dimRed/0000755000176200001440000000000015002200162011442 5ustar liggesusersdimRed/tests/0000755000176200001440000000000015001744211012613 5ustar liggesusersdimRed/tests/testthat/0000755000176200001440000000000015002200162014444 5ustar liggesusersdimRed/tests/testthat/test_misc_functions.R0000644000176200001440000000244714262545231020700 0ustar liggesuserstest_that("squared euclidean distance", { a <- matrix(rnorm(25), 5, 5) b <- matrix(rnorm(25), 5, 5) expect_equal( t(as.matrix(dist(rbind(a, b)))[6:10, 1:5] ^ 2), pdist2(a, b), ignore_attr = TRUE ) }) test_that("formula functions", { a <- matrix(rnorm(25), 5, 5) b <- matrix(rnorm(25), 5, 5) expect_true(rhs(a + b ~ c + d) == ~ c + d + 0) expect_true(lhs(a + b ~ c + d) == ~ a + b + 0) ## expect_equal(rhs(a + b ~ c + d), ~ c + d + 0) ## expect_equal(lhs(a + b ~ c + d), ~ a + b + 0) }) test_that("makeEpsGraph", { if(!requireNamespace("Matrix", quietly = TRUE)) skip("Matrix required") check_makeEpsGraph <- function(x, eps){ naive <- as.matrix(dist(x)) naive[naive >= eps] <- 0 epsSp <- as.matrix(makeEpsSparseMatrix(x, eps)) all(naive == epsSp) } expect_true(check_makeEpsGraph(iris[1:4], 1000)) expect_true(check_makeEpsGraph(iris[1:4], 1)) expect_true(check_makeEpsGraph(iris[1:4], 0.5)) }) test_that("getRotationMatrixFail", { if(!requireNamespace("Rtsne", quietly = TRUE)) skip("Rtsne not available") irisData <- as(iris[, 1:4], "dimRedData") expect_equal(class(irisData)[1], "dimRedData") irisRes <- embed(irisData, "tSNE") expect_error(getRotationMatrix(irisRes), "Not implemented for") }) dimRed/tests/testthat/test_dimRedData_class.R0000644000176200001440000000256214210362247021033 0ustar liggesuserstest_that("constructor", { expect_equal(dimRedData(), new("dimRedData", data = matrix(numeric(0), nrow = 0, ncol = 0), meta = data.frame())) expect_error(dimRedData(iris)) expect_s4_class(dimRedData(iris[, 1:4], iris[, 5]), "dimRedData") expect_s4_class(dimRedData(iris[, 1:4]), "dimRedData") expect_error(dimRedData(iris)) }) test_that("conversion functions", { expect_equal(as(iris[, 1:4], "dimRedData"), dimRedData(iris[, 1:4])) expect_error(as(iris, "dimRedData")) expect_equal(as(loadDataSet("Iris"), "data.frame"), as.data.frame(loadDataSet("Iris"))) expect_equal(as.dimRedData( Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, iris), loadDataSet("Iris"), ignore_attr = TRUE ) }) test_that("misc functions", { Iris <- loadDataSet("Iris") expect_equal(getData(Iris), Iris@data) expect_equal(getMeta(Iris), Iris@meta) ## No idea why this one is broken with --run-donttest --run-dontrun --timings ## Also broken for devtools::test("dimRed") expect_equal(nrow(Iris), 150) expect_equal(Iris[1:4], Iris[1:4, ]) expect_equal(Iris[1:4], Iris[c(rep(TRUE, 4), rep(FALSE, 146))]) expect_equal(Iris[1:4], Iris[c(rep(TRUE, 4), rep(FALSE, 146)), ]) }) dimRed/tests/testthat/test_isomap.R0000644000176200001440000000253214262544757017154 0ustar liggesusers ## no isomap specific tests, because forward method is not really ## exact. test_that("check vs vegan isomap", { if (!requireNamespace(c("vegan", dimRed:::getMethodDependencies("Isomap")), quietly = TRUE)) { skip("Not all required packages for isomap tests installed") } eps <- 1e-8 a <- loadDataSet("3D S Curve", n = 200) vegiso <- vegan::isomap(dist(getData(a)), k = 8, ndim = 2) vegy <- vegan::scores(vegiso) drdiso <- embed(a, "Isomap", knn = 8, ndim = 2) drdy <- drdiso@data@data ## Randomly fails: ## expect_equal(drdy, vegy, ignore_attr = TRUE) err1 <- max(abs(drdy - vegy)) drdy[, 2] <- -drdy[, 2] err2 <- max(abs(drdy - vegy)) drdy[, 1] <- -drdy[, 1] err3 <- max(abs(drdy - vegy)) drdy[, 2] <- -drdy[, 2] err4 <- max(abs(drdy - vegy)) err <- min(err1, err2, err3, err4) expect_true(err < eps, info = paste0("err = ", err, ", eps = ", eps, ", expected err < eps")) }) test_that("check other.data", { if (!requireNamespace(dimRed:::getMethodDependencies("Isomap"), quietly = TRUE)) { skip("Not all required packages for isomap tests installed") } a <- loadDataSet("3D S Curve", n = 200) drdiso <- embed(a, "Isomap", knn = 8, ndim = 2, get_geod = TRUE) expect_true(inherits(getOtherData(drdiso)$geod, "dist")) }) dimRed/tests/testthat/test_dataSets.R0000644000176200001440000000025614210360550017411 0ustar liggesuserstest_that("datasets load", { for (d in dataSetList()) { ds <- loadDataSet(d) expect(inherits(ds, "dimRedData"), "must be of class 'dimRedData'") } }) dimRed/tests/testthat/test_HLLE.R0000644000176200001440000000035114262544723016376 0ustar liggesuserstest_that("HLLE", { if(requireNamespace(dimRed:::getMethodDependencies("HLLE"), quietly = TRUE)) expect_error(embed(iris[1:4], "HLLE", ndim = 1, .mute = c("message", "output")), "ndim must be 2 or larger.") }) dimRed/tests/testthat/test_high_level_functions.R0000644000176200001440000000273614744717774022076 0ustar liggesuserstest_that("high level functions working?", { embed_methods <- dimRedMethodList(filter = TRUE) quality_methods <- dimRedQualityList(filter = TRUE) scurve <- loadDataSet("3D S Curve", n = 300) for (i in seq_len(ncol(scurve@data))){ scurve@data[, i] <- scurve@data[, i] - min(scurve@data[, i]) } quality_results <- matrix(NA, length(embed_methods), length(quality_methods), dimnames = list(embed_methods, quality_methods)) embedded_data <- list() for (e in embed_methods) { message("embedding: ", e) if ( (e != "AutoEncoder" || reticulate::py_module_available("tensorflow")) && (e != "UMAP" || reticulate::py_module_available("umap-learn")) ) { suppressWarnings( embedded_data[[e]] <- embed( scurve, e, .mute = c("message", "output"))) for (q in quality_methods) { message(" quality: ", q) quality_results[e, q] <- tryCatch( suppressWarnings(quality(embedded_data[[e]], q, .mute = c("message", "output"))), error = function (e) NA ) } } } lapply(embedded_data, function(x) expect_equal(2, getNDim(x))) expect(inherits(quality_results, "matrix"), "should be matrix") expect(storage.mode(quality_results) == "double", 'storage should be "double"') }) dimRed/tests/testthat/test_PCA.R0000644000176200001440000000502414210361055016243 0ustar liggesuserstest_that("general data conversions", { irisData <- as(iris[, 1:4], "dimRedData") expect_equal(class(irisData)[1], "dimRedData") irisParsCS <- list(center = TRUE, scale. = TRUE) irisParsC <- list(center = TRUE, scale. = FALSE) irisParsS <- list(center = FALSE, scale. = TRUE) irisPars <- list(center = FALSE, scale. = FALSE) irisResCS <- do.call(function(...) embed(irisData, "PCA", ...), irisParsCS) irisResS <- do.call(function(...) embed(irisData, "PCA", ...), irisParsS) irisResC <- do.call(function(...) embed(irisData, "PCA", ...), irisParsC) irisRes <- do.call(function(...) embed(irisData, "PCA", ...), irisPars) expect_equal(2, getNDim(irisResCS)) expect_equal(2, getNDim(irisResS)) expect_equal(2, getNDim(irisResC)) expect_equal(2, getNDim(irisRes)) expect_equal(class(irisResCS)[1], "dimRedResult") expect_equal(class(irisResS)[1], "dimRedResult") expect_equal(class(irisResC)[1], "dimRedResult") expect_equal(class(irisRes)[1], "dimRedResult") expect_equal(irisResCS@apply(irisData), irisResCS@data) expect_equal(irisResS@apply(irisData), irisResS@data) expect_equal(irisResC@apply(irisData), irisResC@data) expect_equal(irisRes@apply(irisData), irisRes@data) expect(sqrt(mean( (irisResCS@inverse(irisResCS@data)@data - irisData@data) ^ 2 )) < 0.3, "error too large" ) expect(sqrt(mean( (irisResS@inverse(irisResS@data)@data - irisData@data) ^ 2 )) < 0.3, "error too large" ) expect(sqrt(mean( (irisResC@inverse(irisResC@data)@data - irisData@data) ^ 2 )) < 0.3, "error too large" ) expect(sqrt(mean( (irisRes@inverse(irisRes@data)@data - irisData@data) ^ 2 )) < 0.3, "error too large" ) scale2 <- function(x, center, scale.) scale(x, center, scale.) expect_equal( do.call(function(...) scale2(iris[1:4], ...) %*% getRotationMatrix(irisResCS), irisParsCS), getData( getDimRedData(irisResCS) ) ) expect_equal( do.call(function(...) scale2(iris[1:4], ...) %*% getRotationMatrix(irisResS), irisParsS), getData( getDimRedData(irisResS) ) ) expect_equal( do.call(function(...) scale2(iris[1:4], ...) %*% getRotationMatrix(irisResC), irisParsC), getData( getDimRedData(irisResC) ) ) expect_equal( do.call(function(...) scale2(iris[1:4], ...) %*% getRotationMatrix(irisRes), irisPars), getData( getDimRedData(irisRes) ) ) }) dimRed/tests/testthat/test_quality.R0000644000176200001440000000671214744732173017354 0ustar liggesuserstest_that("quality", { irisData <- loadDataSet("Iris") # remove duplicates irisData <- irisData[!duplicated(irisData@data), ] parsPCA <- list(center = TRUE, scale. = TRUE) resPCA <- do.call(function(...) embed(irisData, "PCA", ...), parsPCA) if(requireNamespace("coRanking", quietly = TRUE)) expect_true(is.numeric(Q_local(resPCA))) if(requireNamespace("coRanking", quietly = TRUE)) expect_true(is.numeric(Q_global(resPCA))) if(requireNamespace("coRanking", quietly = TRUE)) expect_true(is.numeric(mean_R_NX(resPCA))) if(requireNamespace("optimx", quietly = TRUE)) expect_true(is.numeric(total_correlation(resPCA))) expect_true(is.numeric(cophenetic_correlation(resPCA))) if (requireNamespace("energy", quietly = TRUE)) expect_true(is.numeric(distance_correlation(resPCA))) expect_true(is.numeric(reconstruction_rmse(resPCA))) ## suppressWarnings( ## resQual <- list( ## Q_local(resPCA), ## Q_global(resPCA), ## mean_R_NX(resPCA), ## total_correlation(resPCA), ## cophenetic_correlation(resPCA), ## distance_correlation(resPCA), ## reconstruction_rmse(resPCA) ## ) ## ) ## lapply(resQual, function(x) expect_true(is.numeric(x))) }) test_that("Q_local ndim", { if(!requireNamespace("coRanking", quietly = TRUE)) { skip("coRanking not available") } irisData <- loadDataSet("Iris") irisData <- irisData[!duplicated(irisData@data)] parsPCA <- list(center = TRUE, scale. = FALSE, ndim = 4) resPCA <- do.call(function(...) embed(irisData, "PCA", ...), parsPCA) tmp <- sapply(1:4, function(x) quality(resPCA, "Q_local", ndim = x)) expect_equal(rank(tmp), 1:4) }) test_that("rmse_by_ndim", { if(!requireNamespace("DRR", quietly = TRUE)) { skip("DRR not available") } ir <- loadDataSet("Iris") set.seed(1) ir.drr <- embed(ir, "DRR", .mute = c("message", "output"), ndim = ndims(ir)) ir.pca <- embed(ir, "PCA", ndim = ndims(ir)) rmse_res <- data.frame( drr = reconstruction_error(ir.drr), pca = reconstruction_error(ir.pca) ) for (i in 1:length(rmse_res$pca)) { expect_true(rmse_res$pca[i] - rmse_res$drr[i] + 1e-12 > 0, info = paste0( "ndim = ", i, ", rmse pca = ", rmse_res$pca[i], ", rmse drr = ", rmse_res$drr[i] )) } # expect_true(all((rmse_res$pca - rmse_res$drr) + 1e-12 > 0)) expect_error(reconstruction_error(ir.pca, 5)) expect_error(reconstruction_error(ir.pca, 0)) }) test_that("AUC_lnK_R_NX", { if(!requireNamespace("coRanking", quietly = TRUE)) { skip("coRanking not available") } irisData <- loadDataSet("Iris") irisData <- irisData[!duplicated(irisData@data)] parsPCA <- list(center = TRUE, scale. = TRUE, ndim = 4) resPCA <- do.call(function(...) embed(irisData, "PCA", ...), parsPCA) expect_true(length(AUC_lnK_R_NX(resPCA, weight = "inv")) == 1) expect_true(length(AUC_lnK_R_NX(resPCA, weight = "log")) == 1) expect_true(length(AUC_lnK_R_NX(resPCA, weight = "ln")) == 1) expect_true(length(AUC_lnK_R_NX(resPCA, weight = "log10")) == 1) expect_true(AUC_lnK_R_NX(resPCA, weight = "log") == AUC_lnK_R_NX(resPCA, weight = "ln")) expect_error(AUC_lnK_R_NX(resPCA, weight = "asdf")) }) dimRed/tests/testthat/test_drr.R0000644000176200001440000000050014210360624016422 0ustar liggesuserstest_that("drr forward and backward passes", { spiral <- loadDataSet("Helix", n = 200) drr_spiral <- embed(spiral, "DRR", ndim = 3, .mute = c("message", "output")) expect_equal(3, getNDim(drr_spiral)) dsa <- drr_spiral@apply(spiral) dsi <- drr_spiral@inverse(dsa) expect_equal(dsi, spiral) }) dimRed/tests/testthat/test_kPCA.R0000644000176200001440000000543514210360650016424 0ustar liggesuserstest_that("general data conversions", { data(iris) irisData <- loadDataSet("Iris") expect_equal(class(irisData)[1], "dimRedData") irisPars <- list() irisPars[[length(irisPars) + 1]] <- list(kernel = "rbfdot", kpar = list(sigma = 0.1)) irisPars[[length(irisPars) + 1]] <- list(kernel = "rbfdot", kpar = list(sigma = 1)) irisPars[[length(irisPars) + 1]] <- list(kernel = "polydot", kpar = list(degree = 3)) irisPars[[length(irisPars) + 1]] <- list(kernel = "vanilladot", kpar = list()) irisPars[[length(irisPars) + 1]] <- list(kernel = "laplacedot", kpar = list(sigma = 1)) irisPars[[length(irisPars) + 1]] <- list(kernel = "laplacedot", kpar = list(sigma = 0.1)) irisPars[[length(irisPars) + 1]] <- list(kernel = "besseldot", kpar = list(sigma = 0.1, order = 1, degree = 1)) irisPars[[length(irisPars) + 1]] <- list(kernel = "besseldot", kpar = list(sigma = 1, order = 2, degree = 3)) irisPars[[length(irisPars) + 1]] <- list(kernel = "splinedot", kpar = list()) irisRes <- lapply(irisPars, function(x) do.call( function(...) tryCatch(embed(.data = irisData, .method = "kPCA", ...), error = function(e) as.character(e)), x ) ) for (i in 1:length(irisRes)) { if (inherits(irisRes[[i]], "character")){ expect(grepl("singular", irisRes[[i]]), "singular") } else { expect(inherits(irisRes[[i]], "dimRedResult"), 'should be of class "dimRedResult"') } } ## This test fails with multithreaded blas ## for (i in 1:length(irisRes)){ ## if (inherits(irisRes[[i]], "dimRedResult")){ ## expect_equal(irisRes[[i]]@apply(irisData)@data[, 1:2], ## irisRes[[i]]@data@data) ## expect_equal(2, getNDim(irisRes[[i]])) ## ## the reverse is an approximate: ## expect_less_than( ## max( ## irisRes[[i]]@inverse(irisRes[[i]]@data)@data - irisData@data ## ), 300, ## ## paste0("inverse of kpca is an approximate, ", ## ## "so this may fail due to numerical inaccuracy") ## ) ## } ## } ## This one cannot calculate an inverse: kpca.fit <- embed(loadDataSet("3D S", n = 200), "kPCA", kernel = "splinedot", kpar = list()) expect( is.na(kpca.fit@inverse(1)), "The inverse should return NA" ) }) dimRed/tests/testthat/test_autoencoder.R0000644000176200001440000002363314744715757020206 0ustar liggesusers## skip_if_no_tensorflow <- function() { ## if (!requireNamespace(c("tensorflow", "reticulate"), quietly = TRUE) || ## (!reticulate::py_module_available("tensorflow") && ## Sys.getenv("BNET_FORCE_AUTOENCODER_TESTS") != "1")) ## skip("TensorFlow not available for testing") ## } ## skip_if_no_keras <- function() { ## if (!requireNamespace(c("keras3", "reticulate"), quietly = TRUE) || ## (!keras::is_keras_available() && ## Sys.getenv("BNET_FORCE_AUTOENCODER_TESTS") != "1")) ## skip("Keras not available for testing") ## } ## test_that("Check if tensorflow is installed correctly.", { ## skip_if_no_tensorflow() ## requireNamespace("tensorflow", quietly = TRUE) ## tensorflow::tf$compat$v1$disable_v2_behavior() ## # I have not found a way to suppress the warning tf gives on first use. ## sess <- tensorflow::tf$compat$v1$Session() ## hello <- "Hello, TensorFlow!" ## tf_hello <- tensorflow::tf$compat$v1$constant(hello) ## tf_hello_res <- sess$run(tf_hello) ## # in python 3 this returns a `bytes` object $decode() transforms it into a ## # sting, in python 2 this is a simple string ## if(!is.character(tf_hello_res)) ## tf_hello_res <- tf_hello_res$decode() ## ## print("tf_hello_res:") ## ## print(str(tf_hello_res)) ## ## print(tf_hello_res) ## expect(tf_hello_res == hello, paste("tensorflow does not work:\n", ## "hello =", hello, "\n", ## "sess$run(tf_hello) =", tf_hello_res)) ## }) ## test_that("Check errors when building autoencoder.", { ## skip_if_no_tensorflow() ## iris_data <- as(iris[, 1:4], "dimRedData") ## expect_error(embed(iris_data, "AutoEncoder", activation = "sigmoid"), ## "declare an activation function for each layer") ## expect_error(embed(iris_data, "AutoEncoder", n_hidden = c(1, 2, 2, 1)), ## "the number of layers must be impair") ## expect_error(embed(iris_data, "AutoEncoder", weight_decay = -1), ## "weight decay must be > 0") ## expect_error(embed(iris_data, "AutoEncoder", learning_rate = -1), ## "learning rate must be > 0") ## expect_error(embed(iris_data, "AutoEncoder", n_steps = -1), ## "n_steps must be > 0") ## expect_error(embed(iris_data, "AutoEncoder", n_hidden = c(4, 2, 4), ndim = 3), ## "the middle of n_hidden must be equal to ndim") ## }) ## test_that("using autoencoder with parameters", { ## skip_if_no_tensorflow() ## iris_data <- as(iris[, 1:4], "dimRedData") ## expect_equal(class(iris_data)[1], "dimRedData") ## ae <- lapply(1:2, function(x) embed(iris_data, "AutoEncoder", ## n_hidden = c(10, x, 10), ## ndim = x, ## n_steps = 100)) ## aq <- lapply(ae, function(x) quality(x, "reconstruction_rmse")) ## lapply(ae, function(x) expect_s4_class(x, "dimRedResult")) ## ## expect(aq[[1]] > aq[[2]], "the error should decrease with more dimensions") ## ## expect(aq[[2]] > aq[[3]], "the error should decrease with more dimensions") ## ## expect(aq[[3]] > aq[[4]], "the error should decrease with more dimensions") ## lapply(1:length(ae), function(x) expect_equal(x, getNDim(ae[[x]]))) ## ae <- lapply(1:2, function(x) embed(iris_data, ## "AutoEncoder", ## n_hidden = c(10, x, 10), ## ndim = x, ## weight_decay = 0.1, ## n_steps = 100)) ## aq <- lapply(ae, function(x) quality(x, "reconstruction_rmse")) ## lapply(ae, function(x) expect_s4_class(x, "dimRedResult")) ## ## expect(aq[[1]] > aq[[2]], "the error should decrease with more dimensions") ## ## expect(aq[[2]] > aq[[3]], "the error should decrease with more dimensions") ## ## expect(aq[[3]] > aq[[4]], "the error should decrease with more dimensions") ## lapply(1:length(ae), function(x) expect_equal(x, getNDim(ae[[x]]))) ## ae <- lapply(1:2, function(x) embed(iris_data, ## "AutoEncoder", ## n_hidden = c(10, x, 10), ## ndim = x, ## learning_rate = 0.1, ## weight_decay = 0.1, ## n_steps = 100)) ## aq <- lapply(ae, function(x) quality(x, "reconstruction_rmse")) ## lapply(ae, function(x) expect_s4_class(x, "dimRedResult")) ## ## expect(aq[[1]] > aq[[2]], "the error should decrease with more dimensions") ## ## expect(aq[[2]] > aq[[3]], "the error should decrease with more dimensions") ## ## expect(aq[[3]] > aq[[4]], "the error should decrease with more dimensions") ## lapply(1:length(ae), function(x) expect_equal(x, getNDim(ae[[x]]))) ## ae <- lapply(1:2, function(x) embed(iris_data, ## "AutoEncoder", ## n_hidden = c(10, x, 10), ## activation = c("sigmoid", "sigmoid", "sigmoid"), ## ndim = x, ## learning_rate = 0.1, ## weight_decay = 0.1, ## n_steps = 100)) ## aq <- lapply(ae, function(x) quality(x, "reconstruction_rmse")) ## lapply(ae, function(x) expect_s4_class(x, "dimRedResult")) ## aa <- lapply(c("tanh", "sigmoid", "relu", "elu"), ## function(x) embed(iris_data, ## "AutoEncoder", ## n_hidden = c(10, 2, 10), ## activation = c("sigmoid", "sigmoid", "sigmoid"), ## ndim = 2, ## learning_rate = 0.1, ## weight_decay = 0.1, ## n_steps = 100)) ## aaq <- lapply(aa, function(x) quality(x, "reconstruction_rmse")) ## lapply(aa, function(x) expect_s4_class(x, "dimRedResult")) ## ## expect(aq[[1]] > aq[[2]], "the error should decrease with more dimensions") ## ## expect(aq[[2]] > aq[[3]], "the error should decrease with more dimensions") ## ## expect(aq[[3]] > aq[[4]], "the error should decrease with more dimensions") ## lapply(1:length(ae), function(x) expect_equal(x, getNDim(ae[[x]]))) ## }) ## test_that("using autoencoder with autoencoder results", { ## skip_if_no_tensorflow() ## tensorflow::tf$compat$v1$set_random_seed(2) ## iris_data <- as(iris[, 1:4], "dimRedData") ## expect_equal(class(iris_data)[1], "dimRedData") ## ae1 <- lapply(1:2, function(x) embed(iris_data, "AutoEncoder", ## n_hidden = c(10, x, 10), ## ndim = x, n_steps = 1)) ## aq1 <- lapply(ae1, function(x) quality(x, "reconstruction_rmse")) ## ae2 <- lapply(ae1, function(x) embed(iris_data, "AutoEncoder", ## autoencoder = x, n_steps = 1000)) ## aq2 <- lapply(ae2, function(x) quality(x, "reconstruction_rmse")) ## lapply(ae1, function(x) expect_s4_class(x, "dimRedResult")) ## lapply(ae2, function(x) expect_s4_class(x, "dimRedResult")) ## expect(aq1[[1]] > aq2[[1]], "the error should decrease with more steps") ## expect(aq1[[2]] > aq2[[2]], "the error should decrease with more steps") ## ## expect(aq1[[3]] > aq2[[3]], "the error should decrease with more steps") ## ## expect(aq1[[4]] > aq2[[4]], "the error should decrease with more steps") ## lapply(1:length(ae1), function(x) expect_equal(x, getNDim(ae1[[x]]))) ## lapply(1:length(ae2), function(x) expect_equal(x, getNDim(ae2[[x]]))) ## }) ## test_that("using autoencoder with keras", { ## skip_if_no_tensorflow() ## skip_if_no_keras() ## encoder <- function(i) list(keras::layer_dense(units = 10, ## activation = "tanh"), ## keras::layer_dense(units = i)) ## decoder <- function() list(keras::layer_dense(units = 10, ## activation = "tanh"), ## keras::layer_dense(units = 4)) ## iris_data <- as(iris[, 1:4], "dimRedData") ## ae1 <- lapply(1:2, function(x) embed(iris_data, "AutoEncoder", ## keras_graph = list(encoder = encoder(x), ## decoder = decoder()), ## n_steps = 2)) ## aq1 <- lapply(ae1, function(x) quality(x, "reconstruction_rmse")) ## ae2 <- lapply(ae1, function(x) embed(iris_data, "AutoEncoder", ## autoencoder = x)) ## aq2 <- lapply(ae2, function(x) quality(x, "reconstruction_rmse")) ## lapply(ae1, function(x) expect_s4_class(x, "dimRedResult")) ## lapply(ae2, function(x) expect_s4_class(x, "dimRedResult")) ## ## expect(aq1[[1]] > aq2[[1]], "the error should decrease with more steps") ## ## expect(aq1[[2]] > aq2[[2]], "the error should decrease with more steps") ## ## expect(aq1[[3]] > aq2[[3]], "the error should decrease with more steps") ## ## expect(aq1[[4]] > aq2[[4]], "the error should decrease with more steps") ## lapply(1:length(ae1), function(x) expect_equal(x, getNDim(ae1[[x]]))) ## lapply(1:length(ae2), function(x) expect_equal(x, getNDim(ae2[[x]]))) ## }) ## ## test_that("garbage collection", { ## ## skip_if_no_tensorflow() ## ## tmp <- tf$get_session_handle(environment(ae[[1]]@apply)$dec) ## ## tmp <- tf$get_default_session() ## ## tmp$close ## ## tmp ## ## tf$get_session_handle() ## ## tf$Session() ## ## }) dimRed/tests/testthat/test_dimRedResult_class.R0000644000176200001440000000112214257365140021435 0ustar liggesuserstest_that("predict/inverse methods", { dat <- loadDataSet("Iris") emb <- embed(dat, "PCA", ndim = 4) pred <- predict(emb, dat) inv <- inverse(emb, pred) expect_equal(getDimRedData(emb), pred) expect_equal(dat, inv) if(requireNamespace("Rtsne", quietly = TRUE)) { emb2 <- embed(dat, "tSNE") expect_error(predict(emb2, dat)) expect_error(inverse(emb2, dat)) } }) test_that("conversion", { iris_data_frame_as <- as(embed(loadDataSet("Iris"), "PCA"), "data.frame") expect_equal(colnames(iris_data_frame_as), c("meta.Species", "PC1", "PC2", colnames(iris)[-5])) }) dimRed/tests/testthat/test_UMAP.R0000644000176200001440000000422014257245743016417 0ustar liggesusersskip_if_no_umap_learn <- function() { if (!reticulate::py_module_available("umap") && Sys.getenv("BNET_FORCE_UMAP_TESTS") != 1) skip("umap-learn not available, install with `pip install umap-learn==0.4`") } test_that("UMAP python", { if (!requireNamespace("umap", quietly = TRUE)) { skip("umap not available") } skip_if_no_umap_learn() res1 <- embed(iris[1:4], "UMAP", .mute = c("message", "output")) res2 <- embed(iris[1:4], "UMAP", .mute = c("message", "output"), knn = 20) expect_s4_class(res1, "dimRedResult") expect_equal(res1@method, "UMAP") expect_equal(res1@pars$d, "euclidean") expect_equal(res1@pars$knn, 15) expect_equal(res1@pars$method, "umap-learn") expect_equal(res1@pars$ndim, 2) expect_s4_class(res2, "dimRedResult") expect_equal(res2@method, "UMAP") expect_equal(res2@pars$d, "euclidean") expect_equal(res2@pars$knn, 20) expect_equal(res2@pars$method, "umap-learn") expect_equal(res2@pars$ndim, 2) expect_true(any(res1@data@data != res2@data@data)) pred1 <- predict(res1, iris[1:4]) pred2 <- predict(res2, iris[1:4]) expect_equal(dim(pred1@data), dim(res1@data@data)) expect_equal(dim(pred2@data), dim(res2@data@data)) }) test_that("UMAP R", { if (!requireNamespace("umap", quietly = TRUE)) { skip("umap not available") } res1 <- embed(iris[1:4], "UMAP", method = "naive", .mute = c("message", "output")) res2 <- embed(iris[1:4], "UMAP", method = "naive", .mute = c("message", "output"), knn = 20) expect_s4_class(res1, "dimRedResult") expect_equal(res1@method, "UMAP") expect_equal(res1@pars$d, "euclidean") expect_equal(res1@pars$knn, 15) expect_equal(res1@pars$method, "naive") expect_equal(res1@pars$ndim, 2) expect_s4_class(res2, "dimRedResult") expect_equal(res2@method, "UMAP") expect_equal(res2@pars$d, "euclidean") expect_equal(res2@pars$knn, 20) expect_equal(res2@pars$method, "naive") expect_equal(res2@pars$ndim, 2) expect_true(any(res1@data@data != res2@data@data)) pred1 <- predict(res1, iris[1:4]) pred2 <- predict(res2, iris[1:4]) expect_equal(dim(pred1@data), dim(res1@data@data)) expect_equal(dim(pred2@data), dim(res2@data@data)) }) dimRed/tests/testthat/test_embed.R0000644000176200001440000000110314744731362016724 0ustar liggesuserstest_that("standard method is PCA", { res <- embed(iris[1:4]) expect_equal(res@method, "PCA") }) test_that("correctly convert .keep.org.data argument", { res1 <- embed(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, iris, "PCA", .keep.org.data = FALSE) res2 <- embed(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, iris, "PCA", .keep.org.data = TRUE) attr(res2@org.data, "assign") <- NULL expect_equal( unname(as.matrix(iris[1:4])), unname(as.matrix(getOrgData(res2)@data)) ) }) dimRed/tests/testthat/test_NNMF.R0000644000176200001440000001301415001744032016373 0ustar liggesusersskip_if_no_NMF <- function() { if (!requireNamespace("NMF", quietly = TRUE) && Sys.getenv("BNET_FORCE_NNMF_TESTS") != "1") skip("NMF not available for testing") } ## if we don't load the library explicitly, the predict function does not work ## (sometimes...). ## library(NMF) ints_trn <- matrix(seq(0, 98, by = 2), ncol = 5) input_trn <- dimRedData(as.data.frame(ints_trn)) input_tst <- dimRedData(ints_trn[1:3,] + 1) test_that("2D projection", { skip_if_no_NMF() dim_2_defaults <- embed(input_trn, "NNMF", seed = 13, nrun = 1) expect_equal(dim_2_defaults@method, "NNMF") ## Expected results from ## tmp <- NMF::nmf(t(ints_trn), rank = 2, nrun = 1, seed = 13) ## coefs <- basis(tmp) ## rownames(coefs) <- paste0("V", 1:5) ## colnames(coefs) <- paste0("NNMF", 1:2) ## coefs ## dput(coefs) dim_2_coef <- structure( c(18.807241710186, 30.2191667888959, 32.1069052462692, 9.53490906878683, 164.109205703974, 0.00064246562138093, 24.3924277525021, 56.4301459918642, 108.103923297376, 17.566220349863), .Dim = c(5L, 2L), .Dimnames = list(c("V1", "V2", "V3", "V4", "V5"), c("NNMF1", "NNMF2"))) expect_equal(dim_2_defaults@other.data$w, dim_2_coef, ignore_attr = TRUE) dim_2_apply <- dim_2_defaults@apply(input_tst)@data dim_2_pred <- predict(dim_2_defaults, input_tst)@data ## Expected results from ## t(solve(crossprod(basis(tmp)), t(input_tst@data %*% basis(tmp)))) ## preds <- getData(input_tst) %*% t(MASS::ginv(basis(tmp))) ## getData(getDimRedData(dim_2_defaults)) ## colnames(preds) <- paste0("NNMF", 1:2) ## dput(preds) dim_2_exp <- structure( c(0.427476458116875, 0.440237021147746, 0.452997584178617, 0.512256378881175, 0.5332094651398, 0.554162551398426), .Dim = c(3L, 2L), .Dimnames = list(NULL, c("NNMF1", "NNMF2")) ) expect_equal(dim_2_apply, dim_2_exp, tolerance = 0.01, ignore_attr = TRUE) expect_equal(dim_2_pred, dim_2_exp, tolerance = 0.01, ignore_attr = TRUE) }) test_that("other arguments", { skip_if_no_NMF() skip_on_cran() dim_3_args <- embed(input_trn, "NNMF", seed = 13, nrun = 10, ndim = 3, method = "KL", options = list(.pbackend = NULL)) ## Expected results from ## tmp <- NMF::nmf(t(ints_trn), rank = 3, nrun = 10, seed = 13, ## method = "KL", .pbackend = NULL) ## coefs <- t(NMF::coef(tmp)) ## colnames(coefs) <- paste0("NNMF", 1:ncol(coefs)) ## coefs ## dput(coefs) ## rot <- NMF::basis(tmp) ## rownames(rot) <- paste0("V", 1:nrow(rot)) ## dput(rot) dim_3_rot <- structure( c(11.624951277152, 31.2554213278975, 50.8858913786408, 70.5163614293837, 90.1468314801264, 2.22044604925031e-16, 36.4357899711133, 72.8715799422292, 109.307369913346, 145.743159884462, 22.4019808842378, 42.1081005773292, 61.8142202704197, 81.52033996351, 101.2264596566), .Dim = c(5L, 3L), .Dimnames = list(c("V1", "V2", "V3", "V4", "V5"), NULL) ) dim_3_pred <- structure( c(2.22044604925031e-16, 0.0731742704517501, 0.194863499580201, 0.50224638618713, 0.557517908619563, 0.197219538171418, 0.0860784848917408, 0.159094934700865, 0.10366866301249, 0.216483929440989, 0.54891083782883, 0.481738298195276, 0.40204352636632, 0.274419226004639, 0.211867578024856, 0.256578985276104, 0.236980211423017, 0.16984840699324, 0.135869049278152, 0.0584647425861749, 2.22044604925031e-16, 0.0513058500137363, 0.0774360678481537, 0.00720517673339281, 0.0678012129377125, 0.344046917890136, 0.49099862480747, 0.542386371921862, 0.660426277478513, 0.691161417731563), .Dim = c(10L, 3L), .Dimnames = list(NULL, c("NNMF1", "NNMF2", "NNMF3")) ) expect_equal(dim_3_args@other.data$w, dim_3_rot, ignore_attr = TRUE) expect_equal(getData(getDimRedData(dim_3_args)), dim_3_pred, ignore_attr = TRUE) dim_3_apply <- dim_3_args@apply(input_tst)@data dim_3_pred <- predict(dim_3_args, input_tst)@data ## Expected results from ## crossprod(basis(tmp)) does not have full rank!!! This needs to be considered ## w <- getOtherData(dim_3_args)$w ## preds <- t(solve(crossprod(w), t(input_trn@data %*% w))) ## preds <- t(qr.solve(crossprod(w), t(input_trn@data %*% w))) ## preds <- getData(input_tst) %*% t(MASS::ginv(w)) ## preds ## dput(preds) ## getData(getDimRedData(dim_3_args)) ## preds - getData(getDimRedData(dim_3_args)) ## input_trn@data ## input_tst@data %*% basis(tmp) ## colnames(preds) <- paste0("NNMF", 1:3) dim_3_exp <- structure( c(0.118730450278164, 0.144080695556738, 0.169430940835312, 0.494122495652466, 0.439293850852014, 0.384465206051563, -0.0169733070286198, 0.0591496323928872, 0.135272571814394), .Dim = c(3L, 3L) ) expect_equal(dim_3_apply, dim_3_exp, tolerance = 0.01, ignore_attr = TRUE) expect_equal(dim_3_pred, dim_3_exp, tolerance = 0.01, ignore_attr = TRUE) }) test_that("Bad args", { skip_if_no_NMF() expect_error(embed(iris, "NNMF")) expect_error(embed(iris[, 1], "NNMF"), "`ndim` should be less than the number of columns") expect_error(embed(iris[1:4], "NNMF", method = c("a", "b")), "only supply one `method`") expect_error(embed(scale(iris[1:4]), "NNMF"), "negative entries") }) test_that("Full_rank", { skip_if_no_NMF() dim_2_full_rank_example <- embed(input_trn, "NNMF", ndim = ncol(input_trn@data)) dim_2_recon <- inverse(dim_2_full_rank_example, dim_2_full_rank_example@data@data) expect_equal(dim_2_recon, input_trn, ignore_attr = TRUE, tolerance = 1e-2) }) dimRed/tests/testthat/test_fastICA.R0000644000176200001440000000126614744727761017144 0ustar liggesuserstest_that("general data conversions", { if(!requireNamespace("fastICA", quietly = TRUE)) skip("FastICA not available") irisData <- as(iris[, 1:4], "dimRedData") expect_equal(class(irisData)[1], "dimRedData") irisRes <- embed(irisData, "FastICA") expect_equal(class(irisRes)[1], "dimRedResult") expect_equal(2, getNDim(irisRes)) expect_equal(irisRes@apply(irisData), irisRes@data) expect( sqrt( mean( (irisRes@inverse(irisRes@data)@data - irisData@data) ^ 2 ) ) < 0.3, "error too large" ) expect_equal( scale(iris[1:4], TRUE, FALSE) %*% getRotationMatrix(irisRes), unname(as.matrix(getData( getDimRedData(irisRes) )) ) ) }) dimRed/tests/testthat/test_PCA_L1.R0000644000176200001440000000642414210361262016604 0ustar liggesuserstest_that("general data conversions", { skip_if_not_installed("pcaL1") irisData <- as(iris[, 1:4], "dimRedData") expect_equal(class(irisData)[1], "dimRedData") irisParsCS <- list(center = TRUE, .mute = c("message", "output"), ndim = 4, scale. = TRUE, projections = "l1", fun = "l1pca") irisParsC <- list(center = TRUE, .mute = c("message", "output"), ndim = 4, scale. = FALSE, projections = "l1", fun = "l1pca") irisParsS <- list(center = TRUE, .mute = c("message", "output"), ndim = 4, scale. = TRUE, projections = "l1", fun = "l1pcahp") irisPars <- list(center = FALSE, .mute = c("message", "output"), ndim = 4, scale. = FALSE, projections = "l1", fun = "l1pcastar") irisResCS <- do.call(function(...) embed(irisData, "PCA_L1", ...), irisParsCS) irisResS <- do.call(function(...) embed(irisData, "PCA_L1", ...), irisParsS) irisResC <- do.call(function(...) embed(irisData, "PCA_L1", ...), irisParsC) irisRes <- do.call(function(...) embed(irisData, "PCA_L1", ...), irisPars) expect_equal(4, getNDim(irisResCS)) expect_equal(4, getNDim(irisResS)) expect_equal(4, getNDim(irisResC)) expect_equal(4, getNDim(irisRes)) expect_equal(class(irisResCS)[1], "dimRedResult") expect_equal(class(irisResS)[1], "dimRedResult") expect_equal(class(irisResC)[1], "dimRedResult") expect_equal(class(irisRes)[1], "dimRedResult") expect_equal(irisResCS@apply(irisData), irisResCS@data) expect_equal(irisResS@apply(irisData), irisResS@data) expect_equal(irisResC@apply(irisData), irisResC@data) expect_equal(irisRes@apply(irisData), irisRes@data) expect(sqrt(mean( (irisResCS@inverse(irisResCS@data)@data - irisData@data) ^ 2 )) < 0.3, "error too large" ) expect(sqrt(mean( (irisResS@inverse(irisResS@data)@data - irisData@data) ^ 2 )) < 0.3, "error too large" ) expect(sqrt(mean( (irisResC@inverse(irisResC@data)@data - irisData@data) ^ 2 )) < 0.3, "error too large" ) expect(sqrt(mean( (irisRes@inverse(irisRes@data)@data - irisData@data) ^ 2 )) < 0.3, "error too large" ) scale2 <- function(x, center, scale.) scale(x, center, scale.) expect_equal( do.call(function(...) scale2(iris[1:4], ...) %*% getRotationMatrix(irisResCS), irisParsCS[c("center", "scale.")]), getData( getDimRedData(irisResCS) ), tolerance = 1e-2 ) expect_equal( do.call(function(...) scale2(iris[1:4], ...) %*% getRotationMatrix(irisResS), irisParsS[c("center", "scale.")]), getData( getDimRedData(irisResS) ), tolerance = 1e-2 ) expect_equal( do.call(function(...) scale2(iris[1:4], ...) %*% getRotationMatrix(irisResC), irisParsC[c("center", "scale.")]), getData( getDimRedData(irisResC) ), tolerance = 1e-2 ) expect_equal( do.call(function(...) scale2(iris[1:4], ...) %*% getRotationMatrix(irisRes), irisPars[c("center", "scale.")]), getData( getDimRedData(irisRes) ), tolerance = 1e-2 ) expect_s4_class({ embed(iris[1:4], "PCA_L1", ndim = 1, .mute = c("message", "output")) }, "dimRedResult") }) dimRed/tests/testthat/test_dimRedMethod-class.R0000644000176200001440000000065714210361274021322 0ustar liggesuserstest_that("pars matching", { for (m in dimRedMethodList()) { mo <- getMethodObject(m) expect( all.equal( mo@stdpars, matchPars(mo, list()) ), paste("par matching for", m, "failed") ) } expect_warning( embed(iris[1:4], "PCA", asdf = 1234), "Parameter matching: asdf is not a standard parameter, ignoring." ) }) dimRed/tests/testthat/test_diffusion_maps.R0000644000176200001440000000064414262545136020664 0ustar liggesuserstest_that("DiffusionMaps", { if(!requireNamespace("diffusionMap", quietly = TRUE)) skip("diffusionMap not available") expect_s4_class(embed(iris[1:4], "DiffusionMaps", ndim = 1, .mute = c("message", "output")), "dimRedResult") x <- embed(iris[1:4], "DiffusionMaps", ndim = 1, .mute = c("message", "output")) expect_equal(dim(x@data@data), c(150, 1)) }) dimRed/tests/testthat.R0000644000176200001440000000007014210356130014573 0ustar liggesuserslibrary(testthat) library(dimRed) test_check("dimRed") dimRed/MD50000644000176200001440000001474115002200162011761 0ustar liggesusers80685b59eba233f0641a95dc2f8b590f *DESCRIPTION ae5a59342168733d9988af23c3ca4c2a *LICENSE d330534aa91715b1cdb9545e6edf256b *NAMESPACE 796f16f5f6b46687e1983c5506c7f0e5 *NEWS.md 201c0023689a30b5b67a413728b205b4 *R/autoencoder.R 1491fcaf87baa04fbb481e72ed53f5a7 *R/dataSets.R dcef24898d3cd637ff8f0a673b94661b *R/diffmap.R 9e17b49bd7954ac4f67b9cec33eac1b9 *R/dimRed.R 0b64904774785f20eea821044c0d004f *R/dimRedData-class.R 846888664cde08c899d92ec7b9ab1215 *R/dimRedMethod-class.R 3fb979a5be13d3e18b4dde7ddf0506b0 *R/dimRedResult-class.R e9bb046efd5aec88263da8c5d8de6316 *R/drr.R 127ac676befe3b8ca118d4820e38060c *R/embed.R 2e6dcfadd1d5d323e731ebc2c2908ddb *R/fastica.R 8b934d56081b9ec45672e471dbe884f0 *R/get_info.R 777c696aa650fa073d2ab60f1731b09d *R/graph_embed.R f6ca6337120da6a13bb2ec24263993c7 *R/hlle.R cfba1960bd8829ebb625c9fce5eeae0e *R/isomap.R 517c9931b7470f1469c43955281f6d42 *R/kpca.R d31536c7a9df4296f5deee5e5869b2ea *R/l1pca.R bad6255d70197524a66540598b406b8a *R/leim.R 211837b77915c12d60aa8afdcad30276 *R/lle.R c581222aef2dbf574cce698e1a7de896 *R/loe.R daee3bf230a9d1ada83077ffa7eaaf04 *R/mds.R 334bc31da9c3630917960f47a9464200 *R/misc.R 92ff206825d071893e8aaf362b1acf64 *R/mixColorSpaces.R db61fcc3f80f8995e1fd0e3058169a8e *R/nmds.R 7dd5a2b51f5b87d89da9e568492ac9c9 *R/nnmf.R 4732a61c83fcfe26c428119c545801e5 *R/pca.R 02f7ca463dc80475b4d5009bd154b051 *R/plot.R a45908c1d41960e62db1e92bf79572e6 *R/quality.R 090e7d5fd236e1e1ee90d0506c3343dd *R/rotate.R 546e6d5cf4d954c002b0e5d2031eb69f *R/soe.R c774fff3b4dc29fce23f0ba551e57ca1 *R/tsne.R 568f1293f4d67d51657de9c06bb5fe0b *R/umap.R b39ab1a83de041d3d8c6ef7e11552621 *build/vignette.rds f4e3a303a848f1a0b6e94c44191c70da *inst/CITATION 99f77cf405c5fd4fcaac99f51604b4fc *inst/doc/dimensionality-reduction.R 405c2150594b321ec6f8cfe9ce7b0fe9 *inst/doc/dimensionality-reduction.Rnw 644549b4940fa3c9a79267caba836df9 *inst/doc/dimensionality-reduction.pdf bcd35ac3b1f65e2b07692ffb9a7155ae *man/AUC_lnK_R_NX-dimRedResult-method.Rd fe9e0b04a1d198383ff307bfb21ab036 *man/DRR-class.Rd 45b94637add6f1a40b4b9267e15a6b58 *man/DiffusionMaps-class.Rd 682220b6ae1000d794109b34718da9fc *man/DrL-class.Rd 7ffc44deaa88bf2211edb20df290a573 *man/FastICA-class.Rd c2c0fa4aae8aecbf477644f6aba7594f *man/FruchtermanReingold-class.Rd b6a7312ee3bbd4aaaa16182c9dac05e1 *man/HLLE-class.Rd e61eed947667604bf384e9da260d4d82 *man/Isomap-class.Rd 6d56ce493ebb2479c1fa04b867d09ae3 *man/KamadaKawai-class.Rd e66ca8bdfe51f81a92791247fe1d8d2e *man/LCMC-dimRedResult-method.Rd 055aa3fd801e6c4885ad38f96556280d *man/MDS-class.Rd 0691e5081592d36a6fe9e8fa0f135276 *man/NNMF-class.Rd 0106fb08d3d7d7de1f2676fa266e8a16 *man/PCA-class.Rd 32335c7c2897323fc88aad904a5c090a *man/PCA_L1-class.Rd d2a64ee29016f6e9c737fecc37608b44 *man/Q_NX-dimRedResult-method.Rd 673691e8e68075b3d22249960a58ed9c *man/Q_global-dimRedResult-method.Rd db781cbd1ca24c2333ffb1a19c33d0ab *man/Q_local-dimRedResult-method.Rd c80cf369e22ae6e24de57a6ecfa3439a *man/R_NX-dimRedResult-method.Rd 370eafcb555be65fe55d4a7d102c5865 *man/UMAP-class.Rd 718f4e21d3332957a02215ba01e9125f *man/as.data.frame.Rd 6ab876c53c0854ac57bda5cc04102fd6 *man/as.dimRedData.Rd 7d8095baec2b3d9adafadf37e6048785 *man/cophenetic_correlation-dimRedResult-method.Rd f0bd8fc3c88f81644d68f20f2a22767c *man/dataSets.Rd 2a851ea90db82c64fdbe911f0c2094a9 *man/dimRed-package.Rd 26f9a811003a32e53a54d3c3d7c9dcda *man/dimRedData-class.Rd bfe045010ee2e5dd135b715fc01c230a *man/dimRedMethod-class.Rd 2b4b047f4e3b6c8f036fa3e8116ba2e2 *man/dimRedMethodList.Rd 0148e339150babe8dc380a9c637fe870 *man/dimRedResult-class.Rd 8245ced1f3f0de4235b11f84b1a54024 *man/distance_correlation-dimRedResult-method.Rd c13cb40c7e0506359a01d15cb5885dae *man/embed.Rd af8863f32422517f0758352f5773d916 *man/getData.Rd beb9c9c0b2b9069d2cfde3a7ef78f810 *man/getDimRedData.Rd 3d700516a933d7d8fe95cebd9e3e0365 *man/getMeta.Rd 966f27a61120f340e6967930d5a4dae4 *man/getNDim.Rd 54af2a8843ad16e4c8daf4b75f80fd51 *man/getOrgData.Rd 47659991b1edf53bbf1a544d8cbfc231 *man/getOtherData.Rd b6a82a60362da823b309497c27b54d61 *man/getPars.Rd 8afc551d35d07d41b0e186dc77c0aa8b *man/getRotationMatrix.Rd dd3364861488caf3f1e293c986809ce9 *man/installSuggests.Rd 451e8bbe6e5085f7f5b67af1420472ce *man/kPCA-class.Rd e6fda0f5f8483f08ff20d467eab06cac *man/makeKNNgraph.Rd debb38427c3c0f1d3c3559ad66a3269e *man/maximize_correlation-dimRedResult-method.Rd 889d398a1978c51f13a5319bc6e77ce7 *man/mean_R_NX-dimRedResult-method.Rd 9c4126f34fc27b575fbbe1418fcfeecd *man/mixColorRamps.Rd 8503e7f3a8dfd85585c0211c65af666d *man/nMDS-class.Rd d129fc72b1b204e139d23885ccd064bc *man/ndims.Rd 8dc9a81bff416e186cb509e4ba8a7c97 *man/plot.Rd 606393d1d95a868d9ce18b4659e29bd7 *man/plot_R_NX.Rd ecdac99d07501417ba48b07a28ec5f5d *man/print.Rd 50f6d37bd578d1e45d53752bdbf5ec11 *man/quality.Rd 1fe05b1ae61fd475a4b39db0176ae977 *man/reconstruction_error-dimRedResult-method.Rd bc566baaf50a52c8765a4ff8803e6a6b *man/reconstruction_rmse-dimRedResult-method.Rd 8a26d943719e6dc8ece1cae32766ecde *man/tSNE-class.Rd b8152e44f03d5cfa9046bef699bea694 *man/total_correlation-dimRedResult-method.Rd 90e7032d9dab3cdce1f4cdab889c1e5e *tests/testthat.R 03cee355cbc64743519da8174ff2db64 *tests/testthat/test_HLLE.R 63b9bbcba3a15b74be7a7ff0c9102b17 *tests/testthat/test_NNMF.R 124cf8e233b989da33f93b8aed767c6b *tests/testthat/test_PCA.R 714d4b2860fdcd3dcd139022997b64e1 *tests/testthat/test_PCA_L1.R 3f74997d3c10e771d752cf891fbadcd1 *tests/testthat/test_UMAP.R 36d0cd76923c27edd2a8cea2fd6e2b02 *tests/testthat/test_autoencoder.R f6a9f52f7737fa73cbdfc9d392fe380c *tests/testthat/test_dataSets.R c8693e4a0167b88ca1a6324d1ea9f551 *tests/testthat/test_diffusion_maps.R 4d5f6d5e1436b93d3e134bb85c0010bc *tests/testthat/test_dimRedData_class.R f9c92929b794fea01107fb2a706613da *tests/testthat/test_dimRedMethod-class.R 808be8f4fbf949ae2d5a4acda8d5324d *tests/testthat/test_dimRedResult_class.R 535ba190da5bf8033aa9cadc3e69f15a *tests/testthat/test_drr.R 03149279e6e2323015f560a068224f40 *tests/testthat/test_embed.R f356a2f1cb6bd8a64aa022427f56b52d *tests/testthat/test_fastICA.R d0b07f08a308758f53931380cf3b7864 *tests/testthat/test_high_level_functions.R 055893333a59f9ea739868924cebc3a5 *tests/testthat/test_isomap.R 9e854d7bac4f41dcffc781a071f581d4 *tests/testthat/test_kPCA.R 66fa0b1685e640e4acb5a6edb2e6233f *tests/testthat/test_misc_functions.R 22575c0551c0ccc939b3386f42b96415 *tests/testthat/test_quality.R 55bd9bdc93bd1f08207db81085ff756a *vignettes/Makefile 6b21c813361c55cf8b7361b7a0b3bacf *vignettes/bibliography.bib b3b0dc9c51a39436ebbc3895a9b2f9f6 *vignettes/classification_tree.tex 405c2150594b321ec6f8cfe9ce7b0fe9 *vignettes/dimensionality-reduction.Rnw dimRed/R/0000755000176200001440000000000015001744211011652 5ustar liggesusersdimRed/R/plot.R0000644000176200001440000001747714257367546013023 0ustar liggesusers#' Plotting of dimRed* objects #' #' Plots a object of class dimRedResult and dimRedData. For the #' documentation of the plotting function in base see here: #' \code{\link{plot.default}}. #' #' Plotting functions for the classes usind in \code{dimRed}. they are #' intended to give a quick overview over the results, so they are #' somewhat inflexible, e.g. it is hard to modify color scales or #' plotting parameters. #' #' If you require more control over plotting, it is better to convert #' the object to a \code{data.frame} first and use the standard #' functions for plotting. #' #' @param x dimRedResult/dimRedData class, e.g. output of #' embedded/loadDataSet #' @param y Ignored #' @param type plot type, one of \code{c("pairs", "parpl", "2vars", #' "3vars", "3varsrgl")} #' @param col the columns of the meta slot to use for coloring, can be #' referenced as the column names or number of x@data #' @param vars the axes of the embedding to use for plotting #' @param ... handed over to the underlying plotting function. #' #' @examples #' scurve = loadDataSet("3D S Curve") #' if(requireNamespace("graphics", quietly = TRUE)) #' plot(scurve, type = "pairs", main = "pairs plot of S curve") #' if(requireNamespace("MASS", quietly = TRUE)) #' plot(scurve, type = "parpl") #' if(requireNamespace("graphics", quietly = TRUE)) #' plot(scurve, type = "2vars", vars = c("y", "z")) #' if(requireNamespace("scatterplot3d", quietly = TRUE)) #' plot(scurve, type = "3vars") #' if(requireNamespace("rgl", quietly = TRUE)) #' plot(scurve, type = "3varsrgl") #' #' @include mixColorSpaces.R #' @include dimRedData-class.R #' @importFrom graphics plot #' #' @aliases plot.dimRed #' @export setGeneric( "plot", function(x, y, ...) standardGeneric("plot"), useAsDefault = graphics::plot ) #' @describeIn plot Ploting of dimRedData objects #' @aliases plot.dimRedData #' @export setMethod( f = "plot", signature = c("dimRedData"), definition = function(x, type = "pairs", vars = seq_len(ncol(x@data)), col = seq_len(min(3, ncol(x@meta))), ...) { cols <- colorize(x@meta[, col, drop = FALSE]) switch( type, "pairs" = { chckpkg("graphics") graphics::pairs(x@data[, vars], col = cols, ... ) }, "parpl" = { chckpkg("MASS") MASS::parcoord(x@data[, vars], col = cols, ... ) }, "2vars" = { chckpkg("graphics") graphics::plot(x@data[, vars[1:2]], col = cols, ... ) }, "3vars" = { chckpkg("scatterplot3d") scatterplot3d::scatterplot3d(x@data[, vars[1:3]], color = cols, ...) }, "3varsrgl" = { chckpkg("rgl") rgl::plot3d(x@data[, vars[1:3]], col = cols, ... ) }, stop("wrong argument to plot.dimRedData") ) } ) #' @describeIn plot Ploting of dimRedResult objects. #' @aliases plot.dimRedResult #' @export setMethod( f = "plot", signature = c("dimRedResult"), definition = function (x, type = "pairs", vars = seq_len(ncol(x@data@data)), col = seq_len(min(3, ncol(x@data@meta))), ...) { plot(x = x@data, type = type, vars = vars, col = col, ...) } ) #' plot_R_NX #' #' Plot the R_NX curve for different embeddings. Takes a list of #' \code{\link{dimRedResult}} objects as input. #' Also the Area under the curve values are computed for a weighted K #' (see \link{AUC_lnK_R_NX} for details) and appear in the legend. #' #' @param x a list of \code{\link{dimRedResult}} objects. The names of the list #' will appear in the legend with the AUC_lnK value. #' @param ndim the number of dimensions, if \code{NA} the original number of #' embedding dimensions is used, can be a vector giving the embedding #' dimensionality for each single list element of \code{x}. #' @param weight the weight function used for K when calculating the AUC, one of #' \code{c("inv", "log", "log10")} #' @family Quality scores for dimensionality reduction #' @return A ggplot object, the design can be changed by appending #' \code{theme(...)} #' #' @examples #' if(requireNamespace(c("RSpectra", "igraph", "RANN", "ggplot", "tidyr", "scales"), quietly = TRUE)) { #' ## define which methods to apply #' embed_methods <- c("Isomap", "PCA") #' ## load test data set #' data_set <- loadDataSet("3D S Curve", n = 200) #' ## apply dimensionality reduction #' data_emb <- lapply(embed_methods, function(x) embed(data_set, x)) #' names(data_emb) <- embed_methods #' ## plot the R_NX curves: #' plot_R_NX(data_emb) + #' ggplot2::theme(legend.title = ggplot2::element_blank(), #' legend.position = c(0.5, 0.1), #' legend.justification = c(0.5, 0.1)) #' } #' @export plot_R_NX <- function(x, ndim = NA, weight = "inv") { chckpkg("ggplot2") chckpkg("tidyr") chckpkg("scales") lapply( x, function(x) if (!inherits(x, "dimRedResult")) stop("x must be a list and ", "all items must inherit from 'dimRedResult'") ) rnx <- mapply(function(x, ndim) if(is.na(ndim)) R_NX(x) else R_NX(x, ndim), x = x, ndim = ndim) weight <- match.arg(weight, c("inv", "ln", "log", "log10")) w_fun <- switch( weight, inv = auc_ln_k_inv, log = auc_log_k, ln = auc_log_k, log10 = auc_log10_k, stop("wrong parameter for weight") ) auc <- apply(rnx, 2, w_fun) df <- as.data.frame(rnx) df$K <- seq_len(nrow(df)) qnxgrid <- expand.grid(K = df$K, rnx = seq(0.1, 0.9, by = 0.1)) ## TODO: FIND OUT WHY THIS AS IN THE PUBLICATION BUT IS WRONG! qnxgrid$qnx <- rnx2qnx(qnxgrid$rnx, K = qnxgrid$K, N = nrow(df)) # qnxgrid$rnx_group <- factor(qnxgrid$rnx) df <- tidyr::gather_(df, key_col = "embedding", value_col = "R_NX", names(x)) ggplot2::ggplot(df) + ggplot2::geom_line(ggplot2::aes_string(y = "R_NX", x = "K", color = "embedding")) + ## TODO: find out if this is wrong: ## ggplot2::geom_line(data = qnxgrid, ## mapping = ggplot2::aes_string(x = "K", y = "qnx", ## group = "rnx_group"), ## linetype = 2, ## size = 0.1) + ggplot2::geom_line(data = qnxgrid, mapping = ggplot2::aes_string(x = "K", y = "rnx", group = "rnx_group"), linetype = 3, size = 0.1) + ggplot2::scale_x_log10( labels = scales::trans_format("log10", scales::math_format()), expand = c(0, 0) ) + ggplot2::scale_y_continuous(expression(R[NX]), limits = c(0, 1), expand = c(0, 0)) + ggplot2::annotation_logticks(sides = "b") + ggplot2::scale_color_discrete( breaks = names(x), labels = paste(format(auc, digits = 3), names(x))) + ggplot2::labs(title = paste0( "R_NX vs. K", if (length(ndim) == 1 && !is.na(ndim)) paste0(", d = ", ndim) else "" )) + ggplot2::theme_classic() } dimRed/R/dimRedMethod-class.R0000644000176200001440000000743214256653532015473 0ustar liggesusers#' Class "dimRedMethod" #' #' A virtual class "dimRedMethod" to serve as a template to implement #' methods for dimensionality reduction. #' #' Implementations of dimensionality reductions should inherit from #' this class. #' #' The \code{fun} slot should be a function that takes three arguments #' \describe{ #' \item{data}{An object of class \code{\link{dimRedData}}.} #' \item{pars}{A list with the standard parameters.} #' \item{keep.org.data}{Logical. If the original data should be kept in the output.} #' } #' and returns an object of class \code{\link{dimRedResult}}. #' #' The \code{stdpars} slot should take a list that contains standard #' parameters for the implemented methods. #' #' This way the method can be called by \code{embed(data, "method-name", #' ...)}, where \code{...} can be used to to change single parameters. #' #' #' @slot fun A function that does the embedding. #' @slot stdpars A list with the default parameters for the \code{fun} slot. #' @slot requires A vector with all packages R packages that need to be #' installed to run the method. In some occasions a method may work without #' one of the packages. Does not include Python dependencies such as #' Tensorflow. Used to auto skip tests #' #' @family dimensionality reduction methods #' @export setClass("dimRedMethod", contains = "VIRTUAL", slots = c(fun = "function", stdpars = "list", requires = "character")) #' dimRedMethodList #' #' Get the names of all methods for dimensionality reduction. #' #' Returns the name of all classes that inherit from #' \code{\link{dimRedMethod-class}} to use with \code{\link{embed}}. #' @param filter filter methods by methods that have their dependencies installed #' @return a character vector with the names of classes that inherit #' from \code{dimRedMethod}. #' #' @examples #' dimRedMethodList() #' #' @family dimensionality reduction methods #' @export dimRedMethodList <- function (filter = FALSE) { all_methods <- names(completeClassDefinition("dimRedMethod", doExtends = FALSE)@subclasses) if(!filter) return(all_methods) all_deps <- lapply(all_methods, getMethodDependencies) is_possible <- sapply(all_deps, function(x) { if(length(x) > 0) requireNamespace(x, quietly = TRUE) else TRUE }) all_methods[is_possible] } # to put standard values for omitted arguments setGeneric("matchPars", function(object, pars) standardGeneric("matchPars"), valueClass = c("list")) setMethod("matchPars", signature(object = "dimRedMethod", pars = "list"), definition = function(object, pars) { nsp <- names(object@stdpars) ncp <- names(pars) nap <- union(nsp, ncp) res <- list() ## exists can deal with elements being NULL ## to assign list@el <- NULL do: ## list["el"] <- list(NULL) for (np in nap) { miss.std <- !exists(np, where = object@stdpars) miss.par <- !exists(np, where = pars) if (miss.std) { warning("Parameter matching: ", np, " is not a standard parameter, ignoring.") } else if (miss.par) { res[np] <- object@stdpars[np] } else { res[np] <- pars[np] } } ## if the method does not accept parameters we have to return ## null, so in embed there is no args$par created. and passed by ## do.call in the embed() function. if (length(res) != 0) ## return(res) else return(NULL) ## first try without the above, all methods should have a pars ## argument. return(res) }) getMethodDependencies <- function(method) { getMethodObject(method)@requires } method_can_run <- function(method) { all(getMethodDependencies(method) %in% row.names(installed.packages())) } dimRed/R/kpca.R0000644000176200001440000001067014744721716012741 0ustar liggesusers#' Kernel PCA #' #' An S4 Class implementing Kernel PCA #' #' Kernel PCA is a nonlinear extension of PCA using kernel methods. #' #' #' @template dimRedMethodSlots #' #' @template dimRedMethodGeneralUsage #' #' @section Parameters: #' Kernel PCA can take the following parameters: #' \describe{ #' \item{ndim}{the number of output dimensions, defaults to 2} #' \item{kernel}{The kernel function, either as a function or a #' character vector with the name of the kernel. Defaults to #' \code{"rbfdot"}} #' \item{kpar}{A list with the parameters for the kernel function, #' defaults to \code{list(sigma = 0.1)}} #' } #' #' The most comprehensive collection of kernel functions can be found in #' \code{\link[kernlab]{kpca}}. In case the function does not take any #' parameters \code{kpar} has to be an empty list. #' #' @section Implementation: #' #' Wraps around \code{\link[kernlab]{kpca}}, but provides additionally #' forward and backward projections. #' #' @references #' #' Sch\"olkopf, B., Smola, A., M\"uller, K.-R., 1998. Nonlinear Component Analysis #' as a Kernel Eigenvalue Problem. Neural Computation 10, 1299-1319. #' https://doi.org/10.1162/089976698300017467 #' #' @examples #' \dontrun{ #' if(requireNamespace("kernlab", quietly = TRUE)) { #' #' dat <- loadDataSet("3D S Curve") #' emb <- embed(dat, "kPCA") #' plot(emb, type = "2vars") #' } #' #' } #' @include dimRedResult-class.R #' @include dimRedMethod-class.R #' @family dimensionality reduction methods #' @export kPCA #' @exportClass kPCA kPCA <- setClass( "kPCA", contains = "dimRedMethod", prototype = list( stdpars = list(kernel = "rbfdot", kpar = list(sigma = 0.1), ndim = 2), fun = function (data, pars, keep.org.data = TRUE) { chckpkg("kernlab") if (is.null(pars$ndim)) pars$ndim <- 2 meta <- data@meta orgdata <- if (keep.org.data) data@data else matrix(0, 0, 0) indata <- data@data message(Sys.time(), ": Calculating kernel PCA") res <- do.call(kernlab::kpca, c(list(x = indata), pars)) kernel <- get_kernel_fun(pars$kernel, pars$kpar) message(Sys.time(), ": Trying to calculate reverse") K_rev <- kernlab::kernelMatrix(kernel, res@rotated) diag(K_rev) <- 0.1 + diag(K_rev) dual_coef <- try(solve(K_rev, indata), silent = TRUE) appl <- function (x) { appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame() proj <- if (inherits(x, "dimRedData")) x@data else x proj <- kernlab::predict(res, proj)[, 1:pars$ndim, drop = FALSE] colnames(proj) <- paste0("kPCA", 1:ncol(proj)) new("dimRedData", data = proj, meta = appl.meta) } inv <- if (inherits(dual_coef, "try-error")) { message("No inverse function.") function(x) NA } else { function (x) { appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame() proj <- if (inherits(x, "dimRedData")) x@data else x resrot <- res@rotated[, 1:ncol(proj)] rot <- kernlab::kernelMatrix(kernel, proj, resrot) proj <- rot %*% dual_coef new("dimRedData", data = proj, meta = appl.meta) } } outdata <- res@rotated[, 1:pars$ndim, drop = FALSE] colnames(outdata) <- paste0("kPCA", 1:ncol(outdata)) message(Sys.time(), ": DONE") return( new( "dimRedResult", data = new("dimRedData", data = outdata, meta = meta), org.data = orgdata, apply = appl, inverse = inv, has.org.data = keep.org.data, has.apply = TRUE, has.inverse = TRUE, method = "kpca", pars = pars ) ) }, requires = c("kernlab")) ) ## get the kernel function out of the kernlab namespace: get_kernel_fun <- function (kernel, pars) { if (!is(kernel, "kernel")) { if (is(kernel, "function")) { kernel <- deparse(substitute(kernel)) } else { kernel <- get(kernel, asNamespace("kernlab")) } kernel <- do.call(kernel, pars) } return(kernel) } dimRed/R/nmds.R0000644000176200001440000000365114744721765012771 0ustar liggesusers#' Non-Metric Dimensional Scaling #' #' An S4 Class implementing Non-Metric Dimensional Scaling. #' #' A non-linear extension of MDS using monotonic regression #' #' @template dimRedMethodSlots #' #' @template dimRedMethodGeneralUsage #' #' @section Parameters: #' nMDS can take the following parameters: #' \describe{ #' \item{d}{A distance function.} #' \item{ndim}{The number of embedding dimensions.} #' } #' #' @section Implementation: #' Wraps around the #' \code{\link[vegan]{monoMDS}}. For parameters that are not #' available here, the standard configuration is used. #' #' @references #' #' Kruskal, J.B., 1964. Nonmetric multidimensional scaling: A numerical method. #' Psychometrika 29, 115-129. https://doi.org/10.1007/BF02289694 #' #' @examples #' if(requireNamespace("vegan", quietly = TRUE)) { #' #' dat <- loadDataSet("3D S Curve", n = 300) #' emb <- embed(dat, "nMDS") #' plot(emb, type = "2vars") #' #' } #' @include dimRedResult-class.R #' @include dimRedMethod-class.R #' @family dimensionality reduction methods #' @export nMDS #' @exportClass nMDS nMDS <- setClass( "nMDS", contains = "dimRedMethod", prototype = list( stdpars = list(d = stats::dist, ndim = 2), fun = function (data, pars, keep.org.data = TRUE) { chckpkg("vegan") meta <- data@meta orgdata <- if (keep.org.data) data@data else matrix(0, 0, 0) indata <- data@data outdata <- vegan::monoMDS(pars$d(indata), k = pars$ndim)$points colnames(outdata) <- paste0("NMDS", 1:ncol(outdata)) return(new( "dimRedResult", data = new("dimRedData", data = outdata, meta = meta), org.data = orgdata, has.org.data = keep.org.data, method = "nmds", pars = pars )) }, requires = c("vegan")) ) dimRed/R/dimRed.R0000644000176200001440000000232413371631672013220 0ustar liggesusers#' @title The dimRed package #' #' @description This package simplifies dimensionality reduction in R by #' providing a framework of S4 classes and methods. dimRed collects #' dimensionality reduction methods that are implemented in R and implements #' others. It gives them a common interface and provides plotting #' functions for visualization and functions for quality assessment. #' #' Funding provided by the Department for Biogeochemical Integration, #' Empirical Inference of the Earth System Group, at the Max Plack #' Institute for Biogeochemistry, Jena. #' #' @references #' #' Lee, J.A., Renard, E., Bernard, G., Dupont, P., Verleysen, M., #' 2013. Type 1 and 2 mixtures of Kullback-Leibler divergences as cost #' functions in dimensionality reduction based on similarity #' preservation. Neurocomputing. 112, #' 92-107. doi:10.1016/j.neucom.2012.12.036 #' #' Lee, J.A., Lee, J.A., Verleysen, M., 2008. Rank-based quality #' assessment of nonlinear dimensionality reduction. Proceedings of #' ESANN 2008 49-54. #' #' Chen, L., Buja, A., 2006. Local Multidimensional Scaling for #' Nonlinear Dimension Reduction, Graph Layout and Proximity Analysis. #' #' #' @import methods #' @importFrom magrittr %>% #' "_PACKAGE" dimRed/R/misc.R0000644000176200001440000002213614256643006012747 0ustar liggesusers## if (!isClassUnion("missingORnumeric")) setClassUnion("missingORnumeric", c("numeric", "missing")) ## if (!isClassUnion("missingORcharacter")) setClassUnion("missingORcharacter", c("character", "missing")) ## if (!isClassUnion("missingORlogical")) setClassUnion("missingORlogical", c("logical", "missing")) ## if (!isClassUnion("missingORfunction")) setClassUnion("missingORfunction", c("function", "missing")) # Squared euclidean distance between points in A and B # taken from http://blog.felixriedel.com/2013/05/pairwise-distances-in-r/ pdist2 <- function (A, B) { an <- rowSums(A ^ 2) # apply(A, 1, function(rvec) crossprod(rvec, rvec)) bn <- rowSums(B ^ 2) # apply(B, 1, function(rvec) crossprod(rvec, rvec)) m <- nrow(A) n <- nrow(B) matrix(rep(an, n), nrow = m) + matrix(rep(bn, m), nrow = m, byrow = TRUE) - 2 * tcrossprod(A, B) } ## a + b ~ c + d ## becomes ## ~ c + d + 0 rhs <- function (formula) { fs <- as.character(formula)[3] stats::as.formula(paste("~", fs, "+ 0")) } ## a + b ~ c + d ## becomes ## ~ a + b + 0 lhs <- function (formula) { fs <- as.character(formula)[2] stats::as.formula(paste("~", fs, "+ 0")) } ## check if a package is installed chckpkg <- function (pkg) { if (!requireNamespace(pkg, quietly = TRUE)) { stop(paste0("require '", pkg, "' package, install it using install.packages('", pkg, "')")) } } ## create generics that appear in several different places #' Converts to data.frame #' #' General conversions of objects created by \code{dimRed} to \code{data.frame}. #' See class documentations for details (\code{\link{dimRedData}}, #' \code{\link{dimRedResult}}). For the documentation of this function in base #' package, see here: \code{\link[base]{as.data.frame.default}}. #' #' @param x The object to be converted #' @param row.names unused in \code{dimRed} #' @param optional unused in \code{dimRed} #' @param ... other arguments. setGeneric( "as.data.frame", function(x, row.names, optional, ...) standardGeneric("as.data.frame"), useAsDefault = base::as.data.frame, valueClass = "data.frame" ) #' Converts to dimRedData #' #' Conversion functions to dimRedData. #' #' @param formula The formula, left hand side is assigned to the meta slot right #' hand side is assigned to the data slot. #' @param ... other arguments. setGeneric( "as.dimRedData", function(formula, ...) standardGeneric("as.dimRedData"), valueClass = "dimRedData" ) #' Method getData #' #' Extracts the data slot. #' #' @param object The object to be converted. setGeneric("getData", function(object) standardGeneric("getData")) #' Method getMeta #' #' Extracts the meta slot. #' #' @param object The object to be converted. #' @param ... other arguments. setGeneric("getMeta", function(object, ...) standardGeneric("getMeta")) #' Method getPars #' #' Extracts the pars slot. #' #' @param object The object to be converted. #' @param ... other arguments. setGeneric("getPars", function (object, ...) standardGeneric("getPars")) #' Method getNDim #' #' Extract the number of embedding dimensions. #' #' @param object The object to get the dimensions from. #' @param ... other arguments. setGeneric("getNDim", function (object, ...) standardGeneric("getNDim")) #' Method getOrgData #' #' Extract the Original data. #' #' @param object The object to extract data from. #' @param ... other arguments. setGeneric("getOrgData", function (object, ...) standardGeneric("getOrgData")) #' Method getDimRedData #' #' Extract dimRedData. #' @param object The object to extract data from. #' @param ... other arguments. setGeneric("getDimRedData", function (object, ...) standardGeneric("getDimRedData")) #' Method getOtherData #' #' Extract other data produced by a dimRedMethod #' #' @param object The object to extract data from. #' @param ... other arguments. setGeneric("getOtherData", function (object, ...) standardGeneric("getOtherData"), valueClass = "list") #' Method print #' #' Imports the print method into the package namespace. #' #' @param x The object to be printed. #' @param ... Other arguments for printing. setGeneric("print", function(x, ...) standardGeneric("print")) #' Method ndims #' #' Extract the number of dimensions. #' #' @param object To extract the number of dimensions from. #' @param ... Arguments for further methods setGeneric("ndims", function (object, ...) standardGeneric("ndims"), valueClass = "integer") #' getSuggests #' #' Install packages wich are suggested by dimRed. #' #' By default dimRed will not install all the dependencies, because #' there are quite a lot and in case some of them are not available #' for your platform you will not be able to install dimRed without #' problems. #' #' To solve this I provide a function which automatically installes #' all the suggested packages. #' #' @param ... additional options passed to install.packages. #' #' @examples #' \dontrun{ #' installSuggests() #' } #' @export installSuggests <- function (...) { "%w/o%" <- function(x, y) x[!x %in% y] pkgString <- installed.packages()["dimRed", "Suggests"] deps <- strsplit(pkgString, ", |,\n")[[1]] deps <- gsub("\n", "", deps) # Windows needs this installedPkgs <- rownames(installed.packages()) missingPkgs <- deps %w/o% installedPkgs if (length(missingPkgs) > 0) { message("The following packages are missing: ") cat(missingPkgs, "\n") message("installing ...") install.packages(missingPkgs, ...) pkgString <- installed.packages()["dimRed", "Suggests"] installedPkgs <- rownames(installed.packages()) missingPkgs <- deps %w/o% installedPkgs if (length(missingPkgs) > 0) { message("Could not install the following packages:") cat(missingPkgs, "\n") message("please install manually or some methods will not work.") } else { message("All necessary packages installed") message("If things still don't work try 'update.packages()'") message("If it still does not work file a bugreport!!") } } else { message("All necessary packages installed") message("If things still don't work try 'update.packages()'") message("If it still does not work file a bugreport!!") } } ## input data(matrix or data frame) return knn graph implements ## "smart" choices on RANN::nn2 parameters we ignore radius search ## TODO: find out a good limit to switch from kd to bd trees COMMENT: ## bd trees are buggy, they dont work if there are duplicated data ## points and checking would neutralize the performance gain, so bd ## trees are not really usable. #' makeKNNgraph #' #' Create a K-nearest neighbor graph from data x. Uses #' \code{\link[RANN]{nn2}} as a fast way to find the neares neighbors. #' #' @param x data, a matrix, observations in rows, dimensions in #' columns #' @param k the number of nearest neighbors. #' @param eps number, if \code{eps > 0} the KNN search is approximate, #' see \code{\link[RANN]{nn2}} #' @param diag logical, if \code{TRUE} every edge of the returned #' graph will have an edge with weight \code{0} to itself. #' #' @return an object of type \code{\link[igraph]{igraph}} with edge #' weight being the distances. #' #' #' makeKNNgraph <- function(x, k, eps = 0, diag = FALSE){ ## requireNamespace("RANN") ## requireNamespace("igraph") ## consts INF_VAL <- 1.340781e+15 NA_IDX <- 0 BDKD_LIM <- 1000000 #todo: figure out a good value here ## select parameters M <- nrow(x) treetype <- "kd" # if (M < BDKD_LIM) "kd" else "bd" # see: # https://github.com/jefferis/RANN/issues/19 searchtype <- if (eps == 0) "standard" else "priority" ## RANN::nn2 returns the points in data with respect to query ## e.g. the rows in the output are the points in query and the ## columns the points in data. nn2res <- RANN::nn2(data = x, query = x, k = k + 1, treetype = treetype, searchtype = searchtype, eps = eps) ## create graph: the first ny nodes will be y, the last nx nodes ## will be x, if x != y g <- igraph::make_empty_graph(M, directed = FALSE) g[from = if (diag) rep(seq_len(M), times = k + 1) else rep(seq_len(M), times = k), to = if (diag) as.vector(nn2res$nn.idx) else as.vector(nn2res$nn.idx[, -1]), attr = "weight"] <- if (diag) as.vector(nn2res$nn.dists) else as.vector(nn2res$nn.dists[, -1]) return(g) } makeEpsSparseMatrix <- function(x, eps) { chckpkg("Matrix") n <- nrow(x) dd <- stats::dist(x) ddind <- dd < eps rows <- unlist(lapply(2:n, function(x) x:n), use.names = FALSE) cols <- rep(seq_len(n - 1), times = (n - 1):1) Matrix::sparseMatrix(i = rows[ddind], j = cols[ddind], x = dd[ddind], dims = c(n, n), symmetric = TRUE) } dimRed/R/l1pca.R0000644000176200001440000001411014744721735013015 0ustar liggesusers#' Principal Component Analysis with L1 error. #' #' S4 Class implementing PCA with L1 error. #' #' PCA transforms the data so that the L2 reconstruction error is minimized or #' the variance of the projected data is maximized. This is sensitive to #' outliers, L1 PCA minimizes the L1 reconstruction error or maximizes the sum #' of the L1 norm of the projected observations. #' #' @template dimRedMethodSlots #' #' @template dimRedMethodGeneralUsage #' #' @section Parameters: #' PCA can take the following parameters: #' \describe{ #' \item{ndim}{The number of output dimensions.