.¦ÀâjÎæBèÐ×Õ£sȆú(€õNܺ®LÙüÑÈÑ€ÁñA~½Þ Ê È´4¿°ñÁJØBÈO«hÉõ‚$^ll‹{s›”IÐÙ)´Aóùìh¬Ñl: <™ßO°é iS“=MÍ_×_’jl;nc£ðäU‰Š1I2vÎeL¸ð‡Õ“õ¤¤\TOycBÝ£ðŠð:´ê)_¸è’?Âf¼òzýSµ0r4 ’ lFãL8XÖH(ýDfÐ1>4#èŸØl&XÿDÊEV‘„Sé‡ña§ó!šž#|¨¾~Fü-6‘¤O;âúkv^wg`© LÈQÊDé(}ólŒ6S [5\ y½áˆ„6©hø‹¡¨U54µ*T=nÐAq3èí¹Á k©l+1 dr˜—p¹v{ò>wÈ(þrÜCyÞ`%ê‘p— V)Û Æ„Ø,(íágòa´³†C³Ÿ×¸ëUåJ¾ÓÂppùFï+öÂ}re¨á4 ñ“‰ÉŸšÿ„CÇ.ó[°EÂL×tDÃkà ksO%áDoÀÉxžÈdz¼ï@c¾ç+¢d"34‰óŒŽcmrhLÜšBï n›$I$Á.“.ˆ@u—eîäñÙRÀ†Ï&»³ñ;¼_Ï\,°[!3è¦ìu&y†ÇÊ•ˆ„Ã3qx¢ €®Å?:‚c‚µ/ö÷MkÉ:è |Wâû7y3O˜¨—%Î £ô¾+Sys\D„MéÑ‚¹O d’fò@&éV1½k\ž²«l™,#udMV|§×júF ¼¨,tùïÆl ØMÙ^` ’·¶ äüš‰÷ÜP%ãN€´IŠa°ºu·6­ËÊMò\Š#hÛø)~:AŠéDŸ¯j@…KØxÅeeׄ9®*¥¹¥É@L´C ìÑ5œ^†©Up™—½” žÂ¾;æpÕŒQi£ Á¯íÚZKpŠ…œfþßN KóÞp"»æ=b¼Ÿ ÐpyÚ6R¬àÅ\Í̦qœ|/0¶ }~14öåáSŒÂØç´Há÷…ØÑE‰D.„³éÖ9sPcÂ, -§*Lìkä´黓¥Ðk”BœÁFÉÒŸ‚" z 7MMFeà0ÇfÛSz˘4²}l¥‡‡±±&÷NUz4Þ ‡ˆ –vÖq—"–Ñ7\rÃðÑL_Ìœ6ÔPÐÚ\¨÷DOÖ¸ÆÉfºÆÓáMé|SÝh ±–(Q~0ôÌR\ãC|HhÊ0EÙPï¢1L|á—ÍE™ùUñrÎq 0¿óõD‰l0x]CÇ*èxõ‹ªËr!ݱH°‹)`¤‰$8e&Î#E¹Ç»EŠLhМ0Æ÷Ø(xÑÀ8³FéúOÙïKl¢;ì?AøKèÔÃV9Úî)F@ËŠ®Sgb³Êë)4Ù<>g"„‘uƒh ­xÃÓøÜÑ—œ%\ÓˆP¥á½, œùh›‰ߥ§”Íë54Pìz_EnűÉúüÝcXè2ZùXx’s×ÙS K u°À«‰„ÅÇšˆ¼ ½wL’˜™ëlŒ8ËÓ89øõ>soו/üŠÊ ü5·Û­eGtÖº¥i'íÛ¥Fn((*Ý¢•¿J“aâêyéûv]Ò!/Ë=4XdÑk+òÃÌ5ð.ÒÂ,a,àé‹yð¦qÔ"äP å5AÀgm$ü“ƒ®;ðÙÑá +È ?=F Xœ’`ÅíH˜~Ó ú™`*èN–x{DJ?YÒ2xmè½5NSºY©|ƒáwÅ8rŪ›˜½ĻŻŸást)¸6Lˆ[KªÁ¢q†c×ibµK\§£€Ènïf¼”œ‚›Ù„Õ¸ãêN&á»4³ºû½U‰Ï)×ü ð¤ÀŽ\ ظ]Ê]^¥b,¼º—µÇ–¼í5…±¶röh%¨yÎÔ>Ëdf_Ü(0eÌË´¥zi^áæÔA,EbSÄË ”ý/U(ßRL™u¹D5;J+Uö3†!:Ìô[ô»u¯üêñ‰ZKEÞ©¸ä—£j}„ºy#a^æÀÖËmC4Ô/3T.Õ9â µ)§èóÇ)˜¡Ü3(ôOçáã´Ž@ Ö„ÔìÖßUµÓ%ÁjÓtÇL7Þ¼ G+èòjFö05̨éß?ᇑAñŠPT£¶ìàà$«^Iú×xf±´—™·058aÑìÏ3† 7 …€P'îWç¨yuÎû9fa†ÁN0‹£lJ9t*ÁŽó£²¦rap›ÞbD^MþïTh}‘žÚ`'›eŽ˜GÆæ}$+utlÏúÈ.n›ír¾¯ úR³]¯%cŽ«%ÜÅ1ÂK =9¿¥$] \ ¢à—@ì`„>«¾w°p\›Roðá÷LiþÆßÜݦE¼œå@ËXd«+ÿŒ-@s>ž!g„TÉåƒ"BUÿÙêrðKÅSÁÜjßS D>£Hé?|™¢Ûaš$aWÜËìÝ’\ÎC¥„¦£ èäU¦Þˆ‘å¢îB®uœÌŽÁdhÃie¹—5ùqš'\ƒZ)¡.”Ú«Øs…¶'Àk!Öý}€+ òU«hþ  ÙC¸@³fPÒáž*ÄŽ@3%S­Í/ ÍäãQ£ÍrŒ˜àdh¸\šÑj°%t¶Ï‹Â#>“|Ó–ÎybE)³÷ºPjh~‰èÌ0/DSéæX=Ä«¬Ød~)KûÙ _\ýpm•#1x¾£½J •³ù<À˜áš±”ñ1c|Ë!>S4Tîº÷fýœ˜ÈФšÒ¼Ò[רϺ0¾'‡U”1 ß}Ç5^Y徯ú>Äx'&½¥•©Ÿ`·3KQì, hµAm¥@µð9"½.— m:pŒôùL«5œª´ÆÔÑr´#)RPMàöß[r«HA™XƒpÅ,ÌÅ1°×^;#zŠÕ©)¯Ó™#V¤²<%KèmÛw2ë¥\dr+€9 lÛÐrô›õôNp–--Hf¶¦‚âWx#Ÿä¯Š ÅÀè•·ö3–M±ÝU«BÿIŒwÌ‚v,Xß¾Ê\2z…å/¹•PºUÖv² èHQ‰wH Ó z×ê VòËb¥”ñU”i ˜§‡\Nù)2ÛÔ!3ôpÓ\š$J|AL11{Ó¨<ŽuhT ¶`þBÓƒªߤ• °æÞxȪœ6Û#Dà¾e®lò;ØÍ0-ÝK7oÌv3Üç5ÝÒO: þ˜dmõ™3}†t2TœŒ´‰ØÜîU#ä²Q*wj»¸üfsu‹nꌗëdPòþ[‹r !Ž-æ Ä)öŠex[™'%ÚŒÓÍ›â—H-ÑmZw‹í,4sW9—U²tÅâ;Ü=%éݨ˜Få1wb?Bì?®­¥ŒÖìü±E‚§|™^”À&iÊVÌòbIÀƈ€•Mx&1éEözQ!aê(àóKš€ÿ˜ô#è¶–ÝYæŽëŽ„Q@mÍߣ"Õ+¥iãÒ.ûê³’5Ù†Ë`)¬Â>Åðªz éömôVgð¶X‹Ù Y_·îe^ôRm,ËIߥc‘ÀMmúE§[–ÃZDóêWáá²Ýƒê›NÞˈʙbuE-übF߸=Q›ßS“}¤ÙrsW›µù´+;Æ€·Ë2‹kg;$&ÎvHKÉÚ|„ j†ÀJ`åK®ýP•`ª»]>õ ÜtUád€}zƒhúÚÃRuÊ b§0ÌãJøÒ…MdcW¿Ÿ1Ò´¡›9Ý[L¬–­Àåj¥ªbIàœ (Ž p«³oƸ{<öî‡ÊLMl_ÀxS;û£Ìi›‹Vj^ÚÄsú\‹l±è–é…€´õ¬½x`‹ÄO E·¯Zç°1ÖøIžy£ö)jÌ¢2É+®ŽÅÑà´G±Ÿ:À:7ó_“,9@û7€Kb´ôž&p“ÈY¹ùCmÞÖæ¶ûômm’Ó‘Û›-wQ›—µù´6ﺛ¸®Í—Uí]Õæ‹Ú¼©ÍËÚü°6·#µ‹"ø³'ÿò?I´Ûîé_u'¾éÎO´|Œ‹îdý%vÉ:ßw÷Î:0ªõ¯ö!{¿ëNÆV»K<í6/úç”{ûAî°‡yã!—õ¬ËGlØ÷µùEmŠi57ük}º©O²‡|`’ëÚÜÕæEm>íŠÙ÷µy~|†¼Kzázj0§Î[šUAF?']Ö¯ð{XéÃÆlkóÚÛa_«Üugà$}Ûu¾¯ÍÛîlWÝC²•ÿ™¯6£Bsô7¿è^Þð½”Õ¾ìîᦻ0»é×}ê>êÞ)rÓiw(ù¢»ÂS¾…Þ1eí`»MÑm2ò1:l»¾îRäew;',¼wr&ˆÏ»{éÛÜ»îL÷Œw]вæÅ1âþUikùY[Ëw÷oÚúoÚúÑ´u‡z¿í̶{ö¿Øv©Ï»Ãî»óöÕ푳¿ó¿$Ãý%¨Ð(üÿŸÆzæ¿þ¯´ÛñøøkV—wgzŒaõúL¬~¤XIüØ™1«ë3e½Æ §éÉÕÙ7ËqÅ^¯/’ˆ_}\ImG2=%#±¨2ÇaR{ qºU£s&•½‘ßÒ"ê;|’9ÁçïÜ%¥NÉVí<¾ÐOw¡d”¤4Sõ ¾U‰Ü`1å.SH_H¡L$Vzü§0“¤rÝ‹éuš<¿Í['Wƒ”>…k§ ©w€^Ž÷F^Â)\ ¥÷¬¢Š{†Ê^cD®aÄ/dâú7ü‹´+Ä8Ówe„Piv˜3¿sŽÅU¹FbYˆUÓD*¹+K¢+¢îÍsrɼó)W`b˜R ùñ ~”Uà{I¤ÐÆQ!îÄ>AúÝÉ\˜GñioQœ,Ü~°¹™­ß ó:I2¹Ç I欥(UO¯R5 00 /°Àù2*ý'£FPñLVÎNJeø©êo8½ÎSÞº§è´‰ÀSe(~p‚Bê®3Çø |eziŸ>öe†Û-±†tXšX@whæ£Ï>»@Ÿ1.'¿ý1“:Á\bn‚Yc £%É=o•:0 -¯GQ|%U¢ùUÔ¤µ“Q˜7_Öæ]m~²ÎyÌêÓÇ6¢ÍiÀ“jóæ®6ïjóYm޵ù¢;ŒM¦kómmž×f¨ÍŸø 'Æ‘]‡xÒâBíJ*A¯COEÎ…í‘E¶13R*!©â‡+L€ ¶çpÖƒWUt¦Ø=Jü.õŽäƒcÚòç5½–o!{Q—7êAŸOßèë Ü'hl>_•¾É 4L|-ÿý7"»Úef¢æ}mÞv;\ÕæÓÚ¼[÷ öôŽÃ´"~:Ã(üÀuúbeÈ ´·ÿt@øaú2;NiϽ°‡ :šá–«š}mÌ@/“šÍ8±Ah¨~›/CÆb¼&ÓPÖIÕÝ šjQ]õÆæNÉ®E~ÎFž}U•Q:>Óùø\‰î*£1ýר(.W}{›Ù=4w2·¯¸Áüic÷TR2NQ UÌëðMª˜*¿j@G$Pø!îbE£3ù1àeèsüû0baŽ]£%p#`ÓQoa&ÃTâ¢tZ> stream xœÅ][oÉuòÚï —ó2Œ5ãº_ÖÞ{mǰxW†a¬—¤(®HŽLŠ’åüùœKuשšê!)-bìÖzªërê\¾s©æ_Vj«W ÿ+ÿ?½>R«‹£¿izº*ÿ;½^ýçó£}¡M‚GÛ¬²^=qÄïè•öf›VÑÇm¶~õüúè«õïŽaȲ[ßoÔÖç£YŸÃÓ ­Îy}slÂÖië×oà¡ÊÙ§¼¾„¦Ñʆ¿o¬5ðâúçøP)“ãz‹í6­ÏRp>­o¡iUëÝ Î”Qz}rOò*®Ÿñ@^ÿå9ö°9Y`lÚ$F¸ÄŸcNÙ¯_Õ·¾Ä¡t0¾_ß¼­‹kWmÜú„žç(¯Še|.^½¥èœŒüT¬sƒm“sJaý+"Urg¡ñ‚òë?' ÄÖ~}r±·Ãä²Ië²@gƒYŸ¼:6q«“Á󨽙 Ôã®>þóó_Á¹Û ݆¼5pðÏÏŽÖ:?ÿöhãœ^m¬ß¦ðñWL§œ×볺]Ík9šÞñVóx_­ÿ {3;”Þq|uö[ýj£·1†ìùWø°”Vi´ZëÈ«æ•3:—hcšH]ôå¸LVf½#®LÑ$eš>@—r0î§Q0ðú%½êµ“y9ÎËå½u)§i»¯öˆceï¼õÞ§0õþì”R!ÆÖf«tr‹cw„Ñ[«2¥·`¿³ƒ"k,‰¬†«$_{ƒ|GçÖï™HIæ¼Â¾'ôž6:)tó%I·Á;”ô”3Œà—¤VÊ.Ògor@9óåL7=vB*åöpv@æÓ¦­rUö¥é16h˜7³T¾¬ò~Ž¿{$×úªŽvÂlå•*¶ûÚ9­PÒÀYëõ à b´>‘›áA”Á­w¤A²wZŠíD†¤Òâò¤ˆo4¨UP_ ZvëAe0Oì¾™¥˜wÀz¶añ¢À¼µyýöØ{:¿i›,={Ä,¤‡­f ás«ü¥9x9ÓçgP Á^ž´Çîv«L0»‹Å2–à„÷” òå¡Í;ˆ8¾©”£.ôh2‘̓TÈó©öI ó±Užd(’¼dÌ?UÚ®¿9Þ€8Ðã$ð‰¥Qç‹E#—;Í–_Qãä|äÕ%`Ò W÷îUð¢•Ôã5GFæ%“#è†ë£åƒ~YGÛIó«´T &œÛ˜Üú7¼ušŽ…âârF"’ùNÄ&Eó=šRƒ á¾´N‰D%X`.’s‘àÐjÇœàèÞa ^ ¼%«›cÞŸBhd@êbêaa/ ™R’ð`¢ viìMœÈÚ36‚‰Aí¡h¸b’5ü‘§–’מü÷‘ªYК&J©´dm­¬¨¤(%©ØùôR²9’Ç~?Ûª⥜Ì EIHׂ° P(Vãp…š×ó¾ê¦c³ Ç‚*N{ ãÐ.º¢A1&—ïü3貘À®Úõoiƒ à”Lià”B?ã5«ìráB€¡šwþ´®ó;ؙ{YÝ“s.˜ï­qvßè·”±zëÅV…ª®ÀqžÝŒO{$Ýʃơ݌ҿ’X/Èù>‘?g ýÁ ®C§m°+»Eí]¬Ä¿—}D7ôPä+ì»i^úa¿Âvó°hâ´À<¼÷Üó¶9f0mÝ àd4[©`¿_ö‡b’c—Ñ Ê­›îic ¹«a`&x_!ÿß„é*òÅ&`7-½¶ÆŠÕm±’Ž!¤ÆÑR±¬³FŸ­ÌIé »óÀhÛö½“Ë ÈÒ@îÊšÏ.Ú &àœS¤¸,í2„º8{¹›èÛ Ô~`Ñ׸Ù€ì´æ€È ›½ª#¼Ç@¨aA͸¸iD2b€vÓ‘M0…±Ò­døµ»COŠŽMŽü×¹7¡CÚ¥¡ W;x¦ž»Ó±\t±:¸™Ú":ö¹`.BÊ‹;§õk´P`º@ì*v—\}FÖ#|BWzHŽä…˺Eœ&PËR¬ Çö`F",•,èÍšòv½»æé%`Œ%ÒM|!ð•„wïyè,8Õã¿"JUçàCðSF»É^§öO«/._ãì!ÅÐ9.‚© ±aòø0鞥þüùÑïŽ8féW·Ë±ÊNû—P¥ ¸Û¸¿,¼æ`厓#•rqÀ& ,nZ ¶‡i+zýKB¬q#Ùˆ¢#xô®Àô`c‡5@Âíæx,vöÔ- mتfKèL˜’uçÓMôœ{A›M²ldGc¶á€ =Øyä¨h½æ!@{kÿTØõûj×ç ÏØ*,€{¡Š¸³·!J¡îÑ<à iTâ*Šo‚×JÙs7lv©“\˜õï¿ä.ˆüÆpFã"vWÛ= "½ŠÛ2 0:A¡""8ʼ«B.ÀgÜ?iÏäÂ%š²›YœœÕXó èXÜ”u¥ÐHÝîJ"¶©@³¸29ëg¿-KCø&V&"̯{½[¸¾Õ©³‘„ü#ÊtèC\ÈZà˜Œ@dú³ÿÙ#!mÙìyåÓh­ÿ9{ñzR­QO„gØj0“!¦èØÆG ÒB‹`N±«…Më'^üyElë/à1F¤q76¦@ñ3~ Ÿu7¶ð[Aap¸>ØÊ¯Ù¨º¨ŒX þì'•9:MRÚÏq[1Ã?#ªq·Ïxà˜l¯Ý˜vHœs …Ëk:bÏú CXÂÀH¢G–9}°AÖ±‰%ßð‹8ÞBèç÷ˆ)K6û…PΟÏôŒ]aµðžæ(Ö¶¬S>ç˜CÔE½³Ø]ÜWÚI Ð…Z?Î~yŒ“’‡·ÚYTökÞéCETyŽí†ÀØ—‚9ÄCI©X1ŸƒºàðWpÒ#nõIºÖ·uËØ¾õUK¼¤¤O6¥)áüBˆ°aL«Þ°fžJ¿ôlˆÖGØcÑúø–®¿—üß@»yßL  㬠™èû½&R<”_d¶N!ˆÙÖ¹‘YË׳$p(ãf ¬nã†-ª‡óNKAí¿hGˆ0#¦;ïÒ&ZJ-àb„‘–ñȳy‹ËÐé„ ,f»­z©É‘Í %G„ؼYó‰Lº äõŒß™¹S°à–½c†âïcÔË +¾LÖr»à(R侨}3x à‹´Z„ãŸ,]ÎÙÚ•f«\Ù ûla?ž` ¶°z9Ű­û5«=:?ýª‘zn›—)VA`•¥”jû…¡}JËÆOÎ)+ƒÒ¼Ñjéæ_ñÐ ÞlXySk'7Þ”:ðN`9F®gG쨴Ѳ)ƒçw<ï~°>14~]ýÊÝÚ`#.4*ú ‡¦ˆ…$6bYÉx5çRßð[)7ÆQè&[S‹´|qªcµ Uð%c“aØ ¢´¢K' E$Žç=Q(­€fà¹`;çN>8Ù\°23¡µÁ&Œ0!ìZraQàIç¥ÒŠ« cÆ&Ì;µÑø.ç5!ñ]õŽäpYsÜ"B(U^k»›†Ôm8džó…4"´ e¼!ÂHÆ• ÊÒ½<7¥/Ít>éŽ)Æ™åF'ä_‚~Qa:dâÊ]õENëžv½Aœ e‡–§eáBDmÃxeêÖ\pü„¿*÷#p¬`CŠ8XŠj‹s’#mû@ʶKa¨&üàçš„oªìܶúR'p>šøÅ91…s¶µ'©ìÞ~5Ã"eb—ÃÍCÒ4Á—9Ó|qΜ࿌!L{ˆ“cT_ãän_IQšbcbäùE…Ã'{Éc(§‚FpÁuu4½·+KcÊQ¸ ßÉHMÑås÷ßqÖÁ9¤˜WÞhÌ&>è‚!¡¦èÀ vò´lK—._Ñ$ã-šþØ/}´K£@§è´h† ³K3‹ÕfqTù¹€|mÚßb7™A• G•.v½ë¡E*[p9á„'ÕÆ dK-•½‘À¥ ðbŽÂ¥ÑÚ-x¹Çl+Zï´ùåBÕÇ䨸M¨É3ž%ôXÍqYDXÖózÑ& ÆÙe¯‰¥;oeÞeë.lu\*¥¸ÈG–#•Ø¢j+à/n:†hâe“®¶ñP‰+òö5¹ÏëÕz«VÖºi1¯])ûðà6ÄØDG„i;¹!T6—àìèFoÝTd¹…¨õ@¶{Þw0©ôVäÄ(ÈÕpzJóºpl>IÓ[Q5ú~æP‰²ÇµÛ' QJ‘FFZ‚!%ÇOœõ†{f¦"’¾*\‚öOZ°Ò—DÀ¯0#ßM~[¦#ÖзE`ßo…;þ¥nyh€AÚÒ]sÐYuÄH+@ì.[ý´ÕÞƒ™”÷*Ífÿ QiŠeUG©QÍvÿÄ{‡ù®aàzú¨)(¸ÌÕ|P'Ž)UÍÉï×ÎwEîÊAv¦µþÓñ&8,ò` —¶f§3Z6iH©}“Æ£c¡ïŽ%xp¸xm £—‡·Öm#ˆ˜m*³aƒÛeÝM_ÿ0sÎmùNÎA̧Ý6„ ÑÅtsb]¤€}ºˆ!|ØQ<]\9oÒ@»Wíeñ8ûªÄ¼SÐ!¿FÌ€¹nYhmC‚Y<„P/|rvƒVc7¯Á”{QÉÉRÁ½KÕÝ6P [Ó‹ +FXÄ+ZÑä[ d„+d†Ym âho/’Œ="I€G¤òœžHâ›Â³ÎDðýøì¤7/õ"»¾\]½J4»ºµ¦}§DeýãwWæ°b«¢]9°×2`HõÆ{µu|/°`ï ñúhÆÇ”äñþWP\ð#*4lFio—^*é蘺Û'xó“B“ˆåc^ãP¦Ó/¿¼Ë•p%ÖÈÎTõä@}¤å𠉋^sw¬·mó:8!Æ DÙÿ-?²>TŽUä”óq5Ûú~Þ¸,ïbô¸½Ü§n§§]D.¶aÂÂ! õ–ŠòE½Ã‹9 ó¾KÊɵÈɵ_q˜êu’PñÍŒ7ªœð€ÑÛ°\ œbª,U9*6°K‚}5m†H—B\7w;ìûàzNkßÝp°†~åµ°þI}º©OÝÌ1þ0¿ìzš÷T¸.ëF®eH&q˜bgÛáÓ§ì÷ÓÚ<­§½«ÍÛÚ<¯Í»†36Z¹˜×ÿ:ÅEr£±æ‚#O†“ñÓËfò˸~ý›úô§µÙ<û /àemЉ/kó¦6ïªú@|qˆ®‡‡r6<”«‡˜ð)êîë!çAÕÆBÌ»—Gûª>¾”g4?gÿImÚ†#æÎÿ»o?VÃGÍŸ¯ùxÖ˜›_ ›¯jóϲùx•+¬ÔXôŸ¬¾åúld…¨.D-_ #ŸŽôíSRîáÃÑ.‡{¸•{˜û>Žp3|Mé]Õ‘e=½áZôVt>®íg³Üù xŽtƒäðjÆ6aÁ|>H‡²šž&¯«ð…•ï‚™àrxnÍFÛÔµƒhª‡šbáï†Ü'6,xþ^ ÓËyÊ>ÜÍ„4w¥óÍðÔß<$K¯ÍMh^ i'F¬7fÙ—Ãó¯çn¸vw˜aýÃ>Úc•÷'™[#Š“üè ›VwGv›ÓêÝ‘Zýâ(iµÂÏúaêîúÈx,¿ó“«£/—Ã7få¡o MX^‹v¥cÞZEôFcñ´ã/3p{JŒ„UÚf¬¥tRXÞ¹ÁúÌ9ýy vÏü®UÐôYh“ðkOôeZï°x¤Ö¦¥ÌI]Œ@†õíTŒ¡¦¯€¥ðËEÈ ÎnËÇÉàwãð®i ®Ã æ:”/9æv Ù¾)+Q¡Y 2¾Õ:_6àÒôÙ$˜3eí8î;ýƒ;YÒú-?·k¹¿aŸ Û++Ð9Å@¸ÞœXk…¬ƒÒÍ‹´å2åÇfÂÝÊAîŹfÐ3^Lã§óSž24e(Å4ßþƱ™s½ŽXÞ.~¾ãŸÑÍl¸s•œ+¾’Fqå[%q®Ú³ÄQL¹ý^ºË­ð]i“ð»ñ“{rS·}¹#mB9•`}'žÂ$/ø)qú(ªqøy&\j†Eÿè£ä³ÉºíSÖ”s„ÍAžµmO›†¡€º$¢ì±«=šÕl1šÌÖ%ªÐ, ñriþ)°›“|LÞ]òrXó $›¾*ÙÜ"1 ›cUÿ­3ù! …͵JIŽùg¹3üÀìÇMªtÕ@ÉÜX%—èRãè2-vÇt¢œ“JSñ‹qÍ”ÍzQGÐ6)7|‡† „˜%ûvRœñøJ§n|x*qtȼsâ¡jHØãeäϵ)E{[¤Ô@I“´ÁMöTÒ©éË»SÍÑl‡X£ç%‘âd5ŒÖ6s:-D,˜–\³É**ë¨gJÏ\Uæì3}¯Mƒ+Ó ŽºYŸDŽ6$èdïÖô`ô¢[«6½öbWñ½<µ^ÓáªØ©®ÒqÃs>ÈåL,Û°"É•6h3^é @K®Âĺ.'ÓrÉ ò8¼I®E0ׯÄ%9€€â-9ì-I4œT0Ýh3žñ­-OÆpîÁŸÏ3Qã5×I0Þpfx—°¬"Þ$•þ»3ɸ'¯»BoÌÕ™õ—’^ÒVãªØ;­­#@sLLäk†ðø)=ŒäÖ·l£uÀœà¾Õ¥ñÞÑßHT[Qíß«BjŽºÍ–´æñ¶žp䤡+´á”5ÌXpºBåT)UcŸ x?ù}óumÞÕæ'åÛ*‹'SWntýˆÑ6[6wµyW›/js[›—Ã×Ä`¶6ß׿im¦Úü‹á‘ÉÐ0 Š­‹~¥ÁVgD¥_áûgl>‘ðu²ë“A¦îŽŸR‘ƒÐƒWUt$JÆû¬X Gp è¡·#{ uÍUehÑ㛀W„ÉyѽŠßd.S–nFYý"»MvŠ$Ró¼6o‡¦P'°Î²ÔÊyZÇðå@–}VºQ[•:½ƒ‹6Ê-)Šv/HEüØ1I!Ș‘#ôؾՖ§ÇsSœã‹÷ŒdlŽ#¤DT^p1D÷N鎞ð>Ö0.ˆ`®ÆB–¢âÄÎ*a§`-Øß ¦V•ÎàÐKÕ× 9ôv¸îÁHËCFSíµü CQ87µ)ž =õum¾¨Í{9ˆß6NÑ7µ[¸þ‚-¬3>úÒM~f½lÅ-†ÙðBû&ñ2f\GR0™¾ðÐj¶HDÃ(Xc,†eF3VÎö¨èèøƒØüi’fÉøý•6C‹OAà fR† ±qn¼y_Qlu[7³€jiòDàI‚°Ûò8uþ¥< ï‘]Ðívn;8„¼Â[þ6^oŽr‰‡`W‰?afðÚü î%ÌøpwUˆšà+@àåc5|#—·ìq*¼¸äD­o‰'4°R‹F ÔFψnÐtëÔS¨  v%Ñ8P ·¼;g}^> stream xœÅ[¯]ÇmÇßõ)6ú´Oë³¼æ>´©si §hmAàű$ËŠ%G²ã¤ýò%‡äð¿ÎÙJ,©F^¢¸æÂápÈùí½õÇÓ¾…ÓÎÿÓÿ>zñ`?=}ðÇaJOúŸG/NÿúðÁ‡Ÿ¦J’mì#œ~ù@^ §N­´m¤rzøâÁ9îWÿ@Ê­”ûØúÞé…‡|~þâjßö‘ÆÈáüŠžs¨±Œó³«kzÞ÷2òù1¨<½ ÛNˆç'¬ö½íýüz¾˜÷Î7/XG«¹Ÿ¿™oÖHêÏ¡Ág$®{ÜÃùå¡éß?üøÁÏ>ø/sl4ý×<jvkù[ [-§Ôrßj8åRé¿ñôêÉé7§—d‚§?@õÁ—l»Î-÷­õÒOßÓ›Óÿÿð@¬_r1ž>ýåƒPbÙꩶܶžO/HòVÚ’<'IN[‰§ZRßBš’·\LN$©yKòVÛ7DÍ)m±‰dðß‘ÉÊÖ”ôNF<¼5ÚI§†ºµùVÝëIrÜFŸ’P¶Pè­±óHY3˜tFÙf3•:Ýi$á—YB¯ï‡SËÎ $ƒÜ ‡Sɦ½áDk›fóÔNC‡Ò0ZÁ·Úž·†]µ¶šq€-F^>jŸæ2n)l¥bW–¾^ÊcË&ÞJßr<¨µÙÆ y‹ÔL‹{$Ißi\¨ÒCÜÂÁ :)²_ßÉïë”$òêÃðzÛNöë­oc è¯FƒáõR·qéz-[gaÒ7€- :=mý0Þ§}0cl`P0¨_að>AØ7Ú°N#µéêðV®[>XbšLÆõì/—n´´¥tx«Ç-^a®ÂNÜù‰‚Û^#77%c vE“>—a¹hÜc›®¾ ÷T·=B_qÏy4ÀNû¶Š¤¤m䃄zå…XS{ [§fÚYÆÓ÷ ¼þ<8­ûè¼µÝ1ìMÖÁ,M¦&ð¶(BN „pb  ”š"pʰz1pB‹ŽA4ƒÄã."q–µÇ vh†c†ŠHÆ™'•ÌCg Ç tÐátX‡ÈA÷8©„¹>­ÈAˆ·L¬¼‘§„‚Ø8r*8ñÈ!(¢Ä1#*HœÚq!GŒât^ÅiöµÑhÀq#Nqf€Y½'9½+q̰Sm3ЃJ«[ ‡Î9,ÕÃ9,aô™ÂRÀ]Mö£¸ÑS2™r?øEæ¸”Ž’>#½O4s`ÂHéøœîŽL‡Í—92Ìœ)2µrh™CÓa„…BSm¸è…cSÆv ŦraáØt°aáØ„þU84V¢Phâ@äfž]Ì\84FC‘é¸ ‡¦ˆ]UZ^ o¦rhÂ+…&^‰!6a ‡¦¾\Ó!TK4ÇAn§­rX ¸ •ÃRÅIVKèôÈ Sª—"vLq©ìÛ8.ePi´Ìå°c‡¥‚n–°£ÆQé0ºÆQé0ÎÓÒÁ‡¥x” Yƒe߯a騅¥‘á³|êP0ûž²:Îä8®R?‚ 9Á‹±sØJK¯Ü×r ˆi›Ï<¡r­%-KP\kI@˲×ZвsÖµ–ĵֱås\ÐÒsÀ•L:V]iI@Ëâ–k- hYp­%-ÛU®µ$ ežêZKZwV×ÚµþZi•éX$¯î•ÞÚ*dNhzt|Pœ¥úêó3‡åêš5vqþSŸ"wˆô§æŸø\ã?åÃß5/vÏÆdWO¼À*i|üç(npA‹Ü€G¤’ƒV¦S¸ ÔRÉA«Ò–LµTrÐê´ázG-• –ÕµpôoklŠ&³aó>¤š½Î\Íî§H‡5Es®^Ïבe\P|8üÍÊ>X￟¥@æQ®ýæ èˆÎr™ë8ºÅ©ùÛ'7¯\™*è¼ÏjšG{ÍÃóTbg䆿ˆþçG_ݼ|úäôéÍ·ONÍç×Ð#¹x¦¸Šó¦#r§r½QσÊnåן~vûü¹t?f•®wKÖD…4gH÷+/>å(R¥µ=ÎȘr ‰ Îù)Kâ µ•R8~‰%ô$>4«!–dÉ™h¸[‚ÂV¤¨LíÎs0eÚ…XÚ¹s—¥Ü$e G%ºê’2Θ)Óp¡Ó(5Ôà¨ÌgÄ êq–«•+m–$M˜è|’p¥úABž=UÉ—\ФŒóI®f½ß®©M+J¿CЏN;r޵îåhŠK3Qjth”9ŽJÙúZ4–¤¨»³sÿ,ɳ†s»q…^qð\ ³ù},\ Ë]ùÄgI›i4ÛåéÔnêS2æ–­Ücž­‰ëó„3àúœ ¸^šÎ€ëóØqN|Øqøös}>óÁ9ÀŒi~ö qD.ÐÃÁ4­J–£i‡ÛzžU4(Œ$+°F×ià½ã*vÚy=¡ezÔ)£W_™#SÆñä0 8·NæÀTp8dŒ†Ö†Í\Ã×zÐáÀ|ïe.ágí/q\JèÿœÇÂPæT=cüàDc.Ä ^™KøYºZW\Á'\<.à9 qës–\ÀóéàïpXªØ5ðóNuuÍüÞÑèe&ÓI‹óÉM\8.e (\çÃPáÀT`8•ã¾S9,µƒ„ÃRÀž¸bŸ‡KJï_F犽+öywg’;¥+etû ¬«œÉ<ˆ|,]ïk¹Ä‹K­\É c ‹+- hYàZKZvªºÖ’€–R®µ$®µ¢¾ÛaI@˨k- hY r­%-Û÷®µ$ eûȵ–´Ì1]kI@ëÎÊâZ»Ö[VR)ñ…ÊQ¶&•|‰» R“`áwI+jmïeëÒZeëÒ‚²ui­²uiAÙº´VÙº´ l½;V×z²•OœÄ'ýß­l¥àíÊÖDCí=ËVªXH–eëG7/o?»yùƒ‹Wå­e§‰Œ¼µ„4‹ç­$)BŒ·–‚wDÞZv^l‘o̓ïç‘·Rü›ÌÃy+^C®h·R_I{WÞZB.|š:o- žËlG/©Feé¼µìc~Î[©ô5Ø«¼5w¹õuÞZvêjGÞZv:+wé\x+uÞ ö o¥©g9j·ÒÔ;›iñÖëZKÂ5ýÏ‚’I@IÓP2 (i‚J&%=qAÉ$®dLÏ$ $Gè¨T4À‚ŽI@Éâ•+™”t÷ƒ’I@Iw(™”ÔAAÉ$ tg5a}]éql.|—Ÿ~ Katž¢ÎcK¥„¢ˆ_Òîi’ƒ'ôw ¥Ô¢ð1+×2ÉA+Uìnþñð÷:JPq¿#‰e¼ÇŸ~›’6Ü+iS¸_Ò†LbÃÛ‘X¾ª¦ÃçkÚ™JqZ\g~ÂüöÉËÌ` ç—rû  vµQ§@ØÂÙoÀ*6÷¥b1›©ž–3Æ ìL§«¼%¶ðfÒ²$Åè³›Famð3¿ˆa}Nvý^hK®mÖ½Q1,U£]nëŒÃRÖf¡d¶DÚ®òŠPØÌ•ÌòŽPXZƒdà ëÓ4 ›;åzU`©PXwG£°óºd6,–ªû.µŸ±°aÝk Âú~7K‰~—úÆ ì¼(òÇ'¾bÉEͧXL¬XvÖIU@¨`Y÷tò0sÁ² »vÆe)ÈI¶ näA&‘I(—õ°l\vÞf‘—-”^èâ)—õ c\L¨\¨\¶ðЇ@Wá²J”ËÎËÎ\œT¹¬G$£1ó `v+\Öw¢qYð@å²”ŒËú¹`\Ì#\:W.ë›Ó¸,,ŸrY:åç ì\ÖŒÙy‹REG𬨂YØ{ faÇ*˜-|Ÿ„| ˜…i ™%_Þ¥þ42 Vɬ†fa±Íúékh¦¥hvÞÊW‘ï'T4K#/›¨™Å®„Ì Hú‘ A³ ¢hvŸ¢YˆŒ•¹LœæÍ®ÖÂUX›¥}YÞX fWXënðXëuŽ<¬cïk-‰WCš€Ž @EÐ1 (iŠJ&%=vAÉ$ ¤‡(™Ä•ìT ˜”4΂’I@É¢–+™”4€’I@Év”+™”Ì?]É$ tg5a}ß¹Ž5>û#Ô±†8½B5 Öƒ—´¢þ^Ç.­UÇ.-¨cWû«Ž5-¬c—–Ô±KÅêØ»£•w¯c ÍþýêXG³?°Ž54û~u,å°¦ Ö±¿xuóòѲT&…-¥Úªè7P•Ç&N†H„Ǧõ¹"ã±T£¸Âci«ŒS›øJw ¥¾úñû¯³`”ï› ŽM¬„£ ŽM¼uâêåÕN]ªKã±têïJÖ”ÇRíÔ7Á¨‚c¥Øª+86q ÈVp,ÜM„áØÄ¡@ÀšâX’$ûª­àXª“¾%86qfµ Ž¥Ú³J*k86ñÅÚ.¸Un+}ÄBc)þ 3KMd) ŒÆ’BRhª4Ʀ4VWi,ê…Á UqK¶«RÆŒ¥áG¹Û7Kû½éÚêÍ*¥kC.Ü Æúj+ŒMeï’qŒMÙÁXp,±0…±³J¯òmÓ caÀ cÁXJc;Šb©¦öUK Iºí8ñÇÁªàZA±(+·"›*[¾›8ï)"K*q`*$6ñ·³’ØT8Ë‘o£ ‰M™ÒU!.JbɾC‰¢Xß<†bgBQÚ‘{k¹œ,4Öç`4–¶\Q`&4_›øÕ/ï M•œ%!%#NVK3oÊg…ƺgµÛ §±(ë»[oÚ©2 ¾”ƦÆ÷sÒ·ÐX:™ª¤¸FcašJc}ŸŽMœ¯ãwci»Û÷˜•ÆÎ+.yG`lšU’¼$0¦©061|8&0ÖBÁLRYlâOJéè„Åú†7ëžo,vmCC±‰ÙÐÅÒÒ •jG÷ŠAXa}÷+„%¹a&…°‰N=ýp2Œ”(›”Ñ+…Mó³²'‡°‰:áNJaö^—RXØ+Ja'ròO¥°~ò…¥Ì¹è(…õkvÞŠ‘…õ5Q L¡‹™N ,,ˆØÄm%$°tâ F`ÉfEª^C°~*+‚%[Eõ^E°°Š`aJŠ`=â*‚¥ ,,v'¿ K'e•šÒ,ŒO,­K0|*VJ,¾•æ‘‘eï+‚MŒåõ˯‚`)ÏкÔ¬G\E°ó&]œW,9aPE°¾g•g‘_7õE°”§EÈŠ`=1 ž&V_,JÁ&&ÑA$‚`ßÉÁÒªTÅÈŠ`ikýL…"XZË¡ûG,ͳIrò›vò½šÑ™¬k¹¤*rw ZKZ–ĸ֒€–e®µ$ e§­k-‰k­ÓËç¸$ ¥§+™t,¼ºÒ’€–-×Zв àZKZ¶¯\kI@Ë|Õµ–´î¬,®µk½#ƒãRý1xlâObæ<6Ïk³ã÷PQKè§IZ‰ïñ›¯&9hq‰¬UÎwø}\“ø¯Žø/Œý™lâ 3†¡–ýѾ›v¾â­ïÁde™zŽRòìÕͦ²‰¯ k*K'Jç0*‹¡²¤;ŒÁ •¥¯è÷iÊRr¶:(‹²išÒŒ@ÙÄ¥}²6@‡²œÊW€ó–/ ö(›8P¼*P–œ9I.kP6EþÔ |‰5i¢dÈ2(K%I6* “P*‹} •M©¯ñpµËŸa-‚v…ÊÎêKp”RYhV¯,};~C¬¥T,¡`Z0‹³ø’€Ùy² 6V0‹O0;‹Ž(_ˆíZÇ-£+˜%Õ.wfÁ|zÇJá^?vk`vÖdCÌ&ŽE¿Ë5À\Ue·fÁ\ faVZØÐ læ fa¼ fÁ³Ì’{GãœfaN f¡#½†–•ÍÂJ)›™rÂïÈ&þM’!í Á–…ÍÂ4•Íâ[Âf±wa³`?e³¾9Í‚§ š…-®wØàŠfi}ô“‘†fi Í‚‚fÁæŠfÁÈJgašJgÁ\Jg±s¡³Þ²ÑÙÄß„ ø%Y7ŽÑYŸ–ݺ“Ùô3Fg}ZJgS²O÷õžõ™Ÿu'5>»¬nxÖ—Êðlн)†S<ëÐð¬ÛBù,˜B)LSù¬û­ñYßgÆgÝ ŒÏ¢Dø,ÌSù¬Gã³¾ ÆgÁ^ÊgQgòY9Æg©¾Ï‚¡kÐÑ’•Ë)ž×X¿6KçÆ’ž¥×”`)žåí¿á·f}3…á)#+uOV: +®t:ëá×8 ØOé,¬ŒÒY÷…³à9 ga| gÿ¦£xŽÀY°ÂYð…³0…³0…³0…³0G>be³Ø•°YØgÊfWeJb…ÍzÀS6 ~¬lšQ6 [FÙ,,§²YŸ¢Y˜”¢YXN]à€ŠfÁݔ͂)”Í–6 ë l^R6 ÛAÙ¬§XÆfae”ÍÂÌ•ÍÂz*›õ¾ÞÀf½è1v‡î}-—xid‰˜+™t,±q¥%-K\kI@ËŽ^×Zв£Ìµ–ĵÖÉàvXвPëZKZº\kI@ËBk- hÙÖr­%-óU×Zк³²¸Öï\à¨ý \ž^º.Ü Eâ%-Á¢Xà.­Uà.-(p—–¸KÉ Ü¥³ Ü¥îÝ‘~÷×`í߯À}çïѾ_›øg;ø{jPàþêæÕ׫À•ŸFNúÓÈo÷ÓÐü1ŸZô#¿¸¢ZcßãhóטÀìýüô;þ•æJ9ç_ƒN;%Þë™W•²«sùÉÕ5žœú#Òè{©5¿âéLh-žoøW¹ØÇùéü™hþçVί­é3ìT^_аÐHô§£9ÄùöåUdDÙÎß^­ß™þÊ zþžt}”ó_¸I<¶Ë?bÂt4Ò_ 1ÏŸ¡ÖvoX{ï-Js«“Û©C%×óÍssÜâš÷Ÿ§!ùP:?âÎË(‡!“]®í‡¯ŸªIÓÐqÔzìGúÚtÛùËiÚHýö•ˆ©D=su¹¬êñ|û÷" ë8?†õYËPæw—^©ˆšV"/Èí‚‘(yã_ðæˆÅ±{PÕŸŸê{½koƒJóSYò‘/¡cnŒ²RZÿÛ2Zìóǫ㛹fÔó8f{5'DæÈkmýñh®m8×ü EÆ$Q™YÏl^´ã|ËRþýò~þÙ”î•ÎÛ3ºè£¹œT"´ƒø¬öVÏ_¨¥ï¼÷Jš®£rp¯ÖÑ8ÿîÌZƒÜ¯Õñõzêôêmá¿‚F«|š_‡Þu/ÿæj¦S´œwœfýàú·<jTÐ ‹˜¢ïùßÄÊmßs—E%ê54N»AæK¯ZÜ+˜ÚÛΉý P%˜ÓedOÄ?(O59Ûvu]îå\Cœ£9ÿ¯­z$YùÝ•ÿúòIýpºxš¿Å¢þ¥gÚ0°Û¹>’­¿ªÉ\eOü›Ä}ËE/<>¹µJ#µ{% û×X'д1¬ŸÆÑûïÁΞ™2¿é=ÒIªtß#ïM†ŒYÃû[…?u–BÅ.ΔüäU¡¿ý€™ŽìåΠ¯|o“Ÿvþˆë^îUíè§àq•iSrú@¡$Ón)en—óÍ3L}ã|áY¤aÞÔ·—¬I–ä¹ük†´_¬g¸¬Ýëqò|&óÔ»œÔ÷¿ñÇ×þøüðâ#´ðÌ_úã_üñ;|åÏýqóÇGþxë/.ŽºøââÈÿ­GháOïUvõʱíhz(»¹“•]ÇTæ:ó߈‡¢ê#ñ•Ð5ø+VO÷^É\__Vùð¸ÜêF§Ì%£j¦éRÜ}üÆ_ûãOüñC|”`”ÙÞLˆ§ÔœÍ«æã¼™mßÍ'æã3ü“?>ñÇGþxë/.>‚ÂK|íÛEÝWþøÔ?ôÇçwÇ{wo<¹¸ç^_T)lØ1¹¨/îÏußcÇÌLSÝÂß8ME]g[±“[f·Ëøî5cc~é:ó÷qå.úóó?]]fVoˆ¯Þ`”ëÓ¼¾ú|»ÖãÞÂå%€ÇÇ;®@ÇÏ~vŸ> stream xœ]’AnÂ0D÷9En@ìo7tâUÕöÁqª,H¢½}g袋±ôp<Füêxz9ÃZVïË”>óZöÃØ-ù:Ý–”ËsþÆb³-»!­Ò™.í\TÇ×vþú™s‰rç·ö’«ký´¹?JS—¯s›òÒŽß¹8Ôu<ô},òØý»jüýŹ|ºÅ§T]ãvQvÀ7nÞ6›(7Äm”€[¢‹Ð}”€ž¢ Ä]”€;â>JÀ=Ð5Qªkœ@¸:9;:;¸:9;:;‹Ј)JÀDD§FŽ<òzeöÌì1Äkç W/gOgD^©> stream xœ½[y|TÕ½ÿsï{gÍìûšÉ,Y' d ÙXeQH`„U¢P°QY#RYE‘! )–Rh´Zw¡¢]¬`Ñ×hÛT…™y¿{'`èóùü£ŸÞ›³Ÿ9÷œïo¿3jhFÝ86RÒUp³qSæLž—jç ä¯SÚxü|ÐØñ1sÛ´yÓçœg7½ÀÖ(\Óo[4-5_ßàbg´Nžºá‹m+ q>”ÌÀE:_ ™íŒsÜš_8³‡n›;erªù9fCçL¾{ž°V™‹ó×`Û{ûä9­©qÍó˜9æÍ½sAoûUq|ÞüÖy?¿ÿölŸÇý½Å-wÂ\;ØÙx’b:#–‰›“ŸqÝ MÌIþ)ÇOMTVÀ1x¶Â>ÁN¬‡al†×È,8L&ÂA8E܇x±ÐÃá ’L¾Óàœ¿ŽÃØ*üÌ0áèZH.Ævë-°,ù4d@)¬€£P†«®…žä®ä7Ãn؃Ÿøé~Ö|!yk.Ñw’Óû@9P£°w¼BÌ™ä °B9îî1xž‚_Â_É}ä`rF²-ùvò 8ꄱx/%É'Ì>vEò±äÉ"†,|j3¬‡í¸þ>¼ 5d6Y@Ö“ 4Jï£Ùåœ%G2¡ïz˜ «Ãpþ߯¨•Ñ2 ˜“Éâ䃆á)Å“´BÞ+ñ^‹g:Bd$Ÿ &£ÈRòÙ@Þ£YôfÚ@ï¢wÓϘ‘ÌDfó{'ÛÉ­á6Ë”‰‹É#Éîä`Üóá<Ýqx.À·„Áµœ$@ÊI™„w;ÙJ“§Èa:Š#oÓÝääSò¹L9ª¢&šMÐõt=Nßdf2˜G™?2ÙAåžâÎÉüG‰–ÄêÄ›Éòä'ɯQð!eª`$Ü “ñ´ó üO±ï}Hµp^“îO‰zàkDˆžØI!÷Hr#™Ff’'ÈËx¿"íåEBP9ÕQ uÒ±´…ΡíôÚÎ8˜,f(3Ù‡÷«Ì)æ2s™åXkbëØ!°†ÃnÁ{»“ídßâʸAÜHn×έæÖ0S¸w¸S²{dke²¯dãÃüp~.¿©óòì/¡ïÅ’ Ü}!ÜSH5iH§Èdè@îšJVáçA8ÙÄÜÃÔÑ|ä†Wà'È­[`)¬f&ÂSÉß1»á4rÊm¸V;<ÇV‹Û„Ô¹ò‘‹zïhfVf8 døÓ}^ÛåtØmV‹Ùd4èuZµJ© ¼ŒcJ §Æ_Ûì›clÐ__Ÿ+¶ý“±crŸŽæ˜»j¯Ÿó6KÓ¼×ÏŒâÌiÿ23šš½6“h½P‘›ã­ñ{c¿­ö{»È„Ñ X°ÚßèõHõRý!©®ÆºÏ‡ðÖXgT{c¤Ù[«m›ÑQÓ\ËŽ"ŠÜQqDA).ƒÁ“—ΰb!Ψ‰ÙýÕ51›¿Zc5“§ÆFn¨©vø|؇]cð¹93Å}ª©þ©tE¡¥Y¬MžØc&7Æh³¸–.;fñWÇ,‹ÏY¿k^­Õ¬é3£ÚÉ­µÁõ©f³Øš¼[ÃÆzqYº¼±!F–÷nBÜã¬êÔv[ý5bWó,oLî¯òÏè˜ÕŒà˜†N{Ô^ãŸ\݃Q ¶¨Mjäæ¶ÞSîÃÓν!÷±,÷YïI•¹?Õÿî1¥4ïÄŸ°6æD|’î3æ"=Ä›-³ÖRè˜RŠÓðj$xÌ™¸ŸÁ1Š<Ãb\`ÈäXûثۘQÚ\ó¬êN¹Í.ž¡¹ªç7whàcp¾Öïí¸HBÏ_¯ï™ÜÛ# h/‚X }Wpüj½MF|œÕ?C¤o[MoÛo­éÓmqÏ1c¬pب_ÌÛˆ]3¬ ä£ö²¶±‹$—wAµë0ȹu爬6³ŸÜìÈòa-/Ç[‹ ׊¼âíðv ™Úá­õÎ@fbR‰­Dplâ7ᣎkÕÖÆÆ¸ND\‡•ÖéhÄfõ®0KZˆã¤üœaxÌà¨†Ñ ±öjG,Z݈T@ö=6ª!v רˆ³ ®íË¥3­½{.Ä=da¥(µÊX\—hìèHµü¾Ø±ŽG‡(c©víˆövt´"ÚEÚGICí~ŸCÂÜç÷á¶ELû!K_å¨.(þa„Kú"Üw["!\úoB¸ìÇ <àG!\þýWàžËE„þçt•?Œp´/Â7àn£ÂUÿ&„ÿ„«Â5ßp-î¹FD¸î?‡pýuùa„‡öExîv¨„ððÂ#~ Â#Â7~?£pÏ7ŠþÏ!<æ:„Çþ0Â7õEøfÜíMÂãþMÿ17ü(„¿á ¸çFá[®!uÄ /Âíÿ(üÛ!ŸØrÑ Å8S–™ÈP‘¯[¯ô({®»2¤ž X‡”˜ <ºÍZ¼›øó Æ[DZE/ºÓX“á,¨o½­­uÁL1ldà/¤z6ʦJLŘ²³o°B;ÙaÚ†‰™äX„i5¦G1±×j»0&t²Bôe²ìdhTÉzn2Ú\è"‹£%õá™õ¡@æpO ³6Âú¸Wùeü-ü |!ŸAL÷ñÞ(è­ T‚B¾‹<ßYé‘!{ aÙs@ \y;Ù#d¯Ô¹÷À TÁØ•üÓA‘OŒ]dÏA­XÃÊK2©&ë"{¤ºöF=¬Xc¥-sšbSJ CÑ7|°KËÍm•ÖJý ]Ymõÿ•5_—gÿß—•¸bQ,b»]èb%éj¼6øL] bÖZ•=lÌ¢mófM“\]M+¦æØmz´·x½ûgÍëõãƒÍ-SfˆåäÖØ<kul–¿Ú»¿mÚ÷ O‡ÛüÕûaZÍM û§E[«;Û¢m’— ¥j~ÓuÏZ}íYó«¾g±*q±ùâ³Zš¾g¸InŸÕ$>«I|VK´Ez–xΚ™c«î\€Ü‰Ê XxllÈè õ5Vw‘¢Æ[(ê’ênFíþýé"EQËò*–ßÈ¢N®m;a=ñA¼ *+/ü¶ ßP<ˆô/Òùu'~µ%¸ös©ÃиãÛÛ™KHt C’¿cuÜp@öDól\66×˸ÜjÛ*ûf»¼Và}¡P±Baõk9¶ØÑmUó´‚w §ÝUª!ÓqoF©:³.,>ùýž =Ú‹ñ²¥ÃÆÜ½8b…ÊžžÊ}Y¤G§/+ȼ(ÚÏ´Ù•Âè4˜ž–¯Î&Œ ÂTbÓ¯ñ…‰Ç€±³a¨BaÑ!)f¸/ÒDÌsQa‰ACüé´¸Ÿ¾Èk0›´<õ¥‹¡¤¸_П.3ÍED+Ìî_sïKÁŠýÓÞúû—çIÙ]U7ÞŸè~÷ -ÜÿäO–m]µLØPæ>M†Ü:‚Ð×E‰϶~žøæõÄ ï ÁcOlÝÿÈšgE܇°®Ò`l´„SÚh©r€ªL=T}3ǶÐC¼b‰ú ú¤š¡r¢Ö €4V®¢j`®F(•?¯ÑÕi%„ sˆ†H ŠxE™¾Œ4ä7“Œò2¼ýzCI_1©9×0>ו×]}~õ¦+ç¹öÇ';²eÊÇd ÙøåÞÅ=U%?f¸'/‰f×ëWyh™ªÖ0Þ0ÝÀTjTŠ4f¡Þ`ÐkÒ¼z‹ÂR¬è"éQ»ú§K? e‹½Ý.µŽ/µÏ…Roz/EÉ‹='$úÅ‘~g/ˆ$â¾ñoe^öRíIèí(È·"aÃV‘Ó ãFB¢÷rN>LäV̈é(s`&Øa)bj+´"9¡©É¢fŠl|Èà3ù˜’þ%E…¬Éˆ$ÍÅõK£7mÛr¨½iyä±9ô|üÉ…¹£fž$úˉž}‰ÿÖ’9[ÊÝo,ÙøL}TÎ0/$æ ¾Ä¯^Oüæä ÚȪäiÖÎ=J°@!¼­GÆË'¤5¦’Vùì´™†»ò!ÚŸØÚüów†–,)\e[é]Z•·ª`³M]'  *‹uº®ØÍYŠsÔ´}€‡4¥™s#B©ë/K#ýꊾÌ””IhõŠAqVžÓ«73js®1 ªlM˜(ôÂäÂŒõÐ01åY ÎÂŒwr( ^.]¯ ¤äÝ„>Ü®ïS‡P°¸Bh6‘©Ìâ+)êOÏÀ¾þô™í÷ß·`ã´UÏî^~ïö %^̺ñüo~QÕXtkâü;‰?.YÌD—OµbÅ„Öùñò•+xhý}ó¶ÓmÙ£Ú·}öáÃ+ÆFr3‹§n;šøæÓßýôp¨KúIòñÖÔ01š.§ AM(}E/“ñTF8^`ˆŒWÐ…Jî+FųL±¼H6ª…ç‘piu ¸‹*âgEí…Ò¡K¦Kñ‹L—VOtr¢ó“"]‘ɯ£Ï&ŠÉ›ñ5ô¡Íï½G.ÓÕñ»™cÖ^¹õñÄÓ)ìfò:ŒnBNðFaˆ‹Ö´ê€ïåz4A#Ïj?ƒÈˆT˜È}7“K ÝtXúlÏ忇tØYÂÖ²ã¹Ù®ÛÝ‹ÝËÈJ*d l³mKlKœ/Ú8H'i¬ScóñNú2œ'--Ý (6p^ÏB_ºÊ÷S¾Ô<7]J»×SšžQçïÃ(xb·?ñFâã_$¾üÓR~a©ýöÜ×dÌRžø ñû–¿ÒÙ²¸:î(ÚX9ü,šµŠ%Æ0Ð3”€žÊ¡Óņe€ò‚œ‘ËYPZ,v†Å"*—QÊÉDtáàE°)ÖN²fÛFj/Œ¸PQfE•?0¢µ](YÓZý’ÙAf¯´T ¹ó*¸•#ò²WæYE_çÇRFBÙ•Kµ'¤ ™¿ÉP$'E-º!ë<ÙAv|ÿ {w4>ˆ¿²>££˜9’ΫOžaíì¤Nº¥ªè¢M£öç< §¡iœÑ¤Ñ§™ŒQUÔ(dÚÉ0åKL7ù5Óíøð¡ü”çwþó–ó~e·®[O' œ/#m‹Ù•Q&ãy³Ïåä.³2Àor>ç<ä<ídæ´€“³)T¼yÛâ졌<>d³Cïûv4‰âuaDüìHí¥=ïÇ%¾–ìH¤ OžÒŽÈûÚk>B-øYŽá(G8Væ ê´z­AkÔ²2U Ý‘Dkç ·Knრ4i‚hnývvq˜ VEP2‚bÑʈ);+;ë^rGÜÑÔ¨Q#úܤ¨°Iÿ" M¯?tZ("Ád‡=xª´D¯½ò÷ЦoÊ7îço,³è†1¯&¾ Ö?2 á6BŠ ¨lD2œŸ@ÐS裉5¬¥¬ ñÏëÉë‘4®%EŠpIS:[€”¤ùÀêvøÀì5úˆ/úSØ]1ù0ƒ«XK¦ šHS†Yw ÑI혮ÓIƒy¤€Î(þþ&Ñ Cb!š­þ¢™?òÖÆ¾…sZ Æ’ƒƒLªû?XîSìäþ¹ýhÛBK@åÖe囲Ìòþo.ÙpôåMoMȲãa“S¦Q;#ÓÉmBŽ5wâØáYc½µ¾~s|“3a–«dUþhý¬WmxÆ@Ίú}5 ü:¶tpc4b‚êþLËj-ÕÈurUHàxé‚Ý@ò´™:°é ]¤æ€¯å Ò ‰³?C,GTžˆŸ9›HŒ (©&ñœf‹)ˆfYç_½ÇôÌlÎêÒ:´«Öd#‡K¶Ræ†î›ß,ê}hkzPï(A#£¼›e•ŒC4¹àV(U©(ÈfÒr¹]ð©5]DyÀ·au¯UˆÔ½pV—¢®hQ*DñŠ§ìš®7‘}läÊz&ûÊÌ’ËÇ©‡;z0Qµ;¡Ù‡–lž™õ6‚¥ö+„ʘ¬h?È*cL‰©"1õ)Ø ~?ÊÊò Eb‘?þ÷ç—¾ù(±‰,ú,q)‘8K±‘ÄJ²ˆ‹_ŽDÖ%n§ñœåÉO˜·Ù‘`ÇÈã¹hä9ÙlÝ)ì¶2CÝV#Ãe.;¯v•Þá°hCz„¨ÎîR„,6'†ìüßü¥½'®ÞUÏ5ŽÆŠöª­± • •Æ  ½.MËÛ°ÅãC5Î2J³:izÌäVY°Dæ#½j#¥8$––ø•†_¤#/ùW…’Ú£T<=õ©eŸvþ=ÏÍ_µnÞý¶}î¿y÷[¢ßÉŽŒžrÿÎ9Ûžúxõ]œ$EŸ;À!ÆËãî8˜1žÈAÍ*Xx‹bC†…üBA0¨©Á sÉx“J¡ÎTØ­Ä” f›ÅÚEdÈ}UW¹O"9ÚWt*Eé*ïé$Z2¿®Ÿ¤Ò°¶ì`´hü}ŸÍ=ì.X9弄ÜñøÇ£}eÛŸˆ¦ÛÛú7l95e¥ý¡®²!•&E ɺe”•e!c›lÏUÔhÕºDá°*vÞnU¦Üî$yÖLØÎÙfJý÷ò%’é»­’«‚Òg¯¨#4[dÙžá»gœ•sÈ•O4shi®ã yŽlž4æÉñO‹{n©˜ª6Wß13þnuìÀD9s«È…<8Qb" ‘7òUª]Ž®]¡Ù‡ʨÀ˜Ó35'é¨FYY¦Ë¦Ð»iy|^çdòÌy¹™œ=_¥ ©CN[$¥o~Õ5-Z&'~ö¢î;=ZÙ#™°”âÌñ‡ín¥.#  úÝÁ „í˜é”¤iTê€+=HBŽLä=•ÞðÇ]ÕŸèßXŠ‹tè´aL*’"¤þ%’†Ì­¯q"ªUB—L**ÞQ1/ñÚÞ¿j©Cï+dJ6/}!q™ð/“êg~úJm`ý’ã7æ$Þa«ù¯¼RøFÛ™­ÏÖ‡*Öûý˜Qÿ$.¢&y‰§ŽuÞºåÅ£û¦,£¹D_ènT rÁ#Q=¯Bê¹FÒÀÍä¦ïæó’Olà Îh•ßç 6ëïÐ/42z·Çè41>·ÙÈõ7ÈåÞ­¤A§CðLž€™)H›é°g Á@Ha gžòm˜vS_èyoäì )£eåZ*š«lÑ!"bèˆLãÓ1>‘‡Œ2ÞM<â+‹ %6"tŸÎÏÔ­Ù>à´„½›îÜ9ç­9-ãÆs<£Ôç]P¨X?µlq¢¼›qÎ[÷x™Ýÿ§ &Å—í,òÏo?ySf­Ñg¨wñ¡G¼e×’üŠÊ¹ `…1/ªóÇ4¤‹TF¬¹ÌÂÈ4 ]t‰,LSãA¿ñŠÙf³_ñMïÕZñ¦²’Ó#yA™ÀC÷hãgQS§£å;Û,Öù‹‹v¾´gOÐT v=ƒC÷LxøanBâƒõñšRƒ’еráÞéôäz‰f’g¸;¸sà7ì–;¸Md#Çx0¿¬äV¸±³Â¥Ó™d\Œj€Iî¦n·) åÚÝ+/°Ù<Þ§|³¦}§cE¦ÿ ;œ–€!¨ 8‚J³¼ÔFmaJÏ:±…z¶PÒ³ «ªõ,f‚]V(êÙÂïѳ"ó£:HJÓ¢;¦O9hè?Hž¾C?ë&ýtÇ}';?L\üûWß9Ð}ܾn_ât^8÷üˤ.ÌKœ9²vGâ­ÄÉD"ñ‹]ŸüèÖß’çIÍÛ–ð©Jžf^b‡¡~ˆ¼èÏJ囹úG›M›³dáŒ@¨ÄWë«Ë¨ Ëš–1=¸HµH½HÓæ_± ° ¸Ã½3ÇÀ ëÉå²y°›§Õ”kÌ §)g"7—h ]­`³ Ö_;]žuåmÉVFx¹FKyˆø"vÕl Y…ƒ|(l/ÐxBÚAʳåt^ó—{.ÄS:¦L‹5‘çË"¢c&½8ߪõˆ>Û†“\4aHåÓx| ò>Âä ßÇeaÍ¥Ç>‡Ñê#Þ´tøÒ5j!¤ð‘`@® ¹¬d™˜¹uN±™)O.E)».êuõÕ—5¡ $YÒ[‹™÷§Üf²­${(†È·!ò•¨Þ9uóÀÐ?[}Âÿcö`º› ztÚÌšðÈ»ŽWÍüð_uóä5!üø[j20ÒHÏrïæŸ¯0c`aÝÈhm–ÍàŠäÔ<ò³·?ÜF¿AúíN~ÈEP'™ÐzV #Ì…¸R-£Ê ÐÊÍŒÙl”Th1F´—Û|æõåã«\\Ñ$¾K0¦4k±®(O2Añ‘ïÅo)øÍ‰5‰5ˇÐÁÜÑ+ ¶ÍÚ¶wÒ“Ìš+݉¿¯K\"Šu$)Ãý4'?`/¡¼E ÑI™i!0X¢)öÕ[‚‹5weÈg V%@534»Ó…f@zFº‚aÖÆH$Û9ÀȰ²åùT¡téžp~¾Î° a{¡' ˆ­ p›oÖêëù”Pê‘+ô½œÑ+œ"säÅ‹šR 2"œ§ó€@ƒ4˜!£ {dCnžTpYB6q<Ùà0Y³‰ÍŠ\‘ ò2›”$ë|&fn½3[äì^Ñ^sø¯É®äø÷šª> ’!¾ÉûßüÁúQ¤ûâæûMùvÞÄÎaßîþÕè5Dù/dð‘´‚[ÎĶL(ûÍ £×$ÿ¯Ä—[·2t9³tä:ï mwrsŠ'úuâÛ*ï|¤å¶Bo~$½|ú‰ ï®yàKV)Êù³h»¦ Ÿ¨QSOzVê6êi¡ t§Qp[¡À`·«Ô̧|mW]è^w*^—  ³.` ÊxŽgy†§<'ShÔjfÌäze!áPÒë‰,QD%Æ:Z*™$¯ÅŒfœfúvë †–ÛÓ>ü{âÉWéXynCÃÖÄŠø¾Ý¦ÐÜÆÆÖÉ»¼™3œ>žxç‹£‰N)f,O~ÈúÐWVálðP´h³°Qû¨ùYv§°C»ËÜ%¼*œfÏi>7ª2—•W¹ôJo³™h(Íî‡L6»£‹ÈÑcnú>)H©ñ°°A¥AŽQ³Ž oÁ§ÆšÂ¨ Ñb&˜ÑAf4˜õy Múâ^ïR|‰*›bl˜rŠÿ´<øËÏnܸýq_Iüó÷‰+DÿÙ’¶cã¤G®tî9ËœIü5q!O¼@²¯` åRñˆ4c 3Š0£àИš Œåv_çøJ¶³²R2™þÕrG¿,é÷ÒäÉ·V¢¼+ZØ_S§¯yŽÝåà‚‘¦¹´ ¸\¼AA]%—gã:½Ý£ ÙmnO7O -âgÏ‚äÝ¡w­K9wv«S®B¬JŒœ˜AáDlH¯ è¿{§m½9T0þbјƒø…Å¥uO-}jÇâU»HÇØü{Ÿ®|~îÄ·_ýÜzþôk¯ÿêíßÐþýÜèëÛA¦4Üo¿ ãS>9)—°á¡$êäω_Ë…!’!F<ƒ¼H'â'®ÂTQ)½ß¿ BÿbÙ!¼Ø¬Ë§¸£oH1Ÿ{î–ü¼²¨UŒ<彑§l6±+¥hS¡ì"ã1Úü¸o´)¾«ý_A¦sùÊôx¤[ .÷ŧŠÏx Ÿ1 ŸÁAAÔ”¡n–;Oh€›Œï"cøÚ&õñqãb%Ec\ù±nzþÊh$ô?öáz›d\ϯG«É0†Êˆœ1sšpâd0‚T' Ìûä#æ}åG*«`Õ5teGÓM”f*ÂêRE©ºŽŽ§m”LU+(£gUªôŒL0!¬¬øšxkT­ð0JY\Eh\íÑcÏK°ÛаŒÔJáíBYþYÏŠ»N!nÁèÕð°1‹ö«U]d÷AJ¨áîNJ™•܈¼Åqv鉕\ªC¡ùwùMw|râ#!tìýå ¡Mèžï Û‰ý(›h:™˜À½Â½dÏ|;˜™’ûö]—3ÙÓ¹%¿ïwåq‰–í(7_Kïž‹Nm¤d€@l”ð2‹l<7[$»›_Éf^cΠtq2Aàå ]F¡Ï IÊôr9ËÉ8V6GQ©Às,ÃÉä'ºqH?F¦àe ™]-§ŠLPÚTêN_Ëab†kT«°!ݬ’ß^Q)"‚I|±),Õþ’ßn6qKµÇ´B…P!:ðpGÓ|¤.)_ ð:û^òæg‰idÿg‰ÎM{Ñðî!݉¹ñêìHÜÞûÆ üœÈÈ:œn¡]L5ÓÉÙ?p;¹/e…²ÙY¾ÿPŠ÷q¹^þ´â>Åo”•_«æ©Ö©êõ$õ ^s¤"ÝÔ/2Œ©ßR;&Ùÿª"5½ÏÅȉ2Ž^ëµ84^©‚/“õ7€¢wTZ· h—ý.Ð;ÔV3v§ýÿþÏ\,¼+åÒ/Pþvw2‰¹WÌÅŸÀ¿pÝÅK¹ç þbEœÍ ÌÓï™khÀÛ§Çé×ê&@jH¨‰—®¿T˜´á ©G  ÿÓü¨ñôà”fˆvßÜ;;M<y÷ñc/áúæßàoÉë:úü’‡½N`‚i¦ªÞÔ±ŒŠ‰YXÖcƒý«±½¡Qb*Ǿe½i -C¯¥biÁrŽWa¹ç7cù,Î)'ݰËR,—±Ÿâ:wÂc²Ý°‰«Þ»¯ý±}/ßšVqt©ƒÜ:âgRùÞýÝ3¾n½R>,|):I×ÿ*%¤ëendstream endobj 615 0 obj << /Filter /FlateDecode /Length 5129 >> stream xœÍÛn·ñ]íGyÚÓúly¿¤hHzA[ ©€>¸A±ºDV,é(–\Çý÷Î ¹Ë!÷HŽì ÈCÆwHÎ}†Ãóñå±ÀÿòÿÏnŽÄñåÑG’FóÿÎnŽ¿89úÍ7R£ˆòøä»£ô<–VáØ[?FmOnŽ^_oetÑ o7[1Ú½WÃŒ:©eŒÃíF¹ÑHm‡1Ú‡+•ÚøûVk_á *úaÄA=†á8œ±ax Î »[\É %ä0½…Q#¬ðË„ÈÃçºÀ:m,€  ÃþÙÇíðº|õD%²íþ–c]Þ^¡¤2Ô/käOÙ6¾dŸ¾¡ƒÈG~Æö¹EXÅ‚þB¤ Æã*„Ï ;üs4[ÚaºÜ;a0Q…!oÐh§†éõFùQ…ü(³hÆ}þöä/Àwí8Ûµ‹£ÆŸœ JnN¾GÉІOÙ#·ÚŽÁ9œ÷røõfk•pä¿›VeG/ÿztò«—Ãßw(Rá,îÓ¤4\Z^u½öa˜pHF𜋷iÔéúß±¹÷i®‘a&K4Þ?’ G‰‹Ü0VÜ._Æq‚Ç—c½CaBút\¥Ò‹û S‘|T=$/BÞ2 ÒEË©E¥”Qʚğ—Ãgð%Îý®€Sß𮀺€ŸuÙ{ 6¨yNš : œÕÊyw›-fûá<³,ÅŠv1â0tœÒÓy"šùØ}—:°‹º|ý$ÐÏ×ä RyR§ î ø¦€7œ x]À>%-ÏÛŠY!­Š®:Ê —Ž8¤M†€ëmc´þx '³&„´ÐWh5ÀVÚJ“=-‰3±¥ \c¸n$“AVó—€?ðÕtPkìèƒN< V)»Æõ³â*‡LY\Ñb¶È Ký襞I|AñBTÂÏÀ]wôß¼)àEW©î ø¶‹ì‚ÏíIE°£•nÞòwdʽ'ŹU|÷‰HNéʧ {´<†¬g×þŠÉÖCš‚NIÎàKU˜áédYä˜ÇÈNÞ;àøyšìÀè¿#i’ŽX—Sí¯ÒE\ÕÜyiþÙ}Y¯|vUt€¸å…ò’üÌV¥9>¶ÊÔx¿­‚9JŬ>Q%ŽÌ$ñ2mÆ!´©`tÑ!Âyô°;]â&ÂSåªpàfLVûà¬FêHÿÊÔ&y¿Ï‹ÌFL¾¥º-3.7}E›bkE`:ñPÀWd:q>»ò0ü®€ŸÊÑD°`Î{&9Ê9I·r­8š. Ð0ÚÇa_)ﺣ¼zl”ì–+{vrÍxc–b<¢@œªxµ*ÙT§©Ôãa`ºÔºK#GY“ƒÜÕEﺣ¼zl”¹LæHrØB äX&ˆ.e¶ÚÄÑêØ¸4æ±vH,P4 KÖ=­\W> "`Œ2Ö×¾uÅAŒ 6ëŽYIR¿¥ðÝ4‚¼˜°ÚAHpc<È'ó嬭„˜áØ7_^‘"E'sô¤Mëµë"ÍÐñí|úâlÊî¶,Î\º3oRŠØêS2i˜;æ$Qá© gΙá}ZÍ® å+îÒvÌ¥±¸ˆû„´ž7 ‚"¦uÄlcVBa„ àD çR’‰TG£¾æ¤f®Ü¯¹»oü³„|ÖÌ¡r޼0{…DÐÌnÛPå'w4o´vG÷ÌïL™iÒÖ²z]d•¹îLþµ!‡Æ0Òº$¯9ÃTŽÄÈcz"‰,%yB[°«¨y8W¨YT°Ÿ/‘"œ±Ù‰ dzf×LeÔÒSf)aû U„3W!('•lq$M_çíJqQ<$ò€ÜAr yi$¹„!’•hˆ,1DÖÎú*RañïrÔ®¼õÈž=²VQfÏñ˜~F"GcÜâx˜ œ<Åu·­vÆw_ÌûÛÞtA–H1Ïô~-%:ÆçgRUüê ‚è³¯± ÷] µ²~ƈH˜†ÿ S§¶ÊjÏ7Ý4 X£U >%«$glȈü1¤D _— IrTUÈ_Ï A•à!†¼áàL…v1 t4ˆþÀŸ¦©;øIÎß%¬ ‘É:Hðy#˜­—h7gúM“-[’癤p"P»aô)¡É¦û< ƒ®WSæï>ÎFšŒ ‘[ª‚’“QDhQ„'»H’á"¸‡<$ä#ïSf¯¨^jL*:~µ ¢GAö€ÌV.1• #ˆ{çüÂ:g*Òž5F.«×‹¦ø0¹ŽÔr>ë•KÛÑl²ã\Þãô9jKa˜™Thy,‡æ€Wx?#W˜AäŽ>EmbÂóJ(0—²n›¨Æ æE§¥êÌ{Å¢\É–”[ÒQ`òîm¡%“ÍG}ÒçËÖfS[U^±vú YJ¹ÃðûRvMf—’¹·¼é‚Sßð})ôÊðiwòUÏ xY@–r¾ì‚ª€ß¶ ù4WV¼$ÌÐs%ù‹B7¼*àÚö2å§ÜÔ%×]¯»¸åK,xÙÜ]wÂGZY@–z²|“}v]Üþu÷³×ÝÀ¡?÷U7ôè ª(䑬ù¦»õ¾3dyvʼnÁY‰—7¼(à¡’F–Ð…æ¿+àge»Çtƒ‰€. Ãð¢àeŸ]´~¾’Ã2ATµÀŸ¥É©„™ÔÛBÓX@Q@vö±€¦€¶«ßŠÖ¾ìj+wœü IÿÖ%)cUßúõ9Áær",Tø[׌Üðó²±mÁ (ºÒò(Åõ€rÀ½MüñmŒ¡€ra埻´yh5´eÄ]NõµŽ)6³¶Ì®2+þMYe™{ÂÀHÆeìªU]Cw‚îb°ýû{«Húù¾¥üC™xÍÁ%Fès„}íë’²ö-xûL¿(Vì´ë.˜—a–”y¤ÊPöMâ§ò^=dcÿB¼ŠbN6A”„L©ži¬\©¤ ²/O޾>JöøÍzGG½äÒÐ!åh?Ö^ŽÑHléy=ù~FûÁø”•1ßKž ³¤‰×Œ(ËN ȧ”ekIñhβ1°ŽJžPüã.Ó>'¶.Ì•¹Wið!å­ÁSéw=[„ F¬MXjÀUvDK™¶–ƒûœ²8ªÂoÚ1ÞWš^Æ¢ž’²ÜÏ ªªDʨõçRp«p]—ô}"õÊð%ž¯þ£™v×Ð;TÿÕØìò‰¤t±š'Ÿò`€FuÔUtŸîvœLíæ˜BèXµÁìÒ(öCM¼]„p-æKæ(x¥t$QºG}-UÅT×N)ÀÖ~¹• 5Û1wÄ©‚}&P|ðV+€#9w§®Z™L!ìî—üµÃw,ö¨›CJ'GÏÑ|Ÿ1áyß,͇GBp£ržʺ¼»]µeKÒv•ðÚâv) ÕÖ¥§ˆß¤îµõ´_Æ5»j«ÎGRv­‘€EZtki©gcµg'À¿Ú臅P‡GŒÁuÜ ì5hQø(Ña·5£ yó1î5,÷úµ—ªS{ϽtÚV–wïúÝÓ\¥«ï!lˆziO=åµ ²fòTÖÛÆÕÃêwÈúÆ}B8ï¼}rb8+÷¯ß­)z©Vi@à U‹@¸Ù3 ¹ÖŠð>sº‰Q’`(ãL¥‹W…ÅlßÓ›´  †)Ú.aŽë-àó&y¶ÔxȪ}[KʯªRI:Š—³IÈ®p ¬Êú™µ´é­“Moöì}ªÌ@j`ÓQ™5±dÙmQŠ –ì7gÛ¬ÚøšÔ¶C퀒`@\½éäÿ÷PÿDº(Al_â¹þ_9JÙlzSL ¢K+ÍÛFÛ‹¼äp·ÿî葇3”ƒ3 ¶\EGÚöAA8×îòJ2µ|ˆ¿Ã°cË–¿ò˜’g"XŸãà5ÅœCøÕþâE¸EH5níÛ{œÑ zW¬Ýùfî”YyE9qçÛïô"k!vr­÷•7oáÿp&ÀÇú@l9Ðñ½”‡¶Útí=½ÿÜDa%¯j¥öüŠ Ö-e9Ĭ›®ñ¨5îóùbસ!Õk„R)à"Mßvqô¬€J Êí—Í*jËfS^Äc°0“HšC‘'Ì6©¸nÖfÁfno›µ÷Òx FqEê}¦Ð@&—«‰»Å~¿¢=/Ò["”‚)“ÝH¹Ûr§Ì Y>Ì¢Ó=w2DuN™ÏRç”SúH¥ÛB¹ý~6u—'i/PtIíFïíþU'Æ{šPV~zíMn’aÈäf38k¡ÒžnÃ*5­Í§öLŽéa"W«»¢V³ xÙ i«à|Û Hw_fÌ«¯]*6õfª5-Ç’k·F¿(fdÅùÔ¯ïHíS%b†Ý?ã’Ž\@v%~¬2eÑëUå1†âŒó©¬Ò[±RîÑwÌ&– >È\ú ]§Òÿ¸òd>8&_©±òW)öªwk2Ô»(¦Œž[À»kaækËœ¶w¦PíߪÆVÓ1ΘÂa‚Œãvyõ¹÷1i„; e_éúê‘ë§c='¬„µþü»€ì³~×ÊiÿÅ$~øDúã>·M$«J§¨FK9ò§¿J¹H84ÈÉÇòZ¸S»=Ò¿C¼Z>*žù´1R™NýLv%X\iÑÇØ\Kpúnø‚…÷i>®úÉÄgzÂ2qF_óÌÑ.º`a(X+ ¥8âcû@‹u¼Š×²Â­Ë”ŽéNaj.'Ö§¶r‰ØùQuª—DŒÖjCÙFòü‘×uÅú^¯.¥×+m ï z>V™ç4,êb÷ÅÏ3³Ì/9î÷óöÌzª JZV¿OtÁVŽ)xQÌÂ4VO-õ¡ö­ÅÁ(k³È̱¢< p·àþ¨)wÈV‚GÓƒpOqT‰'íMY*Tè±ß®Ìp±Ö+n}ËŸ×xé¢?^nHjÛÔv:JÖÔ4fF´÷usn—Ët’:ú:ðt¯úi)PÐåye¾àZTà‘‡wôûeÞÏEŒþ¼O—Õ,àÏñ2uÊÛ_t[ôÙÃ5Ö4Ï\{ÎÆ|ÁË.¨þö ßCç•ί7[‡õììªö¹yÞe{ÕÂDƒ½_Ù{›ø´ß`¿"e'ÿϾ~ìÙg]ª?ŠA=ƒîbà¯ØÖÞˆzqV3Ó3 ¿ô~wÞJtJ2€YY=Hž°¾O²MË¢•qzYL…,à‹~»ÙJaH`Ø 0ö(‹½¤ód²Ø /ÓýŒÉÙ¶;7¶Ï Ú=°§M¦«!¶€±€’.ôê¿´’]d®»0Ã8†åòñë£ÿó„endstream endobj 616 0 obj << /Type /XRef /Length 362 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 617 /ID [<998d3d8e58ead0e73828be7c29a27386>] >> stream xœí–Ï+DQÅï»Ã ¡YÌ`¼Œ™ñf¦§‰‹aÇÙaa9 )eg¦YÈÙ°@ÉB¶Þ¤$ ¿²³"));I¢(Å–wNJ½¿áûŸNß{ßùÞïíÔ{ZáцRAòSi ¡ð?ª¶Ëqu` yÚ”„ÿ³a—Jn*î$Bo6²ÏŽ›Ë‚dCèÍF_²qÖ#Ùz³1¼ˆlìßI6„Þlä6ð/j"±o°&ÖõƒÍ6ÚË®\M  €õ `£Åã`ÀÍ/útƒÕ«`d¬bÝ?F£p³ŠÐÉVÖ{A}Vl•Ó|ë ò$~~ûbåô|çIÆ@c—{¸šì„³= ~§ ¯;_8Ý#O8Á:»è9Θ¢nc½ƒõëdâlÉ¡K|ž³LÑy™zˆúLÍR/ñ–òì{N·Qvß3YβÆ^3ð4×Ù‹Ö1W#`ü–÷üJÏ ®òFÔ/ÚáI endstream endobj startxref 380646 %%EOF bridgesampling/inst/doc/bridgesampling_stan_ttest.Rmd0000644000176200001440000002073515055304401022672 0ustar liggesusers--- title: "Bayesian One-Sample T-Test (Stan)" author: "Quentin F. Gronau" date: "`r Sys.Date()`" show_toc: true output: knitr:::html_vignette: toc: yes vignette: > %\VignetteIndexEntry{Bayesian One-Sample T-Test Stan} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- In this vignette, we explain how we can compute the (log) marginal likelihood and the Bayes factor for models fitted in `Stan`. This approach has the advantage that the user only needs to pass the fitted `stanfit` object which contains all information that is necessary to compute the (log) marginal likelihood. Here we show how one can conduct a Bayesian one-sample t-test as implemented in the `BayesFactor` package (Morey & Rouder, 2015). ## Model The Bayesian one-sample t-test makes the assumption that the observations are normally distributed with mean $\mu$ and variance $\sigma^2$. The model is then reparametrized in terms of the standardized effect size $\delta = \mu/\sigma$. For the standardized effect size, a Cauchy prior with location zero and scale $r = 1/\sqrt{2}$ is used. For the variance $\sigma^2$, Jeffreys's prior is used: $p(\sigma^2) \propto 1/\sigma^2$. In this example, we are interested in comparing the null model $\mathcal{H}_0$, which posits that the effect size $\delta$ is zero, to the alternative hypothesis $\mathcal{H}_1$, which assigns $\delta$ the above described Cauchy prior. ## Data In this example, we will analyze the `sleep` data set from the `t.test` example. This data set shows the effect of two soporific drugs (increase in hours of sleep compared to control) on 10 patients. These data can be analyzed via a one-sample t-test by first computing the difference scores and then conducting the t-test using these difference scores as data. The difference scores are calculated as follows: ```{r} library(bridgesampling) set.seed(12345) # Sleep data from t.test example data(sleep) # compute difference scores y <- sleep$extra[sleep$group == 2] - sleep$extra[sleep$group == 1] n <- length(y) ``` ## Specifying the Models Next, we implement the models in `Stan`. Note that to compute the (log) marginal likelihood for a `Stan` model, we need to specify the model in a certain way. Instad of using `"~"` signs for specifying distributions, we need to directly use the (log) density functions. The reason for this is that when using the `"~"` sign, constant terms are dropped which are not needed for sampling from the posterior. However, for computing the marginal likelihood, these constants need to be retained. For instance, instead of writing `y ~ normal(mu, sigma)` we would need to write `target += normal_lpdf(y | mu, sigma)`. The models can then be specified and compiled as follows (note that it is necessary to install `rstan` for this): ```{r, eval=FALSE} library(rstan) # models stancodeH0 <- ' data { int n; // number of observations vector[n] y; // observations } parameters { real sigma2; // variance parameter } model { target += log(1/sigma2); // Jeffreys prior on sigma2 target += normal_lpdf(y | 0, sqrt(sigma2)); // likelihood } ' stancodeH1 <- ' data { int n; // number of observations vector[n] y; // observations real r; // Cauchy prior scale } parameters { real delta; real sigma2;// variance parameter } model { target += cauchy_lpdf(delta | 0, r); // Cauchy prior on delta target += log(1/sigma2); // Jeffreys prior on sigma2 target += normal_lpdf(y | delta*sqrt(sigma2), sqrt(sigma2)); // likelihood } ' # compile models stanmodelH0 <- stan_model(model_code = stancodeH0, model_name="stanmodel") stanmodelH1 <- stan_model(model_code = stancodeH1, model_name="stanmodel") ``` ## Fitting the Models Now we can fit the null and the alternative model in `Stan`. One usually requires a larger number of posterior samples for estimating the marginal likelihood than for simply estimating the model parameters. This is the reason for using a comparatively large number of samples for these simple models. ```{r, eval=FALSE} # fit models stanfitH0 <- sampling(stanmodelH0, data = list(y = y, n = n), iter = 20000, warmup = 1000, chains = 4, cores = 1, control = list(adapt_delta = .99)) stanfitH1 <- sampling(stanmodelH1, data = list(y = y, n = n, r = 1/sqrt(2)), iter = 20000, warmup = 1000, chains = 4, cores = 1, control = list(adapt_delta = .99)) ``` ## Computing the (Log) Marginal Likelihoods Computing the (log) marginal likelihoods via the `bridge_sampler` function is now easy: we only need to pass the `stanfit` objects which contain all information necessary. We use `silent = TRUE` to suppress printing the number of iterations to the console: ```{r, echo=FALSE} load(system.file("extdata/", "vignette_stan_ttest.RData", package = "bridgesampling")) ``` ```{r, eval=FALSE} H0 <- bridge_sampler(stanfitH0, silent = TRUE) H1 <- bridge_sampler(stanfitH1, silent = TRUE) ``` We obtain: ```{r} print(H0) print(H1) ``` We can use the `error_measures` function to compute an approximate percentage error of the estimates: ```{r,eval=FALSE} # compute percentage errors H0.error <- error_measures(H0)$percentage H1.error <- error_measures(H1)$percentage ``` We obtain: ```{r} print(H0.error) print(H1.error) ``` ## Computing the Bayes Factor To compare the null model and the alternative model, we can compute the Bayes factor by using the `bf` function. In our case, we compute $\text{BF}_{10}$, that is, the Bayes factor which quantifies how much more likely the data are under the alternative versus the null hypothesis: ```{r} # compute Bayes factor BF10 <- bf(H1, H0) print(BF10) ``` We can compare the bridge sampling result to the `BayesFactor` package result: ```{r, eval=FALSE} library(BayesFactor) BF10.BayesFactor <- extractBF(ttestBF(y), onlybf = TRUE) ``` We obtain: ```{r, message=FALSE} print(BF10.BayesFactor) ``` ## One-sided Test We can also conduct one-sided tests. For instance, we could test the hypothesis that the effect size is positive versus the null hypothesis. Since we already fitted the null model and computed its marginal likelihood, we only need to slightly adjust the alternative model to reflect the directed hypothesis. To achieve this, we need to truncate the Cauchy prior distribution for $\delta$ at zero and then renormalize the (log) density. This is easily achieved via the `Stan` function `cauchy_lccdf` which corresponds to the log of the complementary cumulative distribution function of the Cauchy distribution. Thus, `cauchy_lccdf(0 | 0, r)` gives us the log of the area greater than zero which is required for renormalizing the truncated Cauchy prior. The model can then be specified and fitted as follows: ```{r, eval=FALSE} stancodeHplus <- ' data { int n; // number of observations vector[n] y; // observations real r; // Cauchy prior scale } parameters { real delta; // constrained to be positive real sigma2;// variance parameter } model { target += cauchy_lpdf(delta | 0, r) - cauchy_lccdf(0 | 0, r); // Cauchy prior on delta target += log(1/sigma2); // Jeffreys prior on sigma2 target += normal_lpdf(y | delta*sqrt(sigma2), sqrt(sigma2)); // likelihood } ' # compile and fit model stanmodelHplus <- stan_model(model_code = stancodeHplus, model_name="stanmodel") stanfitHplus <- sampling(stanmodelHplus, data = list(y = y, n = n, r = 1/sqrt(2)), iter = 30000, warmup = 1000, chains = 4, control = list(adapt_delta = .99)) ``` The (log) marginal likelihood is then computed as follows: ```{r,eval=FALSE} Hplus <- bridge_sampler(stanfitHplus, silent = TRUE) ``` We obtain: ```{r} print(Hplus) ``` We can again use the `error_measures` function to compute an approximate percentage error of the estimate: ```{r,eval=FALSE} Hplus.error <- error_measures(Hplus)$percentage ``` We obtain: ```{r} print(Hplus.error) ``` The one-sided Bayes factor in favor of a positive effect versus the null hypothesis can be computed as follows: ```{r} # compute Bayes factor BFplus0 <- bf(Hplus, H0) print(BFplus0) ``` We can compare the bridge sampling result to the `BayesFactor` package result: ```{r, eval=FALSE} BFplus0.BayesFactor <- extractBF(ttestBF(y, nullInterval = c(0, Inf)), onlybf = TRUE)[1] ``` We obtain: ```{r} print(BFplus0.BayesFactor) ``` ## References Richard D. Morey and Jeffrey N. Rouder (2015). BayesFactor: Computation of Bayes Factors for Common Designs. R package version 0.9.12-2. \url{https://CRAN.R-project.org/package=BayesFactor} bridgesampling/inst/doc/bridgesampling_example_stan.html0000644000176200001440000003006715107052015023402 0ustar liggesusers Hierarchical Normal Example (Stan)

Hierarchical Normal Example (Stan)

Quentin F. Gronau

2025-11-18

In this vignette, we explain how one can compute marginal likelihoods, Bayes factors, and posterior model probabilities using a simple hierarchical normal model implemented in Stan. This vignette uses the same models and data as the Jags vignette.

Model and Data

The model that we will use assumes that each of the \(n\) observations \(y_i\) (where \(i\) indexes the observation, \(i = 1,2,...,n\)) is normally distributed with corresponding mean \(\theta_i\) and a common known variance \(\sigma^2\): \(y_i \sim \mathcal{N}(\theta_i, \sigma^2)\). Each \(\theta_i\) is drawn from a normal group-level distribution with mean \(\mu\) and variance \(\tau^2\): \(\theta_i \sim \mathcal{N}(\mu, \tau^2)\). For the group-level mean \(\mu\), we use a normal prior distribution of the form \(\mathcal{N}(\mu_0, \tau^2_0)\). For the group-level variance \(\tau^2\), we use an inverse-gamma prior of the form \(\text{Inv-Gamma}(\alpha, \beta)\).

In this example, we are interested in comparing the null model \(\mathcal{H}_0\), which posits that the group-level mean \(\mu = 0\), to the alternative model \(\mathcal{H}_1\), which allows \(\mu\) to be different from zero. First, we generate some data from the null model:

library(bridgesampling)

### generate data ###
set.seed(12345)

mu <- 0
tau2 <- 0.5
sigma2 <- 1

n <- 20
theta <- rnorm(n, mu, sqrt(tau2))
y <- rnorm(n, theta, sqrt(sigma2))

Next, we specify the prior parameters \(\mu_0\), \(\tau^2_0\), \(\alpha\), and \(\beta\):

### set prior parameters ###
mu0 <- 0
tau20 <- 1
alpha <- 1
beta <- 1

Specifying the Models

Next, we implement the models in Stan. Note that to compute the (log) marginal likelihood for a Stan model, we need to specify the model in a certain way. Instad of using "~" signs for specifying distributions, we need to directly use the (log) density functions. The reason for this is that when using the "~" sign, constant terms are dropped which are not needed for sampling from the posterior. However, for computing the marginal likelihood, these constants need to be retained. For instance, instead of writing y ~ normal(mu, sigma) we would need to write target += normal_lpdf(y | mu, sigma). The models can then be specified and compiled as follows (note that it is necessary to install rstan for this):

library(rstan)

# models
stancodeH0 <- 'data {
  int<lower=1> n; // number of observations
  vector[n] y; // observations
  real<lower=0> alpha;
  real<lower=0> beta;
  real<lower=0> sigma2;
}
parameters {
  real<lower=0> tau2; // group-level variance
  vector[n] theta; // participant effects
}
model {
  target += inv_gamma_lpdf(tau2 | alpha, beta);
  target += normal_lpdf(theta | 0, sqrt(tau2));
  target += normal_lpdf(y | theta, sqrt(sigma2));
}
'
stancodeH1 <- 'data {
  int<lower=1> n; // number of observations
  vector[n] y; // observations
  real mu0;
  real<lower=0> tau20;
  real<lower=0> alpha;
  real<lower=0> beta;
  real<lower=0> sigma2;
}
parameters {
  real mu;
  real<lower=0> tau2; // group-level variance
  vector[n] theta; // participant effects
}
model {
  target += normal_lpdf(mu | mu0, sqrt(tau20));
  target += inv_gamma_lpdf(tau2 | alpha, beta);
  target += normal_lpdf(theta | mu, sqrt(tau2));
  target += normal_lpdf(y | theta, sqrt(sigma2));
}
'
# compile models
stanmodelH0 <- stan_model(model_code = stancodeH0, model_name="stanmodel")
stanmodelH1 <- stan_model(model_code = stancodeH1, model_name="stanmodel")

Fitting the Models

Now we can fit the null and the alternative model in Stan. One usually requires a larger number of posterior samples for estimating the marginal likelihood than for simply estimating the model parameters. This is the reason for using a comparatively large number of samples for these simple models.

# fit models
stanfitH0 <- sampling(stanmodelH0, data = list(y = y, n = n,
                                               alpha = alpha,
                                               beta = beta,
                                               sigma2 = sigma2),
                      iter = 50000, warmup = 1000, chains = 3, cores = 1)
stanfitH1 <- sampling(stanmodelH1, data = list(y = y, n = n,
                                               mu0 = mu0,
                                               tau20 = tau20,
                                               alpha = alpha,
                                               beta = beta,
                                               sigma2 = sigma2),
                      iter = 50000, warmup = 1000, chains = 3, cores = 1)

Computing the (Log) Marginal Likelihoods

Computing the (log) marginal likelihoods via the bridge_sampler function is now easy: we only need to pass the stanfit objects which contain all information necessary. We use silent = TRUE to suppress printing the number of iterations to the console:

# compute log marginal likelihood via bridge sampling for H0
H0.bridge <- bridge_sampler(stanfitH0, silent = TRUE)

# compute log marginal likelihood via bridge sampling for H1
H1.bridge <- bridge_sampler(stanfitH1, silent = TRUE)

We obtain:

print(H0.bridge)
## Bridge sampling estimate of the log marginal likelihood: -37.53183
## Estimate obtained in 5 iteration(s) via method "normal".
print(H1.bridge)
## Bridge sampling estimate of the log marginal likelihood: -37.79683
## Estimate obtained in 4 iteration(s) via method "normal".

We can use the error_measures function to compute an approximate percentage error of the estimates:

# compute percentage errors
H0.error <- error_measures(H0.bridge)$percentage
H1.error <- error_measures(H1.bridge)$percentage

We obtain:

print(H0.error)
## [1] "0.143%"
print(H1.error)
## [1] "0.164%"

Bayesian Model Comparison

To compare the null model and the alternative model, we can compute the Bayes factor by using the bf function. In our case, we compute \(\text{BF}_{01}\), that is, the Bayes factor which quantifies how much more likely the data are under the null versus the alternative model:

# compute Bayes factor
BF01 <- bf(H0.bridge, H1.bridge)
print(BF01)
## Estimated Bayes factor in favor of H0.bridge over H1.bridge: 1.30343

In this case, the Bayes factor is close to one, indicating that there is not much evidence for either model. We can also compute posterior model probabilities by using the post_prob function:

# compute posterior model probabilities (assuming equal prior model probabilities)
post1 <- post_prob(H0.bridge, H1.bridge)
print(post1)
## H0.bridge H1.bridge 
## 0.5658657 0.4341343

When the argument prior_prob is not specified, as is the case here, the prior model probabilities of all models under consideration are set equal (i.e., in this case with two models to 0.5). However, if we had prior knowledge about how likely both models are, we could use the prior_prob argument to specify different prior model probabilities:

# compute posterior model probabilities (using user-specified prior model probabilities)
post2 <- post_prob(H0.bridge, H1.bridge, prior_prob = c(.6, .4))
print(post2)
## H0.bridge H1.bridge 
## 0.6616079 0.3383921
bridgesampling/inst/doc/bridgesampling_example_nimble.Rmd0000644000176200001440000001606115060116372023464 0ustar liggesusers--- title: "Hierarchical Normal Example (nimble)" author: "Quentin F. Gronau, Henrik Singmann & Perry de Valpine" date: "`r Sys.Date()`" show_toc: true output: knitr:::html_vignette: toc: yes vignette: > %\VignetteIndexEntry{Hierarchical Normal Example Nimble} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- In this vignette, we explain how one can compute marginal likelihoods, Bayes factors, and posterior model probabilities using a simple hierarchical normal model implemented in `nimble`. The [`nimble` documentation](https://r-nimble.org/manual/cha-welcome-nimble.html) provides a comprehensive overview. This vignette uses the same models and data as the [`Stan` vignette](bridgesampling_example_stan.html) and [`Jags` vignette](bridgesampling_example_jags.html). ## Model and Data The model that we will use assumes that each of the $n$ observations $y_i$ (where $i$ indexes the observation, $i = 1,2,...,n$) is normally distributed with corresponding mean $\theta_i$ and a common known variance $\sigma^2$: $y_i \sim \mathcal{N}(\theta_i, \sigma^2)$. Each $\theta_i$ is drawn from a normal group-level distribution with mean $\mu$ and variance $\tau^2$: $\theta_i \sim \mathcal{N}(\mu, \tau^2)$. For the group-level mean $\mu$, we use a normal prior distribution of the form $\mathcal{N}(\mu_0, \tau^2_0)$. For the group-level variance $\tau^2$, we use an inverse-gamma prior of the form $\text{Inv-Gamma}(\alpha, \beta)$. In this example, we are interested in comparing the null model $\mathcal{H}_0$, which posits that the group-level mean $\mu = 0$, to the alternative model $\mathcal{H}_1$, which allows $\mu$ to be different from zero. First, we generate some data from the null model: ```{r} library(bridgesampling) ### generate data ### set.seed(12345) mu <- 0 tau2 <- 0.5 sigma2 <- 1 n <- 20 theta <- rnorm(n, mu, sqrt(tau2)) y <- rnorm(n, theta, sqrt(sigma2)) ``` Next, we specify the prior parameters $\mu_0$, $\tau^2_0$, $\alpha$, and $\beta$: ```{r,eval=FALSE} ### set prior parameters ### mu0 <- 0 tau20 <- 1 alpha <- 1 beta <- 1 ``` ## Specifying the Models Next, we implement the models in `nimble`. This requires to first transform the code into a `nimbleModel`, then we need to set the data, and then we can compile the model. Given that `nimble` is build on BUGS, the similarity between the `nimble` code and the [`Jags` code](bridgesampling_example_jags.html) is not too surprising. ```{r, eval=FALSE} library("nimble") # models codeH0 <- nimbleCode({ invTau2 ~ dgamma(1, 1) tau2 <- 1/invTau2 for (i in 1:20) { theta[i] ~ dnorm(0, sd = sqrt(tau2)) y[i] ~ dnorm(theta[i], sd = 1) } }) codeH1 <- nimbleCode({ mu ~ dnorm(0, sd = 1) invTau2 ~ dgamma(1, 1) tau2 <- 1/invTau2 for (i in 1:20) { theta[i] ~ dnorm(mu, sd = sqrt(tau2)) y[i] ~ dnorm(theta[i], sd = 1) } }) ## steps for H0: modelH0 <- nimbleModel(codeH0) modelH0$setData(y = y) # set data cmodelH0 <- compileNimble(modelH0) # make compiled version from generated C++ ## steps for H1: modelH1 <- nimbleModel(codeH1) modelH1$setData(y = y) # set data cmodelH1 <- compileNimble(modelH1) # make compiled version from generated C++ ``` ## Fitting the Models Fitting a model with `nimble` requires one to first create an MCMC function from the (compiled or uncompiled) model. This function then needs to be compiled again. With this object we can then create the samples. Note that nimble uses a reference object semantic so we do not actually need the samples object, as the samples will be saved in the MCMC function objects. But as `runMCMC` returns them anyway, we nevertheless save them. One usually requires a larger number of posterior samples for estimating the marginal likelihood than for simply estimating the model parameters. This is the reason for using a comparatively large number of samples for these simple models. ```{r, eval=FALSE} # build MCMC functions, skipping customization of the configuration. mcmcH0 <- buildMCMC(modelH0, monitors = modelH0$getNodeNames(stochOnly = TRUE, includeData = FALSE)) mcmcH1 <- buildMCMC(modelH1, monitors = modelH1$getNodeNames(stochOnly = TRUE, includeData = FALSE)) # compile the MCMC function via generated C++ cmcmcH0 <- compileNimble(mcmcH0, project = modelH0) cmcmcH1 <- compileNimble(mcmcH1, project = modelH1) # run the MCMC. This is a wrapper for cmcmc$run() and extraction of samples. # the object samplesH1 is actually not needed as the samples are also in cmcmcH1 samplesH0 <- runMCMC(cmcmcH0, niter = 1e5, nburnin = 1000, nchains = 2, progressBar = FALSE) samplesH1 <- runMCMC(cmcmcH1, niter = 1e5, nburnin = 1000, nchains = 2, progressBar = FALSE) ``` ## Computing the (Log) Marginal Likelihoods Computing the (log) marginal likelihoods via the `bridge_sampler` function is now easy: we only need to pass the compiled MCMC function objects (of class `"MCMC_refClass"`) which contain all information necessary. We use `silent = TRUE` to suppress printing the number of iterations to the console: ```{r, echo=FALSE} load(system.file("extdata/", "vignette_example_nimble.RData", package = "bridgesampling")) ``` ```{r,eval=FALSE} # compute log marginal likelihood via bridge sampling for H0 H0.bridge <- bridge_sampler(cmcmcH0, silent = TRUE) # compute log marginal likelihood via bridge sampling for H1 H1.bridge <- bridge_sampler(cmcmcH1, silent = TRUE) ``` We obtain: ```{r} print(H0.bridge) print(H1.bridge) ``` We can use the `error_measures` function to compute an approximate percentage error of the estimates: ```{r,eval=FALSE} # compute percentage errors H0.error <- error_measures(H0.bridge)$percentage H1.error <- error_measures(H1.bridge)$percentage ``` We obtain: ```{r} print(H0.error) print(H1.error) ``` ## Bayesian Model Comparison To compare the null model and the alternative model, we can compute the Bayes factor by using the `bf` function. In our case, we compute $\text{BF}_{01}$, that is, the Bayes factor which quantifies how much more likely the data are under the null versus the alternative model: ```{r} # compute Bayes factor BF01 <- bf(H0.bridge, H1.bridge) print(BF01) ``` In this case, the Bayes factor is close to one, indicating that there is not much evidence for either model. We can also compute posterior model probabilities by using the `post_prob` function: ```{r} # compute posterior model probabilities (assuming equal prior model probabilities) post1 <- post_prob(H0.bridge, H1.bridge) print(post1) ``` When the argument `prior_prob` is not specified, as is the case here, the prior model probabilities of all models under consideration are set equal (i.e., in this case with two models to 0.5). However, if we had prior knowledge about how likely both models are, we could use the `prior_prob` argument to specify different prior model probabilities: ```{r} # compute posterior model probabilities (using user-specified prior model probabilities) post2 <- post_prob(H0.bridge, H1.bridge, prior_prob = c(.6, .4)) print(post2) ``` bridgesampling/inst/doc/bridgesampling_example_jags.Rmd0000644000176200001440000002477215055304401023146 0ustar liggesusers--- title: "Hierarchical Normal Example (JAGS)" author: "Quentin F. Gronau" date: "`r Sys.Date()`" show_toc: true output: knitr:::html_vignette: toc: yes vignette: > %\VignetteIndexEntry{Hierarchical Normal Example JAGS} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- In this vignette, we explain how one can compute marginal likelihoods, Bayes factors, and posterior model probabilities using a simple hierarchical normal model implemented in `JAGS`. This vignette uses the same models and data as the [`Stan` vignette](bridgesampling_example_stan.html). ## Model and Data The model that we will use assumes that each of the $n$ observations $y_i$ (where $i$ indexes the observation, $i = 1,2,...,n$) is normally distributed with corresponding mean $\theta_i$ and a common known variance $\sigma^2$: $y_i \sim \mathcal{N}(\theta_i, \sigma^2)$. Each $\theta_i$ is drawn from a normal group-level distribution with mean $\mu$ and variance $\tau^2$: $\theta_i \sim \mathcal{N}(\mu, \tau^2)$. For the group-level mean $\mu$, we use a normal prior distribution of the form $\mathcal{N}(\mu_0, \tau^2_0)$. For the group-level variance $\tau^2$, we use an inverse-gamma prior of the form $\text{Inv-Gamma}(\alpha, \beta)$. We will use `JAGS` to fit the model which parametrizes the normal distribution in terms of the precision (i.e., one over the variance). Consequently, we implement this inverse-gamma prior on $\tau^2$ by placing a gamma prior of the form $\text{Gamma}(\alpha, \beta)$ on the precision; we call this precision parameter `invTau2` in the code. In this example, we are interested in comparing the null model $\mathcal{H}_0$, which posits that the group-level mean $\mu = 0$, to the alternative model $\mathcal{H}_1$, which allows $\mu$ to be different from zero. First, we generate some data from the null model: ```{r} library(bridgesampling) ### generate data ### set.seed(12345) mu <- 0 tau2 <- 0.5 sigma2 <- 1 n <- 20 theta <- rnorm(n, mu, sqrt(tau2)) y <- rnorm(n, theta, sqrt(sigma2)) ``` Next, we specify the prior parameters $\mu_0$, $\tau^2_0$, $\alpha$, and $\beta$: ```{r,eval=FALSE} ### set prior parameters ### mu0 <- 0 tau20 <- 1 alpha <- 1 beta <- 1 ``` ## Fitting the Models Now we can fit the null and the alternative model in `JAGS` (note that it is necessary to install `JAGS` for this). One usually requires a larger number of posterior sample for estimating the marginal likelihood than for simply estimating the model parameters. This is the reason for using a comparatively large number of samples (i.e., 50,000 post burn-in samples per chain) for this comparatively simple model. ```{r, eval=FALSE} library(R2jags) ### functions to get posterior samples ### # H0: mu = 0 getSamplesModelH0 <- function(data, niter = 52000, nburnin = 2000, nchains = 3) { model <- " model { for (i in 1:n) { theta[i] ~ dnorm(0, invTau2) y[i] ~ dnorm(theta[i], 1/sigma2) } invTau2 ~ dgamma(alpha, beta) tau2 <- 1/invTau2 }" s <- jags(data, parameters.to.save = c("theta", "invTau2"), model.file = textConnection(model), n.chains = nchains, n.iter = niter, n.burnin = nburnin, n.thin = 1) return(s) } # H1: mu != 0 getSamplesModelH1 <- function(data, niter = 52000, nburnin = 2000, nchains = 3) { model <- " model { for (i in 1:n) { theta[i] ~ dnorm(mu, invTau2) y[i] ~ dnorm(theta[i], 1/sigma2) } mu ~ dnorm(mu0, 1/tau20) invTau2 ~ dgamma(alpha, beta) tau2 <- 1/invTau2 }" s <- jags(data, parameters.to.save = c("theta", "mu", "invTau2"), model.file = textConnection(model), n.chains = nchains, n.iter = niter, n.burnin = nburnin, n.thin = 1) return(s) } ### get posterior samples ### # create data lists for JAGS data_H0 <- list(y = y, n = length(y), alpha = alpha, beta = beta, sigma2 = sigma2) data_H1 <- list(y = y, n = length(y), mu0 = mu0, tau20 = tau20, alpha = alpha, beta = beta, sigma2 = sigma2) # fit models samples_H0 <- getSamplesModelH0(data_H0) samples_H1 <- getSamplesModelH1(data_H1) ``` ## Specifying the Unnormalized Log Posterior Function The next step is to write the corresponding `log_posterior` (i.e., unnormalized posterior) function for both models. This function takes one draw from the joint posterior and the data object as input and returns the log of the unnormalized joint posterior density. When using MCMC software such as `JAGS` or `Stan`, specifying this function is relatively simple. As a rule of thumb, one only needs to look for all places where a "`~`" sign appears in the model code. The log of the densities on the right-hand side of these "`~`" symbols needs to be evaluated for the relevant quantities and then these log densities values are summed. For example, in the null model, there are three "`~`" signs. Starting at the data-level, we need to evaluate the log of the normal density with mean $\theta_i$ and variance $\sigma^2$ for all $y_i$ and then sum the resulting log density values. Next, we move one step up in the model and evaluate the log of the group-level density for all $\theta_i$. Hence, we evaluate the log of the normal density for $\theta_i$ with mean $\mu = 0$ and variance $\tau^2$ (remember that `JAGS` parametrizes the normal distribution in terms of the precision `invTau2` = $1/\tau^2$; in contrast, `R` parametrizes it in terms of the standard deviation) and sum the resulting log density values. The result of this summation is added to the result of the previous summation for the data-level normal distribution. Finally, we need to evaluate the log of the prior density for `invTau2`. This means that we compute the log density of the gamma distribution with parameters $\alpha$ and $\beta$ for the sampled `invTau2` value and add the resulting log density value to the result of summing the data-level and group-level log densities. The unnormalized log posterior for the alternative model can be obtained in a similar fashion. The resulting functions look as follows: ```{r,eval=FALSE} ### functions for evaluating the unnormalized posteriors on log scale ### log_posterior_H0 <- function(samples.row, data) { mu <- 0 invTau2 <- samples.row[[ "invTau2" ]] theta <- samples.row[ paste0("theta[", seq_along(data$y), "]") ] sum(dnorm(data$y, theta, data$sigma2, log = TRUE)) + sum(dnorm(theta, mu, 1/sqrt(invTau2), log = TRUE)) + dgamma(invTau2, data$alpha, data$beta, log = TRUE) } log_posterior_H1 <- function(samples.row, data) { mu <- samples.row[[ "mu" ]] invTau2 <- samples.row[[ "invTau2" ]] theta <- samples.row[ paste0("theta[", seq_along(data$y), "]") ] sum(dnorm(data$y, theta, data$sigma2, log = TRUE)) + sum(dnorm(theta, mu, 1/sqrt(invTau2), log = TRUE)) + dnorm(mu, data$mu0, sqrt(data$tau20), log = TRUE) + dgamma(invTau2, data$alpha, data$beta, log = TRUE) } ``` ## Specifying the Parameter Bounds The final step before computing the log marginal likelihoods is to specify the parameter bounds. In this example, for both models, all parameters can range from $-\infty$ to $\infty$ except the precision `invTau2` which has a lower bound of zero. These boundary vectors need to be named and the names need to match the order of the parameters. ```{r,eval=FALSE} # specify parameter bounds H0 cn <- colnames(samples_H0$BUGSoutput$sims.matrix) cn <- cn[cn != "deviance"] lb_H0 <- rep(-Inf, length(cn)) ub_H0 <- rep(Inf, length(cn)) names(lb_H0) <- names(ub_H0) <- cn lb_H0[[ "invTau2" ]] <- 0 # specify parameter bounds H1 cn <- colnames(samples_H1$BUGSoutput$sims.matrix) cn <- cn[cn != "deviance"] lb_H1 <- rep(-Inf, length(cn)) ub_H1 <- rep(Inf, length(cn)) names(lb_H1) <- names(ub_H1) <- cn lb_H1[[ "invTau2" ]] <- 0 ``` Note that currently, the lower and upper bound of a parameter cannot be a function of the bounds of another parameter. Furthermore, constraints that depend on multiple parameters of the model are not supported. This excludes, for example, parameters that constitute a covariance matrix or sets of parameters that need to sum to one. ## Computing the (Log) Marginal Likelihoods Now we are ready to compute the log marginal likelihoods using the `bridge_sampler` function. We use `silent = TRUE` to suppress printing the number of iterations to the console: ```{r, echo=FALSE} load(system.file("extdata/", "vignette_example_jags.RData", package = "bridgesampling")) ``` ```{r,eval=FALSE} # compute log marginal likelihood via bridge sampling for H0 H0.bridge <- bridge_sampler(samples = samples_H0, data = data_H0, log_posterior = log_posterior_H0, lb = lb_H0, ub = ub_H0, silent = TRUE) # compute log marginal likelihood via bridge sampling for H1 H1.bridge <- bridge_sampler(samples = samples_H1, data = data_H1, log_posterior = log_posterior_H1, lb = lb_H1, ub = ub_H1, silent = TRUE) ``` We obtain: ```{r} print(H0.bridge) print(H1.bridge) ``` We can use the `error_measures` function to compute an approximate percentage error of the estimates: ```{r,eval=FALSE} # compute percentage errors H0.error <- error_measures(H0.bridge)$percentage H1.error <- error_measures(H1.bridge)$percentage ``` We obtain: ```{r} print(H0.error) print(H1.error) ``` ## Bayesian Model Comparison To compare the null model and the alternative model, we can compute the Bayes factor by using the `bf` function. In our case, we compute $\text{BF}_{01}$, that is, the Bayes factor which quantifies how much more likely the data are under the null versus the alternative model: ```{r} # compute Bayes factor BF01 <- bf(H0.bridge, H1.bridge) print(BF01) ``` In this case, the Bayes factor is close to one, indicating that there is not much evidence for either model. We can also compute posterior model probabilities by using the `post_prob` function: ```{r} # compute posterior model probabilities (assuming equal prior model probabilities) post1 <- post_prob(H0.bridge, H1.bridge) print(post1) ``` When the argument `prior_prob` is not specified, as is the case here, the prior model probabilities of all models under consideration are set equal (i.e., in this case with two models to 0.5). However, if we had prior knowledge about how likely both models are, we could use the `prior_prob` argument to specify different prior model probabilities: ```{r} # compute posterior model probabilities (using user-specified prior model probabilities) post2 <- post_prob(H0.bridge, H1.bridge, prior_prob = c(.6, .4)) print(post2) ``` bridgesampling/inst/doc/bridgesampling_example_stan.R0000644000176200001440000001014615107052015022633 0ustar liggesusers## ----------------------------------------------------------------------------- library(bridgesampling) ### generate data ### set.seed(12345) mu <- 0 tau2 <- 0.5 sigma2 <- 1 n <- 20 theta <- rnorm(n, mu, sqrt(tau2)) y <- rnorm(n, theta, sqrt(sigma2)) ## ----eval=FALSE--------------------------------------------------------------- # ### set prior parameters ### # mu0 <- 0 # tau20 <- 1 # alpha <- 1 # beta <- 1 ## ----eval=FALSE--------------------------------------------------------------- # library(rstan) # # # models # stancodeH0 <- 'data { # int n; // number of observations # vector[n] y; // observations # real alpha; # real beta; # real sigma2; # } # parameters { # real tau2; // group-level variance # vector[n] theta; // participant effects # } # model { # target += inv_gamma_lpdf(tau2 | alpha, beta); # target += normal_lpdf(theta | 0, sqrt(tau2)); # target += normal_lpdf(y | theta, sqrt(sigma2)); # } # ' # stancodeH1 <- 'data { # int n; // number of observations # vector[n] y; // observations # real mu0; # real tau20; # real alpha; # real beta; # real sigma2; # } # parameters { # real mu; # real tau2; // group-level variance # vector[n] theta; // participant effects # } # model { # target += normal_lpdf(mu | mu0, sqrt(tau20)); # target += inv_gamma_lpdf(tau2 | alpha, beta); # target += normal_lpdf(theta | mu, sqrt(tau2)); # target += normal_lpdf(y | theta, sqrt(sigma2)); # } # ' # # compile models # stanmodelH0 <- stan_model(model_code = stancodeH0, model_name="stanmodel") # stanmodelH1 <- stan_model(model_code = stancodeH1, model_name="stanmodel") ## ----eval=FALSE--------------------------------------------------------------- # # fit models # stanfitH0 <- sampling(stanmodelH0, data = list(y = y, n = n, # alpha = alpha, # beta = beta, # sigma2 = sigma2), # iter = 50000, warmup = 1000, chains = 3, cores = 1) # stanfitH1 <- sampling(stanmodelH1, data = list(y = y, n = n, # mu0 = mu0, # tau20 = tau20, # alpha = alpha, # beta = beta, # sigma2 = sigma2), # iter = 50000, warmup = 1000, chains = 3, cores = 1) ## ----echo=FALSE--------------------------------------------------------------- load(system.file("extdata/", "vignette_example_stan.RData", package = "bridgesampling")) ## ----eval=FALSE--------------------------------------------------------------- # # compute log marginal likelihood via bridge sampling for H0 # H0.bridge <- bridge_sampler(stanfitH0, silent = TRUE) # # # compute log marginal likelihood via bridge sampling for H1 # H1.bridge <- bridge_sampler(stanfitH1, silent = TRUE) ## ----------------------------------------------------------------------------- print(H0.bridge) print(H1.bridge) ## ----eval=FALSE--------------------------------------------------------------- # # compute percentage errors # H0.error <- error_measures(H0.bridge)$percentage # H1.error <- error_measures(H1.bridge)$percentage ## ----------------------------------------------------------------------------- print(H0.error) print(H1.error) ## ----------------------------------------------------------------------------- # compute Bayes factor BF01 <- bf(H0.bridge, H1.bridge) print(BF01) ## ----------------------------------------------------------------------------- # compute posterior model probabilities (assuming equal prior model probabilities) post1 <- post_prob(H0.bridge, H1.bridge) print(post1) ## ----------------------------------------------------------------------------- # compute posterior model probabilities (using user-specified prior model probabilities) post2 <- post_prob(H0.bridge, H1.bridge, prior_prob = c(.6, .4)) print(post2) bridgesampling/inst/doc/bridgesampling_example_jags.html0000644000176200001440000004104315107052014023354 0ustar liggesusers Hierarchical Normal Example (JAGS)

Hierarchical Normal Example (JAGS)

Quentin F. Gronau

2025-11-18

In this vignette, we explain how one can compute marginal likelihoods, Bayes factors, and posterior model probabilities using a simple hierarchical normal model implemented in JAGS. This vignette uses the same models and data as the Stan vignette.

Model and Data

The model that we will use assumes that each of the \(n\) observations \(y_i\) (where \(i\) indexes the observation, \(i = 1,2,...,n\)) is normally distributed with corresponding mean \(\theta_i\) and a common known variance \(\sigma^2\): \(y_i \sim \mathcal{N}(\theta_i, \sigma^2)\). Each \(\theta_i\) is drawn from a normal group-level distribution with mean \(\mu\) and variance \(\tau^2\): \(\theta_i \sim \mathcal{N}(\mu, \tau^2)\). For the group-level mean \(\mu\), we use a normal prior distribution of the form \(\mathcal{N}(\mu_0, \tau^2_0)\). For the group-level variance \(\tau^2\), we use an inverse-gamma prior of the form \(\text{Inv-Gamma}(\alpha, \beta)\). We will use JAGS to fit the model which parametrizes the normal distribution in terms of the precision (i.e., one over the variance). Consequently, we implement this inverse-gamma prior on \(\tau^2\) by placing a gamma prior of the form \(\text{Gamma}(\alpha, \beta)\) on the precision; we call this precision parameter invTau2 in the code.

In this example, we are interested in comparing the null model \(\mathcal{H}_0\), which posits that the group-level mean \(\mu = 0\), to the alternative model \(\mathcal{H}_1\), which allows \(\mu\) to be different from zero. First, we generate some data from the null model:

library(bridgesampling)

### generate data ###
set.seed(12345)

mu <- 0
tau2 <- 0.5
sigma2 <- 1

n <- 20
theta <- rnorm(n, mu, sqrt(tau2))
y <- rnorm(n, theta, sqrt(sigma2))

Next, we specify the prior parameters \(\mu_0\), \(\tau^2_0\), \(\alpha\), and \(\beta\):

### set prior parameters ###
mu0 <- 0
tau20 <- 1
alpha <- 1
beta <- 1

Fitting the Models

Now we can fit the null and the alternative model in JAGS (note that it is necessary to install JAGS for this). One usually requires a larger number of posterior sample for estimating the marginal likelihood than for simply estimating the model parameters. This is the reason for using a comparatively large number of samples (i.e., 50,000 post burn-in samples per chain) for this comparatively simple model.

library(R2jags)

### functions to get posterior samples ###

# H0: mu = 0
getSamplesModelH0 <- function(data, niter = 52000, nburnin = 2000, nchains = 3) {
  
  model <- "
    model {
      for (i in 1:n) {
        theta[i] ~ dnorm(0, invTau2)
          y[i] ~ dnorm(theta[i], 1/sigma2)
      }
      invTau2 ~ dgamma(alpha, beta)
      tau2 <- 1/invTau2
    }"
  
  s <- jags(data, parameters.to.save = c("theta", "invTau2"),
            model.file = textConnection(model),
            n.chains = nchains, n.iter = niter,
            n.burnin = nburnin, n.thin = 1)
  
  return(s)
  
}

# H1: mu != 0
getSamplesModelH1 <- function(data, niter = 52000, nburnin = 2000,
                              nchains = 3) {
  
  model <- "
    model {
      for (i in 1:n) {
        theta[i] ~ dnorm(mu, invTau2)
        y[i] ~ dnorm(theta[i], 1/sigma2)
      }
      mu ~ dnorm(mu0, 1/tau20)
      invTau2 ~ dgamma(alpha, beta)
      tau2 <- 1/invTau2
    }"
  
  s <- jags(data, parameters.to.save = c("theta", "mu", "invTau2"),
            model.file = textConnection(model),
            n.chains = nchains, n.iter = niter,
            n.burnin = nburnin, n.thin = 1)
  
  return(s)
  
}

### get posterior samples ###

# create data lists for JAGS
data_H0 <- list(y = y, n = length(y), alpha = alpha, beta = beta, sigma2 = sigma2)
data_H1 <- list(y = y, n = length(y), mu0 = mu0, tau20 = tau20, alpha = alpha,
                beta = beta, sigma2 = sigma2)

# fit models
samples_H0 <- getSamplesModelH0(data_H0)
samples_H1 <- getSamplesModelH1(data_H1)

Specifying the Unnormalized Log Posterior Function

The next step is to write the corresponding log_posterior (i.e., unnormalized posterior) function for both models. This function takes one draw from the joint posterior and the data object as input and returns the log of the unnormalized joint posterior density. When using MCMC software such as JAGS or Stan, specifying this function is relatively simple. As a rule of thumb, one only needs to look for all places where a “~†sign appears in the model code. The log of the densities on the right-hand side of these “~†symbols needs to be evaluated for the relevant quantities and then these log densities values are summed.

For example, in the null model, there are three “~†signs. Starting at the data-level, we need to evaluate the log of the normal density with mean \(\theta_i\) and variance \(\sigma^2\) for all \(y_i\) and then sum the resulting log density values. Next, we move one step up in the model and evaluate the log of the group-level density for all \(\theta_i\). Hence, we evaluate the log of the normal density for \(\theta_i\) with mean \(\mu = 0\) and variance \(\tau^2\) (remember that JAGS parametrizes the normal distribution in terms of the precision invTau2 = \(1/\tau^2\); in contrast, R parametrizes it in terms of the standard deviation) and sum the resulting log density values. The result of this summation is added to the result of the previous summation for the data-level normal distribution. Finally, we need to evaluate the log of the prior density for invTau2. This means that we compute the log density of the gamma distribution with parameters \(\alpha\) and \(\beta\) for the sampled invTau2 value and add the resulting log density value to the result of summing the data-level and group-level log densities. The unnormalized log posterior for the alternative model can be obtained in a similar fashion. The resulting functions look as follows:

### functions for evaluating the unnormalized posteriors on log scale ###

log_posterior_H0 <- function(samples.row, data) {
  
  mu <- 0
  invTau2 <- samples.row[[ "invTau2" ]]
  theta <- samples.row[ paste0("theta[", seq_along(data$y), "]") ]
  
  sum(dnorm(data$y, theta, data$sigma2, log = TRUE)) +
    sum(dnorm(theta, mu, 1/sqrt(invTau2), log = TRUE)) +
    dgamma(invTau2, data$alpha, data$beta, log = TRUE)
  
}

log_posterior_H1 <- function(samples.row, data) {
  
  mu <- samples.row[[ "mu" ]]
  invTau2 <- samples.row[[ "invTau2" ]]
  theta <- samples.row[ paste0("theta[", seq_along(data$y), "]") ]
  
  sum(dnorm(data$y, theta, data$sigma2, log = TRUE)) +
    sum(dnorm(theta, mu, 1/sqrt(invTau2), log = TRUE)) +
    dnorm(mu, data$mu0, sqrt(data$tau20), log = TRUE) +
    dgamma(invTau2, data$alpha, data$beta, log = TRUE)
  
}

Specifying the Parameter Bounds

The final step before computing the log marginal likelihoods is to specify the parameter bounds. In this example, for both models, all parameters can range from \(-\infty\) to \(\infty\) except the precision invTau2 which has a lower bound of zero. These boundary vectors need to be named and the names need to match the order of the parameters.

# specify parameter bounds H0
cn <- colnames(samples_H0$BUGSoutput$sims.matrix)
cn <- cn[cn != "deviance"]
lb_H0 <- rep(-Inf, length(cn))
ub_H0 <- rep(Inf, length(cn))
names(lb_H0) <- names(ub_H0) <- cn
lb_H0[[ "invTau2" ]] <- 0

# specify parameter bounds H1
cn <- colnames(samples_H1$BUGSoutput$sims.matrix)
cn <- cn[cn != "deviance"]
lb_H1 <- rep(-Inf, length(cn))
ub_H1 <- rep(Inf, length(cn))
names(lb_H1) <- names(ub_H1) <- cn
lb_H1[[ "invTau2" ]] <- 0

Note that currently, the lower and upper bound of a parameter cannot be a function of the bounds of another parameter. Furthermore, constraints that depend on multiple parameters of the model are not supported. This excludes, for example, parameters that constitute a covariance matrix or sets of parameters that need to sum to one.

Computing the (Log) Marginal Likelihoods

Now we are ready to compute the log marginal likelihoods using the bridge_sampler function. We use silent = TRUE to suppress printing the number of iterations to the console:

# compute log marginal likelihood via bridge sampling for H0
H0.bridge <- bridge_sampler(samples = samples_H0, data = data_H0,
                            log_posterior = log_posterior_H0, lb = lb_H0,
                            ub = ub_H0, silent = TRUE)

# compute log marginal likelihood via bridge sampling for H1
H1.bridge <- bridge_sampler(samples = samples_H1, data = data_H1,
                            log_posterior = log_posterior_H1, lb = lb_H1,
                            ub = ub_H1, silent = TRUE)

We obtain:

print(H0.bridge)
## Bridge sampling estimate of the log marginal likelihood: -37.53235
## Estimate obtained in 4 iteration(s) via method "normal".
print(H1.bridge)
## Bridge sampling estimate of the log marginal likelihood: -37.79776
## Estimate obtained in 5 iteration(s) via method "normal".

We can use the error_measures function to compute an approximate percentage error of the estimates:

# compute percentage errors
H0.error <- error_measures(H0.bridge)$percentage
H1.error <- error_measures(H1.bridge)$percentage

We obtain:

print(H0.error)
## [1] "0.144%"
print(H1.error)
## [1] "0.162%"

Bayesian Model Comparison

To compare the null model and the alternative model, we can compute the Bayes factor by using the bf function. In our case, we compute \(\text{BF}_{01}\), that is, the Bayes factor which quantifies how much more likely the data are under the null versus the alternative model:

# compute Bayes factor
BF01 <- bf(H0.bridge, H1.bridge)
print(BF01)
## Estimated Bayes factor in favor of H0.bridge over H1.bridge: 1.30396

In this case, the Bayes factor is close to one, indicating that there is not much evidence for either model. We can also compute posterior model probabilities by using the post_prob function:

# compute posterior model probabilities (assuming equal prior model probabilities)
post1 <- post_prob(H0.bridge, H1.bridge)
print(post1)
## H0.bridge H1.bridge 
## 0.5659652 0.4340348

When the argument prior_prob is not specified, as is the case here, the prior model probabilities of all models under consideration are set equal (i.e., in this case with two models to 0.5). However, if we had prior knowledge about how likely both models are, we could use the prior_prob argument to specify different prior model probabilities:

# compute posterior model probabilities (using user-specified prior model probabilities)
post2 <- post_prob(H0.bridge, H1.bridge, prior_prob = c(.6, .4))
print(post2)
## H0.bridge H1.bridge 
## 0.6616986 0.3383014
bridgesampling/inst/doc/bridgesampling_paper_extended.pdf0000644000176200001440000127473515107052016023534 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 5379 /Filter /FlateDecode /N 98 /First 831 >> stream xœí\[sÛ¸’~ß_·Í©MHâL*ÛIgœËØ™IfNåA‘h›‰.‰Šùõû5J"%;²ÇNò°%Ó¼7@ßMÁ &SL Î4s…`†ñÂhfWÜ0Ǹñšy&„.p‡ 'qco9ÞeR*ÀLZ<Í“ÞiÆ5SBàºaÊh\·Lï9¦5N¸gÚÃдƵ 0ãq¯ÚÂZ&³Báø(‰sì3‚ T-ÞsÌI¼$˜̬òŽÑÔk‡‰ÄEn ºE“-³Èž˜n :nÙ8L †ˆÛ´B”`Z·€l¥™²ÕèŽdkqêäˆ@vb@¸“^2"0gðºdÌ3®²óëÙ£L;$Zp¯Ap˜î ®cã†EQ`"<(¯@³ŒH±DïD› `ÌE¡-Ñ,F "8Æã¿þýo–¿(ëÞ W÷ˆ\ÀMG,u^Žwúu5³ÿ€£Âµ§UÍÞãÖ¼VãrƈÃ×½ÓòÅdP²ü·Y¹¸.ÏÀ”á™7_Îq '§ìçŸC»;óúl2e~—㺳§ÛŸNƽùCö¬O«O츟ŽzãñCödZõ=ïÙ[€zŸÊéì_€8-{„æã^]²…МH4\˜?‹â¿ñ×ÊÅs.ãû<µË|y:툴“ ZæÂþ}C«‘|J'5 ˆH yÓ„M{—ö©)Q¤}B­y/5Ê< -¦i³RƒÀ9i˜Àžƒª·;¹DóU{‘ÊP<ƒxO˜NñBÃiGål2Ÿö;!þä²Þ?®‰îH&G>F8s‰y§“þqYvþúñSt¾¼$6ÿùçÕqh†a·7+Ãëùó¯^íÿú?{/v!îò'ãþd@$•¿­Æ;ãYµ¼ð´šÎê½³Þ”Khûq‰„™0:ì¥Gh¸ˆÂëÐ2µÏ4b³o«A}Fó ¥ ƒ¤(Øõ?Ëy:2a6>¨ùꟂœÖPa š2ì!Ee¡Sër—Îâ‘vô Ý£=ÞF»Ò“aÑ\±$4®¿_PÙ¬OiñDåù³²:=«¡Á N1<4MòÝüi~”÷òy?äe~’Ÿædgå8¯òù0åã|’ŸçÓ|–×y}1ÉçùEþò‚FžxDœ?öNgd\„±ÝöJ4Üv°B‘÷ñöÓjXJFZsAC/{£²KïUg| ¹„ÓÕl*³#?®ËÑïüWæu…"òw©× ƒ´Fu/öwÿ8FcG-ªóªÑP ­¹5À~Ôì–¤'Šl”4©Ø\ ?šêmpyß’9H¤OÛÊ@¤} ™-7‘ÞP2¦ysk KÆÀ 10Ê, º'!D5Y/xÃ@úxnâ;tîâÞÊHꆎ0¡ííâÄéœmöMG[<‚}Ã#tÞp Qý&>ÑKxäç×ÚÓ`¯¶ˆ´ÃAºÅAdÔ¯pÐxh/œ?'íçÏòƒüyþK~˜¿È_æ¯ò×ùë³*ÿ:–—y2œŒñ4êgU9-gÕ,Lð"8\ÍËñ 7;ËË¿æ½!û„þª<ü}§ãD;ñû*ÇJ¦/gÓ²Ìëj8(“¬ù is™ÉÿÎÿ.§“–Ø¡i‰bÇ´¥”ð£èš>Ì^Gìø®ØiK‚mÅ¬í¯ŠÙÐÒñ̸á¬l^YªÒ5¹ôäà·7¾&!ø®-˜¦s#˜ÄZÓÉH¹tAðѤu÷覿%´ø“äB{FÃÐÚfëÀ3~+¢ÂV$[BK†|™ÿ|K|ºt“Êm’¥PÓ. è¸'‘ï3¶ñ{ç(<;´GÛðïh‚ÞÚ¶4ë¶e2öWøŠ´ÀV|eŒY¡8c¢nUVthÑ(Œ¹«Æk¬¾Ú éå5 zëj5¶ê#5ÕÉÔ­™ÍÄs S­Í¾ôO;sÏ»sß™-ç‚ïkSþ®MýŸûo÷ÐØ›ƒ¶5]9*×-¼ä’­ R±­‰lyÃBh¬ˆb‡Î¥¶a_q³º+×âQ|nù³ŠÂØà5[‰¡XbV†{Ò‘mƒ{Ưġ“ác³$2=Ó°Çßò·Rr1q i¶æ8ôȬbGg‚ÌW eò² J‡z.áhß3†‚€—À”îÝ­•Õ¶¯º‚²m1%/g)&oló¬Y4W Ò-l[´Lb4^È­Y3^t&[òT‡ÌWyêÄÖ5ö‹ÿ*[)±ÎV_=¶ƒö^tØÊvÙŠóu¶rklµ­}b$ppUc[(Ó¸Ù&’e óP@]ÛÄXþ:™zÝoé-\„ÆþàmëFë…íT¬²“v«Ï×–ùZPì<ØD"Êw½‹›D1…þ)ÒK °ÐÙ`*MŒé¢–´ õYù¯»0ÁY0טé%Ø'8%Ãó3 | “các”CœE®Y: £9ñÌ<òJ]õ†ƒ >FãÀíù Ü1=›‡Kfiåð9xã²ê„–|ÑV3¤ˆw㛸Bv¹¢C¥ÛZÀ¸O<ùcÿåá;´ö¤c²7ŽOkSpo•%ô–,¡`”†’J¼­1‚ÖYĵB¢Ä_­ú6?^ÄàUÇòáÁçß`øÀ}[žÐ[ë6ÓúOéö¶Æ €±Ê átÁ ät—guu>˜\ŒnøâJù‹Kóóö#óóåÉß­NWO?,Oã»sºÖ«/ªA9Í«q]žN‰­fçÃÞ—Åy]^ÖKõD 'š“ôåY¸ruq6BÂ#€üŒåx@Œ1,ÛàÒì°%tT¼ óˆ‡Ñì0fL[šÿmVÙ–1á>nfÌ5^|÷ø·ã§{Á¿p«¬Øxý×xÏ¢èšùjKNôšHÓñÇow2Å,¦0{X{á„Ç4KqòÂÏßýñ'´Kf%…Î<¥ZÇóáž}†q¢X|?¼!l¦9…°tVP·àYiI“9XïWP>¬ÆŸŒCÖa-á¢=á"«]¤xÃ?ÉÄô@3ö7J,PL‰Q´±”­±ÑL·ÑöXf]Vzaî¨öu"eHD“䊻”âJ™¬”ØJù«ØA™²^±ƒ2BI©)•2W)ñ•2Pñu•²Yñu•r^ñõ”ÁÒ ¡èEG(:BÑŠŽPRæLG()_g"””M3ЉPL„bô†i¹Ót”i\:š(co1QKùñË‹ãÃwoƒü8>Ü:fݺ&MÖR|[ÅÞÄ¥ŠETª¸&&Ut"R]G«UZ±§–õGÖ9E§‹€QÈöl—áIÁâ#°á¿–ßYÛmÅ¿â7‰þÜZò*c3NæåFÉ+¹Ë†\™õ'Ór¹V±»RQøEêOwÊ,â]-mð÷­Ü_’ +¹¿«u3½Ë•ÙjçÃz¨Têõõ¥À›Ögî>yöf'ä;‹¯ct½¾XËò.£CdmÉèž/˜æv?÷•¢ÂØ‚–q•…‹šcùÂæ•bF lh‘¶rÍÒ1k6¶VLu ©x°–.«C­ ì¢CWäˆÂmªV§Ö:”´¶Š|m6·Î"ߤbg'Ä—YþÛÑÁBùÅ*öpéÁY]Ÿÿ”çƒËl0©²Éô4çðœ‘6ÿ8›eŸ ¸´UáÿâÏWëp¾Á§ˆ}Xì›i(g­ ¤$‡#¶4h¶Bü÷Žv^fGΧ*ýH%ìÿ;ý8êú·è€(`BPµ^‘…•á)s)9:¤ìßi”èÎf'“Èf¢!,Vø-½æ­ñïM/«ÏíÞ‡YÎ-f¿pÒo1î°„ }ÙÂÂþs‹açNgÖlé|}´Óh“cit2@éóà¹elgk¬WYµà&ÿ˜}gô© Ì,œ }v¥Ñ–ÁŒöÒ.‡\à·±|Ϥñ÷6£O„¯CÐ÷[LÈmçpÈpÓû›]ú€Lc’oãÐúC[¬÷kºýèÝó½gÏBMÑöª}C‰—[Wíÿ_âµ,ñ"/r½Ä‹¯•£t§cëjÚ›ymÍ-ç³/QNÁ Ï¿\žŒnΔͧة±Ž¢LZJ лϼÛ2½vÚl6ž\œô†Ã›wžqú”µðøyˆÊQ¦Þ¥q‡]@úÓÞ8›¶zpQ~hz1ËÃGmž†oÚä<Ëì¬ݦS´šÅ’Ð}>Ò jŽ*Ü Ý][åù´׳l6©'ã¬×ÏæŸHéÁÊo£¨)Øg˜‘"s´V)© £Hí®5õ¢ž”…rs…¥Š™,|E‹gÂÞ5â×ZvV·§È’Lp*³ÍpÖ$ÒBÖ»Åÿâ⢃þ-HEÓòþð‹ÌÓWΊH2pï`mÜ¥ô£þ#úˆÓ-QmWj H‹# 8 Õ²Pu±íJ£o‚ªÀ|sÖ꘰P‹ÖDñu7ö.EGÓ[Œ©O ˜Bå+%Æ´t®õyúBÑÊ÷`ÂgÀÒÇ^bÜ9Ä*ÙâË04ÈqTHߦgTI…›ôù‡ðe ŠüÇ/UÜQ ~ß Pš‰PÔÊBM+}É!Ö³R-r,E¥ï°å£9ËÇØ.+š~ª[e±l•Šu¨œ•ê^R¨•Ũ.½Ä¸*Uº¬VÁÞîk•ö±v5ëT²n)!} ¦]ÕhpµtµË‰ ÚUT Öª<¤å:BÖ-U¤b»E# þD»&’u« ãçÖÊ/Ù†úKÖ-Àdk˜wMñÀÿ]µèÿ˜.@ˆendstream endobj 100 0 obj << /Subtype /XML /Type /Metadata /Length 1850 >> stream GPL Ghostscript 10.05.1 bridge sampling, normalizing constant, model selection, Bayes factor, Warp-III 2025-11-18T11:10:06Z 2025-11-18T11:10:06Z 2025-11-18T11:10:06Z LaTeX with hyperref package bridgesampling: An R Package for Estimating Normalizing ConstantsQuentin F. Gronau, Henrik Singmann, Eric-Jan Wagenmakers endstream endobj 101 0 obj << /Type /ObjStm /Length 3198 /Filter /FlateDecode /N 98 /First 901 >> stream xœÍ[ko7ý¾¿‚ßÚ`±ߢ(à´M i³vw»ÝE€*ò4*K®4n“¿çPœ‘dK²ÝX‘¿˜3ž™ËÃËËs¤´2B ­¬lœÐ> õÂ6xEÐmQ[´Y$‡{Íoø‡5¿ÐF å^ó4dË <Îåå Œâ‹: £CÂE¦t¨³0.Q†&X<2Z˜˜ñÈa²ç#+,h〒ðð¥uìËa}ä£(l´ü*áÂóQ6[³J8•ðnœqxdpNP:Ïñ['\(D¸ù(¯ Eáu¢œ„‹Œ¾lÞf»œ-pq>^´óñë« ­õ`®ëJKï 0q;˜ª¿°ý9œ_B##À´Í|<›ßÈlr^&²xh„°áëE;¾Í|>›ßìÅnš£É,zcØy¯lÎȳ÷¢yGh>O‡ï›Åx8í?ZtyÝXÍ IÎHÀ¿Ò:{ÃXµÚXqzÝXµÝ 3mÀ<¿üòz2ý&^ÏÞ}ò‰8kr<ÅÔü:5×宫QA‚ǯ+ªÃÓ#È}–>ªn„^ÓÎ7ß½xq³ËM“41Jðá ÈëÃì´­K³Ö%FÙ‡Óáäýb¼è{?™NgíýÓÃQýÚ²Õµ5µµµuµõµ µµíä,qÒ›-Û¥¼W´è}Š^}7…/šóñðéìpðmøg‰ áŒç¯Æ^-ï´YÌ®æ#p-Gðõ»ö  @7Y^x6£¢BgóÙ謡Ž/¿zUqî^Au¿‚Æ6gƒ1ÓÆzLVF«o€ßk‚›æðÕx1ºZ,ÖWÿJû©j9U-§ªåTµœª–SÕrªZNU˹j9×YËU^®òr•—«¼\åå¸eV܇ÏÊr rú)p› Â+MÚ² 6”®7ÔÉè·éìÏIOuÁÑõª:›Ÿ7ó:4UPnôò¦sªk„éa†qƒñ±Ü È·bðœãUŽ“ —!‚–KÂÛ ,¯Ÿ]½nË ¿OëP,á°Áé[vaßFÍœÓ^FØ£çt”¸g³4AÎ݇^Æäwi.9À„d嘙‰¤Cò£$ý£bC¢‚§®ÇæAùƒ€Û2«Î9̪Þ!Š,ÙV²f›20¥‰I2?.¸laj¾‡ÄW&>¸`½ Ùî29È–Œ]zdyÎp±2ÑóÒ~±îç «w+p^K¦¢‡·eAØd2f×´º$#“m•@wX´ÞËRÒ0Zº#c3>À=¤¶¤$C¥û`;e féïûÿ`ª¦ÐÎ%ž²h²º "u—L×ë5SfÛ]ÓÞºk&ýÝ5“äî:c¡ÔkÏØ¸ûËÜt)Ó)ÂCÛ¥ §ˆ M†>Ø0 f7ä]îêTŠî7Cͬ+DªÕ;#Yø9ðšÙM[ G–VØ|”!¦ÇÎ!át.]â[ðºéyf v grTpuRétuY;P$˜xevá¸Ø ¢bIÏ ŽN³Ä Úføâd Gg£“9š¸ fLœ±J–Ú*r˜4™¤aÑÚ)ø–#+&æ|ê±Y“ó÷‚¶…¥Y±DŒQI‘Ån£Sö4ª»‹ ÙÐ÷»ßÃwðö®^Ñóàñ¹éåÂVL|³`PSL·|¾™BÖ~(±wõ…eV麬û>YåÓá¢)ŸÎ~>ùþŸÏÿ~öìôRtަ£Ù9ëuƒŸÆÓ“éb¼úG)C}ùv8ÇÒYv“ÍÇ—,¦pO¡¯Nõ/õ–A ºƒ²ìú§ñyû–ÊcåýU¯ÒňJˆ˜‚Á—ÃËo›ñ›·Ý-¤rˆŸ~¿šµÍ &Í“bØåɓᛅÞõ”nž®ôÍ<å¼Z>y6ž4p†ò_ß/š-*yÞ'ãÑ {c/Æ v]à »œµÍÅ¿1Œõñ­©fïòÔÝM—éÛµb`ŽÒGÏdÑIÏ͈í¾™+k#&XêDðL¦!(»Ó=)Vv&ÿ:}Þ¿PŠìË}ú¶m/Ÿ ³Å¯r<Ø÷£ôûàI±¯Ý¼£oò­ä×¥Àm1é¹ÛÁšç9øv21Ü—º ³€¿Œé˜œ‹Ü¶ãí<ãìrí&»l0Ê-¼±Æ ñù¡AWŸ¿ìSÕÚ¨˜™p{ÄzÖݚ-Ó* ÷ä"¦Ú¯Ú¯3un4Â×ä²S&”’–&ßÑ–{VµÐj¡/ÔB_¨…Ã:rî –6ÖÂa¬…ÃXY=ÖÂa¬òb•«¼XåÅ*/æ-^ =¨HjÝ $ý&ÿp᳓ )OÀÚfE¡ Ÿ>鎄t°ðÙIËÈ…Ên2ROÅm3á1äár®WÜc×)N£år§8`Uùà˜ýز‘kÕ#*Ù!#BÞ–Ñ;_YHBèÁ”ÁRp7øv}£¦° a<»òÄ<¯aüq 7K[Ibâã&E*‚0à=-ˆ®‰TK¬ùÈ‘S]+=üIÅfY°‡xlw›Uà  ]à¼ÊRõzó–—õ(ô¦m”TK-Ü3jSF.ÓÀáÛ#s·¶UZaÃbpÑÜÛ¡¢ÓU͵àtGâ{K4z0w†%‚ü#d„öfD­JXðªhG–¥zÃ}5„,9È|øý„Û–ˆAWà<Ì‘gî>Üun1kG²àœ@aˆË¸ßû %Š‹Â"'<Å´äyD|*?xtg-KŒjgͧÊS{nòò¢µAZ}dpÖjɃ=8„)|ü‘À¹÷wnœ‚ã˜/Y¸Ž ¿æ<·¹gc Ççä8fƒéØ6Zô{õñ¥ß .yü \Çs]%:îpptm61^Q…[Ž ŽIjöèÀ|2¸„ôYbΰÅrýHàJ¶wð&ˆÄýf|X¶¡q6ü-†tøs™ûÁe-ùSÔœçÑxwOpûªžw©eöÁå=åÝ/ne–»`˜»ñ©ÿlù”endstream endobj 200 0 obj << /Type /ObjStm /Length 4850 /Filter /FlateDecode /N 98 /First 940 >> stream xœÍ\YSÜJ²~Ÿ_¡Ç™8qTû611ãc^0àubFsšnÜÝøàûëï—%©µ6 ÆA4*m•YU_.••%ÉEÂÉ%~tT‰u Gn &Òyl"¬¡‚KDàTÀOÅBH¤5:‘‚'ŠK\"QŠê2Q6 ¡Í ]щ–o“h£èa›h@\¸ÄHåPð‰1’Þ ‰å (%O@ãªãÆ¢ §ž‘*q΃ºÔ‰xPJ“xéè-›x­è–K¼!6Àœwšê hjA¸c¨+A©d”£[* FÑ-ëé–I‚× ®Ðœ£·ˆ_Áu Ú"¸ôb@IS?jNýR ”œÇ»Z¢4ÝU‰‚ú]£¿…4àY£Ã…F/IÐÂ8p­AC8êX°Žq ACÄÐ@ßá® ðH%ЖzÅ€†ôÌc„„âŽJ ¡$5=)”&þ@[àUÔŒ÷…²œÞ å0ªÒ‚†æÄ@!´"®ÐiBÛ8ø ¡ƒ£ç@ÃÈøhíè Ð04Œ×t4,:%аt.ñ¾°ÀJ"b =ï@€ ô¦À€?Ô)€¼‹ [ˆNQ}wá Á="œ% Íè žô áñâAà ‚è¯e40¼à='¼¥ZÇŸ &%‰Ð"ûxco²À IQ#ÛÏ–óËÅq¶LˆòÎÕêƒÕd•E¬Äž@ÄK<Û[̲êf{OŸ%ì0»Z¡ÒÿÅïÕþ%ÃilÇÖd™Å×Ùþþ‡Û¿m¿ÚúmÁvfÇó“|ö%ömA%_,WÛg“@VÐ|š-ùÅj¾ˆ+>õrR=ÍÀ.V‘&QÁùÉꌺR»áæ?ãÅàuR \Çg0VC¿òI![ozÈ/€H+Ðíá€AäyàU“ŒT-¡œtÙjÎúxô qq¾¨Z+96Ðô ¦‰G(c}äŽÎ Þ I%ê•øTy—CMƒ<¯«;x’ø¦cü¡ÞÿVûdyLr¸Æ¶'ϳüËYuŠá!€ü=a[l›=e;ìûƒ=g»ì{É^±×ì ÛcoÙ>;`‡ì›°#vÌŽçÓùŒ°Œ²ÓÓœæßP4ÙvÆÎ¾_œe3–³?Ù”³›³ù,cì"[äóöõr¾ÊNަÓìtµ>YWlÁ–l™_±[-²Œ­þš³KöýÅ®ØwöÿH!šó;¤ø™N¾,[i«’£xOŒ†‹ï>˧zFòZR^OγÜwW“i~üdöešáIö*_.þÑØ¯ì`•¿òuÄ `Ë.ÖüÛŒÁáY¶š°y³•QÀŠF=Ýi(n>š)ºÍüøôÝÁ³íØL?¾•0¶Ã­ìi/·÷ß¡þW»[07MµzjC¨ ÛSb¤Ú°&¬E Þ ¥5`œs?R­Üýψ¾BòNŽ}ÛŽãЄ!ÁVMPYXŨv!ºG„+ú²óKH¯rö½%Nb-Nº'N¸ç½ˆ”:0“]˜uaðÃ@kˆ“°UO^í¾!á=øÔ]¨8[ƒŽ`Îw1'Æš*Ý×Yû 7êþûäÜ&ÖÚ[¼H&©* šLxykTóâG²ÅµWªDƦz‹§k$>ædrq±˜_e_/'Sv4Y°£Åä8‹– – 3€ ç¨å³Ó|–¯¾³ó|v¹x§«übú½4$D3[d' 5^Ì«|>C¥‹ÉI~LÇìtš]-/–Ù 6å<ŸNMÀË7«Öß1‰O`6`cC:¸W]Üw€8öð"Fê×í·»Ÿ÷ŸEÁò- W®_­]}é‚÷îF"]ÓwmoƒÝͲQ«ièïëÿ¬£' ÔRý –@c,!WÊÁ•‚‡ŨB84¦ ο¦gѳu-Íz7èüœ”êø:ÿ[{;ðs&ãdz’ŸžÂŸY•÷:·íÀèaû;æÍñn€õr¢‡=ÝÅ^£5®½QãbŠÜÃáç­gûŸƒØ~†•ñ†¡P¸Bva(íXRÀBÜyYkA£Ä¨_©´obJZ*¨[‚·ª1Ö“¬\Ƨº^œŽÞ›x­º‡§)ò"BlUqÅEá2¶M©KÃÛ_5a¹¾ôÒóÅñå9iÁèªg…jš÷´ã²ç%vg9õµ»NsϨšc©PÍS(âè¦gßàä·œõ|zR¹ì‘»ž-æ-À¾ÙÅÀ=Y,µ­wÓ…{ cÑŽYõ]ü‹í½×[oH´ömí@åìÉl™×n€½îÀÞŒV¾p»tg®káŽùÝ€›ât›5, (†`ÐýõDíšñ†…µ~hÌçCcn{*®9#ÇÜß`[ëÈM©Re‰5YÒ§(eqô屘ÉPˆ²8Šò(ËcRe}ª¬O•õ©²>UÖ§ÊútYŸ.ëÓe}º¬O—õé²>=Q*y½¯ˆ’nE”ôE”^¼xýò€&/[^úµr4Z®k>F{1ä½*¥:^ìÃS [&Ð& ò¬i>QøçÆTþŒàrˆDáFë8”ÅÿâJÁP1|äTSE•Ë­È9 Š×ûS¿¶ÃÍ[wËyÁÞ²ƒ»9.]–Œ”~¥)b4etf]–˶§b+AV²k¡¨8ÅüyÏS©â…õì° „Ñ^òå­”÷‡Ÿß|ŽÔGO /t7Úo!VýJ$4®Üö·¹†îu>XÚôîf:|à‰kÃüº`!ìÉ· 3²í°KÕq’TP|³Žn±Íwì$d²<ÎóÂq*Ê…Sƒa‡t,ÿ„_µqÒJÅ?³Õú2ÊÅ*^ZÈÞ ;™O1%lÀû²È Í0j1µ˜fËeá£]že‹eþevƒ§VÈstؾ®ã¬¥ïvž<‘_N'˳NÈõrvÇóEVG_ûö°Ô !t¦0¼¸m¡ iŒ:Š!tCOT›ªáwºðjrÕ䶪 +•Ÿ7bV3àç½Ù~·s}ÊКÕTs­zr-úÚ¡ ¶ÞaÅàãŒãñw—?…÷é- f £ca¦º¿ú½â™–‹ÈáºE}üxN¡ZS)MatKèŠ Õ„øvº\îàf(<‰;ÃáÅ–qu½d·dÜ—OUwéºæô3±¡Õ5"jÊÕ|“³Û6[­¥Ž—Qô8*-–9-tLÇ,s\#_Kû:¸¼Ñ0½°þ­7sx–}÷¹tOâÕ‚÷X«Ëïfu?î|ücg´ÃX_ÏUqìzÀë´þÝ»ý5ÃÏÞdÊogðèfò&–«ùÿéz¾}¾—_/³%…P Ñ2 -spÕY7 ‰uéªFq“´oT}ª›.FG)/n£ûç ´©œ%E ÚÆ‰¨Nð6Ms$/ýøé3%f¤œ&kJóÔR†Ììr:¥§ŸƒcšLÓ;B˜”¤Sâ„”i†}S§`k¿ÌgV,ÇÙèõÌñÈ^Í\9mŒ¼•:µ«I-—›X³&uœR€tJ)hLJ¡å\ʽ|\æ0íM…·5s`6÷³˜S^¥JmT%ñ-Ó—ÌIiš~ æ´6)R×Ì9­ýiÃDê”Ú(ÂŒާ %¥ÚàܪÔÄU¤Çd=¦ÀÔš9ïS¡ÍÏbN8“o61Tʵ^3‡!M¡W~ Þ¤õ©Ñ®æ-È”’­€¹jÁ£É)SO nêCjmÝq*@í‰Ü˜ .5¡†œ–"ÕÜþ¬aUÚ¥’û ÌÁÿþíš9CÆ+ü"Ìy-‡QUv‚2 ÁSÁjxlÖ4.M]*Þ$‡í‡ÃzÌõ\ajîK4<¤ÎnVÜ ^ÕÜA%;þÓºÎh \lRÁÒÛ”Ò*ÉÂZE](S®p®lJ¹ÂÊœ‚GФâÍxØ.ñ¼ )¥DÊÝFÌÁ²YI™®Q³ˆSÊ”¤í¼{\æ¤qt·fÂë)_üç0g¡¬Ûä/IcSó¤á’‹r2Š]H…xða½ž9‚œ°¦f=(5üþ™»ƒl ½bNƒ)K9å¿sš0SØ æŒ(f7·bn?«+Bº¸)¢X1ÖôÕ mxõ™Š;#ª3wEgÐ0U P$Õ´ AUe•Tª}Ÿ6”‹]ûžÇý剌[7ìÕ‘—w>îþ¶©óÑ"o­i¨~€Å”|®,ÐsøÊâ2+zçpþn–ÏO²Ä”뜢.š&!.ZQèWKWR ]Ó8Ç\˜&ë<ÔÁDzŠ^­O,¥f—Z¥å0E[)¨Ll( †îiSWñ§Ñ0 Bá"%²‘ͼZ·[t“oxq×uz§·ª—øÕíôNäâ¦XZoßï~ÚßÝùm{~¹È³Åë쯽ƒW‡7%˜^^M{a´ÌÁüY^äÍþ¼¿‚ZM·*µ¯ ?Óº7òªK§uÀÊ©ÍY(¸+Uª;« ãt]pÕÖÁU¨°›BU°äU³ââüAÂÞíï®uÖ1ëŠK?[­.–ÿdl•Ͼ_.¦éñüœ}?:Õÿ»úsò¸:¿Y劯v4 “*Šà•s)ÔêHoq4ÏÇ´à•Ë(Ø>Ÿ-Óùâ Cf³e¶dGßœAvû6мÞÓŽ$ŽÙ±{#UdT,‰½_ ¯úvJH“®79nänÐf-îáUÆ-xèh pÃ{\Öhf ¥®YÓ<¥4–Ûð6hA›6“ösé°>³qŸ\ßJʸ ²o2f’LÛ¤TçôØ2·ÆñòXæÖ¸2·Æ•¹5®Ì­qen+su\™«ãÊ\WÖçËú|YŸ/ëóe}¾¬ÏõµrtÊ| ûÊÑñ4©¸îGrtß¿yó¾HÜogv–~Âõ ƶ¿:z¹&4·I}ÛlÌûø ·N¿ÁÀ åmRÂïÆû›6f𵽂³ÉÝÀf'• ‹ªï,²ôÒè:ƒ—’¹„6sœ_’ˆ²«ü¾hùuí÷Y-å×Û¾‹Ý0qÓ=ÕyeœÝ&Op$ëosÄ–5¿½X~#i~þ#ØZŸîHh·Cõɤúí§LêWIcËU1Ç<š”ßm)¿üqßMUIkzŸ@XA´š‡{† Ôã—ãw_m¡(X =tß> stream xœÍ[ko7ý¾¿b>¶(:C^¾ÝΫI[·©Ý4mù 8B¢­#’R4ÿ~Ïápô–#ÙRlÉp†"yxï%ï‹4JUª2JWâ<žRÙü4U0|ÚJ« (¸J‹3(øJ[Ï/¡Ò>$b¥£eUªDùX­*Án­Åo´T⿘J‚ã[IÒǾX…ñÄ ¿šÈ*ôå,ÆÒhàÞÕ‘0DWVa@#@ lŠBDgb+›WY¯ØÊW6äß„Ê&Ô‰•SQ£PHø1vÆ ÊèÊÙ„qŒTÎ[b1•‹ŠU¶rÉ£•q•×DyÌ…Py‹^yY•*,ZYUù«« ª0¥ šU$s`•­‚ãÜ­CÁò7¾ ÁD•›Ç*j<˜[$ýŒSU´$ÓUôÝICD+Ð(&ôúUI“òÎUIÈ8ð7IÄXè+9ö LÉ“í`LŠ$”Wà»Ê%’fh‹ŽH4oPr†µ”ŸX Qѱ‚ƘÚk­=k!#šLQ²µchO’ƒZ‡„ZˆšÖ…ƾLÀ’Û !8‰Æoø cHˆü†1$Y~ÃF|Ã41,¨BܬÀ¸QXÖb L-"ÆÀTYÂ&åo”tí)q%Ê«-k ˆŒu@Ââ;&ÄßaÚf¡NrÅÆpBÌ ’v–‹)a çÉn`D)×b Åÿë›oªæd8M'Õó RÕY^@íÓ”§-OWž¾ì<âÒ<Ò­æa ýMá§)ü4…Ÿ¦ÌÓ”yš2OSøi ?Mágá™)sæ–Ò>ͺÈAébí"]¬»]\™/óñe>¾ÌÇúøB_èã }|¡/ôñ¥¿Pú ¥¿Pú ¥ŸPú ¥ŸPú ¥ŸPú‰j=ÍAéõ"=£Ü€žz“~nÞœ½xöì鋯NÏœB 7‡£7ƒáÛªy9ž 'ƒù‡'ƒñdúð]o íÔþ¨?¹®¦£qÖ÷ƽò#àjÎ?¼žæ±‰@w@Ú_ÞLß‘¥>³fó_ÀÞðj&“ ’ÇcÇmö®žöoßu¯‘“ÿ¢yÜœ}Y5DÆßbFO.{o'P±ÏC?˜s `;fûWmÍ“Áeª{Q^ê½ï¯éÙ´w9¸8¾½ìs„ÓÁd å Á8À—óiÿýoTy‹S^ Öò„Ôׄ‚ZšÐióº7^˜Ò×âgeÕʬr=4¦Ïý®ÌÌ­Îìñ/¼üé·¯žžÿ‘vŸXÐ×Ol.^§?üúò‡Sôú,í(]ªk]¼âŠxÁØQ¾\VyÙjî5i‚‚X”¦ü:#þU3]$½†J.¤7²D÷¯±Ýçj‹˜¬Þ¯~™0;>l¨æ÷‚ßbï^cÂggÏžþœÇz°3 ø×¸ Õ*ø«ÝV98¸J{ ;köíëŒö—„^IGy GÙ5©Çìrv²Bû°JûzìH|ìÑŸ"¾›4~Ó—m&/ÇùE·/hͺ³u~ÿãO8uh!«Ô ×—üíS ¤6¸` ž5ÌÛ†#™†»l’enÆ‹ÿ:¼Y{|©Æä ´­â`ÓÝKÁf”šƒK¡vÜè´( ´ÛÀÙP Ôð ææ”³jrÃ@­lã©K5ö|gø6jšÎÁ.€Ëu§Ø,@i‚éÀy[Ó1ÀË}Eä àÞoçÁ=h‹œ€7︨j…mʉ«áäÂå¬á¹£m¬MÞ ï¼ÞV 6´Ò1~.lN)³ ›O]MÄÔŽ!—ûM€Iû4Ãæ\­á¹=¶õNÏÁiÐ :OcbÎèÁvÍ Ȉu`Ø&隦µÆbp;îpgð‹Žï¾@Vªâ+áÞ§”ÈßÃvÝ<"ñ³:øCâguPâíì ½ CªjV”Šj¼¼øªÖ2$Ò•]UB(‡ª„+š32¤óAΠEu¿r.‡%Ë @ª® –€tcÃo“;Á €”ÀÉÑùæ´@Ä–l«0Nu‚¡gµ­CH‡+)Îs†g#T`R !FÈ6xÖÇš17ˆã¢5¡"¾NæèšÓkSû°u# )ÓH”ª´’` ø¤É¼šA¸;'X€B0œÑØ>”ìn㊄ ëNn—×ç!Waàµ[i †f5..À-º]LU 3Åè¸M5c§d ¾ƒØ¹j\`eìa͆½±Q¤%ÍíhQPÎꞀ“ëʉÁÖ–Ãï¶f&Ç[_ûx«½êöà Øì7Tçì1ÀmÜ <–µÛjªÂw²ØÕgàv}Êà½KÆLŽ2hn[ƒqµßÊViuŸÎÈ¿àŠ‘ïá|2²®•«“´\ֿޱaר‰¥Ã†'b=<¶HlŽ06ÁvfÔ&¡üq§u­Óñ÷õà’¯™„ìÀuÙÀÝXâläÎË”¢­™o· :ìøêá0‘`:pÞ›?¸C˜²ôÁS§0]•ÎI]À3Ì™Áj”¹H׺A·1Ágvíá÷Ìo%ŒÊSí³$¼\Iœ¹’8s%çJ͵èrB¬Lð@ 1·ÖÈÇn;r+Aó„ÞãPj)g#î2 ¡ *à píîËÕ©K˜GeàG cûN˜OÆò=¨clºü á ¥U<Þãamƒ'ÜMÏ&¶IÙ66ðö“7ÇVa´Ù¼’m¬…‚ÓX›XA2ÄDxrª£ì¸Õ œXs3ÎÁÁÕº:·w-c5qx,Øv „­áxqYí Óü†ñ=,ÂÝa£|²°(°ø¬v¤†ca3íà7xáÁª”ât˜Íé´+íö *l×h‹:l!^·g´€¼ïTÐMâxŸ #̡ϼ<9ˉ?&™wLGûõD¨»y:šŠq= ½|¤A–N,§ ÕõyPÔó@»xµœMs%Ù¦AW¨±cºûúC Y;ŸWÍ‹³g3默FÃöÓï¦Ó«É¿›æbÜÖ㯯ƣÿA¶ëÑømsÕ»ø Jù?¯Çƒ7oû“Þû«K@ø2ëìí»‘^_%Jj·´ªHƒ Íz~rØ,¦<©Ü*¶:Ûô.ò1Àš§Šl²ÀÊpE«…ï\q}:p³`ôáÁmÒ,Tï'l)<Ô„ÏÞ†P[àbÓÆ w¨œO´¼ŽnWE Œ½5¦H'1ÍÀa£¯¹ÉÞ p¢é}ù98Xÿ›þ1Àm0‘EAŠÒÖ¾åŽ1ÃfZ%}?°5©9áŒÅ¦ÇÓŸœc®Ån³ñµ£NîÀuQ»{®ÛH`$ ƒÃÀóÜH˜Úº‰w{lš¶)Ïáwà`;çnÍþ ö'¬ x °ç¬x®Ç­ð7„v(mv¨’‡ÓdeÇÏ<¨K!• B*A„T‚©Ò† B <*ˆ–‚éxA„(,&ÏxZ±á¨Z'ZÆp—ÒA­™ý¡ ÚÓA jíŠË<ß>ÊÐ(°Fú½€fÄ2þÜA³pÎ}ø\ ½>†kà`FédÍÂÆâEŸ{ÍB35Z •£÷Ïzð*’À $'™â—ö,ŽóÕ(ûc#^Mê°1ÚÍ Tû`ûTÔ›Qm^Û9²½Kˆ`ïvöóóÓjæ}Ïwøõ³é~þþä÷¯žö/ÿîO½E¯¿;Þ½èôÇÕ+Pœþñ‡~;毣ÃÁÅèMŸ'Û6C’/,þñzO{ŧ{Ë*ÍùÙ?µôÿ¶¿eu¥õqøçóU˜meµPÎÿKé¹}.#Ëg-VƒÒ¥k|ŸïÎÇÍs\cýh7ê<$•-b‚QnŽ•cõk<] k´AŒ´í,÷‚©DèχþðÓ/¼>q¾ëÁzLd]²VÃIÑìz¬>.ŠíUW…ƒôsA­3E/]h_g‘§“æ»æûæ¬9_:Š/×]ªa5Ó°§åTI-0k™z;ÆŸÒ'âOÇ2ÌE°_æc% –.ãüÛªƒ½,9=q§^ƒ1°udœãi=ÙÜΑ»é`øñÃø²¾½o>ö.'Åì¤crÊ3¾î\íxwºs}¨ÞÕ•ø¼˜;Ï1_n0í©náx`Gdi¿7üÝä÷£á$GH±BúÃIÒ¼þØH­šÄF5Ï ‡Ù ÷›Ã ÌÝ.j8†¦<²?Ù –¬•ãg 汳/h3š8³HöÊ}&Ý|ü9ç&£½Å|ïûzKgÁºÙ5ñnKÎÖ¬–My†òŒåÙZGË>rwÙv÷¿²²ú}äÿÌ1aendstream endobj 398 0 obj << /Type /ObjStm /Length 3324 /Filter /FlateDecode /N 98 /First 909 >> stream xœÕ[[s·~ï¯Àc2™bqpG&“©eGv:qÇ•’Øm'4ÅȜʤKR®õïû,–\‰KyIq#WÍboÀ‡ƒƒs_“’PÂ*%4IXpÔÂ[‡£1ð¹„?4œ í#^ÕüHä"¿Ë%A1áB¯*à ÞÔ*ò-´ÖèƒiãøŠÚò[ä„öڢᅑ¯¡£¡ˆ†ÃX”„Q·´FãA‹¾Œ  -ŒÓ #Œ|Ë -€e”Šßò< :Ôø7Ùj °†ŸÁ›.áƒÿ`ó}aæoN9ÜÇs.j¬p&ð-'œã7ŒGÃÆL<ò•(¼"¾’@JÐ'é]ä Ÿ eAå˜à-gEŒ†o9ÏÔyùatP$Qä~¢H†çŽÙ&° uò¼LžD ŒÇk‘RnAŠØz0‡2L` MÊæçÁÊ3 }à°Z° ©È«áÁ!*ñàðhd¡¥y^XN"ž‚‰<å%á/WÀ”{ C“âÆÐˆ,¦Jš¹ÂŒ¡O¼D:ðLAGÒ™v› Ÿ,X—Œf&ÇÚÉÜ1†‰Ì‘Ù\1m#Æor/\ÁÏa ËýƒSÐòR9êr4åhËÑ•£ÏÇßDõt>[Mfè͹ú^õrr1Ì?¡îÕ%'AÓhIb*xãÕhDÝcu6YίãÉR0²Ó9ßÁÖÉ÷^-æãóÉ U¯žŠêçɧzøþ{4o>L¸«Ë NïL £Õ ËäL™œ)“3er¦LÎØŽÉø‡Oæ‡O«çç«Ñj’7q~ žŸñšŸ/óóe~¡Ì/”ùÝ1ŸpÔùÓžO°Ìçd´œä׫ÓÓÓ““7ß<}y~~ò±úa6ž_Lg—¢z==™-§› §ÓÅrõôÝhiTÿl²/¦VóEV%ÈO£òö³¨Î¯ß®òð ‚,õد§«wLÕÀêˆ(S¥ûç2óï¸çÛo²(þm½nË1S40’§£/&ÓËwÍ) 2½¾ªÎªójTͪÕ×¢â ñÖ<ëÑå2‹ô™1Ÿ4«Ç÷=v9wõ[}ïtz5qq³:½ŸtøÇÕèj:~2»¼šàÙêåt¹}35 ‰på|5yÿ+äq›\-RWoÊDXV6+:_\L…³Tæ¿|Bõ ÞfÖ°5·VoþñOh84‹çऋP1³ë«+~ö2ûë7¬ PÔ.E³ØÅºË%=e¶]/ñOÓÙ¿ÈyÇ .’TX…œØmupÔœp&… º¤ Ö>š舜$hƒL‰µÉÝïR’ê¸èŠjÈàèL`#Ê+é •ºÑiÐÚ¯zIZš"(£sœtZa…í®…%pÌ(XcéX7J6H´NRl/tO²à<Õ/g?®¯¦óY}é«w«Õ‡å·U5_þ.§óÊ܌㪯³ÈÜͱ´ÖD/aô²¼“l.á4fã$I“¨Ö3öS&SsÌÅ‹R”ž½ZŸ9¶³ËÐ7M/š7@>*"ù {„­“ú&“nžìPs¢³“ÐÑÒaéXFj/…u¹¡™?Ì ¿!M›P;({›B{j-;¬ØUÔaWyuTÕ] 4”ˆ‡¨î^²´ØŽ·d)lX©Lڱ墕ڰÁ­!´¨ÙL¶G•óûcƒÅ/‹Pƒ³äûëÚb÷°Q÷žZsQ¿=µ]ì6]|0Ò‡]t_‰ù³‡f$\ò$v7¡4#œ˜c®ÙÞØ"4{ÅI:ÞˆÊÈȹ×Ò˜Áí ³K÷yHêì…×àLtÒ†/œ¹`s¬ ¹”-°ÀuíD¶NôÎU…¯ ‹Âxì<‘l½Tð«M2@)=*8 ± œÝ€ ”ÍÁÀu.+,*Â.pfÜôœ IÊ}à`¢ÁfÙ€c{ËÇ=Áí¡£[Â6‡Z26G&ïWäjÙ_¸îOòX ,/œ†Ï­¡!9x¦#Ì÷ÐÓ®Œ› ±R kpF%Ò à:÷!dQô~§ºöÒ[ŽáqT¶ˆ=ŒûÈØdG» 6 '̓¡Ží®ÛÃ1÷=Ýø’Ãñkp¯¥!×ÅqžXŸï"œVàGÍ&”—NNãØ*üFŽê=.¸CˆôœÿhÔžàö3o;dÇ‘hû˜]NÛÆ³)„ä„D},ÁW[‚¯¶D–mñ€¬/ÇPŽ%ØiK°Ó•þ\éÏ•þ\éÏus}z$ÊÝ æºC‚¹›àç³çÏ^<ÿë7/&W'«éxÔqšŽ§)Np+ÄÚ!ÎÅõ¤îçù/³éx~1aiT¿ÓøÔ!ŠÛÁL¶298Þ p:ßëÿn`Ôû BŽð/ä±¶GlÿR戭kî›#“ÍHÜ˺]FàcäÚ σßjžÞ ËšÛaY>m`©‰Àv_I$l9~£}Õ v+6^G_·×øNøµ¶rŠª;Ú:°BÒpÖrª..v»1Qz¶ÀlZ oPß‹ÍÀÚçÔ]ƒ Ö¡V4¶.‘¯5D„ßûeóÂØ@ò—²^ç 2+÷ ðåáQŠ’à‡7ذ3à ûýÀõŽ^®¦³›ëÅ•ÏßW7£Ëß?-Þþ÷€ &GVý†žô4Â<^LF«éÇ 0¿ŸÏ–r¾¸¬°''³ådY½½©@¯±PÉ2Ag™¨¤ƒJÍž4/ƒ–bÖ-ËδÚæU¹ÀÁÑ=áNèi£MÞCÊ À†­uÜHÍþ쪓—Ä‚ÜGìv@„e—àCèH`ãÁûÁð!§¹p–Ønð¸ûÍNKplH¯Á5¸/\ Ài³v€Óð%Ø9{äU8,*”q¨‹ão\ä6ðàñ·û±±äKlêp$2€`_8H›ºâ#é5Çq$ÜöMŒ ®I!(6at>*rÞG?L'®êj\#§×ÊY—¶;ⱄ¾q'Úþ™ó¹zkÛ'ëã‡Ar%Ö®HÿÆ÷*u¶$ÎnûDÖÓiM~j€Òë_KÏz—¬£ðPŒÉ?²I°¸56Žfðqlw!qAcƒ}.‰6vEêb¯ûóH­2¤âyÇŽâ½mn;BmXË÷_aÀCÊÅ‹ŠÂxåJ,ã4\}HœÐÂ/íàVÖýØ,”5—\®±™P„ƶež6!—þ¥*&ÄÚb¶ƂΠ1è?a\êŸ`ýÃê-,®®$˜÷\,×¹<¼à¢oúâ¾Z ÍɱØl碠—vé ó f›) õÍ‘¸M–U>‹N¶ƒŒ< ýû Ö¨gñtĺ ®+\ÂFŸv…ï“….¡\Yet­ÿ¢e÷ßJÒŒx‡sN´€Ó  Ü9¸íÄG—üáÕnõ §„Ø+v!×}1Zåx—Ô ‘áã÷}‚ö&‰õ~ܹùKˆÆŠÜ½· 燞%<JX>–°|,FA1Ÿ©Ô`S©Á¦RƒM¥›J 6•l*…Òdº ¡ŽZ“M¦]Eæx…P[ÌZ¥‘kf´š}à]}+¬c€~Ñœ±7ØaÊ‹`j{ö˜0Äíì-”.g»ÑA%øñ.šº<¬ò\ ëû—‡lx*uŒG¨W¯­ÃtP~f(ÒYÇš-nHǦô^¤ëÉv±%I³uWëŽ fvÀcæŽcX›h’óIjÛÓ®Ù¬lq›m1Fø«–úX¤F*R#•d^êør¡‘GrÒ­/ÒA_.<`×ß›{'æ€ïà,Ûé,ÑôÚåÕð}©?”öåÀklkÎØ Û:íyòëééë³þiÏXˆ¹I{jõÙ´gÑt=Óž›_“ü¼ØÜnu%oQÂÏÇVbµyJµR¤õ¹ºóÖíÔ§º“øÌ κÕBÕN}–ž”GM€8¶Û Ðò=R+º½ÚÝ Pè”#$@ËlŠz¿…gÌ_‚¤÷yGÀ|du Nš 8¶ òWÇw€T°N*´&v~Zé¤Ò=#®Ck‚Áœ á2¡&Ì•:±¯2;(úvuqqqóqÿÀ—_™üqsÙD|9·<æar \ûÍÍÖ ‚ÿ£9”82;… f™Žp ùS„€ªû£î›HèõA ä<E|ׇëK¶÷£éÕjþí߯!à§3y*Ÿ/æ³Ñõ_.ù3ï9oJÙ$°\SÎ.&> stream xœ½\YsÇ‘ŽØG„cöÌcƒÓ[÷a…d‡-ùcEqÃ^ïà @Z†â¢Èýó›GUWVO7²C4kª2³òøòèùa£F½Qø_ùÿùÍ™Ú\ýp¦éé¦üïüfó›ggÿùÔ“8íÝæÙåEo´v£NzüÿÙÍÙÿ Ï·jtJ“†7ÛcÎɦá<ÖÙú˜†‹¶âê|6Ùå†#®¶9g‡=~V9›¨âpƒø›‡×[\£®iÜCÙ?ÝâJÂ)WÛÿ}öG$Ýt¤ÉA!Ï.€Ø_mw^59_"UY…¤a›òU'¿êü˜´Êõ«Os‹¥Ñ;eêêÿÚZÜÞj` 9S1è8œo-HNßoƒ²Ý?_Ág¯Œ2ax±ÝÙèG«Òp‰"PÁ=ˆ_¥"aÛèà¯0üNHòˆVÎh7¼ÅÇŽž¢È¼VÞz–n9¥ž`5>v)XÝ–Ü^M» Û»”Æh¢Ýì@²NÌí_膎vFb=ÿ¦‘Bg¦l t§žãU[ðáÕôG1x=üvÚKžp{$]ÐV¼Ï™±àà¸]ºÊ¶°hs¬|óÛ޼7x›;­ÌÝfçÌœÌæ·´«Í Þw/HæJŽã jÌ(9>!º«•5õï*'?üƒöj r,W¨íð•ØŽÅætö¯´ 2_3ÖwUcXî˜UÖDµS¥Úì´m̆Éþï[2¢d}`ªbN°÷[ê«ò€6é|o‹+PR$ŸrTš´Çhej‰ ‡÷@¼5cRn8\ògŸãðeµÞ”S¥ÛÉJÅÊÁiO¼‚rplÊ1ša/öXº0¹HÜt\~ML: &×ÝÍ›¢Ì68b¾ ÓïYö Ìç»îª®Ø/h­«©ÐsÖ¨¤ ®¹]¿½ù$éßség¸ìáçEá§áo¤\ dP®;:Ö¦$·åÍ\ 8ÇÍàrÒð²‰~QÚÆÁØ^ÚÅå$SîÐk‡LJò|÷ÇNhÕÒð×m¶`‘Å‹¶>WMëËýîêö†ž'“äâïÑâ4ȇÄ•˜O^Jæ”òÚ/ÝH>ê?ó¦å̽Wå|»ª ®*Üc'$2‹˜6p™fÁPøÏß=;û™M›«#¨cN›wæ¿:ƒ8¶ë7h77gÞ˜öçõÙwë( oò˜ƒ ˜˜ÑÐ7>;P_–äÀß>'¯RHœÊä@À€Öˆ 2…ðx^tÖE+×L×Ö(ØiFàm±Ö%ˆÌtkßá^)B`xKþÑiA†vJ!B¹£#r‚ö5”ŝвh JK^/dø¸¿Þî@¯à_ ¡Cª1¥@±TÈ-_³àdøÚîF>TüÛ]¿è¸*V)þÞ‘O³ÉLÈ¥Éß3&e¶XÕ-×_ùÄÞá7¬ Ú¡·"Â"ºiÒÞÕ³.‰°ØŒWše•ME<nn8¼áÕ±zDf‰ù*f ³I¼½”WñÁׄÜûp„M×w.V00£¾d#ìq¸-ü+?ìoø8¡ˆÖdZeRm©•ûÒ)TP>óyÚââ¼ò7>_¯ÄT2"deVà›±‰=I <ÖâFÚqh&9ª²¿Ú1õ(S]à áÏ šn9X¦\H¤a d!fòèhsÙTùÜiåô=ÂRM+ÅfRŇzÀ¡ÙK‹y)/œÿ=J8ÜLØ“í€[Çðs×îŠvÑØóÎ1™“[ƽA–ì9© q߇7œM¨¥fî¯Éâ}è¶û ÔêUS¼Û‰’8mí:VÄyÇv³Â>@; ú¥ØYÍ‘‰T<ü}h…ž¶«±„ Oà›R,ÊFAv/ÝÆUÍ®@¼tXx&xåbZ¤½B‘¿'°õE.€°HñµvÝBåW´Ÿd“…Ðý÷-c>ôX#&^àCRž1ʆAâë^Ë&$AÛB¡žmÁkf¢Iá Õ— ðZ¸y–Ÿ‹üÐ.DÆÛæ¹A/1DjvMÅŠ¼K*ÖÁ$®Ke2çæ Kó„°i¦LÂéµüØÜÅ*ä,wY¯ù ¹:›FãcÏ60°NëgѺžÚç„S-EeL–Añ¦…/í¼&b4ˆkTþ¥ >Áý}&F›ÜÍ‘7tó8IOªI;Q:³A„5i€"½{%´ˆ³±J7×»Œž¹Kö’…÷MŸv ¾cÉC®{صÜA ¹ãV*˜Å®À |€¨+¢ø«æâ$œ€x±˜1Ãïk Ä»Å}E'çþrÁiêQ…:À0M.¤\¤rr°ò,R¹¯ áaÈ+¾†1ƒå¦;Tx_¼ÜU:{µ—ªVêÚ7áòŃ_z…gªuÞŸ`Ì×€ßVÓqƒE²<‚ÈxŠ!¯Õ½º,é8@—n] €¥9ø•rƒÈ` ‘PïES©‹Æ5§-Î;3ÃG•awG~ 7:ìOj^£ºK/"òŽ)í0QšNÀ—¡nùàg~×Âé©[a·)x’õ qL‡—.ðr.+2¹æDT'ã‚—…™p!Ã_ο…n¿E7¨5¥WHBÌTuá+Ï'è~*v1½)æSɇj-¥œûN”‰…×é´ŠèA™T¿$G¦¥Wª^/økN÷ùÓOÛ©¶_©Z %˜!ËIþc3”âlטÃd‘š¦è,k¿áO¤¾ViöL›È±Zµ “ïÊi¨1ËSYÏk¬–®Yyzd­ÇÛRÏÃýø¦¿bq`ý¼X376PvÞŸ_ºÔÁ×ÑFvÖZ YGA_ÆØW™ÜnÈÂËØóÞŠ Ÿð† …ä…h¦r¥ÞÅ]+.w%4¾òÍ`|©wakEëÉ:³/Ç`èí£,ÝL±˜š)TÄ,w›—mãêǸã^?ÊÆË“"½4ÅêãLA®HŒvë.Í Ò6üãÜqò1—æ§Qéñ‰.…e§²wa¢.—ž@¡®• KS@éîŒ# ®þR°J]à™QN3Q‹§tͰ'­ÛU|+à7®riºS D(!¹¤Ýð3øòþSm…óï”&ˆŒ=-磼S{ZõÏ{{Zf£Ýh]0].å@Áoœrcô‰á³F‰‚Ìuâò%þ Y`è!¸2[  ¾¦Æg©Ÿ—ψµé{`«wçoÅ¿¼ÚÊEÔ¸ FÌ¢ô}¸3ësŃü¡ íaSt‹ y©’ o±>ÿ¾Ø™*ýÆ2ó £aHê)T‹»“:—ˆ[V Ó™"„Ÿf”`Ãò¶9©ð‚î·ü´#µêxòsÕŸ<%:A®à,bloÓÆÌ7»1±âPh€ó<)e‹{ŽrrÚ—4¢z#¶«£éo–ã8 ®]ýÈ.ùÞá¶›¸* :a×¾Z1;ú÷ƒ\,ÜTkM—–¶˜ÚC!Znt[šIh „‡-A„r‚RØ'éɬ³ Õ÷á°ÞXØÀFsñ·Fù’ÒÀ$¹°üëÞ«Àq¶ä“Ð]€“ZÙßåMqH¿F´Å0ïp„¿òo|  ¤%>2~Šð>xü\ À?4m\âƒ'|TÙàš@˜àK×2øGgž¸þ9×ýæ€b´móí|°¨¢ €Kç`ñQ·Lå䜞q<'d_W1)ðâ½AÊãlWÒµÉä@ð„*ÆkÐ p»€pu*Al»Üêà…]±°Æ‰Ä=ú%ÒÑÓø81úºa°åÛr)«Ðß–„i¹-@œ‹›Ï¤ˆÂ€ÅQµ»}³g€SBñ¨«œÑú1Lè¹&ÜÇÃLãú½{Âgú5&¼àGm”Ø«‰(iÅu¿«Ød8œ ç"õ<öøÑS)MƺZí1Óß?oÁ‹]³Áh½ »Y/Îê ªDÅãR@sÁqr:êän—%a£é”F<×wߟ‹ÍØcÍ<ãvPisSP{M( †$‚BŒX?Ь¨HFÒkLý¢1u»¼â¢œ­BGÇÛæKÈ¡M^ð œy‘Hþ MÅ$²ÛuÊ}Ò¨‰gȼðõìOŠYti ŽOCè^µ ïgþ4›IÏŸ6VGyâÙ‘ÝØ½P~)a5fÑì DQÙu_Š^Dxï¹¢ºÊ­g€>ãlô&ðG‰(åÎ#ä‚ÅaØdeßì±ns˜Y!Ö´"P»’‰„t Ù’Ú(¤âb‡£na˜¡¯)¥ô4EåÍT©ÆðÆ2áœíC“ƒ8ç¶YÚŸÔvæu³‡Ç¹Ù\+ÕºãøÈ:•ònJ™KÞT¿'B5Ö@Ä×öË$‰™Ã»ù5j«sžÁ_•.An5x‹„… ÃõsÅ…öÚ„OÑ‚/ç®”RG1~)ô€+I)ádt™çL©l¡èÎ7ŠißZп¢±MŠ(õ“õ,øÉ–ìçÑz{ûdç,{®d½náè%^ÐêËuÙà„ábßó†õ¥Ò I%Mƒ‹¢¢r’ÑYPÙµ€!,5Ö[Ìr¥«îXÝ3#8 ¹¿O 5,r_¼Vú8ò.¨s!iÒ‹I‘‡+çÄ«ïšÝËZÙ~…‹Jq^Ê€ðØÍ°\±óšå(véV¡­\îÇ‹;Â?Ï,¦pØO@Dq2û\˜ ßµµ û;»õv±ö¥ó¶Â Ùé1¦Üåú¹Ëë |”¢Ä=Kà[M”ý*¸Gß=Çr€sT”êxÁ„ý‘²ØL“D &„¡ ¹Áp±V\¼Ëë"¾…cþqñdöNݰ/5Pëµ™%óDx¥€ÉmÆf Wãä…Ÿt×#zî¢Ô¦{òcð“0e.Õ³¯çÓš]vÈ«Š3Ç5ˆKûf;Iyý’0ØU¨Óƒûé ,¹Œó¾®ç `«(I:lÄ™‰Be)O9ã'£:Ñ.}`*Ñ«v/›©ÔfN³™k§|g/¿–+ÈBÁÄ\ÆŽ7èX"Sê u·ïÑi²2mºŒè:°=x“šO÷Št¤× ‰Ld”1_Ü/% qf…£²øŸ Òðžìÿ F»¤ZVãy@#àn;“G˜—R‹~®¡îýÛ j7u›dgwќص` ËÒn†…õ5+¨æòLã›#ioL71KLYb*„ƒtoM¤°·š¬ajä3J‹>Úì{]T cL{K—’¬ÄµùD}T†ýÙâë»Ђ;ý–| \©ÌÐö2èH!QÁ!ñ!CI¢RL‡Äº qZ• 8¸ÓËE^h\òN°‡w[¼Rð³v­Ê% í3bó}àkÏ“J¯V_qmä·Ó.™YŸâãG,>xç˜Ëá*NópƒçxÔüä•wC¯ò–4Z¢ø}‹-‹qê-3²Aò%Ú\ͼŒE{잀ƒýÛmE%zÑ5^4-[i8HK«^Ñ¢Ÿ²˜FL8Kꮣúv=ÏÅ‘lŸÍ,5úHY®¸œâΑw³)¬Þ´0°•(%©^{ î>†øÍK/ ~ªb²z H»*kW¤›-?‚PhImÈž¡É@1JÃúSìŠÌÛàÈpš ¨/”zÚóZ©á ¯¸žç™EkZˆdŽ:î…Ò2]«ÎU¥õ‘Ïi»û*"YGi²WõÏ/ãÖ3¶¬C†Ì¬Ô<ÿ4µçÉ8š¥÷>#Í©Ÿ”ká9ÞÏSQÙ³•ÐÐÍ*xœl'ÞhÂ2®ÿœ2®Ñø+^¾g‰GLÊucKóKó²€néå)¤"¥Ÿ«] e´ž&•VÚKyÑ~ebšf­µ)uàÇag¤Âéû2?Z¡ôB`ÅömWäà¸J¥ËÇ&´x Ö74°Ø®¹ÍÁЧd…Ú:R‘öñùtÏÇ:ñž‹H¢ï iÒ/j°(ïZœuÐn_ó¢)É®z~hU—2=„Yœªà¼ˆÞp¸m[T´ ±¢í !jåur«Y´ª? EÍ=œoÓŸ>Øþ³B-۞̭[Ê8¤‹êú7Ù/¿ø¦(iÁ_ú€/dzsùºÈ*;s„ÁÌ·Sí¥7GœuTâ·:¦÷D°»¨K©B#È»nXclÐR}¬!MŸÍÛgÿøän™±Ç^}³¬/êƒ7Ö÷°èKÜëç,æ1Ë=îO(ÿán>矱ÐÁô™á´ÐñÙ#IÝ{ÁS{½†ùa_±¶ÁHï\ðbßåT~¨t|Hò'a9çÔN—7I1!Q½ËeBÁæõ ¡÷§]½8Õ0ØÞ½’|=>ëjÅOKI»—Òa…ÊTå»kܬT\v±’T1¡2©ŤëwG¿õ¼€V~ãŸâ˜½¬L˜¥{Cí£ ×r2vPÊÛ”<ê°¦þLúìçbXi¢vuŽµÙ–÷'¤VXsèÓº[Q_Ñ#P²œ¬×ÝðtÅC9S(Z Ve$GEwÏHî×MfõY«˜éÁ•ôÒø±p-bR©©@æê4Ö‚Ü+¢ÅÎ);øYÝ~ÕVVêú·IʹbrâÐN?5X¯æ·¤®\R(tåús'µÊ½-?ÙÁDô¸If/ü³ ð‡¯ÛÒ>?& (cé ߟ.œ¦=|~Ö¼Û-§hlÑ&y~¥Ýûm›l\KYf¯\'¥/*çLÖTmøó¡¢5}ò"~K± –‡ÿÒÆRê!ÈÛsEA¹øþ‘'o#h3€ú‘<û‘¾}\û½R,ô儯w“T‘DQdó¨iªãIÙ³ë5z匉ºtls,³77ûI,V8?/´LådÍS¡¤•§ÅOw¦{?MŠ»© Pa¸™ywF"6ذ" Èát@ºÏ½r ›…f"œ…ª&ä=~!¼Î£‰|UÏI Ó ©F½|ÝßN$frùáÚh‚2GŠuh'Ö?£Ø'B°_Tf½‹¸˜hбé®6¹è5k#"ß8ÍóüG‘fCD¹¾îÀ~=£E„’i3§ïÍ8é¥ü$Ô}s|ôé`ÍNLwÙ¹·oÏþVk$Ìendstream endobj 498 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2621 >> stream xœ­V{PSw¾1{¡ŠZ½ã£ö&>*Ž+"Zk«m]D°#¢¨E-D„@ˆ$„§( Ïä$   „·òJ„ B´´â£­3µÝnµ¶bW-î¶ÎΞËüØéÞ`m§»ûÇþ±ÿܹwæwÏïœïûÎwŽˆr™@‰D"‰_Ð:Ÿeη…üK"~ÎþeqÙ=zk4Ø&Ša¢Kéœ~~ÏLÅ“Q1…‹DYÅ~šÄtmœ*V/“/[¹,JxøÈ|ÞxcÕÙòeËÞù&(µqQ‘jYP¤>V™©>öɶk¢â”úôñ_ÞŒÕëW{{§¦¦.LÐ-ÕhUo;£,‘¥ÆéceÛ”:¥6E- Шõ²Í‘ JÙx¢KÇŸ~š„Äd½R+ ÒD+µjŠ¢f©×iµ:}rj¤"=*Z£Ú·w_‚×rŠÚBͧ‚©­ÔvÊ“z— ¡vP»¨u”J­§ü©jõµ‚ÚHRAÔfʃšFÍ ¡\¨êÑzÑÅ 3'hÄnâ`q“‹¯ËE×Å®’é£äíK2ÕÌC·Ín‡Ü¥î¯º·ñEüEpðb›è!JpJÄ|^coë>!b¿]Š-jÎø£„ü1×UN_+…h)¹ §O™®˜;¡ † §Œýç;PI£øKGÿIKÁ Ž4o”Ó6ÓysôƒåÙÚc4 ØkÃ*‡§ã LÁyâŽÑu¬üÑØ°—œ_D£çÍá‘o¶}NÜ+¥?Ô\¼Ÿ3ÃþwÉ+ñ"±X…2ºú©¾š«¥Ä|Íb/.¡-ÐõòÚ(xAÄ¡}“ã ¾(ßÎO³‰N ÷mÁéb>5,Î]ñÌ&¬÷rò Yðh5NÙ#I$ˆe]ö¹Üv¸ VpÀù£mÇ:ÏÔŸhW?ºÂ`7ÈagN\NtŒ^å¼ä"ÙáÀ¹6~Š]tOÀp§pÖO6ý%-:kV'0èþÓŸðè¹ôÏÄ%<ò€:FÚC'¨5`rCMäB*3vä?Á à{ÙÆÖŽÆ^`ìd2‘íܺgßé–4©¿öu÷º‡b Áöv%ºsFcú~P3жÔÓ§Ûjí7…íŽÔ½“Ì¿—Õ¿gÓjê5÷A'|¶"'U¯ TÑUõ¬»ä¤jŠb~`ôMv¬J ë®—\b-~vèƒ'Ð=þqÇú*zø°b­ÔrÉÚÅr.ëHp T¬:A&0‰ÏåÛø—ÚDí·0è–ïóo±5p4=75;ï —qLS¦Æo…vnhsRE–´-¾3·ï=÷j1Áá™á~jÇ'\á cq0:È×K‰ˆNƒCÕ¥f¨¨æ—œ8z¸Ø®9 •â“;?»=´¯õÀqéÞvU©¢L~,ä\`®~fª¹80ÅÌ™2Í…`àp½€äì|;N¶`¢×ZDwPòÀ!Æ]ü\'9È$Ü.—Wiˆda!£ºNšiB}òñ§o\áå!tÈþXu8|\à Z  þÚKø>¿™}Žuí»9p“±î‡Ohø iÏO5#MïÃNδA‚þG\tPtIyJ #¦°–Ÿâzðîì‘“æÒËÀ8hAmÔ"Ì:“À€œ®†Z¨Ë)Ìœ¹Šäxc¥ëC’` 1h L fç™>º*¬4 `,:d4„cŽëY‡DcÜjЃBÍêñ`—iœ1æ~$£$§f5BɱÕw0kær°LWn8 ³N±â²zAüù6ÜÓŠ^Î&sÃåNÿX‰—ØÇ¾—Éä½d†Ág5­¹µ­öl[r•ÑÄÕ–”™[€¹Ò¶Aª¢É‚"2# æ1¯?Š¿}µÛÚ[Ë¥ÀŽï¹³K4XrÌÙ&©¼ŽC-C$ï³+7&«úîNœ€3+šÌ¿À=݆[ë¼Ñì³ÖÇvlä<}ÞQ§³«‡`Núë×è‰^‹nQXtfbœôÈ.¶½§ëD;Ø EW¡¬Ø Û!JèñÐLefÜ^] Ä@¼%©K(´Èmüe‡¨i1ïÏ»±¥UæÒëN&´Zˆ‡ÝæƒÏ˜0 @–± ŒÒ׈Vss zçÖÏúÀ!Q ;Íqã¯Ñ¸tlnn²ncVÊ,M˜*7rÀ`*4U©«„¦]×§Q§EË;ÿè¿é¨*m²]Ô.´¥;NãE~ {(7{?è™çHâÛô&™¹r‘‘E#k„csZÑ¥üÄÈÉ,4fry©É¾ ‚}ué]é]Æ^8Ï\œò°ºÜPtòw :oÙé”qŸÓ¦k0nUë€!/x®!‹È’'kQÜÝuüT‡TAcàoÒý;M$c#¬^£ pT7ìÌî€!ÁWíp©ÂZiooì†V°e6+|c„ÜÔŽ«qëÇb~1ªÙÆRÓ©aºoÂú¬*zåo+…Ñ1»÷§Úê4(È0(ê6oM‰òqœ:$mw1 #}˜Ç@æë¥xY0³§L´‰~@ê¾(Æ¡³:ý$A·¯LåÅ%`,áròd@aMkji«í>Ûëç½@A$Ü­òËäé7J¾ˆì¶á’nÙPß-jf ‡b1úÜe“ÌIupêËÊM¦ãy¶ô!Á“<.ßúr ÑšS.­(+/9Qb,2@£­Jojªªi¨Ï´*2UEqJ.êÔ{%¡¢IÁþoEÔDÖK÷EÅ@&d›ßëŠßŸÿ®¶1¡}o£?ú|zõ&.%ó€0\é?ظÖ?WoÞ„ ÷vÁæi/ÙÃ~Ù“½w×|Oe_ß•sP%õ…l›Ö­6lu¼(à=ÐkÆ´L>ÿÂŽ4~ ·˜§‹ï’·9òí³ù,Xþwqvø¬ãÕ{a+=í· ´@ƒÒ:‚MPXš|z5Šs„zŸ”=*¯d—^˜·ß(-Ü“ªÕ£3ïÃÜëEõùçÅÌ´Ìì«Ñ¶õ áêØ5ØzG‚/Á†õàO^xkxûqp—‰#%Æ8þŸì9UGdDllD„5¶ç¬­ãG6?AšC¿N³VÓóY!¥ƒm|ñâ=iAÎîý`> stream xœµzt×ÖõÙš Å+lÊÈ”Ð{ %B ½S{ý w[.²%Iî½È²å‚llƒmZÓ!B€Ð í%$¹ã\¿¼ïJ¶ ï%ï{ëûÑZZ–­;sÏ9ûì³÷”EJ ˆ®Z?y’é§ü@?¨?X莵¿ÉÛ“,¡·z[d Wm͇÷CÇßF^}) :A›¹0(8*t‡·O¸ã¤é“ÜÉÛd»É³fÍg7eÒ¤Yvó]¶$|©tÙÎå®+"ÝVF¹¯ŠöXí¹Æk­÷:Ÿõ;ì}7ø9øo Ø4zÛØ„Þãúl3aâ¤ÉS¦N›>ôý3gõýx„ÓÜ‘ñŽ£˜^V5”ZCÍ¢†Qk©ÙÔpjõõµžAÙS#© Ô(ÊMm¤ÆP›¨±Ôfj5ŽÚB-¤ÆS[©EÔjõ15‘ZLM¢–P“©¥Ôj5•ZNM£VPÓ©•ÔûÔ*jµššIõ¤æP½©d*€êCRRVTõ6Õ—êGYSbꊥޥ"¨þ” eK  2©Ô *Ž¢©xŠ£*ÚA½%P z zQ[Iy) J- xÒçÇg­¯-vXœ´kÙ &Ê¥Et+³‰)}kÁ[•oýÚ3 çÅ^ÊÞ£zßí£³m•ô¶íÛ²¾û†÷ëÑOÓ·^aÝ*úNŸwΰ+ßíù®GÿÁýeý_ÚäÙŠm×Úž9pÍÀ]ϲ´tЋÁ³_ü+׋³ã>ä"¸_$Jší6Ø5 qòdhäÐ;ü‡u Ÿ5yá|žÃzÇýËïn‚PPíb= ÷ÁèßWâ«[ ÀÑ%h#¾þ’ÆCd–þ´øÀ—Ù)[%欴 Œ‚ÊöõB~ÿ.‹£íúºÝuÔ¶FÚCå¨ wØîZruºY¥—B8$*•)2,Âsm0‹”ÚÔlH·…|}É>5c¤} Àüa•ÚKcZUFŸ€²”² ´mðLœ°}Ø’”©[5õÐ' QaÞývut5”BŽ6=+ E^6h NÖ¤iÓ@a ÒhSm´WH¢[_':’½3c§‘±jßLj|Qö­‘ä.:ýtÁ³þb…ò=X¤¢ë5Y‡8ÔWô´áý+¶ÎÀBÉ£$öiÙ¥ p•ùvâü.×ÑÿRt]#ó–tTÒâ—ÞJÙ‡\˜??H„l>øË·³®aa¾d¾Éâ~"GeV½U¡µôO­–.Ú4k¸„ÀLfà'é5wÑ®»BÞù²è‘¯pÜo à~˜ýe,z õùùG$æpvd]À¹<ø`è~8°ŽWî¯>x¨¼öÃ>i•K• ¬#©ô©³ÔÉ9p 0¯+†îÝò¿ò÷ئsgÒë€äÝ_é® &y_§ Q›«ÕR!“ǧÉ%x.ÇËÐ')¹  ÛrCúÎH{“By€+lW»š UJÙ²âä…¿·Á›è®øEÚËdo{árW™Âé¹{%ȶj÷’ÛÇ­O¾àýB ýÅON¢ïYìŽÞÇ“Ñj4ãG$AL.dÅË@ž¨â’ñ0»YXÌj¼y7:*ÿŒÚЦÝçàÁ$2lÅOð<OÅ.$Ýmx£Óó¶­¡ëW—PñÝþâ§è#¾7{‘ÆÃM8¿œ%w–ˆowøt7Ìnu›¦ ªá¨²áÍæšCçÐ1­_ƒzýò#b‘xÌOØB"~:\#¤Œ±(Œ®=z¸ö(0WÎMÅ–¸ÏÇ3æ»{êZ‚%qå cÅ#ØÍÿn\2ð« B~û 6+ü)‹)–C×±A$ÃRKƒ( Yîºf’›MuØvਠÙ6:Ê9ÞUT‚t–¡¢d,‰WƒgЬÚÓ»ÊÎÝçÅÏ„ íóXÿJº«ÝHí!Bs‡F¡µh=ˆ&ãyüÎ_íX3Xù=-ðLô)\’]´omÎt˜ X¹Æ{kDðúu#¼øÊ®œŽ1Dè¬wßEÅ„¡nó}ϱxÉ¿Ï!JJ{N²?­‰w;ÿÁ@Ì ƒßÅýžŽ@ ©À—вO_Ëh‘?‹‡Ðà$ ‹ó vfÁêˆF½¾¼{õVë´„“æ.>kDõ»hдՀƴ!tƒíŽóª¨å‘…â á ðG$E¶] ©{H?Íó{_b@¥¡¢é2ÿ1Üd”"êl}V„ÆCõ†b,a ¢ $µì8ÛÝïVüÀnZ~uñÕýþâëèô ‹zÐXb‘™-Åþ é½êCšh†CÐlî‰ô|e^£M tðàë, ¨4œB‘!LPy¬¾Ô_Wç_뉯/ï¥q.¤‘íH˜‡Œè`g˜ hÌÍö9lÇÁ×4Tþº ´7H ¶À£®&ô¥ÇAAƒ©îÓ?äv<#Ñw,7evÜ[„Æ€Á¾s$`+ž“éù÷Ë¬ë ¡Ÿ (Cø'ýÅÚÈêÓîÄÀBf³ûÜÞ§¾‰äªôD`â!%J‚mèhHÉËP«ËÊ84¥eû]¨Ê v郟u,`WB¾Ä·Î#Û5›Ìû¼¥§4TµÜG=2&ûk8uR¡¦2Ê$?›:U ñœ"-1)MáY㱤zVžKí}Šƒª¥ñƒºùWq$?©1I‡Bü{f~yÿOCq,ÿð<[ mvÏ&²‹$h½7=ã3Bg^ª Ê2­Þo󴪣je^’´ø¶À⤠åxk:JgKýÙ_MÆ#ÿ-áøÕ9¶x5~OÁ®ØMÃSÑz‰8ö ܪÚ}†ôŠÌ€FêPÍÔ ~¹„”Î燳h˜C+CEªYv£Óé7¸–Æo?Ih¼\sùw*tM´¬×RxTÂu “Oh·ÑŒƒ¶B¾Î6jò®s•F‘b>žðø˜£êjzÛP<ý'ßúƒ~®’©¹®Aƒ?aô‡fÀ¡6\ôgß"T+ÓK[Iƒ¼V-‘üÀ›ìd ϳ4Ò'g&íG¾n¼˜ž¶mÉ‚i‡Ú8ôM×_n€bŠ¡çÂ$4ŽGž„ý5µŸ2Vè¯]ü6èIMñkónrU¦Èæ¸<`NWdUôMmWd Ù.Ä´ç›dÇ{áfמCè9 óž+eåü£ ŒòÓÐ}6§¢dßE“B WªÂ! ¶k¢;'e“*/"!I™–&{gÛ` T'/ ÀÕØVí…R®•½2‚Á]`ž•ôyH—ø£áÙdÆiR  ÒsÒs *r¥úÓÈ‚ßi´ 4ú¾@£Ø‰[ì7Ê—Àio®-WUc.Hº#Îyþå5ž_ùòZžDMn·›á×Ò-…pžÜÑYé©r$Óy*xšo¤„xB^a•šTìßжôˆ± Á–”„%…@pÒDv†Õ¨ÒG‘ÏrP¦ÆOÂ96£P]Z¾Ê¤ª÷‚ŽÜ#PµYØU+sã3äyY‘ÓqªÍ8¤KÍ'Kï^Ñ™‡4بöî\qòù~Èÿj“§M6åA“™Qø3j´yŽ›Òe¦_Ù€¶37 ™>ÚˆüôU'?>¨·n½¾í1šqé ÇÐý¯Ùt÷j×CÀ”Ÿ+¼-9jO¯ •Ë|ÓdpÈ‘&’o¯w“ÇÞ-ÅÛ€™µØqY€.ºª¦TW•ŸZ¿]-©n8œGtÐáSS$^´x߱͊+>Úº œ™ÙOCÏsä&á`sÙ!&ÍdGÒãîpÚêÖpäDë]4+“´bé ä‡ó3X´ÍÏÎ>vô¶I ‡(ü¼a=ìèVÙá1‰‰É)ø"n³A—ÿr!â–áò̤œxH° ð ÒÁ${Mþ¢ötÉ^Úv¦ì7lÓè2 òyµ5£vמ=‡+«Œ-E‡L°Q¨BH‘7jâ;aQ®ÌŽ'®'&1>U¾j®ÍÜŸ“L²0ÓŠŠrtæªeÊØ ŽêàÎ" jÕ¡5?aÖf<îµmÝZåN“|¯ÒÕUP ­ÊÊN Õ¦@èkëÏ}õõH›lYA _RRl°I·ïRŸÔè‰lØ«ÚÕ@”&¼–1“ Áô0=òjí–q±DÆõaÑ—]:ÎL(O ´Z]X}ˆ/jÝru`·Xýfž .Ž1QD¬³È†2Pçï=y"»@cH¥g•›v=¸—rM ÓNO_pïʰ&¢ß´PJfŽ%ábwÏurñ7¦ŒòØP‘ì½8"ßÜuê ~½ ¿çê"oÅ$rI¢¤þE¥ùR‘IV¹êKïñRBG÷„üTÒ¶U窋á5E£FÚY£ª8šØ¸D•25aVÙ`!Ò§å*ÓIV5A×Y è7Ùèk¡Ó!°Ió•ÇK7-^©Ä¬E–Ó³õPÌTE‡GHãœZ½œo9uª’³â×’ Vÿ¸É`Rz›ÇLvé-È¢wZåœWy7pn yÄ3!¥5Uº’]_ÌÛû!î7S¸/'~‰ßùië€:Ô;77„AåJ.pÂò/`ÄüÆ©ûÐt‰Õo£ºúÊ®†¯¼-DòöÑl’^A6Ç๯µŽ‚ÇáfS{˜ØÂz8Ü­/‡Ã¡j ߨ¦‘ü¯=2â3^mó@›ž‡Tí}lÔ—EÝ]Õ¤ýÂìU>‡¦7»Š¯ìîL£ÞpƒjøY5BÛ>…MÊW©#É>ô¯NU¤ªP¨UÉt”ýI%JèŒTµ*]Îëxj““ VeSYeþ0] ‡^„ú¨¶*}Á¶j|:Aýƒ%óèNÌ”£zkâ““.†šAg2ØL4úža70/rñ@ NÚÉ¢:‘^ å?9<%ÝÇLŽûIæ¼C ƒÕ$,ËMÖ¤&)åÉJÎgødH„-à¾+¼)à¸$êRiUûŒ*QÎ/„ížè1‹\ðXbN—ã%x<ž†Ýˆ¬›€'¡Åh9‹¦"'ƒ¿cÇâß¡B”F|q÷[4lÎÁ¥xðŒ‰+tÚL¶hÚ½l½Y\|ü­-䲈¡¿ûä“ýÚ"H)âÒ¢â!” /ލ®-ÒU6yÕoüøýC8LÏñ¿‰¯ÿ™‡¸†DFºÓí©BçM¦ï:ôBˆ"Ð%͡ވºýìÇQßáÁüê#‹?- T¢ŠNø@„¦Â­Ž@yªéä»U õ§ïU ¨°®i‹¸†\khs>Ý_ü« …¢Øið¬¢Z]WddçWÔ4ó-Œ VùņJ’ÂƒÜ Ò¡¢D·7¨EQÌ“K—®7Å4…VHw7f”šŽ@«’¥¥Ê ‰.H(Î-˪(I¨óˆp–»¹r®õ®Z)0/þÐYïiØ)‰òFÜN§1bM´Ÿ ¸3 Ú€¬PÏ_ŽÞhˆ;º¹†ÛX³V¾tµ_úN#6Ž/±#=vpOÓ~­äŒè>²€é‹¶Œ&ú©o|qÉ€ÞÖóµë“ψÙE#[^< 5öÿB׊Y¶¸(šAÈîöã§hÐtœ=72—“žô;²˜Íþ.nÁ‘j¥MÌewDú¥‘oN>XT[^¿÷¸Þu]ž¤%’E=}ƒÞ4–ùØ9¡±ÄM,76dæÔrâße㊠'>ø¼ ÙÍ… Ö­e 1žÂS‡Ì<¶àF°$/íh—ьøIuÊ®”¯ò\B­Ì¢- gÎË8¼‘[w\qAÕ¨ÊME·kw4»ö,µ&/‹µV[̸ã‚÷2ÀÞºõ#ê!_gËîÌБ”œ&Ò¤ø;>Ìœ÷Çm/—_4ÓË”—q¦¼\Ï1‰/;Ú)iúŠÔp(áŠÒu…PÍTEé‚‚¢"B6 :uíÓ ˆ hŸ`QVXV[[YYKtµÉú¬r4¿IÐh@ÙP¶AØ>¡}ÛD‘æ±B4½¨…RË\eyÈ œ!˜ØqC9wQ‹ö9$¯ÐbÆ„;= w›Æ:ÁXaizti4(ò-ÄÓͧª…´ ^]¾zÝ(õ„tka4«š•4Ê ú‰ëCZí!Ê62:-’|¯F}FSNÄm­ª¶ó{^ ÏcXŒ–ب4©™D0¦_>››}þh«¦Ü$šñDìÁ*M\çÄ+SåÊ "âˆ=‚­løð¿ï¤$‚˜þJ³ÝhRš1,:æƒqޏ§­çø~ê&úÐxb0¹¢>A¢N«ƒhfк˜±·j›røÀ6÷ƒØÜíÂ$‹BôqûröM]B¿NÖ1 dþ7½Á*¦—·!R¶}›°]Àßa ›ªk¿PwA›¼Æë3è6UyÑyÉ ¹RŽWtì´Áö¼F^h¶Öµ§À`>†^LBÛ.Ý;üÌ$f=QlÇo6Y‘Š(MFF!™çWÿþÙ‰ù âðÿåã“ÿ+ÖŒûv~žÓëÇ.·_?v9ÜYúßò;Xú[˜ð·!$¥§öåî5™¥¿ŠøqXÑÀÏU:_ˆ¹"™$pL‡› žÆÇ«Ò•™ÄÅï: Uæ.1£ÃEãÖ¹æ”C¾·þc,阧ó2•–H4í¿üþ5HOÍ÷BŽí6Ú$mbúd¥ Y|† šÝ‘ÙùKÛÎߚν°¶ü7{Åœ¢V¤eᆠõÙ€,× ·§–Œ<-M®eY”äÇQ§ðTÀž€çyáE¸/¶ŽO ’TÁÈÓÓ2s~Äg¸£¨G>Â==cmóo㚨g³ec-Û<æ·qO›ñàßc‰"*YŽ4£ƒ:oÙ,äÇ£h“B,,.â$¸Õ‹ ¡,""ã8\ëé¸Hˆˆ h’ òI‘:”¶VðŸ ^<{òLˆœù¿±•UARiP^Z³KWUÉ!‡wk¤ú €ˆ°0]È®½¾†ëzvgô߇覓b´ò±‰, »üpö`V¼›WüûÞá…4¶NŠQ‘`+¾«R*!n î‰,E?ÝoþtWcb¸ŽsSʃ †ñ­Š/«¨(ÞufCëü ¸×f,à°èïä?¿ºN›éP¾µ )·¾Þ’êMÛYÍ^kq÷‰  ) n,ÎÏÌÎå4KµZ·"hµ³£D.'»JcR2Ò2òoÞDôëˆQšNfŽ×›Dû”“hÿlüï´·ÜR|; Tê4_¡¡tf(Ø“ü§Q o#‹}Ijž|}ðjN5$ÕpIi1‰QÙ±%ò7áÒ‹Àej{‹»?ý}Üw4Xd…î£5§y¨TˆjÑö4.]G܇á|šOCÙ¬¾#MjʼÜ%Dޱÿ8½ˆ6î„ûI¾¿_ÞîÈfö×0yI9²¸´ÄD‡ÿòû‚Ôx2}•¶²œ¤¼ÂôÜ\­i¡Tßn£콋²ï yt……[©·|®nÿaV±+¬!nü§Î…à£ôÉ-óö;qŽÃ×åû¿¯»”qn2Ø_a=`­!êÙYx gà\Ì>^†z]Ë1gv1ªlT®=̃•d8,‘­ˆ·>ÀÉôGA ×dÜOš4øªj‡­M8·jÅTðÆŸÖ‘KµU1E„&s~&×ð-1#Íðm—kð£'+òšLÞ®£—/6Zy‰œuú5ñuöÕ 4 qgÃ3[$š| [aËù§ØmIC~KUT•O²T ®â³ãM§y´oö¬¶ÌÙ°J‚7`_™É@‡ÙŠ_ò´¨- î95 Å916%y™³¦ýKk.#"ä+PÏŸ?5X·"‹÷Ÿ£Ï{Ñ_Œ)´½dïTŸþ’dèÎÔ“cGÌ[3ÏWYkÔék8B,g<|± ˜–ÒÉ Êu!Î’€m;¡ªdU˜2’U)*HdÄ2Y”pûEwš–ŒÆƒ:»|TrÆGÒjÔæ1Xæç<éÉ2$@V=çÈ­áÎÊÃÊ;ŒyW’áC×I†Ñ,všIÃÎçvšôJÑ©­p¬K¯tY»oŸGòÛHî3c’¦Ç ølÇ2 ]!B þ-Ksè¨Çh¥õ¿k}ä§mFù€ø0ÞmgQ¯YÏ0µÍ%ÆÇ›C›h¼>¥Žˆº·¿|T©ÈHQjM•D$mX î°=˱ž^Qxÿ§‚>?…JHÌGÂ÷£ªýáGLÁgðÛÙí»ÒvC sî³ÖËW.lZ¸ÞcÛNË~Õt¸ .2§œš4röü Q§VG./¡)Ô@\Æ‹uÓíG ò|éKdùýÝ_e<[¹Èò˜ÜÍÌHW½=·&òP¬¶ÿѦYÓ~z÷tÝ…ou¦¿ññ½ ~¸)ýË#‡&Ø ÑeÖÆñö¯‹vÐìæög×–ʤ1IK»}ƒXâç!?’}¤ÇôS6lrráÜœÂ]á#÷ûn4²àÄ¿žƒ–ÖŠÓ îû!ÛÁÿ|T_*oª>²§ „ú%Nù~é+a;3sǘ©\·ãëºÿ;¯g (¨k6ðVÿ8ðbwÌÃ}dZi}ÿU$i…Ÿÿùjñ“È!K\ÃÜóS’ÿ@óW·S«¼êÐÝP«¹,už&;ËTp> ­ 7´ZÈ÷jïÍædeçA>SU+“ÉÓ8Ü/‰²4ùFT¬´ÞÝs 4 ³5Âö•¨«˜³Â× `ÓQ¿=5qðæÞ‹å LÞKé ’“i=£ûôÿ !2415E¥lã´Äec|qƒ}üì_Œ¹»hÕü C\36Lá&qÚ ¶Óî¬üé›3û꛸KkÎÄ|_ÃùSšûL‡'jaƒo)Nƒ‘¹×\×p†)—Íž¹|Àê‹ö­* jÜÔäµbýª” `f†?=~{wãñ63Ñ4•ßn¹ "­Éµ ÀƒJ£!ú½ÒRSÄȶMhœl/l_ˆn±EÝê°ãQ—,’ðßãl—nŒ•tüEÛ­Iñ^“ÙýNã‘ÛÉc¦ õÄé€õ]t¿¿ø~Zû6¦ÈRåéèZ”ÍGeE%)Ýl_k£Þsh…!6±„«Ž)M)=P¦?zÒ\qîÕÔ¡³FãôRÔûªéÍİÞž­Š®öŽˆK”Ë9•Ò$+%¦×e}uþSI¾‰n´LVjzªlæ<ÜsM¥Ó¾†Òê*Ãþ7Ëþþ?å§°&!]‚û!k?´Ðx@ ö èmÔ¯ ë"iZyâä%X¼–ÛŒ{$`!qHsópŸØò,~ûþò\`2ÓµYó!Á/¼EÅ £àä34í.šýLÈCY4‘؃'ð3ü‚Eð¸|æä_&‚yMèzæ_OozHjOãñ±va GÂ)ht,co:JÇùšŽ—C y=ùûÿH1ó&1ßeQÏáShËEhŒŽ¹«fS3‘¨«5±vxl©Ä­N=œ¡5ìuñÉ·B~ƒé‰?m$"ž=øäÐzÜè³Û~­³gZ*ØdŸ Ì8ÌlÂÔª…‘ן÷óŠE–ôÓ;­Ÿ®‰5§¢£•¦C ¹:´:IIÀ`šîòÑfó¸¾K×wY™£2þ—ÿ…—ñPlMK†mi¶â{Ôêe¦®wâÂ\u[€ß"Ææ?Nƒ÷`–u¹†gßî=SÙTÍy(“ ¤ù1¥©Œ×Ób†®÷[õ?Cñ”endstream endobj 500 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4944 >> stream xœX Tç²îq˜éÖ(*c ¨™Á}Eq‹1FÅ0Š*¸Œ²öEPTv˜©™aead‡7ÄÝx®ËU¹1É1j¢‰ÙŒI5þä¼÷$77çÝ{Þ;ïôaz–ÿ謹ꫯ¾B˜õc$ »lõÒÍ3íLo'Š#%â¨~â»R ÛG™éº7É` šeþµ…(Š•ƒ1z#—HöÅgä)\æïëa£¶›k·“¾Ì´™9þ¼i6³ììæÛ, ô óßéd³Ú3ÂÏ'Ð3‚~øØfCðNŸˆ˜Þ-úED„|0cÆž={¦{†Oó]dzÊ4›=þ~6.>á>aQ>Þ6ŽÁA6k<}lú¼Þw[áf³:ØÛ',hm ¯çF?ŸÏ þ¾ž ÃL_¼,$Ì1<"ò£¨•žÑ^Î1;W{¯ñÙåë¿ñã@7Ûév3gÍž3÷½yïÏŸ0 ŸœaÆ0k™uÌ8f=³™Èld61®ÌÆ™Ê,e¶0Ë[f+³œ™Î803GƉYÁ¬dæ2«™5ÌûŒ93˜ÊX0 fÃ3ÃKÆŠ±fF0¬D+‰Ž™Aã͘1±Ì’$×ú­êW',m“þfænV,ceÛd/åZVÂ.g/sã¹óýö4`É€âw¢ß¹5Ðfà¦=ƒŽ ªt×|žy¼ù›Áùƒ_ 1 3,[UD³v’&¦™wwƒ€qe¡¤±û„T êžÃÇ•„½ ©‰I1D×ó½UrlZâbà¢Ôò:Ý}ÔÃ%8vvàXÕÌçQÆ’~ßî­êÍm­®UßupŒ½Ð˜ƒËXÅ£;ehþƒR«ÙAœWõžÊÊꢆ ›*Ý”ŠVع%™3ïö¥VJ,¾ Á‰8gø® í¶êþïùILÏç„1AïGhv@ ´ô #±ä,ûm¶Ç•€5jù’D)Ê-XŒ6rœ %‹Žþœ 7·$Å‘ÕuMžwñ }±¤ òEß•µò0ÜõpüA]ÐÆ ¥.V—R\)d”¨>eM™NÕ@´·24Ï/s'pd:Ë…!…{U ~uÉösŠgÆäÖ°Ÿ‘£Cï7T¦ä§À~àÂ!9BE$l4$ËÒÑ"¥Šôm硸*œ8¡yO­_…JñÈ»2 sag.nHnÀÿpq¡ä5ÍöAúZÍ“¬Í—‘w¶vÞW^Pofƒ×ÃÍ%VÒ 'pƒšÕNÜ:iRçËRÐ$}/Ðü—ŒWÞã²è)ØÕIP¯R´Š´ŒVý™À ìüÍ®K¥•]TâË¿ü²Ÿµyù½R]÷ ­‹z¹ñ™Ð›*)6u+hõ r¯´É°^“ÁË@“£FyÏ3"W³†ï ^ßAc_ÒäU¯S‹Ä!‚¤\<' â@>3?=ë&p¦ Ò†AìÐGéLOaW¦%jµšÔáˆ(°\vQïÖÌÔj)“íÐ{õ.»ÉⲞ¹ayÖcÈ)¢~~g,ÀÉâFAR‚¶8GIEêícAî—öxƒ+uv[Ÿ³£{ÐT™´w·!/P©c¡õø…‹%»wí s[ôm4#¾íü™rÍ¥dc €kO¢­Ñ¢û/¡8Çâ(qÀ#þcØþ³òŒ¼0JKÀÕõ§„ÃöÙò[d² 1Oí^}¢ªº¨édtAš^Y‘Y­ËîA­çb•?«–§‘¬2~ÄTó7¥"êS‹›¸½8“ŸÆNq lóÎÚdpVþYƒ’Æ‘ÖÍkAR,^•â÷¨å±?ÏËÏÌú¬ÖOã¦M¡±Ü¢î‹e>äjr“R“A“š:ÏÖj2²²AªuÖ@åîÞewY´#ÎÄ’LÜí ÛÀšV¶þ¼.Êದ°—ؘèŒL販^¡û‘á2oµ¼\wM ª¡UsªwÕò>0‰ïq}ÇŸ‹»Åñ<¶ýI@ÞªžWÛ~I¦hO<Ô¾éÙHœüº—°l_’ñ*EìRؾ‡Ë$<¦³'jÏTvPR32ÈA C½UA^ÛãÀ¼/Æ¡|âô'Bñ*eK<Á«å‰Ž{É,âÜ8ñŽäîiD[Á&€O ŠYF-Þ1A”¨âe[dû0š•oèÃh¸&ð¯Õ·ÂAmj¼V«",ÑRŒ–üŒ®í±-r[€Ór°Þ]¢!;½$j¹Sá¥þÁAÑÞ›¯«._ïü=F“.ˆ¿Ñç‹ÍhÅ“$±<®,"iS 3…ãª"µÚà´ð4 = fbáNÚ"šàüïõÆÆÀ^]Œ>È ¥ lj‚ŽÅ²žï²÷ä¦ëB8t$=«Eb¥ë­Ühxôzù{— M#P6â .Œë J{Ac:~†©ÀbÅ÷šù­,®ú'‡‰oþ@ÄU´×oqËÜ=’L3›Œ&V_OÃI<×àLiU‡7̈=㵑Jb8èθX^¯ªlrª Šƒ8ó·V`炘zAŠ»çòq¹Z]Ýóÿ I!+¦ô|žsP§= Ö' »D%>`¡X§«0”ôP\™ ÷Is¡”ä n¿óg{ ´Ç4•i:-Dr=“)&Ki{p>…ôiÄo¤¢•:Å9p¢*ùþ–³ª]F×cŽÔÏ9sÆ‘¡dÄSp.Îjþ¥àX4¤ìÕ¤ìKVEms XIWŒÖ¢õ9Õ)3}½®©èTyCCn%`ÐKgŽ?÷ò †%”Q˜g8XŠýÅu¼½úyí¨–ÿÏNÿY ú‘Å~³Ë22@“¥ŒKŒ†hΣ6ºüduQc“oëÂÉ„ñ$2Ší{d»§}{׈Õ/PŠËQ OžX*~ÃCèÂφۭ­pûéSX±c¬˜­"æñ|[ø9M­üq]w„°S±GU'éë4)šHæÂ bÊË Ž—–ì­Ý«NósWÆäz-¡ç·q¡ƒW¡W5>ÝL°_ò¾µ!à@ÚÒ(pæ6wØ£º®Ü9™xcErCÅZ˜ ¡´Ÿ¥èܳâêàä¤É<Ä]'›(ËÊ«P«}½7‘ádàÖ¶¶«7 _eŽ÷zµï3´³è¢:KÅ Œ]y²Ô„Ó+ÿ”JUºv}œ„sc/U®f?户ùßO??Z¿æ&cM • Ž]—%M&Q2K¤dÑ=ÿm®<Š$Ëy6Êrã8àõt[µü¢Æñ ½èíb_ÙŠ]Y 9 rˆÜ$ˆL~ŠÏ:$È!#ňî•ü¿ñYê_5š©ÎoÓÔü¡ߺüEØ{öýY*Úÿ7qÿeûõšâ=‹þ“¸ÿ?,Ée_ongç¶e{¨rÏ‹˜.;œ9*…ÿ9 ´÷ £ÌÊ‹ºå‚¤t”Y„ôíE‘ð™:}•¡P_GMô¢õÓìX ¾½…Æ–Á¨Œ#ö=¬ˆƒ¸Cö­©mÁƒ–ã‡à×»æ Û8šŒ"oþóï˜ô›$s_z|X—AzNæQ\*ºZáÒ׿|KU‰—¾’äáe)ÞÅ¥ü+ry kÊÚI£ã»øf¿Z?PÐ\[Ûl*˜8£ø•QÒJË>Ú4â”ã=þ•I2IÖ’„É“td&c’÷þ $)Dà}aCñû çágè ÂíÖ¡ó¹Ïîä”ÂihŒ>î^° FÃ|ØvInû§;ïê™ ÉBK¡â;Rüµ[ÊCNhœ’”‹\ÆåÀ=êBùQèÐ]9Îõ䕚m1üB5y;üò‡(·aMO¢º¨G× ’N‡Ž¨”ŠùF{pÚž„Uû“â’ía-ˉr¡þ|së)”qS€o8dÇþ2÷ ÛÕ3׉-­n(>{Þóhlº²²´î°¸'mNöŽ>NËUd;ñ}yÓáT²¶¢åPpŸVí> %–c“U^6E¯ÕÄS‚QôÄÅäÀ1e‹œ!“7«aüØP·ô“ÛT§²ËÊ ‘k ¨r÷ô Ù<óÕZäÑéþ_)©aèzBÆWõE%‚è@C|ßÔs×£ÿJ˜"ΗŸÐdGiµ±•ä§ždjl$b¦fë _õÎÛ_þ9oËé&r¼!ë=÷5…ãŒÏqˆE'ŽxÿîÆ1”FiÀ·óÈ~ø‚L rM P+ÑŠ­H9¬©¡ü9ák”•eiLÓBjœÊ%Ò5ÙƒëñÐìÚ´Ò€ÛqûT¤•v²ÅyúôCYÊú¶‹9t”|³¨o—ÂD20Ü9£ÓSiÔW–Ò³_ð8ë–°æ½®÷pˆRñ+Îùî9š«z=Äׯ38¤Ü”%®Á¡68ÊRÑƒÎø œ”5g).¯Qž­I+‰ðM‰ @ο$¸¾¾´¼îºç SùÍŸK2”Š·ðaö‚FGañÃð;ô(ªo?£ÒÞfÂ}2H¥è‰¤ö\̽!7x7©O<º¯îÃ1‡^:¾û‰`É„Þz*3q¨ä¦ð™)­â >ç0è©#ò 3ö§G¥k³59œZîG²(Óæ<ÌËK×Î| ÔìBùÆ•S‰Ù22È$k‡KyTÈøDÙÆÂÙ,!ûvÑ•ÚF®÷ðâczî'›`ÁƒMOL³ç61œß—\5ÜçY _œõrÚêï¤l ãï«Zà2÷“]+‘•ÇSÝ9w¹+ÏæírwY2‚b™ÙL¡5çñSì‡Ì—É.纺.4×ö¶¹‡¶ñSFÙÐÚ\‹ïš 2;ùH–&¬‹õßëí±ÃbÀWX˜k8­\MD…·wx¨Ó9Ú¡‡ãÌ/0›&à6`.‰'c&}@Få÷ö8˜¦»„¬º;‘zñÓàÁßÁ§¿^)qOWåî†õàÏ9‡ŽŸ§4k'àoF©'ÃRF:¹ß,ßãeq6°rï¸Î}~¾¨¬=oeàM+Ö*øòù¹­MUå'+¡ž»еðý)« ».oÕIGjy‰sTŒPR¢uTX|sÓ¿Û€ýîÞ.i¸¦¬Ø÷©ú5|]­†/h"Síg'Eƒ¶žÜÞÒ&œªi»ý¾c•_x .˜:C€f§6„ŠÐyº}og(†P¿aöÚ¹öËœ?±êý7k_ûÑ•ÙϜܗApï' ¤RÈ?ßX©2ï¾ ¯Å£éßEõèÝQ¶ÒîBTSÚÓìOôLŠI9¿¸eò¢ÖŠÚªúK÷.݃¯hž‰V$ŸäÏ$V„™Ñ¹¬ÃQY»£Ì¿Ð“®\©9)9IÇÚ{¡xš¨e¸An’|w¿ŽmQ…þ#âEx}ÆÝöÖö–['© íŒ5úž *q‡àå¶$zmÐlpàBr XI7›’pã ÆdÙo ùžƒšœ8Ö‘Ÿ‰‘¤'§$§@‚uLQv+¨:Ë“©©@Z21ŠØÐ6S,7W0›W8°?Ãü7-oQ[endstream endobj 501 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 880 >> stream xœ%QLSgý>J_ aÕAÞÒfîõ9Yâ¦é@È\EI˘H«&JHßêhËÊ+ˆXa™&ºÙ$3i“-Eĩ˲à ÖL7FÇu⌠q?Èæ2xßËÉžóŸ{ïIî=9ç\Œ23ÆXc¯r¹¬–Çc¾ô,–ÖeHϩİœ+{ÔbŽJÌÉì“å\8ò4ø×€w-RaÜùöûö`KGÈWß °µ–-¯R¬¬µ¸Ø¶™-°XŠÙR?òy¹[Å ¼ŸÐ̺‚^/tüòrƒ ´”˜Íííí&Îßj †ê_y̲™m÷ l ßÊ‡ÚøìŽ`@`_çü<ûD§éI³ý-a±UÁ|(€Ò–*'WãBèy´mD»Ñ&T† QÊRŒ¢LäDGÐ ÎÅeø,~˜ÁKÇu²Iì‡Ê1© ŽÏITÒS²“.¤HlÕ©¾Cý5$¨âQ/Q¤¢4é¡&ÁÑŸüänß¡‡êô…Zû¥¬ c¬½Þøy`W¬ó=ÿÙ£'ƒçÅ„6ùå7K W›‡“i‹çd!ô¾‘bendstream endobj 502 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7535 >> stream xœµYtTÕºža`8F%dÏ HSÁ‚¢""E!¡†Bz/“^&“ÌdúügzI/“žI!! $@(")Š PÐkÃë}÷^Ñ»OÜyk½=IP|×{—¾²² dŸœýÿ_û÷æóÆŽáñùüñ«6l]·x‘÷Ÿs¸i|núîaA*6ýÄ ŽƒI˜4Ö6}îÑÉÜÌPý}(ò~ž€Ï—*,«’%9©±Ñ1éþ»=³(œüµØñ²eKçû?¹hÑ2ÿ•‰‘©±á¡IþBÓc"CÓÉü·$‡ÇF¦ç /y>&=]²ü‰'²²²†&¦-LN~Áû”ùþY±é1þ›#Ó"S3##ü_MNJ÷ßšé?ò¦ G>­JN”d¤G¦úoHŽˆLMâñx/¬LÚñrò*É+«S_M[“¾6c]æú¬ÐײÃ^Ï ß±12 *0:fsì–­ñÛ¶'=:ÁÂE‹Ÿ|jÉÒeËçÌÇãÍäð–ñáòfñ6ñfóæð¶ðæò¶òæñ¶ñåmç=Æ â=ÎÛÁ{™7ŸÌ[Å[ÀÛÉ{…··‹·š÷ïUÞ"ÞÞbÞZÞ:ÞS¼õ¼§yÏð^ç-ámà-åmä=Ë»‡w/χwïÞdž/ïAÞTžï!Þ4ÞxÅ›À{‘4ƒ7–çæo&#Ø!¸2Ö0vhÜuáŽñ3Ç×Q1Ô'.Ü“sÏß'ÆMüzR˽|Vß7æ>ËýÓï¿ðÀâÉ'¿é›ûàÓ–?ˆEÖ)3§œœšãä÷øðCòiÁÓÇLOxÌÃýó“Ïô0ïû¯ð3“žÙòHà#Ïzx¶ïì ÙíœÎgP ´Óí­âŸ¼W€¶¢q¢C´1z¹Á JǺè:h2ÕƒZtÍÐ?éK1Tº” d5m$_wXŠåï¡É~([èÂËÇe¥„È » Ltt™:¡öéÚ¼‹­EPQ¬iÎ^¯gB…·Á$±´*µœJÀQ ¾6G }¸Ór7·ÀÍGÑhÀå¢U"‹ÛZmq¶¼©¤¶÷ƒ:hÜ“¹a/ž( gòcu…IímŒ>üMzÔâT‚*ôyZZ)‘<º ¨LCiI³Þ^ËTïFcáõÉV÷Îe»²óiÕ‘Øæˆ†¬tibvx~ è)…,Å,ë¶Ð—+x€ª‡$¹T—­•2/áãzµA:±ÜžWUTn«´ÑÃåä{øGKœœó¡¥( ÈY[ßÑý¡Eìb”CeRÓɨK‚Xˆ2Åy«¢&Õ’; &ÆfhÒƒ”:yN&ž‡_ð{íVëV ¶ªÊeq±å.•QÅDB¸.‚<"fôù¤àN(9aVdØ™ïq ŽÀŠÀ5[tqzñh3µF¥“n© ÚH?Z‡›YUN9«gMšrp‚™uÚœF#;üáG‘ü'¬dµFïNA‘™­W uG 7·s¸¹??ìNs·i]•*Ægp A×;n´ß3™»ùEŸ¦ú~ɸ!‘cŸ ZB÷o8×$,ya62ØOˆâ EȧáýÏà#ê½Às˜OãsB©œlË•žÈÕ^+cð´¡®q¾‹Uª•k¦ Ûe úTˆf¢ñhüíO×ö­r0Ø_áû… `²YMNÖÊ\FmãÐKÂo¬Ï¤<öÜ#x ãÃÙG6æ2*º,à¬È#ú6ðÒÓø~,Â3ñœYooøÝDäÁsilÅU¢ˆ(Ï{ýõHÐr‚é8ܼ¨#{C2fÅ0I[wìÙ ”ÏàÞ Ïà=ö¹`ðèà kf­`¦Œ»B¯y!ýúÊK›Ê‚AŒÃp<ÎÀøÙÌB4 B|wØ©ZE ÀìÀ+ð¯= ÔÒ§N¢™gëÐâkh sñë¯û>êÇ}?¢‰ãE©ËÄ–›i²#¼ÝƒæïŠ ¸ ø?(R&(uª@LeÑØ˜ÂæFh6g¸g„ÍE í«Ój«7—1ûÐ[n]Ø1“÷™ˆæ¡Gÿp$`gHtlSpjOQêï ‰¤ªdætºÈÞvöê›@õ:7LJJðĤט‚ÔÕ;€Ú¤¸i7±&£àD;B›ÁµŸ ÐKWDÊXÒZ ~éí!Ú„¶ X”Yþw,bðù߯Õ)ŽvK€õðúÕ=xj`X2—Ù¹ù•Ð瀚u|—džñ Ö6þàúÁà‹¨@ÄM`)Wè_Ò éM˜ŽYŸ ûܵöj÷¹ð¢M*Qò”I èõjÐQ„zV—ÉXa¦ßDï¶À(.*m>è2Õtö+ÙËZ.@{«÷%Åè!âÕ%¾"ÑçëÒƒÆPè}Š Ì%¬¹ÂH× Õ¦z5d‚x(Z˜«€œ|Te¡TÚ<?4Ô:R&ñÏeâÒ„UÀ²¶Rʇ[&¯F—®–}*<ïÈ“äj¥díèV j+-Ã3³ IjŸoÐåhèœW¤©ø+„çPÑ‚MþÃðjš.[—Τã~³V»~G­\`bº ÇÔ}pH×ë%£ˆ ¤ŒBø2Ø‹Í`4—}˜/w¿u -¼ØïžüáMÕI4ù­ÝW¦úþ„‹*z°Š—<7+c“娔>j0R•ùÅ™éɹ{6žŠ~=Ö‰|ú>_Qæ }L¶FÛ¡m•–ß»Í`<RHRµÇÖ§µ$÷êÊI¤h/n>ZÕ%9 g §»ùÝæ‹ûÑB8NýV!<~fnXFP|Ø@K»{l­ë Óƒž·º]Dl¼°MRIlG‚Ú´*½{2â]D/Lõýýý´Èµ³#³ýwãî"ª»KfâU±íÛ{ ;¾,~à{ð|AûJÿeäÿõÕ•Ïúø½üÐSÑX¼}³ ž |‰H-:Cݕ׸lZðqµ›Ÿz%cr3™L>–;Gé¼BXò¾©¢ô²½Ãu|idµ¾Xš¨‘¥A•Q¡(«««j?Vöh*žKœ·ÎÛ‚,‚²Ræ¬ðå¡ aêL±26?(m’—6[Jj¡Šrç8¥©©Y1{dvÜîFQû¼§‡ÞC‰Îzô¶‡?8åOt]¡'„h2šöw4áÆšs˜ÏàãÿâDìDGzïœÄ}&¼|4嵬¼G#÷21ÁÙ@áÉBÒmR¦¢n¹97É^ÇoH.Nõý}u\”¹´ X™+ßNri>$€ÄUe/ª&9§¸°2%'AÞ‘sã‡ßù°’F|n½¹”D/ópô*HW&iißo›d’Æix,çáK­!Ñ뇣p »¨ˆ:JD{ðzeüÆ$zmÓè:ÜŒ&TbêNìÝÔÇR%ó+¸y²bàù7ž7ô¹Ao(½XîÈ«¬..w™hsi šbk9gvìc-U-Þ¾üqμ6&&1ô91ÃM:}ÜŽyø\â·}é5|24Û6òÑ•@û ,PknÛÆ$&§¯jŽÈDh澋ŸÃêê‹—ð4.ÿÝpðÔîÿ×p8ÊÆ!ž°ç˜t•LW(ÛÂÈwkeM­ˆûFóv›ÞšŸoÐèèÜ-‰ñ @%êZêMµ¦zÆTc9Õp2¦gG…—[#=_ŸŒù3>Ƚý”„±êÜêRí™ß±<»®<Ç%se@4µhÅÜ'_zißíKƒÉEƒ‘5ȹ ‰Wê½; ‘z•AGâ´Ú¢µÚX£ÓN»Šê[œÅÛÎåаZ€B“›TÝ)-Lª§À4¿1Û’àÐcKs[ ›úä£/nÞj\³2Å ÒfÐÙ¸»Žy÷‚‡ÃüAy‡€;B&h/rì¬ÝØå@Ý®‘m ¤"ÑËI¢×SùÞRM&º­aÍ`!Dôž½ÐCNa ,êœ@¼Æ¸Œ÷‡åE`2›Ád¢F–uÖB3«‘¨6a hU*}!™wðCCm…1…ЧÄFNiŠÀÂ…㦣p N莎ªU¹Çä ¥`ÔA²Ic†â0p£^’Ôpùzñ;}óEàf[£ÃHE{;4ç2a“T ÕɈݨHîXu(µã »µÒE»;KÀt—çïÈ^³(‰¾¦ªÆÖÈZK5°P W7¼î¨)©®nð;½¿¯Ÿ°Ò&g ¡*M (‡gwcEg}NÛží!¡á±ôæuRiL®×Þ Ø¦zøhÏ¿mï‰ÄÞˆ½Çý{s~ñX4cÑ ‚¶¶}å¶´XÜÌ_¹9x*||hŠ22@!Æ“n¬¹…| ð¦ 1 ´"ò9(êáß:óëþÀI2š,Èoßu¸³ª¡®˜.o/97ZV4:Z•š»:;4Ä¿ä$oiªgÒDÎ fpE]Ú]&;ëÿz‡œN‰.HLI?_ÙÁn`Ê µ*§óåYZîÊòÛÁUk>Î:KFæ#áºÈ_®Ä4£WbýÆÂT#sfhȘÍjÊ@L°ÊºˆT žúå‚qãÚþë;Æ#`,ªnê?pêP}°#O¢JÒ’ QüO÷~]èé‘5âZô?7Œ›ªv¯Þ»7‘V^ ªÜ°3.öÿƒKÊŸrG{ñÓ<ÁOrílmÙa³“5;ÀI±à, Ó!E—FcŠ¿ë˜ÂÆ”ÚÔÄë 4…j9¶Eùepr;ììPn­<ÏRvBz‡Ò¨f¢ B5üˆa{Í„8‘³Ç¬Î32¬Ö´ $ÌëÕ ,z‰»U€”Q ó!—Íg3Lj–‡Õè`ÍÞßqÙæVÑ~²ÑeÍh’=ò®Í_ÔÿÙ•nOZøùWg‰(4~ʼnxÞ2¼g}–5¤÷jšÔYQØž¯Öh¼}gõ´µÀœTRÔŒ KãùP òé>$yÏ~zé¼@z$4-4hõRùj0 3­Èh$)ÑÞX±¯™ÌPYu¹õ9žŒ.bèãûÐË®;'PZF±v-$C„]j޶G8@N”]o~÷íkhšç,1>7ÿ[Ï•æÏÝ—ßsŸñBá{Q.Q …Ê™Faå)ýòœÂyALrì©{ ‚›õïÐw@)U&/Kß¡ÈYs8à&I“@“*µW^l§o·Ÿú >¤n®?²Oœ3sILeRGG_{¥ÜSàݹŽÕ›Ô4k°åCŸœ”¥®¬¸úÕ­ï:笒*p ^6 ¤Fn¦ûÛk]u|4é<2½×Ø*@«(°àlÓÕ>”Ä%nH+gŽ," oÄàéY)»CC¶•†>Õ|YûNßiÏþã‡ÈߪuFS»4a*™=§¾­¢±³?ª)`ÙâͳW1Kð¤ ü¬¦$€x#q¨™è±~ÉxÜÆ½!D½/SÍÕ¹]æ£Y\†=Æm_Ð{{b÷ð³63ýšýuõ>bÒUyrYR™¦Ê Ô\b›ƒ—ôqëáõÙþ„—òòýŽ–6;íA“zï)tÿ14¶ïRãG1G}µF :-—µ-*< Ä +Õµi;µÍa ÊM[kúÉϲ”÷²^n0ÈT#ë¸ög77«Ž»½þ=d>/à^G§E)3RönÉLÙ´à!Ö–ßtØlê U¢¬H‰ÍIŠÞÞ'9ûç×/¢ÿŠf” Õpjô8ž‚§b_<ÏÛS‡Ç¢ñgvòÐØo½è¸RÒÙŒ¦5ö3EîßêhÙ®U!d0~˜Ö”ü£Wšø˜¶còyªïß~S0|®£E5ÒªäØ„ø„ô²¬Æ6O‹‡öàn¤ùMt\ÿаlò‡hgóZ×"\ÆE‹þ|ɃÆa¯:×)ÍLÉMÌ.’» tÌÓ¯îÝ•¸3qm(içÞFI{SeMmM®=/3W–£¢uv°a>ÕQóõ[=Ûœ{!”zn3ÎÆ¥ÏÏnG÷žlü¢¦›6éMã1x]Þ þèx½"¸níM%@YÍf+ãCß3viÕ¤ <Þd8óendstream endobj 503 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5117 >> stream xœX tS癕8†¤QjúžÓ„„¤¬a ”%¸›Ù Œ1^%/²lÙ²¼i_?í«Ù²¼ï ÆØìû§aM¦é)„é4™&'ó?ç'IÙ4ÍLÓNÛãsdùXï½ï¿ß½÷»Ÿ¸œ±c8\.÷‰èõë×Ì›zû;•ËNÃþ„—­_Vƒ‰<˜8Ö9-Bü4ûÌSèÜdäŸÂ™Äå+힊šÖŽ®ÞƒGŽE‹rd¹‚´tIÔÏM"/ó¢æ-\¸`fÔksç.Œz3+%W”˜µ>Q’ž’•(!dFm% R$²‘K~‘.‘ä,š3G*•ÎNÌÊ›-ÊM[ºËÌ(©@’µ9%/%· %9ê-Q¶$jCbVJÔhͳGE‹²rò%)¹QëEÉ)¹Ù‰™9é‰ûR$‰É)™’ÄœÄ\‰ 13Yšš“.ÈÎÏMå Ò²B¥H çåìèœ8qnž$ÿíÄÂ}²ä ©iéá֌̬ŋ–<ûäÄðåôŸ›út‡³‘ó"gg1g3g g+g'–ó3Î ÎNN4'޳’3‡³Š³š³†ó6g-çuÎ:ÎzÎÎ$ÎdÎN9×Ä®™káZ¹6®ëà:¹.Î ?g,çw1÷Ë1y¼‰<ÏØgÆjÆýÛ¸ž°˜'¸O¨©_PwÇWLX0áú“ʉ“':'m Ÿîœlœü«É˜òÒ”›O¥=½øéC?ŠþÑGϬxæÿ9¾êÙjÖÎþ—"ÈÎ rÑW*¯ðîçJ´ÐQ² U¥¯ÚpÒf‹ï°£!ø»Gд×Ùü®³­²íäýÿjÐ*\‡Ÿ)Þ˨$&9(¨Ý]é‡ö —\”`(ÑÑÒUÂ-q@i¼'¿mxV÷ø}Þ°yx-ßjtª &“BA¯\ªªˆ¿…y‰óp>ã¼MÀ\4ëîû}‡N2ŸüƬ”G F­Î¨6ÒªlÉ/ßÚôÖ–uEÛš÷ü 4÷l-zã34ž¹xíá±úãù¥˜J2˜@É(½`+KµgǶ¡™#бo\ç âp¾Z`Ô$%W@¡Ú®w1MÐbm†è4´Ã±‰/ØË!àUBéNpº}ýh³)ÏnN?¢ÐSè%ôòÃÍCËvîJK2ÊS{kSGðPÉd‚²`øk<üê‰A¡/b®(øÎ¦¦æêÊ®¶§¨¾úô˜!~B–ÂV¦ì#‡,VÁn)t²ß´q‡“‡_æ›m;8(·¤ô£Eay`2i ·âÕFIFŠœÚç¶8­ºM81„æ’b„=:óõ80éKÁ©rB5Í® «³ÙQs ‰#Ì6«l”]ïP©Lú €§íŠÆKÂËÂÂÙÍÁ­ïÝÁFóm‡F‘””]DçŸJ®Ê œ€'ãxú+ç×ß8¸¿¾»›Q¥ ñTƒJ-Rë·˜¨2%HIeåL;tY ¾ÐmèøÂÅ»ÂN‹Ãâf0ƒ¦ñ7ê?ðiA\?ÓvóDÿ Þ©X¤ÑnÅ"ƒž)mY»¨pv»¢]ü¸œ(á÷Ÿü ,¶N4ÍVí꨾êh²•7®ºœ-¡*åfÈÒåç˜*ö’VÔuwe´îx;!NTH«ÓÚwÿ½|Ìm6]äS¥î’`°Þ¿pïe8"uzÂ’›%-Zú„ò„¶RbÉ<±t)œ”нº†Vh¦êŠ}⬂=›Ï&ÝAoìG“» ä>:§9ÛžàNs%9aj©¿x¯á˜&¹’G_?ˆlCÑî•Ë<´}‘ÿ0,àVÆÌëF?µeürO‘AdJWÑÉxþ¸YaR%Ê]`î…Eã}Ȩm½)§þx6djЫL…ŽÞûBlž¨eyG½Åió“ã¾÷Ø8W¼xèó3|ï¾.ñA肺ºªvwùE°P#^Bg K·®J½AÐwØÕÅ4#޵ÒÓk«Œ´×yzIaÕ!Ø$PÓ…+p´<Ö¤OZ¼¨íÊÁž3Í6¾ÇøZíPC fôìœ™Š§«F»a©²Ó w{{zrW™2òÙÚ&uFÁzˆ£f¾—{j¨{0è'Â?ž<ƒÆ°EmÜh íeÿ‡ïê°¸OUå…·Öªfraƒ!„°È* ÑR%©Âu060õ§JAkÔÕø‰G y¯®ŠÝbˆõŸ°šœ`jcgk{ާH'_µþäî|1ôiÁªAñpƳá|YOvÓ"—ñx ~¿4ëôš_ŽÙ®]`\‰]Â# ¢·e1û€Ê14‚—w€ñö[<îÞnál&O·ô6¯$?ß@¿}| Œ%E [÷‹€ÚYzzÿ±v4¹îÓv~°§/¤¥…Z­QkÒ‘ú~¥–ŒC*jy€Þ}ÀCwÑi¾£±îÁU°C=Ô–‰tÒ\ÈQI°½ºïDL…`Sz¬DNçmódõÂfÌÏ 5Äeµ¸-Lç—C @Õt©6e­NÅQLñúôÄЂ ÊìÁZBñ¦|WIV®8#þ˜t`¨ûªÃJûR»“/õùYÄo\eÔkŒŒ0jUq—äâöN2ÉÈÁÃÙ7GE©ýÜÃâ:©‡—ñÍà)“¬PÅ´Ú¤0"ËÝPyÄ¢QjT]½(ß©/†ôÈ™'×ßDÐdô zñ~ì{‹ã÷egfÑÒ¥|G,nïÑw+ênÊZûØ…«ãÓ’›nÖ@MÕeRAN ößëÿžØ"ö)¾­‚tÂ9Bfe±¶DEuêL½L#ÖähsöƒÖ—ì]¹¨ŠžCþK÷˜ª6/~ˆÕMûZ ˆ.?dä*ÅšB&éyÙfØM½v9ëüþNs3]¶]—+¤dÇjî±í¯‚r¨ðyÜžr¢”¶›R",ŽÛ9zéóÏï£qÍDþï  Ñ±ü1n%3UÆ"‚›VeßáF¤±r”­‘ÿ:[GcmÅ?ÁÈáhæ’ag`oñ=}Õm·­”Ýg® •Ê!Ý ¤ÊT’©\ÌY“·òÁ`,1ðØG›"°˜­QW›ÌRýsaRùœjì—AÅàçu*“Š2"µ S¡&4÷`*yTf³É¢Bœf»Õ‹"؆›Œv%²<ºá,²Ýà°Ú«É0*%¬¨¹Çæ´¡éW¹' _=ౡé8Ótô`_?PC‹t:Òp=ÑÓïh‰î„-êû{Š&ÌÄÓÝ QÆÚHI@箪òUØéš÷ƒ¿»‘‡«Ãì°ºÛÎt6«ÚjuÐ+HÛ–‚¹yµDGhóC©·$6ã—[¿Ÿz«¢'áõNRÿòu»2ãSɰ ßèÙ¹·/$ã¯gx?PZ%ÉÉçVÕ×µÖµÒËMäûZˆš›\ï&׬”¿¥ñM^ɨÅ{0U¼W).Bµ»3ý©oºû/õÉÖ 7ìx\Ÿ£¢î"Áné«ç.k)¨ìʾÌcŸ'Õ”úó$Y’,iEq]SScã¿^À/\¶kóâÄ% s·:‰ÓFÚ—›]–Ô—äê''?m °cH\¨käÙÄ®Ó7?.Úm6׸膋‡.’¹YQ­O ²áì¿C‹{¸ì2ö ¾³ÙæðYÝ–¨ê¿õKJôÉz1cÒå$Ci­·×⪴ÐMh…Ùfög„dA?:1’c5…ñ/#LFé-¥µëœ³½ÊAŸBs«Ñ 2cÚA¯Öä&CHÅmªTƒ" "Ó´D^p45[ ‰i†s3SSHÊ-ÐjlÊã# Tƒ8· ,b&Ûª¶B˜Án«¤F|]øo”‚ß=÷É?MÁòJ·ÏAÛ݃h½£¡Óð›bXДF¹1´bÅô%hmªê Ò ÞÓÿË-¥+$;È RXæíöÛêlUŒÍOLÁï¬kyÃÛVÝÞ^Wä䡃GÁA굘|F3¸´˜,Æ]U2ÈG&3qý­’Ž=¢xõâhZ’œ”RB…£ãŠà0¿Ÿ{ˆÄBï_Ÿ¨"æYyĬR‡Nôô#ƒAaÔ@qäæôà n?]Ýë;÷¼½0†XD´WÔ›íö&ü«1£ gxò¿ºæjDê,F„)é2½T%]dèÚ6GC»‹®8C$êÞo-?‰&"7'â0i,£ÊÓ+þAלèG<²½†t¼|GBl*m*7tŠêsk3ì¹0âÖItg[÷ü9ó§—ÅüP毪ü.ó£V¼­-ÿ’‹Öy(ÁÌÊÝŸ,”æŠrâ_¹Íí¡­³Ù ”Ùl*}3}£PÈ(„0ŠL»÷öhWaÿ`}³{Ohà‰¥ÿ_²ß7Êw* ÊH“n×ÜEd&äuœjq6;›ÉÈÿÑ(…ÜD‡ßå±b¤à£y³¾‰‚#ð øùÙ–ýñòõº‹ïÓå±™ƒ@l;]åÔZµƒAc`dqiä T&üº¾–4ÌÇ9ÇLÔ‡$4¾€Â÷_ Üî»Öt´ç ±•£Žµ›ãÔ;òf0ª ¾"¾à”èôU)q{´|Òï8×øBŸ5$r±™!_’—snýñæÛw[ëOóÐltž¹Ñù³ v5‰,†v¡[K„&펨Ô4MIdY™ Âz—‚ÖÚLf=Pj£F/?™væRÿ¹£GR«v¦Ô.(/³K]RWsc}Äžê¬è‡ûïþ¶¿§¬5¬Z/C[Ã^K2‰ÖòTFܨï€8ÓýÁ­žêü:¨#½m æä²<ЉƒÛè?T؉;’DäÒÙ52ˆ7H%f=•µj1,…ÔêÄÃ9ÙŠ[øUäs^² ÙLÕ:µA©K yŸd7µ7òëÈžì#ó ôOr/µ^©'‹½ d.*œž0vA`âxçOÂ+»endstream endobj 504 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1694 >> stream xœUU}lS××ϱ_§&/A{<{¨éÚÊФ+íBÇhÂÊ\>£0  à$®í4v\ûÙÎ IÜøãØqˆ%!Ø© -"ºÐ…BǺüTS;‰"u[ÇÐEÚyÉ5ÑžéÂ?÷sï9ç÷»çã>Â( !D½nók; 2â3ÒOˆÄ+¤e¬‹Ç2^yyz0 ²YÈVöñê?.‘&K‡~(žd4²'ÓÂt0½ÌsйÀL1_1·˜ï˜Y’Cxòy“Rb$ÒJ‚ëMN«Ù"ê* VÔÈK¡®°¨èe½î…‚‚"]±Íä´ÖíºÍFÑb²EY©×mk¨±šÄ¦9—_ZDѱúùç½^ïJ£Íµ²ÁiþU&Š^絊]™ÉerzLµºõ vQ·Åh3éÞiåÃϺ›Ã-šœºÍ µ&§½Úi¬yË$Ö›Þ«­æŒf²ˆVGmƒ×>ÇòÑùCÙjö˜E“½Öeµ›ëM£ÓdÏx–XÍsòœ•¬¸Ü¶ s™€ln•W³ÓXŸ‘¿ïvÌÙ:œ µî±ÖêrÔ›,FÑk•I-àTòÓ<ƒ’ÝŽ9Ò g6æáÅüžcõB޲Â0ÌE ›ýäâÒ²};k,ÖÖæ]rIˆ “é!QÒK>#qÒO~GÈ "É0ó£LÅ•ÌÓŒ• 3gäúU,V€â36Ÿ}µ±ØëÊEÊÑ,E–Y äH/ò´i|æþ8ÁÝã,î–5 –SýÌ}ÔÓrUŽ´Ö%°³ HvV²ÓW5”Ç uOäçC»Q-B÷p%ôŸ®[{©8³)UÛÓ} ‡SÚ… %2H]„Wž¤å5¨Ÿ½Oõ5êü&}'!}:J0ÿ,‹ùéšð$’0zH¦ÔÃð¸ÁÛ,äHÿâ§šàU7eK׬4ÀOë5‘P¼# \RÕ Ç£ÁH°Gk>Yqq3*(ƒ2ú@*Å%8„ëðµžè×ïƒö¶ tu ú"Õ®§æ½4O¤«€®Úq–&°¶©=U ¡þö¡–˜{ ý[ýÅw5€ã¼Lw¢{ßð›§] ß ´×Ñ þ¨?Ô·L–ÿ™*¡r^¨Òëi6=L tc0 @€ëˆCÿ`bqáö×ÿEíU4ŸÃeI| p—33>ÛzqfÙ8‘ŠÒÇ4Ó»:BAð/݇ÃÂô5Õ7Érªœ¯¶¼doé^ï¢?.½F…w¥â¾x¤¢K! ¿§“Êò$ U€Í¾kt+—R­Â¶¬×TŽP¨^®Sýì¿“c7¦ïÞK’OoJ¹7YLÍ*5môæÝeò­l=žÃïGcc0ĽïlôºÛlo|bùÓíó¿•/œÄs1dG0’7„›Ž§>‚~8L6Úý]"ìãìɶ‘ÑäàçwžØª¯}nm³Ð^n¦':é"9±Û³qûè£Ã+šT(,6†B¾n¡ˆæRá×tŸkŸGî6„÷Ð}È 9¼ò?˜ä³²' :p…tW°òƒ(oj&Õtiýþ¢¹¤žúð#Ì&yêªPãÒcUµ³—ÔÞÚMó„ É=oÈ+G¤£<­ž?QçÌ´J_$ð‰Ïˆ¦‹•üÓUÉG…Ø»iÀât˜Ç\YrÞ䶘àULôL°è‘U z'¨AÞCÃõª³Ù%Ûìâ§K5ÔP‰^^­¦ÞJ4¨þŸW& {ÿ©ƒÞ}–ð3±Âs”™¬þÜy:ÐûN¦»ÄPÈ©mQ#Oƒè®¼\ÂG´ fu>Â{ò©û  ¼Ð¢v†Cc#áp_¯ð5æ¢p÷D¹èKÈ®äÿHò½Û¼º÷ö{rõïL¿~‡½Ïc»æÃÈ¡$¤¸ß;‡E—³Õ²ããÔ_Â6<{]ø ¯Ná“ø×Sh=…•ÇQ3𱼜†cjŒúë‚Ínpru©–±wSOLVœ._»º·\ì§|:D–¿MWØé+uTÛTREKWƒ\c!{"ó%xe·> stream xœí\Y“E’~¢mv²ÌÔEÜfóÐb`1ˆf3zо¤¡¥Ò¨[þüø™á•Ù0¶û0ƃ‚ì¬8Ý?ÿüˆüçžZë=…ÿ•_>P{çþù@ÓÓ½òÏñ˽G‡>~¦M„G묲Þ;<{À¿Ñ{Ú›uÚ‹>®³õ{‡/ü8|»‚.sÈnx»ÚWkŸsŒf8…§A[óðjeÂÚië‡+x¨rö)/ i´²!Áß÷­5ðÃás|¨”ÉqXãC»NÃÿ೜OÃhZ°}…#e”6oá©S^Åá!wáçOñ ›“õÀ¦M¢‡øç˜SöÃÏõWßaW:ßÏoZÖùKêWmܰᎧ1ÊOÅ4>?}C Ñ9Ùù±˜ç>¶MÎ)…áKÚªä"ŽBýå‡VÉÂfk?lÎwV˜\6i(t6˜aóóÊĵNÏ£¾Í»@o\ÖÇÿ{ø%œ» òØmÈkxò`0yuøûÎé½}ë×)|üc{@x,9gƒG„Ç’œ‰xDû&e؈$¤EöCþ{Ìv\¡ u…ÙE_V˜Lò¼Â²Mã ­äÛ¼B:$X¡Éø[ §gäàyÙÞ`¬‘ƒ?f©º8F©õ «( üBþ‚£)˜Ìס LTtðõªÎŒ„=E“”~»Ï3Î1ãŒqjNèúHë¬õp4`×JE•ðH“N0×£þM§  jˆq†…Ÿ”ßçB\eM's” <š ”^‹7.ê§¼§p¨ÊDH“ËËW“P>]láw†Nq8) Í3:°ì`¼í›²C°¢Oéð”]¶/W(tÎh ³avÓVmHg²wZêþfß”†”÷öµ]{|þ-)ÌPuZ‹ãëµÒvŸÄnK{’¢òffO²H‘Bõ ö¢Ö fþ5É’§ÕƒLÀÁÌÃßEUöK>JåAü?YÁàø@ IF±ƒÕ×(&FÛ¨îePa8µ ÂxtÊ¥ijÎÂÜ&x’Ý]ŒKâ}éê˜p_*Ƚ^MS.Çaul L`!3nµÏ£D€ý†É I(³qÁÍ «¨êáóYt–º)ë‰ R„ßÖ_ŠÓ¨Òü‚äÐ:‡Ò0Êá+!ÀTÅôëxvø+›$g\*PO8ž`Žœ)+•794ÛGÇË}Ðñ&«”äTÎiªûã\YüSâ)®˜g˜f5tR€¡mÁr;ï)À“ ]Ž=äá{)̵ĽŽäèßN¤v —Ú:‡KV"gŠtE +­ß4'­`_¿ tÑ(_pZÇFe„àˆyÈÅœO+× E‚#‡cíæmë`Ž6ÒËi½¥óIÉŽãó‹ÎH•ù—q6Í¢º‰Ò.n›]ÄIÝn-š @•N¦§¤:å`ZÃÁ{¼vš9±T9ÍíÊãéà3Ø7¨¼éeØ$f0Ó6¸iЩ+‰«üx£EsÜL®+‘;XÇ Òö¦*ëßÅïxßr‚%¾[ͱ7[Pý0Ê È¬sÌK¿Vwê ýö³Ãß>€µÏs“_çücò:½ä1ì `ãÖÀŽ\Í6_׿em~R›Ï6çv]››Ú|S›¿Ôæ‹Ú|W›ëÚ<®Ímm¾œÎõìbñg²‡ºÙ7x_Ý9–ML];ÚM^OèÌÒ#½³oÀW ÃcvUš 䳈]J…Ñj—HLD’î‡gBª¿"œˆh¾«oI-o›ŠDLðÒ‘™Z´Š@Xþ†„D7.ôkî5My²‡ p ßOßVRø AÈ î?‘iàß,‰KîÂGt©z¸uÜÀÊ\žûY³¿ýÑ€6[0€ãËŸŒk1h¬&ÿ ¹¬Ü’ð—‡b©Å#œ ¢&X‹¤ÌqaãÍÇ…¡<ÿÊþ6Âè1ì:¹ÞïìäV±á.KR-jøu°v\Ò#^‡ÉŽwÖhàe ¼ùDÌN:0/¦SÚK9Óèñ|¸0Eü \“ m­×mx,äæÌØ:Ï™f{¦îŸ L=%UM¼Ö÷Õï!ª“`ç¦ 8ÔÄöƒÛ1÷uh=—!¢o½³ k@9~zKªrª#ü™UÝÆ¢ê£;æÒ0ž´²®°]òx—ÙZòHU¥w|€ÑŒ„ L’4nú3uCï㜢ð~’ùêFÁÔôPºAÓ-lÏæ¬r®e>§P“ëÒHþÁg+>D`÷¢ë¿!Π؇#ò²ʹ¬cüL*eƒwuŒÐ¸D‡¼9º“þ9ü5è㉣ÄÁúÉXEP»V„‚FÙMt§¤C#¼ŠeÏŽ×ᆃw·E6笶ÖkrÊuZÛ0Û9 ›§hCb¸œô=‘ª.ÈÛ*Z"î·íX,l„·=)\tBº3£î­þsB/¾.ý•hMËÁª–…½¨@@™•€g’“/¥K!ŒÔrd…° ¶ºûx…!¢$Ô§•qK¶ÏDêé,‚¬¹¨sƒ)Òå'‚÷j  hœ‡Ê ¼nžšµ7Vt=F+m20&Á8ãC°Œ3ÁÃzF±ýˆ¥[9çKp)Û K,"K€ÑapmòÒEðPÒƒ‹jãšhß+þ%(ÍP"^ œÁ.bæz4Α‹~ttˆ§œ;(#X§Ü-høðt+ýÐïËÿDX7жEÑŽM ›}} cC™\Ðñ¾Næ{Á‘ÑèÆ '•mØi¦€ à‚à¼cˆÉa.„Çz]à»yø`ÅÓÐMœdÖOb¤ ô©„?½rtÏëÎ<9áÌ5d3˜ jÚ_NÃt¡jŠ*ooŒb Ác`—A /BD6x#,ìºÆŒ‚xwSºÃ0¼Œž·sÊF‰r§ü®Óm`MÄ3Ej{{0AôZ=qÒ/¥w2çgó8$Âu„|Á¾h ÷qd(€§ÂOSZˆXOØò¼>|1?]:ÐÇô¸ÑjŠ$ÀÑŠ^E¼Lvð¢Z(ùø¼öû ñÙc¸Tଌ}, ç±ãlJteŒgO1‚ÄKª¹#ÃC8v•Œk JåïÇ$÷Ⱦí`~âFDÖU(€´Eʱ;¯ÇÔÜBv(Î:¯ƒÌôYky2³&½„eaë~îøL ÞRÈ ÆÙéW'{È£cNE¸+o+° JvÙãR9Û6ÃÙ, Ê2`!&&bb¥ÀVìãYh´9ТŽ([Ä{õKÌkb^èRÍsTž”KÎ5–‹_¶Š$œÖkg#É8Ù¤íp ÒŠ›¶'$!ò ¤ß¹ùmØžq“m&´*éÈ_,¢ w“'.%`éºÌf÷D£Ïæ-Æþjb§‹) Q›ÒN±¬—5p+cÀ×­:x£Rš.¶ý]K'aß4®¢I¢Át–2qÒÏ'cä…bð,uôA˽ÝNiXSÚl ļÄÛÖááÈùXè‡l¯Ãc¼v6Ë!&»”Žæî”šØIÈ ìDÛî&”äCÝ„õjJo.„· xCn¹Ï„¬— ®óÒ8]T©Xp^AûºNz6íñ”½;œ&u×÷`c²ú`ÀõŒY[ÀÞì°ô¼?ZM¢¾“`‡±TGÉþ)gò)³Iä–>ª\{¡»óö9ý& ‘ø›±?Ý„ò@ELaÏÌ¿`åÈ=²ì£oª“(³ãÓÜ…èn$øý© Ó´<ׄ~]Mé°í4avÇðÀIy¬|ÙÚÐ’.õf1_ºß$©Ê4È‘€ÞÇï ·õË:í[Vë`òn³Ý2s:²Aß„+9“ÁeÐ)Žžhñ.Gʱã‰vY'‘ãátÕ§\ ù—YG5¯­õw¥F]ðkÄö¢¡°£ê M3*܇hJ\<]2ä7"§|eÃS¦Zƒ6tµ”¥5L>ã±þ¡#¾è&3yôðCɬµsÌlH[@¹Ž].ÄP¾4 Ÿ£S‡1•Ù¹h…Ÿl…TË[WQXð`t¤(ÊÝcj““Œ1&À‘Ô…Ô€ú®{ gcj¢è°žò ^È =ŒÃ.)¼¡èx.ÄõŠ{5ànIb(èžÌÂî°@ŠŸ,°Àîà æ #-›€¥¾/'×_öZ=Á)' ð¾E@7ÑTc@x¼û=9Ú‡ü›ijŒö€ãÍDuÌà MoÒæ$‹É …c ÓèÓQ3«X‚\$ ¤¶bTF›µ;†Ò+ßXJÌsMûÃÇåµ¶š„ÝMoûøž,Ø3œY*Á…}°•õ¢âàœ4¨Zö‹±,aa‘ÁÙ5¥ë@=fÜšQ?l;KÔ]$Z p¼­ÄñŸr}oì‡~º/‰{Y ä|±[›tœ@ªeL䆂¤%´ù¨NNhO™âE5®}ÂÓÔ˜¸¸AºãÁÇàk{Þè»Lã}k¤vÀKÚkIECèÄ ©·S0ÈbíFOoPˆe­øq •b„ªüA³ „…I(=Ã$ÊeˆY/+´”˜}ˆ¡C½žxAr2‰86@1aýp$#y*Â#uúCªð`'Ö:º=,‡ÄÓUx ôcé]ß|]›—µùIm~Ü7ÉJ~Z›Ïjó 6ŸÖæzö]Ø$Äœ,é{¢ôîµyZ›¢Lïjv´íl¿çµ9_V¸™âçÙÎggöçÚ5Нfgö¾6Ïf‡¸ÍßQ@èTZ¯kåcÝ*ܾÅ|&È6îÝ“ Óv笕x‘u¾¨Af7‚®@“ž>ä6òo¦âtG¦âÙí »óáo™BÍ€ÊP²{Æ ûcnæ±V§–)†¾2ÀÌöàšî^ Z‰ìÀúÉáÞNf`Þ#ê"óNYJŠß/\‰S‡AúF«ÍqÅ%1°¬¤™~—J]¾¬œKØÓ%ªkš–ý¼ú )¯A”23L‰¤ëJ\îÂu¯6ëµ®,L‚ìq9¿±rr4cäD‘:’S;gî>4@ý~Ë1Ö„»RŸäyÄFp§B ð%KÅl \’¹â£kÚ‚/,—™—ä§D!ÍÈðKR5²~‰IN˜u§PÃ(LÅ$‹:%&~;%ë íÎÝ3-2±JïÝ9ÓbköÐORÝÎÌdý£vK0QoúPÓ_Bµ;åöÝ|¹‘M‚¥>И’Z˜p„.¢QÞHÿ—pæ`Ú{4<$º¸?pßèÕJ¬én·RÉ’–lEèîbðazÌ9ê’½¦ à  Ïp™ô'·*+j=ç³Ô²fÂo.§ûZ7¤•1våÍÁ^ ô4U\¤…ΦI^7¬•´óIöÎý·¥Œ« ÇàcLFÊ0„—ˆÂt/b{^/‹ù\‰MßG1‹§)î}6¥™u3n¸x×€YÙ÷—¾v¯’pdT\%—ˆdàsÛœaù\x9M*j„w…^ U<8v¿…wµìa¨k×þ›Çˆ°ÓÏVÔ™²‡wµ9ᆵ›; F̳m««ë= ÏuîKlžŒµÕºœòþÞwö Ô·Êr™)*ŠJÁuà ¥šfÜ£p=å2BK_òŸa·d‚¸þèIwã»R³V¤„ÀúÒI‹öe>;"ØP³9™Í‹õ~^yÂÜzÅ æøžkᎩ Eu/Ëîd„ŽD|¯—ÄkÜ2x¨‰^Ÿ3ðReŠ9AþðvyÀûtºÅÑÉŧáòÚ•«å4…/cÀsµ¨±$0°ì1…î¨êHš_ä™"³"jhvÖ»’„‡ç 6,KÂC÷V£§ò+º±ÕëÞí"2IÖ%÷àÆ-u"ÝFoÊÊÿVô¢¾]bÛ 6wçÞ ÀÀ¦Óݹ·¨ú¿÷ž­ú·ú2‹ÖþáÈßWè àÁ9íÀÇ»zaxLØÎqD^ [‹õÃíïP]`!”„Àw´¡¤pÖ$ô¼ë“¿:üí·m:r=ÿŸ"îÉè¦e,%ŧEh~[/*Í[­0/[d;†N»EfUäËW&KhŒsU;…¦£ñõ˜Ëu¦w§­h µíæÝtNÑcø¶U튗ÕÙéoë”7ÊuH>5~qDƒ ö–;òÝBó¥"«ÙkŸëÂïýmé$=¥“nº§3—NrúCˆ7'“&ÅìwÖ|ìáØÖÂ^HøJÃÈ\ɧäSôŒu° @_Ò‘X¼„SúFz1ó ñ•"â‡sß𙽟6¦øqH´Í7|xÄú@;q>—ù~àÑÑãrƒnôˆK‚'㪜,“¬ï#1ãþë4ߦ\°>þSÕKž°Í-—ˆœüFÒŠæ³%eÙnޝ©4B^—ç(ƒ»œzSYÏŒ”\挟k‰Ããk¾¤cÁ±ŽŸÝùÖ´ÛpÏb*tÔ®e-åš@t·TütKóÆ»ˆIbqÓ`‰IößÚ±j䧩Ƛ9q'h#‹æsN U0åβêf˜Ž’” ÉZ¸”* S¹‘”½ òbFWk± ¶é u™¦%ÌÇÓ›ïç,Pqªw׉´£ méD¡-§¹ìu"yþœÁR ,[™(8¿&Éš*ËäŽÆ¤"Xº"Ýx­Céf±Y¬îY,^,€ž¿%mÖójÊö[Àk‡ÝpO³¸gX¸«üèo§.eD:,h…\eß…Ô"yÕ˜kÿ½e€^Xêoâ´qâ´æžW§òkJ0Ù:SB:Æ­ƒí["h,Ãʬú\xþ²‚þþÙl´TH%n}ÔÐÎóúðÖ´Ør„‡€Cà¯mX¢u]e‡Ú©Ñ7FS|ûèèÖ!›ù-×Ü8†÷ÿpºÄNz°Mm?­îuÜ:¯ò…’, Š¢˜üºæ¨l)Ýl®9âÓ|¿ÊŽýé†ÓU唿µJig– ËË_‡:ákºßV]c4)4Eh”ÄF–¼ô¦{2À“³íÒà9h‰d«–¡\Y®³â ÞäÅÔ˜ˆ Oû–OoÛÔÜ+[¥ït/hŽ{o>€¥í3ç4/M |¼t'€qÁSZ…@¸"}<§òhq%Y¼,/ñ¯”n±BÓF&üúla×1jUîÅ“vóÅË&Ô 6;bMOE‹v,‘¢.×LÓÍ…Ÿù¯‘l/y àtUÛèŒ?Ýîä®\ö¾½®#r4¿Î²(‰De»”k?H¹KÅT’Ÿ½ÜÐåM›“ Ä–IãgõÞ­Ú*Éru¼îhÎlV¦Ø_æ B`'Pœ¿¼WH¸YƒFvZ=fê0éÍÕÈZû6˜Ë­ƒŒÛ6QTúŸ—µúå®%•yŽ•ú‡‚¦ìVÐPœ¯ã¯–Éç<0Wî²Sz…îÈbí”v‹4~VLeŽð.<þÖ¨žå†FÃä^jcì¿?"¿²°øŽhð7åvcMr ¥K@¾ÑÀznmî¤ÓË!ÜáÛE<“ÕRP]ªŸ*š¾}ð/† ®endstream endobj 506 0 obj << /Filter /FlateDecode /Length 6408 >> stream xœÅ\Ms7’½k÷G0ö°Û¡.¾GìÖØ#34^[’g&ÂÚC‹¢(Ù$›&%ydö¯O~ €ºŠ"e{6|ÜD( óeæËDý|0ê`Äÿò¿Çç÷ƃÓ{?ßSôëAþçøüà‹§÷>{l<ü2¤1©ƒ§/ïñ#ê ªƒàÂŒ;xz~o¥ãúéÐ9ĦsLC#<ðôŽVÏ×ã0&“’U«+h[åµK«×ë ´ÇÑ%»z!ºœ®Õ0ÂÿèÕ öPãƸº¦í¨Õj{Ž¿ë¼«KzÒkè~&| ?ûQjuÑ ý¿OöÞm£BbJã†è=¯úM2Ž0ÏêŒa¢M:®v8²JfYc98\«1ßmõ7ꡌu´ ­Fããê ­#¹˜`8è«áð‡p)… éU¬ÒiÄW)ÏÑ6…“ƒùð¥œñaµ¥ábÐz‹Yv¼?š1ïÞŽgLÑ­þºŽØ0fµÅÃÐɨР±}Ž3òæñ:´}}ÁÕ“z†'¼Ñ8Ï}Gx?<¸òRǢǛzVÝ’§ù†:ßä³²Fž•†%8?IÖS<—dbÄ-ű£ ´Pçàa{×Ú¶â‚SáñP[¥§¾Ú®qho‚béÉ‹¾Æ!CŸ¢¶šy’Ç7bÚ‘äàWØÀž«ä̾e#½ei=ŠRàltHp nõ {Jƫշ(² סQY—´S õœ»ºdð´¦QŸ­ª™¹gkÒ#¯¼Ò }­ºàÄž=£ù£…„SÕuG¯Þ¯u€iµi$ÿº*¬ýj{ÁK@]ü ½yŠÑ£DÁ £${!duÆ+‹BQo™E‹ßRû„TNš„^L'ÒP|M«Ìêí®ñÎ6šÍãÂ*äz$ ü„o XåôÎïòjà-¬§g…ËKßö'ˆÛnaD®QEJ/mGØZF¬©ØDþPXÊ“‰jPE¸¸ìfßB@Λª6´kVÁþÙvß ‚]‹sèì´õv}@ÆaB«6 `ÈÆÈ‹;B…MÞÚ$_oñİÈì™ÀØMPÄ ! Ü¢K@€A`ýø1cücƒ3¯·œvšáΣ.¯¯ Ch–ñ_v fÌð”žæ-zHZ›0ã“Ú*Rb²6ÈšæÉ×U¢Ž×Nã¦9\™Ûɹw¸|°›.# dÏæoa¶Úæˆ8€2¢Ñp¬ï§}ó7ãeBH ^’a½\ºâ”„»Á¥ 惶KÚ•lK›nKð ¿W`¦N„ÏÁ:¥&”@¤ Þ‚ª]å½eü‚}&Ò•û,2!©ÕŸq’è­‹ÍÈBÝÎŃˆh|pfu˜GA\x¸û7Ñkÿ  ŠàQ–¬I =áá <ø'­äTTÜ;ôëú<¯Ú¬tÞ·.”&¹Óä„Á .ºù½1ÍÏ'âß ¾½ íÒ ‹«³#åç6¯#FC:Œ“&Ø?]âýØê‘£p%œ†·ÕÄ=¯/¸e¸ŽÅ‚03ëŠÐ–ã× ³‰Ý|+ð|·fƒb‹¢É`—t;pâàq‡CYKú»zôÛ Œ'škôá¿+ø»l"Ý£“Çñ‚Þ Äåƒ àE,IâYí'FVZt@¨-º-`¨·è†)°è¤«FqáÏ£)  |Û7œ·¼;ÁËNb<fs¡Áç°—«¯YÁšìP fŠî„Û½¥C¨–0­óAÁ5©»-’¿xì˜ç…á`ÞzÈ/"8ïSZxv ÛóU&Ï¥‹ºK§<ú ôh›=y«AÅOYf“³=•ZÎN>€â’™Õ*Á 4=ª¸/¼ñ·U«®„£qQíIkp,ºîªóç§Ç²›†G×÷'Ù®dNf0Ûn´5¬zgú ÈáÉ(˜œ¤½À6¢Û€.ü“Ú`¨FQøú&A‰Èh€ a¨¥`c+táTûÒá=ãi"J=÷± Hè>Ï„„Z¾ª:´dÉò«–T©·|ö»sîb”šqz ^Nr0g®‚'–,ÌÉó6žžûêŒ>ÄÛót—uº¦Gס¢Õ¼Â@MåS«ð\àߤð†¸NãñWŸxÖÈ–;°Ù"(®µƒ9RÁnL±ùÕºF£ŒQÊÞ®\‰ eÆ4hÏ ãþÿ!æP üuåg®…ªd¿¤ºñËËKË‘åò¹‹÷m8ÒíÇbŒ6ð“À(0º‰Òˆs`oòA€ŸÎM‡`Önà4„g6Ñh¬‚ì.^ “f1¬ÁPe è">;rúÙ€&^‡Æbœ£ÐèèäÇŸ{DØâ®ÆzšÛ#¸ä&e}T:f0äØ ‰€N/OE¬÷ªÆŽ'y\\=‘*øàZŸ£¨9Ñ#Gx»—µ]±DŸ4Ìg|ç·EÀÅ1Hé×¢˜úB$G`ذ^9k„“¶¸/n˜I8i‹ÃÁž+ðf¿Î»ëHDŠœ#ž#’ÿº¤×Õ¥i4ΨA«ë¾Èl"‹ cÿ>>Ñ´êìþÀ†wr&·üµJ€Fö$óf¿êÉþ¬k D Òn]Œ²¤\ d"ú„§dÞ·KìÚƒB›»€…èM }·€ÞꃃŽÕ(Ðî%¡;ß…¢ØL0ŸxÈ‘;XÌ_`œPL¿-ð4†Ïñb¦ŽøW´]ôã÷øLƒjkôcÆmAÊ]¨#jŸ Ú5ñà £‡w]ýHp”oDéT0 s› ( ò#b"«P„ºèO¸Î`3Ãôäãþ„;Ó1(]ùŠ¥Ûã5Ñ'=4çˆå˜DS¤jç2Á€ 6µ‹]i+Zþ³ìÛ)ŸÓû&A‹ ìg“¡ü¥@¬—´óÊ[/Q)ˆÙ‚ÿžÑ3â7ÁbuZøç $ÈWÑ·å² ´#Ùb["w–jiÝ]–N@Ô§ÈÀ9·¨ ØŸs^l`Dx›³[Ãï1í¹Ýå;6p€zGW)ûº%ÛÉ4ýÙÞFdâacÉ*·É†ÆÌðêUËý¶Ò’Œc+¦ý¢vÀ˜¼À±Õê†Á.rñªÁÈ Ñ†`Î[Û‚Ù¢8[¤Ò^ðúÑêÊ<?IŒx—œ5ãø‚ÉY6Á8Ò/’œƒ}ÞXÛĬQtÜM~¦¼Äšy_`'h6ñ¾2.Ú]ñ Ò ¢1gP<¥#ʹ=à!¸ K‰¢Ó|@#<J“¡/]–3s¸f`QÖ‰€§º\‡(°à6;Ø"Ý“›í *VøÁC]ÆBÃj=ÃtükÒ’Ó éˆ ïÇÒXˆ†8ú1µ]§Î réÓØò!…©»Â€Ê )œ'S”ijþ7²)ê6ŒtéS6ü\Ðð, -ÏòåÓ{ßÝy¢’Ž«å ¥›ÅN% "4ÜèMU ?¦”€½4_×æçµ©js¬Ía¶C¬M_›¦6Cm~V›?ÖæõlSÌö®_ùÔ¡6Umµùº6Åci]÷÷Î¥5Öb¤Önlïe""aŸe/SÐbäõ€·öy)²pï1 õÕÈ_ra÷sØÒ\K9¨¢Á¿âsƒÆ&‰ò-ÿ &¢ËDZG=‰ïÑ(ÏVC'Ca:Bz "<;}Õäž‹ÃU;¿˜æþX:æßjõ¸ÂÉv¡&æ>óo¢xþÌRX˜ÓƒX/rYG~ˆñW&é/in|§t§ÄBkÒ„ U„Øy^8 f±@ˆ$ “p­í&ÇŒ·) $£Cç‘-ð¹[é9s¥¸m“×qg±¬#ám+«D$=4 ´©Ñˆž¨°a )§+~ÐÃÞwˆŽÉ6naTÖOóC⢈˜•Å8:MóÅ[–7Ÿl:_9ÌÛphõGé•N™Ë•P‚(â5ØÒByÖܳÿªæ·úròª¡sHðPìóu­÷èžeyäVõŒæúR,dôa†ýÕì*ª«²#’ƒ¥MI»WhÿX-bµ·®Å Ä¿ë&»/¹ˆ,ùZÙœ«tllXe,1¨rÏ!ÙY/kì›á¹€pðr@¨8Ñá fy3Öj_SzÙ ”Ê«Ç,‰(Úå?6IQ kÔÊ+¿-*<ŸÆ%J¬šawtNmÄ(ÃrZ_ôÍ.äz¶1Nõl£ê±žÅ®¾Â2ÿP*9¹D+R5TLŒÀh…€Ú½!ÊôKg‰êÛo*'ÉH‚ŒîL‡¤Ð„jBPªR5°÷O±j„¡eÇÛ:Ž}y™Ç[‡–¤rXm#C¡mVø¸@‡HÈp’ŠT ÷9œÅ‘K›ÈMM$/0Sððð.PD»ú?,N'±7¢ñ§$_óª$h~é"ÏÌ…Õ]ð4>a!¤™ê7I1yÁ8 «ŠmþMÀŠg"7ƒ ×—Qm¡4BË Èýt޽“Kí ì8÷^¾–Ô¥ M):iƒ¸xQYó NgƒÀ Úì²ÿ¢hr›S™¿o=\@Eöªam°”KÒæ>ÿŒöãÑŽãv¯Tê˜å‡_MÝ{ïxô½Qh,xA<«aó‘œ8ÅŸªÌ¡´²aÌ\{!*jÔ'.Ù7·ýGÕ‘·]H>( ëm¤âéfBÉA‹ .Še9!†þ|½ FTnñ&OÎGkqG„Öb‡Úû<­CWÂH^r4Ítä±q^D„Ão뎟õï7ų³‹2¥Mw.øTìèË….¢¼˜.G!^gf¾ ñ2ä[z£âN€’…Œ¿|0—ƒë1§DK†¹nËËbÅÐD»¹ç6;ÂäÜj½\ä¨zkŽdc-; K|Ôe þΫ]ÚŠ vÿÉ^,V7!¤È}&o¶<&35\Pñ…ÛBôÉâzŸïøLb0]ä[`åu:1ôWUµ¸°” íiþf@»šzìB5/;‹Î‚¿¹Ïí8šÆ\sA>‚]“éü÷êQ/8/x¼É·Ê ÜÕU S]•p,æ»6ýŽù$wø(¯~*¹¸h §½¾æÓ•[M%°øQ¼ûyõØ…ðœ çAü>‡ìV`°‹ÎÁûàî€9Ä!¡Eïj³Q¸.bü¶2È|>Á¢  KuäF8ÑG%DÐ&ô  óÉÒHlç󥲦ÜSß#Ø*®³ ÉâUðÕß zR.ö”ô·­Þ ¢7½òÙ7•T£º î-UYkp¯šzÉéòÓJ¶ˆYöVÛüe0ÿZ;f­¡o’Íih h*!¸£VSIŽK¶.–Ð`Ù`ïf“%-Õ×dgr9ñZ®,­dUÕʈš9HÙYû^¨å#‘pûô„¦V( çÝè~gßÌ6/kSäEšó³ÙæƒÚ|\›‡µùMm³}7x“Í‚Ík üªuÇsóÇÚwç©ý¦6‡Ùĸ§µùYmŠ5lg§øi¶ÃéìÊþ;ë¨NƒÓª!³y!T›ÀoÐÄY„Ü<^øõ7$d•FG%€ÛòQ²ÕtZG=îj9û˜@»HòT;Šƒ´•AÕrÀJ Àò2?"í¶úû#‚õþŠsl*`ý**|}öŒ8f*BÛÔåˆðù–4¯Ç®¾Ù±?®ÆÐÝ EXb˜_;œ(E¶2R§W•k„ðÒÔB!Ò–’Õ7Ipa—°4qäÛ•ù®ç<1Ò}¦%‚ÇÕ•³Qf4â-myw ¦ôâ•Á>{K /JôbÁøm_6'ÓÑâVXFO¦tèöU6}&©!íÝ])ñ‘éˆòëm<%YRvš “‘l›¡bhö©*\¿•ئ˜®,Ð˲>)å˪_ȦءËê¯4{7/ÇM €…ÂòË.10óeÃ`õyÞרO „ЧA)+ ›‰÷¬€JŸ”P%+`îz=Ì›*º=F+à €[Ó9cg+;ÝKDž¬ú=â_SdzÏ}"ÂP ì?e°!n]¿+QüM‘ýE‡³±#u´.›)·ãI`fþ>YC… Æzµåï;d'­+QðdsÚ…Fn[¶¯¹S<Ÿò‹—# þ[(à.Ÿ—gVTïëm3ìí׌¢t•Ã}öÔz*‡m*Mr¥g"Û9 ¢ å·?2W/‚ŧVN‘Ka°¸Ëvq‡°ñMÍÿÂGA&åø“°i'ÒÔ-d“ ôõ×y3E½”žÚ«fÔü8$*ÐNänfÒIÀÑï@L F²bâÎÂyã> Ãâ'g6ƒRB¹åZ3› ”Íõ7Eæ1,û4Ñ¢¡{‹5aÅïÖSÑó:)RÍ8/°Þs_ä>óïø¡†™ú ]öè.Ã\ý†Ö7u8ž¨#9âÓA­Â–àTà Y¾„›˜È~†UœÛ¬ÊËuË@²ö¶W]Û žÚußoØ+yØ»X ª ŠÔ÷j ‚ÞÐ9ÆX„ÈZ…µ™<»Ù˜}@Ÿ§ôÞˆåñE EVZ.ª¶Æ ïVÆËóºh-&þŠèϳüÒx[Q]Ò*…—Ë„:_J~ºa§ ºÜ ýw$$õÁÄPptÁ±èô¹ Z^×Bâçð¨N Õ‚^Ûäë3 Üä ñ”zÀ¿Kñ³(t«`z‹n´}´HƒËȨhïÆ›âD+­M%Ûn!ôËâ¶LlîÙºÜŪßËc½¨Í^£³<*Þl4]ŽƒWCi¹’ÄXûwÜ^e9êå×w³8¨ñª¬—6ÑGr”~ÂÇœƒãíü?Œ²éY Á†ü£6E)ø»ÚüD>EÌö¼6¯gûŠÊtQ¯.ÊÑ­\S+Á Áu! ?AÜŠ^êÄÖf¨ÍßTá®4¨üÎýàÑðÍ0*&Q—O1Ž&Š„–Œ#þ=Ðmšêî°E±ÆmS'rÊä„qÑP‘ó4øa+m¤“-ý¦_«ø“ˆè9Œ‘ûo…\ó>¯1šfáŠZi(ÄWÎÎù9¬ ü~a©µŸý˽¯6á ·ÅÎb±ß©¢o ”³ê· ÷ß]7!zÞü¢ÆWX}AE‰»),P:ìŠÓçï®òšÓ*qÞ†˜ƒßtX¨$ØXÜÒÐòH¡+`-Ø»®Ð¡`5ï@dgHHè‚S¿pûüTÜ^’RþÞ‡¦S 'FìÈÍ4})Q8nùóDômŸìÃM÷ÀT3z—Ïžòó`²E ÍÂõ>éÍÉžå}Pž£6h{5ÃHѶÎßÇ%BŠv{BU‡Äߪ6è.<¦'l*tÝ-.è—÷Y®Ák¢ø…¾›¾Z”ç‰,U¨ŸÝÛ»Y'oís]¾ö!çåê­¾¯äí}ÛoªTµô‘5þΈÈwãî‰kýLUÙfAòzy<ùã»%³vû( 0nûÑÇÒja~¼Û…¼ûüæˆåqü°žÈ‡‘‚°ßßíÀ©V°ãÜ›¶úèý¾a¶ÃUmžÎŽ{Ó]ÀÞÅgõ³ž‘H| ³¿ž×æål_ý±‰ÃìcÍ]À=ç Žª¤žgœ¯±ºYî7¹Yx·ÜŃ„ßXp³nüݽëZ€endstream endobj 507 0 obj << /Filter /FlateDecode /Length 8756 >> stream xœÝ]K“ÇqŽð¾ùLø¢wÜõ®C*$…e1lI°aчÁX’x ˆH‚²ÃÝù¨®Î¬îžÅ,iÙÁ†½ÕõÌç—™Õßl†½Ù ø_ý÷úÕ£asóè›G†žnê?ׯ6Ÿ=~ô÷pžìËPÌæñóGüŠÙd³I!í‹ ›Ç¯míîñ×Ð6eÕ6û½ Ú?~úèOÛ'»a?WŠ7Û·»«aJIÉn¿‚çÑïÒö©hr³3ûþÇnŸac3 iÈÛ[há¬Ù^ás[Rôyû†ÞŒš¿ÄÇ~BñÜ÷`³}Os)1$èú?ÿv¶´«q¾W.ìsŒ<ëëÚÛàüöðº3Å Öoñ§J†9=MžN ã1¼“c8³OÑšqK^Q'¬a{À‡RB.°;Áì±f ïæX\†¥@ƒ4 °XZK{—{qáÞYXo¢Ùy3Ää{/°·¿ ̹u¬Ú0®sÆo¿ó9î2þ*Æ:^(ÿ}i3KØ›Æuþff< èam0 Æ»æJv!Ò>Äb‚ÍÛÃW´Çïµ ’[îÁÃ2Ïùw€ÕËNn‰ŽRL[·ÇϦǯw6ÂRaöïv¢p:¸üN9Æ'_…`PBdÈ .ä;ŸÂbœÛ×eûR†è—¦#úšµ¸Zà%XøóE©d Š*sû­a=¥ç°Ç!]~ÚmÏC¨ýÙóú31»ÿFøø§xÊ??¼Ú--·ΰsñrb=‹Úøf’¾ß"Í’1ب4g¥`9Wæ0x­‡qâFÍÊî“m áÃ$R 'áÛ!kɇã»b‘™lvVH¥ÑOͨ(qŠ \µœì”ôÈ+ÐV£,Ê™G=ÜNz}‰Œáœ2ÌlB®ìÍiµg“SnÌõÅ–¥âR\:m¹”¼âEÕºçEfÄdŒ`ÄX@Ò¹¥îIB[õÎ×½t0ú•!À³ç#î˜ÿ»~>) ÌÛ½ñ˜E®E"ÿO$ò_=~ô{àe ɰ‰ –šáM`†„ÿ镼yûìÑóU+V4Z±Èk ˆ°GT±dÊþù‡i¼ 0ÓC”æÀþ“þ3qÄY‚&hBÁ TëRiÔe¡ƒäù‘$> aki.xËz-ŠÑ0ŽUm¾’ÿƒ%Sr F.xÔ’ló€ŠL ‰Q£duäB¡TŽª#½¬oZËP›¼%ãԸⰤ°«Ýö 7Ã)²Ý۞Ú²JµZAµ€lb}UËç 3ÚjÉ0™—´,N<ší‚(÷ò“œXân8y3 ÈÇ! æf3o¹AmiæVªÓ̘۔UVÒ¼Z€]nÎÔ׬÷ò]úðë’XúY¯õ³±A‹æÝi bx3onna)ÐÃwàFþæ‘ 6mmb6fï7¯90Å@0Õÿùè÷dèp°ÃkÁÙ¼‚ÙüsïféU›}YŽˆõ0žÞ+M$yoƒ)à¾þîÑã¿ÅžØÅÀþ”Ǹû¿`Í`À_1Õ Ój‰ŒP(»˜6noaGÿ?PQ³Øf;ÖJàÌ N[y=ÍtªV/oÕ\›šûX¶@:?ÊšµÖÃèÔo®Ê~H f;­gC´{ë61š¼qãA4¥l.QCàð€^0Øå>C—ÞsÆ¢d×#^¦ø‚E` ÈpyHCêß{¡TÞ°:2Ñ)ut˜‘• ¯®ÂKàz6^[óÖX6rYáß ÎãA´¸ú íK´“Á ?*ýÖ´Ñ¢¯zÇç ¸£0º’¿:­vˆ%˜KǶøEûê'c4E¤E‰vÇ]ª£½s'ÀY°­ÖÌ>o#H[×Ì086"à ÈÑ;PFÁ­~ìb0ŠtDÁ¶9Ãò àà&F:Ëo‰ê$uw„éhÒ½òƒwÞ5KÎÏ ¹Ê-Í `ÄMÈãˆÞø2r~o¬rÑ!KÍÁY²ãcêü+ñêK¶;ó`mTK®ÏÁú „¸Ä9¢ñ«í¸O{†ÒiQ‚M®$°Èè)ÚÑi˜”Gà(Þà³Jo|'ÀV†è|±ôe|ÇYØa--²7Z&Qq÷igqÆÝÊý›Y¦™(gÞÚeC`ÝÅ\7'¥—9— #Ü£ÌIÄ{ aiÇkÈ;ï¶ à£0¾,P†js˽8 4Ájdrtû—ðxðÿ†à:<ÞÀ»#„Ráx“Wáx$@çmo'1:G;ø)>J„ýÅÔ™Bã¯TdÄ‚mG4ûe~Dâ]‘xøÛ"âÄǶB XÔEãÚGBMaŸÖðâÓ ¡GÐܦ{h–4¼S2£¢½šøÆ o}"H&ys£¨F$‚Ê´z°0²[šHöÔ}q_èMˆkAžÇWä\‡ÁFföúæ%ø¹·Zäêøš»D¤M4©°=ÈÌŠÏYê/äEMI♢'¸*Šž¼žP36àÑ»Õ ¥’ч¦ øé¸ðçUŠYÙ½°JHŸôòºƒŸ=ˆ=çV)I)Ke£4ª0“úY¢¤ ý§õ:ˆm™Åðz€œó'8#u{z‚~ŸÜèE´w>á#LÙêÀœK9{´÷õDG 9Ô²ÛmÝI“aŒ¼4"‚oMD%2ìCäÖtÓsÆ™­~|DŠAZð’BÄ$H»ÎÅ “¬Ûþ.‡¼eèLj ¼ùÃ3¢·{ËŒhwÄ(Ñ žûþ–ÛacU‡ñøZ.k9Ðñè=Îà3Á·žÍ€éxB©d£u?-Œs††˜ àùéüôq‘2˜Wh²ƒ „Ó#D`I`œ" ^SÊÆ‹¸ÃÞª.ŠÅq^½lQöóz Áe5à¢{ nt ¨ÛR\$¤…¸»›’‘ íLO¿—Â"¤á` ¥<è§Ëƒ.{@"ʰ` XΊE€Åáq_ÿï#4/.zwXk‹ÆÐ²8K¥ qælŠ{ · ÄY*{ÜŇg!;ÿ1f虢jURe÷ö!åF¡@éš  dm|ÀuûþÉ‚ á7°­:Iõ™1Œ_¦!8´Ä@ª ))Ñt[A¼T4DÝdF¨'ùvPøÛ©9ö¯gb*ñÀìS¬ÑÏœ¥€Øœ`U~É2õpX!Ô­ÒÆB§Á~£gåüýåÜ,£â´ñ ì¢Á½<_`¹.M R`T —Ø_Ðç>bŸ÷X÷ÜÂ>)å'p€ïŽ"3ÅÁ®‰ÑÊM$»çPŲ Á A‡¯ ŸŒ¹¤IHÖ#bÞh<ÃLr3i줌"(Ãþ‚2@Ú@s烾 œªqÚðé}½.o~‹¤1Ý»SØ=´¨²ãñ*vo£­ø¦ó––ÎÊù¦ ¹[kŒå5? ¼bàñ¥¸Ôo'ùø~Bˆo¾$ep e:¾W0—ö '—@­¯Æ,RjB´]ÙÍø½<˜uDaœœçA¦1s“Á„Y²¡Ø°*Ø ãLìQËûLMl'“€ðUžî4Kox¼Àʰ&û©rǾ9¿ið.V4ÖÑ9«BrrÉaþHy’0I·DôV¯<«âLÙ¾XLȇXXºÈÜ]Iâcbuš„‰ðGÌ€ö'бˆHà"ž ó_ Ȉ i1áÛhfyÊÏ´n(em ú Þ±aˆ…â&œð>!dß&M"ãÎåb✑ ÝHä­çK‘öoŠÿ³ÝW—1›Ä†É *$ƒc纣f·søF¼vÝJUÞ‰é§%/¢˜0eÖÔ/©®× ›·÷­ÓrÄg›`zlüv׊e$þõ®eü Ö#DsðÖç1ÍN©ß‚0;1Ï{O06XäuÎò…;*V¥øÇ&»„w"¦ê¶#‘õ.SuÜþa:ÔÃsÑ„Ù!`£ÆvÛž~à^20PH¸dÓr@'kv;ÐÊøƒÞ&%ÞÓ)™۱D€C?Ö8$¯wÀ]°+ÁU; •Žˆ“Ý|¹XKEË®àÐl+Ðw¶kêìP›“Ohÿ‚Ð0oA°6¨Ž¹7:±éO¦Ý}ßicÀ§‰‹4Ê¢0°Ý§œVìgª•ó8|g¸·º³‹¶ÉNË^2“ÁHDÿ½m<æA,W²UÓXe'L©%uÆ0{ŽaL–ºÁôŸÑx¢µ¡LîË%Çx¸à iú|Ó–#"œ²’ˆÞ3)el}ZÉÂ`ù™bAN§€UÑpÉo(2JNŽ9qO_ÇT‹*¹vùª.[óÏQú¨#Å5¬í°:Òa†¤»· A/â¤d> SVÀäãTyÕ’<ºC\®ËúU¶k®˜í•'D™{†Éé5WÔÁ¸â7ú•z.¦`E¿Ô²–¸"a¼pÎNf#„Å^™“Â^¯ª›o9LZa¹]zBŽÁäNêw‚?TJNr–•ÃS18Ùw“Re1¹á)÷.¡‚;x]F4#æ HCöuÃT>^\µNÄk"¬áýD?ïxôbü =-Э¸oÊ­k(²˜¸¢Á7 TqòŒÅ¡Ï°¦Q #}Å)„LMt5Ðå³Òç_ÖCŒ£KðÄ(h†A³MWNëËRì«|ãuœ™ìÓ2q…#ÒjÞL…rïÄ45QÊ­•Ä<¦ ï{{"Nžì_p«=SiWˆ Õ»ò^ ×Ÿª ¢9?ïe"‡³B‘e½Hw!9VB߯–Ȥ»*Æ×Ë T] Žè>ÏhêíJMÿ>T}§ˆybb0ü öÛï“7*~µ’^@ &nÐæÄˆî_`˜þü –¿™íhW¨åS,íðû"ó>b$jæèJõìà±Øìãyi¶ýI ³þoòÞAP†´þj´ B%ÜïÈÃZˆ÷øÕxÅËFþa~—×ÛZ+8+˜J(XéR¶ÿ"©ïù¤Ð“|¥Mà+p·¨÷Õ{ÅÞOž‚.¹‰É6­iò«²ƒ/3†D)ê>2íóc%¯ù(”ÞDÅu¦Åq2»`nqˆŒN/@u;¤‰Ÿ‡B¨"¢çe ,XB5 &”¨æ"°-Xá)/5%N„ºçe|OÄ#2CM­¹D‹ÏMW7uò¡"*aŸC³`ÇmK:Ç€“ú¨†¨òn&à1¾šÕ= þ™îå§[eWÒõdú%,lÉ~F¼<ßÿàZxƈ3_ã¢GÐm¥&[úõmCÖ.txV³ZkÅ‚ ²CZÂìIfÂø3¡|  ¶X';:ÆÃ¸$wHYz3Îpf°Gcs®ŒˆÂçHJ›ÛìÎnhƒ‰]®wà@ê¯F…nÑRK¥æé=a>.Þÿ¸l÷×Öb§Y£¼o™JÚèQºÏ2G¥Jçãx xœ§q{‡¤ƒ¦*§‹N ,ow!Ü¢í£Ü=K†PÕ¥ÚW“B`¨ó×Ò[^aϪÂù8ž*si“ö‚u¢3¼?9­Ë£A±Œ€Þ$yÕNrsòÇœ1´UÌó”jÐ)-„«ù Îäû‰9”£5^_‚{iøÊ "}Ð [ WmEæ‹á4m÷ŒÀõSùÄÝéŽ ñ” £ó÷¢¹¦vƒú²ý|§ï–b'}”±í/±ãjψÌ¡SQ(‹µŠZÌ²ï «Œ*€“œU:J2dOŒ¿jt²R½4áMcgô¨¼Â©3auÐØÕ8{í‹[1‚ï8› nÅ…M.ߌױPBÀUËöc‘ŒgË¢ÀtH·Œ9õþ²“ZêÂÄnƒSdýÃ*§ñ-AÚPš»‹\©Œ*æ©ëq®«’$~¨—…²ª‹WŒ o´!?ž ®¶éõ¢žcdƒ5•!w)–+ =®UD„ÛÒ‰ 1»ïó†•)@IÌU!óÏw~ɯa.ÝÃsx,îŒac³ÙÓÕµˆœþ† ÊÊ”ŠD”môа.éÒ" r¬^U“0nwψ:‡ÍÏùÞ}N¢P•™JÝi^=ù!*àJ »RŸ±à«¡Z,¨F]ÍÅ|F(Ä<æŒ1ë{1%î)w kK Ö`hÝo,Â>òöß-íµQáMÞÇ.Añz8ÙÙâ·IžLk»”–h±HÙr5˱…ÀP5ÀïFÔ®™…ßí0ÐÌŠÛü𠇋©Úã{5Û>.ƒžÉÐf¨º C3x)ÂPæ¡Ê»+4'Ð>GS½$2’'©6I³´'¥‡27†ÊV@N‘âþ3å<K qK^lŽß²é¬\…ö¸z}™f= ]? ·e°Õ‰¬[JÜ6Ï6P rÈÈë¿”CÀf~Ïz² Ç‚ˆ­W.~#gɽ½;[ÆÏ'lî _±¬k^3æ'?P6nã;4_üàɺ7&ÿp¢dÀl­î$~ÇW:riè2p(|yÈ”H}|ÇkÊ¥(ÓcüÈ• ª½]éZäh‹<š72†‡ý¢É‚_†¸¨ Ñã%ÊqF’ï˜&1ö´ŽUò¡bQ¯'nWràý$†aóö‹/Ä—À$P{¨†:];Áug+žÒ«¾ß5?þowxÃh)óàBýré× Ë£u2^ÑBnäÛú¼h¬;™Z•wwõÝŠ*.¯ˆ³'°­»Ò6y¾ ÷9O/”SWkP~hé¬E-ó¨Mâò—W¬Å•WŸu˜ð2µ´O½›œåªÑþ¾_˜¨‡îfù@tJºoq®2ë–0äs«Èêj^WL y S:J‡Å­ÏÆK"#Å?ìZ9óÝžU½=Yo‡šM-ó ‰:{-ß… T/Oá(ÍRVÛHΡ¤+(j…{ÈNÉÙC!na2‰%Å'wȳÀ«ÌûÏ(\˜§ŒÉŒ`iÂÉìS cRívÛ8ŸY&m¢ZÔz1† *=í†÷u8ˆŽ‹¬wèˆÂé™?hº1«AôÖ4…T nÎî°Äa°½™‰1wã¢5§Ð³x%ëEÆ9î úõ9G œ`õêu–ka)Ÿíô½;õ·¨Áè³F"PRðíÌe’Ÿm˜ßP¥ow`Rì+ÇQÕ§²‰¤Üû[räœa­îRUæœju6‰Ú .€y/;dÅîß5¢ÜÏ+ Ý«&®†XŽ-<ŸîãJTå–GÄÂæÎÆŸÔˆ¨âô _5é³Ú>Ôý´±¿ø•ŠÊvécÇäõèTÂ&&ëÅ%´¥:YŸ+áM­æ«Ið¦ dÀávüºRS}ºîgb„¥K@º jŸ¿¯]LZ1Vþ ™ü ií$2LÞOü$ó2;².fþY>ÐÐ}qDX<Éäéê(nmÜ)âÅom“e¬ÉßD†íílÎô{?1§„² xüÀ½å!w¦â®ÕÙ–÷VW0Ù5œOØ´]î®*”¤58Mºå4ØÏ¤½šÀüzcC¨ßXªuA"í nws0ˆÑMÀݨ‹ÂÜÓõ¥³e/Oß‚C0Í%Jdƒ¬ÄágÙ,÷µŒÃi¤aõóËw‘Ìí]†(ŽÝµ™ÈKÑÊC†âyÊ;9¯€vé¢0b$ø}‚5žÕƒNŸ=ˆ»CT>…Ot ¢°ÖŽ:—cJ˜­MÏʦð)>Œq¼ ‡ _l³Z©I“Ìå¼|ƒQÍ &ã–äÓz FˤÖ]—lÐtžN'*°§>ÛG ¹¿À…¯æ,x}®ÌI©W\,£Z‡šŸ•Ãõn,¾Ç§n)œÁ©¯ÿ\ãI,Yø7]¾€ei%N^]*pÞÎÀÁk èÜùIóô”Î…yN½å€6£õÛwuðŠùËh/¹—lÜš–±?iQEõòݬð’׀ЩL׸[“Ý·ÜU7!xëcŸÈ®œÉ·•y" ¿"n»1ß´<„Ö%×£$eÉŽu»n¢aJYK†Ì½Lµ^ëôVä5¯23Gù;K1‚ÿuVI/×y!Úè鋉ªˆ0¸éGä$?éñþ¢Š—:ƒuØøˆòñš€YmÃ<8ÈW¥âðøç…¼©$J_ûŠ©ˆ¿r ’$ù3§ÿñzbP‹v#ÿö'éá|ÉĶ™ü %ŸžK6H w‘äÿüG26¨°tÑ&’å8R Í+×Ègï&ƒÉø‹ ˆ‚©AVoãƒf ”–§P‰S£ÿ)‡ÃdÖ.et¸²÷qºCgt`&:2݉ŒŽÕë€ÑÏnå†x‹i½, #;—¤Ø4¯³Þ­í¾¦èŒ§NÞÖ¯ù6]<4ÖE°+×zKÝ8Ëý%¡ðÉ®]48}¥ðárwSûÈ9¦[@T&Ù¢£3«½vƒÚéé»B¾í ,.‰×ˆNËPQpá3Ü}ÈÉ€xOÉîéWâÖDÇ ]@n•èÕå/tÑÙ”üE1óë\öÉ6%÷±ñw=)Ÿ δø1xKo…×ΘŽÑÉ›ãUÝ“-ÿŒ÷ZQç¡ ¨!ÒF-@GÃ.]–Aa° éUð§qñ¾qJ9Ð&Uþbª¸©4fÆ©¢ƒÚÝŠ/x2©†•[efó4ó3/h³˜½Ôð˜zIª`Æ&ØYcB} ¡5~ÎJ‘µj·@7³Œb@Z¼ÃÇ«/³ës,êÓ•BÆ`AZ³Œ º¼Í¦©S/é¯âtÐz˜ìê.óžÖZøû–üû”al)ž«‚mó{ +xñMÌ9X­àÈpj‘´T•2²¦ØFΫãJ²µÏ#ðQzy_TKumÑ6 +sçDÌí.çøä-­$~ÿèOŠ$‰endstream endobj 508 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1613 >> stream xœTmPSW¾×KâÍQœ½]ZÙ{S¶v‡"Ò«ãnPÚZ~ TH,)D>“@ˆŠ@¾nÞ›B ˆ#_QDAAi©,¥N?¶–îØÎtílÛí¶ãìNgg×sñøc¯t;;ýÑîLÏ3çüxß÷9Ïyž‡$bV$I*2Té/íß½9åÞåq)&®KÖÜÉXzQ±ÄÆøW¶¯E¾xT·U¬!(’l´ù3ŒUu¦²’R³RòTJ‘´mVnÞºuK’25%e«2M¯3•i J•Ö\ªÓkÍÒ¥R¹ßXT¦3×-—l/5›«¶mÚd±X’µúšd£©ä÷º$)-eæRå>]ÎtTW¬Ì4ÌÊ,­^§ükò‡ £¾êˆYgRªŒÅ:“ ˆXC•©FûJ±®¤¬ROÙÄ^b?‘C¤ÄN"“xžØE¨ˆ,b•ôx"†ð dÊ +Þ§TÔÇ1i2…¬H6,?":ã–ÖÂŒHEI±Q”ø-šg<½Ð'èkÆËʪ,­‘uɃÿÄé­­jÙ¥XxpñÍ\þ£l§Üª–º¯ #0oóa×l솎Y¦¼ûF?ℎSŸ¶ð' ÇÛÍúã`å›85>÷ÓEœ;ƒŠŠk&I1€ÖR¨?ÊdÊGPöPõ¤å*<€²ÿ…D‰håöp¼æ@Siç›ÁÏIȂР]®ºù€ Ž x¾ùé»í ™r ôE÷”pÎÂ5×/ ëCŒ»GצæüC@Ö³Mƒ*œˆešÃƒ,\œ¨‡Ô6biœk†|ÚÛðýy{NÜjbù ï±ÀQp9µL'¸eÍ¿Ï =l»7èo÷Nê/ñÃ@£Â6´1x®þlõi®4¬oÛÛ™Û™ë‡ ºCxÅŸú3ì°ñ-àdN@gÐ+„¼lœxÕE…gÑãQòu¤@N$£Ä¡ûûz ÜW­-j!ØÖ‡(Oôݾ‹î€7Ô½Px§áÇááÊþ#£ãÑ3SgWk' ‚Ó í¹Ð6vúCØÒh¯t˜Ùõ¶Cü³U;jrBŒ~Ó:s{ö†×ͺì®V°Óyï9"ìÓèUÆntíF»Þ^UjЛŠ[L@– Nކo¡Cœ$‰Ð_GÑÞ9R<‰â(tsi³,ŽnÞG÷9%:À;m¼ûMÂkò@·´]~Aðû».|.Q´,±uHñÌu¿'¿¶ªsìgf¯¼u" ôßáɺã͘)ÏæŒ/å¦Ç/€àþñüE´ŠZJü™ñ8'¡`*ÇS-}nVàXüæQð‰7üçç8«ín—L¡®ƒ[ð&&»ÁTo:V~¤Ì*•¥™¯¼ÙÕ‰˜Ñ.2?º—!j(¦ãÄÛ$Ú=жEÉ÷ÑjÔù7Jä‘î„ëheú,–ãœdü0^…_<‹Ö£Ô…Û'{ëÀÞà´7[¹üg69kÁ:¯q°æ´mÂàs·Gé¶Q¦}dPâå> oôî;Ðè¨pµHFYÄš(JºõQ™£ä×WÑì—:|“©;o„º‚¾.R;m½(ÑšúÞ·÷[õÜ™ž^o¯Ûn囡…6õ6Їº[ÏçÛrA—Ç–äû $Z’v¦þ>oÄàupFÃÑÃð24 a½¶eöÒ9W³Ð h JŠ X”€•€iÖ›ÙÁO÷ìX žáNOøÃRôœ?žÇ;Ò-Å\cuùÑB ‡ñËÌÈwW¢y?´¡`|Úïy÷K.-J†ÿnî+”B¢çQ*…¾^ZÉD‘WÔZ­¦$\qáõÉéi—c#Y|ªO²8o§dñ¿·ø °à>ýpü7ÐTòÄGeËůæHôÍÏÈ!åîå„å6CËm¦à2?ö¿\¼³ïû„^š•úÎc?JhL`EÖV;k¿R=µðÈúÃFÿâÄþËÍùE Ç:,eÇÁöÿûű¿ŠÙr*VAÿZZ—bendstream endobj 509 0 obj << /Filter /FlateDecode /Length 6710 >> stream xœÕ][“7²~çü‰ ?쩎 Ë¥»äˆó0f½¶Y{¹xÃg9ÍÌ0`†nvfÀ`þüæEUJÕez0ŒÏnð€¨V©¤T*óË›øçAתƒÿä¿^ÞêNoýó–¢§ù¯£—_>¼õù}ãáI›º¤>½Å¯¨ƒ¨‚ m2îàáË[éVÎ!VcjcᅇǷþÑÅè…?h¥}ç›ÏpɸÆ4wh1)©›1ŠžÑ–%O윶Öûžä´œgÄ`ðš­oËc¹øç4+m½mÞ0¡€ Ä{¼H«*²iMrý"ï_M¥p‡ußûð¼ìÂn’ƒÝÏ“.lj‡ë§”pFÈ£¶³Í=ÜF¯‚öºÄß»Tó+íw§ÂÀäQ[ݼ(Ëkëi®õ­×ê`­Lë,L¦÷H2øwÄu_=¼õ·[Àç$9ΗÒiNÒÀ[@Ütð·FióZ.Ä\Óæ«Òü¢4?Ÿm•æyinJs[šíl_`GëZ8&ØÅØw æ®4)Í“Ò<*ÍËÒlgGãž–æç¥ùëì'žÌöóÝÌNçÅl‡ÓÙO\Ì~âËÙÞíá/ûfv¹:Ÿûé¤ÛΤþü<§ß£Ò!ï+5Kó¤4ß–f[šÏJó²4_–æ™`ûV¬Ö‡6€î‘ì>9zÑSŸµÖ­‹z¢§¶º3ÞÙFª˜-©ÃÀþ­ ÀoÅa½‹G]9íé+ ZTÍâuuÑ‘Ø޺Į4E”8䧈©¢@PQ¸˜@º †J!k¨ÃWâ[¯Vƒ„=#ñ«‰¨iA“¤˜M&?ÝÙ——õà*ŽVÃGBjo¤BøoZ ‹à‚æm‹*G]¶ùM(3Hõ$èMß ÎÖŠgµF«@—YJµB«ë€8úê%‘:O›Ýév â%Þœ°T;¡¸¾X­·@A ;„œ“¦µ ‚ŸôŠN÷ú¿VkSÈÜlË&fVH\Ö1f%&öWn;é¶èŒ#½!íæèY»ª¼-ëý,ckä9ré­ú%ý(£èHÓ1ÔVd‘=>$Й@C[¦~X³zþ²¬‰`”1 ™$ ¥ˆ¢ ^³žO"³T‡kvößvÉYÏ‚‡çq)À íp2Š0 Ì ýOü@œÚ&FxSšbf¢Ã¯cŒ2GޝÈx{8y¹s¥ªa›ìõm,[#\×j€Z gŒ†CÒûä²€3VÓøkmlC-ßøP °÷€¤|2áՌ挆Ãv1BŸ=$ÞœÑ ™ê !‘¡9~ÏðÈ“Œ u—!µüªY 2Ô¬§@d=ûEþ™ì—ª}Z6C åÌ:¨Ha¢öY¶ZXh|$^{GÌLå'.Ä‚Ÿ¦#%Ú)ž[ÁÂ*Ÿù2RLÀ¶(¬b¯æ~Ư)òÚBýaɵ'ÔA{>Ò|þ^®&xr+$›XÛøNß•ßó4ÌVÐTt8çl¯‰¤`‚ôËá÷‡ÏÒdA÷ál ”ªÝ9[ QWÈEtÎåÉÊÊ@ÂÑGü®÷-÷„ XN Bx3Z‚¡CNÊU…S5‡·ósÈd ZkG8'ˆ6=)mú÷ˆóOÛ›”â;>U1%ïœȀ ê¯_êvŸà°ø D<#Zêà•å.#ã‹Æ*:—g ícÜàG×o ƒƒ Òú èB’Æ¢Ê3Í£íªRYùÛoPÍ 2É&}VDùáÁÐЯt-NÀ'hý[eÀ|OyêxýX3ØùÈmz¹”‡°ÙzORˆì³`Sƒõx§£Ñ’¶Nù$æ–ñªMVx°£µ‹ÒÞ£nÑf„€ð_ÌÚ¢)°ö«ÒCP‚]n\í¢v v(„Úíò˜ýI`MgWD9†‘’ c_ @#Ü-çæ.?=ª=>¡Úo™ÑmžÇÉuè9E)žŠ#½y]TŠ0P.ûiv¦åÁtGδ<Ø‚? ±4ŽæÕ‡š™”|쮊J~P!ù"ï$ÙDR‘Øckr+I í;9i21¼o1½Zß»ÊKÃ~…:«²B%Ø*à ”t—Í1üÈ篅b¤ÕF}¬&½f»ÏŸÍçZ«íȉµÀÞ’Å’%× ßBð 5ßñ®Z@xÙ´›(² ®CGØä i¡ÔÞ–/òVFïŒüÊ÷iU$ÜgwJök ûÍ›W 0°S¿wV½!*—°Š^Íc\ò'­ÍÕO9çôôÍaEäx°W€ð w‡‘åpã¯\–ã5/˜_ÂP¼à/,`K ý/,jÃoÁ`kK›]/ ¡XppxÎÓ¾ˆÌ“tÕfE¯DfðyŒZTÆ\åp[s°{ƒãplg£& æ M;`H”錘÷ÀÔ1›wÎ{“!©{0-*šâŒ–'(…cphoc;´ÖÍÿ {œÑ% ÁÁBÖ@쟹™&æ]71ï€õaî”ÀƒÃ6OW2&€cY0+ØÙÁ]Žyr@¹æ+±uÿ%ä(ËPKªòE ŒW£Ò¢kû~[¹*ÄH®TBeòÈÌOåׇÑ#y<:¸ …ª’i[tái‰ÒÌË£Aà¼uW"2!)PþÅçì\í¬ÐÀ³¯B‹Ñ1"q…î]÷g¥Ç ÷è@ÀYtÐ5Uê`(Ê)TN¶¶ÄTÄQf6W”Š™^²@ÐÏüJxøcò†`¿”?Rª !P€½ŒVv8Bë¸| ±ù»Š< |8ö†1ß±X³ÌH{Pˆ;±n9²œ>wñ~ØIê1"ÉDvt6¹¾“ɤ¡s,T·,–Lœñ8)ãðõc󞟧è€TcG;tÅðX-¨~\ è3îßu ýÆhkô„,åAÍN°*02qÄv܇s;3NðQXA*áÜ:®ˆÎÜâù¼+6ç¥ ìŽŒ¤Ð•’‚´Pçè‡çÔ”HìdƒG–|mæÓ ƒ–Oó€ºò.âï¢à510 ö~´¯i1ÞºXÂÅa¢“Ê!wÞU¬á,“NÅEˆV(sRÌ!li¥FTÍ£±µ02 -ŠÙË À“ Ÿ”÷ÄÈÌý ·lÐ#pü Ø5Ñ[ uœ& ûD ߬&I¶Z;(Vôm-9l‡êÛ4å&º;¾ÙÑ& ôr@±y/ MàÐ[ÄÔ “`ŒH°ä»“Uê´®CGÈ-pî,«Œ¼94Æ«< §}ü€ˆíS:+DVXÍɸB[™¨¢km Íb¾7$*€*xêÆr´ÖÀth£¹ {?ÑTÎZÀ¸^Ïѹ™¶Š¯1eGbÚÓ>^dêóþå§üÔ'u…¦¶tT\cÊ{ç8CöÝ1ÿ®Tf íÌ*R<瘾Ê-=¸ŒI®eTA°žä5øûª„£¤Îdñ\Èž%éÕg½¦zÅñ!bi¤„éqô"&!TºZBóA¥ ŒÁiäz]&Z»þ…$lôauÃfYÏc“a¡û0uØååœ`íYÅ ‚: /x;~®…Ģʽ"Ëáë•ÐX#Ó!gPNB'lÆxFc>X—nÏ€Á‘ŠÜÔãXš¿2–æ:W™vÂ@Çau¿H Ö?%S@Ç©1<’EˆÀÆ0Ü€üKA¶Z;KØáÐôQ¶¹ Þ–-•dü©ˆ-ÑSpà³Õ™û&–'Ëç£x•O †@å£yÓ`!r…Y Êa ¢üôÕ®Ý;{€&ت8G,;ƸýjHYÜ—;‡'Î 1©WÂÂåì1ÇÍ9ZW³9Es8!W‡*¯Ž ‰øß$0„þOÁƒ¹n‰è A|#ýÈÿÇN¥³U´àæòè@þ´€¤?<‘î¢4÷æÔÝ)Íû¥yXš÷J³íûo–S÷Ióäþgöÿìáâcâ?0vЦÞþQüG{O}nB=)4#œÛ·ùi„£"m6>nN'? (­q è±¾—ß ÐûŽ0swlíAëW¡½}S~pt16¡·ì‹Þgu;•uåÞ²ëÂ8 §``–ÍëP~bêü$ÄäÁ„‰,$dk«Ð&îå•4#{{tˆpéu0+Z1”+Mx0.”êäè- :Û™°7~Z’Þ%T9*FÏ “d‰=éÊöÜœ ƒ7µf-²Ô@ÝÚsyḬ̀äøÉGŠlqäNûºÇ dAådl È6JP›8%˜Þ»•}Nk7²äµ¡Ž|ÊN Êa*Œhy$óòcŒLU9KÂøLïQu*ŒÓŽºP§“_‘£Ô&Ó ¸ê^uî¥˨$' ÍòEG~˜ÿÀü°÷JÒÃÆ˜`­< }k¹•é\— ƒo”@–#çÅþ@†ÖE®"VyXS‰6ô`|ñÃðn½‹”çSïý"jç¶$q%qó <Ž¸ë›š`ƒÃ/vcT*mólÄ‘‡Hôªjo0¦«-\9Ê1­Î¯;É.oÈ €˜HàÉ……;@¾õRL~•=H'xJd[NCÂDóÿc‚â·» 3êà ÌK!¯°B«)9«®c„b6£ ×Õ^…ý˜Ú=h•œ­œI®9§ô="ïZž‚BÓÛL–ˆ‘¬pX‹+S7Q†V`Ò<¨±›M(ûuܤآhŠ ®û¥ÙV/䡉|±_JS¤¯‰$±ËÙ¯ífÇ=-ÍÊîrj#¨ˆŠÈ{NýÚ‚Ú—*µ)Üû—Ù¿¢l“ÃÙ^ç*È`Ð}C L7AUz“Ìk•B’Ù,ií^n—÷¦ÜÎ-ÂU‹NjÔÊbUI¥¥‡qII+‡%%½É®sªTä†aüK&-æ¿ ‚õ¼Øõy[©TœwxSøÊ9jÏ”¥‡‡B픀Ӟ2C]ZÂ…©ÆÁðíJJ•µ©ÓÆæì’ÊIy¬‘ '¼=0ˆcW"ð"õ@tØÔ)¯=g|6ü„ …8ÆOW(1[ óµüBÄ?i¾Ê3 Uï Ù|¤½0!è¡E-«§´QךpãÀÁÍù†0OlÐ(²|Yš¢ÞR8y.f?qUæu}8!V5F¦žTt™ŒŒ¬‹ éSKU8(¦ûÃ¥ª †Rg¥*zÌ8³Ö?aÓ×jXc¯ô.˜ì)Y*IW­+ÞùEùŠ€ËÆ‰Ã}ÈØ’&Àé+ž£±ÅÂ’@ò7`bP¼N2¯t -¥ 1±@p©úí¬ÌTÈ_9öq?ˆ“õ‰²Ç©k.Ìê …»‰å=¿7•t ÜòȘÐ÷fUÛ3Ίô5üÚj& T×;K¤“æ#mÄ“9GӒº^ÝhvÙ4Ÿ¨Æ@­[8]b¢[Ð6!ÝøÝŽóëßé%æ]Nl°I¾Ò,†Ú°E v•0>9À×°·ÀZèQêÃþ^Tÿ²4…ǽWÞJA|BxÑ·¥ù‡)ƒ†qtYöèØgzåëL´úÃUˆ‰“Ï;MÜfØÃ¨‰Û,—ˆçZÅ=n3eà×0Ä+ ¹·™­‚3v"FÑaSƒsCD1KF̱”¼U™×ñЏíVàöS6-î~*ÇÆÙÑ1÷h5\°"UÂiVÒÐ<"lã×cgEïÈŽ´j¥ôVJK¯œ¨ôq\‘L ¹£"dÒÌ}±ålU&;Õ0ÃjXjW^˜Çë•PÕÂ7è«Û|X0†Ëin>øõUøõ§U@wª¯i8øíeÆŒ ×BÒÛ2;%{Á¬Ô…ÓjºÒeö¶œ¨´ŠŒœ8èBº!A¼;k¬M!.˜ÿIRþcì‚ÜèBMŒq0l*ì3 JdNe¡m\L=Gàä[L=%mþ¤Ç)Hå«ÔH®çK‚:Ù‘\ÈEËä1é’‘)t‰¦ªÔý޾â¬? òjæ}«B³á½ºnMÜ[$Ñã;îb–•¶òZcŸÝ— k«è÷Wíî†õyxD¸>7©DjÓ8R€ë`3ÁNLU5Ë×bÔà¿yN¬MŸê¿1PÉ`gáºÝqÀ C$ïØ¬²©g¯1 {;.­Ç{¯pÞ]¾‘á¬4õ¤³‹=©:“ÛËÓPN× ïDq–áy:ñüq; ‡e Hí +oÜBr¬`Hñ5Y¦ß:‹'xê4¿ˆ ñÉ…T'HðÁµîo ›ÆÊã¼ã2ýû Î%±4–¹å»œjȤtª¤+þ0œ±·BT=]°›Š©sÌ^´ù¦‚Ä]•ÚX"ýŸ …«%~*¬Â«ü_ <9 úÂvE‰…|…M/KSéÉóõJìôBE·,fëÈ{’<â¬cyØ#‘ŸZ<jÌë[qj’ àUU'+è&'UÝyÐõ¥£âN¢ýw¥í«…Çb¾RÂÕ‘bYã|D›vÁ+\î'.[J]Éb¨ùêx,¿ö3öÞôúwôZ‰zÓuïá`å'”(÷íj G]Ð3ü1'À 0½ú"XòûT7’gþYðÒ—ÿCã]αSþc9Îb„k$dr¶ iýíÖ¿^ûÊ‚endstream endobj 510 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6030 >> stream xœY\TÇÖ¿ëÂÝ« ›+ ~÷šØbPŒ"jl *ÒYXÊRvém™¥#½,uA”@ìŠ%bYÔĵ¾˜hŠÁèKL¢‰yçš!ßûfYdÉ‹ï½m¸sgΜó?ÿó?ƒˆ²@‰D"É27·Ó¿¾)Œ £ÿ#NÃQÂþçΖ+²#+‹¼ÑükÖ‚ýpøp(ø £Ä"QLBÎ2Yp”Ü×Û'lÌÖés¦ï$ßfŒ™1þÛSÆÌœ>}þ‡@/¹ïNÏ 1.ža>^žad0fl§¯WXTÏ+ |‚íßzK¡PLó &“{/2®2eŒÂ7ÌgŒ«W¨—<Âk×GYPؘ՞^cLÆN3ýX& ó’q‘íò’QµÂ!h©lYpÈ ¹cè»aáN ÏÈ«¢vºìZíµ{÷ZWßu~nþß\2iËä)Û¦Nóxkú åÌY±³çÌ}{ÞØùöã¾AQc©÷©qÔêuj-åJM ÖQ)7ê j=µšDm¤> –R›¨eÔTj3µœšF­ Þ¢©w©Ô{ÔLʉšE9S³©•ÔjåB½M­¦Q¯Qƒ©”õ µˆB ¥–Pèá”5µ’R¯RK l([ÊŽS#©QMqÔ@Ê‘‰² ¢¨ßDA¢¶Ü€‚ÿ+VŠï[¸Z<¶ ±ü”^L§Ó%*f0“?P4Ðuà½A3Ýì4ø¸•Ô*ÒêÖ+mC\‡è‡Ê†^¦öýpÇáW¬‡XKGJ}¤ß¿ªyUÏJÙõl{ˆ½Í>1cDìˆOGüf³Ýæ™íÛóvŽv÷FÎÙ8Š•9êâèm£+Gÿ Tª‘þW=îŠ?1„»lb›J€‚P Jô¯tkmU( ¥¨ãSRP,Xʹ§tE-jÚ«@Þ|ͯ–0—®gé­@µ¨‚J—×£¦âÔ=q9|JV8R"/ÂY },±-ݳ)têÝôÖ àf°‘~ö«l3*ÝÉ-¥cäd¡zTÂÅæÌ¢KȺ{å(†÷€´ôèÏ·ÚN)‘½ÏaÅ.Iϼ㼩ýç)é'^ÀI?{¹ûFF2¦½#ôà®·þÎJò½³…ã, §¿®vñÛáï4‰†õ2örõ‘Ó¨“¹¹ús8‚V… À€:TÆ7t«hé³à~ÆeÐ`y±ëŽaËûJÞ ±X ÀÑ_7-uß¼kÍlžlœ¢‡Ïô¢s¨3ˆo ;Nû [`‹ioàáXúý¾ÿ¬9ì‰ç°.·}wåÊõ—§OsYâ`\"^/äëE põ¢Xˆî°e¨.0*5!9•S§!u¬ÜO·­êâp–¬;;ã•@~Â`¾éz°/Å'†¡ 5Ÿü¦}èÄLŸóL‚7ïÿÖuñì6û>+:3¦ 1-H[eÜ Ëõð–®ö*—xê.ØC9{áü™K·Î/=y…óŠ…>ßžàð‹ƒž‡›¢Ç߃†Îüñµ-îQ¾¼ôq£ºÄëOaíÖý»°Òæ]oõ³†xÊMÃV¢j_íÅ7î¨w%ç³?Kñ°¿O‚WµÖhyì¿Y¢”“øÔ’øÀ;tiY4”,º™v`]7ÏŸïà|íÁÃk†/n]äÄ™€®žÃÙŽ¶’þþXϾ°®”xz_^A3ß%1Y¡àq•DÚ á`#ÙbZö£êJîQï㘶Po #Qø~£#¹›’½){|¹î´ÒãªMýS¦Àñ¾ô(Èa5û÷ ?À+œ&´\Q‡˜êª²†ª¸Có>XµÊ—~¶ß´@÷ô.î´7 „.5:3)y,îÝÅÏø)zj€ÑäŒbX :FÓ/µ}4øAÖKlnöȾn•ŸyÓÌŽÞH¿À¸õ =Äéô6Ò'p òÙ°lE–<'(ûÝ"ôSß¼÷û/KC²8MtfôÞ^¸$F$‡¦©’Õœ‡ÖE’¿6ßû­gÑU¼ôQ{Ò±FîÞí7}ëºÂ;r.µ"­01ƈð“$1HÞTP¦i-âڽϨu†3›¿<ÁKŸ _1«õÏazRféáˆ^Ôf€z«õàÅÖÖ ½M=Îlvâ!:[lÞº1ö‹‚‰0õ‹_î´\ ÃT9ŸWßk2ð=6G¤Æû*9Ÿ¦¥žÄf«×ñ(ì„WýŠí`ð¹CM5U|8R˜¤ÍŸmbµ:âèoq:=ùª÷Í[wwU ­_FD4—á⚆˜Eèt‰_ÜŒ˜zAª‘ð{3«ñ×¢ ÄܤËêzŽªâÝáÝÕ?1­/áÓöqþ оfj$Q@O6„Þ䤑ÑÁ=­:“ *½"ÉAN ”ꇾ63ÜêVaªß¸­ß<ʈš´Óp[/ª‚ÅÂR⑦~hŒŽÆ"|‹à¶¥îO3bB{½ÔDƒ?*ò­BZdW‰jPá>£iZp0€X/*âÅÂ6ãZâPÅc JÖ¯A•|;½ Ÿ²Ì ÓêcÅŒº”^èƒãÃÓ“wb.MÁdÐá”e»©ú…¡È¾×µ¨‰¿ˆ»²Ã²”Ý”UP¡¯ûVS’UÍh蜭x`vRQt*B­(«,»šy®úŸõÖg Û»À…„,BÐÌVœÈhCŒ®š˜(GJÏ„œ¬$$××…_ß>- ÔÆÔ–ê Z5Ê×hª2K4Ũ1;°œ—Ç+ÒñÐM“G:^r~ÊI#ZQgÞñ½L<á–·%¤GìŠòŽvGIˆqÙ±ÿ£öoZa|6ÿ‚Žˆðó@Ö蒆qêC5jà&,~bYßk^Ï“ÞÚ{€†Aø < ϱÜiþ+ 4E+ðßÀÐ.<ÔRÞ1ò¬o&qÓèÁ²¯æ(‰8°eÁù¯˜ìÎ¥(‚$WU'm÷ ŠÔ¹ µr¤BÌ:Óyµ¨™ïVIü#zsïüy!D#)Üv»eÇæ‡{å$ç&%¡bT’Ÿ_’•û5äa4Ý!ôK_VIšµ½\GÊYš*1¤/­®öèÃúý$ëT¸þ4(侄gÒÒöF¿eÛGaÑä…ñ`ÒoGèPƒ®‘‹å’uîó-ÿz××®\»Ü¾ÎÍŒ£GA|â*Ü`ãö)³‚ó®9æuÝ*¹yô›9ÒrA¦¡aUwz±OYF=²k*Êjã…Ü:Iߌ×ÌP¨ë–eôÖÙÑáU½è¬jI5[ëXm%jzåxëüº5êä \lžgõ Ĭ “P,JÊT¢W_’Q…2QvfIöãKìÄ%‡T47Wñueè&bºÀÍñX²}b$çµÿèi: Ð@ÂþæÙÒrT™«ø0¾šO*ŽÚŸ\|¤¢¢¥ànîÇèStŒC:ì‚]"‚ña|H .ÅÍHSÈåÆž™˜™–WˆÊˆjyÖ²þô ¤Ð%|œx ]E£ôÙžÅg««¢.¤‹.t.ø€k=Â^ U¸rË}ÛÄÒ 1ñ´* E¦jÒ³R{ù¡'÷D="D,,†c¬±{ÏØ}q°ú%$®úMÞÿ£Å£{´Ý¦^k}ßNOCÉû˜NýýðÈš-›Ý×Nç—ÑàæÏ~ÒZ©G™oßÃ8¼¢n‘ íÁà~) ~´ôä"ÍšP³¬:…#OäŒ+ýËu1ûs©ö“¶fÒ^9˜Á'©wGËб3—P~b צUöåÖÝŸ­ÁëgGbß#èF²&I?¶_¶XâNüJ?ÀŸ0~,-}"¨-táÕ2Yx¸LV®ÓUW븭¡õé+PvÅëŠqñvh`u)_*Ðlfãö5 d›³vrž i‡2*2Ê3*ü{Õ3¶í‘ÏÕ¹%ÍÜ@}Ìe"Ÿ™ßv]ö>WÌï8œ·°‚‘>±¯ð,òjAÇíNµŸ¸ƒJ§ärYá…)U/ä°­I§F&q;ZÖ¹`‰—,˜ûÞ1§/C‰„ÏÎxV’ÎôIâˆ]`ÓãŠg‚EŸ+fÒ}4#º§Ò(y…ø{õ„â2•™š,’3yŒ.¬<",<:hñè Œÿ¬.sÒGÂ//õމ ë `gÛzÕö%­Î(Ú/)É_*é{rìºUû5—ÿÒó˜(s0¡ÌFõ”ÏÂPX¶ôS¹Óú) ÏÅS,á™iCgsMhïVmî×Ëõk­6ߥ¿¸Eèá-Ó-Kk™— ÿUŒúg_ö¤Ö¢ÂÙ~ã{ýH}„q…$­QºTJÒ÷|¨ímŽÆ›°©E-ü"|!vCäâäíFÙÒ’VžØ:I°³mùËÌ ºË÷x•¡Fd×€*QA+Ó¯ç=ÓƒŸÆ ‘0žU7)PbüͯãN‰wDoºk:iòæá]‰´½ëàñƒ5%ÑÎVI"_pÂí?Mú¯SR‰rzfàŽØ]2N¹_Vá‡é]¨ 7Z:_û<”´io>ƒ ,‚ÁÛøœÜpsIG(bä)Š$earN:ó°¨Ï!\0q7æñ¨éÊ„¤T¤d’ru°l¡À$ÅNé‰h:¥éø®Vtˆ…×…(6=³gßwœç`K<øšý­öÃ1x9Md´ ~¿ CH/9æÁWçu2”Žx¯x_’_Ô$Ò¡Ž…7Ÿ<ýEw4au ¿_g·z^¼óÕ±³‡ŽYkoïîºÝÈË´Â2üè ½t½Êúª`‹ŸØHÿŽB.«÷Ý]uͳ!&å#¦ª¸¢´<®@­áååïî )ê‚mQ^qªd²QãN[–Y¯ù5Ú }~~È/1Hã”Âaê’ª@’‘"6JY˜RœÌƒh ¦ÖÄ%Ǧ …] :ÀÁ°ê 'd—ˆüöíCû 3>Q×}4Oÿ|Á¯œ÷Ÿ¿Âš±éDû%'úó¬”ä&ìçÀ©n§<gDî]-,¼‹HÀ×ü¡–…±tQ jiñAq< ãè"Ôâãƒ|â8<•Ä‘_}ZPO„õ8:ù´ÉEœ©ÂF@9®µ†­0aåeãí`K«tÙ—–•ŠŒ²4º¼ùéÇ0@¿ë#aþ^ò}¹yšÌ¼~Qèœ}þZo":õKì)ŒÃSúLÍyj¯‰:„éba>9‚ÙþëtŸ½Æ$‚á"bÛp1Üéd[ëý½ä»›BšÛêöî50åÅ"Sþíó´ÏêDç…)bÁýùP6¯LƒP>S¡,W„'+cS8üåŽÉ1%ÙE•FWUç•çöÑI|DÂçYX=lðl1±çºqõSlÀâg $ù|p>»ÐÁ0ÁðÓ­›×ÞÄñÎxÐB“V†èŸ’ ¥W]î½ÌŒL‰‹K弿nŒTÇdD¨‘Œ‘W¤–VÌm;ÂuÛO—˜ t¶Óé¾C™ ð|Ûñ?KúG˜lK”çéÛÐhzžMLJIE*Æx¯ËÁCS(ê{ïÄ"eN¤/œúáöá—:Ž]F_0`5á6‚-˜?w·.¾\[S®+J-NÌãJß{1÷>Û6kÅæµNn¦ëZȼh¼j>Òõ~v’R÷XÃ}¶ãCÝ9ô1ské§X‚­Vlqô«SU+IÙ“žÅíÝ{ÝØÒ_=éí¨ô çýCäjoµkš¡ Fú‹8Ü1ú§Sï­]½nÕô‹ ‡ð99y¹¨Š©¬’‡…+ýg>^KêÍ×qÒÇèúÖ NMFfâÀÊùŠõ}øÅFúµà$ü-S–Åħ¤¦$s²J@I±E±Å ­/ F²˜°h…2(E11¥1e…¹9¹y\“®¾¬í!ú¦8®8¶*b?j@º²šòªÒÆjTÑKõ”^X%j¼òq¤³‰±¤U0~É{9ÈÁ”K?±õž9–.@Ý1Â3z_r¾/'£CQjF¬‚Áït3,Èá©%~*éqrÇWÀéaQ?] AœühìX䑼#œWH67S¸ÚÄ'¸R…š+²söäs Í+Γ ðû½£KßYþþÛ²•ùgeÄ£ùyÄ£aeÊÀÄ]ó¾Z0ü§ æ¤ÿx²èG" MQní„ù¤¬}ª®=ÿPß±%ðÚßï}‹ö£²øœTò‘B\Z¡¨¯«*oj÷þxɘ‘øìÎIŸá°Xúˆ~ü ¬€žÕ…pRa#Úí¾ƒ1ø ëŒvµ+ôêÜŒ\u.ƒPF6"š„NZËÈS—9ÔyñäßîžyÏaŽ“ë²³´B+)8†s$U_!õ;àU¾8ጠùµ”—6r9Ð Sa©þBUEf&*aŒ"ÉO§”E¯ˆ|Qx$ïÙ+…*{e&dêa´ÁÍx?o¼i| ¥ÐÍ.u9ÚqºãÄçwÎmÙèêâ±”ÿ<€ý¢áh;:ÇÜ›{ÆVo/°w=¶éóNúË’ˆ•k–Œœôh ë‡ß>¾í|ÁAË-ÀÍì<§ƒþü¥ïž[µÚÑiݼ^¼ ÇEÿ¤b/Rßßû^üOêÎ?)á2›uÜ7?E¢ ø,bìa«QfEèPʩДƒ¾ý?Ï0f~'´’È6vAìcv¾õl¶ðÉ(yk"ʲsrrQ9SU"WDúW,'}-I­á°™„R°Ø0‹'Ì#±¤¿ $tO£ÓåG2øõlÖ~ç·î_ï¸qX¦(ãëýŠ> Ÿ:CRQjv JdÜÖ»ÎãL¼Nfn,þJîø‚ÅË^'Œí„ôN×)jéèìø|‰…eχ³Ù{2s4ŒÄšIˆ×ÿ±"-AŠ’í"Ëb*kó* ³9øúWöÖî ›6í^ãàкæäÉÖ ·¸ÙËٸȆ#G*ŠŠ*ƒ=<"ƒIYOXúήŽ-›½Ö.YøÑºímço›fꎬh*.®Üá)‹ë ÚÆk÷®‰Ú7±à?³EûH)ÚT<þ‰Ví&¥hŸ±ü>ÃSØ’VòÄÏX¤~§ãüÈ“V"ÖÌÌà×i=‹J“³£Šð°¯¶ ôsð0ò»²Â¼lTÊä§V…áíØàÁÇf´lâÎ,½½®1õ9UùünE”Ìj Eýàûf‡endstream endobj 511 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2085 >> stream xœ­UipS×}BÆyf1Û¨` ï‰šÍ0`h!& .©ÆŒ Æ8Þd#K²µØ²¬]Þ$Kòû¼È’y“wy•dœ1ÅØ;eH M;eiH2e \9Nû “öGôGúÞÌwgî}÷|çœ{>4c±X!ûbÞM<½-bn²!°†X;/ðS¶”Ný>k6n>,bâ ûÚçrä\†tKPÎRŒÍbÊj÷Ér5r‘@¨à&GìˆÈd†mÜm»v½±™»="b÷ _.ÊäI¹1<…/á)˜‰˜/Ëñš—["… Eîî­[U*Õž$‹L.Ø;÷—Í\•H!äÆñóùr%ÿw¿LªàâIøÜ°nùácŸL’[ à˹1²|¹ðP©Lž¯âef â²Å’í‹Æâ±#X"ö.…½‡ýû%v‹Áa+°% XÖ‹ý“¥Ÿ2ïSv:û“ œ çó¿ Î þâµa\°†ÎF_`• ³ÑÇÈϱ÷M}ðSÀWǦÐK4©d©ÜZz<~"{êé8ZÓÞXzµ -„1/wsàæRhm¯ëqzÈÆá1´fðÛ‡û#•Ѱ?šPÍÄ6ä@2ÈE…ª<^ai§Ü–P'©ÉpÀ0^¿VçƒüN"tÖñŠa´óI`5ZËlÿ–£NÏËÍ< .¶L»¯Ü!í-6'´àÓ‰CGÓè5ʹŠ]6pVŽ÷ßf·Õ‚FY$.3Y¯ÄB"N³¿U^÷vövžô ÆQøŒŸõþ±ÿÚ Z gñ›©ja–@ßXRg$Ú .%H@Ÿ¿Y‘ L’ŠÒ7žðv=p?%k‡jº ÈoP&¥ªçIÔo›Ä%™†£ ƒ0W–âÿöɳçìÀtçT7A%TãZ—L«59C'ly€Ó‘éÝôjzáŒ[ýƒ®.Ò%Ó€º=ζžQç4³kÎäù%7ÆlÍÛ"À‹LŽNW¥£º™\ßÌ)7•2¦ÇñôbÀ¢Æ™)/ZRßKzžoê/ôÔg2€úŒ>dGA¯¼{„ñX -@rŽk¨Fb½C<:Úï=5žvêM:n½“þÉ.ÿ´±çReÛ1Õ>2 ¸CÕUbµ€ÉD¼óæÐ~D<03Ò‹BÝ“äÈg—šú¯º)—Š9m=ê \ð#¹¥f õ)ZÌFßÖqмà–VèkÕ€ vø»ÐZ{£ÍÙÔÐÕÐH5š Š4ù ÃsÛÔý^_ÿ˜?y0š^*¥Y‰¥„æó·k5 Õ´@y/ø×/–•$”³ê ÙŒ« `p µ8 w«\Pœ–tVòÛáÛíh“Ÿpž²¹§ç¨`À¡Ý¾ÀÒ9.°9æsª›¡*_ ”[\\ZJHÝ9uF ½¯Ó»hκώ}58àpyHmTþ–8éQËEUQU{‹½œx·º],HScþ`¼‰3ñç"EsJ…‡S><Á<ÞqÞ‹7zɡی*ý0¨kHÃCgÿ®õ©ýhÀ‡üËÃh}"V®ÐϲÑ é»{ îã(„^éùAßþOíÁõÐC5Ptø‹k«,ŠÒPE”Ž*¼àå¢Âzs=ùLTÃY˜´2ã¢ðZC»–¡½ ¸²+Ëàê[µbüYpÓ5Ø£3ŠLr²ðXy)èpš…­C†ž8™õÅj ¨Ê]RžT ¸ ¼¿§Î?‘öÁjðzøP9ÛƒÓk:8›‚¯¢&Æé6üÅØ£ÔoÈ™ÙÇJçB!†øªïRZ†BXÒ¹¤yÄl›]Íq«Ú¥Y"‘0ÏUÐ?ìñx ºìÑ}lÚádÀMPÁ´’i‡(í1gòê'žþ&”þôÒe@óqôƹpzÛzzGdš[> stream xœ-‘{L[uÇ·í½¹Vܰ›³½8–,‚m1‚ Ia¬XçÊ#i¦Œ–ÝQ}Xn©À,(,mùÁØfG4›‰-ÓeR§L7* Õ½ ÓeŒcÔMvîõÇ¢wfÿœGÎ#ç|?R)EQl¥µºz{éAœ+>A‰kâ“J^’hœ©Ä™ªáÌ«à•àË‚½"%Eíï®ôú:üÍM.{ÙTlj”MWPZZ’ÏšL¥œÙÍû›Îê\¼Û!ÈI+Wímlæ…ŽÿGÊ]‚à{Öh ƒ‡»Íàõ7=ÿ`K>l\œoãýíün«×#p/:Ü<÷ðPÃC_éuûïç¬Þ=¼ßƒbÍžm‚Åa«Fè)´m@µ(U "´eÈ¿"*GÐUB¹©%E±âc1¢– x ªÎ‹…qjB¼§Ç%‹¦Yοo¡o0 4L2ÇIý C¶K´fj™¢ fÔb ‰³”X~K)†á‚fhàQvÖ}ªÌjk­wèF¯Ò•LÞr}“ù‚ P$/¤±6y¢Ë‰vá¨ÞB¾•KjÉØ“†ª‹ð[š‚5?+%´^c=YÛŒYÒHœd7 -˜îK$õß@Œ&MLÈJƒ–é®í®é©mÕ÷ÕËíY;þØ ,`X<ãwNêÕp¿ggîÅ)PÏ+á°¸Z9Ì;34Éa>€lz+ã#ÙôF¦{'½À„lvÀœ<<820¤W‹­Y)+NM‰!¥x\Ö«˜!ìòéÀ:cŸkƒ¸fÐùµÛüx"tÎ}ƒ§þ8z‰U‹BÏ,ä~ …)*}n*E'$5âC8Æ^ß5³©ÒÞØ­‹xÂûúÃS~56‡Ù‹CÖÎÎ>ÒßÙÆ²7ˆÉZ¶ë­²»Çî¼}zN}3Òíe`ì°ZÓQö4~³öÖñO~‚-#Sƒzµ¤•ùž…ØyJüWFµ~”8uõW<Ï.]&Ù:r€!dÜ‹Ì÷p…†"™:¹B/1dZZ¥u П×ÕlÛ\Brôd½ ~:pYüó; 6-@Ëm¥ø·dÔÔœØ5ºE`"2¢ðr~Ô¢?ÉOô¥º®¿ö^8.ÄÛ†ü¸­0—ä¾ðÜxʦk)›vÜòÞÆZxVÀX1Nògôû>õ ›Î#UïâkìµùK¿§“¯LêÔºGT%ñÌ „þZ¦Zendstream endobj 513 0 obj << /Filter /FlateDecode /Length 6564 >> stream xœÍ][o\·µ~Wû#çi«õLy¿´ÈZœ´AHêâ<8A0²dYäQ$٩ϯ?ë½¹¸‡{t³ƒ"!¶8äâº~\\¤^©^)ü¯üÿõÕ‘Zý|¤éëªüïõÕê//þð6>m²ÊzõòÍÿF¯´7›´Š>n²õ«—WG¯†oaÈ²Þ¯ÕÆç£ÎàkÐVç<¼;6aã´õÃ|T9û”‡ h­lHð÷µµ~8ü?*er6øÑnÒð7ü–‚ói¸¦U! »w8SPFéaû¾:åU^ð@~þÕö°9Y`lÚ$F¸À?Çœ²~ª¿ú¥ƒñsú¦e_ѸÊhã†-<ÍQ~*ÈøRüô†¢s2rðׂÎ5¶MÎ)…áïĪä"ÎBãå‡ÿ=N˜­ý°=ß[arÙ¤¡èl0Ãö§c7:”GíÍ\ ·õó/ÿr·AŠÝ†¼1 ø—§GƒñÇ/ÿEš‘e—µszµvVï v|5|ãçœËî6ïjóŒšQ©<üñçÕvã]J«—_½üÝ«áϵë¥l®½±’Üt›;ùµü,o¦¯b„mmÞÖæûî¸g²ï4îv¡oé†úêSg£æmmžÕæiýÙ®~}W¿êúUÕ¯gÝqïjó¢6¯ºäÜuɃmŽ{:b@Õ½×£ì^'p ]Ãö„,ÓyMR, _1»èq´/_}{Ä~ɯn–ýQ;çäŽ´ÞøW!? C ªiöÑã½1ÎÉñ^@д£I.YŽSʃã»>žš—Õ±lÑïålõð‘üš ÞáÏl h¬Ãvb*e=ìnø{(Ì÷9,|c°àá-wA »7؎؉„¦Á$@ÞVtÆœZê09BéÎx §™´â·€$38ðJb0¦8n¢v¤O!ÃR¨ì\ŽF¢"÷ÂàÐí8¡¾êЂ˛Úùl$ÃÃשË©ë¦ónÚ ,uìÁ^¡«)êi24aÌ8öþ¨ ‰ü¸¦i’Ò:¥î<~c}Ì4Qw¦1Ÿ|šd;ÓØï™ñÙ”Œq¦¯>2œ°bz“C#[—N ƒD±JÒS‚tLX­ÑÃ{¦„œ̉Jt3!¡*óL%úm9XΈÃ9Ý}.Q–Lq zdUÞDСR¬; Ef àg”±Ò¢ú]ßÖqGÖ¢uÊSà`=-FŒµ;GˆZ‡¥·#NÃOS"c®.ƒ¢²`2Ò•Ür»`¢×@:›Ï,Å`lƒ-îº&%Á:wð(X€¨E;`g8àS4ÂŒ í])!Q¼š¦»"–Á¼¯cIYÿ¡ü¿IØY·ÎöŠ"u¨)~Ôèv<¤Í€B æ“v3ÕL·‚ùçÕäŠzÁÜN¨W”C šŠz¥$†c(4¯'ˆ33‹Ú|+ŒjG‚†öL ƒ#5$§ j`°ø¶ÆVR$è ¸wO“èï£&ù&$Mò|õ\•ö‘ûNBcÖ¥è‚%]Šˆ€ FvÊ$P͉~{@ÅæäZÛ¢Ï=AÛ‚â p"P8 0°B/ 0 ®ÅâhM׉„·UµE€kcݸ´ÇÞS´GêÖ¨·ÈšÌ(•èæ 4¯iX ÆXÒ{«7)OQ¬ºl©xD¥]B«ÒC~ÜrÎo” +`ûÌ„áÑ×;&8h‘à䤀± ¡¸™1¸™Ñ³_ ¯¶F`ëhí%:éU°Ó Ù› ŸÏ’²¶€Å8÷ª@©üŒhˆ#lÞLŒAPZ¼P¡Sî "!5­ü¥P=6 —À•¨‹ûKüøÃën¥^WµîŽˆ ç€åœI›¤‡ovlÿ^'TšÇÎÁ¬@ wØ%lpÀ….ã ÉK íã|+æ^àƒ@ !ýü¶Ž,ZàŸ; ü¤ÈOƒÅìî ä;Gp÷¢i“á'8Ó°þØBÅçv˜[cÃÆí‡mé¹5#ÌÝ;+]ü5M['ðÀù³švâS™vC4BDØDgšwQ7çoIì°k@ÆOŠt"!k,©¿0á6G¿ƒí¸Œå»2Úum¾›”l²Í“I¬¼ Y- Ę$€ù„¿¨¨å¤âQv"¶yÍŒ7µ7´!tmÓ ÅdXnä½(LÒ¢ë×2ÏöF ‰Ï‰IɃ;µÍð’ £´?íûœ²òv0ÇA8œÒÍö«K¬Y àJÄ­Gb ¿™6¬L³òq¥94Øw¤Y¥e¢Qï@;Ì0ÛŽ®mÖ›8bÙlê¬Àp r…Î4ú›ïöàãwzÂÿ_âïÜýXœøÅJDßÊ®Ù_nyv'U€BǶ|vó§zIó9ÎmÁ±j׸Ü-¶ Õ{1 ¿[ÂÉMþ»›ÄåÁRGjËþÊê˜ ?Ì…$’Ñ”OÿXÄœCC8sظÙ€ý£Æ($膹yÉÑ¡qíXñ­ A¾Ýд¡k\Ó ûùô x>Å£…ì Ù•‰°Â˜›,‰Ø~R Ÿ!L~_ù 3s¯›ô#%#Œ ôxÌBÙ=Æy<0íÖò¶ñ£èUŒá^c>Öæ†hö{C?5“ÃÆE-fxv¬Ï ÛŒæãJ3…2‹¹r<ø¼D¹„÷Çûr1¤M>F yÊCQk7Û^!%Ï($ûX• _ÆÒ OôÔÐMîäÍð kŠÀ<ýU†¼ó³Q•<§¯a_Îúyì¬àG u†Îš<‘ÈòÐØ:ظ·--„4>nš|!µÙ@iûcw󪸑Á•gm¯ò8n ›lÒ¡6{tVìKYGY°Ä½ ÄÂy4ÁV°d–ÆÁÃV̼¯!\ ÿuÕ5iéÂy T¹mâx=ü¥½ ¥| ™TCÅ-aË™SIn5äs>EÃЪ²JÔO„ú=æUE¢ó”vq&äyRëp~t{9’:r‰ÏaXô°t$4%qHD*EÓ¤½b Øy„Ã5ª$92Û€·Ø™Ñ΂Ѽ(Ù$‡'JS°.|wJ/!B¡c¯÷¨&[ì;™.¨8å9(ÀÛˆ„IøÝd*¸KT*T6ÍGAŒ–u¬u@Žk^N=~ĘoiøÆ`D‚y;‡°cµÎËSÄ6Ò •Pð9z°œ5`!yc|³õB€e3ÄÖ4\×-›ôÎw…Tˆ¨óCAü²=”÷°äI ÷RŒÓ²ô’»û …õ¢¦¶õ´c$Ë ‘úg Ò’ÒCÁùi2±i6.ÆØx9©Óbˆß4»YÔ'l›¨§Ã…>ߊ7#Kf‘)ù±Ù.:Í­Ûôt¨ƒWœ)6bÛç&£¶•ÛÑŒGêÞçSÝäNßÂø¤ô™ïþFµÁè\(ô¢‘ɼŒ×Âà0ù‹ß=àk]$H,¿t*°2Y5°W…øBË(<´¸ýBQÜqW›?Ö¦øY¿”䤻ûñõ|:Ï}s<% ¥¨EHÒ‡öîvËšPƒf ½¤cÇG66¿3¾ŸflÃŽ;ùÉbîZÈŽ½£3M é'ŒÉE¥!ûG<þ.’4s6§–ûííÉÌI>õ÷«RÏ/î Š„Â5ýE8…L_Ì‹Q‘åL5W[)èËã`0Æ#ÔÍ[Û¥M(>HÌn–b)*MO¥(°Hƒ[Ö)›ù`;;(œDϵt ó|Ω!Jý©·˜j=’¸ãy2£§Ñ«_ò׳?2…6 ð–‡À µmÜ3Vm’úçç…[f’JúDŒýq$Ï=ñ°ð#óñè–›˜Jêå;¥LæFÅéŒ?¡J"•f!¨ÏP3ÉÃèËnÿ]z˜|M"É@D¿Bˆ{Zíì_3ïQ>ïo¼öv>§< OÍQçBGl¶Î+¯“3mâ¼ü°¬± JìÉ©jð¦6/j³©ü„± À¾Y‡Y"Ì0†si¹ì*“qMd£¹n 8('aKÆ[û_'M1u}yŽn£+Yz;±B”ŠªÆÓÚ%‡—µùcm¾«MQ´xÕá¶/IÖô²”,ÞGíËfiÙæ9âœ1)ðŽ¿{Dî×Õzª^/UNˆ:™GábšCH›@ɲY24–7íÖNyˆPϘ e42ò<Ò\WGNjrΦìÓ27ôrØâÌé¬Ô/¥fµG“ ½³±V;% ›hã«Àçxb§úáDçÅ“ ÷ð í¾­¯pdZ—CÄy‹)>. ƒèû>”êâ!â L]l…O¡õŽ3zÿ8µœ; Å£îI…‡„*–Iš'qe–ÝTø}à4 '›ÇÅõdoóE‹+ÿÉ‚¶0Û½TΞ‘ÍάGAÌ«QÆÝ]©×¢•Øã`JÆa, ”… gÙ¯Éþ8 ¬¸K«›ÒN²53VQWCÕײ÷Ï·¯™š´åÞÿ,~wQ›§µy^›¢FþU·) Øè6_t+çojSÔ²‹rÞ¯ºMó@ƒ½Ÿ†Îåˆß¯ÖY”Pµ/ÍÓ®(.»ªñ®6Å%†¥ :qä‹Ú|];Ý¡öÕæOÝßén_Áõ{G0ÏÁvG ¬cm÷ó pžŽ«õtû¡TdWB¾¨MAI'p+‹ )–é$ߦMcsLøª: ]›/ª,¨„„úuS›¦6SmÚÚTÝ©«eëÚtµ™+ ªKCªwµj3×f¬M%¿NÜ_7µ)ôÍwMPüÌt'f)  ¦›§1]°Ww9º_ógbº¿Oý¾îLwÝÁÜ}}CéöÙLÚ+ô?vùo??Ó-ë±!Êæ“˜®$O{4IC‡éîiLo˜Ócº¿Oé?)Óc—ÓKº'øôp¦›î}Á[ùµÃtÿ4¦û.ŸúìJÿ¹4=v›¦Û´²ï“˜nî›8ÈÙF„åG|%¸ž­òý0Úï?÷C— ¶ÛlüÁùo»ÜÝf:øVð?>›ÿ‚9ý8Ûo~.þ‹¦úLüÍü0þϘžžÆt¡ÈÂû˜.{ûúÿ¹‚k?Üõ;¨§×~Ðî7UéùSzÛíÐÇùŸKÓûà&uY–Ÿ¦é}p£»ähÞAávPf–ôìï¡Ô³E"š}dÙ7‰_A$ªûµÑ×çŠ$w¿6V·øš€‹c0øòhN=Ý…t@älÂ$²<Ò³Ô «Í=^ÍÚk\Û¼o?Ë“˜Z±yËóâaÛr^{`:w¬³ùÑ%`MÖWUxôñ:ý.Ýç¢$Z±²wéh]¤š§Ò€å<+³È2?ºÉöÙÕ&ìNurï˜fŸ©{JþžñçñÕ¡Êë³’Œ¦:þöº$×Ý—1fªa.èI©9›”¹m&l^_²Ù{÷êÆòü¶Æs$WfuÆ3yªŸá£:£}jJ%èÐ(eÝÊMdœÏñ¾#71?Ö †ÔH_ÎŽ©è[šÓm²2͹‹xk™ xó”c^ºæÐ–µžŸ¹ówªl©uo«/=MÁÓ<úŽ,À!°NàMàM¹¤š*€ö‘œŒp¡H¢³–gOósᨲ³Z’Ûnñg< …ªgÓEa7ÔêIÔZXYÔžnM}ÕjöŠ’ÄM±âû –eEÛ$.WJ5ê*/ªÖ T;`âÛÐÜ”ÿ’S¶À:Å›OÉìñ9àþˆß‘¢[ÈŒTÖ¼tSº!ol´©öòu÷«8v¹¸ï«HÔ‹í…k³I`7#IU?sß!©UÜÀ„Íå£ÃÆÄ°2Þm’+·4Ÿë)Œ›Ž!œ<ãÞ†™jï`'rRݾ§/>ŸÖ¾#ÇÍÙ 4Ší „´:¿=¢2Í_ Ôÿí(Aˆ×Îès«+ gŽÓ—Ë£,C³òÐ6ÂòÝlÑ®´…=\–[cPUˆ\¼5æöXÊiW3‘ê!Åكëý6Õ7‘ÉÍò«¾LÕd†à€xðµ½³1iÍ©“È.Pàº\Òl0à©]÷¤LeÔ±Y ~h ÓˆÉÉ9ßËåO¯ÅOç(™Œ·²ê8o˜ˆM‡ RXˆË#§¼à”ÖÈi³jníYô˻ڼ­Í»Úü±6ÅÏnº#Œ75Z1¹€Æ;]ÚÃÒjPÅ”{X{ÊåR›0TÈl<ôQ…%Tï‹¿Älj”1òw[âij$;ð=és®r²lãÜr–´²d Æ–×lÊ—KX`ØÈWzpÉ–Ãy'ŒÇñ! ü VØèÌø(Æ©ù¼QºdjÚ$åQêzR^F2JÖ[­ëJ=hŒ2à>ÑO…cóßµy]›—ݾw]ùÚ°I“##ì§‘ð/Çô(¾âôvIj:Ê kˆÊåUÜD²€‹ðÒ°tèÙ­KF 98¾Öï2Ø:L g,© Ä9|-Î!K#—âx*zÿâÅ” ±îø3jýB&ØÜ¬ xc5Þi¯®hr—¢ûE¥öÿ ÎÒ|¦€óà½Â¾b¤ð¬à(mêeŠTnNØÐŒO\–9ˆ{°å䥆?H–Ö™iY$¼%͆qÃthzŒ¡N(gy‡’R`‹øêEÕ|ÅÐØuóv¬Xj!¢ãñ‰„3þ‘Q¡œ'’ÃØIC¦ËëÐǧæÈ ð–6¡%œæÆ#‡¸á9TÙæò5#ŒÌïNgMã]ÍË­›¹ÙQA<ó8Yp@'K&#ô]~~N~&¯Èžð¶ðïŽÔy„ ºŠ^ÑC!Å‚èEÖ¢{šERLÒ£Þ*§ÜCèkÕ­®XøßMíÎ~¬%kƒÿ †‚­FÜèr:(Áˆ·ð0b|Â:â¡`¤ˆÇ$|ZR§w“ ¼€‚΀BùGF¾¦ÍvD‰ Š'“0sŸÄcZ[ÙzÄSî¤ø_Õà«Ùí ´oÕÙJÆ<(ÅÔ_„Plß®‹¥Ÿˆs_—Œ¹ÁT[PÝ&ÁY08󰺦†}“‹n¶¸cæ1îïn¤ã(–eðSø¡;îŽOn¹™²]ô{“ t²ïíÀ.\šy;؇Y_Éìî²>èî&ð{þnä ¡™#—Ýäü"g3X›‚\›¢º€dtåÓvo XäÈ‚] 4…Ьiëm03µ¼¥^BœÏe+9TÉz"8{Ò𶀯¸L·ˆ )5^ÉCÅ/é–±è@΃¸š¯7/8®yϧkØåBoáó)[eZ7w!°Ø(²~F™}%a½ 6ÙL>Í:#ä3š¼ æåºu0òg-þ@OTÂZ†ïo€[;ý´œÓ âzo$Êé…½€ÓYa*sp®CŠ‹BíðÛE¬%˜ÕÚ3©S£&"ªž›¼Ô»mµÈ›ój-îêâ’K^<ô’û)¹ Ÿ'eÁÂ70 ˰3••gs˜˜m,OEk?{ÌÀB«!j¢äýÌŒFt8³þè+­4þõö‹ùG {¨…-Ò2„œÄÄ«³ñõ–9B‰¾=ú‡êЬendstream endobj 514 0 obj << /Filter /FlateDecode /Length 7447 >> stream xœÅ]IÉu¾S‚aÀ ¡S•Á*ǾHða$Íh$Cá9ÌøPìn6©!Y›”†òÁÝo‰Ìx/2³ÙÛ2æ0ÉìÌȈoùÞõç s´ÿkÿ¿|õÈ\Ü<úó#Kw/Úÿ._]üôÉ£ûƒun«©öâɳGü޽°ÑËEŽùX}¼xòêÑ7»ßïaÈšjؽßÌ1Öš³Û]ÃÝd½­u÷zïÒ1Xwï঩5–º{—Ο üýགྷw_áMc\Í»#ÞôDzûÞ+)IJ{ —Þ¤´;¿Æ/%ãŒÝÞÃÝ`¢É»ÇÀn¾äC;›,|ýegbj“B‰H8#Âôk i"F6e§÷‡`ªâ&!$òé+"“Í%Èψ¡Ï<Lu¦^qä…x¯# q&ƫޯ:—j†h ıö¦W“1@œ›&rÁÁ>1aÇmj”G>}ßǾRk¤±È'Q² *ÌðíÎ{,þÙÝ\÷íh›”aýÏû7äŸû×`hµ8O²àð‡ö…ƒõÇ¢ÅcŒÄÀ})GÉʼÄZL“¨Æ'zÄ&Ÿ5KÉ]Õ•QMÂ̟Ы¬ÑžwoâûDä!Òƒd!é/ŸYÙXCW`Bp‰ÄðŽqµÎ]“Ø0 ·¿Ë9_Í*ržP¤UáÀηb(ϰŸ6T¥ð_á]`NèÅÇÞ¶µßÖILÛv.[XÑé²m ®“¶¼D`7¯XÌNˆ®œÇ%ηÁÛgÀHÜ6)Ž}®¤ŸõÕ)|F顧 i81¬‹yâØ—È´C‘‹ý^0ºØëw85SAÑ}àéäRÄ®{55%ARG¦)0K—Â3‘\z&¥2›ÄO*yæ)EŸp޼>Ym«­ÞŠÕæ5–ýŽä,ƒn(M-zë*³¥ÚCWÀÒML ÍEéjm/pðÁ‰¿@ÛáûÙv^#Æoêñ<ÎÍšV-ãšÁ Ámù,ƒc Aš\î3èÚ”jŠB8×|Å[ä¶/^Þ>½ì—øó¨Ï„¢¾ežöõhbœxúº+D1égâLT³V‘O*%V”¶T% lêR\¬+Þ-Ùf)¶Z4ÚJ´¶ÓÆÌ¨ùy’!¸j] L—ŸHE‡ÌñFЈ5C&ÛÄ’< ƒ›6óÌ é;& ÿPÚCÈ” ÅëmUÆažëUgR¤¬C~ ;óÚac‰‘ØËñÎø¢¡Y+>–{‚C«5ºT«ïûçð_Nᡞn^t%-`:Ò. r„ ¼ºû;äa¹IŠÇ¼Ç£ž+UåìΤ« l¦¼œ©ìñHG®5ÅÆ>ö}Z¡Ï‰ÈuhL¿”ƒ6e’ƒxN'¥ƒŽVÉ“ä¡+uÍw…nYžlŠ1I&Ý´ 8Ú¤ûŸÙ¯™ÆÍo*]²ö‹.BòË!§¦æ*·â8 À¡M½xò›GOþõ›-†6ß9„=ùÚø—}¤beÿ-‚ŠÑ£-'IrlËaÈ4ÃŒ…¸¶|ڢ溓¼BçEØU:O&ãæL¨ÃäÄ„sÆùÁpN;öZÑF¸#mQQŠÏùß®º…ÊÖ6Ÿ@”3¸)mƆPÐèïÆš8áÅŽD¥ÅN,Iè%¬hí†çHø3H “ðË1£Žè¦=C¼Ÿ¡t£PA“ÊtFgÞ&Ô¥Oç…~èJ…e¹Í@ýM¯Ûû@”ƒm [¾,¶}„o¼c¡ ¤yÀ[½å—7 ãþ¯ÝÉ¿K{óšå>‘÷JÚÊdàCžpd˜æ»f¤ÿ>¤†ó/-:Ó˜òŠoÇšîà9𠹯â=ÞÔü'TU2ì@&Þ*6I×Z ¢BD^ D=í¾°åb¾âÙ³ í·;a,x‹sxsìÓ¸923Ã"üì»<ÖŒöå“G¿ÄÂxñv;2¨#DS`öóhB¸¥Ø%phð·ûYgѪ߸aÖºµ]-âå³ö±oxù(§àߦ½XÀ§Î<Úr¬¹è™ÿä!iSìE1Ï)v²xcQìe ‚ÉâCâåÕrÄðf·ÉH•šÉ¸ü±‹ü%úi (YêÁ),ÝÀ>N£œMHZÁs…öòsÈ Û‚Û£Wþí¾7°ØHrtAÉ@à ÀÍ@»´÷ð!£b“°]ÎÌÜüTÊ­†e¶Ä¥€RœÉp²Ûžh,l£s×|÷¡áZ$5U{Ø@(™m YÆïö1‚¢ö‰£»¸Ù™N¬8²Cˆ±`\Î9F<|Ëã! ÓDæ3«=³ï‰j>Z·å¼ Pú·½Ò¢µ‡+þšÖŒÓ„Î{ŠVD‡¦*!´Ì9~µ )SDa·ÉP:P.¥ÁP>£ G 85æl=-ð$ÜŒøŒ=! s¢h¼ìvsÃß–'º°GŸ¥ @ïzÔOw_x9[Lù°ûS^öÏJSØ^Ñ#P> .èˆ.~¹ ôaƒ6T«¸µ­5rÀ]Œ)ù¼O mZ-Ò̦ïv %ÜefXô¶}È VãšÇš '³'‚0‹-†WØßC²¥5È×€ÁiåíµËÎg ›ÁÓu‚]ÀY¹ŠåjëH k”ؼ:ž˜ôêÞt¥ß"ßH‹3£©ˆ<}¾èŒ ¸{&©X±pµŸFçTäO0䋎Ÿö¯KÁ`ÿlY;3¸¼“hŠpÊcA0²Œ"æ6Ä¿©ë6|o­WQ9­Â¾ˆa‡è~Ey;TAh׋€ü˜ÆZQîǺŸ >‰Í #Ï&é@t I`ädŒÖkX–/‡ –C u[}v½Î^(%sÊ;Í@qÐÉ2Üѵ;Õ–­C„"ÈÑæbLªmЏL:\$ 0A,dA†'a¨.¤ÀI €õ$-!S*t+" ž]KÝòá®>€jR«ï™”|Ë™ŒÙ_VÍ ëÄè´ÇE©Wœ~-#àçUY¥L.˜‘ÑH|NCÊÁ.…MKIʼJDµ¾›ßóþäÒòr4»¨P Û ‰ØàL¹EæAÆÅa¯CZ‘ñ­Dªšè•–™‡ö¸¨hV‚§¤a°/ƒ³²ŒÕ±úª–HÕ¤wŒA ‡RzüÇ®ˆ«(V‘T ‚@Í4 76ÚžF»|×/Ÿ÷Ës¿^‰4I»ï—?ê¼^}ím¿äGÔG§~ù²_þhÂZÅNÓ'µVáÏÀ¤‹á:¡,^)¾^3÷ëPIUµ0Ö!h°bð™bÝ]áyØEcíF·¹8ÉQëX±i&’°×jˆ5»92Ðr…K¢1FêÚzÁAàMÐÔȃèò]¿|Þ/Ïýræ Ø9(6¢þÚ/Oýòm¿|Ó/}¿Ü`{—^²Í¤BŽƒi `ër%÷w2FÀÊÖF·Ëã=&Å!,(2¿3±7ÐLaŒÓsW»8çX’*T8±Ý¥‘k~d22« ßéC8\¶ÿ¸`eÌä4¿ïò«üßµ I¾î±ãŠ|±¢XJÌçåê[/ˆJÈpCû–Æ®¼aµxÛ(2Oüá VoÖU´o(/öŒV- ˜$zù8BâB+æ»êȠ±^‹`Š`'@r}I 6£†‚šV ÿÌÏ.³”êT‰É@²ÚˬRÉÝÑ„m¤\>ëv¥…˜‡ªh/:•2áϯă§L—ðl RóîO˜Œ|Ô¤ÀÖ;ãCŒ‰H«h´^ë!÷‘[Ó´¦¥Ä⦪­>0Òh%jžìWýÎF Œ¶)žŸü¤hgý-³ëÎè›nÿ%N[úøF,p¢®GMòOb ÇF—n¦‘%?r“ÊiŧÜ4{ƒ ˜=&$€ ;È2Š©ÂÆûU@Ìâ…î]$Ð¥>nlp:£yâpM“#˜ÀÑ3º{Ë÷óvVzCÒ[À aøR¸!§èÂ-?xgˆk¶»&T°”RÂ(Tp쮂7çï€í¦?½HГµÖD˜µ»t¶Z†¾RŠW˜&76Ò+ÉxÌ<ÚØˆ`â!òL@:À„Ñ•#*tÌ*ôÑiLf´UÉ¥6ýûå§Ú@ßÈ3%5ó‡N3E J,[ü+$‹C“Ö#ƒT{“R¹@¦70ÎÜýUwS¡eŽòOßȺíçsY  [0ÿûìb×à¢÷ß$0â2¬æ®„‚Xd>Vk¼¹ÚTL&|·™i"\ïvDx·€ øøa*6AJýªe,aq`40bvÊùGä(ißi!Œõ¿B¨ ÃvÅà®ÄL^žNÓã]àsåÏÍ~‚TÎmr¨V†VŒöei`_tZežfÑ®fÿÈiúJ-ÛÞ貿æ÷`‹×€ œü@& -KK˜÷×ßh-ã* sø"-)°×)Ï?J‹iI%êT%AŒàp/{(vCé¤å<ß­XЛ½@$‡µÚ´Á*9S=Ì•1-ýƒµC‚žrÏÁ§¶’ÍèêJEUáö°mäí±X`;¿k÷¹gê Ãm—·6`€”4‰ØÑcUZ¢×Bq¨6 Šé#ÕË:w'p;‰Èè&Û®kÛç9­{£¯ûgn˜0 ôw?ÕmÎ݇U\-e…WeœKÜ„“F·ARu~pvt˜*‘]Í´Bc0ú3Õ‡æÊ¢­Îu5wkò>èéh,&z› ÄðÏLu?HûZ>¢{— QlÁ´:LSÖqæ×•vsÈ ¬4¯±-<àëºËnëv½ÿìŸÜò˜•XûšK?·¾^c¨Q\‰Í\MóÏ:¦Aw{ý*±Žxàæùœ4¥g¥Š´ŸJ«Vrt=àÕ*1.µ–(YåLó” õ4²~«šÙo¬¢H†Þ.Â&šQYmè‰(»OÍ<¤£ µ{ ä+Ù04ös¯Êω#{®nÒMS†ì»µ:‹<Ôrª˜o‹D•jqÑBÑ!½H¶øÙÆ¡ÈE¦à·©$i*tã"Âχ˖îÅ‹±ó­Õ}ýœÄÎ$ÀºKsª«ÀêÞBM¹W¶z-œ9¸X»ßÍ~^ÍÀ‡«=6ã×€Ëw°Cæ³­£Ø³^âOŠý<:¬Ãõ^@7©Îñ\©H9bPƒ·Ô£ ¼`f£*yÑ¢¼œ ¶‡`Oª¨Î‡MÁúTÔ%Ѹra+ô—û9 wœ?²·ç áÔüj¬AéïÜH}i: ®ƒÚ1¾ðMímâfæ³¢-ù÷³ÜoCDCrTn6=ñ.:ªÍ›ÆêŽ­àìô‰-$0¢I—‘mlç風yÙ`QÂBE'náV;=UPêN·V!öñ6âM{Hˆý‰V!û_Z4®Ö7Êïoy< ›Ÿxþh2×#¡bvø5LZ˺èŸd'"õÿtç©ÒYª~ÁMª‡ß¥Í­„«àŒ{a¸¶#bÎnv.‰ö:¹e5ÚÒ&(k®i€;óœCCŸ8Ìßb·ÀµÑQ‹ŒÂž„7(UÒ8ÍU#ɉÐ[‡j4.©©­ç+«ËQl$[ÅY®¾V¾»k9×Þ >GT“huŽ-UÓa ĪuG„8ìºG•„Z8{4™›áž—Ê LÇ#”–§ŠTاø0Ž€ài5§ ‰|>šèÔIðC*õXæ¾6oËVüdèùiD¼{Ù¼(X\ôÝJ®‚º&Z1XU‘u¦,vºØÝº%•ƒ4Õ´]Ô²?ZU×*ž½¶|DFʈ4ÔÉÞðÄ“u²èþgÂûmŸâÏøa࿇Fš`õ#…)³õ_;×D÷ÑÌ6âu[LTjü,DhÝÀˆž U@Sž¿C~åþl:Ðâ± ¹:h ™–Ÿâz˜e²ÏòD¦Eœ¥Mp®ZògZ" o,¡T4¹wÉå„,· ˜º•oÎsï¯ñ[©pçŽÖñî˜P@©^ëv„õ˜<4;ö®Ÿî=Ù’W‡6´fÇKÕ—?ãá›AÎá^ÝŽ²äI…}mÊìhm*Ú[ «EY–ÐÁ¢9¥pj=;h<6ª7O—ÝU—-0,Q˜×­EëNÚIžfõc>­ -hSŸ‹ôáE­–,‡›Ã\›™ËÖÊ~׉0‚@ísû’Uuß"½z<#JP>”Qž¸x‹gÚÉnT±qÞZ%î%€‡»ˆMcZ¤Àn &…[m(’˜unyHš”wèèD9¯#®Dˆx7=Ë2öhz®<üGÇCÈíúH£ÝJ«%‘ÐŽ”nÛÐM/yópCä°Åíp52£kg«ÑÇÐ «´àtó$j.? Lh‡kê–Po©«ôÔ:—-š­6+¹vU®}Î-SíÛÁNóÑ«©ö;#´tbªèV^á~hª"˃¬0ŠæQÅù|¨»Nç‘%SÔVæÛi-³ÂÐG¿ô=Æ;’eÂEÚãã­Ò Å\APvw<;¬…+E ‰M,쨓úó€j"²QEH5gÐMÊà B)âë[&µ}’z´Þwµ$\‚Çý€ÛDQzLÕÑÅ1|ÓB !ZNÅçà0Ú\å1>Ê°âŸ±Ï +Vã}4Ë} ëTŽCckÀ½ « ü´ú ‰zèÓ¤qÅIû²ßà„bÉwTuõÏôS¢t±7…´wÛPd¢Ø§UuÍž¼®©ï ±ùøGqÆÜ½Ò‚Ó6¬9ò"ã,ù1¿Àf‡Bf긑$ý¶iÎ2hó5qŠÉsÁ*D”u‹'Ú‡ÖOg«T5€ÈJ²)ÆOµ2èV—ó\?1¿ºqâ€,TŸ¦^òpPÞEAÞŽ^pÁñ²Å9,5ïTMF³ý›!Á˜2ÂTôæq £sÅT×¼Ùpp§Ã@p‡^ÀVXz2y%l› úÉ©1p0ü M¯&~ñ*œ~5ŠêAzs'æÌ†E¨n2F-ÙÅóÙ>±úû^¡+ (Ã¥°„Þ’£Ç[?rN‡ÇÞ£TàÓ¡'9ªÍºãT_GUm‹ºˆ9^.Íè¬t­úlG„KK˜„¥¥ùÁ$ÇóÕi?^ ØH\­…õƒ¯&\Î#&•czÑñ²þ> «¸‡j:²N$NÐÉNÌæéhò¾ûx—çËÆNf]àïRí[!Z³V­ûãQµ·‰jx#ΦÌK±J,Xøó*¸!ûÂ>ìïs&¯ç~pu²ÎšèÚü-?šç³ÿþ¯[FC¾×-·¿x:!¹G§XšØv«#½ #é×ûvÄ«d'á Š’Úí³©õfÕ/äî–1—:O§6::äÿŽ“F¦ñ„ÜHHôlü"å‚^2×[ ƒL\¯ýPp±Ü…Wk$ÁÅ:Øö"…‹ƒGü^[OO¢}Ø ÄÄ:½ &¬Ç´eÀy±ÇhxÅÊZBÔjqÞ{ O¤ÌÒßžEM­‰~rŽ_ÅÝÕ ÞǬ·S÷_‰W¯É?©)`£«§SšëÛ¸åõ¡WÎ\`X ÄCùJ¸3Ú-0õ%W k¾ȶä$ù²Õ +dU…ëqËwÃTÖ†?} -ÂdÄ]RåNàÕôEL¦OýÁÔJùlþ;F‰~w­8u¶;oY’wªÌMÈ~•åÌøLžóvê¿S³¡B›³mYüúPgl4)øøË6xë¸Í.âµs¨Ø‡Š¼0 ×eÛÂÍ"!ÆùcM½lùЇ~µ=gIýîë)^ÚIˆÕ+ú˜´6-  nDÈkj&ž°‚GSs  è?oô§êîüW<_Xž”L¯6éMëCÜEWD ±±1­yMñ#E¸Ùxê,£',q°äöDÙý§Š‘›©ûý¿‡¿†r ¦øF!TVÒh‘Ø.ˆõ¬>2™eyû×=dÚu€”hK P¬[,!©õ?ó=hzLIÔBSù•ŠˆØÂÄÒl:‰ûªü­ºƒ¼ã·‘<ÙwÔhC+¶Jx‡îpÖè½Xé¨,·x䚟€=–JI„]„'©ò²}ÏúOÖf3ƺó†øÈ䏯`(OˆáÍÊb¡#¨|–2P*t<}ÿڱ¦ îqƒ(¢ñl¢Èv]|£G+»¢´ÛŠ:òŒ•‡Ñ¾ëb˜å/!µk½(þJÀK×Ï0ùKÏb\-äB‰BaϪ ú%?žëî ÞF lž“Bcn@jÝŸíç×—blú|Í 8ù n´°Ë@ó(XÉx/—Œ?¹u”ƒˆÂ‹CŒ„ê}×>W¥  )CoŠ(¦òØ6Q©Zì7§÷rI®ùcÇ´¹ =~–ÞìLÐÝÂË#þeñU'ÿW,ë¦æ:ú³ˆu¯ÿ²”JƒoÅņ@ߢ;ƒ-$v€èàÈf@ÏÏha.Ï©)¾ë ¾¢Ÿ~}Išl©ÍÇÒ«|<Ì«{s½_þOfÞdÆ;$n’U˜bß÷~º'«äÓøsy3½Ñ÷áMKÍÆb¼ŽžÄȪYVp°¬üÂgq/¿xÌãbà÷ñóÁÚ—{kùG˜þeOè¾öÏBŸösn“Úa;æóÀÓ@'GYÂ3±2Éd>ü~ž¨NÇ ¢yÚXl<•’|û­Ô®o»vX?|ë㈧>ñ§‘ˆ0ÆßÆ1ãO'±LÁ›i–)$§x&ýªU•ç–Ü+D¿8cä÷þ䕳xendstream endobj 515 0 obj << /Filter /FlateDecode /Length 5182 >> stream xœí\[o\Ç‘~gò#Þ‡œ‘5G}¿8ëØ…“E°‰a›€±P cÌ›h‘yHY—Øÿ=U}9U}؇[ûäÁ­fŸêêêº|UÕ“Vb”+ÿ+ÿ=º<«³ƒdš]•ÿ]®þëðàÉ—Ry˜£ˆruxz¿‘+iÕVÞú1j»:¼ü5CK¾dcŒ\m´ƒs¸îéðñz#­—#\Î?ÖHUêÑo«Ãÿ=8|”þ®œ cÌRéÓÊðf½±JB¸…Ç4<¡ák~Kà îhøªKaOZ‡ai  µ¿Oç™â´»£õ÷¦¿_8Û4+iö>§áß×´øÄåâò ÍÑ쎆W4¼¦á ÷4|IÃ#¾vÚ⢻Å+žténîÛøœ†Û.ëg]&/ºŸí‰ßÓî‚£.;ù@œ!Q°e‹4ËlixLÃó¤1ÌÁ‚}ˆl!Wô÷3^Ó—]²7œ¶Ã4|6ÛÔÝ6“á³ÔιkìùûiìeOcó–ùãÁ¥1ê§÷²ò)Í~J³ß/™Éä†B`ÛZï4º©ïºÞà††[>å¶< wg¿éú“ﺦÁ´Ž©å·4<¾Ï4˜=<¥á÷4üfÁ‘%éÿL¼20ïyÍ…ÔS‰û.-  ˜<‡·5å—¹©ózSïéŸv/˜9¼ã.…׿$K*RåÿÁâñÜk³[ùЙ6þøLÐõhïiS¿’»zO#tÔ‘†b.€öÜl¦Ÿ{Øéç®ð*|üy>Ö¿Þ 7L&g\&·çÞE”ÓÚGïöYq N›Ov/8`ø]P‡Ñk&¬À”î!€iûewí½ ‹™NqçsÀxÞݹ¿jœüLw6Ò`âç bA¥oŽî[å©“y'gLãJúÎèbn^3Uê[Ͼ«JÍ•Od?¦Y¦`ÌKîºt/»3qËw&Á½èz¾ÓþýzˆcÒÍŸºãq×cò(¿¡ás>¢!sñÌW3•íëÛE÷D ¹u‡ ¹ŸÒd™P¼£Ô¦Z¦ ¼þ }ö˜f%#¶¦qQÿJxSá,‹þ·nþb!üjÊüÔ&è 0d=¡ë{Bü‚fû¹Y“J~@ÔGl?vïð¬ËÃå|øn×ò -xï¨Ò»YkÆîÚ'÷­íëF ÉÓí¸I–´«SExG=›•Xp­ª·T˜†<[*ÎÝS8dÔneæ3Pøk™Sä—]wÆ6fgcêý+£‡ÛÊÿÑ¥ŒÌc~ӵз ¾±w"fŽLÿ?ïž“;ëž~æGµ4wøQ¡™R?§áI6…0YÚj ý¯žu­‚ ‹b‹ÒÏR›"ÁC?Z÷ªè°.D#ë§Ûá]Ia„³˜öéG# ïŽ çFzíð½Á`Ró®ÅUžuR »ÔYˆFE 'ê¶`öyße—gE¢]ê•LÇ×0K¬o/ˆ´¼tmƒäЦAÈ›&$ÅtÁ ›ˆ$âA”ƒä-YhÚƒS¸ÎíÔgJr»Ÿ{.x$,È nïl—;CÒS8 À‘n2é´ ·ØöiòY¢ŠUé}LÍ»RCVè ìªÁ'4Ðúʼ‘p¦Sb)k¥mòLHE}¾Òûmj©Å Œêé°”cT2ÖÕ¼mUôODmø %Ó2JÁiÍÌ´ò€ÉÅ|^#„€’¯]s¦,/¤Þ`ÿK “Ü’ÔàBúv„¶À£„ËŸwá¬Öq~ÿF8¿Z2!Þ¼^³»žÌ"ëˆÓ¢1§lÁY—ƒ,¡­_õ7á·\X’²‘Æ.Bt† ‚šN˜~Ï„E Ëui [sóM6'£Pª1·ŒJËÞ–*°Wë-0œ~–ö1BÉa{´®Ü=+GCD­DN¼Ã¨Ú–¤±­Ú†QºIŸÏ•|¦¶p9.N«Y»3«M€ŒJ'¸ZåƒeV¶{2 ºÛÜÞ.Ë;@zÐö^/òzMë}ˆb–² fºkä¼%»Ñ ܧ޳nÎU£é“ ññ19o¦y­ÿV'Uò£ :rÙ«ئ-;ƒ½·‘§£JÒZn oSܰÚù†àqÕd#95°ï7yÒ‡™šp³Ég‚϶L¥¹Žnë‹ÉÍWŸUßö…‘T[ñH…÷vÍ9™õÖÓó€I¼òÒ $‚&zJºÆ%[±p+ÙV€ Ñü}º@ÝÚ{¯€.|d%>á÷G¨€aJ1®âD&Ñk} Ù“èCvtÁiÓ>îÀœ=?¨ÈڄϘlÌléQEAM TM!xˆªKŸc±41¦B[)yDP슠Ø/UÑHãîUY Å“%AÉÇO4´àñ)cè²Ps·" ÎXãÎ%8¬â¶þ’6¹íû MNn›g­0*Á3m j9Óñô+?;!+YˆëÜ8.2û¸l9'y úà¤Ny{f>#ôÝH@ò19„\b/ÊÓ"±ä˜Ê“«ì˜Ò#"FàHJÅä#‘–ÒȂɈ5:AZ–<ü¶ÐHAç´Ò³÷ÓcQîŽX“踙^\SVœ:Ãû, G˜âpÝK‹EYì¦3ù–ô¸BšäGÄnÄ\5¼¦|¿ÒqÝ߬‘¯h´\ +-¬cI@’B)”̈swYv†Òb:”UÑ‘%ì°D3üŒpXñu "sõꇞõuþ*_#†õ% *’à°© ßUÄÑÍb!ÎÎ]Ùkz‡Hûbf•÷MÍ('0=… SB|‚î\›yˆÇ·~ @V<ÐË)ôrrþºè¹eo45­Ô‘ç ¯3ÿ `‡œš Mã­Ú Q ÏÝua-$ùÓm>#„~R6 ­oßò7ŽlÍÑÞ½¤˜äþËYSšç&( ðѺØÁB˜âš°‹Œ>òS5[0Ä‚“(—nö󂲎fALÂõªeO9‰Æ£yÍrZ¾zDCöÈ«©ÉNÃþ#/VÊú¶;ûÀÆÕ4nÚU%³ÈÇhC‚ õ˜«ê. |òªÂ- ”w˜´O*Ü•¦jm¼%ͦãÞ6 Á-욆# í½Gp}ä+€Á_¯ƒ 9ðû˜ÊCG3_…ó6â%scŽ;­Æäþ·M¤ÑAŒµœÛ/8‘Òüþæð3Ž2* §Ïx¨Ú%†x,b¶vÑú&<õ ´ä  ´¢[Øúº1Ãä0!Úq tœ–0VµŽ“™!ð/S&E¡d·î•” ß±<±¬ªB]ý)Â.«AÎðÓí}F {ýËû¨9N3 îÕÌÓýR 0¶)ñv“£Ç'Ùï̘ ÞrÆ:R?h”¹¾•;gŒ †.ÔÐV’¹§ªÎ;¥¨5§9JˆMèmqìhpß¼òJ h 2iÚÉ&¼-Áù…JvbØÓ>Ç4Ü'ú»Ì,/`gßå“A`nIg#H?Q8;ŸP×ðúáÓYb¼>Ç`°É·È–N¶øŒðÝ.áJ!Á»°!³æ"RÄ$Î@/ ^Î×—5žk+›bZJ“´Ô¢t7Rm2ã:½‡T`심Ën£ÝÐÊëv^Wˆ=*ã›RBÎ^h/òÊ%h£÷¯“Ï´¡Ér¡fÕðÉtS¸Íg‡_äßÝØÕ~ù÷6A¬üÁ©ýµ€ª00A„L¿·‘YF“}‘šäÂ6»ãW=íS³ºnaÐ ]ÞâK‚ ÀB0뎲§p¬ÎÒïÛ¾é‡ëº‹ÙÛÈ~CøªK¡„öÙ£Áÿ¿õ©±íX©ß×¾î2Á*Y¬{ÌzÊýg²¬Eû ‹Ð–%uÜå¡/ ‚8ïnß]Ë.ÑÞ}…¬ׯø5‚œàäÒì†fMïámßÝ\üw< `k¯87]‰±{eg»³91{ÑÿQ{ ÀZúì%¤0ýG÷×4 ­iSÎmw³~îÆ'|vÊaþJ³ÿMÃfvZËò$ö&€mÌ °´íú£¸ìÞĽïOûº÷wÇŠÔãî’½'ao9ØößÓ÷_²ôª¡Ð{ÈÿA6nÔ·î̸O‚±Æø¼ËÏ ?Qªi?BȮȣypÒ×ê)x‚ «³ë cõ bùŸÄpé VÒV—wxø›Ÿf.¾ZÆjea­wM¬£‡œ_Z„ë QHD:&#Š<.ɺ֫Y‚3 Qaªíj£±õKÉàoëÔT‡§Ã‚“ªÔM±mŸk™WJ6ÓhÃf.©:}‰«}êœa Uäš´ñÀµHCÌI¥GIê$Ri€t9Iõ1J›3aC9œ¾ÉDr½ÇJ@Mg[ø—ÈeK- 6+Øò̧6qi¢yëk§Ø÷mþ<Ñš$$9^ùZM”1x—^làYu°¡ÃrH—ÌÔaQ¥êlbPž˜MkÎò·šÐ5R`X¾L1 n.1œà7nêÝ[v÷JšQë©ê•²‹ú8 Ùì ¿¥á) _r =m3r¸>5¼N“¥ÂkoäÀN|³Î Õ^e:$H\ØöËq½ V™ÕpXrL[RuR(ek$/w]ÔU)3ƒdô¿Æ Ü[–|ùëUò8›:±I7T»CÑ'L+=óã¼<ÆfãiFnCD__šd)R2;ƒµ@¸L5ò+ä$øR®­6R,·llçŒ,¸p—•ÙVÅáO.‚õ®´ÛÓ|ysÓ3Áß$Ù›œûÉ=ÿG*=ÄôPzôÜ™¼à´›\ÐÅò=ñþdÙ´.éAzÅm tÌaO‚üŸÖÁ‚T²µÌ}6G-g‹NŽbOÖYl6Ë×à«(…[©™#K‚qÁ6Ó×y»Œ ¾aŸïK—jîzºnîM&i@Ìæw–ʹÑPÕüǹƒ Æ9ÛpÂvœ)Çò„‘)7̆TMÊê²Ó Ëb¨{:pbÍwŒ}¦W%x)t%x%C?ÉKTB×éÿsÁ„EzØS•™2"Î?Å“ÉÔ £õsàR%Bs£W)ÊXc¬Ó“Q1`l4²¾*ÞÖ`]UeP.¨øSº³`Åܳá+ðaybb±;ØXhVo­š;í•ÄØDñá\”¡u)ys˜.…wlÉÔÉ\‚Ü•^¤<DrVDéeÃSr.À´Z)Ÿ;µÓêTþáˆÐèS·ÔNɽ>‹¨™™ÉÆ=7&>SxÜ%Õ§MäøLלn Úî;p]Eæo2G”°^FÝžkgª¤^«AK¨¡ÅW*á0-ËjQš'«zÙÀd6†K¸ÅÔͨ.1Å6İÇKÌ]ŽÂÞŽC’!=žÍÖâÜsTô/€íX’éA8g‘…[só³øûäK`š/.íôS/³B«}'EÀeÁMM†Û,•ú4üî³m¹reí ê.Ô £Ók,JŒ7¨/¹-7†ú¸6%M,e¸¢Ù¥4á$·µ}ÎtÓ´ÛšùU^ƒ¾Zð+\#“ùä¬á.7,‚Ä0š##øÿ+´e¶–=Ž3¦u¯ÐH]Ð’«Ðþyf‚æäUõ©˜;Ú”·ÝQ9nAzMó”› r%œH™œè=ë‚s6|AÃk~BÃ'Ýá®ûCúc7AØu‰i¾¡á  àÞ±®;ÒÂW!ûh\ZX0H;R®rH5%;R†¬ÄnåÅóO ¦ú6ìúÔ]QÐ6Ì[|#gÔhà€kKô;nà­Êëf ¦"™^²ÄˆT—òÇthlÓ— LÃî» œÄgCâÇDÙ²¥bP \§jç2ÈEÐÕž¦^Õ »å»|„ŒÇ·ÎkßF}D˜ž5~ì"èŒä%‚ÚjÃ'ºäÑö'¹ó'}l³¾QSÃàÎ —P»ümÉ~´®WíÜ¥†üž©#™JN§ßUhîèš@7y´\¤ÜuæØšª, ¤©=S9‹.Då¸rhﺻÌa£. / t|úmÊñYÄV‹Þ!É«¼2¼É|“Q…àJ j’ í•]L¨fÉ#~HŽ\‹S*ô[¬ðà󯈩 ç pÖ'D˜{ý@âm²P {F"`>©‡¹æÉúéãb }Ô½Š‹Ìcn ºSø`àë:3hà{¶¨¤Þj|!ˆ¿ë Ú4¾´5æº8§Få>gå‘)3jK"N·?¸¬Q> ®IŽ.(9âD’Æ@6ë\Õ¥¹YÀr Ìžîw”™]–ùp·s€%êPãK&ýº.ñ‰-×°Ï”hôþ6 žR 7tG9$ïꔯ2™ Àÿ¡±‹Ðendstream endobj 516 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 182 >> stream xœcd`ab`ddä v ò54°4qä~H3ýaîîþîù3’µ›‡¹›‡eÒw7¡‚où_ 0012Š©:çç”–¤)øæ§¤å)åç&æ¡ 2000ª30d€t°{ügôîcàûÏ(Íðƒ¥ìû¿r¡··"ˆ _ø.üý½è6áS^L{>åEÏô¾™Ý38Ö/Ê.¬*+®ë«í©—¾0Eošþ=>9.æiö<œ ë?