} #' \item{center}{logical, should the data be centered, defaults to \code{TRUE}.} #' \item{scale.}{logical, should the data be scaled, defaults to \code{FALSE}.} #' \item{fun}{character or function, the method to apply, see the \code{pcaL1} package} #' \item{\ldots}{other parameters for \code{fun}} #' } #' #' @section Implementation: #' #' Wraps around the different methods is the \code{pcaL1} package. Because PCA #' can be reduced to a simple rotation, forward and backward projection #' functions are supplied. #' #' @references #' #' Park, Y.W., Klabjan, D., 2016. Iteratively Reweighted Least Squares #' Algorithms for L1-Norm Principal Component Analysis, in: Data Mining (ICDM), #' 2016 IEEE 16th International Conference On. IEEE, pp. 430-438. #' #' @examples #' if(requireNamespace("pcaL1", quietly = TRUE)) { #' #' dat <- loadDataSet("Iris") #' emb <- embed(dat, "PCA_L1") #' #' plot(emb, type = "2vars") #' plot(inverse(emb, getData(getDimRedData((emb)))), type = "3vars") #' #' } #' #' @include dimRedResult-class.R #' @include dimRedMethod-class.R #' @family dimensionality reduction methods #' @export PCA_L1 #' @exportClass PCA_L1 PCA_L1 <- setClass( "PCA_L1", contains = "dimRedMethod", prototype = list( stdpars = list(ndim = 2, center = TRUE, scale. = FALSE, fun = "awl1pca", projections = "l1"), fun = function (data, pars, keep.org.data = TRUE) { chckpkg("pcaL1") ndim <- pars$ndim orgnames <- colnames(data@data) newnames <- paste0("PC", seq_len(ndim)) meta <- data@meta orgdata <- if (keep.org.data) data@data else matrix(0, 0, 0) data <- data@data fun2 <- if(!is.function(pars$fun)) { get(pars$fun, asNamespace("pcaL1")) } else { pars$fun } ce <- if (is.numeric(pars$center)) { if (length(pars$center) != dim(data)[2]) error("center must be logical or have the same length as the data dimensions") pars$center } else if (is.logical(pars$center)) { if (pars$center) colMeans(data) else FALSE } sc <- if (is.numeric(pars$scale.)) { if (length(pars$scale.) != dim(data)[2]) stop("center must be logical or have the same length as the data dimensions") pars$scale. } else if (is.logical(pars$scale.)) { if (pars$scale.) apply(data, 2, sd) else FALSE } if(!(pars$center == FALSE && pars$scale. == FALSE)) data <- scale(data, ce, sc) pars$center <- NULL pars$scale. <- NULL pars$ndim <- NULL pars$fun <- NULL res <- do.call( fun2, c(list(X = data, projDim = ndim, center = FALSE), pars) ) ## evaluate results here for functions data <- res$scores colnames(data) <- paste0("PC", seq_len(ndim)) rot <- res$loadings[, seq_len(ndim), drop = FALSE] dimnames(rot) <- list(orgnames, newnames) rerot <- t(rot) appl <- function(x) { appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame() proj <- if (inherits(x, "dimRedData")) x@data else x if (ncol(proj) != ncol(orgdata)) stop("x must have the same number of dimensions ", "as the original data") if (ce[1] != FALSE) proj <- t(apply(proj, 1, function(x) x - ce)) if (sc[1] != FALSE) proj <- t(apply(proj, 1, function(x) x / sc)) proj <- if (pars$projections == "l1") { tmp <- pcaL1::l1projection(proj, rot)$scores colnames(tmp) <- paste0("PC", seq_len(ndim)) tmp } else if (pars$projections == "l2") { proj %*% rot } else { stop("projections must be eiter 'l1' or 'l2'") } proj <- new("dimRedData", data = proj, meta = appl.meta) return(proj) } inv <- function(x) { appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame() proj <- if (inherits(x, "dimRedData")) x@data else x if (ncol(proj) > ncol(data)) stop("x must have less or equal number of dimensions ", "as the original data") d <- ncol(proj) reproj <- proj %*% rerot[seq_len(d), ] if (sc[1] != FALSE) reproj <- t(apply(reproj, 1, function(x) x * sc)) if (ce[1] != FALSE) reproj <- t(apply(reproj, 1, function(x) x + ce)) colnames(reproj) <- colnames(orgdata) reproj <- new("dimRedData", data = reproj, meta = appl.meta) return(reproj) } res <- new( "dimRedResult", data = new("dimRedData", data = data, meta = meta), org.data = orgdata, apply = appl, inverse = inv, has.org.data = keep.org.data, has.apply = TRUE, has.inverse = TRUE, method = "PCA_L1", pars = pars ) return(res) }, requires = c("pcaL1")) ) dimRed/R/hlle.R0000644000176200001440000001050114744721662012740 0ustar liggesusers#' Hessian Locally Linear Embedding #' #' An S4 Class implementing Hessian Locally Linear Embedding (HLLE) #' #' HLLE uses local hessians to approximate the curvines and is an #' extension to non-convex subsets in lowdimensional space. #' #' @template dimRedMethodSlots #' #' @template dimRedMethodGeneralUsage #' #' @section Parameters: #' HLLE can take the following parameters: #' \describe{ #' \item{knn}{neighborhood size} #' \item{ndim}{number of output dimensions} #' } #' #' @section Implementation: #' Own implementation, sticks to the algorithm in Donoho and Grimes #' (2003). Makes use of sparsity to speed up final embedding. #' #' @references #' Donoho, D.L., Grimes, C., 2003. Hessian eigenmaps: Locally linear #' embedding techniques for high-dimensional data. PNAS 100, #' 5591-5596. doi:10.1073/pnas.1031596100 #' #' @examples #' if(requireNamespace(c("RSpectra", "Matrix", "RANN"), quietly = TRUE)) { #' #' dat <- loadDataSet("3D S Curve", n = 300) #' emb <- embed(dat, "HLLE", knn = 15) #' plot(emb, type = "2vars") #' #' } #' #' @include dimRedResult-class.R #' @include dimRedMethod-class.R #' @family dimensionality reduction methods #' @export HLLE #' @exportClass HLLE HLLE <- setClass( "HLLE", contains = "dimRedMethod", prototype = list( stdpars = list(knn = 50, ndim = 2), fun = function(data, pars, keep.org.data = TRUE) { chckpkg("RSpectra") chckpkg("Matrix") chckpkg("RANN") if (pars$ndim < 2) stop("ndim must be 2 or larger.") if (is.null(pars$knn)) pars$knn <- 50 if (is.null(pars$ndim)) pars$ndim <- 2 indata <- data@data n <- nrow(indata) hs <- pars$ndim * (pars$ndim + 1) / 2 W <- Matrix::sparseMatrix(i = numeric(0), j = numeric(0), x = numeric(0), dims = c(n, hs * n)) ii <- jj <- ww <- list() ## Identify neighbors: message(Sys.time(), ": Finding nearest neighbors", sep = "") nnidx <- RANN::nn2(data = indata, query = indata, k = pars$knn + 1, treetype = "kd", "standard", eps = 0)$nn.idx#[, -1] message(Sys.time(), ": Calculating Hessian", sep = "") for (i in seq_len(n)) { cat(i, "/", n, "\r", sep = "") ## get neighborhood Nui <- indata[nnidx[i, ], , drop = FALSE] ## Form tangent coordinates: Nui <- sweep(Nui, 2, colMeans(Nui), "-") tc <- svd(Nui, nu = pars$ndim, nv = 0)$u ## Develop Hessian Estimator Xi <- cbind( 1, tc, tc ^ 2, apply(combn(seq_len(pars$ndim), 2), 2, function(x) tc[, x[1]] * tc[, x[2]]) ) tHi <- qr.Q(qr(Xi))[, -(1:(pars$ndim + 1)), drop = FALSE] ## Add quadratic form to hessian ii[[i]] <- rep(nnidx[i, ], hs) jj[[i]] <- rep((i - 1) * hs + (1:hs), each = ncol(nnidx)) ww[[i]] <- as.vector(tHi) } H <- as(Matrix::tcrossprod(Matrix::spMatrix( i = unlist(ii, FALSE, FALSE), j = unlist(jj, FALSE, FALSE), x = unlist(ww, FALSE, FALSE), nrow = n, ncol = n * hs) ), "dgCMatrix") ## Find null space: message(Sys.time(), ": Embedding", sep = "") ## eigs and eigs_sym converges much more reliably and faster ## with sigma = -eps than with which = "L*" outdata <- RSpectra::eigs_sym(H, k = pars$ndim + 1, sigma = -1e-5) message(paste(c("Eigenvalues:", format(outdata$values)), collapse = " ")) outdata <- outdata$vectors[, order(outdata$values)[-1], drop = FALSE] colnames(outdata) <- paste0("HLLE", seq_len(ncol(outdata))) message(Sys.time(), ": DONE", sep = "") return(new( "dimRedResult", data = new("dimRedData", data = outdata, meta = data@meta), org.data = if (keep.org.data) data@data else matrix(0, 0, 0), has.org.data = keep.org.data, method = "HLLE", pars = pars )) }, requires = c("RSpectra", "Matrix", "RANN")) ) dimRed/R/umap.R0000644000176200001440000001072714744722036012764 0ustar liggesusers#' Umap embedding #' #' An S4 Class implementing the UMAP algorithm #' #' Uniform Manifold Approximation is a gradient descend based algorithm that #' gives results similar to t-SNE, but scales better with the number of points. #' #' @template dimRedMethodSlots #' #' @template dimRedMethodGeneralUsage #' #' @section Parameters: #' #' UMAP can take the follwing parameters: #' \describe{ #' \item{ndim}{The number of embedding dimensions.} #' \item{knn}{The number of neighbors to be used.} #' \item{d}{The distance metric to use.} #' \item{method}{\code{"naive"} for an R implementation, \code{"python"} #' for the reference implementation.} #' } #' #' Other method parameters can also be passed, see #' \code{\link[umap]{umap.defaults}} for details. The ones above have been #' standardized for the use with \code{dimRed} and will get automatically #' translated for \code{\link[umap]{umap}}. #' #' @section Implementation: #' #' The dimRed package wraps the \code{\link[umap]{umap}} packages which provides #' an implementation in pure R and also a wrapper around the original python #' package \code{umap-learn} (https://github.com/lmcinnes/umap/). This requires #' \code{umap-learn} version 0.4 installed, at the time of writing, there is #' already \code{umap-learn} 0.5 but it is not supported by the R package #' \code{\link[umap]{umap}}. #' #' The \code{"naive"} implementation is a pure R implementation and considered #' experimental at the point of writing this, it is also much slower than the #' python implementation. #' #' The \code{"python"} implementation is the reference implementation used by #' McInees et. al. (2018). It requires the \code{\link[reticulate]{reticulate}} #' package for the interaction with python and the python package #' \code{umap-learn} installed (use \code{pip install umap-learn}). #' #' @references #' #' McInnes, Leland, and John Healy. #' "UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction." #' https://arxiv.org/abs/1802.03426 #' #' @examples #' \dontrun{ #' dat <- loadDataSet("3D S Curve", n = 300) #' emb <- embed(dat, "UMAP", .mute = NULL, knn = 10) #' plot(emb, type = "2vars") #' } #' #' @include dimRedResult-class.R #' @include dimRedMethod-class.R #' @family dimensionality reduction methods #' @export UMAP #' @exportClass UMAP UMAP <- setClass( "UMAP", contains = "dimRedMethod", prototype = list( stdpars = list( knn = 15, ndim = 2, d = "euclidean", method = "umap-learn" ), fun = function (data, pars, keep.org.data = TRUE) { chckpkg("umap") if (pars$method == "python") { chckpkg("reticulate") if (!reticulate::py_module_available("umap")) stop("cannot find python umap, install with `pip install umap-learn`") } meta <- data@meta orgdata <- if (keep.org.data) data@data else matrix(0, 0, 0) indata <- data@data ## Create config umap_call_pars <- umap::umap.defaults umap_call_pars$n_neighbors <- pars$knn umap_call_pars$n_components <- pars$ndim umap_call_pars$metric <- pars$d umap_call_pars$method <- pars$method umap_call_pars$d <- indata pars_2 <- pars pars_2$knn <- NULL pars_2$ndim <- NULL pars_2$d <- NULL pars_2$method <- NULL for (n in names(pars_2)) umap_call_pars[[n]] <- pars_2[[n]] ## Do the embedding outdata <- do.call(umap::umap, umap_call_pars) ## Post processing colnames(outdata$layout) <- paste0("UMAP", 1:ncol(outdata$layout)) appl <- function(x) { appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame() proj <- if (inherits(x, "dimRedData")) x@data else x if (ncol(proj) != ncol(orgdata)) stop("x must have the same number of dimensions ", "as the original data") new_proj <- umap:::predict.umap(outdata, as.matrix(proj)) colnames(new_proj) <- paste0("UMAP", 1:ncol(new_proj)) rownames(new_proj) <- NULL out_data <- new("dimRedData", data = new_proj, meta = appl.meta) return(out_data) } return(new( "dimRedResult", data = new("dimRedData", data = outdata$layout, meta = meta), org.data = orgdata, apply = appl, has.org.data = keep.org.data, has.apply = TRUE, method = "UMAP", pars = pars )) }, requires = c("umap", "reticulate") ) ) dimRed/R/soe.R0000644000176200001440000000264213024273620012573 0ustar liggesusers## #' Soft Ordinal Embedding ## #' ## #' Instance of \code{\link{dimRedMethod}} for Soft Ordinal Embedding. ## #' ## #' For details see \code{\link[loe]{SOE}}. ## #' ## #' ## #' @examples ## #' dat <- loadDataSet("3D S Curve", n = 50) ## #' soe <- SOE() ## #' emb <- soe@fun(dat, soe@stdpars) ## #' ## #' ## #' plot(emb@data@data) ## #' ## #' ## #' @include dimRedResult-class.R ## #' @include dimRedMethod-class.R ## #' @export ## SOE <- setClass( ## "SOE", ## contains = "dimRedMethod", ## prototype = list( ## stdpars = list(d = stats::dist, knn = 50, ndim = 2), ## fun = function (data, ## pars, ## keep.org.data = TRUE) { ## chckpkg("loe") ## meta <- data@meta ## orgdata <- if (keep.org.data) data@data else NULL ## indata <- data@data ## outdata <- loe::SOE(loe::get.order(as.matrix(pars$d(indata))), ## N = nrow(indata), p = pars$ndim)$X ## colnames(outdata) <- paste0("SOE", 1:ncol(outdata)) ## return(new( ## "dimRedResult", ## data = new("dimRedData", ## data = outdata, ## meta = meta), ## org.data = orgdata, ## has.org.data = keep.org.data, ## method = "soe", ## pars = pars ## )) ## }) ## ) dimRed/R/drr.R0000644000176200001440000001502514744732712012607 0ustar liggesusers#' Dimensionality Reduction via Regression #' #' An S4 Class implementing Dimensionality Reduction via Regression (DRR). #' #' DRR is a non-linear extension of PCA that uses Kernel Ridge regression. #' #' @template dimRedMethodSlots #' #' @template dimRedMethodGeneralUsage #' #' @section Parameters: #' DRR can take the following parameters: #' \describe{ #' \item{ndim}{The number of dimensions} #' \item{lambda}{The regularization parameter for the ridge #' regression.} #' \item{kernel}{The kernel to use for KRR, defaults to #' \code{"rbfdot"}.} #' \item{kernel.pars}{A list with kernel parameters, elements depend #' on the kernel used, \code{"rbfdot"} uses \code{"sigma"}.} #' \item{pca}{logical, should an initial pca step be performed, #' defaults to \code{TRUE}.} #' \item{pca.center}{logical, should the data be centered before the #' pca step. Defaults to \code{TRUE}.} #' \item{pca.scale}{logical, should the data be scaled before the #' pca ste. Defaults to \code{FALSE}.} #' \item{fastcv}{logical, should \code{\link[CVST]{fastCV}} from the #' CVST package be used instead of normal cross-validation.} #' \item{fastcv.test}{If \code{fastcv = TRUE}, separate test data set for fastcv.} #' \item{cv.folds}{if \code{fastcv = FALSE}, specifies the number of #' folds for crossvalidation.} #' \item{fastkrr.nblocks}{integer, higher values sacrifice numerical #' accuracy for speed and less memory, see below for details.} #' \item{verbose}{logical, should the cross-validation results be #' printed out.} #' } #' #' @section Implementation: #' Wraps around \code{\link[DRR]{drr}}, see there for details. DRR is #' a non-linear extension of principal components analysis using Kernel #' Ridge Regression (KRR, details see \code{\link[CVST]{constructKRRLearner}} #' and \code{\link[DRR]{constructFastKRRLearner}}). Non-linear #' regression is used to explain more variance than PCA. DRR provides #' an out-of-sample extension and a backward projection. #' #' The most expensive computations are matrix inversions therefore the #' implementation profits a lot from a multithreaded BLAS library. #' The best parameters for each KRR are determined by cross-validaton #' over all parameter combinations of \code{lambda} and #' \code{kernel.pars}, using less parameter values will speed up #' computation time. Calculation of KRR can be accelerated by #' increasing \code{fastkrr.nblocks}, it should be smaller than #' \eqn{n^{1/3}} up to sacrificing some accuracy, for details see #' \code{\link[DRR]{constructFastKRRLearner}}. Another way to speed up #' is to use \code{pars$fastcv = TRUE} which might provide a more #' efficient way to search the parameter space but may also miss the #' global maximum, I have not ran tests on the accuracy of this method. #' #' #' #' @references #' Laparra, V., Malo, J., Camps-Valls, G., #' 2015. Dimensionality Reduction via Regression in Hyperspectral #' Imagery. IEEE Journal of Selected Topics in Signal Processing #' 9, 1026-1036. doi:10.1109/JSTSP.2015.2417833 #' #' @examples #' \dontrun{ #' if(requireNamespace(c("kernlab", "DRR"), quietly = TRUE)) { #' #' dat <- loadDataSet("variable Noise Helix", n = 200)[sample(200)] #' #' emb <- embed(dat, "DRR", ndim = 3) #' #' plot(dat, type = "3vars") #' plot(emb, type = "3vars") #' #' # We even have function to reconstruct, also working for only the first few dimensions #' rec <- inverse(emb, getData(getDimRedData(emb))[, 1, drop = FALSE]) #' plot(rec, type = "3vars") #' } #' #' } #' #' @include dimRedResult-class.R #' @include dimRedMethod-class.R #' @import DRR #' @family dimensionality reduction methods #' @export DRR #' @exportClass DRR DRR <- setClass( "DRR", contains = "dimRedMethod", prototype = list( stdpars = list(ndim = 2, lambda = c(0, 10 ^ (-3:2)), kernel = "rbfdot", kernel.pars = list(sigma = 10 ^ (-3:4)), pca = TRUE, pca.center = TRUE, pca.scale = FALSE, fastcv = FALSE, cv.folds = 5, fastcv.test = NULL, fastkrr.nblocks = 4, verbose = TRUE), fun = function (data, pars, keep.org.data = TRUE) { chckpkg("DRR") chckpkg("kernlab") meta <- data@meta orgdata <- if (keep.org.data) data@data else matrix(0, 0, 0) indata <- data@data # CVST from DRR complains about non-positive definite matrices suppressWarnings( res <- do.call(DRR::drr, c(list(X = indata), pars)) ) outdata <- res$fitted.data colnames(outdata) <- paste0("DRR", 1:ncol(outdata)) appl <- function(x){ appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame() proj <- if (inherits(x, "dimRedData")) x@data else x if (ncol(proj) != ncol(data@data)) stop("x must have the same number of dimensions ", "as the original data") appl.out <- new("dimRedData", data = res$apply(proj), meta = appl.meta) dimnames(appl.out@data) <- list( rownames(x), paste0("DRR", seq_len(ncol(appl.out@data))) ) return(appl.out) } inv <- function(x) { appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame() proj <- if (inherits(x, "dimRedData")) x@data else x if (ncol(proj) > ncol(data@data)) stop("x must have less or equal number of dimensions ", "as the original data") inv.out <- new("dimRedData", data = res$inverse(proj), meta = appl.meta) dimnames(inv.out@data) <- list(rownames(proj), colnames(data@data)) return(inv.out) } return( new("dimRedResult", data = new("dimRedData", data = outdata, meta = meta), org.data = orgdata, apply = appl, inverse = inv, has.org.data = keep.org.data, has.apply = TRUE, has.inverse = TRUE, method = "drr", pars = pars ) ) }, requires = c("DRR", "kernlab")) ) dimRed/R/rotate.R0000644000176200001440000001705714744727276013336 0ustar liggesusers ## rotate X in such a way that the values of Y have maximum squared ## correlation with the dimensions specified in axes. We optimize ## axes[1] first, then axes[2] without axes[1], ... ## we maximize the squared correlations of the original variables ## with the axis of the embeding and the final result is the sum_{axes} sum(squared(correlation(variables, axis))) setGeneric( "maximize_correlation", function(object, ...) standardGeneric("maximize_correlation"), valueClass = "dimRedResult" ) #' Maximize Correlation with the Axes #' #' Rotates the data in such a way that the correlation with the first #' \code{naxes} axes is maximized. #' #' Methods that do not use eigenvector decomposition, like t-SNE often #' do not align the data with axes according to the correlation of #' variables with the data. \code{maximize_correlation} uses the #' \code{\link[optimx]{optimx}} package to rotate the data in such a #' way that the original variables have maximum correlation with the #' embedding axes. #' #' @param object A dimRedResult object #' @param naxes the number of axes to optimize for. #' @param cor_method which correlation method to use #' #' @aliases maximize_correlation #' @export setMethod( "maximize_correlation", "dimRedResult", function(object, naxes = ncol(object@data@data), cor_method = "pearson"){ ## if (missing(naxes)) naxes <- ncol(object@data@data) ## if (missing(cor_method)) cor_method <- "pearson" if (!object@has.org.data) stop("object requires original data") if (length(naxes) != 1 || naxes < 1 || naxes > ncol(object@data@data)) stop("naxes must specify the numbers of axes to optimize for, ", "i.e. a single integer between 1 and ncol(object@data@data)") ## try to partially match cor_method: cor_method <- cor_method[pmatch(cor_method, c("pearson", "kendall", "spearman"))] if (is.na(cor_method)) stop("cor_method must match one of ", "'pearson', 'kendall', or 'spearman', ", "at least partially.") mcres <- .maximize_correlation(object@data@data, object@org.data, 1:naxes, cor_method) res <- object res@data@data <- mcres$rotated return(res) } ) .maximize_correlation <- function(X, Y, axes = 1:ncol(X), cor_method = "pearson"){ if (nrow(X) != nrow(Y)) stop("'X' and 'Y' must have the same number of rows") if (max(axes) > ncol(X)){ axes <- axes[ axes <= ncol(X) ] warning("'max(axes)' must be <= 'ncol(X)', removing some axes") } chckpkg("optimx") xndim <- ncol(X) without_axes <- integer(0) res <- list() for (axis in axes){ without_axes <- c(without_axes, axis) nplanes <- xndim - length(without_axes) planes <- matrix(NA, 2, nplanes) planes[1, ] <- axis planes[2, ] <- (1:xndim)[-without_axes] if (ncol(planes) == 0) break # optimx throws a warning that we have to suppress: ## Warning messages: ## 1: In max(logpar) : no non-missing arguments to max; returning -Inf ## 2: In min(logpar) : no non-missing arguments to min; returning Inf suppressWarnings( o <- optimx::optimx( par = rep(0, nplanes), fn = obj, method = "L-BFGS-B", lower = 0, upper = 2 * pi, X = as.matrix(X), Y = as.matrix(Y), axis = axis, without_axes = without_axes, cor_method = cor_method ) ) ## The result looks like this: ## p1 value fevals gevals niter convcode kkt1 kkt2 xtimes ## L-BFGS-B 0 -0.1613494 1 1 NA 0 FALSE NA 0.016 if (o$convcode > 0) stop("rotation did not converge.") res_idx <- length(res) + 1 res[[res_idx]] <- list() res[[res_idx]]$axis <- axis res[[res_idx]]$without_axes <- without_axes res[[res_idx]]$angs <- unname( unlist(o[1, 1:nplanes]) ) res[[res_idx]]$planes <- planes res[[res_idx]]$X <- rotate(res[[res_idx]]$angs, planes, X) res[[res_idx]]$cor <- -o$value } ## calculate the correlation for axes nres <- length(res) if (nres > 0) { ## the result is the sum of the mean squared correlations of the ## original variables with the axes. "res[[i]]$cor" contains the ## mean squared correlation of the variables with axis "i" res$result <- 0 for (i in 1:nres) res$result <- res$result + res[[i]]$cor ^ 2 ## res$result <- res$result / length(res) ## rotate the input to maximize correlations res$rotated <- X for (i in 1:nres) res$rotated <- rotate(res[[i]]$angs, res[[i]]$planes, res$rotated) } else { ## if we only had one dimension, simply return the means squared ## correlation and don't rotate res$result <- sum(correlate(X, Y, cor_method) ^ 2) res$rotated <- X } res } #### helper functions for rotation ## we create a number or rotation matrices around the 2d planes ## spanned by the orthonormal matrices, multiply them for a general ## rotation which is then applied to the data X rotate <- function (angs, planes, X) { ndim <- ncol(X) nplanes <- ncol(planes) if (length(angs) != nplanes) stop("length(angs) not equal to chose(ndim, 2)") ## loop over the planes to construct general rotation matrix rotmat <- diag(ndim) for (p in 1:nplanes) { ## 2d rotation ## possible optimization: create large rotation matrix ## directly and insert values linearly without a for loop rotmat2d <- matrix( c(cos(angs[p]), -sin(angs[p]), sin(angs[p]), cos(angs[p])), 2, 2, byrow = TRUE ) p_rotmat <- diag(ndim) for (i in 1:2) for (j in 1:2) p_rotmat[ planes[i, p], planes[j, p] ] <- rotmat2d[i, j] rotmat <- rotmat %*% p_rotmat } t(rotmat %*% t(X)) } get_planes <- function(ndims, axis, without_axes){ nplanes <- ndims - length(without_axes) planes <- matrix(NA, 2, nplanes) planes[1, ] <- axis planes[2, ] <- (1:ndims)[c(-axis, -without_axes)] planes } obj <- function(alpha, X, Y, axis, without_axes, cor_method = "pearson"){ ## correlation with first axis xndim <- ncol(X) planes <- get_planes(xndim, axis, without_axes) X2 <- rotate(alpha, planes, X) ## cor(x, y) returns a matrix with the correlations between the ## columns of x = X2 (rows) and the columns of y = Y (columns) we ## want the mean of squared correlations of all variables original ## variables with the first axis, i.e. we require the relevant ## (axis) column of the resulting matrix. ## Possible optimization: use only the relevant column of Y -mean(correlate( X2, Y, #use = "pairwise.complete.obs", method = cor_method )[axis, ] ^ 2) } correlate <- function (x, y, method, ...) { if (method != "kendall"){ return(stats::cor(x, y, method = method, ...)) } else { chckpkg("pcaPP") ## make the cor.fk method behave like cor for matrices: if (is.matrix(x) && is.matrix(y)) { res <- matrix( NA, nrow = ncol(x), ncol = ncol(y), dimnames = list(colnames(x), colnames(y)) ) for (i in 1:ncol(x)) { for (j in 1:ncol(y)){ res[i, j] <- pcaPP::cor.fk(x[, i], y[, j]) } } return(res) } else if (is.null(dim(x)) && is.null(dim(y))){ return(pcaPP::cor.fk(x, y)) } else { stop("something is wrong with the input of 'correlate()'") } } } dimRed/R/diffmap.R0000644000176200001440000001103614262545115013416 0ustar liggesusers#' Diffusion Maps #' #' An S4 Class implementing Diffusion Maps #' #' Diffusion Maps uses a diffusion probability matrix to robustly #' approximate a manifold. #' #' #' @template dimRedMethodSlots #' #' @template dimRedMethodGeneralUsage #' #' @section Parameters: #' Diffusion Maps can take the following parameters: #' \describe{ #' \item{d}{a function transforming a matrix row wise into a #' distance matrix or \code{dist} object, #' e.g. \code{\link[stats]{dist}}.} #' \item{ndim}{The number of dimensions} #' \item{eps}{The epsilon parameter that determines the #' diffusion weight matrix from a distance matrix \code{d}, #' \eqn{exp(-d^2/eps)}, if set to \code{"auto"} it will #' be set to the median distance to the 0.01*n nearest #' neighbor.} #' \item{t}{Time-scale parameter. The recommended value, 0, #' uses multiscale geometry.} #' \item{delta}{Sparsity cut-off for the symmetric graph Laplacian, #' a higher value results in more sparsity and faster calculation. #' The predefined value is 10^-5.} #' } #' #' @section Implementation: #' Wraps around \code{\link[diffusionMap]{diffuse}}, see there for #' details. It uses the notation of Richards et al. (2009) which is #' slightly different from the one in the original paper (Coifman and #' Lafon, 2006) and there is no \eqn{\alpha} parameter. #' There is also an out-of-sample extension, see examples. #' #' #' @references #' Richards, J.W., Freeman, P.E., Lee, A.B., Schafer, #' C.M., 2009. Exploiting Low-Dimensional Structure in #' Astronomical Spectra. ApJ 691, #' 32. doi:10.1088/0004-637X/691/1/32 #' #' Coifman, R.R., Lafon, S., 2006. Diffusion maps. Applied and #' Computational Harmonic Analysis 21, #' 5-30. doi:10.1016/j.acha.2006.04.006 #' #' @examples #' if(requireNamespace("diffusionMap", quietly = TRUE)) { #' dat <- loadDataSet("3D S Curve", n = 300) #' emb <- embed(dat, "DiffusionMaps") #' #' plot(emb, type = "2vars") #' #' # predicting is possible: #' samp <- sample(floor(nrow(dat) / 10)) #' emb2 <- embed(dat[samp]) #' emb3 <- predict(emb2, dat[-samp]) #' #' plot(emb2, type = "2vars") #' points(getData(emb3)) #' } #' @include dimRedResult-class.R #' @include dimRedMethod-class.R #' @family dimensionality reduction methods #' @export DiffusionMaps #' @exportClass DiffusionMaps DiffusionMaps <- setClass( "DiffusionMaps", contains = "dimRedMethod", prototype = list( stdpars = list(d = stats::dist, ndim = 2, eps = "auto", t = 0, delta = 1e-5), fun = function (data, pars, keep.org.data = TRUE) { chckpkg("diffusionMap") meta <- data@meta orgdata <- if (keep.org.data) data@data else NULL indata <- data@data distmat <- pars$d(indata) if (pars$eps == "auto") pars$eps <- diffusionMap::epsilonCompute(distmat) diffres <- diffusionMap::diffuse( D = distmat, t = pars$t, eps.val = pars$eps, neigen = pars$ndim, maxdim = pars$ndim, delta = pars$delta ) outdata <- as.matrix(diffres$X) appl <- function(x) { appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame() proj <- if (inherits(x, "dimRedData")) x@data else x if (ncol(proj) != ncol(data@data)) stop("x must have the same number of dimensions ", "as the original data") dd <- sqrt(pdist2(proj, indata)) appl.res <- diffusionMap::nystrom(diffres, dd, sigma = diffres$epsilon) dimnames(appl.res) <- list( rownames(x), paste0("diffMap", seq_len(ncol(outdata))) ) new("dimRedData", data = appl.res, meta = appl.meta) } colnames(outdata) <- paste0("diffMap", seq_len(ncol(outdata))) return(new( "dimRedResult", data = new("dimRedData", data = outdata, meta = meta), org.data = orgdata, apply = appl, has.apply = TRUE, has.org.data = keep.org.data, method = "diffmap", pars = pars )) }, requires = c("diffusionMap")) ) dimRed/R/quality.R0000644000176200001440000004772614257373431013523 0ustar liggesusers#' @include dimRedResult-class.R #' @include dimRedData-class.R #' @export setGeneric("quality", function (.data, ...) standardGeneric("quality"), valueClass = "numeric") #' Quality Criteria for dimensionality reduction. #' #' A collection of functions to compute quality measures on #' \code{\link{dimRedResult}} objects. #' #' @section Implemented methods: #' #' Method must be one of \code{"\link{Q_local}", "\link{Q_global}", #' "\link{mean_R_NX}", "\link{total_correlation}", #' "\link{cophenetic_correlation}", "\link{distance_correlation}", #' "\link{reconstruction_rmse}"} #' #' @section Rank based criteria: #' #' \code{Q_local}, \code{Q_global}, and \code{mean_R_NX} are #' quality criteria based on the Co-ranking matrix. \code{Q_local} #' and \code{Q_global} determine the local/global quality of the #' embedding, while \code{mean_R_NX} determines the quality of the #' overall embedding. They are parameter free and return a single #' number. The object must include the original data. The number #' returns is in the range [0, 1], higher values mean a better #' local/global embedding. #' #' @section Correlation based criteria: #' #' \code{total_correlation} calculates the sum of the mean squared #' correlations of the original axes with the axes in reduced #' dimensions, because some methods do not care about correlations #' with axes, there is an option to rotate data in reduced space to #' maximize this criterium. The number may be greater than one if more #' dimensions are summed up. #' #' \code{cophenetic_correlation} calculate the correlation between the #' lower triangles of distance matrices, the correlation and distance #' methods may be specified. The result is in range [-1, 1]. #' #' \code{distance_correlation} measures the independes of samples by #' calculating the correlation of distances. For details see #' \code{\link[energy]{dcor}}. #' #' @section Reconstruction error: #' #' \code{reconstruction_rmse} calculates the root mean squared error #' of the reconstrucion. \code{object} requires an inverse function. #' #' #' @references #' #' Lueks, W., Mokbel, B., Biehl, M., Hammer, B., 2011. How #' to Evaluate Dimensionality Reduction? - Improving the #' Co-ranking Matrix. arXiv:1110.3917 [cs]. #' #' Szekely, G.J., Rizzo, M.L., Bakirov, N.K., 2007. Measuring and #' testing dependence by correlation of distances. Ann. Statist. 35, #' 2769-2794. doi:10.1214/009053607000000505 #' #' Lee, J.A., Peluffo-Ordonez, D.H., Verleysen, M., 2015. Multi-scale #' similarities in stochastic neighbour embedding: Reducing #' dimensionality while preserving both local and global #' structure. Neurocomputing, 169, #' 246-261. doi:10.1016/j.neucom.2014.12.095 #' #' #' #' @param .data object of class \code{dimRedResult} #' @param .method character vector naming one of the methods #' @param .mute what output from the embedding method should be muted. #' @param ... the pameters, internally passed as a list to the #' quality method as \code{pars = list(...)} #' @return a number #' #' @examples #' \dontrun{ #' embed_methods <- dimRedMethodList() #' quality_methods <- dimRedQualityList() #' scurve <- loadDataSet("Iris") #' #' quality_results <- matrix(NA, length(embed_methods), length(quality_methods), #' dimnames = list(embed_methods, quality_methods)) #' embedded_data <- list() #' #' for (e in embed_methods) { #' message("embedding: ", e) #' embedded_data[[e]] <- embed(scurve, e, .mute = c("message", "output")) #' for (q in quality_methods) { #' message(" quality: ", q) #' quality_results[e, q] <- tryCatch( #' quality(embedded_data[[e]], q), #' error = function (e) NA #' ) #' } #' } #' #' print(quality_results) #' } #' @author Guido Kraemer #' @aliases quality quality.dimRedResult #' @family Quality scores for dimensionality reduction #' @describeIn quality Calculate a quality index from a dimRedResult object. #' @export setMethod( "quality", "dimRedResult", function (.data, .method = dimRedQualityList(), .mute = character(0), # c("output", "message"), ...) { method <- match.arg(.method) methodFunction <- getQualityFunction(method) args <- c(list(object = .data), list(...)) devnull <- if (Sys.info()["sysname"] != "Windows") "/dev/null" else "NUL" if ("message" %in% .mute){ devnull1 <- file(devnull, "wt") sink(devnull1, type = "message") on.exit({ sink(file = NULL, type = "message") close(devnull1) }, add = TRUE) } if ("output" %in% .mute) { devnull2 <- file(devnull, "wt") sink(devnull2, type = "output") on.exit({ sink() close(devnull2) }, add = TRUE) } do.call(methodFunction, args) } ) getQualityFunction <- function (method) { switch( method, Q_local = Q_local, Q_global = Q_global, mean_R_NX = mean_R_NX, AUC_lnK_R_NX = AUC_lnK_R_NX, total_correlation = total_correlation, cophenetic_correlation = cophenetic_correlation, distance_correlation = distance_correlation, reconstruction_rmse = reconstruction_rmse ) } #' @export setGeneric( "Q_local", function(object, ...) standardGeneric("Q_local"), valueClass = "numeric" ) #' Method Q_local #' #' Calculate the Q_local score to assess the quality of a dimensionality reduction. #' #' @param object of class dimRedResult. #' @param ndim use the first ndim columns of the embedded data for calculation. #' @family Quality scores for dimensionality reduction #' @aliases Q_local #' @export setMethod( "Q_local", "dimRedResult", function (object, ndim = getNDim(object)) { if (!object@has.org.data) stop("object requires original data") chckpkg("coRanking") Q <- coRanking::coranking(object@org.data, object@data@data[, seq_len(ndim), drop = FALSE]) nQ <- nrow(Q) N <- nQ + 1 Qnx <- diag(apply(apply(Q, 2, cumsum), 1, cumsum)) / seq_len(nQ) / N lcmc <- Qnx - seq_len(nQ) / nQ Kmax <- which.max(lcmc) Qlocal <- sum(Qnx[1:Kmax]) / Kmax return(as.vector(Qlocal)) } ) #' @export setGeneric( "Q_global", function(object, ...) standardGeneric("Q_global"), valueClass = "numeric" ) #' Method Q_global #' #' Calculate the Q_global score to assess the quality of a dimensionality reduction. #' #' @param object of class dimRedResult #' @family Quality scores for dimensionality reduction #' @aliases Q_global #' @export setMethod( "Q_global", "dimRedResult", function(object){ if (!object@has.org.data) stop("object requires original data") chckpkg("coRanking") Q <- coRanking::coranking(object@org.data, object@data@data) nQ <- nrow(Q) N <- nQ + 1 Qnx <- diag(apply(apply(Q, 2, cumsum), 1, cumsum)) / seq_len(nQ) / N lcmc <- Qnx - seq_len(nQ) / nQ Kmax <- which.max(lcmc) Qglobal <- sum(Qnx[(Kmax + 1):nQ]) / (N - Kmax) return(Qglobal) } ) #' @export setGeneric( "mean_R_NX", function(object, ...) standardGeneric("mean_R_NX"), valueClass = "numeric" ) #' Method mean_R_NX #' #' Calculate the mean_R_NX score to assess the quality of a dimensionality reduction. #' #' @param object of class dimRedResult #' @family Quality scores for dimensionality reduction #' @aliases mean_R_NX #' @export setMethod( "mean_R_NX", "dimRedResult", function(object) mean(R_NX(object)) ) #' @export setGeneric( "AUC_lnK_R_NX", function(object, ...) standardGeneric("AUC_lnK_R_NX"), valueClass = "numeric" ) #' Method AUC_lnK_R_NX #' #' Calculate the Area under the R_NX(ln K), used in Lee et. al. (2015). Note #' that despite the name, this does not weight the mean by the logarithm, but by #' 1/K. If explicit weighting by the logarithm is desired use \code{weight = #' "log"} or \code{weight = "log10"} #' #' The naming confusion originated from equation 17 in Lee et al (2015) and the #' name of this method may change in the future to avoid confusion. #' #' @references Lee, J.A., Peluffo-Ordonez, D.H., Verleysen, M., 2015. #' Multi-scale similarities in stochastic neighbour embedding: Reducing #' dimensionality while preserving both local and global structure. #' Neurocomputing 169, 246-261. https://doi.org/10.1016/j.neucom.2014.12.095 #' #' @param object of class dimRedResult #' @param weight the weight function used, one of \code{c("inv", "log", "log10")} #' @family Quality scores for dimensionality reduction #' @aliases AUC_lnK_R_NX #' @export setMethod( "AUC_lnK_R_NX", "dimRedResult", function(object, weight = "inv") { rnx <- R_NX(object) weight <- match.arg(weight, c("inv", "ln", "log", "log10")) switch( weight, inv = auc_ln_k_inv(rnx), log = auc_log_k(rnx), ln = auc_log_k(rnx), log10 = auc_log10_k(rnx), stop("wrong parameter for weight") ) } ) auc_ln_k_inv <- function(rnx) { Ks <- seq_along(rnx) return (sum(rnx / Ks) / sum(1 / Ks)) } auc_log_k <- function(rnx) { Ks <- seq_along(rnx) return (sum(rnx * log(Ks)) / sum(log(Ks))) } auc_log10_k <- function(rnx) { Ks <- seq_along(rnx) return (sum(rnx * log10(Ks)) / sum(log10(Ks))) } #' @export setGeneric( "total_correlation", function(object, ...) standardGeneric("total_correlation"), valueClass = "numeric" ) #' Method total_correlation #' #' Calculate the total correlation of the variables with the axes to #' assess the quality of a dimensionality reduction. #' #' @param object of class dimRedResult #' @param naxes the number of axes to use for optimization. #' @param cor_method the correlation method to use. #' @param is.rotated if FALSE the object is rotated. #' #' @family Quality scores for dimensionality reduction #' @aliases total_correlation #' @export setMethod( "total_correlation", "dimRedResult", function(object, naxes = ndims(object), cor_method = "pearson", is.rotated = FALSE){ if (!object@has.org.data) stop("object requires original data") if (length(naxes) != 1 || naxes < 1 || naxes > ncol(object@data@data)) stop("naxes must specify the numbers of axes to optimize for, ", "i.e. a single integer between 1 and ncol(object@data@data)") ## try to partially match cor_method: cor_methods <- c("pearson", "kendall", "spearman") cor_method <- cor_methods[pmatch(cor_method, cor_methods)] if (is.na(cor_method)) stop("cor_method must match one of ", "'pearson', 'kendall', or 'spearman', ", "at least partially.") if (!is.rotated) { rotated_result <- maximize_correlation( object, naxes, cor_method ) } else { rotated_result <- object } res <- 0 for (i in 1:naxes) res <- res + mean(correlate( rotated_result@data@data, rotated_result@org.data, cor_method )[i, ] ^ 2) return(res) } ) setGeneric("cophenetic_correlation", function(object, ...) standardGeneric("cophenetic_correlation"), valueClass = "numeric") #' Method cophenetic_correlation #' #' Calculate the correlation between the distance matrices in high and #' low dimensioal space. #' #' @param object of class dimRedResult #' @param d the distance function to use. #' @param cor_method The correlation method. #' @aliases cophenetic_correlation #' @family Quality scores for dimensionality reduction #' @export setMethod( "cophenetic_correlation", "dimRedResult", function(object, d = stats::dist, cor_method = "pearson"){ ## if (missing(d)) d <- stats::dist ## if (missing(cor_method)) cor_method <- "pearson" if (!object@has.org.data) stop("object requires original data") cor_methods <- c("pearson", "kendall", "spearman") cor_method <- cor_methods[pmatch(cor_method, cor_methods)] if (is.na(cor_method)) stop("cor_method must match one of ", "'pearson', 'kendall', or 'spearman', ", "at least partially.") d.org <- d(object@org.data) d.emb <- d(object@data@data) if (!inherits(d.org, "dist") || !inherits(d.emb, "dist")) stop("d must return a dist object") res <- correlate( d(object@org.data), d(object@data@data), cor_method ) return(res) } ) #' @export setGeneric( "distance_correlation", function(object) standardGeneric("distance_correlation"), valueClass = "numeric" ) #' Method distance_correlation #' #' Calculate the distance correlation between the distance matrices in #' high and low dimensioal space. #' #' @param object of class dimRedResult #' @aliases distance_correlation #' @family Quality scores for dimensionality reduction #' @export setMethod( "distance_correlation", "dimRedResult", function(object){ if (!object@has.org.data) stop("object requires original data") chckpkg("energy") energy::dcor(object@org.data, object@data@data) } ) #' @export setGeneric( "reconstruction_rmse", function(object) standardGeneric("reconstruction_rmse"), valueClass = "numeric" ) #' Method reconstruction_rmse #' #' Calculate the reconstruction root mean squared error a dimensionality reduction, the method must have an inverse mapping. #' #' @param object of class dimRedResult #' @aliases reconstruction_rmse #' @family Quality scores for dimensionality reduction #' @export setMethod( "reconstruction_rmse", "dimRedResult", function(object){ if (!object@has.org.data) stop("object requires original data") if (!object@has.inverse) stop("object requires an inverse function") recon <- object@inverse(object@data) rmse(recon@data, object@org.data) } ) #' @rdname quality #' @param filter filter methods by installed packages #' @export dimRedQualityList <- function (filter = FALSE) { quality_list <- character() if (!filter || requireNamespace("coRanking", quietly = TRUE)) quality_list <- c(quality_list, c("Q_local", "Q_global", "mean_R_NX", "AUC_lnK_R_NX")) if (!filter || requireNamespace("optimx", quietly = TRUE)) quality_list <- c(quality_list, "total_correlation") quality_list <- c(quality_list, "cophenetic_correlation") if (!filter || requireNamespace("energy", quietly = TRUE)) quality_list <- c(quality_list, "distance_correlation") quality_list <- c(quality_list, "reconstruction_rmse") return(quality_list) } #' @export setGeneric( "R_NX", function(object, ...) standardGeneric("R_NX"), valueClass = "numeric" ) #' Method R_NX #' #' Calculate the R_NX score from Lee et. al. (2013) which shows the neighborhood #' preservation for the Kth nearest neighbors, corrected for random point #' distributions and scaled to range [0, 1]. #' @param object of class dimRedResult #' @param ndim the number of dimensions to take from the embedded data. #' @family Quality scores for dimensionality reduction #' @aliases R_NX #' @export setMethod( "R_NX", "dimRedResult", function(object, ndim = getNDim(object)) { chckpkg("coRanking") if (!object@has.org.data) stop("object requires original data") Q <- coRanking::coranking(object@org.data, object@data@data[, seq_len(ndim), drop = FALSE]) nQ <- nrow(Q) N <- nQ + 1 Qnx <- diag(apply(apply(Q, 2, cumsum), 1, cumsum)) / seq_len(nQ) / N Rnx <- ((N - 1) * Qnx - seq_len(nQ)) / (N - 1 - seq_len(nQ)) Rnx[-nQ] } ) #' @export setGeneric( "Q_NX", function(object, ...) standardGeneric("Q_NX"), valueClass = "numeric" ) #' Method Q_NX #' #' Calculate the Q_NX score (Chen & Buja 2006, the notation in the #' publication is M_k). Which is the fraction of points that remain inside #' the same K-ary neighborhood in high and low dimensional space. #' #' @param object of class dimRedResult #' @family Quality scores for dimensionality reduction #' @aliases Q_NX #' @export setMethod( "Q_NX", "dimRedResult", function(object) { chckpkg("coRanking") Q <- coRanking::coranking(object@org.data, object@data@data) nQ <- nrow(Q) N <- nQ + 1 Qnx <- diag(apply(apply(Q, 2, cumsum), 1, cumsum)) / seq_len(nQ) / N Qnx } ) #'@export setGeneric( "LCMC", function(object, ...) standardGeneric("LCMC"), valueClass = "numeric" ) #' Method LCMC #' #' Calculates the Local Continuity Meta Criterion, which is #' \code{\link{Q_NX}} adjusted for random overlap inside the K-ary #' neighborhood. #' #' @param object of class dimRedResult #' @family Quality scores for dimensionality reduction #' @aliases LCMC #' @export setMethod( "LCMC", "dimRedResult", function(object) { chckpkg("coRanking") Q <- coRanking::coranking(object@org.data, object@data@data) nQ <- nrow(Q) N <- nQ + 1 lcmc <- diag(apply(apply(Q, 2, cumsum), 1, cumsum)) / seq_len(nQ) / N - seq_len(nQ) / nQ lcmc } ) rnx2qnx <- function(rnx, K = seq_along(rnx), N = length(rnx) + 1) { (rnx * (N - 1 - K) + K) / (N - 1) } qnx2rnx <- function(qnx, K = seq_along(qnx), N = length(qnx) + 1) { ((N - 1) * qnx - K) / (N - 1 - K) } #' @export setGeneric( "reconstruction_error", function(object, ...) standardGeneric("reconstruction_error"), valueClass = "numeric" ) #' Method reconstruction_error #' #' Calculate the error using only the first \code{n} dimensions of the embedded #' data. \code{error_fun} can either be one of \code{c("rmse", "mae")} to #' calculate the root mean square error or the mean absolute error respectively, #' or a function that takes to equally sized vectors as input and returns a #' single number as output. #' #' @param object of class dimRedResult #' @param n a positive integer or vector of integers \code{<= ndims(object)} #' @param error_fun a function or string indicating an error function, if #' indication a function it must take to matrices of the same size and return #' a scalar. #' @return a vector of number with the same length as \code{n} with the #' #' @examples #' \dontrun{ #' ir <- loadDataSet("Iris") #' ir.drr <- embed(ir, "DRR", ndim = ndims(ir)) #' ir.pca <- embed(ir, "PCA", ndim = ndims(ir)) #' #' rmse <- data.frame( #' rmse_drr = reconstruction_error(ir.drr), #' rmse_pca = reconstruction_error(ir.pca) #' ) #' #' matplot(rmse, type = "l") #' plot(ir) #' plot(ir.drr) #' plot(ir.pca) #' } #' @author Guido Kraemer #' @family Quality scores for dimensionality reduction #' @aliases reconstruction_error #' @export setMethod( "reconstruction_error", c("dimRedResult"), function (object, n = seq_len(ndims(object)), error_fun = "rmse") { if (any(n > ndims(object))) stop("n > ndims(object)") if (any(n < 1)) stop("n < 1") ef <- if (inherits(error_fun, "character")) { switch( error_fun, rmse = rmse, mae = mae ) } else if (inherits(error_fun, "function")) { error_fun } else { stop("error_fun must be a string or function, see documentation for details") } res <- numeric(length(n)) org <- getData(getOrgData(object)) for (i in seq_along(n)) { rec <- getData(inverse( object, getData(getDimRedData(object))[, seq_len(n[i]), drop = FALSE] )) res[i] <- ef(org, rec) } res } ) rmse <- function (x1, x2) sqrt(mean((x1 - x2) ^ 2)) mae <- function (x1, x2) mean(abs(x1 - x2)) dimRed/R/dataSets.R0000644000176200001440000001442314257367661013577 0ustar liggesusers#' Example Data Sets for dimensionality reduction #' #' A compilation of standard data sets that are often being used to #' showcase dimensionality reduction techniques. #' #' The argument \code{name} should be one of #' \code{dataSetList()}. Partial matching is possible, see #' \code{\link{match.arg}}. Generated data sets contain the internal #' coordinates of the manifold in the \code{meta} slot. Call #' \code{dataSetList()} to see what data sets are available. #' #' #' #' @param name A character vector that specifies the name of the data #' set. #' @param n In generated data sets the number of points to be #' generated, else ignored. #' @param sigma In generated data sets the standard deviation of the #' noise added, else ignored. #' @return \code{loadDataSet} an object of class #' \code{\link{dimRedData}}. \code{dataSetList()} return a #' character string with the implemented data sets #' #' @examples #' ## a list of available data sets: #' dataSetList() #' #' ## Load a data set: #' swissRoll <- loadDataSet("Swiss Roll") #' \donttest{ #' if(requireNamespace("scatterplot3d", quietly = TRUE)) #' plot(swissRoll, type = "3vars") #' } #' #' ## Load Iris data set, partial matching: #' loadDataSet("I") #' #' @name dataSets NULL #' @include dimRedData-class.R #' @rdname dataSets #' @export loadDataSet <- function (name = dataSetList(), n = 2000, sigma = 0.05) { name <- match.arg(name) switch( name, "Swiss Roll" = swissRoll(n, sigma), "Broken Swiss Roll" = brokenSwissRoll(n, sigma), "Helix" = helix(n, sigma), "Twin Peaks" = twinPeaks(n, sigma), "Sphere" = sphere(n, sigma), "FishBowl" = fishbowl(n, sigma), "Ball" = ball(n, sigma), "3D S Curve" = sCurve(n, sigma), "variable Noise Helix" = noisyHelix(n, sigma), "Cube" = cube(n, sigma), "Iris" = irisdata() ) } #' @rdname dataSets #' @export dataSetList <- function () { return(c( "Swiss Roll", "Broken Swiss Roll", "Helix", "Twin Peaks", "Sphere", "Ball", "FishBowl", "3D S Curve", "variable Noise Helix", "Iris", "Cube" )) } irisdata <- function() { dd <- as.matrix(datasets::iris[, 1:4]) new("dimRedData", data = dd, meta = datasets::iris[, 5, drop = FALSE]) } swissRoll <- function (n = 2000, sigma = 0.05) { x <- stats::runif(n, 1.5 * pi, 4.5 * pi) y <- stats::runif(n, 0, 30) new("dimRedData", data = swissRollMapping(x, y) + stats::rnorm(3 * n, sd = sigma), meta = data.frame(x = x, y = y)) } brokenSwissRoll <- function (n = 2000, sigma = 0.05) { x <- c( stats::runif(floor(n / 2), 1.5 * pi, 2.7 * pi), stats::runif(ceiling(n / 2), 3.3 * pi, 4.5 * pi) ) y <- stats::runif(n, 0, 30) new("dimRedData", data = swissRollMapping(x, y) + stats::rnorm(3 * n, sd = sigma), meta = data.frame(x = x, y = y)) } swissRollMapping <- function (x, y) { cbind(x = x * cos(x), y = y, z = x * sin(x)) } helix <- function (n = 2000, sigma = 0.05) { t <- stats::runif(n, 0, 2 * pi) new("dimRedData", data = helixMapping(t) + stats::rnorm(3 * n, sd = sigma), meta = data.frame(t = t)) } helixMapping <- function (x) { cbind(x = (2 + cos(8 * x)) * cos(x), y = (2 + cos(8 * x)) * sin(x), z = (sin(8 * x))) } twinPeaks <- function (n = 2000, sigma = 0.05) { x <- stats::runif(n, -1, 1) y <- stats::runif(n, -1, 1) new("dimRedData", data = twinPeaksMapping(x, y) + stats::rnorm(3 * n, sd = sigma), meta = data.frame(x = x, y = y)) } twinPeaksMapping <- function (x, y) { cbind(x = x, y = y, z = sin(pi * x) * tanh(3 * y)) } sphere <- function (n = 2000, sigma = 0.05) { phi <- stats::runif(n, 0, 2 * pi) psi <- acos(stats::runif(n, -1, 1)) new("dimRedData", data = sphereMapping(phi, psi) + stats::rnorm(3 * n, sd = sigma), meta = data.frame(phi = phi, psi = psi)) } fishbowl <- function (n = 2000, sigma = 0.05) { phi <- stats::runif(n, 0, 2 * pi) psi <- acos(stats::runif(n, -1, 0.8)) new("dimRedData", data = sphereMapping(phi, psi) + stats::rnorm(3 * n, sd = sigma), meta = data.frame(psi = psi)) } sphereMapping <- function (phi, psi) { cbind(x = cos(phi) * sin(psi), y = sin(phi) * sin(psi), z = cos(psi)) } ball <- function (n = 2000, sigma = 0.05) { phi <- stats::runif(n, 0, 2 * pi) psi <- acos(stats::runif(n, -1, 1)) ## make it uniformly distributed inside the sphere r <- stats::runif(n) ^ (1 / 3) new("dimRedData", data = ballMapping(phi, psi, r) + stats::rnorm(3 * n, sd = sigma), meta = data.frame(phi = phi, psi = psi, r = r)) } ballMapping <- function (phi, psi, r) { cbind(x = r * cos(phi) * sin(psi), y = r * sin(phi) * sin(psi), z = r * cos(psi)) } sCurve <- function (n = 2000, sigma = 0.05) { t <- stats::runif(n, -1.5 * pi, 1.5 * pi) y <- stats::runif(n, 0, 2) new("dimRedData", data = sCurveMapping(t, y) + stats::rnorm(3 * n, sd = sigma), meta = data.frame(x = t, y = y)) } sCurveMapping <- function (t, y) { cbind(x = sin(t), y = y, z = sign(t) * (cos(t) - 1)) } noisyHelix <- function (n = 2000, sigma = 0.05) { t <- stats::runif(n, 0, 4 * pi) min_noise <- 0.1 max_noise <- 1.4 new("dimRedData", data = noisyHelixMapping(t, min_noise, max_noise) + stats::rnorm(3 * n, sd = sigma), meta = data.frame(t = t)) } noisyHelixMapping <- function(t, min_noise, max_noise) { make_noise <- function (t){ stats::rnorm(length(t), sd = t * max_noise / max(t) + min_noise) } cbind(x = 3 * cos(t) + make_noise(t), y = 3 * sin(t) + make_noise(t), z = 2 * t + make_noise(t)) } cube <- function(n = 2000, sigma = 0.05){ tmp <- cbind(x = stats::runif(n) + stats::rnorm(n, sd = sigma), y = stats::runif(n) + stats::rnorm(n, sd = sigma), z = stats::runif(n) + stats::rnorm(n, sd = sigma)) new("dimRedData", data = tmp, meta = tmp) } dimRed/R/pca.R0000644000176200001440000001024714744721362012563 0ustar liggesusers#' Principal Component Analysis #' #' S4 Class implementing PCA. #' #' PCA transforms the data in orthogonal components so that the first #' axis accounts for the larges variance in the data, all the #' following axes account for the highest variance under the #' constraint that they are orthogonal to the preceding axes. PCA is #' sensitive to the scaling of the variables. PCA is by far the #' fastest and simples method of dimensionality reduction and should #' probably always be applied as a baseline if other methods are tested. #' #' @template dimRedMethodSlots #' #' @template dimRedMethodGeneralUsage #' #' @section Parameters: #' PCA can take the following parameters: #' \describe{ #' \item{ndim}{The number of output dimensions.} #' \item{center}{logical, should the data be centered, defaults to \code{TRUE}.} #' \item{scale.}{logical, should the data be scaled, defaults to \code{FALSE}.} #' } #' #' @section Implementation: #' #' Wraps around \code{\link{prcomp}}. Because PCA can be reduced to a #' simple rotation, forward and backward projection functions are #' supplied. #' #' @references #' #' Pearson, K., 1901. On lines and planes of closest fit to systems of points in #' space. Philosophical Magazine 2, 559-572. #' #' @examples #' dat <- loadDataSet("Iris") #' emb <- embed(dat, "PCA") #' #' plot(emb, type = "2vars") #' if(requireNamespace("scatterplot3d", quietly = TRUE)) #' plot(inverse(emb, getDimRedData(emb)), type = "3vars") #' #' @include dimRedResult-class.R #' @include dimRedMethod-class.R #' @family dimensionality reduction methods #' @export PCA #' @exportClass PCA PCA <- setClass( "PCA", contains = "dimRedMethod", prototype = list( stdpars = list(ndim = 2, center = TRUE, scale. = FALSE), fun = function (data, pars, keep.org.data = TRUE) { ndim <- pars$ndim pars$ndim <- NULL meta <- data@meta orgdata <- if (keep.org.data) data@data else matrix(0, 0, 0) data <- data@data res <- do.call( prcomp, c(list(x = data), pars) ) # evaluate results here for functions data <- res$x[, seq_len(ndim), drop = FALSE] ce <- res$center sc <- res$scale rot <- res$rotation[, seq_len(ndim)] rerot <- t(rot) appl <- function(x) { appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame() proj <- if (inherits(x, "dimRedData")) x@data else x if (ncol(proj) != ncol(orgdata)) stop("x must have the same number of dimensions ", "as the original data") if (ce[1] != FALSE) proj <- t(apply(proj, 1, function(x) x - ce)) if (sc[1] != FALSE) proj <- t(apply(proj, 1, function(x) x / sc)) proj <- proj %*% rot proj <- new("dimRedData", data = proj, meta = appl.meta) return(proj) } inv <- function(x) { appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame() proj <- if (inherits(x, "dimRedData")) x@data else x if (ncol(proj) > ncol(data)) stop("x must have less or equal number of dimensions ", "as the original data") d <- ncol(proj) reproj <- proj %*% rerot[seq_len(d), ] if (sc[1] != FALSE) reproj <- t(apply(reproj, 1, function(x) x * sc)) if (ce[1] != FALSE) reproj <- t(apply(reproj, 1, function(x) x + ce)) reproj <- new("dimRedData", data = reproj, meta = appl.meta) return(reproj) } res <- new( "dimRedResult", data = new("dimRedData", data = data, meta = meta), org.data = orgdata, apply = appl, inverse = inv, has.org.data = keep.org.data, has.apply = TRUE, has.inverse = TRUE, method = "PCA", pars = pars ) return(res) }) ) dimRed/R/embed.R0000644000176200001440000001217614256650700013072 0ustar liggesusers#' dispatches the different methods for dimensionality reduction #' #' wraps around all dimensionality reduction functions. #' #' Method must be one of \code{\link{dimRedMethodList}()}, partial matching #' is performed. All parameters start with a dot, to avoid clashes #' with partial argument matching (see the R manual section 4.3.2), if #' there should ever occur any clashes in the arguments, call the #' function with all arguments named, e.g. \code{embed(.data = dat, #' .method = "mymethod", .d = "some parameter")}. #' #' @param .data object of class \code{\link{dimRedData}}, will be converted to #' be of class \code{\link{dimRedData}} if necessary; see examples for #' details. #' @param .method character vector naming one of the dimensionality reduction #' techniques. #' @param .mute a character vector containing the elements you want to mute #' (\code{c("message", "output")}), defaults to \code{character(0)}. #' @param .keep.org.data \code{TRUE}/\code{FALSE} keep the original data. #' @param ... the parameters, internally passed as a list to the dimensionality #' reduction method as \code{pars = list(...)} #' @return an object of class \code{\link{dimRedResult}} #' #' @examples #' ## embed a data.frame using a formula: #' as.data.frame( #' embed(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, #' iris, "PCA") #' ) #' #' ## embed a data.frame and return a data.frame #' as.data.frame(embed(iris[, 1:4], "PCA")) #' #' ## embed a matrix and return a data.frame #' as.data.frame(embed(as.matrix(iris[, 1:4]), "PCA")) #' #' \dontrun{ #' ## embed dimRedData objects #' embed_methods <- dimRedMethodList() #' quality_methods <- dimRedQualityList() #' dataset <- loadDataSet("Iris") #' #' quality_results <- matrix(NA, length(embed_methods), length(quality_methods), #' dimnames = list(embed_methods, quality_methods)) #' embedded_data <- list() #' #' for (e in embed_methods) { #' message("embedding: ", e) #' embedded_data[[e]] <- embed(dataset, e, .mute = c("message", "output")) #' for (q in quality_methods) { #' message(" quality: ", q) #' quality_results[e, q] <- tryCatch( #' quality(embedded_data[[e]], q), #' error = function(e) NA #' ) #' } #' } #' #' print(quality_results) #' } #' @export setGeneric("embed", function(.data, ...) standardGeneric("embed"), valueClass = "dimRedResult") #' @describeIn embed embed a data.frame using a formula. #' @param .formula a formula, see \code{\link{as.dimRedData}}. #' @export setMethod( "embed", "formula", function(.formula, .data, .method = dimRedMethodList(), .mute = character(0), .keep.org.data = TRUE, ...) { if (!is.data.frame(.data)) stop(".data must be a data.frame") .data <- as.dimRedData(.formula, .data) embed(.data, .method, .mute, .keep.org.data, ...) } ) #' @describeIn embed Embed anything as long as it can be coerced to #' \code{\link{dimRedData}}. #' @export setMethod( "embed", "ANY", function(.data, .method = dimRedMethodList(), .mute = character(0), .keep.org.data = TRUE, ...) { embed(as(.data, "dimRedData"), .method, .mute, .keep.org.data, ...) } ) #' @describeIn embed Embed a dimRedData object #' @export setMethod( "embed", "dimRedData", function(.data, .method = dimRedMethodList(), .mute = character(0), #c("message", "output"), .keep.org.data = TRUE, ...) { .method <- if (all(.method == dimRedMethodList())) "PCA" else match.arg(.method) methodObject <- getMethodObject(.method) args <- list( data = as(.data, "dimRedData"), keep.org.data = .keep.org.data ) args$pars <- matchPars(methodObject, list(...)) devnull <- if (Sys.info()["sysname"] != "Windows") "/dev/null" else "NUL" if ("message" %in% .mute){ devnull1 <- file(devnull, "wt") sink(devnull1, type = "message") on.exit({ sink(file = NULL, type = "message") close(devnull1) }, add = TRUE) } if ("output" %in% .mute) { devnull2 <- file(devnull, "wt") sink(devnull2, type = "output") on.exit({ sink() close(devnull2) }, add = TRUE) } do.call(methodObject@fun, args) } ) getMethodObject <- function (method) { ## switch( ## method, ## graph_kk = kamada_kawai, ## graph_drl = drl, ## graph_fr = fruchterman_reingold, ## drr = drr, ## isomap = isomap, ## diffmap = diffmap, ## tsne = tsne, ## nmds = nmds, ## mds = mds, ## ica = fastica, ## pca = pca, ## lle = lle, ## loe = loe, ## soe = soe, ## leim = leim, ## kpca = kpca ## ) method <- match.arg(method, dimRedMethodList()) do.call(method, list()) } dimRed/R/mds.R0000644000176200001440000001151314744721561012601 0ustar liggesusers#' Metric Dimensional Scaling #' #' An S4 Class implementing classical scaling (MDS). #' #' MDS tries to maintain distances in high- and low-dimensional space, #' it has the advantage over PCA that arbitrary distance functions can #' be used, but it is computationally more demanding. #' #' @template dimRedMethodSlots #' #' @template dimRedMethodGeneralUsage #' #' @section Parameters: #' MDS can take the following parameters: #' \describe{ #' \item{ndim}{The number of dimensions.} #' \item{d}{The function to calculate the distance matrix from the input coordinates, defaults to euclidean distances.} #' } #' #' @section Implementation: #' #' Wraps around \code{\link[stats]{cmdscale}}. The implementation also #' provides an out-of-sample extension which is not completely #' optimized yet. #' #' @references #' #' Torgerson, W.S., 1952. Multidimensional scaling: I. Theory and method. #' Psychometrika 17, 401-419. https://doi.org/10.1007/BF02288916 #' #' @examples #' \dontrun{ #' dat <- loadDataSet("3D S Curve") #' emb <- embed(dat, "MDS") #' plot(emb, type = "2vars") #' #' # a "manual" kPCA: #' emb2 <- embed(dat, "MDS", d = function(x) exp(stats::dist(x))) #' plot(emb2, type = "2vars") #' #' # a "manual", more customizable, and slower Isomap: #' emb3 <- embed(dat, "MDS", d = function(x) vegan::isomapdist(vegan::vegdist(x, "manhattan"), k = 20)) #' plot(emb3) #' #' } #' @include dimRedResult-class.R #' @include dimRedMethod-class.R #' @family dimensionality reduction methods #' @export MDS #' @exportClass MDS MDS <- setClass( "MDS", contains = "dimRedMethod", prototype = list( stdpars = list(d = stats::dist, ndim = 2), fun = function (data, pars, keep.org.data = TRUE) { ## meta <- data@meta orgdata <- if (keep.org.data) data@data else matrix(0, 0, 0) indata <- data@data ## there are only efficient implementations for euclidean ## distances: extra efficient implementation for euclidean ## distances are possible, D is quared several times, it would be ## much faster to compute the squared distance right away. has.apply <- identical(all.equal(pars$d, dist), TRUE) # == TRUE # necessary, # because # all.equal # returns # TRUE or an # error # string!!!! D <- as.matrix(pars$d(indata)) if (has.apply) mD2 <- mean(D ^ 2) ## cmdscale square the matrix internally res <- stats::cmdscale(D, k = pars$ndim) outdata <- res D <- NULL ## Untested: remove that from environment before creating ## appl function, else it will stay in its environment ## forever appl <- if (!has.apply) function(x) NA else function(x) { appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame() proj <- if (inherits(x, "dimRedData")) x@data else x ## double center new data with respect to old: TODO: optimize ## this method, according to the de Silva, Tenenbaum(2004) ## paper. Need an efficient method to calculate the distance ## matrices between different point sets and arbitrary ## distances. Kab <- as.matrix(pars$d(proj) ^ 2) Exa <- colMeans(pdist2(indata, proj)) Kab <- sweep(Kab, 1, Exa) #, "-") Kab <- sweep(Kab, 2, Exa) #, "-") Kab <- -0.5 * (Kab + mD2) ## Eigenvalue decomposition tmp <- eigen(Kab, symmetric = TRUE) ev <- tmp$values[seq_len(pars$ndim)] evec <- tmp$vectors[, seq_len(pars$ndim), drop = FALSE] k1 <- sum(ev > 0) if (k1 < pars$ndim) { warning(gettextf("only %d of the first %d eigenvalues are > 0", k1, k), domain = NA) evec <- evec[, ev > 0, drop = FALSE] ev <- ev[ev > 0] } points <- evec * rep(sqrt(ev), each = nrow(proj)) dimnames(points) <- list(NULL, paste0("MDS", seq_len(ncol(points)))) new("dimRedData", data = points, meta = appl.meta) } colnames(outdata) <- paste0("MDS", seq_len(ncol(outdata))) return(new( "dimRedResult", data = new("dimRedData", data = outdata, meta = meta), org.data = orgdata, apply = appl, has.org.data = keep.org.data, has.apply = has.apply, method = "mds", pars = pars )) }) ) dimRed/R/nnmf.R0000644000176200001440000001245414744722001012747 0ustar liggesusers#' Non-Negative Matrix Factorization #' #' S4 Class implementing NNMF. #' #' NNMF is a method for decomposing a matrix into a smaller #' dimension such that the constraint that the data (and the #' projection) are not negative is taken into account. #' #' @template dimRedMethodSlots #' #' @template dimRedMethodGeneralUsage #' #' @section Parameters: #' The method can take the following parameters: #' \describe{ #' \item{ndim}{The number of output dimensions.} #' \item{method}{character, which algorithm should be used. See #' \code{\link[NMF]{nmf}} for possible values. Defaults to #' "brunet"} #' \item{nrun}{integer, the number of times the computations are #' conducted. See \code{\link[NMF]{nmf}}} #' \item{seed}{integer, a value to control the random numbers used.