›endstream endobj 517 0 obj << /Filter /FlateDecode /Length 3021 >> stream xœÍÙnÇñ_±P^fmí¸ïCˆó`ÀÄ,,Š ¬¸¼B.wÅ¥D Fþ=ÕÇLWÏÖpDŠ´ =¨Ôª©ûêc?ÌXËg,üÉoŽØììèë³ü×ñföÃòè»×ÒÀJë™ç³åéQú„ÏŸYm[/õl¹9j„š/ÿ ÈÖUÈηŽ9ø`¹>zÓ¼Ÿ³–yé½âÍ ÀŠ¡}s1_̘öªY#”³9oüC4'ƒ3f™köñCÅoV›°.¼5Ê5»ø¥€~…^À²a‚ñæº"ývùw—KŽå]t/¤n1Iì×ð¡÷F)ßüe¾ÐB‚T6öÞ‚€‘rÑêmßð´€1…L×4.«‹²:öY“Œ‘8ÛjçºÏ"øŸ†\>.àyW¼ ?Ûðe'»k.ÉÕ b^–/÷¼ùSY:+˜'$[´zCJ{;Äu\X6³ÐYð¸z[ÀUoH„‹^Lj’NÀ‚ïþ¬pøD’½*àÇV2²‹Žî‚ËV+/ùoç ®-$IH§‰Úð›^pA®"\*—Å;‹rÚ¥ßPDu¢ÎÍ–ÿ8Z~S©±%ÃüvJ¹Oeõd*%‹›få"ü¢€Wd*íÉÈzA†ù“&X5Øo`´Ó冞ËjôËUëW÷¤-?ÅìŠÄ½>0ëÓ—°ÄHùèL£ð†;ÀŽ èP^«)5‘ïHb“‰¸Â¸uë3]¨òGÒPÈ|§c$¨¦+5+«mѪ&?ã´·Æš”xS¾/ %°ÎÇJ™sã°¶|¥ó×d @¸göøÐù¿‰Çißþ~½¬¨¡²ÖùkOþ¬€ÒâkÜ1$ö™.eOàŽÍSº£%qŸÀI›)'5ì|C‚È¡o18áºûÚ1b|`ì÷D³"BFø®€WDÓóI솴ßoÂ9O\CU|¤tŒ ܳ§T÷ ¸ t6ø¤ìž¤ƒ>ÞÔ©Ë£‰ 3f|Úý5Í¡BD·)”g÷pèÎ+t~ÖiÝmn‹dôæ—Ù–LÏ\Ó¢ó!+¯O Fwvd'47WÛö‰"ôž´ÿ©ÏVx@7ƾ>‘ɃFe”G¨* üÇ%íFP5A‘üMŒ¤ƒ:ìCïsƃ6&hÓIoLP<¼* ¬¢¤Gþ•J­§މÆvù¸Æ¶Š3¬0»)w¢áÕ¨‘‰…ª½'$º©(c9þ†>dY‘õ!qˆÿ7I킼ê†=î’¤pM~vÐpÓî¢)0:õA'5è„(^®Ì'˜×c£½=Þ’>ÁÖ™´ÃÈxIH1ÜP ´8èº1.HNŽFh|E ›‘hZ‘š£ˆGcúnJœ‡Èp\lt^@tÂWö :zDÆW”ÁQ•¥LNo:n§Rfì³DãÙ)iÆg¤|ôÔô< ÷>q†}‘¾xGZò!Ý{$^’0½‰BQ‹²”Îè7$ˆŽaÞ’ }eCoïPšW#1/J*Ü¥»i[aúËBúòeW@Y@Dëe¾0ÉĹgu×%Vx>’»)íh³^:OÖ3ºßt–Ç{Ó–4fuÏ„‹ÔèŽpx,LËl?üsì™bF‡ýŽR*\ÕFk± jŠÅ­´®YÝ Ù:gÓ°õÎë0ñ‡UíÌÈwwŸpwéŠ8\îZÝü¤ðž&ùŠØ; <,½“:$ Τ鿌Ë`õÊõîæ œcÜ&Mh€ª¡XX-–Á^UÙ$Ä‹ê$r¼áF,ò½³ðÕ=¹—­Ðª }´ ›œqPÔ¢]Ú Ò[ £ÓNtl°iN¢6Ð]­BÑwýBŒØÐÑEùz=Ûñš6"‡-½Z'£ˆíi"h O$Ÿ;ed?Èrakó G.:6¤¯eiKjPâR2%ȆÔ›J•;ö¶¢;ë—b¼õÚæ ßpzýuî@QÆu‰AŽõ¾36Wg ΀,™àBUþß&"V[[¡CB6¤[º#×N ¡ët\ç€?Ô›òÐ^Áÿ ²x“¦Ãñ) Ê>X«+¶xO‘D]šî^(«P·ýH«*.Á;}TœFËXnLå­h0&ëìÓ!)¾^A)µ½fÔ$&VóLbS­¼j‘N0Àm²¹óÆ›…°Á[ÉPdT*‡Û±Zn xmÙ1…gÑÑóžÎàëÄÎ05陵b:gE. ­¡ØSUœO«ÒÜH«°.¨8¬ö™jPƉJR”“¨HÅ< •×BIÄsÂ6 ‡Š)Íq>­.RŠÂô˜Ú»â`Ue ØOrôm6vL¿ýà9ðÔ ®—ý{¤:,ô^©QÁ¦æbt&u^@tà¶.cï÷|®&!á‹È8Œ’‡…af¤Ç6b¥Ôþ1F72÷uk•êŸþ„Â)Ä‹­'‰Š%àmŒ1ﶤ1¤o¥à~ÔíÒÏ–èUÔ+'-xA`_¥Tl“1B#Ì'”¿EéJ©rÑÇOŸêÄ !f »BIa0‘±FØôÕÇ-›á8¨83¦jh±Ar)yU’po[]Òà[^gÿ>úÑh]õ7áÁ|8J_oqÖYæÇ[âÓ 2(»Ž!þüM16(á[ Q’ÖjIkº€0¢Ýd«xóE‡0¥Ç­PW‘=ƒ{fÚÅzØU,Ç›&>¨YtšÔÛ@3^d~t6¸Âc—ÎR hžõ—S=|»ž“ǨI½Ì4üp"‡EvLï‡ÍƒAË·Ëb ýBæsŸ>•áÜÇ­h*Ø•E{oïú$$ŽOWÍÄ# ôt½ðÙ ýôñð‘c„ŸëÆFðíÄH‡-Ó·ò¼3ÇÅ7¼(àä;œƒWC{í H?=¼Æ,¨gŠ[áÀ%Ãn®œèKRôÙÕÔ tÅC?ñ@¸ô }™Cß%Òûkú±\õ^€¸ðÎá½¹)àI¿êð#"Ü }1Œxè±¢ð²Ð¥ïýn–ð+WÑÖÊ)”¬Ù"6ŸnbYÛú2Ò葟* . ú̧1iÀ4ñü‘ÌdÒ¯Ç~"œH—FÚG—4O’ô'²Ð\ãoѪò”IbIƒëçÁ[$Öª€¿<“X´”Xè±ë߆F&-}¬ÿtžô¯«_&õº¿&‰UEœ’ Yoò·0DO%¹ŠÞêûº¦=ÝË£ŸáÏÿ+@©endstream endobj 518 0 obj << /Filter /FlateDecode /Length 8183 >> stream xœÕ=Ûr\¹qyfü|Jͤ–Ü/NùÁvì8®õV9Vâ;#’âÊ+q´¤´»ô×§/8@ƒC%­]®}ØÑ!Ðhô½}¾=W;}®ð¿òÿË·gêüæìÛ3MOÏËÿ.ßžÿâÅÙ¿ý· ðd—UÖç/^ñ+ú<éóèã.[þâíÙÆ„í‹¿Àà˜ºÁ)ï’Jð‹«³?m^nÕNe›³Ó›;øít0>o^o/à·R>»Í•r³Õ;ÿ0›k¡•Š*mîéE§ŒÞìßâs“cpióŽÞ †¿¾†ÇA¥7·ÝÔÿ÷â·G{»Xà½pf—]b¨_l“§Înö¸§œ×°,¬• ³ÙîlÊóÓí…0zóåáÃ4ðø-ƒRn³¿CØ"üL›„MgeL àœŽ6¦Íþ ¿S”˼n?¿Ùš/æk«‡ÑôCq XÙo¾†§6EÂæ°½0q§4 Nü¼âÅÀöçͶbYÌv¸!4[À¸qå.9¿åwSr{“õaóqž aOl œ[N)lö8Fë`£ãs.¯ÞóäNÙÍ+±‰»o64y÷k|±¬ÝNŸÙyyÈ&Å]ôy¡ÉoÚ›3’€ŸÚéeðÏ`ñ˜èdôøbRZ§4]Æï¼ æ9˨0YÇÀ:ðø ”q+¶y…¿áØŒ›®ïâÎFcŸµÍ4Yß"¾õ.çÇÐVß__%X‚9'étÔ“q´ ½ª@T\h»ó.ž^?’b.1žx¿ð@!„ì¢gŠS>Á‰ï€Ø<õb‹Ø÷!ØñðM„­ç N{݈öæë->PU,pgO* ºâã=Îð)¿¹0ÞëZŸìæƒX9=ªì,Šx3í¡Ve]eÉ'(¼ÊOÁyû-¡Æ›ÍáÀïð5œ×=t P—¸æ å¾ÛzO¯¡LAxó¡Ãœ–¶ Jä´/Û\{‰ ­@ÖâQš}YR6T”o¢|· 8VìøJ,}SNÊ©û"lœ †ÐRæ{CÛ:˜Ìø…NÅÜ’5n"S3)Ù$EÔ;’6rÀ&{ÀV#c)†êNÃÊjÖ¯^œýþŒUª?¿{®*uÙÁ¦òyTzçlB}ú'P dÐaMº‡9à,|™9,µ¿­š ¼…¿e»ùã6Y P7’¿î‰‚'q}੃ØÖs÷£MÞ¹œÎHÚ”2ï”ËlîD™†E+WØàt´A>h`Àßô¶‰ˆ]Uª|˜+ßÜŸ%„å{Xô?Ï,’@Sçoϼz%8ùÉ›³?¬ƒ•§f€4DEZ‹Àú  Ê)d ê¨y»µ(|'_™Ã ÇO']¶€ºl†Ã¡ÚV¯ð¡b‰›_o³‡Ä{³¸ˆ*½fyO›¥4©¼ ?ׄnYêj0Ø Cu†ð$P3_¶÷´;x«Ùl@ÙP<âZˆÖÖZÅЙeÖ sâß­ÕNlWNÚdþ›²'7°ÿ¡ÌÂ}.­qæs/ÑP`k«aÏ:[ÃÈRO˜|ó/¼ª…©þˆ¢²Š‹l² ,|ö&‡ål@y7®²€> G"ÅÜ.{IŠåÉc¤Ø[­=È |Ø%m˜Ÿ°+òNy««ô3ÌIÛÞ^Dà&@ÊæB OÃVv¤«²;ÀD°?ŒnjœÃ©æqU ó°j¨Á8X×+€=Ÿu¤ßÎLª‹e7$kýI†Õ:Ìö"G€dew¤g ¨Ú pdekž`ž0 «Û§Qm÷ÎEؽ?Þ}”[8í¥‰WýMòÏ@’noïpÎìÏ7彜¤Õ'lø;߬9tÄ/-òº‘ÁÜ[V²x:¸šÇØXÜ-^åŠÁntm6Eƺ0¶fþÚ¬çu³×P°“KÝávÛC:ñ­T2QŒ©î*[×ÍG¦|WËó¶,äun±¤|Ì'N¦¹Ø$°¸ºÈ1haxªÉîÀ™ÊÒ7iÍwLÐJËØg,›Rvt á°€a{·aF¦wà–*Áîùi„Ǧ³…ÑÚG5§lš–<0Ô`ˆÏ7ZR&ûE ªòæÈ]Ò1À´2ês¹%£ØÌ”ÄØ{^CK—Í@º$(uï|ÞoûHÃ)ÈÕÉž˜*k äåÀpEöQx*ùè¥{sÝŒšÎo£<bf0‡Ü{ö0Ó! UR¹Qu]èÀˆÈ@¾?‡ŽoQ0šÉR.{¸ì¸ˆ¦$ï»è<ïI¬MnœƒxÆuȃ‘nìãPIbR2Ö|ÑâcÏú£3Ìô½oNëJ<™!–NG£ñ°PFšGˆ(2éë\wbsºñ–˦®(’…› å0ˆ¹z–i¬H{L`ú-=‡q TJÊB6Ù€1ì4Ëj“•éÔ‰.˜°ýÀ;òÞf!çq íz6]ªY! ä³*ˆKœ ÷!\Sçè9áB'`ÝC ƒ¸öüM²]HXìó˜‘ìŒYdIæºç•ØÍ5+¥ÑýZØRÄTFÓ¡¨ ÞiôÖɰÌk!qÈz0ãqP¨²æ»£ƒýšÖŽ¢ÐEO+1³µ”áR*H<_6<Ë0—P(ò0„€.tôæqVÀ R¡€þ¹°¼Àœú°"ŵW&tûü@¬G2hÙqhB§¼1DFyÄÜÇÇݦÃ+ˬGq¥Ô;Mñždõ ¦ ó¯SÝE„ 1Ù…°“Ç-‚‘†MJY*&à ³Yżp*Ýš˜0쀫Àg7Êe2=GéŸÄd¥}‹:îiйÚsÞRDP-VPÁ†ïްrn“`½PÁ—¢6Gùƒe2ÁïäÏ…¡G%üÂ^›¼,gªŽ(…´±ÄÁ}‹™|µíIZZ‚è^ÅÌ[ÂÍÙKKD² çœ4òŸð§:ù‹OÁp”9‡_óq›(1&^â“÷Hçë9q ªìlW–ÃÁùÞ1Š0)‘kö=Y±-¾ÿ˜amìFDØWœ.Ià—Í\kò—Wä«”ßÛ¢Nwη JÕºûC{ñ½0)÷¼R·¼™µh,X7-¿×Yš?P‹íBý3Òf:d[KÚc5»„ŽÀw+9V²µÄjRÙ×d‰dî9‹›œt­@^b“”B 1ÛLïùAÙH׈È@çšš%Gû4;Š2Чû{Á¼8M;Xcð¦fÔ’ü¦;¼Æt„BåfR¬`—Õ×À¿O™³ÆÊµ ¾ÁŠ_M™7®èsm¬€ÄXA»«9óº×Ÿ¢x@£6ýÌBCµñD³±ò¨YHjÆ`) Kn0I0"Ñþª…È' ~ô¾øt`†ùiÚtYå-ÈBm8-[~îÛÏÛöóUûùZ¾6“³c- Ždê‘A3ýe@`ñnç§ràî–d(LçºÐÄj ˆo³Nà GÍÜr§h£îÝrzñ®Å‘˜\°ZFEŠ[GErs’äþn9m«*˜(š4Å7-}sÍè$²ø,±ûyâ–œÅý‡æÏ³h¡4ÈÍJããÐA7®R  ›X½iÚ2+aGf{L2 ƒq%˜PvhK­ÎôXÖRÕì<0)]þ¡6†çvl©ãÜÕÚGU6ûÁÿIƒ›¬ý€;wªHª¾GD¬¬w¹y’xf‰JqR –HítCë°2MýÈ"qµø%H ³¨)ìø_‚Êï®$9%UÌÙÌc‡õDA˜XÒy¹jœ28– -vé1géÑœ77Ú”\Øk¢{^gºXçug(rÙ{‘†Áf`  ¾©¶’ÞóÓ”ÒªóW~“Z{Ý´’ÀæP¨‡0å$¸æ€-SÙ˦#…[öºÊBZìÁ¥ìq¨ f×M7º¹y#÷d“îÇçð'ÐçÓ›>4 —ŸT°'gÁ¹ÁŽè‚täÆ%€%"ÚßÇ?½=­³…Ié½µÚ? ¬àˆ¬}'˜)2›Hò’³øµ r2k{³Ž‰Å¨ö¦|KUfšô4V¬pâÌWÂ|)øçô•²©vŸ¬ÿìaZ Ýìf»-¥‘IÇN-5YQN)UªN `%cÏwMöA¦³0_ä(Æmã´EO] W©ØÆR Ðó!Á6)”œÃµBe8ê&›)h ó¹hm¦{C0±8D˜|‚«oW?’:4˜:Œ§WÅê^Ulãç£,°T|Lͼ—Fµ@kŸˆ«ÐÊTÿáUF>¿•Lš]„ty“°…iʯrÐÿp¦ÁDDÙ·Œ`µ€ù-O‚q£P5[«‘j¢I·2¢ ¢.SûnjPd®­àx4(bdƒÂzmžaQ¹},)ÿÑèQÓ²C55pOÄ·A?²Ó œ’»X‡°©åc>òî¡_|ì**&v`ÌÝcÎ ²ó*‚‰×\ˆ¾÷±‡Lyª–'>%‡RÉôŠ'F7}Å/êy ÌNy*;‘±!ÎVbhŽ,Eå–›ú<±3„)1s—ÌǸR•ë"‘¶ÂÃ#~˜ÝåðdfiRÚ[K“ 'í}-ð±†÷½ß4»M†J$¢ºüª¸Ñ-³0«Ì9Üò‘!;»s9¼Uî¨,—±‡)UwŽîSiÑ›AÍ%‹ú‹®’“ê® ~ÃC°P†üQË>×)é¬}—þ[UhXõ§R—Ù…PIŠ ‡^©ÿÀP ŸU©ÔUM=tòçié¹6k1RR£L}5±F†ÆêÞ/Ï^üëŸ6¿ÚÖ+NßÍl%fáþq¦ósàækìÓG¥’l¨üÙƒR?š£}Ó‚§9ª€§»*ûÎw{Iæ—rÞ¬9÷eåexJR€d!›0ø°žŠïe¹¡ÆRagºæè’HZ× ÎbP.œÛ§Á Eÿ¸J„ÔõQ…röLáÁh’Fؤž–ª0´ MÂ$•Hû˫Ŵ’š?Ôóò?Œ£p‚qJu â(hóìÒh|í˜l¡N‹˜¨0>Ku‰C*–)¸fD‹µnaóóû… F™`qÉÍ^ò)÷c€‡«)dþ¢Oihz±^ˆ)š°DŒræ½ÛˆõV^Kß2Ç(UÊ=Y¹¡Î.ÿ|—ø4€À<Í„šèJÚ'ÝG @8ÖÉùÈK¶%À6¡G»zK Z^LŽtm• ZÀ!íÏ Ââ{1‡ÓÉQ“,Ô8òd-VÅÉñzÁ 7LË’ÆÂ¦¨ÉC>Ô=æGʲp=eæØAF!y»tïJ¼GÞODÏÀ¬ª¡eìšÔÝzÊh~'õ®ì0Ç£¤¥ä{vOwÄì`µ!=õÚCØ?¯ó°B² ÖdãZYPâØª×:LÄ::& c‚ŠT³ù%‡¾è‚!#”Q”EÂRc[4U—tI]¬ÓÒº”jrR”\=›DÅT󲨱v«±t<áF÷ôÞ+M¦|æ)a"ãÄW¬¥õs_€Ç»”ø3¢}Ø] _)”|ÄéN|oºQWüó]©üjw5wÙÀ_©£Sä„p_¶ŸHc'q›ÿ8_ Qþa+dT¿¿ƒ*N§$ùýF0ÜJðíêí²‚ ˜éëqFº¹Úè”ñ=ÑýãæÕH\¨ü†óÍ1ÛÏ$ú1à¿ËÐyÒ‹¡Ê~‚bâe>CöKK¤:-÷<7zâS'úÛm JA#¼MùM¥ìc‰B‚1°O¨Ûª>ªöœªª¡žŸ6gz¯BD®kŒR·º¨‘ŽK¸¤/ýЈ¤¿S_\±MWtíÏòJBŽC¼Ö)¼‹¦äjH÷Ú›|"È¿¨Eå\œ<^¿k-l_uËLúÊÐPÍœ¢{YþØ2áŠp€ˆòsBg …#/HÞ.ýR—p•”¾kî¦]Jþ¢ ~šµj`ïÀ1çXGjli+ðåuOô¦-¡Oy’ 7›ÿÅ ¶Ý€wÍî–|Ñà ?’'Ö’k3ÜJ´ŽRk}3¬µ5†‹Nix ÆÔPr·œÔ ݱìô(‡­%ÕÜç±}Éfª€D\`¸Ïº$ÚÌßµÝXºªÉIfLçþ€p®ææ¹n(€ê+Z@Q#Þz“ (:>rWÑbºM¯vzÕhJÎñ¦)Ð÷¼Jî¯Ì V Ò4r5ËÒð¼îi çXj‰Ö4 ÁtJ¡>c`4•ª»1¿d0”&)r_N©õ’¿Ý‰wªfl3^,]j|î{€ÍáínéIU‹+X) Ij¿sNçN?±OÉÇs „ ÿÿv;óÃþY˜=âj´òPa\(Ô<}ž/¢\‚e1Ö ü÷ÏŠ‚vÁ÷ iºÿ-oÅ®*¹•uO–æÈnE îç çûò^ò'ÄPq¤;¨Ñ½-¼”øÝ´Ø[œjw‡âŠ·È?àÎã–¯\pàåZüDØpþÒ(ó ¶¢ŠÉ0_sVT¹†s |+ClZߣ§€Þ3Âß·ôÃY®oncjUëBªí²kÓš.j™ôÇߪ*[GºMz;,îï•ï„\Ô…?VÚ?rmÚûF8fó›;×<›S«ßÊ $Z:£Ü)©²ÞÛâq沂Nhìª]:©|x‚ÃÃ¥^cîÕëÚÇ|÷ØâÇXŽÊjy?Ï­‹’H™@ßô=sdi+5DÑcÑq ˜¨ Ú»þºéú}5“ñ^ûZ½‡ðd†|¾çV‹À½ â(Ó© º±¸f‰Á®é²/Óñhx 4ÑF+ŸgµZ4ífV"@gfÍt»jÐï–âb3Dw—”dçø2ƒ€›îë7*:>æ0¥³mOQ²ñ¤YÓ^ñIùzÛ€n]úš¨z'”J±?‹ŸOz1Ö½\Ž£ËGÄGZøôg¥"5JÁ£‰có‡¨<½ók-vv‘.ŒJ$p³­•[šôéš‚ðywñ0‰¿€2¦ï‚Íð{íÚ}êÁØh¾S»ôq|ºôt}éùµ>ÝzçF3í ªÞ3 éQO¦ aÅuD.)KH±ë#‚£oy]‹››³UŸRE[ÇŽ]¢ßýãÜÂØ9®‹šŸÀâ˜ðfžvйM(Ön¤ OéånËW“eGmýIW¬WUãŠ`#?}—œí„ß ’wxÑCÄiW>£Ô®Íœš(º}Ô$¶Ùé`鲉ÏåŸNûa"¦Ælÿƒl °ƒS|-*ãZjï vÇõÔd„÷NtAQkÜ!æÝWÄf,eˆŸR~c~ÕÄõXû?‚àé¦`ÖëŽaBÐчñÖm“¶Ú—òªØY›K‚•.´••ÖoîÎøg=M'ýèekû#vÃû~¼µõ7ü\§ûFæãTÙ#&[ÉäÉÉÊíI”Ñ{ÑZð„.."ðE)³<úfeɘ­ßE¬G¹]œ›Ž·m™Ú³Á¯ÞçZuР䥢kˆS8þ¦ ,.eÿäªÄÙ@Túz_æ@ÇTÕñ]§>WU?õû‚O&¨fU†â[[š"èø­- xë“Ç> ”̹‡±1tßâÞ€#ØÖŠ&qˆRÂÄ¿KsU•v&ÍÊ îÖû¦\˜ò«m©áO¬i8CSX$ª%Há´& bØÑl·)­àˆ4+-)sø\sK`"Hƒ•à$¹”ÚÌf)ëxþùün9¨Ä_6ÃAq韉Ž&ÀûK3u‡-» Cu@¥ë’RI‡äùº$‘-ù7¿Cþ¦Âû™„+J]dÉ긺 ŸÞÑ×Ã2‰qžÞq’¿9@D+_š®*ýˆá:/jf3V¥:‘ÐHŒ{OãèÏk2Kñݤœ ~ÀÑb&ƒ ½¬À¡ÅNÛ]ˆf™}8×:cÅVD,'À²+ÊAM„"ËàS„ýÏbŸ–/ÄE¥s7žò#b}ëDD3j=Š †‹R ¬Œ_Ô°µÌ˜u^Êw?Q-òŽ¥@9¯“¤@Ñ´Ú‘½€ùD`¯qÈÂ0DZF¥Òtœ=Óñ¡üM—R55ý g¬ ¿âÉ•N#«Ñ$½eCü6]p* Ó„Ž0_7Ý?ØDuI–\Ý‚NÂvçrWv­“— ¶¥™±_“‚uKçãØ †ºPøKÔ¨÷‡žå*JQ$CHÕtdºÊK¹#ñj¿k`÷º\ï"ÜõM:=ÚŽà=»¥»ç%Jƒ*kH\gS¢¹P–G…Ó?‰ˆEò¨Pü£4@ÒÂÏü‰9JÍ!v > stream xœµ[ûsÇqþýòO\"EÚsrË÷ ')»â<*N•Tù)Å:€  ÀAxP¦ÿú|Ý=»Ó{·GŠ’]*›³}3=~}Ý3øa=ôf=Ðõß‹ÛÕ°¾Zý°2L]×.n׿9[½øƒ‹ ôe(f}öf%CÌ:›u ©/.¬ÏnWßœ}‡¾)Ïúfß»àÐÿìõê›î|3ôCq¥xÓ=l¶CJIÉv× G¼KÝkÕåjcú¶»¤ÎfÒ»GôðÆÖt»[¢Û’¢ÏÝ=ŒÝoˆì‡!/¼;˜îލ¹”XÿßÙ­þílõ5íÚ,¹¬]b,þµ¹ÂÚeëzlèárýÇõ6~µÔµð÷Ôuõ†N,¯¯qš½K1®\åõïWØ€É8r7Dü¿Oaý‡_Y1'9¤Ò·¾m“boìÚ:Ÿûà×Éßcõ>èï‹•3%öy"ܬœ-NœK¶÷nâ8}×9Á¡R"–ÛGG,FŠEP*ˈs\×ù¸}±×ß7«q¹ü9îeä2}×y.VoWÿûAÕ3ѯ VLѺgvÂ[Èø7’~ÓýíÆBJŽÝß‘¤c‰ê³ yI9tŸ+òßC·œ Ñt_Lþ$Úr÷m·1Mgºo7ÓÏ¿âá9hÕ?LÔÜl ˜B»í&ƒè¢ízæT’Ãô¢æ%úî+m*Î6åûœÜúì¿Wg¿úê ½Þ’%ü×Ýâóÿ»i¤K|>NŸÄ’9؉Š:ì[˜Q÷ŠÙL¤ýŒE÷„OâúÐH×ÌC“x¢ÐÞ›q¢×óµ>ñ§™Vô‚ÎW<-øùèw¶Ìc‹y¸ZÙlcD †ÅÅdØ`4ë<$‘I ³ƒže¡°I ï¡K!Á(+j†îä(}‚cŠ)=NQøHl¸°ªcq”7ÑÖ¸¨­9ñnl~C´õüø¼é8¯ær~Õ>E1 4b"‰bì&Ò4/”ÁDVbR_}¬Gµ…ÏC´ë-N,dØ,;ê_lJÆü2|8M üܬÂ(êr#«IíbÕ…˜{˜Tê,ß`J“fˆŽL;Ìy(¼¶0¸ì˜µÇ1^e0!xÄ,úµ$ÓR !õsÙŠ‡”“‘é?Û·¾[UÍþغ´ùòXE<„ã ¡S€ü J±(HW-Œíby“ˆœ‰ÜÚì¶¾ ³ë­Øs 1Xð¿ÀµÖ’z^y›Å-d¬Ø•¥-ÔeÃŒçdÙ®TUÍ,×RŒèd€68S¥MÔBzA’-J²Zž~C̓g…ˆZIÈÕCqrÑ’—á Æ«AŸ+¶[™×3Ñ1®±9Ì<ª8÷3ø1gáZÛ/78£dÑq;„NöåS[ö˜¹@Uͯ¨ƒ5&ÒÑ8â†1†:ˆËtýÆ Óaˆ`TÁyH2ò ä`9Þ‘¬’Œþ§Iã>“‘~`³Ý¯ñãb ˆâ9;8¡ÜebÓµ7MmFÆÇv)ÐÄ‚aq_ƒ¹Ê§)ê‘Æ ýœÜK1&Ì™Y‡õÂñã4R„fqä¡H¯ØKè”0ˆ¥ˆ£~®³J¬†Á‰ûù¬Ç¾ØBtz½õQ²¬ãË £Öâ#¹M¬4{Æf &®S„[/èlK÷Ïm”ˆ¯Ð‡6 ¼ (f,{FMõ›úàÙ‹ÉðÿË®Aæ3ëq dp¤4ª 7CdÛ )M‡À‘Nõl^jKÔR j‰­p0.ê)¿å CQÈokçÖ ½s¤Hf ΡGžr«(ˆs£|ÆØÛ„o@ZŸ§ï‹•7%õa"ܬ¼uXÖD€ û¤‘aû”Á R\ÆT%0‡‘N¼…£Ëƒ“¹yÆñ“P¹,j¤*—e”qW#Çö-sV|½£\ñ°ýµ<ሠ¶wëÈ€ÓÁõ2´ç•y˯ÃÇè_¢ häM”Ž)dšÔ'“=ŒòÕpH3dÏ0Ê„‡/ÁÁóeN|*%ÂAURð™ ›õ¤¦íd]HP à5ÅyØW±Ïé»Î •âigŽv=Q’£0³ybõ‘ö3Î:~S $+)”ÉÚGʸ·‘çô]gýù‰P€GCØp\ñq"d2°œÀ¿‡FrcÄ”`Õ€®A·@Æe‹±ûIÂÓ@^O±Á'ÆgáM,Ÿ‚klƒÖAÛ­%‹4)$à‰âÈßCÀY¶*Ž1~¿IÀX~2JÝœ… 5‚£ÄÒä‰eû–I‰…P`Vô³Q6@»+KØŽ—Ä+sŽß,^^×H!ñÊÊGʸ³‘eû–IE¼Ÿ(Zä·dtd;yKö_7îvˆÚ_jÌ™¨Ÿ{Ëêe±ñ ’oõ¡T/ Ï¥~ÿJyaÅ.*—-¨ì 6P\ôÀpC8ZÆêP)Â%y‡Ŕϙb$7GÁ ¡x€‘wÔ/…D*¥®+XN³Í¤zÆ%Ã>zR½F=Ó†]4?†³†Mx¥z°PÛ§¤TÏZx~›ºRI¨aRçé{Ô½‘Òt¯Qª¢Tž“"ÕY›ò+kÊ7®}¤Œ{y¶o­|‹AÀ!-æmS–âdJIÜyR±ÅÁ;H¨Ä´…£PB\*EÅF—o"QÜšôIdëÙQŇÍ.PVÍA  ”qcv“Ùr.oDë©Æä%sG¬¼P‚d÷°P«%“á¡M’.FºP9®ÅI*ÓÄä©¢Lÿõ§W<±‹ÞTcüå¸Àİkn–<äî꙽&”¿Xt0—©„‰,Æë;ór³M^9Éï¸(9 „Þn˜ ¥ûdq¾ûQ†!wD„ê§î-—@DÓí$Ó†Ãäå¾)Çþ´C± OµSm(²œ1ìˆr³ÈÏ¡úrͺæBäÒ‚\B.öX÷g0cܪ¹;^‡'üX̳P=â¹Íý¨X_ªZíƒ L8ZÙEÁ§Wåº÷29œš|÷=u@QÚ)[:9N…°jÞ7ì#–Ù®îÆ3:µ6«)ÖCw­ÇUÛÓלó$’ñdG‚óÝ µÉAò0!]¯¹$ãJFJâ°€æk55Uz{Òg ÝI}ÜÜ×'ÇrTP”Ë ˜]´UšwJnWµ<9Wþí¸Þ-,3P‰¡¦ZMY1èS÷ý&À&Á¹Û]Õc€¾’ïÞ"Fô”DÿgÍFÚ˜ÝQõ­ÙYUB½¨K¾pc=d“˜RLÅÇQÀy²ö* æ¬,ä’~'”uRÌ2GŠX胬(òâ–$:k¿nÇû(ý0Ó̽̈WLÉ™7R ÖýŽwäbðZ>¯g‹}d7M§¶[è~‚Û?òM‚O™±¸#kìlŽ}Ýt‚ÑÌ”Š5©öWËWš¤™'@îë|³ "D†öÝL˜¤aÈkL%¥ ÅãIxS†˜®kjº Ä¥½2|±*)0ecSÍŹyÛš÷­yÓš—­ù¸¨ÿÈÅázÌ8 TÅä›â횘߰§)äæŸÕÎI™\qDz»Ûfª\Ô „{?0µ*L㳎3{2Ë?¡øä‡©ùÅ ².”á:ˆº½\ž»vbuä£ðsjÔŒZÀ[˜*zD­%û+h8(ÑÏ'#‡¾|xÚ3ìE›ãÜã±gš²Ò:þçs‡Ë±… ˜wDÅ,2$òbH‹ö*&ÉR“·¶äÉ• Ë,>Ãq±%aÉ0ë%'¦wðØø©¥>‘K Zï…[âÇ­ÁqEdºi $ú}k^5eµh{m SóiÑ\Zóz‘Ãâ=%fË {²ÛM'ã* ËsHœÁ±ónS͈¤ÅŒBçcˆ„px²ó×RÏ󾌥=j>iêÒîhý¸»c;Áö<²þl°N­Ø ²·žºÜëm)ì¸Ó.ÊÄ—åÊ u´%uHpGçU«áˆ÷ý€eÛÍç­ëQÆÁ}ýïë«.èÛùâÁP…F4ößݵÅ(a.N…3En:Iæù£S!A”3Tgé"uö1x¸lfHõèêA·º–‡Ö¼nÍׇÆ¥NÍW­ùØš»Ö¼mÍûÖ¼Yd¶lq‘8–Éâ>)B‰†És îDUâP>Šf“‚—4SpN\â†IŒð­Ñ€G¯î¢yÐÌ¡Åÿ€)©Ðb'eÛ:H.d7¥ƒó|à÷)KºžJé슒ÉÕË\!ëfOä BŽiàÅ}¢ƒc©M¬9&‚Œ…Ìã—KŽIW’Ä2‡Äq<”ÅeTÏùà±›–`f¬nntüݳ·ÀBÒ ‘0ާ|5Ÿ°uxuße6+Õf&_ Ÿç[Fªæ{aBéèæé*íÙÄ\[ª !Bïp|•¡ÑÖ±sbdg›çz’΀§ðN¸·>wµ7Yç§±„‰¤ŸÃÇì\¢#ŸÅ4ÉþÝâýÍë×$–l}…2Ýqö†S€™ߎۘcK­zUúÙ†*òQ}§À¢4HjÁZIî`w””ŸmH9BŒî×ч,å„ÐÂõ& ¸Pd²b¢“9 ?5΂a‰¾b_Qðcì ¡çÓØWÖ]ò_*Ï¢5¥Aòz>Aj¦-mq/7²Œ”—(SÊ·ÆWn;.( aHz˜LTaÛk­ÊJB¼b/w—Ó^ŸÅ0,Ý™–€(œè o„´ý§UN1Ö =Îø)Àuï>,rX†”Ðæœ~V=LôèFÐî NNô&öÌ Ka¼ìé¦Öø›yµŒ¬˜Še- èÎsŠ•±ƒV¨Üq€Rf±p¯òœ:ÒK62uyn®B§M¢ŽBî]ëq%Ù_l UÙ]:z‚˜9‹{XlÖÇ“TÏyhÍW­yÛš—­¹kÍÇÖ|^dv©û.¢vºiùèu—c˜Ž•rZÁÐ-í±öRl˜)o/©)á©ÿÙ‹®#ÚäM¹\N˜+ƒ!#»Õt¨,hô=ƒÞƒ¨añÎ,!aNÞ º¨ž§Âö ­¦ŽZá<º*˜©Ó”ša¸q¾h–³r¬ fêtN<§ŸÊªëùNîaˆ(üžÁBœ;²Sá` »® ”Ô¥ 7ªÇûúˆ®ê•.ލhS¤ Ý»)|ìg÷+“’qÁ×cÿñ4›z/Úg€»ó“7¿\4Õüëšåa2}Ò,pí_)¤!&º'‰r1(~ZÄCéÞ•ªáèÌÇùÀŽv7Ewí&æz®³ÂÄ|> stream xœX XçÖž’7\G¥Õ Ô}Ç¥UZmë†+E5 È&[Eö-9 VÙW06¢­R­´¶V»é­µVÿVë½-­­^{†~ôÞÿB—ÿ¶ýŸ>÷ùÂ’ÌÉ7ß9ç=ç}ÏÈ›~ŒL&c—¹,õ˜3Wúw²ø´LÛO'²}¬Md·«ÉaMîØ§š†‹Ã†aÕÜ=”‘Ëdñ)—…íôˆ²÷r|Öqý5Ç~ޓӂösì—„øEîòµwñŽ ð ñŽ¢o‚íÝÂvúEÅö~eQ@TÔÞçgÏŽ‰‰™å9+,ÂÿEi—ö1Qöý"ý"4~¾öÎa¡Qöë½Cüì­Geý³,,dot”_„½K˜¯_D(Ã0 —„. [¶wùŠçÈ•Q«¢WkÖÄxïóY»Ë%Îw½ß+»]ý7l tÛâ>sÖœ¹óæ?ûÌsÏ{Ù2Ì3Ì+ÌxÆ•™Àl`&2“7f2³‰™Âlf¦2[˜iŒ;3ñ`–2[™eÌLf³œ™Åx2+˜ÙŒ3ãȬdæ0«˜¹Ìjf³†™Ï<ˬc\˜õÌBÆ– gF0#žÅÄ0£™§™@Ù@Ɖƞ±a’™¯edGûMïWÑï±|¼^þo›*Å"E’BT®WT>bW²]œYÿ=ýÌ;pÊÀ„ß Êôp°×àvÛ¶Ÿ )ÊmúÏa%à Ï~z„LjG#Ù‘“G†Œ¼ËkøÎQ;G]½jtÊè®1mb¶m÷}° £E\S)wt;ñéåÚƒ‘ÚÌôX¢ïùaLzãyäH‹‚ìWÚv+À"0ÉPŽ2Ü2¹x;ù¯|Î’~Ë\^tØOI§)Ôìå\ðU‘÷ÕláC8B×Ï÷wÆ@™[﯊|I õdÂÚvŸ¤n¾f‹ 'âü+?ѽ”W?éérP‹,:}zï믾Gç«pBý‘ÛÐÎ=Xp‹ÌÈfò.5¸š}Tµxë ße¤¿ŠL%Ÿñøz²Ø¿Œ0;Ö>OX•­Ø™aŸ2Éšpá ¹Xa<>=û[2‡,˜?žŒ"£ÌÄ9¸àóoq¸@ dOFö¿Ý¯U˜UÕ'O•[à 0ï- «ôwðäá/Øvw$Yн×T¡EvD}«¼;¥{>_9ÑÂËËÜάª]v$Ì"ÉnâƒSÉTÔ¢3²h‹Ê2ô ))¬S¥’„wŸk`^¹ÛÛÍAø¦ä£ö‹ïÜxXpnön$Ë ©ùP\ jU4Ud‹'šÄÑfÙcš-#õ_%Óygܤ¬‹n‹x8÷Ãg8 …Y÷ÈÓ®1A»TçY²ä—ìõäý>5Îb üLGé à®tº’1dâ2µjuu{0½å#ŠŽ.š¯ 8BKóÕük¾œXÜ„Sh÷ †ÌÀ!ÄUE\Í‹]8ýÞ<îÞàS± ¤‚{€WÀöU{ægÛ­¡8hµ`éiß1èD£¸kxo¥†Lݽ˜,Ž8bk§ò럗T­Øè­|9Å{ºàŠ¥è¨Ä™`ZSBx®UŠ)ŠžÒãò=ùà xTöþ©Ž?G7†²ÿ]ý¤¤£Eu,èÈàŠ  ”–újZê¬_ª”}Oëap«ýʼn{œÙ3,7ö@z5ØRDçU>Áò1OHi~´ôÖ®rŒ¹åÔsK† }êq¾IvŒæÝGb[5žç,½LÜÈ€ÌÞGc몚+ÒËã S~-Tw­ÅÏIµ‹%sɼDîˆ\Ì{Ÿmm«TíõwÂ9eUTW¥Â~Õ:=”B Gdù™ bƒ¶ù˜N‰LÓ7šVŠó)0î#PòG»ÂCùyŸ…u£© ¤9SC˜5FU™éTyhµªùS§à`EëχÀæ>›Xt$)•NNÚŸž¾ìÔì›4Ѧ٠G¬’dŸæ`®ô¹yª‡¨@9yZá­VÖ®ÒÖÚHû¤ÕjE_!ªƒžü«gΗ·ÒkCŒX½6FîV{z¥ÁJØ}f5¥¿p­q®—pÒãiXWgOYË΢ܦ [`7åo+[¼$Õñ2‰W,²j)kiâÞX| ï eÚ¬ÿ[úvHÌÎÎÐeKÅqŒÄF©8"iÃh ]ûŠã]z&f&íÍL²Óìr^YÉFƒ¾±š9SdUHp¤&ЫÍûÍÛ¯_o«¤Y̦ ²3Õ6+q€\ Àþ|Q2¤ÄëtI™Bú¾½«fSòtœqªS£qtn§6S§ÓiuªììĈà¼ÅÕU5j¿MXãf⼂J–Œýj6NÆ9MÈåÒ–x¾/N“ÛÅÇÒMqOÒÅWS)È4´1Ò¨\UB´Nž«ÑÅ¥VÖnöªŠOú_+E$2'ô€NÕœxAÏb]Ï“)e`WÆ‚ƒ…ØØÝoŒ^ ±²ÞðŽÑõê­-Rìzb!¬R!UCk'Ìâ@*ëD'¹¸NœÆç‚Œ\E ìÈ¿”ÉäeE«ÒøUuÊ»¯$M=lj2=Aº]L>T â@enSx+Ó¢ÝÈpà•¿…žQ£Ô…J§¯×î`£+v68Óˆ>3i±'ã¿}í.´W˜N¨ÜYtþµóŠ,‘õÜç½×{$R¦&CG¼Kådu³ªéb§±Z -Ö´“ëe+ÛÅŒv9ZºŸãS uúú¥ðÿ*ª&VLëù{a’^wìjÁX£?e¡Z¯?| ÜP©/§ì*•ïbм0XQ½È«aëiìj³²ô:ˆæzž£ð.È0£[¾hΩ䢆ó5F¨kL¿±½]åÝêvhƒ$Ìž›H†ûGŽ8§ŸzRV’ñºìÄ UøšÕOj1Q‡O_T5ØZô'ªÌG_­¶PâË'ƒô[iÞMjîjîÕkÐAÞ]ƒç1€8‰DH2ŽL&þÄí‰î¥Ëž2„¿@zÈU~ ¬kò{Ãó£ÌPåúVΖkmïX×IeÚ›ê†Ç7¹P‚›’¼p«sDà&õb*4ñëÞ¦‡‘t¼Q<¾'iÂI(-dà#åãwKM…Ö($¤¤Æ†Ûu4öpµ¹¤­Å¿u¹#‘ûN˜¸D}üø'š0Ÿî^ÒŒVyŒíÔªï.ñø¢_øûÝGÈ̸KœT=3¬]Dù{€O‰]<Χ•«a™­"*ì š°“l?ŠsÜ8ЉÇdM·1ò‰ñ¶GáþLøE(‘à…ß?jN*P5”Ö(3dgÒÙ0‘Óï;|¸¸¢ª6ö¨·ÚG«|j}ó=hR„M/®.ði TÅí‹  ¤¨®Ù]™á9×+«p>çõ_lhˆ(Êòîâà>íù‚LW+oQêz þ·¬BzºøÅ-–ä-È'ýzç<«þBOIåÈñ.šxþ}QAaþ{’ ׯPÕn}š-ªÍNËÊÈ¢"Œ¬!“¢šý=ΤÈÖÃ{¿àì)¶´¨äPu9&ŽcrÓ(O踔Ø/¨ÙZûÔôC«UÅC $ë÷çdå$s½¹»ÎYòêËz³zoöÁ¯ˆýqñoí´þÈ»ïÒyà{žØLòZ/Äß]Y²¦ƒ»‹Æ“ûËO’dŸžûxuôâ?©–¿`ÂÚŽµÑ¥Vu´È~lÿÍç–Œw$­¶•ªÝT„-…Ⱦ@ûu ÍJU‘E=ÉJ1Xñ•E¤~ ÓúÌî°-„!ãzâL þ!͆Si ‚Ñg€©?qƸi z?×XŠKEï1¸¬ÇÛßûi<[A•Ì@\þ@V„r¼‚Ëù¤c6+e€Öœ Ç}öÖ•ïž`Sð‰Þº¢œ@£ci«”á~TÈñÛn–oÐB°d-‘KO÷©+”¯B‡ñä!®§š¨Ôl«áŸÐNד¾”“q¬´ ÀwÐîœEvíÐGÊEQ%œ­IwMHIK_ ”.f+›~ù·’B”ví|ÍáûhsWL[;c‹%¡¦É\uº5¸*ø€pòtÇ*à´½¼lñ–e>j !1)©{±vqâBé–I'O €Ã_½ƒ#[Ͳ›Ø]$¦,Æ;t8…ñž;À0šÕ9Ç<ñ™]/|QÿÖeø„»±ìm¢"6N®Ïo=¸áÕŠÓ5)Ǽr…Ö–k`î8‡„dm§cAx`¸ÖO›¤‹Ñei3²!²¸8#TZÃIe€ôÄ?–û œÃwY¦‰K”uº±ZHHHWÏ+ 5'J"“føoi¯=ßö ÔiTó‰a<ù€€ÕËpÎ4}‡Š"º)sä|–XÊK«§¤] oÀÕ–¦Šó§èˆvŠ’tZÈL¶ÇoKv£ô,ô*K7d²K‚”8i£M*¹²À /ÈŠŠÍmwi”aæ¢e0ž Ù½®ø@UÇ¡“ÕæðúÝ!{b½æ²⬮{8m~NÆíòL R«è°b.¡ØjÆù7q¾Ä÷yíâ=.n;RÓt:‘Ô¢cñ÷wÐîÝ=ÜvîÝãë_çßÞP^’—'`꨿jÚ$¦×qÀ³¬yô§ƒ=.ÅñT¬]>òzuë¹W¨’0g×FøeŇÁ^ο>êèaSYÛ›»Þz† #‹“âU@J0Ç|s“J?ûi×ÉÀ˜µðÜ.eäM~-D¼ž•·ß· ŸÃ!ç;¿…&OÆ ÖBÇ_ŠHä~_E¤Ãæ*‹Fˆ~si¥¤â¬!Z!†ó†›¦ËOåçéõp€ËO*ÈØ?q±[mÚt±­ÞtÂaö MHK“BôWM{[&þtö#R.=¤D_é%ïž,nâ³È„‡,“œ,4CL£œ’ áÜîúÈc¦#5Ív\šôºÄàÍ‚wÛ ³Qid°jÒ¯ õ?Z4þˆ¾ze[gÔ¨È?º.ÎbêŸÊ?dïÝ8v«ì¨6¶^IMÐ@hòöU$s´_ lTêÏ0ÿ ¥åP.endstream endobj 521 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 516 >> stream xœOßKSqý~÷ãrÃ~àžšãK{óÊšˆT¤Etµ ân»l7¼»ãîæ²°6+P¿s„6˜P¶W!ˆ (¼ “ ||ë!ð/ˆÏݾšãÀᜇs8#‡ aŒ¹HôZìò‰ºhÇ–×fõÙé\‹oÞtR·º+Ö«s Ÿõ4(gãÇÏ*«Õˆ–›Õ•tÆ qaHHvh€ „á¹$arU•u%)eIT22²*3MD-©ÈÆl72’1ŒÜp¡PJj>¨ééÑ“–)(F†Ü’ó²>#§È¸–5È I•Iwh°ËMÍ=4dDµ”¬g'3²!Å„Íæ@x SdïœCTÁ½ÖBOëúÜg¨@/T>áßàß7¡nîƒßÞâáÈ1ÖaöžÕ™— ³;l |l6:ðÁ LùÚ¶çèøù‹ôcæýG?–oìþy»Gwéß'з±ŠŸÞ£ ‰Û©»céÊä%xD…Õ7E37¡®˜\Os‡‚ë`ý\w?Á…aÔ´io›Cžã®Äî;M®üfùûÚëêÊ]£¼ååj´AWŸ×ŠËñò#Þ䎣ížæWÅ)rKùÅØÓâü|œNS¾M¸ô }Y-Õ6¿ò"gAÉ#&ÚhKdqsËB‰Î ŸËZwŸBè?tÚ£endstream endobj 522 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1853 >> stream xœMTkp×Ö"#. 6FÁnÉ®R7…2@R†@SH…  Pá1–elÙ’eYOËòCÒZ{VO[[–%[Û²‰ cl¸ ÐÌÐ IB†´0i“´ÎPg¦¹K×ÓéšáGwwîÞ;sï¹ßw¾ïBT°@DÚ!—ïysã†ùùϸܪÜsbàUÿYøèàBX"†%ÁU‹>ZŽ£Ë°s)¶<#ZDMíÁpw_r‡FkÖVUéeÇ6lÚP. e·lÙü¢ìå ¶ÈÞ¨UêN—+êdr…¾JY«Ð µì ¦ü´Ro~|äµ*½^»õ¥—ŒFãzEmÃzNµm>Ê‹2ãi}•쀲A©3(+d»4uzÙ[ŠZ¥ì ÜõOþ;4µÚF½R'“k*”ººSJ½Bø„Ûô Ói‘H´x¹òÀ³K–-/‰ÖŠŽŠv‹^E †‚%<¢§„ˆ DÃÄbnÁ¿Ä邚…Ï.ôJÎpE\'Lq"89÷_©¯—ež6 =€’’$°¬ßðy»!€"­»®Þ :²´Œ4 aµpeI©°ô赘¡Îƒ8•”tAŠI0|éÜÇÅ´•aLŒÝm†f@‰ÑuÍaW8ñ@šÊB–Í d™Áù@ȸӀB Š[ÀB$¨f›YTÄ}ÍŸÈã—ó\qžøgÅÜç\¡ÔxQ¿µ_]f?¦uõ¥öwMÛZN•¸Õ îGƒ¥Ð~æÊÀïs_~F…2Þ ô¢ëo¼óü~•ÑÖ]‘ D}ä(ÿ.$†À o©wZ©ŠÕ†pñ’‡Öé3¾Ì©á—¾¾w—@Dã1FF¢1>Ê×…Œ•U5'_S}…áâ»ø™YÄÝðr7§°.O|„ ñ\(æÞàž—âÅ’¾øz|dïñ B]%ÑHüÐ ]ÁnrŠjSÖôx.öý²!ù±ƒ¦ƒU¤¾ÒYa’¡ŸKLBͽ£¾“lŸÛænkÙ粕¸]Öã5`‚v¯Ã›Žôe` 7Ät§Ô*å¡ë¯Þ¹úy´“œøÃ^áíEEæ,yÓÎåqnj9w¯Y¹ÂÄýæ!õu³Âð\A‹oÿ¯2ôÚ²2Êf;¡^ ˆGÜÓ(Å»§Gþ²küZ’øXXs†’} “¤æ¥ŸWÞì.±0F°B=¸vÛ”FnÖš|l2i6gàAÇè^Ðï÷Ä€Eqh &–5·ñГ¸P2ô‰ãu[›Ê¡£ZtXQ)þQûÕ=ŒÅÍà´t¸šh²¹\¥TÒšÂWzØXôå‰xû  Î&÷¦Îe¼*‰÷æ¹5 âÒ@&<A”´¨ËšØ;H¾dn¶‚è’šŒ=Ù— v“È(~.˜·NBT{)ps&uüÛŒ |“ùôùè øQw´µÐàr‘n7¸:ã/õÆù²°ûF{}±Ðy*3ëï³%Ðù'·«ì§ZÈ]ü0m¶XÌM%5ÚÚ6- ÝÎËÃÙ@Ê§Š­æ›Ä›òøn>•Ÿ÷—Â‹Ä þU)ãîhÍ{8žd€ôÆnbë¹ðë»u÷á㸯Ã+?QŸ­NSùáñ[p=O¯ãKù5¼˜AEâ™Ò‹l€è“л Ñx}Ô™÷¤ÕÁK¨f+RÜ„÷z'¡o’êlòÁªz¾P]¦>z´z õ¿úà›„?é Q=7FðÊÈÅLàÂYü4 ±~s…ºá§T÷O!õÜ÷|ëbîÏxT(^oÒè»m©†7aûNÒvåÌ!¨„:ƒA¥+o>®ÇÜÂ>ðûIÞ=3;%Æ6üµÔëˆC/\þbælí¤e¿‚™ñC¬¢U´†bsðx:…ˆ^”0²L5ì7; uü²JùFØÇ2ʬé';uëA [þX~ÀU§Û'š‚t'íoƒvÔáÖÖ9²©¤Ãçfi@6§ÝÙp¿áÊ—>›š¨M;©fÿº]מþâªÈÛ ˜F7î|eYpûÉË–ÈÊý f.ȡڤ†æã”à†vi¢+.4·x™˜“aX¦ƒnmQB«Ð¬ÐÖƒ6óié`¨_ 7òd C3LkK%Ø… `îFEäSfÍ’Å"ÑÿÊòendstream endobj 523 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2150 >> stream xœ•yTSWÇó&ê¡¶NªÍ‹Ó§Šà2ŽK«Žu«ÕSG\pŒ ’˜…DIÈò~yYID¡Õ"îR\2:h«íÔRÏØqi=.gìÌésÞêÌEN·ç¼sß}÷ÜíóýÝïï>J˜  (J¼h嚬ŒôÁÏ üXŠ—À¿*T?Ë|òí@Ã0!„‰ÁqIÚ—Ñ­—Pï‹è½‘‚(j{µ¿awÇÑs?]¤ÑšuÊÂ"ƒ,'}fzyeÈ2fÏž5Y6-=}¶la‰B§Ì“«e+å†"E‰Ü@*ÙMžRa0?Ÿ2¯È`ÐΙ:Õd2¥ÉKôi]ᛃ«L–™”†"Ùz…®T‘/[¢Qd«ä% ÙpÚPµHS¢5:ÙJM¾B§–kµ:M™b›Q®R¨% µA©.Pª•³NQ R”é[ô £Õè JZ®ÒÉó™ôÊ¥J®#—­\%  ¶&¤NËxyª6E ˜$HL´ t‚A®`“ b) <Gy)å¼D")H<¢¾Hp%¼ŸpY¸YèJ›X?læ°:ÑtQL¼@¼Wü_Þ•Œ¢삆°E¾Ï‚y´ºqÛQ”Ú³3àà¶u;ò+¤NË–¹,î2–ÚlˆvDƒç¼-L#ö w¿BeÞ pÀÑÁpV¨w”—IYwÃiÍ›¤šPòk:y\âY÷ÆÄ¨'Ko y —´áÑÇðÖ?cºesÄ™ÞÔtíóÓçÿú%Ò PÊŽßb#à$Ðz¶yµ‹O}è#׎Å5W¥Éj·0z¯»Á½ÛÕ ûÉt$<†âíh¤'èá Dû؈ÝɲÆ2é,ÂÇñ¿3KwÆÜU„dj4¬üfù7®zGp.¿\`¹ÑUZ5Ë„Sã5s±Òe@WBAÈsøÝ$vôã&ª:Ë™=•­¬.ÂôZ¬÷$GÓö¡_ÑÉ}D¡ä>….ðŸIšÖ·,8Ž_¼„ßÜ·²or}©‡­…zhŽFBõuO¤ç/¨áj‹ðp±.ô"óì:-tC 옸I^Y%Õêÿ‹çá_ãÑ*,ɼ©ºž$ëÐ/‹iïÖÄX•P™@­¯¶²VÖ¢Á»¦àm6m«¨2› òýÛZ>rè@o/ÍÒ«úLû>êEãO40£åhÒ®ÿâ&TÞMÝä‘p`"*—46A,f†ræ».Q¹L¦&hd’Ñ~”õ˜úê±e"¯¤]ߪVëõju«¾½½µµ]šÌ»°·™/hå•1 ©®ÑAþ©º÷~„¨ ßãóA€ŽØÀ21}ÃBVŠËÄÅy[‹Ô ·‘u°N'Ô@uÂìeç©ÂÈF¯…È*¤ñF1È¡ø”âPÉeË! #!ˆ„É@óŽocge¯«–Øå ÄpÂÖXÜYÚ¬kB7v<çi‚Lž¬!<û…húÀ&I4™L`6KŸÍ›Á‹¯}^ÔÌ+›‡ÐU8IyÛV`Ê>„F["Pû̓žk)"臠³û½í]\‹gH<‡ZîË>héqE†˜úèÌîÊëXVmµ€å¹@æ’³§¸nƒ×:¤ ç†Ê;‹›KÛ«÷Ùf saõà‘Ô6ó+ ùDÞ$äSQ‡ç ìª¨›³AjuµÕbçÜ ƒrp.&Åbq»Ážj [Ã!Ž‹F¥(›ƒ+Û«8·Óê0þ_‹üãjÿ&y -¯›Øõ¹c ùã?3ì}îFf¯Rrøjÿ·hÐϾ–1iÙœé«7i.etm†ŽU×é%›%[-œ€IÿøµîþóÊßïœ?./mföhw«úæ ú¿ÚÒºy'‘ßMò•ð£|Ü" ðX<OÃ3‘KÐ jù‰Ê˜ˆô T ‡Dä™ÊààÓå’²œoúq4ÙËÒÎ:L€Ÿ%&è”8a»Ûó`Ýß”§«µ‡-­g¯ ‘h8¡".ØËzÜœ« · q²>‹ÎëÛÑRбêL¦_Gâ&\I8/b Ϩ~”üa+Ó½ªÞøªoÝ9LjBWËÑøú“D¿v‰‡ýÛÜÇ÷þÿúæõ3o¬Ÿ —·m‰”“`ô?Ë|žßŸ4“$yúP‚ßâSí ƒWy* °Ø&/J©¬&MíðÖõ¡ˆ4à߉„PÖw‹S‚Ûý|'xÁz~ã“)ÁúÁ?¶…«lvÇvÛ`. Ô8Jþ>Ð×’–š°Ía³—¿¾”ðű>¸§6÷lîÍ=û qu%Üc’¥/$ΊHþ¦¦Žendstream endobj 524 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2673 >> stream xœ¥VyPSwO ¦Ïji­ÍìºïEÛe{8ÝîZ{¸Z@ñÉ $„$ä~É77ä„Á³U¨GÕ®Õ¶ÖíµeìhÛîNû‹}vgŸÇÎn;í_;oæÍ»~ï}¾Ÿïçûù<6+m‹ÍfsWegÿyéí£¬ÔoØ©¹ÓR¿åÈèß7‹¦Ã,ÌJóÎyëa40ÙD ±¸lv£ÖŠv®’Ô*¥¢ò ’_¸øÙÅ%Ìn ɲeÏ/à?½xñ2þJ±P**Ôð³d…P, ™“jþI‰HH*ï,y¡‚$k—/ZÔÐаP –-”HË_¼ý–üYÁÏÊ„Òza)ÿUI Éψ…ü;XÞÙ¯’ˆkå¤PÊÏ–” ¥5µ))T—ŠÊʘ¯‘…ˆÅbÍ®©•‘ò²rQåÆªjñŠ?=œÁbå²Ö³6²6±6³^c­f­a­e=Ëz•ÍÊa=À¶±mg=ÌðÂJcM°›¦±§É9s9ÇÓ Ó®Os3¸ßÜ'À¤XrÆ 3Úï?”¢Òofè)"ÁNÍ9ï¾ÈA…h)Ïö ;ác`%“‡޽Ø`g}áFÍUäšJ0Ë;(ÙÿÕâ}§Qk5ê(\¶LP*LeðÅb-]¾"<<†îƒ ìƒ-ƒ«–oÉÖàÆãE»·B9HIUµ¬P· ¬˜Þki Ú]½^\„NÊ Gf=ê C4¤mxZ½‘ }h$ûˆD ùèw_¯=»"· X\CÔ_X º{xÉÍ[ú¼Á£‘ÉÀz¼¤Lg‘Y ÄEÏÝŽpdx|l°#Ñüer¾xQ·© ¨°×T—½‡ßî$ÒSZ]bìzìÃáÍ=…þpš“ú}j´Ô+AŠ)š®p¿üôšžlúׂ[C<¦l§ÞÐí1Nê` Ô)*%Š2Y¾M2xÍ%ÝwÔáÖWëÕªŠµ×~^BŽN=-óâ­¥^Å"íç¾ÞÛ\ÆÓSs˜æ?”D/u°/0ͯKÍç}Å~4ÐH,æ¢ù [n°gvª|"cíŽf¼šNŸþW¡…:íÄ7—6š¤ú Pgæ½ùÝ)4/à×;LÍ6K“o(Øör`õÚP2êô;ƒLáô]Á¡û/rR3›gV®Z X~ãàø‰=S]„¯ÇÙ ìxQßöÇ‹éyÚ»Œ{|N¼÷êXr`áVIêIM!˜§ß åØï×øàÀI· o+WÂAˆíó†;Co óX¼Z­Õ\gÂ5Û”yÅ€‘úh¢½uÀÓCxzÂ']‘ŽKžxà x°žV-×ËŒ 5^zg"|%U•Dó¯„ìã7ÐG78©9 E_p;þCÑÓܶ)ߤoÜÕîô‡A‹Ãah£‚³ÕD™©F½V QwíŠ÷ì9XÐ] z]µ¨ ד`­¥ùØŸ¸ Ú{L^஺•¡Èjzn3dRPŠÀ?Œ‚‹)CòÚR(Ø/9rjôLO<C³>Fþ%z9‘â%Ø—.sRÆÔtÓ1ÏíUŠ ©TÖ[pCX¼?0z&ý+:“΢Y6½`¤gW’/ikJ+3åB2›Ì.sw|ÐŽu+ƒõÒꆒ¼Ë–“hþ…K§Âx*à%ò†z…Þ(3L–Ô$OŽö vü(±{ò`r`ïDVê J==ýp§Íˆw}å|ò]:z3×¥j#ëjdby›*Ö»«»§³nqx›hÜÜdÖBcfþpù›_þØTÈÅÅÌ0kµîx·7ì'|q_Üïÿ8£5ègp)Ù³õIÍ×üW&‰ëâ}€…|f‰Î¦Ö‰Ñ­dxJ}~NÓuD2Ò[Âà‰6Eeâ:I"¬èîëMôâ´ð‡çxM9ùkr@M.«½?ìŠCë2jj¥•Â!éä)4mÍêçÐ÷΀£™Njö®Ÿ—}3Ýa/ÞwþèÑ#€uÔ•jŠÙÿ‚dê»}ìÔÖÔ7¼ÖA»ƒ±ŽKÜ*·IM;mfÂÚlÓ3v¨i¥<~—'êÄãhÝô”ø­Ï¹R°‚±>‡^™a5S0a¯©Åïp·{ðIôÌ®ZØ^nŸÝf , 6 AgÜêÒ ©æG!³J hÚãç'þÆMÀ»T°–Û.Ø µ28êˆ*§ÅApÙ]ÎÛª:¢K ýSá޳Ñ䥉4~sÏîpe¹-­ZK5e%ñ ¹Uge¦:C`ÒS`5+qzþ­s–&&&l™!ut ewÈ…ûF{¿õ7½£€<0ƒÙª£4V5˜±uc;ßííñî¡¶“ÌÞm¾IiÁ5…u«Û¬3uŃö€;FØ]®6ðÃ'E¶z‡ºÁãÇÆ‡1ÐT‹n“ Á†ÉÛ›ºâ}]#²Ámë·ååáëó¤Í*#–ŽÞÕ%nÎg3fþqAx–¡Œ2üL-Ý2Z-0µd­:²?6ÐåÇ#Éð pcÊ«ÑSfn¥ÌJª¹i½BP˜Ìë¾çußÿñ®×Ý\þ“puú<ÝŸÃ<;–èM¶0 êo—™È愱®qµ©¶)7ÃÜh3ý4õbW3~9¢ïSº:ÊŠŸè¥á/Fô«yåÙ;pÃGk#[`;ä¨6®2ž,HBHëEL\çÿßqÑ›;ÑJÄa£Üå†y°F—m¡¬V¦RC‹Éøô¯hÆÙXQEƒ¤V• u‡CvÆ'êûRK§¯]îe~6tù?æ¤ÔèKžú˜ðÄbX¹EÅYÏË>DÏD >½:rí/ø¹©Ãèqø;†žËúc ·ÓTË"šÎÝÝ»zƒT¬ÄŽï;{.È ãÔ™Whl£v³z+AÛè+<:Ít½cï®o–zOœ¾t°Ï×¾òâ+´^ÄŒ³™‘³èl‚=öÚÏŠ,¥å¡ÙW–ÒOЋè~ZöT’žñ5ÊBKP7jÄéKôÞA´ã4í4`'¯Ø \®Í'ô"^!½}ÍÉl“é£oG?ö2ï/¿íXÛ¾Òí>ÕÁî>ÑñùÕþäi*B‡xCê!èlà, ömQC5hJ y§> ˜Ø{á½=]d/t6<é`¨hl‹„°z)3*!W;8ívp1Òo5zŒrØ¡W¸íVœN«yu¼Ûâ¢a9?§,‹ÑÁâk•»µõ8ÜØ­ß×äµ´é@Í8RSSe(vt—à:¯Ín¬™ÒYTgª&μ} bŒjC„&¤qoèx¦MLÕZÕ^ß IúðÓq ‘h„§c œÉ9 h=X›Ëˆƒ×¦˜´ÕtŒ§gî—‚‚ùÿR¹™K]îóÄ.h±…(,¿?íùŽY3X¬¯æendstream endobj 525 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3936 >> stream xœ­W T×¶­¶¥«DD1©ÆTáˆÉ3ŠÏˆÁ8FFClyj¡™º9Ð 2OÝ€M6ˆ#“‰†¨1ê‹Ä)Ѩ!1&j~òÔÓäúÖÿˆ?YoýÿßzkýU½ju­{ëÜ{÷>gŸ]fô(F"‘˜-_ÿþ¢¡?¯™^–˜¦Œ2½"¢|8˜fR°]0eâú‰Øo…YãÑs#•Hâs–‡GÄE*m·;,pð¡·ù¶óœÚÛ::88Ù¾êäãf»ÞKèꥤ ÛÍá>A~ʸáW–*•‹çÍ‹ë57<2`éP{ÛØ e íû~Q~‘1~¾¶+ÃÔ¶¼Býl‡ö9wè¶<<4"Zéi»>Ü×/2Œa˜×Â\Â#"WF)£c½¼ã||ýüƒ¡³^w˜ïøÆ_¼¹p‘“Ç[Iv ó3ÙÈlb633™-ÌVÆ•ÙÆ¸0Ëwæf³’YŬfÖ0k™õÌÆœ±`¬˜‰Ì Ì‹ ϼÄLb¬f2“ÄL23†™IácF3‰Ì‰»ä樷G”n“VJ]g6ݬ\6K–É2¬7{–+óâ˜à1s¹yûXéØä±ç,–Xœ÷Ò¸NËõ–‡Æ;ïgÂô ºL*KÓ]0š&$8æ*†^•šâñÿ_ï4;åQÉBöO2òjŠY0{q_†»H*XdxWfkÚ àWu[L7²ï&C»ˆkØÇ_8s¦|Ç:Äýßs-3Àˆg Øl”à¬ÛøÍi× 3\Ã^ËMñŸU±þꔥBt°É^†ÂÃoüzé bU&¢¤öÜçp‘˜ù™,WrÇ ¶9· C@Qö¨}éÆUï-%2‘HÈ/W4‹¨EOöÁé·–,^½âUÑÒdHm2M5H°}@jRaV3!ÖÄzaˆ±z: _DþÉC´H2ÙÂo/}tKäQÕ è†CðiÓq}Ë1m'|Ç#kë½r¶‚ÈÕ[½"|<â<£¨W#¾n0Mi’ ô*6 H±‚,àG`rb;·õ¤_ÀQéZV¯ýLÆùnJuÛ&žeɬ!À¿Èßã%>óû_@t6ÕñµGº[Ïwíü›ô¬ìòE‹ååÝ!br%ä@5Ý‚#%–i£Ë÷£”.¿wñp¥ ™Ÿr÷d¥¦ƒ’SÔ%jët -!ϵžî›c„ìÇ22í û°æc¨ƒ>È…óÃƲ.ê⃔Ã5”Ã6#?(ÁWï¡g“ÔôŸƒKøg—ƒkd#4–?§Qv[“  ú¡}8F;ÊZDÌü}X¢X 6¡V!{39d–0se#„ÚÈp!T¯«$“¸&™¥iaªÁ4s¿¤¥3z¥h2-â+ ()S ‚:;-MÙ †=y ÅaÅÀ[…ó‡´†iTâ‘ÐÚ¬ Éi×aç»S>ïµ°ë'“„¬Òìüdà }—H&° Zº7'§ºJÈÏ/.ÍÏo÷îTë‡Xjëÿ¼+ìodl˜ž»¹( Ûup„k¬9ö#ŽÎw ÏrÒ TÀU@A5M±ù4ÅÆq‘V‚£®â”&)n0Mãq–‘ÌÂu Y¶ƒ·ý\þѳdÌwqŽ|zE8¥ØÊ®Tøû­†;Í zØñmÏëïš\øç¼¸° ÜÖ-[u¼[À[,±bì*¨E2›]sñ/÷^.ÌrËpV‘™‘]•^pBÄǬåà¾Ti’Q2h‡·øÂÚʶ¾Îȫ԰B B4”™`¶M]¼â YµGaOr­g >³4g£?S'Y_•+¤B4xCèÈg 7³Úuk;,ÉÎË*¦sëA»Cå»h´m62·вŠÃq2yl½w·&­*!¯8¿ô 6[?!ÍùIy)•`SyEyÅÜPµ0²ÞxOo´Ýİ«ý4ÇaÿоÛaÑÛ!kBuqzCµ¶¾nwet¾Ðº¿( §Nù:‰ v“jµjEØ~ñ› ˜[ð;/õ·=R#äûéýÚ€+º÷½ø±b ë½;!Æ:Šç~¶ÓN7Ï–®ÏÏ^D‡üßi è7RHÍC…4¸–©Ña6ž}ßÄ<[ÔéwlžôĈå÷qñ¢æ]ª!·¼ª¡µS×N5ã°BZQ. „w¶xlO †ÁgÿÎÃÉÕ¿ïi²Ã`úÂ(ÑÝ‘šÞ£dí?ÝZd"+’åYàúÎuY ´';#3Ù–dZË3Êi©æÙÔ5åÔP®QöÀ³õ4>©çž±þªd{!0XvTsÚéuŽcÈÚ«JZ‡nâÏ%'£òG)¶à¾¢ü˜±¢ììé¾á{ÇμF%Ôb‰ƒ£ûáŒ2]Sù¡>€d¡¡ÿÂþ´6»–,œîâLÌÉ8‘L$/%§P'ice ¸ÊL!SŦ¼kOº3$P)^)®‘K<ôë'zÉ—¿ ÷ߥ¸ïò7º7M#Vïø»nY¦=(Ü_k< ¬ ‰÷±ÿe=ÊÐæ‡{?ßZsõÕñ†¡ï"|Å}5ÿôtÛÅ›œý÷'è›´5 ­!eÑ9±¯iª€Ó_MŸ±"Ì+1A U(Õ²ve§gS¡L,„Ja@œd4yP/_‘š„Á—y-ì‹¡¹“˜*ËÏ|Ì‚±eEZPåˆ=M¯\¸=Œž’]ª*no=1Ne—™Ìøgf¤€>ÙãG¸Ò€üí­ä)Uï{R´5õñ¥YGRQ?huõÛòâ M¦Z ™i¢ïnyòVʬ{¹¢$5_M=(—)q"é`©‡ªØ§ÉÛ—/””ê¹ § ^^¸«2 W¾àŸ½5ÜsW¨ÂÖ»G•ç5Ù{i÷ç 5UM­a¥±q!©;æ_w@­ž<À È-ü•˜°=!ÈOÞ£ÉÆðõ½#zIÛÌ»/E¿ááVAÿÁ3Ý=GÏQéPÕz¨³‚ … ­¯«j(>ô©Ç‰ùD¤­Íš(HN\ý ë£Òãí‘ÃÍÇà.‡“ìîéòrw¥€<¹Â»Bpënƒ²]}qz¿¼Öݸ3°ZÐùÓÖ·^ž±;å#Ÿ<†©ï&E 7Q‡ 1=á ‹)Ô5)E‚"'2×-/»PUÁ)dA$À¬I–[^|©l_qþ*šÊfȈ}q„%6© ïì„ö¡‹œQ‡æ'ίÑ8hN|?é–âmüªþb7\ç~œÝ;wê—9þ¥AûÄʘ<õY_2aK„ læÈ(”®C Žtëɹ c •B|Ev΂^ŽÌ»Ï‡UF5@ wîÒ‘/®æºb“‡ûÆ0Áy=Ÿ§FÙŠÊ”Š´Bà=néâÏܼrªïÒaÕhlzp“~ÞѽÜÇüŸ¤¦)ØÅá¼6Ÿiš"„¶<ЏFeeT\XŠßªSÞ÷ð| §`0–öê b>u™DøsÐì‹ãí=u™¼Š—C˜.ºUÙJ¦‡6úcõG÷<@?5/@ÃM¦Î=ç-ˆå–ì°wڄɨÃ1ïñØ*Ū¡®2LÖF¡å#´´ÓÖšQ¡Äq¸¸CÒ7è& Ç;|¹–jdìÿ1F¶;Šj¢ÊÅÁq$/¯£#±C#V²Ý±t¤ŽŽ -ré‘dKMNƒoðÞ H¡n3¦(ª4¢4®PIó86fëFí.ë£íMP µ K­KªOªJ«…àÕõöqt‚_i#¸C4ü¾(ÉËÎI*É+ÈáÀy€Gq,¾ÜÓQVš“ù\~VAjÂÛÒÒ),Ä6œ¬bDyŸ¬Æ)¯s–‚ùè…Z‹1 ó_…fÿendstream endobj 526 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1561 >> stream xœM”{PSWÇorIréRY¬w«µ½ÉZe­¥¼T¶Å­.e‘®”–ªDJHLŠ1<2†üb(ÊÃu bÈÆ\S¶ŒVÅ J­Îb[Ñ©E[ÚJ}M_¿knÐvÎÌoÎ93çw¾ßÏ÷ÌPBJ ˆ2sV¥LNbù™þY!ÿ ÄÉ_y`A Q»ž¯›Šõ1¨ŽÆu¤h ÊäÈÔh«t¥ªƒìÝÄ…‰Åá’$KJOO“%'&¦Ë–ª•ºÒby¹,Gn(Qªå†ð¢L–§).Uªy¥Ä`Ð.JHزeK¼\­×èT“]âd[J %²UJ½RW©TÈ–kÊ ²•rµR6©3~²djÔÚ ƒR'ËÑ(”ºrŠ¢¢^HLJž¿`aJjZú\Šz‚Š¡¦ROQÓ(–úõ45šA=CERO† SÔߨÃÔ¯µà¡0_ˆ´¾Q%’ˆrù†)|qz~Ís °{„Æ_ÐÉâÙÉ[kÌõ‡ÝeäÆ3¾#s˜”,%ó‰(ÎTm·ƒ…©wšÛ\hÁ$üž›Âceà0 œÀS4 GØË€^b#6 Þe™@+ÿøèàøç{ºá(\¨h_¼÷mÇ2È€lˆÝ–§YY½˜ðâݡްVï ɃhÖo5—•=TÀ($^¸ƒ>æáNÉF¨žÍ)ħG¡?8Ê||5ðéè•¢%ië5&ná_ÙVË/¹&Oõi5¬b^IXŸ¿ð£±±ký§ÝðݾàcÂbîa×4Ÿ‡YX¼c‰*W§(\ý* ß©ñv5·Ã~Æ[Õ®VoÝZ¶è3õMŒG)ÊP‰VBß"ÓK˜2}‰O~XÅõ}¸ù2Ü„cžCæe³9 =dôhŽØ?€8 ¡`¯+èê › dqqÒ›/Ï—þß8u„æg‘J–¿LÂdÀj@ãW¸#ÆÀál„÷˜&ëîš*b!Iä{2;Hòþ¶ÆÝMï54‚ƒ›Â=‘ꎊ¤¨ÿ…c%nendstream endobj 527 0 obj << /Filter /FlateDecode /Length 7760 >> stream xœÍ=ko\ÇußÙ¢¿—­¹½óº3£7qb4@  §V¢Dɦ´2)ÚVòç{sïœ3;³\‰2`胆wçÎó¼_÷ûóikÎ'üWþöúl:¿>ûþÌÐÓóòß³×ç¿yröï66£mž²9òâŒß1ç&Øm:!n³ çO^Ÿ}³ùÓ ™çì7÷—Ó6ä£Ý<‡§³q&çÍ› ;o½qaóN9‡”7¯ iÍäæ¿_:gáÅÍïðá4Ù7[|è¶ió%>K³is M7Íófÿgš';™Íîžú)Lqóáõß?Ç.'f˜›.‰^áÏ1§6ßÕ·¾Æ¡ÌlC»¾u[ׯiÜÉë7;x£¼*–ñ[ñê-mÄädåàÏÄ:/±msNiÞ|EG•|ÄYh¼y ›¿\$‡mÂfw}°Ãä³M›²@ïf»Ù}waãÖ$‹÷Q{ó)P»úøÿž|÷îfyínÎ[ ÿäêlã.ž|{vé½9¿ta›æŸ~ÃðÓ49÷BíÀp'žÓ½'›`NܬÉO.Jp€ÞÖX‰ç ”SØó¡¼EÜvñ&n–½gÃFÌ)ó&ùžnêm߈ùÝæ=5Ýüæ¯ú)Â!Λ?àã2õ^Ð É—RnâðRä-—‚Á©{†±ow¬ÇiLÄ€—õÄyÊEß]ˆõËé¨w4F¢ìñœ^ ¶u¥Æ[§©ËØãC‡¯îì¶Ò§=ºœ‚-0dð}¢4i2&!h šf?©SÁc¸\ÎáÒ¸mDæã(—l<NT†—O_ª›[¡ŸqÙØ¬Ù.G` /Nƒqi¾ªÍ«Ú¼®Íçµù·Ú¼«Í]m¾®Í·µyÓìö¢G€€Üͳ5Ëš_ÐF3ëë¯ð-É)ßÜl"¸{AN_ˆ1ö÷uìÛBÁ½|_Iw˜<ÜïBÄ ^ÞoÎsˆ<Í”ŒÂN1·„¼;žÃeÙW^çî]¹qàl;‚²ì _3rFo*õy^ÁwUY#Ïlçif²Ç‹xÏÃÂFàª*À¿%vújeçâѼÉ&‡Dª4‹)Eë6¿ª  Íd‘ÊŸ_Z²B4|éHÎÛ˜ÁŒÍÑMìŸ^\ €^äÍ·õ"$A&ÈËr40Ê8m˜g'™:Ÿéì&‡gZÄ @[Øïl¢ÙìïÄÈÜ9˜4$V~à0¾%éU2x[©ÍÍ‘ëwð—ÝüuS@^ôõ}=tÉ5ã¯Ìt…Ã.ö[¦•Ð2†”„¥æëÚ|[›7µù¼6ïºëç€î-Óc]÷öùz= vF©0€˜mržû[ p]éí¬ñ6º¨³g•mÑId˜3Î#ïq¸Ùx)x¼¬Ã!Âa”g.ä4xQžýÛ*ñIDÛv ‘‹à"Ã/ƒé@n“@²¿æ·÷/–%?G½*+šÒŠM ÏîïnâR£ï =l¢™Ýt84oÁĤÑÉ”õ3NH‚„K°»Þûr—&à!®»N—X¢ @›²XÎý®tAõ¢î\ŠØ{:…œ¦4ÚÀMCÅùMáô)ñzß 87Å‚¢ÀÏŠ2?’z @N¦|¡0Þ‚ˆu]u§³ rD`æé‹™òÖû¼œ¿ ûÚ¼®Í¿uIè+(Ô».º­ÍWÝú"E„1Î@¡LŽ˜®P¨Pd2§I”q5§¨ÄÇã F”]4“#6=¥l˜d$üj‘_Êó›«Ú#XØ#UÁ‡^ÜÓ¥¹¬˜ÂÂÙ}œ¬¤ &>Aï#D;x ›Âw¬ÓEPêlÝc"¦¾ÈWü89Ab-^÷òEA,‹•ÀŽd§ÝMO0yÏ‹KF«—/õ\Pœ²”$ª®ôO>á(ÐÔÜÇ·cYF,$t$$‰šäò¤f ˆ¦’%/Y®©¡gøxNê,Iš3tõÔ„uéP0Û0»†Ý+ðª'*d+66€&:ßE_Ó ši4- )ßÕ)„"ñ¶ÛW¨ïÚC£ÁœH àÑ:"‰­@M¼3'ëmG)òAB e‚A—9¯º‚Ø;ù´·rkÉs‚˜5P¡|Cļ bRø`…˜êØàŒ {)ŠQ`ãóŽ+æ4!; >RI.²ÂdçÑpO…l~ Ë$«åƒ•µ%)²dî€]Æ#¤ŒU'! Ë‹ÞØ`_ÀŒº¨shj híBÜ–å2= Žç€ìôià‰®ì“ÙfÛá»O»€c@´œýj(×HJ†`aý™ ’’­ïiªd€É ¦2[‡"l;‹]”©oJî@)ZÛ ÈøÖ¾µlªeFRÒm¡®VÆÚ•°†GضBší2ÌE{ ™w lÑ,*“Ü÷Þ(±LIZ°A?\ÿ€yK<âós|‘0k@s…¤8PAÈZ½ xæÀq¶1Ň—Q®pRWha(o¥Íh5}j½Á¤;Hz§’V«( óa«Zyi½¢H#;üˆœÏa]¬Äñg‹®ò2s´{² / 0Nv([è!\mß*<ùïʸ™»é>g3‚º".³‹jly6;Ñ¥ˆKŽ”†²¬Ì¥Ê&¸@“TôPÉ„ 3s¨'SªÂÙ®ùFÉ-dÅ]«Ë€Œ"%Ë¡R ‚I¾ë!‰êºÂúË ë{a>ѺªÀ»U¬ÎÀ G¨úßgOþõéLëXX9 Þ‡dhÁƒß>9ûÓ»ËÂùíØMÖ¼ÅKKñs:„sëÐO¶1è>)Ã~ðx¼6Èñ¾Q _W R£5¥1oeò‚ KæÈ‘²ñ¼t°ôEÚZøbgo‚âý42"YpeTc°ŠÝ;nfhžfßÇÞÑhÙî‚@Å£‹‡G6J¹YÜb¤N–]YiHÔ$™Ôy)ð^ #=«„öÚ,›Øz…¨Ñ£Â6&`ÚfD…cžñ@¬·@†mz{H†# ÅcȰ|ÿ(†UiWfˉA‚»Ìcäë ˜Â²Ð°å¤a=1ÌF¯~} mi¢kyÑ›A dÓŠW6§1V`´À‰û·«lŒ­lH=<¨¤zËkšýÉ9®â˜©’i%ðí$­á9à=´ÅÒ"Ñû%Vƾo}8UÄ*»ÚùUÙ;:.>P¬fOcÚz¨Ô6ìÈ«Z &û>¢b®½óëŠË Bïƒö·‘¸|[›¯jóª6¯kóymþ­6ïjsW›¯kómmÞtë+Ä—¤…[ëdѲ¢íùÝfÀU0v¼ù€"½Z{¹2gIý,ŽìHÔØ‡Hêåât™T)(+!Abš•°*PïY‹zB¨ƒ‘],ÔÑVÂ'ê:h u´…¬À‘7 ªš‘½Eh uð  v@Ñ\Ëuø&òIEô/kLO«j<”è,1dψçÃÖ„ñIÎ%ÂÝOƃ¦‚Q. S#û•pù€ì@ê»\n-uÄoá'6°‹¬ØÜ¹¬ìBŠºÇnöâµ\û†Ÿ÷SF\ÉO¯¸KuíÜ„%J£Š„°û*Ý #\hŒרI@±ifÙ »$§=•Õ–­š{hâ-¢÷¤šŠöËš•©XÁ?] $f_½­ohhS£¡©ÂƒŠóÅ}/«A÷Ž7íäÑawØ´Ñ1OF©0ÎlÄÂÑ¢"»å²'“¡Dtèq–s01Äý Œ9t»I(fqnëÕ¸Ýe¡»,HKY½³¶Aj`’ô ºæéå(RñwO|= Tëí6&Pcq×#taJâBrˆïåcî£\Ô T¦äUžêËê»Àn»#ô-l B‡`W§ Yíh°K‘ v¿¹Xm5hä}£Ó¯Ž ºEsv:zý dAW"üØú*^(C5„^žòq’ôÚNÑw$µ#jÀuìä9õØjÍ ç~Ä< [%ÖçFTÛ±îáƒé„©ç²0òÿÔUŽp5ÀØih0¬[!ÌMW¢Ï±Ž6š±K‰‚²Ðz7é±ct„a&ÎÅÊéƒur|oî?ï3œ¾]•ܾ_ºËâ© "öF &|B‚ˆÜw{08'yaBþ™ÈHp!Ñn~M§«®äy€?²®¨Àå¾ôül@¯™íM½â¤ª7 ÒØyðÐ:zôŽYù©a‹Lfï—Ó§æ«ÚüEDNú-ÐD{Ò]W ®^ÒÆNæDÚ•ò®ýþ;ºŠÉZqË8°+m·ØZ– KŽxJë;nÈ`YQè0 M<ž™ˆ~^û1iö•ô?]¬“ï8fʆ8B¶Ûð>Ü/mì&na2æ›Â][ûM‰!~È~#6ÐdVÐS?ä‹ËrÞô‘ò§[¯¸j9·")‘xÔÀö}è<ŸvG¸h„ûî€çÝØ—Å'Ï8ýD§%j1›OÎ÷£n£…þ_ 0uïOˆ<ýtÐÞËÇwüó±DD_÷£ImZ¯ëõ¹‘ò”|5~`Ú–qž’ª˜À €Cª¯%£0¹Ýh¿êlXu  ãÕõÐw]tCtt| ج\œå<ýi[ä\‘~Ô—P‹Õ…L¥z³ÜŽ’¦Ð594ür¬i _JBE›vÔ¥¡¡ù÷bìâíGÓ¤ööK»¿°¶íH+äÌa„é#bØæ¹Ä ,yÖÅñtÛE#´*pp`Añ ›ˆÀË©8´?AÀ<£\w€rûíÿçbµã «-ûÁ(èAêß,uf{ÇZ@“·²™ô;læªq‘ˆJšA¡cÉÍržÁW~SéŶ¸¡» K…%¬sw~DLƒœ‰Õg#ã?k»FÿÆøšÜËgéó³7µù¢+5ôáÃûí$â,7Õ(û!àáMï0:‘‚Là%dQ1çYT_šÉWÿ¿±áAÇjBš1"ÇC‡N1Ȉh¬‚AÏÆàʼnRËœš Ã*A‡AjÌÌ­ 7>:PÉ]nš?«^©1ÜÔ.SáH’\_|û© ,Îc¨€ˆw<º’Kïâ6X„IáÛÚÜÕæµ$oÝeØ­5æÓ4"Áù`g!-4­Õˆ1PâÒ´5˜ ÁÈc@Ä:2Œª%ê°èGž0 pZM BRîË^Œ;ȇ Çfó¿ˆ'€Ž$uÌöĉó)He…ñÂc΃RÜÜ\㇑_ )«M@(b÷]šûm—( •kNè¶)ùóG’ßþ¸3ëÑËêŠTÞÎÕì¥|ÚËÝ?޽Eˆê\ÑJé@ ¢”üÖ‰¼ˆ«£CiF— .uƒ_ðÀqX­wL€â L*• ¥¬aÒÚðPÖ*y¨ÉN—F¹tÓD¹§<”è#ñPضM XÅŠ“>† €º2ú¹óôÛ!Ø~ÙLÓ9²¶IÏ…óG Ë S¥¹\šamh2¬|ì6S\ÒÛxòRxÇ'Še•+ô˜±%š^<’g¿ÃÍÅŠ½ç<Ëáöü”¡Döý8£1'&æörXøh|ò%±lÂ\7Ë´×Ó²Üé bk–.kÝÕ]ª0‰5ƒ±$WÄ suìÀj€ïf*º¨ T´ÐUü¬è5Å‹1õ:õé_xãp;5ç”BRNL¶7G×HUï+çØÉa´YË<’L‹J=,&N]¿áДÙYafѶL ƒŠÞýRaäEÄÃW1~M×$tóå…A3 URV„aÖì'ûX>1  Zà—5?¬“ìu’þM @ váñ.€\‚Z!V#Âñ1¯w€Ã±iQk–ÄFÜ×õËzé’ ½/ã_Œ>„#Ò$ ÞHdnô¿7^ŸZ@‡'=†dˆ€¥6ÜÆ™ÎJ³çßKžÌ¶O€ê¬ü™¼J@’š@º£ÄǧúTP:Q®PâL‘ÿ°‡èGQªÌYnÒYÕBŽlCOKŒ¸¬èðŽg#¬–òµï/Vļï‹2qò€°'…¼‰¼G|Ïë ‹ý²» ýœe‘ûëÛ*‰ÑÒÜ“óSÎQ˜ó-¿‡¨Ñðéâ7}S:ÉýãÅzM_”dl4¾¬V²?V°û‚ß2yÖžYŽ·¤Ì™zØHÒU´ø„t­ }qõ”eH›já÷ÈŒdrCÉrœ€ª õ™báOªj³Ê§GØ=Ž—tóN(Ÿ‡^oÊ7cË7?Gå„ã09/:HgG{öQ)@Gš"Ô¢@ Šg3èi°,b@åãÀð¶A&ó¿¤ ¯*{eâ1ƒ<ŽRªÓ\óx“q–~|Žâ™V-Øo B}\m€ƒóº–SË»¯¤M¹Rh8¼ZèÞøsU½ Ž è £S‡!ÒMú £8LyÇZ¨ãŠsÄz‰[ÔÛ%u= @òÝLCÈ£¨ v†]¨Š*‚è„\®³•Uœ)›¬¯ÇÚ¤P­ ò̘Ç’Ä—’À¯EFÚ`qÎÚU칆êÅÕÒÙ¸Õœü8ŒÕt‰zn|Œ‹!f<~}$cå–²Y±ÿåšIŠ›û #ìv>’ˆæ´°-, *²3õp¹¿nò‘˜j›êK)âŽãš’+`-V\–$Y A‚sþóÁlk†mdðµ®:@þ¦ÕÐó)“ËægR6'À’ˆjCÄB)ÁZÁQ²æ¡*5]mº‡64ÝXõ´1VñqXƒ@ä? Ò8Ì R*Oèãlç§×ŒqVÿ©aæÃ½^K^|k²;ôÓ+Ëâ&Ög»½Ÿ<Úï&§ŽªÖfT6ÿ`iÒÛ„´‚$êPl4lÛ@Ë Nô«o˜ Ÿc²#š¶»@»O\Ñ ºzXVé š´Ø¬0½ÆŒá WL“P\?´ “ºÚ’Ã:]öFS:Æ¥à¹Ü•‰ŒSùiƒº¸2¯A”‚äói5ǵ›xÆzŒÌŽ|/Ó˜VFPÖÁŠ<²(Š(¢7,,ì ›J­*ôMçÕÈÓ7¡ºr*d›)ç”Y¯kÀm“eˆoÆlµ~¼6K–ádFç úDÙÆcД67b~#:òF¥ö •ŸjI"£ôJé)F"s¨8U N¿Â &ÇD‰@|áÛòâUÅÞÃáß4ë(Wï¹ `äHƒÕ`»BÒ‚K¹Qýq8¼ ¹ñÖ{:/­‡pP‰‹¬òçÏüa·1ÔÀçµ~¨Úß6G¥ë÷Õê‘0˜.¼çÍçvó''žÌX¥Ã­ñs"\ò ö“VÜ1ÎùgK˜:¨Þ‚|vm6ã8NÔKöUDñ5ÒÜh€Â o`î‘›àJëó´Ñt­|”Yk´] \\ÖêdbçÀ"‘ÃR·ëxM"–5O@]ŒÄ%8Ĩʈÿ’KB…­‹qEá“jB8èJ~Mö}/2Uˆ”©fÝó j¾“›‡~9ŽDq‚‘KŠ>8²+±tÆ °k`Øé*<¢DÒÍõ® u%ìFÑB]Z¬¸3ùFLXv#,»R¤Óïjåò§UÛ•éŒëï &c Ý€Õå±ßWõJðÚ&EQç>-ÕÊ_,5ŇÖÍçKywíûß QIIʲ¸ÖÉŠI‡ÖоÇé§ýÂUV0ëTÓÂZSGƒì…nvè,91¨Ã#/H—]õ”ÎÚht:ý«â! }£Œ¶ûÜ£¼X!ß]ñ„³áú¾¤½>&um]5xÑa¡ WJ”µ)^ëV´>«ˆ@Ö’.ÍɧåUeúH’Òc<ü¶ÔÝñ²êíÀíw¨m£MR›[J@Lo3b"3ÜÑœ@%úI+¤qú(—FeF¬Ðe§R•x¯ +˜çh†ß*VjàTzêHu*™Z×2j`}S568;infÓ~v¦qvâB½wÚ©³’ÈÁçɧaT¿¬ös¶‡ÅÓr ¥@"©õ3ù½ÒàÁ2Üö áb Wh—ð(ÆA“ø­;–^¾¬BRQÓeøuƒ^ulõE,9"<ª†ÆR°å=Ïz8q2×c@Ž0„ç¤Bn´«NÊÆ—@Aö,ÃÁV²K4+ϾäW¥Š¶=Yš¶Ê þo$;¾(õcÞ³åÁê˜;QÚ@FÅÄCSþmhâ{7þ4•<­†ù °¾·©ÇCº»b^¢ªC'<äáZf:¥¢à÷Â' 8#KÅêÕ ‰r¼Q¼GL›vÍk¥XºQDÉœ]×bÕúF™£™Ùý`)fkë×¾b1ŠÞ-ÁRs8=X ¿I%‚¥¶åÌàfþÀP†Ø‹ò?ÅŒÊhÏ;XЧÐÙÓj—hUœ¾òâU\Sc›)½Ð-2 K0ÂHH‹¥:nŠÜ|QmH–9U–fš%°WÓÙ§5AïÀçÆ”ËæÉVâÞ;hS§7ÕÆsÒ¼îˆÅVè¼^wL¿€xqÇ!Ø=…}¬D€”‹²N‰{ô± ¼Ó´ÒrÀu¬V‡Î]9#sÊË·âFå¬2Ö»£%.šÇ'¦^ñ[º’?”S‚~8þÏ£ñá_ÊQÉ“ËâÛϾ4Á;¢„b‘ v⦚~2hÎväG~Saz`°.âñB-¶1ÇÍW(CT¦÷•P?’ιšIõ9¯(;¦ú1mü¹=ÒS± k„Û3AÓkŽË¢®gÅH¼‹¦µ§ed}„tM“Ž1Ý eL-©Ë‚G.ž›åƒGÇð‰>GÕÆSf‹W#L\RRÝÑypR´XµˆíóCüþ‚mÌœÈÙ@3§ø‚‡ŒþkÍLðå:1côÙ»Rv,qh륶¼ ÙäèS8*`ԹôMIʵûFöò\ÿswð ¶B«¯–ó´Ç¢§â(þ.&²WËü*Z¸ó4’Äß 8fFã“`¢ûéX¥SìíéÃ+'˜Ñ”³ßDcàQg£Õ>ûw6J;•ׄþŽÃûñ>ÄÇü$ƒ2¨ gH®00”œó­j¶s ²Ç¢iÀ´Ta=U‰EqßK+¯2¯ˆyÆÎÆ¥ÇA½€eÑÒ"Z[ñKÖêh3¶Y|Øá“øFrujjxø­ê~ø,‰]ÙÌÞ–ê†5ª…~O¬¦rAžÄE«†~Ég MX°N1œQhT\«góÝå©QÆÓ·­uì9‘²¾òͲmÇT ¬å „ˆ*ëø½æn:æ¦p*½}JJqðÙ58ìÊCû•iù ¿.Ó½á#…G³QÓn³@ÇU]°‰-Š¢“)cY]kÌ?üJXßE³+ßc.eƒгv‘«jü¦™¸’ίïÐ.‘Î<›Î¿¹9ûzœhÏô³ŒdÊ( Å„Vk AÏâðD{ür:â·"©J)§%,3QàIö‹ZðùX¸Q ÇD̲;ù²ý%[Ô¢åùwü*È#TàËØVÂoâç IQ(­ÇüÅ’0ñ‚›yŠå €Ëзx³>‡"—>4°,Ž˜æñ^ì <2ñ[^Ç´¬Ôùå;â0M£þÀ¡Ð?W·Cϯyô”ŠërFø 2;™> stream xœ½VitçÕ![LÀiú ±šFㄆ/+˜¥%¤4eI0aqc“8à[ØÂ–WɲåUûÌÜ‘<’,¯ò"[Þd cqì„%!$)¡å„¬& $]Hsè))yÇÿè똮'íiÿ|?FëÜ;÷}îsŸçʈ¨y„L&›¿iGòö ³—ŠwÉÄÎï–ƒtà4 1rˆ‰òþP‰î@G¾‡ê!Íí„\&«2 ›ŠŠ+Kµ¹yúø} ?NÈÆ/+âW¬]»æáø• kã7è4¥Úì¬ÂøYú<.K¿Ä'ek5úÊoCÖåéõÅ-_n4—eéÊ–•æ>>›åáx£VŸ¿[S¦)-×äÄo.*ÔÇ'eé4ñs•.›{ÛT¤+6è5¥ñ;Šr4¥…AÄ=Yº¹,Q¿Å°5+[“»K›œ¯Ûûð#Ëâib'±”H&þ—ØCÜO¤©ÄCÄFâ b3±…XIl%VÛ‰$âQ"–P‹††ˆ""2RÖ1/~Þ¨<;jqTMtV´¨È›3ÿÐü÷ÈÑÛrn{g,ܳ7vUla¬3¶Od”â)‹ª LÜyAŽLè÷Tິ¤ÞQýj«£Ø’+8t4Si×r¬­H{ÁQáO»ú N±îDÌ!ý¬Bn‹öŽ{Ç}ãÂHãK/Oõµy´Ë¸¯š­·ì¢µÒ>»¦ v€ çÿî,Bûîvºíó†>Ï(Tï¥õm^–²¡¤Z­™ú˜”›BïËE/òRHþ³%BºWRJ´¤ZòÞ£( ©…bÐ}j©I²QEkü(æH š>I¿[÷¨ ÖÌÕ³fR|G¡ïšk ºvUŽôè7Tà+Ii©ä8–s¨€q%g{Ä©¤Ó¥n»ÆéØ*n6ÿ1~Â5øŒf1¸.?ßäò“Ф:O°u=)tÑ3Ï_û Üü*[}%I]ÈÖêí.îÉÙ––º·L­œŽÇ¸L†ÑÄ,.ÊÑ0ú€úDq~¨no%cÂýËÙ«Œ%Ë\£8Ž|9;©@w‡2î©…Š¿}âßÿuØý…à3cæ(‘¯XWç ùvZ)ªëƒâO:eWN£äÓrñAñ§”«\à&=Œ`u²P[­®³`<ì‡2 7nÉÁÏiÛõ]&º_?dŸ´Œ[ÎÕA©-}âž´kWsí Ô8†©ÔK?ˆc-À‚“´58½Ïwu«=Bk‹ ôiÇÌGDKÇnž« Uè¡!ÅŸÞ˜Ü'H® ïw~ µl-0jK#çnâ=7†0d£š°x_X†ˆëòé(ò„óÀ7º[yß~ö— EPÌA9äB¹ XXñvÀf`™JÖL;‹­ŒY¿k}Þ& ‘b_C‰@믠…ôŸþöÅqQäë?’n£õóùz/x1>hpO Þ8ŸÝmwr\]½zûÆ‚ci  ’r¤LéYÉ(%"Jºýô“©ÈÉQºÉ0œÝ„ÃÀín'•b´Åaôh— )±(ØÄQh‰â‡¤%Š!´7½ê‘Ô‡–3Œ!îEºÔÇTbÜjU^¶M†Ã‘uGØÕÒò1Yª¨ÛÈÖÔ–X«õ9 ³ÌG›øÞK+§-˜\o„Q$ŒÉ5&ŸÎoRÂpCÓ‡@¸õyÌzÐ@l‚\7&gej8 Ù­xËo+·±ÎJk¤Êhé8‹v5_Õ·j&ø¬{Æ0ïÞ†ÑYÖÍõ…,Wl¯õݼ‡÷Ñã(N*2¤Žÿ.‹+f¬ê¸ ýÏy¹8 &Qef¡šã8Ã:Kùv‚mv-SN—KwØ ¬{33Tùùæ 7rcßÉ7ÐgÑõï 4¤ÅNmט“¡‚L gÞøüÅwý5ÏÕ¬Awø]ÐÆó¼ÊíjáÙY'ô»ÀëîÀeù Á³(J,Ë΢ùr±Vüšòo†ó „ã2Ø,.ã#Ëà è]œCh%#ŠÓσΠ,SEÿ|æÓýÛÓÒ@UÉ^ý©Î GúÑ>c·®<£zç¶3)W®ýñ­zVºƒ¨²­ Ê^}±¿”‹õè>ÊYbËb,V]Em5[°Óßø²«…ö ÷ Å$ßK<±fiâÖd“ßìéè«l)ãÕáï4 ùêоgͶ'C³ zNZk—®ƒeäã_V½ôùäÅVŸzó æîÁ3]—šÕîÞç9BJ ”Cç(Ð,+Ë3å™™?ð<èTíÇ5‘߆d.£âkrñgâbj/ë8fr¶„Ð@ç±ó›†ž’î–b¤;±ß(>Zÿôƒ“(¶Ñgs9¬[gWJÜ}hi;#Ýõ6ºó«Ö³lÞà­ìºn´1({} y1Ö£*ªwV¼:ÝAh‰¬Ý$Ý%EãëN)ê£Çþ„½‰Ök±²N³CýÜòuõÅ@îß2ˆˆ!ÏalF ÝÔa´ê‹¶^ ¯ÂFgsÏÂ-èA»Ï~ÒƒÒ?”µžê ‘Ó#çäb£¸‘rài„j²ÞWÝÙÒåïóÛGrr3M:­Úì×öíòÁ•¯Ô´·›h«U“ {@Û¦o«K¬8ð¤“[?~Å|î?†æ¡XI¨“…¼) ðC}}Ã%cŽׯN]°„L=ôø± hÁBÜ&5SÙ¯ù„K½ct0 Ù;Q»ÍâLÔçÐy¹˜ñù¢–í©§e$ÒC÷w6Á% ?û6&­N¾+F‡”zãW!´((†d_‰AtýK¹hL¥›6~„£­~ŸS°Y9GµS]—™™ó dƒ!hzýøW_¡µ€Ö’(QŠÅµ'HÙÒ|é¥õhVÂÕÇŽ6z:ÕÒŠ µe`ÏEÀ<áGñï ¨ÉKSo\òò$iëêRI#=t?]ýfé ¸ÏÏíÏL©åk½f%4Q…5:‹ÈBckäèÈè±3þý)nZ‰†°GG±7ehó×r46-§zL=º¢ü²ÜÂnS_xp0Œ+í¦æ¬ý–³¿Òò/œ}˜ÅÕ G`Œ˜]›<áèt#ôÎ9äë"5ÇžN!ú"ò^”‹ŸNo¥fÀÎáL¾»|xÿ–0)6þ^i¡Á•5šA‡öÙ/—O•Çý¢¤á)0‘ë¶$<¼tõ ¤hiè€fu“˜zÎabÔZ)ý[ƒdTv·Ãçåy¿O=ñZP?¾ïklùwþÝŽt±'5´n,ß÷t›Æg5Ú\‡Z "p’|ÿâûW‘üåŸßcâš¡Jmk³[à]Ø'Å^ v–’aÙ€8 GŸ¢VŠs9üÀƒû×o5ù.LŽóí<–'£Á×Çç·ë¢[›-µÆŠšB=-Ý?%–Iw|‡TÎa¹z&ð÷XŽà´‚pŽí»…åì Ênb,/ý_[éá­½ûU~“`†:ÒXc-Qã˜~þœ«úa˜ëg¿Ù5ž’I•rú¹}múàùt?:C¹;À íäì ».%5£Dí¼ú„?–AʆêŽÃ‹ö¢Yé?u}nYÁ+ìðßUúŸ¯ÜIÿ/y°ë ´ò›fC÷ô=xáùþ7òo¬âeª¹·û…ø[„†IËvWål%àäÁéZ¹36ìÛÆæ°H3Ùq‹&¶ cÈ«"oB¿š÷aƒm$ó˜'±¿k!“ÏpápGÁkÐÄøªT Öæ-`Á™öz)kf¯`ýXa…~ ”7]õû™®j—µT- ø?r‹BÜÔ ¸+xû_$ñ8K)ÝhýMÙ5%GÛ”yeÚÓû0,ÃàµÑ.8<­hÞ ´¨^F£Ï/¬h.9ÜÙÞèóª•è zú¬ì8Â쾈XJêP˜wE£ŬDà|XöŸ£†K[˵Å:>  ÷EÔJõ‚¨5]1·ÄŸ~Eªendstream endobj 529 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6363 >> stream xœ•y |ÕÚþ„a Èê@#8S锥€ˆÊ"–µ¬²µ”Ò–.é’niÒ¤i³ž$MÒ¤Ùº¤ûe) ˆ¨×…6àT¼âzQÀë†^<ãïÔÿÿ;I ÷â½ß÷£:sræ=ïû¼Ïó¼S1pÁãñ"–¬Þ°jãÆ™3ü?<Îãqãpó P÷Çï+†¡<0”†´ŽŸ`ÅÅ„§†ÃÌŸÇ“©lKDYE9©É)â¨í3fÏHÄßfFÍœ7oîÔ¨'f̘µ(#)'51!3ju‚8%)#AŒHÚ JLM>2?E,Îzzúô‚‚‚˜„ŒÜQNòBÿ.S£ RÅ)Që“r“rò“öD-eŠ£Ö$d$EÝ 7æÎ–ˆ2²òÄI9Q«E{’r2 ‚X±(s±hë’¬ìçs–åŠcó–ç$î^U”¸Z²gMRÜÞµÉ)ëS7ìÛ˜¶)=ãñÉÛ¦LÝ1mgÌ®é3ŠgJŸÍ*yröœ ÑOÿå™ù >Fˆ8"šXKQ+p²·IW Øß– Dì±_p6iä“Ò,–Ù\ø¶»hÍé,zˆD»yŽW¶P†4”€"ƒÜ‰‘HH Ïûx\Ì>7ÐGïò?!-³o§‘ž&üˆl c÷àNëQƒÔ ¯lßÿÂæ]ù¢½ 0­ÀLùW0‹ýφÖEnAg/…íôDøNMp–å°£¥ñÕ7Oøõreaf¹¾D¯bƒ±äûàNNÜ>œÍAúî¦õäÓ}2AZئ*ŽøÛo_úßXáfJnCGéÃ0_&o˜Ÿ’®Ú¸b†ÿq*¼âã}Ó ;Îó9´ÑpàÂKÓÐH4@,¢>ý‡ÃàÍ 9ÚAÇîò]þí‹Ï¯~ðÊÆ¥ÓFÏ ÆÌÉpÀû¹St3énÁI6úN nv)â'­ÎN(+êIWoËú6 "[ï®”eõ©šüu§£•‚L²øNá`%ýK ȸR€Ÿ©ðq•>Þ—¸dŸpWhC…Á Œ”»ÔU Q—)ʵJ!Ñ”§î¯Þ(ƒAkÐfÄ\A$>΄¯àpŸCåÉT±ŠÍBü)’t@ÍÙríœ:è:—md冼Þ*KsƒŸˆr|pz);qi¿J×çtdv >‡ÂøøÜåëwdf³MÀµç^<ÌêkÅx(ι/`4L§“Aa­¢ZZ_ÞZ€Ñõ³ÕÕü×wºÞÔÙc›— bæsØPúx—ñÙíÜXÚäPA5š¥i:Ù®rFîI=¾ŸúA4 Eà"ò¯<ûÃ¥ÓÇÜ5l J¼êøL°ƒ²pñ$Z€ƒXýÒé+·o\ûöãÚçv«•±*›µríÆX@¡™çƒ»|<¸vÑp ©Wk‹€šÊñjœ­fg­‰©¾e´ã`ŒB›¶6-]'‹/gвî@-©Í+ß4Tn­ÚÝnt6T0Ž 8t^èž¾ˆPvšHO !cÉCÀ`¶6:½ÀBù‹—¡“æ¨ÅóTÛßÄgqhs}ôœ°ºüÐ ¦ùÒÜáùÁä¨ÿæÓ/nCb›Æ¨æZoó™@>%v•LÆ] wº =þãþìóñ`l¥á8RSt@Ee¶k»ÑãÁÇÿÙX8¾?¼4$QÍ qäA¸Oÿõø#Chi ?)¬Ñ§‡:`y·máH,ññ¹XnTÿ"â¢ÏMX°eÞ7Åß³/—¿W â)xMܱµê¢‚Ñxuî teÊu%òe œ’8ä55&Ë:æ•=ÝÀ‹ÁüìáïO)hɨcÓêE掭¶õ6°Ÿjh=É/ éR£W+÷¼ :€Ña9TÑTy ˜({yX¬’–k™`pç}¿Ôñàs¸Ms$ 燪€f‘®ÏÂP’¡+–j™âé‚¡óFîA ­gW.|úœèÜ/?¼àOi~©*GÃÈž[ª)Ô*pÀmFSõ½¬ÙŒI¨-DBhHˆ[êÈ}h§%û‰\ð§kü©ÿò)$ šLîEù¾æNxÄ*çFÞéЉ|DK§ªŠ¥ÉÛ÷¬Ô ·ÚZùJE3kn­h5·:.Eâôž¼ï'w#C A áã?ƒÖΗ-mÇSf=ðêr8³„ØYˆ¡†GGBýöKàÔH†¸®PÉþâßEã…·ñ. \ÎÎ`ê2œE!9n Ñ\ôÑFø‘`(‚à‚àžÍätÝ’R €°ÔOuwcùŸóø7o¸OUN‘“Ðë=‰?äT^V^ÒÛR@*Д¦¯ØŠ‘øºÝàUèá8^ ƒwt‡¨·ï©q Ž&àebý:ƒØ¸ ¼VQ¸ ޹=Àãbìö3¶¤ ”‚û3Ö ¥]À ꣓ Vu®ï'ï#\ÖLx†n–Bz*ñÁ‚,¯Ì[ÙUqš©7w‚J@ý³b­T£+ÐkØçµÈV Ðdjå›n¾Þãh>ÊÔdP¿ ¨– üÉ…ÀœÇ®ÿ”V¥j‹“ ²Kv—¥jsrã¡÷à°ƒp¤‰½Ën\"ÎÐ Òslˆ R]3¨egL\û³ ½á>y?DÞ@¡)h¶`g¨Z &' °·áð h¸ %ÿNñ#üôß+a“ɉp¶ xú}PЯ~NîŒÖFÜûÿΧú4Úb NÐÏvn/xÕÈü¹V¾Ž¾ù_j_ɰ#¹Ç}?çâçûŽw“2QÿnȽÂQ«ÊÐɲƒÂQîG6*„£¸t¯æ?ÞüF„¶®'ÑT–±ZÛŒªVá&îá°•Íägš8z!ÐÄÏUÊv¯Ú«“èÍV³ Ø(·².S’ªØ±»MtìêÙ¯Þjeîúí Ðüw>Wy´KéÊÉӍЕŒ8)>o' žÞÖs¡·Ž„Œ£hí¬AoÐ%)Ç<UGÏÇ€mhù“hê„Ç.ÎÄ9¾yÓË„º?‰“Ó¶‹Óì¤ ä‚¾L$ÔýWï !Ÿ½ÊÉÕ¡ÎßpÞ2Ñ\4?R¼=s,…Ò“Ú·âa¥Æª¬•€b@ÅÝA`=ëOýý·ý„ ¤)ݾªr›ãYKjE¶eŸ)¿«_pwP!|;9‚vØí• ‰j,Å úÌeUº^©ÜŠ­Ff°´+»m VÔ> ½#/-+…ÂÜzàf8®µÑfÞ_ÑPy³¦_^J ®µ® èÊã)Ô@†ùîãš ŽïOÏYhvqíÞ¶8 Ävx(„¢ÑÀ_õ„·ã0«Wëµ@IùÊÜC¹h«Š^·óÕ!ïÛ¿q¹ö…|:£l+›÷ü w|T $u÷*Õ#á"4WHONâ4夦, \òêv¸øüËÄ™þ©OmÎ1Ë¡•Ä™æýýü5¾>èã]»;ðÙãáºÝ þÇOí\Š"Ñ`ì#‘àëùPÇœ»Ö€ V-)e³wo+LÔê…‡d=tcoï™Ë€ú<•+:}9{×q~p‘ÏuqZúön®RƤ2IÑ©H b©è#Ec^sÝ:Èt\?¥à"…û^¤'(Û}€±î·Ø¦­Õßê«vù¢ûвÒxìωÂt̲wq‚}ž÷‹QaÆ"‚¬ðìu–ƒ­]S|'¨”»ÝqèíE@2W¢\ÁbOª(žNE‡Šü]`P Ë=l m9¥ßö­òA-.Xa/&B Gpìu8ð§7‚°¨ð?Wì’ïB#‡ÄíEÿ“¼Ù²2qU܉ì„ýõÀEï¼Õwôð\gŽ^€šn>ÌðÑexJ-3RŠý9ù±}{‘J£/c«”PϾ’wäbÛ˜æÊ¥R©fôzåÎ|@)Ë+Zæ¶Š&¶¢ÑÜœÔh)¨WÚ{€B‚Nzi`ÇKä—[6­}ü®Ä_õvcãüæ->7‰;G7Ö‹ÒÅ¢œlo~s[SSƒ¦õi4*,§CpDþ^æ>8S  a'AÞíR8ú}¨yßߦ÷LÎ…*¹ZË=ÐÉD»»6ÚöàqbÐÔ''onÕå³­YͪO ß-Ž<%¯OIÔš¸%³ ÐPð½ÛhVÆ?~*¥@ZÆh”9è   Œu¶#µÌñä÷¯cí§¿‚Ä·ï¦,q²Y-…ÑM…æt«Ê˜îÈm‡©î÷Î\әŠ¿³Éj¯NÝ…>®3˜–úkÐô3ŸÛ}ßÄ,ìû…V‹Jöåe''îâE•&‹É€mËuIÒK—]GáŒ=fe.r‹‚ö¥?SO„`ŠÛû_\óØÿ:¼#sq»ª’/Dl¹6¸ÔäÆC1“ÝŒ @lCØpº(äÆwÜaá\ Ïa%MÒ Á± QLÈbì'Qšòü.¼Ü+B°8xVø¨>ê¦úÊS×?Œ¼‰¦‡¿2ƒƒChÊêÇ‹ÖoKøÜœˆƒÁ=l;&œôÖ£ïes—-Y„[w¿üa°l7¼-øOð¿:R!pyÙWÿ $¾÷„ù•qÿB#ÿR À¸òPX\ ³b#B¯¸oó¡ÒGçäÞäkîÀŒSÙÜðÞñ΃€²»ôÉJ½‹Yrî·¾ê²ó’ã²õ8°…eó¹ »JF~4­*ä€ÔÒ,±¦%Ï?„÷¿¢k­¬_]òC4sí¿?Ç>Ïû{.f8íÓ¸¡4xYõõº¿guÅùD€ÊQ”É*U%{ka-–‚gDh+ÊDcUe9Qeæ‚æÃÐ Àãþ|~ãåªãýÊÍó›[l®,56Ð@ÕÉ*eJ­N¥`Ð p˜±÷‚Yè,u•æ¨SÔL1õÝ›×H˜')(’YÊåìkÑur•Dò…JsaƒÝZa02pøù_Rß={ »ý óÑÀ59u’úoC“]åИ™†c§œÔ¤=7 EÌ‘àF«A/Jê2 ›ð:Y j€¥Ñh·•ϲ<°‡!'ïIÿ'ôc"¯Æìb£®£gl1ƾ¨UoaÚõ7õ hN[œfuSöUg·Åe–ÆkòtJÙlD+ÓIµÒòݪ½èq¥(Väã(<µ—Œõ¯²ïvXÚþZ™H|â“ð1UÑ`jkÍ5HK¢§Œ~V Î&ÐØã;øþ7° {Ô ð úÆõ;–-Z8I2ËøF[ar90-6¸ó¶-¥SnïýFýzû§×EoÆígn¼Qý%h¦º7Ghʦ¥[R:Ê«kÛj+00‡:{ n@õËÚ“™Ÿ”ÉîÍÊÐ¥êÖjdz\æ@Îü]*‡Cyp1ìãsÜÇ´³¤¶¨T­)W2Rùî41(*k™½¸VR› ö½9ò²´<±·­ÌYTc·XLŒ«êäÁF¬>µ]^+®‘¶Ðái¬n¯kÆ韎á7. Ã4q1y–è‹€EdÀBQ„Nö‘¥%j(îgW@!B°<Ì4¾ÚbÙÊ9i¹ý$@9As;|p¶÷Ñ·°§Õè÷JÚ°‰ÌKæ¹^•œÁòj(©MÖà1™l6æÔ«gÍí€êíØ´qÊ´Å3¶zNÈX»ÕîÁêZ#kÈÜ6—Îú|Ë 8Žü>xsÅ•è¬]š¼mA®€‡ÏÂy˜.>„õøÉ+àwô!8úŸ×¿àÕ»å*5ÖB1%vµÔ7;OölÝ¿=Š–ã¿Mèñ+±ÿ€ƒàˆÀ m¸‰¨¸M¹IÌWè$-™¶ü6i½¢ 4ãáÑXáÀÿvœ8j6¿Üu¤ K÷FÏ\2ß)ˆ…Ç‚{r'¼ |øç£ &£ ˜©ê’ÆŒxM‚BÏ —t2du4™<ž Šaü_寣Nè…{á„:Þy®„Ï1p..ç]Ê]K‡ ]H';~3ZŒV`ÖH« ²Uyr ³=(˜øg7æ…H»‡L@›Bö“iQºrŸ¢ójJª›¬Þ*ÓÇ ~¾ß¥ð'úçÀEÆ—cáÆrƒÿ]C¶ îû ËS^_§ìñá”F¾KÞãsc¸7è7Tíy–$™²¬H©"§¸íUãë5½ÛÏL´3æ6S 0æ–,­$[ÃèÚB½ÿÑ—èР‚%Ï€ù îèrHîA²È'í “¶+&£ËYáÂ’ÔœçÉ ¬“>ñîKŸ+µR UäPÔ4WÔÙ LEÑnªƒªn| ~Ÿ®éžë¢â\ô[R–€wÞ;y¶Šò 6z¿ª[ Vƒµë7-•Qý–!·.,¥£ù÷ÏÞ7„.Neï•(Ô¥˜[©gaM;$/ÁÁ'òÛ“E©©»Éktþä¼íåvážnåŠi»Åeǽ^_䔨Êtå% êC …ŠrfgP„}–žFI‘îRÿ/¢¨šjW]M©µÜÌ"Gðצpsïg½¼¹L>gÄu«êÄJò»©Ébù;üúó)šJ{üÐJ÷ßA¤"ß9‚ï„b)… tm•µ ¸@M‰]mB§aR¤Ô®À^*.”‹‹eV5 í¸ç® U¥*Y)( `¦Òf2W2!“›‰5â¹M4p•Yä¶G¯Âà"¸Ú·Â 8ÆRa³å(óä%"'zM0ÏêžÅ´&vǵªÉRWÉc, ˆÿ£ÛHendstream endobj 530 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5262 >> stream xœX XWÖ­¶¥«¢¢XM¦šˆwÑhÔ¸÷}Á Dd“fk@š½»o7›@³ÈÞl­,*  1.$LL¢qâ6ILbF“HL¼E™o^7êdæÏ2ÿP|Ýð}õ^½{ï¹çœ[¦?F"‘X9¯\7Ëü‡£ø‚D|±Ÿø)ýÏe=‰V0H ƒúg¿8Âgþc0æÚ ÇsŒT"Ù«sÙ§ô÷õ ·ßî4ÝÉ‹~L±Ÿ2kÖŒ öSœfÙ/ ôVú{yÙ¯ô ÷óô §ÿ(ì×{ù{‡ï³,™ãòÚäÉ‘‘‘“<Ã&+}ç™w™`éîg¿Î;Ì[¹×{·½KpP¸ý*Ï@o{ó9'™?œƒC"½•ö+ƒw{+ƒ†™ôzpÈ¢ÐÅJ—0×ð%K÷FzFíZ±Ï+z÷*ïÕ>¾~þë7(74áÙ‰“œ¦L}eÚkc2ÌjÆYìeF3ëGf=ó2³ÃldÆ2›˜qÌfÆyÙÂ83™­Ì"f³˜™Ì¸0NŒ+³„YÊ,c¦1Ó™ÌJf3“À2Ï2AŒ5cà f†0¶ÌP†g^`ž‘ `¦ÓD3ý™ ‰D)Á~ý®JK›ú ýß¶ÚjU"[$«•VÉMãÞ{¦xÀˆ!ûÜ9°mмAϾølð³[WÚL°Q?7ã9ÓàEƒ†,±}ÎvÏÐC ½5´›̧ó?ïòüçÃf vÑ.]T[‹—À$Z™bC°ÿUô¹:Ìö®BÿÓ_ßìz;ëjİ;T°TP°íúÝI8 ùÚÓš79˜X7P‚ÖÄá>Úà†ðïü-0 vºÄsZ™íµû,­²R°ïç$o•“ÒßÝh© ÚäÖ=`ÂwØd‚Ÿâåo7ÌVÄHùz}v»€Ï˾mž»zÞ—‰r2E†ÿ]é‡]p•ûbü-b'ôrŠ Ù5½ÊGÞ[ÎúhTó„p…ÌöGq” _¸÷åÝ;Ó>"Rƒœ¸‘üvMv½+q-‹Üѱ«æ­ž?Jn-æªjÄqFIíml¼-£ÐŸÇa‰ ±u´'CÉà‡cÐm<@D7~ xƶhOC4A§±¹îԅРͥþž:7ðX«ôÞ±#Ò8šm²É„Œâó¦èš!®bùía¶Ûq)~É׿u¶´¸ë秆È\_yÍÝ»ª!LW z(á\ûW…Öïy8ˆý¾Áa8dì÷dÀÆ-»¼å¶‡»X2ÆœçËY);å½~–ç*0õHLù¹èð´«Çžÿ¬‰œ âHƒkp‘ã²HN³+ÃÄ_$}¹YKMÉîÃy·jßãk a ì‚‘ovuÞ»ÂìÑÇÁŽª‘Ô߯ò«Rq>â·ßX—ã@$ãÉ0bÛ=Ÿi9Ux¶UNýñÉÅsJvéäa¤íQîô ØÜÂ_ r—?¹v½mæÝjŠ¢ó&<\/Aû;èQ#{zæð½Wž‚£äi˜ŸÉZ1Ï*X¦$“CÉ|z({Y4Jî²ßÓå5X,›¯+LÂ$Y GÈÐ j6{®Ff-:>i G—}anÜÇ7çáË(´¬Fa\HYtEYEaÝ¡À:÷Õžž+ÃsUñq‚F“˜˜’ª(WdùÓ¬ÙíyÝ-  ´"B^¯8’|*ñTÂAuytn’1 ¼¹W!vtèggâu®6+¸XHÚ''CÙhH4dét%ÅBFV^~ffË®6µ‘"ܦõÊ¥‘Õrÿþ٠B3_χNîPEËWÈdÏTê]<¤äWÙ%4+í&Œ3‰£L’ÎnÑõŽ´gAÏlËQ“ÕêÄÁmA€iÝ9GN6‘™d:q';q™†n÷®4vÔȆ4úå—9Er\ÀËȼ$˜Øejl‚Ý0üÒiú‡Ø»éñ>ò,±& nYÓMx—þä»W+}œ.•ž©2Ë(•8P*±5áÌRÉOWqD¯‹£x+‚Yí ¿QãÔœòsRË’þ·ÂO_j¸xYè ÞÈ.Tøú./Ьc­{òhµß1a½ÉRí®;R±IdyÒ…±²&}Þ5¡Â$sW¯‡ôZî–cV°ÿÉ'ÒÏQ´Á98aÁA8;OC±„ØE þì.±œý“'QFSci´üK?D{œÍOݲÜyfjë?eÉx3ȯzªœŒcax¶ùÕF6'ƒ7¡£¢ö:ŸI‘0¼”ÈÅv¶NvS@lÔì×nƒ­§[ßW¿nØ"ïÏZ‹;hÝü*qžÅ¯«ß7{Ë}|y&”ý°þkjÖMt Ï‘a?¾ŒÖhÝñ¨";5+1Aœ¦•ûžªÙÛ`Wuxýžíyhát•|NºSTgá¼§Ž å¬{ŽEÔöL©5[ŠðniÏ>ü;;Éd|•¬¦×d2ƒxt"Sé´´ p*zäkò)ïHä_`ªÑáÆýûè0‡¨I‘¿â(·Æ¾Q õF Z]¾û¥O[LÁ@´b¿ê8Ñš›«IËÒ¨aTr¡%ûŒÕÅ%UG¼o˜;kÍËaç(nÿÄ#âUšš\²«WtݬÆäjIí9Ü­þœ£+oŒ1íoîë+ïßè®+kl¤ª“Ra§ÊŽª((Ê-+‰5y¹«|ý„òÝtn™àì:ǭηh¿\£ ö£mî_ä[½Ï-ÆË¶s‹¾[‡CÑæÇÓך£ŽûT ëÖÂJ©¤ÊŠª¦à+Ê,ÌÉçºÓø©ðmyµ¾þ`¥¼°´º°¸;0.<ÆM‘·‘yü!´Ñ¾¶nžûı ÛÏå¾w[Þ7žZp.éóR\Þ³Œÿ5_ýñÐ€ËØÿ}–][ýëé,kGÌÅkÁAÈ ¹ÌBÚqwq…¸Š'£ÌG¹˜“B|Ù“íOèËtÇ¡ˆ¶ZG«/KË<*·}.áëÂ*áÊ   ¥©®²²ŽJ×¥SS¤ó"Þº(¥ï«üìÒЋpœ»tæâ§È¿9Þ±@HÒ¥,ž·LŽÙR8Ÿ¬ÕÆ' qûró÷lŽ.ÝüÆD3;Ìp=·}[fªü„Gq* ¾•£9ì¯ÓÖûÀÎuë§y„Ò׬$A[Yq7)'ÙHH2dët†l!¿8!îð›ï¬¾‘ÐA9ÉúÖ÷:÷«“ï<ëž·¬¶F4Mi’4™0ïæšÌ†{ÿ +‹$”Í pVi-Ž£*U ¹šâ4]…3Ø?RØ­5¦c?‹'£_–ììfGBa½ÙmB•.§4#W_ Å@·( * ³,³ˆYÜeuÚ"ytYJ'¬@^ eÇõF] 4ƒQ{âW(xÀ^øuó¯þ9ÔìiÚ[éeØΰÕ3xSüÛ^3`6lݼwg{Kû­ìÿóâæç戲ž—L’’ŸõÒžD¤3ÊL1^›¡Î¦¦ÓÔ Õ”ÈÝÕ[¨'Ùɰ²OÙOQeϋΉ+]BeH«¦™¼Ô;ÇŽÌ÷S›«§6÷÷VvB)ä{£go¯]flfŠP+žU‚sÅ,;œ×›ž­O.€áÈÌÊ,ÀMâM»ÂÕÆ·Í^N¡ †9‚ukûjÙ¥­„pHÕ¤i’©år ú²Ÿ×•J0¾KЧ0ƒ‡¿Åc¿Í(]ƒ6“>¢£k‚&IªWg'ËßÚŒýÈ‹@Žq%ÛÈhò‚F–©œZŸ”k¸s%g„“ßTþ8ˆ{ò– ß«3Rã –Û¢ £¥? Ñj¨ïçˆ5ö“=¼×ÐYq$%Ì(ìNKQ@<X]Q]VRÓ¹áÄì—É ö±ú7%ømláÇ8mÏŠÛ%'å|§Ø¥(&Ëp2\f¤Î¬ˆ§¬ùÎi©Ô,i¹Ô¬äì¼[×pÀ¡M»ý¢BBBJBŒ……:áidú'q‰ózñjÐê’Òo] KF˜ÕŽòÿöØ{þìñ–4“‰ü·Ÿ4XV¦I)b“chKÆfÇ%rTšiD_ãÊw$yX-Å#¸’‡T¯4‡ 4Ä/‘¢Û¾6̦ ¬ «{LĹÆž!FɱÛXp[*âG<\Rßöû«Ç½ù•ka5Ìóà’ú̇eúq­sÚ_½ÓïÂÕš–¿×]Êú+Ü䈂|È‚sAZ%¼ ·©³nΖ~y±¸Ž@Wdɤ¼ 0VP³<#aÍ^"[˜ 4¿.Ë¥™l¢~*òš;{ly£V¯V.ŸL!K…¸gª¸^:´«ã' f"ý’ò\3ÜyL£ì$µÁl;sá&v?ì6IN=Ä€¿KÅ]¸˜ºwM\Òš¸˜”DªÍq‘}wgâÈ §¡{8²nÂÎurÚÒššS^WÔX··\‘J˘&T^¾xˆŽÝ \FÏ›¹m³œ,'[Uf>\´•™“VCGVá€ïß¡3!JpËÝ…ÝÃlÿAç°ù» Ç?‚¸k¯žwp˜»fþžò¨ÚÚ²²Ú†°B¡ªåB)™OŠ–nLÙ¦ô–+Üý4A¥FIÀÙþ’¨MÒªFÄ€ƒB»ìó#‹'¡®¾nQã2¯ºËSkŒt8¬, Rî÷œz×9|÷N·`ûøÜåêø²¾œâ“èI{úÂUi-ºñ ¬šNS¨Z D(d]éB6õW Ë’ÂvÙEÝî6·RÍŽŠ×jcr¸×‡GeV½²Ç0€§PŸµˆz`XX`P¥’bÉX+ûÿ¾žÌÊ/÷H"™êô”lÂã€Ý¸Ðpr®Á—pDF†>2¹ìÔŒäø)ÎD²QØ6>làœCdgÉ€·‰ÍÝש!ÈÎÌȦ5ÿæßÛðÞ—RñšÅ]¢îòÎɶéH)üOwÙä[¿6|GН—°×èup=p„]?òiÕß÷£¤_âÜ>ò®¡^S'$ªÃ(¢Ò#+¨ C"¥8š;VÐFé gæŸÃ§Ûendstream endobj 531 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2327 >> stream xœ¥VkTSW¾×„˵R¥Úë²µ½73­.µ>°Ôè @ñ ¾ˆ ‰‰@ž7†@DDF„ž"/ÂÃDjñQ¤­Õ¦V«l¥T§:«¶>Gk×ôÄ9ÎZsjpèüš?wå¬sÎÞßþö÷í’ H’¤"c—- ñþëIzÞàyS8Ýsèq´Ÿ%€„ˆËÞôñPÔö Ú:É Ifl)ŠTkL:å/Iš$>“%“CB¦—¼" O“é”Ò$•$6‰WÈÒ’xa‘*Yª–*e¼©çÊLÏkB'M2“ÒôÕº aÞ(ã%F%¯,‘éeºM²dɵЗ,LJ“Iz°NìùFªÓ4^¦“Ī“e:A¯«Ô­NÏ’Ò×›¤2ù…2uâºIÁÓCgD±ˆXL,!–ˈåÄ "‚XMDñÄûÄb.1˜OD±Äb6H¼J¼FŒ$$ÄH BLðÄQr,¹“|8 wÀuÑ<Ñ q¤¸ÙoŽ_ƒß¿¨D‰…ÿ:ˆ^LótËÀ°Î7^Zíiìi7:í&ït¡E]"OjgÄ·‡$¬ÍØ(cí{Ö³³¨ÍjHÙhƒî(v­ó­ÐTªÚÎ ˜¹u(œºß}àØ±jý"ëSü7«„Svï©q}NQB¾íntÁM~Ù…ê„|J”Ê À °ö›0âÀ»ã‰ïÞC,–â &"îÒŸ;Îv^<ûî丈Nun4þlK—)°Žéƒ%r¤2‰îÝECÑ )±8!)C¥à>Ê*Q½PÒ“ú¾%½ä11§O;Óyzî{ïFÏ‹x?ù‡¬/c‡›<Ø…jà+=,Sr9SÙ”ýÉÖ•@cjÔx<¿|k ¢¾ýôãêj'¯éÃDU½OÀ¨0®¡ÂÑ#fYüŸfD.øËõ›ß¸¿ën ‹c{Ûár“hœPb˜‡~D[$·çVÝhÝc¯ÛÒ>}IŒ~ùÎáß²­\Éb1eîÅ¿›û+vÍð­P­/!ù¸ÿÖv¹EžpϘ°¥ðÛ·äî`euñ!ÔiR¯8¬¯ÜÆ}¸É¾ýQæÞ¼+Y°šNU)ÞY(µž6²¹õyj åÀ¹ 3hœ5ÕeöìçŠSP/PÚtëбT‡¾†“6ëJ&Ô$•ί€Vz¯Ó~óf‘Ò`a Õ6Ø t+4Öq½˜N»Փ讞ª ž ö‰ÿ@õ2ÍÙÓý35°1ÅÛ¬¿a3õÖ·Šo~ìüºë€²3ù)lþ©A t8¸šžG®nÏkLg/hZNM Û¢ ƒ}5ø÷ß/¦&\Ð~àpÉþ6¶8­jîî¯éÉî[nò‹.dò„¡˜Ëq—±díh˜­j05ív”~ÆÚ‹j¡è+Ÿl\ÈáùxDŒ¥guÆÞ«ì†C.¶Ié‚ íMÐâÔ@¦y”¥sá ð°IjÜñä½h}Ëác?DΧ•‘ŽA$zÛï0Uc`i!“Ã(³F(¡ š¹yçÜökêk~¾³WPÈa ùá·ñ <ÙOJejŸ‹õÆáAÅ]AôULûiõÿµçÍ!}Zz‡ xnÅ™žóý9~”øV¡åõìÿ´&&þ]ëÝžf7Ù&ð:[ưCIáÎÂê2h jÈ`1Ee™²J7×äq%ù‚ò!¡ž’­Ün¤ ¨Ü}ÆÚ‹Ë7¢š¡´°ª¤¬jh “÷n¦àÏôÊœòÂÝ}BsÑ›ø×–üâ-PüL³Ê UeëòËêFäÐí2­6¥k¤ŽÄ]gÜÇ=wÕ7](õ¶È#G$c5—²6ƒ!‡Í5g$E=uNçõãŽßЫ{ª  ˜«Ï·XrŠ”¶­»¶Õ×Û¾ 8|!Œßƒ† ·jž†f:ÐË‚².£]Ý"O(ZÌÔ7ÀADGÿ3xðøQBóƒ^E¯·ßhò&Þœ%$æôK@6,†iïÒ–¦îê¹C_ÁE8²¶l6ýL:(@PO´Ð´r¯çöñÜÀO¨Kg,ûÙ"5Ó tÝÞjçÙ0‡…&NâV¿ãóà=ìMù&Ü>ßÀíNï@¡gŽw ¤ÛëAçYÚpŽÙY°­(SPt¶—ù*¨‚b¨,)·™9 ït]úÉ™cÏØË5TÖV[JµÖmÕÂø««m²+øuVÉ9u­²Bô„ðˆ`yUJ­žËÉܪ-$YÕ…ùs“vDƒ™þg††þöõOè-*6ù3«Û\®¶¶ãÇÛ—/OL\ÅYðûÌ DÂtiTâè±GÚZGŽsÏÞÆ§âîÿ<¢ý§ÅÃÿÿBöôæÊ/$ÊZãöœbì|£ZÍóju#o·76ÚY‡‡3¾9ï‡]xpŸ´._þˆ¾§z@öÄõ„†  xæR<Õ7 Ðð'<¼ÏúzŸy2¼F¢5h˜]9Ç´¦ÚRäšÔ¹Cãlµ9œÞã¾#Oz‚Dži㘊ƒÐzP[8|Ê–\Ö •^N§[óõä)Ïx‘çƒÇÌÎÝ`2º1½Æ¤ÏIߺŗÿ±-S0_îk|¹¶©¼¶¢Ä:ÛòÜh¥›¼tå %T¢Ï™GG£VÅ,Y4E;«ø3–B XJË¡°p—Å…PL7­Z=oVßY‚^Aï߼{5öd‚•½t¢ì<Øèïgþy ™?7­ÁÔÜl­ß[¾£b{ÛbsC)ÐÛåëÕYë“uœ6ÃT°#9ߘi´—äêBU¢;èsjÏ…v褯N»‚pÀ´™!s.¬=•ÉF§‡/ƒPzì­`aæ ½õó½k³\1µìL'×öåç®O»»] «—Å%FqøŒ84æäù3_}}ý§“q çÇ, åz©GQ>ú=¢þüã¯Ä¿×øåšÝw“go¿úæ´ƒöÊ/¸Ú›k[¡…®$Ær,Y½ø {òJòJY»ã¤EpÿÍv­’OßÊgqX2Þƒõ´LGŽ€µÝ…£ú«s0û’ؤHÿC±úendstream endobj 532 0 obj << /Filter /FlateDecode /Length 350 >> stream xœ]’=nƒ@…{NÁ Xvø±%k§q‘(JrX–ˆÂ€0.rû¼yk§Hñ,}~;k><Åùòr™§=/Þ·%|Æ=§yØâm¹o!æ}üžæ¬ôù0…ýAü ×nÍŠók·~ý¬1Ç8&~ë®±ø¨é«2 …eˆ·µ qëæï˜œÓÓ8jçá_%>Môãã¨/•q®ò ôÊ8×”†¢Œs­VÊ =ÖÊÙ6Ê8çØ¶Êàf^uPWñ‡ŽÊ`¶5ì”A[öÊ  ƒ2@¶ƒ2Àh•Ále8*ãœt@Á»°à1FC¸ }[gWI¾öTW¡oÃY¸Jòå,\%ù6†pú6Á®B_Ï«à*É×®’|†pú6½!\%ùš‚ÀUèëy®B_o/Và*É—-\…¾­µ\+úÖŽðü«ml­ž[”‡û¶Åyçîq·l¥¦9þ­çº¬6•#Ù/Ò2¸@endstream endobj 533 0 obj << /Filter /FlateDecode /Length1 5620 /Length 3612 >> stream xœÍXyt\Õy¿÷Ý·Î>ïÍ›}ßGû23ÚG#k$YÖ†dY‹­ÅZlcÙ–ecc)˲ªø±C¸ÁÙpÓ³´4““œ„s¨IC ­ é)ôœž“JhhÒ–"˜Qï›E‹mæó–ïÎòýîïû}ßýî _8»¶—ô¡û ¾ôMLÌØBx|Ï]÷ìÎØP€ö?ïÜ56ù‡‡Î ¾ˆ£wâÌçà>½wN>–1E#¾,Üu`"û¹ ]ScDzÿ^çsÿØÔ®¬ýd<0s8ûûó’ 0Væ›ÉÁ€/|¼¼|û4²áp¥G\Ð 4àg€¾ƒÓÙOÉô§ðÙßÑ@@K[Ó`SC~ãØ]{ÇíÅ¿ð¬,“÷R:à~|z=M{ÜED¹ yÜ~´ÆPy™00ä"°Pãs8|GHþv’ «Í§†,|–TšvgžYE΃?­Ó[T$b¬I]å”I©,zòY¹ŠEˆUËÏ$gq0s$¤TÀòA%«S‘—Ûц£å.ìTÔ©ÆŽ`¸ˆðx´åe1BX{$¡£²kbº5uÙ  ÿð¹‰2}~C^d¨)˜Jš+·oyö¥Æž¨©Ó×ò…îW—kýp¦nOO,OtÈù€£ ÷xGQoK%/‹ôì'`q{ÄšöÔt%ߪ¨u¤*­=˜¡‰•÷Éw(c Š„c„Ä #Áq«0P;‘ÆôΖ³oŸûÚµÅÄ–soŸ{àŸÏ4=ØñÈÁƒŒ†üÛ¿qhúÑ‘ ñð_~òÌhÿÿ{aiù©Ñ¾ïýñûû´ØÙûÕ+{ýd±£÷±ÏK+ËèeÌ‹„²>=Úœç,7$³Æz9~ôÉcg9Áe2¹tlžŠy{§ÚCÏÕô<þXçžf/:;v~mªˆU0Å(Xò¯ƒnÆP?tO×¾°*ùQ°e`ÏC+ï£zô (q¬$¿?ÉÈ"=ëòHvÎÙRâAd2,èËË¢¨^cµ˜ªš‡º[fº c‡ÿj´³ªn¬µTÁ*8’±lêÛûJ¯ÿ»g“›ƒw4¨3*4­Pl¯oö5ïnh?¸Å×¾#b±yl¬Æ¤6ÙÌ›P°íÞÞ— …õ¡æ­›íF{šy n-6qªL”DmFùh1Z½>ÍÛµò‰‡ó[››,ouVžf§ÑääÙ`ÛæÍÁñÅþàe1ÜwÆâMÄ\cl Âo¹²Ð¬õW‡öc.IsIU²˜P_’¿ Uz4'Ÿ>Ò4?YÇçm*K-mí¯˜•2q;FëDWADbVE¯Ó-êÒ¦ÇMç”$áEN‚bLµmÅcïŠ4L/ æw'"FŽ&x¥:P»­úè}®øpmU_}¾‚‘1èÛZ“ViòÙøøìß9õãã5³Û¨Œ|Àá º~p¹ÿä@¾7ßà 6ÌÝNŒæ<5…ó¾*'CÙúH—é « "¿½Î+ÐyFkÕ‰VžmYÚ1ñÕþ`ÙøC£]'ãŒÎ!ñÇ=ÑøÅD=f ³×ઋ7L9²Žvôuœ|füð•…–¦FBÎ(%=*™dæi|.ž˜ß…yk,Ň1Â%¬Å|–¢K{\ë¸72Hˆh!ƒ–¦ä³öæƒÝñÉÖb#§y´o:~àâ¡êÚé û¾¾³ð tÏѺ¡˜› ˆ€«íX_‘h•‰W j…ÜdbÇŸ?~ø‡'š3 óçŠÚwUH1ô­,§©c vMoi^Ä &z}¢âÔÉeL#Iœ&)–fD{Èâ ;UWY9Gñê«,ÖœÑ)°÷i4’†îólžÚâÙäU°ˆR ÅÉ9cywõ8£5 ^ç'ï±rIlr‰N¯`Ö2Ã#_î )Õ ÁpM¤Î¢ûÑ?€è£Þá±– ©³b¢ï5ì) á‰é©¥ñ«ÔYZ\æsxÃC'ÚC-¨ÑjS©]Ã%-ņ];J7¶Žv¿ë ¹…»ÛvÅ,è°Çáí/î<¶µÀ¦ç‹ìž"BF¸êkb·•úâƒaW¬²Üdj/¨Ûé÷ oê8Þ[ȱ®Ô íqV¶w;*6'Gªë ÖT Š ¶’˜«%\E/àêP¶NßÚt  í­5"Í(ýËgj€±¨µ$6—À¦ ‡‡É•†–[·Ï¶»L¹0ꎑ„w`[r17²¾´µÖí¾ «ùÔÊ2즊ˆ×íõx²î©HaÀüÃØÍ>…‚šê|é\õŠ˜Œ–Tç…ªð‰ë÷ʵÔY8‰½xA TÆ ™ «ºOqØmO¶8  Ã1´Çà*¶«r”¼çå×Ôä©'g{óY™RË+y³†¡t…›[ÑßÜ $Ãýæ>¼6×¼ éÙîg¡^æXÁm¶xŒj:µp3 °—åMn£É-rJuê¸_)7KD#FÉÁ?¤”·ÒÿɯàÝ2%‡pþs £&õBʧ3è` £o‰[Ù7ÝúÏY}Q¯áútÇŸÖ×§ NÌÎe€z-£;Õ$Šªfš$ö .Ñ4U^•!Í[ z›†i µr0Q¢)ìnkñößÝêX¤§ê&AÞ:‚pñAˆ“³G·u™‹‚¥‰<+µ=—7x^Ÿ/oÄÏÊ›UÀßèøŒ¼Ù ƒÙ)u$Òªù6Fó¹ú/ôvõÌ“‡|o´jæÒ ¾W\¶ÄöuµîM¸,õûº6ïK8áoöÿðtÛ¦{ÿî¾oÁ÷¹Öùñªðè|Ç–ù±ªðȼÔW¤Î¡kØçƾâ6sÿô¾âk#ÁDCÜ»Žhá™P{Gwáø_H}Eyº¯h$Ž7Æ+ÌðÝ»_<Ù¢q‡=©XNe付 Ü/˹{òb!±}á©#M'&k…PciêÑ­µ“sYÓ=Û†5év±J㥉‹ͱ¬ÁæM%‘jÏÍ‘ò5TWÙ”.¯MA"ˆÆõv-Çq¬®¨½"ùô­±:MÔˆ•É8•£é^yŸx£i]EC梕.@á"z­ëY·‚ê0®WËGæ;Kú›Jô2’–3òüú¾Ê¼D™%¿c[w<ê™íñn®‰ Â)-£9w´µ8/ƒñžm[ã¨jºk‹_m0é¼×'‹ÓÂ{¢>8èpçÇúj#c­ ^Ô(ÔzÖ¤aô&½à)±"A§;¯¶WâÒµò{bŠ|T§µOÞ~!߸Üës- 1Åjœ¡"CódÜv¯š§X%ûÅ\ ¹!õ½¼úFE‹ÁkÕ±G‘;lnŠ£}m3„*³’_Çû%’äø!½Ö§d㜌£TF Û9©cC/nÈË\¿¶VQÓ™­XëÜÎ3¼M4Ø´tÇÃédt™ªn(Þ\›mÂ>Ï­æåÑmµ{î'ܹ'ÿ»k´Ñ7°8’‘ÐDpõ[ÀhšÒ=¥ý¢´s 0(ûs .r‚¡BÈn$ש’J}ˆ”† Ý‘gR ÄSHiÙl¥>¢H\ V7Ï¢_ÄËÇc¨ž%Þ àuowÌF›–A3:õ'ß—v–$«’g8.9“³P¿ZÇpr†‰¤™ãˆßrJ,¼f%9‹`eÒŒB¸îµáK;a]n'¼¶ÆóÉ–l!=¼[f jd…€Ãîåä›orÑ÷ÃZÈAcêC §Í£“‘¿x”i›'¸ÔG*AAá%‰»Rᢂ þ^T JÑ2&õ ìÂ7DÊuêÔFæÆõh#óâí>Ê«ü~Ìp8‹– é5^¯cˆòcti™Ù©%è9NƒR?f5^»Ý­ã(ÑÿÑZ·ÓêÕÒ©ç4ZJ¡SÁ*’—¡!Ѩ¢ð¾\™,"® r +ŽÇuðÊʇð úúík¯ö&žáLA‡3ˆi5Ž ‰»ÙFNgE.·8Ý…Ò½0te\®B³Ba.Äs=•ºÿH-öHãã «o%ŠPº[͈þ~txtU6o(ÚSiuTõ”CNcÕ¬‚¿š¼þFjûÏZ9EÐ,µûõ7ßšžþ×_ÿjIÓ˜hõãØß ìÏ•™!“ w”„‰€?«_=oX+»£H!˜y³M ©¡‘‘’ÐX ¢UË{ަé·Þ|}7nð J®U¼/¾q^¼ÊidØMþ"Õ%­f‹h7ñ(uw¡uŒ¢ÜrvÓˆ^$NÒÏã~È Ó¹ F—Žƒ©/o+ñ£Ó¹þ2÷”*Ý8¦Ñ¬¾7ªŸCŽÂ¿‡I¢“x„xíGÏ¡wÈr–ü&%£º©Eêßéýú:ccN3ÿĪÙVöû<û!f‘y£¤Ã» é“YŠøìÑ ½ÂÄË£µN®uš•Îî°X©ÏñÖ v¦¯é7oÄWVðÕ%]±MioFPÛÐ0Èpv C PcVå@ œÀ ”@8``V@¥ÿÀÁç'ŠÝh~>XÙ0°î"ü%†þ-à!·ƒKT;˜ ÝຆÈ0XBã`;¾ïDƒabøÐK "Ãëàü•ëè;éç%z,IãdeúûKÄ+ø·.ÐM\.lŸ£žt„ÐãÀMxÁb œÂçq‹-ý‰CÂJ<óôS/Œªkÿ˜2“»òÞÜ?J÷×ϼÒòñrr‘ûÅ&‡Nÿ:½Â•endstream endobj 534 0 obj << /Filter /FlateDecode /Length1 13768 /Length 9179 >> stream xœ½{ xTUÒhsoïû¾%Ý}»³wBö&é¬,Â*  ÈЈ:*P7GÞ¨3£€thpTDqc~ÐÇùG32ó£3ï‡ô}unw at>¿÷}ïÝ›ª³Õ=§nUª:7 ÐA'p0±qJnHWÑ7ˆn˜»dβx»Ð @Î̽u¥?Þ†³Šó—Ý´$ÞT.-¾iñêùñ¶+Œðâ‚ö9óNMYÔ P¼;K`G|\wQÊ‚%+o×"·xéÜÄx[?cÉœŸ%Ö×ý‘ÿ–9KÚãm½“/[Ú±2ÑŽ ½lE{‚^¿@ÝÍÀ? ,½\xÄs ø"¶Çp<Ö/Šô#|djâ×T¼•ðT2>^Â<8 Kà!xû É»ðóŸ#WМ”t-ÝEEn$·™;λø'bbKbOÄöŠEâx´-dà‚"¼G 5Mƒfœû.”æ3ðjf/ZÏø+q/É#cÈ ¤‰´’d)YF–“ÛÉ(ÕçÉ>rˆœ!Ÿ‘¿RžÊ© å¢sé]t ÝGÒ3ôÜ®‰[ÎÝÎmáöqïqæ|6ŸÇç[ùÕüÈ8¹]ùÎÇ•%ýmýOöÿ!6,V»9¶!öZìLì Q#¿9ä!Ípòøs|ÿ{áxíãäñsø ¾FÿeÁq#Ç>Io5È÷xä|:i&óñ^@¡ü;ÉNÒC^!GÈkä8y›|@Î’o)Aî‡á]Ž»`ïð$ÝI£ô¼¿£ÿ›Kã²¹®«àZñmîãÖãû<Îå¾ä)oãóù)ü:þM'›'{L¶MvTvLö¹Q~cÂG\ó xqïÐ×ø n1쀉”ãþB? aòsz™ü†&“×pµdn"7‘ÖÐr äZù°*¶É¹@­`T´²9èVšÃMçÓ8-¬Äýt½—¶Â¯É+p™ŽFK»•;AwÐÙÜ6þa¾‚|ëpM :ò=TA©@݂娡nÿ.›Q¦ä®È–Pxÿ•Œr I(÷™AúÈDjGi•Ó ˆm#éÃr îÀOÐòéPÊŸç6Ò±ô3ì[ [ÈkøŽ‡`1=D~…z)Åý¸‚L$Û¹|XK–£4Ê`}t  =Oƒÿ&wîÜ˨›:xNGçÂiÚŒZ˜é0²ít l ]MúÉx‡>%¤ûÝW%WúH77ºÉeþ8œò8Ók(Í<ô´gÐGLÃ)pih5¥ £Ùhÿ-èlj~Gî ‹a!y‚û/ò­‚Fhç:h=y,ö_ŢĢ7©‘—)A–%óE¨ñ¯ ­ñ&ùþœì.VçNq—ÄfQˆÍ–écga Jg4z· ¸—FçÄNf‘I¼HxQ¼vÒ=üYÑA´D€÷EÜa±ý$LRD?Y.jÈ$´ðYòçû·òø{øUü›.£×¼†'á÷MžÅ¸•Žr‡Òœ‰¾g!ƈ<(€b|» ¨F¯4Ç& èO[ÑK·[`9zÞ§`tc„j@yÌÂçæÃ"ìïÀu;¬ÅýlDðüÞ§/Ч9®§¯Ó[éBø>åÞä"ä8Íßϯƒ)“ˆWŽZòásÅS¸Z&xÐûá.E»¿ψ¿í?‰óýyX^ _Ëk É÷¼›È"US#•#Ãå#ÊJ‡äçåËÉeef¤§¥¦‚ßçMNò¸]N‡Ýfµ˜MFƒ^§Õ¨UJ…\Æs”@v]°¾ÕMkòiÁÑ£sX;8;æ êhú±«~(MÔß*‘ù‡RFrþu”‘8eä*%1úÃÎÉö×ýѵA/™1© ë›jƒÍþhŸT/Õ7KuÖð×9Ôú£¤Õ_­¿uAW]k-N×­Q×kÚÕ9ÙЭÖ`Uƒµ¨#¸¬›8*ˆT¡ŽºÝ”:d*êÖÖE]ÁZÆA”K­›3/:qRS]­Gšs²£¤fn°- Áê¨!$‘@´LT^UHËø²· þîì#]{ÐÖÒΠΛ3³)ÊÍifk˜B¸nmÔ±æ‚óZ'7×4Ý7xÔÃuÕ9úY³«ë>tǤ¦Á£ÃÍÍ8>KSë[»êqé(Ć)~\ÞÓÜ%÷à’~ö&ì­âï׬c=­‹üQU°:¸ kQ+ªÆÝ…É«…·;r@<î:×Ô¦ ­ô›çÔ&u[¡kòê½®ˆß5t$'»ÛhŠ ¶[oHT´ºÁ•ö«cRM"gµ†ÉW%KGÁ1hQÿ\?rÒÄw*e¨½ºæ–"^ÍŸŠÎC,ŒªjZ»Œ#X?{>*K5ý]ßZ@°ï›¡=s=òTãwÀªÌN®šŽÔ£¡P4+‹™ˆ¢uŠjlÇÍjAø‰õŠÙSRqí±›Ñ¡¡íò!í!ìi»8d˜O£ Sgtu©‡ŒÕ£êêªúë»Z»æôŠmA¿1Øu´®eu­ínðDë76ãK, #ÐZ)TwÉúIݲ~ÊŒ¦F<­ŸÚÔƒ©MMkussÓ‹)ÙOˆ ñþ²¤¡Á‘z,$€ÑãnÌ)!#pO˦cÖM%sâ99fáÐ0nò„ISB5KW­XؾbBûm§ŒÇt‡Æ'Œ¥Üçúup  h¥HU£0Bޱ±1fMÆØ2 #×th:ˆ!äw¤gZa¤‹R±WŸRÐÉJN*{T…•U¹ÜX†°á$³¯KôpàC\‰Àz”Æwp‡ Špá=Ös{bÏAì9ˆ=•\/îe.½o¯+¥àÛ*7·DÊ=ÄmÀ#›•(g'ʱÌÂrs¢ÜÄmè)÷ªTØ&ð-bâ»mïÕXp@ª K•m=Ûöb¯ÊÅmG®¶#WÛ‘«íÈÕ·ˆ κ û·aÿ6ìß&õo"M%d&¦JT¶÷쉬T©¹fîÌ|˜›ÇËéÜ =¾ÃU­Ü4œz„wpS?(áÙn”ð:itT_*Õ—JõJ©^™¨3œ;û$l`˜›ÌMÁ<ÁÇMâÆJåD®R±lÄ6+'pc¤r<7J*Ça¿Ë¤3c9–«—Úc°]‹åhl³rWßSëË«Z†íÙ8†gjŽõ×"µÈS- ‰õ<ˆ°áœÔ3ñ:„“œDI¸Z¼kð®âªð‰ÎÁ‘p\ïJ¼+¸ ‰´#G¸°ôŽa¤ ãJa”Ug£z0‡EPpaÄ~®ò"Zd8O6>—|a^Š'Ì­|˜{m+–þDé£0ëóq^º¡Çë‹T©è>Ц“‡N"œC`OGa¤£0ÒñÓñùt‰J.Ñ}‹ "phDé8ÿP™ô´!wÐ,¬7{2°•Ïd möžCL¤'ØøD„'Æ’1$ã à\ä6q¥T3 öqª2ô¢|ÉCÕp”{#ÒM(ÍM(·MÌB(ÛĹ8R™ xa‚Œ;€w&ÞéxgàÀ[ÀÛ7jó¢ö6ãý Þའïxo@mX÷„‡èìâ¥ÅëŠ,~ºxOñábÅ!:ïVÚQƒÝŽ^ÓlRº«ŒxÄ™ :ò?Þ-áŽHØqÏÔ]˜©;6S·u¦îÑ™º¦™º 3uõ3u¹3u½¤-âé> é6‡t7„t%!]qHWÒe†tU&<,OüNÂÕ.p@ÂÉdzT¯AP¢Å“ô}¾/…^žôøîz•XÜoÝ/ÊYçK¾<á&_v¼'-^¤¯ò8L#»@AB‘lÅqÅlEDQ¦¦ÈQd(ÒA…OaUš•F¥^©Uª•J¥\É+©”Ö^ñ|$Ä"‹Und…œg˜—êFÊpë=®U›\šCÏ•»B×%¸ÍTQ•ÛE]nžq¬2Ëv£LŽÜªÕÈ4òk@‡MÁüìA2~€ßï¿a‰Ý!ÜZ)U wiÅEÃKÌÅE4kȽÃn¶Óu?Èíß:bblw@ëBn“ÑÏ>GF¿…Ü:5ØK1æÐûOò'ð\¡Ý>ÅDÃçæBn.&¤¹&9ÿèåg¼n·—oñ¹\ý'‹ƒ²¾Y<ÇßÀuB”`œô‚âYß Ã¸4Eª¯œ_i¹Í}«§Ózûaë£îŠÖgÝ/æîW¼¢ï¶îsð¾­¿”oSÉ"Ü“¦GÜôöa]ö {A¿sØëù景ÌôÒ#îÔ\!55 2ÌÉGf‰%™„+Ôª²KzÉùÈ ²>Ô…§Q mÌ^–Íeg–kµÖíF!YÁtà÷ ½Ò \¡Rhf O {„ÃÂ9A)¸Kæ r6¾Tþ´ü°üœœ—»†gröb’,ˆ„Æ÷ÿ‰©f9 …Ç÷cNÚWÙ×g.ËíËmÁZeøR*ÉìˆëÊ\f*cÿHwãw—ŽæçACÔ5¥!š‚‡Ùàÿ EâE(Fp‰—öš•Ô¥ÒÕ -Ë‘Tƒ¤V$=^$±ˆGØÈòÒ"ÇÕÏLÖQ\” \µ‡¸›$[–¹4iÌfµ” çš^~ïñÎ4b}cgg[·_et¨õs·O|ºg™Ïíö½^þ‹1/ß4á¶KÍ]ýäÖ¥k^2××Í/S;Í&µÁõÔÜþÓ‹ÙI~e26–O·`úlv&ÍAÝOGKO‚ ’Ò­³0]iŒ¹V£Ñb è’ì¬mqåÚ\.»-äUpDãOÓ¶hzÉÜýi‚Ê/¬E²¸$<+TšdÁ€’§rwVp*hý6kÄ ª4X—ZÏY9«+sÖƒÕÁ”pAÚ+¸M*+Ã.ãgŸ±ÏuÁyia°üÿUÚ„2"S©Hž&/eTÆ ó2ž<—ò29 yÅûRúQÙÛÊÓüYåÙ_”&;ŸO d#55¤Q3Æ{™&kQ´hæ‘ù²ÅšUôvõíÞÕ¾û½}¯ö§ÚI¯x±GcÌèÿÒíµ3½2å-o&&Ôج€Æ–Ðc¡)Q!L› …‘¬'>ê%òØ?öŸÝò:ÛxË—3ÌýòÓ‡þ”ÿUÿ©7bßýþhìâÏ9Í_áD]9öôÿø4jg-jg'û­,™?iLÖ‚,ª¤L%zY.‘É( (½NÖeôä:<§#àUÛª5*fo† µ3ù‚Õ ZUÁ¼±Ã§òw²ßWâÎN:ÄØK6î euÆÕcü~yŸ´QPAac˜)Lj¾ìþ\bšùµ´0½4Dí µìÕcžÊŒþš¦@–øMßš~wOšøÕÞ 2Åuu×ÃJ;„I”9ÆáZ —§q£øóï¯^ý~ÇÙǤö²}ìã{ôcþ«ËK˜µÿæØêó·ýìÜšcäÓ¸lwœ=»#.ÛN”m.z=øá½ÈBµ}«Ðj:™Î¥oÐ7,o¹>5ê:ëùOç—¾ÿ±ë\IYIE´Ô;Ö3Î7Ó3÷Գطֳѳ5i«÷e™a•ý`ÒQî¨ùxÒq¯\ùºÉí÷c1% /˜4Ú©îò@–¡·î%_F9)ßa%K­‡­'qsðV—µëÚæX>¾¯) ï‚ä¥PÀá~ÔÀ³ï±[åh¤û»ä4Â"ÊŠ‹-WÁœŠ\Áç\ù­ýËçg½[eÑƼïîü8vŽ޽KÔÓ]nÙrÚMžzæÍŠBƒËd2L'žã/£-ÿ÷^ܵ‰">àg eÁÛ‘Ôˆv¢¬Sv·öÎüÚí¾ÐïC§Cj‡Ò Ò3ª¢aOò{)ÿ@`UÊzI$â&h¹)HmÉ’ñçw ËqÊUJum1¢.lâwŸ”Lóш.×±-³½gãm®âUÈ;àŒg—ZÂÌFÿ$ÅÙ0Ö+û/HþŒ}h’§Ãñ²e r:œŸW³:¢Ï yP¡Ù>y2}„¥4wÞ‰ÁÙ•Aáº]˜ˆÑ™3D[‚–æig÷/eøí—~i×·ÝWhsZ•–ÇÜr¹_ÚúºþQÌ(Ù^§˜=®[´Ý®´›Íα¸nëa>ùç±µüZ´Ìt($ÞH~u™•žN¥~#\H½,\J‘ßœ¹$gnîÜÂ5º;2—nÌì,|*ó¡Â™; zõTɼA›ä T2™R à å;ýF‡u©÷nÉüê[ÒÊr*'r’‘ì'~µÚ¨Ú¡Šª8ƒªQ5[µGuR%S¹‹‡ ÁÍÁÁh?<<¼䃮¢¬9CŒUòáñÆ>Tº‹¾Ê hµ*YÆÖ7Ôc´\ç¼G¼nñRO–² WügW ½ØÊVæ±"S[È:sì¹èˆK]ñXJŠ\†ÉªÐÓ`B]fúÅÌ‹Ðâ"saÁ`×ÁÝ÷Æ)Îe3Çÿ•Uÿ6ö¶tû}î¾|y÷‡÷½½iÓ[omÚô6=ö¤ä1L­Îž•™’“Œ“Uuå!û÷ˆ5<òΉ-œ8úz÷‚]f£èºHVÀUàŠ¸&»æºVº~áRXtÆ&+ÆR¹VÕ$“´ö$×£6Œ¥Üë´—<òR’\§U9DfãóS!=ÏËü¶F+±º’'­‹›9‹”Æþ0ËY•ß÷ 1íÁ–±‹-×Y±0`ÅtóëÈXæ(ûìÅÉØï¼·Ofú䓨¤+d›f‹“íòCøfVÜåNh‰µÙ:lwÛÐ<´MlWã>nb{Øì´=j2œ€[ˆßd469£Ë5˜{Æø¿áúG9~h(¿gü8÷k1“ñjC^㮩§Y‘°a¸¡T_faF"†CÊœ¦-Ñîóôdó餄ÐiImж¤•Š•I²EAR¢.išB–§>RНçFõ#FŒ¬ ·X—×o&Íï™Ï›/šy0Í3g®×›Í}À–ê“B0Œ¨÷>o µ$/ÞYh,¤…õ¹……y¹’úël?WCjê+kj"•œ\¹7mXNFr’œ(²†GÊ¡^ž%pnA¥âÃKJRSmjÞï°G|ÅyöN;µ_IKöúÓÓX;­O9W* ×_YÁ’_¨8\q²‚«pÊÚí”ga%¾Z 60 ‡ãû³2Œ[4žõšË`ðFÛ¼Õ²üúÑn9­™Šá^.ÙkO)ÂdêÈ^Tžï1¹‹Ø´YrÄþŒL§K­åešÔL>ÝGdr—Úá#²,qjÝÌ5£o6†CèŸï¼ZZÐux®£J jñ¯À#(ÄOq­Oˆ§¼Y^Ã>â(î yo¼dœô`)q@Z,6) —òŒk‰wÐ$ù ÅжbPÇuááÏ7/®jJ;FÜX2j³Ôm ‡Í¯ª—ªù9Ù#k¤î/ŠSpmÓ:êêëëÊÇÍèßϬ™>™Z×ÞJª?T3=9s^¼q-\ ¯y³–0Z¹dt¤ÔlçíV‡;NŽk>¤ŸÉþ¨øP#¿Y±ÐDÛi;¿P¹P½H·ØÔn™ïPÚÎ ¨ð€¥Ð À¤apUJ¥Þ!•­8 ÄyЊ®¨—ÞqšñD…dòÒ,ÅCÕIùyùE¹LÞK¾ØëDKd‹hc¡¾þ–å!V¢ûgV%9yÍU'oG'o/í3ZõVÇAñ <}±Wç5y¯ùsÌ®[€)-¢±[žJ+C¦^ñûˆÅà­ÔX)Õˆ aÿ7‘d³¦RaÕ˜q‘ÝjrTX²X VFq4bÆŠZ­5Ⓢ(gð…ÙÇ‹¡W3aÙü@~48Ë Çú0=ÿ+1ý=±Lû|ÇŽÏ=Gb‰éðbŠ]|í—ÿqî©íçϱ³Æí騛TLwr"•ùjCY:BqÎ$2¶èæÔ‰üfÝJr{ÖŠaš?Ȩ?Q|¢ú4ý“ü?É¿T+]\6w»b#·•ÛÅÉíIÒIÌ•›ìr%%ìq¤1âpª¹ _Ct™¹†r[R9¦(ú\A£ÎÈ^¾òTyš`P¥»0ô~¯!¹1yvòÒd>ÙU0ø8ÆœDxà0Ö–øÅïëb?~*ëÉÐæD­ç ÖCZŸ0­ç‹ìN^Õ¹¤q4bc;eWìX5°Ë®O†ž®v­ºãƒŽXÿ«Ÿo|‡m¨ØÒA‡¬§N=±õôé­ŸæÚ¶Þ8såÉûcâË19ÛNì£_ζSláC'ßÛüÐ{'1zìdù,w&‚¶ˆõ=ÉV5ª™W›ï7?&Ê¢H’>bh|Ç‚>_ HòØÒÁ‰y¬ÊêtÚ¬O(•Q4fLHÉÈHM „4z«ôG92…ŽXÀª7ªSRË!$WW^a+÷Ê“’p8+FŽHûˆÇ].õ•øÀZe’‚*‹ÿqDâ^£ë5íï+·©“^¿‡ø Ô⡽Â:]îÞ€=œt-Ç“&¦áRœ-E¬Â¤ÜЍ”yg§Ñ†-DµÌ×ZÑ×Z5†Ê$6J†½Ì‚•¡Aî#ôqÌ6`mé‰ï`;»g0«\újÿŽÆÆ˜[(.JOKI‹\ãî`i¬Ó‚6%/|ߦ åõy÷î©3ûÝ7ß\§´é˜+0»Á­KŸÝ1irìÍõãNoy‘ %£¥nöºí®pziY¨8œ‘d°8ƒwŒ¾ù7í«ÞíÝækæË«\S;!7×_´ ¼xË?ÆÈ\Î? Ùp<’rÙCt·‡>«Þ¯þ½ú”ú‚Zv«þ^ý£ú_ëßМÑÈJ¢`„'+"6%Ï+”b´ªl&ƒÑd¶Ê\ÚÌ^òLÄä-OIQ”r­àÒX×ó½äùˆ5;[©ò§ o@’1ÉŸ´,ép’ £Å—{sXʇFtA:_’> Ç“ƒ”à™% ºÎa³³°Û£ÖhÜ*¨=ZÄÏÂÒÇ®2°ÃMÖë?'¤=Ûmä 9&9âÒU˧½1ܪ3:uþ,ßòâ6) bÊàÚØæîL[¡_ç2tÂø®U4—uþ“19ÞˆrlæÚ =±VÍï·Ó ;q+ *Éks•Z­J0Ä?zi<½ÒÖÎ’RïOIütb7XýB9¤«ÎrŸ×kPªÊ¹Uà4~?€ÃÞKŸ‰¨2&¿ò¤‚(zÉ×{3F͹šÔHérXú†/ù[¶Yúà Ï[öcÉðºÛˆšD˜³õ_õ´(w£ÙÂËe©Þä³Ü—||ZÛðU°áö³cà4‹_$¾îHŸÓ‰_ÒÍðkͯÇ÷î:v{dŠ__0áÄNI ßJÉçíÛkšVQ¯¤ŒM“½¯ÆO€4^„wÉ;t7†û3ÿ˜ìÙgò|ųʪ‰j—f¹Ö¦eÿ BÉdÅ”‘}Zt#Èÿåo›~ô"ô§Óº8àe W(U ÐhA§¶qþ¯æúsñðŠ„y&Ÿ‹«DqÃìWò0ðËøÿ_'ñ"öj P‚ kji„ýÅû¿&=bÁf‰; ›%úŸv)‡6/ÂEqHGâ¯Ýøpm!9XÝ 9°:á#ø9¼ ‡ðôþöì„“ð0Üø“n6'rØÝsp¶!üRgâ™ÔIÒÿF½®yÿ—¢â6ó—•ìWªþ³!+endstream endobj 535 0 obj << /Filter /FlateDecode /Length 10169 >> stream xœå}ÉŽ%ÉqàanEæ6·w| ö ù¾°ÁC‹hRÄQ,€‡¦4ÈÚ²º»*³X ©âúö13÷7óðxKf–ÈÁ õ:2ÂsÛ7ÿãNMz§ð¿úïó·OÔîæÉŸhzº«ÿ<»û‡§Oþþ_µ‰ðhÊ*ëÝÓWOÊ7z§½™Ò.ú8eëwOß>ùnÿÛ+2‡ìöŸ®jò9Çhö/áiÐV缿½2arÚúýGx¨rö)ᅦŸF+üý`­÷¿Ä‡J™÷>´SÚÿ Ÿ¥à|Ú¿‡ŸV…°¿»Å™‚2Jï¯?ÁS§¼Šû¯Ê@>ÿÇ—ø†ÍÉúàO›ØßãŸcNÙïl_ý‡ÒÁø~}˶nÞÒ¸Êhãö×eàeŽú)[Æ·ìÓ÷´“áƒ?gë<ào“sJaÿOªä"ÎBãå÷¿¿J€­ýþúfµÃä²Iûº@gƒÙ_ÿxe⤓Áóho(ÐÚã{úOpî6ðc·!Oþé‹'{õô‡'çôî`ý”BÀ§ß•½ÀJ•Ôóvþeº¨4uÙEØÍí”ò€:„.J¥¬÷/p»þÏîŸáòªzÿ†)i'Æø@³›úˆ³R1†º¦¤-@^È02œ½‘r>Ò†P¦ž\´1íoÊ,0vE±™é9¬DìñnA§·ìä®ßÐØÊ˜Àú/ìÊú€ Ç›eö °âŽa;®BLÉ$8HÄ„”ÒHcRIÓŽé7`ùu¼‡Ã RW¾*§‘`dNÞøús‹RʇJ':iüí´áëøp…(gŸúɾs?§I¼ÉAÇ‹2Ð?þ Ñ ˆ:•å¥`«< é=1  ?7/Ú%xáY;¾CüNkrâ;¼»­s# ÒúóÚNH°ìãyEne —àteíþOøË(c$0€3|.ùQ‚¦Óƒm¦Û.¦dÓ5¬r€4öK3@$ÈÂàºý»ëòÖæý<vÇÀà Ñ·(þÅn!ïˆ)?#†5<ýÔc. Ì\FÕÀ€½n_]Ï Ó’°Þ4*¼[ó¢à’/¯”ÕnÛð-xlt0ø 6;Gèe ›¼\*ç4D ùœ]hâ\p*‚Û3D €&Xœ*D³SNBt¦þî QìøîUû-H„: râåØFkžÎ¸~ÍİA1°…Žê¦ ¥Töþ‡}Ðje¥©©ÞÍ´h _-„C~ûôÉoŸÇïÞoë:Ræ-ªŽ¶çýÆrÔEÙÙÖFêÆ¯+IÁÛ"Q5°tjìþ”('DØÆÃ¦2ÉEQzßh{À¢ÓHX£¨·ft£øL®¥ÂãR@ÀH0 ˆ¯Ò@Æ“1YNð¿–Cý¢(‚UèoŠÄ7ËB“Ȱ@ÊÔ¬9¾(à/Q¯¶ 5Ùêh6‡–xNc$‡WW³µ¤e…?\5>§ï@L é>Å•Ht,¼Æ&ˆÕàb,Pê³÷vF.8o؇|Ï×E' "æâàM´‚#pMØãÔëE[‹!zÁw–„êÊøêÝ e ÈŽè·æƒH*TÚƒñ–à*å³àáB`ÕÄýMÑ —f!_I¼‘V/¤[ýCÑ΄ {—¯÷Ž*5G?QeªJ0ÙD’ã#“.Î-©×M•C!Ì{Ú¤¥Û2.ʾªq» ònƒwûŸÝ‹Ö“Ú••$uï¦dÝ.$û(8nʱù³ÈÇù!»viRÈÇåIS†~×éˆcúÉ¥¬ÂÌ2AÖ,6DyÝkþº›€“êëŸ ½ÛÙè—Á¯ðph!zÿó"k• uY^n)ƒLNž&"ÌGß[$j¶A×o"ƒ/`^´Êï%ÏH~S˜²óöÅ™€"¢}0r÷`~W^…½m‘+ÚVÿ½.';;þ ß{áWj(¹<,0q'ÿÀºþئe9úº1ÄñY€úª»ƒ.ŠäæAç(öZT£ñà.k’›åƒË•‡IÕÖB(Z8üЦï¹òŠz¡Œä)ÖÔ·è .‡Æu릔~ dwPbÊÿåǹÿ·5'„ÏÓîæRSØýׯžèäÂdAaòH8ïÞ>ÙAºåÉ›'¿Ûdo~ÌÞ2–ö¦§`saoßvúà,á]ÙPgÒ­ ¦,§Û5Oè úØ©óÛy›)üPΆ£±Íd½ÕF`ò&+aËÖ—ð0ì/å7Úø ø‹—Qm,g hl“ ù È=†‰,ûÑ—|Mõ, Ô•g gí@ûÖåûÿÑÏ&u ˜ T P÷œÎõ =Ð1¬ð <à<0 ©E]ѸåÉQ2õ†®ÁzäÌÂØ/¾G_¦c‘ ‡N<Ь™G+}ü¹zW0¹áu ×ó˜Fñi[ã„ qh€Vœâ¢}¿ncŸM'Ü\+ŠhΪ“ª}-s¤ëŸÚlç\É(Nzë“å^UîÇ|_"²fâ/^O§Œî¾}Ä%e‰óòžµxKqô“øûÅŽ.~ñr°7ô.ŵ°ÿ ýݯðˆàœu‰¢ÕPÐm¿vaÔèÁ\ÕIÿ}‹*ܵØw#Ð& g°:çµSº ìÄ.wßo`¸ i÷7fò¼p"ö ò„˜SœÅG™§zA#sžó… zJ .ïÚI¼¿òV'~<ï®<|ÊŸ| UEŒ¥\·§o? …$ú|ßðë¼r.m¸B¯c¬ùP±žÍx÷© ¥‰°¬ƒ„öÁ‚¥ 'ÕEK?2&SQ.Z]vPƒ¨·+£ò PÉ@X@45Î5ò9?'½)¤ Ø’6²ÅL¶äºì¨6Œ\ÍLp`ÖËÂÏuÿ•¤YpPí¬a}Ýï¶ÃÿäRê Ç¶­{Œ­˜“[IœW[Ñ!RÚÏðg ÈÕϺ§åçñm¤ûÇÝõ–‚¦à ùvaØt›DqèZµ†ÄW7:A;a—ö¦ mG ¸ƒZ#Ë¿è“î@-‰Év¥R4À©(“«ö¬M,~-± >øz+·Ö ¹A›èÝZ‘]::­i¿g¸ñNKŒÅÙ!ÙG%†‡DÂ÷My‘‘÷k-åÅ #cÉòÉ‹M[ÏcŒÜÔ;C\˜ãâ"M¶¸šK\”$•$ÅÅÂËQ``fŠ9–IoX`(ë4T””…1µÍ¡$ÁÈ Ó.Y:©¤ÐœL ^.ωÂáHn0Øû¡Ï ®¹eCOVÂ\3wŽQæ­¾D*è´)ÎÃM½al ¹3°€ÅÀø³¯Ðòˆ«´þêÄ(9cÚ›´¿f ½LYÚNÇ¡•Êû?6â/2yNo'þŠJð0@ÂKºÓ p4 e–‰è¡Á¿•8^ÞÍ;ÖãüÞ9gËè>‹˜¾s*Árzãœd½–Z÷²ì iƒÑÇÎVî³ ˜‚±æœÅ„%­ÿV³lT #•ªÏQ·ÔG ìzÄ\ȳÎqŸá›ò-è R÷l*b)Œ š…ǯ<8¦{ÂÂ@P˜¾á ú~¸Ju1Ÿ™ûs´5~*e>S0æ7Ä–€Üü–ðÅÊ”zÀ·baÆeÀ¢’8WY™Z{Sþ~óÜ^ Hœ–+íý°EŽfåSìTê+÷MüÖYy·ê«¾”¼Pȧ]+–Oæä °Tø”…áü¢Œ¶,F*ØÀ)r>¦!4JKEÊœÒ]ÞFƒk•WÜêaèK’œþF5(/{½yY°˜ŒäºËµolù«‹Ièj"ñï*l;:gðS—=vo”yü¬´XòGÉ €Ë$Bb7ÕeÃ]ês,˜m¼ÂŽU ^ÆdcY™Ôä釦Šäç¡Ö¸çF*ö5׿ّ×ò¬<…àåëä ºnðå…›EX˜Ô˜eWœ¿_÷«[ˆ¢æk¯k5©Ü´¹\Þ;]Qy}—¶ý/TZ#%}.>ÇÑŠ¢ó“ïY@뎩òÄ `r¬¬êóÔ •9Ýp"èŸÊ2ùÑÉÂ_²caš–†ÞiÔC¶gÑhÒ¤0QìlE%_û|Œ\·‘…9§iÖ×ÿþøà1OÃá°ir_£Iªo\­í<¯)FLxF…9nó“c ã¼zs 8¦+7Ôl‹M¡X¡h°šbiŸïR}˃} ­Ð/šüØÉÑ,òþ×NŽ~ [ñ2-Üé§Ç)Uƒ¹ý²¬ÓdKâá1?ƃTLcЪälNp¹ŸôÂì¿…¨í±%øÈ§†Ù¹ÖŒƒh}l"O¬(¦)?a3Âd,Îú"izж•L~X$ÛÀå(˜:ûxzJs9öàŒ”ù(¾YWÿˆ¼w=yì+nCŠžMôصI¦%_¦Ì7óÞÕÜíë¿a6( ¦Zž\œ§±Y Š Kˆ»Ð» Ýu… ºJöÉOëéÆá;àBþ>áÄ•sX¢Ïœ„í¦šðÚNàrÞð-·â˜ÇjMúÜ««!Õ Ã{,? EïÂBçÇ©â=³lƒé‹[Þöã-û±Û_±-’ –½Wè±õ©Šè-Y!ϯfO®ðȉ)BÇ÷–*UÇ£ÝQòL,;Œ=¶+ÃÐcgšÍ~r(u-`š˜ÐWˆ$ìC° ³YðåM#—턹¤¯y ì»fR¯“£–†ÞPlöZ–ÜÓs›{£’õИ>^u|¥°éÞŒ…“®üÀN ¤\ç–ªŽçK©kpÔÍcåòÄPZŒ‘Û÷Œä2<ÅPÐt"È@ýû>4=hTq$|0‹ˆ­®Kfù±•ÏZnËT%„[jÕ™,?¨u( ì£qj/°$¤ÌdX²J`O Îz ÁY …{ÃË®z’ ˆÞ¾Ïë¢çYouëxYÐä:§û®YátÑ>³¸^6ãöv^Û1G²Ž’QhˆooÑ›å}¸ˆ sÄegºQèòš¨éùþŽcÝ¡ ^ÎcjzŽ™ºyÌÿºnÅà·cÎEžT?Ž´ü9ð¸ŽE{׎?¹/wÂþ‚)l¿iPû¾ìaûJéÍñÂs‚~Ù|ë/Vd'Ú{uà\0[(€=‹Ây³…ÂÈõ¿Z^æ½"V=“5jx¶´IùR<ò˜Ò1)GŒhf¢ôô'½g{ÝwMø†á]Dh`Œ§?VraoÎkÊØIÅYÆç…$Ï?Üè¿·¬:ÎþJÇfþî¶&%ÀHÑ¡=®¬Âë®oßZ꣌Úhg6–mE GЗBßÀæS£ÁÚèü(ÒÄ–ë“+¬M”;=‘®)/àšY\Y\*ϲÚ{®´3a°‘|°’¡—W l¶ÂÐ}ô¸)‚%융“ Õñ/WKu Y\*á‘ì¬^ˆýAêÞR¿G€¦æ^î @'Yd° ýÉ6`9›9)û¹<$œQòF ®)Õcõ² ðÛj˜ Ðɸ2—•œñ¾½µ€t€Få6~µôéÔ¡•LT{Ýlñ:¹íì„›¦sÄ8 oÞסÚdéx2SnÙÿ82 :˜´úóeûù¿ÛÏÛá ¯øÏ’h–Èö6kN?SÔ`6X¤®ÀØ $Ý7ô3bŽØ?·Ÿ¿k?¿ªÀ8ÃÏ»ø ³x4yz6•“MéWú¼¯?+ì×kW“‚ô”4Úesºx# ® þâ>‡ËÅ~ˆy \/RÀ¸€ñt™p†ÛZ§Äià¬áf+ÝÐàÙ‡¢ˆ‹ u k;7]Ëû¶Óä4yø ?¹â†1Ó]zbÒÑÝi/ä'?Á³Ìõ©Î“v¡ñíÑ\}øKó%ð…¢) C¾¼ÿfUù6—,lôeÔ^H(ÀšÂn»Ã]¡}Ð 2wlt¡{Qœ‡ >K_fÒÍÐA çsÃ5|î"Ûìð-4dÐ"d3ÖbôÊûêQM}~&>Uꈣµ³Ü¤ŸÍljY~?[œXÃáËbé"êÅi7ö]õ5{Ù‘yÅÏ€×ÐÇw;£BÈ ¹øvvcÿæjÁ·_0çJçô—ÁœçÒnø¦G¡ƒSÇì¿©Îo›6+J›ïîšS$Ã5f‘¬Ôî„þ'ühϪµˆ8rä­¹oID*—–ðç$/ê¼ ‡?g¥Î~î’ô®×À™Ôù É¿N?6Á.NyŸ{ÓU¦œévˬåè~ÙôÓcúÜ]ß½®¹I0nKC¼^R?7 mÐAiŸ^’ØrØSÖ#sÝ·[È pÍzz!pû8w²Sf…Y=wâ9Å%wù({Âl® þ¤1s‚{0Îï+‹?¸€“ JÊOæÿ³Vzƒõì[ªšÞPÌæ#Ié˜?ªÁeÇ\-ühäo–¥=wîÛÜßUzgÐÒëÞÌÚp?DY¾Ûò-v^cCA4Óe4œKÓwi†X¹˜fÃòfvݘ'’' mUxㆅ 7ê>Ì«NÅCð;êÆ¡;Š¢¸”é}½ð+ùZê«0A›yø¦Ìéf–ƒˆRƒX°ÎMø•î´ðÅ>Mø‡Eœí':B´¡pÏ¿_ ±Í‰Ò²r¬ßÃUVºnórð¾Ï3-Ú´Ì à rqÕüîK;å Ü0›Y!!Sˆ“WsÃ7¦Q°› ˜žnlîhnXß*d<äÔírošš%¢V§îdbd&¼]·ÁÉTéÚs–R=ž^mä .vÀc‰øEUä6ÓÔN†a¯7Ü¥§J„uXïãq…/o0þÓR>€åúº™ëcOBu®G’VÆPÞ¨­º®#‚jXõºéŽßÓ¶Î K˜˜³ùŸuj6ðöI¡xÄ«¢œ£»€y òuá»l|L=÷xDS§n?´PaÍ<2¦=ûÖ{zÝ*Þéÿ± Ýf3h…]#Ž z…ÖEn5L™ŽXq›à$ø2.ÏkÜ9Ü`×L¯‡É#¥Î ;º´³*c®5øW [þÏO.΢‡!Ñ.£ ¨1gwßhh²Ý½«š Þí fvÈ™¥)=xÙÀö@[Ç”}*J€C*Ÿob‹½`2Š1”$€š×^=Bïp‰“9d…v6ˆòR `!pN¶lÉ›MHÈê °2¼iîÿ¯ ;ŲŒÚcY–hX ‚e5ä9ºÝ£-=À•†j¾çC±UJÑUfT¤±\È€'-¾¹¤KéÊ9 µú®%E ý˜­q˜Óe$÷Úz7ÝšLé¤Í>ùwÉuÖ-ó¢Q gÜê¡»–2Çoõ`VþoÞèàSÄ^çëñ €-7‰Ã¦Næ­X¦˜dÈ ýŸ’g®ì²ž6veߘibv&[…ýÁ‘Â<µŸŸ\Ü’Ü$0`\€á€nö$7ɸ ÛÛGÊ@ ÑAm4—'÷Æ! ò‹[’ŸÙ÷;ƒ|›ìRɱ¾?âTës)9Ì\6wRr(ÂZ)9Nw%oåۂüî$ÊÛzðYìÌÃ×F›°îúÞ‡kK3G@ƒ‰•¿(ëFP_ȺëµL®ç9›u”uc­),d'fû’uë–ŸwëF‰úÿ ëF²ß`Ýëré@L ”vcy ÆíÚc`îÙz¸ÇÍâc—¦dgšìâcÝ ÿ¦¹Sq cÊâãU‹ci€:–©Å_LÎÞ;sªl9a)ƒ —”-kL ‚Ùà8ÃÒ¼ÿ]µ¶`¸mûFGïì›7x0h—ÄEч¸ÃíØæGƒw—­.7ÔÉ2D/2#ÇEä×dÀí˜G”€[‹ÔÄô€½p—,­ã<¯âFVÛn¿š-ßVV,=*Öpûô¬î{;÷΀¦ó"”!þWƒR©~whïV[cõ{Æl¢åÁåÅï>÷~glœü|-ßék7YséG‡yÁÌØnÞúb0GÕÎ`ƒÔ1ZvÌ›¤f¼©#7w ÆÀpX5ßÌ<ÎÅZ·%u«ošÛôlÞ¹ª¸9É;‹tê®® ¬µ“ëܸ¬±ÎØœñ§Õ‚ë<ûžÆ•Zpšw %PB×»€ÅÌ^”ÿì+—ƒ*Vñòˆ¯Ö×G <Æf°—†T7(˜¬égˆl¨¬ˆOÖŠÎIzß 3ñ@Ä‚‹¡C–Ì¥ÐqÆ\ ÿ(tæÆR¯ìjŒÐ hîþŒðè,n‹moÒ½§„uˆ†`²ürL\¾º/ÒiX£Ù#>9uO©E =”˜f@ùˆ®/Ñ¥_·eI*Ì̲¼ƒEßÁ½£°#ë7<7îœf4‡QvË”#¡½ÿ‡«…†û.ÄŽšý˜ý/¯’)Äϸ»+d«ÿê’ÉÃË–¾ëÂv{æV]IÞ›r{Õ·ÀÖ*¹÷íç]ûI×J•*¹íç÷íçmûy3|zÍ_¨)» Âq­7ãÍ¿öƒ):!³ø÷95Àºä `£¨ÎpF*¨"Õwÿ¥½kqðüxÅòü­–¯d$U¶ñ!ƒË,AKXº«Êú–ÁV¶ø]r´^´ŠŠ®¨æZ´‚ˆ–s×·Ù÷\š7le…JIjÛÒ¼f´û­>ÊãU¬õÎÞ³·K²F–͹ú"PäÐ¥a6uŸnúõJQ^'Ò€šgyzô‰4"Ïh˜§ü\š3XZ|m–mŠžÃEª,êë;šL2™iNŽŠëܨþt»Ϻ/™Çø}›{\¢×Uœ•ÇÕÁ¤9N2דuY¢)F–(—½])‹WEZÌõ*^§%+Ú☓{ÜU»©Ü¨P{l¨yŸòsa½T®‡ KŸ1™Ž+íe»k$¨-Y[oz™s®÷ù"J‰£,×m‚Œj "¤èa³]Ðå0ƾ¤"Gyö){ÒG´Ý•å ‘‚õýpÜ»?m µ‰»‹†ýî8u!/Æ^)ñ{ :j6ØÝÊR¡bM­|Yžbš®H€$έ=f–TT› ”*Kú{öH>Cq£í®ø²íÒ¼ç¦N¤Fð¦Nm¬Rú=õ`œ)Jž7¾‰¡Ë2¨Å‚zôÏÃZèbµPʲȇ¿\[ >Î×6Èã¨,e7G]¢-yÄ!uœÕ¼mHç(B’<î¥ýÐû™Ï aCÝJ¯ átp±ë"»8ƒVƒ­ª'/wëF3µÄ~ˆÖÌìAïšÑµX(ý€6¥-×^¡x¯µÕ{QqºÀgœFQ€´Êäš §kV‹(´äå;ÖqàM"i×WrÓÈ]ϙ롅6D+©áÔR·8Ö 5%¼¶´µwÔÏoµ­Fz»8kÍ}º8ëvÞx—Ü:¿pü®cKîÌS½ûû9Ww˜n\é (†z5äÒê°‘jlœ#z. I…ꘖµÒ bþkZ­u¡{éyÁ!Là¥êÏÚ1NÕnåZì…›6‡'†¤”rÑDo9ù(øØe@[]zvì‹ü/GLÈ=aÿëvöÅ5b09o´bƒwmAŸøs>ó‹2œZœXm­êw×Éb±9ºÁt'€|Mš ra#ßöík Ú릠0†ÀɈ$'ɬã˜v„_ñõ½ aÚÝôÐQë¢)!Žæœ«D28ûO„¢ÐèòùÕ"žØªøÐb,­¬®©ú(I®ob‹~·ÅW^–åé”Ä(|Æ¿{òÀ£ùœŒ ÿz_X£˜RQB?&¤È%–dàË,oÊB€1o³Ïk6øÛÊKÎakG¼€’”XíÁjߨ)Û± zl³äÁ(|˜ÂYUÐ{òwôBÆÅoŸü_¤â ˜endstream endobj 536 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1027 >> stream xœ%RmL[e¾—xÝHŭ]ïßFäËÍNÜDQ :@IÓ6¥ÐRÖ^ú½Ò ]Oi×Â(Ú2`ãkÈèXæ´(Q ÆD]?†þÐá/óÞq1±sçÇsž“<çœç$‡$ø)I’é%eï>¤/°O“ì3)ìp;o=ø(2xÁîLebë>¬{«Ÿ RIÒâ8w>T¢i3i•Š&†nÈ;”'MB>_Tt8›.ÈË+¢©åZ¥TÒJWH˜&¹ZÂ$ ]£‘*åŒéÿ–#M Óöfn®Á`È‘¨u9­¢øá”lÚ dšèj¹N®ÕËet©¦•¡+%j9ýÈjΣT¢Q·µ3r-]¡‘ɵ­É%ŒÄ¨$‚oªÎDñ:é!HMžIð‰y2œ²'fÝ‚{¹Æx£ñ8+ˆ“øNã±»,úÃÐ }hRS›;Z:Än—SÑ­¯â:DO㥀Ê!1º2¹~yƒ „Ï…`}s|¦ŠãÕpY§ÍC0õC$ žü#qaP`½“é²PUÜs -âÒ· ë7¯Ž„"âvúȱbè‚vÐöOGÎOC Íê¢êO›e’kªM¼?»Ž…³bÁN¶9®Mà±8Kd²»øy~-k?ÃÖ²ÿ ýƒÞd{oÂ%@˜Ü‚ÃzGA­Œ:mj0â²Òðu­g/|½ wÐ}.e•+s»i#¨ C0î¡ú!î z8zwEÔcñxLg­3Xµ%ÛÈ•9\¥âiÿÀ‚;(83^p({ÀÞ]濃GEø©´ý7~>¥îèTu·S¶z· L(÷>³SÿZ|ú§µGl:%ÓµÒé‚«ÁÞÑÞaÊí_ƒ!¸­ø¼a Ø{Î8^LàÅ8y §ã/q:ý‰5 ñ;/~ñö{¯J9ÞQñ!îIWÕˆ{ùîûÛßÞ›ýûgñÞ;… á´ËçxÂØÝØ÷s«ã ×—–%ÂUõµÖrk9eûXh©4m9)-mlUjn™ØX ¯G ØkÉg`_‰Gã¸0 ?ÆÈ‹[¸lyæOþ G„_éoC ÐÜ&¬ÞøšôJ8SO9Fa‚°6¿vëÊDË4LšÝH ŽƒÔÉ€[CyÃ0˜ðú¼ð¡AGÈÚÜÝ(wÃës•Õ j.+cgòOÈB-¼„ å’Ÿ]ììwƒYìsÏ'ÞXØáw÷ö²9ìÓלš·Ï úué‡Ä%ÇTs„êôYª~®xY¤UEa úk¿-#|'„ÃAŸw?]n§³ÎbƒNê .&œì‹BPß5èr™]³L”@¼‡oÒd> stream xœ=ßkRaÇßwÇ_£a+t[z. †ÓÁ(#„b7%ź8¸Ã´Ô#úÚ™¿æt™§½ìÔR›N篤 XÐ]RÝ] ºî6è/ˆ÷œìæË÷yxžçû| ÐŒ¡Îëóß½|ì.HÓPš“ÎQXåŠ\Ôâ Oh°ôí,Îüi’šZÓyqwàåb©xh%ˆè%ç‚3 Š‹v¹Ý—féy§ÓM_‹°ñP€‰Ò>ÙƒÔ"Lû¹@ˆE©ÑÊÕ B±+ss<Ï;˜HÂÁÅW<ÇWfi>„‚ôm6ÁƱËôu.ŠèL„¥GŸ:Fêå"±$bã´[fãQ&¡úP⡚ 3H chÀÊÀkpnB ´*²Ú³ƒ[àÎK‚Q> üþ”§)ù&áMÍî÷“8c;ú®Ë$1B=Ü´É'Eìú;L)â‘—LMÜC'3Ö¿N}'û}ÜkZÒ›ý®4¥Ž­¥$1›ª%?džf£¾×.<˾°-¾M¼¼×!ã_̱]­ˆµm±†«†R;bUÎÛäâVëé Š-)œËŠ9C^ßPìŠåWq[ÀO°%“[K­ÖÊ»máWëŸyeüŽyCX-n…’PÀECª±Ö¬lὕèd•-ß*Öë­j§V~·¹c-ï „÷•weýJSCJZ”gLd¨;AÿsJ—þÞ²‘G¿ué@þGSì(endstream endobj 538 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 715 >> stream xœ-ÑKLaðoi©«© †F*²ì…áa¢5$š(A*R4†J—²B,[ÚòØJ¡¥íWv¥´–-hAŠXš/&.†=úàâ…<}‹â埙ÃL~“Á€: `¦©­¯¿rf¯*– 0éd–T¨‚r»dÚ-ɆZÔª#»w!ûQdÎEÆ#@…a¾Öfw3´¹‹%.ïP¢‚¬¨ªª,!O•—W‘5Š¡;ŒV²ÞÈvQ#«4=äu[M±îý‘ó],k?[Væt:K–¾Rc¾°·¥„tÒlÙLõQL?e"/Û¬,yÍh¡È}gé~ÖÚ,vK1d½ÍD1V€š¥ïŸà&¸ êÀa­œÔÀÀ±_R G²d$Íkt1‰!ÍOš— tÓ$E˜JpÐ]T¬y!'aX¿àŠ zzǺ½„I.Ë–¦†Bãÿø8ýüp&!¾£i”øØQzôM«Ô'tà+*œåƒ¸ ßã'èêæö6ˆw†^N‹pâá“¢©IÏ ¼¹Š!ÿû³o*´³«Ö-¸gX»µ×Ê<šÏ¤Ò)¢Aþ­bÑ!ÊG…œÅ× Ë†â69ßá¼¢ÈOFybiûÃÓ%ˆ'#ëô ÇŠnÉy+ r´ž³ø98€·¾5¯í¼Gùó¡¸{8äwùˆÁÖ{ ­w{ã ÉÉÄô²bš’Û3Òÿ¨ø6ònª”Ç«u龨`7ÓÓ×?ãJ-¦SiB¦ÿVè\Õ­MØÂB˜Ÿ€á¢D<2x¦72l·8:[6> stream xœcd`ab`dddsö Ž4±T~H3þaú!ËÜÝýóæTÖnæn–îÉBßË¿òÏ``ad¬ªï›åœ_PY”™žQ¢c`j $  --ÍuŒ ,sS‹2“ó|K2RsK€œ…àüäÌÔ’J°›Œ’’+}ýòòr½ÄÜb½ü¢t;): å™% A©Å©Ee©) nùy% ~‰¹© `wêIçü܂ҒÔ"ßü”Ô¢¼Äb ;³8hO3Ã2Æ.fFF­ç?:ø~…}/ÙÏø]ðg óÏ ßKDg/é^º´¨»Zþ/[uQwaá’îÙò|?…Ö.ø!5ŸñGêwEÑ¥•½Ý“º9æÌž5~ÍÄæ~ùˆ Âç}ܺ|êÜɳ&ÍœÐ=Ÿc~õ¬ªæÖö¶f¹ßJ†=3û×õL—ì?ùx÷Ž953*«ªëª:§ö´Ëõ4ô§öÔýVz*Ñ<¡µ¿¹›£ªº¦¼|Vëävù}eûÊöW¨&æ7V6×´Ô¶u—s”Ï®™3yδÉÓåfN^»pÆ”5 ¦O^0½«¶=£«¾QK¢jvÝœ¹³fÌéizÚ5A®kZûÆ®| ‚;¼Øendstream endobj 540 0 obj << /Filter /FlateDecode /Length 9280 >> stream xœÍ}[\¹™X¼)ƒ<øi~ªJ¦jï¤6N²‹õ.v±kbAI-µdK]õ\,ïCþz¾ ù‘‡¬®ÖÈÙ`¦tš‡üH~÷Ûùöf9ª›ÿËÿùþÙrs÷ìÛgŠžÞäÿ½|ó«çÏþòŸ‡'Ç´$uóüõ3~EÝDu\8&ãnž¿¶óû翇±!6c£=g`üóÛg¿Ý½Ø/Ç%™”¬Ú}Ü–£K)½{ ϽrÖ„Ý­r·WÇþ¡w¯p°Z–°ÄÝŒ°Ê.ZíNïñ¹NÁÛ¸û@oz Ãßác»,.Yž{Ñ‹ÚÝãÓ˜’w¦þ_Ï àZ'Á=¬ðŒ;Fïêu¶ÅX~).7°ï°Ð;æ¨[âÍA½ù…ï˜eQ)¿ã‚xǵ1)®ÇòMÞÁ“€Ÿ>ÁöÍ`-ïáù½ÿ´nSÙí‚Ý¥yøcºi`¼¥ƒ &ÄÝyÐá¸(Å'Çœt9Æ|ZFΩ^~Z¡¡ãÕË×ó•ûúŽ~§¤BA¦ÕÑØ‚!÷¸ ï8¾Ý¯쾯0ÓQ…“ã·”1p𞬴JïÎ÷8xqK¨O€S ;óÓãº\4Îï~Ø;GëíNïhehÄ {íÒî„S,1è¸hùâ£”Š€”å¦ßõ'úgB%µDŸhQ6ŒQþ¨­nq⫺Íüúb™ä\Z¢ÆË¤#S»ßíö‚$ëé½¥#ÓÖÛÝ}ì¥Q.ÃÉËxS‹Ûú@ˆé¢ÛˆáØ|M^#Vš©^«Åx¸å<]P®˜’Z„3Àe 3¢;¡ÇŠžÅ$³;1bé{Ë‘Ó|èÎ.Ï}Æ=xØyn lˆ@u‘(ã½¶pÿæèlÒ|%•ý0̶èâæ¤ÕñiôÎ0È`Š»žNV'ÅÇ »"x\æéˆI0'ý„ï ¹°;íaG°ˆEbîzz[§zWOÿô¢žÕ»J±¯è2m»Ýïöõ6ûC\ü1ÂQ=¯lpã°2ñ ½™¥8ú¨£—G^ 6ãht°¿Û:àîUå"Í5 ^–å à†çë^’³^îW Þ½¸ UÞ´$qBá}N/ñ€=ìf÷äF&ÜîòÍ™dó5ÓÜr:në´„jƒÈfÍY"2ýÁigj`s Ø^û¡.ÙRöÉ]·³Y«‰bÒ?¿gff×´_ §%s­S<ÂY0úAü0µÄøda”úÂÂzÃ`½ÏB·¬uªBé¶žíhƒZmRä`¢¼z_š±3Ù— ¡Ù×’’sÀ³~ÿÈÎ`¯U»³ó­ƒ?*Ûp©³˜Ml8ÏQ‰÷¼ãYBL@ÇåWÌ„à!ð1I¤ÄOTð¡‘)â§Ðî‰D‚Vw‡³iT2/‰"ÐP൓ˆwßÜ•,‰Ò,´†Èø,•NÍa€U×{x sÀ-DØõ¹þüX¾ª?†\Å=,E-ëõÞí)_‘Kº½8:g›ÖÀÛ Ð݆òá.@HŽÏ¢Æ¡?]‰\µé,yš`u$èwÿXT³û–Ž@a³AuRô¿Ó­¯* ‰‚eñi÷Ç ø_’BÇË~)ñiŒKÞì~0j”E¶¹xä×ñ]±¬vMË÷Uq¨Ø»¯an«@ø­Œ.9 æ#Õä˜÷Rsˆz ˜Ú"ÀŸ¤àc=Ô\k…ê>‚Jò1A¤PÖ˧KL «dÊéöqFËÅÍ4¿Û¢™ÀšŠez8KÿùFj†1”g=’Ü,@Õb}”ï@>ÍZ*ëm4â »vש…=y[€×™t•Ö øÔ!P@ëùŠCðL?Žù4z ‘õ{ Ä»´'yKäåh`3«rø£0 =ŒAµc½e¿ ZA~#M»ám1“7 ÖÙRK+#ëÆj<¤]×6@Ði¾£èˆ‹*…Ô# ®DDðɪ'©¯¸WÔ+Ázl¤â{þ쟞±KÊÝ||ª+ÊD4ØÃ÷á"ú£~»û;á²–?Ð¥ÁÛ; ·€< T :b6U†[¢¾v¿–W‹ »¥`!Çh¯f[%ö3÷Õ šÏúŸ_Ϲ¼¢§²™²Iú-ô@b]òM°ÐÊBwïì¬ß€dn (ª]±úM’æ¬Éo«ôúj,Yo.—ÜLš¾âhM½I}‰V7BãVœ_´ ’P}þ}5•'ž„\”<]Í[Ðtþãê¾"Ëù“UrfÉø˜œN¾õ¡B*º3?N1ìHqnoïL.‹„¤ß¥‚1ãUˆzF¡Ÿ2ø‚Р/zE¸¸xi·œ»=Q0"¼·;a]ˆÑ/ºb­½j o…_àÜÉÂ7oÑ ÿ+ /:¨µqG‡>!UÆö Œ1Õ0Ó£¶ &×á?«JÂhr0-¨©eò œæ`åã;;ù¹ÍoH€ªÜPöPÚ€IïB¹Ú•ô>VyËZªõFIsv¯X§ÑzO«Ý ÔùåÝ+i±…€¹à_‰–Ô5*ìÈ›u…9(ݦ¸Ø¢ðýïÀ¹@@ÃH¸>ö¡DsDÚl¡,ûï÷HM`£«Î!SÜ 3%šÖ…cš‘¿Øý˽d˜Ò‹T®ð TZLK7^a…h‰ ¡©zª›yOgSã÷w,9•àó?T•¶Z˜Ð½® q*\E»Ä“³àÒuz×ÒÛA-ꌺ3"?tøŽáà]Laeì<…YA'&g… „F5EÐT2+Ø$ïÑJb“J ážÆ÷2Å$¼ZÓ¹œð©UXޔƛBHüãÄcÐK°å´l vðýY xÝÅЀ-¼ì—¦ìà‡J—ýy(¿ Ãàz«”gF£`ÁÆ\Ï‚£¿µ¯‡[/;|’ˆ!±h-ØŒ…wÖr½‹Tc°éÅ´‰ pË{B«<Û]ªš<„AÒíR®ç´FB›ØÞa…VZ? µïsÅè|”ðaï` Enzt4!¿»­ü}謈ƒ–ôsP-)1Ž8m£äÍ#>€›”\/¹c$ûzúõ’™+v¢ÌÑ»àÉù+}g¹àÕ¢çâ§°bMR«Ct"N¬åYÍÚ=Îg.øDóß…gî?ˆ ÊõØì%s³F%Ú Gâ‹#õ÷u¾DÕ!n£¿Ã«ŠÞ©Ž¡&ÐŽªKx«íåXZPqå%Àdô;Ê|Q¢4ßJŽ?R§.8™Ø¯V¨x&¬*á½À­yöîuV£<.7ú9éÎ.‘ôÔzgè¹Wfâ. ^K€„\ ŽÅLT—‡ª $»$øh†ë.Mªåÿ6q¢–Re Y«­;»ì…&ô8O9'ÐyÎ’™ˆMXÈ$¾ŒÌBÅcTj÷çö´yÉÔÁ*Q–êûA!MªuƒÞ‘$î¢óÌv$=öÌ Îªäœªú÷ pK½Á²$#€.ÚïjEÐÛƒ’ÝWÇi!í_î‹Ã°áÖ Ï‚}Í216>¡Zz±-ÈEb”iÉû 0áMŸ}p(¤#LäklCòÞ™®2±aNL9ÞK”Šà…%ôÎÑ ´d;Ë @Ïüìßñ‹15ÂãÌ'·(3)|´f“†Ð+zÂ}tÅùØ(ŽÀ²Á²UrÖŠ«9O##¼w 0r–늠ø©¸PØ åJ8òQ¢Ø@á…¿]£νº‡u;½½Ñ1ã¬|ñ!z³˜+µ!ÊÛX|g àS/ˆÎÐ×I¡ÖîÁ@cHv®^£³Ïk¿<ÿ/ Š¢…€Œ`É´Ù$HÚw)ï6L`; Åî¶Ì°¾¦z'Ÿ­•“5îÑ‚æêX¡ßÉa"¹¾ Ÿ·4OÇÉÕIÄáUU y‰%g¿ 5)N -Ï@^l¹¦aUÛ[ÐTÏt·Z*cy†«åÿ)ÑÇŒHé ã/ % °ìNÊ;‰É`hãœÒ‹ Áìþ´/®åÎql½#ÂÜXu¬Úü}5 ]E™)Â]Ê}ŸJ¡SçG© U·z+ÛÀDè°f«VÈF~ìHùñ12à8öâ0Foyå:eB£™­½pTص´¨‹ñY:SÛrâÊ=ße ¯cÅ„äÁµ/Ö†+·ÌÎÄ´Žèr—kê«V ¯ªv|›ºXÜì=ngp¤Á,ã$ÛkUÅŸAÑÔK"º&b‚Ån[å › ûXFP–‰z*/>ñظ„^÷-)/¯Öµ‹:‹^Š(õ#»Â®ÍNc(Ü$G¤œJB¢E*œ SCkæ¡ðòH ]ú©4×ó”þ°V//ªÇݱ¨_—­|è%èÖ‹õ7Îjô¡rà­Æç+µt>ÖÔ{ãÖÓþŸìxYFæó÷{2D]íy–Ÿóô CD-Üß´*ÿO;ëÁ ZL»Â_ï1Çõ;‘e‹kaB3XÁ7Hs.’ÄËîÿ`]Qi˜Xüí·Òý¦xè'Þ3Á3ÆRô_²ŸâQÇ^•ûM•a{p©(„³…©؈Á–t)t¬ŽÂþ”kT :¨do€«a¦£¸Æ/„ßÊÁ-"~Ëþ6zëZ•’Q™â+2T?rQštü(þTJ‹‹ ¯PÁ¸pD Òå5d9},++€:U\’€ áë~èû '­1#Öt'Ý¥?·ùúF9§¹:%zÿÆ‚¶6­YžpdTΡ? 4 Ô­ƒÅv ­žZ#ì°1Gc ÍÏK™’ee‚cý‘O®z®{Í”xŒXSlÖØ•°2³Rêšìçì´aØ®Œ[ ¥´‹a9™dÛÙ¹¹èv/̦ØO·ÉµÀlLÔ2a°­dÍ"„7Î1‰¬HÁ¾WÚÂÓ& )'ï¶µï¤Wˆ¹aZ›T‹PmMS(µ-ÔÈ*W!J)ó”Ó*¨çÌO±¤yœe÷†Gø.Qi¨˜¼äq_ð$Â*ò:½©¡È}b®»É“3úÔ†üµŽŸ(hÕÉD.OÝû>q_Ñ7ÛI÷¸ÐD Öw<_T …HaʈL 欺ú$t!¶³ÕѼ=úšç0wéGGþçß÷$žõ®¦Ø‹ðCùm\[ˆú¬€ ^Ô+C+h­¬`ljÅ`öw’1­Y:#¤»"I§S5(ä*T©Ç£¾ÀAÁ°C/Sg6u,”‘ý…IÓ©Ja L¨b¥€$ÝX)ønTá_ÅJÁµ½ÚÆÐn4†v }‰«ÁÒKYg0óBEšÙîøT·úùEšœÒ¸èK ëŽç|›FU£Ðö”Uˆò€„j5M޽X®@ æ ·ra&ýü®þ|SžëO86§ Õ=ürubü uÂâçôŠ·6ÑäŸçú“ Cfk¾¯?Oõç»úóçCÈ&°òC9ãÖx2dÛÎMöU ¢´nº¿dHÔoëÏÛúó®þ|Uþïúóa_ª`OõçûúóCýù®þų‡§-vH­†’-˜ŠE5¥æªòŽÂÖ¿F»¸cœV{õ9XO¹)[ËO§‹0b¡(·Í㢋ɢ•Ó÷u‡m6NÂEÆ’‚[Žœ‡±°ã]X׬õ¹p¯ ïÔx×(ª xµÉ¹_}²:]Á÷Uc™(}dŽ-‡ÆÄ›?hg©„vV[ßÎOÛL i»Ÿ6ú•L»S “åE%T€<3)TBN¼Ê£ŸÕÙË‚À^’."œÀu¶1×‹„x·®Œ{’ªï•Ê[»t¹\…©.¡3ÌØu¼x¸NHÛ“^nó˜¸\ƒr]Oëݨy™ÉPîaºLÁœü[vN÷ybš7•¼(çX]°”Z+=Tßñ{iq%' pRWrDãã@‘ìñUU ÅåNÚMÜòÄèÉí,ŽüA"Ÿ‘ˆš€Þt8Õ•IKY3m-ße{ãAöGyd¸ººÈîq´rïRØÓ[æÒppRq}Ìçý“gÅ9…­ ÌCÖ½ÚÏ’ë°M£Q½¯É"‡¯K6&äÄ0Þ]ç;AÐc²½8Éç9©Í0nœð©^|¶sÜëÒõäo‘ÿBâ¬DIt)ÛFé:óC`ØmКàTÓú$såÚ]PúSçî¥Étts½.ƒ0i.Ñû\sï¾IòH3yà™1ÑLžÞ޲薣dS•˜ÁLs’v Ãï¥$(s}[G²òCÝ’&âã)Á–a×#︓X5èüº±ä,4¾Ñ.MÜéä*…i]dütÖá ²³WU6Œ‰ï–gCO\SÑÒEÞÐT.W@“4Ȧo°Þ°v &¥•rg?ç\[À%Rõ…Ä ^ @%%}”ÁmÊ¿ã—ÒCå—Ìy°)ฑ3Ì­›m³Ž:nÏâ0JÓö~á<„iï—Z®ó³’mï—¨ùT’Ð+Ñ߯öTIi¸g¦±Nø‹FlÁ:*~’É~õàEíÓ0~$Òž%úö%£èñ̘Y‡`*ŹB““‚•}ëº$Ü uŒÏ³Z*·–®ï‰¾—³”j“ÐV9OÊÜ'¼¬6~ù”gKWöo°X^XÚ/ÛE86årBÁš*Â5š8µ0’TX»«f¹ïå¶.¨@ë–r¹Ì(7¢uÖZ`¶KÔâÜÆ9ʪR¦í[/’ãÇ…/ã£G´#,kõËõÜ̲Š¢j¢ñ ´6Ç"ä~_ú Êðj±~qÑ,Õ(䘧!,ás¬Ó«W©ù±¸&i?"jÕf·¿ïÀo§öǼ°ÑO—OÔ.ÙA ù"6+Ã.G¿ìmÈŽ·£ÆÒÔzÂÀçs‰‚±‚iµO5!pÍ;Û£máêŽv#kÀ\áB¡,úØÂbRnÊüoØ”P:ºFcí®Ðàù„„E}hxb_³G¨„Tv5áK ðÿ—º‹ ‹,¢€Eþ’B³œµEî‘Sô¿º¼¾9zãX@·½åv4 WÂ]°z1 @ªЮëwþmÇêzÄc`Í;¿¦%àþ¨M:0¨oA6l|³ÿŒpðö—Äu•ð Ó/~EÙLBQ‹±îÖ8HdEãKë¡æižÀ! ¶žû2ÜìIèÚÞÃJ Í™þ»æðÜQ‘wiˆICôiï¸ ·ƒoÐ盎@úžîê(Èœg9W;«±ÒŽ:KÌbeíÿ. RÇeZã&w¤ÝÁÞù©u¨Ê&RXrÙïÏVbÜÄ^²äòÎVU°äÊ6vÀ–%£6@K†{-O–-ü·<¬’C³À5憊ŸâÍÌŽ,Lª+8²òOàȦ…DƒaW XFöÜSF`“Åb¥–LÀ l¯çÂÃyÝ ¾YãŠøqÒÞi’#ûº8ïgmê:;Ëó'¾Ä7qp/5÷ò§š.86€¼PºQ¬Z¹ÜågO Ô­N›t,M›Œó~è ,Å6¬0o°š°–¿Ž–àåÏCùtùóPœ¦Þ]a[XA¡ê>X–s€o—:˜@Cµ5UèÔÃ˼ÕCd!ª?/"ý°Yá*ßÇçë‡Xœ‚¾ñÞt—Õ›æò/{XBý.O_•Û9ÄŽFn€”$Jt}s•¤¤õŸUIrõóG*[2EcÛêHÍPGúó]Y@?¯½‚ïœ7Îæá<Éêæ·“Â0ǯkô£IH;‹Ú´¶i½ÊK++–¥R£‘ÌûRØ¥âg°­8:ovY¹˜óFm»ÛŽ1¢† ÍL@gè2óŒf>sßz⽯lý ” ‡lœ >à1TÇ Î—!C5€™5¿G:Eº¹8™æ j]Ii°M€Ç=hG v¦Þ,PëF=Inr`ò’½nA¦þ[T8£É'4g »õéçìȺçÅî17M·¦À¨øRÇó$«d;P¯(‹3f×Ï_íØÊ¬æ­v¬€eWN‚øBÜ\±÷Q\2:™Ö©œ[¼¹{¶ç÷ã³åæožÁÆA«ö7C*ܼŒßÎ3åÉ»g¿™6Oh·±6‘H†¾J 5¬£#÷NÛù‹ýxÞ¡«‚vá´Ÿó£ª#»ÒÁÉ¥j`/1L÷Úû/BÅ*Œ¼fQøÖU‰èf!æO{¸[ ’Ý×NsZÛœ5PcëZ@™Ku>׃؋o˜äŠo’tj¬$ÝÀb)Kgƒ ^WÁË(­Æ±Ä'j¸pRkø1/wmˆLbeC÷qÒ¾*#iMÁŒ<9Ú,X®k±W,´˜^³:6åÛìïÊ·/w:Ûô`â.•_ºåb¢½y½Y‘ðDÍîçA‰2·+´›68ÅÇ£r ¸²Â=vk4«:œÖü¬i 4Æ ÚJÌvÉ[ű1LîHº),™,OÍÃEº˜.Ü•„V}ÏkzÒ+g©óe½ì wLMÆ[5XÅíÝÉœPA2˜gÔ1M¿}ÅLr2áàB—‰æc¬ùÞÿ$LǧÖï5®`tix‚Þ:ÎÜñ)%Ûù“{Øí›.s+Ð/h+Uö5ï­Àhazõš.Nµ™ñ·ÕÔ§RÒW1âF„Vˆº®™Üû»fnûDÇÙyž›ãÏx\Ú¾šŸ?~Þ*Dµ¶"Ÿ†YeÉ!n:%¯+_Õ€çÀž}A”òÔ6p\ôy9á·•@¾Á ÔÔ@qÒ~¦é’<ôÕnú9Y¿â”“9îz8#` 9.BJG[•G©Ë·y·©ûÖ‰tÒ¡çó¼5³m[ÙÑ}n²Ê3Ðm®@W„–SÍWÊÆ9uOÌ4gÜ¢/´Üò*ØOS”I‚y[¾>-]Ó§oÚîœm›Î5Mõñø ØÐoˆ}V]ã6œgpu©L­/ìÈwÔÞÁÍ`#—­Ìµ /áž ˜\œVÌOÈelBM?z^öZ”Ú[ZÖÎf“¨¥J¨5äObòªE-ûøCP^‡sÄÔö7øÉš¥ì*‰ =©1ÖÌ/5o%±–?MmÊrÔrîmé> š’ü`œ³"‰Ú+$j¯ð­ßÄÏØ·R›Ä$ ö\Ý„l¦9 Í[n%ãGlºÂ_ßÞ „±I†ÿ¿·7;À°#HHyð%´6ŸêÔ\8ËÜŒÇó¤ðë!^ ÿGÛkƒa:RKàgJ~F ßñúöëü¢š5¿¹¹]µŒ?Ò‡ÇÀÁSîrIÍún|~oNŸ‚âiuLt”9ô“ÆùbPì>ß“³uÛ&…r$®‹·î'}c3#”ÕGàoè€Û)ì­û™ÍPM‚=+çk›¡~Í;ÅÞV3ÇY÷YÛmÆd—)N¸v¡wH>ØIº¸…³ñº.½ EO7«Vå’¼‘wõF8 ÌáctŶâ¿GR³³?1?¢Nÿu*wŠ&5ë\Ü3¤‹ÖÍlyøÁšûö”äÔxÚZfç³ûaï¨õ²“0ˆs‘ûä>ÛBãïž­K¼«Ã Å€$!ÄJ ²b…Î7c¾þ7r–ŒP ¬bu‚X5ÔuÕÁA²\n;›žêÏûúóuýùV¾6â Àigë§×šs¯ÀÞæ/D ¥oC*ÒÌa1—$ÀNe5%ÿ<ÕŸ÷õçÇúóUýy7Øaù"¸-úÚD½p$ɈlåìSþJ `(ÄEì‰ÕvLLa×£@ááÿôìÿ5u2 endstream endobj 541 0 obj << /Filter /FlateDecode /Length 7841 >> stream xœå=ÙŽÉq²ý" ü`ëiŸ„~ì±·Ë•wæl :VðY CòCóRK²)Îr¿wyDfUuÏÌ’Ú…}`oMVfddÜõ§Ý<©ÝŒÿ埼¾šw7WºRôt—ÿyòz÷/®þá?•ðhJsR»GϯøµSNOq\˜’q»G¯¯~¿ÿí5L™|²û÷ׇyr)… ÷Ïà©WF¥´s­ýd•qû/áᜒ‹iÿ~j5áïc4¼¸ÿ%>œgÂ~‡fŠû_á³è­‹ûwðÓÌÞïOop%?ëYíïá©ÝöŸòD^ÿõ3aR4ÎÃøÓD1ÃKüsH1¹ýí­ßáTÊk7ÂW·uóšæµÒvä‰ëùUÆ/Ä«ïh#*E-'"à<àoRŒ~ÿBU´W¡ùüìöÿu [¹ýñf±Ãh“Žû  5^ï_\ë0©¨ñ<ÚhƸmÿçÑoàÜ—Çn|š4ü£§WûpýèWkÕî`õd­3øø÷ûG×h¦ÛÓQX§ö¯Úae@9À^}v}°fž¢²ûÿ¨dó©gm É—$<Eda¼³srð×¼†VûÓsüééqOà¨`BìHçP1) &Ò¦šç0ÇîxAxª‰Na—œ\IЍÁÎ:š­ûç•>OïˆêæÙâ1Ç0;8%b‹tœµ$ÌO˜œõ8!®m–œC{5¢pŽÙ%›Ïw–ç«üræ£|܈˜@³RÀ5Œ0x~ÚÜ ‡e œ¥ÜîgH^ D¾m›Xßb³ë5j nJ.ÄíÛÌñ Ê”ììP @Õ³ÈÔ6Äs['ç¶v òòԯγ…‡‰¢.ƒRFž´J…h÷'>a7ÛFä4¦+pÁ‘Ï2Tå;#$@ôZ¿;(39Ç0 …ã3ûÏÀŸ‡}ÀæS$Ñ ìáÁSÖ>LA)Þr&“yöi],ºJ[º5ºµ“¶*>˜lÑ4L ´„A9îŪ¥BûžØR ±ñ¸“Œkíç-%õ%R¬h÷ßò ;”wvo{|{-h² ZšMÍ^ÉÙ2¡€D[!¤Â'#%Ÿ¡‡'QÙEVzè9 ˆgà4A$ )2ËcÏÙRPà9K ã—mV®ÕÙȱhî_eƒ^uÂFý1ÉÊ(° Tµu{à®~‹”w7·W ¿Íîkð~uMP;ؔڽ¾rZ¥ÉëúäÕÕï6½(Ì+NTR6î|P“†™Èzt ÈCÍ- ¶ŠH½`¥;’pÎ"?&šêç@¸)–ÂzÍ›Ù0*« €ŸÑÂ_@¯Ãë F5³B€‡Àz#älS=/›éo`2T fè¤ýç8‚ÑýæÚ(Ú±ž¡Ÿ® _„×Ð{Ø¿~1‘n›P|.¨‚ H‘_­—F&o­?Ŧ»GeÄÎø¿<>a³Uƒm•G#µ?ôNö`Ðë‰aÿs±‰M„ƒ2ªô®ùi½dÈeÞ‹ßËÝXÒ áSŠôs¥]ˆh¶Ò«× žzÍOÎÒ«?K¯Ä6º}¯É$«ÎUsðïdÖ÷¤MyAE 8øÊ¼ŸÐhPüÑdív0"ÌY¹ šEyò€ Åï¼dÁË™uåÖˆ%%ßùÙ¨ð+UM“¡úIÛÏ Tn£vNkPÁìÚ `ž¡þí^ùÉèÓ-—‰ñÒ2ËÍÏÉ®n~Ëc¢Í7Ûà“ÑD_ ¸77ß’Av;e1†Á¯üuãv|L ì´{ô¯Wþnõ¯P¾þ׈ÀгÙ­N—û'º SHžÂÁ`ä^— ¹¤e>/1@Éç ¡äóÏù¼oÄS—žÞwé`áOÉ{ÇW«Ù^ßâ"Ò÷Å|2Íû0wi]1Xo8Q%{—'­œsºKO¹å©Mt縌FˆÄò£¿B$¡™à!6f: š+}~Åcˆjä\ÓËŽO»þ‘ÄLÂüÏ÷#êøgϯeê-J¿ãdÏ8«Ë!Ý6ù¦‘§Ü4—^P IŸ¹Š›HD²%&m½-)ø%§¿€ö˜)ΦF,©ƒ·;Ðô Þ>7”‹=| Â™zzÜd´ xÊ?X0/Ó¼<牲È^¿ÿ%Ö’h$”÷ T9cÒvreÍp¬´$—8m`ËbÀª ¨æ–áGFøú­ç…Df$ó#•]`â ”ý¸æ/>Ë$+… PÈGÖŠ®²cV$Ç­4æ§<£WqHø®9Üé>j€ˆÕ[ÊaÎ3ÐlP䌺‚Ùu_T=Ý«3Ú¶dª<¦ÀBs—dõω`§¼‡ôîŒÚûè1 ñXdÃ[r)W4€Äö+óAæPâ v¦’jîP6Ðë‚ß5]À9‰l|;ó&G¾ôšúÔ€¨5YÛ9Ã}òÖX)ðÄjl‹Ò¢wè8Ý´’Ç\)c­É™™%çgH>t¥ŒŸ´kå,g+eŠf¥\ÞYIi\êÇbäfN¯îäüW<‹½j“ÉE6³‹»)IÜ"s›Ñ`£ÅjäA C| 'F¤>Y—·M¿Ýò`T±§çç‰SãEÔ\ƒe¢<ðK>;ªÏi2Ì:¨ULƒg[‚Jc#aÓ­ØÞX» û"„B9¥Þyü©Î@:mT¦ )ÐÄŠNk`EFqöÈ èEK_EE¬YH|h+éü.0ò~Ë‹¾ÃòÀ)/Þëjüè½4ûûÑ&I‰§<4u-[6í(/^GÝË‹neXý©]âÜI^Ð ¤ÞM«T¶l=)Gž7rê p4Q²7Nö\O{kJ½AŒ‚+9?ÔfáÌ>õSIxåIàTñBœ$‰ b,¡4ÞÝ[á“¿é„Z%Y «bJz"‰„¿]Œg^º¦kŸ‚Õèô–}3 7‹qBrR–âÖ7êM(f€ñ×¹w-‘õi¾¹+Ë`ƒú°Õ³ƒ ÇÈ Ý¢–P–eÄñ.façû’Á rgÐ\Ëò¹`Ê7yùÎB’G×—£Y²)Lê6ê<¼bªQ·QSt\¯Œ9¡7N6¾¹èËRpq@3ΪQÌ h›Åm§Þ›8ÀáMÀ’!nI²h˜û0„꯮kµö3ž ¤@!8š‚•;—F<릦á¸!±úD#ðü +1],X)Ó³ß(a ‰~žVŒ‘A-…N\4&·­Yx›,ÒVwÙ[ù´JòRøf¡¤ÇêÕjå­{¬ù‘¢e0%ê†ävbÀO±•ÞG\xÒôR)5úr¡X²F-UÂv¼¨>æ¨aÔ„*$°‰nÉ#†ê±úãœoТô\’Å—ÊŒ„Áëä6©„ê(¬PXKe'Á"²Éš=xÚp¦ñò±äç>±qoù%ͰK“¥6¯ÞKíîVCæyb©¤Dâ@`Ÿû>âÄtà”2 ! –ì„>Ä*„Z ú'â+ø5÷¹89„FÙV©FvBâd^%>1¼\¡Ö4—kø;‰Y澃¬ J´µ`ÚlücLBaì0J½‘kÝUp^ñY W†Ä™’ëm±Á Ýÿs=$']Ñ•¢Á+E!p‡´Úóx¥‡¤àìUeéqÔú}RVÎt#ÈŒÜîÝv£õû>‡  ÓŽ”ÀLŒö Ûäiï?ùˆr> 6u~5¢Éž„ .J¢H_¢Hß“f•¥•ôŒ‡˜¤‹&%·€Œ ºaZÅ—Be0£9eÛ›¸‘Ö=aå»ÉÔHWƒTýBò[^7¤Àe¢§nÇ RgQ0´“y§²¡Ø·´â ̃L‘ÑE½!÷ùnaÂë/•nù)Zo›ty;h6æ—]‰FSãîŽãƒÇÀk{éoe”° bšøÎ ø-l§ ¤¥vÈñØN;˜ŽÛkLºk†tº)CY2è¶êQHìes˜žôœ{È÷V•PB²ÍÇŽK :3‰"Žˆj:ôAÅ/’E±³Wï-5V 9üœc„é'~ŒW²Y7±ÏÐQGŠMÿ·Z7¯y:…mðmý‡2p_ÑÜa_‹0n"SmõF“C$bËá+á OÌ 6bWµÂ]Kš×õ„8z‹KÂA±Ü#K92NLÚºMiÔT÷Ýçÿôqn}¤¤l,„AßH^ m¥\ñYôq¼Û HòÚ˜cÍdð¶ñiÛKô­Éo³¦@rª©[òÊm«=ß2ø«¹Ë謫ôXMù@€P¬v¹Zm^‘xò~!mÉ¢\md$Ú,Ý䆼§ïžM¢Ñ ÛÊd­qê7¹}œZËš ÚIözÅKĹëóŒŸbŒcÙµ´Îñæ$nxH²sÓPÑ/n(k.E¥(‘ÆsË댾ˆÓ]õÇÃ1¥õ»7 0鸶™7½ôžß´óbq„–>r'fOïu¸hÛ—ˆJsV;,jAX¡QëÚqݨz7^lûÔÎnÔJ5L['ùª5ñ”ÊGô ƒÇ[üCÙ‰ô··c]&PxyC3ß/½ŠêTû¦­Ò«c<µ\œMSZ(nõ³ótVKC”rµNd¦ÌJ+——ˆ~"÷DËEìêøœ§öóù< ^\¶Êû´qF½•ĈvR½®“„À~F F/RÔ_g¬¶²Æz‡9&‡jý³çA½\7˜¬+ct·nmßÏšu¸õœ69§-Z>wJ™¥vnÖIížê3˜½¹t^§ü¦QïgUH­x(ç1Ô KaQ@Š(.^Vpqç«©}r¥|³£Cᣒ¬^Ïce‚Ùnj•Y-Àõrg]غW¸AÜVq €zOÄÆÛÙ—›ÐCWP§¢å4{÷‚žÖ“¦"’RB’ $¢c±(Å5²SÙ³µ^Mx“ÀÁAð£”ݬ4UcGkÄùÉùCÂʾÖâóR:öš÷;”þUw 6ÆàðÍ:ݽ¨§E¾, ´¼3 {‹iå[ÖR=àouG¬ÿ 1ífŠN‡\ õßgBŽ—^Òà”9%ëve©XWF‹­ETãg•¨˜ ÀÎù¸JúšJ™(ÉÉmý?´òêRK€‘©¢¡ R^ôö”\¨ó¤\y¶Ý)¡ë§fAði»Ó@HÀš»×x­¬å“såACÙV)š³ à“² [Ñ\ÞÂùòIÜwàz¿sÍF¶ T­-Ö†‡ïù±#¶áÂd—PšâÊa¸±”* ÍŠZK‹{I‹F 0.f‚&ä;„EzÿÖzG·bÇÞÇc ±5ºEËhÛœ7ædûýw<ŸOºOÛ]˜Ülå­_YqÙ&úØÞ¤®×eÝçx_~Hœê3™Z‚8Ž.™b-¡ŠÖèŒ9Ìôž.l·3XòF—jzᬛX© ×h("°)RŸä#O‹ôœETjªÐìR ×"³òªB8-·DZ[Cˆ÷oˆBë"§öb_ËêƒÊvZ³wÚÅ\¶*)Áä¶Å9ºhqEª¸šÙøÜ…ˆç/ZDj=z"†¾3±Ìý§9:ª·•tíWíNÖ1J¶awÜOJ×è&÷òŽ™“Ÿç>“S¤—HþÉÅ È@ÂØ—Ý­NÏןs Ýk¶î@È0Iwq«!uÚ‚œÃØgûÉ›–†~lûZwýŸvô]ûh‹ vÞS}üiù.ÎãÜÔÚ`·`é›èhu…“FôM[¬K-5•—ï8»8”8?Aô­ÆÍ}›áSŸfVnøÝ²ø˜r[6Ý{:åü0Ò%l‚mÄû–[„艉¤uç‹wƒ< ›ƒ1¶WØß0©Ç¹n”£¯øUŒW¯‡g¾?„3!ÅØ ^àŸ ™ù&2òÝòݪb\–ct~jL‹|Õœ–hÊY5%eOìê÷ˆÖ®M¦ Â¸äA©×„üX¬#¥N%Q=ËÏA½¯7‰1Uõ±‘³þ´!J¦}Ù ªF!˜–Åy±tÂÛÁT¢U’ëh#ä+x·Ä|Î;ærqN¯‘–JûŽV¶“’×Dê3ÒgµPL,¾; Ï»ÙÒKœD½ÈëÂǘ24Ö­çô3µÚQˆ¯ ¦^ºÀ¾ÊTßì͵œ0½^1(EÛQ¬¸)Jq:ðò†Œpqi³&)FYåsŸP)Éh¹€PS¶B!û©IÊ#翸®A½? ±>¶XûˆHg¾ŽòÝÒ·,æIi¿Ó*L‘¿œÀß%{`úXÿ´’óý^¶S¢¿¢ì˜_U'Ëq°šv:ùE fŽÎ% (8»4µ 7*f”÷“Ýí"§]:l±m¶Ô’ µú”—tT9UêO¾mçw?"Ì.ó ~¹Ê(½ÇÇÞ„¹$‹û;hÚfŒŒ©Ÿ´·Pj›uïäÜ^waýõTyžz Qiþ³ó=Æ8ÜwC²N¬(—؃÷2VÀ4M5P_7<¡8P”ˆû°Š8£Ð@ªúõ‡^‡ÉÇw+ˆ+Ÿš+¼¼ñ*þŠaý–ÇŠqÞ_|Oç+ü¦DÚÚ/z±zÀHÕ²Œú߈¯¨‡!}§$ßÑòc²ÔŽ·Ù\1@“ƒ ]žvgÌÂØEÑêç=O<íL©¤%i´%rŸx¦Y™>(":r,ÅxsN÷ð){mŽõô™þÀ¶ùLi'B‡V›t‚›sÕªˆÇ躔¦vµõœ€ 3øyÍÁ Pg0¬ÅEÊ>Ô¹$@€Ö@÷¬ÑúÃ{ÀÛœ[ B ]Ë‚›ë¿Ö×±u⺔37;{a.n&Åð @üÌj™×JT(MæsÍfòžz{¹¸%è-ŠT‘.]‚u i֧ŵ7s¼jÌñµØ†Ä–¡ïü(Ö7€s—?Fl£GãíK9ÝMys/ñŒëT¿ê•ЪCn‰«LH̰[ëR°…ªÉÌ‚ÃõL+”giZ'y—Wß?}yqêwëÈyü~ÄZþÙcm£ëFš½)Çv¦wÀ¬1mtßgº÷lX ßž ñMdÃÜý!ôä$¾à'Š)ÄŠ£÷ˆ©\ÊoG{ø=µ’xšàÄìVìCäBÏŠ2žºl„Á…–¡Ý!%ü®’sÕ…†¥=§ U)Áû‚ý(’Ý¢ó nwøÊðe˪gwé›Ô‘VXº׬'‹”ͪ(NâfúMûû]¤þ¢}Kš’W›:æð|ÖkÆ)}ë“2g—8"/ì¡Ö'77 iÑU ©žÍiÚ)ŠI ¹nŽrShüY¥¸ˆÌ•ªÌîó «%€OyGÑj •Œû¯V» ¢ôUªT‘°¼n©åø´'¥W®[J9D‹Ä¾bàB4šñ„•v.‘0HBYöŽ*A†Ófd™1×0”\bƒF6t³\OÖÜuÕ:Ùt *j7   c¦>kÆüx»Œÿz¤ùÖ³&Ïþí5’ºÏ®ž(jXÆ­&ûx쇤šw5„‹e 7ó×FÏ‚!\\ŒÎr¡êûÁ#úîÙ 3á‘C‡Åƒb¬MϦ нý͉³Ó¸_ÚxA‰Á×#%ÛMÔh²áßlÞ‡dŸÐEî±jûV¢` ªªT5;]+ð5]?“E”ÅÇ‹ÎVv©³KƒÎ.L”lÜékµ-¬Á9|¹&b%ø/ÇòÕ,ç Ëy«ek«2\øÄ›Éë]4’"D¿½ú_*Ôúendstream endobj 542 0 obj << /Filter /FlateDecode /Length 8315 >> stream xœ½]I$Çu$À‡6aÀ>:tª–¦R±/$äƒZ¢`C4€”`TÏ*±§k8=\†²õÛýދȈ‘‘ÕU==$,fGÆòâ-ß["ò˘äFà¿ù¿O^]ˆÍ‹‹//$=Ýäÿaµ(t…R€Æ)¿pÅü‰¤•„„¹ú¼g ÁKFYÔ¿Î#.–¥¥WÅDÚ^'¹ô´þëç·Ì8§÷¼Äx­¨d]ìÌ‹YÍR¶–$KJF€sq2ÍÊ84¶@ X|êh™G{Ö³~ÂûÔƒ·8;Þ¦cám ¬`@RU¤ËÑ&‘0é8 ;Ëcùïºå½½©¤@#êÂ$daj|Hv›~/…[Xt9S´K¶&ŒHH€ö/6;õ²Ò™‘,IBš~k]bÇ©/†í‹,tB¸È÷•6H?ð¼çÒr¸eÜ(n%M¡àª±ÖFÎÁþ\°ÜŠq黩ҷê2çÀ¯*6 ›Ö›ÉÃÃÇ—¸ ¥î9GFyñ¬𛦠B-Ð ‘O?Ñà(ÙÕjÐ, ¢&ÙŒIšJ6*þÀ$ÿðâ]êÞÇ4Þ¦é¢u ÅsR5ÊÅ5S3|ëi&¿Ð\Pi0ýíL%·ýHNÊ…äÁX™âõÜ—çÆ˜Y&1|õ/æ–[ü=—@Žd¯«„5• [â÷<=bx›æf¥È 6úôñÅï/’ãe7oÎv¸ié6t&z]Ÿoÿ› ”´‰Òº16e µš7FôiznA'ý‘=~‚ì ®Õú­Þ ãösÎk­'œÚ«KF…s—¯„BlÕ.,dᣩ°/m°=µßI¢ÓŽzE78Œ%?tsã,$8 ia'ãC”V,—xÜ–¤µ²–ZËJìSDöÂ5j™ð¨ð ƒN’ŽQƒü…à«¢+“Ù?¹œ‘ÿ‰'`Vû\Å>B?ÑŒFx’’üûÎ6#8Û¡Tf+oÍÙ¬ ©gÛ¬:³B~6 A¦”Úr(Él4bB@ƒe¯\Ç“HËhÄ;6¡ÏȬIøÃüSÒ/ìL‚}½ª–} Úí¥÷Ð.? cša<¬öWÄ"úÓ¨žMÕþ<À Í'ö¾f¢»?YñÓŠÏUü3ÞWñƒN‹jÛ•Ò(û÷#­À^·ü®@}ÒÕ°9À:V±ôuéã:ÑÃç¯j¤«@+rQágŸ¾­?_ÖŸ‡úó)š„‹aû‹úó'µÁ7õç¾þ|S¾®?uýù“¡¡r2N^Î2°ÉAª5'® Ž!™a“ýPš¾aâB0Š šàÒ!o¶Ï¢qÿÙfN¦XvëKG‘M£ÆØz¿.úˆ=%ÎØ>ÊGá&°Ùšp‚Šj ªÇ ™CP0_v¦ä2æù BZc”V7˜âÐz²% 4„ ·¹èŽÕš›cñ)hA°EÈ`(mwl2 ÃƒLɤ§é±n¡äTYz—¨(£Òül”ƒT¼‰æ›A•Æ;ÇYª 0R âà„Y„ä5eçeñü÷oÓZ¸8óþ¯Xw‡6e2C"Þõ—e…_ÇNÉ )¸Z¿f˜*Eä›8eùšú˜_é73–T '(aQj~öm%E‡—•Q茭x®Å½\)|îJˆB‹²xŠ¿¯£1ù`Ò·õ5Ö/gŒlÏRg(VTŸ‹– xœÊ´óЉ‘¨ ‰Üdh’"&ÉW]_³‘w—ó^7|Óä/ûØ‚|–níCï™x7èëÛÅR7¥æB„ ¡rÙ˜5þ‘TcÜ=a׉çÑŸ{ßBpަè»Ù>h!BÀZ„0Y¯ç„’¶ä0/EùƒQþÎ&§³ô¼ôºF;”J²Â¸&\ëæ©pø°ðÞÕñCxQmZJ`á²'ná¾æÖâaãUµ ‹¯…Ѱ[#ÌšYCe›&|¤†OYG:Š©4®~×(I%¥š’ÅïÈ09y¥ H ù€Gj,ÆÞ_ïy‰zgç—§c,Æ…šÜ5 ÜUÏŠ{ÎsEN`Gj±Ò¢Î€Λ¨ÑÐé%Nj8¨Î„ìÑéLÏáùe©'\ ÑÝäÊd<òÅÞìͽ Ú°jbá¼Kq>¡×g¬Ò =Ÿ‰%nSÅ/ÐK~B²ÚVr# ¬EÌTýqÝý‘óå ¨¤Ú?,2åt,z»O“²mè/«14nLdg/‰´óžX‡¬êœ8b7ICÊ·˜¯øµDcEàZ$Y?8ÎâáãRµýŠj¨îø“4 FÞÆùŠL[ª áóx^H¾ŠXé”jÇÂbE:ãǦI1_Pê¶'§Üf§Ãdå<ÀJœ`ýìã M†6Œ[4êUí{Ìðº§÷¬[©ŽôEò~¹ØŠk3€.¸èäyÖ!öë ™ÚI" KÄåh‘Ù?Ì݃…vÞÀ¥`RŠsm :¬Ý‹rŒÈ£œ*"þ|¡: iLå‘À˜ ÌNÆÖ‹g޳ˆ†)Úhî® vW‚[ ‡È„2©ÏûgmL®³ýXF¯Ô‰ ÔÛJæÆæ¤c ÁÅÕj¯·e·PŒgJÝr>úÃêXBz;,¶l«Xòˆ9¯mi ººªkèÛÉbT¥i>­ë„óšÊfÑ_ š¶«¶kt‹s67§ÙšêO¾Æ©:"˜LE/WÝÔ.®+ð'%@ɹ–Šuèäi¥”Ájf>â96:V ö€3Ñ›tX,í‘ãã8¢épô ¥ÍGœ‰ÇKJ Ç/T‚w%«×9ž85,À½ª8+1/^n.5F-‘ï‚¡›¾®Z•#¸4ˆz-’)„þï¯.‡g««•ŠEf¿¸,UïRxkÅJ¨•åe]SŘ>åÕ‚Í\£9â™ TˆN,v¤^cVü(*Fæù›äSÄ•kÐc!W‰1 áºàÊ™|¨@§a5æ]ºÂ„ö^ñ’Gé^'ôùï¾{¥)CaŽŽöÁÆIÚ¸qñ[*M*¹Ëe¥lA½Î< ŠxÿºêµTxЧӯGÔ›>VJº–g5(|õè¢cy‘<ÕMƒŸÎ×<äQ´ÔyðGY#–wp5ò¬ ¬#=KÛ×(®dÛPÛ ãÎ+QÚb9*ÒÌtúS¾Oñ;w&€îËÝð!b–®Â¨;¨Ü[\/Âk.› Ù„+<õ׊p®ã½4g58`‹‰ˆþ¬bpt`’uÑä矧&v>ìŠsÇŽö`k#ä]«yÙÆ{监(ݹVt:´×x¹©À*Ø#—bá0cû›‹Ytn ¸ayÍÕ~ÍM’ìÆ†y{øšr¹˜[=WÝÕ…§>\—‚lY>ϲ5ß^–óÀ_V·7ßÔ—ÑïD=tý¿_!¨ïIx·Ñ*©x „øw¹Ïe~ãý-P'}ö«Ç7ŠdÞÔdÇþuqßïNEv¨ åƒÝi‰Ä®D¤qA+J­1x"Á@«8'«Š®Ä—õ¤,:¥;0po‡™­gïpº˜ÃL>ºR„Y*Aµz3Rêx¢Æ``Œ¶ÀmÇLnK ezåouÈù>AØ?‹ÁoîLÌ3/=™[w}Ÿ q›o.Áh‡n`}·yu¡,^ Ê“c¡ë†îår£0®"ŸØQõÔ_Ä$¾ :NˆiÖŸ_îÈ«¾ýÇ0"„Adøz ÝÌV# ‚ßÐÊ[xøG3Ð ž‹‰Ch`ñ¶´€»ËÞáñç­º,óʯ6¢?¥©5Ï A/PË õ"ÌdýÑQAÀ¿Á} (´DÎÎ^l'}LQD ¹Ã–X¤We»U—ÚµÿÝqï¯GÆ< ¥+L‚ú´z:s2æÌ x§Îà“@9»3ù ñ:Ÿ¬å)*ü©(dÿ=l$ ÆF‚åD¶iÆ!5¥´W“Û@xãfÖ¢0@äòähfÍŽì¥òf‚mÜu £˜`Ë¡¯‡…JòÛ[ÊØô„Ô)vŽ‘míäN{Z[‹î ëý̜Ȕþ~Ú,ÚIL ›ж¢e÷BßCKž¨SÊ™rµkØÊ8<*68I­NJáïú!ž>’ëé#@.Ìh¡õÞŽ!()bÁøªÚÉÖœ€ TⅎÉ ƒ¹Ö¨¤?°>Øèq´Ç;d…ïB¡œ¡×Ž@(pve¯,hØOÀNTWdË“ó±“BìºÉªÉ8}6xBmr:xõìÉ)FQ…dݬLN1Š€B›wÎLÞŸ„œäYÈ)¬jç]Ѩã‡YoHí1SF®é¨bȨ횶¹8©PÉc0­hýíNý'Á˜oï|0£|º:„&9—f~Åu¾r>úÙ9¶å6òÏEVËó¹«ó¸èý0úQh§„ $gÁDit= (¤ va~r>¶C§¿¤ t Vó(¶³”x4›lgñž9Ÿä ‹¼cç°¨b×´½Sþý¬­;×hP¾rÓ¼s. ~R Ôâ$3ËëÅ ì™æ“¥:‚L,‰yˆº––cñR;Þ>‘‹!XÂýœ(j³Ìð*Þ‹ •e¸›¿Õ|²Ä A©þkˆ {uÅê>>È:Tt¡_ÇÒ-×£_‡ÌŸèø¦»;>ŸÇ׬HG«‡[óš J…˜„ÞºéÁ(tgá-ïÒ(Rç(‘Å×Ùª 7Ô¬fr´yô)¡„FÇu9a’ (Ú¥€æ|K[b¹°²J×4âM ¬Ž½Dè{\aÜá,bè_KÝ*–ÏçÙÁ”wŠž®€Í¹< elWúÎoØ|ÕïoÇlHújU@¢×Ý H| ’Pð-ªRù¾l$¦¹~ËÝQ±Õ+I]êÕf%¹4RQâŠ_=bÉY4m³%[0ºw0Yç,ãÑÑ1ÙqoÙaQsô§NžŒë='¿p´–“—äÏ´“¿·:ì­"àðòÔ…¼Ñ/ô¼qÓãt Jéd–M¢Dþ%{TZ¿’¿SZÕ¨À”ò>YÞáI£ Tþ˜‹ƒ¸,IJÐЉPv¹Õ 6Ñ"¬—+55EXâèuhÊíÞïË€x.¶\Ï5_[,ÑâK}–îlïõÝZ\›œÞk> ö=]›¼kŠw:. j²5ê~Oß਷9>•ÜÂ^£ù±HëÏÿ™¾c¥üÊ}ìÄæJ-;Ý\óÍîï¯Ç£ÍqÅ¿÷xi˜¸Wöä¬@QΞÜ×Á`“þžÁ¼g;´ßºjïSäW$× ‹º+åh¹_­É­ôkoõTþ‰wï5ÜÉåÀß]ŽtÑàª< ¬uí*ÖxªO¼“†·uÂLÃÐÙyÔQØãatÝζ;}Ñ›Î{Rô¢¬ÈŸä)¶ûf@nМR”Â[ïg€.ÄåÃÐaVЇ$Æ'‹¾5_ó¹r1ow»¼%7¯9)r›9þ,SïªP¾uzj‹ûÝhýòröb9éÓçëBKd×·y;ž÷›ÔÚËæ2àý¼œϱêÁ‹äæYü’Ý,‡«Ÿéüd÷£5çMhY’Ž…‹Ÿ‰½zëVn»²»$7xà$E:Ò„W¯Â]ùXï‘+@˜éûÏ+¡ž6{“Z»Åm±øPÐy_˜(È»š/s²ÙÛWôŒÖ^O»Ï#„ümjü-]·-#ÿ3[àJÔqí.3ê9}8ríšy:OÜ~ÉhçñÂ2pòÇYª9¶¤-ݱvʵI«ßHäŒÝÁ¤¬ioû:ÌôÖëMSê0±>0^ýøõ"ãÑ}Ç¿þc-k.ðvC©|þÊfÿó0|ú?õç«ú“u¶¯?oëϯ†=ãmK-Ïï/þ ‘ÅŽendstream endobj 543 0 obj << /Filter /FlateDecode /Length 8825 >> stream xœÕ][Çu~gŒ<ü²ð‹gͨëÚUô ±Ã1b›@ìÀq©#r‡â’–è_Ÿs©î:§ºjvxQClõöT×å\¾síﮦƒ¹šð¿ò«ÛGß=2t÷ªüóäÅÕ—}úGáÎ!OÙ\=þúÿÄ\%s5‡ù]¸züâÑÎL×ÿž“z8åCšüàñÍ£?ᄎžSv9{³{×ÞDòîÙõ®§)d¿»Ü^›ÃÿcwOñ 3Mó”v÷ôC?Y³;¾Àû6ÏѧÝKúe´ðøs1à3¸';™Ýúÿv³¶ý2ß½ ‡#Ïú1½dšà=»o` —|¶‰ç/™œ§Å¸ÉYïð¶‹óÁe·;âm›½ÍFÞ~}mg˜Hr»ï¯m„÷™yw¢?ᆭágãî -svs‚ÑáMó4Á"__ã>ø)šJy€¦‚ ›>ìb<Ä4ïÊîä”"<2B6°ü2íå7øDÈyž-NfOÏtålîyÞ~ rr§W|;æ´;ÞÓ§Ù:|'’\à7F3G˜“¼}ßœ56N‘§¼ò–dž Mõ)¯ÑÛToã°Á)íž4ó9Ø·Lò»#NÃäºÃ£âÊË!Á½·<†=}]6×=µuîO‰®œ ÂBötnò.Ú…&€ýîV¾¸.ãøœß’ŒJÆš\Le³èò[œP¤YNžJÏN!e+Ÿ1^ pÑMYÔ”Ôp÷õü^ãí”s 3ÍoÙWúÂUï—eï;à±úB…GÚ5Ýì˹¤Üîp½‡óNÈg™­P¸¤ ¢ƒS†÷À|s„ÓUO¿&®Æ8#YfY?-Ý {λe^¼íeÊÁ {?L|o*9È£µO)LEЉH²ÉÑÑ/A2lÎ)¦@úµ™'šaŠ>¤:C«g(÷Š)–%Y½å_‚ÔôñŽŸˆp:ÍêaNÆåi†Å×=|³no}ò³\®¤ô[düî(‡ ½L“X–*fغ¼0Ô åfNðçhƒá“bÅqŠæÖmbò£×‘XQf½eInœÞãýÍÔ…`ŸÔW2Õ—¹1Õ§TU]!5)¢€ `DP8¾%0O(]wG^[ô»¿]‡¬àâ"¡£<ºãWbäçU–ŠÑ™ïŽ)ÃìúCmpb²œmyûMy$ËXô.ÅÔØ¬4¾7‡Ù¹å¤~£ä¼ó®^žêå«zù¢^ëåózùó®Òöé\o•°UJÏ´ºH镵["ù5,·ßwCæ„ÊÓt6äûîzņ¼¬—îÁ]pë½¹`˜#Öü ”½CÁà¡ g¡Ìtw?©¿“ÜtO¯žÒJø ôíé¥bˆŽŒ‘È›ï{&8\°!³ž±çm£pÊAORÞy`·äV­pM@“×å‰)²°ÎpÂs,ò/¥Kºçëó!˜¸B\>¾EÚÓzù²{÷u½|öÐÝS½¼«—÷]Z@eüʃÇ*ÇnßTÂf}IÇ$Õ~@SÙ  ï|`›BŽC࣎f³M ©&+K`KðÏêåM½¼­—Oëå_ëå}—‘„8Œô¼;Ø«î>&„çVžRàü!ÔùºZ# aã>ÆÉ)l èô(QjÓ"àµNpŒPa·ò_ñ3 T©-$cÞ2 8“3?$“³’ ,/"¶³x˜Ñ3Û…¢’Åø`”a„È.y€²®AvuÿX·YáW¢a$Ôª¼Óª¿ÃáïæL(pÈÄ8°ËFÚUH®"á?““´~¢»»ÓW­‰¿*‚>èƒ-P<&¥óK/LJ C…ïúä=З¶bB…dî[ LpVÞm QŽó¡zþš§ ôq΃'<,RÀIal'Ê8Š=3yÎÐ.À  ‹ñ_3åb€Í†*¼kNaw|¢È|µ¤N…ÉÔ•.¢ðM®†?AîÂçò´nòçk¸w|¹’¿ÔnDÄ)¯ÐéažÇTø éÖã}&OÆà‰fÑœ ¿rã À‡‘ÒßÏ ²Ú"ž3Ò™ß}Á&íÉv‘` 11)ò{?#x_@e L?/$£¤xï²6…úŠB &4‰Ð/oºƒ=•Ïv5‰?€„³Y“ % h©RûD§ßã+eìNo´ ãG_ÖG‹ß“ÁR®Ôg†¯8 .ÆÙ4€Á@Ä™¿ª—ÏêåME<·]$õW ‰ÖËc½|ÑÅbÏ»ƒ À€‡õú|ÑÂi.—<×ÂÙâGÜpD6˜†Ñ÷ïù§Þôá÷h’FrÕ•Í—i0Á+N¸)c}’ò…{fNÒ‰'!Í7Zjn E@W1›[nzÙ½ûº‹ûw÷ tˆ›³¯G]h',QM › >U`º ;–Uø€Iù21ÙJ9/¢ƒ£¿°nëZ¾ä¸­ =$˜Í´ø=IIIN9'–¬ù ÃÅÅ>ý÷8¦æO½½©îð´ö¼¾ć‹zY|xšÈèûÒ«‘rWÙv0¹PŠ¡ô#†‹56ÎÌ•ÖrÅrkjß87dB Å1IZJ:'^ƒ[E‹ÙófRt:¼Moë{§x’ñâ‰C–unfl.Sû‘|”e}ZA}¯¨{ͨb ;££–Œ¾ Ë£‘«c¾ÇoñÐ;a¦…%¶.CÝ„‚‹bkE52lU…D(r šO‚›"òÔæ‹’ùõ° ãR’,y3;Z™räÑ BMM’Ù‚6‚š\ÚÚùa?ÏE€’“ÊÑ(Ï2î kó)±ÂZ.cD|ˆ,É'6Rµ_¦ñÓ‘v5~ñZ™ýÏ—í·ÿö²«%=œÐxëkʳÔ!'6¬0$¡ÐrAïdÍÃßmnLÍÙ KÐ^‘­¯)s|â2#€–‰2Î¥-œ®›nôEðø¼¨­>4õ¾øúzÉ<Öº.NÙ{›€Ò½Ž ÿ âxm†Íp«8h°q_cÈ8ZÈçòW,¢’ª–ÝÚb:3…ÅêV¨~Wéé–·ØAºZúJV‘·e–h˽›Lí¬xÁá0²'ØáöÄÉè!„‘›@ž'¿;{gÈû Ä•ÀžC‹xº0äë^— š’òg‰•zðÄpºÖùœ7ÛŒ«rðC ÕèU^‰Ö«ÒÂ+9YìJª.A L*ä8höwµûFž&:þì8'ÆMkÊ|—¢—3e’fJ6X9–¥i¥ï4Q6Ã}tFÊJâtÆ{§ñݱxB¶ˆ2]2äûžQ5Ïðšl/ü¤‹—öòÛŠñˆS¾VÅZäl ï³Ä€ÞY7¡÷Z·åuÆvš`Ç’ ó0‹m›G¢Û}qS }àç}ØÕAay,{ÒÕ(?\×ÄIÉ\ídK@^£V\¼Ë2Q¤å1KÇ _XÚÖœ4¥HÌG'„ðSbé]L ݯ¡Þ¥óîV¥œt“¤”jVè–¼­y‘ 7©´â¿=~ô‡GœT:]½×µ¶>ŽRØ «,ï¯<ª£ÁêVoóŒÄ¥pR‡Æ/ëå§ÝË'×=OŠðƒˆ¤¥C÷Ù=ÊúÄ.‡—ÝDÔÿ^÷Ü'Oº :tGãÞvô²» ñŠo»ô½DŸ×ËË ]÷ÅåD—7õò¶^>­—÷õòX/_ÔË—õòy÷wò•ÒΕNÛ+ãÎG+) «ŒMÈWÞ$¬}c sÄÞ ¸,ÕCz´Z'Ìšç°hškgàVâŠÔÙS:ó¦$„UÈ¡ÁDì3#d P~‰ €$mP? ˜ŽüRŽo4 îáx•×à>ÿꞤДL©à&Å¢lfcÐ9è0`%bcT‘æy*Æ V0sÑ9jÛ€ºg <½G" f Îf󺮸[å ?À8öÕ ’ŒÚŒÆýïëäP‘0› ©,²•¦·Ê ¡À<eÓ³´s³ Ç †žÈUrä·`î„xË ¤ÏzlˆÐDLp4'L§¥Îs±=”˜¼ÀVQYêÚ©4£(?§V¶k7‚g2y­×°D{Åd­á™·ä瀉Œ4@pîåDá;‰M¤?N˜ ïºH(i(T<÷y k­6Ï[ד£Jï ³ÖÅ z´ ëR\ñr¦ýÀ>hÚœ sþËŽvdÿI†=!Â9ÙïªÒÄ+ Dd–g¿]ñÜåª'<¨Íx[áÏ}aD`n"æB‘Ûa0hå=ÅÏ*U|øàài"H…cÿ±`pªBdäëÑ 9°¢ªD)$âÔ©' ‘ \? k¸FÏ a“×·š¡õôÑ/}‰÷í@zeìãñž»ŒØ2Ĭ6â³6{ß=63肤†ÿÝÛŠ1{[gâaò³»hëXŸ·¾–³×}3ñöÍb޲1?Ú¾Y?&Mrüß\¯®½êUž¦c-í’dFÏ„ýñ÷u>~ÀÆ:°€†\ø_®«=Iñ&TCyQÿ†Õªi]PƒøIÙÓT;Q~ûGuƒú09gyø]ÝÉ"Ù;Q­ÐC¯O»—/»¶=mS…YÂÝu,ÆçH]£0Í*•éi£f`ÿ2Hð¬fRD¾:Í_]¯%2®{_5 ôPËa:ß[-û÷`ŽÒØÊ,®5­7\ß²õ¿8A¹òÝœW6‘)çõL¦ÒŒ_ÐkSø½f"Nw¾r€ ꦱ1tw.È´`<dZ¨Eá8WUŸ¤Â1’CÐ*qº-ª'F1HÑj}wÛ¥hF—}™Tq˜“[”Ra•¨ÐyÒ9U•®@¸w”¹´¥to'<‘¤²‡N%(·E§q82[íÉB1~›ÌD¾T¹Ÿ· }¥PJÌ¥õskÙFÛ'‹„ä›èŒÈºkL‰}“$ "ö¼Ayk9»GÆ÷‹—z.m‰Ðí×ËŸ¤ÌíÙ¶ÙwÄg…V kœWä¡ Yûg©]'™2Ù&—OÛøìt¼© Od#÷ÃfÃ7ÊpNº©%\649€–jƑȲ*NÌ'’„è ô³jA a+ê:ö[bò½ö÷Ë{Í&®ˆ÷CžwÃPƒd• ’2E¢Æ¥ËYîuúlY°ŽF °©ÜË7• T@zï½+¸’#Òyêp¦Î£­¡úQŒÕZJ{éi`'êuIª³´Rµó¯ø÷óK‘°#bPMfx¡¥©SaÖ² µô¼TŸ+ñÐu/6ò§‡žQ0Gúé–‘eÝ_‹PËqKÍ`ÛR š³¥OLæF1¡5ÃÿÑÑ •>í]D©›¸X€zB üŠïÏ“J)Ýoø¬²áV˜žr¦Ç9•øêô1èxŠ"rî 2´@&sDƒãt£Ç×Ô¢)f9Ú@h9<ÕYÝ­Ü­ªý4¯Ú'á®ÝÒIgíóNà›aýSŽIdf¼ëN€$vèFP³ÆÇ\£dV4Z(Ó -DV¾w­N€kAjF'Qü­Û¢T@¬A½é´ˆƒññJ7›<^´ÛUȇ£ã4ëÔF•þ¿ò”dú'õŒ_ó ™‚b| KøRlu[ôՖ«c¦ÎÎ*Îþ‘ã=HõP”"akEô¯‹{øb¦È5ù~¦˜›¼‘Ù£óÝöŸÉ#̦z'ûPƒfÖ#«Ó ê~Á"ýyé·‘Q%.ÏŠô1Yç¶ár KÓ÷Z¦ÜÚvÒo”K5§Cš×ÐοÓDR b¦é £¦?‹Î*Ê¥pÇBA}Wbákbª8–dfU’³íHÝVÎ<=/F¸×öxR†¼‚Ní<õ¤Ü™©mC XãÜÜÀÅâ mDó²BDN ókù×ä/,s„Q(úד‰ÊÖeµªãf²Á{QSÜv*“¢ÂÅseÏæÉXe/RR•:¡Æ.ª!Hè”›frÇ9ÃZS ÷÷k-±¶bã´ìÓÜ6 ¦·€^mÛ#мâ’ä'ÊÊe=J²)æJ?kEŒR º€ûA+‡9þ¥áA¿ä.ÓBtžÝ«ab1ŠŒ)°. \z6C·fC¹íÂü|pn2Jz@Ì6¤a¢° H¶Ù! ·‚ï)ZÀÝ”ö£~óÓBÂ@«¿op¡D¤Y›#ÉhàÞ’2Lf®¿ìgí!«c3`wãïÞõàœmÎ ÕuŽ€©bŠÅ€zH¶ß¦BF«‰êúƒiù(†J{åÇÁ^˜;ãfìÍ„E΋Uáµ€±Øõr®GÐû0f°¿GM¹x4†Ñ\úyE¿Páú›>‡Æ¨Õjõœsßàù"ƒržz^ i@­gêÕe‡…“ò©õV(;{œ¼Sÿ†m`®êÇß™Ì&[È$¤…ûPÝT-ßsþa2f°!?j!<¾]ç—+w‘á1g>¾!#wÕïÓU.¾_aÊ¿´ÔßÀÌÞ«ÖÞç•U»ðŒg[ëØ~†žÜN³ûçʵƒ×$‘õ gÏc¡ëÀ‹=wl 2ý;,àî“‚ 8ÎÚü2¨µ(Nš“•‘ò€b7gzš‰jUU™˜ïöu’íuÅ W¸c xßð £Ñ—¡WhýákþaiŒÐËÔ@«r¨øÑ‰‹ÄD.h7ýž€ c( N õr…SØÒþ]µòúAÁÝ^DzYWó¾–~¿J­†åª†RŬ\ñÓÖ0Áv:¦-Ôúý"3|j’6h³ÎÐ@ž72%û¢9 ÝA]•§ÕéZ šß»ÎùŽ•9ÁåÉ5̰«˜:»,·1çÜXê/!íRÑvÓÞ^˨̪8A·AqpLöK˜^šC[Ñ OG*0Û×XÝ­ ùD§€b#É ˜9ìM,ö£ïw('щïNSJRé8Ԩ鰊/Ù@¼øÉuÂy·æàª/üR£éR.ŒAnOM’_O¼¹“9k@#u—ð“'¢oÎ>ÍUÙ¾;}t)8â9)-c6š¼Ú§­Èk$‡\½|0øÃ¥Ï0Â,àÜïJF[8äXÙâ¬ÃKl÷«rüL9·é+C ,büìÚpàj³‰,ªý´mTtÃøC‡¿HëÈåàÉÛYe “ †îª …<=S°§¾DÒHTD3ÊCk⨿‡…O×¾Ö›>¸GQ<­SY… –ç±×ÙúZÈ ¡ÂáWç}|`fz«½«¨€@K ½«>…§‰¼5¿,ä DhQRT9QÛ`R:L%]ÝÞ[”¾4]ý摃åÁcWÖ‚¥ýâ‘# ç×;Ïýé]“°Ð9މ5]sÉA°|&Fk:ΆÌM↺gÕT¥Ž” š›ì¦ßjŸbnEï’\èddã5,ܦ ‘ñ׆ Jïï×kEÐ`²ÂêÝc«4¶ÄéÔ>|Ôº•„ÍŒ~Wüˆ€Ò¦à„í¨0åC·îãÔû8´Ëæoß\p4°zÁVuwÝL…Ðy[‚SÜ@j‰j"§lÇ’ G)[£¦,ÜÖlØÕ9€>;€4Ð+¢JžÍ¡1:a*ô¼NhÚ¢:JáÌ ©FèÊ$¢l\–¸Q¥4©U/l5Ð/Q^ùHýèTb ¿dûíÙrûý>0èm5î2Éû¢»Ÿ,»•T³¹Ó Ãäá ]ó¹gï))tl–ääw*¦mƒQ¥ÛøÈ¦"åÆIlðŠŸ©¾®é×׃ÀÙtˆ”˜'£é¦Zœ‡1¶ ¶:¹©~?3o‹uÃßrßU¿—üÆC/ÕxPZ"RÙĦI ­Xvïè³.í·o_PÂ`¶êc{*˜’‘ÁÊ…B§&û}²Ï~¯¤I²Ìö–GHÓ™okྉXËàÔ‘¡|nÝ¡œùÎ-ª´viâMX}hV?r‰7Õä8Þ´F0ÍyªJæ€ú A´meÆ¡^Ê%ê£ïÒä ¾ E²9ZÄØMsh:ð,wýâQ]×{ã æS £Ïg•¤U;+ݵÏïŠ>óéµB2µM¥J…í,y\ܵºþ[ÏÉXŒ?wɇ@°f'úêûàfl~žŽÁIá}’ØVÿñIl3917>giiœ%cZ&c;ƒÙ2n"8 bÜ;?µqA¼ëT£Kú¶²?”L÷b/Û‚6‘rÞÔŒ‰™æ´tž˜}¾ˆ˜‰0ÎŒÑ»ì¨Ø±·Þ‡Óº‘–é—t¾ZÑÍ[¾™¦8*ï·-ÄiNº”h˜å÷#çŸnÏ6fêC£Ú³‰.9Îf9NŒmÚNËÇä;ýÙ¨UǶ?Û솟éz¸?Û;¸¹m²)s‹K:ÿ<·}Ú€lçä·_c†=‚wþÖŠƒí~®ªé†ÏÖ®º˜mˆÛæŠ*Õzö²²§´MË^b®4O€"ÂA¡>ü {Ö=Ðíqîø6ÊÒ¶iõûãtdÝ:éwþ´¥O>ÍgÐø~‰‰¼©BcP•.RMœæ2.Sj_¨.-®ñ¡v³·½ÖÏ­NpØ£íE‰ëñÓ¦nbLùƒ÷Ø€êxiÏÔ}äÐ×ò¢f[®°6—¬­–éŸëþŒï»ô«½š3-š«õÓxÿ`ð¸–zXJívªÅ>C3ri|©ª‹ïäd¶GL0Myœƒ¬-ºSÒwZ¾õÓ­~’Oçc@Ñ-—ÇØ€ Ùý¤®GVfËr9ëÁÖK©¹-=H«®~Éã†Ü6œÃ1\j{Ðã]¬›:ÉD9i… ÷ÿ?RýÐÙöëqç‹å—\^ñpótaöõ—ºl WÛé> stream xœEÐÛKSqðsÜ:ç—‰]࡞À DtZaVJyÉKF-ÎÚÔ¶ÓîšîâeßÍËæugó’2!ãT`T,È —ÜŸ>ôˆÅoãì¡Mƒ^¾—‡ï—ï÷Cò ‚$Iº¶¾ª¶T™.óã9d<7#ž'HÔ'*A– ²äþÄØ üà8¾{·#d$i¾ÖÛgÑwwix®MyAÙž ¥\iEEyW¦TVp•:µ¾»]ÕÃÕªxZ§âS–«ïmïVó–ý‘+žï»TRb2™ŠU:Cq¯¾ëjzKgêæ5\Ú ÖÕ\MoÏÝTéÔÜÁÅ©ú‰V­'"£ºŽ ˆs„,õ !'s3òâ£Ù‰bñ'oˆä®øCÄçÅ=Q†çð³QQíD#¸½ý0‚…°¯ÒV«ÇîdÝsÆÕäA¸‹Ž-Â*¥pÄj¦j¼N¯]H!>I?óiÙä4e±ÅºÏÎVErŒnºm·‚Õ"@˜G¨E˜ñ¯w_†I4ëð;ûG<¬ûñªê~“¶¹¿Pe0CL?Æß1whë¢Y0Î#‰•Þ3‚%^Få´!¢÷’ŒØÉÀ¬9Ãè5ÈÃCp ¤…†.¿iÂNS0¬ÁŠ£ÆKo‘奰gÄuÏãDÙ‰NH£¤hÈßâOßwS.Ë8Ƽ¤p¡dŸ±­vÌÚOùŸŽÃ3@˜¥ÂAÜ~‡OÑhÝ6l¸fZ¶¯cbGøþð„ÒÙ¨”ÉJ±ÿ“®–4B˰«Îiþ‡€#û›BV¬ |PàF¼Ê¬¿ß‚·uo=ÚÜtüÒBÜÐ5监Ԉû™exñåÛ”)1Z³TÆJ¹RŒI½¶Ó(î£S¤‘¦¨˜ÀŽ’S4 A_À‚öðã÷Nx„_Ð4`BªùzRÙl¦¼|)ë0AübùQ÷endstream endobj 545 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 499 >> stream xœcd`ab`dddsö Ž´±Ô~H3þaú!ËÜý»O†¥êgk7s7ˤÕBß³¿§ñO``fd¬ªïsÎ/¨,ÊLÏ(Qˆ105H† †––æ: F– ޹©E™É‰y ¾‰%©¹‰%@NŽBp~rfjI%X‹MFII•¾~yy¹^bn±^~QºÈ…òÌ’ … ÔâÔ¢²Ô·ü¼¿ÄÜT°CõÀ¤s~nAiIj‘‚o~JjQ“oƒC,3ÐW , ÷Ù~tðɰœxùSl>ã¯ÄGÌ?d~½ôûÂRÓÓ¿&×õµOêžÐÝÓ3wÎñ#Oî_ùýFåo¦Ö¸úß õÊÝiÝÕÝÝéRzšú³·usl»±c^_÷„¦úòÆÖù‚Þ®¹‹;Öv¯ëîéþ.~àû½‡'-êîížÄÑÓ=£¹­­µ­MîwÏï­>.¿E«z‡Jf^¬Úžö]9ÿ[ù‹Ê]“;'4-ˆ-k/¬Õ)ý­¥õ»¾$0Û.½»®;aRÁòìÊÖ°îŽîæîú5Õ+j– >Û}ú»Ù⣛Þø®ºâ»ß÷¿ûü žÏøwów‹Ÿ±¢sºç—•vWTÊý3b¯ê._°°{Þ\9>9.óù<œ ·ŠÐ'endstream endobj 546 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 549 >> stream xœcd`ab`dddsöõõ´±TH3þaú!Ëœ÷;ìG×O6Önæn–I?Ö}ÏüžÊÿ=Q€™‘±ª¾Ï9¿ ²(3=£D!ÆÀÔ H*ZZšë(X*8æ¦e&'æ)ø&–d¤æ&–99 ÁùÉ™©%•`-6%%Vúúåååz‰¹ÅzùEév StÊ3K2‚R‹S‹ÊRSÜòóJüsSÀîÔ“Îù¹¥%©E ¾ù)©Ey L% ¡ Ì@O1°0œb´øÑÁ÷cúï°Ußu–üP_ÂøÃá*óÎß‚¢-yM Ý õÝ•í½MÓä·õ²NìYÔ=³{N÷œ®9Ý{y”gwÏéœÕÍ1qF÷ÜÝU1Ý“¦Lœ´¬¶ü†ïšSË–'é–üÎù]ä»âw­>ÇÊ"ÛÜýäkÇÎÉìNì.Ë©-¨Ê¨ ênçhšÔ1iZï„ùäæÝZ°am7ÇÊîìšæ®šÎfù39¢æw÷ΘµlíŽ;º9vÍ‹‰‰Ëÿ-&Ÿ”˜›ÖÍáU}kÒÄÞ =äù~°7,ù!¶ê»ó|Æs瘿gþP}Å6w:Øu•òFl[¾[±Î®›Q™Ýœ×Ø)—üÛ€U—­轺iÝs埰¹ÿ^ÒœÛÝÙ]+°#sÿçcßU¦Nè˜ÔØØÕQÕ"—ãÕÍQ^?c;éý³äùä¸XÌçóp20"8ÜWendstream endobj 547 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 401 >> stream xœcd`ab`dddwöõõt²1UH3þaú!ËÜý;îÇë¬Ý<ÌÝ<,“~È}ÏüžÎÿ=E€™‘±ºq‚s~AeQfzF‰BŒ©A20T0´´4×Q020°TpÌM-ÊLNÌSðM,ÉHÍM,rr‚ó“3SK*ÁZl2JJ ¬ôõËËËõs‹õò‹Òí@¦è(”g–d(¥§•¥¦(¸åç•(ø%æ¦*@ª¡œós JKR‹|óSR‹ò+¢˜YÖþèàûñåwÜæiß9–mþ!