} #' \item{options}{named list, other options to pass to \code{\link[NMF]{nmf}}} #' } #' #' @section Implementation: #' #' Wraps around \code{\link[NMF]{nmf}}. Note that the estimation uses random #' numbers. To create reproducible results, set the random number seed in the #' function call. Also, in many cases, the computations will be conducted #' in parallel using multiple cores. To disable this, use the option #' \code{.pbackend = NULL}. #' #' @references #' #' Lee, D.D., Seung, H.S., 1999. Learning the parts of objects by non-negative #' matrix factorization. Nature 401, 788-791. https://doi.org/10.1038/44565 #' #' @examples #' if(requireNamespace(c("NNMF", "MASS"), quietly = TRUE)) { #' #' set.seed(4646) #' dat <- loadDataSet("Iris") #' emb <- embed(dat, "NNMF") #' #' plot(emb) #' #' # project new values: #' nn_proj <- predict(emb, dat[1:7]) #' plot(nn_proj) #' #' } #' @include dimRedResult-class.R #' @include dimRedMethod-class.R #' @family dimensionality reduction methods #' @export NNMF #' @exportClass NNMF NNMF <- setClass( "NNMF", contains = "dimRedMethod", prototype = list( stdpars = list(ndim = 2L, method = "brunet", nrun = 1, seed = sample.int(10^5, 1), options = list()), fun = function (data, pars, keep.org.data = TRUE) { chckpkg("NMF") chckpkg("MASS") ## TODO: remove this, depends on https://github.com/renozao/NMF/issues/114 ## require("NMF") meta <- data@meta orgdata <- if (keep.org.data) data@data else matrix(0, 0, 0) data <- data@data if (!is.matrix(data)) data <- as.matrix(data) # NMF expects variables in rows and samples in columns data <- t(data) if (pars$ndim > nrow(data)) stop("`ndim` should be less than the number of columns.", call. = FALSE) if (length(pars$method) != 1) stop("only supply one `method`", call. = FALSE) args <- list(x = quote(data), rank = pars$ndim, method = pars$method, nrun = pars$nrun, seed = pars$seed) if (length(pars$options) > 0) args <- c(args, pars$options) nmf_result <- do.call(NMF::nmf, args) # this should work but doesn't # call <- c(list(quote(NMF::nmf)), args) w <- NMF::basis(nmf_result) h <- t(NMF::coef(nmf_result)) colnames(w) <- paste0("NNMF", 1:ncol(w)) other.data <- list(w = w) colnames(h) <- paste0("NNMF", 1:ncol(h)) # evaluate results here for functions appl <- function (x) { appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame() dat <- if (inherits(x, "dimRedData")) x@data else x if (!is.matrix(dat)) dat <- as.matrix(dat) if (ncol(dat) != nrow(w)) stop("x must have the same number of columns ", "as the original data (", nrow(w), ")", call. = FALSE) res <- dat %*% t(MASS::ginv(w)) colnames(res) <- paste0("NNMF", 1:ncol(res)) scores <- new("dimRedData", data = res, meta = appl.meta) return(scores) } inv <- function (x) { appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame() proj <- if (inherits(x, "dimRedData")) x@data else x if (ncol(proj) > ncol(w)) stop("x must have less or equal number of dimensions ", "as the original data") res <- tcrossprod(proj, w) colnames(res) <- colnames(data) res <- new("dimRedData", data = res, meta = appl.meta) return(res) } ## inv <- function(x) { ## appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame() ## proj <- if (inherits(x, "dimRedData")) x@data else x ## if (ncol(proj) > ncol(data)) ## stop("x must have less or equal number of dimensions ", ## "as the original data") ## reproj <- proj %*% other.data$H ## reproj <- new("dimRedData", data = reproj, meta = appl.meta) ## return(reproj) ## } res <- new( "dimRedResult", data = new("dimRedData", data = h, meta = meta), org.data = orgdata, apply = appl, inverse = inv, has.org.data = keep.org.data, has.apply = TRUE, has.inverse = TRUE, method = "NNMF", pars = pars, other.data = other.data ) return(res) }, requires = c("NMF", "MASS")) ) dimRed/R/fastica.R0000644000176200001440000000703614744721626013437 0ustar liggesusers#' Independent Component Analysis #' #' An S4 Class implementing the FastICA algorithm for Indepentend #' Component Analysis. #' #' ICA is used for blind signal separation of different sources. It is #' a linear Projection. #' #' @template dimRedMethodSlots #' #' @template dimRedMethodGeneralUsage #' #' @section Parameters: #' FastICA can take the following parameters: #' \describe{ #' \item{ndim}{The number of output dimensions. Defaults to \code{2}} #' } #' #' @section Implementation: #' Wraps around \code{\link[fastICA]{fastICA}}. FastICA uses a very #' fast approximation for negentropy to estimate statistical #' independences between signals. Because it is a simple #' rotation/projection, forward and backward functions can be given. #' #' @references #' #' Hyvarinen, A., 1999. Fast and robust fixed-point algorithms for independent #' component analysis. IEEE Transactions on Neural Networks 10, 626-634. #' https://doi.org/10.1109/72.761722 #' #' @examples #' if(requireNamespace("fastICA", quietly = TRUE)) { #' #' dat <- loadDataSet("3D S Curve") #' emb <- embed(dat, "FastICA", ndim = 2) #' plot(getData(getDimRedData(emb))) #' #' } #' @include dimRedResult-class.R #' @include dimRedMethod-class.R #' @family dimensionality reduction methods #' @export FastICA #' @exportClass FastICA FastICA <- setClass( "FastICA", contains = "dimRedMethod", prototype = list( stdpars = list(ndim = 2), fun = function (data, pars, keep.org.data = TRUE) { chckpkg("fastICA") meta <- data@meta orgdata <- if (keep.org.data) data@data else matrix(0, 0, 0) orgdata.colmeans <- colMeans(orgdata) indata <- data@data res <- fastICA::fastICA(indata, n.comp = pars$ndim, method = "C") outdata <- res$S colnames(outdata) <- paste0("ICA", 1:ncol(outdata)) appl <- function(x){ appl.meta <- if (inherits(x, "dimRedData")) x@meta else matrix(numeric(0), 0, 0) proj <- if (inherits(x, "dimRedData")) x@data else x out <- scale(proj, center = orgdata.colmeans, scale = FALSE) %*% res$K %*% res$W colnames(out) <- paste0("ICA", 1:ncol(out)) return(new("dimRedData", data = out, meta = appl.meta)) } inv <- function(x){ appl.meta <- if (inherits(x, "dimRedData")) x@meta else matrix(numeric(0), 0, 0) proj <- if (inherits(x, "dimRedData")) x@data else x out <- scale(proj %*% res$A[1:ncol(proj), ], center = -orgdata.colmeans, scale = FALSE) reproj <- new("dimRedData", data = out, meta = appl.meta) return(reproj) } return(new( "dimRedResult", data = new("dimRedData", data = outdata, meta = meta), org.data = orgdata, has.org.data = keep.org.data, apply = appl, inverse = inv, has.apply = TRUE, has.inverse = TRUE, method = "FastICA", pars = pars )) }, requires = c("fastICA")) ) dimRed/R/dimRedData-class.R0000644000176200001440000001373013464507204015114 0ustar liggesusers#' @include misc.R NULL #' Class "dimRedData" #' #' A class to hold data for dimensionality reduction and methods. #' #' The class hast two slots, \code{data} and \code{meta}. The #' \code{data} slot contains a \code{numeric matrix} with variables in #' columns and observations in rows. The \code{meta} slot may contain #' a \code{data.frame} with additional information. Both slots need to #' have the same number of rows or the \code{meta} slot needs to #' contain an empty \code{data.frame}. #' #' See examples for easy conversion from and to \code{data.frame}. #' #' For plotting functions see \code{\link{plot.dimRedData}}. #' #' @slot data of class \code{matrix}, holds the data, observations in #' rows, variables in columns #' @slot meta of class \code{data.frame}, holds meta data such as #' classes, internal manifold coordinates, or simply additional #' data of the data set. Must have the same number of rows as the #' \code{data} slot or be an empty data frame. #' #' #' @examples #' ## Load an example data set: #' s3d <- loadDataSet("3D S Curve") #' #' ## Create using a constructor: #' #' ### without meta information: #' dimRedData(iris[, 1:4]) #' #' ### with meta information: #' dimRedData(iris[, 1:4], iris[, 5]) #' #' ### using slot names: #' dimRedData(data = iris[, 1:4], meta = iris[, 5]) #' #' ## Convert to a dimRedData objects: #' Iris <- as(iris[, 1:4], "dimRedData") #' #' ## Convert to data.frame: #' head(as(s3d, "data.frame")) #' head(as.data.frame(s3d)) #' head(as.data.frame(as(iris[, 1:4], "dimRedData"))) #' #' ## Extract slots: #' head(getData(s3d)) #' head(getMeta(s3d)) #' #' ## Get the number of observations: #' nrow(s3d) #' #' ## Subset: #' s3d[1:5, ] #' #' @family dimRedData #' @import methods #' @export dimRedData #' @exportClass dimRedData dimRedData <- setClass( "dimRedData", slots = c(data = "matrix", meta = "data.frame"), prototype = prototype(data = matrix(numeric(0), 0, 0), meta = data.frame()), validity = function (object) { retval <- NULL if (!is.matrix(object@data)) { retval <- c( retval, c("data must be a matrix with ", "observations in rows and dimensions in columns") ) } if (!is.numeric(object@data)) { retval <- c( retval, c("data must be numeric") ) } if ((nrow(object@meta) != 0) && (nrow(object@meta) != nrow(object@data))){ retval <- c( retval, c("data and meta must have the same numbers of rows") ) } return(if (is.null(retval)) TRUE else retval) } ) setMethod("initialize", signature = c("dimRedData"), function (.Object, data = matrix(numeric(0), 0, 0), meta = data.frame()) { data <- as.matrix(data) meta <- as.data.frame(meta) .Object <- callNextMethod() return(.Object) }) setAs(from = "ANY", to = "dimRedData", def = function(from) new("dimRedData", data = as.matrix(from))) setAs(from = "dimRedData", to = "data.frame", def = function(from) as.data.frame(from)) #' @param meta.prefix Prefix for the columns of the meta data names. #' @param data.prefix Prefix for the columns of the variable names. #' #' @family dimRedData #' @describeIn dimRedData convert to data.frame #' @export setMethod(f = "as.data.frame", signature = c("dimRedData"), definition = function(x, meta.prefix = "meta.", data.prefix = "") { tmp <- list() if (nrow(x@meta) > 0){ tmp$meta <- as.data.frame(x@meta, stringsAsFactors = FALSE) names(tmp$meta) <- paste0(meta.prefix, colnames(x@meta)) } tmp$data <- as.data.frame(x@data, stringsAsFactors = FALSE) names(tmp$data) <- paste0(data.prefix, colnames(x@data)) names(tmp) <- NULL data.frame(tmp, stringsAsFactors = FALSE) }) #' @param data Will be coerced into a \code{\link{data.frame}} with #' \code{\link{as.data.frame}} #' #' @examples #' ## create a dimRedData object using a formula #' as.dimRedData(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, #' iris)[1:5] #' #' @include misc.R #' @family dimRedData #' @describeIn as.dimRedData Convert a \code{data.frame} to a dimRedData #' object using a formula #' @export setMethod(f = "as.dimRedData", signature = c("formula"), definition = function(formula, data) { data <- as.data.frame(data) meta <- stats::model.frame(lhs(formula), data) data <- stats::model.matrix(rhs(formula), data) return(new("dimRedData", data = data, meta = meta)) }) #' @param object Of class dimRedData. #' @describeIn dimRedData Get the data slot. #' @export setMethod("getData", "dimRedData", function(object) object@data) #' @describeIn dimRedData Get the meta slot. #' @export setMethod("getMeta", "dimRedData", function(object) object@meta) #' @param x Of class dimRedData #' @describeIn dimRedData Get the number of observations. #' @export setMethod("nrow", "dimRedData", function(x) nrow(x@data)) #' @param i a valid index for subsetting rows. #' @examples #' ## Shuffle data: #' s3 <- s3d[nrow(s3d)] #' #' @describeIn dimRedData Subset rows. #' @export setMethod("[", signature(x = "dimRedData", i = "ANY"), function(x, i) { x@data <- x@data[i, , drop = FALSE] if (nrow(x@meta) != 0) x@meta <- x@meta[i, , drop = FALSE] # validObject returns a string with the description of what is wrong or # TRUE, so the following lines have to be as they are! vv <- validObject(x) if (vv == TRUE) return(x) else stop("cannot subset dimRedData object: \n", paste(vv, collapse = "\n")) }) #' @describeIn dimRedData Extract the number of Variables from the data. #' #' @examples #' ## Get the number of variables: #' ndims(s3d) #' #' @export setMethod("ndims", "dimRedData", function(object) ncol(object@data)) dimRed/R/leim.R0000644000176200001440000001422214716104145012734 0ustar liggesusers## loe got removed from CRAN ## ' Laplacian Eigenmaps ## #' ## #' An S4 Class implementing Laplacian Eigenmaps ## #' ## #' Laplacian Eigenmaps use a kernel and were originally developed to ## #' separate non-convex clusters under the name spectral clustering. ## #' ## #' @template dimRedMethodSlots ## #' ## #' @template dimRedMethodGeneralUsage ## #' ## #' @section Parameters: ## #' \code{LaplacianEigenmaps} can take the following parameters: ## #' \describe{ ## #' \item{ndim}{the number of output dimensions.} ## #' ## #' \item{sparse}{A character vector specifying hot to make the graph ## #' sparse, \code{"knn"} means that a K-nearest neighbor graph is ## #' constructed, \code{"eps"} an epsilon neighborhood graph is ## #' constructed, else a dense distance matrix is used.} ## #' ## #' \item{knn}{The number of nearest neighbors to use for the knn graph.} ## #' \item{eps}{The distance for the epsilon neighborhood graph.} ## #' ## #' \item{t}{Parameter for the transformation of the distance matrix ## #' by \eqn{w=exp(-d^2/t)}, larger values give less weight to ## #' differences in distance, \code{t == Inf} treats all distances != 0 equally.} ## #' \item{norm}{logical, should the normed laplacian be used?} ## #' } ## #' ## #' @section Implementation: ## #' Wraps around \code{\link[loe]{spec.emb}}. ## #' ## #' @references ## #' ## #' Belkin, M., Niyogi, P., 2003. Laplacian Eigenmaps for ## #' Dimensionality Reduction and Data Representation. Neural ## #' Computation 15, 1373. ## #' ## #' @examples ## #' if(requireNamespace(c("loe", "RSpectra", "Matrix"), quietly = TRUE)) { ## #' ## #' dat <- loadDataSet("3D S Curve") ## #' emb <- embed(dat, "LaplacianEigenmaps") ## #' plot(emb@data@data) ## #' ## #' } ## #' @include dimRedResult-class.R ## #' @include dimRedMethod-class.R ## #' @export LaplacianEigenmaps ## #' @exportClass LaplacianEigenmaps ## LaplacianEigenmaps <- setClass( ## "LaplacianEigenmaps", ## contains = "dimRedMethod", ## prototype = list( ## stdpars = list(ndim = 2, sparse = "knn", knn = 50, eps = 0.1, ## t = Inf, norm = TRUE), ## fun = function (data, pars, ## keep.org.data = TRUE) { ## chckpkg("loe") ## chckpkg("RSpectra") ## chckpkg("Matrix") ## meta <- data@meta ## orgdata <- if (keep.org.data) data@data else NULL ## indata <- data@data ## if (is.null(pars$d)) pars$d <- dist ## if (is.null(pars$knn)) pars$knn <- 50 ## if (is.null(pars$ndim)) pars$ndim <- 2 ## if (is.null(pars$t)) pars$t <- Inf ## if (is.null(pars$norm)) pars$norm <- TRUE ## message(Sys.time(), ": Creating weight matrix") ## W <- if (pars$sparse == "knn") { ## knng <- makeKNNgraph(indata, k = pars$knn, eps = 0, ## diag = TRUE) ## if (is.infinite(pars$t)){ ## knng <- igraph::set_edge_attr(knng, name = "weight", value = 1) ## } else { ## ea <- igraph::edge_attr(knng, name = "weight") ## knng <- igraph::set_edge_attr( ## knng, name = "weight", value = exp( -(ea ^ 2) / pars$t )) ## } ## igraph::as_adj(knng, sparse = TRUE, ## attr = "weight", type = "both") ## } else if (pars$sparse == "eps") { ## tmp <- makeEpsSparseMatrix(indata, pars$eps) ## tmp@x <- if (is.infinite(pars$t)) rep(1, length(tmp@i)) ## else exp(- (tmp@x ^ 2) / pars$t) ## ## diag(tmp) <- 1 ## as(tmp, "dgCMatrix") ## } else { # dense case ## tmp <- dist(indata) ## tmp[] <- if (is.infinite(pars$t)) 1 ## else exp( -(tmp ^ 2) / pars$t) ## tmp <- as.matrix(tmp) ## diag(tmp) <- 1 ## tmp ## } ## ## we don't need to test for symmetry, because we know the ## ## matrix is symmetric ## D <- Matrix::Diagonal(x = Matrix::rowSums(W)) ## L <- D - W ## ## for the generalized eigenvalue problem, we do not have a solver ## ## use A u = \lambda B u ## ## Lgen <- Matrix::Diagonal(x = 1 / Matrix::diag(D) ) %*% L ## ## but then we get negative eigenvalues and complex eigenvalues ## Lgen <- L ## message(Sys.time(), ": Eigenvalue decomposition") ## outdata <- if (pars$norm) { ## DS <- Matrix::Diagonal(x = 1 / sqrt(Matrix::diag(D))) ## RSpectra::eigs_sym(DS %*% Lgen %*% DS, ## k = pars$ndim + 1, ## sigma = -1e-5) ## } else { ## RSpectra::eigs_sym(Lgen, ## k = pars$ndim + 1, ## sigma = -1e-5) ## } ## message("Eigenvalues: ", paste(format(outdata$values), ## collapse = " ")) ## ## The eigenvalues are in decreasing order and we remove the ## ## smallest, which should be approx 0: ## outdata <- outdata$vectors[, order(outdata$values)[-1], ## drop = FALSE] ## if(ncol(outdata) > 0) { ## colnames(outdata) <- paste0("LEIM", seq_len(ncol(outdata))) ## } else { ## warning("no dimensions left, this is probably due to a badly conditioned eigenvalue decomposition.") ## } ## message(Sys.time(), ": DONE") ## return(new( ## "dimRedResult", ## data = new("dimRedData", ## data = outdata, ## meta = meta), ## org.data = orgdata, ## has.org.data = keep.org.data, ## method = "leim", ## pars = pars ## )) ## }, ## requires = c("loe", "RSpectra", "Matrix")) ## ) dimRed/R/isomap.R0000644000176200001440000002047714744721703013315 0ustar liggesusers#' Isomap embedding #' #' An S4 Class implementing the Isomap Algorithm #' #' The Isomap algorithm approximates a manifold using geodesic #' distances on a k nearest neighbor graph. Then classical scaling is #' performed on the resulting distance matrix. #' #' @template dimRedMethodSlots #' #' @template dimRedMethodGeneralUsage #' #' @section Parameters: #' Isomap can take the following parameters: #' \describe{ #' \item{knn}{The number of nearest neighbors in the graph. Defaults to 50.} #' \item{ndim}{The number of embedding dimensions, defaults to 2.} #' \item{get_geod}{Should the geodesic distance matrix be kept, #' if \code{TRUE}, access it as \code{getOtherData(x)$geod}} #' } #' #' @section Implementation: #' #' The dimRed package uses its own implementation of Isomap which also #' comes with an out of sample extension (known as landmark #' Isomap). The default Isomap algorithm scales computationally not #' very well, the implementation here uses \code{\link[RANN]{nn2}} for #' a faster search of the nearest neighbors. If data are too large it #' may be useful to fit a subsample of the data and use the #' out-of-sample extension for the other points. #' #' @references #' Tenenbaum, J.B., Silva, V. de, Langford, J.C., 2000. A Global Geometric #' Framework for Nonlinear Dimensionality Reduction. Science 290, 2319-2323. #' https://doi.org/10.1126/science.290.5500.2319 #' #' @examples #' if(requireNamespace(c("RSpectra", "igraph", "RANN"), quietly = TRUE)) { #' #' dat <- loadDataSet("3D S Curve", n = 500) #' emb <- embed(dat, "Isomap", knn = 10) #' plot(emb) #' #' ## or simpler, use embed(): #' samp <- sample(nrow(dat), size = 200) #' emb2 <- embed(dat[samp], "Isomap", .mute = NULL, knn = 10) #' emb3 <- predict(emb2, dat[-samp]) #' #' plot(emb2, type = "2vars") #' plot(emb3, type = "2vars") #' #' } #' @include dimRedResult-class.R #' @include dimRedMethod-class.R #' @family dimensionality reduction methods #' @export Isomap #' @exportClass Isomap Isomap <- setClass( "Isomap", contains = "dimRedMethod", prototype = list( stdpars = list(knn = 50, ndim = 2, get_geod = FALSE), fun = function (data, pars, keep.org.data = TRUE) { chckpkg("RSpectra") chckpkg("igraph") chckpkg("RANN") message(Sys.time(), ": Isomap START") meta <- data@meta orgdata <- if (keep.org.data) data@data else matrix(0, 0, 0) indata <- data@data if (is.null(pars$eps)) pars$eps <- 0 if (is.null(pars$get_geod)) pars$get_geod <- FALSE ## geodesic distances message(Sys.time(), ": constructing knn graph") knng <- makeKNNgraph(x = indata, k = pars$knn, eps = pars$eps) message(Sys.time(), ": calculating geodesic distances") geodist <- igraph::distances(knng, algorithm = "dijkstra") message(Sys.time(), ": Classical Scaling") ## TODO: add regularization k <- geodist ^ 2 k <- .Call(stats:::C_DoubleCentre, k) k <- - k / 2 ## TODO: explicit symmetrizing ## TODO: return eigenvectors? e <- RSpectra::eigs_sym(k, pars$ndim, which = "LA", opts = list(retvec = TRUE)) e_values <- e$values e_vectors <- e$vectors neig <- sum(e_values > 0) if (neig < pars$ndim) { warning("Isomap: eigenvalues < 0, returning less dimensions!") e_values <- e_values[seq_len(neig)] e_vectors <- e_vectors[, seq_len(neig), drop = FALSE] } e_vectors <- e_vectors * rep(sqrt(e_values), each = nrow(e_vectors)) colnames(e_vectors) <- paste("iso", seq_len(neig)) appl <- function (x) { message(Sys.time(), ": L-Isomap embed START") appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame() indata <- if (inherits(x, "dimRedData")) x@data else x if (ncol(indata) != ncol(data@data)) stop("x must have the same number of dimensions as the original data") nindata <- nrow(indata) norg <- nrow(orgdata) message(Sys.time(), ": constructing knn graph") lknng <- makeKNNgraph(rbind(indata, orgdata), k = pars$knn, eps = pars$eps) message(Sys.time(), ": calculating geodesic distances") lgeodist <- igraph::distances(lknng, seq_len(nindata), nindata + seq_len(norg)) message(Sys.time(), ": embedding") dammu <- sweep(lgeodist ^ 2, 2, colMeans(geodist ^ 2), "-") Lsharp <- sweep(e_vectors, 2, e_values, "/") out <- -0.5 * (dammu %*% Lsharp) message(Sys.time(), ": DONE") return(new("dimRedData", data = out, meta = appl.meta)) } return(new( "dimRedResult", data = new("dimRedData", data = e_vectors, meta = meta), org.data = orgdata, has.org.data = keep.org.data, apply = appl, has.apply = TRUE, method = "Isomap", pars = pars, other.data = if (pars$get_geod) list(geod = as.dist(geodist)) else list() )) }, requires = c("RSpectra", "igraph", "RANN") ) ) ## input data(matrix or data frame) return knn graph implements ## "smart" choices on RANN::nn2 parameters we ignore radius search ## TODO: find out a good limit to switch from kd to bd trees COMMENT: ## bd trees are buggy, they dont work if there are duplicated data ## points and checking would neutralize the performance gain, so bd ## trees are not really usable. makeKNNgraph <- function (x, k, eps = 0, diag = FALSE){ ## requireNamespace("RANN") ## requireNamespace("igraph") ## consts INF_VAL <- 1.340781e+15 NA_IDX <- 0 BDKD_LIM <- 1000000 #todo: figure out a good value here ## select parameters M <- nrow(x) treetype <- "kd" # if (M < BDKD_LIM) "kd" else "bd" # see: # https://github.com/jefferis/RANN/issues/19 searchtype <- if (eps == 0) "standard" else "priority" ## RANN::nn2 returns the points in data with respect to query ## e.g. the rows in the output are the points in query and the ## columns the points in data. nn2res <- RANN::nn2(data = x, query = x, k = k + 1, treetype = treetype, searchtype = searchtype, eps = eps) ## create graph: the first ny nodes will be y, the last nx nodes ## will be x, if x != y ## it is not really pretty to create a ## directed graph first and then make it undirected. g <- igraph::make_empty_graph(M, directed = TRUE) g[from = if (diag) rep(seq_len(M), times = k + 1) else rep(seq_len(M), times = k), to = if (diag) as.vector(nn2res$nn.idx) else as.vector(nn2res$nn.idx[, -1]), attr = "weight"] <- if (diag) as.vector(nn2res$nn.dists) else as.vector(nn2res$nn.dists[, -1]) return(igraph::as_undirected(g, mode = "collapse", edge.attr.comb = "first")) } ## the original isomap method I'll keep it here for completeness: ## isomap <- new("dimRedMethod", ## stdpars = list(knn = 50, ## d = dist, ## ndim = 2) ## fun = function (data, pars, ## keep.org.data = TRUE) { ## chckpkg("vegan") ## meta <- data@meta ## orgdata <- if (keep.org.data) data@data else NULL ## indata <- data@data ## outdata <- vegan::isomap(pars$d(indata), ## ndim = pars$ndim, ## k = pars$knn)$points ## colnames(outdata) <- paste0("Iso", 1:ncol(outdata)) ## return(new( ## "dimRedResult", ## data = new("dimRedData", ## data = outdata, ## meta = meta), ## org.data = orgdata, ## has.org.data = keep.org.data, ## method = "isomap", ## pars = pars ## )) ## }) dimRed/R/tsne.R0000644000176200001440000000541314744722023012763 0ustar liggesusers#' t-Distributed Stochastic Neighborhood Embedding #' #' An S4 Class for t-SNE. #' #' t-SNE is a method that uses Kullback-Leibler divergence between the #' distance matrices in high and low-dimensional space to embed the #' data. The method is very well suited to visualize complex #' structures in low dimensions. #' #' @template dimRedMethodSlots #' #' @template dimRedMethodGeneralUsage #' #' @section Parameters: #' t-SNE can take the following parameters: #' \describe{ #' \item{d}{A distance function, defaults to euclidean distances} #' \item{perplexity}{The perplexity parameter, roughly equivalent to neighborhood size.} #' \item{theta}{Approximation for the nearest neighbour search, large values are more inaccurate.} #' \item{ndim}{The number of embedding dimensions.} #' } #' #' @section Implementation: #' #' Wraps around \code{\link[Rtsne]{Rtsne}}, which is very well #' documented. Setting \code{theta = 0} does a normal t-SNE, larger #' values for \code{theta < 1} use the Barnes-Hut algorithm which #' scales much nicer with data size. Larger values for perplexity take #' larger neighborhoods into account. #' #' @references #' Maaten, L. van der, 2014. Accelerating t-SNE using Tree-Based #' Algorithms. Journal of Machine Learning Research 15, 3221-3245. #' #' van der Maaten, L., Hinton, G., 2008. Visualizing Data using #' t-SNE. J. Mach. Learn. Res. 9, 2579-2605. #' #' @examples #' \dontrun{ #' dat <- loadDataSet("3D S Curve", n = 300) #' emb <- embed(dat, "tSNE", perplexity = 80) #' plot(emb, type = "2vars") #' } #' @include dimRedResult-class.R #' @include dimRedMethod-class.R #' @family dimensionality reduction methods #' @export tSNE #' @exportClass tSNE tSNE <- setClass( "tSNE", contains = "dimRedMethod", prototype = list( stdpars = list(d = stats::dist, perplexity = 30, theta = 0.5, ndim = 2), fun = function (data, pars, keep.org.data = TRUE) { chckpkg("Rtsne") meta <- data@meta orgdata <- if (keep.org.data) data@data else matrix(0, 0, 0) indata <- data@data outdata <- Rtsne::Rtsne(pars$d(indata), perplexity = pars$perplexity, theta = pars$theta, dims = pars$ndim)$Y colnames(outdata) <- paste0("tSNE", 1:ncol(outdata)) return(new( "dimRedResult", data = new("dimRedData", data = outdata, meta = meta), org.data = orgdata, has.org.data = keep.org.data, method = "tsne", pars = pars )) }, requires = c("Rtsne")) ) dimRed/R/graph_embed.R0000644000176200001440000002233014744721454014253 0ustar liggesusers#' Graph Embedding via the Kamada Kawai Algorithm #' #' An S4 Class implementing the Kamada Kawai Algorithm for graph embedding. #' #' Graph embedding algorithms se the data as a graph. Between the #' nodes of the graph exist attracting and repelling forces which can #' be modeled as electrical fields or springs connecting the #' nodes. The graph is then forced into a lower dimensional #' representation that tries to represent the forces betweent he nodes #' accurately by minimizing the total energy of the attracting and #' repelling forces. #' #' @template dimRedMethodSlots #' #' @template dimRedMethodGeneralUsage #' #' @section Parameters: #' KamadaKawai can take the following parameters: #' \describe{ #' \item{ndim}{The number of dimensions, defaults to 2. Can only be 2 or 3} #' \item{knn}{Reduce the graph to keep only the neares neighbors. Defaults to 100.} #' \item{d}{The distance function to determine the weights of the graph edges. Defaults to euclidean distances.} #' } #' #' @section Implementation: #' Wraps around \code{\link[igraph]{layout_with_kk}}. The parameters #' maxiter, epsilon and kkconst are set to the default values and #' cannot be set, this may change in a future release. The DimRed #' Package adds an extra sparsity parameter by constructing a knn #' graph which also may improve visualization quality. #' #' @references #' #' Kamada, T., Kawai, S., 1989. An algorithm for drawing general undirected #' graphs. Information Processing Letters 31, 7-15. #' https://doi.org/10.1016/0020-0190(89)90102-6 #' #' @examples #' if(requireNamespace(c("igraph", "coRanking"), quietly = TRUE)) { #' #' dat <- loadDataSet("Swiss Roll", n = 200) #' emb <- embed(dat, "KamadaKawai") #' plot(emb, type = "2vars") #' #' } #' @include dimRedResult-class.R #' @include dimRedMethod-class.R #' @family dimensionality reduction methods #' @export KamadaKawai #' @exportClass KamadaKawai KamadaKawai <- setClass( "KamadaKawai", contains = "dimRedMethod", prototype = list( stdpars = list(ndim = 2, knn = 100, d = stats::dist), fun = function (data, pars, keep.org.data = TRUE) { chckpkg("igraph") meta <- data@meta orgdata <- if (keep.org.data) data@data else matrix(0, 0, 0) indata <- data@data outdata <- em_graph_layout( indata, graph_em_method = igraph::layout_with_kk, knn = pars$knn, d = pars$d, ndim = pars$ndim, weight.trans = I #pars$weight.trans ) colnames(outdata) <- paste0("KK", 1:ncol(outdata)) return(new( "dimRedResult", data = new("dimRedData", data = outdata, meta = meta), org.data = orgdata, has.org.data = keep.org.data, method = "graph_kk", pars = pars )) }, requires = c("igraph", "coRanking")) ) #' Distributed Recursive Graph Layout #' #' An S4 Class implementing Distributed recursive Graph Layout. #' #' DrL uses a complex algorithm to avoid local minima in the graph #' embedding which uses several steps. #' #' @template dimRedMethodSlots #' #' @template dimRedMethodGeneralUsage #' #' @section Parameters: #' DrL can take the following parameters: #' \describe{ #' \item{ndim}{The number of dimensions, defaults to 2. Can only be 2 or 3} #' \item{knn}{Reduce the graph to keep only the neares neighbors. Defaults to 100.} #' \item{d}{The distance function to determine the weights of the graph edges. Defaults to euclidean distances.} #' } #' #' @section Implementation: #' Wraps around \code{\link[igraph]{layout_with_drl}}. The parameters #' maxiter, epsilon and kkconst are set to the default values and #' cannot be set, this may change in a future release. The DimRed #' Package adds an extra sparsity parameter by constructing a knn #' graph which also may improve visualization quality. #' #' @references #' #' Martin, S., Brown, W.M., Wylie, B.N., 2007. Dr.l: Distributed Recursive #' (graph) Layout (No. dRl; 002182MLTPL00). Sandia National Laboratories. #' #' @examples #' \dontrun{ #' if(requireNamespace(c("igraph", "coRanking"), quietly = TRUE)) { #' #' dat <- loadDataSet("Swiss Roll", n = 200) #' emb <- embed(dat, "DrL") #' plot(emb, type = "2vars") #' } #' #' } #' #' @include dimRedResult-class.R #' @include dimRedMethod-class.R #' @family dimensionality reduction methods #' @export DrL #' @exportClass DrL DrL <- setClass( "DrL", contains = "dimRedMethod", prototype = list( stdpars = list(ndim = 2, knn = 100, d = stats::dist), fun = function (data, pars, keep.org.data = TRUE) { chckpkg("igraph") meta <- data@meta orgdata <- if (keep.org.data) data@data else NULL indata <- data@data outdata <- em_graph_layout( indata, graph_em_method = igraph::layout_with_drl, knn = pars$knn, d = pars$d, ndim = pars$ndim, weight.trans = I #pars$weight.trans ) colnames(outdata) <- paste0("DrL", 1:ncol(outdata)) return(new( "dimRedResult", data = new("dimRedData", data = outdata, meta = meta), org.data = orgdata, has.org.data = keep.org.data, method = "graph_drl", pars = pars )) }, requires = c("igraph", "coRanking") ) ) #' Fruchterman Reingold Graph Layout #' #' An S4 Class implementing the Fruchterman Reingold Graph Layout #' algorithm. #' #' @template dimRedMethodSlots #' #' @template dimRedMethodGeneralUsage #' #' @section Parameters: #' \describe{ #' \item{ndim}{The number of dimensions, defaults to 2. Can only be 2 or 3} #' \item{knn}{Reduce the graph to keep only the neares neighbors. Defaults to 100.} #' \item{d}{The distance function to determine the weights of the graph edges. Defaults to euclidean distances.} #' } #' #' @section Implementation: #' Wraps around \code{\link[igraph]{layout_with_fr}}, see there for #' details. The Fruchterman Reingold algorithm puts the data into #' a circle and puts connected points close to each other. #' #' @references #' #' Fruchterman, T.M.J., Reingold, E.M., 1991. Graph drawing by force-directed #' placement. Softw: Pract. Exper. 21, 1129-1164. #' https://doi.org/10.1002/spe.4380211102 #' #' @examples #' if(requireNamespace(c("igraph", "coRanking"), quietly = TRUE)) { #' #' dat <- loadDataSet("Swiss Roll", n = 100) #' emb <- embed(dat, "FruchtermanReingold") #' plot(emb, type = "2vars") #' #' } #' #' @include dimRedResult-class.R #' @include dimRedMethod-class.R #' @family dimensionality reduction methods #' @export FruchtermanReingold #' @exportClass FruchtermanReingold FruchtermanReingold <- setClass( "FruchtermanReingold", contains = "dimRedMethod", prototype = list( stdpars = list(ndim = 2, knn = 100, d = stats::dist), fun = function (data, pars, keep.org.data = TRUE) { chckpkg("igraph") meta <- data@meta orgdata <- if (keep.org.data) data@data else NULL indata <- data@data outdata <- em_graph_layout( indata, graph_em_method = igraph::layout_with_fr, knn = pars$knn, d = pars$d, ndim = pars$ndim, weight.trans = I #pars$weight.trans ) colnames(outdata) <- paste0("FR", 1:ncol(outdata)) return(new( "dimRedResult", data = new("dimRedData", data = outdata, meta = meta), org.data = orgdata, has.org.data = keep.org.data, method = "graph_fr", pars = pars )) }, requires = c("igraph", "coRanking") ) ) em_graph_layout <- function(data, graph_em_method, knn = 50, d = stats::dist, ndim = 2, weight.trans = I){ chckpkg("igraph") data.dist <- as.matrix(d(data)) data.graph <- construct_knn_graph(data.dist, knn) embed_graph(data.graph, graph_em_method, ndim = ndim) } embed_graph <- function(graph, f, weight.trans = I, ndim = 2){ f(graph, weights = weight.trans(igraph::E(graph)$weight), dim = ndim) } construct_knn_graph <- function (data.dist, knn) { chckpkg("igraph") chckpkg("coRanking") data.graph <- igraph::graph_from_adjacency_matrix( adjmatrix = data.dist, mode = "undirected", weighted = TRUE ) if (is.infinite(knn) || is.na(knn)) return(data.graph) ## else: remove all unnecessary edges data.rankm <- coRanking::rankmatrix(data.dist, input = "dist") data.rankm.ind <- data.rankm <= knn + 1 inds <- which( !(data.rankm.ind | t(data.rankm.ind)), arr.ind = TRUE ) data.graph[ from = inds[, 1], to = inds[, 2] ] <- FALSE return(data.graph) } dimRed/R/lle.R0000644000176200001440000000467514256645303012602 0ustar liggesusers## #' Locally Linear Embedding ## #' ## #' An S4 Class implementing Locally Linear Embedding (LLE) ## #' ## #' LLE approximates the points in the manifold by linear combination ## #' of its neighbors. These linear combinations are the same inside the ## #' manifold and in highdimensional space. ## #' ## #' @template dimRedMethodSlots ## #' ## #' @template dimRedMethodGeneralUsage ## #' ## #' @section Parameters: ## #' LLE can take the following parameters: ## #' \describe{ ## #' \item{knn}{the number of neighbors for the knn graph., defaults to 50.} ## #' \item{ndim}{the number of embedding dimensions, defaults to 2.} ## #' } ## #' ## #' @section Implementation: ## #' Wraps around \code{\link[lle]{lle}}, only ## #' exposes the parameters \code{k} and \code{m}. ## #' ## #' @references ## #' ## #' Roweis, S.T., Saul, L.K., 2000. Nonlinear Dimensionality Reduction ## #' by Locally Linear Embedding. Science 290, ## #' 2323-2326. doi:10.1126/science.290.5500.2323 ## #' ## #' @examples ## #' \dontrun{ ## #' if(requireNamespace("lle")) { ## #' ## #' dat <- loadDataSet("3D S Curve", n = 500) ## #' emb <- embed(dat, "LLE", knn = 45) ## #' plot(emb, type = "2vars") ## #' ## #' } ## #' } ## #' @include dimRedResult-class.R ## #' @include dimRedMethod-class.R ## #' @family dimensionality reduction methods ## #' @export LLE ## #' @exportClass LLE ## LLE <- setClass( ## "LLE", ## contains = "dimRedMethod", ## prototype = list( ## stdpars = list(knn = 50, ndim = 2), ## fun = function (data, pars, ## keep.org.data = TRUE) { ## chckpkg("lle") ## meta <- data@meta ## orgdata <- if (keep.org.data) data@data else NULL ## indata <- data@data ## outdata <- lle::lle(indata, ## k = pars$knn, ## m = pars$ndim)$Y ## if (is.null(dim(outdata))) { ## dim(outdata) <- c(length(outdata), 1) ## } ## colnames(outdata) <- paste0("LLE", 1:ncol(outdata)) ## return(new( ## "dimRedResult", ## data = new("dimRedData", ## data = outdata, ## meta = meta), ## org.data = orgdata, ## has.org.data = keep.org.data, ## method = "lle", ## pars = pars ## )) ## }, ## requires = c("lle") ## ) ## ) dimRed/R/loe.R0000644000176200001440000000315514256645362012602 0ustar liggesusers ## this function produces segfaults and is super slow ## #' Local Ordinal Embedding ## #' ## #' Instance of \code{\link{dimRedMethod}} for Local Ordinal Embedding. ## #' ## #' For details see \code{\link[loe]{LOE}} ## #' ## #' @examples ## #' # for whatever reason the loe package has problems if I run this ## #' # with R CMD check, running it in the REPL works just fine ## #' if(requireNamespace("loe")) { ## #' dat <- loadDataSet("Iris")[sample(20)] ## #' loe <- LOE() ## #' emb <- loe@fun(dat, loe@stdpars) ## #' ## #' ## #' plot(emb@data@data) ## #' } ## #' @include dimRedResult-class.R ## #' @include dimRedMethod-class.R ## #' @export ## LOE <- setClass( ## "LOE", ## contains = "dimRedMethod", ## prototype = list( ## stdpars = list(d = stats::dist, knn = 50, ndim = 2), ## fun = function (data, pars, ## keep.org.data = TRUE) { ## chckpkg("loe") ## meta <- data@meta ## orgdata <- if (keep.org.data) data@data else NULL ## indata <- data@data ## data.adj <- loe:::make.kNNG(as.matrix(pars$d(indata)), k = pars$knn) ## outdata <- loe::LOE(data.adj, p = pars$ndim, method = "MM")$X ## colnames(outdata) <- paste0("LOE", 1:ncol(outdata)) ## return(new( ## "dimRedResult", ## data = new("dimRedData", ## data = outdata, ## meta = meta), ## org.data = orgdata, ## has.org.data = keep.org.data, ## method = "loe", ## pars = pars ## )) ## }) ## ) dimRed/R/mixColorSpaces.R0000644000176200001440000000467114262553576014764 0ustar liggesusers#' Mixing color ramps #' #' mix different color ramps #' #' automatically create colors to represent a varying number of #' dimensions. #' #' @param vars a list of variables #' @param ramps a list of color ramps, one for each variable. #' #' @examples #' cols <- expand.grid(x = seq(0, 1, length.out = 10), #' y = seq(0, 1, length.out = 10), #' z = seq(0, 1, length.out = 10)) #' mixed <- mixColor3Ramps(cols) #' #' \dontrun{ #' if(requireNamespace("rgl", quietly = TRUE)) { #' rgl::plot3d(cols$x, cols$y, cols$z, col = mixed, pch = 15) #' } #' #' cols <- expand.grid(x = seq(0, 1, length.out = 10), #' y = seq(0, 1, length.out = 10)) #' mixed <- mixColor2Ramps(cols) #' #' if(requireNamespace("graphics", quietly = TRUE)) { #' plot(cols$x, cols$y, col = mixed, pch = 15) #' } #' } #' @importFrom grDevices colorRamp #' @importFrom grDevices rgb #' @export mixColorRamps <- function (vars, ramps) { if (length(vars) > length(ramps)) stop("need more or equal ramps than vars") nvars <- length(vars) rgbs <- list() for (i in 1:nvars){ rgbs[[i]] <- ramps[[i]](scale01(as.numeric(vars[[i]]))) } retrgb <- Reduce(`+`, rgbs) res <- apply(retrgb, 2, function(x) (x - min(x)) / (max(x) - min(x))) res[is.nan(res)] <- 0 return(rgb(res)) } #' @rdname mixColorRamps #' @export mixColor1Ramps <- function (vars, ramps = colorRamp(c("blue", "black", "red"))) { mixColorRamps(vars, list(ramps)) } #' @rdname mixColorRamps #' @export mixColor2Ramps <- function (vars, ramps = list(colorRamp(c("blue", "green")), colorRamp(c("blue", "red")))) { mixColorRamps(vars, ramps) } #' @rdname mixColorRamps #' @export mixColor3Ramps <- function (vars, ramps = list(colorRamp(c("#001A00", "#00E600")), colorRamp(c("#00001A", "#0000E6")), colorRamp(c("#1A0000", "#E60000")))) { mixColorRamps(vars, ramps) } colorize <- function (vars) { l <- length(vars) if (l == 1) return(mixColor1Ramps(vars)) if (l == 2) return(mixColor2Ramps(vars)) if (l == 3) return(mixColor3Ramps(vars)) return("#000000") } scale01 <- function(x, low = min(x, na.rm = TRUE), high = max(x, na.rm = FALSE)) { x <- (x - low) / (high - low) x } dimRed/R/dimRedResult-class.R0000644000176200001440000001544414303302725015517 0ustar liggesusers#' @include misc.R #' @include dimRedData-class.R NULL #' Class "dimRedResult" #' #' A class to hold the results of of a dimensionality reduction. #' #' @slot data Output data of class dimRedData. #' @slot org.data original data, a matrix. #' @slot apply a function to apply the method to out-of-sampledata, #' may not exist. #' @slot inverse a function to calculate the original coordinates from #' reduced space, may not exist. #' @slot has.org.data logical, if the original data is included in the object. #' @slot has.apply logical, if a forward method is exists. #' @slot has.inverse logical if an inverse method exists. #' @slot method saves the method used. #' @slot pars saves the parameters used. #' @slot other.data other data produced by the method, e.g. a distance matrix. #' #' @examples #' ## Create object by embedding data #' iris.pca <- embed(loadDataSet("Iris"), "PCA") #' #' ## Convert the result to a data.frame #' head(as(iris.pca, "data.frame")) #' head(as.data.frame(iris.pca)) #' #' ## There are no nameclashes to avoid here: #' head(as.data.frame(iris.pca, #' org.data.prefix = "", #' meta.prefix = "", #' data.prefix = "")) #' #' ## Print it more or less nicely: #' print(iris.pca) #' #' ## Get the embedded data as a dimRedData object: #' getDimRedData(iris.pca) #' #' ## Get the original data including meta information: #' getOrgData(iris.pca) #' #' @family dimRedResult #' @export dimRedResult #' @exportClass dimRedResult dimRedResult <- setClass( "dimRedResult", slots = c( data = "dimRedData", org.data = "matrix", apply = "function", inverse = "function", has.org.data = "logical", has.apply = "logical", has.inverse = "logical", method = "character", pars = "list", other.data = "list" ), prototype = list( data = new("dimRedData"), org.data = matrix(numeric(0), 0, 0), apply = function(x) NA, inverse = function(x) NA, has.org.data = FALSE, has.apply = FALSE, has.inverse = FALSE, method = "", pars = list(), other.data = list() ) ) setAs( from = "dimRedResult", to = "data.frame", def = function(from){ if (from@has.org.data) { org.data <- from@org.data names(org.data) <- paste("org", names(org.data), sep = ".") cbind(as(from@data, "data.frame"), as.data.frame(org.data)) } else { as(from@data, "data.frame") } } ) #' @importFrom stats predict #' @export setGeneric( "predict", function(object, ...) standardGeneric("predict"), useAsDefault = stats::predict ) #' @describeIn dimRedResult apply a trained method to new data, does not work #' with all methods, will give an error if there is no \code{apply}. #' In some cases the apply function may only be an approximation. #' @param xnew new data, of type \code{\link{dimRedData}} #' #' @export setMethod(f = "predict", signature = "dimRedResult", definition = function(object, xnew) { if (object@has.apply) object@apply(xnew) else stop("object does not have an apply function") }) #' @export setGeneric( "inverse", function(object, ...) standardGeneric("inverse") ) #' @describeIn dimRedResult inverse transformation of embedded data, does not #' work with all methods, will give an error if there is no \code{inverse}. #' In some cases the apply function may only be an approximation. #' @param ynew embedded data, of type \code{\link{dimRedData}} #' #' @aliases inverse #' @export setMethod(f = "inverse", signature = c("dimRedResult"), definition = function(object, ynew) { if (object@has.inverse) object@inverse(ynew) else stop("object does not have an inverse function") }) #' @param x Of class \code{dimRedResult} #' @param org.data.prefix Prefix for the columns of the org.data slot. #' @param meta.prefix Prefix for the columns of \code{x@@data@@meta}. #' @param data.prefix Prefix for the columns of \code{x@@data@@data}. #' #' @describeIn dimRedResult convert to \code{data.frame} #' @export setMethod(f = "as.data.frame", signature = c("dimRedResult"), definition = function(x, org.data.prefix = "org.", meta.prefix = "meta.", data.prefix = "") { tmp <- list() if (nrow(x@data@meta) > 0){ tmp$meta <- as.data.frame(x@data@meta) names(tmp$meta) <- paste0(meta.prefix, colnames(x@data@meta)) } tmp$data <- as.data.frame(x@data@data) names(tmp$data) <- paste0(data.prefix, colnames(x@data@data)) if (x@has.org.data){ tmp$org.data <- as.data.frame(x@org.data) names(tmp$org.data) <- paste0(org.data.prefix, colnames(x@org.data)) } names(tmp) <- NULL data.frame(tmp, stringsAsFactors = FALSE) }) #' @param object Of class \code{dimRedResult} #' @describeIn dimRedResult Get the parameters with which the method #' was called. #' @export setMethod( f = "getPars", signature = "dimRedResult", definition = function (object) { object@pars } ) #' @describeIn dimRedResult Get the number of embedding dimensions. #' @export setMethod( f = "getNDim", signature = "dimRedResult", definition = function (object) { result <- getPars(object)$ndim if(is.null(result)) dim(object@data@data)[2] else result } ) #' @describeIn dimRedResult Method for printing. #' @import utils #' @export setMethod( f = "print", signature = "dimRedResult", definition = function(x) { cat("Method:\n") cat(x@method, "\n") cat("Parameters:\n") utils::str(x@pars) } ) #' @describeIn dimRedResult Get the original data and meta.data #' @export setMethod( f = "getOrgData", signature = "dimRedResult", definition = function(object) { return(new("dimRedData", data = object@org.data, meta = object@data@meta)) } ) #' @describeIn dimRedResult Get the embedded data #' @export setMethod( f = "getDimRedData", signature = "dimRedResult", definition = function(object) { return(object@data) } ) #' @describeIn dimRedResult Extract the number of embedding dimensions. #' #' @examples #' ## Get the number of variables: #' ndims(iris.pca) #' #' @export setMethod( "ndims", "dimRedResult", function(object) ncol(object@data@data) ) #' @describeIn dimRedResult Get other data produced by the method #' @export setMethod( f = "getOtherData", signature = "dimRedResult", definition = function(object) object@other.data ) dimRed/R/get_info.R0000644000176200001440000000215714262545361013611 0ustar liggesusers#' getRotationMatrix #' #' Extract the rotation matrix from \code{\link{dimRedResult}} objects derived from PCA and FastICA #' #' The data has to be pre-processed the same way as the method does, e.g. #' centering and/or scaling. #' #' @param x of type \code{\link{dimRedResult}} #' @return a matrix #' #' @examples #' dat <- loadDataSet("Iris") #' #' pca <- embed(dat, "PCA") #' rot_pca <- getRotationMatrix(pca) #' scale(getData(dat), TRUE, FALSE) %*% rot_pca - getData(getDimRedData(pca)) #' #' #' if(requireNamespace("fastICA", quietly = TRUE)) { #' ica <- embed(dat, "FastICA") #' rot_ica <- getRotationMatrix(ica) #' scale(getData(dat), TRUE, FALSE) %*% rot_ica - getData(getDimRedData(ica)) #' } #' #' #' @family convenience functions #' @export getRotationMatrix <- function(x) { if(!inherits(x, "dimRedResult")) stop("x must be of type 'dimRedResult'") if(x@method == "PCA") return(environment(x@apply)$rot) if(x@method == "PCA_L1") return(environment(x@apply)$rot) if(x@method == "FastICA") return(environment(x@apply)$res$K %*% environment(x@apply)$res$W) stop(paste("Not implemented for", x@method)) } dimRed/R/autoencoder.R0000644000176200001440000002346314744715744014343 0ustar liggesusers## #' AutoEncoder ## #' ## #' An S4 Class implementing an Autoencoder ## #' ## #' Autoencoders are neural networks that try to reproduce their input. Consider ## #' this method unstable, as the internals may still be changed. ## #' ## #' @template dimRedMethodSlots ## #' ## #' @template dimRedMethodGeneralUsage ## #' ## #' @section Parameters: ## #' Autoencoder can take the following parameters: ## #' \describe{ ## #' \item{ndim}{The number of dimensions for reduction.} ## #' \item{n_hidden}{The number of neurons in the hidden ## #' layers, the length specifies the number of layers, ## #' the length must be impair, the middle number must ## #' be the same as ndim.} ## #' \item{activation}{The activation functions for the layers, ## #' one of "tanh", "sigmoid", "relu", "elu", everything ## #' else will silently be ignored and there will be no ## #' activation function for the layer.} ## #' \item{weight_decay}{the coefficient for weight decay, ## #' set to 0 if no weight decay desired.} ## #' \item{learning_rate}{The learning rate for gradient descend} ## #' \item{graph}{Optional: A list of bits and pieces that define the ## #' autoencoder in tensorflow, see details.} ## #' \item{keras_graph}{Optional: A list of keras layers that define ## #' the encoder and decoder, specifying this, will ignore all ## #' other topology related variables, see details.} ## #' \item{batchsize}{If NA, all data will be used for training, ## #' else only a random subset of size batchsize will be used} ## #' \item{n_steps}{the number of training steps.} ## #' } ## #' ## #' @section Details: ## #' There are several ways to specify an autoencoder, the simplest is to pass the ## #' number of neurons per layer in \code{n_hidden}, this must be a vector of ## #' integers of impair length and it must be symmetric and the middle number must ## #' be equal to \code{ndim}, For every layer an activation function can be ## #' specified with \code{activation}. ## #' ## #' For regularization weight decay can be specified by setting ## #' \code{weight_decay} > 0. ## #' ## #' Currently only a gradient descent optimizer is used, the learning rate can be ## #' specified by setting \code{learning_rate}. ## #' The learner can operate on batches if \code{batchsize} is not \code{NA}. ## #' The number of steps the learner uses is specified using \code{n_steps}. ## #' ## #' @section Further training a model: ## #' If the model did not converge in the first training phase or training with ## #' different data is desired, the \code{\link{dimRedResult}} object may be ## #' passed as \code{autoencoder} parameter; In this case all topology related ## #' parameters will be ignored. ## #' ## #' @section Using Keras layers: ## #' The encoder and decoder part can be specified using a list of \pkg{keras} ## #' layers. This requires a list with two entries, \code{encoder} should contain ## #' a LIST of keras layers WITHOUT the \code{\link[keras]{layer_input}} ## #' that will be concatenated in order to form the encoder part. ## #' \code{decoder} should be ## #' defined accordingly, the output of \code{decoder} must have the same number ## #' of dimensions as the input data. ## #' ## #' @section Using Tensorflow: ## #' The model can be entirely defined in \pkg{tensorflow}, it must contain a ## #' list with the following entries: ## #' \describe{ ## #' \item{encoder}{A tensor that defines the encoder.} ## #' \item{decoder}{A tensor that defines the decoder.} ## #' \item{network}{A tensor that defines the reconstruction (encoder + decoder).} ## #' \item{loss}{A tensor that calculates the loss (network + loss function).} ## #' \item{in_data}{A \code{placeholder} that points to the data input of ## #' the network AND the encoder.} ## #' \item{in_decoder}{A \code{placeholder} that points to the input of ## #' the decoder.} ## #' \item{session}{A \pkg{tensorflow} \code{Session} object that holds ## #' the values of the tensors.} ## #' } ## #' ## #' @section Implementation: ## #' Uses \pkg{tensorflow} as a backend, for details an ## #' problems relating tensorflow, see \url{https://tensorflow.rstudio.com}. ## #' ## #' @examples ## #' \dontrun{ ## #' dat <- loadDataSet("3D S Curve") ## #' ## #' emb <- embed(dat, "AutoEncoder") ## #' ## #' # predicting is possible: ## #' samp <- sample(floor(nrow(dat) / 10)) ## #' emb2 <- embed(dat[samp]) ## #' emb3 <- predict(emb2, dat[-samp]) ## #' ## #' plot(emb, type = "2vars") ## #' plot(emb2, type = "2vars") ## #' points(getData(emb3)) ## #' } ## #' ## #' @include dimRedResult-class.R ## #' @include dimRedMethod-class.R ## #' @family dimensionality reduction methods ## #' @export AutoEncoder ## #' @exportClass AutoEncoder ## AutoEncoder <- setClass( ## "AutoEncoder", ## contains = "dimRedMethod", ## prototype = list( ## stdpars = list(ndim = 2, ## n_hidden = c(10, 2, 10), ## activation = c("tanh", "lin", "tanh"), ## learning_rate = 0.15, ## loss = "mse", ## optimizer = "adam", ## encoder = NULL, ## decoder = NULL, ## ## is.na() of an S4 class gives a warning ## batchsize = 20, ## epochs = 5, ## validation_split = 0.2), ## fun = function (data, pars, ## keep.org.data = TRUE) { ## chckpkg("keras3") ## indata <- data@data ## indims <- ncol(indata) ## ndim <- pars$ndim ## input_data <- keras3::layer_input(shape = indims) ## input_hidden <- keras3::layer_input(shape = ndim) ## ## if the user did not specify encoder and decoder, we build them from the ## ## parameters ## if (is.null(pars$encoder) || is.null(pars$decoder)) { ## depth <- length(pars$n_hidden) ## if (depth %% 2 == 0) { ## stop("the number of layers must be impair") ## } ## if (ndim != pars$n_hidden[ceiling(depth / 2)]) { ## stop("the middle of n_hidden must be equal to ndim") ## } ## if (depth != length(pars$activation)) { ## stop("declare an activation function for each layer") ## } ## in_depth <- ceiling(depth / 2) ## out_depth <- depth - in_depth ## layers <- mapply( ## function(s, n) keras3::layer_dense(units = n, activation = s), ## pars$activation, pars$n_hidden, ## SIMPLIFY = FALSE ## ) ## encoder <- c(input_data, layers[1:in_depth]) ## decoder <- c(input_hidden, layers[(in_depth + 1):depth]) ## } else { ## encoder <- c(input_data, pars$encoder) ## decoder <- c(input_hidden, pars$decoder) ## } ## ## now build the actual model, compile it and fit it ## autoencoder <- c(input_data, encoder, decoder) ## encoder <- encoder %>% ## chain_list() %>% ## keras3::keras_model() ## decoder <- decoder %>% ## chain_list() %>% ## keras3::keras_model() ## autoencoder <- autoencoder %>% ## chain_list() %>% ## keras3::keras_model() ## autoencoder %>% ## keras3::compile( ## optimizer = pars$optimizer, ## loss = pars$loss ## ) ## history <- autoencoder %>% ## keras3::fit( ## indata, indata, ## epochs = pars$epochs, ## batch_size = pars$batchsize, ## validation_split = pars$validation_split, ## verbose = 0 ## ) ## meta <- data@meta ## orgdata <- if (keep.org.data) data@data else NULL ## indata <- data@data ## appl <- function(x) { ## appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame() ## proj <- if (inherits(x, "dimRedData")) x@data else x ## if (ncol(proj) != ncol(data@data)) ## stop("x must have the same number of dimensions ", ## "as the original data") ## res <- encoder(proj) ## colnames(res) <- paste0("AE", seq_len(ncol(res))) ## new("dimRedData", data = res, meta = appl.meta) ## } ## inv <- function(x) { ## appl.meta <- if (inherits(x, "dimRedData")) x@meta else data.frame() ## proj <- if (inherits(x, "dimRedData")) x@data else x ## if (ncol(proj) != pars$ndim) ## stop("x must have the same number of dimensions ", ## "as ndim data") ## res <- decoder(proj) ## colnames(res) <- colnames(indata) ## new("dimRedData", data = res, meta = appl.meta) ## } ## colnames(outdata) <- paste0("AE", seq_len(ncol(outdata))) ## return(new( ## "dimRedResult", ## data = new("dimRedData", ## data = outdata, ## meta = meta), ## org.data = orgdata, ## apply = appl, ## inverse = inv, ## has.apply = TRUE, ## has.inverse = TRUE, ## has.org.data = keep.org.data, ## method = "AutoEncoder", ## pars = pars ## )) ## }, ## requires = c("tensorflow", "keras3")) ## ) ## ## no idea why these and variants do not work: ## ## chain_list <- function(x1, x2) Reduce(`%>%`, x2, init = x1) ## ## chain_list <- function(x) Reduce(`%>%`, x) ## chain_list <- function(x1, x2 = NULL) { ## if (is.null(x2)) { ## stopifnot(is.list(x1)) ## result <- x1[[1]] ## if (length(x1) > 1) for (i in 2:length(x1)) { ## result <- result %>% (x1[[i]]) ## } ## } else { ## stopifnot(is.list(x2)) ## result <- x1 ## for (i in 1:length(x2)) { ## result <- result %>% (x2[[i]]) ## } ## } ## return(result) ## } dimRed/vignettes/0000755000176200001440000000000015001744211013461 5ustar liggesusersdimRed/vignettes/bibliography.bib0000644000176200001440000006220013371631672016630 0ustar liggesusers @book{rojo-alvarez_digital_2017, edition = {1st}, title = {Digital {Signal} {Processing} with {Kernel} {Methods}}, isbn = {978-1-118-61179-1}, publisher = {Wiley}, author = {Rojo-Ãlvarez, J. L. and Martínez-Ramón, M. and Muñoz-Marí, J. and Camps-Valls, G.}, month = dec, year = {2017} } @article{arenas-garcia_kernel_2013, title = {Kernel {Multivariate} {Analysis} {Framework} for {Supervised} {Subspace} {Learning}: {A} {Tutorial} on {Linear} and {Kernel} {Multivariate} {Methods}}, volume = {30}, issn = {1053-5888}, shorttitle = {Kernel {Multivariate} {Analysis} {Framework} for {Supervised} {Subspace} {Learning}}, doi = {10.1109/MSP.2013.2250591}, number = {4}, journal = {IEEE Signal Processing Magazine}, author = {Arenas-Garcia, J. and Petersen, K. B. and Camps-Valls, G. and Hansen, L. K.}, month = jul, year = {2013}, pages = {16--29}, } @inproceedings{scholkopf_generalized_2001, title = {A {Generalized} {Representer} {Theorem}}, url = {https://link.springer.com/chapter/10.1007/3-540-44581-1_27}, doi = {10.1007/3-540-44581-1_27}, language = {en}, urldate = {2017-06-12}, booktitle = {Computational {Learning} {Theory}}, publisher = {Springer, Berlin, Heidelberg}, author = {Schölkopf, Bernhard and Herbrich, Ralf and Smola, Alex J.}, month = jul, year = {2001}, pages = {416--426}, } @incollection{bakir_learning_2004, title = {Learning to {Find} {Pre}-{Images}}, url = {http://papers.nips.cc/paper/2417-learning-to-find-pre-images.pdf}, doi = {10.1007/978-3-540-28649-3_31}, urldate = {2017-06-12}, booktitle = {Advances in {Neural} {Information} {Processing} {Systems} 16}, publisher = {MIT Press}, author = {Bakir, Gökhan H. and Weston, Jason and Schölkopf, Prof. Bernhard}, editor = {Thrun, S. and Saul, L. K. and Schölkopf, P. B.}, year = {2004}, pages = {449--456}, } @inproceedings{babaee_assessment_2013, title = {Assessment of dimensionality reduction based on communication channel model; application to immersive information visualization}, url = {http://elib.dlr.de/88828/}, doi = {10.1109/BigData.2013.6691726}, booktitle = {Big {Data} 2013}, publisher = {IEEE Xplore}, author = {Babaee, Mohammadreza and Datcu, Mihai and Rigoll, Gerald}, year = {2013}, pages = {1--6}, } @article{mahecha_nonlinear_2007, title = {Nonlinear dimensionality reduction: {Alternative} ordination approaches for extracting and visualizing biodiversity patterns in tropical montane forest vegetation data}, volume = {2}, issn = {1574-9541}, shorttitle = {Nonlinear dimensionality reduction}, url = {http://www.sciencedirect.com/science/article/pii/S1574954107000325}, doi = {10.1016/j.ecoinf.2007.05.002}, number = {2}, urldate = {2016-08-26}, journal = {Ecological Informatics}, author = {Mahecha, Miguel D. and Martínez, Alfredo and Lischeid, Gunnar and Beck, Erwin}, month = jun, year = {2007}, pages = {138--149}, } @inproceedings{bengio_out--sample_2003, title = {Out-of-{Sample} {Extensions} for {LLE}, {Isomap}, {MDS}, {Eigenmaps}, and {Spectral} {Clustering}}, booktitle = {In {Advances} in {Neural} {Information} {Processing} {Systems}}, publisher = {MIT Press}, author = {Bengio, Yoshua and Paiement, Jean-Francois and Vincent, Pascal}, year = {2004}, pages = {177--184}, } @misc{noauthor_scopus_nodate, author = {Elsevier}, year = {2017}, title = {Scopus - {Advanced} search}, url = {https://www.scopus.com/}, urldate = {2017-03-28} } @article{diaz_global_2016, title = {The global spectrum of plant form and function}, volume = {529}, issn = {0028-0836}, url = {http://www.nature.com/nature/journal/v529/n7585/full/nature16489.html}, doi = {10.1038/nature16489}, language = {en}, number = {7585}, urldate = {2017-03-22}, journal = {Nature}, author = {Díaz, Sandra and Kattge, Jens and Cornelissen, Johannes H. C. and Wright, Ian J. and Lavorel, Sandra and Dray, Stéphane and Reu, Björn and Kleyer, Michael and Wirth, Christian and Colin Prentice, I. and Garnier, Eric and Bönisch, Gerhard and Westoby, Mark and Poorter, Hendrik and Reich, Peter B. and Moles, Angela T. and Dickie, John and Gillison, Andrew N. and Zanne, Amy E. and Chave, Jérôme and Joseph Wright, S. and Sheremet’ev, Serge N. and Jactel, Hervé and Baraloto, Christopher and Cerabolini, Bruno and Pierce, Simon and Shipley, Bill and Kirkup, Donald and Casanoves, Fernando and Joswig, Julia S. and Günther, Angela and Falczuk, Valeria and Rüger, Nadja and Mahecha, Miguel D. and Gorné, Lucas D.}, month = jan, year = {2016}, pages = {167--171}, } first application of pca in ecology? @article{aart_distribution_1972, title = {Distribution {Analysis} of {Wolfspiders} ({Araneae}, {Lycosidae}) in a {Dune} {Area} {By} {Means} of {Principal} {Component} {Analysis}}, volume = {23}, issn = {1568-542X}, url = {http://booksandjournals.brillonline.com/content/journals/10.1163/002829673x00076}, doi = {10.1163/002829673X00076}, number = {3}, urldate = {2016-07-18}, journal = {Netherlands Journal of Zoology}, author = {Aart, P. J. M. Van Der}, month = jan, year = {1972}, pages = {266--329}, } @article{morrall_soil_1974, title = {Soil microfungi associated with aspen in {Saskatchewan}: synecology and quantitative analysis}, volume = {52}, issn = {0008-4026}, shorttitle = {Soil microfungi associated with aspen in {Saskatchewan}}, url = {http://www.nrcresearchpress.com/doi/abs/10.1139/b74-233}, doi = {10.1139/b74-233}, number = {8}, urldate = {2016-07-18}, journal = {Can. J. Bot.}, author = {Morrall, R. A. A.}, month = aug, year = {1974}, pages = {1803--1817}, } @article{pearson_lines_1901, title = {On lines and planes of closest fit to systems of points in space}, volume = {2}, number = {6}, journal = {Philosophical Magazine}, doi = {10.1080/14786440109462720}, author = {Pearson, K}, year = {1901}, pages = {559--572}, } @article{kramer_nonlinear_1991, title = {Nonlinear principal component analysis using autoassociative neural networks}, volume = {37}, issn = {1547-5905}, doi = {10.1002/aic.690370209}, language = {en}, number = {2}, urldate = {2016-07-15}, journal = {AIChE J.}, author = {Kramer, Mark A.}, month = feb, year = {1991}, pages = {233--243}, } @article{hsieh_nonlinear_2004, title = {Nonlinear multivariate and time series analysis by neural network methods}, volume = {42}, issn = {1944-9208}, doi = {10.1029/2002RG000112}, language = {en}, number = {1}, urldate = {2016-07-15}, journal = {Rev. Geophys.}, author = {Hsieh, William W.}, month = mar, year = {2004}, pages = {RG1003}, } @article{optimx, author = {John Nash}, title = {On Best Practice Optimization Methods in R}, journal = {Journal of Statistical Software}, volume = 60, number = 1, year = 2014, issn = {1548-7660}, pages = {1--14}, doi = {10.18637/jss.v060.i02}, url = {https://www.jstatsoft.org/index.php/jss/article/view/v060i02} } @manual{energy, title = {energy: E-statistics (energy statistics)}, author = {Maria L. Rizzo and Gabor J. Szekely}, year = {2014}, note = {R package version 1.6.2}, url = {https://CRAN.R-project.org/package=energy}, } @misc{soeren_sonnenburg_2017_1067840, author = {Soeren Sonnenburg and Heiko Strathmann and Sergey Lisitsyn and Viktor Gal and Fernando J. Iglesias García and Wu Lin and Soumyajit De and Chiyuan Zhang and frx and tklein23 and Evgeniy Andreev and JonasBehr and sploving and Parijat Mazumdar and Christian Widmer and Pan Deng / Zora and Giovanni De Toni and Saurabh Mahindre and Abhijeet Kislay and Kevin Hughes and Roman Votyakov and khalednasr and Sanuj Sharma and Alesis Novik and Abinash Panda and Evangelos Anagnostopoulos and Liang Pang and Alex Binder and serialhex and Björn Esser}, title = {shogun-toolbox/shogun: Shogun 6.1.0}, month = nov, year = 2017, doi = {10.5281/zenodo.1067840}, url = {https://doi.org/10.5281/zenodo.1067840} } @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } @article{torgerson_multidimensional_1952, title = {Multidimensional scaling: {I}. {Theory} and method}, volume = {17}, issn = {0033-3123, 1860-0980}, shorttitle = {Multidimensional scaling}, url = {http://link.springer.com/article/10.1007/BF02288916}, doi = {10.1007/BF02288916}, language = {en}, number = {4}, urldate = {2016-08-16}, journal = {Psychometrika}, author = {Torgerson, Warren S.}, year = {1952}, pages = {401--419}, } @article{tenenbaum_global_2000, title = {A {Global} {Geometric} {Framework} for {Nonlinear} {Dimensionality} {Reduction}}, volume = {290}, issn = {0036-8075, 1095-9203}, url = {http://science.sciencemag.org/content/290/5500/2319}, doi = {10.1126/science.290.5500.2319}, language = {en}, number = {5500}, urldate = {2016-07-13}, journal = {Science}, author = {Tenenbaum, Joshua B. and Silva, Vin de and Langford, John C.}, month = dec, year = {2000}, pmid = {11125149}, pages = {2319--2323}, } @article{roweis_nonlinear_2000, title = {Nonlinear {Dimensionality} {Reduction} by {Locally} {Linear} {Embedding}}, volume = {290}, issn = {0036-8075, 1095-9203}, url = {http://science.sciencemag.org/content/290/5500/2323}, doi = {10.1126/science.290.5500.2323}, language = {en}, number = {5500}, urldate = {2016-08-16}, journal = {Science}, author = {Roweis, Sam T. and Saul, Lawrence K.}, month = dec, year = {2000}, pmid = {11125150}, pages = {2323--2326}, } @article{kruskal_multidimensional_1964, title = {Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis}, volume = {29}, issn = {0033-3123, 1860-0980}, url = {http://link.springer.com/article/10.1007/BF02289565}, doi = {10.1007/BF02289565}, language = {en}, number = {1}, urldate = {2016-12-22}, journal = {Psychometrika}, author = {Kruskal, J. B.}, month = mar, year = {1964}, pages = {1--27}, } @article{kruskal_nonmetric_1964, title = {Nonmetric multidimensional scaling: {A} numerical method}, volume = {29}, issn = {0033-3123, 1860-0980}, shorttitle = {Nonmetric multidimensional scaling}, url = {http://link.springer.com/article/10.1007/BF02289694}, doi = {10.1007/BF02289694}, language = {en}, number = {2}, urldate = {2016-12-22}, journal = {Psychometrika}, author = {Kruskal, J. B.}, month = jun, year = {1964}, pages = {115--129}, } @article{coifman_geometric_2005, title = {Geometric diffusions as a tool for harmonic analysis and structure definition of data: {Diffusion} maps}, volume = {102}, issn = {0027-8424, 1091-6490}, shorttitle = {Geometric diffusions as a tool for harmonic analysis and structure definition of data}, url = {http://www.pnas.org/content/102/21/7426}, doi = {10.1073/pnas.0500334102}, language = {en}, number = {21}, urldate = {2016-03-30}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, author = {Coifman, R. R. and Lafon, S. and Lee, A. B. and Maggioni, M. and Nadler, B. and Warner, F. and Zucker, S. W.}, month = may, year = {2005}, pmid = {15899970}, pages = {7426--7431}, } @article{coifman_diffusion_2006, title = {Diffusion maps}, volume = {21}, issn = {10635203}, url = {http://linkinghub.elsevier.com/retrieve/pii/S1063520306000546}, doi = {10.1016/j.acha.2006.04.006}, language = {en}, number = {1}, urldate = {2016-08-16}, journal = {Applied and Computational Harmonic Analysis}, author = {Coifman, Ronald R. and Lafon, Stéphane}, month = jul, year = {2006}, pages = {5--30}, } @article{scholkopf_nonlinear_1998, title = {Nonlinear {Component} {Analysis} as a {Kernel} {Eigenvalue} {Problem}}, volume = {10}, issn = {08997667}, doi = {10.1162/089976698300017467}, number = {5}, journal = {Neural Computation}, author = {Schölkopf, Bernhard and Smola, Alexander and Müller, Klaus-Robert}, year = {1998}, pages = {1299--1319}, } @article{hyvarinen_fast_1999, title = {Fast and robust fixed-point algorithms for independent component analysis}, volume = {10}, issn = {1045-9227}, doi = {10.1109/72.761722}, number = {3}, journal = {IEEE Transactions on Neural Networks}, author = {Hyvarinen, A.}, month = may, year = {1999}, pages = {626--634}, } @article{comon_independent_1994, title = {Independent component analysis, {A} new concept?}, volume = {36}, issn = {01651684}, url = {http://linkinghub.elsevier.com/retrieve/pii/0165168494900299}, doi = {10.1016/0165-1684(94)90029-9}, language = {en}, number = {3}, urldate = {2016-08-17}, journal = {Signal Processing}, author = {Comon, Pierre}, month = apr, year = {1994}, pages = {287--314}, } @article{kamada_algorithm_1989, title = {An algorithm for drawing general undirected graphs}, volume = {31}, issn = {0020-0190}, url = {http://www.sciencedirect.com/science/article/pii/0020019089901026}, doi = {10.1016/0020-0190(89)90102-6}, number = {1}, urldate = {2016-08-17}, journal = {Information Processing Letters}, author = {Kamada, Tomihisa and Kawai, Satoru}, month = apr, year = {1989}, pages = {7--15}, } @article{fruchterman_graph_1991, title = {Graph drawing by force-directed placement}, volume = {21}, issn = {1097-024X}, doi = {10.1002/spe.4380211102}, language = {en}, number = {11}, urldate = {2016-08-17}, journal = {Softw: Pract. Exper.}, author = {Fruchterman, Thomas M. J. and Reingold, Edward M.}, month = nov, year = {1991}, pages = {1129--1164}, } @techreport{martin_dr.l:_2007, title = {Dr.l: {Distributed} {Recursive} (graph) {Layout}}, shorttitle = {Dr.l}, url = {http://www.osti.gov/scitech/biblio/1231060-dr-distributed-recursive-graph-layout}, number = {dRl; 002182MLTPL00}, urldate = {2016-08-17}, institution = {Sandia National Laboratories}, author = {Martin, Shawn and Brown, W. Michael and Wylie, Brian N.}, month = nov, year = {2007}, } @article{belkin_laplacian_2003, title = {Laplacian {Eigenmaps} for {Dimensionality} {Reduction} and {Data} {Representation}}, volume = 15, issn = 08997667, doi = {10.1162/089976603321780317}, number = 6, urldate = {2016-08-17}, journal = {Neural Computation}, author = {Belkin, Mikhail and Niyogi, Partha}, month = jun, year = 2003, pages = 1373, } @inproceedings{terada_local_2014, title = {Local {Ordinal} {Embedding}}, url = {http://jmlr.org/proceedings/papers/v32/terada14.html}, urldate = {2016-04-21}, author = {Terada, Yoshikazu and Luxburg, Ulrike von}, year = {2014}, pages = {847--855} } @article{van_der_maaten_visualizing_2008, title = {Visualizing {Data} using t-{SNE}}, volume = {9}, issn = {1532-4435}, language = {English}, journal = {J. Mach. Learn. Res.