°™ñ»Èw&æÏpŠöÏîžÐÝϱ¶`zYX}ta‹\¡rmH]HMˆdWK¼¯W7GBù’]ÇÖ>\v^~ẩ³ºgsìßè©ú[¢¸ff÷ôÙºgöË­ûÎv´oj7ÇÄiÝ¥¥ …muòÉjå!ÝQjwrîÏÞØ½r‡\©¢£­uwgw^wñÔEÓç/é^ɱ>fqBVjRЉœ[ßù¾KÞúλRŽOŽ‹¥2Ÿ‡“aÁ˜*endstream endobj 548 0 obj << /Filter /FlateDecode /Length 8993 >> stream xœí]KÉq–aŸÃgç†N=¶¦\ùΔ¡ƒm¬e–`I´|XKBs‡;äŠds9Ë}È€ý×™U‘•ÙÓÍ!-Z0öÀÚž¬¬|Äã‹GF~¹›'µ›ñ¿òïg/Í»ÛG_>Rôë®üóÙËÝ?<~ô·¿P:ÀOSš“Ú=þüQ~Gí”ÓSܦdÜîñËGŸî~]&ŸìþíÕõ<¹”BÐû§ð«WF¥´u¥ýd•qû¯àÇ9%Óþ9g -‚ÚQ›ðíà OÔ2– RͲc1šXÆGù _Œ)yhu¬Rv‰5~Õ—7’¯aê“Òqw­Ì䀸óªyµ˜À-~FE€[‘ã$àKz3΢C6¦ßµ@s¡¶ 1’Ø€ÎÀÇ0ÍJ+6ü†L˯œJï_O$'ãÝ4¯Ú³¾ÿ>¿ï×c}|U3»_›Ð«°”ËãøQæ\Ø¿½Y M7‡ <€ä<Ô‘5É`çaTUêìÕ{hà#¬7B1Ä \Ff ’:„É+ &S´± ͹ׂ{ D ~Y3Ãi®n2Ï£´¾ÉŸô*pqÈì"þê œ®‡Ù š–XE“M©AgLge€qJa"á]ôŽþàÎÕ?ëNéÒ¢t{ºÉÃôÊŠ¾î¤zç„V8ZÖÝY¢*æLª8'Ü¥×Õ9öšh\ûÄ|g+[|Ûe‹-^ wu]o'¸s™©÷|óÿ‚ž·Îƒô¢t_`žÐ4p‘:ð‹úøúÊ9kÙßdTÐ|Ô c8b)]DΑA¾eÝ`Å$˜·Ê•åÌÒErþ=æÉ·]óDøäú›™õK²„l¯Iww©Õ E;%o¨Ñ€S¸ùÂÀa×´&¿¡È ŠdnªJ+y±­m(`+€6³,\tBsaÏV±. $Hk$Èh˜D’jl$™òýfS+Ñ/+sMshÇGý!…|9ràqqÿ¦´üL¤ ƒu­#®³6ïb%á›ðû…V1¼ž:~—³Ì%ün–\'°òì¼ß*º>µ/;*½µ´0ó²d‘|´«RpüÛ3÷ºLNj‹®mÿCéSS NàšëlR~óØ&c×OVšÑLœwa€“›¬õiF#¼«òË:OzV‹¯H €`=ÂXÅK?ª6`~ ˜_xg§ ”Ù)5ëB~ç“•bò+VÄiú3£ÝÁ«è¦¦7žUk_q“r*”Å À$¹Ñ÷¤õ¸ÿSÒ ‚v×q‚­O–"¿ÁˆŒ@ º¡¦+@%™™9¢ß3˜³_ZÿǾºYËš(áJžE¨•¢¿;=l?L«ÍòW›ÎlÎ}cßkwGN4?~,³4Ág)idéœmå§û?i?!H¨i1¤0 öö Á€ÔÝÕ$5ëEø2üäñ£ŸãLâîö^€}óhÞýøƒhÜ—`Ñv/¯âã\~yñè—ðe³E%j ÂhrÆ“`ðEŠ[ž±c!¦‹v¬RÚCéR¬þÒ·)œ;Ø1u€<„€•5J—w~¸¦®¥jÒäL`3^Ä¡²y„i8aÖÝËád·{3#7_(ûÕÎX$'ÜŠêV*¦ŒœÄ4ŒÖƒ$Ax’Ï"~ÿ߈$`@kÇÿöi1WŽ?[ñ)fÕc‚v¤ ,ñÿü%ÁgƒÊÏP­¸ŒhÁ¢œшXÇX\v—5¼tñÓ`ÊÌ䙀šƒøþ€ÄÝ`ù'ö°|þG ÚV¤5PاSŒ!Œê­òuk§·Ï_FiÈÑä>¢…ËÛh-·7@•üø•-•üÁl9,¿_`‰õfwÊa²Ý^D*»žÒÆçÜíYåîîƒx °µ³ªÝ ÆîODÉ ¬ü:|Ñ™F ¬*í¶´î‚¹ÃÛ¢ÝóC¶Cp„«iñ€PèR4]û}VÝNC5Í ÌîG~¶Ð6ž_ÞbÈ!,zÓ`x\*Ú‹ n…?ú˜;……Ú##HŸÿÀ¸Ìþø¶Òxé#ÇÊñE Ì© Ô"…¶°sFÇ›Lh{ÇÂX’•Ž=ê³3ž(ôø²PÈlnl6¤‘' [ë´%G1ìM^/#•ÆþM¥×çÌ|a-ó†õeדÚ7y³uè[1f-X± «’­ÿD›¬ÉƒZ;Ó×DÅ.—^þUaŽ@+1 «ÜG`3`„‘.D×]žŸÕ :Ã&é–ΖÅå{ý¢é’£pÁP¶0ß6÷¼,_Q£džuÍãêñ‰|Ünç`µÞ Gköv!¦l2,ˆ(RŸ%dMp[é±9*ás¯í†¼¨‹-y)0>»ä5ké¸Zœ†ßåtõ“:í­c,ÏŽG^JâŸuŠóÄêy]Ý”„¼²' F§:^vÈ"}à©>´ÒQ/¡+ÀV¬€ã ›ªæ½H%Æ9§ZtkÂ2 òÛdþ@þN²M–DãG%mË\E·ù=ŒÞþôjUpÿÈxç§•Kþ17¾”è7ò ýrÇ­ÚM²9$ÀÍ føœû>b€5`;]]G´`œ7£,sÖjrjõPø\3P²Ò2nÑDw.pñâÊ`þÀ{k’1ÊL$rÚÆfU2©Ä[ýÒ@Žè2Y~¹Üu¢1µû$“°¸N^IWN3y”8ccòÕÁtïôa/á%…øÁÓì÷¿Ê{ãë8‘¢½ÉoÏÙ£lcOª®kž‰.“;À&j’;Yþ±—Ëgw"Û²ïì<ÑlC0ûß×Mžm|³$UÊLÐEMF%Zç%ƒï‡\±àbVR4ëQMe½n„xg Îk 5þÉœÿi¡:T I²ô–Ùc²¨o“ù¥ö7ðKv8ñ<ÑÒËD.éáÑ'?À-2=¼Cojzê¨$Í zM¿¿ä¶.MítáeôC æ‡’¿ïnháœÂm¡×?QÁöæK&æÞV˜|åâRªpGˇœ°“ôˆ\Æ­†‹ê'[„š¬Ác»:¤ó+ÿŽaÂ\èO¸”¬soEÌøÕR™a”Vö?l'Nø´²ñ]šÅ‹Yy¸lêÕêu9¾½Z €×ÝãE@”³$Uîæg,ïÆo'ªâ\ z¾½ê긥N»a¦Ûº°¢øÐƒ*º †Î#MÄÀAÍ¢ž®@j¢DzÍO®-Å2h‘¾`Ç)%^EÝèxÅ]-?Ò–¼úµ*ÉɳŸ|.-/,Ãç'tdµ@ã *¨Qeí»º{\±t&×0ÖÛª-©vÌ_Ä:žÇ'+YóJ8ì¸,ð–Ž)mŒ“U±x<¦ Í^êA€/˜hÛ  uùL–;¾ŸÅ–q}s…;ê¼7\‚°CgÏ–>»Õst¨ãÉÖ¬÷x>w$S?: н{×),’&Kya̼Ó½Ò±q?x¾^¥D‹ +@2‡­ð@ˆ,ĕΆ¿!¢f·êÜWYUà ¥x§Ó× ÁFǽBäœX°®d,ᦕëëRœ¾ËÇ¢ŒTïGY ÁãaÔºd@ iüW1/Äþá\(8vÍšvö±1JœµiI]R)¿Xu?‘G¡u)Þ9qäÓQôìD©Gj±uV•.6¾ª‚”©„ª3tÇ?‹ËJHT »aYOX RS»9Ò¹5&zkS²ZÂ+!ê‚ <]h _\Pî974ž>\ÀËhœLÍÕÇ-)­~…–WU³ÎØ Ö~9ÔÏ›]”åEŽù´1 ,·Ç²Kùܼ~k,äY($Bl"³øÙ® KdfÛÉÅŇú§í¶ (…ƒ?bbº·0[¨¸¹³OÕª®·Ïc;Ìë£C;Ž¥èÖµ{™WI§±ö–¾Ó'»Ñ±L™9xÍ› `SºFûW÷²P¹ò§¨×"…¬hG{­ÔV€:ºó€F¡´mÎ4+ƒªR² ö³2à9ŠŠ£OóÏX+šá'¦èP ƒ4…¯ŒM—UößÔ4—{•_OÔù@#ü=¡¾™+u|©ø«‚ó'Jaãô¢TÂKÔÙŠúaM/& ²Žª­¹ ·Ô³X’¸ @GDYüóI'>.¡«âËÚ.6æ“çª-Me©ôs©UZ<¡k– ®5VÛpòÃjƹ9QNmZÐÝpûð€‚q¦‡R¨vWs^®Öÿd 1î§±+–„C|`”, ǰ[½nò›.šæfãenŒÅ¤v(]° Û}Ûªô¾ öð}ÓÀ.0‘õ ,î›r©ôgÁ”C±^;Ü2cåÅyMíRü×&òì§HòG(á†<®2Z8ˆ³xœµÈý÷$,.96 ³Ò]î)¾DµÈ­4€ìGª§³C¬Ë+“{“qÉ”&2y?« @ÄȲg`©×Uª¯0F|‹K»/Ñ7»$´çŒuJ’PÇ Úæ2¥Þí‘´:3Þ&ãø]Ò\Šñ+Bu¬Ø3ª•“>ƹÈZ@˯ó¨úÝÓܽ_—ÖúZõ_SáËà \ñÌxC]ÿ-ÖzÇ;aid¥kîÎÆ›µRz_atUæ/røE‘Q"#ÕâX£Yƒ(L *ÿ½tIÑDXpL#s5hùh¿¼ê¸’Î &âu#¤!\$Êñj ›45ìSÌÎ2àwkšMÇ@PƺŽ@xòyÅ“­ÂÔC“säI:dX<òƒâ@£¤Œã2|™åÈÇœw•jñ‚O3H0ñ”N#ˆ¢>ˆ…3€ñ½7Lˆ'¹‘î¿]Z:€@uJÅ4 _ï›*Ÿ «-Ò ê/KÇDHµ¬X9ÜãFÅæ ·qý{AìËФ äJˆå‘f£ ƒrk(Ï©‘qHœ&ùB%øjC}›>Ž­¾k¼{+œ›Ä~äª[.¼@žF÷7Èk¾¶ù+Üsz—ßCõ,í¾¥·ìRÞ«×åuÀø‰dé a‹Ëò‡ÙÝ{2 ó¼´ß]ž.ú1àC¸¹Ï÷üM8ãÐ×Jýl?á^Í;‚”ó•q€h9qnæU~ŸµûÐܦÆÑ¼ðkþÑ*ÃÓüªI:=µxKD¨…ðÞåhéææÇs¨· Ýå”ŵO“uF‰ìâcY6ã M€ð²¦ñ9+l€JýpǤóÝjhoiîB'2 ëÕðJÃW¹IŒzŒcóðâ98¶¢ÎòžÕ…>°A>êmh’Jà‰Å9«;Çýo®Fý¦†×?² ªpu£Ìß½«k>€0½c”@ä¸eE6tE'É;áæ´wƒäêåÆ)}¢zùJ^ìW~K¡Ð´½ž@ÿ”VßvçŒgÃe.ÐQD††¾­n‚ÔJ¯óYy]Úå †pËæz] ufÒéšñe!sÍxå}ê,{vlV½sÇ&Þ {S2ž¸¤Hi‘Ÿ\­Ù_®2“Ÿüø_ œá–îµR¨q0lö ²Œj™ï°ðÝU)oÝ¥ûi‚X–åµìelnm©¡š{Bê¯+Z¸Æ¹#o°«ÈÝøl•?Á¼Ô 9ƒ5¾I¸À¯ö&ár ƒ¸!”Å¥ð#±ÇƸHs{o艣4…aG—ogµ(ÇŠsfY9 OwK3iP~–wžN¹ÐÚ9j]ÓFdžÛ‚TÎw(G¤“Ú6­É×¶<Å)Ëg<—Ä>Ü”OD;‚Ó__5U¶Çè6ˉcî\Ïœ¿sï\Ø»£Ã,_v›’Ž£_/Î>ÕUTÂ9}Èg:(+±\4m-^ ¶èʇ¬ò‚¸åƒ zx×ÉŒÊÁETŒ)¸ãü0ð½5×c77Uåùqd¨ô¯zϯá_o#fÉ‹o*'ä”[ëâÞøÛ§¤¬5FøÄŠÏ˜¸¥õmÙ99;º±MB½nÀ âïK|öÖ«|ާS ‡-fºî°‡mù…‡ëIìã–aþ»Ü/FcÑmé1”ãû^ &î3!SÞ4~;wq‰Ù <üÚpj듾ð ;zkný¼ËÜÊ9®õLoa§šÑôª¿<7µc‘ ‚?FÍOÂ*çY‚Zß5Œ’Æ OEšJrv2Û nÚü¡~¶Cc¡  =Ïn¬3òihU`%išÁ¿\ô¬ÂÞr¥²²O’2VC>ÏÖ$¸GuvV6?¥L±/éï˜EkìPß;…¯rEÚâÅÏÉvÌoÙÙæ²Ü’ì¼xx*µ»$ðв°Ý¸pÀ²Jkì0€†WÞtÝ_[_ÖGÖÙ¡>²È3 !³À2 Bßue'à±M°˜2ªÏ {m6¨×ÑQà["aú=Éc%Ù%^߸¸— ˜Þø.ïQ޲·z‘—×ešpçeÍbcŸa<¨µH¿_)û›.½36y]M}ü~—È-ÞÇmV"Ð'tID)× â„1Oæ¬[ÒEÚÎä=à‡eP}¦íç“°$’ç÷ýz¬¯¸0 Ã2xîýGõQõE„›‚­"‚ x¤Ðúöê¾rÙç”ûç:¯™ã:ç.ÿjg',Ó¾#¿Xda£—½â‡ª Íú( ŸoW.hªÕÈæÀƒ{Ú”¹Ê€†£Eëäu æ<´n"ÝÕ¹‘n=oïªö¶ÈL×¥e`©-²|c€sjäñ57“hh†ÖøÌòÖ¿É̓¼üø˜¿ ¶»t’ä9é²ìåpôË¿pó¤kf°o4ÑA§èX]ß~m@¯S”ÜðÙ€Æùó„’ìü÷eÒ‚Kªñ*¬‘2"WÀn©þPŒZ¢¶V»}ÆT$-vL¶]VÒæ§Ï½vÞž2‰¦¿A:jÂKÃl³Í9.:YƒÎ|Ò ¦5ç¸xI `òÓrË9§‡.þÖ‹A%%Úüí &áÅ\yê­\³{N`¿‡ô‡å?ÜN)¬/WÒÿç%Q!ˆ?ÅDÿŽé./(~õyƒ‚XÜçuaªkO‚ª¥‡AÆÆmYq_´ÿ}.°;Ä’ƒù™áé(û!3.¾³ ŸÌ¿¯™#øLð§UA¸ºnl]©8ÿ“§ Oºšsm P,IRž¶R‚¼}Xîz½0I#›•’ï®–¤MV!Œoç¹ÊyÞæÛŸéZª!v=8AúŠˆu ʹ' ¨ÄY8d5¾­ 70 DnbgDÒÌ%Žÿù£ÿ×áendstream endobj 549 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 348 >> stream xœcd`ab`dddwöõõ441U~H3þaú!ËÜÝøýÚOVÖnæn–Ißß}ÏüžÆÿ=Y€™‘±ºq‚s~AeQfzF‰BŒ©A20T0´´4×Q020°TpÌM-ÊLNÌSðM,ÉHÍM,rr‚ó“3SK*ÁZl2JJ ¬ôõËËËõs‹õò‹Òí@¦è(”g–d(¥§•¥¦(¸åç•(ø%æ¦*@Ü©¡œós JKR‹|óSR‹òKB˜Yê~tð}ÿÚ8ÿ‡ÌŠïNógþûCMô9Û¼©Ýs§µv—˳mø®Ö?³»·{’äìº)uÍ%ÙÍr)¿YuÙÊ›º+'uÏ“Âæù{NsFGcwdÌš„Ã~W›4±½¯µ³½»½S® ZªË"c]»9r;—,ìéž×7]žOŽ‹Å|>'ãÌ€ƒendstream endobj 550 0 obj << /Filter /FlateDecode /Length 8028 >> stream xœí}]\G’Ý{¯ÿ_ öƒ«×êÒÍïLÁ0àݱ`Øž!}ÐŒ-6›â›ÍiŠ’g û·ûœˆ›™q«ª)Í ì¶† 0ot~FFœøÈ[yÿ°[n·ð¿õßWwËîÍÅ.œPwë?¯îvóòâËß8_@:´¥¹ÝËÛ mãv.ùCÝ•T-¤ÝË»‹oö¿¾D—-·¸ÿtyµRk¥øýkP³ ®µýûKŸÑ…´ÿÄ¥µTÛþ-ŠÞ-!Wüý*†û¿'qY|+û‰áP÷¿$­æ˜êþŰ伿Ï‘òâ·¿þj\ÒRö_hGÍõš5B«!e Àb¨¦‡·üsiµ¥ýïg«ìÊeŸŽç7–õæNú]¼óq­1Ö¦fgš>ÈB\«ÞvþÊÌóŠeßZ­yÿµ°ªÆÂQ¤¿¼¤ý?\Öf»´¿~s²Â›¯ûu‚1d¿¿þý¥/W=÷cÖV.H“ü»—_cßC¶Ûr;xlüË›‹½s—/ÿéâï^^üÕ|‹»7)=>¡zÛ¡·Œ•îBòM|ËáÛîáõîvï!>o~ºæÅ-ǯì7 >ì~Dïñÿ?ATyáSL‡v±–xÈiwwJm‡àåÝÅ‹3µ&ÅC ´ÖqKÛ׬õ9ñ-íœCÍX­‚øä¾”]çq—W­Aš¡ þ’|.º’ÚaI»ØRäÈwƒeÂŒ›Ìá\­Œ›[ KõØpS«S6µ¶b ¶ÖJ±µrŒTsS«S6µÖ¹šZfö"÷\ÂÎ/à^s˜³#÷öWžræÅ\+þr(ÒC‰\ø‡EI9ÉE¤xZ+IÄè"åÓûàÅïÒ’ …‚3(¹@_± ï=&]A©Ðë 硨 4´ÊBYü!¢•[Š2Þ»æù·äuZ\ÿ 48MÜØ.4@5p† Æ„ó›aGóºÕ34i®ŽLøÒ Œ`¾ q*`wUDÜÜË(UèݨLW8Áp¸/3( ÜÞ]Ü>sÏÁœPžƒ¹wÏÁÜs0÷Ì=sÏÁÜs0÷î9˜{枃¹Ýs0÷ÿO0÷Ý™`î…œ({Z;qø¤¹¹ .Ì;cOåH˜]aÕv?^,»¯g“!âÑ&¼/ Jà™å7;`¸ËPÕþïïvËîf{(Ý•M€Ù)ëlìat·Ô¦–9pýfÀó¨–næì3CëH n¼µLŸk­é¼ø9¼áô°}M‚ X9½²(ñT>®‹èµ”fki;9QM¡‡Šêy=)Pa±²!ЃðU¢>ªà‰‡å‚Ñ!dÑr@†Í1Z$¶G3¢Ѱ¢œƒš’‚?¶PÀdS<D«O´‡¢¹•)ä@i]B D[”è»hÇXï&ÆXXwG4ñ%Ix($Gh7EÌU€Â+p'¿Â=Ô[‚bš]YÂm†”  "s±ž x>ž³7×)dW!ì¯=;YD–ÚëHl•œšX¡ˆ™Cå}‹bFG.ôé°=1cZnhw,}Q™V™Oê ÷ ¤1y¥$‰~‰.*ð¶Ê+Ð¥NB™Š8¶ê;Ý™Š¥¨5âÎP–é~(ždQÃCE³' Øï]ßrñbb=¬2Ø!¶ÓwyŒb2Ñ6¦.K³µ¢Ð(2­J"QGߌ/ùèŒÑ¡MQò!BŸ,K¯bQ¤”Èü¢ó+«cX›úf H¾ÒC¡0^üzHV `Ù%´ÂêÔB´ŸÈ¢–,4ú¶Ðý;Ä·GMI{mtªaÔNG8Ì)Ï“R¢ÆCDÏ ”,Aĵ.(ÒAaƒ:ç!òÍ!úï`ZÐg®JÐäÉ2¡DŠKö5+T’%N 4ßÚ³+Ì nTBc‡™Á“˜¨é…A‘#B3‘6­á( mwèä ïtç W]ûÈ”˜ÌI6.d?O_#zñÂ2!Ìéäà=q÷‰b+Aò™ æµã@¿2Âö ™„´g‚˜"_ •e‚˜jO$\`l‚˜VlB121L£Hw “Iiõ-@IÚ°Y×VUB xËÌùÂ7’08QL¡/L™(¦ÐùBú!Š)ôŬì$ŠyíhÁ)Åû¸âÂVY¢)RŠ´ÏD1žX”D1Å>²…ÒFS˜ˆU¶$ÅŠö¬ÙÈ\Â9€Ò¤Ÿ’–û`Ù>í„œä„ a |ðq°õ™¦kJ\(1ŽAðˆS™¹ŽŸ£ôV‘JÍí=GF{äß<2Q¡Zg‡Ç*¬Ó‡öD‚Ð\b$Ã…Èœl͆S‘Y:¦7¡r:»ÁqPª´»D¦DÆÎ¢ó»éÈe+щ;<…„Â|Ç£Èd4£ß!k‘þ!S CùÚ§ z—YPŠ Äk@‚ÂCôA”ÜÔP‘ujP´kFË"ÝU>”*9®« 4UÄ®ÎÑ%M •L=z  É èEø?Ð%òÅ5ÍÑ,öGæ÷Å'ëx™ÁôÁ`VˆN×"p‚w‡>¾RJË4Ñ1ò(Ë™­dAgi1(M“`¬±NìÑôÈS‹ 胒E”†aˆNcÝi<¢ƒ…"˜ ë5Ã:ìžW«ÖíSdÊ• 5l(‰"4í\dÎG¬Z·…€ü >ì%(ºÎaSa$E=índZò;msôŒÞ²±ß H¼8L|$SA»²v̰¿ 2+›­7J‘¨;Ñ+ôNŸ$2)mf%2)Ëðkø60KA\ÁáÿDæÕZ ÒºH }øQ‘iÙd\­È¬¬$û;J•#”á²Áº9 _‡[Šæl†çŠð`ø† $‰Ð†û)ŠŒ[†‹):¯Ã  †«*ýÐî¬ Eçu¸¼2ú‚Ã-–)‹£Ü]gY–8Êݽ%1TxÕ¨ÆKK«Rº'/l§#:¼ýHõaØ9‚¨éÌ3È–GV€àäÀaDœ(Ç]#:‰ÂÛBÚ$^QŽr*3éçáÛˆ• !º1#žRÍË&àš Êx4ú¨=jÏÚs ö¨=jÏÚs ö¨=jÏÚs ö¨ý?¨}w&P{q2|÷€;~˱Ľ‚À›sGž£I­ò(â½V8:ågzößȚбSÖùØßÖvÓÆº³‡ž!ÓLÛg%RY^¼µLŸk­éü,îpzÀeyÿ†º$ü¨qº­|ëTÙÖRš­¥íX Š›¸ ?Îs]¾¯ƒe ßVqý(õøÔøO’M­‚¾Úöl9‰Õ˶Vü,ù¨¯“-3ìçÔ–3¥G¶ìô4ûx«7#®+2#V8U±Í«ÿ`yŽØVÓòâä´ÜÔZgªµ°W¥ÞOо è_2KgžµÅ«‹Iá[Åi7{8~î-n§n<ÍÌÂÍK¢žÊèõäY[˜q—"ÞØìáø¹·¸}¢qÍz‡b ô•þÒèõøymaÆ¥øW7Ç9yî-nŸh\³Þ¡â“âåíüÑëɳ¶0ãº"/PÏŽŸ{‹Û'×îo+ÃG)0|=zÖ–Ï–bØzôØëß>ɨs­r'E_1ì}ž>k‹9jf–­ÍqNžG‹Û'׬׼ Õ)01ÕŒsò¬-ì¸|û,šqŸ{‹Û'×¥n ‚'úÑÆ=k k€*ÅèÌÉsoqûDãZÝíÝH½¼5l´æèY[X-âZŒ 8yî-nŸh\³ÞášLŠ—;eF¯'ÏÚÂŒK‡<òÜ[Ü>Ѹ/ìM)¡"äqÐêÙÞM _ð†J‘WŸOž×¯.&%É[ijÏãçÞâö‰Æ}1G™í ¨ ^Ož»‚LŠªÐìáøyªòÓŒkÖ»FfܲðZ¯9Îɳ¶0ã2Õ©™=?÷·O4®Yï7™q™“Gœ?z=yÖfÜ´ÈÓèáøy´¸}¢qízgÈÝ)êàÌqŽŸ»cfFÇL|û8ݬ§u®µÇ±w†â=ãùÞçé³¶˜£æÄ³‚Ýìàè±×¿}’QÍZM’d¥ðwSÍÏQŽŸ×fÔåL³ÏãçÞâö‰Æ5r¼æ¬=€vCÚ§=8~ÖF¢ø §:ùzúÜ[Ü>ѸV–5Cb¥JwmdæèY[>gÈ]žøpòѸf½3+5(šŒ^Ož{à1(kh2z8~6!ÒÓŒû3®LèÑÉ…y¼,æñ¼-ðÈG^¯üï_=¼¾þøz÷öýîŻׯ?ì~»ÿÕ%³ùÞ…ýý§‡¿½”kûµ{<³ò¡î"ßáqriáþo>½×äé•e½òñì·Göž«ÛñgZ,S37|Ê%˜Köo>é}žKmn½²ÖPyie\Ê!Ô¶÷_]^%þhiû—rO¦öòݼùRjó×µ¼Ö’¿°´¦ý»yÓ§ÜIº¤K¿³Å’öt”ìÜþFnñ,¡Ôýµ\VZ‹¯‹ß_K×ö¶Ìõ‚Ó’ ¯5•j-ûßîYÞ'4a\ô¨×®¦ÝÃãÛ{ž{<Ý„lYø ŽàZs˜ä§yêGY\ô±‚'óÖÑ÷¼,Éû?ê,K]/. wŠ% ײÛÿWVåáñæ²P®αoyÿ­é÷o}­àk]kõ£v—¸wmI—†êÚù6£LÚµCn1ì²lÆáò*óôÚ©<¬ùnrd•ž¸d™ízáª]Û­ÏÍná"—ˆtÖ[bëâVy/},ˆ,üÑå°"<˜Ð‡yì;Û°÷Ýâ*_ÇÌZ±ú0¯”5“¾æº Í]=ì ôëͺ¼.ö»9Äëíå®Wr¸–^ñ‡´0ýò<52¿®wYÀQ¡°`éLw‘èR›–%Öu±ÆÁ]Ø;€¥²]-/ï lhäý-ï¶eo/þnö÷Z+P¢6\^MVè»y­‚_Ýý…ã+ˆE×Âf3DÈEçø˜J|Xç_3UÈæñíÆZÃlÍý§©†§Êô¥zJºL Pb¸ú^píN÷U™ F1Í,Œ˜n0ÎÌy{µ° Â"0ס ¥Dǣάuš{ÿ óÏñ1áìSþ“*¼È­úè 3¾×¾ÚB„>¾QY®†þ4»xó…ö\—´ÙÞM-Ý(»Ïô›ïdÕ‹Û¬Z”¨¯Y•¾¬,]A#À·víþQ(¥Gš`îF "n¦$KEÌ`ìÚèç3â²$ Šô¡ÅSÌ€ìþq£ÖÒqtq«p[îЩwŽ¡A'wŠ ¶Ï!ƒìËÏDò¥U•ùBæ¹…™œÞ„]\Λ«µO‘AÈÇÈ€Ï ƒlUü3amh‚U ªHècÝæ»m1bØ2ãÙiJPNüÊ0ØW¸u}óï[MœbD“ÂÆ ª7ðý†wo{6‚vŒ ]ãTŸÖõ‹>%e‚18G¦€[,[é7Ž˜µ÷ï§VÜhK®Ìˆ´‘ØO"5„²¿‚éOÂÇߘ ÙïUÂþ¿OUß(ïc‹ªuèP“\äÞ÷Sfä7Ò½UC^gÔï/1*ü0ça¤ØÔµjxýN)àÑý·Ó"mýÜÉj¸?\ÊUÝPàÇŒˆ½¤pcJ'-¸¾FîhY=ö ÝÌZÄTõ·FÉÜ`oF¼S…‚Ôy׺Biè uâ¿«æ[›"»0Ãùý1®8æÊ Ù³–deNªÇÚc™sŽÛªë¶nšúª˜bVÛÊ·h[üŒª Bh6º¾3â¼ÖˆK³R¼nNôºÍdž|½º1”YÎ+T«ÇPƒØm¸öôª×žStcrèØBôýù¯)Øm·Õuz®¤ì¬£s³²fážÉ³f>ºôzu%ã¡•‘ßø+Ó“ñ@÷±ÍÎ ÿ›9õ+/]Ú8MƳ¶^â*|1Û}ÛV^¶¯OÞVÆÿ0’oÓ~šVOwk®øÃ͸M(M"Êjðw2´‡×º;ü8×éjS­‡Uˆ£M\õÈV_kÚ ‡u>LöoüÐïuFLµ~;bÒ?*±`¥×}juÿæÚ~Êk3ÌZÉÙ0ø|zC³\è•5¯É ùâg2ëœÏ÷lbëê¾µj»%¯9;ö#yÈÃy =̾¿Ð>J-ë1‚Ä®]\Ùdô¬¡V9ã ürç¿;6{ ’ÄèR¢ß#‹É‚ÄÛ—¡ÿr+ò_þ¦.»¡_¤2¼=ŸváÀf ¢¼nùâZ<÷¹³HñÀCÜ4ÒT,¥*¹®ÌéÀƒ³yFÑBA¯Ås—U@"¯×`µif¦Ÿ}­Ç5Ô¢›~Üg¤± ÀM³G⺣0lŠŠ‚C…Ò2QŠ$7 ¦LSr¿ÍÆHõèN`ÔÖÚþŸÏ§ËŒÜËÉoøŒˆ·*ýÖ5"8Õ#¹B›ùÛØJƒ¸¶:”ú×Á¢OÚž¹™¾º”ÝJÔrk²Uuõ äEïOðÛÙV|—[wÅwÑDÞ¥™GvÛž·_&4¾ÀµMR})a lÏÍ‘X÷ilc©×F¬ÿêrŒdɯ4º(AÜ©ÀßÔÖ u:—aP™qÜfÁyW@h»D_»@f޶@,›[¶Ç¿w2Q—üÖï[³.ÛDˆ­p£cgÔÙ1›r}y¸ø“×dYz‚óªëÆ9¢‚ǹÉç3}ÿgÓð\ùG#øZÅ{¶9K.l°I­±_þ1gôªD¥g½Í¡ëžÒ=¿íמÿbnÆæX¶yJ+ò*Ú÷ö{˜Läð¦_ ß¾C°µ(ÑÙáÏÿˆæëÆ|m:ùbü\Nû_^:NO¾'zdͶÛì±kl³iwå—ú³|ù3ñøO¿s°1–=ÄJú»^/ß"ha¥­Õü3ƒ7þÆ…÷ ·5n{ePa~ã”1¦¤|]ÑL!/¥vî³Þ¿ƒ,¤3gü«zËä!­kj£ÖTýùÒ*àÕœ‚jwã'Õn¦â[GüÌݺ¥»–©~øvsk-ÒHÒX7H­8Œx ö;µö$j~†¶O©¦uzzf”äÞ¾ƒ`­õˆ¸~¼”CÒœ·‡Þ_mãé/ƒÅl¤–×!äÝËÿtñò¯¿Ùÿær$ÊþýåUòúÑSr’»ŸÅ›Y|=‹ÿ8‹¿šE×;Ëû7©WúÚR·9:…;ÇýWs6wÂÞÍÁþÇ!™þßk[Ü£ÍGñûY¼žþ¯Y¼9[W|öµ¼Ìâ³áÇ—³øÐ‹uÿßfQ“0’ÑùbRݤң-•)ߺÿ׳†É©™d“É%m²Qc'èÔžpêí\ÅûYüáì¶› «iöfï,WMÞõ'üæl³»ãâqÞoÝ )/³x8K=_tgwà/ïLB¹G¾ýew´[Úœ×ÌŸU3ÄfѤÑOÕáx&ii²°ÿ8‹Ï63ÙÒóî· ÎÕ S ƒÏ§wÏÏçõÙÍøþ3»Uõ»Q4æ äãYª9ñx߇Hö¨å~RÏ÷ðfÍ™Éõ91¹=‹©s“-޽ä 9ԯ΢7c‹Ëë|<‚$ª€ÑõoÎJðï~ "Þ?²¢s‚o÷9…9•´±õ=‹7g%Æäð¿·=œƒ“ÿûšÑG6šqþÐá÷?µ8S×õÜŸ-Þ|Ö$ÿÏy Ð¿/7çü(ߌ¯pM¿áæõWÌE^¾î”Ï}¡œwË¡nÉÖ‡åÇN<¿\ÎÏgEã;fOc÷—Ââ™sÔœ’KL(Á•ï ¥ÿ|)éÏÊל.Ù6Vß4&„7w«¿¡æZÜɪî`ŽYvi¶dí┯ü¶CMs:!ç„xùJ]Ú&†¡—c~Ïk ˆaôôСû££íÊx9›ÁÐ:‹Øœºªp¹}¬Î.ñAœñHÍÉøªA¤h´½YÛ"P_ƒúDç}@.^á‘£wû[å[m Ïîí'Û‘iaÈÜ\c@øÞVÿØßô+ŸC„þ°¾³è—¨‰…^ÝÖÑe¹L›J•°[ýíŒT²fWöÓç y³”f— >¾ßÔ¹Ñmk~MEBGäld¶”¥¶¸ä¢±9§Ù8wñöÛ<”6ÈÛ1Ûɽº4óreøwß_ÆÜìÃw–+Ÿ\õ[>=¼î³žKòëg%X¡Õ÷Jùa””k—¬ãã1ž÷~»eòÖ§ƒ¥®21BW™RŦm:¯2kTRXûãYm•`i÷þx™ÔRª1¿&ã²&¾SÉ­ó4/1®>×U{ÅâîŠÑTjó]7~)iñƒ‡¢6òºžç&<µ‘ Ó[¥༱ڔŠ%oTOxìšë™«U¡“Ÿ;}ñ¿ïŽˆendstream endobj 551 0 obj << /Filter /FlateDecode /Length 316 >> stream xœ]’=nÃ0 …wŸÂ7ðŸ,%€Á%Y2´(Ú^À‘éÀCdÃq†Þ¾/I‡ÀgŠÔ£©âp:žÒ´åÅÇ:Ç/ÝòqJê·ù¾FÍÏz™RVÕù0ÅíIŒñÚ/Yqxë—ïŸEsÐñÁïýU‹Ïvïø©zÅyÐÛÒG]ûtѬ+KéÆQ2MÿTÝ>*Îãóh£¦²Dî„î ÷B÷†ƒPÀØ ®amcµM%°2¬…Ö†N( 3ôB=Ð!ã˜u–u°àhÙ  Ž6œÙh¡Ê1ë<îô¼×Û½Ϭg¶ Ø¡€Á]=;{ëì£PÀh¨BÕp ˆŸÛŒ8~°ñf œ7ؼm³`!Т-æµÛ‘mûµÜ<Þ×UÓÆ'Á•Û¦§¤¯f™«Ê¡ì°pŸsendstream endobj 552 0 obj << /Filter /FlateDecode /Length1 10700 /Length 6938 >> stream xœ½yy|TE¶ÿ©»ô½½¤ÓûÞé¾éô–}!!!!iB6V!$H Ã&C˜¨ ‘Q€à†Ž¬*M@i`pE>ÏQ\ÀÝÑ'¨ã3£o #¤ûwîí`~<ø™{SU§–[uêû=Uuª hwÓ„¬\žÀ{Mš1¿©-ž÷}@¾šÑÑî~ðo¥O`Á'ô¼Ym·Îÿ†Ùø.S pÞ:oñ¬x{]@©µ¥iæ†oŸº ø´b"™Ã1Ô­˜Oiß~W¼}0£Öy f4õ·_l?¿é®6~…2Û¯Á¼û¶¦ù-ñzõsÙÛÜÑÞŸ]¬o[ØÒö‡{oËÁü7¨ß[ìQаG Àv‚É@ìC ‰itbì+ö8h¢ócÿMã×Å@EËJà(<[`È`ʘ›à™ÉTاId"^ D`4¼Ab±·aüÛ·Ã+°ö‚ ¿™F¬]K¼±%˜¡Ü +bOC Â}pа׵ÐÛÛ‡µµ0vÁnüþ?ˆ‡ÚËèc/ÄÎã±ÏXóvltlè Êa–®€—‰—þ(Ö (Fíƒ'a+ü ¾#÷ý±ÖXGìdì  °Öð]Fö“/è=Ì}±Çb߯¢ˆDRqÔFXÏ`ÿ{ð=J€T’¹¤¬'¨uµŸYÉš£}ˆCªñ­p?"pŽÁ?àŸä{ÊBkèvúÕX~ì@ £p–âLZ ßUø®Å9&2’M†“qdy„l ïR©ÔDªŽº“º‹úŠKO¥Óï2w0=ìv“L=;;;fpÂ-°–ãì^“p~&4öå ^RLÊÉ4|;Éê ÙJRãÈQr’ÚEþJ¾$ß“‹K©(#•FµSë©ÝÔ+Ô›ôlzý(ýWú®n/!kë#$¶2΃ zú4¬NMmvŽ™Œt,HPÊLwWaÇU¢­¸»Ü]#fv¹«Ü­hLŒWJ±¢¥«> œP‡8ÁÍ8b¨Þ> ¶Ô×Á~²Ä~©Ÿ®zìaNs¤°ƒ>l”> §éW7¾.ÜYa‡*ê‘4ߣãêÂG‘¸úzl•3 )¦Ëf[úuÎEsRQÈ‹÷2ûÀ.껺â9>ÚÕeï×X<!ð¯¡þ‚H ¢Ò9Nªêôv sÁ# Zõ"¦ƒÐ¤/[Tòá‚«ŒÚHþJÝÂCnáâë#\‚:‹ý÷!\z Âe¿Œpèj„‡¡¶! áò_ áá7‚pÅ !\y}„«PçJáêÂ5× <â—y5£PÛ‘£%„ÇÜÂcoá›®ð8Ôù&áñÿ>„k¯AxÂ/#|óÕODmo–žô+!<ùF®»!„ë¯ðÔ¹^Dø–„Cö0\pç¿ ¿:äS¯‚\ôBñž) Fƒ*òSË¥^åÃbÉ5M*±Á:db.pè6kðmà¾Q8ñ¾E¤^t¢;’ [AMË¼Ž–öÙⵑ†_|õ4\[Ê0äcHKfN² Âðf“`1†ÕÅÀ H;1$ô0|èY 622¤d\7¬.‹Béz'BdûŸp}hùò0±âmú bíIù0yŠ< 3ÁEž/Y‚7¨Ù¼/8ÏÕˆU;¡ C'ZŠ ÙÙ“”ëz™¤ƒ—!ø’ò’ëëœ ×ÙœEz\¯ø# &JÂ\(ÑuÔù„ëÎ[]/cدڌˆßìtÎs­OŠÍ=®uÎÁЇãÉ"'~ú’k~°Û53GªÝ¡v÷¸Š°~RHé*(\ùÎ3®,„'˜ÏpŽv¥æüŕ┚¹±SoHër8×»†`U’³Ò?Ãa²‹lT²¥Ç;ÒuEœî¾ÁÂîù;š@Ž7B–„ jÝÁ¿78Úå Vùý(Oz[ÁÝ ãr¹4¼Äø8³s^Çkx5¯â<Ïsò\O™Kv˜ì†2„e÷>^Ƴò2‡ÉóRáóx†§xà ‘ØçûE;1DÈîýQBá%™$É"äù}ñ¢çC.F”©BC‰17SŠðŒDßðÁˆ Vš:Ê,eºRmQUÅÿ5^§ýï…8Ãݸ,»œõè¢sÖTþ‡ñ§}F-åii£jïëh›3Kru=•-ÃtàÕ£³ÙíÞ;§­ß÷56ÏhÓ¦–p›§¥"<ÇSáÞÛ1ë:Õ³ÄêOÅ^˜UysÝÞY¡–ŠžŽP‡äåïk._ØpÍX«ÆZX~ÎÊÅΊc57\§ºA¬nÇjÇjÇj5Kc‰ó¬œ=¡üŽv´NÜÜp L?¥o}õ²MÜñ‰DCªN±ëðÖîÙË“É ©†S1\7 Šj¹¦ã˜åØ©¾"(+;÷—œl}~)œ§õhýy³oíQúB—¾~ÛÏ·Ñ$Òñ2Ç$±C2l -`ª˜Éì\çmIK’VUŸÊO±Îµ.µ.u¼he!™$2µUàV\§¬+11Y¯È׳n×"!Y%ü–+4-HVûïv&§T{D=Þë=׫9ß{ÊJúJÊzµº¢,¹ˆ`ª+*Òb 9ÙÇŒUåÕú”:uä.@¬L‚F ¼#ܱ4"t74èÊHÁà‚üA>O2'ã<( ¹:£“%FaäÊ?½{Pm÷²ƒÕ>æ]¾ˆ.|¹¸êÅÕÍ…3m´úRð ѵ-•?aî²õkF­<Üq2zá™ç–T·Œ.È™dì&HÜ2¯bIoÌOdù\‚®^`)T&U;ãðôõBYoY¯ °'øˆ×æ“{YŸIm €tbçQÒÈP2«Œ¢§0²*Ð2‰°•‚Ù¤Õp”àöû´ƒë]våI¦´³)-mœ¼<úŸÑèòÙe$¿kÛ]Ï?¹>«ævÓÙ½Ñ7¢Ÿü1ú÷Ï“âs{HÕÏg"µçHqôTôÓWþHs„ö’Å>†RL %Ë)Ÿ@(êeLÆQ2Âr<4(¨EJö{ZÅ1t„˜_$Ý üsŠ©ÛÇ&V«¥‰Ÿ?WÒwF´P´ m‘døW´*3Y¦y51'›håD+ä“×mLìcÆÃ>vðÃÎPÑ6bæ½¼ßZg½V‘ûå\5¯üB¾Zm sùvÖŸoH ƒÔÝI…ÚfU¢HÉ1«’‚}EKGÕÞµ$Ë‚æ{.NR/Z¯hÂq²¼>‡;Ñ2ÖçNL Ÿ1%=J2 „¡]!@¼&œ:Œ‚V-‘¥)‰S…i@¾LFÏÖLÑhËy¹ŒÑ€tV#q'Ù¹Ìh@êªôh<ÃVlìQ”N›4g?QEÿëDô“aËÈè»\¾­}Ï“²OüsÅÄì)Ñ¿E/Ý’øêÌŸ£ï’2›(‘™?úÇ{n;¾yËý%û>Ñ:öÚ·YôINFfº *+;G{Ɖ'Ø#?GlW £ÑËŒ+ú)ÓB9dÇe#3Èü†Y;ÇT”Á¢q²È,J…³Ù@”Û$Ó´‚Õî@GaŸÐ\..œs%cúÎŒÕ\#â‰&PR†š€,4}ž±”äåšMFÜ´ùãë\M0GV콫õ̸ôÎìå¡àÈ û~²ÉÚ4­öÉÉO÷§ži.™™`*Ï¿}vß[¨,ê]û‚>ÉŒE­í°=”µÝJ6Yvð»,ôH^»Å@Ó™ÓÆ%8 J;g·›5~¡ý”ÖæTøÍVºÜ>aá2Ië1½¨sɘޢ¢~½Ñ"PÐ\^»VÞ«2*| Ök|D§MÔpV̱@ „P ­4%ø Q‡‘Ü"ó†È„Ëæ D<×/Ú„ÉìÉ$â´EÞs ç©1Gåk £NiÞ£Y¸ü¹‘Ù÷¯k»×º'é‡ÃïüLtï9˜±á÷gÜ»cþS[?Y}ç©WIÞWÄF†°HìjbS Z¸)äóÓ¾„Át5èy ¥–kå*?/Ò¦Uð6=ÉÔµ`Õé#¤éZ~]_áŒÇ”ë;&.S¢“ÕO•Élõ•!E«w?—µ85vÍýëö3Y ¶PôË4µgaß&ÑW­‰}ÄØ¤ «¤ -ÞÈ?jÛî¢Y5•ÈŒj]¢ÑR… |ÐFF)_¢“×èãöøå§]x¾1ãQ××QSyVHIÜlr¦É8Î$8œÂiRz¹ŽíŽŽ÷Œ×”èu°V…ŠÓâ™äô³6J&ç·Z}þ÷„m qNû W»xa@F¸Å½I3°à«Àð4K±„ed.ŸV£Óè5 #Sy“í)>pƒÓG’œr3ç¥Qí# jMÀ"#Þ‚¶€'š``OMK½›ÜÞ·7ˆ´ãk’ÑÁéh÷2i+€<"m2ŽPûOè4—¾gÚøàÍÙ†½ÜM9µ‹‡Õ¾ý–Xþ“¸”‘Ï/ÝÁS=wâøy#Ÿ~æÕ†‚êâ‡3Ç94ÄCd„"åQߢª{öu‘OÄ}“†ÚØ'Ò/ï‰P %ði¨05›(4J»ÊáÏ«ÑÌ–ÏÑpE¼N%§í¹\ŠÜ©Q9‹Ó¨Ì`ñbª87Õ«Óp,ïð'›q‘w…Yâ²AêDZ¹ø)‹{ªÙä"âJ3àâòùÉ÷¼·bÇÌMCýwünõ°öþcîpjë+}tÖìÊÀØ;_)ŸýágßçÈ2nJöäÉ·T¦à®“œ:âîMX;¥uhnõØPUªUïÌJ¯|äw'?|Šúgü¼$ÅÒùÊAAÈÁ¯ñ2Z!7›m¸ƒ†|ו#ñX_ɱ±•-_I'¢äWŠN;:?+àä^<ÍyCòsc§˜ ìYÈ‚lˆ†¦ýŸ¯@/Tûš}KÔw¦ÈçòµÙKÕ«[Õ»’i…zHrJ²‚f–û YYiŽ!š’&Ϧj^›’ì dgk-^óް庼ÚàͲæä>%ÌY}ÍÅDtà‘a]?ËýG Htf_^Cœì1L­ xÊGù2¼2$©NƒŒL)aSù4âÔ»ÒÀn´¤«N¹_™F¼J’‰2Ä(IçHÙNëg[3°ûݧþ-q=øj²SDêÿçšñ C<˜$nÐŒŸÛ¦öŒýôñ?_Ct¿&Ã'æÜòQxó”â“on¿&úøEÿ¾e M!-»Î]úÔ]y¹ÞŒôü©^‹þõ|GÙ4ÏËugg%ßzìÜ;kø;£„ø9K†JœCFÜX,’\7‡«¨î+¹LtœäÕû÷K^–ÈmGt"ãŽX7²öPúN~»™ ðn‡V-s¹D™ÚéP&«)¿Å–¢ÈÔd ÁäD«'e•p¤a଎i;¢cÕ|9Lv`m>ÆvÊGXFĪömFo¤ÿ !"š"aw>[’g”¼RÞ)dÒv¨õP¯m÷V:\éÅ8š¹§ tËo^Šhß¼¸6»xÿâwß霺÷ðÌÍK'o£÷®(Aw´/út÷ôü¤}ŸŠ8­N£šØSx») É Z9.X³M~˜<†7Zy,¤A'3Zc5š~æÕZ"\îʸÚ>µõ¾×{¥^އ¹æÌ(± () * F¼ ©§Õÿ—/‘¢èâ yŸ:ô>(É |Ĥõ}2ŽåŽæ(Ž•)4|.!&Œä:e.á û©È~ƒWt=EŸHCy--¸Í&­£‚„:Ù2¬}d±-ñÃÿŽ>ù:5dmßP·%z_ßž]Fÿ‚ú&T-ɼ¸‰Õ¿ÿJôíoD{$[-¦¿Aî]¾ÌИÃ~„¼Ž¯—߯ÚißáÜéß–vЮ ñ´)9¨>¦HF÷‘‘V…ΩHÌä23YiÊ̲¶l•ÚŸPêó;¬YÙ«„…å‡SÜ9s^{Å,ë•\÷øæ—î Ø’”Ú¯ÆçIòù `ÃH«T ¨V%xÉ>â·ñ~¦Ò Wne—@Ï> stream xœ_HSaÆ¿ãÙ9­SƒA£ÜNZ(¤Ûԅ΢´áh6 c‰®yØîÇ3—¦”Ed Ë‹… AèÆºHÁ$Q!˜­’ ¡H‰azó~§O££7Ïó>Ïûþ^ ©2EQ¬ÝéñØö§Sø8…Odà\ZŠË§åfFÒÐ’Fõÿ= B² 9ÑÕyû±=ëB È]·œµø)áJl¶ò"®Ôb±qÕa^ù}Îéƒ|Ø'*¡•óDý!^ì8¨œŠb¬ÒlN$&_¸Íö·q‰äÜ|/´ó-\M4"r._˜ç0Mj†cq‘8g´…"!¦ú²ÃíA(¢3¨ Y«<‡T¨=A( u÷jåKÒ0ÔÌaë…õ²CgfÉðžƒYa¿‚—Iv‰x™?,Y–‘rÈ?†> stream xœí<ÛŽ\Çqï‹|@´fbÎQß/N@FÄÒæ! c¸K.WÚYî”CùöÔ¥Ïéê3={! ÛI=¨ÙÛ§ººî]U=ojÐ …ÿ•ÿŸ]Ÿ¨ÅÅÉ›M³‹ò¿³ëůOO¾øÊ˜²Êzqúê„?Ñ‹¤ÑÇ![¿8½>Yj³:ýÇÔ,NyH*Á§ç'Ï–/VjPÙæìôòÆNãóòrµ†±R>»å¹Xr±Òƒ‚˜åK\¡•Š*-÷ô¡SF/7×8or .-oèË``ù•x ÓA¥—ÛôóÓߺÚj‰ïzDxmýB`´±Zkåâ0~9GÀjù„@h;x—Íâô_NNÿîÙò+ú{p./ÿqµöÆÂâò¬~µ«Ãó:|Y‡¬ÃßÕ¡…å?ÔÙ5¡€ûþ¢nö¤¢pýˆ}¯ê’`µO~Y—nëð}ñ}ŠÏ.êP ¶©CSQøï:<ïBØtñЧ4. á7Ë:Vu8tgûC]‡OGÔÒgöÍjµ¶!ø÷ògðM]q[‡—u¸“ F9ô£ ¶½êŠÀm%o!NaÖ4ݰ{šÕuö—]yÀó´bD ’’@Í𼂱Ϻóü>yØ9\O4ä9U>™hº­Ã÷uøÇ:Üw¹rQ‡}I4-çCÒÄ$Áù«.àïêðeö×¾îJ‰ž÷ÔûÇž)ù±š’'Å`¶ÎÀ¸!$¥GæþûÊD°Í&.wûb‚•uË·+4ÞÁ*ˆMpôÄ' fܰ‘6ZÙ–;M›ÀfgOTöÉã'SŸS ¤6'ëÑ |)añõ9o—›-OûÄH)¤SÌéhãƒ@—ÅA[p\ µ0JäŠpÖ"MÑŸ#JàrøŒä 6x8Ÿ-‚ó jÑã–&ÉgȀݻê÷boa\ha\À‡19E¹áë Cà_ø¥Z~ÙAëÑ£³²Ú{o–æ[üýä‡*'—ûêI{ü·a0ÁÆàMEds¶)öÝÊûÁ‹–›‹B=X„ °È—û7§'8á°Ä/nŽ8凨íŽö†b’g˯+>ï*É7ÛÊ6Á‰ÿ\%”µ + ¢ûíŠXíT#£$‹V9 .F@¢%ϯÄQ{¯,®=yˆ„„Îì[ö®1ôź˜dÂ+B¤%,w%ÐÂÀÖÂ(g@œwÈ›œ|Z~OZ¥ÄPEÛ`Ö€q‡é˜SöáLR £j¥u4‹>u½ãCVfˆ°ìƒè5 ÓD êƒ<ü•Àö£¯«®syÑu›î쇾yR‡_É(f~Û,¢˜}°¼ã9û‡;ïnñ¶;{w„ ÕËîðæ>„ýÝè~8ÇN³‰ÌÏ» ~èR¤ÏîgwdîxÅPDj?ï"~>ø„09ÿ_ÕÙ_ÕY.>øã‡Ÿ(ýhJ›9¥ïÒ»{È+è/f?Ô«äÏêlÿ~xÝ¥¿8Ï[I§éçݨðUwø²K=1+á³înûî‚Ý}p÷÷w{yû"+.ÂÊ ‰|Ý·†ÂŠ[vµ}wg±ÇЕï¾b÷ñÑø<À¶>ÆÛô³ ú>ª?f‹#ô=ðRåŽ$TóžË9A^òϻЄbˆ;ü¶»vÛ]{Û]«ëð‹®b¼éjÃ!î oN¦õÝñÓ#ë쬖¦â ˜™_GÅ%õe±¾}GºŸíº ö]ÞËÝzä=ëóø‰dwá«.j›.Ác1ûI âÔE^×á¦Ëí'w1[rø®¬ÞDœxÕ=ãÕ}œè Æ]:ÿSW¶Ý¡vÖÖO| R0ún¨OÁÀßÕa›Ÿë‰?CžÕáë.·…dû®¯ÄöK{—?'¼Íe—x÷í×´ Ôá½YÌrÌ¥ìE¾“8ôبÚ=H~:f‚:¯ïÆ¡a‰n4ôî(áÓñ±”ÿÿkgÜêã\-þÏù¾ÏåŒhø˜ìô“9™çõ…Ÿ<ÑŸÃ £öWä‰fù‡ŸœÒ_—S:(ÒÄÁ7iþuÇ¥§‚Gõr:6ù¶ "Ë´V—‚MM¥…ÓÊð•YnDŠ&)#Óåï1ݬ±½ÔbDáæo‘tàÊ=%ž—ÞNã!/F<3Ê+™åô'4¯q¨¼ŸÕj¦ŠÊ-Cˆ:.w¯xÐcL‹w¢ÖQª+ÑSp¦Mn ;¥\*ÇsÉ9ªX¸\RèÁÂl§`´Nò„TRÁ%ßÔ~þÀküÅkÉ‹).ˆ¼yQ+8L[°+ƒ] :†èe!é²â†¦=*c`+Š•uv0ÑŽµžZ‘½òd$L”Xº°¦ÔV«FäÞp¥(”H1mRÎ¬Õ ·•öÂ¥X+%ˆ1C®©™Œç5”AÆ:lDŠ Âá´m”CȰæ¥Õ¦Ôñ&9"¸)‰Þ–g}Ž-à¦~ÙÊ¢4f0¦¢åƒËY—r"ÍJ4ÍÃÍ• ž¥S­ èy=±R½Éá¾8‰‰ ÀT–F¥…ÀZ`ŒÀi³”ºÂ,·Ù%‰“\±Cµ0)8Ÿ2É“.G¬£*#°•»·æ@Ÿ'©§â3€‹Ú?L—I1°˜¦üÅ@p–=U;‹ èr¿)²´a‹g²wZÒ†1MɶÀ¤™E Yj}§cœD–tòœ‡ÒRj›;’ä“q†•¤œi=e™¦£•¢þ¡Ñ£YdåixÊ2llký²¶=€1°z@Éøèt@IÆË³´†Òð£ë”Á z¸Í *4ŽC 'ÇF b!ˆF®#d£)8(“à®­² vù=þˆ*6°Á&{ÅË‹—3uðÙ‚‚!ûñÓ”šVéh7´Ä ™l]f^ôDóº)k(’³‡fŽp1R.*g`ø†˜eƒw E©÷ B¤¾ÿ™ƒ­/Xç2’œLé†(§%'%ñ°­™ZvUÔÏû=· "êÂË@EztK!ƒÂ`3Á–=…OccAu‚Éí.3Pp[O-¢Ø±8ÑGk-êï= ’{a½™Ã^“Óíy‹Yô`­Áæ…Æ”n„¾9&ïì=#eKÙ‰ãÈÐÀ>>ëEm³ÃCô˜ ÿдh°¥Öç)ö”ä¼1gT<@QÅÃIK-5óf"9Óþ@¥9kó\õw By‘dfuç|ÅÇTØ‹ñwI“!zf™¶dlÂöLo¹Mµ¥à¤<{†ŒvùÐipßë[^’Uãß6ß¡çÔåÚŒ l¦ž¢]rGì„”®wÎe‹’bÒYùYãYq½³‚üù ð§-Žƒõ SßWéJ!m¾,Á'²˜Gó!£Éi7Ù}$üÙ¨IQgÛH>á~àÙM@±Þsë’¦°©úÛ®Á:Œ3eg–Ö#ç5;bR=¢oDúrr Hw+‰%»Ôž„.¡´'‘ä‘Þ™fE¼f™Ï…ìîýN°H˜SaËЮ„LÌÑž4ÜàÉKßî‚¿Ã^6¿çûA$¶]e+®BŸY\ÉTÆ4qô ÎK)8gôpX¶]I Âëm ÛN@vŸa{UåR9²4ñ²H©§ñ†4í<ˆðeÅ~¨+„\»¥=€#'ŠGetÛðQĉmË¥3$Æ2çK@:zAº` vÛϤ53vÓìo„̼©^XÜ›Že1d°úéýŠ \@`0ðü†ÂáŠì4%ÔIxÏ8gXdä„$Á-OW(>;ËôôlÙÈtGŸßÑäb®Çø”Å!{é46Òg388”™g‘ âêVu÷ˆ âÀ‘®ÀÓWÌQ¦ð~0¦ž¦Íü§*)XÂD¥Zÿ#îÓÒÏ „Ú`S%ùøMò õ×é6 ˜À…Ñ‚ü^¸Ø/I× [þv¥ÑÀ&_·Â>;@\P¸+d¦CƒöÒ©ÉâÝ/á@™¿¤x%Q|MG$sDP¥²Eðà»%Oæ™”ÎéL …ÆÐkÂd×voOXInåW$}¬ë»•)iìñ;›µt);žÅœŽ”ÖëÚ¹)†óü $˜‚€µ¾ÃÅÒ]—ö˜Ûº*Ç.ÏœÆÔ©Òf~¿ãM Â&ˆ\ýA±jE^§Pnüž |kc°aß7%ïímÓœAÀG[aO¢j‚#«Ÿ x;à%¸¡óÄn¼}".åT†Ð7ýüsIî@ÀÙú÷¡E‹£ëf®ó”Õ•ú´_‡Aé8û¥ %^箦xY)}Ýw$øq1šï#ŠÊfpo¯NüFÁúd%èÃ,ìô ðpš)îès8– yÉ«±,Ñ¿5_¼nòÂÄZîìî;)ÅyÙ<ù#ŒËk¡M¥d>Žõ1 ‘8¿yèKª `L]x„¤º…¤"x.ø×]±g]'}“ߪՎzŸÙ!Òþ#,Wù°Ž;žÕ_¾¾·È©–n¸¹]­›ôÿ˜e‹í•3vî“™ñ âÐä1Mtƒ²ú¡¨õŽ"û*]ršN¡ÑPÅ K>a¥ìÚ,[2¹¶ ´>¢<S)‰(Êí4^˜ÓwËé–ñÄ7N÷>(’©¢‰VöÀðÀ4¦lޤõ$¦û* ÍÁ08²G…“D`òûú†è!qDÂGÚˆ» @Y(~[CDKS:dnƒ³ü~ÁŒZGj ¢UinÁ?éµ †U  ô=Fã#ñä•a}ä Á™·„<—ìÌœuSÈÄOåÚ”K/W,È~D~„b‹¢Æ‰¯tˆg]®üÅ=ŸwÞ¦ýo‡Ç±ø¾ ƒøEŠ-Þt¹-L‚´lþŸštCp¶ßžÚÇ§ß ÝçlÿÅßY÷ýÃ5èÌš~©ÓqWû÷uöo¦ø¢ä´¸ØŸ`Šgñ=„Ó¿=IFƒc×Cò‹ëã#ü-N3W'_åÍk}1Èx;C€hü¡Á[+Þ½k|ïÆ@Â.€/äâ§nÐÁZü¢,?û§è8ð†ÐJcœRa/ áD¸zK¤Ó°„‚Bˆ†`'W”Vûkî@ôØXY"7I±o ék\8ù*ì ü¥® šKè€eËínØ_²ö$ާWŒ&9'c6ò3^k]à–4a¯­tÀ ·ŒøðŒ*9§‡|€GʺüRÆøs‚Îô`È[žác¦`t!hù`B',ÿMlŒáoBIãÔ\^tœ`}-ðÙc2¥%I ׸7:^­\/öþçU‚›®ìn7tN’7’™à÷‡7VqÐÛïHÎ!žÅš}Ä2Nõ9x’Ö;®©Úz!¡£pCÄ ¸'n ‰)¿êÀmË6ÙPtu>¼©CVÛàýøKB4ü¢;ÜÕ¡øìUuxÙýL³uø¡Ïê0Õá á?Ta;Ôr {¡lK­¡åÇÌŠ¬m†ûªO‹uD£@ŒŸÏz\6ZfÜÛužôaÔêÉ4`ˆbk0x‹ßºì½Ó…=•T.ØÊ|#þg >ii8cBjAÈmæ_0)ØÚr)2!.öyË«#¥·(3ô%9UpCöÅÒÁ ÐC¹ãh鲞,Ýh#&Õ»â/½²íñ­\.ß¶Ë'½Ø þlØiƉp»™èíÆãùÚúĘ Ü-“·ì5wØŽ6Z“¹­í躈ÜÝß“úN˜û튬«Ž’âôSšU”2)„ ʹJØxÔ´oº4³·…LS0X^MÞÆ™Å?Úÿ–áÐü[.V—9µQŒ7e«=åÄR5ÞKêU³™@¨ä´ÁíǸXc{ëÒWnªd™ö(€GcÞWi­§}iÍEÕ£§ìŸ€'RußÉÕgÈHý­¯«·ß0êcŠ=O;З›ì¤Qè©ýD#ÿÍ—·ŒžÒí!o¥þ1áÙÆ™…¢|™Ï¹•Áºâ=ž­X ©ÐÅg¶œÜÄNþÿ§åendstream endobj 555 0 obj << /Filter /FlateDecode /Length 6700 >> stream xœÕ][\·‘~×úG ü²=kuçðN®‘ì½Y#XÀÎû`AÏU²GÓ㙑â ÿöÔ…ç°È&G-KY`áSG§yŠÅº~U¤~:š6êhÂÿòÿÏ^?›Ž®žýôLÑÓ£ü¿³×G_ž<ûÍwJx´ISRG'—Ïø7êH9½‰GÁ…M2îèäõ³ïWßÔÉ'»zs¼ž6.¥ôêžzeTJ«›cí7V·z€‡SJ.¦Õ+j5áïׯhøáêk|8M:…ÕšM\ý>‹Þº¸ºƒ¡™¼_ínðK~Ò“ZmßÀS;¹)¬žóD~þû |ähœ‡àÐD1Ã+üëbr«˯þˆS)¯]Kß²¬«×4洛¶«-O¼|#ÿTñ•øé-D¥¨åäg‚Î5ŽuJ1úÕ7Īh~…æó“[ýïq4ÀlåVÛ«½F›t\e­ñzµýñX‡Š÷£¼Í\ 7îËã?Ÿ|ûn¼ÜvãÓFÃÆŸœ?[)w|òJ†Qò•µµêhmÜ&zï}¿ú¦OÉ[›Vÿq¼vÚl&Øœkz¦‰y›‡§exW†ÛîÓÇ2|±*ãOËðËîâwex_†_wvV†e¸£¡‹q&†Ÿ–á‹ãcä¤2ûqtò‡g'ÿ6≠ççî×ú<éSöewA’SÝaŸ'ï5ñÏó’âê·eøsaÊóòô±ûîc÷ÝÛòt[†¯º[pQ†çÝOœ”¾+Ã?•áWÕ& zp?q?;^{ìή,þ¦ …Œ ¡2~9“ã eþ½(ܹ.O…T^uÿuyá‹2üCþqÄ6 J'©ô:m&³÷÷E¸Uþ¹È¹*e¸)C]†® ã`˜-•>Rvc¬×ä :0D,¨4["KæwR :›üÉÖÞsJ¯^¼8V@¢ nuzoÛ½V$n¸¸ÐD˜;‚ƒCWì&COaˆOCæüŠ"×ð+…!i+"à#Ø ~<‡ªiïú†ã”̽%Ö?å½Å‚µuz2ó<¯á7Ç”"ip^;ÿIip¨26M I~@'NßHàz­Z]d?ä”é9…µ¯àÀ¶­a9ÞèÈTœÐ¯Ø{¿,þ&3ÚQ¤ÎVУÿ…¥GŽ&¶zK 4ÞYé wäᕠѢ¿ÂÙìdÉX¹è´v³sK¶£Kð™À<…E…àÙåNQ Œ¶ð[–¢±¼ŽxÇNÞ+¥·äX&ê~´„[~àqírÏù›0 ð¦|s‡¡|'¬þÊ S°Fœ¤"€$¼,QÅÅž§ž*Tjãí"Z§å‡ÄêñrAE”öóò®Ü(c”­V¸Í≄HŽÐ6NÉYO&(2£€é¸'BÁƒø8S{[ˆÙž!K<Ä, mΑ8p°Cû®|1m—½$œ¹È\’’ÀÌ{ÝÝš‡%èÚÑ Õ{íæ+àhªÖ]…^üŠ{ÑnÝ}HœÒÑš‚„˜õ'o»²ó¶“¢àRLeò0=hò 4«­ÐŸ+ÚÔ4i=G¡ôÃí5þÒoPkúÛDÁ¡žûÀúCïN¢Waj-´k’ZoiˆþPákÌ ™•êwù1H¸ þ™V# ¼.êÏS˜˜²n/D<=ÅB‘È& ¦U­·XÖof« ýÙ:¢!%Q¨î”04³ÕbŽ û>϶aŠ"ùcä÷A°¨Zß@p…mؽΌ©•V&(B¯„¼;àd' •xY±™þ×¾Mœœ÷–v"¿}[­…©¢L™$IüC§“?`g¥Æ²nÙ†uË1ßÉbØ |¡E®`)7i_Ñõ¦Xy‘¥]Úø­–Okõœ_&rËÉäÉaÖO`Kjõ! ùçèg –hKö1Sq ï$/@ýÎüB#gÅ—ÇeA !S-^‡f£ ¬"Q‘Àbêïó7rxB®TÎúÓñ¢…oŽEŠ¾Øˆ»âÁ„Üó´$ >F9L^²‚Xw¡ ü J“±zãâTwàbÀ%áì«ÈÈ% D$¥gEx祢kÇ-S輘­­5k¦ó¶8±ÝžÃÐÊz¹@ò>Emµœy'ž“RÌëX/Y).ç^¨EÞNc¥×0@Tòw£wfù%ÄY«ÏA-dÿL¯ŠŽhd§± laÄH‡ðÌ€0Ü›`NÞËIG£«á¬hz0¢æs© ñXhÈŠÙümé3Ú(&+¼´µì¶­2£ïy>;å/Fð~.ä/ÂYDxÃ$'µyw• Á@ò2SýXÕæ9$I¾’\Ú-šRžë Žýmh_ñƒ^±à±îî) ‡ Ö­)‡Ã”,•$¤¬úŽç #.×!œ›˜âmß”‚B¼`1$YÖBr³¬!i†Em¢íÞßÊÚl&¾ÁÎ…y–‘ü?ÄR.'gÅ€ëÄ|£~KÁ_Ä:ëɆ×BÊ•uÞ6iàEl)TîŽ'  ˆ§e«t¾HÌ}m›á’ˆÐlÀ&©‹D½ék£0¸]âUÎü±Uæ"åå–ßm"±{~j’~J§à Ûä%ÙF‚Ý™^Aè'%­™¾µ¦i'@ ›é‡AHà„¶ŒtÂÛ 0ëÄMW‹w,Rí*c`ÕŸaǪ[§-D\h Ëw&¤¶ø³wµÚIëÏûæÍT‡,I¶Ú"ø©/òwåh°B•§à8ȸhfõ†Ñ#OÁ7мáM™øÏP ‚›¢ò(î!Á_xŒ¶5B* Úm¼-UòQû4ˆÅZÎãú§ØVÈ~ªàC?æ˜0zR:ØÖQ†/Y߯å¹Õ3t¤3‚ðÓ!pQé¼*[;–kHjtXÒ¢GfbÅ,Æè"X†Û †ËVÚ²¬¤#bûrØŒu¥O ¯L*pù%[¿óBý ½áaŒ&Vñ‘,º°æä¥Öž¡…®<8ÅmŠV‡Jp›|wçà/£b­7ôn!Ò×^`{?¿½|µ>Zéx$Ülöã&5ÞcŽÖEœ(v e]ƒ£&¿r™B)ÙÃÈYäۃث’ÞlE•¸¡ ræ~š™}UØqõE ty,{-´ÙÅTÎKzø*>Q>+Ï+Y-’¤9:m¼_¢$¹Tk¾&Ð ]~b½+Oß1¨B‚|ÑØ‰,€#kö¢MWyÑe‡¶×" ¨ÎXyòjeöÅ7è2Ï"éìÄåD‹$vÆ,6a946›ž³Þ¨†nIÐ}Ït ¦$”Wl‚vuº?×§·îúd7A2uÇ3LÊT)ᖌϰØ-ݨf“$,ÓµÀ;~ÏNqŒÚàǾ:²k±3Ž×éacîê’˜“CHcøSå|u o˜Ô¨íaà I8à—! e­úÕ-%ÖÉà[j1H!5îwÀaÅ“¬ !:g+Ø b¶`äx2,"3ˆ&nJˆ£WÁù¡õÔê%55k¶ÁJááZ€ÜÌu‰òÙJB‡ ó0ÄÈÖvšülHôzØ/«ÀN$ø~]VáÌs\VIV–UXnëNÉT:&Rj÷yމsc7ˆÍ.¶OX\‚ƒüc±a—R¾Ù€Í¤ÈÈ$,è˜ §¯=¥X´6Ö–›¡êDHg<‡I2äÙ`$á®ö6å†W‰«˜nwYÂÊ‹ÔyÑ_q¿"…¹5Z[ u]½‚ûõ¥¾¼|šŸû‰ª¤”V­ƒŠƒú…‚LfžïŪl¾þÕɳoŸqO™;º÷’ՓέdÖBŠެ÷˜Hp/Ù²3&¨4¯;s¹l‚xê+k`ª8šye* ÁjÙÅPûÎð€¶¡Bì¶0íZ0mÓNÜ”Çx`›­rï,*`ÿTæÙû2 ´³¾#ëÌFûÜyG]*Y9 ÜÁÒ‡Z}!“nQ%¯SÃå:,F€â}C)Õ)+°'4b½½Šzf7üD¿HÔ] ¸j’dŠ¿†-1ûµ»FZãÄ÷+*{´êW‹v­óni9‡«w«ÕÆ9kâE‘¼YŒPw}võ²¼ßѶ%§¢úã®ÓßÝ–¥Æ —4MjíwRØ¥)ê®P´…ÈCÆ DÜ3\ð+…$h´é 9*!ºü HÆ».¿Ñp‡C¥<$è¸"‚ijР̑; Ì$G= rUá§i´„°ÞÒZe¦$P/‰Îµœ†¨<%Z¢K@ˆkãjx:)/UÿÇ’ 'Ž‹ÿ Â’¥µU\ø%V¿´ìZµü#ÇmN²!õ,y+BRiPJÚW¡$·ýLx, þ~ÒÏ~$¨*öè‘Ëï–›u=–¯Ô!½"5,Çì·°Ï­9ïMFÓV“>©tŸX4™1ì-2Ëu)qòf5ÝIžg¦ÕlD¨:°‚øÃ{# DÚÙ]€„Å‹‚NÓîÒœ{“`-‚õÈì‰ V_\@vWèHXƒÞ·› œ78¨™u ÏIô¶ŸQcZ Ú] Tñ(™ŸÐÆÚÂY÷µpˆk2U -ßF1Ö‘@B5±±µˆ4I¥éÊ{ÕÇ{j` ¿áá³’>§¶‰¹–OU2  ße(nꊔ4ïN‹³ªé›0ÓÁ?D›S"ù €\t+¿ƒŠû@r¼eò9ƒ¸e !?g©® <ÐNɺ],’)Jêá3@×8©÷èß«P¸zu]5^ä&‘È÷[§r£S_—êðOeL‹w µ ÙëTÖ9™=/§#d~z/T‚/ƒ=UÆ " Îò(‚áìjˆïÔAhÓ¾¬&X¿Yú²úmï¢ãü¦ /ËPô¡?tÓq ѳ-UjAP$¨Õ ºˆœj€;^¥RmΛ!ÈqÞ;›…îâÁÛ[éӲлîÚÎËðª E»ý_Êð¾ û^—¡èè¿îNv×å$xkï§…æªR(ýÍ Ù Ð¥[ ˦A±A~±A ´ÐðÎþfUÙúeØNSžQ|åt[G%½S~5B:ëÒ'B}—óØïkH/TvŽz[^¼æVØ”*¢™tf¿ØwQŠú”'Æyêr„¨å²2x…ÇB¦È˲O$æ"Z« ç…‚ú2X:âÜ$ã7`‘Šàö“ŠþXLqà\¶å1žD »H¥© RÒŠØá&$ìÛ½$'saò õ²z±¤Sc©¢ÍÄT´Þ(YŸÉPªµ¦î*ËÐ ‰íÇï=qQGï’Êš¨´2|Â(@~ÿ„Bó3O÷¯M, ¸øŸÌ¿þ”ÿ@•¦œ°kUãíY€EÜôAýÃMÍÈöA t•ó¡ZÈç•Ê 0ˆ]3NWó\P•FÌC€A”BØÖÃpAMnå \ÐÀ‘¡ïÁúXoŠ@ ù¶›ý¢‘êÕ!ÚS¥@<»¬ËÑ)Ƥ©üÓ8Ò “θ͘´ŽéèL—¯Z×»m&{X7&›L}Žn1£ƒ¶ì‡wž€ I²q“o,©«k ðKGg9jŸ¦ÇHÈbZåtyºÉv‚Dª°É(q'ß¿û\^´©Ï” |>u tH_,Î7>¸tPß»G7Dgj¨æÆ'Å;H³h@ºg"lÓ%ŒxÛVGoNÿÐI x­ŠØ;)aRD׊ dïĦ«<ýD,áƒÝìvu™ñAÁ**Î_”(#sWûÉ7€;}ÐO©ÊзùpƒÁSÒ 8½•²È__àÄÞùʾË9†Å5u«Ù‚úa HÇÆšn—3Ÿ2©Öã­çåÔn¤b´8±†°§³d¯šö¨îÑ9jì÷±q3ë ¤tÎòJ¿7$Þ7í²! ó=ÃNa$â7ü†K«¢¶1ÿÂ3êå\(ë÷Øu‰l’ø@H²'©êMtÅQU lDcÅ;ŸÚ÷b ðq›TpŠx||¯ŠÃÌ`¦Â}P oE(Õg—|áj³És®#á±€Ûf•9Ë5¢«˜=;-(ßsGCXï*TE8£ùèí´ÜÁö¶{Ô³ºÊ ÄW¢áòž§0K·´8ù0½UµbÑ·q¾·ßÓÉ>¢(1s&ts'Ž`vOEˆìí©ÎI\ŽWu‚'ŽÒ‹ œº³ûeòt¶3°{9È7,ÅXÙèýÀä%0WÒ~ˆâv/ìnc©€EÌÒ'Úbmuæ3¨Æl¬-ÑZyaë‹OaTq.ïxß‚ñËV™{¹`*°Öµ•ÖOÆLÖÕÇMwBEׄìà0Ù!Ѫ†7 ˆ:ìv} UmÃYúœsz(:ûX2ÂÒ¿<Ùþüõ9jŒ•åUïÄë§“ÚN«¤è‚¯N×D¼m×9O0dvòÔ¹P•Éh®E%sòòDg6¬)ÔÇv<žÇ|ø;;™qêòTÊ AÊÆ†ÿG·•€aÐ%ñ¥­O•´WOàSOq .èìGPZK6 èe€¶ã<1&zQd%˜w)X­¥Ò÷0leAÂp—Çá˜ôÐÛNðˆªIºw]È·…8£ÈŒÝTóö<Ø9nÉ[güÂáÕNù0Îr˜*Ïûdµ{OΤ?ÚËÇ"Ú—~”V7Zà—}ݲp3?Å»ªp8êŠÁ·Â¸ZŒY.h¬Ã¶ ™ºoâ0‚ÎÜÂ…ý!®^\ñì]Ê–SQƒæ€3pc»X—=‰¤Iïå§øÜ¥ú”XS8cjdˆ7›‚¤@‹ÀOÊà^“æìlš(êž < „zËÝ!©º®¡Î.lRù`ØòBÕ}Á³j~¸Ä6ÿ~¼ž,Km¦ºžbpÚt{΄Â]ÎëvUpV…‹à KÖÿúÕs–è»5ÄÑIü¢Oé=É–˜Ý(Ö|^líàÂ<¼6nÉXÄ%ˆ¿”¡h3á ý¢Ò!weÐðunËðº ó¥ŒíËoÊp¹?Ðåf zúª ¯Þõ¹åNÀ­ÇËŽ–V—½æû¶›P2;€'?€Ÿ0à?£m`¼_Ê-‚Ü©Bw Š;+Å™â&Fq?ã›2¼îÅu¤ƒÛ2_–áE÷q9çˆ=ØÀŸ‰;bw5"MÏ!°Õu±:…C'cÉån¡¡f ì±W«ÍÛ×\ú:/g­©˜å¼CÛ2¼+ë#—«0?+OÅ™ý;ÿº»bÿÒ}z[†çex¹'¤’Bgÿ^†¢·éMŠ[:EK”hªTbÑ3%o ý¼Ø 9CÎO²•²n¯«oo÷ðõÖVvöQ•ô©½l9*ÚõÞ½—å…—e(šÓ>d«PIx«dÛ â!Ö>8«ó©î&Û¹O³>*ž!ý"”qòxÛ®ü£ hÆ¢%þVÊ*dŸJ¦ºô©^[´žnm¢À3M‡FH5JiÕFéfgÚæöQ`ÒÝH |êõ¹Sw¦p€^pó"•¨ß ê\äµÿ߫ۘµ·Ô%Oí\üψ{3ÛŒ}|-Í|».L4[ÓŸ K6ÔûÚÔþ—¼¨vž¤ª“º¶n'RÛæ$îæIžî}}çt¢­µõŽ åàúBãÞD×yygBçji¬¤*_—kÅš´3T—˜u¥F7ç­^Ó´*|òžÚ©>E¾Ëï&=ö ü=7ÂX/—@jùp¾…%x*°<Ñi¥°ñbðOLÀËùÂÕ/üo¡4ñvÁ/~ôSþW°1Cn?C¨ÔÈtuÃ4zÎ4G±L¯kZø”wte× <0ÔÒ£ÛyÓ èÂ9O7n¡]ÙÞ„lv‰ºWçÅêp&Ò°ÃÐÅv Ê÷®ì x‰¯¯úJZuª»˜—GþÝð€i£ŸÔëúí³Sêx÷endstream endobj 556 0 obj << /Filter /FlateDecode /Length 6416 >> stream xœí]Ys\ÇuÎ3’ÊÓ„3é}q¢TÅ¥D—ä”c¼Y)× Ú †Æ"’ªüøœ¥o÷é»C´R.—ÔºèéåôY¾³tëO§j§OþSþ}þæD^üéDÓ×Óò¯ó7§¿<;ù§ÿ¶¾ì²Êúôìò„¢O“>>î²õ§goN6g€Î1uSÞ%•àg¯N~7¼Ü¨Ê6g§‡[h;ŒÏÃëÍÚJùì†W¢ËÕFïü‡.°‡V*ª4ÜÑ2zØ¿Áï&ÇàÒð–~ t¿¾†ÏA¥‡›nèÿ9ûÕloÛq½[ëw)^õ—j²3~÷€Cûœc4Ã:Gm,/‡Žæ1V¨ÃpO3fŸ2¬zkñ³ÊÃáÛat”=~ }EކmDòwb´²iÐ6HC$“”³DT«B}_Š?àßsÐ:ÑÏ EEçà öfzí6[çô.f3œýsÖ° \§M&äÉ‚pKN…a¾¡Í%S¶ÔÎ8æ”=ìg€#óÃH*£“õ¡¦å"ÛØßs”']êtÜÁfÜsû!òNiÊ oËdî‚uøi ‹ó‰\~u.~EÛWptfø;1DZ–Õn§Bå|AŸ•=]Œ›öÀ¾í<®˜”Î…W’‹#Gzdd¹B–¬uᛑµÇ }†ctÌCb+:p:àêáóðýP§g~ÓV;ÞŽ[Þj»ó.ÞyÙ®vIr8±CRJ ´ñ#yIŒöwÄ'Î¸Ô‰× è Šé#ÒãQÔÌŒ’0MN‘%Ú>1ÆCûzÓˆ*6?ªØ}”S9¸&¢*c:qüIË’sZˆ`¼“ E{¢XÎÁÇò»è­“_ìp[Ëù³ùÌâs¼¾ßðÈ)§ 'Œ‹ß3á”6Ã;ÔI–Ûc+'oˆ§<ò”_\mP<&ÙQ|x—)Ù4ôüÞ4úž×`Á7ÄÓ„ÐGÈÏTî°Còpn6RõS&åhÏš^i/ÆY*ÊNX*Râ Zƒ§ØKH¿0èaɆճ¥)-ðpSf4XTƯõÈ#)xK¼eaöl¿¬9)b43'Rù¦äÁ0ìê†FØ$DÐßžœýÃï†_˜" ,Q÷‚0xq~SIE[€=@4&,i¢Ûád¥Ò¶zÁ}xì-Âc(ƒ{íää_‚p6c†ïÆE¤Qï[Íì1~cÔ‰¥Õ»©³IßË ÷Jüt­I(ÄqÝÎŽ«xh_ï&:Nâßrç(õèŪ:”"Œ?sr úû!ea4ZúQYÐß@…0Ñ~’^£"Xú{§˜ä eÜš:o˼¸ÒY(ÞC³âd7,D0£Ý %¼mö„•IÙ))ÏÛe’ÑþTØQÁbËñZl’}H±­…#)ô:ïb²Ãl’A’‹ñˆ»¨ÖŒ½DQB&÷²Ë9.…mf»Ý.iˆ"Á1ÙB’-œ4ƒR  ^§¨<Ñ„z##Š3Jb§£ŸOqæ’øN `îb ÐagúYˆÃ[1÷€°&Í(=5÷™Ò¼²þ}ÑrN[Ëî6Yú?À,;g« á€÷´‰ä\Í›­y»èPýr€Æ',Ë&-¿J9xÛ$EÀ8I4Ù›u-$Âh‚L£œ/«7©vÙ˜‰}F;6Œûp‰OÐ?t¦VbKÆ7 °Ä"F)ðI¥q(Ô¶Z~¼=Z½{¢ep$©5o[óŠš ¹Ðšp¤ÞXp“ÃðíëWíëMûzhÍÛÖ|ÓšûÖ¼nÍß/~}Ûš¯Zó²5Éi@Õºáøž4üok¾iZóEëp×¾¾nÍ«Ö#ì[Qê8Ķ5oZCkÞ>5Úukþ~ñëyk¾jÍK±žaq£o›risªyX%dçDõEëz×¾¾nÍ«Ö|ÓšûÖúÕö?/JÆé·ÌÄ–W!¹ŸÃà™-f‰Uš5„9@h³8aÜá’ñÒ¬ 0µf&D¬GŠ+`tQýe4ª64ý,Éù~Y"t_I=.I¸bbcR'’Vâ ÄCYÒ;’LlŠ¥Ub‡¹×¬ÁL§YÍ#A—2„4MM‘¿¡ÐP6ZšÇëæÝì¥G'vØÅ‰Æ9: P‡`pbBÿª9gʰ.9GñÈ2‚´°´;pjò@ ÌŽAÃŽ=¡°Œ-ÆL#,’r¯å`ÆÑ¡K¤ÞÆ$¦,2„%¿$û˜‹ =@ÜÇ`IGÍ zÇ <'¿äRÅâáyc|çP±Ì“™îPXqN|€(aÕ‘ÄÀ$ •~÷·ìõ»¨ÌðljïK}W0ÛŠ‡‚øTöwñ)´Tç®<†O‰6q6OMD¥>F›Æ\¢ t>¢Bg`M)xŒ`2Ò‹=*Pï6ŽjgŠTñ÷yE¼šÞt[€ªCYÙÇ“P5¦]´Ù+¼nëКïZó¨ */CÕ.¢ãŽaÎâƒèÀ”óZŠÚ^F9…ã'=¢WchŒMð÷EÀøW˜ø? 1^/®çÝÓˆq& ¼÷3#ÆOŒù˜¸¯àmjõ<øí–>_lvܽDhwäQPŽTÃ:”ÈöD* {ØÜ«ø+þ ư¶EøyŽåœö”¯ìÂaH³¨mV± k\7C×{èh´7Ó eHU—Ø Óú——´.ѵ‚´dîSSÊûIVB#MRf‚$$D?R éøÅMö–Dò¢mæðBë!·² %Ù<[a«zTÙÅ7FC‚›dåHÁ3u.¤©í¢í‰‚èÓe–µ¦Ax€±ÄKlƒ5\wàðÏN›#ñ%ö%ò3DÛi#ŸwÙÍD”y×DCåÎQ0uÝÃbjL,"gÎ…œú ÀøÃb CG¸Ó-äÕáñW“mO"Þ¼ž#¼5Îiû]ãº^ØÚŽE±¸mJîýØð-ÃCE?êpgIjy¶¤=P]ñDgòUˆÒ¡AÒ®º¦—çéï îàŽ ì›>](ª xI€^fµ»hI3°’y/ ÎWˆ‰·Ã¿ñÊ`sǥá7ê©#=÷¯T9Ös_rè<ÀsEÜD¼ÕEÉ{‰¥ub2{âõ2­=q‹èWÙ­,¾ó‹¤n'ÉÂD¯¯þV1^^93 æ)‰,³9H mk&˜Á%ʾ¨çt¡C‚µ¯»àLEF¦Qw‡ÊÌ>d!˜r)gbB‡nÙuŠÊK~$gB‰ê.üXÒ††)k5˜¾«6Šþ2-#‹dÖ´»×}¤VøF€Wð|X<-|6‰ñ/¸‡£¨ÛrñÊžÃÊ„ z»ŒÛBC*cuMbÆÔX1 àÜ«.[{­0jœíÀHÌÃqLÀo«^zºv(¹sÎM”ʵˆ˜£k¬œ3æ¼Ð%|/~«Ó!P#÷—¨ÌyÉ3ÎìRLÕ—ÝO3Ã=‡ù] €ÇÞœ€“ƒ{Û%mw!D]ÿ›¶ÄEö¥æ$Õ²¼·H@ꩽ#ÅáeS!K³;ð3²K[ëãm€TË3½æTÆXg¿õkõ3ð¹p¾úxeoÝp¹{Ю‡ªU‚ž9èØUÖR™– ŽE÷ÐwÏ«U{Œ_÷X¾k,´”éÝr$|NT¤‰5»÷ÓHâjö¹º÷/x»Øì}b¾ca'Kâ{,IÜc µÓìœo…˜ÒkqUAö u@RMd)‰DçztÐô°šÐS á*³TßM\âé‹éZ†&?λËý­œW,[WÂý“uÖÔëÇ׫X`•X±ðãÆ{ úw•¼bíû—-êÇ ŸÒ·uVרz¡*¼œÌ54 בœN¢¤¾ïKif²}¸°K+` ˜ (MoŠnc­È޳ÿ”¥ÝÒâëE}ÒCfÿ½EËš±jÕ¢õ‹\µŠdI(œùrh9d2h¡:yRÎßÇÜn ¡¨DƒT—ÑD9ûš y@†Mû•t ïí¸þÞ>Jä÷žØ1“áE8 †¤Ú 9zLèÄ ªœêáà+¿„ð$¦Œ !@¥0™õÐ%À™  WÇ“µû˜Ë*·3ö¼>E÷Ÿ¶ u Àá3 zË?ŠSíü,e³8r€‘÷OÒ´…ñ\èqõ±>ÉJ Í£°HÃu×H½ º$Ø[Ù\¸ÂVh6+5Þ>S GO¶GJ8ì’Æbãžj«×}zƒcð¦ç4d1SÔd7d9CóµòäUqÁ-õÐËÒ’•R»ù$^$9ÜÙçáª7ù[éWlë}äÎÎÍLÔi‰3ƒM‡:^—LÃÕ95¹:%k:¾,y{x•Q¼'…Ťm´Ã¦à±¼sv¯XMïŽ(m‰¦:íb°¶§iIÅn›”1SSÉûMeÄš:àÜVä%²®ìä(skT­j¹ÒbLø÷³“ßœðãþôvýQˆÉŽÊ£~ jbF%‰/C<Ûþª[ù5 6ö—Ë(¦sÌ’k$–Y®•pŸLg‘‘Ã:§3¼7½%‰OO `SÐ;q#ˆ÷±Oi¯Ãøª½(ÙÍ׊•çÕ ôøÅ,ÉÅ~·}h‹µ**Òmºï¿§íŬºÔéSuH]˜o|-TY»œÝéºg®Ï—ª®®èï7tšM Ãó„» !é6ä]`Üa¼‹ŒœöŸ”ydñFde â¡a2ÉS¨€ÍôQmHѪ.†§æµiQ¼*C·£Ù„¸`;dw…LCé½JNØ<Ÿ]vµ-p!eæ@øÎyí ¬vR°Ö® P†f˜1ÃኯöÞ›ú¤Í2µRå)J23e_ø G1‹ÞLMÄ„çcM :`À÷ø÷1Júª£¾ßÔzc†È”z¹5„O_ þÀ+Dkö’cü.ËRÝõê£ fm€ E䪑tMød0aæío5ÖXë<)Î(“Ÿ»\Ž"ŠID^U$^ïµ0F U«4B%æÉïÈÃÓ3xvZ…®ê< Ç;W™Ê­=½ñT°#¬_KÖ¹ÖÓœºH÷‹ôºð†EÁ€ÈÊ‹¤»HÅ úzq°å RêVÃ&TÒ±%£ ¬²ÀŽHOŒùá×R6ßS÷¨HËÅp)ö1Oüˆ®¸çrånG¤f¶§Ì´@ëÜVêÛîÈvim%”ÈøH‹IãêÑ4ã•Á‡¾W¸<²±r±Ê¸ ²!¬¬(AHovoGp(Ar jÜ[L1É+NCØ,bÊÙÛi]Eâ5O“èõ™jYe&¸Äúv9"Z«î¦6•²¼_n*PÏ4-\¥\QЭæÐ´‰¤­*³æáçM<÷Ñ"×U ZsªA¥{,¼<±Ð/µGþ‡+‚À³4Ai l >—ñœ£Ñ7Âþƒ %°ƒµðf|**0–]Z–Éø`GE2L5øm¶œõÁÓ·¤øÀÂØ±|–eAß"'x­1ÔgÀ!•ÖÑar»FX«c‰žÔiܲî§2àþD QÀÊRÏs¥ªÐÝg,  5ÙÆQoÄúLU,twÇÊ£`9Ça¹H¨±h\z%nu.õIí!ñUŪ3©OäO¼Ì;Ÿ×æÞ1ìƒ{Ü2Q (œ·ì2ÒöôH@sI9¸g­î_îܳ1¥0Õ<¸êzp” „£‚{®¹º(§§øØ `€êÓÔ»¼z(ًܽ`²ï®ál%>ÅÚ7½Yµ¡|Dè b.]„ƒËpÌ,’1®§ÉͶ€{çø?ønÈ¢]“÷ZÆt}è²²uÒ.Nù Ù¥zÄŸ—As!мK¤‰× o¸ £Á겕ì‡åËz»ÁEfgõY«½,4ꪨŚš'Ùì!ñ•/ lí;CœŠ•bÁpˆü¾!ÝD¥dxÔ°ø><6ò²%ûMdï|àÕÉw–ÊKT ¯éÅÄQ×xdÑdC ð£n2†¨|‡q…u_z¨îü¸ÌŽ¢²Òÿ{u˜Ýñò¦®åsÉ®J’7zû¨Ö½>©ë£› 7,¼Tí±…J®òÑX«tÍc¡³·’Œï¢$“kÖ™¤êŠÔ~Wt0_µÁW z‹# sLt§\çäp…í-(IÓ=ÛØÚÕ»ÿ±íüe-¥×Ö ’fb9/—÷ÑI†€ÃÈ&øÄL÷w¿/«¹úaCÕä)Oo¯RË”N¯îN,Ðáô—oN ò´3áô͉ñþë—ë“ß®ƒ&s N À[‰l²Ý9ãÁáŒN`&é§â](€ 7UÐkºµø y.Òü59Å`¶’eÕl€Õ±Ë@áäÇ•¢«tK\àö‚;*NÒ`LfR+0íàó3Uè²ç±æ“3¤Î“8ö—£#”uˆ6úò–'ˆU†žõǀΞ á•Adž3ÿ«h&X+2¾FªJpì8h©áöNt¹gU‘JPXÃ…b×> stream xœí\KÉq¾ù0öð±!È@·Í.çû±kù°€áµ!vV‚Ðä ‡»K²ggÈ¥(ýyÇ#+3²:k¦I.m„=0·:+3"2_DFÍ5éÂÿÊ¿Ï^]¨ÍÍÅšžnÊ?Ï^m¾º¼ø×ßÙO¦¬²Þ\>¿àWô&éMôqÊÖo._]lÚ]~“cê&§<%•à…Ë«‹o·OwjRÙæìôöÆNãóö»ÝÆJùì¶WbÊÍNO þÇl¯q†V*ª´½§2z{x…ÏMŽÁ¥í-½ L)üe”Þ¾î–þãå¹ÚjIï~&xoý”B`²ÿe·×°¹¥µrö)åí›6¼nûÝÞ D§í¯ÚP· ~8TÃᓶ»öô w«ÃWmø¶ o‡äœ±1 GÛÉ»l6—¿¾¸üg!„gmâ‹!YBJ¯Ûð~H‹²{?®^=&ç?ìÊ÷Êkü”ŸYú=Ì×Yňf£2=,0ªA¥^ìö6û)hMO.Î\;mL¬—¨QÑÑAïƒ|ÌT¸NËÀlœÒf¶ŠoÚzoðŲÍÇøÊ¨º0ŽJ¹´Â•¡ZÙñ)ˆÄM üyû½Xåç“Ó*À6º™3¯Áða§"KD+în³ƒefÞÉj¯ym4-´Z›L S„¦˜<ï—sŒ×Åý’áÐ~É$å¬Ü¤˜rNp:lt³,éÕ{&ÄÁ)ŸÏg“çCç è»æ 6[ðu›ã ?V:’Ñ„ ÒqÛÃ]•ðö©Ò))¤À3¿/y÷H â윲/,ÀÞfûÃÎDÐ"c;¢is'j$»‚ÐãnïBh9¼Â%šøpg›‘N”’wZòwDÇ 1ïããL.näW“Òº2¢cê%zUŽV;pΨ[Ö›)Ä<ëÒû¶þºwà ›=zÏsî‹·U–½­ÎV'¥{+xyIÂÍT ·ÖÀòýŒÃ=)jtÁÖµgOkûd 7d27¼pÜÛh[ïšgŸl~½ÿžt6‚åtfüŒ´l+²êá")Iu;Λû^ »ÍgJÄ1¹‹AOˆ§Þ]xÔ«6¼ºÆ?I—;rÏ"TܶáË•x6ò7ÉN!=Óü¼ ò­àÏ”öliý¥…5_7þ¢ÚÖ8DçÀ‰Cˆž9Òð;¢98pyÿ>„XV=3EÃ7m8µáx®^µá¶m¬Åã] œ)ÍQfLÚÓöÚ]~7ÜîfHÏŸÚðë6Tóaûoíé¾=ý¤?‡†µ˜½.üf¸‡@χ†òfHð×CÀSîÿ´ôßNëÌÓ:ÛU³»$<¡dlm0›8X …Û¯(@e ‘Ø™^<8ˆI0Ò Æ_Rð–¿…%²tv‡UPÍñŽÃBÔv £`[®R·þ©Â^À€NY̵·]ü°q¨:ûâ¯É+ ˜g'µ$-*šœ“2Dï)XˆHüŽ"6ñÎ!jáí'@7Ý;G¦ÚAµÄw ÀÚ Êm½ÏŸB´þ¢e:¼æ3 êüXg—É>£E"Dó„oé!¡Ñ§ ój&»€ !Käñz¼ðU[øP´ R©Ç—Å ,ÙNàkº†åÉ}F0úEÜ©.¢çpNNèù8~¾hV‡O>Å)>’ñ1 ¸fÒ”}s1UZ/Úðº Nð'àÅ›!ͯÚð0œÛA‘*‹¯†¯½¾vß^{¾|¸©½pÈGéÿk²Ýeùõ©ðîbÝŸ[L<}ÞžþYÍhîOÃý®`†¤‹ª„XáÇ6|;dèåüš/‚JÚÄB ¿h4çUÁOÉÏoj3MÆ6tmhÛ0 ß¾¬½'åÔ†·X‰¢ÐþFC²Qê§wèB0ÉE• _!Ö[ƒ¦ÊpV_w]9Aº¨{ñ¼,)«ÌÓŽütVõAövxƒSÜ„¹6%ýó·­žªk5Ñâã0aª‰Á*Êéê·Õe9}¶:éõ—·HËȼÁ\^üö‚K¨~s÷¡¥S«,†¥Wa2˧s¨”CGÛò!R>u\jxÏ„GÓA¤S…¬“ˆ=V˜géA¼u+0«9M1¦ŽUšÀ]úøéÂt L mƒ-(½ÇbôG’ì (›Y¼ÛÍU•i·w˜ý@ÿ–‚=©7 ¦§@h.1BôÊT:…Ó[TtÈDr—K°¬ÇXg‰Ø}M:—6hªÈÛ¿y° 6ÒîDY‹´ ¶Ò¦«Ì±¥ècdr §œ[[:ˆ²I„¹ÂÙH¥§ÂbÀo·ÆÃðÔwÒÁ}VL¬M x¹R"¤©†Â%éÃ)—hÚçch>ßêó™´¤&€¡ÝáÝ3ù¤x™’õù¬s]ÝçææºýpFáW c¬åi½*È7E'—Õ¶®ä«5åi§–agÖ×WW¼,ä`’–cÙ-CT|‡N6aÉXX+OÈÉ8:c2'd²Ð˜¼£¯˜CTJ¶¯{ñ•ÔÞ Åž³‰‹°çb>"½6:—*!Ï<”l%`“”OyE…M*[ÒÍÒZš<¼ X¹û˜^å»Üu)N,ö&×åa‚aâxŸ¡ì=¸'º¡\IwìJ“y…Ç`Ø¥iõ¤E‘¿%JRÅDåÿ¶ívøûn»ªÜ+uÍZ-Hk&ÂNÔCÖ€øZóô˜.ªóŸºÊ(Ääϯvܶ“IÖ½ûJ;ømo}áÀãùš–üQ$ÄÊhϨÀ÷7fmK¾ñ,λêîFŠ´eÖ\µ0>à+H4s „Š 2ý?¸*‡µRÆV'(3q `¡’)Td²;¾¬ÞH*-×)²3t‰]à’t*fϨTˆd÷n8<ŸŠâƒHÃÅb"µ‰üÛábã¤ÿ#ª%ç]ò¬V´ëø—mx;\MTuŸ 'ˆòí¸¾ÛQ9,œx Ê”$U úm;E݆luŠ_4¡ˆZÐ4|*†¹ cš6ü§6üÅJ+HOñߴÙÿ/­«Ž’¨[|\ÝlºskqMÑW×ÑWÁ{ÜV—P¿á¤øªI{ìÿpn`$.ÖÐk¯ñ7]uÈ j!äʸ~¸Y„p" PÒÒ_ÑÕ³]ëçr³ˆá¡,§dÍ 9ƒ {” ÿEa^™îø&¶‰¦ÁÚç îÈñ;v9|BŽ].Z”.ÊnmžtŒ­s ÊBRÆHÉ›L—³TlÍá,e‰Â,¤mÁ¬¶æ\1ùå,Áɳ¦¾ïÛ’\Ç(ÌȾVШ—)œ´Ž®˜,Œ÷ a£Nb§WP¯Üu(h°É¸ýkæDÀÆÀLÚwvðg6YÇU[êšFª©ÈW¼4¶’Õ¸y¹i;ÌiCp~ÖßåÍ©/¼³þYÔ·Ë‘g=ìõ9 ö=—“ïøyTiÍŠ¯y¢ÓAy‰XR uD‹Ž !úŠÈ  ®ÅFWKîb–Š.la>$;/ÌcÝìj7DÇ/™Š#oãX˜.¹¹7 ˆB ¬ú…ξ„'•ÿ¤TDv ‚áfnícÞ窩¨¸Ù&¬P -˜ÚP.75•y²hØéëT9ŽêTJ'ûaw½Ø vµN¥Å8€"µÆ!›Eî²®šs²*l¨ ×äÔ,ø„VùÐBœ¦¶ä1ÏHmû®¨’Øùnñµ€?Ó7-3*k6Ž÷†o~áà¼6{ 4Â,1Ä3+‘pxé¤ Û`]ÑYù¸¬ëäºX#‹ÕÞ¾ÁÉ ^7Òaè2³6ƒžmÙy&í;öº)-;âä–ÍIbœ% dY8ƒ[<2¯•ç¦q›0…5¼˜SÈ_‚F¬¤í¬‡±ÿFK}rã{š ! q–°Æ•’ÖÜ"–”íÞÔ4*Ÿ½á‰Jã£#*&ÖmökZöÃÂòäÄí8×ÿ•×\šïâJe¿Ì¸o3†—…>L.Lkà!vŽTÂù}ßt¹n%‰¼ßÕR Äd¼©qÁÉj"ÝB½žþW14ôc…*l‘½NOøöý:úÐ!vÇßžœUyéø„¯d%¿kXTka³|rn-`2ü-Æ©k£¨+#ðw-Úôõ)ÖÎÐ…×Ñï%•qYV™åûæŽ ŽúBüÓü+(›b±Ã«¡É`£½,7SÄP *Ò6¨æ‹ª@— #”¦B=,†F‹NÐð a#Š˜ó™kõpïùU¬?­R{ϱ÷}%†‘¾©ì]pXŠóhuÚ›þq!šZ)Z"È'Žž~q?”¸[ãà,iÞš‘wí}')07²ñ„ {î|OŒ:ÌVÎ…V «FÂö^º¶V콞Ä)…7»üQ`’—å°Àk / 龜œÇxµK£¦‹Ã—äâõªÉïqjQð&shR!ú­~ö$í~c°9Äó%ü¯ ÕÇò;QÒ+—Ö¿ý=&‡ Ö°|Qœä^•fÿOèwÐ8”ëèæ~‡“¥?R2:‚‡ŸÚØðà>¡á”p²~Aó®ÙÅš8á§#J¼zÑÂXíxèoææ¼É>6qËŠ%`^Ï‚/ç,8ü.# àËŠ >»su ¬}œOóÅq@¸sF¯§@××ee¼7RÌ.ŸwùN®1b÷élçoD|þDé5<ˆÇ#œ¦©Å¤¶Èþ “î4¡?Ô»á¦À^Èuþ—')À"e­ ‰éÓÍ~A°'ïÛ§›°  ™ 4øAj4úbñ”‡_¶ —|ªxÁ=¢’m+Ô'X‘á½Ü}Ñt⟸œ$ýY¹0õ©o³YùÂä¾??Âß2Ž>Ö#œ5 ;Áú‚,ø¼dÖà _àŒ@_OŸ÷îòDœð£så|@“Iâ‹#7X©¬ñA\³î9CUÖ9ÙÆËýúM× ¨ß$¢P*È3VÀ>š 2œ•—’“â‡2TYëCøH$~q†º®ØZkA”èf‘ ÷ðº·:ÇÚôó¾Çs0;Š:Ø´Í*p!D#,f¸8쇮¢3fÓ½Ó YwªÃø#e0àh!ÙHÀÉC^igv<-% Â"+X¬‡Ws×Ç Ê–DTÔYo–õ܈M¤ú{kŒ!MCOàfMÓ˪öcÔ`¢–¶XšÖò\0% #QlãžÉS¹üw~„?qTè‚0gÖŒ/qí¤ËàÈÐ[ÿ•‡jåýw/ YLj C]n$!ðXÀ‰9SBÔ}fª÷À'xõ£ù§$v؆m¼Ëζ²rÿ%û¹iw!V³þÀ,#üë°'Ÿ“tq/¶lX´°Ïs)Ó”?áW¥(ÜWçùñä³ìþR0àUÌíÞù¾×IpȬ²;ßÝ€âÿ DýcK¼CV Zì»-…°Øñ³”]Ž#ëÄ¿5On.ŸÇ,Y’Ó5/ÿÐXÀ Ù?"0—¼yL"½¯Áð Y[Oß—‹c²yYYȦÓ¿[ø²%ÿ`'­…ïlâ|á u‰ÀYYé?_äù<ª¨anüaŽ[cG àq¥|çT–†¤eÁÛò¸Ü›ˆˆãZ–¥ ?šž–å±/•R”¾å;)Âdñxp1š>L>CšN¦g„|†®™á‰æöHšú0Ì&MÆkq3¸Ô‰·Ë ž­N–I››{°•œ6ïÀçþçEÒèn3þ!Í+Àó~‹õÉË‹oÖ}¿Ù@H»¿´ÙPDõÄö!/\¹]Wm> stream xœ5mHSaÇŸë]Û ± &Evï-z#L§½¨EZQV¦DJY-½m«öÒ¼ÛL—ºµíÌ5gf9k›Q¡S’ŠÊ"ÌÞ ½QĹrûÐlù|8<çÎÿœßŸ"²4BQÔôRMEEIe¾z2Y$ΣÄì4q> ¶‰§A: é²ÐÄ›Ùx"-3Ñ0‹ÐuÒu¶Ôl©·tzÛ§^­®I†|.¿¸¸0‡+P«‹¹MFÞj¨Ñš8VÐóF­LŽqæ/ÔÿY¯ËÚ¼<‡Ã‘«5Öåš­º “*9œÃ è¹r¾Ž·ÚùZn«Ù$p;´Fž›º4wêSj6Zloå4æZÞj"„L3 Úò Bv’ݤ„¬$«ˆØy¾ŸÅ㊣Cîv •ŒtEq4tbhª•!.sŽc"t„ú„Y4šÄ,ÕgyWâq4±oSÂÇRÂE‚Âytº8t±©]¾$~pìì-?`z‚£á¼!WÔñ¶7ƒ|>—ËÙb±iAY×Ðó"¹,æLàÔ5ÌÂu“µ8¦Â)Ç_µ¯ê´ycov{À ­í»ü-~WЂ ’ïæíáØ3P> )cõ ½Ôí•–nÙô©ïuçØÖ‘BH!IÙ¿U¹9àÑZâƒß‘ ]ñ3åÅ› ´} ¾à"Œ K‹|¥zÞýmp–«$#ìg¤Öÿþ}Kùw÷¿a¤X$ݸPwb0÷±<ÒWÙ?kð· m˜¥@e´z{ÙÉÝÒÌ$c²B‰½?©§˜‰Í˜Ic¯¨QÙ‚š^x¤|ÿ¾­od¸qï=&Üà÷vÝÝç´u@ Ãç·žßÜ_¬e”g—vn¨¾ä`ïï¹sj¼~¤1æŽ9:OEíÀ+W¬ö),é»]Å4uyá4¸Àíñ44¬šãm/xÀþKô¾´?ô^%.ÿúóPVôni/›ÁÌFÒ§ò†$xendstream endobj 559 0 obj << /Filter /FlateDecode /Length 2979 >> stream xœí[Ýo·úGœ<쥺 ¿?Œ´@S8qŒ¾Ä½¢N`œ¤ÓI±¤³ï$·NÑÿ½Crw9Ü›ÕêÖmÔðƒGw†óE½™°šOXø×üx¾Ç&«½7{<ŽNšÿÏ'ßÏ÷¾}Î……¡Ú3Ï'óã½ô Ÿp-j7±ÚÖ^êÉü|ïEõóXzãUu5±Z{o­¨–0j¸äÞWSajÅ¥®.ay¯¯NœIãà÷3)|XýÞVu”µ«~ cÎ(íª ’S­/‚$ÃãÕâ FÓÌVû‰‘…ÏŸ.à éÔR:Äá4üÚzçuõ*õ÷ÀŠ¡ûëë¶µ:|™àBU‹Ä¸“Ñ|Š–ñ}º‰áÞ Ìü­shá½s¦zUå” R"?ÃtõÏ©“ l®«Åjg‡NyáªfJQ-^M…­¹á<ò줅8c›‡?ƒs—»4¾pð󣽊Ëéü·`’ã)3¥ød&uíŒ ó^TœÎ¸¶¼†ÃYƒ$Ø=c¾ºÊäåt¦…¬3Õwyt6 +à²Ö°Éüo{óo"/a¸ƒ9ÕQžz˜É)M8Éä»LþRe1^fò ¯—·Ÿw±£Ú¹Vr$™<Ëä²ýÌUÊäùÙ%9úu&7™ÜÏÌ´u&W¤àyžð<“ÿÈä“Lþ2ÍßÁÁ( vøU;¤«×q¦ähÖÉÓL®ñ„pØÃ'¼"U~N’ úXO3y‘É·™|™É-ùÙêqQ!‚T?Ë£u&ÙÉ?<³2Œö<ß§m º"eàF££G`´¹ d_4|Ýÿ¬¯w„§XïyŽ/z÷Ù7$>,IX¡¡âÎkx`ë!,©€–3Òf^ermF‚×Ñà†XrDôW'¤Ñ!ò(òšµÌfÁ%é׆Ly d ÈLÑ\dØÜ†ež<Å·"éÅVÿí“–R¾úsþý)áÂÀ×äÜ-¹š%¹·S’Æ”ö4“l èŒé8ÛÇU&/2‰œ.ºÈÌ×ägÍDú5iýÈ¿¢û³7¿Qò?ø4[“ú°+’âz]lè³M_pÜЋL>"ÕŽtý6“/I¥Þ”)øWÐ$S6hò«¬i—ÿ&OhCŠ(Lªc6j% réKRðs ÌávG"ú~¿ÐõÈÉnÈÏÉmЛ+–Ó‰¸ÄÞ¦sm[ÒI­2yžÉE—"i” Ý3ÙrîúdëK(þ‡â þ‡âŒý¬‚ãowä½âáØ|Báo¿h%D­ ëJHÏC‰‹3ÆU  sVÈTxSŒ1©ªEÐ ÷R; JšIcjÇ.Wž BÞâ2üà ÚÖ6ÉWEEL‡’›õmå;d<µZꔺ›n§âVZW-6±HÉ,| ÐrnŒoKy^Ù¶¢ª9—¼O%¾X¥DÅÆßQ0¨B{-|ˆ`Ë6Q#?ЕË:™vÍeÒ‰Lþ¬Sĺ+§ž£Êå¢Ñ õ)<Þ-¨¢¢cÚ€Ž)‰«³ÝÜ$/˜Fªã¢e¢¹¡,$kWx›QV‹¾Kûo*³ž£š#…”²>n8ð(hws ²È¦X¬˜pR€Z5¥];'ƒºš•ºb ª¥Ÿ)À”y³CÇ8}€IÆüWÂÇN·¶4 š•ĤW1,3%½±Û3ʨ+㽇ãu}ï™lV%.¬í(…M3*ÖÍ…¨UZPQƒÖÄäTVž5¥j¸°Ú')Í}½ %nú®Þ%ÆÖ˘1JgáºM‰T¯7 ²¶î¾s‰vtæë ð¸4û$ˆûëÌÁ{[ý5¢÷<\èܪ8 ºƒë>ƒõ+®<^?>ý¸WÀwÛ‹Ó-« .ìGš¡­b!ë0 N?ÅÊ-è5[â ×`4տ¦À"»r À4XkŽ ÖÍÁsÜ7Y·¬x1¼,@+ÓGÍ’›¤*5KÖi08¼ëí]¦(Ž}vBŠkÀ]—p-k¡»SÔJäAaûLI°MÛë"í¬ˆhë§Ù94‹”Lwø\§t`Ê)ÕœndqÃÓ$g4ëzliŠ´B÷\]è¼ÁJ‡­Á.Ó¨‚³¸ª«Øà‚­ƒC]–úŽ&>Wܧâ;ÒAáë°>O\$ìÜ6ÌYqq/JPëûga,„1í>C7ô/á2J®Dõ㔇+›‚=n½hC×JzÞr«;¿ñT¨ ÉPD„ë®”O“æèN¦]ëv/¼?UÈ:Æ7øVáXŒ,ðƒAÒ›3ZnG†Áó„ø¼ˆ-ã„”¬oŽA ÏñBðЌ2ΧÅ)uÁë »ÆÚñ–ÈÚN8C†½JÃáº!HêµÆ¦ñ*ùŠÐŸ¦5i0GdE±w*˜…UƹpE}ÑÅÅáá:jÑ(8'.8¿m³ozAQ;ŠT°N«ô—#¦*†dr¸¢Øb•‡ùî øÒ½KŒ­k¸{ÜÛ0=„o“^ïIì»&p¨N´f¥ï÷šgíVp€'n4ÆÃ“îµ@Ä^z²¦1ͪ2–î¬{M%ÅV€ºà—.‘–€c;¿¹D”)Ø:ûrlVGÙÔ±}œcµ„!½&zHY è2–÷\SË?È$]Rçcå@:}CÅ_œÍ2ùÓ”JåŽ3‰ºâehîÓû¼úhû¼ßæ†w„˜Ñ4´´-½´Û>N›GtÝÚú%PT%ÁÅ`Ô“9È$ª?Í$/ÔÖU1¾ËÃ3²À‹å¡’ÿÛ¢ˆ*áaÌA%ßqÌùˆÌ¡Z&DÚ­ÇN¤õu¨ŒåºWˆŽÃ0L§¢c«­ Ñ1ª“…p Ò •jxð©mÐôÑqL'n5ɪˆ(ãH’}W&Nãd¦ÖFl:ëÂò˜=§â¶À5¤Œ~Ñ!°æ!Ä…›¨,Y.:U•…‚½ÒJ,^–&¡Ô¢†wØ%|M)|ñX“[XC— {A÷yŽ2‰Ú¨_ð2“¨K¹È$jM¢®ÒÉlCÚ·S5¤¤]öœÒQ¯˜"êvÁ¼wÒ ,o§l׫iòÚC¾_Ö4qí )Zaªu:4Z.2ÍX넌²ÈPp þ¸Hüïá#牰E³ô㌮Ƹ!qtç—ö´gA­t‰ÑhŠ!/Nr{šVÚ–\$jÕäÒ—$yDëEK(R‘™T™Ô…'Üé×Ó›¸ÿ©Ü1?º—àkœ ý†¶ úmöö÷g¼%±¿‘|W¤àÑ|fàýzè˜úÁþ0Åÿ59­eèuÙÖx¥„±²Ýw”ÓyšIžÉý~;ÚßäÞÈÎé'=ˆ6Ç£±'ü(©¼ ç^s»óÑy®ÎwXç—[ų¡7¤Ñk£fí‘hxJÓ„‚‘¦ÆTy›ÚüÕ˜ˆ»—®Ï”>öŽ&v_°÷~Ø[<åz÷y¬ »?Ư¬>4üÑ/ÐÞ+ü•áºB{†ÍŸ¢f-o“äÐà@ÍáEê¦Åôg¯7È~Š'Y£ª<‡¨n´û.ù=e77)©“Ù·Pµ“¶Sé÷y‹›Lžfrh%ÔÛìëò¬~©ŽÖ×*ó¥S¹K’ýÖ¶€šÎ@,÷=ÇÑò³Ñ‡“tålƒçRrA~v6<¯H¥çžKG$B£ÇYð,#jÓ¶ƵE›_gEÀ–E@-›ÖA÷|}ò$Ûà6“—}#½¦Z_ü!PgWè ç9q ´HÄ;¾ÅÜnTg}¢u‚´ßê/…pE•“ß’ì¤ÓB›òsȵ­ÉÒ·Ù1bVGsy2ßûþýd•Hendstream endobj 560 0 obj << /Filter /FlateDecode /Length 4003 >> stream xœí[ëo$· ÿ¾ ú7,‚˜-²S½¤@.HšmÐ$Fûá{~Û{gûî__RÒŒ¨YŽ×ö‚(òáYÒP$Eþ(r_-E/—ÿ+ÿ^,Äòtñj!Óè²üsx±|z°øãÚÁHE”˃“E^"—A.½õ}Ôvyp±è¤Yü&ûÐL±"À‚ƒ£Å³îùJô"ê쮀6Ò)»³Õh!l4Ý™rº’½€ÿQÝ1ÎBxºë´Ð%»ÍŽ«è ÝË´Ò)˜~N6<ƒa'”Ýe³õOß»RKÊïz`x­mœËlÿ ctÆÄîO«µU¸òé{1z`0¥g•¼¬äM%ÿÕUúù¾-Ž*yZÉãJþ\Éo*)ÈçVÃIU¤'U¦W^/þº8øÃ³îi=áU%Ï*9ÇH‘†KZ)£›J^T’ˆë|Ÿ¸Në¾ä¬×¬<ÏØ¯elÃÜDŽü†n[GOê(™û‚]v^GɧuÂE%<\ѹ#yVÉKvÙ9ûa²ìÊ$YÆÍ}Á²NÈ£J>©^§Ñ •ït2%­}¯Üx§Eý{_I2*++i*©Ò¶ëaßµÔ½5Qåí¿ª6x]É›©‘òúŸÚ ±×-{ oØx#%–yT÷m掣¦Ê“hä†Õ±ÞŠÏXí *.&Ñ×dxU¹xÃn·aíø˜å‚7§£ºÃ',o[ö ü­!vL6ë‹CkÃz±ï¶ÈŸF8‹ºÖZC¤‰k«3×FzíC·¹ÁªÁ€ (ãÚv·ePäPTæ¦øƒ‘Ã[p@å€Õ×8lAÝ^%f•T´M¾÷YÞÎGßrQב­YG-Aœv¸lX¦œ MìµHÈ.aú 9Ë6Ùˆ•4Á RJN‹ÌuÈQÚ§aÆ¥cÂÀzˆÇIbä¡Ê~B»Î5ì—…ƒíèEbAÛ"ê­ ªè6­Ü®ÖÊ÷BF8Ê›Ø(3Îð¦{ipDG•˜¸nô’¾’Ï(=XJ?–ô`+NƒÓr½:f¡}w\ˆÐ¦{—Îæ¬RSÈ®÷p¶·+à N'› ÊîXÜæÇÁ ¢nG£¼&(ç8Ï0Ò>Ú΄CûôN¼ÛKòF÷3kǬ)×ôšÝì˜Îåld’CQ¾™^:×(-JG4Êéåd¸H¬o;ŠÚtÙ™$̹͊àL¶Ï«ç*×mp¬+[8é» 1÷—£ßÀ#já0ÛóVÙH€k¨•¢½P^&o…–n…QÕNð6Á­ŸÚkþ€{Üù8Y·U`F—ÙáÁ^YÁ³§ÅŠPT3Û%àbPFu[/wòz°?ÐI•}¾#ÌŒ-v›UUd .„ºd⳩ÇECqpƒlãZWA¨¹Mž4wx' Pt¢h̃ÿ{^é(ë¬Íê p÷5»‘_Lq)¹wä>SIÙ€Š‘þ}%_îƒ6‡ìÔÔØÌpyÄæYÕž¬äOU‘ŸTa¬©gGC%}%?­ä'|Vù3âÍHü†Í胻ÓbvÁìAB<¢‹O.~TÉE ì pE 6ç)Im,&À…‡¨”CQ ‰9é vƒ‘3÷F£“8‘—LüpaîŽJÐMñÙ 4·_åž Óëa™le=ÿÑ ÈÊ[9¡`Y>¡§ì¸‰©~1ʹd‹FW)„‚ÌmèN)‚¨[Ÿç•¡àåÌ*áúD`'²X²¶¦—rÄD<Èæ¡r‹š (N‡3Q@¹Iöƒ‡d²²0N}ž6û,zÞÕ—˜00ÞæÿIçî·?¤c‚II+mš"ö¦Á)ð€ÉB5úw^`›ç|ªw»Ô£„Á[¿6p|÷EÊ-ܯ|g\t`•Í7.Q`F K­…\µm2­i ä=&ñ2ȯ&§i9ûg™»¦ú5„ôxùÄrs .ó8$r%ñH&sÝ\â4ÃÝZþ$ñÈi °½ì¥‘ƒÁòYÁKò/l·|^«·Ž÷¢M(‘Y¸í Ól“¬“©0dî6ÂÌð°*hºÙ$9(lê2*ôm²'÷jüûºržï4}0åÚÀÓñ²I :ÙU€ärŒt  5º\6ØømJ™žI*¬÷¥!߇'ì ßÖN2 â»#ÅxÊç•Õû½0„˜\ûü ŠÊ+Éu€|¥ò~•ÖkØnOÌÕÂcUð¯÷ ^h ›5)&ä‚ÔÛÜ\˜ËÑæ‚¦>(îÅ`  æT@ýë¹°}JâÜuÿØüš k4jê¹O©`§ð¥,Ê{òöO­µT bÌ#‚QÍ«üøëZUVö¥±rœñÑNÍ0ͦwö&¯ŒÒÑöŒÙ/N*£ÆR%F 4ûÝ´sªrˆ!jôf›ÂHÀOŽh|Æl‰h x×¶51¶f=Ó•1©Y##®ûárHÔL..ZáCK_0*Óš ò¯zîì?FPŽ“± óv…¸ GÓjzæ×…-ÂE±––›’÷yµåTÙêG×õä«z£xí(kë¡>Çæ,Âë1hLöH†›çÃôôÛªÖ‹ØÞX¼ã± Ζ7~ÙÞ‘¯ß#/ayz½€›æ–obùçvÈ÷Z-A° ¶Y^, ¡Š}ðãÈùâÇþ öì-îi1ÆjüUسNá’.ÇÐ5q˜7&IÉ4®VÎï&¥À©x&EQ¾OukObÆê]´muëñN¶i†1Y’ßöqõmï&UýÚ«3À ά‚HmîíQÌèNêÀnˆ(SWþŒ3ë2ÞþJ/êdÀ&|«ÔË]¥8&…’\=½Æ)ØŸŠ¬Në¥C·Vm #±ã4/Ë…þñcˆUwÝRsXÎöZ8þ`R´ÆQÉ“§NÝrƒÀ5er¦6®ìõ¨ûi»Þðã6¶]@»¡,õáíÏcù7ÂR ÑЮTôjOb‹Õl‹Ø Þ Íäwl“@9œ­oiPq¶—¹˜"IÕyËj†öC¼®÷ö”`”‚?ðk¦ék‡ë÷ÒNëGœkk—Wþ­í•†ô_Ò‰Âd—úmÖ äõÒañÑjäšDÊÜñ£!Sƨ:º „fE02ê¸"¼>”I‰+Q·L¦ö ŸÜäÕïeѸœVB%»™©{‡XÝ»Ì.6­ý%Áˆ ?ŠoÉvý0§ûz5úÝ™þÏ Áø ܺùÿm“ ë’ƒqÜ´‘k¤?faÌE^¨Âl_Pú‘ZÌ?R›}ú˜zJûCò« w¼ˆ¢·TO{F6‡á“·«<Û…ÔxXg5íSÄéøÂ^„ãdh–’,èè¨äåø¨1LNpX !˜?µ-o$ô½9Ò>¢7Ç”½—Hmhœu_IЦÓpný,'¦¡¼•'ê¯ëíc@IÈ Ùç`¤$÷€™Û\šå€2µL­ÃÒ³(Sá×*Fšþ.¦ý :øüèÇ•ˆí@'0CM[g}òðM»ÔC8¶ÂnÛÐöíïófc0Û8Ë·pŸ—Ë/2ÉO¹’†ïºP‰}™Œwx³(àî¶(‘g£¼F<ÒÔÖôß]”ÏH7›3·9‰Fáhº Jzšeþ…Zòc.ö-é+EûQ·xnò“Õ ¦à´#!Lçª}Ξ¾^vš§¿$yzÂÁsé_VÖ&HV~†¥ž÷»‰¥ÕŒúÆ=Wæ)ý>WQâ3®Þ¹‹cÆ7{ ~÷Þ—QÖl,#ÇÂd.íÒÖ¿_üugendstream endobj 561 0 obj << /Filter /FlateDecode /Length 11565 >> stream xœå}M“]·­àvªç¼ªÙôòvuÍï§²I&ãÅ›r¬ª,’·h·Ô-%’Ú‘,;ž_?AϹ-)rú.¦\.¢‚xÎýÇ¥9ÚKƒÿõo^_˜Ë»‹\ؽìÿܼ¾üÍÓ‹/ÿd]бšj/ŸÞ^½´ÑËeŽùX}¼|úúâ/‡o® Ëšj8¼¿zbŽ±ÖœÝá9@“õ¶ÖÛ+—ŽÁúxø€¦ÖXêá%<:k|*ð÷'Þ; <üƸšGúc9üa%…XoáÑ›”÷oS2ÎØÃõ{€M>|Ae ÿãsÄðµø˜€>ú"zx‰εÔxø;S}‹]Ùäâ:¾9­»×­_㬠‡kêxòè¤b¿¤oÛDl-Nv~#ÆùŸ]­¥¤Ã×MT%däÒúK&þ|U<ÛÆÃõÝf†%TW}€Á'w¸þû•ËG[®c“Æ;ÿ×Ó¯aÝ}’ËîS=:Xø§Ï.6_=ýÛÅïž^|h®†Ë»w¨=.z½ ÉÂ"»K]9šxé²…Õ+—oŸ_þùò èÏÝG ^Üâ öœ@{¢)—?é×ðÿß.@fèš&þé¶™¿Œ¾¢ˆ/_ Aÿî2_Ž€÷êâÛ‰ÔA©“)¤b¤â+Q!udGd©V#0’ñù˜¼Ä Ñ ÒFEÓ¹Œ)‚ ¢T=t›M8zD Ó©tO6CRX)ÍŠE0‰Et3ÌÑ‚3XöðЫµÇ¨FUcm]°&±ˆN½XT!ÉÐÕc´Ë°&gHt +äpTÊÎá¿ ©Ã‘}€_Î`«°¶?vðR!ØÐì‡]–ɦغª³´‰âF þ[g–º=)na›øÃ™x»5úš`ëÁ^'•†= òµà1I´‹`‹èk²1+V*G.¹Ÿ¥Ý)n˜Sö Há’û\Ûƒ‚äyÞÈ6#øt1ŽRó4³‰E0‰Et +¿&ª9Y°¼¬ ÁV§“k“ ¨‘ãJ8º:å±mË'Y‹»ñ”Ǧ=)ôÚ<.ïíÚ8"n,Ñ™rŒ®£:Ü|¢'oC—ÔÀ"˜Ä":‰EûŽX0‚8¼cLb²`r\°eÃ_ò‚E0‰Etjôœ`ãQ2 «ÃV§SX9€?©+—fC‹`‹è´$L¥è‚%þÍ…‹`‹èkœî+ÖlÈRû˜–ö ¸‘ëpÔb]–ö º|ÞèrI v45ð^ëÌ€ ¬N§°RµWXÙDZ½ò:L`uºE³ ¬S6AÌ1Ä‹`JKZgѺS:‡´ö)ÉM›(„¬] ¨éÜÃÚË:?*ïÓë G¿xLÊ",]6¾`‹è–…+¶£C›“µ w4ˆ1¬Æê0Õét_¾RüÂX  qAj ‰CT„D08}‚$ðZÌ^–v'¸¹`@ôÇŠ£ÇµÝ ú?>c1Ûq“M‚kòÙ¢ç®íN!Øð•¹¬Í{®;º<äYJÕ£ˆÕ'ÜÅ•Òt˜ÀêtRk"ƸVaU§á VomÅà”ZÌÅ=¬íA¡çqy? OŒ¢´Á„ÑÓö<`r´D§¥î`×k“ÓÑ,¾¡Ã$Ñ)¬àh®ä­1ÈÀê0Õé«VÜE)ºhVêB;DÇž­Õa«Ó-X¾ï`³¯ç´`Lqôs7œãJæè­Â2yœß¹/‚Éq]Ú”pn‹q}¹TBÍŽ#øÄ¶“pk{PtM>ç==î}Tˆ¸)JéTén1ÊN¡PàÒ<³z8D¥™…¤SýÈ:1 Á$VHÿ>Ím±—F‚ãÏŠD0‰ÕÈ4¿j5+YzŽ°çŠø­Ï±]Ãò.sAoúhBDVS1q§M ? ›ÐŒÖ6StÍ= o9gc9K¾¼—|Öv§`¾ ]û\ÛƒâöL|wlÕÇ@*2!­pJ18šÑ¿Õa«Ó5¬K°Z¢tB,ìôGDýlÚâæ‚!‘Vyö¹¶Eן³ð~@ž%»¾ïIUðHµhyv˜”:Ñi©ÿ}…\q†}= ¬)µå2\ðMK6íNò™XŽ1FŸk{PŒµ9ïóÍù\óÝèâäBÏäð8ØëóXÆ2±ˆNcÅØ3œsxB(«Ãd_D§±fcö•,VÀ4Á$–ȈtX2°³Q;!£¹4e»mË:ð´9^rk{Ph½~\ÞrÎ%õ`eBÀ”*ø¬m¢|­…¨¤0Ÿµ=)nÏÄWÙ±~phørØÉY;—v§Pöä1 ,ìiiŠÛ3ñ}ÀŽsM=|ÐB7ÖÞéô>©m¯äˆYgîgiw 9'ÐIëÄÖö X÷Çä-í%…ž…f«r-Äv¹´‰BÚ)xìZ…ž®íAq{&¾ÿú‡§F4Ø(ÁÙ©´øÇES[<´¶;p1zKsàßžçŽ_=”ÐÎ<ˆR[àß ~"L Õ+!ÁbLOk î©].à±.íN fSð&NÃ_›¿{„Gç{ZŠÉ‚€¨ZBDÉÁA³Ì'R‡1R§RLÖùžë‘•Ÿƒ_›ýFŒ­ãrv§[[Ið‘x> ƒüQ”‚1Á[?< ‚ñ:w*©ƒÙ'º2&´HhêÂÚ&iQ©´hk*“n|­ƒÇ÷!„}R:èâHuMl ¡D#eXA)m•rNër¼Zk›„>×òWs5U“ñµ ¯˜«uX›~­XÌ‹³gXÚ@¬[…ˆ)[f²4þíx> +v–à¤"x3¯‡L…"˜0K¢jHÉÎ=Á¤Kwxí2.åÍÖô漎vWrxLayˆ¾ó2Ç“’ :=z—lrØxà“XD§½Ø¼W;%áZ­NK•`Ò²ÄÝÅ·Ð&–¸…69Î[hKÜBó†n¦Â>nè© ÁìÅUÐuÜ3×v§[ž8ÖÁù†û\Ûƒ‚üæyxïø‘ÞߌTJêk¬ c‰›ÑkX&–<°L¬qba,>±ø–Åiï¢ÔcmH`€¯ÆŒW5Á$V##¤š÷EB÷Cg7›ö¸ý9 ã~èèam¯wUÏÃ{»Ê³ÁŒFò!â%1)ÍXD¦,p+I!A,ªÆê0Õét__ÅЦ4ü;cLbš#cqÄÈ}ˆ‘¥É#°Š=„úcwb¬Üß)e,¢ÓÚ7Þa½!Â+¾¶Çû ¡7D¸‡µ­ßV9ïíʽ¡[(V­'¶·UÚ;j}V‡ ¬N§°ŒîÈ@hØ7^F!˜ÄZ{™õQ@^°¦Æ=k5«t‹X΃T‹Æê0űL‹˜°èéÓ qí:s[ÛDq#ÇÓnF >K{Ptm9 ïÓÚÂw™•¼Ë<±æ]æ‰%î2³ÔͪSFÐ3çŒE0‰e„~ޱcÁÔ+µÊ­âÇŠ·´;…”O0™rŸk{P¬kó˜¼ÅœñÙbpÉã[>Ìwm…ä a.‚ÏÒž·g⻣‹+5Qä4<Þð*¥18¥Ñ‘dFcÐYüL”¡eÀhf'K»Ü0‹_J€õ=.Íß5çÑùž–"¸_Û÷¡)Å2hBŠ…{‰¨”§‹€î‘æX×öôPÒ=Òè`i.¾ñÑùò\gÖz(O={Ü´G6zB(]=èuK$Ë›#ÏÑŒO°å$ŒÏ„ý©ö M¬Ç˜'“µ9ðoÏÀæé]Ë ÷:âhŽÂ¡w˜èI›v¯ r“J‡ÜÛÚîeËGe·gc€ß¢‹b ?ðe{t5±&±ˆî•”ï|“}ßéæp—6ï|ÒwºÙçÚ^vݳð~@ž³€ÇT\Àc¬QÃc,®á1ÖøªcñW%k|U‚±ø«S pTë,«½¬m£l<±:ÆÊåX”¨9‘ÄâI)¡Ú¥W Y‹@]½Ö>kމim¾X3ü™k´iŠE_‘óÚ²’ÌÜ Íí™»]OèAÑ}Åöæ ÷³¶‰BZ~§I¸µ=)i>*ï䉷iµ-88iŒsþÄ"˜ÄrqkWàáè¬ÈÖgæY‘­Ïô³"[Ÿ›gÅi1½®%üô¬k _ž´ u-a{±Ÿ¥XüÈÿ ½ò=—ÅÆç¹,à·cÚWkl8ÄT¼`é=~J&ošÖlB0²¿ä—æÀïÚòè|w4eöàú7¬˜Jd½&ÖÌ M,7¿‡ÅXÖ¯}%Ø9ò‚E0‰Et ‹5x`I žXSƒ'–Ðà‰å=Ý?g¬bûtFj ‰CT „ŽMsì ¬e•Á–uG0–V¢ jùRY¥åé;BZiܤX` ޾BÃ_Hãч‘¿ïXƒn}¯Ò1G®Ò1Ö¨Ò IÌ*Ëp|“!¦`•ƒÅ¾¶‰âF¯1h±ÒÕ‹u=*oœs xÇ6ùQ%ŸLIGðùÁƒ^lš¸@¢-bv¸¶Áí9˜Š™:ë†nvîÕO.K³ã3S,]ÏL6íAp{¦;^3Ò{kÉçJ7ý|L¿P—¾±Þã•Õa«ÓÖ ,™¾3ÅéKÉ£ŸµM7Ì)Ú‚_ž=¬íIÑmä,¼yÎ1Õp”‚‰ Ô-ÇÉfÛnÌ5f­‹“˦=nÏÁôÍ÷ÝSFC>í{uAkN‡I,¢ÓúûLÌjõ`nAj ‰CTiž~yÕøôËk?N¿Kœ~çHKêQ:Ï0´¼'Ïni…Щ ç¯Â*´4'þ¢ÍÈYèrÅ›?rEc–Ô¢«Í¦M‚«sb>K›)nÏÄWú«W­KíDÂz²¶‰Bú ˆ½ôK{RÜž‰ï<߆šT²Â6°¸Z7eËoC1Ö¬Ö ,Œ:³#ä'ê~s®&ôD({r7¾C(¼¹[ý=Ñ5,üÞ¥Á/}Fú& ¨nŽ‚¾àvÚå<¥6Í›¬íNÐ øñï­oï#ª‘"Lر¾«ÃV§S’Œ¡ßBeÄœ)ð 6m¢SÂ;l6ð6íA±óQy? Ï­¤,B΋< vBêSÆÆõªç\Ðlð <¬K»Sˆ9yßîºrŸk{P,ò|TÞÈ“O³¬äó4ËvÐO³Gœf§ÌCí¹¿)óšfvdbÕþ½'Æ":……'¦¬¤ƒg$–¾&­†èh•Sû ”ÀʶÝíøŠ•Æ"˜Ä3&‘šG·Ý 2~°"}sHaÅñ­£‰Õé«ÃŠñýD9 9Ûv³dô³¶;Å sÂ/(âí•ÙçÚ]ûÎÂ[Ì9¹q1eÊ\jÉÌgmw Á7á]…Ì|6íAq{&¾b¾!—î‡&$dÌ·°F­m¢|£m÷‚yäK{RÜž‰/Ï7VÜÿ“àÛî¤`µ§÷ºiw æÛ¾ìí%÷¹¶Åí™øŠõõ÷X¥W˜ö…åºi…³Ç¯– =Ú´Åí™øîìSkð«™QëY÷š…®Uº×ÌXD§ü¡ï‹3$…–QýlÚD!çä fÚ„Tt{R,þðQy‹9бö - bÝ6m¢|MjoÈpk{PÜž‰¯ôÿeäôÙ‹ZÅgÓ& Á¿öT+óYÛ“âöL|Å|3Þ‡MŠo­­ž9ù,íN!ù¦öÖ ÷¹¶Åí™øÂ|ñû»°öüŠ!Cè­B_œÇ(oÛoNH·pö°¶Åëçá»ãG\ÑT²¢3°¸¢3°dEgòK½º9`P)Š)¬íF gdÚ™‡g´´Aw†ÏXÎÖÆ~Gb@ØfÒG§k»S¶䊹úÙçÚ·gâû€æ´kTR7qÁäh‰NkDÞíIÆ‚è˜2·¥Ý)äœ šÏNÌamŠUy“÷òt`½FIÊaŽÊjyv˜Ä":-Oüz´ÂÂ_îÈ#^ÛD!çTæÊ„7YÚƒb•çcò†9×PŽ®`µ©ÿ&Æ„øššÿ¯`Ì)nÛøNH2m™}®íAq{&¾;ú3úp±ÐÛWs&Í„Ü Á‘)$—#%\gO¸,~é‰`²§FöJ­Iì¿!#fÒ~¹LÈbi…”M…5¢Xš¿ká8?°&xŒêJƒªý‚¦Õ¢ì09V¢S²Ä,OQË’Jl7˜G?k»Sˆe Ä+̳ϵ=(i>*o1çÔbß%f²iµ~1·†É×vXLù1Ø}{ðó‡±bî¯ÿC\Â}Íí yÛ6Q Ó©íW.¹‡µ=(nÏÄWÌ7á]l+ùÆì±’3{]ÛBðM¾Uo¹Ïµ=(nÏÄWÌ7ºÚJÏjnÙètmàñW’#sÙ´;Áí9˜Ê•µýuF*ßåN—v§-ŸÍ}®íAq{&¾{~~ÈNZí¦ Ã›ysŽ…`rmˆî•ÒšdTG°õc—kiº\¼ÚòTL¾¶:¹÷GeyZzüöà Qo¬ùöàÄ’o²%­þàÌç’L9„Ò/ŽM*TaHLäÿ¯µMR·ðC¥J—t{R¬ ò˜¼·+ ýz-Ä¡‰j—ÁÐTÜý(]N¤c¤NÕðt,ýë!mað~Z+‹ÆñÓ¦©Ã©Srʸ›2þlVô—³“M›n˜M®+ ³ƒ¥9ðûš<:_žkÌ–à ð½ÙìqÓ&Á3™öÍáÑÁÒœø·gàÉóœÅŸ  Z+ÆÚ•Õz&ݧÇç¹c_£‡Q¦žúîÚÝAm9c$.wóØj ›is,ÁŽ‹Í<\‚‰•².ü½(pÚ·šYK³£KǬ4ë´n ìŲ…ç«àM¥› sbßse$‚ $¢B$8ú”¶ÿS›—ÍXÓ‡ýÉâm2¤©½ˆÕH±Á™¸ãs˜v…3öDš‰=:]Æém‰‚[gg’÷¦ýöÈDš‰”*ýèDðÚMóü@"i™! $sywñ kÚŠõn^_þæéÅ—‚õ¸Ä¯gVØÈŸÞ^X¹´X5ŃHõÇÝ<}}ñ—ƒ¹zâ þn=DxŒ1ã£E°Ëå`#= Ж6œ€{#žãÕ=ýzŒ!€~Eþ|2ÄJ—Ol˜ž>»8üöÕûn^\þïgÏßüðòöåó·WOÿvñ»§ß\X,àà§t,~Õo@RÁ«T¤';HàN³…ðÖº“X¢°2~sÈK¬‘Xó+Á©μ4‘:DaÍZÇÄŠü—eÒ‰¥ð©:ÚÝšvéÏTƒG±›Kü¬¬5´2A‚jEÔ¥-aÞ–-aEЪ"8º'8Lë3X;—ÇT}$5ýÍË·?¼¸üóó—w/~¸üëáo¯_¿»‚ƒ©q‡¿^5•kŠó tëj¾¼{wZ0ÀmôCÈΧ?ýâ‰Ýï¯ÀAç5^¶ÇZL9ܽ¿zǘGµ‡·÷àÛ|9<¿zâ 㿺zðûé5þמû þ"õáúl@T^éšð=ÜŠïß"_0p6LÐÞ\á»9ÙçÆ oÕÕãá'|vƛߡ»¸€Ý¸z°v lŒb äoÉ0÷­?°Â “€>²1¡t0px…=Xæ`X`­ï¨7_üᯄ—Z!d™Âorµ|û€gÚ¾ËXL¯j¾nÂÃ_–?\7pSîðÅxž8V8r'œ(>C|ïÈýÀ)^0„D5¸»úý¥Ö’ªÇY?ñ’;qUe Ж„{8N u¿¦f€Z ›0u Ò˜éÃtлbðøŠ¥(÷\7 &?Á…~ÓÖ¾ÖRRWÐXª;±œ/º^Ù :jR <É…=ܽ¸Âܯ±±‰–äF¤] ‚ ‡ïYšÀ _[ÊᾩzE-µzF™Òjá ž±Z^ß] îbÑ|üA+Û|…õÄâ'ª£U½A¬Kà»SŸïÙzº XÏÍUKãÁ¸P:pÚˆ É×Bª4\ Ó0àÂfn›™á/Žþ^ äïž 5i#€~¡Ûùø²­J-àPdöÞq51’×S²äæn^4 ˜T³=èzÉ0Ü) aœï…¸ÚÜÀø„sË8¶¶òŒ¯}Â&ýŽ:FC~Ákx}Õ~Y3ºÃØ3Îó†‹I¶8¥;òùM%¤ôBϘ‡Ä&±9 >K‚ŸNÀiÞÞ´ñ×j}ó”CÏ[ç&ƒ'–Z*éŽæz!à}Û4<þ„» Ã1ˆ¿¿Ø´66h‚±5Åñ&øä¤WÇÕX'`ý÷'Æ)6¡äS'AÒbç”Dh° GW…­Ù›ÁŒi’Á”B³•ûÓ½ÜŸÐÆñ×›î ™NCz&Ä‹ö¯¦¥¼;õ ú Mðƒ¨ 4Í 2Ω›& ŒMˆæPAÀäSÈlšîšèS–cûißlî‰JäX9d¦4¸ýÈ,ÄD•ú+½„niUÇîШŸ³Ó]¢›}Å¿—.ã2+èNE¬†ß®FÓ§íjÀ”Šb¹¿NGÜK3ÞœBxE'Ÿ\o¥:>hÍ´4h¬¹ì-M•>á¥Ø;h¡A ½šî|_Òw=2kA´‚uô"2ƒ!’”ù÷WÚ̇‰âjW­º5Áedb].zOú®í¦6ÙÃÏ4KcRýü€ ¯Ýƒ¥cŠóJ¾Ý7Ja¶r;¸Rêž?e0p:´]ËyÃF0*é·z;í¶*ãR¡ÞKXö/ÆEø‹ƒ5F=[Š@É‘|¾@-^ +Y²Àh.~F4×~3ݬ£¾^#€zðíJ«§OºkÒT8©*÷‚/f!ªÜ±1á úzhá”­¸+‰Háú;öYvÉô¾(˜»^‚,š5Ègó€<-Äí{±¬&i™=zÔ—¾Wm¿çÇwüø?~¹û(zxÉoøñg~|ÏoÛ#8•ÜdÒüxÃ÷üøš¿äÇŸùñšïøñ–ÿÉb ßñãOWŸa.˜º„}\‹^œù´a£ÙúR–Èlº¼æÛV1 ÇæÛ"y¶ßŠÍž½Ç³‹•:'|¨ (Œ’O…û™üšh1¹…f(p–ñJ!‚ʳ>~Ïïøñ+~ür÷ñ†ßòãs~¼^¹­Zû#?>çÇ~¼çÇ×»A˜€°§ã.î[~¼Ûµ²W»ã½Ùï>ãç»PÁâ»]“nwFâ~†åø‚ŸfZUŽÓÏ}qž´ŸÅ¨•¬A$‰0æÇ‚¡éžeäáòÝÕpÆ_\=‰mÃõ#ÍaÏ~Æ}Ðɯ3E@Ü‚Y:GŠ]XjC*íP åDé¦kT™lì¬rÏ!†xϵ%À=%†¶oa‡N2ÛS2Ȥ윒£<²èCrw4/dÄ%ÉW²}ð=þκwµ}FýgáŸÝèkÆwûgZ•'˜™šIõiéM‘-`瘋™¸ˆ«L\³ZoaQʰړ²^“r 9åã’røU#wx"){†˜™oÆj|^²;cr'è™Qùü†ç^lUÏö(”’ÎÁ".Z3t¢Óuh=ɇ ">ê„R?awâz7 H¦Šî4´P'U|§M­rK¶YÜ6ʃɶ¦<*ÕÖdp*ÑÆ‡±®:E%EšîÔ–Åmé4À´e›N+û‹%ppÌxlû´Ω² ¯ösG+ò„Y-ÑùZ÷pj­í ?мÎ6»¦õx˜~2n›yèÆ½Ýn¥NÄôÑŸ.PGÞ$ï)k 'é¯e>ÓZÖAË=‚àïxœ:ôlòo­C/ƒ·íòEï«Nˆ®ë'Ǭ}(#j±X7y7™_M¡ÄmÚ "cT =—”q½#`’ǦìÙ‡±¦:ûÞøMw5é{߆w² !#$ìVCej¯ÛN;÷‰zâ3îäe/`>c Ä>¢KmÄ}ëïò¼³“«ÞæŸWsó™’ðm§ÁDU÷ë[ƒÁùì™””±ð*×oVƒéSÓÛ‡Œî›ÐkqC6µèWXFµ )I†PcîLÒiÙ¡éB¯îßPש— ¶å·¥†Ž¿$cÔl¾ÀNp‹/CŠ‰Ê¢îçF+s×4–+[JJ8&<ÅK³}Gà%±~OÐ:s¤ RÀß³¹VÛl£ôý”·[™ÂO {¢üðŽMKŽókƒè÷ÝàÖωÒAH ŽÇŒ(®ú%ñB/“UÇ3OëÛ3Ͷ¦lÇÖç£U%ûçmI!øÒ‘e+×[puAn[Uš ‚ûÉ(½{Uý aqš%Qæ¾n!só>§Œ+fNïÖ€ ó³›ò´(>‹ •€¾P¦5êeûQ—Ü«(IÜÅ„…5‰’™Ð’i?ß³UÉ(ðDvV¼ê"S‚>¤©½æ$ÒÔC^bªÇ µ—ìßa\ ™9.–³9‡»#o_¨$ÏgÞf©ùh#þž®ƒà?âÌ^D*bÀÚL’þŸijèî—# >©ú¸ °¬œ f©Îñ9ùf|õ«z=ß_éÃçI4´‰Íáÿ\:Ç($[sÜ̵—í(·<´Œ¶Ý¾ P¤‹v{úöc¯þðû«våÄØa"1XåH7 ¸pb´×bs¸†Ø/ ÙϹ4„ï[.ñ]Õ˜²¸5ÔwÉ_:üVhÁàyÞöÝþòXȇ´'üØœŒÕÑzÕÖÛƒ„šeÎrÝñc_¶ïêø™h«b`½“6D‹{±ˆU5dé2^!‹?q¿}ÉñE1í(Kcuí`¹ïÜ0¥ÓXÖ(ät=æÛê<¾–¸›‡—Ù‰”¥‹Ú©û„_|ÖågÒ‰­íó­û7øË¿f–ã©"s #vd²ÈÜ]Y[ M¶²‰Ùé-e ¼n í¾Í/ScøÛçèÄädÙ[Ž «‹’ÅçÖ˜ño먯®NÝ ø¹PÀבÉéëgXÕÃs¥ˆú7':¼R_ÂrzV':?ÝrÛùØÀÍ2°kceÕCFæâºœÑöJƒM_ð„š/³wMjÞ=žC O Ê0on¿÷¢l.Ž?t*“÷Ãnªû€£©k8Î2âÐzØÁ¯1š,Ó\÷-B3ÖÌͽ"ºB‡Å&•SÎj.k«Hû’mJêF]c\BÐö+­?_þ)D©†âäXÜ%n*9›Lêô3;Z"‚X?&eMåNó·‡Ý¦öµ—Šæ?Xˆ}`Æ¿+}wÄ:òOfWþx‹9•=yýÞ²vŒ|lÈþ2À`BWJ÷°KBóoò4ÒC8_|«G NnL OjŠÅ·:ÁZ>I •> †ôÆäƒj‘îgªáo¯ÚY ¯ þjõ_Ë| þlg¸„9ºbý\þÚD’®Ö{OaûÎ-è´·G‘œ(#¬gÄ^CYjÿ«<úÚ³§+S±ÕŽD|Ôîkµ?. ãêB ìmãóN˜TÎÆ_ÚçádbU‘É{ަ>èó}Ø¿ -û-ÞöŠÏܾXüÅr`C-3X[zczÍÁ™OܦU`Ì7Å DïKµ›[lºeêgܙƜ6&=o‡bä¼ÖJ‡y«uw¦2Dûo8aªhsuùœÀ`ÁfÁάg0¤û`¢¨x‘(r IC,œÉB]Eã“E0‡ýDQyO?@í·qžà7š`—Ý??Í+£íZBHŸŸ<þÜN-Ú¢Õõ“Û[™\éVo?¨²~˜×[uФĤJç¶;DÒ¥ý@”Ã%ÓÌÓƒ—j Ý®üÔ×îù:uû˜°¾ qßÇSêÎë±Ëmºõõ !¡k÷Tܧ¸G÷aï¸3¦O¼:d|Â3—o:ÜIë]Ê[ŸYžóáŽ5ð§_¸Ú ÂÚy¥vÈPU;y·QUŠÙñ/Sî,ø–øŠøo©tÐ8o“dñ¹•NÐ<ün‘4 î„ê ¦7Z€µoßãïÞ «fø‘H}ãpÒß]“QçPÇKí*óö¥¬#O¸5DÀ tÿ ÍlåË÷ÓÀO\Í&²Ô±;Œöý…ìŽFÔ>—sbÛ{KÂÊvýÔÄ^†hù8MK ïA{ ·u$d[Ý”ùF »¯`?ü¢|W¿;æ={ñSo±´a˜õƒÌï5]æÅŒbû÷ÞûjOvîm¢Yr¢vÜ2Dp 2^Ä$Ë]¥þîÁ;χ:ÓùY;Àö™ŸÐÒ§'Îr+ßjàÄà {À2ª~ËpÙ{o¨¾™Ÿ:Ø^5mïx¼"\¼ƒûB|a¦Gå=DZh Û³c­–:Ë©¸ÖÕc´3?òÇõ8§"·ŠõþR?­æZñDyŠæ«ƒyEÍn–7.¹ÀV‰ß>ÖvŠù˜’ËÑEôk|õ?«˜_b)†?E´çiÚ2W}5øžV׺>ñ*5ßîÅžÞmÐ0ž¨;Y ˜AÙìÑaùÓÚ‘ý©W«ô QšIÀ[(úÝyWžN©wo–å[)vÞ#½ç©HÃÝ5éŸÆ6ýæÄr£mç|sñÿï –endstream endobj 562 0 obj << /Filter /FlateDecode /Length 365 >> stream xœ]’=nÂ@„{ŸÂ7{×oABÛ†"Q”äf½Ž\`[ƹ}fH‘b,}ìû™os<½œÆa-7ïË”>óZöÃØ-ù:Ý–”ËsþÆ¢ªËnHëƒôM—v.6Ç×vþú™s‰‚Üßù­½äÍG³3ýTÝ›ÒÔåëܦ¼´ãw.Ûm<ô},òØý{rîÞqî¥5J©í_à.JÀq%àèPèTìXìª(+b%`MtQ:¢Ð›(¢E hÄ%` ‘“+GWŽœ\9ºòØéµ×s¯ÇN¯½ž{=ÆxòåÑçÕëÙÛà¥ÑkÃWCS"c"ÃÓ(ã(ƒ}Scƒ}Scƒ}ScÃTÓdÓdØ7E0F0X0Ù0Ú°%`"vQvÄ%`d ʘ7À`É@“ƒLš 0d_ÄóŸçmðÊžGU¦Û²äqÕ)êÔxaØÿ®užfv•Pñ Œ·¨endstream endobj 563 0 obj << /Filter /FlateDecode /Length1 13180 /Length 8798 >> stream xœ½zy|EÚUu÷tÏ}ßgg2WîkBBB.î@4Žp#‡„ 7DD9Tð@N !HaY„Öû¾Ð]W`Y›ÕÝ]2ó>Ý ñÃëÏ?ül÷Tu]SýÔ·ž³fF)Q#¢Påªô,$^Yã!>nú˜™ñzÆB„ð•q s<ÿ½÷SÐp!jÚ„™§_¥7¿‡]Ì9qÚü ññº6„œ 'Õ¿ñë+Ê.ÆÜIÐ K`{"¤šõÄIÓç<Ðù¾W [=mƸ1ïˬlú˜frkå©0~-Ô=÷™^ïWí‡Ì>sÆýs:ëç…þ™³ëg¾²ì¾L¨_úÞbN! s™Fd£Ó‘¡Ø'>žÑ»cW˜sHûUß>&$-*D§ÐÃh:ˆ$h7”ƒhÚ‚.à)è¾µ¢± ¥^4jCÑë8{M@ÏÁø9è4Úˆ!|g:2Bï:ì‹-€zÊcÑòØ3(å¡•èʇYסöØžØaè†îF{Ñ>øþkØKÑúØ‹±KˆCCaÎåÐóNl`ì Ò¡TŒ*¡u9:‰}Ô§±IÈ‚ €ºíèi´ýý/Å­±I±†ØÛ±/^ª‚{nÅ_Ré•±í±¯cQ@"ˆ’à­uhzæ?÷)Œp)žŠçà x#‰¥¤•^Á˜£€C•Ã]f Õ€À1týýˆ¿!JCÍ¡ÎÆÂ±ÿAr4V)¬¤5À½ îu°¦ãX‚3p_\‰áÇñFüI"w“j2<@®Pƒ©{©ùÔ{ôýt ³–Ù"‘G¿‹‹}€ÌȉîA³ÑbXÝiô6º†~ÂÌåÀ>\€‹ñ(¸ñ6r ïÄÇH%>…ß&{ñŸñWø|0DAŒ$™Ì!È>rš¼IM¦6ROP¦¾£{3„ÙÉ\–øØÏ¢c£k¢oÆ b_Æ~ à;SŒ£Ñh ¬v&ÊAÂ*À}ví :‹.ˆ÷WØÚÑ€Â:lÃYx܃ñ<OÆOá—á>)Òò= R¢%fâ Ud,™Nɤ‘²SITj$uîóÔ‡Ôuê:ÍÐzÚH—ÓýÐZz:½î]ônº…~‹Égz3ƒ™áL#³†YKcÞa>”,–¬“´H¾‘|ËÙì v-ìÎàÙ? ®ú,t‡KðX´ vc'ƒš€»ÆãÕ@ãLŒÕR‹©r’Üpý¸u+Z„ÖP÷¢±©½è#à”i0W#z.FNf3ìÎR”\ÔyGBI¡`ÀïKô&ð·Ëé°Û¬³ÉhÐë´¥B.“r¬„¡)‚QJ©·¬ÎÓì¯k¦ýÞŠŠT¡î cº4Ô5{ ©¬û˜fO8ÌÓ}dFNøÙÈH|däÖH¬ñ¢ÂÔO©×ÓüF‰×Ó†G­†òÃ%ÞOs»X$–ËJ(ó<|ÁSj™TâiÆužÒ沆IM¥u%0ݱÀ!KMGÉ…‰›Qß1‹&Yà!Œ(m¶yKJ›­Þ±ò•Žß\9´º´ÄÎó5ÐMêá©)“:ÑCŠñÞñµEÐØ:¡4æÞêfjLM3©æÒ&7›½%Íæ—-·«7K¥k»t6_Ù˜ú¦2€à¡ŠxµN¨Y µU˜–¬¨©nÆ+:‰hœR'·Þ[*4ÕMñ4K½ÅÞIMSê\4¬ºÅ±•zÇ”Ô4£ÊêkÄ*VRSŽYð°úc©}RûÏÞ²8þüÛ²xû»§äâ¸3ç€a·À›¼ý€ÎfÏ8ñ%^ 6OÈêóPÓ¸<W †eNzú6àÊ×Ìøúin¬ºIƤ’8quSJZ¤V›°†ºâ_×¤é ¯ñ¯§é;[èmÿG÷–1-Ÿæ;$…¾Å+Ð³Ü #¼Îâ$ìoCigÝk)íÒuæfCsÖ€Êj¾ÙS m(9e@’VVÂx]MŽ­hC%ÎcHŠ¨Ñ£ ;E`µÉ%ð~¨¤¦@C¥´OL\&ðЧÉÓÔo|“§Ì3 ˜‰ö‰Oè¨oªI«ª't¼1Rc¿U¬¯©é ó¤ óÐâå|Êý{çD÷IHûâ]{CmÂwö8§¹7¸ÚðÖ÷zg†ŽÇâ¹NøêKîé¡Mîñ™bÿÀMmd_‹;ú‡GäîÜ<Þv^r§Ú8 õTç@wRæîD§8Ì“ú"Z·Ã¹Áݺ\ÎÒ@OHÇñ^¼ %ám-¾þî—¡Ë=Ü/”·© ÿîpE0Ó׆Dr+‚›B_h Û*  <ü<»œ½‡íÃf±ÉÄøYžµ³NÇi8§àdDZmxK‘[rïCE˾Ü„cÚð‹ÐHÇÄÆG9š#â m±¿´ |bhÃûZ5B /IÄ’¤ 8o:qÓB‰;4DÈIœM æê¾áÃm´ÂÔPd)ÒõÖæ—•ü_Y]·<ùÿ¾,ØÙ¼ Ä¢y¯³\C(Äœ5·:á‹ñkÎ\Èê‹““ ›¸aæ” ¢«ë-­‡T×üP„c=žCSfvúñþº±ã& Ï1õÍ3½õ%ÍS¼%žC îÐ=Aènð–BJïª>4!R_ÒÒi½üÃc‹g×v{ך[ïš]|‡ÉŠ…Éf ï[{‡îZ¡{¬ð®Zá]µÂ»ÆFÆŠïÖY:¹ªøþ9À Ü@«šû Y Q_MIÞ%h¼¹°K(û„v0[9ЬˆyƒË8cXÍ8¬R—GͰäÉ]åNMÃËûíí¨¨½¨=3£ïüH²+ýØgóK}Œß¤²‘邨ÎAI#’Ya b=Ì*s‘–†L  ßÚ‰% –Ì&­†%¼'à׿ôÐñº\mñ&­Álʦ" ëF,Žþ5]<¹¨‡›v=pàé é/2[.о½øûè?ÿr\;ˆË~ºüv D?ˆ~þÙŠ×⺲8vÖÖˆ<èx$¹B·ÚMòeúú‰zº'§P²H!S«Tsuz½N¥öèô,Ò›eæ°¬ 'DlÊU*§®§š¦ÃžsN¥–ͳÍ@yž„r>Æwígö¢]~ú¥kíZ]>†”ŸUiÉ‹4gQgCf†à ZÜXJü” 0·‡q°A,µ@†ÝtIìqVY£8DšBM! ÕêM€EVn8ÇïM°=oä©Ü¹ÙY´Ñ@ø„Ä@‡nQä®[6Ö®Hß>\íxºWVjåä³Xw=Ú~0ú?<}këõ…›ž«ˆH)êÅèl¿ž¾úZôOg_q:Œð³qÈ{ˆÃm8;¢ iVA³›$+— ë=óAG>**ºöFf†>Ü÷ÈÖzµg^Ýê_wŠú¾I_³ë§û¨ïŹ  §]Ì“`vEçÒeôfªó>××r¼ŠpIÜHëTëBëBÇ+ƒ°šv¨¬<ë°‚®fÜju‚^Ö3÷\>AÁ?Èæ™f$¨ê%Äro÷kíšïÚ/¡¢ÂŽÂ"õtY ÖB†jEötÐV…Oë—ëTA$5ÌVZ©x9ccw²`®®œ"¼¬„õB™ÏÒ ¬D%Ðp÷_ñ‡SKr†mZt¬ÜO¥Šçâà÷_Í/;²flÞx¥º:†u3g WM]´aí€ÇÞŽ~ÿìþåõs3GLÙ+â’ rfc¶¢Lt&âJ­Kš›*ÙäǸd™%Ù ¤~Ì4„•ž6ì´a̓Je¦=œÈ°áL¥eS DÛS-ËK›AÜ!Ï*@²Ë³º ¹( ÊµŽ+švÍM®!ÉMϰú‘”ñ;} ~ ¢‚ˆ¦¸ €Ãáu‘Íg b³W:d.Þ˜ùíq†…V`H%3\K“pv7¾ »pvVsMŒ¬  È‹M—_QËŽ®Ûd§Î§wøMõ}fo©o-õ3-‘û°ñ³oËSÊf=ý÷l>ÿPѬ-<Þ€ñÓñä=:uÎÅ vÌ<ÿê±åòîCoD£‚Œ42ö)3‹¹ŒœÈ…E ìÌf¼‰¡Ü UKñ*fž©â¨•N­Ö(éé¤=Rq¹¬T&)Ðdjmi¦Õêöìä§LË1øÚ öÁšïŽ!°{KM\ãõD³OïWùì~¹Iš…”MÖiÕÖ5QYš’YYH­ƒŒ³I²RÈDã"ÏE$F›½iØ›€´_l`9Qj?/íÂ9ÚÓüÙ–O¢ßý뛋÷÷r¶­?ý(†^¼¼ÿe\d.G?=¾nWô­èÙh4úû=5]}òĶ7ð~\úö_E¾[Y/æ¸G¡ˆ<c6Û0 !ÊJ3{ù±Å⺠u.­/¹‹ é^ÓÚÊœø©¯ˆqcì+ê º2# éÙf8o R=g°ê­† dõËrˆQÉD)cœ:¹…µXä&eš,¤Ûl8d²ZmïÞ|•1¼ï’ö&ÆE…ù" |…EÍ/0’ˆèhxþ°Ö‡ólË^)ñµî%Þœ‰.W¥âƒtzGþ°œºÝ#Ÿ$ªëï<Õ+é®'†­!Û„u›cß)3(v(9¥½VñѦ|3%QÉ´6€Â’2ªŒjÊMê†@æ ~â¢8™µùgÒAÉh⸤™R»¦ã’P¶Ñ'5·‡Q;4zÃÙ»_Ú·ÏoÌTº î¾Å#{Œý`CGiž^ŽÉ:)·d"9»AÄ´ ö%õ6=Ù½IÁŠ·Xvs{-TN»Í@Q‰ÓÆ*¹µÛÍš€ƒ¸kmNYÀlu€›Éæg/ê h{~þ¸6Y9ŸÂ(ó#•^ãó«jÀ¯¼È¯°Q~àWȤ‰_àWþü* =2Ź•• âʳ…•“°e³äïÌ5³ïzýÌeÖƒ®o¿ûÖ½ï 74nÙîé;v^\38û ¶áž ìÑràÇvæ42¡ªHŠ˜ÈÌš¹ÐÏeçrœ^IôÀ±Z§„5*dÊÌfÁÆ2Y͈wc]AhÁ$ÀÒµùù8ÎL°I¢™4›Œ`¬r‚š‚ÒòÖHöˆ¥¯J=æÊ\5ó¥VætÇÅ¡|þ³5Ou %Ï6ô¨ÞúaÇù¸ÿp²õ¢ì˜…Hçe1xJK†0¥·!’ž‘)HÊ… DI!(/ö©¸9h£y‘¬ªrÕÕ ô;ãã DíÔ Îédõ2â4Ë™4}š&¤ÕÙÜò€Íêr¯âgÿL>. º\\‘6®Àm‡TŽE{å€ Y‰É윋ZTͺÛ:ÙÞ•Y£°°M(œ£Ëþ~ýÎE;w-X½7Ueô:ðLÑþ‡£?}ó}õ£ ¯½úöŸH×âü©÷ÆqÕ8õ§¯ñX}EìSÚòï@‰’("ó7sOØ^pSŒŠ¨ƒQ¥S EÄÀ…lx€ü%êþ#uÎþ1÷‰ôC÷ÇÞ«æ«^ù9í9¹—cøDõV“31vÛÄ;¬Ìi’ûØÍŽG9hŸIís0V™‚Õ‚Ýw[ 1 X­þÀûü®ÚNɼ$î÷û¢Í}®ôÚ[|/ˆlûM›W†¼4C1„Á -qƒVÕiôƒ†–(| öD?x†N?v9¥fÖäF•+U^M dœä¼ºS :`RrÒ<«ͪDn#·~‚@°¢Î…޲±_d:“Öórušß0n~ø® Ã!vHæ°ù}†~-Åny°ÿ…»ì¥Ë§Þ=tZÿgž=[›[^ðXZ¥Cƒ½X‚ .Žúç–-=Ü„/Æíž(;°'VÐ £"™G%ç$„–$CƒdËÄ`Ñ8I,r™µÙ"$µ9pš%dEV»ãg"‡4®? ÊÛb„AŒ½q79‚5ª0Ôðò}÷NºT™rÔ™±8ꟗjoÅ/Ðé[F {zÄ3‚<-¯4‡gMîx ˆÓ D™bQnÄÁ^Ž$$”L úÖb)PXÒ.†éLGá™›¦©°hP{Ü< úwùQ¸è¤ë2'â~¬^`fÞ;5(’Ì:%2'…Õ†|“R¢“Ya~•R2ëXZåVÕ ƒÕb}¿øŽú>®î‹Ú߇ê5b2Ý'1 šß+(ûðoQ«6Ñì°Ê‡yZZ[6ndŠsî%ä9‚ï~qÝñÔöu»oÚ`²ž.GZ4$âP~eªœ¦Uœ†¨¤Z©"À Û¤•q6=t²êôm¸¶gq—íHTt¦ãŒÀñX{Slj[s‹6°ÛûŒÏMe,N]³z}+~,w¡NRäàìŽ-þ9àŸ§3Û¡¤D÷F¤DÆ)1!'u K$˜a9°Š¬ŒÌ•3ßP –¦Ú°ùÞ¤äöCXT}˜Q—«Dó»k…—„ˆ ÓÆ ÒÆc‚ufÖJ±–㸩$ÏGÃøÍŽµäÑ-g¯“5ó¢ ÕL­»1úÉè3qžûŒö2OE  =‘üy6læ|\ÀZm]‰VáÕR¶œ“ñ>¬R¨slØÎÂà3‡ÈWžv†YF e‰™æPyP$°#á€a,H·€cÜé ü}K5äøüÚ„$Œß£v±ß˜D=”ßÓ”[ñÏ"§2Á7Æ·ô@Ü^6T€Ñ+ :¹–‰ @Œg;U1ØKªüD‹ÆÛgùæYïQç´bEôÿ]ˆ^ì³\òðâ]s>ý0óÔËïÎý{ôÆ=©Á+—^¾‡3ñd,ÿéóß/½ïÜÖm«‰<5@ÜÇFˆÛ«"¹ŒÜJòä=ùÊþÊ»Épz,9ÊÊ*[•g•‘‚Rë‰Ô´TA”B3T\žt¿J[®a‚Àá²°qÃw‚*Å@Õb£„ŠŒõêô¹=ø0^z¹zDª3í\ÉÕ5›o\eŸìm=u|븋x+ÞôÏG„³ÃâØGãlûgFYèµHùpñeÉÃZm v1æpŠ’äñmxåQU^hF:—g‡òC^zNyv—ÀçvÜÓžß Š{NJsxt&JiJ5‘"YÄ2á¶2ÚM‚ؘf"ed¬ƒ bÊÃt‰xºìq—}캧|ÓA9ˆŽ` „½O„¶乕˖ÎÙ4aõó{W,yvãö葤!W?xóëeMöèèÕw¢^¸€Š¬¸·råÊ‘õ³; V­|èÑ Kg>Kv$W6î¸òÉc+«ÒSCáñ;NDüêãe 2Ò/ö1­…8R‘}‘4+“ÌM’jf³ÆºÚ¶Å&-ãX>Ëd>¬aè°ýœEÉ’BÖ•ihÃwGäJ²/IÌSÞÂŽüEqiÏ4º ŠÛoµÉõ˜Òùˆ?A RâÑ‚”PVD~9T½*·2l£ƒÈ§t;é‰cˆãÑ¢>î1‚+âÑ›ŒÂÑxÎ]ÑÅnjÒ%/ù Mxë_ÿ¼ŠóçY=÷î§$ëÐÓ¿[¾mõF‰œùÈÀEѹ¯’y˜L š•7®fEô‹Ž T¥·Ç#f9¢ù#§ô½£§»ã:£ßzϼ‡jÒɹu{ÖÝ¿t…!và ÀÃ#9)~€/}@¾ ¯¤™r<€”Pô ®X¶†[%;OÎj=/WTË'²“äkÈJj%»FþÙDmd·Ê÷]Ôóì^¹šãX'·r&ÙV"çhé, 2>°"À ¹”Æ”œPŒDÁ ÂÉäË©À³Œde„£èk2"½Ö(Gx¥Âª\7Ê’l¬¹fÔ‘ŸoƒÔù°Š–8Ò\á˜gÕ ´öUií†Ío•ʤX¤­µNcŠ–°RN*ã„6™Ž¦)hF ùªEîìª4 “Ì]ZÅinW cDà/Át4L"N(•rñù0Âfà4§Ä¤atX¸3±°ˆ;6nvmí,T;[/ÅÙðÁ^)xk؈~Œbã§ÑÅïDD÷½mdN\¿›Þ'¤ŸúÒ§¯÷= ^Ñê*¸En”ŠÒÐÑÈ \C?®Ÿ´š«‘®Vì±ïvî ìJ>f—b¦„êŒ,ÁéfiIÈi•éœ2u›–Æ8¨4SZjˆ±e(TeoÀaMÏèL\kϸµãÒw·âm!ª]ä8˦xƒ6—\›èÓø½.¿miå*©U ¥Ï™àÇ{bD…Ž=a|ë CŒ8„(#œ­¾YÄO…zäAO¼`ä¿1Ëc²pTvxWáÌè…ÿPUz-{+â§r·,z1z³/ã’ç@Ô;"5h¥z°œô8ÞŽ8dÀÛ#ªj¤j¬FÓøiÃ,mlÖŠ8H¶ÏmàèÝ>Á`ü´³Iánl{XÓ#WOF=™^>4kÃüõe¡<“¼¶à8óAô­G?‹~ýâÛÇ£__Z<íñÝ#†ààß6`ŸèÏŒ‹}"üG% /z'ÒÛ.Y‰WʉÝÌJ¼Æñ’‡‰pjÚh¢4ÓM‹MDmÒ*é• ­K¯ÓÙž ”‘Sö´I½Äë¥\º6< ¢¡èLª@ãÓÛ|²L—5Ñ׆'æ§ÌìvvÕ!îmçÑJ׈(¿¶ó„:¾ív)>ûvYâxÈ$ˆÎ ¶´Ü©ÌBR7›…Y÷m‡}NâøÄ¯ø¬D=æµÞ€þÜ<À PW6–y6ñ¯û_þý ¦Ïa†Šæõƒ—ý)zý•7ΟÄi<óUåýÑ¿ìÜ}3úNô§èÑ¿aòüž˜‘ÜÏûx6žõéÛÂJ»(þ«O P!ú<’—”e¹]ádWh&K§hØ|N§Rö,6QêÔ(œÉ$-Tp´€d%ùt–á3?M¯„)àL“gX^È: l(iw¢­·=äè¯äY{õ~oF<:†7¡[Ò$`|©ãÌmY¼J-(§ZÀ6­=­]ô„ÍqŒƒ¹=Œ [}8WÍ#‹ 7y <æPÂ#›ÓÌc#ºíWv°&ŠâÒ «°x mìvF}33Ü>6Cë¡ÇªÙƒG×lâ'eM›Y…[{Ë<\ÀËv3ÿyöDÃ\³OáÒ&¥øk“LÒo.ÜxâåÍMoLé·ë1£C¢R:Ò'âi\Š%õÞªIUÜVQ±¥c³#¢V($ÅÞHÅ”#«7>§Ç—Pü GâƒØÆVD XŽUIÔfά2«\Bø ëpùD¹Âë“Ùœ^«ŒÐfï4;•`&$v‡ÒË‚ £ÚAøaÕ~_ÈNó±‚mXÙ-JÕ\þî”S° £µ·koýÐužú˜»­g?]NZ"95³§$>Sÿñà¤ãSMyâ¨-4s 4m’Ø«(±lxÕö»Öuô W§V®ÛÕñ9>=kÀSo §CDðu©—è ·ÓqZä‘<éf“î Ãã–$I0ÑÈåËøòÄòÀðÄ ‰ýóó•óU Þ9‰s|sü»\»Sô’™T:MlF»Ùa1¦Ò‚jùdÎïËõ_‚RF'ë-t8õ,íLÛš,Og¥* aQ:Ÿns[L–€¹wÐÏ‚¶L•; éi֌̖[ç$U\÷çk $ˆ~~ºÀœ¢³/xy"t³DNˆS‰ßè³ùy•›GR?Ëc*xŸI‚’Smvƒ…Çuø•’ Èxì÷Ie8•æ‘$™Këà±ÕäˆssüàP̺ýâ'œ'Üüá àOŽHDÚlbãQX ³ÉEWH Àßp¾’Ýã·ô ÜÿÈš>s>;öï©}É^Æßû‰ “Kƒƒç.žüÉßœcñQ\92cĈ{JMÎÄ„¤~K¶¼²nä¤^Yåƒ#eIV½3=¥ôñGÞþdùø¶l…l…åFœéÀ‡ô@µ^0IÁ\H9«Áø¾èwp¾ßþy¡×õÈÕj~*Û…Í. ¾¬„*:­L°[ûø3B£ ^ŽŽÂ¹ë> ðß>ŽMßß_¿èÚ¬èÇW7F¿èüCÅ}˜à n%uä[JGM£^¡{ÓëàÞÅ蘋’<ÉI‹ä¶Œ½Èù¹¥÷Iÿ-;)Ÿ Q1\éQnW-TDñÈ9þ/CüÿX8—üò?9„KÑùtðñ'¦hÆ@Œ&³åæ«0‹)»}Ív«äB2•Zg—kÁ¿tk Aï‘rÿÿ÷þ×.½.æâ¿^¾‹Aîrá/ è67/â»Õ1àI#p%A˜Äß?~~YÑM¤ý ©î—ímu@t¢‹¦ƒˆNŽ´b+ ¡¦s„yq"5? ÔüÚëg;ñ-ú6Ö­¡Ë?‡èûQR1¤3åLæ‰Ï¡5Pn$ùÈ €@y9”¤ P΃T!´Á8¡ÝAöŠãs ‚4 sÎ~Ìp´™}ù Ü Ƭ“ä£qP&Ù‹–üÅÐVr“žCÍ_­.üiã =èñùÞ²s“~¨¿?ÆýUéÍñÿ ÔÏuendstream endobj 564 0 obj << /Filter /FlateDecode /Length 2931 >> stream xœíZI·N®Ï @.:õ³üZÜ;öÁF#„ØžÛHzö‰gÓ,–Åÿ=U$›,öã›]²: ‡Ã¥–¯¾ªbëõœõ|Îð_ú¹}ž,¼†Ra¸,­]’>€(¶QÂI)b Æ~uúèçbعD½?NKNË_©`^uoýpŽ“:àœhpLpß!¸t¨Ó +Ç!¬¸õt2ì„7{&«ö/•把6lÅÊÚƒ/NcOTÎŒKe%åià«EXGqŸõrÒlÐn"„× …͵î/Ü—ä™wˆ‡X-SB|Ö|&F,×/ñòNtV›¤W{[ª¾ª‘„¨ Ëdé¯kâ‚»†ÉEÑ—¢"À(=g¿ bÆ.é ´5ú6ºB!ˆ†‡A¦nAÒ„Pkæ“8mX˜ÄVgDψz£´[“iøo”c€1ƒO䓼–çÊѧ¤)ñ­®Y^“h$6ͼ•hìØÎ¦F$$‰U¬T¸(f8,=IzÂ@ºûq°È5}M]áIV…‚p=à~I¦<'Üpé´ÕÔÖûè$ Çk²H ­0X]Ê8í¨]óyÄš^èÒ:Ÿ‘¬Ðš§_Z‡èê†}¢}dÙòZ,˜‚õñ Þd’݈0g’)Ì õ¶@@‡XJyKnn ÝËÒµ‘û䊕¢(Ø–Á}Ÿ%ä+ÐA§ •-ÎbÆrÖXZ›Ñ Ÿª:¸1¤õñSÖN° V_kî†[jBi6¥"@ÿM)¾$\ÿu©6(lÒ¾Ú3áé:cLÞl ¹"_ n–;à¾ÔÜBBú0ˆL åDx ÛÊÏT»qS,aˆða hª*ú$a4 ¬&ú•äÐÌ;Ñň’á"Ê!½®ò@‰ÏôÝ?n%ŒÔ\Z’ºw Gƒ‘‘J‘µô´@…/Ú'„FðC “GÈ8ø«‰üŸÚÎô¶i!÷žEî æ1ž¸4.n̆&¢€0+VŠmPqB¨f¾ñ¯ÙÆ—›ÝÏ‹ÐV*¨(¿[,5ül ØÂY‹¯]¬ _•ávž–áN™îoevB/'¼(ÂÓrï“" 9k(ÃK:›oxŽMgqm9ääà’´ô¤y‘먩ΪNž—{¿-C^|WfŸ—Ùoþx‰+¿*³Weöl:Hç†a>וs]Ò=,ø®Ì¾+³›eø¼ _–aÓ8çMÕ†¦E>”ˆ/ß–Ù[ê“{å¿ßg% *kËÇM½.×h›‡7Ï-lŸh{„`é yB›XÚZïÝ*—?‚¸«hÁ㲸¿}ü õcî5qONhCe§Xæ¬yÛƒp—X#/ ?¼_‚­ð'6}Ý4ÃeÑ'¼O¥1¡AV†}sßæGC|Y†CYqT†„‹Êphüªiv²öÍÃY÷á¡ôÿavþf¯)a2y\˜`]•ÕrËû&½Œ¾lú„ØyMhçóŸ–Yâ?ÂJ7òO8¯¦³S7ì”á^ %€2nþ[†ä„¯š•QxjÍÈÞxVfŸ•}gM!Ëð”.È<êÜg€Èýý=qòºäŸ½•Œ¦ËtÕ€´š™¯Ë43…G‘m–\»Nµ£¦>¿–ánÓ…‡S:.lÒm:Ü¡†ãg¼û­æ¶sjÇ–+®šZ¶~Õ\@0r|c\´›/rÇË&ªÿÝ œÃö÷æÚ|ÝÓGHÁ«ù\§V-`c³ Ëðe@Œ4ºwùÙ9lø;Çt½L‹ë×z××ô¿‡óB&ÒâëŸaÚíǃža>¿½|D?¿½ÜÙNúöò)!ó‡)2×o˜¸ Òš ÝnR>I”¤á#kI"¸¶¯mµ>¿¹M×®> stream xœí<Ûn\GrïÜ÷ À¾ Œ<œ±4G}¿ØñÈfwEàÄ6<ÈŽ0¼ˆäšR3”%Åñ¿§ª»ÏéêÃ:êbm`~P±§/Õuïª:~±½\ü¯ü{|u g/d]”ޝÿzxðä©< õQD¹8|~×È…´ª o}µ]^<í¾^–ÑEÓ½\®Docô^u§0ꤖ1v›¥r½‘Úv·0(b´!v*)´ ðûJk »?ã *ú®ÇA݇î/8œ±¡Û¨…sÝõOrB Ù­_¨VøîqÞÈÃò/Oq†ŽA[ ¨Ùáö1DÛýPW}‹[I§ì¿ñZgWi_¡¤2Ý:o<žQ–4þD–nÓEd Šn~Lð\!¬b ÁuM¤ Æã)i?'l÷_Ë ØÒvë³;7 &ªÐvª[ÿ°T¾—A!?êìL…4cW‡¿?ü+ð];Êvíb¯€ñ‡'ŒËÿ¡dhI§¬Œ‘‹•¶}pç=í-WÒzÙsð$¸½1 D×¼¬à?³£×|Ån¶]®¬Ò½®û¢‚¢NøCÝÕыڢxVÁ« ®+¨*øùÉ$uoØ‹Ã?8ü4]8Ÿà»ŸÓï“ÁÛ´Þ)A6$(>g©@v¸b rRï{ÞÆãÀov;MTØVp7œºŸèÝ ø‘Ýö˜=¿åÓ þ±‚ß×[ÕÑÊK˜ó«Æ‘Ì_TpW'¼`¹s[Áï:Ê´|G=ønÉêDïFö‘&<3ˆŸ³;–ì„À/XÑš!¬ ¨`ÏŽ!Fv|ZABµË ÞTðœ¥0ÙøËP2÷Õ”ŸìòWBvùÉ~´&çÒϬ™~½ªîŠØ»Vœˆ ý´Ç ܲ¨nYj4h<áQ%¤]UP±”»c¿§Ö®ÂQ˜±†öƒÌqã'uôI½áqû Xp~DR„F%‹­d±¡o…‚PÏ*xUÁuU+B¶ûï$@ÊC(iKЩ0æ\ c«1ðšÄ™¿”l‘ÀloÆÛÐgÓÑ©E:©àsžíÅ—Œ\ÿß ’Sa™ê{…š AùšN`,ëoL~_Ïõ“ÿ¾L>úèÜ22αŠ?vÃÞ‡píªîpZíøs$Ž+x[ÁݽﵹðÈÔBÛVÃ$ÂÚÔQYG?«àW¬¾ƒ™•4ÎÏÑŽ‘í*HËüÜóJ„k<™É4('ÌùÅåˆ]¶¥$å¸ò’½0÷gì¢I$Ž™Ñ¤7|Êžñ=«>ÿÉÚÓ þŒwö»\ùÎöýî3Çv¯«˜<­ Á¾O£A¬s%”z”B©al5ê%”RÒM-¡ë1‹'o£ñ6Ïbá{ÐÇ4ÙõNÙ…î¹Âf•sÃBFÃQ%öÒÞ‹U³ˆ$«wå^1=Rk 2&Ç$7N–ÁÇßL68 wÌÔ^Ìáh9fÏi!­“FjG±@*!`éÎçuÌ!x3DK3ý»<ªc“Ò¿.“£ ô”+’ŒOLÑšü˜,3hJÎ>M6¨¡ô¡4E4ýžÏ>)7v¦àP¤ É¸+é€?zR´¸Å…¥j@n¸É4W^VD¬¶ë—+ç4P Ë1A÷ Ö%U/g$º”)ü*]õgJ ´0qŠ!€€6ÍôÇ!eH˜®€½4zòð{…T…Y`¬4ü¤¹TnvKR‡‚÷Ÿ×Õa¦Ž^'8U•hU&Uk ˜àhr… 3Xl…+³ž­š }^¥¥J‰zDÞIV‘_gš… ÁÔLåÊIk´ÏŒ |Ö—s¼Rrå­ÿI:,ª`¼ BM i€·B vKb•­¢Í#%=0!ró»*¬1Š>Hddï´ó…‘â~{dz¯UÙ§kWã6òò-‚u-RòH }) äð±PA+jY úÞx£dp¶ŒQúBoPÊŠ¬ç¶Èþ-³HÂ>²È!°Á-²#ç½@×±%Õ¶X˜%Ú)­flضˆq°´šXD·èûMµÄ€ÎÕXó†à×P/8œˆUÉ—‰F˜"¯Å4aé‚ 2q¤n~ܘZû\©àaÉ`kÜ`kVcMú|9VYê`iVpEPü}¥€§ Þ§©:Í¢¶(èƒie2€¸LWø´ºön½K*l”ɪšÎn‚ZÚå›|^¼1x´4Ÿ¶0%Õë"X1 Œzˆ¨”l:©ã_æuAR"Î.KX€µ»Ù`$–¨1¢Æ;×Éͤf]¨hZÏ^ŠÛ:ûÐM5µ¥Õ“(£ëÁfß)’ƒõn£I`ˆ ƒ¿W¾.…ïÏ*¸­ É ¾b£Zë1€ßÄ™ÞAÛ‚%ÿÕ¢¶¿¬àMÏYTä/€¶2hKe«¹'¹çÕ€½ÎÊ n,Õ·À³ n+ØÔMØø(€Ì* ½!:œ³ 4âTÞ‚ÔRÙº2´nÔ<ÍÅGC(áV DvMÄ‘vÃðûúyž=Êïø4O˜jàúxˆд§ýBŒM@‘7&S =LyUÝS¹­rm°·pÒ~"(¤ûpꈂu§‹—eOvQ&c—ð@ý"ôc]pèß!ˆ Ä€LÆfÍÄ=$¶ë‚ìhððf¢í:ÛLé¨ã+åö0Ëïê;ú0“øžÄ‘4ÞYixGlj’ E^á€é«Z‹tC/ I¡Ä3QÑøül—Nì×ySZ³Z=I&‡Î¬ì‚³³i1zrcî™@ùx\_ƒk<'·Ê‡;Ž5:‘8x=Šß›¼Ð ~BÐôè¼Ï'bQ<öwGŠ!ÐÀ:•‚Õ{œ)ì Œo_ÊcxÒ˜³Ë<;@Øs²äè(9(!Éseœ{DÎC3˜ûöns> 3ŸÖÊJììÝÄ ¼iâăàø1qòUš-¤ŠSY-±øßuÕ8r6ÄôÊÈÑþCÝ;•K¸Áï§1DcYàbÂxýVÙšá!Òfk0‰=Zò‘Óa%ò”øª™¨útŠíäÆ9¶f®Ì§•ðÁ;æ+¾@ Fj0ÉL ?ÓG~yG+÷>£0!ÕûeżԞ1à`‰Ô„Îä<°©ðú A™òµDg öbîL½/Οìt¦N«°hÖ|1s§IÓ^Y­°šá¦Ü 颯;<Ú³7Ú-ˆèi|éÁéþËã{ûf‘JÖZ )Ш.!êtÁ•°ËÀ+gÄÀzBd¾{±‚G^Ê<„pøž¶j¡ú¨´°5i!0C`Ûe‰ImÏ{Œƒöèë&èi£4{é  àT%ý@øËèð–„O l(Ñúª¤}RMÒ8ŠgÚ°M_æEm‡à|Ô™Á DΕ¦$_Ó±}™ÒyYB(#{PåI5­*¸ã·Áã9'v° ]j& ŒRøZ¥š¬å}ùùtÞL~žd;Orë~zì¦Æ¸••O ˆŽa! ÇÊ ¢n!n½Oiæe…ZþIÔ6*L”æ«ÝßE(Õ ¯EÇw‡˜‹ ãŠÏ'™Î©û,FC%Ññ§/&@èR³Äu4øÊŽÁ;ŸL<Î6’F¥tîuBñO‡_äÏFìb;ÿ¹H[¡¾Q‚Hç‚  Rþ^dZ¯(x–‚ErO›‰L ›Æ1]ðo) ŒVÙ¬Ó#;úHßI—$d$E;Õ›üMõ&iSµ9\Õ§ð•ì‹îÉ î Èò”vóD›X¦B4ƒ.âɆhä›’†R»”õÕNÞÉó—/I€8Õµu.ÕYK)‡üMµ ¡ØNm\ÌtŸI~Œr%i9…F0¯—£«ÉÚæ9èØ•›jW&öȯ¿š^½.[Ó¤*I«ì)±a¡UYoëºw—X4Y¢ m‡A¾Øì£:Lfë‹Q?7uòlÒ§h5Éœ_Oi Öš^%î ÌèE ›ÛOóùÜ~›»¥ô³Æ¦=Ôº´±SÑíca¿¶àÀ/$=‰­÷ß«‚“™†½lÏ ¸HÞö›š.üCm3 Ía¤åˆ4ÐðÝÙdôMi/Ó'ûv#Ç‘¾l¾ãgÇ"AÚÝHfšï×!=a¤Ùø“ ‚õ`š•þ~DÛ²·ç;¦6ìåFó×8a7ã˜Á’L~ÉâN&ªñ¬}Üwìfä´ž=â”Oø{Ê;ø4]~{ÛË,ÒxÁ.#ýš_V|)D>ñ"ß¼ ´[Œô¬‘nIÒCÉ·’^¸ãý;pÍû_Ö |Ë÷öÁÇ3]‡|¦kHáê–ŽròVeÇîÐ6ùq»‘ɤÿèí’½$9ùŸèi*4WýQqyMqOûŠÅaÃL8ýЧîÅ}®g¡ä{Bóu)ÿÊ8Á² `AB>B‡5{á+–"7,:8øÎÍùÖH‚ ïsw,†½ãŽ¥(Oö÷ÿ•µ–¿fkÍ»ñ›µþÍZLkÍPï,æüÇ…¯?º„Ôï߉¾çîï|ÀǸ_‚ é©üäg»xQ‡Å+x9ÿå À‹^ɲvqu ¬‡ßü8ryðíü«]-,y}YGÝeR™ÞjMí@ý±$#á—ÐGçLÎtJ‹Õ· Æ´ïayæ_jßBI©s]ûe, 1£´:é—„)©tI[ðe!wÝ )” 2§-ü%JfD ]ºHJ0ãL‡3ž ð©xZßk8dÈò|Sò½°’»UÀ"?V-‘MJFbiAˆÂûœº0Lw³˜Ó¤³Q¥0A¥^{ÆÊúájeU[zF:\Bè˜;¥ñ2Ål©Œ–Žв&¸™Wóa¢-­pÄVcÉ­~7 «¦$ê•è½ðŸ"qQUŒËù2EI²‘2ºìÍ€°ížo³ú8´FWYc¬ÂoŸ¹/FƒMÔãÂ[¥B$ìN&öô¦F—4bº£¤ÄDŒ'GlÔ,RMS3²0ý1Q“4|}ðˆzÈendstream endobj 566 0 obj << /Filter /FlateDecode /Length 7249 >> stream xœÝ][oÉqNòÆï1à—ƒ<:âlß/^ÛÀ&^ßàñZ†aÈ ãˆ”¸Z‘<2)­Vä¿§.=ÓÕ}zx‘ÖÉ"ЛÞîêêº|U]=úëFMz£ð_ùyzy¤6çG=ÒôtS~œ^nþíñÑGŸiáÑ”UÖ›ÇÏø½ÑÞLi}œ²õ›Ç—GO¶¿;†!sÈnûæøDM>çÍö< ÚꜷWÇ&LN[¿} UÎ>åí h­lHð÷k ¼¸ý9>TÊä¸ð¡Òöø,çÓöšV…°Ý_áLA¥·»7ðÔ)¯âöáõ_>Ã6'ëL€M›Ä/ðÏ1§ì·/ë[¿Ç¡t0¾§oYÖù%«Œ6n»ã—9Ê«‚ŒOū״“‘ƒŸ :O°mrN)lM¬J.â,4^P~ûÇãdÙÚowç+L.›´-:Ìv÷òØÄI'ƒûQ{3¨ÇM}üùã_Ã¾Û ·Ý†<ØøÇgG[£ytâœÞœX?¥ðñ“í[¢šwí‹JMè”RÖ• ­qv¦#»èyB¯› õ”£M<å“í÷hŸs¶AÈÓz >ÏÏh ¢IÎRvÆde¶{ÀMR¦él°ÑÃoAÊèÙç%!>Ã;ÖN]"£`e¶¡Õ ZÿÇKÀGãÁÂŒsç—UІ\ýƒõͽŸÓD R¾;-›àA;yí^9c·ûk\°› ×ö¢ªÂ~wF´N«pïÂ,kE`w8¾Öþ&Õlãëe\ç~wÄæÈo®×ÍPR05Q5FÈ;EfìŠ2‰Íf¹W–ª™®öGL¶>KÇÏyTb ³˜ ¶‰gyÔ¬ÞÌòÍ8²Ÿwâ+5Ü6°¤>Î}\uiJ°!gÒ -{³;?.’Òfë`Sðª Ñð`W÷e(­›“¦ûª”p÷†ëaR6vB•Hü‚©¼ÆH5´= SJFYî¦ÛndLÚXå7fÊÀ¶bM>>>Ñ!’ñüAo›ZaГ‹ÎÜM˜Ñ)1a:¸a·aΘUÂ~„ÍMÏMñ”›×·/Â*´£éÖE€!‰â•†ÙÁûTè»dQ κ‘œÀ)+@=y[Øð÷½˜´ 6 hr,,QkieI:{ä´ŽÉÍV–-ì³XÙbŒÈ½}1o´-'6ù ŒÐæDÛÉ»”n1¶šPN5µ,º›Z DÅÖr(j-¸™F=÷WÂð‚Q5Yƒ:?ÔFÒ[àé¥Wå6FPèU G}6u¬ŽÛ‹íAM4Ëý“x)V$³_{7¶"Ì’­Ž f!ÜãÀòZÓà—vöÿÝn3uÇ˜Š¯Ûª²›±1@&ê„Û>ňæµ:E^«4Þ ÑзyçÞ²Û „™›ÈmP½íîx$G.N÷uØèµpA¥·„}gU†Ã¥ NÐWà¸²ÙÆ·Ý‹ª2©a‡‚téf¸Óc¤Ú›¡~"TÀ×À™ÎB©‡…<—*3‚™œƒU*Ãö›c Ñç^’ýˆ!@ÚPÆMÎå¢í¹øª"{ÎkàUÇåJô¯v1¿ÂÞ ìVÕO>ú‡I˜F:òHÀÞ‚31Na~fÐòŠyôÚÝAøCt!k"ØÈ·:À_âûv C˜c«x`Áœ‡b™ƒìaƒxíÀÙ w°J´‚ˆƒà›J9êB÷;éÝåþÔlHë4;¶I‰#©{~ªÀÈ? ÈR'Ãt <.o±Hu4šÀ;–BF/ˆF)wš­¼VŸAÔ%Ò ©{{Œ& dÑJî1Íü ºdGЭ7‰‘ö¹Ö€Ò±¼JÏfÂYó þƒ×‚dÞRTŠóKÞK ßN,R4ßaâÆÀ n¼ XÜ\q#B>÷hs‚{‹-x16jBž\瘔§$©D6ªÑi‰©ÂrÐK©G¸-Ñ»6ö{(&NLíÅ£´¿é§çæ›û0˜IªÝØvzžUlE¸v9­Žh/ðî‰0=TL ”Ïæ,§î@üÈ#¾+ÙO >sJ¥5_sCØÔ:0O5!Í:ï^J¶qFrÛß,ž°x©%ËBB±B2bk!DÁ°%BUã'ŠñׇÚwUÀb¡F¯y74„ü#8ƒ:Ž}›w¾†,bJÅnKëë¦Ì`J›úK<]Žãà ªyçÏÛ*£X¢*ðñŽXs"wÐÒ:)Œí“I--ßuÖglg ùs#+™€ j>òÏÇý2;(ŠÝó(iÝ'×èYÎB§3O”•AÆÒX£™å)ëo%ÝrÆBð"–*,ÅJ[5‰×ÂèV0÷“Hn[zÎAž[Ç,s]~Ò6Ø6MôÓ²Žè†á |LßlNš—þµ§° ÆÁQ˜Øä/×מÛmžšm¿¦1ÆIÿeTäN¿ì7Å$ǧ†\PnÝÜüðÀ[ˆ¦èd¤ó ,ï*ÞÿFx®2 Á^lpÓ2dkœXí!¡Ûè"ái-ǺôÅÉìJDÜ]È>Û¶ïí^T\ 7…f³«nƒÙ çyñJK†pBçÏÄZnfþ6ðôŠŸ©+Êl'š. ¯,Vœ"¼Ã@© f\\41À úºj˜È „ÂXS2ö:Èphó_/½ z°. ù ƒgá¾;ÝøÊÕøªó€'3¡mÖ¢œÉDøèvNÛWè¡ÀuØWà.¥ZœÇÜð{nÎö4Ç: ²n¦ вv¨ƒc{p#H%O¶C³‚‚òz»Ý_òôÀr6Œ%ÖÍr!à•DwïxhÌ+Lõø[D­ê‚|AêÏh5Ùë´šš’/qöbè¢!T…Ù0y ü Lzà©ï{µrRpµq d2¡œ‹ÿñ8€e)—èk†À"Ú&r`° HKÑÛ_ø³àýHÉG$€2ùÆ(=Xç8ÚE p¹9ÀáˆÐäÀW5KÂXÂ$Ð좻ì¶hbØä8ØÚPb“Ušuƒ2z©ËíÁÏ£DEë5ÖDûß…_Sýú’á{…l/Lwö6D©T":ZfØ‘E%©zÉ)SÓjÙK7,ö¨“^˜í~Ï]øÿŒáŒ¦³Ö Bí‘AÅu PQeYUa)à#gva¾2.)z4'»³šhb¹1㊫BW Öí/„#bŸ ,1«”ÉY?ùm! á› L3¼êín‘úór²‚‘B}‚}~ E ""P“ˆ¬SòŸ,¤%›ƒ|­µá?ç^Ϧ5ê9}Pà {-pfvÄ”;qÁ‘€ô„Ð"˜Sìjaa3ý$‹?¯ˆmû<Æt4®fÆÆ”%~į¢ãyîÆ7>b/Øå}°”ß°SuQ‰¥þÙÏ&sÙtš¤´ã²b†~B\6âjñÀ1ÙÞº1?ì xÆ0.g¬•/kg\"Œ¼!~dY>t6È;6‰ä+~Ç[Éû¼ä1e)f¿ÆùÓ%€þŒ±K ¬ÑӒš :ð>Ç¢.æÕîüMåô]žõÃü—Ç$™ƒŸàÇtˆhì·£Ó÷t †rh7#ûþÈ´ˆ3gx(+)ÍFs0œý NBzÄ­>#K×sº`â&·ŽíÛX僊Q@â¦<óÞŽA£ <Øþ8ÿ=Yª#zßòõýïí–uŸ3/€Œ¦®déûOMšx¨!¿È£Ø…*fÛàFȽZ4A€C™6k`u›6lQ=ìw ºÈÎJ\´'D˜ÓŠ•wg&Z: ZÁÅ?'-Ó‘gËס5ò O¯d–íºÚ¥æ€l!”󆿬ïÈë¿ssf2`9À­<þfÏ %ßǨ—,8V|¹‚íÑ.{`â¾~3oy ´v„ä¬_vÚÚǘ?”š2ŽØÇ~8ËL@½œb èöC ­öþôT#÷Ü”×9VaÁJ•MÚ|GaƒŠA5î‡+)eФ…ÜR§q†²ióbpïçâà82bÕcsÕ†Dt¥Ø1ÕƒÁÖ ”[-‹ksÞzÖ$ÓÊÙW<‰wº/[§XÈú´œ¥øyWÐ ®8¢®¦weA®@y#7 <™«érº¼ïþ[>wp|¹˜!«fôAÊZм0cçH˶|éN,šãx‹®?ÊÚ¥hX6=XÔK@³(fqVù±|í±¿Ån2ƒ"Î*q­¾ ˜Ty+Srb”å `º_Ô…³`óAæ˜ÞŠª±÷‹ŒJ”=.ÝÞ­d9è42Ò")e~–­×Ü3«0—‘ôEá´ÿ¨+}Q”ü ó7ÞÔç·e`:b =•üæw¾<>ñ`§4ð÷Kžx­Ë’œÝ4oÿ˜‹û”õöë»AÍÅiZUL5¼ü’Ô¤eq·W|Qí™Zëôa9Yà ‹’N ª è{\ð–¯stw5H‰kWFM¤jóñÝl õµµk`ðêÔ`3Y¯k¡%¯„籉ÎÉÒ¦YÌ൥´×—½ufhÓ R·S÷ºG £YÉúàͦl —&ö×"„yY ø>"ï¸ø¢Äß_„^À¸6…ƒzj†x{@xÚ•+bçâ ‡yFqÞº\¸†:Y󋑃vÈ<Ö;"6%™ U/·$Ãø"M ±ÜèfdZžá©¾«E¼”zòhª!O QÎj„úf´Íz.Œ×®õôŒj(¶~‡rq.7,§0“<>ÈS:»³y­†±Î³CG{Ö!ÞyŠ^)AD´‰¼bÐ- •›­ÔKJtr¾“;ßH^Ù€HwˆIúã2™W¹á1›ŠXÛᶤIé»–4 ½¹rù¨oçýðŽwÄL&+@¢…®{ý4iïÁLªÞ ÿþN¥)w–u¥J5ÛÃïæ›F€ë `à2×GðFí0Sê*š?¬žïÊÜ–ƒîÌ´þóñIpXäÁ®-ÍÎ{´îÒ¼J—Æ£c©¯Ž5xô‚PËå;¶·»+8N"€U””ãdî»zb jÁÛ=’ÑÕ(‰§]¯(”È""`ôÖªò›œºªr-³ù«õ"RÀA¡»8dˆ '>ÐöZ@•Ͻ-)ËÕÔ)ˆ«sTk`×4ûb¾aj]Ûr5iW96¾~#€(([;˜c†)»šS_ál"rQ0es1Óxª!ÌÆ5cI>±ƒÊ‹s4ƒ—˼±tÒ~IO#Vîkó¬6ŸÕæEmþ¥6Oï¡Ì¶?®OOÈ^,>ù7GHØfÂþ¥’+ÆÚÕækùt™á¿hØ2–öQO¥0¾t½ðãá"ÅrÞr]çýImêÚá§õéãúôãJÙGôÔ£Éùhî› ‘ôôMm^ÖæÓÚ|V›×u„}}ú|øTŒp³2ØÒüª6wµùº6_Ô¦˜âJNñÝ•ËïÀ®ŒÙ{=dïn8ÛÅpâ›EüЯï÷_~¸ÿ|ÈÜÓ¡œï‡ÛSùL šN ›¯ëÚ»òum>©MaFÕ¦˜âóÊÞ?5ìµÚa Ç {ÏîÒñ]í{yWß±ì~-Àlæÿ{ôðuµý×Cæ ‰½©ÍçC1½²IHìYåØÿ Os-·ý6ðÕpªÓ!Ýc†>òVˆà7+«{3¢»3åcv\Öæ¥‘Yš'ç¢/…†…†—UàOjSWyÆlÍüXh’©=@ëŒÊ~Pù¿kÔĸc‡|R›ßÜåþ÷½±LÚÄ¢Ô<­Í×µ¹¯Í…^_„¾ï ;«ÍµyU›çµ9„¹‘]GxU›ý~±mk[Õæ4|úhh…)T^dî¾VöUµ²»!£ÄÓ±å|}«ozs¹fŠÆ,\Ô‘žÞEËn¸S3·#w=°$©€âýç껨ýŠÞ À&ôóí]š(´Vøë1<<¿Ëˆ¾•²gò鈜˪~φú)LÀMÕ{¡ìÏëÓ§ÃÁÄ»;Áró·q½jèzDóE-Í¿¯û‹á¶úCÉõp¯Æ z3œXÉ{»BHNW([u{”“þè3›6ç7GvÊióöHm~q”´Úhüæ”s›Ë#ã±,.O.Ž~¿~UØl<ôÅûÀâZtžb´mýD¶j¹)¬±”ÏÉöœµ³›4e¬d¢#‘DŸ4>Áj¡lKÒîÇx ‹¿‹‚.À r”WVZ—êíÑTûèRØŒ_k4šÆçîb˜}9MxŹîr2‰¤ìG2y9TTŠK<€t•è#—µÏèuÉQÎíkAËnøTÎCï錷v¯xh.ÿ6Ôˆ|iÀAχUX·¼^ŽL¬ž~6&[ŽLøt×ë%5\M˜c.ycxù#ôA‰4sźPY‘²vtLay¿Åíôô©·~ŒyMœø`îwÝu¼.«~©¿]À÷C¿'çðê„ó±ÁT¨aÓññ¶6áCGŸ~îwÌû€ß–¼¿×¦¿1ž4ô=Kå$tÞ ¹$çÚíf&Ê…´ÊÞóÖ3Ò¸ypÖ8ˆžPBTrø…G´bFÇdâüõCVƒ¦T!`Ñ Ë¿.a5DH\³ Ôf¯#Öø6’x^û¹uª\ø*ƒóˆÔY,èZjè׳ħ†Ó4'Ø6—:V̲¿c{“¼%ù;1NÓ>žàÉ…Ïlï.ˆòDËÄOŸj‡W?ñ«DÊ–“Hü°9ØkÃNycbЬZÎE<¿(}ñ:ke•„ (©Ÿ5•š¯y¥>H¼ ºç§fbÅò7oº]-~Kèw£ ­U¥QtÒ²»$tWÔ4âÝàYMçÍÉú6(5wiAUvâ†ÜòfýEZ•eOÌЪ ~Ås™ÙHìÛ=Àlt£ èEç9°Ix¸7ÑËô7uú™µÙ´\íÂN ˆfÒ“RBcÿ‹•÷:·þ÷l fxYf–s£}ù`»ÃÔ!g[‹sŠvƶZéÐYõ‹˜–5Ö³ì¸{JNêöõbÃÒЀla³N¹Á72\i(8 ’þ÷‹nü[<{ïr– ú©Ú8)¿Ôâñ}Mld ÑFqu‡‡µ–šêA7ôMºÑNKAŒóKa þ"@Œ\¾Gàõ|Ϙ›¥ºKG—ú­U?Ѽ”ͼZÑ”bÏf<=}ÿÎÈ? l)5½sG„ùwô?€9mendstream endobj 567 0 obj << /Filter /FlateDecode /Length 2050 >> stream xœ½XËr[ÇÝcáo@e5H ×ó~h)²­’eUä ±SR(’‚“ÍGd–>§{æÞé )/\.-8jÌôôãôéžûóRf©é_û{r¹ÐËÝâç…aé²ý9¹\>ß,¾üÞØÑPt1Ë͇E=c–&Ø!/SHCqa¹¹\¼SoWPYbñê~µÖC(%%«Î Æ™RÔÕÊÆÁÔ„º”‹:ÇÒíbÆïkç,ª¯I¨µ-I $tCVß,G²ºÁÒéÕþŠnŠÚj£¶÷ztROª¢„ã/Ïh‡+Ù…ˆ hé²ÐpN?§’KP?õS'U&ÚphßäÖî’õjk¬WÛªxº£f|%ŽÞ°#¦d+•Ÿ;×´¶¥äÕ+Uö‰na}QõÃ*;ÛµÝ}æaöÅfÕ ô.ZµýieÓ`²¥|ôÝ5 ¼ã¶‹ÿ½y…¼»(Óîb,¿9](gV›ÿ,ÖÞ›åÚ…!ÇHâw£Mv4Ék†jR¶9T“š_£IÎ&ŸB3‰£ “¬/8> ª‡¼Å#Zg)¾ÖgÄש×{¬ãPŠÎêô8ú>ñåTŒ/ÀÏ"î8E䟄.¯~©š³ÚÐ!œ6)÷ëŒú–ÄY(1ì 6x‰ª)¯¤¿‹¦}Ù”ecæÀ&4jí³ÚÞvÓgq»ª'#<ý¾FH#ïUŸÖ bTƒ~¿¢8!êH/ÕɆ`®Þ¿Nz³Ï¸%ÛJVXIkÁ˜`[½°À¨—"לƒ¨µS{®ð´·N}ì%!Ñ7WO¨cÎÞUdÀ"|C¾Ì5PˆRLÄ(dG)1¤ýš]Q;¾b (R–—kㆀB©W}`Âip ’àuˆÈþÖqw+ Mð19æXFø <«—É)û ŽVÆfµßqèr€‘RÇÈ”?]­C1ð5«gÕÀAøß=ºë)ß äT÷ 61伎CBvˆ+I]ÈAžœ'‡6? ì ùï*ø©vÇu¥sBv}AÊ€’ç|Öë …nµçîa´,ªïVºåŽ»^éÂH*tÄÄ %²Ð2žÕŸV•Á¼›1. y„Ö_§N°_l¢¦´ƒŒ‰öª2Gð¼SäÝØ–à ‚ÒNQôl€e6I'SZj.¸AÙìˆuÚ©ô{å÷}_^t?bßC÷ûW#±ƒ}Òë³í-r/`Ñ>ÇÝqeà€Aðõê¨jtgû˜n¸ÄÄÒJ+çºË„ü+À1L–÷V¥Ëµ…FóYim]gpí]/!0`Í×ÔQщ²¶ m)ÅEÓ8+z´ÃY®»ÑXÔ¯Çu¨TÙ¦¤36ªL–Ô”ÅC ¨’ ²Æ¹ig öºMQÌ¥häÞªÃ4>{ˆvþ9«ç0¡¼º•ÛKV©Ì¯…ü¢#z6ƒt…D†’Ÿõ© ¹ éFЪz#+ëÖ‡êgPsDKDš<à€fotœTtÓÚêr¦Øpa Ç\ëÄû«÷¡;ðHu&;X—Fdm{)Üôîø£hƒµÑù<*¤^S{-ϲ°T«Yt}T+W8L7~Vøw5¢ð¤¶hgóAÛ`;QoHvS‰‰8}n(¸جTA;`ùéRS­b8ƦˆY yrŽeIÑÏ·$±%>rTì?VÝ;úûÄ‘[üà’Ë”ì8ñiçÚ² ˜sšì“&†û/¹´œ1:Å£”lŽÔÃè`@¯yÕt”YAÓ sXЋCÜ̸gôø9·E[|”¬´€ö%Îà­èßçblëçÈÖiÁ{&a¼"BØÏjÈqR‹×ZšC_WBÑ-›…R÷#*¹ÎÏ;%IàîèZêCéÀ˜iÇi5 !P/ˆð½åȽBÅe§5Q3'MT|ÇÒ”r]ë´+8ãËŠ«Üæ5úg” ò&1°ƒî‹À¤3‘gp+™é´‚!êùqÚgs¨»éIu.¦×ÊWuó0âÓÊIH²ó{!ŠIú¦bŸ…xÜUf±ãÓAÓü'Í{E¼×GýÒín|h‚nÞȧקúvÆ;QýkR¸¯­ ]ÎÈ'Ïa8»4f(!XJÃÔ¯=”jå3ŠMN„û/Øs”¿­Ù Ú¸±2šxËSÑm\÷ L“¿€¡#¸ZmûÕÓþŸ£³f@t¹y½Øüyüú óþü0öñvmŽÁ‘½S£¨ö½à;utÉÌÈòšñå<½ÒEf„‰òõ7XcÞ Í=†ÓÛwÿ¡Ú ›~Ûãï’\C›#ûŠ-KÅ$_/ò =,èNjk¿Çø. ¤ØQÀþ!>ª´:Õ˜.ÑEù9QÚÔGá–Ã×-.%5`M%o‰ðx¯†cÚªÁ¢Œ'õLF™u”`K”yx¤¥ÛËyq“oêH¤“H%þžÓgÀ±ŸÈ¸L„}V³©zÆÉ!„#|G€{Üû]…PFóUÛš^<÷¤‚ *Æ–z(ï3»6¹íF÷þNÍštÌ"‚¿[Ô&vßÌ6âƒÍÇYIów0Ôò›árñ±Чø†x:Îßè˜ÃXÊâk”üR7ûJÓç`qÕÓÇ~µY¼]À+þ¢zóÿ¾À–£_`-³ìÒ£û¦$¾Á"J”Òû¾<ëË«¾¼ëË󣆾üú¨ô›¾¼éËýQe[^†œGËxù—¾Üõåe_Šcç}yÑ—C_žôå^*›‚ývñ?ß8Ú·endstream endobj 568 0 obj << /Filter /FlateDecode /Length 8510 >> stream xœÅY“$ÇmÇßçSôc­)VÞ™Ò“L6ƒ’-r ¥p w‡Ë•ö vIÖ—7ÿêŠ{ˆ¡p8TƒEåD"üu7ÿtÚ·pÚùÿô>»ÚO¯þt¦ô¤ÿóðÙé?\}ðIª$ÙÆ>ÂéÁWòJ8õpj¥m#•ÓƒgWç¯ü”[?(÷±õ½Ó ]}vþüzßö‘ÆÈáü’žs¨±Œó“ëzÞ÷2òù¨<¾ÛNÄók„}o{?¿š/æ=†óí3–ÇÑjîç¯æ›5’úShð ‰ë÷p~~hú÷>ºú郫_јãȧǯxþÔìÖò)¶¶ZN©å¾ÕpÊ¥ÒÿÆÓË»ÓoNÏÉß@õê ¶]ç–ûÖz駿ЛÑÿÿáJ¬_r1ž>ùùU(±lõT[n[ϧg$Hy+mIž’$§­ÄS-©o!MI‰[® &'’Ô¼%y«í ¢æ”¶ØD2øßÈdekaJz'#Þm‹¤SCÝÚ|«îu‹$9n£OI([(ôÖØy¤,‰™ L:£l³™Jî4 ’ðË,¡×÷€Ã©eç’An…édÓÞp¢µM³€yj§¡ŽÃi­à[mÏ[îZH[Í8À#/µOs™ ·¶R±«FK_/å±åo¥o9TÈÚlcŒ¼Ej¦ÅÀ=’¤ï4.Té!náà”Ù¯ïä÷uJyõax=m'ûõÖ·1ôO£Áðz©Ûˆ¸t½–­³ „° é› Àž¶~ïˆÓÀ>˜±60(ÔŠ/0xŸ NìíX§‘Útux+×-,1 M&ãzö—K7ZÚR:¼Õã–/0Wa 'îüDÁm¯‘››’±… »¢IŸË°\4î±MW_Œ{ªÛ¡¯¸ç¼ `§}[ERÒFÁ%Ô+/ÄšzÜ[Ø:0Ó¶È2ž¾oàmô÷àP´<î£óÖvKİ7Y³D 4™šÀÛb t91pÂuˆ‚PhŠÀA(ÃêÅÀA-8Ñ »ˆdHÄYÖ ƒÚ¡ŽA*"gFœT2%ƒÒA‡cÐa"!Üã¤æ:ø´"!Þ2±òFž B`ãÈ!¨àÄ#‡ ˆ>ÇŒ¨ IpjÇ…Hq0ŠÓy§Ù×F£SÄ9Œ8QÄ™fõž8äô®Ä1ÂzLµÍ@*­n):ç°TCæ°„Ñ7f Kw5ÙâRDOÉdÊýà™ãR:JúŒô>ÑÌ #i¤ãsº?H826_æÈt0s¦ÈÔÊ¡eM‡ Mµá¢ŽMÛ)›Êa„…cÓÁ†…cúWáÐtX‰B¡‰‘›yvq0sáÐt E¦ã(š"vUix%¼™Ê¡ #\¬šx%†Ø„%š ørM‡HP9,ѹ¶Êa)à*TK'Y9,¡SÐ#/L©r\ŠØ1Å¥z°o㸔A¥Ñ2—ÃŽi– ¸qXÂŽG¥ÃèG¥Ã 8OK?j–âQ2d –}‡¥c;–D†O¯øÔ¡`öÊê8“ã¸Jý 2äÏ®bç°•–„_y]Ë% ¦m>õ„ʵ–´,Aq­%-Ë \kI@ËÎY×Z×ZÇ–ÏqI@KÏW2èXXu¥%-‹[®µ$ eQÀµ–´lW¹Ö’€–yªk- h]¬,®µký£Ò*S¿äÕ½Ò;P[…ÌIMŽгT_}v¦ã°\ßP¢Æ.Îõù¹C¤¿z˜ñ¹Æåÿ5/vÏÆdWO¼À*i|üç(np¹H%­L§p¨¥’ƒV¥-™2j©ä ÕiÃõŽZ*A-«káèßÖØM:gÃ4æ}H5{“¹šÝO‘kŠæ\½žof…ËÕŇÿì LáƒEñõ÷³È<ŠÀµßѹS.sG·85{wûÒ•©‚Îû¬¦y´7<ì0O%vFnhŽø§}øåíóÇw§On¿¾;}8Ÿ_Aäâ™â*ΛŽÈÊõF=*¸•_zúÉ‹§O¥ûé0«t½,YÒœ!5Þ¯¼ø”£H•Öö8#cÊA2$28ç§,‰3ÔVJáø%–ГøÐ¬†X’%g¢ánu [‘¢2µ;ÏÁ”i>`içÎ]–r“” $t•pèªKÊ:c¦LkÀ…N£ÔPƒ£2Ÿk0\¨ÇY®V®´Y’4a¢óIfÀ•zè yz8ôT%_rA“2Î'Y¸šõ~»¦J4­(ý)â:íÈ9Öº—£ý).ÍD©Ñ¡Qæ8*9dëkÑX’¢îÎÎý³$ÏÎíÆzÅÁsÎæ÷±p.gtåŸ%m¦IÐl—s¤S»©Oɘ[¶vry¶&®Ï΀ës.àzi:®ÏcÇ9ñaÇáÛÌõùLÌçS0¦ùÙ'Ĺ@Ó´*YŒ¦UnëyVÑ 0’¬À]§÷Ž«Øiçõ„–éQó¤µ=ŽyL¹=;%uàœ¸†ŸåšK(U®MÌE<¯Âò®á¹~œoIÃt"æÃêrÏ™;ö>'ÊE<_¹ý¸ŠO'á*>Ḉç#·ñáà%œJp ]Q¦Ð8\ÃWkøý°¼tØm£ÞR¾-¿›:úyÞ98EXpŠ©M.Œl|yçè„A„*©è ŽNâUæÔ§úNÍ\ÁÏzÎ| sÏ¡h¹_æ žVÚœ6Mɘ7wÐ.§Ã2d.â¹ [q%sÏuô2Eæs0¦ƒ„ã¬]æžËèeÑÌ5|ˆ Ç§Š¦à"~‡á4©çÚÖ2…¤yO·t"ǤÃ#M°aì¦ãɪ·%á &傽b4É\°³ó»‘¹`Ÿf÷ž8(¥ƒ¤µYF/ïÊ‘£ÒÁ-¸ˆO­ÌE|:¸ñ±$–#ä"þ`v®áåi5Ìaé`Ò$ÚØ0‡¥ÃzRì³/ŸL™¤Í'eôê+sdÊ8žfçÖɘ ‡Œ1ÃÐÚ°™køZ:˜‚ï½Ì%ü,¢ý%ŽK ýŸó¸CÊœªgŒœhÌ…XÁ+s ?KWëŠ+ø„‹ÇüK»æ~Þ©®®¹€ß;½Ìdú iq^"¹‰ Ç¥Œ…ëÜc*˜ §r\Âw*‡¥vpX ØWìó0pIIâýËè\±—ƒrÅ>ïîLrQºRF·ÏÀºÊ™ÌƒÈÇÒõu-—xÑc©•+™t,aq¥%-Ë\kI@ËNU×ZвSʵ–ĵVÔw;, hYu­%- T®µ$ eûÞµ–´l¹Ö’€–9¦k- h]¬,®µk½e%•_¨|ekâPÉ—¸« 5 ~÷iE­í½l]Z«l]ZP¶.­U¶.-([—Ö*[—”­—cu­÷([ùÄI|ÒÿËÊV*Þ®lM4ÔÑÞ³l¥Š…déP¶~xûüöÑ“Ûço\¼*o-;MdDà­%¤Yì8o%IÚ`¼µì¼#òÖ²ób‹Dxk|?¼•âßdÎ[éôrEk¼•úJÚ»òÖráÓÔykað\f;zH5*óHç­e³ðsÞJ¥¯Á^孹˭¯óÖ²SW;òÖ²ÓY¹KçÂ[©óf°Wx+M=ËQk¼•¦ÞÙL‹·æAK–…y o-QÜßy+9àdcÎ[KÜÙÁO‹·–½è_¶Ά›t#´µL.6‡ËÅ\bËŒyïξ0̬£™Yš¤‡FdKLƒ-½ˆl¡ö89q"Kiçn*Bdi8Ab‡Ù8  (•›Ö’¸d‰ ÙÂy¶4#H–´‘,,”"Yz© ¥R$K®Uø6Ô‘,eJ“Ù,$ ³T$Kk@vr"[BœŒÐ‰,"[+BdKƇõ^˜t:×ÖNd gøJv…ÈÒ¼wÎßȾöQId hñ%²ä³ '²´}wñ#²äŽYA‚Y7ºYò#&-d ß'yI€,¸É†¶{lê|?9-I.œœÆ’3£º“ƺ»Žõ=g<–GÐ~”Ç–Dþ4[QK«ÒŽ8¶påªÁ±µ oXDZÔy“Øb86OC }·î%в7yIp,ùp”•3‹:‚ciYŠ\sŽ¥Ø’dÄJc©§ª=)%•km§±4â$>l4¶ìMG£±‘;—þNciu+G‚Ecé¥ÁqÉq,y_á«6DZH"×v„O+yKV¤°i«`T´xƒ^´T7.ªÐ’-ß: ³+ %É®^ €¶ðÐçÆS@›;E e¸hs«Cg•ê Ÿ%#WYų0qų…oxeeÏ^Ö$o ž…†Ï–À…´HÏ‚¹ÏRx©º…ÏÒZ ]+ųen%`˜ÂCüBñ,,ŸâYZâ¦~¡x–Þª†pÏÒ‚Æ4ÎÒÊ$]¡³4‡ªsP:K <ËT§³vö;¥žŠõ4é,¶+t–T’~„A©IšNJélá”Z‚…ÒYŠ/Ijl£³%uû ÒYZš¢7a<ëQKélIÔzÐ*t––e×(%‹Uc¾“ÎÒÁ`ªt–ù¦\Ué,Ùª‹5•pÁ(Í£d9ÿ ÏzZbx–%éÇSÏÂW<[86ÍJÞð,… Áæp'»~/´Ç%×6 ëÞ¨–ªÑ.·uÆa)ë ³P2 ["mWyE(læJfyG(,­A²á …õi…Ír½*°T(¬»£QØy]2KÕ}—ÚÏXXƒ°î5a}¿„¥D¿K}cvÞGy‹ã_±ä¢æS, &V,;ë¤* T°¬{ºaY˜¹`Y …] ;ã²ä‹$Û7ò “È$”ËzX6.;o³H„ËJ/tñ”Ëú†1. &T. T.[xèC «pY%Êeçeç@. Nª\Ö#’јy° ».ë;Ѹ,x rYJÆeý\0. æ. +—õÍi\–O¹,òóv.ëÆÀì¼E©¢#øVTÁ,ì=³°c̾ÎOB>Ì´„Ì’/ïR™… «dÖ C³°XŠfýô54 ÓR4;oå«H„w*𥑗MT„ÌbWBf $ýH† YPQ4 »OÑ,Ä ÆÊ\&NófW ka‡*¬ÍƒÒ¾,o ¬³+¬u7øXëuŽ<¬c_×Z¯†4€Š&4 cPÒ”LJzì‚’I@I1P2‰+Ù©0 (iœ%“€’E-W2 (i %“€’í(W2 (™º’I@éb5a}ß¹Ž5>û=Ô±†8½B5 Öƒ÷iE-ü½Ž]Z«Ž]ZPÇ®öWkZXÇ.-©c—ŠÕ±—£•w¯c ÍþëêXG³oXÇš}¿:–rX ÓëØŸ½¼}þð,•Ia Àc©¶*ú T屉“„!á±i}®Èx,U‡Á(®ðXÚªã”Ç&¾ÒÈc©¯~üþë,åû¦‚c«ᨂco]¸zùGµS—êÒx,ú»’5å±T;õM0ªàX)ö„ê ŽMœ(²Kw$a86q(°¦8–$ɾj+8–jç¤o ŽMœdA­‚c©ö¬’ÊŽM|±¶ n•ÛJ±ÐXŠÿÂL…ÆRY £±¤š*…±)…ÕU‹:BcapBcÕGÆ’íª”1ciøQîö ÆÒ~oº¶z³JéÚ wƒ±¾Ú cSÙ»d\cS6D`0K`,Ì@aì¬Ò«|ÛtÂX°ÂX0–ÒX³¯¢Xj£©}ÅR#C’n»Nüq°*¸VP,JÅÊm€HŦʖ‡/Ç&Î{ŠÅ’Jܘ ‰Müí¬†$6ÎräÛ¨BbS¦tUˆ‹’X²ïP"¤(Ö7¡ØÄ™P”väÞZ.'„ õ9¥-W˜ Å—„Æ&>GõË»BcS%gIHcÉȆ“ÇÒÌ›òY¡±îYFcí¶Âi,J„ÆúîÖ›vª ‚‚/¥±©ñýœô-4–N¦*)®ÑX˜¦ÒXß§†cçëøÝXÚîö=f¥±óŠKÞ›f•$/ Œ…i*ŒM _Ž Œu§P0“T›ø“R::a±¾áźç‹]ÛÐPlb6t@±´tBG¥ÚѽbÖ#†AXßý aIn˜I!l¢SO?\  #%Ê&eôJaÓü¬ìÉ!lâƒN¸“RØÄŸ½Æ¥öŠRØÄ‰œ|ÅS)¬Ÿ­@YJÎvC§eQ"P6ÍBSš(›¸´o¢#PÖèP–“C¹ó pÞò%Áže§ŠWÊ’3'Ée ʦȟ”/±&M”ìYeé_¢$ÉFeaJe±/¡²)õ5®vù3¬EЮPÙY} ŽR* Íê•eâ£oÇoÈ‚µ”Ê‚%ÌBËfQ `_0;OvÁÆ f±ó fgÑå ±]ë¸et³¤Úå.ÀÀ,˜OïX)ÜëÇn ÌΚL`¨‚ÙÄñ èWb¹˜«ªìVÀ,˜KÁ,ÌJ „ÍœÁ,ŒWÁ,x–‚YrïhœSÀ,ÌIÁ,t¤WÂв²YX)e³3SNøÙÄ¿I2¤$ز°Y˜¦²Y|KØ,ö.lì§lÖ7§¢YðtA³°Åõ\@Ñ,­~2ÒÐ,­¡YPÐ,Ø\Ñ,Yé,LSé,˜Ké,v.tÖ[6:›ø›p¿$ëÆ1:ëÓ²[w2›~¦Ñè¬OKélJöé>£³>@ó>sã³î¤Æg—Õ ÏúRžM±7ÅpŠg=žu[(ŸS(%€i*Ÿu¿5>ëûÌø¬;ñY”Ÿ…y*ŸõH`|ÖÔø,ØKù,êL>ë1Çø,Õ÷Y0´b :Z²r9ųókà×féÜXÁ³´ãš,ų¼ý7üÖ¬oF£³0<¥³`d¥³îÉJgaÅ•ÎbÃBg=ü‡û)…•Q:랣pÊùoÜ$Ûå 1a:šNéƒÎ/†˜çÏPk»·¬½÷¥¹ÕÉ‹©C%×óíSsÜâš÷_§!ùP:?äÎË(‡!“]n쇯«IÓÐqÔzìGúÊtÛù‹iÚHýÅKS‰zþêú&rYÕãùÅ7Þ‹,D¬ãüÖg-C™?Ü]z¥"jZ‰¼ ·{ŒDÉÿ‚7G,ŽÝƒB¨þ|ø´PßCè]{TjœË’|sc”•Òú¿x&c Å>´:¾kF=ó7`¶—sBÔi޼ÖÖæÆ†sÿPdL•™õìÁæEK1Î/XÊ¿_ÞÏ?™Ò½Òy{F}8—“J„v?ãÕÞêùsµôÅ{/¥é:*÷jóïά5ÈýZ]_¯§N/ßöÞù+h´Ê§ùuè]÷òo®g:EËyá4ë׿æñPk¤‚NøHÄ}Ïÿ)Vnûž»,z (yØP¯ qÚ 2_z5Ðâ^ÃÔÞvNì*ùÜ~ÀQFöôWàAüƒòT³m×7•ñç^Î5Ä9šóßmÕ#ÉÊï®ý×çAûÃdÈ3(˜}3=–ôŽÑýínþT=UmƒÄC0…„Or¯×ö,ˆ< vtr;CÄܱäHGÁ8x$ ”ÞxØÆéÿq~R3ˆÿÓDdüúSÞ^üÙÆpðôO9R¨Ÿt­ìíŒ$üÑéÈþºö 7³L¯æäO?^~¡“¥Õžó(¹• I§&=cÈ7Š”]LœcëYÆFÑ5ô5¶Jîzïвn¥>F-MÏžDçùÇ¿œcÓÿi¾“¯äpûÕYì)¶ÀÝúO {ßI§™Üå·×ÌôzJ‡ÅÑ9°ûOƒißÐáÿgºj¥Huþ–áýŒ÷-Àcìo¡õãq"æ Câëî°º܌ݔûJÃV•}PNþéþŸð{"ý±,ï\‹Hƒdçš5•iêÿ˵å â“?ÏÃp°ÄʲþÓU­9qUª&g«?™ËNõET3´ÀA_BÓNóDÔ1Ìç¼2­Sð•Á‡@>žgäàJ4ÔÃæ~¢TŠÉp$Èñܨ8gÛ³B¢Ã»Ôèëù"•èº:§Hïãüs6EçLû¶¬Ó*÷ÎiÐ/®],;?…Æabj´qp9èæ§0ÛOà¿Î¡K+yÅææA}G|“Dçü—j(òíãžà“¢U9ìì¨Í?ˆ™Ð+i‚Üð˜‚üsÏXî.z!Gcî±ûÆqð½ç’“0d+ÙÏ-„ÜGÿyõÙÿ›!€Ì“^‹¿³ûvþ‹ç¹ø¢ä•ryœ¥¤%:¢cXÿ¾Sÿ¡6“0µ,çq´ = µD§ŒÝŽ›éxt”§0è(¿ÌlRàL(aÎ*¬iŸä×øä”œ¯DŠœ·è‚xÎ>=jü&Ÿ¯¨-à #I^Ë*tN^¦,æCè"ÏTÇ<*[ªŠ>¿šH‡U_¤ç?{Ò 3—TZÿÃ2Ãh?Þ ”r42ÄDP~ ™ôE14 ‚ûò´ãœJgy1W–R“€~ø è>ôIýpºxš¿Å¢þ…gÚ0°s}$[ÿT“¹Êžø7‰û–‹^x|üÂ*Ô^+QØ¿Æ:¦aý4޾þìì™)Sñ›Þ#¤J7ð=òÞdȘ5¼¿UøSg)TìâLÉO^úÛ˜éÈ^.}í{›ü´óG\÷òZÕŽ~ çŽÊX™6%§J2í–Ræv9ß>ÁTÐ7Îçžu@æM}}Ÿ5É’<—`Íǽõ —µ{=NžÏdžz—“úõǯüñ•?þÐ?¸÷ZxâÏýñoþø?¾ôǧþ¸ùãC|áÏîtñù½#{ô]П߫ìê•cÛÑôPvs'+»Ž©ÌMæ;¾EÕ‡â+¡j ðW¬ž^Kx%s}u¿Ê?Áãr«2÷yU3M—âòñ+|å?ôÇðQR€QfGx3!žRs6¯šwþx;Û¾›OÌÇ'þøg¼óLJþøÂŸÝû Ïýñ•?n÷ê¾ôÇÇþø?>½ïåÞ¸»wϽºW¤°y`Çüí^…xïþÜQ÷=vÌüÀ4Õ-üÓTÔu¶;¹er;>2ýÝÆÆüÒMæïãÊ]ôg翾)1Qyc^>1Mxû]«ôÅw­,9xÊ#븪O_övÿîoìëKée¼|e½õóß§åWé÷ñÕƒ›f…¿¿°‡û7 öÃ_ýñ³{‡ûü£?þÞÍðùwM †ó£9‰‹‘ß¿ù`£þï½û§Îæóßßµj}}nýñG¾3~uõÿF·úµendstream endobj 569 0 obj << /Filter /FlateDecode /Length 378 >> stream xœ]’MnÂ0„÷9En@~ìg7tâUÕöÁqª,H¢‹Þ¾3tÑÅXúpJÀØâ¦ÕmËÛ¶Ž°&6Q6D% #ú(=1D ˆÛ(·Ä]”€; k£TU8purvtvpurvtv% S”€‰ˆ6NyäõÊì™Ùcˆ× ÏA®^ΞΉ¼Ry¦2T7Õ7Ö7¼3½5¾54…4†4ؘ¬ŒV†ê¦úÆú†ê¦úÆú†!¦A¦A§(OD´1526²%`&Qâ/ß” *X0 `PÈÀƒB† ˆ'×å¹ÜîàsåÊt[×<]µ¨ZDîß8å¿]^æ…¯J¨ø‰ó¿õendstream endobj 570 0 obj << /Filter /FlateDecode /Length1 13076 /Length 8793 >> stream xœ½[y|TÕ½ÿsï{gÍìûšÉ,Y' d ÙXeQH`„U¢P°QY#RYE‘! )–Rh´Zw¡¢]¬`Ñ×hÛT…™y¿{'`èóùü£ŸÞ›³Ÿ9÷œïo¿3jhFÝ86RÒUp³qSæLž—jç ä¯SÚxü|ÐØñ1sÛ´yÓçœg7½ÀÖ(\Óo[4-5_ßàbg´Nžºá‹m+ q>”ÌÀE:_ ™íŒsÜš_8³‡n›;erªù9fCçL¾{ž°V™‹ó×`Û{ûä9­©qÍó˜9æÍ½sAoûUq|ÞüÖy?¿ÿölŸÇý½Å-wÂ\;ØÙx’b:#–‰›“ŸqÝ MÌIþ)ÇOMTVÀ1x¶Â>ÁN¬‡al†×È,8L&ÂA8E܇x±ÐÃá ’L¾Óàœ¿ŽÃØ*üÌ0áèZH.Ævë-°,ù4d@)¬€£P†«®…žä®ä7Ãn؃Ÿøé~Ö|!yk.Ñw’Óû@9P£°w¼BÌ™ä °B9îî1xž‚_Â_É}ä`rF²-ùvò 8ꄱx/%É'Ì>vEò±äÉ"†,|j3¬‡í¸þ>¼ 5d6Y@Ö“ 4Jï£Ùåœ%G2¡ïz˜ «Ãpþ߯¨•Ñ2 ˜“Éâ䃆á)Å“´BÞ+ñ^‹g:Bd$Ÿ &£ÈRòÙ@Þ£YôfÚ@ï¢wÓϘ‘ÌDfó{'ÛÉ­á6Ë”‰‹É#Éîä`Üóá<Ýqx.À·„Áµœ$@ÊI™„w;ÙJ“§Èa:Š#oÓÝääSò¹L9ª¢&šMÐõt=Nßdf2˜G™?2ÙAåžâÎÉüG‰–ÄêÄ›Éòä'ɯQð!eª`$Ü “ñ´ó üO±ï}Hµp^“îO‰zàkDˆžØI!÷Hr#™Ff’'ÈËx¿"íåEBP9ÕQ uÒ±´…ΡíôÚÎ8˜,f(3Ù‡÷«Ì)æ2s™åXkbëØ!°†ÃnÁ{»“ídßâʸAÜHn×έæÖ0S¸w¸S²{dke²¯dãÃüp~.¿©óòì/¡ïÅ’ Ü}!ÜSH5iH§Èdè@îšJVáçA8ÙÄÜÃÔÑ|ä†Wà'È­[`)¬f&ÂSÉß1»á4rÊm¸V;<ÇV‹Û„Ô¹ò‘‹zïhfVf8 døÓ}^ÛåtØmV‹Ùd4èuZµJ© ¼ŒcJ §Æ_Ûì›clÐ__Ÿ+¶ý“±crŸŽæ˜»j¯Ÿó6KÓ¼×ÏŒâÌiÿ23šš½6“h½P‘›ã­ñ{c¿­ö{»È„Ñ X°ÚßèõHõRý!©®ÆºÏ‡ðÖXgT{c¤Ù[«m›ÑQÓ\ËŽ"ŠÜQqDA).ƒÁ“—ΰb!Ψ‰ÙýÕ51›¿Zc5“§ÆFn¨©vø|؇]cð¹93Å}ª©þ©tE¡¥Y¬MžØc&7Æh³¸–.;fñWÇ,‹ÏY¿k^­Õ¬é3£ÚÉ­µÁõ©f³Øš¼[ÃÆzqYº¼±!F–÷nBÜã¬êÔv[ý5bWó,oLî¯òÏè˜ÕŒà˜†N{Ô^ãŸ\݃Q ¶¨Mjäæ¶ÞSîÃÓν!÷±,÷YïI•¹?Õÿî1¥4ïÄŸ°6æD|’î3æ"=Ä›-³ÖRè˜RŠÓðj$xÌ™¸ŸÁ1Š<Ãb\`ÈäXûثۘQÚ\ó¬êN¹Í.ž¡¹ªç7whàcp¾Öïí¸HBÏ_¯ï™ÜÛ# h/‚X }Wpüj½MF|œÕ?C¤o[MoÛo­éÓmqÏ1c¬pب_ÌÛˆ]3¬ ä£ö²¶±‹$—wAµë0ȹu爬6³ŸÜìÈòa-/Ç[‹ ׊¼âíðv ™Úá­õÎ@fbR‰­Dplâ7ᣎkÕÖÆÆ¸ND\‡•ÖéhÄfõ®0KZˆã¤üœaxÌà¨†Ñ ±öjG,Z݈T@ö=6ª!v רˆ³ ®íË¥3­½{.Ä=da¥(µÊX\—hìèHµü¾Ø±ŽG‡(c©víˆövt´"ÚEÚGICí~ŸCÂÜç÷á¶ELû!K_å¨.(þa„Kú"Üw["!\úoB¸ìÇ <àG!\þýWàžËE„þçt•?Œp´/Â7àn£ÂUÿ&„ÿ„«Â5ßp-î¹FD¸î?‡pýuùa„‡öExîv¨„ððÂ#~ Â#Â7~?£pÏ7ŠþÏ!<æ:„Çþ0Â7õEøfÜíMÂãþMÿ17ü(„¿á ¸çFá[®!uÄ /Âíÿ(üÛ!ŸØrÑ Å8S–™ÈP‘¯[¯ô({®»2¤ž X‡”˜ <ºÍZ¼›øó Æ[DZE/ºÓX“á,¨o½­­uÁL1ldà/¤z6ʦJLŘ²³o°B;ÙaÚ†‰™äX„i5¦G1±×j»0&t²Bôe²ìdhTÉzn2Ú\è"‹£%õá™õ¡@æpO ³6Âú¸Wùeü-ü |!ŸAL÷ñÞ(è­ T‚B¾‹<ßYé‘!{ aÙs@ \y;Ù#d¯Ô¹÷À TÁØ•üÓA‘OŒ]dÏA­XÃÊK2©&ë"{¤ºöF=¬Xc¥-sšbSJ CÑ7|°KËÍm•ÖJý ]Ymõÿ•5_—gÿß—•¸bQ,b»]èb%éj¼6øL] bÖZ•=lÌ¢mófM“\]M+¦æØmz´·x½ûgÍëõãƒÍ-SfˆåäÖØ<kul–¿Ú»¿mÚ÷ O‡ÛüÕûaZÍM û§E[«;Û¢m’— ¥j~ÓuÏZ}íYó«¾g±*q±ùâ³Zš¾g¸InŸÕ$>«I|VK´Ez–xΚ™c«î\€Ü‰Ê XxllÈè õ5Vw‘¢Æ[(ê’ênFíþýé"EQËò*–ßÈ¢N®m;a=ñA¼ *+/ü¶ ßP<ˆô/Òùu'~µ%¸ös©ÃиãÛÛ™KHt C’¿cuÜp@öDól\66×˸ÜjÛ*ûf»¼Và}¡P±Baõk9¶ØÑmUó´‚w §ÝUª!ÓqoF©:³.,>ùýž =Ú‹ñ²¥ÃÆÜ½8b…ÊžžÊ}Y¤G§/+ȼ(ÚÏ´Ù•Âè4˜ž–¯Î&Œ ÂTbÓ¯ñ…‰Ç€±³a¨BaÑ!)f¸/ÒDÌsQa‰ACüé´¸Ÿ¾Èk0›´<õ¥‹¡¤¸_П.3ÍED+Ìî_sïKÁŠýÓÞúû—çIÙ]U7ÞŸè~÷ -ÜÿäO–m]µLØPæ>M†Ü:‚Ð×E‰϶~žøæõÄ ï ÁcOlÝÿÈšgE܇°®Ò`l´„SÚh©r€ªL=T}3ǶÐC¼b‰ú ú¤š¡r¢Ö €4V®¢j`®F(•?¯ÑÕi%„ sˆ†H ŠxE™¾Œ4ä7“Œò2¼ýzCI_1©9×0>ו×]}~õ¦+ç¹öÇ';²eÊÇd ÙøåÞÅ=U%?f¸'/‰f×ëWyh™ªÖ0Þ0ÝÀTjTŠ4f¡Þ`ÐkÒ¼z‹ÂR¬è"éQ»ú§K? e‹½Ý.µŽ/µÏ…Roz/EÉ‹='$úÅ‘~g/ˆ$â¾ñoe^öRíIèí(È·"aÃV‘Ó ãFB¢÷rN>LäV̈é(s`&Øa)bj+´"9¡©É¢fŠl|Èà3ù˜’þ%E…¬Éˆ$ÍÅõK£7mÛr¨½iyä±9ô|üÉ…¹£fž$úˉž}‰ÿÖ’9[ÊÝo,ÙøL}TÎ0/$æ ¾Ä¯^Oüæä ÚȪäiÖÎ=J°@!¼­GÆË'¤5¦’Vùì´™†»ò!ÚŸØÚüów†–,)\e[é]Z•·ª`³M]'  *‹uº®ØÍYŠsÔ´}€‡4¥™s#B©ë/K#ýꊾÌ””IhõŠAqVžÓ«73js®1 ªlM˜(ôÂäÂŒõÐ01åY ÎÂŒwr( ^.]¯ ¤äÝ„>Ü®ïS‡P°¸Bh6‘©Ìâ+)êOÏÀ¾þô™í÷ß·`ã´UÏî^~ïö %^̺ñüo~QÕXtkâü;‰?.YÌD—OµbÅ„Öùñò•+xhý}ó¶ÓmÙ£Ú·}öáÃ+ÆFr3‹§n;šøæÓßýôp¨KúIòñÖÔ01š.§ AM(}E/“ñTF8^`ˆŒWÐ…Jî+FųL±¼H6ª…ç‘piu ¸‹*âgEí…Ò¡K¦Kñ‹L—VOtr¢ó“"]‘ɯ£Ï&ŠÉ›ñ5ô¡Íï½G.ÓÕñ»™cÖ^¹õñÄÓ)ìfò:ŒnBNðFaˆ‹Ö´ê€ïåz4A#Ïj?ƒÈˆT˜È}7“K ÝtXúlÏ忇tØYÂÖ²ã¹Ù®ÛÝ‹ÝËÈJ*d l³mKlKœ/Ú8H'i¬ScóñNú2œ'--Ý (6p^ÏB_ºÊ÷S¾Ô<7]J»×SšžQçïÃ(xb·?ñFâã_$¾üÓR~a©ýöÜ×dÌRžø ñû–¿ÒÙ²¸:î(ÚX9ü,šµŠ%Æ0Ð3”€žÊ¡Óņe€ò‚œ‘ËYPZ,v†Å"*—QÊÉDtáàE°)ÖN²fÛFj/Œ¸PQfE•?0¢µ](YÓZý’ÙAf¯´T ¹ó*¸•#ò²WæYE_çÇRFBÙ•Kµ'¤ ™¿ÉP$'E-º!ë<ÙAv|ÿ {w4>ˆ¿²>££˜9’ΫOžaíì¤Nº¥ªè¢M£öç< §¡iœÑ¤Ñ§™ŒQUÔ(dÚÉ0åKL7ù5Óíøð¡ü”çwþó–ó~e·®[O' œ/#m‹Ù•Q&ãy³Ïåä.³2Àor>ç<ä<ídæ´€“³)T¼yÛâ졌<>d³Cïûv4‰âuaDüìHí¥=ïÇ%¾–ìH¤ OžÒŽÈûÚk>B-øYŽá(G8Væ ê´z­AkÔ²2U Ý‘Dkç ·Knრ4i‚hnývvq˜ VEP2‚bÑʈ);+;ë^rGÜÑÔ¨Q#úܤ¨°Iÿ" M¯?tZ("Ád‡=xª´D¯½ò÷ЦoÊ7îço,³è†1¯&¾ Ö?2 á6BŠ ¨lD2œŸ@ÐS裉5¬¥¬ ñÏëÉë‘4®%EŠpIS:[€”¤ùÀêvøÀì5úˆ/úSØ]1ù0ƒ«XK¦ šHS†Yw ÑI혮ÓIƒy¤€Î(þþ&Ñ Cb!š­þ¢™?òÖÆ¾…sZ Æ’ƒƒLªû?XîSìäþ¹ýhÛBK@åÖe囲Ìòþo.ÙpôåMoMȲãa“S¦Q;#ÓÉmBŽ5wâØáYc½µ¾~s|“3a–«dUþhý¬WmxÆ@Ίú}5 ü:¶tpc4b‚êþLËj-ÕÈurUHàxé‚Ý@ò´™:°é ]¤æ€¯å Ò ‰³?C,GTžˆŸ9›HŒ (©&ñœf‹)ˆfYç_½ÇôÌlÎêÒ:´«Öd#‡K¶Ræ†î›ß,ê}hkzPï(A#£¼›e•ŒC4¹àV(U©(ÈfÒr¹]ð©5]DyÀ·au¯UˆÔ½pV—¢®hQ*DñŠ§ìš®7‘}läÊz&ûÊÌ’ËÇ©‡;z0Qµ;¡Ù‡–lž™õ6‚¥ö+„ʘ¬h?È*cL‰©"1õ)Ø ~?ÊÊò Eb‘?þ÷ç—¾ù(±‰,ú,q)‘8K±‘ÄJ²ˆ‹_ŽDÖ%n§ñœåÉO˜·Ù‘`ÇÈã¹hä9ÙlÝ)ì¶2CÝV#Ãe.;¯v•Þá°hCz„¨ÎîR„,6'†ìüßü¥½'®ÞUÏ5ŽÆŠöª­± • •Æ  ½.MËÛ°ÅãC5Î2J³:izÌäVY°Dæ#½j#¥8$––ø•†_¤#/ùW…’Ú£T<=õ©eŸvþ=ÏÍ_µnÞý¶}î¿y÷[¢ßÉŽŒžrÿÎ9Ûžúxõ]œ$EŸ;À!ÆËãî8˜1žÈAÍ*Xx‹bC†…üBA0¨©Á sÉx“J¡ÎTØ­Ä” f›ÅÚEdÈ}UW¹O"9ÚWt*Eé*ïé$Z2¿®Ÿ¤Ò°¶ì`´hü}ŸÍ=ì.X9弄ÜñøÇ£}eÛŸˆ¦ÛÛú7l95e¥ý¡®²!•&E ɺe”•e!c›lÏUÔhÕºDá°*vÞnU¦Üî$yÖLØÎÙfJý÷ò%’é»­’«‚Òg¯¨#4[dÙžá»gœ•sÈ•O4shi®ã yŽlž4æÉñO‹{n©˜ª6Wß13þnuìÀD9s«È…<8Qb" ‘7òUª]Ž®]¡Ù‡ʨÀ˜Ó35'é¨FYY¦Ë¦Ð»iy|^çdòÌy¹™œ=_¥ ©CN[$¥o~Õ5-Z&'~ö¢î;=ZÙ#™°”âÌñ‡ín¥.#  úÝÁ „í˜é”¤iTê€+=HBŽLä=•ÞðÇ]ÕŸèßXŠ‹tè´aL*’"¤þ%’†Ì­¯q"ªUB—L**ÞQ1/ñÚÞ¿j©Cï+dJ6/}!q™ð/“êg~úJm`ý’ã7æ$Þa«ù¯¼RøFÛ™­ÏÖ‡*Öûý˜Qÿ$.¢&y‰§ŽuÞºåÅ£û¦,£¹D_ènT rÁ#Q=¯Bê¹FÒÀÍä¦ïæó’Olà Îh•ßç 6ëïÐ/42z·Çè41>·ÙÈõ7ÈåÞ­¤A§CðLž€™)H›é°g Á@Ha gžòm˜vS_èyoäì )£eåZ*š«lÑ!"bèˆLãÓ1>‘‡Œ2ÞM<â+‹ %6"tŸÎÏÔ­Ù>à´„½›îÜ9ç­9-ãÆs<£Ôç]P¨X?µlq¢¼›qÎ[÷x™Ýÿ§ &Å—í,òÏo?ySf­Ñg¨wñ¡G¼e×’üŠÊ¹ `…1/ªóÇ4¤‹TF¬¹ÌÂÈ4 ]t‰,LSãA¿ñŠÙf³_ñMïÕZñ¦²’Ó#yA™ÀC÷hãgQS§£å;Û,Öù‹‹v¾´gOÐT v=ƒC÷LxøanBâƒõñšRƒ’еráÞéôäz‰f’g¸;¸sà7ì–;¸Md#Çx0¿¬äV¸±³Â¥Ó™d\Œj€Iî¦n·) åÚÝ+/°Ù<Þ§|³¦}§cE¦ÿ ;œ–€!¨ 8‚J³¼ÔFmaJÏ:±…z¶PÒ³ «ªõ,f‚]V(êÙÂïѳ"ó£:HJÓ¢;¦O9hè?Hž¾C?ë&ýtÇ}';?L\üûWß9Ð}ܾn_ât^8÷üˤ.ÌKœ9²vGâ­ÄÉD"ñ‹]ŸüèÖß’çIÍÛ–ð©Jžf^b‡¡~ˆ¼èÏJ囹úG›M›³dáŒ@¨ÄWë«Ë¨ Ëš–1=¸HµH½HÓæ_± ° ¸Ã½3ÇÀ ëÉå²y°›§Õ”kÌ §)g"7—h ]­`³ Ö_;]žuåmÉVFx¹FKyˆø"vÕl Y…ƒ|(l/ÐxBÚAʳåt^ó—{.ÄS:¦L‹5‘çË"¢c&½8ߪõˆ>Û†“\4aHåÓx| ò>Âä ßÇeaÍ¥Ç>‡Ñê#Þ´tøÒ5j!¤ð‘`@® ¹¬d™˜¹uN±™)O.E)».êuõÕ—5¡ $YÒ[‹™÷§Üf²­${(†È·!ò•¨Þ9uóÀÐ?[}Âÿcö`º› ztÚÌšðÈ»ŽWÍüð_uóä5!üø[j20ÒHÏrïæŸ¯0c`aÝÈhm–ÍàŠäÔ<ò³·?ÜF¿AúíN~ÈEP'™ÐzV #Ì…¸R-£Ê ÐÊÍŒÙl”Th1F´—Û|æõåã«\\Ñ$¾K0¦4k±®(O2Añ‘ïÅo)øÍ‰5‰5ˇÐÁÜÑ+ ¶ÍÚ¶wÒ“Ìš+݉¿¯K\"Šu$)Ãý4'?`/¡¼E ÑI™i!0X¢)öÕ[‚‹5weÈg V%@534»Ó…f@zFº‚aÖÆH$Û9ÀȰ²åùT¡téžp~¾Î° a{¡' ˆ­ p›oÖêëù”Pê‘+ô½œÑ+œ"säÅ‹šR 2"œ§ó€@ƒ4˜!£ {dCnžTpYB6q<Ùà0Y³‰ÍŠ\‘ ò2›”$ë|&fn½3[äì^Ñ^sø¯É®äø÷šª> ’!¾ÉûßüÁúQ¤ûâæûMùvÞÄÎaßîþÕè5Dù/dð‘´‚[ÎĶL(ûÍ £×$ÿ¯Ä—[·2t9³tä:ï mwrsŠ'úuâÛ*ï|¤å¶Bo~$½|ú‰ ï®yàKV)Êù³h»¦ Ÿ¨QSOzVê6êi¡ t§Qp[¡À`·«Ô̧|mW]è^w*^—  ³.` ÊxŽgy†§<'ShÔjfÌäze!áPÒë‰,QD%Æ:Z*™$¯ÅŒfœfúvë †–ÛÓ>ü{âÉWéXynCÃÖÄŠø¾Ý¦ÐÜÆÆÖÉ»¼™3œ>žxç‹£‰N)f,O~ÈúÐWVálðP´h³°Qû¨ùYv§°C»ËÜ%¼*œfÏi>7ª2—•W¹ôJo³™h(Íî‡L6»£‹ÈÑcnú>)H©ñ°°A¥AŽQ³Ž oÁ§ÆšÂ¨ Ñb&˜ÑAf4˜õy Múâ^ïR|‰*›bl˜rŠÿ´<øËÏnܸýq_Iüó÷‰+DÿÙ’¶cã¤G®tî9ËœIü5q!O¼@²¯` åRñˆ4c 3Š0£àИš Œåv_çøJ¶³²R2™þÕrG¿,é÷ÒäÉ·V¢¼+ZØ_S§¯yŽÝåà‚‘¦¹´ ¸\¼AA]%—gã:½Ý£ ÙmnO7O -âgÏ‚äÝ¡w­K9wv«S®B¬JŒœ˜AáDlH¯ è¿{§m½9T0þbјƒø…Å¥uO-}jÇâU»HÇØü{Ÿ®|~îÄ·_ýÜzþôk¯ÿêíßÐþýÜèëÛA¦4Üo¿ ãS>9)—°á¡$êäω_Ë…!’!F<ƒ¼H'â'®ÂTQ)½ß¿ BÿbÙ!¼Ø¬Ë§¸£oH1Ÿ{î–ü¼²¨UŒ<彑§l6±+¥hS¡ì"ã1Úü¸o´)¾«ý_A¦sùÊôx¤[ .÷ŧŠÏx Ÿ1 ŸÁAAÔ”¡n–;Oh€›Œï"cøÚ&õñqãb%Ec\ù±nzþÊh$ô?öáz›d\ϯG«É0†Êˆœ1sšpâd0‚T' Ìûä#æ}åG*«`Õ5teGÓM”f*ÂêRE©ºŽŽ§m”LU+(£gUªôŒL0!¬¬øšxkT­ð0JY\Eh\íÑcÏK°ÛаŒÔJáíBYþYÏŠ»N!nÁèÕð°1‹ö«U]d÷AJ¨áîNJ™•܈¼Åqv鉕\ªC¡ùwùMw|râ#!tìýå ¡Mèžï Û‰ý(›h:™˜À½Â½dÏ|;˜™’ûö]—3ÙÓ¹%¿ïwåq‰–í(7_Kïž‹Nm¤d€@l”ð2‹l<7[$»›_Éf^cΠtq2Aàå ]F¡Ï IÊôr9ËÉ8V6GQ©Às,ÃÉä'ºqH?F¦àe ™]-§ŠLPÚTêN_Ëab†kT«°!ݬ’ß^Q)"‚I|±),Õþ’ßn6qKµÇ´B…P!:ðpGÓ|¤.)_ ð:û^òæg‰idÿg‰ÎM{Ñðî!݉¹ñêìHÜÞûÆ üœÈÈ:œn¡]L5ÓÉÙ?p;¹/e…²ÙY¾ÿPŠ÷q¹^þ´â>Åo”•_«æ©Ö©êõ$õ ^s¤"ÝÔ/2Œ©ßR;&Ùÿª"5½ÏÅȉ2Ž^ëµ84^©‚/“õ7€¢wTZ· h—ý.Ð;ÔV3v§ýÿþÏ\,¼+åÒ/Pþvw2‰¹WÌÅŸÀ¿pÝÅK¹ç þbEœÍ ÌÓï™khÀÛ§Çé×ê&@jH¨‰—®¿T˜´á ©G  ÿÓü¨ñôà”fˆvßÜ;;M<y÷ñc/áúæßàoÉë:úü’‡½N`‚i¦ªÞÔ±ŒŠ‰YXÖcƒý«±½¡Qb*Ǿe½i -C¯¥biÁrŽWa¹ç7cù,Î)'ݰËR,—±Ÿâ:wÂc²Ý°‰«Þ»¯ý±}/ßšVqt©ƒÜ:âgRùÞýÝ3¾n½R>,|):I×ÿ*%¤ëendstream endobj 571 0 obj << /Type /XRef /Length 337 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 572 /ID [<6bc528b18782cbdf65b040a1f6094ca3>] >> stream xœí–¿KÃP…_Ò€-*-Òb Ö_Q¨Kq7'AtAqPœEé ÚE(BwÑ¡ƒ ‚›CÄAÔEÜ;‰è ˆ8iÎ×?ÁŒ/ÃÇåææ¼ó.gˆkô¸Ž1iøi\5KËñ×äÊõ¨NÖ”«Æ²Í•e<¹®Ö£D=¿ØDYÆ“¨ñŠuß°‰²Œ'QS_JT¸neO¢æ¿õ7åÏ)Q­‡â@QÌ^ˆÞ£X€¹±å'¢“§ãÏ2¿KÿœNEÌ¿Š)jÏ£ÿÎ :UÑɈmRë› 'EwILâ'u‹·'1}ÍY[bÏ‘Ø^»Æø¶yî gÌ398ªSŠ8ñPNà91Äd‰™±÷Mìƒ;fF˜™¡Þ£f&X¥ñÊöÅîMúì'‹²¿ÃE®¡³ÃÝßÅ ,•QQ¾âí”;Øyá˜mL³íæöð\š?SaFo endstream endobj startxref 358265 %%EOF bridgesampling/inst/doc/bridgesampling_paper_extended.pdf.asis0000644000176200001440000000020115055304401024440 0ustar liggesusers%\VignetteIndexEntry{bridgesampling: An R Package for Estimating Normalizing Constants (Extended)} %\VignetteEngine{R.rsp::asis} bridgesampling/inst/doc/bridgesampling_stan_ttest.R0000644000176200001440000001137315107052015022346 0ustar liggesusers## ----------------------------------------------------------------------------- library(bridgesampling) set.seed(12345) # Sleep data from t.test example data(sleep) # compute difference scores y <- sleep$extra[sleep$group == 2] - sleep$extra[sleep$group == 1] n <- length(y) ## ----eval=FALSE--------------------------------------------------------------- # library(rstan) # # # models # stancodeH0 <- ' # data { # int n; // number of observations # vector[n] y; // observations # } # parameters { # real sigma2; // variance parameter # } # model { # target += log(1/sigma2); // Jeffreys prior on sigma2 # target += normal_lpdf(y | 0, sqrt(sigma2)); // likelihood # } # ' # stancodeH1 <- ' # data { # int n; // number of observations # vector[n] y; // observations # real r; // Cauchy prior scale # } # parameters { # real delta; # real sigma2;// variance parameter # } # model { # target += cauchy_lpdf(delta | 0, r); // Cauchy prior on delta # target += log(1/sigma2); // Jeffreys prior on sigma2 # target += normal_lpdf(y | delta*sqrt(sigma2), sqrt(sigma2)); // likelihood # } # ' # # compile models # stanmodelH0 <- stan_model(model_code = stancodeH0, model_name="stanmodel") # stanmodelH1 <- stan_model(model_code = stancodeH1, model_name="stanmodel") ## ----eval=FALSE--------------------------------------------------------------- # # fit models # stanfitH0 <- sampling(stanmodelH0, data = list(y = y, n = n), # iter = 20000, warmup = 1000, chains = 4, cores = 1, # control = list(adapt_delta = .99)) # stanfitH1 <- sampling(stanmodelH1, data = list(y = y, n = n, r = 1/sqrt(2)), # iter = 20000, warmup = 1000, chains = 4, cores = 1, # control = list(adapt_delta = .99)) ## ----echo=FALSE--------------------------------------------------------------- load(system.file("extdata/", "vignette_stan_ttest.RData", package = "bridgesampling")) ## ----eval=FALSE--------------------------------------------------------------- # H0 <- bridge_sampler(stanfitH0, silent = TRUE) # H1 <- bridge_sampler(stanfitH1, silent = TRUE) ## ----------------------------------------------------------------------------- print(H0) print(H1) ## ----eval=FALSE--------------------------------------------------------------- # # compute percentage errors # H0.error <- error_measures(H0)$percentage # H1.error <- error_measures(H1)$percentage ## ----------------------------------------------------------------------------- print(H0.error) print(H1.error) ## ----------------------------------------------------------------------------- # compute Bayes factor BF10 <- bf(H1, H0) print(BF10) ## ----eval=FALSE--------------------------------------------------------------- # library(BayesFactor) # BF10.BayesFactor <- extractBF(ttestBF(y), onlybf = TRUE) ## ----message=FALSE------------------------------------------------------------ print(BF10.BayesFactor) ## ----eval=FALSE--------------------------------------------------------------- # stancodeHplus <- ' # data { # int n; // number of observations # vector[n] y; // observations # real r; // Cauchy prior scale # } # parameters { # real delta; // constrained to be positive # real sigma2;// variance parameter # } # model { # target += cauchy_lpdf(delta | 0, r) - cauchy_lccdf(0 | 0, r); // Cauchy prior on delta # target += log(1/sigma2); // Jeffreys prior on sigma2 # target += normal_lpdf(y | delta*sqrt(sigma2), sqrt(sigma2)); // likelihood # } # ' # # compile and fit model # stanmodelHplus <- stan_model(model_code = stancodeHplus, model_name="stanmodel") # stanfitHplus <- sampling(stanmodelHplus, data = list(y = y, n = n, r = 1/sqrt(2)), # iter = 30000, warmup = 1000, chains = 4, # control = list(adapt_delta = .99)) ## ----eval=FALSE--------------------------------------------------------------- # Hplus <- bridge_sampler(stanfitHplus, silent = TRUE) ## ----------------------------------------------------------------------------- print(Hplus) ## ----eval=FALSE--------------------------------------------------------------- # Hplus.error <- error_measures(Hplus)$percentage ## ----------------------------------------------------------------------------- print(Hplus.error) ## ----------------------------------------------------------------------------- # compute Bayes factor BFplus0 <- bf(Hplus, H0) print(BFplus0) ## ----eval=FALSE--------------------------------------------------------------- # BFplus0.BayesFactor <- extractBF(ttestBF(y, nullInterval = c(0, Inf)), onlybf = TRUE)[1] ## ----------------------------------------------------------------------------- print(BFplus0.BayesFactor) bridgesampling/inst/doc/bridgesampling_paper.pdf.asis0000644000176200001440000000020415055304401022563 0ustar liggesusers%\VignetteIndexEntry{bridgesampling: An R Package for Estimating Normalizing Constants (JSS version)} %\VignetteEngine{R.rsp::asis} bridgesampling/inst/doc/bridgesampling_stan_ttest.html0000644000176200001440000003340415107052015023110 0ustar liggesusers Bayesian One-Sample T-Test (Stan)

Bayesian One-Sample T-Test (Stan)

Quentin F. Gronau

2025-11-18

In this vignette, we explain how we can compute the (log) marginal likelihood and the Bayes factor for models fitted in Stan. This approach has the advantage that the user only needs to pass the fitted stanfit object which contains all information that is necessary to compute the (log) marginal likelihood. Here we show how one can conduct a Bayesian one-sample t-test as implemented in the BayesFactor package (Morey & Rouder, 2015).

Model

The Bayesian one-sample t-test makes the assumption that the observations are normally distributed with mean \(\mu\) and variance \(\sigma^2\). The model is then reparametrized in terms of the standardized effect size \(\delta = \mu/\sigma\). For the standardized effect size, a Cauchy prior with location zero and scale \(r = 1/\sqrt{2}\) is used. For the variance \(\sigma^2\), Jeffreys’s prior is used: \(p(\sigma^2) \propto 1/\sigma^2\).

In this example, we are interested in comparing the null model \(\mathcal{H}_0\), which posits that the effect size \(\delta\) is zero, to the alternative hypothesis \(\mathcal{H}_1\), which assigns \(\delta\) the above described Cauchy prior.

Data

In this example, we will analyze the sleep data set from the t.test example. This data set shows the effect of two soporific drugs (increase in hours of sleep compared to control) on 10 patients. These data can be analyzed via a one-sample t-test by first computing the difference scores and then conducting the t-test using these difference scores as data. The difference scores are calculated as follows:

library(bridgesampling)

set.seed(12345)

# Sleep data from t.test example
data(sleep)

# compute difference scores
y <- sleep$extra[sleep$group == 2] - sleep$extra[sleep$group == 1]
n <- length(y)

Specifying the Models

Next, we implement the models in Stan. Note that to compute the (log) marginal likelihood for a Stan model, we need to specify the model in a certain way. Instad of using "~" signs for specifying distributions, we need to directly use the (log) density functions. The reason for this is that when using the "~" sign, constant terms are dropped which are not needed for sampling from the posterior. However, for computing the marginal likelihood, these constants need to be retained. For instance, instead of writing y ~ normal(mu, sigma) we would need to write target += normal_lpdf(y | mu, sigma). The models can then be specified and compiled as follows (note that it is necessary to install rstan for this):

library(rstan)

# models
stancodeH0 <- '
data {
  int<lower=1> n; // number of observations
  vector[n] y; // observations
}
parameters {
  real<lower=0> sigma2; // variance parameter
}
model {
  target += log(1/sigma2); // Jeffreys prior on sigma2
  target += normal_lpdf(y | 0, sqrt(sigma2)); // likelihood
}
'
stancodeH1 <- '
data {
  int<lower=1> n; // number of observations
  vector[n] y; // observations
  real<lower=0> r; // Cauchy prior scale
}
parameters {
  real delta;
  real<lower=0> sigma2;// variance parameter
}
model {
  target += cauchy_lpdf(delta | 0, r); // Cauchy prior on delta
  target += log(1/sigma2); // Jeffreys prior on sigma2
  target += normal_lpdf(y | delta*sqrt(sigma2), sqrt(sigma2));  // likelihood
}
'
# compile models
stanmodelH0 <- stan_model(model_code = stancodeH0, model_name="stanmodel")
stanmodelH1 <- stan_model(model_code = stancodeH1, model_name="stanmodel")

Fitting the Models

Now we can fit the null and the alternative model in Stan. One usually requires a larger number of posterior samples for estimating the marginal likelihood than for simply estimating the model parameters. This is the reason for using a comparatively large number of samples for these simple models.

# fit models
stanfitH0 <- sampling(stanmodelH0, data = list(y = y, n = n),
                      iter = 20000, warmup = 1000, chains = 4, cores = 1,
                      control = list(adapt_delta = .99))
stanfitH1 <- sampling(stanmodelH1, data = list(y = y, n = n, r = 1/sqrt(2)),
                      iter = 20000, warmup = 1000, chains = 4, cores = 1,
                      control = list(adapt_delta = .99))

Computing the (Log) Marginal Likelihoods

Computing the (log) marginal likelihoods via the bridge_sampler function is now easy: we only need to pass the stanfit objects which contain all information necessary. We use silent = TRUE to suppress printing the number of iterations to the console:

H0 <- bridge_sampler(stanfitH0, silent = TRUE)
H1 <- bridge_sampler(stanfitH1, silent = TRUE)

We obtain:

print(H0)
## Bridge sampling estimate of the log marginal likelihood: -20.80934
## Estimate obtained in 4 iteration(s) via method "normal".
print(H1)
## Bridge sampling estimate of the log marginal likelihood: -17.96114
## Estimate obtained in 4 iteration(s) via method "normal".

We can use the error_measures function to compute an approximate percentage error of the estimates:

# compute percentage errors
H0.error <- error_measures(H0)$percentage
H1.error <- error_measures(H1)$percentage

We obtain:

print(H0.error)
## [1] "0.049%"
print(H1.error)
## [1] "0.0655%"

Computing the Bayes Factor

To compare the null model and the alternative model, we can compute the Bayes factor by using the bf function. In our case, we compute \(\text{BF}_{10}\), that is, the Bayes factor which quantifies how much more likely the data are under the alternative versus the null hypothesis:

# compute Bayes factor
BF10 <- bf(H1, H0)
print(BF10)
## Estimated Bayes factor in favor of H1 over H0: 17.25678

We can compare the bridge sampling result to the BayesFactor package result:

library(BayesFactor)
BF10.BayesFactor <- extractBF(ttestBF(y), onlybf = TRUE)

We obtain:

print(BF10.BayesFactor)
## [1] 17.25888

One-sided Test

We can also conduct one-sided tests. For instance, we could test the hypothesis that the effect size is positive versus the null hypothesis. Since we already fitted the null model and computed its marginal likelihood, we only need to slightly adjust the alternative model to reflect the directed hypothesis. To achieve this, we need to truncate the Cauchy prior distribution for \(\delta\) at zero and then renormalize the (log) density. This is easily achieved via the Stan function cauchy_lccdf which corresponds to the log of the complementary cumulative distribution function of the Cauchy distribution. Thus, cauchy_lccdf(0 | 0, r) gives us the log of the area greater than zero which is required for renormalizing the truncated Cauchy prior. The model can then be specified and fitted as follows:

stancodeHplus <- '
data {
  int<lower=1> n; // number of observations
  vector[n] y; // observations
  real<lower=0> r; // Cauchy prior scale
}
parameters {
  real<lower=0> delta; // constrained to be positive
  real<lower=0> sigma2;// variance parameter
}
model {
  target += cauchy_lpdf(delta | 0, r) - cauchy_lccdf(0 | 0, r); // Cauchy prior on delta
  target += log(1/sigma2); // Jeffreys prior on sigma2
  target += normal_lpdf(y | delta*sqrt(sigma2), sqrt(sigma2));  // likelihood
}
'
# compile and fit model
stanmodelHplus <- stan_model(model_code = stancodeHplus, model_name="stanmodel")
stanfitHplus <- sampling(stanmodelHplus, data = list(y = y, n = n, r = 1/sqrt(2)),
                         iter = 30000, warmup = 1000, chains = 4,
                         control = list(adapt_delta = .99))

The (log) marginal likelihood is then computed as follows:

Hplus <- bridge_sampler(stanfitHplus, silent = TRUE)

We obtain:

print(Hplus)
## Bridge sampling estimate of the log marginal likelihood: -17.27045
## Estimate obtained in 4 iteration(s) via method "normal".

We can again use the error_measures function to compute an approximate percentage error of the estimate:

Hplus.error <- error_measures(Hplus)$percentage

We obtain:

print(Hplus.error)
## [1] "0.136%"

The one-sided Bayes factor in favor of a positive effect versus the null hypothesis can be computed as follows:

# compute Bayes factor
BFplus0 <- bf(Hplus, H0)
print(BFplus0)
## Estimated Bayes factor in favor of Hplus over H0: 34.42872

We can compare the bridge sampling result to the BayesFactor package result:

BFplus0.BayesFactor <- extractBF(ttestBF(y, nullInterval = c(0, Inf)), onlybf = TRUE)[1]

We obtain:

print(BFplus0.BayesFactor)
## [1] 34.41694

References

Richard D. Morey and Jeffrey N. Rouder (2015). BayesFactor: Computation of Bayes Factors for Common Designs. R package version 0.9.12-2.

bridgesampling/inst/doc/bridgesampling_example_nimble.html0000644000176200001440000003006015107052015023674 0ustar liggesusers Hierarchical Normal Example (nimble)

Hierarchical Normal Example (nimble)

Quentin F. Gronau, Henrik Singmann & Perry de Valpine

2025-11-18

In this vignette, we explain how one can compute marginal likelihoods, Bayes factors, and posterior model probabilities using a simple hierarchical normal model implemented in nimble. The nimble documentation provides a comprehensive overview. This vignette uses the same models and data as the Stan vignette and Jags vignette.

Model and Data

The model that we will use assumes that each of the \(n\) observations \(y_i\) (where \(i\) indexes the observation, \(i = 1,2,...,n\)) is normally distributed with corresponding mean \(\theta_i\) and a common known variance \(\sigma^2\): \(y_i \sim \mathcal{N}(\theta_i, \sigma^2)\). Each \(\theta_i\) is drawn from a normal group-level distribution with mean \(\mu\) and variance \(\tau^2\): \(\theta_i \sim \mathcal{N}(\mu, \tau^2)\). For the group-level mean \(\mu\), we use a normal prior distribution of the form \(\mathcal{N}(\mu_0, \tau^2_0)\). For the group-level variance \(\tau^2\), we use an inverse-gamma prior of the form \(\text{Inv-Gamma}(\alpha, \beta)\).

In this example, we are interested in comparing the null model \(\mathcal{H}_0\), which posits that the group-level mean \(\mu = 0\), to the alternative model \(\mathcal{H}_1\), which allows \(\mu\) to be different from zero. First, we generate some data from the null model:

library(bridgesampling)

### generate data ###
set.seed(12345)

mu <- 0
tau2 <- 0.5
sigma2 <- 1

n <- 20
theta <- rnorm(n, mu, sqrt(tau2))
y <- rnorm(n, theta, sqrt(sigma2))

Next, we specify the prior parameters \(\mu_0\), \(\tau^2_0\), \(\alpha\), and \(\beta\):

### set prior parameters ###
mu0 <- 0
tau20 <- 1
alpha <- 1
beta <- 1

Specifying the Models

Next, we implement the models in nimble. This requires to first transform the code into a nimbleModel, then we need to set the data, and then we can compile the model. Given that nimble is build on BUGS, the similarity between the nimble code and the Jags code is not too surprising.

library("nimble")

# models
codeH0 <- nimbleCode({
  invTau2 ~ dgamma(1, 1)
  tau2 <- 1/invTau2
  for (i in 1:20) {
    theta[i] ~ dnorm(0, sd = sqrt(tau2))
    y[i] ~ dnorm(theta[i], sd = 1)
  }
})
codeH1 <- nimbleCode({
  mu ~ dnorm(0, sd = 1)
  invTau2 ~ dgamma(1, 1)
  tau2 <- 1/invTau2
  for (i in 1:20) {
    theta[i] ~ dnorm(mu, sd = sqrt(tau2))
    y[i] ~ dnorm(theta[i], sd = 1)
  }
})

## steps for H0:
modelH0 <- nimbleModel(codeH0)
modelH0$setData(y = y) # set data
cmodelH0 <- compileNimble(modelH0) # make compiled version from generated C++

## steps for H1:
modelH1 <- nimbleModel(codeH1)
modelH1$setData(y = y) # set data
cmodelH1 <- compileNimble(modelH1) # make compiled version from generated C++

Fitting the Models

Fitting a model with nimble requires one to first create an MCMC function from the (compiled or uncompiled) model. This function then needs to be compiled again. With this object we can then create the samples. Note that nimble uses a reference object semantic so we do not actually need the samples object, as the samples will be saved in the MCMC function objects. But as runMCMC returns them anyway, we nevertheless save them.

One usually requires a larger number of posterior samples for estimating the marginal likelihood than for simply estimating the model parameters. This is the reason for using a comparatively large number of samples for these simple models.

# build MCMC functions, skipping customization of the configuration.
mcmcH0 <- buildMCMC(modelH0,
                    monitors = modelH0$getNodeNames(stochOnly = TRUE,
                                                    includeData = FALSE))
mcmcH1 <- buildMCMC(modelH1,
                    monitors = modelH1$getNodeNames(stochOnly = TRUE,
                                                    includeData = FALSE))
# compile the MCMC function via generated C++
cmcmcH0 <- compileNimble(mcmcH0, project = modelH0)
cmcmcH1 <- compileNimble(mcmcH1, project = modelH1)

# run the MCMC.  This is a wrapper for cmcmc$run() and extraction of samples.
# the object samplesH1 is actually not needed as the samples are also in cmcmcH1
samplesH0 <- runMCMC(cmcmcH0, niter = 1e5, nburnin = 1000, nchains = 2,
                     progressBar = FALSE)
samplesH1 <- runMCMC(cmcmcH1, niter = 1e5, nburnin = 1000, nchains = 2,
                     progressBar = FALSE)

Computing the (Log) Marginal Likelihoods

Computing the (log) marginal likelihoods via the bridge_sampler function is now easy: we only need to pass the compiled MCMC function objects (of class "MCMC_refClass") which contain all information necessary. We use silent = TRUE to suppress printing the number of iterations to the console:

# compute log marginal likelihood via bridge sampling for H0
H0.bridge <- bridge_sampler(cmcmcH0, silent = TRUE)

# compute log marginal likelihood via bridge sampling for H1
H1.bridge <- bridge_sampler(cmcmcH1, silent = TRUE)

We obtain:

print(H0.bridge)
## Bridge sampling estimate of the log marginal likelihood: -37.52918
## Estimate obtained in 4 iteration(s) via method "normal".
print(H1.bridge)
## Bridge sampling estimate of the log marginal likelihood: -37.80257
## Estimate obtained in 4 iteration(s) via method "normal".

We can use the error_measures function to compute an approximate percentage error of the estimates:

# compute percentage errors
H0.error <- error_measures(H0.bridge)$percentage
H1.error <- error_measures(H1.bridge)$percentage

We obtain:

print(H0.error)
## [1] "0.2%"
print(H1.error)
## [1] "0.22%"

Bayesian Model Comparison

To compare the null model and the alternative model, we can compute the Bayes factor by using the bf function. In our case, we compute \(\text{BF}_{01}\), that is, the Bayes factor which quantifies how much more likely the data are under the null versus the alternative model:

# compute Bayes factor
BF01 <- bf(H0.bridge, H1.bridge)
print(BF01)
## Estimated Bayes factor in favor of H0.bridge over H1.bridge: 1.31441

In this case, the Bayes factor is close to one, indicating that there is not much evidence for either model. We can also compute posterior model probabilities by using the post_prob function:

# compute posterior model probabilities (assuming equal prior model probabilities)
post1 <- post_prob(H0.bridge, H1.bridge)
print(post1)
## H0.bridge H1.bridge 
## 0.5679244 0.4320756

When the argument prior_prob is not specified, as is the case here, the prior model probabilities of all models under consideration are set equal (i.e., in this case with two models to 0.5). However, if we had prior knowledge about how likely both models are, we could use the prior_prob argument to specify different prior model probabilities:

# compute posterior model probabilities (using user-specified prior model probabilities)
post2 <- post_prob(H0.bridge, H1.bridge, prior_prob = c(.6, .4))
print(post2)
## H0.bridge H1.bridge 
## 0.6634826 0.3365174
bridgesampling/inst/doc/bridgesampling_tutorial.pdf0000644000176200001440000132403415107052017022375 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 4824 /Filter /FlateDecode /N 82 /First 688 >> stream xœÝ\[sÜ6–~ß_·uj* âÆÔTª,É·Xruì8Éøê¦$®ûæn¶-ϯŸï`7oÝ¢lÍdwK¢à!.ç~%XĦb&™°’)fbÃ4³¨–Æ’Y–¦¸XleÄ∠©-‹c& •‚%Q"Yœ°D ’,1+&…0,ÖLjįŠRŒ³L)™°8eÊ$Љ¥F£L&SpEÂt$0%É´L ŠikS&43Âb¼aFc°ÌÆT¦4c‹É°T(¬(f©J0)ÁRƒªi*5£©FIŠ šA¢©¢1³Œ¬ÁZ^„'“”*:b´ð8Æ$V ‹Í¨È4e´–Ø d!Ö ÈBc®x],h7¥¡ŠLÒ†¥€/9Š6E«ä$Åô Kw€,l°d)±Ã ¥ÒØ*Ml' ÄRcò %-Gуíd™âqM§aOµ JªÆÇJD)¶•Û_T°ÿF3 ÈJã:de"TYY¬d•š˜Bl‚dc' ë„ µ¤Á€ 0 ÈÚD87Šˆd,URt2N bœ)*)6›ÛË´€Œ—Ûÿúûß?ËËl’•Ã6Eì‚ñóì:_³ÐøõË2güýÓÅ5ûñG÷Èñ*ÏÊb1?ÉÊœ=:ùADBáL-®(ÒDÑã÷»0n±b&ŸŠåú>üã;¦§ØµãÅò˪¸¾)´@ë‹lRŒ³){ú%g£ÅUù9[åxþl1¹ëç«Åd3ÎñŽçç§ìùÍb]®Ç«bYÿGêqŒ1¿å@²Õ»âÓ±‰t¤V~Šûs]fåããŸß3¢ª³lEó1ßmºØÌKB'þª˜¬ÙŸ hÚ @r*€Ð®ð-å7Nû›ÀWh_¤®°Ö©–úVÅ¡”¡ôƒã8 ¥e¸&A”äÊ$ŒK¸$Œ“a\˜°6”a¼ ãU&›ðœ ðmxΆçlxΆñi–‡u‰°.Ö%"?Ga/«= ã“0> ãÃ.‹°ÍBú÷¿¯pÓ£k8°'óù¢¤ƒŠm5êx1/ó9n ég ŒŸÙÑâæŒ-vé=ÁZah…ûùz±Y@?½-ŸJBGágŸ21[O5«Åx”—€ÉÏOžarùm ?þXŸg5ÍŸÏÏX\uì‡Þ£l;ØÀÜY¾þþb1Ëæ7/&Åüšñߊù“ùºØÝm.K‹ n;˜¯_~ò·Ó36޾¿È¯7S`þîF‡«uy|ƒ¾ÈC;É=q¦Ã^žfa„¯=4LzRÞÐÑhwâ‡~$pO:üs瑨ŒvÝÊûÖî²í!HÝöÔ©5‡žÛ;M%z‰ð¬‡â'G5B2J¢ó×à³De¬r} ɈpKKNÁ`Ü3ÔÆX#ñ«p0¨DX$ì¶¡n`ÃU´ÛzLBNVe9SÝwK¥¶ðS§Mrúé~’’L–nƒª{4 *é"˜»· ûQŽ—üßû©#Ͼu½ß²˜õ˜x„Ÿ„\\¾È3`ÏœxÀ#þ„ñc~Ÿògü9žÍfÁ_òŸø+~ÊÏøkþ3?ç¿ð >â£q¶ZÌù¯ü Ëãïøïüžñl¶ÌWël>áYÉ/ùå*È!Ȯʪî(óq±ofWÓü–S€/è}žs79žÏ&Ùú†çs_|ÜdSžßŽ§ÙŒ_ñ+ú-¸ûý”ó«)¿×ã×ü†ß|YÞäs^ð"oÊœÿÿÀ§|Æç|^Ìs¾à ü]ò%qM71WóÓÂä‹Å„/§›5ÿÈ?nò5i ¨,Ê|r9u놵|uÅ×|Ï ¿œuþ ³X·|=¥”¼¼Yå9/‹é?/ø†o&E¾Ê×ÅšâŸù-ÿÂÿÉÿ™¯ÿÄ´èľ']–?›f×kèäŽ+y)ð=d‹ë›IÝɾ÷ýÏŠiŽD¦»õ:›å‡˜èKhJÅøÉü*^wV¬×`©ŽùAÁÆQ™ÏÞâMºÎkŒ•¿ (%ÁL:ÜûíÙ«£³ãí‹M÷‡nÚ~_Ø–“CÊÉIÉUòêýàZï§1ét?NFz{Ço¼/¾=ÊÍ9qo¦¿ÔnÓ'iÇuútÍ}Ž@ržJ®â¯@çlÓÀ¨.o`ÈÔ'ò¼’^К¸5ûo(ÖÄñXK©ƒ5ǯ~:òlûbqO¬‘²‹5IkÄPù/p’dÖˆ­„?üc  ¦¡›Ok²¹`&iëzH>QŸ†ufSS=£ ¶r2Ì"³¡õR÷—Œ= ¦R!šú‡ý‚j<ÞJý³ ¤xbµ+é>ó£é"X¤„>в”•ÈxQA‚â éH…Œøü–­_5Ùó‡öz®KüH ^è8a™Õ!d†žó„&ÖBfÑFæý85™qšw²@ÑEæ'¿Ÿÿöô]õbۃ˶šìý5Vއ²=ÝfyF›ܺϹ$¤#*+ô–¹›` ¹<ÿl˜“F^=ì:Às°S¯ñVeM¶º/`8¹64]ª[«ÜýªŸVjÁê.Ô£ ²÷ºô°l’Ï;êÐPókÔqÔ¨ó›ÔpÙÔ{jºŽÓn®‚2ÓÑdî¥ÂîâU‘JÙªNéäµ_ÍM5Ú¾ëµÊ›-KÚ$¶Ó‡R˜ø: ;úåììÕiM»ñï«[ˆÕ\·&L—ÄL‡ÄÛˆ„0އ[ÛFcOlššŒ¼Þ@ö&ʺÒkC.?ºWÂx#i6o”bš 52èŒt}ÄêÐÝ@?ÔX.I÷ 棽(R7kz$yJSWvˆŒtr‡ê]fTµýì¨E~PK¾^-¶swOb7iðq•ø'‰5Iº0W껃ÄZ-]{åÂéL•™R7Q9öÚ]£C“÷6*>ÞA• 5Içê-€XÈ>Ú”mÚÜK#uÚüžü~ ½[™ÛRçç„1þæâ¥ÿóè¦,—?pž­n‹O«kž]®yÝ¿ùs?Ü£'¤z12d Ê ˆÅ¾±šä«à ‹ËÌ5bßx%‘/lL¾­D?äºOí#û8q+¢>-æªU9g\Ýåíuy]@øÇ&¿  Õª¾\ tAÉ ~CÔ)HPÕɉ_ÕÉê ½:¨/Pñÿ­¾ÀDíƒ×kÇør–]çGwøë6ÞÉÙKB­³¬¼ñèÔï¦ë¨9d´pIȬçH’Õ`zqÝ$ujÚ)Þ2±,h½ŒÉ¹kUêõ-Tþ6^fëœ10ýŒÓÛLÒ4&ÉŸFg8‡7uBÄE5Èc˜bVtP%R· ·¬V:M‡VC. S‘SŒ4Ë,‰çóF‡¤Pö#qz$ÏŸC=‚që%=¼®Ýƒíž‚ÑVlvËd§Ëè;yY3ò)ZÞ ¸vJÑ5EZò¸j¥âLóõ\u¶!»`–_gÄSƒOÔŠ¯nÄD‹k<¾õ«d°Rz•c¢ÿ2P±•ÿDÚ>îYù“k–ðAªß@ÎAkúÍÑèíË—áí£/³ËÅtÝOaÛ?`HÝ&0rí "0SCõ» £FƒŸiþ膙romLa+âÁ„WD;÷1-´CF5hÂ4h‚ÔŽl¹\-n½R™­œë3ß:Aƒ»7fçpÞsèî³Í´,–Ó/ñé•ù*ŸégšoæPH ÀL÷y •’m=!­ôÒñŒjcºicú]¸6Õõ>TïN_ž:/½’*Ÿ¯‹Åž@€ß¶ßЕºø½x3/5Ç„zQ^¢×]ä!‰÷[Í Ê5]ÆÂõ6,ÑK©p×!L´8*ëB™žêûGîžØC臄Šlø±bé’HxõÒW\“¤0×þ©šW—ŠD“ŠDŠÜ€&‹ÏóåTw<mom–Í!›ån@?×õæe§yÝPÔ†»öe·ÝºÑ pÀº¯7Ë%¿ÉÊÏÅ$_—¼A_¯²é¤X/§Ù—m•; ‚fPoÔZ—E³QoÕ `Ûz¹¬Y$[ÐU«Þ¼,Z­F³nØTð«.]VCY-+4ݪÖÈ{ ¥TÛÔÝ`d)t ~y ¥Ðw½k½ÅÆÒ6»›© dd"ÞøèFª:{ýì¸É:{Ý}ÑÝ\,‰Ú\¬WJï¸XHàèçbäg.Ñaç{;È}Ä×F…½¿ß2¡ïгxqÚã¼n)°®YÖØYˆÙõ`ã“ÕA)­Kä– s™åƒTÌ*@‡èz_u'Ôrî •ºf°Ô=>óâ÷ÑßÎFGg°PFãÒ.žŠž¦Ñ`¯tÇÌ^û‹F·X[Õô¿6´±§ÐÆþ¨ŸUœÖô$mÛÇ…n—éfÛ:’{wèpH›ÜúOÔÐÃ9½=}{Ö07ú‰©ØÞ!ƒ:ùƒÚ g+¹S;dZ›v[2¨$:x'u"ÂÝWùöT¼MS™ñ²ÙÖ<•Zj˜ÐéøÞ?I?*&E_»(\‚–”|©–@ÅK%Áò³€9mHc¢ÏœqÔ@ò­Þi4Ë&J¾Rº8n×HÞÇ75¿ÿ>{8¸›Öp°„ØÁºG®¢7u.ä—ê8øãåC…Ž=m{q¨§,dïñ‹„•ªºË!uÅBFꆅ,ÅŽ?N‡w}³?Îîö˜…ȯóÇ}ÍFݽ9Ý…?#RÖ‘òa‘Ç£—ÏF•[ß7k «…ɶtSCSM$å‰Û&£ä¸!×ý™¶Ø†*|T‚b}‰Zb‚8”wÔ')©_Ù¨ctg{d ³°ƒšÑÏïÞ={S½)í—Êí‚€¶{ä]q94HþdºlÇ6©•‘¿œ¨£< ™¸2ry—í+ªýõ5?v'cú‚‡¤Ú½Áº{*šIð>¤Rø±áGJŸ¤;UåòGªr7Ux÷zr”+³-“jšh»…PÀ¨nðªŸîˈ.å_Ý£—«p̯‰ü=ÝFýú"~ôDüº±>èëK"üŠìÁíLÀûûdºGJ'©ï£¤WLw|x{Iap²ß€8|òM‚§&l$å[„:Å'öI\û0‚§žĪ†oï€ÞТ Žûhï[ÑÝ*nÔè9;÷úM-H´˜Nê¬"õîtdU'AV ð$–L Ü qY¿v'š´Œ,J@¦„ µ‘Ò_ŒûB@²4¢‹b•A´¤ ÇŸ4Ú=š8;ÒF ^£àhâóh])(&vÓ¢¶ŸY TK•õ£Boäm8… v,Ý¡‘4Y*éòù¹Õ¢»™¹Í4¯ÔÎAñù'UP4«åšøTÈý %[SÏŠìæŽoeH3O2î‘ÝRš¨o¢6êïÁÁÁ!Îyâêßk³48 ÞTp(W)ê/&~ ñR7èÔƒî X=aWÙtøÞÊ; ë®å°Šû|`õ"Ÿ~ÊËbœÕá$Cá4ŽªH•¨ò×Ùê˜%ŸUub{Ž\<̑׽¹¬òþ/²ánÚÚHh£d}£ÔÿÃz ¯P]¥g•âûíõ ÏÝæ 'Ãò(ÕE3{>sýk±kFõ[@ÍÍLI=ªO„øó⤸ºÊ±m´Oº¸€ó93çtfÞÓÌ|f}|ìÇô¥8Ÿm( ß”*DiWÌû™¥[Q`’Ð4yï—&‰4æ-lbˆ^7ß}õ¼Ø×Ìžrµ¯®pîõ0Ú0€¹8kúØ6‡>žÞåé¸ Ù8¬žëCçT¥õÒïRuèûX¶Kbµ< Ó½¨Ú&불_Mx܇ ÄŸC²æ÷ôeyød“…/8ë·ôïÚ§“ŒÌ½Ý‡ÞVqÊ.ýs >6} ¥Ô€?ØÞÔ³1X3}‚µòLX;Ämi=Óƒ5“3šÐÛà;ð»/¸vfp#—¤õŠkRŽëÉ"¬‘Ùáþ—D3…|&­ü’*­’õõÜ”ÆÜKVOUaÄg:7rDX=Ÿ„5rfè_St2LX+…µÓnèÛ:¶ËÊqÿ¢•0ÄÚ)AÞ ÜÉMb=ÉI¬Ä:éI…Ïý\}/;7'ÿ+˜ø^^‹9ÔS1©§bx ¥Ì‹‡f˜©©öÏ}Û€¢ÿ^ö.&Îûà\k9ÇηØÞÞ—4¡·Çobïÿ…¸‹endstream endobj 84 0 obj << /Subtype /XML /Type /Metadata /Length 1504 >> stream 2025-11-18T11:10:06Z 2025-11-18T11:10:06Z 2025-11-18T11:10:06Z dvips(k) 5.996 Copyright 2016 Radical Eye Software arXiv:1703.05984v1 [stat.CO] 17 Mar 2017 endstream endobj 85 0 obj << /Type /ObjStm /Length 2493 /Filter /FlateDecode /N 82 /First 732 >> stream xœÕZkoÛÊýÞ_±[\Ë}“ÀÅüˆ“´I`ØmrÑà~PdZf£‡+ѹN}ÏYŠIɲl±i.lRÃÝÙ×™Îì,S/‘¡ÓL¤©pÖ P!Ñ"K„R.™Ê9+2-TP™ÈŒP™Ã¯Å/ZfNhe¼È¼ÐL:3íR¡­1"Ë„vì,I„ö†„:°[Œ¢3›0 Ba…QÚƒpÂèC$^ïIa²X•‚p,É„U ­T"¬„ÖxLTiamBÂëØ³²ÂCÂcÊ ›)òá’Àå€óVX¦S˜¸Â:œqh®ˆ͵HäÑF8ï0mApªÚ 22{á2K=gý¤ÂÅæ™ðÓTÂgƒ%‚æèF‹`8€¬%Áq˜wðèŒ8‡0º "dxR&A| Hh•…@8RV‹Ô²gkDê8–µ3çc›°Ô˜¦Â¼3Ã9Û²Õ$ lG¨ .Å NAÌèC9Ê; gA§žªBÁ$JCŠ0¥DE6ÊØP \JŠwNlhK8¯IQ; “&âá?‡l–v´YÿyÈŸ¿Òt¸÷ªÝ{ÛÂ~¿ü:Z sÌ/ÀòäÉàöu^ŒnêG,ì2/ÅŸåy)‡³Éd ¯e!ÿ%¿È¹,ÿ"$aëšügãÁh!lµâããÙ=V›TuªÃ>«*ÏŠq“~ 5ŠÞ&ùcBª ަ£qކò]±X@dY¼ÀPrYæ“ÑúØ7Ä&]®æµà,XÃÓY õ]~U êé4¼áR˜æ~>˜s¹¶â»È³»ù0_öóò¾|uYÊœoÈÕ²øšŒçóÙ`~yz†µL£üóÌïË(zÊç(¯çÖÐÞ£“ã¼0³É`ª’­š«»š›n %]ÅÕû*nÐz—â&»U35&þ¸^Ї¶Zïsi´Ñ±]³õÓÿª>xoÏÛáUe­í¬G/ÇŠ³p¾»rÝœ y6Œ Úß4®ø¸2®ó›B~ž†_òrœ_—5='¯óáÝäzœßÃdz©¼’¹ŒÝÈüßwƒ±¼.¾æòz(Gr,'ƒáLÓbšË™œá~+o©´±çHUýÞæsNMÞŽïr‘OŠª÷Eþ5ǽ¸—åÍ<ÏeYŒ¯pÿ}&ïåòù¬eó\ÆC6O{‡ys©›O7lþAÕÞÛÞý£öÿ´aS—G¯ÎÏ]¾l.¿M>ÏÆ‹í.¡6è•a%›†¥;†eö4«ÌW†ááÀ»ŠcጊS=®#åóbñe‚éËI1½[4ij’Gð–täCs ±»Žp²®pÁh_ !4Ú.¡åz/èô—ƒ_Qù…ºáÝRi. iU¿}5Íšf¹¤ ÃËšf`YÓ)UM#˜¬ÛZ†‘KÚ1€\ÒˆäÒº-‚°L5'µöiÒ“×h8CÑÏ÷ßÌ€žo½ Ð6R=ÕPÒ¸«è )ÄÎ= 5Åpó)>Qغº=IØeÝÊÜœ5a6?ºB>Ú=•ÖôghÁ™çÚƒ¾:ùú¢.g[˜í:0µr«Ý ÕžN̦͆uímdz£´ÔuJ‚±½ôŒ9f”b7¢uªÝQMü–í’ko—ZŽùd¹YÉÄ_åM^ä}!¿µwLn{ôô*k±Ñ·]tZ‹rå¢w+A1ôý©M¾¤6ݾü̓×oË}·ëɼ•jš·Ò½˜÷ë|ü5/‹áàÅñl|Õ0hÞôhº(Ö;¬ô_Ç„J¶ÈïÉžï¡Øá!÷ Yú¾di[²tÈò9žï h÷ð‚ûz¾ž²!L¯6á<ÄóõHOÚ<:i£ÕÏ_Ä» Êú‚Ê´ :$³öƒBU§ç†Ê´ü‘yÀí„èòH”ó»¼®Zw¾á§ÎßÿíèÃÇŸÎãAYLgoqѽˆ VZïqWq(ÚˆCõüUŠ@h¿04¦]u…î$ÕñHËjžþd1?n€eäƒñpÛü5<±qõ&¶aÚŠ<&ŠÐÄ” ì7Å–€u>º.ëÙóë4%ËB°"E¸êÿxž%ëbu[“…º‰×­LüHá?ÁÅ_Ëಸ.+àJqer„j V VM¬¬¬¬¬¬¬¨2`5`5`5|«««««+Š-X-X-X-X-ËÀŠ0ƒ¬Y+ØÅö`{° =µ)ÐãRÛÁnÖÐâ*Ø}DÕvE»Îøu>*ÛZëö›W/ÏÞ_lXÔRî°r›¤£ÜˆÃöTn*`HWt*ÒúJAm¢B‘&_Xf·ëߺmTn*áR·+a;c­“•ÐD%z†²ðl²Ò¼–9§Ž¶è®¶<&¼]ê’*·VýHú2{êUÔ¶§oá éÊsijѕïxr@Øð;{F0Y_© ÓŠ—Íw‰—ÜXöµ1y<+¼ ¨í ÐVÄl¾wÄüÿ„°¯ý¸mEÕöUïkÊ}m}­kÁæ€míBÿzyztò ªÙt¶-?¹™ÎXûP»yÔ¦¬íøPî1÷t¢üHG¯ÓŠÝ,ù_ý­GêÎa[}›“W×Eû¬'Vë³A9ŒGÅ9Ûq\Ì®ä\.d)ï6wéô*7ltÛûªÖÁ*8lÇ 7^^•~Hþ{¦&ý?’™4ÙAï»øµÓÊ\¿Û±â¦÷•S°CöøýÖÓwû¹~Cm.§¯}¿kmfÝ!ÉÕ½õcøä3PSŸVI+ær¨e¶íiÞMØz::V®Y¹1²:ìÀÒ$}ÿúV删~\ÍêBÄxdGÄqZ\_ç†H|â‡sç7…  ¬>©âw|±ªÏæâ×Q„t™!«;{Έpwñ~7Ôü°§§îyÞ"óI÷Eü¨5žRö4@ßý1w2Š7XÓK¸A#( 3 ¼‘â§ž#S4ySÞX¤b#Þ2žE¤XgØ:–°Š²ÎÆAØ#ÏûÒ¼Ù8>‘ÁÄ›[–±N³aû›—‰Ã’ß„>Ò5qÆqq6f¹:·\C…‡¯—jjÔ"œbf‰“Z.4¢—V+Þ:åÿŸø¬endstream endobj 168 0 obj << /Type /ObjStm /Length 1860 /Filter /FlateDecode /N 80 /First 710 >> stream xœÝZmOÜFþÞ_±[UÈûþ"E‘ ò%iŠª|pÀkî…žšô×÷™õù°ï|‡'DÕ Ýìy=»ó<3»;³gÂáÏx| &¼Å·d2|+¦Ã·f:зaÖR˼ oüF áð²V¤oi‹_<[n ê¯ HzL# :{Í$·$&÷qp)%uvL*zÕ{&5‡V ô œI«Ihô€é:+(&½!š}šƒÀÈÁ2Å- tèRB@3,U@HÎ!à¹ä‚)üA2¥ Š)Ãi¾‚Â8OYO4;¹phv³ƒ%ÊÓ41oE–Â8šÑO NæJ¦§G„±†fÙ- 3\âua™‰HÇ ¡ËG¯f<:Jô³‚¦*³ „?f¢GŠ4ÂF渠Ζ9bUJÇY)¥gNE…9MzgÎ ©˜ª’Ì9)a¿óÐ*•føúx&%¹Yªó’Æ›^k ¡¸ødÞ†Z0O.!ñØ{z]+æ´J 8½® hIm!Àã$´I. 'ʈŸžûc8´õkPé¾ R ¨t_PY8¾é¼W~áå²RLžî .– ,·múÚ7€í@ox'ͳøzòîpÿÍîѯoÒâòe‘ކg‚oíLGçsr6=N.b”•Cgyñì2¢qϳül6¼*¦³¸Ä^oÒª“dpý±ˆ iˆj6åèï‡çÅeŽ9î#XÉl%õóQÑ‘¾ÕGƒU—…æÇ`ÁüP¡½Ÿ¯«Rò,½z‘ /.«&`"Ö~NΦãqš “¿’ÏéÕUšäÉ¿Y‘þÂB˜^ߢ5:Ù¥9Jp7g`§ô¥-ø{ìbiA†îåã½á(S´ïÝ8Ía:Î63_6·'£ ¯%Ã<‡D¶°©â—A‘gpÝ5WHþ˜©ìmý“ñq[ c'©‚q]Pw]]OëE=`qú¾›HG຀E›và|_Àép¦¸o½•tÙ>ê€á|Võïº5„¾s Àü÷ð´»ÂÓ-ø*ø Ihœàš\/Pܘ¶jŽèËœÆ)+¬9eõÌìª9²/slÃ÷Hæô•.„P3‡rÉÇ1§§#=&êæ¨G2§§ƒ³¬Nàssì#™cû2Ç7̹OЇ9=’¤¬¯lT¯¸ÿÞu“Þì¼xûúÕ)¹ÇÓq:q[ÇÙÅõ™ÉMnƒd²=ɇ7?Ü$9H÷–O¶²ZúIŽsó£E†`×å%Ôo9w°V×s‡²¹È²¿¯ÓQ2dÉÕè:¯ç ÌÍskŒõ”—Ï="6Qó®2aX‹eÇlAH¾&]XÍJOw^ï6r“»rçÚ¸ÓKÜ ˜Þ5Aµ ‚B\HÊ‹kd÷t‘ |ꎩáËä0PjØÌuŬ’Ë´ÒÃ`yK(j;Ô<܈uWnµîÊíÉéöÛWï*72w ÉÐB«]¢ÕðެZ¤fô·n¶n¶ÎZñÏ´ÆßdˆuœrIG“ É—©X MGpàïHÂÛ׃Áîû9郯ãÓQÞaTq]ªüðüªë’³Yá@[Sç l.8ÀHÙl˜cþÉx8i,{u:4_¡Ã!¯$uKtˆe:n©kh`‡ìÈÊáþo'/*þÃV9B×ÈX­ÈÉÊÅj¹® ^yìzȇn|îTKsmK©‘7óPº%T}cé,› 79L²dš\ÁU¦çIÑÜkÅ4Ó¥‘y„,é[ò“Ú¡¸ô“u´uÞíe4-W½eÿäàtï¨éž¡5†«ªÀMõ–·9Ëòɦûî([â×Ñ*\ÛÓbsAÌÇtÖØÍÌÆ˜ÏÎ(¤e‰µLÇ-¸tdEÞ²¡u>:S¿*óèv/á|¼$œ·<„UKÆËÁª¥ãÅ`Õ²ñR°jùx!ØR©•H×Ýot¬ôɾ2MY¯H¹¦ðíJ¤¨&×!ÜU_Y¬lÔÔšÃU«‡Al^¤[…°¯ÌY5êjM]ã a_ÙºjÔRÔšZÊ¡Á¦sðn†°§Û ú§ˆ:„kê7}-ô@ÛKý›Áíé&DêúýoÉîÝïHªµÿá`éX¾gÛRã¿XÖ˜¿b2y7ä@χŸ>e0”,#Ê|’Ðz–Hx”ó^¼yõñPŒÓk_ê .úÇâÍ?øcå´ñg¹þ‰endstream endobj 249 0 obj << /Filter /FlateDecode /Length 4130 >> stream xœÅ\Ûr·}çäyžR3)í÷‹ó’Ø–íøI´*Ù+Q¦“\Y”dË_Ÿn3h`0»KJŠ+ÅÊhƒKãôéÓ ¬íØÈ;†ÿKÿÿøòäƒû¶;¿>a£îÎO~=ááë.ýßãËî£Shâ;ÁºÓŸOà‹nƒ¯JÑ %»ÓË“~ûâ?Ï^È-“#ÓÞ©×¼ë^¿Ü¾?þö§®ã¶ûzûÞçv8ýïÉÝÓ“{ÐÍúP?=óŒÓägµft‡|ØÿsØHáFÆU £ÖNêþ»Þîè‡ßâ£Þ˜þþ°a£5ÎJÛÿkØðÑzËt6½ö´•øâµoò` j4Ê ¹Ö×'ÐÀZ©MÿÙï+g|ÞWbtÎõ††µI+Ò¨Vö_CC)¬Sý¿±çµÖ8“0VôþÍôÎgÃF0ílχŸN¿@« 0ô(¸VÁjÌNu'Gn˜îNÏ’Í~ÀÁ<Öáan¯ Gg¬åýKFcû]˜7F÷/æŸá“ÑFõÛüõLëQÁÔÈKWø©Áˆ¡‘`¬Í®ÎæÑÏóëOâëlø`þž z‰ÚrÉûçó÷sŸ¹÷+Ú;¥žñd.Õq5JeškÈ2`án#a›¥O»‡oÁ^)é9 z`‚žà£×& !4,æS#€lú ™â°O` û¢¥é?…m†u‰~D±QÄŒà÷ }¦vø““8@Ös‹&˜>}5í:ëüè0q×¹ uz¶×ð—«— c®Û–û;iZÒ#RÄȼrí:­%.[9.ûßCÃ`‹·Í¹žåG²®-"ìepg[ë*ÛNŸþ@1/¨eÎó#™äî ‘ Pc$úК‘>ýäºÚ®´)ãb…—äàá@‹¥«z™›þ‘-ûË €F•àÁÜÜ1é|kÎÚ°£6»\,ZÐ휱áH ú™"ì;SË}pß»ïègM/y^ Gd°¯†xfMÿÁ/„`N4W(¦¼›Ðºg…š{/Â*§–ÅN}—áLp¹ËûhJ¥Á…•æïOók—MT9`€Ë1“U‰ xÝ%˜pQÀ¤í„mÈ4g¶Ñí¾H×ÀÆrèT¢wi^îiÓyÀ`Ö³ÊÌ0Í-ÉγÄQ »ð:l“ÔRN *•„‹k2‚rÆ8'D1!45E^_D2‡÷I¯û‹36–{)ŽÙËäZ G= !–þL‡ å\ƒÛÑY–¼€¶yÚl€»ÌüÈ­%ÝŽÙ¶ŸÎŒ^É/•;ßÑ‹à–Ü:áÚs—7ú]Üi 2‰Î‹DÍÇy6xÔð ,’[#Aþ‡ÁiTO…±H”(…ø3ŸƒÀ£¯%–®²L6"ÚÈkÑÆòGº ×ÞÚu7ù<3™ÇE‰ãÊùKG!Q†´%ž@Lq¾À ¾Ö$Ä×E˜*#¸¼PŠªiÓÙ.’V´ 䫱fŠM-®¼Ñ¹o’&¸‰päèƒIÃ;QŒ …{¯Fg¡1HÆYojœí œd­÷ 1JéBÃ÷À¨ô brfФRÁ€ ƒ…Fu‚v°GD¿_ã#Ð/X(Ä9¥ªÄǃaì †”yØËð5lŠ}žÃß›Á…Ý&t‘2œ(,§×ŸÍ¯¾¤ˆ¯äy“’9åw`Õf´²˜§Ô5¤­×5§*Ä2¤³ÙpaTã­§£ž•O]Ö¼HòàEðüR“LŽ˜ì ‚ ƒÎ9Q^ó<¡â†E²ÕqjĦdÒèê0gm^ V@{Hµ8Xg&-€U½S ZMßk5ç˜Ø×~ûM.gÌ<žÛ^#f ”+Ѱ ”ÀǦHzçÎVzn¡jeÜ©z‡B‚ò4i®f“ßÄ/V±;áC* áwS¶ö¶÷×AA @µq‹û<¿›¼¸zéæŠŒûeé" ôµFOÑ'BŸ@Û¿/pl¯ÍÜõ µù=Jµ†ùë]È"ÿ:|PR÷«¼Ÿ6I­ö¼ÑzW‚5% #ëU l,(ÈzºæÐ“Ìü8“å®ä ò˜©‚X¦6õÜÕ“9«Q9¦Ú!ü0q2'íÖ¼°¹!ÍM$žGJñ¾Íð‹`/¦©mêláõ‚`(Y´`š§«ûžßDÚã!ŸyL꜈áJ€Ú "SS›’ÇÅUDGŸDn±4ØÄ-„p `}ÝB©w/–4.æžÉ‹FìÀ†Z]b¬«Ü=V²´–.¦aèŠ0åXî„:­C3eëýß–V«âÿFX‹õ«2þ¿¿Ð(±^*gçV(?Ä~ ‡R¦£ù•¨ýÚˉĂŒ ¶+½ß•þ\[2ëúßL× M%c>Ê-GJUËÙ1‡“Ök4“¶)Ìĸ›ê„iÛ-L]@ˆLç›™ö%ŽÂ9w>Ô6cQvƒ¥ sXùCˆæàSÄÇ+8/ö©2ÛEŒysë_ª¡Õ®pþM<²ô Ù„@ ‹¦¥œ+3ÄIQg ‹ÎìèÈ¥š˜bÌn… c/œ Wý´±yaÄ4‘ÊrßD1Uû‘ýw#žïÌ‘k^²ŸÉXË'RÔa)¾iÈnâçÏ*V@A ‰G§ã–¦…Ü·HO’°BREíWT …:0÷ÓXG”¤Ô$÷ôëQ®’”Ä·Ìf€‰—mUÑXÇa¿"XË RºÂ’j.Òi¦Âp·ª–+47%Î+j# úOÆMW­<•E]O¢Ùž¹ÀMsW™B,e*·³ÚÁ–h›”ÃjHs¨!ÃWYvVÜÕ¹n=*"ˆØ¶ÉOk)Ýa? ÀÛ|HÂ.Ð’–H°¢ÿ|)êIJˆç f/ý‘M))lЗf}“‚©žÎZ6AAÞ%1w  [F5x«Š³[ 9Éž tæúÐþí] »ùöYÉè81.ƒÜ"ØX/µÈ¦ÄO\œíì‡ 2…wÊùe³ÐvՊг!æ‡;9úð”Ú”þ¾òQý…‚¢dŒ ¿–%3£œAw¶¤ÿ+ΘdÿÃàqIË2Ôù°LáRg%yMÓòiZ?d®œïy5 c-ïã,³æKB>‹Ã8oÚÅòø¡W[¡°ä^k Gd_¹W´åÓeú3¢ tÐ"•ˆþ¨µ¯ÃèY֮﹖€åsÅ|ÌÝKQÁ›nSe ‚„)ãæüùÿ·œˆ^Wì皘®*µ>)‚*i]$Ë¢kYºÞ…$‘U¸ÞÇRIëQƒÏJ\eå»"¤"¬Eÿ›©$ðß{¢²À°dxÛAÜ,/!™…À{R\¥Ätªºº¬è^«jeÎñf¡b•ðtä ¨K’ôÓ…ï„:5¦ºd!ìâ$ËÀZsx5Ÿ?ÉPúI…âXà5œ*”öÁ á&¨öeø–…KA²`ž" ·6§Èœó4IöÍ#nœ—{Wºk‘¿Ãc7Õt¯f@ KºIÀ($çq®g´*6£u{_kXŵxIß¾¥f,4ͯ â7”ËXʵn5d±œVäÍ”$×|  š£VeŠ…2œŠ 7,‡)mÓef)*ˆÚ:n«i'óДHŽñ‚¢\œ8#)75Ê=GÉI’ÊW‡þ5Au_y"æ·’Å,}áý!јq¼pþ€iÐÕ’ ±–Tn¦ÃžV ÈgtgSÜ ‡Yƒ‰EÚÜ+mß2zORÿ}Goel;zƒè ÷0ÖV¨L8ä%Ç6ÊÏ+‡¨{LH+fÁfÔ‚òc}`¿ÁYÆìæûÁ3pF^ ÇØËyo¶¤=È×Ò:ÉŠ¾Ÿ© dŠ*6Š*_´¥lé”ÉÌ_ÂÏ ¼À+¶Û˜u¢\¬Ä›G܈ {s3ŠS< ÂåVó(Ôšq¯ ÒÕ|¥uÍàð>%ô(„mÒ\å7‡I6DÀ:#“o›çî/"çÁ²­™ãsóÌ„”Y¢huïz—ñ ¥Å+8 ]b𬵶²XpŠgqk7_а*´ß¢,"õ»iªUËà+ D7x±ÀH«’ºÃ1K†»m²èß•,Œ¼º°&¬™©ä*ׯ ?æbÅÞbÌ…ÔÊ!B :UU-%´‹Ð+À•ÌònÀ»¿KšêIÄÞÓ=[?KIèj\¹W‹û{¤ÒGÏ\ãáÛÄoEp5·¢ Xô™.̤d8ZoÉçÏÇÚ•37å( QUô.Q¤ªQÒ£Ñ]ÌXbÀ÷xìõÈG, '^>bL©ÛɨøCÉé,M-¯y“b ½ú•“`ÖWà{ŠÕ‰îñ œžÑTMs•ªo_$ÍvimL' b›a-ž$9ÕOš*rEƒï/õ4úÛ–u§qªënÜçŽÞ•Ç‹áZýW'§{Ø9h.£"œ§_¼ÁŸ¥q ä÷½Å½†»°Ú…»õ0§ôþþÎj þýaøUºÔÆËÖE}mÂ[7(kiR¼¥4™NñneÛ;ð5 Ò¦ª–‘ UÐòÒ?ö§~(æ!â`E¬¼:ÔFÓê]¸\¼Ö"^b8†œJµ;YÍñpú½¬£þÒ¸”XÃÊ|?·?†¡¦‹#QÉæŸuÏRùè7ÝUÒÓ%:IoG“ßòdâ[¹ÀQí(¹ÝÜŽ*E…zWŒH¥Ein™qå6Í_Öýiu‡éúíëñÔTÍëÕé?´òÁ}Áñ¿îrïä'¸Óendstream endobj 250 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 9087 >> stream xœÍzwx×¶ýȲ5C Ѱ ddzï=PC¯6¦ãŠ î½b[.²emIî½ÊÙØÆ`z¯âI(‰à@nBI¸!gÄñ/ï± —Üpsï{ïŸßg>óy4Òœ³öÞk¯µD”© %‰ÌW­¶öõvô™¤†SÖÔʆIm FQ¶Ôhj#5†ÚD¥6S ©qÔj5žÚJ-¦&PÛ¨©‰Ôjµ”šL-£¦PË©©Ô jµ’šN­¢fP«©™ÔjÕLݧæP=)oê=ʇúˆêEùR½©>T_ÊœJ¦Xê ª%¥úS¡”%£L(Kj5DÑT4ÅQ Cí¢ºQV"5uZÔ]Ôƒ²#±¥L©pꥨÞdŽI±x˜¸Ðt„i¬é 3G³»’’Ët8Ó‹qî&ê¶³Û¡îcº—öX×ãaÏÔ÷6½w¿×‚^_÷žÕûzŸ±}ŽôÕ·¼/2w4¿Ã^í—&í#½Ö|ÿ,ÖY\’yÈÚ,­,Ó,(è0hÅ ¶÷ÍÞßøþsn ‰upTä ;4UP™º”ôl4¹ÊЯMÒ%Êb‚#¬ëu7 hçm h¨Eš æHÞŠ.öÖ“úåå¸UºxÓìaî+Ùžœ^'G•hÍš>kž°LÞ‹W)*øIzQu+ÚÓ*æ=‘‡õù¿‡ûŽÁ"ÜKÿ>uCïýü±Ü¬ )¸m°}°½ÏpûR¿#‡àh€&8S~¨êÈÑÒýpW:T:ÀzpaÞ Ý{ 6†­¤Ú+ÙYí˜&Ó ÂBÊè$¥ÏÆ¥x9:–ZHµ,­H9Ìh7ŒÁ(¢?‡ E?rÅ?Êð¦×PHt7Èã›à‰c¢?Re5É‘-lÑgŸ\L©K‚úYT°Á8Þ :÷‚÷Û#6ŽGQÒ,HV€2VÍÅã¡V³±˜5xó^tB›ö~‚Dm“ðˆ¹6 TyÀ€®TŽbéBHW$%AL<·ekÃæcÁ¯ÅÓñTì€Ñ <­A3Ÿ"9bä%‚7Ð8=oiˆª0y ´Z°}ø"ä%Eì˜gØt®£}p(×B³Oð0¡(n¤+íåíîoÒÝT‡ÌþQsèL:5²Ùök`P¿?ERù¬þø½g.pv)9àÇE•‚JH³ýNÖ¯99ðæ'S±™°çAìå'ð1•H$ñX6¯&•=KÂËøWéÙäíé–JåÚ7H8جB’ŽÌö|ƒf‘N–´[¶ã¨!Þ2"J9ÞQB>?¤º¢Ì=8þE?7¡6)²ÆÑd<ïÝ)l"As‡F¡uò‘ý‹ÃÖºm õ³^?˜©Êï£;²ù¹ä2\ >¹øàºÌé0W¨¡Þ—^£:¦B´·\óåx£´ %þ|0í2)ºÚéʇ$8Ì1¸?îûdb®8X£—ã¥okæ…îJÁ3Ü780:ÊÓo;0 ×´!õ¸ÞúåÝæièjžC—  h&Ùä 6´µ­ÐUˆV(›à€'-Äó Ž–]UVò=ý$Ûs†¼H¦+¼Æp“QBWqJ%h_dEI†7 û²åå ÖŠ§ø¾ÒZ¯‡…nË¢8d"°©ü]l*Ñ퇣°ŸPT½ 9»AŽ&Ðì¨gÍm_§kA­åTêÐðg|Kwë‹*rj9²QÍ%a£G èá¦AmÎmwÚ*ÐÐ ¶‘ÿß&íXì‘?/VÂjtõ·¡iàxÔQ†4k=rëåHý€þ)ë53c=ÆrÓQš„Ý EO 6˜#a©ý)…^[Ì.6¯;†œŽ³`g¡vÔO §½÷ÄäxÔîÌp̰É^– ˜úÊIêd/-§‰Ë&R‹å?whb2ÄDsª¤Ø¸$•Kµì&¡éå²ÌƽÀ·*X^ë_­ü"Šao꓾\4`³»óÜ™nçï‡qª\uJ,0Ñ.Ç2:²S5šâbN«mQñ!ÇÃêRRô‘Ͼ y!îs” Š2ðÃ;xeF›ØˆIâ^¤éÌ7Òtjéïu WùJ›b6ÎwÞZßA0[ê.ýöh2YÂý¿xÖÚžERx ž§`G숦á©ÈúæÝÊ‹{å¹Áû³É„Œ|9ZH7¥¤~Jb(JxH)*Ї¡(Þ€V…šÿý‰àÁWè>ê#=°^àí⺠rÈ€†ðP¡ÓN ¨g{[Nb‚iÖp×HpïbnT߸Êuʋ˴·3ùO‘}:ô7Ò YÅ—Ó Úì[\¹Aâ®Z@Z§ ÌwãUNwd ŽÆ§Pô_ßóZÔë¾$r|õ$ºžòÑ)œÿî{:IV¡WŽÐAƒWó-²¢C‹|Ÿ~\ŽÍÄ#ÿQ&KèiÛ–.œ™tôÇöD÷iö@ç«·A5EŽÇÐsawîPõån2MPÝ5è5Å j£ý þôU×îuÙw¸JagsȾvœŽUÒwt];S)æpþªï57Á®UË á'DÅ|”˜Oå‡‘Ä JöQÁ4¡56ª³ƒ â’“’Ãq† ›¢Ze.¤XV6AiŽX¤òg·–’+¢ÌõBÃ0’¥EisÜ™™’…,ÐmYfYáÁðHÑC*XÈÔ™ëùƒùdº™þLˆe ïÒѱTåSÁ…¤ný¢ÝåíÛé‰[l6rì%,· ;ìTΞÊß_9»8xW”½œ…7Ö¶ýróúWÙœ&ƒ4ð½ ¿Ž>W¸ÎÞK6*2äDEÆb£MÇVƒÉVƒa‚°Õµ>|@ ɉѓp¦lªMÊQ 2 ª JÈN‡ª¼Á§s£PœªÌöN›ŽeãPIbybÊë{ *«Ó' G•ã‰Ìño²Ô(]¼€ˆ6-5ïgÔ û7¦(„K–¹ Pꆾ‘0äÖ”ˆ&ÒGPÁ÷Çô海󵛤x¢ùÐ6é¹z}€Rá‘t8•CÛih†&·ÆM[ ¶3{ÉöåÞ%•ÕE%•9‰u;4òªúãÙµÀ?¿sŠÜ•Þ¬úXµÊ{þ®€M`ϰŠž\i9²ÿh1Ç.tN©r<:°ô“¼oäøÃ“RV3nÑ.»­Nõ'Î6·¢ÙiBq·Ko¥Ÿ1ˆ¤µ-„¤x‘èZ†ddœ>ù wýUžàGtš5ì"YH$oZÄAdll|nÁ§dèÆÿ±шA&h9.M‹ËŒ†KïD- ÷z—Âí-,¶£a‚Á<‡×X°*>—,™]g áÚ <-íÙ·ïxy¥¡á@þQAuû'{«ýÁ6j£5dÙ¬UirFtä²ðèDåê¹²¹?Ç Â0Íòó3K4 ›K"M©B`»ÆOH‹ë Q]û KeÛ×Bòvëmë×%‡ù¤J­AS ?ªdäùóƒu ¹ù@_S÷É_”e(r#IÖÅÅíöS3¬ŠôLJWMê=É–¯Yå“ftQ\›Iû]ÞŠ´D»íÒn£ŸaÉ\‡íᑺNwJ·jiÿ¡‚n¸œÔ¼åK°|­Ñ4RpM^ëcâåâa ëjnåD®é ˆAN4ƒ&» éÜÙŒr8 þå.•N:kp" ÚŒ@ÊOéjɨäã§üá¡ETúb’~vR§hÚCï…¼¹:ƒ„¥r›NwÂÜ®³7ÿY…Iºä”£¾èèy{ƒyñ=bGþÌGuA±u±êäĘX-Ãb¤OÊJN!•WÙÅÿÄGÇȆòÜјv‘,`]ðß%+Á’½•HÜWX‘!%CLeXAPhp´·]³Û‰+Ο/çÐb~^å•“šA²‹Žû ¬îqc‡ÄÛôXÌOE=¤Y± "œ¨Læ|&¬ˆqfãÔƒh:šùmóéÌ+j·z¹“Jé ÑŒQhueIážÏç5}„ûNÄîƒû=Erw@-ê™%U¦áuQYU£üjûø•ø} Ï•ø¨±oû%öæÏÇéUd'–xî)¤¢ý`û0AvuÓ¡n‚^G«ä|ƒ†FÊÿg’Jò×2t)ÙHm|O¦i¿!y]hºÏ;,ÌgÐ(taçPÁ÷#¾Œï&懣µ$Òq¸{ˆ=fˆŽé.A¾gfvéåÆC8‡o©>Hõ´_Š‘ Q( ®m/NÉh•NƒZ%ÿè”ç è,Éj¡Yh‹[,X¾üu¯äÿN³o%4ö¢}*m…G¥˜}: I®Þ[[!_NŠ IM!’ Û´ÍÛ.Øa IîÊÀ}þTçá4j/Õ.5ì«;õмÛ`—AVþ–5TÍÏ®&’¢³ÿtSán¿€í~òöy4~ÉÄå¨5aï¼j$ùP¢ÎW—©4jcÚ‹ÿî…tj¢F¢äǵ?‘eÆhÔéÀäAz±œ?NWÁÑÜ›ó.E ;p\KW†Åkã’•ñÉœû°É [ÀyOP£÷1hÕJô:(}fû„Ô3qù=à×1Ä/ô:ŒÄÅòåÈRŠc%ihô½Š½À¼ÈÂwÊ;ù;¸Ò8«B‰ö/ÄFôXŠðXâWà¥x<ž†ˆº›€'¡%h‹¦";nXžá÷gN‹“ LPAhUM~I9÷Æÿì«DW æõ/àî²yaÁþf4å•Ò§£â÷9üòÏï_484—F=õÍsù°þÛTæTŽõÀ*ëôGm4o¦Ø© Y_8\VP† ,¦ÌMýŠ|ØW,­àÃùQÒ˜ڡöJ'GŽÅŠ:GG]ðÀ K–|d¯w©‘Gï÷wðÊu1„®ðtgfѳ ¨êþ÷“·ë£Nn®æ6V¯‡5„Ô Aã™b€Z¢¯Ê Kš|¨ŠùáÚµ[‘eò†½ ©E„·-é S+’ÃDäÆd§—qx1¦¤à§öÜäë Ì4x^V¥©Í¯³W9eÕû~#ƒäȤ½‡Ôvñ–Ñ#–œ<}d_ã!wQò™Âô®<Á_\«hÒ_Öó5æçž“‹=Ô[° …Ñ3VšÙŠ8u|¬šSÚ:z;ÀvØx•a[(Ôýô}Ôð§Ä²Cc‰mXa¨OˬáòÇåMülå#Å/ÅÈò¤|0úE scðàÁsƒÏyžXÌf/'¿Ü0M²Ü¶›ÞÁ \dõÍcŽ ¤ž AÓq†Ã-Ò]ažIÁäþø#ù5¥uMgôŽë³åoæ‚–] óZŽßü‹ÑàL°_鯍ÑÏ’×sÎfZø/‡ƒÿj4ø_&÷ *×€Nëѩ΄’­ÅF¿‡Ò4ÈŽV@\Ao±{xl…ø“Q?Dß•…_ÝZ·¡øIùíOà6ó–ÜÃ#9üÙ[9Íú¼{àô:«ÓMEX¿kŸxÁ2XÎ\ö¤Û³Ê=o~[-ÇÁüTé’Àð(ŽtÏ ”AŽ^—¥­`¾G¦Ix8O$½ÔYØ^ÍHôÒüþo~®@@À[ž”Ú$çÅ4{[ }š©$ü¬³]=Ô'ïU[²² üÏÒª Jï]¡¾~eþ{ö–TWp±!žõcšgøÄ€>¨»úÙU´êª˜OBk¤ð|ù·3Kp?ƒluþÎ3Äe_?óÉmô¡ϲKã4JPfwÙl´£Ã¨&¨Õ1 œ»µwÓ)„ Å3§žuzám?yvÒɘëU {ª]Ký³<ÀƒY¼eÑLŸy©Ç7rëϨ®ªÔYñ zí¶·w¸ít6;Ð¥Ô6ìºêÖFzY·»O‘‰¼“ðˆL)xÈvãüøäoË 4?"×-R^Aãq$·2…´±¢í⦯L ‚\.?¥$ª˜Êð_ßðPÿMç|Ïuùê#Žígbú.ˆˆ_!ø¯ A ¢† ”ц2*ÄÆüfi˜0ÿ@’°Ž¹Xšž_‡ÆBTBVri( ˆ!™² ¢†pÎ^’º_àùyHž8ÓC o¯ *H°óŠR²µUD"‘·ç{äáéod³ÀçþBÕ¼lùª¥‰ì®•Ï w…`p9Y´T¦Ö&¦Õ˜rãRVÆ•“ÍÚRA>û¨¢Á—¨þÕÚ(A>«³ ¡Q1Dõƽd|ÍÖ¿»®D:dò¦®^ÐWÏÞÜlá–aIa\‡$®u ‘ÄÆ¸`Ùp´s 0»í…áMÓî®Â=Þ4müœÆCÆ|8n;î^¬9¾ï¿qïÑx0b0ùTDÿ’rºÈ„ý ºI×ÁáŽ^-í2@Ÿˆ ,H€¥sÚ÷»0{çÞÄGêã â²ÛÄFŸ7hÀAÖžR—ú-¯R&+ñÊö¶áµÊ¼Ÿ]s*:†ÐK„V¸ýSA׺ Ýí¯déa©ª\(mjj äïËò«j>|¶xí?Œtàq㙿$À—¨ïdÛ½uNòÍxNrüÝdø¦©ø¥áŸ ó¢WìæWʤ¼“½ÔÞ@bK¶þ™ºÄÂ@©Š'Hiw’ái|´:%9øô= ²©¥R½„ÛÙYç¡rÜô˰¼}žÎ+Ô:"Ãtï¼ùôW’˜ãж·eº8]l.ä6=%ÍæSeèƒö´Î‹–Wv²áï?˜ÕÔáR8<äÕîPм FÍH'…Û ôÞd¶õžþi,0ʤ$¥ ’‹ÃåOGÇS“gÏs%»6Ž!’TÅ(S’Ò²¾ÿ±¹“È$‰áÓÙ”zÔMî…¶ ÿ›Ÿ«@Ô5×6\3\Ë n¬ÅºGRç!K<¯ÄcðT¼ ¯Cþm?u5=ÿ*W™†zÖÛ“•‘\œ$RæªÎÇa½÷G“ÑRdƒ†¢áhzÍÃ&X91aòr9pßNæË‘’.Sk‚¸ò^µF™¾ãʦ¼À 7›có'¼8s¬¦y„ù)“Ì;øÁÍÐãp¾.=ôcíµÔÛp‡™•#%Ío©båîqÖÞv°ÖU„ÿ¤¸á"\…–Œ3ŨÇW™P-áÅ£²l`¬F’$d†«„Ýü¾ó3û<éɪìF9.m·zåTð¦]%äsNU2íù„]c&sž‚ûö“Ÿï:¦Î¯vwÀö*Rü*R€í÷È`K¸õäZòëÏó¿>ýY°¯x[´P IôN°Ý¿œ/“¼|&!îÒxn‰$“ïâ^ØlÁÄ)6'@WXŸs 2¼Ò=>Ô*®ìÓ3€ytðƒÙröSøpËœ «ñì!S3‰@†§%Pºm!h]hgkÿKÝãiQxQøn…B™Äážx|a8‡ze¦gdCNGàªo  +Cݾ\!BÀ‹ùhž¾]u{hé·U®“ð|;õÜØóÖÎóЇÕJô5'¶ÃnÎp¼%·˜gƒ'Ç$¯÷·—{oÛ¥ PÇ«“ ^ †XF‘…Ü!É·KGãAK|ìæ^t—×'ô°ið+ñ ôŒ²ŸôÃr$B½=ú…ë)`àƒILOߎÞgK #ùm$‚i‘q*áø_jßeæ…Š§ ~z"(ÊSÄa4ÃéEÙåá¿£¤X%A*¾›YÇ^‘ÉÓ±­h‹Y´~üÔ·:D¯ 5?ñ,¤mÆ3$m³`ûõ!±Ý!E=f?ÇÔ6‡Hw7m¢Y¦TYR—P;õ¾þ(7M•š g»Q@z¢*4nkè2bM(gØ‘¾½4^—$œ·±ûFÅB|¤§Ã!>/]«KKá² Ï|§ bGFx«v'l!|m càNWÿDÚXŸŽ¸È°óç«u:uöÀºÂŠòòˆ (÷„r¶T6ýÚdŠ˜_~B,ÁÈ‹¿OHn•Í'<çÄ?^ <ìðšèJò²Òˆ'Ñj5d) JòLX´jµ<¦³• œ—Ýú5êΡýÿ7oë@’RÖúh…yó÷hÁ÷¾ß[°í$g¤ˆò/uݼ-”+§‰õëÓp²¼Y¹KÏív;¯òÝú‚=™M—ìÍÂýð@,Åþ¸1‹³g‘øÇ¿!™|²F Û`K„›÷ÚÄ¥¬ïKÊüð£pŠ˜ÛµÏ¿/8« \‘+l†­BýyöàV-É•Å$mÃ2)N’à^œ›TÌH<°ñ#º‚Ì+¹9éi·!—¸&g 6ÅS&ãXÃ-cÁîÈ8œÅ¤á¬îlÆ™”²¼‡.£ÈZ–)œŸ”2oèm0Ž—Öùùûû…{pMíÛ4»5ñ9`™ºTM!Ó„'½“Zƒ«½+DÍ'JO Õ ¡¸æH¡AqØ¥9¬42kåþ/Ÿ‚æñ”ó“F~°`B¸Ö®y;—ÓP±Þgº Œbÿ²ìWdöcëoÜba&a½sÛZwÜç®lÇž¤½PÈ|òió›W7-âJÛ¥Òó7Íž¾èrë…Ú«÷r¨÷Üê°£Þ°¦³Øß+»RÑäŠ}BðJ¿G}HðžŸ&‹úVŠô˜þ|ʆ­ávœ“]#Ìgp߇£‘é'š/”qž4Žºc}„­v¯w(£¦Ð˜é·sÙ§ûHŠz›â)ŸøX:kט©k¡ˆ„àu%¼N€ÀöGK«NìË­'ίnW¡Ã2TŽgʪ^ã‹|»:ßëÏ8âÛ¦Æö­žÿ—oÖµ÷Ö$iû:×SuàÒ5ÙÚŒtâç®\ÿ,ÿâ.bºŽ–‚ ¨ÙpƒèT 7onÝw%µâ× t…(Ûg§žcT ˜ÙyÔr¤", 61A­’oc·Ôact>±nïÛ#ú̥Ͽ&>Ùºxõ‚ ƒÓÕOá&±Ûáï¶–Ó¾]õìþŃuܵµ#Á×på¼öÉ^Õœ•v` ›Nzî;rzÿçGî4µ”Ö·i˜v´NÊÞSÀò¦úûÝU]somý% \y{Žt¥õê_`f=9óÍÞ†3§äúíùÞWû6ljtê†ß‚A8‚¯’âqh‡gäF!9¢SfÛG–ûÑ„ý¢sÆñ‚j|Þ©Û’t©Ä|9ÿ7I¾  ñFSòÚn®ýo’ݯ$ÿ“¤K1 Aâ§u ³Uÿ–}ö°î°ˆŸnì#Ì7—möAùYœ_Axz1MaÁ›m vË`ß±Ce»c ¹ªÈ¢„BØÅú“ç8¹—È6TôE'unàm¤•Un¡Q±J%§N+Éy)µé_\¹,Ïê_Ǥ'¦$*fÍÃÝ×–Û¬/ªª¨óó¶?ø±gÄŽÝà RÐ6¢÷Eæžh= ñ€îC QoÔ7·ës’tÊØÉK1»ŽÛŒMb°˜xâ¹Ùø½³Øìîý`E0i)ºtè[³Hý‚Ž>ÚöèsbÇ—¾ÜúÒú±{«;žâ§òŸI/8ߣ1µzé Ž4WYT™p.{Ø‘ÖpúB~3!H,Ý)g°.2<<|ù¢à‰°†±#L™“ ™E\= ÈüÉúJ†›_URÚÐ<[µç½ƒú„:þ÷×Çs{«,Øûü×ß–)z×·eRÿôm«ŽoËðU4»¹cþB‚†BéºîÀ15ÒHU¨0NSjªâTÑ1 ¦ñ.dF?ù¶ùÓãÕaÀ½5äAìã:½¨ÃI‘bãá·üáNÕøNghÙá ÿÒNµvÞÎÕ;–lf<îFLâÿÐuý6”îLŽ „PΉ,JdpÁ§ÑÏ¿kºX^Ÿè[Åõ Öó‹ ‘Ovš^bè~­×ÝtÃûžÝ gÐk´ƒ¥kµºž=¡â€.M›¦ÓéRÓz¾÷ß±i°Bendstream endobj 251 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2153 >> stream xœ•UyTSWðÞS¨Õ<#´:/éT‹=ŽŒŽ8ŠãÑ £YeW¶€YBXd‘a1HH¾BY’°‡EPQ‘E´8Ê8:­v<·ŽÕzÔZ;3ö/g:/E[Û陞ùçžóî»÷~¿ï÷û¾ïÇ#ø6ÇxûÈ"—®X“‘lÝ}Ç2—g™gcù…-àð‰ì‰;p°þȼi7H9 E½Ž6Ï$ly¼©ÜC–”™#MÿfÉ’e‹s«›82Sìî"Þ!‰“¥§ÄÅŠ#£Ä›\|\ľ²tn3V¼P–(ŽŒ–FÄïËv‹ƒ¢·Šƒ×Š7øû¾ëò_¸¾Û bÖºDwYRrjZDTtLl`P|Aü’ð#Þ&ü‰ÍD Ll!܉õÄâ}báJ,'|_BÀeLð 5Ïžw÷ÜFgË· ±=Î_Ï?g·œt%Ë)_ê mG¢®ߨó'ÀŒâÌïtÞÄÒ9fj dBNNž  «TÅùª¢Â,|ì”,É“-§LÚ>¨…fèƒ&m¦vj :¡ʵ:méz× Õçñ].¨@ùFR8d°rªM; `†A뜊ꄸˆD3Ðc»ßðþ}ƒCa±7OGPÔˆ#ÓfIçÀx)KzE(—Ê¿…§¯Žô•d³ê§$sOϳ“Scåvˆp­,ôâ"4iû¹÷Ípb ÔÔÝ Šiûüì•¿\+óÜÁbÅOžåh(¶ÒpÍ€N™Èé"ºtuÇ5Gæ„åŸh“î¹]ëÕþyþJßr»ƒ…,þPN^9¡¢É#Thl`åè1Ť¢Ù·îß-DŸ ×ú®Å‹ç£2²[«ëcÑl’¹þ¤ÿw>¢f|Gè°óX<‡”¨tÝ"tùP ÿƒKÜEk …Éâjൌ£¶q[‹Ú#D³]¾Ä<ÌsqƳ±àÁ"ÄC¼€õ*B”Ê/i‡lWxF4ìIkjoò‰¢³ÐÇ´Ãæu]½C\šG’›¤;Áâé)¾qˆ-7 ÏM‡Í&Á“T=îÈ,´ÈQ¼ \Í÷Û¾G"c¯RÌרþ;²'þ'Ù~T[ı¤ ¿|zÍy©…˜ôrYe<•Àæ4@)h´‚j¨ïí¡™é%ºîöÁ¹WÏ/Á¤5óÈ·¬"`Xë ã2 !ê²#3}j™#쌫‹]»g4ŸU#É´aú'+à$© † Å ŠÙâ‘ 'DÈztôÞÇz½ºHÏBZ<¥6¿¦²Aßú"&Ç6kF>é‚/F2Mˆ592ÿBçÑLá¹Ì@jCÒ®ˆDIÝ}Fb3[•’f’ªùÒ¥¿UÑû(æêßq7™˜è±î®±Sä*º-ö=¼oKÙöÛBöß_: BÏ)üÚ÷°7Q+BÝ×¹œfÑÍú 4Qð>„›eU9Íòàt}TVOk\È©úhÿ#йa²µ&<›@ù&)r"a¸ŸEó)¸‡"zww…WĽ:ÀÇsw»ª´ª±¬µ9ã`–²P­.Õ_aAÛ¢zN¶W|ÐÉ´Œ–tj_”’ 0{ÐC’™å=‚®qdrd¢-)/·<§Ã+e„s(¥.r|Ð .ÁNØñÁ¯¿¸ÓI¯¹SL8šÍ‡„̤ÔtšÑ'ÄÆfÌM|»¢­ˆ®4Ÿì‘Ç4ŠªöBdZà çôCi5Ùäap-SÀ !*~ü&ßZñ~Ïy¸èâ÷?«×+ Ôª\%›¶1(6Â!¼)©?~ÆàŽ“Œ¸¤´o«…LVz4ÿzg\†“^̧§èÇáFä}!´ÿžÉŒYÕFA]ŸrlWãðØÝ±¾üFG†OXB,‹„µÙuq,3Í_Ò ™<¡%¦"ŽSe£ÏÊ€®˜Š|Sßœ …ÈÂ7A^ݽ7$'RÛh‡[‰lž }Œæá…°†eV¦B$jâu{[á”CCmCmvWVП\¾pˬèKèµ¶­h„®ËtEJõ~%죾MNùþ*–)Û^SVQ%®˜¦&–-DÔÕqËÝ»Üg:ûõ$- Ú°Å™eÞËsÞ02Úalk0ˆ1ߨ\—çÞD$¸pýBL4OMjyšuSpû†7§t3ÚcUZUzXd!)榬JŸ-ûQoç £ ŽB£Šfœ¶[ž ›2Œ{S²2ÒRj³ê›Œµ /šgŸybqïäš7€Ø[KòÂpF_ž)b<´rGeA± «ƒ«SõÉ-²ŽüNè¤ÿ4üág—ÞójØâLZt9E(Œ2©5¨”û•l‚gôèæfoxcÛªñú°îQÏ®CŠ¿ímW æT(Ï¥´ûA í±u«Øù<°jƒZS´B­NáPŠ{·T¯ÕuT³šbÐÖô¼ý‡ ïúýg36†jŽ™ ªEÎ9È™KŽŒx‚±„ ³Ünò™…åv&² ­ªnC.@3WLܘ*S×A.¤Ò“½TLQÞJV&'‘³9«ìÌ2jeÑAŽÏ^  ÒTB3bMY˜æ¢ÅP“X…WÑ/ذŠ!øŠÓ¡É_zæ„Źä+ƒû.ÙÌMÉþ)ç³å h½ßºïé‰ìWÜwpÿml¿qç®àLVMæÞô7ÂjˆôÍ–ÐV3¾ñ™ñéŸ3ãïÏþ¬mï3XÜ+‘¬¬Ú@š§›ìÙéü ™Ã4p°‡F£Óhµ¥Å‡Àdª,Ö–ê´Ú’‡×þýÓ£Çendstream endobj 252 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4171 >> stream xœ­Xy\S×¶>!’sT¤–˜ÎÁ:«âÜÖª8TÄ ÄY ¢ „!$YÂ<&ÆÃ ÊàŒ´ZEëµõVZ´öV«Ïª¯ƒ×¾}póî};`íý½zßð{ïÇðÇaÖZßúÖ·¾5Ä‚‰D6®kÝBC¼³f;ºùF{G˜ŸNƈ„±Â81`ïa}ž–`%«!cGyÙ Ko¢¸7ÐÆ‘”X$Úî±'0(Ê~öÌ™NŽŽä÷B{Ÿ8ûe3ì]¼}÷…ÆFîÛcï­ð³w™±v†ýºÐXòpý;¡ {ÿ ïàûÐûMþ[í=ÜW¸¹Û¯r[ï±ÁÝaÆòzõ€¢¨ÉKËB—¯ˆX¹*ê£èïý®q¾køùn Úã¾Ï#8dËtÇõ6µžš@m &Q“)wj µ‰z‡ò ¨ÍÔjµŒÚF9RÛ©åÔ jµ‚ZI­¢>¢fS«)jåJÍ£ÖRë¨ÔÊšzƒšB£†P)"+Q‰èo!Ä^âC’,å–{%Œ$HÒKÏ¥/1jæÎЃC¿3¬{øêáÇ­Æ7âžuˆu÷ñ#§Œ,yûMƒ—MÍY›Û¨Éº/x´›¶ÆŠúÜÞâiˆƒ„v¬è“ÈÓ 5Ù µê öï,Oð _£eô]œO{gDT@dƒN_t ÙÉ‘^rÏÒ'‚Ôv![!‚UЕº^r¤nB¥†Á€Jd8^‚ô¥µÐNÂ7ñݼ¢ÍQ×ï5[éŸIdD€¶žA®4<‚º¨FEëÎì=0ü¤Ä2ÚgéS<6ÉRAÿ)7u;‡«hÏ$p!±jt]$]$=†§×$ÂI­£Ÿß¸påJñÖu,N|íIë¿[  H.7ÊÑ1Þ±=(¾î»>´•2}6h î,»‡1ÒödžWoþnÎ]lËâ_å’›™Ê®¿ŽP+ÙX…`%‘¾@²÷žp˜AßÊVoY€Å,ž„t’&]Î ÙH~:2׃«Æwe‹Ö-u`ñ(‰—&§‰C¤ŸÏåL¨4Z27)x;©_‚h'AS a[ žÈ˜$á(Ò²¿ýUº5¯ZÑ%!PÆ_6ǽÞf0“ì¯Ýé½½¶ÒQèWA*««Û=Oñîþ4V‹Ä)G¿†RuºóPµð…™¾<-M•H]–i Žphý´íáW¹:Ðf±)éÓ ŒQT&•–—Õ²Ö}Rö¬ù{ ÜM&4Ñ$~ýCþÞùƒ8ÌWîudPþKÞ” ‰Ào.Æã Ä¢äTA šm@%QÓIwRŒž#© ºö6&ç6„e¯. É^V Ÿ2 § QöŒ`›‘’™À€ÞÀý•6€^™²?:9• ®ÎÞGÚ1"põ¦$j âC§žJ>ŸT¤®Ž5ÄEC(³;b‡Óê-?E³é­@“•j`’@Çá±t¨òõe¬>t%¥-;»  ˜çç.ö–‹‰ÞÅðè/¼Ã‹º ïÝ÷ù"•Œ§Ã5+!öÁÓ1Šú~fb ·†Æl›þ>^µ¢chã‰ÏïýÕ¯¨auI .¦2Ë9¤("M«Q¦±ÛßWYw~:ØáÕØ ÏÂÞØ9á™Èå‹;•Wr†}M{sÉ…ìR9Ó­Yú«ì eÈôæ‘k¬Í³kÑ&4Öd+}ŽzÑHÙ'Ñ›hg…·ß*xTÆ¢&4žÇã‰HIƒ¢%ZÇÀi3ÕL,-ýó_pƒ‹¿Œêìnºr“TÙk¯˜ŽÔùÑ[|,í¬Î?Ê uôÑÌü›l9/‰Ô,)|!D’²Ëé~`%>Gjú/Ïü>¢„CßU«‡o Špèe d@ç°áõgˆ+[¦M4(Àâù]•’ÓÁ!ÆãŸˆUô<ÏåKªNw²èÛ—éõlO¥a-Öï­ oOü˜4¸ó|ei 3‹&£?äSÂKa&/2QbA%L&-Vh êä ú˜FI¬Q©'á9‚šUÅZ½]M XžŽÐl0˜f>|òÓ ƒÑüB®OЩ !²u9eè-t[žg*;~5ƒTsç™È‹>þMë [úÞ–™ÿ‹3nï+V}ofU¿={ç˜ ¹CØzU½Ž0U«÷D…',¿¶öÞ·>E¬àm&ÇuvPšUü¡”i¬þæv¬Íá/ϵÂrAñ½ìB´;í™’à%,aY/m^­AžÅ^À,tõpQ*«ÊʪÚ!ž«‘eª*Åüõgá¡3&˜ÝÀd‰äõÈ*Ϭ«Êy¿áÉU ¿ÌøRÜ÷è5zƒß•DƒV›²+ú?“c…p=Õ¨%\°Ãï¾ZNtìœ>à—:\\ç ³š§k9áxÒþ}XVRfJ>Øå˜]‚Òû¬åý·$¿©M¥î6Qn›è`é`cEµ‚…X‡\I·“±äÀ<ܼn$ˆÞÌ+dÙ¤Â_—$a'K“$ûãQ$1ÜÚ?Î2N&õJÌ VÛ*Œ-G{ˆììn豕 S2áWs¿+Y8Ãïn^G¢1Sð(,}ì€,zNœ5s+i$BØ Nˆf¤ÍA‘>ŠmcÂ1•6ß,l35qå m gá 4{æ,<@Ǽêæ.#Ñ–XâÙR®ØJ/ ÓHK³UYi)DÙ4løü¢¼ñž\‡–rFTOK;L:0þìñ%NñH,ÿe*£á'UÁ­ErN–ä¢Y÷ uðoÇgì1›6“tWÊ£šXu?ì£Ç}6²£üŽï{LbñÐ_ã;¯÷/±ô uéE–<¦ÑPúÁ©Sí¹%š´B6]‘ &ªô`eUiiÕK­ÃÞÈãüwHWaSÛ9߀eG`1QK„PaªÌP´Åo_|RTäO4ÿ£U‹Ýšò“9éã¤Äø8…ßhØØ‘«ÚuhW laVþà†Þ@Ãì¼Uzi}»µfÌ…u qFe~²* ,»,¿øtpóàúŸ¾ªMiÙ×ȵ¶=d™4ŒtîeºJ™4:!?±4× 7±x1¶‘ÞùÛ¯QÆã?W ½¬–3òõùÀH»“îÃä(QýÃd>Üùî´eŸäêZ[jXSq|Ì]d sÈYôåPxó£Û¦$¢Ë…F“M×C4»5>\LnJªo§R–yÊHMÕ²©ÎÛ#ƒ`+Düœ‘^KBÔéÇèM4w4òÅÓÑl¼ ¯Äxñ»Ð;Ø ­j:œWË–N*šû€dµ8 Í@ÎyÜ4ôLx‚×Ä÷Üœ ½äÌ6ÅnŸ°âš[Z3å;@Á Ò¡1~zŽl§a-‹'ã2©u0d_jؘÝñ­U|Åá–OÊwºp׫©øŸÞ¯æ‚¯KB0£E¿˜/X¿OLÅÿõ‚…ªI* ÉÑOmî?ý°ÛVZÒÌ7Ît}+' ¡¥Ÿ ^è®æ¥‘ ­þ½gÈÿ(€‹p˜´\î.ü,«4F†ÆD‡…›¢kêU„¨B{ ß7«VÔu­¹øõE±@D.G k 8éYà—-êä[‹<ÏÂUæó Ý_£&> stream xœX T×¶­fè*tÙ2è«jŒ(’èScÔà„cœQ" óÔÐÌ-3BÃiš‘YfhÀQQ™•hŒ‰Æ§Dc|>Œ“hnù®oåßI²þÏ{YëÓ¬^«†®sî¾ûì³O‰(#J$Y¬Y»Qâ:×~£¯´Ü3ÂpòMa¼H˜`$üÍØkž?z¾ÛÌÁÜäô„q£%è¦J mC™ŠD.þŠåEXlD @”ÌÑÁá-{{ò=Oæ+sš![åé¬PFÊN'Aß^ò±d»„sãôôêdhãQ4ýµoïëSÜ—D&sÙߋٯð¤Ó úò¾tW—Òîɰš ¢OhNB=4Àq8¡b†º’f»ž~Ùuþ|ÉÎ5ŽýÓ{IO¬Hè¼ÒK:ŸÀ]”ÿ$üáÒ'–¬Ésg´Z _-¼…-Šö(U_üä²ÍÀä/± ÷bLP•øFNŠÿâí—•²‹ìÄl â}÷€Ç,úZºâý…XÌáY(]|('¯C¼˜½ø¸máz¾ß‘Îw^6‰Ã2±[VÞ!U š=<ûîžäÄ.¦R›„‰:Qãj0T(PŠ,l…­°•-¦°¶øe*‹¤Ï! Î1_ nY›žaÞî±°<뢛#ZU]Ð Gàã¦uÍÇ+:àœˆ¨¨÷Toof{¼U¦ë  =Ñ+›$Èø:j°d¡ÉIÀ7À£|6¤ºlã.Ðl+žj@þªv'ÿÂ÷¿"?f×mëèI;8±ÈèË;ŽÃô’¹óÜJºƒ¹ä2PC9ƒéêcÝ-¹Ñ7‹ÈºEåCl:IréGÆNý–¬L+Œ–6륇4â%O^ü£‰>|Á”=XÓá{ùw%PK! –úïðwß‘DvÕ»6ührù"¸Ð$tNɆ–ŽÊ6¢WGå!eaÅàÄ ¡ˆwêî˜^Tù *ÿÆø¤ò„LØ ¡²ŠãIŒ=ÙéÉ2œa…T’^BT!׺¦I]E8å®Ú Ñ¿sêg•ù"Gü/+÷‰!Ë–_|^Nu40º˜’heT’Üã„_ï@ç/ûs9´F˜]{¶e¿^mMJòÆ;¤$Ñ‘{åM’æ0à8hÉ ÂZd.-LUzFvªŠKQ,˜ ÌZÇN4Ù~ÑÛŸb›yÅîÌ(HfÂÊ•:Žm­«<ÐxaE£=æí±1‰ÙŸ§ šØŒÌ ‡kT«Æm0($ æÙ¯!¹Rè.UáGš=ù‡MÀþtÀ‘.D‰,°ñ4,ůý0 IÎuéšõ¶û—j~²‘â½â|$»[Óhäâ‰ê(C°¥ C¥ƒÒõ âÌúáÞÞ{–ì aÔssé φ­‹·È8l2/è6îÿïà*2×ã×)ÍŽý¶«í$Ǿ^ ù™¹Ù±»3â ‰ /ßUW ¼ŽÒìÙ€œûŽ÷…6 ·†½ ’ÆsçÖßúæVÅ­Cç,Y{J(&IË’yÄ}ééÆEð)Û̧åïî¨ ¨TòÑiÁ ^òª8†½æ’èåãf³ä§MÈ Y £ž[½ÁǃʸõM®0˜Mb¹&¢CÍÞü¼üãG3j€yÜåæ‘¸ƒ‘u|q¡¾²K©ÊÈ€x&¶(é@qY~5‡ß—IÁ/#—Â/)}A—<¾›_µ°ÜìþNYSÀVjÞì|§ý½/v&ZÿMI÷ã–Ï5ÐÇ8J‰!™•¼)æõå‰AËKcž¦œ…AB±+ðYÁ‡•?ÞÜ_ ‡àJ\…CáfXLüíPp²ÿõ—ˆÉ·Œ…Mãô´ª°…NÑõYê0ÎË{k¤v×Ò|TϼØOû©’í¸€ q«æh#Ÿo¡U5ü°Û臧ô’ÓO×>ðxŠÆ=°dë…p´B*«”iÛ“wíI[ñ¤Ñ-£ñhtiÉq}i±õ…³ç>„0hä䨂c×cóŽ®GÓ‹+›JŽðlЩíÌ5ôZÛE”²sÁßßpZ„Íð(Kð8S6/9²"l^ü ÍF2” #?mEÆP'ùâÇ…?»þ¬þ±ògKv %Ä¡ER¸³òú¤ª[ºs—áK†µKùrÖÙ7dó7,ò«¯kª¨jh .ŽVsÇ?¼¡9@ÔZrºîzší²PÏÄx>D•µ.sWvZ6iE‰ùÄúv‹ouoxg{ɸ·ÔoëæÅ§¸ÃµÕzžýpñÁ¨êà0Eœ·Ýk‘YÿóþÜ0æÈR/DÐ?¿fçJõ…­tì‹!¬LLåðç/¼MƒPó\6[£‚ÄÈVƒlU¦ú(z¡ª …¿C/ÖKqžå ¦¦Ãë~úxê]dÚØ©CÒ»•’_ô…÷ï—ß·dOÝ%›°CŠ˜¿ÿ„Ͷïˆôåк(óXêq2¶X\ÿ®¤ ]“AÌYÆnÞ'Á-y á’k‰¼0Uk•˜$H‰åq; É¥û4¹û´\aÉ‘ž»pêÝòw•ùç¸øeoQxì ñ–o…U°º5ªaO§h²óltUšZB‹”±Á©;gÝt@4ÏÊdÈâÙC4†ÎêЯº¯î«“œ´ˆ¢‰Cë6l˜‡YN¹—ìtsâàN^ÿáóÝ=­‰Žµ«ªܳ2!… ©Ž«9ÐPpäc÷®Y˜'Æ Ëq ’8?äX¯”N8UÔvâØÑCÇá[ÆžØÛmà¡ôw £øVjIÐEµe]†#ÌãÞ/nt7†”s•~Äm&vŒðåm‚)3J  Ÿ[ð¹:"Ç%7;_UÊÈÅØß´IœSRp¥x_öis ÛbΔ=ÅØ.;.°I·Žh+ä:i@¶5Ȭ«MC®VùÄ U1È<7#Xœ ëFÍÝag·w[²FŒR¸x<¾,®4[=»—a·©¿Ü}ÓæÁ´Þg;ÙûÖ†re1¹Y|¶Ùæ´É!ã5H„^{|ç÷z"… î®ëC±Å5+öFhYdC³ÍÅ+Ǯ޼´uWýB"]8ÿƒykë¸èüíkgÎ]9È£ñsKwŸ †÷­‡“kzx['L0l–ó ŠþÞž`ÒNÒ»-EE˜¾n‹Í&ÎÄ–XúЙ^=ÑÖSÃ)i¬ÂŒç†MSÇÞ;™«Ñï·iŒ*‹Œ Mñ]qÆë>™Ç¡ (ˆ›~_º`§£[heK4Ç2Q-ÐÙcÃŽ#Vñx}kíáƒð)4¬ÔdTºªßå+À} ZJ´zŽP'Åvh¶ÃsŠ(ÄcÊtHÒѨv4¿]tAÐiu$$pÿ!Nˆ$^%üs qIl`R­4\³'(ɵõâ’š!1ÿ½÷üDZÏ3¼[ ¹Ùê¤"ü7$ DëÍÔŠF¢ñ=íÅEj5hmf^jüöm»Ó8lƒe ì ØpÔ vF¦3û áåøðëN¢ OšÐ³¦'zѹ'hÙ]´æ‰ñs4HzÛðÊR¦—n†âAî ^ì®ZL†£`¸“é =‰üf¿“€g’.= 1o¡9 Ìf:í¹à q›æšaD ž±4Û`ÚŠ›ù^­+{üî1/Äx©ôíý³ZY2¹zúY!ƒªÈ9ÀcgzÍLcÐ3ú»ôï½K  ª Íã_zštßXøUØ. EJÓ'~{éV2üÒMŒfh: ŸDµŽ*TÒCïÛh1«tU™á™1•Â’¤Ø¿¯R¬7»>’33Ù¬0æ#A§6üiµêœ}ææ Ó”Ôköæir´ZóQÿbK…™endstream endobj 254 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8715 >> stream xœµz|“åÚwJhxD# àó°‡ ”¡¢¬Ê¦eY ؽwKÛ¤#iÒì\Ù«{¤»)--”  ±lDÁ .õœó½zJ0råÈžGGŽzgô¦Ñµ™ûýØ­Çcÿá ÇXöØOÇ•=Èår¥Ü/Ÿ÷ßâÍóãÝžÐ61gÒÎIÿ|:“ö¦aîN^9eÒ”7¦”L91uÖÔši1Ó¹ÓoÍÐÏœ<óÒ¬àY÷fÏ›3wŽü™Ò¹ÿDÆü2ìë],p¢=N×>¾×Y÷£l÷ú2n¡rT–Z5âæh}ðr@)“‹ñ¾O|B^ QƨÅM¥ÒæÛkôPK;¡IÕ”±ÊíRj¹6ZN° ¬¥7ÐX$àØñ‹Þüýy!â<䀾õ°Úè8¨jÊTe ^‹\ÉA[ÑGÞä|‹–±Ä×|‡—kÜ™²ól×§h×&™Ô¹JZš’2gP™šâ¢[­¥š©8ÕŽ†C/õÉNÇžå{ý"Zv<¶1¢Ÿž“(m%g–ØÀX¨Õ:ŒtÙõòãN j!Iœ£(s˜•ø”Z®Q€Š'¶äV”šËÍôaô¼Ñaª4:x…'@[ÚPTÝuóPº Ì-Áx”0œŪò!“ ®>öM3šc¤‡ ëörzp³ÝþUÝ¥´—Ëh< ÝDK‘_­º¶µý–‘g×ÚÊ(«L/ONTA Qú8 ä¤Lb«FϘ5 jH©Jœ•‰gãW|V£½Ê0W”·êyF»¶Ô.ÓÉ"ÃUÁÄBLÿKE¤Â6(:mdX˜pŽÀÿu;TqjÞ`ë”:©­Þ©‡º™4ài]TØDZ`õŠR°Ak3Ût:mÿ/´%¥Z¥ÎSdfE«eš|äRžV¶õ·rð'õ·’áät]q CN/÷„/Øîå(™ Ÿ®ï^cEcêÞû Þ§nø_Â^4¾ÄÉ“[ ÜYÙ*P+… žØwX+—®#ðóü§Jô)ME#Ј™ô9wÉ+30‡Æ>œ Ho=h†ÀCpnÛÖ%0Ûð{Üg^š†‡ÑøqNèÍ&½Mkb®£fo´’óé…TrB¯_& â »Ž ®³]&ää~ëíyü8æâ©xæô‹[>E#.y×Y´ï!.„dL÷KÚ¹;hPQÎ=µˆÝtši=¬ñPÇëƒý=7¿¤ge8Ýó^è™ÏÙîî\­Ak›d Χ7¯ ¹¶­$x8 Çã œ‡—ýc:¢QòBqÇÈw)ä2Òrf7^ŸØ´ ¨¥‹Ï ©jÐs¡aÌÕ¯¿î~¨ŸÎ}>U*ƃj»^[j ®…_w¢yÔñ{›í2£CÜø÷Û›Dçõ¤=+ä#Kf0§/Hš UEhxù’2£Â\G8_Ï4A³Š|§‰p¾@ÂÝ`²™Ìµ†æ šiή ;IÚá…F¡ÙhƒÃë¹yi!¾»Ú&¹cÑkõ: sm³4_øðMàuٶLJ¦àQI›˜1nåwÜë?e»K\¹hÚ‹ÿ…¹4¾ü°09ÇAÛЋ2˜em\ðOÂ~KfíÙ¾6ô% ¦?D»z¬-f-Î÷œ? Âã™1®_k‡XW‘é*Ûµ ¯á]Ѭ3jM4zÚÕA®@˜Ë³Ju*qtLr×Ú²(ÌÆàyxæ’nß›í­µuõ …ø/‹C4ÊMJDŽ™oR™›Zôp€9@8Ó4PDfêáJ¶¾´¨}Ò³=N4²ìSs¾»§,P¥)K¶åØ’@*R-§Ðêúüœó3'Zêôºà~•í^ƒ€kÏáyz>½ Ó1ñbr¨1Üûª÷þœsÕœ“"ÓäJ“PKUD/Lv½®ÌÀ¼‰R¯VJ¨2å´`­ ãE ^äœGËþŠ¡'8ˆU“¸6E-Ríg4 M>¨¨<;Š´†2]…|õµrÈ^_4'[Y"3Tô‚4@ªÌeð„¾¿ï›k?§´Zsñ—(ÙG«Ó“#KzÕ:Y¶LôÕ‡ÅÌsn³]B×cÜ“íq¯EfäÐâSåqÿC‰o47XtôeT¬Õw!îgÀ3B=TcĪxPP"« ¶ÌYtÈ#èÚ^O¡:Q·§Ì‹ÙîW*÷+î}ˆ+ÚAøˆ3ÝpTÕ”µ€'r g5X  33‘ÑûSÎeknJ¶2‡˜¨¬r°®„ßåFÚÓƒÖÄ8H—EU–‚ÎZ›“F$bç*êÎHÎ? ¯íW TéŒ&ÇûׯŠ~Atï­Ð‚«=ä Π±o±]O£ç¸ðùв0k²)ÚTuåÕêZ%v:^)M %6eW—Ött‡Ú€G†Í xå²°^NwJº$°‹ŠOyizÆ6ã‰ú„:IÊE…™éÉÙA[{£ßAÏ´¡1Ýä½ÙÞED‘Ðéš1(VTȵ(ù ±*ˆ§C H”T|±Š §J5…šJ•EBP¨&g,R‹“C"væE5oùÄë­F‹?Fì§‹ç‘r@„yÿN„_øq šúõ»Ý­ Œu¿#ÚfЙôöch‡©JgëªÐÞïn^›û³ ωøDäα‘k0œä&KJgí _¹¨¨)1C‰¹žyõxßá”Ú{þ§Í6Ž4²2Û(I“d’H{/ádâ#Î|X£Tæ€x üäÿ:ñ`¾@œ¨ÙG'ÛíK"† øÛÀb°Ši4ÑÕfi²X.¯Ò eý!ÌÂ!L1~£¤[±Ú×qÎ!ùŸ{Ýï˜À¼­]‡˜ÃЮ"¦h&q`èlŒ1o£oTÇÙ€+þÓëÕÜØXM—íê—C+TÖ;ËÚ Î È•D7˜ýÞrù³ÑÝrnø[Àl04¦ÕÒd²^#¶õ;§2jᥤ³èånôßµô—#Ãqù/.¡ÓëÞl÷0÷b®U®—ÆE« –‚}zRnOnèt§Ô›s=lV 1Õå#X¹Ýw'„AL´]§ÑÚQmŽæšZ~a¦Ê^Yw:üÒ½¯oÞu0h¤+Á\o¶t¯Øî¹÷/à S‡òÜùÂ3wΣ5_²Ý[þàò?5;,# >ì  sÚXµÕöNæzÙä°&êàAM’,… f;È’5™„{â„e¯ûÂ{…§kßs~B›Ë[®@< RIvµÄÖîoJîR•B´6ž(Ž:œrÎÁ‘öÆw¯B àõ` ý IŽô«¨æýˆ—Å*4´ #¾$þ· ä`gåñÃŒ}OkfËo¡Š× ¸Òø-/þ«´AuÖ„‚F¦–“³YŸ "ú‚»í$ˆÎ‡|:Z›gÎsâñèo>h3š_U~õ­+&žEkÓB)eVe™i*H§c R; dš12Ešò¬ìÜþ;îöùÝøÿ'8&K“±ŒiAÓC¦ÜdÊ51ÿøHÈC4—ÒC+ÝHØâÉD;=ê~Õã% «¯S·QI¹¿v#GA§¼ ?¥àdµ½ÃÒÌ4£§‹NÖ½yxz¨a¸"I‘‡2ĉmI;ãö$tƹ=–4 fíÂãÓû‘Ú#S÷ÙÉC„Ê åéáûóöäG1é s6f¾ä<ì‡ì¢F‹µŠ©ÚL“(--3.âHz÷±m¥tÅöãâZ ~8&TÜuÄ x ¥è<ý#c3ãcéëèÀPl%$UI4=[š§k@À“‘ñ˜N&Q©„@Ïîc4*IDò–Y÷.ŽF¢gÈô`O‹«¼Ùimi@Æ\ ºâІÃmÍm@=æ¶éz\gÙîáHÃ%±R•§Q dtü¢Lá…ž`ù@*Ÿäj·¶˜lÏ6`˜bPíSÁD#Cõ჉þ8¹’ã qÒTz Åûž~¥gáPZé©ÐØ¿žâ&ãÇ}ïZ¬âþÅEkMºß{ÆQYR¸Ÿ?ðþoÍ¢ÛY]XHGâå«‚Ú+l3‚VgÖ2NcA”P•9ö,zœ1/B¾# =öÍïþðךN¢¶»fÓÐ;lWÌ\£Ô.Uj4)½jþ"e6P»ÒºzOÕý½ösðrOKÑÖ.uqX Börì9UuÕŽ¶ã!­›†ÚÙg7|žüôoÅž(&vvæÊÏ/³Ýý‡Q(…l?ÉɈ³ð7}|v¸zÕ5(óþÕlöd_pGd^š'k²ZÎù¾tÙ +^!Í&»k¤Û‹|O黸;î·þ¶1m„û­÷CC½dw ‡ýÞL¶Ë×Ãßà‰”tVàÞØàCŽ™oM,Ì3ðARPhÌ–Êšúz4Mó9Û{ìX)Ây9á|žœŽÛ.Rä@Hl‚Ú¼’ì*"´«BæóóÍjKVW`d,ކšV¨€2©Cr —¤WÈÍÎçäàex©ÏŽ{W‘ -±’1‹´ß@UÖuµ,â²´~±€äûÓè©êýDf/húc/(6U3hšëêCòzå:SêBIÏÊ%ÖgþÉ™ôþî«?˜~ã^4îã<é>bõ @)ÌÀÊœT[øÄ“óÕ2µëÛäƒý\¥ò–ÌTø‰û2Ÿ&Í•JÂ`Ÿ¾:áÎ(Ñ R\WŠï»gÌÕª‹€GF!­±Mv÷)¹tFß ¥ôÚÒAÎ¥8ÐK„tœkHÑö¯I·QüΡ6[—¹Ž9Äi„·õÇÊ?l‚Ë`¦º£mšŠ§ÍľÏ[òíÍB…;/‡8:“Ó–ý@†ZêpUJ¬GÿédeÔº—Õx¡Ù_¹"ï°Ý ..Z6ã{<‡âp,Á¹xî½ÉhÚ‡¢P’ÓKŽpaq4æ½¾p#f/ò_ ÔŸ QÝEhòu4†9uïõÁ ?<Á£ENâ•ä8Ñü*^i·Ñâe»Ýã¸aUasÒðS±2:óÞà)6Ÿ ¥˜¹ÀYÝ72o‹$LžÉ“ÆŠ¢A½¸¸ÑXT ”#Ë–“–Æ êÈlý±E4WÁÞŸpJmƒ"±‚Ó„–XZí§Ï•êœD…p?ð©Œ2IIMME }uÑV‹.:½ÜO}Áv'¹š¸·×õïO=Ä¢ç?ç‘Ö=ËAcÑÄÿB#™Åu\àçΉ މødå\Euƒ{ÃÏ8×O¤nêßþ‹ØäpMõ/!Þ#›¹È˵ÑPL’–¡?iå¥K“”´°!¥žÌ©x8gã)KŽ®»y¢£½ €É\š(ÏLŽå…ï 'W b¯°T’TT˜_žš• Œoͺý÷[Wn•Ó9(€„°­+½v©oÙ5¢‘•G™šÓ]äJç¬K¥ŒJèý{A¸Ó¿ ozøeøú˜˜Äú]Ôõg÷}®QkÄä[ÅÖÜòÊÂR»žî@«7áÖƒZ]YSESÇÅëÿqþA*+ÃA}ÊN:Ǻ²WóWãÇ•º£¿æšÕ&‘H£ÈSÑÙ;ã‰,$ªêšjõÕúZF_eì„J8sdwšzðêçð.õá«×ð4.ýlx‹‰•xL¼ÏNš9ôG踌J¼‹sädΡ*_¸ƒïS A@k_u>þâíÆŸ,ôºýÛ%¥Ì%’ µuµ… [™KèU[ƒŽ\„÷fdMÔüXÒÇ÷Ùíªôn<¥µ LEª¨pDÒƒOýƒOýztùi:æ\_ŸN U”`Yk/Cß¹Þñ9üv‹½UoÑÚŒ1dxîÜà¾ÁÝÿ€ÕýXoo«ØçœHK¯”쉋}ãÿéÃÖã +¨lèéè½T7ìÎM‘%©ó™¸ðϼè}‰}÷‹¡FDü<›ýs#Àž—žJæm‚Õ}üý…™)Õ4ˉç)òåblê‹òÉp‰½A£7”šÊ/k «T'ŠPAãy1ºÇLˆ ÙŽä¹:F«Ôo )V-—`aßJò„šJMÍÛZÞý^þ¯&½ìé~-Sß÷ßÚL’ C$Ñ-ŨÞ>Ž>…VòROƲ€­ ]! n¾P]rÌ`Ó¬`£æ œ•ùs.Ÿ¤†¶k¬+ gó/fõ¤½Ò+$WT*åJ³„9½Ü²|Oòïe8D(Ôh@EÉ *“øMýœFÃÐ'Ú ÿ  ¦?[¾Û¿ŸöQCºüæÜÉ;¿>§ÿƒÍÕ-ô·Í„MvdÓXÊ)û¦â»Â‹h ðêᨪ&-8·'I»‰4L­ŠÀSRè¬ùÞ]‘_༆Ýqx–,Uôz4ðRATö»¤º¯SÐòU'š‰fÔÓçÐÛÞhß{uK[+kœÅô¯+\On^™‰výä…¼›ÒrkãÃÓb’â«$•%vƒ‘Î}%pÓ¾ð•FâaÌ:½ÙLŸ8÷¦µp§"f×Τ©™áLð‹þQÄ ·Vh¾×kt„ÛTsyCU…¨(=@cÃgèIm'¢y÷M†Îo?:\ã…F_Fzrjªâö¤ü„½·‡¯­úªúJ÷Yç¡SÇ΃(mÑÔ^E˜Lhɪm.«oë‰jð[þÜök˜%xt^ ¾T àùžøL’ÐTô ÇáÕÜÔ}¡!;€òÏ»Ðða7 ^‘ö—2Ö<+ŸXÜ1x?bðQ„&ÓÕí8zÝ Mwe°ÝÞîéÎÉJP)é\~Ô®¨ð0àe€ªXÕ¬lS6†A ì‘nÛYÕCª ”ç3,bF(£çâ’iT¤Þšf»Vk6Ð7ÑŒ¯+’ Ê(+M.I*Q”B ŠÌ3ñ‹u܆…x£`2ÖŒ2qé!kS³…v¢ÑGи^ôøI4¼ûZ}‡µ rÝ_<÷c5^ß÷\|½r¶¸‹íÊG\hÊoâ×ÉÍÍé=Ö{Þ£nm:⋇͚>+º(Ù&¢MR­¦+¿ò²`QK¯¿î!åù„]Œ¾åNÅO¬“È™eô«—²Š%¨æ]¹yåýS‡â¶Ñ«úžä¾´ø¥g7w\z÷ì=JòZMF•‚xCgjýè;‡k:ièòÈp™íêqårëÍÅOáñ¤Sñì <8×yø¨“N’æ¼#3uoÀ"f±fQÃ1ƒþ0©"iYjlVRôëÝ)¾»ýñÛGé¿¡)EÈ:©¸kB°?½Þ-jkDë{èGÇÕw€:Q²7„r”LæRb(ÉÈkü¸;ÿÒU>Fp«r*’éqþ± ñ é%üúfg“shQå@Š$Ž8Î|—ÈØØ[hOã9'ÚÐ4~ÜZ±; ]⹌ž˜îï®9Ñ0(%<·åd¦f' Ä óükÁ{÷$®%¨ ®Oii(¯ª®Ê¶äff ³dô¸“§T„Å– ÐÛZõõ[GvÙ‚!”zi;àâ—g´ GÏÔYÕNëUΤ£@ììênKqD'ÆäeÄ1ú΢eß@#tfiWSÛaxRCþ|Ùù¨Ó¯Mž‚'à±$ÇY“‚´TrŸ5+2Ÿ…(jÚÝùh9r¾‡„£ñçßr£S"£ùuÚVØv´¨’RióÛ5¯‡ª±ŒdE0Èl»>‘Þë€&u@2RT¤Õ54+õ$'ŽxO}žÆÃð†¼&ƒ¿usY`ÍúŽmE@™ “§°‘»XнïèPso£gn£™·ÙngM\š% 3ÃdÑiø) 9ÐZk‰¥Ä\ÔÔØÅР*Ï«’r!¡ÃVWåh:P±OŠŸ³ZHó§{oð|:e(/­î{D´^ òäû…1ð‡‘éN7žm¤Ï£ÞHÈY‡®ÊÞ$ÞÏSH¢·î>ð ¹EUÆòr¨é]JzFüîÞœ¶k½gÛtͱâS¶S×Ð><Ä!Ùy…Sz[!.»më´Ÿ8LT¢J²Ò¤õŸ¼º¶ü 'œ§:‡žÔx¢å•ޱi·¯ÜÛhím´œ$ÌñãþyçgúÏ…L§ZßDIf¹ µÉ¡ùš¡ˆYî,i? I›ÖK·î¥#d‘iøI +9Íh9è¬UÇ&!ûÔRe¢ Ü/ô™Õö½xbè+3øtÖ¼Bg‰<|³¶•””ÄËí‰!˜ÂßúþÁ/ºÐd4«žúo¤älÀßåù©²²wò¤i²Œ””¸¸ýž ,¤™r ¨qŸ­,78Êê&ܯøÙœ#¿y£ÈF·¯E>ZÓô®Šù· 7ÃáZcGûu%Žã‘3£èG†ïÜ> stream xœÝ]K¯\ÇqÎú.x•,feÌœÃ~?ddÅvLÇ (™ˆÄYP¤HKº$%S¤B9þï®êgUŸ>3wÈKÆ2šÃ™sº««ëñÕ£ÛßîÄ"wÿ+?zvu÷3¿{úòJìž^}{%Ó»ò×£g»À¿Y¢ˆr÷àÉU~Sî¤ KØyí–¸{ðìê¿÷ÌâLPzÿð Ã"¤Ý¿9hµX§Íþ ø1xbÿòp”‹TðßþËþªŒƒ7ìþùáhc„§,}滃^¼1=ÒþÑßœ=Ú}D§µÁ,~þ|„åh¯Ò ø‹S‹”fÿùᔇ T!X ]ÆÀO/àég‡£Z´ÎÁ#ð¢‡5™ñy¼¿øÇÃxœ dÜ2÷šdˆ§ðÌuûá üàÕb´ßÓ)Eª¾é¯¼ê¯kÃ\Î-ðYXfõÿ<øõ•‚ öûÁcØa¸´ }¬ï9£ÈyçË$Æg>¤g¦åÀ6ËÅÀó„êÂmPhŽb1V ‡¯j«4’Îý¢1Ç —Ò[Ji-~Ô ^4»£tÀ¯ò~¿Ï"ù/¹Äàd ì~Ü?®¶ …è{àúbmÐiç´N{·ÿ)|4f1°T2]Óíè#¾9¢÷w`—¾Wðž€?þhøó3øÉ#ËÌZÉt¬Z¦TÝæJ8ùØwœÌÓëRI¸ñîl1Käc*ª8.PdôtXB reúŽ`"P;Kõþ·ƒÐ¥·:+¯‹œÂ6W1ýºñ£¿°Á]W¸‹?™¸¿À-•Î&±j¼â#|× ÿj|y§UgëYþóÅ"„ìf¯¬ïxÀa)ŸD8/*I°*¯­ªLy¹ RÙo©­½f»õb`÷&ë7Ê%éBÊÈëd݃Í|Êæ¤ ÌóTé¬ðd^å.²¯ú[zÿ ((¨n0DÈ®'Ÿˆá|Èí_ …È{øö¿<€É±^ØØª6ÿKH—Œ0Iô({,gÏï1í>YOó9?´¯fRú²YS×Ä”Æ\.E›i[ê‡J,vܼßš½]G'Ð;Øýƒn§˜ÍŒ‹²¨¨MnumFºl³Ü$¿-ʲK^D5­Œ[[º1 ¯ßL+*>X,=è'PlBÆÌÍ›`”@|ú ®>ý‡.šdÒ¶U¯¸,ÏÄ =­È›>uÑÄ~³mà‹á±2KV#`ô£ \LqÂ&¬© bkÒ'¨ÀñËtîé¼Ï Áp‚;YŒ}X¼«b<Ø0p¡Æ'dr¨Ódè5Ñ&û<èóŠ¿ÆÏ¬ðã.5‚¼ÀQÅjyé…k*ÏÔòz¢”\†6 K¸ügÆËRˆ>!2(³`˜ €kãì ùüôd6Âx4.ùè- QwŒ¼ôZ•`î[‘ƒÃ}Aà}‚ÛgPsèÕaј’Uý¤–ªPR.žžN¶hLéáó¹2^Sî}YŒ¼Dà¹2ò„aL+¦Ï ƒm¡ç¼RE7ȹB+üárÛFe1FÚ_’^ð1êArÄZˆ0èÇmÐ ³Tu‡é»;I/dÔ2¿ ×(üçð¸÷šàxv7^·”ƒê¶OÌcp™àØg%2¶Á©d¶=À•!”oΞã#QÓ z’™ˆ¸‘õ͇  ±•w¬A÷Æ3‹…ÆE„ôþ;¯7Qƒ-R:V‰^/ÑAÕ˜ž"ßH–/|†âá€B—vÿ„^7h-¨ol‹‚Q ° zÅä…I^¥š‹¥­²:戺ÐÃús´Í(oÁ¼œ¶ô;0ø·Ì±ñdŽÚmÁמ;ô|=4‹“ÈÔã]ÌV ÿ2,Dæ@ÁÁ—mdy›‡Ãês<¬ª¡ÔâÚÒÇÂHÓRdÑ“|å×á–ϸãA"lsZC˜æ‰-ãØ8©Äà·íxºb°àͬ\!—‡pÄ«! .³ì JŠ@¤[0 Ýã—b,K^LSlÍfô_ç cwˈª Ñö’…^ ‰‹¶åSâ<Øãsˆ¯ðO(â£3R½ƒ„h-Eþm…¶Áº¤Y£¹ü1ÖA%ÇÝ­äáFzoý*58y›ÑY$%I\•¢Q£¢Š9óïÿp@gAަ5ÄÖ!xÝvcɼpfÛÿ;ª7h·%i2äOWT6Ùmö³8mOgˆ\ÂÒÀ›^Q ËÒ4UNJ¤ û¿4›7G±Óh\Ãü/³¦ 8}5Geýâœ= n…f“ØmPå—HA†ÃEýUÎÇžÎôM‘úÊ‚k‘–TÓhW|sä·Y¯9‚¼7˜ÎDRJòfÏq4IfndÓC¹5îuƒÎWé¸H5„à•1ÕVXÃ¥ý»–-^EþU´Ïoð\[6™[¿œ¯äùŽy9õGÃ&nÐ¥'¼2Ù݆ ¦ ²”ɉp¥~mñ}Þ×§¡uµG›e”¥éÀ“ª÷p½Hž´.{Lª@xŸñÍ,ƒC$”Úb,œˆãÖôgHR¤ è,'f¡Ô!‡’ ¡ s€»Ž:òج°‚£“™M«A˜âþ«Ñ4ù梮]Ný„*Ïàv1 ¶Z1żD)Ìsjð3¤¦OòÎòÎ 8àü\KÒŸ Û¬!é§9IR³³DËD®_ó(;ýŒl´YTœk6=MˆA}–‰š¸3¢ ÿL£ž÷:³Ž‹Òe¿<ç•¢²Ê“+k¾Ö¢;ýŸà؉–iâð!†WÑÉðâKp 9[2Ù4f³ZÀqžhždKëtÝ¥vFš1ƒI¬Jl½‘”é .ìBèÄ\æÒs :˜Ó¤ðªª¦ˆÃºk=È¡@oà)g,læœÙò„3ã"FΰEœã LI¨8í…F’§Iöä÷ÅŠw¢÷®>½úv04Lý¿ a§°¶ÂL0:&l'þøÞÕÝ{Ÿì¾ûã«/®îþn'¯îþ ÿçãûÿ Ýûùîï®~qo÷éf«1ÈC„H#m5†y`# —{?Ã}•AÎÖ°i.À¶ þf¤Kë¢!ɺ¼TJ@vT «ÀB ¥wGöÎy¹Ô”ª%›·°ÚÌûõj¥KvPXðSȤÒ{ï>[vÃþ¦WV†@¦‘†5¥š¨¿tHé©öñëƒF”f0í “DiôÆ“ÀpÞÛÔëzT°gÙÇÇI¸Mðeó¸jŠÅ#áý¸¾j€n¾j¶B..› ˆ‘´¿ êº@‹ñ¾,EÊÈá4¾žJø3¸nm¢·ûÿ;PKƨóª¼öž© x£nÿ'ä× 8@ÔïÐCÁºJÿvŒØ….r‘£lÙøQå€Ö¥ÖT¾_ÀÆ[å ‚qˆKœÑÊë™(©,‡¤–+YNÍåEX"„ßîKÄìÞMD™gDk€8#ž—di?¿•¤9í ᣗÍ& ¸Ñ؆ânÜ .¦™¬¸hèH y£?”ªŸ…ô|ÜAm0K0Mî0w+SŒ’Ùµ&2›úšvFó>¡"l)6â0è Ð‰›jjóUF]À”@]0Imu ÓIo¸©;Œ¦ÁrùèóŽ¤ØÓ8ˆ³ ÎíÆ­¿§íKbŸ73Ùß¹Î9DiÕB>š)T‡ÍJ¶A™Å´e®âê!¿'°¯/ñ¯‘¼,}_T·S'5ìèÖ+PZÓK¿j‡¿¦)›þe?L²•’ ¨ªql Ž;Mó µ&T:ŠN^õüLÏÉÂkê:§9ù&³ëQ¨/ÎöS Eò´5f¬®™–­H¶‰ä ¶òÕÚå¤×©,ZÌi-ƺ܄4O'òbæ´W¦åIk:±ÔrVéÄœ€]:ë2;•MdÕ’šMôô€NIõ,ºˆÆQ¡âýcä8ÐPvÃâòva™÷^Ê÷ùç´ç\™-ds¢¹z×KóvÄže=‘´-¥ø^ &-’¥Þ:R0MÒ^BÏõ‹ºOëóåYÞÖ†œ¾…À¸é#åZUÌóE¤¤O׬™®´&c¡0ˆä" ÒÅtšî5 oyMãzõaºž5˜e&lõ—M—Å* Åø »¿§TW~‘º ßøÒ(òîðªÖ¥ó4·^¯6åf}'u¼KmÚǶêΓ2û%hRgOSc-‰¡W¶¾2‹Â¶öŸ<î}êr €ýî[]YÉ^šŽ½ý™õg ‰Ý8¨“ ½ÿIÒdX‡¨©!ÏRµí±)ƒ5µ*Ü—i 뵘Æõ.gawì ¢Â4¼‰@Â4‘ >äÝó¡|œžfä€ùö­¸q’Þ´ýÊ‘ŸÎY˜¥Ju~ éòœ¶>*‘‘gŸfkÖ&ç<òÔOgFLbX¶R‘÷‘ÏN¯:Jδʅ”޾I0¸î—)àeþ·‚½7® ò¹ˆ«ÄNó«QθæãéùzMÛÞ†5c¥w‹¦çêº,ž1p—&~¼\ÂÍò3±è9ÏßÍڜɢ¶¢Ì)&&÷œï9uÝÖH¶ >ßQ5Ë¥¯fλÄRqüTUÈ ÜWCplÕ€¡{È8\ûE½EËJrŸ{2¾Âú‰¾´ÉÀl§`Õðtd”Ï$T ö"óAái9 ek›øó²Pª…äÇ®sŸv”äÕ'9^Gÿ)r*ó+àÆ€^´q& Áõ»/úqÓg-ù1{åK|Ðyéc ZšH,@ÍØ}\U¾ñà%î-‚–7¼ œrµÎØÉxAÂŽ¡±uÌ%OŠùøöÊ›±Ý`p6^“UÀÄ[“±}﹟zþÍþîb2É Hó«ª-¯£ ¡ß×Ë¿}þ¿9Ý/…Á‰äR‰×åG–´^»z·“w¾E³ž#·é.7cǻܘ-W’$Ìô 6Ž$»ß¡þ†X=Ü(u»—LàUI˜Îk«®‚˜JÐÀ=~¥V:á‘ñx­;×ÒI‘“Yµ~–V˜3]+ñvwôÀƔ㘟û™A}v­ÕÊÿÓ_û¦8ÿäû˶ x]!×rNAÒ;"ÚUp«|GçÚ?Τ ?‘ÏW~NSFø” Üròéü†ó ýZž/Ùº`Šuñ‚­M®åÆ=҃Ȯ0_=fsá “\ª{ÏïT ž9Ö·Ö.7B„_©0:üâÃûò,{çL»ÏÐxq]ν(a[˜ {áÉ¡›- O’Zq⛀(пÛÆ$ÒÀ²›DN5Ws³È vf¹Ù8‡Í9ò. ˜`ŽÎ5Û¥=¶€Çõµžƒå—AÔ³5åFt Š^×Á=nfíëI_¥W×ÎtÏóÑi)¥áB›Ú;ùcRL‡]6*æ;4ñûT‘;×Û ñ´}õÿ«A1$¶ôÅzXÿÜf”¢AŠ¢‹7Rw]Ôƒ½ó›¨oAø.Xo¾íõ–†*)‚¦ t˜0D´.ƒ{¯½ˆxsˆ‚YzÇ×ým’SN06Ø]ŶŸ¥EyãD2ŒM´sõàŸŠÂiˆe«ïà[º´À‰ÖÉ--4C„ü^ÍûÌuÂÚ¯þWÕé[®9¯Gj°hkf ÙP=Éôþˆ”È^º^“RÏ­}•‡(*zOSÌôtO!HŠ> stream xœ•YyxåºOÄn4Aœ©GQP@£^QAd‘}ßJ)Ý÷¦M›¦[öd’7™ì[WÒ½éB ¥€T(”ET\ 7ôêÑ£žoêôžs¿iñ\—ãyî}xÈ“É|ß÷þÞ÷·L…‚±cB¡ð®ÕkÖÄ*’W*bÓSâæÏ›³1!)/=6‡ÿêön!;} {(c~lÒƒ‰"˜8öåéÔçS؇ï@çoCÁÛ“…ÂmEƒ…qùCᆦ¥YÙªœ”¤dEÔ£óæ-˜3.ŒÚ§ŠZ27jUl\Z–27-%*63>jÕÜ5s£Öf)ñÅ”¨™Y™Qû’cÓ£²£6'lÚ²iÙÆMQË7®Û²~Ó¬¹ÿzŸ¿¼›ž»/AŸ®ˆMŠÍȈÍNNÉÊHHŠÍIÎRÄæå¦$eàûñ)`^æö%K³—åä*ò•±«Uqk×'%oLÙ”º9-}kƶ§ž|úÎE‹o8yyï´éwO‘ ë ÷ îl< Ø$Ø,Ø"Ø&Ø.X"˜#Ø)x^ðˆàÁrÁ|Á ÁJÁÁ*Á/ ¬¬vü¹ º ßßZ>ñ±‰oOb&—Þ6õ¶‹·oºãŽ;¾²sÊçS¯ÿGŸD$¹_}ç¤;£ïl½ë9i´l™ìÌ´ô»gßÝ8]0=eú›÷|‰Z'ÿcÌöEM˜¢Ë.ˆØ×Ð}Ÿh-ÐÅ&R¹†ÚĽ)™ùèCÜ’›.. mZm0`wV¾ŽZ¤hƒøËªçöò»=ß+È‹ ÍÁ[½$>5€ÑdÑ[H]¦âù6¼°iuá6 æß{ÍØÿ O}ãÆñøöÌbŽˆ£­ ¥´¸A°W:ÉóÈ3ޱ¸u´ÕªÑËëBÑor"q¹\'犹…!šóç·ºôSŸ¿_ñ)0ÄäQ”€ÛA³Gzž}ü²ˆ-Eí’/>³cWR|*©}yïþÄ‘vÖ©T)¥ë€þm;W„ô Zc.¤¸±Ãô)C ÈÔ(Ð;Íž†&©Vh£[€p¡Ú¯…’àözÐî:*˜Ù˜üˆ@w Ѓw·H’²lWj"+K?p8˜u mw744V–ÉÚ#Mî ºk“ׯOånQ%ðµüó|ùÁjmE#àÖVë,F£…\ÅÍL\Á=†ì·˜¼†ê¥_‹?‚ü¨ ”Åd¥ñM£×Ã8Ëä*ç29 øajšÌF¥xˆ9âAdô¶Û‡1ø÷ŠÑäæÌ…¹`1gS`´ÀD˜ƒ×osUÙÉjôÓ`‚ ÛÅÊ›×Ñ*3XL*Š“×6œ¬L¿¤Ørq ØlîòÏPºÔîdð¬òHš)ðå£÷?bnúòs»‚$iOkÞ¾*fgV©ïMjÙýÀé÷iÇîhCÓ•-èN©#ØØWö¸›êQ_®*Ô— r¢È_€Q¨9€éFx¥3eÿu4óJÞÑg"6 ="uê@vc¦3Æ›ä‰sC/ÑT{özÝqC|™eUæAQâ-‡k+ºz÷|†“&Έyújq“‘<¡=¡Í„\ñ7±d1ô+ÈNS]345E|yFþžq×Ðã]hR/¿~Êtž©e´M)D¯ò4­³ÎJkLäÞû¶æ¦‘¯ ¶ÖÚÝŽ ê*::Ú7Ò}*jøúƒ³\D…ÚWHgY“ud<·`Ü¡µª©ëâ¥\‡¹TĖ΄—¿åXáÇG~’áß ºë†ˆMf ÉËòrUN®<¯ÔiôkÈýÊ ’ˆØµœŠ¿]Ñ~âTÕȤ»Â¬ֱۛcN7C7нÜI6}s¨¦ O¤åh³ **†#J£a/Á ®A‹Ї'ðêc.|ñÏÕ_ñ~{­¿!ZŽ×?™]V˜“ƒ×w½zÒ¯©“Ã.HÉœ%ß.ßšœŒkwvó@£;âQ=h‘3ìë—¬ã Vé•’6ìæ6ä† ‹ T ‹Í¤Øš‘ÄSpµ¢ÅÙÕ‡n£üÍ®T½©;g'þbû ŸwEÚð–[Ór4Y†B¼ý êhH 潚üfE\ê&ë_|ÝØ oÂáóõƒmï´ ip÷ô˜Û7Ôý†ˆ5ý$µVs M®R­ßD6]_¶{ü‡©ð'P”»ìàñ°åçåѤª#³aîñÜí܃ÜsN®|§ú¸ãAÊÛžzÚ¡¦¦¼¥â@ð<". =+ÙÁm7©ÀR\(‹Ù¼¯( ˆ%'»Ž· ÛjŽP‘3½Ý@¼Zˆ™Ãh5ñÔÒÄü¤ªwa^qÐnÎj*2)Äpbî9ž ~K+èn¶Cê=ÀøoÑ쪀L7“ædÌ8ƒúÿ%?lœ¸lXyßÅlàðãç°Á+\l¸çznÁÿ ˆ-dï8B¸Ý¬R>%Ýí0ï]¶dÛ5‡;ŽTœk»N•ÄÏ«iÈ_#z£»¹í§†” ¨¸{Ua7ñèùŒ3]mdé6õθ­ò”„Ìh(=LaW9!ðy}AÜä‘l‡V‘Z´sÇáÄsýë§h\#?=/c¸QÛõî°ðàU»äo—ÑUÏ¢7’‹frBP±:ûØàÁêÿj;GEN: mÐYÊ.‹””[ Á@äVjªšj»íîxž»›“q÷q÷Î?½è;t߇?x't_ÁMÌ~7ôG^ JS“iH%S ™Iý§OñPV>äm)¶Ò¼tI99[¥¯´ÚX8§‰•ºQ¤œçAGñàhã Óž¤eFµÀ€¥­¥Vª Э£ÒæÓÙ4Ô»> Õà¶9?’²uR‡,N-²_“º ‹ü î‘(öe©¯»2òC86ÞÁ/íç ”FO……G.£ŠÖß)ÒÓº[¶HÙYª_ÜWíÇ÷_jvžq8áà œˆ{ø!néŒ3‹¾­È.ÄHîãþûÈ}â.4û¯eõ@ô5d¦ð+Þðó}TuÍŽ W†…ýŸ¡×>±Ç†n—‰®Ù—²Z53ƒ4æÓÚ\n ñ‚¸à'•º(~v˜R=T8oÈÌXß *0ÞPFÔ¨ò̼„=‡sžì>ÓYI¶œ¯A“lîAtIzí'.¤þSì?mµøO;ö‡Þp¼UeûÁõP¥Š1k“¡˜PTª«ê›Âää¡;±ºwÖ£óx Ml“äí•W¹»HîíŸvS¬´ZT¹ÅEcöúí,ñw€¡ÐTæ‚5 aË~ly+¢ƒ‚Ä,¨tÙ6u1ãÐb1ú¢¾Cc©¹µˆW>Ÿ´cÏ:} f{ů¡º›–ïKñýÙ/ðüË0ðѵ0û‡°ðÊe^!A"v½ ?Ü#T…9=ÉŒ©*¹>?GŒ©*Š»æÙõ—Ïôõù}”ÍšÊIͺ”™÷‚¬RmYÞf¯¿;ìrMUv^š*n_‡òKtÇåwËÈ&öNÉ.n“Q®ÈÉ+å«ÒU™˜ÂŠOtmB^¢ŽêîâbèI“ S˜™§°gg޲,Jì¢k#±æÐ/bMñÖ´ç7ÿ<Ö”êE·Âi╸žgWïJN$ßAoŒãI±Do‘“z«ÆŠ¥—¾ì¨Ý %i%7cøŠy„eŠj“·¼<r’Uo…? 12»ËÓjs1ÞÈ©¶†py¤ ‹Cþ”¤- œ0w-¥W˜ðLþ"ÎŒA«yaŒ{ˆLa›Þkûü®©‡¦±Ç%RôB|¼\¾5m>®çXñ+(äªe|UŒÌkkÁ³G¼D0“BÂ὜R@g1,dÎs{ @¤Â]×KŽÊ²WAÞ^Éö}F·^‚oˆkó/ð­ÕùÏáÿšžš¯ÅÍu·Š¿-@á8‚¦Òã<_·ÕET9Ý*þ´rSr±>ݨ  YºD|Ø©N€&Bð£öoB<9n×ßDéÎ…ï ¡Ž¡q’ê’rEv¶<» TX[Ó\ÓLz‡ó†œjuêÚí7‘s…jÎR]ßšÀîkyªÏmüŒÜó ùf-¥—ïሢ½Zyi*ä»Û’bfxyæó!e^£-¿„Š/‰ØãH-×SÚŠCŠšbÇ£5+*¥ÙÞ”&è'þôÞG_|pv/76ͬ#   ølL…ƒ|eDœKÔä®ò¾mu«0ÁNå&r·p“žì~©˜ú[V‡îd1,”Í_8gÖ‹œ(Œn¯uÖÚ\¤Íaã%Ïg°á†Æå'ÍæM\¶·F§Ùå´ÙBòØÀ¡ ¯•œÆ^|:Îi2t;?—å¯òséû3ËŒT´ô3”y^ÄÞ‹KZUR‘«ÈPd(CE5 õ d,÷Š»ÁND±í;fl¼Y.¯ÍVå!ëÎ9{ˆP¥9v4äÌ_ðÌ®›@f„bPy›Ý˜P«G†5'3?)®;ïè¥Ïû¿®ãë·b/V"–ë=ÁfIÐ|02žÉáâ\°Z ë¸ç¥V‹©ŸÓè4¹}6g¹ —í‘úJ4ˆ.q#˜õFZm¥yŠèiMÈ’Œ˜Õüàjh´Cõ‘ík4[Aæã[PòœR°Ë©LFÏ@9¸eHÆ6JÝW€ñÚ[qgßôšŸ.6Ç›å”ÕlQóUå“‹ÝSfçwO”ñr4øI`”:½zús>þܦ)—(¶cr,(õ¨pÔ8Ê)Gfq¼²ºéq¤²¥¥¦öhÿ‘CÇÀ…MŒÝ°`d´[Áj·ì¢uñ É˜æ»š­{²¢õO-%Sâ㊿cŸ”þ?'Xæ ¸H§·­qÕµÑïÁJ0€™ÖZÔþUÉúî¸Í åa²î°`ÔD=‹Ï7$ÁG3üÊ{¬ÇL-¡Z›ÓYE¡ûÙ7MöeGm:=¿™)Ã4­± H¶ñpr_k]õ ²²308²Ð˜å[Öü¡Ç±|ù†H<&‡^žIC6™ )LÚÈ{—×ê¦,UZ<‚ÅÅ ¹Ááâålý¸Ššà‘öi^½Ý·—Æ*®‚oÔ ì…@`;ÉK`ù)›.‡¡ÞþoFé ƒ +‡ÓDÃì%é±wz˜{Àf«äwóã˜QË=t¯Cÿ{%¨:у¹t`D žÝ³5‘´鶬ڜýiΘ;_,T˜b›÷ü”=“K×ÿ«ìY^öï²ç¿}å•cÈÒgPY¡M´u©2³R—‚36ÿ눫®ÅCâ0ÎûÑD$/*c9±r+¥Ë5k~%*¢ùM X¸&ú±»C‡Ù­ÏÍ¢!»ÃÄw8 †‹ªµ¶ë!4&½¾„«N“&²kµ¥þŠMVMŒOc3ÇÅÒG)`=£}{†["tØm,°S®ÅœkxMë€Ô¼e“ù0„þþ'û¨dHbpB5•Ž‚wܦ˲S½ÃȦ²éC ÃfÅå-C}¬[Ú1l·çÛMÁåszÑŸØW¥u‡kœwz1•`ŠÇ,pÏæ£-?ÑʰÅØ$sºâS•9YÙÕòÖ@Ðáõ‘ŒÝnÃøã!,y.y]j*¥ÁAC…¬ÓÿÞÛh<9ú øAxíÚÜ/iÊ­ÍÌÌÍÍ̬Ímjª­m"'³4§Êÿ±X)d×eJü:¯Æ` 4ÉýåïkðYL2Wç2î ‰¾øq1vÅN|ÀN›€Û–bÃìRüó×7ëú<íT#0e¾NG™ÌYãëÄ9O4&¹5EOîæÖÉgXM»æ= ²¹­/7¹Ý#©v?¾Ó)ûßDÏÝ?ü­3^¿Ø¯®Ø¨dì¤Ã<щæ¶d÷š«átõÖ6z÷tdþeRÄ2þ¬à‰†V)%à78Õ®á0²IYüp¹à—ñ§§-`(%‡_âB¸KL –Úcò›X|A4ØqX#ü^¯Ÿúù󰇀ީq¿„BÒR7ÆN§Ñ9!ņ9Û0þ_b0A7RNgº ÉâÛýN|9ÕÝ7“3¤® JÜFÆh iNÄ;0ÛéðNí~ìÔ 4a?ÏCoõið˜«FlÃ3»×çnAóç{Ž»‡“òjîà3ßž¿\sö-2¸µ5½ˆþÈÉrŠ[Þ%Y°x±âºŒÞ Çê‘ å%ªïÊËU8ó Ü]O'Â{!o4Û/àžËG/†ÑßÃÁ䬙¦œ+=u×Ô±l5Z+q†>uk;”uEIY¡ßçÂÿ<ÝÍÍý½ÄÔ™ =˜M“*œÝ[¹¸‰0»'…›ÎÍæ¤z‡S¼Ø Ææx 5H+6‰{ àlՉΣ:^ õ+utÞîøä„ÔÝX™–î;ùF¹½ÜQA "S šò’ 1 kƒÆ’r¹·˜)„(²š u ª„ôL½AgЙ”…3’  ÙV ß×DîAh¯«sxëÈ ÖWê."¦þÑ—ïPäLƒ,S†!“Xƒ’%ŦbºÊt°9o+ÔâH°øi~DÉy­™×*ªW ½Â’¯ˆØK¨LïnýŒ£|§RÊ„°žûÔZ+]h&±$q L܃œ ¸é2˜}išlPÌ‘ªwkx1s[N»aH»çŒP'š%E9Ñ t7 i§@ $÷?²ŽYÚ‘šx E¡YA-àH pÃÃõú¯ì#Ò·ÌѰ€ße¦B ¹ÌÞ©ð¤—øŽC7Ô›ÂÅA£KÏèpÈ/5jµ:­Iƒ­Ö¡wêò‚é jk)­&ó6<²6Aj§îD°Ñ×ìn¶{í^ðe&I6'ÏDêÓÍÖÌÔ-»â± ¯•?_ÍÔ8ÃTÙàSýŒ‡S¸ÌNCÛiLA<>&ã¾9/­Ö&˜â!™x²iÍ[çO>×Iú״Ǽ ßÁy$iF“ˆÉlè&—ó4XrYÄZQ‹ä‡•KúÃÜä rÖð=¿a^§·Mk@‚긖ì> Ðx<ˆ÷¢YÔÒCØœÉÍÞ™ºzWZËŠÞó:œÕLËÀXßp÷¡+Çà :Z2Gwσo>+9-d=ìÃ’Ú|( ¹V±â!fwjRÖ.0|øðØyìíÞç~ žÅ]5«ù`–iÜEáVgcC¾Š¾‡‰ƒ §¯§Rx»û÷ÓÂÎs¨‡ä £W‘\˜{˜q ¹[œYöéHȘ„æVÀÑôÃ3ún3w—v+¦l_¿EÄθ—›ï·Ÿ¡z^ áÈõ¡ge:‚«< +-èJXØsµ]±»XZrQ…¨ÅÍåÚ9Õœ&Nô).ÐlÔä,î — ®¸Pý^÷ Ç:Nav>æzqãNýöÜ™”.M¢‰ÎFZ&ÑÓZS ¦7lð½åÎýà‡6pX+MÄr®N¢7kÍÑ À¬¨òÔ¸ÂØ‡µ~99›¿?ˆ2Ââð„Á[É c7oŽ™8&Þ a›Áá¨> stream xœ•S{PSW¾—¹EJm§™M*MRKµkWtÕÕ­ëØq…ÚŠ‘«ÒBÑX¤„ðÉMB^¿Ü›„$"B¶| 5>˜©²¥ok_öálw­ÝqÖºigvÝsÃa×½:ÙýcçÌ93çüïûÎ÷‘DfA’¤t‡J¥n®ÝÕVÀ 3þtõÊ2MM‹NÝ”®-ã—|~ÿ HÙÙïRýY+‚ÜÌé|ñêûÐk÷¢á{Px1A‘ä^½Åè‹'¶Úš´5µÍÊ5«W¯]¹RXWhSþ²P¹]ýRÁd¬Ó*ÕúƒÊí…ªBåNƒI8Ô*5è•4µj]µÒP­|NS®Ü½«¸l—r[Yéîgvý¸ð@ücuCC“Á¬ilQë4:M½F߬Óó{£¶^+\hÑk[5MFµŽ ˆ»U; ²úåš Ùšû¥?'ˆBb1J4•Ä‹D‘ }$~’!Y"OЉÈ$®‘1ò7äõŒöŒ„h³h"³4s*« ËšuÏ»9ùGâù©ÇLäì¶k¢Ùï&$A7ãê2Ù6¹Ž…IøþqME?ò÷øSçtû|Í&9>‰¯=^±gã&Yz ]iÿ‹÷°µA;˜,NW‡Õçðt:ÊÌx‰ o9ˆÉð’}`mÔ<à øü ,-UÐÇ:£–1ÀÛð&R]xõ›)$é¿x I¤þì,f-'ñªÑ_ÈâªÑ=î ° L$üÉG|úþçÈ€¢Ò¶uØ Ë© P}þìççâò¼Û¢u¶47É r¶:å“vA'~¨¾h_›\ÿd)6·þl7n”–¡û]Ç©—¿ª»ÚðuZ*u¶'€õ†¼,-1v¸Ü‹Ïç1Xð=F¼¸ ¯Pá}Í`‚V¨åÚû]AŸß&RÙ ½Ô>üú¹¿'z§ÿ:žé}+–K‡J¬ãáªwñº+ËŽÃñxÏØ1ôÈ*H¢‡¡,ipàÐ…HxòÄÌŒûûÞ>J~×;jO’©íˆ•ÄÍ`‘Ïɶ˜Ád„˜‚?“„¸"ï6)y›@Ïß"¿¾%BÏ Ÿ&Œ#z½Ñ¨×‰‘‘„<÷à¶V¾c„·˜H¤û@Ä?ˆví߬ž²ŸôpÀÀ…VˆaÎ{£]—J^9È¡œð ŒQè)1\†¡‘_ |úQœ¬Ë×”oõÊq‰VBG£ÁbihØá¦œNM‡ êSœõ\k^¿ †gA{¡úlýûŽ£@õ†û¸l¶S@µ()Bkq½dv£8ƒ&˜-òm[ÀÃ`쇞V>|‡ƒ@uÃ~výø–BB—7áÄÞÉý‰’HP4 ¶¿uMVEjOz¡–ÂÉz(gè¾§/6ž²á-ÂÉ­Ðbljkk6»]>·º)[¢ß^?™‘#äMèe,}/@õôø£Š…GJå$$ö26W J)Žc„˜È8{Äæp»ív9®Æ‹¨ÒÆyÈhÚnsÜ»U… \AÓžnè–Ù¢öh˜a8NŽ*ÓWFé'²Þp„û¾ßÌÌïgN “œão‰R¾\rÄqÒžvÚ'wo+V—@)To›Ú?¶g¢¨U[Š [z=;T¿º:þš²©ú«Î¦k/u㳿Qà®Ì#Î¨ÓæmïôÉ]eªŠ¢ÿï'7/z]˜qè(ñRRðmÚºWO‹ø/M æÅk³±°øÏVôÅožwoº ˜ÛœÝ‹òQÎM”Z÷CoÈÆëpÎÛðF´/FhýÛ§•À¦ãqE½NÖšB~)?Œ˜h €¾yõ=^è¶Éç¦ñ!ÚewC— ¬QWÄÍ_À‡¤\7 ¸ˆ ,Þ“)ôì”Ï%³-¦ÿŠØ|e3(ïÍÑ$G\œötš» ¶Vì„pàä–K%oì¬êaÕC?1ÎËgAD}ùê4¼§k>{úbÙ9ó¯úÛ»·þ”Öë1–ðµòÅIä6‘ÀO‹øéÔz çˆX»Ü4í–¯ÇÆ,üFöÔèêóD, Öp­ øç#Á.ÖY"SˤÁ^Px)î—à|Ìã|ÄgåÑÑd0uߨ©¡ìdNr‘> stream xœ]1Â0 E÷œ"7(¥ e¥He Ò2p{l‡20üH/þþ²]úcÃ,«Kí féCt¦ñ•-È!Šz-]°ó—øµO“Du8™t'h_ølžP]›­â¯º4ÙÑÁ”Œ…lâÄ~µÒ{ïµ€èþJ»Ò0ø¯³A'Éw0hÄZ³|ç·„f!î7š…ÈæV³ ¢ÂU¢!ƨÕ®5 «–SUInyÎe"™–_v•ö•3Ä™/Ä ÅC„ßÓ˜¨K¢Ä?»pxendstream endobj 259 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2914 >> stream xœ…UktTÕ¾g&™¹Ä€œÚËb ,£‰T‘ òÐIyЄ I0$a2™ò"’™»ç‘'0 `&,B‰«¡ÅDPDªQÛ¥(°Z¬–"˾“=ž ºº:?îšsÎ~}gû;LÑŒ±ŸÍ›??Éšöl¾5%3'=+sÊä‰ RRs3’,ÁÓ êÏ™*iÔÑÚ釵Rh³K(„k!<ämi؆áþ ÷ùwÜë/ù‰0Ž ÙB©P#löíÂqá3ááß,”`cØ$6Íe‹YËbÅLa^¶‹µ±·Y7;Ç.±¨¹_cÔüR¥™¡™?3+{%=5Íjzdòä©'òoŒ)y)v’iNÒÊ—³òr^N7%ešMs&ÍŸdz.+o¦›&deš’SÒ’2V™²V™R›>»`¡iö‚çã>4é"ý¯ƒd ˜bí+!9=55Û’eÎ]iµ¦ä[³“,)™)«ï›Ós²3’ÖõÝö ÆHI³¦g›³òúwoEpNÏ´¦¤Z’2ú½sr׬I²òôýëAֱ驃+âËß`Ew$ š.ñŽšÒ’¬yéæ”œ»*¹ ím÷þ´}±s³oG¨ávÁw\Kì`è¹Ù}Æw¸Ý™Î:x•’?xeÍþѯÿ_Á?æJÉ¿ýw°qò „)ù‚ Œ1¼0|Ɉ‚û—.NK_°^`fö'…÷Å›Šˆz|ê”§c'Ϙ)pJs2s3«f5¬–Õ±zÖÀ6±Íl §k#kb[Ù6¶½Â𙵰¬•íä4~•íf{Ø^öšð`p B„H¡X¸Î±8§¥éÖþF[¬Ý2>deÈû¡SB—…–…îÖEê²tÿÐ'èÏ‹FqŸø±ø¯!Çd ùÓ5,!¬=ì<þnØMͽ'éúû]’xµ‹¡¥K‹{øÒ y‘šÐ,á½dNл©=`n¶õD¶1œzIyIÛsÏBC›~,Ùcô»õ{àÈ÷r[ï§+õßÃÒ5Æ^·~ ,+¯ÄwlΪ3{Ïöïòˆš¿Žæ™ÏÙxª<†æsZ¼týSx.‡{Õ¸ãP (Ü‹§A5úöãŒÁ·¾À1g϶·»Ýà·ØPEE(,”é+:>&°1ýuÀ„µtôëï“ßHÝ\â/ˆÞZh0»ÒË÷Ø;¥ÐðN†Ù8Q}'j¥ã|ÓЩ§QüÀØsLêµC!wJ”“¨ÇQ{—Ï5Þ8¦Ÿóò ŠÕÜC)d»úªDÉ'wSãÏiÕå@=E5Q-ÍkIy#yÉfXR¥Už*—Ãøzê‡q’€Q´éÏt _*]¡zëW4&::)ÉawØÁ.–ÖÃf¯ eü ÿ ®5F¦þ†m¸Ã¨™Z5“â Mz’ÐA¹ã@´’mœ«·B¥W>¡\.ÿúEߘ×jvWÖÀ[œÎVãÝ|pwiÕ† ºÈÌwÐÜEMÒu_äÃnA¾%}õÅ>öÎ%ÿ¯9)fN2t&L˜¾½” Û7PHÓ;f-M̤i«É¸.v9Å?bª¥Œ¯¹¶ú Uü¥Éšc)L[üfÒ Œ<†Åø‡Oäϱû~Ú‰9€épÙ>4l>Â?a/´æ{ªV;Öç‚E\ÝZв£µñuyØÍÐÖµÁΞ—B®fRèË7N,:óƒÌ&ý[åCk)ÄÀZ£þ³¶Îå†êQP]ÑXå¿/B=¤ÃŸÁ7EõŽÎòóë¿XÒZðÑŠ}Oˆ­:ŠûBy‡uVPûFÅù°AÝÙ›h \+-£6ÔÃ6™sA7ì&û§Žä”úw´áð’ן4ÿrúz¹$!•^/£¡ùäŠ(¦èÔ  Ö¸mÛv{êZÀ+îÎÝ’Ÿ—[¼æ·o¦½wñðù¯}ò–£û±½µÛÑáÅyûZAìuøò3«Ê­P$fúŠ·¿âÛ²GD«œ ­^zÕð~8mã(÷·d'I.Ð[œJËv§³¶Z>‹#Qþ_ôˆ›¡¶™Ó‰L$rÛ¤ý|È#»µê‰Êû‡|ù‘Ùg’ðqë7eßÃÀ¦“8Ãñ§õõàÊ¡ª0ñùÂby Cq@9@cZi9ޤ'JNMߢ§®o¤ï̲¡[‹ÇǸdŒ±àr‰O–nžóÙ:++åU.»Çn<¼èÔoÐÔ–ÉõcaŒ/·ö¡2ÅO[¼°¬ ªxòòZGuc× ïfù*=…q€9â-‚©l(¿ËìRè­ºKýÖЛŽ3zÓhFMŽ%Êþd’CyIÍ{yIëÚz®qÁ\ѦUe¾2´QdÏ5Œl£‰^ÐßeÛ¦ÅÕA+ƒVbäkÙ§”‰Ñœ)Ù858¼¸Ï´ê1Éÿpÿ%¦îOìš®Ü+@ÇáèÅ™ø,×ÈêàMV@I±ÊËäÈgQêKa¥( '€Jÿ@Í8… w™$4”x ê*¦F¸”†RîêÓ¹ëœõFÎà­Y7ˆ-P]$?çœP7¥„Îä“–ƒöêœw¢UQ,Æ=JäÀÜeWAlç.ãÝ0.pö^á]j‹Ãã´s‹šVÌi®¨qƒ”Þ–Å}i ? m@˜Eá´âh®Ã1 ˆ [\PW/_<{ݘڎ£}ø`ïZˆÑß®®žÑm¬§ ·œk‚åé¸çË,¨œ•C¿à’𤯨3jë¹$xFGqn¬§Óê‚Õ¤CàúŠéy.QXÚû±.[Q2Œ*㪆¹å¥Šªn¿ÿc>ýÚ‘¼£?TÚ¤{ÚƒT¼¤õ;¤ À_«µ£8 ïG#'廋°ÔXPŸ:¢†áλ¨iÜ”ËnI×Å/vŸñ ýr9Kò?E[géoÙ>·©—,ÿ2¨—g.ëü£lÜ¿û¶¿©Onÿ6 ·òúaþ›|®8?ïãx3P«U¿ ¦8¨‰aOÆw³ÑBZ,¦i˜\¸­ªšÓÓ©8 @,äЪ¶¬3âwõ§—œ½1bQ øä.]3Ô€s“Øü±[Á±÷Ÿëb§ÛßÔä_¨o+þJÑ»rå?+ÊѬ‡"£ž½ã?" j©§Qrã:O%~Å©4ØÔ×jÿ; êøÀ—õ¤~§âÌæQ8W×'õkÊ.^Ê.§s§q0ÊþBv8Ù úÈVe§4~<-§ÚMï¬ ö ™¹Rðjœj Ä.¯¼F—ÿ…3êø½ZT{K³ƒì¿ÁŸÔ+›6‚ Ä]îF(«PÙZr^E=”EïUÜÒ\N„Ʀ>"xÜ8LJË1·žÃw¨‚{o3šKƒ)ú#ÿ¤¥ êØjÕØàvêÚºï‘ÃB²Â‡@ø=àkrÕ:kœw­7<ÚÜžºZþózëÇþÆ´ø¿endstream endobj 260 0 obj << /Filter /FlateDecode /Length 203 >> stream xœ]1Â0 E÷œ"7¨“]ª,°t!àiâ  ¤Q(·'v!†géÇþŠ¿›í°Rœes,“;ã,CL¾à}z‡rÄkLBi飛ߊ«»Ù,šíÞæË3£¬}°7lNmü¤“›<Þ³uXlº¢èL‚˜ü_«[ cø™$´VÚT©ÌŒÉÖ0µKR­ £õf]e[}„†–¼+o€ZE¿±†èoòù“–¢xŸ4Ò=JÁ4ó 8#E‹ ¿gÊS&—¬ˆ!¥fºendstream endobj 261 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 902 >> stream xœ}oLuÇÇu´Be8läâ¼ 8i@ ‘i¶dFM6: HÐèB,ÐBwµ´iz…«½þ{z½–Rh¶´à'ÑÅ%Ì73º·—{c²è+Í’½0&šüZ~xºW&Æ7Oòý<ßäû<_ éêEQO Z­¼gf$àœææ_î¶M{çx÷ß«g+OS•£u•gh 飺R5|Œ4u·öûàÂ8q/5£zŠs.Är…×WÀmŸžñp/öô¼ÔÝ­Ín"À²p§ùÉYÁ7?kçøóp§-V wVðiÐÎu ç¹ Û ?7Å SÜÛ¶w¸Ñ‘ׇG¸7‡ßyÎòß÷ý›òó›Û>?ëÔØ´ÛÆkÊö¡—Ÿs¹íNBHoE”ƒ6õ dAÛÈÎQI ¨2h z@¦ú¨qêaÝh]Út ûMFÂíj¿ÚÿègZ{ýsÓ² Ñ?œˆ³r<–08àÛïîoaù:5«AÕ &×"r2!†Ø…$Âa2D­Ï·µ‘†®~þÿá¡ów÷^ŒâP— CaùœHh7i¶’þWÉä<ø@WÞ»aˆ,ÇAK zÞwJÚ]0_·4ð=ÜÆLáÊ-ÜxŸü[n’ñ¤óë¶¼-°æOÇÒÑeØÜ…{·`®àÁiâX"]ð.3ï}óåýe¶é€>>…°oªzpÚTö‚ÈÖîÕ‹^ðxJP4WîÕKP67PÇÚÃ4õÓ4×Ì×\%Áîu ömïεÒöûÈT û(ܼGãÄaÚïÓ¡äñ€WdÿìÓ‹à-—¡TÔ¬u-§P…ǽ&Ø\ÌJ*é¸ÛŠÛïæÕB.0ÙÄå–tt®ã.e#^€ €L‹I¿N^ ¦_B+2Ä4º¸ôä|ÌŒÛIû)’ÁÏÈŠû3wü$=‡¢úXdÅs ¶A-%6DÜÕŠõ¯lȳ¹öñºùQäÄ?`¥Œ”©ýˆw[CË -Ä’¤˜æ£æÊWäbí&¹ F"2,2¡¼TPÈ®²•Ÿðn!›ËB©%uÿ×"׋ðvE1].9'%Çbœ%-µ7’‰X€ ] /gUu5Ãâ3•ãJ&³ «L“”¿ž©Ùù¢T¿×°×È6ÐcOž4>ÆFØI+™\*«¦2)£QS©5µ¹ªæãã°‰²Ðendstream endobj 262 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 847 >> stream xœ%’oLuÇïh¹û¹u¨#§CÜݹ¸e‹˜1!85{Å^0Æþf®b-hY¡Üh¯´ÐrcëÝs¥£ W˜°â\vq›‰,¼˜º™¸bŒo}e\ô•ÉbÌïWï^HáÅ“çy’çI¾ŸïóД»‚¢išm?ÑÚ~¸±\¾NjiòjÙë‚H©£ÔR xÜ_”žîÆg^ÄÏãö(M/GßöË¡^$ì>$nnnªßlll[ú|¡Þnï%±Ý+õøú¼ÒfO»{}’,|§G’úßnh‡ÃõÞ¾Áú`ÈÿÞ¡:1Ü+õˆ¾A_hÈ÷±Ø¼$‰Ç½}>q[[ýv:z9à Qå:{ô8E¡P [ ”›ºCÿP‘ ©ªR=XĶè'Ñ-ù«´—ËÍB&™w.0Ÿ¤R1»v:RŸ¹šÍMf§Ò|f9÷ÍwõËÄ@¿1ŽÇùolTHÕȘ<™fn¤37‹øÌž™±¬S“ám~÷ { {#›ûVcúcy4ðßkÜ3ÆÙ娕ûÒªs«ÆÍŸ¯ªa5qÕŽ1[Bñw¾mÑϬß-ü–õåÂyü·ë` ­2'a\ÃÈ ˜3¼Ì`D£ZLáÇmnÿ•SÂ~v£Ëü:ƒka£m²MWô˜Q^0üû¥šðNŽ‘‡AŽ`êqF9+8*{>•ìŠE!ºÍVd 0 sº¾ŠÀuTæ‹_Ñøñ¤·õâ©Àéx' Nf0~HÖ¸sl´1†f‘ÍÛ8#{cÞ\BMì`10«mº1„ò°¢˜è_&!Á§0†™6œC¯1S&¬@ÔÉéìm£¸´hj×®|¨)¨ªôIdI-Ÿp7vß#m÷^®Ž`7ù“sb,t)òi %¢ÚpY·€sLcX º²¹ÀV¯‘œŸs£×SY¨Ùò> stream xœ­WitS×¹•(7`æ ¬´½×@!4yIÞ „Ñ „ÁÆ`σlK–5Xót¥Oó,Ù’my3ØL‡y PHHÒ¦I¼¦M“××9×mß‘!mºV»^»Ö[w-ýÐÎ>çÛ{ûc³ÆŽa±Ùìë33óD%kDy¥/>UX\W‘W›º37ùcvò'c’?åûwkÇAÒÆžúÉŒËÓÐ×SQïddšÂšÀfo«*µ&‹Ãj\!¨–Ö–—ˆ2ž]´ègO?ž‘/ÍxyAÆÚ¼‚rA½°¼4#¯joÆÚ™ 26êñŸ¥ ª2ò Kò*Š2E[ ·glÝüJÖæŒUY·¾¶yþ‚ˆñïþÌ«¨.ÉË/åçUVæU—” * ‹ó„¥Å•øü·¤”ÅbÍ®ª®y¥V(Z#–l(*.)Ý\¶¥¼¢rÉâe3&¤M$gýxZ:‹µ‘µ‰•ÅšËÚÌÚÂÚÊz‚µµ“µ’µµŠµšµ†µ–õkëyÖzV&kk"k2k +ȶ°meÛØv¶ƒíd»XsðѲƲαé1 8|Nרcããž×ÅÝÎzHDPÄ™‡5ã§ÿlBiÚÌ´¯&NNJLúÅäÉ“ÏLÉ™*šœFO_=½ëGysPbÒ_ÆèûYšx’г“Óo8oq’I4‡çÓÙõ*³^C“Ÿçí-B®óÅbžV_;>p=g‰÷¶õ¯X¼mga©?³»w;C­H^!ÌÑl ´n“'hut¸ÉÀ‰È…A :\µuR£DWF‰1O˜ µ`â‹¢º`$¸I»ËÓçl‰}žnûØÃ¡Ó`%'޹D‹8gKÕ줔e`%‘u\pøw(#Hbü3n³˜×èÉû{Øð'Ù„ºy_­»ºdcv~e)¾¹4à‰rÕÛþ¼àPäÜín‘Pcšu3vd“®Ü¬+¾B­×èô9ìð.u Zh7Ž0DC PeƒËëŽÜìFSAQOñi Ðdô#4=F-äAQ]Fåk5[³wç±JþlA«zmr6-á8z8ÖÄÉèÎ\jÒ_Øæþ`‡ñ2+xß/àr„IôãdŸÕau“ï2y´ªü½9©n­<š 3™ÉPÌãs®o¼}r «£›*fæ6lËz _¥‰Á©óc6k:ŽÚsÔ‹èMž©h™dÛ†Ý:1»Dƒoïü¶õÕuéÄà1 ®7-Ó›Ìz‹£äŒïbAK î~ö°Yx` )ÔºNC®cæælf^ÀPÖrµ6À ›Çæº:Ò¿å¾V•ÈôÊl´pÀªl®&y Zíö&¾OçÔ+-z™‘¬_VÝð<ó¸‘ÎÛoµ -⢴Ÿ‰µ ¡Tn£'dõ6ÙÈúO«/æä‡T %GÚ¸\5Ešì07Q-f F F³ÁbdI¤k ͺå@|ÿ•<Àm+x"ÿ…ÊÒm› .È/Å,¿ݼÄ”ÊOryýû²VíÊ­“õ·Výs:ýŸlßçŽ÷yÈÖO{Ñ «ÍÝeuòíÞöŽöÞ®>gü±„T{´†"ÐuM ­Ý­‡0ÇÙ_nÆ=r=zû@œ~r‰“|-äÁó£Eîlï^7 ‘¦k¿=pP]&E&±j i@Ùîñ½¼¶=“y$ï©íõ~“6ÑojöéÏi`ÔHÊ’"áN‹„°ÊQ{hÈæ€Ñ]íVÉóU[^»\x½¼ML¡P:Å”z½žîa›ðkmµÅÔ 'ë³w¬Ü„XJDí~{z÷;n4€Õ¢µˆÛfcιp¡[ä>Y©¾:WMV0“Æ=É•(Ôâ îFFo¨Õ–€‚¿ñDé©o/¡YÔÂWû1ñ’J°“®ágR¬“7T˜-r’!¹ k±M„IŽ¿€æ+`PèMrŠátj‹iÍrà Õ 1:´PÂf Sˆâ†,ýæ®F§qƒl2JfÓYqœV°‡Ð#ɾtï>›ï= bx˜ýcÆå>ðI4áÊûš“4$Y¼rÁ$ÔÔÈ=z¯ŽŒÕ‡PNìZÔ3í)‰]9ÓýaÛE2Ðk÷@„8½»g×ãùÌ,Õ}¾¸|v²ãׇ÷a{µB‘V¤©¥v2ÓLePA0ìÏëÏ¡Å×ÐÐû)›¸€Åì‰'üeâ'NNä9B`7Ñ^ïRE–%i6j‹b|ŒézÏâ—Ø)ë?z¾ïóØyÊ×n÷bgvwÿS‘X'ÒK©üY²íCÌ·æÂñ¾–X©Ø¬Ù[˜]–_P“ 2(´×wŸr8Ž‚‹h“Åu%²9‡ n~ƒúMì-Ø3ø¬PûÝž8ûÈGHöN2ï<¯Æm0дÁH.]ÀŒ)[÷$Þ?ÒüÇã—©#gOFBŽY:ªòÊ ¨'ª:tAçãÒ¥5í™Ù .6“ñÔÕeˆƒžýäë”ósÖm}@ œžá¹Œ^BÃrr (íZܳhµN´x©Kf¨Áh’3cFÖ¦3†dT1cÎó™\©r”;-žn0Ä(ì}ª5u«Í|ƒÊ"MY§#f‡[Ô‡¦½÷3 ¶é©bk¥ öN{H43g增‘/Ýr«ÙüXŽ&D%O¦N´¶Ý²>+˜òú?W¤jþ,Yž@³? ÇÙg¾Dw¾ä$oOäÏnË.]/_XNjE`®f2ˆ—¸õß[ÕMtÉ܆ÿxø4ˆA8æ‡Ã¸ÛƤ¡ºê*QaÞaÁÉKƒoµÉþk14Õæ;®¦ßã6/Âg±·8šìþp€ô{l~C#Ôaw¤´L«’âcE­]íûReަ ¢•ñ$/Î~·¥™«yˆ\ÏÀ…“x”"©Tl"uáÊÃGûÐ †ÏÌeX7·¾{l ½+AÉ×ûöËשóôU{ËòŠ ¡_B«ÐÙðµ@Ó(j+ê ²>0]D³o¾)LÖ lž^PW/–hõ…•ù@T%.¶#vçÕ{îxâîJ‘åZŠVŒÃÊØûê}U¢Â£lô‡Ñsû_0›_¾¾‹|²Úì!¼#§É«2UÐf¹ÙTgÖX@ÊW„ ð´4˜R’™=r wL=~VRDC¾ '^zÍ /áó`kííûW »tè|Þ]ög7osÐÐðX^«¼QTS%¬¬k”Ç:ºÚºÉèHݶ$Z’Ÿ_„JåìlsG‚=TÏG=ychâŸ,Ø·ý‰<&Cù7yÇs¬³ˆÏ(ÐXšJªúÕê5˜]¯ð FȈŠOýöû8e\Ä'†Ÿèf£µ7‘ÿ&'ù!’ñàXCu¼2QæÉ ,jM¯ton†·‰~ùËo¾¸œÃ°„&1˜H•×ìXrí²¦Z©“ï68õz³Y¥&ÕÊšrµjï¹õ¡í˜(¦Êà wSO©SO%Jºt·dû´6èÒwéߒËÄsÏ/˜½–™ÐŒ¦Ø¡ÅÕFZ}ãj«Ii1‰Œd>óî9Õ@óu.£Ûmµý¤ÛcÁ7b•ç ¾ÆQì14ÍDi)¹õíOq8ùéè7ü‰0CžÁgmˆ +k5’°¤­»#ÞAæ1Wyö€Íaì‘7ÍÊ|pˆ~«=ì&»o ¢% (SÐø¢žß°açÚ À—CƒÃlí ;:Á;JèªêÚ²Âýµç.¡1PZÊÇ”ùSVõí!öp~²Š×‰^w?¯|Ê­3èŘåéf#­¡s<~›³ÉEžCÏuÐS@äv[-:ÚTo1QLúH«¶VÏ~¹$Š& M¶ûM£ÇyRñT ÕBØj¨r»ÉApXvâ'»Òï§)â}îe;j {p®3«-jì!J/íò;\Q{ íü—Rö}ø‹ð¨¬’‘¿ Ê 5‘ÊœšÕ8ÕÖZ;ƒÖ€3Fa£kÄóãG#ÛÝû[ûúÁ3§î/ =š­zÈÆßfú„ý;6mÛ•EnʪUËõ_%ç¤ßñÏÓrÇQÖÃu dñSoÖÐJ3¶zâµ#{ÎvôDƒdÛþÆ‹¸Sa*,›·5œv”}ôyñ¦\´[©¥ @ši£”V7l’ä!ÔÇÚî‡lß?tr®®ˆÖý\SFpâ9~,s¨üäáX_«ŸŒ$ÂÀ‰—åôÞz†§üé;êïýéżÂêO¯fgæ’º;ë"Û`loY¡¿˜Ï¨ËJñ°µýÿaزû\m6ŸÍ™¸z$ÑבðÄØß\·Kh©s©J&­a£Q¦¯ã¿7®=$ɦ45´$ïxóeâ°ÑÆ8•Ûyo ì.©T ¢‚ýmá0¬Udef’&ÚlÆEÔy îÀ'¢‡ðâ]Äá Ýgx}‚ÖêraMUi¼®³·­£+ÅÛé/³©ø»†zö…ä"N²|¸œÔø”r“Jc"æÏK ¬6š¯ôi‚Ž€ÏA"滥®Tˆ²óñûª…x £¼xrI=;ù?)†˜Ü*LûZ©Ø"Ù¶‘6oòvwQßDo;[}ÁÅOå¯C-N´â+˜©š³¡ºP$áË”U’" rÊÛ/wxº]mÔ ZêŒzØGC°®LqQ#obö¤X]ÛlÀ‚²vI»§ Mh¾Ó¤ì“ÁÇpúºÝyõf vÀÓÔÜ:?:¨Œé){@.œ³®¼Ç‘P­6Ózš”畚8ùÈÁ„&Ýû&f€‡ðZì£b)xlã20·7Rf´’áö¯ÂÖ< ›óO™YßXþÇ·ßm¿ð!Õºô¼1ĹÄP”b¶ç­\÷Bí& ¶åvßÙ×øßǯS‡Îžn€3г7¸!¼J·Äµ)…lË"³\ŒÖw¢¯ã¾8²Ä§%o‹®Ìœ>6ymà9[lÍ…AõAQºQlð{œør v÷ö%¦gÚG ¡ê®U%r›v3æ1”btO §[4.£ 7÷»ÕuEÓ[¶œ,¾áJäÌÁ¡}O†NË]»¶BIBu<Ôåïu÷ØÜVŒ"ú¬¾A(4’Ú2S¹µªtçÎ’×Ȭz+b‹:›©ðù}g Ù6'8Àmr´¶š°u&£!/«:S¾^[b,…2âù¾Õ_95p~€ ¿v°àün¡éÝhR ÿî…©†ùûkì·9Éß%çñâµ # —YÀŒgže&Î{Ý=4 ïw"šZÒ«ŽRh,7‚StÀã÷â)ÎM0 Ÿ÷èJf>3~ÇîÄ;8ðf£ç ËÅ)ïû}OêûWûÐU,t> stream xœÍ]I“Çuvø8'é _¬CŸìnºP¹WŠ¡ƒ`1DÈ¢,Âcë ú0ÀPElHŠíÿî÷r}/+«ºzf€@0†hôTåö¶ïm‰owã v#þ—þ|òââþ#·{úöbÜ=½øöB„_îÒO^ì\¿üèÅîòÏñM±óãÎ9;LvwùââOû_ŽJNÃ(ôþ>ÆLÊìÿó ?Y1Ñ/ÿ?jé­Ý?:ÇÁÙÉ)·x8ŠÁy7N0X~íwð¬Â¿°×~_'{pЃՓTKcýpN»ÿÍÞדõûOá}-‡išöÿq8Ø›r2ÍêÔþsxPI7éýpœÉcp%a#ý÷ùߎr4“ÛËÃ_þöBùÁÛQî.wqù/Ú¿9a™“•Óþ+XÏä„vû?Ã+°/ÓwpÀôÁÙ;øûkX¹à-¹ÿVéœ÷ûWøÆÑî¯fÿþêÌ à½òȳºË¯âÓBÙý \€‚‡5޾½¦ÏæyŸã ŽO§/å¨ö?à‰k#Gëö_ä`¬Ô÷ñÑ—õË'å˲³ÿr8ºA 顨‰AŸ—_¿‚}—ÍÞƒa=Z!3ù~8¨ð0}Ÿœp© Óï·È‚RÃó8!9Tǽ‰q„¥Ç§…Ýa@c1–¨†öÛ¾ÇD3H#ĤÒ;,þ® PKïØ+Müå:ú_FÕ[¤ƒÂÃݾÈ)(B:£¼Ù"„:MÁ„.ª.êìê“SžÚlÕYö« .ŒËà7€QØ*ž‰9HÉt[’ÕQg(¿UV¯ë$U_¼ªÓ­,»¨*ŠXÄwQê”ó&¨1Ùì¢üôù†3Pšb¹ñ}‡dÁD¶þG b%\ĬÕ+Žûlë’ß$Ç_õ„{Å€Iã ¯{eÙÕÙoædË)F}¸ûb±¡¡Z*d2PÏ{ºXËðQ‘®5µéî?Rb‡µÒj|ü¨Ñºƒ íàw_Ûÿïáò/™ÊÂD¢…ÜIŒ!N@bXÏݘ¯¦4…†Y¦ÁéHâÿ• ´¥ú·aA¶8£v|aøººýÿáqµÜβ‡P—‰aY9â†Ó:&«åMÇbƾ-êÒcÌì ¦9µ ãF ï&5­š_1Z š2ðBÜã4ÈÀh)Jri1<Èk¬•qð‘|ÂÅ8ÙG©(@;8zuñ—'4¬„-Â;>±îǯaO ∙ITàäuà÷­'6þ£QævÞÆIClK д­JÀƒt}% FØâ&Å–§à àÄÞÿòD:…:JŽ´Ð[ltTÖ gjžãtÂØÛ©Ÿ&"à¸æùû™³ÌE0Èݪ· ­æËFÄŒ>ŸC6§DÊŸcݪ®Ħ‘ÄóõïR]}4¹k5wÿÉMb$ÆaÎÄbÀPîCÅP峊A!ÀÒÆˆA =¬úaÝ&¸­èq¾;($ƒVqª-5– ƒïn1Æ"QY/>)ïV<·¨5[~VvPÈ öË›¸Ø™KÛTyƒl†¬“#m*–›γÊé\›UŽf$3ܺ†!¥TMXõbmõS?hW&X/>M µÊéøàpجZs¤œÎÅÅ”u!áz^P<'{¶„9”‰•YË ªµ²7Æ´“gÁ»PŽÓ_¡WÍá+‡zUÞÅšO ¥vs™,µƒÛ Ö«"Ñ·_4enJÊAÖÚ‡ÄÐ9tíE·¶ÅìÞ\2ÊÃ9ÀÐÚ“Š¯²\^¯ÖÕS¾“+í6E|ña̩姱ÆÕ¡íÖ">éÇ¢{/µš«‘\@Æ¡± ÙÖ,’ËÝ0÷WxøY-Ë:Kæ2ÁÿË{eÍbÑMâžÎ‘.eU¤„çÌ g,7Ûƒž(C[û™N‰„… i¯VÉ<^¹ýÕ,Ö«@¶Ê‡61ÌäCë0éb¶`¶—Û˜|„ùR¬µ\ËŠh…É+y‹2·PæúåkwYæF(v"îkź£ºÛ•ôÖfÝAúc‹œàÑÖšÄÜýr<`Úc^ƒ0/,]Ît¤ÝòÜ`l,Ãe\Åz<ƒXn–”{ÔÛÎUé´ñ„€%R-\49–±úèÈ·‰ÜÔ­Wn°Ç9}……"*¦16Íe‘§ªûyÏLþøIªß=W›¨êKÿx@;a`¨þ ´r½Ykª ÍEìØŸ?IÛP´¹â])ç,m2ÄÀZ£°ý3j`9ùÀRM–ˆÉn$`‰l©Shñå¦Z®WŽ<'[J 6•ú¸I®«iOžÎ@z‹Ú_[üI6!žµY&>oV!k¤mtÙ=ngâõë*&èú•h01Ýš ¶~^•ŠÙw>GÀ4¹ áz"ÊzNh.Ú«¥r˜Ü”×°elKù[i¢ûR…ˆ×‚Pú¦tLÅç"#¼ªéð18 ’"Š®ôAÑø¼ ›õFñL2ÆrYË×EŸ >O4Ç}sõK³àÂÒŠ0f鳿֭ĺiƒ­i : ¶VtyÂü nø²É2T2Ïô/œ$éú=ƒéçe+¹8Ïc—Óú•OzÅ?w§@ ôNtˆ=Küî0æ]BmU–^/Ž9“ö*€‹SKý¿­Ë„$Oc·ÖœP™Gn^•uLÛç*z†—E0ÕÅáútÈ&ï«7 ©¬ ûi¬>A:SCìl´-w«ž°›vŠýJwÕM›¬íjsÑÐåö)rC5Jhˆ4üL)Â…‘ 9ÚñsïµÉˆ‘Ë¥øHã7/û ¥Ð‹"d†îMñôà`7”ØÎÊŠ^VÇ7ª”Ô‚šY¾nl<®ãçnhúJ›•Ãñî3ü’ã×2îVa )ž+qÉ­:§mÆåæH5ŽgW!w$¶Ñ9°…Qö –\¡ê>3˜jžfÚ…;½î“eí’gúiеLT#E%6‡ZªÎçÞKÓÅÑ{§ÁYiXœ‹qîzRIÞ§ëdE3´Ã”wh´0™!׊SqçÜ$SÀ¯ýZ{~ÄŽêÓs›ßÒ-ï½ù-ÁŒó€oFaMñÿ6è;÷fˆ7‡Ü»ˆ7rnÁ\Üií ¦¨”å0N¢b³4[ÆOçÿÀ#Æ…z¢•/;Š}`’Õ¨VÛ˜\nAVšD1ê¥6õvO¾›òYù2T™U¶§T–¡î] ·ÐmÐ~z˜ºâ6rùÍ¡øyá@ïÕ!ÄPTŸ³OwSDY~CØÏ‘LÁ†ÏøÁŽ¡gú¯]¥²Ð¹s”2£èhd^5–ˆµfÁr>ˆ±tl‘Ì!p¥/Lßa ±æÅ›.î€ ±è;ol CØ?ïÌ™»‡{»ñR£Ì$<$MÆ8åÞ6ÿ´„Vز:Ϩå›ZÚ65†Úá~äeo®™ùÓ"bÃr‰Uê¤l¥ó0ÀFÁÏé¬î–µs¢²Ÿ”ǃ€64­H•l ”·¼›–P’ §¥úhyƒ¦~žµÁ†Ks£@Þ,GÇ=ÿ¯‰¨êxO3ìÁD³,ieø^WIƒºΠ‰¶˜ŒãˆhñXxêxIis=ò‹"Á€5‡Áã YÀ¾UŒ7û1ûTFîˆ j•±»¾1jaèwìökó,o>±å‡¥ÎÜOúûö©c“åÅÍ–s„©3!b+qΘߢ½öB-B›^ š†k…4·ŠŒÞõú‚bùúYzÔÔˆ´4ø&ŸªØ¢áµ~Ùâ‚㸻æLËØ®´wX *ãID)ªj‹€ªÅ;âBáa æéLŸº~ßÞúß…V6Úø®ˆ´¾úb#òÒõ9Ëo;x™L€ÀúµN2'çA¬ )*Å8pfü§ ––XÞN§Mdö6âÝΙ…æôÑúÉ¢®nwæ¶Hv æn¹ê‹Öwm•°x­˜|9Kî°cÉ»Ïë°&\´ xÖnúZ@ä°5ôIúËÆEn}¶:Óuõ™è(rƒñ¬EöñL¸œ£Üó¹ü3‹ÁÉ1ÈÅÝõÊx͙ץ΃Íïáš:â‹æ _'h(c‘FN^ÉØ¹KN„•ârY…äÊovmV×íç³rÍÚ˜]¼rcÞ\$q³ûxμë ʼnŠ@Vïúš?µ)j–¢²Yp¥X»¥²A7án/„š€@ð,–pœŠhbõX»¶‘, –úåœÜåÍwÍoTí°_šà*Õxª0WËxI݉›îé˜OÈ•aJ “]ÑÖKVð«w$à‹, ÜÐ ðrvg¢å ?wõN”¶l*âPš¾ßluVJƒš0N5s‚Ãþ¹ ÔvóÅô3¯µZGL“]+ Ì×bwÁ©P:™—¢‘kƒ€·-$‘)"=w*&¿èTä{boéUà•i~©ê·’Úx³+±`ÊêmÙ$©Ðú…òÍÝBˆË´¾¥G€°¾fæ$Bººµ^"Ÿò»ª¤½},ívɯmlø,þ×0ßâb%³õ«x ^y›j€ŒÆ[7há-QÀ™†GÜÖ½Ênæää*±ÞJº¼I,Àâõ;Y«¦•üì°-¿µØšnÕÜ<ÑNæáÔp ¬±gæ¨ò-=ï±Ú !¥o9¿Sí•ÊMkæ®—Àú‚­¦´$ÃÛµQy””¶6RÇyަ<;äâZêyÉ_WrÿÈ œV™µ“æ60ÁóæöØ›@émYh¹V›>«­½ƒttÚàü~¹ô‹ÆŒê.l9ÕÙ ‹1 Ê®Ž#¥¶¸ÌŠOô;anq¨‹¹º˜csh¤S6ÆÀ|ž¥~ù#©‘iT^·H ËÄ` Àƒ^)ëåœpwSÆØót•Œ4¯Î½‘5E7«£ž°8Ý‹Rï%K½'a¼yvC ç© „loÒv±  IDÝ«;ʾ<+ð’í­Øä~µFÓ,jPd¹Y:"×®’ë yN3ä5õ5ë5\K¯èô\OX„0µ,ŠB3aü߬Ás'× žY*RÉ7õ-r æ `×[æ¨r 5åŠoÀGìÈÑfêjý®Òmh»\qY_Y¸´ð'!Q§*õ)>«QÕŽ‡nòìWµ=ýþ#)ðßÍúââÿ°f·×endstream endobj 265 0 obj << /Filter /FlateDecode /Length 5735 >> stream xœÍ]K“Çqvø¸wùb…bNòŒÛ¨ww‰'‘¢eÈ’LÒkë ù`AA`$Hˆäo×Á™õ̪ʚ,V c¹ƒžîzdåãËWï×;±ÈÀÿÒ璘/~±îž¿½»ç__Èðå.ýzúz÷ñÜ ñÊâ…—»«//â“rçÅn]ݲ¹ÝÕë‹?ï}¸Ôj[„4û+ø¸X»i»ÿïƒ\üæäF/þ'~4Ê;·ÿâp)–Õm«^÷—rYý*6,?ö{¸Wã?šÇþX'ûø`g6¥gcýnXWmÝþ·xÞlÎï?…çZ¶mÛÿ×áÒÂÞôªÒ¬«ÞÿnÔjÝÌþ3góÖZ\IX‡hFÿc~æ·‡K%ì¶îõá¯~w¡ýâP»«ß_\ýëŸ÷¯j±N·|°ûo—°èÍ©mÿþù W³.Òîo ~KáößÕe½>h[~ÿnÜ`ÕJÁ3fÙV8LkÎîoa¬/q,÷ìßÔ!ºIñŸ¯a½‹Ö«5d¬oaãëê}º¤„¦½ÅmKÿíà4NC“[É÷oú•â÷O˧— 9*qê§`«gù×Ê9/ê–ê°7H€p¹®¿¹1RWê¼ç 8è>Z÷×Ü u%o# àÀŽŒdä—áЕ‡…*«k 29‹:r-ÝéLZ‚ó«'Ì·µº•|{“£ø%bÂFnʥlj$^SJ”ë(q7VÀÅnsOz…4’ái! Hž’^Kd¸Ìt¸”NÐo‘_â&·Í«³Xñ¯…ü%d`kòÄW8™±Â›m¿.W sCå˜ÈNÚ…U¸ £qp<ÆKc:êäšðìê1[“1¸*EXû†.#Ñ=Hääv”QFßâL‘Ÿ´ÏRÞÏ;mç%{j$ÁÒ¥¶YwS†¬®…]›9½]ŸÓ‹‘¡ÈÀ×uY× Gýó”Üjaï{&a«rÑÒ5\¬_ ­ƒ¾ ßÃF(oENó3ÌM`3³Z/O§ –6¨ØqßY¬å × ¹2ŸÞ®×:Ý‹¼ÛÑ/š¢ßƒÕíÏ •Ñv]ù`SÈRðF"Èr^uù¤L‡êv5AŸã:ˆ&'›Tø‡eøç0žó‹6àtrdnX‡µ1WÛ°áÕû©m؇ á,ó×Ê÷·‰µí"Ön-!<Šd)‡²­‹oø gi”¨Ï]WÐÀUÍ3z¶\:Â2‰ Œ¡V†kŸX9l°ÕÎו•RÁ|”–b…Ñά>H2«?“®A>ÕpÃyuš3óÇK …³Ænƒ¹DùywÐpQ­¶;y0;FÚ%YñÌÆ…ÛÈJêOX;ˆs’¿L‰¿ìó-•&I¥ëÍã4áTÈâÞ¬Y¬I¬Âˆ>^ŽøjW±-Ò(Êw0¡€Dà²0²2q¦Š—álQ”´é×aWjsÚØÊzI£ö÷SA #@1|OtuÞõc³ð阀›’kÄ$‰"­6@zÇXô m{+ u[²¢ +oÊþGuaN cy,³?(ÌGÔb¥:bDFD[¤ø“X1ejÏ= ±4ç®âY"x·c¶AÒÝ=¶|"µª…_¤¶Lø§ 3¥]š:X“øÉæ5-2« ªn*`z¸dBhþï±,¯KõHºøAy̨»V¶sÌRº>{Šl‰àWDgõ8Ï£Ä˘ýæ rHÈy‚Å)ÐŽÞy$åÐû4m”]ÙEIЯ£øKêüK×hiÎhã1Õ(yÿ¶¢-’ò‹©U8"–Ó{ޤ©ñîïkš³Ã¨‡i0ÔÌÚ–ox@é˜ìukÈr„8ÆUºÌÕ‰j;ŒŽnþ˜àÏ{¡ú}°‘‰¬ìáîÌɼvç|’#e²§*r6|Y¹°¤?ù€ùüE©ƒvÖ3‰bÀ™übº|S¢Æ4ßÄú•à)¬ëÛ”ø˜ˆ1%-JŠ`f©E%¡óŒ»ÂÖ¨g- ¼eœc={ÎÁæîk‚EËð g æPéÕÛÈaËÝU(£ &+b rج.5­±hDn®6”Ëtò)Q"%~2W/]Ú4¾r1Ëf(Þa¤3R6*«ZÏu˃ܼI0¿ŸT÷²ãˆW„ã}}ÓÙLV—Î’å \¿¹67¹k`£ÜVó·àqèhÊG.$š6ÙÐ/m}R.ÑW\ææäxÄA] q»‚¢a¿¯-­PpÒ[§Ò¦uˆ qÏã8çÆü’mâgCr,‹<å£Ì‚!ˆ‰ÒÀU ƒß]iä`ÚO¨4VŨa9*tR¨Cº™Vqp!ˆ.wÚW÷]#"¥7‘“á!¹hÛ¥ œJc|­á2Òó¶ s›Ç„ìdDÒ„+ÇZ±T¬‘Æ;áñ‡qÍšØ_ Urq÷­×Tùþµ`oõ&Ä’üšê›Ÿ”JMTÕöMëzBa!…œ\$‹MF7ò–½›‰«õ5iÜ ØÍ "ˇ5bˆž‡Ÿ5%6ÉWDÛw¯7 Ÿ·acˆ¿·zø{|’˜tfQ׳0M~«˜åsA¸¶”»ŽÄ„„€1!ï—¤xlÂ(ø8;oKÅ„ ú«8iÇÂao­æŽÖv£@ƒ« saÝÖW¦&2:ÇâùÁÒÜG>JŸŽ²f!jýÁˆœsŒ‰‰§PZ~N²Q©žsw)°lkœ×˜É8U‘A6q÷*ëÂõ­ÅNø6•L¨e-a–ÂÓÞrvâ„<‹g‹X¢³}$üE€G¾¹ÍróuÏ1«y|àGqÄ£v™ߪ×êkœ¥µ”Йº"…SЀ±ÉDl„ JþvïBÏ['¨ûÅn“X+z:ˈó!Ѧo‡|iüb¢o\29G"t~›ÐR1$]ö—ω1eI4ÙIàjUH*ÍŸEú:Qìš°,|c°Çƒšá¬Qµ6×fEnþ—kYË)kVŽÛ®Þ9ô™ÄôÐÿÓÑ#;ƒí먑}‡} p.?E×Ú¡.÷§bº©10)ËÌbýó:Y[|u“ÊŒ$‰[£”»+µDZYšÝ6…ªù°jcw]è'½BjJ˜nªJIÔ ±YK]cå] ~JG§zpÀ‚‘:–š²íÈÐj¨èO$kKŠ•èf‰]« Õ;,t3<ݘ Gkq'óo4H•Y’5 œ{û‚*‡\1”zw‰à™Çq¼4Ö(7í+FaýÍþŒ].m[ ^™Yì*a™ ¼†3ÊRÀIJc–L„Çm¾ï‹ò‹1ûç)TH3–º/ 9mãTlû  @–ÙadIÙá¶F!N…¹»C-]ól swˆ§'ï+Æ’Öy*Æí´ÆH.SÓ:WÙaK>ý¢Ps­ÃP…݈œæâ‚r2ðèsj)m‰ÅYØÌ±žy© ê±ÓŽÜXgœâN䈹 þ"[Á|ÛÀ3üW›Þ㎮+€JUEA”ʃޤc»¬´`¥¡òË÷¤|e½vÜïÆ`ýÎÀȵ†d;2o¦TÉ<Hìf $ N^eľN%Å~woz‡Lî|6yœ¬íJË@“ØNÄhÍw*u–±äõ"_èúüÐ7u?NÙ §…š;|…÷xœ­Žl*³‹ÀÔïçC"½‰GŒ•{D“l§ô‘ÐN¸d©,°81/©hlKmqùÀË"Î@‡ò[W—ÏW g¤iÛ·U”2ÅŸ³ž`J¾Äge%½Ú6A¥’mB,v;õõûºŸ]-X Ekî+3Þ2À¨/B¸ýˆc-'þþ$€Sžù€t\÷(}^:®ÄÚ»IéCS¾S:ÏÉ,¦& jyðe>©ìs+n´oÌÓÄRDìïª+8 è0ˆÅÇÚÆF¬FÚ iÈr†Qñ\?áx×9å7Ý‹cÂ^[#а°±ù¥Mø©ÓÓ³Ì!§6/‰¥lep£-©‚gàÀM ƒÈÔ#§®é;½\ tê&cþƒ‚$ccîfØ>=YCÍ';áý¼¾Ë¸_cs×}8f/â˜Æ~îÐQßÃ3çå±!ĬÕïtžpð̺.Î þÿX‘Wû9Š–&©˜.´Ú5]°p…ei®(µI4zêè›·´ˆÍ°L—_ꜨOÓ6Ê4¸î{´RÄïgË4ëDÆ fåCÅwSÌóAiÿ4ö½»¤¹XÉ0™sóÿÔ!U¨aŽÅT§:>ìp«Ð·íÛ’Ôd*Oõ¶0=lºevR|×M›®U¦ º¢©¨v’èN4Q6v§½g)Ý©¢”Ÿ¡ú •:IW«˜ñ+.Ã]ÕR³šKåDשÆ8RŠª¹`\`€,÷ÓÖ]µQn.ª~)yæW'Ó.Xê÷Þi—À¢AÞgd\8ìò<‘Xïj ˜·! žéP2’IØx>ó$jŽ#ˆZ™Û&ƨê €¯ÎÙFI[œgX<Ëû{c™otýŽ E+Y ®>›‘)Ór}>\‰ÀŒmH9y~‡À¾+U×µ¨oÒ†” Ó™v\ÙͪåC&eKÒ÷nJbלjJ`É32^&X§ð¥±qq“÷u0é•V½³ºªéŒöïÒŽ×ÇÀ‹mó@$ltj’ØÄ7 ¢KÜÕt)gò}Ä@µÚ}‘Éãø?Ífä¼!ÖÑwœæw<ÙŒ½±+Ù0…׳¢Þè=ýØ1½uÈ¿ODZZ¿Æ‹<yßÔÚè m&¾gh*<£»+÷[ÜS#È)OM- 8CARë «¨2߰ꊬ’oYJ˜$Ç#²VP1kVsí%\ÝÅx޾Cw"z0¶Åp< ¨´£%§Ò¿pçÌ¿6ŒeºY葆çO¼¡Ûy >¢{Át4¼_àQ/}§ÂýÄí¼×½õt&nâ:™±‘›÷ Ž½ÿn2¡vð½¾âÃ%–kȱù+îÜ0¥WiøD'ˆh¬Î]ØÛdìÀ½W9Ò4M ó5UÉI½pßä…ïÁô Ö·ÎëÒ~ÝsþÓÒ‘«œcî¶‹!§.éc1ddÐYQ꛾#’iõ¦¥â©om&<:Fëº8ÄÿÃîDÛ±Ü>¥EOlðÓú7(ºìïY¯7x\°¨Â, ¬‚`Ý ëßÄÇTN^Â^2¯©¦ y2­]76½´õ£D}µ‘wœño&¨s² ÜëÐ: øôêâó‹¯wÚÅ?kƒ˜Ýæ=:ÀÒ®x&ø‡P>~tñðÑvß~óݳ‹‡ÚÉ‹‡ÿŽÿûø³Oà×£ßìþáâÓG»Ï§$Åø,~]íFÿHŠÁ68 fÎâJÁŠ\)„p6VäZ¹ÛRۄذ"w• <¹ÔÇaß"ef±¤6¬ Ò¢¤´AéäïCîàpи@8a¶pnùûëúñ%–×8þ÷X µÂ`Å' Z¿~w@[Œi¨:$š ÌÈu~±ÚÓÑã­Ú"è:ؽNc® ËßgVaè60Ü„oÙ %CùÆÛòuzÍeLk‚•óRQÊÜâ;:½Xú˜ W‡!$x^×Kf$#5+Š/ÞŸÝJÕÁr‚¾üy½Jv\VŠCá+ÎÂë3¸¡ÈC•vù¸ƒ‘¶·J°¶Ž>’î5‚!)ã«áGWÊ6ë IòP³´Ä¦'®±àÖD0~+Ìw‘?¡bÄ·šir†‰eÍJy JÃ*ŠAò4uAá5{&¤Têõë2tì«î;¼cm[lxï\{&y ¶\%*ö°†×‰Kø]k;âÊ-Jh¥‰ø\SÖËS?KÅ[–°HÝ@89¨f£²ýª Yåg4Þ£z õƒñsQ€¿PÿÒÓçÿ¦1}Oendstream endobj 266 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1650 >> stream xœ]”{PSwÇo’\”ʆx塽ɺ Øå!Á"êV)VµŠéb©– @$ŠÈsÄ'y)ËŠ1f1j¤e´¾*(hj·SìV´¥b¥Û¥ZvmÝsÝŸ3îuvéÌîüfÎÌïüñ;ßóùþÎPBJ ÈÞܘ ËUçE…&dhŠ´ê‚ÉÜ\7OȽ,bæn?­ƒ—¼<.Ï“ôù`‘ ßõÆM¿¢DÁï5ºÕºüâ‚,ÍÎÝJÕâÅ‘¡¡|\¦L+VƆ)׫wäèöæd)ÕyéÊõaÔ›t{ød–2X—§LËØ©Öf*u™Ê-ÉʤÄ5 ‰Ê¸„ø¤Í‰‹Âþ_Öô¢(¯E‹#T‘K^Z½,˜¢fP2ʇ’S³)†šCùR~”?@yR/ñýQT>1ñeKœ…›E«Zß6ÆÂJú?5Àŵ»Ü¼^Û¸ˆ3Íq¥J¡Å©àÎI» ˮ۠ӥ6¸ Cvú™Iš eljºäŠeø3 W ÓMà_‘zàŒ …Íq=ÏdJjK+×í¯8P½J&ñœýS÷ÉîS]þ]]}áseD|‹&"*4ùÃêÃ'þÔÖÛQæx=~qøôg@ÿ<ðÚò7Þ]³AA*Ine%ÏKëÏÅIþ‹©÷JQáÌî}òóe§Ïä“Â'Š"_ù,ŠëÇ׸•x›Ììºcs»ákúnèñ"žª¤e©ÎòvÛɶžSEmùöÜ¥ï  è‹îÂh…\FÁíoVÓòñŠºâüÚª¹•uu°Ÿ.9 GÙ«’{ƒ AD¸.%6?°þêv…ËòGœ¤» gççîS£0åüãäì4e”¹8íG‰¸aŒf\Ä“Û$= ŵ5åU,™z¶MœŽî<ßò¥l^ºUTÄ®<éR8âTÜ•F»b— Ÿ‹§çhzôuýÃ…ò)_¹–‡¾AIøO„Y¿UŸŸÃâ›RgU¡:x·nôm¾ÞVZ>ÖRi6ÔÔ¡‚Õ”&—®‡w ©iûÑJ‹Ádº*Jä²t”·5™- ì G÷(Ðè 䕜ôšÄì4…6c[I*¬…µ§ ¯ž7Ö»à}Rß©­RÜ~?}ðe¤¢ŒýE®·ctÒè§Ï©…qþã°Ç6^òî Þ§Tº îMƒ;ïõDÁHÖdm6^0õ\ïÿòfׇ³†N]fuõ.(¡wµuu;vŠ•›b†·]"á$„Ì%YÄ€âôsý¹þÚ0ëp¸ÎÀ·ôÂ9°¶6+kGanNI ÐòØòkÀ×øà×—ºô9 {:l‡·§ÿ°ž™pðQôPÄo*?†–¤A¡1Ýü޹Üx°“ΔhˆNü¾Älm¾Öz¸±~Zy*z‰Jù ñŒ#ó„øWAÊGçál k—né{taU¸Ù¯©L`§ÁñV/ÎãY¸spx Çý¼~\ÉÀgê¾ý­{Û¶Ú5í_8ÎÃýhþ¥ßñ¢¸ûR>(`û ÄòÏׄ%. ž({ iôGá]±‘ø•ÑiºR8ê'wÖ“íg>¹ãøbôvj ÛùÌ›ù]xZ+÷ {õã{÷î\iW`Ð kÙ•\HðŸVö ÷Žƒ“½°é©šÇ §0„¾ò§1¼¾¯4ÑßÈlÂ:œøÅØÕ½¶?õ£]·à>œ´º`ÕM|AzÊÖ×`7$™u6ž:åhhê8`+îÈeå'br÷îÕ.ÿKî} C*1Cø=±yEäÆüSÖVîW¡;]÷á`\—³ÏÞíl»ÄCž dÕÅÿîYŸD*˜C5‡€%Âo"PXXò-.A{4˜ª74–“jA~ “x€¨Ž±4Ö+fé­ÜêVÔ57Z%®c3Ù[t^žà5F“Ñl45M^^ð¾éŒÅhi0ZšL^/ý†6@fendstream endobj 267 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 6947 >> stream xœ¥Y X×ÚžÉŒŠ¨Œ‘ vB]¨»¨µjݵŠâFqY„°ƒlaOò%aße‚*Pw©k«­Ë­Uk«u­Ýìv†zûŸ‰ØÛÞÛÛ{ïó;Šq’9ßwÞï]NDTï^”H$´r•KP€Gଉ.^> PáE{~˜ˆÞ‹E¼ë~®èJ²K1Xö>5|ÄkÞjÊ€V¤Ä"ÑFŸ ÅAÁÑ¡»||Ãí¦:8L›8‘üœe·#ÚnÑ$;'Oÿ È0ÿ]v;íœ&­šd·:(’¼¸ËnLP Ý/_…·]·Ý:¯Mvë×.qYkçè²f½óÚ±“þyY/ÿMQÔü…‹‚o Yæ¾,bùn§H¨Ñž«bv®öZãíìãë²k­ß:ÿõŠ ÇŸðÊÄIS¦N{ý™³fÛá(jµ†I9S£¨·©Ù” eO­¥ÖQc¨õÔXj5ŽÚH§6Q‹¨ÍÔbj õ5‰r¥–P“©¥”åHM¡–QË©i”õ:µ‚šN­¤Þ VQ3¨ÕÔLª/@õ§)+j5ˆ²¦Xj0%¥l([j(5œ¢©>¢~ÔÒxª7•$ ªìeÑk¸¯ØCü¸·oïk)’á’ z íOw0S˜Â>Î}õÝßoR¿ó–c,ÏöÞÿÕT«R«ç|<xiÐë!Ö‘ì¶aððÁmÒIÒ0é£!m6i6ŸË’d'l×Ù*l3†öºeè{Ç]ÿJŸW ¯üÂý]îj÷6Úgõ«¸—‰r5ñ®‘¢®ð!¦z(s8²‹–¥ªrb!Ô©©±Ø¿û‘,Á/Üwž†QÐôµÐ ÈB%3Ñ.Ú”A®.S—ÙŽ¤2T 9…Çg$jUf°B8}XŽƒe(_Š•Ôݶ°â¯€‰<ü‘)Î`zß@Þ7lX%ÿÎͮۡ 11h w¡.h¸Ñ«p3L‚íKã‚Í—¶VZ(è+¹)[东ަ„åä9íº2mt@¡æ¤š1ÑË•pDŽœh6÷Ç¿¸x¶pËÇþé½V¿öúè+¡ïP³Éü©¿y¶äk–隊œ¤ððõëX\À°-_—xñÆÐÏÇßÁ2®›QTInê”ÞòîJÚ[­œÇ…+øQ6 {úà‰BŸIç-[:‘ÃSPº¤Q—ÝΡ!öúW-s×Èkð]é¼5óGqX&ÙªÎn”£jô6ÍöBÌÁ±«ådE¢û”ÒÈ3ˆê{b> í’"›‘ß㘵·Ãƒñ ïÇ ˆýö[4€›ž+ox;Ô=hÛ¶HØ †ðƒ!­š“¤ñÍÐih©?~¬¸ :¡Å¿|W•‡vxU?r¤"L]M¢Îç|Z­¸kÚ#ܸ̓xHIÒpÉx¶\8 ˜7ðò“hj@N'ï~ýÃüFµ\¯M+¦2+ä(žÞ ¹ )*UR*·i¿ÉåŒ=Øâ x&žŽÝðô&žŠÖ¡7¿C¯ >r²óxƒ M0 ‡Æ SŒÑú§¨òž ;†ß‡Rd=öÜwýæˆ^ÜEšý 6újVêvy·ï_nô,º&¤Ñï}`P?Ô벑O‚%ŽÓÞtóªÙÆÅ—ƒÊL³}ßm<]Þ:ìãsS0%4:\JA#ÿw“ˆ¿ŽÊ¥A’dÌEMÀΰó%ü(žÏ) oͲݛ Q\·‡D‰#,Œ’lľsM"O{CÒ=º»+9Ôb å$!ËQ¤Î #©”e´n¼‡òî-$ á›ñiϪù3¡´×´­·\r}IÇúbÑxlƒÙçcPŸÖãŧÛäø­5³JÍ.е“º‡±G{*ÇcÀ Ò÷‡n÷ðßÌ•Ÿ# Ä\½{óã#3× Åulp}ÎtÏ„fdÛ=|ò°œ,ÉFöïÊ®)d$ƒ$¡xrÈb<ŸTl׃Ų'ôWŠér#* ’LOPŒå&¡ä•°G(äÆõ%ØŽ1J‚P„E÷µßF¡ì·QøLbÅÛ Oo-7)Z­ºúÓç6¬3߇(m¨w[ãá±*œÓ|/a¿Ä#þdœOê µÇ±„f"éEªüf9G·ä£×„ÓÐjMl„1Á1UUÅõœÕ¯¢/åP=m£ÑÊ Z3ÃwÔ8J³×ïã: î}'ü$Çöº¼ÿÒUùoRsÁ„M"‚Bt‘Ô<ÄNÏS“å+éf]þM®Ê$qS­…mäZ n¤ô*Ú *‡/¢¸¿¾ç,9¬?CxïœÃ*æå3Pºˆ‹þüÂIÊVÞ¢UôB‰ÄfrLÊ>*GˆÆãÿÎ%ôÔÍ+ÏLk;Å¡O{þç&¨¦Êñ8œÀãˆo]dKÊ!8G«êÎ1Ú™dh0u‰ÌU‹ÑÃ!¦Pz¶º I(¹IWp›3˜$;Tް\ްƒ”c oë|„r|Ô ³¹P…¤EÚÈuZTÌ fÉÛÍO&„UÊ"h Pm€ PhƒtDžëÔ{÷@$jÔéÊ‘8S†%¨F•¥Î‚lÛš&(ãLôvu¸Æ|!|Èév"àÅÞÈ#YVlŽ*r!G—½ GwdÇ÷ì× O(¥" ˆâ£L¢$B“ï‹ù .;ÉT °×âÍÀÌXâ±BQSS[V^Óæ– òÚšŽÜ:`ŽwzM“ûÑëÕ Ò–ù/öØž «œõeðå»N‹8v‘GfOÛ0ÃÅâÛr¼è„”5Œ[à¾Õ½ñØû¢‰YÜ ¨±;oª'`1L{BD± zS–’Kš@~}üeNŽ©±±ú¼–Hi *˜´Â‹ˆŠ¹ÛÅêÂdÒíØ$eZêŠ9²¹_§äªuGP_P%Üï¥Ѹ‘q†Âý€N}Äù;,•Ã}6¯qQïÒÔ:âë 4 ‚\‡êU{!ìYQqiµ©¦ÞPË^VAô3”‰ña‚ÅlÕUkÛÈçž…ƒ/¦Ó€žš È»UôÓUd vÈlù[:nõ ãÐeú…W0j÷#Ý|Þä~,èØþf´RØšº!Ä3‡b¸WuXs\hcàN“)Ðæ—49Zr€ Û¡°ší:gðï9ìaè4ñJ“uùgÉŸÙ°uü^3>ýU ˆÿÇðQƒ¤ƒ2=1=Ù'ÉpoTœJÄÀ¶¦*¸‰U*p!ý"9 eê‚`4µ›–…:GlttÛPˆ)TéöÛ­1§qhMTIxhtl°[«÷‰÷ÚÞ=]Í¡åüìüšÒ–K:[ÂÕç/®FMêŒ"b1ÜŸˆùù¨Ÿ´@ DBÔ1©\øÒµ!›€Y1ëƒn·Ÿ+<¥m–ïNŒƒ@&¤<²¦¦b¯éÂ’Óðàñvx–~?–8tyêŸËYý¼¨‡¼F›®šøåwÄ?ùÒÆs$»!R¢qx÷%çÏ%—ktÁDuæüf Òè`pMdý´®H{”˜·bÍ) £¡£VÎ7ÐZ-ÒüBeÆg$€m>dæfä"}—¥L«±è¾ükŸÓ_&#™7à¢@…Bõ`ä­ "~ r!N&‹ã7áAD±ûHP#Oçæ›'½8b8ü ñn3‰wËz^ÚŒ,ˆ÷–àýÝLi +±¹@í‰ÄŒ¶ÐV…©Ò­(ÉÐHP'س{ëª k—É7¿”þ{šÝèü;àá]tZ–ÛɹdìÆb)ô=êwýp[E©|ÍŽ¡Mo2]ª=»V¿ÝM±-ÊsØvð¬i iSŸ%CÒžu²æPeC‹é$´Â¡Ýµ^± (楆¾¿ÀDÔL¿ëÕ{4®°âµk>×`y÷|ÿÊ—&¨ ʼ FIGM È»›þr i~n÷O9 ™ ¶%S&çÛéZèx.¸‚ ¤ùV£yæL¢ºòjÙiYI‰ª”t ·kôTõp…µá~G5ç •A$•™PñÝÚ/H`±œ8Ä6?¼†¬ÕÑŸªäŽh¨§KrѤ‡%F8 ç<´x°P©|;Qß5Å(¸¢ðçâ®hôXжãÉè ¼†\“ñ ìŽÝ‘É«É倦"wnt±çcù4{{,ÿå#yëË/ÑÈ9X%,ÿ;¤{¼… ¥›BIä´¸ 2ذ£ø^]VÒ^ûÖqìù¹³œ_“czŽâþè/lè Ęp?dA³ƒ=ÜÆ±#ò OGfžxÒP&¤,ÚP[ZVýôß$4ÑE“õ¡çðžUè’ò©Ò¯GÝÇrãI‘VOìþjýabQ†±ÇÿÙÈ$ Ù4²{~ÿ™|ô7À½ð›…*_Øóg4‹¼æÖ!ñŽZ´òâíZ”Rk]w&ìfü4üfãv0ŧó¯IËâLžnJ_.¸rg‘0;ÎÙTïS²G®Vù“µ«Ä§6šaŸ)7ÅzzoúÖ×.h0ðÃÉ›-QïxWsk÷¿ ˆFøC².0+ª–@¸$³8·ÐkÚCBÿ×®Ü:Ô_$?ÔÔ¦JNƒhF™UUT’WÁa'LIÃaÜŽÍ£¦ÂW•µºÆ½ÕòâòÚb#0a\¸‰»©Ë<·‰ë¤»°ýtIÞû÷ä% h€æMù˃Ô3¦ÿt–à÷çg Ë`‹¯b-£AÏ$lÛïu£ä?&üG ?D š{܀ޛDdÃïpÊi\”¬áÒV*¤aÊòä½I•IWR'_HºŒÅû¿¨ýø,|Ì|ûßÁ¯qøÚ¿/HÚõÇ@xùù;Dè‘%} ¼2Òë½a¼Eêsïðj÷>ùÀ|Z|¿ZŽ#ù©Òéî+ñp3(O5ºÜ²Œ\]Ts±€ÇĈ^Q¾EëOˆ²~€¨„ð (‹´Ò)=ó œÓl'%ôëRn*¡»Š—]8¬«Ð¾%„´ŽªV¶–ÿFZVPV__]M2%ÂdB.FM(še´î¼ôã%4õ’ kCñyh•:w¿V¿ý´[¾Sñ´ ÙìòKðsùÔ¥O‘ôÄxû"N¥M+0ç5uÖÓå“¢Ñ$¤pñÑy…~cÊ7› ë¯Ä}f8ŒžÛîš™&?ì^š†ú݉ÊUïÛÅÀ~/gÇ- æa"r³’å"(ñæÐ)g“”x= ÉÙZmA6WXš¿ïÄ…5·½°ºóÍOòTBÜÓܤO*¯z#JP†«(ÐUÊÇÓØAhÐGf@ÉéÀô×U!PÆ5䲘š¨òàÀèÈ`ŽUm|7¨“¤¤[ß{,gGuÉ{ÿkÏÌ–˜l &¼‹¤¦uü&i$‰Ü¿Ð’HóQDšU^‡ÆûRGX¨4]›H8ˆ@fìÁíTHšô¨—9?¿šhvÒ# ¸Qo¨Ñæ–gäéj¡È”áYÌK×(Peȋ܎ÄW”—ÄWøA˜Ö§ƒa·âhýWŸ9xEok¢}‰M÷&¼£—ר)H!<*6>)¿ŠûÉøš5ýé”!±‰U=óõ-}éԗئ$"'âlU áJ/˜Ç:•í Œ0uÙ˜ÓÔ­‡hë_Š þ†ÆÃǾñÚÛØb?ZÆñÿC€ìKc{ÔÿUÄ¡×>E¯|ánºÚÍÚgž "½ÁXV4£¢!/p~¡Ùþ-…vØ«9ªîÑoÍnþ[ÓAn’Ì«öU‘ܸ·Ðµ£šÊpÛ’IlKÄk»£ex+¯'P¬cýq¨#ÖÑMµ‰,n¿ùéE¾(­»K–µGŸRBFOŸ•Y„öðŸÊ*N¶µƒðÈM™YC =­>Âo6½ë†ÀÇ÷Áè×̰ªw{l¶¶xmH8ëÙ4fÖ»·1š¯$¬ñ:zÍ@ÔÇÇÎ.ݹäßæ?nþ·ZýÚÛnœÐÂZÓ'¤(kvàÏæ6*Tþ$ñá¾B_.jª ÒÔéêìÐí#Ã3ù ÖN“¡ÊÎjê„ZŽuZ¹™€uĵ®‚ËqbÄócrãË…H¤RjÔøÕî92<ƒßCÞK¦NßóÞþå½P…^È£»[–—™Z9$>g•¡¹|– ÍëÖgÅèRŠÀ¶2…ýÙÀß–®5œR£pÒ‚£vÿ)B Åè8ÊÂ' ¨×F$vF&]O&Q¬JÓ©²SäïnD½ðpÀ Á®x4¦V¥§C£Ò%ç<¼†D§¸ŽgÕß²d̺(Ìð §õšn^}ÿªØl\_ ¶‡$ÅjÔ/µFMò5ƒ­P/É÷O÷wVH 3p;ÓSÀTÇTÕV”;מý¶\oÇa‹?¤?Àüåv~„¦ÓíYñ;ä¸òߌƒ0SxÁn´Q"äd#Oôƒæ¾QÁÁÁeÁû Å%$øÏš¿˜KOƒ4&-+%;ÿÎMÔ—û­6PòûCa¿ÐÞ©*Ðh“IÀ*ðÒÆ’º$˜Zc/ÿï–í÷oîÀcøÅR@:ôÕÝ–+*Ô©•\\J’ð I\vlI’Pц ­º ÊGµbt€ˆÙ\»ŠîaRå爣M§¤uaÂñ¡¿çxbÕ" ]ÖÑ¡{¨ˆÄÛt] —U÷|ÿæþt~õÛ°懹÷_šö&Ì'ݸ¶9ío|{ÞƒÆÖÇõ—³þ·™éRX3wcÉÂÄP’õE!‹Ä³p:á Ü*8]þàRi#€‹‘e“ò×Á\XÙsxAÚlºDpySÌ¿5ÄäOORw†6ht¡Üª“Ɉ´—Áy8UÃtÑÞª„Iœ¿ / …\uéù°Ûèù÷ÏM¢ãß#ÿÇb~ZB²™:>Ù9>65i)q‹ ^*ùú)š‰Fœ? Ïm=á6€é¹›ÛÒr+ëKšêwW*ÒÈ>¦sÕW/5œæùþ KGÏ›éºQŽWà-J!´…Ûò¬¤§yÆ[ˆB#jBŒˆùæ‚Áº ‰¼(‰.»m©äýÐ<)Ü_zc|Å“ýï\‡˜›oœ9r®ó|¿Ê¨ººŠŠ:Ž}…ÚV¼‹«i=_NÄþnÉò­©®¡^r…›¯:PͰ÷OªCÕ<,I“¬%Ÿ{¹vÉýK&àÁŽ>›¢ÆeÞp“7¥ ÐÈì ­ Øã1õÉRÄ AO>ç^¶ 5ñ¤ÏçoßéÌ’šFó[ˆÉŽJÐhâ’8ü^··…ÕL'ýU.à"’‹ú‰dÂ5!óš"èB¹G/4I1Hð‹—-zŒ>5Ü}|ˆ”ÿÈáIù“òÄëц'NlØ9¤îRÄN~†-Öl÷]ÄÁóüÎÚå-Gß½A(ìHz•ÃèRi4–•ÖËY­ÝÏ“$ǾŠY†«‘Õ²§»€Aâož ™ÜA+%oK”7Ã&-pQ¸§s¿ö„º¨Ãš»P°¯2—MˆzVrV5pe^D¡]™—Ëí`]í@Æ1YÚ)|¹°#´D™Xš}¬úú1¸Ãq MûjYÙ'RT-ߟ‚éÑ“„ogG×l+å"h¬Ââí.á›2ö…pö»9êƒ9‡†ÖD—EE,?¹ý!’’K†‚¸I¥‹üFNŒÝü Ú”QàhÇPÁËW¨?~°°‰LhíÒŒÄ"ïŒÕ°ý ‰ü–\DXrßÿ7cXJÄPÇé»ûH pëmEDX€ÀåY™Y„if¯\œœH7³gîßn"K®'_›Ð‡†PS› ’¢ï5_1ÆÜ[j<|/ÌØzoÙe´ÆhÃ:ôîJ0rùªœˆ,âþ‚ÀvTìŽPªU‰±ò ¯[°”,d{ ‡¯Or¶@Ü6ÄÜzpä\`ؾvm1÷9Í[‹)޽!€ŒùÍV,oh\îèáë™×?[ñí•‹ÆöÓÜGË/'€›ð~§îCˆbþ*ŸÍ°v´lk?|ìÐ…ý-Wdõí-¥g´Lw´ZÊêaéĉññw4A!sÆxºã¬n|WÝ'õ |Ûט7CwÊY» ¸S_¶³fE‹KYÈ …qwþQw¿%²û'I!S¥OÍÆRÔw'Zh1 ÉõÈ½Š†fdèôÉd§e¤$LYŒEë9×ña£÷ƒÅ¹Xr÷=‹> stream xœÕ\Ë“œ·qÏyŽ>¤R•攚Ii>âý+K¦¦,G¢7qUìV»âC$wIS%ÛùßÓg03KRLR*ŠÃ™ï~þºW[¶ð-ÃÿÒßW/6÷Úíã×¶}¼yµááÇmúëêÅö³ x€ã7‹gžo/mâ›|ëÙÖZ³8³½x±ùÃîûƒna\í.à㢵“z÷ï{¾xg¸£_þ~T³{¸?°Åg¥Ý=Øøb½e˯ýž•øæµßÖÉ>Û«Å('äl¬_ÂÖJmv¿ÞÃûÊ¿»ï+±8çv¿Û4¬MZ‘fµr÷<(…uj÷%Žã¼Ö) t°fôßæw~½?¦Ý©ý]üëFúÅ&¶¿Ù\üÓvÿˆ* ^Ð ¿ƒy¬õ~w»×»7ƒï?ÁÕ»EÁ’<ÂÒüüÇ=üfÙ"„ݽ€¹)­V0Ò!0FšÝuðà³°»ç{±h#”Ùý-²Ë{¡¥Ü]â /”"v貕ȎŠJým äñÝH blQš˜:¡•½À…’õ¼Ž† 0²Yàq2Ä'û Jû‡_|ú£¢½Êò¼À˜*ŠÓï÷‰å¨ba›9,ô²µ;+1ý%W¥©Db5ƒŠð_SÐ0 0¸&}×´š ¯ Í5.Šð’p­ëÐxLÅMhjáA…4Ú[$˜ZØòÈ“øˆ3Qtnê?‡3\÷šíã!l03–|{=4â8I]E42J»¡YÛ]°%>XÛËV ®éJÒºMy:˜¢ÓœÆx”­Qmk\Q¤JS·ÑØÿ`¶#EŠG+&¯Ô/{ëœlH5ÕEì’bH”GÿY!/$yá Uºè„!†¸ÃkÝî?r¨#îf± „à^ò(ðB«"ðÅ@“ØìI¯Maºø‰<¸Š^ÀHp¼‘mºL0ÄœÙ~ŸþþjàåëväðHw‘‡W¬•.ó›ãäúRÚ¿äÜá= ¦ nJ·CôZÞS£Ui~F”‰ö)Îù0º# âÓ˜‘à íLº‰Šñ‰…§y–ô*!'£˜HCtéçÂØäîl€Ë‹‰¿Rijg‘¢Ã£ `‚VZ€1E´f:¯‚‰3Œ±…€X#a²»Á#F¿ Es\Çùb`äuÀÖX?-©ðôû=è¡Vëø­uÞ­K›£è~±Öå‚M0\†¬b¬ù‰PæEÃÏ•íïúåˆÃõ×käb`ÞømdÌu2Ö¬b#ÂyR ?Á‹„L§ík ¬«^UÉch„i$ŽêçYðf=Íᥗëy€é=*òØ_•óƃvð~ÿW‘vdJkÈWŒDÁ Û0LáÊÞ ët´Ì_†aNeBÞM‰¿E#£,t3ý6ÅìÃp¥ÓQ¸4Õí‚Y¦©ÝXúË£ƒ¸$9ä6øÁ Áò$ŸÈKiHDU¸µœm^žcôãzS¹ÒÒ†»buPÆGI5é›~kT‹j A >Ál%(ÅiMó}êBšŠõ»‘”ÅiÞ8*Í¿Ú{ï8ÞÇyC?ÔÙÿ¼âVØ£ïå5ÍÃ>CŠZÎ;ûü|W€ R:˜ï¸] qœK©¸÷P;ŠƒÁW·Mf—*x–üñQý¸ÔOëGòÚ½Õk˜©ùúñª~|U?F¼©GéíÜûL] xAŸ6ÍÓÎ ¨€¼Ô©:XØ3±£CçÙÞìcÓÒEë Á¤G -y@2/0¾i<ìÁËòësøä¼7moùxS~GàÃL»/öU*€tȾµ±A·Š»Êo! ìhþ7²ßAZçèã·ñKFð8µá† BÚK².à†@û@1çv?Àj@!R!„×%¦eóvÎàF5Ò>&ü›W9IVKF"„<.üò¼ô<î p¥±2D5åg{ :f¶öûb€ì†Á!ñGƒ@¤]`@eƒaG5áλ‘ —‚‡€ü²è.|nRpÆÇéBëÙæGº ç³ú^•Oƒx.åcÙ¥·ùB Êf(ì‰èGðHNgm:Ókݾ{­ÝÔRº®¼æ§#Ž$ñ*Mr‘¢›9Ó¸›ÖI¨évx‘20E%ÕnÓåº#)qDõ•)!ÓÀ¬b„uf4Ô^Y^Sâòì³ÔyÄÞ|Ÿ.ä ›‚£ñ›¶F¯h™êóŠÑïKÅc6tbP=%Î:‚Á´| €—­Â]°N€ú|Tû¯…=§§H sÑØë¬é³Ò}‚‹Žx(5QRå"Ü ®¢¸ï ¬€29I§GË,%£*ò.¯t†ƒÀí]Ü”8Ê™@°:D«D>¢¿-ü—ØÊóçÉ9ôthöË5lâ%`cÈ¿íå©*¥"ç#PP¡ó— qVÛ_mÇN«í¢h´âÆ¢ŸÏ@Šu©ŠÕ¹9=U*ˆEæ ¬Ž2ÐD*ëAŸïG¹òq6e –2[pxäçð“h.‘”ˆ’N%¬‘‚C–«ª¸N Éˆá £‚ ј®¬ËpA‡Irýù-RX‘q1>Þs=3â-äÉnEðºšÏªÄ¿G,EqcÁ¨_¶ÙWª0~(?ÔË&bz7‡«D‡K/Ç.v¦Å£óž³Ýfm)³«å¤ú+ñ[?QKr<Æì¸ÎÛ&³˜™X‚ª:ÇKZkEç\:j5^×<xçÈU€Oå{ ¡|`Ï ÖOE¡• ìŸç%½…•·èf#$ÂEDk‚Œ‡¢1Óš"ÙeûÏQˆP¿«Hw©¸©†»`ROÕM?”cB-µRD’…ÇŒ÷±1‰vbò!lÓ«±Ø,T?bFå¸wb”©àjXÅ«”Ìn*Y—¸Þ:“ÝÎH‰þ¢'sÌé»á¼a£›êvgà¶xçЄ>¡!2ÖÄißpZ£ÖeÞ}3ï”1ÂWF“\4Nvºuè«LUí*Ú°qÉ„•7£ß{åCs”•¯¸£`eÛ<$…yã9úŠÇëöR¬ÌB%)Užr¤«ÏŽöƬS•cö)ùˆšá䟊3reÌ×dž© ×ÉŸöhU§Õcâíh,¥ Ìà5pg$ozÑÜû"œØÛÑ"íðj3ƒÑÊ)£þ‚ Ý|¼¬œ ¢Âí`ȰE"XHúç^ù:&ó M[0âi ÿ-ªaL µ•£š …-oü_Q×cF¦<÷3 Y\0ê?_½Òú@ÙHà+ÐzÁ“†@Ù¸YsC`ùbª²9­?†²¥ªsLACŸŽPÄONx5w†1/[ ¨1øØêÙI6PŽù· +¡ÉO¥;?Ã,Lж[Ôö§vsAwæÒÍ](?$éQâãH·†ÀÔ%Ý-}DD}ú¬Æ~Û“â Ü |~±A@’,eñ$Žˆï-q€° £¤°r´ÕR¡wÓ[Pé¬dLEJK-‡6(‰üÍÍl'W ÒÏÉLj3mò”ƒ‚}Á> „#Jrý¶"žM®[bØc„ ,Ùy×*sv˜ëøv•¥RäˆZR8iPÂJ¡q´ë·]×Áö_µƒð-0/âd·d4÷,w½oãÚÿ¤†5iB¦mL80è~=¦ñŠ`—o&`ÁªNÒo@‚J·ê©ŸÆ­…ß% lXÙñ).ÛdÙ1Ó4c55#DM©ÈrÃ÷ª”5• †Ë•JžW¾rÚIñØ3ÓÎu…Œ±Ð5\¥<#þÎ\ÿkЍ@èt¾g&àd+N¡­“~5‡µ×R~q˜‹‡ê»²¥¥5ÊÛf#¶™—§2o*T©¯R³ˆePÞ…~¢×䮸ûûÁx™–~HP!¯Òççòv—¹1ägCÏìAyÖJõ÷ˆö¦‡|Ò{Ì'Õ`ÄQ¯5Ó3OIMû<û~³7íB• H骙”6üõ^ÈôBúNón¨¹Ò<œS9§T–,}¬ j ¿Ûôyæð-µ…óR»xÓ B³?: ÄÂ]•"9^Ãyv¼àÜ»9^¡×v?ác‘8ZœÅ#1MëM"¶ê¨‚ %«3°àéÐŽOýËCîŽôL.Ž &E¾È£ÑÖ®lM~íªdh[êJ2ü¿…Ú4U™ok¡ãtúÉÓ4N„΄5Ä¥Ûª1­ ⃄ t ؈.æ>p>HÄÌšÑïÀÒÿÛùù߇…Ù’­!‰–>yœHHA®`‡±{VÅmësÌÓV+u¬Ûi†ý¼Ò× æöD28«6´Åžu§ Ñ|<“©Û1FA!€Ðqv-M¬Mžjt8iK§}ÓØÚް²;–u,€Æ.ƨñù…uîçFÖ¹ß0Š5›N{ذ÷A¢ï“ÞZ" ÛÆÈwÃZéeeVó²G(›>þcÇÓ×5Í®å,°dv$œŒ=‚@¬Ãã®»VȾ»ö½z~E«žŸ»7Ù Ö6ÙòzûåÚžätð”ØUmG¯H‚ŒMnmPŠCN·\˘T–GB» ¶Û£,Q3ÆçHÈ·' à['½aîæL@蘇MˆM¸Í¡€znájÇcGC5S¥¾u¸I­ôa}ùËG±§_¨yKhùW»‡{iÉ´7ƒO§Aà5%(ñÚ¤ÙÿÄ Úâÿ)¦ßˆ¥Î©¸š5áÚ‡û˜Õ’ÏŽ^ øòZ| ¼)ŸœQ¨,¬T“GÀÝÕs̓€S@ZU/ÞèO3ÐJFA@ø¨ºóän™Ö°ä†l"Ýä›áÇ™UÁÃØI8vâ :¹§ä DtÈÔ–ã…§¬AÛü*£iÊG#V­àg]n›®^ê™…Ç5¡Kî†$Õ“$Øîìÿ]û÷rŸñú:”Üê{™–S®}ô ¤éó-ŒQY?vIxf?ãöŸ`[TÉN‰›œ%îïÔ¹êË|vDLô£0ÍÌñ袳¸’³ƒ³tü—žî™ë÷Ñ“ ùTجËW¶8†à Ëɱæ¾þÚ—‘l—²­´mœð¨ß‘cGÙc[P$Ç}tÕäB¢÷í ‹¦©Xœ}±E{ŸLq:ðó3ó³!ÃSڌ͹¢Ý.JþðýFItgÁ= ~x.dG/¨ßu4Mðš‰TŽR…ÛZ²¸œrc„é3¶…^!xM¥Ã°+ ãÚnlra¥I+D{ÜND°}׈¹MmÆNTœYìñHƒß„ó• <òsù5%< Ô “ !˜zoß8‹}%0o©âØY!sÒœ;»€¦îkwïQh×muäª\Ðæ!À:ÀèMl`ȵ‘h‚^Ç›ïê­~wñ<©V5>k‘R¨,í³øÂÇH§jH3^&LXY¾"ñ¨ôºtV+U´'uޱk[z•{wåÃðÍG{vÄ^Ák‰oS‰O“è5’cFjtXþ~?ÃŽLÙAöÚJûP}ʃǀ’c¢ÞŸyKËmc¦át¹üÂâíEÄ;Ž.„±fdc¤G SNÍ]eªØL™žþ»–òI*»V/¥:²?mô–6ˆÇ¦ó ýÖ;:èä‚A ±€`é5B¢ÜDþxä\÷d‰áÚJ¿òMwïÂ0Ûë¾ gÖ¾æ+ãD”­ZGYlxº„Œz!Võä> stream xœ]T{LSW¾··\:-Âî|ß{Ç":'•¡Yd#e«¦<¶ ¡¥¶pm+(ä!ÁSa£ ­…Ô0ˆË⦉—ì6#®>03þp›N÷pËL~×lYuËÎ'ù~9çû¾ßw~9$!—$Iªvj4B¥ðvb‚¶L_e*¶Ì㥤´R&­¢¶HcϲÒBJùäJyg *(ˆ‚]ÑE’ïë… á@Å /?È'%&nLHíÉ|I Ÿ®æ³‹÷›Õhà‹+KùlµFÍïl¡¢_+Tò%eåÅ&/èøÜ²ø¼œmÚ>K»;oOΛêÿÛz ‚X$˜­ûtõ†Mɱ‡Ð¹D&‘EdQD4ÁˉšÎ9±¸@¦“½äß²"Y£l‚zrÂh¤äná®H~„¡ %éÁÄ€Jý+–c¹z-VáØÇëA²Ç?A »½‹Qk¶¦¥iîüø`jêæ­¯³Ù¶ˆ°A„i‘¼„3!’1œËø­ÈÎHWéÓÈm(Gµeì³%ÃZ¤ÀòÕëq,Ž~´dß|>~ÆÅacAxU˜<ÈÉA Ý7„|N’^c´ÉÉiÙ7~xx#xïÎÅ-;Ø—vo‰0 RR¨ôf\ÆÎ¬Þ¥•Y½hB1<â<ûI…ù8ë¨=VëGŠsÈ5ÈÃh¨ÂÚVßÒιŠPuÈJÊÁdý†§µë¹ËÍ÷P¾B§ÛŸX˜Ó3ca ´õ˜‘¢²qëÂíÈâëv:Æ{ÙËúÉv/R@ÒÈì%î¥ÛA°~OI: o%jµn·µ°­ Õ…iHñNÆ—¼+\¨‰s”Ÿ®÷ …ÇÕööè#¼u7^¹+­†àÆ~éŸ#E"DP‰$ì þ|Ÿ’vHW™¯R=eˇ›Øü5áv 2U ¡>î7ˆ§ëÌ¡ì†C}ÿæµ[ŸyÚœl¬b¤´»:sydc”Ñ©==´¸(¸˜]$Ï”¯ åbtÞyÂ1·:;”JtÎu¬£ËqÚqêê¨2âAÔ6Âendstream endobj 270 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4799 >> stream xœX TWÖ®¶éªR‘²‚©FE%.&‹QqÁ¸à®(‚BD‰¬²ŠÐ²ÙÝ·idA6Â"JEcÜcL2јŒN2æW³‹âŒs 9™×¸$NræÿOºU}Þ»ï~ßýîwKÁX b Ű%KWFì ÁËÓ;âÍ`Ë­ñ²³B5H~^ $àakßrX+ÁÚêô(‡!öxs8í¥B±.$|nDdbô¶­¡;]¦zyMóô¤Ÿ/¹lNtñžì²(hKXD|LØ6— ð`—E“—Nvñˆ§7·¹LˆwÙôæ.o¸¬ñsY³jþÊU.>+—­Y¾Ê}ò³A=ýa¯9áÞs#çÍ^ã³saìëqñA ›—$nYšìòÆÖЕÛV­{síÏÉ/L6ýå†Ã,cÆ2ËWf3ŽϬbܘÕÌf ãάe<˜uŒãͬgæ2žÌf3™ñgæ3S˜Œ³y™Æ,b¦33˜%ÌRæEÆ—±e†1öŒÀŒ`ÔŒ3“ʼ@ÉX1;™OKuƒ&:­tQîU~cåcÕ£ÊQÝdײÍl·˜û™7 æg ~oÈÜ!íC· í¶žnÝc³Åæ¬í‘avÃNÚÙØIÃm‡7 ¿i?ÏþÏöß C„••»F\Vsê Ølû‹2$’ ÇKòÆxEߟGJ)èSéêR! œ"`ozF"1õÿÝ13YŸ> ø8-‹ƒÍípÞÒ;IL…MNñI´Qa{‘ŒWMÒ²mæ  :à´èyr3Ô$EU¶¿ J¹cÙ¯WÒž±GËÍ@d„™Œ”`1÷Ï5ín×®ô‹‘á„ëdvºJË]ʃ` ¹´@Ë¡½íõ*úÓ·N¼¤*n–Hj=¢Ë+§Z[–?ÞŠå’ÝÐOãe_&úªáîŒÈÐd*>¸×ùo§Nfˆý ´ÈôE­ÌâË_Þ¹§!Þø…ú5ÿ¥"ñÂr\Äöx5@SO>W§A\E²ãZ¶$8Ø«@ÇÛÊŸdvÈB«¢ G`ŽPÊí®Æç¦ô’ÉŸ¼Æ'bwÇ _ÁWo÷â0‘Œ(RO€ÌíãðNù±â­£U'à(ÝUZµ Vƒ?OOôš™ÑIòCIq=eý e_Æ«+3LI)id3ÈsÄÆw<Ì„®{O{.õ3øΚ‘yÿÃ>¼]tŠ.?̪&‚9Ád¨¾Î”]§Á0® Ó †ŒtñõåKO.<àN$›xwD‚~c6.CCNó6²VÂÑ­xKJ–Â:ì 8‚¨(„Ãp„ƒÀ3rƨÑÉë{â:{훉;ÅœPÀù! Ñô›žÐ—¼u¡]Çöt:£ÇO_£FCFŒ$£ç¯[´[ §7Šº0A¡œ0Z&SiiGç©Üjà?:ëKìiTʨ^жüÕÔ£dtSöǯÕIÑ”lʪþ ì«Ñ|>ÀƽH£JBs·¿ƒLâ°¥2²2IÓÚ–y}wkæg)°œŸ=bGG]ëJ³J³`7ð1¹SC\¤ȈýU¢ ¯+ï;•àÔˆ“Ç[¨¢÷ e„k$yÈ£Jò°èÂ-LTK\¨~:à ˜ k̼]ÇsáÁ;£’Ã2Ã`ÌhØp)ðLÊUøЪòü[':N^ë.üëÿ¬+ïós ×Ѻ2’)Äl!þ8ŽLÁ¢æûÙ—Nj#/Få_ %û5ÀÑ<žú“Ù¿H¸*Þþ>²Z ‡PªõÈöh§~WëÇù„ÅD¬€Ë5"6PÁ&ãq•–3ºm˜0AÏo¥Üø©g]nÇ^ýËñs×DÛ‡Žôv ‹ƒþ©å¼½#%ÂPª3¢w‡@z¹CˆåÐ )&Ÿbñ=¨®Í|Šz܃6 3lÇOIûïž<’ŠÌw±÷Œâ‰¾+-êÎ-Í€vÌpdñ¯^Žä·Öû5}íi¿æÉnÎ勨¿×}7ºÅ™–ätŽúµÔÇ(e7z–ž„•¸Í4Þz¹ÃfK¼,—Õr4ªnz݃Ψ6ö2åqò8IQ'¿£”¯Ë£)ðцpc4x™µ\Eƒ>ÀµGCxb&Ö©NK,±ÓÖ¬Ò^æpn¿uqt ”€S9š «ðe”sKsò.Ãc•XÞ¾“Éœ³ ·Æí€ÛÇàa~_÷À†; ;Œ10ѲaÁ £N¯Ï4ê5cHa±Yu–îÇêƒ ({—ÉI{«ZzØkùÑ«dµ£°p ©„@Ëï†é‰‚ÆEQ¿À¢gÿ¼¤œ=µàT 9…yå¼`|€ÅHñ3wÑ8 sJöåä_p¶•Ïf¶îpÙaôlµ¯ÇÁléÃZùäAuM ¤ˆ¾&zÔžú«y÷•Ävï´M- õMUG'”ë³ÅC¹M¦bà?k š¥ÙÆÍÓ“¼4 ãxA7í?þ\êHÏ?±æ+gt¿ÿ¸“VG‡oÐ…Á|>½g?9\}ËÛ g€G[ 6ó-µ£ñ7¼Æ‹T—:Kú‚$2•øïJYî,±›(â°6Áøß–¥|…{”>¢m•ÏÓü!‡Zäž<†òí1Á©[IÕd¥Žª‘€5ÿÁîeý£wúÇú‡ù̧Ý`0¥› rjJ¡…oŽ9¸-"K/’ï=•ÚrB×oÈJÖqëÛ×ån·¸1ÓÈhâøí$œðÞÛk58a6*¬„úĔͫg9[@›+oÃéºvMÃQ©°ÎAGXu8?ÐUhúoÒêˆ(x‹~8v}½}%œà¢Y Á΂}¬ÐãZN{Ê z“bù~w®ŒªüŠuFSœ3I|„ËA%ã7¨,y•JNÎê¿©ªS MÆ2çz(¨ÑÈŸqPm22ó‚ù`6r¦)¦¶4×%Íøò€I?øZÿ ”Ó(K$@V’!kW¦ç¿2lÍÏh#:½£Á3lu!Ô7f^[RóFëÚ è£éÓ]ÉpòÜ8§v=(×LÂçÔ$Ín7­j®ëè(n ÙÄÁjÁÓ–Gʆ‘­ *gÌW8L)¿.÷©n=>Ó0AD%ŽŸ­ýŒÜÿO7w9‰Øôr8è/µûö!OLÖ¥'@Ø’Pw¸©ªS¤S hÅIwçݹÕŠVw7ÝÝÚºµÓóï*ᎃÀôÊg¨Ô$µ$kõ¡›D¡.²81¨jŽ3q]=sþæÊÍM;5¡™Û!’s6t„¥è½ã` ïwf6’ù7.\9œþþÂ#¢°<òЪe0Ñ9ŠvÚ,Ó¦<]€Âœý¹ù¼`ÓýŽ¡Ö]Ïܸ"E7'—i—Ue™ Y†4Èä…!‘Ñå‰uuåE6I½N…ó‘Óà£ãÇá£;w`áF ªúmÔ[ƒ×‘ÄzCw÷Å÷¡TÄÁl#ª`©æÉàø”ñ¿ÎŽ×ž™ýV„ÄŠFüŽz~+Ô'ÿ_ÃãF¬ÆVlðû£GýDg†çORAëûûêjªgqÆ=)F1K»–AÚÕ¬£†¢ôûv_YÝX†üáw>€ù^2èK²\ì·£,þ×c­f[©%¡Óµ$­,T#¦ýì4nk ¥–Ó^‡ W¶‹½´·ø•|]¦!’ì®^"/‰„§¿BwöL_šŬ¨'SÃ_ÑËþo´ïÙ"ã ÔbûHi©ìÆ çˆ·%~lÍ*Áñc¹WÝÚØÚÕÕÒÒ%>Ê/5È]2×¥¸Üƒ÷(嫸IMyôò^d\£ã–‚UGà=¾ëÐ¥?ïÝFFÕˆ91`xbâqñ€÷M7÷èÄ›Vt/* ý—Lš;q̢怪X͉ G2Ps‡º‡ê¸ýɵ”I¼Ô‚±³È¤JtO`_ì?¿hÀÏdÓ†-vw¸á»ÌNp—.¡ªWcÛ×I™pCR•0ƒ6ÍtÚ4 òuœe¶šÁÆ‘Lª ¨*ü]¿ÞƒxjÙÓfZèE¿N[Òï)ßø ‡c¡ð•BÂòOMÈ·g6I¸îñ,†+,)­‘¿)%q ÏI)#3q«#Žì--*ÈûÈâK„ÙúÈhˆr\7`É|kÀ¬ÏO'+ˆ»£@gàßÑÚŒ6D¸†šüÜÊÒ^bïXZz>-‘º/-w8û¶i´Âãÿmj,Ôç-A½…Ý”ö}ΜðñïÖ6ÀæH¦$®Ï™:Þ¾sʾ›úLTú-T˜ƒÍÔüR÷골%ûýÉ69Fõ½Ä†è'Rï /B(Uïo9løY‘Ÿ˜“~œÊ¨%,:ˆò=ÇÜ’œ‚kÆ÷5Ï¾Ï zôç œxøÊ£º¼ï×éêµn}@”ÿÝsL‡•Öð–<_ü÷<·O\:RÿÚÓý/è©kôîQ”ày%^Eou9ïÁ=Îz)¾@/%î¹ñä—?¡¹Í”.Ç+0‡Ò®@Ý„‹|«†Â(2ÒÄ×VºRä㵕lœ1]¨àûK‰FË3? ãò x`™—-ëàp<‡£Û$ûs(æ¢hFW„r¹£ië×ǧ-Þ¡Ëœ »h3qc¥öS]Ç›yá!²_^–~x¹±ŸÒÖlã¹ô…åo'lê¨>y*¨,9Gl8ØVÔ ü­nŸÙ B|æÏ£fš¥¤Rcï”È ò–n¯ëjBÏYíèÑþ >ßÖnÿ9jÅYô{ I§Õ/Ÿüt%½rLŸ:ªvǶPj â!ÉX°?!›:3ˆÜ©ÓEîÐéê¢i"¨„r}×îîä C)m…õ9õõEEõ‡‹Šx[]‘¼¼7V±Òd‡ŠC¬VGXë¡Ðl6›LÙ9¦¼¼#ÖÖ å-É-2ççdYÛüˆ$3¥endstream endobj 271 0 obj << /Filter /FlateDecode /Length 4179 >> stream xœÕ[Y·Îó&Ayì¼ÍžïBbø@ŒÄñ¡ @l?¬NÒ®˲þ}¾*’M²‡=;‹Ø2ÁÞžšbu±î*ržOb–“ ùïý§þÌO_^ˆéñÅó É_NùÏý§Ó»w 2Gåt÷ÑEZ)§(&ïÝÜt÷éÅ»¿îZ…YH³»‹ÇÙÚ íî_{9Çàdhÿ¤G£¢s»Ïö1{¼ö»¿íröÑ‹beÙß«éC·ìãú²w÷fv&(½Eë= x¯­Û}¸Çz\ܽõFÍ!„ÝçûƒÅÞ´Wù­^ïþD­|0»OˆNˆÖZâ„ùõËš÷%lð;»ÿêîGïß½ø¢s,ÜçJê0›ÉÊf7ᓜÕ$]Œøóâáôïéê"N¯!Ûðß·bÖÖCKÚÉ)=öá…RÒ2YeålÍôíg²Ê«Y¸é ÖÍ>LìÏ*A $«&kD˜-¢£¯¬@‚h‰N‰™hmg¢^Ç9(†X;…Ffâí¬@45'ÑÌÑMN`K’F’^&P³æ5FzrZJ¨!ÖÌRMÎ=GxM}Ú9­‰L9‹]X©‰iç$˜dv­Ö³Yç4í“ VãŽÄÒ*ÈÇ‚ŽW6KÅF5+ÐñFÌ‚W9Iš$ˆÉÛ§³W '­r¼a:ž'ˆ'M:/\D¸ 1èC„‡ï8âÏ`o¼m¯ìaò"oᑼÏHo$ˆ‹„JÂ%Hˆ³œÈt‰–ÅÇÌÉœ1^L€‚ ÓgÈnô™¥ ˜P¤÷¤,@"ŒòpR‰Ä~ÄV=)âUL&OúsBøL&:ˆö­Îfç#Ù‡IûZ@BfLd3ÔB9òˆ Þ²2$»ƒU¨q–h!Bþ«p ê°ÉD¥°ìÁ€u¦%4La#k“ Ð'y„µžvOgØ#àHD Á°K¸†`ED ^Tš}˜d©ÖÌ.a”d9i•ä7É« ¹„ÕAæ×`Ï$f«Á€g€R$« ë– K° µKv‰ILÀ£MAà ü"#$½ÒB‚™{â >aU´Y.6Œ' •ÓFâù„%6-oÒA>hâ³ <(†_’’¬d µÊ‰[„ Ct ¬´²bFQ¾‰0½’_ŽÀAN „Q°Ë@†Hv-í2%‡;K¶D|ˆ,„µàÀ© À†§]ôä€hâ ¨)˜ŒÊd çæÞ Îb §±BY"3"\,8Ð⤷W”ÊÍÙ"“•çè†Ý®w‚µR¹¤“b*·:/–¼4Pß Èc}ÝJ“«U:å]|¯Ì#Œ/–ëm”)€(1Q¯dLi¼êHêU­uÝ?n·Ž»‰\Úuú.ÀUUZž®Þk¾¿>n–¨2'k÷c*lÑ£ùõd iaj VW®*0:¨pr>æXÞÜVÈ&¥Üôö®ØTn¨¾I-MkÍn Ôe÷.A¢©Ò¬º:güQÛ“Uuý]#¢ó*zvfbe³\e\ð6Û.ý…ìüd¡¶HêšÅ³Q§×ÔŠ¿Š¤Êà ±§ZÅàÎ]ÑIlš ³þ£l|jñ½&@Tï>¢ ÄSˆÖ,ˆ«ÔE[SiF˜½Û·–ÇSM>ÎêÃÁ³¶ÇlÞ¶–{zàÑèøYò ‹g+ÌÇ_`vÂv/ÌF̹Ŝd«MÙC"gÙpëÁ]jå£ãRj; uÚ šÆr®5 i"*»^¦Þ¿í¡û¦8·a'‹?žÞrBmÌŠŒx4×&â&éšÉÉuÿÆê<¾Ñ"”ê<­L’a/Ñe¤ò ÷’vIqí8""\ýÐýÅÐ׬³÷Ô§UXøß‡0e9•‡tkÕÝ*©Yfgd{9:þi[™”Š´½•Árì¿ì§³ÍcÃ}—?!ÔèÚ¶6M¦ Esø•Ô^¬¿¦IØ×RÃZhÁ¢4>ö¯Fá¹)s è›äÕd@$s<ó,Nµgq«À^ý¡2ó¼QÇ«Þw›}æ‡7}á‹ÔÓö‰e4€-Õn;å«xË(˜Ê¥Ò;÷êè 2yø¢ñz£#êR‡Ša–b+œOñ%žû3YèhëõÛGéü3¸ž-’Öˆ„ÿl ^Ýqò1:•ªýœ]„ÔëfÙú Õ^+)“ÿÄ8ëU*Ne42€‘Åö~¾ ©9p‘”nŽi¨x[&½Ûçc$)äºêB™mÏð[iøªÜùƒ0« ò;«úÍ ÚÉufž£å`¥%]5öãéõQØj<ägÕsÝ ’blºñÝ×óõü«›oÔ[î·5@JNVÅfj)†'€È<íœëöçáåàõ Aä>e~ Ü ëì½¹9ˆ«îºz+á”T‚ö«îìä±Û ¬ª>Z!¤SëfcCÏ\hÎô†G‹wž¾­ÓÔ% µ·PŒ¦W7ÞY0:„³:¹Ôò…òl·mêÚáËÚt/Qº•'ç’FŸ3<¼É¹Ÿ9ì›ÎÐùPNª¯”覺µÿdÊÈÆt±œ Ð3²1]óñì¾P;llÞö™ºK¥sϹ·\†¾Å3õÌFŸë½Ae¼}Ï MÉwxdìéô&¸MøF÷@RêçߓԦ’^Cy²=/ìòýD«CCåñQÒ”¬TdÒ02+2&ºD‰or7àŒçÉ8cëó]s§ '+L{”<ìåP,é~dw«àøœ¥ÕÊ'"Æ·žJ.†oUmõÍÔ~Û­WºÀ.>»ÙÛ`xBQòj·L•BèãðàµrË0ç/t!ÚÇ·=¡Áœ“7§Ì£áe)êe"‚B2IãG¿3Xæç)о&»"CÝ]LÎ4êîe³½ã×dzÚ;Ù)ÝêÀtéíUù¡_°]ÕºLdSÒh¯ßÑèÒÁSÕÛ;’¥ü¾r¤’¸ù·ÿØÜ=9Wcñ¡±¯Ž,ŸO…9º¥ù‘F†ñû2ÇêAñÓ_ylß*û¥å«w§†éðTdä˜Ý¤j|…€Î1.ªîƒrÂÏ3iÌomŽçîæòP×. uÇ–ÓF:[¦’°›,‚"."„Éþ7HÃI`>V5H8tèTÏ…p6½'J¾˜Ü˜ÎJ{Ý!NÆÿé.îÖ…S÷”P³ðKCùk>ŒàÖl´Ÿ¦‹ÝâЊj"ôoø=(õÇu°ã[HÝú©®ëOµ{#aŽT³Õ’u|ÝV#š~ +—ƒ%RrÄÇ<¥3KÓÎLVôFY`1Æ¥°0‚ÆÔj÷[2!ÝfuÛuH«û‹ù§ÞJÒO½?½ø/PgJòendstream endobj 272 0 obj << /Filter /FlateDecode /Length 5050 >> stream xœí][Å&¯Þ"åáð6'ñ÷ýbD$ Œ€pY„’³kÖà;`øõ©êËtuOÏœ³Þ]ÇŠ"$ïÙ=ÝÓÕÕuýªzxºa#ß0ü/ýzg¸£ü;~TÂ3|±Ý±Ñg¥now|´Þ2ËÓ>†±©¦}Z»¹U£QNÈ¥g½¬•Ú la¾rÆ·`¾£snør»Ó°7iEZÕÊá(…ujø Ÿã¼Ö) t°êéŸæ9lw‚ig³ý×ñGGÒÞ0±9þøèø/ß ?á .à¿áYZ›áHsøJ>Ý>‘9äc÷û?Â~œ~ÈáÎVÊžNáã`§bøއ!ÖOÊ€·;` 3 ßoŨPfx /¤u£Ñvøöð"<½ {0}zÖ}`¤U0ÙКɸ†d‹QÁí›õ‡â6ùþdúô3œ˜µÞâžoeøH'‚Ý:¿tÏA0=×G…oå‘Ó*?E~#agÀ‘²áüÝ ÂØÑ P˜ãSP²Kä䃲ÿÂâÄû<î!~!a5CÙ5Qr.$û‘3žÅÖÚ,þ\Šá}œŽçûž/è¯W@ |Ã’*ixjØñpDq!k,‚•¼jøç€ªÆ¹‘Vá&¯!le"¥É›þ=¨ˆbÌ›á- ËÀ,^Ç'H«½5ñ ‘q£rŒçGüs[/¸SOovxGÍ*gFdhbZWæ¿-œ$ÒܬÇQäÔÀ#71C2n{Ì0ðî=åP ž¸!‘R熿áÓ÷’ûc¤„¥ÊÓЂ̑ÒÂ$YïMyV)mO/p; m9p8Ë9C B” ÎþF J€Îj$ ž‹Ó6;°rB¡•CZŠ%¾;×Ë;¸Ù`Ó'†qç]aÂŒšlñ-¡$çºÇÆN öVMhûh;º}çpN©^ŽÀ¢áíõ…lXƒœúpz¢¿3i7vëÃó΀ƒ|#Ñ‘p“©†)\j)ÒYOQ™¶×` lOð¼CšqÒN…†Ã½ÉZo<œ4¥N0+ߦÝúŠO¢Ò×Z‘n¬||ÑóΆ¡ÈRÍD‡Ã¤¯™ø:¬ÀAuµî3‘‡¡cä­ã£Ïžn,W!\{ã6’9â6Æ1‡Ñ×ÍÛG×o²ùùÇgw®½áG×?Än~ö.ü¸ýÞæµ£[·7Ÿ/Ff #Sd&…ë¶1ÉÅèìfPfï™Q=®¢£clÒ} \½d5ZµÀ,pÊÀv4õjAÑë%vÂyá@nY\+Lú%Å ›öŽŸ4Ú›—å']ßGbä¼è$†®µ“TNõCj^Yœ–%M˜YˆžçNÎÇðž“ñ_ˆ4.ÃIv¢ y5'Oƒn)wÞ¯SHugEœ©CM8¤ö¸·i³F@ˆ!†Ìã¬}¸:Xiƒ·z1"”p`˜˜iaÓbL€=ܳX#!ñüœt¶¿o$„>:/R©‘„/`${"´õ—½Ô$M¸’ŒzaÐu'péêYþ×F‚ë§ ¾_[io¶‰»M†3|𶪠ã¤|óµ‚Cí‹$Šz„z'LëÑA¶rËÁæ£rëqÛ»¨ áÛÕj÷œ4n¬Î xLuSpðæÄ©r)µñ]ßVì0 GDûD©*åDåðéöø‡Î1{*“cY˜:tåڢ̀ÕqQ¬w€^g˜ò2n–.dÕ#<Úðk°âÚBâzjŒ !SÆ\¿/ߟl5,_ÓÙpÔà@Îò£ï"•b,g€©@0ã*+ÓsžoE+Åóƒ¸u K>†cƒù:Da¸Æ"åx„ˆRœÎ¿Gi˜Á‡‡°9cšE} &BgÓCÉò3†á¤iÏ„udÎý-Ä…à,læH€][(} ä³ôoáåØ$µxŒÍ&—4Ћ %Ñ—AÞ"<è!ã3%32ƒ;Ê&|3|€q0ˆK1­TšÀzä9Ód<‰ '¨ §e¾ÿð“z8M~\¶kµ Ø ï05ÀÞ„,¥”dæ^øp ŽÃ`3ÏQ0™#9Švð‹ÑJ; ó•4‚„ô%ÌÕjEÆ$ÀVxpŠÚÓ1‘„´Í< AJp–“h«JÔ°¡‡Rvpç0YÁåÈ>”˜æñ¯t†~…‹àöBö—G7€u• ‡A¥$ü›`†w #¼&%‡‚Â'ŒÜ)¢¸ gpù 5ì­GŽì ï´'›‰2J=i²Y€Ò¨4ý̇!ȤeÓØû5¦d>ꕲ(2A!¦M¤»KŒ©Qîâ•ñšp!\jáT˜W®']¥öžIÙ8‘ \¿ E$±«-„˜3 “CDJÅ€ËY+›tN7ÀZBε,>û~ðÙ§› ï>³ð4DŒÝ8‡‡<÷ÜQÆu†ÊMeËôGn¢R~ÛÑíºÜ–Qzoë?BÌ ªwÚžµOld<U†–öÊèË“òTl zë8ñFa-m§<æ‰ Ó{‚¶†vOº…‹‡Þf"ÔˆUÖùCNa2"Óä¨/‡×”Ö‰e¨ÁMÊ8éÖv‡a’€ó{ŠÕ=HFàÈo ‡󬛱€m1,R« ú޳è–wÕº³âG*q;œF Ù°D53Œuó2˜П¤å’VR!îR¸'ÖqZÊ)…m—¢AŠxPÁápèî…$hɼ ‚k.½žA°*ëE¬¼‘LjànË®Š7ç.òprÒ=ö¹)<­¯âJö¿O€9Öâì¥ p¬g¬ pCI`aF6MÙ¤ ÕŠ®QËéçÎS¨¡¶D,Ôq%²¾ Â55&¡¾BÅw˜óæÔ€UÓB{K¡a~ï¯Z*ðƒÁ>íª9¯^ár“m¶û(°•;m³`œ]„³Ö¹è‚”©†‹}9Ã^}Ø,“!ñÒ:‡ ©D˳“†HÓš‰c+a:‡>¶¦X}|¹úpeõ¤=‘±£ˆèø–‰e±W‘Dü‰7ZÇÖ0à^¿˜’½ ý±KF8ê‡PA0ŠÁm΀)Ç?d\è —JJÄ(àx8ÖÙ¯¬Œ¯° q£ S·*âàëá£?üè| ãÎSRçÙDD.gÙ&q·nÐâÇtO¼Xý¦º9ú:ܤYHEŸt?Îz çÝ•¹Uj­¯V%-”$ÅÂÜ­«óý"tÉ¥°OSË&¥3«H .ͼ_†ŽN{€Ör™}ü:Këןԩ!á!B´Ú'·ô.%¥(’iHJPÙ;š&¾Sÿ:‡8§¿À²à1 ëý)U’f•´ƒ‘þVrX•?>šáÊ”©íSÎ Ç0g‡^W‚HK¿K»NðŽ›çˆy0’Cd·êñ]~…$éªäEÏ:ãÔ͢۵ũ‹Ñµ¤+/H…®0»D‡lu ä÷=€Y> §µô'rz²S#]:báDbú½&‡È¸Ð-óLlfØýŠ ö=^f%p.eÚ@F¨ÕvÙ’Fq{a¬jôÛXuÀ`É*ž­ZÀ·–â5åØäš£»Vuë¾î2(Ë£»e…„l$t`[øµn§å5Ð` ¡»h*w'­I§Å±þIN ÑÇ•ÓBµ¸’ây¨µÊaŽëáòˆë g xM&ýpªöbÎGIk”v’^p&xlí=•¨Ÿ¾ž vD’BJ˜ÔÉlqA¾Vñ´ú1 X6W0¼Sx%õ}\b!çK oø§=EiJ—¸Dw”˜¬:k"kútò8ܼOLÀŸ`X †…\›Y´Œ6‚¾Ï· aZYOàP˜gu8ÂμÚ[=Œ tíç¢WRЏ¼®£žØ”ZzÎ;ð 6-½ÔuÍÆ¶ ²T ¡Z?ä#¦bQ§»<¼ ƒ÷8Šw¦`ñR<• MóòV‰ ¥`c9tX,ö‡ÆeVBèß3H6Ö‘›U1©c¬P͜ƾ[DôNt ¼w‘æ‰p§èõÂÚÜÂɾC›Åòb¾{Ó{6¹½Ô<¸ yëùŠœ7®œ^ …ôaä\qŽû¤&UêäVM#æ̵¥%‰KŒ™Î‹”çúm\uûæZÓ\Ü¿pµ˜2DjQ©Èð²ÐúŠ-ÑÇ‚·%ïežæúÝ^žöâ<)pQ½Ð]¹ˆéfP@ÄŸ˜ü®íP6˜ŽàmwȦób:ÎïÈZ·î!_—ìx–ŽY1!È處d@gúß\§œ€ ½¸,=Ÿ…Féú’MÅÏ€!í^D~J‚®g=‡Ð — 9§ W;ÉxGÁz¬ì!®#ñ”W€7¼žXoT{üê*LÕ¼‡¼Òf4=èQÙ¾˜öžµvßv­c›”|LNúÉQWeZùR§çÌÊÉd”­DeY‘ÀÕ$R)^;7æP=-Ï>g`Z°Úfľp®7¢((WD麹Ã0JmBgÁ.w8o%ÌÙDÖ?ÙJܨ‘xÌuïPæû×[Ì}½]°7GZ¾*onÀ×B`¿4yĵŒWÚá#”2¡˜Æ®8àcÜÔ“ò9dõ@ž€Wú²'ÖE%!\‘ÛçF«6'Ž{©x_}%ùÏVÝ?Êe§ =òz™TÝ€¥Œ;¤…Lq±§ë‚ÒÇrßeÜN¤€:¾iÃÔ’š£©,¬>öµÞIçà«XeùÅ‘µÑž»"Á½ÈeQéÓz¥7»ß<¯˜Ð$b!¼îî*sw5k¢ÆpØ´#"F™Üg5ª¡Î°Ÿ°ã:rÉm H·â›. çÙI‡6×g­0,¾Å!UßêÛ%ìó>~8Eö‰\]ÅõYŒŸwD» ©RXß-ÌAñìc/EJÿb(RÀþp@SÿQC´é.%úÉÀÇðuŽýLžÃõ¤Oä¨yD¤5¢Só÷Ñd¬²ëÎçúµ½N ’¶VgÂQÀ¸7Ô$Ï"‹—,\9è†äTF§Ç6ùÆÅÉ3þñ ”[úr·V¡oÂùnTó¸PîSƒØ¬[.(‹|±P˜¾#Éa7²é—á«ÇFè@=A¾Àkh¬0OrrÆO”­ÝƒÓ>¶äÔ˜Õ´Ë“•z€>áIå’eh‘@KYD wÙ‚8«&:n“Z,(¶åõhÂkeîÙir¹rš¬Þ0P9•;±b£”+¥àææÄXµ=D#3»9]1¸ZLXcÖA¹›‘~K!ªŽ#/•ÊÑ&Þª°r-Ú\xØùî+”w=e¿U^±µàKê‚B›ÎæGæî©ø'½§`¿K\¨ã¡øæ¥°¥å׎œg¿ª–šòÀ&íVО߹Ò"^¸š¾Tj–2¾Ôb§aî„»^UUýöõ/~¡ËpßźÉÿ>ÞЃl˜›µvɦâl«´MŒ‹Ý>öMúWðšÌÿ/9,7„çç¦ÞSãHç)w:¼@ "Cl«¼²ÎSPeP6XÄ76žþ·îÈ܇R‰Ù¹oYeJ…Œíä6×Ãn7ë ïÀ zZšï%s¢Û|¯Ð|Å»!ª¼g'µ÷§÷ì”ösâ4ÙoÖ¯ Q©“/1` O˜ò»†–ö$b[y5Ïa1dºßrØEŒx… šóê]Ä8à r…üú´^â] ¥+FVmêœé©'k!Œj|iÖ¢¹{‘­–³ ,£FéÊûZ.QJúá0%Ó{5 ÒR½õêÿúÅùTK_~ݳ´&Ý@X±´Íík‡æJçæÒMUŸ®©Z}‘WÇV-¾È«fèe_[´UW{q,™ lÃVóMÏÜˈWx¥h¼ò )0$PçS`=ë»>D×åí÷§ýó>3åì)ô[ëÍ´;ðG §mì:^©bQP#TµÀ¯ó[#«4¿»²›ÃžTiîÙR‹×o´åFé\¸ P!äúk·…”Œ ¹äåñå%ôïÇ×X*9½…[AN¾r7ƒå¦}¯WÖÍ˹—_§Ê˜~È­©L8¿Ò” A0“źî”ê‹¢ûœRýª»½{´Iöï)LEŸé½¢kî•64À×ó††\vë×°#UûБ:=…I‰Ñ Qé-8C üäø?}øüè?î%¡­endstream endobj 273 0 obj << /Filter /FlateDecode /Length 5287 >> stream xœÕ]K“Göyœ8p.Ä4hZõ~ˆðƒE`ƒÍÁ#b­µ$ÛÒJB–@¼~;™õèʪ®îé‘´k[£™êª¬¬Ì¬Ì/3ÛÏvlä;†ÿ¤?ï=>»ý¹Ý=x~ÆvΞñðã.ýqïñîƒsÀñ›Ñ3Ïwç÷Ïâ“|çÙÎZ3:³;|ö§ýφƒnd\íÏá㨵“zÿûÞîè—¿ÁJxcöŸ6Z㬴û»ÃÖ[æ`²üدa¬Ä¿T}Zû`P£QNÈ¥¹~¬•Úì9ÀóÊ¿ÿžWbtÎí74ìMZ‘Vµrÿ ”Â:µÿ-Îã¼Ö) t°jöOó3¿‚ig÷vøËù¯Î¤½abwþë³óÿi1èýs|Š ø‡~|QÖ SŒRZ­ö_Ú»€ÆŒ:öª|üj£6B™ý}œÀ9/öO`½¿ `3ÂáÌR«Qj¿Z$ÊéIiìhŒ ½BÆ*¥¥–¸µÛŸ [ œ‘8¿1øÞ€C%ç:­eÇÊ1æòà‹8y¦ç©´¸°ìå¯/á8LRò_èW¯_“j@@àѼþ7¸1éA&MŸZ˽yôû(Š A’ïE<”¿{= ÏÉÇBsý-Láø(D ÙñS \"ŸÆ*[ž#m2ˆ'2ƒKZKFþÞǺÄ+"¬MÞüðU€N(Ûã|œ± ¶Ãa–Å×Âú4Ñ;— Áxˆ¦VqtÞõ¶ "Ìd1ͽmê#î ˆ¿ç^ç)нv׆*PK‹d£alщª™Ü-æ*§Ôfæêl©ƒv¿ÀÏ;ßlø-ï^mè•“‰º~Æäjãñj˳ߪµó Â¾¹Ì“‘j2$p¥—»ùˆ‹*`9ëÈ_æ¬íñ×ùÿº½³—r]OŽh¦`Åu>¦%<Ð5×’¾‡ÎQOZ ·]ΘjÖ#qÚŸ€Šè÷eˆµŒd¾DR‰]ƒ%‹¸¼×²¥Y‚Ubxú8ä¨TÇÖDšjš×xB N²›nÀO´Jw`”œ ^÷äb`€ªaµ'ð% SÈX^b8¡ÅþÈ7þVðN—Š“Gñö´¨ºÃà’^„^ ÛK{o´Å°:fÃCH†0iZÒ¼æÕ ÃÆ-¥–<óa±di!n1ÂÁ ‰Ê¢Ob`ƒÂ‡a6^Ü%üdLÓ©!Ž6ÆkN C ­è>Z˜–Ñ/ïGZ…â}~ç½Iößn¶¿?“‚¶Sò®¦™ÈCâññ +}Åýo"`äáI–¸$ ž–2-ûA@¼J hÌŒÔCz§"œcq£ÃFF†Ÿ10“á^%´ô}] œMúý?½ 3v¾/tp>¼ÀÚ­å’ß*šº¬ý .‹â÷Dxõ}ÙoŒaõ{ãúœ«˜â ÏzqÅs‡žº™³O³0x£Þ:¤e_<¡Ê¹ÍB8"¦ržó+ü½fõj[FM‹½$,©C~à‰ÚKˆÀ˰UÒÄ–Bÿ°hDs‚HÜ˨½-ˆú,Ô$"_‰V|áºD}ÇkÙ‚Žé3„xQ{¶äc7ˆ „´*‰#_ G(k?Â<œCµXí vP¥Üz< Ÿ ̦Ñ,Â3êHðD¾˜ÈÇÜXeTùN^@ ‚rÕR÷sÈŽPØV>X¾Ñ*ÊkÛi¸:ƒÿ’x‚‚ܫ%¦´Å¹'ÇËBÑèH¦Ç›™9âBøßEª—Ae |WAB¬î¥Ü4¯a•E Çßž=Ž–‚èIŒëÛ-o°@‡Å$ƒ—â1¸/jZ‹m"e(t®¬”aìü\óéu¢IQ¦•(zT xÚieäÊ ]}Ù& Ž{“ìÒxnf»gðI‚…mÕ²ˆs]d°¾«GÞ&d|° ÄÎ\‡MÚ9^óÅ?á…Åv_Ðãh¼3Š›7ÖïïÅ®uÁÖ‰/ ³DÉRÄ­%ÐW^(£Ç|ä"„ù×"RÔI{J‰Ëîu ŠÊõÈ{~9hð~•õu6áEç(Ýñ$ç•›RAžyõÃ1ËÝð’¼hó"÷ˆÕ?(@êì"ò¸$®0i·¦òÇàdÀ¾>°­ˆþÁŠö)ðÊPûº„ÝZÇ+c éŸÐhpózá‘®ãÿ£aIk½ÂÑqïD^k h¬Àt°ï·ÔKÝ@¥%% WÁù×8¹Ù¡Îxd¹ÚaÒ§i£àëZmÂ#zÌ%"¦ÀYQ)ž¨‚°cpËŒ’ÂÊ.°äÀ‚ƒé®f?37Åñ7ô5=ŸuX·%yB…*|Èøè8uÒÇhëmZ<…ÈÎV‹ †ëe}ÁC…ßÚTÎÚ‚'æûwSºÃ$õ7ÞaÒ4¾®TÁ×MôJµêæˆî²ç/E0TJЃ™É¯n¶‡q &>OÈÉ/%÷Áè Q™õLÅÊ>0ѸµBC†Ÿ:÷|d^sÍór WøIvWêD]”¦éÅÛYE_³¤ ó‘‘ÇEyÁ &·Íƒ!ä&ÙÄùâ0ó^jîô5ͽ áf1›Y9‹k٠ãj¦óù÷`œÓ¼kÍÁuplr̈Ìxa¢Q"E¢õJ4âln¹èãg8m£L û]Ôd¼qV>ÅÍ7¾_õ„p³Ûv¡4Y‡y4(ðRd}{Ù‰š¨s¨•]Ò u;V𢕑ÊE^Xº»ûl±ö¸1º©öÖAðnÅQÇòãx)Z+Ó~¥¥'RêQpÏd'‘ .å•á„°hWi2ÿc0ñ ­¼· £1!]ɸ©­d¾'xÝzØ÷Qq%S^̤£áƒˆe…ð'Çàñ;ŒÃ\-J³8¬¦ÂÅ1;ÙsððýT ¹(Á9#cçm} ϬR›ù!T4I¬‹¶¶Qµ¡åO#ÔÅz´n¸nåßD3D-I5 ¾:À¾; Ý¡†¼¹fÔôLš7;0@a¦&Uæÿ .©0wüÏ`Óûôy†§|íô¡g¢yûÿôƒIÅE‡PYœ¼& xð~{‰Õ Z+¬³Ð£ñ\IŠ\LÀǃéÓ—àµ<@±"!hÉ79û#N¸ ºõ VFW/ƒº(g»ze JXJ‹¥ð¼* ^RW7X”MJaŒ:Yi‚üQšZíM²ŽÕ3³ ¦ÆjÕL×e¯NwÖõò¨ç&¤™žsAõH*僞+ÆýúôH‡¼ \H#_Uó†<ƒvëȳn$Ô-h¹rQ ˆ–?Þ©×QÈÚ\Vž¯ ¨'Ñ΢²è·Ã¬àØc4g°AjžÐIÃÐóA€¾&ÊHÞ†¢JŒAGÀd\Ò–“1Ø 7 ‘ü÷­L(`ÊÔô'ýbzþÅô©<Ó]ýjÝ&…Z6»C >îëκAâX3§ˆjæˆÐ¦®Ô(#­êÖÎañ?ˆàA«øüçD0<ñSéÓUçS· ÂM­b¥#­¹ûÇ€½QšÔÅ• ³§Ó㤋fM}è|÷Åg;œŠ=)˜¸±±Ó¥i_Zn=ɩۥL‰YÇcA¦(£Õ¶ Sy4¾nk‰Sc·Ó,Ȭ;&D` LâŒO~ì‘a|«ˆ×KûN3”g¥°XùÞ¯Á¢É[Šk>V—WîO¨¸`xS'Hó½M;Mz‡Š¨æÑì•&†}ž=•/‰h¾äK0á¨blÙY§€«<œK>µßÿaðá Ï·{x9ù¹’FÀ‚òÚÚõŒLÉÅv³Øý$è :ÓTùMvÿÎ,¨¯€€5ÈDRœÇì ì%{ ò‡R ÞÄ 6ÝGþŠªÀ¿ïvÝÁÁ‡é«GŽ´hgä|Ë6|F„ßtâÈ6Ül ¹ÍêÎâG‹}[Çv‹  ßèny[µsó}×}t× ô¡k¯ïÏZù(;Å´} ÖÓϬÇ]:ùŽ„ÏS릕t}íK–f›ü¿·F– 5üïY Èê¿e¡é¼1ÊRNŒ¼²á]¦O}ö¦Ï¿ãôay½¾ ú*›µU;ÔšÒ~çÔñ5K÷:mä'P·8ÙD]lXzW©c§ì SÇ©V´º…º|?·kJïKsì‘ S©ëšÉYȾp]T »ú•¹T´ŽSmÎRgÕTõz¤¨×wk‹È#dW–‹²ÕUç“ÔF"š«ÂÒ½ôý¦î¾ÛóûO‚ÜMÑÎZߌ´¡n¤ÃR> ü%Ô©ƒþTÏÚÛ)á­"šÐ2Â줛CœË4';­R ãBÌ[ WÞ7=ñ(u%?¨É¿˜•I|YcÓŒ©¤§©ôTò}òû2QèW5ï‹ ³pbŽäøkhq%À×[â{¥°èÏåÖA|?á3RçØ­™îv[ŠXZ.ÿ­$ÙË}G"‚h]œŸ¦R[÷®‹‡–‡ž–F†ªv3¼FVʼnqõ©]0×»ö•ï»0VÛè8èôâ^ÓËŸ¶wëe`±¤'änKÛ^æI¼q_hšR§´@l²òÙozÐ:X„NЬt·EœRb5“¹M.'u°éa+`°RßUƒ·Sß5/U!miæØô¾±¾lweõé5ï]du~Ù4Æ,”r£ÐÉØrÑXˆ‰Ôͨã\?/ µ×Ýš×é]«ÝKªITll®Ê¶‚Å6bê@}•´uêâ‹&«³\5ŸÛ¨¶¼«"†# ÉxÉR÷Uÿ5{5š/°€ˆ7pþ‡ÅÏ=^ ¾pEŸðºŠ© ]OI¹¦“GÛLxJtpœN±¸¯'y@ºbÙûkÖ}ƒ×›ÑÓ­ußÔœÕ}Ï1éc/ñ"ÅoG_iË@TXtf=x1½®&Ëî¶¿ ­~»WK„é_›ØߢgÚbt¥c¹óR1:ǪsR'ƒy>þøÛ)vë¿ ÖÁ‚&Žº—jnc"±'\Ãî±]û ïÆ2-Ñ}7¥ˆ¹Züu*Ò§‹ü*Ò§\W…ç1!o¥+¼±yY¼]#ÞKMį/Þáy(ÞÝÂѾ$o RÓx@ÊîòA-{Xëq!CßR-pë`©N¯ÊjO‰ÛªÃÒ໤¯_‡ãkÚ¶ë°Íí$§«±Ü®À©æôz¸©ÜM%UˆâÄGw).°¢Ÿ×èžØ|Ì×öTƒÅ¤/Ö&„òý­I"TZƒYµ“-ùa¤ÆqÛ}ïÝD iÇ(6%×¢†æµ˜„>¢> stream xœÝ\I³ÇqÖùlÿ‚öÅ1æ4k_¤ðÁi ‘¦H8t€t€°" (Kÿv_íÕÓóðéˆ ðMçdeåžYKÏ«E¬rü¯ü}ðüêã¯ýòäÍ•Xž\½º’éË¥üyð|ùä.$!kQ.w_å‘r‰bñÞ­Á-wŸ_Ý;üûñ¤UX…4‡»ø¸Z´=ü×Q®18Fàò£QѹÃ×Ç“X½ ^ûÃãI®>z@¬ûp5¦a_öÉ>9šÕ™ ô%ZŸÁ{mÝáó#Æ›àâá3Œ7j !¾9ž,dÓ^•Y½>|D­|0‡¯H'Dk-9I|ˆ‰ú—uÌçÇ“6øC8þéîo¯>»{õ{¨Î%徺RR‡Õ,V†°ºOrU‹t1âÏëGË–Wqù+tû[üûË•Xµõ°’vrÉŸ¿þüJ)éY¬²rµfyˆö«YåÕ*Üò ëV öW•!0’U‹5"¬6¢ãWÖ  !ZâÑ)±¦ZÛÕƒ¨×q *A¬] ˆÂ"« âíª@4µfѬÑ-N@$I€‘´ËªqÕiŒÑ†Ÿœ–fHkV©g„^cxM‡‚=íšÇD ¦œ…T&¬ÔdÚ9 &»VëU€¬sšrbwToÈ£  :^Ù¢Õª@DZŠ4ÊIZ’Sħ«W'rмIt<'ÄÓ’Î W¡B}ÈŠðˆGþ dKb{-àÇ€Sy‹ˆLrFÎHˆ‹ÄÆ„’¸„„¸ZÐ1À‰‰N j“úsAE:Ó –F E§ ÃüìýÆÁžE›€UEzOcáЇ“Jdö#Dõ4,Ô«™h<íç„ð…LtPü#Z]ÜÁ»Fú‡ÙúZ@CnLLn¨…rŒˆŒ$²:¤ßÁ+T†8KZ¨0=Â+ˆ:È!Q)lЇdl¦%,̈°1Y“Ø“a­§ô„8“"Dz„“B 4DÂQ$b0QpéQéÆdOÕðæFɤ'­²~f"G”bHXd™2SÍVƒŸJQ=V›d[B–àpj—ý$™@D› !A i"#$§´Ð`áž\!&¬Š¶èÅÀ‡ñÉÂä„'–lÚ$¤ ‚1lâ‹ "(†œ_²‘¬Lj•«·H†t`¬,½8¡¨Š‚Xˆ$Ì)ÓäH X äŒ)ZÚ!eÊ”î,}‰|H’¬àÀ© O»è€hrˆGÖ‰Œ*d¹ö)tTxP7Zu×Þ^eêt®…ßì çÖ96+NóØŠ38l¥,ávÈ_ §Fœ<{GéÜÜXeªò)ÝBz“|þ ªºFÔB¸óAžAÔD¿o€o}¯¯m®i¬Aµ¶<Þ±zfïʯÝn×~… XF0õX 2Ò*]Ù@«BFZ”šÀ¡ dä¾v*û ™°J÷2`ÈÈWéf¾*d¤U«y§Õêû@«5ûV…L3æ®{œ±@,ôqF"’ÑŸ„­=+Ù2úEkØÄ{ÍQž9¢pÑ0 —Â,ǃ«Ç·X6F˜1۫™çR|­Åd“ͣŕƒl\Ús“­B*g•Bå¼ÎÑe«\4ŒÂe£0Ë‘ìvkec ½Éy ’9Ã’I7Î{–¬²)Å¥½0¸")Ôç:oƒÎ…Ây›£ÉÖ¸¨•ËJa#ív{ecòq[…üÄö~”­×­*›Ú²z1Q¨ÏuÞ)œ5 …ó6G“­qÑ0|œ)ø¸µÛí•}V›¾ BŠGy¬…EÏ%½“h>éQe•0”ž)Ôçæ“R=ªR¨Wçè>Y¹h…ËFa–#ÅÛ­•os§V!Å£$ꪎÝãZo×|’‹ë af õ¹ùd…TªªÇÕ9ºOV.Fá²Q˜åHñvkecW¬Õ¶w®Ry¹[©†ÚݺíV»*±j·ða¢Ðž[í®Zy+…Z™ÛÞc«Ý•‹†Q¸¬6r¤¾äÖÊF»qól^ÍTH•MÇ©nëŸ&›”ˆ|=Ȇ…ûH¡=wÙ ¤qV(4Î˃l…‹†Q¸lf9²Ýn«l\ía¿Y_VHÉà6 j5 ­H[ àn»j€5v¦PŸ[ ¨šÁ+…šáë½T.Fá²Q˜åHõíÖʆx³ÂoVü R<ÊD;­`ÚAóIƒºªŸ4VÏêsóÉ ©U)T«stŸ¬\TŒÊe¥°‘#ÅÛ­•ë7§¶{0R<ŠGz£Çµ]›æ“š[{Ã*H‹0S¨ÏÍ'+¤­P …¶‚)stŸ¬\4ŒÂe£0Ë‘×o·U6æI#¶»bR38;á¶Öd3ÈèãêÕ`¾‘B{n²UHå¬Rh™¢Ì1ä’ÂEÃ(\¶\2Ë‘óäm•­ží_t .ºmÛYñ’7A…ÃS^qX»ÈÓ~9äíñ¤Vç¬9¼>¢™å=’ããɈȃ¢ƒ:¢d‹è϶wkŒ\½ Ó¦ó¥õxâ9¶1f¼ròìÈb¡Œ>½í·XÞS*üwø¬z#89™*Ó÷¶ÃŸ6/~qàÛ>Ï#~-VV(Éwª?uúذ%8è·kò¤¼K!¡™6 q#e8üº_"áAŒg礌Af ^ ½«€ÎÒsšGëàܬЗ…¾àI_¤ð¼áÊ:DN}QæôÏÄÄÀ$27m£§úhlÞÃp¦Ú–“Ÿ@ËY¥ ‡Ub™UãG­’‡Â¸3 ‰<£¶xØm†ÿ›w¡ŒUÂe¤að÷ì³J§\9Pɨe$Ï'fJ³œx4KÇL¬×«\Qn•Àö3êÃÙó¦²ÁÂ4œž¨œ‚>×MÚ­õ⌾T“;wJƒ\»ßnÑ;Þ÷&ß8›Üg#&ïf{aÆ9¦è9ŠVö£V:Î;¢µ#2û5‘¬(cŽ›A‹ƒ¾/I—Œ8å‘—ÙOÌcuà=s½Ÿ5‹·ÖJ~x5Ó÷…;thpkMïoæÔpObÃ9kìR‰Ã}dŸ,³e§Åc±8J޶.êAUms UgîçpÝ_È]9 žxOyøëQÅÕ(!ÓoøEX¥ÉùóÎ\sŸ,\2d52eÓ„ÝSë&—âÊTUg&µGË$*JOl»Ó>ÉÒÆà¶,Ÿ%€:_Qo.VªæÑÆzÖêt´¯_ÎEéu‰ž†—(é¤ú(ª[š•yÿ,S ŒŽ·qÉgÒÌ@ggã£2k“oëZÛÙ`¾ƒÄ£èÂuW?ó¼VpÊÃÀ¶ld$—·1¼£l íCKäa:;w*Éèð“¿Ç¸¥ºXZÞ%'®Ÿ¦:œx&D“]H›X‘§€êTåQø‘îP‡Ù}œÕa:òèðsŸ÷¹QTqêMCº|–œ ÆL7µæVÒÙÌ‚PóÑÅ„ø?QùñÄ¥0QåÜ{‡J h)méTÝBs™Fq•½_Ø!Љ%Æ I—A¦§™LA†ü*yŽÒ>Ú½Ž˜b L}1"0­{_1ùY õ1ÎEXí¿¼ø1Ðõ»Äe%ò\ýdVÛWyÖ#ûŸ >9]( ƒ³;¾ÇKÅD(9p³ú˜»‘—ÑÑC‚ÁÏËœS[yž&kW[-¼à ”8k¹qÑ%»Ngíª­¼ØäÔË[¶–ªÒÕ×1÷iêôÂÂᇕÇ=ï‘6mÑŠÑû[Þ<[®M‰Ì+<]J§½Iiq•9Ï"W”ÖâûÞZ\Û–êôÕÏÜ–VŒ\0”r>-„1·3O¶Ü¬ü·9L$­„:ûEµt í”ÅËf\¨Ÿ¨,¥Œâ…b /âÅÝϯ>¹sõñ/–^¿}tõñyõñoø¿O¾ú5þÜùtùÅÕgw–köv_~Á<¼ËÖ^‡¼/¶¢–KD:BÑJƒ93«—±DéRzD¯üžÙáÏ@UË)æ ï¯+ª’yM5!ûe½íÔ¡¤éiöžgé+Ìæò×ÿÀ$ ƒÜãŒsJFwžSì¥&.‹Óþòúl§+ž…hḗ±’î géö“ó6b"ª§¤7 cJT¦ò¼[NFTOaç×G%?6쬃伣º«;ë#\«ϵ;ù×-O›5 xïrQ»N.„ì¨RÌÈw(P™ŠŸÍéÈ©}_­1(ìEÏaz?çÙQÖ^Jßñ»ñƒâü¡¼ç¢+nôp^"Þ×{æôÁR%”^\IiÈ?¦ü€À.G©dZèPÇ–Ê•×[~ãm7²¼€´ÿÌà3a%û:쌪›¹†ÂX/NZµŒzïðÅ‘íˆÕìøúŒÉ€­ËøöÈ­iR¤ív >#$ªœÙJ—ö“Ò HHmä0”ž=Ez¯ž´â6%߉6­\4ßU Ü£¬D_Óø('~î§]è(}@©­ôùªž.3ñÅ:ß´¯‡1ãœõëgøbäþÕÓþ±S’wù&&_ªäºÞ²}ÇJ;r7Œï3 Ó¨£ ÐÈŠø8 ÂýŠ]kTA•.&ä¾ç0Ó ½'‰(º}ñ†AÏ’it•QÉêV¿ËG:µ:müwG ³¯Ž£-¬»U¥³ )„^ôvüøð¬Ì~«57ÕQïx¢u¶ÔNZ™¶º ´ö;öÚÔMm©ÝÍvìÓî~¼ñ–½Í¯ï~ m{ “Û·„θx¡†Ó¶ìÐÁöÝši3H»¼¨˜¶ž´½þ”¤ tùï÷ÝÅ,.HäÍ…Ý=ªqç¨V¢§íHÁ··9Ãö޶»–IÃÂh³5œ¼ÉoJ£  [ƒ\Û â)„çQÕp:Á0uTÄÅõÖª0©.G *]‚àRê½3«*Ûœ¯/uˆ:waswò¶¾ñs“©~ÞuSÃ]ÚNÙøÎªÌéŽc¸¥70µP8»è ì@b³wc:Ew×…~¼|þ¥ß÷ç{仇[|ó›¥Ë¢“çB@Ö_ÖpÆn›wÃeø¾$ îY¢{‘9<²¦æøø ׌Y7þÇËmÚÙÎÿˆY‰ëôä6­øÏá߯ ¯H;‹_¶ßi þ{£µ9IéÇW›}ÍÍœ6¦ ßqÒ˜he¤!¾x¾¹ÝÁ\¯t ¦àÔ™h¶NÓŠüM|Ê{b:ÛÍôM¤·sæ~÷&] †¡\œE.¦vk éǹK–’{ÅÕÛ/dÞªá¹ëpŽô^wvUýx´XÖšÒ4Ü·ã|Ã!™1ÙãÏ[ ñèöl¡ŠïÛ圳ö¹17Ê­6ÆM;s⛌ÿv/éòð)æãÙ©ïä;GÜsÞ;jÿnèã«#ïá ©=±vãG6½"Þ%:ÞÜ=šºyó±Þƒ\¶ñ¡š¹Ænýe†q‘ð÷f|ÓÌGµ µ×x$%Åí¡íõ«ƒWˆGyf)õ6tòjQ¡%V‹<ʈ|ß(ì·_/öªÙfå3tÜåC¥êõœö«öÞ•öw/UŒ+2Ï&mï݉XkÂp– Ø›MKT5'ý*úx&»±0×'1àkn7hþÚÔ»(;®˜.Ÿ™¾OÏ3&ô:ìÿr´û><_wEດÁ_‰Qvã^å2ÙEø5ß¿íËÇk²ÊÔâÜ0«¿YtV~,«€t\3Ü{w~É:t§{r/ö*_v]ð‘—·0 êµëe‹±TœŠ°se(ž€„]•—xJ%Ì¢›ÆðŠ'—nàÔÛ.ݘùÉËݼâ/++ÇÍ ýë+óFÇ«árÏ®ÕwÒöxPŒN<9çGu3ââm¬U·évKÀ&áŒCL½.Ëß«ïû“Ö;th>Ηp÷+wÚr%`wcàÁÞ%¶î¾C3;_/6À†C‘öxq8‰KÒY¯_~%‰ÿÉ|ú_é÷zŒendstream endobj 275 0 obj << /Filter /FlateDecode /Length 6336 >> stream xœí][s\ÇqÎ3óä•kŸœÝ÷pî³TÉfÙLYŠ.pœŠTRêI”“üvwϵgΜÝPJ*¥¢´Ú=g.=Ý_ÝÓ3üjÅ&¾bøOúïé«£‡ŸÙÕù7Glu~ôÕ?®ÒN_­><†8~3yæùêø‹£ø&_y¶²ÖLάŽ_ýyýÁf+…›Wëcø8ií¤^ÿqÃ'ï wôËÁJxcÖŸm¶l²ÆYi×O6[>Yo™ƒÆòk€g%þOóÚǵ³7j2Ê ¹ÔÖoák¥6ëßmà}åŒ_?†÷•˜œsëÏ7[ s“V¤^­\JaZ‚í8¯µÆ‘„q°¦õó;¿ÛlÓήýæ?ŽÿùHúÉ&VÇ8:þÇ?¯…Ó£o†y²Ñë/àE‰ëo¡[k½_?ƒ!; ò^½ÙÂôœnýßSšyåÖ°97)¹æÐ‚Oüy„3óБ„±ƒà8wØÍ6HKšõ—¥·+xš4_›ðƒ?Ø´?ÙäqM8!¤õçšaVv9ð¨ [ÉÉkoíêø ´Blà ƒé…F•¶œëÉ­¶‚OÚ{_!Šò¼®Í3ž™¸ë1i#”Y¿ÂÉHiµZ¿†ßLLÌ&V¤ŠÂ¾¬-ž!cÛÊ‚¨ôú\Y.àŸðxêÀʽ®o^”Ô¡†Ïq¨ð?^¦…L҆ˀfÁ~°ÛòÄ`,Vá—K7Z`}¡“X˜• ÉÃNÀB&_’ß;‰ÕY[`ÀWt˯¿ÛÈ0¡®á<úÓ`Âã’³¸ÖWUÆF¥×Œ·ÅË:1Ÿn¥#‹¢S6<–̹É"–ªQœ¡6`k§¥³n¥ífMqì:¨á[n` иqO7¥Ì9Z¨ðLÈ—D‹ñaG»¡S#&ñÅ­Lj?×Ê gØF°wX­&­¢Ôg¯GÚ€Be¤ß -·EäY_:‡vëÓW­ê¯"æIÀ˰¤º0uγ;iW²³Ï:F³zs1ÓÈ¿kû´<þ,i*vÖÔïPi çÏP ¢Ju·ÌÎQU JÄè+ÕÎç3oÍRr‰ÊFeëG7‡ÞËZ·þ*zÁ áëvÞ[Àhð±‚Û ãqÚ¨ã’{gŸD*Õ|…s× gu}&-;—TåºuÄÉUölhìšÆ…w G;øìx¨¥­ö×÷~$‹Ÿ?¡`þÎFëSŒÜQ9­Z2æ(sSÓXežoå d’Ƽò¢‚ÓŸwy\NF+íˆÊŸD•wšÍ:_1‘ÎÌ‘!ŒîóȨâ#—4žØÈYgná÷Ë™èö‹9Af²0¤Èš(e¶!³=ÌÖèøKx@ZÊiôÄ ãˆù0xÆ\” @_Xèþs°î¼ç~ÄpàcðÍÛYã ¤U£A©Iä%øû 6 šŒZד-QkÚÝ*PZÝ•ô©ó¹zr3tJÕ&q•Èjà Ùb‰´ ‚àÌxàg v>ܰ±§õmbš/Û9§½˜CüQ’Eþ%yU›Ùe‹â‰tF„ù2%;%ò»åŒ& úPTà< žíÁì[j™í/cx±ŸŸ£ƒ7 a ¡~ aØHýVDKΪãz^µ=RlXÈp01BK@&ÐAěĂNT/GmŤã­U3gíȪQÚˆ¬™‚ï‰yÁÌÑ¥¡fµºé¾Ñ—¶ãxÉʇ.5ùy}f¤•/AÀ蹆¢G† kJ>žÅ0Ê×YÙä_D¤c •„¾µN8èî#!ĸ,MQãM‰fŠR»–—Eƒ–5@¢¦2gˆÙÞlÀq¡c`&Ëô.ÊZìÕ&|yfÒ–4è;7’–$ ù³ Ašº™Ù(? ÆÔafãTýQ÷jEY­.ˆC1l”™·êvé6 ÉèvŒÜïPµ+ñ—[©¶ ô²>8¬01 H†l›¾˜5´K"I.ò–ÛÉý:Þ8pϱnqpïCúY]ïÈJ…×¹’KLœÅÄ$ö6i¥HĦø§•İѭÞuZ)ð+sĈùÎã2¥£Á¸hª%r`½°:A]ÈoT·H´Ò¾„c2 › aŒ(m ¸”Š ­?Œ³:E¤ÝBó–\£%¢Oo GPÌ¡=ÝH ±´ @ÔÌ )—v¨õ—õíúå$E<àñãT^›-Jm6ñ®”A™~ž¡ÞÝÒ€3#ÛšŸ³Ç6þNôÑ©}Q ‘ ÷Öa Ð· á5wÇa`’ì¯wO{+”¯¶ZÏþgaæ¾Ò €³{æð·Z1nדPV8XÏ÷ã,„±iD’¯pwEd ê…ƒÇ&¾üïÁ ”aLŒc~P qqyã]ÍYø–è7sþ²ŸgÛ¬9Œ-ä–kë`£4˜Ü „pÊ»–cXs—QC :\F”õâj&÷ýÞ(:uâøÝ@€ªwäšv}zôÕ ÷ßDØÂOìV0}ŸÖà+•Ê€Ÿ=|òÑêÛ¯¯Ÿ=üÓŠ=ü=þëÃO~ÿyòÛÕß=~²út±Z ³ŽT-€i00­$è$V ì°õÆ¿½€ëÛïJÀƒUéa:èëe|hˆÝÈ obˆ‡ƒ˜ˆå Õü qLëǸ—yÉwºÅ·L•ß5‚Ýwj?³66l_dcö‚£ß·1+tMÜΘÛ;Y4æûð,D`ÑËã¾· £Eq“Žd«°-`ÆüÖlk+uÐCˆe3þÌI¼îH”.ͯkâ0V+¢9D'’0=[AHh!è‹raáIX ™{X «&¯!Bü<ŒÊ &†M9ß¼‹këÇ̵Ó€õ#9˘áT‚z +‹ÑµÛ@ºÉ1µÝÆlÚ¡œ¸Ã"³õ?mþa¶h¡ :„(¸Žÿ~cÿ'§wÄÓ:hÿ¶æ5wî>¡]0°3³Ò 8ñNd5~ÿKÒ!]»W²1€{å)·æÄ°>| FØbÑ,ÝÒW;Z¾ŠÙ0ÆÛZÇ¥laJøcZ‹–¾è²÷˜¼«Ùã³&-–ßß‘¼»ó¢Ê.y÷3-ª”Xc×ÿ¹ú{a&¹ ¦µ†m¶Ö°»ô5Øô[ª´û2iãlà–+öõHö„¬½Ë²àG´iÅA\ȈÃ$OûnDÒ'³P@c-V"ÓL@ƒ„ÊÞSPOxŽö^ù6ôƒ+¥ªx¬¶ÿè¤#‚ûú¸¢8ïL|Êü¤s~„‚€C2òÖ¸þ[ÀXÎõ2C¬Bí¶+»/‚4µ•Ì4C´• ï£ùJ¦"x§`¥­·+èK”¾~žI¶v&°±ÔPÐèæãYð,ÊÙ!ÄrÆqbñV‰ív/X 3;ÈñP–17µÃC´uf„¤¿ØÃm³?ÿçv^v´; ;|n®Ã^µ‰@:ç(ö/µµ8ðkwö¨£#!µ;ᩞÓÑUÞóðKݤá-  &PW‚N,*À„@RÛÇjèlâ*.„ò ˆÌc¡cÆ"jW´Ñ𨰖*‚ÖDô| ô1m·´A–ÎÙeϳÌ\‚š#éÈJÞv‘œxëèq fqc.ú JL*d)rô«x/sWž/\œAZ~§žƒÖ–l£¤ZŠõGupI 7ž­ëÊQƒ¢áèFŒîüîÂ^£yRôEBãpƒqØNce¯uçV,2„Ûîo’‹_n†Üáâ  ^$2P|°¸-ÐÞ$»Óî‰ã‰é)ÑÞù,†ŽT Ë®4P¶ËÁ§ðÉy›¸õËóˆ¾,Ð8Ì?Ãä€Bü°Ak3¾ã=N¢ƒWð1^ó°Ÿ_¿¨m¦×¥užvÖÜsø\¯MhŽ®Iß«6Î\à!xªÇ³pgIIL/˶ImßÕ~½é#¿!ºŒ÷ñL O]«rv³Þ^-BvQ[×$9v¾iy56{Ñym` ÆŽ¨î:ûLÏdx>4ÜT>Ýú ˜W¾‚¡umÂs¼Þ†¬ùõC/÷‚Ød< [îB¤nv¨4G rýýOz¢Y Ò‘c¿7ôÏ îÁ¤c>â’.ñ𶡃ö7ùÀ¤Ì\<™ÛEÛˆd%ºÉr‘. …ÉÜo`ûîJ½Î¹Þé'0v…{é÷{çÉ»,aÍ’EË5¼êëM~óÈ›f&f‘1eº‚y x p?˜R¼}NZyZƒšsÒœÅ,'ži1gŽ%1œ1fÒD5_s3F¶Å«9÷›œ €Æ{Ÿ£vixÂDÕq“•2à}%þ~¹Ÿ $ÓÑÛ`z+.Â^ pt!ƒ•¿üÔM`ÊvøJ@%¸[ið6¨6À&×!l«c«=†»¥<§£LÜêФf ™ÞÁ J¾€é Î'ß‘‡ïœEFì¹ÍÓp2ž¾·zB¥ø$$uXpoáîAF÷eééªL#„/«f‚þæ¦Dy€•O¼|2åSHZy3iëÈDšæƒ@´ I£ÎétƒÇÒT€‰ü]ºÿE*¬Å/ɧ·EÄV` ÖŠã톯ë²^®ðžHoÞ³!^m¡H/õmÚ3ª–r*³Ÿ¬Ód^—QO”7t‚¾*ïBëI_™XÕž‹2ôúëu}»þ\_!ýÔ‰7#Âûß„óäK •,ÀkØÙ3ÌËúmí´öD‡¾Á9nb¤£yا@+·©}´A„µñ:ž2¡µn% ƒ'Sìþ„èO1‹bP‰sjé÷ØuµÁ°ÄÌ[çæµ¬ÕØÒ# -)0#µˆIyìKj—[E· bÒMWeÈaK,VÔþÝi·Ô@<-5§ºRµÁ«îŽº ûƒˆBS¬7d$uL†=š`ýDGS&}ïðäFÍô¹.‰ÒxõÛ‚¬F¦ƒ ÙÏY5‚úd¯ZØç°É§õíhÌZi{ˆáÜQä휣˜Ú;Á‡Ó ð:ÉmàÙùÁ“*œï± C°pE^Ö7a«4’Ù²˜š¦fK," •wƒ!¼;Çó6¢­’yæõ@2χ‘fêﴣš0§ûÏsú>&.4£ðPzÙé'rôQ «ê.Édz¼F¨óÊN–Åpkf×=+È&!Ã!œÙŠ,J[_ªmŽìdhC_Ñ`K~òA\éõ¢EÇ+±”f`»µÕ§+ÞÄ{™˜2ãáUO7lèdŽ‹‹ ÄdýèI‹µëÞÝ %㽃Ӣ’Ÿ‰»dJëÀ/Ÿ®)øÌ‰™Áp®å¾[>‚È6<¹m„a±fÐFÂ̼ÒK„yÆ6Ý+˜“ ¢ÓD[NFpL™wœ§6óø¦èj'Æ:¢o7xw´dA}…•ð¤š||ªoŽdjü0²!¦}p B{C„ÙtkçįoCžC,¡`»iÕQ'éÝ\oaûJVŠŸ† ä—ÄË.žy¥ˆtU`=( >†*ÜtêÉÈ›è½!®Ý ÷اI×N döWQ€öj{Äö¯HKúª¬sƒ>»y ×·BÉ×ÈšæìÐâ®sZ‡ª˜FE³hî$$Þö/ù»Hd·$b ¡ñ\ÇÀÌɺ )à ’£Í…=¤Îö!FšO %& %x#¡?²U¾à¡©É <Ê BéVqŽ@%”Ï,2ÅoÊÒ˜˜éx† ÛI ®–z&ãëÒZïcx̱xýg®—¼Aë|´èÀBh,“„È·ÉŽæ-6ÌM>Ü­êB²ö£œ¼Ÿ¸×]h_}º›)PÛèÒ-~Ž¢ƒú + ñ¾m†¹²,ÕU\MÒÎÓ:ǥإÏÉŸÅJ„_BLJCê 7ðí…=ˆi;£–Üç͸&º{ænæDzËü1õk‹{çæY)-¦”b,º» P)ü~±7HéC2b€—ñº ôéË 8Myý–î_.eׂhÓ6Kl³Ùf¡ùà6ŽîòÐìÏcy€w,ùÞ¸t-m¾®f}Y?îf¢OGÖ†<¤å•:ȰÉøÑvBš´ÔTœ†Ô¥oòò0 ~M¹ú<;¼˜Û¬—D¿ƒFœÙPÛI‹tz ˆc9žxs]X'Å0ÇULz|­›ÜÚ¼ñÂ9`ÏÃIìAЖ¤+pDÆ4ïTv£.¨ž ·#Ë ‡¶ñ^cæsÚÚ,zRl3Ü‹Zþ0mß@Xn’APO’[ªD¿~÷ ;ö ;®ZKª£>hfÅX‡ª+KÊ‚†"V51!†EõS%[ræ€Ç¿`T€/$„®½”†Š§…@DÇ‹5’+Û­²Aä]†Ç÷ ¯~ 5$IäiÿÀ W‹™~&8þý­Ÿý ùÄÕêendstream endobj 276 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1591 >> stream xœm”{l[ÕÇïï61å°\_‰(ÐP6ö`ÓFiAUŸ¤IÓ¦­èš¤q^Nœø™ø¿¯ý»¾~ä:öµØŽHbÚ„ í¥ˆmbhÕ´ftÒ´©ÚØÚ©HCçF·RwSMš&ísþ8Gúïù~¾¿ŽÉk0ÇÝà@»©g©]×ÛùýmÍ]Ýf]»aãæiáq\x¢FxRâ©uïúáZPÊ@)_yBa|ÙD=÷£·Àd8~T7ºK?4jèíî1QßÙ¾ý»Û¶Iû+TÇ(µ³‘ÚÛÞÙ¯·û{©öÁÓÔÞÆÔA½U:쥞ÕR]=í:-¥×R‡»Ú¨Ö–7š[¨ÝÍo¶6µlmü¿ÚþçðMÓmoK_ÿ1¬kÅžÃvc{±—±}Ø~ì>¬Nú%&Ç’8…_©±Ê–]—wÖ~¯Ö„ÞÝ|·f×ulÂ"ü Š ·dÂ'ènÃʡʾáƒá×’Ž•ÖBœã ÃhÖ:š!@Œq!.Ç$sqrêZùì»@ÌÇ-6O§_¯1¿d}Õ¯wƒ€Úœ›,Lñ…ÉŽ/¢çÓÓS±ñé–æÓã³…óÀAfÃ^‡ ÌDÿŒŸŸ-/‘›ïâ××0OUP,¡#V)þ Ñ·Øð„ͺƒdïŽæSÇÐF3Á0žøù¥(»ÒtÓó ÐKè!ô0ªÓH&ßMn$BXûËé›2á´dñœ1eï7茖ÜHef®2GvˆŸ5DS,¼äÞò>±ö ññ‘@ÌÇóLŒO’³Ÿ]¾´ Ä\Ò`p…Z³íΦ‘Mm‡@M뙘†eÓÉdÕÕá¤shÀ¬=rÅýþçHùRÎmøÉýIbª_ñÒ€a¤ó©Ÿï lAÒÓ­U"Úç&rÀÄ ˆÓ×^.ÿ4©)g‹¹å³?¼tn2¦9Oß¡˽qQZÈ]<×_=¾¿éDç[äÑ“ºa­óŸ¥bbQ©/ g¸#¢Ü«²E\)|RÐs³I:”!Á á]¤î\V…ìà o65›ÊÉÌ2úQ²úy𪚠AzŒvHÍà#ö\îúäæYôôøFzíEL|Í‚Ž %ŽìUÊq W†/œ8mÑ uËY>–š á…c‡ f‡K3ÓËyÇù_¢ûÉÍ–¢°+51†ŠŠjÝb=Y'?¬Wne=ÌE™(Ãfó)f\©„Åì4Ã0\"ưÊûþ »#þendstream endobj 277 0 obj << /Filter /FlateDecode /Length 5872 >> stream xœÕ=Y¯œG•Hóvá‰ÄCúnp®}Yš<ÁˆdHr!H$Ç×qYo™ƒÅò´?ÁX‰©¦}R6»¹S“QNÈÑZ¿‡ÖJm¶í`¾rÆooÁ|%&çÜöóÝ^ÃÙ¤iW+·Ã@)¬SÛ?ã:Îk­’«Vÿ$Ïùh·Œ9¾å;½e»œÿñLúÉ&6ç:;ÿÕ—Û;1i#”Ù~c')aðcÄBl/aÞÓÝNãŒpÛ烵ÞoïÀ÷ wá8Î-¶÷`®v€.Êï÷æßɤg0ðv0“ÕpÊïa%p[¶ý¦ÌFžÃË&!ìök„Þ9/¶/ʘoçe?è}Y>=C¨åÄ•èî5Ê}5d¯§®lì+ŠA‰‡Ù/VÔ‚J²‰ù¡fU\sѨï}ø+ˆ;|¥YƒÖF ¯&,u<¸(Ô‰Œ?Ýá`欃kß!Dnòà¿ow{;ð^nÿºó;üØ!ÞR¢ßaÍ»(¥@;X¤” c`*”2€L²æsÄEÔV1cÓüéN­"·"X~< ÿûû.“a‚s ‰cˆÔДsY«ã FÙ·˜†ŠÿëSH º¦01 kuw—¨ö½˜Ñg¢ƒz‡‘œ3¹ZŒ‚ÛÃÀ½œ àQòÄèY$T7ÿ‚ÞIžŒp4š"è Qù#eÁ¥¹†ýÆÖ5< hìqà™²& õ7ä°çÜyדgîÝ$‹„> *Ê8­U_ -÷ÅÛY3«t›8¨z¨É”¢}›˜\µðE¯Կƒu40¹Ñ hïØàdtåPn§$ÍÂE±Îa¿o3kß©ùy>I¬€ÁÂÞK|ÃÊ-¾-بº… *¾†'² %z$¥ÀKÀ`ÒGÁ‚•„k¬Ë7E°ZŽé°öS4} ¬|ß…ä‡T£–Ÿ û]{Þõåª8'/šT“pÑ÷à£*]3ðX`4ÞZ”;õ¹’ÞA£泯ØÉôn0ÕQ9•ÈÀYC¤\ÿŽ_BôŒŠF8àO-Ý<úa¹¢Ä+ÂÇ òqOîÕ{Æ÷¢ìºpÿb¼’ý Â© —®y|Ö(y|yÓWEX©£Ud" ô¦/(ó”ä8€#ýpá›ñYxf«”È“¼ƒBƒo{n/¨£QZ«Â÷JÁ8]Ü«¬½±]5¦ÒðHÂñ rCW…k4/C½}8"S,²Ý)l†9}IS,b·;’@ú¸'i+6=Û#TU!VÆÃ:ßPI‡šÈ¼¦X .6úª†Gt¦ùÛ—yPÌtµ\«ý¤Á°å-˜–{p€zL 8Î#‘Kÿ‘×^N3 ¾¼Î'ŘÛÈT„˜<¡Á»éŠ8µ­íÜ>U¢«GÅß­"ÏšŒJdàÉ’Q_ñhl¢Œ²(£À¥*ŒÂvpÓ!b:"krZóÍå3zàƒ‘'Ïä/V)1N¹1V¹—Owxj¢pB=óv–%†Åz™ƒÒ,fÈA9ÞÉA©e28x¡9Ö‘#O1ác™ËÓ‹¢ ñƒ‘6DÖÆ©ü Tqý+º€Oîlj ÐwÁß;:5•|ÓqjJ†ŸŽHM¥eO’ŽÊ#¦Ú—p¤€°äEo5,fKy'ç­À’ƒAÁ]¸hˆ‡â9weæ.¬d1iȪIcÐWZ"íU‰í•‘u6é:Á8„-¹^ ÍÞ|–ìÍ+ëÐñ[‹=¸bìóø˜4+•¤¾@ŽÛ€Y«ô¥ì?Lw»«›>3F{ Ѩ`ËÈãÊ©EåPCVÞ‚ò(Xc%q1P´$EsZ§OÔ_Š:2GÒ:+9z”€¹¢26XeñûÌÑKíCΰÎÑço+E¨cóÀž§ËÑ;£Þ’"ŒÚM€‹ÅëüÍÑk2ñ]4Þ­”‹.·ç’Þ(7¹(’±ÎwÒŽ a¨?.òSE‘Á2ßw«j$Œ¬/%µ¤ñHÚ—k6béŠOIÂ)J9.ƸŸ©c3&)¿r2{›“DïÍÞæ8÷¹>OmÆ2aør½ž€N9FŽ oN®t½CbB/£`X ö%ËE_%öðQ¥üIzkDKܼ: ÙV±sf2»”‘¹ai0Ú’ºÀÂQöòˆ8V5B+I:©®»$×õÕŽÚÅ}BÎ07™'šé1fÒ¶Ný¦2¿!îO`p»Bp%]þn™>7",2`Uþð›2ð@ÛÅiÍ[êL¸ªy u$…ãumÕl—ƒ«´Åš¡{›ÙÈlÛú†k]¥p£'•Î:J/IHá+Ù7«U#+±Û‡v©˜F ün²i*V?Èb—%¨×îÔÂê§²±ÈÖ¯Ô¥·®7%É^ T™Wüƒnº<-ÈÖ§Ûñ³†Ÿ=ç‚QQ/MVކ%Ïb+&“®ÌíMuR¯× u™ê¥þžÙœˆqµÿµÃߥ#ÜG@ë²6êjåƒf¯U¦ŒÑÀEës$›Pt5ÌW°+§ë“8±)-ÏnM TQ:s­î š&Ì‚ÊÀ½V0 íõ"zk•sÈ7pq0z³vb¤Ÿ!ÆoBkŽŒß²<Ëþ^rY:åÒ”½ŒÝw‹¥êR™û›: ²ÈçZ‰–*«›t®ðU:WW0·Ùk†ùfs€‹Îÿg™žÔ¨CEJ „ž@¬%ß(¬£d(þ#@a%ëæ¡±¼ c‘A‰3àžœË†YpkÞM‘6S\Ë„œ¹Šë`ÂBà<˜âÀüÍðcÊ>}$ÐKKW'Á<,"´sËÃUüãé±ÀÆ©ÜM4Q_«‚z1X0•Y2Ö‹Í\¸e˜t)*ÕB2Ö#ÑÕcð±Ub£Õf%v2°°Œc~x`a}Å¿u°4íˆ94Yò‹z¡Gw,ž0ãéð79¤î{R í¿?\Lª$ÿÁI0Ù¯Ew\IÈ_Èáb=Lö½ÎâµÈýŽäÈÙîù%©õ Ûô#Tôpë½bzð2%Ö=aé0ë“ùŠÒe“ŸÓ,&S¤F-v¤úJu½ÊZ/É€QÀ½ÆÉjHÈmíKÎõÀ8o\{kûÞ˜´­7c xc±'\å À¾qâÚ–%‰\…¡¶sÔ¤—á¼ýºa‰ë@Êû/µkôsP5±àÌ á° ç¢çŠÊÔ[áëù‹Z`…[/•³®‹k_Í&D=®$˜Óik´rf*Ùa1´½Öi…£òp¹jýNópXCǵŒˆ©–½"ƒ&ï@J–ëõ  ³ÊHtWÀì+ ãiš›Õ‚µ^½žùÀ†ìq7Ÿ+7òQ,pôn+5Ùqá+¬ÈúØÂ:Ò8¤ ”öIq‡RT°·ÿ×ÓÇ0)¨ µÙWJ`¡¡l­¡xˆSæP62¨(ØÎùÎñž«avMIÈ„Š«ë‰å­'D¼k³¯f_]OD¦9‚ëB 1rnSåz\ºuZª{mIoF¦V}#Qfo;FÙöPPW¨Á,ŽZÿ›‘®a®;ÜEê7Ÿ—»SØ5m¢"M©málÊt#VJgy^30oõ¼´þ4`ŽYNïÔ£Fˆ¯s;;]‡Í•Ø7m䜇Ê4Ö*bA/­—%ËÞ—‹œmK|SwkÕÝ Mµ‰,÷›ÚÐãuªÞ‚µrµðýzSC¤e.:ÿòr§Õ¤U*Xwù§{>^J0òãº%:5ÑùîtiÿÜBqeõÞofµýbçmïÍ—õÊu¯Ã)ýX½Ì—)’ U ÂŽ™vi(¹JZ,©¯,)0f(½P‡ág‡Á§¼ïºÃÐMíWƳ ijˆ,RÀøÆàÎÛn”r0U ¼0ëMªd®$ Ý6åz®™‘kô‹öõ¹p3wÙ&鸪päG&R3î—Ž:£\&Bì²9ý^ûBàÁg¬ŠzÚŒ}íôÙ‰‚¤'5~šîÖ)Á{WEÝ¢3ÖxðÌ–MùG“˜d«$Î׃U—İè pÓ3¼çl~D!‘þPº¶šÇÒÌCÒ¹ì®ÕýŽ’úúæ:˜Xk¾Mß“6á£ïU€æ"…ñ¿¡p[!X¾¶Z§}tu ýçë9@€&Ô;ÐùÛ£¨…Tx}íJ-aÃïø`vr]ÌÊíO[Ìô¶âÀ‡ôzɮݭͻͻ!ÒõÊ]r‘¡¦ƒÔ÷jrm{+jäV€$M©]#-Yëu}J$‘³knÜh%®iÂV!ÐZâýF—œYÑ .ß/9¬Ráð<æî¤°ôë–)[vÏ0„©/]g†(À®ÞÑ^:Q44ZàQTzî¯áª>¦íp¬àÖÏ;‰ÅÈ ºîqŽ7dn¬ã4¾R }c5 ;üu€ ~zæ pð aT@Cƒo8Ÿ n³¹11ðc¼nÎ|ï«9’ñnj¶å)ÇXךxÔ¬a+Z—r`b,åt—~Æ*×ö!^µÝ-Z\“á<%JÌéÑÑ\Ôƒ……óeÚ¥^0ú›5ã={²QÖ„ª ÛìQ_s÷Ðá4ŽcVŸÔ¼yûìúí7ÏŸ¾¸wvý‹ ?»þü¿›þüqû÷›ݺ½ùtøÜfc¯â`o® žK|q3F×Ê‹³]»Ò¹'š~Ê6ºMdm¼Ne /èkµË–Y 2>#8à ˆ¥z"d”G…ðŸÐvà¼À!µÔaÞj6Q¹ÅATâ>ìI†ÀT¢0UŽø%?mÄß&uêpWÁ4‹n–'òI.Pwt®üžZVÚ¯ÕXsp}P€Í¦vêJ„}+ðöE×b }]‰Ç뻢+ÃåQt•@Ù=Ù™K:IÚa” †=–vÕ¾?Á ¿÷O¸Q'ëëeS àÄž,:³ë¢‘©^1¼Çl²7n¾êã$CRÙ«ƒaFåq‘ÔãA±“‘¸GÛÝ€þ£Òë¯ïm¬öo¼jÎ2ìl\-ä¼™A”Fž•;èVïÐcvÜÕÖ¨ÅAç:BþžØ­Š>ñ|’cÈÛžúÂÆÎ$9õ±nUx¬NpãðŠÇÛt«, >0ÇúUW%íq;±_Udî_¥À¥2Ž“iöY¾®êR©…;ub-ö·EbSÿ „,UÉ1^[BEþöòoêµå|ñÀkSJ£F8fxm«‚¨¤{÷N['Kó‰< —Ô»mŒÖ—¢ ›;¥ÃæÂ¥!=ºÿB¶fÅÄ'ÒD²H÷è³qo’Ÿ‚IT¥§3“p&0øç¡§&š|Ž3ÆLâQ¯7F&ϲM´¥Ü|S©V³ø4Ò~R¡oYÃ)¹­5à"1¼óUÝPÍÇž+ì4ô˜§$u?>Uà¥v–~yߊ³«1-+&É”óø ÖR­ w?øD³bÞºÐà’ç;/§KÞƒŠÝíXÞ£kaŠ7OÂ&c-&°€ (+d\TnxòLrlàäüxR¹BI-à‘3ÝÝ.TìÀRÆ„§2žíÀ°z.ÚåëÙðhRþÔàËà;ûžx^›@Ö;XÙš ¤G„µÁgà:¿££íTjióÖ‰W´’Cå÷‹2éECå°›lxª@·W ‹o R*︢¤|T¾--hx¹Ã×Äy™c¥Û~¼C_ÊÆÄùLI4¯^Up9¿Û!¿ÊjröBÀËhK¼céýVˆõm¬É±9ž¸>¼¥ƒTd…:໡!ü¿ £]°jÊ)¶ãç¨ "b]o“N écÕñ>? "ë!`!€èfüYú-a©î™P’ 7w_¬#"|ˆ*‰/ç7X?Þªê8ìEt’Ëž}_s2f`§‰or/½’¤UÃâiþø¬Q¼©PNß¡SÏÃíùÑÿšÕÂÈ·Æ×À´ô]ò¨£ˆ HîgT3QY£ {øf1}ŠoyÂ𠛘]š¥<´6KI!J°ñÀÕ¡·)Cw ¶w̃>}R–z1`V‚#Z 3éKL›äIS- !2†Hšã?ñøéÙÿä%ùendstream endobj 278 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3351 >> stream xœ}W TTW¶}E ï!ˆJùļâ§í8!ŠÄ8ÅVœ”!jIf(æ± €b.8ÔC@¡ Å‚AÑ(eµ1fðû%­‡8Ûê¿/î‹æ÷ïþ½Ö_w­»Ö½w½{ÎÝgŸ³ÏQ3J$YoÞâí<®{ph’2 ~l÷Á^$L3ÞæGêFr¤`)KÉÀ4«XktlJš€¼&R‘h{X\âê˜XU|xhX¢Ã‚ùó]æÎ%ó‡Ý*‡UNŸFƤ$D†;D9|â´ÅÉáÓ˜²î03&ÚawpX€2Ä!&ÄÁ3x‡ƒ—ÇZw‡õîn^[=f9ý›cÿØØNQ›ªœå=Çg¾ó—~´hñ’¥Ë~ﻦ,©?P“(kJNM¦Xj eCÙRvÔTÊžšFɨLŠ£²(sJ#*¦JB…PÏE½fkÍ:Äñ-ÉR‰·¤M2$]/-“™ËÈ^ÓÌf¦Ë|™ù÷ã&Œ‹°XedÑnñÜòSK¿ñQ›• Õ…ùÑ¡atxX,D¢MžñÇ“fcž„Ù—s9ÿü ’s‹+X¯$¿$_¿èà~úØñ½pÚá 4õ¯ºf*ZÚ.~ûÃ Û Mu:äCNŽ:¶˜‘k Ž.²{¨Æ 13¡³bRöXFõC6ò`¡‰¼fmnù)…ð’–×¾C󛊼ÏXIG·û7{ƒÇ½? ³Xþd&’]>~¤Õ¨ØH@¬TP¤IcäǼ£|“üí}!´9¡3®[ûtC‡n°å¸ÞÔÙ6G¡Gmò­Jƒ"P‘ðŠNÅQ#ŠÒ£Uoi”3$\[™«+È)ÊÏ-â¦;C6ì„ÀÉQ_´3¨UfàAÿÔë1¡3o:™§¾šhdu‰ë‘‹³eehÖOÆ#Àü¥Û)WñîFä~þxcm#‚ƬFkäò=a#§5‚J˜ÉÖeµ¥øåïàäXÓÀ'Ù;­[÷?C°1Y‘©VE@(«ƒM)ni‘þȬ~ꉬи—ý7Žfôï8Ä}vh| ñ„Ùy%‘¥É&h…Rh¬k8Ó­­æÁÕ«?v¤wÄ7*Ú´ï9ŒÜFP|±¦°@YLZuVme}y#‡×`Š…ØâHu|nVbL 0³ƃ%­5F…ü²f_Eã¡.û;0#QÌF-X¯5;g}°®ÿ̉Ύ^ž» »$°VÄŽvD4b$&î@S~KáWZ~õŸ–Ô€¬ŠÛí¹®`9,ƒ•¥ÎÝ+¾Xz=å ÀúÞ‡­W÷Ü€ÿdïca%¬×lR;ºGùBl5ªiá>\€Ë0T1P,¾ßk„6RÕϬô€°™!–Á$t˜.œc¿ ‹¦˜"igmU‡B8O7.‘Û²É"Ç2¾Üsº™­¡CµYÎ\¤Rv”¿]dÜ£Ú·7ýøøG´îÕs“uß«'¯àžüà…V±ñ²‚¨<¿lu^îFH")¼Aöú/h>âà™’9ßÄVXê:oGðuG÷u7«šÃr‹ XË5^è8̽/–.QȯÀ²{nÁž8ÂV£!ñM`Z6†Ý¡kˆAÓѸ痌"ätŸ¼ù¾XðA+X¸µùÆïô·žÿ† tËåÜœV¸­ˆ0¤¶˜ -}»@Í™N U·Ó}6É9«h[œŸ"Ê;\_œ[œP”¹ÅyÅÍhÊ¡Žë•ÝêX? O[í翲îB˜âhÉL{lCtBd†ßü‘YÝ»÷‚{‹*šj’¬g®)ÓÖ4Cð& –¥çh!+—ãáR%ªÿ-Ò¸rÉJY7zÈ8ÝZÆ”L»Uµ+îÐkL,ÖÊV0—¾}+2{2gí4 ›áµOb%øë¾§É?ô±?ÛÈ'O$˜û°ÈbÉ3Lyû§‡…rh;-gôù my­öhÂ7÷ªË´{òrs @ Ú”œÏS6r`F‚Où.}._@Ö3³!7]OÑ*ÈÝ_®ãËJ¹ªÚŽÿ‚Ó`ô©PÕ†è‚Ha ·„€„ 8XîgÒ.0ò•+‹y¾¸Ê¾­ÎØÔ”fŒÈËóQÈõ¶ ¯ÎFļxDäøí[„÷‡ïu­{î"×»1wmä£$jþDW<Ââõ!;¼S¸&•¡‰íýM=ùáN¾Ê&µ¡öðÞcƒ~_.Æ“±=‘ƒ8Ü€˜5ò³Hüðd«p.aÁv¦…F¹ù$Âfˆ̯Q„›p€¹Ñúìní Øbâ„Àø|ŒºÅÉÂí[I´Öâ¨FlY\(ÃVPT]XÏÄË"ðn©QÆ×îýºz_yÙ ¨&Ú(üÀÛG`üÞ.|Oœ€ã•\? gù³¥ûo÷^BöÈÝvï>"±zæí‹G&E=}ú>¤ícèÇ,´kŽ÷¤êÓ+7u}Ûqê4 1÷|5ÆRW'•ηgW•ÕoLÛ½Ðf2ÿñbÃ+$}8üßÜô‚÷ o·0<ñ¦­ÏáÂ#PÇ\¼Òsíúåí«9ý(˺®Ü¾dáêKÃç[/ÿé$‡&,?”z2 >µ{ëGûýŸ¿6Â}älìÃ_M$ø?;CœºÅ"¦ÿ¸Àós•¯?·Û71V2xÒŸg!ÉÅîžó\$3ç³-ÍKw$–ë­h©3%Ô$¥GåmØý'ÄUš†"óÃg»pDgÒÁ”_«: ƪÖI}ÇÁ¾Îê£pÚÂë|9Cí‹,Ýì3õ7Ñxb^‹n¿#OÁŠmIhŠŽNHˆŽnJhiijjáð É¿íýVbW&#¯ÿÿcžVKÑw^aªØ¸¸ºØö=| på%UºŠrˆå›\órß*GÞžÂ=UßÞD ¹ZìêEy6€ñ†;ës—._ÑÒKÈÝh#?}fdãH4[•³W“]——Ïí\¿!v¬…-FÏÓ©uÉ5¤|®X³›ãñß.ýþúW?#É~8™|Zq%¤¯ ~€~SYiI±í¨×_s2!ÀNS™SY©+­ªà~$¿l¯Ž'-Úð( ½õΚÿs7FºLm_½=ec5ZŠ–]©ÖŸéw}ŸÜFgüÓGó „#Éh Q¸„ƒ,vDaGüQuR )0%}'„È® 9u‰ÎÌ“Ágïdpô‘ì7Ù«Q¿ÈjÆd&!gjnô™ú$Qx${'ÄØÙãüq‘°pd"›^#…`o¿ÄøšÊ4.¶VUžÁš´Ã£Vm _ö6ÕÙuÜÁôyuÐ õ†þsÌ¿´OIGðÎc]Zž„¬#Ñ6@s­êD«Ð4©z,åx¦¼ÏÏv^å[¹Ø, ‹a,¯ÂãÏbé žpû“J`ÊJùò·îÝ6‰„ÕÂmÖ„ÿª$=€ÙµÅ¤{Aòan2²6‰Î=C£¥ÏÄ#sÑ/,¼Ä²{ØqsŽ>ûrm&Y¨vì&à ByFÙF?„Ì0…çªæÁL˜ŽÄ Ð,5ãA‡C†#¡”µó÷IoÚ  ÔûÚª*ÎÑhéSÀs¿À›Xü~½ê\‚Ó•¤rÎ&?:² nj> stream xœcd`ab`dd÷ñõM,É®ÌMÊÏ)6Ó JM/ÍI,I©üfü!ÃôC–¹»ûçÍ©¬Ý<ÌÝ<,~Ø }/üžÏÿ=[€…‘1<·ºÝ9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õ°» U4±¸$µ(³8;(ÆÀÀÀÄÀÌÀ°Œ±‹™‘‘Eçè÷5|ÿ™}aø^²ŸñçÍï}¢K‹ºkåþò±Õu.éž)ÿ“mæ’î¥ò|ÿ™ê1|ßt–ùÇÊï†¢Ý ê&4Nø­wBâ»æñÙ§Oêž/¹°bz]KgWs½ÜoÙßU{g°Î©™QYU]WÕÑÛÐÝ.7ó·Âo•§õ“;{Zº%ë*êK˦·Íj•ÿ®åÿ[Ó¿ºµ¾¥»\²t^ýŒI½=“§Ë}WyÚêרÅZ5»nÎÜY3æt7=ëš ×zò»¨Õ´–9 “»%gÌ›¾Pž¯qêæ ?…–oZȶŸk?·s¸ˆ=g7w÷ê ==3zz&L˜ÐÏÃÓ½º¿§gfïì¾ÉÓûxxµÁ\endstream endobj 280 0 obj << /Filter /FlateDecode /Length 4790 >> stream xœåÙŽ\G5ÊãÀ å ¡æ‰n ¯k_b!'&q”„$ )ÉöØãرÇKpøvΩåÖ©ºuowÛ=– ²ìw×rêì[Õ“øŠáŸôóöÓ+_ÚÕù³¶:?yrÂ׫ôãöÃÕµSÀñ“Á3ÏW§wOâL¾òle­œY><ùjýÞf+…WëSøuÐÚI½þë†Þîè‡Æ_•ðÆ¬¿ÜlÙ`³Ò®ol¶|°Þ2‹åiŸÀX‰ÿ©¦}V6»¶QƒQNȹµ>€ÖJmÖn`¾rƯ¯Ã|%çÜú/›­†³I+Ò®V®?…RX§ÖŸã:Îk­’«Vÿ,Ïùp³Œ9¾æ ÿqúñ‰ôƒ7L¬N?99ýíWÏp>ðgýÍF ÚeÖ çx<½¾‰g‡Ï¼X?„Õ)­VdÆ¿ñÀJ3¯Üú;ÙZï×ÏË2O7[À3­ï„aO¿þ×Fx@#ã𡜲’5Ïú{aΙU;.×ðÅ£3d¿{e?ÜDš­ä\e›»xçàd¸.*Ù¤–ëÛ<ÁâÞ ¨ÿÆ8˜-D†ª@§<š;ÃÝ€4¥a¤Ñ•/…¥Ü-´î>=Žþú)Æi­âP_ õƒÞ©<ü uƒ’|Í6½¥¹<÷>7¬.¤õº·ºÌã$l$äïlË úàÔÎ)NI„ˆTP6"ØxëåâË$ÂZcé´›0mÄ£&,„_<‹"ÊA‘ŒŠSÎjÞ^%;\„cm%[m? )ÉÊL^€ÈÍ,› ‡CD—Aã1Òç¿GNƒ-•ZO©ðh7\ãÛqLùíÅÆYøUJºðœ”09DÖL_ßÉR/Ѝe~à 4ï¢p8@ÝÌÊ  ¢$‹ÍË Á[‘§"‚dí³¾¼vµì`«A¥¾À3¡œÀfH~aao‘™¸ÑY QŽ‚›²÷Íú0”&y«.WAÈ¢ò`#Ãät´ O‘uå`´ÔŒ,h´þ˜}TÀnRaü6ÿ‚4` +u%9Zb›°„E¡mA¤%òI5nÉM@hÞ’g${±…x‰[¤ _QèJ˸lw±[e6«qN½+a«wâyØ_jÂâ!“€Üê,XËÖ&,¨)ј¨žÈ_l$ú mêèÜ,ôƒ¥2ʇɱ$ì=¥S*Â{I8@‰AM(°g4PÜKî{æÌ:ÆkiAdÓhOGƒæ‘oÇu•SªkÕ¿¬ý;™4H$¡žíbÊ×kÜOZÕ;†*C±¡¢Ö.ª Ö{|è¤àT@'Þ7÷àCsµÅ¦oÀí8:_oÐÔàøõïê™[Åù`s §Ì*`„Æ×Î ¸¢|䤷–i‹üÎlë ycexS{B<¢ìºíÁ¢€ë,o·°ÔüÐÀRüý¢´ˆ¬ï˶ev`ÎÚýØAƒ¥ öøg—lpþÆñ?`pCcMoŸÌF"¡fç÷'€XG´nÉЯÖ?Åå÷tÂr€ýÙ®†½Ý`_Ê›ÝÆÀÍ&¾&Sš jïv¿ Ö6¢¦e¡ŠV- ¡†ÜÍBT˜3qçݱ•ŠŒ\$攊8åô‰…¿r.*µŽš]qÔQk×c@]Tü¾ 9 ÁÓIåÕ8­‰>Ѹþx²h¨8Í+L\»ä—‰ž—:ªSœÃ&ù´f7|ˆÙJÝ]ùWàþ*];ÅyñÇ3PþžìH!*aq¶¡åÛ³èlZíyt6Cޤq6oÅ%8Ÿ¸×SW*øŸgµ«LÅ{­¯‚Êü¬¸ÒÅÕêzUãµ{2ä\ÿiƒ|ax›Ý˜O w gÀ€{(‚Øg0œü’úy ëçø©Ž :.¢—ØGÐÆ(Þ:NÍ"Ô;BͽƒT†Ocú*P!‹Ü4àb0FO£È»™÷ ŸM¢¸ àœq`N?%â&‡½Š£®ÈTd(Gë}Ù&‚€*Ê«ó•R{_ïÑÌ^Ì…ðZå ›÷sï‡vsY%ºc]Æ¿¨ÍW$ L‰V¿â<øÌ{ßn•ò¾@7¤‰Dû8› T"ZœÂ=}ÖµG•"ÉäÓQs”å~U&Üî°\¿ÈUª92zQ粓†Ó½Wۤϣv H@[ÞM"vñ˜Ÿ‘VzpÁi̬ ø³®¶®".Åe"©<N¦Ùv6îT,XMkQé·îÝ”¼2rÍ­V>kU_>ûadÚÑ«èW¨ˆwV}/öÊœItTQ÷[ô)Áw0Fuá:HýÔˆGª6ž.ˆð³$‚”d;®,³t"Xæ&†¼9eøåìS•‡’žÁ%þȱÃ4ø?BûÇÀ¿¼‹û@7öéºEdä3Ì邞“>É‹k²£Ñ ìÈM£J^ÁèÆŒäÔŒð>Ç 9#߉b¯“PªÆ|(Sê=ª”Ý\¶,¥©ÏðàÆ9Í»¥ E&Ý6Ä€-Ã’–èö°`úT—,?9÷ÍIÓOÏøÙÍ9–IoR'Ik;HìÑšÉÖ×À‚~¢ÙúÅŒàƒLi­ñB]¿ÞIÊ˼TŽ$ûQsðèÎ!¾ojäyË Š6fn¤ž‰›µ}]DÓXåØbeâîP츋ý’'0€õƇÿé–åX¬°©P—Ëc§ÕEnV˜ße<ÕRx¬åq,†çZ‡9By“ů-:™°|5eGuQ6ì³Ï1°€¬ÍŽ!vÃMŽÀM41ïÎþj%Ö!vœÅ[ ^ëi9ð°†°ÄMÏ]Wèé©Aw˜®©cN+´ý–‹>åº5;R5¯t¾NŠŒ¬Ø½‹ŒÇ‹…úç–œ/ÉÖ ’×YmÝD¨Ë>°M†_ Œj‰ãÞ"ý ßñh¼¾Jo¢O^‹„¼tØ· ö‡nwç×ÐÍ.&)eÍ }£qçI´R›Ô ºl£wÈâlc[TÁ¹Xm±?Åä.÷ø™þˆº’³…ýÀ Ó1 SZ.– U±“Õ'õ`œ¹Ð€Ò¦SSÖÓÚL mGÕy’aË ¸„Ž®" R.h.‡”ýº½Â‡7“¤‹0©™¤_ç“;zL,-Õ?jS…ãmƒåÎîÇ¥ ¢Ný`³9­v¤6”¥ë7KEY’Å]h b!ÈÍýÓ½l\“;Je‰xME¶ùÓûc(>ÍíÌ4¹œ•n’^ÎìA¤Þ¸¹Â%-id.º³kûw“ŽhšivUîc"el„'Q1‘úTèÛÑ+ïôSa ÉaúðêÔðõxKÅã Él5ÉÀù²}Nœ»Ôy¥BSÙ} Š>ͧµ…2äýB¸³ê¼YóíÐ,—Ù[r`ÆkézÁ«$‰xÅ«'‘[Õ GvÝqí¯¹ÿEj|ç›>We¨TFu´z7r¦£ö’ÂhZH"²ú§`+¼D~×»‘õBûõ˜2H¨z¼A½ª¬1ý\AtM–3#­·‡VShhR¡ª›i²›$}Ûw†PöHƒöýå~ñ/ðŒRy×u¯}QMþ˜åk.Ö{šì‡BO…ÉUÌêp$ÑõÓ“/NžÀê>à€­¶!·ä9¦VÒ`ÝÂáèk7N®ÜøtõÝÓçwN®ümÅO®|„ÿ\ûü}øqãƒÕ['×o¬¾˜½ÝdÁÓýhØgÐb%µl¼"]eÁ+nˆB3=êäÑŒ‰#«xd ͹K)lÉWxŸCÛ0ÀƒŒSþòSà7%þ‘–îÂ0Õ“Zœ ¾ ˆÔV2߃-ß&(Táƒd Ô"oÀjnÒòt&,÷ŠB¡A[íÑ @—ý˱¶äs~¾¯¢ûË7L½úÁ .ybð.EçÑltò¹Z¿j†³@jêg8' ÔæÔ4/=íöo¯ËHŠÓWâw`@ùª¹ú¤hoí¡H¦E¤d&5§L¼´qL &º ö@Å€L VEvÈ5ëW»®ù¤8èášO`$³'#!yf¤—‘.¸¯-™$'zö=çü&Ñ–c»)àUcoW¯tö7ÜeÍvb_‚a³ç¥»›AO]ˆÚ €2˜[ÉâÏ1)Æm |…Dâ7`­"Ãàÿÿÿ*VÀ3ïüü mw¼çX@Å6\þ­K\è©°Ê%ÁA!pá*Ÿ"Nî¬7cÓ-FÀ0ÁùyŽo,fS@A"/«œÕ¸kX7’éFm÷L-»Ç»ŸÛjN¾³ëg®ìr10we·á™*5y\t/ç5l׺†¾&™Š|Q͙ܞ0+J4±«‘G®B êñdsÆ8rt?‰hþøM#u°ÒؾÏJ|ÜCíjé_î›®¬®þ?L—Àäƒ ©¶âíâÖ>2Ôo˜X‚,«^6³c­°HÞ9Þ#öCÕ )± É·>È‚Dtu,Hè(6ä°RÒ%ÚLbDÊÛ¯nDöEBaîrŸäH s׈ìwÀ%;¢3àR_º}p›c’Ùç<º†dÝ0$¿ÎÒYyüžÖdŽ»š.=ˆk"ÆÌáÖdö~Öd7h=kR®Qݼ x.¼ß„ ïÁÿ' rìRÇŽIó¯;Â+Â÷ ¯J?/;¼ÒÀng|•4pL1s«Ô\lE÷qÐmá¼[Ÿ^Y]Èé²¥Ì^ûK¦GDF¨ww)5Píþë»§ƒ Û¥øn,eçEðá¶BÅvóžŠÔªãz*=&ÉçºKÌKä=²"lÍOõžÏîà…ºe4Ý+eë0¦Vù¤dµCr[ðn)ÉŠù.Ê)]xš)Áçå0'l Ÿ‘BÌ!/[ÎuáV|ãßô»ä_àFSwÓpPeR„f66V|ºÁz¤WÀ¬Pø~Ýw´°ŒOÆjéB× eB@`t{¸Æ£Cϸæ±ZjÒŒËðªfžŠP«Â³Œâ~‚;WmøˆÅO¥ïaÀy`‡p;ß–õÜâë…0À{|mð›òë| L6+dhšÊë´d±°…´"<Í ¸4^ã3#ù`.²Õm\ {XÍ¥»’õðI]ìÀÐX˜‡XQ0¦)¦É²Z|×wŒ~ˆ¯`Æj}J†«d0 ~-¨‚üƒf (•¹ë<,K-ø©Ûã«3áA`ce¨­sldPæ¶ÂYKU'XoQ¬%°• ¢º·¢åБOë¢os«&´É`_’$|Œ¨œ7Û"¸F ³ãC.2ý\Ñß±ÐÖ½ŠúªÝ.6v«;±£]×NÇÈÍô|›S:Cy®¡¹E=Ûë´ÿÓØ¡ÁÐa™_:7ðB iÎhîþ“‡P#U«—|‹gŸ/Õ¦»yÝÛ9·{š®–í¹z{æ²iF;>zhëW9ÑJûäë`£OŸµënGoCÏO~ 6ýÇÒ´Òyco‘3ºóòÛ¼>Þ7{7€Å÷Ÿ÷(4Òž°_'7W³L 9i³v-SGí¼–Úô1ÆI;ŽÔ»aÛù<=™ƒzcÔ¼“;¢ô ¯âñ%0‚arÃÒþ ¹ ×m8ë=#•—U‘™1„¦oWº*r »ûD½ð^8¾¥ÿÅÉëL©endstream endobj 281 0 obj << /Filter /FlateDecode /Length 5975 >> stream xœí]I³Çqöùý údÏ8<ÍÚ9aÑ¢(($YáP„) GpI€¤©ƒ¹þ¾¬ªîªž¼b±„p0@LçdeåžYË4¾šÔ¬'Åÿêß×7Wïü.NŸ<½RÓ'W_]iùrª]ßLï>‚&dÎ*ëéáÇWe¤ž²šb s ÓÛ«?9ž¬I³Òîðgï“õ‡ÿ8ê9§ Süw~t&‡pøÝñ¤æR´ñðàxÒsÌQ%kÃ~ \ˇaد×ÉÞ=º9¸dì%Z?BŒÖ‡ÃûGŒw)äÃ{ïÌœR:|p‚6ª°Ÿ!j¤a¡^#d²‹´_P*V29@ðìmuCðœéJë[ ¸YrYÜÐ* "²U:¤ßÁ+LOz¨PáDäÐBT+/ÄfVÃÂŒŸÅš„ÀžŒï#¥'$8‰é’œ„„Ch(Á1$â0Q òh¬Ä„sÅS-¼YBÂ-z²¦èa¦JT!I†„·I×i 3Õì-ˆ0†êñÖ‰m Aj‚OÀ©CñK|Ðdí„@(ÈDNiNé¡ÁÊ=¹BLx“}Õ‹ƒ㓇É)!A1&<Ùô"¤KŠ1l«"(§’_Š‘¼õ&4{¤ G:0V‘^,(¦¡ 2 sJ™‰ƒA ¤’Q e¢£RCˤL-éÎÓ—Áw‰tà!b…N}*q<rdLbÉ YS SÉDè6@<"½xW ¦@4MÅQÂ_ÌbI¾2w*HQPãÊUˆÌ”ÀºN„pŠNC @â ¡d$N·$ù'WN#£„òJ 굇ÿ9¦P3Á±\ù_-&Ï+éз¦ºzŽ€parHëdQÕ_~Nì¼`óÄ!:fѰ¡Áþéã/ž~öì{Ž‘Ò÷Ûû½''ç§?‚êGc œºŠg‘Nà]ÅsÈÔ<†® žO ¤V¼€0OKÁ‹H'Þõ/%WÌ´T¼LIMWñcI>KÉÓȇ: 5¾\ F«yÈÕ}ÁCà3ÕuÏÂ/B_ò²k6}ÉsÔW<‡‰ÓPñØö}Á# õõιVŽ[½s6ÿ]êûRëÍ5[½³ÿ<Ô;d%^W𘎠™Vð$i¸¾à|“‡‚§së1ZÁÓ`†¾ài­Jä.5Oa´ï‹žBE(¦¬U'USÖªçáéE[µè¡Zå’©[Õó â–b[«ž— }Õc+%ºU½BµT=ô 5yײ©œ¡ì¸­î«^p¹ÕÁVø–°>U5±>äÚBx-|E̵îÙ\̰Ô=:׺‡>·f½¥îÁ}ÒP÷y¨{P³éËžóµ§XÊúï*P«{œH·Ô=:yIÁ­î9VéÐÕ=$ÄÊ~+|w©/|NK)ë š¤y¨{l:kµ¬u¥[‡¾îYT“Ø—=Ba¦•=‹p-e¥–= U¹¡ì!¥W¹[Ù³¹´hKÕC(>¾T=ËBÝ= w­ê¡˜T«µªGˆ´ÖKÕ#D»®ê1•æ¡êR X«z„)[ÕH_õ(¥¼U=ÉÑ©¯z5kw%l|ðü …šc†úÄþ(ÃÝ5'—5烛/o¿ÆR†ÊÁž=úâú±¬¼`y¥2 ËèÆÒtŠlP¡Mv™ßˆ…žç¬ßnŸ>{ ¢ŠlaŸa†e1wgÍEp]ª_¥Þ¬Š(êá gèÐpj®^qÀ‚³¤š†³Vœ0 ÎXqšÉœ°àlÄèåZp^Ⱦ†%^É4ƒˆÃ$°DBÄx#ŸÜò),ŸÒŠŠ°­µ ë’¹§.Ê=CQ!Ìc¿Õp"Ô¥B‡SÊ•bt.8 Ðã”ÙW”•›{«LCUQZhHï$(Š>®à pn#¾¯Ï æ b_´iÛ8úî^EßøÜ,ƒN7=ÖÍ é±6åûf…ôX›žãfôX›Ú{³zJ›~³B^x¾msw³@®6åç¦[ˆõ3Ž=ÔÍhmJÃM¿DZ°PùLÙ$jmõé°°,wAl²noÊöÈö¡ËŽÒdª"Në®Ù£HÆöºŠa`{]â¶G´?ÈßËX´»+]>·ÎY¾k µ¿×Wÿ­ ÀHá.Û) V4H؈ÐËÜ“ Äh‘Ôž1#RýŒØ\1Ð Ús™ƒ#m£…¸•‚Ï\%¯s´gŽ(\¬ËFa”CŒóÖÊÆÜ•ý6w8µÂYJh§=žµ¬.—-ºúŒy“ÇrÐvNÊs›ƒ#¹†œU àT÷s´gŽ(\¬ïFa”CìöÖÊ&¹6n³{ƒ ¦QŠ 7’=s†•ÍŸµ”çk®‹Ñ(Ç#€žÂò\æàˆ KsBºi¸×ÏQŸ1¢q±`T.…b··V6Öwnú õ½È—E³ïͱ—Ž¥(×Àçn{^ &£íYÇ/…>˜¬€@ž°JiÃYs;úõ‘ô+ Báo?ðOs½u"ÑJÚŽÖ Á?y BWÕ‘kk7­=Yy&—<ðÒEV ës™ƒ#„;º¼Q°yœ£sDå¢a,|W 9$ÞÞZÙ¸›Å:îfUˆìnÛÉ)f]‘MühÙíªÏס#ë犡üH¡>×98¢A¢¦/.˜Ñû9ê3GT.ŒÆw£0ÊA»½½²Õ; ûwÓ…;‡ÎúåxàgG‹u{2éðoä…h¬>|²ÞÓûæx‚³ï_}’+}‡ÇžxÈ9×ßþ{rä»q¡ûôÍz¡ð)1µÁ‡g`5ÆœÁɉå™îðèèWøg [€¿ —l’<~ŒG¹k¹âºNC‘PµT6•Ên¡ëpø’ßÏ)#Ä:jÊœâõÑÁØFY¡2hç^¢´‘«VV:ŸTr0ÎãeŽ=5í 2(¬‰‚ªb¦Šx¡3/2Ú˜àŽö‚Æhr¹µXøO«–„µAµ Ž!ÊÜ'<o¬#r£U8u±óvÕOp ‰<á<ÈpQ÷(·ø(Zãá£žÏÆÈ“Fbæ-W£3V”ád-]¦ÛeŠ,í²mÖ?qÆÍºŸuúÿt3wD4[×Yë»ÌËŸÚ ~¾Rêe÷ûŽ“Õ=¾8²¹Óªs~à9'˜¢êoF²–VŠgbÇ“ÕÞ»V‰þ‹:vÞ(Ø}ðÍÞE§ê’˾dìQ›Œë­OTÅt™†Î`Ñ#ÁªC¯ü`ª€¶*¹Ã÷TœÈ¶¶9Eß9ý§g¦UÙ5+¡•™×\Üœ´Ð|1{}2 ýèˆÅiŽI '¼Yäö .v¡J[ݽˆ8ºû™/1Œ^Ø×¼àk9ÌCvÚ虚.¿±õ^Z[gêxS?¿È™_õV_qî(*+b—£:ß½\pœìø])Kæ=y´y•ó»£aWºå¦!’úÓÎdD»1š7SXÅúkû㚢=oªTÞ¨‘£ ¹×¥ ì67û¶ å=÷úDÌ·å»óð5wJþöˆîǛຯ+ÿtzSEAõ¹^¾ß„ùèÑ4u4®»Â¾µæf€ø}U„ø½Ïé9~ßùÇÆ!¿8pt~y‰ö,§‚Ã+¦õ"&H/Â_:(~§îðÄGK–Ø8ðÌ줫ê~2F—ñ¥ýx^&ÁZNrZ0·}¯@ÉBɤg:£=/Wl:”ýºÔt!C4ÊoCDcgÝTëHVwßm«z¦àÙN¥Kÿjrß¿òN:° -M.òæØ£„Ù ÃÅJs‹P‡ÿ.ˆf@„+&4ÍÎM§÷ÃÃß Vk_;è0Ñ&JË(îšä'væI©ê³cŒ×:ÙÊõ0ïæèÿ2¶;[xMaÚûˆyÆ^T!?Š`î¡ nÅÐXø²ãøÑÅÉ!§ê»DæÏWÞ¬¼úÈ;£ÑésÉ—˽̈Wak\UñÒ-ÔY;oG.4ÓK·ð½èÉØ˜}i x‡±¤HçZkÐèè°“<¾[Ó×\¶t-ëb¢Tù°†×åÜNãi-3úyßÉÜÚ÷œ%ƒv*b}úC{Oküë[÷™ûöžK&Ûo9S$ÐÔ¥Ëb0 há—¿¼zøO\I:Õ¥5äïŠl¼°˜¾¸´ä=ô¼´¶ÜÜHá\7TøÕ mÉ–Öîåu3hdÄš?Wªå Å“wçØÇ“üÞñîq¤œ÷s‰V%T†Ñ8”Þƒ—)÷ܲfÞf“mrö°ï‚ü‡ã–î67™ýÐ ±þnsÕñZ×XÝYÑhùêðô v¬¶û9èJìû.æþ™ëœâ|¬Ö¹þqø*GóÖnc…gðDÀJ Eœ°I›Õš §aÌÏÛKoV¶¬r×y¯]céFðqÑ94%r¼bž†¸FÇØ n×?\n’t×?£†!ªíÑo%s¿0Á1ÑÞÙÖ°ÖØ²nétX·¯ìk Uî7é ›W•üÿÝæUg"…êïó¥²mð± ÞÍ4Ã’¨·×žPéò|·þ—Èa»ðëvòwi]«KçÛ×Uùã6Ë:cµ¢HÖ«ó.ÖüjñÝ®XuZp¶{aOfÅ4;¹ì\¼@Ñᦡóºï~ÌÅ[C´ç•»1rÉ#¥7ê÷¯Çau(¿Bq=ßÒ­DšãÈüVe£Ïs$cfÓ­u³ì.øJ¢+ÎmºMâÛnæZ>äm³¾¤©nÏoïr„¶á¼õñÆÅl(]V«3ŒYíÂöu³ÝR–R޳²Ù·-eYž(î°5Ü÷ÂÝå­OÖõN|)Ï™²}¼æ¹s¿Š¸zçÁ¯¦g_óøêßOúêŸóïþæßð׃ŸNwõÞƒéò¹ýfÛ~¨†xTn2Fñ—rrvÿ%¦¶ ÷Y:Ö%©U:Þ±$ýžë¬¤àžÏÛ/Ü,IÝ8[™6JÞpéÇe±gB¬¬Z=e,ÓLpe±7{n´j¾Œ@ügéƒRfwO±¬¦b盇ï³QoÀ°Ú˜W“#Ò´wòj{ô}ÑÈ•ºæ€eoïrÐf¸›¢>]n5®>ÆWµ›Ö½-éË*¾‹èd‰4^+[Š1ù2YŸîÎ+Í`¯#¯¿2c^¡M>WÌ6ÌžQ‡òÒþnü.°#úÑJiå¤ ¸uP‰R¾Ît_!óó´)*þþȘ™ïŒ•ÎÊYÊó©êÿD—_î‹ìT.]®xòm¨1­š~´áUâöË­ãù!Ÿ–Coåô}ª)Ä6¾fem0fØsÖvÉÊϓ…ͱ‹ŽUËÞÉÞ{xc> stream xœÕ]éÇu7/Á|4` `>9Ó§Y÷AB@$Yqhز%oàL\ФLrMQŒÇÿ»ß«óUuõÌ,÷‚ÜÙé®×¯ªÞñ{G5ßlÙÌ· ÿ¤ŸO^mî~n·ÏÞnØöÙæÍ†‡‹ÛôãÉ«íGgpÇofÏ<ßž}±‰#ùÖ³­µfvf{öjóp÷á´—ÂÍŒ«Ý|œµvRïþsâ³w†;úåïð£Þ˜ÝçÓžÍÖ8+íîÁ´ç³õ–9 –‡ýî•øK3ìÓú°&5å„\£õK¸ÁZ©ÍîWŒWÎøÝ'0^‰Ù9·ûô×07iEzª•»ßÂRX§v¿G:Îk­‘“Àk¨šÇüjÚ ÆßñIïäô?g¿ÞH?{ÃÄöì7›³}XøãÖížSΊëòÕ´‡¹8#ÜîÅ$fm„2»¯k½'_½®,?Ãå_¼ £+õ·È)ðg÷®Žz¹¤þ6®3Þ8|Ð=d^a¬Á©Ýý\ØF(¤œÅv¯í̹÷Û³sˆ?O fBK¡ãߌг†;ˆR¸ù¿wøÎ¹ónô5—[¿ºÂqïĘ®5Œ›Bw‚}qb\î>ˆsÖ'Ž$H1l‘0*ÌÁÍNz·0Ç8Žß±éìË ·³Lâ>‚¸ýËÆÌR{kÃïÿ¿!MYp LHÐ2ˆ|‚D@ÌÖÎ 4<ÜdgæûcN^³½0³å P°‰ZX6QÌÒk%`¿`‘¼çÌ­Ì ,¿àIðÈ \˜Rá¸]Ý<LáÀg‘ki)×zæaê-× ¾Z€:ƒ8ô£Í –fÛŒ¾ÄÖÿtB’ó“Djjé~r¶ùlóf«¥™U°a /n+׳r[ãÀ 8‡&ñ£›»~»ýú«wO7wÿ¸å›»ÿÿ|ôûáǃ_n²ùäÁö³UsÙiF2—ðЪ­±°•*šÌÛRá[éläË^)Z²æZ–þ³7µWä·U,¤+lPŽ ¼WªA©@íÁ|¨­`é{rc±wöãÃh?$U²¼C •ÕšþæäOö·µ&f.Åq÷5LE÷d5œUX‚8æ~/­Ëß ¯AcAax1‹ç7ó¼:Šê=žLWŒ\V`U£—Áª)îgޏ&â°ª;Ç[Ñ]ûê°.¦š3x9¯c~^¿|M¯ïÁþÀ²ªJéy{™Ë™ÑgàÆ#5غ–Dþ’xÜGpwõªu’ß—›ë0œ Ô裑!ø*Ø|éì\À•×ã.Ü’ÛëƒÅyéë²ÈxAh!…¯#–aÔ)ËØEd$p•—CS¯g‰.%ŒØýot&­,Âxð:\›5[ÐÊxÖÙÖ÷ÈNÜ}gŒõÆŽ‘V]7Öhé¶j„þ™¨Æ ×Þ›©QI䌷>‰“²»/p?|iòŽfQ8¯›û üÈÑâ%ÀË¥ ľCÎX!xØ ìÜËè£÷R£Á‚eÛ€ø'Y½ó鯂¿87©Ü o#‚FEJü½h´ ~º˜$‚uMÁ.‘Á¶lWÙÁÆ£$í¿´,)à÷˜,©²¤¼Ñ|E–Âö5C²,{·'Ésf(©WÇ­ðõEŸqkùTÿÑI&×±m§Ö¢@LS=\‚VÞ7”p•†Ýß7…¬à9ˆ¬4ØTÕ§èû }Ik[ ‹–I#Îge½â FÏùÑcà™Üf^/ô_cpÎøè9A.@È@Ê OˆK‚l*;M¹Â¨'’)P¯Ö³Ã4ÌBL¡2áhœtÙ†+p$bR€ñ{.!lûn0Âô:_~°ÕFƒÇx®Ð¥€_¸»“/?-—뮀5ã”#p4"e`(Ø"ñ;“+â,Pœ÷ÀV£Pʾ'R†¡F”2ލÌF!³ ÀÀuYÇM2°BVÀc 8QÊþ Ë%•·z÷ÿ‰/Zö¼B »qö$€k{»¿ ­¤ð¤o#9w0Ò bx…Ht]‘^‹³ùyÖ ‡üCP+™_ÑF´lfdç5MìM2‹€>Åó‡¢J+l`>Û> +}¶O#Ì¢¶ïGTFÃxé½8q¯#¸Ì^‡=)ˆ;),{½ws¸Ì@5Rœij@ò‚N\O’aÅJYÄ/Åá/ÅH}OTÇžõ€4n=çgW¹ :HŒí%š2Ä{°=¬D›/«+!^åO“D@ÜSöDã;Ÿÿ‘£@H©›çA¾•³cE؃!<8'UXº­ÔÅG ž÷ˆ‡*!y¶ r’I}!™ ~û¨F´Üq};Ü¢Naò*€um8¢wŽGت±ÿÔFá Ïãêßr–´g¼¡ûåa–Ëf]1iÒRÍu’tû½ž‡Î-.¥ j…DMÿ£¢ï‚çSÚâÏSt/„(@«ƒv¨åmpx³ü)as+fHû‘c&Õ©@6ñg6SÄ1Woý6æ•,ó˜H‚‘)¸N,Ú%n…P5­NJâן¢Ø qHkÙÍÄeŠk9®ì7­{i€§¥Îœ;I0\ɉ>.ãß•OužÃ§¿šf½â£|#WíÙ1h¥õ"éèSZjß^D9Ûk›ÎÉ‘\Ž¿ á”2ÆŒ€Ç$ž&Ócòn‰Y¬•|»thÙ<É·cöþºóí©zpå|{äÖÌ·K®Ô¸÷Ï·— GäcÂQì~6é¶4ŸŸó¤<'r.°Ïrmwú«``Ä ¾ØÝ”ÄE¾¤ ¥˜œ…’dÜE˜0ù¢Û:Ø|ælâJÙ<£BÖIb¾[ˆ2´Ò•Z—Í~R²Õ¨É D¦5j­É j]ÌN^S¤“mµÂG/Öº'‹Í%Ö‰õÍÂç 7+Mòg13ï-!ü“Fë;á}×kLÑ.">X)c±Mc0ká¬[ÌÍœY’¯' _Djà:?Vëvw´dCµ}AJq½Ãl:èhP0>ÕÕ7¥Âý!ÕÇ•[²¬U⊤v:>ƒçÑh’uîí€jg Û¢bž7…—Ö<({ÂSî P ”oJ’Õ¤âØNôÓŠ” ,LZ©ÊîpS¬-ÖhÔêJÆA÷–t ç¨ú‹6²3: [¾°*÷E½‰¥%æ•[•åvß‘Œ¶Á ûHœK»ÝRƒ ©±_ÁiHbN/{žPÞª=¬$‰v4B¿p€‘'‰^=ÌÃ_ Cx]_‚¡c «V6šjƒž;)ÂR¼;¼ÂUæò;øõ~šòcS^Ææ…gž”¿%O_­x¡@äºT -û=/îé»6G¸OsnËCQO¨y96ÌÇ|÷C׌4Á4ö‚v‚Ù*5íz଴S8?é4¬ï*¤ÄìÀDÌ‹îAø¡1Qô"ç§b£MpDÌóÖ´.ÚAJaö v³ç¼½ Æ=µ ~sDuÈâôû´¨ë–ØÇ‰¯ÙõªSm!ti®!n\l{Ö¤‹É€Nvâ(÷‡œ¸¤îsé¯Íw]ï;ŠÈ—Þ/T9©Ž0¦qðv¡] M Òq¸höå<6ߢ\áå?Ó Òn5Wëâž§&¢³É¾‡£òØÕý†9ãcß³À#(BÍ‹KtÆT„X˜„">Žú‚z“f O0Sáó h’iŸVá4C/´Ÿ×Ú˜‰É_ƒå‹¥&êý1YÂéG¹å»(ÀmÓ¤†ÄqßiÈ_.!Ó ½ãé`Ø>g$Ù4ÛWß:n¨»ƒDx5äpE¾p 0öh!RÓ¨·ÇÂOaz;À !˜}Müʇý\¶ŸY¼ªŸSD¶¿'Ñcþ„[â0¢Æ^.#AëÐËÁ-O’ÊæîúœdwQÊ­ö¼xn: 'É#Ôºz”‰à}¼c eÇÊ28Q€¤ä¼DzvìŠß`E ’<ª[åK,…]‰²YÍcî?îŒ~R> 8æ)¦Àœ ©NA|¤D1g¼=Ã*”kpaΑ9,RѼ“ë6üuß3»Ìßdd31+TãÒ&6Že‰pØÏŸWã~ séÎp²É5“9<Ó(P1ŠúÒR³‚J§x,Òx”¬]Äö‡S]f6Ä}Ÿå}4Yr.mœxn©ÎëãÊ*…à‡"_ŒqUôZ•¯¯q>µ™³jÆ\>!Ví¢<Údhý&M›ŒXö©†­ð¥wTÈØ;JñsÞ­H'mDÈ6ÉŸ¥',℺G_ÕwЊšt½Ö#²èº÷°RXZ@8[Xä^\Ç&jD^—§1±[õ²lwžšÄ¤ ä€ôU@R®Ò^>Yy펩“ʵl¹>nZsL¹yͱt(¹é¼]ë.¤lÑPîp¤¹-ðkº‚Þ— !