}, author = {van der Maaten, Laurens and Hinton, Geoffrey}, month = nov, year = {2008}, note = {WOS:000262637600007}, pages = {2579--2605}, } @incollection{hinton_stochastic_2003, title = {Stochastic {Neighbor} {Embedding}}, url = {http://papers.nips.cc/paper/2276-stochastic-neighbor-embedding.pdf}, urldate = {2016-08-17}, booktitle = {Advances in {Neural} {Information} {Processing} {Systems} 15}, publisher = {MIT Press}, author = {Hinton, Geoffrey E. and Roweis, Sam T.}, editor = {Becker, S. and Thrun, S. and Obermayer, K.}, year = {2003}, pages = {857--864}, } @article{lee_multi-scale_2015, series = {Learning for {Visual} {Semantic} {Understanding} in {Big} {DataESANN} 2014Industrial {Data} {Processing} and {AnalysisSelected} papers from the 22nd {European} {Symposium} on {Artificial} {Neural} {Networks}, {Computational} {Intelligence} and {Machine} {Learning} ({ESANN} 2014){Selected} papers from the 11th {World} {Congress} on {Intelligent} {Control} and {Automation} ({WCICA}2014)}, title = {Multi-scale similarities in stochastic neighbour embedding: {Reducing} dimensionality while preserving both local and global structure}, volume = {169}, issn = {0925-2312}, shorttitle = {Multi-scale similarities in stochastic neighbour embedding}, url = {http://www.sciencedirect.com/science/article/pii/S0925231215003641}, doi = {10.1016/j.neucom.2014.12.095}, urldate = {2016-04-28}, journal = {Neurocomputing}, author = {Lee, John A. and Peluffo-Ordóñez, Diego H. and Verleysen, Michel}, month = dec, year = {2015}, pages = {246--261}, } @article{lee_type_2013, series = {Advances in artificial neural networks, machine learning, and computational {intelligenceSelected} papers from the 20th {European} {Symposium} on {Artificial} {Neural} {Networks} ({ESANN} 2012)}, title = {Type 1 and 2 mixtures of {Kullback}–{Leibler} divergences as cost functions in dimensionality reduction based on similarity preservation}, volume = {112}, issn = {0925-2312}, url = {http://www.sciencedirect.com/science/article/pii/S0925231213001471}, doi = {10.1016/j.neucom.2012.12.036}, urldate = {2016-04-28}, journal = {Neurocomputing}, author = {Lee, John A. and Renard, Emilie and Bernard, Guillaume and Dupont, Pierre and Verleysen, Michel}, month = jul, year = {2013}, pages = {92--108}, } @article{venna_information_2010, title = {Information {Retrieval} {Perspective} to {Nonlinear} {Dimensionality} {Reduction} for {Data} {Visualization}}, volume = {11}, issn = {1532-4435}, language = {English}, journal = {J. Mach. Learn. Res.}, author = {Venna, Jarkko and Peltonen, Jaakko and Nybo, Kristian and Aidos, Helena and Kaski, Samuel}, month = feb, year = {2010}, note = {WOS:000277186500001}, pages = {451--490}, } @article{laparra_dimensionality_2015, title = {Dimensionality {Reduction} via {Regression} in {Hyperspectral} {Imagery}}, volume = {9}, issn = {1932-4553}, doi = {10.1109/JSTSP.2015.2417833}, number = {6}, journal = {IEEE Journal of Selected Topics in Signal Processing}, author = {Laparra, V. and Malo, J. and Camps-Valls, G.}, month = sep, year = {2015}, pages = {1026--1036}, } @article{chen_local_2006, author = {Lisha Chen and Andreas Buja}, title = {Local Multidimensional Scaling for Nonlinear Dimension Reduction, Graph Drawing, and Proximity Analysis}, journal = {Journal of the American Statistical Association}, volume = {104}, number = {485}, pages = {209-219}, year = {2009}, publisher = {Taylor & Francis}, doi = {10.1198/jasa.2009.0111}, URL = {https://doi.org/10.1198/jasa.2009.0111}, eprint = {https://doi.org/10.1198/jasa.2009.0111} } @inproceedings{saunders_ridge_1998, author = {Saunders, Craig and Gammerman, Alexander and Vovk, Volodya}, title = {Ridge Regression Learning Algorithm in Dual Variables}, booktitle = {Proceedings of the Fifteenth International Conference on Machine Learning}, series = {ICML '98}, year = {1998}, isbn = {1-55860-556-8}, pages = {515--521}, numpages = {7}, url = {http://dl.acm.org/citation.cfm?id=645527.657464}, acmid = {657464}, publisher = {Morgan Kaufmann Publishers Inc.}, address = {San Francisco, CA, USA}, } @article{lee_quality_2009, series = {Advances in {Machine} {Learning} and {Computational} {Intelligence}16th {European} {Symposium} on {Artificial} {Neural} {Networks} 200816th {European} {Symposium} on {Artificial} {Neural} {Networks} 2008}, title = {Quality assessment of dimensionality reduction: {Rank}-based criteria}, volume = {72}, issn = {0925-2312}, shorttitle = {Quality assessment of dimensionality reduction}, url = {http://www.sciencedirect.com/science/article/pii/S0925231209000101}, doi = {10.1016/j.neucom.2008.12.017}, number = {7–9}, urldate = {2016-04-04}, journal = {Neurocomputing}, author = {Lee, John A. and Verleysen, Michel}, month = mar, year = {2009}, pages = {1431--1443}, } @article{sokal_comparison_1962, title = {The {Comparison} of {Dendrograms} by {Objective} {Methods}}, volume = {11}, issn = {0040-0262}, url = {http://www.jstor.org/stable/1217208}, doi = {10.2307/1217208}, number = {2}, urldate = {2016-08-15}, journal = {Taxon}, author = {Sokal, Robert R. and Rohlf, F. James}, year = {1962}, pages = {33--40}, } @article{szekely_measuring_2007, title = {Measuring and testing dependence by correlation of distances}, volume = {35}, issn = {0090-5364, 2168-8966}, url = {http://projecteuclid.org/euclid.aos/1201012979}, doi = {10.1214/009053607000000505}, language = {EN}, number = {6}, urldate = {2016-06-10}, journal = {The Annals of Statistics}, author = {Székely, Gábor J. and Rizzo, Maria L. and Bakirov, Nail K.}, month = dec, year = {2007}, mrnumber = {MR2382665}, zmnumber = {1129.62059}, pages = {2769--2794}, } @article{kireeva_nonlinear_2014, title = {Nonlinear {Dimensionality} {Reduction} for {Visualizing} {Toxicity} {Data}: {Distance}-{Based} {Versus} {Topology}-{Based} {Approaches}}, volume = {9}, issn = {1860-7187}, shorttitle = {Nonlinear {Dimensionality} {Reduction} for {Visualizing} {Toxicity} {Data}}, doi = {10.1002/cmdc.201400027}, language = {en}, number = {5}, urldate = {2016-08-19}, journal = {ChemMedChem}, author = {Kireeva, Natalia V. and Ovchinnikova, Svetlana I. and Tetko, Igor V. and Asiri, Abdullah M. and Balakin, Konstantin V. and Tsivadze, Aslan Yu.}, month = may, year = {2014}, pages = {1047--1059}, } @article{han_deep_2016, author = {Han, Yoonchang and Kim, Jaehun and Lee, Kyogu}, title = {{Deep Convolutional Neural Networks for Predominant Instrument Recognition in Polyphonic Music}}, journal = {{IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING}}, year = {{2017}}, volume = {{25}}, number = {{1}}, pages = {{208-221}}, month = {{JAN}}, publisher = {{IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC}}, language = {{English}}, doi = {{10.1109/TASLP.2016.2632307}}, issn = {{2329-9290}}, } @article{van_der_maaten_dimensionality_2009, title = {Dimensionality reduction: a comparative review}, volume = {10}, shorttitle = {Dimensionality reduction}, urldate = {2016-06-28}, journal = {J Mach Learn Res}, author = {Van Der Maaten, Laurens and Postma, Eric and Van den Herik, Jaap}, year = {2009}, pages = {66--71}, } @inproceedings{bengio_out--sample_2003, title = {Out-of-{Sample} {Extensions} for {LLE}, {Isomap}, {MDS}, {Eigenmaps}, and {Spectral} {Clustering}}, booktitle = {In {Advances} in {Neural} {Information} {Processing} {Systems}}, publisher = {MIT Press}, author = {Bengio, Yoshua and Paiement, Jean-Francois and Vincent, Pascal}, year = {2003}, pages = {177--184}, } @article{lueks_how_2011, title = {How to {Evaluate} {Dimensionality} {Reduction}? - {Improving} the {Co}-ranking {Matrix}}, shorttitle = {How to {Evaluate} {Dimensionality} {Reduction}?}, url = {http://arxiv.org/abs/1110.3917}, urldate = {2016-03-18}, journal = {arXiv:1110.3917 [cs]}, author = {Lueks, Wouter and Mokbel, Bassam and Biehl, Michael and Hammer, Barbara}, month = oct, year = {2011}, note = {arXiv: 1110.3917}, } @techreport{de_silva_sparse_2004, title = {Sparse multidimensional scaling using landmark points}, author = {De Silva, Vin and Tenenbaum, Joshua B/r}, year = {2004}, } @article{groenen_multidimensional_2016, title = {Multidimensional {Scaling} by {Majorization}: {A} {Review}}, volume = {73}, issn = {1548-7660}, url = {https://www.jstatsoft.org/index.php/jss/article/view/v073i08}, doi = {10.18637/jss.v073.i08}, number = {1}, journal = {Journal of Statistical Software}, author = {Groenen, Patrick and Velden, Michel van de}, year = {2016}, pages = {1--26}, } @article{leeuw_multidimensional_2009, author = {de Leeuw, Jan and Mair, Patrick}, title = {{Multidimensional Scaling Using Majorization: SMACOF in R}}, journal = {{JOURNAL OF STATISTICAL SOFTWARE}}, year = {{2009}}, volume = {{31}}, number = {{3}}, pages = {{1--30}}, month = {{AUG}}, publisher = {{JOURNAL STATISTICAL SOFTWARE}}, ISSN = {{1548-7660}}, } @article{bengio_learning_2004, title = {Learning {Eigenfunctions} {Links} {Spectral} {Embedding} and {Kernel} {PCA}}, volume = {16}, issn = {0899-7667}, url = {http://dx.doi.org/10.1162/0899766041732396}, doi = {10.1162/0899766041732396}, number = {10}, urldate = {2016-10-05}, journal = {Neural Computation}, author = {Bengio, Yoshua and Delalleau, Olivier and Roux, Nicolas Le and Paiement, Jean-François and Vincent, Pascal and Ouimet, Marie}, month = oct, year = {2004}, pages = {2197--2219}, } @misc{_gdkrmr/dimred_????, title = {gdkrmr/{dimRed}}, url = {https://github.com/gdkrmr/dimRed}, urldate = {2016-11-30}, journal = {GitHub}, } @book{luxburg_tutorial_2007, title = {A {Tutorial} on {Spectral} {Clustering}}, author = {Luxburg, Ulrike Von}, year = {2007}, } @article{kraemer_dimred_2018, title = {{dimRed} and {coRanking} - {Unifying} {Dimensionality} {Reduction} in {R}}, url = {https://journal.r-project.org/archive/2018/RJ-2018-039/index.html}, journal = {The R Journal}, author = {Kraemer, Guido and Reichstein, Markus and Mahecha, Miguel D.}, year = {2018}, }dimRed/vignettes/Makefile0000644000176200001440000000063615001744211015126 0ustar liggesusersall: echo "BNET_BUILD_VIGNETTE: $(BNET_BUILD_VIGNETTE)" echo "_R_CHECK_DEPENDS_ONLY_: " $(_R_CHECK_DEPENDS_ONLY_) if ! [ "$(_R_CHECK_DEPENDS_ONLY_)" = "true" ]; then \ $(R_HOME)/bin/Rscript -e "knitr::knit2pdf('dimensionality-reduction.Rnw')"; \ $(R_HOME)/bin/Rscript -e "tools::compactPDF('dimensionality-reduction.pdf', gs_quality = 'ebook')"; \ rm -rf dimensionality-reduction.tex figure/ auto/; \ fi dimRed/vignettes/classification_tree.tex0000644000176200001440000000722513371631672020241 0ustar liggesusers\newcommand{\imp}[1] {\textbf{#1}} % style for implemented methods \newcommand{\noimp}[1] {#1} % style for not implemented methods \tikz[ % tree layout, grow cyclic, % level 1/.style={level distance=1.2cm, sibling angle=180, text width=1.5cm, font={\small}}, % level 2/.style={level distance=1.9cm, sibling angle=40, font={\scriptsize}},%, text width=1.4cm}, level 3/.style={level distance=2.2cm, sibling angle=30}, level 4/.style={level distance=2.3cm}, % text width=1.2cm, font=\tiny, innernode/.style={align=flush center},%, text width=1.2}, leaf/.style={% % draw, very thin, % fill=red!30, rounded corners, align=flush left, text width=, inner sep=2pt, font={\hangindent=0.2cm\scriptsize\sffamily}}, ]{ \node[innernode, draw, align=flush center, rounded corners, font={\normalsize\bfseries}]{ Dimensionality \\ reduction} child[] { node[innernode] {Convex} % level 1 child[sibling angle=55]{ node[innernode] {Full spectral} % level 2 child { node[innernode] {Euclidean distances} child { node[leaf, text width=1.3cm]{ \imp{PCA} \\ \imp{Classical scaling} } } } child { node[innernode] {Geodesic distances} child { node[leaf]{ \imp{Isomap} } } } child { node[innernode] {Kernel-based} child { node[leaf]{ \imp{Kernel PCA} \\ \noimp{MVU} } } } child { node[innernode] {Diffusion distance} child { node[leaf]{ \imp{Diffusion maps} } } } } child[] { node[innernode] {Removal of shared information by regression} %level 2 child{ node[leaf]{ \imp{DRR} } } } child[sibling angle=55] { node[innernode] {Sparse spectral} % level 2 child[sibling angle=45] { node[innernode] {Reconstruction weights} child {node[leaf]{ \imp{Local Linear Embedding} } } } child[sibling angle=45] { node[innernode] {Neighborhood graph Laplacian} child { node[leaf]{ \imp{Laplacian Eigenmaps} } } } child[sibling angle=45] { node[innernode] {Local tangent space} child { node[leaf, text width=2cm]{ \imp{Hessian LLE} \\ \noimp{Local tangent space alignment} } } } } } child[level distance=1.8cm] { node[innernode] {Non-convex} %level 1 child { node[innernode] {Weighted Euclidean distances} % level 2 child { node[leaf, text width=2cm]{ \imp{Non-linear MDS} \\ \noimp{Sammon's mapping} \\ \noimp{Stochastic Proximity Embedding} } } } child { node[innernode] {Alignment of local linear models} % level 2 child { node[leaf]{ \noimp{LLC} \\ \noimp{Man.\ charting} } } } child { node[innernode] {Neural network} % level 2 child { node[leaf]{ Autoencoder } } } child { node[innernode] {Discrete mapping} % level 2 child { node[leaf,text width=2.5cm]{ \noimp{Self Organizing Maps} \\ \noimp{Generative Topographic Mapping} \\ \noimp{Elastic Net} } } } child { node[innernode] {Stochastic methods} % level 2 child { node[leaf]{ \noimp{SNE} \\ \imp{t-SNE} \\ \noimp{NeRV} \\ \noimp{JNE} } } } child { node[innernode] {Force directed} % level 2 child { node[leaf, text width=2cm]{ \imp{Kamada-Kawai} \\ \imp{Fruchtermann-Reingold} \\ \imp{DrL} } } } }; } %%% Local Variables: %%% mode: LaTeX %%% TeX-command-extra-options: "-shell-escape" %%% TeX-engine: default %%% TeX-master: "dimensionality-reduction" %%% End:dimRed/vignettes/dimensionality-reduction.Rnw0000644000176200001440000017406114716102405021211 0ustar liggesusers\documentclass{article} %\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{Dimensionality Reduction} %\VignetteKeyword{Dimensionality Reduction} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{hyperref} \usepackage{amsmath,amssymb} \usepackage{booktabs} \usepackage{tikz} \usetikzlibrary{trees} \usepackage[sectionbib,round]{natbib} \title{\pkg{dimRed} and \pkg{coRanking}---Unifying Dimensionality Reduction in R} \author{Guido Kraemer \and Markus Reichstein \and Miguel D.\ Mahecha} % these are taken from RJournal.sty: \makeatletter \DeclareRobustCommand\code{\bgroup\@noligs\@codex} \def\@codex#1{\texorpdfstring% {{\normalfont\ttfamily\hyphenchar\font=-1 #1}}% {#1}\egroup} \newcommand{\kbd}[1]{{\normalfont\texttt{#1}}} \newcommand{\key}[1]{{\normalfont\texttt{\uppercase{#1}}}} \DeclareRobustCommand\samp{`\bgroup\@noligs\@sampx} \def\@sampx#1{{\normalfont\texttt{#1}}\egroup'} \newcommand{\var}[1]{{\normalfont\textsl{#1}}} \let\env=\code \newcommand{\file}[1]{{`\normalfont\textsf{#1}'}} \let\command=\code \let\option=\samp \newcommand{\dfn}[1]{{\normalfont\textsl{#1}}} % \acronym is effectively disabled since not used consistently \newcommand{\acronym}[1]{#1} \newcommand{\strong}[1]{\texorpdfstring% {{\normalfont\fontseries{b}\selectfont #1}}% {#1}} \let\pkg=\strong \newcommand{\CRANpkg}[1]{\href{https://CRAN.R-project.org/package=#1}{\pkg{#1}}}% \let\cpkg=\CRANpkg \newcommand{\ctv}[1]{\href{https://CRAN.R-project.org/view=#1}{\emph{#1}}} \newcommand{\BIOpkg}[1]{\href{https://www.bioconductor.org/packages/release/bioc/html/#1.html}{\pkg{#1}}} \makeatother \begin{document} \maketitle \abstract{ % This document is based on the manuscript of \citet{kraemer_dimred_2018} which was published in the R-Journal and has been modified and extended to fit the format of a package vignette and to match the extended functionality of the \pkg{dimRed} package. ``Dimensionality reduction'' (DR) is a widely used approach to find low dimensional and interpretable representations of data that are natively embedded in high-dimensional spaces. % DR can be realized by a plethora of methods with different properties, objectives, and, hence, (dis)advantages. The resulting low-dimensional data embeddings are often difficult to compare with objective criteria. % Here, we introduce the \CRANpkg{dimRed} and \CRANpkg{coRanking} packages for the R language. % These open source software packages enable users to easily access multiple classical and advanced DR methods using a common interface. % The packages also provide quality indicators for the embeddings and easy visualization of high dimensional data. % The \pkg{coRanking} package provides the functionality for assessing DR methods in the co-ranking matrix framework. % In tandem, these packages allow for uncovering complex structures high dimensional data. % Currently 15 DR methods are available in the package, some of which were not previously available to R users. % Here, we outline the \pkg{dimRed} and \pkg{coRanking} packages and make the implemented methods understandable to the interested reader. % } \section{Introduction} \label{sec:intro} Dimensionality Reduction (DR) essentially aims to find low dimensional representations of data while preserving their key properties. % Many methods exist in literature, optimizing different criteria: % maximizing the variance or the statistical independence of the projected data, % minimizing the reconstruction error under different constraints, % or optimizing for different error metrics, % just to name a few. % Choosing an inadequate method may imply that much of the underlying structure remains undiscovered. % Often the structures of interest in a data set can be well represented by fewer dimensions than exist in the original data. % Data compression of this kind has the additional benefit of making the encoded information better conceivable to our brains for further analysis tasks like classification or regression problems. % For example, the morphology of a plant's leaves, stems, and seeds reflect the environmental conditions the species usually grow in (e.g.,\ plants with large soft leaves will never grow in a desert but might have an advantage in a humid and shadowy environment). % Because the morphology of the entire plant depends on the environment, many morphological combinations will never occur in nature and the morphological space of all plant species is tightly constrained. % \citet{diaz_global_2016} found that out of six observed morphological characteristics only two embedding dimensions were enough to represent three quarters of the totally observed variability. % DR is a widely used approach for the detection of structure in multivariate data, and has applications in a variety of fields. % In climatology, DR is used to find the modes of some phenomenon, e.g.,\ the first Empirical Orthogonal Function of monthly mean sea surface temperature of a given region over the Pacific is often linked to the El Ni\~no Southern Oscillation or ENSO \citep[e.g.,\ ][]{hsieh_nonlinear_2004}. % In ecology the comparison of sites with different species abundances is a classical multivariate problem: each observed species adds an extra dimension, and because species are often bound to certain habitats, there is a lot of redundant information. Using DR is a popular technique to represent the sites in few dimensions, e.g.,\ \citet{aart_distribution_1972} matches wolfspider communities to habitat and \citet{morrall_soil_1974} match soil fungi data to soil types. (In ecology the general name for DR is ordination or indirect gradient analysis.) % Today, hyperspectral satellite imagery collects so many bands that it is very difficult to analyze and interpret the data directly. % Resuming the data into a set of few, yet independent, components is one way to reduce complexity \citep[e.g.,\ see][]{laparra_dimensionality_2015}. % DR can also be used to visualize the interiors of deep neural networks \citep[e.g.,\ see ][]{han_deep_2016}, where the high dimensionality comes from the large number of weights used in a neural network and convergence can be visualized by means of DR\@. % We could find many more example applications here but this is not the main focus of this publication. % The difficulty in applying DR is that each DR method is designed to maintain certain aspects of the original data and therefore may be appropriate for one task and inappropriate for another. % Most methods also have parameters to tune and follow different assumptions. The quality of the outcome may strongly depend on their tuning, which adds additional complexity. % DR methods can be modeled after physical models with attracting and repelling forces (Force Directed Methods), projections onto low dimensional planes (PCA, ICA), divergence of statistical distributions (SNE family), or the reconstruction of local spaces or points by their neighbors (LLE). % As an example for how changing internal parameters of a method can have a great impact, the breakthrough for Stochastic Neighborhood Embedding (SNE) methods came when a Student's $t$-distribution was used instead of a normal distribution to model probabilities in low dimensional space to avoid the ``crowding problem'', that is,\ a sphere in high dimensional space has a much larger volume than in low dimensional space and may contain too many points to be represented accurately in few dimensions. % The $t$-distribution, allows medium distances to be accurately represented in few dimensions by larger distances due to its heavier tails. % The result is called in $t$-SNE and is especially good at preserving local structures in very few dimensions, this feature made $t$-SNE useful for a wide array of data visualization tasks and the method became much more popular than standard SNE (around six times more citations of \citet{van_der_maaten_visualizing_2008} compared to \citet{hinton_stochastic_2003} in Scopus \citep{noauthor_scopus_nodate}). % There are a number of software packages for other languages providing collections of methods: In Python there is scikit-learn \citep{scikit-learn}, which contains a module for DR. In Julia we currently find ManifoldLearning.jl for nonlinear and MultivariateStats.jl for linear DR methods. % There are several toolboxes for DR implemented in Matlab \citep{van_der_maaten_dimensionality_2009, arenas-garcia_kernel_2013}. The Shogun toolbox \citep{soeren_sonnenburg_2017_1067840} implements a variety of methods for dimensionality reduction in C++ and offers bindings for a many common high level languages (including R, but the installation is anything but simple, as there is no CRAN package). % However, there is no comprehensive package for R and none of the former mentioned software packages provides means to consistently compare the quality of different methods for DR. % For many applications it can be difficult to objectively find the right method or parameterization for the DR task. % This paper presents the \pkg{dimRed} and \pkg{coRanking} packages for the popular programming language R. Together, they provide a standardized interface to various dimensionality reduction methods and quality metrics for embeddings. They are implemented using the S4 class system of R, making the packages both easy to use and to extend. The design goal for these packages is to enable researchers, who may not necessarily be experts in DR, to apply the methods in their own work and to objectively identify the most suitable methods for their data. % This paper provides an overview of the methods collected in the packages and contains examples as to how to use the packages. % The notation in this paper will be as follows: $X = [x_i]_{1\leq i \leq n}^T \in \mathbb{R}^{n\times p}$, and the observations $x_i \in \mathbb{R}^p$. % These observations may be transformed prior to the dimensionality reduction step (e.g.,\ centering and/or standardization) resulting in $X' = [x'_i]_{1\leq i \leq n}^T \in \mathbb{R}^{n\times p}$. % A DR method then embeds each vector in $X'$ onto a vector in $Y = [y_i]_{1\leq i \leq n}^T \in \mathbb{R}^{n\times q}$ with $y_i \in \mathbb{R}^q$, ideally with $q \ll p$. % Some methods provide an explicit mapping $f(x'_i) = y_i$. Some even offer an inverse mapping $f^{-1}(y_{i}) = \hat x'_{i}$, such that one can reconstruct a (usually approximate) sample from the low-dimensional representation. % For some methods, pairwise distances between points are needed, we set $d_{ij} = d(x_{i}, x_{j})$ and $\hat{d}_{ij} = d(y_i, y_j)$, where $d$ is some appropriate distance function. When referring to \code{functions} in the \pkg{dimRed} package or base R simply the function name is mentioned, functions from other packages are referenced with their namespace, as with \code{package::function}. \begin{figure}[htbp] \centering \input{classification_tree.tex} \caption{% Classification of dimensionality reduction methods. Methods in bold face are implemented in \pkg{dimRed}. Modified from \citet{van_der_maaten_dimensionality_2009}. }\label{fig:classification} \end{figure} \section{Dimensionality Reduction Methods} \label{sec:dimredtec} In the following section we do not aim for an exhaustive explanation to every method in \pkg{dimRed} but rather to provide a general idea on how the methods work. % An overview and classification of the most commonly used DR methods can be found in Figure~\ref{fig:classification}. In all methods, parameters have to be optimized or decisions have to be made, even if it is just about the preprocessing steps of data. % The \pkg{dimRed} package tries to make the optimization process for parameters as easy as possible, but, if possible, the parameter space should be narrowed down using prior knowledge. % Often decisions can be made based on theoretical knowledge. For example,\ sometimes an analysis requires data to be kept in their original scales and sometimes this is exactly what has to be avoided as when comparing different physical units. % Sometimes decisions based on the experience of others can be made, e.g.,\ the Gaussian kernel is probably the most universal kernel and therefore should be tested first if there is a choice. % All methods presented here have the embedding dimensionality, $q$, as a parameter (or \code{ndim} as a parameter for \code{embed}). % For methods based on eigenvector decomposition, the result generally does not depend on the number of dimensions, i.e.,\ the first dimension will be the same, no matter if we decide to calculate only two dimensions or more. % If more dimensions are added, more information is maintained, the first dimension is the most important and higher dimensions are successively less important. % This means, that a method based on eigenvalue decomposition only has to be run once if one wishes to compare the embedding in different dimensions. % In optimization based methods this is generally not the case, the number of dimensions has to be chosen a priori, an embedding of 2 and 3 dimensions may vary significantly, and there is no ordered importance of dimensions. % This means that comparing dimensions of optimization-based methods is computationally much more expensive. % We try to give the computational complexity of the methods. Because of the actual implementation, computation times may differ largely. % R is an interpreted language, so all parts of an algorithm that are implemented in R often will tend to be slow compared to methods that call efficient implementations in a compiled language. % Methods where most of the computing time is spent for eigenvalue decomposition do have very efficient implementations as R uses optimized linear algebra libraries. Although, eigenvalue decomposition itself does not scale very well in naive implementations ($\mathcal{O}(n^3)$). \subsection{PCA} \label{sec:pca} Principal Component Analysis (PCA) is the most basic technique for reducing dimensions. It dates back to \citet{pearson_lines_1901}. PCA finds a linear projection ($U$) of the high dimensional space into a low dimensional space $Y = XU$, maintaining maximum variance of the data. It is based on solving the following eigenvalue problem: \begin{equation} (C_{XX}-\lambda_k I)u_k=0\label{eq:pca} \end{equation} where $C_{XX} = \frac 1 n X^TX$ is the covariance matrix, $\lambda_k$ and $u_k$ are the $k$-th eigenvalue and eigenvector, and $I$ is the identity matrix. % The equation has several solutions for different values of $\lambda_k$ (leaving aside the trivial solution $u_k = 0$). % PCA can be efficiently applied to large data sets, because it computationally scales as $\mathcal{O}(np^2 + p^3)$, that is, it scales linearly with the number of samples and R uses specialized linear algebra libraries for such kind of computations. PCA is a rotation around the origin and there exist a forward and inverse mapping. % PCA may suffer from a scale problem, i.e.,\ when one variable dominates the variance simply because it is in a higher scale, to remedy this, the data can be scaled to zero mean and unit variance, depending on the use case, if this is necessary or desired. % Base R implements PCA in the functions \code{prcomp} and \code{princomp}; but several other implementations exist i.e., \BIOpkg{pcaMethods} from Bioconductor which implements versions of PCA that can deal with missing data. % The \pkg{dimRed} package wraps \code{prcomp}. \subsection{kPCA} \label{sec:kpca} Kernel Principal Component Analysis (kPCA) extends PCA to deal with nonlinear dependencies among variables. % The idea behind kPCA is to map the data into a high dimensional space using a possibly non-linear function $\phi$ and then to perform a PCA in this high dimensional space. % Some mathematical tricks are used for efficient computation. % If the columns of X are centered around $0$, then the principal components can also be computed from the inner product matrix $K = X^TX$. % Due to this way of calculating a PCA, we do not need to explicitly map all points into the high dimensional space and do the calculations there, it is enough to obtain the inner product matrix or kernel matrix $K \in \mathbb{R}^{n\times n}$ of the mapped points \citep{scholkopf_nonlinear_1998}. % Here is an example calculating the kernel matrix using a Gaussian kernel: \begin{equation}\label{eq:gauss} K = \phi(x_i)^T \phi(x_j) = \kappa(x_i, x_j) = \exp\left( -\frac{\| x_i- x_j\|^2}{2 \sigma^2} \right), \end{equation} where $\sigma$ is a length scale parameter accounting for the width of the kernel. % The other trick used is known as the ``representers theorem.'' The interested reader is referred to \citet{scholkopf_generalized_2001}. The kPCA method is very flexible and there exist many kernels for special purposes. The most common kernel function is the Gaussian kernel (Equation\ \ref{eq:gauss}). % The flexibility comes at the price that the method has to be finely tuned for the data set because some parameter combinations are simply unsuitable for certain data. % The method is not suitable for very large data sets, because memory scales with $\mathcal{O}(n^2)$ and computation time with $\mathcal{O}(n^3)$. % Diffusion Maps, Isomap, Locally Linear Embedding, and some other techniques can be seen as special cases of kPCA. In which case, an out-of-sample extension using the Nyström formula can be applied \citep{bengio_learning_2004}. % This can also yield applications for bigger data, where an embedding is trained with a sub-sample of all data and then the data is embedded using the Nyström formula. Kernel PCA in R is implemented in the \CRANpkg{kernlab} package using the function \code{kernlab::kpca}, and supports a number of kernels and user defined functions. For details see the help page for \code{kernlab::kpca}. The \pkg{dimRed} package wraps \code{kernlab::kpca} but additionally provides forward and inverse methods \citep{bakir_learning_2004} which can be used to fit out-of-sample data or to visualize the transformation of the data space. % \subsection{Classical Scaling} \label{sec:classscale} What today is called Classical Scaling was first introduced by \citet{torgerson_multidimensional_1952}. It uses an eigenvalue decomposition of a transformed distance matrix to find an embedding that maintains the distances of the distance matrix. % The method works because of the same reason that kPCA works, i.e.,\ classical scaling can be seen as a kPCA with kernel $x^Ty$. % A matrix of Euclidean distances can be transformed into an inner product matrix by some simple transformations and therefore yields the same result as a PCA\@. % Classical scaling is conceptually more general than PCA in that arbitrary distance matrices can be used, i.e.,\ the method does not even need the original coordinates, just a distance matrix $D$. % Then it tries to find an embedding $Y$ so that $\hat d_{ij}$ is as similar to $d_{ij}$ as possible. The disadvantage is that it is computationally much more demanding, i.e.,\ an eigenvalue decomposition of an $n\times n$ matrix has to be computed. This step requires $\mathcal{O}(n^2)$ memory and $\mathcal{O}(n^3)$ computation time, while PCA requires only the eigenvalue decomposition of a $d\times d$ matrix and usually $n \gg d$. % R implements classical scaling in the \code{cmdscale} function. % The \pkg{dimRed} package wraps \code{cmdscale} and allows the specification of arbitrary distance functions for calculating the distance matrix. Additionally a forward method is implemented. \subsection{Isomap} \label{sec:isomap} As Classical Scaling can deal with arbitrarily defined distances, \citet{tenenbaum_global_2000} suggested to approximate the structure of the manifold by using geodesic distances. % In practice, a graph is created by either keeping only the connections between every point and its $k$ nearest neighbors to produce a $k$-nearest neighbor graph ($k$-NNG), or simply by keeping all distances smaller than a value $\varepsilon$ producing an $\varepsilon$-neighborhood graph ($\varepsilon$-NNG). % Geodesic distances are obtained by recording the distance on the graph and classical scaling is used to find an embedding in fewer dimensions. This leads to an ``unfolding'' of possibly convoluted structures (see Figure~\ref{fig:knn}). Isomap's computational cost is dominated by the eigenvalue decomposition and therefore scales with $\mathcal{O}(n^3)$. % Other related techniques can use more efficient algorithms because the distance matrix becomes sparse due to a different preprocessing. In R, Isomap is implemented in the \CRANpkg{vegan} package. The \code{vegan::isomap} calculates an Isomap embedding and \code{vegan::isomapdist} calculates a geodesic distance matrix. % The \pkg{dimRed} package uses its own implementation. This implementation is faster mainly due to using a KD-tree for the nearest neighbor search (from the \CRANpkg{RANN} package) and to a faster implementation for the shortest path search in the $k$-NNG (from the \CRANpkg{igraph} package). % The implementation in \pkg{dimRed} also includes a forward method that can be used to train the embedding on a subset of data points and then use these points to approximate an embedding for the remaining points. This technique is generally referred to as landmark Isomap \citep{de_silva_sparse_2004}. % \subsection{Locally Linear Embedding} \label{sec:lle} Points that lie on a manifold in a high dimensional space can be reconstructed through linear combinations of their neighborhoods if the manifold is well sampled and the neighbohoods lie on a locally linear patch. % These reconstruction weights, $W$, are the same in the high dimensional space as the internal coordinates of the manifold. % Locally Linear Embedding \citep[LLE; ][]{roweis_nonlinear_2000} is a technique that constructs a weight matrix $W \in \mathbb{R}^{n\times n}$ with elements $w_{ij}$ so that \begin{equation} \sum_{i=1}^n \bigg\| x_i- \sum_{j=1}^{n} w_{ij}x_j \bigg\|^2\label{eq:lle} \end{equation} is minimized under the constraint that $w_{ij} = 0 $ if $x_j$ does not belong to the neighborhood and the constraint that $\sum_{j=1}^n w_{ij} = 1$. % Finally the embedding is made in such a way that the following cost function is minimized for $Y$, \begin{equation} \sum_{i=1}^n\bigg\| y_i - \sum_{j=1}^n w_{ij}y_j \bigg\|^2.\label{eq:lle2} \end{equation} This can be solved using an eigenvalue decomposition. Conceptually the method is similar to Isomap but it is computationally much nicer because the weight matrix is sparse and there exist efficient solvers. % In R, LLE is implemented by the package \CRANpkg{lle}, the embedding can be calculated with \code{lle::lle}. Unfortunately the implementation does not make use of the sparsity of the weight matrix $W$. % The manifold must be well sampled and the neighborhood size must be chosen appropriately for LLE to give good results. % \subsection{Laplacian Eigenmaps} \label{sec:laplaceigenmaps} Laplacian Eigenmaps were originally developed under the name spectral clustering to separate non-convex clusters. % Later it was also used for graph embedding and DR \citep{belkin_laplacian_2003}. % A number of variants have been proposed. % First, a graph is constructed, usually from a distance matrix, the graph can be made sparse by keeping only the $k$ nearest neighbors, or by specifying an $\varepsilon$ neighborhood. % Then, a similarity matrix $W$ is calculated by using a Gaussian kernel (see Equation \ref{eq:gauss}), if $c = 2 \sigma^2 = \infty$, then all distances are treated equally, the smaller $c$ the more emphasis is given to differences in distance. % The degree of vertex $i$ is $d_i = \sum_{j=1}^n w_{ij}$ and the degree matrix, $D$, is the diagonal matrix with entries $d_i$. % Then we can form the graph Laplacian $L = D - W$ and, then, there are several ways how to proceed, an overview can be found in \citet{luxburg_tutorial_2007}. % The \pkg{dimRed} package implements the algorithm from \citet{belkin_laplacian_2003}. Analogously to LLE, Laplacian eigenmaps avoid computational complexity by creating a sparse matrix and not having to estimate the distances between all pairs of points. % Then the eigenvectors corresponding to the lowest eigenvalues larger than $0$ of either the matrix $L$ or the normalized Laplacian $D^{-1/2}LD^{-1/2}$ are computed and form the embedding. \subsection{Diffusion Maps} \label{sec:isodiffmaplle} Diffusion Maps \citep{coifman_diffusion_2006} take a distance matrix as input and calculates the transition probability matrix $P$ of a diffusion process between the points to approximate the manifold. % Then the embedding is done by an eigenvalue decompositon of $P$ to calculate the coordinates of the embedding. % The algorithm for calculating Diffusion Maps shares some elements with the way Laplacian Eigenmaps are calculated. % Both algorithms depart from the same weight matrix, Diffusion Maps calculate the transition probability on the graph after $t$ time steps and do the embedding on this probability matrix. The idea is to simulate a diffusion process between the nodes of the graph, which is more robust to short-circuiting than the $k$-NNG from Isomap (see bottom right Figure \ref{fig:knn}). % Diffusion maps in R are accessible via the \code{diffusionMap::diffuse()} function, which is available in the \CRANpkg{diffusionMap} package. % Additional points can be approximated into an existing embedding using the Nyström formula \citep{bengio_learning_2004}. % The implementation in \pkg{dimRed} is based on the \code{diffusionMap::diffuse} function. % , which does not contain an % approximation for unequally sampled manifolds % \citep{coifman_geometric_2005}. % \subsection{non-Metric Dimensional Scaling} \label{sec:nmds} While Classical Scaling and derived methods (see section \nameref{sec:classscale}) use eigenvector decomposition to embed the data in such a way that the given distances are maintained, non-Metric Dimensional Scaling \citep[nMDS, ][]{kruskal_multidimensional_1964,kruskal_nonmetric_1964} uses optimization methods to reach the same goal. % Therefore a stress function, \begin{equation} \label{eq:stress} S = \sqrt{\frac{\sum_{i>= if(Sys.getenv("BNET_BUILD_VIGNETTE") != "") { library(dimRed); library(ggplot2); #library(dplyr); library(tidyr) ## define which methods to apply embed_methods <- c("Isomap", "PCA") ## load test data set data_set <- loadDataSet("3D S Curve", n = 1000) ## apply dimensionality reduction data_emb <- lapply(embed_methods, function(x) embed(data_set, x)) names(data_emb) <- embed_methods ## plot data set, embeddings, and quality analysis ## plot(data_set, type = "3vars") ## lapply(data_emb, plot, type = "2vars") ## plot_R_NX(data_emb) add_label <- function(label) grid::grid.text(label, 0.2, 1, hjust = 0, vjust = 1, gp = grid::gpar(fontface = "bold", cex = 1.5)) ## pdf('~/phd/text/dimRedPackage/plots/plot_example.pdf', width = 4, height = 4) ## plot the results plot(data_set, type = "3vars", angle = 15, mar = c(3, 3, 0, 0), box = FALSE, grid = FALSE, pch = 16) add_label("a") par(mar = c(4, 4, 0, 0) + 0.1, bty = "n", las = 1) plot(data_emb$Isomap, type = "2vars", pch = 16) add_label("b") plot(data_emb$PCA, type = "2vars", pch = 16) add_label("d") ## calculate quality scores print( plot_R_NX(data_emb) + theme(legend.title = element_blank(), legend.position = c(0.5, 0.1), legend.justification = c(0.5, 0.1)) ) add_label("c") } else { # These cannot all be plot(1:10)!!! It's a mistery to me. plot(1:10) barplot(1:10) hist(1:10) plot(1:10) } @ \includegraphics[page=1,width=.45\textwidth]{figure/pca_isomap_example-1.pdf} \includegraphics[page=1,width=.45\textwidth]{figure/pca_isomap_example-2.pdf} \includegraphics[page=1,width=.45\textwidth]{figure/pca_isomap_example-3.pdf} \includegraphics[page=1,width=.45\textwidth]{figure/pca_isomap_example-4.pdf} \caption[dimRed example]{% Comparing PCA and Isomap: % (a) An S-shaped manifold, colors represent the internal coordinates of the manifold. % (b) Isomap embedding, the S-shaped manifold is unfolded. % (c) $R_{NX}$ plotted agains neighborhood sizes, Isomap is much better at preserving local distances and PCA is better at preserving global Euclidean distances. % The numbers on the legend are the $\text{AUC}_{1 / K}$. (d) PCA projection of the data, the directions of maximum variance are preserved. % }\label{fig:plotexample} \end{figure} <>= ## define which methods to apply embed_methods <- c("Isomap", "PCA") ## load test data set data_set <- loadDataSet("3D S Curve", n = 1000) ## apply dimensionality reduction data_emb <- lapply(embed_methods, function(x) embed(data_set, x)) names(data_emb) <- embed_methods ## figure \ref{fig:plotexample}a, the data set plot(data_set, type = "3vars") ## figures \ref{fig:plotexample}b (Isomap) and \ref{fig:plotexample}d (PCA) lapply(data_emb, plot, type = "2vars") ## figure \ref{fig:plotexample}c, quality analysis plot_R_NX(data_emb) @ The function \code{plot\_R\_NX} produces a figure that plots the neighborhood size ($k$ at a log-scale) against the quality measure $\text{R}_{NX}(k)$ (see Equation \ref{eq:rnx}). % This gives an overview of the general behavior of methods: if $\text{R}_{NX}$ is high for low values of $K$, then local neighborhoods are maintained well; if $\text{R}_{NX}$ is high for large values of $K$, then global gradients are maintained well. % It also provides a way to directly compare methods by plotting more than one $\text{R}_{NX}$ curve and an overall quality of the embedding by taking the area under the curve as an indicator for the overall quality of the embedding (see fig~\ref{eq:auclnk}) which is shown as a number in the legend. Therefore we can see from Figure~\ref{fig:plotexample}c that $t$-SNE is very good a maintaining close and medium distances for the given data set, whereas PCA is only better at maintaining the very large distances. % The large distances are dominated by the overall bent shape of the S in 3D space, while the close distances are not affected by this bending. % This is reflected in the properties recovered by the different methods, the PCA embedding recovers the S-shape, while $t$-SNE ignores the S-shape and recovers the inner structure of the manifold. % Example 2: Often the quality of an embedding strongly depends on the choice of parameters, the interface of \pkg{dimRed} can be used to facilitate searching the parameter space. Isomap has one parameter $k$ which determines the number of neighbors used to construct the $k$-NNG\@. % If this number is too large, then Isomap will resemble an MDS (Figure~\ref{fig:knn} e), if the number is too small, the resulting embedding contains holes (Figure~\ref{fig:knn} c). % The following code finds the optimal value, $k_{\text{max}}$, for $k$ using the $Q_{\text{local}}$ criterion, the results are visualized in Figure~\ref{fig:knn} a: \begin{figure}[htp] \centering <>= if(Sys.getenv("BNET_BUILD_VIGNETTE") != "") { library(dimRed) library(cccd) ## Load data ss <- loadDataSet("3D S Curve", n = 500) ## Parameter space kk <- floor(seq(5, 100, length.out = 40)) ## Embedding over parameter space emb <- lapply(kk, function(x) embed(ss, "Isomap", knn = x)) ## Quality over embeddings qual <- sapply(emb, function(x) quality(x, "Q_local")) ## Find best value for K ind_max <- which.max(qual) k_max <- kk[ind_max] add_label <- function(label){ par(xpd = TRUE) b = par("usr") text(b[1], b[4], label, adj = c(0, 1), cex = 1.5, font = 2) par(xpd = FALSE) } names(qual) <- kk } @ <<"select_k",include=FALSE,fig.width=11,fig.height=5>>= if (Sys.getenv("BNET_BUILD_VIGNETTE") != "") { par(mfrow = c(1, 2), mar = c(5, 4, 0, 0) + 0.1, oma = c(0, 0, 0, 0)) plot(kk, qual, type = "l", xlab = "k", ylab = expression(Q[local]), bty = "n") abline(v = k_max, col = "red") add_label("a") plot(ss, type = "3vars", angle = 15, mar = c(3, 3, 0, 0), box = FALSE, grid = FALSE, pch = 16) add_label("b") } else { plot(1:10) plot(1:10) } @ <<"knngraphs",include=FALSE,fig.width=8,fig.height=3>>= if(Sys.getenv("BNET_BUILD_VIGNETTE") != "") { par(mfrow = c(1, 3), mar = c(5, 4, 0, 0) + 0.1, oma = c(0, 0, 0, 0)) add_knn_graph <- function(ind) { nn1 <- nng(ss@data, k = kk[ind]) el <- get.edgelist(nn1) segments(x0 = emb[[ind]]@data@data[el[, 1], 1], y0 = emb[[ind]]@data@data[el[, 1], 2], x1 = emb[[ind]]@data@data[el[, 2], 1], y1 = emb[[ind]]@data@data[el[, 2], 2], col = "#00000010") } plot(emb[[2]]@data@data, type = "n", bty = "n") add_knn_graph(2) points(emb[[2]]@data@data, col = dimRed:::colorize(ss@meta), pch = 16) add_label("c") plot(emb[[ind_max]]@data@data, type = "n", bty = "n") add_knn_graph(ind_max) points(emb[[ind_max]]@data@data, col = dimRed:::colorize(ss@meta), pch = 16) add_label("d") plot(emb[[length(emb)]]@data@data, type = "n", bty = "n") add_knn_graph(length(emb)) points(emb[[length(emb)]]@data@data, col = dimRed:::colorize(ss@meta), pch = 16) add_label("e") } else { plot(1:10) plot(1:10) plot(1:10) } @ \includegraphics[width=.95\textwidth]{figure/select_k-1.pdf} \includegraphics[width=.95\textwidth]{figure/knngraphs-1.pdf} \caption[estimating $k$ using @Q_\text{local}]{% Using \pkg{dimRed} and the $Q_\text{local}$ indicator to estimate a good value for the parameter $k$ in Isomap. % (a) $Q_\text{local}$ for different values of $k$, the vertical red line indicates the maximum $k_{\text{max}}$. % (b) The original data set, a 2 dimensional manifold bent in an S-shape in 3 dimensional space. % Bottom row: Embeddings and $k$-NNG for different values of $k$. % (c) When $k = 5$, the value for $k$ is too small resulting in holes in the embedding, the manifold itself is still unfolded correctly. % (d) Choose $k = k_\text{max}$, the best representation of the original manifold in two dimensions achievable with Isomap. % (e) $k = 100$, too large, the $k$-NNG does not approximate the manifold any more. % }\label{fig:knn} \end{figure} <>= ## Load data ss <- loadDataSet("3D S Curve", n = 500) ## Parameter space kk <- floor(seq(5, 100, length.out = 40)) ## Embedding over parameter space emb <- lapply(kk, function(x) embed(ss, "Isomap", knn = x)) ## Quality over embeddings qual <- sapply(emb, function(x) quality(x, "Q_local")) ## Find best value for K ind_max <- which.max(qual) k_max <- kk[ind_max] @ Figure~\ref{fig:knn}a shows how the $Q_{\text{local}}$ criterion changes when varying the neighborhood size $k$ for Isomap, the gray lines in Figure~\ref{fig:knn} represent the edges of the $k$-NN Graph. % If the value for $k$ is too low, the inner structure of the manifold will still be recovered, but it will be imperfect (Figure~\ref{fig:knn}c, note that the holes appear in places that are not covered by the edges of the $k$-NN Graph), therefore the $Q_{\text{local}}$ score is lower than optimal. % If $k$ is too large, the error of the embedding is much larger due to short circuiting and we observe a very steep drop in the $Q_{\text{local}}$ score. % The short circuiting can be observed in Figure~\ref{fig:knn}e with the edges that cross the gap between the tips and the center of the S-shape. % % Example 3: It is also very easy to compare across methods and quality scores. % The following code produces a matrix of quality scores and methods, where \code{dimRedMethodList} returns a character vector with all methods. A visualization of the matrix can be found in Figure~\ref{fig:qualityexample}. % \begin{figure}[htp] \centering <<"plot_quality",include=FALSE>>= if(Sys.getenv("BNET_BUILD_VIGNETTE") != "") { embed_methods <- dimRedMethodList() quality_methods <- c("Q_local", "Q_global", "AUC_lnK_R_NX", "cophenetic_correlation") iris_data <- loadDataSet("Iris") quality_results <- matrix( NA, length(embed_methods), length(quality_methods), dimnames = list(embed_methods, quality_methods) ) embedded_data <- list() for (e in embed_methods) { try(embedded_data[[e]] <- embed(iris_data, e)) for (q in quality_methods) try(quality_results[e,q] <- quality(embedded_data[[e]], q)) } quality_results <- quality_results[order(rowMeans(quality_results)), ] palette(c("#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e")) col_hsv <- rgb2hsv(col2rgb(palette())) ## col_hsv["v", ] <- col_hsv["v", ] * 3 / 1 palette(hsv(col_hsv["h", ], col_hsv["s", ], col_hsv["v", ])) par(mar = c(2, 8, 0, 0) + 0.1) barplot(t(quality_results), beside = TRUE, col = 1:4, legend.text = quality_methods, horiz = TRUE, las = 1, cex.names = 0.85, args.legend = list(x = "topleft", bg = "white", cex = 0.8)) } else { plot(1:10) } @ \includegraphics[width=.5\textwidth]{figure/plot_quality-1.pdf} \caption[Quality comparision]{% A visualization of the \code{quality\_results} matrix. % The methods are ordered by mean quality score. % The reconstruction error was omitted, because a higher value means a worse embedding, while in the present methods a higher score means a better embedding. % Parameters were not tuned for the example, therefore it should not be seen as a general quality assessment of the methods. % }\label{fig:qualityexample} \end{figure} <>= embed_methods <- dimRedMethodList() quality_methods <- c("Q_local", "Q_global", "AUC_lnK_R_NX", "cophenetic_correlation") scurve <- loadDataSet("3D S Curve", n = 2000) quality_results <- matrix( NA, length(embed_methods), length(quality_methods), dimnames = list(embed_methods, quality_methods) ) embedded_data <- list() for (e in embed_methods) { embedded_data[[e]] <- embed(scurve, e) for (q in quality_methods) { try(quality_results[e, q] <- quality(embedded_data[[e]], q)) } } @ This example showcases the simplicity with which different methods and quality criteria can be combined. % Because of the strong dependencies on parameters it is not advised to apply this kind of analysis without tuning the parameters for each method separately. % There is no automatized way to tune parameters in \pkg{dimRed}. % \section{Conclusion} \label{sec:conc} This paper presents the \pkg{dimRed} and \pkg{coRanking} packages and it provides a brief overview of the methods implemented therein. % The \pkg{dimRed} package is written in the R language, one of the most popular languages for data analysis. The package is freely available from CRAN. % The package is object oriented and completely open source and therefore easily available and extensible. % Although most of the DR methods already had implementations in R, \pkg{dimRed} adds some new methods for dimensionality reduction, and \pkg{coRanking} adds methods for an independent quality control of DR methods to the R ecosystem. % DR is a widely used technique. However, due to the lack of easily usable tools, choosing the right method for DR is complex and depends upon a variety of factors. % The \pkg{dimRed} package aims to facilitate experimentation with different techniques, parameters, and quality measures so that choosing the right method becomes easier. % The \pkg{dimRed} package wants to enable the user to objectively compare methods that rely on very different algorithmic approaches. % It makes the life of the programmer easier, because all methods are aggregated in one place and there is a single interface and standardized classes to access the functionality. % \section{Acknowledgments} \label{sec:ack} We thank Dr.\ G.\ Camps-Valls and an anonymous reviewer for many useful comments. % This study was supported by the European Space Agency (ESA) via the Earth System Data Lab project (\url{http://earthsystemdatacube.org}) and the EU via the H2020 project BACI, grant agreement No 640176. % \bibliographystyle{abbrvnat} \bibliography{bibliography} \end{document} dimRed/NAMESPACE0000644000176200001440000000436114744717566012726 0ustar liggesusers# Generated by roxygen2: do not edit by hand export(AUC_lnK_R_NX) export(DRR) export(DiffusionMaps) export(DrL) export(FastICA) export(FruchtermanReingold) export(HLLE) export(Isomap) export(KamadaKawai) export(LCMC) export(MDS) export(NNMF) export(PCA) export(PCA_L1) export(Q_NX) export(Q_global) export(Q_local) export(R_NX) export(UMAP) export(dataSetList) export(dimRedData) export(dimRedMethodList) export(dimRedQualityList) export(dimRedResult) export(distance_correlation) export(embed) export(getRotationMatrix) export(installSuggests) export(inverse) export(kPCA) export(loadDataSet) export(mean_R_NX) export(mixColor1Ramps) export(mixColor2Ramps) export(mixColor3Ramps) export(mixColorRamps) export(nMDS) export(plot) export(plot_R_NX) export(predict) export(quality) export(reconstruction_error) export(reconstruction_rmse) export(tSNE) export(total_correlation) exportClasses(DRR) exportClasses(DiffusionMaps) exportClasses(DrL) exportClasses(FastICA) exportClasses(FruchtermanReingold) exportClasses(HLLE) exportClasses(Isomap) exportClasses(KamadaKawai) exportClasses(MDS) exportClasses(NNMF) exportClasses(PCA) exportClasses(PCA_L1) exportClasses(UMAP) exportClasses(dimRedData) exportClasses(dimRedMethod) exportClasses(dimRedResult) exportClasses(kPCA) exportClasses(nMDS) exportClasses(tSNE) exportMethods("[") exportMethods(AUC_lnK_R_NX) exportMethods(LCMC) exportMethods(Q_NX) exportMethods(Q_global) exportMethods(Q_local) exportMethods(R_NX) exportMethods(as.data.frame) exportMethods(as.dimRedData) exportMethods(cophenetic_correlation) exportMethods(distance_correlation) exportMethods(embed) exportMethods(getData) exportMethods(getDimRedData) exportMethods(getMeta) exportMethods(getNDim) exportMethods(getOrgData) exportMethods(getOtherData) exportMethods(getPars) exportMethods(inverse) exportMethods(maximize_correlation) exportMethods(mean_R_NX) exportMethods(ndims) exportMethods(nrow) exportMethods(plot) exportMethods(predict) exportMethods(print) exportMethods(quality) exportMethods(reconstruction_error) exportMethods(reconstruction_rmse) exportMethods(total_correlation) import(DRR) import(methods) import(utils) importFrom(grDevices,colorRamp) importFrom(grDevices,rgb) importFrom(graphics,plot) importFrom(magrittr,"%>%") importFrom(stats,predict) dimRed/LICENSE0000644000176200001440000007674512772463050012514 0ustar liggesusersGNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright © 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. “This License†refers to version 3 of the GNU General Public License. “Copyright†also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. “The Program†refers to any copyrightable work licensed under this License. Each licensee is addressed as “youâ€. “Licensees†and “recipients†may be individuals or organizations. To “modify†a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a “modified version†of the earlier work or a work “based on†the earlier work. A “covered work†means either the unmodified Program or a work based on the Program. To “propagate†a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To “convey†a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays “Appropriate Legal Notices†to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The “source code†for a work means the preferred form of the work for making modifications to it. “Object code†means any non-source form of a work. A “Standard Interface†means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The “System Libraries†of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A “Major Componentâ€, in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The “Corresponding Source†for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to “keep intact all noticesâ€. c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate†if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A “User Product†is either (1) a “consumer productâ€, which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, “normally used†refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. “Installation Information†for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. “Additional permissions†are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered “further restrictions†within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An “entity transaction†is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A “contributor†is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's “contributor versionâ€. A contributor's “essential patent claims†are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, “control†includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a “patent license†is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To “grant†such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. “Knowingly relying†means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is “discriminatory†if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License “or any later version†applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS†WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16.Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.dimRed/NEWS.md0000644000176200001440000000143113464507204012560 0ustar liggesusers# dimRed 0.2.1 and 0.2.2 * Bugfix releases to pass CRAN tests # dimRed 0.2.0 * Added the R-Journal [paper](https://journal.r-project.org/archive/2018/RJ-2018-039/index.html "dimRed and coRanking") as Vignette * Added UMAP * Added NMF (thanks @topepo) * Added the possibility to return other data such as distance matrices/eigenvalues * Added Autoencoder * Added l1 PCA * Added `getNDim` * Added an `ndim` parameter to many quality functions. * fixed bug in kPCA if inverse was not computable. * added autoencoder # dimRed 0.1.0 * Fixed kPCA predict function and documentation typos (@topepo #2) * Added predict and inverse functions * Added a function to extract rotation matrices from PCA and FastICA # dimRed 0.0.3 * First version on CRAN dimRed/inst/0000755000176200001440000000000015001744211012426 5ustar liggesusersdimRed/inst/CITATION0000644000176200001440000000105614200237535013573 0ustar liggesusersbibentry(bibtype = "Article", author = c(person("Guido", "Kraemer"), person("Markus", "Reichstein"), person(c("Miguel", "D."), "Mahecha")), title = "{dimRed} and {coRanking}---Unifying Dimensionality Reduction in R", year = "2018", journal = "The R Journal", url = "https://journal.r-project.org/archive/2018/RJ-2018-039/index.html", pages = "342--358", volume = "10", number = "1", note = sprintf("coRanking version %s", meta$Version)) dimRed/inst/doc/0000755000176200001440000000000015001744211013173 5ustar liggesusersdimRed/inst/doc/dimensionality-reduction.R0000644000176200001440000001527415001744145020357 0ustar liggesusers## ----"pca_isomap_example",include=FALSE,fig.width=4,fig.height=4-------------- if(Sys.getenv("BNET_BUILD_VIGNETTE") != "") { library(dimRed); library(ggplot2); #library(dplyr); library(tidyr) ## define which methods to apply embed_methods <- c("Isomap", "PCA") ## load test data set data_set <- loadDataSet("3D S Curve", n = 1000) ## apply dimensionality reduction data_emb <- lapply(embed_methods, function(x) embed(data_set, x)) names(data_emb) <- embed_methods ## plot data set, embeddings, and quality analysis ## plot(data_set, type = "3vars") ## lapply(data_emb, plot, type = "2vars") ## plot_R_NX(data_emb) add_label <- function(label) grid::grid.text(label, 0.2, 1, hjust = 0, vjust = 1, gp = grid::gpar(fontface = "bold", cex = 1.5)) ## pdf('~/phd/text/dimRedPackage/plots/plot_example.pdf', width = 4, height = 4) ## plot the results plot(data_set, type = "3vars", angle = 15, mar = c(3, 3, 0, 0), box = FALSE, grid = FALSE, pch = 16) add_label("a") par(mar = c(4, 4, 0, 0) + 0.1, bty = "n", las = 1) plot(data_emb$Isomap, type = "2vars", pch = 16) add_label("b") plot(data_emb$PCA, type = "2vars", pch = 16) add_label("d") ## calculate quality scores print( plot_R_NX(data_emb) + theme(legend.title = element_blank(), legend.position = c(0.5, 0.1), legend.justification = c(0.5, 0.1)) ) add_label("c") } else { # These cannot all be plot(1:10)!!! It's a mistery to me. plot(1:10) barplot(1:10) hist(1:10) plot(1:10) } ## ----eval=FALSE--------------------------------------------------------------- # ## define which methods to apply # embed_methods <- c("Isomap", "PCA") # ## load test data set # data_set <- loadDataSet("3D S Curve", n = 1000) # ## apply dimensionality reduction # data_emb <- lapply(embed_methods, function(x) embed(data_set, x)) # names(data_emb) <- embed_methods # ## figure \ref{fig:plotexample}a, the data set # plot(data_set, type = "3vars") # ## figures \ref{fig:plotexample}b (Isomap) and \ref{fig:plotexample}d (PCA) # lapply(data_emb, plot, type = "2vars") # ## figure \ref{fig:plotexample}c, quality analysis # plot_R_NX(data_emb) ## ----include=FALSE------------------------------------------------------------ if(Sys.getenv("BNET_BUILD_VIGNETTE") != "") { library(dimRed) library(cccd) ## Load data ss <- loadDataSet("3D S Curve", n = 500) ## Parameter space kk <- floor(seq(5, 100, length.out = 40)) ## Embedding over parameter space emb <- lapply(kk, function(x) embed(ss, "Isomap", knn = x)) ## Quality over embeddings qual <- sapply(emb, function(x) quality(x, "Q_local")) ## Find best value for K ind_max <- which.max(qual) k_max <- kk[ind_max] add_label <- function(label){ par(xpd = TRUE) b = par("usr") text(b[1], b[4], label, adj = c(0, 1), cex = 1.5, font = 2) par(xpd = FALSE) } names(qual) <- kk } ## ----"select_k",include=FALSE,fig.width=11,fig.height=5----------------------- if (Sys.getenv("BNET_BUILD_VIGNETTE") != "") { par(mfrow = c(1, 2), mar = c(5, 4, 0, 0) + 0.1, oma = c(0, 0, 0, 0)) plot(kk, qual, type = "l", xlab = "k", ylab = expression(Q[local]), bty = "n") abline(v = k_max, col = "red") add_label("a") plot(ss, type = "3vars", angle = 15, mar = c(3, 3, 0, 0), box = FALSE, grid = FALSE, pch = 16) add_label("b") } else { plot(1:10) plot(1:10) } ## ----"knngraphs",include=FALSE,fig.width=8,fig.height=3----------------------- if(Sys.getenv("BNET_BUILD_VIGNETTE") != "") { par(mfrow = c(1, 3), mar = c(5, 4, 0, 0) + 0.1, oma = c(0, 0, 0, 0)) add_knn_graph <- function(ind) { nn1 <- nng(ss@data, k = kk[ind]) el <- get.edgelist(nn1) segments(x0 = emb[[ind]]@data@data[el[, 1], 1], y0 = emb[[ind]]@data@data[el[, 1], 2], x1 = emb[[ind]]@data@data[el[, 2], 1], y1 = emb[[ind]]@data@data[el[, 2], 2], col = "#00000010") } plot(emb[[2]]@data@data, type = "n", bty = "n") add_knn_graph(2) points(emb[[2]]@data@data, col = dimRed:::colorize(ss@meta), pch = 16) add_label("c") plot(emb[[ind_max]]@data@data, type = "n", bty = "n") add_knn_graph(ind_max) points(emb[[ind_max]]@data@data, col = dimRed:::colorize(ss@meta), pch = 16) add_label("d") plot(emb[[length(emb)]]@data@data, type = "n", bty = "n") add_knn_graph(length(emb)) points(emb[[length(emb)]]@data@data, col = dimRed:::colorize(ss@meta), pch = 16) add_label("e") } else { plot(1:10) plot(1:10) plot(1:10) } ## ----eval=FALSE--------------------------------------------------------------- # ## Load data # ss <- loadDataSet("3D S Curve", n = 500) # ## Parameter space # kk <- floor(seq(5, 100, length.out = 40)) # ## Embedding over parameter space # emb <- lapply(kk, function(x) embed(ss, "Isomap", knn = x)) # ## Quality over embeddings # qual <- sapply(emb, function(x) quality(x, "Q_local")) # ## Find best value for K # ind_max <- which.max(qual) # k_max <- kk[ind_max] ## ----"plot_quality",include=FALSE--------------------------------------------- if(Sys.getenv("BNET_BUILD_VIGNETTE") != "") { embed_methods <- dimRedMethodList() quality_methods <- c("Q_local", "Q_global", "AUC_lnK_R_NX", "cophenetic_correlation") iris_data <- loadDataSet("Iris") quality_results <- matrix( NA, length(embed_methods), length(quality_methods), dimnames = list(embed_methods, quality_methods) ) embedded_data <- list() for (e in embed_methods) { try(embedded_data[[e]] <- embed(iris_data, e)) for (q in quality_methods) try(quality_results[e,q] <- quality(embedded_data[[e]], q)) } quality_results <- quality_results[order(rowMeans(quality_results)), ] palette(c("#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e")) col_hsv <- rgb2hsv(col2rgb(palette())) ## col_hsv["v", ] <- col_hsv["v", ] * 3 / 1 palette(hsv(col_hsv["h", ], col_hsv["s", ], col_hsv["v", ])) par(mar = c(2, 8, 0, 0) + 0.1) barplot(t(quality_results), beside = TRUE, col = 1:4, legend.text = quality_methods, horiz = TRUE, las = 1, cex.names = 0.85, args.legend = list(x = "topleft", bg = "white", cex = 0.8)) } else { plot(1:10) } ## ----eval=FALSE--------------------------------------------------------------- # embed_methods <- dimRedMethodList() # quality_methods <- c("Q_local", "Q_global", "AUC_lnK_R_NX", # "cophenetic_correlation") # scurve <- loadDataSet("3D S Curve", n = 2000) # quality_results <- matrix( # NA, length(embed_methods), length(quality_methods), # dimnames = list(embed_methods, quality_methods) # ) # # embedded_data <- list() # for (e in embed_methods) { # embedded_data[[e]] <- embed(scurve, e) # for (q in quality_methods) { # try(quality_results[e, q] <- quality(embedded_data[[e]], q)) # } # } dimRed/inst/doc/dimensionality-reduction.Rnw0000644000176200001440000017406114716102405020723 0ustar liggesusers\documentclass{article} %\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{Dimensionality Reduction} %\VignetteKeyword{Dimensionality Reduction} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{hyperref} \usepackage{amsmath,amssymb} \usepackage{booktabs} \usepackage{tikz} \usetikzlibrary{trees} \usepackage[sectionbib,round]{natbib} \title{\pkg{dimRed} and \pkg{coRanking}---Unifying Dimensionality Reduction in R} \author{Guido Kraemer \and Markus Reichstein \and Miguel D.