¿6S*…ÈD 3Cª ƒ 7¾o:ô~ß!gÞbªn¼ †ê¾—ÎqØd¬Õ<ËËÆVO}Ô[Pl5Zsô”cýòÕ$Ñ™?k“vkÅ+’Ó»¶d·”áÒ-ÇÉ$ÇÝö䙦Xˆ§ß`‡-vh$#öyhÙšï&tyZºPpì?½€OÎ{ÌÔ/ŸM{ðÓœOñÁ8‚© þ4/˜_5tÒˆ>I_£0¢Qß’Òàå…6@ÕB,ÝD:" øÕÓRaP7N¤å¼jBB5ll°Î°’?øùh¡N®Ó#\g²ºÔå\æÀ‰tʨe h6©º.}¡íù Ùƒa&­IÍ/kwkÅÙG±>…/ÑxÒDN¤pÕZ©iét<±¬óôPøø˜ÖDc|&N?U ›C2«Ê‰½:Âwd;!p>Áa„ûç¡FÜC·“qÿ>!3†Óý K?¢Ž‰L¦‚·þ¦è€HáyÃrÝÏF~3êQ•¤§8žô~ØÿØÕ“þÛâá7ÐmL†ˆi?aÃÙÖXíS î«ô‹¨, cÛäÚ0O€ËuBŸH±—èâ9Zü¡» z49W%v\ YÕq´Ëã*]XÙZìÂ’Þ16ha*¶O <ýèøE¨Üæ ¯ö ¬mEý ‹¸Hd/^,D¶iA…)¶{ôÿ¡™û‹ÑÁF]»~Úň‹Ó30OŽÿõL_ßñßõ=NÏðî¤xÏMiø¯ÇñD‚‰éÑÃ,!‰g®È¢¸‹÷V?†°Zž>‘ºÆ¯¼âØô¬[N¬O§”¶v/¨ÂòÁâµVë ²äõDZxæþ€`Þë0-!™ïÄÃt‡BXÍo,^ÙÒ¿¬À]3[èøÌß[,&nš-½<ƒrœ5¬œ—Bíô‡deÒa¼¾õ+L®îîΤ¨LÚ“‡VRÿ LªÊ$ÿ1¬$;I‚!®Îä*±ÑJÊ¿[&Å{m÷-3É+“ÅïùU&³O?h¢óè^h&-æðÄ(#ºÿ0ÊÔ”@‡„ÏP áwhÄi@qȼ+¹Ú~Þ`åA‡Î~ÂÎJ¥Ý0tê’ZË.ãZ&€Å™q}u¹à0–ƒ¯­È¥EÓ‘û^1’æñ¤J-$ÖÇ̃!MסOØviJˆÎà*ï™QãXA@ô¼Í/ä9íp°²Þ¸øöšz¤øÈa{lbo…ù”7K4Õ.žùÇ.§Ñl¬z5L¾÷±êñ ¯ö ñK¼=í´\n}s`p™õ­/3 ë{ìà1™ÇkÂÓ[ÓÝ‹l\SxÞ&:—:·oQáäZ ­b{D\týWøvDÓ¶Ù‹`øƒ~ÿð‹Ú*ŠÇ 4}L„y(̲¾gða“ž[8×zv {µ§iîÞ¿Ä·_ÛŦý\ìùo4í»Msž‰6pxÄéøka¼mŒ© ·ÚCÞ¾“ÓªÐ5s‚Ã!\ò=Ãí‹ü’²nð‚P`†ËƒðÞ°A«ÍñqÍŠ;:)˜`âÀBÄ6€ô,—²q’ÑfÿZìIã³Ø*¯v§Ë¥søJζVXë"©Ç Æ]Kj„6×äjz,Ç9QKˆ ¯Î1§S–¹Žœ?ÈîÕ¯ý’¬¾åÛ jB´¢‰qPá«å=5]ð°t ·ïÛèÔ^Æ t·¥²5ÕwãÅ ¬="¥S¡&,bv\…­ûãäƒxÓšç¥ X]—_žcâK&ð¥[ç=v‹qe$: «¿²Bù-<ÞZíè++@%ñÍ\¾¥ÿƒ­/gŒ™´kšo[#]Ü5–ጫ™Èð¿ )˜]±°`ÜËgͰJò–A2å|®t0§è­ørÀ©`ס\žÇ¿…ž#>7³åçzÒ}d0–tóÖ9B‡<çì—ÚY2<µ, FÇšOS»‰V`€.”¡‹—õrœ¯Ô2=Ñ lUv¶¬™âã:øe¹‘<q"òî¤%4çrë³B©~w'vÓH¯ ÍÊoRYÃÚšòeSð¸š,ÈS6…ãÿÛpk(XÆ(h‚ Û:®—»ƒ|1`—> stream xœÕ]ë¯\·q/ÅýÔP¨Ql¿¤»€÷ˆïG µ'Q‘¸‰« ìuõˆ"]Ù–åÄNò¿wfHyxvïJ{%†­Õ.Ãá<~3Ò_nÄ$7ÿÉÞvqë¿yôâBl]|y!éÇMþãþ³Íí»Ð@â7SQnî>¼H=å&Š÷n ns÷ÙŧÛv{­Â$¤ÙÞ…“µAÛíowrŠÁÉÀ¿ü/ühTtnûÉn/&ï‚×~{g·—“^¬tû%´Õø—¦ÛÇu²Û;39”^ë§ÐÀ{mÝöç;èo‚‹Û ¿QSaûß»½…µi¯ò¬^o µòÁlã„h­EJˆÑŒþqéóóÝ^ äVîìÖìþ÷îçTäœóS”1ªÍÞÅÉ+¡7w//¶wwŸ`KÏ[ÚÉáçO·?ÂUY!dÐiL­702·T¦Ý˜É:!]êóØ”õZÄÔ¾g]`<}|Øìý¤R‰=LtVfÂ;rÒ$jr:“º¼Lpj2Àí#4ÂH"ùº4ª×¢ñ'«=H…>a9*Âî¼6¿aeAþ«jD&òõl%Y‰ÍÂÃdIª²¼¼Ä+¥œw£C•¬‡ ¨? Ö2j™IoÇ–šD6õØŠ#¢ú“4µöÑŽÓ¥‡‰ýn´‰ð1”Vïõ£µ 1µå‘E4 :Û"","¾­EÈ3-Bs[õ·¶“är¯Ï³‘ùVöÄ’CŠZø¸²žª”7º¤s銃½‘gYË÷AÒÜ!¥Y®†Ñxl5&s®Õ¬²fÞUMŸe9#A{³K uIßÃjüôu—„p2œa-˜³J!ð @ŠkéQšÃžÙ„Cö ’¹{`õ™Mµä@&öëÈ“=Z™LW'lC.@¦nr°uÚ#ì̲DTQn× æ Ëà¡ãöF)RÁ?ð%l¿…¿ÄíµéW»=ÄNÁ©°}+ù¼þòû‚‰”qÛ¯!ò>Æí>8kl¨_±þ÷ ÿUíϦ~qZQѬË3üAkoM¦"¢í%†{‚ÊÀÇÀÑsóÑ[ÂÓ™Ð:Æ‹2–ŽlJdƒvŒtß–žcÞ4#WŽ–/¯vʃƒŒWÃõ|>·û¿„ ÀªÚ¥ÙÁ™ÊGD?Š„ ð³+òro§1À€hÇ2ÂZ‹s•!ÕóÐ/R°+¥Ëûj<îU¡ëg;”"|ý§}¹Â‹L›k·S«u{‚&~öÊLj61,ò<16<[»ÐK:X˜Ùþq‡!—²L/•ZîŠ|·ß÷‘M!Ÿabmñs\ ¤ÖÔþØ^\µì]J2Š&ð•ÍOÆk¾žº^FùH•jC¦l7æ>µáó¤}eGG ¹GM •k’þ|«opcA@…ólžËÞÌu#ñ20AU7éÙÏuÌ+$¢Á¥é» òH.úX£ #ÕnßáK‡F·yÈ{ž^Ÿ}9ÚB¿\µÆm|_GÛCŒ&EIOR®%šRp¤Ž9ÒÌtmÎmQ®ÑŒø®Xâ ç°çH˜j¿¡X±‘Äþ5ì,ˆˆ¾ú¡'7qR³{¦”ЉQ8³’ÅòÑÅž¢Þ³*Ú¯dUïõg‚½2Æ\)ìµÕ©50%Y™ß–LcHeÛÅGÈ;±j.‚ Wœ•e£> ¿)•éi›£ ÆMzˆ£%£ÅF{ÞnÒAGÄ–öÔ:;{ ô‚Aè” Ê>ÊDã62÷’𠨲kZ\F™GÈ”;SLRiÁ€­…qõÉí¥Å)ŸIPhû#ˆb0s6£ºN6MËàV îu“hR¡{³7‹Ö©$Ñ0UB·VÌ•¨#vFè’Ø|°z4R… «laÈ¿àN‰hÍC5‹OÞG;L |àÁÐbxbÔ©Œ@¢Vb2ï**»CÉ×5mß ¥¢ê°õH—_50…€o3øpºUvËŒÊýYw±Ø!ÄEó:sÔ¿4¢ð§!Ÿ¬Z¬5ì܇°Z½gÞŸÕ3/Q ¹ÀôûÒß¡)à^ÕMH"èê(÷þ$9C:‡ É;|n‚1¢)›ÝZ‘½Ûèà×Öi/½§ænùdÜ€.”°÷ð¯I~ÖöÞ€¶§ÇX ì˜sÇVE@Ƽ¼Ï¶¥IA"Î,ó¥w6_2€ør´¨ovÖLú}–È%~àþ &“â®ëd Hš­Ó«ð£ÌñÙ®˜»,>ÏêIše Iâ1 ·ÃN,Ll-°=·î5³‘1”@³îΤPŒX±†Q‹ØJWñ±;ÀsŒgø®ge4Z‘Um¨)‡3AVcQ‰ßtX¥6&5lc¬\dµ¼jÉÑdá &ù}Ø3Ù>=éê:_) EqZð ö»‹Ü-v‘p`€FLè9‰•²N®`íÖvÔOßî¦Â´F\«y‘¬ÊYòà χ!Õ1Ï;0r|ÅG+›|û0›¨&•†ž/ô|ÊÍ ÇÑ¥¶kÈa:%ž>¡–{™ÄÁ‚²)u3zU ³šéBÅ”¥MvÌ©¢Aþ¸6d±ZѼsÜ öá–"´!ëÆdÎäýÃÙu)ìúV?G{#-0´ó\Ø%%x "mû2’àzÚæñ('#ôRUÐÈçô’ˆ† Ða×Ü-]è ÍäÕõÂ’˜ÂB¶±*$P·–ä׉g}XÒ :‡%@À ¨cÞþ3Ulm¦O†‘ Çòµ,á‡;v9ˆÁ Â*Ø*î ±µ]ñîã„äÐÎrh뺴»M>’r×ÙÀØêÎg£ÃræC@v,ÜYdÏ)Ó8§¯WR•<ÏR¾»êô‡&ýŠ’\€Ñ#©Ã^ÑdD8Ô« œÖ…µF&‡“Áø! 9WÀŒÁÍYý*ƒ24ÈÓëûU#úÕµðý [$ÈU-b‹îºEKÀú½õc³”X×,±>Ì^â‚$ð1ên£éF¢Š”6€¿çæFÚôd9ê9PdÙ¥˜b“‡5K)kt s§÷o”°g{ÜT\æ ð÷ƒ¶Æ'!ê²¶-z=ìtöp`5¿ÙiúXåÒ¨¥6^'¿så–ö«jcOx{V=©úð,•M^Ëvë@öð0%ÑÀ„Xgöfu9|«H5bhò@¢#±v³fï€ys@NÆDò1ÿ‹`ë³Ý,›à>¡¸Ïíïv{ÊPrzh퇉²šR›…Ø.Ÿ D¡_”£|ZvkûË(Ò-h¹š ÛãœG(pOÏ ·¸#Nž—Â4.úPÎWb©·8±àîHyŒŒB®ºKe»D›‚ q>ký46$kŽ`Uå!r&aI忚R6Øz¾¥ÑD ”IŠE­(–ØDÐ)UákáC7;%œ‚»‹¤Bªçx|2Î*â2BãÁTð„ô.³%AÒÚPµõt‹sQƒINѹŽ0I5Ó\…Erhã©€gN-ÁhÛÚR:jÉ‘G>W,­ÛÅjŒQÃÚ!ÀUyfhjÊ™æú–+³9yXšóˆ%õ¼H4îåñáz–„{ÛÐm”xV]+Oš€ `@ð`Æ4×¶¼zfç°[YÃnL{žÏ~–cM–yXþ8ŒZïÛ•!I°š)Óh—!¡qQ©¢¨Ó¡ˆwû?RïX\ô©$®ºxd,EæX'S+Ç”…R™„?‡•k7³v<‚Ì1âŸûks4yÆR>ª { Ü–m¥ÏLý°Ü ;f&+L™ûeN~ýFgŽmñ†R©ZèÁ­± È"ã´Vj¤tò%ê7v}DWÎ4bŒù{Õƒ»b$ä"|âaŠ1æ@ýOê×êR})Fp;n”á aŠxÇ-oË?v貯ÿIå¹zŠë·ªõ? ÛÞ9¬ÿ À}­úŸ=ÑBãu1êÃ9²ž Ð#îÄèt^uS…]^²TþñÂ.bói[ »®¿±õþÛXp ü¨â¥â£®³­kÅýÅ3”æHƘ”®—%`ð1X ±fp,=d@‘§JÖR1ÖB¤£—ç‡ã©=V׊D›_ÀŸÛ9ï–âÓþ˜µ~^ó'ìúmÎD4µŒ™kGF àB(»Üb)‰/pQ‰”8¥Ýø˜n3(mÃhÀÉ'¶ì3îúBƒJ+·‚Öb4k% ®­¡µFd‹ÖÔCx9i¡uì^¢…!1°–ýߣ :—fÀ‘KƒàÒK*êÅ×¼!T‚ØBjLI¡…€¯Á’”Ÿ¯ð¡pEXsˆ+J“Î ¼€ðh»üü`þ¹vyAÄÀÖsŠÈ»E õS2[ƒ–è£UÖŽr·ß1ÃP2Ë`;%!:ÑÒXëÎ!bâeS`7ÁªaŒœ$ì¯À-m"x£¿ISg€*÷¨ÃáM%oûçQõÄk ïAÔBw';–uWI)‘d-ÀB™s‡º«pš æŸƒ"ÒOZ³«d~zèÓ®ÉÓ¹‡ÚHÄsMR*¯†‰©ÒeßôIxFÆ F‚Z<óäpÍÕÜîïv­|¶´—TÈi¥ãï©K/ͼí5õÒp£qm½œŸ*Zèd» &YÜsÙÅ?°U¸¢®ÿDÛbe~{'Ó«P{剤¥áþÏêb§ÁÃÈh,ɆÓEñÆ< H8xåý…$‚ž=àwlèSxŠø&è³ÀhN8èt€Ý>:e<am¢ìäÓŠR`ùÃN#J$äS@θåãú`12V“Úæã%é >Œ¤×:æ0a'ù°›Sºwz¢Š@Ÿp’ФY’ŠØ¥ŠÌU{z£#5it_&«¢æ|5w³¢æ¦o¨ þ°*´ä…ûvóä…˜¸`k‚Ì‘ú¾Tþæº3‹˜°óœ’3mÇ8Þl‚ž| Ve¬~8Ç ø©ûV6äÁꬶ’\<”·D‚7“ÃŒ«˜Av)‹NŸÈ€`‚9©oêyE—Ž(Õ8*Æ3gs>}!}Iúûš„ÁŠnU ré€[óC8 ¯Ì¸q~eß ^,2Ä¡d –t`¦Áa®˜ÅSÙ«Ixàºì‡Kf±a/&sÚ5´1¾®áØÍãvñ˜¤`…ö7€|b¸Î€÷ ½aÀúËý]Jǵ©; ë˜ÃÍ£PE>œöñA>ø³A=‹VŸz|²¸½ÒiyóÀY…æö‘ÌÄa‘Qí2OŒ ø›}H¦¦u€®&´ÉÿŠmoÌÁ`©ªF&&kû?FŽò 7Mñ £Ñ™¸5ï‡i9އޝz»Ï矛¤VÉíwøÜFtšÉåÖR¢ ÂR…'KÞ:;wgùÕ.—é. øiö埒-õžªGÊ<µ{üªþ\¿ddÔÉŸó>eÊô3DféU&Fmø”ÅZlB„/ê;°l¡PWû/ø^§¼@†ïaÔ–WõËL(¾÷ñ˜÷‡°_°51¢° Ed'X¦bŒ`¤ÔYKñÖªÇZ_ü?À—Q)ÃØÃˆ*”PýɈÔTf‚•Ã3j¦·~P°ÒtnøT LŒjùP~¥ÇÁÔé5¼#,©„²Í©£>êänžÉÄ 9CŸâ%- Cç£Ï7ü(ìÎÍI£ël`?ê8uêgtâŒòi[iOçqê4/(®öüeü -•É<°B¹ù^~c °²˜qãýÃ-Œ.·}ïÂΩKÌU## +9ŒÖxлAxÁ*¦î©Ó1eªDrÇ™/GÚ}™¯ÛÈÔ÷j‡olEAý¾¯+ùfÕÎõ×é¡å7¸q ¸Qc+2o×C@vJÄT{Ï$.wN{@#4D6"m!Dt‡D_f±†I*eÂÂEɇÏ®ãþ5ÜäÂ3œ(†±‘-¾RôõN³Õ"¦GSqÛ%EÜK˜JX¿{7Å#ÊëÚNüÁKÎÜ·À)ò r«Që2͹VË=ÇP ñ>¯îE„k†ÚQ’/, Á/ ïø¦b ) ÝW[ùIæ‚Éß‘:16ffù{$ÌñªC >ÚœyPèíl9igë'†Öò›pG4êW-ß”þ'"ØrFL·>> stream xœm’{L›õÇß—ù±±Ë1«¡Ùö¾Uæ¦ó0=ê4Sñ03676ìÂê¶ÒAéÚQÆZè…–—^iŸ^ÞZÚR …c² 0»DÝEÌ.Ç;&n.9G§ñ—è¯ø3Ñâ&ç÷ÇóÇóä—|>Ïó¥©ì,Цéû·nÛ&ÕÔmÖHU Ù†¢ò¹V%mœŸ¬N/§Ó+²Ò+õD:×3W™ùÈϾ¼"÷áûpÛ?pÃ\»”Ê¡éÝ*½™+Q7èò:ø‰Ç²¨(S7ˆ«õâ¯o‘Ê”êæcJ…XZH¼eݶuâ2us¦©?¬®W×ÔIUµbu­¸¢f¸rçKå;śʷWîØùȺÿK÷·¦¦®F#Õ)(ŠB% zyÝs÷PÔ*ꪊ*¥6S‹h7 T^ƕʦ¢ôá,&kRÐ 8½<ç!<ºø¬»}”öÄ\Ñ úõ¯s±¹g…¾.ð p‡9{{»ÕÆ”•:'€Àå±[z÷Ï"zÒL‰Ž<ƒ’\¼þç»—O³_~ÿüÈï ¶r.»ÓÍT‘õ¤pã@kWÍàG§cø‰ðöí¿»ö- ,˜yšd)Úm`e¹.ðEÀ›à™ ”à{Šì:ÿ™J¯IÑéâYAÚG…?n}»¸i¯cSÓrõÕ¸¤Ð¤25êLåàD–`{0ìå{y&q»ïÌI@# l±º[\V– ßÙê]–ƒ âZAïôZÂì”7àé‡(ˆâwǡ⮠@z"m`@°3òw³gð#¡¦áêk Âyx~¯e_œÂ~5YªÚ¥(—©´Åx;ðòž½„+ø^ðFb¢¡“ÓcÓ€.$$vñôok)"M}qö/#œó.+ã” =¼7±tkÍz«ÎÊJ÷‰µ\.‹Èí”>_hÜHLG.Mál¶£?…ºT{ªêQy°õ/kO âgúf'.NÉàÔ[ޱ²Ô,…}ˆ¾àÎ\:5ØÓØ÷pûí="“55™†Ñ›Ás¡¤1ª=¦Ô½ºû¼üƘþ çŸgþfÙ<3.M¥W¤èÙé¼R!ÎMÌé6Gô†¦VµƒÑŽ)“Õ™,,"KȃD\4³ùÎôDjd”5WK­z'f54ƒÒÓLtēЇ’†h“F©¯®ºÚz ggov3éeB ÙîÔ»]FhÏ+Rk3 *ýÅéñœ=ò;xáÜÔy@7ã/X2XY;ž¢¸ù-âÚI}3ô® =ƒ …|{°s;ÌN¦ñiiM¯¥BƒI¶÷õ‰_à*º·¹o×ö=ê*3‹/ú£à¿¨ÓÎ[LOZ]ÍL››sƒ™ÃÐ}l'¸z†þþ¡Ó.h#æžx4 2^¾ó4ßׯÀ ùb]ç øþkx¦]†]†2 YÌ©ØV•³ t¨òì‘éoÇqa8kz¥‰"ÅM¸S4Þ’`™Wx]{î ¢ù¨ZÝ{ôd,ƇC † /n´ÛÁIµ-è„?ýçÍÿ_AÆ¿ÿ~?EO¾‡Ç3æµi«ð'ů‘Õ¤ˆŒ‘Æ’$Yù3^‹ð)¬aÖ!QåöÞîûèì{g®fÖxÙ¿¾f»ñ¥–­¬E)4nÕË6•ÈÊö:hz㣛ݷb7æ¥gþøéšTW Ê”;Ítÿ•ÔÝ{Ã#3ÇO ÒË× aÔÐw,j÷‘¼)mgñðîÌÀøé»ÿ7B/ Ñë0:(÷íÓ4‚¹†5w`>xã·†zµC4t F‡x¤šVp4°íî(„`€ï„ âm:¨æì`r¿\ò¼ ;Æ”ƒ-dQ‰æPÁ¿>?<Òú«¬à¼!aKØ AÔd<¢Ò)ýrÆpyœ€ì™gšQ\ùÏÄõóìÈÜ B›‹sÊÀpÁ8Ê0¿»Ç6‘¤Ð¾Ã :¦?Ð I@üp°‹µÉtI8ÆêdnjÁðBfAvEÅü<È_)ŸÏ×áᣟ/?†cݼßãõyãžüEjgcendstream endobj 285 0 obj << /Filter /FlateDecode /Length 8436 >> stream xœí]klWq%âKÔŸò"¤HQK·H7ûý B â|#""9smcÂ\c_!¿>µjÕ>¯éž™kI¸²ž95ûQ{ïz­ª}ÎýxïÎ~ïð?ûys»ûÆOëþƒ—;·ÿ`÷ñÎë÷öãævÿÆ3iàA9w×ýþÙû;öôûîöµ–s+ûg·»wß>žbhgçÓá™üzιÅ|ø·£?÷V|[ÿ¿¦ÐK9üôxrçZZõðÖñäϵW×d°ÑíÒ6âaÕíGódoÓ¹¤âµ±¾+ j¹Þž²¬-Ö`³Öxø¡4Œ¡¶tø1Æi=ç N”·ýG£Ï›ÇSp®ùƒ?æC>þâÙ÷wß{¶û‰l_Ñ þx|lç´Ï¾µsÙË“?‡½/½ËOÞÛÿlÿb×÷¿—ýý¾üÿW;w޹ÊIÅâ÷üý§oî|I ²?ç´¿Ýù견j¢üZ(rZ‘„¢Ï±Ÿëò9¥s.F ¥¤³kJ?;µ¥´x.mMÁBHh 4Ï!­)íì­MS暯çžV” 'AB×çÎyM¨çlÏÊ\KõÚŠ’ÃYùg§¼‰ðȹ¬)ÅvN(d® ›eM)çbãx2×tWW”r6Çí^„eE(goSå®;/ §„HÈ`|I‘3kÖ)6Rò¹ÚDIgîÁát”’IÈçlSgÎ CÀB”’) §Brç`*ÇMëWJã0Ùñ±sŒœð¡D…R:NX)^ jHB`'‘ l";ÕtNÖ)qžÚñ7¥dr×6M)•„n¢±A ôd¢ÉQ{1Ávý×;ÑBiH‰$4“\)¹‰â.„–”¢R\ˆ8¡d PšIw>“£ wæ™ ¥¡±R Ûˆ™éÖ‰MDvuØÂ­ çH ì“«)@á>W5 è¦Ès»@Bç(5˜JÔ± µBb•’8n9/¤T£±R:gêþ4 ¯PŠiI£/âL-i”¡Ó’ŽÅû³r ¡˜štœ(ÁSOŠ3–}(ª'Bгé¨'Å^ÄYõ¤xjNð"Ϫ'B©ì%ò¬z"»fÜdGE)r&³š%bO@)´šB°ÉK¦¢ˆhSÄÖRQ„’IÀ©H;¥qV=ŠM#â¬zRÊX£È³*ŠPx¢TªQ:ŽL)]{‰ØPQJ³‘å\¨(¢fAg—uSS„ÒI0.lSƒ5tE _d‘iÕÏ&Ñ̼P¨ !ÒÌ×H BŠTès!¥QYj¦Ê©Щ u²¢º©T6^gæ˜ÅÜBmvÒÊV( «*Js&ô¡™§h~tjtÍ U=PSÚ0¡›óhÙ¶;º@MiCߢ«Ô”64%Š<«¦ˆÏã‘Doþ¤;;€( ?Û½mw æNºn Õ9pÚ‹éKz¦m 1™3&­I2oÒõLcVWÝ8Ò˜éJ°ÎRèI¢K¶±Ð“Dñ:ÜíXéI°ÎJ=ItÝ”<6z,œú›z’ÛIB§'‰ôTJ¡'‰pò $'Ž$†¡àÉÑ‘Dqù4 ÉÑ‘Ä옓§'‘̶ yz’ºs’ÖP(¡B1 =I„»#%¦³6icòHO‚=¦¬'d 1¥‰¢Î$"ÀÐ¥LgÅ‚Ðw¤Loá¡H)êM$D£¬§Bg‚“ྤJgÅp¾$JS›¹Ñ™H jÖ&5:œ E.u:œõêêM¢H7e9;z“(+ t&±Gr—½ú’ˆžF 3IÎbqüt& })t&É*§¡*’|=¾$‰ñìd±j MO!ÀeœŒŠjÎt$)õd¸<Ì,-i–sQG’q1œ0|8žH®t$Iv·“ ~$ ]Ítnt#ºëìÒèF’ü´a;Ýö˜¬tz‘c¬¬G/’]1ÓX,öÎ>™A-Œ½±ƒ<ÅâéEDm¿K ‘ƒåΕ ç!ëƒz!Ù”H/’Å}±I¤É¢ÇôÀÅbúŒˆŠ£&:‘ 1"%Ó‰ä>ñŸ>2–A3W ?"£RÔàÉÔqPª:‘"@ù/²­ˆ€M¨ŸÅ°BÉž›Y„ ˜¾×®„NRJ+èô!EVÀCª'ÊåjhMyjÕÓ‹T7 u5|ŸT‰J|QÅSj #©"±´dÕ G±£õ¨Äa;%:’*Æ” WC!Uô“ì#ä*BÅ™n¤Š(éªk¡i.›ý«†Jšˆ U­Võ"-Œ²(èl󈻃’4™N‚º‘– }käaèW “àÐ$5 â´VMÊš’Ö+¹m†Iº«æp›a’î›IY3LÒH…®¤Ç!‰Í@I‰´6%! Jzu£‰’ÞF ×JzW̦êKD) ™ E}Iqb¤¨±¨¤¸0üD#*).*_«êJ uêg#()˜³ @‰ŠÁ,!¨+)u³SWWR\ó<¤¦°¤ žæöv‘fá\ Äð†¸D(ÝÌ_÷|£Ê6&¡1×ÔLdn£HQg":;B¶NdR÷VÔ—¡Ùnv“‚(—JЙ_ƒ©R'2)k3 êKŠ`i ZW\R<‚,ŽA`"”6(&%LáH'0)ˆ`yúÀ¤ ‚¥t“‚ÖÆ!0) a•gRÁ긩7Cå)®BQo"”LWÂ’‚¶A½I‘ cPK„’¨©É1h’ jtfX"ñIE” 3)ÈÀܨ(@|R¡²˜PJ÷”³dø¤ˆkµA Ÿ”•„B|RJ0^’á“’Ç9%(%YŠR`J‰CŠØ´3[BA*'ÙóÙ*oÔ·>ª&Ù2¾±³Ò5Wðb·ª BkNS²ÅXŒ}Mò¨v+RÁê&£HQ¬ËÊfì£nbÅψ2`ÞÏS!XÕdÔ]““x.ŒJ, }”‰õÅÜ·•€“#@™ ÇÉYÑd›“#B™ ÔÉŹ4Þ8.mê’2Š&£6žÊ\POl¯£H2êòÉÕ©X>Պ¬î'׫ɲü(oŒ É3”Ÿ)oï~‚Ûâá÷)A>özÿcWî½ "›ì‘Ù^\‰HÉF"C‡¿?»ÝöÇg¿Â…i $­O¬ÃþTÿËþÙóÝá¿­]ŸÚaĆöÄ"Ì>ë¨ß}ïÅË?ýú苟<î®…æó—×-jòû7§žÓ‹„zÚz³ÞÙ‡ºOyÿ aè¹^Úpèü°+z~·(Õù«O°Ë« 6;/…2À …E¥¦…þ¸çšz©E dnVoªÕ.ó¨ˆz›A0„7Z`™%ÔļY\+´äQSl6JÍŠͪ,¦O5·ì#ÝS¥T‰XrŪ<™i ¢±“k`•'™ cbU72ðž·:DK-÷_¢îµÄƒ£:œ3-µQ1@È‚¨8Ž _é~eÍù[ÖØYÂÚ²¿º%ÂÒ¨1öàšÀKË–ÎÌí‚>7kÊ2Øf5¤¸h瑵”ÈY|µDx+€ÜãÍP2·a…=Í6j”]REÚNð\r0d(aIÕ¬‰°cl¤óL*–6,ê• ’éÌŸYŠ­ŠŽ1Ãԉ E;K…i 3åˆ7rZôç¥XåE"3E¥ø‘ÓòN rEƒ}&]‚ÖË%DMyy_gžÓ£Â.ãDgv.z^ )A–ŽâQ .Y"Ä’QómÎwFVZ¥nÌLÔƒ?AØ##„¨‹ÖÄR‘eÔ¢5‡dŽa¬Ö%¼©RŒ<fyàg‰6š(ƒ÷«;#ü‚È*´ñv7@FñTŠ6BJÔÁXlL†ê%e)ªRø ÅŠUS…x–hÆ(Ó®‡(KV~oK`…ÈŽÙÀ¤n1§è)KÑ-ßÌŶEÆý®2ðí ƒ¶©ã: ôjno,¥·rÿ¨Ì,oPEÔaÆ5,g1p™î€1ÈDÃ-ýiÔrÅò¢[Dáa\–³2[,55Y\7yK±eé?ß¾×Âk…•'É MduE¦ôºä[·¿ùè“ãIŽ¥÷Ÿ¾ûâæ=½4(†H¢qvêOŸ¯Ü–#ê³?á6‰ì¡üùÃ]š?|ôòÓ÷dLº…Ç2Át ñAÿŽ`já —þŒNôvÞ °wÚÌ1+Ö¦ƒ¤E›‰0µ‰jœãÌ„©Ífú%?S›W:”$Dß[Y]Ïåާ„ÙN^~úîíàäW½n‡ žÓ®Þ ŒPZHCo_hãJ9¯åi´¡^4¨u5B„] `ÏË6íÜdÁÇ£·ÉkÕ1FIo÷DÀ ¸(êS¼ ¦X¦™ˆPD©¥gËW‰Î6âxé.,¤×Ê0Fèv¢¬¶¶!ý£™l3t;QV­Š(Œ(B‚¦›<(‹Vö¯ ngÊr,äØ4ù·3e9–¬V†àl,£¬[!­+ÍšÝN”U+äf1>¢§­eÉ—Þ¶dÑ„l‘°)yM±‹ÿS?x;S–­PsÕjK ”éAYÍW‹CÀ¤.ñÖ—FT#îPöòÛs ø*vJìdC±¯j]s>y>ß Ž'+Ï% ˜°a~æ7»™éËûyf©æ9øŒ9£ÅàrŒ°^ÇÍîý×xm'—7š5Q`}ú^«â%#þÕTÛ¬‹|¾A´+ñ\´È~=Âxæè1(ÐYý4BHë9ø|³›¹°—6Âf8·×wm°uµnmQô"PÞ‡‚¸w|¼s“-´çà®Ù›[„¸Ážmô\g‹ûi„\âj{Fãbj1ø#¬×¡çöÚ® VÞ•÷™(bíc—H7KQ횘ýŸo€DNü¢üôr„ñÌ9ÐcPpMAìÕ4Bòë9øŒƒ k1qi#lÖ¡vòµ]âX·ñ€Q’ØeéP°ó5,ÍgOñ‚=ß É"0ÚÏ-’ù÷1Âx¶9nv3E#¤vŒ€êïr{¾ÙM\L-ß6Âfªo¯íÚ{1W·ŒÐå!‘($.Jç½HÃÓñù†7`Ô¯Ž.¬GÏœ=wE¢Æ¾ÇÕö|³›¸˜Z .Çëu¨¾½¶kùŲ™^œ‰·„×DF¨(çeóù†÷ŸàyG ¼;³azæè1(¸mƒ¸nŒ c¯æà3Ö6¸-—6Âf<·×umŠ=ÜÅLä…³ˆ‹¿ȸ¢ÅŒ{ø|û-°S ¾U50ž9z ŠH­‡#„¸žƒÏè1¸°—6Âfzn¯íÚÞfâx‰+'B(j¿Q© ž·.a{Ã8ãåÁØ PÓ[ô·G޳òªØîÑ)âÅøö¨pˆ eðgý7ü¶½fK‚v¥¸Eöƒ‚ ßÒ)¡–ÒqKK­ò·ç&±{[ÄÖW#LÏœò4(¥žkÜO#”œWsØ3æ0.¦ƒË1ÂzÔ®×umЮз¹–AßUt_Ï~/["«;²3|†´4]àˆ8ååó3ç@A‘±‹à‘i—×sðY³ÆÅh1¸äÛuPÍ^×µ!ûÕê*û¥"IÔWzºÇEN­ZZ¦Œ7x³$Ÿ]_üˆcê«mñˆ@ÄÛN1þ4®= ­M;ý÷€*¨?|0â·ÇàJN‡OŽúVEm‡÷Ž'Ü)Å×*ÒÑ%,*Å‚í74P@ôâ²K8çã %Õ”ÒòÓ¿>¢ RYüöÛùk/ÑÒã-êçÂj­½ ''q­ÓïóLÿpà#!¿V(»· ïã—ãêÜá—óñù)‡Gý‚Ör9»èµ4ÿ‡›2}kožÛιëžL¯Èû•Ÿxw­‚¿ÜH–êàóØ P¹Ï¼^ðν^À`xQï‚€HÞçð÷;â/ Ÿ‘ðW½ ¥!Ü!ªDŒ‰X°²ÒÅžß,‚&û®#ÞDe‹Å¬Ü R-þ°µ¿¡¯ j×—×Lþ~¤§Ó»+f}£ÌçŽ{‹Úmj¼´ôÎá+þFä Ë%/€èÝIˆtšÚm;þÚà±ÎW]Çzx±/KŸô7´3â¶/:š…KúÖ[‚kA=Ö_Y‡PÛq›:$ãâàx§9l–5¹ÙoÞï ãhWE.à/»W¼+°Ø$_ˆý­œFr=§rilÜÆýyðbI¸ã®MÒ®ö±œ'á:<‚sa@·j+¶Ub᳓WÅø9d³–cƹØg9þ3•cwqœ€U¼ª°cD¿Ø¼Ðî‰~ñzUO §V‘ÝpŒÀ½3žÜóu4?ÛÜ—8R‰é¢…ï|MÆ2¥$Ü1q^Ìüç6'|cžçŠåËú&gPO$Ž6{âÿ÷ápÖ7ÄÚrŒwg…æ‹%Ì~hé¸áÀ\«õ’ñx§´šÖw÷ ñ{ãÒáül[Ùãž> ©öùªÌðò­É½Ð]0^s®J$‰×²\ˆìåµ—÷-^RKȵ=¶?·–å>q見þ½"Ÿµ—¶å3<ħtêWùüæÕ_«hL|…%!¦~Šõø#®¸W‰Óï¬l%7«5‰ÍP¹Ù`¯vhÈÎuõØX“En`Ša{pbÀ-Òl¦~?¸³ú˜Þ•^–½lºŒÛû¡_‹×&Íá½’uøG¨:7µMT\ß_x«W¨¡Ô‹nó @E²ø"@¼%{/@]”+$µŽÝG*+êŸîT´y I87¼¡^J Žçû¿ÈÒY6_ޱ£féxø?.¿“SÊeÞ!¤Yä°Ë%µÊ]!5;k|„*¥^²¿|blºê"±9·m¬:ETÿ…–r†1_ˆ®Iݰ£ðæEàVjû«­¸­ù˜öåÖ“øÔ‡£ÙÁQ!…tÇomç[‡B€7éCçÏ)ˆõUì–+öƒèãß cã7>žcîµ*ñŸäùN´4c´ÇË ø9…tz=üã=?"ƒ”ü P) ¥} åæv÷Æ[»o¼õÃý§Ÿüö½Ý7~¶÷»oü þóÆ¿#?Þúîþ+»ï½µ¿žýß°3^púA½X`sIø„÷†“Ç §”Ìuƒ¾ÞØSÜŸÌü»F W™¸Æºñ*P"äÁsÂYPpÃ"ÕKÌ ß4K?G—zظúìq¶ îùB `§·ñÒâ4ð凤7Qõõ¿Ï›§‘õÅ,¤Š}`Üm7uµW -ý&솠wqwÂc¥Åßâ½³ø°Ô®û¼þ‚Ÿm€õùÏ÷†BUý]ØGÃ%§F®Ô6df-“ÍÂ<¦i¥ß9üøñÙOöaÅxSÐ(C »…'_3èÖ÷â jÍKtwcȯÒê¶”àwË>pzq5e^‡Ê~ÂÙ®l{±©*ú|}Ö€û…_“xåè“ìô+RtY•¢ã×¾hUÂ7^ךô8MÚfcàK2æªÞ9üõJ+†ÓJni%±çé)}V¸ì³ð©°²òY šð5–Ëi´¼)Ö¨úÖÛç }.$^%è¹–ÉûìAOôô\vƒ ¬DI<§âÿ|†=m _×ùêqén ·àòNˆ0ƒË$½"ÜM¦E‹V) ÇésuI~Ug»ãWÖÍ9´Ï pï•âý?Æ^™ÖûµYÈ&x>Í#"×®±òr—Áów¦à¿ñq<[ƒçõ²ñá0ãÂ"i®½·à/¥2ëÆÖ~n°¾.ˆœ|\Ä€„‘eê3ƒeðH(êØËÃø ¼>À—AÜÜüOÞ,ñÁrˆòû<Öpy[îlÆÆùác@>³¸òø(âÞàuÿðFéQ+Ó¸{ß¿ ->k>Û¯Çé&ɂۿÀ4¾ùKFlÝ ?ÚT<ýAÎqòüÛã#óþ¹f| 2OøZÎB}:?Wù…«¿¯ñ¥ú¼zd>+|¼ròƒ¹P…á,ðÁƶ8Ú`ù‹'ó¾ÆÑæ/¼~Â_Ïv[ßîeV-Å?q6ƒä9¥´–Œpvj5Nm‰ïO;ÐblÝ¢¼93µ |×eú'+b‡ë™5— ×Wµe‘¥þӪϜä÷AÈ&. _§ÖO¼ùB(¹Í5®÷£ÝëWÚ¨H¯ú|î(½o¢t nÿ¯¯AÔ »§ò% ])Æ×ó}çz©ð>Æð¯|,`í7ÚnUz+N¯Ù%ýTùïšðñ\9³/]ÓÓFvbNû%Û|Od—ËÈt>Yl÷ô;âÿdb»¤û#(PÕ{~©@OÛ e¸Ý%|åIs—£;|Ä^ƒÈ/*ºó#ìz•èNû\ˆîæËkw¢;2õjÑÝCëî­›>et‡[ ¯Þ¥–.Þ-ý,áÝc7áâ{ _Tx7{—G…w3Gw»GîÜ:´{š{™Ü¹zqç6Ú(†Aþ¹ŸU¢p™dûÎ&Ɇ¤j³â`Àë¹–´¼Üñêwó²E½Þ’|ê¼llúýðS]FJÌvÜP},Ù̼2g½Ø—û3¯¾ôü4®ôÞ̫Ƿٷ‰×àvãÕR»öºf¹–UbÔó_~:–¯À¹÷üG_çhñë†áÎsIâ±þá1À¿[®`*ÂO†C‚&zTÅ1”Ëõ5·*=Ô5ô„o‚àÝ•`þÙžÜûÏÛ–žBfÄw„Q<Ìúϸ_]`]õ{ì£ Ø.bþ;¦M6>¯´×/´÷¾ÒÐ0‹Oj‚ðMPÎR[ ¾¸_ö*/ \»O9í’³Wƒ¯8lö]•^Úûý/å·ÿÕõËendstream endobj 286 0 obj << /Filter /FlateDecode /Length 5091 >> stream xœí]Y]GFâmyB¡ó„îE¹Ç½/A<0` !Ë $HãÇY¼fbÀaùå}î23×C9¾¾ÓKuuÕW[wÏó|`ø_úûüñÉíððò„ OžŸððÃ!ýuþxxçpüfôÌóáô““Ø“ž ֚љáôñÉÇ«Ÿ®7R¸‘qµ:…£ÖNêÕï×|ôÎpG¿ü~T³úp½a£5ÎJ»º·ÞðÑzË –»ýÚJüGÕí½2Ù;k5å„\ëçÐÀZ©Íê—k诜ñ«»Ð_‰Ñ9·úh½Ñ°6iEšÕÊÕ»ÐP ëÔê}Çy­5Rè`Õèïå>¿\ocޝøZ¯Ìúϧ¿ΙŠsÒÞ01œþöäôGÃ,b”RËÕ$Ü eœY}UØôé—£¥[=…/ÙêþïÔ(¤Z) ¯Åêm Ÿ›‘ 9̸Tœt…±¥U°K6pŠY£äêKø±€þܬ>ƒÎ{£-ŒŸ;=œ†Çî6>~4ýø,pÂsëVaùÆxÍWϦ?*C’ÑŸÑaqKq`É´-F :QàȈYaNwu¤Ó#dž†½ñQxŒ•ÞÓ^_¬%Lé@¢‘ZƒÜ¡‚^€JµŒ4°‚Z*H”·š~¼@aâœ;ï¢ ÖÚ zcF sl„-÷>NUî2ªÕº<úÊjaŒÕùôé ý1L ܲZJ”DÚú¯HÒÌ+k£6 æHcÖ¹ÒôÉ(âœEv\’>OðK LÀ]— ÑÀÊOé8avz4õA /‘ó "n¼rI ±õ°É[çhCÐ2e ´S$P0™VŽŸ& yOaª'…2À[H™Àa(¶§ëØsmeÂÄyÃ>«‡ùHtFÑÎy(Â;X¸Ï2e¼õeÿd¦^*M7UâY¡*²YÙD“²tý㊼—‘a2l$ÌÒ›Ìr¶¦-Òš‚¥ñRlG «Øö)…˜Š‹9#›Àƒ˜I{¦Ù*¢z>„ŽT;âI¸ŠÓ!+[òõÔ¸t»ˆB弡SŸÕÛDö²‘£2øy¦¶j^¤3­=ËQùA¥3¹%cQ‘LL‡½ØZèÐÈ]¥4XæEwz²ôf½(7\ŽÞ"ÐDq5£pYZ—µ¬76.ˆg—,YÖM|¯ÕÛÌÀŒü¼šäQÒu˜¼Ï •Äyë&Œ FÛ¬QÌaA6ˆyZ}ré]dB :¸^)G4øÏOðŸà²˜%‘WÀ^Îì|GÃ÷F’iÄs"óÚÆçèŽRØßµBDd .×K!YÒùËH5¼wDú¯k>Æåʨ3D°ñ»íÜÙ&ÚSÇB!sqo.z:] ¤\§²´wǽ_zQ>.[$à#®£ÂÓ°Q „qïE–4S6mõ\mP›Œð3 Ú…yë~Çx<W€&ÒG ¨>rš+»–¡ ÷°,ór\o`GFNûG]fž£j:ôyA8 Ú4EùçÄ»yÑÛà®wá»å³æRz<±óæÇèÅ·ðýE%ú ¡MVJ_Jpýu_PF+3¾hwޤx­Y,¸‘«ï—>DñÑztE£¸¤¶dO+‡˜aÈ”õ¡Â ¾0ÁAöºnÅ.tËrÚÂÛ$ê,ÚŠàÂÏç‡ 0‘‘ðÍÀ7gã½…â#¸—< ZmíÓt…ÿÙz«gþY‘e×Ê'YÍa 0 ‡º~9èxô¢p×zu‚6-³!œ|Û íÊØ‚ôo·Ý«²@‹!Ø¿9°VáG5B+F#±ì…l qš¹Ë—äˆa ‹;]Øž·°4¢»'Á#„D/7#öaN~t2 °²€€|âIÞúÿi7Ö“¸Hª¾@·´q©k¬É1 *¥ÕaWÀZ™“ÒÚÄ]è£X²$FÒ¯+ωxS’‚ú?­æ:1V\þ…œSÑûÅ€U[¦(!ÿ)„~:MJð¤K=ñ¼‚à[à[‰G7kô—”®s;†¥Úží:?Eãj% KüùÓzÚ±AfÌ“!Üèž’&$!ÙE•‡kÊ‚~õPMƒ¤E2E€™~7³Ì\rtÉDýNqÛÜ¢w Åp Œª}É“¤¬Š,xÖ]¤£>øÜqG%Ÿ™°ˆ…óˆýiˆºúƤ«N[\’YŠ„àr”ݧ'Rò„FZ•œ>ŠÆ÷èF*0xàŠ´KA”Ð~œ%LºJhʘɡ«0fKèÇm¼|2Í}ƒÑy°=¡ÿb«À–v„"$?Ô ,ýxQ9ÂÄ,Èl}½ìcd†­ÓA½{$^¢qUÌYÓ¾ÂÓ´¯g¯¤QÞ {S±œ#6&#92ÇôRÖÞ$´ã˜ל;ÙË+nioíPu™Ûd¤QK-»4²¢j{QÈ Å. ƒaª.5 j5fŸ§èSÂÉÚù5â¾PLÒë{0¹±q†Jáç/‰'®×¤M:Ž|(ÅÏ?FÔÐÀ0¿úM´4NkšÓÆþ—µO%!.Ì!ÄäSýÂÉyU#;K2‰¤è¹7d/‰[ôV¢  )“Œt1¡™Ft~5ÕžFÈÓDì©ç5×ÀÆp'‹Xé¸ðŸó.fTø…‰oL|M {é“&.\ ¤ˆKI—Q^UÉ„:+*\ &Îb[,`îX÷–x(Æ `›¤GqG½&ôpÏAøhrn¤€;ãÙj‚$Â&eoÈ¢¦O'IœÊË6ŠðÙnMŸÙW’=ßÊ£Ðaà0/YÒ³.Ç&±ý{78XJ;¡<°XrÑ I>³nýŠ,š4SŽnѤ ®Z0©s> ­«pÔÔ¨©Šy êo5&}>‹EPnQxÑs¡PPrY©ƒBúTm\2¬ŸëŽ;¶ÛLÆ@¼¾‚øûr±BncÔTJÑ6äØ †7»3W€*J¦Ãõel>Ày5W§J–ëiCˆ¢Ò¬l­! ë&KêÛÍW/cò£ 2÷¦ØÛ !H˜„F ߤê[–žïÝÆGÓæ¡%“a`6˜½wú‡fs(ÈÓßµ³Ñvö31•Á£*8ñÕ1}ªvǽ_#@e[¢5À2qV‹T„-)«½ªÌ–FO÷æ¥:0€bÕËHÑôé¼ÎÐ$O½¨œ¨·ëý·ÞV F ®FïÊëìÄP°P—þIè/¤õ:ö—|Àü«0* XgTˆøUìû!º—Üñä»V³¹;äÀÍf,Ù!<Ã…†ðµG¡N}ØäŠ6'7ê)T±ó/‘ǽ=?Úƒ‡Žnjüy»ÎzØ©ÝwB!9ß‹Øõvbm!öXL8½xÀ†kc´íkÀ]ñ%Qûúè•¥9hÙé篓³˜Ã½ø®êA›$™¾z–»§'œ<¸°2Â@K7¾¬rƒ‚`ÿ>|òν“;÷Þ¾úòŃ“;øÉ_áÿÞyÿgð×½Ÿß:¹{oø`ñ0c­åù0£Ð@§€iÀ‰ç·k»z5¦$TüŸë; ›÷¯ó Üí«ë½á”ÞnŸ;Ç"2ØY|S›ü¸•äæ² YÙäУÃÀ“ —99%7±\®ÁßÑMpv]<_¬3•4N“\«Ö'ÑYbü #ïŽ8¡2õ^"TÆ­çkI®ëœ&æ.–NƨèÙŸ}ÃR¯©†.WÙRž_¹˜¤X ¹õ–²n®ÿ*b¹ÇÑšùѰkœ§Ñ!…»3µYm8¬°[Ž6[Ee‹Tà¹Ô®TàIõ: G% 2qxI[Åê \ÈfvÏs,ÇÖ¹í¬ÔŽ5¹¦xWÀ©¥s239ê†Î/»™¥ÞZ±Ï)âýŽ$äv .srGÆ£EwËÕ‡…âôbY§ d#(OÇïO–âdÌ_í8õ|Y 𯒠‹5x %—µO®l+€•›,Å]¥lÔðÛq+¯±5–󺉧dt‹$ 5Se‰®Mâ&»é‚YL_/ØŽï+‚3KÙ¨@<`ã¦7²‘9#÷dcŠƒRfAk–2 ×Ï,É·7Þ¨ü÷7$æø&ÇpÃ!±†ëO3%¼MI2p Ñ¿qƒ´Ü3Éó`vV‚£­Ò­É?ÆÕÆDw5bôV ÷åC’ IÌ4Öˆ”AŒˆg0¤æf¤¬‘•œÊbxÁoÀª§QÊ^Uvj/?ci\®kxCPò !Ûi8cjàXdíw”M¸ácò›²Éÿ$²½). ‰eêscbŠ\{~†Á»Õ&Ä”x¸ˆK¬•¢ [®YV[cè——!õ:ÜSÍ_âUm®˜gñÞži$úbšç3 vœtéLRè«5ÆÊNJJizêÿbúTú†…Ì'AØ­W¼«¦ sºP¸ú±+Ù-r«`µ ‘’‚ŸÅãmŸã¹F0ž[“ΣÑú,l¥XýsMŒjEœâ.XÔc¦ÝɸÕ?"Ô7Ñ)Ç#“Üê˜:È ìÕ¬ ¼–ºœÕ¾ Âxisg]N9¶âÌHwoŽï2‡û¶è2ûÑ^¥.w«PiyÜÛhmâ$F|‡cå¯Zš[C=íØçÛóEMrÍ´X-¡ ª`0<³6ìÛ?)„òìù#L‰p² }CŽÿ†Â¬jÀÃy9¼üGÆÐ¯+ ­¨S,ªØ±©S.2!S½¶Ð˜IõÜ’ú`§E–´`‰¹]°ÄÅ>XëÑx®–LiéŽoº0|“…1›ìá­3ݵœ*á`Ûk?Q¹âŠÆÃÉd<9eYHýV~?Ijê&SÜ*ŸfB¸7XZºÁ9« åþÃ𾇾çµUø€„á•1žïÔÈÔ¿“^Q‚÷ǦàW[³EŽX!€øšÒ}@våuE5Ž&J¿IÙ¾éñM*”-äœà ‘=dšÚ>¼4uè^«}Nmz¬‚xC†Et¿ÛC÷IùyÏÜîÛô’ï‡j¼¸[võÍIÄ/ÈßìL €.žÕ·!Ù”RAoo?Ö³áxX„c:&öX¼ýâ‘׸ ¸Gi¸:³~å»*™=ᑾB‡ÈOý-žs‡…×ïMO@roEú|’?ðw¿ýTßÇMeüþ•¦…³ z¾ÕÒ*ô¶E8-“±úK7ªfxét´6·¸Ú[C¸i¡äŸO¿†îá.¥òFsŠÝÌÓ£¯ÜàÍ6€nn4Bø @wå'MÐmpZ“ç§<ß P ©“f+?ÀÖZ«]E›1œÌÅ»—œ1fºYa´£h˜¡ùûÑ_åœåôTMÃËšÁIŒln„®jžÍÔ‰Drx.·T[ɺþ¨¨}ªŸ :€Ï zÖÞ‘eÞ™±’ÅG¾­ÉîÖúÐ:/•õß ÊŠç+¥6¤íÜÈÔ»†¯½‚Ù&´î¸Ì×y‰åEùuÒ j?†`˃„ñU0¤ ­®åépaF¾yLÉø+™£ðk}€_fo~›RÄä9#ÖÁ_—~÷2Îãú}\ãàt‡;ÖW7ü¦C¸ÆØ3Ò9(]‚3{€qX)ÁQ¶gdÂÊÚ8(/®b^Ux"e­i:d:$ÍÀ}{]ëYëàÌrÅãŸ1«…Ùˆ£Õ¢oU8ôú8mâAœ’\ÌÙ ߯gAáöëäÁ¤×N‰e~C¤ôùîö?çñA¦[7㶇™Cà$ãVU5àB’ļ Ï]ˆw˜ ?Z‰ ʈñv4‚” ¾&^Õ ú´ôÉ—>c0]è[((‡âƒå²ˆ¤aWºÕúø*‘9ð¨¤âK á2>nYx.6Ž©øìÔü°ÀãÔTؔ߇¯Àóðx…HŸ.$ådh{ðåÆŽ#l$DÖ\‹mõ eÂó™ÖCëØgKýB9Û‡ïð„š„&1 Wß„ØÀN›AѤÒnøP1XÎÈG˜fÐ[ÃP>ð^¹ †x­;aèõF«qwGo¨,º5 ˜èo0ÑðTísñ¸X…‡BzÚƒsñÐÊryʨ ü0‹¹ÛVEm¨‹o‡Ÿ:ã"ZgòÐPûx'ÑP\ ­Ô‹]‚ã£õ^Pˆ9\ÇI©³…Bcâ•Fèäj±ð_€EX‚Ò·¡¬ÛÜi…ˆF˜¸iè½VÑ»×*41UõãÎÅ­öêí·”‰ïÞÄY7(q¬zFºw·³Ÿ^z•¿“jÎ7PYÿYÁô^”Âd¥l^ÝRÚ†‡®g¿·Ç­/ê˜Ì>ðmÌ.•åæÞêcœGâ3þÛ®ê¥{¤K÷*Ã’LØÇ-ÇÞ䄯Ë×dóÓ]Ò;lÚÌïɪ…·Úg÷d•ÝzM¶w‰’žF¿&i¶îü²o.Ý ÏšîýØ3«¯pÏ{FNBdýНÏÖø4. ß}Ä&÷;ƒœµ•¬]¿Õ„Å_bp…—cSÏk¼‹aøÁYHÉ#²×ú­$ù¥UPüæ‘"²£‹o°¦žÍoš!WŒKͰ¾—˜K†é9Æù»]_tžp­—GðÀ[âøÛÖ>8ù/þ÷endstream endobj 287 0 obj << /Filter /FlateDecode /Length 4540 >> stream xœÕ\ͳ\E×í¬Ô5eÍŠš榿?´\"ÄB|– p‘äÅHòáñowá9ýqûœ¾}gæåТÂ̛۟§çûô}¾“Ü ü¯|>xº¹ó‰ß>z±ÛG›ç™nËǃ§Ûw. Ä_¦(¢Ü^üs“{Êm[ïÝÜöâéæÓÝïö­Â$¤Ù]À×ÉÚ íîo{9Åàd ?þ¿Û}²?ˆÉ»àµßÝÝä䣫Ý>„¶ÿ`Ý>j“½³7“3Aéµ±~ ¼×ÖíÞßC\ܽýšB»¿îö¦½*³z½û4Ôʳû Ž¢µW’Ö!ØèÕ>ïïJˆ wrow~ÿ‹?ntœ¢j{ñáæâWŸîžìÕd2n÷xþöy™]ºÝ €[Òìëe[Þ´?x;лfò\í56´»—{8BîÂ~ƒ‡ÃÚ}»×86ä·¯÷ Wp*ìÞ†¯^LÆÊÝ} Gr(EšþV¿E³XÚñ!|Uf’šO;ÿø ¡„Þ݃ŽÏàÆlúó«¶!òµÑæ;Æ´é”*ñŸãÙ«„ó»ëÖ üËû U¯ø´x" ÿ$¯òrœ&¶&câFµžœõtϤÁ³á×ÇùÈ¥›À —Àäù#K¤cË$vÑÇݿȶp/O‘äZ;3 Žñ¤#žEÊËÑøW‰FÚOчé‘вÄ;$nàPwp€O£cȹl8md~ç#üWŽQCEž¿@€9üƒ.í*/ öžÇò¡ÛŽ8‚"ãWH-C>éûmÀùx±U[hm<˜,ïšžcíÅ»?Âê¼@zZ4WðO2)ûŸ* ´§œ>$ñ¼2AkHÖw= Ç‚7t@¿‹ÀSWÚ¹j/åî·ø¸bó’BÝ&Ò+bÄÁc&z0£ºq¶,—È@ذŒÛ½ÛJר ؆Ða/€Ç€¤>¾ì=áÝ ´FÂè¼nÈÏV IEVð(gubK€4çLz‚wd;¡&io…—˜tÀ —Ânl&#Â$ cóö¼H²àh§F²{E£H99:1Še©“b¿·23¹£Ù)ãÝgãAN*TŒ7UE2š>œŸ? ´ 0“›<,­Â3Ã`>?m,|LåÝkT„o !•tF¢¨°Ã$h  ¦Ž™2•¸ô¯t–¾ÇäLç¡…ÁaDë ÞÚÅdž{üJ9°¬Ht§Î g =ÏT¹°“±âùeÃuçc¢k •¸ ÔP0»”òÕÔ‘MY»2rü í—äûËÂ%@ ™KÊðó¶ã5‡6¨ï±$Cì6 6ç%Za:á 5Ðd8êH?Í #&%£–•A¸ºøÝ~6{‘Ú·N, q߉þˆH,¿è„m?â¥^}e ÒÆ7Ëù{0o¬¦ßȺ¨p³dRÜ}¶«Œ öÙÇÏÏöõ ð¥:óe²ÒþóaT¼ ýlDÒ5fqq¨¬jßl ÁÂg8©B¨›ˆ4ÞèLƤ¹RbrXíYcúlþʦ¹Ô¯”•®?ý¢‚½5³Qb2”~`#Vg:¼l¦àXbiëÑ“=EÏÄêdȼ1„[ýAÃy+ëŠÚFå ‡ÊQ b¤\5¿ÿCs¹˜¨Cà u¯‡ÈzÔ=RÁ1Xs™ÈÄÅì´~>k¼†l‡Àáã>\…ž¶iUkæÆÜü{ÓÐ%Éš<¸°ûó®9è›áÿ½šSs HðO ”e”r„Ð*k½&ßK´@D(ñN˜^CQIÍßúímœsÝyaüŒ19ì:J[kfikíR¿ElIë´ò5›Bƒ™#âíü줱  $aÞ‡IǸ4t^Ÿ°RY§RyÁ¤ê—$„$VÉ}î{‰fã·»6ЛÈüJRPLJÈ·’Üiïý€BnçÕvFñùEœµYŽ #E ·dœ{œ&œŠd Èsƒ¡¾f1úÒ"ùÏÈ þÿ úø˜ Èœóê;S™Ïòsj7é¨ÀÖ«ÎÑjާëNØ”xÌAƒ †ÞÁ84TÃø[vmÓhšê‰á3àI€µ)B®h^,b ×ÌxÏŒmº%SÓI~Ig¾ÐIú–ÉOÂU¨Œ]ñˆ-6d¨at¦ÓN„\G¿æîW¡þã¸ûÈ©"‚8Û1ùü³A§ª%pjqÐ'ÚÉ'–·Ð`‚ƒiN·‹6˜Ìi†g\AÎS«^té>Û9Õ¹G!®“¯b=G %Ì=,ðíì3k|ËZãœÁù!“讂—Eÿ ½aCNzu†ÈF4ÄÆÁfçT1z/é»1‡Í+9;[E¢T)ÄË"§ˆŒÌ©q`u)±sc–×+Â2§áõ¿%vÇð$JŽ /ÍŽñj>$<|‘Bš`4=°äÔ*³Ç¦ q4&hÕIÞ —܃y†|Ås É»æ¯ÏO{÷!“ƒÛGYHÆC,8Š^™£gçGpΑpÕíšÇ’5%nÙYn*b |a«ðhûòÈ×ÂX*æ$[‹ÿ4:1ܶ¿Þn*¨žÈòÿC¯‚}èû2C•úט&ùD³ïÌUá¸JÄ-‰lVÖøþ3ðï7Åv/åZéSóM™u°p#‡ ^j“ùQg¾ÏäçkUy­<š(ÀuÀß÷1áÙ.]ƒäò @Ô›Y}°„ZÅÐl© Ê¢±CÇb‡9<«”óWvçÇŠUÀ0uè®~Zç»y…ÅX/bu2aµ@5‹f¬EÆBƒ7D À‹)ÄˆŽø³¹9îȉ$g ôÚPI·ëHÆûj~ü …ë<ôSðaœ‹y«L¢ô!éJ›Óß÷çþ_Ã7Rli—diuÎy!É7„^Fº¤jÓ¶Ÿ{L"èÕåµ´>šFï3Ýy‘`…¤:M+×ÓÜÏê­·‘¦ïì6@57JHƒ—È\&±,V¨!-q4e6?_ÈY $ÅeNŽÜ +Þ+H†Îöa«¥Óg°Hk™ÛD†{c85WW%@U|,›’Ò¹~’‘S˜Ó•ûµ¬ÂÂô­²} '#¿Çòóý¯3߃)f3þ”gEjJà·SÞ [›b’Ö¢s—Ⱥ€-²lv‚aƒ0ƒ” ÂhÓTÀ/+hО£qíd%ì~wîrö§{bÅÈÌEï¦ÖÀFƔ֑µ†¯²E´~ÚÝí@a„Ûú$Á öj_|±yïbóñæùV*‹¢KýÖa«œu˜"0Ž><ݼswsçß|}ýpsçï[¹¹óþ w¿ýÉæ½»ÛW« »½–ªB˜‡×}”\Yø"K/Ppºˆ\6HYè+môƒÀ.æíK”“NOÏз[Ö…4lœªsŽñ|x|‡K 25:¶€•³ÏùÅqH¸WÆÜ™‹}]D¸9Èä—¿u‚E|êY;ž†J¢5‡Šúß…J?.ƒÊÙ§ RûG<ËcㆠєuùmoújOç ˆ”ÝJØ’-¡´-gaâ6î½ Yæi˜ÜaK“BÀ~°OÑ*À¸M=H›jB¶`> ü¼½zà›©êæiÑ+Ð!k‡WÙ‘b;ê‘Κ¿…SOÊ!A-Ö“¿=u{¤ƒ]žš"Só·ûCï¹)·?г<äÔy5(6~]B¥ôŠ:„xÓƒSRøu(‚ë‘ ä× Etq‹G¶”$ݱ--±(’Ö¹ o¶Ù¯§Ã£aX¬–%D(0­¶CŠëU«¶õ:‡Jë{µJ/Š„F® tQozÆ‚Cf”…n±ªÆfwç+Å—FïaÍ` THñxü¥¹fþ¦1˜rô,V™×æ‰c<øÝêN®\¥˜Gv*êm”Ù Åz­.TƒÍ²Ö,`”'ÅÆ—Žk×äp68-äxìÞ¨i‹8˨iãrÔÆ†o^2óˆcp:˜ JIg 隘sè$–EƒËh»ˆ\Ì¿VsL¾19‡aiR—ç_[bLy½Aá`Èñç+9UhÝÕL ƒÌÇFH^å"‘÷áôE¢A½]ºØÀUBæ (–-š\å=3· 7ëú\A ÙK`+ÖçYW²¢H)æ5Ò{Lþ¸®6õ†bó(3ÁRDpZ®ÓhÅâÊØ±B¥'£$Õ´?D•3‹4.;-š°¨'úÞäzÁàÍS0xDïl§|$4˜ÖqäÂFaD¦0Bºò5ð$Ù×Ü¥–kZ3|¾G†P¬ñÂ,ñtÍœDtJH¡áJõ‘“çS0?ÃÓR—"9»‰ç’[zõÜØyƒ¼u:Íûs "‡]ܾģ屦8ËÒô" Û ÔG­a)«´ÈÕ(ëAÙ¹s ûö¡Ù–¬!ç2áM å†ä›'Q*Ô4‹ _ÜõR†±¨0Jñô«á} ‚BžRèÂõµÐC€¶×®qþ&1ñi2y”•Í¿ý{pÛ¬«!Ê;^+4eâ¿THº±üçÂf2šT.…¶v\"ÔÁ ¥D ¾ž“‚ÓëUIÙwYbýLZ…HW!ÔpuÛK¿)ÝRl5UXÔœ4’D„–s¶~dn—ظġR½8ö«wŠèå×¢¯0ÃâÌÉš%Ÿ-ĵbY&Ô×g ÉZN o.$3Úô÷¢½*!‡vâ¢ô¹“u—LV¦zzËíäDI/ºÖ™V}‰–¡/$ ·?¬ÜI Òï_dÙ²U—ýÓà;Çþ¶êà-Fvo8惇Dä9|wƒèö.VŽnƒpÓ7ˆn¯¹X]¤ëå ›¯IXE ¸U½Ìøí€à²ý|¢ŽËC.ø8zÓƒ…ÊMì]*!äÙêR·Õ~\Øå¥Þ‹U]qä… L×êBú:‚U!1(x©Eu€¿Ù†hwã[&»èœJþSW\Y1ä·åý ’ózÌ¿Ôøõb•Äu"òõzyèßQiýW"©ÄB,n‘PºË•ʩY«¢ªu3÷¸XΆŽãYFBÈn#+ÑG^1Ñ,ó"xÚ,b0+›3ÔÕ5Cb•á—+ÚµMHÊV 1¼8Ø{W„úhß9™“¾»")‘úŽ @^ºù¾Ösc…‘;©_]‰8ß#õpžafÇ\­Ï ÷+W2­Íå‹> stream xœí\ÙÏGGâí{ä ‰Có„vDvÜ÷â“(“„Éɱ;ÁgbçâøÛ©êcºº§g»_¢(Нw§¯êª_ýªºz^ lâÃÿÒß÷ž\Üxß?¿`ÃË<ü8¤¿î=n^¿™<ó|¸üø"¶äƒgƒµfrf¸|rqgóûq+…›W›Kø8ií¤Þümä“w†;úå_ð£Þ˜Íûã–MÖ8+íæÖ¸å“õ–9è,7û3<+ñU³Ûe°›£šŒrB®õõ&<`­Ôfóöí•3~ó´WbrÎmþ:n5¬MZ‘Fµró<(…ujó.öã¼ÖgæÁªÞoç6o[Á˜ã>êÿqù'œ·Trz5L [/&n˜.ï_lþ9^~ OŠêIXˆ7Œk’†‡îlž°eB fzëIsïE~øÃ J‚sɸ׽«i~ôkèW8æŒì÷kaó$>Û~á7;øÜ¯š4¬LÏç½çÌÅ祥ÏËIHïTîþ%ö.¹Ö¼×¹Ìý…/™òD à «8N­©^·°×ŒÛjz¿Ã…Ökl$Xã ̤Saw8îÎ[—ï]¼¸Ô“ ÊݸvÃNÊ –i½£-ݼuqãÖ;ÃËÏ^=¸¸ñÁÀ/nüÿwóÝ?À_·Þ~tñÖ­á½U;«w)ÛŒÛ0sWÑÖnÃb•¥=I¹Éjoíb2Ö+p§5çNö¶–ì@{!&Š›à0RJç|l¢ü¦b­v±‰ JðzÎgIC$è²0*èµKšº óþŽëQœ3Þ›C«A[Ø °EéÓî}vO[É|O hݸ"6ïuÑšZµØµŽ€±ÄÂü¸óî óãÞ¥ž>èjóû´V×v&@†òÂQ}ÿ·.N1!îÂüìÍOÂ.HÎuotÚ°Z«›PÏ /¨bÕ&ÃÈò¹’Üa#q™‡ èhtÌl¿@‚w $ãÒ2ˆ"Ž 0v~À±`f€7à®]Ä›Ïâ”S\öLªF‘Þn3SIU“ÌlE–‡kUisf¼ø5˜ÙÕ"¸½EQï±héB`iů¥þ­¿mej‚ÐH“£˜àùmä &Xú]2ÁÌîÎǤO4J-uKf²y…ü]u$Ghx$l]“7Ò*êH€àOŠ8éüm Trø÷Õ‰ï;¥Â0À^ 'ÙM§O§ÎK§Ñ~£aéæ@:}€wké´ TcŽ#©t=ĉ©tÐh$2—vÄçI0U7°Ë–t,—†w…K»×6À°µ0-Y›Vì7/ 4ùñXÖBDÈY l¸¡­"jWXî¦tš‰Ê××¢ôÆC  Jo'{NJ·„¤ï&¥«»5Ç*S´Ö•)Å®&º†•)R*­õzùÜUŒM0©k‘OpÈ ùa'ÁåÉù]Ç?ïåwa†‡ð»DÜ;uc¹"·Ñþ=âw'p/Giüì^ŽÑøä^zˆéÞÂýN2¤Hù¼ß=ç^ò.¥Üre@½¶þ«×çtÜɳG5ŠÃlrŽ ´ùi»ˆÆ´y¶s«Âî~FÔ°7é&ÔˆjÁæ?” ™é1ÐUxQ`ʤœ€(Ô󙉂°bÃJîçߣš¤òVo¾)“©¦'ˆÂœz’ã ™ßæ¿q“kÙ*‡Væ`n +3È‹Iz­Äæî|lð¿TF8¸+'iµÑ›Çx"ä¤Sfó` ÷\Il.¡WËüæã™!SðûgãÖN RnžÑNãÂÐ<=‚Oæî >MšGÆtž°ø2™îÏaÚ3C¿ì.Ö"5ZlîÏ}~R)–¹’1É£Íí_ÍŸJò`™ÒÓàw„™]xJ^Xè¼GPÜ"©=À nÞÄ£¦£I½Íƒ-·¥9­e JïÊ+®‹†µŸýì>Þ›œÉUXBñ= Àiœ"*öÜÓ9³èa‹à&Åiò+èᨠ£ˆèÖÌà:æa;|Iæ·‚nÚvybt3Àb´>ÝüÜ¢›1Ö&x33¼“ #à·+øU`¥L±J¥ùgˆt°¥ÏˆtnmôˆtÖ+ÞE:ŽðdÙêœsY°±ºÌš˜>’!–3HÀ­56”(øÓâVñ å€¤ÀÏb³/Sí…ç°Ss¹ÃƒÓ30ŠƒwД°J1g»4ô¿Ü÷­t¡J½V@c™:2¢iö­EYŒhÈTî÷¶ìiùòÙˆê‰zá=yâóhœÙòkµû[)QÇtj¡¶á°Yð_ióɈú$@ÝžH錩ÆH°(Ý0—q`ìQï¸é¨áÃQ“Ébñ9$5` š=žŸ)Oÿk”ᣠë=÷ˆŠpˉ,ýx‚G®>¬ë). žHµÜ·ž®¢H -6¶ C„rK<õST `"ÚwÄ× Ø—!3l•«ZT*ò–(P*NçÓÛ2Ëòà1kû‚V{+¼áº,`wsÚ™¨Û½Q¢¤µë#TÒ«ùr‚Ù`±ÐÅÛsÁXc [¡ýÄ»ŠWž=–Åš°\êõ"ì†f^9pMƒ…Y$ÝÀ+ê|æ­P¨ET‹w>‘Þ{¶×•÷låÉb¸ lõe©°{4 ´Gf%·X@nm‹ô[æGpÍïA\vB¦†Ó fû¼´¡&ôÛaaQðÒ9tŒèH…ˆëÐಂ-™öRZRÅ=Äpš9¢ÏâÎ3fW5>hãä÷»3ê€&?Æ-å ]§8—!%ØB¥I×ã8¨Ðpv•½‡Eá 6>¸«m’N°•Ý{2Uà£tVÐSyt¨žÊ¾Ùó2_üg³}± T K·¼ÚŠ]ŠXìï̺…(-¤¢K„^13Š,[ $ýÍüì·f€^îób‡p:æÕ]wÚOå=þt€£9ÈÂ]N"ÎüIP+Ð:³ªêqíj9UÐΟN«a2} /_’1ïÍ_’Þ+ë«wc1¥Ê7DÙÔ¾aI;x»ud’³”îÖ²¹7; tq]AÌ㬈Y‡…<Œ1fÚ‘3˜0Ç¢Y“žŽ[kÔ+ZærÔoæ‡K3OË7­?#”n¦t~NÄxòx(-NÚh¸¯Mƒx=•¨ ïCåklôíúªSóŽ7P#Ëp“ ¯’¡¿¨ñÝèSðµ:ó'¬u¯”|‡>Ç¥ÖàžÍ››ãܯ=•ÆF§ë6Uˆ°qœ ’Ó{c ö‹lüHžP³ôþ(h.C¡6HŒ©¤‡¨¦ ñ‚£çe<*ËɳLá|A ¦Þõ4<÷ûóq5ÎSµ ªÉyæ®2z“‚€å{t8ãTŒ0i¼ò´ÿQ ‚™I”ÊÎ×ÁR¼ý…lÇ<¨©÷³Bç`ym8Y¾{ d‘Äj8ѳÚ_ì·ÍÆ ¡ÙH‚šùJV(ÊYÕç^ý¹/#“I½AجÞD\È]ÐÂj‡²øë8úQ½ôWu'hWYr²Í…øz b;ØTÒCÉM\~ s»'ªjòÍ‹¨JâéFÏÓ54M‰½™ÇjSÉ”÷¼B,R™òº×›òšÝ¨„‘é`iWI>–ƒ¼„¹’ !{3”X—_žQ(ùŒÀ4ÍÎþe<†Â¤Ï³Ù-|Ñq D\Ä‘TfÂ|‚ tºÙé%ŸµÂ¯†ÕµYD!ÕVQ¨ÎWÑçpMÓñ "ºHun—S:¡+©ÒÓvŽš0°rx6.pN4 R²5@L†çëbmѳÎÜ<Çne€×1¸$f^#‰3Ck;:Ùˆ0†F‡wuò–Yœ­¤²aÅ¢ò/ƒÅx—î1¨îÏË—­fpÏi€n†²ŽnûÉÓy?\Ÿê%¥¯ù}\iM{:†ÍMCë¥`!°'G¨'WͼK©a.gÞÑj‘<}9 sDR]›T,7®]¬1Ñ˾4?5·ˆ¡<™.—ÎïÈò¾"ËëøÅ]^G}­cÞ—%~Ú‹ºÉž5²Ù¤;LRÛȃº–æüˆB¹ž#*çÐ…’Åmf±T¡uvßÍ¥2FUF¡Ç)3±GÝþRà™»/EšñÆËâŽq9øû ø°Û~$ÅDùd<Ÿóu)éÚî!®ÜAl.$§/w ‚Òx÷A+OS;Ø¿ãà­Ì”ËH?lÍ\ÀUŸ"cED*ݺƒ9>-M8 [Rä|¬sK’.Üw|%LU7„0õcÃÃò6 ±4Éå…%W'÷É»i©»…$>Ü´ãƒ?9PèrÞ+NÇ×  ¼ÔµçîºÔœ^îãN¢¸Wæœ79&¢q8ð¾îZÐΘa̬cÅ]Ó$Q! Éd û}µÆöý SŸB¯0ªnI¯ŠŠÄðoq:£õoIÆš°úŽÃî‹¢Dkð7ÕîÙW â°ŒP¤åÐü75 •C¹[•}÷•(KýwîÚÞjµuS¾|˜|ËijòñÖM&×®ê\õòÞý~WäCØÑº|’1’Ó7 HïOìFú×ewx€EÜÈ1w‰N±×w‘rý¢é3„¨šcErå!–naW=£± Š«øÒ*s8®î~ŸUW÷pdôcŽé®Î ´‚«« µU `¼4·*ˆw~LA´ÎÂ9¸ ú+ÑÂØî, z˜Èõ®òÊ‹RG~’—I‰üΔ%p@Ë®Tˆ~¢˜îę߲.„¤À&WÔ]`PwÎ÷pæ‘ý+?é£aô[üiÞ¾BîÔ¸‰¹!R+ŽH¢\ «yE[úºRÕ‚U•zç •R±Ö¾TÖ4'§OF M?Ez»Ð¡”oÙ… ìz­\~gÖq¥ðS™Å9R*7²|[å:“xçô¡¦'ºI‹âGš©~±M<©ž·~Öj’r'GxàÕ«tè•þ`ÆWj’Þ']nÃëe@ñÖ•´Áº·Õ+hJÎÁ%^´byAsY÷\ê½Û  pûžß‚CðL¡WSÞäw´dÛt ð[»D”ߌpö‹Dé%¨RúôTíܾÛE@j%¾u¶¾]”*@ ›3Vmµ9·ßN¯jMòÅNÍEßgB&½Ä­,ÂW¼­Kîâ+CÞ¦‰IÓ+¯óí–ž<Œ‡@ˆp¿ÂqŒFl°-žEǪS…%t±ȧ?&ýdBB£9a–"V§8xHÂ;†»{iŠÍ!RpÚ 8ޝf~ïâÿÈé½endstream endobj 289 0 obj << /Filter /FlateDecode /Length 5667 >> stream xœí][“G•&bßæ‘§€‡~ìŠu—ó~ÁÁ"À xˆ!$Y¶‘fddÉv÷·ï9y©¼TfuÕt÷ ‡¬VOeæÉ“çòKÖ|¹##Ýü/üýøÅÕû¿Õ»g¯®ÈîÙÕ—WÔýpþzüb÷á5<@ñ›ÑKwן^ù‘tgÉNk5µ»~qõpÿ£áÀ™ ûkø8Ji¸Üÿn £5ŠšüËÿÆ‚Y¥ö¿dÔÊh®÷†µÕÄÀdqØ/áYŽÿ(†}œûp£†ñÞ\?´æRí6Àxa”Ýã1ûO†ƒ„½qͪšïr¦Øÿç1VJ‰”8:H1ûÇqÌφ#ÄÐ=äÞºþpÎêœsLT¶;X†äîúÉÕþÏÃõð$+ž„XE¨TÀixèáþåGÆ#ÊOLÕN@uËQRkab:*m•õcŒaÂ*I[ĈÑìŠÇÿ¸GþQÊ Õ~«°HÍ[œÙ£xkf ‡@èDú‡zÞ’xœWŒø!'Bàyk)1þy®óçùȸ5"NÿÎΩ&‚¶fçñ¹ÿÂ3ã„s 'ë1 ‡´•K•;¡·|-èû!®ÈSÚƒi¥5;8]Aˆp‡JñP?º¾úÍÕ—;Ê娜ÎÏ , ÌNI@Q?|põþƒ_í¾úÛë§Wïÿ~G¯Þÿ9þïÃ_ÿþzð“Ýw®>z°ûMW=ËcŠê ëŒÄì”Ú…WÑa³B#›œ2£–VëJˆX%DåYÀ– ýޱ‘€>ø!¸ çŒËÀSaw aZKã‡è(«¤\†FIöT€)áÔÁDwŠt»AÀýJI“6 «ÐNÈpNïswzRsb[\@£€;"ÓY'©Áq”ÞÒ©G€µØ´–×ZÉ™lë‰ß)õkV鵆…mþ )õï /®\Û&ÊYµ‹Gñý¿ŽM2‚0.ð¦gî¿ëNS*[§ ÕR5;„’¦¨â¥}Vóç$¾Ë‘à6×1ÉÜ̆šeˆ×³E†D{# IæTÊÙK›XX朼ñææ•Û“0‚ò¶ÓJ’‘˜·¬e"ª;úg97ðWlØqŽHY3§ÍR5ˆ×Õx¼È¥!¢AÌF;OàÔ‹Q °[Z°®æî1ʱ×bv,FIõ-g†ÖÕ·‚Ã0„á¢õ-¡<0L™ÖzŽœ0DHÖŽˆ¼×Xå¦2íù ó†¡ê=™3ÄŒ&4æ¨..s°h¡:ÁÖÆ ’ÏêJG²žßU÷4~×öĤW¬s K–Vt–ìo¥›CÎ…%Õl4W¬Á’ó‹ûÇ’ÀxE+óx2úpLy@³jÒ »¼tVMjà—X›U“Êêóµ”U“ÒŽôõÎdÕHØ[²jVEr¶¬Z¥"Ä·Zeîª8}CM+ÇtéÓÇ“PjÅæ$ÓÇ“L‡Ã’ËˬqG€¨mõu¼ŽÃƒ¯5Žã®EÕoÇ)‰ˆ©G ýF4j,w\p‚KŠU¨éTWÔP×ÏRC-³®ªÕqñŸn µœÚ¦üÓ¬©àÒÙ—åygâRùÁöÀåy„ýÿä>—ñès!:µ±Ô%vDžntKz¦dÒË@¬hƒÏýç F.¬–û 9R)éšb@qqú€ ’eôíÿןr©,a¼Dàˆ’oƒÈFn¥`ûG®¯U º_ Å ÅG®¥’à&;ýtðc©à8œÃÄšØý§ðó¿ =‚\p¾¿Í'u2 j­°+>}6MÿM³Z¸l‚Ý’Á`Ƨ›+¼²(•ÙÜ ì…+ &ÃìŸLs~ž6è &Z³5³Gÿ2=}Jc²I7ÎÊ £›ú¥C“#»9Y+ª!ˆâHZˆ!>„…R`uN KTÕÅŸX W)‡ÌxVqÔ Ý±t¢¸nν`j‹y¿X¶œê$§˜ˆ­¬œ/ï®-#ÒmÆ[:à`¥6g‚•m "˜ñDO½ÞÎÂIÆJW‘Ç5¿ò$ÈkN^ÇÀIåBmgàØ‰ÖM 0d'Y7?®­›RZófP²¦‚`»¨îØ®dR’ñm¤4~Î%‡½È%+—M4oµr¦·º·rÚÆ‹¥vâïF8ƒ£¹ÔY^1exEø,YNÖ¶¨µÒîꌄ?µ²€GÕÐ'?ì£t3çK|ZHb…ÝM×y ¸EœÛZØ!¥bnƒ¶vv¬LXó ¸-<÷ §¥ þ˧zæª(-jÑü¹iW8«û6}÷Y‡ž÷àYðûð'#íÆÓa— •p’€ ÃñOÓ$ðç‹ÔiÞ[üÎÿK3ýi(× lhü~ÌÄHàÛl®Œª4Ó“’WÙÈŒQ¸¸Ó]Ε@ÝųåD)÷ÜÍ(t˜>Üä3ûY‰öL€`}šŸ‹È\¤it¶\b?> ,qÇ«OñŸ ¬Ëž)XÆâÖË#G(òˆ= XËøflzV3=—°[‚9»ñ|z&=ý×ãG.¹ƒ&5ŸËhpwã¸Ê?f'²'9R.€€•ÖIþÍЃR¢rÁ1@…yU”ÀÑÆ°Z1¡¥ÄÄEƒWóݧ§ƒž2¼ÍÖH›hŽŠlU*û2[hŸ° ß´´%}zâ7j–ë$`©,/wz Ì<ˆÏ§ƒkR´,'ýyaBI£ ?ÿyÜZú”D7;’q8‹æ@í:à=In2)ÎøÒ÷é@ÙþëÁ4ŒPG;ÀÊõŒnõ‚D]ZÚ¦¥§”eêÓ•Ö6Óux‡ <Ê‘’Oé@§5¶¦¨Àhfrü ³¡¥@G;goRô‰Ž ŒD:²Œ·a6c`¾žÙcxCSæKU3¼L2‚ÿ¬¨}Žós0ù'1oùަUͬîë†1Ÿù4ÍqÓüXЙ5(‰I{üG'TohzÞÕk#гø˜)(c¤Ú9Fâ â–§@¦GÆø!éÍôj*G ${Ñj8=·FÎãǸ>>iZ‹ÇÓ¢_á\ mq<¡ì¸+FÐJ Ãá Fª¨š‚)0³—Žt…vGÕ2zY$Q*Ið=¹s”«Žu/mjöôäB0/´eÁ)¢³™D_‰EÑ_$á_å`¼ì‹<^HºI—^VYÕ‡B;‚ƒCÊ`ç,‹TùvÑÉ!RÂW¦Íon—()Ïmâ¦KPê='µ*æÀP"“ “¸`‹,áÓŠ–ˆv0_Nr×gë]ßr#ÑÜõ)Ë-;¤ª‰ÒñÍA% VÌm•pvî-.‹í\wŠç‹í'.µ*öñv1‹ºä}&YézœÜ0Öÿk &è œÓè#:a i|³²¥…Ù¸ Ézü;£îU0Uîšua©ÎŠ{A8TÝ–¡S]ÔV(lö‰¡)¸£zÑqFGYŽÑO^ ÍÓS o >¯ùâDŽŽ…J1Žj†öJq€æÉYG}w=Ƭ.;bÙö ZiZÂÜO‹E3¦}Þˆ#ZM•ËȾzéƒ扈Ødh (6š‚)) hàÀ× ¶žâô,`g¾],™´¦ã€IA̹ª±cö“~M+ûت9e¹€BÈÃnKïû!&86“§«êàt^j.0½lëÁX½,¯,–ï•ùVðd®'ór¿ÇŒ`PzÓ‰^VKÂFzœ¢Š +HŠ¶Ë‰€Šàáˆ2¸jq™4fÆ·W<Â5Üë;ÍV ·ú¨Ô»|s@ ?5-vÑb½;v¹ŒÄ[Ux̉ƒ4e·RŒzÞ"¿Ðü›–¥˜(•\ š‡JxÊEY&Û@ 3µjdéBú8£óà®–w|_$Іš|ˆ¬÷{“Ôë™ï=³ 7õgÍLI?÷2¾˜ûÒ¥ÛïÔ[Ra5Ìd4|ÿãdûßÑ.¨ÅÞ¦DÌÛÁh°±j [ZjǶ5Õ:9 c±îÔÚ·EṈ̃Ü4ζ„Ž‘ȯ‘ 쀧í°. ÇêÆ%$º¬=.µ)ÂKg‚ã¿7`afk—â $B­Ëð-ÔÒP f‚ód>cmXñ!ÊYWt‹½í] žü­YÔž áÖ»å6ÜY­'ÆE™ ¹Ðy~:Ôå2vx¤8L¤ ߦø«DêÁñp˜Qó¶×*ør ~þÔšÐ+BìÈz§µ6=k„ôU¦=ì¾Wè›;5áj=YOw`æ:Hd°º¢æ&ôXS b ”ìóa¤€/J”d|u¾gÀ8H4…iø§š°Ëô{ÇŸÖ÷bªu ¼¨¶¶2²9ˆ×7ðèùºÞû»Þ´Æù–»ÞøùºÞ°2 t£6zÉ®·¬0â2Eîï91R–>³ c(Þ³©¯cûxQá}cRÚ»yj#ÄÖ=7 êkM ©Ô¬Bž5á+ʨJß5p]h;¬nr¬ñ7c,䋸ëj-§³ FàÅ:ÙØçXóE·¢YÄ@—ÌWÖ±âjË ¨IË<¡Ÿâ‘ˆGz1e¦Sêw¡î\,L× ½((õ©ý•oK©ú¢Å—žøÆ(väýåIú¾{WÍt«éß#é[Þ(|4u91û­×•YþZQlTrk‡VÙc\ýÂJ>n½5½«ÕËEò·³W9?<_—þ®Ñ)²¢›Á·Öý¦\ú.š¾w Ýâ'e¥¥O­Ìz²ŠÚ/&€¤¿g¶œ¥»I™²UÖÛéÖßSóô d€žÏT3&áðw²cTä~}>_‘8]0˱{ÿ€˜U±TÞ‡é^”ÂNwÏ^Á§ÿQÚ‰endstream endobj 290 0 obj << /Filter /FlateDecode /Length 5499 >> stream xœí]K—Ev^xWËY{‘¨gIª$Þ0¶ÁÃàÁ 6Ð>,F^H-Œ[¤ÁÌ™_ïïÆ;²2«»PÉ-3s*¢#nܸqßGΛøÀè¿éß—O7ï|a‡'/6lx²ùqÃÇô¯Ë§Ã‡hÀ©fòÌóáâ›MìÉÏkÍäÌpñtóÇñƒÝ^ 71®Æ üœ´vRÿ±ã“w†»¶òßè§Þ˜ñ‹ÝžMÖ8+íøûÝžOÖ[æ@,wûm%ºnŸÕÁ>Ü©É('ä­ß¢µR›ñãú+güøú+19çÆ/w{¹I+Ò¨VŽ@C)¬Sã¿çµÖÄIàƒuÔ?Ë}>ÞícŽb§G¶ûÏ‹O6ÒOÞ01\|º¹¸ûÇñ‡47ãC´y¾Ûƒsg„ÿŒñ¬õ~|æe'… µtàPˆñZ¿ !¹Àkë¯13g±,-­ïvbÒF(º=§‰êÉXßR áŸ‚ßIJ«Ua "¸*½+ñq ¨ãÏuë8…Ÿo©¡†F8Œ½ëcÇÇ•úãÚ vÿ¾û{þ‡LŽ¡NlRZ )„Ã93ãOµåÓþj¤wã£*²Ú½ M„ù‰ÕËòw’RÃÂ’œ¦ÚŒß,dMüIÔÑú ç&¡`,a ß¶“ÔÌÄ\·®•çUî’Qh­j“fxdÈ;Nd‚{É=ñ³ÚÆ=7P1ï"_;§`VŒ‡E ê;1t¢.:Óüœ)s•Ö_‹ Ueº~:®f«7d„ˆ’i”¡’løªBúiqùšŸ½M|§ÕTß (%©Íu5“¬kõ#ÉÓa÷OK,/öJâsÆ4•U½ #/ˆ9Ê(æ^ò,.wÒ‚#[¾©yµæÖ®ƒjZ7Yí³n6tŸ _`Éøè4„Vg¢©lZ_–Je3ÿù\H+…¹LB%ÍVá¼IÒƒ.7kõ¨o”½´|<ŸVò•Qó%³ð[>ª¾"ŸLÓ>Ñ%.ú¬'äTÄäm«ùK‚_ÖÒ²ÒHˆ—'OÆ/Ôä9_TÔØk/¹ž„°kº,™œhU¤9³Ýq–žËB#MþBóúw½Í8|r”a»QÑ‹’¯GÔŽ‡"æ¡°a!5·$Ëhj«²/éhµ–²P+¶pÔ«(»Ü)‰È¨ÞX 1ó.]vˆLÁð&¬ŸÅˆ$m©Š6qË^!1ߣ†3¢½.ôè öJEªkÝý’¡Ô†:/…惠$-©^5¤k𔩋e Íz êÍÜyf í3™š‚×`€­$€TƲן¢QÆÇ´º˜VÅÿZšvŽ]éèØgbnÈ5Ê;=ùÉp¹¬éT™f×ûü8A¦7ò7àøçiE¢²4aåWð³$d¬[0Mé"È 8‚þ¾hŽ4v2¦Äi}PËž|£Ùº°ö!º›Òš{­ô¥'ª¡A£€×èbÕìÂi¹¥gØ>nM9¸pO-³’R$ÒnêPÒ3’’:¾ö ¹j~aÅI"7ÞÌETô»HÑg´¥x;ÍaÁÍÓÈŽÁ–U†š’Rf«3îí@KšxïŠU|ÓÀ Å…o4«Ãi3DHc}‘rÛ˜Y[C¬~t±ùœ¶¤ƒtˆ…f@º!†ç__ ßoøðdåÏ›oîn°òÚø§áéŸÏ©¹Hìc™¸ž65ðÍf@ür“4("£rà (ÏÚR¾¤ ¶V[\A™ÐFÕ6±œD¦XJqÄËMªÐÎÒ.CèŸ*´¦Ü.“ƒûIy¼T¼Üd–RÅÕ&óœ*òŒ2½ZŽ^’tÞù‚kE›4p9ÃÏå'øßŸ 4”¶r„HÿüâãW)4s^¡™W(´o7_.ˆçù‘-.­’n³¿Å¸Q¸%£EÜäzãÎöÍ·Þ†•2g”1z¤ßð+Vèñïv”k ©ùø`Ü>Ø‘…0‹ÂÜx7öÁ<ãŸÒ)øÒ9Þ»¿ÝS‰1ˆjœè/ÜkwþNLéC«» ”£¬yø÷aqœZ&EøƒÚ¹Q5:m8äÁýшӴ¾\zÚ¡BÒ†Wâ*ìô”2)B–¥ ༛Tm“"‘,Å8fÕ x½‰7 D±kQÈÑ&ž¥r0•I…S©†t(±jÊ´ÍZcÃûUYç1( bT# 1-JÝÙêFUÍV<í®èñƒhFÒ¶vï®Ûq¤0ÈøüvtšóIsïónëÿIÆzܽ'")Á˜M°¯˜×~¼ûnÃÁöæÙá˜al…L–¾m͘s縟Yýý8/Î9ïZ›”¸ «¢ƒPÃZ#ÄÄÍ %Ó“U(K3I‡2©ˆ-å˲ðÎF”š+ÔH$ôºÔ(«ì$m¡YËqT¢k¤³–j®šC2Mé”–ò¨¹|¹Éœåš«Mæ=×ä¹ešµG –ù«Hz‘œÃ>%…ÁÄ…Mï½;Û¿çb;ÍTþ^ 6!&Mï︥„•ìµÕÿhÈt’2¾õ`|·–Œ¡»±pyûÿX þŸÂ¢ÅÝÙ~ðá?oëàlr@Ò*À?˜¢BañáàÔ¤kÍU©z¥íÔ|¹Q’|ÕQ²Ðöƒ³ÕTCý´mÛ\…8à-'}дg£CÈ5ܨ¨;_¢Î’êƒöô­àò$1Á½Rm›@~}ìàдNT“+wƒ ÇD–@~ÞŒ«ñ‰Òƒôh1:´k|³þŒðÅs¤28!À¯4­jp l°Z;*x¯±¦wÃ’è­ß¾<šõÌ÷é§D( Ú‡EŠ,“9bY« ëëb↌áâO³9‰plSHÞ~3ê”ò¶çæ0¦QÈϯ¿Ål~Ü:ÆýøvTnÙ¸¨ö€aqDåãmÿ8]ë­Rã½:°dtV¤ˆ‘dµ 7O;KrSRò,·ÀwÚ8±,70n â£rƒG’s¹…Œ­åæ¸ÜæMœcp4Yp{£IbH; ¿z¸ÄÅõ¨Q ÷6éPɲ7'¡`DL9 ¼ü¹@’ “ä\@’˜æx< Á‚µF$””*È}ñ€³J!…$¡YÊ;Ò ©€Rd,ÕD TŠeR‰`-Ç!CdJ9Ú¯ 9nä ª9p­Š.ïÃ;ÛßîšëÞGÛÆ”:cŽ'KÚWK÷¡¥¡–§„«Ô °@û%Œ¹liÛ^‡íb¾µ51÷K|†N ?ŸýÝÇ䋼±‚â>ôÑp¨cœÉ^!B µƒ!fdxÀºñNÈ-#ãK¹¥¥]ü_ž[ƨ~©C|…¸ál(%yZ*»_£2UayMÛ†ù ©(&×!f¦FÊÑö𩽴º6½7´90˳vÁ/–ÄÀI‘6–rq|R³„Â"AT}+d'ªK(R›._QNhŠÇµ£¢='ÝQ‡2ÑùB×>TɆznÓSO( éÈŠÚ×§Û3ºo” uK>µY÷YeCŠ‚‚m•ÆÂNNG@-Á  Êå¨\ØSN5iÎÉR“·Õ½\L–m¸q®j…fC&–%ž‡ËåJ¥š ¥R±@'¢V q¬`ùÿU甚ÁyÊ¡gûI°{IA}ŒȘ`ÛÛ5€uèu–mýÎ6ƒ¯ºÎpÛîžV7ˆÄÕÆÔ–io4§¡â¤¸hîq Ð}0R9‚êO›€1©¡uØåF& |=ƒ&UŠˆˆp¾„¨rÍmÏóR#-¬óB²–ã D#Õ)h¤æÍdìPhÂ×tGMeXKb,UÀZ2穦Ì,‘,å4èeDŽ¿ ¤ äNlDà­§¼×ùÁaNùÆaRI;Œ~ñhRi¶½®É)O9/XÊ)c§•öH”ø±Ô1w=ýx#ô6È—4F;»3»éyHÄ®`)¢RháÈžBVÇ%„ϰœbZ;§­‘\fé:N!YËqL"k·ÀX ‘*,@¾$I¢^‡ƒ‰8f.VÌžk*fÏ5i^™b.ÆÓ9È+…;¿(Ü+Å9å5©eô ÿzgûæ½ûÍA¿¯·íýâ#ô`&é½ÏÛßÚÀµì!¥à >ðŸ8 1äóbØhŸ¹lïÝ¿¿°±%<|lñ1k[úlN¨Íj’’§÷€oö žf}ã«•ß[^>%Ûׄ2¹¡ð{Ñ …#‚“·³ŽozÓŽ dÙlòb¦“1åv@Èx”.·r9 qF¡6×4Žjá9µÒ¬å8jØè 5ÒAqµ½©ÆÄ‰¦tЬ&šŠõ‚@ª¨÷REžW¦WËqÄî²Ä¯â8ïu Å([NåëîHaôt°Êœ¦c´k\“©®é ?m|„›„œWßÔ»¦ ¬¸)Új‚ <óþûͰRJŒŠŸb“ö  &ç~*uŽnŠèw—GÞú¿q£ëóuýr+O8¥¥7•Q¹~·““FH¥ë¤{è-$§ûãùÙãOtëñùŽÐ3éÝV·zÔaÒÞ˜¤Ý‹Q ð»y§Ý‹:Ñ6Ý—ííSºV«¼ê/Äæ+©k×±»ûÉŠvã™}5qßÐ=+çóÍ^¥>"S:> \È)úW}/¨O|úÕ^ìϯ9þ{'Ce¼{\gWë+ÕÇ•Ùî@¸•çóhá^øÃ^~S°òÐ _Ö–¢¬õÊ5ç½RíɺBGØdûæ¦yA®£·øÝKzæåÜsºŒŸoY¿ì+òT—‹ßê¨zäKÚëï*Ÿ¬­FzH#¥£Äsñþ-(ÅR»îF{yÁ»ü˜7]—Öëhô¦3zôp0>/vÒÐÓÓYz¥­¥Ã}‡_Î{zÊU+ŸÄÛ÷ô0õkÕWèí_vêk‚ “òA~p\ÆÃ·üPº_Uš©»Ôáu,=Ú%§#£+_lᑬäñ=Íí&?z^[{¢‡ÚÛ“—&öRoòâKÏ Ðí»Á½{CÓÆg„ž´O,ÔŸÀ†å 6?Sþð0ã*=ÐFþ•—¸´§8-%¦lã1Ë"ïAªO[•nPâÃ\õsð¹ ¨{ÛE=Iú`FLDLD×DOå¾àgDË8ä:‰S3ØÉ[ÆyÌ^¬aÁn!Ê!Ò1;…PÀ—ÆDºæïC_­£Ž„Ïz¨Ý’LèkæéÂÕ>>v£èˆðó4,›á’ri TS¤ñ5½D&)”#C!ŽD ‘Ⳇdˆ¡ÿ¼£³Z$Ð÷üçðàMƵtÂòv˜Úãa@íV ±$ X}-"Í ™eRd™¤Ð/ el©é{sd0[å©$tBÍÉmý®¨\iÿÃÎʲ‘EyX3Ûçå[.ßU™ÖÞá)gÈu’ÞJéÚ–KÔ#Imr;cwúLÊ’$o%Ý´¬c“i¤£èôÍÒߟ“`¤‚û%‰Ã»4ï",Kq. Q‡Í9Ѥ`ã´ñr ûÇ›?RbÞW»ðQ Û›a äØ®Á¿§Fˆƒ¯ÑÌ Ødâä—ÔMÈÊøE¶’ˆ_añÙí¥¨ôúx1,‚©wç&"|ozä…xÀÏ6ùgpqÜþf†g¥lýaÖEßÚØåoÈBÿ˜_r¡¤#tÆ 'Šà¹ì@çܰp£;ßPÎ %öAHRpyIÅK±øîêÏÈ›O‡ÖŽ¢Ù‰Ó¡w”ýt@ ìô¨ùÄ:qi¯¬™, ¨Lï]ï Þ?®Š]묃~YGvЍ}O¨\i'+‹a&\ :1Μ-Hæõc‹-ÿÊÙê”æ¦¬Éí ®°Ö"É[áŽ[Ï[玌À¾Öܽ¾²SàŽßœ»’ƒ»UbìØkË ØÅK¡V þ©Lí~ £ÀGüt1F­µ¾UiòÊäjD;AšHÜmørÛžûˆ–ÎàVÝõí8qÌšo—-õú°…|¬ÑOZJ÷Úúg~ àÝ:wGáç­swÔHo»Û”ÝÍ"ïy‚Ú«âîLõ’!÷—r¸šj¼ò+>o¾¡R¹Ëiñª§=`~¾=æÃ¶CÜž1yì³òÑêgó£àpL·üq²ôÙNá%rûå/{Ò'h½˜¸ÿvq«¿ÿÚí¥JÆí’¤œ—_¼ðìôS…m’º­}âöY³åE€….1\ûÉÜtEG.´ÏrLüàËÈý>ÞY>‘éîEG“î¯Xìé-'ò:®º“´~òz6÷ê9OûÐ| TŽtf£µ° +ÚýÎù™õ¯ê&Öâ*˜Õó×8'SFÑÚ@ÞL/~ä4^ •VÅ+0+øìCuQ¹ÒNéÚì ??.èëÎ>}ÞœŸž|¥¥SŠüíº=ûªéÓx -ûCùî„^å[·òÉôåcwbŽô–÷ÎM/ÑÓ÷žé#îý&×gÕª ­±djª÷ðšãýøù}íÛï}ÖÎw‹þšÕ³¢t¬Dox®t}LéÏ•²š¸8•µ--}¨¶ÿ¦ïâwP;Ã}Þ¬ì¥t{½?HùßýÔm>=>ø°hÔKÝ6#æ»Ü½—N–êùñÞëð‘„J/–@}†“æËzÌ÷m>a~U>äSù ÏúxÁ™ðÿ&ñÈЇt*«OZ•ÎŽJ/8>lÎsá‰cwê1âìdòÑÒu˃sÄþ ó{WŠ 5?× —B±´œ>ùùæÞSqšendstream endobj 291 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7388 >> stream xœÍ™”õçÕ€¦ËØ`ŽÝ¶«ìµ1aY,ƒñ° ˆ¸$I€$„f¤™éÉsªÕ~•:ç<ÓÝ»gFŠ^2ñpÂÆö½÷ìµ1Ï»néÚïÝýkFNûÞÝ{75Ýo¤™®ú×/|Ÿï¿TkÎ;gJ¥úìC}c}æá ÝýèevèÖ=¢ï›P~õ…±îü©ßžZ Ÿ:>užøwWæ.>ùéÿÒÙ÷éuÑšu*Õyêó/¸èb þù/^zÅ•W]ó•õ›n¸ùÖ¯óλî¹ÿÁ‡·>¶ý‰Ý{†F' f«ÃíÓn¸A»á:íúµëo֮ߠ]¯Ý€¾7j7nÔnؤ݄~¾^{“öfí¦ëµÑ߬׮¿^‹þj“vz¿I»é:í¦Úµèßèm“özíú´ëÑǵ›6h7ܤ݈¾7h7nÒn¼N»ý½_¯EW¼Y»q½vãÍkÖ¬Y·þÊ/o¸jã?^}é?\ví5×]þOë¾rÅßßvËýÚ­_ÿêí÷ÞÃ7ßy÷76mþæ÷\Ó]÷­QÑ*FŪ8¨x• U’JVETQULW%TIUJ•VeTYUN•WTEUIUVUTUUM5©šRÕU US5­šQͪæTóªUKÕV-ª–TËk¾‚"¿æ]ÕoÏ1œûÉó¾~Þÿ^{NϽê/©_Ç^úÄyŸˆžÿð'oûäíŸú쟻à_/t~z‹Íó·³ëoƒšcŸùLë³?ÄEbäs~ŽþüøçOý]ù öKοä7_â/½íÒÎe§.ùЧOÎu–;û5P¤rÞ”/íŒXaÌ~‡Íi ˜@ÚäDÅ\1O“mØ ™&úʶàGËóÃ3{²;áqØmp< Á½åmzŸê;n}^…“‡>Výüw žs|K{@{`gã¡´]‹?íÛgššÊ> ÛàAûãÚ¾Á=»¬À£ðdAÛÒ.8ÂqØ—Yh4Óó™eÀZ0ã4NÒ£0ã~ƒÝj³ýc`[Ì•wåƒE¨@Y.$2‰t&Zl2å3ºý¤5tIÚ:Ía†¸ð仩“ßÐÐôZ«Z¢÷qiˆq2KHŒ@óatxx‹`'x±kÔjØ. Åm1kÆU&K¾Õ†T¤B´ÉƉ©z­\ÊqfNÇK >%Tùä`š;ÄH^RÓÒZO <|X ´ÄD˜—çì`$ì5¼Ä?#Dð^çc¾ Ñ4þÁš$–ÏZoæ•5=ªæ¶rzÎÅRKI¯Óëtzí~[À6ì²+掓©PžÊ1MØuÖ¢‹ψ\»ðäç:k4yíÔxËÔ2îó„×à¹Ú±#GL¾ß‡W,Ç{Ÿê=°µ¼eå ï^C¿A7æÒb.mp…½/ÞŸÂÞë,hjÓs¹ýð-X6×w×w§Íð€o—qÌ8>ꀘHË†Š£ékùZÔ>8ˆÁ·SOÕf° ;OMžº}52=%Næ™9AGÝ­‡7òZár¼QƒÝî«å¬Å…Xš¡i†aiŽæÜ({&bâ¿D–¹e%òeù1ÁÁÓÏÇ„˜¢#™È&³‰L4%¥ÄŒ‡2él0J‘ OÜ#»'†Î¨ƒì>5ÜÅl¥{#a|I¬ñ1ÈB]÷t@†Á&R‚ŠÐ˜aÀíY)Á[ éb0çËø2Ž”9aN˜d#¸ÁÃyhãg(t„h*d²­ Æ·ø†P9»œL'oý‰Æä±Ö 5d¡-°öæ†gFfÇàe¬s]O &ùE¡ÍOKY–q>Î' sÔ´¯ékXkã…ñâp¼iŽ>lòý&¯Åeq¹ÜoÀ°uX@OÁ0<–Ü]ÑV´ ÂkÁÝ.¡HÔ¤©H=:™¯äðî|燚J}:³ Ðð•%Sb¶C(ùY=· ål‚ßË÷£4RÇû* ìÂS Oþºvò®³ÓWÚOdE•Íûx³`ámàÄþp¾R:vÓr6„òf˜?’÷}Â’Ð^)Hv™ýXAò+)£¬G9”wvµ §žsÌç!>-¦Å¸AG<’I–2åt)]MgÑh,’ȤJ©r¢­a±šTC‚4G5ÉIÿ¤»lÏ;ò¶”%j‰™D=ôÁ8å@ 1¦ß½ÂœØÆ‘Õ¬ë»ÿ¨8D•CŠG’‘D"™IeSÙx.’‹äÅ<4 œtOº ¶”!eˆè` ƒÁаwÌ3f7›\&—.8 0F,IKÒ‘vçP)\2}¦}P ¸Ôj%Fü¨Œ]ý±¾VÚúö5 ã8È`d%Œai`Pû ó)r¡ôuõu…]ä¹$°gÔ0-Öä’\Lä²élº)AÊîô8Vé9qQ~Љâ^Ù+zÀ ^ÖöÑd( IŸÏ=øÎæ„âJ?ºZàL糜æ~?Ì¢Žš…£Ü®ÅÖ8QÆÙ*–øŒbD¼ŸÞÎ>Xw[OçËk›³•:Q©çêÉfª)7QH—󶦽i,¦ÇÒ#Ñ!Tôº°!¨êìcãLoxwh7&ÑkK=²”>oFD4‘Žc¥XUšBÓwÎ[3Ôô©è‡aÿ ­ßÖß»õ®;º7v¿‰[Ôr¸$´ø§y4ãn=عD#œHðs~ÖÁEªLM…§ib&<É–áÛp$מmÏ—à T©™÷çÜi[ÌïJ>šÁ}")ù#þH0N„LR—2ñT,•Œ§#T$E(AÎSy*Œ°„_ŠA!(xx›LãÅIâ Bš #Þˆ-bˆƈI´ Bèõé‡ Ž!è»äЏ£î¸7E¦ýé`šNÓ5j.¸h ‘ò¡d0æ’’<`ô#4´Úõ!4ò‘J%ŒqgÚŸeŠl êa·ö\Øö ÏGy‘L»"ž™$3Tå(I&“©ˆ’.´\2éKz#.p‡"I4’~\?ùiMÉk°R÷ɤ„Y;XÀ€ÝÑú~>/Eó_œns1ÙWÀí¤²€ «º šÉb#> u˜ U<OΖ4$õò8 ÁVï“­A«u<òk—Q{ÔóÅ1_‚Š"Õ–¹d±Î}êh-[™,¢ÚQÂN~æÔÝš]þÖã;Çû‡ÆúÇúͽîîÁí¨Üo-Ü×ÚÑÞqÌô,Â|l:×Ì6êõ6ÕN+Œ»HÍ{šÞ†­¢Ï²cÑt]'ë¡Ý4IÂAʰ{<¤×O†0ù¥Â‰™Ã3Gۇ˅V‹¨»Gþ°N#f¢éd*‘Ê&J‰bɺµj¨ä)y²ö„1i”‘€Ãhxœœ un«Í‹Ù<J¡{SÌV°æÝµÀl`&<‹ômR( i”ÅNçSWjPÈ$DA"+°(ÞÒi€¡»,íMìqŽ;Ç:—ÑmpÙžaÏphAJ¥‡«ºó¬e‘<XÁs6“óÙ©j!WÈÒHŸ(`Á‡ zqˬ0)Pã4Øen•¹)Ú…H„Ä0ªQVf³Hz'‘”Îaï}áNçù­?|AÛ¹aÖÁÚCvŸƒ´»<ÒAZÑýîmab~bÁsNÀ¼<›l&šùJ-‹U³SQT P£&}“¾Š³dV@õ½S×jH?R¸#Þ¤?I¦ÃY4Òr2™HFRèÇ•ö'H¤&nM^EM¾Ö | &”!+CPøðT’³²š!OÁU†”V‡àG’•Ø3dçœcÿ©í§®ÿŸ—ÏéwAKHOéÃzfîGÒ;ê;¦úuGuG='àEx1u¼v°öÔüÂ*öTíhê8RžjÎ?O6Ý5‡|.Òk«HÝ#¯GÆ -ëRCÉÞ8Ñ—è•zá6¸Ûó þAÝŽ=Ú-ƒ[÷Â7 »¦µéûwïî_t>?…¾×.ÂnÇω^€âªNËÆGÀÿ#Þþ5Ôù¢ñT6“Íæ™H6R+g‘v‘vÄÍ;Ïmv´—ÅêŸm6œm¦JçAÛ™2m¸9ïiÐ1 ™-‹Þ‚u>µªbbûlØ>qróÉ;4»«½É= …áà˜s»n¤ v»™4¸´¡Ø å[Ø=ß{Øò<$iÇy,ÎË<Ï ‰1ùß_Ä»ÿ8ö4€@»°Ov{Ví}ˆc~EÏ®½ï¨ar 3üŒPEŽ%)ŧI|SwDƒúü ¸e¨w¯¥)1fΘ³öšwÎ3Z€<“9XŸ«Ï/äÀÔÂUV%sdʇ¨½¶aþ/uñ%s¶=ûã6ùã|yv¹üu¾Q1£ôÙ˜¾Œ•Å^WÃ_P¹D$“éD.š‹¤"ÒŽr(ïÉy“NÙ&ÛD b[þ:Î= .óójñûWỀüë2§¬Ey–¯ðI1M:“ÊdÙh6š—ò+ë(x Ê:¬hƒð8öÐJÁ†{£Š3üXÁŽ ‚ )ˬìŠ3üg5´¸&[fK¡:WÁ™±"Ì7EŒH ]Œ‹v…}á Ì»û|MGŔÌ9]lDÁ.ÖvÑ:Œ¼z èõíêÃùi~J(Ÿm´™³i–#ûÒûÊûÊíúÜÌÜìÔ|©]j¥[Ñ…è‚ÔFsòÛKý‡ú=^½î‡Ç¬½½X_¯e ÜÑá´.3Q27 Ç\  ÏÁ3#'B7LÜñØC?tûÞõV, ~óä)M­9‹Üà2Ì:«ÃÕáT/lƒÇ}ý&ƒÙ0æX™}Ö¬-ã.ûþz¸ ާö×)ì¼Ó™é:5…ÙòòÞWͯ–WÉ·à×йóXç²÷:ç`²Ú]¤xudx`1¸cb›õaëÃþ»‘ú][¼¾}Kû–ÞüÊÃHu¯+ŸºZ#2 l…‹1Dœ(MC‹!žD‡‰俌w­jî Bè'’¥” 1ÚYjE†ÁMj‘~K<Œl3‘FdYåže›¯°eMM‹Ã‚ED@‹´2"£È•$¹ׯ~©îX‘ˆ¨…ïÈљĬ4Ga‰lXš–Ì("ï®ÁQý¨~·g Àã¶váß¾çÄ7ŸýêÑ»vVô a’¯B \Niþ**1¥xJÊ!ÉY4ÌçM³æéÍÿŠ›f\•@úh|1Ó(6ŠåJ¶žQFjöyZãÓÍ-ٛѴw™»ŸÝÎi†]üƒ"º?Ä-%‰i3IveËå}Þ ¢T?ïâ݈ŠL|÷\¼{—&¸>v»•Õ)ÝDRv?gê¤yq–Ÿ¢CpïÂO¹‰—ÏL ó„¸ NŠZÄÍ=a† ÑΞéh'ríakcwp·¶¾‡ãŽÁ+ðßøCB}IhðE˜‡:Wb‹lŠ‘Ñ¡˜Y<¢EÇ‘W« AÈvÎAŠ×‚‚–ÖZzhšç\(ÁQHyüøÐlœ‘C°£üÏ¿‹ ÿCxcYšã'@°Æµ˜Û¤J~Ù(Pi²Àp,rQµA’^ŠÏŒxûeîK@ŒÁí(­Dî…ÎÓÍ‘Öx)–?ü.Þ|.¿€Ü|2‹Š)-…ÓM¾‡àœ@Xaœß+„Wu§ÉØKD1¼âvȰ›vùõ®þ½ÿ€ïèžûDçÜ;Wyç¨2Ä ˆˆ²,EÄ¢8ÏŸ>å;À a-¿K8-eYTzÊçP¨h9ñG]ïv=xë¦é¯­UºJoÓ´Þ,¼ ?‡Î¹¦_=ñæoîxn{›âp·}mXý^÷œcÝË {'\MÞhÙlÞ¼wó–»1J]tE¸×žúµÖ›ÈÛ>ÝYîüLƒ¼W@ëO²2aŰ‚¼w {”¤Ô† WæêÒßã´¼ÖˆRÃèúØ0ÁR+#%•Ô°&N‡øM{xìgjøµð‚8Õ’fø:<‡Âó>É-¸‡`|€¼ŽèGù¦P&„²Xó¨°naoå¾ f¸…ï~QÉQ-ýŶ¿\i{&@ Z }¸íi¥í¥3mŸ„CÜ[ÌGžR|›ˆR˜äRè6[¨á£Îñ“ü óþx^Ã+ð*û’䟀×$™8 ^oêæ4½™ÁÕáÊ¢áJ}hï³»¨/šjýì^vœvÐvÊð½~¿ŸòS$C ¨g¦pY'˰›™ž+-ÅÆIGá®sþs5üˆîÃàJŒ44!ÔøíÊöN{e{§³}Qý]N„âB–chÙÄ8=ý¶Ú”œ“²ñT*šŽfÄ<2âå`Ñ•”ðŸ¨=²Wô*wÉ4öÜ·Çé°Ym#è zÂ.ÆÉ¸8#Œ`êûF•zQ~WZÛ}ø‚º2ÅÂ%D- ê0ÅMr ®ˆ|â™FA`≠Oe³ÿwdnV¬#e&¢(ƒ5î5ö2D‹Ð–ZQtdZ¥Vy¶Ñ˜oÌW³r¢OÁ8Üï\Æ\ËÆ…Ñé‘éÁr_zOj[ä^èÚøø-"*¸Î¨h¸Îk;ëÔð²ð¼ð̾È~ñü¼a<úøÑÇkwÀµp?¹Å²Ý¼cxàI㓆|_Gƒd@Ž`h¨';,w×iöO¼|ôÍ}¿"|ƒß2SB–åè1ÆÊ*ûQnʲ##â 8ÝFÛ0š”?èÄ%;ÿ™Î‡ßëœ×«>°öP\ˆUÍ…Ÿã•ãG:êübj*–"béh,"FÅ”çO?i™@’;„©ë€"F6¦$ÛQZÑ·ø ›}ƒ¾A×.ëÖÁkðÝ5[:—îÖÔãpõ;nïnÂ]ZŸ.`%gÍ`íÉÎz<0.Ab¢EÚWxqõrz¶ŸÛĤ}fEN•ËU˜ «$iŸDKa)$DÌ‚¼ÑPª?½çÅî®l&žÇiH› ¬,á“/-¿süwÇwä~øZç"| ú«áÛÙ{€°£So¶ŠZ$;þ0.Œ‚ Ül÷sм•Ñ̉¿*–…” HáEYÅ’£i~-Ö¹¦Gœ>‹KG|³{ñÝ/¬ï^¦}Ø8@:ˆ„?'dù,ÊZð“?Ò)§ä¨(ò„€ 2  DDð8¬ÃºÛÔÀÁ»•Û³>†d‚HAidUPè˜ñp ¢“wÄã|ˆ&ã^WŒWEÍH}‚I2à)dÝÃ"Réè*I£c?Ä:÷¨¡)¾-w.÷ʸ•Ôº¶[wXûÜ£p—÷Æ™‚²_Yæù¤¦H—Ù |^š|ö؉cgá»°HΚëæúÞü–è|­>Y¬‰&ÌÁ×ÂHiôf…ͰŲw×x·guTËRj.^‰$‰t:—,¡Ó—å*šïM²j©ZRz…ArÔ¬·èÇÜéòQ<®Äó‘¤H$„4ŸVxÒW1VMÉaØ £Ôi N«ÕmuëBZ4B ²1iJسÞ"æ-ù&}Ó”ˆ;BL(·-¹+ÒOL‘•`‘A ü^ç“ÓšÿD«È¡ñ}F´Æy‡"ZF‰‘C•1sL†W˜(jÆ Þ€ÛYFì/øve«>1ù?¿Ç1ìÃÆð0»°î=gÇ÷¡}›}¹•ѧx6yeô…Óh"&|Œ¾•æôi²tUÚÛðZãøñgž­?/ÃBpÞ5ãš1UGr£ùᘌ`¦-!kÈäÕÛ1áߤ—¥¥ åßFUyŒm³²ˆs9Ê(døŒ˜ceü.úavò1Û%*Œ£©ì¤™y#°Mj°qè .ÃKT&›J&bD"–Šd嬜 Є:5éôí)cÊUö(‡B£>Og·ÜFÏDh0%SÜwÇBÑPÄÕÐ¥Üéç¨ÚC¹¾˜‘ÈrT–F÷øÐÉ /j,~[ÐvÒNÖ¡qÙœ2'YOÑS$«Áf A7aZòtr*1™+–“X9Y‹L)»¥áY%Ó~Ir¨:‰Æ•‡âAy_¤MŒûÛA6Æv‡-ä¸kÂeõz¾é#]~WÐ2…LŒAð]¥­K}ØRïqëëð-8œÜ_+Í®ÈãŸY„#Ü·ßßê3ï /º -Ñ2“`³l9à66;©.£²eeG³6‰^>)ZÆÜ0÷$‡ýVÍw¾?^‘ž%¼ò]ú.Ñ}r]wÝ#—1ýáiþ ~¯íA†ÄŠÐJûè0M…˜àtìNît‡BÒö] º›N^¥9òÆÒwfž¢»ïâÝD4Ç¿ÞÏ•ÇÙ íÍ#Ú‹+´'+\F ˆöD{pšö®Ps+&%=߇½ñ`ïЪÇ+"wy<áŒÇBÈ|ù$&Ê%ôÕ ÍýGïœ5¾ ¤ !-Æ#ˆücBZHñy¾ÊK">‰Îp³‹óá¿—@@¡~ú'ÝyM *‘r²œÊ²S™zº¯vÖvrø‘Ï·ó­ü‘_H–£Qä&Јˆ‰q>uþm¬ŽbFxýø/16…nžP\‘ƒ¡ÙGQN¿~ϸ³Ï;°ÁÉš«m;6öC{´Ø×mv€%XŒ·ŠíB³^iU[É6ú5é«`dÙ·§i]¶¿€Éêƒõ™©B=?¯+òštWÜUKNŸÒ%'"#HǶ;µƒZGlm|¼hĊƺ¥eǼ‹5îR° S°ªW‹•R3®lí5ÈŠµlIŽÃ (³Ïⵘ-C–;ç{§> stream xœ]—ypçyÆG’ÑÄ‘)âÝN"Ö¹œ:‰-ÙŽ§qëœÇ‘í‘d›²MŠAŠà‰ ì.öÆ~ÀÞ‹]`±‹$ÁK-ùèÈräjâ¤N“ÚiÚ©ÓL›™LgšN©ðý 'ÓLgI̘Þï{Ÿ÷y~¯oÇÎkvø|>äÀhh425;÷0ü$ç}úÁÈhhjlðÞÞþ­ýõ+ß¾2¾ \÷pÝNéƒ7ýô¦^üÆÞ×®ïÝqÃŽ›}¾×¾÷ý×߸ýàÐ-½õ¶Oݾï®{>û—÷ïÜÜopÿ}Áýw÷ï„?w?„îîÿLþïîàðõ³Á{ƒw?ÜOpÿ]Á»‚û÷ïÙ±cÇÍÛ÷ÑßuûÇï¹ó¶ÏÜrǽù‹»?ñÉýŸþÔ­;|¼Oðå|¢øò¾‚OòÉ>ŧú4Ÿî3|¦¯è³|¶¯ä+û_Åçî@'D}k×4Þcî<´óÉoíüÅ®ÿÙ½~­íWþä+ïåß÷§ïk\÷àû?ºgÇûúÝà»á—7~ëÊ«WîêýWàáx¤sAöIñaÓIRÐpÐIƒ6i›5y5¥"ßLIO‘ý')¶t…^"Z)‹¶ˆf§,¤[ /cÑö$rÿÌÁRl¾È[Þ*1OãsvAwO™6‹[¹Íö‚þ« ¶Èé"ª f¡¨œ| 94ö„2:êpÍÎó¹h2|¼ÌÖ7ÚöO/îªì.o ¾ûÚÔ&æòèšÛ*WÌï®<_ï”Î7N9Mó%wÝ®ê… ä‘øp*HúûõþGO×ÎT4wr5ÚvKÜ®þ‘·FµKšZ*ilgØÌP¾àe%AQ%IU‰ÚÓû—^¹wM …/$“D–E³-°À³z¹ëþçfï C¯‰›¢ŠgNƹHn Y@‚t¾üSãtÁð~ŠF-“4{/õ8;#çˆIœ‘’øŸâÆîÃCÉ'Ù))‰P)•Òx˜À’m­¤7ÊÝÆj½^±Šኻö\þ¾_<×+{¬Íë9TÏé¢,à(žî «]n;u×õ¼ªÓ(uJKÖZñTñ¤²V@]¨òžŸsY›Ö”Ó`Œ§Ÿ =:úôÄ7Ý5^®¿Lëét„J†öΤ¦£¡…ƒ(¤š[­ÕlCAMY•à×–äEF$‡ØGùy~†;ŽNôGI‘AÓ_SY[m) ú£Ë÷Œ“F·Ø¬œ¨v›íF»îVͪé*X²Á)”’•’`„¸Éì9–‹ó'Æ‹I2EÆØ0˜súœãßs-©ÍÔ:µjÀ“\ÕSkfÃi:nÙ†éh­"»À_b-Ö¢LR÷“¡â.Eå2©DtÜ",ÖUÐ2jžëVZFœ]¢±˜O€$ˆûaWy·,©òe¹¢xhN](Oëã]a.–’1<ŽÅÓX*›Ì¦¸8ˆLJÃÉd‘*Òð{‹¯ñËœ™õ8“5Y•V²r¶YÒ,|h"KQÎd¸4—00ŽÛ³-ÿ›×òò.l7ÏçBÌQò0º§×í=xù·6ø"p€¥KfIq@ؼɨ¬FÉ$ÀÎ8‰³HBÎê´¿ÿg}!p¢Vµ”‚,)ùA·$–¤øjtˆIˆ=ÀƸ$ŸâS¹4H¢§Òg èRQ6åJ± o¶Y©»þ¼ÊY\abn1“(ÅivÓ}s³wó}N_•*²“‡]ô{¬™Á Þ&¦"ÏNçX(™]{®PP¬½ð.‚‹âk‚,#…š Ñy<ŸÌ£A),eRaMP²ÜQ·•uíŒñòRïnÄùóóò¥Œ…MLe¨/E¦ƒLö¢ò?Ùø^çeýÜ;{œ°8Êá$âIËÅÄ´Häh‘ã‘\LæW¤oåà%JƒÞ¸òùÏå™ßõÜn9UP„@‹¤@,ö?õyy ”bRL‚ c‘tË žp&”™&'¨‘ì? /$ä¤_N¨„Æh t-Ð'kçNŸ=}z{ó;ÁÑã\˜ ç’€é)3 ­°AÕXñ–½•úJçê4³…ñé…4=ƒ×ËPóêP¡ª®/]ì-!ޯݷʗÅžÀ¡üÚ;ÈŒÆÇç&æ…f'£Ñt’! 8™Wy š – +êŠÒÕ»F×ìš³î/Öô’ªiª¡Ú²¥T U° Vé.–y„cƒ¹êýþ1|(< ià¼Â4Á2¨ÉmµÛP öYg«zªºT+×Ë ­ Ú I»i³ãê"ˆ€&‰Åô||>‹áQ&ŠOežÆŸfFÀQ0«DŒ„‘(e¼,|8¼ ~¸þ¯ûÕk9{Wÿ ½v TsJ®îéŽlÃû19ƒ6(‡bŽÐQ,šŠF’!<„Og§Xïg•så,Yøñ·³ Û)ÿ¡”˜ìVd±¿o¢ÿÀSýGTQ uuKwƒhkú²Þ(.9ËÕ%xžV£ºÜjA;2d£ ¿­±D*;œøüÐ\ÿýÙnQäP‘¡FàŒdZfà5ƒ"¨×kkµn½SÏ+ks…–"p ÍÐYŽò‚”+äd [?UþAù¥‹öËæ–Ò†–§ç4NåV¢3GæÌ<øÍÏód»Gv{·–.þ_Ç÷\>ß»I ç”vAÑO˜kÅåâ2¬~¥º\o7ëÍzé™E¥( ªW©TŒx<¼o{ˆ|† ³ïª/[ Fa4(RÀxU-Å+¶+íJ£Ru aýùgCó §›W­Zùõ•ž¨ñvñ¨CÐy•Si‰‚ƒ1OKL$&æ''&ƒ3á1!”^36%«xFYe ‰ðz••²€¬Èæ˜Á&)è”d’Hâ‰gý"#“ªx²Ý²,€2‹GéƒØ=C©{ÄÒh¤¡5”ºtõÜ×`œxÕ6ª‚<,ÏÉ´„R²`JÀ³Þlö>´TXKÐÌÏ‹¿äkÛ§<Ì 0€ûïÉ/÷0/êÏë+h³ÐÌ7Á¿mv@1Ò –yÄÛ-Ë…o©gõQNîoóŸ”ÒyPåyšÇ–ØÌ©ªp< ÀøãÔáÙþýH¨ÿ…äíäaŽBY*ʬFŒIü–´™_ƒVsÅë]'ä–¾iž-žµO;ë•õÚjg¹³Üð\Ó+–øM…É,0Ù¯ e¾¿oáEºZ].ì7Н ‚ºÔuÚN«ÖjµÚ-˜•Ez¾d ‹’ °~¤GÒa≣ô,—„9L‹,Ÿ”`³Uf€:(J¶j«°Ù®¿U©–Ëż† ¼|.– (z9“ã€? -½j_hýjhµwów îwh›=šš<´÷ÐÔ“OùºóºyFre/¿ßœ9–šÞ;<õôSÏ|Ý{Û´ï–þ-ý‹iDæí|+2œñÆBÀþ¾yÎX×׋«¥¥Ò²Óö^Ã)Ûš­¥uY·%D}YÝPÜô‰Í³pîp§q*˜ Î>:Ôüõ}àùFÇ!\ŧ÷N'B±Ùˆø.\=¿Ò)™Õd&acŸJ.qäƒA,¹®®ip">Ùûíïc³¡x„Šf£|,‚˜¹˜G/ƒçÀsÆKÎyç¼»QuknÇXpPâüeÞ`eVæ P€Y¨žã×BÛ„#+[Ú)óDœˆ3¯Ã±I‚„gÌ\f2²€Å1<“Iñ¹gg˜ãÌ? àô˜µÅêbßþ°j¬¹kîfëÔÚ Îl§ç_©^\ÜÆÏƒ àlñT}«±±²tbéDù x Ôù*ã0²„[+cd”´Ö¦4ÿ¨9cÀ†è+[É:\ ´À²Ö.5!l¸ðÅê¨+`œL·fü_T_ƒÕkçµÓú*¬~ª:fB} ƒg©1HŽÇç'‚øQð4˜Vç­h1VIÕɹF¾=Euè2S¢-ROû LIB~I›=>{|$uòwLŠ*Q%b‡½Ü¯AÚÛÍñüaz˜z8pù¶ßÂIŒÈòpxk ‡Ç–ÛúÉ!턾ilXg‘Æ?YÏkͼ‚’F(9]œQç1>A'è8MGÓé Ed ˜˜Ø1â(ù,4ëq0é¼8ר¬¸ë§÷žÞxáås?’D„ž%ó bšÃDèåþ˜N:­W^ûÑÞ‚ÊÛ»îìmÒ_M< ˜ MMG0:w^¹JMyUN®xÒÞ´7Í–fû5[34ÕÓkJºg‡m‘P]Ö.Œh9U%ªx“í U:½|fiíLóÕÖ«ÖØÍ øÖBc¡*ƒ¹>’™ñ?;3}4öDì ò1ð 0­ÌQÿô^4¿s¢» <àp6eSfFKjI9µ3ÍO²ãÌ1r23“aQŒÄÈþH)3cfmÖá*B–õ3ëõÆwüñÿÉMùCÔÃå#‡§nC¨ÃØýá[Âýk2r1>–K [ÒÊU#ì€ó«o]*¼›Ô28ÁaÖñ@(2/‹ „^˜ÔyEî8ÿ¼ÜÚêîôn°Ïãrô÷! }}÷6Á¦¸ñ{†•é<3I RÂamù„ù=¯w#r¶Wéuß u–tLfÐs»õ×ôWõíµÞ#ÈFïoœŸ›gd •µº²U€Ÿ—‡Ÿ§Ä§zLæ#yþÝTiæš¹rNãQ¸ˆB®9‘³ôä¯ß9Üo_^J®f=AC#¹ˆ†;Äl>\àì+ñ«bC°YÔfíL)z¤¿Œ,ô?–º—Y é4ÃÓ|R˜Ëý“OKëù%pu×è^þb€Ì-Š£¢ó¶õªÞÔšfÅ2m£¬¸ƒã 6×J#‹"»fÇ>ÕcJ ^6.dXœ…F‘XLÄSé4–É\–˲ v&þ)ƒ ïxFà!- *°ò@u`‹.ï§âKøCø£ø£Ä1¸Q%á&Ã,Á RîáÂGèùìŒÅ…ÁT–ËZÛny­N»SíV6M÷Ríß/õ¶‘ pó.Äøˆ2,–­×8¡*—¡ÄÇ.^•’HH,%i %Z#8!ņ· ÌsŒœì!°pà ›q/]Åô„ߎs ÔªÔ½ºWm¸·SÙ(¿à¼ ¿^òƒf®Ê;¼ÃZ´FCÚÈ€Y0EŒGÆ#GÇFÛîáÈzon¼«,ô»ï„ųîVcµ¹Öl4ÊMÈ×ux×&²¬“ H`‡±ÃñÑðñðñ,üó ¡‘e¢ YÆ™²V<ëßÀîÿ|}rendstream endobj 293 0 obj << /Filter /FlateDecode /Length 5321 >> stream xœå=IœÇur æ”$ú–n‡ý±ö…‚¡-Ø dÅ’'ÐJr8\d‡â"É:ä·ç½Z_ÕW_/œ!Gt`Àjv×ööµj¾_±‰¯þ/ý÷ìâäö×võäõ [=9ùþ„‡Wé?g«»§0€ã7“gž¯NŸÄ™|åÙÊZ39³:½8¹¿þ÷ÍV 71®Ö§ðqÒÚI½þ¯ Ÿ¼3ÜÑ/ÿ?*áY½Ù²Ég¥]ßÛlùd½eËÓ¾€±ÿÑLû²nvw£&£œKkýX+µYÿvó•3~ý9ÌWbrέÿ¸Ùj€MZ‘vµrý{(…ujý\Çy­5ž$œƒ5«™çüv³Œ9¾½æ›ÿ>ýa'!½[m¥Ÿ¼abuúõ»Û9œÌY@ëúÕf P8#ðË­t@á×?n„€_?qiÖ—°üËzæ7ð‹e“výN yƼÂ)v2F­À?_à8ÛéðO²ùHŽKàÀ³´°¨‘ë§u…7€k½Çïò\Ls`Lö»?Dø`E!*T:¡"øåþ·~¶“6B™õóòéϸšš”öë':÷E=Ný’…k×eêÒ?—ÁuÚ#˜Æö&k¬„3à‹@bÉÅ$ ŠD -üÙÒâüæ,Æ[Ÿ6‡__#zb^•‹`<Ë?×ë&à v” Xò¶®ý|>¥¬òr0ì|Ã&%ž¿Íçßr_¯0^¶dí0x|&áøŠppa‰!S¿ŽòÆyaƼþ#”o èq”êu‘J®JšÊ[ÈpÊMBqXTB³ôe{ôtlê#òlì&ÿ$¤ª@5 ÃO=_Ÿd‡ÁÅÉÄ[)•;õ(P^p9æñ[1FÖë‘,àsQŠÿÔ‰÷̤GJꃶžl¸üUp‚­d)Ö‘–NÁõ\ˆv¶†Îú.ø˜(;н\Þ)Žþ Pg |ý×›6´jOÈ}Ô{Í ?A6ôNp3ríM¿÷ç}8ë_m›Ås¸ÉwG†›=r5О‰\ˆ”¸6Ç!"I@‡ÊÈÍm… õ÷A«dfY(ä5ʘ»âxì’ÏÈ!¹‡r˜î[à!âJ£r€bõx3 \ [b]]"!çî¯?í#ôžÔé˜kµ!n0hÓë;‹=L€vϦ€‰ùß±†ÝG¨®Mˆ´#Ç›Ð`°°û7›èëºYveÎuʽÐ5ÎPÇÞéSí™!`±!¹ýÅ ð_w¡4(!0~E ÇJH…Óª±œ´"N”(ÊŒ^˜¡¼ÑãœSÚD¤¸¿¥µÝwFX‰9ƯzFu¥3ÞYü˜Ìúáðõ0áQúÝq®@Éiçæu²ïzÈÆ©?צè>Û̓ÝèÇÀÊŸìÉ&¶f{tÁÞÒ¶‹É<ÎÃÆ~3"i•쬢¨ÝöCu Ø×„üK”*ÜG  ¹ÍÿþBá׃H%hܵ@æªæ©öCœ¯C$邇R‡é¥Pk{-`yŠ­j꺵ˆ£’« - Ï$²î>¾»8Ž?$TÉâ—ËÁ¤ieÈ4‹Ìæåæ9;“ð,‚R²–£¯ë‰¯»Ï `ïà 0Ô½ÿXM¦ÊzOŒrøf}¹É ˆûÀ´×øJÕO%©B¾/ ~Ô¹¸Ø×,qôËZëÌeÒRþLE=E*¢µ^ú€”ݶJ{8_?*_’šÞ¨8,þ=¬U»·˜T2F+2gX&|`XˆÛ y‰€ƒ—Z3ò—OËœ¢ʵJ˜IC xL¹ãʵB‹ãʵZU®õ¡ KõåÚZfmÉŽß:$œƒ‹@ Þ¢úRš78O iCÔ×ٯ늴Ø+ãÜXÖ•3»é"”%šG–™­¬+?ï‹´QŒÅœ°¬ÔŠíy^éYõYé]Ågœº§ø\ _œœþê~Njˆ°˜âûJÈÿ!  N¶¯s‰Liû¸B˜)5(ŸÛ±JÒ÷²ÍÓ†´œsGYbrL³ÁƒÚCW餪_‡´#sv˜  ´b¶ ÿ3RÕ@Ì-š"{ÿò|ZI6´Ñ^–ºÄg»Mª¢¥o, ´ÄlYN° Mòàyk¢WK=L ¤ۇ߂ÚBZqv³Ž Ub‘ ¸‚ÝûJt¹Dˆë«YႤPJõ¿+ ]D¯—ªÿAܸó2ª.5õÒ¦ñj+¥Ÿ@Q'哲QûªÈ¨È™»ê’¶„ëòö"øÔ­½q.'¬n"I®•9ÁÝÙ›¥šç¬ÒÖ¤Þ·¬<«àÁ\gI­UT؆ :õÚõËÚ–w*–a7vÒýpp"›òÆÛ† Øþ .ÖŽ2è ±±Œƒ¢jãynáôÝTwe(2×´ Õg)·{ _³ìr¿pLd·1ÉâŽk3ÅIîÌh]êMª3DKÙaÎcŽû=¢ºõ†¨Ó覢”äîƒÍ`^«áÚ †˜RI]0¦‰šŽIBF³¡CAQ‚[œ<·þ­âT ¤Èt*—ZýóÓ“¯N¾_älµEê #4V¬ „0 tx?åÛ÷~¿zóêíùÉíoVüäöïðÿîþá×ðŸ{¿Y}ròù½ÕWËwWšCå»+°ˆÑJ!J\¼¿Âº¢­Ç–¿9P…ÙØ¢²F¬‰XÅ}ù“ëvéûV£Ç${‡eþ%£Ç!m(ù ï“£"»F&X˜ sþ&”Ò‚5›­ %œ`š@†c¥±%–¹ªäþ*0 <˜“݈¢ŽÌÁ˜2?¶|#v‘ŒUfÈÄ,õÜûbl\Å,p4(šäó!LÓ2÷¸D·:º5a™¿m /"»ØíаÌÔŠóD|µEi,A ¾ž¶ôGótK *  ¬0¶ËèÅ]Ç­¯ ÷}Ýfž(¸Rì»ó :Ú[?Ê7\Ä›SJ/¦kdpSvå,vgšd•ôH(w#ɪœÙ׋nD ÎÚŽÇ&- F×úÚ[@0xØ{tä àÀsÊzT¤º6üßa(È“BÝ’¡ÿ©×ÂnOä1÷ šá3«;þAW=ôîŽ •†ö?¦ÛaQ‰é*/3 óÜcZ –²-®šÓmXð=?®Ê‡¾) êÓGµvóñS¢Ô¯§ bTöü° © Ò"Ý\cÇ À~XŠuQè?º»ÙÕró1Ø §Ñtó‹ÉìjL;¦Y@87y›êݰ£š®KQ‹¿“inÒd^–r×ûêxCà’³bæz‚ê³®>ßD¤g£8­þ\fÔ‰ó!1¬å¬çxóÂ:P#¿X‚çË„Ü,¦Ø>EÝå$D†Dv½È]ißVhö™ÝcÏ—©u¼fЄÂ«  ;‹Fâ_]“­ïr§\ìlRp“ (äÞùÚ÷ÿ³ìƒävž~h»O?pÉ!ë²\úFí¯ËÞFÁ²’œ×$(r·@ºÉ2~Ùܮ߷w–ÉÛ*dßÙƒ*]ÏÁð™îrÝa7Ø€ÒÊúîþòÛáèÜH!øŽ»¢y0YâÅðã¾÷~î'äez2EWmwÅËéÊ8xú&Õ\¯Ñ×{̇Ö'›ëñÏ[Cº@µ½=ö&­Òá‚ð¼:­5^Âëhö|÷ GO,ïµhdÖÚÓkãw/d+߸Øõ¬¼T»ØÄ¤®ú,.œ~’×5½;Íy(‘—‡Ö1:öŠ”i•IÛK´ SÈéöj º|ÕoA(8¡í¥¢êןb)šy5{þjì¥]mÎå<>ç²Da™äý¾j&¢Îé.UhGúøY>­7”$]‡=¨Îù±ý9¢ç­Sò·+ðæÅ”Øx$ç$´Ä6>ڴѰœØ­‰sKÓæ(¿•’(©t¢6âçbAšKûÍÛñä[ޝäzÝÁm:¬}ŠmÖ¦£|ñŠé*óI Ä{5/±Æ)€ fT¢´!Ê/]‘‚#Þ™æ\X1\?OÙ6sþœ6þ×B[ï2æ¹#BŒ;ßDVßí¶6¦]ý©ÀÅ ŽÁ£}!b&b)V^¸Å|~k¾Á<ÄGáö*ÞQk€ïÏÑõÑe’æu»»L2 ëÚcËpû̯Œ·mg5í¦puý÷—4ójf‹–—ï«8s,ÖÔÁ^ú¾1Ÿ([Â`ïí˜Ð@ýªEhp§ÌÞ’é Ñy÷ BWæãQ{±÷‚þ_ã.¡´½!>waôŸK@:ËÑ„Tž“GÐînÕÅyä°sc„±W´U ®¼åKưyc@x› ]|ã ^¬Ñ3/cö€P¶PµÍ5E‡Éqªß§Ó÷ÞJ5hZ«?wɘ;+û¯H_ìùv‡ƒët½ôãÓAô­ãÇuƒäŒ‚µÆ éjÄàu`íþRüíâ[M½/bc¢›%yåìd/qè’önÔÐ%Uøâp|8YŽæÁðM­Ç’ç«:{{+¡W‹èêσ~å–_Q&dÍŸi®oE BƒaL÷ʲ ~ò<I~_ÿPq+m ÍóQ´øí&†ÏËØžÑdÊrZk|}‡›äƒ¢f›e¥DÛYCq¢ëÎÓ³Z`+Íëà«et¾Øáü‡µU•…°~—]IZ?²Í=î×wÆk2¾†5¼•ã5[å‚Câ5|;ÖŽuíy<’o¬+놻®5€ë1Iµ” ™>2ÞO ­ôKÙì05…kúמ:{Îj!ã¸+ÏK6¼ïUÒ%Í›äH5ï1è.‡Ùʹ.ZP·¨¥¤ ÷Ym›\cîØ5©cÛ}ñí<>qâzv•_Áá¬ÕŽ6ìrˆÕnXĆ]|ƒ™3ÆL"™æ+pqŒ‘.ºy©7¯i¼>Ý€ø ‹—Z± Ì¡AØŠÁsŒV&Ô–˜åä÷ŸbËZd=9y‰+½Z Ïã»ý4s Uú®Îýa#°ÚLÿ`¿PMö U+©!Vöhÿ°`a¸&?¿¨T?ÆãX!é—uÒ¤+&EmÚ„"T`#¦ðf‘‘ø§.ËœWñIþð_™Ý m ¬ˆžJgþAÒ è"ÉRhèÀ%†ïÉ—G-è–gA£˜Î"ûÕëì·õ#™õ,ú<x—‘—þ8Æ7¹ÀÛÿ‚RŒ VZóVCÌ’C½ØCŽzhÊ ‘÷â3‡‡`VYµ³©tD­òŽ«wFmœP«À‘·c€:|ÆI„éV+;U$Þ*̸ÄÙ7ÜÝ=eÒ;H­Éß &x–X§(ú/âëÅïó"ÑU@ÃƒŽø ˆFöBî‘h4B»þœó‰Ø“U‡"^5ÙéÑHw‘I…˜Ï› ¼Z(Ä¿´¡X¸Š:–ë†MñŸvýãF†›Î¼œÃQÑêô’/ü`b§µ‹D%-v¨—¸O…â"^¸åz¯‰ÈšñíUJþ\ ÃÊz²ã@€š­[–Á“Õ3’¥ŸÄ2nXº*ݹ uÊ„k‹ÊNJ÷_&¤Že¦Ìéq…³bàI™Tþ‚¨:ªmæxù™à¹òHâHÌ–0ê«Ø¦Ý)Š$9DÈ†Š»Š#F‘ ÃÁfR•œFð$8cøWhêÏ=ÅPV‡²>£˜]’ú[ÕÄD™ÁêŠþÿ\=–!ÃUîÍnÖ‚¡+5×>ôMë±V¸» ±‹£ÜÔˆí/]£ÊúvEXaA"‹°ŒZ-0{rÙEçjú$駈}g¥óco±¬ë ÂÍH{îq`öù#“H¨} ¾Î ò¯CàªÅLJX‰ã_ûêäÿ»ˆÐJendstream endobj 294 0 obj << /Filter /FlateDecode /Length 5681 >> stream xœÝ=KÇy2r1ö”9ä`sóLìiÖû!C@D[°iȲ%oàƒ•â.’¹»$—K[>ä·çûêÑõUuuÏÌî,I†Ì™ž®ªïýª¯j_­ØÀW ÿ—þ=»8yð•]=»>a«g'¯Nxøq•þ9»X=<…8><ó|uúô$Žä+ÏVÖšÁ™ÕéÅÉ_ÖŸn¶R¸qµ>…ƒÖNêõmøàáŽ>ü~T³þj³eƒ5ÎJ»~´ÙòÁzËL–‡}ïJüR û¢,öp££œssý^°Vj³þÍÆ+güú3¯Äàœ[ÿi³Õ€›´"­jåú÷ð¢Ö©õqçµÖI€ƒU³‘Çüf³Œ9¾ ÿý÷éïN„„ônµ•~ð†‰Õé9êeYðõf À;#ÜúÛ´ʬ¯`<ü ŒŒ¶áë%b¦”–Zâ¼¾–rDÁ¸‹ ü¾­ã.½]óO ùí`f¯øö¼ù`Qnà€÷ÛVƒV~ý õb„ø†¾¬g“ëkâÁ(<ů(î×o€ºÖzß.¢ýÀàiŸ>8ü"L!Døz\€ùa…ÐŒDÎË…®äõ‚.—ѳqLÍ©K\ÕÎz}6âþMýÓêG™ªó{çÉøf&r¸êã.kl˜üÛ$x~°"sø²añÖ#‰@ à±Z½§@.Á‚Æ×bè%ù÷ ŒZ°´äŽ‘Ò(AYR¢t:#=Bj«·Õ–›(³BBæ.uÏPóõœ 0X )2:a–C”Â@8J `ÿm#<åˆÈDaÜ×›¼à€è !­×!.Ͻ_üIÃ-Ì’^Æš¤„®2¢iTbÑŸ76)%cÌ€h$­´  „YŠŠ: [¤­çˆŒå rWù½×£)>I3Ò™Ÿç÷p]£Ód@Ox ÅàqÚ³–hj}šUJG–?Çn°N‚Tæ¿_ŒK)Pû³b?Ÿ#’Òdʧ8P^“1ÏÇ_Ÿlz–£둌_ ¬ £H47+ 80^ ó({À^´€a ‡1Bób,+>ðƒ”ªU5äåÆúB¸ý“‚qa÷-“pôkÔt|,ÈD…ˆ´Ë†sX:?CãœÉj™28ÈŸ¯ç»N`Ë=H”‰z¨²k*n÷::HÎU­†0#˜×5¦Q[``¨Ó‹è _…hQÖ¾ö? ŠA,);szÁa<îù78±ž›®H¶»Q1Wµ™HÐA`‚£ç=Åÿ×8/äêwï“mïØÃks â)ŸÜ&˜ÙÏOþŸMŒñlØ %Õž6¨`·UóOAy¬d¾§pè'`Œ…ÈfÛÔMy£yOŸó"U& C~ ,0¨SvŒ0sŒßFy'?žýè.ˆS÷Ǹ§ÑK|”¾->S Áî3_;×bþöô;xÑÛúEk 0>i}];mõöSåÂî%OHÔóWÞqÍ"³‚;Qz2™ßC·lûn„ c<üËe…RåÍHThƒÜ H¨:Ðï ‰c‰“Yâ î>P<À¹­t?pl 轄ȔO©”PRN©ciË,}F”XAé‘ywqh?tf8TÙö}QBS|{ŽŽË]YSë?À±, òÿNÒ Î†t*È6H¶¿Ëù³ûrþïÍo ‰Êoú>9bÛ±63´òšä1˜ÝÃJgM…@i’Ç’Á fTÆhE~G”êE¿(`ä`2/ à•Ö"õ‚e Á02T¬7¾Ÿ¢HKǨAi¬Mbyì»ns¡”íÒ†aý€¯ªu&åš\ ÐË™2ÈHËwWªIcªRM]\h4 ¥qÔ”=Š2ÜôX°OQ¦ yIH˜«eâÇ#R€)o‘•JsCÉÞ–ÝjjúÏ0²ÞrõæÉHu`…b¸‡à >ÒÙIÁG™ >6Ù%¨«P.!ý·6œ‹(Wj^¬Œ±â;Š[Û¦ú)ÀxÔµ\ªû”¿B°`ÈL KzFÞ+NZíLø¸g@ʘÞÒ…; f#ŽŸŸœþÇ_f¶JªÍܶªËØäaSª÷S°ôl lŠcä7bƺÐU**y¹P’Ã6)É™bË—ªØþŽ&ßÐâsá–Á ´´seh‹øˆ©žNdjRïòúmBf/"];¢ù!U߀Õ×ëq,î#‚Ð0æÖ¯zÂ×3®ÝðeTd ö‡õøéëMQtJÊ,¼ÝÙ_ ¸q‹§,TFg­S²k;©­êPå'ãڊ莅×%LB—ƒ›Q–Ú«¾Møb s1_=³{‰FË4„™‡`£ÈÁØo‹=œTägÞ벃ü~ÚÀÁ+y_À´6=Žò9µ ñ5•ÞeŠÐþT•zcc¥žXjNJ]~¾Ì}6¾óç³a¾³Þ@ZHŸX™Ù mXʸ¸ý[íƒ{°’ÄAˆ5½Â-J$m·{Þ¢YéFé ûÀ,ßí*ƒøÄØùz±3ŒÇwôT¾„å¹Ð >½ˆRb o¶™TÑÔP`bQ½6¦’µÉ–‰Bÿ¤Åƒ+2½©Gëü îÀã. Oí “½60ÒF0!\e×9ð%â'wˆP”vP0wfðZ¸ᚪÂÄRxæW¦Œñž3× Õeh¿Ÿ71F×9®orüÚÏQÎ$Sà$x(œ[żz¥VäŘ‚¤‰‚·#‡çc_q\Ñ <9ŠèiÕ‘EO¸CDÖv‹°É zJ+zá©èFwDO0Ám7Kì‹Iû²ÄŒÎÚÖXÀ¥³Ôª K€g?g °uSÆAòÖÜh I~ÝÊcLêº2)·w”ÉZvFqðE²ÕUKæ¾æÐthå± ;+Ú[û¡™Â(ž²ÝQîãq‡šÔRÙffs×Õ8´ œ¼+|¦¹ÏÚ« V :öÆYlvâ‡$|Ý¢W¤kê¦7AwTš»RÀ&¶\ö{:¡Yy”Zä@& ò˹¾½fM ¦Ó&¥JUªÜ<Öëΰ´=¬tWiAݳ±§¾L’á©-dã»ÝÈ€íg›¾µE雕h a$Ø®¦á¥mJC?ž·—µðÂkýþ² w¨zjo“ɽnK’;Mf0•Õ{5™Æ†ö…¾É侪 ì2™‡Å‘fÆÔ‘/Ä!Jk¹Á_aaŽY׃tºñÃÛa"ª$'c:Q¼Nu²bbßL ¸ì–Ø´ª3©µšèË*¨÷µ[^œ9à“h¶eXr5ð~7g²V«iÃ(þN)–ÐÊ´™Áj§°S›<Ñ:§ÎNÜorÄúMAÂ㪭¶P—tZmá‹ÑJ»~Ù%µš¶MÍ­µ’¾CÒÚóžÆQ<6d×eAZ ”Á>y*sÄW4ECŒahÝUì¡­û•_4TÇç7± ‰»%;*Åbý‰ÉŸu ( éÛ†½àFÃM¨‚.‚ Lâ$•Þ§ó¸ç[žŒµiJ7‘È—^)µ+¿U»_Ø›‰ò7K(,´sK»ÒŸ×.®nÌ«#4Œ1¦L8Ñ™åJLW>«¦ðºšÒÄgìÿûORGw«É÷8»ã+öf×iª$a‹nD¡g0üƒ)E4¾É fZŠ@+z]>5¬ÝƒM÷}DS[“ôì³rZf&ÞÝÑ«c‰‡}îØ8lP8}ÏOÊþɆêŒC—=R¯¢–²\ß o¨,y|Ó±*­Õ«N7fÇ®j²#ð•ÅpCEñrW³½Ç•{º­Ëøø:è0Êe7Ʋqû9‰U¨c ÍL_ü ¸ )P§Ož„ µÔ¹”éWC¦VnéønuW Å"“R[ÍcSîŸvH~Q™Iñ¹®'Ûê,Öþ›ßó'ÚÎÆTC>Y®Õr±7I¤5ƒTr¾<âa7=Ï7NÒ?žË/Ã#L{Îø¼Äßïà\8±GJǪûa1ß»‘µcŽÓÈZg—<î=Ývw.LϽ²¬k࣠6@éE`ÉÎÑñl€<‚ €´7œàßmhʃgeå1l€Ò¸/¡;'VÝ´™TH!N•Âný¹.ÔR ¸âª"•ëJßJ‡-¬T³Uá?k”ŠEÅy«0©Ñ*Z‚Œµ\0ä™ ÜMÊtË«)¨¡e¬Š ¨Ë@ñ¸ßäeh£¯ PßÄÎVÂKP’l,–¯ S›Óα7\ 9[W‡…{4:g¹—î(É.åÝÞ·AJ¥šI°ðÆ–¼šîKQÞ3ÓŽTËëô=Ž×NM7%›\ˆŽ›’ éoëúM±½¦²-óä劓=H;Rï—46à6)sR˜?;=ùòäÕ Æ„!¶Ú†í+ÃiVá!Í€¡g'ȲÛNÊ‚«TÜÆÎáþæØ¼øë0¤tnI¤sÅñ`4äñ¡µï(z¸ù§Œ×ðý?á{î€àa±Fà¹ëî âÅ7[“ú¾›œDÚÙB(Ìz?®ðhÃÞ 6àüKNk¬£ØnƒU:=âyp,ºMÓfÙåÝÜ$¾m›Š“ùáý²„ˆ}pû‰¯vCŽLƒÝÍ\×ôpíîT·]ÓãGË0Ð 91Þ,‘Ì> ɾ ç4î®Ͼ5TKöMi‡å09ˆ¾Öæ#Ãçeˆx’Y̯ !ÞýÇlXÆBR”î£m»gC²÷ ÉÄhDüøi"EMïø"ûgürm[ÆÍt>ÚÈÖÔÕMñÉÔU‡ŽölŠ?><±²ùiaZ^û[¬hÆuìøIôäRY]É¥Ò÷Øî].µÇžÙ÷/—µ˜ ï#Î}Ì>ÚêärÓ ±ÀN}õ¯_ýi¸_°wÆM¯Ø`Æ !Ÿ¿êïHCÖ^B¯*K¹ÏÕ5Ñ ÌNZúô'÷Ö„šž ð>ÖÐÞÅŽË‘òÀNÀî\0 9Þ›ñCHï-ìP‡†4“ º)fÕk¹û‚Fª±#ÂFЋ1gã3X(Dâ"uhœŽ´Ø'3,Ç%Øá¿R¥»,#U¾Å²"U7[L^gÌÁg¸Wê8na&[Ä‹3Ì ¼ºuÂx ^Ðä~yáæ3wű¤éV9±Ú+™TÑ žË ¡,ÓÏ'„,–÷n•î“ Æ<°Î€”)ˆÅT°hÝÎT0ÚmûÛ?øT0Ò`ßT°à¶+”ñD^5fg*û¡¬*v‡\Ë–SBȹÄ1Ø\J¨l'…”PºCRB2VîðÏVÜgJˆ¹‡È[ª*#´ñ bC÷O Õž¡MÂ÷ÚN~ö¡f„J¾±ÔÿþÅû—Ë&#t(1z>#œ´.™xyI9üuHzçW•ÕÛ/½³‹éÝÌŒ‰Û¥F^#•\ŠòŒ;RÍLù$ÖjGYí]$7¤ŒE37xÇeŒ;8c` #Fš¯à'c¤ã„*<û4¶Û@†°r<ƒm,u)ôOmу4Ðå÷pÝS¸\¢MéX C’áåa¸ÃŠs-bÇ(˜~.HoÊDeÉk>áy<„5âÆ.n®ÉŒ—±»¤³F-ÜÁ¥òõeáÕÇe¦“¸°gÃjˆ¤–ù:2\é鄆ãlz½Á;ø’,tÉ%¥§ =§“Žà2”•ºË“•(=3Èø*©pšÂž4À±ªÂSWcQf$Ë\`ÏDBš 6a:®x†è€£†Œ)‹O™ÅèÏ#§ ­ÊÜaBæ” œ"o^ÈA¶,à¨ÈäݩֆÖ`yãŠm–ûñÅ)÷™®ßÄ«/äFçñ蜋îs+ðžL‡wÚ¤6UQ"M¹KÔg؆WTámÁ¡èÔUO}®cç„ç¶PµÌSÔ§«¥]&ã‘b£Bkê#,„XÍlä#í";œÂñ:·Ì“åkVÔF¨ðBá®Rœu$üñ@¿Q†*ÚÕÿþ›axW‚”È=ºâÛ@>T|&P„>°švÊÝ¢ÆÜ Îð¾Äá*¿‰Í5RàÙMðœ°Bq¬¡r .Õ´‚yXÛ3ªá˜ÓŠÝw­]yØUÆÚ'r¿Ý( ¬Žw´LìÒÍdqù¼¨^iH_«lÂ(È—ôUb2AÇÑåÓEDW[ xæ‡ØÓTë¼Æ;c~Z¼éYeG­è‘˜­³ñÜѺçEåÑdÐ%—¢ TE¸ºSM¤5:æPªÁnâÖ‘àÏ1<Þ‰€çc´l$GkL$z`&æ%0SE×/†ä¼üNJ«ªÂ±oˆÇÌnãeü¢c^ÇFdäÓždx»÷ E³£SC¬h9ÃÑÖAÈñoW~yò³ögendstream endobj 295 0 obj << /Filter /FlateDecode /Length 4895 >> stream xœí][\G†×ý¼ÀÃ<Á’9îû‰%!—E % %¶c'Ø^DZüßy ª/§«ûtÏe½kŲ6;;Ó×ꪯ¾ª®3ùvÃf¾aø/ý¾ýðìÆ'vsï»3¶¹wöínÒ¯Û77Ï¡ÇwfÏ<ßœu{ògkÍìÌæüáÙgÛw§nf\mÏá嬵“zû·‰ÏÞîè›Å—Jxc¶ŸL;6[㬴Û[ÓŽÏÖ[æ`°Üí}h+ñªÛ‡e²›“šrBŽÆú4°Vj³ýÓý•3~ûôWbvÎm?vö&­H³Z¹ýJaÚ~„ã8¯µÆ•„u°jôsŸ?M;Á˜ã[1é­œþyþ—3X¡Û줟½abs~¤ôÇÉóY[¦¶Ðì ®XÂÒ¼Äö7>ñ–JZ°YsïAÚÐwû¯éüh"ª&ÐçÚÄFŸmOp¶B fâˆÜlì +塹žµ`’o`ùÆÁjc}„òFóÞ*TjZuù|‹Kç\2nc'ÑtyEÿ›ôpð¦7¼‡Q¼_Z¿b´™FöPŒ–Ûƒ£ !Œ5½u,ry„{” ί¿Ó.@ò-‡#bðóù7Ëw=© ÏIÎ^{k Aï9K}¤¥}$¬Æ;•g}„Äu>‚z™›½…Š'™ò§à0­â¸¼z¦Æ^è9Ó ˆtyo£]á6·ßOƒ¼ßÞE«Ò >Ö#Áh¼ßÞ/æqftô„ 5˜¾ÛÞù”–n¿‰Ç"­ïÊ{Ç5jÈÎøÓUÛš‘j=z£ÚUЪvÙìZµá`7 4Å+ýª ˜w”nKé“nk@ç•n×›ãuð¬Zß;µòi^ö"°1jG{ïüìã³o7TÙ§ø€™aÔqõ}äÍ[g7n}°yúäÙݳßð³ÆÿÜüè÷ðëÖ6?9{ïÖæã¡ÿ¬Ï-ûO˜¦5ÖÎVEú!ìUÁRôåpð*¸õÑr>M‚­j€&Ù; 7‹ÐTˆ™¥­Çi$¿ó±‹ò0qkµ j5Ûì"X1 œ†3ÁYÒh€nML”j³3 þ{Qœ3Þ[‹*‚À½JŸîëppÚJæ»Êˆ‡ÍQ熵‹Õ³E|†¹À Ó\P Ž)ÝvÖáS„M€á·ˆšN:eÚ=%³FsˆÉ+Ð8§gUNº¨rß…Õ)§¸ìƒ*.£ÕÒîêñÒ®uî%¥Ýâ…K*ZÍóVë«éÁË……#±ÅJÇ[©Wð¶Oºœä5xíþ¸šúŸìØ :¶¸^ǽýq#åqÐ#W&Wx}Ô¨ñÛuÄÐ@V€j`Ì!Ä¿¼¡ù¾¡¡_Ú ÐŽf¶×ÛpiÃ’47W³¤ís`fbc`àK¸›Öô[wÝ „GGº›LÛX=Í^w“¸Ì£˜Ç¸œ ¢ÐIŸLØ–%Wª.’Áâ(…ùœiìâsDòoµhIµÎá•h2Q à£c@Î^‘دl•€ÃU̳>‡,9Ú¥¬´BÊ=Zñ“)„‚w#Sø~±0ÿ‰ži!C—räÝR0®Ž[º\¼%ùIñÖHÚ¯,•€ñÖ+÷—«]x àºÙY“4²Ê!)€•Á°BÀ&ULqÕ ÇüLx.烊>ôâÚÜ/Ìê·ÑÀ¦3ÏEùg%¨  ¨`ãî!Ç–çïŸm7ýjðp%GKK¯VktŸ9‘ådPO\ÐJd,j‘¥ô¸¾ë—¥ô0ŠÏ÷áÑ»,Y‹î.·: ãkôÔ€º¨ G®h]Tú;!MH< ñ…¼ ›zÐ ¼ºÓúŒ†,ñ%Á¹“!¶ ëS{ý„JM«.¯ÕÁh¼vÕëÑ_ ¶‹BZ_¶g­d/ áÓ¢`Pqn€XIۼܧ­\a“„mí€ÕcšÎûDHå^òn¸_µ…¾R%¢Ü+€T˜g—€ÔW€'—‚Ô£šÎj ¤ºS õÐAŸ ‚áPf–…Ú!ÕÅôåñš.Ý®S´êzn&Ü)˜JDx¦ ›C©½˜ q°’z…©eË+LU hêS@7ÇÔa ÕjÔŠGª”.*(Gá”G¾ <2¡ÛÒDuäØâ×IŽ}9˜M®“S®å%¦÷v%–»k ìÞϲÉ)§U´2¢Ø×½ûH±aó1ZùQPlû†b¯/ªqë‹ê7»G±Äÿ(v¹}íÛ;¼×_²K{paÄ׌€‰ŸŒ€ÿ׌ØVü£gÄWoq7ø:q•nñ y,Øá&ʸ¯ïu•ÛN‰p¥»^˗˽R~ú^Üqÿ¶_OPY(ƒul¹¸íÞÔµ"7úοT`uùqD±Y¼“gÎ .kºwò£º.—ÁÎV%‹‹]…M;¶«-,|KkXŽXp¬©G´¡Ü!¯ ]ômu%¢c¡ëd¿,ç´T~ïW'  ;;«Ãß៱’ñYéûG%¥Ý)ïbûeÔRÊ-¤FE¥o-Zº”E<k¥tÆ´ƒî¤Ç~a3_áÚ°nzPd¹“Ax·îɴÛU#bÑeœVYªÄØìÏg¥¼LM–¶ÿždXl*æ4ÞúN+²œ XC¨³¶ôåT.@í»e•¢Ë': îµ<ÕYŒ ;¯ÂYÄ[Ÿ‚ÒšŠB9p¶r-&z~ØGA4XåÑ¥Ÿ6&2ò]w Çiêˆÿ»j$²¢>ßá.x¥Ë—~Iõ®ÀÇ”Cž§ñ ÇšÓ‡ˆòËF<ñ„¥È›Ð 6Z!@éôœX (Šš9Ìù¸ÌIF w{™¡¨ÜéY·û5DÀns3g¶¬ðß ÎÑ6Ã$®‘ T’z༆Ǵi~³ìÜK€¬¸ˆJüh(XfHŸ‰àüèLx€ÎfŸ³£b-=ÍT3oAWT áC ,©Á/èZêb÷Ü‚,(äé‚uËL4’e|®ãÁrÜQ* |­j©n/m@Üšá‰Ñ7IÇ¡î Û]¤©š€¬5Z¹è!»'‹k¼=It€FöŸ rSrhÌÚ­ŸpQðѽós>°tþgݳxÔ3ÉŠ»í”ŽQTYݱAœú„›!Þ”(L{R؉–ÝŠzè¨8€ ÇZ “yA,uuÊvÍ‚èìÒ.›r‘Ò,ïãD!¹¶Ç095ÅW§¶X¡+Lé+ œ±7£ÅÑ'”vIÔµ}ÖçÖÿAhÐ]UÛd^ÔæBfCUÚoÿ>ùÐÞÌR´×Jv$€e¢ýñÜ¡Ñù1c®Š‡ÿe‡ËHw¨ÎjÊrɦŽQÖ‘HðgÞË«`¬÷/’滹P¤°.rã‘D<^ØôeùVd”èËüå¢FüÒ&a¡ðÑÇ‘65­¹örï¤ ? ÒÀW}!-ãŒ6¢>“saò]Ù1§ Gºh}]ô5œ°¬g­¶‰ÐuÂ…Ä$‹QFʶðöžWTgMF…õ¸)*ÍeØŸO¨R¶¼¢m ÿ¢ÁL•kØIfÒD ñ¼x$v‡Ý´ÕªùÅT¥…0J5*äŽr¢I«ÀôF^Zš ÌÍøÝLS£³ÙM›@²»Ô¤qÔI/×íŽqÕ$ÐP>f û1{—ù,[å/Ö: •Ðñ²ì)Q&K¼Xÿ”(FuÂ\¶²…õÔ2-V-*hàÚxñsò²Š¤ ‰HÊÃÒ[jµ “M ‹¬Ò7Ñ%v»ðˆÒÆH"ˆ§$n/ö°ŠISîâ@'9¸ëʤpu„GR<{ŽúvµˆÃAJy¼žŒKΦ ­qÁàIºV§HSH—††Ì£Bý¢Òg¢qek{‡ê¦°_•e°YŽLC†a‡)±Å9¾}NÂûn€UgòQ%¸#>£‘_ØŸ¤’’úTþ~1“PÅ£&¬“Z¥MMààƒé@ÿ´ ½£Ôj’UŠ#à14vïðš¤Ô p:vfÜìí¾˜˜ïÛ¸y=½!ÞN1 ¬inµ¼Pí÷P´‰¼^r6çõU~–?Óƒ Bñ¡ÁæèúpÆ  0˜rMpTê#îUê@ òN˜Ga"\3ïË„GŸÛ ¨2ñ.RÖ¤J‹,µ”Æ%sÐX|—6Ÿô^·ùÖûEíÓ÷—0`¸TëÀrðySG@¼ö’ˆ9ÈKëëÄô'#õ_”²¦aø†Ou ¨ U(2Œ·xT)†y–ú~"mbi¸"ÎkEm#ü²,íƒiŒXV’tLdá°™*d4ò˜å'V†‹®ì5Æz—º‡˜EX€x гWhˆ¦Öðàƒd¥ªA0vê2!¢ãýlemÝ*úˆZõ“j–ÔÕýÌ¢d.‘ˆ ÐÐ5ù´D$f±ÈHM¸1d^x²Ïz h(¼À#ir3 `¬ôu>˜^,‹ÆÓ`WRb“§‰Iö}žwLiÀ ` ªt½µ:3àw¼xE)TCÈW'«lÞWC$q‰eYðerÀ€Tʘb°n É(à^š´?=,Ùí*¹O´çA»î\}Lj᱿˜œø 2 8L¾ª®¾T.0â‹~Ña±ÞWö•g+Lí°£],*؉”ÇÌ%‹~éû,¥a É!"„UAJõ•wX”RƒXº #¡[viÖîõRN_ѹº_N;¯1?^ìåè¸Kdöåå6hšórÙ¦ªŽÓrŽÍû½‰¦?¾,n©kO4åXß.z·Ž0%³1ÈÞÂájv Î@w;aÊPĬc÷“F\m’(ЍünÎ&§~SÉ^“ÿ¼0…Ä›¾2>¤âs.Ï;ªÚÌ›EGzÖ!-ùSUùneNѱÕCNäÖjØeØÄyv?'°^ŠAÈ&ÿK3qÙÃ|_⌲¶'É,§cû­¦\µK¢®å5ÀRÔz\™Öüv’òáû]YúQðóÛ\Àªéì½ èýžÚ‡œR .>8%…å›zû˦¬0É¡6†<%7$.è&}šì$^YYíFÇ»Õ$ß¹½É­/ã½âûgç¿ÆïþE”dÊ£rX³«^Ñ›ÅÞçäŠñÑr›x/ævÀSÓKÊûËçwc} ÓKm«m5,9$ÄÓ‹r=I. Ó­$·¹Àk<Ä[\ 8(Ô"V:@ ŬB†/"fVKg9‹jkwÈÖòð¹;ÚåF•¬®\¤>^>~P† .B9~Í1¡NrŒiºên·¹²åµà12eN8¦äèÊ6Ü׊å®9ÓÎGéÞ‘õ“aš #¡îåla=ãü{¾úëÞþ’Q+* á÷ØÔÆ÷|ncåPïVõ[BÛŸÕ¦ÞaÒeé%Wõb ìO©!‘ÊW¨…Ö¸>惥 Îâñ¡’%Bvo1OžtäEcÂFϤæaíP1}Í%%ÒGd+{(z¯Hü¥Se€¹[)$LѦ^Þ…t,<8âj¼1ÊàþZêÜ8éÕWkßò#,P0¥zÈlta’u…8C¡cÐRŒ¤IÍ? ÄH¨¨uŒ$” ”£2…NlßʪôŒÐ1iŠâtîØ’ëûŠêr’Ѱ¥Œÿ0‹CQ ²Œ®‰êzí WÝ2äa½v\9ÆIè^UM«èhx?ÕŸdØM…› f´Ê?¢€jÊAoŠâeSV(*·¬ì‰ñV¬düy/é,`P>FE«ÙŸOÀ÷µZYMÍv»å8½Ã‡ÙÌlµS˜3dš}ðdݽ|¼+l¬r¸æx7Æ¡ffj1ƒ—Ohæþx mØFÃ’¾ôíhñV£,~ϺÞNOF|wUjú<ïdͶs\q•¯\ß1t32éŠÒ3Y';ÄñiÇ}±ê½ö`VETçÃ÷ÜøDpü_É||ö?†Ø—Äendstream endobj 296 0 obj << /Filter /FlateDecode /Length 5957 >> stream xœí=ɲÇq ûöN¶Âº8Ž9Ù3¦Qûb…KpH4I?KÊŽ@€ àƒLüå>8³–®¬êªž™·€ ­`€hLך•{ef¿Ú°‰oþ—þ¾x~v÷»yúæŒmžž½:ãáå&ýuñ|sïpüeòÌóÍùgg±'ßx¶±ÖLÎlΟŸ}ºýçÝ^ 71®¶çð8ií¤ÞþÇŽOÞîèÿ†Jxc¶Ÿìöl²ÆYi·v{>Yo™ƒÁr·ß@[‰ÿ¨º}X&»·S“QNÈÑX¿„ÖJm¶¿ÚAåŒßÞ‡þJLιí¿ïöö&­H³Z¹ý-4”Â:µýÇq^k+ ë`Õèæ>¿ÚícŽoÅNoÕî?ÏÿõLúÉ&6ç¿9;ÿÇO·_äæävûÚ¼ÁA¸€ÿ¶ßÀ|Öz¿}ku½}½ÛþœnûùNLÚeB·×ðŠŽðÞ<‡LRZ­pª¼©¯æÞeð7qûÀ‡_”Ö°ØL“æowZMZYZ—/K?|1ï¢,˜Œüç´¢4|V^?Ám™‰9M·× ˜\l«×õb',l‰¦r“€ÇWˆJãm—KÛ/Þù©ÌKÀ÷y8haåd€(Î!¼Àh  wh£Ê¯Ýã~L¡§CO¡'.óÁK¥éÁ%–¯lšÓš6+ÐL!vî#qÙínÚx›P3<‘e]vwPšN~Á½äá´ ÞlöÜ0áõ/;Ï'm™¢CüoøÙ|N,,¤‰tê{¿­tEè;‰+Ђ¶|1Àæ†8Žk·Øæ×H÷,ýQð绂† 8‡õ"9g¦dÑ0…2%—Ø(“kF°šû+ͳöW@ùv'ÃcDR…P—¡-Yþh'‘ ,pEŸ {&H‰Îœ%Nm$Ÿµk‚6fB;­D<•~ûß„Îg|'tQvŒÓIÙôWõdÃJXÄ_É̤a‡{nàgïâF#¸‘\z<½À—0èê[Ï»ú‡¹®Nˉ3K¸qÚ*óÊQì) .æ§Ž\A\R(µ—l_d:GÒÆœ¡\²‘,… VØsW <ލ­ú8Þùç?N$¤õOòî'ÂVJ êfìIÅ3e^+`X ,€ºäaó*öäfc'þ<ö™†˜’H{kco]„æÜÉØÅW“YäUû_´«“ºZ˜p§`ÀI=öU A-C… =‡÷bÃÕ$ãqð¿‰LØqZã óËøò¯vå]»N@Ø™lçópÛÿŠóÖàƒ @Óáz‚_#̄Ӄ™žàÈaå€&¬&ôQ«@CÁQ5Î Órhï]ïHy5ßâÈŽ{'z#kPŸ—Ž|»××P™›þ¨o ¤‚G^øa “v:{×»«1Hª{Ã7äÈ?Ýþu…$õYš оQLÈ>ê·ÃÇÔ´ËO(‚Þ??ûøìÕÆ_SÁÒØãÉ «í¤ÜÆŽH€†Ë½gwüvóÍëË'gw¿ágwÿ»÷Ñð׃_n~tvÿÁæã¡QÓU2j$½Ú€4Y ›ïðØ´[} 8.Š@UÝch–Á€‡ƒe¢?±Ë‚E6v˜aΑfqÉÓš¤ðà´SîGQ¬F ‹Lê^¶AØÔZ±2.HºÇô×Us(éÿ~$«^F ¤œjþó3üg=eñs*y•Uóþúšý(!«Åâ¾=â—;dö#óPïR+ø1¨€^!™&$Y—ÌÎ úѬß‹£‰.“M`?Ý&-Œ˜2]¥.ņŽM øA›Gëé’¯x ž/£±atEÅ‘¥#”Qü2žü«2ÎRP¢2¤ÆêKl=#QÓ^êéKºb!+&Á4Ñ]:Hºxh¢øÐŒ…3B3¶ï†@ä[qCd;ÚÛ`G†œó ûè9j¸Ç;´Œ«ØXÑ~‚·°®b=+Xèô;Šx/¦"ˆaOÀ?æP(s¬ö¼ÇªAÝåȪÃÐ`·íë(”ùðŠ ú1š7Jr~”lÛµãÖÈ9¨‹Äü«˜F:©¾C¢åú¢Zó&üx¨SK*H¤w?„Ô@8ºµãþ8M!T~|1 ”Š4HŠŽá‰gñƒÂ¸ê%üìÕõ¨*-f•ª¤X¥*X0ób…vÖ½ K§¥¯ö@c¹áU(Kƒ Ý£zAÁîÛRóZ«‰fÜ/Ö­TyC*M·hަ¦•ÇD¢~ "ø[<<Ž€Dð‚ÜK039°Í‡µ˜)d×u$6†9Ö…†gßåÈoC°¨õ1JÁÁZnÄîPëŒx~´›+hyºòÁöï$—/K/éUœ.:*ï±Ó%_PTž™º²û[Ëc£ƒS£2ækåp^õÂR©LhŽÎX³°>yX2„‘ºB` ¡}eDèÒð“[Â'PÕ¾qþ´ÀAùÉ+S IJ9ìÏ ½«,kTÉnÏB†yÐBÖ^¹h!ˆ°5ÖJуKܨvö¬Û§ÍSèÃ=¡áßíP½²éÐm凘dð§QðÐ7ôytr'|ßhŽ-LÏØsæz€.LÕ›GmßxÝÝ5‘À›q+l•“ 8À%QEj·œhØ»‹.<ôÑÌþY CuÝ4zRÍ ðî¶Øôª.·+i–c§”ØT›¥©D:ø&21(ÐèÍMCãÍÄ€nc˜¤GZÈ^Ùö61àëÅÛ²ð“ÙºKòÇ«ãChÜè&ß)ëàƒ>gWãÿ4øUë±=0÷âVÍvàCDÈ¡²ýÛtK`k šäן\†:Š9aEBå7 ð­Õ.®›¥“J3s8&fû€\¤S¦NCÐmñfp%BNø'R–°,ô;Þ¶\“õÿk˵›ÉôºHk\ëY¤U3€j* p+AÝ0 «‚Ó”A¯ªßkd Z… WI à#¤¹®œYWƒ…Æ¿7Ê@ëɰF<•6^WHª¥¼Y$í˼ V7 nÀ4 P/‘I×D)ä;¸õÓ˜«sþƒˆõÞsþŒTKõW´¼ÿçíUcã{sQyìßÎØµÛEí$ˆ9k»äÓ¬c\M¦+otW2®ž¬d¼¿žödËž,·Ô¼lŸ cMWeãA¬nt!ø:¬m[yûj›”µí V1ϺV“(§„>%î˜)™ŠÎß(ƒ3W´•I x…\Qy«ðïàŠÕâg-œ© ^}étcû¥ªP¶§ËÈ@U¦Ñex£ËÔó$Å*1üC>]ƒQ¯Â‚Î +ñNð.Îû!’ú¼Ö”È॓.ï¥-Tsã¬üÊžÐçÎíÝÅ`á«òÌ÷LÖ<“xêjž™ŒÅ™g¾‡‡ÛçmRù.xÌ3ý™»ý™»½s°nËOänãP¸š»tåF,î¸r­w²k,÷`C÷p[°:sHšÚB#e?تbûFè.\Áý5¶®o?>`h]«¾T/t´+ x~ÑbY=Ã^ CnÄdòN°C-ðÁ˜Â*ðÕÏ÷½]¯Ç5Ý’ï ÓŒ{t@kㆠ­ëÈ.Ňaÿ"EFY1ØXò/V~X _úªÍþe ¡ÎIiÄ#©“+E$odÑ $ÜFϲK >?1¨èö='µ°™Qóñz0‡Ix7XCÊ*&:níæH7ÐùÇ—õM>‰²1f5äÇèASg©u£Zš[û‹yÆ`ä@^]èù¿žÓåý1 Ö‚çR7)Œ‰Ñ1먛 F2éºÁf%lå)æ&U.pÌ£Ô¡„j˜f§·ûJÚK† Ûƒ¶äf—Ü8m4E/*èÅÛˆ¬ò<üI¼åf¸°–c.\£‘Y5ôþ¿Mùk"ÔÁ »>E7á`5óA/©É‹ë¡¬&‹Êr;àËÞÏ‘ÎÙÜ£ehבƒvwrÐCHD¸­;’YÞÅ…Ýü­]J2rZîn¯jPÕ¹ ÞÑÕ~?íÆ¿×Aÿ:É[,/Ù¨‰»a¨WƒNîÜ”†v4HÐ.ðõI ×ÉR_ ™æJN& ˆá x@¿›¸7ܯ*œ½pÜë\Ê´G¹W X›Cp1ç›vc)›èB"š`Þ~$5†êÙ¨ºôr V¢ð1À±ÑœÈŠš˜ôX0óO„MRlcXƒÁ vRš.Ûu9Ö߇ “Cj™«R+€µj§BL¬7!&6ifÀ¶CÌ,…n¬l„p •ETÀèd`¿™K:éQ²Ð"l¯ý0²òJ©ÿ„zßT™Ñ- :ýµ2ºâÖ,ùt¼—>É£]º|w©UÚÜ^ãFªa•U„=…pšŒÐÝ/TýŠD _önjÚþˆh+ñ$b™‚©¾Ñ„“Ÿ‹3$©A*¼H™ã~TΠÎBêhŽåeYæä6\®@“x0ã%Êù´¸ì«dß…yX?d¸_veâ—d¶ŠñåÐybœª ×Óiž‡))ŠM—?]šSÈ L€ØÎŒÌ’Gï†Qvs¥…PË  ê–:Z/#*ž€'´&†‹µÄ´ ¡¦XÃQ‚q\ÖÆÉxr98??ñ:õ:ؤvL”MǤ ]{€Ã §óë\æ¨+,{ ºSÒê +ËùÆNÆ(ÒúôCY8Y›SqlHÔvÖÖ5Z@>¥Ÿ´ûL"'ÆýÜù ¾âgè’Õw÷ißµV˜v“tŒ.sÎÎa§I.Õr‚FÙ/@]RQM§«³ƒ ôæ67ä{"ã"Ї#heWHös³'Öõ˜È¡³æ Ð>X.y#T;ñ£­ZÕj2ñÊ­êr­\DsÒL€æJ/ÎÄÆèTb;mÿgTxöh‚„ØYí‘·æïæó  i+Y7ÄÎd—í³ša Aä ¹ÂûÔ¼å\õ mš³êäT醭 Kéñ¸5ÇŸ¥å”ÉÒA Ä~±=ß9±?÷4J¤æQ™¤#XÕ(î@~íeiÔIçIÅ;¤O¬ÑENÝRòí”{uÎèñh :•âªLT¬×?(ŽCDéœP{ÌáâÜÈÉ„ß ’Ï,^tX¼8¶ó.¥&†R"ƒ‘šº(·¬ìÐÇÐGŠõ-”fÜ;âVÉ›ZØ8§»¾Ö•tr¹6ß”°Y Hf1r Ô1HY'AºØ|G[‹‡Z¦ íùºéøû‹t'>"1ÇnÄpùðxsf€ó­pU2 –ºªÚÇÛBZ:ÜÆžËëÀ%Ûh„æ›Ù7afT±ý4ôð*ùùK]9räD?ê¢M+ ,‰õ=ò÷Ÿ°s½þ…F·ÕÈ4-^6ÖFTÅ丌lCjÄ m•öPøßË9ì–•ѪˆágbvÑ-q|Ìn/œí{·{ðlWËõñ£Áô½*AqúõR(»·f;®^/ͯ¯ðù‘ÐÓh$޾?‚F klÈ¥õzÌ×fm)ã¬íM 0iÍ<¯„›ÈÍ5üÆ"Ùɺ{CŒýµ=9<ø&Í(FÇÎÕ[>œ?–Ôä*ì5+ o»Snúû‘.âÜXÄyìÈÉÓk݃<.eiãVû5cïìä(,ŒDŠ Ïվã@g@ƒúD_õ_p'èB0¡±º“Xè/C¢8â’ƒ”J6×}ס½V=ôY‡ùtDß•*¡ŽÂø|ª˜ÓByŽ˜ž£eªp Å€[sYXL¢j°x ¦Õ7’Ýë¢ìtƒ/NÿÄL¶_ååÀ]Â5ܰI~ݶv]opä»ïéG8ŽQœÒ*¼Îª@߯Å L ‰ZŠ4žñ±½”®Kn2úit©½V,x¦^Zb¶V `%‹‹ÙŒì”O¨ªÛäv«ê&âÆl嚸×?˜ ÛOŽÝ/_'\9ò•/cÈVú%í}MAÚÖ% •ˆºèê— º†¾W½ãD«Sdt&ž©dt“ŽÔIã"y¡%ù6Áó2ÃßqZprF¤~ù±9ESáwR@=.ºp‚-¨7$edn2-—4ÿ´¨uÏäÚg(šð?Ârøòe¼vd¬HMïD—|* =Ö}{Úf;|ÜõD½íƯS:€2Nõ£¨WwdŽ «ýùnŽs/„Ýö:fœ¢¤þH­>ýq3f[jbÛAË(ÔãÚŠ›©ÅSgÍ_¼ 1.æa“N5BùÎñŬ±ÊÐCÒ,4ß`Ñ#]t}à7×hEÆßïïk vfÒHÎY¦JsP<ùšX×Õ†9y8Tû$Ì[Ȩëª%Ž0ñÁ|˜}†§ ¶† ¤®-È~-ÊL(šÁ\Ò¡^Ç—Z^ ô¦‡f,¢yšþ+œÓMÂÄ4£y" à _”ç)㎬@v¼ÚHæÑE¬ߦ¨öf˜šÇ `·œ¹ješWˆANâíÝåeĽ!‡&sþiþ±ô!½Ä–2D¯?Ú Û¨ºÿ´ ŸæBrÃüX¶LVò4}?“×XÚ9R•—0¶ ?^vgy9¿ïBæéúëùP:§óv'°ôÑ"?C(xBB§DÔÆl@ñì„"c#n8Äâeyß™èEyû´@šìñÎ8—‹7që)Åxš îR0ógÉ÷æbŠ_U~z2?]ÌOßÌO¯ç§ËùéùüÄæ§i~zØéÄxzÜíz,ÂøâàgH½ä ˆÛeá/)ò„üí ò„ož"`)2†Ã‹$\¯äy¾š_—£, )MeJ 'U^‡`WPœªO:/­=ÞL²p¼–ëœ`Ø/¨}$÷£œÛËùé19¼ciMªO,HŽ‚ €íb3 «0ë+s˜ò¶דL&8ÚygÁjó‚B•œnkÀ„`QÀ’­@€÷v!èÙ© Þ‰_z½ý0 ,e €SØ¿…#ÿÖ;ïyÀ 0ÓÛ¿ß…k)ÇÝöw^Õ'âÁ8ibë<™ù í’¼™à°˜Õ°Ë9~Äþã³ÿ5KÎ\endstream endobj 297 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1628 >> stream xœ}” PT×Çï²ËÝ«Y¹nu$½wgå1i4q ‰$ B!:°²²°î®À² ò‹ßò yÈ ˜Å.«±’JS¡5·ˆâ–hm8š´„fl3í·™ÓÎô.PMÛLgîÜ™óÍ™ïwþÿÿwŽ„’ùP‰DñºZm4_ OÎ>dÖgæ{këžïK“|O×7 ¾à/Ùµçåë±t9fàk J*‘¼¡=¼Íh*Î×Ê)TEEFn ÿ/ª²ŠUñª„LMžÑR§Seª"ÔªD£E,êT!Fƒ*+;'S¯Uµª½Ù?R¥¦ìHNQ½’œ”º;e}ÄjqIQT€Ñ”_PhÎÔÌ>¼>"2„¢vS{¨j/•J¥QñÔvjµ“J¤–RÔrj ¥UR2±ø±$T"øDûœ•®—ÖHÿ)ÛïKû¦ûZ}'è t-óôÖ 8)H~áÆ·Ô£C½á__âBD1»e(›C×¢üAR|||ÒÇ>ùõÔ­ê(Nl@ò p\HÿäF›{%»ÊSîmä÷Ã'D–‘YbÈáØ¹‹åM.†.3B^®:ù+ÿ°x¶ÂèŽt™ÀÊÀ ÚyøRñ`P:7‹|Ü÷¢^ß~ðþϹ[rvÅøøè¯¦Æ_‰öÒAÀ1/7ˆÜHO©‡QöÙœüzAj:申S®êVGd´uÕÅÿŽŒmy¶ÂÓtÇ9lÁDŠ~4«z2ùR\ƒv æ0}gºøy›n È …Bà´€m‚Wã T¨ÞYЩ9›ßÞ™Ù¼«†˜w>ÿ¼Ag¶qõF¼ «‚¾^³÷;Á‘WX{¬æÇ\vÏ>(†l³FÓ† Þ©æÏ ÔþµôÝ÷ÊáMFoÈ MÔœ·p5öíF`´Phá#åV0 vv´ ¼Í}˜sì¢C/õqiá€b` ÄP7¸gD7æ<©¨T^8¥–º¼“\]ºÆ¬&Æúy<ŠåO'ïÓ=ЧåØ;óœ-›å¥&ÈÍó&ó€Xé5Ó9·?›špsóœ$¯åbÔ·ÜWDŠÞsjPéíÂÀOéy·¿2ÑÒì覗é^†sN{åÿ»£‘Ÿ<òé…ᦟ¼Ï±±‡íp:hf~øó„/„ÀÜhž.—rÐ¥Ö"h9Êá!ùݤ»DõÖ:ˆ5ô÷w9›?àNC+0÷®æ&òdKY•ë¶"fJ=÷Î \9ºþ1p ôƒ‹'±H)¡Š4†u•Ú'‚vg¹†GŸœG…zIn»QÿG©G‹åk«¹¼ ÌU\µ$s0/ìœzø‘ó︢»ã$4òö:ÛI[UƒÎQÙŒÃnwü62H\" ÚH–ý9pó«Î§úÄä|„Àó ·ÇúÌQí; £Í=š¾4qx¤¡¡d9ÏÖ€Çy¿ûâEQ™J~Ê-H¢q“’u¥î)vçî› “w&>|#u!HT~‚Ï ’kw±mFê9¸(«¬Ü+« ù5¨€=°é¼e–ÁÚÞ ï!“ð%Q’eaÁÄ(¾Á¸zäq?ƒk•¤îùýK¿„[pù­–Xæ[Wó£ ¤½ßJvt^™r8¬”÷Ê¢*ÓáÍ,®®ñèÕT1€Üjƽƒri«IÔÜ x2&Ï1/ÎãcºÓ!Ž­Ø„ÇírvôÁå«ÃöSejŽ”È« ‹&ÝþMÿg‹7uÑ7šëtKñox] “e³»f÷Mo8Œ±Ö\]ÚVÓzœÇUÑ— k ¦(Á¼_³/+C_}¼¶ª˜ªæ"G߃ë?æ®ý¡ûÜž¬Ó‘•â½Ê!½#OkÒçi¦Á!‡sÐk…àA"δK|wM"ƒq%‘ßud5I ‰!+ŧ×÷ ®Æ.®]I‚ÕdÉÖ­j\Šk1øæ—ÓÓ77µÜ‚€Ó ƈv¥)¡«²¹ª…¬z˜…| 3g„Þ‘á™ÑË?s¶45·B;ÓvÜn*Ü´':…KÛ\ÛáÕŽ°ß„n»—tVœÕf{¿¬¢Ý³­·v4Øha©Û[*Ûkô_þ~ð^W›ÍV_ßhë®÷÷‡¡¾ú†¦Æú.[ë˜ÿsÿÌmsšendstream endobj 298 0 obj << /Filter /FlateDecode /Length 5261 >> stream xœÅ\Y“Å~ßà;û„gš¦ë®²Ÿ|`|`l‹5<`?¬Á²„âgøú?8³Ž®Ìêìí…B£™îꪬÌ/¿<ª¿:Ÿ'u>ãŸúïã/ÎÞ~Ο½8›ÏŸ}u¦òçõŸÇ_œÿö.PøÍ”æ¤Î/>9+wªó4Ÿ‡à§èÏ/¾8ûx÷›ýÁè8ÍÊî.àãä\4n÷ϽšRô*Ò/ÿ†­NÞïîó| &ìþ´?¨)¤0G¬Ýö\kð?ì¶÷ûÃ~»·“·Q›­±~„`œß½»‡ûmôi÷ÜoõcÜ}°?8X› º>5˜Ý_áB£C´»¿ã819çp&y3ýývÏ»ûƒžç¨vzïvnÿï‹?Ÿ™4%?ëó‹÷Î.~ùñî~øz€éF¯ãîxH)í>ÛëÉymýî1L5óîjùîéòݘôì&ëôîÛ½N ŠYÁÏÕ¤´¦c÷›¾„›",~>>ÿ ýíÂÀè‰NdZÏñi vÓæ¥g³û9|9}[~ùÙ°üîz¯Ã¤Ôì󳓙4|ÄY}‚Ï 0Ë´{µwvr6¤Q\}@üAtãâ†ù~Ež3¨o2»¯PC@~³»—}©—ùÎ>·ÕÐ8?œÞ½Æ™–= BÃÍÖÁ‚re\<k¨Û2ƒÚâè].ý™Y&¿=Œë¸œÚ–Xˆ°gf÷hÜÍ6ÔÁ‡'ýçg0n¿ïj¶ÒÆ–yQ¶Ö[ŠÔn¹jÃ,ã]ÓñP‡*Žƒ‚Ù››Tpa n¨Ï?’¼ëcƒ³|³»ZO¸“Zk<>î퇞a”BËm˜`»MyüïÊ,5ªÚrÝ~Õ*‚rY>½ë½iý ÆãDsADšƒ3 D“¡h´‡Ô2yÈíÏ`a€a.ïœI¦ð±?¼ÎR…Q“÷É¡A·Ÿ¯údôk2:,¨@ç'Y\Vùlí¡_ãŽ^v¼‘®4u~cÔ­¡àKø¨ì à«/€~{½7ykCt‚Í‚ 2Ðú ‚c×i§õ‰—‚zSeD€æxR€ÚÆÉ¥DŒwy*ò üÚ$cQ9î€ËxP9üQ‡"žâ}–’R"ÞvíQ\b1“®ûŽ·Q°Š>«p‰û £QW)ª^ ŸDI;À1Sx(¢©Ùò,øøà´#ÝóŽ6èHÚI,£wÆúì*d“ÁûÔ\ÈÓ׃Ùr]à>‚ûj ƒ×_áƒâd½ðñó½É·ë²>[_EæÕ-|K>>©k“v![ÆãƒQ`ÜAÝØ)€¯q˜”Ý(= 9Q â+´W¾åF%ÈfÐÿ¿ŒÁmîY\3чw«ù®øþ9ÙŒêv6ˆb‹ŽÄB?.óØê÷èø²ˆ<Øl›ŠãîùÌŨ¨™*ããSá*+ÓÇ!¾)pzô¯]»§`Ù\ûÝDߊÁT3‡Ú1Ï0ªÙ½…{PÀ1e¬Ta®j>aYnm©HOàXÀ€#3žë_üü¯}݇96Šå“'&Òe8c[ñµÎÃ.np¤Q­3j3Í~§°~¯¸Ú.}/9÷+ÎAØa>¸OsÅ5ÓoF’æÒ¤ÈÖ¿Ó£“[‚BÕ0MäÖdÃ9Ь•³Oã'¸bð³V!û‚±Â4k=²…\1’»¤uÞ§ulÂc²àε‡x¥ûŠÍà ð~€+1ã…—É!`Xô™<ïZòÍ\É´ñ¦¶AM«A(p)ß"F¶)‘rê#›R]|ŠföQåÓ–¤·#ƒRð‚$ƒ`grôFÉÀeåëY Ü Ð d7s:…€ƒ jÇm‚€ÒçèÉD–¨3!K%TÀºHÞà×èÊ|¾©ƒµDƒ î ÄàÊ`aÓfT…[µ2ƒENË'äQa0ì\’ê_[P¬Î‚-Ôî£}ʰ”<×ü3¿±‚ßfu¥2]95r·¬A/Gü(VS´=Hð=¸WLJDµÈö!ÑÀí39”ÁîIa¹Ýw¯³.{3C¨ ¿ìƒéL‹" ìL‡ÒU¥> õY5³Ø¤­°!óL3ìÏK8¹Þ›åÊÆˆ.kbÛ}P„ûË»×ErÞs‰÷X5* ³{O’àøOJT½â¤m½}<Q>ãƒþ:L)Dz£äFÈ=ðžb¼„Ù÷ø¡Nä{!D½’–NÆ[»¨¶ÔåIxIQûâ.70‹n¼'-©I‰IñèñçÔã°–§ÁHÇ÷'PàÖAû8ažüT@ºr˜ ²IfRv¹V‰#t³ª—ƒ|Ê‚òþËä(peÍmQ>ƒ]“lÍ ‡$çWˆÂ‰9šEoóÉ Ñ>Kì÷ë\BA£nK)Ún†§û? 23Ù¦+ ç|å·£Î-K—€2L£š¾Iéû×¥b‡¥Y‘ö•2ô°4?3ä ’C±ž("›"Qò oP)ÁÚL°%ÏYÅÀýB³y`OEÚZÆb³ ʯ0Ô ^s½wªÄs-?*‚ü~Ò.gEnõ r×f¢-l­îLZ1Nõ¬óÑI³LN¨x‡35%¿t ìuo€µÿÝ Ëòž®åTŽöÛž {MØòãªçÈC:ì÷ß¿#Ÿqõónz÷—ÒN݈)«Ìz Pt•ÍÅX[²“ËÞ¨š¹Ã’ø€äD9 ½Ü߃·ëª8nSÿT÷-9A3ê¾iJY%(¹ôu£ ßžŒâ ”=9X'¹|`MCùµ~XG1håêGЭ6ùQP,U‰ý&$'õO çjmK9‹*zîVWoÍ9½ cF£11m\NI}[ P墽 ØykÑ*.= Sgƒ=ºMKÃÅ>áÃz36än šl³×Þë •ëÁÐb®ÕÛlY¨Õ[ó†µzkïX«’“)Œ0€ Á`2'=–”¡?dtpLX®2›/ uÙ3¯ÒðØ1w¿ã°ŽE±ÊX'ßZŸD{žŸöÿ#ó-Mÿ÷…"ØH‹ù”j6_²ÉŒlm0›vÿY/Ü\øñ 2é 2zIu/u¯Þ?­ÐFè(°>åiXFàê³5b>¢„è"mÉmoÞs“Í ´añ•Àøæ5¢q_‘X[Ð[ uà÷éЙ¬‘£óòK›hŸÎËM¬ß­©-*L(Üó£ªÁ‰Tu˜_Éèà{%j»^;:íq¿b*qò)»ÿ•Vp†*e.ïÆ€xCuù©n@Ï]§íBÙË©à#šc5cwwg mÀ·J÷š1ö±0÷Þr²ã6PX~~ÄuI¸Ê–½Ì¬ÎÜKvÍO:$gݧÝS*¶û—­_gŽœN”Šêµn®“@'2Îþ­“_©ª×®r†™ég[(¤®;Ôr¯×?½ÞÇ€úi-}L©i§íÈ«ì˜×%ÕÜŸr,I*T‘—þã5áIýx³ìИtæqT£Ä|fŠ–Æ|b‚Gp­{³k#Ï-л8`2ŽWÚÌÒDŸ F_îYðÑ 6/Û­BÁ¼D®¦½‡o}ðcèðŠ¥ÛþX‡—Ûì:Õ±G´›Ðqï{ÆOtØÃVsž<UÄ6zž%$ê…ä¹4*YŽRJК“NäÒ6ÕÎ'ÃÈ'åÖ©BÃaÒKn㪃ï-:ÒÅ’šÌýš‰ÚÚ6d¡MÖ3,¦õ˜7hö8âE2œl1ñO¹ZðÈ÷jv®”±á÷Âaޱ’ôw]´€»Ö8‘*‹ÚCð½¶â57[Á\6ã*ÛrØ_ŠêÊKîB+Òà„¸¿‘[–`yx1=s$:­¡,Ÿ;†n RR ™±œ –Žr7Ú*3µÏƒ¨.W#)g³êíl?,½ –<ú»9„ôч륬ÁŲ¶u¿ž …f²²ìÑîðï Ñb:C®¹³ê¦èš”.Ö—ö Š$´é|³×{13/õBu­£]Qýî펎¡VQ¦äêÁQ^¬›hy3Ð Kª µ`Ôú-tªµ7º­L×`Ä?Ý#espÍ’©÷üôª«É…ÚgÑuòô;^®ù³¤R€ô¼@®#è~º_oÜýåJ²@Ò¢²@÷q‚3y8mª£b c”M{PJGl¢sÝDröohUP¥[q+vk­ ¼QÃÌß.K'Ä”¦£YgQ÷GÍXj'cy:Kh«tÂ^P[pŒÌ †rñ‰Óøæ©Â³7¬¤´ñÅßû6YvÀŠ0ÛÚHã7"SŠ ":Ÿ2•örµû2•Ìn`+Å@ü;öñ4ñÝÊTJT§6m¥úÆn¿Ã¬ÊúÎf3Õ`B“ˆ•T`¤¤Úè1Šœ¶x é/ô£•èDNò|£ŠÂRZ­!áñï«~£ø ›i•q²­HoTÚRéÙäî¬Nž 7“ À’… ­‡¾±ÕoÑò¥YH\}Ñ‘p«Ul…·# n}Õ\6 €X»míks ”{a)ËËFÆ¢)åüŠ(|'®em9CM„Òã5Újô#µå“EMþîáÝ¢©)­Çò*4óT+¹u½MYéA˜u3ÈU·¡vŸ.Ôä8»âqÒ“÷ljr*àMÞ6¾ˆg»ž[²b­cB!ß 23#ò¼K¢ˆ_“ §ªú­ñ)FþbKAòR‹ÂØÄXµk™À¨È­G€ ö|’ÓæÿìŤf=ìpSSuê4Xªµ¿ùl1ùˆîxr¶JdëER„Ælõûäh\ÿHˆO–Äò‰i|E=ñՉŮ/%#_#Úƒ¿Ö~εz£“U´FÔ5[*³íÌãÜû¤O)mñ 0¥~ŒA¬ ‰ëw.ÎþqööC­ð=úÿ8û!c'xendstream endobj 299 0 obj << /Filter /FlateDecode /Length 5444 >> stream xœÕ\Y—Ç‘ösÿÏÃ}ÒÜš¡‹Ü{æÁ¬‘pÛz°æ¡EÆôˆFjÿú‰È52+ë.¨ñ±¢¨[™ËKÖÛ ›ù†áéïgW'ŸÚÍËNØæåÉÛ~ܤ¿ž]mÁïÌžy¾9{qßäÏ6ÖšÙ™ÍÙÕÉ_¶¿™N¥p3ãj{—³ÖNêíŸ&>{g¸£7ÿ/•ðÆlŸN§l¶ÆYi·O¦S>[o™bùµ/áY‰ÿh^ûªöhR³QNÈ5Zák¥6ÛßNð¾rÆo¿€÷•˜sÛ?N§Ö&­H£Z¹ý<(…ujû5Òq^k3 ó` õ¯ò;¿NcŽoŤ·fú¿³ßŸH3+Ç€i_žœýÇ_€NÍŠ{½=‡G¾¯ã^NbÖF(³}Ž«53bË `¾k˜<4Ld’„Ñ•âBmoaøÙ#ÔöjBFÎÉŒ8 ¡ôö]YÚ¼rVooò¯/àì©I½‡I))­Ýþ5ÿúß@®Kä БœûJú&ùu¦Òû%Ò³ð %S}VIKév¾Ygý 4B8ay~KؼEðhel{â&hÔ9®U¡l ¼òn>kØ Ê%œ¸0r;ãŒìl™Ø~·~Z Z➟ôƒ+U®¾›pœsç.û‹³“oNÞn¤ã°qÁ23Ae¸溅¥¢¡{ôääá“?lÞ¿»}~òðÛ ?yø;üߣ¯?‡¿ž<Þüâä‹'›ovA?{#Œ¢FP;›µô.ÚA47ž;8Œƒ×Ï&âàA^£é‚—@;ÐdrU{ÐKÒÏp7Lrãç»ßòž¾õ9¾…vTÇ·´Ò†o)Tòö­4ÁǑנCx-´"œJpä°å þù 9­=˜¾e¼°úQ9X6Ê¡ v“W3‡]€l1ü]ç©@ö€“ùÙ„¸eðƒ¥¹™íÅ@uÐôò"šwÁu" v}Z¢žR¾^ŠâЍéLkŽ› ÞÏzã7§\ðRh8~ )Í@¹_5Ó8€†¬=Ü`Ê^L LÁ)¸+ Þ©aÎ)ÎÞƒ‘8Š ùýºð|÷(”¸‡yn•yó%Eá¥à‰¢Ð¶Rô÷0q#µÚ= ûé¤Õ¸§L  Ø wá-:sÅPo‡Âw= =så=Î¬Ìø²®û&‹1º™Y; Ö‚\RRpŒ)Úýõa‘ÀÎïw Ü+O(”e8nö‘3Äœñü–±Ê”ødÖ”£ÑVcôlU´¦OÛ8âïDûÅ2™®–ñaþµjy.j$ÓÊV2›8³Œ:øþt‘ å¬Mÿ¨%LÜouå¸ pHsyÍ ^þ A€C$íj€&•`±L‹–ïb"u•ïQP^Öµõâï ä²ÿ|»°Ž®Ð‚°òünî5팃y„Å;oÙš.›»%Í¿Í| ± ø; °g÷2[ªŸ ßH¨2Èþ"XaîÒ£­0[P˜ô\™ÈºÎo4ŒÖõåO6ˆ¥pïÛqŠÞ1’¨"¼æÁJ¬÷æ~9•h‡TuIUs¨{\ä¦jVµT8ʃWöZîZ’÷&`Rk10 ê~ìÞJ¹Ñ.öom—ö>pˆ—x ƒûñ2ƒ8ZM;¤EÉ)¦a/1Æ]{‡Á¯q6õ¶fDêï¯Jn“&à4׳Ò!´ ¾|W®ø  æÚÙür%ó_Œá6Îh¿ó!fG!W)„2üsüãUIS=5}t†ÔÀì+Eæ÷¾äfÑhÎu5Tq6‚É•1ó¯È@þÆ†Ü €òÌŽ‹i+_IÜà½ì¯ ‹4pù Xq2ÎO(žÀJñJ!Wð²'†2ïMK7îžf*S°@ëUÌGpŒáYÆÃVo}â¼ÑÑ¢ãeRÈS€ÁâÄ“ <äÞèåÛ–þe·\ÜES ø.âp°U³„)ŸÂÔ•Ä(gN³sÈPŒ¦’{éD3;oš}Á{˜»" %/U1ÅŒn*Ý:·kšó„/§†”—¡—iVáj)fÏ& 6È#Ã$?ÄÌ(qú¾W©øV¾B],³ãAÙˆW^Þá8ˆA5™Ya^G€U¦W#„_"9 ö_nf#+|&d-WxÓh ³Ij)s#ÀË—!ðckÜ‚»A Ó¢@ázîj9cJò § lRQ:©2 !Ï”{/CÔÁ2Y¥‰ø÷¶¥U¾w8¬Àxe?®{Mô»}D¾œÂHF+ízãÑ™ud;†Ô’xN-³ôܤ ƒ‰*d«OÛˆL±Z*3à°‚ÊZhè4Ʊ™y±gS=nê•ñ6¨LgpPÏ1%Œ‹1àG`'ïÈ«Ä2T±nU¬îA£<ŠYØ(Kn¦¢ÂRe{†÷.’°ãä²°'š×r¤X‡·LH4:‡ü8/°´ÁçÆ’ —bûßĪŽÛå4Ãнé 7ãœa"vÅ'I‹j%9Éx°L;"Y ~ÓZ L¹¿”±[Šld‚‚H91y‚0 ÑD Ä ÂïÛ.¤ÞoWĶeFy—ÒPGÊ©`ð–«Å:1Ú%Ž¥A*ksL £¼Å"–`|w –‹ªÆÃåNˆóm|Ç$C@Vp)“7oì@D[`± Á%A_ÈMÉŒ ¥À¢ŸZ3¦iyôwB-IP«×@J·:«š.Æ Q%iNëiÅùMâsÜkU·»ˆ‹ÄÅÒ›<£öVÑ]@O”³Æ¶Âû<@Œ$rXuоù¡ >’dœÐ¡G;ÊSž!ÜÈûÊSåWIw‡r›M³g‚"Z,L¹èjZËJRà»m–5OøôGÁŸï¦ü < a>=v5MH LÔ„"à µ ÉxfˆTïâä&´F~` ¿d:©¬?4Ыqhº‡Òž¢a9 eq¤SÈ”ëcsƒ±ºÕ>ɧ‰AÚK¹,yaÅ€Û1¸¯†²ò ™ ò6ÞD˜Â×6ÄS-Ƹ^0– ÞîaI‹„[·§P£` ¿p1]¢ \¤rÒà"°þ‚9:H% Z<î. #P@†¡ÄNÆ%LÙgÐö¯Å5{”ÁùÙSe@d±xkOËzÿ‘%;kį`†èpiöRôØf:xwDùuòÉ™«±å*`Æ(z¤ˆ$”¾šhžøÑz€ëêjXZõc t1÷ ûÅcˆ»4ú¸ªjX¼'¯ŽüA5œµ'çЭˆBh‰åvmôÀŠC¡%R~€Ì´¤ÍÈžf%¢6B‹›i-è&ú!À¶½0•í¤ò%™ÊÝ"Îkùe沨q’Tdˆó=ga#ä®Ò;¶b­{X˜±èõjaÆp˜ɧµnư¹ÀH« n—½˜WÙÎŽ&N®«_0F“ ·ilÙ0ê#,[Bâk–-F³k–¢ãcíY’Áž)ˆ™••cùìíY¸YF{¦€5Ú¯©B4gæ#9‰I`E$·K+’`™³€ÉÉ›ä$¼‚á×í¾Mì˜3†N¾Àl Œ YDB ÏQ^wáôQÆqN>˜rÄX¹®ˆ¢‹Ž ZP”øÑ¢¢ÒÞÄ\”§0sœ,Jï/'L6kØ«q‡êÅ<ˆA@Š›4nˆE¼XÆ"Rs¬Ñ­B½lŪNª,ävÈ¡Z \Ëà_v°QõÇåCÛ˜Œ{S“‡18c,XÜf4SÊv=C)¼ÃF¨¤Ãlgå-YÊm·êu胱„÷¸)±äºÅ7D{Èås3Y&£÷ä•ó1„HñAX|ë$¨ã冦f?õItÇE2ÛÅ]|ç-¡Ùsw]a>ÚìgùÝ'ËFÑ"ÉÆ|œØ?Šz#•劣ÇQ„0 ÊèT6&õ’í¨f¶¦FÃR–òpå¹ÍÐ<|jšÚçišŒ3s“uÈ Z3°_ØŽ«c«²tȿЎ+õøiâpK¸è«B¶"59˜¬C°‘š«ßW8 Œ^ >gêÏj_6 #ÁýÉíŸ'0ÙÄFÇô6°8ï̦a=Û!I&,°E>'ÓÐú1ØK²ªBä2T♳¶”À «V‡Oq;Jÿ!)·‚ (‰ ®ãrM[xÕQVÔWqJ‡k`]ËRª0“ísAÏF¨ŽÖ$| ѵ´ŒjûE=ƒðg¼ó¶Ä‘¶Œåü.KÜUÓ[C[ƒƒªè"w9;¥lHztb€Wêtº-ËAè‚ÙK_Êo’”ßF¸‹¼]6Kl¿<>ÉiÀRÑÕ¨fvIÐ!‰Y”þgÈi Ù4¡}P/çÀ £TѾڀ«¬‘ Y> ¸‘ÖëALÖך~-0%Ï—°I‡¥Lø¯ágÇÂÏë›Ò¶S¸)»òKøØ£É=ìp1ÖçXóÕÊZ0ÉŠ?á©¥šŸLúIÅD“ô/«ø~ÁfÔ¢|Ÿ|(•Zú ¢AMÊlX¤aP—!yÙ®k57€âÀ#ÀÛ³‚f® ˆŒÒª…Eº; "¢vÛOƒ4·¤$R7ÛÁ–dS3å'ìf|œ ‰•j[ÃÓo%uÑŠeµ ÀJëЊUe¤Ç4vÎùÓ~3 »´JìëÏW)ÍÀFÞ5›™Ì}{Î}FºúKi#¸I>M5–;MäÑ =ÓšŸáÚLhç)¤s|?ÌKuy€×dæÑ:#ÝÒ9»êóø#§Hz KÊÒ,å4ËJc±×3ö¹¬-˜íL!5¢žWz˜¬ƒ¡ëˆ-n;¾–1h³uÊîPe£€Ö¸DI;œì#ëk‰v—ÁíoÒtùæÝ^™Í`ág Ö€|+MyIŸEF£4䦪Ò\…¼*õR.4}Óãh ¥$ßsŠò’¹ÜþOÃJÑ0@])óf KþS>¼ü¦_5‹Öƒ¾3!® /Õ~4Q… ÄÈàϦP§rìe Ôdè¸E¹Éåkž±ðaúŒ¸ðx|ØìÑ’EÒƒh\7­™¿i§GÐE‹1õ®HåA¥ôõ„ GÜÙÞ–¾Œ–v±/<É‚ö¾I ­fSl ´Ä2Ò);Dc²áÊ"ºXÅÁq‘­Å%Uÿ¯çðK•é'’ܱ)‡·Jìqˆ4µ°,À©ÃPËX¥ª ôÈõcÖGX;ìþnjTî¯÷ö´|·Žéß«T {‡Èðýš£(RCí¿R!Kœ/M !b2| ³¦6K+@Ñ]cþî,J”Ö+ïwaÞm«SM£û•ÆœFÄÕ¶2M-Uà4Í¥ -,òæ|Y.»æò€VóÚaŠ!”&5©¡LòTàY—Äó¾¸À·k@ vfÛá"RT®SóÑ?»Ë±T†U¤Q#RéN+3X„ô •05w52’Û·wI±¯MÕrŽõC:?ǪýÒÀcU,´”b;~×êÞö”äNüç9~\æ€nýÑ·tð‹))Õ OœýmQŸÐ3Sª¢0¢'gƒáU-Aáé#xüqCÎýå`óEš¡·Í9:Ëe© D$iÛ9–ùýº/LµÄTY¬¸/Bò¾©· !œáîÐ * Æuža/ì+šéºìçØîj8Ͱp¬ï§p°ÓšQYKÎ €N—ÀNmÂþ ì†n®u¨AŸß8÷Gt?µÏ„“ú˜®bpÙwRµ .¢•Ålš”z6UCÏ|Þš³Œ) –FÇî8¥ÒX3 =Bµ0Ž Ó{º¦HCqãÞcº ‚½²ë»:åhcO/k›zY¬ß"¯b6ò¤úªþKH‹êª_#)†.Ö´Îz:¨çì'«Dó/ãkáÐÇMUV]¦ù‡à±1oœ+lÅcß:'BW)´Æ¯æÓ󹜑.Œº)šr’…Æ©IKmºe³‡œZw(Ž!Lå»<”Ÿ%u(Ùø¥¦Œ²’¡àWã·:ƒ BU„¢Õ#–r‡ÙÛEÖä'·⢤Ý`²„ñêvÆçs2·¯q`Ÿm¹}À„ò8È`'n¢ó;‚.‰3ö°lÝõ>)&dÕ3 À)˜Ø ˰U³ ßáˆån|ËZÍÒtz¾ÇÂɶ>¾äs5ÿ{‘Á4GiÊ—ø…Ÿ!ë?–P¥«^’Oi„¯3¥Oí¦èZè¶ÜºÕ•Ûµ¬tˆŒ7ñ)9*b,øŸ»E‰~”•‹Ø ÎC®æËèk4DµÃ…è(xŸ~!’]¨ ïÚªœ ØËVÚ…rÈfuÔ;#‡=àëÈPddúŽà)?òÁs¹±i=~lWƒMSzù%‚ܱstëa˜Ðh³®IÝN:v½æµTˆºµ?Q‘d†R1{G;¿ã=¹]KáEIQ]ÝnTC}c¢ïÛÎMܵgïbלƒÈKoOsâs-áÕSÆ™>z´¨w̰ٲ1²áCMÞÃò¹Ñœ„Ñ<œ,–54 «®ï‰že,G>LZÍZùî‰Û¯¥î´Z ×.S¯‹Å¬µ"’ÅäÓ+m$9‡’RuÃüÜÿtVOõ6[rˆ¹ŒÜþW*Bp¿´‡­¡3XýáVïóšÚdQêñ=ìH­ÞŽðí ¯ÆYËjSK„âÁ8˜ØÛ4j_¨Õè0GFÄ©Úß½»¿´Ÿû­oêG–`9~Gû›“ÿÏšFaendstream endobj 300 0 obj << /Filter /FlateDecode /Length 5383 >> stream xœí]Í“G‘g¯sä° âØ÷@¯Ýõ]…CD¬"€µaÆY²e[öŒlK²Í_Of}teUg÷ë7zlá°§§§ªº>ò;•þj7b7â?ùç£/¯Þú“Û=ùæjÜ=¹úêJÄ?îòG_îÞ¹†ß a bwýÉUê)vaÜ9gow×_^}°ÿïÃQI?ŒBï¯áq0Æ+³ÿ¿ƒ‚·ÂÓ—ÿ‹Zk÷:ÇÁYï”Û?8Åà‚= VºýÚ*ü¥éöÇú±wz°ÚKµ4Ö¯ sÊØýoÐ_{öïB-ïýþχ£µ)'óWÚÿ*é¼Þ¿‡ãø`ŒÁ™ÄyŒÍè,}~s8Êqôb/fï^ÿîJ…!ØQî®uý³öÏò—„Ý¿¨Ïa*n¤tû/aˆA)gôþùúp„¥y+ýþchÄ ¤Ü{vaðRÞÁ©ì?;ÈÁX©íþ ôûô Ý Ä˜ÆrBÅoð×NÌÃ_lJÐxZ>~ÄeÈ@Ìsò¶yLŸ–£Ú?®ýk§‡ð±é ÓÜÛ•êz¶k&#ƒ3³0DjtSÿòw/ÀPfÿh2·Ñ#¥K-ûò¢Ú™a rÿ~hB’­h¦Q'ý L&T?ûu:t ý,pÈõcàŠ´'ÚµƒC\ ³Ç9OËT³­ŠÍ·lÕVkTºÌQiC†¨OO‘[´‘£uu–dg‘’îa)‚—vÌk; ;h|Zâ·™±?í÷ ‰svêø²,7à‰hø5Rf€Sø¢¡"Ò'ô1žª„Ù¿<=b«ÚçEKΙgø?‰ëÕF…k©æ©K Ó±}{À¶£w.·m$ di;¤…Á}dY*1ÂÄ„•C¥M–@&}L:ú1maý£¨3ƒÑrÿK¤'¡ö¿èÇÍ@÷Ï+ޱ7‡ëÏgk‚50kj&\XðÑAÁxÞª~¥ä°ð×ÊDTf™Ú²»2u©}]¤„Ї‰Ò;ÈIPŽã`G5IýÑô4:aŽéÝ-awV§Å==¨8:0YÄDÌvbeèÝ&rAº>«o ½>Ç3„þÊéÈlrç³iÔ"x6E NChü¾9[C˜0 ¼(Âàá†E 1sJë„ñN§2òm…Èc#…›¡£ãÔ0ãL-(åð½ §N/¨Äçè†Ô{}÷*jDO_D%®Tù˜É•1y¬:à!²jp@./O’oU°EvUìÿ¶{ä@EL¶!‡›ºËuЉ¢,Í0Ý¡<Ì”J^n«UЊó¿þ}¿…d­ˆÅמWK Hõ„6ëËïÓN(Ýê(X:Œªö?Å#Žv&5 'bÁ]Á¼¿‡Ýü öéÔñùo‡ÒhhÅ4X°ÈߌÖÂß׬ìÀ#¡¿[ Ò¿à[ Å·–ã1Zưÿ3Å¥~½’t¯R”¬ˆ/Y+•6 žYÉÀ¬t@†óG™¾¦?A¡Ìò\e4V‘|Öˆ$Y©£ÅEæÃÈ÷žsóDG˜ßÕå3²‹¢Sè¾ÿó‰¿>ˬ¯€ çO¼3©(ho³*†ñ?dëFI$ ½¤£ÎÖ"Ù}ÔThí }EÙTxÊ™ p\Ðb2ʶ EÄ*.i&÷´Ë"¡ý ¢-Šo’ÏØÇ;Ëd îˆñ‚Ë“¶´l­)‹Y5Ï_ÆÖΙ1·Vn‡sÙ(’.ذC–Kžâ4t°Fpvø ©Õnj4*u`ÇwÕ’ÄŠœ[n`ÕN$J7l»º1P•[õ6)\”ŸUô¸ç@¢©£ú“åÔK³ª¸‘0µ“E¯šðíÊgß_ä§WMÉÇU§s’¹ €:Éú.s¸ú8q ‚¿2”I‚bAê#øCI$c¿ÆO@5@溣à%ÀFS~j ú +€·N3ð'p¶é‰ÙáOÌ"ÒÜŒ˜…þ5sv‘˜ßfˆy…¶¢ä[£­Î;¨¢«uÑ—ˆËQ×™Ö}£:.ê ÎÌ([r£c7KƒE€®RÉf’A¨é|Tº©™PaËgÄðt”&-—µÒhÔLŽŒAGå(­‰á’‡3·D‚5(ïÕÁªýñHA°}Y}Î.bÁúCuhyûª1$œƒ8S0Öšù‹Á>“Ôã#›SL5 Œ*àXgbši2!Í &Vº°OR@êä~49Jßãyéh},+tB—.äð«PtÌ/æ,ò÷#@ªþµvè¨ê¦?º>t•˜$íMkGQ¿pÔ‰šSbxÅu1&²¡·IâŒR4üpC9Má@kI™‡-Ί#.Jµ¬ts„Ûa`üÄwá6ª–Dmüþ¯‡÷/¾~ÒòSkê[7XhÇì_£þq¶2ÅS³÷«¹Ì¼£³¼\4%úù'ÎÁ…ÂK *_¸—KöÆ1zß8nHž¿èmÖVõF XŠ ÕÕ4óÌÌü—ÐÌÒ§Ðåýu«DøÁMnÃë];ˆ ð.°vZ»Jѵÿ ?ðvøHÖ+µAÅÝúùúnI…&Ÿ©B8¯ù%»æT¶/ønîÍ?‰îŒY¶û£rÔ•dŽÊ¼ Ò¼Øö\ž4³$.[[¢Ì³Í'¾ôœÉ¼Ö.ñúÄ}ÌPÄN$5ú Æë±½ZÒkZ¤ VUºß-:ó»lÒgŒÒnLÆò²þù1NI]ÂU\†¸#úÿ%nwË|+•Z«”;eM씀XPÊRF+c)xSÏï‚уòL|©dñ-¬L!¼s?¾æ^j• wp/k,PË&¦ÑbÒŠA™ÕX <*"lH~­ñWqßlÒÃ}\mðϹh4—lÙÙÍœóg“›²%aΡ·6Æ«:Ùå̪ìrá\RX‘]øç™ìjÝA\¬<©\NvI)^§ìZˆ¾aÙDHVvùÈ ©Èè©0ˬ–C Ü©U¡•©ô’a)"µ (­Ã¢/Ž´*ʬ/ôyH8DrµÁƒê=íãwF鳂± 5g¦.mÒó‘ò q­X}œLîê1ÿ³öø:l›g4,éöŸ8Wà £–ubÂf]ˆžæh™å…´Yeo¦Š26°ð/ ¼Aú꣮q }8íaCeðœ5ÉjÜÂsñv±Ui‘rð_‰þ¢W@î33,̱ êÁ1Åou žµh`Rµ?yÙôP°$î Äeƒ-è ¥pC2£…ÙGoÓ& <ÙŠ Í0Ïeévô²y‰b×ãv ¯œ!ŠîF:ŽaFÑHÌúl"Rx l°ÊÜÅEf¼äè oÞÆùíÿÎHìV¶c+–‘YøW‹Ébèš  É “Œ¨Jï‘éP`ƒÛ3 7ô"(e$–I¦³§dÅSœVJ9±P^N ±:ª3×€ídgjU^øÑqVËÖ:šIøíÇEäâ6(¯vIg?„G›À›0ºØEÓúWhšo¤qyýŸŽÒ|7º^s“™_–îÑÿ@yÐi„gÜxèÚd¶œ&þV‡têwFú:Œ Ù—¯+§Çû˜QÏ6ëIêÙa/Á Ú¢ÚnÍ¥WâÔæ ÙP›ÿúâиqº¡|ôóZjF !õ¶4„8'@l‚sM¥¬fÌyª‚н¨¦à/,°üa2鮩كV@Oášâ\·yŒ£–ˆ¿›!}d,l$/›Ð0$·¸yänͼÝBQ*þ¿¼Ô@êRinÓ¦@Š®ßÛhpÆ:ÈÍ.‰LlÍZ¹K ƒñ×tº°·¼~³áL8Ø=›¸ç"Ÿ¦ü"ã6œZE´ˆ`”ë*þ©sGŒÿM›Ù#FºTB¾¬T. ༺f"‡ƒ"[Ä~¥ØŠw­×˜ ¯Ø×ï'3~ )?K®»:™YJ£T1'?¸%PÅg± †â du'ÑvŒ ¹ví¤d gDÑ' Ÿ£Sƒ͉ÜÙÊ y‘ÝÄ/'-VÇPÌ+Áã“ÎÏ,ÃãµÐñωÉ_0cv·$j‡‰Œô¨ÅBÀmB¡Xšô~J%÷~V%ÅOk&í4ÑjáÑ8xÒòá4Ëf€&‘…·ŽÕä~™4mr±·‹@°·Ø Öw]0¨×´êUÀÒ"¶“û\¹(¡ßÞ×¶»*; Ø0JK(ÈTBÀpÒ¹·KO Š$ID­f:|Äχ“àa‚µjJH©ð´KÑ›-Ú2CõÎeêg«¬RÎ!ÃÛ/f…ȹxÑÛên*ÎSÅœõºò†)P€õ²f â>sh æÕžÝľë¼7Ò3MÞ[¡éŠÈZ‹§ér!ñ4.‘â:óM­U\'ÞG~ݸNd¬Î‚Y ŠÚ$$yÏi<ÖëPÓtz…(XÄ5wÉ‹œ÷K¥½S­ÜBE(7dP´Î€K‘“,ÐM“žÝ„#3óB[mŠ4cá£_£ì1ÖÇz'1õÁºH›ü¨?㈌eÖá+ð¶Wqø.’U_“«Tö!šBÑÛ>5@±°R—Wh`”ƒù/ ÒÕ˜’ß}~˜6˜ù³´Ylnt£çF3‘^¥‰°•0ånW;¬"nV7¨Zô?°±Ãè¸È^ä±@؈ù%ô¡id¹d6î€ Øò9²ïÇxù#JMUH\J#=¿)6ÃfIŸ7±=ï^_½õÕÎsùX8æˆþ®ñ¦ü´mO¬Có΃«·üa÷üë_½õ׸zë·øŸwÞûøñàW»\½û`÷þb%vXmE‚É@jÔàýX819ëSš÷RŒÔ»Ø]c‚io9ÆEéŽÛš(:Õyù‚)§L‰³Û¶¯Ór”.ýi¯–£®ÆúJç]-ÏzàÔÅ|¼Ïäì¢iÔÞÇÊ 7Ü%¡¶`%ž!{Ú ·Î²Ï ¾6úvŠ×oϱàÑS×ZÍ<>е®4n w®r˜ì¹qVka¢îyò/°É¿å<åÚR«ù¶p©ð³®+ÁÌè‡ëqc_ÇE˜»¤)6|‹Ô»ùWFÒ „ÒÝÇ'³•§>&eS1ãy¦Ýg©™ÉЬm?ÓyÍNGÁ  BkŸ—.MMŸ“‘ÅÉ×Jr¬^°˜È&Ç€M}.¾ÃÝŽ-aúN2l׳óª¼÷¦|®©á£…@Îΰ݋µÍ—QD2È-켘| ÙQÚ•€³ìÕÕè”*›amÃRç¯Á4vÅûÄT’Êø¬Ö iŽïáI\ˆ¦$Ið¬ƒg–šÃ¼lÍÇöVîˆ>^§×I功©€¼)üwQg©£ëRÛЖÝ›rCSü“Mp°Î&º¸ ñ——Ld´\ò׸´å‚% _äRÙDßïÎ¥%Õr.—&2rm&Ü÷]âˆÌeà *c #¶à È›5ƒ9J¿#—¶µÒ¶ôÑËÈ¿BÄâ4fµ°6Áwv„~ÁžEx²á#ô³RÚ^œE;¢ÆÛ•£ÊhÃ#¨Þªî,÷ù% 6^yS/à­¡ÁA®KÝ™Ó #Çsñø6 Ê_ü¾lUw1)5Á¸ É´@ÅuàëvËò$Yj<ÆÚ‘éÒ¥Ö3¥ç†õÌØé¢L¶O°-º}áÖ›ÀÿÖûWÿ)ùÈendstream endobj 301 0 obj << /Filter /FlateDecode /Length 5271 >> stream xœÍ\Y“ÇqÖóþ†cžÓl£îƒ ?")Â!R"¹² 9ØAÚ ,‰Å!ü{gÖÑ•U=3»iÄ »Î¬<¾<ªÞ‰YîþWþ¾|qöð[¿{~{&vÏÏ~>“éå®üuùb÷é4ødŽ"ÊÝÅ÷g¹§ÜE±óÞÍÁí.^œ=Þ2kf!Íþ~ÎÖm÷䃓>ü3þ4*:·ÿv:³wÁk¿4ËÙG/ V»ý ÚjüG×íë6Ù§“™ Joõ4ð^[·ÿãýMpqÿ9ô7j!ì¿›Î-ìM{Ufõzÿ4Ôʳÿ Ž¢µW’Ö!ºÑ¿®}þ8+!‚Ü«ÉîÃô‹ÿ8ÓqŽN¨ÝÅŸÎ.þíñþ¼4~M^¶yoq8©à¿ý“š­SÆÑ‡¯a9ÞǸ–F€s ½/—‡ïaW.‘hÿS{ÿ&{5•‚S!ýó¬uÖÚ[C†dfn@·ÙÁ(¸äïñŸøÎ¶Æ?´‰ž!Qý,¥FúV²ý'`œ…X¦ p€7ð3Ÿß_Ñpt%ôþÇŠ³±±MuƒÓçCßš^»Y„Õv ±žÃ?ŸMØ@Kiñ~=eoeí pøÅpõcä)¥´¥±Š´±®í~—Úɨeä ³•1ªÜ8äâ¿q¨®‰—I?NÚ4ª-‘×þ1¶ÄHî„­=ƒñ 8pž’ð iïA`bÏ ªtðγ¬à('æc±¢H¼Ñ†T™»Ê"´±yn}LóP2Ñr¨ÀZš¥?0È¢ÚK­bèW9ïN9ÜP›:[{ÚÙ¶97ÏÖ¶³m­WgëaîÚãïûzxM)¾aO¹‰8« ÞO¹D›AøÇç÷ÿŠ?=ÒSíIäÔÒi—ç°›Ñ3‰oEùƒ¿ÿ>ÕF3t p”VR‹AX«ÓÚ™Y@¯£š¥õúhÔœ•Å—u¶¶EOƒh%¥×^ùVü8ôfÒ¸÷o3-ÕnWmÌ-Mæâ,…$’p›Mа³ZX¤É^^칬ÌE6Õµ¨›ŠÈGzg4åÑl‹sYPÑìÞÐ츢¤Ý}-ƒÖWV $—óÐn­é‘¯@Ó+—¹bë+|“©Ä¹ ò–aØ—“B $gÙÈØ' <€$˜ärÒ¨÷œ¦ï‘ha¿ GD„ázé„MmLÜû= TëÀAÙ`‚9ÒVo²Çìo8gÿsèzù«‘‹t1i1ƒN û§MY7>&+¹Å¥š r…аlUùô‡¼Fêʹ꟨éŒU8ïraúgÌ/<º€¼kFf/GeäZ_^®—!k²Nm²¶”eb§F™B\ám”I. z“SU4p*«Ž ˆ‘*ï蚃ƒ7Ù¸ øÉ©ß6ØÆ‘Û‘ƒü1qBýo,XÝaFX®Û¨‡åÎË/ÔúÀ9Э*} ̨ô)„–‰n.™éF7ìÅØ Q:¦]LLnBV.bn\½æÄjœ¸#Z¿÷8pú-¥ÓÜü+]Vtˆ±FŸ„âq­7ƒßz)­ûx:÷€Ј7Ü ó±À¢ã ¾I´²¾Îl23*˜³C&d5ü.Û7åˆ}{¶–>dßȰe©Ž§U’fB+Ômж¨öì²¢¯'ê‚ { ©A‹0Hõ;ìJß é9$)èè.¨}˜£Ç€ðST÷x%1qK ÷—ò8¸$ã>@þ×ÈßïŽ`²¢‚­Â×hZÐcø9ëvMg ³¹_iª5ž"††·ÛÚÁJøªb¨Á®ØH9¤…¯pH™ìç^wXˆÏJ{×µ9਎ÀW¸ ?;gyÐ?È=Q?d¿G%>ÊrÁÕËÎŽÐëM¶ÛÝEYž¸hW£ _ ô€+@’ÅV$âƒË%€YƒÆ¢¬ûIâ8ᵜ<†Ùƒ¨ºåñÜ($¿ îÿ¹ÔiM掂ÁÖ9Ér>TW^´N( lÓŒ¨¨’a Yg~;xã®-AÎ¥· Z\×8`^=+C—¢ÏŸ8¤{¹6°ƒ·Â!íN3a­‡Æ8<Ù61ÖYŒ3¨6$4µå©eįKñ"ð:„_Öá ‰©H¹!áíÖFæ„y$[zø¾…Hƒ¥­ç*Ý/ŒkR&VÍ‹­¾L«2Nz6裊p_Ë~§øÓ .ž ‹ÔuFlÕÉ !»Ô@-`€ÀëÃh–¨ˆº¨ˆfº':~Ú+Žfÿ7Å}qÙ$ï$Ä\°p$¡`9‡:ݶ^ZGZ Âx"jGB?%’»V?õ0š¨ö+ÈZHbÔ±žû5|Çí%Ô9瑵èá6˜¡ãtvŠCä9?›Ð~9Ð.ORR&ª˜\ÑÂtO&ŽW³W ¦Ü,^åߦ˜G¿›Ðš%û¨âKHI«Œ Š´NW)%%«ed;1¸xGÖу/­ˆcv“ÿý$ÿÅâ¸dÎÒéǨyl‹ôE笣AóO¯Œù'¡H=©Qv`¤ŠË1¡%³N9-¢M€C)ß—è©›µk÷’7¡(§º ¶ c¯‚ݰb TŠÕ„c£p7¾ „%öX³†Â£=q¾"êC§j…@ áãM¯ñ½Jœ–G¼ozòˈ¯¸Q&fM£ÓæËR4Ͻº%jšpƒ•9í°aÜH™ 0n(ÙL¿Æ> ,Q‘)nøÑ:5µ(8! “ýÀyµ‚g¨žbOJ³åP¬ k¯HëDð>Õ³dRäâ0{Òe>ºøt%gEeíG×Õ’/ ÈøTË4„ ˆÛ±­b—ÝCÞBfÄ šÕ‰¸ÓX¬¯Šnf«¼Árè b4P4vð÷\º~‚&bü R¬ä×5¾Žó¨?¶Ÿ—-@CÞÀ¶„@–ãà5hU¢Î5è°$VÙêî^KGºZVô|éB» ÐàçwËë²"épËÙ¹håÑý¼$£§Øx®ÚXv˜ôxÊañqK:Gža[tkcµ5“©Þ.`ÝÝn#dÑçø8Pyªðq\=¤´PàÉáýn»§×y­’®”§OBÀ†ÄµÛ8­}úrÒ‰û}k— bðÕ*%e äáÂ’öÿaY*ÖP€H À[‹¤E÷PK§P¹X—J{‚™1ÈùÕ„ŠÅê6!Ù”Aõs oDðþD|>d}\œBé€IM¹°ŠùÑrÍaË™"³¡ÉT—Tµ¯±ç#Ây aéSË•SèFïfë¿-´¤gîî†ÔžÈ Á<] ®sEpõ¢‚ª1&EÆ$6R!»V¹Ù,nXðvCÞšÇ ñèçÔ—~ÙÄë¦9 # ÂQäJøŸæW¹v ,%}õDÊ{º\Ûì/Ø`L¶·ìa°¥0oI^†åŠ7#j›s ²³Æ† C¾ç2¨.mv厕ÑpC²!bg.ä©d àV–Sg@Ô¥†kD»)OËîHâ}H@ûP•Sޤ9›«ñY‘­«^`]a.){8X3”5¤Í÷Œß`9ç®QqwR]Ö^'º“Æ'ÕrÑ;V¾ž”3¯Èv ¬KuìQ»¤íU—Ö‘Q9Lfó²(ï[,øý<bgRx X ÷Ʉ؂¬·÷„ùÌ%Ÿ1´ƒÛlKÍà`±X– Ê5‘•jHH­0®ãéè?U¦§K©'•ÇçyÿÈç¶3–µ ”l¶cP¼Åx¤çYˆ®Úæ¾¢DkQŸ9¨àªÇ÷AªµUŽÌlúž‡ÍCŸÞCëjŒý-ÂìBXCª‡.&X}RÉÛ´¼&èbYT$µ %ÁIÁZؾN0r‰×¥#QTCgÏyu™uTÐK5Òâ¡ýrc\À²9(™¼ƒzLÕs‡Õ£Z©£ê1Aªº*\i)cF-µ2äµïo ”HÙâ»R–ðIü 8ŽýFYh†°"¡?é,ø“q›³KµGò÷dˆOMjË×ý{çsrWØ[ ;iÃ}Bôðó‹ µ—“4Añ¼_Íë,ñ\¼c1÷)n¦øô‹ 0¯õÂ,6mUK¸%—ØÔë=¸¥/Ý=ûü’!. Áž,úÛ\ŌԜ޴XžØê¡¬.=u#i6Çë¬äPgUës¾ŸØt„%÷Yöò]“:¥$Bº\>÷ñæÏˆ˜W›ÛÑô±ÑÃ|´Ë-9xœMfÙE£ÙOË3äP\:R’%w_Õ¬U¾7ÂÜ!ӣߙ‰oâúº·©Ö¤g[`ëÈžÚm7äÎÁßK^~;¹ÒR§”ázô<¤u´ÝÓ<£O©C¬¡¥']HË6÷Ë A€T&Ë-,ëµh*;ØÄïF{@^ÍÖTwZð×ù~Åû$.‹H_dRBã}’EöÎõB‰+ÕÎxV«Ë3lu¹ÖZ÷n§Íêþ#J0ö!¥LJ˜µF îfM%T÷³æŒ# G®‰b†\žø­‡õ’c G8œRn¡Oz÷¼lu•{¢Šò€;Æ K ‚MÝ#TVÏŠ„-ÆÊ«#á—*²*•œ;)%þóë˯N*„¸gV®ÎRXÉÚBŽS/uZO² L+³©Ë´ŒùŸ²Öñ…gBÏÒèµòAFÛÌÝ¥^×Å8MŒ‘*Ý$áïÓo\êg‚Õ½ÙÞÝ1 Ø—ÛŠ|·õ@mMÅD¥ôqÛö¸¾ÊÚžèFB´ÞöÃÚžúëASª(d3ÇíS[´4].)¸¸"𨣆r–..E£ÜZaFÈ.jVÒð sw;ñTظìÚ)í¡2þ¼l°Wì•ãØm+~Z©S°eT KmJÝ1h/¦þß%$ë ÝUX3 á3ƒ¬·‡ëÈÖªI½‘ë­ÇÈFò¡2{‡Ù*Z”uzj+ñ ˜ÕGbEÿæÛrP²å+#ìÕï. 8|`äð×Bò¾©r?ÑÛ ÁÊMoK:ÎÛ2Ñ-}w¯£ëÒa ãÒ‡‘¶¹™(&:ôåJû;} å!íô‹ìGõã1ûÍKä›5‡¾°€«ÕúÐ]úûÚŸÄåo7` ͽ_?ð!¤2G«*¤gPKçÙ|)úÐMœ$‹DjúB\…œ³ÄYíˆoêåvå_¶~ÕÁ„\ÈÕæ®¯áaôR/7¦{t&g]?ôGu*¼ãËša³ŠŒ V0¬lTg­/óÉl>Àzq“ªøƒé.­æá•ʇÏnôñº8Ÿ‘Ö}?õasÔ»&…<š\¿!åÇ}ÌÊ>BmñŸ0 jœ,ÿ_Ú´Œ…áØåÛÔOHìÅŒ»fkÃç×øoP 醀ߒ‰«+u)ñš=cçîb8Fêt‘»*áæþcþLÍ—õûuƒ†æj¼»Òó—“ÕR4™´-ùŽÞƵ\¶È—€ÿ@ë\;µJÃÍyÝŠú_®¿ÚGÆJ_³ù¾/ ž”BCI2ÇGØÓsÒ&=Ì:›Ìg+>ŒÑ0B´¼S1I:íM¹4›öÑ»¥ëPZqbŽ„Ò0ð%˜èY‰”ôJ¢êxþcKÕ9ßâÆâ~ÄØàc—`Rˆe0ë'ß¡!s•üãšå‹´Ú²7{N¨<ïf¯NøÀß{1-ÒÝš ®ë¦÷EjÅòˆ×”ïïªÞk¿9û£/üÛÊK¥Ûâ¢ðjîê¶ÝZ^Ê}ý#ò’.þù•–_vòkØ’D‘•èÖݲ#`£Oô7—Uý\IŽSÄÃ_¥ÙÄl¨\ÐNvãƒi›p„Šú{Ÿ"¹æ¬;ºVÑÍV?Ž·ìÚgȆ”àÕbµ5)€6„\ÇZðQz%)!ÌN—Âq ŽÝìÎI³ÇûoÑ! ÎØÀŠ»ÌYÓ–|_ilä7jìW>ùm…×N¥ÛM›QN­òŠ’ìKKöØ&Õk (_Y’ÁµŠS£ñùÅÙ7g?ïÀJß"N„ Ⱥa'ñò‡ øeãO=|ôÕîõ«7ÏÎþm'Ï~‰ÿûô/€¿}¶ûÝÙçvßl~õØÄÅD– ÝW“'N¹Žºó§å@¤Î—ŤÂ½nå^9§CþXXfpAÑè4Ž KnRÖOJ›‚Ó‰|pê¶š>Åb¤Ù \N¹Ö^HvÄÔw„íz?’3‡t¡¦Ô˜ »1wB"oë9j ËxÓÆ¾j?[÷«R ÌÆŠ°XÏ BT[ÝV‚Iwfñ¤S5$ô«òJ—•šd!ê3v PjV`é8·ÙÉwÎÓ=½¡ÛƒMA¿@{Ýä D7çËÖ§-©Ü ” ?éâ®—ÞdšJšˆç‘t–ÁŠO'ÖÚ<a‰¯6ø£NÙ&¹21¨ ¹5%ñ‹àßœý/ÑI‹šendstream endobj 302 0 obj << /Filter /FlateDecode /Length 4998 >> stream xœå]I“\G†àâ"8ãCsëõ£öE0„1ØÛiF#ɶ4ÚlÙ>ðÛÉ̪zµ¼z¯_ÏŒd;Ôê®%+++—/³JO7là†âßgN~ÿ‘ÝÜ~Â6÷Ožžpúqÿ:{´yçpüfðÌóÍéÅIèÉ7žm¬5ƒ3›ÓG'Ÿlÿ°ÛKáÆÕö>Z;©·ÿÜñÁ;Ã]ùåßñ£Þ˜íG»=¬qVÚí_v{>Xo™ƒÁR·÷¡­ÄTÝ>È“½³SƒQNȹ±þ ¬•ÚlßÛAåŒß¾ ý•œsÛw{ k“VÄY­Üþ JaÚþÇq^k”¬ýƒÔç½Ý^0æøVìôÖï>;ýë ‡Q¸÷›½ôƒ7LlNÏQøû€¤ !Œ5ØXì*ËÁcGzükgi j{èÖj`ÌlÏ29vSz{¹3,}Š_=ú¬¶žS_gˆ“wp +Ø>Iíží´£5ç®OšÑ¤tq8`Œ‘¾ûFóH±Ûž_>DòŒåV}^ìÄ ¤r¦K.ÞÍKú ¸9£Uѧh™ z ƒ+Å… <•°Ï^FžÖbk`ï6§ïŸœþyêÅ ðÄ¡ïÃÖÜqq:ÁУdä/Ÿíö o·€µÓ(ÊuéÓwccZZ Ÿ¨4 #9­†y’yR5Jsawlx¶“ÄÖHØt 'ÒÛ d–s~ÒãÎLÑÈz "ä=öË«‚ŸAš¼/;T>î~Ì+-¾¼4x:´‘YöûÜ¥3–¨„„®Á .–™y â2,¶þ‘°HQÒ÷%‚ ©4uerà ÷÷Ÿ.Òz´“ Ô„àe÷0±²‘9¨|˜¾úzçL+8"HIÁž±~Ÿ;Æ­fΖd_Ž}5ƒ.qý@GÔ܃’@Š÷‘ä=ŠªJêâ¼Çø¸pø“7vB#6¼›{ û䆗ßp~@£Ù~”$%{‡ÎÈ‚l>Aå‚ÛÖ\Ð ‡Ο}ÍËI-¢¾•ÖkâtR° ³רÕòf4sÐXÒÚB©ÞIJ5뫬™/ZÅFú8)H<ÄG,GU>Î JäÍqØÜ±Ô»Ðˆ 0pPK´›¾PàYÅVFú¸Á:YhÛ‹VÇ [qGÃg“˜óÁ¿îˆÈI³±MNmahÃà+\ºÃúpè#4çNö¸ïp=¦,»D3%e×LåµÝËkëZŸÜ•³Ã¯E×Þ.GÆp­g°xP˜¬¦ÉØ&8ñnP®9ùP¹g¥ ÐÛ—;i%XõåTeâQ+ÜIÚ['MÉüTSâü³v@Ub“¬+½/ÍNWURßÂTD "¼[â_³A¶€#š¢ðnाGsw5¥ˆb ÀË&ji‰Ê–¶.[ž]ZZaeây+Ío{BdJÇáz!Þ‚³ûõNÃÄh€•*溤uîãB÷£†ëííScõ Žeg*(RÁq–?†6Gá*äÂ>2™|–®ÔÄ9ù |kÞ»5ip4©½›§¾Äq ‰Òœ“FŽEµêë—Ï3Ú%e Zê-V¡od޲J×Ñ¢Þ“ßÁžI{"Èf{ ÑðTdëÕ 6ˆVûzúùd*›°Uáçzô ÈWLým8¾wN „;VoÄ­ š™Q.ˆ7ÜÃN¨o B!ÅÌFamÆõ'ù GDÜ©`‰ñg~ýŸ?Á ¬çj5¤«Y¹47¸7z{{ö£‡ÊšT(ô|ÄÊÐÂ{;ƒYd/c5F¢Ä,ÀŸ&"j©(ˆ`Pqu«Øˆ¨ëUÝ ¸µŠëA»ˆ [“*¨U¦b Š/™X†ÇÜ-/wÄ\$3ù`ì3aÔ º¦„4„Ç k™‡® -ŽC×´> ]óÁMmѵŒŠÕÛŽßûy.!4Ì+Þ£&VšW<iS0©…E‘¯yÄ›“¡o@á¤Cè˜.\–Ðn‰ Z™G~ØŸ÷F^ GRX‚:ëÀ¯•y¥'`¡ÒKX!v]‘Ç"%ÐËc?piæñ¾ûˆ…ÕªHmõB{8”g…AÏNáB }A¸3üË–ðÇe†d”âñNàÌ„Žï¥FQS5.2drÝ`Ðq Å Pœ$(w¹aDººdGÜ“¥0d…v¥&gã§Ñ ƒ‹h´í¥²âx]˜aÜ&ÌñR& ,˜B‘´!~eŠªŒ·AVĹ^ÍÃ$”2øM“G‰¤Õ§ yF¶àð3 TA<À îf9©é~s; +Ãlî›]`¶5ÂùñÌßmaž8r•o%3ì|’пJK=“ qƒp«uõ ¯¢Ö¾ÕÒsôm«@ü=|ÓIvÿ¦ÐØé)B‰÷ŒòŠk¡X’Òž¦³å<ÎX"‹ÂŸzË£OðÕ‚ºH°ÒE¼’t‡s ï\“E FÚfQÍÔÏ»–ë¦NÀ„®Ìd÷ÜETÝíYosÙË.ç²c÷c«JÚC8kq·kÝP{u表¹„MáÕÍÙÃpÖ?‘0Ô){GS•9 ` hÏœlTJá1U,ªñæ­Çy­j ý’UÛ·H,rN—Í«1Sâñån ,Â8ëí¯ó®w†fí¯#ÐD´gèúiÁE·‡òœ}G½ð' š,輂NÆsÌ"vô«L@£2„“ÈC\Å‘À¦âz%E-¾Iˆ¦B§ùd0£(rlñÄ/0§O¨Ê5~|=™µçØ ›@mN˜":kå lÊwðÙ4T’%x¶M¾ˆ¾oe¶ƒ¾>$XÀ¶õœà{Õ’ÿV ÷×kŠËtÀ7 g!åd{)§Y‚àË€Y¨íÒb¡òÖ-¤6lÔ1WßxI‡r66“9ý™ª´;áƒå ËQ‹6‘«<,Tô€Ñ”›aIßîK0_ìºC'b£50ôì>fzžg›±gÛÀЂ¡ª%d½"KI٬榑ݵd*®hªÍMÕ¡×gå%žõ|§üóØ#£Î÷ºJÎÈœýøÓgÖ ®ºÜ©Âe‡¸>ƒ… -ñ“ÓÖ¢¥Ó6©äLå„:„«•{j©z[„2àùSò2Ž«ªœø2m<@,ëÄW.|ü?‹$·Ó ׇ\òA·eàÅõ™3Ñ3*! ‡]šxo ôI<!N8ã—U9]þ>UˆWñ~Ÿt@Þ5gXUÖÉõ/.Ô h¦÷«në„\ ,ê<4ôÁ‹‡ “¹«!ÈŒ‹ò$–Ì顪˜ëzÞë`²âŽIÿ6Å,÷0¿N0QY °¨åêïåjƒ!j; Äé}§~t©‚½Ø½ë ¼‡"Ì Éo.´xÉÉ-G˜F/Þ2AÃ\4t#èûƒAWî ê pî“ް¦d]n¶€ƒSÆÈz:Ñwê“Q]XÊX4zŒÉÅs(ØY+A†Q˜Ù&Å–PÁÂsªCt(jFXåôæF_ŸfL)—+áV<\ì€Àz",CçàäïnAg…E_‹Ìáröt„LªªÐ•‚“e"‘nü ût-‚"FÙˆû‘Õ¬ú´˜œú-Ãu“$pÚª“&µ_® P¡NKÚµê*ÉNk«Ð>§»€(7n q;pÄl{RcRpz‹aéÜŒ-+x޳÷ÕÅŒâV_Œ 5¡k®f$†ÇºÝK Åòͧ窌ÐÔXÚP¦ScfQ©-Ÿ¾'¹¡$nÒT¿†]7V1ÄÃË"VŒ25h4Z¡59ï¦ g?F#õob¶à»"Wž>7XeZÂDtשªæ:ñ¬p7A:V}üyŒÄr¯¹w>–ü¢:FJÊ.LD{–¼ê´¤îs¢m§Ê¨©hCЄñÔkm#ƒršHåBErCîÓŒò'>0Óµm_tÊF¨ÜpBìà²GÐ7  YЧ¡ðÀkãxºAãñC®™ |Ê6Ñ—Ñz•öN4â Kñ0SÕ¸yÍõ™j’ò®}.D¨3Rùûu9îÂ1¬®•[\¢n}ÂRáSÍm8DŽc¯êCZ„cŹذ´-V„’ƒÕÙ+C…ÌŒ$âÌ©•‘±å¡ (²Ý¢=¯÷>Ô aŽ<‰bÑïU:´PS‰h©[Xw‰¬ÕqvôÞÈRŸÒ* –ÚO« <ñÝä>V÷^KÄoî÷\Ä_qé­Ѿ?iÙᨂݘa‡ šõ&OÃÙ\ªi!Oó#ᇠEµŽ?€,OòCùW%  Øk~D'kÅYK‹á…wH×ZãåˆoÄY˜˜­ÜT*Ü9=ÎäÖíVÅ9Æ–e &*rJ–mõy7ô/8Ì„0ªv8•¦’ÛhQ¯).ì÷YÇa Èžci¿éäÔ/B'@•¡.ëxRùåüÝ“ÖÒ¿KgÕ8æ2îAÒÏríR“ãªî¶ÜŠeim°¯8wõ¢,´¹Óø®8×2_†ÙÑœu´:8w¬œYùŠÂŒƒÓÁØoÃ1µR+\…7hv%ˆQ7ëË!Ø•ÊÁ°B0«IRaߵ𵧹ÂÛ[í „½¤èßùRdÕ›ºµt}-ÝÈ^0/жBôF—Ñf±ÚÄäqóæé½¬âQá­xaþëŽ;Ô v ÊÆÀNå& „¹GIØ`+°;>Ïá™å¬Ëbj¤“ÝAMð4¼õ>¡«]ÌÎsZ9ŸmÊ· x@ «Êë©ÆËj¨Æ q$§ƒÚØ óÉJʾ;ê),>c¤K®  k3vHÎÞFT…yšPÎ_¬@‹­ –#ÁJ.bX1¡ÖÉÅÖ½XðlêÃUužÔ‰5cׂ>wQ¡ÉM<.T3nî,×¼iÎ2Z Š4¦‹¯#Цš±ÀÉóÿFuhx²=½æI£ÑEØ5-eÞs‡#+\ð¦ëÚÎ(´„¸,¾½r¡R¼SqsUÀ ¶€¿~~Ü4ysÂá:§ð(†¤JêeWKÔn ¸‚vhÞIaÅK1øˆÏâ£#ø±Øæ b´hDY |"fúލ– ƽ]G,¢³b`h“¨Ïmžiž;Ê·A*²'´”«(¶™7Ñ¢gÅœ¼z4Î÷Ér}âÈÎqDÏÀ3èëIŸ"\Ñ­[À㠼ǟ¯ÅhÕÐó„£(¯9g\ÉÏ&Ë®N©0ø>ŸNÃüt™Išj8Ç û/œ³½%à^)›è©UPå ¯Àa޼Zô6!hÔ…jºÝêŸæ­*î§rVä÷cNUÎè:³¾{zò!NÍñ?—øðärÜ$endstream endobj 303 0 obj << /Filter /FlateDecode /Length 5261 >> stream xœÕ\K“Çqöy¾ù$c.Ž˜¶1z?¬“hÒ"%’+ó ñ°X«؉YîþWþ¾¾¹¸ÿµß=}s!vO/~¸éå®üu}³ûôH|2GåîòÉEî)wQì¼wsp»Ë›‹?í=´ ³f ?gkƒ¶û?NrŽÁÉ@þÛ=Äì]ðÚïL9ûèE€Áj·ßB[ÿèº}Ù&ût2³3Aé­±>ƒÞkëö¿™ ¿ .î?‡þFÍ!„ý7ÓÁÂÞ´WeV¯÷¿ƒ†Zù`öÀqB´ÖâJÒ:D7ú—µÏo¦ƒ"Ƚžì^Lß]þ÷…ò³Ò1ì:ÎÑ µ»|„úbÙÛcXYð@ÖýÓvœÂ‡)‚÷8Äý¯•§ÄWš <‚4Ö%4ÖÞ['%g+c¬ŸOj¶N·ƒä€é~‚­zãþY£Ãc|mául¯_Á®–\Á?^ #œ‡Þ¿œ`§R ·Û¹™´˜lÿZ µReÇJhܱ–jvΦ¡Ÿà1ã) QÚÒóÔd#Ö ÿíïáé+¥}´á$,Á„J 5/l¥mC¿l­Ÿ¦õïÑ_»è#þûãìrPFÂv=.¼à_W¬D‹Yñǵº´Kâu–ä¤5)çË Ïdøìã(ë Ä–À:첬AØÚDU{ (gÒ¢eáúŒ±ÚjýB‡~ÿœ RKi9AÔÑÉ[štBº!hkJ©*dà ƒlWðóæmð+øi³*$ ÙñAÍZP›“=¨B”‹Òî÷ï&kfk|†õMÖ!Øð%ÙEä¸ÿkÓïÏFYŦE0œÆ×•cÙɶ£EúP€Ñ؈æŽb¤žýBÑâ–Ô¶t=ýa5¸Xgf ÔÛ€“CÚ2QX}h«ì"{%N x%ÈŒ ¦ wk¥“">“YDXi¿%Ú@#bc¬åYk ›`¥Ÿ1ªÞ–x6gµêN _=çô~ë4÷'°–Éüêö›q>´¿®—_¯V¨?µ¬Ê(÷×I¡å#pv˜—¢èF®)"ê¡w“Æ5kƒ-M£Q½E2CF®ÉÐö^†LÖT2ôÌ—&¸Lxxi[o{]L­g¹k8EBí'&`¥åC$]Ê\Ñãm뮔ŠÃÞ°Õ/¦G0Ùôõòkä vCÓ”gÞùÁ @B@‡×‰K5°¥YL›¼L+¨¥0,ÿ àG×ešÅ´É..¸—v°¯ƒC_]ïÃþ¦,Æyö^Š ¼5‹µ¡ÝúؑѴvÙxyÝ[AÑ1[ï…j{¡cÛt¼— Ü™÷ †¬Γój'ÒðþQƒnÞrë»'0(uÀ¿iµ "¨t)βÛ´Ëhøá¬±á#px# Äúä·ÜdŸ/š¦î‰YÉj­zÐ&òX–´3´w…öŒô# ÑjdFEá3m¯—‘’ »Õ1ñtÞ×&”2L×Τ3mŒ…`å©3L1“:È n®““Ÿ€|QÍJêÁ-œñøúm¸²0•Ür›ì.Wl/#Á†ƒyÞ²œÐŸr̰ÅîŠïלÛ{ªSs¥qsõ™§Ë{Éñü1–E« ÌŠÛ‹kbfÐÊ ÞµXVî²Eï66¹p˜˜8»<òÚòWIwËÐÉkšŽç÷ÝØz°IT·”ÿ=®Ê F½¦«4à?‚7ãšäµ_¼£˜õF%={Ysfd¦î¢B•éÈ` º.PÆh'Éözƒ‚æzü3Š tïý¶ÁB7㪇wŽÚ8éÙèƒoŒq–ªìÑ{@­br)ŸžªJ2󜳞uƒÊ‡Þ‰ÒêL™ žÌ2±¦Að$Ë GÖ‡£F%bï&‚æB`€CΓ'娹‰C¨JÔÛ*Sy$©ÝÿrT?ç¤8È /ÀØ`¥u–½ŽÙ²Œ. Úñ¾h vîIטGÿ[‰²!í›Û/ŠÂsôuª]“£Ã¶e—QD°ÿçí²lŒ¹&N·c22“}»LG9W­lÊꙕ †ÛéÕÈ*¸Þ¹¸ÆFpö`#.Å*Æâý–Úx?e4 ,!\/Ò™Û˜H†»ÀåZÒ0dˆlLÅ%i²mKµUÿàQ+%û¨-zj6úodÓ‰/T” gÃðÒÁ¯ÀK9]ÁËëœAÇÙ„º—u[G–s“ùÊl³•³ÀVòP´P‘£ß¤ó(7Ù ñGº”g¤]ÓËT‘3>ä¤õá¦nÇyü—=þöâòßþ£¾ÛDýl¥ts:ËxGûËQ³©I „ËÙj¿e@ùœ4[‰êŠ­Væ{ÜïZ2zãêïˆLÔ‡T‚Ó®À‰©}±¬ øFˆ€aª5ÿqøÊÚ3/³,[€ ¹<´Ë/ŒÝVY§¤¬üËŽ^‚íQ2Që]Ïh>)\1Tùå2w[ÅãâƒÚ¨y”ó¿àñ‘5¾âaMÍ Ž¥$Æ!ïuÖw.ãxò€…õ ½.,g]%BâÊÀÜhÇyÿ¦/^8äöñŽ€ ®X-q|OgcÏ@#¶VA£o§˜°#ÒŒëV€ÿ`\H r?},)y£®+S¬7@WK].yaòŒ Ǻ­¼Çš–\{ÏÆ%l®€qL{ÀmÏÿwYÑ Vå½Äq°.K\:§"ð I åc¡½!ñ ï¥èN…Ï—¬È±*ê2ÅÇ‘ uý‡xÏ*`h¼gî3‡²­Þ< ­+&BFÃÝ)3¯ËjÄv+SVè€ôn/6§°9³Þéf£s]Á*™PÙ¡+çYç±úº cs¦‹®¦­iËOA%©þÚ*0È?•ûØZÞ>uãl6ÔVݬsb) 4f¨Oø¶ƒuP„E®r-‚ˆL!ÂÓ‰¯-,¡6£rºv]âø=Ù{‹WŽ­¶jiÜÓ˜l•ˆ˜‹Kp˜Âí×߃zã) 6WÀˆ<ÞNÆ0gÐØ±=`²¤g ?´¬Õ‚Ù¬MH˜#áRBÙ6Ï'·®.ÞÈúš(gÕ¸.`‰ý¹EzÛ ]Çþ¬ar±ÄÉU¼;ÝÄÖLú¥•,Ž.,MlNeo—ã.Ñq1F¤>oõû‰Óãd«E*˜a+Ø\Ia6Ü´Â îÆb—Wø´äü? kaŒ°±z¹Á]z„H¥¤‘jþCŸ¹„K->Pöò/«¨‰mi›ÿ8ž]ªîÑ?3ðç_1Ê¥šì•ˆVÍ@Èþ–ò’mÇ“˜–0ß©ÜâRPÅÚ*%¹‘¥Ý¦=“랺d —V}Ô¯yÌ%ø`›ìx(ÛÈÕÐò±’$öó&ߣAóšzùÕ¦ÒM¬eeå±,¶aJoxŽá3ØØÕN—¢Ý<ƒi•7x-§£¹!ž­€mÜŽp†*èñë ñN˜QÀšŒÐýzŒë °øT'²~ÿ»Çˆiï—^M²…ÿ`ƒHœ° G}‡^ƒ¼²hc¡o%xN׋vMüÖÚ﯀Ee¤ãû¼‡1=^qAÛ;¹V ©ŸàC•€¦=¤cÂkpêSHiÙà 8ÎE‹q±ÚòE{]¨†mJŸ¾œt‚OwOMž’iÛç_Æ+)Ïr¹#L6:_%‡°2n•j6óÚ¿Ï.ŠÞöAJñiV˜­&½þzËÊrßÏIdÍRð™V•€†÷‰¦Î”Ì•?1Âèkûö )g‹I»ë¼ô&Zg€dFsÅÒvÛÊHÑû¥ˆxÃ>ÃY°Fa0îÌzÊÅþ¶"WSp~ñ`%²­Ý96x©!¦Ö@ö@8IÁþynK_r€EÓuIä X|ñi9]ÖF!Ä^Uâ›QÓóp]l>8is«:ÊÆ+õ°Òw#sü÷.jÍ(µªŠNŽeøAÖË´]mÝ9˜Ä4F.%8gU±wõ}Ù+t;Fé!VÔ‹`­(*m¶j™º°W¦ë%{Ô䟪Ù ÑÈ”ÝKw³<¨Y ü²*Cîå`«Œ)C‘ô{Ç8ÚØGë9«»VïµÉii1/˜o®?îÁ L‰Ë™úäVâËœÿZ‚ïíèž®¤­AæÂ­.ÿ²ó7Ö·FÀ/$܃œ)BŸeá¤Á­}EŠü ØÈ|Qî£C0 EÊìׯkÍFœ¨ ÐÖäê·U.ÚMÅSá;8̤€ —wÒjè@!nËrCÞÆ-Ÿºq2[Îöž—ƒÒóv{L§0!„+—=EîæÀ 5°Ú'wu]ÃT–˜:×ðß :S%ª0§¡³6\¹g'õ•ò9¤Êë«@ÈW7ÊÐ@u+øÃñéö1Uœ¦Hµ†ä­[WßBgT[cã¦I¦¦LyF´}CE aF»1ÍsÎ";ç»›Y¨0Z-Iß#³ùþ½£s-FE Ná˜ÚÁk1"ƒêö½˜_a!¦OÚæý˜ªi/+·1SaùX^ß7Š8 ˜ÕÉäïæÐK‚*äTF@É¾Ûæ2çƒuäÊïÔb îN“eFÂê_öìŠ7eÑ•2Û>D•ÏÞ˜Õý#R‡œÖBÂþôõºŠy™öýôMš`ÞÊ„êMšzÞQ®“Dƒá¼àc\û|CÓ·Jr\pꪗ€s@*ª˽ª—ÔÆRÚés‘+Ò‡-iïöT.8øM¨Ýrjp&¶þÖ^<ºh!—&¤U†£W5ñôÑÝ~X¾zãæ0ܽ½£r¨ÔCq¯W€ëø¤ Äæ«[«Nne¯;ꙑ۸ëzcG­…ãŠuñØËí°õIª*)[Y°2>Jµ.ã¡_oõoÏšÙ¿µÁô®ÔÙþñbŽLÞÅV¢¸Šá¹r¶ôÈÁál;–JT ÙúîSg Véæ7™²˜xÆP*‹D!$£D¿t;¾ÔPeØÁ'ÈX‹±*ÄhÊ`ÓvoG±|©mU"A®ÌvÒ¦Å.¥Ž÷'­9W{w4ýKWÖ‡–ÂŒÏ//¾ºøaJ8}*æ2»€±˜°“o¤üðì§.î?øÝî§ß>¾¸ÿíN^Üÿÿ÷éþþzðÙîŸ.>°ûjó£´&î,†Èlè>J›îP©hŒÙ•/ÓÊ)€U!u®‘BWêG¬ÜÁ+çt¨ß’ é\¹®ÄQŸ‹áTr`hâ«¥ÚÞjúl³"”ŠýÚ ÏÁo4|äÚ†|=ÜR0’hÇc„&D2ä8&Хɤ«ã`5ˆ‰1Gð—ÅáS+`çº ¤-*œÒ+ݯ´' ßd‹WI߿ʞdÎÕ‡dG‰ñ0Ñ›·!s¥NDVôtyø|YÑKŽ„/ò:ÀG&ko}¾Ÿ0ßž-·ÇÖŽ¬Õ—œmšþ|Ô,$¾—á ¸ª}ð%h> stream xœÝ]K“ÇqÖѱþ Ö¡}›‰À4ëý°BR¢(0DZ$añ ù,@æ>@$Åïü²Þ=5»KÛ´#…„©ê¬¬Ìª|Wuïw‹Xå"ðßüïåõÅ_úåå» ±¼¼øîBòÃ%ÿsy½|ô„$zÖ(¢\ž|s‘FÊ%ŠÅ{··<¹¾øëîÃýA«° ivOèçjmÐv÷o{¹Æàdè;ÿ?ŠÎí¾ÜÄê]ðÚïïrõÑ‹@Èʰ?¬Fcöy›ì£½Y JŸÂõ{ð^[·ûdOãMpq÷17j !ì¾Ú,ñ¦½Ê³z½ûŒµòÁìþ ½øøÉÅ´|Ž˜×;³˜ܪecþ¿·/–¯—› ½ë¥Y~¤õý”þ÷´#Ÿ\(âªÔb­´«‹Ëõ…2¬ÁÔž«‹¯&PµÇX½FŸ <=•Téé ´0r¾ƒª==”vŽØî¡JOå"Ö¸‡*=Ô–£ŽÇê.ù¤A$ŸŠ°—O¥üª ‰Š«¶* éA±?DéV#µtnŨ¨¥rË’¤ µ¤ŒfE+ж¿4X…[¬ Ëš{i Ôƒ%Ó—{¨@ÿÊÐCåžÊù¤Ç (w 0:Ò¿ªÊ=”3q¶‡Ê=T槃ê8üy›#£\-m9m᡽I[ób¯,öƒvìùEÚ¢ÖK+zÕVNa÷ÚÕËàí8"ò#²p*,$}FÁš}C"¿*MÜ“è¸`Ï_wº}¹\?}»'8!¤Ü½|}óôj¹zý틫ׯnoŸ¿c™H w¨ìJ6Ï-%Õª¥N¸>zKÒ<Þì^?ùby÷ôúÍÕë›—Œ tÀJÁ«‘ÖI‘¹ÑI†_¿¹¥á†öD¸Ýû§7—›á,–_ІTqÊš%ƒr«7‹4–ÄÚÝczúÁJ±ZF2÷´é^­Â$­\¤™Êâ“lD +à“m)=Ü-Êk;vžL iKóòB9’êsG®Eš6¼¶ÓPzŒ_Ó‚ hsUgÈmQH¨…ÄŒaÃÄåÅ7çÊÙfj",ŽŒù:ØæÚ鈋&¡X¥6ö[S›¤PùÚ¾¤Z“½i’ÄÕuJ;M¥‡ <±Xµºnn¼PŸËè‘ì×Y²E»¥´#/¶8E4H˜àÖã-ÙÐE“M†r*²îÁS“¤ÍéÚ¦YIû¡ôBÂa«† ¶ÓQz4»ö†Aý¦›#µiD!¢3‚ ¼agÊí™´òã$‘EûÝz¹Mrä(+â jS¸¡emÓ´"zÈD… su AnæŸ;HÂäRGKk!Ÿnc!2¢ÐœlXà ;G¶`½_½†Ö XÛ뮇B!²·”A¨UB/‰ì€Ñ°º¥ ÅVqkƒ@˜Ô!ÈÍ4às‡$Ï@d•á&²k¨ä6d*D!±`™Hñ,£°öQéÅz!(Ü‚k®=2®—(KÚJq¥ìo¥ÐKÁàR*PÚä9MÐ^ã<©yEPšiÀ§Gò¨È™—áŽÖÅ7ü©Ià…€ò<ÓW†o8à€ã ¹¢½2”9QðMC$áºë!o'([3ž2V‰Q´ã  D™¥ *)䥠ºAP(¯U‡¡´ÓQzQ¬U08Š“(ï­sä6Fd**D¡²`ùà;[ÞP3€^jD«”Yr®Y{"a ˆ-)aFx+ÍkRÚmdm#:%c Lƒ@ À7¥™fà€9uÑ,ux0l{ê¹ 2 ¢X0ŒL¤¸þ,C-ˆ¢VƒÔÚE„0×]O¤åŠlí! dQšÔÕ›Ú¦i)ât¡B6×Ai¦0 ôX0ª"°Ú ̪Sä6Fd"*D¡±`¹à-;SÎPsÉ?Fž2íÒÀ/Fz@î1R*AÈP*\Ú—4Bp½¦ôèHÊLÂT0´6OA·t@Z‰ÃŠ ñ§Ð©N‘Û˜"Q!2‘ÃÀ¶ìL#-s¤‘>8 ‚Y,=A8NóQCB’®(‰D›j^”ÒzJ°”ök_”fžJ È1*O+Ãu‚,=^Ø•±(„ ˜‡’qXÏ`×Úâ”Þ%±È)úŒ¡.íŒJã,¤"pVbž2Anb2 ’œlXHÅ3d »e=tËzéVϸö­ÆA¢5Ñ@$"LB¢ ¬¥ÍÓâvDƒ0ׂÚNSp‘'õ¸HéûR¸  ïuŠÜƉ† I,ãGÒv#_¸½@^.âpÅ¡5,æ«vÄ7Gá'ßö ­¥¸”ÒDã9(mšÕ¤¸³A•8…«J›§À€Òa)$: c̪C›"·1"Q *‘ÃÈEªÎŸ%c\‡ò8c±8E !UkrOLi¡vl(¢ô\–F´ªem#UšOÂ+„€J7¹™fàjMê°ðÀu´Õ)',øs𙂠Q(ÌFrêüØÂnE»:Ã…0æ)7A¡Ä‘i(¤p4À¶—6grõ®ƒPŽïŸU¹m3G¥IYbàT& …(– r›³G¦ z ‚Žþ´OgÅY@˜ßt}‹v †¢t)qINãÊTÆXQ“¢Kaç6Ì.\°ë à‚e‡ ·Ó P:¼ªŠi¤ˆmŠÜfËÎ4€JsF0òÀöïÙÂÙ?ÙbRm'-Ÿ¹\w=d\aBYgÒv'£f*¨&4·qèMc}`8‰lJ;M¥ÇðÑOE@Ù§í&à&Âg ÒóJ`½a!ýŸ![¨3‘%Œ°&"Ö¼îzH='E"Æ4œT²¬éÈÓ¤ ÊȘîw„­ªCPÚiŠË‹Ö£opšdº9R›s™DD(4#©âtžœádRH$|çM³¯=6¡"Cãó4ÊÜfÓ?|ÜÆÍË\Ïñí9 )º^Úi‚RjA‰Ê‰;xd¾ÍÛ‘I(•ÄŒaÃD:™ èîq{¸;”!êÝ¡Œ¡ÞŠy1jé”§Þ2 ¬»;dòb´»C¢PY0Œ|lîEoˆ>PÁþ²®[‡âc”)ÿ‹†Õ˜oêØXÛ|·G' .”¾°Â ¥¦ÀˆÜ¢XêpØ cÛ¹ ðLB…H¦Ñù)ì8/޾â7`N¼ÏN¼ÏÈå+“^³ùÞ‚XTؽÆÛ~Î+-w/Û;€ßïjuΚÝÛ=å…x]p÷b0²âm2·§ô^DçÒKAã+”ĦH/­ûâh£w¿kïGÞîíîè)%üoÚŠOé ÞýY)þbÊh‰È¢¹Ý;&ý—Gßàý IrÏ­o¨…ëëÎïÞWÞǸ{Õ‚j¡È4éÝUEˆqÄ­¡xoYfr‚s[^R³Ñq3ÒzÔØ¬Ø¡nÐßî5ÿ 8uQBOá:bo‰~ñÓ÷?Ÿ7€w šò â<Aß0)dÞ¯ö˜¨Æ((Óu¾O;FF †íW|F–eµ­Ô 8 ‰)RD„*¢Dð»Í–¬›ÅþùêDí§AÔ(I±i6;aÝNâ;|4¿g5Rýkã3“åz%iz”‚¦3ÞFÉ‚žXÍr®ÇEe/OÙòÙbG7æ ÷œ`Φ›Õiv{ÞD(6ûŽîwéet)ÅhÏ»íÿÌ’­é_öÛ›êÐ]ßFh§2ÞéÑFÜç¼µ‘GŠN4…ˬïÈO"Sã5DÚ°÷ iŒÝÓ¹6øÀÀ)¯E»¾Š`§o“|½V_ÛÙ‡˜#Ô'KÕ²¥dÔ2æw~÷~HÓ£§©?ÜÃý aPð‘«C÷ë ctšQ^îñâ-ûDQEÞáê‹*àíž4i+öC²´>’+¨OkþV‚ðÎÀ<ôœ%¿"z^)zY‡¿HÃýüª>ÎIŠy®÷¹hå½üÜt؉Lƒ×Ÿ{Žn1S 7¿Á)0‰÷[ÈÕáz¸lí/´Cä@;º:/÷(8 ‰M.$­³ÙºJ+ x }PÝÉlOUí{oöšå Œs´€Ã»j»ùïÚiç“Õ »ï¬[múñi˜ÍhA –ĺÝ_è¹Ñ´P:GLÒŸ> ”5QöÙªcaOZt‚’™3dSx%(Ý ÞÏ‚^…+ö…ã.!Öî;Ä¢ü*J9UÉ!QŽì¨z»µ5‡øUñ¼¢ZÌ““îíÏï»KÕC_M~}d0}ª³¯kŸñ‡ÑÐhvæA&%ذ>b†úÇᣲ)ÞýЇðEÏÁmA™Ñª3¸$1›¯L%‹LnØÈ"ñ-æÈF$x}ìímƒªî}ãö(Š)4¢ôÎo0Å´é]¬þrIl‚€Þø4ÅÈÂÜ•î„N\˜îh×ÿ$ДªoK~§I%ß=ÅÏÈ_†˜jÏ4ªØdt—ʃ?E1ŠB"¼În LJùVÎ_@†\…ò½Îýê,õ#kµc¬óp°d—8¸ƒãßɱÓ寋k?$7I¸ ª±Y¶§J×È™†#75mhÂ;ÊwËlËŠ ªS™îg§˜ÄŠF=¤Ã~®1iþŽÅÇ S­‚¡L:‘‚U”h»¬‡<ª!tÖ éá‹c>•Ûwìo$¹Æäo”ïý ¾-ƒH?ïÆP[œtRÍÜ &)oMܱ–+|Œc†œÌ6Í«:ÇM¤ˆhÍ´ÞcÉY’‡îp•¤û8qK–$z6+y«ç™ñ\2ÆIog³âD¨ã¨åC>É+O¤¯Zõ©"Ô‚"–³ÓÕ¨‰¿mšÓú6z‰? x‹fƒ¹æüƒ÷¨s¤Å\Ü´Ò̼+±"²™…Ût‰õ¥Rz-kÏO¯Ð‘§*x޲üAk;„-¥¾Ê <à oq£!•TÉþ¹oë¸0¹¯ž½#%¾'Òi€]ìÒÑ:› dúƒAÉ0<Äô—Lg=F?9ó2ã¹´u"ñm 3ñýõ,åb½#. _QQ£½¼/…6x“MœˆÒNæ÷§ËU›p4¹+…{‚Yx°šÞp ùlÄÒk* œô™ìp\ !õOd¯·DN'•SÛ²šõ®óX¸·/âÌ€ÞCáÆOñ Œ¡['Óêå,A8Y˜ŸHÅ´òsT)ÉîïD¥$UB˯V)ù%­s?êª1|zñõ>ò&sYÆx>Lø¥)”}Ø“q!Yvä‰@ð¦7§,ü®·œ³0ü¡ê­m¸9G§²,-ñmCYËÛâåPú:Ö3TØ ÿéó—6ΦÝÒ4öûi,Äu1òJÁ\¯w2e$)H˜¹7­*ËËøŸJåeZÙÈÅŒç£Pv‡‹íjø¾ªÁ Ï0ùZ3‰½Ï‹mÇ6aɼ»ÒtÿA|9TùIt+8-^·µ”ÍÍÅ”Âüö¤­x{ó&k #ß¶¡µ²l¦˜Øôô²a¥#œʉr|VÑ”‹:µëºîÿ‹†åýå=í}ßù¶~üQºåã|Ì&`Û!RùÓñ¶.wˆ¤‡Hø%NÈN¥é‘9ñ\iQlYø¨êÇßìQn• aQÔ=þ¡?/«½ ´Ý[êç„Û:’%:àÜ_:×uv«Ðaïz³ „éhH{:yW‚°ýª¶·ârî}w™æÄy]:½nkXBëŽÆLƒu]_ |‡¥ísëKaݸ¡,\‡êÊEx“•Æt»0›øÇ!7ýàËèÇx&­E†S ÌŸ¯Þ>׺bŸ¥ ÁʬxnALÈ\òLeI–’èbÑXÉ•ËøPàþÛtrEß ûiá¯(6ÿÍÖ Œs˜ ˆšÌ,åw¶C›6§›[ý~3‘öNvàt<;†/Yµ™Éèu*…öxÇêÏñ„í¤­l‚r$O£…é÷¶™^œvœµL†}ŠòÙìc3¼)ó:f‡Û@îàŽc—!žCˆ–‡_Î+Õ³SW¹àä·•¯»£i©¦ÌœãEþ™§©ÓdîQºÒÀBˆ1Íä£ÝóÀkØÊpÆ‘Éüïh™ÎðÚ_Óxš"<=¯t1Àë½D²&²ˆ¤A{fǶ³+÷T+~þé˜ Ã1)R-¥Í7ÂÉ£°žŠb‘¸Úí§­<§³Þ/v…ŽOc°wN,u·3÷´OšßÔ®ÆÛ²H›XÎA™ƒlç=õ>BôwÖsl’üõ"+)ɼÚuâJl ¹óÖØDu¶Ü®Gšeñ‹®eûšìñqiK„ݧH ”äè?ÜkþËåïР6ðÕæ’b!m¬µÑ¢PERÄB÷i¦µÔN§'ª™ÚÑ}¿YºÝí¤-9ŽÝÇÂÐ"á#ùD6B‰Aàô×Ó.ÄVÊ0õÒ®Ú’Þ†ÑC)9¤;3ÿ•ÚœK×RN׿ºÚ`d=¦½vÜq,Ê-§¿à±(¾%C ³ÐŠÖïíµ¢·`ätÅ)ÿßDsâ£roðZQ£BÇÃó„¨Q›‚áûXÓY„W,.Ó¼ÜÅþf[é;.Þ"éçØÝ¿œüi¥—÷LªÌp»@÷¡ï°4²¶È¥?6#N÷(¿-Ql^ÍɳđB½Ú ïjRP]Ø›iñbpMêép'¯§ŽaæG¶GzS†L-ÐóÒ=üõG—Ç7Wá¾Õ§ÙÆÆÔ,V›]ï¡»òï¾P<†ix_Ìwó‹uBWë»GG•Õ]†üÏÈ÷,å VûÞX“Cç !ˆïY]³j Üýð3)Ù0~‹¸žOïþa?êˆÖý| ï€ã¯càïÓè_aº”œú×^Gß±UúDÑa@O cé´7³Õ2ëö>P´2¨Ùb!Ñ}øBv×z\(„<#5›×À5¶Öf¤/;vWyþ‘¡c$'4ßçXóú‡‘O?…G×tŸåöïý¿Üç|5Ëkfk…ïíÿÙVó_ëún!gÂï!’E1 ><Â"q»íâúâ£Ç<þlyÿöû|½È‹þˆÿûèÏ¿£ÿ~ùÕÅÇ—Óo<š¸óÞ†áG.©…’<ü~íQî) R§ØM A.?1då‚àÔéPÕŸÅÆRä¸ÍGXÃôÜ¿å\…bAZ&DÔ´QÂÒ’Õ(5ðék$-äÿ8|ä̯ÒùÞv’+>*Á^##jã¯ÒáƒPœJ—çW{|YÆßò¶ZJÚv¾Å’A¹NDù`Îa(®ð:ïÓûx8A½¿AÞôD—Îç3œoZgž>hŸÉÇ3°o¿NôÃ^ \~7ÝcžYA[ ÛÚ5ÚngµNÜ ¶8îQýܯúU¤Qje//ZÒ¨;×Õõ–Çë šêzÚøtÉ A¶(rÍ<Û+…Ǩ8ð–0ÈšÈSh¡L"ÞpšÊ2×Û ªn Û4âÖ´™:Z6eITõ—œü‚†—1œ¥­éþΧ’ø;Ÿ_\ü'WíÞendstream endobj 305 0 obj << /Filter /FlateDecode /Length 6057 >> stream xœå]ÍÇqO‹A_ È%:¬nïÙ|“éïn :Ķb$p”HÙØ¤X-EQ2EÊ¢hY:øoOULW÷Ô|q—t‚@0¼|oº§»º¾ëWý~5âjÄÿòÿß~õàï?rWŸ¿x0^}þà÷Düò*ÿßíWW?¿†~2„1ˆ«ëÇÒHqÆ+çìàíÕõW>>ýÃù¢¤F¡O×ðç`ŒWæôg1o…§þ+þ©e°öôÑù2Îz§ÜéŸÎ1¸àF“•a¿†gþ£öA}ÙÏÏz°ÚKµ4×/áç”±§_a¼ö6œÞ‡ñZÞûÓ¿Ÿ/ö¦œÌouêô/ð ’ÎëÓ¿á<>cp%qc3ûe̯Î9Ž^œÔÙœäù¿®ÿ('¥œtƒTÁ_]T‚åÕõ# Ü'ßລ Ö©4J¹+7Àì"Ž2°½Qª+x¥õð†4êÅy„%j—F„æ=è|D¼ëóè'O?‚±R%B~Ÿ¢ïa0¸85„8Kýøºà¥°iˆ°tˆì8ªl8¿Öˆ9!á„P£p¹õ ËŠn#‰µÎp$Ö™PûIlñÍ€Ÿ‰edQ`äª …<}r^_¦«‚IK…cºþrö63èüµN_·ůÊüe¤æèe9­±¥KÞmKÍ3Jp¨P§/Îxè4ˆ‚"@ÐUAŽÅI¬ô§›³BBßWüNe@5øÓc  ÈYh=ù g1S戇 NŸÃ7݃/ë{¿®^@D­ÑÆŸžN‹ý $Ý;`ªÓÎ >òÏžÂ[ì8h#q}ežçí ¿Âå*åAÇÜÀ78¤Vƒ|“í7äƒJ›Ó·°  ÑÑéÒ“Ú>­£É~ê˜éA\’O£f¾êz¯ÅéIu3-ÙŒ0ÿy‹»´Á2ågÓgßDm$=j¿"Ó ˜«!ÇjíLˆâxQ¤DõWœàÓ3FˆÑž¾‡åøJ+ýã9x+Hlâ}5"¥äOÂy<€’l3Z”O°*w–sÖVˆcvÉ(nkv£YÐÌlàƒGíFyâ!n]Ïl·ãA£fÛ žgÙŽr~°AÍ4@™ë€ˆ2*ÆÞl,ëx«t«ã‹µ¾óé)ÃkéôîÈ×cÐ~·–Vƽ-”Íèë( C&þwøìŒ^Ð7’ ¶t΢ô¯¿ „D |DßÜå]1†:¤kÚ—Ý$ÿ LʽÏ8A­îë\à!^Á󽃄¿Šc˜ýêŽÙÈâQF§QÍç“—MŸ8’É+ÇÈÁ€à¢ŸJLuS$ÒETo”'yÚ¨¢g­¢YÖLe~ü'²KŠjð„n!m¬ýô fÝ«‘æðÄ*~ŠÛÆ#ŠË3BÃK¢#ÙÍ×E°ÚôÙƒT¹IÁŽCk¤üÇIK/GÌ &ÀAy?e…œó§ßÀ§ ¸FI×ç83f§ÜŒi²»›—ñ02ò”ŠŸVuö’è‘Êtèå(ôåé·ç‰8žüŒ¨†•QQ«µýÍ9Œ+æµÿwÉjKɳJåßB=(…4R%"hgzX=(j=§EõPp+~á‘·>9•ÍKxb„ÿ‰üÿŸœË7CRàE_v¢÷¯\ÿôãÓõÙëä‡Â1*¡£ì“UR¦È·©ƒÆ­)©£cu;=’ø¬p)çè™Qs×/ý« M'/8¿N( ¸œ/V¶ÞÏË¥™G5à2oZ·Ž¨ï‰­ë¸Î.²ï~ºÓ±¢Þ+'{Ài kß¾ýéªÖ½ÍÉÆU01¬Æ |}ž»4) ¬Àk8ý¢¦¶Ú ¹œ¦áì0É=,é%Ñź̈́MÔ[6ÒZX’{«D¥ZðÅ8s‰L‹ü?eoM–Ö µ5«úiË“c–Á2gk’刉Èépˆ^ê‚ö ñ"Õ pàjÚ1ûm VެbŒf€Až’ïÇ9t¬âk¹ƒ*m›²j¯)\“%$ wts6„0ü.ÊbF.)ÞyJkÑŬüL=œ[b“™&Iú—˧d%‹÷»d Q7Bøtz«ÏUG·ÉÖÆœ¼UNs¬ dÀÜg‹Õ²TŒ•×ïK*Jæ.Rväú5Õdà?½‹}ž¥÷‘£­YÚÊiä롦dS™bLß2*øIH79[>Jׂ™®þj1й†" ñøë°â Üå´ Â4ë§µÃÏ%§EP#¢Òz8 wÌꀩ‘Æ5&Uú(3»Ý–¦m¤³‰nH®wòìr5bzÓ÷ëÄ¿H­u#…¥¶ÔQvR6±ØÎFF‡Îk|ÙêãÁûqiQ³Œç@³ ½Q‡Ü®<:i•S)•;³)X}< ®D$Ö*”Æêµb*·ZÄdÒ@állIÖ0 ‘šDc!;‹e€õ\‰ÉxÙEÓ@±5S9AH%¦ðbŸZmKñgΡÕWrp¥úo.=RBûøô&ļ…Íj+™-'´eÌêª7‘3ûìôm5ð1— ܤrd A²ëCŸöÜÓÊWŽMto­®6jöazݤ”?Fi|yê6´âœ®Eöˆs;ÖL%Áq‡‹]­v!5€cR€¬muŸ™¡^XUªSµƒßú- ƒj ÇØVògõg߯XX÷52ÇÛ€ìÙr)9yõ\Ïž“ Í‹³\%¼Q$rÉ,ÓM쉚ɂLY½Ìóä- ƒÏÔû¥ì³õ÷˜ÂŽdAcíäJ¯9H8¸²ñÞ—J&ÛáB—áÃ3ÖÈÄæÏ¾”ti›‹PC!€âÓƒÃ?"áeT .|£ýòÀÌ™¿=»ˆÓÉ H ŸÛŠözr60Pàù9z°ñ¯üÑ‹³­ërNÎÛ}¸IÀa…(?÷ͬ BÊêЯ»Ù0$MÓ…”1ÍŸåò[Xi(~˳N8CÆ|{Æ ŠöxÀFü´né% •žŒ!OÖ=;ãá ©Mii µ(˜9£¹H` 2³Ùêg«ŠþÁªíxÕÃpK#f,ã5l?­KÝ;èþE »9j+*â&e§ˆÖ¥8–t;ÊíØNÒã¾V÷QÂ"Þ^—üF\H'Îê~Ä9±¹rŽHâM‘ÄÊäUœ÷Ò…¸Hšž€3Ò™'=Ͳ9½5M[Ra)wx{ͬ۔bu[ÝÛguo¬Êª£Ñ¸yc NI‚æ€hÁ ‘UnRœ(0£j^So(40ç~Ð=|¡“_$}rº±‹•ãúHi(ûB :¼=äs6Ä'\sY–rɵˆ+C‡óœ™Éƒ9¥£üj½±<}™UŸŠ´÷¨—£Æ ¢oW‹‹J*mÐÄfh>#!œ?Z#»äÀf’éÍ“hb­¼þ6ÖÊGdŒ\;"$òÞ¬‹Ñ{­Ë½ú‹:•ÞXª1©¦Éû KŸQ`PœX'‘_!ѧÜοʼnML€r;¿Yt{× (•íŠsÜSô&)A+®‹e¿¬*Œ¶h|Ù ÀÃ>ÑÚ¥ Fòís)p}n±‰@eh}òWÑö85–V… „ Œ‹eO%Ÿ”¬ð]üÓ+'ðeTø`yH¿pƒA7‰M»&Z% ²ª3 ëýðgDrë§Xê¥èó~6¢6/Íä#¾Ã'G0hVHnñ>¢­t»øÍC‰Ø3%ަ‡âƒ/‡‚HíCSZ½9”yGEßà0íïaï:¶”@°òÚX k¸˜QŒÈUµÇ’ˆp€¶àÕhàRy´gLXjý ö“2yÇw`?âûÍØ/u’°ì'`›ìwsíB€ÛÇ­ÝdôÁ •Šä4ÁsZÝÊ§Õ ý*§•¦/o »só³GåÎò"wX ª­g7;F€Í·©½n›5ŽEeçhãØOâr<«MÞÁEˆ$AGÙsÞ6¦¸¶±7ž –ÕIé6S"æ¼æ¬Úµ™¯0EÉ|›™›À‹mf %ÿº¡}+€LGl IâúLþ·`~aê:9$°ŠN8ÞÆDˆ óGŽÁãfA›ºX÷uébÞ(ž]áûŠyh‰ï‡[¾¨•qIÇôqÒîJ‰zTòZzigvÓ/ 'ª¼³^¬Så9ƒXö˜%`VÖ7ÁxÊðîtì[³º ìvHÉnz.%?ÆtŠÓ^qX ¶øFSY² Æ'Úˆíþãhˆ›uߟ¿<9,uòŠÝòœ{¡m œŒ dàYÓËÈ+Q_FÕÛR« ù^Ed¦°&"K.Ö\D”h4À¶(ÇÎþùj×_¯È ogôàŒ>¤Ù4ª´¹Ð¤¦ý-¿ Ábè´ÝAhvyùkB³äy¼N¡á Ë+Ò_`¾çÅfiko^l {[l76/Û Y$•*°àHržïͦ MÝa<=^¿Ú@ni/ª8¯k¥^3ƒ„_ø3¤näw7::¹#ûvŠ/!8NK%Ö>&ì%³¥¯Ž¡½¼"CNŸïhzòX˜’ «©ÅàÐm XJ2—Xª,­Ù¯Òù©]rØ~íÒÝo4aÖö4aÂÜ YFRØÏáS Í]åø[ü&õlÃu´õƒÐmO…6©±)#Áœx÷œ+nÛ§¥wãM³V‹ê:BHxZ©Êåb…ùƒIï°uï‘©Ù³AñT|‚œ{¨&’—ÕºÎÓÕ}'NWÙà:œÄȦf×ö¦5E‹®^—³ÄR³OíMUˆØêE¶,£ïV]GhÀ|_+Ýߦ&?ðE ãeÈdLƒ³™ªöÈ€:àÏ‹¹H0†êŸ'´³|ødÂÒk€PmUÂ~d€ hme‹ @¨?¢Ýø±~²1¤Ëüþñpb=V Öø[VÀÏòá8UÎAJÞ ò>˜ k›SŽóK¨Öc<ÐëŒh ÒØ)P±½ñ¤+-(xÄ!NÕ™¿àß{󜹈ë"¨7™PSò¹3)èÚ¬ápèî¡ë†l1]X`W0]ôµ~ÑJÓšgÖdVÜÇÊj gc8CÃb 2¼Üþ”ù-›! ^Þ¶[KO‘ÅŠ–^»1ã0Ö!o¯v½f?oúA¬ä^héDj9°CO—„È̳™æ’+ÚóüÜßH¤´™µÐÄñU”¦• ü÷½sçì0&c¡&ß®‹ÖpS ·ûæP¶æÈ6w|¿`ë뀪ó.·‰.·ŸÂ`³×å6¬Ë]­æþóä|·zgD±ÊÖþ³¤;¼/ ó=žì’ì="ÔÆdRw™æ\0u˜Ôö•Ë9‹¨ºsê`ÁG\îºÃ¹î×ý_ƒå_bÛœvkB[¯=ˆ-7½º%{˜dý£ÔÔvŸ”^ß©åïZÐô²…N¥©é…™7é-ßQÒy‰mÇÒ¼›eá6ÓµJœÄB\½±`ÛþúÙ•UrÕþúˆE“½ ݽasÏ}¬kç,=udñ ºϧ¹tc½ÔXxýíýXÁïQÝwô(eºv¥y²ørËàfýu}0§b¬yž, Qåk™n=ٽʵË>ðœÂ{,Ý8ø`„3ù› h˜ß\º²”ú;”9¬ËÑþ‘ÂNqsæßHÿ¬OÊÄÿ‰í’ÃXŸ™Ð~p6šßP`Lßܨœ… MUãeTÙ®«Äwm)t[ênðÛ*HO‚Ü1»V¼íê,"]˜þ*l»qs©L¼ZnvSb§€ÙÌñÔcg¬7Îw¢×¬dÝ]`Þ›—WÝ@ÄjÛƒ­¥ÃÅ}DÝ »#!HðËrg8ˆ}›‰8Ff3‹õ¼×x ¯ºdûc[p;ôFhôÆáó˜Jì-xkk;bû¿äDönb†63¶ÚÂyy*$Ìu]º»sº,³-+,°È.Ú«ÖÞù ×TŠ»¿¬\>æïä4©J´¿°÷Ê£=5þr ì;‹biÞHúìz «T¼K{#†í+ëÍ óUõ'Žf}§I“½I¤®ö"A½l¥ßSoà¾Î¯¹Su^Qâcéû 7Ï4NŒÆ6^°^º2'tÂYXm¢ÉÖH'¦\Í&ÛûÉÕÜvU¼&ÑqË…ÿõëiD-§òu;«ª&|Šp ç¥Ð¬<°wC÷òÐkOzcVA"ÎTeKÖí5V—î^S.Ü%›údº'gY–@Âq_¥h9 Çû”V$“Òzå>äÿgI-%Ü<«Õ–@÷gµ„ÅÖ(~Ï•Qcºñx3*/7¹Ò¸z~‹k{û(fjîmXú)ƒ­y¯&Š—ÓòWåÛRq³moñú³üt)¾‚}òvkjþúôYÿ9šå梢Gõ@¾ÎwR˜ªíºTÿ 8Ë•uîÊuº‹UT¼vwɇ5½¥iS­[÷f+ Æ]zoS‰{vÁÕj3Iý´÷©”ÇMór—iý­åHÁ­åHµI·ËÜ¡ˆ¥Mˆ7ལgïdñbZð~„?JD‡˜ª¦‡~Š 4i§öwß&Ñaüïém-F¾P˜½üÿ-vÛMrõþtL§ýgˆï¾ÕN¤öªÂùI.FÈø°E$~FÈK}Ú9S\šN/*ÿšPvŸÁHã=8Ñk>Ÿ‹zHÖÞeúsx½KÙ ÍßêQËÓ÷ãtð‹ñ‚™Å?(â+4Ä|BÀРë@¯û/ÀŸÄŸF”(´˜*µÏæ;J+FŸ&]þ9@kkx`i×Ña×Þ,üžch¶<ïå íãŠ>þåzp>Úª¼Ï;:l}dŸ`’¢KËà<º)×þ7©ÑˆTø´¼´'9rªÓ‚elɽ Ök~;x#;ZÜôâI¨õ?Q¶œ”£g™DÍJëÂü&çVäÄ!ðŸçŽ\Œ¤¹Vsjø'yZœé#lÑJ¸ô<#V“UÓNa]â«Òitÿ¬Õ£Ÿ8ÎJÑìèeài¬’Ñiæù²×ãí†\®8Éœÿ[ÝVÎÉ^ÈÃIõ×Ίşy’9@­¹Àå ¦ŠmS¨tɘù±· Yq¥ù»ã™r[mó÷½²ŠÉ¿]ºƒ²m vF#lªf$l´b„]»BBËô#ß-8_Ì%Úm£Ã,5šÊY±ñJª-ˆ–ù œÃ~¶šÎgúØÀ w¶³„êXÂ.aøÒ/œÚ։킹÷¯|ˆ›øÛÚ>øĦQendstream endobj 306 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1122 >> stream xœm‘mL[u‡ï¥lÞAÁ1Ödàv{u1²s‰Ñu°M&Œ1GaÝ&H–ZÊKiiK[J)´=·/Ph)°µ¥ÚBÊ0Y¢è@Y_2 !û€$êcŒoû/ɼè'¿œ¿ää<¿çàXj †ãøá åå"•ôu•H.k8Y˜_¬”7îåO'ŸÀ“GS’Ç8¦v's§rp9ÀM]ù BÚ,$5Äöáø•ænƒùŒ²MÛ!k’ª¨ç Oåç³óEª^KP¥¢†¥¦³EF‰Z©Ò‚òê¢RÆ2*OÙJÕ‹¥"¹„RJ(XHUUž»\I•\®¨ºTy¢àÐþµˆÚÚD:±J„aØþNYóK‡b˜+Åʰ ÜöÛKÅ|øq|ÿ)e†#G³™R²Oc–ÄJCÙ?‡ø]”j78ÉôætQUPK‡£Ã°@l Ô`®‰’ÍÆ>ˆöPO8²\Z©ž?ÙZi—Öµ2ýЊ€2¬uMÚ¾6Î Üë…Zb ™×$£]äÜhhfˆDë¨F&V^-½/ûu: dæ#|d%JI ,tÿþ·ârÐöN./ª)ÅÍRY[P=½07?G¾½;À ô@Ÿ©Œƒ¤ü)¡^ „Ùêº95ŽÜã…Š?i» (ÔLX‰~ŸÉøs‘ìzÊ„•Š–ÙI.âpv2QÞ?î´v»v€´´v>/dÝééE #ž|טÓ^X+ é=M>£3߈MÍG¿XžôFü›½,„<¬ÞŽ-ÆÇ¬s5¯•$5äÅëíÝRýPØ35öè/ÒOɵMæ:)ež|‹9;Øcí„þõ„*¾ìÿ!2¸áp7¶ì[F¨«½×a%`Ð`.[müò—”çå³åw«ö¾°s6Ilið¥Q×6')<ǃÍóÁzÿ©è‘º±â0 ÐQ„¡g~¸VÌBˆèøxñš«N§³’o ÏÐn§hVsPMC3\ÒYAçî!òæS ̸Î7.Š¢”-¾mš5ƒ˜´Kdj…'(#-nm¢×b¶¨¿i[Z_ZÿŒ?µ“Ãë7;ìz›Á®èÀ2ôàLƒÛ1n%2u“I!:.z"ía:™–¢1q7Nšv¹½žD`˜Ë…qŸ›ö8‡h7ãoÀendstream endobj 307 0 obj << /Filter /FlateDecode /Length 5592 >> stream xœÝ]I“·•ö¹u™pÌø¤Cù⨊`%±/fè`Ù’ÍñȶäžñDHsh.¢$sIQ6}ðoŸ÷°$@VV³›1áYÌÀ[¾·|¹cß1ü_úó᳋»_ØÝ“×l÷äâå/wé‡Ïv_BŽO&Ï<ß]~}{òg;kÍäÌîòÙÅ—û_ŽR¸‰qµ¿„Ÿ“ÖNêýøäáŽ>ü#þT³ÿâpd“5ÎJ»¿8òÉzË –»ý´•ø—ªÛÊÇ>>¨É('äh¬ß@k¥6ûß ¿rÆï?þJLιýŸG s“V¤¯Z¹ÿ JaÚÿ Çq^k”:X5úrŸßŽ‚1Ç÷ò á¿ÿ¹ü÷ a'!½Û¥Ÿ¼abwùêáAZø²ûoʧ_@§obÒF(MÔä,¬÷þñüë54Ö|₇Æ_Ã_fðEx /Þ”À |Fˆýw@üò‚ŒV¾ð®çÜy‡4ßýBXºÛ^Æ9°Hükl-”S\ÆÖ5oè‰ÆMn}'´ÒzÝ{’´õؤ¬,"íÎN°È<6ÞÁ4ƒ%Δ0Ø#ec[_ ¬&4«]Õá«ýúLÕĽ7zœ^ÃÓçô)î¶`w[ [ª†™G{87ÆÏy¤t te‹="® ~HjØ|ŸT*½Î Æ§ooáWâP#­êí·rbªfPÍŒæÝe…Ÿ°Í¹uùÜß±ŸÒ‚»ÿ¾V¼:AÑ8#\TeÉ[²Ø…ðòúQ]YíU |Ü„¼vä&°j¤×Òa¨²´‹O£ŽÀE~:ÿ ¥A)dà®<Ø >„Øïò»Å*»åE¹¥VÛlʉÓq#`‚vÿËáO¯qÙiÛuÉ“ôO‘¥Ó’WÄ(ϼÕYj¨¯LË<¬ öÏ4{ÁiÜgÐ9vÖ˜ÿ¶žɉ!±ÑkvÒ½Xh75ia‡….`^+Ø{¤Ž9‘5F3U°6H]5ÎG‡£‘±ƒþQL[ ½+I¸©,íÏ‘§´’L÷ô1Xþ c[ºA³ ë÷𧓸ó;¤\r¡²ºn¾Ëpˆ†ò{í^ø†Í\h[ïEÕ(c¥Í—û°Bõ'äƒ5º¡ Y¤·™Pæð¯^…ɧu—ŽÂÌ–<±‰zmO ®kyP3y9°’¶_îÿ¥¥ÂщɄEµm%ó½¹ù]ÕºH.ª7!ƒK9g˜*l¸ô½Õ=ªƒùm]TsÎ:ÛUóðàÞSs0SzhEÓÕsY;$6µ€z.JÃ<¹À“E Ï&=§ìƒÊtÂ,õÜ<ÆI¦Øÿ…S°á@ÔR‰)\bT£ONáê“Z%4¾Yˆ-:HÀ—*!à„ÐEt‹. F¤1f‰6È<ܺ0¡ßkœŠãd.›NÙâDç¿ÜiÁv-ïŽE7Cà‘#·È{áÞ“òFQy?úò^ãü=±«ú|TÏã(=ŽÝØÝÓxY”ô³h¤$w¦Ozĕ֟Áõ¶^àª&0g¼\N¦Á•|†øe¤îšpH¬eñÖ<›a8rÇ{“Aðf&£ÎœITÜë3 ^‰ºö¾|pŒm•SçÍ„£ßtÞdNMÄ\w7®;ÝÞÆ.˜-0a8 tª´iöcìTƤo&„î’V (”;Ç ã_ΜҭíÊÖIøvÁ›©‡:á¾½M“ñ›ê™988Ö4€…ék/•…RcXŒé_#–ŠÄ—{íªp÷1„率?Áøy0‚&™˜Õ6ÈVƒî…u—ãì~iÝ¥±ÉºC›˜ExRÅß{®h†Yq :ÄJ˳f€ç« ê\Ü&[Ã0î`«õ€ÅÝ‘ôǸðUžðàÄ#PœÒ%ºIf"M·üØaj²ÑwÐâE¶`/ü®ÉáßÐI®Ò>’Ë÷ÀI,úéô€¸è?§Â(Qs9-¡,š«£ùù5 hˆì"ªøðam)*NÀ7ÎêÎVé„̶]¿j)ÎPD!Ï/Bgœ,9€gîk6-éŽ@¯áCÆŸ1·Çø©I Êó©‘jëYŒø= ޼ÜÜ@¯±tn‚< ?!Á&¥žö|·Øf¨Ãà¨'1p"kåN<´ìÉIìÆhpsb·ì¶±¸ÃÈQTÎ Ëæ5ÎJoB×J KzÜß-‡xT ØrãØj"#'ÔÙRÔ¤ç­bµDú2qI# ï“ù‹æÃ“ŠˆFÉ1y»ˆ}.h@~’¬ZºF5†gOó.“ŸLÓåÎm D“‹%uQ ÌDÊN;•iᥒÄAZš„Ý‘ËÈþ ¥ö‡U;Þ·Ç]d:¦6‚ÑÔ(` ³Ø€ùÁë8÷_Áú8ÔG®à$¹ê×cÓÁ衜lùþ[ìî½ÑÈ.Xc§¥n>*Ë‚£1ü±†k‰N6ˆ²˜ªÂz ˜/ùõfîò ³°Üä.ÜÒ–oñs /¼„<B«ŒþryHÇ„×|ÂB>2…g`Œñ!Ç—[>-¯ÓbHmhSúôùA†Ý¶tò„hò”|¶XÖp Isæ¬íÅq„E´_ ÒœŠnÜ‹h´Q?Rý–9¹']Ä\Ô6Ë*¦Âö10È‘ ‘ŠIÎí2ù¦UŒs¢´yÛ¥PsqÓn5!~£ôQj”aYŒÓy¯¬nF+ä/ ©r±Æ£òºCœD‰qmÝØg˜£,†”º^E£+q»(&œ±bÕæ…¯ŽšM±&|ó c\k24«)rô7* Ñ8x±¨.ù¦¨Ö5‹ZëÇdPcøËìÏ+òèYÀ'8˜ ’Ue†s˜00Ø$nææ!ºèªLú7k|{‡^ž8ñÚSRÕXkV¿Ÿ…Ô?c¶J «±BIÊ0Vd!ºå©Òzn^­jJgñd±z8æ›ÒiY;Ç¢UÚ”9·š y„]µðž<›ÙA%w<ŽÙ`ÿd.jXK¾ñöàlTŠ ô#ÍҌм7ÔWêsdqJ熭 È·UIv\¡-@œÀn.AÙ97–qì/¤Ö½×‹ÉÄ ÅÜçvsvÙ]ï¦åÒV®ûˆŒ­4™ËoΨ Ï{7‡t_w§Ãu±LÄW &c¤E™f]ųaäÕÏ |ß\ºÈ&ðë&›ºXé1vQC¹Pµq£ó¡·¶ŠÝ…¦-5ÒòeN8ÇÚxÙ#N0¦%ô4jQ½¢*Ê"úîjÒ›‚æ*²®Ø&§žO<Øl/®ghyVß+Hj&…ŽWÂ$P3 1G ŽŽÝ¨ø±‰5£dä¡®õ>erÎ øÎ_¹f^;ÍôóÚyCššE`8x¸Á"2I:fÍÔdÐ.Öob[XikÞJˆ#ng1WñÞ³Þ) üîYïpÁD*Œ:õæÍ=SëBDÊ4W×ïtf)]Œ€%|äx’`4Ç„aܺ–h<$øÁxô‘ôè–vvŽ5¥"IÒs¡×BžT…¤9AA+z-:Ö‡1"$!Ê5\Ysáh}™©!oÎÄ]•Ø-iÛ2E†ÊîWɪ˜K’¦Mz—°s Ü\æ„’g$NÂu ÕE9¿SFh¥zñ;—$W]Vv s:ÒX¡Ä´¦ï\e5M3cË"™3nSYOر̤„c×ý®* ¿©©…Ї¹Yâ’ã£%'ð]ª| Ì·EÁyâUBó,•ª‚Ñžãò ï'Ÿî±øÆC´ù,G:ûrs—רxzaS¼uí(Á<ɦÿ´i oˆ,j<‹nmLgKל»îÍ“ù.ɪK%q£Æ1Ûtþ¬b({¿`à´áôhÔ.“3Y³6µƒÝMt.¬…­™ol×âÕJ¡d[€&´x4„‘ô3µ"Û*eYC=Ž÷”©ÝQóx__øPÁ ŸÆÖ\ëœy‘•òV1OS+ï ñ•µùêÏvðu ‚K/óƒ>ªÜôu<ŽÏTÿ~øÎ®joP̳.]¢\-¸‘.ó1f>üÃK@ ÝÛ ,¸ê('ÕF­ß¹ 9zçsÌQ•–bp¹;dË ªsÓ·(¬Ž{'z†ÙÑ›#¾ [¹àîž2Ò>ÜѺRݰ ?\°47ooNøäòâó‹—;eU¸Ôøˆû+ŒD&Ü ¦Böþ᳋ï_ܽÿÙî‡Wo_ÜýËŽ_ÜýþßÇú5üqÿ7»Ÿ\|r÷ùðþäfÒýÉðdy’«x‡òMïF¸Kã¶w¤½¦°ÅLíí¡:ëéñ}„6½Ì ¾‰±Ýmótk´êq]=î)jÓ½[íaçfÊÖÖš—°êrö¶n”2uR¦ҋŒIa–Û–1ø(nSÆþ_qÇQ¦h’#ÞO¦´Z^§Ó8`l¢ÊnwÁ¶j÷ºvmy/N»[2˜ƒJ­ÜkëS\I/Ó)Çs4=2ߺêÿðZ™®;+€ úyÀÍ÷ÆW™Š*ÛQ-kÊnl05‡‘shC<>æ°zÝìÔpWïžÚ%Æãnœ^}Ò?p{cE ÏgyØ“ÍîÔ²’¢¥àˆ!+LÆ,Îäö§ãx(jÝxÝ€°ùD›$Å#ž©›s*òU(½ãÀÝQS†ßâ…`uîz¬ÕMôå$1×ÜѧñPs2ói{ÝÚvÁÛ'Ïu˜“FÞ†‹°JMPójÄG ã·~q¼ÕºòJLá%)˜Þ£‹7ײxÅÙ)¯Šè§ «â…eä xï;f®eôöÏ8Å E Ém=Å y¹2ÿ9³N'ÍúÚ¾g«¯¶ê ë|uð ½s•òN–œ<À¡BZ)æò1˜Ö¤ð‰j(7šÔa±t9W- ºœ™ÙrÙKðz×ûâú×¥tÃhäèÌJµr}ùÅ0«©"—™Ö4ñØSyø’De×Ä0‡÷G„§lms­)Eèrf¾nÍÆ3.kûÖOdÒ}‹æÀãª,Ÿá&Õ”tr®vÛfÓ•º—®{Vf`Ö'{¹¥ºæèù™ÙŸ4xs[]ð“¥qüǘ>¿ø_{½d.endstream endobj 308 0 obj << /Filter /FlateDecode /Length 7800 >> stream xœÝ][Ï$·qÍó—÷<9Á¼˜<íæLžb8b$Ž%oœÛ«]i¥xoÒʲõïsNU±›=Óó]„†¬oªÉ&Y<¬:UÅ}s˜'w˜ù?û÷‹7w?û¬^}¸›¯î¾¹sòð`ÿzñæðóghà(™ÚÜÜáÙ—wÚÓÚ|(%O5ž½¹ûÝñŸNçàë4»x|†?§”jHÇÿ<¹©Õìê(üþ}ËùøÙéÜz×/Р”òñ“úÇšÛñŸÑ?ú©ÖzüÍ霰¶P¼ZÂñßÑ0øRãñ×|Om)%ÎDæ1oÞþ«Þç“ÓÙÏsuÇpJÇxúó_Þýó³»O¡¾, þæÎû2Os>¤äÒ”ÛÁUŸ§.¦<Å|øö‹ÃÞÞ•©8¬òðghú—øç¿ïæ)¤‚= ÙôïÏ>¹óanSÀËr›r8¼À‡ÉÕEòš’Ì¿TÒD° e+)ÓlL†’8OÉ›DÛÄ0µ¼•NY$U{åÈgI|Øô*nÊu+IËœmôR§ì7’ê'ç7snmŠ£ Î~jcŸ8ç)Ä­Dæ5Œ]˜üfÆÑaCÂFâçe U{AË} ÍÚ”ÉQƒe–aÖp·“J¢î{á¹A™Rh“èô£·qJ*ú¹LÍQ_‘ÜšJ’I"§(’l’ªJ€¤¨$·U%µ¨$MÞ$Í$U•€Ír:zñ“÷* &‚‹JbUI›œS‰í ¶-›¤êªj6=8®F$ 6ßuÕÂö#ކ5Ð4QûÐ$a«uÝ‹Ö*„¡SÂNë²±“”É•¨Bvºx•`ûD'—UÒ‚JÊ”E"È¡¶I—TmÕ‘DR9/‘$}qt“ ZUþ’%$®V$¦J%M_ƒ ×…Ù:TJS¨*Q´Â¼NU^`&D’=,™J`©E’`)©ì-’fÛ[ Ñ\q‘E4ƒÇ]Ô™pIS]TgJ®0?úÙ´…í–ͩͪŠ*û!˜d®¼FÓ6\TQ“±<ó\”¾N$¦›’Â'")ªŠZõÀd@ rM˜«*‰ª‰f‡0¢ˆæ¦Y;yGx@â‰S‘DU¦é£J*,$qŠ2ã P-™†sH¢ˆ†9™ N‰[תá>ÃùÌpmYßO$~²&•z„ š yÑCÞuS2P¥O5•çÔŽ”XJ*‚ËŸu¾9O>SM«Q¯£„øÆ²÷´û"e¤@`@AÓI£ \ v.ßwû3‹$õCùÔDÍNG†f×ûAÌЛh‘ (I4•&(Ÿ‹¢JªJ Z¢JôLª€kHÝ­N•’,˜IUUä¢:.@@áª`¡Šîa)Èv¢ ¹àÜë{±`'Ô$IUÑä‰Hšª¢U3R Fëĵ¯™;¬ãlg¾`Å$X°à†éàR‘T’˜ƒÄIèØX/p˜8¢â±`½ÔD1MÊÒ—¨ãIlu.bÏ`5œínáÀ8õ^ßZº0ÅÜø’è¡ØÌð a”J߬ËÑ“ áúFâ%‘4;M`UôC°Õ$uv²Ù•v4ª$ò°ÕTWqpÖ`4šy(ŽA5T¬@ÏrëâP€©ÚØŠÝçfW˜=¨x§@uéE"T !˜ñ®¼£$ˆ/ DÐÍF ptX:¨ªÁ¨b7¨ŒV…QN5cY­åÉ™CäÙyShÅöãøÁ$PJRà)M ÑE`ÿ%YÈGͤ‰øX–‘±§µìH˜ÇsH¹A„ËRÃ^á–<%˜2‚Š½Ç¤a0¢qZ…€ wo_±ù™\'S ƒ›šì¨Wl¢$8³þ ÖÔ¬¬ì„H*y%ìL6à5l?•à9€I’(!ÌÝ‹4@°Iºm :ÄqÍŽUUÃ4 ÛÀý9kÓèÄaœ»MkØ~ê"ª¡l4vX6ù]2IEŽ)GhàÓTD„^u• {gYÈŽ¨¦OS‰–\'M0_Þ0ÔðÆkJäÞÚ&Í¢ út[6G+“¨¿o ¦ØP¥ ÛGYÜŸ¾{(ÁyRÖ0UjB<Žö*bÊ2}…Æ JxÜuY TFÆ–)—4(ÃTzn¢H‰z¦‰ôúf€€[^ÈgU¢¾öÔñˆˆ$U™FiBÈ4 ‚à0ÀàÄfi$‰ûMôs£»ËÃmIQ4²S¢ê iÄO®Ø©¨ˆŠ¨Í,%$ÀoU@7“íg*è›îxóFk!4@RÔþ‡™ûŠe7`Ö6Q‚‚L‰s„„^‚¤°3 ÐD’Õ‚BE4>Q'€ýŠ$©$‹ï‰M 2øA$•§]$ڤș”Á£IY!$Qí%$• Yfl/fdf«j:eÒ6®Z &i¦‹Ú§ $.¶µétxÀyúš5h¢ì8º.<5•dòãLK­vsSE mÕ^`ýAvÓè$™ü8Ó6 ¬ƒc|W(™Õ¹@ˆ»LÇ‘TPD5{=šÁ1ÂË—±BH$TÈ4êQ§{À²éT5.’(´Îðç¢Ø0©f:w óû¹Ï¬?RBM›$Š.ŠXr‘Ïä³J€€JIȶu. Xq2ç>8P)Q2u18¡ ÛWä¬Ã xC¤S{3¼Ž×^ULX&£ :íi¢Åq†Z°Él48¬™–¬g†$Ó!á½¥O™^£EljGƒ‡½‚r‚ú«I2§š“ó¹ïw ŠÉpᜯKQÚ ‰ ØìÙðå©–B»îû›A°Às`ûÍÜARD¾¦è›ƒ„ X¹3|yt;¥ÛÒÂ&Ø#…ºgìG¯A’=x/#RîÊÝKŸä€lç>ep7*Ã[øl›xN¯¯aìG›ÌßB’dÓ=…®ÜÜD?¨Æ,<ÉF¦&ö*0d :ÿÐ[ð¯D‚ÐÌþ‚hÐ[g‡iz}/c¿FZ1÷E5 @=ÄÒˆ¤ˆ*x–^ÁŸÐ cD"ƒ0µ¤0L4§ºªˆ&ÜP2 j#ƒd.`ŽÒìT¾D’iQ„†l"©ªsER¸Fù&HtR’úP=$îš!O0K÷Mà±é¹buS›¤Y’<¨þŠäA峺­Â˜¯©D!PÈ›£JÔL咱ר‘V:Xæ_aa–³TâƒåÈ­PI¶y'`œ³—@”c”,Gî4ü…¤˜.æ>zœMV’ „­ÒcÓaÐ7”z@ibV³[óµ¡X_5ÿ=Hª-³wâZüPR‚$Ùnöj²,‚¦©íµv.o%ý\ëXŽ=Å¡ÔR$±½TÇ #´VÐã6ÖCuASü½ZIÖ%®˜õ0V.¹ˆÏI˜%“=ô QSúƒ¤££30»Hœ¹ÖCÍn™s—H¤<öbHU6cca;:íƒÛÌ&­¤­„AùZÆó¬¬i”DñK'HŠ0¢A¢td’(4`”(mZg’༕ĩ+dÕ.l%i©3['²×²‘€¹¤²~ëbÙ/Sî’¼LÙ–NÞÙÉoî>åÍŠCTÕy81ý?+©Ã¦à˜Æ±¤~ø„EÀ*Ùt«Ç¿áZ›–šU—_·Z$‘ ¹¢­Ï–ÇV]2´brah¢Ç礛r|–&]2¶*Ê‹†V]2´º\˰º¡Õ}×>xEÕ>ìÚpíƒ,9ë>p¼r÷ã ¶r:7IÆãFS?ñÓølæ3D|ôoÇ™œžpä“åÖÄzWb¹Þ`’ÜHçTé;æºÔý KÇYóIk«.Ù´bù6{he’M+ÄÐhÕÕ93aÏ5€@ÀCŸ¢–gÄ(Ë „õÙË;QÏ"͡۶l&”–?û̵8Z)ÞÑÁ$?pt`j‚£bÛƒ¶äÜÖ†g0UV—g®FŒMwüí‰F½¥x|þúO_|8¼ûRö ½7Ãd&Å@}gàP¹ú*ó`–ÞêÌ1Ž´{¾7*èLM9Ö’$bÆV€*QK¿øâ퇯¿ûý2Ÿ>þŠ /Q\ݱ)°3Ÿì`*ÎR¡!õ;L‰a%÷òøûå35jaIJðRM‰F¸Å€Ú+åae¹ Ã8W¨®]t©Bå¤âm—V’ÖsgoõÜØÃ“ÙÒ²ž¡¥káh%6ò\¬XsUæîËÍICg·3šÆOp½Z‚{Qƒ#+ñkRH¨f×fs¼%%“¢¥Nx {Þsè­XÙßiåº'î|¶z]±—ç½Ò“z±…a¾†ÞYÁX•;“£U|.ÉŠÇ•RŠÇrh, 7­C'V¿Í³æÙ&\¢¨’heô’Õá²2®•A'¤.lÉz©\J $ÙjbЭìLí—CXŸ©ÕVYc²4@PÃã™U–iÕ «•×0˜Û•²š˜-…Ûy°êI ÚZx±x„ÜV«,@g–´EÒ¨Á·,%§D"«%ýVe‰Yb«šé…$¥i-[pæCxEÌy2Í-ð™ñÄInfÖÊk˜³z,fk4# ÖXDîYv/sEÙ2èM°FªtÊa ì1WË5+•dªj”–©+¦4i—衵·LáToºŒ+ƒæï{ª´ØX‡Öu±$ÉN±G1З€…[Ë:ÍÕÔc]æ³$äfÅ–äõ¤Pž“E LÈqÆÅn‡Ö(5¯—¬Êg ƒ –Àa)ƒ3®Ñˆ6¯™9)y[Ñ>ðŽØ,%ï%aS”¥°ä—„ ᶦ™kaíz^s$NðÆº«fSÏqòXž" ßcÍÆò z¥¹®cæˆ7z4ì§ ãÎ0 jÑx|«`ô(ºù^ bL¼±œ¤ixžRfXÀm^΂7ä´°Ç #E ûÕÆ.jÁD¢M˜¯­*°HŒµmy‰ÆŒ©¢W‰¦å1…¨C»%ÚñY§§¨ZW^ï–œ®ZG‚C.ð@k§¢·Üšëî!­¬ënð°²-Nï½Y®Ýgи¿i!6±†®C1se»½íK½äܬÅk’–%Zf j‹ŠÐÈúªdˆ-ó¼pK2p±usKj †r CL_gY€SrùëoÉ'8ǯß}+”ãL{‡³€/¯%“Ÿüú…Ÿ¤ã»ß}Ñ{…¥—°œ(Àæ—\£¶„jwI•̦¯÷RÝÀ©\?¼`‚^/Û-ƒ^']º÷Ï:{tIH,o¨L%xÀ>¼¸[Æï—ùY÷‹¼¸ûÄDéÈðü\§E|ûwÕë»êrA5*¤þåÄ<8ÜóñkÞäÎÅw|µÞïþÓé̪&˜î·'VW}©Ç/Ng^!žç|,'Ø °Â¬ôw{=žás•³‚r:³d7Æ«äÀ&Ó¤Y&ãò”ïNò °XZ3q:¾]樂ı\ïÙGÞ{éóïuÿ;~wbíº5L–U]ð?f¨—ë0k›½×î¾ìóµ÷ŸÖ?—>ÛQ‡aÖIç¦Ëø’óa­míûÕÚú ®ŸWF6j£Av~¿þy>ñ–TLõøz™Äª™ïOtí ™ƒì5G‘ÝzCÐïŽ]tOt×a+‡]I£û´Mÿ~!&?ç¢Á•x­mvÒœ¥Áì½:Ç¢þúİÖiVøs®ð›.ª[ÒoWt¨òJ.—Úã ‡Ö¿/ ŒJ³Í?ÐÕæVZWxø üA´–ý(û–Ë«ëÌ/À#{Ä Iç:âÙ æB¤KËã70–¿ØÔïø-VŸêñ÷ÇÞÆ£Ílÿðïߟˆ(æiËi¼¼÷ùIf7ÕÀ×^âÜFÐÖ7_g¹P)k<èþ“Uúj;ï¦Cûaäá…ïN©îøçuÀúED«7O…Ü5LÑ*0™‡]}Ø*p³=#òê:òŸl!ÔÆf!¹ï4[ ød›×½ÃÒ“pJj=®¾ÖA+h‰¼÷l­aóÆiâôšC32¢*0¼[¶äýŠõû´ÍkÓöÇ´Áñtµ¦—#‡sX#Q\ªñƒ]]‡¸Ô¶Ú–Ü^+·–\jñîÒÒ?_NÈ\ÙÀõ¼ñ1kˆû3ÚUó‹ß9.<…ôýmã›þEJ¸†~N]Š]a3:£7çâ®=zqa™v ô%u/Š0ž]n:a¥ÎaÞÅË|îÃÐ£ŽˆªINHBÝOˆX,W°Xݽ+Äÿ]Óø)7C±Í züå$ÿ¼ úŒv,>f²`uê7mÿoFo×ÏÈ÷'û)ÚÞñ(­°Z™ÑúíȽ)üqëí¥/Ï^eñÝ߽İü:fØ„~BÊrBx’°N±jˆó»ºq€Á­3øf¥WãV==Ç öYÛÐ5¦"Ȧ4Gí,]¾!\XáÀá™ZiÁ)šCâ7~`Æ&ÞIÔ6R0¿:èñdÀ#˜gÃ/¸®=_ïüuM×nazÇŠñuÝ#À¹OœÓÿU<ö8ÇÉ…ôx%ÞÇðC >Xþû-4eàõ«§óH·/<Ê«¾ù¡SjSÍm³— b_wã‘FæýŽÞ_tÞpڕưTýÈüß]Îi'I•'µ9¦œ³Ë˜t7êÏ·–|øsX³ ZÒ /ýj7ÆâWŽ/",^6Þ°²EWs£+^ÔÚ‹®x?yÓ| ôÑ¡;Õ Ä/a97BÍ¦ÝÆwóÚWŸö_mUxi–XJhÍðvœÕ,m•0˜¥—ùPZÚ{Yèí²ÅHñ´X²b¾1tËÏ0ÌPžy=zqÛ·Y›|ë¡B*i8bÜë÷÷{ØÙºr·¼©Lmw–“îõŒ¼B½¡\_ݰÃݰORŠ÷ùnÓuB/G ¦uåaDûó›ÖåÎüŠ“'”ÛSÌ!ïhsØÇšÃÒùS³xyHdtÝ'‰,oSJÑv"‡«6C®À'ÞoÝ çš]ö?ÊgîÁœ¸‹õ, C5ófˆdüé‚Éâ·\h/v"ä;YàÌŸÉQÝNU£æ¥t;j–]N×Á^ê q‹úBnû˜oyvá½{Œ¾ß‰7‡Ó³Îá¢"ÿF ÁÇOò?Vº'`:ÊO‡ü(LÇ÷1}³ltÓü —‡0MÖ ÿÁðÓGÍuŠÿbÇ;]TÓöØT9o·K‚ôÞ€,W¯«ú+ÏøË²øâÇD7CQQ~RùA «å}µüà‚_ÁnìpüãŽcøá"åi ߊcunØæ«œÒ£q,g×òK7‰+8Æ-?²Ã†BúCaÅn8¿Ì•“ã=°íý>¯® Bîsöòóyüb‹÷_´¢yýk÷¥ÃŸ7’âã™’»ÂæÍ³Ö –òãœýÝ{`;%ýû“×—¤ù¡½Q¢++³-Ñï8N£EOËBm²³}”Ë¢§©eë:›»ýUÍLï ×’í«~ÇÛ–ü]©ý(ào÷ ¿sÊ6õþŒ“7Ÿ/»7”¸sø(3»´@³ÁŦ¶bbâ6÷Ðø=¡¸ ®Ä[[Öíâ£Mi;íWz_äb®ƒº5?#y#þÎÎr$®S5rg‘Ìu»gr¯[í$cäÊ^8Fô4õýÚ(VóžL”ª Œõ׋8ü꣮w‹õ®(÷„äåýõj»Ÿwoà{å°)¼yw¨— í~È6Åýð¥‘[!ùnÚÅÆiWÉÖÝ» žÞ®ûVÅü,XñR87<úé%ÂÊ‹“Þ+½\Aõºx¢qxAâð éëmFjù¢¬9¼ù'»;û†=sÿhS–ú”¿}!ãåˆ}ºÙ{>‘nn¢Aþž"ŽÄå´‡ŠÐ5¨-gÛùEåoÏíÿ£1Ò¸ÖÑouîÕl®@ŒÍ`DV ôw«?\[~}í7!‘\@vË5;nnmñ¡5FMˆœO40Ø…b æÍ€j·öM.8”¿¾¦i_­…Ú‡,ÌûKŸsé?1伿;+ß(ª[ýÜ=èOnM«óÆ{Óúûé¸{ÓúWž¤k³“±œïñŸýRÀÃ¥/ŸäþþcŠJ3å׿^ÊX–] ß–ßoÜu¸‘`»™@ãfÍבÁíjã´×Ó³—¹ÞÚxÒ5£Ý+|gSØ62»¸õööÒŽ¡™ ®ø–1Æ|K“Ò«CfÐSHa÷^ár™æØw{§§ oÞÞi’ŠÝ½¹Ã_ÜmK¶é7÷ÍÔóë­­õÎn¸´²|kÿ‰7Žè°ùÆ¿ßX½«ùë.<¼ýÇ3¼ã<ãÓ»ÿ,ȶøendstream endobj 309 0 obj << /Filter /FlateDecode /Length 4971 >> stream xœå\I“\Gæ<œáDÍ¢›P?½Ú«pp@Þa6>ØÄHK3²- äßÎÌZ^eÕËêé–Æ„PŒ¦§»^-Y_f}¹Tµ™'±™ñ_þ}ñôìîÇnsùÍÙ¼¹<ûêLÄ7ù×ÅÓͽsh ð)ÌAlÎ??KOŠM˜7ÎÙÉÛÍùÓ³O·¿Ùí•ôÓ,ôö^NÆxe¶Þ‰)x+<}óøRË`íöãÝ~žœõN¹íýÝ^L.¸ÙCgå± ­Â?šÇ~_»·Ó“Õ^ªQ_ï@ç”±Û÷wð¼ö6l߅絜¼÷Û?íöÖ¦œÌ£:µý*é¼ÞþûñÁƒ3‰ó˜›Þ_žy·—óìÅVíÌÖìþzþ»3e'ígÚgç¿ü$àõ¤E0ÛÐäouÜ';9+µÝ>ÂÕÚIH¹•± ¾o„2´³,]ÞÃ%Ké„‘Ø)¼Ôfû ¦$„ó±»2åov{­Ã$Aüïíü ½W¹¨ ŸÃd´RÎm¯Ë§_/âÀ^lqûö@$’¦6|ºÃ-¶BlŸíb3mêµ—/p4ë„3Û+˜«ÖBêí%t o¤áµÛÇñA¥<.C»­ÊÜam/@Þ“µFƒøöNOF}‚‹ô°­2îð¤ìÈö/ð®Â?l,ݺLf(< ùTÄ€]™{­SºÆþ `,Ü4Ïwæá¼j÷Pc`ÏÉÓ¬TVÛ-팜‚ & ãX ‡eF  {Zyþ4ñäõz‚BH«È$ï@?÷‚||6V©¸aqµ–ó`éükÀÃbË‘†ÕRT-ª¯ªZ~¶Cè ß%v쟋÷Éì+²žD´jò¬Úݸdç׻讯£lÂôƒª{8«ðÞ^öÇhhD ×/– `»œ5Ë0—Tqq}töÕFÉLJö–*´1p¶n¬Wn’y̽ûgwï¸yþõ‹Ggw?Ùˆ³»¿ÅÿîýñmøuÿÍÎÞ½¿ùèDŽ# NucÝ<©Ds*5HJò‚e>¬gù#`ÞA7ˆ›`|˜`Q•£<Ø)¤-`^íT<õË#rVQÆVOéÏQݼq@Ž¥ÉsߨQ_AÐ{°nÐw ?¸ÄJüè)v¨Öô =í½•!ŒËcWu Ø.šb)‚wAÂ(¡‡X³vó%³,®Ýã: 2ÎÕÑ—ÓY`”Q‰IGwÈI!lš ½ LÀÑÌâŒÀ”Â¥§Có´p“.&ãÓ8'ñçIRVËí_ÛÕ¯0Hhf¿¿kÎmfÚ/8ù9$ÌI•­wF/‚UvV8&;éí2ñ”Î' Ëì­|zñú¸7 !AFìág†±ãvSŠjÂÕ·¾oUÚa.þ€jìGàz7®í{8ï¥o}©BÀ›}ÙËrô&­ª2ýM PŠªµ¤aÕ…‹å‘¥]ím±7+$ý}Ž+Bøà¹¥Z9Ûñe?ŽJd´š³,•Û ÍšEj=Ùšoð„òpĤ‡~†)xƱBXÐÖ¿î·«ÅÈz:Ž<œc¡ âv™­Y¡Â1 Á6â9¶„™„ŸÀªx’tú}Рį=VÝз¤’ÌôÿN7~ˆ Îg%ù½õ±ém*ÈôhÎÿ¾ÞÑz´ ›ú#­Åsb¤?`™OÖOŸõÇþ·èͽZŒ3é¹*þêN Fd¬;¥ñ¿§;Ÿ} Ê# Œ¡ø•¬òÙ‰Œ)ìˆú»Á!"r^YA= 2‹×9*&ò}‡ºÉg§!G…º%¸‹%zЋ3AHÄþ›shËrh Nph£õ¤eâÐï€ .‘Fh%Ö S þ­œgô·Š/þb‡&ÏÀ«úi}E¾ÞEO×Hô¤P•à˜°¬¦ ð̬ހÆ'Š¢"!eôÄddøUo‰»Tõ ÁY šä†Ä%è]ŵHŽ^ù ã\ÕZlÿ±ƒÉi9cPÆÀX†"Ý?“úËÙºí3Îy0r-kè†(cµ/¨ÐŽxœHažŒ 4TÎ.ƒx4èÓ’)S‰S"¾0;mvÊ—Ø]LG7{»ª+€ªw–qôUt/òDT ¦- l9¨ö[îlt†Œ Jb³dA:ª-¿(.ìÓêÂ&£^Zଔ¨òæcº/°¡ R@ Teˆ‚u­‡Q‘ž85 ¥Åˆí¡xÒ3zT¼@ÙÎ­Õ {ˆ¡Ì!U¨ã¸Óeoð²ñ¬û\Ö&bd™B¦ N¬ý„*¦ Ý!´r)ìb2œ–×nGûs¾ÀJ¤¢k%šðŠhïE£ £hŒ¨Í*²„ &ïRŒgÚíB«Zsg¸vö/† ÁFü°¡_±/0·:¨ç¤ƒU¨"Úàß7ÑŸ}^_ ç"a›\áô%nk¨f5 Í)7ʶáW2ˆÈ¯øýM=ínŒÇбáÊöð‡5Úxj Y»n­\oê—%kXì± ôDžÀDÌŽ ñ„yÅK‰£­ ¶åþC`«“#§B’Ó>¶ú>A¸°‚õ{W€à üá=´ë#ÊÌšØåõ %žP–ÚóëŠvØê†šcàþu‰^[²ˆZuÉPº§`€ÿ@K—3ܨ(×EaùH6"œN}¯Á?Å…VÆS#üD!ÌÀʰø&KáÐPNúu#¶ ü\Ž ^ä‡& –òt‚Sž<‘à°«¾“Ï€™œÉ+ƒý„f5X±Do-'íhË‹©Jæ#Á8^Á(P>šJ gÚ(ô!¿pY‡>=±”vVmlj¥Þ}Ìkj9›=ìKQÂ{”wƒ@¿)ìë’Mãv;t´²“D°bî’Ùöìuõ» Ƽ¼zÑ‹gmÓ„ÜÊ„Y6ÁI²» zcVÌÂfyÝ dÌ¿=;b¶ÏŶŠpб3pòCžÝáGñe<‰Éœc$Ô£~ÀÂ9›_;% )-o Xáûã3¡™'ñµ¬¥p ˜eºs,µ&‚#a`®D“Ë]—k<Ѝ&ÙðÖ“è÷¨! ù % XšøV ¿· x­pnª3þE£xEDÿàfÎeQˆrV:Kœ–$]õ;c¬k”LU.Ô½ÐíkŠ‹rï†Ç(<'z9J©XhúÉ#×K.¨;¼ÐÖâ t²-TʶÒ2„ÑÔ;p€,þ.•—ÆÞ‡ŒMéÓ£eÀÏn•bÐ4Õ-dIruUc´U@¼iÚ31¿ýYÛ‚jMCùlIQ^Ũ˜#ˆ¾)*6}8šŠï’¤¯r6£÷'Õò¤)É×®ì8&=xT= ¨F(a1xëíÇåZ×q•œŒ°Ã(·z2lUˆ©óS‰É1ùh1 Ýá˜Ñ,®P’ jg”†!½qµ8çéÆ j%æÉæ‘ò6“͉?˜IµáSÙx«zaBù–D¼dbÓ+IvF9®{˜A©iÀ.0vi0ýkâ üÞòìÙÉáOŸèT€uÙöË”,l^áFâõÉ.D‰¯±èÅ×sŒ-±‰ƒé /Vé  Ä’Êó÷õš»?ë‘vÙTvûùRd]]¤ë&wë¶2Ÿœ°ï¨ ªá¢y‘#Ó|Ur¹¼EjNàä£êÞV óµm±vS;kDW2Ú¹·èZ¿V0ûäoTø–#˜¼»ÄRœƒ¡[6qÎìÀ÷9NÝäUFÛíUŸÿsIØz`6ÄG¾Àõ[¦þ"~ æ/„çâ>YÞûêlUõîàe0`ÆjQäÑZõjÊI'M‘K“`K³ÛZQÊ%¥_ǹ„*nÊÒäúù@ø.G¹º4ÇÍŒ¦„ë,S²|³îI+ólµ›âkö¾Ü hEW§5.|þ¶‰ò$c`4’@$9ýášùhZΡßF™¶Y&*Eq…µfÉóÏ÷˜ÉK\lkÿÉÝ ÞTZ¾•,™7˜„ƒp+­}5O»}£•LË9®PVxpkcEˆ_±’²K ²¶ˆ„(šÐÕBuÙXr{Àdó1b=Wµk6$Âã ˜l=Þ›L¡*)l9M4 MËå7ž¥C79}³é¤o6ÙíE…,†ú£P?F-§Evë½Þ=XŸç.…4ØïÅh+{ÆÉÝ| &Ìí=2õmáHgÛlºl?&;‡s«µvø­^ú?LŠõö:Qo>Ѳ&›îueí/wFOF/f’­ô»Ì¬/•÷ê¡/»;æŠà:s×h3'?tè§Æ=õßM‰Ã2’"ŒÖâ¯Ýä°øÌ\7•€1“Bmãu¬³pÁ±Ù»ìب0rcóƒb9ÎŒa]ŒXˆ÷J˜°hIžv{¢©uR7­‹Rÿå«K -©Vò&&ó[b‹¬Ù¥’uêêQØÈøaß°¥öFå GÍ$Åï¹û±øãýˆ±œendstream endobj 310 0 obj << /Filter /FlateDecode /Length 5400 >> stream xœ½]K“Çq¾ãø"…cOôŒƒÛìêztWø$Ê”,­¸2¢Kh» !€½3ë™Y•Õ3»\(fº«ë‘/¿Ìl|1OêbÆÿÒÿŸ¼zôÉãõâù›GóÅóGß?RáÇ‹ô¿'¯.>½‚ ~3ùÙ«‹«oÅ;Õ…Ÿ/ÖÕM›»¸zõèï‡ß/õ²M³2‡+ø8Y»i{øÛQM~sj£_þ?šÅ;wx|¼œ§Õm«^8^ªiõë¼Á`ù¶ÏáZa·ý©>ìÓ£™œÙ=ë?á‚uÕÖ~„ûÍæüá3¸ß,Ó¶m‡/Ž—Ö¦×%=uÕ‡ÿ† õ²næðgóÖZœI˜ÇÌFÿS¾ç÷ÇËež7uÐG{pÇÿ½úã#í'ïæåâêóGWÿþ÷Ã×éIÊ~8^¬7·l‡oËdÝbÜáiÉsã\3/“‚5¾Áç©þ;\Ã/¯àQ“Ö«5‡×õž—e g°âm…ã ÏY–É9sxR¾¼ Cè¶möeV0BÊMý2¶Ìçgnš?üX³ÞôصuõþðŸªáÂ…}WG„qô¤f‡Ó×^¸„Y‘Õ¼•†‹·ã¦Õ½Ç]['2€#~ƒS™AHW:ƒz#nô i±ø¥&_>•nLg°9Gnº‰Ç>+3Б«§ äìêÝ85²Ç¸®—ø@ 7úðWò+Ù÷pˆÎ¯>b˜ƒ3K/fó ÿ„#l“qŽÞs ƒ­t‰õ®2Лã º9íqy—i}—ÊÁ·~‹Ëd²£ Ú*§¸$Y²TŽ.®W Nû¥WœS²ÛïÑ;{³Á­z… ´ }öm… JܦØ MÇzËU3ªg>ur]™õÅL3|”–Wû´M‹QTÏ´ p‚øÈe@©-ƒ¨áÏã½…}Â^¶mÒÖg Nâ¨ídÿJ&ôîhÍdÍÚ‰m•Uœ¯YÁ’ÝQüà.'¸ž%ö¢mÂvH›µ¤Â¬Ö« Ìy­Aš k\r<\œÚOQŠš}nWÓƒªTÖÍ%§RïyƒJè'Ålæ š+%(ËÍqÁ‰éqrº]ã3¦8þ¼Y­–oöð;“Š}=Di]Üê!^›íÖâNëá2»5ë¡Ógéa6ä_ò$ê4'fÂëß>†Ût¼í‡$Ì~š·,ËuQ¾ÁŃÇIµ§œ„9"rX¿¬çwn…U_Â'gA%ÛÜœéMëlàb®«è šÇßÁ’eøeQ^+Ÿ!ì·ê°©:žmã¿oD@õŸuLAšˆÜã…‹…»<ý6/N»nqAö_Jj«Ó*Je„:°$SSºá²I4â[EÐBÁi@¯E NÎ¥*è8D”ÐØhÀL~%>¦;œ8:\™÷Ž€„»{õðc¯>eO•üê˜`ŽŒ8ÀstP̬t5dŠxŽ3 "Á“´3ÜVî|$샚úë¡û(*2к°©óJý Eq›¸µ‡£YAúÞ5~ÔF”ñbˆ;È#qøèrÛ× ÞÇ}¯í ÔÓä±<å]Dˆ^Ëy'Ji\ÅÒÝdA˜ œ ¶D`MVˆ´”Ú»nìœXÑXxÕb… —¬o™lj0¥ÎŠçS×Gæýƒ±È8ñúÅkVÿAD¹º—jç_׳é RÐ–Ö 5èÐ[Ñ ¡VYÄÔ#&Ü—pÌ×Õ%îÃKi)⠖ˆ ®Z¢­•ÄSæLô”°ïR3s®ÃÀÒþ6Qß5½G•‘B3Bs¢Pe cŽCŠƒÙ€òz°‰ÄOz1ÜúÜ 6ȃlDúmã3a²7u ðÉx§ü‘WÓ:àFèŒë}hòTôßB “U¤ôì¼çÙ }•q6AC#…"¼`gûÃÚ¹é²l”Úoœ=žt˜N‰Šu/ › ¢ ^ýZ’Ù7Ä@âã…_GºË4±C¦æEq$0';ÂPpÒREâ\…h0%e1'çv)Raéc²„`2þP¶ãn¹ú¶$Å\‚¢l/[âp05r ð»oáþÙé¢6G”WÈ-¹ð3ÿ¾wð©ü„Ÿ]æØ–­Ø²J î›ʶUfDÓ‰“˜c?J9Ë%~1üðþÍÐ'<£‡þ ðY‹H !]º“×Í!Uâò¶y*°†J©¨~;h·±$¼N@±ðÝ/z,Üéò6ÓÒÆ²ÃtkÒx£öbŒ@æópFpQMInTòv_GŒÆC+ž5Ás`«PèmŽ@|“çá Œ¯[SÃÉpð:ÛÊÎñ:Hµ4wŸºšà+v"oØÌ€˜G숎’?¬&dï³1bÏ\‘‰6eôÓÅ#BúóEbh f²vpk´ Ž„Èã©P=Ýh¤H=00z•ežWÊô– .¥LaõˆÎÎëÝËå°š«ìLO » ùðqž»Ê˜»„©@샄iubÙ¤HðJ î6/ym¹L¹™(*D£™µ?]»™¿D¨©#û+jõ¼ÒÌã;1®bÚçtˆ’·|î-ZÍ-&~- ‹8s‰ÙÐܧÜc“’!VºJÏà3²ý2¡Ú@ûšÃ)àgOd”£ ¥ !]8ߦ¨‘`gI´Œtö³ED}N IΤ7.Žçhnú !