\ Mahecha} % these are taken from RJournal.sty: \makeatletter \DeclareRobustCommand\code{\bgroup\@noligs\@codex} \def\@codex#1{\texorpdfstring% {{\normalfont\ttfamily\hyphenchar\font=-1 #1}}% {#1}\egroup} \newcommand{\kbd}[1]{{\normalfont\texttt{#1}}} \newcommand{\key}[1]{{\normalfont\texttt{\uppercase{#1}}}} \DeclareRobustCommand\samp{`\bgroup\@noligs\@sampx} \def\@sampx#1{{\normalfont\texttt{#1}}\egroup'} \newcommand{\var}[1]{{\normalfont\textsl{#1}}} \let\env=\code \newcommand{\file}[1]{{`\normalfont\textsf{#1}'}} \let\command=\code \let\option=\samp \newcommand{\dfn}[1]{{\normalfont\textsl{#1}}} % \acronym is effectively disabled since not used consistently \newcommand{\acronym}[1]{#1} \newcommand{\strong}[1]{\texorpdfstring% {{\normalfont\fontseries{b}\selectfont #1}}% {#1}} \let\pkg=\strong \newcommand{\CRANpkg}[1]{\href{https://CRAN.R-project.org/package=#1}{\pkg{#1}}}% \let\cpkg=\CRANpkg \newcommand{\ctv}[1]{\href{https://CRAN.R-project.org/view=#1}{\emph{#1}}} \newcommand{\BIOpkg}[1]{\href{https://www.bioconductor.org/packages/release/bioc/html/#1.html}{\pkg{#1}}} \makeatother \begin{document} \maketitle \abstract{ % This document is based on the manuscript of \citet{kraemer_dimred_2018} which was published in the R-Journal and has been modified and extended to fit the format of a package vignette and to match the extended functionality of the \pkg{dimRed} package. ``Dimensionality reduction'' (DR) is a widely used approach to find low dimensional and interpretable representations of data that are natively embedded in high-dimensional spaces. % DR can be realized by a plethora of methods with different properties, objectives, and, hence, (dis)advantages. The resulting low-dimensional data embeddings are often difficult to compare with objective criteria. % Here, we introduce the \CRANpkg{dimRed} and \CRANpkg{coRanking} packages for the R language. % These open source software packages enable users to easily access multiple classical and advanced DR methods using a common interface. % The packages also provide quality indicators for the embeddings and easy visualization of high dimensional data. % The \pkg{coRanking} package provides the functionality for assessing DR methods in the co-ranking matrix framework. % In tandem, these packages allow for uncovering complex structures high dimensional data. % Currently 15 DR methods are available in the package, some of which were not previously available to R users. % Here, we outline the \pkg{dimRed} and \pkg{coRanking} packages and make the implemented methods understandable to the interested reader. % } \section{Introduction} \label{sec:intro} Dimensionality Reduction (DR) essentially aims to find low dimensional representations of data while preserving their key properties. % Many methods exist in literature, optimizing different criteria: % maximizing the variance or the statistical independence of the projected data, % minimizing the reconstruction error under different constraints, % or optimizing for different error metrics, % just to name a few. % Choosing an inadequate method may imply that much of the underlying structure remains undiscovered. % Often the structures of interest in a data set can be well represented by fewer dimensions than exist in the original data. % Data compression of this kind has the additional benefit of making the encoded information better conceivable to our brains for further analysis tasks like classification or regression problems. % For example, the morphology of a plant's leaves, stems, and seeds reflect the environmental conditions the species usually grow in (e.g.,\ plants with large soft leaves will never grow in a desert but might have an advantage in a humid and shadowy environment). % Because the morphology of the entire plant depends on the environment, many morphological combinations will never occur in nature and the morphological space of all plant species is tightly constrained. % \citet{diaz_global_2016} found that out of six observed morphological characteristics only two embedding dimensions were enough to represent three quarters of the totally observed variability. % DR is a widely used approach for the detection of structure in multivariate data, and has applications in a variety of fields. % In climatology, DR is used to find the modes of some phenomenon, e.g.,\ the first Empirical Orthogonal Function of monthly mean sea surface temperature of a given region over the Pacific is often linked to the El Ni\~no Southern Oscillation or ENSO \citep[e.g.,\ ][]{hsieh_nonlinear_2004}. % In ecology the comparison of sites with different species abundances is a classical multivariate problem: each observed species adds an extra dimension, and because species are often bound to certain habitats, there is a lot of redundant information. Using DR is a popular technique to represent the sites in few dimensions, e.g.,\ \citet{aart_distribution_1972} matches wolfspider communities to habitat and \citet{morrall_soil_1974} match soil fungi data to soil types. (In ecology the general name for DR is ordination or indirect gradient analysis.) % Today, hyperspectral satellite imagery collects so many bands that it is very difficult to analyze and interpret the data directly. % Resuming the data into a set of few, yet independent, components is one way to reduce complexity \citep[e.g.,\ see][]{laparra_dimensionality_2015}. % DR can also be used to visualize the interiors of deep neural networks \citep[e.g.,\ see ][]{han_deep_2016}, where the high dimensionality comes from the large number of weights used in a neural network and convergence can be visualized by means of DR\@. % We could find many more example applications here but this is not the main focus of this publication. % The difficulty in applying DR is that each DR method is designed to maintain certain aspects of the original data and therefore may be appropriate for one task and inappropriate for another. % Most methods also have parameters to tune and follow different assumptions. The quality of the outcome may strongly depend on their tuning, which adds additional complexity. % DR methods can be modeled after physical models with attracting and repelling forces (Force Directed Methods), projections onto low dimensional planes (PCA, ICA), divergence of statistical distributions (SNE family), or the reconstruction of local spaces or points by their neighbors (LLE). % As an example for how changing internal parameters of a method can have a great impact, the breakthrough for Stochastic Neighborhood Embedding (SNE) methods came when a Student's $t$-distribution was used instead of a normal distribution to model probabilities in low dimensional space to avoid the ``crowding problem'', that is,\ a sphere in high dimensional space has a much larger volume than in low dimensional space and may contain too many points to be represented accurately in few dimensions. % The $t$-distribution, allows medium distances to be accurately represented in few dimensions by larger distances due to its heavier tails. % The result is called in $t$-SNE and is especially good at preserving local structures in very few dimensions, this feature made $t$-SNE useful for a wide array of data visualization tasks and the method became much more popular than standard SNE (around six times more citations of \citet{van_der_maaten_visualizing_2008} compared to \citet{hinton_stochastic_2003} in Scopus \citep{noauthor_scopus_nodate}). % There are a number of software packages for other languages providing collections of methods: In Python there is scikit-learn \citep{scikit-learn}, which contains a module for DR. In Julia we currently find ManifoldLearning.jl for nonlinear and MultivariateStats.jl for linear DR methods. % There are several toolboxes for DR implemented in Matlab \citep{van_der_maaten_dimensionality_2009, arenas-garcia_kernel_2013}. The Shogun toolbox \citep{soeren_sonnenburg_2017_1067840} implements a variety of methods for dimensionality reduction in C++ and offers bindings for a many common high level languages (including R, but the installation is anything but simple, as there is no CRAN package). % However, there is no comprehensive package for R and none of the former mentioned software packages provides means to consistently compare the quality of different methods for DR. % For many applications it can be difficult to objectively find the right method or parameterization for the DR task. % This paper presents the \pkg{dimRed} and \pkg{coRanking} packages for the popular programming language R. Together, they provide a standardized interface to various dimensionality reduction methods and quality metrics for embeddings. They are implemented using the S4 class system of R, making the packages both easy to use and to extend. The design goal for these packages is to enable researchers, who may not necessarily be experts in DR, to apply the methods in their own work and to objectively identify the most suitable methods for their data. % This paper provides an overview of the methods collected in the packages and contains examples as to how to use the packages. % The notation in this paper will be as follows: $X = [x_i]_{1\leq i \leq n}^T \in \mathbb{R}^{n\times p}$, and the observations $x_i \in \mathbb{R}^p$. % These observations may be transformed prior to the dimensionality reduction step (e.g.,\ centering and/or standardization) resulting in $X' = [x'_i]_{1\leq i \leq n}^T \in \mathbb{R}^{n\times p}$. % A DR method then embeds each vector in $X'$ onto a vector in $Y = [y_i]_{1\leq i \leq n}^T \in \mathbb{R}^{n\times q}$ with $y_i \in \mathbb{R}^q$, ideally with $q \ll p$. % Some methods provide an explicit mapping $f(x'_i) = y_i$. Some even offer an inverse mapping $f^{-1}(y_{i}) = \hat x'_{i}$, such that one can reconstruct a (usually approximate) sample from the low-dimensional representation. % For some methods, pairwise distances between points are needed, we set $d_{ij} = d(x_{i}, x_{j})$ and $\hat{d}_{ij} = d(y_i, y_j)$, where $d$ is some appropriate distance function. When referring to \code{functions} in the \pkg{dimRed} package or base R simply the function name is mentioned, functions from other packages are referenced with their namespace, as with \code{package::function}. \begin{figure}[htbp] \centering \input{classification_tree.tex} \caption{% Classification of dimensionality reduction methods. Methods in bold face are implemented in \pkg{dimRed}. Modified from \citet{van_der_maaten_dimensionality_2009}. }\label{fig:classification} \end{figure} \section{Dimensionality Reduction Methods} \label{sec:dimredtec} In the following section we do not aim for an exhaustive explanation to every method in \pkg{dimRed} but rather to provide a general idea on how the methods work. % An overview and classification of the most commonly used DR methods can be found in Figure~\ref{fig:classification}. In all methods, parameters have to be optimized or decisions have to be made, even if it is just about the preprocessing steps of data. % The \pkg{dimRed} package tries to make the optimization process for parameters as easy as possible, but, if possible, the parameter space should be narrowed down using prior knowledge. % Often decisions can be made based on theoretical knowledge. For example,\ sometimes an analysis requires data to be kept in their original scales and sometimes this is exactly what has to be avoided as when comparing different physical units. % Sometimes decisions based on the experience of others can be made, e.g.,\ the Gaussian kernel is probably the most universal kernel and therefore should be tested first if there is a choice. % All methods presented here have the embedding dimensionality, $q$, as a parameter (or \code{ndim} as a parameter for \code{embed}). % For methods based on eigenvector decomposition, the result generally does not depend on the number of dimensions, i.e.,\ the first dimension will be the same, no matter if we decide to calculate only two dimensions or more. % If more dimensions are added, more information is maintained, the first dimension is the most important and higher dimensions are successively less important. % This means, that a method based on eigenvalue decomposition only has to be run once if one wishes to compare the embedding in different dimensions. % In optimization based methods this is generally not the case, the number of dimensions has to be chosen a priori, an embedding of 2 and 3 dimensions may vary significantly, and there is no ordered importance of dimensions. % This means that comparing dimensions of optimization-based methods is computationally much more expensive. % We try to give the computational complexity of the methods. Because of the actual implementation, computation times may differ largely. % R is an interpreted language, so all parts of an algorithm that are implemented in R often will tend to be slow compared to methods that call efficient implementations in a compiled language. % Methods where most of the computing time is spent for eigenvalue decomposition do have very efficient implementations as R uses optimized linear algebra libraries. Although, eigenvalue decomposition itself does not scale very well in naive implementations ($\mathcal{O}(n^3)$). \subsection{PCA} \label{sec:pca} Principal Component Analysis (PCA) is the most basic technique for reducing dimensions. It dates back to \citet{pearson_lines_1901}. PCA finds a linear projection ($U$) of the high dimensional space into a low dimensional space $Y = XU$, maintaining maximum variance of the data. It is based on solving the following eigenvalue problem: \begin{equation} (C_{XX}-\lambda_k I)u_k=0\label{eq:pca} \end{equation} where $C_{XX} = \frac 1 n X^TX$ is the covariance matrix, $\lambda_k$ and $u_k$ are the $k$-th eigenvalue and eigenvector, and $I$ is the identity matrix. % The equation has several solutions for different values of $\lambda_k$ (leaving aside the trivial solution $u_k = 0$). % PCA can be efficiently applied to large data sets, because it computationally scales as $\mathcal{O}(np^2 + p^3)$, that is, it scales linearly with the number of samples and R uses specialized linear algebra libraries for such kind of computations. PCA is a rotation around the origin and there exist a forward and inverse mapping. % PCA may suffer from a scale problem, i.e.,\ when one variable dominates the variance simply because it is in a higher scale, to remedy this, the data can be scaled to zero mean and unit variance, depending on the use case, if this is necessary or desired. % Base R implements PCA in the functions \code{prcomp} and \code{princomp}; but several other implementations exist i.e., \BIOpkg{pcaMethods} from Bioconductor which implements versions of PCA that can deal with missing data. % The \pkg{dimRed} package wraps \code{prcomp}. \subsection{kPCA} \label{sec:kpca} Kernel Principal Component Analysis (kPCA) extends PCA to deal with nonlinear dependencies among variables. % The idea behind kPCA is to map the data into a high dimensional space using a possibly non-linear function $\phi$ and then to perform a PCA in this high dimensional space. % Some mathematical tricks are used for efficient computation. % If the columns of X are centered around $0$, then the principal components can also be computed from the inner product matrix $K = X^TX$. % Due to this way of calculating a PCA, we do not need to explicitly map all points into the high dimensional space and do the calculations there, it is enough to obtain the inner product matrix or kernel matrix $K \in \mathbb{R}^{n\times n}$ of the mapped points \citep{scholkopf_nonlinear_1998}. % Here is an example calculating the kernel matrix using a Gaussian kernel: \begin{equation}\label{eq:gauss} K = \phi(x_i)^T \phi(x_j) = \kappa(x_i, x_j) = \exp\left( -\frac{\| x_i- x_j\|^2}{2 \sigma^2} \right), \end{equation} where $\sigma$ is a length scale parameter accounting for the width of the kernel. % The other trick used is known as the ``representers theorem.'' The interested reader is referred to \citet{scholkopf_generalized_2001}. The kPCA method is very flexible and there exist many kernels for special purposes. The most common kernel function is the Gaussian kernel (Equation\ \ref{eq:gauss}). % The flexibility comes at the price that the method has to be finely tuned for the data set because some parameter combinations are simply unsuitable for certain data. % The method is not suitable for very large data sets, because memory scales with $\mathcal{O}(n^2)$ and computation time with $\mathcal{O}(n^3)$. % Diffusion Maps, Isomap, Locally Linear Embedding, and some other techniques can be seen as special cases of kPCA. In which case, an out-of-sample extension using the Nyström formula can be applied \citep{bengio_learning_2004}. % This can also yield applications for bigger data, where an embedding is trained with a sub-sample of all data and then the data is embedded using the Nyström formula. Kernel PCA in R is implemented in the \CRANpkg{kernlab} package using the function \code{kernlab::kpca}, and supports a number of kernels and user defined functions. For details see the help page for \code{kernlab::kpca}. The \pkg{dimRed} package wraps \code{kernlab::kpca} but additionally provides forward and inverse methods \citep{bakir_learning_2004} which can be used to fit out-of-sample data or to visualize the transformation of the data space. % \subsection{Classical Scaling} \label{sec:classscale} What today is called Classical Scaling was first introduced by \citet{torgerson_multidimensional_1952}. It uses an eigenvalue decomposition of a transformed distance matrix to find an embedding that maintains the distances of the distance matrix. % The method works because of the same reason that kPCA works, i.e.,\ classical scaling can be seen as a kPCA with kernel $x^Ty$. % A matrix of Euclidean distances can be transformed into an inner product matrix by some simple transformations and therefore yields the same result as a PCA\@. % Classical scaling is conceptually more general than PCA in that arbitrary distance matrices can be used, i.e.,\ the method does not even need the original coordinates, just a distance matrix $D$. % Then it tries to find an embedding $Y$ so that $\hat d_{ij}$ is as similar to $d_{ij}$ as possible. The disadvantage is that it is computationally much more demanding, i.e.,\ an eigenvalue decomposition of an $n\times n$ matrix has to be computed. This step requires $\mathcal{O}(n^2)$ memory and $\mathcal{O}(n^3)$ computation time, while PCA requires only the eigenvalue decomposition of a $d\times d$ matrix and usually $n \gg d$. % R implements classical scaling in the \code{cmdscale} function. % The \pkg{dimRed} package wraps \code{cmdscale} and allows the specification of arbitrary distance functions for calculating the distance matrix. Additionally a forward method is implemented. \subsection{Isomap} \label{sec:isomap} As Classical Scaling can deal with arbitrarily defined distances, \citet{tenenbaum_global_2000} suggested to approximate the structure of the manifold by using geodesic distances. % In practice, a graph is created by either keeping only the connections between every point and its $k$ nearest neighbors to produce a $k$-nearest neighbor graph ($k$-NNG), or simply by keeping all distances smaller than a value $\varepsilon$ producing an $\varepsilon$-neighborhood graph ($\varepsilon$-NNG). % Geodesic distances are obtained by recording the distance on the graph and classical scaling is used to find an embedding in fewer dimensions. This leads to an ``unfolding'' of possibly convoluted structures (see Figure~\ref{fig:knn}). Isomap's computational cost is dominated by the eigenvalue decomposition and therefore scales with $\mathcal{O}(n^3)$. % Other related techniques can use more efficient algorithms because the distance matrix becomes sparse due to a different preprocessing. In R, Isomap is implemented in the \CRANpkg{vegan} package. The \code{vegan::isomap} calculates an Isomap embedding and \code{vegan::isomapdist} calculates a geodesic distance matrix. % The \pkg{dimRed} package uses its own implementation. This implementation is faster mainly due to using a KD-tree for the nearest neighbor search (from the \CRANpkg{RANN} package) and to a faster implementation for the shortest path search in the $k$-NNG (from the \CRANpkg{igraph} package). % The implementation in \pkg{dimRed} also includes a forward method that can be used to train the embedding on a subset of data points and then use these points to approximate an embedding for the remaining points. This technique is generally referred to as landmark Isomap \citep{de_silva_sparse_2004}. % \subsection{Locally Linear Embedding} \label{sec:lle} Points that lie on a manifold in a high dimensional space can be reconstructed through linear combinations of their neighborhoods if the manifold is well sampled and the neighbohoods lie on a locally linear patch. % These reconstruction weights, $W$, are the same in the high dimensional space as the internal coordinates of the manifold. % Locally Linear Embedding \citep[LLE; ][]{roweis_nonlinear_2000} is a technique that constructs a weight matrix $W \in \mathbb{R}^{n\times n}$ with elements $w_{ij}$ so that \begin{equation} \sum_{i=1}^n \bigg\| x_i- \sum_{j=1}^{n} w_{ij}x_j \bigg\|^2\label{eq:lle} \end{equation} is minimized under the constraint that $w_{ij} = 0 $ if $x_j$ does not belong to the neighborhood and the constraint that $\sum_{j=1}^n w_{ij} = 1$. % Finally the embedding is made in such a way that the following cost function is minimized for $Y$, \begin{equation} \sum_{i=1}^n\bigg\| y_i - \sum_{j=1}^n w_{ij}y_j \bigg\|^2.\label{eq:lle2} \end{equation} This can be solved using an eigenvalue decomposition. Conceptually the method is similar to Isomap but it is computationally much nicer because the weight matrix is sparse and there exist efficient solvers. % In R, LLE is implemented by the package \CRANpkg{lle}, the embedding can be calculated with \code{lle::lle}. Unfortunately the implementation does not make use of the sparsity of the weight matrix $W$. % The manifold must be well sampled and the neighborhood size must be chosen appropriately for LLE to give good results. % \subsection{Laplacian Eigenmaps} \label{sec:laplaceigenmaps} Laplacian Eigenmaps were originally developed under the name spectral clustering to separate non-convex clusters. % Later it was also used for graph embedding and DR \citep{belkin_laplacian_2003}. % A number of variants have been proposed. % First, a graph is constructed, usually from a distance matrix, the graph can be made sparse by keeping only the $k$ nearest neighbors, or by specifying an $\varepsilon$ neighborhood. % Then, a similarity matrix $W$ is calculated by using a Gaussian kernel (see Equation \ref{eq:gauss}), if $c = 2 \sigma^2 = \infty$, then all distances are treated equally, the smaller $c$ the more emphasis is given to differences in distance. % The degree of vertex $i$ is $d_i = \sum_{j=1}^n w_{ij}$ and the degree matrix, $D$, is the diagonal matrix with entries $d_i$. % Then we can form the graph Laplacian $L = D - W$ and, then, there are several ways how to proceed, an overview can be found in \citet{luxburg_tutorial_2007}. % The \pkg{dimRed} package implements the algorithm from \citet{belkin_laplacian_2003}. Analogously to LLE, Laplacian eigenmaps avoid computational complexity by creating a sparse matrix and not having to estimate the distances between all pairs of points. % Then the eigenvectors corresponding to the lowest eigenvalues larger than $0$ of either the matrix $L$ or the normalized Laplacian $D^{-1/2}LD^{-1/2}$ are computed and form the embedding. \subsection{Diffusion Maps} \label{sec:isodiffmaplle} Diffusion Maps \citep{coifman_diffusion_2006} take a distance matrix as input and calculates the transition probability matrix $P$ of a diffusion process between the points to approximate the manifold. % Then the embedding is done by an eigenvalue decompositon of $P$ to calculate the coordinates of the embedding. % The algorithm for calculating Diffusion Maps shares some elements with the way Laplacian Eigenmaps are calculated. % Both algorithms depart from the same weight matrix, Diffusion Maps calculate the transition probability on the graph after $t$ time steps and do the embedding on this probability matrix. The idea is to simulate a diffusion process between the nodes of the graph, which is more robust to short-circuiting than the $k$-NNG from Isomap (see bottom right Figure \ref{fig:knn}). % Diffusion maps in R are accessible via the \code{diffusionMap::diffuse()} function, which is available in the \CRANpkg{diffusionMap} package. % Additional points can be approximated into an existing embedding using the Nyström formula \citep{bengio_learning_2004}. % The implementation in \pkg{dimRed} is based on the \code{diffusionMap::diffuse} function. % , which does not contain an % approximation for unequally sampled manifolds % \citep{coifman_geometric_2005}. % \subsection{non-Metric Dimensional Scaling} \label{sec:nmds} While Classical Scaling and derived methods (see section \nameref{sec:classscale}) use eigenvector decomposition to embed the data in such a way that the given distances are maintained, non-Metric Dimensional Scaling \citep[nMDS, ][]{kruskal_multidimensional_1964,kruskal_nonmetric_1964} uses optimization methods to reach the same goal. % Therefore a stress function, \begin{equation} \label{eq:stress} S = \sqrt{\frac{\sum_{i>= if(Sys.getenv("BNET_BUILD_VIGNETTE") != "") { library(dimRed); library(ggplot2); #library(dplyr); library(tidyr) ## define which methods to apply embed_methods <- c("Isomap", "PCA") ## load test data set data_set <- loadDataSet("3D S Curve", n = 1000) ## apply dimensionality reduction data_emb <- lapply(embed_methods, function(x) embed(data_set, x)) names(data_emb) <- embed_methods ## plot data set, embeddings, and quality analysis ## plot(data_set, type = "3vars") ## lapply(data_emb, plot, type = "2vars") ## plot_R_NX(data_emb) add_label <- function(label) grid::grid.text(label, 0.2, 1, hjust = 0, vjust = 1, gp = grid::gpar(fontface = "bold", cex = 1.5)) ## pdf('~/phd/text/dimRedPackage/plots/plot_example.pdf', width = 4, height = 4) ## plot the results plot(data_set, type = "3vars", angle = 15, mar = c(3, 3, 0, 0), box = FALSE, grid = FALSE, pch = 16) add_label("a") par(mar = c(4, 4, 0, 0) + 0.1, bty = "n", las = 1) plot(data_emb$Isomap, type = "2vars", pch = 16) add_label("b") plot(data_emb$PCA, type = "2vars", pch = 16) add_label("d") ## calculate quality scores print( plot_R_NX(data_emb) + theme(legend.title = element_blank(), legend.position = c(0.5, 0.1), legend.justification = c(0.5, 0.1)) ) add_label("c") } else { # These cannot all be plot(1:10)!!! It's a mistery to me. plot(1:10) barplot(1:10) hist(1:10) plot(1:10) } @ \includegraphics[page=1,width=.45\textwidth]{figure/pca_isomap_example-1.pdf} \includegraphics[page=1,width=.45\textwidth]{figure/pca_isomap_example-2.pdf} \includegraphics[page=1,width=.45\textwidth]{figure/pca_isomap_example-3.pdf} \includegraphics[page=1,width=.45\textwidth]{figure/pca_isomap_example-4.pdf} \caption[dimRed example]{% Comparing PCA and Isomap: % (a) An S-shaped manifold, colors represent the internal coordinates of the manifold. % (b) Isomap embedding, the S-shaped manifold is unfolded. % (c) $R_{NX}$ plotted agains neighborhood sizes, Isomap is much better at preserving local distances and PCA is better at preserving global Euclidean distances. % The numbers on the legend are the $\text{AUC}_{1 / K}$. (d) PCA projection of the data, the directions of maximum variance are preserved. % }\label{fig:plotexample} \end{figure} <>= ## define which methods to apply embed_methods <- c("Isomap", "PCA") ## load test data set data_set <- loadDataSet("3D S Curve", n = 1000) ## apply dimensionality reduction data_emb <- lapply(embed_methods, function(x) embed(data_set, x)) names(data_emb) <- embed_methods ## figure \ref{fig:plotexample}a, the data set plot(data_set, type = "3vars") ## figures \ref{fig:plotexample}b (Isomap) and \ref{fig:plotexample}d (PCA) lapply(data_emb, plot, type = "2vars") ## figure \ref{fig:plotexample}c, quality analysis plot_R_NX(data_emb) @ The function \code{plot\_R\_NX} produces a figure that plots the neighborhood size ($k$ at a log-scale) against the quality measure $\text{R}_{NX}(k)$ (see Equation \ref{eq:rnx}). % This gives an overview of the general behavior of methods: if $\text{R}_{NX}$ is high for low values of $K$, then local neighborhoods are maintained well; if $\text{R}_{NX}$ is high for large values of $K$, then global gradients are maintained well. % It also provides a way to directly compare methods by plotting more than one $\text{R}_{NX}$ curve and an overall quality of the embedding by taking the area under the curve as an indicator for the overall quality of the embedding (see fig~\ref{eq:auclnk}) which is shown as a number in the legend. Therefore we can see from Figure~\ref{fig:plotexample}c that $t$-SNE is very good a maintaining close and medium distances for the given data set, whereas PCA is only better at maintaining the very large distances. % The large distances are dominated by the overall bent shape of the S in 3D space, while the close distances are not affected by this bending. % This is reflected in the properties recovered by the different methods, the PCA embedding recovers the S-shape, while $t$-SNE ignores the S-shape and recovers the inner structure of the manifold. % Example 2: Often the quality of an embedding strongly depends on the choice of parameters, the interface of \pkg{dimRed} can be used to facilitate searching the parameter space. Isomap has one parameter $k$ which determines the number of neighbors used to construct the $k$-NNG\@. % If this number is too large, then Isomap will resemble an MDS (Figure~\ref{fig:knn} e), if the number is too small, the resulting embedding contains holes (Figure~\ref{fig:knn} c). % The following code finds the optimal value, $k_{\text{max}}$, for $k$ using the $Q_{\text{local}}$ criterion, the results are visualized in Figure~\ref{fig:knn} a: \begin{figure}[htp] \centering <>= if(Sys.getenv("BNET_BUILD_VIGNETTE") != "") { library(dimRed) library(cccd) ## Load data ss <- loadDataSet("3D S Curve", n = 500) ## Parameter space kk <- floor(seq(5, 100, length.out = 40)) ## Embedding over parameter space emb <- lapply(kk, function(x) embed(ss, "Isomap", knn = x)) ## Quality over embeddings qual <- sapply(emb, function(x) quality(x, "Q_local")) ## Find best value for K ind_max <- which.max(qual) k_max <- kk[ind_max] add_label <- function(label){ par(xpd = TRUE) b = par("usr") text(b[1], b[4], label, adj = c(0, 1), cex = 1.5, font = 2) par(xpd = FALSE) } names(qual) <- kk } @ <<"select_k",include=FALSE,fig.width=11,fig.height=5>>= if (Sys.getenv("BNET_BUILD_VIGNETTE") != "") { par(mfrow = c(1, 2), mar = c(5, 4, 0, 0) + 0.1, oma = c(0, 0, 0, 0)) plot(kk, qual, type = "l", xlab = "k", ylab = expression(Q[local]), bty = "n") abline(v = k_max, col = "red") add_label("a") plot(ss, type = "3vars", angle = 15, mar = c(3, 3, 0, 0), box = FALSE, grid = FALSE, pch = 16) add_label("b") } else { plot(1:10) plot(1:10) } @ <<"knngraphs",include=FALSE,fig.width=8,fig.height=3>>= if(Sys.getenv("BNET_BUILD_VIGNETTE") != "") { par(mfrow = c(1, 3), mar = c(5, 4, 0, 0) + 0.1, oma = c(0, 0, 0, 0)) add_knn_graph <- function(ind) { nn1 <- nng(ss@data, k = kk[ind]) el <- get.edgelist(nn1) segments(x0 = emb[[ind]]@data@data[el[, 1], 1], y0 = emb[[ind]]@data@data[el[, 1], 2], x1 = emb[[ind]]@data@data[el[, 2], 1], y1 = emb[[ind]]@data@data[el[, 2], 2], col = "#00000010") } plot(emb[[2]]@data@data, type = "n", bty = "n") add_knn_graph(2) points(emb[[2]]@data@data, col = dimRed:::colorize(ss@meta), pch = 16) add_label("c") plot(emb[[ind_max]]@data@data, type = "n", bty = "n") add_knn_graph(ind_max) points(emb[[ind_max]]@data@data, col = dimRed:::colorize(ss@meta), pch = 16) add_label("d") plot(emb[[length(emb)]]@data@data, type = "n", bty = "n") add_knn_graph(length(emb)) points(emb[[length(emb)]]@data@data, col = dimRed:::colorize(ss@meta), pch = 16) add_label("e") } else { plot(1:10) plot(1:10) plot(1:10) } @ \includegraphics[width=.95\textwidth]{figure/select_k-1.pdf} \includegraphics[width=.95\textwidth]{figure/knngraphs-1.pdf} \caption[estimating $k$ using @Q_\text{local}]{% Using \pkg{dimRed} and the $Q_\text{local}$ indicator to estimate a good value for the parameter $k$ in Isomap. % (a) $Q_\text{local}$ for different values of $k$, the vertical red line indicates the maximum $k_{\text{max}}$. % (b) The original data set, a 2 dimensional manifold bent in an S-shape in 3 dimensional space. % Bottom row: Embeddings and $k$-NNG for different values of $k$. % (c) When $k = 5$, the value for $k$ is too small resulting in holes in the embedding, the manifold itself is still unfolded correctly. % (d) Choose $k = k_\text{max}$, the best representation of the original manifold in two dimensions achievable with Isomap. % (e) $k = 100$, too large, the $k$-NNG does not approximate the manifold any more. % }\label{fig:knn} \end{figure} <>= ## Load data ss <- loadDataSet("3D S Curve", n = 500) ## Parameter space kk <- floor(seq(5, 100, length.out = 40)) ## Embedding over parameter space emb <- lapply(kk, function(x) embed(ss, "Isomap", knn = x)) ## Quality over embeddings qual <- sapply(emb, function(x) quality(x, "Q_local")) ## Find best value for K ind_max <- which.max(qual) k_max <- kk[ind_max] @ Figure~\ref{fig:knn}a shows how the $Q_{\text{local}}$ criterion changes when varying the neighborhood size $k$ for Isomap, the gray lines in Figure~\ref{fig:knn} represent the edges of the $k$-NN Graph. % If the value for $k$ is too low, the inner structure of the manifold will still be recovered, but it will be imperfect (Figure~\ref{fig:knn}c, note that the holes appear in places that are not covered by the edges of the $k$-NN Graph), therefore the $Q_{\text{local}}$ score is lower than optimal. % If $k$ is too large, the error of the embedding is much larger due to short circuiting and we observe a very steep drop in the $Q_{\text{local}}$ score. % The short circuiting can be observed in Figure~\ref{fig:knn}e with the edges that cross the gap between the tips and the center of the S-shape. % % Example 3: It is also very easy to compare across methods and quality scores. % The following code produces a matrix of quality scores and methods, where \code{dimRedMethodList} returns a character vector with all methods. A visualization of the matrix can be found in Figure~\ref{fig:qualityexample}. % \begin{figure}[htp] \centering <<"plot_quality",include=FALSE>>= if(Sys.getenv("BNET_BUILD_VIGNETTE") != "") { embed_methods <- dimRedMethodList() quality_methods <- c("Q_local", "Q_global", "AUC_lnK_R_NX", "cophenetic_correlation") iris_data <- loadDataSet("Iris") quality_results <- matrix( NA, length(embed_methods), length(quality_methods), dimnames = list(embed_methods, quality_methods) ) embedded_data <- list() for (e in embed_methods) { try(embedded_data[[e]] <- embed(iris_data, e)) for (q in quality_methods) try(quality_results[e,q] <- quality(embedded_data[[e]], q)) } quality_results <- quality_results[order(rowMeans(quality_results)), ] palette(c("#1b9e77", "#d95f02", "#7570b3", "#e7298a", "#66a61e")) col_hsv <- rgb2hsv(col2rgb(palette())) ## col_hsv["v", ] <- col_hsv["v", ] * 3 / 1 palette(hsv(col_hsv["h", ], col_hsv["s", ], col_hsv["v", ])) par(mar = c(2, 8, 0, 0) + 0.1) barplot(t(quality_results), beside = TRUE, col = 1:4, legend.text = quality_methods, horiz = TRUE, las = 1, cex.names = 0.85, args.legend = list(x = "topleft", bg = "white", cex = 0.8)) } else { plot(1:10) } @ \includegraphics[width=.5\textwidth]{figure/plot_quality-1.pdf} \caption[Quality comparision]{% A visualization of the \code{quality\_results} matrix. % The methods are ordered by mean quality score. % The reconstruction error was omitted, because a higher value means a worse embedding, while in the present methods a higher score means a better embedding. % Parameters were not tuned for the example, therefore it should not be seen as a general quality assessment of the methods. % }\label{fig:qualityexample} \end{figure} <>= embed_methods <- dimRedMethodList() quality_methods <- c("Q_local", "Q_global", "AUC_lnK_R_NX", "cophenetic_correlation") scurve <- loadDataSet("3D S Curve", n = 2000) quality_results <- matrix( NA, length(embed_methods), length(quality_methods), dimnames = list(embed_methods, quality_methods) ) embedded_data <- list() for (e in embed_methods) { embedded_data[[e]] <- embed(scurve, e) for (q in quality_methods) { try(quality_results[e, q] <- quality(embedded_data[[e]], q)) } } @ This example showcases the simplicity with which different methods and quality criteria can be combined. % Because of the strong dependencies on parameters it is not advised to apply this kind of analysis without tuning the parameters for each method separately. % There is no automatized way to tune parameters in \pkg{dimRed}. % \section{Conclusion} \label{sec:conc} This paper presents the \pkg{dimRed} and \pkg{coRanking} packages and it provides a brief overview of the methods implemented therein. % The \pkg{dimRed} package is written in the R language, one of the most popular languages for data analysis. The package is freely available from CRAN. % The package is object oriented and completely open source and therefore easily available and extensible. % Although most of the DR methods already had implementations in R, \pkg{dimRed} adds some new methods for dimensionality reduction, and \pkg{coRanking} adds methods for an independent quality control of DR methods to the R ecosystem. % DR is a widely used technique. However, due to the lack of easily usable tools, choosing the right method for DR is complex and depends upon a variety of factors. % The \pkg{dimRed} package aims to facilitate experimentation with different techniques, parameters, and quality measures so that choosing the right method becomes easier. % The \pkg{dimRed} package wants to enable the user to objectively compare methods that rely on very different algorithmic approaches. % It makes the life of the programmer easier, because all methods are aggregated in one place and there is a single interface and standardized classes to access the functionality. % \section{Acknowledgments} \label{sec:ack} We thank Dr.\ G.\ Camps-Valls and an anonymous reviewer for many useful comments. % This study was supported by the European Space Agency (ESA) via the Earth System Data Lab project (\url{http://earthsystemdatacube.org}) and the EU via the H2020 project BACI, grant agreement No 640176. % \bibliographystyle{abbrvnat} \bibliography{bibliography} \end{document} dimRed/inst/doc/dimensionality-reduction.pdf0000644000176200001440000354677315001744211020741 0ustar liggesusers%PDF-1.5 %¿÷¢þ 1 0 obj << /Type /ObjStm /Length 5108 /Filter /FlateDecode /N 97 /First 817 >> stream xœÝ\ksÛF²ý~¾m¶R¼_[»Ùò#NœØYGv'·\·(’S@¶“_¿§g$ER EQNrK¦ñ ºgºOŸž@¼P…¡Ð…ª0…1¢°…Sªp…0Ú¾BË"Ò([^Ho%n)(" %/p¯rǺÐB¢JSh¥C!l¡]Њ¡pÝFSà‰¨\’ÆR¥¢0ÎâY²0AšUXap¬ «P NYít!maÄyWXïqÞŽkÔ '9 ÙM€2…3x¨’Ø¢ÒÇ£Ò…‡À…‚b… ’×]„S¾ÒÙB…"@Bó"@ (U}¨%'åÐܪBC7.!>šJ@Whj%ï9G3I›=v 5 D80œr µ…xšA›JeШYM탇⤚Ԭ5jV :@3¡ ê‡Êh^Ë K}œDó¡38ô¡ÞÒ%!­Ðè ´$v,ê·¨YS³XÔl8¶ÔëçÑè~oQ³±틚M@_8Ôlµ(j¶$†CÍ–Ì=$¬ƒ:5Û€VC[ ‡û ‡šÂÿ5;›€$ÂyXÚJ¸TáQ³ÇÅÏ^ÑÔì-•AÍÞ£Ù=§2¨9PózÔ´èQìôöº }ŠšC@ƒSè#ô¥ä Èø õ/¬Š;E½‚¥<"8&™m /^ýÏ?ÿY°çU?šŒú,îs\°ÿ̫كq_7³âáBñÜ“º/ÞàÒe?­gU“é‹ÑYõ¼™Tû®«—ãé^˼úuŽëðŒisV|öY|ìƒËþ¼i‹OþŽ+m5¢Ç=õUñÉãH.Ñ{°B¯ƒŸrù7Îÿ6”£{ž^U¯‹÷u^œ£î¶­Nqùëê×÷M;ébé÷ª{Ñ6“Ëq…ú¾xñ¬øâ¼éúnÜÖóÚ•Ü”e^^žü\ûX嫺ŸV´—5xÔ\Îzraöu§m%’Ö0pÚH™Ï¢ÍÓ6µ²äN /d:/¬ÌÇ*?=]—6Ý»Ë×M–'æRé¤Î"'QÞ =–:qè¯Ù¬éIK‘œK“=¥mVP…¡–Gͬ¯f¸‰L?ZÂójR6P Õb·&ü†žÕ¢è`1ÇU×\¶c<ýõ÷g‹k›ñ˪GìÅã'µú@¶ùÙg«bR?uU¼ýøÃëoŽ¿øôå“ãç< QÙç³q3©ggEîØxÛõÎG-Á||èã*l.)Éžr „#ëèã#éÁ›æ»Y=&oPáŠí'~¨'ý95¡‚ãÓÇ?-fø3èxãDüycW®¤? ÄÐ_GÃÎÄ3Tm©®]Tž~©^÷`‘µÃBJK’p¯)’Œ®ÓyŠTÎ%9"ªÒR“ôn¸FPË]Xéê D¡Å·ØªAXG%i•ҾϮÓyÍé—šg8#Nþźcc_mòÿO¤ãÒP²I9±¸¾fl¸òfááݘ\Бe?Í¿¬ê³s‚v02yò¹OØö=bÙçì û‚}Éž²¯Ø×ì{ξaÿa/ط옽d¯Øwì{ö{Í~d?±;a'íh\M«Ó>íµT7³q3mføÿâbÄ&¬bÕh|Ùc/W³É¨;g§ì”þÕ,þ{W±Ó);<°3v΀ÿçՌլNwþÌÞ²)»`36C$b³¾žN*Ö0¸zÕV]ݱ§çlNxå‰{I„’º™°ùô²c¿°_.«ŽÂvš¾šœLcñá Ý–çÓÉ–u¬«.ê¤\W½ƒ€]ýuSR§gýy[U¬ß°Kv¹ër6©ÚnÜ´{ÇÞ³ìWöû­j„"ê›#°V ÉttÖ£&8=ìÆ«‚q1Téú“zZmÂÈqê›ÑEµŸ">×ã³3D9>¯»ðA øBp×Wß\…µŒd¯³ÍÞà‡¿øô5ž÷ð5xÛ*gf]½<±„b0ÇõÇdš²€b0Λ¡8ãûV(6à®7ýÖÿ¼J¨V¦‰2ÊÁïøàmD›ã;˜¹ —tÖlT¶pÃø â|Ä :C¡鬙 Ýi@+i(k,•¯â>ÂHî«é ‰Gåé·áÞüª{ÇÃ÷NÎýœùÜwœ|3÷iöÁÁë…Ã5Ùµ’ùFÕÜ£]_1h²¼dÐ`L«ÍÓEä%2J¹fÏnÝž7ìëF{FŠ0Ø3òwíÙ/ì ”1ñYN< fõ"f’é{ýãOD”Jg(ZUÆLjv9Rá/!#q1Ý¢¬,Añµ·%"˜Ô%1G\IˆþfÅÀŸÕ³·ƒÀ‘”m04›žž™¡MÜË&BbØä6µ¢MÔ-SFÇ‹M—J܉À ”hO÷ꛇ>?Žx›¸Bà²pKÔ@>½Þ™BmÀÆï0¸pl€VsG+x2ýbv”®«¸åÑ·wù¥ÒË?#u^‡®´0#¤¨‘£Ñ5e‡SÚˆ'T†Æl”4ÞiRMHñý±ãÃQT#¶9Ãù¨ Ç ,L0\§ó Ö@ä—ÔÎÑ£iK?ªs“qˆ[1â/®ð b[ÈÄX§Kê°ÁÖC³?øåFˆ»!xÇ`¶-xkž®Â°ClŽ+`§s¸vÎp#Ø¡ŸÁÛÞ"x/s¾œã 9l‘RØ´É©dò/™œ\æ¬6'µCN[¤v_ô0œp|QÈÄ~ðòò§¿}öðÓGÏŸ? «Ø2Ä™%¶ðMl±·£$”¨Ü€-AÆ,pÅ1½ËÍ1x¹v®Øtà›þ†l.#†ÜÓ¹„ tÆÅÌ-’C¬å&<%l i¬!>C÷9Ä’!] (åãÀÝfÆÊ Äð(ظ¦ÑR…´ŽÛ¨Õch¤Õ„BǨ³Í óh”Ý„~>ì6F³LU†$廜 Œ—1ïj‚ÓŒ oGóùè0]œL°Supb¾ÈÎë„õnØý6’cø5Ž/Cº*hYs|µîøWÍô&¯'T¾e×êÇr9ã×PéBi(·¶T’F³UIÃGƹRz½˹7é QimXJ§=ѵ& ²Ͻ¶íT ¡´ó%ù 14^PÎPHþ±Â).ÊS¤SR–h¾û._®u,ºJ™ë˜µ@ š¹¹yšG@ÛQÓ)¿%·Ö)èÑtŠh&E4“ZÎ$Mò]“"–I¼Û¤HaR-&Õb6GL5×wˆ–ïï«$G~C¤2÷‚„x§o× ;Jg¶H'<œŸ v«tZŠ’&qé@‚J0ØÏH\2„d›r‡lSÞ¿óbƒ5ÂiÄAß@é¤64”RJÐéÒYÁKawƒï$ wFÂa îXÕÍ#Œ‹ÁÖx›Ij0`ZË›K2øî!ÔD\ôR:KÄE݇t[©2ºîÚ|WÁ„”XH§…(•ý³H§…+5 ¹Ò"møXÂið$çíufdêÈ8ªbi}T鲨÷?Œq³lR†R)¿”Mºí>¤Ë+®Ö\B:$8×ñQ22hâ×ÀØüÏÒxÕŽ|tA3}‚{Ÿ`-$NR›…Äó¢­*ý¾˜×†Ý‰/ú»ñŧϞþðú)E­§·à‹p“õ`¥7õoœ0ÔƒÅm_òei=ÓõÜìêQ*¹2ýgÓZ‡îœ‰áÛº4ÑO×hƒ‰I‚…e™ï@oã€<­õ5´XU¥òq Ðä]K ‰ã—M¢h'ãméÚpœÊÑåå^¥Ê—*h¥âè¾Ò"®À¦’–VÓx’cºv×IÀ¯V S4ž—ýÍ#‚—IÝ>·}*0q¶;ÏùAñ«cÿ&Oú í·Lú ¹â’m˜ö*!;zcƒ[P2!n1ð zãË‚}wüt"iAp<õÉyßÏÿÁØIÓ¼íF³ÉÏðáÙhÚ•'m=EóÒàL Q/aã0¬S8çÎþ=zõõÈ)6¡ÚËRЏ¼4Î.Éç%͉ï†~=…ŠþE#逇XyQ(imÑAõ¬¦õI9™¶å¤bÞ{éÙþkPü‘>ÅRmuIkœ*ð|ßìÊY=ïÊñ82Yw4­F-œøì¨oŽNëÙähÞVGõ-h.ç“ÓÛëE£A´î_sð®–Ä4(éw„üê5ô—  °ô& 8ÍÈ—4e{P½&ÊIS—M{–=D2îCpT_8<>ìá" üÇ[C+çA{—C÷ŠƒÍ¹]‡îÿH †>à™&÷nô²P”;öèHƒUñƒg?ºò4G”؉a84þ-•)-ÈòÐüR[ –ú“K¿hziË€­@hê¥KÊùj<ˆoá»ç—'e5•¨«6†–è ˜›×5{)¸UFrÅË82ò=<‚£+âF4A²ô¤Û¥çÆà¥ÔÐS4ßB/¹(˜­¬%%•9¤—ìªÖ´sÐ c2„=:JêÒpz× A…2õ¡£´*9?0ø~$ý$Phut *¾êWÒ ˜»M› =¡—S’¨hò/ž­N¨ÐZ¤b}nå–­òþýûr6ê/ÛÄäÒî@äØ;#›9ã ;ENž/ K Îû‹é]N«JbT ʈ†$FoN´Ç?¶n îÎSFsNA«˜)ý;l( íºq3¿ì¢vw t\:RÖLéh6Z’8DÜEëZÄ>äŽC¨"ñùÇa ÒÙ£®oÆç£®¯ÇG3ÊOšö¨º8©&4¤²'·èšæ.-œp%½íü×ÕlA/‚-ã¢pÊ`ã+ˆÌødau5W“º…ÑÐò6j¡Ø4£<e˜+ÒîC1u™k«èÍÁEä"£Üu¨ôϨØ"|!« ‘6Zdâè}r$Þá   ‹Ëy\C/Gr;jÇç44%¹ðìø«#Úq¾êþàh:ŒÞÏGB.— ¬PèAuhžþ1zLøRzʼnGˆŸ(¼¶[vóˆéÓ`~”‘pîØÃ'\J4ÎÜ^-‰ØÂ\â %:¨þRš b‰ºBy‹|ÍÑÇ/ÊCúΊؠ÷:¥„Ód/¥[!wR÷vÜŸ*˱DÊœbâN_© ¡Eçv\ vxÈ~Ƀ4hIICÚí}† $/ƒ¤YS³26ÌöÐö±5[ަRôI3’6~”Eßâ½ÀûÓL((¦Ý>}FÄA;z_¬\‰F4¼ªï#úhŠ-T=ÂÕ#èq€õ Iµêw)²žt Oá%ãöˆ%- T8³‚rʤ¥¦s“zÑÔˆ*ä CF¤¼dçñÑ0N£wð{%÷Ÿ½¦e0F.‡ hý.}ò诫Ù"#RAHFÊ'’¡)­L>¸f ºò¬yG õÕøœÔ'ÓºanÎ-?š´G“ºëÛú䲯&GÐÿ²í@RÎÚÑüüh:úµ¹ì÷ÏiE@L²Ë JIpàîÁ6ÿ =ìÛ›¥Ð`ßž¾"½å®Ëìn5 ÕŽÛª«(•˜c'¦Lš: M Ÿ8qúH*u‡¼”;ˆ•¡s£Ko ß÷¯Î¢wÀbã÷ähe½Bõh½Êc÷Í@3@ÐÅè,ƆaN]ÎŒáœI%ïÐÙ¡'?äˆ :~¶¯äîÀö9™–£ñE¿îã7ÍÊñéÅ¿ëÉ¿¬6†^0€Ú=¸;¿É­Yh'?LÞïOŸ¥åñûvâ¿5¥8hbØmM§Æç£y_µ‹tJÍ´6^‰ÿ“wá ´$3~2™;ˆººôû¹ë›6öL×N(1”´Ôï“4Áˆ€ š$$"nâbGš¯áö©ÅÚ¼­‘^°ßªY3iÐ ÖyÍï2o‹ä•>;¡A# µõ êÀ8½;B‰}&ÿ¥G–´<9”Júzßn½3,ÓJÉ–D>®OO«–ÔŒß}°Å•¯_W?Eß~È_銟\9=ůÆoJû5½¶´ò],úÐÞòƒY¤WRdñð}$¤¯1Ä×ô‹ü–~$¾‘Oš wôã{ùÕ~zå6/è+ÒËôµœô¶Å¡$Z6ÄÖ ÿ ]iÉendstream endobj 99 0 obj << /Subtype /XML /Type /Metadata /Length 1658 >> stream GPL Ghostscript 10.05.0 2025-04-22T18:49:12+02:00 2025-04-22T18:49:12+02:00 2025-04-22T18:49:12+02:00 LaTeX with hyperref endstream endobj 100 0 obj << /Type /ObjStm /Length 4004 /Filter /FlateDecode /N 96 /First 894 >> stream xœÕ\[sÛ6~ß_ÁÇv:‰;Ðéf&qê$›KåÒ¤;yPdÚÑÆ–\Iî¦ûë÷; HñÑrl§»ãQHðœó+Àð‚gEÆ ‘:ÈLà”*SŽÚ:ÓÎáh2ËŽ6sžîÓ5aðϸ¸Âñ´â¸ÌyƵóW½Ä©Sj¡!¸¢ aè–É„´tÅfB;— G½rŸÉãqQd’;‰žIiéŠÈ¤VtEfxo •IÎ8ªÐ Ä)Áéa›)ièÄeJ zËgÊZ<,‹Lè•KžiND¦£[ü0tEeFj¼.ufŒ¢[&3Žè‘6³…©Òe60 «0WEf ˆK2k1 MÛ:K'2súàJeŽ{ô£tæ¤&þ™Ìiš²› ñG¹Ì9L—+Æ“D𜧹æ™s×"óJ£ü¼ ìW™·ciypmp¢è¿‚ÄȉI…\{4Ñ `I4õÂã5nH:$:n$ •È ¢SÄKC"S$ cHœ@Ì."ÆtPÏ'˜·‰‹¸e9ÉË£M# ‹ÉräCôYE¢^­&Á7ƒÐ$ñÞ‰ÐhÖ‘$ˆš+»FNgœ8N¢uÄE©èŒx®ˆ*‚©2’®i⺣k$šÀ+G\"èsR-hþô ‚¾ˆn­ÍžX®5 â0 äª=Qà‡‰– ¢÷ÄW`þo?ý”åË‹Å&sY~8_­7A‹l’åO§Ô‚ôBëõŸçe–ÿr±9/Êuv÷nx÷A‰gþ™éê™wï#þ0kÀ¡-+@~¶¸8=Í>dùóòË&hxxöÅtU.¨ÍcÿóÍi™ýt\…òEaJhŸÂ¢4¸fè\ã(«ëÆÇëåÝššj&w ê5aÜ»iÆXÆ Í5iõÌU{æ<Ϊ¢ʤûŪüc˳î,j*ðÓqF²M9~¿Yu-ÌGL¸Ð"¾³sÖÕs*öî¹§äÝžŒÒ¬€‰bä¾”to¶21?Mãƒ.ŇcùÄXÀ7“¤ã½±úœ•ΪÄÈæãØèàKbtm r8º]§ä*£Ìx%ÏF¦r+Ï CÙ½f"ªÝb)4³ ŠÝ(Åf‡>*#‰òb@…7)¾iÅ,`Ù§ÂRaSTÌ"mžÌ¶˜WméH¥ˆ÷t¤¼¥Fò49¡ æüÀ*ñbt6n×l·h05xKCu¼f·V`+ƒ”¦ oSrÀ À0 œRîÇì’©~d_úv©±-W¤úÍ´òWŒQYs¿«ãe‹š£®¥ >!j\ ô –öŠš™´šˆI™,ä`–}ßÖeÒÓ™ŠÂ0#YQßž‘­ñ^Ûÿˆý«Ùþô,Ⱦ<û³P£³Hy:¢€dD|U%a~HAÊ#ì°É|‡÷‰¤|Y¸Þ 92"@ælK›vŒ•ò>$òÏZô#ÙŒ*Ó>¨àLcØ~àÁm'ððíÀCô¼x$3AÃŽà"€Il¯Õ*5``z*—™¦<£'ºžsâIw]A&ŒÍ%¹õ­*FZk#ÔR{ëâ=±uÂmÅhÌ@í õV‘†Ê!kŽv•ÃÀùj;˜ŸOÏ/Â%éöâlƒ£p-'P«nË™úYÑRýÙ–‰ wtÈb’¯!Ì{t§œn™žÚˆZ¹•ÄXXZ#ªÞíVUî-ËÍš‚D]ñ’"ÂêÈã±ÂôR«Åä®3U+ý³òh>½¿ü‚÷é-sd‘õlgvR®—«2óç/›‡¯6ÓMRÇðÀá’Ø`jK³ZÎ^•ÄÇüŃC0‚„ý$׉ϋéIÙrERŵc0.}܈¾ìhqRKt­™‘ǯª…^]«ÑoÓa’Jé4S|`úEßôw¨)¦ÕÕ …Ñ·“˜àv‹V˜ô1ž‡°(Qa#*¬ˆG*u-ê:h© aÍu !÷I;#ÓG3K‘Ì,ueZ1h×Àm™é#½H0K_ŸY^^‡Y©òRH;Ä¡ýt­Ë¬¤»nÙ/S·aÈ;Ô›dQ£€•M„ ]:’^¯üÜZ»\ÐÛ b»:}º.Ãó‡OÞþðêpršá`â³åÑ|q’å¿Î÷ëùöB2>MW™•À0ÇÙj~¾Y®B5²‰=ÂC¨æ¯.>n‚ÀHlh¿^¾YÌÑa ¼Ô“ ÷+r~m>ÒlÈ×wÿ)M¤B-•B•$ܨ ê"˜² ëTuw>4h^ψÕy]~0=TÎO>¡é,š ›`÷]>ɧù,?ÊËü$ŸçŸó³|‘/¿R oß¡T;?<ž¬ÿVä߯AnZÒTŒñ¡ºy8?-AHíÙéÒóéY™ÀãÍôt>»·8È1Ƴùz öÎ -BhøjSž½ AB‹w-Qäï✈I‰¿ÿurÿÑ/4Þ³žÄ©°W×Z$-y_ÐâA»A{5&æëþÙ0ö®?ÌX1¶ RÌD8 ठ´êh¬ž°õ›þ±_¸û `è‚Ð"îî€P·Aø0|Ó±<;š®?åÇ‘§"óu¾É/ò?»È52Õ˜"óTæÇ¸=`ú>0@Ù˜èeÀT `>~óðíÃGÕxA»ö2EJ%*¦ÈŽ"´Žm’!b¨þUÎ7ÿn ÜÉ Q´Ž¦Æ¡ ¨qÁ<Å+bÃqL ,a²t¬®Q«¢JÓªÎLjx&Þ¥ø (t&éÊ\·ñW5üÝæOògÑΖggÓ€Åãùd?ÛXcñüC Oç‹Ï5Å!.oÂèWYþfò¸y`¶™/Õ¥ï>m6çëóü`rï9›Ü9_-ÿ…ÁÙru’ŸOgŸPÿýh~6)¾qöî¹òù’êo™Ç$Lô˜é‘Äzþí&0[N¦‹ÏôÕççΤÍ”–‰ÿ¿š×– š-€C›,g´ø-eRŠýæ0¡µtc¶‰ªöĆ [ ª­ôË:—ƒÅ4õ©¢mu*Oi±½z·)vÖ©£¸VžÝªÊ¸–›KåWÏ&÷ÓñnVu\Z¨ó;t\Ç”•`´OKV™ ,bOÙÜqRpV 0lˆS<˜žoDœæ‚Ykw§h™Ä7ÄÁ!2Ë¿çÆ‰SÂ2Ú$Ò§ {âV8'’ÄñîD× sH;ÈH¸W!`Ó Ÿ­{Ú´[#NPÁ[ÔAÌÁÑ-P§TJ#àf­»@§q—@žÑj8Œ£-7R*V˜ìWP× ®¦®FÝ7¢N ™í’¬*ó0ÜB&ŸÖ¾”öòHýW;I!5S´ÇÉŒ6¨UÄÞ>ì.¡ÎIfi¨CJ„ÐJßui7Qh2»T¶°Ì)¹¥ÎÀÈñÿê¬`N·¨ó’ ˯FÝ„R+¯ÍµaL:&´ãQ¨:¡}‹BÙKâ mð“O(ˆ“›xª×“ÆÍz½î6\Ô{0&X9Æ K½ÿâ·÷÷_WÕD¥öÍRSõ\ã¶m– F³ÔzS²ž{I‘#f¢.ifÕ¦ÎG-¦|Õú-•)æùY;Û¤‚ôXº‰ûÖëDÕ¶®ÃoóÍŸÇ‹c~[µõ—ç›êÊéÄl5]°ÕætÜpxaÀ¾Lrx „§‘œ”JÝp>t2ß|ºøÈf˳üäèóêl•-Ý´¡À‘Ò{_ã‚§TÍ<®å|ªzo+Ñ7­ úÉŒ×ô8D§z—‚[æÞѢКUyF/÷4Q­ÄÉÞPâd\;q2õî„ë'Nã<£²•“(`àfg »Nû¡WŒ¶® K¯éàIM±oZ{¹]ïXòjOúev=™ß^×ĬúÓÉÛÃ_ÀÚ¼~Í‹½k2Q7­B{-Þˆ±Ål~c½…î\éÞ½Ôöž®û«ïôû¾Sµ·Ïu{H÷Õ~¦ÿk?9ô?Ò¹²»tó4–?Ï_½ ÕÏP6sª—‡j9©æiy¼©ÎVÔO]Bÿ=ÿýb¹)>žÆjúE~±€z­gËU™é­øP3YS¿£«»©=Üskƒ5ŸÐÆÜšMÕí±äS\Ae€cKÒg¦Q¿K#¬«Ù#Õ®Ö"µÆV»Ò¼Ø™ÞÎèÛ0€iKŒtLÃ5jÄZÞ¨‡ùêÒnH¡ 8Ϭ¥/„˜ùë©£Ø\“[v/$9BÁÈ̵ôáÐ ’×Ùʆ€9!á%œ‰ßUÍi’Ã=PÅ9uÑCw§§j•L(ì’|Œ{”~ÏWå]äGúz“›­DDegd„Œ’$ªpR‘‚¨-ôžÌëZZW¶)9ß¼®óýüòÑËÞ={l;›#ê`»¶Ç‡þÕö³&çFÝk]ZO»W7æ@½®VŸ}r÷‚—‰ÝJ;)SÇe=»z—¯O§ëO碛.&¤Þý5[ú’CwÝK½Q¤µJ×áí¨o!çSï'0;œË@vO½ÿò%úŸØ}·ø¡ ]Ñ“¡O|åØò,•½¡@Ú–Ch6rX.ÊÿÛÌ7®Ç|Ú "Ãû=ÎÖG;œÙ“ñv—Sóã’>auµ–JAå\Û´h)Ê5-¾Œ-Y„/w8óíD÷k:&m–TpûŠ]ôí}@®À'L¥^%áØ{bî›S]GÈœ4%|à.Yøÿh{êqW°_³w % OÉ»*ŒÄæÇÇ%Yþ°¤7]Ò¬ªi4Ï~M‡0†ø*ÝßÔ!s’endstream endobj 197 0 obj << /Type /ObjStm /Length 4832 /Filter /FlateDecode /N 97 /First 923 >> stream xœÍ\Ys7¶~Ÿ_Ñ3•šÆ¾Ýš;UZ,GId;’ì8™šŠjIS¤BR^æ×ÏwÐ {c‹´¥(Å"èFÀ‡ƒ³"ø„'"„DX—HÎÍ®"±Rã*ÁGB%B „¦’ôÈÐk ›Héé*0šÞFÆ;J„D ))x¢‘B$ÊZƒ„DK…J´ò¨CèDCwL¢],c$š.1Ü£BP`¤¢zBbT –ybŒ=R$Æ¡z‰öŒ·(ƒ7-—TF'VxÔ#Mb•¤G6±†è• Í©‰õš…Ä ô[¢ÛÎà¹T"qÏ¥’‰—„)•øØS¥è-e’ -šP6 Ã(•K‚STØ'ÁÓ@nÁ¹Ákh)!T"¸p(¯i¨-FCjŒ54ƒ-u­"áÑOm‘Ò(-µCÊÐÐiT Ñ-äÑL  i hC‹B: ¦4h3ƒZ Í'G‡0c4³´¡õÆ  ÇÇ  L½6”Ç(KÔ‰uߢ à´hCÓ|K‹6´"ê1BIOц¶4˜V¡ówц„ ”FzmëCF¥a,ZB 4¶mX´‚Ú°Æ¡oŽ€¨çÎPÊS m8®¨Úp" ¿m`^@CÎÍžSŠ(È„s„96\ ±Ý ‚ Æ8¤7”¢±ÇWxCm EÁÍX ÂDZòh#ð€T e&hŽ%˜ zDP´¾€4xД ò/ÿøGÂöf³ùj™ü+‚‚'§ùÕÄë¿v0Ÿ­²Ji•ßc'Ùåd´?ÿŒ÷8>k =¡²oF Mò:Øi¶œß/ÆÙ2¡¶ŽPO„W|öf1Ÿe+TÁÞ%ì<û¼B ÿü'’_î2ªê:C¶MfÈÉ3¼¸Šâ*‹kÑ StØâj‹«ëé–ý–n½ø¼zy¶­²áX ï© ßÔS[ôÐ=´EmÑC[ôÐ=´E­+®91ŠËž»ožH,î¯èÞþh™Å×ÙñÞÑ»“óïÎŽN÷9­9öb6ž_Nf׿ù0NËÕÁÍh¥”·z˜-Ç‹ÉÝj¾ˆ[G,õÓ¨($À¼ÙÙýÅ*¶Jm \æogTœÑ&¿S•SñËäruCÃmBˆC0üQq•lóqކØ:ï«»š—éÖá¹)Kû¸¹ ÔNKh8^ÁRv4C_—3 ìTĶ‘ò€;Ý-Ÿâ}M­›¸ûÆ'ZÆIÊA·Ód;€XwTD­«a×`ƒ/¿Måi–Þý“×B¿Í ¶Q™ký~Ùf¤ÈµëêÅ {ƒ1[aðb1ÈVÓìjU¦TŽ'‹ñýíÕ4ûÌÆóé|q™ý~?š˜Sàp>Ë€Å;âjñí˜Êß½›Þ¡Ÿæì3ûo¶˜7`j`jh}‹Hb¦ºä_L°‚(Iv%D…x¢ª Ñý“_Ž^¢­“cÛÀ¨ncÔöaÔ¶1Š©ĨÀhÀ¦e•O6ã ’p‘÷­Š}*QàC|±àŽšðÂæú*°„r êw Œ$ÇÊ~‡;gïÁÇþ9Ù4[.ÁÌîØïl9-ovAúú ¢ÚiNÛ¶˜óF€ÆFN_¼¥ÆNëÁ¼ÍöfËÉúFŸ…¬ø]ù™ÀŠ¥ù+¾ÝÊ<ˆ‚í>ýõc7%5†cl­ëkÊbÊÚ0Êq³ F£‚[!Ðêf‘e9«i`H”‚¢$xG‚T¾X} E¦¢ÆÄn "Ú‘í‚èõÞ»×?³_ŒÆ—TUàéá3‚·°CH‚Ž}€Í(h[!ÊÈ}¶+Õ ÛDF‡­@³¬o^1[áØHŽˆÛÉ [Îíýt5¹›~a³ìz´šÌg‘¹°»l1™_R}Ù"»dw‹ÉmÖD‹ÙÌqðÌC¸§–[Pqm¨4§o[¬€[÷c¥ó?¼;ø5Öß•¼Ýáªë >†„{y–Û‰>ÝR`â.ÿÙ'±¨õ_ϱ¼°;•¯K|¥l¶›dõš]Œô½¼˜FÑ*«„¬,“pãõ°ëEewq{?¾a“ÙÕd6Y}©a›RñY äMXï²…ÇûvÐŽ.ÐÜÖÌok@Ÿü¶wxòþ»“³ýÁ·Ü6½ìÁv[  BÐ.L -»24!¯±-5ØÐimì«·ÆXß|Œ:t|z»9ò¦#Þ¶FfÛ¡ç ý|q™- Z¢.x3"²^êYJ¡âý¯¿‘)1u$ðYéÒÀAÌì~:¥Â߃,²cŒéa\j±_­SÍC" æ† Uq¢µôµÏLœD1Ôš8,!äNÄ òŠˆBi=%÷•*3*~™Ôѳ—gÈ'SLôiô±é{ûŠŒŒŽ¾"££¯ÈØèÞ+2>zö(Ó±“¶lY˜wvîÂ+ðí–ýºå1º×v7}Ÿí%W£é2+Ÿ­kïHïÞ½9~ñÝÙÑþû¨‘n'k”x]Ö]] j@Øðþk5'r¢†(¨BÁÇ`šJ–V"T×`|þ´ÐÀÉ?§*Ò^¬*¥r ŒtDÀ¥!òøºÈs]<7UO*Ãti–þREÉO]HDJ¶eQzHfj«%•¦µJ"êÌà ]šì;Ø¥M1ß¿ùåõ›#²ƒŸp×ô¦øRóô¦(¾+PÌP¬ÛFUR[kH¾ð»xK–=Ÿ8,zïuù0qÑpé+ÿŒ—©ŒˆÂô}Hn¡B†ûêª0™å}%UÄ© ŠR¶¬š¬ÄcèJw¨¤££+}»öÝ´覃å½`Gì%û‘ýT8Y~ÙÝÍÂ>±ÏMTËhRÚäl¡É#1-T—Šz…êʆQ­+TkzÕ=fÊŸÏONÑÞÙ{î[¨.ò0ª»>Â0Œj7„ê­ GÊ Ù»ë[sÒ­<Ú®­ »´½ÒÚ ß¡ d{ßôQnrÑ^î(äD ÆM4}ƒ—b{׸–G¹Ü‹ÌãÕ—(žñ8uäì×¢¼C‹®ƒfÕ°~:É»îBÂó÷ì8"š‡oڮâ»xþÔD²@²K‚°‘¬knùÈ` Ùù Èà;¥;@>øáàüø=µwÖr(=U©]u]‡ Âeh2Þv~#`£ÅßFDØ(w¹Â¡m¢7Þ ïë¬5̽(‰ÈÂ,&‡¼!¼A¨õAY]Ðnˆç"ŸÇvðxõ„é^ùŒl³˜i@€°ߎ‚~ã×ö¸e¿Âµñû¼ø‡¹¯ ìž³·ì]ƒ+€ëÈÍ-]ì÷ûùª0­y383ûï.¼™‚|ˆÐ&¢‹Ø¢;D´Y³f„m{XóÙñ¯ÞDÇû"jŸ9Lu<Ž|˜G1ìav H/ºr8ÊŠc{Õãäi‹– ˜œbåmCŒ¬ìjýA-ñA²ˆñ©{ŽÛã<8¯j-Hʇ=ƒ5Aò©LJ›”¢'…w)ÅLj­Ó€õY:õÑtù¬¶,RŠÿ¬¨s"õ¨g'êNÅpʼõõ=c? }™"ðd¨r2Æ|–9ã=Ëœ±žÕz­Mw–âO'¯^ü–ë²µ¹”x”’tGJz@ö·CJ¢5Ûø.T<{dÈp²Å·ù¾ö<ž9ˆæŽçëY ¥¥àLŽEî+ †–dw9´ÛÒ5i×!^–a.Då ’!1QŠ¢Ac™â)û.¹¹uñ„¥éû5áV$?oâk$A]M>bšß/úµƒÙd–­#`ò͉v¤eöå–“ÏØ›Öžéû|j¬ãµl_¼V ãèlÙŽbÜë°äµÞ§ôüÌ sŒ\\®Û!Me8—Úü+L*Iïghܦ´KX.R½] •jÊ ×õÓ»¬O)wu`wîtª!)-R.ˆÁ™”Až™:læSQgmªòðæí©k ²Œ·ÚhŠGò>úuVÉŽ!r͇_ÿðêŒü/Þ7Þ¥úQ1a ©ê0Ꭵ®7œµ7vµYçÐW7À=ÚöØÀüaeÛðÖ‡>‚W֙ꖎ·ºa€[×·þi³RÝäu# g2[e׋Ñôr²¼›Ž¾¬c÷'××ëÜE•‹2û~3Ÿ.F—“ñhz±*S«»2õ1[¬²ÏyxX|uy{ƒ:Êf«(·bñ“Í./ç÷ÓftG0*.={¸îhP &·ôÉ’szÐ'»-ãg {{z\­Ï1õ+¿õ×›ÕênùŒ}úô)½˜ÌÇû1*Hç Ðñ‡Ñu¶d‹lšaá0*ÁnV·Sv7d«›ùå2¥üߢ}3+]î"eêèØŽ)V2öŽ”k²{ˆ4˜§gÌ``Ø66ºþ «`\(–§„NÉÀ¨]êôÓ{ˆ†‰SÂ¥bOEœòÑÑü‡QÇyܦ]Cz aœŽ-™Ôªè5ý•>szFê”Ñ9_QUˆG¡®-®ˆjäAE¤W@‚ë¦Áƒ˜BžH‰EåQ_Q)Ù³ŸÚ«K[¾Þ(h‰5Jç¹PœNd•±À#êy©+c „4´V)HÄÒá®H¬{nâ¼N=Úˉƒ¸’ÆSp»ׯ¹nöô6…-aò#‚ÏêÞv7:8Ý{•žþýn1ÿƯ¾ýÿ‡l1›Ž.¾bÃÑ*%ÝÒ*™’åS9›rò$iäù£Ú6zBÖ (¸›V¾ `[Øÿ¼Oé0Ÿ"KÙóÁ8$TUà+¨SЧ zEب ˜§Ç§®—© «Rîý&¾eŽ„d£tjH›/cœ("Ë<ý–3L]m"© …êIÈI§®¿ºŽíÃÖ… ‡v­ŽŽ –7’‡MFÅãÃ)yÚ$-:˜ŒûÞm)'®w\q`Õ<®'€Ç>ÖÑ\×àñ<Ù=€g­éž¼=ÿùeî·[;?BéÕûäÖGhì ƒš¢kˆ«êÒP?ì¢èt>a¯~[ûÜ¥—¿Ð{È%4£‰C#š87G^GSãœ-É|¸Á½Õ ¨¡‡‡Ð1¶mgȇZ pîp¸$t¦øí‹—Ggêp|Þ:ž<4ÅÊôL±êL±žâ!×­©¯)]æÍ°Q»õ4ϯ›µÔï´s›ë-Ë }·-×ÿîú÷!ŒJÛuåaoØÏµÿò7½ÇÆÅAÒñüövÔãéÝß^d‹åäºpúö,ý}0*Gº¥AH°<ºKÃñöÒè@uÐÖ#+“zx8ÔLUǾöŽÏÊðѽ„Cm«üÆk.ËÆ£Dô¿!(ý„»–‡Xî@“þ2#HˆK2ŠíÜ}“ üä)ìñüÊ ž  Ø›œ\ñM‘Í2z*¤$’ÓÉ$µMé¤ >µÛZÕz&;U*ÿ7•2—ÿ£JS­k-çiÝA*cU¼¬ŠþÜÆ•Ú¦Ò•¯%ç] ‰œEÎW$@y+ð÷;]ëÊë.º'TÏåx’ÍÆYZ\oG×Qýç2“3c8gR‰°»*,ZòøXLà#q¥0rg¹mM(ÛveŠ ÒåÝÜ$[¤àŒl´XMÆÓŒx9wlÿˆÓ5A:ܽ+$õ úß iÉà¶¶)—µ¥NøçèJ5+Â¥ùÿ1¥ô'QÔ3Šiþ G—œêmãd•ÃÉÕU¶ .#õù1½¤u> stream xœÕ[ms·þÞ_Éd‚‹·NšYŽcÏDŽC9MšL>°òYf#“ªH{Üþú>‹)J"i¾œ,w4öÝñ ì³»8ÊAE9*"‡cRž,ŽY%ã”3FYãN¬²D'¤¬·râ”&à„•M.ãÄ+2$'­áͺdp’y'ídE}:‹^“gœXi}Y¼`ѱ³¸p^žÁíÒ—ü Iná×Är+*6‚Ð&Å6yU±üìÈ(æˆ70Ï ÇŒæ1DÎ+o bH^ð: Ês·¢ò÷A1É[YùÌè DäœU<v¤ ptØÉ «à¥/çUˆ-» BŽæ¢ŠVð@‘¤9á­Ç òa«bù0©˜=†h’…سJ$Ù«Ä$·‚JADÂQ¥™“JÙIƒYe“Ù• ?C ƒÀëžp"ªDëÙ‹À¡††”sy8@ï¶<qF‚XÃVîf±ŠˆŽƒØG”1ˆIÒ#žµxϘˆ%ŒÄ؈…ÂpæqæÅ¤ k£ÀèÃ&ÁÐuïf18IDäD&QŒÐ‹ÑDôAÿ»ˆ>(‰šð¾…YÉ]ôáD7-„‚1B0¤ô£”çÐÆs°QË&ä  Ë$êB›8Ër†>˜sBÄúàˆÞ]Bœ¥·„>¼©¥$gbèÛz1EÙ`à2Q jë£È%ËlÊÑüå›oTs4OfSõ{™RF ʌꎡc=¦zÌÝ“©;Úz¤ztåø‡jŽ'ãY;Fë»gš“öÕhøhòýÉÛÁŠÁ‘<ûbx…GU‡¡´ÓÉ»«³vªã´S&f¹÷âjrvÚÎÐDóâñÕ¼l?Ìзßâô?—­4uÞâòÖðl–­Ã²uX¶ËÖaQÕaQ¹z¬b¢ÚÕö¨¶Gµ=ªí¹Úž³+ÄB‡ˆå»³ïOgÃY[–„ò@')ç’”«#ruD®ŽÈÕqW q•W q•W qmk{\ÛãÚž7+$ãz’Œ·Ë’ñtd|¡¯#ôu„¾ŽÐ×ú:B_GªÄB•X¨ µ½PÛ µ½VH„ŸB!4üP‡ê°â*ÅùÃaÎW‹=a¦*ÕT¥š:H¶Ú©­vj«Zžßõë1Õc7\[íÔV“²Õ˜lµ [­â¦8B?vl«©u²Õàv”PióT5?žÍïÍF“q÷Óof³Ëé_›æxpô\¾¾¼šü«=›éÉÕys9<ûMýí}{>Y:x4¹zÕ^ÕÙ2ìra»‹§ªy&ã9›•Õ×èhÄ{-êQÑ Ž2Õ?}÷ÏYAôÃhüçètJ æKÛ@´GujPE˜Ÿâw3ÿ](@òqéUˆ¸E2ó¦ 2‹;òzœ_€AV÷Ö£ qçù>"Lšàl‚#m„´%H˜ Ó+õV"ìýèüjxùfwü :€ü˜‚º–¼öÐh «…m5€õ¹xÜNKWUý¿þã7á_:zè>ÆðÆãwwÑ«…pú´¸r ¬%ôð1jÂBò°èÀ:u‚³X K°PÅ{@WÅ›è|ð:d³9 ¸¨²t¤3a„?š¸WÍîƒ.Gm0ñçè@ü4#`Ú ]çâ¢ÝcÖ£¡`ÊAS,1ˆ&° smó–³~;ÑVž{S´ˆ34xÞ:Ñ2i ­ðPLd-–LÓ±W£Üx¼N`² pŒ 'z88[.—æsÎKèrÆjæL§!·Ö(ÙkÃZLÉSX-q"¸‰Ni{‡7fq½{ªB<÷j÷å,.òZϹ¥¦ý*MkNkG,?Ñv~DÒH>C„©ó“»û4Ã=ÀÁÀêàë ú|àö˜#Éjú%.!{§½€ÃÔñýz•=À-<2f•t¦H²•?Ü;8²šòl.@¯Þ@¯A²Ð'PyKÐóC£s†µd¶èÈ×׺ۋ…åÅ/&Kj×ëìy­GNº¤ùÌŽJ&ÁKŠJûm'EùÕèõëwS¼r2¼ÜŸÐ"ʇbYéJb9À`©¸÷éÂy<Šw’úcàY ÚaÛFÇT!Øktµ¤:wÇ@YFW’)Dš$-³ZvÙΊ Tq±0biϽ’‡}àÍ "VDßÂ1ûPáökx«<^“¶kU B¢%Ù n ·,G¬òP5q2ýRÖ=Ðy»ktÑCÕùÓ¡³†T,V£‹¸ ·²@—œfxæO…ÎÄäk×m°À¹$‰2í0+„øp©*h׳ÏÛSÆ p`–"É.àVbëšÐß"ëôYÐêá´-9ÁæÅã£_Ž_Ÿœ•XI m¥ýGóTªÜ—Mè®Ü{2ºh%ùÐeoËOχoÛ;z6^ŒÎŽÆç-žlNFÓ)¤Spƒ9á—ÓYûöïŠÓòÀ–äÔCÒgãRe3–óX|²Úãõ’léu¶íM*» .-µÙÐõAáNŽNOÈE",Ãb!©ÈPR«àL¼eô}€lÅE"¬Y2°ŠA'¹”à…t8øÕpÿŠß N›ì4X ƒ™´ó©Ð±÷0˵Ѷ1š±X1–-8€·u`{uŸ{€sTCYÁá-Ú?¶•Þ“`ÛÉ­ÍH~!ÅÆà¿>l‹8+C¹²‹Q¦lˆ)Xù†‹‡V>d®$º®|8 $ç^ùúJ³tžµ´6QŠÅ/tY{ÙÅ&hãË^+l¯âèXRSñ,ÅÈΚÃÁõ‘Æ•2¦Ô®ÈrIßJ’9Zp4‘©¡>eW7eìæ¤£&Ù@áE’D kwÖ©C¿qâèJ¶GÂ‡ŠŽ±X®»¸Ã;É–*7/¼? }丹<›Ž÷(-¦V"WrÑ’v#è`¼©,O÷m0Exçµ'Ù´´HÿJæà@å¼çL.óþrÓ«ü%{÷¼vA÷¯%'~’lþ<À1‚øä®±Q(EØþ±­æ¶O¬_K4rW]ç’Bð0ÁŒJê"QË»‡EG,%{.°6ñ>À­ÌçZYÌýÚ˜aÐGI !,$0³aøG¶÷_Iú8É¢ a¬è„ê×ÃéìÙñÑþ ’¼ FÀ ß){j)¸âÑï{N{©b®¯qÊÎ$ÙþœÁgc,Éï‹ßÓÙõ«ý=ÐI• |ŽÎa94’ŸîÝêÝ)à†,{½×…•Ë’bCeóx)=€Ø`a|ptQ’ª|.ç²³g't;2¸bª›JÿŸ ÙãÁ`>$ÕPVžd÷T—÷ )("”m¯I©Õ³Á~ŒqmÝDJÈ©lù‘-ðÎ-[çÅgQê·œ¸;:çÊγ9:Ä”ò=ÂNè¶ÜRŠ…-ío‰wím±m¹îœvu˰«YuWÙòáH9¦U»®«A¼]>ÝØ.ŸöÙ.]‘xùèå‹üêødà·¬GÀ—Ý)GÌ7¾_—#Èl,GT­.G„rwÕŸ59®¼­¿SÁÄÓR£»\T0†ÍÛæÃ*†ýHC>drVÕ|ÖRcY!]ã†T·,bÈÞôÕUŒæ×¥!ôP¤‹â)Ö11áiÞ΋×ó"u§õð'ü Ê›Á^™0 p¥¶ñÉÀm^á$éä38’ ƒçáä[BñüÐë/ù ­d8çè„–oûG·r;T’ÒÚšEJ:æòÕ§6æÙíìýGN›Á-’Ãa³Ô¯kv»»õNÐæÁ6­ò¡åüƒ«e¿÷ÙnÝœcb¤DŸóâ¤dis¾Êé>Ù—Aó®+§²ÁÛðŽ•Ó-3Ú¼œeˆQÇ æYgZ¿1Y’G¾äÝm²ef‹fÙÀê¶Ý°º`OÛ‹÷ílt6\òÿòýiuÇ…_ûëõ }ýhrñj#›Ø¥ÙŸŸ<úíû»-fKŽ’ì]Ž’òmŽ‚Y°‘£ÐŽ1Ábùvp·?OæQ‘¯®–ˆJw¹ *?5ƒæÏD%óG˜ ˆÞ—†n1w›©Ü’î¶\ÁÎæ õ=ÿéû—¿=*´µö„¨ÝÖ^¶·´ìfåñåÉH¼Y¨ÄÜV¼è%…nì‡)— %µÿ~7¼h^Þ·ÍdÜ6ÿm¯&Ë*ƒÓ© Þ‡t[a¸É–6oéËßÖ×Mqn«.ó± 2P×Õ<½~Ý"6‘`äw,žªy;¿› Ø®ÕÅ£hï©A»endstream endobj 393 0 obj << /Filter /FlateDecode /Length 3183 >> stream xœYKsäH¾û.»Aôj‚ªw‰ÛÂÀÂÜv8Èê²­–Ú+©íñþzòQ¥‡Ç3»áƒ¥Rå£òñefõ»²»ÿÒÿ¦»*w÷W?^IZÝ¥M·ûóÍÕ¯ÙI_(iÍîæîŠIäN]ø*윴…®üú^÷eQªªôJжÃcu(+qÍ|JÄãòò¿›oQ‚[KpeQYãAÊÍxÖûòQÖ'úã>‘l”Ò²0¦R™¤9VNz»‘]÷Úþ~õõ-¼)ŒÒ!sûÍûv¿°»#j+K«­xá/RV•‰1«ŠŒÀ°ðÞîJ• ÌïïÒ•S^¬9³Áœ¯*ûqýå¼±ÁÆ"§Õ¶5É´W¶¨B%ÅËþ ¥*ªJ±)À[eÐà†K3½!„õê3QØpÍË¡ZóJF ; Ç´V¡V!8 gðà+>üß.tHclг‚Óì‰J'bÞáÅõá[p`Te G.C±F’ÔÝϧ,DöÇEæ+€”¸eÓ—b*öi¤X‡>…Kíűý:fúÊn™Å޹d‚]Ýüþ{1Åþˆ$Z|_‰éœžƒ_Oø¬1-Ø]ZcÄÝy‡•Ö)1tõ”?HòS#ômiÅcÝI%@·½…  %l¸y‹Oí}§)frÍºÓ  ã¢•ƒ`™8YÑÀy½ÊBL|L‡ÂÓâï.= Õ¹¯O- F¢/l6’"–´6Џ¤T2«Üe¡Ö ë`æîøšBÚÁÎÕç³ç.RT–Pz¶1ù«wm‡ø½Vh^Ð÷ŽÄÀØ{î J{EkïÅ»kuØc(M0q?fHH!'ž51þ‚u.@˜¢– úäZÂ…rV‡.õããpN)A‹Ó' úóòüuLòÁ§ó>‡êó[ Ÿö¸âÔjÄbŽYz¶˜aÈH•uxâTßžâ¼wˆ°4" ¥øŸj´ &Å€Ô ¸9(q¬§:“b@càò>:d®)=py"Û átz™#)v³¨Û”u?ñH)¤,ƒ• ˈ÷ÐÞ?6ÇÌ»FˆŽ8"byp!“a®7uŸw𤴠J"ä'–`Oâ—EBøažVÀ3;>ƒ–öXDçïC"ÄÒöËgïâôà¿„üæPªœµVReJ2ës‹\•!|ô'(ŸÒ>(’T nÍ* SG(mÐ1PÓq†ÃSâTâ‡Ø[аPic#ÍL û&¦w ‚÷ Çø~_Ÿö‰× Щ¾ßÏA‡äóÞ ž(èT¡ûk—ÓDí-¥ O9ñüÊŃN!öv3b­aüxŽc"Àz3d‘xô» až_ÁÞíoP!Ë÷)ûøcsî³âÄF—\ŽÙ!ø†ð†=1œU-]:Ê:(ÀmmÁi,9òïàFì8¤!pN%RÌr|JU(!€ ÇIEYwi2kÿYxUe(¬ú%ðjµI»(xËšô®ÌØåºöîƒh( çÔo:ôS1ÒÐÂë ŒcvÁ °qÄ t(ˆØ“P ÈÔÙj Ó…GEsªûû V½‚ÁÀ>aDÛg~”œÐTê —úZˆ&&Ià†bd®0ÏËxè¤+ÏÀœÎº©B±g˜ÕØA @EF~¥Ö «±äòë±=½¤w€éºTS¤@,ts Ãüyd®ŽôlNõ8¶M=÷§ô ÌÆÕÅÃy0o1|1ojV’0„LR .ÃSBÊã8çÃe¤¼5eIYYó#¦¤M‡=©®*¥u Çá<ätI§&< Êê -͘aå<ç,Ë à¥¤yj1ÉLüñ2Wz¬6/‰^2G0Ît–“P˜iòlHýŽ®¸þ,ÀÄÃÀ#æ˜|*³Ú°À‰©B#?µ#êôÕÒEwI%–µL.·e|^ðC±–ŠØÍÛ‰Ÿ2ô»×ihÀÉÚ˜Ÿí¦²ÿÛ˜“<æ/ÙXiÛ¶Dœ²vex¶2¹2e!ž—ÖuLrSýu‡¬:g•O³6Zceç1š6˜¥ˆ8²; êá=îÒ´ úÞ¡ý˜©ÄÝPwñyž_ÎÇbé›þÑç}0̃«c‡à­áÐÄPCš@3ÿ¥PfmáíÄ-!ús^×dª9ÍúfŽð}î Œ é4Í  A Ø4@7{ØW’NÁE3Œ{\y‘ƒ ž¼û—Ë0¤.2—à(ñ’6?£Û~Y+£-ÚÉ1ŽÎ/sã÷´Ø¨=%œ$xÒì`"ȇÑÉ0—õ:v©kBHF¹’º™ñÜÍ´†óȽYI˜” öÇaEÙŸ§¬†ÜˆOíù2®ºÙ/ŸÉ§s Ø{K<®óc* àk· BàalQˆH`öNm½¬>×H¯‹_ÐØBZå¿Ü„B•Ön·Ë=´8A–ê“r¾â®ê `ÐÒ¯ï8E Éd0Ň®þ0Wlåð:2M¦ÜŒV¢Å èR´Jœ8ãqùú3M¶e4»ôorÃ8‘&ÈÊ»¾a¸]1:ÅÌÉrIZªµšnž¼`Rž0¨2ÏqJƒ5 Ç8ŒÛnõ^§æU™o$($ :–4"à@7[F§éu€ºtäûUëµ7â²~i¸Í )z6[U@*é,ùÕ,ê#¢ƒ¯(Ñ®ó,–èÞˆGiJJiÿ¸ê Z@—ô³e±0Zº……4R˜Ä™GÊ ò6ÉLm7DÞ½¼Oïk¶#¯ÒËÈ«¼£FñByî—Ò‚_‚Cô ßãGFHâ'jüÜŸ·oÁ@û0Gi|É|äëÙ g6 A´.M´Ty¼ø®N“ôv39Çø2­¤Q! ¶¾<øÅíHè¥ÈnŒ¬Ð"âdRcÁ@°Áát;?Nm×þÄ•Ær³=Ož4u2×y°ùèè±/„ý¸%…æ&!7¿<-=óÐ.Zc#Š&àûlT¾¤u¾rÑ9ãmÜ)-ÒÆ1>.‡Æ«ª3ËþKÏnØÝÐðæÁ8½pÐGö4š¤¤ƒvmÏÇZº¿û¼×ÍØËñÔ@ôPæ<¨<;·AŽdqpG Àxep¤«°à#ó:¡ 付pn7’ðD°–¸ñ"­Í­]Òc+;gÛWˇÅ-)UŽÇ(…ã0_1D!þ†¶!5´?\Æy+W;#5µ¬}ÝÅLUÑØ ¹ÖÝÅgl>¼¤mYö9µŠ4”x¼g`$mx Ýþ3'ÐdÁíeÌóèXn1»zŸc†ç+ª&ôfÓ…–¦Kòri{ù§„UU­ópDÍÈ=oÁb6K‰8†,?ˆäß6¸ˆžty¬¥Åj£Á¡”ºRh( CrÊQ_aLaÀyèlTðüKšÄVò¯7Wÿ¿ÿ§¨endstream endobj 394 0 obj << /Filter /FlateDecode /Length 678 >> stream xœ]”=nÛ@D{‚7Éý~lÀØÆi\$’\€¢v¦Y.rûÌŒì)†À˜Zè=±ûç—//Ûé6ì¿_ÏëÏvúi;^ÛÛùýº¶áÐ~Ÿ¶Ý4ÇÓzûhz®¯Ëe·þº\~ý¹´hýÞ¿-¯mÿÃîšî‡Öó±½]–µ]—íwÛ=c}ê½îÚvüïÕƒßOúÇG'|”™Çi­¨SUP¬^Ô‚:g½gœYª2Žx¢>VUoUA=°®UAåÍǪ ò‹æVÔÆÚ«‚ §@fñD ƒ:±ÎUAYKUPÉ\¬*¨Æ ÕY£*¨Á 95Y!W$X(X W$X(X–ª .¬p-ò-ô-À/R(T0ðš˜Ì^³‘ÙÀkb62xMÌFf¯‰ÙÈlà51™ ¼&f#³×Äld6ðš˜Ì^³‘ÙÀkb62ö1mdÜȰi#ãF†}L72È™‚Ž}\97r¸º|¾W—¯Ó×áêòuú:\]¾N_‡«Ë×éëpuù:}®._§¯ÃÕåëôu¸º|¾W—¯Ó×Áëbv2xãþÏϳÞs9Àb2xCÌAæoˆ9Èà 1™¼!æ s€7Ädð†˜Cß Þs9Àb2ö mÜ(°Oh£àF}B7 ìÚ(¸QÀ5äôM¸¦6Jn”pMù&}®)ߤoÂ5å›ôM¸¦|“¾ ×”oÒ7ášòMú&\S¾Iß„kÊ7é›pMù&}®)ߤoÂ5å›ôMÈ¥“‚ çšÎ6žmxÓô¶ñm‡M—Q§QQU'UÇÏÖõÓáÉËñóä=É÷ó‚Ö÷ëµm7]˺vyÛž¶öïæ¾œ/<5 »¿Öchendstream endobj 395 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 10200 >> stream xœµz\SçÞÿAäœã¨ƒ4¥=ÑZG]µÕÚÚÖ]­ ÷*ˆ@  +‹ì';a† ¶"Ó½ZGën½µ{]ÛÛ¡½­O¼ï{ÿO{mßûö½ïÿþÿŸÈsrÎo}ßïï÷pêSÓžžÎžñÍîç£gf¿ðâ÷¹³f¿4rν—_™ûêk÷'˜¼ œ!ˆgˆµÄ\b<±Žx•x–XO¼FL 6‰Ä$b1™ØLÁ!Fcˆpâ)â‚&â‰AÄØ ÁACˆ(ìo‚"ìAOà 8ürð³CÈ#ù2yÚA¢—ѵ fÎ2rHô†®}bÜ'‡é†/~tÄè‡FNùChTèG¬Ý¬ëOÆ. 8ÅEu·²*Ö»‹sjö©—N¿T(æ˜Ôf5PÒhµ‹§Ç´ÃGI€T/ô$ë!»Ál\øò6«½¨‚Óu£ûf÷õºNË™ÃUg\‡9•OVÖËRÄÙbE7~ó|$lå(eJ¹JFëIµC…Ć»9Yn^(¥M”ÑÕªçc}=†úL÷¹çWy‚ýwýÿÉæwÏmYi¦e$ÚŽæ WÐvnU„¶ÂhÜ€k’ Ã`œÈµSz›Ò¬´B£Tp•”|Âb4MóÀ¼CÛ/D^’Ü·ÀîÞ·£õ­ês²ÁŸPH 6JtâR@—í.P `«ƒÎ×I³RÖ%§1}uŽ6àB‡«ÜþñžÐû7aÅa¬#uB/§ê<Ú}܇joØÁ°rpýé«_™"0ãú]@5ÆJ?ŽovðdCrˆžÜ•³Ÿ{‚UHÅÖ¼¾sì$@o]y¬ƒ _¡@‘§.}úz×Ùo:Ñ ù* Ô«·’öahÌ>ç3ˆBYÑá€ÊPFˆ‡4Ï?ÝÚÚÓs\ÀzŠ<°=qKbäshÊDôÜ44U)SÈ„–ØÕE Ëb±Ìáþýd)¬á“ú•y ·ïع{‰n Nõ)ä}8û'øÊ}øÒ{äXì…Å .’›¥ Ë¥Vë5á8«F¼‡³J&|ðŒ§3|æsÿ3?†±J{Qã\!.ºðßÕ: É»ÚL^G#ò×Òh&5÷Ù£"—X÷¾'=¯-֗芷Ô3'€Xo5@®Ê±_ÁÝžàÖóØ¼ƒT½O»—û°–ŠIP%H% cxþO©vX€£$‹P¼±g×ÎíKô(…’çVõ_¨FpH[–\,4$ƒTZáe|6æîZ£ëD@ è¥PG6º • #¯€´ÍóœqæK,í!ù07² ë_ÙýK+¯…±ZêþYKÁnò^ÅnZì‰'ãùæV.|²])ÿå. õT®R•rèWVµ»ÌUݶ×u`MÔ¶¹ «E?Ð.Ë}„¡öø`WŸÝQd7¼î£rA¶>БÙä2¸øFøKºÖ˜Ö}–5¶­ÿ°4?‚»ýÏW†6ƒÙþÉ0Ö¯Ùõ‰mÒv@ôáá︔æôîöÈrƒoNµì±¯(gé³7ŠÛ/tíÃÊää… ë® ØÌ Ÿ lZ‡"G&RFG*J«Ê$ÌO5§ú©é&ÂAY×s¹y=©æ(zÉZáFN.6ï;•uE[œ9€–ió\ĦÆx ¦åFyÃ^hµ2«ÕfµZl£q¹M\J<þI½Ø¸üË`?¼È.Lm‰+´Ã`ÇØ<V=¾+º¥ÎÐÌX}äŒÇI|²”0¼nVíÎÓ+€’ dÑë÷-E#¦½xü“]LÂÛòëà2¸Zx£ù­Î›Ÿû Àaà㱕h°Q¢Ïtþ6î;7Ç»gã&4ÍC›Q|-‡I·Þq]<Š{^¹(úg¸>! ýå&ßÃkÃXïÁiþ‡ìÅñhðdF@±º?G¥$à“œ)Õ{Žfwa“È÷‹Š>çè>r ´Ú-_°n³ôÂVÁ >4FP¿²Áó>ØT×›Rç¿Â)õß7~Øí#%@¢—â¶–lmãB'<œTt‚6šI ¼C&òLm\u°ÁŠqL êæ5RÕš=\$Eç¡”êô®õ‘Üp:±›­öñ¿[½üÏAÕÔ%s2 ÇÎF;(dH.IñD¾-;Nƒ åÇ s8prAˆ/‹JJ2ur1øO M•…°nñŠ)_½v'EQª•1‹ç} ._q\WÊ@9žÇ×|…ËéAp¯áÁ ½Vâ€Õ;€Õ^jßÕI9 4ôÜ@CãY1¾y©CMÖ¦¢> ©>  ÄÊT¸ÿê0å4½~xZóäÃÓ,Kn)nÓ®«%­ÞkuW½×l¥ÖÒü’òZOq} yGád#ùd•Þ•kÐj 2b¥)‚µüµ²*Eµ¢j-|–“W¦,Ë+ÓÙÔ6`§kqö^yø/„Ð-€übIÚƒÛùó˜5Àåø§©ÖV î¯OS Û²èµâ 3£÷U5 0êM€®«®®ã²xõéU¼$hÿK_î¸ùég'¾,aŒØ¸‰ú£¨¯¡±’¬RîN‹´!}\ã1s‹©ÓÀï^Ù4­eZý4‹Ì$)ÖaÊ[,–ÂÚ÷8åÇËOT·”ØKLNÚ@š²í9–œüT‡À‘Z÷*¿¤9©E†É¡‘,6šŠ,M÷Þkù±üh•·Û@ûÐk<ªFïˉ Ut@žœ±&m­0âÀ—ñ_%}­µi0½¢=AN¶­¼"ª8Õ%{M*s&e: (Trm"¢-™›…[|’üyÒ§ýgÕ6ú‰p€`º‡`œ.p‡¶} co^÷„±vÁa~»ÖÝ–ß šO\‘TÎ7ð@"IÍUÌ˶&RcÀ^úÕïùïœïò÷2ö½Õûq¾U{ì·“IñU±¼]î[©Ÿ_8þbÄŒÔ×VSŠSØÌ¸ Î*Pj…Å鯡IìÉÔ›Që–1yäK\褿…d×·˜ºséGLtì¿V¥8W’,¸É¼FB»Õnmªo:ÔRc‘Ûå6EÃvNËÖ–--[ËR9vYa6†þ~½gºÃG‰0'δŔñ§7®ÿpý‡›>ÊËW*´:Õqâ䱞ž®‡¯àÄEñ<ªº\"ÌΕÈ\¹B.—+д€#eˆ…"©L&•Èix…êh0µ35>²¯P >ÿ@_Pyÿ; œÂªäŠT— "µyǬÆÚHI¼ìÌëv®y% °Žá¦Éö"‹*”€ªÒÒgY•«²´'SÍþúµq•=(@Ž0O¢§ypŸOLE‚LWº/®#¾3®CkQ`pùO±³çìáã TÝV\ul ñùY¹"l@.7K$ædÐ:2­5¦AÔ¬3é±ÅŽbý^M¨VQÐýk°úóàº@ J¨/nô <Æ–sÍ‘='Áh8òî/ð‰ûs°Úµi—8:š /c²úPÇÖìPïIŽKIÜ—±Dƒ½îôæ¼lX Ó({ǵƒÇ0äB¡ •˜¶*âG16ûuÿcìý^ÒÓKwäÏ˧ á‰|$z™‘ëpsý­hª°V=&/ðô«†Ã‹Æø1ÒŸæ e¹\}õÜÊäÅñ®mÏrï*Ïò†ySž]†=œ+©$R>G¼‹·~#¦ Ù–Ü‚jKa pѬèêìò¤iš(ª'±ó§Ãðé›uLûOíw;Wv¼H˜—yT匒#M¬Oݾ>æÓø/b?{l ýÀôv#–|°Nâˆgë ü»ŸagäeJA Všá­q•×]›ã^cĬÑhÀtôö—qðÉ«[®y¸F«ÅKÜŽuM–>57IÛµ;yî·Añpä-.«å# Cj½™›±i­j›6 ù=röŸ¿é£àö^`º©^‹µPqæP+Ö«v㊑ú¨ìïæÀÁ5ø­V‘Ch~ ?…&žE:Ö³óYj0WZŠ®ÂU7áê›p¥ÝUPi­4<¼ÊÙ›¨J”äöu›V_ õÏ:é"J¤•g£ô‡”NU©²tôžŸ#á“øk+|r´¼&Ï©6g‚Ñ}®3xüO¸ƒNâpÊÐ+…Ódl«ô¸ë»Lm8¿‚IÞþ”˜äØ•/¯|yõµR…«‡–åkí ¼‡uÍœBÚ½š¨´Ääý‘ÚÝØgÁä7ð‰;ð‰¯áp‹ÕÖËc”f9ó»¢Àú úZ0¼pYu¨F·Ž‹b©„ƒ;*"ñgŒ? GäÌþGv_¬jss «àTÜÃs¨„dLRý(ôíC=»˜ú°> C]° ƒ°¦“¨JyJÌ.þâ*Ò|É-šNuçoUúXŸ¯¯DÞ£j•!íþ §—oÈÛÙ¬]ëm—í8Xv,Ia†ST"ýû-‡ÖÄÖÆÖÄÚdVIq ™@ )ýg¨Ëg­8RÕqV¹‚ûp!…þìÏJèÈ4ˆñù\=P 繃<_@Í•`HÁ,6fÐh1‰ÖÁd¸ N†óáz8å%8M?Á°: ãlñá¬[*œÐáHðp(»”ªƒOÃ!g<%õ6ÌMì$|Qq½ Ð$€†ðq Zš˜¯Œè)Ó"ÈdÁÁZ—¾BçÂaš ûtÐxœiÜEaCm0'ák¼Ûècòñ1]ïó|ë^ð¡?nŽñäî4óa.”ÃÔ÷8ê €C$ÑwPF«Ñ7lè¦jò k™[äP£©ñš½é)ܸÝkó6º+ =µ0âüm”{ D¡ÞÓi‚oÞj8Æú^ ¸…­§D"Y<àƒ„âýÞÌâ]|°…ž_H¹þ)WwE#ª&23ÉxsF¨§‹¬ƒ¹¶HV¬)WUh+ýÁç§¿h’âWq TCUmQ+ÈSá:•ÑYŹNW~iqCri*f < O.jµµ IR 2Jr¬4ë¯2»Xh†ÏµqæþÒ½ué\Ö/²täeÛ¨ǽÝùzÏ#Ï;êü%´’š&JRVM­¹*gð¹'áCvuªèêûç=[ߨºa•@ïÊb²+´n­›îK?´ùÞÕZ8Äíw{‚Î~g¹á©‚ýJ%ÛiÉ4g®+_q+çÐwh/rm”Ck—g›ùR5#‹‹ãÇ‚u@p:»½ÒVQ\Vôíå“0@š†KГpJ@[Ð$,‹¢žk™|s)s~ÝÇñŸº€ô=V•®8ÆÎí‰ëÙOç‘ÛìÝcαçrјÎýp>¸à¨.8Nouš'ø^k~ÓK•m«ÁZ€‚“Ѐ©Ki~6;Y’¤à:>ÍSßèu7œ,ÝYÂýÍdöJ“k0K“#MÄ*¥|^ÍvîC”†ÀwO²>šQ‘OAþxFýØÂß̨ërjÓ:¶ïÁ²Äô5zRøy5¦÷Z<æ†ÇëÃ"xôn+瓼ãw:̓)¬P“sé%XY¸ø§tšuDSâÔ9ÃOi»îÐØäbã¶ Wš™)ÉÛ〉EíÕÖi¼šj[Z™Þ[¾½â¦ë‡ð €#Ðô£­4z}ĆÅTu~Q óùñOb4 ™š‚ÔëÓ¼(‡ŠB?øù WõÍDêÝê]\TGíKÑGbà‹J,S5;¸è2„† AoVM{33ÓfÉf ”Ë\à´7Ý™†“+]›%éXˬ¿œÑ}ûüå/¿„Zó?º «4Cÿ?02~ðU𙯲E½ÃNÓiË{m žcÆv¬vIwµî@ {öîSÅô®œIäù‡ùV11'1ñ9­‡˜Fò"¸®tÍ´%šŒ‰4fã½#¡|ú¥¢Ðûغκ?¬1NÿΫ½dRÆþ°è-ÀJ -{Iaq‰3ßuxgc”UáÈR:[¬Îað‰0 Ÿê£@º-­6§TRž[¾ÿxÌÑýÇmf‹Åj©­ät:yäÑ\…)›¶D²AòþôŒ¬77p0×K¥´?µò)¬WMa1ÒÇ)þJdßšìEƒ`Т@w ÀW?:!aª À[Ô{§¬Ý}l ë´r)}J™ñ3žÛŸ¡HÓ¤ãú‰vóšöÑ\çi?ñ8‡£~­Œ©¢ ܃›W.¤š½ºÈÿâ,ÌðõŽÁ›¸öß6>˜ƒewà¬*ªTë‹%E«Ðšu­ÿZm°fYÒ*ñZª­ÎcÍ9Ÿ9Ÿ= ǹÏ5•ŸÐþõ}ª@…ª4˪à˜ÔPƒT!¦äÛѰ]hØ6ô„*[™­ÎÆ ES¬*R­‚Ïo†/¿ gèÌXÑ&ÊVÝb¬t~@Öo[ú»‡yq¯0Vû?}ž'Ä9Ðô[¬ÜIY¯õ\ÇѶ¯ü\Ö¶ÿËk¡¯Æêï·¸šÚ½µ cÿª}ÂMØ"Å••5kÁJ°:.muï£ÀÜoû[Þ÷Œ§Tê %…¹f±%«~*ç iF[QHzŠcÉ1§UÈa™ÑTk)î‚OsJºœÝ%]çájŽÉar±R&r³Â¤x­â”ìpîtîè œ™kJ)ÓÑ&²˜ª,%Ã9 Yí0ÿ,>Ì)l¯>x9ŸÍ8>/ðÉ&ÐkŠJ­J§ŠE'arü¤„Éꬼ,mVo\ÔEêb4Þ¿ˆ£-T€b‡û Á h«9y•d7(PºÞ4åYä O¯Ö©tjŸ³ڃ¢Ñ(U‰Ú©.áÂIù0壔÷ÁÁ½YgÁŒ´î¤ÁÛ—ªæBe ÿ–‹sUz!øÒ[­Ói€ȪÅ€†5¢…Íè•X´ ÓÛa*•,À*«ÊÆÈBc…«¸Ž€ƒNÞવ0 MƒƒÔ&•EôøÐééÇfX’úÌ?ü¿œöOÿxÏS0òÙ)qH¥Yß *’|M®ÚÚªL_ÃúP«ÑkÃÑöQÉš¬T ¿¬ïÒËx ÞÚJ_È›x_‹ßï£BoáÇnø±(Èæö‡A'½Kæåi\ƒÂ®Å¬¾ƒÞ!Až)Ï¡§f» ß…ïR6»ÅÎÕ;ð¿±>ºñ ¼Xa š¼¼Ç™FW“£+LÀ{ä>öÉë¼#Ô½œâ†)ä#üëUmëˆ/â§šš¸ðcø å©Ì‹á" œrùòþÇ5WûÖÞè]›†[0®+?I¡Ò4æ \—½¢êÄÛ gøÕÂ4P tZyšÇ]YQ˘¨+ êÖMFC·!’é5´@OŠB¿€Cî0Ö§pe),¯ŠŒÔh”X2ÓJ›ÚRZÝ\^ÈÔ´GèvùÅuI¢dARî^¬+NPl)( ÿ™€>þ-åúÉê¬Êô fJZLœ%V¥)ËœiÌ2ÐYäx4h f2° `£¤ûäî«¿TVh´•L®\!™@àRs0p)&[²@³ß¢ °.*€€kÏ÷O¡Íë üùîþP)„„(Ë‹`8lV˜øtj¿Þí+k®Ö&hu@¯e~«-ad@íõ Ì0ÖýÿÏs¾?œ¥ËJ¥‰‰ ɉ‰z+­ÊϵZ,f£™ñ8;ª?kM£Y?TdWÖ}N¯ë/diOvŠBY²ŸÐ~¶L§–-qä•0þ£$+ÚjÓÛ‹‹­Ng®-‹Ë’)òôŠð‡‡H-À‡þ‘È ÿ–…Kj5Æ™FÉWe#Çž ¼êÔ:µ^M+-iŒ¤ ˜l&kÉA §àPx"ðjqX‹]oS™Uáp¼ÿÅ@’Ýtÿè±õV8Ž”ñ,(®.…´MeQç$íËÈeÒöIv‚ttÑêÓ¾Êjc£Ôžô²$J™¬ÿ3j„v%ú Ö»+áÁól4'{z Á+¢®,lÚ"ý8ø\>í»]sÙ|\£Y·à³ p;ZØ¡ ìP NeëíÀìà¸h¹`j5®¬Ç \-•Ã? ¯Ú–Y¢ ‘ ’^HD(Ѐyqe¶6¬{ÎJßÎë2vª»9ÏèV ÿ&ÁPÊ/ŒÕ—BÛH],—Õ‚‘MŨÉËŠzð (0àkÑpÕ+[ŠÀÍ-=+ ûo3¢á¸Ëˆnßñÿˆ¥ÍÐä8ZJ?,¡vÆê62ñ<øY@Õô>ÒÜ’dîäúß¡ 5VI¶4K!ev&oRly¤Í úù‚Žý&Ü þÚ_Çv¾u¹ý-@ÿØ8e>Wþìêe+—nZ»iõúõžU@BËü,Ê—†ðIåÃŽX•B-´€LÖóõÉ ÄbÁù·.œ¹tæüÉËÍ_Ð †Ž½†>7}þø„ªt_mU•·F\“ Ñ½†yÄðüÅÚ;ùÄO'ÜÍk%b‰„—´/QÀ{¼ÚÌjó:=%µø{ty~m>¨¡Y-Y¢»Ò_tý1ÿ[ öbÊÍ`ø%4³7f®Ió€Ô Å,­¡Àë[bb ÆJ‹ôŽá Æû½{%¸p* U…­­V›±Vk*¢-”Þª1©Œ—lm·A±¡ ¸ˆ·"Ï¡pfŽi¹B#WZÔ®<¦:#(Þd’)ö-Š z÷ÁHÁÒ±…ýzüIp]jMh; zõ.\zgѽÀœˆôßb{¯:èÓ]ñ¯­N]°FÌÝ/Ý\ Ò€Ò¢±ééã$ëÚׇWNXÆŸñüš•5'â¹&˜ÒÓ ®Z/½Š“ÄoûêgH^‡ƒ¯ì9¿¢›e9DÆÂüJ‹³€f]:ÞØtê1Jþé„¶×ýÚä/$T‰=µU•OF_«Ó-÷QRÂ1>¿GñÔíE˜ÜõÂWÙ°f&¹7Q÷&`ƒ’öb?Ÿd9Èýúžo‚NKGnzÌ¢i̲‘óÐÀ\!G“§Æ}Ü¥¢ë}lÖüdÈC’úÕ)£Ý0ìc_ kŽ}¿Ëå_…±¾ÿ f[ôÎM{\ÞQuJJš7åÃÙ÷áП¾‡#!±£á\Ö_¶ƒí™ññ4Œ¤jUn•GG‘WÀ庮«Õ ì´‘ÒY5f5nWr•R—˜½5o/Ø ¢ó÷8iÖ_jµI®#U@£Ö«htRe…EØiÆÛp¸¬Ã€ïOVôôêU²Å+ã¸b™P-KÁ¶Nþ;ýÏ?K7C"è7ÜèþÙÝߣ2£’cd¹i™8 •Vµ¥¤îPe1S}¨¨ tÓí’ yiÐ:±,Ã˘É6‡¡xèV @ÂÙ¾i:Ñv´ùXm3ÇêpØ€“.DJ²ô™`ØjÖy íƒaANÀãÝ©(püš­£âå±¼””$^f4ˆ¦Ç •÷îAò úókot1¬»çÜO_óósGf1 r–fñúœ™´Œ+Z¶ŸŒw¨Ê| =mcƒ@Å™ÁÕ'N6š³³Ì ´‡S8¬;gâo&ÚÒ³_ݱ`Þ’®/¥L¥4ûú•ÖKï¾½~¾ˆÆ ÕŽëwFG'ktM äÔµiÎIΊ·ºýWøð…OªýÏÔ<ÊÎ#þ'àe¶³µ×,KKIî×ÒydØcK«Ãý¹¦Ìåæ²rÜbW _,J\ø§¤‹pÁ—p=œ‡çÀyèÙ&Ë"6‰±š ž›„F¢7G¨¹ò8ÖVv’ÖÁ06PÏ{””z)òt¼–PÁQ¾c»z¡•ë´—YÊ}· ±7bù4ÜG„Õ¿(€L˜²Åñ/~DZS\) ^w5fð-5"ÖEWútÓ{ÿˆÕöé…ú?3+₩ðu‰.ëí~ѰÝÿ›Õ¸ Ì£zünÛBús¯ÀìßEúáì"íßBªÖèšéß@ú¿Ø>ÚàOøce wüOʲ—°Îê%¬0 Wÿ›˜ÚÓOCn©{qÚõoÒ`ŒÓÿ‹~lÈp÷B0¼…É~®:S,•âô¶Í Ãêóh=œ‚†Z4VÐXX S\ò.Nïá‰p.€³|­³Üáp¸Õ’oÇý{E‰›¹^È·¯^!ª„þ2¸ ·‚3wª!±Ìû=Žû÷þÿ`×vž*?è³Ç2g$&rW-¿ÐZnÉË/4ÚLþÜzåæÙÃõÞãQÚL}7û0 a¤äšÙ»À\šõAb¹ÈS[^å®Ksò8ü¡•˜Ìâìÿç£Ù­1ÿÂý퓲GÊ>‘ÿ¤-\üGÒ”òlI ÊE55eî£[+£÷$d§&0¦U¶D@OEÃ#QˆÜ  .l»ÄÖÊû-ƒQÒOh0×c»Z{Ê{@ ¨VU˲ò²e˜“e92KUôcÃ?lL(|NÐoO¯IÿU´‹ðwô‰vQ@´wü7¢½w]ŸhÝøÝºßÏ4~¿¶ù3Ó`u¤Vdx|NwÕyžõk×fîßÁˆnpÆÜ FíBCäyÀ1­sÙ(é. ª •ù.šÕ|¼ê¬ïtxhPT :‘¤©YfWàÄTXkTÒØÁÁ †"ˆÿH¢Pendstream endobj 396 0 obj << /Filter /FlateDecode /Length 397 >> stream xœ]“±nÂ@D{…ÿw» ¡kHC‘(Jòæ|Ž\`,Eþ>3¤H1–¬5ûIJØ^ãp­ïó9–kÝc7—Ëù6çRË÷0VËUÝ ùú =ó©ªÅþµ¾~¦Rc ôw~kOeñ› –÷—ò¹+—©ÍenÇïRíš&íú>Ueìþ}µÞÞß8öÑõ2)Mƒ'p•àŠ¸N pM IbL 0-)@#zR€NÜ$¸tõö”””…mR€[b—`ŒgšO J¢Š"‹"ä¢##J¢Š"‹ ƒ¦aã°a#ÓVÆ­ ƒ¦aÓ062meÜÊ nÒ7êÔMúF}ƒºIߨoXߤ`T°cR€GbN 0!g4 ZI °û¤ñ“ïê.}§¾ÃÕåëôuظŒœF—‘ÓÈaã2r9Öw)8뻜 Žõ] xòÔž7Å«ãý>ϵηy.ãUG®#æícùûLç‰oÕHõ ÅÍËÞendstream endobj 397 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4801 >> stream xœmW TSgÚ¾a¹÷Z­­¤)Q;7 j[ë^—Ú±Õ*ˆbÅ* Š61ìK†%„¬_HBVe‡aQ¨ˆZ—º´µnµV«µ¶µŽcýÇe¨oœÏÿt¾hkçÿgÈ99‡äž|ï÷<Ïû¼ÏË£¼<(7lmТð³fMwÿ3Î5ÖÃõš'ÂQÿ,x¼ÆðD#¼,¯ ¦ø€lL| ¨—)›šœ–—á’—‘â·(Uë·X–—ûÿ¾¤(ê…)©i‹32³²ƒ¥1²\qHl\üª„Õ‰k¶„n•$Ïx{æ¬ÙsÞ™KQþÔJj5žZMM ^§ÖR¡TõõN-¢"¨H*šJ-¦‚¨%Ô j)õ6Lͤ–Q³©åTµ‚ò¡øÔ+”€z•ò¥„ÔhêMrEŠ¡äÔM^Œå¡óø‡gœç§^^×½—ygÐBÚÁ,b¾aW°÷†{òBØ ƒÃûG”ޏÿ¢áÅ[#§<0rè¥â—Ž¿¼àå{£–úxù4òýø¿üÊK±Q#õœ?‹28a®ÓµAÊÛÕ'ƒÜɤ¬F5e¶:s…¨zwƒÓ¶‹…Zús<×{ª.8'ÓÊvy{a[ ,_ËÉ»ªRk•¢T¤É•EàµsqÈbZœ¬IA¨À @,¤Á&00,ðù«Çf ‡º^røôÀ¼·î¾5QC¾ü›=®•q=ÿØÚ¬•ˆð5†s±tNšz1DÓ×úïÜ=n\¶–ÃO?^ U êÒuÉÚÓö†Z£PZ¼AÄòoêñÆž49gÂuJÝåµó@C9°ž`sE ðˆÿ`„§¡¥-KÆ $žÌ?Nj|FžYGóŽÇ÷‹"?ù >±ø%\+8Ì C†½=MMè"\o]P*5H‘ŒÍdP¤nMr\fr|~<ŠC±5YŽôNÔ¯ée ²cR…}_pòNÁhÏǯ<öDÚ— L„Én?wÕ‡©3Ñ,4Û>ã䲯þlâ#RÅk0é6¼%23:›Ò D¬†..ш”Œ"´ !1aSôŠÌhšÞþåÆÏÔß’zÎX¾Ú}üÀå[]7 CßM­ÇTiN^‡X]e,«‚±iËù²´ü|®ˆü) Ùgà0'¼épíòé€ÿ!0ãËêpÓÐÂðï66é’DOjþÐoxGÐÝ)Nét }Ó2ðY[_ÕAtïÅ@ãÉk#e[6q‡±7ãòÂ* ÊF›Z2z5eˆ¼XP2æŽó=û¨¿²T…Jô*ÁiÙI"iÎã±Nø3¼è_þ¾]â¡'ýÅð5×56êÇþ€~ÚqîÄå/:F÷Ì›ÓqTsviÊF,~çÇ\a<ówtwcDŽ푥¡(œÅ¾yx!–räÊç+ÜZßï„'ü`”g÷ãîCþî/vý“éƒzï8º(¤dITTDäBý2"€Ñ°ÿ8ÝÕÕeR”ƒrذÇÑDíy–tk¬6±«¡&ÓgÑ™’þÅu ¦Íf1ÛC§A:ïP¸ûD%‚ñ;SoO½<}ù:~Óúgϵ~€\A´nŸãé›Fx†sÊ”Ëò/$´æ´w6¶¶\gY·fe1§‡a˜R»Ïèù”Úžã Øé³û4äöÄöåß~Ø)èHݧ؃Ø[ßö=U0êãÑ{ÖÕ§—§šÒÌbK@9:Ìù¼r߉ÃYV®)k8 ]i6W‹ø÷Ëôeæ17›Æ\œ+ÏF ®IkdÆ^G—»3G8$NX+õ¹7×/ïöå_‚y_¼/Æ#ý8 Ãÿæ*n¢QriòŽô¶ècŠýˆ½²ûô‘3ŽAù†|$gÅŠà°ÅáÚaÃßïÄã`-óLÝj‡ë})(·»xö<ujÖ•f³XÅ_•lOk ¿ 9€N¢Söú†ÙBX0Ngå”:D®1ˬRz‹™ÖFmЧ3ªå›W,Bll úºÆ°U‰à8y†ÜÅö³ÛÍþ¦©v·pÁãÉCì!†ÿqb"I'óÌQS¼×jx©A¥rSaóJ¡sâî‰Î·Ê¶ó›Q3*­µlo8"¬?Ôp¨þPYµ¥ÆTÃh“Ü"/Ë·µ¶/)“s›ÜO’/÷=ô Ëw+N!Ö‰ß3µ¨CoU°Z©´%:MN¸P•·AUœ]”£Ê ô ;ññ'´UÞ¸z>ŽÄîüÝ3Û¼&Ñvÿ^0kèX/ÿ*LvM´Yìemˆ=r8Ý_´…ÁÃñštüÊ,àeŸ>zÑ~ªVd ×õ% |ìø˜û4n “W’‘“­²×pËÜ^|áøýóŠf'Ú¥mŽ–¦Žæ‚YµBq `2óaDä‡ÿ瘨¶ƒ€_ÿµ…„G`’_ÊÉ«wã¶Ÿ1"³ÁŒÊ‘Ie.Wñ;B“Ú¦D*¤*.Ѩ±'~U¸Mš KFlŽV;i‰YQf´>„amIߎ÷ŽCžs=­Ej¢MÒXTìB"w«Þ‚ʬ“éûûÂu–*‡±ÁXܘ®3êr•Z1sÜ0Ê{ïS¤H]x½ÃuÞÉk|àÙè®íSLÒ²‚#Øû¦bÆ\l)$Q¸-]¹-;"yÕr5qô"¤0·Wm·!;ëÈnHà$ªü”ή9–:ðãÀÕóî$Œù FŸ€±•vaEóNC b+œx¶˜®A;õæ§ÌH“ŠsVb¡P‘¥È*ÊÆ|ès×Å»}ÜÝ[c»x»€ñìš.ØV¨È'Þ•ZŸÒÉ•Ñݵmö›øC¼HG¯F«ò7į۔¶-a1÷`:¼vþbûg´”•#+kS––p%´ŒHµ¤0{ýÆÌõˆ}sÃ5ð¾ZÃ`TK‹FÓD8òâ¿ð{LèwÝÚÓùÌ¿¯3¹bÝN"³3ŽNÚRJâúÊ$«Ì±ÉF‹—^ÆÁßàe¹QÚD6Õ[¶_‡krVXkËk͵†'…îàôw=râdZŽT%ªü¢LáR<=O[‚§•lSnSå±:ZU§¨UÖÃÔ ˜LÞ‹š…ªj•EŽØç†À9@+åí&iÀvß~rרÂ47¸-8‰ëˆÚILÿeì5¿¹®j]Ç&QßGgSÏ ÃèðŽÞÝl 0J¤ÐËÎ1—ø•Ì;¬}bb.Õ€' ß³+wK;gÒ˜Ô‹K·,5ª´Í‘©‘h1Šù¤ø‚¾ÙôånFx‚p;,è൓’ nyÂxÈÀ)ºÊd©꣇xrX¨ lñV±Ï: †ÃŸH“óÏ‘ï"ñÅ'ÔÓ)4ËE—³?ÒûÌýÁjÕëm\^añ6¢!þ­-YŽö–æŽ#aöõAÓ3¥qŠL”AäKP¾çïžw ÝpŒ( sØO²Ï¿òþdZ†2Cð9ˆÀƒ©/0cu2^ðü³ŽÁHæ:ªëµ'£M$X­G"“â³6ê7=å’XŽjƒw~¼Ò…íÉ»|Ž=˜Ó’Ö+¾üŸ‹€‚HAVFaJBqÛ“w¦F•ÄÆ£Sð^ÞÕ`r=PæîÓ¸PÒŠ…úBÄnLlÚ+21†*sEY…3¯K±±7:é•·¥;DÍåÍ­M‰N‰”löŽü††í;ê©Íɉ‰ri§Óiu:Âs±µÄÈò)ªIŠ·ÄøöG“ãj7te‹ ¸S€ŒúRdD;ëì;­•Æ*T‰ØÛôÑ{(èÙšà©Û/*D :˜m§®œÝµˆS2ÉÃ3Òmµrn[­¾QÛäΔïž!¡ FèºçpY»I²€¯vÁ«ž.Ë«5!Vì ú;j/ÓYÖÊØt¶"¹1«XÍÉ“c‹$( mÝ•ÛÛfm«m®ûþL/yöº»õAÀÙàO§·Í@˜BØcsðÌÈ`éôMk›tfé™à;)·Q'ê4vXÙÆ“‚œ}1Ö"6z}rd±±B¦Ž¦€7tßÌç»Ûª÷¡ÛèÒªÎ)µa¦5h Wøçé Ù$™ U™® V"©sttÕîÜ¿3vS¹èßÒd'Xðú}ØD6‚¡·rêHmmAñ¢'_üEÿÛ:`cÐ.Ýn©#­?Œ¬¢ùÑy!zx(ÄÞÄ=gSE™úà$IÓˆ³FûòåÝÈó;"Ï>à1_œÛ2[Èð,n~÷±Ÿ·pf¦\k“'4Ì@AÜd…)ÚVÍ`îÞÈ6¹-Ï–g¬2W•V™?o:}]A—Ö^n¶”"v¾*çæúJÛUŸV‡¶¢h妘4qf¤n£[мÛÈõ“úì…yXÂ×ïûòoìuGÆ‚¬+‰·§4©"ü]òË]S±'ÿÑ:ÿ\RIzú–1‰ö¤~’â:-­­¨‹íNëŒqGÞ'ýn`ïn¼H²É‰Çó2\àÝC›OíÜݽïDéaÄž|rO»æ9ñDד$Ê^ÓÔ¿iI6JJ“I”•=²Ï¦ðc)ɱ žÖ×ñ9çž“sƒ¡ DŒ¢K«î±äWÚ F·‰±mâR™DAmq¾»ÝTbHwÒ †,sn-ž º²Ê*u¿¥ì ÑÛ‰CÄL¥]W,Ò3H]¢Ñê°¿0/?o[nëŠ!~û/RKÌZKŸ»ƆlÁê\S:Eôä<©ˆÀ¥t=ö¦[æìOWÏ[¿¯ž—žÇñ[¿­žgþ»Ö¢™ÿü¬òé:šÛ–>°Öº£ ÍÙ!¬žV^_X¿ìùvzëÿl§¤š'$£æÏó{×Oä ƒè€i †}²ÿIìåÄc]_1Èd Á„­V[å2i–"‡ ËX©Zõ»ÀÛ…œ¼£0 Ba¤'0®öÞÁ&–o\4_TȨ¦|ð~ȇ¡kV¯ _©TêÔ¨ˆÍqMgìOöÕfÃG±(S›‰2‰ý¾G8¼ÿhÿ…£?DC,ñ+ÇÆMÃL˜_L{fgOs{gOjs<÷ìä¢Ý®@X¿¥Ëg„ãá%˜#Ç»;ªþìº,hk¨&6zd·d%Y_QHÖ{ù™šÊ`ULiQ"l=Óv=Ý‹º[ÉžÓ()޳B9mºØJ{$g`ºLÍDϨ#§=ÁÌ*éÍé)ñØ ü’¿!6ÿê!øÓý™ŸN+ñOŸk»ÖwÌ?ððîYÁž±“[Svíj±wwe¶&q¿ƒ Ü®ÍRø¼ý í÷ð¶x˜ŸÎ9'Á°Ÿ“\+é*M™œdžL¤Ì)ØööÃxôëØˆQƒŠÙ=Vÿ6hà’7¾Äü<êøå‘Cês†÷AøøòõPÀÿgWGm_gfkbRZNÌÄ;·Ijû ¼ Þóîà±"þ£(´>?!™…™L«ºEÓŠX }Õp©çã“dU²"kÑZJtZ¤×q²uEa(ś˓mB•‘¼ ¬–V!­VOÂÆ—ŒÂ¬¬¨¯l­ÚÁÙº¬]¥¬•¾ML}™(A›tÑé Y) … hZß.ÙÏ>'‘ç8Oi‘à5 †ûò¯Á<øV ¯C·ŒCW>ݲ££¼µ£öâÆ‰.+ IXþ]IcF·£¹±çúKçÎM ^ÇE,“¾K׎Ã!úüçMG÷qü;]Ί‡Æ€wÐ, ]´RÎðAs®ñ»kœ8‘Ëb–½?UœZ·SÊåtœšžßŠ+Ïq9Á{ÃðVÂÚ*ðòå_þëãw¬&fîEGûP«±Ø œÞºlr4ffÙ„úôîA[o×Πfyꧪºí;ªk‰p„Bky¹í@eîÈÏâ94ßr´Ì°Üœ‹$¥ºæ?°ùå«è³P}vã%_þMX 7‰²øÜô­™)…q$š„µF ¦ìO=¢<Œ>A'+vïén:‚Ž ¯7éV”Y‹L,ÿò‰Žƒ½Ç> stream xœYKwÛºÞ{Ÿ]Þê‰(0;Çv;¶“JÊMé‚–‹‰Dê’”}}{úƒ»è¶«»è<À‡näœ-D¯Áà›™o?‡<ñçÿ›£ðøþèç#I_ýßbsüz~4™uì‚$ŽõñüËÇÒ¸ ¶æ866P‘9žoŽþ.®‚Ñ8²*¥Ë Ÿe8+®³l7R0‰ƒ—Gê#Òbé;‡F|9ƒ£”hg•¸Ió ^ލÏÍnÝäË|4–ÐÓEZlF!Ì*¥DVÔ¾ÁÄJ”ØH)#QŒÆø“ˆ´ÿ¼ÆUpZ-f‹t$i=ø(E^Ü·8ñ±ö¯°Dƒ@ Ea´øZVù¯i“—Å«Ñ?æWG h(”ññXÂ"&9ž/A³›Üv&Nœ¾3ë¶©`|ŒáQ‰i@ã'Ó(êÙÂá(£A×4ÓíÕıïyK‘‹bñqÚ¿=¹†Y•wAk)C Ìæ#›¤¦“‘µ0ÔX1¿œÍ/Oy„†OVÌÞ¿™Éߌ8™ž{±öOßé ´­P/yC‰“"’ŸEôyĺƒàLŒW†SÜ]¾ˆBi…¬%âã…ÿ b(Pº6†T~9›Ý¶RH£ÝØÆqÈ:÷J·Ai^æ'„JÄ@:È×#£Ú$àÛaiëAˆ/aÌèõ ¯ƒþûœÀ ë̲bÄ_µ¸Kw”4ÒˆG1Û¦Uõ3lð‰rqÛƒs™o­e‘®YÎz‘®fð²#Ä= ¨5¼I«o¨€¯Tb;¬%ÀªE[S{%"ŒX°ÚH¬Š|A"h…ˆ©²ÞšpNÜ$h¼¬š—íb§ï@ùÁ!Ì`ùXY²þ3¬K,˜÷Ò_É m¢>6 ;ÕÇ´¦ïÒ¦¹ÏÚFX•u|ëŸA±ât°ÆiYÙ:¯ë¬€‘q’б_v#“½%>_Tå÷+Rš ­hº¡v°#®Ó>%0òŽ_ê4“­_þÀô½çĉ³*eµËD<áY€…iܾI4âkê¬ñŒÄ4µn7p^ÔOAÜ´¥x·Îž:˜e•ï“$¤ƒ Gø)¯šU·˜!¥ðxj[£/j»~¨2†4‘hòEÖ­êÄy»!'.ÒjL;o7|}4ÿÓßE‘“:Bo#.€*ÄÇ×ÿ-òš‘‡ç¾âN´î¡ðDZˆÖ ùoç"èŽÅqûz£%<h8ßtF|Q ðµ¸T‚ðíe’r?ÎhI 'íÓ,RƒöóE§QTãô‘8é€óì–ÄM¹ÎjÆêQ¦bôìâ gò"}ËQ•Ê…ä,OÚNÕnÏùzžBÔ¥IÅ>hðŠÃ Îé½p"þ–/Äþ²—FŠÓUÊØÛèüD/VDU±¥¨xEg`­%ÖÙvÅóÀ‡C¶ÇÓøUC€8ÏãÖZµÌVY•m²æÙºòÄ–Ž/2štz•.4(ø`ië§]£¯Ó*]—MÙŽu|hÔ Ñü4«Ò;>t´QÄtÞÎ$IœˆD½u¢½ùf­¯òí¸Ûšî¢$ÁвâΚWx—WßvÛ¶Îê 5j:«Ó´N‹’•¯uëL@}!!©×•È!áij몬ó{ì'¤»FÀÎoË]1è±Àí§A·7|z@†Ö‹_wßzà"£„EžþvÏ„¬þj“ä:Ïü3úÅ›t…Å;ÄUJC"jâÀ ¼¦þH ýPVÙøë£‹ é,Ä|•ù5@÷ëòŽBŽèÖ[¸>³ESí6íœpØ_zOd]늶(Y€ÃzÇìï¾”Õ†ßÐN¯ý–d¸OÿÂ@ÑîiÕ4ÛW“ÉcgOO,ÊÍÄKêÇì‰Ê½&_Ë]DÈüæ–yÎÏLÅDyÁI, (=ÿ;lû`'­jQ?+¿4¯ðä)iL%A|ˆaû<Ñ:ÿeK.B‚«GÔÀ.DLXkè$”Epù””è ¤J^H{B }¼Æ…oý7P çx ÈËy­Äy†.a¿Ò&û&ØfVŠ(ª Éa1aǡҡôûMqr0HLCò#Œo5©}¾Î9Ðx0¥Pý(;ø+(K0y›D³˜v_µ- †Ò µ¸ÞYk¢Ñ‰xð3nú:ËȨØueÙ¶xpY =åz×ø¬•â6ÛUüî(ÌÝf 'z,<Ëê[ÝÀ@Æ Ü"Pée¹É ŒC”ED‡ ¤™.‹ÃXÆpÞƒ¶i¶(ï‹%ÄœyKÑHâ!Ó]?mW%$r<ò2ÈÅaƒ "ëc˜¸/æ¢Áé Ìî0t‰ùôävÆ-`ǧóË÷·³®ñý­„ðßþxvù“NåfÎÏOßúwð#'·gíøH\ŸÜ^|ä‘!¤éçrŒÓ‘"{Wâýéùlvy{qÈ®bˆ9¦ט×Ɉø™2`X`W*t/ r` ‘jqurë{IÛzj žÂJ,5mZõE$È×lj‚PLjí„@ß.¿§Ñ¢å€Mæ­=™]û„DÀš£¶H0¡ŠBû¯™¦XŽàÍÖ‘uñ6g\aÔ Š¨!‰Ø†œ/kÌÚ`óÁóÔû+ùl×9–d‚£Ÿ^ÁÜ‹Žq®ÒºA:î›ùÔ€RÞ»a9¡_ÿ|3j?zd˃>¼uáÅ= Bt^‚Á¹PŽm8_§¬rƒlÑíÿ[ϱ‘ÒZÉœxØ}¾ªv胬ÏIK4¯Óäib"ϱxÇÅÜ1»Îï>^$[æMYùìð;k6h⤅èÉÈPY (ÛØÑ|‡= <íèzfàbË :ˆØr‘Ùˆ8ÐrôjØ ½ëe8e×B#Á&?x"K…SŠdÀ`xÚDÍEP˜\Ìžê&ÛЪ1Åki32XN%ë³1gGÛôž„¦f…3ö…߬²·YÔ¸AˆÚ7—s~F´ƒw­1e’¡AZIœŒÔTû|–¼Â.e,´ XÕ6ÝfUù¶ ~0¿òÝ÷$1ã1ÖA0Ó4¢nÊC?í‰Eà¿ëL¹¬|òÍls—- ÅÛå—ÃÖ0ˆ"½GÕÀîàû¶ÿ ³ÇL‹Ÿ51Ú·už­Êc¥IBY@: ì”»£ò6]5 +“Àhð6¨Wù€¾7˜¥qþï³'Çyj“o2/ÅŠA•ã9óŠ03ÄÚ§:¯ûGŸPEàïm¿-mHŽu’!W-±jBíwÖß4«’¬6*Ų~†ÚAe£.¡™²Õ€OÈJ©É#^ *(·«§ú ¡ƒP*“!Ÿã`"´â¸3íÜâШèe[ø³MÓmm…êàþHf~I`ãßåS  ±(t]Õ7:DÛT2yÕ´«p]„Ð&ÈÕ¨È@…ñöɧ?– P…©ª‹’AU¡n|£%l42Uy·ã6Â’øÃ/àè·þ€À‘PíÚûÐÁëû²Ê›ºžÉíò¥'¨ZV,3_ @–•ÁkÑE°æù`ÉR+€~öΈkEZYw¥.¬¬ehaý ¶À}G‰k±€| güãŒðNÚ¢-Õ)Uê¾ úhzN¾wèÚÆ$ ÐÔGb¥‡\ PG׿Å|Y“PM°ðYDýÅÑàÚ&oöÕ«ø€á%ç oúrøÓànPþüÅM¨ àSÙiE,Zbd 2­âqN7„Î_lÒeêßew§˜teHîùBÚ•©:6ŸæÑfqRô;Äá'š¸ˆ/ξÏHÛ¥ï³"£ ‚{‚o-º„óŠ{Ìv9ÿ=x"æ Ý[ð 7çGÿwঔ<â5· ‰4 Áý D¿ƒàÁ[A³ˆ7}èÈì iÚÏ`4'[ô^:äË/™P=)f|½XNhìw…«pJfÒ!Ýúxt8*|)ö^2žPO<5áZë÷…D ªˆõ^!q2…&> stream xœ]”?nÛPÃwB7°l}ÀxKºdhP´½€,=" Š3äö%é¤C  m?Rz><>}Z—[{ø¹_ÇßõÖÎË:íõíú¾µ½Ô—emާvZÆÛ§Óu|¶æðøcØþ|lµÅê|÷ÏÃk=üò.õÑñ~ÓxêÛ6ŒuÖ—Úœ»®œç¹4uþû*ºû—ùó§§oEê:\aŠû@; v¤Š;ÑÖ"ÁVØ©T×á {,ì‘öT$Øm_$ØžÖŠk´^$X§"Ám 6iß«BÏ =ð{UèY¡Š;ÀˆLTF*‘‰ÊHe 2Q© D&*#•ÈDe¤2™¨ŒT"•‘Ê@d¢2RˆLTF*ʦ%KV4-i\Ò±¢kIç’@¤Òè‚tB:]NH  Ò étA:!€.H'd`‰ÐÁ5!¡ `P $ „„‚‚APP0( BBA¡ ,Z#¸F`‰ÐÁ5Ï'ôŒ‚Ï(.E‚½Ðâ ½„Á—00[hºàtÙBÓ§‹¹H°8çÄŠ©%“K&º¦ú&û&º¦ú&û&º¦ú&û&º¦ú&û&º¦ú&û&º¦ú&û&º¦ú&û&º¦ú&û&º¦ú&û&º¦úâÊSúuy`yô¿Nz;¾ï{]oúÐùç±_Öúï/d»n¼«…š¿T:]endstream endobj 400 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 7428 >> stream xœ•ytSGÚöµ5—’@,´%÷Ò Ô%˜fz Û€m¹É–ä"«÷‘ÕmK®’%7¹` ˜:Ð;1 aCzOÈŽø†o÷ÙÀî—ݳ9ÿ¹>ÇÇ’|ïÌû>ïSFTH*""¢ç²ÙKã_;vlø¡¡A‘¡ÁQ ¸è´ÔѰOìÓÃ1xèÿÆ ÝÏ ‰}ìGEFDüåÅ™i™¢œ$áøŒÄ$aú¥i›Óÿð"EQS§§ÏȘ™9+ëáì츜9¢¹bÉæÜ-y ñù‰ “¶.Þ¶}iò²”å©++ÓV °ÇÀØs~<è•AÁÁ‹}VÃ<ÃèØ·Ø«C^b{ní?"âߦžþGäW(s­ †ÖK"ššx$‚T¸¥ÌØ ‹m.‹«¤¹¸ÙÝdqÁR¤‘„S Í «Ê»€_œU™Å´¨²MéÖ P}0“³‹ä¥ŠR}…¶l5¾½² Ï;’}\vTïÖÚ ¡êÅZÉ2üV<~s)ž"^Ä׿ió s²·kSÉ#Ö£\ên¡h|+š,pD*Y`ˆï‹A‘çæ_A[®Är¿n Íä Ê@s£a‹À– ÓF†<_Ìâp;3²­m,š®µ}õã9ûìM Vƒätƒ€É BÈÉ̲¶°(ÀfSKAcÎÞÕ¥ëáB¸`³dÍýÚôKø™'‡SæF¥ýàE»‚fI b?Eï?ãçXnÇŽoóÀ ÝæRHïhÐ%°ƒ )E›,“›¡‚ K€+òV›¼ƒþ†ø‡ÐïpôÕÉlà¶Þt~yö³ Fó¾ iî‰Ä”;è9üÅq¾?:ý×æÇ½XP`†ìTŽ8ß^Ë¢=P€›¯ˆF\Îûp¯¸~1ÍípäÙÄ’¦qo-z* Â¬€ôÓÿˆøí3J©1Ibêï ú;±Ü}HZÎÃ1²ÉÏALÓ8úŽDPŸŸ@1 ·õ~ÑxÃݧיôƒp_\ÂÛ ¸ú¢oï›æbŠDP Epžfòü­™H›gÀÕ'·Œnè1ºÉc#¯ö¦ÄÁ£‚Ç Ý}@ñäÅ ·¼xsËʪÆËñkx^‹—£‘xz B=~EŒ›5Û ÚèƒC•kK”èñK¯NÂpœÛ¼îèÒóù÷àgð’ãjðƒÝß=ý%DýàmÜË)‹B›ç…´§È^Ì"p˜\ éº)Ó ¼"ˆFúBÃ÷¯ ÏgQua´TÆiV6Ø–¥OgrÂXÈæ¤e[w°f4½fË I€úýø;z õ}÷\¾6{Ë6ö<@XÏÓÍH:VEk9›`¢?{‡ºD[ =4š ÛD°@½tèÔÏ­8v–jMºð:ð.¡QèÙ»¡þ?Gµün~ˆQï3'ÑKe»p/Dc‡£)8ÎW`·d2Diž¨†$ã(üLJš* =““g :ÌhgCJ]¦bè¢ÛËìõN§ Ú™ œ+ð²ôÐÂcóJ'Â7hò 5Ô˜Ôá¶õ­û—R5ßAeW£B}ÏðÌ8>z«Ð¸’é*ÈÈ"ã: ÄF™0s¾ðĪօpŽCÑ÷ø÷@O<8àgqz–WàÇ ß}Qï,r™]ð<Ü?¯x ǸhÁºD… 7)àü¢W¥g Fr…×Ѧ ÓAÔŒ@ƒï¡wQÍÞúcµêÿµZ¡ë`*‰r¤cå/㈠&ÕDÈ÷çHDE,ªÿ ´ÂvC• Tl΄BZ@•B²÷òM‹Õ¹Æ\˜ éw‘Óâ5{Ô‡s ^‡í+l+íké'‰ DèÝÔqÿb7ˆþrtAŽšäNÍ´Ú>«F¼¬h²2& Õª HïrÊ jôtCUe`W’oÛâ•+W(YÓßÂLc®"0Aƒh÷ÞWüùÞÑõ („ù¦|H¯I³îg‘ñh»Ué‘9f=Ùì*内ê<²ÙQ“.Ì&ÃTH&8ø=įР—g,Ÿ¶úØÝBÆè2¹HÔz­†Å¯³Îb°™è"N9,o+µÐfŽÖ ½š m¥±ÒŸ~´÷« kÍ­`ã+^„ð:ÍÝ÷ÁŲ½ï]Êœ 2«KŠ­Îb›‰0ó+á!»Á©.P ɶM5,pË­äãö<‰%w·S«3i=ý¨~zB?H ½f ÐÄ{Q¡/Ïñܶ$7¤í»“ES´›ÐA·Öíe‚xG¸ÀåærHl2l`³” •Ó¯¿•8eÌøã·71)gÔdpàÕ¿Þ¾Ô±ãdÍ ˆ"áͱu8Â.ÑnóCºÄêøû¸eeîMÁw=+ Wááø¼ˆ•^€^Áo •d—¼Î…™Zs.ÌÔ<Ÿ(ˆâ%1¿]Ð ,÷&zÈ›ŽŸy‘îGwq ¦¥”§ûäï…ô'å_eÛ„JÍRX@oTN]¼Tuyƒüh(àâ¡(<’õFt6ˆZ»puäÁÕŸ0ÐÁ`2ØœY´‡E•è® ÉúmLJøu‚qYãÛ¶v6íMö·ÛKH) ZÀž:ãf+ñ¤»Z¬;˜æ §›‹þPì;QÐÈnéîì’n¨‡ F{©¹*h¼À³ 2½nÓIù¸î®´9ŠÅ–Ró8>z±$:()i–},ѳ¿úºp5ÈÔm¤êÚëô&è¹›þ~ìÑ7¼&x“áîM÷æÖÖWøü 9™ JÆCx/8{íòyzZÏY·¹í kŽŸQtë]Ë#m$Ô߃ò246ª"܉jÒ ¸&ýÜ—oÕ;Õa¥W« úE³7Ž}Ò¹ÊJOu™§´Œ--+-w—9‹].{I Ó›êK¯ò­:‡j葪àns0äÃ\³Ô™ç’WÉËRönß›²WUÊ7-& ´;ìkp'¿ÒWî÷VëÛË÷„Ë?[ªuN%‘•ôÔ¬üJ*&®Ö¨JDõÛwÀ XæsºÍÝ`"#HX}¤Ù%DÅP娺ð8T€`xvþüEî ÿžè"Ží©ìCÄeôûQ¨7ãP$î¿j½0q;‹®ôòôku›Ó¶ S“Ä ¡@Nع`ÝUñ.#túúþˆªÅ1SºlóÈflò…>z4>ådö}†Š¤ý8r/Ž:€#-j‡ª Éd„&X)QI$ï¦ÇÅC)”Øå¥U–êXOCŸ´RTD ò„kö±fÎ5¸óFàTã5~ëÝäòŸäW¨m;ùhøjj „2­L'gÓã²f§Åu Ÿª{ø¼*_ÖyÁ…lm‚Ì0´í¾øhü"Þ[A˜5£QÂ@LóˆVÒB8ËË2Š `Y•[×Xî«gì@yýuÿBõO‚ûáèÏ1ñ.œßq¥Ž-²Û\óM#U%É4Lvâ–ì ¦!0åoºèRÀÝ?®B}Pd1íä´ÁvEƒ .Ê•EP÷ ’ðÖú¶§l ˜·H»‰ GÛ/»ÌÄï±æË&.–8%®àøkxÁ5<ߪ°‰Ê ”²"k­ôZt-¹Š;*œ¶JóÃü„Tmj¡¬›wÁáø × ,ÀiOãôÐiey®%º»Ræ@ˆë‹8JúªÀ¢œ¢Ö¢Ý¾zÓË.¥(Î(üÔ«¸ÿÜW§Õ¦ •C1ƒ¾âT Eļiât“F(sŒ"˜éñœë?ÝøéÆ¾†Žƒ°‚v©-jæ&µâR:®J9h­Ó/aMxkö®¥ÞõÄ’öþ~jÈ'¸â9ØÕÌÎh‘Ž| H³`Cþì¡™Wà ×ÍËû«Kk5~ïJÂá~‹'(Ó©4ʬÄMéëHÈYQqÙèeFý8(wõfp}hRý#9õt»ˆÆ:ƒ”}X ÞY¢ÛÐÝ›M íýq²!(Ïs‹ÜÔÇ¡>xnø·Cé( rTlq¸ØÐàâi[©³L:Nëæ²§ü÷Pm^Qô@¦yÑt_DýgQ$Kyh7§Äæ(ù}ÞW¸î;GàÞcOú<­QÖi¶p:ṎºN³…D, íÐjSZF¸qmú*¸¦z3ëöÎÃ÷i³—×¹û»Oç•éùâEa{òjA7ý!»/E]ŒBQ¤Åo ná;¥ÓÂQZL寙å%jtÃRÝDœ î‰bÁñ{ŒZ'“«SäÁ\:«:ß_[Uí;¸&°eì¼Y¯0\#j¯Eçà ûÙ{è௱Üïÿ4'ýÓ¥hÑð­õ~"zå¥bš{Û,-4Kq¿ïŠÖcð7<°®ÂRUDß䜀çíëüé–¸ n3$‰Ò’7-Q­~œñæ´ôÔ§~dð—}Tô!šñaóÑXî Ô»†gëT7Àuô(ôBjçÄ4þz~ý¾E̶’­æ$Hå¤Z„M°‰¶³ÛQ[ Ý¢LW©­6TçöñŸµîÊô±fPW][¹Z—I¥Õj Œ.p–W”zÊëD¾ŒíÉ…¢,Æ`Ðëõ&BYZ¨vê,4÷7…'+Í™6hÊëËǦ¸Óª³X«Þ¡ƒäÒêŒz™D#„ÙPàÙÒ(¥¹¿+’†ðœàèþà1æçìwª©3†âçŽi¼¤dÉŽ¡‡<78î¾qãL`Éü-êÉoe K}ùŒ´Úè7øé9v Ïмˆ’®D5…[SÚjõkÙ‡EjÌ2ÒI™ú &»ûðåÿãè¥YÚ˜½w{=\ç%æ.3¡Ÿùä©w~¤Ä>؈ŽùÐÑ®èŒÚ~ýóè¼ï $\ˆ.ÀÓIŽ©ô ®a<|`O𺓱§¡X•gY%,`äyò\ø.T_дËoñWrŽl®rT[«œ'Ç÷ÙÏÓN@…¿?Ê‘o.€$g ÁŸò!ŽÚbW ˆ¾Î¹ý­÷Ç,ŽTŒc tx{µ†úß§§™s1–{¯­Û+6Ôê׳¸lÏÓ."KM J@V¶¥‰ õK‘„Çí$¢ÌéìúºZ_°AèÏ`¸_Œ&àî.ˆƒÆÖG?‡.Ÿ‹Bô{¼³ï¾'î$äÚûæß~ùt]ç›ÍìÂÀ4ãʦ„@NÜKtñðÕ/Oy¹œ±H ™$o•˜].¥‡Ñ¡–*2djFK8N¯Ü²{]ÃH1sŸÿ0î1ëÕUk½º²…þ™6©¥Jé·WÏœøò+G0&—©Øä¢ XgS+j ƒ3¦Hã,+©w;»ËQl-~Äa½ÿû£rüö{W9Þï.GK“”ã€yæ<˜G/ÓŽ‰“fYJäL¥Ô ½tƒ¨<›ÑsrrEÙËÎdèþU´à Š¿Œæ—ï©Þu+\ŽmÐØQ¸5“Z¯6jdÉ|iRa¢4i"òeÛåÛ¤Ém²öÂkPìjû.â­&´Ñ`«=º_ÔôçþÏIsBø‡(Ò;l¾ý˜ñ®ïúò»s޹ë¬ÛÒŒ)Œôÿ2â~_ÌIË´´²H `›±9»%«y“+΃+“2—ä^ݘ çÃ… âxšû}×Át(Ý£šU†kæg¡5½$é,^r/9ƒ—Ú -B"5EœJ‹¥Éê<„FD££‘—ÅYä"^Ж]’cÏÙ‡™½˜ÝW&ߢ±jœFb*¡ÅoóœEñ'Ñ¢3(¾t·wç•pq· @+|OfI„Z£Æ¨U ùùKs—å.]„ãùª e¦:£°E¹SÑš€úlEOmA} %š°h<ë ¤*u`t)kf“°¨„*ÚH\–2W_˜2&}TÚHeŠ,E•LDÎXª+Ñ—b ÝåK÷(vKw›Â-²’9j>nQøØçŠÿGJà–w*êÌOo4 ÊkòKäÃýšð[¿ñ„<÷Á}4™’@PgÓÙ3§´¨Ú[ZŠbPÌ!4†,BóñK¨ŸÎ¢³i¡‰\FÓ?å¯GPІ`øüm½uÿ_=P—¦e³9Y¢iwÐPïÓ­Pš”PÉb嘄AŸ!´î`CàòhÌû…ýf_±ÏwøTÓ ØƒÊš:K”—™]•SWã-±vpyfpñÛ¯¦ÎØÎ(Å&b³èîQÃÓÄèˆ$æ.ê)öÆr/£¸*^‘ά%ñ/.uÉÆµFƒQ ´Þ¦µyêvúÜŒ·û<@ï“ZÅp?Kå¤%׿֕•ÛÜ®°pÅ¿M¡…§"J‘·UÝñ‰»ˆ›{ÅþÎ#œ›…´°:=XWï 2\o­¤>•á5ºx7ì›D5ø>bâÚ?EŽ;Ḥx0†‡Wä뱇£8âìô¦¤ã$^Þ…Ž;ë.[>„×á7JÄYx™æîkO^á_=ˆÛ©Ó›tƒpôѼ0Ë@}Àƒð€í e§u·Ù×ÜZÓN”¯§¿4Œ]`¦9¦Ñ¸>fp$èF+Ïi™î%™ô# ɼõEè'â:àA[»—~X“´‰ùùfNà·Â¼›o*€tÂöðÉÏuà28…ù¹j³1}…ú‰34:Úqè>ÚøeÔ½Pç?Üvø¤¿Ù3á­1ñÓ–Îe—ÎY8É\•J¯%^NNz]f’„£^o[Cn’ÀI7‘ &Â$b/_à××ÕÕ5n\øæDQ4Šñ Ž1jÆaqêžÆoc¤V Ó™ îÑvÄõ!ZLé5ñgôæ×ÓˆWÞ"B¼–ÇÊŽAúTÝ¢5 Ä“æHØíbñÜ`Ö8LNH—rJ`iØ:q¯þP;z&+¦ùã&ÀåpNmúá°µBº©&¬Ï­É°²ZNB^†`(Š^ý9¢~ÿ¯§\}­œåž¿^{郿ü|ì‘QS‡m™êÏ­««©n ŠªkDƒ!1ónͼËý¹M桪±œ-ã*¦P€Aެ;d¦f’rùcpXh9€V³­ëk §<ߨQh˜Qxè(üühûi0 ×C?® ¢Ü{Ĭ‚úðlF»É鯷¡>§:+3'7õ…O&ÿŒžúöWôÔ/³‰½ëÃr¿[ 7ämO¡Ñ*à×úµ©Õx¡ñÀq«Ýn'ù½˜lz«ÊaNaž.]%Ð à˜P²ÉCܸ®ˆ†™6rtøto•ES\Zâ³Ù˜ú措½áöW£÷€Ó`œþõ©Iêá÷ù‡òÏÒO:;Ô‡R{¾@ò/¢Ðt‡gâÀ{Ö_Î]nhÜáí€-°YVi0“ɆtV®$+«ZR[WUÙr=.¸¿9/Á#ð³ xZ€žþqPû3QOÜ{ÉRÁ¼<ÖŒ{ñŠÁ%?âüˆ"ÌxÀB&ÌÑâÞ˜ŸùÝGzÃSñ£Å@qè³›­dnf~õùƒI¼œ@,”sñh¤k9~XSä'¸€³ræ²›§¼;z;ކÏÑiU¢¦ˆSk®ðº2ìžÍhè…ûîjO•§êÄç;K6êKÁDo ÃÅvCÓ <èK€ýžh tˆ¯ˆ¢/xF0#kÖÛp­öa¿-øÒß!ÎEÔ«3éøô½¬Ü©pÉì4·óôÎÓ»>xwâ£^?äíã«Ïl'ZÍãÞ³š¬ÖðÊ¡ãÇ[­E6«ì´1§RÖžýÓZø=ñí5oΜºÿsÃíô…ð\àbçŽã>HšVÊ@½ÙõpɆ›Ò £êuP³¼…®UÍó4ï?Y6Úî ½X³çÞü¯PâÄ)„"Ñž™'˜†/{'#%9g#L† Μzº.ài ä×däˆ ² ¬ L»*¸„¦ßBëÑXôt:ÚŠg›2or:ý¯Ê2ddÄÔ‡˜C’í‰öSeŒ qyÛ€~–`ÄxH?¯Fü«­·/ìdËœÖ Hß/ÆC—±©;4=< w«ClhÆ¿ów[7_îâoÜÙã¿KÞ‚á/SËmAø–? ßò ‘ÜB]žD.Ç}qß5x* îÜSxz÷²ì:{×w.Ö’L¯Â;€ú¦¢7 z¢IÍh.ê‡úÙíÅáC7n›]gÕ’u˜Œ&SØ¿Ç}ä­Ç# òÅtIn,÷öÝ­$J<~]÷$@÷úÀ3î¿^syÂG”Ú|µLÅÄPeUæÖ6z|5‡VVoIN“åg1z Ò$N–)좒l{¶™VpFâ>p?5wð *¨€JšÌNò}À½ýÕ¥·ëkÔŠ#ÖÈIôÎ+ΫÔÒO3½¢J¦õéIQÿXèÜendstream endobj 401 0 obj << /Filter /FlateDecode /Length 4315 >> stream xœ}ZÉr䯽ódŸ=vð¦jÙ¾ø&yÆ!9´y†4> b7$,=X†ÓúgüεPMQØ@íY¹¼|‰·Á>¼ ðOþ×ýMp{¼ùpÒÛ[ùW÷·_>Ü|þ6n‹}™eÉíÃã oôØgyz›¥ù>ŠÓÛ‡þæGSCmÛ»4Û—e‘šêÐÙÝ}‡{|ZFý›qð!‚~¡9LU;Ìü„‰y'}ÈÍã:-';ÉÐ27Õ°»÷A'°À.ÀÂ06Ýenw÷ðX1Ì9ëZ‰Yªùg7{hºöç]TÀÏ46vëUwÕ<·¯êjiÇzØÆ¿þRÙ—iyûðÍÍß4“=Nzb§8Á±‘9Oã¡ó·;Ø`•¦Ÿ÷ˆÌòÙ¼½ïlE¯Ã<6IA ëÎwÜ…1/¶Ÿe e^€Ì| kjfk.A ÷tÆûëC–|Æ?ÚzÙÝG%ôB> >à"vÀÅAd¹ùØNãÐó \wÖɨ CµjZ¼–y,3$ÿù ¿ Ô¹ÈØºµ³®hÖy­ºî‚Ï(ÌØ§‘Ĺy’× rí Ë•æ½±ûãþNÖ*£+AÎtVT„§v9á²í±«¦#î(/iÈ<>.ú”þ¦Äe8ÜÉSÛuÒ?/Í`?²h ?ª¾ö¢Íãè7OÓóÞñ'²ÚvÔØÙN‹NÌaÕ8cßO»(Géíh§Òœx£hÒGÞrX=ˆ/*PN‘©°tœ” î`– %gíw§¿Q9³œvw®}ÛèÛXô {ƒÔæSÕŒNnOm!ÅÁuÁ€7ÅÁn (ÎûÝ~wŸÆpœ(2_ÚºZg« ¨-ÉjW¶$‹‚-¹sPß Ctkf¹YÚIà ¬¨¶ 2RTcQ'EÀªšç l–^elȉ™·µg˽xD4L06PwÓWƒÓ¡£âXóB¢&tØWgØ©ÛnQª.%WËÆ¤ïj›y›²"¿*éÙ'À;òÀÅn¼éÐs4,Ûû‚ºyªò%ië*•õÅ&â`ä6) §K^0ÛÓX¼Ð¸(ˆŸìÊN«`–g 4޽£ Æég7Ù&Sƒ^…šS¨ÍW”VESäžPijþ~‡/Êœ¬óI€¾™;C@šHæÂ`åxðÿä”KUŠP9{œÇiì¥1TÖš%‘¹-3ŽW\U‘Š((âÈRJ9ÉÉcT›… ÍÜe"d‚¬Êªt$g?$7á8Â__ˆná ïW²xb êq#óýD ¢RmuH$ê*ÏßÂL¨Š Ú_¬Lv~Û¼èØ”ÒÇY%‹ÆÎ`~¯ßb.Rp>õ/g¼%êqíwÒWŒb:Ó3‡ÏtQÇV:Áx©Ùð ôi׬wC„39Æ)3‡ÕƒmWV;o½ZOeQ»i)EÙ«ža0&dT?Û’ãz=|í“_þ*çõ û}‰¶R>çÙó˜ë §|éd‘$ègÎü‡b/Œ‘3–"£˜+0³þΕÍÎÖ%3Šyeì¶xhÂwd—Ó¸¦fëE¹NŒ®fnƒu(@ýv튤J†b‘H§$ÞÒŽ„®ÂT³>:$|RC”øFD䯩=¶D¹$Hk楋¡, 6¥DÅŠóHy»ãIgBn¥r&~Ù†ønB·³ž=hÏ’“ÆIN;d$ˆ‘Ä„ê-X@å‡5¸¯š¨Èm&Nºý™*P[8²æ9ÇÜoÇyq“û—ò£Ê¢®„áK÷+•©<·œãŠÉ]Aø|Ëlo'Š´©AÔ:Xi”o¤&$ã»ntéIâ:È™"ÖÅüp8ÏcÚŸÉâ14Ç!ÝãÃIW“ý°rˆpõß0“ˆ„A©q]jæ#6§g·ÅÌ–-“§ƒgoÇ/Ô¤¨É A{KÙ7D©1È LöN57‡¸ØÖl Ç“ô«BÀtŠŸ¼Ø¿´L/&“‹Ä‡Hî0X(A† ¼‚ Ílã ¥ö›šH ¡µ¤‰cHN®ç™Þç,ŸÞsˆí(’<€m?.ÄîÉÎΧ µ!³ãsUÜ'{ÆÜvÏ+ÂIQ0s½,X`aÔ\0`½+'c>.·"@Zâ:d@D@%e@îú=R²˜ãú¡ZpÄ~M°Ž$ «¢)¤I£Œ” 2ÌCó“­¯/ˆH®ˆ)I«m\Ëë„M²’@Ê þÙ^b Î Ï%°þúÅÝÖþõ_¿ ­ÑŠà˜…›½‚•䘵'H z! ËU.iàÅÔVµRê|oÞ}÷fG…VT¥Çªo» ¼ƒ6¹¨@XV®½bæ÷µ¾Uk%Rè¥èpâÙI’ŠC*¬<Õ(g+’ExK^”[ïS‡M.ŸeBƒ›#°•ù%JŸ"›„)Q[¾ùæ ¦¿Ê¿ ¢'>„#ÞäeèElwަÃÈëÓèx±'™ ‚QíÊõ§j8r¬'å ¯²B;qµ!böÉwÝÚëž©Vxôõóhá-] ÿ'”ÿVôˆ“T“Ó˜ÈtüÈÂVžBôp¥”XJÈàÅ Ì:ÿ¼œ&-Wf¬m^ø{·HËä^ñÕXF„æ»+¨~u«z\4|‘­C¿¸ã»?©½&°2$[’ |Ñ“ ý[W½²¶€í!R:¹ÞÎ}·¬’u3ÉðkðçoóÀûR, ‚}á÷bt F¥œ)w¾ú¬,ÞÇQ'ÚùÞ·j>ƒËj*Ýp$É+ÝzÀµ'Åõ­·`Ƕj˜GM¢oˆ©O™ÇωÍ%Ÿ«g׫k%.²Ì9_Ç•h}®KM¡`Öw؆v£—GÉ΢+/º}³P±#zpäßT0u´é¦ÎcKl|ºçO+d$îüwõä-ªz‘(‘BÄïï´Ü¢ì}J‚5Î;Ù×>¤-ÏœÊðëRʱÄ:Rj,Rð÷¾SÐ(QrÖª,ùf¹ðKm¼TÉá¨wÕõµvFrÚºRÚŒA¼äà≤[{»MäoR]U-uªÖý~vOÚá:ÚÉK>‡ãæ Ç,ÞkÀÇ|}~v,%Œ˜¿‹ZÔ»Au@ù«ï|d¿lÐ.ͦ\?æ QU8y˜> stream xœ]“An¤0D÷œ‚´ûÿDjy“l²È(ÊÌÀ˜ˆEhD:‹Ü~ªª“YÌ¢,UƒÍ{Íçôðôø´­×öôr\Êïzm—u›úqùšý²sW‹4:0Ù£endstream endobj 403 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5829 >> stream xœ¥YtTeÚžaÈpQ †Í¬ro¬€Š"º»((ˆ´€´JÒHO¦e’L¯÷½ÓûL¦$™ôB =TAÀ ú»b]Û²êúërü¿‰7ù&É®®¿»GwOΙ“É™ù¾ï¾Ïû”÷ —3~‡Ëåò—¬ZõìcÉßîNÜÎMÜ1.1WÆZ¿;?¤II<˜4ÞyÇ´Œ[ãnA{&#õ͂˕+­žP¬¹}IyEMUQA¡(=k¹øe^ú¼Ç{tvúü¹sK²4¯ª(7»,}U¶¨0¯4[„ß”¤¯/Ï-ÊÕŒ|å‰B‘¨bуJ¥Ò²K«(¯*ømr•ÙéÒ"Qaúº¼ê¼*IÞ®ôgÊËD髳KóÒGNûÀÈë’òÒ ±(¯*}Uù®¼ª²¼Šê¢’ò²’ìÒœ]ÙÅÙÙ…EÕE¥Ùçþ'Ë6oYR±´òé*Ñrñ³+¤ÏÉVÖäîÊ_›±®hýîâ %›_ô›'¦ ¦·s8Ó9k8qqfr28wqÖqîæ¬çlàÜÇÙȹŸ3‹³™3›³…3‡“ÉYÊyš³Œ33ŸógçaÎsœ•œG8«8 97q&snæLãÒ\à2\ ×Ê™…‹ÍÏéã–;À‹Ÿ?>‘¢æß5á– Ää‰OMüó š'ÞøÚ¤ÿ¾é`ê†É7L.¹yÆÍGnÉ¿5ý6ámS*¦\¼8¦ýêË´{Ò–¥©Ò^Ê„ïÿ:xûƒ·›¦Ô!/t¢m‰§£\´Md>¾Ã”kÒÑ-h½Mç!#pÄF8ej„ã“f8üö)¥aò,ÐoÄj¿Ši(À·Š¬EÖ*Û.Ç0uõò µjT.³3Òl(…f&Ý`f:D7Ñ! ’«ùU \C;ÛMÔÓCãÌ´]ÂzÐë´ ‚­~F€¶£÷ûØ÷SRÿ«Š'î‰s)—<¯òPš'ð‰¼Á¸,ŽøÑÞžöÖþÐ^ NÁFùê,6UUB)KŒjö—úb/šáµ›œjmPɪG²ó €ÐÕ@WÜÓâj¤¢ƒû¾…3Ä'ÏÆ6>ù¬¤–ÔŸÊéÞÙ )©¯Ö¯#¡qšœ^‹=j'#Wc}{€è€â:‰¶D_Ié*Õ;Ê\vaš®ÌøéîÚÆ@Ðís’V‡«Ë%R‡>Î!n'7aOÜ&ˆ7¿p©9îñÄ[<Þ ÷íûÀác¼ „›É­Ò™AOjhÔB ȘšdÝk@j‘¡ÇUúh å¢;ÌP rQ5M³ ÙߥÍGY®-#{(6`%ì>¦Á­³i¥"3H))Hi ìÆ‡«fðrÏ[RŒuP£ðïœ]%uSèF6 ´C´L¬€ýu]JUY¦R­^½+÷Q½’VÑP;ÒŽ=pn¦ B†NÿbnÂé3¥eJ-Ð!Ÿ¿³û÷WÓN GZZ]!â°:»Ÿoc¨•ì4%-×8®hî* Q&6Ö#xÙÓæ^Ò¯åZƒ7ª¡RׯÊÈ&.®¼»ßzÀêblnp.½]Gš¡Ô´Š¡ÐZ’<–!Y./í bf¯ð›òRÚÌjØH;×ð>aÓQpû}öh¬º‘b‘È¥é±bÕ2"¦C=®–W˦ájMe?°+FØË>l¨Ql OÐD­ j’Oê`˜*ÆX`/tá]:è(§#@8“¯‰±,µ”ØJÛÀ NÜ"‘†ËiA°x¬V ãp⎩wÍéä^ã ‡ ¬¾äq †ö¨ô&“VG®^n44i ½³.ºýÜ ØVÊV±2öQŒ)-¸þÞ©ž½Ôgï6| 6Âfv*Uf½‘&3Ù쌥÷qÿÌshÖ¡ šÿ5šL¿òç³_xçaÇ™t ¥T>°úÁ±“© »±Íeáâ7y‡Ù[º2³f'*%Ô-/5`IqàÞ@4Ð IBÐ`Žq] ò,pºÎV[ˆêC÷y$m9gAˆ&¢)èNtÿ7+Ï/–l1,[MÕÙÖPô3ø§¥ëÌZê¥= °uÏ¡þC@‰dem/go.ÙH­Ë.ÍbEíU§ÃbgìTêÐÇ£-4Tõ -xK )0k!ÃÐ)<¦Ð§|´mE…¨M[€n`çRìüü€ 7Äla0‡¨³Ó *0ÐF“ŠøÐ,p÷Z¬pÝRø×ßÏ`Uìÿ¹—Ú¶náv†d¿7‹‘Q3&œ`‹=L¤&v|_ÎoðÙ‰Ù[²'m„Om1«óŠ ¥dmoI÷f¼II²sØq¯oze`ocO•Ç> ØL›VÒB%>>N ñ¬©${B´Ÿn£}_u¶ ¥F 0È€®•ì̩ĥɔkGšR]ç÷íâ•àã:ƒYOq±LØ Îw¢î=\ô úLð ÿrP¹[k’k)ü Ö:”~ã ÚÈ“(ôüBLF­ŠÖË ¤ô‰Åã@Ìæ/Aëì>GÀi鯕º‡ni+]Tb(¥µëÜx‰°…Œ¡Õ)¬Úä°?†ÈXÉMŒ4`³¡†·§ý·DœÆ›[“üa~_ë‡h¸“º ÕÒ´HE®bÓsV²‹p1çü4¹ª:û™/ÎEßþ‰—¸7qŸ`·^^BÇ[Ûšúö´g.Î^/«'•§·Gó Dby¡¬@ñ¯øC—³µÝIú0ç÷÷¡ûÍ»Ãwøó÷³Gk7âóLÀ†7µ-‰r_y…‡Š3Ÿóþ@k¨ùüýhQJHá¯)Ö–©Íd.;7e_¦Ñ©0õ ×–âÝê…k¸~Íô$PM›ä:²dÉ–ÌL ¤Jw£Õ‡Û"uè3Œô…N´3#–ø‹ÀÝgu¿ D/–´j¥k'–Va1^³”‘2•Œ RýHõ££EÌv¨1-L&åjÖ”Æ^âŸCJw¿Õõ6ÿµ•0ÁØÛ‡{ˆvR`#q†‰PX`»þ&°-Iuù~B`G~ÅÒÐ%¾¶p-«1¨tr“îw4‘¤Î/_ÏmqY°B'>M$(åU^¢]8Z|‡1{ýš¸¾N£Ô‘õ2¶Y¿[R»íy VÁÅÈ!ÿ±4žr59!Žå÷dÎÊe§+Gšw­Œ]Ù{|ˆ˜µ®Fn¬ÑTSYìÍŠlØJ°¼OU}g÷÷t6“‘g_´C<Ûî^Â{&¡UÒ™3N’WDµ.Ø£î*þž6Œùæ-‰ož~‹û] "˜5^µE?šDGë@"F”Tm T[¤ß£ÒØÚ(…hŒ8 Ù;†ûÒ4…fõocT ­?ÚhÕMØðÝ”\)ÍæèßœOšWa'XllæÅñs×òNîïÑ8^âXâ¿®=× |øÃ øêt98 Q:º¤P •LurÁj|4ZÅÈÑší­`ŠSÍIE®]R”؉Ãyi¢¹Ë6nÂ&ž¨;d¡-˜æÄ¾xO{‹4T%ÞQ»rÅ™íoqýå¯â¸óEc0ò_M,ýœ—¨DŸc;q÷Ž!©¨ÑÊ´¤Y¿•Ý ¯ÔW›jéj[U¸N*®ë$@l þlj–ËïQv¿³á€úƾcØ¢6…tÔLvŠ:² –ÿeÝñ½}¡ídÇÚ‹š>¸ 'º^n;·M‡‰×ómšªÊ Q[ëÔ“­UîbúJ«,Íï,Ú±ˆÅðz¸ÕÃ(§}7±?±@€v 9>ç…þ–s¡s4\ÚM. ©½i ®|ka²–úÑ„dÅ2ŠhõŠz%´Él2šiƒqx:;˜öºò#˪“=#Á!U ÿŸÆ?é“?¦ñÈdðh÷“9ÉåÞ³ÍGsЄ44…í¶+,&Р˲im’Æj·É‰Z ‚'ŤœÉy §ÈÀHŠÔS…ŒÜ&ïÃÔ½ªŠ?F[>ƹ×ЛXïU‰{ù:U1Ôè}[ksÏá-MYk 7J”¤ìØŽøV Ò3Ø)•IXÝV»ÃBu~õrg?í-²¬‚ìÊ­”¶¤tÕó¸&§ÚÑj6A —yee•UE™§¤^Øs´5HÆŸ=§iÅÈ9‹¦6N%Æ:%^’±eeá£Óî~ÊnE‹Ó×Ûqr0™µMA5Ž…kþÆä¯Ï5 ÚÜøñ`UâÈJa~ÐÕ˜ÉÕ fj˜FþKPµÒ~30Œ+æ‰_Á&ŠÃµÎ®SÓF©–,š¿ƒå³K€¸÷§=ÔÊfÇû?ÝÿW]´¿ÄKÐ €±[àøŸh£:G/ÞÂf¥iËÀlÖÐÆì'–ü\‰|sßQ̦fÕÿ„Dëi ‡IÅfÕö][Jss+v@9ìöÔ·'=µqu±lۦÿAÜÐÄv¬CkUqÔñÇ=qîÀ[HŒ[áîÄ­‚ÿ‰å4v`Ó"Ñ$$@·¢›ï‹—8©¹Í»]«Cð–ð­w>þÏ}{Uåmd>³§”ÝFh ­ÍàñŽÝ,Äbâù0AT¶þªÀ©ù^\ÚH}¸º²\TZQ†;›Û›IvçÏHÙ˜¹$`²(mg,q¢Q”WˆŠv”¾òÅɯâäµßÂÈ1ÂÓ9ýëg¬+®‡±F\dÛ¥£§Oà1Œ)¯¡AfRb=ëÂBò£Ðˆ£c—_øíûZlL$;cøŠ1iz&a­_îv¶ãYïÊxU?X[„ £©7t=¨ˆµû³O÷77µ‡Éxàü˜$«ð*ìLU˳°Í›ZãŽÆBYøàõ§Zëîˆ4ƺº œÄòãĶݨʇú‘HÒÔ>Ø]ݵ:3sg6¹5«º:¿6pwüª“ûÚ»¼¡i‰+ÏH×ÛVÂác’³¯x½ ÄTÕèeH,u@ëG®þT?Ý®ÁÙ€LÏc¿K+ÄÖrÓ£÷±ùÉÖo[l-ŽêËÄÔc~Ók ôñCiš][Ùµ8>Ó*cûè7h"šŠ»hšÚE¦¢sªøÐ­¸‡ð˜ëý{<ä µf1©¥•cx€V;†Çäa•AŠ5Ô(\9XzðP¬·ÑK†{}g1/¾w@ù2i&&»TèŠYœ¶•úÝvqlèÎNîwK—6‡ÓëpõŸî±¶Yü8%c8ŒN-i©éy(‚Bkñr² Ðf(Äs†Z)eãÃùiÙ GŠ×»àó–§b¹ *È|\šZFÁT0J ’×ÉËÃÃ6]­…bôöÕÉä&’µ?•–“P›£æÖ7aòÒ§bŒ53öU)ˆi)Ô@(“w¶(´hÇÀËg´jpø;FÎhƒ €ÕᢠWÚa ~šm€?Ã’ÖÏnˆ¡ÅˆÃE+â<´"$À°?öäR½>9Î:§Áá}÷m4ñ‚øàÎ"ieyy´rO0h÷bñAý€¿ö1âðÐæS‚vQ¼¤DTUVÖTÕÙÙoÇ´ö°ÖØwë£Ü³‰¼ÄÆ¡Lcä^•ð«Ýªz£ÖL“ì·ÿ³BŸ$ŽY¨ðh¼—-êζos,q.Êýß7´ºÏÔ£:/sVà BøÍ³Ô?WÑœ-€ÍiõƒÎoˆÊ*[©g¡£-Ø>Ø{°§£©74¶!÷ÊZ»;šmЕ³jMfÞVríÖ*éÎ:\!Äfãn'îkFuQîñWw¿ÆK¬zPÀØ,N¼µGkÑ«À„·ÎÀAèIK±Ó€"„_[ˆZm‰®X[Rÿ<ž,Œ„Ñ¢óyk“ƒ<€G‹(MÃ!Iïdü‘M÷`؆Ÿ,±=7Ÿ⽇¦£¹¢mêÃ¥]0/:‹½½S‰õ.(ºÀÝ÷2êÀÆÕžHøû ·EŒ™Ê*ùì,Íç±·Ü}yí‡(ÝŽnB³/Vì5Ù)œ» Cì£×ö¢gÐ]Ç‹Ÿ¬RÎÝöµ;ksñ6 RÉÆ?4‘Ãù?q°4endstream endobj 404 0 obj << /Filter /FlateDecode /Length 3329 >> stream xœ}YMsÛȽë®S.:SKó‰sHÉÙµVö:’²Ùd•JA$DÁ&.@z­ýá9çueÊå² `z>zæu¿×ÃßÎÒDž¥ô§ÿ¾>IÏ–'¿HþzÖÿ7_Ÿ½¼9™]Yw&M¢Sg7÷'¡‹<“Ö'.³gÎf‰Òöìf}ò«¸*'i’jã½³â~üÒÒ³Ñ:·F„ï6Ó™õdº™[ºÉn.hzuæ“Ü9óç‰×NŸÝ\žÜüùWñaâ]’ÊL‰d2Í]žä^Š ~FŸ\‰wñ{.ÅÏñ9ËÅëþ9Msq^´[¼*­L’*ñºê¶mu·ÛVMÍÄy]¬»ªÃ— kLh°V +¥÷ñ«ÿä¥í«ûnS-Ê68‚a\*ÝÙT¢›ÍÏnد[qÞuY”ßMðÝ;qù8oºjQ”·Œ©æv¢¢uè ³å¢I¼ÞÕe|Ó¨,¢™/c‹xWu×–g¢¹ß[}h«z^My}¼¬ÌÇÝ«ÉÔãÜs/^5ë ö‡vãüæÃÃ@Öæ8T‰ÙTްL¥[Àò®ÄÝKú3ÕîàP•Kœr€oÊûrûP¶«¢^`Ù>¥Œ¸hvmÍkJ† ~p£×âßÍÄ*Ú*ƒ]dzä3^>E|—Àm?Ùw´б¢4ÛO•Ó‰zNúvòB9wªUÎg•ÚÛ‹¢& Å‘y¦HÊðÆ¿½¾~OšP%­óSkÔ/#ƒES½ÀXÎæô†ù¤tz¶?<Fš*¯r—é_R¸îè¼uÎê¥Sô*þquÙ»+Óq†VæÑ߇-Sš+¶›³Ù]Ó|ê°ÕÃþvÉ][­VM½ªê2œÖ4Žp°#óf=›7õ¶¬·³¾/ ¬$"£›E_†… ?r*Å^Äó€C7qß4Å ì”理¸VÆ’³{]tÓï‹v^8åÎ~d€6/ù™ÒƒAžˆè-·ȲŽ}Ðöý`—‹WÅzÓMžxK’¢X­º`*°Gûñ.c¥æü¡V"*(¼6t>pŸVücÙNŸÏu¹"XäìÄ»Ýj[}žØLmUlËØbFIH)/þFˤPh‹uùû„m°æ¦ýÄí÷MŒ¯G¡º Ñœ"qвý\u墟Q{½»ë6żŒcXqYm]Õ˼~Âãùdª07aˆùݶÁRWôYrJ0áå]JEÛ·å:ì¤Î5»„}açcã×·!Ñ‚´ÐÐ~ŠÅ3yDiØTG¨¿}óæÍdj$§×Õ’0"¼7<8ƒ-%dv…gyuRÌ9™«”]‡=ÀxžšÀ,ŲøžÃ4L¼ÉÕ(ÇX@O§·Â HwÊIßx¤‹Ý ÙÚc!‰($sÀÆkÍä’Hh4ÈVO­÷>Z¨DØ«8ëW‰i>{wýQíø Ï¡”M-ö6tÞÃ’B.ס7ѧ£y¤/ Î;÷ÝMÅžJâ±,5õ†¾F¼.¶ó]lƒ“ nDºøž »{U-›ÕŠÒš–ÄÚâ¼ë°óë’Y1©ˆVÈš†!pšH,*Øt ìbõ8«¶!`I´åD?åbb®ÍÁûLe@¨Éˆ#EÜ]9d¸Åþû!Ưsβ&Ó¢Y¯'1Øvu5/‚®0Ìí°ã°ƒÝCQs „-ÖŒuJ™X”«¿äñæm6«'ã€l›!:«õ9AÄÝé­©K5'«ªFFX÷}ù#²2À®XUðgÚ{¥Sñ¶>ÎÕ²žèóeµ¤q,¹è_À¾„±c±áq½ņs{¼)–eGP¼ƒ1Oc°ú$“Ö¤P¨ŸÃ:­õ,cB ‡7%~Ù¬š–€è8òmŒ(DI¹žu½Ï9cs| ”ˆ@GäHˆçrˆK7ôΟ¥YÚø‡-Sj¹ªî’ŪMål@ bVùÙQA²sV TøÆ> 02Užiø™eÄËâSÕ2K9V‚ÑÌåhÙm›z°r‘Ï‚”<ÐÑá£î 4\Ï9p<Ðòð¿Õ§€è èßÜÃJC‡QÈ‘(%Á2Œ‘‚¯ªH¡¤Æ?´åô횎^ß½g„_'á™rÑÍ' ïA¢Ý‘_V†Íe»8¦f.v+6ë]çïJpVD°³çaøŒ=ç1°ÑäyFˆŽžGšÝܳZQ.*P ´Âq^‚€J}„üù VŸ‹zά#‰Š;â„”UzUGð‡®»ò¾Üµ—°£¬L4jïÂÛqœkk¹0úšá¬=Âp¨¿V×ݶ\w}w–<ªß$ ûQjÕÿÅrûYüóá.¡ÿ­’{UÍ‘¿)6e»Wç]RW›.ªè¾Ç¡Šž‡>3edF« êÔJ¬ú@ê?y¥Iýª)¹Þ#”¢yjű„7a¤ªÍâþ¨Ü†˜Òo”Û±RǸ_±Ø–.WŸ¨ …šg¸‡äür˜8 PÞW¥5Ë* p¢»(v¤6#!± ß5 |Y§C’~¢]åHÑ œÁª hØí5oå ü«Bu€â2’¥gÖãÅ/èÍŽŠßG)@DEzÿ`J|F;ª;ÝF¹USÃæK{+iOéøçx±ë,J®4AŽû*äˆ9M€%iQ>C¦J¨Rm$§ÙÔ”ÄâÑTÅè¤L2”¶jÖN†ÔjZϧxL‡Fæû í½,ëeÕÀ “gŒŽŸ¸1¤¸×å 5[Yì¸IJ¼ufvpáZåªÙ}†q ÍéßF­û’±¨Ê^½Nlû>=oŽØƒçÈÅÏU='û^¼mãRP\fž…œA¾'¶úi Ò­T¦‰ZíˆZ Ò+­÷Mµ,ëû]M‚•.xÂw‰r+»þpØ×›½¢,çÛ}¶Œ3mÅ›uˆ]¬ô®·Å€åbÑOL÷crp‚$ÏP¾A1~xu~âÈZ>WêYˆ‚±|Ïô-tËÄ4Lªén1º¡‘yvªðolTâ§9m£Vy¸ã $B®ÐŒ\]…ôŒZÀê'é™ð:í‘­SÃaß#[rÚ!{2ä1Æ8ŠÇL+3ߥ ’oIŽüÛ×­‘K_L•4ír$aot(ƒŸDÍ:HNžþ¸âÄæ÷Dqâ[ú”.HfâÕCY÷o$;XC1äP¤%ñªq÷± Ü*þMk¨PèŒÎëIüLÕþ¨tÛÏÖ¡ÃîýMF„`.¨ŠÑ§EõÌÝO@ªÎ0¡QÉÇCŽ*MDü²-6½ <\´E¼Éü+aC¿¯^×G›¶á QâKµ&N¡°£ ÙëöSA‰é!g_ìåC«Òs0:pŠª_ª7 ‡Û‡‰¤:ßAÃçÅ·S ®·4]»Ps¸bº¦(ë¶Õ> stream xœYKsÛF¾ë®Ûtl™ æ=ã=lùµ‰ÉëHJ²Uq“ˆH€@ÉÊÎØîžø0é­ÚòÁ æžž¯¿þºõÇE–ò‹ ÿÅÿ‹ÕYv1?ûãŒÓÛ‹ø_±ºx}w6½ÑâÂ¥Þuq÷ù,¬à\»ÔX}a´M…Ôw«³_ÙešL”“©·Ž½ŽÏçì‡6™d©wÂ+Í6ÝC¢Ë—0ÁY›f‚³ëͲ¯fÕª¬»ª©óeÜÆYÖù²ªçøB¥YfØ}"<¬aÏñ׬Y÷Õªús; 6o’‰°©÷™cø'pܳY]vÝ`k>Óö·>ùíîòÌÃ)3n.&ŒÕþângêaµòÎäYŽŠÕM½*˜ã¥“†õm•L8Zb+âlØu1Xº†ï{t˜Ò/Ê®êRúÞôFš=ßrŸj)Á¿ðeö±{.ͪ„íòäî÷Û€ ÐÆš0ûWö"™h‰V&ü'Æ?%/ù¹H8úÜfi<#îó6 'áÞ¨<3áÖÂÙ›¾¿½ý3]Ë2)'’ ùW[ÆÉ&™wÞ¤Ðp=ŠÍšêe2±Þ̈e™¾þ¬w^Œ8 E œhØO7WÑ!<Û=¢0Yª2²èûõKtÄdx¿wQÓ)å!íÖ-¡lÓ¢Y§Ÿæm_ËrzÄ ðá=× nRå\ün¾)àrðM˜KÃGñ2÷pIˆ§çLâ æïC¬K¯iÚD\j³5zƒ­’ª_ÅAØ\ q¾UçzöŠYQ¶Y•°gX»zÇà+‹&@/óœÍŽƒîèÿè9G°;®Ï¹ðôÖ\njŠ0³DR0øîÁ1AÒ¨Íëïß½{ !&19]6›6„­D_úàç$|ñs|ë5»-—e¢9< Ê>>kÀ*ÎÁ£Jv—XŒs ëf]]DRüøÞ¹éŒ Ò¥g·Õ<|^!ÿ²m¢&À-‘™4d(ú : ræ”A‰dßRp:„¸ÁÏ„9ç™4Ãùm¹î-ÜR’€²¬®éBŒKŽÞÑÀRL”Ëâ ¢•ÎmØ;* Ïüôòöîö#ÑkÅRüV*d0)c6Û"cÂË-]ÛÌ‘ƒ_ Ï`ûU ¼dñö!iåÇq;Ãéžáõ¸`д,Ÿ»²F6Ó Ø ì€iÏqLλ<Á‚ƒFÐ[£VùŸ9äÒm"˜œ†}üˆ‡ÏHŸ’ÜßBðU„„Q” e÷L@ŒŽØ˜ÝäõÃä>ïÊî²wÑV=$•üT èÔú‘ ?”›vÄô1´5«õ¦?7£RmßK(8ǬøÄì91£´ˆ?Ÿ’ü<ܲY*­<‰R˜4‚‘QíÒF€Jð-ø% 0‘Æ@»d^è‰|›Æ©>¦À¼Â…ÄÚÜPtkc›þžÖå8À÷Læ F]ÝýÌèTŒmt§’ ¸N‚°“ÌV2…tóôô”vEUÖE9«Zà.J5ñ ]3^Þ(yÖUóаqð–u”BnñÔph‘ù,Ã¥Gò½#2Ý×CÁè“U¤? ¨4RÎ`('xG#†SÖy;£ÁŒÂã»q Á^—íÁ(E=9° îÐz» \NÙ£ ŠI¾ßDkNGõ`ãõøaõUT% "wIL{¹ätpr@2Q€ø†šxÀ2±¼ª¾ôÈføù”xA‹È~Ø,—÷yÂ^8öp~UV÷˲ëá´³ê1ê²#.ºa¹þ‰ŸKЦë‡UR:ä䎉5eá‚ɘp” jv‡£"r¡8S(í6‰K"ËÐ05 ádÉ:¨ã–y;ð&„àv§5¸£lŒ †w=NMæhn¿¢&qÜDé8̉ץÂÔ=º"o(ÙH\;%ìQC+Ô®(V$[=ã|ëWñÒ Èœnz¹Yâ)MFÞ\†éÐeÁ;C†ƒ,ÛB(R•Ø™…®§9C/…óæíÁs¤,Øù ô ¢ANNŠ` P—Šào°Ò–%‹rÄq£’+ÒÒ(‰¹à°¯,?ªŠÁpeT1ÈV% ê æŒRÚ”\„!Kõ 9ÄÍÃ}h 8eå’fYÊÊ×4ªöº*ãXµ3 ‚ºÙÝïû|õ¦!pö}²¿RìiXB½†°B°w€tÐ"ËÍ7RÒ`¤ÙÛýH$lÙÐ&$Ðo0ê¶NQùOìÁhÊö“a¦¼n›Qº<ÆÆŠ |ö‹røaØ›fÒ‚pˆ8‘ñueã—ã‰ì‘·ÿ©¡H„ƒ€,¶ß‚èï×¢ûí¨…´¥•Ü ,’·†ý»@Å©Dàf@1G—ûÓ©ÕºTΠ›·_ªÇ´içÓü¾›Æh%¼‚C ÇA¡ì oFÖ,nNh7| ÔŠd89þ6TÁ>ˆ‡[§û•`‚ j:N\yµùr¿içÇm e£žÂV •-”è¬Y‡uašrf˜%Äš(fAY ¢ßRçv…eo–›Åáq=ÇA%q'ö| JPGãqô>Ž‹á¥¢.Ê[z–tÜë|Q!û‚À\`-k8I×WÃ, öú¿êòÏqÔ‘ž‚Ϫ®2ø¢¬fÃ4¬f1tÃ6Ž ­A RPwÆ‚0€y(T>4õ2&…ÀÈeËötÀdK,ð eK-Ș.Q™‹Œš£¯–=Ê S:»(B’RiÚYUç!ÃÒ;¬0Ö¿A Ã,BúW´Ýç¦f‚Ñ_&cZ‡¸ >‘Ø[ôC tXÒügXª„î«&VÑX½¢…±¢n»˜Ä­§†][ç=ž¦‹[ö¨|¥¾ K‹Å.áŒF%[5õ¨ú¼.㸠Î1ÙÊlìX]¢¢QÜPýTv^ËyÙG7Ñ ÖWy¢¶s¬Ñ#~ߡޯ‚~Ùà3ݼ*ÆòšZÖ28ø} ¦­à[±j?¤3Ÿ /Ä.aMî±&Ý9u¼ò4C#/7謔‘NvB‰[8‘¶û`‹µ¶&ýȵU¯Ç*P!UêŒÒkTŠ\îv”CY4Uý9¥eXÀÂ-( 1¬† <Ù½• *¬8 Ûd”•¨"Ä™{æ£C{%Î-žÐkÅ3 uŒÜr¸8ÞâÕ@ÓÒî·x °?lñÞRï–S¾Gz©ê¡NøewŒž) Ìž±8x ÓÁ1”ùêu­‘ìÃXrÆ¿$¡{iØó²*IHHЇ·mº„»Ò:ÔXo«²íý¦/gÑÈ7e±ø‹ØWæ[Ê'6oóõâSíâ‚]åc;úy ŸfÓ“–âôn4/p2…碎¡ë%áó¦\ïü ¦íãÑìfùÄq¨U€3y¤N'®¯GÑàÙÝÇ«,‹¾Æß·à½*ßúïC>9Rf÷Cã\…>òU~ÿü&6mŽ©¯DÕ'5§Löa«Ä)½U¢k¢,:ú´àƳV‡«JçÍ#Šá¾,ƒŽK÷®ã긪™rö™É&xÑx'‚ÍÚðÃcfžÁ­¯‡©¢Æ$ë7tËÃo¸œeþ Wz42”MG4D·ü ›v“VMI8<›½çë¦móå’JkN©Û¦Z­ Ý¢m>oêyEï°9ÿfÀ-ª< Ê<øSÕ/bC8·Û­Ác£W `  Á¿Ã„flÞ£¨]”O#Êóúåééžk Áe3G%Í=5Ï)ŒÃÁþØäõi}Õ‡DS"Ñ5~!_>Ÿþ»pQ¦FÅø&ÇŽƒ’ŽŠ}ê¨È<_7}zìÊÉn_ ÓbÅ4¤‡)Åec MžsÇí‹AƒAæùþ‘_mæƒæÄBÒ[EŽÚÑCVQ!Æw*R€ܱ0;sc^ÁãÁUPóVúé=d¢ˆe™DÊqÅÿH%» ¡À÷ Û¶ÀvAÞ ìt?Æä±š‚]AêZ” ¬#¤<ÀÚìÕ˜ÓBÔƒ3&ÀØ @éé„ 6¡pê»»³áß;?vÍendstream endobj 406 0 obj << /Filter /FlateDecode /Length 4969 >> stream xœÍ[Y“ãÈqvøqžýæ ßZCuW­Â+íÚ’B«{:|Ķ!ÑMÌD/@NOë×;*$ú˜•±1€udUf~ùeUö‹"‹ÿÅÿ×û7ÅâîÍo}]ÄÿÖûÅo®ßüêÊȅσµzq}û†{ˆ…0>·Î,¬q¹Tfq½óC¶¯]ݺ|¹²JäÁëìz[-ÿrýÆ£a¬Î…ò †ºÞ@ÇãrÂ…Ó†OæT¹’NéÔxµ©»c[¿?a®·Ë•¦ÊÊÝ®YJ—‡`eöÐÁ÷¢È‹B€T›ú´ç÷d†ÝËú¢&š¨ìØÄg!³÷Ë•ôðÕ‰¬J-BV®×§¶[ƒ"pÙü.qÙ3tîU?ÍÞýé»aüò@“™¬î…0YÕÝ“ƒw ÔHš ٺٹõlYKá³&¶!K‚••i‘Ad¤×öS}¸º‹ÝœÕ¸h¶‹àsROìÌõ´>žZ29!H h ÁHŸ–dq À^Ôö16AÈX¨-¨u04}24“·´x!áMCû'ã ¡²}¹™õB)B.Œyµ”UêL ´‚ìÔU·§]ZœÌn—ø¹RfM›.Ê{Ÿs ºŸìÑC 2®dd‹eÛ²‘ °¸GüKÃÑnã3Úy,ã›°`ËÝ©ÜÕ-ð3nìLÙ}ìF㢱pðmšÌx_·Mt}ô¤ÔL à6ƒTërß÷dA½Á°°ëe² íÐsß´ÕàO!¹Óý0`s·ô’F»j– ®"¬Uä 8¢ˆ³ªñ¬p!ïÖ Ü­ûo²ïv]…°ø? Z¹ð½YÞ,#4ªV¦Æ É\àüeÿ,ÀäWÊZÏ!б(…©q¬!+(¢& Ös{d/ÐWçI·ãáïËußà#ë ú•w¬ü‚Úß6ih0øvgWîN±)}RsM6+öÖÙš‚ÍtÝ,ÉÙh‡Ñ`W­ Ç‚ËØ Œµã„)Õp¡ü,zç‹¿é¾^®œsäD¿?`;t(“ýùÚâÌqö= Sw܇ïÖõÇú¸ÚUe›ÝßdîÍ¥Ú´Õ]Ó•½5T€Êp,w9š€Ñ$˜€¸YÒØbXÖö^“=8í66,lÅ¡×ÄSr1ƒôÄ‘%ÐààQíûO»*ý`¢ª Çœo¯òØÌw!vÿÃiWƒõF_ »Õ©m«‘òxP›}¾3¸ñ¡¾mv›?âFóáŠÅ h"³CsØÕ‡ª¤/Š@˜ý/bú÷@j€ X`[,¼léâH 7ãц¡à7ça>:Ÿò‹Ñ¾¬1!Cn©¥A;I^'uè½NjRnNÜ«§j!8s+ BÇ4°ÖY³‹Ø.€%°åÊeŸÑ% =KŽCâBAÔ8nÑ“šñ‰Ñ!¶Tù¾<îÊ÷q$(óKoÑ?Bìe€øÝTzO»ÀVzGÚE+Åg l¥ô Ì@~;ÂJ¿#(»Õ¿•íí…ûÛÙþ>Y¹B˜†ãȉ÷q[›½Û6w§^æ—}ÛE$ÒfÁ¸?÷¦v“½k‡¸aYö©QHÉaÇÈóˆi»äyDÖ-È4P „áá—Kt£AÒ£Ná a±­+ÄS"Õq‚[’âÂêÒpRD¿¤Á lÕ/ˆÇ‘ƒø®ÉN ¶ñ#T{u=zþí/É/¨ò*è˜5ÿXµ]jô£>lÀ9»8jrOê!¶Lßåq¼ôF± ìž'§Ûún; ¼«>õºÚõk…m%e7 õzwÚ0ý¥"»zŸaÈÅðEDSñ v<鎬, HÚFRxèÐ=NÊÁèØû=O@q˜ª§'ž®ßõÒLj ¤ää£KÏÙa4¦F’©Ño¯¾ùSßæÉpÊna(¼ÿ.8H¾Œ6ÎÁ#Qi Þ&ÒL„! 4å§ $Š–ÁýHHèÙ›þvô5‡+ì‡W,}t‰»«úÝa@sìñÌy¢8L‹‘YDü*¾¹ÀŒ;>3a&r¢"Ç—Aàøû*ŒÝrWƒI¢J:¦aÏK>ËnXZf,Ü( ÿ@ î\FvÑ$B'1Hw;e£©%¹Wd¥‘")ÝV±3DþOìì#GÓÌ>J° Ʀ'¦ŒYÓK3‹0ôS"i$þ'©æ¿Rè€õQç öeäÜŽ%ÂÏà÷÷»zÝS}g‰öÕ(sœ Ã'¢e&yNü ‹ßÔÿ´¦|_¡=7é—5ОT²Õ9í Ø^E»ûE°Æ¾…p.k‰¢ÞŽÏðÌK& ‰YÎ+#SuA^v¬Ú>ýÃV($sì’Ì—û ç:&‰àߌ ºæl‡€·û2ækh…Õh¸tÖ“r..x­1…ÖãóáX£È¸Ã/.Òlà6gsšMŽyýábØØÅØfÝ\•‡œÜr<š6¹+¤KIû B é‚•”³%ZÅAž”f™ÈÍå­±¸áè`OðÍ퇣?8rSý&Š‹ðzé‘¿‚Ë4w#A %æí“3&:ë§ùJâÑÚÊD»%æÐK â0Ã8`^]ÿ•Îç°“ÃPEºtxVµ·åº'æÑðIÎ3BÑœºá—1Q’°ì_ÆÌaJúÎ9„ÖÁшCh.S%üìGi8u=N ¨„ÚzMýˆúF'Q|¹Ú÷6f×ß^½4`„–íÍxËîyæx¾­j>ãs,ö”ÎCŸº†ʇà |¢ŒMûqHøTÒ÷ àgÅ1£*Œ' ¶·xzMáVâá¬`ðÐ/ëÛÇ4XÜÉεoºcz<ÕGV5Žƒg¨ M‘àB &qÍ<‡£3YdÊä#iZåH•äã.â>zàpÖ&—¨ñ­Häa?Gçåí§š®RÈélÏÁúpÏ?ÌÂf¢^ëf·C¡»zÇZÕjÀ4ÌY%˜0„åäãÉ´æþz"œ4Ây™äDþØ–‡îÏS6‘8I‘Ÿ'M÷vP*(A¥;3C‡1 eæ×R+ÖÐËpdÙçØø‘`Â4N2h(‰SuŸÞð°Êïð`–†N´N<£@‚ß2å6|é †÷«(!ÝaÎ¥;œÑ^Ñåœ1±² ŽdˆÎäRVÍ þØ}®&Z,È!®~AŸ@lü™æ!^h§s ï…xA‰¤{Ú[ìÔ[Dú%ñ¦¦IørdN.‚ÿB€|m`Qþ‹‹Pêÿ>° øÿÅå•!e²Ë~.J´SH‘J¿ À¶îÝk ¢ñLL™ˆtS çÇ1ååUþDŒ šØ×7脚Üy|T¶ŸœÌplsx̦|›Ô“²¨C¬ù€¤È[¬ùˆ¶øÔ9CÇ÷{Hø+:¹)4rØmºÿ ã4`}$¼‘:eó%GAÿ Ôа1Ï»åd/mnÎö1²þ"2y t¸=ˆø…²CBîÑÿûÂÏÙnÐfÄvqìW°]•zï||Άun48ÇÏ“í¾‰”ø¹#‘Ï=æM_„D@´y=32jˆþ?ÈíçO|°C9¦äö¡ˆ¡C퉡Ò%V¤'‹åsóË€GÅê5äÔå dÑ‹iy>Ñe,pæ<¨7U,s4\!IÛ8ãðˆK€œ‰‚ƶ25E;fÜ_a[³ 3$Z<ˆ‘Çë27»ð‡!¶Qâ‹öw;âX‚—¼sßFÅ›˜á€-QcW*X¡g<8ÜÕk¼£žÚöå}*s ’žôf÷ý¥ÊYÙ$>&oIYÒP5ƒy@Ù šô{|“±j4‰™ö£õùYÀÁt 8ÞL¤™Îß«'ü‰: Œï0¬»€6n®²® ñêX"`Š—<ó¬UP™öã ‘´°ñ˜‚³­Xê€w;•ƒQ6•ZÄFŽ*àÙÓUýp4>lì*ni˜ÙÇœý[—§'2v–35j°F1Uãß ÑC?=f‚\1E ƒ¬qÊM’ @üœ >r´±…ÖO€*¡ö¬ê^`C—3Ó‚EB¾¥³ÿ9‡Ž +1–ó-‰ûsÄN+9·¼‘›ôk¹°Â3/™=‘Iuà±LÒ>â±±¾û¸¥RsA—ÿT|‘ Ãé~>UÚµ.P)ùP^¦²ïŠ=a 4!üôÔMG—Ÿë}y¬(çJ‡IoÛfŸf³ýñ‚ЫlÞÅ3z«³‡Õ¦æ)щ&%!ƒ4¼4ƒ„ãKÒ‘àX»‡'ÂtJ1ܹSŸOçC!ü¤:Bâm+Á€¤ókwy«ÕoÎÒ…é}Y·u×·žü¡Ià'™ÊPýoY½Ke, jUÑ‚¡"ÝÑ¥b=”Àѽ•æ»ïXo¢ãUXµ©6o‡ãÏø©«Ž³È£ tÉä›g¹µÎÅô§7ûÀ.eÕl¦=àü¹+? ‘1~À—K §朶b=-˜ÔÜÈsÁóÙ³JØËƒŽ{º~ Öì„ÖðœRK<ñ9›óù=VÈýñÌä.';q–Z×ÿ½ÌPC2ÍdV ™«!¼Ø¼ÛšY;x¬eé'}^¶0⪋…yùó4°—HÂ$ü‹íë’ÔŒìëùh ]q‘â|x>ó½Éœy=™¬mDT!{ ‚Ç9󑈾;û£Ÿ Q«ÅlNè‡Ü»Kåq>b:—Ýy¬rKœš˜–PbEzº}¸F½= ¡è°æ`‚’À¦ZL&Òþç–@=pám[ÝV-Ÿ{ó'‡g=)!œ¬ýQˆö…“'ž3]½œ—nùᬔn¤×a=Q]&tJST_vY¦L®€ŠNJÂæ®ˆÓ²øO¸èÕû’.›QˆwWø(ˆtõ>eR¼6¨³Ë(ª®Ðšs9¾ŒÒ*êà®(úì@eE¿®áå_°‚r¨æ‚RªB¦RÐÛ~7cW—Ø ÍÒß¿ð¼öùz Øe\×D ¯À|6É-§ÖñJ(¡{yZöz¥ñËuõv¸š/û‹ÿ0NЧ–ƒ‰„ÑÑPà Þ×_÷;v©]*Î-Rœ[ÀOZHË@^¨\M¯œ» äò™Â–ß]¿ùwø÷¿ùª(endstream endobj 407 0 obj << /Filter /FlateDecode /Length 594 >> stream xœ]”=nÛ@„{‚7¥}?2`lc7.I.@‘KC…)‚–‹Ü>3#;EŠG`$ïûfÝ?½<¿,—[·ÿ±]Ç_íÖÍ—eÚÚûõcn¯—ew8vÓe¼}&=Ç·aÝ퟾ ëï?këðB›ïùûðÖö?-Oúépÿh¼Ní}ƶ ËkÛ=ö}}œçºkËôß_Ùß¿8ÏŸ¯UÓ÷x"žªñÄøP5ˆŒCÕ ŒcÕ ŽŒSÕ NŒ­jã\5ˆ {,@äô=žˆ‡ªA<0‚¨ˆªª”ªA,ŒV5ˆÆèUƒèŒQ5ˆÁ˜Uƒ˜Œ+,,+,,+,,+,,+,,°)2*42à›Œ |“‚QÁ€oR0*ðM F¯‰ÙÈl 2Q© D&*#•«ñÌ@¤Òh‚4BNÀt ÆSpTîªÝY»ƒ×Åìdvðº˜Ì^³“Ùѱ«ggÏŽ]M:›t¹¨œT†ÃÑ“«+gW¡½Á½¡½Á½¡½Á½žB]» „0‚ÚBÕ« u踃Ç A!¥†Š (5Tl°Ø~H!¨(5Tl°Ø€MÈ(h(5Tl°Ø€\H0(˜è8Õs²ç„kÊ7é›pMù&}®)ߤoÂ5å›ôM¸¦|“¾ ×”oÒ7ášòMú&\S¾Iß„kÊ7é›pMù&}®)ߤoB.%ˆ'K‚×/¤¯û§?¶­-7ÝZº•x]–öïb[¯+¿ê0»¿ºß6endstream endobj 408 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 8154 >> stream xœ¥ztUUÚö !ç,¹^DÏAaPz5ôDz -=¹½÷äæîÛ{ï)„®0ÔÐä¤$¢R”ñsÔqF?Ëìë:Ìšß A?ÿþï/ëfe­pÏ>gï÷}Þç}ž÷ƒõî…åääôY:«¸xÔøQ£2 IöJ?«eé}¿ÌË}sAßÞö§_˜•¯< g<þãX¯œœÂ—¦WUTó¸›kϯ*Ù\[9¸XT½YP»ýËï¾Á0lÖÔÊw¦UM¯žQS;‹Ãåñç6Ìnœ'Ú4_\²`ó–E[o[²}iiÙ²òŠ_Z5|͈WÖ%yõ5Ùè1¯÷Ç!ãߘ0ñ“1l¶=‡-†b‹±aØl)öVŒ-ÃÞÆ^–c/cï`Ó°áØ l:6[‰ÍÀ^ÁVa3±‘Ø,l6ö*ööV„Ææ`c°¹ØóOŠKÝ£cƒŸvÔ³‰!ã†t=·þ¹]CŸjúÍ0Á¿zõ½ƒ=–ýmì\ÇcRéa‚|Öž?w²u@cÔ’'Vqy>e‚þ;Ϊ¶Ù ¶ÂXÀ¥Y{"2G«3û‹Ë”â.}t”èЪ™L@³ªùEŒbí±ÙŒ¶Â¿ã Ÿ;»xZ ZE7êõ]‹¶Y×R(N>~"|;PJ´å[˜W¶2£Ê˜‘õ’:Iƒ„„¹p4ût;N¹æw0–¼›NÁŽ+ù8fj\Ô5€õœîÏv»¸F5ç‹4µü€2L³ng:–㬯x ©ˆTÇiøž¸b!…ŸG/‡ÄA»µ5ژر;¼{Å hF°¨•¨¸÷/…'ü/¯À»k>²jµ¨l+Õ³‘4/•§t²?ƒs¿dææipžLÉãT’x½µˆh.ŠŠhÙ¹íç*/èmuV`#M„Ñj±š¬þ¡}‘½á½®˜kwa<îñ…›xV Í8_¢âqêíÀç2ƒfÂA6‘ ;»ù4Càn]Ä% 6Ðx˜d6åŽyíóÛšô¦zPO6žœ§äW-­^\µ´^­—ÉÉÇyJ©¨2¡Ð0ñ¸ÔÅ¥·:ßIåѹ]˯`ýôEú û¯‚àH•|¾O‘ ¡oƤëbâ` \W‹¯Nw“¬ô™–£m×}=þÂpŠáã\t9'¤ŽÒ?Þã±a5d¬Ÿ.]1w ·´BHWŠËA) _€{ÙðØ›`¥÷_“OÜ&(-G߉²ßÝßP} v¦rN]‡‘®\hLÏe3½å“FÖ&U“{‹éó)ó\7þjù‘t0wÄ™þ3€²Å`²ût÷'”ïGf:f£uSW=aí­ËÚyT¥Ò •³¯;7=<ÝÅÞÖ¸%´ÎDªpæÕ×™ÉÌ0æ™O™ip¸¥àoÿ¸ ób OÍfk5·ŽÖ,Z¼q ðU`Ck՞͒H“žÓ‡ÿtäÈ@ºð‹ºýÅž…–2¯.ȶP˜†/ …OP£©¨l€©IÁ—;áÙTƒnv„êB¶ØÁ5 ©b\ ´F ªL¡ú¸¿=~/ŒÀýÓ¿÷j|GÅá{€„~ñØço³à£ kÕ&Iåff![7}ùŒ €|kÝÓ£¸é£„ýÄùýÇùɱ‰3t Î {ˆˆµüôÁTþ']Ѓàpè“,j Tgš%ääQŠuÈfEåŽ †%t» žB8â:i8p.œÉŒ£™ ¸@¤æfÑÃ:ôDš÷gö=Î 2r-3hˆŠþ5Ã;á…TÎÞë0Ü•›îw‚Í”,%¸è”BŸÕռї=%—^š>ƒ7 ¬¢Z¥”C)ˆÒ¶µ¡5€dú¼8”é“ÁF|òØáè®]4‚#zÀðqªûæ…ã‹çÙ©ÅÄô·/œ´¬ó†–úÍQ‰sVA~\1QK äB†ÝJ4ª|Uó.«x|æÉ;LÇœµ+— E>iŒfµÜA ] Ñ«5Ö£F"2¸sê'Ø—ªŽŠãñh°™byOÎwm+ZV¾fÍÃgÃ’ÌOÎw]°÷ž®Üï²qÞFpÅj®È#Òp2ÞèñF /—^ Kàè : %+ƒêh8dÛAÝ%€ÍhGäÒ,vòùbue†—u¨ÐÕu‹ðŠ 6štû’Ô-"V*£î À«e*nmD¥{ŠmœûÂ?ÌIå_KAWj+ŸÝÉÞ]sH}w`Nó°?³Ø<×KWÛ6ø@#yø†cÛYC‰ƒbµqmÁ®ÂVK4B_!"ª _.×*ê¨rÿVËv@Žczq^fÞ„Ý_† ¼XÏ¡êPé¬ ñŽ‘¬ò¤J,/,Õó„ôK„À%ŽE¼°…úu_áš|\_B‰—ÒÓÙcðZ¹\ ð)bô À“N­¹ È®›ÇnG4ŠuáòR!‚[¬ZVY¸P~à 9p0;ýÀO6ó-bŠÿ9Þ"vøuUϳ®ÀŽTÎ×™Þ’ûuº›Ñ ÒTä4—WÀ!W[Ò(ô*QAßEdìŠG%n!ýüküeÔ¸˜W_%rKãô fþæB^ñÖ-–³Œ M°œ‹ó¥JÞo‚þ ð¿ñ²9gz5 _è‘£ªNá!Sv¿¨÷ÖÞÇÓkiì°à‰f±À¤pQƒZ ¤¤À'K:ìF`p” ?§Œ¨·wüĤ²¨ÌªàŠ‚Ð ßÊàŠ¦ ÕNé.@šñ]Àíðï÷î+ˆ\ˆœ^ˆ^(°x¬“‡lÍpJœfEÃr‡bu 6®+Œsd >jsqºÊ\ /äµàqD>Q™‡CÆYQ­Ö¨-ä Ú YÜ€*ñ+Ó*3‚wQ?„w3ÇNÌ/æ­©¬¶8”‘°ÚLà ›‘jOXùúwµ—º¿Ø÷¥‹JOn%b!g<"÷rèbœµ§´ÔXZXƒ×Të+hÖ‡¯<ñÛSç\F'6×Új,µ;˜É¡gMâ÷ÀAàò4Á',AKÈ"8X[ä]ïÚªO‚#ÀtÖõïvè¶û6éÇã>O4)´£&ËÆ9dˆ|bô|sì‘Pí¨nÑ%¥Áj0pÐm×Ö(6*6¨7¬„ Πî G”ÞÚÌZ¾P[‹h/þ°À >†ª«£ %|*œ2€uNIìˆ1bŠòÈ5ÑšÁ™ùæ‰W¿\ýÉ{®–º¹lOR(<7ï@¸•Ð2œuƒÃˆ_#€×è^pkö™‰>Y€\öš~zUL˜lõ56Óð-f{±à-aqÉÜÐÉã°S­ÖVskO}@ñ(11¸ˆyâÜVòó,Ïjá#âÎD—þ ÑÍa°Æ}>Ô€’(ÙµT-dá_B2º<_[K³¶ñ‚Š…è0#OgÖddÔ¢5™WL©p—6nImMmNé­:°“FÂd³!EŸ€£ lv³Ó Pb^o¤…cÑ/ã‰’Ç i¢4³žqæAgí-ÚˆWp–W‡´k!7+B“|¿2ñ[Rï•-ƒ(CÛ@(*©J¶dJ\ª©EáªÄEµúJ>…GÐM£R–âŸ@òCæIq‚ÍZÏ ª¶Úèh7qÖz»Ãà(Lø½Ñ®E„ª•‡¶P+AƒEç4˜ë,À‚ ØïpG’áÆpÒ)°ÚÍVtºv<pÇB‡ˆfrp–U‡Øº'QrÑ„^yœòâE#gý%Ï‹Ç<þP\äÐÌS¨ôä‚ʤ>ŒJÏ€Ö¡ ׄ¸!^ˆëT8änÕƒ”Ö¡&Ú s³Dº‘¡tšˆÒ€&–ðøâ”ø÷ò ˆØÇCJz4.n+€ˆze1*M2ý ?wA9*õC?gá´9ÛÌhxe $WÙ Óâ!³3BÀn°# |L$•þZPS­3Ö:j#Oó.q¯/•º943 ç+¤â «ôˆ~g:~Ÿç¾ËðœÂ¦´(wNÜ9iÇĦYfµ] T N_g¨W×H×ð§Î¤FgñÑA<)ÊðŒ¸jõž-G`¯}ðé?·P„ß™]F· Œâ‘¨y][EHY`ˆÙtZ£®/Vð³!”%©|³¢zD^®n{ºóšð÷D#&̤5ªÕ݇e† y‡°Ì´´¡PÞ™ ‰ªjØœQ¶½ä¯ŒL?rð§ ‡¦>l¼ÐLYœfp’Q‘]„\ÕòÈ„?ŽÝuëDòÄŸvÐ-á–¶Œg Jºž°Ö†$q@6F£É®Ì«iÒH!ÈßvšËç`ä|îålFÄOªàg;è7™^‹eB,Åér£Â¢0+ú߉Ìiœ,èà¸jZÀnà>doœ õ/0{, Æ{åbÝIÀÿýÒ<Ä¥7êT>.=_êuå#¹EüÙ‚Ùze½(‘|IY«¦‘÷!ÿ2÷²ä=‰©óq®B†´¥2þ«/9Ñ™s´ îDmòq”e¨2HÔb¾D:pòÔ‰Ó'Nãókä ‚x$ V¼ÕÓ—‰¡M$ꪩՌ“ؽ£}W{[êüÅ çý^ŸDÉVžU@1_ã"®¾œ^Lpâæ¸ßÑú0Gðƒ*"­öëЄ€ü-L£¸1#ˆÒÆ’À‰G^Ê<ÊàŸ?sŠ´µÑJ¢Ö«HRŸe•ALâÐ+Ò.œu3¬ð£ú­N‹è<\ÄA|ãE-…Yê X `%»Ï~ü)eÅOë¯Å@iP\£ ¨È9«&O°é“‹ê÷„ýå9X‹øºíËl:« .2ŒB·¬ %Užeë„Ï¡Ym™ÖLUek8øváÀfèQæù“ÌP'×%@* ˆï´ÄBtÚÜDdZyX髦‡ã¬`–VkåZmC@IPÍ÷Êq2òuê 6ÁÞaÞFØ[ÑZ nç9ª¹8³H‡ªD QðÑ"T©±ž€^„ý/¾©œtÁG¹°?\†‡ñf7ùÓÒŸ™g™G‡aH¦>2ö9)~²¶»ì>àEf¹!"sð@0•AùfÙ60L>­ì"Ù¾Ô©SWÁYpjƒe"ù_Hÿcˆ¡^ ‹º2m¶)Æñ$]¸!u„þŽé×c«2JEéð°gqC°°5jm ËhYmÚLÎ^‡G¼þPÇ*¦™~ø»û÷S¬±†õ{ ›B±&Zd¹{#º“×¼ü+lg¤ 6KÃê®û4Ì+#8WµÒCðÄ}¶¨¡Ëà Há_:n_?‚/‹î29’iÀkP!ð2d÷3£eCíM¢ ÷­<(j] Vƒ¢E«çëš\„oœ?ñ÷ÝÌ‹ù-j2¶õÂÖÏÊïÞcoU,«‰Á¡›îþ>Ýþƒ›rÅ ¡&áu ÞTH-ÎúQÉ‘5F&§ÙA7K[5;ùÑœþ™vú&uB–ðZƒN”`ÚŽ¨' %v—F¶›h-ÎÜ:žš£(¨o¨¯«zÐ`Ò#2.`ýUéæÔØj Ǽ1{dµ½ Õ\gÕ!fR+EzEƒ!] ª<Ô0l6Ú¯Á LæA§Ï$Páç¿ÓLû#3£Á\<,|VI£Û†?³Ä‰ƒÝ·i•RË×­[±²dÿ]¥îÇOÁ9éþ©œÓÈI^ÏM?mcw„ÜçmGmgV²홺ÃêŽÕ‰­¡µF”·íøR0­¡ryõ ý,PD"Þ6.s,·ÖX«ý¼öUײôïâf`1šØy6er¹kÝD¸¸×érÓ¦^•_ë‘5I›dMä–ËlM\SÆÕ>C€‡P†Ë¬A/%ë  ²«-7׃>¤¯%€ÝÞTw\1c„È@A6úÈa:jì:”ˆ¹›L @:ñ6°Ï´W[ß ßÀG-z¦6ÌÞ²å!úáÙ oýfHöí}è-'þíÄàÿcü¯$CÏ^ŠùpÏE¸9•§ NCšw 3mè茅ô%Gè—ÅíãBßÅm±VÐ}ßNTÁ’«ø‘S’iô:‚%^bñõéöã'›EvaÖ´äzŽ ¬£¼†}Iú6axÛ\¾“dý©#Örí½A?¾Ü9˜bfâ¥LˆN£¿gJذä‘ICB½WÒ¾ l@ ™4ºvžXl’_íxG |ú½ ŠÜŠº+3QgÌ`ó$Q­P$.i¨†Ý÷žÂW“±fZúuäwH\Š‘5I" ‘  ìªz pIn¸ª¥-šhB­ .l® X?éõ}áoQ'®ÀÖ+¹ð±6öɲcÊ÷ùýgýp¹äüüzä{Ì(€½Èóì:yáèö¹AÊ^ÕÀÝÈÖHˆ†Äý€ƒL*üüZ¤Ûë©Õ-[|ËÁ+àõ…š¤Š3ÎOq¿)…ƒ=€éKÎ-^7oþØD—†ªÛ "Û‰ 8’™ƒŽGI"qÝãÀAg:ñ0 Dz9†ro±€7{œX ›fTf²™âðÒêzªŽ˜ò½~7eÇ¿—Rþ;惙~•hX„3Ye]MmPÓHÃaÿ‡1zÀìÌt¿|i!ê~û –S1Á:€”ºðþ”rlfR˽<º¸ ÿè:Ä™òÄx­,Ó•¸œˆ:ŠÈ¡.+å¹Y)ßäõEá7óÌ"Ї l‡ÒR@‡h‰8íùªk—qU9Åð5Wšå«(ýxÔï GÅ^Þÿí…|âœâÎ%kùåBJ°§Æ¿”R)—ÿ€^ð fË`gvŠÑû—9liƒJd@êQ{´›ñ>à 0ùK˜Ç‡L“©¤Z”B‰O ܉Á§þ‚úþ ³Óatœ6æ¹Ã¶2oÕÓ ø›`=Ì•Ü4„‚ a'<ØyŸÓêáûìþ6p„„/àý”å´…ôâ~à59⤗Ð$>˜R!{‘df³_1¬Ê%¢m»-aõ'ÇjðÉŒ!€ÀÈw ÛßúOíÉÌ  ¸ÛB=ˆKËð•ÖpŽ„³‰úVþîrÏo¼Ê/¹kZ‹=P›®aßù äCæuªÈ#ɼNµZÖBèéy¹–y9Ô+iží÷v2® r9:žXC ·UnݨâÔU›@©'8±:?ÂÅ.s«¿)þë@‰,Ø®ÜôN6ÃÃ?è¸tìüé“ÇŽœ·Ý@GEž ÷&çU&§xpYXÐ܉4ú”.à¦v_n}·û“µ£Ÿg°)‹VRe5åÕe5+6HåBà‘1}˜‚_⑨¥n'âšP•@¤í¬ÿ1l÷ãÝϱ7ÖHK3–Å{Ñœú¥õ¤—yƒ†KÊ ÇSW|Ìïü†„³ˆË_…}þЮ­z‘ZcœåÇIˆâ1DÕáí—†Ù—Róä2߯ˆÒ>ühÝU#XH2³ KYtëNù} •Ÿî×½Åû3øZº™ÝÙeGš÷ÐeÞââ5«ßÖÒëµ }`5ŠŸQèWG2ªŸõáUнÅ>‘ÔS&­™µþmwk… ŽYw§‡4¼Hm©¼º–ÒÎÁ0¿ô ‚½¯BòÒÊ« #Ȱ>{/¾÷ƒ3ƒþÆ`7±Ôð?w•4û£ œ Î:ÇÃýJ?buõ|.¼'²‡Î!jraö½\‰‡½ÞHTææÑE?ÜÄc^_8«sÞ€?âQ}d U†o:±¸zCQÁ²±Ëƾ=V­Ð(q‰ˆŠ.Nµ§Ø°~•Ç|Eôˆï„£2¼ôrªÝ™®<u8–öìdŽLí­´! s£æÃXpÖM­Ú¨.ätÛi&A¬ÜI{Ä šßuìFžñpQÑëS–OÞºÁÛÂ¥ë-:@WÆÎ'ÑÚj¾ âˆ-ÿügØ÷*dÿã_3Ć­Jñ–‡r¶¤àØTα;0Ü óá7l×·Wࣰ7P}@©SëÕ@EÖFùÉÆh¸åö¤øBJ‡3ýÀ˃+«¶Öo[H&/3Ά9¿ ûüøÆ×Lž…RãËÀ;¢[Iòš7.¸ÜuºhúŒ%oMžºáƒó2ÊL gƒ­Áf°=H‡›Ÿ>™  }3ÛòAZ𚲚Jî¶ Ìc«˜a€yž¬qñš&L®0Èp†λ §Áp ×ës"å’ûs™m™mÖ>r Ku"]Ldþß@$doþ5õ)¸<•èúÂ.èíZˆžüœ ï°‹j§¯£ƒý8í‡zd†y×aï;³Í@ðÛó¡‹ï^þ6äý×̨F2yK‡ÌJ­;'¢Y?ÌaÆ!ßÜuãð¥Ë6Oñ!ß\^ñëò/ÌûûÍû͇ ë!,‘V¢>&ÌÜáaÄÆfP“´†ïLþy”ô˜`ëF/`ú=«%U¸°Äêsا[x¡Új!¿jü-î9øú÷ì¯Àüjø63É:†ydÈí‘0·žrâ'ÁñÐݤŽd³ÒJ³R9hÖŒ ófÎ?s“rÖkïŸýt‚öÁ¦Ì¸Z÷°K§§=ìÒééÿ›.­cNý·=üS~ZƒîöjQ‡Z5j¾{² â‰z#^¿3âQ2( ˆ¨:\Ñ Ò¨tK¶Œyûõâ1oËÕr jú „©ò¿YtyÇë/o8³µÀ¥si<ÒŠ‡¼`Œo—ºéyû–ìZ¼kÉžHÍ{$ö¡²2u÷þ\ýRú56òört»ÌÛn«Í¬üõy#‰K„„Äç8+ªRU… 1h d3œ-U ‚ > stream xœ…•MsÛF †ï¼ûÎ[Á™ŠÝÅ~ëÖŽÝ:Žë´–&9tz`$&ecQ E;“þúXRV\gjÍXÜ]À < }*U­KÅŸé{³+Tù¾øThÙ-§¯Í®üi]üpë°ŒuòÞ–ëwE~C—ÚÅÚWzj4®\ïŠ?ຮ^c­´ƒ‡Êù:E¡éç] ÛvÈ‹~mš±’áv^øåèËÀe×WêR‚qßÓ‰FŠŸ"¼î÷Í]÷O׿gsM{Λ±á•ûÃãAÒ0.V7uõçúŠdª+ѓҾ\hU'—Êõ–ô\qHG‰rÝü5¯B„ëʱKg ­è_3ôGS ·ré­ö0Gûªˆ‰eO…”0ßW‹ ©ö–èB:C¯Ü¼‹nö¹¦s ‡\‘xT*r- ùÅju#€v•âÂ#"\Xk\Nb1‡Í#æèoÄ7«¹¢ ÆX*%N¬¡œzô&xEavu,¥‚qª÷ßJÿ<¼®¢—ÖÛ©»çÕ‚]¦àŠF‘´EC6HIpmçˆ Òo¥ .f¿¿U"^iØÆ]ÃFF=Òc¥ÓQ:—§§™X‚p^è—íÐ}à¢zÎÂÁy·kûC·ï «‘ƒ)¶ú"²Ÿ…dh·÷›‘^X’Sf>Ñg,Âf¿ûØ ÍØ=½É³p>!!šÞ{èÚÏÏÓ¨ ß8rEoù ˆ9”#ÈAPTkæðÑôÃç( ¦öΟRh,¿àA«¥÷gAË–!gÈ<$­éRQM' UM¤>¡@jï•TWjßö½4* Ã'ç‘ÛX©†öŽnvî:Ûi/ÙÎ1n¾¼­ÒŒ@£(©^ÎΈ€»íþp '"ä0À*ÂËæð¡£ç¨¬ ‹ý»ý°k¸ßîñm;]›GZ²š;ªŒ³<‘N% ‡9KRÖn¤ï?Üw焾q??{ºØý]×·Í·˜Ü'ü±Ãü‘'ljr™x›Ý$ S>ÉäéÇJf×ÅqLŠÌºúî?ÀÑ4E…GÞ¨>tóå>LƒO–Ñ~‹ºã áÿ§_4µÁdN¸Ã¤2­—Öé3›x¨@…VÓ)ÿ\üL,‰Üö-…Ãä·édN£DÏsg˳&`fUÛÎè¯ûš‡#Q–K÷¦šš÷jEPQ½Sy&ï\¥gM$†YAŸ/¬Ìš’³5f÷€¾Zÿ]\¬‹ßéó/²E²Tendstream endobj 410 0 obj << /Filter /FlateDecode /Length 3695 >> stream xœYKoãȾû>·|K+°hv“ýàA`ÏkçáÙ‰åÝv'h‰–¸¦H/)ÍŽç?çšSùªºIQ†´ ‹ìWu=¾úªøÛiÉÓ˜þ…¿óõI|º<ùíDòÛÓðg¾>½¼99¿ÖêÔE™1ééÍ݉_!O¥v‘±úÔh©DŸÞ¬O~ï£É4µ*Š¥Ÿ&ÊF™sRùDFqœ$V´“ie™J­]ýK£u&°KñäRñ}M›IŒHQ•uÑõFäõ"<8'ª< âà8ÍÝNˆyÕtE·é'kñ'þ`b&6Mÿ^tݦ`qlªÅšwKD3!¹¤”‰ö“©Êh½MYO”ÃKeÄf$^ÿãæÝI¥ÅÒœN%¶ÑÙéÍâDtù¼ˆ&7¿B¯‰+6I"ã Ð˜æý">­JÈÞ<¬ÊùDÓ¶‰y5™jmøŒ«|™ƒVø¤'6Êt¤bÛït†E$VJ¨ÏÂ|ž<‡¢Ÿi«xÀ‘9„Ìb ÕËØ8±hÊç°‚õ2+ »Œ]|ÎçL%®ë2®ä”?A¦Ö™4eœ¥F‘Òœ6ØÉª8òëvªpQbµóë^ãH£"-fA‹¶X6]ÑlͪD¼áIŽÍùãÄ¥˜è2‘·09˜Í2ñÛ6ß~å%$³~_6ò›6_ß5톇 ûÀ£á+¨—LcÙª¨Â&±Ôⲟ%Sq³*Û²©ÏŽ™õñ=f')m¤qdÙñVIJËq5 fâ²jêEÅ¥ÁíL*­<Í_áS[l6E½jŸ k\S”ø‰×ʼnEÙuýq±ãûùIZ¼ÜÞBOA»Í¶]Žæ½ óH¬ Y#[S¾f»'7ùE,ŠqF§Ø˜Â óJVÞ}v±žw]ãgÅ|—< *s‰xóë¼ A‘oyªd ™$f±.ÛíÜZñõy7·?-œ©Q´m³ñ‘è$÷+B$:OBsïgŠLÝÕ9o!®'N“¶R²€•„VÌæå}¹™V NÑ£#„Tä}õóp/ÀÀU6vJ¬($ý‰ð„ªÀ̲^ÒÇžTÖþ7ÝæÓãfÕÔQˆà}4P©Œ\¢ú~×ôG“ !SÊvKì8Àúù{N Á¼<‰±¬™MJ:›à¿^¸ÄFÜkvˆ¨¢Ã… „=$ë|uh$Nsq:Bš$U ÊR=WnT¥Ÿ)—Ä<žp$«jî1%Ž,ö Øà·šq&Ѽ×ÍðÛˆëfºµNüο” ÿ§†ã6ä͉âC€˜>9¥÷³QÆÉw ¿½®(yà›š´á7Sâe¹.êWåfÒûócp&®‹Åv¾Á„þ•¸õâbÒQùЄX…‡Î½\ZB\Ø)»'™÷¢A~Žxµ@̇;D`ºà Y›â|Xú°«IIŠ3½á÷E=÷v7Ðí!»ã&F5²{*”ÊâÏBë8FšQ §— FTòL%Êô3ál/‹9áOfÙ¿T÷¹B¦:2éW~;›}$G͘1êM]Ì1¡V“k±‹dÈXY,zš©8Á1Ù•àÈç6gì„”Û»w ë¼ãË®Ñ-@mT¿>†üpý!èCÆc…Ô¬6›‡ççÃô—äPHª/Öù2jÚåù¼©ì›sqNGœÓ• „Õ^É‚9œ TîÇÊ rìÔpª™å[¤—– ¸§<ðoòõºh×y}6ð/4Ždûãh.R‚ÍàÜ_î MJk®ËŲ3‘<³Û¢ë¼·‡Õôõö¼Z6m¹Y­i‘ã¨atL9ªÅbëqްR|™h‚(À~Þ–ùmUt$ (ÚÛú°OÃ^rD¦€cd@t3°©ùÄã !"±Tz\@b£ÙG›ß…·Èv›U ®EÿN‹×åݦàC$&þ+?Fªx ƒµ§Á½ƒh{ºØ0”À‡ÙD!UÖHü>)Qr@Òy~RyM¿}¦ÚÁ<¦G`þ~ƒ¼ƒñ;V|Ÿ·/®>P¢NÙÀÎ%¼ýC¾$¾­²„]NKýL+Ù/†*gyîöß»ëkÏ[à6y=/»ysæÍLIýÅ=(Ÿ­~˜íž4(*ÀŽ5!š¸B,åu?¬Äû|{¿î߀“lo«² {*Úz[æØØóÀ·³ËQ`ÖÎÄį§Ž©0󜣟1+<,ÿ¢ŠòùÚÇy¹ÉɬÑüný·à0åâ¯&ÕZ6W(¨R“ú aÐÈÙ=<GF‚pûx@ÌUi&$@s¦&8D¬þ]Ýû4»J›‡QÖ»c‡‡Ù59ƒ²> .xCËè:NëÉ@š*çÌH=¦ðŠÌçÝ!Œ¦×^8qõŸª*ZÊÒs¥Q’UÚCÀ‹fÍHî’t¯ìª‹zÒsÿ¿+U7¡Ç\à8äÛ¦ ayø…cÞ#:‹Šž5…W岨F7‚žj[ð*àI Zɧ ¨Z%½g|²T±m90mÆ•œ²–C·|Øz_9£ò'q6ŠQE 9åΆ”t‘q‘ó²g= ¬$+Õé¾ú@ÒDøʬðö@Ô(Ǧ’™V h ˆc?U…ì™j˹³§Qçaâ*YÈænl–Fíü43Où­ëý”24¼¢y¸; ,\÷+PM|W´·m¨Þ¨_íøûŸßZ±÷úEÆ—<ÎSç=Oøu•Sºw\1\ô QFuÑ‚ì}+»—×ÅòÞÈW€óÇïfU4-9Í4áâÓK^@}#ë->òNÒ·DŽqyI‰ÎÒi>çK6íãAô‡Æ­KÆž¼'÷ìÞ)6N*Í3‚Ðð6š=´8j3ópÒ'^vY´gÆoïgß%êÞ[Æ2EÕÊÅ(á9EÁ»-Ü4¶ÌÛA%×ßžUÚæŽ[±=O¦Ôa`×iÜ0¼Ì”iªôÏ1e*ùOBÞa×ÿEæ::îpu|Û̶æÍú|¾Ê`ðó=qø®Šä¡'O…ÆbHà‰qð¡8¡hÝ#|(ËSù¤8b MXœ½ß³æ~BÁ©‚+ÿžØÃqâÛj¯ûÈäï¢ðÿºYUwôlÖ9ƒó ćX?0P0ª¦¶ìˆðTÉÝ·~û—E½h›e›SCÍ¿´TùfÎãN¦ïoYYk#~-P7}ñYË&¡þ8PWêgò'±èC1ŠMk²!IßLz¿ÆY¸©Óq4P*åg¡®Iò,‡×ð¦Ì(f”}BÒ Às)…‡öè×°C¶×]æÙ5h/ù¿á«®ã’ cÞ!E·j–Ûzºii€Iš*4¸¤¦{õ üzîçÒ‡ 8¿ Í36–‰ ßÞw {õƒÎdÐÔ˜´,BÂ.ùÿp;ã*8‚VNž+êfÑ€ë@P-|ÁõxZ _±™ÙÚw¡1Cj¹äßšB‰´ÏàËþžŠÛ|»>Û}é·uQèd—•/o2j›‡žò^Shw¶ ½¦ÐM†¯Ü5í‚ûBšÿ"Ì´N¼©š[ßÁ1¼å›¢Y»VÛfzz‰ÖOSé?yŒÚëÂ÷|¹lïiNƶ†ôÀ.¼×­•>ZŽ·kÃC»öH7>¡ŠK?m‘R¡”þA‹4Ñ{-Ò„Û£¡2ƒš'”yÔ8•µK)=hæÇZ¼ÑC Q7#ÍâÐQ§êÔe’ÕøˆóŸ^âx—÷¸uÊS­|V”q6tJ]æ]ƳKȬ˜­ì:%¨¶5JGåhFR-q,‚dª"›öã@ótÔ3õqìéì@7uˆA™ü8ŠˆSæIȤXg÷CŽ €öŸ±f£ß»ƒh¬ÖÌRs®íÈ} rÉ„æj»+««M¹Ø¹ mE2Šn¬—ÏCÜ¡€| ƒ7«C§RÎÏ€|™ËýL”° ‡°8âÉ8ØWŸºÇ©'w !à{¨ù »iËûü@3ŠZ'™ÞûÆlB[`çö³HáÎi,Ÿ¥Ô“ðs¸—§ƒlæ¤OZZq¢ 6‚‚ÖÇAàQ’štàºqXO „}•êkŸG‡íò5\Ù9þ:ÀyQ¦†’ƒà¨Ÿ"ýi©žpëQ]ÊÁ¼Ý¶ÈtÈþ‚øõðA#ì0Vîž@ÒаE`e&ûéù5†1•éY?Hü)%G?á‰JÓÌW7'Ç¿ÿŒ{ä­endstream endobj 411 0 obj << /Filter /FlateDecode /Length 521 >> stream xœ]”;nÛPD{®‚;%Ý ¯±1‚$ ÈGƒ…)‚–‹ìÞ3#;EŠK`$R÷œwÏOÏË|kw?·ëð»ÞÚi^Æ­¾_?¶¡¶—ú:/ÍþÐŽópûJºoýÚìô럿kmqCîù¥«»_vJ}´¿?4\Çú¾öCÝúåµ6ç®+çi*M]Æÿ¾òÓý‰Ëôuëa,š®Ã± bE<â‡8]‡+â¾h÷Œ‡¢A<0‹ñÈèEƒèŒQ4ˆÁ˜Eƒ˜ŒEƒøÀØ bhØiÚkÜkØiÚkÜkØiÚkÜkV4ˆÆ†À`Â0bLF ; â‰D&*#•ÈDe¢Šq`D‹¦&MZ45ilÒ¦¢AÄsv”ê*ÖY¬ÃÆeä4rظŒœF—‘ÓÈaã2r9ð] N¾KÁ©ààu1;™ýR4ˆFðº˜ÌŽC={ „0‚„F#€ÂbJ ,6@¢ RˆBTAª@©¡bƒÅˆBTAª@©¡bƒÅC!H”*6Xl ÔP±Áb¥¦ŠM›(5Ul²Ø„MÊ(i”°I%6)£¤QÂ&e”4JؤŒ’F ›”QÒ(a“2J%*OÕŽ+Ïá÷ã‘äáþ>Ëíð±mu¹é  ΃=/õßKb½®|ªÅ4ŸD+ |endstream endobj 412 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 9766 >> stream xœ¥z tWº¦C©²'¨ä8]„ÎNö:y„°…}_ØÆ6ï¶dY²ö]ª¿TÚK–,ÛòޱÛ€ Ä„BȾtÒéNºÉK¿îy¹"ÅtÏ-CÞ¼~3gΜ™£ƒ|Ì‘UuÿûÛ+K4á&QVVÖÍ«ç¯Y4óÅ™3…_¦eroÊÜ—]˻½j™·eÃmü÷=*Ÿ„zîFÏÞù—»D7eeM~pnUEu¢¸vÊÒª¢âÚÊ)‹å; ÿËÿŠD¢—æTnxµjnõ¦×æÕΗ/P,¬[¤|½¾@µD]¸´¡hYñòí+v”¬Ú¹zMÙÚòŠõolyìñ™O>õô³Ï=ÿâK"Ñý¢å¢EÓD+DÓE+E³Dˆ­Í­ýF´VôhèaÑzÑ#¢ ¢WEE‰6‰^=.zC4Oô„h¾h¦hèIÑBÑ"ÑÓ¢×Eψž-='Z*Z&zA4[ô²èÑ¢»E“DѯD÷ˆ&‹d¢{E¹¢Y¸("±è«,g_œ0k§?#ìâ9dyåæŸnQÜZ|Ûm·¯»cÒÝw¾xç7wÝ­›´xÒ’ô¯¦Hëî™qÏ¿Ë&ËZs¦ä||osî¦ûrûëw)']@?Ðýàã3n™1üÛCO?ôÉÃÌÃßü#«êIÑÿ¸éç"w·I‰´=™õ“2± ë¾é³É’ÁL/ÒI%{×DW­¹ª¶Û• i$ô.«Ž”¨ g€’ðxXOn˜rÃEKÊÙ’ q·†VrŽI@ Þˆf©Ñlše‡û¢Àj°êùl~éýüJþ&~Ym~ÅÆU6«iõYý¡B"ˆ +A C~¨uµiØÇ§þ›ÌðøBà/Ãá«Úz¤h5ú¼“ÿ|"^Øœ‰"S:ó`:+³ýL6êÈdI]û vÀ\Ð>«^Ã88H³ÏhxÒC…ö4ÛdÊ#×ÔÙ•6%½ou™f0ç° æô@ ËÓüª”%/ŸúêS Yb RZ±¸âeÅbÚ\£¯jrk_ÉOüåÍ 4{Ìz§Åì¢LEµÏ-=gBv%öEûZN¶Ÿƒä‡ºW,ÙR¶µ˜º¾ -ÊåUºÓ]ŸªŸ$Ie– sÒóü«¡ÚD©[•…¯µB9iñÙûp°Ÿ’ä7~¹È(!qrÆ“ xi&lbÍ@:ˆz¨}B×bí1¶+ŽÕ¯;&?)súìAð“n±;ò{}FG÷Œ:ˆº[¿ÓgaI;!I5hšÜÕøËkArŽ´&³Ã ?ƒ*·n¯“Ë«å5òjƒÎ ÑqKÌWÖ6Œ:}?¾ +†¶1.ÀùÜá×€Íg¡$©¼¿sÛá1ƒt‰uµ%ŠšÛK‹wnߺqóêy&ƒ«Ú u`õظϚ¸IböÀ€“ô¸‘¶-裡9•ŠÅ†Geï?rð‰ë}q“ˆÚþJ ôLÊüÛ7å_ M?‚~–~ÛŠ²NÁOðå샳¼$ÿ{¬wiu &IûˆTŠQÓ.­]ëÐòw\ÓÊÌlÍ¿F†ÉèЛýö z‰*?‹&¡‡¾A“ßÙväÕmr›Y“›ätR´˜83°z5-ä'<üŸ­Ó± £ž"L&6”Šty[é=è!_{°ÝÓ‘ãOK=mþV_ë.4Yt ‰&Fl;a9›ú”§¥ÖY þ¦+ÊrU[Jߥ#bÏÉ¨Ý $Gm[»ÕvÆNã }Q(Rö\}¬' =òuöÕÚÌ?¤ò“s:VÉ+ø­¼¿Ë~Çç¢Ð}h*¾Ô½»h·ÏíŸËoå¬xØ «ºð¡ó¬õm¥ªö˜G`:¹No{åžB4ºû¹·eü^ïÄ=÷?«¶kAM›Ž å!Bn6äE2.â²ÜÐ>›×¦-\QUM]/¿º ïîëí¸“2ë.M–@[HÛ*“Õà#8ó^×PÿXûY8C^Øþû§7”í(¥ôƒð ¨g˜ ‡ ¯–4 ÓÔ4NïazHú” …ºBS1ý4ÿïözW•^Ÿc¶èÁÈ÷£–v‰%*sÐÄ츹ènÜ®`B¹‡Ñ’àw«'t¢®(ɉÁçö»}=è.™'î»ã$bQBj_WÌ›ù›¤‹È¯9Ú‡‰Bž;¸M‘…wsÉÞþ–ÖžÎ>À­>èŒl„`c:¡N-bû2ïɺšuuª”Ïágò¹ü“ü½øçü4™Õb1ƒ4™•y‰èèö§ZΤÎ&ϲnÀ/2hõX꙽ƒR-—/X»}Ýö¥Ì¼¿wè×èE4 =‹¦ ç¯ B EC˜âCfÖB]{‚h—Ín0—Ë´ëUëõëÀŸÀEZö@ÒÛ÷P‰Ã]££í#íGÙ1¡g³‰÷0¯Þ„ïtÓÙÈ~õ©Õå°‚•Ä` S­DkŠ©§ÌÃNóý×^”óM³êTS…Ðò¸â:—Va4ƸïgûÃhΔƒVZ({"øÛ œ ÉŸ!œ€o†!3%|ÔÀ¿6›ð.ÌC*¶È „'–¿°èÞLŸ,ÐfïÞä÷Ä^vì’ÚÙ¼ V À‹|`ŠˆíA'»Q_‹û+ôE†6¾›8;="óÆÙd»‡DgßµÒ9xNÂXÑàæhah‰ Ž‘Çßê=ؽG¿3@Õ»4j¨'ua]²3Ö•>¹¬}üµ%‹«(›Ö¡ Ôk“ªámèÖ6xŽœ?¯pYñÑA&æìœ¿`á@úžÌt¬þ.;ó×w¤,áS&‹b.ÊÂC²È‘à‰äˆ7‘ðı#n¯$f?ŸÝccwÂg)l…|n+&«Õ„‰"@÷]½B±¬j‡Æ²ÃZR]Q\¸T¹ÖÁ†æ’ýeûŒ‡à0tpÞt+ºç8’¢‰—;ÇRGyÙ;ýµ]ó)/u'_ÁJ÷˜¹éµ%3_ZÀßnÇÒZ/æ©oùÉè…“gšöŒP¡@CM(÷$àñ´¡> mÈL—ZËÍeÖò­ü™{Ð’oôæ¤>dǾh>êöz|à%fµÞY§³Qʼ²uë-d•½¹µÙ×âMÒï †‹paw$çG"Àúü¸.Qì,¨gˆÐ@Pxí–±•Øm%µA}‰µ´ÊFUð·º,.Lø9s `B3ŠÙtDý~üô ßõ`2Ðq}/Eû‡Ü"·É7ó+e– §zþKÂhrè„ÞõÛ„Þå8–Ë]îN¶ [ðêÁ}ŽÁÜPx<¨iQ¯f´»9ò6#q¦PÖxÀÔó xÀÃx ‡|‘ Ýk®S0®:zÖ 4°d atÁ¤Ùˆ/ÅU}ÞU ¶ÔÛÕ›ùÕ2§…5ê{wÖ‰)+IøSžojÍ’…öúÃç Œ]6%}bðÛ=Vvlpn‚J¨à*ñšœ:m’´W0r*ÚYo­·«xâÚ™d`•.Pýt®•0€ÝʘðZÀêµù™Ãpˆ; ÝÐåìÆwŒ-ec«¦„JÅÆÇå˜>ôî bƒ9¸’žðõ Þí'Ïdgî9,M”Gå#ö!þEüëq{… Æ|YÇÖh”iGÃâí@ÖÛÛ›ºÂ=þNú$²²>wAN£©Q]i–+lÔ">éÐ3F«1G±³lg`?P`ê}§íLêm:Ôë€r¤|÷*j¾uÇKÚuãÄé -~§“C'¸ùnÊÃzY‹ÉS¯Ý¡ÞaØI+W)VÂRrÁ7. nÙ“ÂèÌ‚´«YšF¬Ã¶:ìµG¨6¢¥Ñ¨Í56Íßv­N·ªÁY9rÂfÆa$mb\,»Ÿ9#ÜA û‰4ÓêJãÔð…ñëé:¢®šmÂi‘åh”“銽wANŠGÜq¿Ýkeé-°Ù¹ÈD-«pׂ ÕNFÀÐG¹¿PÖS¸¤[±§U0r( !f è#*_¶”«6ð…SõäJÝð¾ó=çZÞ¥ý©`ZÈáê}k_Í{l½²‰Íœ#š‚t£‡ŠvŸÄN:Éét´Ulß,ÏÓåvÈL;-¥PB.ï[ñ'*H ;Bo¢%it‡§ÍÓmdÚ¸·\p—÷ag™1ö0XHÆPî)Çx'Юöö®TC¼®@S´sΩ’·¿úäć}´?Î%®ÿBèÖ“vl°a²›è‚^—[C:Å`sÙÛLþ¿ËêžÑðÓø‰*ÒL@E»qŸ {Ýÿ*Tî|£èɳ“%ç3¿“ÆóÆTÃð K¿Ûz"þnôOʓ¥ê´(–+r†‚†¨)hˆª}r\Ù*K•¥ºþL#Ïi#6Œý°úB»½ûÑ<™û6HƸ]- …•*⟲”™Êœ¥95b{EÑŠ| ×híù|ôãÄ´;À0iIF*v¯š·ýÑ-:êŸûUr¾Ý{ÙKúˆ˜× Û©)5–Óõ««— ò™3Å´¶ î¢þ)íü|‹ˆwÛ`Õ^øš ŽãÌCÍn[«ipP†"í‚B µædS»¿Ãß>.©!O˜ ç¸ÅMÚ°¦^£V;)eeóv˜«V•l[[=À²ÄⳕQ{Ô…ƒðvoj€<ŠbR—Þ¡wêwò÷É´+ÖÍÅÆx½íL7—dž.§¿3v"ùîÁá¦XK¼H71Ì´¯ÅÝÅà¶zúcA†kÑ-èô$Iþ]RVÜìiJAŠ ÛRU•õ5Õ›Æ4ƒûºwDZ±‰ä¿YׇcËÑ‹­gÜ^'©qi`ôŽÔ›´ù —çV¨»v%eØT¸n 丈­¦¡>ºQ:k>êlì€nòPUßrj¥èÃÆîòêq}¹¾ÜXE×-«\‹É9‡òÎö÷D[ÒÔ/Ô‡úЃ5í“p¨¼4s»´ÖQßÕ¤&Úм;¶«‹ Šm‡7´pü˜næáïyü•?ú°ÿø(íõú¯Ï|\~KÀ&0¨l–m[í\d^Q÷{CƒálZ?J½ù×?ævB1R%$³èxSÍÊ«46)”¹z3™GÉÖ¹ëZøEüâV~káLQ¡½càû#è&´ MDK- 'cÍ$É…µÎ^WÆO’•ówUðw–ñwYwÔÚ7 3*“6Ö z†¸ah^ ™&®rA>"QAn­„RÉ&±‘ð7c#11³^³÷d+¶‡‚ L¥6–ä§å`–ëäÓø—gð/ßÏ϶š¬F»Ñ‡&W|[æV™£ß1àèwvËœØqªAø “†i¨ú¬ÓSEƒ;%ëo®M‘™ ̆m†m¥š<›0ù²Z´$ÃÂGùˆ”»Z€ÜO$  .²‘¤Î¾œˆÙm.)±ºJ(SÏ‚ 3#D…ˆ¦.И&§™.䟳c›æTæ4¼þÿÍ»ÿ1f}ùú]¼š+Õo6¾aؼo•¶˜¶¶ ÊT[줞°ºl8QƒÕ‡m é%`€Ûƒ·"ÿÙvð»¹`9»^.ó\ÜÛ䉣¬ÌB™§ÑÓˆK¼ÅÏ<Å?þ6ÿÄ Ÿ%ó8eœÁàO´pLevYìDhÿÑÆ‹Â’ÜÕÿxèa¼v̓­Î;¶¶{%¹âfüƒüriëÙŽSçÚ£Þ˜§Èž]ªm¿á§;gãT’=é#‘²ûê2ì¥þ6£ÀiñðÕuR¾®‚ŸÏ—_Gò·žå§¢A ´9P5š°‰ùœ^JãQ»0ì$šÅƒTÇÏXÍ?Ëßú䎪7ä˜zø»Kù4õ4ZrOïinÚ“`öÈ´§ÍØ™ñÕ³^:,FæÃÄaQ™+}^˜±XÆg,œ%Èø¼@¸4­S£ä Yý4ÕtùtÓ6ÓÂ|ÐÎg µx›Ø7&tÊ uuMþ>ù¾÷÷~þnŠêþC쇦ïüþ=þOÊ×âN‘?AÖ{}Ë]¡ñþs„/énö4GÎÑÝG13Æ-!‹ÒÖÐ ²!¤iëJvv om)žVÃßù‚ž²+l —âÎ¥ú;Ñ鞬«~󿛪5·1Zƒ·€æe×:z—ÖfÈ1Õ׸p{) £ÞÕ@³VŸÃÇ€ýÜ ûˆV¦Í… úÂag }o ´xôZ}]49èÝ…ùM>V:º±•ÞÖœÇâ˜Î.AŠòSþ;ióûñ÷ï7—y›Øx‡‡üwâØ%íìÕ5/•Ó%åyº­Î}È/V¢‚t&Wh_ÌFWŽH•s]/.ÞT§®4U”~G²â¸?‚I& 1UÅÔ×@ ¹þ²½ŸJ§àTzð`ßÞàÑÈ¡¯Ñßd\È‹u…LhÃZ¥^£¶Qê¾rløH~ò ~ë‚ÝÏ|;¸§¥³‹~uH£Ãà4îäse¦mšÊÕjMMC-[ôcýýá@;‘8u`8o·]§šôØñ e¶g¸N™OžÍFú̪/%/ÅNÊÜ>Np g±Y]à *œ•® —Q ü§ÅÔ‚_" ¥QîPÒü¤kàÐZq6ÎÑ„ôÍݾt{€:ŠÊ›?}÷Ó!‡%öú‹+—VÍS® MeºjØNæï­ØwiøëS1 Ü, n2`öZ”LµÆNé‹äkòœ¤ÐØ£Ý]¡N:u¶ï"\ GkŽ¿¸|[õŽ‚µ¾)ÓÎt$ŽôLÊ0ßúv²D›iAßI?K¡_” ß?|ø/Éï#ŒF—¦æãVŸ‚Ï#VÆÆç^Û-³”Xô+T`ÌØ…¹äõaס¶4×–{Šh{û»rý!.L{ÅÐñ|%ôBïÈ$Rö…ƶ°RÚ´&Z…5 ½ÁR*³É­Õx%‡VØúÙ[ƒc‡bÔ/ÁÚæ3ª…/´B^„å°Â¹'õVã1£ýbûáÒþ-Í$¿9&MžŸo:ßø–ÌçšÚ8 ¾cïÉ_å¥Ïå%7 ]óJÇeâ+$„Î×-Û_ÖndlN¬­¤1È»h |@Å|:ÂTk©£Uë”ëTë̵ºjW5i¯ï/¦Ä{¾=Ÿ7v{Ý8Õ3ÚPÔØ´úš8ïê,¡x{¨=ØF7$F#ñý2“¿’äPõàêT*Uºê•PGªbÚd[kK%9ŸÔÆT”ä+—‹qå^?êÄDùdgzä´wÃYÕqLf9(Iѯޮ9±¼•žÓÉßicPùíWŸ}ýåž×g[+Ø(g…@`Ïq #NW³ p‡¢%2.,Ä#aôe÷Ú´•[*J~dEb=FËíüD^Ìß¶6½æD-ýÕ$nþÒ%~öÙGf¾4ïð÷-$¤(N̬n 4˜œ¦-üR™Óä0€ Ðæwxc#­ÂÔA8Lf³Wï÷™¾«/J G­C§Z'_¥_‡¹Öì³îxÔCEšŽõôîóŒyŒ“ÞÚàÔÑü× úuFÍ £ L`bœÂLB’oö;pÓ¥zz¹ž\D’üÝ}Îݹ¡ 71rØÑ šhËÕÕP̺š„“/ës{Ñ=™fY ÃÙ‰©ï-b7vÅwú  =Èr‡‚19Œ`$Í[°ÅÕÛÄQÁ±ÀXð(t Ôµ¡_Èîu6ÒƒÎ?ý;Ú€TÒ!Ç;rXOJ¾‚›†Ñ½’ÞtáBûßöE(–c9àÆ“ÂÝ sPÆBÍ|,YJK2¹«± vÑðùÞ¼¦S½}œÚ 6‡“Ø*‡³Â^¯Á¸Ð„Z»›;:ËZJù›Öò–¿LyÚmÞÖ/З²H Y<æ’í‚ïÒ gîJ¨¹ÔŠ£ÆÚàÐbøî“¹,x‰f²!flÜíÝÝî§úP.×èÅn&çºRö\½§7 m»œ=úlÊ­¤Q˜|wÉf—Æâ´¸,ôlþœ©@—y9fq€ŸøÉ¢+@† $ò÷û¡ºÎG>I^B³eÁÁøS8±‘( 8|fµÚŨéD)”re@ZL½³ù]t#Ñêê¶aOWoQÚUsùAY팭Ï>¶¥ÖPe®BÅ+¥çNv{z‚ôïÝoN 9"„-¢'BúÅÌøy+ä9±0íÄ1QþO1‘Xx}ò¾?†®.–þƬgÔå虸àLãŒVmR8Tôsü÷Æã6sAŽËĘqcomßršògýMŒ ²V°E!36‘eÀñS0ê ÑŽÁ¦Ñð nÉTŽk?üN¯Å-„®Kÿã¡…Óèî“g²3í(#=¾ªkCÜn”S•:…B)ÿ~’A5Å0Óú:|-“ ‰‹§~ÿ™ð$þ`IE¡®Ð\L¿Á¯ºqªrýÃ}àïó¥ÇP™¬éü™/?‚f§¬Í䫆ZX\9_¹|\svy{+.ì»ðv‚âüÂ’çêΙ0×)ljm~Í*ÌuZ[cãHç›±!:v(uÞ"Ê?ÿÚ–â7Š0LȺSÊ«Ïuãd„v}¶á"ò~>ï†÷'K.^”qKýÛœopy¤ä‚Ÿ¿ÍÃßào#Íb½ÛÐDI.5ƒ7ê\F÷]F¹øýÄO²Î7ÓçÎÅân3˜j°²¤‘¨‚*îÉžZ¨akÝ¢Íjª}«9\Dƒ‹uá.PªjŒõKxòu^ŒßËWËlF 6$C`ËßÄ$HÉ%3¢­hŠMaB Ftïñµ²dŒ°þñÙÖ p(TTä„"ª*¹ Íf«ÉvFiɯ‡õæ&¢í.‹w.´*³f×"^2¿ÓjÀÔ»ÂÕaçI™dЊ¤6t~?#Œö}bïÈWeÐ7þDEá6'Rµ„ä’ `p“ZB2è´³Î\0N›³­ä’Q8½!ç| a~m#¿ÆË¯Åõ«‹8qi_4ÿ½ø;4û{ôyë”?bû•Ã+¤Èôóë/~Ö+ÌŸB·™z€ƒ^ÿ÷Ù2Æ1~0j »BÔ_‰`ˆÅFÑýNÚþ¹ùWK¥¼éï¯Oœ‡Ó•tÒq©ÃJïJùšþçÙ˜¢Xaz6ºMÔtÂlbŒÆ+(|QÕ“"´ìdÖ_‘Kj´Ûj@ã"ö³h'†w€s‡¹ Œõyw% )¾Œp`h_6¾‰%á{£ìlô*Ê’–;ª*¡œ”'ê;0l{<]ÐC¶©›y†@™¾: /þ–sè<Æá3WŸò ëóyeü4ÃFÓFØ@¾Òþ8š ©åÑÊGå3Õ‹^Þ²^Q³½v@ÙnÇ(Ã``_p_ów©+»¾ u„Ûã­‰”¬µuwªÈ}{KWØ[)úú°=WïÄ^òæÌ~©©Ø\d*žÍ_éVûªgŒ?{"ž´ŠÏî‡Nèà:&Fà°sT8fqÇ»¦U8{i¬o1_“'†x«Ìí÷`R$±BšVÅFnØ7ßHZ±£sè­^k@Ë $ú[nxZåÅ ÊÓ(”F}éIèÅ]¥h>šqi²d=õ±tìƒážoÿå8ºõ‹°Dmùäþi ø)ò Ÿ+–ìûä šp0eîÓØì+C»Ä€yØmç,n3k!7o~§BÚ‹ÓA±ÿwŸ¢'Ð Çöå/àoYøÜËè7Ê6ÖåçoÞ\´R³˜qºÊeû>„·ðô::” ¤ä°º«G»+÷8|¥å¦×îÕ Éc©7o¬k äååŠmð:,ïzÆ£=óËÚÒè|nŸôç¾ xaÓ?¸”|w²¡{þ&mëlêNi"ê|óÖòç.ä]ÄýCÿM>RûöÚfúóÝŸ¾?——œ|ŽŸÀO>X‘(Ý78¼{ØMyÅ Ën•Óì´èõ ¥*+++( ¯²$š¾GY|:t°nÑŒEð"ºŒÐYzlŸYSHð÷GzË×?²ya~1]­*Ñï„ °y—ãÜ/÷Ú•‘¥õaÏx@õ¡C'K~B÷£»¤ã"Ú[ÛÛšŒ1•›^oÞZH[Äì‚‘%:á‚&¡ihêÅ¢¯Ú\ ªÞNBo´›:ìsÎ÷ñz|Âq+'L8»pؤwj­z{™©ÔV Ű#°#FJþ•³aC9Æ¥uYçð‡d.» ÊñçÓ¢±¶P„êkïObût µ%¯Ä²Ó\J› õÛ;+ò7¯rUþÐ7z[Ù™¡Ûÿ„¦×⦺ý=ü`²ä3dD’2Dû߆~úît¼+܃@·Ñ_UÃÔ© Š”\iiÛº›»úF‹v­\°¬4#Åß>m?øÇÈW:§¡‰èž+èWNQÞO+´lürf~iCu9¥7jµV ‰ŠŠ¥ÎK‰ygý¬müÄÜ$?ø&n>ßïÚÐMïŸlmîŒt9Ò^¸“NÊ×ï”™ýhêk'IÆ2‰Ì.éSüÃOóS×òsmjK¨Éú¸>¹ß·wg´M—Çg¡sýáX\˜×Y8[½Co°PUÛ‹Önà ‚C?½Œw· ª°ÌߨØ‚áàdXg*ª7SõÛê·©¶Y5Z¥KK2bSР¼D”m}³¹”¤özkè])µÍ{+7qo£÷—éD%í™—0Û½tÏegÖ¡ãÒºGòyò©ò†js%6{¥]gšmIbˆØÃŸ†“•¦Æ¹“´‹×­=þ·¯¿øì(uö‡~4˜ü¢ú ?á©ç¾šGÕ4¬†Øas³Ææ| §a`÷àar™¤–'TÎ[$¯«Ô–¹F=:L‡Åîž@w ;qqºí§ìoÉÝý•Ë~)ë j¾ü“ ü˜œËQödÉ)äϼ*ÅÑX`èšfuz×®Î~J2ЮNÔàät1ÎÜYüÿ'§nÉ¿rÛÍ"ÑÿÀzbüendstream endobj 413 0 obj << /Filter /FlateDecode /Length 4118 >> stream xœZIsãÆÎY!9°|I+5Ä ô┎í8IÅ)[£CªìT "AРdÿû¼¥ EŽí”"€^^¿å{ß{À‡UžÉUŽñÿæx“¯o>ÜHº»Šÿ6ÇÕ_îoÞÞjå³`­YÝïnx†\ÉÂgÖ+[¸Lébu¼ù^«²¹]k£²<7¢ÿpº]çYð.WA”·ð3H)µèª-ŽÒ0ʉªëÚ.M*Ä˾æI…µ^lnUÈré´Øã ÷µ€RôqŠ’b[ý¡á<÷¢ì?½ýÏý?nrµV63VÉÕýöFÜ}óî«ÛûáX!Ÿ ¶‘ÎZ8 ú^|†2˜’YаáYÿ¦YàwÆ]Ø(Ï\®%Nû‡¼<©æI¹ö6N2³I°>èÐ-L‡@d:óàs¥â¹–ú †¼Ï¸¸Ù繜T1Ÿb2çPq³kd¹°¾Î ¯ƒOƒ¢•Cß+ÛÙ1ŠL) Â@ìzpQž’Ÿ+y¡®"3n ƒWJ:EBœÊ•¢“Æ£þLî@.\m¾QÀ`OCç 6æš]η”àØË9?ÜžilaKÔ˜Ñ~e2EâÒõÊŠ Os€°þj=›†Q9lp´VÎe… VÞOÏ_êaÏ`µP“B|h™[lqÀW¬Ò™ÏÁÃgs³—ôˆ3J]5ÙB@aÐ+ î](}=Òƒ"´Êu’~GàÐ//û›)rç—Òÿ<â‚Y@Šå¸ðë°:‹Y >¯Kÿ¦Pù™ƒXšpA‹&+Ä»7¢sü‚7.K¡ÅóÔ\œB´»¡jÒ<)N=F‘‘’‚£ƒzú}¥}IÞ¶)'köÕ(lÉãî^5=˜­<ÔÃxX[ÀSœåÃ)¡Cwç­6´žtßÔNqëÂôð‹öxäÁ`oDÛ ßÃÔ…{p½cXƒ8è%ºOu8ÄIàB©Î£=ËŽeSïÚÕ$B±¸«ÊÃ(y\D‚Å»ÃÑb¬^ýTŸ„}Á‘t§tºsí8¸D.aë¶‹W˜?¦ãĠޥÓ(Ì"n1nh¼çâ¼8’/åÅiC¾îàû¸“R¢ië¾®º7s{€¡ð¸mŽ„Æ˜oaÚk# ¹n7¡t‹G§…*ºç©(à±½C rSŽ» i„Z$ÌiÞÑd¸+zRç6.‚˜ÑŒ¨5 (s~ÚcÝ^?Ô´…$î[²'*Òñ¡ì«i§ºÚTý¨†sñ …ç¹ÈAç ÂÜÄLƒâó±­°ÝÖ! XߣoBDa,F#àM‡«œlÊ&ª‰¯ç 2Ýí™\ZÔ»øüüÊšq€ó¢}諈1è³a%«œ×L µÑU‡ X º”EýóùÀZ‰$É‘å #èêòÿÿ°Ÿjز’[ýkX‰v”:jt ˆ!ªASÚ¤•iœû9FÂíD)óáj1— ’üXÇ|Ç»Åô˃‹Åâkæ…Sxó’RîP½1+*òÎ@0«ÈàZ@:«ºH!ì©èØËíFƒ ØËî}"jN«aß²Ÿ£ª¶}ÜcëŸt`¤`9üÄ /q.ƒ‰²¬ÓÆ€—¶^¦'¦¥çìÊÂ]K8R@É3ïÃ4±³ £÷Ì·±¥Í„‰¤¼Zò}/þ΀„E#ñF¬ˆ±b_G> stream xœµ[[oÜÆ~×_ˆ ,œnáe93œ[Ú<¤‰¤-ÒÄÖC«0è]Jb½»Ü”dµèï¹Ìð²¢å:ÕÂÖ’3sæÜ¾sÎÌᯋ,‹ ÿ…ÿ×»³lquöë™ §‹ðßz·øóùÙ^i³yªr#ç—géâÓä»WñO•ìÊîº^®¤K³ ænÚðÎIøe’5LƒÝ[•Ðø[&u[í¯x:ðÕñVr•4ÕÕõòÖË5Ø^TʆyYêµ¼\Ö Ò³°€J üÓô[BÚ¶„;òŽvT€¨¼ïQ†À¢Ö>ÙàD ¼çaGÎ&Õ¾=_ÞÃFËuW‘ˆ`}’’”rÞ”íͶkiŠ"©ÚaT[íÛêY¹ 2—¼[²<î£Âò‘¤ö©ÖLã|s:ؽ‚©çÿ<Ö«©uB…a)Ž®Eª”[¬HNÖá+T9m'× ØNÏ <ðÞ‚ìYU¹Iº8ÇW¦—)NË4H µ ½Ù‘š¼“ÀÉ9ó ¢&R"Ês(<Û=lË@ß;—tu|k’kPú6(×îâ">È–ˆ«ä¦-®Ê¸c1"À*C!¢=Š`tJ&ï—ÚÀ6LMÙxTê„÷A:>gI*Ó MŽSTp‹2>xhT-¾²´ø¦KÔS¹oA°Å¶êz ݇ÀPSnnHò`‘Ò˜äYÓvñ-ÚfO½+ËdStÅ0¤-ãx)ÐÀ¥Õ,Oۺؠ¹IŸ³ÊÈíØÔD66"-Ó<‹¦†Ó¾’¯ÐC{Ó`oVû&A¿Ê1¼Fì‘bŠìrL*©4¹‹óËÝR€àl®“w°×à’&ÚçqÂåÍ>.³%ÉÉ*¬,2ÊlŒ€~XÑpr‘Ìî ÀÁ Ì2(wïf½m%m–*㦂^°Üed@Ŷ­Ã/!’ëb¿p^åÖ“XÚÍ&ŽÉ+|éhÁ`,n\$÷‡NÑkâômõžD«d^¾Â¨TFù&»¢kªs°!SK†ÁžxÌÑZ>4ð‚À&ÒKÄá™õÐGj½X¦Ë•3ˆãއÌT j*½]ñ¾G|B£«.ü-’Ûe/Œæ>> ZÆß–1HÀRIq8lïÃOÀ‡£˜qh~•3¸„u)Ö…çc N†Í¿¥è P#ìã¦$;oD¦2½JÁcrð$?à?<”›òÙž‚cžad’ˆüÎC)„Ãu‡`Ëï J(0¸^7Ã$äÿÆÈwÌnx\íA«mœ”“=ð;ÜšÞXTJÙ]Ää©&Ê™²-Á መߖȴr„ÚmÁ, ñ-p3:¹«ºëY{†l•Іºeµ>´?XRBXöÖgœ%—ù~‚1I%› ì/æ¢0¤ÂI÷É(¬S­œŠä£¼¢©{ÕÜV’²@g¶ Ž!îW(nf…*²h`-’GÊÔø#ÇaxsŠ çcx‹3€~צCìdŸÎÒ¥3Z}¤'•{J>ÀûÉE­Hîð©£Ìï.ÀP¹ÝòPŒ©¬+ªƒ¸.bpX÷!æÒÂ&Ù—1Åw€d£µë& þ ¬‚ó°Ó¸i_Ì”Á 1Þ›ïlªóšzOÝöùGݽ}õöÇ_ærL2…êÑ…2¬¼ŠG Í>ƒ†@©=uµ)•‹c.§Ž÷.D|KR&û¶6 >¢)(ö%Ñx;¡T„×=sÉM¼NÖú(ûå,›b-B)X’AU{þi=cBôJ š’›W9‡ˆCSJ…d—*ž\N¬ÆúXûáòÀ(øÑ¶î=ôŽkD"=õÏMùñòòüìç3à^/Žÿo®Î„†Üß™…R™…RjðIž†Ú;ÇÒjÑ”g—0ßXkä—©vP"â$”[\âc¼‚Šk”'Uð¹ >W\Áùår¥%0›ò²Ú—ø;'(½£Œ2S 5Ðú:¾ð©1¡™`4À¼Š©ÍHPy ›xðÇ#ezÇ€äÀF‘Î…ßÆAðTƒ}+$¦¡°ø ðgS•À5–ºcªZHYH¦0?)… º ©õˆÒÓ‰ U@aL j”ðÂy4ØÜ+¼d©_u¿‰x†RÏhë]qx~Þ0+|qÖ¯„6SÖ~úö›Óð¥ g³žêl9¶ù§ÇŠ\§Jê‡Xeø˜ Vhcè|„ž»P^ô£ðlà´¸ r( I¿mùàé!‹ô˜à© A€‰åSÞŽÎ@žÞŒŒÂLhž ¬H äö#Ro’çê»hCÉëÁš¾½inËç§1!ÐVŠoÆ,1CA˜ÎP¡ÆX‡ñÉçSRî3;¡´? ^àYÝ”¥¯'î@Øé¸vPh¢:µq ²®Ï§ˆ¤ŽüAdYv¶,xÄ‘qž¥¢È(Žq8 rPRôíèœõ~°àþxõÄ8(d K 8IÒiqpDðÔ88"5œ·œ.?‘»˜&›“”ÂdÎ*X•‘SiBÄßäÝ„p_2žÄÈwŧ§>ƒæ2åíÃi˜2˜©oyÃ$8ÒS¦úú§g ŠDÐÁˆØÐVLv^D¨Ñɇ‹%0<‚™§ã¸‡ðþÀ0ŸÐž‚aád*1\Ä.zP›âþÓÁšRPåIN@í)Q&”F¥Ö³OÕ”‡ÅÀñDµËpdÏ..†ƒ€¦¼ü7¼ÿ ÏaµéŠqn¸œ©Ûf˜6Ôî¸ xz»TÖ§ÚJgW·EÓžè| TíÕ6ƒTþ3gnìk-;Y_\̹ػÁÃ.>;Ã3E×ht#Ük~ðÏL/’Ÿ¾ýæÔ±Ai›Ÿ:M+Õ|LîÍ(>¼ˆ"R/&i÷Ó¹e(—Ç<ŸÎ-µó©|Oä•ާΨ ¥çòt^©”„½ú ½S{%ÈÆÏœn}n\"à¯7£¢ú“  ¼oC“ÁéNáU´éƒßÄ©èScŠcŸ[Šd.uÎVHmA)J˜TGȤ+ iÕ'nÏTjÝpÍÎbÀ’Ð^&¿=s™öý¤¦®ºð~¨%Ât눗fØ€èûË&|ƒÓ]]|©ã%•´!¢çÓár1\–Ž®ÔÂå"·Žî×Cû&ûr“K±6\ætñÖ· ÙlzqžiÕ³ö¯íOÌÈÁ¥B©AEÇhx)ZDBxîK×ÜÊ)“\­Úu±-1Ñk ¶~…½yÝp3;Df’x™æ‚ô’¸·lجY´áWL^¾¼\h¼r4d*` ¾eÏ|Î[þHexŒg’_Õ<ˤ¶aþX.B…†‚Ét!L2¨ÌÈR1ì|T–€A·ï7:Zy"xÀ ãb n£-I½Qõö¾¢û!Xwb ÂQ?“Ö–”)­¦.Ž«ê¶¿)/ãs/’‚ši¹MoÒ#ûtšÛª¼¡Ž[Ûa =¼*÷eƒ} ¼j>¹‹¿.øâ^²õÀZî׌K=hoújˆÖÕedÁÌ›6Mhi>fâ¡uÊÅùžI燫sjt9µ}â/¾ æ.ÞLQ£Â6HÌäÔ¨1$Üۛ͜2¬„wçÀðŒAy“J÷]-}t¿ª}ĺQ_£È¨#ƒ »f ½&­ÀÃÏïgèE/Ωë {Iª}ßå\<é¬B· u¾Ðm:² XpoÔËíöɲœn°ß 4Rvf>îî„YÑÚfêÈ×Ý'4 QD³˜Îf=£ÍöjÆ.ª™›¶EC ½™™Ó-™×-¨ «ûíºåvó¨[C]>WÛú«US_ß|Cý,àšm 3ƒæ¸ ¤×œ‡ýcótK.0öub‡†‘£âRl3ä?P—ˆ -¤Ø…ö‡ñ2è94Ñ¡¹Å„;cOÑ÷“ÜÇb÷Ãÿ¦jÊu·½ž mÎaÙíüa¬;êX «c,îúF.j«¬›r¶I‡0ÑóR56B(ìÔ™µJì>w:&5u|2¦ØXL§¯ošÛ>.–a?^q…§<óÄå~¶ùÇ‚š¥ˆ;mi¡ÐO°{ni{¼#Ž×=j™ [ëŠ÷±ýrEÍ­Àó$Z{o=Zi~Àr7û ufÒO;ÈR FéS€¤h‡éÔåæVûMµ.¸Ó”VžMóâ)UXûòpß 0là~ Jý«a3ã&ÿO0gKìC=",¤”1 2‰š =çW,ò»ëj½Œ¡×CšÅßN(ŠÊíuÜín?<-ÚHÈs>'ÿ·¯%x§ÜgEÛœ4EmKÈ6}¹p]BÁTsF—…¶¢xMŒ¨Ô£N@{ƒP¼M.›z7¼ŠÝdð6‘ëaåßs@ º1²oÏïÍ€!+”TaòàÕë_ÆæAÂ’n”&ÝÇÇ*¹ ©;Âìq‡`Æ5JÁ(¯ ;ƒ_-ù ¼gcÑŠ x½­Û2þ MÐJ뀉›êf^‚9l*ìä§Ú…Ç›Ùè‡x•ëœzó&Éâ~˜ËmL ¿ÍÁ{,ÓQsw¨`2.ÍåîOß~Ó»üQ_X½'XÇ_0mÜOØQ¯8$aœ™vqŽ ‘+˜;KdØ8AºëM’æ»ãf|^ÕÄXŽ?a©^>Þ<¥o\bÒ‚®î¹YugäŒ,Õ{ƒêµänâ#?nžŸ~HÆA¬îáØ–µi1ñÄ}=]{l¯‹CƒúŠ3ª[ûÛª¯ÃŸYpè°Wì¶àçyÒŠuIÈ ÒÎ6® Õã¢A†ˆ9¶¹xXHž³÷uכ⠈ò$.Ïß*< %XjÏyÎ3&â@Å&úŒd|> äïm•¦ü]O†ª*Fx?e’˜(J z課ïaÅïæÖ5O9ù’¡áÖZšÀÇ©‡éÎïíÐml¹aŠGQ/åÃ6{´îI›=v‰{ú,aº*ú/Ðý©6v3â&XÓíj®]¿c  Ê~O2ç|Äqé÷z52?$CŸ0r¶™¹’GB©ëÅÿƒÆŽóÛêj_Ó±9XëRÇYüƒÍÅ}Ë›$z9’En&ÀÁüÇE vµ‡b·ïRÆîþ£™®¹Yw} ²Ÿa†˜¦àÏ}ùο_vÁÆk"6=žËìlF~Ìq³<×ú‚Ü艉å8¼Ôû«m\Oboðø‹”=U‰–+Ðz´|€Fïuô‰ëºZ›%ÓüWç´øQŽÎBtÇtMº ‡e¬raØe±¦wžŽÁújlò•Œl)~dòØW2F‡6üÙœô=ÇpÈpw=ñTÇäôØVš˜FƒLË¢Y÷yÖu(›¹e2~÷¡ó*0H.jWT“s–$”Ûêþ|ö_ÝB(÷endstream endobj 415 0 obj << /Filter /FlateDecode /Length 3454 >> stream xœ½ZÝoÜÆ׿ЗC^²Wè˜ýænÑ<8ŽÑ¤ÄVÛÙ¨»•ÄøŽ<“<ÛjÑÿ½3³»tïÃòâ·³g¿€8ë¼6 ¥Åe‰Þxo¿@œ…•b&‰¨RY%ÝSˆ’Ü¥ž‰ºdÛ%ÛIP‡µÕæûj¨^…aùæâïYþÓYVð ×3U_³‰ª` çÑûÚ+òÂq^º/ee!ïiú•ú~¹2RƒºìU~’ì9ºö«Óh¬„C¨Ì4>Ÿ(¬”â}kmé­_Œ_þ¸$é îç¶m¦’žN'…^,g’¾…†1aÊóž£;uÊø/¥máïņ䜟F/‹Ñ1×ëõE­$/ ^ÊÅJ@¬€"›3öîPmëáî×.ô‡íП„¤‚£À‰´* lNÉ Ñ#¦’vÕÐÕObiYÚBI?•6£'D° ˜* ÉúùÙI´%ÄÅLÐùI|%…Ð3IÛÐÜ ·§q–0…0r*îÜvWa³ÆJöë. ·í¦½<ŸéÔã)þoJ+©à¨ê¾Ò9æI[Ê›NyÁèýt´>âWŠBHIzoê]SíB"wCöÕv&ðÛÓpŽðX×MÍŠ‘º?U¢°¾+ç‚ 3ŽÏSyàí=Ÿày §C—ÓñVhŠÏSC̰½4.~:‹›o`ÿ ÔW˯O)à´ªaã\!Á}§Ìd?7µEoŽ©dœ { œ‹FË£+§´a¨jüòÊß“K:vÝv§Ë02• <^ÔbÌeÕ§)©ÅPz*êrZà;ˆ-Sp)ØbAAiµ5³šEÌåexóæ4–In°X’¸“ÆM™¼0³èIA ÓL¥!ËÅFv¤7ÁBâ±§]Ê\ƘBYÚ`J%ÑTdë““äÔ\Ö©‚ K/m¦¢.çùhNÂ¥pzú‚“ [£u¡cá5tw§q#ñÔDÒ´æ¢>ëXs ýe„qTýÝ›©îOÈ‹1ÕþDô „ÂÒg*)©~š —Zëòž±‘ÐÆ^¡Øœ§5Ñëe.Dé §gÔý_ê™=l+…x8UY|úÀæqÊB{€!W…©j»¸­ûåJcwÎ- «Ý~ðƒ%në¡`“2 ûþ®«>Œ+ nÇÙ–õ5¬®×õ°” o†îŽ[}¨¡ÓÀuìÃm½^Êq(}3ð M@ý§Ð…s.J6$1°X:®h¤Äv!™5ñ>Y¸Ltɪf³\–&Å'È• ¤¸b뮕¢>vËzL9eY]ŵ0º6ø"h£+àÈøé«3lÝî¢*fÔMØph-IŸïº:ô4ºt!X{Êh8»÷C×67I0h¾ {RÖ{éXh6¡Y×!ꜱðÓÙÅŸ/YÛà© ~ží«zš!t=®E}(ucègšÊkÚáøRmÞ×=äÐ4ˆ¡Ïèßj¿ßÞexêqÉÞÖhè¼ *7nÙTÛ»þ(Q“÷ÛÃ7vl84+RÕ¨Iy($x6Œ)ɼS” 9K)0¾ø’…jMx»M[@Øe¸x4»c›ãHpË!€R°8˯%`/Ïód-z4m>bÕahwÕPÿ –OŸBChVØEœi1šS$4jŽ#3íð&L‰÷…ÖÓæò.°$‘´¯/cÑs/Ô•(J'TšV¤v!4°ä˜² \‚V0Y#oaȔ˕}Ìžc0pm¼v¯õö@ï ¿*5D8q×Êöp¤ÔMÒ™g¼¼¯ŽPL#µ#ºÁ7’…Ž>Rì!Caüƒ©Kï!AáÊÓ„ŠGì%šÄœñ³hPH¤YÈqÊÌÀe,Ÿ-·n_VÍ[DåÃÍ€í-¸2μeÞ. ¢€îê&ä×.’41ð)&M$˜}—éõ}½‰+€ù Ò9·~š.ÙUWŠ5OûÅÀ ì}DÄ}èÞ×áCšQ‰‡SLj‡Ï8Ölú4ÑY`—©‡°‰‹ “ºÉ,ç)p󌄥’ëßá] 3³&F­­ œ ÖŒöÀß$°½œÙ#†*8û¼>„&}Ó×ù•ˆÌB7nìezÄo«ææ2Îñ“¢0o)¼‰ÉÁã‰øi3Mš¤Î6ÞµÐȧ½”I«Ý¶U—‡ô(¶Ïke¦6NÜG)?s+ºÀFóy` §3_#NÑÑRZSrºî’ ñDR×£qa½­®¶!/ò°Ò]\j?ùìç"òÏ$ù1NçêxðR{uÌ¿…5FÉ3Ø›XN€§†79ªH ”%Ñc”¼@gé^•²¼À&¤®Ô:EÍèàý$±7Y2P]{èÖ!½ÒPt ðUH_8桾ŽûÇÕÇLæ¤\f“9éht—ÃÔG±vÌ/á#@º¯Á˜¯lÌ϶˜Po0éAsðNÀ+K²á³t„´ˆÏ’ÊöýKx4ü‘«¶]¨6wi1Xö¶Úä—rB ÉbCuôÜP· ‘ÉÆÐãŠ2ÝËóÇ8‚¨ÔüúÆ_ËET›ÈTŠÙ·»E²9/[åƒ`\¤R˜á‰Uç­Û6c˜ WšÀîÂæ°FÝ¢«Ò±AÒ™–åŸH*®€ÆSüž¤b!'s7×Q‹h¼GéæÛäß 6Ñ.m­SAŽ¡¬Y»Å«u…õ½g©ôÏeCcä÷±œŽrfGéj œ&9µWð}'Л¬E.´Ï^&ß:™YÞ!»b¼ð1 Jl‰û ß ‰©Ý M„AYja@ÂØ!³0˜ ˸‘"—:âÇi^‚¤ õì. ‘ÉžtšëãO Õzh;L•¦Äoå§«•êûY&2…€£ÿ¡jEσ¢ªw‘i ½šÒÇä_­kFhN2&ÙëãþHe¡«wÓ¤X!9e´”©Ñ& àò±©öäð´ïÃ8¢ÊNú’óG M>´{„@hDJÀUÕº0*+«ó:8Ëm5äC~Ǹ_²£>ê3@ÎM ÓÔº§" èdχ0ôBWšޝ@ƒ/€> `p¼¬ù44r%¦ž^¨T‰˜KA v*Þ´ñ™PÐD>ˆcùÒ%nÄÖ¥Q¦Uš²~{…ÕÙkª:qˆ˜¦QÜV]‚+ÌUJÈ?ÄáJdO*Šõ.’.½¸ÈJ™Lš“ŒéަJªŸîÁTů¶7P·»zwrx%ѵ©ëBF¼ T Eý8¤™ð¼«Þy»?ž+7“ˆæm}âuÂrRR}o¸©¾·T ü¦«&Õæ.tyªKx¢N‘¯fØK×A´~Ûm|áòÑjÅè˜Õº|@ŽärÓ…›*öc¸zŒØãÄñ¶9ª¶‡Ì“Š£#'s ]w¤1âr¼†óĸ<Õ€”‡p¤$AhÎMºë´{ü!j²;ÔμV݆®IF!ëmÕÓåaœf#ûñx!Z­×¡ï²§>º>4T€T㕪qx^£Y‘}vÑ‘¯7"i¹ãdz%¡ ï2ችm¦mÄ br²Å+Ý»å¬wïbœ¤iWié]þ”‹NÚÚ³‡®Íû KFk9²Ö«}D»ò¡›£Œ›6hð,@|üï w#z_³¯žáL’ì‰w=U|A¡t)£r/ªsw|ì¾øîi!þ×Ò´ þ©ºJS}¼I"¶/a]j¡‰Lðÿ…EüÝûÃaËas¾º†å¨Åþ/ß|ð(±òÆ‹ˆõá*éR*­œö?m÷XWÑ(„/wÈ:ª’®Ä&WR8‚Ú‹à3µaÉR4-¥£ã~€Œ§ðîûõI’eß=3ÏóÏó’‰O2/ÍvíÂxï%\þüs{<…Õgm¦Ð>[iI]ð…3 Ȭ…+½"ÃH1þ`óËÙÿù‹gendstream endobj 416 0 obj << /Filter /FlateDecode /Length 218 >> stream xœ]Ð1Â0 Ð=§È šB Bª¼ÀÂBÀÒÄAšF¡ ÜÛ- ßÒkc)ùÕþx8¦8éêRFwÃI‡˜|Áçø*u˜T½Ò>ºi‘L7جªýÉæû;£¦fŸí€ÕµÙùTÏKnôøÌÖa±éª3º@aò¿êe£ËÑvchªnSƒÄšÄ5HˆkfbÃlABl™[·ÌHˆ;fbÏô !z&‚„ˆÌâüŒï}ùEÜÍ· í^¥`š¤@)ˆ{‰ ç1󖦨ÅYtŒendstream endobj 417 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1606 >> stream xœ…”P“÷ÇŸ$$ß/HQó,Ó“öy˜]¯×9Zm×Uï¨]ýY¹TOg•‰TB"  Hˆ¡!OB¾É“@€Èo†0¨ˆólw‡õj[¥nÇí¶yÛ1æÎêØf÷‰÷xçžÔu·ÛÛ÷¿Ï}¾ßÏïû}/ •"¥$Iêžmù›Ö½ñêúd°:‘)M<+#BÁ£ÞGj9I—‘ôÿ³Š?*!k9¤.ýû2J*‘d~o³þ¸áä MeÖ»úbMeyV¾þxQyÖ&½®ø¿2E-)×)Öh󕧨]Tµ‰ÚBm¥¶QïP¯Q¹”šÚI¥‹£Pˆª¡%mÒg¤NYj J¹ O—w)Þ|"ÙÐBe<‘¦õQîñÄZ£²Ögÿ9{~°¸‚žïLìR•ô z&<àÔ±Âï=¿Uö¸‚¾±N)¼×#7?ínöÜ~‚'ÉöVˆª5`‰o…^DFšb¦È‰ó…ÁB²ƒäýØ’‡éyÈ 'Ïx"™=Dq±DVÔeT†AA²‚¾úÄ•aÙò2”8kJH‡µÀNC ÈzRs!Mø.C_â8—ù†0 šAôÜ4¿xo(l=ÙÅ„uüOHÖ"br×’üfÕÆz]èL-Sã'q,öýô]Š‹€¦Ö*ÃÝ,7}K/©†Ú†ÃS¶ÓùžB¼ =/¼ª–±6x{¾ê¹B¦bmñõŽúfKH;é%ø’¢Åïé`}ˆDÕŽ —ŸˆŸ„Ü$„á‡èîÎÏ…4†þrß µëõ]†±ÑÞÁH¤¦£º•… ÂT‚Ù Êöí#˜~x¸â¹ßÝ¿`Å1ûWQöX‚‘DA"ƒOÙª«ÙB*HEgÕOv÷Åf_éÙ`¿¹´„Ý_P³¼ƒù Ãs7?›3žfÞOüØ‹\¾F7Gp£¢–xê8k¦¬ôÁÏ[á™96€~î…%÷úûí½ÌSp‘Äw†Ái” ƒ ïË üh³ªd ô&PŒtÃGÚß'XX²a)¤ÝÊúâù®H”-€·."ip}@ðÉj_”}$R°ûq‡j ýª¤=c*dxϹ9,„6ïÈá×í ŸÙÅÖ’qÅ@Á ¼‘ˆ† +ƒL0ª  hmöÙndŸ²]-:_)l/û3;¹€÷„vŸ-dã‡>®ºæÄ­Šrã\xÆíõðÄ‹[lžªyÓ S£-6ßHOì6;žBFÝñàHplxìÁ·;VogŸR(‚œ;¿Ž€õŒ~T9ñ24ή ¿ú²]åBZËÑ R€³—ýá|» äðœ|)Q4«ËJpAEøëGž6_«/8j±Ž‹²>øÓ/?^ˆY' }¬u¶žníñ8mMĆ«;-Ý=§;»£½½¡ÞTÃ8Åã 6b ØyL2óÏÜøÚû«õW°¼Ãï v!ÒP[ËÕrf§™˜Hiû‘H-ö~_@gC±ËÌo’ÎÀN܈6çTæ«÷õÝ23ç!¡AWÈÓ ý«mïå³Fôž#O½·áâ¤#©üÏPÖHÝ8LF`2®„4À°–­ƒå+hs_Ò÷à \¯KÑŒ-”Cö“ËLÌØ„è+[®ä‚êò…_ rÍ£×lmbœúºc:²—p·œö/ZÒÏbúòlävüþ*2]4µ;²;¢ö¨ Þ.üF=ˆð.¯(]€÷˜ëŠŸ’›bG*y-)Ŵݘ+¬JzEž—„U6¤Ã·ŒÊ.Èh _º/òª/É«N48àÔ³Â<¢EZ™âêÄ:E’:qð¨è»:G•A·ªl°t|4:tv¤2¦ÿÜåLÖ]´&ëŠ÷x£29É’‹Áäò(@ZÜ-¢šwû{¹röñìÓÒuñð¢":zOXç«oh,wÊK@7£RÒÀë>:zU{­ìš­}e“§‰'¼Ûç÷ñüÜÜÊ¡¡¾æËÇ…%èô˜³up¢ôzýJFS¬ÑàÄA†2žÈ–þ-9ù* æ…oÀ<ûo0/ü ÌÓÿ̧ÐÿHv%©=R©¾x°­¨ÉÁ¢ùØ¥h¼y ¶E w~ ñ…o Τɂo¥§RÔ?Wn4> stream xœ]‘Ánƒ0 †ï> stream xœV}PgßÉ»x”¶Ä¨-v½igî®íØv¼êùQªÔª•¢?`Pù0…$ÈIH$Ÿì»@B‚1K@#òUEEË í]µ Òjm¯¶uîz½»Ö«§=ßÐ׎·±Îõþº™Ù÷ÝÝçù=ïïùý1+Ž ÒµYϽøüÒØÃ¢hJ\tâ¼ïVÍHãa¢&ÎjZ0›JF/<Šþç#Dœ@0÷É5Jy¹ºª¨"5CYXT¡HÍRÊw)þg‘ ±B™^Y¥Þ¥ßSXT\’%ÛR&ŸK™Ä&âI"›ØBl%V¹D:ñ ±–x•XG¼@l ~Kd¯uÄ>;r⺀{*N÷wa`ÖŠYGâSã½ñwE_‚nð=YFHXš ½/Xö(‘í`¹èb­àîÚ3&ЦIT~é¨ÝMã~ 3Û²)Êäô ²¢þ0¤`2|û› þÌÍv™²NNÕÆö "UEýìg†+zT½…ÞB¸¾¾³FÊük~Ò}Á•sD›&ºU+ˆ\@Ýï ‘*š)Á‰ÆWÂTrÑeœ€RÐ/>Fñ(îîj”ˆçR8C ô2^è…ï·üõOGý?¼G^ò¦±Õ¬êa¶scq^¥¼DW —ÂkÖ)²®¶Öµ’I÷ã.ö,g×Ì<űÚdôÄ…èüç‰#3<¾Cà0ç,²26h£ïÕhg­ÐFË]e”V… H¼££“éHAÙHˆV¡èÉ¥h9~®‡®ôT²Gô:FŸ‚Nâï%ü?ìÐNêÀ>·c!ŽC^+‡e|F¤©i yY/l¤£,€>¦úÈnØþ&…Ä"´ºæ4^ñ<è`ìÐÁ§+¨°ÿXžÃÇù˜ðêI‰[,9Y=ɩϻïœÐŒl ÓY½X¬3AzÀø87~ö¢âi+´ûšXO…悆ºFG­±Êl£‡Ê[Š ¹a‰ú7[GŠNéȾ£®Hí e@æ. àµ-¥—–]¾TMÕµ¸ƒ&HZ§ÆË€Óm÷ø¼A_#åiò4Õ{c™É7Æ2[Ì¡ ­àö˜QÑ{’MÕxÁ/)à ¬ÐÄ¡‰\Ù—ñɵöëç©ü’‘5BY°oÙ&©é½1 õ T§¢ À³­U}öp£6ùßæ‰¯ýȸ¿%ÇÀ ‘ÆÏXÂî )9ÅqË ‡CmçØgæ£ÙÞxÎJµÞaZ<‚îœh‰_SÀÑvK!_/—,Y¢R4u¨š&»HþµàîÙÂÑßi“O¾‹ ƶ¢§ç‰o}¾‘øOŠœ†äå¾WÖÓ%`1Ämîr‹Þ^ 5¤4nøP5Çà»áö·IVÄîîÙ}’M"ñß<¡£ ýäúPæÈ/¦Ä·Šë΄h´À&l )OKÃÙpÜR®–:ÌYá7 Ú ­ÓÁ0N •bBò+7ìÎXë í¢¼‚¾ÑÛÿ ÍgüÍç^§‰Þæè‰ª ¼›d¡õ}Ͼ¹øØ³n[Ó>X « J«^·]¹z#ÔÂj¯±µÃí÷ÁN²Ãä×éL&mþHÅàtäÊDÕ{õÍŸúvuû‡Æ!Éá*l×ë V½ÝD+V—¥+_vX—…dDu>‡ÏÙ¬_>©¸\>éô:Z`3éî`˜ ðÇJzÐù#_ø^Ž¢;'ë`Ô˜ªµšvcgg»?tuÅéu8y ~('\_„¹øÎ™óhw=ë d=hp²®h¬uQêmù…R„ƣ߿a@ÿ)¼L~Ä¡9(nôŒ"ïų¦M3“‹…ÚÞ¢³±&€Þ µˆf°Cu"7”Ã¯Ä S¯âx”pf<<ÂÑ,/%Êå‡þ:?ùß#QÍÛ›È"AQsƒÛwsÛ×8ÏNão‚EÓ¼x%Úi¯h ^éœfëÙzŸÇUï¬q–›í”º O–°´EÝ™uÚq N‘l@âþhð«Ïàسª1ÓmfjÜæXHê¯ZÑ$…xE>+¼Ëþ ÕÇø¢½*f/eW¡|ó|þ°´*ö³¼ÆdŠr*z†‚¾6ïºWÛm>ÉÏ.L}1ªºh„;»;ú z˜Æ:›Ãæ€ÒÜbi¥X‘ŸmlûÉnÕ~­LfÒTP.—Ëé„6¨˜u^mƒ–WÚ¯–¿ºqY‰??¬¦Å¨÷J¼`b´o‚úB4ögãÊU å¯=Óý…u}'áÀï;''§ÛÓ¤Rõºõ›ªÆÆìïC _Sff ó4ÊûÀÈÃ!g‰áEôØX´’… Wi̪¸*Ñ^uý:¦áeÍ/²˜Þ™ø~ëàfÿsh¶ôŠÎAn´a”lb¼VJ¾99<‚ N*Õõz&‘áÃO? &…±ëç³Éq S0E?›M²ÁTï­›çÛ7eRØ J*ë þŸíjP«ÜΉ¬F˜ˆ¡G=°³uÌ„¯ï2eñjXsiב4~”ÉÜQ“ý`”±(¬ i’Åž%N3|· ˆ-DͶ¼”˜@ÿ#ÜÀ˜endstream endobj 420 0 obj << /Filter /FlateDecode /Length 339 >> stream xœ]’Ánƒ@ Dï|ÀBÀN¤h/é%‡VUÛ€ÅTˆCÿ¾ãIÒCcé%ìz<ëât~9Oã–ïëœ>mˇqêW»Î·5YÞÙ÷8ee•÷cÚÄš.í’§×vùúY,Ç6Üù­½XñQkÉŸÊû¡4÷v]Údk;}[v !‡!f6õÿþªö÷Ýðø´J‘ h‘p‡‹\! «H+Ç&RÀX—‘ XG X;j¤€êØE Ø9ö‘öÀM6j¼‘àVáÍâ7Ë.RÀ#š‰78ºw%è)ì+ÞWö‘î‘áHèJÜ• a8âá MŠ›ä$ÌJ<+"DôGElÊèÔ£SL£œH}"…}åê#(ì+GPAa_9ª¿âó¹üA}5ž›§ÛºÚ´q¸¾ãd+¶Ì‹ŸÊ¡ì쾫|endstream endobj 421 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3486 >> stream xœ¥WyTTg–eA}OEM¬T„VëIº5qŒKÔN'ÆÄ wAƒë("Š lU,%KUQû­½Xе€y¢¸ ’(б5Ñ@ŒÚfº;1{&ËùŠù˜“ùJÒ9ÝsæÌ™9s¾¿ªÞ{÷Ýû»¿û»¿'`BÆ0`ìÖ5±Ñ/,\° øã™ÀÔ1iB Æ÷…B˜ÂBÜÓ& MÆ1Obɤož`ÆOÏ\%ÏÈÌU$eψ–Lʖ͈•gì—ý—?†™¶B&ÏŒÊÎY«ÈÝ¿11ú`ҡñ)iéÏÏ[°ð÷ ó ³™Ù¼ÎÌd¶2Û˜ç˜íÌf%ó<ÅÌcV3k˜uÌzf³ÙÄD31Ìfó$#fžf¦ÓÄÄÔÆ ¬c"Æ\.¾¢yº5ôžBרMlÏØ+ãûëøåãûÇ„yÃ>›>Á7ñwþ,X³™™øó˜û1V'ð]JÁ±6‰ ïæQfbÕñJW¥Ã˹êÝô”5;NÖ‹ E^°ªíÚ†Íá…'Ç£°ëZ(ee{,™Rvñ ¤…µØ[â5ø µQxû¼cÞn¨35åA èufuinx4‰YGbÖ“˜Â½Ê¯Ñ¸Ûp‘³ø!fÉÃPšÌ)0Õ'ÀÌuœx]ØX)‘Õ#¾Õ¸—#í(ùˆ!–¾.ƒ¾N–ã8Éáèfç×_¿çݲEJJÐa™)CZðøº(3ËÚÅa%‚vË1U«âôžªØ ûóSâ´%ºc‘åûð‰? >Ïc´åd~· MŸÇXÉ ÍÜy@Ä,ý‰q8ûü'o4XŒSÉÄ%±x xnº?:ÁЇ<µõŽº©]p² 9£ó€c+ì„­–IqÙéÉùIð$|XzÇ\–rv´`²Çó}ç?\ÇÕCÂÖ`Íu¨­Õ´ŸI@ ·ê@Ç&e˜S¥EÁÚrEò,Ç ÎŠ×6ïï˽x§X€Çá?`!™°->3ñwᢗÖå,_w¨P§2·úÂ[~×R ^öòß¼ú]' _£½E/¥É|YÏX[Kó†ÛFñÀÓï$ŸMמ^.wÈÚQÇ1c’ÎBïæFjÑÁ }FI‰Ô´ÍHœîóY¦Þõ—ot}ß²x9 Á+I²T\›—gQNÅçG$’RÂ~†ˆ3J3 ØEJ¥­Ýcuƒ› è”YÊ¡œw´@]ôÑ-¸Uxyå[kÝ‹a ¨AcQSÌ…]A’ÌW ~«µµ™âþŽ ÅžèÖes¹8¼ ËBÁe»x8-å‰_†j ÎZ lW‡~?·Áíî­¹²Â4}:,€…} §hnÂ-øªñ»¡[Ý]ï4]ü$|@˜&ÂÙ N“ Ør‡ËÃáJä2¹t¥µÞ(•Çë5z YÄ?_Žé¤sMvß’ÕdÓÌS³WsïÅ>Hy·áNÓ™k¿ô]„&­œüýõÜF<½aŠøC<+0"ÙE$3¥J$¾û䉠ÈREì v<ªû¤_Ú‹ ÐZ…lBé’˜XõÍ^)öãH$îáI$ŽF£¥¡Ñ»(…‹ÈñÐcñ¢³ ÆÍ‰CnM«ÉlÙ×WÜ—àjguŸua8æÊCù#H&wœã¨ üŒH¤:T<$«DÇÛÌ{8²VŒz’áP™æ¢¹|PÏÒûѨŽh ùÀLßäîðþëƒSĽ?B$þ®s¾sÀ^¹ðú6Šö,%'Ó9 *[û ë*¼ ×Û«ûX«H\g?žrzêYè8á8ÃÞÎÝd†„Ô4]ws…µ‚òs*¬•PÁ~¾øâË—$½*«WùýµõMÍGjr¤8‘ˆ%Ï#qoTüƨ¤]moýùãó*¥U¶*K•=(3Ããèd‹xžvOx†ôÿ4Î~•ÐéQ›šé<Íá¥jüµ­­|Kk«SíѺ4x) ÷¨+T´;™)–|ú˜†7¡µ âw ‘ ¸%Ül7ÙÁv›Ýf«¬ ?wîÂÙsÝÎõvß–';d¨Ú¯ÍÍ?R Vsjõœ9³ç=77„γ^‘ºyõôSAžÌot ñX‰ ÌV°Šü#Šìú‚Æ&_ÍÑû/´o$~OB KÐ'T«Ÿ¸qõÄMž³¹eàaÈâ0ÚŒPPhÒÙ±+i+°‘‡ñø÷[°‡œîÉOñsÿ]bå‡C):œ?Pó¡ð\ ÔÑfLþ -Ú¸C·Ÿ™Ê£½»ËnpÖÀYg§ÀUñ™ÝGž»BfŸ'cÃÅeµ‰v´MŽ ¼:p ÜÛéí¬ê¬ì·»ín›Ç:r%J­Áí™”nH‚®¡kù4”šîèr[]àâµèT›«­²ÒB›Ï“ŨÀ¤L FºBÍ"r Ð¥ì.°ÿ²/©4ÍmÀn%E ×ñÅ`ò•è´ßL¹ž†ÒN%øwщœ8/’„E’qøéK]MçÏpkޤŒW¡Œ { ˆ|<’j·Ëo^ðU6º}óýÄMÅ–b(æÈË(viüîq·>ÐJÍ^ðš½ì¯=zÁ'à?šáOÁ}~JTît”¿íK2Ž„½H„]Ô³ð_qMšf]3°vÑmxÿ\Ã«ÝæëÔ; %†Ìb4;>.m;$AJCNkâÆx—µÖKÏ~ýàÏþßEIGÇŒ$4àí}±µ¡B9ùÝ[ÛZqïñOøN`¶Ä"ÊlN¬ š¼ü¥óR+S³9»Éizôz³‘Y¢Ôå(~iUI¼Š.€½%ña7»O9ôðžÎƒ'‘‰u/K_íKmêæÈZë®òTóª–â3ëÝ…½Þ‡l‚ã%þ|Þô˜ã¬¹/×4÷ 8-ZƒN j¶Ð«®ª)¯¬‘:‘±IY›‡ ^•“ÎóH‘ÄCø;Ú½UÎk5°ý üÕP±ŒÕ¡e‘²Íëæý@#ÿt H¼è ÷ƒ»×ü›¢÷•.}u‹¢·ïñªþ›Q 638‰z¥`ãëP{ õJ#ÇPr–Q.Í5Cÿ³Ô^@ÍRœwÄ@trþ ú¤17Ó¥ºÅË>Ü‘»øì£Qù‡1©C‰éÆTiº 7ò颃Ùvª^,@—ál>¿¯&Ë*»Á–²Exz1[&z·ãÒE”k mY%fNŸ®HIm 2žRß·~¸´GU–ïÉw\oÀÂãðà‰$²o–“%3ÈŸ$¸µ”W´Ho‹~‘C$KöìyMÅe³! ‚ÄœôU Ù8âKeÝ‚ºµOŽš…v¿!þïÌB"_„dÙ¶ã\`<ÚŽs$™Æ¢\ÈcójäÇŽÕûýÔõ5¨ZÓ¥âG&“Å4•‚Ò Íò¸vÔ‚ü÷¸¦¸f(§¸/´t×ùš©*tì<µ§c§Kë.¦ÉW éë_çÑÈ­9ПڛܛÖkpÝz¥Tÿù¾{ Je•Ê*u‘<9'÷w8ýPFJÈC«qx.e€`@ØñkqÜHÛ¯i¤ñ9"™Â~‚ÑG„óßùƒýÿóØÿkZ{ìÁÏÄUÅSZmJÊßÌZDº›1üzˆ†˜½ªØQ3NË!Ëòp7­gUƒ¯¬“X5@ikî–ÄD£QO9Æš‘Íà0Û¡ üõM§ªß€¶KsmWF~v¶¼ñHK×]^. ט÷¸ûâ‹ø©¯$yFe>d³YŠ––&_«TÜÐ’Û”%_4™÷5¨.Jßðo|VåäÓƒ¸l¬ž'!±ù¢9,™ÞJvã(i¥ÇÖÙp!|4ÓdxYIib0Z S‰hdvð“€nè‡kÎ~ûi繦ã í'éÏ4-IœË­@°Â¸4sgþ¡äŒýÀêE$¬Üƒk?eGÓ°¾è§cx ¼ðI|ý½oßö/=X:såË›Vq«–ä)òròr"YúÒR#G€Áj#`D-xih®¨4ξ'è´™åTû—ˆÞ~ûÍ·.õÞøb~dñä¢~nö¢WfÉËóN襵MÍMEõr'§=èÌ¿$¡<˜îÃ3îS ¾=ŠU÷„Cø ‰Ëâ´P ØR_ßÒ¬¬ÏQ䪲-œÍ\ôo8ì³qØ·ë13Ã-Õˆ¨‚(’-ø`8¯m3ðpú›{/:\.'µ£6dqŽîåÜ"•A^ša”A<$U$Tl»ÁÊšE0Q*µ•–{]õ”o?SßM½­è¡±š„ X£[¼ìpAi©ÖÆ‹*ê/¥ã„ËÂÆ2ÌÆˆendstream endobj 422 0 obj << /Filter /FlateDecode /Length 201 >> stream xœ]=ƒ …{NÁ ÄŸHãИÆ"™L’ .…È ¹}–US¤x;|»ó]O=+y¡«|o2óKТö#°FÕX«øáÏ’{Co—U®HB`eMÇš°&, ±HX*b‰(Ñ‘äÊäJt$¹’ÜJ‘+šäü3 •âi¸Ùb¿Ò(cŠæ<üÖæº8Š}Áñe¥endstream endobj 423 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1086 >> stream xœ]“}LSgÆßÒöÞËW‡½éŠa¹ENMˆ1l:ê¦B˜5Œ2&°´”J/åÒ·åÃ6à´Ðe8¡€vvèV¦Á¸ùcg¶%Û²eq8·„ä¯ +ÿîÏ“sò<¿'yމ"@ ˆTÎ,LÝ“šº1$†"B¯qçÚïkÇÅ8FˆcDgžÿ"Ù& ^ZC³3«VS§×©µ‰9µåjmMbfmuyâ¡Fº¦\]þ¿%Bˆ|S[¯+)-C( )Q>:2Q:ˆ¨°?"‡ž ¾ˆF„Y¹uU…$ë–id BR0Tdæe*òû1½Fh°×8@?dƒ™pu«[Å;Uð$¸›hÃV×ß>¿ ^ƒüýPÐ>brÔcŠ%j1«3öñ¹éü;{ù\“.Þl¨â4¸·ÚL˜ äË &!ŠŸKB-a÷>H)óKý°/ùY2ˆäô¢?”+S¹Iú[ï(§Qð·Izñ-  Ú››‰Ÿ`+ˆ“±Óˆ›(zñÃñºßÅ1ÿ‚Ò[ÔÃt98We̱‚(> $ë‚ïÆQçç ¡7fléåÀ>ÓSP:)+é*¶TÖÕè›*p.wk&ôs•7»n˜.±ËíXIÙÏVÏó,fØs¶áLuœ©UÁG“t56ÙLƒÕGŒáá ç1e#ÎXû;û»)zªej²s6á·¦A´”wý°KqÄÅK8|—ºù‡}Œé%®âëÆ³ªÞf¶q‡ñ~ÛÜØNÒׂüvP’’õˆ 9²øá¤’ýÒ)ˆÝ /Ãë%§WáXh‡l´×kÃÔWwš’Z’§1¯ÒšøXjÇJõÓ…Gž[£L¿ÆÖàkéðZÃw7ˆóÇÐH³Ý¨è"ô=§8§ã, ì$7ؾñ]„ãÖX_\¬WaŠÖþû£‚ž}ì!HÝk—›‘0QÂŒ˜H„þELóåendstream endobj 424 0 obj << /Filter /FlateDecode /Length 221019 >> stream xœ´½Ë®5M4ßO±‡Ýƒ>TÞê2EBHžZb€ØÈòA²€xz2b­y°‘lÙÝêþ¿;3"òTU^"ãòï¾ÇOùö¿üïûûùoþ‡R¯ï¿þ??ÿîS®Ú¿ýl×÷ÿÏhßûiG?¶{›ûùß?ÿÓ÷ÿøôŸ£^÷õý¿>åû/æÿý›Ïñýï?µãçg›DþÓü~úTÐ+»G{ôÓXJýÓ%q«èâ¥ÿðd¼¦œ5—Dø/úrž?½÷sûsNnçÔ¶w›ñçü¿Cåÿüû[y¶±ù´|l³ÈÒPÿK«÷ÿy"üW™)ÖÃX_ìxæÂrÇœ ¦lÿϧa_u¯}³ÁñÓîþý÷ÿz.èÇ|ÙçÄxÎÁXâƒòÌf~ksJ>çèógô ‹M$ßÙ¡¶L©½;ƒÀ.Âzˆrû ιÉ2ˆ­”ˆÒQ öQ¼Ÿeýl Ïaƒ¶ï׆ÛnßEŒcœsÖõ/MÛ-Ìo¡Í©t¾æ ax®“ ».Ý”ˆ½”C`Ȱ¢t›¦¿‹C/» à÷³´P iIÆ¡7{¾·?ßùÛ€ëýØ&kNýýǯçÜOµñ­uÊn·á{Îeu¾7¶É 4MÊl×Öïs¹ÊÝ…ÁßÛ“0?Ÿþîc.·‰=àl.ñü=ÔEï]{Žr¾¹‡Í¯ù±Î¥þ±?hë¶ÝúM”>?Rûžõ§ûðùéöœ¯÷À¦øugÊü÷ƒ0døC"endû[ˆC=vÀÖCZ¨…´‡}6àb+Õ¸üí>Ø1Ÿý$ŒÖnÛóþ&Êœz&eâ¹0<ÚO7<—ú„§"ça{‹Õâœohæ2¬GPÿªƒCí» à÷³´P‹ÐþŒ#¿ÃxÆÇ9ªÚæu·sïT¹Í%á1Â|KêO_Á&w¾SóÐ_²;ü%LÝ:{{J$Ì¿Í/Ø`ç~„M•ùu%ÊÄçΘ2¼)sïܯop°ÁdÄþ‚ÑBz‹Ã>}¯ÍWž¹CŒ)¸Ì)°É^S°æ–§Ù 5ü$ÒÏ©ž½Ž-AŸQñåé÷9Á¦Þ;'`'ÌM2fhvo×ÆÞ¡#–rì¾kŸWÖ»Û§z\xûüŠç®¥?ók¹/ßH€2޹/˜”jÛËÃN‚ežœ OŽÏø…u!Qªíï7À’á=DÁ"‡>',CØz@‹Õ"ô&‡}ðiŸêyجT9+fö˜ÇœŠo%å1ÊÄ·>6œ†ç‘°MªóýšÛ±Õæ•Å!°Ë°¢ÌÙeö\ú¹Ë¶ÒB-¤¥8ìãHTŸ;9Þ ßl³w|¶k6múÊÜ•ÙLg»°¹jÍãy3ƒÐÄ­œÂ¾º2enüúÎA2|s)J±osq˜ãÞd¿Ÿ¥[,½ÁáÏ84^ðey.ex£«[¯&#ßçÿ&ÊyøŒjûØó1<ßÂwçìým;3e¾mç ÖC”ÅÁÞË,˜»i×B-¤¥8ìãÈëìé{Å2§£çÁÌ>õ2§ýæ3UPæÂÐ&+ÛŸv4™ ÇmÛ„s±½mOË”zÇÆ!0d¼ŸE™KËÜÎ-s-Ùd› i¡ÒRöql ßIibžûµbKùÜaÍ]p®s’8ëâ\çù"aß+>»ªE›•Ìa჋nPæÎøö ™ß /À¾Á虲´$‡?ãÈËîYmÊ*s¾ö<ç¾fv7?búe¾ŸÕþtó1=6µ9½tã«°Ï?󹞩ÅÕwÂáOK¾Câ0_ÏM°ÏŠPB Bk2ØG¡ÚÞ˯m¬|¸séfŒœ»j7 .ÊÙl­;çû8ɹòõÊØ'Ïñó¤ó,û B€µÅ6ãýç1nìÛê'S–†b°!¯¿—ŸlKÇô|Îél®LóE,6½ýfÊü;ÙD?;u3óØB0'á„ýã-¾ÞF 3 f]†÷ ežà»÷ ‡rî2€ýu™²´‡}ùéÎ7Ç_æ†?>…Ž2¿7é¥ÚeçñI×ÊÇms£Â6÷ØFãI-æÓÈ„)Ã{bߤÍoäPæ7˜e¿ŸÐB-Borø3 Ø–ÞáÛŽZ¹á(vXš»¹kà]vøÌ ÷|¯šŸ+ÛŠ´OÆã=î“ùùUù£Ð¶1(óaùIþt“ØQ°'œG­ù§ ìÇΚ)ßÁC›FRæ£ènG"TI„°ä]‰Õ:.û(ò©àv+òà±o~aOÃîúñegQ|g>7´Ý—„y(ö ¾› ¬¶Gev²–Z\çÎ!pá"”a÷SßÅaÊÞdû¶šZ¨…´‡}yÏXüÿwÎÂ}¾ömšIàÆ€ƒrãÝŽü€/û„çTÏSÐ\–üḿÀo¢ÌµÝ”}¾*6µ¹ÙÒ vÎ'^gîÕbîä6Âá‹»·=—íÀÏ&ØŠÔB-¤¥8ìãàx‡ üëP`»J·ï<Ö/Êí‡ò¹?u£O™¯Ôéö¾–±oØÝ#bµ˜Ïuãøà±>(­ºöÁ¡Ž]F•é ´P i)û8¶‚Ã3íþü.¥Øqñ7S?@6X<Íc ;œ£}®=3eÒëÆ`aá†R.÷ X윜eû %Ô@:’ÁŸQäÅȦªuáÕÌe¶›1„ýX]Û\í«˜Ûm³Ì—*)Ñ|—?÷¶õ4ÖÖšx>‘ÓTTgÛƒ-ÞŽ¬5%óWª¥¾Yë|þk‹8úcó0 ×QxÃ0†O£µ†yÿ컕´º‰7ZÌeqã ÞC”ò]ÝçNdì‹Õ™)Iéòý;µÛ¼ý,{<œ‡oܾڂå>$¢ø’eçÆ~cïz˜=ÜÞ1nĉ¹Ãé«Á<“l ˆ%Â:ˆ27nRwY‚°ÏôO¦,­ÉàÏ(òk{ø4Ü/lÏjO/Nw"àûvo*›1ÌèV½nw„<™.„ÏÞ]Øù{{Ìz4¾«¹6þßÏ’Ïߥžºoúçqúšs™dN3aÌY«Z·ßD‡3ªóCoŽOûàk'΄ݠýøþJ-Ú|H™C`Èp“ )sP~DõÚEûtÝ2e)Iû(² yøÁ.¾×»á;€5ÐnL;.ñ|ƒjªl ò/ý~š HÀØO;ÕŽh'Ìcèçw«‹/!ïíFn`Z©sÖ8Uý`ÇôÄþ6K PQn»œKWµvyܬ5ÿZ,À/Ìp¦A´˜»ÛzƒÀ.Â)sö)õ»8˜—c–ìë'”Pé(û(4Î@°ãvî«OsA™KQñ?ðØ}á¤5×¶„ýIžØÍ±…}2‡Àñ~åÔq•ƽËöãë‘)KËSÇÙ¾ËXÇWÎG¼k¯—ŸwÝyœøDI™‹”9'Ø¿6Ø#‡ofÎŒýõsz´0hæ2hg5ŠyªùŠŽùmfÄ|‰%´ û8òiôlw±£’NsA޼M¬~•×h:5cÝyb/pcŠeþínúDør­K³)ÚŒyľ]=2¥Úöм䂃0dxRšß¬.­î2€éˆ¡MCó…™Z’ßqä7úðÍâ¨|Â6Öp^”³aʦÙmÍ'À'Ô12ö›wø^-Îgç ïgQd…‡ùÑo2€}ÓueÊÒRöqhÀöl/¹”ø”5Üæ:w²á_! ¯Öm:1ÏÁ£È¿Â þ«÷7wµ¸ƒðþ ÌÍìE çWë”!ÌiÑ|£´\öqä|ârw îŒî7(·oÐÎÆ;suõíèudì÷wúy.†ãLÝÜenà͆n½Ëun̉ýM¨™²Ôcï]ÿ¼_¤+I•+Iq‰>çŽk¯(vÖ¼`Z°N‡_ÙØ¾Íì^Äü¨Ìb¯­‡Àá%¤Øí'ç`'Ö,˜æ ×B-¤%9üÇö\ádw§Ûy*ÖßL¹}%9«_› ÛÚ*p¶Ãí<Ät€H¿?Ü8>¸ÅVŽë»8ÌMá&اj¡ÒRöqÈúd÷Yg^‰Š_´Íf>þ&Êí“åä7°Ü>™NUZÆ®|Áº¡syÜ8C†÷ åìü‘øvÀ>Ü‘)KKqØÇ‘{sûa¯·Â{©Ë,Ÿ¿‰ÒÌmί-ìLÞº›Ü-áÁFOj0¬úì/>çb·_ãýç´¶ æÍI¢, Å`[l>¾|°…¾¸vÇTí’Ê/áô×Íï¤|¶›ë»ß_V÷$ô7¹%‚¯¹;áÐí¦ýÁÅ#{÷ºqïºÚ ñj@íÔ}Óž£lö_þᆉlÍv·¼SExüP쟂o»éyZ{‚>HºSª-ö©;Ꭹ"ð\e÷ãê™?áû‘üø]ê²û¦½že_§ Î-ÔyûßNÝ÷Œ¢Øy¢?ðûì ^Ï“ À~ *™âÛ™1e¼ŸDñãlp8î¶É ~?¡E´½ÉaG¶·ÑJþ}S)½šŸ Ž}A™‹4üÞ›ÉÚ|C†[Üá†CL=<‘Ø¢ƒ0d¸o) u~‡¹YÞd»e™Z¨…´‡}Zzl¨—ïËÀ_$ÌÞwô¿™{¯YNÌsÎ>ÀBÊmG‰yL·-o´¨ÇÆaáuŽ ¥ÃðÚ¹Ëh:G„lZ’ßqä=ããÓÓ1J¼Ò‡Ï'E›‹ ¸Qv¾LÝÏ ÇÜÆ`Y¯vÒöôÈa7 7A¾È,¶Î2€ý•¦j!-ÅaGþ†áѨsî­·ÏýÐåt—¬ÚxëfgÑà zï9ö››·NlQ:ýýÀ!0døûIJ‡m+8´{—ì7Ô‚-BKrø3޼þt?Tú3–Û~>ÆÍ¥(f ;á)x?¸x­þ=º!\ØoòŽLñkÓƒ0d¼ŸE¡w|p°Å)Ë~?K µ–â°C+‘_Ò"¶‰ŽmþiÍDÒÊS_PÌmÂ}©ad1¯R;oµÚ2öŸâA Ñ¢];aÈà‘fæÉßüBÄ¡ÑmB2ˆ}=2%´ û8ò}ú%Aø÷Í/À-–þ}A¹µq0¼]41]ýtÂyR-æ÷çî—âø`4WP†_-}ì2€ßÏÒB-¤¥8ìãÈSVó9ºq¯a>̶ػó VaQªûóø5èåØý}ªù)&üF0I4`4G0†ˆwÅ{¸Lw‡IˆßOè-¤£ì£È/tqsU§éÕœŠÅc˜ ŠÀAxü\iîïn¹}óÛç_þ,‚ô›X„Úç¦`ë¸àN2g³{èn.2‰½Ã÷³ÄówiÇÞ›öyYÝXÓy2»Í€~É:dtÊé(·üޱ7Û`´?š3V´¸úÎA2htŠÍWßÅ »`še)Iû(6÷·’m5îAg7 ‡Û|~3å¨ú5úÜ'Xæ “0¬îC¨óCÚ8K)ÇÓÌJ;5&ľ3y2%´ û8òIe-Cmžá±ÑÚ”߃yXÁX ;§9y!J@–Ðv_™2—ȶs† _DIéø‹î’BðûYZ¨…´‡}Ù†ÁK>~µãºÌuwØ>âׂR«—íî¥>سšEbÌ?a¿!:Ü\§fêÍC2ÿk¡â`—›Yñû -¢…´$‡?ãÈûŒÓ],"2Æ|ªÜœu¥e衹Í'xÛMh¡I\!úÂ\…znÁ»ý`@L\…œbQ‡Ï78˜‰-Ë æ*”Hk1ØG±]ˆ¹ÓE> â*Ê?„ßE±OÁ> Û±zÀÂqù‚n+HÂÜ7ûªϵs ¦ î›bV­û³j%ÄÜ7'ÊÒ[öq`Àˆ³-îjÞy™4‹~ó«ÄV”ðÅ)fá¥æHÎfhø\y½eÀh1ÿ»q† ú¥€â;øÅÁì–Y0-=®…Z„Þä°C/ô—ÿO‘mM¾µsÿ‰û¿ Œî·w­uxãž~v©6e$ì‹T‰ãÜ9C†÷ E»~q0ì,Ø7ž=S––â°ƒÃ=<ˆþ®5¶%77öÍAyü¥r·–æø¡+ð•1]kl2Q óœÉC}kœ2?Ü‹NÐÎ÷-!#ndB µ–äðgyEšƒ»Àñ ÐĹâ.ü7Qì6Ü}·Ü)ØwJ¾í—Êíô•(¾aØ8Ÿr(Ê|qíú.8Œc—ìO˜Z¨…´‡}ú‚¿‘.Ê­=6óY”ùh.Ý}$§ä“v?£ð¤ôóœ5rWB°öö TW÷z$îî2w¦ß¨•ºnZspîŒÜúÈ·›Ö~þlóÚp(åAQ5ï{ŸÌ«v7> ÛDÙo¿XŽv=“» C€ïðI¹'&f]Ë2€­‡« Ÿ¥Ÿºï#ÈK¿T9çò(ba7tÎ Ê×Zs)HÎán±Ï™±©qæh`Ÿaf°p¡onPÌåÒz€Eåe ÄþÞ™²t$ƒ?£ÈçŸË¯¿âZótÞ|#:}sƒbne¾Œ?’ØœçÚϯqœ}—sÁz¤Oß9C†ØH)ü ‰Ãñì2€}©¢j!-Åa_e?Êã…fhL£ôq¸Iá7Q,CН 7V… ·¥vžû6¶!¦Z-îcç ¾¹vJì p_†ê§eÂ>“Ý™"-‡}ù÷ÛÁsAžmëH ž¶u'rbBA²º÷¾ñïòa–|ý.uÙ}Ó>ïOâuSŸÜ'rZÏ?3ã é_qx ¬} ø7¼!Ö/ØD?BgëMç³q7U–`‰ûyÒÁ?Rv˺æcŸÀhŒsÜã7 vcxòJ”æùݯ÷p¯üÇ÷t˜}ÔÀ~*«8r¨Åsï„!ãý,Ê\N†˜;‡rì2€ßÏÒB-¤¥8ìãÐFÉSvø•^9¸ <}:šKƒßýfÊã •Mõ·ç#ò['7’]Oàé³eâgçX:A)ž\fq8è®-‡ºC µ–â°#ï ém ©¨àÕ¯Ðø›.ô BÓmŸ(ÊáC‹ ÊÖàå§ýØú F% v‰g‡u·‰? o­¨€P?õßô×¶a]ôp²{‚‡z34B~ô–5£§¯Þn7öKÜG‹VvÂáWµ¤Ô›i'Èan<6À~yödÊÒRöql6?ÏÄÝôÙè3ÒèI”Ž-{¿Ž¯;ßz`È%Ÿ’‹.ïNWR¶xêÞ]ÞÏ¢ÔÁÀr 7~Èw}¨ Ÿ¥Ÿºï#Уõ°—æ;$]â~dèÏÜ;W>[Ræî¹2y^{àCw=H®—0ŸTë©E»vÂá=H¹üL¾8Ìéy“ìל#S––â°#UÝöÂÐas-«¶×~”ÿMK„ã 7ÜÃjb®åÈøEB¤«¦óo¾q† ë! 3P‡vï2€Ý©®fÊÒ’þŒ#ï€írÇ’Eéh#Žm©‘ŸP„ÓW¸j·¢înÛ0ƒ”ݨ­ß϶wvþ>¹Š`I§W÷¹ Êìúâù{¨‹Þ›öy©½=æpîynµy>|·<þ.‚™ÝÖsâôpÝ~¾ ð¦,ýlîî«« X{{.lÕ£ûu$îþ]Ÿë7iÅ®»Öç¤8ïÎù×{dt(üFå§¶Ò*žÕ#ü~‰ßOøG sfÈG&QðEó9Í2ˆß•"ZHKqØÇÁûëzøãJÅÑOábéßx…%Š-”¼N²œ-£p#‡ ñ‹+‚–0+L0®wÜ`‰ràþ‰ ¸V†`î•)Ik2ØG‘çàæ«ë9c‰Ò¦¢‡îáf´/Þ˜ïBU,sšà‹X–E¨v¿’ºŠü2ë´zîv%›éúfWº;üìdÑá(l>ÀÙ®¤²‰ƒ0dd»Ò‰ ·à0ǹÉÎv%µ–â°#Ÿt  ¸oê2w܃邂ò4÷‹>>fÙ×ìà=ècDìëæé+}´ ß’B‚uåºàMîï‘D»éùÈ”¥#9üEž‘OßÇŠ[™c¬x²¼ßD™ÿÏšÜg„Tš×ð˜&„;5°åäL „!B+–Q:s’ÁÜ n€ßµ(F é(û(8\¿Z¿ÜAµ< X»Ã­t *B”«ùÝŸO6sÞžØÂ3̸EìÊÞþ²E»vÂÁ Î)Ãíß‹Ã(» à÷³´P i)û8²œQ\:Ø–«àê’k®(£#ºÓ&zø|bU|èš[bѽ蜋îÅŽÄ™AiZ˜É7!øý„j ›6cãšß`¹syì0˜ÄÓ²  ã¢xhz­ç +ëà‰ O+~áƒ(nìµgµƒÒÒ Šƒ¿³ `7S µ–â°c»`÷¨ÿKIÊé¶>g« œ¾~{ÚÇ—F_ï—#<ð»bøÕÂ#á‡Àñ~Å\ŸVZËßµ‰~?K µ’`ðgÙ =Ö €Ýùâ^¾éKK-VqklgÛJø’¹÷À/r­'ЧƒÙ8CÆûY‹ð÷‹.r˜À&˜WÕ®…ZHKqØÇ‘ãHbÁ ¦Zý^ÓÒýàö™¹ú'Ä-½-òÃñíúÄ/¾öDñïlã Üo}†€âïսͩ<ñwèwÏT€¿‡ºìžÔ×´Ò/šç„Î|ž_©{…þD§Í &ë‹€_8!^gj¡œEâ <ô9å|x5Gг“ `_µ¨EÄò;‡}yKU‘%®<“ÉÏ©¼¤œGgÒ‰9ˆÊÁ¤wÆ>ƒœ^ÆB OÁ¼S„¯(¤Ü~9%ƒo½$û$~dÊÒZ öQä<Êåõd/Õá;†Â=Æ¢<žü¼ìç,2ëpQØï¿)RC-î²s,¦ pÎk—ì/?µP i)û8tôèp¸Ðò6š™°F³(8œwI°8¹‚ô ~7Pá iÑ_$íó|-j`³HêNöÞ„ãñ÷2ºmãø~B¾~§vê¾iŸÌ©Ý‡Úhx³Ð]¯©u´§. µ–®ÓãOÌÅmî.üÂû­¤­í 2§Šãg0èç.øý,ÔB:ŠÁ> ­<#6EûŠ;¶ÈàË?ðÅù–Œù¹ÛÁ`©ÈàmàDñ`Ì!pdð ²;“s‡€Hß*°E¨¸œ»Ÿ+Òô)2¼YâÝmSn šÕûÊ›Š¹ßyöMEiîá-ê±q¼6¢hK Ú2HFl*B ¶-ÉáÏ8ò£½=x«´‹öBÏÓ»KpKøõ;m`—„)èà‚Ó~ŠT_„ Ï­7 ¹{s|~Uw/#°Ø¾‰×ïK[tßµOãêCí|¨4ç˜K‚Lƒ2wÔÝï.`2@OƒG“ñ‹p¤«¥4:aÈp?) Ñ9ÁÁ®å² à÷³´P i)û8òÁ¶»-Îø0=]˜¯*ç Q˜@Íe^@ùÓìêГ²Þº†l¬--Ú¹3¾t ”¹4vzQ:‡q!A»dódXRé(û(²YЉvôÑv}’^9ë7QND_µHžZÜï]„ˆi…ë=µ°Ô¨™ƒðP½® t„#‡^w]õºB µ–â°#{ °B䎲ëNORù0´'(vذ½ja®6dž skêÔV»X-Fß®S[P`d µï"€}L%Ô"´&‡}éëe•›k%z>™b«%z>™d«3Ïó ŸaO­y¾¥Vd|s´¨×Æ@ÞÏ¢ ¦ƒqì"€ßÏR‚-BGrø3Šl„;ümM7'K‡5ûïo¢ä²¢a7sÞn¥:P>Ø-Fw¦x’‚ƒ0d¼Ÿ ˜œßDý±{“Aì®aÐB-¤¥8üÇ`¶ÚLÝPaŸ^‰ðR'<>é[\§G~¿+­ŒLwø"¶Ô{ù{»¶Þ ojE°Ì½¶†¨û87öƒC<—rê¾i¯QúåvÇÊçPÝuiXfN$¸ Ê€—ŠÝS˜"‘ i*jÛ7â— UîÔ‚±sÁA2ü 'Š2!‘÷ !øý,-Ô"ô&‡}y+ååðŠâæÓò±D (ªÒf›ì¯W´õÚ|–·NÞhÑ=óäb ¼V¥¬´%s‰¿C°ÏŸCßòý«|¾²ÅÜ4çIÎMÒuž* ”»t·nUÃò µâçaŸkŽL™øÜ9Ÿ*Ä+<æ=Èa”]ÆP-¶Ð‚-BKrø3Žtð©Xpy˜¾Af ÄYVxnYžl%Âx’· à»’ ê÷¹«Ûº.ˆ„ ‚E2?ßÕŸ«”ø;|?K¾V±±wßôÏgX¦½âÄS§”[×\¢ÔsÝyÃòSyGaףļI¿äØC¯A@9xGE–¼­%ÀºI Bk2ØG‘)*Ž½Â‡Ù,°‡,]z DõðW õU ¬¦kTÂïGŽK«…‚\ÅX2ÞO¢8(ÐóI•H!BøýH‰Õ"Ôƒ}ùÙÞé:~þîf¬Ã²âÀh,J)(¯ÈìV4ÀË+–ž±}HÍ-˜q08CÆûeŠò·âàU’ aÿ^ÏL‘–ÁáÏ84\z¸­Œ} S1—\¯(watWa-¾>C*l ü¦-֌Ɗ‘g›sÀ(f›g—l2¤…ZHKqØÇ‘ϳªŠmaJ-»¾™ ‹ó]pTõe»-µ¼'î\z6õã>œ-,cæ ïgQú §wq˜;ýM°›¡¨…ZHKqØÇ‘ßg†ù«ž\© f+Lýµ(*p”qAŒ 5»Q=ûB;ðƽìù…1¡Á¡]» `_m©…ZHKqØÇ‘O{̯£[.E("*XúèÐ"„sÚ‹Õ›}ÖïOÙ»Ö"$Âðûè®5èLðý,ñü]Ú±÷¦}~¬Lª£MñhÈÞÒ”L5(©PÍjç¾®HH×.-’ y!Ôà®;áÈ”ŠL¨bPË.¡Fé ÒQ öQä›éî[Æ8ÂÓ7ÝÒ=Àó (“Ž×XbL¤ç&¸ Sæô hŒcs®Ü8C†[ÑH±#Aÿ.t^áÝZ¨…´‡}ùÞ‡ÏWdåë™Ûl„óÅfÿ¤ˆâŒÐ"Э„’cdJ\¬aÈx×…¡åm,œì¬W–ü~–j!-ÅaGþlý ³Ý8ÄÛeY÷­Ú`› (ßÔ|Gßœ!PÈêÖ%Ì º§¥ãÙ9G%¶ XŽïb€¢hKDb %ÔBJ’Á>м !où®^5F¦\Qât‡z¢åBøÉ©ÛÆK*ªI-˜&8§L¹¤(Ï­8ÄéïÌøý,-ÔBZŠÃ>Ž|9Í̱4I©XKÝo¢˜·Úýhép‹…›j¯—äÈwdŠ«»q^Ž|AÁÖ+8Œ¾ËªÕZ¨EèMû8Ò®™9„΋YÀPèÌ‚o‘Í (¼t:9Yá:»A³@Ž„mÓÓPÕ/ZPûà |+›yP.ä"ç½Ë8•Í<´P i)û8¶‹jíº˜žŸ‰C®ƒ6¸E¹XfÁ]±o¾RÑ@`·Ñ›-N– !ƒÚà‚rzŒÈb0Æ.øý,%ÔB:’ßQ¬c½ÇJœ+îÝݹÛà AQ¦¼FÃéãsÈü&ÀïŠ{cìÝ…!àý$Šæ%r¨}—ü2î=~Ù}A¶^üýhO?[H_íJ ìå[¯^ûÕà ¯Žù Þ_x¿{ºµècç ´b!Ïó^üõAÐa–Aü~B‹h!-Åa잺Ã6ž,Y³[Øá3þ›(1×}ðÒ¡3ðß̵O`û¢ìF<5¸ÔÛAx¨V†ë³<ÆãpPÑj!ÕÄ`W>o¦†û5V楰DÅ“õz äßDiÈÆf¡ç¹¶-ã¨Û§TTAP‹rmCÆûY”‚äQÁn™!øý,-Ø"´$‡?ã©Q1"¸‚ÙC6qÇëxQÜ%¸iÙyòa}ªòöË·'SüD³q\TJK\Ç-¶‡È2€ý D-ÔBZŠÃ>Žìú•2CæA/îø›(µ£yaá–æú^V(aÿnûOnÐËÎ@"ÞÏ¢¾eGÙ%óbäÒQ öQä &Ââãµ» Ÿ/YƒÂÔ¶Î÷‰:˜zÉ©‰_¸„[’¢ha.ñ™ƒð%#kP΋!r8Ë.㔑5´P i)û8²é¼œ#ßxÑæÄÌ¿‰ò DU +Œ2}wƾ¹`’µèmç ¾¹ ¥ý‡óÙeóò?Q––â°#ÏXד“]›ùg¸Ý¾3a{P,߯¹àpì¾Îž%aÖÏ6ùäî!€œS¤šð¸Ä]øýHþj!ýØýÏòFÉUpÍÜ=Yñ DÊí¥çj?`@xpŒ³  »‰•¢…eYÌ„!Ã{r>LîK¬Ê2€}32ei)û80`<Õî®ØÌEb{-sñ¢•ŒóE„Ó|=øe>$Ä/Ò$Š»ŒoG!HQn–q$/[™d¿ŸÐ"ZHKqØÇ±˜aO—åæv—@¯÷‹dª‹‚”x ¥éݘ;Ø®~ŒÝœ eP¯Aߨ¬GŠW)˜.Þ¸‡ÓýdL{º;£±…YËBI 9Ý)÷ƒg ×,B˜æôDYZ‹Ã> ÖƒQOøìjéepJA^²ßDn ‰h»2.–OHÊÌ›­DYi‹Å!ÒW&; r”-õÞe¿+j0ZHKqØÇ‘ÌÔ}L PŸHÈÚ˜Ü"(–ð‚ëá ?ÃÒà™è¡‘ÀºW©/â‚pÕ½~P ªè‡ãÙeº×—l:’ÁŸQìžéîϦÉÎ{nxŸ¥²â˜¹>¸ƒ÷j`tM$¦×Z¢T³ýn„!Ã{ˆRÜ78}—ü~–l±ô‡?ãØ"ÜènϳzVî‡gRn¦Dª|Qn?;Ãâ ÌW v,¶èmç |é°”9Ó>e9]Ú1CFX:C µ–â°#—fª(7¿Y«÷Û˜ç‚úÛÂáé$ [ ~‘ç"Q&¾wÂá=Hˆ¯ £î2€¹|!IcÌ*‡}Ümx•Áëܪ ¢ðQdw_‚×¥¹ýcD²Ëâ„/*|ÝéwKS•ºFÊhØKÕÉ›ƒ{ä‹ñj@íÔ}Ó>n˜iS6ªÇýRü 8º¾Ûƒ!¾8J"•¢]é<'Ìï¶Ÿ©…M™C`eJoð‰‡ví2š² ‡lZ’ßqäMdóªNôàµÐÎáQxMè¢\Å óó/v8¤÷wm¿¸nð\’jÑ® $xRhL ýÙE[)¡ÒQöQd{,Ì%üá|ðPœWPn¬ ¥#`ˆ°bQvâî»ýN-Xè=8VLMPJÅ$ǹË8TZ¨…´‡}Û½¹ý Sºœ1™‹G”[¹xnrU.ž3cŸq1%Zôcç |E.QNåâ!‡qï2ÆÊÅsgÊÒRöqlWönvUÖ€¹¡£Ÿ7¨›ûáz’”á!ê_/O—ï 30߯'õÀ2МØügvÏ'³vèVhŠæïRKÝ“ÖÙͱ¹í±Ó4UkE¤•ïªÁrÙWsûÔoj7.ýôc§ñâ÷Q¶Þ‚ÎÝu&¡xš’ÕÝò"%ö­½Äów)§î›öå¥P,DC‰8 Z°ÐÃØDQà®Sa÷„Ýõèû8=&qµèÏÎ!ðA—  Ø¼ãQÂäPÎ]ðûYZ¨…´‡}ɉe~Ö Ìï’ÕÄEiÕÄ/¿E:úA º =Z¼U¢ø–6s\Ϩ&NÊüì|6!žšBDœ«B µ’`ðgùódM29×£Üèi÷E)Ìšoo•§bV}{éæMµÝ£G‹qïˆÈ»žðÅá`Z}É8"ï¾´ˆÒ[öqlæÕg/yÁ,y´Ø“b7pW·nØœIߎšóÒ˜W·‰â³á£Å¦”ãq£hp8´­¦Œcm¼©E´ –ÁaGpõ ŠÎËy›Ü‹Ô,ü~Eáß®ÑïÔì/7¾5;^¿œ´[ja¹Ã3‡À…![AAeðÅá2J›O)ÊSÉJÝ‘s"ʹw¶ŒÞ <<z¢­£°söù˜„v3y{·š8·°ä!²¢~—Jê¸éœð(:ùNX×-<¯î¢Üü ÓdáåLj lzÜw¦ø—·q|ðÕ Ê<É=þm’ƒ¹'fÀþ­R µ–â°c=Iø¿…—Óù4””üÍ”oŸŠJνJCê”(ciKM¢L|m VË ˜Cüw1¨ç.øý„j Ñÿ϶XE7¡šIáâ—û´ÛÖ˜`–”r2\i̸åùbíPѿț(î˵q† ï!Ê9i½J»UÑH2ˆ­µP‹¥·RÎ^»Œÿ˜? Ë«ØÛt²¼6)ÏÉÔ¼¸MíGƒçëµ»+ÀñSS–Z ÂAß‹Ù/.w8q^ì4I ~?¡C´­É`Eí GÞô˜Ó³;Ñ]ƒ“pPî—ýâiý>qŸ°êûú3ž{gâ ïgQ΋±¥äp» à÷³´P i)û8¶›ÜXjÃ8—§ÎK“ªU¶óÖ¤âØý8|<žjî~¤™å¾Öï–L$õtî\_Ð/¸ª¨»}w‰½Cžña)§î›öÙ@Qü00TSÛŠaìt:ó ‘r{½ßéxÚ×§ Ô.J`¿8Q D-̬›9CÆûY”óA©8œu—qêlZ°EhIƱ(ðXu/ÀìÛUú]Ä7ι§·Çä>òµ$øÂë±´±u'ŒØ¨ t‘gw„)ÿˆŒ’|ý.uÙ}Ó^Õ}¿Ü6!«„-P'RÛŸZfO$ÕGjçúãwdù¿…¸ÂºK#6ïèÔ—0²^Ï?<×VwOô,dMÄ…µ¬_©»fÓâB…GÖv'/ûP‰á7Q˜MÌ ;ž¥Öƒè¼ž›_ÿûfÁUц–9C†oIAé’ÅÁL‹YðûYZ¨…´‡}œ‡æ‰å20Y­ZK¨[´ Âð\õ`\•; Òó¬Ð°(Ó~2#÷ÔF0 ¹¿£³­ºÁÁj¿…Bì¸k¬Q™]Ô§Âi§Ö ù1îAKRP,µ»y"iF9|sæó]¼‡:Sƒqî „!ÂgdR,õùƒÃ²U' Äþí¶LY:ŠÁ>ŠôÎ2!>FE¡ÛbQn8Þ1§w*J^,ø®4ú½µ½{`® A0«àÊÛQg,öUqȯߥ{oÚë”ö„¯øˆJ6J0Ê*Ší¿òÕÝ @dy2¦I ©Ek;aÈx?‹bE¯op°ÊrYñû -¢…´‡}Û‹”¾ñ–†ÇM®ÒUˆr]H6qú¶feЏ<ÁOÎ%q¹äjas_æ ܬŸ4ôº;­8Œ±Ë~?K µ½ÉaÇæëÓ/ éáw¶'Cª ôUq<Ư?0ÎQ=ŠÛ•š)ŒŸ9nQÞN”ÊüoâP]0÷È®[„–äðg|£ýƒåÞ¨Ó´o™‡Ü"õ(±³(÷ÅÄΰØûyÐDV®À/b©eŸ-ζs† >¯“iö=£8œc—ì†7j¡¡79ìãØ¶¼°„?\mP­`øÉï7úáN üSÛIò° W»$ÒïõÚz :÷÷³µcë¤îåÞØ;亳K9vߵ߉»µ‡!ØnÿÌ5ùé2ƒòÐì¾~Â/Ü}ª\»êÈ-˜a.8.Œ¸ ÊÕh&‡Ó³É,À>Ü'S––â°#ÇvŸ§hé¯(.=,盳Qã>¸{²h”šv@/A÷ãÙ:Ÿ nlÕ»¹«,9·+ŽGžŸü¢ñpë¸é¬]„ÛÜÊÛU3ÑÙŸÈn/{SM§TDj&}·•üáé/a?/6O-ê±q 4R€¢Hmr°…#Ë~?K ¶Xz3QÏ>ŽìTú PDSHð@¶QhÔ_:`·Š,A§{nzÄnÂ/¢‚=kZŒ¾s,_Ñ ô†œÓâÐÎ]°¿í5S––â°c‹a©ù¶±yõ¨¹Þ Å®Üç÷Áêö  gÇͯ°ÏÀ+¢Zœeç >‹‚|ÁÁfæ,Øw!O¦$½Éa‡6Q%â)ÃÈÒà=yH”ÒÝÐzîõ0Jõ\÷5IøEH¢'P‹VwÂñ~‚r eUp°JGY±ÛОL -ƒÃ>ŽüBWßYÈÖmÕ«*íȨJ«¾âYnPcÓ«³ø§R5š½nÇ¢xðjæ2ÞO¢¸í+Ø’e»KµP‹Ð›öql×È!šWŸ G?TÄJm(ºq %¾9Ãya[æêãÉåÔ¢•ƒp‰â!¢Èp޲Ë8¢xˆ´P i)û8ô„ϯjyFþ ¦Ã¶Ì;¢ÐDñ+ ]iL_lÙÕ~á‘ïÁÙja9ËÔ=¸û‚” oÑè^ë.Ø O¦,ýÈáÏò~±#¿Ì¥€»Ë˹šÃLi$t·IGeç~ÒÈU|á¶X50«÷ê.ö´»y2î#šº3œøG¾8ÉçïÒŽÝwíó±§!&¸,—¦†ELÉ"Ðÿª2ý{W.Ed‡ïáÀe±’~·cwêNÞ["ÐõJ½é™%îáºâÕ€Ú©û¦}:±3Q·r{¡Ê¶—d¬(æ ÀÒ?~»[ŠÕ¾1¡Û2á—¯ç¹Zصgæ2x1ŠÒ(¸© ç±Ë~?K µ–äðg/rdúÆhðÊÆ.ü1 Ú¿Eè-ìÓžsõ€y›æ*‡¾bÔD¨C0ötîÞœ„ʺ•ê^ËÆÞ¡¬ëuý.åÔ}Ó>ÏMtËÒÛ[™ún´åAÞ›íî(çþ›¶iw½¿S‹þì„o=n»‹Ãùì2N=‡j!-Åa‡>×Fè™Óh½NîRõ›(…ƒ÷Å/wïý»³Šïú¢ÅàÁR/G.Rª] xp¨pª 5¹¤E´ –âðgy2n~ Y.¤¸?²l2 v¥VØ­8WZRi¯©GÆ/ã¾RÛÍf¡Ýò@ùçáÑ4`p»à÷³tP é(û(òqf´\¼¥Ó#Á\o‘N#(Õ/Šúå‡_?2\ôJØÿô~_-æ®03,ªú¸((R ޶‹8T?$”P‹ÐšöQp¸UlKÌzaµ î²F.,Êãq«Ç𘋡w`ŸzZ¦Ôy\Þ9.Œ\JCâ¶àPÏ]FUtDh¡ÒRöqì~¤Û}Î@˰ |V„cXËüxW(3÷xPÄÉ@™C%ÍÂë¡4jq;bÊx?‹rŸLoã>6Ä´{²TµÞâ°cû~Ê"–rË Â—›)5‚¿¥Ý^7¿C``ÓÁ¢óÀË=#”gc"x…5Éàè»à÷³t`‹¥5üE¶%ö1’ƒš'óøz–e—‰0jJ]ˆðzb–×?à WRŸÕÀ ¤î„]W]"´¹BÔ½>ÿª‹.É×ïÔNÝ7íóCeù ~¶RPNd B]à܈]r¿&¹?¼PhËØ^<Ùj|‹ƒ0dÐEÆ)¨t¼8LÙ› à÷³´P i)û8òcý³KnYîål”À˜Æ8zˆ¦;sßLO\o­(ÉŠ`ŸÕ‚ƒ2ሒe0ÆQc %cD”¤´ˆÔ28ìãÈDÖ!ºu´½ŠU˜dpQÄYQ6ma ?5cß.(&Ãæsž9,,ß Ø[íÛerèç.øý,-ÔBZ’ßqpÀnÃ5Ù-y®—çj•×ZAéGä1yd;l¸IøE±_¯Ô§Qò‹„!ÃïIH1{`û.åÚe¿Ÿ¥…ZHKqØÇ‘MŠÈ»0è¬fÆs\_ÓBL‚ÝtzB°kØ}Ð@[~®€É‚«¶ÕIýÁß ­ ŒéBÔ]%ôÈ?LС€P?õßôÏæn4·Ý¸6³d±(”Ûcóª­`¨ŸÛP/÷€™ˆØqÔ¢ÀÈ$!ãý$Êá—Ááì» `7Q ¶XzƒÃŸqäÛÙáF·Æ¤N#Y ,%(–XÉ w¬ Z¤E.OÆÜìOjÑÚÆ@ðˆÌˤXµoXóãÕNH"ˆÝû©dJèöQä0¦tbŠ#û»¹›Êü&Ê í ÞíE Ìjð‹¬Çf7‹µm !áý,Jƒ!-ÌEuÌ™0Q–ŽM–¼¾ËH;8þ)¸ÁÝ5ç“8éî/¯È,€ÍíHÍM*~Ì*_æ.©ÁÓ·þ„àÿ~‚0‡Ô=(–Ýíš#ñô“Pê§þ›þÛÃMååVY¢bŽšsa® z…>ôùe&¾~:Y&üÂßù¹S 3ófÂás+)g§_9Œ{—ü~–j!-ÅaG>÷išâg{{¹Øù¥œLƒ#Je…'ó†==,ãpsæi¬ïÀ¼ ¶+ähaê&”ÁWß)6»ð¢Û¯±ï²É ~?¡…Z„Þäðg2O]áÈWy®·HE¾+âå)ð¨²èZd)„K–o›„_DW·‘ZXpf |ë ”k œRÎ{—qê$!%Ô@:ŠÁ>м ÑJÇ ÙÀBb:Œþ& Ýo,>ãñ¸VÏåG˃×WZÓcd òôÅ!ðJk*ÊyáÔ&s7´É¶ƒ´P iIÆ¡“½bt–_›;7Û%!n:—îèk“^¤7.R˜v6»¡ˆcì„!í¤XlCû.dzË~?K µ–â°#律fCG„/ -Å !óÔVwW?•cöÁÞîŒÇå0Åsle ˳_„X¦`нZeHè¬f*ðwi8+56þËjóÀ÷XQvenôÏA™EAh¢Åqù’xx ¹öiøEX·Ý/F â µá J¤¼aYûkl2ˆßOh-¤¥8ìãÈ®þ„UWÌBä=r÷*ªø·4ÔÆR›æÀ¬0ü„ý,ÊZjqõCà¢0|QÎ/\q×.Ø­%S––â°C§!e‹Y;f7h~Š(öÂüf ¾E³à¬3ü;ñ²òwàå¡ÅÕß8.Ì㦨 üC°›K¨…ZHKqØÇ±™©0]EàŠhÚÅ3ˆR8ß48ôwú(ÚQ;aŸ||‘_-Ƴs† ïA }ÅÁR[gÄþœ™²´‡}y~þsÞmÜä;?†ÉŠÒ<¡[Oò€$ÌÝr••À¾6¶L™øÙFMè 0 s0ÙX"€}GF%ÔB:ŠÃ>Ší¢ˆ@îH«èèÆÅJ”³Á4çRŸ{˜ŠjÅñX¦³‘Z´kg ïgQ˜ï&8ô²Ëæ„~§ÒQ öQl¾_-¾æŽ=ÆœÏË©<|~¥%WÐPËgO³P È»ô–~GbÓèNöï'×Å ô¾Ž;àûYâÕ€Ú©û¦ýæ·é»•þBÖÀë;•'®tI©®tÆ/1°ÏÆãûÛˆü;-p{5°T ™Aà(‰¶(…7º`pŒ]¡¡ƒZ„Ö…ºc±,TH—YéfËAwãåÁ«¡E¹áp{’Ò¹;EÍu3˜&L¯ì_Ñ‚ 3‡…ã ÅRÒ}¥j—ˆ•Ì]J¨…”$ƒ}ù€ÀyOd98©Ö Š•ªpã6’AX1ž›K’'ñ~™j¡¤ãÙ9CÆûY”ùt.9ÎsxÈöœZ¨…´‡}ùˆp Ÿ¯å¶°+qφS•('ëXðîßr^øEíã¥F„ýeC¦dµ0ƒÌ!0dЧÁ)]99È¡=» àwùMD i)û86¿¼¬ 8˜ôïôØ’ßD‡½ÖNfU`M–SÁ,6ªçZ¿[Xò•º +˜eަ ñîGÛØ;LNsú=ÔEïMûl¡Ò¸hÑÌ'Ox¨b~t‚²½­z´·Ëlp}ýÎÌ Ñ]˜Û!A÷òUWó{J¬úiƒ¢ñ{hÖ3ˆtù,Ùr–ïª/ìBl¾ð«Êíyu¼¦èãØóð¸[RÂ>#™O4èÇØ†ŸH9Ý :XXq–ìRÍ”¥£ì£È[&ÞàÒ¼£z þ±cáF‰zÛœH2÷õ4è'JTãnà 蟭£°sæÖÊ öؽ~{{ñq>Ãju>úM*©ã¦s¶?Ñ=Jé~\ÏóbEà\ž×z~-Þ’Vë¦Â}0aŸ ,Õžiæ ïgQ¯êÅaÔ]°Â#S––â°#û½ ˜ex†µÛnN{º=‚ßE1—”Îxűgwó;þ„_d—7cW´hcç@LïgQæ!p”op° ú,ƒøý„ÑBz‹Ã>ŽÝÓíô,©L²oEV°že`5´}W¥«í­³E üÒy·¤½ï„»ÖÓ 4¬†Á¡»Œ¦õ4´P i)û8òf EÔÆÚ+ÕK‚R O‹8,¬Ò¤\T±›¼DñíÀÆA2¸åpÊÔ°äॣ’ až+ê•ZHKqØÇ¡ùÉËy zɹ|K|4•uðDhŒÉ7K‘œôö9—ykÒï÷±u'{z•ÁŒPfMaïãB¨$¹ú!âÕ€Ú©û¦}Þº•ðF¯áŠ»FxP.wö•ùî¨5z8¾3v \¬G‹³í„#|QÀà2"<´P‹Ð›öql¦c8–Ðsµ˜9» ÿ|‚Âü'fÆáfÞ„éAÓÏÔ¢‡Àñ~…IPÄaª½É¦M¢$½ÁáÏ8ò‡{úY½t ;‘®Åj, 8…‰Ò´öøÙbØl‚u£eÌSו<÷Î@"¼)…^ddp<»`ë ÔB:ŠÁ>Š|ŒeÂ2¹üÁè‡Wñ¢4~)fŒ÷xFZOÂ~±qùÎ6ZØ‹9S†_Š‚hBqpp’Aü~B‹hz“Ã> ØíÆÃ¢Fç!·1ÏÛÁñ’Ò: œYîÖ~È·Ð3~‘¼yRÙÇÐÅA2xñù0Ë)Ê‹’C)» `^/%ÊÒRöqäy¹#"\á‡Ïañp= «yˆmÅéXnIS®Ø]:S†)Ú¨ì„Ãõ<(¬èX2Âõ<´P i)û8ò¹@I:¸Qn~ôÈ[:)‹b.