¥ˆ|°%XrµÅû»ò¨Ã»N• ÉÀqÉ›„àzWÍ|dWÉËzíg†5KBf7£5¹Æò•DÁÀŒR €óys2 À­Ãyg…ÊIt¦+k F™‡ À·`æ6¦ý±:¿­/—JÔ»úÅRá^Kü2P‘’`KþüêXŒÛ˜Šá¨pVû¤ û—WVÅZo;&{|äi¿ ›Wó””|æ «FùµïªfFL’ûÃÚ"« ž–Jv¡tr/ªL¶[h §ÿ4dK9©¶…3÷fÖÓöÔ Äõ*Mˆ¢Šî%ó޳[bmÚGm ÎÑ éÿ K„„åÏåÇk[Áê=üYáÏ þ£Äy5‹ÛÊwBY-q/ñ‰cÀϨzq`Vd>²­ ƒ°Ê‹Æ}¦5>_K5܈EŒë”ˆDöÜ9È× U±ûUsl"¤øðÉ|ƒm-V3ô5ua=/p˜Ãéd÷Ü’‘2P~îÑ·o%'kNÔ ¿¤¹Jc~6éÔ"¸O#Â~Wè÷ÙT$ÖÒywø;ò;ßs½É¤\ :Âu\¿HKT$Wj~(¹ŒSRÀeÙ7‚°A.ö¨Á |ùÛÊ5Ú>€y—>ÂÑÀ¤cˆ þ× ïäÄ+àÑ\€UÛåFB<˜õT;2k ZU×Ç‘Zµ}@&%ü!¥V-æ‡Ìï¤þø®߬\\ó–“Éõ–_’Z)šíuX ·Þ¯«ÍnÄí9_bóF€St_èö]§yamÇ•°7Þ€—«p¨yZ“®¡YÚòÇOZ ©}IÂû’YýŒe÷ n a,x¯†îiVÕµ÷öµ:© ’Kƒ¢å7ɃÀU‹ÂJÃóŽ?I65Ö1¦¤IîŸßhݱåqÉÜ7{~ƒˆR\ÂODúDFûì–kÂ.E8½‚–{|°*È!‚'eñnë.üN1e}ýÉu™Ó{ ÉÝá†69s¤1*µ&»8*›É…[yQ6×ÏlûÕŸÛºsâzlëiÿ·(ßT"Q4¤p«Ye“SWƒ5¹~×åúŸ”°rô®’³{{Ïš8cÑÄwØ(P¤s—HÚæ¾ÁºE@È>«Q¢_XÉN©Aiœ¨`ç *95ƒŸ§ÎM*™X-›${A¹Î­EÎFHOòœÄ✠Þcv'g<õBD[.ï™çÐ8î§k'l' Õ$)‡Ò»©‡„9iv'aN×¶¦Û”'cBÕÀp‹fûuS4XŒ•=Ú}ŒÂÜÌ-ÌÑdŒ1þtmnPæÛ€®9bFК»¬ÒyMG~WKsEù^ñï´¿èNÅc¬›¸Ð=ú¼.æ¨r%ìõÜ/»Lô¸]ƒfÆàí‰äšà;¾šk öð/(ÎÞ/VëJÑÜFƒDçÁS*RÁù>Éø½)º¼Gf>µD>ã(±êCjl*;r¤Ü½ SÊG8*:EÞö&¶?à’rr –DÃZâpÄVMga¯b¯f‘©«ãfj:Z›öàôp—Gà´Ù[Ñ£pԻƪ>Î;ô{¼ÐÏ4MB÷éÇƒÓ ÉHÚIª‡Mk™Å—ºžî/ — èæ¼G§~H‰™V(Ò6ú´õ¥ißÕé%^D=í °ÄÝ—Ý-ZÅF¡6ãÇëù¯V«L4ê×b¥ß‰÷Š}9,?#t{6IGJcÁh.ˤÁx`ZË›¾F5!gu»%Q¿®ƒÞ‹£þ7¦˜©÷Þ™há†?tid¾9?Øpc ñ$APÍåáÞ㓜½ë‰â'LØoŽ¡“gsª-‚Xcü4´_’Yb€ôG´ÁVÿ‚7š`ŹŸ åðÆ$ß7Âß¿—·µ ¢{)H(È,Õ[DãmÙ)EoðìœF$ ˜(çUÞ'çúìZ³º˜Kt…€yŽïãìßk‡2(¼×ÎtMØEÉkí30ŽÖÚÛ¬yìf±ˆ¤—ë´Ê!ܨНžª'Ío½SÝûuÝçw¼¤Ž“;™ÊRZ%v\5®[d/›ðf؉#Än) ¸ ×¾9 NÕÏg,>ãYíª¯“Ìj¢šóÕKÇ—*28ûÉcÇÞ}©À!9 1æòkœÇoŽ€ªÁ­"¦Õ袕‚–L><ßÐlu`PÝ4ƒÙ@«T ÃöÓ:\z¾ëù1Ñva¿¿‚ñóV±oop& qkˆ2“Ý{ƒh¯·-.IµK‚`Ô\\Bø’Ü—Gö¼ÅT69l|‡çAx•½’$öĪLñƒ:îÊä‚#j¨‘”ÂÀZ-ÇX˜ˆ–cª Ó7²æ6õ!M^JV%š\ìˆoB¿eø2—\Ò¼d‡8Ý8²OeN° ß'qÿ– Yë=mùoòפv:½_¡«ÙØä'=œ¯³h#ITm!Óž{¶¼†r¸ÎÙ ÜÆ~óâêžYL]<‰;ãmj¯l¢'²åÕœª¤ãýs¦ èëpsEf!ÕÊ[ØÅ­_ÛeØÇt-é %\rƒ»›ÛE×r‚ÉÃî‹or= Ié,cÐó’l8ìu/øk:Ji¥|ߢï7K:AB‡– ¬D¤@»Ò—x¡]\~£ÿf£•iª9Z6N `YH¸¬X2ÈA°-d=–:àwèxì:›ðÆ~¸ÅZjýL²|ŽÅ°ªûÆ&ëÈs¤ÎûoyµŸFTìœÇ,â7vô˜^f»ñ·ò݆ þ+O¤gq±Í§ŸißGŒ3»bN{à8VfJÚâ1¬øÏ.àÛ)×uë³íéý”ù}p^m¤ÝÔ¥=Œ6©!(ümµ°ã¤‚”Ž~™r¦€ƒêVÿ1‰ÇèÔ—Ùo´l'ô¯„ÆuRØIŸKe/RYJùw,>YeðÀ‚œä4)™Õq. ²œ_ÆÄ¾i“#> stream xœÍ]K“Çq¾ã=1fœv×»ŠH+(R2MQk*’ Ý%P†½3ë™U53»Øµ< ÙÓ]¯®Ì/¿|Ôþt±.âbÅÿò¿O_?úçoÜÅ‹7Ö‹~z$âùŸ§¯/>½„ÞYÂÄÅå÷Ò›â"¬ÎÙÅÛ‹Ë×þ¼{¼?(é—UèÝ%\.Æxevÿ±KðVxzóßñRË`íî›ýa]œõN¹ÝûƒX\p«‡ÆÊk¿‡gþO÷ÚW­³O÷z±ÚK5kë_áç”±»Ï÷ð¾ö6ì~ïk¹xïwÜ ÌM9™{uj÷oð ’ÎëÝרŽÆIÇÚµþUyçóýA®«;µ7;·ÿ¯Ë/©°»Ê‹Ëß?ºü§?çGqRÚ+·éDœ“Ö0+¹{ :Âî§ c 2]jM†´à4¥”ÖYìDø4òâË¡D—Ïàcä¥pØÙshÃ;¹ªÝ÷0D˜3´Ûîý¼?Àúy+éƒWmMžÖ›íç7ûÖqõÎáâþÀ™J«qêˆÄbÓpÃà¥ÄE| k°Jë~U¯>ÆùÚÅiƒ ³8á Lr]ŒZv»CÜ8A¨ÝÆf¬°ôg|[Âà«~¿lÊÝ»Úøœ³ñaÅIã¢À¹¾ÞÃ]'¼íî¾ß㘭 Ý]X"»Û?v&äbáË}‰ '´Ð8Ø8;ãèXût¢€¯W†ˆ¿ÿiïqÛZ¿{‚kìÞ½(´Ï¶:i¤j íO 3OvSì{…‘…›Þ.Újãéàòò®0¸nJÝèãœwᇂû^Ô”ñá¶UÚÀú^—ñ½c~$kðe ºc]Q™Ä-BÖð³¸Áá-ƒú •Z„ÜýeWÛ’¥£usáÓLr÷—}|A[YtºÆ¯ÛÃm•opðV]Ö&kû®Œ JvËLšºJ뵆îî÷8?±HvÏâòÀ´ÊçÓÊ9´vÍ÷AîÆ†ƒ0  ¯ð=­…X.ëAj’/.B/¦*„WM`èž©[ŠL°m½ÚKí&lW©-Ž”ŒGÔƒ&ÏŸ¤‘þqFÖ- +¦§zm{ê%íJZ³8#N‰ÓDbêB¼jÿ‡vù?Üšµ'«Àw‘Ò-^‹òiÇ>É[­©Éøf=ÄxØRmûÒ÷¹•ê¾T”CXV¯‰"¸¬Æˆ¬Û=Õí¶<÷€¶k”zúCÁnƒNƒ¬¢¨«aàf~‡Ñ€vñQ¯Ýü¥¾óÅf-\^Zoï<çúyº7 Ûá@É\'_†ÿqš¦ÑFrÓ4Qrdy°UzÔ<`9­ÎKÃu"@÷“PÃVÑ´€j—®‰°M›Û°6–^4#¯év¹¶×d»»ôó9rã|“È>†#Rè»Âp~ûw8.å% ±“0á°ÔîoIƒÉ!¨°·ÝJ¥ × Ó€|^¿ªj®(.M4jSvœ`ŹŒ”G 7 ./yçe,½!7SC¢¼õÊ1È Üm£%\˯ûÚØ•ö޽‡ˆ`–*m«`Ža1îFÁ^öx¬¦Àš}Œ=Á#V‘¥ÌJj•¯æ])Ü}WŸ%À½ýj±…g8{ƒj€kP<Á†Õ’uÿ¢“uKÅI§zÒ´pYÒCâö|ýë• e€8¼k@ßH{Z.^"Ê©%ªÐà‘Ã6rô*SpfÓRÜhO9¼{…jj]¯mË5±æ÷üh¿¤öŸ0v³]Hn§ nX©Ý²‚Y0‹áŒÉ} ë’še½5’FñZèqÛœy‡-;¡+ŽíXm­ x÷¤>‹Ÿ%xøž4€T/Àב*ƒýl#ë+ÀÙµ+¤’äí7‰> ø. "¶šú ªM kº&ßG. Dž4þ²v~Mf&A1"³KFr”fd¼O†/!Y@.o÷¦eÒ«.#ÕZ¢ôÃ&^V¥ᣖGͽÑn¾Æ¯ƒöÅ´ÁïÒ¦§)„tÒr‚…íŒcëÍ€~ ]h¶™F…$VP\lÓ ˜@,IÓ…T‡²MMò¥ÀðCr xYí Ý.*›öðA¬°¥ì°Äͪhª°‘"ÂT©®#бZMY%eF´Ï¿#þ9PF€&Tœºá÷„½ß{tðÈ@Ú¾ì hZG}œÖÅSå"ã>¾…G‡R!á'Ì{T^&€èº6¯¦#o¸n ÿËÞ8ô&)–Ù|ã >eèæºåS¡­äIÛâm¦õ ³uĪóBÕdEöÝÝ ŒdÖ €Eˆùo«õñ²2|ÆÎÈìÔXIùöU³nºGó˜Ìk´Ê3²B£/ë“Ä@lr÷E»lr0êGíЦ£Ÿ­“ÆO£RÓ°‡ÒÊU•Y˜ÐžÜÌÊLŸ,*G§ 4yA`†°ßºˆ²l: Iá¶š4ð}ê@®„SŠf„%6HhxCÔ/ûNèªÐ;¤TNÀ~%÷€UX0”’ÆOôH!î6C‚B¯ê׊î*£@&XÌ9€æ"lÕUø4µazȱu4ö64¹¨W¤LCÁÉá¸+´3â}Ö(°òUñYAu×Í o $[#³D7|0N‡™µÝÌiÒ~s1d¡gb™á6¯*?ަ/¯7H71þ›áÚ;… ÏlMÎy¦‡P|„¯Ã¨mG³)=÷+Øfõ°¤éÏá9à=îLfI.Ìc#§ð¹ée­º<¿®¤<§sÇER ÀAï^¥¡¯ äy'ç¸p º Ô#ýNöT‡IÆ^¤o¤1+Ww#˜Ù ‘½Ùù´ ”‘žî{û;9{y$¶ÝœrÆmN>×[{çå)‹’u[WÁû$ÅV/‰é*) *‡¶ôßm¹oóqc¡mè)!½GYFw©àIè;Æ‚Þ3u,Ðb«NË;ÀIC*é(ʼnÀ–âßì56ª iÚçó-ê5ÎI‡q 3¼ãü·s`Ô+jÇÍ“«CØè}wE·Œv~vr)Àpº40°ôyÿ­hb½4XG;øl;@æåˆÌ¹J6¼¢ÂH&„Sn•´°% ÀKØ_a…੃¤¿)ƒZi`Zô>PÇyè1?À‰Lõ’o8„n-¬†ðŠ/îãaù `qõ6È_#—|´–Lm¤›Ø¬S÷•F£Ý«z€L0ˆÔoù¨å±Ò·èÎÏLG÷×½îÈ#šµø'LAIËñ«gµÞàs°”ïy\{²¶³Uùq$wå$lj@çwÞãÚìòªè ØÞØà &ÍcØm°mÌŒ²W¨;>®Fj¶Aê…¢‰ .º®)ÊhXNZŽ»2O¹Dgam¨$ÍÏ­>Hß>Ùüsl,Äu4¾43€Š‰¯÷Ô ºX2®ú;$,$îÅ÷òÉwHÊãÎÈ6‰>sØÜ>âÊ-rð ¥wwö kôf8×û†5†6zÙ€+oþïxo3clÆÑr‰n‰¹å‚>…æ]Øaæ>ãöÁ*‘¾å¤œtÏvô×Õ1È£ŽÚ‘þFP’ÍK»6/í?´Ë­s¶:G/miSfÌ3×¶ŸÆ_>.Bo¦YÀ)Kž1ž0JŽSªØÀ¾(í¯jžY 4½”Òÿ‚èôßáý‹ÛAøÝo+ úËãù/a%Á×G9ÏøéÜ-_"vD­½³ õnººØ,‹éýÖ"å%®¸$ÕËSw^½ öjµ…í³(Á/b˜l×jQ ËWò&ÌBõ/,ç}»—h¶Øèq1=!{Æ5û*#6¾«#k¼«ƒéŒŠ^+9·ÕJ¢˜3É3ü©Mãûå[ RèP0k|_íîë†ÁUd^Qé™'[lÑ0‘êÕ8&*ÔÐã ðÃô¬·¨¬¯mêL{W)8Ãâ­ºøU9ãéªvÅ<¯Zj!ûY'ÖÄ!°ì9$Àî91êšx¨WtQXXÈ4g'6 ES;Yoå±Í¹®|ëæ²U]º“9â½51òá@*¥*„)He×ï}aTä€y¿=£»{@£Ô!³ä›«™çå—Ч F-*Ô˜Ô®dK°Ù¨|Ïž֪sØ–¶¾Þƒ²ôN%6Ÿó§:ÄÁe{Ñ1ÓÄii&E[3²Í£<ÁÑ^É6õ#,V‰Ž-vôž]ÑÛ@ƒOÿý®B 43rLÁR+øNžþŽÁQÉ›€eÉ‚’^í [¤õ¾ÙJ™ ÂðÁ/ÝŒv±h´JT5>tž`Tv“òT¹7Ã'ÆœÁù…uˆp*œSõ|þO—e„àa±ðp“êw†}œ¢ÇR-Ìæäñ€Ã¾8¡>Ú7!¹ÿ¯“àYx±2RpÐcŒ ÁR‘ ·•‹#`u/ôlÕåN!½(ÒÒý]rŸXü\-”çaôA¯cP_TjîB-k¸L— GHd´þpæy¿q+.=7†Ý J5ŒFó=ây¬AQržœ'{_€^œå3@/¿_îA³ÀMÅœ/@¹'M}·\!YaÀÕ+sF®9–+$7’Ëð.Zб}¡r²1Ú'µX’veš3…ƒœ2”õóíÕsm(fÙ„.=ˆûÕ³…1)}ê9/Ú« 2çe¤®DÓ,0H`=uà̵çs&N—‡÷¥êÉ›*ZJÁÉ¢õ’Ië5h P¯§ììû>Ø ¸WI‘'ëáü±U_ÌòcSf¹œ ñ×õÑÉ`ß ^ÝÀ‡ XEÊ£LZp¦¬‘Í":å Eu•’ÖœU(Z>ãßÇٚΠy8•Ú¿»«Uâù–ˆ§‹æAß3²z$žaT/éÀS„5¶Õ /…þ¼à`GêÛeÄv¿FvÞ©;fÄV­H¾‰q(Hçip$ryæá«E–wäq|ÝpwTMŽÖ}FmÉq0ßs•zøÐQ‹½ê“lÌRàAŽèùÇ*z3ýd€ëKžc½]¢¯É‚‹¹¶ðV'´#3*ZL0bѯr$cm&àY!Â3ò0b¥¾ÕS½õ~WEƒ‹"1=j&ð§õåƒéHKPíTuljšB¡h®ã}Äg:€D'’ÕÔoÉ–v9ۺ뮑Ô5¶úC¶Ø‘-ðîk³¯«&"¶<È–†HýW4çq¨3’­BcwnWh'‰ö¾C¡]UØÕíĆËÒªa Ma¸aj&*ù.9û²äì—r±|7çìËTMMösO ›åÅG‹ý–¥ÉÉ0SQ/œ0à9;¥7#â`n}Ž]ä?Ò‡!:“K~‡ceCòÁ§Çé”w¾¢l§Üdjé_16qˆð,„Lée&!+qÍ2‡¦0çêñ(¸RÁ-°î¨2aP˜in~][ÙÜý¶.±÷Y…Ú 9®S%Ž “4EÊ"êll£®‚Yü.g4yR¦Èàô%"Q¿:w°qÂvDoEÝÑ%ëóã÷:aäDjN¤I;¢…êqDõ>%ÙÙÛï.Ÿ;k½›Zâüœñ=«Ï=I!¦†“QðÄÍ5ÍŒ+Ø~ 2o…iEö8^Œ"@N>ñ·{GjÕöð¥r+¬iƒætiŸÓ“wÏ—&$‘¸Æš9M¡ZÁvsJZåxâU°É!„Ä…® œýh‘ŽŠžxM\=Ä:«žãkNè7)ÍE¿ô’мlôÇ}U ‘ÙOöÛcO ›?y^ÉÑÈÐ=ƒpŽ œC7w.»ü@¨Ðš6.ƒ™užwÞÈ|¢‰ˆLÄäö•㥑¯÷`BXíIŠËœnqJãÏI VÝpvì¼Ìãkµùï¶ëôÇŠ^‘ÄÊZàÂÛ'Í<²Uè èUã ¤ÿm|^=iùŒw?¾ ·¤“ë†{@1Y³MšÁÆY}™š´Ë'òÁ¤­CèÈé-nÙVéü±áâùŒ†ÖI±DʈXsã¼Ð­B»Á =Ú¥Aðä4­r“íðAun¶Éëg² –¼nŸ¼.bæÈaXÓx‹[ߌg`-Û'Ħ6ˆ^k€.\"ƒ¶eåâ#Ôgu¢J„ÇlÈXùc¤‡<µ\'Mô=«k¸ˆÔéŠjÒ æWÓ,’ü–ܱ@m=÷´ÁcF)k„Œø’²õ¸E6Ù´³ X2³Î×¥šqöH¯‚н pZRîêjUÇ‚êæJ¡ƒQxNaz›XZ½ùi;†-¶ú4×n’xÍLt4:7¤VnÛTïÃe¸llqÉI°q"‹ÿ²?Ž!`òK¸×Ôú£¾²çÎ+xÂù\Ä–Îûxg Â á«<¶?F“Ú›ŠrrtŒÖÜÁ/S£Y'ÏRB¢·­ ÿ€SG·ÆXcâ­Ýºw2hª7—払ÒNb☠®IýÍÖ±¨Yç¶NQDj’ Å.>Õ’'À÷fÅAX¬cí23¿Á/=DÕ[,¢B¼¨Â¼{° ÿ¨ƒ§G¢¡iÅ+¹C8y²xvÌV|Ç?h1–b›³B z"Úã½’° pn¨gm#Ô7•­úgͱF„—¨—öö‰Sÿé™PM#8ˆ už;ã>Ü…GülÑ.âòpÏÐÚÞ¸:fT—p£gdÊü·RßFû(—n“#,»3ËACâ 8çhMøÇñ•ì¾|>”êÖÑ“‰qãÉLÎÞ™'svd2ò‹ÆÝÖ•yCÅ¡°“-3½Œ)×–yÎñJ$i"úoX‡Ìñº¸‰©¹9¹žÝT…û€×(Τx`I…ÎHgQÓxè…ÀÓhÅþ2P:šo8—«(¸!dñXÇsƒ|’ÿ¦°=— U<š pKMìì\ l©ÊòF ¸³š{äЫY’þa†“ÏsÃ^oãh§\yýÒ„J˜{OØKSRnëé<ãO9 Yè|³Ã‰±¶·–ÉklÆß$GÎÔ|5’I$=ÇÿȤÀZnŒ µ¥^ŠI¨©wKà7—þKšóþ¼2endstream endobj 312 0 obj << /Filter /FlateDecode /Length 6292 >> stream xœí]Í“å¶q¿ï=§ø0'…/¥aˆo@7É‘¬ø[ÊÈI•Ãh¿¤hµ³’V±7{î 6È÷F³ëJ•Kq9$èî_ÿºﻫeW þ·þÿñ·þåswõü‡GËÕóGß=ñWëÿ{õÑ < ðΖ ®nž=JoŠ«°\9ggo¯n¾}ôÇéÃÓµ’~^„žnàr6Æ+3}qsðVxzówx©e°vúüt½ÌÎz§Üôo§k1»àå×~ Ï*üGóÚokgôlµ—jÔÖ¿ÂÎ)c§_œà}ím˜>†÷µœ½÷Ó¿Ÿ® |›rríÕ©é7ð ’Îëé÷ØŽÆIÇÒ´þÛüÎ/N×rY¼˜ÔÉLþô_7¿L3æ`¥Õ8s ¯yuóëG7ÿüÇéç8^©­„—nqÞi+¦ïO×vf{zqZf££Ýôu½| ].RÀØß‡ÏpðÆÁ4àè`A¦y½,ŒÞ9hU¸Y^Ç—ì2{¦÷ðQ³ÓŒå«Ò>éô˦S¯ç Ì]¾ ë«äô§ gO›ENbýª)l.L¾øÓ©<Žh1ë ÈçÜž„ŸafÕôæ$Ål­ ÓÓ¸Ò°ÔÒO?À¼ÏÆ;¸†+,ežO˜,XihÀÈéÛ<èÔ¦;x'ಙéIùÚè‹<±fz|’j–­ór—['=>&¯?Å)–³núž^¬6Ýð”u³´¸×`-BÀýyw„É•Dìæ ˆÙ ß”ï¿+sÍ+{Ñv ë4”ÞePRÄ9 ½]{·a±ù£ðÙ—'if¡ §×qq$l°òM:o³Ä1—·ú›:»[?UZ²ë\k[¯vÇm•Ñyº<öYç9ö/6r3OÅìÚš}u-ôlDi"yº†Më½Ðº™•Ћž~ÄÑ;;G¿à‚heâÍÖk+•ŸÅ=aÂ,¬& <Û6ÎÊkìÀKm}Uþþ4½´8Tuµ 4__ ¨´®'`~Q5á0Œ-K'Ö'¥—ôæ×pSx’þCÒ‚AC—ìOf™AÒICë§ÉEÑ>a˜ Ñ è;ØZ³t¦®6ó´Ü#½ÔïA-dq“JÚd}inm­`ý!m7а¥)–°EAµÔû ¼µ¡ù‘|U>®~Ær/J4d–´ÐŒ€ñòÆsæÃãü™E´˜ßuCÂgY°Ì0ÕE¼³fÒU’\½Tð€€ _£*qµž>ëëe¼„±¶hdA‚H˜Ù¦ž[ëú$Õ§cŸpá%w“‡¡ñYÿþ9¼¯AóéÖÌ\ƒ[ŒÔUÉ+ÈÛ °’l°€¯´®ï1ý@ø=ÿT5ñ‡°c¥ÔA“ï‰êo%ýïQõN¯‰RÏ=Á.¨­ÎÍßõK ¹š·Öê”gËÇ¿.Ö±^u}Æù”›ùîÇDµ6i¡±ŸI*‘Šª³‹I%}ã5³ƒ*Csk4zýOìWYR‘@(UÁLh”Œ@ФÈ*K•Ž¥Þ%¬H_#Å]cp›R£õ˜\“‘õ`¤|Mµ¬ÙÄ]ÃßÃ*g¢€‚}ÙÙ¬4ùÂÛ:ùßôx¢“Åç¨-QU9è„×mDïÛ]¶Þó|A|É6J†òú$ݬE@¼Ð=ÀW5;62ÚS—d Ç{¼ÞºŽ>GH&¬Þ.ýÖÍýªŒ Šü‹ð*XÀE˜Šêß/“)çA(yàP ´ÓV!EM—…´] ˆÝ UÜênÀ§éÓþ%‘‚²38*딡h’橌<;éMÏIþ8|ÉwBå쎅š B-ÏþeÅÅàäà0~,c­H›î…1ÍnFEi’{ýwûõ3`Ìv@ÝKÛ‰›ÓǬŒ" y¾õAÌâ½íœÍÖˆví5ŽÔ¼ü.¡oÝnM¿wè΃Q£ßL¬x•«ÚÎP4ÀŠmcÿE\‘%‰@çA9WÔ¯:ÛÚµSÙ)@0÷ª\Q,]¡mEà ÈÜ@Á}y ‹(ç¥á`¢ÓÐï" LÜûd @jY ¨Ôe0Ën'‚LÔûI-;@ƒ½ÍL—†¢äYÑ]Ž€¨@ïöQ!g k<¢Qǘ‡¢œ–]»ü6©¼ÚÐ-J—ÉÎ_H‘tÂboúßµ«ðÍG<.ñê<˜,,^ÙÚ,sÓ %.k¡!¨~ô% 7%óª.›‹ò§–›Ò°#°IŸœ<œ‚±«#ö¤³nqˆ¡C¼ù¼õ*ªP¿©èÄbä¢i{Yž¦F®Žf„MáYü®E$+ e{¥‘;Æä1Ö‚áÍ^0´ÀÍQ¼­/¯_Öwn‰õ°ˆÛ%•dO5@”bæ¨Úìþ‡|ÍË$‡¸.0WFºï#´°ZŠXŠËm OQ€Ó„ÿ0 5ŒW‹ ìµ[ ýDÙœ7iÙe‘œÑAë¬dß²Ix¸X)S:÷±l*¯i¹Ðué‹U³ùÏ…S9´jÒ{ð3ÂȬñžXÃãÇ@47u”ƒÕ‘EðiT°VØÎ²ä÷+%¿a‰%Ü0}–,‘´ƒþøñàûVƒÑQ¨Ñ¥CRËcX¦>îK—ô!†(Sø•ﱉ¶ZÀüϹSIÍkYÜ]Ý.tûÞD×¶lÞO…w¬rù’%jQ}‹%™~%‚ˆ•*Ø×j‹§ÌÇ5C´¿ʼnžƒP‘„©Â‹]à}!VM#¢bÍïTбEGpZàe›_Q˜å:3ä*¬&øû|^›Îö‚FÇêÀ‰¾\ä\´K/§zI^N®ÂÂúl#‚eËŠ|Ÿ¢”ÊÒæ-ŦxЇV6Ὠ´Æ¼TÁÏKðMË¡ Wé|£oö€vTë@TÓÇêoP\a3 (rP§<XϬP lñc2-#ÿ_òè ž–Ñv»@ €e©b›3‹ëÎD“‚×8™ nâ[j¨CEÝúRL”5&v¾aý)þÙ°e¸Ý ï¸ €YŽ'Á°¨ûl$32Œ¯0§1ˆ àSpv´÷i¬WC?­ÿ*²ÿÿ¡õO‹ÃB :y”Í•Dz^1¾àƺ&”Z™§ÚReÎ*dM¹ç½è&èl±¥ jE­QCoTCŒTƒ )X‹‘Ç æoÃ1ªW4÷0ÜùáIƒÁÛ1nMJÞR Rá1X -©Ű,éýíÆCÓg M¢×ûaÒ ­š,œµ³³1³€¥+ÜQ(]ØŸÀ锌šÁÌå9¿Q|s»«‰E¦‹Ó$ÈÄP9€dˆÒg <ð« gÏ DW9Mtmð1=ßÒ[©/ F¯°¢¶O(ã¤Aʹð; n¨Žô÷d@?ˆ'WùÌš–kâùg$šíÜ…Â#fF(Gècé¦d&$ߤñ͹†=Ïs Ì( ˜”.KÖO51’>”ÔÅEî± 3¼!6#7ó$M0¼7 yKSÍk¨hgž—¹±a¸ñ¬©UäÊê=×\ÌzâÈ´ ìS¸IñTÅ^Ʀ•é‘A£f¢y\¹'IÅBóÏx ÂçnÕþ`Îì`¥†(W{ÉÙóðÎꛓÇHŸ<&:%ò?99=+¿{‚ã .OŒ"\œrÀr‹ï) BÓa/æ=Ïå^HO±ÈYÙ³ñ›²‹(OÛ2„ÊGÉr¯^…]t'‘8[DGŒTH<Ì‚àAÁbÔ­ðôÚƒrÙ¾!­¿zˆòòåõê5Tò=£¶”ýE!J¾÷1Šœ=à'>O«¾t[eX0 p ÒØQR¢¤`zñÓœPQ ëYó1Àvc½¸A›¹Ë&FfQ@[ÄD¸“UKBõ,z× ¥8¬€ÇiÙ(÷&êkÎY Võz¿~óq[@ÖÐF€úÁ!×`â*3À‡Éx›ƒ­ÄÕÁSŽô½éåÉ€õ0¡3£|‡MÄê(ºÝ` fF{K·=y´6ßg6µÌØaz‹–pÛ¨$Ó úìv%K.áŠñØÛcìDGûVz©­°nÅzaÓð1a»Þ·¡Gáp¤uGØXîOØhæG‘Wh#1âÇÇžâßÍŒ†*ñv„ø´l†"Á aAw8ùNÓÔ;'g¶ÍÒª´ÓÚØCÑ\¯æ[„ _ƒ]‰'B1Õ?ß^ ùÐK¬¹ÕaîCœ€•Ï q†ÒƒDƒÈÁO×Ȫ“‹[2È]#=|T¨Ïõ.ð–®—Æ"t8ÂÕÛâÉæÆ(J K »°±õñ®ÔDs¨r·°Èm¾§µE1r¨u9ß ¨Éì„Åä·F]P\¬¯˜°B61’'Þ %;kYò3µÚûyâ]\61ðû`Z]þ<;Dýsdý€*àÂVýmðv´‘Ê“ð’Î×±ãX2s¤q –ÉE7‹o`yoœX“Ò8.@N„â §ÈÝ£j©³|I”sÏõß”HuËê;ºHõJj¤åRÙ_Ên™¦•W$’ê²aý7Ñ…dƲ¾&¶ëÀÎ Øý·[`ÕÄÎǵ@ºY4ôæš%·%*ù<•òœ$ÊžWâ"è¸Ö¨ÂsжUá™&ŽäHË]ÝmÔ8P¾U¶4–K†ÓTÂbÞŸ8×t,¼éHy*›ŽèÆt̬PÛ9æQ,ó¡£¹0u"ª‘ĺ;ð'ò¶<߆¬<qLã–²Œí6SàuuY j %TËA‚PHC!ÔQ¨ôÕI´‹ÃÒãAâÂW›³òe½MZ]šÖ&aˆ–xLç©·I ÅWŠyMMòbÁ[1I>-Ê;²IÒÉólÒ‚è"͵îàÙ™zPKP,_(î‹jjÈ¥gh*Ý×°píÚ2"UHWÛƒÛê?Ù™Ù6‘/pà³Ï¸"Pôn©Íu(£ „5ÎLB¨wÕ*m„—%<†I¬)¤¦sß©]‡Tå%oi¸®˜_®žŽINß~;IÄŒ­8›®léñA^Wý„=»½ÒŠ×@æ4¦,vÍÔÅó-º\¬§­5ÂØ+LÿÈ0±> ^;£Œ ÇÇÉÝgîIËŸ€^$½½9ncGª‡É—åzÞgnœJÄÍÝø§‰sߌZçæÅ LgÏj?|랈CP‰ýË’ò÷ÓŠºh‡Ä‰eÿ`)™÷¨g˜B¬‚ÚíØå‘³o|žUý†»<YJø·ª\ÊÐßï!§ ô/­9¨f »ìAÕÒì4l5>„E Ÿ[eçbª¾¥ËÐÖfk@ÖžQÄÊÇ£Z]{bV¡Ï×I3ØY”¿§9R(>)ü6I³ñ‹žì™-:dRýö6†ÅaØ7ªý€‡2³ÜP-™eÒPÉÜÕàÍA«U•Zƒu”Ô³¹KËØ¡»jtÖR_úÒX«uŸÀìå…óIo[„ª$Ñ?4Ó×ůHôÙGšÃñµ¼v/±”°Qoë ýãu^Òן²ç‹9¿ã‡%Ä-NôáZÉÚ4ïi5ý) Ê{ÿÏ|ÔS…ß®m-"¢5[O‘IgçïQ¬ìtGdmô™IúzÌ-˦ÉÜ#¦¸-?t†{ù^µþ³G‰¹§Þö}Y$â(äŒ6’¸¥)Q?“ô@B´uÂj‚|k†RÍ€Þð09•+#Pr¾O¸wÌÆš¢¿ÆEW{“ž×ç]r?­G¾àqj?7JrM6Û¤wú´Ýw€«g²Õz,€¦À&óžd’ºÌµ6ÒNî ôx±ßפÍïê^úqÏÖœSŸëu å0Qç3¦ލq¶<Ž-ñ…ãé)iNG4õ™»)lÂ’gŽˆ¡üœ»Ä7 \PKåËî0´• "ÏÚzéö¸ O¸"†0‘%N¦^nBˆ †os¬VG¢òL#ô‰Gdi«`–<ƒpNãÊì eíSJ¼äƒ>‰^"F¸é#Ãr®Y´¼YÜ—üǦX–¯{ý¦ìäºgAûê€øW±™µ¡&ÇS+¨.ªÎÕ1Ð.ªÎ­¹˜×N@— þxÆ–+ â¾â y­’%nàÛ%Bä½ú‚$ØHuXîíŸ{W@X‰LY›s! 3r¸ì\4ØImö 4?+7iòRÌ$Öz‹žñ•ô "äð3*zή>Í_üA1,u¬7Q 7ž0SàáEÞò¡/e‡ULËÿ æ6€Èfz>¡ú( L‰r|ð†FhŽ 6é¨`kg§QhãÐðÚÕ}åD]rø ž³ G·ŒÄαÁœnDÓDå|ýˆqÏ©­h‚Œžm0££˜S:Èûlp¶’TíQ²K,09Ó*yÞ*%€žjÑòDk!{âè%ä‘1ñxõMΣÞÍxåÑxÈ‘›Þ4¤ð©©Á}6zÌ”Fœ õõeöÏ^Ãs'4À”ö^j·I?ìa¢¬åë|R‰cøÎwækP×RÛ…íLO[³ V@˜‡ám]Š*¬=o3þ –·¹«7N‡+Hëy$6"¸qUÐö1€¿•™|Ø€a’J‹þ*N}W°&•ŠVë+jö Œ‘R# O·5k0ÿ÷Ô)É,mŠiŠšŸöK#)¶HòL›Gp^4¶óØZq"qÿ}¢ê¾QKÛ_)y«‰x%瓘һ=}œ…â~ÿ£äzp§ó$“ì®îµ{ޱç¡þU³Œ+¾óß/‹¤2G¼ß¶Ý Àœ!l]Gš¹Ó•Ò·‚eV†’†xŸó0@V5:«¼Ï.ìR7‡åL¸ê5´Zù ®ˆê~üwe ÷QF‰ºä¨É†Œö¤ÄúÇælë‘ĉ«ÃrD§ 9°^׊6…?±½øÛTŒù>䯉õ'þÒlÿõîYÙþñà_Iްܥ¬ˆ íÕÍ:½=JÓ ÛÌ¿uUº3bΩ(Ör@=í–~‚*q[.üœƒ#Wwÿ²ƒ#Aöw,U‡GAõI9u§:P,õR5û{äå4hË—>ÕzYuZ[Ýz°2‘:ŒzW°ûçA²´“‘#ÿv}‹ËÁgÏßžòÒB©ÕߥÐäÛ®åƒnïº”ßøÅ~|¾B–ÇÂ*ëé'dº&¡¯#œÏŸ¨Ã¯?jíÿ¦¹ØÕ…|s ¼fˆ‚V."pcxép§A Ò? _‰ø¼^òÊß?ص=g *Riô»DeÍ;·ï€€U– ‚3ó¾Ú \±ü­ó¾ˆÏW@…'è‚I¦-¶m›æ¾A!Õ ëi^0eµ׊©OÌØÉÄî‚Ùë)/·®`:²…„Èó‘%çÄ:`é,ذ2ÜëX_Ev[Ý•|²8žû2¾€|Ÿ Æ%I²9uŒžïÏ ö6ÖÒ¾k ‰?ohöSWzLÚ2§´k•¿RhÅ~e %nj•8)ÔØ³À’üwÞ%çò}|óè3Ø R௜öè¯Ä¿ö endstream endobj 313 0 obj << /Filter /FlateDecode /Length 6028 >> stream xœí]K“Çq¾ãdŸáØ“4£à´ëýà´%Z²DQ"$Ú!ù°À‚ ƒÀ"Šð¯WfuWUVuÖtÏî E8x@s¶ºÝ•_~ùªþË•˜ä•Àÿ–Ÿ¾|ôo¿÷WÏ¿{$®ž?úË#™þxµüóôåÕÇ¡Ä_¦(¢¼züå£ùNyÅ•÷n îêñËG:|tÃ~B´ÖâLÒKϦ ‡o±{iáõÞ>SïóèÁMJ9éF3‚è&oÌáχҿ̃ÇÕ…Í>–æØ‰‚÷ì¼o| 05X€ / lægG5)o¤j&ð5t ƒÕŒ…Ý#àïu&8=cI‰’’gJƯMɵÏïf¡Œ^Û jœjW¯¥é¶y!.ª¦'z €E€X>-ë«ÝoLïY(< ‹‹œè*xÊä÷ûÁ¼¬±ŠÛ '#$4“•1Î7Å4”æ `()…ò– VNÒ&Læçóþ,Sœ„v‡¶€Å¾þy-PËÖB¤=|Òar:Îó AØyÌ„s mV7ÒD¯qZàðä7°€„שþŠ˜­7In,¾­¨ø«<%±º¼ø['=?Nk€ýpëÃ&Q24ÕÍY;5I@X*ô=Úú8RSåé¯Þ”±nÊÕ× l¥÷ªÇíRuÓâv~:ÚYÒk]Žï LÕ\ˆpËLÉHey·3ô®¦¿åËO/ê­o±C#¸Û¾q»ÀvDÙ™¸H Ó²"'”ƒ×¤|ó¸Ëߟ¯'A¦=?ï8ýà¥äá{ºn H!BÌÌkâ Êky)F—=k4Àä‹ÚÑÊGÒ+Ž’×ùìd©¥³ æ¼M¨Áœ įô\ ³þH™Âà,’ÆäX$òãÔJÎ^t`‚¤Gfòæ Ë#Aøí¤ Ë Y×x? xÚ?ÁÇ©a¬”Ààj€˜ÕÛ¿ï ï®ýj8ãŸôÎ{®e‰ HMÏó _C= «LEÅÕ#A¤(F†"ȸÜc}‹;]'Üí5ÂÜžª#É›E!NlLËÀ}Âd¨ÛYÔÀÆ"ð’m\{øjÑxÊ4?V FqB$>Á~íÛq&"å½.¯þE•ö Ò7~Jæg”š ß3öu“çýªº~qdøœŸœÐ#U}ùÆçl“ ƒDjX®{÷‰É $ZŠdet4°2ê‹í‘Ö4ÀÉI7Þ¯9’^¾^–áDü±­ ãí´F,j4YZÇ2†ºHÁJ59ا®b©—av0Àö9å`£iSÛ]Î`Ó1°GääU6Gä *IùÙÙ`[G‰×4ã¼:³«_ZuvŽÅ€n„óü[kcÀtÎòdŒ–šMÀʪ8¦UÛÂ×nÈ*܇ úÉlëdgÌéIýmÝI­Ÿ`»Q“äjm½òü.…Xö¾ 0”–‡O 騕ÖT‰<üÏ1àì#ý¾©šöCèT£“àðôé¥o”ï ÞF#†ÎŠ †ãŽwaK©ÀX°°êkÝò÷?Ϋ±vDÔ¾ZÛeÅ\¢·Tâƒ8œ*(ÕÑèùïèÿ‹fB¤ÿâÐoêöÃh¦oXRÅ;β£PƵŸ2½–E3#d&5%œßÊL†Ãy¿Ac—/®yéÍB%¿·óÊ7Ëøþh=ŽëX ùÍ ˶>OUËö%ãQ“YP)!²£mÂÛB§®+Än[Òʪ4ï–öß±5¦gi#ïEE$gÝR…%F+`9ï &«á¾Ù-„ÐN¦ãƒ„gµ€À¹‚ 'q®D¸9Þ6p¿ôT-Š•[‡Úw‹`W[Œ£/gÚd­:}$zŠ"è¶L óÖ ÙŠ­7E ûFµ{1zô¶þ³É5¾¯˜zS77‘b:»aE¹xëxçÓ–ãݱUÉsA™M"v4W+xÜld±:XžÉQꛕ&á»ìo@=-(L0&î爪.¢JPŸ—;ÞbÕ[)q‹Œûç7ÓVp}a4ê.ÎoC}ÞÄ¿£Ât%n{=Ý÷Uê‰ Ëw¤Ôóè‹19ÖêZ8”©(­¾ø›.ÔêOÊÌ;µ¾twOÄš•º$Žß€®ŸÖÁð×ODö†U:Ä …½°~š¿Î1»º‚vöuÉã­|]E×úû5ÈSVçwz¬_aâ U¦^3G¼¹‰wv)) „®uÈpª–Üô\fGÆfN›ûq=Öµµ/ˆ%Ú+«ñF(†*õ·h\ˆ xΠ)tÈgkeûíôYDô¤³8oSÒãÎÞgeŸÉšØÞŒ1Q†èn-¹¸ÍT½”9×,V»[Ú†3Ùâ=Y·3Ýp¼‰JŒæ^W5&{£Ë¸0.¯¡rßÿNò>¦j†ÿqÃK@³V‹ã„.­±W¹DÊŠkÀÕHÈ”§¯‰…Ü*Òyž5F ~doBR“M=YãFíW ÉE÷¢þ)Ý„K ìuÎÅ5Uu'Lžƒ¾ío³6èCÝ ‘¼®qÈÙs‹ò';}º¤‰8šíH¤c/_­ŠõkF´^ÔíkNW,†àí0ÊË'ɳƒ–Y6Á£ÏåARW†8^‰„-»JŽ¡ñœ9PX/ù›©]kS——Múk3 432PÑI;9±ÊW]&øz1ÈÑ’« ×‹få7 ?3<-q/bRwyá^¾•¨Ì\o2‡iˆ)ujøÐÎlÐ'÷0¹ lâË©3$5¯iÉĸ.4Ÿ- £QA¶ÁÓÖA*¥òÊ jáC뼸H g)ïbŒ¬ó…T‹€]ZQAB7Øã'PÇö¬9²-ªhw\îGÔX¬ì€0©ÍØË9Ômˆ®v@݆ŗ¸¯,Ìñø–”Ÿs,ª/Uê ç‚ª0| èuåˆáy|ÃØ¶¶U.c½+ãòZ…•’×îE1CÀfÊûpJ9» =(¨e3DØpm#Ëì ׊ÛðÉåK?W»ð%fÊèR—PßÌ2ô¦›b³P£‡›kãÛIŽ+רšöáB¤=(êG¹®±ý­ `î½ò¡ CK5\Ñš [iGÜ.Î;Úª“´ˆèWS¥H°éH _ÿHî>Ç€‘ðµ~­œë_€»8”$Cuðb„ôJ"üŽž5_°ÍÞïav颥0½ìgÃ’€M›ý¶é^éIm—¾ 4»RöHÊé@!ÞG` ð(žŒô ƒKx)˜y‰2=XõäÈò^¼ÛÍñ&‹a²þ2µAàbF{‘7⓵Mþ„Sy<³nýó@—àA ·œëg„˜¹«¦^îR¾Æõ\J,­b“;I§Jo¬ I~yçˆC1ã¤â ¼Ip{JÂêǶ߱Ýaµ¥º›½ÒZsZ»/ÍÑZG°°³C{°ó’K›'hÇÆ ÷ª3s×rDA°^l¸{Xú>~ö9oàR?{λ0ǽCÑ¥26ëwÜ}„ÕOå­×œ¯€_{#ia=§1“÷ä6ô.YGÍÔgÜB/žýÒx+ >QîH3Òx÷Âȼh ’÷™×T»þ‡B W›(/LÀ«·wIÁ¯¯²uÅküCì­úÚén@îe}Å›©óÃR;‹ø^Êí)k.ŒrÇßSøi¤Ð,µîÜÆMóÃ*ý$ÊÆñÉÍ’¿E@%\‹1´tÙ³©FVG⬷ÚœŠYn†Ñûå8‘[*kE&° L9[À¯oð=+o|kµLùº×AþA~“ÿ|”hǰÅsNËãn%squ™}‘]}? î R=rK1 t4çI«Å8g.(PNñ^¼š±ÿ€Å‰Ë1÷Šݳ6Ñ“xÔçM^¶jàò£0Ξ55KWðÍÊd£UúÍ97›¯sŽi9+evs=7ã"Š·<Ø5ÅkLµ5Å£¥ý5™€'(}îᜂPíPT`‹°xy±Ó{6\“’—¶6âìÔ.Å9ªÅ°+ Ÿˆä›ho™~ëý[ùòF†dðS0âaËàOÕ–m¼ éT‡YÕÈÖx'eðÿКƔ)˜Ð4KYÚÐlW1‡ûªÑ>»ñëZíŰ8 \ªé Ó~¿9_€råL-ÿµˆg5tî˥˶Dl‘IŸeZ÷Šg!¼5úÄ+9¢ŽWs—Ï`uÈc?ƒâÚÐd²]Br£Û›£ÓmKÊAz2ÌL Çí©H +Aò®9#æ|C2ô9|ì9xã6ÌýT×ËxF‚ÁÐ3K¼ Ïâ8#ÁônÆ>n*8óÇ: NêøôÄt|õüõ–l¾¾rïøkZ9ɯš§ÔÆ íLºÄä^€‰HÏHàN~a/?tœkGÈËþÝ?ä× p‹`Â$¡«,`Œe/“[99ÊÔÍ®®-~…?õ{Š ‘Rš8€.Øl­ïšôIÎWøŠñÖлV%@à ¿TBφOe棟|Û&j’`Ãú“¸¢ïþI£THÛ~_°®E.®ñº÷|Œ”AD'úS{îÇ‚ÖòE<â¥ÕíA×q‹Õ)ÔÛ+©kÇ[p÷½×ƒ¬qLi2æù«Ù2Šº ©>ÒåÖÁÞÍ1 :†tÎÊÇsWó‡bêâê1IìTr¼¬ã†ü6W®FâL=OÏ ©Þ èz>¿Y o¦‰ ùHLÊp>} ; ‰gY’œÅæ¡ãF|é£2ùòÇ"šoh2™rß%#¹Æ}üa9ñà^å…¹®â!¿‚;e YÍ«d¿ƒgbpÚ³¡P>ÛIk9üœ {ÙaÄ« 3êPž#¿‘£Æ{–sV7}·+²åà~þ” _¨íD *Hð§¦pG±¯âÌIví³Êä€@—¯¢=ÀO¤»ÍÏ©×_`Ûh@ßÚÖ¢´?6…\+:>?ž;ÊvYúÜP«½‰5š0›¢z… ÌÉeº96µ»àíPâ¿-[å+b‘Ûò²£ÖsÎ!ñx~NÙÅ™lö•o›Å»ßbó§÷:k[ÂùZ×g-,G ù On@lˆ ¾Î6ŠêóÏØ3Õ­pËïÌJD<ƒs“¬¨îæÁ)¦ƒTÝ0ö;g`IÁm¿›}Ú a2ÔÛû|˜ïËÞ<‡½jÖ×½u8{{€‹ if÷>°6G`NgÇO6éÃMþ”.8T„ã ãoã0qÒ|/HïVæ(› ÍBUY={&mbÀö®2}÷ó^ö:µ Xåýø£%.ñ÷á:ÃufüÓð\½ÇoCžðøß4?ÔR§ýÜÎ`)YóW®Á+öbD‰~™½Þ´µ'ü²˜î‰"1âGsÕ7Q*sùÐ"Ø×ƒÛÈ‘k¡þÚy×~þøÑï`vJâ÷ž÷èïŒ\endstream endobj 314 0 obj << /Filter /FlateDecode /Length 6319 >> stream xœÝ]É’%·uÝ÷^+kQ+Æ{Š®tb¸kR4mY¤(²l-yÁž¥9tSÍÏðú|/Æ äÅjP„\0;_&¦Î9wêû‹u+þ—ÿÿèÕ½üÚ]<ûñÞzñìÞ÷÷Düñ"ÿïÑ«‹O®àw–°qqõô^zS\„õÂ9»x{qõêÞŸvö—Júezw—‹1^™Ý¿íżžÞü^j¬Ý}½¿\g½Sn÷/ûK±¸àV…•×~Ï*üG÷Ú—­²Oöz±ÚK5+ë·ð€sÊØÝç{x_{vŸÁûZ.ÞûÝ7ûK}SNæZÚ}*é¼Þ}…åø`ŒÁ–Äv¬]é_–w>ß_Êuõb§÷f·îÿëêwi䬴GNáõ*/®~ïê7Âþ˜Ey ýùy/Õâ¥ß=‰}€NÀõk(z•Úxšì4Q-RZawË~]ŒZväçö—zÅ~©Ýâh­vuf÷¼ô«ôNïÞ1eKʾ´Ò@õîÏ; mV¹“ååu~ñç}} Ya˜Žq©í»òàÓ½ÆÎªàèv¿uú1üêõýéFåöf1«÷¶»ûˆ\ÿT›ð—8FÂÁ·}¿—b±ÖZ+ùýÕ^.Æ©5ìÞ‡„‘3R·áúú²+€”δ™6ëñv‘«ØýE.Æ;¨½¾ô*N`Ì=¬§«Ç°†ÞÖ‚^¶–‘F¶Šž•b¬QÊÕ‘§œï¦Üºh¿ŠRÁï`~Àt û“OH/a.@YNh'°ŸPšÕÖ ¨ &õÆjhtyö%N0·(#IOᦰpÊ÷RBQÏëÏOðç°(ˆ{mpRè>,!´Çi ákh!»êÿï oT€A5Ð +I3^ØHM ØéKÀ„ÅÈ‹K¡#BH}ý&µ_kYš%´ÏeèUÓ›©.¬õÇŒ!Òþ¡1XŒ‰2>´Êýƒ¯ÑD¯aÔWÝ*Ýn¥iÝ›a¼à`&ÀÌ ßüþá3–ƒ.O‡Z…*Äê Õ\%¾©Ai¿8?Qæ¥*~„¯¿*»»L¨íehÏéÍ ÃŒ†Šƒ?.tˤ*¿Ú ‡°¯pAIh—‡Êÿ K3³‹[¸ÐJi$€íPšœpéj{-t0d‹U‰ÅÂôÐÆ—EV¹A¤ˆÚ qàÃ6L`Ÿë½40~†<ذ–™´°a’}oûó¾cF¢‚ -õ ˜×Æ^YŸ¸OI¥è+/(¤VØã‘«£ ø½€—Èåcì0­³ ðã4PØœ€`„P óÔ„2 ̓Z:R:÷zã†'ÇhæQ®I‡ülX+Siå\^˜"ˆ°©ÓôBÂEâÊ5 6}ïõY(‹T±4.U "¬¤[…ÃîÃÞ£dE–W’ÑFr+_(X ®Ü'3Gžàì‡(„^ Hg4 ¾Ué)6+˜œÁ9¯ß”¯LSH•Ð{SZ@Qtl!¤“–•\¶ã¿ŠTW4 K!TÅ%Õ¾ÐH­kB#«€*sw(Åeý£+·Ívu?JG²J MtÅÁ¤!o}Àõ¡WœJMÏ1á~Æ'`e:Ï–Ö”¨ „–ÖµæV}„EøÅx²Â’ÑB›êÑP7Lðª>M`Jvõ Ì ìjJÚ¬S ™ ÄUÑÔA±ˆêrE‚‹?G†‚[é,Œ=NÃëî&QŸÈ×I÷H³Ñ&˜yXÔ‹þuEŠg…e˜Ö7uà%«Œ¦/="Hó†+àm}ë]­´µ‰ÔÉ6t¬>¾N^zÙ#`(`‚ƒ¢kŒÙ>AùaDã,þ×N;Õ4YP>‰îƸþül;›ÙeMn¾Ù¾rDš0±kk˜BJ‹_ú5µØ„õ"Ë ^f} Fê³A_V) êSö’^ü‡ Zc} äÜ¿gŠi¿þ # µ+¯D_C°×S¢¢¶p­Wá°& †JYDµê ìKVµÖçÂFŽªU"º©ÊbÃd†¾”ÎðvE§u/gµq0¾f ”èi¸Ê –¡áchMyá µì>‡æ¼Õàüã çàJK”ÀÄš%ÍÞ®1ò#1ŽÚ-|YTÎÆա8Æ!ʵâ)áH^NÂ]èmUðÅ‚•ûIôúÀðCé…Y>°Â—/ž4çrŽ®3ô༭@ù¼b/ÔG£¦  ¹l4Сu«¶=ú#\†‰´|ÙJÅÑ¡! Êýb¨¿‰ö!Ï h}òamýCR&…Ké@óèí‰ýDæEY£«$.¤™ÕT—hÑ;T½Æk° וUÉÆ­rÓ?쵃§”íLúìx²¹x\1¬Á(ñ°<£òZ­(àuïa‘€ÑAO=,2 a(`A—›©RÉh\¡S@L*'eò¾ÖDÞj¥Rï>†çQž]`#+·&·:_°G~oqÄÜâõXý í‚zZ&éï€zX›B\e?%©c\—3ùØuÀ'ÆÉ[}bdlë¯m<ˆ¿í-çùcké&(ǸqŒuZ¹zúÿ¾÷PÀáEëÒlAhwp UãA’%ß¿ª@´ä4+Îó¤ÖÙqHf¨î’Ÿ‹ÑÕñsg]åÉ0„6öc/g–b¹Oc—axÑ™Eñ®YÙñï'3Éíÿk W¨8þõ½fÜ¡‰œ ‡_œ,¬ßæ@]ÑÜô}])>qÌCW/fº\ȧ¤ÿhÕüv/Qî O~ü{¹êØÄÐºß ¶#¸'ÎŽìù <¬ç§>çÈsX„·…pñë=~¬¿KÅÅÆUmúO °uˆÀëØY“$@@¦àß;76LüëcŽÕ†„H2&‹4SK]‚oáSÐ!Áw—Z"6£ºõ° žÿèä !…6†]›ÅЮféÙŠ˜„•òËjˆï‹ó°>ø"gr:«.ù%â¡Ã™Yæâàa“?Y* ÎÎÔ`>˜Ú~&è‡.qn$rI Õ·`@«“ "+Éå;¶|À‚ÈYUïoºD¢[¡ ß0³nâï©mx‹5?±—r&ñO–ámJÎgs¬êƒÔ Šó@çÙ¤Ff¥wÔ䘱d•±ãÁ„lîçñ÷²“p“ü€ôÅ¥#Á÷tDAåpщÝ,¥¶„Èj9äÞ=7º–§©±²W(yšv€ÐC¬J¶ªC1»4âS'î Ó¸sófÆiœŸ%ôPm2µ›ÁWEK}GaœÁ…Ãa¿­Óif»`[©ÌѤ³Lâv›xQ‹äBš1ë²ú!LY€¶y>æ«­°8#ó­®söu?’›¼ëÐ.†–Ù†}ÃzŸïÆ+Z’ó¾ØãøŠ‰›ŽOQÉÄiz¤ize=W¹eá qg­º6A•š•™-¡>\º²ä¾¯i‚âäÙÁ ¹T*ÙãËÉÛ‰“ ³Ð&²²¢Ãý””"åOÞ<:å„Ä\h…‰pù{Äè(ÉŽénL?àø9¸Ûç=„¬*®n´Ù¿ož¶—”(™ßç1N }˜–Ç~zšæÍ(ó9Íö;k}?kO~ —žƒI”úË<Rš;‹qÎ3#ÆÅ™DNŠ¢R²1x?èÍÒßãºà=Ó]ò™ô”H‰“ÝZ¢N¤†å³åõ!q¾^ó¬èq_ðŒepË|z°é=fìÅ`(ŽÙ7h¿Hnr&D1D§KrEŸ¸Î€K+•üsMÙ6lzþ%³Z¡V…Ñ3»øIq‘ˆű€š˜ë¸Yòa÷OQ{jÖ3I°d›ê‹äEÄ ’,-¢@?${D7·.âËxÜ ÛüÖÒ–YFP|ë«^¦që—Ø§ ã*$âªù¸fÉüG· ©¹Ç[ö¥=®7[yÒÿ‡·ÛÏ]´öR¹”ÜÚ4J»Âtg üß:>ÙÒÒš.ês0ì‹‘}’J¶'[uÖ^¡ùmQ%®ÑÓËdàª6±d&ß6ÁoÚŸ›t^Ÿ)Gt÷Ñçì>¬^CÝrHQQiÐ0×·Þ¬Á‰•r¦¾¬k—º®F‘†„%vßVæâý1/-r ÍY7Fišd!Qš‡mßÓD õQèìN"fÚ‹áîF»))н;ÂD£§ÇÔ¿µ1xË÷„'IúÄãÔ-)fi¥Cˆ`ãwiMëè2ûÕf¾ÅôÆYΗÄÊ‘ŽžsýãØêˆ] ëi©žõ¼e #T×Þ2†˜°CB“²>úá’Y¦¼¹»Œµs¾kJæÖt8u;I·GpFw²&([ r–«T Ñ«t§oÓ"ù°jÏ삨¿NwA(Ÿbß'ÀÊ;FéÏ--tNàð>´ ‹àošð’þ_ ÷+i£ú®|ñ`e/^œš_b&ù%9ÒTÚëæ ì´äVûõ¢i‡m}8ºÏ•è[¤É p„‚4wâê}NL¹éXiäwòÕ¹ÝMš>çÌC: ï÷÷­æº™¯™1!l]¿e‹U3ßò—Õ».j‘FÜwÛ¿ƒËw‘hµ ÷‘ŠBrG‚]×u:Htk²»-x'*ã‹¡_µX3<~ðL~Î:9q¿@=‚ðml× <ÉfhRþŠF„0y{žrŠ’/ŒŽ‹¹D†°QãÉiR§s USÊ0—‡ïvÛ[?ò®Ýk%1µòü=È kfEui–ÍNU¡û"@ñ’z¡›ÿhãþT²ä±Ý*ñOçÀLùî4Õ3¹Bgt—žïîK¿“ü7nIÓF÷‘ÛØ:9xgᦪ ùwÙ¢X' or[«×ÎËÉõàvðáaŽÓÀëÄ€»~ŽZLLTr{ò†¢>쥓‹/‡‚ÄÑä¸ ÐÉË = )|›zÄ%‡Pj£'ˆ·6×!¡Êi#µ¦y¼%×0)kBC/³N’‚PÚV¸„1õ‰fOA./¡b*ÉW P„—0°×è#ƒwä’è'Êä½ÃÑGªŸŠãízûÍŒÃI/$q.ZZÍh<žxˆtöŽÌ²>ÚVvÅ·Gß4­Ê§·mÏ}ÛºDû òÖH³‡óGƳdxrΣó ÷5ß=>É¿Ÿwƃ´Ãê·ÁvÝ‰ç° „6=ç9›¶Óÿ˜|(y=e—ÍíƒúÜdAКŽq%¢ÜöØ¡ÿëæ+\è|6_Å-Z¯›h㜯;ëUÞŒ¯‰s5t|ݱ]„C9‹FF¿²õ†a¦©7üÁ5<‡ ¬ÇËsûË@Äùt™ºÓµäã⮆Éñ;Åv=ûˆäÎÎd}O£9ŸéHr»ï`–®ÍxŸ&97QxÍb4šv_Ž!† ‹±Uµ^ÕÌÞ~ëWÎ ¾Õíf9ÌtW»ºNÜ[%V¨èt¸…ƒS,ÕÝv²ük²ÿì¡d乊éZX\4Ít㽯}p;'ö!üíQÃüQÄõdÂrüÉÅK«™žìÒÅ÷ñ­ÕУ Ø…J‰iÂ3cI9YéG¸ÙƒûÁø…Ï ü9óáh«t’Ôæx†ØJâaêPH™ÐGOI.ç¬4Á>ázJ§Ò zHk§7‘^lvEåºMóÎ8'ÚRÖ½ý~ ²ätüá`vÕMRå0¡ÁÓ¼ÚáôÍ~?wŒ)³›†·#v‚]·ÊÓœQùOŸ g¸°P:ã‚&œûtrÀ@L] ¦g-¸Òì¶‚tçÚ†)×ß®å‹'õ˜¥=)™ÀÄ]uNà©ev´í5){A…@²ݲ{«ÛÍ&ŽŸ¤¿ÀuQºÿ˜H/ž_Óëɤì!<öŒÝÉŽ¨ºžŒNž’@ƒ@’åF¿Û~„gõºUÔÛ#%+"V±}®´fI”9¿[$m“FI„ âw) ùwŒõãQÌž?d²2™ó,TÞ ˜ *)Ýü™¡n”_¼<}<âž0]s¹soÈJæalê[…Ýa\Mܧâwô”L?ÔÕME¾Ôxöª».ÞP ¦9.ÕyòÁ OëŸãŒSÍ‹â€ôëjÒü!îÐät6ì-mÝ‹„¡mì—QŸC÷y‹ÛÚ6NîÊÎ4ÆBO䋯´cþp˜¹.¯ó„zø0y~Ë}ÿèaÀHÎÒ/ ¦%gNÜ4Ô•«éC]\rá3ïÿ°´Li)&lã0¨ÅçPÏÀ¤âi‰ó<¥U½ç õFô‡ áAÔËhÙÆn=d:ØÅËÃD©Óv¶W¸Ä+ [²eÊÆ²U-NšIŒËdHù¾1Lø|ðéÂø'Ì3œ˜éäèæ_H5’Ù3ã{P˜,»t¯}Ü·-àÉæ(òY “Œ£é_õÜìã8I‡ŽÌÐB-Aõ§|Lþj• ‘´uŸ†GñïRtÁ¸þf¨Z©›¡–Ff Éòêþ¨ ùbÔ‹6Ãø5¹9Øû¸,»4vØ6O™:“»<ßq–Ä0H“®â9áô£[H»?z’Ò#îÌVur¸I]ø%ÄFÜ—t¹ù{+>ÿ½@–ñ¯kíâ Û?°ðÙÕ½?‚ÿ¸ôïý/ýºq³endstream endobj 315 0 obj << /Filter /FlateDecode /Length 5642 >> stream xœí]I—·‘¾ó®{Ÿ¾³¼).Â|᜼½¸|q篻Ïö%ý4 ½»„ËɯÌî{1o…§7ÿ€—Zkwßìóä¬wÊí~½?ˆÉ7{h,¿ö;xVá?š×¾ª}¾×“Õ^ªQ[¿€œSÆî~¹‡÷µ·a÷¼¯åä½ßÝÛ ÌM9™zuj÷{xPIçõîklÇc Ž$ŽcnZÿ*¿óËýAγ;½7;±ÿŸËß,+¦`¥Õ¸r ¯gyqù»;—ÿþWèYL³0†ï±?mf¹{ç“~÷l?OFÍF»ÝËòè®wz÷Ýþ`'aà£ì^A×Gaš÷ØK1YëBs—¼÷)¬‚“ub÷+”VØÝT{Åß•œ6»?ï=.·õM[uÜ?’»ô‰çµµ70ÊÉøO“†¿™i‚N çÈï: LÃﯘ™§6̱ŽåÅî95‡ÝýüJ]¿z…HØð=?+ðƒøªüNçö¶4uF©ÅßìzZÀ 4]â¶Ý2y 2vyrõ3| žðŠ|„ÒMÙt`/ ìÛ~WhåÜ`MóQ %ÆNÚjã—Ë ¤Ø¢Pid;£ƒVjšaÈÛÅÏ"ÛÉeÐÄnŽ2' H²¨wU½üÛ¾¼†ÁˆgmA…CYýñ¾ll…ür€1ƒÆPÎà ¤‚†.BOF„°,ô²VÂ[î#>l÷·Rð!Œª{ò1n&1I½{ZÞ¡Ÿ¤4I¢îا{i&¡ŒÞ½Ãvp’f÷º4tŸÙùõåguÿ<\ix›ié%ö8ƒf" ½YúvÞÕy½\„ši†K¦˜—âר·°<¼.üÚPíþw/Õäa³`×J„i%U6m¬½…IÃÕƒÒöó:2—FÆ•%C+-’]ü-^êÙ.;sIžIA{ª ¥1°-’à} ¸!”ޏ´³ð}ƒ`­å$¸f1ñ毞ïB[€¸"2ƒ–yRÞxÏ oT€V Lm8òúîAyP8qPÃg² ¿tôúQitôÄ +Ð]^“‡ñ»NÖ«añ`I@uà0KòÛ¢Œ>]ÖÏh#¹õ+k'Ëd ´.fç¥á[ŸhÛ‹vl”‚§Z#Ê.® ¼Ý /*"=qùe½ ùBå‹ôùÕ<‹E ¸Iªàc[ÞÏbië6ಶ†&‡¸lfXà® —uˆ¯qy˜@XÒVMBÜ*õkÒ¢REJË0*¡Ìµ¨äA-ÁÊeTÂ’ys¾«mse »BæÝš ›À†g;™H$ÚhèF¿"z.Í<êd‹*ÿ~C2ßgdÉÔ ¸k ÔWz÷1@MN6Q¸$ ¿,c(À¹ÇCò*m¦Î„ÞM°â3Z €÷Ы=Èšèä—ìG6Ɉê> " B(‚èD¯X|nåAS÷WSM!ø94ä›+æ6â!Œl[d3Ǩ–ü¾Õúqbr½×yÕÔ z\U@·p`ø> ÓcOÈ`ß»åI`ŸùÉŽÖmI䀽وZ–“^xbOOê“Óq|ô¸qB™Ö%0 mç™Rœ‹[¶oÔ]Á¥ ±x‹9¡Áfû.vfeŠç ‘˜ÁàÅä4ÈPÉ“³Z±4­ç…ÃZܧ¢rŸïöÚÁø•%Ï=(,¢²œÊ,^à`ܰD÷–Ai-ÉÛõ:>D毢‰}x'Kô‚ìÈHæ¢Ð`å,\Äw{¸Èíõ$óýg‹7€ëcpØ{@6ÖòY,äs©Èƒ¤‘ ž‹,Ö²ÚýiïȹV½ñÙCÈÕZ»²{›Åت;Ÿ…Xv;ºÏòšü©ÈPt¤) ÷zé‚ ÕÅùÄsNIßϽòõÒþi6i¤¡b\¬ÀO”Î'׌xYK&9ü°÷'a=˜â=ÖG‘8FrNÂúm_1{âuúr:\™¨CЩ ÔX°©½”N«¶¢Å($VV¢F&bSFâ§¿Iƒû]‹„+3tT±¦Œªƒ ]†p–lãÐjÍ7C¹òGÁ6¯D­ŸZíÁ¦Ú6¥¹=¸ ÁàÖ z#\@?¦¾ -1P#XÀq‘AXÚNÒë‚ ygâ‚„‘cO/"2 ûDm”Û«æGú_1ñ–ßd L¡kƒ²õ'õhAÆþØny³³òìÎêùŸ¬r¡‹š:ÌâÖºê$úVZ¹`âÝY+÷Tä † ß/P0½ DvÎ>d\·¥ê] ’èWõ‚ºI«jn"z)ËÅ{Z1EiX¢F² ½8Pm}ΨپM¬Ð'öÿ°ãÖãè%u¾ïAWŸj¯Ø,™ v%…%Äp`‚ŸÇ¨:Œæ“ÕÇ;vB8 جTjqÖT¿Þ(Z¬0“–;›Û&Å4"F}‹wpU·ÔÀWU°IYѹ‚>Ø_Ê„CoÞpúèðýíÿwàC}(|” s>Ôê…•U£Ä þ.Œæ¶"Qû &´ûylLi/°¯ì?JŠLZ×{®Ò{*˜Ð?Qò¼J&žªßCó ù1Ùhê›gÒKâïb÷[Üø6ÌšÊ]™õ6Í~°ùDžä5³€8i±Ìlì`\—{V§ÑŠ6Uæ»ôý wî¿ÈìÉ”1€é}ßwÚm-&G ñ3z•óÎäœZS œZ„Ë…¦œ7‰@SN\…ü®ª‰ªdÉ£UáuLLžçé{8ª{jlôĪsŠE7±úìÕâ"¿ úpz èkŽÁ¡‘¸®­°=V†V6†$¾ÃSÀŠAu÷ñ°O¡ÑÿqãÉ êñµÔ·5¯j»[À3²÷’™µrdnAïQˆ[Z¿[¥áˆè ± }N2ÒŠèåi9ò5³aHJ/ Y¬’Î#ÊCiU¥JoË·­¨:¶£rLC2rˆt}“ê é…NÚ†C¤ €³a8@K~V¡}ê%7k- ÀwÁ?ð°Mª#ë¹€Sï=1Ð&ËcÈMÌÒžÿc áz“¶+Ç9ôê…yD>‚]‚±mòOŽšTûÊŠM=°i=DB+ šðʧI3óå Ül\V£Œá21 ¥)aÂ9?nŽúÓj›Å˜ŒÀ›!›\ŠhÈz–bUÇͲї粙‚œfÉš¤í8à–$+‚/«ü$ a¼0˜!-áœZ볉åI€*Inß}m“êiòËkí›0UjøhÇjXO‡¶•K¡,…›Ékͽõ˜ë/Cü¨Iœ¨ZVR¶bX„³:3ØÄ"é]ÞóÑù·Ò¶ïÜ3q†pvjNW¦¿âdýÀ8]Gzýo+À?·ôŠwµŒ…Q ¼©°xÎLT(nµì›”üÒ ‘ôg)'/Ûû_ªŒÕHCÓI«5xLV‡ä»#a#Ö °z¼þ€ d@9²N·€ûå1c÷×x+J&æõ¯pÕ…´æ ÖqUn>(N‡­›RhtÊSÈÏ ª?“|â×åfJKUxS©m’´ŸúÎó% Çq¿r™t´?Bð z” Aé LSGÒ”ò,Øwºm ϳÚ7´Î­LKŽ‚qÒ±±cùVd«eÓš8ÄãÙèÉ*3w—œèøÜb†,þ‹Ì²^È·9RyÒdçI7i‹DŠ#HbÉ€ô“ÆYîFnÏ〠ð¬5;bÌÀaZ|04$†R]º¸NMN¦öUò¬Ï«5!$·â2E}ßS"äF–5zu ‰9;Àñ%NÉúæ®N.OYï’~&d®„,(û¶Ø‡-n*i#!w)¡ÛH½bº[9¬ä.O¨5)Lúrï-š –˜B˜H±_K<_ï`Hj,ö‰å¸§;X Ž¥HðA¾X& ˆå ùÃæâ›JT6+k”®ÛÇ©Ÿ,Kb«w;êçå£kô'×øüYÞ¶„Ëó`â騡ïçÑÒva™ l€Âñþáúþ÷‹ßÒÙ…G«Üô Qõ¼w¿5‚&w÷¥¶¡f'¤>/KË,°©šWuF®Bލ0¢Ár&"n}dÂÆt´¶eâÑ`EØrú!]1$LNCK|H›uçØßTõÐ|¿|d(ͨòï«}¥Û]µ¸òà‡Uq³Ò»‹&ŵµw蛽Ø÷Ð9uá@Þ”<'AsãmD.¦̲c#T0”á¿a# cS&äúÛ”Ö¸i%oð?-7°”¡“ c)™4 XJŒzŒYŠžõµ±”éýRƯ‹¤¬‚"’RÈ̸öÈ艤ñeÇ<™ƒ0‡'œêÍÏ…ÇÉü]|Ôà ‹…Sœ\2M(ΦžzF‰ÙÃ5 t% ×tÔ!2®x¬Í ‹"?ARXH4K…øIÝó(£„’ @¡Yá¹4‹uŒÙ(ç£g˜¤ƒI€OÁàò–løV@k{Z~`9„˼pô Œû(T|¤"áÕKÀºjéî£Å„'É,X,¬ùé]`>³JˆS”mV%6cËæsà¸ñ#kØW¾ät˜œ¨ßÛ€žÉ˜t P‡¨ùKJÖäÇÀkåääÛèÙyxÚ‹«wáûyøÞlS§ÊéˆÆ… <,r-5……4˜è³e·—‹ƒÝ€ù`Úª®:.¢¶3Ñ“Šü·¼”›¦6´·8«AŠÀó‚ÆŽ˜$Î-}‚|getX>ÀèøÓÀÕá*YÊ›ŸÎª±JÀšMvè}}`õÛ¡ýØiCHjO„Ó՞¸ÄlNÎÑj¬SÆ0Ÿ•£•’ši&á*#‹è´µdõƇ³Ë,6uŸ< Âû;Ã@Ã×6±îÔ…§þJ^?6$Ãâ/\AQUtMÿ+|Ô‡Eób#š=ø¯Ñ| »5‚Bðìéj=AôáI9)Ã{f7Bv›¨VÃVšmc'5ŒL{ÐÍÚ·DÜ" TA  kÝÙ=Êu¾ÊAø‹X'ýÛÚpÅ`^­Z±ªªÿþRÓ8(—‚-l&÷×LHÕj¯Ù6ÛRzöL7J0E}§—ª?…F©Ò½ÐÄSéÞÝrO”×-Q$ù*”«©¼QuÌ»áDuÚ" ·-”/IÀV–se\ס$IÿB"ù÷SìîPN+;98¥t²Ä%œ ƒ*Š|2Jª9÷dTèæÔDˆ™WÙSRóÈR,ßë güÄOIȤñÔ|¶É(“/ÙʨlC*¹Z‚œ7õ¾j¯+ù‘¼w–Žò a8¾z£+Ùˆd¼r|¾Ns£rÔù‰¾7É–ã8ô9~ˆ\ªÖŸ¯¼\Fš¾$k´©`Z {Ÿ¤FR¡‹‡A|Ä&ª>^?\K¼>8È3=ÍV%WªÔ@I:dzVP½iÕ–#Œu›G{ý2nn°£B€‹‡Œ‡4ås=7ÿ’öê¹u—©pñܺË“Y›õc˜f ,!ÝY¹òæRð»³FQK÷ø|NRã=bŸkþ º@úÜ‚rw»ÁÇ„+òÑÉF>+#éÍoø ôËñ#l·½7±l]èç¯×"(Ù¸-à«uG]´ëƒýÌâ¤ñ\˜ÔîÔóŒ§2DŽ6·I!а,CLGå2ªokâï†W[èçY_g‚¡ž] 6\W¬¯Á!³ó+Î{f¾!ù‹,´Q¿¾áÇú¼\¥žè;Û¯°J7Ô•— ’Çã-e¨ÅuÌ„lîRµi-±«ä„ ó‰Ô%dÿwõï§øg£sÊÓï¥,Ù`ØÃ®®2* Èæ'­ã«§'Q3¾Ôœ®+ëÕ†nð¤×ó½Õ£Ä*î,XâT8S¦5h¨ŽrÐæ~/Ñ=gSn£ÚÓ[|Î^qòN]À½#Aîi*0èÏ•u˜õÝé7–'P£¾ìÚ°æ’ü‡Õ—Èÿ“¨&ý÷¸Oðω ¶Éú•õ6Ï_r[„h²¡ª2ã!\Înó䩎Mp•ƒsÚ,Èè㉺ $JÆ?\É&ö±V08‡9{BÚ¤¡ÿ¼Ãú×»¦’kÎ_˼„Û±‰ƒémq̺ª'!\K‘‚B9>æÜøIÓ…ÚL€(+ÙÅÚ?mЀ½dõß7E(¼OŠ&°Æ0‡òsïÓÈÌá‹Ë;ÿ }ôä \ýx¨%endstream endobj 316 0 obj << /Filter /FlateDecode /Length 924 >> stream xœ}VÉrG½ÏWôÉQåP—+·ZŽVØ‚ø Kh ¬,¬¿wf÷tW:¨TË{/—Ò§!¢ýìŸ^n¾{™‡ÝÍ&»Í§ L‡ý¯ÓËáx«`7¡Æ Ãö|3{ÂPãs % ÛËÍ÷½ KˆÀn«Ç RHÜ+¡–¥¿üÕŽŒ5%÷Ò1äT2e÷Ärͱh°Åí©Ú’ýqàö¬%;ö¤‡bý 9“$÷Ø«?—TÝ#õg ¥÷›E¹QÆ}ÖLî5$Ì…Ýs‹Sªˆ’ G<ˆþlñyìGŒ±€c/ýïÛŸfåj¨ ›rdçˆÃöéfûí÷Ú£Ð]†’ÙýåÇ@Ti÷·a`‰èÞ{”$ìn}14XÝ‘9Õ€„¿*™« z)9@¥B1AÒË„¢pžœ4Ū¼ ›lÕ,¹¯”IDPIvËÕQ x<±×‚ß ¸ÿþ©„ZSgz«šމ¥gÖ½›*¦%ÃÒûÙòS!µ0J¬ì%ï)qe»Ì•“{ëV•p—,Zoýjn1r Ö“€`z<§Ýy­Ï¥Ç Ùü¨Ô(DAn_oŒ®”œ«û0‰Y»ê@W’è ºÖ*³Þë\mÏt–Þ™a ©×mŸÇÔ¼°ðX aÁÌ”³`JªaíÏMC©4Ô^]ŠŽAoñÙ£ú§;·ßIË63C-؇²Cs¥hP?È×,¹3Ë x!‚ 3bÑ*á0ZWÖâüÛš¬+ÊC¥lÂ÷g¶J@¥òÙkG«Ô&ã¢uü?}ï’Ä ­ÐéÐÇü¸š>`ðµØÓõÕ:î ë ¥]uvÝFx$À [ñ ÿVn­}Õ«-.Qî÷ãE pcLu¢»N?·­¬ã¨3Þwò×Ú<±€(ÓˆÚÔ_¼–©à¬±­wj[礛¶¤KJO¬¡;\­W0‰Æ‡eŠvsì˜é>%;õÿl ¯ÂeÁý/\aS-K†}f]!ÕJÌ9T[Ç×^w`™…ש“deY cE­Õ-BVtTÐD³&NiAÒ¨0 Ðbj¡rž¨<×mIÌÒÞ»ÊÓ¦µKßFmö%êûIÃtá­=R²}£¾f»Õãvž½#Þ÷~AÄq!ôÿRõLpgrY‹¦³YîË%}—ûjPœwÁ£íæ…º Ø?,/6ÿ§Ôâendstream endobj 317 0 obj << /Filter /FlateDecode /Length 5808 >> stream xœí=Ûn\Gr ääaÎÓf&Ñõý²A€µ½ŽW [ñ…Ahó@‘4m¯Dʺmä‡|{ªúZ}NŸ™!9¤¤Å€y4Ó]]]÷ªî©óóÀF>0ü/ý=}~ôð[;\¼:bÃÅÑÏG<|9¤?§Ï‡OaÇOFÏ<Ž¿?Š3ùàÙ`­ŽŸ=Y}²ÞHáFÆÕêG­Ô«ÿ\óÑ;Ãýð?ðQ oÌêÛõ†Ö8+íêÑzÃGë-s,OûÆJüG3íq]ìÓµrB.Áú= °Vj³úb ó•3~õ9ÌWbtέ¾[o4ìMZ‘Vµrõ ”Â:µúá8¯µFL¬þ8Ïùb½Œ9¾Rk½’ëÿ9þãwfôfØH˜ŽÏÒ„uax”nô°Ýs@ÖYÁäê²~}V\‹Q¡Ìêas£j|VÛp©F5l¸•ô.®F¨þC…rŽäÓ#ó’ïåzÎGV!K_À¾p¢4#‚Òí¾yÛ¥t€Ùس¨‚¼¤ äF&ò+|äþ[½&Xë=™JÁ5ˈ+øÇKd©õá»W‘Ã$䑆%½$Ð%tý¡=C‘ØŸUЦu2Â…8< ô=þeÌGy’ qãɈ¼5–2æ 6hGoa¡|Ù‹YñH±—‚Ò€2«AäŽ:ÚH+G/† r×1…€ˆ+lV©·RxÁšJGú5[D!X–§Ÿpû¸’±aûY ŠË‰”ŠòC 6¸/`  €Ò¼‹iä? q£Pý!i1æ4å1N¬˜¾]ËðGk ¦ê7"ðcfê"dìDˆÜ×tHFQ^K%‹%ۆ롾ƒ“Gýi $ Í`ÌÔÆA\öG`p”–:ðãá·ÂÒ¨V€*WÅ"dmŒ¶q¬oÆšQ‹µýÓ AsÎw=Ðj,bÿ÷hô”ä\÷àêQsïËà?­§pÛ@%>·¿õ8㙢¢ÃyÑe ÒlâuˆÜå \£‚p{¡‚vtugÆuH„‚ð¶£o„V{Þ£59´9$ºÀh‘óŒ´jyŒI+VØ-‰`Œ8Rp/¹O#Í€ãa¤<ÙAb"_…9D^ Ѭ„A‘½e¸Y‹³if—úmƒZ*€ãÒb˜–¾Dß,$‰a»–kA ýˆ n,–'\Ô$9Í­øF„ ¨!H¾(Ÿ!m Ê–žÂ½,“Ñ=«XÀä=¥S¯à{Ü`õyåšéSbà:uàUù¬îéU¤Ø8$L†CGÂ÷1ˬ€~(_§=…,‡1^’…_®!WÁU(‘º{=!Dx1ˆþ2Åù¢¤|Oèì?G˜ Ÿçå)’T™JO‘½Z› Ä’<•oÄÐÄ4}Xq<‹á’={Ö4„)!Q%«¼( ¯55.,†# _‚eCjr7‰ô×Å<}†þZhL‹ØGÙ°!p)ô®þv½± ¹ä–¨úM„]VV¸„èo[i‡OçãUÃ*Ñ*up¸Ãš„˜ãÞJdÕ‹+ÊÍ]ˆ+ñe£V•µsgO×:„Ánš¡Ù—ÔâL°¼må˺ѺX´ ©KYGž'Åp@ŬI×´i©£ ¿R ÃJ¢_ýaÊÿJHm¤³„Ê/²Êiæ¶¢¦á<Ú¸†4 ؤ]mŠÀÍeûgç*Ã[쟢Fþªú‡&Sùüøè›£Ÿ ¾ ñ €np²97€û‚i+ÇŸ>:zøè«áõË7çGÿkàGÿ€ÿûôëÏàϣ߿:úüÑðͶª2ÖEdý´ªl )ð=V•¿zÀÊX½=å] —ˆ-– ó>2Á µ3†DÏï,„¦ÁY@c”É2¸_ç™ ó„´d:¤sðµå…˜ä¬"ã®òG@-»Í¨ƒNÄ¥ËøB2*‘¿|Và6Ýe ó0#F†5XkøCP cêV¦Xy¡TÁéYýûÚaÍDpp7H!3R£6‡%r<îFh /C©ÃLvr$ú[ck¢/˜IŠä¤)1'«A}Xœ£lk„í‚ͨb”]ñha«6ïÉQv†½C~5í¸[ù…PÖFñÝÂÙ r]ÎÒ½ó÷éˆJìTÜt²Ð%Y(3À p“N‡dÒÆV@RRêo<à"œæ„°œªrË,æÍ:øúCU8FñÊt……0±Ó4ëHÛÇítI¤91€l8.EÌÒ¥Ò0ÊÃIyB.Mš$9å¢m-ξۅ_ÏÔb‚"‹Æø£âŒ=P Ú±µÉ2›2ËbmŸ¹ÂR2Ñå«hñßp 0°èçøz›¶C˜…UŽAƉ/B”¢ .è«;ëUD„fu‡NÏq—“jáé`×Âþ)æ"Lë®qDÒz€È5ÌÂ:ÀÿÅ:@‹@q èR!ßÊØ¹í™p3R¤=赪“"4hA'™×LÉfk‰Ff,L»í3Â{G\Ÿ Ö¯¹‘ï! ß!An"!ÁVm%H¶¿RÇÆ×ÁK¥ðïLpkBŠ ö¸ïACBê£ ÞÃ?@^Ö &áYÐ]úg!(4ÐF»½D±Âð KYmOQÎW÷p!UEfS'aÀ_½åÅ7˜Mk´‘]?!Ç›ù‰žO@-¯ øªQºÊQÕ=ÿÌ‘sÙ‡Êbô;Wôû¤ê‡ŸÙ³^Ïxå¢ô”6ü¯„6n;]¤ŒQèÏÞ–½ô-o]@PšNùÇXw}¡OÚ|oìÜ+ûY„IyÏyh¼ÁqŒ™Fƒ#„d}+ã!…L6Ü ¹âÑK£¨ïÑá /9}`ÏØw>°i<2Ñxw§u>’É[÷´+a4uøŠÉèð…1w»-†e'Xpûnk9çjÜÈÄù„P| ³Vÿ’,C‹[ÖWÖ8Ñkâ3÷¡vQtµ 1Z¸¾ætƒð=ë!*²¼_¤•}ä›3È[•Rv }—$¹¾1‘‚ b3É'$4fë˜K’è›i«ØK[­Xpº{mõ2®ó1kk¯,²[[ƒà¼7mÂA®n¢R׊&: Ì„ò>Ü׌>mÍ}}¶† Ês“fíŠåBéî…–ëéÔ •šY‘k*òf[ýl/Ìho„¶XYÝH¬‹ç”ö1ž¹ ÃÉY©&¿] lâ…R)Ì6‘ՔÒË5˜[Žçõ$e©À#:e`'uQR6'…í«Pö:ˆÔ)¾2 ¶(bˆ;ee=ÌÀD”r!Âx šüá%„/òõœ¶¤2Ø)äÒþõ­c=¡_pv)€I”½m‰8xþúJÄ9Ÿ8tz7QoüÝ%â÷–?ë÷aso›ICðWðþ2i¡bòO2çÆBrëÆN¾|×&/ÌKj"?¸¸ÇBt‚_›3 JNɤ+=ñ¤ýl{p ¾ !}@á]Ee)Äà6^ýS= ;üÀ…7*…aØ£0JH®xsJiâÈ´PÍ}ŽaÔå¤0ùÜü”ÜݸŸ3úÆ7^êh[|ƒ¦Âôã›i¸"ßzȺЋX¦AÑ&§ ›äºþ;F"²ØÏv ‡ã!þ!$Y >\3à•@ß}×f@àÅPXFˆx'û¶Ùî§á$XfÄ,ãwAÝ3ý¼Õç£Ö&$^æÞî¸rïÀ!ñMbyC3Œ†³qÿXcùÉYØ!E V·ŠÀ}æá×µ^ôQä>TÃsaãÑÿ4¸cû‘s€Fìž*ø3éQ|QzA[+z¿Y„`×ü-‹ØaÂ/ìv؈=¸<·÷’(¬à”*Ë3aÔÀ[-Œmî|ן~J2’5ô3„_š¤>'ñ1Œ‰6!ùa~E¬VS“«y¾C–=mȃpëLŠÉš|¦Á½M׆” ¡Y †²Õ€/V¿[ÿÓŒ °'®ŒlÉðÎ78=é$?Ðmä~dñ×%6ÛÐjß(çríõ¯- Aïê•Ý)Zyƒè&Å_aB\vôžÀC]2·:˜ÚÖcf9 Lm˜§î8йßK4¬32ÕHôûËh'?l¿ÞaØnŽ †?¤–õ’Úu˜ÎëÉâ.¦‡«pá@ò^Ú[kDˆY®K ”[]‹@åå6"µf1ß=ÀÅ:¦«?H®ã“à:&{ri®cÎVúUXHAèÑ7Œ“&Û/ H·Ãö5–Ü ¾Sã³\KX:'Éã‡âï倿C9Ÿ‘$•b?¢¼O¥ÔÜVïÙDNʳÞÙÏ];š”÷ÝÚÑüífÝ{9n )­ÅŒ¶“f´7¼D}g-H$vÈÛ#£- ›Ç¼ËÙì–˜÷ýÿzVb®Ës‰Ñ °2ÒQóàÁ4H~¹fUÜX¥±þp]küñ·•ö>ö†ƒ`…ÛØ…¦9\p {v _.úÙñJŠÄÝ W­ç‰ À…Œé‚'¿žAê3/½ÌÎu Y7R½Ž`0Í—£—Ú…ÆIRÛÐtæ5(²,4IT˜,¹Ôx·Êc›µÝŒæµWWVIˬW×ÐȱI€%[æÓOH\¶Ü÷-I¼ JJ» í3c´‰ýD¨Çc³lm«Uæ7z’Êï©êâôʸ®·vÁ°1µÍÈKRìæÀ—íBœì‚‚8Êîeâ¤Ñ3"Ô¾¸IZ»à¸q¹ß”ð3QÑNï')B[c÷UhšêL¸ÙZï7Qbà«Ç25>- ¢žqG-z¥XWã “ª’?‹xHo¯gïg.d«½ÇY=o3·÷µKÏhZ%˜¼ËÒiÊv`Ÿ\¯L}ò®NÍôÓÖ%Ïô„pã¢Ð‹¨ø÷ÞŽÄ ¹»&ûZ>M ¸Í¾8[/XhCz¶† ÚÒjÛW9ÎÈ!Õ“¾};‰¬­'»è"ܳ:s!ðë†#6œÆxÀ¬ŽC„ˆ9áP"ñ³‚ÛI׈f7ÝC²Î}Su:8dæ”-e¥†PU“Mí¿Zc7{‰Æ_’26ØÂúX/9"\ñÃeáŠß/ sà§ ö—Õ\_C¸‚õ±<½i~YMXtC±ãY~š…éC)!üíÉŠi¹*òRW~Ú5B•‘ÕVøÝtᱯ»HÃ5Þ1µšÐ¯#YÕ'—ÆYŒÔ´î1ǃŔsâÖ®•Øð #6Ö´Ü_èššvÊ JÂbq!w ï¶U¡}œ]ê‹Ëò4óÊM;RßæÝ@çÚ¯ùöMµ±C3þ¦¥é¢!“Í&µµëpƒƒÐjä~bÔV‚b7å¦O}¼½ÁFUMjj„Ût­ì”佦õ6žD§±Ý¦õšäÒ"›à|ÃvجfC|ÎÓ=ÝpPØv•MÔjÚ×ü¢*BkáÚzÒƒðzG#Xä-è§17i@eÖ.Ȭ1ùÞ2«Û­…îÛFN_ZíÚiÏe"'Kb”ô«oÚ~ØHe@àÞ/ÒS¥.°m훃ú9Ï\ƒ÷ÄI¡CséÜS>hÔ7ÛÜr»êÜþ®€•1¿íªÑJaÇ]XgCÆüPu¬|ô žÑÔ–ÐmcêM")Õ¨ku¼—ez€gíÊ™³Ý6èn×Â7åå,B˜þÜ5M)Ò€`fŸe2úŒÛC£ßÂ]lÖ C“„ež·_Ïâ}“výµÝý;$ëgv(ÆÍýñ!šë·ÊÜ~ÂýØÊ¯=K{ÿ­ö‰ì ,ÖK^rO^ âõšreF—¦Ší"øH2¢÷õž•~Ì”†õµí‹:޵ûB¤Ž©›Æe.ü"xá½/h"Ç”ŒÓO§ÚfÕ—Ù”Õ=‘ÔðmûFŽ©Q®{mÞB#\8—š„)Ô—‡°Š·Á]|»” ï±ú9Äõ±MýÔé-*$UlõæEûŽÀêµÔÖÓpÂÄß¶Æ8ðHdˆÓñ7 9ÞQžVéËéŽÃ£qëðшÜCÎ…ñ-Î2Ó=’±cxƒ¹Iû8œ;zÖžH¢G²»~úwBgÅJž™–ofå°ÅòÍ4‘¬ÐcuÀ[ל×<+ ›ŒµÏ©ïB%e^(K×´ .ÂÉæl;EýnÁ¸Íqñ¾¦à»rÜ\ª¨< ï‡CÓžGLòpŒ ‡Ô¤SºiŠÌ¹Lp2©E/Y<©'ü±Ôê+Ñ*ì ð—²Ã?¯ñ¦pó·ƒMVx0éy?¢Lg'^žByÑ®¾©UÜú5 Ì +ìã|›?ƒftˆ¬{e†n1‡,~2ÕŸv$)]D_ã‹íø!£kÉÈÍ玮…Bä×ø9§êP×%ºvÑ/å̵6¼•rö·Î•©ò®rz㈠%"ƒ9¢…ÞM|r ÖQ_&F#IJÌG‚HÝñ®ƒõ¦/Dwô¤º ¹ æ’ é°­=ZN!ÔBtA¦fïUdìƒÀ©æá4ꥤá^Ýá‹YoÏSJ°žééÑ÷ŒBO{"ó´gTzd£šÀIܤmÔ½Ç4rš…üçè¿íê7Èi;Íñ0:8]Cš/¹5TÉ{8õ°kÊ{Ã"?·à„ø[T¿ý×jÕë~ê2'˜è}ä*~Yéþ”pÔÜPç\õ#í9¼2…è\+¾8°>©|Pϳ¶ïN5–6›¢±=… Aàß}ûÍÑÿZ`endstream endobj 318 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 467 >> stream xœ]ÎOhÓ`Æñ÷m²¤vqsÓƒš¼Y­¶ÔyDpþ¹ª¤ê1Õ,«Û—DÃ`ö®¿fÁªÐaÐT{pð$£ˆxX½xð*=îþ&«E3Ô‹—¾ÏéƒCã‘™¼¬/+åsYÕ.)Æþy"8Šƒc±à8½D¸žý\JÒ;#T¦ùCˆÁø–¦OéV’¶`‘‰\îl&í$)®’‹Y2­Ü]Ôms±D”ò=2ÍgÉuÝŽÎIéeRT”¥y¢Ï“Yõ6™+\– äª|cîfádöÕ¿F1§ÎœGH@I$"cV~õƒn íáô#ºÛ¡»6&:L¸M×ÇZ<{;´ËÕÁ3 °¢êöº|ÅÓh†D£â*`z-hnˆ´Kwøºž4ô+6¹‚ÀZ>øm;Ikߌ¾–û*?õ-)øÀ¿yRÕÅk3¹§Eˆ~Öx¾À§vüg¿•qQÕ8zň\4Þ¡:økhí«úcž ±Ÿæþ*R˜âMhI½6¯‰ý·fazP—Â4÷GdoS Z~ùb“óßÅ;« @„׎ãTךS{+Ð~æ¼s«nÍ}î c`Ĺendstream endobj 319 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1031 >> stream xœm’]L[eÇÏ¡€g¬VçìÒêvÎ!ÆdºÁÐù5&‹‹›ãkãcºŒ+]l»ÒR(ôJ¿ÎÓöôã”–¶”ò™²í]\ ‹½0gÈ”˜hôÂè…^¼N<oL|.Þ‹çÉû¾¿ÿ/Ž•–`8Ž©ohP™:/˜T=Zõ«UÍšëæ•qò,ÿ4Î-áI@¸ºÛºÓRR HK×w'Ÿ@ºCHýj{“àø{=gõ†£öz§‰~±¦ætU•x¾F·ÐoUÓµ*u·ÞÒÛ­¥UºktmuC5ݨ·ˆM-}\¯£Û5ªžZßA·j®Ð—[Þnn¡Ï7_¼|©å¹êÿEûOð² Ú–. {;…Õb/auX¹ +Å¢ø9ü»’¤¤-ÉöðÝ <*àüÒNœŒô}ÐGžgÎÌ` ™Aé³m ²0þ 5é2à·Ôï”żÂÕå>„a̶ôü óÔ7Lf|YPFRw€L´P¦ °À@”M!%ŸSpËAn ˆ™LQ²=‰ïÇiD¯/È#žØpW‡´d/4±½@xD{’ᨻLfŒàb<>§€ßQQ>ãÊø¡”±ò~»H,>9•e¼S”ðTqqDcýèMŸrÔÆXœ1oti……ej6¼Ó@Äãáô¸#à¤êƒƒq‘0̦ѓ<§@Ÿ ²L”i€PxQü=EüVzi;H„S}fœ;… çy*ä¿á¨ôÛ…ôp§LžvdõÝ 5Ù7;7›Ÿ%sÅ>yÒ>ãvzIÓ¶_ÂâIfoF?æ²Ôâögèp(J@\yW}«õøÂQ«}BãðXˆÌý¼ZX"͹ &÷±ª^öÚ=°*Ûîhîÿ¹ŠÈ)Û+¹çÄ,…gñõËauàŽùfgaˆäó}á®ØHÈÈ©fàsâ‡_·ÿBØZãI»×#¤hKÌΰäê, ûbÃn†±ÛÉ÷›5ëõ¢ÕJáP.<2RÏwPËê•‘¯²(]_˜á ñú+'…òÓ• HfÙ 2ÀB€H:Àkcü^òŠÐÆxýnð(ݬ; ’Ir,‘[K¬7}ïØ@2tUì}ø)&\ÍG~á]ÿH…?uKÂ׉R3ö)ƒÎ 7 &Ìùٹܩ¾’‡Æ‚¤ˆûm·/ ’:²í[KB©(9³±ö冸^œµÛé·1êDñ°õÜ»M—@iGÐÉæ±iñîtÒÒsÃЭ¹mÜÜD H¶@Ê,“üÙx< “åùŠÉŠÒV½ôHB> ˆ?„“шT ËÁàR@¬H0)}ôo Àõendstream endobj 320 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 454 >> stream xœcd`ab`ddôñ ÊÏMÌ3Õ JM/ÍI, ªüfü!ÃôC–¹»ûÇßz¬Ý<ÌÝ<,}üÀÿÝG€™‘1<=ß9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õÐã3000101ƒìg ¹ú} ߦº·ÿ˜¶ýt9ã÷cÏ™ìÛÉ®Ø=m•ü]ì+;º³ä\¼3w—wsTÅÏa[Ô}¦ïèŽ?ì9Ý Šr‘ñl‡úŸtÂ'݇Ú9 æ½þþð;×µíBϾsvç,ûÖý-ý›¸pÓ‡ßCEÙ:*}«›[Í»kº9~G°ÝsõðñÍšOOÞ?úUê»ÈoÞK¿•å„¿þ–Ö°Õ ßÞ4sÙê¹[ÖÎÏé“_¾ãèÊsÝoîjšzÛyÉÿîøÜØÔÕÝÕ"™û#•¯táç9ßó¦M\ȶë+·KHH<g7w÷ªÞ¾ œÜ×3‘‡§{ë²É“ûû&÷ö÷Oâá²ã½âendstream endobj 321 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 452 >> stream xœcd`ab`dd÷ñõM,É®ÌMÊÏ)6× JM/ÍI,I©üfü!ÃôC–¹»ûç’©¬Ý<ÌÝ<,{X}/üžÏÿ=[€…‘1<·ºÝ9¿ ²(3=£DÁÈÀÀXWHZ*$U*8é)x%&gç—gg*$æ¥(xéùê)øå—34òó’R3sÒòÓBR#Bƒ]ƒ‚܃üC‚5õ°» U4±¸$µ(³8;(ÆÀÀÀÄÀÌÀ°Œ±‹™‘‘Egß÷5|ÿ™kî0|/ÛÃøsÉ÷>Ñ%%ݵrÞ±Õ–t/îž!ÿãÛŒÅÝ‹åùþ3y2|Ÿy’ùGËwCÑîyµ[û~ëž–ø®qzæÄiºçJάŸ[ÑÜÑÙÒ(÷[Î`Öw­Þ¬Óf——7ÔÔÉÍùmþ[öYÝä¶žönÉŠúÊÚÊim3[å¿køüÖð®mmhë®”¬^9or_朗rßeŸUÿ6g­›V3þ´ÙÓ'V}×íî—ûÎo¹¬²·{R·ä¼ésgÊó5NÝ<á§ÐòM Ùöpíá–ãb±çáìæáî^>±§§wjϤ úxx@¼™sú&OäáÕ&»úendstream endobj 322 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 798 >> stream xœ]‘KLa…ÿé´u”ŸUˆÚ øJ¨DF]˜€JÀ7Ð`4åÙZÊmÁ-E¡´½Ó¤T°­€Ö EAê›D ¾ÅJÔMŒ. ã?͵,ܸ¹É=‹{Î=¤DÄì»ò8ƒ¦zczŽQS¥+ÒR…E„°X",!ÁûÛ"šZ:óÌÅEsð¾Y8w6" ¢°¢:‹;j>¦«ÔÙ5kÓÓãs#[bf3Ul®¦TÏÕ×ëXMu›«Ú¥bwsµqQÇ®àªÙ’r­¦ª‚å*Ø‚òý¬:[^>›·G½7¥ê¿LÿV„Œ3î.W!´©Ñj´ÍBòøHŠŠÐ[‚'~K–⫉$ô d ËÃ&ÇqpœB¸Wñ}ÏëÕâ8Õ×»Íñ¾°>Œ7ÄQP¯°ë&)ÔL(š;N·6œÎÆÓy™›LÅ@e7¼hƒþÀsEþ´ v¾ìõ=‚nênùÍì4qUº˜#JŸç|üúùþ³!åìS¤Šk!Wy¯ûáéŒê6¦7½D€§a’Ä5cŠ‹–n®Ò 3ƒ5½ƒ}×ú”‰¦!Ë| Gžñ"A9CZPp˜žt„=nžw{yïP¦á÷ð-¼»ÝMÏü Àohendstream endobj 323 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 291 >> stream xœcd`ab`dd÷ñõM,É®ÌMÊÏ)¶Ô JM/ÍI,I©þfü!ÃôC–¹ûwßw‹ŸM¬Ý<ÌÝ<,¾Ïúž*ø=‰ÿ{¼3#cxnµs~AeQfzF‰‚‘±®.´THªTpÒSðJLÎÎ//ÎÎTHÌKQðÒóÕSðË/ f*häç)$¥f$æ¤)ä§)„¤F(„»+¸ù‡kêawª(cC,##‹þ÷5|ÿek~6•3~çÝÆüÝâw¶è/3ö™Ý ÊJ»+ªåþ™±WwW,\н`¦_ãÔÍ~ -ß´m×6n9.æp{Înîî%=½}Ózz'Nèïåáé^Þ;½§·wÆ´ “úxxå2m¼endstream endobj 324 0 obj << /Filter /FlateDecode /Length 3749 >> stream xœí]I¯ÜÆÛ“K9ðHª÷%‘-Ø/ˆÉ~A8 ˲$C‹eË œC~{ªzawsš3œòÍ‹döÈCöVëWÕU£7 éiCðŸðùøåæÎçºyúÆ4O7o6Ô=lÂÇã—ÍÝkxâ7½%–6×ßlüHÚXÒh­z£šë—›/Û?t[ÎLO¨h¯á½”†Ëö/í­QÔä_þÿ(˜Uªý¼Û’^+£¹n¯º-íµÕÄÀdqØŸà]ŽÿS »Ÿ»Û‰^ ÃøÔ\à Zs©ÚO:/Œ²í=/XoŒi¿è¶ÎÆ5 «jÞ~/r¦hà<ÆJ)q'n¤˜ý~óI·e„ÚŠN¿ÿ¸þ#PÎêœr¬ÍÖíáÍõ×›öŸÝõ·ð+Þ‚Cn@exéËö»‡­”Ÿ”ªF÷°8u¯Ë^RkY;RÚ*ëÇÄU’ú1øÕ[Å”À1@1{m(œ\Zã‡ü —¡L³°L¹+Ýó°Œè™!Ôù —1Ä(ÆØ|ŒnØm8Ç·ÈƘÒÕ†÷žáF¤RR׈¨z†Ô‰/ÿ½ÅY)å„êÚ¬°Ûø*PbtuÞHÇ8oü4¬g”·–‡¬ã¡#BK‘‰÷®77oje¯œ~lEôµèÓ(c5~‚ºÝ½Úܹú¬yûýO6wþÚÐÍOñ?w|W7¿ØÜ»jNªby¸¨Š°N$þ÷µ±}êkÿ W¤Üy ádX8FºA¿ï¶ ™ð l½¶åîí pk+kKPãÔ´TRÉ™œ³LØ>5ÖÌÚ>§tÖ¼ÝxÞ±Þ{Ò:ük§÷’F­ž8ÅéýmJ›DuOa ½ÄO7†¢­°7g+¢ÂëÎöi{aMàS-¡0\ ëU…êü×}ØçÜëO$lÖQki¼ÕÑÑÊg:Ý‘’Ž0JtÚ:¼JØ÷þ$›”’h–ËÝp R[ôLÃ"‹l¬Xg; RÞÕøAÏS¥æÄÖ˜7E =>±gw¼ë-JâçØf2VØLN”„•@$Áϵl&¬Ó£(1^ÎRaÙAo2Öµÿrïø¦±y¬è%Ë$*ð½|³Ã±rËb$JSŒÙµcGÏκªeóØZÃæc‡dpÆ Àº·oõÝ £©¿„GqtŠ=‹ mI'YË$úX9· LqŽa9$5òXÑ1È›Y~Ë0ç·X­e¶7á·› ßR¼7ìt¿Eø-†ÆZ Þþ°Ûl&Q€´“Š“ÝÖξ&Ý–W÷d8HB×ÜÇw¥<Þmñ^á©€Lx Sº-á\r[LÊe%`Âm·”(Ÿﶎ@žœ×ÂNxâ†ü²+õÄ?â ì¾Ä; ŸÀ{Vîà›oG‹ãâTŠñâ*)O%wò™Tr‡=ŠJ͸§hÌb¶ÏÏR4?  7àgS.cÇ­”HA%·’ÆüÆ¡[5x£Ž1g¹ZðHÕ¹Ï ÞfÌ \2À;Áåùƒ@ÌS` ælùÓQ*vdoŒÕ"ØPIán'Æ/æõ “ZЉ½ ª1ro¶@®c¶nÄ7àôòºwT<ùËSâi…AÖš¸$ÄÓ+ÃédV§“Á^,œ)ïÑŸÐäOþO4 3VL:ÌOÁ¶ Ç#ÚØj8B¹AY/±6Ù(¢¢^ÍÒz8!¦N÷òU³h@GÌpK±\(ÂFÂ+ÀwÙ„hp ¡´æ¬¦SQ&K1Øó9÷y\›Ù‘=¦ 磈(£~—i^¦°¤.í¿˜tLÄÒÀ†€Í€ÊLbÁ±ôa#ú”ÌFÿ¯Þ CD¸¼ußF_ jOSù·nŸ…OP…Qgz×µ¼üÊ<‘y9ã[a¸Œ¯¹©dÐÔ>i|Ó˜CXxß‘ÁK:iý9P¹t Rr©,%Ør«à<ÍVêì"úß¡RÀÒöYºœÞ1b˜Pí㜯1’ác¦×(“=þÁßíS*Ú'˜c ‹µoT”Ä ÓþX›ô_„ ÉÀãGl_ ß§)^u `8%ª}‹ËjwIø¶ƒÐ^[Û¾ö[2¥ï²Ý?ÁÇ dRÂ<÷¸T¾îþ8¼MÍJ^w²ØCXßø%o?J%8ó÷Ý/ú3Ùy^‡0Ž8IFq5Xo˜7íëeªÆ^)7mvd·—àá0Ù$ÙÁ_#³¬6t`+Çc¸{tkáEYI ¾Â#ae Öi`ù…Ö&r¥s¦ixàç:k ÿÛ—²¸eÜ,B˜å:¯;ðÝ‚Š”b†8Ž~—ÖˈŽÏç8J B2ÔÅÀïv¸bž¦QËmûUuÙD§¯Óó§0ñ0Òä¼À%3fGIBQ>MÎÏ—’À¥húò䙳Ãdì}<ÜÍ$+bëâ¯uk'‚QâËàªâ¿~tVŠÿà&+¼PÑ õÌ+N sB!UD4_@ž³—žÜ×Ô<ÁS‚¿äžsI1ÃZ"˜ŠRêX’\ÿv,ÿø¸@;:Q †’9ªØ‰Á²àï^*Ÿˆ9÷/í«@beËâ´Çý<y(Ôç5ãQëwûÓóÄTàÍ<æ¹c¹ÃTyzx÷=+Oë·®HÂXðB#ñ(VMLª3+ó*™ì%]·PÝÕÃsî3&ÑFå6ç(´!¼¹Íîu.Wí¾H¥ûŽò¨JwyJyîqîÌUy"ù[\ o¸+3ã–­{µg8–™qÍÏò+Èk9U ϧ–•†ÄÙjËĪòÌÂi0(ñ·‹gë}ª?i¬ow5³¿=¡¸~å’Ä÷ °þ´¶†%.ÑŽêó¸ …õqãÑŸZÔ-àΡ,†ü¦*Y,^œ:®æ•²(o…¤¶«°YÕKÖ`ÐÉŽ.¬O˜åPaýàï„¶z¶ËC„p‹‹ë“1™ïò "==íòÏ¥€c~kQ)˜pyã¥ïSå^W1Z§€ÝiwÓuù©âü˜ºüã+ÎC]þPEõø”’þTìy¨ø‚j…@dÛSóŠengUtò§Ëœp‘1+“Ñê%2¹{8ærõᆬÑ_¹!@‡’ÍŸüf4@ͺàãäî\=Ê»LmêÞ0ÓÈÓ¬Sgâ©ù)„ O­UšrOY³â­*M}÷ú¦. jÞŽ1æA¢dþø¢¬ÔÍLŽxo* «ÅLÎzp0<üà<ô¾Vªzý|Õ@µ“¯rïV ®ÇÝ÷DêQ{»K€§’ËdëIînä¦M¯Åü$gÌ¢`1­ê·¨û4Ž?e¦É9]n³:^à_¾ãEìp ãÅ4Ѧ£óQ»‹ ûc”Žº~Ã:n ò/òvk«É <üéÝ.2GÄÄ«çùè@Q[½áÞb;]28Øé.è±°s¨‡XNàO—5°Ö™.3ù éê=.óÓÕ±âá¢éêéN—óáÄ»’²Á Áµ÷k›É0cÍÀ§ÐSᅫÊ(ì&«2®~ÿÅO᠔ljuüÁ‰álÁ6®õôyœ™ª\üNnˆi©Õ…è¶ í×þ5d1Þñö¯5:b³ØBm?àfVmCY`Æ¤Ž…‰&1ØnB–,?»7,TZšZoþ ªï .êŠÎ0¡°S„׆ƒ¨¨·}…Î0r‚N ‘›Dðø q!}àB""€¯Ølµ˜-BbÎ0¡8PHšé™%&‰êH£¥ÿøãsI£x¾ªU.g-0Édä½\ÿÉúÂâŸà(ÂX'Ó#ÞgÓeÍb£zäaîÇ£ZiAÀ¶P_,=äÿR»×“¢îe_ûM¤³Ø§¥8Ô:æº(¤=·u ¹‰æ„²ü”Ž囦lãK3Oè‹}SžAÓ;挧u?Äsž‹{SÚ‰e½è¶Ð;¦|‹.zÇ`“®áq¢ÎßbÚsšÇJËì^¶ÄCQU‰® Ͼ¾²Z‰>S^ybûXþÊYÝc†;œ_Å‹uMüúùÞßÁ>\|ò}þ8Ò¸±êàyÝc®e¶Ö<Ƥîó›Ç\Ó¦œî@ ýͧuÙ¢ýY¢{,êÆŒî1íú{Îi§X#²ñR/Qê1 ÝQÍcÂm*Èý‡ue=e˗ʳíÿE™½Í0‹ÆKUj.(ÿ"öÖasKFÄqT!0‘…¿8QÀ´ì/y•üX ²fú¸p_W7È7Äûí¹-v¼Òb7ø]®ÅÎ%/A)þí:7ÿI*©`endstream endobj 325 0 obj << /Filter /FlateDecode /Length 3737 >> stream xœí][ݶ·óÔ´/}Ô[%¤’y¿$Ð81R‰›¤[´€Û†íÜ`'ql·qúÛ;CŠ"©CéH»Òz×],à={ÄËp®ß IùYE:Züé?|z¸õ¥®¾y~ Õ7‡gêVý¯‡O«ÛgЀâ7%–Vg_|OZYRi­:£ª³§‡ûõ‡MË™éõ|ì¤4\Ömhg¢&ýòÏøQ0«TýeÓ’N+£¹®ï6-í´ÕÄÀ`¡Û§Ð–ãY·{q²Ûè”0ŒOõ14КKUÒ@a”­ï@Á:cLý—¦•°6®Y?«æõgÐ3mDý9Žc¬”)qtlô{¡Ï'MË1´¬eóϳ?ç¬N9'd' ¡U«"EXuöèPÕœ}-YÖb¸5B§¡Ñýú§DÆ#ÊLU¥; €ºæ²“ÔZVUʾ€>LX%©ïÃAfUL GL§´U¶¢°úž–ûõ¯qÊ4ë§É©ÒÀ£´Tt âú¼Âi 1Š÷}lÚÇàJÚ~ߣŒcJgP0;.¤oý-’#•’ºÄNÕ1äQhüǦ”ªKcÍ¡).SbtqÜÀÍ0n’Õ¨®?È©ò´NyçìðÅáY%•“Vt¦b„ÙÄ¢‰Á4»Ûw·î~V½øùåãí¿UôpëøÏíÏ?‚_w?®Þ:ܹ[}1i’ùÒ‚IÂ<®¬è¤ðféGr&—,µg!5Öœ`¡—:µ†-—:×V.º—§tÉÍ<É:’¼+6¥W€ž¡Áº¥ã ëô~Ó‚ß꯿): ~ Lá2hg†uŒò` S"¥Æ90ߨv>ŽëÜiQ·BtZι9Àµø‚Iža¬¥¶¸fg¬Êz_žÔÆÎqNQú¿qŽTÒàæòÑ[j1U­‡y|Ÿƾ1wòTûñ©…0j{O3ß{J¬[gï}€ tT•Ò„mã}rAïó€ÒVJAœ7ÞûÜò8g\ö\¶‚p£5>G»×!l‘¶²Ž¢d‰ÓhÏ”y¿ëšŽ\‚RÂ\Nñ¦ÑâÒ‡96¡+›§:)º}§ïœL¥æÄ–dˆ"ƒÐŽÎíH°GH‚#e9A{ýÉâpd °¡Ì–PŽ?¨Ö~¤él}"lYärð‹EŸ1Œ°D_% Rÿw”aK¥FÊ4ö$GnÎ Ÿc³#½ÈiøéVõ9êxÊÎ …;Ùp®|S ¶k™2øþ½™Â*ˆœÛ°ÄÙõ"–xðþæëÉåÙ¨k}µÔѧ³¼YS‘9dI¸ ɱ…Ca…à!!¢R~õyú"Ä ¸‚UA?‰ c?ÄP§Áìˆ1Ð%ˆA­† Vž$ªO‹g‰:‚ ¾“ò ›˜‡ˆ)t .ðÞ VÃHöqU`Öc¸ Q¥é*üíÅo¶ÑΩtU¡vØïø“­r^ªÌð^q]—·›Ü¯ŒTƒ8§H:‡’Gº1’1dþ¨P¼'ï*…‚]xÔC±5< !|%XšŸNf£X•Ì:ÍbÉ•aðŒƒšd°SÆE ¦ ï[6Ô;æÐ¸1ðƒ²J|ô$ýù&H,÷!ª„Ä~ëú`öe‹ §(™IŽlÎ1òµW¥†¦ ñÞtBé¨ö1G8Í+=Ÿªp¤pc×òËe=Û~šíöBNUqìŒ ÏÆý~^SÔT ›² Õ@lˉìµÚ$”e'a:…ãòš“LgL%T»Öœ ¯$,'ìBíVpZ±(Yª6qcìZ¢%zïj“°Ì‹T‚ùó‰ò2L¦Ò°™ÁGàIñcÈn¤VqänÙDÐSI@©zErÓ—C%ðiêfË¡˜á© hç¢äæ<åÐÄanBפ‚úòÚ¶ùMî9Á\\"'X瑩5L³Q4+`ZÒk)L›-ZŒ²BjÝÖn¦ŠÈ¤TI+W¹Œ|]ÒÂ~¦k˜ö íÞ< ÅîY¡§eÊcÚ7E}È=s@™Œ g%j‚> €±q_|z¨ÿÐü®m-fÁH¢-—ÙÙ#ô¶Áv¢XcðÐJ%(ºˆáL(­9+9s0ŸB5F¹-¬Œ1¿·unèDÇÐ)“K‹»þhô–oæBfK|¡{Q¿«}þXV[9¿7kÜÞ…¹þcÙú’C†¸—E4/Ãt``Cf:ov¡SòˉhËkLW/¢íÊ£$¢Íñèø ÓŽ¶tÒhõ¡‹Vùš‚—‡œ*œD¸_¿…^t+ ª4pÞ*ÌkÀ¤[ Bƒ¿ß´.¿dæTJ8.T"=JµGª÷?*ŠçzT Dµ°ú”;‚ Õ æ+‹9ù¹ã–á(öóÿÝŸ)¶´þ6ãý®a q&Tý°á¨¾ ¿ÅcIJ3Ê$ŸûSÀ”ŠúqAÃLõ3—@Kb…©_–ýW#A£ <~ÐÈúÉð}â‡Ìà„ª_à´Ú˜{Ñ€Ùkkë=)ÀÐø]Býc|¬ÏHû²ŒFMÚ„/n ’)£Ø˜šHï†Æ±Û#˜D"k²©q„dÀ§ À$À^JÍ2?åp j Ú›5=ð9$sƦž#¢ ~"â°ÉX܉GfITׄ•Ž`.$LÇLVõ#*Õ†êÂ=M™>~wÇûÖÚ}€ÜS§ú€ óthx0Œñc¾^ v¹Z·”àár“&x˜áÜùOq|øÈ5PSÖ€G%aü}( iëÛ7 )ýœT!xoýVK’âÉùDèq´d ¯ˆN/)cé‘ydC"¬d%Uü!'=Ij˜È‡¢¦¥F׫G”Q¦\#e~/=×@Ô‰Œœ»æÌµ.2erYh½ÌÆ›‰Ö)/rÿ!>VVÛÞ®aXãb^Ï1P§ ï åôãËÔO8Û1îHo<Ï1(Ük#ºtªÜEI6$A*½QÀxÁÚ­Æþ]Z#w-ŠïAÃñÖ† üå☿Á1E3PK‘O:ÁÀÁ!a8âÈüðÉÇ—%?›<ÿ}/ þ’5ÁÆAGó&>%¡2Ž›¸¤â*&&3܉wRN:§’â‚hïYyô¬Ò».kFVºD7ŠX bÖ_7nçCY?Ù“àŸDÿè€Ûtå©N I€Þ‚F6?z¿JþÞ7Œ[ƒUt ²wŽžºuc=úÛðÖÍ8yñM‹Y÷âŠe¼l³{ÅqG[{Ý!·z(1%tÌó 7/<0ÖDÐb$´{7-ãÃ|Lƒ´åSª}ÚÑfô•ÜFûBÆç Ô„íº<¿(ï1êNîWÜò.ç”÷ƒ`<ó®·ãÙñø™êVá\ÙüÆ`ØV¦ñ†ÙFûy-¦fi§›OÐXö%Aå’øw-óÙÁ0©f¨'>Áec1´Ä Ö'è0+³Á’´=™ìûèù‘’úõB˜´iíIæW„+ ï¯uàÔ: .Ôk"ÎB6›s ÔëNTTuÉf]N2:èÜvŒ.øg'ÍaŽwGe‰|IYâ‡BY{Æ\ÆæÊ1Y—¯fµ¯²b‘ˆÆXÔºËàþJd¹‹D’ȳd‰Žø+ i—u1à•«1ÍŠgb<ʇs¸¤ð,HHȦ‡[T$W¢Ì1¼ð ÂúVYå²ÖŽ–8öH¾¹Burm ^àÜë$£0 X©’C…xYèr‘<Å7"o*tà sº0p-Ù–Éw~.²Nìû@ÈrÚ}Ωpņ–4\m´ï#0@ÐÃÇ×ùÆBW*»;ÝíÃï.t,¡Ôã®Åz¿¸Gä…èñK"‡“!dÓFý–®vl9 ±õdäè)Y9,ck"Ç‘1Œ}su"‡;ʲ»À—=Žï÷wq_ôàŒ|MöÂD²“²*à¹çm>aÖvŠ­M`¢\–'0ƒ[Ü9‰´­J`ú›4›%0‚øc– zûq€ÄRÁë_ðí%Š æÊÌ£‹Ûxáå -6èÞ¯° 5ÅD] íñk1†W7¬] ŠUPsÐ)c§Â×ZÈkK»Ž³Õcp6áSr6×ûR¦¼“°1£,&vÂö&—§f;,ß…ÃÏOìÊ®¬ËÅrHÄçÒ;ÿ6ëñæ)dàîb…ô œ2å6ª_[úëNÞ˜Eæõ¥¾BŒ.úÔ—HJ7A³©/Ó¬ÓçH}Þ¬Þ=õ W ®y껢Z»kú«üq&w³H$•;<Å—–ç¿»KÞç¿ ßf²Yþ»W€«à^ܶ…{2¾€jmñwŸ~[¸7]‡¶¯­Dp]¯_y@:ׂå*'ïL–Ÿ­N”  Û=ï»…òv«7hsa±8- L]?_]@y‹uu! _ J,ÌÁ’¢À†9Øš(q%s°!J,ÊÁ´C7|ÄÆí…7>hnz¼—öŸÊžŒPcÁØ‘`Ôñ•û·ýI#ÂçñÑr¯MÁ|'‹)–šÖ#—â»|1…Z=œÍ¸úű®’"nÊ(£2ŠXd¿cn/³ÜxU:Ùv6Û_R`QùNÛ¬“žMoEÎñ*õ:â_P|ù%§cÊý•®–]ÈÈÄ‘…I²Ã£Ùû˴4ÁÕ„¡¹Õ -Ð߇Gưlr\££–ìúÁ¾FGñæZ_££0Þ¾“X£Ã— Š¥û’ƒõÆ„pI‘îB;’×ë|Šõמ1ë0Cn—ÝÈRø‹m··Ë(ò…¨ÕÎàU–oý¹Êäîúî+“Têá5ÿ7•É›Êd1çzl/¼™œsë=®àßz Èu€ÛWtϱ_jûƒËW ÀÞž°xÕ€n`Çæ6…a÷ ”“¦6 `GV–ÁÖ[_2ŠÿÃÔ‡ÿÕ†9Ðendstream endobj 326 0 obj << /Filter /FlateDecode /Length 3436 >> stream xœí][ܶ·yjÿg MÞä¡nŒÔEãÚéyhZÀuR×®/ñ%hóï{EI$WI³ÒÌØYöÎzy9$ÏåãÇC3Qqú¿>y¹¹ó­­ž¾ÛðêéæÍF„VñË“—ÕÝ+, è˜ç^TWÿÚÔ5Eåye­aÎTW/7Ûþn·—àj{…™ÖNêí_w‚yg„KÿóÏôQ7fûínÏ™5ÎJ»½¿Û f½åkªý ËJú&«ö ëìîN1£È¡¶¾ÂÖJm¶_ï°¾rÆoïa}Ì9·ýËn¯qlÒBìÕÊí7XP‚ujûÚq^kM’9xÖúƒ¦Î×»=pîÄVíôÖìþ~õGœ9o³™ã†Wí-gP]ý€“ö%‰ ­×TAj‰‹Ê2%½STf+vWÏ7÷®66o*-<3aú÷й ¸—X¡²Ü¦­æÝû›;÷¿©Þ¿ýùÇÍï*±¹óúçîÃßã—û_UŸlîݯ ®t!o\i쇩Ê`'RÕ‹ý#Ω³Àåö4¥»ý)|VZjY_¢–0oÀ¨ÐœC!qtB0 ¯a~³Ã NÔÀ§ý;*Çq²Ÿ„9^ +“̼ð¥_`ûÒq”0Š$qvqåD(,I"ìA2ƒ‰|J"i+¹ïM¼cB{këâ¿ÍF Lھ̠žT “ˆÐ¾.ÌR\Zs ÉÒtÅ‚×ôõæK+m&X³´F×Ý@kÈhƤt._ù ÄZí¨¢agpMS†XGpÜÆ)Ë:sÌuhˆÚÇ*£Ý„¡n¬7~ ›leö8cT!ÚÖÃZ…à¢O(,¨ TX]åYP­déóÕ$‡ACæ­ñ &¹òP,©áÌá€+Txš¬ºô;œi/™ ª Ð`°šSκ^{QµÒ°—\¾Æmäöò‚œ“N™ík4[ V‰íS”3ô'Ûï·4©Þ îú¦ …´f‰9 ©l#@¾j€­ÇUƒþà‘”—Á›…‚_ ûdÀµõ*(ÎA÷®‚&±QÛ>¾ß•#(l¬ðÆ} ÞyÂô ×t•CõÅPâ + •n\Á§$9jRªßuÈ ¹‹Ó”¸m”O½¡è”¸lã$î}<`7hd§äÞÑ|²}ë-™ƒÏ(ÖüÚò…ÁgUŽ2E–¡¦˜…Œ.«-þñÙDô°bÐ-íD›ðX†¾Ž†Tp²šŸM¾.—k•ËB¦™ÿG®…^Ohä € m`ŸHªUÜ´5"ä"èr¡ ¿PaÇÑÏô7®ÒÂAÉE±½šM+nHT"ŠBxnMŸæáõ}=9h=ÐoWYé KÚv)¹õÞ ¶Â »땘ìrÇ]ZXš.geaú¬LI3`dÁõYx¼Ë·FÖa±-F[Š`·º;ÓP²¢=ÖS I7„’±7Ü9ËLDÉ-|ŒygÍâJ6&¢äq­›^”œTCÊÀxÄ•¦Þ[…ZÏ©– T¯#BàõXöŠ>ná$áq8´E2šgHã Ö_{T|ªépÌ$Hw³ QD´7…Dí~ft0êjœ•5ETàœê Z†ÉØ/uûÙ©Øh™b—‚D=ºüB¢ºè%Á"¸Xäëé¼,r;Cà¨ÔÖå‘‘õr0*¬«“8§B÷ Æôjï$CÝ5°W_LjJ~ Í$HeJîŒÐ›ÁÙ ‚•›Hoš@_© ô&DF¨†žAo*ï)h)91Ø«oEC«pp8K§ 7oܦћ3€›`:îiSà¶(Ë©?–“–î’Ëb9ÝlFDZ2Äo:®£?õ«ù‡ê@þ€3óøÍµMó]•ãùÍ©6!£JžùoÚª,gÐÆK±‰#XÎyüf·”‹SœÃ‡j½x¾+¾žïú˜Œç»*kãù´é!<Åöb.¦8«‹bz˜B'ŒÑ¥šÂx¦§õg$=¯ÛÜ݉x9JBÂ2¸t€îÔ„œ+(XÏ ;•'ø‡ÕœXõQ³ìF ¢šGéÎúð4tçĤDÁ˜“¤€y΀seð.ÓyNtS¤Š«/:B#ìÅif?–s*6êXÎËÈŠø°œ"èÇ*'Àf%ltËuÞb£œg8´šJ­=Å"=‡O‚Kâ‘öñ´dËñ|ž'`î¥v„JöšXIë1’°’1éÒ§"“é Úé¸nYÎ1FÀjŸ•¶C·jÝ÷;ô‘ÎÒp·ñ£¯“…Ÿ>«£{×ÛW]’ï; Ððª–dÖzõ¨P#ÜÆGÍÅÿí’–ÿÝ5Ñõýd')8k S×ά=5'RE ½Eyˆ®;ÛKNªë›&ŒL{xM)½Ùñ™©I‹-d"Æ+*N³•LIäx¼“ÔšôhÜøcbÐ\7ú¤_’†ïÐ>°‡ÿìdèz»ûôS6©àú%ÛÛlœît÷ã®·;:ÆpÛ—ïÿ™lYŸ…lj‰8Hë6±÷U7áu›ÖØÞ>m3}RéíÏ]Ø—QµøÖP‘ôçŠCß>Å¿Apãm­6ÿì ¼ëKÖ•`¥©G¤i€— ün穦¤¶÷hé8èLÒlùµþ¡Ú\©êäÞF˜¨e/ÚV^‡åkÍ ‹)œw}óµXž³”{Œ JS¤69FŠA‚ò,zm³‘7%‘KúÁ˜G‹ŸŠAåK@®<ö‰š©]¥÷:›|_6”ËAÇ…h~íÎ ‘ÏÕóksHK†bÚ6:¿Ý¼côÀ¡ŽÉÙiÕ<ìò¾ž>Ä˽Ë4ˆZúgyŸI‚ê-!%ÄÑö© š„Nœ„-A÷¶%LMîR•ÉåR±h¾ú#ŠœèÙ/Ó}­kZÍn#Û£K”!£îì«Õȯ֩n¨”çPkÜN™u|[«Æ#Ü\ –~‘ßH*=ÆIÚžÛo¯r$ñé5]×Bîá¾ ½’\ôº8a€ŽlC„T#Þ…ð 6´Ái=Ýà RñÎÊÙŒÍÆ}å>“„\#LB•‡\£žÎ<Øæ¼)ìjžå ]NMôÐå–ê §@Ìת£ž!Jè#—ëó1!Ó¡¾€ +TWjî‚"âË{i{ôÎ7SˆËÑÂ!`¹xgû¸lWt3bCŒÂ†Ö—àh.&ªÃ "úg)IÞ¯#Æ(l6¯²“e`Í6É#‚w°°#ó¯ž)ä'IÃ/&(îVÍ·À~¨yÅEsεFú•^&o~4ýJEÿ7/ËÄSÑR°dv±@ Ö¼\“K;O9YþUšÕ{îü«‘cï"ýª<øæÖ2 qØZttU}=‡@¼vç1.©Õ°š ¦7LÀ¢øóãÑñ¯Ï..)ë˜tS1¦_á{•ªAóR°dWi·¥´W½çgÍáÍO莻‘Ðø#*óGXèŒÈ9µ @éOÄA¬J‰8Òª6!t~‚‰#íRyBCø (‡xG}ƒüõKÉÄQ MÏÆå eã˜øÒ΄lŠˆIŠF°³úÒc¤Ä^(Ë~Z¦r›¾púLåËHà¿´„¸¨'f¤ æãœ:\ö¨ôh¸Œ“þ‘†Ëë÷Ò<§3õÿ‰H…VÁjKïM”9@b)ozg[ÞÑý#Dw¦—" ²ºv‡Ž§twB}™e¹šÄfIé#›¥e³L}¼¼Ïä»1µ> stream xœí\é¯ÅGÊ´Ÿ"$P´ß²±ã¾HHÁÆG@8^)$ðc|‚±üõ©ªîž>¦gvž½ÏEäíÛ×ÓGu¿_U¿Ý²oþ/þ¼yoså#»½õhö·6ßn8ýqܼ·½z8~3xæùöì«Mx’o=ÛZkg¶g÷6ŸìÞܤpãjw­Ô»ìùàá®üòïøQ oÌî£ý Ö8+íîÆþÀë-s0Yzì]+ñ—ê±÷óbW÷j0Ê 97×[0ÀZ©Íîí=<¯œñ»ëð¼ƒsn÷ñþ álÒŠ¸ª•»÷` Ö©Ý8óZkÜ íƒU³¿Ÿžy{Œ9¾S{½³ûŸým#ýà Û³w7gúd÷Îx¨/aK΂'{­ˆ$6ž"›}š¢ôÙQr¥Å:΅˃W²GtE?'+V£ªõÜnçN…¢Z‚'°æÝ¤„¢knqTÒ®fÞ j^¨Ò¯æy ’­G"×P«‰¢-TyB©Xét¹¡û—¦îø¼rÇpÕJK-{î0-¸[»'¸šq7@À²¿i!Š°ÞøÆç8‰öí½èûxãuHTÀ!ü¼Ò¹»ÐmÞ3¤ðWyí(š¦;–ËÈp*s¥u,êV‹>KÝRÀ$×UË1Ÿü—hr—$C45nÔþ;ìVŒ"u0Ûh£k¥~OÝ×høàm´ß]ÛWkŸLi )×2ln|gN”À¢\ÅÆn%Õ–x§¤I#š–’æ=¦Y—,¶ÒJ e…¬ÔÙ©àkîU쯰’Éþ€:±•Û•Ê߯]Ìs  3$@©ä°  ã•EhÏ»¨‰²Ù»ÍP:“ÙùiÆÈ=Tá\±áóRìi®ŠwvP{^¢¢(eÀ{cªLB¢û„ƒþ€‹šAÛY³Æ=áI Õ_yé ”1ë8ñsºtåü ¯FŒ à¹BÂsƒ7ë‘æö¸>³µƒ1ê8–>\‹·Ëø?* H.W9³Îk\J§¬ÃqfM<Ý©Z5—ÒƒyÿéÐNPQ%B<øºvä}"ù ¾ð’ýÀå®Pu¾¤¤z(‚Þ³†Ó¤TBÐ]퉸žÚ =¢uQ~Eî¢i V­ ‡”êû©XàvÄæK8Ï'¿u™%M>ºMkìTÁâl~eð?BÁmÅ´£wÚ̦6Æ {§Òà^}_9Ã.‚”Ýh-kâ^r~ܪÛõsO:‰‘q.D1.DaMþò¶!µ%1µ TÐ%ÛHÍ%å2rÈŒ¿{‰ã‚Ûž'e¾>fP ˜ðž‘9áÊ´ëWh´7N˜~ÊÕ‘³)Îø¨æHÊ„›-‰¦ë«*ß4«ôìLO<˨ÒÒM³ôõ»Ê•XÔN¥j‚”D¢Èc”Í!3©#(sÖv½Ž00=3Ýê—§‚ü(̬¥Ñb¥·D©'GDõ|­kWµúš‡h¦›3cªÎÏ¡ÏÚ¬É-%†¤5ƒTc†|ѳ;Œ sA©•²)ÝÄb†iËÀë-kh0)>Àô¬ÅÔáËSžrì£x¯™²Ü½¸¯W©ë!&eLÕõ°„q’'ã4å#&Ÿ”Sá"ºìjÈmеGªÇÏ `æŠÀż04]š#ƒ FÓ» ©Ö™À ¡šäCÒ`>)^,ÆÒnÙ¾™cŠ''1gE&d—bEUíÅa9ÕP»äþiÝ$ú€¸Ìüv}ÈEÜ$ìBcî¸)j]zÒ)?cdò!e¾ÐQ+µ°„ÅTd›íN쉓úGò$ ‚xNxƒ?Ÿ<ÕÛJäIš°=p ì@}ÖØ^ÍS'mX¯/…ãw °A KÃUçóÿ ÊX§le§º(°í`K®ÆñÞ†,&œM EH¯_‰ôºrG*² ¶Æ¥Ô@|T t´qøï+¤LŒ¶ä&Òõ:­f\úõp§¼ÝI>Ä ÛâšmxäwÕeÕ¾t:”¼óÝ‚£Ô-’çöÏUúÝ€' ¹˜æ¥0.DL‰YÑà™/êEKß¼»: ÊHp06%ž=÷ˆ£K“júž™g†~@$MãyS/›B±ÀÇÐì›aKŸÙ¬)â\ÎðUðFú‚HA‘ì °LŒP,yêŽíöÎÖéh‚[‹ÂcµG6}] :É¿ÃÊÊç—ïÒÆVÆ»ª|UÈiLjîœNÊ~Ïf#µ‡¯ºÙHk§ÙÈ&!Cã_õtÙë–”)¼¬uOWIJ ØUZ#اö©µU"?lxܣгŽ*²ÔÍ\WÒóã¯õL÷a#!&ã”^ôß ¦Hz•µ`&רQÜê‰`¡èæf,”4RD2t* Åâ<ås´ÎæE è[)ɬ¦gFjHpUù%jHÀ©Â¢u¯—§¼Úè{.pfà’fãf̆6ÙÔ1ð÷ñ¼Ä΢’qÏTCS%"¶ñ²ñ  ‘ T½·!sQ–!š–!Œ\кu«x÷í±NôoJš˜-_×kÆñ½€îk¨ ð­Ùö&4Zéñ½‘x¤ü}xÓFŶ¿.† /áPË1£6¾¬Q¼z;e¿­w®Ù}jqQb¦Mq"ceóõÓˆ’g©tis#­[àèö}Ò1D‰«nÇÐ󮡸ØýĦ©‚º^"D°Þ2ë Œá<æ•[ß5›H{EN¨b^eù¥ Tùh_~J,dÓý±ØÖBvÛ6ÙM6ý©éÁÎpôþÛ¯Mqã’†ö]Á¤ç¤Q'`‚˜5XÅ[îCd ûe¶Â fºÄ¾0XX®@õ؇ˆI-` j¦±Á‹‚ï6øµ´ t€zFátî2q¬@¦ƒ¿\Væòñ×V¡°PÃôJV`ÎZV1ŸM`ù˜OpÖeßÀÊB…¥˜6â>X ¢Êéq_5ï/™• ؘµB[ÅŸ—¦ÍÎ þ‚êŒeRmæÔyÊÊÈü]Qv{yQ5‘šaÀ> stream xœí]ë¯dÇQ·ÄtùEH 4|!3’Ïq¿¶,%Ž—°(1q²¤$HìÃk;ë½vÖ ±ùÛ©ªî>]ÝÓg¾3ס•½sïôéS]]_=º÷‹˜åFàŸü÷“ÏnÞú™ß<u#6Ïo¾¸‘ôå&ÿõä³Í{`€ÄßÌQD¹yôÑMzRn¢Øxïæà6>»ùåö»I«0 i¶àãlmÐvû‹œcp2ð_þ~4*:·ýÙn³wÁk¿}¸›äì£&+ýÆjü¡yìƒú²÷vfv&(½6×û0À{mÝöG;xÞ·ày£æÂöç»ÉÂÚ´Wù­^oµòÁlŠó„h­EJˆÑÌþAyæG»I äÖìì6ì~ýèsÊ7œj–j3…0‡Í£§À´Ïw°Ê(áÒøØŒ·³•1*à6 þÕ(¥Ò¦7ó2ô+˜WƒÏën™w¤{9+µ}ß ”öѦ5ìór†fm4¬ÃFZÃVì}z#=‘ºyôãØïݸåSýŸ›5½¿ù>ü “[NUÈTÅÙ+ïÅÉàä €nãg`·¤~ÖÄØ€å…•“r@lÅ-ì¸UÞÈí+øå¬£5jû%²:F)ÂÊÊ$­LÌAŸ±²ýEµ´J™WªDªÄݱR¤ 0݇"=…| 1j$“Äk7zF(ù’cúåG{@tq[¥Á2=ó|´ÒgMi—²¦L1þc­½óÞdùPrïmHDI ÀGGlßH’fš¢à¾KáG4 úMlJRØNæVêY¨™2ûw+Z»hÕÚôUa»yõyß@^€%CÎeʃn>ê¿Z†·Ùü,É:X¢µˆr4~×e ºÂ%E¹K¥g¦M¨ôÈŸKpQ‡N8 ™‰Uõ7Bs¦iL»¨þ·k_˜fÀ9:`H}HL#í›)­;AÒUe¡qN2İ*¾Í§ê¨*6þr:ªªÛ¸7m¹ó’=칸k¹˜…$,6*åAZ ʺD¾€tt@¥H‡p±³M’‘ЊÕÊžVª@œŒVTá‚<øÓ¢ôGr*Ðm¦á$’w‡Iö•äk±âŽô¶Kk‚RílC’=¨ùájðSú‘šÀϰô ;ØäOšg8Yï­ wÔ™Y=ì³Üܨ;·ð½08P÷8›4øÁãåi›ÀFtT“‰_HùÏ·|\C…Ovj¶N·}²ÓØb~­µ…€(À/AM=Ì»ýwˆ^b´‘Òö1|B&Ô~áHíhÌçunöñ·;Ðwœ j5<:n‡Ë0@¡óŒŽÏêêàÒ|_Bã}Œð$–³} o´Hk¤¯0ˆ‘ þlßîuª»I©Ù€G?œ‰‘ü8W²Æ-ǧ„ŸiÅx7ÜIh«;(¯qSMtVލ1yhóÈÙ±‘nŽíÇF<†Ô%8R®8û½" “¬K8á„¢>á„Mç m#U­ñH»<©RœÁ¯«zœÝLŒ<‘`‡Ð¹X¿W×s2ð0 @gòZAJ%G>"#ѧ ¢ÄTøˆÖJÛ¡%N|A€^¥æ_ÉÚ*­Üè=¸Ûhšë(‰N1¤A¨ÍcèŒõ²½‹j¦…Å•\ƒ*F\†#šÃœOP÷ƒE¡ ¨¾Ƕ`"j©5(»Ã$…ò Øåë—˜ÃðÖY0Fv¤`4Ù ?ÈÆ |ýlùº>’âfã`FØ0úŠTAƒé!»A¼h‹&—̉Ú×LÔå@HÖ¤H-$Z^ ‹¸Œ¨uªY¢]„Žðfãƒÿni½Ýþ׎Á­–8e}@~mâ4n±cômŸ,lgŒ¥!uœ¤NÁE¯ÅÎs¨‘I¢Þ {™@"޵ØS¼bAše¢~Í?,šá–ÑÒ>pL”çhìyYϲ›„Ï­W~dÜc‡SK ÂQA‹Oà#=£y÷ñÉØ•MÍäw€‹-é.6³ÿQ䵈+6ášuêlÞ^PHülÓûp:¶èÌs4ûFÎ:A“è™óèÁÇwR2ZXži}6,˜àHîAC”‘5wмÇäæ‘Ykþö°h4SdV™› ±^h’‘ÌòÅ83F˜|9°à•cIˆ”_2åÿSÒã0 ÏÍØSu>Ù‹+é<›ü :ïëìÇuÀ‘;_çil»Ž#!)®£Ùˆ?c›V²Ö® {’ »22;5@ôÛÊx$ŒzbÆã<Á|xŽ3È‚fã¡€ð¢ Ò1¡€è¶y )N,V-’DËS¡˜Â`$A+y¡¬è'‚i%IKVô÷ TüšCÅŽ>ˆ%0}uú¬‚_2úÉ e“V˜¹A¬(ÀŽ•{Q=÷¿Ùá¢-E % üx n!L¹r¶ùø”„Û?ÖŠ@-¦ÑkØsTϨ"x÷tÚžJмgªDÆGg©€ÚóTª-y>ÜyA¶ä­è„t ¢A(€E¦YXÍdž‡Ý KÎh凡¯³ ¦"5% t$WÊ“;kYÔóò,Ð8çš’\Á!^÷ι &«gµLþÎâU'õGt ¨…4uk.à£z÷Z|”¯jÿ—}ô¡úèƒvïžÓÿ=áKdóéar»*ÈÙí H®Ó¥2·Zy»§¢3b°á¤ÑˆÙ¥§ƒ2¥]Az`*@SÆQG‡qÇÕ2-XjLiÔA3ÖgDN]™8Øý„= }+vÌFæÛ=c /5Ød‹c¾½:üWX©ë âö£DQøž™Ä[>) U>§|ý1Ë*"f×D*8ùðÔ9ý:%§YÉ;n›'퀦(Y~“diÍJóxÒÇËó¯—Oõ™áÛ_’–ùh†褌@Ðû%çbuŽ•ÈêØ­™îÓû­Î.tLãÂv' Táê…\2îÜÂAn_;½p Ï/p¹’Z ÀÌÖ&»zO%M öº%•kÌ«ˆ›HÐR$h¬¿PÄjÅL¼Æ.®+EƒŽ>Põ®O_P¤ }+Eà%±j Ž” ÀQÖÑ0ùE<ÝZB+`&üìÃJ*^¤dо— ê‹-š!–éE+|ÞŸˆcs3ºÝúÔ,ës6q雸§:vUÄ/ƒ©swÙÓ¢˜úR=3èKR²yRòêNÎSFÉ*š¤dmo×T:ݳʯÕ#úÒPÍŸéû$Néʪ@¦O¿‹•¼{C{ÌIëiý>÷Ù¦õOÔËóâË¢—ëñe» ‹` XÜĪØ~žÛm†Ý£.Q–nB/¥Ý&\²šeV¤ÕMG­¯Z5z†ßè¨ráj=bjèS!ß }Ø€Åé[‰˜Œ'N“jR¡..?æT¨tE•T¨u©ŸNi*GS 'kwmBŽ'h÷ÿ+âº"®b€†ƒw/Qþ_`á®ß%£eÆF ˜Ëû1 ÎÏœ`´:úb ^¯MŸ¦³'-‰+¥«­L›°÷HØSÒÕwHJiN ·—ÎG§z;¨X’ÑóÌú˜ŽI7cÁÔÔ^¡ (Xk‹™(ñoI(lRÑòH£B°¡¥ñb ©*65“—döZvøìF…óØûÍëÑŒ½ûî¶¼;•[¸KOöS’ó Í86á–œY<«àq´¹WðÈÝYŒ ¹àa Ô»VÁãÈÈÿò‚ÇÞ ‚¾j Fs¼£¢­sÕËÌLé+xëe¢Çµb‚-†×,gxÈ Z¥ZÈi3ì£ç»6mVÒÑÓ…¶µz-&R9fú¾êðÿ5s?QY#:íÆ%€Q6”¥6SUÄjãÇiU–M±ƒ0†^ÐióøÍë3i¦WtºÍHSÀˆ’&kóìš æyÍfi?­:ƒ¼»tu¦›þjÕ™îR@¥ˆðÙùo²cxˆÆ;f9¤Áô&cB)F_‰=žéárnV{üܲt*ˆŸÉaÝâÐè£â‡‘[ ¨²žôaO¤@&Ìmöþgø­[ýº~ŸW¢My¬ {ü9Ò@ß…9ØI!ùLHMf‚3Í¡²åD—Ãy‹0 …6M•‹.ï’dìp6Ê‹ºHpqÊ\ †šEe23tÝqéÈ®h,š;$£°ö¶=ƒÖXCYdRRùz›ÄGkú 9º//£i‡“=®O³ýˆS'šoâý#h—üB3hôšª¥õÛÕ³}–“R_»Ì6Ág Ãu•-?ïfT…ÎÚµ'ó ÆnÁÏ’àƒ‚¸EðÙkf˜ÔÄÀlìn”—i:˜á[º·-:R‡*µ‰) íûlÍB[ŽLþÇÞ‘IøúéhΧ•æ'Ë/1£G·Í¬<„â@ý,4¶¨*ÐEì€0À`|uæÝÒF,|]•„qƒ•±i/_€©v¸1q+š„Ez{êYÓ4°ñQ&$똽bŒ-ÉÕüëÄ,¢ê|}Kcò…>âeØ MãV¼ÎH¡ÛÙ_à”Š4òïVTΰýû)ëÁuâ¿nxº7ÃÖZìð¥` ÿÉü7€€ä ÂÌ"%P:•oe½èvÙ4Ý™CR¯šóÄ@Óˆ¿ñÉoà\¯Û] vÖsªÙ€—Ãc?“ízZÏ$Cj— e%æ äãÇ/BbNÆ[³ïd”qL ßì‹Dm´Ô3F†g[mWò:MÄGᬢÞõqÑŠìéÇ" /7G°F9¾òq‚yIp° ûN…¾½R¥.T ˆK:à„Lö·³7{Ùlzž»wgº‚´È÷º4|dY;¹.µíTKÁÏuà±jèb—jôr'Yk´ÁÛD˜ÉjTûHâwxÝx&·ï·í¨à‘ð¸Më˜Ò¥iÀG¦¾+@·±ð€5Á°-½ ‰5÷¯`GTd×½]Ó(àhÑû:d+Wà!E)¯×Æ áSn-‡*ì¾8fýG!¸Eô°ôJômñ(PjÑÕÁßÇåb~>²÷/¹àñ(ÕaF1t&  ¨‡eÁ˜£ª6{gšèØ«Ò^ey'³½åÌZЯtz›”‘Å>äù“%$[Õ²}7tª–µÊ{@Ëòóè ±%ÕÐ>]ñ„Ä#([ËwdSÏÌãÿãf+Ê€'£`~¸ c†"Ò ‰§ŠØ^iÑaq GÙøõ²†.›=î¡ëÇÙ”š}¿xº(¸Ófƒ™ Vé¬jP]^ãÝUsîµpº†28¿¦H“_j6ÊU×e¯e»ºü¤„AŒÛÆ5íŽd±[ ?š «+ެY_§Y|š¡R©Õ ÄuF¯§mŒ@=Þ,† ÙâÕÊÍ@Ý9Œ‡m±Ti‰r€N·¯H&£‰Õ©ä}\•a(í‡à…*‰ÙŒlᕃCˆÂ‚©¡ç¡»ýä‘Ö÷ö>Xì’Ö9ëOÐuÌ‘.Sz¬&  —o¹ 3¸[m*“V{LÉ LTU2Z` ¸Hë¦Éìãë‘&±ïç> ˜C’R-ÕÑ({õFX_$]Ñ„=²žíù—¬|µ >jÒ,íÈj´š¥ >mÛ¢c ¹h'´Iåî@:ØDâ6],_¥ìv5Î!ëg¯ð”è4 ä{ÑÀð爩È=4 XP±6£‚0ã{i)ilwÍbßþÕ¦ØLÓõRêéG’Ÿ._óÝÞ͸w×A«Hå<öÁv«šîôZ6ˆòùIµO¾Nõ øù éËsöJap×å~²7͵*ò æ}‹J®$§Ò¤®™TG–œßþ!ÛO°‡ è_ÐÞI‰Ò*´—ç|4__â‰*¯N.Ç£šgÞ½h h£=lCö‡ñ?Ã`ÓeŽ¢œ÷)Àc´m%½<"‘m[û{N›gözÇÆ[Ý2¸»úχԋþ„fŒ¼ó˜ôtªôLÒõ>w’®Ž’ދƯ(¢€Œ¡¶Ø|AßÚûKµl?ÖìÙYŸ&ð«•ýõÞ ^äÝc¦eçí2ùx¤PÒß5îËu}µ‚]M@ö!»¬ C'@…hW‰ÒåÌôü´2%™¥R,Ô…jØ?†טCyjœb½®¼Þ’‘Ki¬øÖ;;ZLA ãÝRj¼RB™½¼Ïïíy-L’›U§Uš NpZ­ó;ÕiÕK¯â´R{móžcN«\¹·zgJŸ½Zwù÷Ƚ«@¨\o½÷ªäv•‚ß°(ûUú—•ç÷«É‹'¦Ú¾ï€ÅËЯØì@q1—Ý-1Ôr {!ñŸúðæk¹6—endstream endobj 329 0 obj << /Filter /FlateDecode /Length 4214 >> stream xœí\I¯·6r Æ—‚œ‚`|rO¬iq_$ˆe ¶Ûñò²AöA~O–mh±õ¤ØÉ!¿=U$»›d“½Œfžå$x€Ô3Ã­Šµ|UEö÷[ÒÒ-Á¿ðÿùãÍõOõöáå†ln¾ßP÷ã6üwþx{û Pü¦µÄÒíÙWß“n-Ùj­Z£¶g7÷š·w{ÎLK¨hÎౕÒpÙüyG[k5ñ—ÂGÁ¬Rͧ»=iµ2šëæînO[m510X×íhËñCÒí£a²Û;Ñ*a¯õ.4КKÕ¼·ƒþÂ(ÛÜþ‚µÆ˜æ³Ý^m\³0«æÍ‡Ð3mDó1Žc¬”WâÖA’Ñ?êú¼·Û3B mÄN6v÷ÅÙsVÇœSv»×f%ðñxöhÇZ©˜PÍSèôFUŽÒÏ$…RN¨ö±d jZÆ­mÖkèð©ÚêVG]cÞ2AßÂ’•ú> ú0a•¤¾×qѲnð›ÈÕåÍ7¸*&5'¶DžDÊ`üdžÏwÀM[Æš[ødZÁéˆð°ªÖ*¦„[7ì+ðxË`ÎÀ±†ìξê·glš?ìÞ1» _µšZËü¾R)“œÉòª¥kÈíXO5%ÖGœyg·×D¤ôkœB*%ui {Ž”¬ŸâÌí,ü™Ò¸°aÉÒw£qmÚ¼oú­ÛIƵ-òDÁ(ÑÀ¿Tw¼v•Ö*ß­ù7î¬Ñ¸ô ºÞ_。‚ˆ%íZ§Ò;#‰ æÚ‚¶$q!Ûo¢&2TÝü v@hÆHq`gU¤ˆ/±³éVÁ£ˆÆ}Í‘K-§Erñö«kMA¥€XVÏÚY²ÑäD×*K˜eˆ€Ï8²ˆpFôZ áÎPä’1Mq-ŠL£ŽÝçZ+©Ê“)GÏHJ†ÁS‰°¦CxDÁi…C‡”InçJ\"†Ù¢xs0üÖˆ²uË¿s¶ùdó=˜iÁî“íìÝ–q žÓl5º#Ô¸}wsýî‡ÛçÏ^<Ø\ÿë–n®¿ÿÜþøøïî»Û×6wîn?©Âl  áL€Ñß*+ wâ8¶ÒÌo&ä´º«5[}ê:ĹNÝX£F®óí‚ë„G_XCwÛÍt#·<)tØ ú‚Ë£iëmÁ׸z°C/ýšg»=²W1}ù€Ë"(6¹†Pðà¿ozüðd˜áQeð×<ïyè}†½@ØæÇzÜñ~7¬9wíáî‡Ç¸˜ fúnÿÅðØ_\ÈCD§rh”phP- ÷¤ø˜1"ZÒ2@¨a ÿê©xÐ?u4;R€}@­ºÎ.ìMüMÖP˜¡­èdþäZâLÝÒ}¡»I¸èØ¡• ¿œà3öéâÒŸà¤7•)NêÇ—AÊjëwØ= ƒ>êzüsg4ÒÈœÁÀ•v …QÐpõHÿžƒ +祿ѰÀ°WZŠ9 A«Ê “ð³aféÄ ¸O¥‘`I\ p•¼—}î4î’Ó°§ÇT9)™Ø¦4l2˜—uÖêÞkL ib ‚v-nLÃm‹À 0£²·×…àм\-‰9ZòÑ«áOmìBøÃìaáÏ‚) “¤Ô ™“™-oµ̪‡@Õ±3Väü盵*™íjæjÂl×âíƒÍölWDZڵ4DÉjË`µ…EÇV±Ú ¦ðÛ :¡–[ma„Xaµ”—ßJ½Àžr ú²§6Âàë^†˜Ö4ÀoŒH ò3ÃÃ7po¤àD–Ga¾EÈ£§²C;Å‘‰ :e;åJŠÎ ñ¹…ƒS_V‚þZ1Ï«×ÝÖ£ÊÌò¹þµ™áb"’¸À-Ùs ‚GqôY¬ fåRµ‚S~2aÔ,§>樢y‰SÒi¼8>§¦H7ƒ;»9“D‚Ød A5D›] éËÒÁ»Àú<Éå¼(&~àÞPNÇá{ÿåý4žŒ_$¡r½ù£ -ÊIŸ‹<Õ…ÁiÉ_Îuz²¤”`ßÕ΢,ÂTÀÛýp‰1«@»P”YÚ¢zÓ +Îw`FA¿8Æþœø|@À?D½¸ÔG8¢fy‰ûiFmèýÜÉ5'v:YI{ð7\*Ë‹6›!>ëõ嘶R»ÂûˆpÐá[Mj”G¡¨–%yDŠ éám;dp&·Kͪ/éÊÅÐáÙ4A­\{F#«‘OÚGq`c@’ŒÎÖô $ŒìÊÉi Td‰º—0-@¹ F—hâpj-钮̦õÕ™„x1s~éÏE$Ù«§>…#OåôÐ –szƒ9©fã1‹zÆ…Zj’º\°CÈCÉ%/CSˆzQ»×DŠþoä`ªAH±æyëts¢qÛ´%ÚBŠ*ƒ!Kן‰Øá­¾¥fÖèÜúí¯/nÜI¹´§ pRÜ'ý¡&bÕï9Êð0ò£8ã c¶” Yt_˜É<§qR"»ÇRŠ÷<ñ3õ)—Ú9,'=œê)ÊVÄBL„GÙêÏR7T®ä”–8úƒóß‹Nÿ\1’Ic@·(šÚp"HiU˺ØÉ8·ÐKg9ç“a@]œ'ô 1Nk9SÈ\ 3ÁÀšÉÓ©ùÑÐ,¸¹¨Øï@Z±¥YšŠJj9=«ˆÌsz’àOµ®!C†Ób(-É‚«OúDK ké0I§é¿ñ®«^kÎK§o`Ú `ˆcpÆ…Á“˜”ÒB@0“M°T1©ÃW=Êþ­;«Â¨©ÜWËoJŒXI‰ß¬iJ\ #Þ—×w€«5xÇu”P¬Ž­#fŽuènJŠëHÐR¨’¸[ªƒ÷Ã#)³†œp>æUS”¥ÔŒÎï¸Ë™3×Rhv´/>õLúµÞQ%M_©â!½?>º?º˜2:RM\퀷•µBCÉݰ¢÷ œ¡c¸vªý/¼@s{÷&lrÂ]T€"#þÜ\ÜÑÑ_ZM/è‚ k'¡„è–ÊûÜ Éoê&ËCüõÞÿîSÞ~Øz⎗a±\÷“]¢;cÝi§üú°Á÷-„>œpnš-lTŸ—X+séìn¢Ÿà,zÊ®_ç©‹˜þ¼x(SIÿÙ†<áÞ¹G A…Ë=+ÅÜmDJ<Ú=Á­ÞLHøÈJNKˆì EB^ò*ðOsþ Îtåj|íw‘Xe æžÁÉ8#ÍRYÐN\Û¬ODn¤ÑÀláút&¡|`=é3wUå‘ÁÕ¹k¢å ¢¼tAô¨rÒ%«°•†XÉÕ>.[ÁUÑ­iÌÕálU«<ãj ÞÉ„gxŽaŒDð©â“‘·òtfº$:ÜÁ³ä¸,nþ¾™<8»á<+Ž$cvˆŸ>d0,$“¢·Ük~ò šU 1H§‰¥óH/Xù?l¹RØòJ½}¤\åÒB®ˆ–lȪþÏ!—øHäK¾ÄdôôVv8*ëj,‰¹\ñe/G|>Ør™« þ‰Þ>ä-xE†PþŽWxCUÕi8Î22Žú&8ÖZî ´”ICUõÆtM™wí$ð4SO‰ÇÕ!„¯¤(uòÞ”Ù\…»¸vPb/cÅ(±7§}¨ù]iÆu] J…vÒÖã·Uéð¯ŠÐ8Ľ¯jaqÁE¢Z…~ÎveZœ\sj’'͈.’Né´Š•Žq…'ÛN®t0üWs‰W§qW¥m9^öx‚éVö˜¹×ž·}’ÍWIHÿ½*¸îmu \Ã}¸Û†’ÎÄݸҊ™ò ðNC¾”ÓÀXoÂipçpƒürA$’?µüÂ<Àƒÿ^V{IǸª5ï2<Ê]é6|t¹ÚmP.{Þst‘òŠ[•µãjk=yYtÕ{ÁÎ}ÈCÜžÑ)S„yè> stream xœå–ËoÔ0‡áîœ27[(fÆyÀ‰ŠªA¡e9±œŠX!Q¡Â¿q6U›*+º@¡åÄ™çï³g÷ÄADíïGÇ݃Cv«¯¸UwÒáðÑ·£c·³0l+QAÑ->tkOt Ž™¢[woýãÐç$°ø…=ÆZ%Wÿ&`T!”ó‹/ÛcIJäC‘I8³zŒ¬ bÁNÝž›mn/·ý³d;¡D*’ò¦XOÌ€9Wò{Áü‹ú]ó/)Šˆúj½eNcVÎþ…æÄRü«G´ÖÚ*ê€IôýSŸ½Ð'A_CõÞ-ž™rÊç•+U]_ÕRƒ­½7á>…+¥Bþ³y®FÏlG¥DeÐÜJ$HNbK²v¼ 朠âÚ%M“™ØÊìú‰Ïݦ’µÆsR,ƒ-¬­—>ôœ£¥`ÿ-ÌgI§Æ·[èR3 -°ãh"ášœ©FgµÜk£uÈþQƒ ™4û-LªœAç*Dlí ›DZ†¡-Ì€<'_«r"ÃÍ ÒMsp„Át*Ý}œle¼²D‘«Ê2DÔúÇ‘• õrÈn…;#11 ~…ŠÊÄΔ»(‚Îlöí‰ §r[bH׈XU%¼@mùÅ`Ù¬E¶á­¹tÅÜÊüI³ÂRfšìQísq}–¨n56¥ü±Ym×'À½cå`M(8´Dùï¦æ†ºÍgfò^#b?94ñêß¿=40¾æ33]bf>œÎÌÝEwÐ<±ý·?è¾sù{öendstream endobj 331 0 obj << /Type /XRef /Length 328 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 332 /ID [<788d9713acb42e50141e4ab157e2489c><962be3b4fc0d2f6e77c06ff3193489de>] >> stream xœí‘Ï+Da†¿{çºB™÷ÎŒŸãÇX™”X( kEù (¥ØX) [j²µ°Ql¦Y`EYHÙ „Hb'¬Ø\÷}üãÞÅÓÛùÎyÏ=çØFŸm‡ŸÆVÀŠXæ Œ7\ µÛ«»¿^Ewÿ Ln¤^ü>]¼|˜üN)Ô‰i]¹óV¬:“[bݹ˜›S}bÓXI¦Õ*Öˆ¶/ÆEg;¤å/Sµ+fJT]à°H|O¬8½F1±!ú¯è7±¡šÚ‚<3Òµ³tì¢Öà¿)¦ópHt'ÄöAܺ™Åe.›œx*Ï–~âgdzÄçé>…óÝ÷y½«äŒ¢Ÿø‡Kùü½6/‰õ_LÇfÒböO¶‘g®ø@—kô73ޱÃâ?LÊÿ;TÙm0KdŽ+,ˆñwøÌ~Ømrî+è#ª æ:@? endstream endobj startxref 370113 %%EOF bridgesampling/inst/doc/bridgesampling_example_stan.Rmd0000644000176200001440000001607515055304401023164 0ustar liggesusers--- title: "Hierarchical Normal Example (Stan)" author: "Quentin F. Gronau" date: "`r Sys.Date()`" show_toc: true output: knitr:::html_vignette: toc: yes vignette: > %\VignetteIndexEntry{Hierarchical Normal Example Stan} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- In this vignette, we explain how one can compute marginal likelihoods, Bayes factors, and posterior model probabilities using a simple hierarchical normal model implemented in `Stan`. This vignette uses the same models and data as the [`Jags` vignette](bridgesampling_example_jags.html). ## Model and Data The model that we will use assumes that each of the $n$ observations $y_i$ (where $i$ indexes the observation, $i = 1,2,...,n$) is normally distributed with corresponding mean $\theta_i$ and a common known variance $\sigma^2$: $y_i \sim \mathcal{N}(\theta_i, \sigma^2)$. Each $\theta_i$ is drawn from a normal group-level distribution with mean $\mu$ and variance $\tau^2$: $\theta_i \sim \mathcal{N}(\mu, \tau^2)$. For the group-level mean $\mu$, we use a normal prior distribution of the form $\mathcal{N}(\mu_0, \tau^2_0)$. For the group-level variance $\tau^2$, we use an inverse-gamma prior of the form $\text{Inv-Gamma}(\alpha, \beta)$. In this example, we are interested in comparing the null model $\mathcal{H}_0$, which posits that the group-level mean $\mu = 0$, to the alternative model $\mathcal{H}_1$, which allows $\mu$ to be different from zero. First, we generate some data from the null model: ```{r} library(bridgesampling) ### generate data ### set.seed(12345) mu <- 0 tau2 <- 0.5 sigma2 <- 1 n <- 20 theta <- rnorm(n, mu, sqrt(tau2)) y <- rnorm(n, theta, sqrt(sigma2)) ``` Next, we specify the prior parameters $\mu_0$, $\tau^2_0$, $\alpha$, and $\beta$: ```{r,eval=FALSE} ### set prior parameters ### mu0 <- 0 tau20 <- 1 alpha <- 1 beta <- 1 ``` ## Specifying the Models Next, we implement the models in `Stan`. Note that to compute the (log) marginal likelihood for a `Stan` model, we need to specify the model in a certain way. Instad of using `"~"` signs for specifying distributions, we need to directly use the (log) density functions. The reason for this is that when using the `"~"` sign, constant terms are dropped which are not needed for sampling from the posterior. However, for computing the marginal likelihood, these constants need to be retained. For instance, instead of writing `y ~ normal(mu, sigma)` we would need to write `target += normal_lpdf(y | mu, sigma)`. The models can then be specified and compiled as follows (note that it is necessary to install `rstan` for this): ```{r, eval=FALSE} library(rstan) # models stancodeH0 <- 'data { int n; // number of observations vector[n] y; // observations real alpha; real beta; real sigma2; } parameters { real tau2; // group-level variance vector[n] theta; // participant effects } model { target += inv_gamma_lpdf(tau2 | alpha, beta); target += normal_lpdf(theta | 0, sqrt(tau2)); target += normal_lpdf(y | theta, sqrt(sigma2)); } ' stancodeH1 <- 'data { int n; // number of observations vector[n] y; // observations real mu0; real tau20; real alpha; real beta; real sigma2; } parameters { real mu; real tau2; // group-level variance vector[n] theta; // participant effects } model { target += normal_lpdf(mu | mu0, sqrt(tau20)); target += inv_gamma_lpdf(tau2 | alpha, beta); target += normal_lpdf(theta | mu, sqrt(tau2)); target += normal_lpdf(y | theta, sqrt(sigma2)); } ' # compile models stanmodelH0 <- stan_model(model_code = stancodeH0, model_name="stanmodel") stanmodelH1 <- stan_model(model_code = stancodeH1, model_name="stanmodel") ``` ## Fitting the Models Now we can fit the null and the alternative model in `Stan`. One usually requires a larger number of posterior samples for estimating the marginal likelihood than for simply estimating the model parameters. This is the reason for using a comparatively large number of samples for these simple models. ```{r, eval=FALSE} # fit models stanfitH0 <- sampling(stanmodelH0, data = list(y = y, n = n, alpha = alpha, beta = beta, sigma2 = sigma2), iter = 50000, warmup = 1000, chains = 3, cores = 1) stanfitH1 <- sampling(stanmodelH1, data = list(y = y, n = n, mu0 = mu0, tau20 = tau20, alpha = alpha, beta = beta, sigma2 = sigma2), iter = 50000, warmup = 1000, chains = 3, cores = 1) ``` ## Computing the (Log) Marginal Likelihoods Computing the (log) marginal likelihoods via the `bridge_sampler` function is now easy: we only need to pass the `stanfit` objects which contain all information necessary. We use `silent = TRUE` to suppress printing the number of iterations to the console: ```{r, echo=FALSE} load(system.file("extdata/", "vignette_example_stan.RData", package = "bridgesampling")) ``` ```{r,eval=FALSE} # compute log marginal likelihood via bridge sampling for H0 H0.bridge <- bridge_sampler(stanfitH0, silent = TRUE) # compute log marginal likelihood via bridge sampling for H1 H1.bridge <- bridge_sampler(stanfitH1, silent = TRUE) ``` We obtain: ```{r} print(H0.bridge) print(H1.bridge) ``` We can use the `error_measures` function to compute an approximate percentage error of the estimates: ```{r,eval=FALSE} # compute percentage errors H0.error <- error_measures(H0.bridge)$percentage H1.error <- error_measures(H1.bridge)$percentage ``` We obtain: ```{r} print(H0.error) print(H1.error) ``` ## Bayesian Model Comparison To compare the null model and the alternative model, we can compute the Bayes factor by using the `bf` function. In our case, we compute $\text{BF}_{01}$, that is, the Bayes factor which quantifies how much more likely the data are under the null versus the alternative model: ```{r} # compute Bayes factor BF01 <- bf(H0.bridge, H1.bridge) print(BF01) ``` In this case, the Bayes factor is close to one, indicating that there is not much evidence for either model. We can also compute posterior model probabilities by using the `post_prob` function: ```{r} # compute posterior model probabilities (assuming equal prior model probabilities) post1 <- post_prob(H0.bridge, H1.bridge) print(post1) ``` When the argument `prior_prob` is not specified, as is the case here, the prior model probabilities of all models under consideration are set equal (i.e., in this case with two models to 0.5). However, if we had prior knowledge about how likely both models are, we could use the `prior_prob` argument to specify different prior model probabilities: ```{r} # compute posterior model probabilities (using user-specified prior model probabilities) post2 <- post_prob(H0.bridge, H1.bridge, prior_prob = c(.6, .4)) print(post2) ``` bridgesampling/inst/doc/bridgesampling_example_jags.R0000644000176200001440000001267115107052014022616 0ustar liggesusers## ----------------------------------------------------------------------------- library(bridgesampling) ### generate data ### set.seed(12345) mu <- 0 tau2 <- 0.5 sigma2 <- 1 n <- 20 theta <- rnorm(n, mu, sqrt(tau2)) y <- rnorm(n, theta, sqrt(sigma2)) ## ----eval=FALSE--------------------------------------------------------------- # ### set prior parameters ### # mu0 <- 0 # tau20 <- 1 # alpha <- 1 # beta <- 1 ## ----eval=FALSE--------------------------------------------------------------- # library(R2jags) # # ### functions to get posterior samples ### # # # H0: mu = 0 # getSamplesModelH0 <- function(data, niter = 52000, nburnin = 2000, nchains = 3) { # # model <- " # model { # for (i in 1:n) { # theta[i] ~ dnorm(0, invTau2) # y[i] ~ dnorm(theta[i], 1/sigma2) # } # invTau2 ~ dgamma(alpha, beta) # tau2 <- 1/invTau2 # }" # # s <- jags(data, parameters.to.save = c("theta", "invTau2"), # model.file = textConnection(model), # n.chains = nchains, n.iter = niter, # n.burnin = nburnin, n.thin = 1) # # return(s) # # } # # # H1: mu != 0 # getSamplesModelH1 <- function(data, niter = 52000, nburnin = 2000, # nchains = 3) { # # model <- " # model { # for (i in 1:n) { # theta[i] ~ dnorm(mu, invTau2) # y[i] ~ dnorm(theta[i], 1/sigma2) # } # mu ~ dnorm(mu0, 1/tau20) # invTau2 ~ dgamma(alpha, beta) # tau2 <- 1/invTau2 # }" # # s <- jags(data, parameters.to.save = c("theta", "mu", "invTau2"), # model.file = textConnection(model), # n.chains = nchains, n.iter = niter, # n.burnin = nburnin, n.thin = 1) # # return(s) # # } # # ### get posterior samples ### # # # create data lists for JAGS # data_H0 <- list(y = y, n = length(y), alpha = alpha, beta = beta, sigma2 = sigma2) # data_H1 <- list(y = y, n = length(y), mu0 = mu0, tau20 = tau20, alpha = alpha, # beta = beta, sigma2 = sigma2) # # # fit models # samples_H0 <- getSamplesModelH0(data_H0) # samples_H1 <- getSamplesModelH1(data_H1) # ## ----eval=FALSE--------------------------------------------------------------- # ### functions for evaluating the unnormalized posteriors on log scale ### # # log_posterior_H0 <- function(samples.row, data) { # # mu <- 0 # invTau2 <- samples.row[[ "invTau2" ]] # theta <- samples.row[ paste0("theta[", seq_along(data$y), "]") ] # # sum(dnorm(data$y, theta, data$sigma2, log = TRUE)) + # sum(dnorm(theta, mu, 1/sqrt(invTau2), log = TRUE)) + # dgamma(invTau2, data$alpha, data$beta, log = TRUE) # # } # # log_posterior_H1 <- function(samples.row, data) { # # mu <- samples.row[[ "mu" ]] # invTau2 <- samples.row[[ "invTau2" ]] # theta <- samples.row[ paste0("theta[", seq_along(data$y), "]") ] # # sum(dnorm(data$y, theta, data$sigma2, log = TRUE)) + # sum(dnorm(theta, mu, 1/sqrt(invTau2), log = TRUE)) + # dnorm(mu, data$mu0, sqrt(data$tau20), log = TRUE) + # dgamma(invTau2, data$alpha, data$beta, log = TRUE) # # } # ## ----eval=FALSE--------------------------------------------------------------- # # specify parameter bounds H0 # cn <- colnames(samples_H0$BUGSoutput$sims.matrix) # cn <- cn[cn != "deviance"] # lb_H0 <- rep(-Inf, length(cn)) # ub_H0 <- rep(Inf, length(cn)) # names(lb_H0) <- names(ub_H0) <- cn # lb_H0[[ "invTau2" ]] <- 0 # # # specify parameter bounds H1 # cn <- colnames(samples_H1$BUGSoutput$sims.matrix) # cn <- cn[cn != "deviance"] # lb_H1 <- rep(-Inf, length(cn)) # ub_H1 <- rep(Inf, length(cn)) # names(lb_H1) <- names(ub_H1) <- cn # lb_H1[[ "invTau2" ]] <- 0 ## ----echo=FALSE--------------------------------------------------------------- load(system.file("extdata/", "vignette_example_jags.RData", package = "bridgesampling")) ## ----eval=FALSE--------------------------------------------------------------- # # compute log marginal likelihood via bridge sampling for H0 # H0.bridge <- bridge_sampler(samples = samples_H0, data = data_H0, # log_posterior = log_posterior_H0, lb = lb_H0, # ub = ub_H0, silent = TRUE) # # # compute log marginal likelihood via bridge sampling for H1 # H1.bridge <- bridge_sampler(samples = samples_H1, data = data_H1, # log_posterior = log_posterior_H1, lb = lb_H1, # ub = ub_H1, silent = TRUE) ## ----------------------------------------------------------------------------- print(H0.bridge) print(H1.bridge) ## ----eval=FALSE--------------------------------------------------------------- # # compute percentage errors # H0.error <- error_measures(H0.bridge)$percentage # H1.error <- error_measures(H1.bridge)$percentage ## ----------------------------------------------------------------------------- print(H0.error) print(H1.error) ## ----------------------------------------------------------------------------- # compute Bayes factor BF01 <- bf(H0.bridge, H1.bridge) print(BF01) ## ----------------------------------------------------------------------------- # compute posterior model probabilities (assuming equal prior model probabilities) post1 <- post_prob(H0.bridge, H1.bridge) print(post1) ## ----------------------------------------------------------------------------- # compute posterior model probabilities (using user-specified prior model probabilities) post2 <- post_prob(H0.bridge, H1.bridge, prior_prob = c(.6, .4)) print(post2) bridgesampling/inst/doc/bridgesampling_example_nimble.R0000644000176200001440000000753215107052015023141 0ustar liggesusers## ----------------------------------------------------------------------------- library(bridgesampling) ### generate data ### set.seed(12345) mu <- 0 tau2 <- 0.5 sigma2 <- 1 n <- 20 theta <- rnorm(n, mu, sqrt(tau2)) y <- rnorm(n, theta, sqrt(sigma2)) ## ----eval=FALSE--------------------------------------------------------------- # ### set prior parameters ### # mu0 <- 0 # tau20 <- 1 # alpha <- 1 # beta <- 1 ## ----eval=FALSE--------------------------------------------------------------- # library("nimble") # # # models # codeH0 <- nimbleCode({ # invTau2 ~ dgamma(1, 1) # tau2 <- 1/invTau2 # for (i in 1:20) { # theta[i] ~ dnorm(0, sd = sqrt(tau2)) # y[i] ~ dnorm(theta[i], sd = 1) # } # }) # codeH1 <- nimbleCode({ # mu ~ dnorm(0, sd = 1) # invTau2 ~ dgamma(1, 1) # tau2 <- 1/invTau2 # for (i in 1:20) { # theta[i] ~ dnorm(mu, sd = sqrt(tau2)) # y[i] ~ dnorm(theta[i], sd = 1) # } # }) # # ## steps for H0: # modelH0 <- nimbleModel(codeH0) # modelH0$setData(y = y) # set data # cmodelH0 <- compileNimble(modelH0) # make compiled version from generated C++ # # ## steps for H1: # modelH1 <- nimbleModel(codeH1) # modelH1$setData(y = y) # set data # cmodelH1 <- compileNimble(modelH1) # make compiled version from generated C++ # ## ----eval=FALSE--------------------------------------------------------------- # # # build MCMC functions, skipping customization of the configuration. # mcmcH0 <- buildMCMC(modelH0, # monitors = modelH0$getNodeNames(stochOnly = TRUE, # includeData = FALSE)) # mcmcH1 <- buildMCMC(modelH1, # monitors = modelH1$getNodeNames(stochOnly = TRUE, # includeData = FALSE)) # # compile the MCMC function via generated C++ # cmcmcH0 <- compileNimble(mcmcH0, project = modelH0) # cmcmcH1 <- compileNimble(mcmcH1, project = modelH1) # # # run the MCMC. This is a wrapper for cmcmc$run() and extraction of samples. # # the object samplesH1 is actually not needed as the samples are also in cmcmcH1 # samplesH0 <- runMCMC(cmcmcH0, niter = 1e5, nburnin = 1000, nchains = 2, # progressBar = FALSE) # samplesH1 <- runMCMC(cmcmcH1, niter = 1e5, nburnin = 1000, nchains = 2, # progressBar = FALSE) ## ----echo=FALSE--------------------------------------------------------------- load(system.file("extdata/", "vignette_example_nimble.RData", package = "bridgesampling")) ## ----eval=FALSE--------------------------------------------------------------- # # compute log marginal likelihood via bridge sampling for H0 # H0.bridge <- bridge_sampler(cmcmcH0, silent = TRUE) # # # compute log marginal likelihood via bridge sampling for H1 # H1.bridge <- bridge_sampler(cmcmcH1, silent = TRUE) ## ----------------------------------------------------------------------------- print(H0.bridge) print(H1.bridge) ## ----eval=FALSE--------------------------------------------------------------- # # compute percentage errors # H0.error <- error_measures(H0.bridge)$percentage # H1.error <- error_measures(H1.bridge)$percentage ## ----------------------------------------------------------------------------- print(H0.error) print(H1.error) ## ----------------------------------------------------------------------------- # compute Bayes factor BF01 <- bf(H0.bridge, H1.bridge) print(BF01) ## ----------------------------------------------------------------------------- # compute posterior model probabilities (assuming equal prior model probabilities) post1 <- post_prob(H0.bridge, H1.bridge) print(post1) ## ----------------------------------------------------------------------------- # compute posterior model probabilities (using user-specified prior model probabilities) post2 <- post_prob(H0.bridge, H1.bridge, prior_prob = c(.6, .4)) print(post2) bridgesampling/inst/extdata/0000755000176200001440000000000015055304401015645 5ustar liggesusersbridgesampling/inst/extdata/vignette_stan_ttest.RData0000644000176200001440000000056715055304401022667 0ustar liggesusers‹ r‰0âŠàb```b`f’Ì@& `d`aà‰{000 Yì@Ì’9`rÞPM* Îw`€$lyùE¹‰9PU ¸iûXósS‹¡F±ÃsòÓssà*2KR‹`–䦖dä§@yÌ…††¦œi„52B·09'±f!ÜíIE™)é©@Ö?Œð0ÄÃo¼ºv¹©LÿiÌ0;ûšÕ£ §´Óã®6‰¯®Šcsxè¥å¡ë0Ð30±TÅPmˆU5;Pµ™©)ºrnp¨â2ßÐØ ]‹“›¡4˜à¡nè¸'®y¥;ÍV‹–L°Ä›” `¨â Τ´xXx :77?%5'9ƒ2!å ¤ò#ÙÜ@^Åt»£ÙåA´r;º)ЄŒÏ­ @ÖsJ¬L-vKL.G 4 \i{ïAS/ õV-ަq9;߀¬ѽSAlbridgesampling/inst/extdata/vignette_example_jags.RData0000644000176200001440000000052515055304401023130 0ustar liggesusers‹ r‰0âŠàb```b`f’Ì@& `d`aàÒœzIE™)é© ÌÂ@v æ)8àtD…Û3ØÆw`€$Øòò‹rs ªpÓ(Ö²æ%æ¦Cb‡ æä§çæÀUd–¤Á,ÉM-ÉÈOò˜ L#8Ó!jd„narNb1ÌB¸Ûa>gø‡,†8ƒå™Ì»÷‡žÂƒE„ò`aúOû`†ÙAØóÀ4‘ZT”_„®Ã@ÏÐÄDCµ!NÕfFèªYœÜ ¡aÊ Cû/w9ôjçHÙ\`µ˜!ÃÕÏ””ó0Œpx3)-æ;Û¹sóSRsâ‘fFÀLAÄZ_\ôÈýLöd’e¾©Ûß>nyLx³·“a…ÜŠ§:‹æ¦½H·¿ºl×Q#}Sr­`ø,£bridgesampling/inst/extdata/vignette_example_nimble.RData0000644000176200001440000000052215055304401023447 0ustar liggesusers‹ r‰0âŠàb```b`f’Ì@& `d`aàÒœzIE™)é© ÌÂ@v æ)8àtx«Û ßA€ `ËË/ÊM̪bÀM£XËš—˜›Z 5Š&˜“Ÿž›W‘Y’Z³$7µ$#?Êc.44D0àL#„¨‘º…É9‰Å0 án‡ùœáF°â –g»×¶DR3X˜þÓ>$˜avö<0M¤å¡é`1Ð3RÅPkˆU-+P-†b'7Ch€2ÁÐþ+û¥†ð‡€l.°ZÌ`a‚êgJJƒù @8üÅ™”óŠíܹù)©9ñÈ) 3`Æ?Fø°ä—ýÁr?“ý#ü#+ÍgÚß^®P¶vÂ-n'à #¸O­íð«ý´¿ÚÙ`ÿp“1¹V0ü^J&bridgesampling/inst/extdata/vignette_example_stan.RData0000644000176200001440000000052515055304401023151 0ustar liggesusers‹ r‰0âŠàb```b`f’Ì@& `d`aàÒœzIE™)é© ÌÂ@v æ)8àtDè†dëßA„ `ËË/ÊM̪bÀM£XËš—˜›Z 5Š&˜“Ÿž›W‘Y’Z³$7µ$#?Êc.44D0àL#„¨‘º…É9‰Å0 án‡ùœáF°â –§ÿŠ—°ÿ‡‹åÁÂôŸö!Á ³ƒ°ç9€i"µ¨(¿]‡ž¡‰±*†jCœªÍLÐU³8¹BÔ †ö_nÝo[³ Èæ«Å &¨~¦¤4˜×€a„ÃkœIiñ0ß¡ØÎ›Ÿ’šœø˜03fÀ"Ö‚üâ ?˜@îg²$=Ég}Œ¢ýí·ÓºŸÄáv2¬0‚[ñTûI¬Ñ\û«+Ì£Îê!× †Wxµ bridgesampling/build/0000755000176200001440000000000015107052015014334 5ustar liggesusersbridgesampling/build/vignette.rds0000644000176200001440000000072215107052015016674 0ustar liggesusers‹­”=OÃ0†Ý6¥€„„Ä‚„À` ?€­Ð*ˆV¤[u4n1$Nd›Ï‰¿ÍB¹¶6$ þ~|w~s—‹yBH™8Õ)WpZYÂnÛ"¶qÈŽë—’ûC¦ Œ.†=ö0ž±Þ5 •{úÛÈÁ/–óì) "­f°ñqOk¦tC̤ûWÚú B·š ŸùYšfh}«#É!øàÒòÐcÎ$ÈþïC@Ï"âМ¾‰¶êGžá6‹¸³‰H?±è¡ VÈ}xdŠƒ mÁv½éyw·‹%±vúA{´.è9í@ÿ†Œ"I›Jó4oüi 1} see \code{Details}.} \item{data}{data object which is used in \code{log_posterior}.} \item{lb}{named vector with lower bounds for parameters.} \item{ub}{named vector with upper bounds for parameters.} \item{param_types}{character vector of length \code{ncol(samples)} with \code{"real"}, \code{"simplex"} or \code{"circular"}. For all regular bounded or unbounded continuous parameters, this should just be \code{"real"}. However, if there are parameters which lie on a simplex or on the circle, this should be noted here. Simplex parameters are parameters which are bounded below by zero and collectively sum to one, such as weights in a mixture model. For these, the stick-breaking transformation is performed as described in the Stan reference manual. The circular variables are given a numerical representation to which the normal distribution is most likely a good fit. Only possible to use with \code{bridge_sampler.matrix}.} \item{packages}{character vector with names of packages needed for evaluating \code{log_posterior} in parallel (only relevant if \code{cores > 1} and \code{.Platform$OS.type != "unix"}).} \item{varlist}{character vector with names of variables needed for evaluating \code{log_posterior} (only needed if \code{cores > 1} and \code{.Platform$OS.type != "unix"} as these objects will be exported to the nodes). These objects need to exist in \code{envir}.} \item{envir}{specifies the environment for \code{varlist} (only needed if \code{cores > 1} and \code{.Platform$OS.type != "unix"} as these objects will be exported to the nodes). Default is \code{\link{.GlobalEnv}}.} \item{rcppFile}{in case \code{cores > 1} and \code{log_posterior} is an \code{Rcpp} function, \code{rcppFile} specifies the path to the cpp file (will be compiled on all cores).} } \value{ If \code{repetitions = 1}, returns a list of class \code{"bridge"} with components: \itemize{ \item \code{logml}: estimate of the log marginal likelihood. \item \code{niter}: number of iterations of the iterative updating scheme. \item \code{method}: bridge sampling method that was used to obtain the estimate. \item \code{q11}: log posterior evaluations for posterior samples. \item \code{q12}: log proposal evaluations for posterior samples. \item \code{q21}: log posterior evaluations for samples from the proposal. \item \code{q22}: log proposal evaluations for samples from the proposal. \item \code{mcse_logml}: Monte Carlo standard error of \code{logml} on the log-scale (Micaletto & Vehtari, 2025). } If \code{repetitions > 1}, returns a list of class \code{"bridge_list"} with components: \itemize{ \item \code{logml}: numeric vector of log marginal likelihood estimates. \item \code{niter}: numeric vector with the number of iterations of the iterative updating scheme for each repetition. \item \code{method}: bridge sampling method that was used to obtain the estimates. \item \code{repetitions}: number of repetitions. \item \code{mcse_logml}: numeric vector of Monte Carlo standard errors on the log-scale (Micaletto & Vehtari, 2025), one per repetition. } } \description{ Computes log marginal likelihood via bridge sampling. } \details{ Bridge sampling is implemented as described in Meng and Wong (1996, see equation 4.1) using the "optimal" bridge function. When \code{method = "normal"}, the proposal distribution is a multivariate normal distribution with mean vector equal to the sample mean vector of \code{samples} and covariance matrix equal to the sample covariance matrix of \code{samples}. For a recent tutorial on bridge sampling, see Gronau et al. (in press). When \code{method = "warp3"}, the proposal distribution is a standard multivariate normal distribution and the posterior distribution is "warped" (Meng & Schilling, 2002) so that it has the same mean vector, covariance matrix, and skew as the samples. \code{method = "warp3"} takes approximately twice as long as \code{method = "normal"}. Note that for the \code{matrix} method, the lower and upper bound of a parameter cannot be a function of the bounds of another parameter. Furthermore, constraints that depend on multiple parameters of the model are not supported. This usually excludes, for example, parameters that constitute a covariance matrix or sets of parameters that need to sum to one. However, if the retransformations are part of the model itself and the \code{log_posterior} accepts parameters on the real line and performs the appropriate Jacobian adjustments, such as done for \code{stanfit} and \code{stanreg} objects, such constraints are obviously possible (i.e., we currently do not know of any parameter supported within Stan that does not work with the current implementation through a \code{stanfit} object). \subsection{Parallel Computation}{ On unix-like systems forking is used via \code{\link{mclapply}}. Hence elements needed for evaluation of \code{log_posterior} should be in the \code{\link{.GlobalEnv}}. On other OSes (e.g., Windows), things can get more complicated. For normal parallel computation, the \code{log_posterior} function can be passed as both function and function name. If the latter, it needs to exist in the environment specified in the \code{envir} argument. For parallel computation when using an \code{Rcpp} function, \code{log_posterior} can only be passed as the function name (i.e., character). This function needs to result from calling \code{sourceCpp} on the file specified in \code{rcppFile}. Due to the way \code{rstan} currently works, parallel computations with \code{stanfit} and \code{stanreg} objects only work with forking (i.e., NOT on Windows). } } \note{ To be able to use a \code{stanreg} object for \code{samples}, the user crucially needs to have specified the \code{diagnostic_file} when fitting the model in \pkg{rstanarm}. } \section{Warning}{ Note that the results depend strongly on the parameter priors. Therefore, it is strongly advised to think carefully about the priors before calculating marginal likelihoods. For example, the prior choices implemented in \pkg{rstanarm} or \pkg{brms} might not be optimal from a testing point of view. We recommend to use priors that have been chosen from a testing and not a purely estimation perspective. Also note that for testing, the number of posterior samples usually needs to be substantially larger than for estimation. } \examples{ ## ------------------------------------------------------------------------ ## Example 1: Estimating the Normalizing Constant of a Two-Dimensional ## Standard Normal Distribution ## ------------------------------------------------------------------------ library(bridgesampling) library(mvtnorm) samples <- rmvnorm(1e4, mean = rep(0, 2), sigma = diag(2)) colnames(samples) <- c("x1", "x2") log_density <- function(samples.row, data) { -.5*t(samples.row) \%*\% samples.row } lb <- rep(-Inf, 2) ub <- rep(Inf, 2) names(lb) <- names(ub) <- colnames(samples) bridge_result <- bridge_sampler(samples = samples, log_posterior = log_density, data = NULL, lb = lb, ub = ub, silent = TRUE) # compare to analytical value analytical <- log(2*pi) print(cbind(bridge_result$logml, analytical)) \dontrun{ ## ------------------------------------------------------------------------ ## Example 2: Hierarchical Normal Model ## ------------------------------------------------------------------------ # for a full description of the example, see vignette("bridgesampling_example_jags") library(R2jags) ### generate data ### set.seed(12345) mu <- 0 tau2 <- 0.5 sigma2 <- 1 n <- 20 theta <- rnorm(n, mu, sqrt(tau2)) y <- rnorm(n, theta, sqrt(sigma2)) ### set prior parameters alpha <- 1 beta <- 1 mu0 <- 0 tau20 <- 1 ### functions to get posterior samples ### ### H0: mu = 0 getSamplesModelH0 <- function(data, niter = 52000, nburnin = 2000, nchains = 3) { model <- " model { for (i in 1:n) { theta[i] ~ dnorm(0, invTau2) y[i] ~ dnorm(theta[i], 1/sigma2) } invTau2 ~ dgamma(alpha, beta) tau2 <- 1/invTau2 }" s <- jags(data, parameters.to.save = c("theta", "invTau2"), model.file = textConnection(model), n.chains = nchains, n.iter = niter, n.burnin = nburnin, n.thin = 1) return(s) } ### H1: mu != 0 getSamplesModelH1 <- function(data, niter = 52000, nburnin = 2000, nchains = 3) { model <- " model { for (i in 1:n) { theta[i] ~ dnorm(mu, invTau2) y[i] ~ dnorm(theta[i], 1/sigma2) } mu ~ dnorm(mu0, 1/tau20) invTau2 ~ dgamma(alpha, beta) tau2 <- 1/invTau2 }" s <- jags(data, parameters.to.save = c("theta", "mu", "invTau2"), model.file = textConnection(model), n.chains = nchains, n.iter = niter, n.burnin = nburnin, n.thin = 1) return(s) } ### get posterior samples ### # create data lists for Jags data_H0 <- list(y = y, n = length(y), alpha = alpha, beta = beta, sigma2 = sigma2) data_H1 <- list(y = y, n = length(y), mu0 = mu0, tau20 = tau20, alpha = alpha, beta = beta, sigma2 = sigma2) # fit models samples_H0 <- getSamplesModelH0(data_H0) samples_H1 <- getSamplesModelH1(data_H1) ### functions for evaluating the unnormalized posteriors on log scale ### log_posterior_H0 <- function(samples.row, data) { mu <- 0 invTau2 <- samples.row[[ "invTau2" ]] theta <- samples.row[ paste0("theta[", seq_along(data$y), "]") ] sum(dnorm(data$y, theta, data$sigma2, log = TRUE)) + sum(dnorm(theta, mu, 1/sqrt(invTau2), log = TRUE)) + dgamma(invTau2, data$alpha, data$beta, log = TRUE) } log_posterior_H1 <- function(samples.row, data) { mu <- samples.row[[ "mu" ]] invTau2 <- samples.row[[ "invTau2" ]] theta <- samples.row[ paste0("theta[", seq_along(data$y), "]") ] sum(dnorm(data$y, theta, data$sigma2, log = TRUE)) + sum(dnorm(theta, mu, 1/sqrt(invTau2), log = TRUE)) + dnorm(mu, data$mu0, sqrt(data$tau20), log = TRUE) + dgamma(invTau2, data$alpha, data$beta, log = TRUE) } # specify parameter bounds H0 cn <- colnames(samples_H0$BUGSoutput$sims.matrix) cn <- cn[cn != "deviance"] lb_H0 <- rep(-Inf, length(cn)) ub_H0 <- rep(Inf, length(cn)) names(lb_H0) <- names(ub_H0) <- cn lb_H0[[ "invTau2" ]] <- 0 # specify parameter bounds H1 cn <- colnames(samples_H1$BUGSoutput$sims.matrix) cn <- cn[cn != "deviance"] lb_H1 <- rep(-Inf, length(cn)) ub_H1 <- rep(Inf, length(cn)) names(lb_H1) <- names(ub_H1) <- cn lb_H1[[ "invTau2" ]] <- 0 # compute log marginal likelihood via bridge sampling for H0 H0.bridge <- bridge_sampler(samples = samples_H0, data = data_H0, log_posterior = log_posterior_H0, lb = lb_H0, ub = ub_H0, silent = TRUE) print(H0.bridge) # compute log marginal likelihood via bridge sampling for H1 H1.bridge <- bridge_sampler(samples = samples_H1, data = data_H1, log_posterior = log_posterior_H1, lb = lb_H1, ub = ub_H1, silent = TRUE) print(H1.bridge) # compute percentage error print(error_measures(H0.bridge)$percentage) print(error_measures(H1.bridge)$percentage) # compute Bayes factor BF01 <- bf(H0.bridge, H1.bridge) print(BF01) # compute posterior model probabilities (assuming equal prior model probabilities) post1 <- post_prob(H0.bridge, H1.bridge) print(post1) # compute posterior model probabilities (using user-specified prior model probabilities) post2 <- post_prob(H0.bridge, H1.bridge, prior_prob = c(.6, .4)) print(post2) } \dontrun{ ## ------------------------------------------------------------------------ ## Example 3: rstanarm ## ------------------------------------------------------------------------ library(rstanarm) # N.B.: remember to specify the diagnostic_file fit_1 <- stan_glm(mpg ~ wt + qsec + am, data = mtcars, chains = 2, cores = 2, iter = 5000, diagnostic_file = file.path(tempdir(), "df.csv")) bridge_1 <- bridge_sampler(fit_1) fit_2 <- update(fit_1, formula = . ~ . + cyl) bridge_2 <- bridge_sampler(fit_2, method = "warp3") bf(bridge_1, bridge_2) } } \references{ Gronau, Q. F., Singmann, H., & Wagenmakers, E.-J. (2020). bridgesampling: An R Package for Estimating Normalizing Constants. \emph{Journal of Statistical Software, 92}. \doi{10.18637/jss.v092.i10} Gronau, Q. F., Sarafoglou, A., Matzke, D., Ly, A., Boehm, U., Marsman, M., Leslie, D. S., Forster, J. J., Wagenmakers, E.-J., & Steingroever, H. (in press). A tutorial on bridge sampling. \emph{Journal of Mathematical Psychology}. \url{https://arxiv.org/abs/1703.05984} \cr \code{vignette("bridgesampling_tutorial")} Gronau, Q. F., Wagenmakers, E.-J., Heck, D. W., & Matzke, D. (2019). A Simple Method for Comparing Complex Models: Bayesian Model Comparison for Hierarchical Multinomial Processing Tree Models Using Warp-III Bridge Sampling. \emph{Psychometrika}, 84(1), 261–284. \doi{10.1007/s11336-018-9648-3} Meng, X.-L., & Wong, W. H. (1996). Simulating ratios of normalizing constants via a simple identity: A theoretical exploration. \emph{Statistica Sinica, 6}, 831-860. \url{https://www3.stat.sinica.edu.tw/statistica/j6n4/j6n43/j6n43.htm} Meng, X.-L., & Schilling, S. (2002). Warp bridge sampling. \emph{Journal of Computational and Graphical Statistics, 11(3)}, 552-586. \doi{10.1198/106186002457} Micaletto, G., & Vehtari, A. (2025). Monte Carlo standard errors for bridge sampling marginal likelihood estimation. \emph{arXiv preprint}, arXiv:2508.14487. \url{https://arxiv.org/abs/2508.14487} Overstall, A. M., & Forster, J. J. (2010). Default Bayesian model determination methods for generalised linear mixed models. \emph{Computational Statistics & Data Analysis, 54}, 3269-3288. \doi{10.1016/j.csda.2010.03.008} } \seealso{ \code{\link{bf}} allows the user to calculate Bayes factors and \code{\link{post_prob}} allows the user to calculate posterior model probabilities from bridge sampling estimates. \code{\link{bridge-methods}} lists some additional methods that automatically invoke the \code{\link{error_measures}} function. } \author{ Quentin F. Gronau and Henrik Singmann. Parallel computing (i.e., \code{cores > 1}) and the \code{stanfit} method use code from \code{rstan} by Jiaqing Guo, Jonah Gabry, and Ben Goodrich. Ben Goodrich added the \code{stanreg} method. Kees Mulder added methods for simplex and circular variables. Giorgio Micaletto and Aki Vehtari added the \code{CmdStanMCMC} method (for \code{cmdstanr}) and calculation of the Monte Carlo Standard Error (MCSE). } bridgesampling/man/bridge-methods.Rd0000644000176200001440000000241415055304401017176 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/bridge_methods.R \name{bridge-methods} \alias{bridge-methods} \alias{summary.bridge} \alias{summary.bridge_list} \alias{print.summary.bridge} \alias{print.summary.bridge_list} \alias{print.bridge} \alias{print.bridge_list} \title{Methods for bridge and bridge_list objects} \usage{ \method{summary}{bridge}(object, na.rm = TRUE, ...) \method{summary}{bridge_list}(object, na.rm = TRUE, ...) \method{print}{summary.bridge}(x, ...) \method{print}{summary.bridge_list}(x, ...) \method{print}{bridge}(x, ...) \method{print}{bridge_list}(x, na.rm = TRUE, ...) } \arguments{ \item{object, x}{object of class \code{bridge} or \code{bridge_list} as returned from \code{\link{bridge_sampler}}.} \item{na.rm}{logical. Should NA estimates in \code{bridge_list} objects be removed? Passed to \code{\link{error_measures}}.} \item{...}{further arguments, currently ignored.} } \value{ The \code{summary} methods return a \code{data.frame} which contains the log marginal likelihood plus the result returned from invoking \code{\link{error_measures}}. The \code{print} methods simply print and return nothing. } \description{ Methods defined for objects returned from the generic \code{\link{bridge_sampler}} function. } bridgesampling/man/error_measures.Rd0000644000176200001440000000540315055304401017337 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/error_measures.R \name{error_measures} \alias{error_measures} \alias{error_measures.bridge} \alias{error_measures.bridge_list} \title{Error Measures for Estimated Marginal Likelihood} \usage{ error_measures(bridge_object, ...) \method{error_measures}{bridge}(bridge_object, ...) \method{error_measures}{bridge_list}(bridge_object, na.rm = TRUE, ...) } \arguments{ \item{bridge_object}{an object of class \code{"bridge"} or \code{"bridge_list"} as returned from \code{\link{bridge_sampler}}.} \item{...}{additional arguments (currently ignored).} \item{na.rm}{a logical indicating whether missing values in logml estimates should be removed. Ignored for the \code{bridge} method.} } \value{ If \code{bridge_object} is of class \code{"bridge"} and has been obtained with \code{method = "normal"} and \code{repetitions = 1}, returns a list with components: \itemize{ \item \code{re2}: approximate relative mean-squared error for marginal likelihood estimate. \item \code{cv}: approximate coefficient of variation for marginal likelihood estimate (assumes that bridge estimate is unbiased). \item \code{percentage}: approximate percentage error of marginal likelihood estimate. } If \code{bridge_object} is of class \code{"bridge_list"}, returns a list with components: \itemize{ \item \code{min}: minimum of the log marginal likelihood estimates. \item \code{max}: maximum of the log marginal likelihood estimates. \item \code{IQR}: interquartile range of the log marginal likelihood estimates. } } \description{ Computes error measures for estimated marginal likelihood. } \details{ Computes error measures for marginal likelihood bridge sampling estimates. The approximate errors for a \code{bridge_object} of class \code{"bridge"} that has been obtained with \code{method = "normal"} and \code{repetitions = 1} are based on Fruehwirth-Schnatter (2004). Not applicable in case the object of class \code{"bridge"} has been obtained with \code{method = "warp3"} and \code{repetitions = 1}. To assess the uncertainty of the estimate in this case, it is recommended to run the \code{"warp3"} procedure multiple times. } \note{ For examples, see \code{\link{bridge_sampler}} and the accompanying vignettes: \cr \code{vignette("bridgesampling_example_jags")} \cr \code{vignette("bridgesampling_example_stan")} } \references{ Fruehwirth-Schnatter, S. (2004). Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques. \emph{The Econometrics Journal, 7}, 143-167. \doi{10.1111/j.1368-423X.2004.00125.x} } \seealso{ The \code{summary} methods for \code{bridge} and \code{bridge_list} objects automatically invoke this function, see \code{\link{bridge-methods}}. } \author{ Quentin F. Gronau } bridgesampling/man/bf.Rd0000644000176200001440000000674315055304401014701 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/bf.R \name{bf} \alias{bf} \alias{bayes_factor} \alias{bayes_factor.default} \alias{bf.bridge} \alias{bf.bridge_list} \alias{bf.default} \title{Bayes Factor(s) from Marginal Likelihoods} \usage{ bf(x1, x2, log = FALSE, ...) bayes_factor(x1, x2, log = FALSE, ...) \method{bayes_factor}{default}(x1, x2, log = FALSE, ...) \method{bf}{bridge}(x1, x2, log = FALSE, ...) \method{bf}{bridge_list}(x1, x2, log = FALSE, ...) \method{bf}{default}(x1, x2, log = FALSE, ...) } \arguments{ \item{x1}{Object of class \code{"bridge"} or \code{"bridge_list"} as returned from \code{\link{bridge_sampler}}. Additionally, the default method assumes that \code{x1} is a single numeric log marginal likelihood (e.g., from \code{\link{logml}}) and will throw an error otherwise.} \item{x2}{Object of class \code{"bridge"} or \code{"bridge_list"} as returned from \code{\link{bridge_sampler}}. Additionally, the default method assumes that \code{x2} is a single numeric log marginal likelihood (e.g., from \code{\link{logml}}) and will throw an error otherwise.} \item{log}{Boolean. If \code{TRUE}, the function returns the log of the Bayes factor. Default is \code{FALSE}.} \item{...}{currently not used here, but can be used by other methods.} } \value{ For the default method returns a list of class \code{"bf_default"} with components: \itemize{ \item \code{bf}: (scalar) value of the Bayes factor in favor of the model associated with \code{x1} over the model associated with \code{x2}. \item \code{log}: Boolean which indicates whether \code{bf} corresponds to the log Bayes factor. } For the method for \code{"bridge"} objects returns a list of class \code{"bf_bridge"} with components: \itemize{ \item \code{bf}: (scalar) value of the Bayes factor in favor of the model associated with \code{x1} over the model associated with \code{x2}. \item \code{log}: Boolean which indicates whether \code{bf} corresponds to the log Bayes factor. } For the method for \code{"bridge_list"} objects returns a list of class \code{"bf_bridge_list"} with components: \itemize{ \item \code{bf}: a numeric vector consisting of Bayes factors where each element gives the Bayes factor for one set of logmls in favor of the model associated with \code{x1} over the model associated with \code{x2}. The length of this vector is given by the \code{"bridge_list"} element with the most \code{repetitions}. Elements with fewer repetitions will be recycled (with warning). \item \code{bf_median_based}: (scalar) value of the Bayes factor in favor of the model associated with \code{x1} over the model associated with \code{x2} that is based on the median values of the logml estimates. \item \code{log}: Boolean which indicates whether \code{bf} corresponds to the log Bayes factor. } } \description{ Generic function that computes Bayes factor(s) from marginal likelihoods. \code{bayes_factor()} is simply an (S3 generic) alias for \code{bf()}. } \details{ Computes the Bayes factor (Kass & Raftery, 1995) in favor of the model associated with \code{x1} over the model associated with \code{x2}. } \note{ For examples, see \code{\link{bridge_sampler}} and the accompanying vignettes: \cr \code{vignette("bridgesampling_example_jags")} \cr \code{vignette("bridgesampling_example_stan")} } \references{ Kass, R. E., & Raftery, A. E. (1995). Bayes factors. \emph{Journal of the American Statistical Association, 90(430)}, 773-795. \doi{10.1080/01621459.1995.10476572} } \author{ Quentin F. Gronau } bridgesampling/man/ier.Rd0000644000176200001440000001304715055304401015064 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/ier-data.R \docType{data} \encoding{UTF-8} \name{ier} \alias{ier} \title{Standardized International Exchange Rate Changes from 1975 to 1986} \format{ A matrix with 143 rows and 6 columns. } \source{ West, M., Harrison, J. (1997). \emph{Bayesian forecasting and dynamic models} (2nd ed.). Springer-Verlag, New York. Lopes, H. F., West, M. (2004). Bayesian model assessment in factor analysis. \emph{Statistica Sinica, 14}, 41-67. } \usage{ ier } \description{ This data set contains the changes in monthly international exchange rates for pounds sterling from January 1975 to December 1986 obtained from West and Harrison (1997, pp. 612-615). Currencies tracked are US Dollar (column \code{us_dollar}), Canadian Dollar (column \code{canadian_dollar}), Japanese Yen (column \code{yen}), French Franc (column \code{franc}), Italian Lira (column \code{lira}), and the (West) German Mark (column \code{mark}). Each series has been standardized with respect to its sample mean and standard deviation. } \examples{ \dontrun{ ################################################################################ # BAYESIAN FACTOR ANALYSIS (AS PROPOSED BY LOPES & WEST, 2004) ################################################################################ library(bridgesampling) library(rstan) cores <- 4 options(mc.cores = cores) data("ier") #------------------------------------------------------------------------------- # plot data #------------------------------------------------------------------------------- currency <- colnames(ier) label <- c("US Dollar", "Canadian Dollar", "Yen", "Franc", "Lira", "Mark") op <- par(mfrow = c(3, 2), mar = c(6, 6, 3, 3)) for (i in seq_along(currency)) { plot(ier[,currency[i]], type = "l", col = "darkblue", axes = FALSE, ylim = c(-4, 4), ylab = "", xlab = "", lwd = 2) axis(1, at = 0:12*12, labels = 1975:1987, cex.axis = 1.7) axis(2, at = pretty(c(-4, 4)), las = 1, cex.axis = 1.7) mtext("Year", 1, cex = 1.5, line = 3.2) mtext("Exchange Rate Changes", 2, cex = 1.4, line = 3.2) mtext(label[i], 3, cex = 1.6, line = .1) } par(op) #------------------------------------------------------------------------------- # stan model #------------------------------------------------------------------------------- model_code <- "data { int T; // number of observations int m; // number of variables int k; // number of factors matrix[T,m] Y; // data matrix } transformed data { int r; vector[m] zeros; r = m * k - k * (k - 1) / 2; // number of non-zero factor loadings zeros = rep_vector(0.0, m); } parameters { real beta_lower[r - k]; // lower-diagonal elements of beta real beta_diag [k]; // diagonal elements of beta vector[m] sigma2; // residual variances } transformed parameters { matrix[m,k] beta; cov_matrix[m] Omega; // construct lower-triangular factor loadings matrix { int index_lower = 1; for (j in 1:k) { for (i in 1:m) { if (i == j) { beta[j,j] = beta_diag[j]; } else if (i >= j) { beta[i,j] = beta_lower[index_lower]; index_lower = index_lower + 1; } else { beta[i,j] = 0.0; } } } } Omega = beta * beta' + diag_matrix(sigma2); } model { // priors target += normal_lpdf(beta_diag | 0, 1) - k * normal_lccdf(0 | 0, 1); target += normal_lpdf(beta_lower | 0, 1); target += inv_gamma_lpdf(sigma2 | 2.2 / 2.0, 0.1 / 2.0); // likelihood for(t in 1:T) { target += multi_normal_lpdf(Y[t] | zeros, Omega); } }" # compile model model <- stan_model(model_code = model_code) #------------------------------------------------------------------------------- # fit models and compute log marginal likelihoods #------------------------------------------------------------------------------- # function for generating starting values init_fun <- function(nchains, k, m) { r <- m * k - k * (k - 1) / 2 out <- vector("list", nchains) for (i in seq_len(nchains)) { beta_lower <- array(runif(r - k, 0.05, 1), dim = r - k) beta_diag <- array(runif(k, .05, 1), dim = k) sigma2 <- array(runif(m, .05, 1.5), dim = m) out[[i]] <- list(beta_lower = beta_lower, beta_diag = beta_diag, sigma2 = sigma2) } return(out) } set.seed(1) stanfit <- bridge <- vector("list", 3) for (k in 1:3) { stanfit[[k]] <- sampling(model, data = list(Y = ier, T = nrow(ier), m = ncol(ier), k = k), iter = 11000, warmup = 1000, chains = 4, init = init_fun(nchains = 4, k = k, m = ncol(ier)), cores = cores, seed = 1) bridge[[k]] <- bridge_sampler(stanfit[[k]], method = "warp3", repetitions = 10, cores = cores) } # example output summary(bridge[[2]]) #------------------------------------------------------------------------------- # compute posterior model probabilities #------------------------------------------------------------------------------- pp <- post_prob(bridge[[1]], bridge[[2]], bridge[[3]], model_names = c("k = 1", "k = 2", "k = 3")) pp op <- par(mar = c(6, 6, 3, 3)) boxplot(pp, axes = FALSE, ylim = c(0, 1), ylab = "", xlab = "") axis(1, at = 1:3, labels = colnames(pp), cex.axis = 1.7) axis(2, cex.axis = 1.1) mtext("Posterior Model Probability", 2, cex = 1.5, line = 3.2) mtext("Number of Factors", 1, cex = 1.4, line = 3.2) par(op) } } \keyword{dataset} bridgesampling/man/turtles.Rd0000644000176200001440000001154415055304401016007 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/turtles-data.R \docType{data} \encoding{UTF-8} \name{turtles} \alias{turtles} \title{Turtles Data from Janzen, Tucker, and Paukstis (2000)} \format{ A data.frame with 244 rows and 3 variables. } \source{ Janzen, F. J., Tucker, J. K., & Paukstis, G. L. (2000). Experimental analysis of an early life-history stage: Selection on size of hatchling turtles. \emph{Ecology, 81(8)}, 2290-2304. \doi{10.2307/177115} Overstall, A. M., & Forster, J. J. (2010). Default Bayesian model determination methods for generalised linear mixed models. \emph{Computational Statistics & Data Analysis, 54}, 3269-3288. \doi{10.1016/j.csda.2010.03.008} Sinharay, S., & Stern, H. S. (2005). An empirical comparison of methods for computing Bayes factors in generalized linear mixed models. \emph{Journal of Computational and Graphical Statistics, 14(2)}, 415-435. \doi{10.1198/106186005X47471} } \usage{ turtles } \description{ This data set contains information about 244 newborn turtles from 31 different clutches. For each turtle, the data set includes information about survival status (column \code{y}; 0 = died, 1 = survived), birth weight in grams (column \code{x}), and clutch (family) membership (column \code{clutch}; an integer between one and 31). The clutches have been ordered according to mean birth weight. } \examples{ \dontrun{ ################################################################################ # BAYESIAN GENERALIZED LINEAR MIXED MODEL (PROBIT REGRESSION) ################################################################################ library(bridgesampling) library(rstan) data("turtles") #------------------------------------------------------------------------------- # plot data #------------------------------------------------------------------------------- # reproduce Figure 1 from Sinharay & Stern (2005) xticks <- pretty(turtles$clutch) yticks <- pretty(turtles$x) plot(1, type = "n", axes = FALSE, ylab = "", xlab = "", xlim = range(xticks), ylim = range(yticks)) points(turtles$clutch, turtles$x, pch = ifelse(turtles$y, 21, 4), cex = 1.3, col = ifelse(turtles$y, "black", "darkred"), bg = "grey", lwd = 1.3) axis(1, cex.axis = 1.4) mtext("Clutch Identifier", side = 1, line = 2.9, cex = 1.8) axis(2, las = 1, cex.axis = 1.4) mtext("Birth Weight (Grams)", side = 2, line = 2.6, cex = 1.8) #------------------------------------------------------------------------------- # Analysis: Natural Selection Study (compute same BF as Sinharay & Stern, 2005) #------------------------------------------------------------------------------- ### H0 (model without random intercepts) ### H0_code <- "data { int N; int y[N]; real x[N]; } parameters { real alpha0_raw; real alpha1_raw; } transformed parameters { real alpha0 = sqrt(10.0) * alpha0_raw; real alpha1 = sqrt(10.0) * alpha1_raw; } model { // priors target += normal_lpdf(alpha0_raw | 0, 1); target += normal_lpdf(alpha1_raw | 0, 1); // likelihood for (i in 1:N) { target += bernoulli_lpmf(y[i] | Phi(alpha0 + alpha1 * x[i])); } }" ### H1 (model with random intercepts) ### H1_code <- "data { int N; int y[N]; real x[N]; int C; int clutch[N]; } parameters { real alpha0_raw; real alpha1_raw; vector[C] b_raw; real sigma2; } transformed parameters { vector[C] b; real sigma = sqrt(sigma2); real alpha0 = sqrt(10.0) * alpha0_raw; real alpha1 = sqrt(10.0) * alpha1_raw; b = sigma * b_raw; } model { // priors target += - 2 * log(1 + sigma2); // p(sigma2) = 1 / (1 + sigma2) ^ 2 target += normal_lpdf(alpha0_raw | 0, 1); target += normal_lpdf(alpha1_raw | 0, 1); // random effects target += normal_lpdf(b_raw | 0, 1); // likelihood for (i in 1:N) { target += bernoulli_lpmf(y[i] | Phi(alpha0 + alpha1 * x[i] + b[clutch[i]])); } }" set.seed(1) ### fit models ### stanfit_H0 <- stan(model_code = H0_code, data = list(y = turtles$y, x = turtles$x, N = nrow(turtles)), iter = 15500, warmup = 500, chains = 4, seed = 1) stanfit_H1 <- stan(model_code = H1_code, data = list(y = turtles$y, x = turtles$x, N = nrow(turtles), C = max(turtles$clutch), clutch = turtles$clutch), iter = 15500, warmup = 500, chains = 4, seed = 1) set.seed(1) ### compute (log) marginal likelihoods ### bridge_H0 <- bridge_sampler(stanfit_H0) bridge_H1 <- bridge_sampler(stanfit_H1) ### compute approximate percentage errors ### error_measures(bridge_H0)$percentage error_measures(bridge_H1)$percentage ### summary ### summary(bridge_H0) summary(bridge_H1) ### compute Bayes factor ("true" value: BF01 = 1.273) ### bf(bridge_H0, bridge_H1) } } \keyword{dataset} bridgesampling/man/post_prob.Rd0000644000176200001440000000763615055304401016323 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/post_prob.R \name{post_prob} \alias{post_prob} \alias{post_prob.bridge} \alias{post_prob.bridge_list} \alias{post_prob.default} \title{Posterior Model Probabilities from Marginal Likelihoods} \usage{ post_prob(x, ..., prior_prob = NULL, model_names = NULL) \method{post_prob}{bridge}(x, ..., prior_prob = NULL, model_names = NULL) \method{post_prob}{bridge_list}(x, ..., prior_prob = NULL, model_names = NULL) \method{post_prob}{default}(x, ..., prior_prob = NULL, model_names = NULL) } \arguments{ \item{x}{Object of class \code{"bridge"} or \code{"bridge_list"} as returned from \code{\link{bridge_sampler}}. Additionally, the default method assumes that all passed objects are numeric log marginal likelihoods (e.g., from \code{\link{logml}}) and will throw an error otherwise.} \item{...}{further objects of class \code{"bridge"} or \code{"bridge_list"} as returned from \code{\link{bridge_sampler}}. Or numeric values for the default method.} \item{prior_prob}{numeric vector with prior model probabilities. If omitted, a uniform prior is used (i.e., all models are equally likely a priori). The default \code{NULL} corresponds to equal prior model weights.} \item{model_names}{If \code{NULL} (the default) will use model names derived from deparsing the call. Otherwise will use the passed values as model names.} } \value{ For the default method and the method for \code{"bridge"} objects, a named numeric vector with posterior model probabilities (i.e., which sum to one). For the method for \code{"bridge_list"} objects, a matrix consisting of posterior model probabilities where each row sums to one and gives the model probabilities for one set of logmls. The (named) columns correspond to the models and the number of rows is given by the \code{"bridge_list"} element with the most \code{repetitions}. Elements with fewer repetitions will be recycled (with warning). } \description{ Generic function that computes posterior model probabilities from marginal likelihoods. } \note{ For realistic examples, see \code{\link{bridge_sampler}} and the accompanying vignettes: \cr \code{vignette("bridgesampling_example_jags")} \cr \code{vignette("bridgesampling_example_stan")} } \examples{ H0 <- structure(list(logml = -20.8084543022433, niter = 4, method = "normal"), .Names = c("logml", "niter", "method"), class = "bridge") H1 <- structure(list(logml = -17.9623077558729, niter = 4, method = "normal"), .Names = c("logml", "niter", "method"), class = "bridge") H2 <- structure(list(logml = -19, niter = 4, method = "normal"), .Names = c("logml", "niter", "method"), class = "bridge") post_prob(H0, H1, H2) post_prob(H1, H0) ## all produce the same (only names differ): post_prob(H0, H1, H2) post_prob(H0$logml, H1$logml, H2$logml) post_prob(c(H0$logml, H1$logml, H2$logml)) post_prob(H0$logml, c(H1$logml, H2$logml)) post_prob(H0$logml, c(H1$logml, H2$logml), model_names = c("H0", "H1", "H2")) ### with bridge list elements: H0L <- structure(list(logml = c(-20.8088381186739, -20.8072772698116, -20.808454454621, -20.8083419072281, -20.8087870541247, -20.8084887398113, -20.8086023582344, -20.8079083169745, -20.8083048489095, -20.8090050811436 ), niter = c(4, 4, 4, 4, 4, 4, 4, 4, 4, 4), method = "normal", repetitions = 10), .Names = c("logml", "niter", "method", "repetitions"), class = "bridge_list") H1L <- structure(list(logml = c(-17.961665507006, -17.9611290723151, -17.9607509604499, -17.9608629535992, -17.9602093576442, -17.9600223300432, -17.9610157118017, -17.9615557696561, -17.9608437034849, -17.9606743200309 ), niter = c(4, 4, 4, 4, 4, 4, 4, 4, 3, 4), method = "normal", repetitions = 10), .Names = c("logml", "niter", "method", "repetitions"), class = "bridge_list") post_prob(H1L, H0L) post_prob(H1L, H0L, H0) # last element recycled with warning. } \author{ Quentin F. Gronau and Henrik Singmann } bridgesampling/DESCRIPTION0000644000176200001440000000472415107257542014766 0ustar liggesusersPackage: bridgesampling Type: Package Title: Bridge Sampling for Marginal Likelihoods and Bayes Factors Version: 1.2-1 Authors@R: c(person(given="Quentin F.", family="Gronau", role=c("aut", "cre"), email="Quentin.F.Gronau@gmail.com", comment=c(ORCID="0000-0001-5510-6943")), person(given="Henrik", family="Singmann", role="aut", comment=c(ORCID="0000-0002-4842-3657")), person(given="Jonathan J.", family="Forster", role="ctb"), person(given="Eric-Jan", family="Wagenmakers", role="ths"), person(family="The JASP Team", role="ctb"), person("Jiqiang", "Guo", role = "ctb"), person("Jonah", "Gabry", role = "ctb"), person("Ben", "Goodrich", role = c("ctb")), person("Kees", "Mulder", role = c("ctb")), person("Perry", "de Valpine", role = c("ctb")), person(given="Aki", family="Vehtari", role = c("ctb")), person(given="Giorgio", family="Micaletto", role = c("ctb")) ) Depends: R (>= 3.0.0) Imports: mvtnorm, Matrix, Brobdingnag, stringr, coda, parallel, scales, utils, methods Suggests: testthat, Rcpp, RcppEigen, R2jags, rjags, runjags, knitr, rmarkdown, R.rsp, BayesFactor, rstan, rstanarm, nimble, MCMCpack, cmdstanr (>= 0.6.0) Description: Provides functions for estimating marginal likelihoods, Bayes factors, posterior model probabilities, and normalizing constants in general, via different versions of bridge sampling (Meng & Wong, 1996, ). Gronau, Singmann, & Wagenmakers (2020) . Additional_repositories: https://stan-dev.r-universe.dev/ License: GPL (>= 2) LazyData: true RoxygenNote: 7.3.3 Encoding: UTF-8 VignetteBuilder: knitr, R.rsp URL: https://github.com/quentingronau/bridgesampling NeedsCompilation: no Packaged: 2025-11-18 11:10:07 UTC; singmann Author: Quentin F. Gronau [aut, cre] (ORCID: ), Henrik Singmann [aut] (ORCID: ), Jonathan J. Forster [ctb], Eric-Jan Wagenmakers [ths], The JASP Team [ctb], Jiqiang Guo [ctb], Jonah Gabry [ctb], Ben Goodrich [ctb], Kees Mulder [ctb], Perry de Valpine [ctb], Aki Vehtari [ctb], Giorgio Micaletto [ctb] Maintainer: Quentin F. Gronau Repository: CRAN Date/Publication: 2025-11-19 06:10:42 UTC