~oV™ž¹Á=éÐ…}|gŠßo„!ãý$Ê£ƒ8œ}—ì{rj¡¡79ìãiæ«ÿ|0@¤qg†Å Ü~Ät¯d%ñèŠ]¦ïò”°²k/ÂÁ3‚S°Õ]Îc—Lß¡DYZŠÃ>Žl^<‘Ý€?;ê›Ùµ"ßÛo¦ÜðX.*2¾Uó¿²Ï­F–9?Œ—ÔÂ.i2‡ÀÊ2Ûb=ßÅA†ÉöužZ¨…´‡}yÓÁÍ3j-i€W°#ı‰â—„ †ó 5¦zJ˜×ŒÏ•Z0ÝÀÝ?ER¬.Ïø®îíØû gÊÒOöäÙªù¦CÊëÆwÐaÝùz­Ä¸"¶‹«t‡ì0_Sã÷u+Ý”aWÒCq[¢Ø¥ÕH—Ôn !`ÈÑ!4P )H†Mª§×‚P­l«ß…KH¥vX$f°ó¦ç:DQ.?‘W`žzm[-îkç8Ê€‘rМ.Ç}n2ˆyê=ÎÔ‚Z‡}[v y9žp¿Šr;Å#Ð<·S÷¼Íƒy&ƒøEÊéDñuã¸(·ƒ(Hà ƹ‹~?K µ’d°"Ï˸˜o+—Ðãö˜þÓ”J•Ým‚="õ€¼r×#ø"Ð"x’ ÜÜßÏ"Ø ¯—l÷îs:}{Â÷#ññ»´U÷Mû<7Ñ‘“¶í¬¸¶ü¸0”‹b9‘ý¦ÕË’¸«¦9šïdÂn#C=hñxüw0 „·Ú`ù2íȪîƒ5%`(ÉX¨ RQöAd8šÒ!×4¸‰³šIPX`· ø\=x?ÍØŸ0¯ÉûZŒ{çXopPTWÎs—qê-ÔBZŠÃ>ØãP‡Ÿê­äRäÛPd ÿÍ”NuÇÉÍïÀV¡ôŒ_ägxJjQŸC`å*Šû¼9 oø’¹ÊC µ–â°#Ÿwß<ò¦Ö&wËQd©TPï}QPÞ»ÌÇvù-Þð£õh(ÿ übq¶½m´(÷ÆaáƒõÞƒ2£«~VøÀ~Ü¥lZ’ßqäwÜ÷fШˆ´?;½i‚r!9†Ý´¸ бދ\}£32Å·BáS'Æ Ì)ÖMâП]F׉1´P i)û8ò€•…†^ªËàõ7  n¨¨çìŸUŒ|_f6 ÌI”:èƒ+ÄÉ̶(ð$O˜d¿i-–Þô/ÜÇ‘?aÆ0ªx@y<3“ùæ3ƒ”( ibn¦Î;5Ûï%ü"#Çu¦öœ9CsN)ž9iq`˜gÈ(*>Z¨…´‡}iÝ-UÕmÙ@évÔN¥Ÿ¹èx¤Zî §Rôk~‘f%Q|þóGŽà  w"Y¶wɈ,ÁR‚ BG2ø3Šdϸø*ó†EðšàéŠòTøbŸ‚ÅþŽÊ ì¦T_0W‹§í„!Ã]ùH¹XL®c—Lƒ@¢,-ÅaG¾ƒc'³´0q••Ö§)÷ÉTH7œ÷Ý œ¿ˆè·Õ>Zœeç ï'QäKESéM0ï*%é­›‡ºËHŽ4ß„õænhWYoœbåF:œL­ÈH{pªT)Mb×Õ6£…ùßeÂÁ‡ÊÁ„äp¶]ðûYZ¨EèMû8òážoôܵ`ïû‹êÚ¸ áÁaŽêŽž(fÁ«ʳ¥çJÝ Ræ [ëWÝç«&þ‚œÈ[úÚ©û¦}š¢:¼uëi/Ü`z*,5(—_¨!ë„á›,½Zx“WEA«…Œ°â Þä‹Â VFße ¦†jz± l2Ö¢‹FU&ªªÂmþ°(¥q=Àí—¥Z¬ Ÿr24§˜2‰âñˆaÈx?Añ<ü£ºwÉS6ÄéŠ1ZPËà°#=àá~¬t»è¦RAUKƒÒJk^™¶Ç°¢§g5»}GAüÂh™(n..B× <Ö´l¹ ¦á²S„Þ}ޱ«-³#•«è¾#ûwþ^Ÿ½»°ó?‹PùýkÙø;|?K>—zê¾éŸT<‰ø¶áp€Âø¶ <ˆãTY˜'ÖÌ) Ódã[sµ°ºÑ™Cà¢7Q®þ]Ý-IlL{M¢,½û>‚m¨¨ +ëy"H®«Ré¢ žyÌíýÉ[Èá¶'fÙªTj‰â9£6U©4(­ñæ‹”ú@2Vri¡ÒRöqäWÔ+’åeçF¸åvõj˜öŽ z ÕÃC§…ÝøødŠdß((ç`’Er »Pȇ¢Ð‚-BKrø3~³nxdAp.B¶üûòò!w! ,ÎðøQÒwd›æó|}vÞë÷ùÉ¥ÞûûI”HŽî–—/±wèFŠÇïK[tßµ×éÇFùÀJuêþÚkú¸KNJqݹáž<ø"Ü"|_y(žpã Ÿ`PæCê,®pÓµh“쯵`‹Ð’þŒcÿnÏívIì8…¤DAi¨-j®†Õר=jžˆµöoêp·ËhA§Êà \U4(µEƒC)»Œ"›\h¡ÒRöqdGÎ;Ï{Ýý Ï&“²Cœ6jždÇrÈlÉöÝjzÿäßuÊ+ÀØo¹y¾óHRtë÷ÆÐm·”«®û&}óåCöN…ìuÏ®`Ùý/^„ˆòØÉг‚\, Y¼! ¿ÈUtõÕB…fÈ `d½[…p.¦ ºx5² Jz*¨…T$‡?ƒÐþáfèi¤(çÍ< ÚƒbŸƒ öR±ÞÇýuÊ]3¦.æŠ-žkç tq ²¼.íØe[i¡ÒRöqäýÒãNqJabZϦ<ªRªŠrÌ© Ï»ƒ\«äù–ÃÆkq žqP-X\18CÆûY”Þ‘UÚµËhúµá›p°*6Yñû -¢…´‡}ÉX|¶œÀc°‚¯9CÒí<((ða5Êü45çwø¾*Î[À>i™â‡ÓCà"·sQ,Þà\g¸r]› b?ÁB‹h!-ÅaG6ÃÀ§Da¦œÌ1±âùŠb~ÞL¸îeGê §+sBjù·O86eÂEÙt‚2ÿBUB^s É æ}ƒi-¤¥8ìãÐ í‰<®²Ú-øÕK³1¡! ý\n¢H.ãge¤1"|Âh T¢üP£;á_G×Ò§/ºÃë4ø/?WÊ×ïR—Ý7íóg[=íŽâkéLXès°(ÌèÌó–-ñÕƒ îŒ_„2{5µèmç¸ð!…n ÁÁ²~gÀéÜ-¤¥8ìãà€}¨Ø$7ÞJÛÒ+o™ë›”F«‡]½ú“bJH«VX¿ÈL”(ž]%s ¾ŸiƒÃT{“ì§@j¡¡79ìãØ\£Ü^Üm J¶NeOå6wÂ(î`fsÈ16©`÷¸ öŒ=3eêØ™¿ŸE°ýñ—}çr“;äô·K/vÝôÎÿ8¹F>èævÍäÑË,>Fà›/ºì™‹ÿÕ³Sß  m´0÷¤ÌA8üú‚2WÖR¾‹½öBFøõ…j!-ÅaÇf FÕØ®÷n/tqÁ@„Áò vµêÂn õzyGÙÖÏVk ÷ŽÂd"4z,¯R™{&“tþ.åÔ{Ó~Û,!d‚¹ÛYWÛ£¡à,ÃBÛâÅúƒ"^ûÝæû€ö÷V©¹õ—žû’ÿû ÂÍY€Ý=\kñ't§( ¨0ûïúg—Ô«—Ó—íCêr¿‰b+·G–¢XŒl)–BÁbë–[ž9²'Jm,P„Ã//((X zÝEtwC ¶%ÁàÏ(òô‹X®ªÜ:~šwg)VA ÊÃ*ˆÎu“#êº B˜÷‰R=›]â°p‰*ˆ¤\Ìž"–¦$ËöwžZ¨…´$‡?ãȇõõv{”\ðbÀ­ÉaD”^xˆ8ô£_,(† ”˜Wo‰â6Âá=H{ÇâPî]F¹Ã)…Z¨…´‡}ùv²ÄIÄÁ]Oÿ›('.³ç!j÷òkd3ø%LCb{R óbÏ„!Ã퉤tÏN¿8Lµ7À´*&ÊÒRöqèÐÝÉÍFºìmˆb.åf±› 0z½\¾5@erùÍ”ð‹«‘D©eÎ[wapc›(Ço-œ¢ÛC‚¢ß!Ÿ?†¶èº+Ÿ_ãᮺ„½ž`Ž7QxenÓÝãøA~5^­û|Œëµ–I0q Þƒ”^KÁáü-"‡x‹(c½EÒ"ZPËà°ƒnp÷üüÌJbõvò <^ÙÖ³å»lqµYþÇü­0QüýÌ C¿§Øæ¾ƒƒ{w&Äþ7u%¢tƒ}y›Ñköõê>»8>ý&Ê5èUİ:æƒ4gЄ_l3ÝsX-®²s^‡6QX)>8ŒŠC›d¿Ÿ¥…ZHKqØÇ‘od;«ñrÀîSfþ  vWsÁòçFWK¢¿ oËOþÉÏØ ª^„Æècõ«×ÆÞc#7p­Ô9i¬ý“ŸvàD^"^ …j´Zì~†Šcqw4Nd,>bÿd)eÅ£±6µ w?Á»£û§ÐB-¤¥8ìãÈ·YºÝQ†BOHuŒƒyrƒp£”ä¢A‡+.¸´€/Ò¶ô»%#HÝU‘M„î§ëèÝÆÆ½©[ˆWj§î›öùme¨“—ëäe_å61(×:7Ì–6Cžwº±¼ZWŠlaÑW™C`Èx?‹‚ü>‹7š!#¶¢¡…ZHKqØÇ‘k,&A‘á‰ãý6«MPÖm8‘bXÉËÕ2v]èO¦÷½s† ïAÊuC[rè¬ô-Äï'´ˆÒRöqäcÝb”Ø \þ…xVªßD¹xü§Iì¸ÝOl~AùO€ß”ÇE-”AE„!ãM9VN/qžr¬ô]0¯ à*Á¡79ìãІѾØã®4’ã®ãô7Åêf=,¥(ã\öèL¯5· ¨»ü"N!Q¦rcç ®>)ærƒƒåÈ2ˆýêZD i)û8ò>|WqÍÌÃW&³§wØE±ðóŠ™ùpo¢êUoÃΉýy]™2çݾs† Ÿ™EA pp°tÆY0gf×B-BorØÇ‘Ÿpñ}Å©Xé ÄíÄËqP¸x[fT{`Þ‚Ø÷C~¢‹ft)uq ´ê8¥ÁÁ<8´c—ÑZ¨…´$‡?ãØ.<­[£¥Æ xž ßÊ|\JsÊÿåuþ·¤o;ñ‹;„Dq#þÆ!pa4VP?ìó¸È2ˆßOh-¤¥8ìãÐùá¡!âX{Úçñ&¿™òðòôäÕ¨—„ö똄yåƒëU¶h÷Î!°Ëð¤tjYÚµËæ•O¢,-ÅaǶ¹ª¹ÄD¹°)éîû›(™O†2øŒ‹y¡JÆœ³¼. Zh£#Âñ¦ \ëx<âPï]0ç¬DYZŠÃ>ŽüF—¢â§0Ö°r·•5©0Öˆ‚z–VÆ+s¯°êõÀ~qjrgsµ° ™C`—Á#ÍÅì­~‡:vÀn¬93ei)û8òî¨2X• ¹¹‘¸xM™ßE@ñBKBR¹?÷›}C@3$Ž3<Ö5õ&ó÷UöDçúÀ …Ì ­9¥Gê¦î›î›éÂoXÏé`ÉáfýßD¡o`=×áh••Ž+°éÁ¨õhq=;aÈð Ôgøó«˜eûZD jöqp´^Øu#G“oóízôf:~RîA{ XšÏŽßopÅ ~WvñhaC`Èx?‹r>HÚ"'R#H„Cß›S‡“‰έûŸAp´5E0ñœ ê“ "ùM”³b—o>9Žaƒ1Wí„ßOÔ¼Œcì„Sè )ýdü!9´g—Ñd¥ -ÔBZŠÃ>Žü2£¢ÓYâ{휹‘ mQàšh ÖÏ5QíZéyû«62Å¿ÊC`Ùu‚Ò ‰C;wMvÐB-¤¥8ìãÈÇÝÃÍ'«KXž/óÕoí1DÈÝcgmßž;ˆ¥Ã€_ø'JwÝ9C†_ÄŠr`K–eû®„Z¨EèMû8ò©îj¤k¯¸'=üü7QŠNì¿¶L}~¦îðe"æûiVÂhq–ƒ0d¼QúóxALqð(Í$CØßè„ÔZ.û8ò¶™¹Gé½i…d¬Yxß·(œçdR˜>‘C'sŒžrŸŽt¥ŠN:vKäá e¾çó]ƵË~?K µ–â°COØmÊHžË£o¹|4gÁ ,iƉûŠò ›Ü1pQ¾ˆÏ/}50£Jê/þï'µ7¢ûÜbgþ€~?BÔ€ú©ÿ¦Þ[À¤¡¸¼b—7lŒŽe>&z8›õÞŽ(–p!ù ñ ·ôûI-ž²1„„÷“((ð ,Iü~–jZ“Ã>Šäþ¦ìôôº(þW9ºç­ù]„9ù»Jqï$ÛŸ,þºà‹ü©æÞ zÙº‚½ï’™s0ö”Ý™Büý6ÿI„ÐNÝ7íóìtã^ ß.tòJSëmP`²@г!·‹û:Ýž%L÷‰ñ¬—9,¬èÌ ØÆ˜1ãÎỌ3¢3¥…ZHKqØÇ‘×VÏ8enEU(–;þM<®•þsÝ åºsýñ‹-‰¥ÂôÙ Âñ~‚b Q¥ì¦,Ë ö Ø‘)¡epØÇ¡éx,Ÿ\å0´ ö~ÁrYb¦ßD¹=USµ¢Læíl.žˆù)û=ÐãF1µ°L¾™C`Èp+)¬ìpŸe»£eÊÒRöqä-$ JŒ® ®ê[¯ï…øQžÎØ%’Ââ:'Š(¿pôµZ°h²8† 'H¹X¹›ÌÒ•eÓœí$lZ’ßqdÛ:.°ÃáoÀ¡ÛüȆvTN¼¶¬ôàa•,ÍSuiÙ¶»~»ëÞQØ9s儆Ěѻ*™ ™×•îåÉ”¥›8lÊo^¦•mjÀ[© Êóo¦0qêéîMežÝ}ÐÝ%JK{è‘ZÜçÎ °JKåªtb$« ˜e¿ŸPB ¤£ì£È›(~µrGÀ2WQqé7QîË3pÝÅ­ºvÛ¼ú“±³¨­ãh™A@HðOV”âUž‚Á9vÀþÉ–LIZ“Ã>ŠÿŸ3.3á›Kè8ñÉ’b÷ÅÌl~V×å8qדð˼Á©Ay6!âý$Ê"gd0Ÿà&øý,Øbi}pvì"ֻܬƒwC|üî”(¶»ex ž{ºÏ ‹’ û6ïhÁ²Ñ]ÞO¢¶\FÛe[WA?‡Æì¾ Ûß¿Š„3ÌpX‘ÜnŠ¢ûD+ZwÁ”‡ûÊžñ‹{|Ï—¤ýÙ9C ÈÉ›sp(m—Ì=Q––â°C‹Ok°Pë©ç6o ´^,†W$~’óHd?e.È«kDòáwƪ· âžƒ` UÇwug²áàéˆCµ~â° €-•Þ¹ÉPceÊÌ~e×ÉUI:@¹Ý†iµ”ÜÂÕañ²RK û±¶!9´ZœÇÎ!ðA;iPjų»¶Î2€}çueÊÒRöql§¼†"Ô<å¡|½mCP¨J c(¸)5oYÛÙX¥(K¨pôop$‚ß4çî„`Ï›h#œ^ä&zÏÝQæø~–x5 vê¾iŸÏtÖ•7Â|¡FÅMRø¥T²¼ JÍ ¿\©æ§”ð ÷^/VÃx”8nºÐ JõLÞ‹C­» `:°$ÊÒRöqä¥çÎÅD,ôí±>½ò‚ (ã€éýp?ʉO˜æË‘±ßθ/æjQûÎA2hÞpJc-cq°é%ËvcEÍ”¥%9üGö­¿Óp;’.œ‘hF9<ã‹íÀ¬ê R.Xþù€/"•zn൱ÔÙ¿B„×E?år c@ÿk´Ÿü;25 oÒ7?C¤ŠÕ-O£Ó£eèT…xRPsÝ@ØðÉ$ƒŽ•Ä/lT‰âÖ¡Ì!0dÐ~Š›F™D%øý,-Ô"ô>X(þÙeØ€‡» $‹¥ï¦]Ù[ Å1äý%Š]âûù—þ¶~áDZ2¦¹ÏÃyÕ 2áCU"HñÆ~Â’ a_U[¦HËÅaÇfRDét¥ÀRúÂ8Ãåö‹—j»Ü„‡ãDHg3¬yüWj¬Á!pœaƒ5mÉ'ÔgØÐ‚-BKÕÕÝÇ¡mÄò<à¶ýËg¯‡™ƒ‚b1ÇÎÏGpOi?_ט~‰âÕy2‡Àá%QŠÛøƒCpÍ” à÷³´P‹Ð»D-‡MÆÚwÿŽ#âǼոðÃy“„~r'  fỼî"¡¯G"Dº+ 'rô‰€ÒòêÍÒòâø¦ø#5ºì¾iÏQº·õáaµš|MŠç»è1”‚t<éxÎJgØÇ 1 ó–(È!—8†Œ÷«–ç>Eä`¥Þ– â÷ZD j)Æ‘7Ã0@)Âɱ{QT¾–^3•y?‰mÊ©=S¢ k0¬JfA©¨ÏʵË(ªd&%Ô@:ŠÁ>Šüt™ÆM©b¯o}ãÛ,B/ÈNe—Ë_OI×iã]ðM6ˆ?º ‚}ÒÛBç[ÒÓBç@ÿÆG"„vì¾kÏ¥ö[¹?ÔK'Øâ'Cû;?,/Ê Nõfv>nÛ™ñ‹8‰RS‹qÀ…_*õ.ŠmoY­¬ðœ³É~?K µ–â°#?Öï¥cí¹lã PºìÅN)žÄgu‡^GÊÒúÂtzS½Iÿ¢Žsc"h.vÓɃŠãâ0è±-Ätz©uƒ?£Èûa&<Çd$­±*Ô¼Ô¥òÂèò4ÆÃò&<¼^sË{U12»€K”(Ö.!ÃoðH9lÁ =×&‚˜WxþB¨…”$ƒ}ù‹”$òxkfˆÔƒe9+\Â&¹ÜUUƒ1m`†$‘‚ù3Œµ› ~?Ó °“RÐWQŽ>ª®u¶ saÎm×*%;ËÚãz“4B€+÷%ž•9â¼»cÚÀ ID š¢³`µA¬Ãp‘L/­¡¯£ž vPP‘*K¤l\Œ*Jò " ‘y2y¡ß,"÷ãÕp©ÿƒFˆG/5ÓÆ;ɃÊk ¶H Ë5š aÜ8¬U2½´†¾m§ÈeÜ ?Ñ÷HÝÔH‰%É÷ϸhämÜÀ7骮UA‚Û”Xq´•÷Éà†5Û6 ’ÜI³¨éDņñû±s„ý¶†¾Ž'W[7ïó8X¯ú[$q8F3Š´xzLD"H¼ü–|{\ÌÇÙÓ„Ž4œ·š‡QÁ9ºb$«È°VÐWÑŽ|¬öòr¤£|¿Œ—Ég,Éf“htr¬CW¢RTŒ_’ýÅEޏ¯®Á˜6ÞOJ–ï •7»Ô€¦SņðûI/r„¼L }5Rsu?õý—ÞÀ±*fJð@®å-BOdÇ\äùÖnç^ˈïw¬iHlæñ”|ÿl|qIÃ8» â÷3½ð{i }=î3çü™¯d4 ÚEÎ"ITêlŒž ™çfSWÐ;ŠXï–"‘Ý4Ók’·.!¤áX» b$ É °—ÖÐ×á'V|—n$Ýâu¿I㹘}3%+¹3eg¢m B [ňI°Wvޏ®®Áx1‰%®õ³4r)6„ñ›?ª$½L }5†1ø¶/êw‡Êß´ä&›üªîa×®žgkÅ/{2={ñ}ë7 ‰gcZBrЩa?º=›»Ù °—ÖÐ×Q¼®¥oß–ø]¬êÿ"ø¨±ËÕϸkFs{} _q÷–Ï‘4äÉ«»¾®ìjìyËÙôêŸã¨à•'ëQà`Zêêúÿ…õ÷¢Æ€ÙGäE)#çM‚‹5!6ér¾sÀó´ù†‹G$ˆÃÙõ3§G.Ì5õ¾Ÿé€È?Ïoþk?n)wj•ïÂFŒÉî¿Er^LßÈý☺®­ñËcC‘`ãÞ4'𔬼ɱrùNÉœ^xDú- }õ »’3Vw!Q-vèü¦|¾”Ü @Œ ·E5…ȤۯŠñUd«Ž¡~É©!ñ¢»”|ßÉÈ´†x'Wĺ.,’é¥5ôuÔŸçá&(|òAPÝzÃJ²êxà*+B]Œ°É0Þ—üÇÏꑌi3( â$Æ(L]º5ÂxÃÊ·Òy™ú:êïö&m¡¯¤0?`ëy¨?†$7Yâ€z+%÷†cU‹bwŽE2âÔÕ4Ó¾Ÿ–°…tjˆÊ¦­Ø ~?Ó H¿¥¡¯£†Xý r—m–‘Âæw .R3EJyÈV>‡¢çqÂWõvk f2Ϥþw2¯Ü_åôc4ý„øòËžßü¯¿ÜÿÍÜŠCÍD£ÚûöA’Máóà¾í» CÐöâYHXy²”iD4¨ŒiC›-H|Ñk ëè6ˆu’‡a/­¡¯£~“ÛÙvgŒgyn®I}/œÉê¿FÖÕÊÔ| ˆq¶]ªylMƒ°l(Ó’EtTÔ‡¥jC˜™nð"G¤ßÒÐ×1_Dj¢NâÁ®G¤±º·iJƦC¿W*Ó>ƒœ# ¹ƒ{ HÀUЯnnš>T¦†ïQ¸Ù V¨î*ì£ôU´×êÖD.œƒëL¨ø-’›t÷ñlEÐï&Ý}Ü/¡nX¯Ä"qÒ4g’FJØ·qj`ÂÄ´‘Ié…GØKkè먑ä v.ûpÝ„òûß" Ó¢9ÝJg‘-p“ÃLøe“¶Õˆ¨¬ª Œi3$YHVa Q@[m+Dy”öÑ ú*|Ì»&ô$Ó53vvÝy¥ä¼ÞÓ.ñVïKÅ/™®Ÿ2à8ºcšx?Sr˜Øš ‚µ¡Z ~?Ó°Çä½n&ÊßZzùDíÅÁêP¶@±àZØ_u°£ut ím  dKìüøû¸¨³O‡Ò,ø>u. ×tU“S;®õdÜË7Ïn¾×o¯¬u¿^¤ <È™ÿ[$êŒÖåQy«úà~ãÎj©’Œª!ñdê·äë-›çH‰ó§dêO/<Â^JßuÔ°ª¨­Et0˜y¾„o¬‰HÉÍtxgDÝHí ‘ÊÄx¶2ÿ=G[×xQÌ<%Q^û3Duq5AŒþZ%ÓI)諨W7³³Eà`õSnÍ}Æò(Ô€uìPû¥g¢îÄJqAhÈ+i0†‰·Ô‰àœ˜ ظ&-¾Ÿé‚>O—5½-¡ÆŸV<ž|Þ‹Ã胳züV S]AVÛv+À#Ú³CB¤> ^MCâì`I¤Ñ"Lö³Û Vv¼ÐˆôRþ¬£þtR³dÖK—‘ᣬ!IÆÆ Ø[,BÛBøçâQ“×ëG•|ßòkÓxõoJb_pÿL ËÚm,yÉk/<Â^JßuÔ/óÀ8¯€.f2Dê. ô,ÆRdÑ)«ìÀ¯dˆz€ðeuáàR§'†þ÷3ƒ=õrþØš~À÷3íës»§éÝÿ9¾ðEvÛ—Èùý¾‚[6®$ê‘6p÷[r·ŠñŽÅ tÉȽšÃ’–+I” `‚dj®L”ÜÜ£J¦ÖÐWQ7JŸw‰Ï@háØGéB)9‘F6Ö¸*õ£Àk\×MŒ:³BrÄqu Æ´–ð¸”"§Ú ŽöÂ#Òoièëh¼Èè£Fc`­ƒŠ³h,XÙµ&êßÖ“Ä´xÓÅN>!\_±3ÍQG\æ f æ<ôtsJÿ’ 4v пœßü¯z* wµåù#ÒÙ«É’H4Œ«ÂŒóˆuƒí÷ëgÁ/9èê1~z¾  ¼Ÿ)¹/ö6ãü¨F«„c‚\ÈöÙ úê]€u‚:“Cm˜=“’Cç© ‰{G8'ë÷§XðË.h{àQÐ[5ïŽ,¥äûÃÓÛ¢‡DµAü~¦a/­¡¯£<£DÖ‘5ð’ÑÂÊÙ3¨×À?»lñ&sÂ7kÚýñ~·É†P®´Ü@K³×»)ÄIö(‚éšg7ßëîòS¶¡Ù¥5%‘ß1ssÜ‚ÕÙ;³I«ó{<Âù?R0{´Zr‘£ ¦5³MkISÚ’d }uÿôðµÃ_kôæìUÅ|Ϥ'~ “ ƒ€7{ëâ)sÁ÷§·õ鯫v‰S€ÆK9}9šúE›Ä4¯ÏÓ]ÎnÞ×;w>zUt¸*y2"x|’'_¸sV²dì¼6НYd™’‹tbfX‹òííâI¤`vÀ5êÇÞ5Ÿ.²LÉ÷Ex«'4[·q¸È2½ð{i }å©´!cº•“dxÑÇì½$+èÓñ‚8Aˆrã¾,ª­'ñK¢Ô"AfÓ`Lï'%(´:RÃöýWÂzM…9B^¦†¾ýy±izzò•{4²B†LP؈L’ ¹ñ‡93›+‘¯Š_2á"gfs±óhÓF̰$RòTͬ›µÛ Æ?êS%ÓKiø³Ž–‚ÌT¿vx×pä ø-õÎŒOÆEŽO°ðöÂ_è7p9âXºãÂT` úåM ëÞmã¡,/<"ý–†¾ŽúPÖ{vÒ2²o󪤨)Á‘ó¤dõq>uB—j‘€t±iH¼ê„š’ï¿Ð%ÖLhØ®nƒøýL/<Â^ZC_GÝ4²,Ülè^®Â/ž}R²¢Ð9ÚªN;‘Aac}=‹‘°¢ !-¼KP|¶ª«òþÌÓL”㕜Èò15üY…–{’Óáð âö{ä”ÄŽ3‚%;iŠÕ®38Pp%AŒh ®戸æ( i$Q»N)@—bÂ8fЉ9Â>ZC_E}ý2c&öUÌcè#6ôγ„Œ|Aƒ;Øxâ³—sG…±ƒÝÔLõHæ¦!ñRØ=vå·€Iöçl6„ßOz‘#ì¥5ôuèï»óX  GlT#ý ´âÍ•$‚ÚÚúF‘x.¦ìmkâ—Ä!E‚žØMƒñž,¸–¨6(5l£ÛØ\4^x„½´†¾-¬XºØS¹Þ*¶¿åZÕ‘lJD1&¾ÀåFC\¢á·Bü2ѵHp1×4$^Mcf ÉRÁqvÄÚM °“RÐWáð5WÊÀŽn•¤£fx³D)òÁîC‚Ú‹ në^ñËî*8n{ĸ»cÚx?S²FµÄT°ÜÝÄb¹tB#ÒI*ø³Šút¾I£¤ßo´h¸#µlø“’Ô¬#ZE ÕµÆiŽ-±²!XÇ­ÑÔ{+Œi7W’DÔ|ý™ö¥Û FÚŽ¼ð{i }~>#z¿ï.fóM ÔTý¸%_ì„Ù#¸3¼7nõFÞK§CðÜe¶Á’w’)QÙ7gGâHU/Œ:#Ò_)èþ—T)’!ïnpÊJdù(÷Ú©ãÊ,Î(RïÛ^1"ˆ,\ÊÊ*L Æ´¡‹@Jòa[ÃØ»á«ˆôÂ#ÒoièëhÕ?l%â[ å`Ï/_‹¤àâq5XòÃie,«¡6xS€cy›nì;‘)PbMç•Gª÷•Hš×çé.g7ïëU—2r³ÓozßLÏÝ€6û÷ÆwýÍ‹çÁ²mãxt<ú)iŠRІÄW^M[øâñd ÇÝm¾šN/<Â^ZC_Gý³ê{ì„M_¾°³Ùo‘ì'Sóº†oò œ(XÙiÈzñˆýìŒg?µ” ¡dj[·Aü~¦‘~KC_G=š¹P­5ØE4.Ùq.%Q97”ö¡dö‹'t¿{’\Òýð<âxºã+é%S²h3$ ß¿V³Aìì•2 ½–‚¾ŠºÚD4—ˆvP°‡ŠGlv‡#_èPsœº ÕÃÁˆ>Šbü2KJ1V8¸HæÌí˜Ju§+s¤P{ê¤êgáêèG»ÁGØczjJâû´ëXÔØßà§;‰ßIÙ”#"“°j0¦÷S$‹¿Ò0¶nc86½ðˆô[ú:ê»”´©néæ ˜²ñ$¥d»ØaEÜáÁMzß`hÖ¿y‘ @Ó`LxP[²êd* ëÞm¿Ÿé…FL¿©áÏ:j½Ù&Yq/êh²šm2%âqŒœK‘­“çQýGˆ_2î×1–§i˜x5‹%ç–ì Ð †^i#;~¥a/¥áÏ:êEûUY±¶€ìv¹àyˆmwÍeЬ$›ðe±Ú±ÍÏãê¢N7>ÔIP­Ér6È"§vÓS¦u}nç<½ø^·¿¢ûÊD>!|OšGÜôýÉ3Èý=²<»ØëNPX?§"A€¿i0¦ Ý!@â.öÖp-Ýñû™^x„½´†¾Žz«¥,(wA9ÙBThØþNÉÃr q*ƒ^ ÏŠ_–ãÇÛ0G tÄ > öîMCâUù!)ùþØØQÎ³Û .q‘a/­¡¯£îõ-æùGœ€¬œás9%ââËèd{ùwØÍÆÁ÷2`?º‚Ä‹éþ,‰ÎÑ÷O*ØŽnÛ¨Q%ÓG+諨¿Y’D™–ñûÛ^wâ®Z-%q_²ÜÌæ?EütbõGÅ/ä¸òñˆ Rƒ°l踊üiÝ~RC$WÂï'½Èé·4ôuÔÓÞ†Ÿì¡?ïz.¬<»wQΤäʘÃÅ¢Ìïþ}gMñKêñ"ÁÑ­M7¦!!?ÌÔp-ÝÆeê-ºàퟧ÷ü×Ívß>‹ªŸN)P2qX@EUP “(¥á€/)™§{ƒ6ÝúßO ÐUã'§«©†ÕâæŽæý¹¼óìæ}ý¼e'4>§XoçXKôÈÍX6Ç®ÊÝXWÒÄ®™Ý±>U‚²¦AøÈnS{ãTÙÆÕ„°Ã˜ë1݆‚?«¨¹â(t©eúãütéqœ’Ø«âÉ6Q<ƒ’Žó®øe$Ø<â]ƒ1mà› ‰©V­!’%ª b¼•—*™^ZC_‡ÏyÌÁj™¥ÃA÷ ´Ü6¦ä\2“ Gä“ÑÛÇ#>u:¾9YñtÈ;Rƒ1m¼Ÿ)Ùw’ÐXÆ ë´Aü~¦a/­¡¯£Ü‰Ü,‡Ïƒ=vvè¼w°‡«%q^DwÔ5öi¸ 97ÛÐãÿª24 Æ´ñ~¦dG/שaߺ blÔä…GØKkèëÐz×<x—¼Gv´nø’’ëTxô"A:ºÄÝoÁ/cÐì¥ëÓ4$Ξ/Sþ›©A‡ÿ´‘=_Ò ˜~Sßu´:.¦ý…Fl÷apñ—[²áEðÅ7Éaö•÷s “y„µà"A¸»jHœ4¬)YEoŽédD’ƒ5]Јtq}~þ®À¿]fá~Ï!¸½K@D«f>–<ì+- A§°¨™N‚ŒÄ/ëd‹©=UCbÚx?E¢¸‹4â[²#™ìEŽH¿©áÏ:þëzäÎ¤Šƒ7çæ¤ 0,úb2$.ák7–J©ˆ{ŒüxÛÛlBi×é07¢Šåä&«UhPFEÏå¬g7ßë¡G‚<Ô>PrfEˆ$·¾{,»ŽS~5Ù]IX^ïu„B&©ÀøÊ/¯%ðÓÓÏÑ œ#ôÀì fwÿµLdÆ‹QÇ` ízÔ Ñ‘ÄÄ bhÏ|?L—±£Ÿ¾Ë:]êßÏà’nN?¦Ÿðý¤}nw5½y_{e0UQg» $»Ç£ïkJ¾¿®C}—JÝVÔ!"ű]Û<âX»ãÛí¡§dÅ^Þ–ëh6„ßOz‘#Òoièë¨$Ò·9é MDð"\¢®ï·JnT™{ ¨@XÄ>%kâ—|Í÷9G ÓIQ0ñb6nKŽÁöÖ°ŸÝñûI'<À>JÁŸU´9bŒÞ,F'”ä@ÿp§Ác[,>(]&~ÙU l]qž]ƒñîðqJD˜•¶µÛØAN/<Â^ZC_¼_n¹Å¿5Ó½>@o4Où-’ïïÄ ZÞQ‚Ú…›%­Âˆò*AòVÓ`LJƒäºIî/ qPm¿Ÿô"GØKkèëðSjÌì[…ÜâY¾«ñ4Ó½R²î Hß;3Sp˾'~É]Q$x_V ‰iCïä]í¯×ëÇÐ>¦Ø0V²Ë4‚^¦†?ë¨QäK…µ¢_ÙÀÐäŸÛo‘\'€ß/ Rõ£¢†Ý—*~ÉðÆ?8—®Á˜6pÅaÉE‹©àØù °‰ÃÇé„G¤ÛTÐWQ_¶Ê qµž¶.çpa¸%‘à~óFÑ1ò]ŽØª¿L¹)’/>»cÚÀ IƯRƒšQ¤lW‘^x„½´†¾Žv¼ÕCטßW·¦|ïNÉ#îµGíí7Så+ºT$àl¯zù¦D{ûÔ°_Ýñû™^x„½´†¾Ž^½k#í(¼Ùóe9HJždÙØ,lŒ=HëcŒGçR%(DiÓiàýLIäb†é‰FµaÌ`GùØþyz_A=È‹ºOÛ°»ÞüΫ1—%Ûˆ‰Iü«JmÉ4nŒWËÛ´9â:»cÚГ–õSCĪ â÷3½ðˆô[ú:ÚŸ'y]PÇ—†9û»2‡R€‰0ö³`²ÚòˆsíŒwï;S²éËo ãé6†wžé…GØËmþÀš äMÞ7ã{ÙDZð\UŠ9%h-ž*/do#ÝçNb<š—*•xÓxÕeNJØýajø>“› b<›å…GØKkèëÐn}`Qv{”ØØÅÅØ`Ÿõß"a§õïñüÀÖ'ÞãÁ,YÏ¿|{­w[ªÁ˜6t ɹ³¥ˆ5W·AŒ‹ £J¦—ÖÐ×á—ïZn4uº¬QþþÕ H²#}i¿¨RÞPpEÑcÁ/«¯‘§ä®{¶cÚxKeô¸Ð125Y_µAü~¦a/­¡¯£v’R:Ÿó>ØÚlÛu\HÉ÷[uÜéÄeÈþˆæ —kÆØ*±¬,G¬{S˜&¾`?µó¢R0–n‚øý¤ÃdeGÿg m«ñTΨæWôò¨PÞ‚•]5W^9CbáÈl·âÒj~¾mº Õãà(b/žŽkS»àûIó9Àîjzóþ”«n¹FÀo•0‰". Á;6íÖŠu¡î2xŽ®!ñª|)YØ‚O¾oé³Ú0~?öbް—ÖÐ×QŸÊ;BRy$ZÔ-k)Õo‘ ¶‰‹Ý|<‚02.˜‚Þ2(Â/{UÉ?]ƒ1m`†$‹¾öÖ°ŒnƒXg xáör™?­f#÷ñ€R‘Ÿ Á§Eúƒ”<èË—O“çúêù<¿“í!G|÷°Mƒñí»Ž”ÄEÞú35œw·qÞy½-/<Â^ZC_G=ífÖåÿEDå82Ó.,J‰÷7Øo×åß„ï¤rôçè„çÉn‹'Ö[Bm€4/n´Š^Â÷3 k€œääêq}ð.G-s‰ùŠÄ˜ÃÕx–Ü.Œ`‡»¸?CQÂ}ñKš€« ˆ‚¹2_0yï,ÈÔÎ>×®>YïÒÓ5rP þ,¡¾T„SfÕO%j2XXòÝ+bîØ±¬ ˜ŒësÄqw Æ´–_55|÷Í1ïg•¿¥¡¯ÃÛ&åÒR¬“7Q³ºè ,‰È²#iŸ¤¢ŒfFpmȉuB%¯¨F<£k0¦ ½$Ù`ýARBjˆÒ‚jƒøýL/<Â^ZC_GÛ5a1óÀH³$M̱Hɾ*P?´MºXÀ¿-Ú$]é¿«EJMƒ1m¼Ÿ)$úN & ° â÷3½ð{i }åFO{'§‘Ä5¢bÊ«+ÛÅ|$HÉü®oeÖÇâ öT3øfò— +yúPãxhÀqj/ŸÙMMm^×G“®ïÜb ŠsPhq+Ę’qªÝ"¾ ÇØ@Ù´ËføòQ6xÔé‰i@Jõ7–‚…įiøýL<"–†¾ˆºZÑëhË¿êâ?¶6¦×‘d M3¶2¬?Û’úuDÄ/éu"â‘B$iHLx3Y²²ÄÀÄÔœ6ˆµ%ƒ‘~¯"jëh|Bø_ ¯êåÔЏ¥„ Iד¡Å$ˆÊ…X&Mâ÷ó\eijt ‰Ýô'%jHšÖ³ÛXÏŒ¸ÝU2½´†¾ŽzÏõWÝA6™##È–œŠ ìË6‹U#ÃÌ—#Èñ²xî2âX»ãÃä”ìŠÿZþv{Fí…GØKkèë(O§‡YC»¹6Oæi,C˜)YÖÙmƒ%+Ëc#¥E« ç’šÍ#Ž£k0¦÷“’kúrßÍ€0Þµt!GÈENï+(/Zu×í»7™A’©ÌKÆÉ¼— MâÀy¼˜³â²µÍçÒ5¯¸M‰@IòuË–Ù9w•¿¥¡¯£üeO`óò}°Š3¢Ík-‰RéâêO ú£®?"â—~G¿üøØ]Á‚›Ëð9v·}™a8²oLË󀈪–ù‚ÙªÔ‚S~{úq7ý‡;,¤ ÿ<¿ùßþ¬{¥ÊEéfü‹~ßáƒ* 6ßFû§÷û`5ÞNÄòˆðÈÙ‘|éo„=Wª‘;!¼*ÇYs¿Š¢èýLËú8ÕìæxyÓ*•^Yô¢ÿ>³nÕ"¦ädSø1^qÁÊW”cü²Ýr–×Ù5ÓfX‚íÃÔ°ïݱ.¾‹¤ø- }õX@fÆ]…ñ=BëœïË,X)9p6Û@ ŸŠAdü¿<5 M5Æ4ñ~¦$~¯*Dd «Û ~g¯,°VÐW¡?/öPºÙòEÏAÒû±»&>%ñ2xx/O¸q²â}'A—ñËb·"Á­i0Þ]?%+ªæSöw›kâÓ H¿¥¡¯£ÏÁE]ôðÀ‰ wŽ–èÛœ!±Ë‘ïΠ‚_²ŽÄŽ>G—[Õ`Lï§H¥3JþwÄ8ßURü–†¾Žš(¥$óì"Ε½‡~‹d#ÃbT ˆEaÄþ„áÉ^%H3¬ g㔬˜_¤Ý‡¦lxd'<À>JÁŸUÔ‹ñl¾§åÇ`êß"¹ñ¸wQpªTìû¨½ŸÄx‘U‚–Mƒ1m¼Ÿ"Yùû¶†ï¯¶Ù ÆËG^xDú- }-dó§„àFà*þ¥n•°I¯úsÆÛcg¶!b¿Uü’´Ø]MoÞ×SírݵâgW¥Ìã¦á–œË¢Ö;I.ïžY#Œò­J¾øé„e3$!]¥ —x1!ü~Ò‰a·¥ ¯¢~‹uaàÈA"¨½«G•%x@|1ûYGQ!úÿ‰gDøežM·‘UÁÄ«ÂÃ)ѬD™aµ ŒoýY%ÓG)ø³ ?‹ïY x»Ùƒì©ó@•èo•ܤ·];D›É¨®ÜT$ü¢º¹|¬t¬œžØ=rRûøÍÞŽ®|s‡œ4¯égÿñ¿^c²ó¥¸ü‚I,‡y×ÄÁðs0‚¯+L0@­½¤HÆ9?üåx®!T¿ŸÄÑågξ(S5.Îù©¼ÒÔêsK*'‹Ý9o¤#l[î$ÙØD8î‚ÇÆ¡Ž‚}#}—b]L Æ´¡iHVï0¤ayº bÝHÉôÒú:ÚQ‘ã¬ÈŠÏݧ+ò†"tè0ÿ¸Í-OއB`Â/+òΫŒKÓ˜6ÞO‘¬",†è•]m¿Ÿé…FL¿©áÏ:êXÇwgjžd¿‹È…q6K"˜ýå ƒ7ªˆñ´@!ÆáŠO7¦ø.ÉÀUÞÔ°ÞÝ1"åcûçé}%Âæ >Ýn]lýI®ºí±dÇy‰h~ì¼jyØ^HXù,E‚Œ¼ª!1m¼Ÿ"YÙõÎÆÑm+¡mÚ5"ý¦†?ë¨/×gÔ„òø•€y,Î&IÉ­\Udë‡rEÈá%¬­p‘{®jHlºÅ”|wØðYÃrvÄÚ “±ýÌ|“¦¡¯£•üìµwÞˆ˜òJ’¾^S¢DÄè76^…~ñ]qü½vVßçˆcëŒóú5% Èe¦†eí6ˆc†½ð{i }u“¸“ð@/žèN½!iâÐ_8%?Š,xå |j=*~™Ðû±-]ƒ1mÈ}Hòð¤†eí6ˆßY¸›#ì¥5ôu”­’Ž7ïŸ6¥¾ ³äo‘ƒùÌ·»)©çüãnK~S€.|J’\ÜÓÆ;éǃjôRO&¿ˆŸÚ6ˆ}nXË{) ÖQÂÛ‡›ÑBÿp šâë×’=sFìïã` òªwßÛH¬[‘àUÙ4Ó†^¦œhe45JjµÃìcé…GØKkèëð3úVùÚä.Œkô¸º؇Ìo)yB‚ç‚亓ŒšêŒßO¶³ÈûÙ5$† ÌdßȨi ÛÕmëÔ /<Â^ZC_‡þÂlF¼»Xœe]3Áð¹%q~aŸFF6ã|¡ŸU Z„}¸ËµxI nùò8~ž’+Vç›jBX;²e+#ì¶ôUø½Î2ÔÓh6¦Ž+¸›Oh ¾/˜ÒÛz ¾³õ5!ž¶ ïÛôùqõéÆCÌ2)X±šó¿[¬ª7Ù×çvÏÓ›ÿåA5ÈfîÆ/¨wÁá¢Þk’ÄßÍy—M—Qx{ Ïiy¿d¢)ðÌ4 ²ñ~Šda=®4Ä©Ú~?é…GL¿©áÏ:ê›èJF%¦Â]¬ Ê¥Â]ªFÓ…Ò ‚‚eÑǃŠ|ã—Lãû9GËÙÛfHbÞ_j@=Z±aü~äÄ`¯¥àÏ*jZ#Óéu°ÝXS?Èaö›‚Hs¾q.}X˜±.dÑaɾàK’¯­|ΊÿœN8’4Í‚û"gÒ—YûHÆ4›Ïr×Ó›÷þ›ÆCi½ÚñýfL6xzn§,ÙÉP;¶B‹RÇc°·kŽØÖÑ4$¦˜‘’•”aÖ0önƒ8¾ÄöÂ#Òojø³Žú%>±½ðUf|"@i×Í».IN#…fQö:”[°îº¢z9GŒ§k0¦÷3%q!ÿL q#_mã{UÉôÒú:ê׸­mêÀ=®Ì)±äVNI‚ßÊæ¿äef­³N®¦!qR §äTN‰5O·1©…í…GØKiø³Žz@XT=•Â,ëè4§¤, ꢓ›wö7yØnêØ+ŽoÛÉ~9Blë©Á˜60C’¡¶2Öç™jƒX‡"™^ZC_G]°H.”UIЛ—3œ1%n8uˆÕâD !º*‘ÓâT¨!2vŠm™š†Ä«Â)9ô<³†h8Um¿Ÿé…GØKkèëЂq¼_ñ•¾Tâ fûž)M¿E²+ÅìT0Ú:âË´âjQXimEòº¦Á8ËgR2Ä–m ëÕmdMzáöÒú:ê3K÷]ÞiDï$\ß=±áü-ã:Å í¯ÑÅ{TŒÍÝ‚Œè¡´¶Ô`L%uî`MûÔ bÜ´AüÎô¼‘~KC_‡Œ­²RÏ#k©OÕ ‹·Å’àDQ-õ Ìr±Îü²–z¹ËˆsíŒwWb¦d;É»b ÛÒml.ÅL/<Â^ZC_‡ŒÔ vƹ܅!ªáДæ \J6öG¸ðÞX² Ÿ–ú©ëS$³G«5ÓÆû)]\Ub ëè6V3Í¥a/­¡¯£>´¶Ó‰T±à  Š_K¼°•´ ÞñUQ“Óx‘ì¼ ÛwCœÍ–"@Žt-Híïg Ä9åéñV)ê q¡Ióú<½Õôî}½·U¢X)‘G”s»|d‰j"̓a¢]­O„_¦Å–9GW×`¼™$%j[Æè6†@Ò °—ÖÐ×Ñîúx‘kêúÅàý¸}ƒ{üLÊïÓÜ%7nV¼LÂyŽòñý´©‚§Ón-0O·§'Ij'à¥mùL^yjóºíyµ§Ú‰ ¶gçš]ç– °–"E )y‹È¡®MoÉ,óÝ®GzxŽ‚°¢@PÞÏ”DÄVñ?Í„0Vz¨ŽFØkk諨W{*65CÿµðæiÅñú·HɰÐ^ggØúVñùr$ÆÍ×V>öU–§Ó@½(‹*`ÌP‰pÓNü~¦}°žÞW ¥®þ‰’G—AV¾Š7v¯þ-’GÃ÷\Í—ùÆþÕß_ _÷[öÌŽ jÙ®H„¢,ýß"Y‘°Î[µ-óôÑ®à—Ä h§ª¸É+gm€%Çs’÷B"ºVm¿Ÿô"GÈËÔÐ×á¯4.;YYmèXÏÇÝ'Ý”°•;¼—/›Joï ÓµJ²¥§ì>ã¦Dm›sºÚ6§ÍgÜtÁ#ìŸ5ôÔ2¿ÌN »Ø.s;ô—Mɾ±òáBÄrðŸ4^’hÈyø›…£Œøþc7Æ4o²$Î&·†±vÄï'ðû˜ùêW71¯ Àö}‰é{¼«iÆwá¿Er£È“ý oæ*ÞwÅïÇüâ9Btä©!1m¼Ÿ)‰>55ƒ†ãé6ˆu¿P$ÓKkèëð÷øøqƒœÌ˜rªðâ@zJÖ“ùß÷^„ƒaò]l(Âø·ß«¦Áxq }JfSHCl‹ª a½ï‹‘~KC_G=í]l€ä@úº¨ ïR§˜”|·8lë|²F.úó z'm1¶ì£JЂ·i0¦ ÌD1Ô 6äiƒ8fØ °—ÖÐ×Q_¾â¼Pryx÷¶0`ú[$⽊bPß§®<׊qýx“ØÒ#ÆÑ5g˜6%â½J ™N¦M/4"½”†?ëðOõÆø!gJöÊ—–Ø~‹d“^)çƒ/ïEá—ôJEþ¤¦À˜&ÞÏ”ij¡jƒøý¤`­ ¯¢>ž•`¤˜k|•‚´jl‡3w-QÄtW‚D”¢ gV Â/‹•Šäûû[»cÚÀnRELSÃXº â÷3½ð{i }õÚäÚšª–Å] R"â´À§{ì ç ¿L8-¸ß4/îR ÈÕo=j½Vl¿{1GÐË©¡¯£>²t…ü½ï¼œµ$~Èì ;'¡g"»­¿ìº[$¸—jŒiCw_”Ä?5,[·Aü~¦‘~KC_GÝ((¿ÂW7¨Žx@(¹ÞW~?;{Lœ›ß{L¿ì8X¯¦!1m¼Ÿ"i£5l{·±í™\//\ž~/:0ÞÝF)â:Ÿv¶$€9|zMÉɳçò0ʱ\<›FáTÁ/S+÷»ŒkÓøðéuJxöL úQ¤üÙ¤1ý¦†?ëh—³ø oÞ3DPaWÝ‚L r’¾aùïÏî é-÷Æ/›. ?€G0î?5$^u’²¨¥‚qvÃÔ>é„GØI)諨_è;‹ñ8[¬¯`Ö"7å”Ü ~ŒS6ÑÁp«rÊíN¬³\‘ Û½iH¼ˆž2%C¡KkXÏnƒXg¹}+#ì¥5ôuxÁfãç—›án`#â#šKž“Á²“¹ÁñV¬ÁoEø%wšÿyD$ßU Æ´¡¬=JrHCD‘ª am›·QF¤ßÒÐ×ÑþÂwýß"º¼múSro¼ýb×|x5½ø²ú5Jý¹¸n5;!Õ¿Ÿ)9E'æù'ÙúÒñû™hD:( –Pï¹Xêå]ck²pk(dœ’}Q±î;ÿe?Uë»±¨ŠXž"AVGÓ`LïgJYSC$PÅ1þIå…F¤—ÒðgÞ^]3“Ä×>ÑQÃkæšO vw#Î0§V‘åw…Ǔ炣JÕÑ4$^”kž’ ;Ä©aœÝÆp>{záöÒú:Ú‰ŽüÏÊ$ jéke™ï¹R’dƒä_‹ Rú¿¿É1c·G7ÉkL ‰i[PI%ZòtÄÈ °—Òðgõä©ßè Øá8u‘™’‡,!ÑÂ>åÇI¦à—”_÷VFD§Ò§h0¦÷3%J2–Ü Æx _U2½´†¾í(‘èwΟÁë7ˆ™R¤¶d8AHüÃxϾÌï=2 “ËtÁ݉cl'ÿ²ž>ž¦8mÌöý¹¼óôæ½TLg$ŃžÉääŠë]¥dGžèXTS·(‚«jî„ñ˜eª±žMCbÚx?SýÇ0C‚)·Ú ƃy¯’é¥4üYG»¼\ÀÃãÆ0ËP`ó¦Ê’må–h¹9Ø.u8+~Uw–ÛÚ5wFJIs~¦%§¤‰L_I'<ÂNJA_E}J‹½^W½‡nQ}ù’ƒïãL!¾˜üž´Á%2¯.ÇR%…ñ¤‹Ì«Ë¤¹”™¨é¾˜´yui4"ý“†?+pd döYÈí2ßÍ‘¸¬|dKb—9ÔçÍÜj¤?KÅør{à"Êé ¨ýýLɉûË9]ÿRi ÿ-Ó°ÖÐWÐ~´'¯óts¹ã'²xé!Aä­Ê³‹]kê‰q".̵QˆÑþ|Ûûtaê?Sp?ÿDh×÷¨ê ßOš÷çvW³›÷-Hüçöngtä^ÕègJEÕ†C¼ö‘>WðËd›ë,#ö­kH¼ªÑOJį•Î³Û ŽöÂ#ì¥5ôu”’g’ý:.LöIÌoɽ‘÷þBƒg´K/þ6 ÆŠ¾ Xºª†Ä“›ß’óÒå¼4˜{ß6’?½ð{i }z»‚&‹‰¸÷:Tñ%ˆDW‘•X Ÿ•p·‹'D÷È Pm{¡n ©Áx5yZJ–\#R]y« aŧŠd:)}õ9¼í­cïŠk“ Îc~ªÑà qÚ=‚ÄqøzTNø² 3ºÍä€h6V¦ Ic-ûÆyú¾6ý»“_mߟË;OoÞ×UÞ s¿Üc{Qôi¬¿Er ˆÌe8‘ÌñÌ~ ŽÇê÷¿Š¤T/Hƒ1m¼¥ C1ÓÔ°mÝ1}òÂ#Òoièë¨ïv½ùž3ê¦áv¦äûuS÷{Ù×M±GpË;5ÓFÝÇf¿nŠ£RzÚ0®›bÈ­»4ôuÔ¿°. ÕlnWS¨ØÐ°³í”°?ù®ö(»Y7ÞÏ^kb]ª ®›†Ä«.9R26¦®YÃzuÄïgzáöÒú:Ú Q¦@ kc{$¶zµäPwQåP7bH3#öæuJw¨Œe›"IDf ñ€ª6„ƼÈöÛú:ê‚ÉÙ’,†.ášÁ?°ÁŽòƒ²Îx”„Bd‹Øx⻹c²ªçÊä„Pþ~¦@ñHÏŽJâ¢ðýLãúÜ®yvó½^b⛬»‘ØàŒ3Ò][¢7x<ï@ÂpmlI2Nžº‰µ!ŠÎ±¯]ƒ1m¼Ÿ"YxQg qB«6ˆ•ˆ/<"ý–†¾ŽwÛÛÝ‹ ]ðBøì$¤ˆœ1qIDÚe¤­%Ä–õÑ´€[Æ“Ÿ3cÿ šÝ›,š8ÄM'Í‚oÿêçðÊ“‹Ç5ät¡ôc“ÆŽ ðÉkIðµ|=“ñÝܰ{Å/k!P'í÷Ó5OöØ”ð²:5˜Ö6&{¬½H~Ù¥kèë¨o–˜ºåXÜ&韘ëµ@9ÚÁFµ i]FðQ­ ñ¦ÜI6æ×Òæ RŒ·€$ý9]ÿXÖŸÿšé€ØaÍoþ×ã ³3ãLÉd öqˆi”Ròi|ßp ûäI ƒë“_¯µJpKÑ4ßfRJÉE*¤ÔpÞÝÆi&¥ôÂ#ì¥5ôuh3Œ„½õpÙ¿¹Ý‚ðd÷‡ß"Ù6–4UÙÁ²É}p÷Š_VͯeÀ¸»cšx?S²ÞLË—‚uíˆßÏôA#ÒG)ø³Šz“·à“9$Q0óPß©Sòp“—5 'oEŸ]L§Þwû2ª½6«†‰W½SS²ì¤º’†#úÑÂï¬DÍöRþ¬£m:Ýœ?~ŠÙòÖY'%7{Á'™,Žk2[D"ïêe„Ù2­!Ù3ou¦D™&ÖpnÝñû™^xDú- }þ>Ÿ?æßÏ'ó‚«@uênÚ5û‹Þ;³Vp)<93Æî©Pè7Æ4m¥$êõ—Î»Û ŽrÂì£ôUÔŸïEâg·®rÛö;«³‘»jUN´ˆ¤jWÁÑ’4V&eÎ,YšŒï¬>´äríàÃæðר6Œµ^Üåz„½´†¾'[`wˆ;®3©Ð$ûlîh‰ª`Ž÷Áޝ7£™Âø:ŸU‚ZŒ¦Á˜6ÞÏ”¨“bjXÝ>䮸•Ø9Â^ZC_G½ Pf1ƒmJÏLòÿ-’G‡ÒÁÚšÈÍ;pSÅ `aÜTÝUÚ‘¦Á8K ¦D‡RiLóO#K ìEŽH¿¥¡¯£}¡Y¢¨q$àß;w,:åY¢¦}Q`¶mܳà|q’=ñË´ïÍWU\6 Æ´ñ~¦D™r©A©riƒøýL/<Â^ZC_‡ÌvŸLÏTšq¤œ]'ßÔÈî$yL+wEïcÊÆ”¶q&ŽÝÀ¾UɈüê¦Á˜60C’KÍA­á|º bÜ<È °—ÖÐ×Q¿Ò+ŸÓâ FQ3h^p†ø-’è_ˆ-^j_ŒsÉ_ÈšXPE2ëP¦ã¼ÅIÉwo1ÆÏÔ°\Ý1¶XòÂ#ì¥5ôuÔG[¥d~ØŸH3òkxDk¢¼ðâ.ø-oâ§»â(“À7¢¹…½„¿r¦±âþÀóH,’Š“ËĆý9]Ôäâo}Ñ®ˆ?]¦$‰£ÿ³q-‰gØ~Ðe…=ëYW#Œi¡rDäEs¶!Õ¿Ÿ)?t*X–n‚)rkùØÞyz÷¿foŽZT:x½·?1ŽäIDwºØz¢n$.C㟷‡øW^Ø&‹ÉÉg—zßÏ,'ÿ ž¼,Eñà¼+£ñY:¤‰Ýãú¨e+S×~GprÃJ]«„¯­íDȧ4ìÓ¿Û•ûNü²Yg‘€¦iHœ¶–œzSXÃquY`›^x„½´†¾þqÖAßešÍ‹7‚'«·‹d;™-|]$¥ú>Qk}$­"Æ¿üV%8y4 Ƴf<%‹nߥõÛÓÆ¬·‘~KC_‡Ìk:²˜ß,ñŠKnF`¦äfÀS×QGµàæªø%Ïf¼ =âP£,k˜x1åˆ%Ëa5DeUµ!\nSr„½”†?ë¨_i浪«Ì$Ëä¡—$êØöŸVvx*"R0Þìàל#\vh ÆKòЗ²BÅSCÔWÂï,~Ìò25ôuÔÏeû’=ª6¾é«äa—ù¸äJÏE]E•Ñ.¬{ö¸ÏäSCâye# ßõ©a»®fCØWíS2½”†?ëðWúùqBP2©*§(‚+"2Ï,£ƒ ³ ƒ€nlLX`–‘¡ÌÜ&PDÞŒe3$¹õº§†ØìT±`yáé·4üY‡^??féˆ&?f:;Çzv3 eáã ŠïcjÎ)ü’éŒTnqÞ]CbØx?Sr•õHÃqvÄïgzáöÒú:ÊÛV½Èt«µ­ìï0Ò~Yðˆüì§6Ýø¯h " ò“ÓãSÔâœCóþÜÞivó¾þjv|9•9X9s‚ñ·H.qÝ¢¼¼¹nÏ¥â×ÕpsÀµwÆ4ñ~Š$¾d?©àؘ]n ÄŠÉIñZ ú*êr¦i.wƒ†–U3¿E²¢ˆaßp$®G¿òOP>`„ñŒ=ª'´¦Á˜6t ¤Dµ–Ò÷<Õ†0žÊô"G¤ß®ÖÝFyHñ:ËìÇ™7¶Gý-’`E.©™cÓº©MZÄ3"6GÏuÕ`œMYSѨëgjˆhTµAŒ«$yáöÒú:ZTë]¿š›óÔpÚ’ïL´‹ÞÙÞ;ªTØNú¨XwÑ`–ðˆ «Œ·ì]cITöž?SÃXº1›Z_U2½´†¾ýILÈX”Âng š#CJÎEA–“}8Ï‹[>2•mP$Øø6 ÆGr,ÙÉö–¶»ÛØf G^x„½´†¾ŽZãä+x½v· ùcñ„;Õ§W’,>ä=q„´Pþ§^Âø{-U‚0ZÓ`L ÕQ²°Ãˆ5¸ÄÐ6ˆßÏôÂ#Òoièë¨g… wï¢ó^n`ÿ¿U—èã}ÖËÂú8cíy®sŽXYr—&^ôNÉ¡†eÖ°ŸÝqÜ½Û °—Òðgõ¨° fkªBBÜ«¨7g¶¦%Ç¡‚²·î*9tÁ‚°R‚ÈÉ#‚->þ<Ö˜60CöÀ˜¶­Û Æ‚å…GØKiø³ŽúRRÜÍçz¾Ý| ü[$7[·ãÉ«à1m(wÎ|ŸÎ÷Ú§Ï{gK¢«©¢VÐp¨}‚m#õ”ퟧ÷42Õ“ü:ÁU:;Aüɶê6]w\36°yÚ+’Q$VT ‰G&:Y²²ƒZjXžncÉW{¡é¥4üYG MÝHð3sC”o±µ‰ 9%Hò}Ð?ƒÿÒ7J/vleâ/qï‰_&Ì ’ šcÚP¾%+¯y­á{ªh6ˆ±Í–‘~KC_‡_G[„dŠoÃãŸøf}„äXÏRãHʼ ±5¼'iŸXøêtC×*Y :OßÇSÑ/ˆçø(‚ôÎÓ›÷õ´°¼X¿Ø}AâçqÜ öü­’›œª]I9ñ ýõ¨XÉYèñáÛÒ5$^t²IÉEŠ¿Ô½ª â÷3½ð{i }íîö.U‰Kä. l(é"%q+䈡ÊôÄÁ5Ž(©"~YUV$,ªªŒiãýLÉ|¼©!ª bäÉ °—ÖÐ×á«–ù P^‡Ý¨Ûxç+dá)Vu¸ÅòߢؤáÕ¿MŒ¸:×pù—TÉ3=qÛÌ©‘ç9)Úqócy¥©Õçz"PA­Iä8DÌ©KI´‹™UE:«:bŒÇ"psĵv Æ´¡LH"ß=iˆ|‹Qlë^¨H¦—ÖÐס£]ÕÆ¦ÓÊ*_NäS‘µÍý“ß§øŠ5HqØÂF@‚ø®E:Þ6ÝøR“ø)@ÿ½œ~îMý©.ñi^Ÿ§»œÝ¼¯$v?T™¶g`<ùf%¼%QÇ¡Lò. XÍT€Kk®„ßóªM#ö•iÖ`œ•ðS"R2kp»mÌJx{áé·4ôuÔ»¬“”Y8¼±Jõq­å”°Rr×=J-öÁ`hÁ8Ê#ùvŽPmJjHìZË”ÜC­ì¨aQ°Ã6„ßOz‘#ì¥5ôuÔsÀEzgŸôxÁrï[ðüw禧żï|ɺ¿móóçj³®ÿ’~‚ ÕUsú8É%cýÄïg:àöÏÚjUıWš à¹A³‘8ëH+É÷)qÆÆî}î?#âžûQ\¸èHâçÖÓÄû)’r+Øð㜈ރ‘^KA_E»¾<ÉU2K,Á©,.±„ îE¿Úlã®"Änog·Z}®Š+Ï6„ö÷3ã&_‹§G¦LQ¨ìLç<½y_7†úö*£õ+¿}ûů¯$ßy!Ÿ“XEÈ×U1.ìðt™#žµk0>¼¯Mɪ¤©A­$Óñû™^x„½´†¾Ž~=P³)b+ºéØÆÖ/)yvv½UO»°ˆ<£âø·_øóˆ \®'oaJ¾¶.ÌзTÍclcLÞBy‘#ì¥4üYG;ëT²Äðñ>¾²òP’]”ûÍ- ñ73Žùe%[ÜáËÿkNO@í.Éx”8 éq©] ã‡"<ÂþIß´Df~9u ‘hD>M ÈuÜ? l~žàe¬ ´ÝþxßÛTAªV ”â¿ÌéË]´`8ÊgòÊS›×õ‡º [þžœú›ˆ /§“CðýAˆ ù¼PûÅ£¤ ^Q­àÏ]¦Ù†›Š$gõû1çôﯪ|?Ó¼>·sžÞ¼¯1& šf%.ŠèûÚ]<Ê&+æƒ,L¶¡^S«)Ú\eDvE‘ã+ R²ò~ÐÎ£Û ~?Ó H¿¥¡¯Ã Ɔw´Ê6Žm$:ž§ø¹S¢W$¶¡Ïcçà>]U‰µ÷réŧcÚÐN’¡°©A ßi#9ÀÓ °—ÖÐ×á]?zœ°Ïé¨R‚±i_DóK zYá»2؉nAÏp¾œ _ÒÊ ã¢0Öó eße Ø(sñÿS¹àûIë9Àþ²‰Bs¾žSï³6É‹Û^0n’ì·HâÞP2 Åý1ŸÃC;ò g+”é7 Æ´ñ~¦„|dSÃØºá“EzáöÒú:ê[õÏÞþ°P~YMfœ’‡%Âqï?ª`&“ëŽá—EÅE‚¿UÓx5™±$8ž?©!Ž€Õ†ðûI/r„¼L }>æÌ[hï…¿Ooä·òöú·Hx=¶¡ -ÜЪù­ÄÈÇ»ªdÄ=VÓ`LØÛJr쬛°%*§LeN/<Â^ZC_G»ÏBqwÛÇ©ŒÙE½1¦„ªƒ6õp¡*KÅ8•¢ˆtŽ8Ž®!ñ’÷­’Ä-;²`¤aÝñû™^x„½´†¾Žú¾öµ¦/+Ùy¢Vlu,ñ¿å¦*Žu©›ŽÈ|:#–¸“IÚ#‚F¢j0¦ Å)aCGi˜iÿ´aü~ìE) X»†¾ŽúÈ›‰º5^hlUw ,&µDªã5°¥Ë8¦lYè·5EBºª!1m¼Ÿ)‰ÜÌógj8F·A¬×?k„½”†?ëð«hÌ=ÓŒCo¹ÅÜÍ«^i þX«^i±ÕCYï„/™›ÙL€Ÿ{Ÿžxá7Y\UsvBí€ïgZ×çvÎÓ‹ïuC̼®eÊ‘œÄT(K¾ó‘tt¡ÁnixöYØP˜øeòT‘ m©i0¦ %6±IñÓ‹5,£Û Æí‚¼ðˆl|, }í½Ë=]s }0”ABÜ)aç”Á42œãJy#?«ñËy‘Œ©k³÷Jb‡]S×ÖÛÏÔ kë´‘´»é…F¤—Òðguÿ(ŠyQ•ÁíÝt)kÉ, ßjÈ¿ðám¨R"„±µ»ªáûªÀtÁ É8u¡*cé&ˆc†ðûh }õ }Þg} í·jdw3‘X dN¾Cl—r€œ¬Ì~Y2ŠK¸®®Á˜6ÞÏ”|7܈LÚÍfãH¶{áöÒú:jœ¢ËÄf wêñ=²-<$7[åô~H™6t4¹Ýg7rtŠ9=Mƒñå>»)‰2¦ûgjˆbàjƒ¸>Æ=Â^ZC_G}(­öŽ‹“4;TžJgL‰.äP…†S+.Ë"Å£`¥‘€€Ê#γk0¦ ¥‘°»vYƒ/älCX€"™^ZC_G]ðº*[ˆEƒa¾ Íb>£%ÑàfˆóD!'ÿ)#zn‰_VNŸ{q­]ƒ1m $L fm?©!ÎÈÕ†ðûI/r„¼L }Z/.nœ¿[ŸøwCSA‘-ÙÀÎõݰl¤ªÚ7û£¢÷J¬»Š"Áž®i0¦÷S$+ƒýÖ°îÝ1¶UòB#¦ß«bšW·1×{3þ漨CYƒ´±€ß,°³F“ÜŠ´†/Yëç Ók2cø»™_o…øcÒ¼õiz ßÏ4ìæ¡ÄäâqýÞžÙLp°ÿó•ŒRçðSè/‚ÖsÇLÜg¾¬¨G@vœ/² ê'wdz²BZÓãmTô ¾…Äì°æ7ÿë–b”K€õA[bì<1³KÕ+#¹,,S¦Ì‚‚]ãxÙ¯g•Œè¯Ù4ÓŽþ’DžËù35,£ÛXLL”^hDz) ÖQO*'Íb¦…¬¾ñÊæµGJPA?"à|#Á›HʹGb„€G•€Ö´j˜xUµCJ\如ýê&ˆ3–a'©àÏ*ê~œ»ÂŒ&×’ã)Ù- fÒùŒ&Fw_+©HPèÚ4oŽ7N ·Ô©aÝÆp¼1½Ðˆé75üY‡ŸF¦ÁþÉaš(¥ŠRïè®Jšò”ÜŒ*Åõá¢AZùg­w7ˆ†˜GÓ˜6ð,•ädT)5œ[·qš =½ð{i }uÿt`—l¶Ž-¨ß¾*˜”’tj_U;ž#q‰¨ËwWT0Ï„9 Ø««cšÀI6–SXÁ¸»b¼Ž÷*™>ZA_…ÿ¼ˆ«^µÝãzî<ìo§Zf§„ͧѮoÝy›Ãæ­ Äx‘\U‚GGÓ`LïgJ†³Á¤aŒnƒ>yáöÒú:êß÷bv›ºÆ}ÿ©@ÆÂÙ¨Æ š°8!/ƒìU=Êôߨ?Üÿò¼C4eV†=2‰H·É)QKaeøï÷c;üˆî˜¢sú¦ ¢¶.üEî™'-žÓßO ‚Æl;Æ^_ ôgX]‡³¡«?;ï6•PªßO nÅy+²N½ï'ÍæÇrÓS›×õåÉÎ-göâÄé.r°DììñÍÀ¾ëæÎ-¾9ã»u°¾F#@.[4$¦÷3%ñ‚G“)ip™„mÌB {áöÒú:¸Ü€ÿ…òuç¾lkœéç£fU.ƒ{°7…¨¿žðåß}¯øÖÑd€ù€ôÃÁýðæùt‘e¯<¹x\ïÛ94x±ƒÑÁðÄo‘0@Î7˜vvú N¸‚d±¼G¬"¶†Ä´’Œƒ™úÖ 6óiƒøýL/<Â^JßuÔMûs׆<Á¸¥á‘ ĦC)y‚Äe[¤‹EÂý)¢½eM\œÉÏèŒiãýLÉ…½÷Ôp^Ýñû™^x„½´†¾}sŸÂÞerLU=ÉÁÍc¨%'òP u‘¤¼áˆ8’xÓ1t©”ß7 Æ´ñ~Š„,©aGÁó´Aü~¦‘~KC_G=¾Ì+Ë746»ýo‘lÃ"q‡k†;Z¶Š_fŸž£Œw×`œœúS²2,b ä·Ÿ6’S?½Ðˆé75üYGÝÔNßà¢ÇRç> ° Ç£„Uj-{† O©urB38[ð=DÇõ¿§ UNõG28Óº?¶kžÝ|¯WËô‰W2Y‘±$Ú4ob²’dã-òÈ·•˸µígby2®2"²mªãune$ù¾u¹Ù¡†XLµ!ü~Ò‹a/­¡¯Ã{ôÅnOUK|Çñ<Ü´ÙKÉ÷Ëq#‹ƒÅ£Ü|Äca;¿ªY:ˈûîŒiãýLÉâ¢jøîtš aDOQ?k„½´†¾ŽÆüÃ=…sÕȃà”íß"¹q@ÆIâÙ}ð¤q_‰_¦Þ ù¯‹†Ä´ñ~Š$¸§‚൭&ˆ•ÜöŒ2"݆‚?«Ð3™ÇRöEVªª±õ9œÐdÉCÒìèh‰jÄ *E}#ËS…ñí¼ªYeºN Æ´¡¼3HØÎ75D¦xµ!Œ`½ÈöÒú:Êáôa™™øb¢çTlâ56¯˜S Ê¢ÖUÄNª¸1Æ·s­´^hŒiãýLÉà-|jˆKjƒßgyáöÒú:ôF’4o3ñíܹáV@©Ò–|Ù‡ÀVë åçHŒd•µJåܦÓÀû™’ýf–³5ì£Û Æ5çY>¶žÞWPþ´¬•ÌÒA\¶AÙ¹®S¡äV‘ôÛ½óFèÞ+Öæ(È{ră#H*0Ì;' Npéäìãèú‰ßÏôÀ#ì¡ô%”•®x9žžI¼«’)ó$”ØÓ›¤’—º`±4z'K¦>‚Š2סÂyà¤i¥‡±¶©íQrbZ%ŸB'2{~Øn†a^4‡þžbµ¿)8ô@ÙϨøBµõ»®|u”q{_¦J=¢¼D«ßŸœ jå©^ßç§Ò[Ín¾×÷(S˜ÎÓž\ÅÏãã$ñ°Çñ†t”Gâ`AºJc}}Š)tMƒ°làÁcɪÉ8–ï½Ùƃ‡^äˆô[ú:ê5ªRÛÝd°/èƒTþhÉ`õ²çI½…ºÃh¿}$~É}V$(j Œi3$YXÍž–¥Û ~?鄨G+諨§9ö™Éã«jub“s®µÔèàE'ÒN7vS1°²Nâì•#TL”ŒiãýÉ¢óŸ4¬{·Aü~¦‘~KC_G=ÍÝdurÄ¢Ø0—‘ÿƒLtÞ9LñCþ±!.¶õóm)“ V…i ¿ã#ÇóÖ³é%|?Ó°À+O.ÿC›ÞÕÈ{;ÝŠdž‡Õ¼–  ôüV0H7Õ¼ÚÍëÙ4$¦ Ìd<ê©( ÁCwÄïgz¡é¥4üY‡wwÞÆ˜&$ÒòvlÏF¤ÌüɃ$”€úì9Åü…ûfã—u( Kóˆ·âSƒ1m¼Ÿ)‰ËúýgjFÄjƒøýL/<Â^ZC_G}2énÑb·YXK•øãù¢í òÏ™ÜòáùLŒjk¸üË'6ú†€ÈS÷£*ÞU£•võ±;špjõ¹§›™>ÜÝ)Ÿþ>1²9ûN:w5ÞŠ¤‘›ù”b'Æ;>¾Ÿ}º1ôsçFAœí~æô±6õýl^ŸÛ;ÍnÞ×xö¹ð~_i“+n–õ¹²/%#šš#Û•h/}¨ž¼íÄH}»«dD«¶¦@X&°RIÜ8IÖ{4ÂX,œÈöÚ ú*ü¤EœÔº^Štø ñ¶K1ß”Ü,”òXyíüàð{VŒ/-Sgrĵt Æ´¡¨$"ZM çè6ˆc†½ð{i }5ŠÄ¬³ùûT-Ô}‹^9%ñxª‡M‰– ´»˜Xç'46òˆèÆQ5ÓÆû)ÒZCÜ›UÂXðS%Åoiè먿ZR äiÜ;Äþõ¼nù-’çÔ*VŽU PÒ,„_r(Éw#°u Æó’Ç’ë!5™4¼pIG^òØ‹a/­¡¯£~¡d=ßfƒÿî×½§bà;%H ÐAÍ{Á TæwÅ/Éν7Ĉ`‘®Œi¬‘;»ã3÷†ÍÆêàzzáé·4ôuÔ-…ºB))®#Ì›^ |OæüS .Á´£æû‚_5eÄ8º†qT|K<Ð) Q/Tm#ð=ªdz) ÖQÃhàȘQ¥ýß™7"¿SÀ+¼êWä1Ç*‰k—ù±kù·wšÞ½oãMLrŒ‹u¶{â_í·HV¤—âÊ÷ÁWt[¹°…uÖ,Ü’W ‰iC7ñ”¬ªÝÉÿðìÕ†ñû±sDú- }58Ї”®˜™‚xDÏ\ÑG8Irw6ÄÅ×-úˆ‚_ÒGàÏ#ÎÑ5ËÆû)d¦†ãûK­6„ßì 9G¤ßÒÐ×QQ`EÜDáßF¼ YŠ’4~Á8{(cC™ˆÀáJœ€FAöØÔ01l¼Ÿ)Y±¿¾ÿ@Í1ûòB#ÒKiø³'¿l?N¨ôyCúã[ÑgwIv±$DÉݵ3$zo<Œcö‰$óñýý4 ²ñ~¦äæ¿5ĵ@µ!Œ“ÁR%Óokèë¨A6¶7¸³íŠÛ+]‡Û®¸ÉÓ¥Ž »ïÌ•ñã¦P#S~ŠMUš†Ä°ñ~¦dÙÀ#¸8/&„•û³e„”‚¾ ï/Ö™¦f’›`”:¹ŸfÞ¨úC¤4‹M?¡(Û#|Ù›a FœÃÚtcèñ\³ùê¯QõâÉ JµË­%úôæy˲·³Œë†Âny¬äÉ“d#Ï:Ž""z™ÀŽtã—w´{ñ}5Â2ñ~¦äûÜ]ŸŸÔ”ÑÕ†0N?Ï¿:À^[A_E½€$‘²ßo6cÜ|ýÉŠÙ÷çä^÷ ¯îÏ…­=‰_îºðõˆkçÚŒi/J6¥?XˆŒŠ a<èEŽ—©¡¯£î¡X²°˜¢öä£ìX”ý<%·¬†çÁmÏÓÆøóÞU‚JЦ!ñb’lK¢ž×áÒ°Ý1ÐòÂ#ì¥5ôuÔ_-^º®¥Z¨×alî’‡}Ž"L²\ÜŽc»q\+X³Œ2âZ»ã{n$¹NÝcIõtÄ ÖÉôÒú:Zþ%³U“‰ÖQÝûfMÉÃ.ÜÁ~wG:o¨ë€ðKz¶"A©PÕ0±¿ž’|ÿ…6ži¨)%ņñû±9B^¦†?ë¨ï܃1בœ«8ŽÓœk%¥ÍÞ”+Iô~Fè^ áÎ’Ö`Loé^'ï¸È±µ JÙ¤(½ðˆô[ú:ft_iE–— ßöcÉf±)ñ¶tcGøUý`õ_Z³clÄñco—#ÔÓ)5'‡oJÚ°†ØòVÂ1C^ä{i }õÄ$ ÝôÃ'H&·¡îIÄ¡ú?Ñ1pGˆ•-!þLO€e©ÌÚ·à{NC‘&¯wSNˆo¬{€|óôæ{Ë~g^—Þ@qI³Äô¿E …¸ômZ…^ÀxÍ€q y±Ò#ö½k0¦ |-Y±£O ËÞmãNT^xDú- }õ«Öfª7ZUIžq`ú-ÅõÐSfcÂá¦i{ÅX/Ÿ†9b{ºcÚx?)9²=ÜP=ìÚl¿Ÿô"GÈËÔÐ×Ñ÷£î7L@9-yÄH¶€ÈO%àþÆïìî”#ΫkH¼&i $×FÎ?k8¯nƒøýL/<Â^ZC_G}õ'rö¼s¦Ó”ˆ˜ÏÔ›ÊcÊ>z™é„N{k‘ø¤!±sRÂ\¥T T¦4‘ÉNé„GØI)諨ñ öº>õŒZÇ&2ýK™3)Ynw¿¿%ìÕÆªÎâWÅØí"ù׈ct Æ´ñ~RùK( †è]m#ºóTIz™ú:j6ÔM‚ÜB‚§D û²X²‹c?#êš]D¼HüaìýþYF;kj0¦ Ìdxü¤†xÜTÄøG=«dzi }õÌn›É_;”ɲ0ëw 6œÐݘ_¹‰gB•Qbå_WïµÌ7¦÷S$¬jJ ëÞL*¦¼•Ïí±¦·Ô“~½n“I¬(Á;yì3¼ÈP±ºïŽ$´/žqϨ;Í£à¯Î6Öñ-!2p9“,2©Ø,3iXŸ§›ëOóY G8Óâ]a_– O§ðY‰Uãàî¾ù4¿Q.Nºî3³ø@F¹•Šœ§á#óøRÂT<+8”¨gGfòÙ‰a·¥ ¯¢žiWB*÷)rlî‡ó.2sYò òßn3ÁîÞÚÀ&Œ*AãȦÁ˜60C’K;zkÈîò{ÅþÈ °—ÖÐסóÒ‡„Ë 4®ÚÀOy7g¢%û`Åq©§ËC¶Âž¬‰_Öå *4šcÚÀ7B‘ §†(”¨6ˆñÔ–a/­¡¯£ÝQßµ&ñmñºé ’î(!~’ß%„žÄJþ)T14 Éw¹é ’å@¡€5|q͆ðûI/r„½´†¾Žö ~*÷Zt¡3Y¸æ(ÞJyŸ(VÝq0Ѭh$Äwí`“ˆ7M™/HýØ Q°"x:§¯£é'DÔYx€üóü潩]ÉHlªZ•–D‚§[²êyðF`u%ÂÙ+dΟáǦ!1m`Æ¥x>K¬á¢ÚmÚVȼHÒKkø³ŽFvÓÈ%†Êq®ÛK–Ü'ËtVŒJ…6[.&ú¾è‹©MƒñåkÞ)YTn$ çÖmœ¾æM/<"ý–†¾ŽzKÍøŒ›oFY?îì(ýV ïѶh~ˆÈǺˆ”ü’L Ò¢="¢-UÃÄ«JèRrodþ 4Â+6Œ|~ªdz) ÖQð:26ÒoÖ[U†)YO%5ë];˜ üû×øeH§H°ÙoŒiCÇJ˜ d ÁÕSmã< ×±G¤ßÒÐ×á—è]‘¡{;ÉqÛùÌcC§ß"Ñ—'¶oc}ÚÜÝ»áK‚Îû˜Ÿ‹þ=gSL°d¿´¡”‚}ÕvQˆßOzàvÐ úê·yÊŽ1ØU³É0Ïò–°Í0øX‘7{ÝäžÛžŠñ—ÂE×ÑOL1Ã’¯wÚ²KƒùílƒøýL/<Â^ZC_G=Úî,ZòåÈÅ0AÔÖŠMÐ’óR SÒJEïK2ý=;áž#†i–¤!1m(³±KþwÄÊA(’â·4ôu´` Þ»n'¥››¢>LvLÉ ^\ô1zã>»HÙÑw™ΜU®Œ¦Á˜6ÞOJâÊ5ÁÒp(_Û6„±{£9B^¦†¾-xgÎ]×$™ 'îd‘:I|¸¤ÚRÚr“Ti°$]¸&ÃyÄ>ºaÙp2 šUTF ÁèTm—d¸a¿­¡¯C f»B¦³:»M~À«Âo+[éaâkI£fûµ•Ëù9I¨rºàî`» =rö¸›öáH{š÷yçéÍûz¼¾Š:FŠrrX"Á8~ßþ­ÊÉYY˜³NŒ‡˜øçˆÜÜK1-¼Ÿ)YæYòu‹ lì„ÈEÏoK¨)²Â˜@>R·âqÏx”§äF88Uã a† áù­â—)Üñ²ËzĦ†Ä‹Ê)‰HÄø™mIÄ1Ã^x„½´†¾Žú V#Y€F"ÝÆv–÷0$ë`¨'nEÁ±Ž‚_òÄ~ GD`Õ`Lï'%QSiÊ‘± á÷“^x„½´†?ë¨[ª‹•@æû>W‚ãzYÑ‹ü·H¢€ac wÜGá¢ecÁAÁo²,ÏâÑN Æ«; §d—íÔ°¬ÝÆâèé…GØKkèëh{ȃýdõë :Çé·HV&ÕÅãa获ßKÁõÆÃ#Ž¥k0¦ üä)‰ˆ½E‰jCøý¤9B^¦†¾-»GŽ«ÃwþZ¶Í_iKvv6^b“£_$oWÅ/Ypã ™#>J ƛӾRñBÔHƒ~i#6é…G”_94ôuÔŽØ –yO•7Q¬×ôDÌA·ô‘Br?h=v°®‡ðeÉà¾Î6¼²±™'hÊæôH¼(ê}=¿ÎÏ휧7ïëvùFÒäHQ#†CÕ>܈ƒcQ£%‰=@#³ˆ_V¦QFøèf Æ´’lQ=Œ«› ƵéQ%ÓI)諨TÙ:¹&2›@Y7òÁ,É%ò+2³#≇f4c˜8šß×x¹<"Øà«ãsäƒY’9Sƒ~i#)é…)öRþ¬ƒ ^Ùø n¾9H‰û"Ì·d]Ôu‰ÇǪ Ð8ikbmƒ'GD³ÁªÁx1¡%qƒ6BiˆËjCøý¤9B^¦†¾ŽöÆ]P¦(2CDiûIVKV^ƒ/q‘¼1ªˆ–„&&~™pU$HujŒiCÉPLѹÿ)ÿÀù8Õ„0¶t"GÈI+è«ðrÙ ÙS‡îêôbà¦ï!K¶ÛÀueÿZ'”Gã“X÷Žw¹–U1Màð*‰òÉ­àk©Y ÆÍµ|ðûh}uc¥Î< F.¹GÞIZÂ=þ©ñßOíùKVºI‘ ™¤i0¦ ¥›@!5¥›@ÃzuÄJ7á>B#ì¥5ôuÔÓ®*ÝÌ®ó=’ã†Çäß*! ädâüÄ«qDñÜv'~É|Y$ G¬&v+µ”ì”­a;»Í­ÔÒ °—ÖÐ×Q¿j}wë¦h9Hœ·]ÚI¦d?È`¶‚4|`[ŸŠÃ™hö\l{W`LïgJ+/­`ŒnXí"™>ZA_…O÷O¶5ñ¶jE•Ëw{²Æ³ô·JæEå/ˆš62¹Æ“£`}Ù@îäûÖ5$^Õa(%+™\SÃrvÄx^­U2½´†¾ï#qWÛ"sƒ×£S©ãU’ˆF7ˆI¥èî‰wg÷‹ç¨’à)hg÷‹”(_05d÷‹«â÷3½ð{i }u‡¥^³æ’ßvÖåg3ˆ”°—CÜëì ’\”D¼#›Alª¤ÍçÖf3ˆ”¨•C*P«‡4‘Í Ò °ÖÐWQ¿Ð£]k£* )Xûæ;ûKéó»ò(P‡­€6Þ9¬kí±—ÏÒ5$^õóM‰j—­áPí²më^»H¦—ÖÐ×QE$„ð݉o1â§7| 8DßOþ¨ýðf…*ã¬XŸk”§¨ŒiC,ï†Y # cí6ˆßÏôÂ#ì¥5ôuÔdzê+_¿^@¶ÄHš9«4|Mƒñéë£)áÍsj8¶nãðõQzáé·4ôu(€q®³<è2÷…§—öÇr‚Vvÿ*ýÊt¶„ȬXŠ<¯uºÓ÷/m-ˆ"¾ó'goãÿøz›izœ;pŸWQË™ÍëPHñ·5à ˜A^ Ïj€Ï÷¿pðüPTaÚh »S"©§2#$Š<\´" Cæ=@Þyúâ}Ý$²o˱ûŽOÈóÖ&1%ÊVŒ5‰7j÷¡L4aEËü;‹cÚø~ФýÌéÇX ã7+<"n?WPï½ÆÅç”TOföÄm:;NÉÃJª 1» ì[d¶ÂÚðÉ‹ÏUCâæŽ†–D±Kû™Þñbƒøû™^x„½´†uó Õ@c˜¦ «ØŠœª-€•ˆ±ÁÚµ›Ñ–‘P™&£|µíeº!Ô? )rüxvìŠvA嘌£  w9}ñ~®qäw˜¿ÑŠ# »)eJ’ëà…züŠË†ŸMAaýL‹‰‰‹cÚø~ŠdÃ&!5¼œÅ±~¬ðÂ#ÒoiXס‡ÒU±^p†àâtÄ•öo‘4µú‰”ádzoÊ'>Ä_¦âÉ‹ïU1M`%wp†ž?©á~¶Å†0¾Âp"ÈÇT°®ÂAä¬ò&*Ç,O~LylI™ð3TU Zmt{` õqÔ¦ jYª†Ä´ñýIC¢¦5Dqrµ!Œ ¡²êC´Ê×¢áÏ:æ·™œw3$Cº÷ÈPëÚSHârÚÝ·L—4öv'þr[]$ØÐ‚sÅŒiC[^H6&Ì[Êi‹ aì)\’«öÒÖuøûÌ'²¿ÍÂÚøðå3%îüÒþÑoqùÅ1þ’ѺHü]œ oz÷¤$ª~c/ ã\m?鄨G+XW±¤Þ3ëQW"›SuØóâ·HÔ\t#8nW@ëäbÝÏô}ŽhäO ‰K§ I:ÊØ¦5MÙi#½ð{) Ö±„Tñ…>Ä´iðÜß>þ·J¼4nEØ~umOíŠú»-/P—U ›éÖ-Iºu)8Ày6M#f%'<Â>ZúŠzzX:’ÌRhŸò¾G‚äAý {AG)/ýŽß‰ñ—yèE¡Eƒ1m|?Sr f•[ë{±AüýL/<Â^Zú?œÁVÃßp˜jŒýðã qPnï+æ›ÕÆ»áØ”NŒÇËq< v¹Uq7IFJÈCéù{[ ì¦ÈH<Â.jþº†ºØÎä?>mi GÏã@Jåïv¥ëÚïG˜ôÌy HÂf8¯Uƒqž R"ÂÝÔ MÚÈcAzáöÒÖu,;»6/jï¶ïR=»)y73ñ»Ž$—Äï&ò ƶçš9bŒUƒ1mÄ K‚æüg*hûj‚øû™Nx„”‚u¾ßûIBU.F % q ìx«L>kH££"ÊqŽ¿$/ê÷ü<æuº1ô+A~rz˜õ„ßOš÷çöN³ïëüƒb(×ÅÙ÷Ts æ\¤är{ƒM¦;Ä£¾`áÛ^F<Ø>L Æ´¡3ü©“/bjÖ0îÕ±ÎðE2½´†uõKì$„33XcïÒQù-’h+þ† i]Ô¯;Ú4ãt{T R ‚ 5g5ü”lˆ±¤†­¯6ˆ¿Ÿé…G¤ßÒ°®Ã_ã ·¶]èV>î_Ø­;Yµ, ¦+”G«÷)Î,·ëΤ‘ >:zñì«ãL™’÷œÖÐûj#Ó«Ò H¿¥a]Çÿß¡ÞIÙ·Ræñõû­µ^ñ_P í‘jx»ç‡‹sÄs­»çGJN†‰SÃq®6ˆu"bš½FØKkX×QÃln$²þ_]¼Nègk¬Í]‘ Õõ¢Á˜6bFJ¢°ýgjcµAŒ[1yáé·4¬ëXÞ¹­^ EУãê÷Nþ I @£:ãF®ö®¼Ë^1Â08sÎd´›ŒiCJ6åvRÃýôņð÷“^äˆô[Öu,IbŒ>*+..õ‡ZÚ5eïJáyÕo=;Ãó§èw Fp§‘}vªãÓ„)9P+25ûjã0a@záöÒÖuÔKê稭œè½1ƒí·J´ïHIÅ¥7pL+þ2½üºËˆc¬oÞFZ²íÚªB.Š cìËáÅa/­a]GýJoLötVM$ ’öSœýƒ¯«“Näëàxˆ·‘ £õyܲÖéÆÐ¯wÑ£Ò]ü=?RèŠ~@üÜ·"(þjúâÿòXÆòògóô”˜0%"UoHŠyÍÌ.ˆ³JÁ: õ½ŒmÕØù)9Än ã\m ç¤a/­a]‡ÿ°}žíÕ^¯ƒOžãQ°*%çÅ.¥gcjKd`=Üyô31þí¯*A!å¢Á˜6¾Ÿ"i̱†8öTÄxÈ H¿¥a]Gý ;Ö,®hN1܈‰ ]’ä½vóFVë~ªÕF3ïõU‚"wïMZÅ´ñýLÉ)ækÞë³Ø þ~¦a/­a]Gý «¥²»°!ßb|£-diŒïÊ@i$H#,jÿC$8c?óó>ÖéÆ]$)ÀomNß÷Eý.ŽÇ4¯Ïíf/Þ×U*ÏQ%ª}ˆ›gòß"xØ=îáÀ¬Ô!jáŒPg¸ˆ+§:`ÁÑÙº\³yOíHó ï<}ñ¾n“É»ä*™Æb‹ÁÎp¿UÂT½èh ¾‚¨™Û™œH3ñ—•» vôˆ±­g?:KÔ¶=5°=Ü´1ûÑÙ °—Ö°®cy3”ÞýÝeVÙà®ç·HvõÂe5þ¥;`ZoGÅ_¦oßwÑ·Uƒ1m|?SûžógjØÚjƒå«J¦—Ö°®£üØ´,›Zí¸½:b÷*Œ”<Üìà>³í­ÔËm$þ2û¼HÞmC[5$nŽ%Zrvm,¤á8W‡©cÒ °—Ö°®£Þ<ìŸsÎ`:øCúãè£%}c#ŠØÑÁ¾±ç.X±tTjDDÊ‹‚„´ Pú©QðÜXA´—¨&ˆJ/’âuS¢{µ‘ñ)[ë\ßF×CûT #%7Ñ&6^ÜQQw<¼¶,øKæÑ{/#®}Õ`LßÏ”œ·Èj¥ál«ÓÍzÒ °—Ö°®£Þü fŸ?Y£z©Ù[;\¤JÉýŠTÑ«·™b°äLøË*Õ"A jUpSe„%q¾ZÁñþ « áï'Èò15¬«X6S8èª)EW³ÉˆFëžÄv_Šm²tö›WÑ’kbl{™XëÁjQ$lnK›’íÈÆµ‰BO5a¬½W‘L­a]Eý.#(—!›÷!ãót†%×`h¬îÆô‡¤3nN¸h›#’YÓi3$9À^>5ûjƒ»¨ú±ýóôuú»²L“yž¢t‰î›»x×.,ÙAP½wrë!$¾ß"çK¥óK4GÎoj0nn"2% ·F©a;VÄ1Ã^xDú- ë:–ã¿Ýï«GyÉà#”ìS)9² u¢qËŽàÈÁ5blyz•¼øY5ÓfHÒ2 YCï« bü£Ê °—Ö°®C nzáF޽Ö3Ä› á) ÁøáÅý òG/Vù²éÚÃâK·vòçû¾L6¤öïgJ6¸çü 4ÞÓ1~çt@Ò=)ø³¿ogÕ•‹²÷àUÕo‘Ä‹ûõ±È|×¾7BôíIüei‘ NU`H ˜ ‰¶¾©`l« âïg:áöÑÖUÔç±Â4Nvdl’‰É‚†NT(:¹Oþ@9Îv!‚Ú Þåó(s)Ó·ì‰nÍ1ý5¦vÃïÇæç»«é‹÷åË’6õññIw¯¿UÂRÀvóy÷ã¸\eŸGaØŠሪ a^÷Z2˜å• xý:MÌû^;áöÑÖU”Å2 ÝÌâ¶<­< ¼I¢Âψ ªý 6m½bív¯2à¸WÆ4ñýIci)8Õ±"@ER¼–‚uKØ =yª=°ß|¿ùC×")9Øó¯‹-2jñ†"'+:³—w_Ó„6ô“ÔiRзÕ±b3E2}´‚uÿ›C¼ŠÆ@£¦äØÅù˨H¬&"-جL ïG'bÄÓV Æ´=W›¥‡à“†¾­6º ^Ó °—Ö°®cINÆÓxè8¹ŠàÜë"KÉNª¨VºË€ôÇóıy5½Fìî # ‰iãû™’MTQÒpG3€bC¹VO•L/¥áÏ:¼¯ÀIÇn.ÀÆ2¢†÷o‘¼î"+ï¾³°y}nGÿøÛÈbÿKÅ,UCbÚø~¦dcζ5ÜQ+]l?éEް—ÒðgKð­ùŒ×|ÈÅ“à¼ç“äêlÚ¹!cÿ}ül 6Œ§þ6ãÙyVIž­Sƒ1m|gÌ îq™o G[m#€!/(™^RÃßuԣʻøx¾/q‘ð[$w'oþ£>K¢ùnîzIŒÓ9Ûbz€»fJAbšˆ Ùi“,ßVpn«bd2ô*™>JÁŸUÔÍÔ¯³ÉâDíÅ ê$®§-ØqÙÑò–|ºæ‰"T’[/Ÿ³¿˜gIù÷“‚ûb!N^´¢\P ý(䬧/¾k(->Á!–dZ7ÚÐÛûS``U‚¶‘­#ü8‘ÔTO¯—Gع’êMŸ¶-Ó©{i ßðüíU?¡þ§ øËé«ÿ53LD&Š­F`খ‚{Oºö…¸Ô‹½Óu˜Ô[^¦«Ÿ!¨û<58;ŠjÀïgšÖçö s‹×5lÜïšô&&OD™T”ä0õ¹@·VzÙ}&þ²d©H²cFj0¦ïgJ"·ÛHiØŸÕ±vÛðÂ#ì¥5¬ë¨¯™Ú ºÈ¢"aS˲Üd ìbɼIìžàKÕç(G¹Q™j¸)C‚ 4CsúyíL¤+ŸÉ+O]¼^ž9OiEÐI¹vD"Š †-¹ÁÎ…Dv¹V9ðûš(øË_ppß«ã+ë…-9Ñ(3œmµpf¹°}ðûhë*ÊvÿoĈ Åûõ>Ä>“’W íY+ˆЩéz*þ’«?xúªÁ¸e7(K6×öHö­6¶ìe/<Â^ZÃºŽº_`²iÁ6“¸FÈÊíö.½Íø9ÄÀ~’Kg+¬0~wW•°R®j0>”ó˜‚á‘ôHCœºrÓ}n=}YB­|ß? žs¾X6f—íwöà–¤¢ Óå«ygÿë -šøKž4øÐˆh© b$iHLßO‘l¢ –†ÖWÄz¿Iñ{mð²Žú&Ú©”¯ûdË,‡#¦¤]!ywYXÆ1o Q¯ñ—Œx¦äˆvT ϘDJHŒk ]O8Ûè~¦’¿¡áï:´`lOv_ÐÖ!ßÜzÁýÉ}*îåw=Ãqq$¯Â_5<îeDßW Æ´ñý )øSC|Í« âºãðˆô[ÖuÔãúEªoTÎàQ£m„%q}£úW€›!nõ£Ÿàý$þ~ܼqŽØûªÁ˜6õµÝ§†¸1©6ˆq„’1ý¦†?먷wü ›nú‡¹âž÷·Hn¾²£¶È¾!–î‚¿ÌäÝî2¢=‹†Ä´ñýLÉùèvYÎ¾Ú ÆÎùª’é¥4üYGymH¦7“nðøÄ/#’.r Yr“•8˜36ö6Öö÷Qñ—ÜÏUFŒ{Õ`L˜!IÔ‰ïåQ5Ñbƒ߈³J¦—Ö°®Ã¿`ö§¾Ê¦8.TN¾*»ûfÖ‹Ó±)üUÊ/¼É8èËRèí˜G&K™,ÝßOâ¨þ™sãË;Uéî–õ±üÒÜêµcþس1³Êßçw5ñ}Bý”ìWd‚¶̞ȈíL`6‘31ž®[• §ÆÔ01m|?E‚Kç©!Š(« b<å%Åohø»Žºu¼qpן¸ùd¾ç#¢~KbŸ‚àÑá,ÓÎàÑyVŒ“Ë`Ï8 ¸·UðŒMI#Q9Ü÷X,ãÂ÷®’⵬«˜U˜È+x²)ÁûˆøÅãm²§kXüzŒk(þ}¨$ÄFá*¿–é†TÿýLAãSK³Ç±h'TÌæ=Àîrúê}}ÃZ“¬0jËÑ–vÓ=Ý”°¾{ ¶Úhºµ^½ÄñD—3O• ¨c™žxÓËÒ’]/dkˆRújCûËQ>–9}]Áükâms(‡-îÃÀÿ¸ƒæâ·H" x> EòïuøA¢[û‚V%à+X4ÓÆ÷3%¡óÔÐöÕñ÷3½ð{i ë:ê¹äŒàñÇãp¹[|ƒÀtW·ØÖÉ‘ÚO Íõ:;_sĸu&‘aÙø~Š„Ý$¥ ~ˆÕ„ð÷“Näˆt› ÖU¬;ã^wÆÏ™ÏÄq3Jzæs9³ïSÏÀÕüùÔ$Ö S‘ µyѸ‰`?%›sf©!È « aì¾é…$ÓKjø»Žú»}+5ëf(Úq“8”„š’}g r»É_³£ð!Ü«'þ2†s2¢·Uƒ1m|?Sò~šâ)—rEŠ c7®§Œ°—Ö°®C Æ©gcŸ='Pt|ïÑ[F…y–ܬ”ÃM vAHï“‚°ò'ŠÕUAÂÍ9Æ–ÄeÌñ3°È4‘MGÒ °Ö°®bÙ6±Ÿ ÃàN ‹{Q’K0vžÉŸ'{w!±]Y¥éÞ]Õ¢!1L|?S°ŸÌži³U×(vµdIøùÌyãôu 5`!>7eEp2^dh=¯È©$å±Q*Å.¼×ÑX¸‰ mgÙtUƒ1m`%Q—ÿÖ—ý˜6„¿Ÿô"GÈËÔ°®ÃϪ£ÄÃóWú–™ãeÁ“¹ì(ÄYìVÍ Žj↑!R:êĉøµ þº8ÁÏsMÅtÉ‹‡Á­{‡:oñ¸æT§åR€½«!ùm6;KŽ“\tAŸÖ˜ÒC®ºKmÓw3̓¬—$oUƒ1m éÇ’ç[kˆuµAŒŸ©¼ðˆô{Ëòbƒ?S,E6¦shÓ€û—›YN)¹Õ®ogGÕ¨“Q>Q”] ã±t³+«GŒ±jH¼¹M¸%Á‘‹L*j†¡jC ¦9Â^ZúŸxîsa¹0-~ó HˆûAw•Øç­F´s@AQÇE[OðU;‰îÏö{™g½ßÏ4jròvÅìd”F·ûg:¤‰«Çõ…Ê>!æ ݶÁ6íPÏô”¼ß4oèJŽ;{žÌø¶Æ õ¬0ý/Œ›yS²¡ÉÔÈ« bÏVFØKkX×Q·Lʬõs7:ááÃý?-‰,UÜQGÉ=»{FkÁ_öxzq´Uƒðìÿ™’{ðI- nïi³¨½ÈöÛÖuhÁHÎ;™:Ýt »pD_ƒC^I.´7Ž'bGGvƒñ¸ÜÏÄxž¶*Á!­(Hxêä=%jL Ô˜ M?Ó °Òðgõ M^X%`Fç,gutµU¤ŸzI>ß ÙS÷ Â3Žúhu•±k­Œ3ûxJ6Ò¥J3§‰Ì>N'<"ݦ‚uõ¥Ê6snï§À¦»1æ9¥äêLa ßîÇÆÃcæy'ÖQ¶HÈOP5ӆ޲7ù¬áh« b_•ô2Â^ZÃºŽšøsä^‚‰0OÉ b¿E²ãJ 1X”£wXC÷Š•ÖRfhç¢!1m(¶ Éöðζ¾Ú þ~¦‘^Jßu,‘ l‰Ý©eÏ»ÌÏ®xJ÷>7–À9\­ƒKÂ¸Ú çˆ»¯Œg¸%Îø¶g„ÛÆL·‘ù¤a]‡OƒUÖ;Y:,y;îF;‹WOÔH¶è[0¢÷ë])AAkÑ01m|?SÒ±‰žØ­`Úp?ƒé…GØKkX×QŸÒévŽ–GÀIb›2æ§äfCsVTÌ¿WGã3cœoÎ*ÁoÑxóùƥ¤†È”©6ˆ¿Ÿé…GØKkX×Q3…Ä|ÏÊ¥vf‹$zî<ùƶ© ^Á:ùƶ©ÑÞ¢Á˜6t<¢dcý¸5´±Ú Ö!©HŠßÔðgs]zÊ· ‚»Åî\T .\ã"éâ-(s@Ï¿ËcùBÀ x5xJìJíÆUñûÂþ}Gj¡".S>£kn¥¶S‡ M“¢ðû™¦õ¹ÝÒôêµ×6óMuèëbÍÛ™†ü[$LDÆ]1z‹6pùÌ^£Äß™¢ê™£*Æ4ñ-y¤"3ÌÄÑm± ¬ûê"ISÁºŠz*P9€öŒÝÇç±»ó‰%Ç´w§M½^"~ §gbݶÉ|yU!-`‚$ìS2ÄO¶š FtFNxD¤a]EÝ@=;;Û¸óØÃò¶ãPuJÎÎF<ýàŽò¢òovâ/k[ðö÷L¦cÚø~¦ä]øØ¦†±­6ˆ¿Ÿé…GØKkX×±„ÉQòþ>–y&x¿ñP»3Ú’‡)ÐQ™€½¤wV Ùx½Hp#UÞ™D¥A[Á­,i›¸3ÚNxDz- VQ#bò¾Üi{WÃæGñÕ”DN@¼.Ö•D§ˆC‰‡h3½;ö‰—ê=G`U4$¦ï§H˜o` ‘áZm㘥êH¿¥a]GÝ>©Šôr@ÙüQ@ô[QàÇdòÿ5$¼“][pÞàäçãYfB;†KÀ"ü9½ï‹z@eÉLÁtÎÓï} @ì‚íµ}—wdz7Yïò,¹‡7[FDÊj î§b\Æà;”#¿s©!1m`C IÂþWÎ}µAŒhG«’é¥5¬ë(µ²ƒ}‹šŠûFP“nÈû­Ü“¾èbR‚ºÁ°'ÖcªH7Y4$ÞØ½>%‘7pÜ?©!´Õ†°SäEÐy™ÖuÔ“¼8cdy6‘•ÞгàÝmw¦øD+¾¸¨¸^4Ÿ %†Ä=Åœ.Dí1\‚Èe:~ælõ:²zB%Á¾È;Ï_¼××ø.¹‹âp‹ž© œ#MÊo•ÜÊÜDÊÄêòýA)€1¢g• +TÕ0±ÉYR4wÈ”ÓÜÙF’³¤a/¥áÏ:Ê×X÷xY»[¼c .{eãwuðP‰u\(Ýÿ‰;–¾¿¸2ˆê”rø&õ)¦mˆÊNyõ²ÂägTÿêÓGå΢¨E nÝÙQ°¿ÿhV?nÞ`5_È Aoycw^`yÀ»›¯ó ¥>K ·¦G¤­èÔn—W`‡5ñ‰=ÔȃvaYD¿Eò =ì¹oÛ™G´sÁXh'ÛƒG\ÛªÁ8—RrdÚ "Ù¿š.›Ça'¥`]EÝ žlÅ”w¨#Eó"]LZŒ¥ªÚÅ%apõ¦³í{b|Ÿ*AVlÕ˜6¾Ÿ"i “HC¼ª asö«ŒH¿¥a]GÝ)<¸ÓrG ±»] ’¸Ÿ?y}÷ˆ¹ý¢ |$ÖõÝý”½¯Œo×L 3ù¥<‚uÙSñéÛš”¼_\„Á¤`<«‰‘T1òÁì¢æ¯k¨‹Uz—Ãh7z‘#‰4ñ)ÙASè“p¾½'DI\B’ð­6LL >@²‘ƒ,5lÛjƒx†r€}¤‚¿«¨yÅ ü›ûýn€=ˆt[¿EòžÀvó†ÿx:ɳnfc?xâ§æѵºjH|¹vnJkç¬á« bìå…G¤ßÒ°®£þxùG~tŒëQi®>ìÈš’ÚË™j5.æ¸÷“Ý©‰•Q$àË[4Ó‚†’DÏÖþ35´{µAŒý¾¼ð{i ë:ô}>ûÜ*ݪòPçkRðþ.ÚÁMK9¶D®ÜQ5mÎuvâ<×X“Ÿ9]Ç«÷±ÆÖùqúÆÉ«ï%ÐÔIgå6÷í`k2?ÿIa÷ÜPåÕÉþŒCÿÕI†R$hi°h0žtÓ–Ý)ÎÒ°o« b<óå…GØKkX×áGTËëÉK•;ísÒ±w'ܦdœHq¹¼Bë§Ø·´ûà¾êp¾mS2@ŽxžEawºí”lL’±‚}¬&vçÛ¦‘^KúŠZ pVÒ î0ѥݯê¿ÓùÝC~pe€à»Z³à³ø›Õ‰ÆÐ¬_6Û²0îéÉG/Šý@[Â鑿-ëÉZÑæÃLv(Åq ƒß"i;ßÑ™âr‰m+$¹·9☻mŠõ4%ÔÞìKü%KD‘¼Ç¾j0n.¤MÉ«‹µÒYÕ1^ÂòB#ÒKiø³ŽšÝ%>2GÎd±‰y.w\¢äam¬¾q±g¸öíYåž©q_«†ÄM=7S¢¾­Ò€6Fņñ÷c/æ{i ë:– óÃwçïq`°Òê…cɃ3å¸}üÂá‚…¿Lo/¼> Æw¾p,‰çªRæ¡áÚVW¾pì…GØKkX×Q_8âÿ1ó’ ØaúpKO )yÚ<ð28ÆÉ°d¼ø F4i°˜ß#î¶jHlV锌Îà¨5¼Þ.6ˆ¿Ÿé…GØKkX×áh0ò©q‰®„Ì÷Ÿ’·ÕÁ÷„ܦ)¹PÓÕL+U‹#|y݉qfGoKФ­h˜˜6ðs”ä¸Tn$ ¯»‹ b|%ä…GØKjø»Žú”BˆB(äØxrœl{>%ÏP¨çü„›{À6º%þ’t«HððYÓ„žk‡b:ØRË÷jÃXÿ¤-ÓG*ø»Šš#±œïðÏ%!h£qøÏ ;"ã6 JЇãà?}ԛ˗"Á¯h˜øòMù” j œ}5A¬¿î5ʈt;ü]…–‹Äbeê9Ö?.>(6߬§¤‰ ¸ÃmŽv¦ˆ¬àÙ5ʈë\5o¾Y—dnލ] ‹ cü|{•ØË©a]Ç’ÁÍúãóÝy( mw—%צP-{qëd@9Êx'önð)#ž±j0¦ „œ%9†ú~HøVÄÊ-)’é¥5¬ëÐ_˜÷8ìæ ‚¸dAeJí¹˜Ï– ~)øK³•íZ4$¦ ̤³ïGjPIfÚÈ¢ÍôB#ÒKiø³Žú>šsœ;ÛŒÝD¨)éä1ÝUJ²‹—'.x@Ž=L„¹E‚܈Eƒñn&Ô)iÜbZC;VÍT¨é…FL¿›¶¹×jc¾‘¡q²ÈxälW xJÄjØ|å#ÖÃæ â/išŠ™‹cÚP.$]=å¬a¿WÄ1Ã^x„½´†uË [Jmœñ0GfìjüF¢@ôhÛI6ïØñmŠM@½¦o›ezâöO÷ëèT÷pÀüØ$ý€zìÍ‚é§ÿñ¿ýN<«2çôݓ쨉<”‚™^¡so¤œÝêÎ}O<œ…µ·ŠÈ`ŽÐÙ75ÓF9£.vÿ™¶¶Ú ÖÞ ^x„½´†uõ›|""Ë;j'ÞßsSBÁ”ø¢…)èñ]ºu3S°.‚ƒ+G¨!5$ny]$IgëQ+`GÕi"{¸¦a'¥`]E½ý!‡›Éó[ÃÞzÜ‘¡¢>”›*ûtò«5Óø·ŠãGÅ6«s3„§aÙˆ)Qïzi¸ïγ¬l+ÜS$ÅoiX×Q¶’êìx%äú$YIÁŒPÜ#‘jõæäÙÈõq“û ð¹J†‰›«œŸú}7{~ä¹Ìé>ãH?á÷3ðùçù‹ÿ5;óÀòìú«!9ªRY É®òqS1vÕ¥"]S}Hˆ¿Ìã.\Ú,„e3$¹I ÍWβ!¬ë–±—öÛÖuÔ/òxê ¨ØYÀ$ÁÁ$ôvÜ<=ŸèÜ|8?ų׮Á¯>¿Û:Ýxˆg/‘ŽœÏ`«á¾yî"˜îyúâÿRJËV®ÅÛÀ‚vl=ý[$ÁÇÏ«xÒó‹Ž¿Ýë*¾UÂþ¾/ g»kKÜ Ñ Ä&’3 ðûh ë*(Õ¾ëäwpgŠ‹'Ý”àê‰HÚ‰ÚÎ]gJ\‹1×Pñ< Þ[Câ­7§„Íy§†ã\m?Ó °—Ö°®cyßê­ëħ‡#¶¿E þI.¨‰.åý'ëm™…>±þü¹×éÆCû,§3ÿ-ÕwmCÒ¼>·wš½x_ÓÙ:«¤lqMôì|Š] PI½ÖñÔq¦Bø527øçŒuú,d ,Œiãû™’࿦†(é¯6ˆñW•a/­a]G½÷:ûQ7ãâÑãñ_U‚èE}óý‹hEÝùúoÍP¹NS€³k-¸yo™‚8â)k¬5fþõ›÷–6ïÏí­§/Þ¯{ÅŸÙ>+6empK¢®ØDS4å½Ft¬û3gpOêîj ÀõYgB;¾¸´;ïÂ0½µE}óžÍës;çé‹÷N/`V{êše/,ÖKüNITL05ù`™]k¬°xŸøÏžøËô8”ÙyDÔÔT ²¡<=¾&窡ªîÞñÂï']ðçöY³×%Ô?è…µfÖ鎄q[ÿVÁÈ´²9›©.¦~2˜ý$$¿K™—Ð$ÚD¯ãCü/X殩ø&™Šò39”—] «øõŠ,,D6P©ö[%·"ä7/—t5­jÁ"þcŃÕåÛV5 ßÏ”t4˜ösµAŒÐ]%ÓKkX×Q#ä×é %2œQ,OvH0˜_¹G½-.ô± ØÉË.ÿê7š0ççäyŸÓ¡y.ìH®Ìéì”–êc¸Íës{§Ù‹÷5Τ ,w( f¯Ø,^gþ6%yߨl?Ô¿Yý´ƒŠ¸ÖGÅoé*#ƶj0¦ïgJNæ‘ZÁÙVgþüí„GØI)XWá?jü9ÙíÚ5ÝÛE²¿(þ¾xy'I\û]`U@ô%ê艡Ë31rÙîw¿™¢’qœS±L|?Sr«-Dzµ ŒL6ú#쵬«¨‰]ºõØ}të¼ÝÅCí·âO?†‡Íx¬Å¯é*°\PQv´9{B?CSpaÏ:§ã¯4Õâ·úÁtÎÓïÿ-ù®Év%ÊŽ“ÁI¾g°Ìè7HàXÁßy$„Ûñ©aâÍGxIÊ}Jg4ü¾ª cœS¯*±—Öðwú³"ÔrðYÜ{¾d¶Á‹T‘m¤D4`Œ=â%–‹Á~¨Âz×Gqœ«‚ÄM\)‰kÿ™"5­Ú Ökç,죬«ðmG›ßb—ùmu܉ÅvÄš]Wu'Ï3nꢥ2ŽhÆ{³Ã2Ï"}~iàe¶áÅþÍSp"ÁvN?îE= 20¯Ï휧/Þ/‰^Ø+¹ yíAå1pæú-’ƒù±•EÁÏ»¿.¶{$ùÇÃÒ;±ë.#ÞêEƒñÐIoJ:ó=RCßV}³ {áöÒÖuø[Ì䘙t©}»¢Qc8A‘’ß—Æ×÷aƒfl{¼N F>Ç..¹VjHìÖC)¹Ñ¯$5Ü×±Øþ~Ò‹a/­a]G’^*ûpÁGG¢XàÌoJp½zënŒ7*[£ã¾YðQ$8£,ˆmC‡ HÌ^N ãQolÙ0þ~ìÅa¿­a]Dz±PϽFÓ®]y‹3N¥>m(²u2¦‘.×"¶—+“ãË5)9éù¬á¸VÄŠ¦ÉôÒÖu,O©~Ô­E?˜Î»—ß*yH/0ÐÙs ( þ²(0nÓr„Š‘RCâìse o_¦†~®6ˆ¿Ÿé…GØKkX×QXJ„z´¹¸Q8⎫"¹É¿ð€ý_žƒOÚ ñÒE ¤¸)Ó ÞLpeɹ‹A ÞwÓxŠb<Ì[•L©áï"ê!öÆŸ7h®ð¼bu%(Ù•àf‰Z"µ.UÑ500+8ÐlUÂ>ÕUƒ1m`†$àôô­­ˆñ4— a1}]AMå;völW×ùhÕ-a ý}³7„7öc#¥y*ÆþBåkñ’ªÁ˜6°¿$ÚŽ`?! îûgÄØ_´*™^ZúÿtgWgG9ÓZM®ž’FzôˆãJ®åK®WŒ×¢ÛjDƒ©!ñf†õ)Áþ'5DÝ}µ!Œ“ÇQ%Åojø³Žš?rðJÇ}=³AvƳ‹äPCÀ†£¦ßºJ/ÿúë1¶UƒqFÑSÒòõYCÚÓF†ÑÓ °—Ö°®C Æmì†sß“åi'ÞA ¤ªR â~¸ì¼±‰ëä\=¹Ëö}ã^F\ǪÁ¸«ïÛl̇³‚}Ýlawß7» ÏÓeM_–PËúõ¶<<øÙôüñJÒA‹…öqrÆŸÍØ+ÆO•æˆã\5Ó†²"øó–Õ¿§íÎ晴é¥5¬ëðŸv̈Ûã§8JÁÁ<Š”4’Æ£5þã­±³lÕX§¡"Ùwæ’`[@ œ4Çjƒøû™^x„½´†uu+¹ã'lž‘Hneß¹³ðÈ@r VOvõ‡¹'Ç B*÷VxdŠ-‹cÚø~¦$þ÷ú™â« âïgzáöÒÖu,ï£GÏh’‡>ìAÒ.sÿZ²ã[÷îúÎøy¡&¬»×`U ±BHE‚rÉEƒ1m`†$ÛCæ^kØújƒ{OyáöÒÖuÔx†j¦KL‹—ÚG‰ßoð^#¶l?|¡æ/»« p×AÈŸ‹γ ³ Ð‚}2ÇÓãmSÔjg2Ó9O_¼_¾Æ?³4Úw‚•Í1‹äî|{«©Ó'ÉÎ@âv'ÆŽ¡WÉ‹ŸECbÚÀ INø85œmµAüýL/4"½”†?ë¨ç!²?‰ ‰i¨ ÝH#S$ÈzvÅ2JíP"ÆŠfã/ËÎ2à]MQPðæ*4KŽ0R0ÎÕ±n8‹dúHWQ·TË&r¹7“Ç”M1Êh Û—˜äÕ þj†È1ØŠ`Íeº±³)R‰@?s:“%R½“)Ò<Ó;Ìþã}Ù(·ÍWyÑ´MW€"r°d?ÕÌKzgVíû0Ä¥"ñ—õ|E²\#BC¹fTVmJ610JƒÉ"lc’EØ H¿¥a]G}4±µ£)Û¢£ZS(^å—–°k h†D'Kn¤®> »¿“j”#‚¶´*0¦ Ý0P²©Ç´4œ}µAüý¤^KÁº -w»ó>ú>s›ŒŒ¸Ã”ä 6^ˆ¸*1UJ+ð›| s@d>ÌÙBTîĈø»ƒÎuÎ~sU=á÷“æý¹|óôÅw/1vŠlóñ¸2º“³6`ªŒ¶äæhd>zÌ¢*™ýŠu,zqŽUƒñ嵦äŒ>ZSÁÙV§›Nx„”‚uõ/ʆí7‰¹Ûs ¢sý ƒÂ/fÈH͹Ú¥%«êèleDÀT Æn6% O }[mÇ {áöÒÖuÔGÔ8žY ‚}Ë8ºÌý‰zxè˜üâ‡ëÞWÞv'Ö]]zŽæECbÚðñ?$: ¦õðHÄßÏôÂ#ì¥4üYG=(¯:ãpçÌK>݆53£O6»ÏÄjä’µ™H­ë¯§JPZ4Ü2_íÈìh”[Ãy®6ˆñªí3½úü™^RÃßuÔÃðÐäç·Jp—ø¾Ñ:w9Úü €» Ç­…¢<£HÞ·æ±jH¬ÖBSr¡óÝÔ¡jƒ€òÂ#ì¥5¬ëX‚«M߉WÍ‘¸)9ȃ\4pO3ÎÆ>©+#UOeUUƒ±£dSßÿëgjÐ÷?m87½ð{i ë:ê·ùFÞ®ûïÆ‰ìº–{LKv%|]ʇÒ%厔ÑzÙ»ú²jD†óÓ’ía¿U+ð¥MÌ[L;áöÑÖU,ûH2QngRf!ä7-»)³ ‰Ë<:ZìD¯šO¥LãªñAX7GœJº¶cÚø~RÕ¾îJu«ÚÂxZÑ‹!/SúþxÿßÏ|Úû~ÿ£ÿùþþüç}þÓÿO° Fx¿åÿú>C~"EsÔáŸý~þÿöþë|þË¿>ÿ×ûŸÿøtô}{š×Ž@\ÛÙ3Êÿû?ÿûÏýùÿ>ìˆë>FÜ Dêùù\‘ð?%ÈGäÚD‹î I$#ªû¶#ñ÷p*Ñ”mQ`L1Ã’ƒýœSøWÄ1CNx€}´‚uüb]xô£Ïú†TÔ8>ÅHœÈŠ$â“#rãq{vÔ…Œ ùˆ'’ðëJ#ÒñôEAÂÆÓÕ”4¤&NÛµšØ.›°a­a]—»3û÷©Zn?ß“êiÙÝî·Hn0÷ôˆÝ¢)íƒãä{~ß*þ¾3v’ôçˆ>V Æ´3R‚lŒ©á« â˜a/<"ý–†u\°h«>øuî×ûéhxñðÆbJÊHûu w%¢_-ð¹Wü:s]"}õN Æ´–´»§†(C«6„c†¼Èé·4¬ëà‚‘Ùr#¢1\Ö#ì™3WËo‘ UHÆJßUpµLÅ;qåbïQÁ*†øvJÏñýnHM/û»¯ì÷.Ö©M7'ýîlc›#ú½j– Ì„]©SC„Ûª á˜!/r„ý¶†uªÆBŽ%™±eï õiÜF²…"A~QƒÆI>ÞÐìñ~=‰ò¯"éq\$Þä»$ å}_)Ö€y±a3àÄpì«‚uZ¬~ºñbâÒû‹ØÙ3/"È~¹)AÞý‹vÉk`9xU|¹ ãwxTI¿î¶jHÜ·5WÌ Ô•Æøå>L5öz95¬ëø·Äsï@4Àx7C7_ES²#ô5ÞcWÁ<“#œkcÁnk¥÷±j06Ëg‘àI¦éÛX Çp»àétûù».õdyó?˜êÒÏN±Ø½NÉ@«³-kp5nñ 9ŽŠãr’ "G\ÛªÁ˜6b†%Á]O2kØ÷ÕÆ¾Û†½ð{i ë:*G3Ypn6cýQÓÎõz¿Eò 'ñâ òÖ"ß| ò׿›€è%Q$ï‰[4$¾U$8%ïŸõ}KX(!‹ clÄL‚Ëé¥4üY‡Ì @=ýòõîùÀa{J¢xúµá¯K!©÷g0îˆ__¶ž#¸oO ‰i3,ÁÁpjx¿‹ âø²1ý¦†?ëàzTy2Sk ¶àwà}±¢} n°œGFYto”÷Ž(Š áëHd¼NÁˆÒ¢:ÛðbÅùœèç2§ŸmQ6©·y}nç<}ñ~éDS»X¿?ð;. ‘ѧݔ%úÿ½Ï‡5èWÁ'Ê^18K =â¾V Æ´’tþêRCßWÄxJ*™^Zú}ÏY+nõNeÊ4RòžÐ̮߳¹x E®cÔÇŒ3ñûO¿3R7GD¤®(0¤…˜`ÉÎ|ËTð>„Ä1ÃNx„}´†uÚ-ã4¤Øcd#êÖH–7âõ[$ƒoµƒ 9ÀïÁÈÇ‘qü–øæˆóX5ÓF̰$²ôaG¬lÚ ŽöÂ#ì¥5¬ëЋñ|dÓ*åòý“4ö³Ü€ð[$I ¢Œ:Ž …~ߌǎ;ãðåµG•1¶Uƒ1mÀ{KPÿž‚{¾Úƃ^äˆô[Öu踋Ä2úz,ø]àØ<ð÷M kÕLjÄÀÀ¼·}ñSq<2/Ü)Ì‘ ]5û®¸H6¾†¬ÅêÓq̰‘~Kú®—'y®(÷&¿È^Î ïÝ”40Øàþ/ðûOíÀ›À8ßq=:ʈó^5ÓfPý9fPÃÎÈiÚŽò"GÈËÔ°®C|½À¯ÂÀïØ#Y§D„¿S½]·xàDkl°û€LuDĽ'ŽÇI¤È^sD­Œe#¶ –¼›É¨Ì±D2Š á°!/r„ý¶†uzñ¢ÿüCc^©÷¨ Nš;¶}8ïZpàXöb2ÝݸTû1Hã.ü¾-ŽcTI´ÐEƒ1LÄ bÛ÷3ç÷­¨A µu|f×4oq]/!l‡®Ò¹µ8Iž9H õ[$ ‡ ,‰ûÀ޾)c»IÏ)¯ÿ8XÞeÄs/ i,aÛ¶T°õÕq̰‘^Kú ½ƒêsá*võ÷ÝÜù}|ÿå|î“dœ:Q=bbèy&»&ƒÎ}EòîöUƒ1m`a óSs¢¦ bûà…G¤ßÒ°®C ÆÖQäVÚcÄma|c"!Çú)‰xA‹&¹_ã#Ø5â‹#ŒGì]%ï¾u¬Œi;_K×75Çjã8lÃ^xDú- ë:ôïË9ŸQ=z®DX=¦(nŸ’²‰~l¨Û{ß)¨ìGëÇïjÇÿ›#ö{Õ`L˜! ¹–§†}_mÇ {¡é¥4üY‡ÞB—‹™ºÇ $wç dçÉÞ´§~!·ó`yÇ©úª;Úƒwq1À ‡º#M ;TO|L~HL'<Â>Zú mª°\î%‡Bê7îîP qâû<%Ø~ÜŽ Çã@säçì=q¼¶³JîhІ‰7†§äúÔðnKÄÃË °—Òðg:܃I­ËYâÞÏxÛE„'¾Q;¢)Á±¹_Qu“¹ý‰?Wcº‘püãï[•¼øZ5$n¬oœ’†\Ì©-(§ â˜a/4"½”†?ëÐ÷Õü<òîŒfô¸èÞÐYæ1%OÝõ èG›i¦c÷ ¥+8‚„§:U{ÄÅFÖš/ääï°"cÎ>ŸU?qL°a­a]‚âé8 ‘+S{D{c¯v>CNɱƒ¯ïø‡¾6cÛ{5áˆÿžH#ÎkÕØaÈ”Ü "ZC\©UÂ1C^ä{i ë:´ƒd³öøÛ$¨èç…2Œ#:~âO;Ñcú…(Æöͼ'sƒ—EÖlÓgWÄøç¼ 7n¢RpáŽrNÆ•ë¾ÀFñ™òÄÅc=–˜ñBªÅ'c¡?ZTœÝ± HnüÓ!jpàÖâw€GhÁŠ]àèíáfÕ`LŠ]@râð05œûjƒX±‹"™^ZúY±'fU! ÎpÌŒïï;ª~«mIFìUã_GU¼iZGó½J^ü¬«SSJò¨* AVmã8L/r„¼L ë:jô‚„¢n‘Õѧ[Kâäqí¾»Ñ7K9"Û|«·ìˆRƒ"‘{·h– Ì$øœ÷ŸÔ'›jC8fìî®öÛÖuÔ’ý -ê­ÃÛ#öñð°' 8G0[F±Æû4Œôsð^‰qÖ»ªä=ÉõEAbšÀYO’wßï©!(Wª bœõè„ØG+XWño›ôØ Dlz»˜™‚hç¶÷W±iv yáS n¯(÷Íg½Ï醛Ê5,¸\_æôûÙ«~ÁØ/Ò~~Nï<}õ^/¼jÔ²… ctòmƆ ©.S…~ïw0rc#v!äŃ”žÂ±U?z•¼[ómÕ`Lˆ¸Hòn ã '5mµA3ì…GØKkXס<ŠY.DZ›vOqðà!š|þqP9ëù·c¥a<0£î¸|Þ®:Ýp(p’‚ŽÈJÎÞŸEû®ÈÌ4¯öNÓWïÍ£i²í Dõ;ÒU tb™)9AMÛï]ìoï¡?ãâYqp}Õ`LØH2[<5Œ¾Ú ŽöÂ#ì¥5¬ëÐ!ïaä 7óì 0"ƒíFšÐC6Ø)U'z &ïð;q«Xq´ÈÉ×X5Óe,ñÔðþ-6ˆc†½ðˆô[ÖuhÁcòöCq‹TÖ#²!КfJ:z…ã€ÕÑ[G°‚uʃ3qµUƒ1mà˜'I;x³a Q2Zmë˜W$ÓKkX×áX²IaóT;"ýä¼Ñ a) "n—PÙ}‘ý<â 3aDŒtÝêÏÏ}™mí1Ü¥Yåt¦Y¥zÀoóúÜÎyúâ}Í0Ù·1k(G°ì*uÁYgJ:Ž#ø.Ü2¢ucBÁñÊ<Ý2jÄy®ŒwU¬M SŒ¦†ÖV­Ù†½ð{i ë:êãøÜ™xòIuâêóˆ#8Ÿ¦äBƒ5N"ÿ~ßë y{ÇSä=tìe@Dµ«cšÀI"Ã3¨àØW Ä: Á°V°®B_ÄѨeèb>ÊXwätfýOɉ]ˆÂWüÞ¸vAƒrµÄº\-’÷«5V Æ´ï¦$¥gSCVÄ1Ã^x„½´†uµ›ãù,W¸§©S6vc-0Å¿”!²”ûm„F ŽGȳ±šÜ#žkÕxãJx 85D¸£Ú ƃmTÉôÒÖuÔÑÀÛˆ–8wZº»ß"él¹Ø´¡Þ* )wÆñŽh¤GÌû¹j0Þo¿UR‚(êÔÐújƒ8fØ ˜~SßuÔŒGþ·ÒˆF”3Áù~)U$h´0‚3$Öö±¦Ü—ã¥øü3Ê€óX$V hJN„’RÁq®ŽÓìƒGØG+XWá`ã=oèùxŽŒæ†·Yc/Ç"a.Ó®ßÞo;é1„qáÞ«dÁÞ¢!±:ɦäx˜ e QZm㊞^äy™ÖuÔxKH‡ÿ¼L+{_“»uNI¼úã¶cQ‘w0ÁO~aÄJÏ*QI¹h0¦ ¸/IlâÌf ±Y¨6ˆÁ•‘^Jßu(؈b~>¥k|6u¡þ{¤RÒPùÓ£ÏÛ­‚Çw§þnOÔ×¢©;]¾ EÒ㙲h0¦˜! º”þ¤4)-&„c‚œÈrÒ ÖU8á'„Û›g<žùâ‹àÏÅM¤Ñ©)vkQ%øƒòûÎ'í„ñ^|ßô€ûõ«L7¤z¤¦Rp F =}àéšú ÏzŠ ½ÓôÕû%­†¹Š[ä§Œ9q KØWmñ)b@þY_|3ƒ…8¾_×Y%c¿ûªÁ˜6†°lâ©¡GÑ]±!3äEŽH¿¥a]‡öT,‘Ū}IAIt“¹æ·H‚4nDÄ›×§wCŸ½Å‚#¢­+Ø.ªcÚÀ Jâ¸á¾Šâå[m#Ì~VIz™Öuè)ʼn6]⎋×Wc½)ýÖk›%Úí¼Âµ^ îÞ®¯ôù©eúÄx§ j›æô(e.ê‘Õ|Áô޳Wï}äÃ×VñÒΚÃ÷9z+»$%dxñÃ§àƒšeì ƾýà“Ó#޶j0¦ œ&,A’øÔpöÕ1ŽO•¿¥a]‡žÅÌ ÛØœgƒóÀõòÑIõö[%wl[Þs ²ºˆqö(9ïŠË—X¸ûª ñÆ7É”l;ëK¨ RcªadoU2}´‚uõfþP)Ôлggë¬hÏÑøî‘$ nZ<׹Ϲ°!éQÇj^b¼zðJ#¢•hU`LxõHqåx9YãÊÓqÌ`­`]…ãçØT°†RG]ôÒélÄÅ£Á§y„±k}PA=˰©}º!v½WŒÈ¾[¦ SŒ·à}©ÄPÓƒŒ¡¨'Ä6œæý¹ÝÕìÅ{?‹qÖËjo"NíØÌbǘ’ÓÇ¡ xèñþa‹üã#qÆ¢_ÔQF¼Æ4–‡<5Ä ªÚ F¸ƒNx@z-ë*þ-GÝ@OíθóÁ ²%ŒçÁŽ€‚…¥È#ø ÆîOt=¢÷Uƒñ¦Î)‰à÷‰í­;ìöņ0ö¤[•¤—©a]‡Êì‚–Ž;¯½p0ÄUiÛÙÀgJvðß°¦IìØµŒãjS¦‡F<תÁ¸)q~J6ðߤ†ƒíRÒ†°kSž2Â^Zú/xü°ë÷ûß›N¸q"ÔÆšq8 4ÑB°áR-dìÄ·8Å&D n+‚m.êtAªÇp ¦šÝÇ¢P±˜÷»«é‹÷ÎÔUú[{:ì"Y#s,¦äá&ž·eÇÁ Š’¼;qxç¹§ŒhGÕP°µ)i Ñ›˜A1mdŽEz¡‹ô’þ®£Þíñww#üÝÞ¬pèªò[$º5\/GÍ6wÔLãWتdDõñ¢Á˜60C’Nζ԰_« bünå…GØKkX×áÌÕûÇTAL-_.¿UðÄ£®?Ú¾îJZܶñç½ÙIŸó¦ÂÓ ÖÛ*‘±ø“ÓùþHõ~¤y ¦w˜ýÇûK(‰ilÁn–æüV 2E{äpïñà‹#(òÒ˜,ŒL¶Q%ýˆ.UCbµÎž’÷YÂì8i`д±¶a/<Â^Zú½nÙäÇÚ]?\t@oˆ=øxš’÷÷>`:JÉÎÀ¶gèÛÞcµUIG5[Õ`|z“™F¦†c[mÞe¦‘^Jßuè{Œ¿ð±1ŠÎ¯ñÓ”yù°„bJ˜ßЃ™•ßh›bÂúf¢àÁ#n†‰/‹„å‹©á5ª|Ú ŽöÂ#ì¥5¬ëp)ZI+H¡3Ö.Vš<”mÌ•èÿèî¹ ñÓOˆbìyç€û¬³…¨Ñ Þíuš…¦E=!b½Ò7O_|7™Å$d»Øõo'R\™D†Æ ¡”à˜5bo-wÜJàÖ©±…§‡»ØUCbØ@,C’¸ªˆ¾4DýRlhmC7YôÂ#ÒKiø³?p÷§åö]9`Ëyx¯x‘®Ä’†ÛÁ~_®IAwïÞ‚‘(q& GDªj0¦˜‘01§†ãÝmUÂ1C^äˆô[ÖuÔÂ5r :åú”ê¨ù;Iö“9—7ˆ Q˜öèm_°ÒÄÁÇ¢W”¸ ‰i3,AªõÔðþĈ0URü¦†?ëÐ^øàÞáúaO-œî·Ywc°­HP\ÓKæ0töh;¾_‰‘EºWIøÐ¢!qc lJ.ÐO çµÚ ŽöÂ#ì¥5¬ëЂF}@š¹3ËEU “™,dIQV=C½}±ìjðNå—­J^|­„e3$¹Q •âÞ¦ÚÆ˜^äûm ë:ôÒÖŸw˜ÌzرùÚùš’Iê#˜f•`[ÝIÎJ¸ñîˆ4ç"yñ½j0¾ÄB2%l›;5`Í›6±èM/<Â^Zúmš6w›g€H¼BßV‘ü ëHzäx]À7ëNî§â/Ïû×íª 1Mè(ÉöÓTp>«b<[•L­`]…xǬ´ N8ü}/¦9\ìÔþ[$jïÆ®¸|äÉndý1Féì²2häýI ‰i©?–Ø%5ôcµA¬÷;¼ðˆô[ÖuÔtî«Lö\ƒ³vå¿S¿¾q€›ÀøuÞÀ4-Œ]Ý“dDs€¢!±l R'É ÷SCü:« aìÝèEްßÖ°®Ãé3?n$=.EUŸƒ|ò¨3û­‚{ð­5”jxP¨qñwØÉR©Ïö±NLÜþáAÇ‚¨0ûÉÉgð]Zñyñ8 £ø,=â¼Õãusq.› 䦽/íK)–WÞ†´Í1¡8HÅ3ï¾®Šñ;:¼ÎO[5Ë~Û’Ó+ò6Õm2KÏ6„‘¸ùTÉôÛÖuøÕÓ²Úçà]ô轑ƒ%οEr#eá`ozâ‹rð=ã*Öçˆs[5ÓÆ÷3%,ržl˜6ˆ¿Ÿé…GØKkXס¿0 LY{é#ATäü þäµ%Q±e¨àfÖZô¯5àž½|öÚ®S ¥úûIÁM>/Ì=ïmêÍæÇrÓS¯]õ‚›üw'ÛÛˆ~—ñÆ:PêþNIT­F"h<Ó‹ò~9#ñsS\@Çr-äcM ²¡g5$ïÌhàg ç½/6„¿Ÿô"GØokX×áàˆqM9سòݳˆ,÷ÂÍðo‘ÜIÏFrÜ÷ˉœ—ó©Û8–Úänô¦cÚˆ–„®Ÿ©àì« bQ]ÉtR ÖU˜¦Œ”¢. ² 0*N9• ãºuº~–M*bF+}þ´e¶!´?EÐTñô6õmH½ÍëóôVÓïM¾9²vK·;#ÚKŸ(2RJ:Ù¢*ª“)ò¹ Ž0ÒûƒjeÀÑWÆ»é“RÒH~dѳ§Z þ~¦a­`]…¦XîâðîÿÁ»1¾þ;‚]uTŒô›”­ ¾dx}Žòq{êTCªÆx ÜŠÏéÁ&™Ú p$ºægöJSW¯k¦­’öœ³§Æ2ÇN õ)‰Ø=²Æø­8I^Þƒ2¼½¦7ïAª"xŽUƒ1m gO’ªº©¡ß« bäìÉ °—Ö°®£&wmØ!93H©{lõS¡…ˆ|êbEm¢Æˆ›‡„_Rü£ x®e¾ õc¼ÈgËé±ã)úA@Br€ÖüÅ­[†v¸Ó7EÁ)H* Š‘<=ÎlKXŸŠë% ¿G³bÕ0±ª¦„×U©!ˆŽª a=Êdz) ÖQ¦æ=J¢.õÖ¡5Nœ=N…­'øâøœT7­PSV§ ÞfÍ´à‰wÎ>¯EûyY»Í{€¼óôÅ{30þ¸Ìò݉aóRÐÍòþ)9Q(ÿþ‹´½‰[ã6ÌEEÄ_òeɈÓ¢Á˜60Ã^°§†1VÄøæÈ ˜~Sßu˜asäŽI½îÞ”Ú˜÷cÉÎö€ÑU<^j:‹/ÌÆBcìTjïºUXƒqSó”"ÁƒrjØújcë¶a/<"ý–†u•6¨¥ü{uÇ…­Ö`4qJžÄò7#AdòˆhDsÄ_ò› þUCbÚÐß ’ë$³¼5œÏjƒX×Ù¤ÌÓ{i ë:j¥˜øÅå\?ˆõ’xî·Hv†¢ûy1Û;yãQ1Ù^%pwÑ`œtwS²‘ÀH=7m$Ý]záé·4¬ëð~"^¸¼8D+Ó¾Acé“üÖ–—MpG¿§«  Q{l} ¯LC¡dŽ8ïUƒ1m`%ñÍ>1ƒâ›]mƒ[樒ô25¬ë(ì“Ü-ž¬ ÁZƒÎÑd±ü­ÔÖƒͨƒÇr'SbÁ_²1žeÀ=V‰M™’Æ\N+ØŽÕñ÷3}ðûhë* 3=7½ÏØZ\´D…r뎭Ar!;€Ì0§5·j(`Œ§Ï@pÀ#"rV5$¦ ÅÖ 9À–45ÛjãØlÃ^x„½´†uÿ¶•㈾1QÚu“SùwJâ64êG)äpú Z]Ç1bÔ³ƒ†nŽ mâÔ ,1#%(§J 7ÆiCXÅ~áEŽH¿¥a]‡+µ°dwh½‘"Šr€rÌ蔌]´thÊøøaÁ‘Ýа¡š#ö¶hHÜý€N /„¦†ö¬6šÐé…F¤—Òðg® g±Sä×ì& ²MIâ,d(;Û¼qñga¤OÜû2%Gý©áÝ".6ˆc†½ð{i ë:ôÒe1SL|§Ð7<ÜãzˆÓO’c&Îc`96Þ Pºã¶ sÄñ¬Œi3$yÿn¸!°†½­6ˆ‘)/<Â^Zú}¥QrŒ¦LtœÇ#À}ÙŠäæiëðõ)ªEq~{®ÄÊù/’¡†q ‰7•~§¤£&vjˆÜô«Ø Ö9“ ^5Â^ZúSZ Ca°?Œ~ÃÓÛwòûþVÉ“èDz ék¼oÀŠñûb'GômÕxÓ_8%¤øtÏ”6ˆuÁZ$ÓKkX×QË1;r§Î'ƒ°÷õã†Ì¿Ur#¬” ýpp_ÊÐØâe‹æw“pV B¬‹†ÄæßMÉLìÔ€`l±!3äEް—Ö°®£öÃaû”¦ŒÝ  ¸‚zñ$}»qìäI}™°Ï6É›òŽ\xoêfÜz’TŠë p°ä?žx“žªûÿ‹â$øHŽxVõSïX<‹wÜ%u2{<·1IJvn{w&è,þ>Ë{Ž‹ŒM„Ø×‘#žUýÔrØpk'Í©ãûÏúHKÃé-# £óÍ|#í…O_’þ?ÏüüèËlChá05mNo÷¢u¸­¦sž¾x¯§Ò3Ù^º“à«ß¤|Cê—RáÎA:lo5Ñúô~‚±3‹ßü¸Ÿëlc¨Çp ˜çéqÆ+Ú¿Ÿi]Ÿ§·š½x_)auá‘ïHÐôއÄb¿UÂ|ÐH‹½Ûs¢nhDî\Á_gÐ8Ö#îmÕ¸1H=%£³.ÂH_6mã(~WÉôÒÖux›{s7@bg¾"/Þð6²~‹d?Y2vñöêhyzÚ‚E§ñœ«cÚÀ KÈ–62¥ bQàIñ[Öu8Ö’©Q—(pqjo1÷ÍNJ: §Þý/%šîmc˜{>äSÌýX5çÍNJšò¬A÷6i#ovÒ °—Ö°®c©ŽÞõÛå±mcKrïq‹ä&;4“ÖßoŠ â'Ʊ­—#¾NO¼¹rÂ&Ri:÷®S»w·Ó¾GØ?O_WPY‘Zû™Œm¸fBÙË­TFK‚2;û,F(‰Šc«çköjÌÇX5ËÆ÷S$Œ#[Côù¬6„ñ]Ø«¤ø- ë:ê5›\ž¦û¤G*?qX¢>ƒ{D5âz°¤ 87^æGŒ÷„‘9BMâSƒ1m|?)‰pxÿI ¯&„c‚œÈrÒ ÖUèAõã~LC |ºH\¢“×£~6’‡ìýgå…Kœ{Ñž{¿+Fõ‰vQ¡èIj0nÞ¦„š[RɃÈÍ9pù Â@ðºŽ+qì]›ò±‹R&V»¨”l¤SJ ›™lcsKªôÂ#ì¥5üY‡Ö‹ïò†°Ú­¶ðA¨[0”ð2ÅÏ’ø§ÚÙ.9rb\îè,{!ià™bUm?Ó °—Ö°®C_è,‰qÁ³.vÛÅël ö/~§Úׯ\«Â%Ju=âØöEÃÄŠtM ÔSÔÓÆ~؆½ð{i ë:´“dæîæMØJîäO Þ[IK:Ø?Þ#מŽ÷Kº­‚µÙ{ªGcÕ`Lˆç›¡Õ³SC$TWÄ88¶*™^ZúŽJqFJëq¨Œ¢1d<³¬ÓKÊÈÞ·#kí¯`ô"Áõ„*w½æÇc¬³7êY‰3?9;òfŠòã”r×çöM“ßë-9Ù7—^n¨Õ„ýSrâˆ7D´º.ò½¾/:VàƒP‚§—Ñ/n ¬Á˜60C’A¾×ÔÀšýiƒXo:xáöÒÖuÔæckc”-/À¨Í .]‘NJlº÷`j3‡(%Ù C!£^%(-„e‘+Ki)¥!jÄ« a¥17Y#ÒoiX×Q›úìØWnŒx£—Õ7}¬e›p¥¼‡Ñ=ˆGœRwTäoc“§;oˆ KÑ0ñ¦z¶”4ЩO lû:m¸1ìôB#ÒKiø³ŽšÚwÜ3w³?ÛF"ªŽfu¿Eí7Ðâ"ñÔÀ^ usÁ ÌÄ«aŽØŸUƒ1m`†$±ü™ ¢cM5A b«J¦“R°®ÂÑr¶¸9knÐþdç°¹#–D߬“ícvæ¡ØøîÜ cgÞŽGD²½h0¦ …Ÿ±h!³ÇF_mŒÌ?²‘~KúŽÊÌÎï³3ë#/6`Ñ[^Ù_)¹yÆzwàd‰ÇÞöý.îë”ÖË€ý\$Þ\hÉÎÀ€¨lZÈf±éƒF¤RðgÞ5ÿ˜ÐZñ›=°æÄÝìØd:½íøYmêô±[Ü&ßå³h¦;g55ø°àݹ ©zWQK€ÔfYõÇòÉSŸ°awe^ôtoÁ–=âfMûEbƒÑøùaƒÝíÔ…]Â/ûÁDçÀ†,9_ýY¨ÿ;¶ï´.èbzÔý‚ßO:ä°ç/þWb(ZMû‹¦êýM}ûå›;H‚s)F¼{ š˜\ì_.Œ»»»Jp7·h0¦ ÝÞAr!M/5Dtµ!Œ;z‘#ì¥5¬ëÐO'ÏáNj(¼¾qG|ó¦À8˜•9™wý⩃õœo×sâ×è¾ÌÜnÝ9o¤dàÜh¨45}?iØÛMÍ­^› ´2ˆVd²^DÖñÛßþ™Üè½pÜLÄÛAŸ€Ð}BÝ«›ŸßÛ2;áöϼãc9½=GUOè‹>?·sž¾x¯Çúš0ÇöR~S„ù"б›ÂOSr“0ª[ãvìÍ zG\DøËçr‘à™X5L¼9üd ë󧆸³VÄÈã•a/­a]‡r¹ \øèÄÀƒøˆó{C¤äPÈ=>éQ=‹ý"t"ŒòÀ^%( \4÷†HIœb0Cz_mt÷†H/<Â^Zúó󑌼ÍðÓÓÀx|ÁÆlŸ”°½í£â‘¸öÝ#—§ãnÁ8ö0q“¿—ãX5$† ÔoHò¾*.蔆 …¨6ˆ±±’a/­a]‡3öfóR÷’~ºxãFb:ùH¦äá[< X›÷¥At¯páøz^[•¼ø\$V Ö” "ž ñ¦!†§tÂ죬«pÏ„xLÝ÷^Ï9ÇÉlû‹Àß*yÈû§Ç}tD·àµU\^:9âfëÑÔØÍNSòn[ã2'5ì×jcw·ÓôÂ#ì¥5¬ë0…ê=Ë ÔM 6–jî®,ƒ¤*ƒ ©ÆöP€À;Tc¤‡žØ¹xÀµ¯ ŒiU;¯YŸGU¡$DÅ‚1Š ØK>GÐÇ©`]…·Áóç{(iäQ[Ôh¯ø°G„%¡bg'€8Tï,qÈÚ¨=;‘F”­e„ê­Rƒ1m`†$;Ц† Χ âïgzáöÒÖu(RAºº«ÄÛÎ^qà?ÜD‚£³GœÕ>ì½q\~Y#‚ˆˆ=q™.Hõ¸è¢ Ò+÷Ÿ9=âÀE?aŒ—}.ï<}ñ¾¦èñÒöuºÎE<ïj±œ’ iê ‚AüýBͨbž=1¢äw• ^5$>Uf6%ï ¥ÉRpl«‰Ã]œÓ °“R°®¢ÆÙWúåâ@ôrà!N*kK"‡,H¢Ù’|àÅi´Ò4F!Œsé§cÚø~¦dC2ñÔ°µÕ1RNå…GØKkX×á$šÒ ^œ‹¹:ÇAžíß"y<‡äFƒñýöƒ<]Ù‘8‹5 Â^9€Ê™­oÊ ñîœx1bnÍ„ßÏ4ívÍ Vç]í?”R›m?.6øÑ„Å) NÝ89±%ð¸ã`'µŽ¿•ñ—ý⋤GœoÑ`L˜!Éq©Ã¼4¼;ÞÅ1J’å…GØKkXסG“X”ؕɽ0]úžî‹.I\û‚Ç~×­¯’ß[Åà&¹A…“#ÌÍ ‚²jIî›}Ó¥ Èøª aìEö*™^[ú m•û¥“,;ä™8ôA\ý ~‹äŒFbd´Šö4Ò F|ðÆ"GìcÕ`LßÏ”\7#ŠÒp]ûbC§‰½J¦—Òðg•mòK–qs–šÎÒ脬S}Ä9|²N5WÀ‚3”#™+SðÂsžX%΂;vsv¦í€xÁº?·sž^|w}0ìC‘5ØQVÁF›¿Eò€š©GÞz6oˆ ‚®Î›¸BÞ}ëQ%8™/ŒiCg÷&jê1|ix–‹ aÅÕ Þ#ì¥5¬ëp'¦¦ÒB2àòÅÃ}L$A*HlIut§]ÔƒϪT]X¥a+G\×¢Àpϱ%î¼lm[M´ŒÛ °Ö°®ÂüXˆ=1ÕOmñö–ó(L<7O–œÔ8%¨›ÆXmëü\$ÅoiX×Q :øºÌŽõ @‰üÍPJî@mººcWWó`ò* ‡¤NÌí© &ÜÔI*%¼™ ú¹š Æ+묒é£4üY…{)¸y´wèꃻ¤óü_|]K¶ë¸ ígwµ,Kþ'íÌ¿ûÌþ t¯Uµ‰èžÄ–lJo"HXJÿâç?<š],%FNôQ%h=´(0>)—þ{¤‚c_MN”³`5]C=Ö²s\¦œL7ÚhàW$t¡Gã‚H°ST¾‡¼ÆnÚ‰Hi¹Ê‡Ñ¬Á˜60C,b*ÈÝ2A ²9ávR ÖUT¢(òù©3öâM'yÞ¦ä9vïÏͽx<óŸ™tÆñ³z¶*¥ú¢ÁøV[“)¹™L ÷»s¨6„u†/r„½´†uõdˆ…]T3ª2·ðÀüÉy‘EúBãF¼@Ó…acPõ*ï„§cÚÀ KʶR‰R§á¯ôÂ#ÒoiX×Q¹ÊYÛ?|£Å àw‡…&&¿"èU=¶x¾¼H”Ã|bcùR$¯·cU`ìÎ)S›Èöoj`“iÃ]MÒ °V°®¢Ö ±¸ÇÝßÁ2½3^Ëž)a×W”Í\;#¶ÈxîŠ#h´ˆzÄÙú¢!1m IQ’Ù©¡Ý« bUÔÉôRþ¬£Æ•É@ªºwÄŸã’ˆýÕErámÖ3xrÓ†wO,æ0qyÄù¬ŒÝÕ}J0¼M ãYmƒlF^x„½´†uõp fÚlÜR}v5},’ˆõûl™æw̘/UÎW¦ùaÄ= Õ“qJvtmœ ´1Lí´ ;áöÑÖUèûŒë¯6j×tœŒ:Æ ÙT¿"i³Œqó¾ð Õ©&éÆÎ¡UɶӪ 1M`†Ú4>h˜®g_lc¯'<À>ZÁŸU(ÉžIoÌS©Z “ÅëTºPJÆ`k¸{#ÇÖÑXÄþ§ +ÃIÊdx^o«†Ä´äI¢ýx¤aßWÄøFlU2½´†uu+)곫T_Æ5èé¿oJtçºÇà)Š[TFN\ª/sDävT ƧÿÀ)‰·G©¾ŒâÅÆá?pzáöÒÖuè/ŒW3,ö{°(bÛØM»Hn††Ô‘Óôìäd‘ÄP7í¾¡ˆ-Gtõ´†‰7uÓ¶$²žò£¨!²œª aܦҋ!/­áÏ:*¹B®IÔ‡ ñàˆ¨Ñuúˆý7ÈÍM”H²øÊ£‡ …J±¯Œ³WHJÔé#5¨HÚÈ^!é…GØKkXס'ÖLFØcFlûa ŸLo)9k5×Ó‹eŸ ×[ÆJÆ+’³‹cÚ@ª$qáùo*è÷j‚ ŽrÂ#줬«¨½ovÞûéÛ<Ð¥ì87t3ûI\bŽý@ëÛ÷ÉßÐá`?@…bŒ¿î¨’÷o·­Œ7õPKIĤª‚¨!º¯×´!ŒÛz‘#äejX×᪯ñÏ«v¯ܨDT{?D”œ’w§r6r®ß»ÃÊv“¨˜Ä8þ¬#Ë*6L Æ´QʆÕÔÐÚjƒøû™^x„½´†u¾! ©ôÔ~Ÿkâ ¼2û«¢¡H^^ lÇz¸ÕË~TÉûöl«†ÄÙNÆf§‚ã\MÙMÆNx„”‚u¥×)S§LÓuÛñʼnDvM´¤Ç¤ƒ¯Æ÷ßõ+ÁÎnĸ“ÞªäÅתAX60C’ûa¡»4D²Iµ!Œ[lz‘#ì·5¬ëPh!IíJ²è)9ädMAìèã9pŠ!ž=g¢4½âIµ¦u¶!´+ ‚ž´†œ¡˜¢žå4ïÏå\N_¼w‚Ø17ªÂ0ÀŽ·[×S*%îbÞ/\'}âs±3à@ù˜1’Ÿ*qõ¸h0¾:“’ë {µ5ÁTµAŒ¯½¼ð{i ë:ôgÅÏ•9F»²1† œ;yðE¯¯ˆ¹‚èêð­ÜFÅzC\£ŒhÏ¢!±Ù÷‹Dß|k8ŽÕ1 RÎ*)~Sßu8â'ÓßwÖ!P¿ïŠZ¥¤oÉy‚>w"K½,V-P‘ ÒgÑ`Lª‚„©€¹çÓ±Jà„GØI)XW¡-Ùúñ«ÝÔ:0:Óàåÿ%[¿%ѹÿpì×rol†ŒÕ‘¬­Jz¼ª†Ä´–0=Õ"d]mãÏK/$»ªƒ.-ÁdýA´Á;| DçuOsÛ±~olöGˆÚÅ^ýÞ·ezâ}à§mÇæôí^ÔŠx æùyzÇÙ«÷u·Ln».†(”YœÌ`l{‹D%Æ-,ë47lÁXÉ1±ŠE¢’#GìϪAX6\,‚D l‚SCä0V®9Ëûm ë:*ÛÇx»|ªù[tud“â”°Ý/H`&ùESÏ‚ãŸ^Go¸ÚX4$¦˜aÉNº©áÚVÄßÏôÂ#ì¥4üYGmCÇpsÒø “ôí$ë/Ä@±³ºÙCä͉õ£*’ÝÏ ‰weq¦„7{SC¿VÄ¢ |î2Â^Zú}¥ cŽF4⻨±mði<|IÒqbfèÎãN4‹‚¨ÆÆ6¯W Þ,UCbÚÐÛ ’ˆÔEøØ¢}jµAŒ+&yáöRþ¬£2Ø`ñ+ïóy¯YYŒò+’w—Öu߃4Ô£¼gp\Ç¿}ëUòn붪`âYcÉû @Óak8öÕ±®˜®L©àï*´Z†"‘q¤Î§í}§7Rní|ïZ þ½÷q‘Ðh2L‚àLoÄ }*ŸGÿÃ2Ýpcúu .Qïiöy,Ú c¸Í{€¼óôÅ{]z"ÕG¿]·Ù;7é§„rÐT !‘öÑÇÆgéGôL)’ÚEƒ±ÛSÂùÔÀû´á#ýôÂ#ì¥5¬ëXjøîQkø¢Td^]ÍbRrldZÞ™W}'™–£…ÕÄñ/?øÊãZ5ÓfHÂÖ.SÃ~­6ˆñÝ9ªdzi ë:jQR]ÏÓôÞø]¡`l½·$7‹£Æ-V ²}³Gû–¬2QzV$è¬VÒÂ÷3%§Ù¼¥à¸WÄßÏtÂ#ì£5¬«0³I‰0«j0ßH«¾øDž’‰åà’oâ- FÏÈL+øKò—íœ#‚v¥jHL"f¤#³|jkhÚ þ~¦a/¥áÏ:êf™§¿ìãMfßx§]$¼Ñ»ØT9n@â²íò^™‡¿£J°¡[$ÞÔû3%;y RC;VÄ8ýÑ È ½¬«pºÑ?wÇÙ³¥$)”#ÙŸLß)Q®Ð%æ“­¹ÐÙ¦`$¯’h(Gˆè95¦úž2u§†1VÃ\ßé…G¤ßÒ°®CGÞxþã1Ð7b‘€[ë‘7bô”`Ñ)%JÈÆmÕu'ÖX‘ྫjHLºƒ¤ µc—†íZmëF ^x„½´†u¾/™=RÏ[=R#O¯ñØÖY8d‰Ëá/&*ö/º‘ž-1®#{•Œ¡òwkHLqåiI{Œž¢¾Ú F~¯¼ð{i ë:j¯E&5ïJ9Š”84kþs¸’&$ç»­‰”Õóýò¸ofó—32¦'F%ÍÛ¨½0ªaÙP) %Û¿œM®ªá.rD:½ýû»Ýà¡L57šˆ*T¤ ÿŠä@:ñØOîì¢éQHÁ¸üxTÉ÷¹j0¦ m¸³ûôÂ#ì¥5¬ë¨½6n<¶œ­ ~T€ÑâW$·‹Ñ=Ó9Þ+Fv:ã†)[UCbóhLÉÉFÄ©!‚[Õqá•ÈöRþ¬£6ºmÍ*²„+ñ8˜ž>%Lô7;ò/l·G¤üå® ¹‹W2Uƒñ¡-þ”¼o¢«ÿ›F[mŒföÂ#ì¥5¬ëXZ)ò„ëû¯h/ê¾Ó­æ-¨OCƒ¨ŽÊ$5yo#Õæü¯—Ǿ*0œ’ѺT°·ÕÂÞlÁ>x„}´‚u5”NzǦRÝÈ`@kàþûW$ÇÉ⧇—hË‚¶7[gXìÔx©"AžEÕxèÖ½H6²TYƒÓñ÷3½Ðˆé75üY‡ùýq¾EsÑáõx‘Œ y¿|‡6’\¼X{Øm¿oæoŒMÇñßSì{U01M|?SrüsIÁû|],#ðTÉô‘ þ®¢²„+À¬JÖ ³C^ôëÛÅ®l)!©yãûðˆ KT´¶Uüåå 9ë5b?V ‰)e§ä$©yjx_b‹ âïgz¡é¥4üY‡̤"$©+ø߬ˆZ·~+S.%mТKäÌ06¶‰³þ2P$8|/Ói@ÇsJ@½05¼¿ÁÅñ÷#üqz¬éë ¼›<3s9Ów6>‹¤y2Y¦¤‘‡2.&¢ª§“šzÄQ„ 5f²ÜÝrÕ#‚ø½j0ÞÌd9%›ÒÌo¥ØôÅÆžtíEŽH¿¥a]‡Žó÷?S;î¾ÛÙÛð>6½Š¦„i›hqƒ€OÁ÷/Qð—¹ ¨!÷ˆ¨”®oz¥d -5ôsµA¬Üß"™^Zú¿{ó´{¨MÒ¦+nðLðMdÉÅgœ8Oä<âÆGÒs$Ö‘·HÞæ¶hH|ê’gJò馆£­6ˆuî…‘^Jßu˜Cïö-¶žTqÌl ÁÜܱ"%·úM¸,¦ÛèqôŠã°Ã"ÄpÞ«‚Ä›VXr±`Õ È8-ãd}TÉôÑ ÖUÔº!fãG¶+¯… vvóþÉ­L×­— ÔWÁlü<‰qpéU‚¬¦ª!1m|?SßÀ¤!¾ÿÕ1jíä…GØKkX×QYP˜@•÷8Å =èôI "ˆ«–÷ƒà ¬šfBð›"þ›“ û2¤–Ñ@ijÄáiû¯~¯<¹x\7Œ3‡ÛŸ÷+ƒ{R2(þŠ„Š/¾x1z"û­à Ž þ»õÇ#Ð#¢·MÕ`LÈ÷Úæ}o¬!(<« bÜ0]U2½´†u:Ö“ö¿SrŸàž<®Ë‚ge 6Z±äF®xyD’ÏÃvß`¢é=±2AŠd„O‹†Ä°’tÜ>N ï7âéÅ1*Æä…GØKkX×QÃ$¹ÿl[çwwJÉxv½#"‘D9ʃÈy–J­N Æ›[wH2"¸ˆñÜwµal6VFÐË©a]GÝBñ¨ët„h7µAïÌëL Hȹ„Š ñÕ3;r[ÂÜu^BèÅ` ”¡îÉÑÚ ³¯AÅgé!'®ëO‰gІӭŽ*ƒ¤÷QëÈ¿ä”ܼW>H›- â?{Å>4ýå4âºV ‰77H¡†ìÒøw¹jÃÇߣJìåÔ°®£r0ŸF` ‹ª¢ h»éÓ(yDŸ¶“'ù}œŸêh‹‹Sb„îy—#®C×µÒ¸1•vJF‘š4t4N6ˆ¿Ÿé…GØKkX×Qé0øª R —7W”.<.‚à,éØÐ32’_XÂöjÂ_9 *~ư ’ Λ½G­à= b¹¢ô@Û?Ï^àfHÇ?“–^×™j ½¢¦ä}•rLGÛØþ2¶€¨0#þ’C­H@‘¶h0¦ï§HØ"Ó"Y¬Úþ~Ò‹‘~Kú]Öâ;Z©ÓÜTÁWë Rêܯ<ú–¨9½1Θg•`k[5L¼³‹â”4”5}»VÄßÏtÁ#ì"¢>ë Üa¨,†ÌL8ÂnÙâI›þ+’Us#ªÊNvjX#qÀÜ«d l­*0¦ ÌäB¥|jˆ}mµ!3èD°V°®Bû'Ögf½K âߥ³’õ7%ÑÇ÷+ú‡¢<?Ú¨øKÒãH=ÌQ¾R5ˆJ (ç4D±Xµ!Œ­óY%ÅoiX×áFW̰8þeã6”Í1<öø«lÉ»EÛâ{gjå»á{tœÙ|Àùoqm«cÚø~Фá±ÆXmã¬|WIñ[ÖuÔ–šw ©öã|Øp÷9X‚›’‡Íîz„¡qG³ò ä)à&ÝÊί?¾ªAX60C’÷p´Gí¥4Dž[µ!3äEްßÖ°®£Ü·ÒQå}PlñU<ôë%T´§±U2ŠòŽ×è"!ˆó÷þ_ý<þF9 å›0î0óô‹·Þ|$¤a€Wž\<®F¯Së:¶Ø.ãëÿ3ä›{DÝ2â“,GohŽaˆ=# p=e2ÀÐ/M°ŸŒPxbßÍ„Ø;œÿÕÏá•'+õ÷†K[½2ƒýð@îûPzuJDF•:mŸ©Í‘‰³]5ù-5®2¢‹†Ä´3, v·SûVMı+´‘NRÁŸUÔó ¿ž&¿Ûâ¨÷ƒ;þû+’.þ‘gÃ/÷ƒoº‚õmÚŸ9¢Eeј6ð*•ä]ö­·)4¼ë^lëmZ$ÓKiø³“u¢_<»“¹}ú Ö÷ç)Š–)9Á Ó‘“%æÌëáó(nô…¿$¡*’÷iÒV ƇèS¦d ¨xjûjcì¶a/<Â^Zúm±w`H¯Ըˆ‰Ë®hk9x‚³¤]ä·:ÍAšé¥'®Ï„qÞU‚³Eƒ1m¨’ÚÔ›ŽjC! z‘#ÒoiX×Q …Eµ$¼È¾C§Ú åø¿"Q¿ëȉìåHrBuðµŽ1ØU{•ô8ß,Œi3u·¬–†Èsª6„¿Ÿô"GÈËÔ°®Caaqï~«ÓÞÁ[¯#ö”(HÁCjȸ“ˆÃsðÖ æžÍPi‹Á¿àÏß7Û2Ýú1^KæôwSQÕêJæõ¹½ÓìÅûZ%δTEÖF»wѵž.ó±Ä4·‚ïccR°„Q4Í,-Ø[[4$¦ MKwVq]a ¤Ã˜6L˜1½ð{) Öáé ¼´]¿ÛØ’Ä—ôrÈ”°ŒãÔ #N£ ÞäŹ³DÛTˆ¾Â ‘†‰³Ä’HDEÔFÄì–6Ž£á…GØKiø³ï(þyÕ~N©ç»ÁzHÞ‘‚÷ß-†˜y…]ÞÅ2JÍwÑk0w+?gjלn ý8«[Ð@ï¡é7ò6S=á7›‡úóé.f¯Þ×r¦Õ[C-#ƒ  î>Ÿ¡ø°A·ùË‘ï *AöÈ÷œðË®¡ûQô¶L'”úï'7zoçôW@Ö¿ûŽÈöós¹ëé‹÷Úó"aô3ÉPr_ŒÀøÎÿŠ$vÕ)3/S¾Ä¯ÂÁ>bl*ž*AµdÕ˜6°©°dCZjˆâàjƒøû™^hÄô›þ¬Ãu¥øof#åí+éÕã­GÞ·)!gÞξªïÃ<ñ#ÊÂ@¯Nüe¿§ª†ÄM¼o)¹‘ ‘âÝZmãö•^ä{i ë:üŽ3–ØœgÜP“pžx­ÿŠäoÆ‹/rPEØžhãdŒ}¯4ëZ4ÓÆ÷3%6SC4Ò¨6ˆqa/­a]‡ ‰æE‡î›Gü.â$r_$B›’‡1½81ŕʶ±rœÓž„±e«ÿòù»[eºà}¹KˆÍþ§É/Ú‹rÃMës€½ÓôÕ}ýa‘Êиn"_£ä~ˆoÝ ¶$ @o$â£Gýs±²`T_ulf=b´mÑ`,ðޒ誑 âÕQM#ZyUIq þ¬bi¶Ñf.˜ÆZâÙYêW%÷(k<â:{gè œ^1j-Qn4GÜ÷¢ ¡yéSÂîUSÁq¬&3œ¦a­a]…þ¸ #þ›ÜÑAáìü±³¤'%µŠWõO^|ám·€­'Æ&ý©Ü,.Œi•i’\7-ÖÀ>vÓq̰a/­a]‡“ç[Þª»‹×­-y4{n"—µóýŽ­;¦Á«9ì=1 !²Î‘Å^5$†ïgJÈ– "BZMƒ]VNx„”‚uú.³”\J7æ¿Ú»ÝÙH,ž/.*z÷Gáv#˜ï¨’÷«¹¯o:ä$Ú¢¨ è fïc±!üý¤9Â^Zús»Çß•m7†Ûn4~‘ÔîýW$ÇÉðûÁîh'ºàu$ôöı§­J:ÒŽ«cÚÀ K6†­¡÷Õ1¶™òÂ#ÒoiXס¯s<šã/|눧ÎaÅK–t¶4}O]ìvaÒÔCý0„㦎9B5Rƒ°l`†$"Mµ†-MÓ†pÌ9Â~[ú…Å‘6O¢d5h]ëgqö¯HX`>¢Ó5r@wqÁvâÆÈÞ²öˆý^5ÓfH¢.ÚÖ¼šÕ†0^ug•L/Ý©{]‡Í,ô!½»‰tQ”FÛÓm i(pCCЋ5Ä!e'1b$9\U‚4ˆEƒ1m|?)‰ÞíÒpÞ×bCøûI/<Â^Zßu,[ff¤n¾V¼ävæÈ”0q0TG^H{ V™ï+¸îUCbgޤäbÞGjx_±‹ bE”‹dzi ë:ôx~ÙæÕ{që87Ò ¥D„=±;‹c:IÞOìj„Q79ª¤æçÌé‰a fXò>ÚZ̰†ãXm£Òò)Û?O_WPïxé.Šó>ò¦å_¿*Áïl¼±¿ÇÍ ˆw/Äxd¶*1ðÔXÝì§$š°c†4œçjƒøû™^hDz) Öáú¡@#¯µx2ˆ¾…ØÌT´ *8Ï;ÚZâJ[÷=¡Î{ù¼_ËtÁË©Lœ\±gÇŸ»h'ÔÁæ=@Þyúâ½’GÎÉl>t¹IQvΓòo ÎÆ£sO±¤$¢\ÛŽŽÓÆH„U äCIÆótnÉ8yi ýYm«þ¯•rÑó—%¸Í º%…gòKNÜ ÿŠä}!v\C©Ãxü:Ÿ3ã¤Êû—×5Uƒ1mÄŒ”ð±Ú Ƴl«’â·4¬ë¨—îlžy:z¡ÞK±§%+rJ:ò›xàQrì2P¸>‰Q'Ø«ͦ Æ´–à œ ÚXM#mNNxDºMë*L[È;K¤ŽkãxЦ5èÕë6%ˆDôK'ǃôæÅϨÊ'þ²'c‘ôk?V ‰›’mSru’XÃûüYl#x+/4"½”†?ë¨e[r/uXñEˆFä»âU›ö&C…£+q¢wx¡Oµ(Â…b|Ùr„îSƒ1m”Ê þŠmj`oâiƒ¹qòÂ#ÒoiXס_0ºûòÂ@ì›j8únôn-¦¤«p4úH«‹àyVüe‹¢ÈªËw[5Óˆ=$‰’ñojhÁZlÇ {áöÒÖu”õ’«±‰–äè·6ïß‚÷]<`ÀÝ8飭¯¦&Ä]£¢`úü¼ÖéÆÐñ\7ÒÖ4=ÎE=á÷“æý¹½ÓìÅûÊ6Êm㾫Eõ»A‹Ä`QÆwJîôø[5Q«DÊÆ©ê a„HÛ•#ζjH¼)q$%7HøRC°«TÂ1C^ä{i ë:ê+W×1c= Äù‘©”t¤¶Ûì_ü1ÜãáßwJŽ+þ:ïiÛïÓ×¢ï†Ü¯ÂJ„(’~^cÕ`Lˆ±ZÒX4n ïOs±AŒ¡¼ðˆô[Öuè>_gÒæŽKü}*V޶”y¢,1ù (ö¨»Œjea…ûYFÜmÕ`L ºC²ƒ¸njØ÷ձŽðÂ#ì¥5¬ë0¿[ÿçCŸ¹Ìßm7wÕ÷Á®ëSò0?=Ž`ç͘ø:$Â8Â=U2†3Ú­Á˜6P5æùœÖpm«k³ {áöÒÖu¸Ç"2VÖ#kìÜÇÄî¬s÷˜æ{…q¤"ÝhÉçö31Ü¿ªd õªM ‰7å{¥äDK®©á8VÄ:F3!J#ì¥5¬ëPdŠ!Ì©qÚ4² ³AJ"¡ödÛp¹WÀµWüeÛ” iË÷µj0¦ï§H«à­aŒÕñ÷3½ðˆô[ÖuÔœ„ޝô©¢è\s±ºšÕ\LË£(’HþUƒÓÈy5{¼ð®Ó ó,aù[5›»úÔž‰4ïòNÓWïk×… ›ª[½÷_ïïnñíHrÄ> ”‘ÄŽ,KqÝDš{ÁJ¥ßö2b¿W Ķ–l¨Ú‘†ñD{iÃX©ôERü¦†?ë0Á#¬®úa„•ûp´[bÆ”%7K‡"vyvv¬ˆÎc¾-F½ÏQ%ˆ—.ŒiC1YHÞ㨓­!(‚« âïgzáöÒÖuÔÔò ÷Bz4wlôv† ٬̒gS#þa·‡ubçÃ?1Þ£W• ŽrNvjBÂKõœ!Ãj@X§‰p!GØckXW ,V¼!õÐÜgmg§öë6ù$ÌÌC –*¼Rs?'¬Ü"ÁYÕø>MOnIÄЯ©a\ûbCøûI/<"½”†?ëÐ_¿]R =Jþ‹\ˆÈç¾ùšûU ¾< í‰ÿÞ|Q‚4¦àx?œÜÊåˆóZ5$6¯JJvQÓX_Óñ÷3½ð{i ë:ôÛeš²lvÞŽô[$žîØV¥ä=î‘7à“=*ï½b\D³ uŽxÎUƒ1mˆY’ÕISÃq­6ˆ¿Ÿé…GØKkX×QÿÂ|Fß*NŒ6.qq¿Oó“%l–°ž}ÃJ6çÄ|ÜH£±™9b<«cÚÀ KÐwj`=û´AŒ3yáé·4¬ëð 'â ¨‹›dêqNKr#p6b;ÌË·uÑœ]h‰}Fñþ5Æ(Œi…Ä’¨¹uj8·Õƹن½ð{i ë:êWú@¬Êñ›ç}ë?è»,jÊ)9‰«Õ§›]Æž8Žàïï¦H^|­Œ‡²SÒqÝ35ì÷jc¿mÃ^x„½´†uµ´ëÀ¶ªÕ²9ü% ¬e³$ø`CµJÅÏ pêdç7&1È|Ÿ*éÏu®ŒiKI6PôO [[m# )/<"ÃfÒ°®£fd—ótË.Ú8OÉu±èØaGaå<¿)ˆ®zqOy²Ï9Zm¡²­'À–¿•ÏÞ‡T*HÕ:@€ÖžœµÕ©WšÍí¦¦.^kÁcîÁ•yß5îMÔíS¢BíÜbÏp÷¹·.ûÇ¡ÝajH¬oü”ð15œÇjãUÒOÑEZCbÚˆ–˜{Äz[m£zJ^hDz) Ö¡'ÉìÎ6bFž÷ètªŠ‚÷ü&2öÞHØÓ6ÞúD,?áWOðV'P™hýz¶Š§ãøçÙ#®Š¦zC½ßÚQÈ_M_¼¯Ì£¬ rMŸ9¶¢ýK§äÁUéûïÿž-¢|‘´¹ '±WŽ8Û¢ aScJvôs™ Þ?öb‚ßû»J¦Ö°®ÂÏ)¦yâDÄrg;¸w¯F~’Däwì‰à[ŒíipŸȼÜÁ¬ˆ²ÞŽÓ ¡c%xžpn$ǤZ¦Þ¤I|fwòB#ÒKiø³WÕ²É4÷ Þúñß5ê˜Y“’hÏÈ_ü˵j‚E"¬_‘ ,X$¤E!ÙìŸ ¶m5A¬œðûh ë*´\¶¬EMÈîæ üaÄqîÆòG|…‚x8çsÆÿGŽÝ’ˆüðÙ–y‚Pûý$îq3>çC‰ïä>‘7šV}­Ü¯÷Îë:]¯7ÜáNBeÂ’Ä9 ÒOöÆÚ ¦àWCƸù¾xxôˆ1‚Ç“EÂ)ilC#Ç=ÇEÂr"G¤×Ò°®bæÛ6Ń™y# |^x0ýªäfò_Ü<Ž–±;ÛTŒïèá=œ×ª ñ&n¹”¼?ç3¨ ˜6ªâ˜`<Â>ZÁºŠåX†+ºKw°qˆ¼©íR"Á”Üè3‰ÖÀñT{pMøÂ®…±«Å;zŽèxGOÆ—îø§äÇ™5œmµq6Û`­`]…«¡+dõì³g>&êȳeBJâd¸3#3(©š:"ÄUYÁºKb­¹FôkÕ`œ]¦„]¬aSWÛØ²o‚½Èé·4¬ë¨kD‰¤j÷³ƒ…2z«`ÁSr"ÿűk;-¡nìr‡}AÌ£HÞf[$>LÁ2%-n!¦†q¬6†)Xì„L¯©àÏ**ñ+ø9v]ãlˆÖ¼?3¾foÐG€¤&hMB¨+Àb(¦œúùÕÊd*EàF¶ Í3ÿ°ôŠç¨è¤&ëÑ„g±¡»‹ Ü$)qÀ’ ÂAJ÷Æ+ûö u…0ŽêÊè}¬ŒiOìÁ’é÷oƒ;j·\±aŒÃ¼˜#èåÔ°®C[$ìÈE}0v2âk~œ¬µÝY"lÁMbôûbËEÔ[ q)*¡g}Õ¾uúÄ›¾Xp £}ÎGg©ðû™öõ¹ÝÓôÕÿ:Ýàcƈ"4Ï­A^±_‘t4íÌŒ²Vž#qd¥ô³JF±.Ói´?”™ï­!J$ª aäÊ´ò±üËéë ôþyx“Œ"žÛ7É<&ß§®Ý¦äâi%‚B‡îÁ;ù¥ÇÄx8U2‚{Q`œw)9xZI G[mÍ6䄨G+XW¡¯2“"’–šeИäðCAÎÅ‚ð÷“>äûhë*ô(æ]ÛŒ«!‘ùB®«dSÒ6Ò+uœ` Ò—h61 :7&{Äq®Œ³JÖ’¸ÄU¬4 ÕÀÚÆÈ*Y{‘#äejXס´ƒ>£ŽF•â@B‰®¤¦doänÈØq]=N–“?=±k#GÑǪÁ¸éºhJ¶“ÌdÒp=ÏbCøûI/r„½´†uzPm3Ä—ŽàY@•žû\¤D ¢¢Ùë+ØÅ¢ûïi~©Wr«FC#ÞÓÛ¢ÁØVS¢Q©a´ÕÆpŸ‹ôÂ#ì¥5¬ë¨q7þŠÝ1àyؽ Ù%` Û—¸\j"|ÝÐ/ˆDxÂñbÙ·*Aeä¢Á˜60Ã’M¥aàÅ2mŒ‘//y1üòºª†¿ë¨·¬ì{xi3ÜìŒùøvÊ’qñæç>ÈptÞ =½â/¯ Ø­³«á½hHL˜aIû¯ÿ› ö±š þ~¦‘nCÁŸUV3vÊVS<ÄàA©ñ>×–¼OöàóÇÞÙ0*~Ž‘g/€äçᾑ‚v¨/‰úð©eÈjˆ=ŒDyg™.HõzMݤž9½?½êÄŽñ,{—Óïk¯U¡ùjRÙ2Û£–†)‰üÝMmrÐ  ¡¾¼_ª#FÁÎŽ¦ê9Bµé©AX60C’[­ß¥!˜ÿ« áï'½ÈöÛÖu8ï›'yDÎ&È #iõLŒ`0“rÉŠ¦cÚ@ôP’ƒ9á©áØVÄ1Ã^x„½´†uŽ$#<#®/¾^Á[:!.7%ï¿è£Jû ém†vx Ǔ湫ä}[‹†Ä´×«%þARCì$« bÀ H¿¥a]‡O¨nßk‹lÛMþ i Ð8|<¬HÝoöà+øË>Íã\5ÓÆ÷“¤ËßÿRC$¶UÂ8Ýö*I/SúŽzßs!‘¢‹AÿÚȘ«+§_‘DgÔ‡¤­gã½r·À¨øË¦¿ÇYFìϪÁ¸»½XJö‡¿GkàÅÖ´±»½XzáöÒÖu8¹ o¦w×Tîìè;öSi–)éúö(ÊßswbozŽV1ʤ­ÍDZj0ÞÞIICÏÔÐöÕFÛmÃ^x„½´†u5GÖBM­AJÉ<Ú” …žóåÞgêš^ûcw蕨ì¥éÔjIØ¢uNlf“† e¦ aÿ¬a]‹²â»ü4Þ]Š^ ¾Ž[Iá)aO½÷­ˆ/{êÅëœû6cœVqÊ™#F_5Ó¶ – øÔ0újƒgè­JŠßÒ°®Cz68¹ËÓ íÅ‘áw4½~§œÿhrqsÏÎ"wÜ‹ã²ö¬¤°/ ·ìo"Éè¼M°†~ò&À6úé»9¡é£üY…{lÅk—7$NEl &µ`šÐ}ÆäVìôÕ*ˆnGì2%Ù¹.Ðï`[t-Ñ­Ô‰¿ì<[$è+»hHÜÔ$%Ñ«öþ—¢\¥Úþ~Ò‹a/­a]‡“éÿ¹Èí;‚ãbÒöû i¤3“àÁ;DbÌV80M(23ö=ãçï;x™n ýøÇ‘àÒ?ŽçŸÏ¢ÿT¦YÚ×çvÏÓÿõwei ™p]3„=2¥å Y‚wˆ7TJ=—ê»âñ¨!¼ªdìŠñ§aÙ@¡%¼T·†è­QmÇ y‘#ÒoiX×áz¦ rò˜ b{ØðMì-a¦ÙûO‡;«÷ÅÂMaüKÇ_BÛV%/¾W Æ´’DO»çßÔÀ´˜iƒ›yáöÒÖuÄ‚ñ€B¹«ÉK„E"ö~ÇÝ&Û’ZÂz–užïŠÇLA"dÂHŠ9ªd´HA«Œiµà’œlXÐ2m#ú#/<Â^ZúŽÚåò!iÙõßÜÁÖ×-–º”¨³Õ¸Qe7ž§ƒ.J¯pNü%ù>æˆc‹†Ä´p‹%hä05É|µAŒò0yáé·4¬ëpDêø—¤mb×;{ F³‡E0–ôÛÀ¨? .ȲÁ9×@› ŒËS%ï™æ\5ÓÎQ’DjtJƒ¤ b”ÍÈ °—Ö°®Ãü1g–…\¢åÛÌÔr!?ñW$7Û¿nÜÃ3b3ñË£2c;®*AÉÇ2ÝørJä”ð’(5œcµq:%’.øãôXÓ×TÑ¿<© ¿ºù«§„ìÓ¯DéØà5{„K V¾ùU<Ϫ ±é«S²ó–Ý Ú¹Zhf¯N<Â>ZÁºŠúd>y]÷­«Å‹×F¿"éb!7“Ï@„×ÐÔî©XÙ-èbè}¬Œi#f¤„×Ï©¡« â˜a/<"ý–†uŠh°yÞu”C xíãpÕ7µàšd‘âÂǯÁž`ÊŸX¡ÒˆçˆãX5$VœgJ˜}’ ÔW,M´Ã&ì„GØI)XWQÚÚ¨ÿ‰ir¢bÈ¥Ïpå$ÌœèÈ1Žbˆ}g'X%« £ò Äÿ9 U1M¨ð ÕÌž°‚H«„Q÷´gqFÈÇT°®¢ö=ï“È÷w-ï »©•Ï”ÿn.ÂìâÒqÞD#ÆÕy«’_«‚ÄM|,9£ïØø©!rb# alÅàD©`]…Iã=Äc‘ËØ‰ÇEaôŸc:§%íbâó}ª+ÞÜÛOïˆÍ¢=B½ìRCbÚø~ФÆ±ÐØÆ‘<5ö"G¤ßÔðgú6ó tô™}þž­qL=^LÒÅ)yŸ˜ûÉ‹ò`Ð~Ÿ™ñ×ÂEúy%FTt«’O©Eƒñ-BÄ)¹N4³‚óYMœMØ °“R°®¢^Uèö’WÂÑÌÝMµO ƒáêñ޳4òFƒõNŒ7ÅÁ\Sž¢ª!q^5X2À[=5ôsµÑðL/<Â^Zú4È_ÁG´­7–ÉELeçÚ’'Æí)pøÜOfïØÓ+õ¿Hصh0¦ ¥~1n(ÛØ™x×bC8fÈ‹a/­a]‡þÂ8‰8ÇÅ^bð;y¨ùU ÷7ýB®ÀÉ3Ž(…ñÓ"‰`ŽÉ`NOœç(K¢Çyià™fÚ(ç¨Q>¶ž¾®`岯Pœ+¸º8‚7ëñoJîƒÍéNæèµ©—ýÒ&FX‰n{ }Q*0¦‰˜` ›j§‚s_-#v¿WÉôÑ ÖUhŸGïûTô>MâÒûˆKnŪ,xȧ¸5g(nÁ EEÐ# N7lSI¹!ˆ„aväï킸ï£ù ï<}ñÞ·šÇ¼Õt3ÆŽ^ÇÞ¿*¹ÑêêÙ7¦ƒè8ÃH#F|ð¬’iû(o꥕’÷ùrSCG5Ó´AŒåÊ °—Ö°®£&`»ìØ&<®á‘v1ÃDßÌnW£F¢(cbU÷Çk>GDéHÕ`LúkA‰×׿©¡ß« b¤˜U2½”†?ë(wó<á;r3¢ï®,E•:%$:ÕùÒb|“FÔ9]{bC¯^F°7ãÔ`lÓ)!ÑéÔ@"ÔiÃT©Ó °—Ö°®ÃÅ‹l5gû]mM#š3›²M¦yhȲƒo0äDôË8B×U%=úT-oÎ6±$Þ˜à”†÷ØºØ þ~¦a/­a]G‰¹òÛáö9{ÎþRrl›ÕE—ŠxýEÕJü>OõRÆöíÒçucJ ĶñýLÉÄNk@_¶v§ ã˜A/rDú- Öáà­û^Ü›GôŽq­˜<š”ð7ÑÔ߸‰ñ/¸{K 6¥‹…°j˜¸%« $ÁˆŠ*cipœmÌJ:{áöÒÖu8Eûɤ¸]×b èeå=Ù²,ˆg_Ït3t£šª'Ê "%n+'ƒxº!Õ;ƒŽ QÕì}[´~?Ó¼Ø;M_½×öâš—C*mÃ;!v’èüªý:zÛå@ßÐÏ£G±MÁ¸ê!9mޏöUCb·J ÛSÃN´±›W'½ÈöÒÖuh¯Œ V60òõnD>"‡åâÍÕ¯HøŒ{±¢*2»ÐKè¾#ý¤WÉ»»ÙV Æ´ìI¦¦†ñ¬6ˆ‘kãèFØKkX×aξIÚíú¸wÃ݈ëEç(’ âZ퉂pñ±1x;F•ôè‚\Ò¾›’¼ª;úQKÁÙVÄßÏtÂ#ì£5¬«PÈG!–Ò_ê“[Ñ3ÛÿŠ„Èy¯ |¢qùÃV_ƺ݂ØÁÞaSƒ1møv7$Á0ðo*×j‚Ø—»ga'¥`]…ÞB¸.ù󊋃7k&K•亘wW!¢ÕB^_4ÿ=ãqãJ¢+pUøôÍô”`s âÕY-ÇK×>xDzMVá°ë‘7û ¡(zù«òå¿?4þŽ:ùôû»¨ûIŒs}ÉïCjÑØŒû)Ñ•ajØ®ÕÆfÆýôÂ#ì¥5¬ëÐK7ï±oµ7ûá[Yå:Ö[r«ˆøBÞÖ‹uh¿ÑÉÓÎUòîÛ¢!ñåc}JxÝ35×jãÈc½½ð{i ë:J}S—]wÆcá`ñ õ "½ñŒ„å`;϶õ—:óã±ËlcªÇJ%¸O6šæôq=U;!b{Lo={ñÞÜg¦S™õ"Ò.’ à$4|H¨óLìÕ7ÑàMˆTª›v< jËtÔl;©ò5=âE¿à7ûæøs{§é«÷µÞ‹\Îb§A¯®¨½Ø1öW$RÑí õ 9`ƒ«µUÄ_ö+t[4ÓÆ÷3%b’†ñ¿Û6Œ¿{1GØKkX×áËÍy} z#Ã{HþU…ãŠ"²øÅµ¥ø¸VL!\\“óÔŸÛ2YºqiM¼£ïöœÜîªÖ2­å˜'W¿]‡úþ=K½DœîÙ™nSw±)ÁkûÅLtÞÀX0¢ Ó 5þB£¨£ŒÈæwRxSs±”Üà±H qÛ\mÇ :‘죬«ÐC×yC³µX¼”NFªØ‘ÉÖÞ¿[•ÆÀ÷ˆ,––U–Üíä€x”ù‚Ôÿý¤à})D+¥œ~öEÿé~Oé€È?Ï_ü¯<Ù`ëp¾Ed*^üQp ö>OF¼ÕÑÙ“{xNléyÀ|µsº!Õc<ãk½¦ûô(ýyÓoûþ\Þiúê½®>PÚijœŠBzä@GvΤÁlr/IT‡‚—ödÿÞ¶ƒ˜öb¶¡²"iÚŸß÷2[Pê1^’›=z=?JKû3 Ç y#ì²5¬KÐ_OÛ éç¡.€(:¢WŽr)ˆ(]„ž7ùâòD‘a¼ã_ü(Pß4§ nêVoÁà1/§‡¸èD~ú]ö.§/Þ×ì\^iE'U dG¦ÓI Þº‡®À;M ã^ù®dM,ŒiCyì`7œö¶Ú .¥D9Â^Zú}…YÑÄNèJïÛOü‹Á÷Âüë)‰bý±_ÈD:"_©Ñ$k5ÆUë]%cßâUAÂÍÙ×– t œ ú¹š ŽvÂ#ì£5¬«Ð Žù}(ßÜïÕ{¨ê;Ù÷Ý’g@œ/gOŒ-O¯’±GÚuÕ`L1Ã2äL ,0ž6ˆõ8ƒa/­a]G%Ò®P\œ‘¥ûiå¤üŠä}E“ÅI·ÎJéÑd¯à/›ß{JF´,&v&Ì”lx\M Û¾ÚØöL¶ÙªdzI ×±zwF`ÔÊòÆ£ût÷ݰunÇu·’r6°¹âÍpº÷n?IÊœŸ·«N7tSÜ) 'flªk퇻î¦yHw9}õÞ&ÜÛᢲ«SvT!“x£+!*%ú3žºS©yJЧgy{Ô¢\e@ÜÂEqV·§¤ñNÈ ÈÚ<-« >x„}´‚u5Éœ¥"c˜kT<¸PíâÚ—ä`™cSl>öà÷C š‚׈çY51¸MIgTjèmµA3ì…GØKkX×Q§—Z^Ê©À•ØûV>Ý ]„AwÖ<„ªž=È·ŠãÓfÂ#È€45ËÆ÷3%|§†]}ÜmCXuE2ý¶†u g0®†9”.²sÅÍ #Å)‰{Å(Àö àª# ·à//ýÈÀ”¬!1mèB’ȹÔ4p2mx3½ð{i ë:ÜöQ:Ô<¨oA ŽŽEñ ¯·%7Ò‰·  G¥ G`K)Û†K½™4⫆ěò¨RÛq²°¯Ò±Ú Æf¦UÉôÒÖuèÍûüËïµÒ¢ZÃdS'KâGGÇØÊì¼L:Áø`ë&Œ³æU%hsµh0>ý’†“`j8Æjƒ8fØ H¿¥a]‡6VÍIÑ»T;ÉÆ¿Ï®}•}‹7Ä‹p‘Žì¹®äÁ+!’ 'c2°’ÔÓ‰¤B ¸MÎÙÁ|\Ô âMû9@îzþâ}­š`š9yè´¦é»öSSÒY¬ÛrÖ¼c·=<Ô˜]û©;û"AŽø¢Áx×÷`J‹•RÃö¬6¶Ç6ì…GØKkX×áFSñƒeëÎ[ÔJÇA^â &â1(%êâ€^s(WÁå÷8Nr #ø0ªd¼^¬Œi#fX2Xiú½Ú F¸B^x„½´†u:!ò¤”(‘5Æë1Fæ%¯ÞS²òáG†ÄÃòÃçbX쉱q8«µt‹cÚø~¦$6B(³†­­6ˆΓa/­a]Gm¦Á³DsvÀ˜Mê,âsNy1ŸqNÇÿãáÚÀ•_g Bé÷“xc;FÍlÏ:ÛSsôõ‘\ñ¬êi%kç]ÎÕøÖa22^oF¾-¹q×.Ðëâ[=¥ÞÓVÁ_¦°â-à÷µj0¦ Ì$ÊÌT  ïf±AüýL/<Â^ZúŽ©à×åâèYïkA ;–Üùq^ªD°m"6^ºÕão”‘x<¦†Ä´ñýLIT»ßÿ¦†s_mœÉâc/4"½”†?ëÐW–-%Øn3j”ñšÝ’ãPöB×È Ûz¶ãþW×’[• qߢÁ˜6¾Ÿ)é󟬡wæ?Ùñ÷3½ð{i ë:ône½À3TjKYònºYÀ„£÷¼‰cW¡cÄC™ ^~àfö€ .Ó©^ìR­ îý_N8FÑ/ˆó^Ó]Lÿã½~¸È1&«n›Ç®Š=âFì—lÉAG¢ÈsÍ _lß;1B-$`Ïϵj0¦ ÌD¾Ôðn•ÄßÏôÂ#ì¥5¬ë¨\¼Ü¹†È¢è é•#Kk%y¿Kǘw›U;ïSäªÏ?Ãñ´Uƒ1møÎöaNÏ'•4´mµAü÷Â9Â^Zú§y!í‰\Qî²)ƒ‘ï‰ÎA¿´ ÙÝ/D8 2>Op;b{;˜ëþje¾° |?Sr?ì# ¯mBûá»ÒcO_à].ìXqªxÅ+ìw‹ÚÉ×Nˆçüû$7FdñÞJm›ðË<õóvÏÉMÑnBÒ+å<²+¥^B<eXè•&Wk•å‰k?y/glF@‹çtJ…¼PD ‰Å‘Y¡Æ¨ÔÂÆÁ¼Ò©Áy¦´ñý‰RfœyA²iÃøû±9búM ÖQ;«ñvçP‚Sl ƒY ‘™÷W$ Dx=¶Ô‹¢ï½bš±…CŽè÷ªÁ˜60Ã’H[K€Ó„0*ÓŽ*)nSÁºŠg#)‹ qÝÞò:XTjÉk3vvA$Ææ¦qT|W[ñ`!)HR2ÓÄ÷3%SSA\TW Ä1Á>hDú(Vá®/›Ž²‘@ÕT0ñW$‘ÐØXy„ëÞNšÿHñ-8îaÐ(tèmU`LßÏ”° S*ˆ<‹jXµNE2}´‚u5¬èö/âífC·ˆÎ=ì9kI´îow„­ßCÒØI©š1â/i»‹¤“í¢À˜&bFJ@;5ìcµA¬_û^¤×R°®B”_nyƒgÕ{¦Âo<žpäŲd€míÅŸÊ ꈂõÁ“F#¢¿jÕ˜6ðK”Õ© Ý«‰&Úœé„GØI*ø³ŠJØÇû¼íqwO–ûÜû`fJ¢š; ‘@tD{â~°G×þ$Ž·É@Ó1ÎE!-`‚$¹}© m« bä\Ë °Ö°®¢n‰Y–¦¢¥ñª¤lª`‰è#‚…»æ="X#qìUsÄÝW Æ›ÉÆÂ5iØãz£Ø×K‘¿¥a]‡¶Œ¬ÅwïñÄ?ꎘ‹™’½Ãt5;Ð#ð¹Wüeù6Êo­ aÓk%%7_+VpŲ‹ áï'ÈöÑÖUÔ¹šÞè×/†ÎIî–˜’cˆÂ•%Ë"Å+òàŒcÃÓÏÏãX5wKLIg¯ÃÔÐ÷ÕFw·ÄôÂ#ì¥5¬ëp“¤—‡•âìÈŒbDJÔP¼ø!í T÷[Ý8„Ktß#vøH ‰iYò’ÙDÏäoƸ€s„½”†?ëЫOgµ’}E$nÈrêLñJA‹[6Vž™g5šyXAÁ|Ì4­Ñž:;!´c8ãa·{O÷SÕº@1霧¯Þׄ™MYòêT;6µQt-è 5¢ëW\1îqµ0ŽC G”àÑŽˆ‘Ôy†»l)hàñ›“Ù,`êÎÞiÚ#ì™5,®»Ëç?ï34 €ƒìÎ ÷”<`8yÄp³“€ Í"–)ŒÇÌS%è’¶hHÜ;›’ÑY‰h ïnâîÅ1žÃòÂ#ì¥5¬ë¨|ÖJ½èqŸl­qê™vU|ÏY;£ÓÏìÇxÔ‰m»# {ŽšÑ¢!1m|?Sâ³Q<ûEÎà[¸_‘)½ÐˆôRþ¬£Ôël°«ÜeäAƧ„þbßü–‘€¤ð‹ÌêÂxÙnUÒƒ9aѸ)†lI´FR¸43jµ!¬óGx‘#äejX×á{þÏT¢É™:؉û5¶ä’ÀÑ–Yz”ç²gì† ¥ôk~=Ìëtcè×Ë …Z<=Þ]E=à÷3Íës{§Ù‹÷ú³â6Zw–‡ï,—rˆå*%­óôÉå4Á3uD¢å™'Ö^%=*¶ Æ´”ô¨hÆ)˜"¤\mãŒK/r„¼L ë:´`l(ؘשÖ;¨q—„ÖcSÂäµ>›;s~# °K»q$óDØì,#MŒi¹þ’ˆ^45¼ _l#Ãè®’é¥5¬ë0ýÓýKV“Úhj;â\xï,•ž’È*ãaä£2+Çïéhâ Öˆã^Ò&Hr!b*8ïÕq̰a­a]…¯}k€Ä*èß•wƒnEÂT§¸½ê¼Q‰Ä®¶]¤{'ÆËþ¨dOV;w,%;ø_§frM™]4ŸJ ›’÷×­RøWã¶ {áöÒÖu8ÁâŸ:®d ºãõŽÔ­ÆšÚ”°‡Û¾¡Öa<#Çþþq F)<¹Âsi妆Ĭ”SÒÁ;5¼Å1Já*™^JßuTò_öÁô9ªû‚|çW$êù1Û¸nêù{©A§0^£WùøèëtcÀ ‰%Øôjz´P«Ú‰ñRoUR<Öôu:ü ŽöD†Ô>DCøn»cŸrµÆâÒ"AŽþ»uc}`4ê¹#ex#¸0¶ƒ*¨òˆv-&nN2¶dsª35Ä¡ ÚÆ’^xDz) Ö¡ï2.©ÙŽxäíÞ`b_\¿*“v?6ÄCÐßT¬ë„µ ÀYÚ#ö¾jHìöç)ih–65l×jƒ·}òB#ÒKiø³%s‚xq¥pJrˆªrg×Í8G^J¯,X)œ8yÄ«ãá&^)!#ÁÔ°“¢!m쪞^x„½´†uZð=›Ä+%9®žNq!°×iJ"[#6ãï¦mcÉÇîPõÀ,’_‹†Ä´’D,¸ý›ömµAŒ8€¼ð{) Öa¾TÃ÷“µÃuç‘púðÎ %äÙŸb\`Ä“rôYÛ.üeϵ"A~HÕ0qcÓdKÐ¥íéÿ¬áýÏUm?öbŽ —Súí3ÆàQÁ¼,»²BƒÙŠÕð)á÷ñÝÀãï„+êp"ÈH Æ–ÿAk‹ñî7 ÆÃÕð)á÷qjà÷uÚð7zz¡é¥4üY‡+F®yÅ©òÿ¸L ѽ3Ë~J’?wˆŒÜñàz²à/ÿ‰bï}닆Ĵ!÷!¹pÇ35¼gÚÅ1.E·*™^Zú½wyê½.±XÜÈ¿qWó°Éœ%Á£÷[=FŠi¸nOb{[•ŒÈ¬J Ÿ’8ã`†4Œ}µ1”v>½ÐˆôRþ¬ÃÍ3W®éS}`ãö[‘e âúû eç…ZÁºŠº™r·5Å0Hª°í¢ËtäàF·ß޼Ô¶ö‹ ‚¦ô"@´¥Ì¢rŒ– ±èP“Û±('ÄÁPÖ=ÀÎjúâ»cÊÏ?³žõÝ]@Hs`Þc¦$òXV9ÅRT À2*FbU9ÅãÒ#PÃT4$îÙÀ’lü› ö¾šØ³†ÓNx„¤‚?«¨dQÌf5—Ð-¢oHÔþ1,%I4 Ùî¬î<"¿á@:û­Y__$.(M Ʋ1kVhkÛú¿Ôp_ÏbCø›u±s„ý¶†uZ°š0ãI¥8\0·DUÕʼn¿"ÿcPWÅÎôÞ6$“Ž‡Þ„±½ßª¤GbÕøV‚)yÏ- 3¨áºÚbCøûI/r„½”†?ë(}‹v–w)ë"¢¹¨É{æHKÁq‘Æ9šŽfDE´·ŸÆÓc°\ÒŸÛ:Ýúñ´± á"+ç÷±èDøù.‚⯦/þëú–¹»ø»ºíIü{ýü•¿)x‚`½i¨Úz?2‰ŸPGT°äk€j4ۈʵé×Ò~üËÙ±‡/ê±jE0åôÕwS[°3 й{êç®^f¬b#|ÞqAuÌÇ?ô)»Ëœ'Ä~•=ws@äªæd€.j)Ãtž¸÷EóÞ­Y–ý9Ôäâ±6I¨À¦°›ÏìRá£ê,§ 5’”Þ<]Röhÿ:!¢ˆ•’ü<øÅêôĪ„LATDß-Ï﨤Lý]•–iߟË=O_ýw#ˆýŸîxÎGÄ}è‰PÄ”°}È‹™7'ÐŒ-^Ì#q$GYð(#âe_5ÓR‰%9Õ45}µA òyáöÒÖu˜pþúçÚ<ÿ$#·íÇ¥ßdJ¢Ô3ngNvŽý©8¶â ºÏÚ¼§c“AO ;œO $hž6LØ<½ð{i ë:jó%Ýxìû|P’çP+1IÞ×yÇ žm†ñ(™XÏ*$kžEEƒ°møiÕD³1jxñVmûyÕÊû- Öá+-0Ñcwè†DûûW@³Àcsl-%`{|1¹J£¡¢Z|£c?MÃæ€s[$ÞZKÉÀÝd*ˆ¦ÉÕqL°a­`]E%*çý{rZ?ŒScŸÎëw "©=nß&AlvØÆQ[™ [Îëñœmí.7észo‹z@\»"˜Îiúê½û)€ QDßD³vjßt++x£#upœ€+Òž÷R—5t[zãe??ïO™L°é*–°±ÍŽçmÇ¢—Õ2ì,ðÒäâ±vö<Œ“ÓXgqмûãGy^¼_zì;/î§Ÿ¡mé‘@gä­•£ä²ÍÙ†—‹¹§TISAt6LýøŽÊ¼?¶·š½8oJÜ1ÇóçÙ3ƒ:uAÌ"rº”¼›h&P£°5²{TQ^°¨#Š™#ƾ(H¸™N’ nÇ¿T°+¹Ç&öLÿ±9B>¦†u~¡âýòèÛêb-„%·ƒ\¦¤a«‰2)$’íbCQHU°ŠµŒæ÷±j0Þ²d°ùJjˆ|µ!¬b­"I/SÃºŽº^žÈ÷l\sõt¾„%â剾1»Êà©p©óæ–ôh}Ôˈû^5ßnIŸ’ëÖá—¢H¯Úþ~Ò‹a/­a]G=±]'nušy¿ÁQÙõ´‚ƒg°3ðãqÚ£¹Þ„ˆøL‘Õç{[¦'Öóp ®Òtí„ßÏ4ïvWÓïýWÅ}®†z§=[´ 9™W û•ô¨ÃEºyå÷ûï8"õÄY{•ôÈÁ_4ÓfH†%SÃÖVÄÈ+a/­a]GÀaÕ*è@d WTç`ÝY .6§ynf×Çi1|®jAQ¯;­NŸúc¼Güçôc[Ô"òöÁô³ÿx¯°ûsv—60WÚy½·(«SÂNÄã`{¬W¼‹Cbcb/1R!î*‘ž¿h0¦ äJ[²)WZ™6ˆq”‘~Kúm‘Ù› £u°‹Fˈùœ§//-‰'ûEG”tD{9üe¿è¸TÎϳ(0¤…ïgJŽ›WVp´ÕÄ‘í»ì„GØGkXWQï}ØÃ\¢A"©QÕ)¹Äš¢{²€5%è¦&Æ‹óÀs2Gèn.5ÓF̰$R&âMi C¥‰¶1²xÑ^x„½´†u^ï­ˆ¹ßµ¸l¥gW›"K"Iv ƒÚ1 ³¨9úV1j™oRÅyÄâE”aÙ¹ƒ$7ÒRC´ö¨6„qe´WÉôÛÖuÔæ.‚ªJ…P<Ì"{U_KЮ 1£xŠDSf…îâžíüùq.³ ©ã-aWšœoÒ VÔªHŠËÒ°.Asl’QYLj:Îb1„ ¦ 2ô;‰`Wt<èÌbŒaœÁÆY#vÄuvÂÆ´˜¼gÔûø7§¿G¶ªPQ˜×çvÎÓïuÀ¯Ê}–#üûÛiqlºt'@8pz@ÛÏ#NM;"ñèR—0N]I{<àlÛœLÐMÜf¶zâÞÍ»ÝiÙŸÃ+M®;&Žì-òU«^üÂA²Ïξ¿"é;ëYO&üµ~³çÌ¥öpÄð¢UI†êEƒ1m`Æl ÇÆ©Òðî#Ä8WÈ °—Ö°®£fé¹Þ©b Enä@üUÉÍ>5;[ælïã1”£Á×q'þ²‰X‘ô,o¢qNɱ³ËŒ5ŒsµAüýL/<Â^Zúgéµ¼¸Õ âÞÉ×rnºß™¾´:‹QÒ׌>oM="R§«†‰7]ñ¤$î]ÿMä÷ž&Ì>ð;IVáf.#Ë_u[Ï¥=‹_%y:wíÏN¦0½5š:ñ ƒdïs+†RCâ[—éSr±v×ö«-6„¿ŸôÂ#ÒKiø³ŽzbgªmW7K]|Í]'ïº%Áˆ€Ê—ÁBÔ ÏÅW £>gcåªG<תÁ˜60C’à™ŽTkÏjƒy×£J¦—Ö°®£Öç0—Ú$’ïKW ‘!ØXõ?¾®%Éu\WÎkg’ø‘´kÿÓkä+^¼QwÂ$ž²%–´ "¿O’ÑØ›~–r,áøa©ZÕ#Þ£W iõZ’œØÔ-ÁTQM£üꬒå£5ì«Ð·ùfní¿Ei<¯‡…#|2'#v™ÿݼFG3¾ ¢Nã(^l³Õ ;áñoMž4E5 ÷ú8Ý<þm>›Êj‘5ûÔÜxqþÝ+ªµaJ° h‘6–'~)Q!è„2Sœåó'T9[ˆÚU/77žÌM@*'DœCÖ= ÝÕüÝ}}_QqÄuŠÁ*blhŽ×”\ªà¸eû~ûÈàŠü¸7±b.w+#î¾k0>Íñº$ª¿¶†£ï6s¼¦‘~KþŽJ¡Ï¿î$¡Æw;5QMüª¦ÃP^°8„åöìaÆûAìQ!¿ð>Ƴ‰¤{A X•³#K±¨üüØ|~.g=}ó½³9§ê\;ê±Füc‰ègIâx€v®‘8â}¢›+ DZY¹f‚±¢ ñ!ž”D-dp=YÃý¶Í†p,–NäùhVQ¹,ÛÖ¥z$bO4¹o¬ãäFÁùÑo ÊJ_Ô\4~[ˆŠà?ˆô{W`L˜`É Ž<+}·@üùY>xDz-û*¶.†Giñ}6ã•4"ßLlKòGMé Gô“ˆüó—ÔÂxÅ<"ሗ÷ù©aáC’|ÿŠ™Ø¨á{(Õ†1Þ1ðb —Kþsþ¬´âÓ¨( Ñ,ç|ø„¢àûz>ì·Ñ™œ6Òú.ø!}P-å€ï#±N¤z=·_%¦‰“ÓkÓOˆGÓ,‚ôÎÓ7ïu¿W/„á<ÅAf»?8rEZÂZªŠ`pö`(X)fqÝ”#¢Ø¸j0¦ ÌäúÒ¿¹jƒAá»J–—Ö°¯C續¦Ý—ÈÔÕÅõxíƒ-9ýÿÁP¾Åĥأª/¬0¢cg•€¶qÓ ,ŸŸ"AâRj8‚B­ØF<^äˆô[öuè½C¾6úSæÏ­JpEäg–d°Å6 õÎÁ:¶æWwźh9Ë€ûÜËvµ’<ƒ·‰TЙŽºÒ‡a¯­`_Eí-ËR$]7ÿe'~5«¶.%º>¸¢[È*œ»‚ß`ÔÒº‹Ýš×ˆkì Œ³´.%‘GҠ¹´‘¥uvBÒG)ø³Šø4þ¸·R£té@—C/ Âc_;í?;£ëó×Üc±o• ¶ªÎ7lêÙ¼$×dñ•0:¶L\‡MÈ H¥àÏ´åÇÞ KÕ¶]hÄõ}[¼¤+¾ZCç¤qFu^à~TG鮬Ec×øHJn¾SRÜ»9mÃ^x„½´†}[Õ3Ø+z)'¬Ááù[$,"ëq{àÞM ã*=¯‰•èÑ¢!²ìÔ`|‰9tIÎ'“i á¼vçeöB#ÒKiø³×µàzUväMì—êðÚw«Mœ”œèŒØã“HUÕQ!ÔTé' >µ£Jð¯½i0¦ÏOJ‚ˆ¬a5©@µ! 3záöÒþ¬Cf.©™C„dÑ›|ªê¨3ù)%žúx"_üTŒ¯ôdþ GŒkרQK‚:cà+L •´Ñ3Šc/r„¼L û:¶"Öâ¹ÝlTŠÄcíV3ˆ%yBr©‰äL./F«xÀõî Œïa6KÄgóÜ-Ìäx³a­`_…Õ¼«,ö0-õ@´+:‡œÜkXòýª€1ê@;ÅqI©Î£b½ŒPžáWß5ÓЖ€½25Ìï«ÚÖ˨HŠßÔðg5‚ÌF&Ù¸…iUà QžfJ^fY² Ð÷Ø* æiƒoƒ=Ïr - ‰OçiZBí¥¿ìeÃ<ÜË °—Ö°¯Ã•ü«¹cn®t¶Œ)xd ¸;ÈØ_O´l«ÂˆfŸx_䈸Uª «6sIæ’¥]–1lCNh@ú(VQcl'–,…sûƒËÍß" ž–ȃ Ö¨ÉPÁ üVŒ‡É/SŽ ©ÕÒ`LxÄIr#Ô²4Ìg·AŒgúY%ËKkØ×¡³éx`=îdÏÀÇùýܯ÷(j`©}¼ìc[$PÌ¸Š v³|ΰLN¤zm7Næ$G’¥fGZvÑ.¨½F˜Ïô.§oÞûfEy<9ls€âëúþk<¼§”àû'‰»‰HD :âïQ#ÎÑ‘‡² ö ߟp½ÛtAªWþj̽âéß#MÕOøùIûþ\Þyúæ=VùϽˆ’>1=Ètxc›lÁs±ÉnÜ‘d¼+ZŒèü5 nåÊtAÓ¥`3óšÅwE=!þìo¤sš½ùxñ¾R9Šq“0^nî´dÉ8Ùié!'ÿE2Fô4*˜÷ëãh’T§'¦”m›’ï)Ý­ á˜» bñùÁ °—Ö°¯Ã·¸ÐÃÞi*µut§Â…)™% ±$örÉ3^ãqaš{ öÃʱá/Ó©ã%@jÞšþÕ[õj/ù”Ïí®¦oÞ—Ö”Ì)n.êg­ÅÌÎÐK‚K{Ÿ.ÆUö}ŽK–‚?ä²è-%_<«†‚ÕµyIĤ†¡¾Ï¶1²3´½Èö’þ®C~vv'·ÊÔ³I=ÕÈ Ä³É&-»ûÁ¤å~ƒA¯„—mþümÛlChÇ[J‚†t‡5=R ‹zÀÏjïÏ휧oÞ›Éjãôé~D°îá̧%QæS<Oe>ÅSráøzì$‘#®±kHì̧”t&.YA»‰–™OvB#ÒI*ø³ŠJ¿ÜPü|Ñ“±7Ä8n”ÞüVÉËäf4}@ßÞ¯ã¬øÃºÜczZpúªôY’‰ãš>æn`¨g¹ éŸ4üYAMÆl¨Üy”N¬ŠTŽÊYÐÑËî>ïÖn8?]Ø´eÔ—ãÇåKrr½-CÕ‚0þF•¯ÏüÛLäN¢Ÿ¼PòtÜ]äëk,dI OăÏß½Ä'›U+E m›<‚íªRÃÂ.¿LÉ͘rj`)䲑å—é…F¤—ÒðgõñDn|§h¾ 4ß—ž¿EÒÐ¥3í@Òı7WâxVΫJ¾øÝ5ÓfH'€¸¤·†ãÙm£F^x„½´†}µ¹ì)²m½d'ƒG;^UB§äd²{›Ìm¬È%BTâ ã0Þu3¬ßí¦Á˜6Pík .8SÃõö͆pÌ9"ý–†}µW– ´tës¨ fÌC­ —$HzAø‚ÛY“;©ÌFÇNÖáxÄ©2)XðËDJÄï” úØMt7KL'<Â>š!j_…ë¿qÀ¦iÔ±Ù²¥›”ß%èLj-B”Dô÷a[º+anî×çAÍP¦ R½ŠMCpM¤ {öulÚ qywž¾y¯oñûÏŒGȾb稱Gte™Ñ ˆáÛ!^~_üÛÜÄ'‡ ȃŽ[9tRI¥Í-[lTŸ§OGû·ù«gÛ‹"ÞdRí¨¦Áé÷xØdtIÔï)jEÚË_9ãOÌDF¼©±šG|”›cÚøü {[ޠײ!Œ\z‘#ÒoiØ×¡¿"ãÞL£ Ed·â*ôPéþ’¨R$òa;JÉâÝ F­ŸšQ{Ä5w ƇÞ)¹ÔÀÙ"ºZm++·HÒKkø³pHæµå·JÖýnOØôlIØN ­ˆÐ¨¼5dç;UÁx5Õ[sD„¾«†Ä´§‘%'ÒóRÃwY› âÏÏòÂ#Òojø³%ô=*Œ˜«ž½›ÁÇÁ ŸÕ%Çy©—zÓ Põ¨óÊ©ú6ÏzQ°%AgîDNÚðTÌ|¿4ŠÏì'nkŸ4×hð§\n7r䘶gȧÏÃ3Fp¹“Èöz ñHéEОØ%ä\%ÞÞˆüz*¶9Kµ žA*Œø¹ÝòôâµÞ GÆ‚»ëçü¦¹quWß—.ïð®Ïõw ºB¿ÍˆýÂ\’õ>”†Ä´Qߘs¬7æ,”ˆ¶A¬7&¼ðˆ|CŽýi+Çvª¥5O¨OÄF‚qrº™LJnl>/P™ý\ð]¹£äæfƒ\˜}S`8ÝQfIp¯¶Œ±›n*“NxDz- û*œc‹S.¨.³F¢‹J‡X#-A¢Ê£À ÂïŠ?dõþþ*׈h§]5$>DŽaÉMF™Ôp“Q&m#rõVIz™öuø—ŠÌ5\pLuщ+x4ýÚ৤3É=H_®ÎBl­Ÿ¸”#ÇvVI‹v2UCbÚÀC’à$ÖðÕ1rlå…GØKkØ×áÍ?§W‘jùãnEû? ”3?ÕÏaÿ5YÌ)ŒZ_÷½ÖˆøÍVÆWóÐ’ï×›8k8ÞÝÆ‘{L9árÑó·%˜‚mþóþ^ù\ߟrùz¼~±´ 2œƒ;V¿¢þÆÃ%d‚ø‚É$?¿¯}º0õÇx ´nÎùqkõ•6 Œ_-=ÈvÙ¶%lµW:Ê\¹T0;÷›EÍKݱ8†ô¢ËÆ üû™«E6Õq_»cÚÐz!i/©Ð­¡]» b<å…GØKkØ×QjÓùkµØìî§Ó@Ròb†2/=!‘‚¡B°;s4n1Õæ•’¥†ÄâÏ^’Ö”Æ! ×Üm\Ó6ì…GØKkØ×¡§ò¹ŠÖ3~’ùaVÝo‘p_Ûã¹pOF<®·bì°\#zÛ5ÓŠÖ%a^]j¸¹¯MÂØ”U²¼´†}ÎÅÄ$;¦ª“f7õâ«¿)ˆÜûØRG—Yv²á«?=Áç'»TåÇqÀ*³ ›9ySððÏäé-ÂCMÚ>?i—{9}ó¿R‰7\ºv­Ü¨¬AÃÙ–Œ¡Ûyä÷¡`dàöþ­øÃª¼~­—bÚÖ˜6T4IÃÑ{ih×n£]¶a/<Â^ZþpŽå«FïÖï3šçÊÈ·îz×Hr# áûÖPq9×/Þ §:W5¥@ó­’ï›dîŒiïKXu“¢lý)6ˆñ®‘‘~KÃ¾Ž’L%²bw=ÈvwMìW~‹äf&gd°|°ái‘ÁÚÆWùª’Y¶›cšÀ IYSÃ8wÄH{¤`­`_…"æûm¾%½ö½È±2ãß9 µíh'»huP-³q»¯®Úú|ô}º1ôÇx Kxr~CØq ŽöÀ#ì¡5lK0:Û7㫬ƒO°#o&Jy_³1CÒAèÜîï&áyT„¸îóU&ÎÅ_I‹îE®åMƒ1m|~–äB‘ûÒäÕq̰a/­a_Ç*nÇÖø=ÄGÑ”üy4óQXrò­Ï$ûœwÒMD „p¼‚§ ˜{fZñá®·–@X)Þˬ–$êð/dÔ{uú7ê2¯ŠUÉy½eD›»aÙÀ Ibw ŠÔЉ£Õ†0{•,¿­a_‡ö,hµÏ]Ü׈m‹Äñ<`ò޲7RÜ¤Ž v¿„¸Ž¼‹Äre¶Ðí󾳓˜J“™Í˜Ê‡ûiÝä›§o¾×À1ÉNÝMTv36×&²‚à q‹.dçÃÖ¥ÙÉ ¥¸Â`§:³ù)FŒ{×` ¢³‚ ¨Ï‘"-Ç÷‡\,‚ÑJ.ès{èéÛ¶œÓÁ½…~­dF§<ýZ- OñËa<ìnú<¤+Ž_Ò;Ø T#"»*â#Öø45jJ˜wµ4×nã05jzáöÒöuÔK&dÞ|ÍöHЬ¸8‚XÅ’qtöO>˜W%LBdIkJ2’†ëÞm#&3«dyi û:ÜÚ;lkí>œø¢‚Ÿ›QÕ”\èI†×öý¢ã™èÃ5ØZ“ÝÌ4âºw Æ´¡íÈÔùºÿ- Gßm~–±ü¦†?ëð™gÛV®¹úd=[_mÂ,‰S¦øÔâYÒ³ i|újö´*i<Ù4¯6a’ı-.þ¬¡¹ ˜l´Õ&L^äy™öu”¼=6ú>ñ”&ÿˆÙb¨,+%ß}Z#Å|Q\‹‚`ñýëU†´€ ’DÈcü[ Žc7A,:Š"Y>JßUø $‹Ò" <a)B’ó1ß$× è_†~vßCÍù°SMÁæ9ˈëÙ5Ó†øF(9P¦’âu\m~–±ü¦†?ëðþñù—´¨Se'îóG0D¿ì²dÉDp«Ÿ®øÇ¸ñnýú‚;~ã8t÷³J¾øÙ5ÓfHòýï‹ÒЯÝ1òÍå…GØKkØ×Q"ÌF&yeá%‚>¼¥^ÞKƦ $N1 ¸¡Ä™LÑ•å.#¢IEÕØ·Ô–D“Š`jðõ¤mkßV$éejØ×¡õò܇[ÛÞÔâš øtW/IÒ]AS¹º¡~Tüa;‡û.#ÆØ5ŒQmà´+Ƀz‰Ô׳Ն0N»W•,¿­a_G­9dØ\¿¿ÿ¶Swª9\V ¶ ílWV¶çÆ;`Õ~%o•|7ãc×`ìzÀ"aÛ™ÔÀŠÂeÃ5‡Ë H¿¥a_‡ï½FÖ*Æù_n „ñ>êU†âª!± ¤–$ÞºñƲV+-®^Z^x„½”†?ëÐçÕåmœæ©û2¸5Õþ-’›Ñx¿Ô"1g?:"ÜEŒ¼Û ;1Ÿ]ƒñkn‘`{°4Œ¾ÛÝ6ì…G¤ßÒ°¯£&×p™ïß C–ÊI*’"AËm<&¶>Ho¸†;$µèlP$-:lŸ:§äj|C[Ã9wÄŸŸå…GØKkØ×QSø½Ž$Þ¿‘[Á½| yÕü"(Ezç½Øï ¢Rñ,‚ œ[“½q B9ï›^BT'ʰÀ+M®;§>þ„b1·jB‚$*ÂÎ8m€ìvIêÿþ3tйœñ›<®Šµ‡EQGÌ{×ø5qJh©—†8ÁTÄ`ÈêU²¼´†}:Ŷ®¹ÿ-þ§Á Ñ…hIžÁd‰Ë¬D8€¡%(yŒN¥0¡mh/#úÜ5ÓfH2ÙÁ=5Ìk·A¬;DxáöÒöuxçx®Z=7Á }‡ó–$¦vÖ4ð‘6õ¸¾*FñÝìQxæ®ÀØ)[Er²M¶°ë²@¬ªƒ")^KÁ¾ŠÂ-ÃÛÌ•aÎèGTÓó2S‚÷àÑØóŒ®`X§r¶`÷ç¢ñlChÇ5&ß÷ÿŒó¡§÷hš»Ô "Lp[Ó7ï·€"ŠNÝ5l~ÍFÅÅt^ù’¼Š‡¾kƘ5ŽÛBÔ`8¯¼}ÿݪ7UCbç| ²ÂSÃdÖxÚ˜Î+O/rDúM ÖQ6Ç÷U¹ß:5èBý·J@Wßn;‚䌠™N&ˆžœU‚þMCb]ã/IÔÙb5èJ=mä{z‘#ì¥5ìëðêί±º£Õ›µà4(‚ÄÁU_º¸²@}R¤éñ£g²é6g)vf|±ÑtÎ<çRzªg»ìá#ûây›³Z²H&yä½åÿî*x¡;ÉC’ €àÚÏ{Bæµsö|Oþ {Ä{ï„eãó³$j6RCýVŸŸô"GØokØ×QYȸâ®&)5±Ãi|¹ZM_o„Ðb$’nŒ F<©“\¢, *0¦ dÛHÒzœ ¢mlµ@Œ—ñS%ËG+ØWá&.se~)BüAëûí*•– ÒûA ](Ä=‹T°‹€^lâì¨ÏÛܧ S?ÆKÀÀ£§g¦Ù¥ ™CêeÞŸÛ]ÍÞ¼¯íG Ä– <ã_>â:ÊYÂøú;x`y_ƒúNŒsYg3,ø~Ѫëû gÉwË£žœÇnâ¢éÁßôÁ©ý9ÙIð¹fü‰zù,.çÊTB©Fl‚ȰüÇ©qý“jð§¤ÕüX^jææs­íÇÞ׉@WjÁ{‘ùT‚è6[ìYÿŒàÉlOñrë8‡¯ãÚ¦ R½®,Æ>/0˜jzß‹~B\?EÞyúæ½Ë=˜Ž‰ðᡚ¬ (šø"arV$IF§{—â"aü]”PàÑ-¾jH|’Ì}I”œ•®{·AŒÌÌ·J–—Ö°¯£Þ=rÁ—ûÝ iÅeeçÑ4%ï­ƒQîa*Ê‹C!‰†„ñ­}«ËMCb'¤äB‹¥!8« b,X^x„½´†}ú ƒud`3hž²äÙ_Ã(T¼yY‚þ“NÆÈYXðC"Âú9î"<€ŠY?ðÏ)ŒžesE¯àç' çxåÉÅc½=ÙÉ[¤§ºU=ïŒðA›’V-’eÝà&Ó§ySôdd,ÌŽXC‰JÜÿjHXuRÁ÷ï·™ Ž vÂ#ì¤쫨yÓLNŒŽ;ì©͋zãß%AÃ6t¸dº¡fpTŒ¤Ð¦ý&GÄ>³j0–˜aɃšæÔ€Žnņ0 ï*Y~Kßu˜‰ý9þ™‹¢E š̓Â"«Ö߸:‰J¾,Òƒí‹n•0~O­JpÚØ4$V‘ä’Œ‹Y×Öðýãl6ˆc†½ð{i û:V‰N1ƒT¶ ;w¥`¦„¤Èíæ%ü?lªÀòÆØ¬¿È˼õ_ŒÝŒpIî©Jii`\fÙ˜NóL/<Â^ZþŽJhû¼«Æ§ùȨˆ‡öÍÒ,KZk·¸t‹‹xÄÛ2nsû›!„ G[Þ¶+0¦‰˜`ÉÉž¿Vp<»â˜`<Â>ZÁ¾ Řÿï³r0ñ%@mn#{o x›ô…9–Ò-f}‰ßQ>~mª Uë+ŒKØ¥z6¾QÕÊ ðí}ÊgrJ37Ÿkzø`j„žÂAn‹üŠK'Ñ%x˜1yÃÙ¬Ñy!ʬظ‡1ü‚·Ì+ð»žç%’<·@›E1ÙàÓ(>³CœøÇcílDy‘HzhgÔ[ÈéY'ÝDJ@dÜz'3É£ãÑUºàÈYˆU¯sìŸÌ(X¶OÁYMÇ;ávR öU(Ié^χœ]=^ñ‡"¦ÈŠNÁDn2bƒa[( ¿ÔE0>cùëšh ͪFƒ ó:-g÷£hþT>\ —Kž¸ùìh´ÙDÇüÙ߇D$J Å 6Q1†{ˆ`1¼Œ‹À’…áÏçÜf R»JÃ(çFNG8k©'Tðz\ëóôVÓ7ïõÃVž±?§" I§’–D©\sp£& Û›W)~¯·7í+’õ1Uç’RrGîûRðý7¸{1AŒ'šœð;IVQ“Zâ—yª&òÀ ^8j"%ù¾¢oDÌÉDz³¯Çþ*nb…ñ-Ädï®Á˜60C’’ô¥!‚-Õ1¾½òÂ#ì¥5ìëpl œèˆ¹G[4êjñÉ4þ”ô‹‰ÇûFÎd4.z¯Ä6GŠ>Þ9âj»c/É…çéÒ@âäeÃÔÊË H/¥áÏ:jS:‹D!ý\h6NÄ—àÂö&F¥:yòÚË0V׋ð‰v6åó¸Ò,Ó©^·œâÈãl³ðI;!N€2ïvWÓ7ïëŸõ­-‘Ø´fDñ›8§÷¬$²FýùD‚-ÚÀ'Ä…íY ]äËtÃ˵æñ'†s¶Òw­}¸Atš÷yçé›÷ŽˆòK1JDIð¾ËµSÂÓC‹"á8ÜÇ;ýãrÃ#B©g•´¨d®?.×N {’[÷jÑàÁš+H/¥áÏ:*…†ÙÚE M\ŽG½R‡ù—Aå làÜ“Dй`8óþw­‘uW$¦‰XoJ~#© Ê+øOL ÂÈVkUR¼–‚}ÿWI¤v¬Ø@›Î­ƒ%/ZHÅq“=ÆØ”h°ÌÄ·™MËÑŽM!-|~–äf“ +v®jBgß»J–Ö°¯¢¶©C"–»Ý^$Z“íÀ~‹„ Ág‚¶4qÙw±—vÁH#ãålŽh}×`LhÆ!IÜÆ kèïnƒXÙ.E²¼´†}úù’Vo:‹Û 0‚.t0}Ý’—íxÇO'÷È„0Ï2"J&ІĴ– ò55àò¥ØÆÉgTIñ›þ¬ÃéÏàLÄ¡mj':± ʦXÍäâ¿9éüäå{Ô,Œr6kÄ÷ûX5˪ ,a äž¼m³!Œ~­JŠßÔðg•Ô‰×of!‹>CÁÙyvUÌ¥äbÞí-J_ä=ê¶%ŒLP&ßåˆà8¬Œi\2’d J Ç±Û SèQ%ËKkØ×átþx!©Ç—%5m¨Û‰Vˆ¿UÂf¤M;òhnô¨[g¿£5ÈQ%_ç–Š,·?P¿œ°mIôa?Kòððc ñW«6„??éEްßÖ°¯C[b~…W,"»G±ÀÖœù“wz:DqØZ}“ ?«5³?·yN7†þÏOˆFÁóãèUô~V[fžþjúæ¿Û™ bP'ZžÈÿ"»ò’<ÿE”±‡}‰¾[8ô@3F)D«’½ª‚„‡JR,ñ´‚`í¨&ˆñ•—a­a_ÅÿÃ%ýº-úX Þ|Iâ4}3Óãæ†Á„xYÄJô(¤qœc)H|vó7Z‡éëßÒÀ.ÍËÆ¡rótÂì£üYEeõŸ­PÈ¡»a$ü4†æ‹¤ %K5nsú¥–:$×þ°ÅM‘dÝlj0¦Ïªn Ñ/ ¼ð^6òf=½ð{i û:jÚ±ÝåÄ Ë=Q^]^YbzÍ‹}Uš Fâ º0®¢Æ:»$‘@{ýK Ñ‹´ÚF š^ä{i û:tVÀ]šDªGɹm¹~‹$Z9oèàw)~vç]rðˆ#¥în±³Íϱ+0¦‰ÏÏ’€;'›JÙ1òåƒGØG+ØW¡ï3,·wü£Øz$‰ýÑ’ï¥!ØØ»ç»ï¢â÷Â*­@ÿÐ @j0¦ÏÏ’ŒWÒ%,Õ1 rä…GØKkØ×Q“IXnÿ°gxƱ;˜Z±Øt´Ü&ÏáÑêY ˜X߈­AâW¦ÌyHAì…ÿ­Ùmlê A“ÞŠ ÓìÍ÷­ ָׅ³O4 Šh&ÛHÐñA¥m{¸1,ó›ÿÞÆÖ¿I»ù[Œa¥©°1ùRñÑbPžíYŸÛCOß–P`1ÍërÐüÄiqÄ÷C=E-¹NvUZ¯Ðͳ«§ÝeÄw»·i0¦ ,Ar v•†û}6ªÆ)’å¥5ìëP ÛF.@¦Ÿ×Ã\ÏcêŽ+%®š(Gdt¼ŒÂó þÅ«Œ÷®Á˜60C•–ïCæi†¯[Å1£95T#äejØ×ÇÛ–ÓMÛ 5ƒˆ( j­–dh¿ûòüDX8béj[Û \n¯AlЗ†Ä´–p¿›ZÛmãý<ª¤ø­ó¾ó¼t¥OG>¹nô¾ÿjÑGá&AÎo‘Œ¡ £}¸nräàF£à™üãÝ#¾OªMƒqÒò¤¤¡eY*ˆrÑj‚¢³J–“R°¯¢¶®¸ÍÇËúå9jOÿß%¸IyÐÊO¹oöÐXP\xìõ Ï»M¤zŒ—€\a9}ôM?¡ò°ïò¹ÝÕôÍ{ny5¦„IlÉÀ Ò°Or[J‘“¹'ޝ,úy™idh­lÁ÷`ݪ‚…iGsI.¦rZÁÕv Ä*†a­`_…Žxí<ˆ`¸ðê`œ¯³Ão•ðU2Ï‹lð}¨U#‡Â¶»8Ë€Öw‰ÕbI.’ÕZ›1, nΰ|ðûhû*LZúähÌ‘¹^‘ Æ‘Ìõ‚$(Iîæo`&áDzdÁÈõBl8Ǧ 1M(Õ ’©’‡Iµ@¬óC‘,¥àÏ*jVuÇëÖo7j.~-<Ú²Õã`ik6ƒ.~Ív‘9Bí$SCb¦. KW—–¶..~]^x„½´†}µ…jÃõ—«&Ïç'Ü0èÚÖ^‰öóʼn W X*Y±' ¦±·Jú¥kJkHÜUú]$¹1­MW—Ö}k/4bùM Ö¡¿0»ž±D§œÁñ='O?’°ü'ƒurq6)X§Ÿv—7ã1©Á˜60C’ùª‰®4»eµA¬óO‘,/­a_‡^¸ÿ’sXu„¯øp&³~‹„ù í|P'2ZŒ‰ÐGd O•´W>©Á˜6ð¨•$8ÿâšZ‚(¹ÚŽò"GØKkØ×QkÒ.f–s»ü}œ=h¦ ª ,¹p•Ö#1¾ZqÀóMSÙã#Ja?eD¿w Æ´’ˆŸ¥œÿ‹ aœ²èEް—Ö°¯c5Œå}˜É¸‚HðUìàr-ù~9¡8s•ãŠó›u…u9[$íCªcÚÀÓÖ_>\×/ óÝm#F+/<Â^Zþ}ϵ£ê:Ý‚á{Æa²„kI^öňܫ†FFG|uÀ×î b1Âà0îï±k0¦ PÂHr#”œ&™oÓÆ47nz‘#ì¥5ìëp͘ó†9 $´ibÙH ·i­‹ ì«;vqˆµŒè˃bxQî½=З¤£§C*h$êH ÍTéƒGØG+ØWájÙËÁ©S ¬ñX‹+™xü¡lmI&Žßx0Æ?5,6j¾ÎÄz< ¾›ã¡’²%Gjèm·Ñ›mØ °—Ö°¯C^ýðG>»Z¶ÙÐùÌwx@§äÅ!¬Äü’Øí»s+Xé¥ñ]Ê×±iHLˆ%JBáÆßcÙ Æ7â®’å¥4üY‡o˜¼:þ­Êöè[u 2ÿ(tcy•Úý’7.g÷".!eG$ˇ§'ž"¤[‚ƒ5ÏrÏ¢˜‘Îöùùò—Ówÿ¢ÂŸ”©ØýUnò­¬àƒÕÂKÀNF-þ¥pq¾,ûþµî'12±Ï*iS©‰Öø`q¯`ÃØäŸìËþ©)Ø gá3ú–wç )/9=ó7Z§áª û¿E"òæHÃ:ÅÆêÆÉUĨ‡ìUÒÏ`vë…þÙ˜6P¥)ÉxE* ãÚm#·E^x„½”†?ëÐ}óø»Jœ¤*‰J…N. Kn4È`ŽSþN‚á<2¡…QU6ñýÊq—ü Æ´ñùY’»œ¥aœ»qÚ†½ð{i û:ôxŠ•ÞH.ʾ+âr‰ `Òò¦¤£›%{¢!î-†Ù™”¹q[‰XœGÜc×`L Ѱ„áöÔpÝñçgyáé·4ìëÐö ­¶ïiçêxF<ìymÁ^ýh&„ؽñ‚òó³ÊG•Èé†ÝHÁ÷!ÇVOâ‘¢_ðócûù¹¼óôÍûz¦ç*³Xp²Ü|A0.eI<1âAvÀ+y`ËGÎ;±VZ$à†Þ4ËfHò`OÆýl6„µÚð"GØokØ×á\ìXð‹ †Ó/"Õ*.#Û«áŽ/%íæèá#ÎͱaygÅñÀ<:s5"òÁª†Ä´÷²%ÈšYÎ¾Û ÖF­HŠß§öaçnƒÇ 8ð]ëï1ºñââ[Ü%áltì~ÆçAÌ ³ cÓË'ˆ¢ªªaá¼ÅµäiÚHû¦m¢.Ø6„±?ªdyi û:ƒÄ3ŠÜµ¨.0ó|Oÿ/D- K³{Ð|t$r¢6»÷¸€=#•øª’-n7 Æ´–œdr²†¸¨6ˆc†½ðˆô[öuèAÅo4*ôŽçÚ¸W"Žw¼•{e*ûδ'ódq¶oL… ÷JŽÐ-lj0¦Â½]Ç»ÈWÆ{l6„ ùJŽ—©a_‡žY¬ÐCæIWÎgÔÔ³"¸³çÙ’<èöý®œ¬×}à:Úö–ß¶»Jz¤qmŒi¿I&Ü\æ±Û F©Ÿ¼ð{i û:j˜ùEþÉågVrG€¶‹ÉepÆ— ÕçìDñå»~ؤô.Ÿex™.˜t\¬IólånZ{ÒA¤ywž¾yïì ð]5ûââUS\žÈF°‘[™WJ¿™-1r)Xaš#Ƶk–˜‘°»§äRÂ* /rDú- û:ôdn~ ±9 yJ‚Ä© / 7ðpö¨²iHd "Î…>Í{_v ðÇß÷B™lxñ¨”82Cþ­¹‘ ¹T<Ç,ËüØ~qîæuå†g1­:OâÖôÖ>ìæÆÂ’H©Ã½êƒ¸uÐ^x¥3Ò-ì—þSF<Ç®Á˜6b†%ß“ÖÖ –9iƒ·½òÂ#ì¥5ì먌½º r‘×)v» azM±H¾;eð_*}1xÁXð‡‹`Àóˆ>w Æ´ñùY÷Q´†óÙm~–a/­a_‡Þ³`bqJïæùzºHêò[$|gô³MÖhó±ÐÏÎÐàåÇ÷ßöªü-Þ«h06•LJN¾3RvËņ0îæéEŽðkÕöuÔ>,'.8o5ŽvY™Š¯Z‚öÃhÄ8Åù ¾¹ÞÕ]Mïü«Jz<7 í©60C’‡½s¬!îs« a\˜Ñ‹a¿­a_G=è ­ì°È^xm©™ ' 6öoñÊS&Ödž‹1¾lg•´¨EÛ4ËfHòÝØ£5·4`ã_l«Jý4"ý–†?ëÐ/xrψ‘†&™ŸñÍÇýæ’t\±¡½#¢Ù×—m’KÚøCºö”Á›\57Ý>.É÷/ÙîKÃyï6ÎÛ6ì…GØKkØ×QÙY”ñô,‰Bl×d4K.dCÄ‹`’jÙ#‚o’m’î¥ÀÐD1KB*™T0H5“&†ÉhÒ‰a­a_Em´ÃÊ(¿’âê-Y;zíýÉ8²T/J°âî¸ézvÌĈUÒ£l}Ó`L˜!ÉwÿÅ©ázvĪ„a/­a_‡kÉÁú¶“ȬìQ:I5A°ûÄ“` tzŒÈ„BÓSà‡¤†ç(@©¾¦Jýçg pšÓq:S¿ Ê¨®ò¹ÝÕôÍûÚ0–YÊBǽ״Ouxý-‚ Âö}Fä úRݼÂ:oCÜ`=EУùA™Ú‘À ó}Öô~lêq¥&óúÜÎyúæ½ë °9F%®ÉÏ”ô EnÒ[Hrhn~²û»ñ½Q¯aüa§š"iß]Ô®@X&b†%ß'ÒýüK A”Zm/е`¯­`_EíÉr±Ì=À¾g-v(šfÊOIPERG¼?"œ@6ü/~Ѳè6Y~o'+ÌrÄw¿ZNóÚ/Ƀî8©`’?MLç§‘^KßUø‚W ìZ¨ª¾×% ±'1¬%'J0Ñ\7¨ôP ^ð‡­^qCàßcÁ¦Á˜60ãfšê÷ÖÿY8‹ ãÏX#èd*ØW¡ƒžÀjW¨€ÅóÜäŽk­<–¤£taî ̺÷8+ƒÛK~98ç¦!1mÀ{IXrº4œïnã|]b/4"½”†?ëp‰N`•7O¤K€wàT†²à…Õ»`’‚ö>gHNîÿ•ÛY¦¨¥PBÒ{&.n–bߥa}ž>jvñ¹’%½¢Bpø|¢@’w´ÌɘÉëÄóF9YT ¢Íû­r3ß·úógîÓ¡aQ È“ó{Ûô"”!ûú<ýÕôÍÿºf±SS£’«#Vuîü’WÉÏñ2º釗Hʉ™G|ÿ^›†Ä‡;?X2/u—÷ްÕ]Â^x„½´†}•ᘠKšXÖGcGí‹Iü¿EÒÀèØb÷ñâM†;·; àÐÆ™ÀkÄ»cÚÀÇ’gÑÔpŽÝ1Þ8òÂ#ÒoiØ×QJ)Åsv±>¬{Ê&±äD²Ó÷q?I‚Tž‘ø|âæÌ¯«J¾øÙ5ÓfPò¼ÈýH Á»Wmã¥C/<Â^Zßuè¡„û-ÐÊûé`´dæËo•°lä,>,ª½:Cg÷HŒ¿ÖQ%-’J6‰•n“’è;zã@ S_ÒÆåT;‘äc*ØWQ+ØoH<=Bš `Ë¿ß"¹o&–Þd6zÌ!>=1ʪIŽ”#Þ¹k0¦ ”U[r²xÏ¢3_µAŒ²jyáé·4ìë¨ f‘fÓ5HŸ¢v“é~KÂ@Ï“3ž2'Úƒ×>MHyIåª!1màÛ)É÷+0ŸK— §./<Â^Zþ]ì!Žz"¦š45A% [m‹äE¼µ Ha· ˆW³öWm{4Ì)’ s6 ‰U€°$»Ç¥aÜ»qÛ†½ð{i û:¶v£KÝJÇŽ_zd¹F\gú‚¸\ÜÄÈ܉ÀVÃñ*ª­ijçäÍ®g›.HõzVA€|¦œ!Ö¢_ß…QË]Nß½¯tôøÝjq»Øhºä)%q¹‚zåïOÔB¢˜j4]#ºä)rФEC^\$ZƒñtÉSJ¢zzþ[ú³Ûè.yJ/<Â^Zþ=•ñbjc›#‹b$t4Ñ!§dЦ=LOA‡‹qTŒŠîÂsDð0ätjW9 $¤c_ÓÉ6¹ ´Çì‚GØ?kØWà=‚OhID¢öìŠÝÐEžš¼zýŒ+oÙ—P‚â5˜½ ¸G.Díˆ;Qp‹îϳ³CÕ~~–}wž¿y_£Œ’‹'Há#vu±¯øo‘ܺ_püùA×ó~F«£™¬e æˆq팧­I\ú,,ŠZ&ˆ?%tïé6ì«ÐAGìÔjóYg°W2L‘’q©C$é>ñfÉ‚?äæŽrxE)j ‰iãó³$ß½^„RC;vÄH¼z«dy) ÖQ#¨<\nÃyâ[5ÙFþw r¬]NH>ØñþŠ“!vø7 å€Þët¡l[oÁÄ®gÍVõ›Õgy\Ú÷yçù›÷Š#lëçzþY™ÓܲåRJ^ðð¶hÔ9¡M •ÞƒYÒ-[.½fqñˆ°]4$ΖK)¹Ñ™riPC¥´‘-—Ò H/¥áÏ:)¾ÍX^"ÅSO‘Zz¸424Ç»™Aoò[½*æ‹@—¼}›.øŒ$Тà¾Yâ¦éñ.úQ$tAzçé›÷Î'Ç——çO·3|3}øä¯U’¸®9À¿1Ý?ÑÛ ß¿‚A EÚ›½2«aÙÀ KÇ“¾_¹Í†ðç'½Èé·4ìëp-Mq?b¼C¢.Ò…ñYPð296‚±}ޤ¡T,î¸ ?$ü@R–¼÷6_úEÅ‚à?¦ÏwÓOøùYx€üóüÍÿÕ­gr5ëÖ&Û·ŸxýRr¡£螉îöü¾ìßL¹ÍØÛyÄ=vÆ4o¤%ºš¥†£í6ˆQ¶F'< ½–‚}5m„uMº—u½P#8‚ÐLJš*ˆâ]ÿ²EìŒ÷Ã=ELð2+UJEÒÞ÷Ü5ÓŠT%9o¾¥¬!2’« bÔ5É °—Ö°¯£vHSz…O#H\¾ï8Ø Îða3øãc[ÅQ!R½Ÿ"hqK·æ&`V¸aG pM º†¢0ÆÛ´>·[ž^¼6‹Ò¹Þ4nò"n“ÄÁ8›%$ÄF˜vàOF·à›™Db]ޏú®Á˜6>?Kò=áÏ¿¥áûúÜlãmvVÉòRþ¬ÃH«fÙ´CÃÒö¶¿X¯ 4LêöÖ£3a{àÜq—ς˫L¼Ôg!'B šKR é=ëµY,¯ÌØ~­‹­Ëzp}Œ½)~/kÄuïŒi3,9˜Fb GÛmÍ6ì…F,¿©áÏ:*™o\o_¹¶CÙõ7iè—$’ýp‰:ÿ3½1¹É. ºÂ«JÐIkÓ`LŸŸ%Qû’ÔÐÁƾlãªV^x„½´†}µ&äÀfz¾€xcÅy=s—d0tÇÉ,ÈŒ#²1b^³JzTþÅÏ/5Ó"q’|Ï 'è„¥!:WÄ1Ã^x„½´†}z·2í áqµ,ÿžüòãBáa^›%™ 8nºShÈ(kÇ×mp/GÌ{×`LŸŸ%i cY®w·A¬Sc‘,/­a_GaC~˜l«—M¼ÇÀ=¬$‚%™Hø¾XЪ8OîlÅ…ð&yQãë&°†ÄCWýErªA©4ô±ÛèÃ6ì…G¤ßÒ°¯£Ô1)þbJ‡ï#’o¾0‡Oø£í÷'ØÀöÑÉä3¿Ú›‚¯ZSñã9¶É‚Эܙ”¼7;hrSƒên«Mûc:–“«ßõ`ó(2ŒÅ)¼Þ™ôü[$ÊÁ¶C4úS{áGñ€çÜ;ÓºH°c²‚~÷ÍBwôúGôˆôZ öU¸aÜ›—“×­‚Ê¡j°ë%cJšÊó§êÇD†ØZt‰ñd‰jó¡ïYj0¦ ÜPJrºÀ_"%¹Ú Vvv‘,/­a_‡©ŸÇ?בžn|¨5gä̃R’‡9;è Ïõ¨%ÛãÉz*aÜ7ßUÒ‚DoÓ ,Ø+XŸš5Üâ@° áÏOz‘#ÒoiØ×Q¹®žð_ø½A•6¶N¶ ÞÿÐD÷a+°ûßESgAPÇ€Y‚>æ5½`þ— Rðþ­éÑ®¨¨Ÿê!’æõ¹½Ãì?Þ› \½ôØ_ò ¾»9ÌûÅ€xªµ #ˆ,¢è@ŒþÑØyaœ¡Ñoèc×ÐGµñù)’ˆŒZÚUÆ6]URܦ‚}ú£’4–d3. î·È–]æž’ÈÑ>¹³%¹2" ˆÏ£Ù±* ‹¤EQѦÁøp»%ñM¸Äµ¢È·ÚÖv:¼Èò25ìë¨ÍPtèiî'rðàëdÝC ^Ð;â*õÈkq|%Äùå(‚ù)uºá©’ ¢%ډᘼ8E» Î:4ïòÎÓwïDœÿÔ¶=ùqoÑ:4ÜÂü‰˜¡îÈç 9Ýñï÷ÌŠUTXˆæfUCâ–tw–ˆÙ)5ˆû(m\y÷c/<Â^ZþÓ̦`t‚<¨³¾ñ²MI”ÔŸw¹7¨}«€–qó'¬}î}•ï±k– Ü8Kú¯TÐUÖdŸŸt"GØm)ØWQÙq{íqÓUZDC¡‹à– 0®!ñË›L4‹Rì‚8†yDĆª†Ä´ƒ›$¹ÔÐÎݱx‹dyi û:껇-Œ”tžºŸæµ$â—`#xÈ´9+ñˆž¼ÇĹ£ðÄŸ÷cŸnܦ‰D-‰{XPJÁe²RY¸’¬Ô.x„]´†}• k¢'xóÈýtçâ²Y¶‘ iñâÆ×WØíf;UAü oesÀs¶:]Pê??KpÆß=§÷Çtëăá,‚å.§ïÞ›_ókÛ}ÒY©#vÒ¿EW¤¸±yo\k^‘q*"W}Îìüœžú•¡ê[ä蚬E? ²1F,÷4}÷ß„©xã ž ¯§Áàň“7ó‚ƒf7˜Ðƒ© waç‘@Á2–+äÙ‚ÔþùIÁÀÏiMïoÑNðùYÆõ±}ÓìÝ÷µÆÒs¶EU#,A~‹äD³ºeÈc=yGÑÇdæ+1vä½JV¸i0¦ œ(y^„ZRCôA®6„Q5I/r„¼L û:ü zóê*Ž[„ÊQoÈŠö;)–Q톷”¿¯ö¨%· 8–‰?+›Ñ#œGh ƲQ2 £ê)»ÒU‘Õ†püHåEŽH¿©áÏ:\içŸx¯Í¬´ªÂ9/WÚAˆjÜÐíulŽÖ.ö‡%V¥]‘à>Ó`Üg6`“„£¥¡»fbïôÂ#ì¥5ìëpm]«¯†czGðjj‡h ’˜[dÿ¡×WgkìÙÐ ŒQñ«JZ$5³5,|zßg‰¨¼SÃyï6ˆqÿ*/4"½”†?ë¨{'^×%Yj¿™|qÆ“û·.v‘ŒæªÈs½°K‰ž‹ "«ì`¦¬>¿ç>Ýú1^‚}¼×üãØô‡ôÛ¾>·{ž¾ù_9F˜³æJöÈõzñ#9¸õ/”• [l€.e'È'ëobå¬2 µ]Ab1¶/ÉÊ”T0Çna[°a­`_Eå×çö¹±v€êàe­ío•¼¤±}Ù]åeµmGrúÂxkbï¿F)5,ì ß” I ñm­6„EwQ$ËKiø³ÝàL§l‚yë]{ò^aN¦ÿ, øwÛí‹…çdFÆ1+Æû–åº9â:ª‚„´€®$ãQ·Ä={5AŒÝÓS%ËGiø³ŠZ`7I#ª þû½ÈDúý¢Ü|Yr7íÜ\›ÉZySÙ k½E’ôøÖ˜6”äÉ §]jçnƒX †‘^JßuhÁøBóWìŽ‘Ž®¤£‰B4%lOØßû#ŽYˆCǾàJ¬{St.õˆûÝ5æX·%ë–†öì6ÚcöÂ#ì¥5ìëЫWéµè«œ½Sä¥gW= ¾Ö¡&¼ðŠÓ²Ø‹{3Tòà åÝ6Ýú??KpÌl‚‡ùßçnÕøùYöõ¹ÝóôÍEŽÑtŒU;MMÇ6`D;¡‹•“’ÜŒzѽ“~\» xï×Þ2â{ÆÚ4Ó†îä ìtš¢iQµAŒÊ^%ËKkØ×¡3î;‡Ò‚É©ªü&x¥¤ƒ|Ù Q.ÿ~¿!H¾ºy3*ü7l/#ž¾k0¦ EG)9™f Wßm~–‘~Kþ·Á_˜tuÚ`G#Ì#îï—$¢uì„|(~ ­!âÇ¿~Dî2b\»aÙðÍ."áèÕš"\më[T$ËokØ×áÞ—ND²­·“9J§Ø±}oÆì×¾ñ@X0N)ß¿f¯æQ&¸_2aÔ~‚%†ƒŒ1Ò]¤Y0FÓr~¯<¹x\SÃ'Ú\Ê6“uSE¦Â)¡ƒw”9©‰(µ‰}(yˈ·½45$>›HÉM_SÜ» b„å…GØKkØ×áÌd®hdøròÆ%ßÁfQ¿KÐðTlQw• Í6EÄ)Ç—Wkq‹ÜÓ Óª%9ñ`]Žw·AŒû>:árÑó·%TŽ'D‹Wø ¼ÄýjÁ<’)‰¬(amq¤\P!ðYyƒÔ9]ê1ž‚Žlø5AÁÔßë—}.ï<}ó¾räáVÛ¥¼$ß·lü ;.öñóiîÍ€›ö â·öâç•ÀÙêÉTÌ;Ì8úŒ€kâùlš õ‹¯ŸÃ+O.ûwù/[€wåFN»]˜’Þ |ñÃÞ—•'‘v ð×µ)‘x]$à¸ß4ß®NYÖ—¤†ÙwÓõ)é…G¤ßÒ°¯£Þßð9Ô´ëErÔ€óV½AîçBnÔÇ—êXH»Ð¾>~Pmˉú…n 7 *LO‰’ªSƒ’ªÓ1 <Þ*Y^ZþÅ̆ßC+'ƒÇü‡ßïW‰dâÂöe‘Ž%ß«=*tª¦Ž¯ç¬8¾žqoÚÊV‘¥†Ä‡n@RׯžÃÔÛÐjC?š§JÒKkø³Ž­ Ö•!Òµµé$'^’‰Žkwgmü!¦ù&V)w‘|ñ»k0ê¾$AB}þ[ú±Ûè‡mØ °—Ö°¯£Š^§éxäE_$Ñ]/€’\hÈ‹F{˜L°aéMÇiaŸ*ù¾ÔÇ®ÁøÔ&iI¾OÔØý§†ãÚmÇ {áöÒöu˜mþsX¼û²#¶ m¾I^›’àÙ‰Màw•‘Dé}¢4ȵ£JZ´4Þ4Ëj;$‰óZ›SÃç£bCô"GØokØ×ᘚsâÂùP)pìЃ“侚(÷R¢V>±§*À»!üõÅè™kŒˆÒ]% æß4_ ¹- ›©. Ç»Û ÆAY^hDz) ÖQµŒÑÊuV›ƒu?Ò0Ø Ó’è¾ ŠNÒ´D%þ^qµúÌÄ^Û .L7 Æ´¡+UH:r¬—†vï6ˆc†½ð{i û:Ê6ëAª—ۢ͆D•þCîÍb;IÞƒÜßíÎ^d7’ò:&¾ÎÔis´*AíØ¦Á˜6T] ·ÂKƒ:"¦l™˜^x„½´†}•oƒàÆKçöŠ1+^üqœ”¼(8ÿbµŠ<°×ûþSrË ÿø½“oÃ#Ʊk0¦ |%,AÉzj÷Øl£>ä%·F¤ßÒ°¯c+Ïâm‚ÞJñªY]ä™c½)‘ íÁ©ë¡xøá Î-þïYµ ¢ šæs€¼óôÍ{m‘ÂWÍPâËà¡GÁkÍRò¢­'R£â_Š{’’´àxijö,#î¶k0¦ mì)ÁåyjÀõÖX6„??éEŽH¿¥a_‡_ëÚ9•ÁÕÈ9òº¦$î}_–8G®˜º¡ù®}ü]#æÜ5ÓÆçgIÒV–†vî6ˆ??Ë °—Ö°¯CáFþm»«öñ Šk¨“¯›¡”¼$뺄|YdoÀóLŒwd«’/~w ‰Ue´$w#%™5Ì{·AŒG—¯B5Â^Zþ,XåuëY—‘QÌÕ'ò’¼ì¢ÞƒN,4QÎ'ŒK<5Äh˜Ò«¤G?²Mƒ°l€j@’‡£ÖÍ(« á˜!/r„ý¶†}fN¿òfÄ]8£â'2ß^¥ýÉ@õqñ ÕŽÑ%ĸY%è€[5$¦ÏÏ’0Ílih×nƒ÷/òÂ#ì¥4üY‡X±Ô#[¾1q ¼¯øáO%®YBŽÒˆG€>CÆÙrôV1ÒÐN¶´ò¶]»3kJ˜„»4°K겑YÓ °—Ö°¯Ã—›lÀ9ÿ%ÃxrFÍ FRÒ@Õ‘ä…OG¡LÒ Å!~ÄÔ`|©8§H}é¥áû—ßl Å‘~Kþý…™>ƒýÄí®`QVfûæôKJûq2¾÷އ‰+ç[1R[eÌßЦÁ˜6b†%ß¿ÛD2Œ4\ïnƒ8fØ °—Ö°¯Cû'>®ÈT<•ÕvùÊú%Ks)Ð̸éÜLéó$­²°JmŠ{òMƒð•·•K‚\ŠÔp©:É6®¬_²9"ý–†}N¢¾ÿ±Àê•|Š^*H/˜’_«ï—…„TñX‚¿³1š,Œ§ô[%ß/èÜ5Ó~– qèÒ0Ænƒ_iyáé·4ìëð»,Ö¼f,Ó/<ý5Œ{ì}^\ÄD(ìÁnIL7ÄŠ< âŠ`¶±cÿã,ÉÍF ©Ž.v|yápÑÓ‹ûnÃé<ÔUË,è/òB‡T)aø×ýJ-'DkÜà #XôTIƲM1M „%IcöŸ%¬Üi×ÍÆ_'Ù¯”“¸§gÊÉ¡îÆ/ùd–äñl?ħv’Ê¥c˜§É^дHÐ2tÓ`LŸŸ" îÚ¥ NBÕ12Nä„G¤ÛT°¯BWx0#ËúR˜1+žñØß"yñðdÝBÜFv5Ã}Gbä5*iÁ”±M7¦˜aÉæ©!î'« a—NäÇöÏÓ÷l=LT’†o1¯z°vB³äŸÒ¿–ÄQ.®—Z$·Äºà(|§6 Æ’ú–äf'kxîk³!Œ·½ÈöÒöu8`Ž>RÝmx´GGá‡(Vú§¤ßŒT*)üQUwì‡GOŒƒ:Û"刻팛^ÒE‚>ÝKÃ5v×° {áé·4ì먷|¤¥ju$º¸O‹¯>i©-x@G5Á§~ë—,½¸L÷I+‚/|·Ù ‘]Y0ñu^ÓÇØÔ“iÙ¼>·sž¾y_­2©f*{Ý_Göxù]’è.-AÎÈþþ"\™õëºÕÈÊ×tWPÐŽ2¢_Û|Aˆ –<Û¤ ÒTª aÜÇ`Ÿ­`_ƒ¾Ãýüç¶C]\ƒ1 õT×! ^VºEqr#':®ÄÍ]Blç˜ñ’®¹M|Ô“)Áv…áš>ßMÿ|­_öõ¹½ÓôÝûJ$þÓÍI¡ùª7rJ”O‰W$&BÙÈ FeÃÃ*Wˆt‘ªÁxº©ý’°Tjc·1ÜÔ>½ðˆô[öu8£%VºŸn`¨‹ûÌ@O‰òÇ/]Ê/oL0FÝz¯ü­ª†Ä™ž&KÁžÕ„1 Ý^viD:IV¡LÜ0ú*/òÉèy‰¶9%7Š#23\ßbs®ð}üÓÇÆx–ãÙÓfH2f±4Ä£û.6ˆ±'¥`­`_E¹ñQ`J÷x8ïÆʉÜßß*yÎǨKŽä ÐŒSú“Á«J2Ü4$VÆñ’Äf÷ÌÔÙAÕ†0ë¾àEް—Ö°¯cÏkòÃ^ܪÞú6Kòýn‚ë™Y0užìIòÜ+? îiD즪aÛP~$Quþ³ܳƗU6Œ•V$ËokØ×¡KÄW™Éj¢Ô€æµ=b÷JIGX|³ì *:d¼È!1þõ¶HÚ<æ¦!1m Àd ¿—†«í6ˆ??Ë H¿¥a_‡@H¤á}í)}ø!-õqÆ’ˆƒEŒ»±î¾.FHÚ[1 ~nÒ„xÄè»ãÃ=v–[ùÔ0Ù'#m£ 鬒â·4ìëð™IÙüb+螼ƺf.8%qhDŸu½‘ÐSâÆ5ÀÅžq¾›†ÄÇð‚%9Þ›îJCtUÂøÕÓ °—Öðgõ¦„aåÉGtÄS\ã¼ÙÓ„’ï/P]I˜ªúý…ªiIÃKÏAbìÜ׈>w ĶñùY’G­I|yÎják&Ìæûm û:”m¡Ì!S'±Î@%/Ç¥†Ž)9–pEUbÔ鞓ׂžèLŒ:ƒ‡„E1ÓN ‰iu”D÷„ØZÈëíbC÷úô"GÜ.´‘†}z ãœË¢7ý#ÒŒ'îÁñp¼Â¸Ÿ|ö’Aþ,ðCù^DONž3ÇX@¦~x"ž¸K³!HÚõs8éÉÅcíŸuEïò‰¨ìxnþÉÅÂÖè;þ‚Ö)f(ƒn‰ñhzªäûà»cÚÀ£I’hfŒúFi8ŽÝ1MòÂ#ì¥5ìëðùÙºLaÕuÔhHìqgø[$'ò›Ûl¸DA4²œ:öiƸ>«¤Í1w Æ´K}J®Ìµ¢†Ë™T²!Œz‘#äejØ×a†ùþÏ(ýNÙòôû;Eº$xZ~1¹‹Ïä¥=JQÆ•”½Jz”·lŸ"µäxA 𢨲ÚÏ–”=B^¦†}Þ\ôy–WêjdÄ(Vê,Ç]’8†vÖª`¢–½à›çŒVFŒw×`Üt|Z’ uðKÃùî6Î×6ì…GØKkØ×á'CGyV19ùޏÖ÷°p*œ¼$ˆx´'î;y#ûÄýòÂJ5~Þ2â{Û4$6û^Jâfóü·4\÷nãrÈ:½ð{i û:¼›B&'n½ÚeZr²¯Gõ¸´!jÞßì¾fB-aDŒØS‚~°“¦¦'¤úøKYp0_O³Ï¶i'ïŽÌ{€ÝÕôÍûZ…ûâ2óp`õiпñdɉ}6Ž$ G?±/Ï#‹0r/Èqä‘IQ5$¦ ek„dº(B¢ƒ^µ!üùI/r„¼´†?ëð‚qœuÐÙÄöõò™3ñõ·H:Ùc…ª˜úŠ>øÈtÛè“V$ÉHe ‰3Ý6%ªõK WÛmãä!/4"½”†?ëГŠÍH¯r š1wÌhò[$ßgÞ{±ërIÐè¶éÜRâLDMŽ`jÛÒ`LŸŸ%‰Bìû_jˆz¨jCøó“^ä{i û:j|õÎëyÞ{á‘ñÝ—tõ$M û|¶8Û¼¯x:Ð×õ`Î=1b O• 3ì¦Á˜6>?KWE¸÷’†yì6æaöÂ#ì¥5ìëÐø Ê×=P¿Àç8:‹‹$Ê#S´]ä…‹Pü$%Áy'Æ›÷©ôÑÙ4ÓÆçgIfgµ¯5Œ{·AŒ{MyáöÒöu”޳ /«x±»ëE :¯½,¸F¨¿OJ\~_7o° P1V~øèïšç%†bä·Ip€üXsꦥv¸tûL¸üá´Ý_³_0¿_¥H½¯ŽH—*ªSòâß²GîÍ,ùؽGt§.b”.UòÅÏ®À˜&0C’àKGª4ÆpÙ0Ña:¡é£üYÅF …KÌK…!‘26Ä;ûˆïX’kˆY­êFPò‚Y8Ê©¥Örn¥‹†Ä´ò I¾[ÊŒÈÒÀ²ÝeÃ…½Ë °—Òðgµ!†ð®˜?Ñ !ò‘µØÜ!K³µ‰ü~ë#ùYP? »|ÞÞmºá©2K FCÔ̳¿GùªI2ïòÎÓ7ïõ-FŠßG°¯/ãiNé—.·–ùèeð€Þ ·WM7qX‹ ÇF¡N_X×[)8y?•óÑCiéWK¥e_ŸÛ=Oßü×]’UYòêãEQ•ÎÆM¿KMž—¬à>Q{õ=© rÈUX$H¦Ü4ËÆçgI<}RC¬©Úþü¤9Â~[þ·œ+´¨—j°úÄUXlÌžßSò²töêŒxKgçy>nÛ„Å%4fÑï]Câ‹ýù–äÁÝjjÀmQ±!ŒÊ/z‘#ì¥5ìë0 o.uã…ÓN¤êÇ :ž¿EÀVŠÏ÷-i‘ßñPû Y¯aq¦Çí9ˆ{¨_'©»ì]Nß¼¯ïv¯|OG×xyÿöÉ3Î’0OÉõìßç=8óÁ°Q°X<@å¬CIÖ˜6Äâ 3–† WÄ«ª~°—Ö°¯ÃœRÈÕ¾s DwE¨¯MAdÝD\ò¸Ðk#2‹:¤H•}È †Ï¾ß³m¢ñ`Ö%èH,X³ûQ4÷ƒ'¿+ár‰ÿø\鲨³RÖQ¦<‘Ês±MÚ’¼¨ÒÅ»7k/ªt¿øES7îw•|ßm×`L¸r—äæ&.5°)à²A¬= ¼ð{i û:Ì@³È_çp“Nê¡åË¥&’teÄ7ð`ŒÁžó=äèÔCŒˆig˜ç®Á˜67µä Y¯5\m·AŒzyáé·4ì먱¦O·Iã }3ØÄ1%7Èm´·rïÍ–s¯*’„‘öÒ«¤E|~Ó`L3H2 kiÇnƒ‰2òÂ#ì¥5ìëÐ#oWÆþZ‘¯0õ ‰ß"i,ï¼ÈF‡XNüÛFHÁñuˆÔ¯cîŒ/S>§$‚®‘gb º.§)ŸÓ °—Ö°¯Ã—ˆ&²––?aÄ ±•|É »$/IÝ%FÐ6®@ãHŠ«Æ GGì´—×µiHìàM‘€bi` eÙp`ey¡Ëojø³ŽZÆÆjH„{¥žuÝ¿KÐɾÑÍ—Q–G©H¨Áöí,ú“KoŽˆÎëgQ`ìZò"!ùbj`]÷²á:ïtÂì³æoK¨7•ÌÙäiçû9C Ž[L†’ )GßñåšÈu‚ZÁ[Uôòy¸Y¦ R} ·iß9;NsE;!¾Á2ïvWÓ7ïyám‹Mu‚½Ù‚îèÉ?CÁy‰~†GŒ¸Î 5 Î ‚È.¸ŠgÉ:]ê??ÄM™gÈ2ÄF4Ö.ˆ¼šÏô.§oÞ;m„GV4é<”ÔQB0.2ü ïïñĈïP0jÙûD "¯š þü,'<Â>Zþ í ÈRˆ¬˜»e€ø9ñê—¤1\¥î =ºòÅže0ÅÆWß“‘¡WMj0¦ÏÏ’îü·4(g*mdVUzáöÒöuÔ®p,xôši̦G&àËzž”¼lOw#¸ŒdÀ7&죤!î5‚ÿKCâS@)™¤«Ö0îÝq̰a/­a_‡ÿÀ#oaoçRG¦Ú«qÇdr;25åŒë°•¹rª}ßÑ‘wšŸ3—iM7>ԾςH¥ †¦?Ï]Õâö•æý¹¼óìÍû­ã7Â*ÓŠ÷pDkÞ«1E~IêO˜Ú¬óðÍÌç¾°j½Žèï®Àør)lJ¢mû·4ïn㔽M¯=½-4?Ÿâ »ýPI¥Þ¦Hé΀– &l.ľ>åõâ8›;AW}ŸÿòNlçwö®J{™øó“Nx€}´‚uµÇì§ðÐU„-âçôQ:èXr²·ö³a’+1Ú¨ì'9GÄAô*Œ<èX2N…¬al«‘{áöÒÖuT²M’a¹::ÊrOÑ\2É)%l.ñ~SÔ×øBµÛˆèhÁø"3ù=GŒ{Õ`L˜!ÉÁüúÔÁ£jƒ1³J¦—Ö°®C f.33gÛÕƒé}ÝMW¦ât3ý±Nÿo¼I@ù˜Ž­N‚ÒÏÏÄßš9‡VÌÿÎ=?±sšW}­ÑˆÇŒÖ2v‹[¿"‰{‹9ˆ %b*øKŒXgcwUתÀ˜&¥ÍŒSCCÑL/Bp½wæHLÉŽKø1:²cˆÅ1{ì£b\±²YŽˆÆ¡Uƒ1mèR’F>èÔ°¡·õ´AŒä¦³J¦—Ö°®£¶VàzUÚ¾‹H¶%“hJÄ59‘²Ü勬¶%“èÞ÷*A ó¢Á8™DS"ÐÔ žÐ´‘L¢é…GØKkX×QKîTß¶×{0–ô‡››lÇ–ô‹W‰ÌÚ~ß—åê7c Æx0óÓ#â}Q5$¦ WYÒT" ¸Ú Žç”½ðˆô›¾ÖáÖœ¼Èùe"›÷‰›²ØUån +è°CÃÅ+Ì£ËדXûÄ"Á.pÑ`LÚ'nOvN´IÄÚ' °—Ö°®C_h\×±ÈðÚR0uVÂS@á(î‹3Û¦zCðS£¾PÅ£q!ê?§S?­’ ðiúh«b–å¦.Ž›•îù5Û×Ðñ=û"ê=ïxB¥„½“^LŽÇhW ‹{ø”P†{”ANVæ Ò@Œ· !–ÓÇXô"!< ]–‚u ¥1ÑÓœmÊLâîÌUù+ñŒ£ÝÊhÀÑmOŒ7'Âs„Ò(Sƒ±3d¦$n¢b†4œ¢·ÓÙ+éEް—Ö°®£”µsó¯8+¯žhÄñ3öÔn¿Âê2„¢ª&²µ2À›>Í7ì®>KI»Yáf­-ZVŸÙƒž¿,@GWZ™b·ÈÛCâÈy¨“ùŠl(^iÆ)4 % ‘LuÁ~që““ ¡ù]¼_JtUòôc[Ô‚£€Öõ±]óìÅ÷J.rãfY @‚íì_&mƒ c#‡¤¸ ÉJ‰œ¹ ±¡AŽv~~žëtcèaQk?§G±VQˆtóQÅ]Î^¼×=d¡Ùp:ÚÎÆqn8ÿŠàÒR"ྸEûœ;!2ËŽ"xŸì}™n¸qK›‚ѹåÑìýX´*+æ=@Þyúâ}½¹@H_ £µÍ£K„Á(ZJnÿG;øA’‡Èl&hÞK ñŽGÛm&sDª‚‰a»ßLtP“§†v¬6š¹Íí„ØG)øZE%e1¬SÝ÷$À¨NæÕ²%Ñ”·)FÏöh<‚%FŒ ÄH/:ªyöUƒ±l|~Šdc§iˆ.~Õ†°öá…GL¿©ákÚ-°œ»î~wô›3s{,é[“#ø‘UÓƒ,Ó(=5ŸB½rÄy¯„e3$y_÷ó›Ú½-6„c†¼ÈöÛÖuh¹'oÒ¯ßÉ7iE¨bþ‘ÉFÉÀWƒÜ$0æômüRýáV6ïÏí®f/Þ{Ÿ„ãùÅKtÑöîL¡ÇÝÃ_ ¯Þþˆv'º‡ ÜuÖ^6²óç£/³ ¡Ì—Ä Dl‰==ÈêŠz@<Ξ"˜Îyúâ}-—Š'é ™DXѯïR—J ÚPûGœÿâèÑÕŒbÄv¨‡‹GœbžnLýºe Itë»ÎßÔL8Õ†0¢fOù˜îåìÅ}ݬª‹5 &TšßXg½¿?Šv1§]’£‰5éFÁ{ú‰4jìh Æž‡¥å9BÅo©Á˜6Ó.ÉBÏ©!Ѝª bì“î*™^ZúŽXðõóþ¼y>Çjþ†4ÿçÿú¿ÿíïÿþTÙ×ûÎþ~ÚïxÿïýÙ~ÿK6,‹äæ‹ÝÇcÇÁ^¾–üo?ÿÍbTJ"Žô>1*å#Ñi޲¤ŽBä]GYRFa£· Ó/Kê¨/_‹÷eÔöû?¿ÿHmûÿ§ÿ|þ~ÿóÿùÏþëýýåGÀ8ÿýzÿU0$šQýÓãÖ7²ïõßÿ~þ»ù·ñ¯ÿÖãmoÿòoý_ÿmd‡ûù—íýŸ;zÆÿKÇÿ F¾ÿúßÿûøù/þýýíQ÷2÷uiÃ#ÉûH®ÿ.ÿ‰QlPeIõþä”ÕãQ–,£pStÔQ’,£¢a&‚³ûý^¶HäÓ^¨ßhU“è —t-B¼h‡{’]= t¹-¢V‘ÛlA<áç§ÕuÌ‘D[¦R=ÆCÛ¼Žáœí ‹~Áw¼ìççôÎÓWï릂É/"1îAVþþóìnë‚/ÆÞN’~ïìÚÝÑæ(áçD6åóhœT¦ ºåv žÁ9› »S»zOó ï<}ñÞ=—p·Œ:¯2úèDôy 6æ¯HHÕŸ>È”q‚À®?{¯øu%H°ïQFŒkÕ`|ˆ4oJ"'öw*ØŸÕqL°a'¥`]…#ÿ`Kak8~uû½!Æ>ÚØ_‘Hbïñ³@šÜ B±wöq°~}‰[ûû.#vlm¦cÚˆ)åØÔ°Õq̰‘~KúŽlº÷;úó’í>HLÐriJx‡ÐãööŽ\–ÊÈ×™8þí÷§Jz$e/Œi^JÐ…jÿM Á[mãïK/r„¼L ë:t׌¸)oï¸ÜónÊ’T“ó)ÙÑ¢¼G/½þt´0ïQnŠ<Ê¡&ç=‚?ücqÄ• jHÜÕ€¼H85´±Úhjr>½ðˆô›¾ÖQø^ɸÇÓáͨ•íwç zJ$¢õˆFA$Å=O`|Ãù«JzäE.Œi#fXòžÞ™SCð'VÄø'•‘^JÃ×:\ÄŸï/ vb½Ñ»á3ò¦dÇv¿‹ŒýxðDÁøõ2ý7GôsÕ`Lú½CŒ9íwjØžÕñçgz¡é¥4|­Ã‰"ÈJd÷wfL¿£ÁÆëÛÁ„Ú ÿ(ÍãCÊv\ãû"ÂpÈT{4j(8 '«ªsÄù¬ŒoeÐITÑü¦†H°¨6„ýÖeDú- ë:*s—hšyÈmQåsròáKwJ"Š[š ïxx…-OÁØ=±Yš#â2u*Hè&œEÒB2ìc5AÛ(;¡ÓkjøZ…žÉ-KëDߣ$kQý«M‰~sQœÇ¦ªüMFqàÕ¿ÿôÁzQ$}‹¾¸UƒqþjS¢ß\jÐo2mä¯6½ð{i ë:Ìsg £kOµ?·3Cý>¦„Gó>6¶z;tóèQYðëLpjƒGÀ#bT5õâ˜ͧ2¤Lý¶ {¡é¥4|­ÃT"÷|LmzLÝl›×H…ñW$„=H#†ÙÐgw4s‰ñ¨jU‚=QÕ˜60C’÷qóà9, Ú§¤Üɤ‘^JÃ×:ô>gßÁDÔYƒÕßÉOóW$ÈA:êöÀHžëQ—ðŒÄñu»° œ#î}Õ`L1òàL û¶Ú ŽöÂ#ì¥5¬ëpÉ‘ÅY7‹ô{¢%ñs\1%û†ŠòíO£°xoè¬Ñ£ýiÁqbilt•#"*Z5ËF̰$ºÚÇ™IÞ?õbC8fÈ H¿¥ákz'¡ro³6«G_õ¡ú7°MÉxñ×9Ð8n¹cC52+†+­Jz$µ i$é(¹Ÿ z_Mã !'<Â>JÃ×*V6~Ÿñ„nAuŒõˆtÄû(%;øÀ[´(A1QtÆ9?ÇûåTA’G\ûªÁ˜6b†% ŒâSCÛVÄ1Ã^x„½´†uKa ¸B#u&þ¼][Ôˆ$!‚4%ÁÒòþúPE44þÑ{צWøýÇGÍ^Fì÷ªÁ˜60Ãô¦L ARmÇ y‘#ÒoiX×ary¾Œš¢Îø ï$=ÚÆš"ÁåK‹xÿy³ìûˆÄúQcüëßUÒâv|Ñxã)vJ6g§†ÈW¬6„cÆ0ªFØKkX×QÛv>¬‡fŠu¿è±ö¸“ä”Ä..¶ñ³Àã~ÇëãÇ æ‚Ñ9âºW Æ»hfŠ4‰SC«>lÃ^xDú- ë:ôJâu..ý؈K€ÈJÁWˆ8NJž øèï[=tø—|ðï#4ç¯+ï^™ý="jÑ‹CZˆ –\hü˜ Ƶ/&„c†œÈöÑÖUè}Ä®èøó=Ÿ£8ål<@kÃ!R‰{ÄþpF‹æŠ<'Mˆ ùóhUf'„vl5$ØPr6§GRqQˆF+‚霦¯Þk•ØH’¨íâ6¿—uv?Z H¶Ý¢âm…°>´HR»ÆÏéÞŠ [g.HõNÁ ™œMšíÔNˆŸ·Ì{€¼óôÅ{3Ç ÕšI |6áAÖhüU rŽpâÆc®þówÜJ#ÂvVIžb‹†Ä›¾Š)A­F*ˆA5!¬À%a'¥`]…Þ=üsb¹j»„mëÀ&scöE‘ òµ4PÑ×¾&íéŽÄp~ãFÖ#¢AÝQ4$Þ˜1%ÁŠ©¡« b¬W^x„½´†u•j„;È¡8z0k>ñ§Aáù_• –£ÇvœûÖѯøQF°W8¶FûU%=Ö½hH 1Ã’†càÔ°« bl6å…GØKkXסÓ=rS/e¨*Æi°A=!æÌ)@ùx4à  ÅìOd×nfÍìO«ŸõV§&™¥û™0“ &ôÄß“fócz•SW¯+¸±‹Ž´ü÷WÀÖðSteâí±÷ÀŽ4ÿ„û|î"@°´L7â°HÁŽ4Æœ½÷EûÞ­Ýæ=@Þyúâ}͵8÷z„∮9QdÀû`°6î ã¡Ú"ˆ×ãfrÂpag' [ðœ @Å10(ŸÂ9O<û¢™0F˲?‡Wž\<Ö>_×ßWº®ŠC65)y¿HqÑÿ}væwÄ‘"ª¨î;1®®*é±é^4Óâf’l O ÷s/6„õµ/r„½´†u•2^…X¶ ¬Ž_ûÁª%;àôhJ5ô$Ýâì|ªë*¦H^|.ÓfX‚,÷©¡« bìä…FL¿©ákµ`C@U4GxHEÁ@¼÷PÌ>%YdxÌQnôóƒÂëI¬‡mâävŸŒiC[JÀ‰85lcµA¬‡-¼ðˆô[ÖuÔÀDßÜwÑøïÑ‘˜›)ypd@7ÛÆòq¤ˆ°eÁtÖizê 7l,éøþM ï_þýNLÄaÃ^x„½´†uõ ¤£NöºuVïØïA¡¤M¡%±sXdõr»²Á'¢0r[•4¹TÆ4– t35œûjƒ8fÈ H¯¥`]E -² ©ºrvä™Ï×uø~Ú’ˆ†ÅÃd¨õƒn†G¯8&ÇFÂUxSÒ&Hr^¼¿¶‚s[Mã™8ªdúh ë**™-i¼r¿ÿ.›É?§$."޲«Y,Ë ZÜ­gbœ¡¯*yÿXcÕ`ìÒ†)9ñߩԞӆÉ?§a/­a]GeQd™@ó^iðŽáÕÓvn–$9ù(Œ¢[Ü2¼‡É3¶8Û]16Lèóäy˜ Ö5èd÷0Ì†Ëø¦·Ñ²‹= ÃkÉ`)uî1 øŒ›ÆÞ·½b„À$Ñ®Eƒ±l`†$7îkRÃÎ&ˆiC8ÞFòÂ#ÒoiøZ‡<æÙNÜ̸0IíE6 *0òzï‘k›gX¤ÊæÇcÔ©DÒŒïC \MÞn Y¹à¼ÚÍÏå©§/Ž/ŒVdxÒá5þ…öùÚú+¾¸Þ6{ÀDyIlÝ¢£&òKvo ‘Ö?%=þ²UCâî dJ´=J Û½ÚØ¼L/<Â^ZÃºŽšO¬äsw®¶”ûÉ®ìS‚"¡;ÞÜLM‰,ófö[o‰}‘ÚʈøAV §{ÁOÉ ¹Ôp²/{Ú8ݧ=½ÈöÛÖuÔòÙ™áÇßìñ>5Ñ+* ñN 2»ûq1ó92Ìb/~Ü[Åï?>r[ñ>«CZˆ –D“òñ;ôg5A3ì„GØGkXW¡¿/Y)žY Ó£9ñƒÌgq‹OÉÒ“>(*_Œlšëq%ÆÅëU%=jŽ ÆôMImÊÔÀ>Ó†{üL/<Â^Zúí§Hô,Wµ—â<÷P°-%þA8Áãë­`%ú‰ëuÌ÷†å© 1M Ú*I´îþÍùç³ vÁ#ì¢æ¯k¨ïŸ—yŸzôÑcl]eþS²3a%ŽŒ®3c%¨É ŽIßÀ;›#¢ EQ èü4PéÍéÛ½ Ž vA#ÒEiøZDMmäÿï\¡ÞàÒ)÷'~¸)! ^Œqj‘À¸ㆠÁ 9bV Æ´”Ä­×5~SC<’« a½ž‹$½L ë:Wtóà¼ñˆF'ñˆß}ò+œÛz”nÿÎs]°‚ã•lØsÄñ¬ëT6%|qL í\m´Ó6ì…GØKkX×QcR¤rúG³1øª~-Sðð2ÿ}´Ç7ig3–÷ßqD%Îîn-ï>dmsÀû˜)óªJ ØheNg#–ÔïN-Ó °š¿ú¯#éò¹ìGrİr=>ˆÙ¤äFˆ½ùuTó†ÂH Npv·ÞX'Öƒúœ‚ º*HLñ>±äÄ]f*8Ûj8,ذV°®Â©$8 ÜÞ)ã<6ÞÉ€Ïô¯¦›ŽSw“ëlÞŸÛYM_|×ë×@<îvÿVïÆ† Hÿª(Øì |1d.먣$Æ1}TI?+J 7vÝœ’\A©!Þ:Õ†°6mèÍáöR¾Ö¡¯.þ¨ÇÆxz~sÙ‚îV Ý’xÒðÚb°i³XPÃ6wyñѶ*Á·³j0¾2sfJx¾±†‹9ŸiC_á¡Æw1ý¦†¯uøYŒ;ü^y5ÔQ¸ÁÖ)@ G‹]<o4Fmw”×%Œ“ʉœà9à|–é†à)8ÑusN?ÎE?aŒ—}.ï<}ñ¾žs¾ÅãÒ±ï¼H¶µïüOÉûhãM ;“…½+4ß<„ ƒŸà©’¦¯ªÁxWïØ)éH‹™Þ=ïbƒ÷AòÂ#ì¥5¬ë¨]ŠøV2cœ0ñË+\KÀ†Úû|¨º Ü­‚qÝþðòÜ#ösÕ |çnJЃ ܺŸµ‰;opíDްÛR°®¢öcÝ*3νаCÍu§D±Ã(©Š1ÔGw]E¦’ð‡…]EÒãÊuÑ`|©ñí”(x˜ζÚ8›mØ °—Ö°®£²\ÌGKHýô+$x:cX9pú@‘NÇùšU<[´hS½L7†~Œ—à:™„îùç³èTn ìës»çé‹ÿ åóÉûù‡¿Û [C‡ò‡¦$MŸñ‹ØØOœ{²£*Ò¿©“]Í=âÞW Æ´_º%(嚎cµAŒ§š¼ðˆô[Öu8qêøuîu–ŽGìÃjÖ›%–°³ijB¤q ¡^4 2…9¢ÁWüÚe¾ ÉŧäÅžÝHNžê›ÙËÓ‘.KÁº§.U’¦zܵ›Œ‰7O=’qÖ ¶KI_ä4Ÿ’÷_îh|[ÙHG~,BH÷‘A¦£J:ºETÆ›rrSùžòލ!ò=« a½ôž2@>¦‚un†ˆÇÕV ñ Ó ʔ¿"¹ â} ëÅ ]ÁƒL Äx\mUòâsÕ`L˜!É2±©áØVÄ1Ã^x„½´†u¦‹žÅ¶Á‡7p<"­çnºÞ&SìQ^øQÜõØ*ÆÛñFZŽ8UCb':§äý'9¡StAœ6ò 9½ð{i ë:j–·XæM±%‹êoô¿)8oì}$îõh>?á‡ä$ˆ“yÀ¾-Ó©ß~ v”çlVëZ»‹ym\ŸÊ3M]/M:iðØh­ÅùµÏ‘ÎÓq²ä}"ìÁJØA¡ Ó |WüaE}*æˆÑW Æ´¡jwH’¤¦¶ž6ˆc†½ð{i ë:ÖÆYwï'ú\ÇÕäÅ,O "dùîö¸tzH?æâ •㉔>}Ïà>g'ܘۜ‚wK/’œmŠz@lEö"˜Îyúâ½_;-«ƒÞZ#Nÿ A0ÖuIOɵálÑî‡7 ßpíy÷èH´ô;°Å;06m9¢Ý‹cÙÀ Iî36©ád+¯´qºÙWzáé·4|­CVT²FÓ'&ÎîÇu±mÈ”ÄEÿΘc„RŽÍ5ÄX1Ç"AD±jHLŠ9Br>:]ICäUÄŠ9 H/¥ák®—ÁÕ[{Š.÷¢aKlPXª™’"zBÀΚÉ8¥Œ‰uuÄ5VÆ4“%¼Ö·†ñì‹ a„ê€ôZ ÖU8:G\hŽ[µã×I’kð15%7ºŽ÷ˆ8 áôÆ¢Gþ2šn=BP\$ØÃU ‰iãó3%'¢rSÃñ¬6ˆ±ñ’a/­a]‡i<À\)‚ÃÁp …^ Û”`éyòÇÄp+¾2 mžÄú9 j“ Æ»ÞSÒQn>5´gµAŒLy¡5`{µßïuÔ†®,ÓMêæÚáÞä-™’ÍÀZ°ÌK«nDÄØÛDXÕzEÒ‚#nÑ`L`r°}:§†±¯6ÆnöÂ#ÒoiXסˆ+»`"é!<,ñ¸ÙD\2%äz‹”µ:tìÌ þ.Tת!ñæƒ%w¤?¦‚ã:ŸŸt"GØI)XWQ“x•¨¼À—)ÑN˜¡ª”Ü£jÑN©¾HñxðÂFa6Ö¢åˆóZ5ÓfHÂ,S[6LÇmöÂ#ì¥5¬ë¨yc¶W Ý |{2AôyHa"Áƒkçl,zâ¤+cKˆxñU퉼Û2ݰ‘j4Á-…è2gó¶#µâ‹/ó ï<}ñ^«d pE_]w_ˆÊp£ŠÃ" ¾‚†ŸšŽ^*Ž;Ö–[þ‹zSÁ„ÉSr³ì"DJ_5!Œh4Èò15¬«¨×ÕÚB²ÁH^Éè¦À¢å¿"¹QÚÙq•u±•%x.Ç+â@Bñqî«ãËÔ)9Iš›‚"±Ú ŽöÂ#ì¥5¬ë0£ã¯K7ß´¶‘ƒÃ§²¦äjܰ=èæ²G‚0¶|±9œo!&Áäˆw{Q5$>•+0%.»§†\ƒic(az¡é¥4|­ÃŒ#·U‡NólŠÊ¿)‰¤³|ù,z´ŽÀWL‚E©q­Jz„L ²’Ü  H ‘k_m×±GØokX×Q9ˆÚYÊÌq­òà"¦G-Ò_‘œäš‹ÈPÔdÝ'¹æ"v4zb•àE´0GÜûªÁ˜6t=É@›º©a¿Vĸ’a/­a]G-ä…¿áný[^,âú›’›½KÀ“ÿÌ=ÀÓ!8(êÐ2ø:Ž9]ðzòeAœì=ùb —•_®èJë9 ýåôÕ}o/âuËûƒÃl5#i»šþ Ût´Ãyø&Û„üù}wTÿzÄõÃECbÚˆ·§%o©©aì« â°a/<Â^ZúŽÂ[Éíãɺ<36D¸zÔgüI\ÏÄæ¯ƒôÁïF Œò³ä£EKñ"y·zǪÁ˜6°”$j’¡S"éªÚ Æ[^x„½´†u…ßž›Œ}W N;—èÇ{ƒ”\¢þA¯ºë˜.î…„u±U$xì,ŒiC6HŽ¡“4ŒkµAŒ ¼ð{i ë:Ü©G{<¨ÔÛ«ƒGˆ7H]õ(«±Réżh(d2Œôéí*‚­„Ëtü3° w~s²®¬<ï ÒºÈ9Î^}wöŒHÅÐnªoÑš£±&¹f-Øñ0èÛûJS3’vHÜÜ ãÎÜÎú|?ÖéÆÐã-ˆòB æE=` ·y}nï4{ñÞ•åd hŠÃ1óbgêøûüDfÍ”tlJÁ²‚SIGR õÆ™ÛWd]ÏQ[5Ó¶Ó’€V  {£˜YÌÑË;)ë*º@bÅ›z |¼Š7¶ *’tÓxA`ƒ€g@ýNÁž ±éðˆ>V ‰7•¯¥$‚ý75Œà+6„ìèU2½”†¯u,­FF››Æ~‹%cCó¯x4ÆmTðnlbö[4›c¦7éóý±X6’ÛUq<1ºrÒ5`ï«cšˆ –(aÌ Z[-#1ý©’飬«¨iœlÌ–Sž[}®äÀcðXîó òw÷ãl“8%6nïÙ=“Ðk€d»WŒÓɆ‡BޏÏUƒñ­N/Sr!*>5\Ûjƒ—Q%ÓKkX×á×þ–ˆ‡Ÿú¥¶ù‡(x0¥dˆG?*6Tîò\qDÁ=•qœQz”ü•ý\5ÓfXÂF ©]‹ b›ä…FL¿©ákÞöãè†=×$Æ6í@Xl°Aè”°eh4ù „½="ÂãÑDZùÑïUƒqS¥ù”D þïT°m«‰m³ ;¡é$|­¢Öœ2“Qì™“à ¦¿šçÓÄÜä<Ÿ‹ÌMר©=ÓÉõ¬ŒOgq¥ä@ÿÔÀk¬iƒ¸æyDæIú޹¸©¸{Þfu$¶ÄÉø¯N† ãu7Ú.ã¢iB]e¡^QŸG Wn|0=¾˜I“óÙe$õê­6Å_M_ü¯e|ë¨.kïè ýW$±¸xaÁ~ʳ_Zg¬X¹,ENÐEƒ1m|~¦¤9GZ[më’^hDz) _ë0Ox•˜h .)4<˜*¦Î‚–œäG?£ü$UäGG»Ä‰c7÷þ\G°«cšˆ –ŒG„ÐTàÞ…¶½ Ó°V°®B¯X–3ÄäØÏ÷ß…¯! Þ?Žß) ‘Øf[€ÛJÝ·>ÛSç%„^ –àýƒÇïœŒÔ +æPmzGÕ‰«Çúæ¢äMå8ÍrzoE S²Ÿ,_ ‰›\Ÿ«‹Ö¼UéŠæE¯Hz4Y4wÝþÉÆBRkxÿ`‹ bdÀÉ H¿¥a]‡‰,Q0ØúE?Õ1t>Döï_‘D­MÓF6í÷´q¡tîÑòÖUT<~ö½Œ¸öUƒ1m|~¦dœ¼Š²†ýYmÇ {áöÒÖuԺ˙PzåY'øÅöM¿Ô)! |{[5 r²w}ç„?“9-G˜³L&ÞôSM‰²ˆRC;WĈ•Ê H/¥ákµÕ {¡4eß^ç ë©6ÝSrÅo¡GQãÝò4A¨»ñµv¿î“t‰ñì‹Cß›OÉûg<@´#G_MÇ ;áöÑÖUè ‹‡‰z2Å}s4iÐR7ÉŠéʶjŠùŒ—àùOð>›Æ—;åM ®@RÁ9V ĈTnUR¼–‚uËã ÜÌ4¾/PÓ^¼àû+õ‰Û0‘½øÁÖ;2^ Ö366k9¢‹†Ä´(›$ûÉLpkØ·Õ1"m{•L/¥ákõp§ŽÅZ0šàô²sg‘’sC?o¶ØÉíQ¥¨ï(8þõOnçsDìîªaÙÀ In¤@¤†ãzª6)’é·5¬ëÐÑío˜ñ¥’ÓØéÅ@p (P,I„A"ìá{ðà&~ÈÒHŒØ/;“zÄÃÖ‡©!1m`O  ^¦0´iC9}ô"GÈËÔ°®C fS®N°–½ƒL¯“ÔöoJöî6248<³ ³t„?¦&œú±*–‰ÏÏ”ÜôV úu/„??éƒG¤×Rðµ =¯­ÉŽÔ»ÚŸ½6®2ãŠÇà©° îBlÉO­#½„Ä/ÕröÄÛ?êF-ÁŦ€žþ~ëv@%yÌÏíœf¯ÞW^YÝyø­áØ_4ª»ÙäG‚È…ö`è.¾Wx“S‚ì­^xÖé†Tᜠ'ÌÙqL›ÊâoiãúX®iîêº÷Ä7wäƒækvcsAÿŠ„Ù’H³;ö<$‚cÜõ`z7Õ]FDܯj0΃é”à(è(M+×ïØËˆt› ÖU80“)O×íÄ[¶h"QŸ¼×–<ˆRóèG« .µˆ,²:®<¢‹D_Ó†„ll)H ûÃFá¶a¬´¹")~SÃ×:–zé®ß*Ïw¸HYo¼þ°$˜â¢I9nžFÞ¢‘ü»M»Ä8­mUÒƒß|Q`L˜!I#¹fjhÛjƒ<:áöÑ ÖUTÞ¤Ö~'«ydçFƒpÓ6gC…$ˆ£Ôذ¬5¥”ãbøª’¦¤²©Á˜6”e IQöÔÐûjƒ!cyáöÒÖuÔûvÁ<-ø}ލ‰zr¥ ¾`ñÅŠš¿à=¾FÏ„qå¿áÂÅ’ñ„9=!Õ#E‚=r2‘ÀéÁy\ô "mõ){§é_Þë õëOãÖ€ê“ÏÈk¿°È”<ñmÇÏ)¶qg+艑û³UI‹]Ì¢!qã7rJÈi85 pµA¬Ç¼ð{i ë:\üñ¨z6wNíaeóuÊ“‹-1;ÄFš©þFb%"!íýY5Ÿb·/’m­áØWÇnöÂ#ÒoiXסg2^>\¶ƒPa*xƒŠ·x)9w¶ýfß•ñGD¢`í[Ñ+Á#޶j0¦˜aÉ®‚kØûjƒXÑæ"™^ZúŽÊþ¥kË[í»Hæ,êÌÞ›’›¹w76¼h ˆÜ¼èë|%þðžó¼çˆhÆU5L¼){/% Å“SCt¡¨6ˆ??Ó °—Òðµ­ßå Á·ûPúÞí^0=ŸS’0ìƒìs2)ø9*Æ£ yôhXLL˜àŽ1z˜Qn4îiAXmB‹dú¸ùaº­&&ôݤÁqÁæÒÄ)yp˜è—Z§%ê"ÇêIÿöý¬†,Œow¤äÝÙ‡¿5Ä–·ÚÆ–Z Ü<Â^Zú}…C¼ûƃÛ*8QŽ[×{)‰¤áønõ(ôCÂ8ØYö¹ع¶HÞoë¨ ¾Çžö¦Jc¬&†ï±Ó H¯©ákú:g©‹¯i#¢¿òÈiåI>%Ïá`Ûr•IgÔè>+0U$ˆ;-Œ‡Oò)ÙVÃXCVÝ'ùôÂ#ì¥5¬ëÐ’]vwxÂ’|'øš<*%Qšûµƒ ìÛÍ›Éóä…†ð‡Ý4‹¤G?—Eƒ1m E’“=ÂSC¤òUÄ1Ã^x„½´†u• Øãp](ðйg°:/%(’xÖz /zŽŠU9w9""gUÃÄMI)é;»À[{¡LÄŸŸé…GØKiøZG½!¹ûæúËÌqyHú]²`.Þ“¾¯¸]vÏïàÏ?£ðe°ßƒGDyxÕ`œ×½SÒþAãr)àÝë4‘·½é„G¤ÛT°®¢6+{X÷¢Ëù[„!ÁÒÉ÷oJ0% ð…£öàÛuÜØàoOˆ¼´ªÁ˜6TçÓÅŠ7´5ø nóo/<"ý–†uµPÇëpsÅ[ÎýØO¶Ïœ’D¤¶Ùñ>€:b£l,²"iÓæ§cÚÀ¹H’~gÕ4ô¾Ú VŠ>¼ð{i ë:jÖßq—ìÍHb½À¸‰Sò_•<(ŒÊpþ4œ¼ûAÆã¸:úQFE&5LÜX‡–’-B£í75l÷µØŽx´¼ð{i _ëp8MrÎòNÂ3œ9káüÂztÀ/cD9JÇ[Ç(‚Nç9qGíc™+Õ1X¸£-Ÿ§F2ÙT cmWË+M­>Wþv~w]ƒøp·õþ®nf4NɶQÅ̈4¢ -.1®;±šv‰ß©Àæùi@ûñ;¼?áűбá„G¤×Ò°®Â[å_3];^%ßÊ“’ þ6«ö;O5Ìêâ¾g¯9à9—é‚»3õR€ÍíÇ¢¼»¨ûsûÚ¿üV€†šyï³{§¸1Œ×Ÿš’ß·‹©±èC|<–l{âOvÇÈ‘^Y5$îÎPM {I¦‚í^MlNPM'<ÂNRÁ×**?#¬&FÉéCbì$¦äÆ; I¸ÂˆJ±Æ”¥ëI¬¬¨"kè¢Á˜6>?Se„J‹‚†ã^m+- ^x„½´†uúµâ$ðàñ»‹!*^jxOb´³àqçûì|ÉßHþùû7Ná9à>–ù‚Ôë üÚõô8Üý„x Ëž¿øoj(0Ì p‘ù}fû"Hæ÷¥äVæ\c[©Ë™u: ÌÜ»+n[= ·}Q0ñæô>KtÁi±Å¬ˆ??ÓÈTðµ =•Ð …y¸—ò¢LG/Þû©|ªñú¿Çoò™Æö`GIzÏí®Š÷­J’155ÓFáT=Ó˜z_mônöÂ#ì¥5¬ëPòÁ “«@°àî† §ù*,Ùc´]Í Æ&¦µ? Æ[dT KŽªcÚpQ"Ü<$XCk« bDíä…GØKkX×aâ>Ò˜·’Štèƒ)flMfÈ$q´ÐV>ÙÁ/ÆÖGõy¾Ôé7ŽÜд Sq{2U ¢nä,‚éYÌ­^;©oö:uóé;zÝld©"hKÆÅƒÒ¥>ÇÎòã Å»ë¨U$,I¯ŒiÃEë ÅåÔ™¶Õ1r‹ä…G¤ßÒ°®ÃÝâátß}) KfÍɃôÈxpŒLŠ_$†É¬y´’.¼Rª‚„ÍÔÖ–0ë}*8ÎÕ„óæ§a­a]…iTïYñ8||#«9:[7ÃÇ– O"/õ/@ëìHp›øCÊÌ«—q‡S5$ÞÔ Â’ˆ*÷oj¸Øm>m~Ò‹!/Súo‰çoõP.IdßÜ(©Ë–)QË÷ß ,5ê8ÉGbüª®*é‘3´(HìŽ)ÙÝ/@M±µ`­`]…¢$±»JÀ­Å'¾(qåÂà±q'ÃH.»Ÿ^Œònllê +ÃÙ±sބЋÁ(¾“·»(Þ,¶Ñ ‘á»Nüò¸¦ôñŠöG\€ –ΛKØá-6¢½ëç=1n=±®ð¶=%p:ö¦Ò0ñæ>ÆS²±S§4€A·ØÖ5Þv—é÷ÆÛ¤u5”ÈæÓ—èwþ»DÚÑÃ$UKNÆ`Ç€//¾"€Óm$þ°.ð¹ËˆóZ5ÓfH2°Û™ö{µAŒDXyáöÒÖu8I¦tŠ×‚Û Ò=ÒÈpñ‘’H5‹Z0þÀ¸t@ÁEÁØ&‚5GÄõCÕ`,Ø'J"j;kˆ\Õ†02Iž*™~KÃ×:\Ç?”›ÍAâu76a£¦”<Èû}7ä=®´Ñ’=:ÕÜ÷V1vôJÀðˆg¬Œiib’\°L Aå]mã”Ñ«dzi ë:ôlCÛ5¹o Ëï~û¿*¹ãŸ+À7²‘¬¶¢Øïc§°pÄžkUx#ÿÏ”¼ç³ý¦‚í\-«k|ðûhë*´-Þ/dÙRÁ˜tÈà¹T,FVöa¿‰¶ó’ÙÀWê?û:Ñš??EÀ‡¼& ’âƒ4“6ÊÏÒEÎ[<® “¨®˜g#±Ûî6ÄS‚ˆ.¿Ï„ø®øC’Æv—QT5Ó~Û’¨UsjP¯æ´AŒóúV%ÓKkX×á>MMŇ$Äõ»çiì„ CNJPsÅS?~A“Ùðñ^-ñ‡_‰"ÁcѸ‰Ü+%Û®6–ÔĉՆ°Þ=ø-z„½´†u&»BÔ‰Ù}›(oîÀ÷çaŠuJâM¬JÚíĶek|ñ¬ÍÅ3RŠ¢!±l|~Ф!AÚâMRmksQ$Åohø^GM±&å¾_ŽÜI\ÓólÁͶ¤¯Pqóßø·Øâõ½ÎØ,çnfs–àýºã—§Ù繨'T± ì{€ÜÓôÅûÊ¿Á7Îe†«ÈŒ\Âvû4kÉ»ÑöådŸD‘ϪGźœ}Žx¶gј60Ã’-/'¡aÛW[=1IñÛ´aÛjƒ=Üm:÷ŒÑrå1»{Jrª7'ÃB#ú)³ó&c"Âñ¥¼Ï*AC‹Eƒñ1»{ZâîžÒ0ÆjcdwO{áé·»{î«yœe[¹Ì/è¬êQiŽïqJÞg\|/58èQª¹ÓïÎá¼Gü:^žOql«cÚˆ– æ…§†¨^¯6ˆ‘¡"/<Â^ZúŽÊýDn>õ0zÿÁð${ÿÛ?úÝZpÿÓXTXîp>~Æ[ âg»AZ”:;áö~µ 4ÍšÓc…E=àçgš×çvÎÓïëÍÇû‘%ðÁ=&¥Œ%Á§øÞHÁƒ.ÃW¯øÃjÅv–÷¹j0N^™”9ŒÊ ¡ál«Ó}ˆÓ °—Ö°®£’”³æø*ëÀ±`?Ž‹y›S•¡ª¿½Çíaë‰qã´WIG¿ŠªÁ˜60C’ÁlåÔ¥£ÕñçgzáöÒÖuÔ‚5–ø¸W|TøEqTœK|$‰§ ±œ( ƒ`#ŠpuÁ(Øéåãó^§Ó†K"Ž7N/xÕNŒ$ɳJ¦ž¾® F‹IªªˆS1Ù` SVyJlËΈidt9A™ƒ·Æ(ÿ¸«¤Gªaâ¦?TJ´²†àЭ6„QB/<"½”†¯uÔÓÚ hkÿ@çù[;Xâ>÷Ît$÷ùxз¼v‰¿ê”ô`u®g'”¸‡5¸Ï‡mÌN öÂ#ì¥5¬ëÐw÷[mÔÆq­vs£ÛX&!ûË·àÖÅ^fG¹¾{Âs´÷òyuº!Õ+yUÁ3wzç^¡j'Ä Ø¼Ã`ï4}õ^éóÌlc¢—jÔâê åû¦ðÌ” ¥ã²J9ƒ9œcFÿä'âÀsDÜTV ‰7…gRÒ™Fœè¦fÆ¡ôÂ#ì¥5¬ë¨›GÑš)Qs(2tÑÙ¿"9º:£E•] ãŽ3ñ‡m¢‹/ÀEƒqþ¥dGÚÄÔ@w§ü'J/<Â^Zúý…ñ¾íx&ŸÎ<îÙyÇÃVéSràŠwjàó=QÊŽ;·‚q+‡†;s„9ƒ­Á˜60ÒƯ»5ìcµA¬&+ERü–†u•iÖd_|È[8¶¡nJúz¼²Tˆ¡¯m»+Ƨ€9¢÷Uƒ1mÄ I"›ÉØÒUoÕ†0–[•¤—Òð½=¨f¾Á¦ÓAD¬¤ _j™’Hs€ÁûI=FÏ ü^<©#Ín¯n/Œ»ÉÚR¦"a ÑYªÚ ŽöÂ#ì¥5¬ë¨ n:ïöœIò£=¨Z3ùRò°êâaÓ¨_Ú»¸·(¸ñh@»«‚‚›jïRrE}Î?ÏÕ±îFŠdºˆùßkp5×øõŠÍÖex[Cµ)9xGÔk|>,ÞÝ÷Š?äJo­Œàn~j0ޤdg›q+ØÉWi »é,í‚>·‡š½.ÁWA8-]µŸ‹<6Žÿ+µ¯Ç/!yjo_cK;U «‹c7§/’†€]jP{û´A3ì…FL¿©ák¥·)£Lˈ„¢§2±§äÝ{b/ºLRb?r&-í‰5ʈH{Eƒqö@OɉîÑSÃÙW§ÙÞÓ °—Ö°®CQ YòÓ•D!q9šÉãDÏ\j|E®L/ìrÉiÇ?‰Pç°ÿS>í[NäÿÞÕ-Lˆ|Çž¬HS%j d‘Ë5µ½Ÿ~:Ëë˜Ûlí,ÏR»úx¦äDÆQ`Ýu’”4n!+ÚñŠ?ª¤Ç]iÕ˜6ðm•dê/ û³Ú Fv£¼ÐˆôR¾Ö¡¿~—L êʨ¸”íý>ÅO’¸ãÎþmÞ…D\¤ãïxª˜J#ú¾(0¼Ýš%%ÑYS*ˆ˜N5!Œ4Gõ?шôQ¾VáÐq<…Xú~»>ìQÑ ˜Û┨ 74;º›e³WüaµY<ør›i¥†Ä›÷•SbMjhlª•6„??é…GL¿©ákÚDN?ÎMmãçû³ž‡SrŠ«¢áжwõŽ÷yÁ(N`yFŽ}Õ`œ‡S2Ä4a ê+œ6²ópzáöÒÖuèmü¸Í»ÄÕâ¢/dRM ßb[V¼¡/r>’àèCJÈ6?Ï2Wª1˜ø<Ìb‰ôÌ»*б¶«å•¦VŸæföøPlb×ýIìœÅ,“\ ôHý·÷qŠÔñ©øÃ¤ëx戨¯7]{¤$øÀÎß©¡_« b„Z•L/­a]‡SÙÄ—âÅ DÉhF|£Ø!%ÏΆãAât1]cGü¼þÆñKÚ÷*é‘b¶h0¦ ÌäbV²5{aµ!Œð ½ÈöÒÖuÔ-0™ëv­Ä%ésñrþá!Ö’w'ðܼhH!@[ãDêãJŒÄ3¶%9"º¹T ‰i#fXÔÈ[”†óYmër^x„½”†¯uT’>örÉ}ðƒëÅ=îÀ™lœ’ž ´²‹mWÔ4?èÛµWüaßé8cçˆH­Œiãó3%ýa œ5tüCLÄŸŸé…F¤—ÒðµŽÚ-Ž¡ã¤é;™èŒ.îü [rêf(ý›—q]°"ßc”O_5Ÿ&ßI‰Ž ©áØW‡ÙwÒ °—Ö°®C_i„Û˜]ÝzXS b ô:™]‘àF¼_KŸb»p?X³áßñŒUCâDsSrqs›^Û‹ â˜a/<Â^ZúŽJ:ƒ}F¼¼ÙúÚ”}0%h2únæ¡D£EÔ´ùΣHgucŽp¯ikH¼)û %g×qG޹iƒÇy¡é¥4|­CëeŒÙBJ¯îä‘Û£357)é :íà[ L–оsc_¶íáÅŒG0˜ÓFÌHIc“TkØÆjcóŽ*½Ðˆé75|­C—˜H¤Á¯_I£¤•ÕüIël„³‘ó¢"ÔG,ΜàEÌýZ5Ûù”D["­RCô`¨6„ÝknJÒKkøZÇRw¥þN¬àlöW$â¹Ä–LL+…s­âø·?ãÐ5D£ŽªÀ˜&b‚$;»€YAäMT Â1A>äù˜ ÖUÔ"5$¯ž ›Çƒ7fÑ/ˆÇ¿”ðnc ¤‹Ù]ûàö`ü²t«¦qx«&nºÛHÉV‚©á¼VÄxŒ*™^JÃ×:LPR¢Èî^*þ¦ñtþySrð4Çï^8ó:‰6x;väÆÊg+°-„e3$¹91¤a¸ÕžlŒÙŒ¯» ”FØokX×Q7Ñ<ºÉËu!çæýzcÛúW$:´áÝð€_¼; ÆÛ™?9âfšÔ˜6p~µD SÃq¬6ˆñ>zª¤ø- ë:œ;ôë¦6Ý„oÐAQd…–\êsî,Õ Yd®µŠ‘ ÷°Ü×#îcÕ`LŸŸ)ym‘jPâ_m~¦a/­a]‡ ¼ÐüåQ÷^;³Yâ¼Åzÿ”¼ß©¨Ö?2CG‹ÓG`^‚ãNêfe‘Gðb}j0¦ Ü”I¢l¹ÔÐújƒ8fØ °—Ö°®Ã·"³‘éy«‘éJ¹›•XEÖŒvGŠèý~‰vdìö¥e_~|ŸËTC—}Y¹U­ôd–´gÉ-û3yå©‹×µé!S‘»{ ¿Cìc¢vjgâ%ñ‹ÚPCî©,gìö${÷£~|nëtaøüL‰kYbzü«vá.û9Â{úº] àLÂ35’hàË-ÌÀ}É_•Ü!KOœ¼#g\¬Å(פN‘ECÁ›6)Ù‘?65ôsµAüù™^x„½´†uZðÕ²b±¸¸„C©R$ í¼±•„]Qß],_Š>ï{źí½ŒתÁ˜6”óI¼!uÇâ‰Tmco}TÉôÒÖuÔ bõs,.(úñº IÉÑñe‰F¤ }76þè)0+Íx»Ëˆû^5ÓÆçgJvèžâèZmãQ,/<Â^ZúŽJα5²]»íKitzân*%ÁW0"LFçúƒþ½½û´ãI³cTÉû`h«cÚˆ–\¨„®mµq¹2;½ð{i ë:jn ’‡6í-NnS£H…iat<þAôGHÒèõóÞ ü$³ëT™eº Õc<Û`¦75ד~ÁÏíççòÎÓïý‚E0y- Þõ=ÙªiJH?…¾@캑@åØ*VÁ6ʈs¬ŒiCÍŽ ‰Ú‘ß©à=è.&ˆ??Ó °“R°®B¯ ‡LÞà,ì¢Éå¯g>Î_•0‰ ©·èΜTáÂÄ9:³ÕŒF€v­h˜XY@S²1óÄÞ·ÓbC8lÈ‹a/­a]Çr†­¯k³DZ±Íp‘Üq§”Dg'BDŃ“¨à8œìWì~æˆ1 }”ugHû¹šØ}ƒ”Nx„}´†u΢™Ô§¾ÌQ¦<ãQH‡Ý“ð"‡Š­GÀ¸p²µÉÍFÆü(âƒeš!´â4NÌù¿sæ±O¥[*Ø>’/šU=­ù‹ã™ßÖ¡ÄÁ+ºJ3€lÉIÿ¸ZÜâàïÐmß‘(xÍàî»cÙz±_«cÚÀ IÆÅëJkÛjƒXW¤ðÂ#ì¥5¬ëÐߴý^x~E&Kä óðjxéGß‘ÌýGñ`bËBu8›,,Óo¿â`ÄŸ\S:.¤jBä=Ñ´?·glƒs½³E_¢¢ÀíqrÄ›úqèÅ’ :´ÙÈ©j oad%N¨fm½ÄÉ£HzÜû,„e3$¹ÙøØ¶»-6„c†¼ÈöÛÖu(ø²sƒÄ޳ê´ub ‰3à­KI‚Ĥå¸q ܱy¹*ÖÉ“—!jÄÔ`L1#%-H®§†à&«6ˆ±Azª¤ø- ë:ücÅÕ–Rc}i÷çp3‡Ï’÷'s‹ŠœA‰…ûY±( È¤c[5Ó¾ô’lø'™¶¶Ú T‘L/­a]GmŽqãåôêh¨]sŽq+½"%ñµL\9E@µ 6m<÷Ä:q£Œˆ–/Uƒ1m 9Üt5ŸbáÕ±pà…G¤ßÒ°®£¶¢mÍA'ÿ…·Aj€žaHŠHZdö²´E'x6#1þÂàœ#ƶj0¦ ý…!és­¡Ý«æ~Aé…GØKkX×±ôCä1V\ñdgk©Æ~öEªƒHvŒÕ= ΄¦‰?,_,’÷Œ6V ‰›¢G)‰„þ;5ôkµA¬”xáöÒÖuÔ9)›Êko5†‰˜µZ–Üø"Ý#’’ú³ñq¡æ3ÂHˆA`%¨yM*0¦ ¤dHrê©&g[-œ&ÝM<Â>ZÁº ³îãøŠWþ}± ™×[)ðÝHôòêjß Ôßö:Ê€q,Ó ófK_lyº/¶¤ÞkÉ~^|ËôÅûÊÛ­X±ZGô› *AôÑOÞjY‚öw‘»hd‚41öÙûHŒ;ª­Jz´ª&n"MLÉûdCA’5çjƒ·ZòB#ÒKiøZ‡Ì !䔋&5ŽöïŸ}D/O9)‰v$:G"ð˜QÍ¿Œ#” Âî2âqxÜtíQ»ù¸5þ° ê9ˈ§¯ŒiC•J”`k05}yµAŒûyáé·4¬ë¨Å>L¢VW7±À¬)ÇzJ\øF]Y¹O¤oDÞ rÙ‰?¬n*Ô.-7åX§äÜY‚f ÇµÚ þüL/<Â^ZúŽÊNÂô°(gçAZºãQÇÀ”ˆ,èfÓØ.$æ¼XrÄØ3\UÒ£=ã¢Á˜6Æi î0¦‘¥ bldä…G¤ßÒ°®£n#gì…ßü¸šâ )%'íHÚB5ó…òndÀÇoIøÃ6tE‚6‹cÚøüL wÚSwÚÓ±’Ïà…GØKkXסÃ>ùJð&iÉûãÙ™ÏÝõž’×õ“-9ÐÁS}”„Õµ9ßæºECâ¾»”Ñ’v¨Q¶gµ±é<½ð{) _ë¨Á rxø™ ˜àm×]’¼G\$;8ÍHø<­b\w=ÜýP29=¨¡p|\¦2°äu‹Ë+kØújƒøó3½ð{i ë:ê‹`')à}2Epg+KÆÁ†„7g‘Èx—&,ÂøFoU’\Rƒ1m`†$ì¿45ô¾Ú ŽöÂ#ì¥5¬ëÐ_Ϭ ­[õ\qÕëNÆêXÕg/cô†âã#º´F Óq&FÀí¨’öœ$ãL Æ´kK[Yƒ(¨ÒFrT¥‘~KúŽÊ À„“5¢=,y•6%g'¿Ù&ÒÚ“õ¥‘½?îÄ6¥-’5‹ã#óÚ,è‡95 $~MC©aÓ H/¥ák•Ý‚¯¦à¸(Å{¤Öm½Sì‘~·ÍbŠ=º>= Œg1ÅÁR‰Ô`,³˜b¶ŽÛ,¦@)Hµ!<‹)rDú- _ëps£ãפóѱ£_Æêו’£gµvoìÆŽrí5uÆxH·*iñsªÓf˜¥ãT‚¡4ìÛjƒX{9xáöR¾Ö¡ \¼G›%™8oÆÒ¸{œºþŠD‘ŠÈ»DZ¾[Þ«blŠ•Êå{[5Ó®$‰D‚˜a QxPm+´H¦—Ö°®Ã͆êdȹ„SaÇÞoDº Ný)8Ä›¹c³8"ŒÒxb›PGÂh„àÏ{n ý/AD$çô÷™SÕê<8Ó;Í^¼×ÞŠ™Y0Ï?S²¡Ÿdjˆú‘jCøó“^xDz) _ë¨çý­vE‰'7R’ºŠ*,ØA¶Õ#\„ ô‹Å h°k¨trÆv4 ÷:ÝêñP£  Eö4}»ý„8ç?EÞiúê}="04y©”"ʇNpܳ²ÍPô°ÑC·cw7Äh°ÛC¼÷ï"x7 c™ž˜ym tij°ÃÕ;™'§i~žž cùRÝp1tߊÇq›2ÂìΤ%-Ü6²þ¾˜-Ü6n|ŒñtlH™Íû½j0n¾,LITÿ+’N^½è$zêŸ2r{¢ygÁñëÚÿñ5"2陼Ĵ’DÒ#fPCÜŽTŸŸô"GØKiøZG-:Qï5tïy;| †È/,ˆoc0×=¸˜`þ ž ì@¥곸tŸS ©ƒ)ˆŠˆ_MmOQK€¼^YÕÇvŠ3WŸµ'FR#Øh’Édë m¾ÿzª4–$Þž¨ÞÄååmk;+ÆË ÏsÄÞV ²¡Ã{^‹cë<æ¥w±!ŒÃû]%ÓokX×áBT\l&#åá÷ì{4w# vJ\̽Û;pナëÄùšÁì=)ª·qWÉ{ «cÚÀ ^’ !Ê©á¼VÄØtÊ °—Ö°®ÃïÛ1ŽªuŠÖO$%¢;0P@’‰_‰d™xîq 8±uÓç‘ø]fO¸ý“½ÑÝ8hú~.êq(ØŠ`:§é«÷>€š7#êÛ’™I›[Ö¦„ T‡ôn†šÅF·GC\ZEÐb35æô„›ÛÕJÿôCêì©Ý°TQå»çùëô÷D+ÃæºÕlt]ÉÎR. XJÔ¢.#*UžÎ !ö,TòppŒä€û^¦ R=ÆK°‘øÒÓEhýÉhûþÜîjúâýÒG£Í„]T>¶ÁkV5Ô¶ÿ°xúŸj>Ôóð‰.’~÷±(0¼Ü rJj[Áy¬&N÷ƒL'4bzM _«Ðß”±ÄßI~ðtdÆî7/‹þŠ„×EyþJ$ŸOX7—Ûó|Ü9"èÝFÑ`L84X‚ìÔqðjCX÷JáEŽH¿¥a]‡Óé[^Ì»?W\‘75ç uJÈÔtyW:Øe¯Š#Pø,–Ôˆs닆‰7½YS´C¿SÁ~¬&ˆq“ÿTÉtR ÖUè»ÌâZp4ž™ù÷ˆ¤–¼×SBFé»ábK¹¹–|ŸENê`B*$ö-oâ½NÉÀÍÝÔ°« bü^ä…GØKkX×aþöø»²³ÆpgýFËÉs#·RbÑxÅ-¤Ú>ÂNtHøQ[ìòyä–é†ßÆþ&ž;‚ÿ6U!SA¦õ±ÓÔê¶¾»ñø?ç­B5œôF¿Ìo’›Õq‰ ý&u8Ÿã˜rVIEƒñeŠë”œÜ)§†s[mœf¹N/<Â^ZúEÄ‘cOdõYÃ;)^YÑm÷;5ÁŽwÅ'4 ‰÷D¿Mù1bsª!Uëu AC&qNßGѾk‡ef75uñZ]õ¥ÝÔ¸ïOà!޲7‹¹—Hqï ÐÁ^ )ðíI¬ò±"A¹Ç¢!±2+§„¹—Ss3§ goN/<Â^ZúŽeëˤÕm^=ã^µïŠD¤$Ê/^=ã^ug  ‹0EXWÏq˜#ú¾j0¦ ]=Cáïþ;5lÏjcó­Qz¡é¥4|­CÞH +÷ì‘¡*Éáºá”(Híç`»çø™Ä=Êùþe Ž7FП=eÄÙW ÆÃuÃ)Ù±¿™˜\3mì®N/<Â^ZúŽ÷ç=»[­E)9K÷o™,é»¶#¼à|ÿaµ¡g#±ÎØ`môˆv,ÓÆçgJPVœ¤m5@ŒKv¹ ébLÿZ£â‡‚‡¼¾"½ºc¯|ˆ^Ç„_ssÞ¦ß0EÚXµ*ìÖ¨˜ÇÁBÕr“¿"9p*Ø?g ðnýÉ“ç—((´LX4çù%%™‡SCo« âÏÏôÂ#ì¥5¬ë(ë%gcEɳ¹)Ê”ÿªä=%ñÌ$=噿LO9ª$ aRCbG[´_¤§ÙF®ÚF…`±õUúŽJ@Êíd× )B`ý‹)¯,M ˆîSA$[R&Äõcc?>¯u¶1Ôc¸Š¡{zÄЋv@ÝæNÁtγïëkWÍÓ}Œ=£ŠIèìñ“’“­'ƒ¿˜¹Hl=°î=q·wš¾zïGŸJ¿ì—΂Þ"DåàNÙ’¯h„wo`ÒGEÎ@Á"‰Œ›ˆkĪ!1m|~¦ä:Õ,QÎgµA¬ s‘L/¥ák¥„O¦M BÚ©{‚ufJ:ëïâü†£;c´ÏqVŒ§Í@²{ޏ¶Uƒ1mÄ K"­]ȤaC{ìicsKîôÂ#ì¥5¬ëÐÕ$¾Ã¤Ï—©êf±Öï¯H"%çFC1Ú\Èoº¢èHŒSßU%ï™n,ÓN}’DL0bgÒlÒÕ†0~ô"GØKiøZ‡¹Þö_ŸEoþ~ÐñhDŸÕSí?%éHñn±+ëÀ4´`].X¹Ò}Ÿ#‚ɹjHLøFK²áe ïfó®6ŒÿjU2½”†¯u¸o"ò =6wÉÖEyø¾CH¤dÉû„?Á#só  ÑòÙ¤ˆÀ:»I‹½Ã¢Á˜6Pï Iľ§‚h<]M«ßÙ=Ê;)ë*¤b%sèÍîq³fäà¬a³$¨É“{GùܬS7áÓ/Ê€È(­ ß.zKÉ…_*8ŸÕ™5oöÁ#ì£|­¢¦ìø:Ÿ‡¢(¨XÉ–’w»~"·‡$­Ñ«”Mä|4F¼—÷.9B Sƒ1m(Y†’ {†Ôp‚{Ú F²Œ¼ðˆô[ÖuÔÎ öV·ÛÙ¾¿$dÞÞþÉÓYÎÀª·ÑL‹ã‹°‹ ï‹ãÛÜà)‰65ûïÔpm«ËÜàé…GØKkX×a¶7F]]öƒ}†{í¢®)—"¢(DC) cªê&v¸·î»¨’_«cÚÀ KîêRƒŠÞÒ1"»òÂ#ÒoiX×QÓÊ/ܹED°#vg½”¨C^܃Õ-ýæ;¹`\N²íPŽ8÷UƒqöØK‰:ä¥uÐKÙc/½ð{i ë:”³jÖ7º3ƒf#“å¹™ :%,ñß·“½Ü®ƒ4Ìmór£ËÈ/P™-»ÑeJÞP9[Ã8WÄÓé…GØKkXס¿/~Á¤#z˜ß×6FÛ†þ0˜! Qµç³yµIz%F4ã®tL[4Ó†zªA¢©áDÌyÚ F4C^x„½´†uú3ý y4]÷&ljÌðw¯r蜒†»¹ߨA‰ªT.LÇ]rBÞe„ªRRƒ1mà‚ÛÕ6ü[CüUÂ1C^äy™ÖuÔ¿0ŸÔ·èˆ"§Ã4$ °àõ!*òo$VïA%‰’þ‡| €Øû\ ôâóè€^f'„vuc‡ üó¦Ÿ}QˆÃ‚Ìës;çé‹÷¾ÝDô‘auq"?"ž^õ›ßcK"óˆ õD„¾A¬±µŠ?,?8FÑΪabÚpi‚.hh™âå]m+ŽW$é¥4|¯£~D«¶‰\90¬±àï¯JÐͽ/z+цàfßfl!¾cÛ]%ýhcÑ0±Ê §¤³…ujhÇj£¹3rz¡é¥4|­£VtØ\í*øj!´Uìã•Võ¡&D±ÝE_Uµ)gÔÈ(G¨ÑQj0¦˜aɦþ°Ö°õÕq̰a/­a]GM½ 7ç%–©ÈÝÀ[=ÈD¥k ùHÛÅNç-ì ÆÞGÓqŽUCâMÄi)ÙÁÔ25ôsµAŒk¯’é¥5¬ëp)&ÎûH°1;t‹ ‚Rrñ0×tÏÎø}Ï‚4a%R ÎÞ‹cÚøüIC9Oj8Æjƒ yáé·4¬ëÐ^ƒç\* ÊW^1]bø+’ g}Zk|öuºñ¥†¯S€[¤œ~ŽEý©¦¯i^Ÿ§»œ½x¯-Þ°§{Pã(ÀÖ¹'–ÜLŠ=Öê7UcŸ’îŒ?üw)8V5$¦ ¹É»Ã=å,4ð:~Ú ÆáA^hDz) _ëp+d&°‘•blu¼;ò®Ø#%gÔ 1>gkl⣎[Â=‚)sŽØ·E , ò(Éû í D¦‚ècWM+œ[$ÓkkXWQƒéçU¹Y‚)?B>ïW‘Gãã‘*sGÚd°Ï£4çŸÛ("Ü-oóã¦Ï¹BÐŒÁÂJ÷ÜwmE5PŒ¶e~œnròâµ+kÙkš;í •hØŸ[â-‰È@äç4¥&ºG{Üó¬^$<äˆ÷dzh– ¤áX‚áÔa³jC{ûJŠßÒ°®C fS[†t÷p ªž +í·ÈS²ƒA³GÓî Ç`ÕÄŸŸiÜ#Ò]iXݯ¼²`íèºò‰Ì“Á­ö\)¹Ù 8Eq~<”‰_ËçNÑkÕïçˆ8ÙT Æ—¾ E²‘zÇÎ}µqî¶a/<"ý–†uõDÃ#œ± ~Ä÷Lu<ÁY´“‚ÿðd6ÈZb<%¯*‰þb«†ÄÍ,9–D†\ÿ‚­æ,6ˆ•AFæG°—Ö°®Cû&l-ȃ}( ³gLeDfÕ_‘D¾wTïbðy"3«ï Ç¿ýxª¤G,¢*0¤…˜`I„Á¡R ¢;S5A3ì„GØGkXW៭ûˆÌ Sì+í?q0ú+’‹)"8wãì‚ÃÖ»Aã X¼G´{ј60C’ƒ)"©A÷7iƒ‡€³J¦—Òðµ3:Ì|¿Öe7·¬°ù«tl:µhÞÛ¸‚µQϯG\ת!qÓ lJvÜÏL ýÌ;@Ø þüL/<Â^Zú}¡^æá -fè­ïQÉx!>ùW$÷Pëô°Øƒé4ÚID—Ú‚?lÏÅ9âÝÀ-Œ/GESòÒ¶çwj8Ûjƒøó3½ÐˆôR¾ÖQÛ9ñÆG|ý-z•Üh6´©Áë”`;ÎÆBã>˜¿R°˜ž÷2@­¡SAâMý]SÂvL©`?W ÄŸŸéƒGØG+XW±pò,$NÊÖ³Îå¯Jnüþ¢O ZEñÁtãœé£s€{ [Abפ$r ŽßTÀj—i!kkÒ°V°®¢Öñ¬wó¹ö=Bïxü˜ä!%)NF‰F”çGÌ'^ ÷žÑV«äˆ£¯Œo“<¤äbì*5œÏjã4ÉCzáöÒÖuÔ(9SY‡²j¢¥3[`gPQw"ñ;HO>ø#3|BýÏ£ ˆLÒ9[ˆÊ‘yNÁÀ÷uÎÞ¯E=¡òίò¹|óôÅ÷Ú$g€™;6ž¤G?6=£¦©)ï®›ûÑOÄÚ_üTûv^ÎϾjH¼é•’èï3¬a?VÄ8´*™^Zú½…ÞJ£6èö­ôîgÙútJn”£‡Aœ¶Nµ>z2u.GDÖZÕ0ñ–Ù¯’ìٯ֠Ʀi#[Ÿ¦a/¥ákú3Å")°™ŽÎŒ—ƒ èÄVTìÿ‘~ ŒjÁ{8÷òùÙ—é‚TÜs †òê4{´E;!ÏeÞä§/ÞëYÌ»»rëj·ß»òßR–‹¹Mòߨ²¦wïÙ°2ÚºIrÍEƒñí¼ü”ă¥ÿN ç³Ú8—Ÿ^x„½´†uÊ­¿è3j]j'?E²ápžúXmtGÒ H¿¥a]G½¢ewÅ«‰¤¿£+Ú#ŠÃÝ~9Ø;,°øÕÑuÕî¬ Íǹj0¦ Ì d„)5etµ!ìxw!/SúŽÂÆNÜêÇ×ñ 9x3ÅãnJ¢¤7Bò‘ZtŸx‡w|eŽÄˆ ‚TcޏïUñíMCJ‚Kæ7´k_LÇúì¢æ¯kÐZó^vö¸:Ý ’¯ñ¿*yx1÷žÃp±tkq0sÚ8\¹ž*y?V ‰a«•$î §‚ˆ&WÄX­œð;)ë*öÜdôóÉà9– š”(ÿeGéúÌÙŸŠq2¸þ5Åf_$ÎKœþ"™# 3Æ>x„}´‚uŠ¡3Õjü=ªáxŸ£‘„ï"׺¡#ó~ûùº’$Çu¸÷)ê"5P:Öuÿí7rÁŠÕ‘0€]¶ÄH€‚ø0Þ¢åó(½-Ãi>Ô%Pê”GÇs¨X' u»·‚¢óð%úzÄP\NsoÛñî»ÎƒÇ5S¢ÂhÔ¹3ðÆV—ç|¢Ê/wT†§.u¦ä¸Ô!XöguAü~fÖpŒ¶°Î¢¶Pm›÷†ûÑ#¾DdÐM‰ºÝÝqrÔy9ŒÞ7®ÆX.ÜUò]Ë«cúˆ–ìhÂ<-ìûꃋEa Gi ë<œÖˆµžP¾“ßñÌþŽÚö, ¨Áquç‰ʾ3«CçÊí_ýÌä @ÃPlvZ–Œä‡|ZZãêCX/U´/³†ã¶…uÞ F¾—Û¸TºG웚WM Ï+7R~W2,²A-ÙHÏE’ ¦ªÉŠ…‰› yRr€xZ`C³éƒ;`Ea G) æQo,vÓïß¼b‹º|µµäûœ¼ý=Iq°«`»`ä¢b?ÚX $¦ d`Q'`8(ŒýÌž’£ ü™…óòzº»2sßXÁɧ÷o‘°Y,›?:½=*Æù.Q¥Ft‚¬Œé#$il­–Ú¶ú ~?3 k8J[XçQÝÈü0Ë©w)‚6ð·Hv ât®ðPt$p÷Ä/›â"\kt<3ÓBbúx?EjÂi¡«â÷3£ÆŒ›þÌÕ]ñ}~ï‚FW0¥SO¬)9QÕ0*ŸxáHi£§žX= ±«4®¾Z0>ô4™’…óÓB¿Wý¶GaLn•…uÚʳCÊ]ŸXñH»ùÛ6H¡ ®žf¶cM~ öñÛ¨#ˆÔø«ú‰¦´s¸ ͇ºªCöèv/Ö CÝî¥àè4|Þ ºâÅʧ1öë&ùÿ¶«½OJ“—£0ë46Ö‰†Äûžøe_M4ç±Æƒ£ßiÁxóØ’(槪-ì÷½øŽÃi¿ÒP”ia‡^D iá MÓwÜlç'ú±ß"™fœ}lH_ß³™TÁ/Vm­h|ÿVÕBâ$=›’– «6´›:Âï'£°ÆŒ»©aÕX}`uÌfÜÝßãmcÓš8áëæ—‚Ä­µ·Á66qB¨¶×㹃GðÔèÏjÁ˜>ÞO‘lb¤’…ÒZ>ˆqÛ5ª¤Ä½%ßÔâ9r‡4Ýà¢@yB”sÛ#I½ó`õañ\cuþ}‚îÈøåF)ÚÛ¥Æ`Ÿð´ ,ÚÌP²ñxTâÀ°úÆsŠQ¤FÆ- ë<ô…Æ’·Öû­üê+±`”&=MJTÁ"×9˜L·U²H†nwbåY³0HϹZ0¦d[KÒQG;-´±ú VÆ5¢°†£´…uõ<ŠD‡’ÂæÚY#‘’¨pˆãÎG[ß¿+ âf®³F"nPž5ƱZ0Ή”¨Â!-¨"}dDFa Gi ëˆñ>U2£”…?óð lÐ'&éyûˆ“wÞóY0pUØî¸ÁBAiäî7'.ˆÁƒ¿”ã±1‚iUÒã$m±`|˜ºJXA”Ôª)}ì¦îÏ(¬‘qËÂ:Ú먑CZȃʫ![E‡VS¥­ùÓèu~áL <¹WO,BkôG·Æw=¿X0>t¤4%;j>¦…½¯>önŽÂŽÒÖy8ñþÇÝEî¼<=Èï‘(–‚Öy,ÿý¦ÄMÌÝD>på!Þ-O¸MHÜԵ‚ñ}Þž?<î§|?é=œG/±ëoÊ’ i#Á›îß"á]÷³d=^1‘å–Üšl¼=ï‘#^$}#‡è´`L1Â’óVßEY8Ûêƒ8F8 k8J[XçáÊ‘¦•r’¦¡³qT4Žï+Db–\ƒbAUÿÕÑmçbjbTM #Á`«¡U ‰éCej”4qˆÉÂq®>ˆßÏŒÂ7-ü™GL'6ïìƒZíã¬KÇT)9QœÒÑ# Ÿ`~éèMu$F†R}¬q^«ãd›I‰Ò!ÓB´m®>ˆ‘a£(¬á(maGí™ù”‡¼þ=Kc'¼Ù]$%A05YMÉ/}µÎ§âXÊ^,æN±/ é!¤dck1¸öÕqŒpÖȨea…«ÎŸä‡Û”}ј÷½§ŸÈ)A¥U Þc,Ì¿‹³¦+,å‰ñ|½ª»™ÅBbø@I5$·…`«>ˆñÔWÖp”¶°ÎÃì4W–“ ñKE:ÛÖ˜OwòÊÏ’¸îÆm\<ÿ¾p讎WTÂ8óÆãwjDêjÀ˜.tJI?tv/ í^}£š„AXÁ1ÚÀ:‹ÊRºÒ²šU=¶yÙ’H€W^8(Rã YyãÛžX ­Ï(j†˜ŒéC9­è(-è(}ã®BQXÃQÚÂ:út¾¸ 7øuoìª4ºR0Rróäëú.èºZ9m(ˆ=yvA¿®m¯’/~ ‰é#$Q*lZ8ïÕ1rT…5¥,ü™‡N3Ø‚oœewÉñ¿øÓÿ­tTFSðÈçˆrÂqâ6^Â8Ý«´¹ÕÂÄ›’1RruÙØ‚ 4ÒG–pdÖp”²ðg¥‡Žú¯˜—'v p:byó[g$¾`C†"Òï×óá~m—dq íÏÏ{mëP· %†cx1ˆ+À³J´¾D_Û­ˆ_ê4©?VàèÝù`¶dÇ%ÕÛE á;‘ð21xÒ˜”˜AéX-÷à _KâvH¼h°°=«í±Ga Gi ëwX^£Ö7–o›sŸ¹ç=Œ|WË LÕAJÞ‹s‡ŒW(HF70/ë®~»ŠF»¸–…‰›î R—í´/ÛêƒøýÌ(¤‘QÊŸyÔÛëÝd’:«ï¤¯mö·H:žyâÞ!£â—d[è7k8ﮌ›ÿ‹RäšÇÏ´°µÕÇæÿ¢ŒÂŽÒÖyøà‚D|‹)ûauà™¬†)yš šP. pn£bl:Y“˜Q¨S,$ž¬†–Œ“¼‡¶pÝ«blŸ*™QÊŸyè/ŒíÈw²ä k½=:ÁmÚÚJ´òﻓý‚q!~²p!}„õÛ*C,ŒéCµÓ”àZaZ>¨êƒ{\EaŒ[Öy¬TÙØõ)O,¸Ã;HŸ8ôù-’­¾ûx6²¦ìïŒçcOŒ¬ø«Jp*^-$¦¼SÒ”Ý/ A·Z}ã]QX#㦅?óк-Þû¹B踴âŽûQöáH H©AMÇ#zv^8ØÝ^ùKƒUÔÓBâM§­)ÙÙª;-ôsõÑMr”QXÃQÚÂ:_tžó¢ÓGâ«‚çá¡‹¿”°ecœáÆ-È`ýU1N]…R#’(Š„ô , H¢ír˜´ï×qqA¬Ó»"™1ÚÂ:‹ššíjdçŸào‚;+v–œö…<ÙIíûUb/Å“½ÖŒ‘‚ ô©ÁnmÓBbwf±$î­"\[ˆK¼êCÿE­J2J[ø3roÏí½mâõ'Ï÷¨:JŽ ¨B•@»ÔRëP†¿hˉ±ÓíUÒ¢*~±@laIc•-ìO\ZNÆx Š©‘qËÂ:—1²ÃYlí»6ÈFn¥ÉÑRr“â,xÆ‘©p“ÿ yÇcEð0SAÑä¨ZH<Ì“–’(Ìû™Î{uqš*-ƒ°†ƒ”u娕wÙîúŽÄ¸3‹/3-é £!³¦Ù+/Ž… ~É̈›;kcµ`LïgJ6ÐÙM [_}lÝ>…5¥-¬óð¾ïÖµ/ïÉÖ‰“}z#[§$q:v‘ëhì,ˆ_NãÙˆñK¶Î"éMoô`L1Â’xÜ´Ÿi¡=«â÷3£°†£´…uÎÔ~2a®ë6,©`ŸM'7SrãÐà4IÛ†CPŒlwâx˜˜æÍǾZH색”Üè͘¶q->„ñˆc©á(ma‡–c^™­ókþsÝ"»O‰hä]¦õÜLaÎicML®þÔˆªÕ‚1}`„%›geáùNITàÌܪï.hÇÿmÜ”ßWâ™[55F_-Ó‡2Q(áÑSZˆ‚¯êƒxæVMŒ[Öy˜ð'©ÁSƒ+k&8âE .ÉÉD¸Óy4Ádo Ç·í¾«© Æôñ~¦dG#ÅiaßVÄ1ÂQXÃQÚÂ:¾b›Äúú¡öñŒG×½>”Õœ’85‰]ÝE&ÅX1!ãxàGcŒâÆ^0Ö†ÇjÁ˜>0B’ö0ïÙÚ¾ú ÆšRQXÃQÚÂ:½”pqòç­YÀÉ-ø;ÏÆnbÚ‹[°ÇaI¥ìÏEj¬Tˆ^‚e¸ É S4±?s´º_Ûüå‹»÷ç N£—Ø}âzæ%ç1n‚*'NnÇé³J‚Ï ù1±+£Û®m^Á*·½÷©‡4ÅÀ„[r6J²›³Q¢ÙquA¬$"™1ÊŸYèµ›Øw‹@„Ü‘ÅZdÀà“¬ãŠ¢ laÑpê ¯|}Ïs0 cˆC¦¡zeŽ‹ ïb—PåbgU@T\#.eôM îl‰‹Œ•ïM7¦dì,ÌqAü?¡0G«PaõÄíGÑÐÊ6-ÓÇì+´ã»ÿL g[}kd”²ðg&G¸2s*é/ÌŠŠpg‚`pí±™hêÅ)NÛM>j@ä@]Eð]¡ôetBu,LA‰ËŠù¦–…鞟gp¾F_kÀH m¢šèmˆk–<³H‰N¢Â…×,<‘ˆ^‰ã‰Âõjj|‹ã<³˜¦Ç¤H¤<³È(¬‘qËÂ:ßfÎÛj?n{'›ú ýVÉ->Ø%2™îŠã&ù ó[jœûj!ñf>K”½ž¾KŽÅñû™QXÃQÚÂ:W§~ÿÂ¥´¢¸b9ö­kÇ“’¶a¿k€à·Ž¯Qì5Ú…Kc,çï(óN…q¬Œé"HÒyg=âŠal1Cj(Æ4°ÎB^' e#³iAýú]"‹ tJXò‰Aíî#ç89âG$ü’¢¯Hz¤›,› 4%;[p¦…>VÝ¥…5¥-¬ó¨ DÙÛëTæETÚÄÕK쟽³ ¨ TJ~5~‰.ÖyOø²úü<ÖáÆ°ÿ~¦à»ªm?sx¬qŠyÀ÷3ÝësG§ÑKôºA·v® *c4°?—’ïc…(d‚éƒùmÁ¾ àá ¸$ŵÆy­ŒOgÀM ó×&uï±ú8œç ¬QËÀ: ýQñ,ÞçxJ€c¯Ž£g2E‚ú~dŠŸl¸ RŸ!at&:ª${¥…Ä›ÁSru!ÙÂy­>ˆ•¯Ž(¬á(maGÍØåXô¨uŒÁ¼ÙÎZÇxÅ;n–1 ùuÎCáw–1¦†ŠeÀPÞYÅ=‚ ÂÎ1Âï¬b´FF- f¡¯3Ë ØŠ] ± ¾;uàë<%Q ßIE‚ûÒ l‚¼?m‰ñ÷íU‚NÛ‹cúPóvH¾/žmüL Ñl­ú ý á(ma‡vtÌûC•ùæþl}¸_’¶qkü€)8Hè6v7FnøQ%=*FÊø„Ù9"%'x-¦ï‹fqA.ƒ¡ ¬s¨\DZ:йóPב(¦ãqŒMÄp—Çq‚ð)ßKöÔöçªõhCXDZ Q©Gf8ʼbž¿“V\_¢_˜Àw¸ÔúÒ¯çæUæ”DÿCŽí[G˜ãaÎ<²×ŒÈ™¸÷¢Á¾ÔÓ‚1}h£KɆœ@[ˆ~ Õ‡ðûÉ(R#ã–…u^Cáfš{7á. ˜£-­ºYÒÉ»yÏ6·züÔYXEE‚öbÁ¸®½·d»x/ Ñü¶ú~?Ej8J[XçQÓÎYª“° Zd"²O—©Ò"m³H½X0¾Í˜6%ì2c q=U}ã«Ë(R#ã–…uúî²;Òi[™¤È1B··ß"ˆ›Ð4aENú½!mB$iÌjÒçw[Fº¹\ ΋_s²§bWôOÌà<|‰^ïUV<‡ŠnI5Ë.àq¶1áÍ’ ä0=È#7g ¬Ý°%-ø%qlä÷¤Æq¯Œé#$9À¡;-|ÿ]|ãM|VÉŒÒÖyè7Š„drâéú™eF7O9xøfÁ÷]'†8¸?|Äe€“‡ý?ðÙu.ã aIñì>ÔÓ`ÜûÙ°níŸ9 \"®L¼ï‡H¾{‡`Ú»;Òs~‹dµi‹‹Æ %­H‘mq ù\‰ÕP¡H¾–s±¸gá—% í=§…¶­>š ¿2 k8J[Xçál/d?‘WJW[=¾EàõÞE“lÉ¡|4âz€o²D]½b,h7óX#RͪaùÀInü}ÓB4Ô¬>„±>ªdÆm ë<¼zÀ]kO}Jñý4dq¿ð;%qÈÒINwbUÖ#û¦`œ±à,ƹŒ”]ýAr_l²Âññ2®„ßO†ŽÙÖ9Ô"Ì w~þFS¨âïQ©ÝÝL’]tURòŽïŸ¤Z 5÷Ʊ:í­JpF¿X0¦÷3%íÖ)¿,´¾ú ŽŽB¥,ü™GmÐÆ+Ÿs¸#¨ ¾;£&ž)yð 6’1ØÅ1Øo®› ã7þ‹F• ïcµ0qÓ]•%Œ9i¡Ý×âC8|(ŠÔP”iaG=t#W‹¿ÁÏ€Î<ˆþ-}1ºø]hw{T纥qS£?«cúx?SrÜjo+ G[}ÇGa Gi ë<Ü4ªGYRÓ7η/Û)‰{ªÆ§g¼ž¸ÇÂÊïbc8â7Ks§Fß ‰éÃe³;Ù?°š´…¸Èª>ˆõ@Ò˜q7e´ÕÇÑh uý-’è×ÍLý$Ýg\œ=W«/¡'Ú4¥Â8—ñ†t —$ºýóø¸ü«ˆßÏ ÁŽÐÖ9Ôå1‹ØTâÄ‘¶ÚO³³X"Òip‰?äEÙ÷ŠßÙW!5ޱZ0¦Œ$VDýgZhÛêƒXËã"™QÚÂ:-1xÂŽ–dr«ÂÃjŽß"é ¾ÅÚÕ ĸßy„•9Y$(GY,g IJ¶‹õ¶ÀzŽé#kH2 k8J[XçQÊÕ"G?Ú›=Àу†„CS‚æœàœkàœEG°Òü’ùn»‹Æè«…ÄÍU`–Äwàþ™úµú ~?3 k8J[XçáþH8.Ϩ“7†G´»™nl ¹súÙ‘C{4fö“WÆ8³oUòÅ÷jÁ˜>0BrçL ,Bž>ˆ‘@¯(¬á(ma‡Þ¹x(«ÅæžOgî‘.:ÄÔ"Iä@¹õ6‹fh)sž#1Þ‡…ìÖêŸj!1}¼Ÿ"AãË´ɉՇ0vEŒ"52nYXçQ³i6¥Ñ«ãzCìllV’†»4äXŽ[´¾¹ %ûØ‹ÆÑV Æ›ÛX4oÑiÙ‚Ö­úV®h‘d”ia‡{‡þx-™'‘G‡ ßÛ5l–4œÅ£æwÛùüá³á¬øåѮݬ¡dÄ´`L:~¡ÄO(ZˆÃ·êCWù£JJܲ°Î£²d+Ÿü2®:±Ãjj+É=H`§÷íÖ.V$õ–XIßE‚¾—‹cúx?EÒD' סWj«wՊ·,¬ó¨ü%;¶Gb ëq·oó×p¿SŒq1k˜ûL‚‹˜‚±oÿOW1 , ïálìTŃ0ò9Ï*™QÛÀ: }Ÿ·ž¹ôÃ,×Φ½{—`ɾq—0^ýÅ×çã¹àå|ì¶÷¢ñô¤#ä>C˜>Ô{’vpo *kLÄ(«VÖp”¶°Îc¡F¸+Ï}p!¢þ:²Æws:RÂ~lÁ¦ˆšîç¥þYñËšŠk/ç¶ZH¼%±¿$Ô•ÓÂÅ~léƒøýÌ(¬á(maG¥kÁskž[±m糫&S‚8s:™\ÜOIm¸T oÃø¦aÝ??rs4‘Œ¿ŸÜh'âÁqUŒ *‘™-¥ `=|‰]S¼ž^s:o5£Ó(ÿ¦)Ù76߉«s`V¡ÅÝRÁ/[ÎEÍXjôgµ`L!IÜËÞ?ÓBܘTÄ1ÂQXÃQÚÂ:Ú0”ukæq¼#WÜÅ û­tkDÅØ ®bС¦ ÍÑoSžÅ«Hz,›ò,%ßßÚ­G‡Ú·/>ˆßόŽÒÖyè/Œ ÙÌv¡|C¼Æ_w‘.\;E~áÃÞɸ—"hrWð„(52G§…ÄÍÜS²©$E¶cõA¬Ë/DaŒ›þÌC Id98|=œ|~°×ðÙL´›’ï·ì¸ØbYÞdÑÝ/nB…_^~ÉÕ€q3ÏnJâÛ~¦…­­>6y:+8FXgQ+ºXLÑ5Ý`¯ æœâñ4#%l`ýM‚;gÀwÅ8L½tX*ïb~±¸ùHC’8Kì8 ¥…FN¢ô!#Ej(Ê´°Î£N˜ÍGÜÉL„¼Ñ³ƒ &)9ÙMã¥o0£·ŽH…ßäLŸ¢ N Æô¡]) ÙR#-ô{õÑoûpÖp”¶°ÎCßg>¡ñÖmz`¹wüýÉAšë ÷çœ 'ÛGÅ8<îÈÈ´²ZŠ…Äôñ~¦¤û€Z¢kcõAŒãæ«Jf”݇àÛꣴ‡Â´/Ï^ø¥·ÛšM {R5\v aØÃ è{çwËœ¶-Šä‹¿m¶`lÞÜ)‰};FÈBßVÄÈäVÖp”¶°Î£–R3ý0Ç}&W5¶m(ÜDµXÔ#_kÇMT{œ¿EŒ`ÛwY#Àd!qcK…) .U$¢ËÂv­>¶Ë>…5¥-¬ó¨ìèò̯ó~ð‹äj¾)P‹È\Á{g¹^p¯íÝPÇÀ‘}ìÏã}¸—á‰UÏ—‚®þÎr½4ïr¾t¯ÏF/ÑûŽ·e)Å¥$8æ‹F>"éx,‰Œ ÝÄ"p'“ˆp¶GL&?:Ez«Å‚°|¼Ÿ) ¶Bœ-ÒB$YWÂHÀaÖȸeáÏ%‘{Ý l!¶°Õ‡06ÔW•d”iaG=šHt½fœÝmà ìLÁ™’¾‰Úçà§£r1Ï;ñ˦†8´Éf¦cúÀI¶Cmi!«á¡(RÃQÚÂ:BØycÖ]}¬Ÿýfg¿ëRc™”kûP{ÄÈìŠS±Á ô $Æe «zR#ˆ¯«cúÀIΛÍ)l!Žèªbœ) k8J[Xç±ähàk-†R¤ƒ Éö¥£ô(¬Ší I¿ • =ÇŽTSã—DâEò}· W5 Ê^_’Üìýlín‹ aìºDj(fX¦PÊʵ?èÊÝjèѼþ§$’ž#oilC§+HèèÿØ#v]Hþ¬„å#$ñÛZâm]}cGÁ(RÃqÛÂ:_œì?¦-M†Öï+$ªÐ·¾©–~Jp‡WCÔ±çϵóÕ•îÂx¹£ïTˆ ¯2ÞpS%½ü™åèí\Íã€HXÃÚÀ:ýqq£­[O1ÜÇ™l¼åw¦SþV o©orZ¡r<2‡"Û|ë‰_¶Dc/Niœ\õ¥…ÄNâLI¼8ÕžŒ}4ÇêƒXz¼•†£´…uš0Vì ¬Ôì¾]¨êEþ>/ò- Ò4$bYÿßU6$ê,(ØT”‹¾½­(<×j@X.ÞÏ”Ü8۬<‹á RÃQÛÀ: “J}÷L?,ÍeÖ òXP’ѳn$Qó¡ëBfË—{§bdÑDzÍT¸Õ€1]`—n –i «blŸZ•”¨e`…o‡Níoy&‰EU¼³b±²T¥ä8I¿Ð˜ò}œÌßÚ• ! ž8pìECWWiÁ˜>b„%—WÓBä°TÄ1ÂQXÃQÚÂ:WÊ4å*Ìû¡x½tï±±þ-’ ½¶[,:ð¹·-ú<Œ-7y¬p>«cºPê3$ÇÁƒøzZ<ã yTÉŒÑÖYhº¸Ï>°Ò0éGœ °ÈãÝý[%¼Ì‹s‚þ°UÚ>ØY à—Ï‘ ’qWW z½`Ážsø>VÄïg†` ‡h ë$œñcÂaN¢q(1úΩ–Þ”l·Ž÷ôDÛ4tA!ÆCgTÉw¡¡#Å[¬F†Må2)f’ëZ]\—]8k8F[XgQù…ÙgÓëeä±("™þ@óŠ[JÜU€u/ÊùEÂ× u_2$ñ«Ãy}—Pe 9::Ð뀺)w}îà<¼Ä®*p/dUuÕYÞ ~¿1 Ëø­ô"BÆq4%ü฼w4Æš7“Sƒ7—ÓBâÆß”lX,¦…öýÓVÂÊ{.’¥-¬óз×ì}lú¥XÆG~w\¨ê}, ¯¾˜Wˆ½g+äHÆ\¯’/~‰é#(é–²k¾êC8æË RA1ÚÀŸY(çôÇS–ûƒs”¡°ñqJDëº:¹ñq«øýL‡l||®ŒKãcK6žÙÙB6>–Òøx¯’7-ü™Gåú ?„7@è•€ÔàK먔MZ>¸G]YüWF’v¸—“…Ÿ{_-Óv¸’ìì®—ö¶ú ŽŽÂŽÒÖyøÖ`dŦ/²Á€x²:eŒ¤oðŒ•d°]IZ¸žÕ1NÞ÷*™QÚÂ:s®²z~ÿ™lƒ/ó½óó·HƆvFQœù]g˜ß`°:0~ùÞ*¼2 Æynš’ A>~¦…c¬>ˆ1aEa Gi ë<´ÎÀá·âsɄӨQOô”7ÎN&Í :ùýDþe¤ žÎVBŽf‘ gæbÁ˜>ÔU~?§…àæ¬>ˆÕUQXÃQÚÂ:—–Œy¹y+Íõˆ½4Hè™ü-¸Ù=ñÀÞ{?xÇÔâår%D}f/‚5u¸¡î´R0:S~5úû˜«Ö ‘+÷VPt¾D¯×í97·C©q±iãOÐ-¹q;üÝ6ždéº/ò6\ƒcsÛHÁa~¯Œé#$¹ÐâtZ8Çêƒ8F8 id”²ðgnÀÁåúdŽšP‹×¸)ˆž%dt:¯ëxùØ _–Çüü¼—ц°þ~¦ Ù‘5üj‹yÀ÷3ÝësçáKôúòêýƒr0±™ ¡*n)ÍÛŸ’‡¬ûÑ›&žüñ´lá[-„ñn¸ª¤ß¾c´ãÛ¼ý)dÝO ׳ú¸ÌÛŸQXÃQÚÂ:JúÍd±ÇÌb¼DWsf‹YÂ^V-*:s)‡gI‡ÜyLÝ!ZÎ4`LjâIPµ#õK¢Úºú Ž  ŽÑÖYÔõ…(õhB] ¶Ñ/uJN&¡=ì…³솊§IÁÈ¢ØØ2Íc¬ŒÝËtJâ.#dÝP§÷KQXÃQÚÂ:-QcÁÃÕ[käèrðàØòTFkJ@9Ñ·ÿ¡G'åDßôÚ2Æ©ÅS%=š3 é§’“0LÊÀÕVÄ8µPÖpŒ¶°ÎÂ{þu“B@Mu£Æèá»Ç’`¨;™ä‰xñ¸gpÆÌ¢AKÐy¸X˜˜>ÞÏ”°§`è÷ê‚X¹JÂþ΢®¥ÜÎM«¡7³s]Jà×h‰£¾t‘…Y0¶c Ýfo»{±0qv®³„¿ÅiÁ}éìcv®sÖp”²ðg>Q~~̶w7Á9Ëüµhî<%ºñ„M\ºÅk,e©P‰ß`[»«ä»ž;W Æô#,aQÑ´ÐÚê£9Y2£°†£´…u•kŠ ®f%ŠÊÐèe¯' xSòðÌæÜiJñþ;Zâ—ŨEò]ëž«…ÄÞ¢§D]ëÓÂ9VÄ8ÖRÖp”¶°ÎCVƒg<¶|*w‘ñÉð<¤²d ¦¦ô‡ÀNc ü»b-öƒK35ž}µ`|¹MÇ”4¦¦ÚÂy¬>N·éÈ(¬‘qËÂ:Ò©³&L‰è{¦¦Ÿd×Jɱ±óyäõ_|ÖﺵMÏ¿?¬>«cúÀI:VQÓB«âá(¬á(ma‡îr™Ì‹?°»ªÄNëe‹?Æo•(÷xèT»+79*ŸžÄøsUò]ì´ÅÂÄM”î)Ù”{, =î‹amªûQ4¥-¬ó0[ÛQ PY‘±ßˆ,Ø‘-­S¢†4±´ ž’¡nÊÈš‰_rƒ Ê® ÆÙÓ:%jIÔ²:}dOëŒÂŽÒÖyh‰…º,(÷ÓçT ÿ•‰j~‹äjªÅnï±ÊAÞLüŸÄ/ ÔFQ8¶Õ€±ÙqФ)5‡HT3=˜¸fÆ`ŒZÖY¸WEÿÑåÐõ¨C{ßÄæt25aJÎ1[Ô&u±M¡ß:«úÅ1T$Ȫ],ÓÇû™’süÇ¢TõAŒEa Gi ëŸ-P7ÞG÷š¾Û„/Óö6?ï÷:Üö¡OA\~µç'ÇoÜGÚþæ}¦ýës‡çákü•UµC‡s>¯Æ Îäñ¿EÂ&çÈÏD'±«1»r°"B8Îöï£Júñl«cúˆ–Dn3š!ÉÂÞWÄÊEÖp”¶°ÎÃÝ9âM´±A»Þ¼[ÜÀÆûR•”7’ò@Äÿqqª%q—w'Ä*ÛÝ©å”e¼ íccAÁÅr‰~õÅ>áû™XAñyümú¤{­!#sîfeÓ£Çy¥ž ‹Øb7 '|ÙA<ìSáhËpÁÝyStRJåðö,ö›³¦ìߟ+:_¢÷í¨î±pT+¤ïžd=ë¼Ä’’ëÏA>­~Í_ £'~¹)¬ Ƨ›¤­¡¦£¯.7È ¬á e`E¥Eçí¼I³#aGéI¼5° þ·o~¹“‘â´>Ò&ÄžUWRˆ…{nHó¡/Aü­‚sÔÃ[_ìê·1ÊçŠNÃ×èÝ®”[8yô•õ56Çl]©a4¼‰‘Úƒ2¯!Rª³ÀÈ쉼³(åm.HóЇ ~N¨sxä+û‚ÊMêåsF—×èµà&ž$Ê—¾¹ÌÝ/Ô–üÉ‘RVï`ÜoÔ«€7ŠáÀñßÉWшšðjÁ˜>ð͵DJÓBpVÄøê* kdܲ°ÎÃL6¸¨ŽÇ‘ )⌠VãÚ“5Ç–4ЬèC‹súÞ½âÈ’ŽžeWÑx®Õ‚1}`%‘ŠiT¶°+Õ>„c„¢H E™ÖyøÅŠ÷Ì£o2k½Žøt!Og­—$ÊÉx<[É=¨Z:ÏÄh˜rUI{ž}5`L8p±Œ€ÓB<~ªbŸò…ŒZÖYÔÙr¯Û½»ßgUÜ aµ”ö mb¾ûÄý’#  `䘴òñ1Öá‰7u N 4|¿VëÄÈ.9«dÆçáë ê¾n\Ìѽş,ý1ù“%¹É~ Î}`±#o£b¼ú@À05z[,$“?Ù,mäO¶ó^]œæOÎ Nó'÷jàÏ,*]43±»R9#ñÌ” L}“ -yl -“Ô^`,ÛΆ´€TR‹2\æßÏld³×pP–Lû‚3O.?w¸¾D_+Q‘C£ómœ˜)Ó¿Er lõgà'þnGš¤´Š_ÖITÝߟèbÁ8ó´SÒÙô,-0qzúÈTíŒÂŽÒÖyèoŠÃrTë$&v@à}¾†+D,ÞE‚ÑhB n2Ù0@øeד"!Kµ`LJ$Hƒ±|”… ë¬>ˆßόŽÒÖy˜.Ž‹í')#3áVf)÷éS‚®Ñ=ˆ&P®èƒ/¥à¸\Ä>¢º°˜X ³Sr¢ít8®Õqxp ÖpŒ6°Î¢œJœµ¿<Ò¬"ññ>ÜžzJÈÁd?Km΢ßåžøe‡ "éqÖµXHìöÔ)ñæÌúµúènOQXÃQÚÂ:zBR„«©"õÀ‹w?÷&†Ç)AÆ÷3³,þkƒ] ™‰ã?ÿçÔ¸žÕBb÷‹J à4¼ÕAs·¨ Á‘ÕoÛj}&6F Í<ƒ?z`v?§$àYøvÞ òtˆg«R°¬ÉÇe¸àá&ñÄóäþ™ÃUKbû„ï'ýûsEçáKôµfO¿_qPƒ*x°ÿÁ…$á4!cа*XB&Äö ”ùùw ´ 7†}lY$8@k0ÇG¹t±ˆ3å½fx¾Ä_2Fø3‹zHº‘¨ålú±v6Z=2¥äD…úßl´z!O§W¿,/¸¢q·Õ‚1}¼Ÿ"A‘ia?WÄ1ÂQX#ã–…uµò…ÄàÙyû9Xˆ!üÉ’D× ´ÂØxw4`fTi61Ю*iè(Q-Óµ!ÙŸçbßKZ@½{ña –¢ä¤ÒP”iáÏ<ê„YO|hýçpè×ùëÝLj'h »2Ÿù*Œ|çÖyз‰u’X$8)\,ˇÎ!Q˜-D>Mõ!¬ÓDô‹±†ã¶…u&|@mˆßόŽÒÖy8£ñÉßpf‚}¸)!#Åo‘x½EjþU -.Éö‘¿á§JZ[ߣX0¦ü†!'Å TÒ=O¯>ŒñF©¡(ÓŸyhÂxJ“]Êü¤¡ 0®ýTýZJn›á*ð¹±â½µŠõûŠ–ÔˆsújÁ˜>ÞÏ”tœmO ½­>ˆßÏŒB¥,ü™‡YxðÐÂWºuMx0-ecÊo‘0™8'/“âyßà&3Æù sa¬Ϫj 1] zIDk“Dk“>ˆßOaÇhë,œë·ÿ˜7¬‹Ž5öPM%ÊL5HÉÎîñ·ög±fE"Á±ññBü’÷¤HÀ8²X0¦÷3% ™ÓÂ÷I»ø Fö§¢°†£´…uuÂ÷Âìxq½ƒL5L7÷?±#uý»éŠUÎ÷?ž¥,„øÛòÝŸ?×2:áÆ B Ô£0‡ÇQb1ˆ?«ÜësçáKô^[9»»!®$£A.3§¸Ž$Þwr(Ü8×cvW¬*£™¯ÐËdÞÄX–±†0­çΤ­ë'‡FbÀ4 ô~¦_}¬¨8t‰¹Q#ãá®dJW›¯-%LЛÎkõq^ö¡ ¬àm`…–¿ì¸Í6ÔJ obÜï±}èo‘|³qÜÙDþ·³hGîçÄý…é¡viÁ8›–N 3fÒB;W͇²…52nYXçQotØeC,£±Èh·‹+%y/¢@*Ž|¢áß…û ëh¾HP»X0¦÷3%qfئ…¨¶¬>ˆ±àTÖp”¶°ÎÃó½užïÑcC¿/üI<ßT«o‚KôOQË\0~‰¨ÁžûÒÝ´`<é,9oñ5È‚èŸÒÇ$|pÖp”¶°Î£6Œyp~ê\yÕE=õ#!JŽx±«³Òîc¾³óGÁZÁÜOѸÛjAX>b„%7ª™ÒÂ~÷Ň0–w•̸ma‡NűÔ‘Ì8³¥RÅFc[Ð"y´q=ü±Ý§¶w"1$Ævn'i¡5H|š&Î  %Òù¦…óZ}œÞfÒÈ(eáÏ<´ïÊ}• ;ú‡âM 4÷·HNgeÒh»¼ëºxOüÎ>¨©ÑŸÕ‚1}¼Ÿ)ÙÑ'fZèÏêƒø-}P­á(ma‡Ê‘ÝEökõá‹Â‹ ê9†÷7)¹¹;‰3”¢<ܽ  {b„D]v*°”a0ÞÞ¤„‰íià꫇˻›ŒÁŽÑÖYÔÄ=wá{RpR~cÓò”ðYψóæqæüTk× eÙSclg ‰7=oS‰w±·…XUTÄ1ÂQXÃQÚÂ:ç𵼸g· \ÒŸ"E¶€?)ìÜ'éƒ8è3ï„"X¿ËçÁ™X† Ò¼úLìd 2cÖÏÏÖßOºOF—×èÝ#æÈ:ZÝRk||Ýv»Y ýKœ¼7|a™ù'ï-a¬Öw¼Á§Â÷GTÇ Ò>ô)𕶇kïbû„¡ï¬ ø<~‰¿îÌ™b»ß*z@šÊ­ÍÅØgɃ-*L¢®Ý\y7Zÿãn71©ýª…Äôñ~¦äû}ÆÏ´pî«âðá(¬á(maG-ãaµé'£Dª©à‰œí)ùn‚#{7žnè^¹“¤ ž°×•864×V%_àû™þùy†§áküú"£P‰ó V¨`:iÏ’ïÊõÀPï,É~“{Âö¶úØ›}8 k8J[XçQ‰Ù Ô5´qм#Kús{Jâ]€Dù=~ìX#` Ï£‰‘nü°û¯5$L Æôñ~¦dÓ6]Úó,>„‘n¼WÉŒÒÖyÔG3KÂ}ß8w¼,ôHɉŠö½äÆÅ›æxÐ6ÕõlUÓ8Ñ©¡z£´`L1Â’ i¡ß«âá(¬á(maÇÒVq+Ý%úI’e¼8™R’’I­=VâÍ$l(ðm³ñËàX¦†ÖxiÁøvJIJŠÂÓÀu¯..g”dÖp2°Î„B3á¸ù‰õ°tõ@ÂØo‘œdV«0*‚z´Z-ø%ÞóïŸ`±`|¸ )%;¹ÎÓBäˆÕðQX#ã–…uKm4ò̯<‚Äwpò䦬0INôZÂq ʬϡ .ú¿\~ ™ Æô¡RgHvô—›ú½ú Æ‘¢FF) æá"ܽ³LïÉõõŠÑHuæz£ä‰÷ÒY¢àñŒ&žJw‰;8a…_$`r[,$n¤ª›¦òN çX}ã\WQXÃQÚÂ:=¢9adwždAC¾Ü†/“· )!¿2îp~?´ŽöžXyE‚¬¾Å‚ñ™ÛKŽ›a[8ÚêãÈí‚£FF) æ±TİdÏo•I $dIÉÎ]Œð`,*1ÂÇb€´ô©!Úú´˜>0B’ø‚ÆŠÁ‚‡·ú Ž48Ga G) æáÎ8Ϭ¬ÝTH|Ÿ¬ó;Óó[r qçƒ'Ó~ÕÍ­HxŽ—ô_”>Ž#[( i̸iáÏ<ê13;§d§µKíRÍ^J:*:qÌ‚’¤KŸlÀ,Ç,¸„¦ÆØV Æô#,ùNô©¶ðýK/>ˆu\T$3J[XçáÂÿÙOÒˬhÃÑê‘É0%ñ ïÜ1Œ‡}KâË«ùq$Æú¿W š…,ŒéãýLÉ)Ö[8ûêƒX;Da Gi ë<ê;˜ù¡õˆVý:¢ ù· î(ã&8㣽¹2A2’2dšSÐp‰[‡'&%ÅÄ¿?sxü[Ì÷Kæí^Ÿ;:^¢×f‡¯xRÝ›S²Y‹ÿ-çítNJp¹ÅDJpÀœä‰·BO¬tÎ"A²æb!1|(3$׃íjZˆz‰êCØéœcj8J[ø3ß$ tû£ÝÖ Iq˜Ä Ï)ù>åТ6Ð¥\ÔÆ>Âz¯U£?Ëø„[ÞvJBú‚i`?W{Þ¨*+8BXç€Éþ¸áQ&ê^z<'SR"’醾׃$Ów'co‰±ÆøÔxØ8,-ËÇû™’MiÝ¡Šad&3ŠÔpܶ°Îýñ„âE§™ëòŒ¡Ôs "f|¸£sjCA¾Õ¾¤˜êåóq/Ãi^× !¸–hôÕë„ïgº·‚¢óð%úšqs`·«ñ'ï`Ó‹vJ­“3½HxÎĸªºª¤ïú2æðűäØÉ&k \Le!ÒæÇŸ†ÿ™ß8Ètľ é&WÉ’(Èj.ºU‰Ó‹ÖÝ —ÐÆ^ÊÂNͼŠF‹‰ø)AÔc5±¸‚Þù>™ÜI„ª:òcÇçÑëj†#'º«Ÿü¸Ðb©í$›$ß-eLt€¦èG]]c'Õ«dÆh ë,*çóŽJê!‚zð<Ïg˜”\àpÂùýP°xü€hñHŒëÛQ%=úÕ/Œ³LJ°@M êö’>²LFa Gi ë±HÌï¼ÎC®ƒåi‡%h{Ѓ|éÏwQ~‚aƒŒêÂñÀ=G•ôãÚW ‰›òvSX°|ÈÂu­>ˆc„£°†£´…uµmµwÏÊâãfÅÉÙ]YLÉg!¸ay+b¶U¿ÏX•ÅÏ^4ž{µ¸±MÚ”dþ§,lhí:}«²QXÃQ–ÔÅÇìÔ¥r/íßcŸ‰†qRÇZ/K®¡×áÆ:Y2DN‡­R1 ø~¦k}îÈ0¶D­¿$Ä™‘-R‹sÛØ‡W¿Eò°ëÕé3ø¸3ÜXKø2µ ÇöVÓÜ/èÛÎ ô”Èá/mó=d ÐÖ)hD*°% .~ë±"à%ãï ^˜íê’{ ]¹EÝ„x¼ìEÐã^©¤y¨Sp^ˆc¶ŽÂŽRþÌCk§k>ŒÎ;Óu›÷ÈigIßðKbZðÎbŒv3oøº+1¹HŒ»X–¥ëBr#%9-´{_|;9yŸ·,ü™‡^4[ž»×Š7Kîo÷HI‰, ë#bëדøß{+ìc5`|»µ@JnIæwñ^=\î,1XÃ1ÚÀ:‹š«{©Ë6§{ùNð2ÍsJ‰šƒ"£ër?Gu£ŸǾZ0¾Ìõœ’“lÍiáì«ÓlÏ…5ò.SÖy8WÛ<Ük)ã/ÒžãÄ+(3˜ËiI\š¡ñá\–†…Y1 "Fºã¥Âu®„åâýLÉ=Ø÷")¨z~?Cj8jXgá/ßp r©¹Ï¤“£jì·< ‘R{ܬN‰ÚŒóÉòü·GùÇôSåë9ÜXÜfEƺ'Å< 2zá^Ÿg¸½DïÝοÈ>o þ5.[ýÞI‰Þ±çR˜/–X§sáë7OpØIô¥j!q¾|R¢×GZÐÛ%}äû'£°†£´…uf~»~¼PØ÷»Žœ8gJÿV xE.Ñ~Åó5®~TŒŸlçÙû³Hhä”ܤ±6®Å…pŒP©ámaÅRè¥ OÏéâÉýýöw?%¸@¦'–!–ëN\¦›û³0¤M—Þߤï¢bqA\§kŒZÖYÔ÷ËYo¼ßjlîÁÌÀß*Á¯wGàEì_0˜NlŒ5îŽ%¤ÈD> $nY'I–±ÑÀq­ˆßÏŒÁŽÑÖYèqÜfɼ3Ío¯ßÁò[7³ºÅ•r‘WâFçë‹ ãÁBaø]!íËÀ‰7®åSÀ–ŠstÐD¤eÒx¤W|æ4pÙ©š¸©dëVu÷ŒÛKímyË“ѼŒø¤Mš—hŠ^ðËžXä.—ƸV Æô’ˆÝ7-ìÏêcìÃQXÃQÚÂ:§âþè¨ è;x“ƒÞ’u7H[Ù€Á‰”Ê‚y\>^¾:ܘP%É8ÉQá̘։•x³U Ççáë ôºa7&|qOß@GD|–ܼ€– lñëºÁLt?¤hß®qm~0µÁ }+£h™ðÑäù3Gǹr1OˆŸò]›†¯±ë!D7°×‰™0Ž©6\õ=qþö;%ßÿ.ö¼ñŸ¿Çµ »">㕊´+Dþk5`,x£Z‚KTˆkšêAøýd ©‘QËÀ:‹¥žAÎ…á…’J)°$öÿ™¬‡Îs¸ÍÅæÄ3Yojôg1`xúu‘’(–<¦c[]™µà ¬áma…[îðõ„í ÓBœ„VÄïgF!· ®óX^ª'sdøR%)í~Ž‹‡áSœe¨®b–ÒD`÷âÍ¡°ŽŠ¬ò‹cúx?SrÝÌt²…«¯>ˆc„£°†£´…u: ×ÅûÌò:Ihô}¿_: O k^{äÜèn‚šØyÿl­iýó"«©ðì«ãÝ$ú)aÑl`ìôÐÝÇ c°†c´uõ¶’ͨn÷‚' z*'Ó’{Bæb™ç÷ÈŒHS£Ë]%ßUÿ¹Z0¦4ˆ±¤‘„Æœ×i3óÓQX#ã–…uþ6óú=¾ÍÙ¿4ÊTN®yX¤—’ÁÚØHlÀ‡‘]X0VÄhAŸ ÷µ0¦‹÷3%'yˆlà¸WÄïgÆ` Çhë,*¯÷–Ì…Ì zX M‚ˆß"¹HN´>Á‹þA‘—¬S&~Ù×­HPMµX0¦÷S$ ´i!J÷ªb\Î* kdܲ°Î£‹ST)_‘7H§ÓûwKfAF¯v¤S<Ú9÷«âxØîÓ+¬ql«cúÐU $ê`›ƶú Æ+à®’¥-¬ó¨Tæ;ngî Ú>øÞú.8;ià,éè# §²ÈÆÃü<¼‰#àÚª¤Çò®0¤ 仯Še¡ ôg,.„‘4È RÃ1ÚÂ: í °•åËÈoߨð{P:¼«£¶%—¦¿ßµ¥Â\Fžâq'ÆÛè®’•‰‹aùÀÛH­ m!òOªá÷“Q¤†ã¶…u +šjlÅÛØ~J fÜAI¿ÕÃ&-$v fJ’¼¦X¦,ÁÌ(¬á(ma‡NÌoöõ|JJnðä¬)g3%Gß'^ð`–ˆ‹ÂãÚ*FêÀ`°5ƱZ0nJÛLÁ†Râi`C^fzØ”·™!èsGèáËLÙÎ®Òø2çÆ•_½[©B)é<æ ø&~çÜÌGů؛¯©¥uÕBâ¼h’™Š¶°í«bl®*)qÓŸyÌúx,ŸÕm_Dø‰®ß¤J‰’F¡ó <ÄAqU¬4§³£­ŒéOI¢ßòó3-¨+iú ~?3 k8J[XçQ³è;ﺺ:é cìñõl=œ’›eœl½ ¶*¢<½âx/ª‚$_<ª…‚7×B[wQ‘n ǵú Æj쨒%-ü‡ÓHpÌ8Ó„@OÖ>â6òñ[ÝýJ™îÔsê Æ±Š:YC¥Á¶˜>JùñïMËBô¯>ˆßYâlŒRþÌCK V½œµ£^”W‹"†!-h8zø~xÐiµãËñKüõ ™¼«î»v4µ„;ô”JIt9Yo¹“ãT>uÔBŽÄ/ë-‹„Õ”Õ‚1}¼Ÿ)!çpˆ‚®ê‚øýÌ ¬á e`Å’®zr¡_íÞ²øw°ú0%àjÑ,âD›]¼ÛÃǽ1è’X2—|L ‰U5%ÇÎJ[ØÇêcöá(¬á(maG½açÐ 7–Ö :ÚoçoZوȌ<Ù…&²;Y¡o 1ü­J°ØbÁ˜>´E dS†§,ôcõAŒ-‚¢°FÆ- ë<ÚÔëš Rò’b†–Ì)i'’TÆýĽ/¶×uÐ4ŽWâvò¾I7³iÓBbúx?)Ù¾¶µ$´6‹âC»FF‘ŠÒþÌÃ}4PðÃŽÚ¾Ò¼ƒŽü$®2$¸Xö£eI¤fz¹u›9=¨epBÇòÂ6¥ÎáܹOûÞÛ§+d¸2°„ïÇ17¹{½ëò!çØXoÉݘß“ÞuñǦÄÈZUòÝñî«cúˆ–|×½H‹·Ñ»ÌÃÚLÞwÖÈóß3©˜™×Ç>G×®•rد —~¿Ur“‰"Z—Gån}FfÅ ãÖc¯’öp›=-$†Œ ä|:—0²lÕ‡°ø2öQ4œ{o ë<üdFšEiQ†÷2KoÑä·H.Tñ6ôŽÅ7MPË‹ê^b¬/°†›½-Ó‡Ö,Žž'ÓÀ±¯.ˆ±¼PÒÈ iàÏ,¼z¼’}UÍQ:ç@A>ì”Äï»mëêÄo€¸‰Ã¡‚ßèTÝQœ×½Z0¦Œ$ø0B¶{õA#…5¥-¬ó¨]®„ö\Mí`ö@ÞÏÁ<„”àø³_Š¿ë—“-üέâXðœH¸˜×¹ZH 1Â’ÁFäiáºVÄÈ6êU2£´…uš/÷}¸Ñ=vu¡ø®HЩß:‰LÉâ­/Æ~êˆÞç;Rà±§3ÆN÷`;'kŒmµ`LØêZ¯@ZhÇêƒ8F8 kdܲ°Î£Ö)òh]Å¿Ï;<*ŽvÞ$ß™’ïÿ%’EoôôÀÿ%²QŸANEâøßÿ¾5‹¤=,ÓR),Á>hZ8ŽÕ1Žï…52nZø3ßYº¨£æ¸#î,º»ÈS"ÁÉšè bˆD¼Hoˆ¢å   _®³ãU™ qwUÆ Ò>ô)ØÙ­"‡ï}±Oø~fVP|¿Ä¯¼r–‘]_ä `»q÷=”A”’ ¨n$qãu<©P¢eÁ¸lÿö¢ Œ4`LïgJ‚å#h X­«â÷3c°†c´uz í³ ›nì[tì8íEßo•`Á†—ÄÀ/æŒ_X'FOürKq¢±ß«…Ä"´«°}ÿ±…ï2ìª>Œõ®Cg:k0Êia‡+p¹|DuˆVÁ(áwr¡1%ßÿef"v]LCÖ£øºˆ‘娔 É"Çiá;ñÅqŒpÖp”¶°Î£V¤‚Qi'ýL?~è/ü°=PJP˜]¡QO|‰]£ ~Y Y.©q´Å@ÂMo•”=sl`¿VÄÈ@º«dÆh ë,*?'3P޼/áÝ¢ª3‹7`fà]"K n•r¿¬yZÑ8¶ÕBbÕNNICuå´°«í´Ga Gi ë<̈væk×LàØƒŸúÚã‚wJ&Ð_È‚Áoóæiq$ÉÇ=;§M ¶7u¸’¿½X$ɛӇ1Þìèù­À§uš.ˆ“ù&:Mº3.<âë"Æ;Kú¥CÈ]‹Ä\sß ZßÇ“äAŠ€%}ÛpÆo 7¿t§dã¢-lÇêc;ìÃQX#ã–…uZeàü†|h·žVM=e÷SÜ%SpãXM[t4 ½È%nH@œ1·"ÀÕÔ2<±˜KRA?sø~.æw—¤{}îè4z‰~áë¾ûãZŠMW"E’ÝRr± eäp%;Зç|ØØEk©½JTZ-$¦÷3%qK3l!ÞÕ±R!…5¥,ü™G-9D…¦J™¨‚{H¸óâ/%L};‚gM¤_¬{™$a与ïN‘ô¨Œ],$nâ¸NÉ÷›üLß/þâ‚Y¤ B$ ü™…÷öl&—{ζ5ñþ^¾,±ä:D·}“aglº¦¸*ŽoZ”…}[ ÓÅû™’ã&•‹ mõp¸DÆ` Çhë,ÌÚ˜u#¾ä¼âÊåä*~Wº$ƒ‡}W¥é÷ÀNVñÿ¹‰±/kUòÅcµ`|eN¹%çÍœr[8õôA#…5¥-¬óÐCêÑß•ýrðŠë*NpçgÁ‰Îž‡÷$hßÏ «DÁøUñ25?ïh9æÑ a=Ô-Øù=Ïá{_ÌÆ—Øîùy§ákôµë ô‹ºò8Ðï·H.¶~‹2Þ8ùy.RŒãÂi$Æ[p«\Ì.ŒéCw¿p‘7-D~õAŒ¥—¢°†£´…uµ:s'›® mƒcáRç·óä§$.qÙØD Àw ’ _öðkGÑ8îÕ‚1}`„%v…i¡«b<…52nYXç¡Ð£«ÜØÛëúújìd|¾lg+_m÷¥{C¾Ú¢"¥?†8÷=ŠíiqQ©Ñ†°þ~¦ 1+6‡·}1ˆ¢ÜësçáKô5¿†«F¿i£zìBäMþV y-qâƒÊå3–(ßçJnŒq.…Ÿ©¡S¦´¸)]uždaY”Ú}->„ßOF‘Š2-¬ó¨Y ü2Ç!$ÉðUÛHç#熒èïÊþ熚}\¯DÚK4{¼üÙ÷qTÇ Òîû™‚h^Î}>âņ¡šF:ågŽÐ—ˆkÄŽ™¡‹Ÿ-rÂ/®[ÙÀ7%;ÛïFFÃ…ª*‘Ò2À8V¶öe}_-w7ðMIcÕEZh}õÑÜÀ7£°†£´…uÚÈžl‹3~’K ¤(¸d;Gì"~‹äÂ34*¸f‹ ½ÿ»^+ø%—|Ü[Y£q…“ÓV’ìЛâ²ú ~?3 k8J[XçáUb›Õ{c6P*¹xEmìH’Íû"W%X5â¥w¢%$L¿ì ŽDaiD~Lµ0q#Cê”°ËXZ8Ƶø~?Ej8J[XçQ¸hx•9“Ñ—ƧdœlÆÍð PÇøÖ*ÆÎúá¢ÝýZ-_؄‚«QÎ}õqfÇxG!ŒRþÌc9kD!ªû–E3Â?gQ–ø$i#[ož4µëïYÔ÷½W$ÿqšµý=‹ú{’d >i²yå(¬á(maGY¾´ŒßÞ “–ê·H.0zá(…„ B¾ë‚_R•Œ½h|G.ŒÏx-+O ”øÖxÚjÁ˜>pp%É~²S-ô{õAŒ<Ea Gi ë<Ü*æšÉa:D¾¢Ø~¨ÓYg‘­5pÐ÷Î×sVü’„+6iCN1ðt{Å”5Öù3 }uq¸½ba Ç( fQ[¡ž¤CPrg¬ªq:àÉø[$g綪Ÿê rk[µ£„AXgà >°ÆzÛiÁ˜>t5 Ë\¦…þ¬>ˆq £(¬á(ma‡êH6þ}‘âé:òÈsFôí¿¯%ßxœ¯D…ïŽô<ÿßF‚hbüïßUòýû«cú@ %äzI z”§bä* kdܲ°Î£ò`í¬"ðŸƒtÓñÛ”ÜJäÉ娑MÚ2# ð¨’þ iZH¼éø-%äÇMÛ¹ºØ|—AXÃAÊÀ: W‘0µgŽjªq±Šùû¿ÒÝVÒ’<{ßÿ7µ.ýþ­ÐБcüÏ_U‚ôÌÅ‚1}àû É…f‘Ó‚xMÓG2ŸfÖp”¶°Î£^jrÂ]mSBqü¸WíïDNiìP¿»e2¸ƒ™¹£=!f;ŠS©Ãi^SÕÑóƒ¶Î}µÅúåÆîéÞ ŠÎ×èõguɉգ©ÐŽ(¤‹{›&úë°›ll(‘÷ßÙ²76”OÂxF/ì6ÎHz™ã:n 6ÞÚhøþ°7¼ìâžLŧñküzÛ²ñ¸ˆW}cËçâõ\ºÔ³d¨^<ßÐYí z†-¹°±ŸÎsõqÎçð^%3J[Xç1+F°:E¥L!gĽ£ºrKÙÜJ‰my ‡ÈIÐ žø%ƒA‘|WöÇb!1}`÷ I´±Þ¦…v¯>ˆßόŽÒÖyT*Ýû™#8Ñ î}jM‘ælà 4zÃÅY¶núN+ý¶HúÓöÅBbúˆ–D9ëý3-èÞ(}äÅRFa G) æ¡Ó f–àmŽ¿ø<`¦:uŸ‡éúñEyxO‘ãH¬ÕþÈË«ŒéC_gHt±Çfß~ÿÆq <Ú­hô{µ`Lï§H@89-ìÇêƒøýÌ(¤1㦅?ó¨Môt%Šë‹yù8\`Ùž%½q§x«CýÓ¸¥#1¶]w•  p± ,ïgJ¾Ï4fÜÓB4ת>„u7ÊŒni8n[XçQÿÂOmå> äfzËo‘¨ ð·IèrycQíB@ MŒso†LÑW Æôñ~¦$2\bf dzú ÆI¹¢°†£´…u>r+lœbºˆÍ$(ONÐŽüVÉÍDõmˆFåĪûT^²02CvžXƒëÓBâMá§ä@ñ´°_«bìG•Ì(maG¥öÐI¹OçwÀ‰fâ3ûR D† HqWÃcst|+±?mk ãïg 6’âæø¸¹)öCÎõ¡óØ%òÿ*ÅÔŠbG#»¯/±5Zpaýù…è{D36WØ•|ç[!ŽMÊpAš} ÐYÌáßgMµOˆ«ì»2:_¢¯}ôìå½AþÒÐn~cm‘ð.e#ýÏÒmÎ\Wb,n®*ù®~öÕBâM=SÒÙ0-´kõÑ.ûpÖp”¶°ÎC?TRü]Îùâ¶îÄ)“½Œµ0‹Š0””qe&#Ý$îÇü8ʪæ`C§zƒävŽe"—M;Ï+=ócÇűKÔN§O#6rצ^—ßVÐæÝ,*ÿ‚¢n#ÁqÏÞÝÁ£'ü²P‘˜;1 ËÅû)’ý¥e!\W¨ÊÛH’,…ŒšþÌ¢ÒGñÎÎdh·ê%·NJ‡)iäª ¢2T364±—zÁÚl15(¥…Äôñ~Rr>hsŸÎû^|¿ŸŒ"5¥-ü™‡‹â%£ndjÞ-DPCýƒÜ ‚Ž{ÁiWíà¡~gg± _ÖhnÏü\ä 9Üö ;Cp²Ÿ9|;ó›:ý¦{}žárô½Y…Z&)å©EG˜K¹³Úå¤ íQ3Õ câþ‚½J„µÁž„&ñŒ´Pðæ]Ž%YÈÓÂy­>Ní¤fÖp”´ðwnØŠ<RGé‘g> Š‹~–¦I0ð2F»:2}_Þï_òœûü<ŠNêpcØ?Sàç–ÇÇ…M±ø~¦}îðò±·/ögÆYÚµ$ÜÐdäû„~DÅ™’ƒdúA€z¢±äΤÀŽ®%ÆñŒÜ79¥Æ>V Æô–n=-ôcõAü~fÖȸea‡ÎÓîùtÊÔ=sšeê·HÈ3Õã›ñt¬€—j /ߎ«Jzž-Œ“95%cˆÒXÂWõA#…5¥-¬óp¶HÞsø’=ʶ#¿<øNQŠ7%ûƃæ‚B°€D¶ÚsoÇ7-v«­h<ÇjÁ˜>b„%OÓB4è>ˆqÙ«dFi ë<|øõaã©8WNXÝ|7»]dÁ) ÚóXÄœ(é z¤]'Pc¤ }kÞÏ”l'Y7dáû8^|+O£Hf”²ðgzZmÇÜý|㡸ákñý*º›ìh€.¤øª¢£Aô ?/CÜìÜE€oUmëïg 6T¾Îá‘ÎXÌê÷úÜÁyø}]RÈÏíäâ¿Í¢÷ÍÄ)¹IÐÕ:Š„@!pVüé@PM…s[ $v×â”t¼‡Ò@»VÍM‹3k8FXg¡ÝŽúæ¹+$·é],.ì™!;Å8}Žb_ ïüwû|%§ËÉú‘D2ñyT—ÕáÂ›î§ ï“»ZŽÝM±N¨ûé{ŸŸ;V/±W óÆÜ—·8¯Dñf«ã.n‹)i8SœZ_}´nŽÂŽÒÖy”!딢gȱv Ò6KIÇÙ äêÂp¼Žû³'~Ù?à9ŠFß ‰›ÏóSün?Ó€úx¥‹ìô•AH#ƒ¤?³ÐlÕ ¤IÞàá1í&ƒ¿E{ÍXe“{ÞmÛÍwKimíMö©ð·i18;Z$ÖÑÙP‚³ºzFÿâ§J2Fø3 ­Œù5.gÙ)šÝx~«„G9Aゲê~¨p}T¬Çj”*¤Æh«…ÄÙÈ’­g †^ÑçâcÌ@Š"5²Ãµ,¬óp#³Srï“52ºÿNÉ¥X¼‘‡öŒÒO`[cÁ8ªd©‹aùx?Sò‰þR²pD1hñ!Œ#£H Çm ë<þß5•}Ïû¬”<ÚC±Y xmtsÔöÄ/‹›‹¤ol§f ç}–%Ñ’mÿ™ÚX}´‘;=Ea GI çQ»\{¡³C̔<Ì‹ôÎl…9c,êVöU‘àP±Ø-`Rßý'-´çZ|ÇE‘ŽÒÖyÔL¶m¹è‰DeÜ)§V)¹°þê‘»£â”´ãê¨8n.tLë^-Ÿ¦¿M‰ÒLÒÂÑVÄ1ÂQXÃQÚÂ:}¥™ÿįô#>1çÅJgjµ%¤Y''–°ôƒÌ/5F¢ôQ% -&磖Dª’¯eáê«bÑÄ# k8J[XçQ¿ÒÇ£„c¾~Ió1"G™o_ ¢Cp¼ wæ€Faµ?¼ _&&O˜5êhCXÇ{ׂ¦V@Of±Vó€8ÞÛ3Ö½Ëð5úå„dINU òlÇPçÀ”Üì8ì=·^yx¯ì;7‘Ä/ùƒî¢pÜ«cºPú,$ß? »×ÑÀ÷jñ@ü~f ÖpŒ6°ÎbYdàf`ðW‹s¼cî|cë‚·÷ã} ÎréÈAðãX+-Ç&Ô¶d ¸o™Ã±­IëÚõ¤o}ª¸<¶†]·<¤X1çHЙ ’œ™‹ä»$:@ÏöCQNÝ+¾O¶Šqo€©p«cºˆ–l µ+¢ô Œƒ«V%3FXgQOÝ.üIO—Ì>;ü­‘ ¸H”só{( bOäõŒŠ±q'1[jýX˜¸‘¥7%Qðº¡éÉޮŇ0²ž*É(máÏŽ5ÑçŒÉÁXŒœso¦ ø]†ç+ÇÝa»éfY"SxÿJÖ¶¨.QžMAÊÎS0‘‚Ûù©IfN"Pì£ü…ý2™.üü™9¥Ã/®0d ÍŒz£_Àûª]ó–ÿýR‚Tµ^úG´®åïáÛ¼T—HõßO• F\;â÷3›wõÎÕ·Þë,€[$®:Ìhk5ìv么;Љx]†»AþÑñÉÞ ¯Ê¿Çü»V· ýø` „ïï¬~¶M=D˜Ùê,ÝEí½÷zsa¬ ©ß®ñ×è4ç 8jü.Ȩàmy#Â ŠŽ¯Y©'N ŒôœÈû>"–e£ÇsDqeBc•¿dþF†Ë,qž»Ël#j$#ôÔPûÞå¨á^¸Dö[öqèx€µè†Ù"I[˜è[Ä;DÚrÂß±Lã§…™¬3Öéh)èL3C–¸î]ƒe¶BÂp†ÒÀóÅlÃ'Ù —p/­a‡ã§Þy:/Nz³#î f, &Öò ^ùíñ¡ºÐÁ=ÏÜÌ€üû}íÕ-C?æa8þÉꈢ2ÕSŒâjÞwïT{ëýê`ݱìzj'œà(Á̧Fâ†åBÊÉÆ˜‚o VìE†]ûá-ŽK¼Ù4HVrÏ ‚¯15„«Äچ䨡^d‰ì·4ìãXS½6Ü~™hY˜{߃„ã<'ò¾97#k>ð¦açˆ}¹È_ÆÖ|ÚR¢Ý›‹Íaž©ŒÒœ jÛ›¨Žóœp ÷ÑöQèù2ó™ : ÝpÃ#?VLäDÆîLØ›çáóq¦Œóͱ"5|Þ6–Ùji7r[Cƒù|¶A vB²RðgZt2âqupÍŽ“tÜ€2èÊDè7Ñ餸d5^@I†Yu¬È;;¶]Cʇ^ÌD*½ëSƒ¢¤eG-{¡ÙKiø3Ž•«VéJÎ-3üƒÓ‘?}©)ä¼x©)ãÉu5]9Ò¸"[¤±"%|ÒV )÷'o5ÝjJCë{”±qS/\"û]t­Ù÷6œÔ–w_І 7²ÇÁh± ß%xJúJ6ò—ߌ‚nsl|¢³#µO) äšÈà¿VÛ¡ûš-Hþ~²YB}Lû(ô2—¹£ê:ò¾Oœ)'îÁÌ\y`Â,pѪ Mwʽs¤ŒÕµ"5Rý-¦Ì6°£‚<5© º5!*v"K¸“R°Â”5Äa„1Îfd¸‚áqq~ä:9otx<´`M!Ÿð»³óÈ»©‹eYâ:w –g"R#ãÌ6)göÂ%ÜKkØÇamµ¡ª8ïÚÃY@éÑä}§®‹æ•pÝf%-Wç*ÃVŹ'KÔcÓò’”ÝH¡yJ ˜ }6‘IÙ³*1»]h¿*{ x¼<úá!—.V8V¼]½˜¢y"ïtG/Vú‡·ã`%ç⤶çët‰Öw –ÙÆ÷3‘ÁÈ«ÖÁˆÖ6$à YWdöÒöqøú€þ«çϤÁŠ€‰½0ÉãïDªÂºDR¥ ö ˜‘t ))ã]c$ê,qÖ]ƒä’©%¹Iœ·†Â4ÙFÉÔ’îE–p¿­a‡,Vx¶ôÆîÏ j“Ñ9tcm@¹TcˆeÿT.U,)â®-¤ku‰Tÿý$Ðé¯àÚ½mÚ)¦æ]@½sõ­÷K8`†ÍkÛÂ`=ýîʪÈÃÔ¥Íæ‡Ùzàþ<åØÊ6R·³D˜`V –oŸá ÃN ãØÛ 5Ü —p/­a‡.ýè Æ=Æ)Ç¿KYÛÛ¡B¹áæ©è¥žy”Xæ)‡ÞSVä•a­šR>C(‘ÊC\jˆmñÚå¨á^¸„{i û84QÅHŠ2 LТXý?>¬ÈàPâú0ö¢…׉%Å/ÓH”²hÏVßbõß@e⥬^ƦŸâ÷3;àêŸëoý×î4‘Ö×Èn‘íúy¸Tðv3‘p›áü1â—k‘•A›Ç‰–ä8¤¼OaAjL›Ël5„¼O#âú¥†«îmP†KŠzáî¥5ìãXó°#ÈŽœLt:м‘‚„ÕØ)É›™ »CT‡í¬.%F[ª§p8>µ‘w¿€øÔ®ÞνÊQÃ]p ÷ÏöØ;†úÀra¯‹qÚ(ÀŽö» ‘R,î#¾xܾ ##¶K,ã’cY¸ÛŠ ã¦Á²­w‰³|l>¤¡Ò’–mÔ´Þ¹Y½´†}>ÅÉ€+®^æÖÚ®˜Š[e#áR·¤ðÈD¢g¤ŒŒ€×Š,ÉO©Àâ)ÂD˜va*èuo¢W7‘¹MUÂ}´†}2=bvbÐÜ[®RÁ·ˆ”Gþý]X:‡’:D#‹jÅ¿–Ñ—kEœqj°Ì6f’Å~ÙY¥©g”¿ŸÙ —p/­a‡æ*¾Ï ï·¬¹Q[ÜU<ŠÉ"$ §Š¼Öh££?ŒÕ%elc_5—xž]e6!· m0Cž5({¶‘ ÛÝ p­`…f*òøàxÒíÝy’zÕ¯úæº1‹yDïl e‰Ùáq†ºƒyÚK¤|ØÖÚ/¦ŸÀÙyÉéêôvQÁEÕ¼þîιúÖûÕœüÀç¤j’ŠØðX]åëMàF0åë8"I4ų™"nîR\à[u‹‡Rõêò“Õã^Ñ/÷|}²w®¾õÞ>¤îÕÕç¢âÞ÷³Kì²WûîwÁG,áwYO‘.PCwhzUr!Mx"§»TÐÆÞeìAΙ}´‚}šˆ›×¦}a|„Ø@ Y&H¤7e:p;ú¾-ƒ2|,–cçZx!•%ê¹)°˜Ëf"u0޾Ô²7A9j¸*‘}”†?£X#Ó“wëä—ÝãÁ/ë`Q‰tì¿j¸¢vÈ ìªEŽëÕȽÚg‰àW­RÎ`Q‰T:•¥…‚Ê62XTöÂ%ÜKiø3Ž5°î€ÌíRH®ðô  `"y×G‰:¤·ÃV:eÜ8"ýÒ,q^»Ël5ŒÐ>l qY¿¶!gþ"K¿¥a‡–Zb±g³×"’"®¾F)‘ ¥,7òŠ'™÷ñ”qßÞV¤Æ´*°È¢B" (imœ[’£†¯ì]"{- û(ÖÔ/›Ã¹‰ïÁ¬¾–ößDzܳްívx_–Âü@ä&Ë0+R"¦üª@²›@ !7øµÖЂ°´a&ÙèDÈ^KÁŸQ¬'½Ìr‹×ê¬Ìjuðe6Ò¸OÄRwTÞâÕe•qEÏ]^–¸Ï]ƒe¶+z!U¯¦5Dµ ʸm+2{i û8ôõ^Ü2â Tl¡¹a5¢\LdÀ:‹À¸sd„ íºî%E&ÈJW™,³ïgA —Ô dÕåïgöÂ%²ßÒ°cÑ"'Œ[n á8ž®pYF‚b ~?°™‰ €!oòEþÎw"K\m× YmøyÁe‚BÖ0âBwiC2ý¶†}k𡼠a‰{ÔþÉ´½¼Bpñó¥FÐ…8_Kþ’Ö¾ 5‚Ñm,w³^Ñ{jhuoƒrÔp/\½´†}¦’#úÛÆ%à=8 M„‡Œ©@Jº «FºD9¥7ñÁ=K‰0ž¯,³ïgAp…35´¶·A9j¸.‘ý–†}k[º,‡I~TL3#Ù]Ês0 îYx[Õjʘ<ÛŠà¶nÓ`ùJnˆg\]¹®’À[ygÎÙºþîΡîÒqÓž°]×ÑϘ¹uÄAù]€ˆõ1%" ä…çÂ)~ÓµÍ?Ç °Ö¶¬¸+ Äb\\»EŠ®©œb”Vãþ»úæÊ[ß×Ü/•T6æ)4ÎñjÓTaÀ¨Â+ÅQ„*RGCÀ±½¥XbÖØ*Z†fÙ ÖꬌeÕŠ½n«Ñ&fëZoë±/p×Á,ˆÚ-E:Ø£3C ÓøL„­"l„>DÈêïïö”ÃŒa‹'RÏR6 S>”Æ'²¦†ˆ.³¶Aùû™½p ÷RþŒC‡;̳J€(»DðÒ*öï‚(«ü¹“±kü¢9»Æz_K‰³í,›>‘ƒ+­á›ùÒ†äï'{‘%ÜKkØÇaÎæDžo¬1²|9tG;¬iø„ºbσa—ùËÐνÌáS½j˜ò¡;ÚDÞ7nX¥¼¥ ËšdöRþŒc ©ô(ìŸpP¢.Üþq ü» ‘àæõX©´D`™ o-rX9Éùœ%È,³ ]û çãp ±†«ìmPþ~f/\½´†}래¤§vØa¸wíáºõ;‘ªß.ìb®¬AHºRç)>¸,P+‚ôª¾D5€¾`(»¬ &ýe˜;ŸY »,†°F>f ”¦ÀìïR„MF&c^¹DªB‚\4Ã0€à±hö”áþ~­H%rÓ`™màÝ¢Ï"<õÚ†d¬;ìE–p/­aÇ:_U†zv4Þ:Çɘ…!çG«ÀJÍÀG]eð®±”(cÓ2ÛÐÒ„œ©!8!k”uÀ[ÙKiø3ÍW¸äB$z¿ÌñÃ!Ýb¹9ËH½´Ÿ¸˜(©ÕÌÆ¹È_FŒ˜zYâyv –Ùj9¸©‚£íMœËp‰ì6ì£X™OÌaÔ3þòjÄE=ã—PgËøs2¬PaììYA(}Éîæ_˽ԵHÕ(LùFEUÔ{S1%ø ±]ÙKTÝû¼ŒÌæ+öȆ=h-žÈ ‡|J™úA¦ \Ï,2ìÖ…×+.qÝ»ËlCi´hÊÆUÀÔ.\k”±ã:WdöÒöqè &Ôsª£ÑÜ÷ËW#wâ»z!,ü„Ápe®4Ê8P¾¨åïŎ®‚£hˆÜÈ«^ ‹ÄÔkQÊçZTåµÇ[òRš†œªƒ‘*ÎH6qáAyÅÉ,<ú=˜ÎÁ—<Δq¯tÑØ%ZÛ5XfÚ6‘6­á{”º½p ÷Òöq¬¡çñMjÿ—õˆ L¾ïï‚äý~c\á¼ÿ/«lõ†¿_»ˇͽã75ñ@—6$óª­ÈÒoiØÇ¡K ]Ûuf𯘚ãj·dô/ G`kãRwÜðä‡17&{É_»ÆRâ:w –ÙÆ÷3‘“[ŽÔpÖ½ ÊßÏì…K¸—Ö°Ã&X˜£H¡gÞï·‚áÍY/šÔŒÜ "YxÐ —Ó¸˜‚ŸÒ•2 deE3hÓò!Z¥‘ð)­¨A ƒSY¶!{hö"K¨—©aÇj€ E\ã 7À»é2 ãMd IW­ŒÒ^UØŽEô‘ÖR{u„ÐhK‰Há³j°Ì6¢†‘÷¹蔆³ìmP†]½p ÷ÒöqèP‹ÃŽÎx “‘Àå|e~ŒD.$?}OO5²ž<ó-2Î_wØEf‰ðƒZ5Xf8 2Kÿ™âåÏ6šcôg/\½´†}«Í”'€*?™ëª<¢>Å”DQ!òšõÂÍÜõÇXeܵžˆb–%ž²kH¹èÄ–ÈM¯Zk(ãÚÚŒûÙgEf/­a‡Lˆ³šã'Ì ]Ù 4dt_#Þgpñ§Ÿ"Ÿîücï[U‹P­ç  p÷Ⱥdz)†¨G:Ù-×Ýú-›ðpŒòÕ&\É­©åCÍ$Âø&Aèw¦! 1¹4=å/ãi-ù9«†”‹b{%Rp}55coƒò÷3{áî¥5ìã°'9Þ`溗ñ•bNG(~åŒH‘aêõªª ¥wfk8М%éŒPž¥Ä>èÔrz˜éUy)¤¡{-=LÜ —p/­a‡)Mˆc‡Šq;¸ƒêŽÿ­í"wv3ÕìY¨bLu2©d±ñ›@l ·ê)C?wF¹pý÷õ^õCÔÆíëïÙ_Vßû?Ó¨õt«fÔr&©8Óc1‘!@_9ꃷÚAP†Ço:,ƉyAöhUr:,&«¦©AîˆÙF:,º.à>JÁŸQ¬ž#d3é2¶6dFjˆ=$2ŠÀR5ò1k,¯Þ×êóΡî2ÿ^ï­ºDªGq¸¸ÍÚ¼·MíñSªyÈî²úÞû5wšRÝË„§á†>3ƒ)äĆ-¡ûªò~G £)Ë¢ˆÐ}*¥UCʇ3ƒé}.¬!Õ¯mH–EqA²—Öðg¢Tæj³ä;9wÚõq¾“±S6‚™•¼$Ò—MùËt'Ͻ”`hîT Q-Èþ Dy­àˆëÆ¥ ÉßOv"K¸×÷Ì~²µÁ¸p§&WÚã“©CÃyŽcq°@sxY!.l˜ÞoxaY„} nZ³¼¸fuŠRòne@Wu\Lý¿·ŸWw]}ëýêÙK]wÅ‘\0Ü@Ú£€›‰(Àzx©E·ÞJ™´È_¦e:ÚR"œ‘V –Ùja€õÔ ÙFõÌ^¨Äì75üǼŽ×®c‰áÞöá@Äœ–‰4Ò+Ž®_o'y×URØÃÇRâ»Ë5“)J f åØÛ(™œÀ½p ÷Òöq¬ì4FV¸gx»^JÄSd€2rÇDÿXúýwæÿ8Ë*+Ö/ös.YêW )Îb$&ãò35”soƒ²¼tdöÒöqh­¥çLäN…”£ÈЇ4zLäfìèÂ@Ûí9q‡ÿž¹L2“úŠÔ¹iHÙ©0’O ×µ·q9ùOöÂ%ÜKkØÇ±„C¾ét+_ ǰv2AÙïŠ ÒGE4±O¨Â†´Èr:;êRB^©!åbO#ñÊÛï#4D(¯µ ÊX¹î™½´†} IvGs­æ Þ\`òiX8ùf†º,‹èú`u8ûV_"õèC â]#V„ªŸmÓOQFtÀÔ?×ßú¿~n9ʆ‡ ­QFøQ¯üàõ‰L9PÏ’ò—ñ$Q6 –ÙÆ÷3¥ÆI qñ±¶A9j¸.á^ZÃ>g{ò¾²j±eD:42R‹6c$ÝtUʸ¯,+Êà¦Á2Û@ !ï3Ʀ5ô{oƒ²îÑ —p/­a‡#?Ÿ?&—ßáÅ}X·Áú@°¤py‚”ìGô+ÓAMQ·qÁ¦Ê>b©.‘êu¹3hM/ãÇÕ[Äú-âng,À쮪o½_ã[ÓPáÇ18ãf"êh¬èˆMÎaÄmU=SŽýz?V䕯]åêDØYk‹Û9Xu" d¯¥`…cë/Ù¸Þ£ôŽ6ˆ©KªV"m7*÷„LweW~˰?ÅlxןYÛ•? Bwp×>û®þ4,;àÙ_)Øû¯çÊH± 4cŽpø¦`¿ÛhzJàÆãTq`S?¬ðô3£oW»\þ½ž[m‹Ðþý$p<är»úqß«zŠQ^Íëïï½_3 èÈÓž<òÀÛb Œî»õ°¦Äqã,Ühß$ð¡ü•c͵”—–Uƒe¶a§ ¤ã¤†«ïmPÖ¡½p‰ì·4ìã°EñúQÂwÇÉ’žÂAáf$ƒDn°GÆ@´Ð^„çªá÷ Kå˜ ßq-H_›†”F¶˜H¼œ ßIC¼Œ×Òå¨á^¸„{i û8ÉàúqˆF9~\–}»óRÏȸUë”=û†+Ï»±ET1Ë -+òÊc×`™m †8ûL ¦5Ûp¸­Ù —È~KÃ>Ž5RnßRÜ„ûjÌdÁ·`R¸¯?ÄçÇWz0SR”ÃlܶøïwÛk[v°ïND'œõ~{êw´o7¯?»s®½õ~]u˜¹Hž@—. Þ÷èb ÇÛü!ÃÝç·2IQ'—¬ß ƒnã6êBµe4á0ê4R«z ¢\Mäl ]ãêýÚ Œ[þ±"³Ö°À‘T1ã  °A7•!<}ø„¼/[¹™+Cvv†´ê#eìpO]q©DW<k°Ì6𘄠¥ì’†2œ²‹mHþ~²Y½´†}sÀkZÚ¸… óµË7‘ïICõò½Êøj/Üg‰§í,³ïg"ç%ò¥4œÇÞåïJàU ÷Òöqx’zòéšâ søQî—DâÊÏæP\c¸É½ò½Êøj/å‰P‰«í,³ |µ-#G^ÔðN±[”ñ>+²ô[öq˜‚gŸ Èõ©” M ‘Oêw"ƒ¥jÄ.;ÞŽÁ8ö'eøK+òÊ×®A²Ú@ !‘Ï<|p¥ábü«lC2ÎÍìE–p¿­a‡Moó~¦˜ÀÃ{ùÑö‘HQB÷³t~K¼ÎyNY›Á©q¹i¬6Pö‘©áPBw·!ŽèìE–È~KÃ>Žu;ÅK½ ¥úTÒSÃY ±raÌÊW†lÅqýzÄ0®”á ×Wä]€ËªaÊl#j$‚SÀÔPûÞe8ö©D–~CÃßq¬±HèìfÂûQÂíLIB¸q^!£/ÑÈR"€æqÙ@½pPgu‹ÎÞ‘óêÎêLÿ‘ú$Û÷ßÕ;Uß{¿†ßçŠ{+ÛÀÄX1+«‘ˆ”ñ0lCü çýðZ•Y2,Ñ [¸Y¢×]ƒåq:A‘?Ò¦†ëØÛ¸·á^¸„{i û8t+‚ŸÜ®‘ oäŠ-}^x<œg"Xþ¹V‘µr‘¿œÌï{)ÑË®Á2ÛРdpžI á<¼¶Aùû™½p ÷Òöq¬ì»‹FÅ~«Ï0·Ì4‰<È* _wo‘,îÈ 2m(£Ý+ò§ï,³ ØLú©!6Äk’åqï-3Jd¿¥a‡ŒWšŸ¯ÓĽ)cCÈ«½™ðø‚•1ÊyQ|ÛkÐBd]ò„ؽ>¥ÜŒ¹ò(bàý¤,Ç€»ÏÊÝ—Rn¶&Rq¹<5”goƒ2¶¤ê…K¸—ְáS`^:úÏ’Ì2­…½õýúÅÀ†H=WC&©ÜRT"Îòäß‘ n©ž2ô‹"Ià`~'×gÕU?D%·ŸÀÒßC‰ê¦?ã3?Ø*z?1ä\Ñ.ÚXŒÄ®þáLά±ÉÊYRÆDÙW¤ÑpÓ`ùN‹‰‘wÁ¹pa/ :HdyÔÈ^¸„{i û8tPÅeÖ‹'ƒ²Áåþf8÷L¤ƒÅ€7²FÝôñdRkËx´÷Š”`®RnÍ~¤FªüH­¡<{E!¸f/T"{) Æaù;/×w·u²G"L =äypóUƒÔ»“óÀ¼^#fðG$ã|¬H oÐMƒå[kÉ‚ðà` ‘lmCrÔP/²Dö[öqÈŠvzåIïqL‘ r='÷‰DÚx&)#¬9*ÜÇ*#ˆë½üùé{uÉj@™Ò0V«—»lÚ%c¡­+2{ìêûlé¿~2’¯¯'oÜ…¼›žü] hk†4ƒö+å/³.H ÓÖª!åšY˜Èä–JÙÛ(Μ½p ÷RþŒC¦I˜7Ú´ZÀóÌ~òn&ͽ.¸&ÐþG _Æfàýùî[U‰Ãîñ.&ÌÍê×±h¿ìÏ–ý7õÊU·^Ï|K Þk&lÞm2žü.È…ËÌzÜY¸YTj¬ê‹ —þ‹QÐU"8,«†”Ù¬HBÞ¹,Bݤ†^ö6(Gî…K¸—Ö°cMù7èÈfsw=xqŒ'’HP—é#Ž\Îb6‡ÿvØzîä>‡‡÷‚ 7ýªÀ"[À5ªÑ?¦‚þѳ ÊrG'\Â}´†}²ÇÜ9-å}UEÆÇ÷x¤lö \´ÀVx³2˜±¾!K¥DläÆÀûj«nùtJ{qyþ3«÷º©ïJ¯—Íëïîjo½_}Mõd° (FZ«·È¢‰4xžÕÂøZÃGµðú ×ÉñJ^uEj˜H6 –ÙjazŽÔPÚÞå¨á^¸Dö[öq¬ÄŽ{¬"±r#ö3ÿ.s#S Â5VĉFìs)éE¿ ¸ˆÙ4Xfºé!Rþqþ¤‚–‰¥ ÉßOv"Kd·©`…ÍO# †>DX¾‡qîÂÑäwAÂ@{1¦`—+Ò(Œû×KÊ_…+K ŇN –ÙÆ÷3‘ÚáÞ’ÊØÛ üýÌ^¸„{i û8Ö‹ áo=ßp7~*F["ÛA£BÃû`šŽƒ9E%ÇËVp¥”ʳ)Hù2á?‘s`mgÙ[8Í÷Ï>¨DöQ þŒbËO#v»v­2Ñp¤ –¥ˆr˜@ôw÷PÕ÷!8@Ûõc+y× H'‚½‡0}üv¡‰+h·ÇP0ÁÂ`[GMùËÉmA|雦|(N" ©üXƒ Î6,?îÅ,á^JßqØ…d¸o>D¾i>h-¢ ]L’&¤ð†*bÂ`¯®ûðÙ¿pê’ '¿f‰w™Ü4Xf0/‰°÷H( °pmC2.‰”%Ï%ÔËÔ°cMÜržm¹ãê'|hZ¸1Ü`"×AÉ…ˆ-2WƒD¥)dôYJÜ÷®Á2Ûø~&Ò!pjˆ|£k”£†{áî¥5ìãXöT7¼2GZg ©Ñ/èK à·OàÅ…+8ƒKG˜)Šp( €àá[uËÐÿýL€®àY=v*‹zˆº>Cóú»{§Ú[ï×|ªM÷ÎIßoNTbãRÞú£Kygd‰ñcËäå¿37ð¬n™ŒïÃù;«ÆË¾¨†…Ý´þîž¡îÒëŠÅË­7]¤ˆã©éwE½=¤U-=]Ä Éxÿ w–u#5¤\üþ‰äux§¥!è¼k”ñ³¨.á^ZÃ>Ž%Âs{ÞÄ5õ²™Už¼ÿ ž\ÄdŸ§Ìî*e9gÂH_–¿‡½k©.‘êaÈ Ðá)kG€«E;EõCó. Þ¹úÖ{GPÁ)o¬èìE9[s þ.È@~ñ  wDa?Šo¡èïKØs)îø«Ël5„DÊÁH!f ïÙÚ 5Ô p­`…¶ˆðábs6“&™"üH>5Réª+²Vßú&¯q‘¿$N"T€JÄ*¹jH™mh%.Ê„q(TjhˆøÙk’¿ŸìE–p/­a‡af”¶rÉ…+ŽÂá”õNüÜ$&‚ˆ‡”Gc̵˜ð[ʘIûŠÔ°’m,³¨‘BÇ¥†0¯mHþ~²Y"û- û8dRä³íæðc–jøú[87¼Ð‰ îé{L^?[¥ö~2{=eÌ•éë]â:v –ÙVI!ÁõŽ9ÆúØÛ  /*õÂ%ÜKkØÇ‹i—Sb½!'qér»L¤2p½n&!Ž75âÅ]«üe„¹Q—OÙ5XfQÃH©?©‘o–6$G õ"K¸—Ö°ÃÖkÞ8'çà}a\_04ƒ€v\Œö,‚WØ È_€¿˜Ä/ï¯Çòw’”³:E©×ŲBZ?ãǵcÀ‹v‰¸ú`óYÀÝUõ­÷ž¥b|Gæ~ä\Q¸‡:$B?ïA,*dœ­jÌú‹,«I­K‰³î,³¨ad0ÒYj¸ž½ Êp‚;VdöÒöqøÊ’É8¯Ÿl<|+¬£>Ê&¢ï?Ø22ªõ¼yJ¾}” ßËÑ–£åÙ~¬òðQ6‘Øà[‘†óÞÛ8}”Í^¸„{i û8ô„é-ƒ½ÅÐ]^ä±g,xWÿZìˆV#ø1·¦|)#úñcꈅgù{ÄÌÊšcUP¬|]¯ŒMoq ŠlØÐ+W^z¬-§"F+¾\£2»T³Õ?í¾ÂVä3¢´”¿ ;± 9õ§ËÍæÿDá+5Ôco£ú {áî¥5ìã°‡ôøaF€é¹Wm®|prüH¸"…O\¦oÁ9ølU@%ã=+RÕ Ym`Îrã|šâ]_ÛŒ¯ƒ½Èî·5ìãð¦;(zú‹âסñÑÄIòΤ乘”)Ÿo Oý–‹üe&¥Ñ—mì,³ïgA¸[C—]ÎmHþ~²Y"û- û8œ‚Ón¨ EgtvöiLì—ÈuàH  ®÷œ8çu?eÜ:¨DX‘V –Õ† U@bkø“ ÎñlMHþ~²YÂÝ–‚}Ë1½ W°l¨%òC1âó<2²A¶®Ý``ǹ£k÷*£ïœ%âÚeÕ0åײF˜Çkj +Èlƒ2~ÑcEf/¥áÏ8¦cµ™²ñ¨MF¼7ßlMdÀ•t\¦n‰Klòˆîà½(½LÝ¢ç±k°ì{§‰ÄBò3ðâj6á«­Ù —p'¥`…¹Ï·Üþçyà¾ïìrJMä‚å ‘Y:ä[™ îUþ2ó<•\"²·¯,³ïg"÷ŒSCÜl­mPþ~f/\½´†}‹ƒ³F‰‰U"QÚg—ˆyÁÄ~F"dK¼Ï޼펨xs:bÉI–Ç‚àmÜ4Xf¨!äýÞ{ý™"ŽÆÚe$R/\½´†}>ÏO’¸|‡I…ûØrë“HGpöI¶Ã„í;HuÚÆzëÇìAÄÚMƒå¼õI$îlÆÏÔ ;l#o}².á^ZÃ>Ý `~†—u•]1<â,G †ÑLd\ô]+üicÑŒ+ºØÑ,rlÛO–h÷®Á2Ûø~ÞQSRÍ6NgÃÌ^¸Dö[öql©LÄ>óÈ¥ê$[i"9ó!sdÎ9+o(ÀÁjÊ÷‰¥ÐU"®8V)WåHÄÝ?SCl×6(ë¤-ÜG)ø3 [É‘gª;uOó`k¼Ó:²åý.H?¸/íàw´‡ùòjDþXd[>Ÿ¥„’ƤË™£/‘ ÷¶Ÿ©!6Æk”¿ŸÙ —p/­aÇz©ÇÕ§¸>á‰Q·¯W€.\œùeò@º|ºïLþY€a¹²ºÄùá Ð]kV÷W)ýó³Uûþ»zçê[ï×t«ôŸ¹äNrœtÓ¿ºÏ$€Ðæ5ìÁý¦qxÓÈ%b\¢FÂ×6ÿù^×ê)—ÈF@ãžõƒ»è¯—ô»}ýÝÝsõ­ÿz}{ùqÚ¡.r\†Ã[àýÕäÁhdàŠ†ñ£E¦â±ÊØ1 \–¨ç®Á2Ûø~&&`쿤!} ÕÆâ%YWdöRþŒc ¤H2§‰=0ôôàÃq{‘Hk$¤ $MA´~PZnD˜µ ÷ÿ²"¯í/0Aqé{ŽÝ¬­¾` ŽÛÚÕäß—Ht ^Vê®Eü­p­+Œ¿kæC^‘f Fð ,³ ¸‚ !>ô{o‚2lšìƒ ¸‹ª¿AW0¬Ò?5c£F€.‘¶`8•–=¢4ž Á¼Œqgñ›cóï°u©.±_i¼ ÐnZT»•M;Åïg6ïê«o½×Á~2¼´-NÀÔm!-Ž/ŸH|Rï§DG÷äÀî—Ì¡”¿¼[ÜJ­ R,Ú'2è— ®±7AŸ·:áî£5ì£ð9þÕ|eyŒ ÜCHöwEn„–¾ec(YÐÊp —ákãðµ pöX5LÙák oû¸=”†pYÛ >{‘%ÜKiø3Žõ*„&äKqㆺ"•®¤ /›? ¹8HÝÏ?ôß±‹ EýEö]Ö¡Þ˜éËu®ØØJÛ¥ô×jˆB\göNÞr÷q”#²íb¢›÷ÁÄ}FìÕé°ÒŸÿldÂÕ+e±ípá¦v,,³ ï!›Ij²àÚ†dÇ[¬K‰ì·4ìãÐ≳*Ihzd…ìÔÞÊ¥V‰Ð”€@aöx_P±i)¡`Aj\ÿo,»Lä¸é“k ﻺµAùû™½p ÷Òöqhÿ{Ïëv“ªŸ­wÆËØD"7ÑÍ|´mð¢;®AïØÜ)w^î*Ê¢!e¶ Tˆ²¦¥†wUÜÚ üýÌ^¸„{i û8|°Ï-Quûç»È6ö.-ú¼áË]"?[Gêì¸ý-Õ¢Ü&€'[uËÐå ÔŽÀ1®^îM=Äïg6¯¿»wª½õÞãû' çÜyèWxVŒŸÈ» …‘:oZ#‡ÂLÁ ðR0w0èζ”(÷¦!e¶¡c¸bë?SCÜ£¯mP†N½P‰ì¥4ü‡÷ ý'OæŠV·{aî@#L¶ ÀœSò]È¿xˆÛ3Å/9çxçÓ¶WOù`´â:rieõÈŠ´¨‡ˆ3¿š×ßÝ;ÕÞzï|%§NãäeÁ¸v†n–wíÜŒõìŒÞá;Kçâû²~¾Îç­¿ÇNýZª§L×× D´…çgÖ‡ëìÔ/×ÚÙ¾þîî¹úÖï‹àx‰k¬¦ÈÓás7aœ'˜DC ›0d†@@Fã)™1™ ]¢£;5XfßÏD ÒPO qç·¶Aùû™½p ÷Òöq¬ôØ•‡-¤£Ðe5¢¶qc$ œsÃ9ÈŠ“I"‚®˜"Ž×`§øï‘(q­žòõ8x¶ÂàÙª~ž›úSïM6¯¿gwY{ë½G‰#8âþ”f†Ò`t7&¸ú]Fz€-.>“ƒ‘`‹»Rþ2)Å‚ ‚Ô¦!e§ÕJän i% Êq•mÌ´ZîE–p/­a‡f%æ­ë!æ}íË©4pýIÄÉBcžP.јë#Iø™rt%¢ÕO¤!6ÿT0e6ñýLĹB­á¬{§ƒº¹.à>ZÁ>ŠÕ.:ò¶Ù²ɸKD&›˜ÎÃÁ5œNâûˆ+ÓEÖ¾FU"–Súû*³ïgAJØ¿RC$Zیij"K¿©áÏ8ôxÈòÎ[ä¸V Ç7âKÕÙŽ³0¢w¹Vf%Eåt‰Vv –ûðÅ­ß XC«{-c—».á^æÝBÝÛÈd²4 ›_.ú1GD`î›#Y¹ãvߌîÞa˜½[ʸPê+RÃ6»*°È¢‚‘{¬ ?{”£†;áî£5ì£pœâšöï!'Š‘ƒÞ±­ü€’€„5 )Z±Q­ÂYÄýȨQ ‚¹.Õ-R=Êh÷8«·ºé§sy_€ìªï½ß‚<áB²ŠÓ—dÈ ù~܃+‘Á\¼£3Ê]Äe‰\¼–¦<)ÊVþQ—רXf¨ ä|h“‚³í-P† M}p ÷Ñ öQ¬)-t,™ý×Ôð¨Ç¡éw6Ê·dý¨—¢F4fdÑ! [ÚºüAä\=EÒ0ÕµÛóŒE»Em‡ë9 ¸wª¾÷^¯.œôLǾ€|nz××ð d:0# KþÊ0SFþ¹ÊñzѹÅH vТaÊl#j90w¥†ð$_Û oú±"³—‡f¿}ºÒ€³éq-ò‡Ø´áÈd‰ ¤=­GlúÂFñj,IוüeèÆq/%D÷M –Ù„ bÿ™κ·q:á@öÂ%ÜKkØÇá¼Qç´z¥÷­ÓWi74r3´ÿ]/rœndµ©wë´áQŽU0ˆÉ})Ñï]ƒe¶ñýL$èÁó‘òí?pàmopÜ>ì¹Ãiý=f!}ÒÃ3;,¾QË8ì=+‚£Ü¦!åC©5¹àQ=5ÄõøÚeöÔ —p/­aÇçŠÙ)eô?ÂÅ.ÞzÎT’"äÝɘ²°÷·`€EÄÙ^,âN½u£¿Ò®³¶eÅ,K—ɳvij[´CÄŒÆÆõg÷S•g·,fÆt½äû»–3r^ºLŸH¸™ÀN ÷丌¤‘ r‘¿ô£wL”ˆôs«ˇ.º©¢O¤†zß[’±Ù+’½L û8V ?=Œö¹‹ú¤3H"rçèJ?÷ÈÛ#h&÷“ò—T–QeÓ`9=B‘OGjËG¶‘>!Ù —p/­a‡æb,²´.ÞúZˆZ ÖE'ïÜ1Äfèï©!þÛn‘SÆ:x26‘Kôºk¬6°:) Ö, íî[’1=+²ô[öqø6E’bE{xpé…ó#z%rÜýµ×`-<’‚(Óx µŒ3IÜÅÍõÚXîæâL„v+hçÞå¨à>¨ÄìuahìML.5:ÍPL,t+¬>äQ(éà=•^ˆ%}È­2&ÊsE¬{Õ2Ûø~&$ÚŸ© Þ{5’î„Jd'©àÏ(ÖIúcêô;鎛S  ôƒD†Hµø úýÁ-Ú"ãenèJ–èÇ®A²Úø~&r“È` `Á,mHÆË‘Î\ï©¡½ ÊðSè+2{i û8ì#ƒ-ÒprýQ¸¥®”ÛÅÈ`‚ u.§ ÞDQGš à1,Õ§\?%ŠZ1]»ôM{ár;[°ôÕ·¾¯)d;Ø<:Ñ"ÜAU6ÊDž#.",à|.Þù¾ÅŸâËÎÁÍê¨Å…Œ®‹U¿ÆÞe\}ô™ý³†}kÀ šÊ›’)…(šŠÐaÃ4Y÷ÉXR'ð‘´sç"ÂÐÙ˜ôG¿½ºeèÿ~&‰~fõðXÔCĽàX€Ù;ÕÞz¿FÙ`Ô½Jo5Æp×õ:ÆFâ\Þ%ˆú~é\g—a,‡½ä8GÛ%"ÂtSƒeµñýLäVÐIi(²L»’–i÷"K¸ßÒðgÚQ0À ÅðHäÝhwDóÄ_^ùÁ a=b_Dƒyå±k°Ì6PCˆò¦†qìmPŽî…K¸—Ö°c5c<Ymó*iêE©>&´­aÙ¬^—õ¡ís‘e^-÷RBnÀ©!墈½‰(boj¸ÆÞÆ5܆{áî¥5ìãXC®0tèiÂpe4ˆ`ôÝ”p#p²GÖxU" JÄ`Ev‘)+ª–¥ÄyîRFò£á%ëÏÔp"fêlƒò÷3{áî¥5ìãX·’4Þ '1¤]§õ¡óøD’ƒOU #Ý…W;‹, Çq-%Â…xÕ`™mèî–HaÐrk(}oƒ²X] ²ô[öq¬I8^Rà‘›Ïr8gB"xë^™Ü¶«žÊö§ÍlÍ\}$¼ÎÌS15¤œ¹úŒ0Îuj8ŸkkãôW“½Èî¥5ìãXx¢º(öYuµTàWø» pòº”•xwÂV€|ã”cµ8yåk×`™m †$˜Þ}÷Öå¨á^¸Dö[öq8-'/ƒ~è ÇM剨wÅ+ô» /Y‰o$v/U#Ñ26•¤Ûg‰ˆ³j°\Í{JÄQÕ­¡Ô½bÞSöÂ%ÜKkØÇ¡W~džÊeÓã=l¤Î3kà„¹½vSxN&‘í · 9ÖSdÈ Ø,w§™M$ZÔ°†:ö6ªÓÌf/\B´‚mY÷ü8 X××{Ó§›a9†­ lNý¢éà¡d\õÅhQ0å$X&¢à"©ôÉÙ† –Ù p©àï(–,EO±ÿ*VßS–YÚ~ä®dѰKŸÅ=»È±,‡Uâ®Ku ÔþýLäb®·¬~>{”¿ŸÙ—pÿ¬aÁB|ç9A–ôÆdm²zÿ.Hétâ茦wQxg]åxHîDf‰kì,fÚ‘Ý;5´§nmHÆI¤¯Hö25ìãÐÁG^zœd`·›¹N±x1~h"¾y}÷0ïß—¼Â§üeàåVg‰XV S.Î m„NSƒ²Kg™:{áî¥4üÇ–äÆíµE¼´Å:Hí±áGáÚ×l•Σ'Ýì¦(ëSuý÷HP·V—<‘ÚâÍܵ‘8mj§§ô¾³¯®¾ô]7™K\{ÀÄèäža9ÄjÖ;9Ž7(œ…Hò7µºRDp­¢djVøï7ݱ•`íÜ”š›TxµÊ¿¹®¸õy½Á퀒Ÿ‘Ù¹†p`ü]ð ½ca†u¡ƒâ¹Ñr,í½¯6›ËÅQ 9HqH GÝÛ8µ0{áî¥5ìãX‡’)Û·9búÅÂtp.šâ 1@¬T˜å‰dñKÎt¬.`×&UOñðZ! b¦œÕ#tÆ¢Ÿâ÷“íûïê«o½×¦\ïe|¸ÊµQãhN$6æ7÷/3Üq°BV˜ûNãì+òŽ£lRf©‚¸—SÃûYomPÖ> ½p ÷Òöqh¸oãÇÏ =¦”®ØntœIäAì,¤£x #ÖÒU,2nÊ;ò»DáUSjH™m|?°(N ãØÛ  WÆ{Ef/¥áÏ8¼O‚_TXɧÈ\1\ʧüý,û •}×`™m|?9™ˆknêÞel ÊŠÌ^ZÃ>o•pd¼“ç&8&ï°Wy×?‘Æ|ËŠ÷@Lìék4›-eØÄ˜¹Ï%"gÁª!eïÈ'{öëgjàž~¶á]ÿì…K¸—Òðg+9¯ËÕ2ƒå…´`—Ò$9ƒ@¥¸mŠ ÓqÕÛ唣3Ï. ë¢!e¶ñýLd0ü¦5 çå5Û–7õ"K¸—Òðgº°UÎkF§pyDaé±Éº+ÙyB:V@ðyá²z"¯+Õ.ò—ÁpëRàyv–ÙÄ÷³ ¤Å[A°wÖ(?³.‘½–‚}1Üÿáó~J˜Sö5|kDDñ?ÿ×ÿúó?ýüŸ l{üüߟòóÞÿÿ—ÏñóïÓ^Ó‚ NŠPD-‹ýüÿ/¥&‡ø†RMצ®D–Rqë{×µT"K©ÈÞ®7³T"K©?}]{?K?ÿ{üHÇOüOÿ|þí¿|þ»ÿÔÞÉ ¢l½³Ç¿üo﯂"qÈqnKïœø/¿ŸÿùŸþ¹þ›nÇqþÓ?—÷?jäü«ÿt¼ÿyÞÏ?ü©wþ©þ›ÿå_þÃç¿ÿ—÷Ñ”»0«@̸•ŽÒDzä”*ƒ¿î]*˜@qÞ²•:ß½?k)![)„g-k)![©'ØíçZJÈZÊ}¥ÖÞÿÿüe㘄,\×;CøeßßóÇ¿ù—xß…ø,£þüË~Ñ·` qµÒ#4dpþt¬å# Áó¿¥9âá¿ËýÏ?—F ÿñß./‹;Æ}&ìÖüw5ÊÄHΟ¸<Ša}Gb/ÿùý:ªü稀'Ÿe;ƒZþ}–å}9ßíH¿Þíúü4Ëûiþ·ªþí‡Í„ÓRXkãê]Je¾Ry \úo}g”µ7ÿ%cUuø°“å?ýû©ç¶·¬ñÅ<¬0Þ²v·üƒ›H°sÀ•EœÊ¹„h|Op¸ ¤Ñ]ö]TÆà‚qþÝzwy˜–¥T, /2œ‰€ð‘-H«¼U§ƒ[ ï¡©c~ qUûƒÌRòMšma²Ò@§—Btš‰ ¸ßŸ¬H\'ý ™qCÓAŒ¤š'*Ò+¯ðsܸë¿™å¹ q‘2|·0å&ò0ÿ ÒB‰F Âþ='éùã=cFã.Z"$Ò%ä2è”04ÛÀ?Ö@wq vI ƒ¿ÌÛ¥‹Jz´7Ž(®!é,~˜¸§8”ÚNz/uåFZF H®âä¾ 8º‘: È^ip.¬uÃŒD‡ó4›EžƒyÄxL‚ÐQp´ÀìÙC™ù®JQ,Û•àðE°ÈR*hE.ìÒã>î¾€Tå×}`¢ÒÃÝT\áÊ>1¾°ÌðxÈÅ$ÏàOæÙ8y(=½Ñ0ÎÛA Ù$årŒuÍð‹@š¼Þkx7¹˜¯6Þž$®v 6~9ÅÉw÷Þ‰Tª‰HŽÀž@˜O4voœAòp˜){€ VÒÓ$Ó;swyò Ù¸’¹¨ùæSãôG„†7 ÷ ‚½9ü{øôäùÌM>˜» ì#^—Â÷¤1"òÎ]aæTe®|{øVc‡ CîHM?g‰¬ È3 ·> pÛÒ©§"F'ÕTRÍá nÞu–iú… ~W O¡`' ä”·Ô©—­4°Ä€h™Øk€¤æNVi¤Ô<Øå÷}"]e.œsl½ßt+_!ýt.Ô[_g„p?”tY=<'I–ÙÖ©„åõðš°uèUizT"ƒµÀÆCëà@/Þa—/nÝ£¿³˜·ñÔká4…ílœ½r¢Þý`ó÷“ˆ~õÑé_¶ '_”ZýnAŸ´éBŽ™µîÂßFMßѾ6}wUÑ€»|üxµqµAÚWfP›.–ðgxh!  ñ×|ª~ª¦o5&B+6r*Û¬…ü/(ÂÇôÜ$|3^$2Ê㓯M/[Ì_×µô&æ&þz«üô.õï,D°f,½‰Yåkã1?uCüW-¢ø¸o ]3>S!•­—®Ÿ}"¿¼Ú5­VæRܛ߃ÜÂF|ûâã“IÅ•Qj¢ƒÏC¤gwÔAf±ÝKoè¬uÿ£îÃã €v0ÏÁ,Ò° ã“iD¸ni©õ|—\ëä 3Ÿgúqš>ÍØ•RŸpƒh}Â}¾zV½n:bElÛ£ë=®6äüǵ¾Õ‹fU Èà¬_›f¿únoJßZ>•""»¹£Ï­»ï¤åHMdO)[Sg'ßqvç’ñx;;_Ò¯…ÐT3üV'­!chs‘Éñ.ŽK+G Ñ8uò$€Þ¢€•"2T«)å2Þ×…ŸÞ4[Ž€09¼Oí:øœò)4™ Ÿ•Cøá:¡Ö;,d6ˆlK@Ÿ%·!qªÒ´ÿiïŽÏ¿_:ñ‚¯0×nøS½@÷sÒÆ*½}·æ:µÑ„Ú«§ê­×²@h¨d˜I°n¾“Û%5dò¯l÷£þ™¤mCÀX‹èS¨Þ~X/‚õE?ßS¹®Å2y‰ß³zGJ0BùÀ^œ<ÓDb­8aÁ:ÕŒ`v¡¿5Y_ëá7û].ºúä÷(ô¼¢Ö§Ñ’_8³†Â3GŠo>©rz†cBfý¬çÒ‰hSò<|“ÒB×eo/Œšˆë7Ê…³a‰CI³d¤5ÃÇp ý6 šÏqé9à Ÿ-RÿèÚ—F.T:<ûdÈc©ª–bùÒQFŠ`ê€ ¹ýˆ]Šx|=·>†àˆ‡Á3ôÍ0:zÝjú–ë—¾Õp-ýø[íÚÜ‘ÑØâßËÁ‹îÜ5‚LÅÏ¡Y¸Ç/÷3]؉ß÷`ìa ˆ¯4.¢\ðS²¿'žäáë rXyW2αY(0bMW¹is4—Õ@N´uhÊì[á÷7{´ 鮯­/(xÏ#ªHW¸ÞE«]F¥zœY É‘g«U#7jÙNÐ nœ`eoÍ\øFq‚ÎÀáj?¶zîµÃ 66ÉG®½à»nM[i  Öð+ZE¡¸.íÐ{•?Ë…(žB¸ïô£¨ø(_¤û¥­]·ü¹S¤â¬9•|»ê”ÈÀÕbñ룭~ 5‘ë!KM?X|ì‘ØÝî#Ï;¿gò±ËHìUŽS‡'Ä7E¾²Köô‚Ó~P/Ø‹(…—:Ü`vR¹.ù—ðY5^t¹Hw!"5Ú~@f›£¸çÑ,Ô¸“QoSXè¸õyêœqpünxùÉôá)I¼¸N’ÎSÑOí^Á[ÜO»l|áù¬<vÙfÆár«ŒžfÜÒÿð÷6€ ¿'Ýí¿V:ÂiTDvì‹H‘’Ω³~­^ä¼èƧµæìœÿËã)åäý` šÎN†A DßÛ‰</â3R ˜ Êí-Àyq.(wŽ[NgyÙÞ¥rûÛ7¬Œ9̼±ë§¶qiIàá(K.'.ƒðOóˆ`;$R‹£ÌåIå:Ô•‹‡üÎr¬4Œ¸3R|þæyÅØ/DÓr8¥f#·:¬MÊÕ¸‚l>ÝùK\_ïüñt,]~à‹÷@GZrû¥­D¹u•H×ãÕš{1ÌãòÀ/Z¬ÑGisQo%t˜]^œ8 ûUzŒ\å/ò¨­[­Ó¶‡×¶Áë¶ g̼]qëù‹øõ×Ò6~}"ÚŒCßøáÅQ®/G^¸vfÖ¢yÐjˆO:ËÜš+ô>ÊE¶V¿á€pn³‡Ô˜aØçÁÅ1o[¸„œªÔ)ò2«sS†¹MKî 1òÈ[¼>´`VXi*£);B½ÖmÖ—¦ÚÜŽ‹ÁzÊ~ÈPÍS:§Ï z(xsµI(>˜Ë¯à¸ùR’–)„fxÊ7_Êàá±6” ›iXM/#h,íº3‰•I?Ø34=ßG®xZHïÂO¸Ù^C6ûN'[e´= œÊè·¹«VõâÇ{ãÊ ˆ¶YÌ}AdéZ¥u¹›v>”÷OÿÂÌ®¾ Ä€§aa-ròYmOKãŸU+2©Ò5mÑe}X»#^t“U2榵ç@gÓ ¡/ÆR‰›­V½­¸o¾µ òð­Ý¦mö=7ÜÑ=žƒSûøCãò2„0jl¿Äã-Y>¼§pÂkŻΧpÙnÅëÙS¸eŸ¯ÅC¼ƒ‰o…œzÀ:m>•Ì|½øF¹ tyl,2ôêPöt=¼|·e0 丌 }"걿ýV§fœÇóásjƱõ¸Ë ˆf%ÒÁñ)jæz.n=æÇù\båÝÞ°<ƒÛ ›œàvϳÀ3rZÐŽ\V˜@´¥y‘®¥Þ¬ÁºX¯|ÞÞÿ]9ªGsäå½ðÿ<î5‹l–Þy”'؈?‚‡IŠ˜³¯óq ÷µÎâg\iš·n›^@†öš\_#±û¡uˆÛã@šÖª>Œ\Úò=·>Q¯‚'ãÜqëøñê~_Fno¥Y›ÉÜ[Ò×-Jø<Ë Ï6.÷—¬qçáÝ¥üQpÓ×õ=œº÷ ¤éǸ8¹Ìæ^‘­޵M`hëS,â·¢AHž/sÁow¨ÀÍçµ»üVÇ¥P ŸžùÃ<œÈ"m—ìVަÖÉ AýH×È@°;8?]ö´E _žNfþ}‘[Ëäɰ ˆ?N5…ùý‚ìÍ…=é®é/p÷Âa*ËD¸Âç©Z-Îk_‹˜Ázm 6²ðoÕÀ 6²ðä×PKð¹ïlœq²T…‘&‚ ÓÈB@×|q€*·Ô?%ÜoÏÂ/üOþ\Ê×ݘd¥ ‰W¾&vØ1çF5¼íçÊøñ.;œü૬—¼Ü ‰p{v)7p^ùèå7\ž]é‰ÏûEšfQ±6^¤zr)Ø,#r‚^ô ‡˜ötÛgOØïãVÀ i÷¬U±{†G6W“ ¯"CñïP™³³;,(·‘xÕƒZ…0jfz" Zrjkðm/Cï_s¬ÇovÃàE.Vး .eÂâÞ$QWîì2Î/â] ñšÜy& $>½{¾Ç ?÷‹Øël \½H.µ ùyÚ=WNzh·;â-d™`@ßGÓI?¨ïA¨DÞ*¼|0U†ˆ`8Ò$˜Çsä/ˆM\÷ðH’éÚºru¦\šH +¢Éë]§Ï Ò0if¢‰¶ÓLkAƒ/pCžêǨޑTWšåVª2NBÖÛ­ÃõÉgû"öŠ9é®þ""u䎶ú-K hg¨ÃqkRñòЙn´áGÕáâñ"Í_kÌ»Y f1A$2ÀEÏ·¢ƒZ…ô…úù:NS/b¿ý@‚!=ŠoèanÒ‹¶ÐH‚ >àQ=SÐ#6™z†FX^w5•u8¥¾ˆ/“‰ 'b¼j…ƒúrÛÛ;3Š…kJ5oÒ5šWäŽ{`ÄrÕ ÙñEÎ4 1,‹NŠ€äNYéFž¿ü€;.÷¢Ï¿ ¨m/Òý}tœu—RÛ•~)veÏAÀ´Ý®êÛ°@"Ñ5O}(€×á¤#´g»Jnˆ¯åÆqCÙ®X/ª‘•;"?ûùäLÉ*‚çïõ0 ð}z. yÔºmb;¼Ã×l'æ/rxvòM?¯î5.â5! ynlOšíùLäf&uQhXG®uÚî‰×ëÌ»–“¦ö³ã‘e0ÐjŸ¥@b¦:Óšwž €\ì]鮇vÕ'ŽUíÌý‰rÓYö@ ‡ùÛHľƒy¤‰a†ÍéÉ2ñÉf'ñÊió‚E¨…ÝX{è³+ý•¿¼µš.$„0vN“HØúòsa~b|§fäDkß‚Øvˆi‡iûv2¨açYIH¼pýð¥ûI¿0WÔ‹;X`}¼]­T{±Ÿ &ÚÂÁI›” ¹ÅÃw©d‘ˆ<~HÚ£\¸jjáS¤÷‚/Q ï '‘øüÂÏÇOÑv,¿9Sɇÿær’-Ú1?ì‹'ÒCÓÿ…[¥vÐaNÈÛÎ1|I@ìux@¾F o­Ÿ\`Úq™«yòv§W|ò85PJ³Vl0Ã¥Bs2yí˜KOð€CÏ™¦wûv/$^ÐðRÐÑið Õ‚#;z~ Þæí _h¼å»7xª=ôDP‰ðWBŽ„·Å•_øÍ.œø2t9hN<¿ ©Å‰oà­œø¬$ÌPâÄ·`Ð`ÿhN| ÞÆ³râ[ð XIœøÖ*)¦Ä·Ö.ÓÛI‰gvÃ…ßä ;9ñˆÚ3VN<¢’H-Nqâ‘ÊŽ;Eqâ߉T^ÂÅ6†ËÌ4Qâ1ת)Râ_Äž<¢Ä·KRâa)ýž”xXSÄš&É“¶ió<¶Ø0%*ùj§>nߊÿÎôEŸñ°)ñ°ñk#†¥®J`Ä#Цkq3çø¿&)^±9ÿ59ñˆk,~>¹œÈÏm“8ñ/bŽ£8ñ\xVN<¬lÜ͈K¿CÑâ#ùQZ”ï¼½-þEê?VV<‚9ë}»n½ÙKB´xX¹'-!¡ÕeÒâ‘D\ú“¦ÖnCYñ/འXñX*qà᥋(¹$Å#²û¹²âaX-â·ƒõµ®¬øiºæájQDìKÉ$ßÚUµxJ‹ûI“ÛuxåÃÕÑè¹ì(J<®B7J<®Kõi;VQ¼‡.ÂÆ•d{_²Ž$ÀÞø%%‘”øa‘Í£XéNî?Ý»pO,8©[¸KvžÂbCj.;|~[`¾sœ÷ãþ‘Mëʈǹ‹pÇó˜x"B<îÙÝôÍ7é¹L'!ˆ& âq¥¯·–„x\û+¤€ñá,P6F|d¨#>\ ®»h³æÉˆ×·F|x7(ø‰ñ±Ñ~.#tã=§Ë+7oøL‹C€î Å ®¨hñ“6`Z|˜ÜãG>~É]-þÈ«ÓâÃ,!^§hñÁ{86Z<¨⼓äU¿hñA¹O´ø#w¶¦ÅÇè–bqe‚¡™DyüÈý6!W´ø ‘¸ÅE‘9Þ¬øh02+~ÒUÌŠJ‹)øhV|Ø~4pãZÏ…àçJ ãIŒ1þH¯ ãÃÎ$R©ˆñAïÑë.b|r‚Ì‹“ž^L.­Ò¦ÅI¯­hñG’†ÅŠ?Ä9%>xOúD‰n”ŠÈ õº’Y/ˆ ÉŠ K¢"~Š Ç¢<ÿqäˆÄÖöÒ6+>Èe¢Q->ÄaË0 ôø@Dp—ó\îM‹Dß“9£›Kß•ÑlRÕÉŠDTj±âã$mŽ>Yñ¨ÿbÅíN¹é˜dRü¡@bÄyä6#þXèø"58Tb2âIâ#>X‚Š]!F| š-ňDj@ˆ®¡Ú&!þ˜Ì<¸“&,B|Øt5Ç]¦,Ö$»_¢Y&}ׂ»yº!>SíoöF6ssâA©BR| OÒäñ"Þ9›ŠÌØ "Å¢C¤x âŠWó2)Ù>üwNÂ"ÅÃ"^z—æá¤ø4O‹ˆÂŽˆüRͯ"ůˆœí#Ïl3‚ëö~Ö¤x0Wo#pUÏâÄÐ7N| šOEŠ?$CŒøEħóä":| ú}E‡?¼…þxŠiØbÃbBºòÿ=>¼š ?é»fÃÚ$Å`Ãé»h6üÁˆ÷@”B$ÂWÀ›—§1“á“Hl.|fÇ+ŒúcR¡¹ð³’¨ð<â„“ ”å²QáˆZ^ÅsÖ]døõ–‰ ?‰Ï&Ç M¿Œ}»Ãªf“Jì7.üŽø’?~ÛLŒ_ʈ6Q°µš¦¯qãoŸ^“Ÿ›—äÆ{“ÔøÜ%5~†ó05>7NÉŽ¿í‹“ìø;¹ü>åÌìøû–É;Ùñ¹³Kv¼£‡%9þžMŽO'×$ÇßvöLrüm«}’ãoÙ“_&lšïè䓨bäRÔ}Ñ&Ç/eDŽ_4‹?“ãg-³ã§f³ã7¤Ÿ‘ûO²ã—¦ÄŽ_õWß”Or·C&%;>6åÄgZŠˆ¿! ^¶Éñ¹·Orü|.&Çϧirü=Ì679>_ sãç{cn|îÿÉŸïž¹ññÆà&_asãóÖÜø¼©HnüDÌ¿3ª…¹ñ "r|~tæÆÏo×Üøù}›ÏSD2ãŸÃaÌŒŸ3‹™ñé–šÌxŸ+’ÿI)×ñ4£&1~N—&Æ'¿)‰ñsÖ51>¯'“?£ ™?'xjŸš´|㟚¿ˆñ>$/~.@æÅÏeË'ß<~$/>ÏÉ‹ÏÅØ´ø¹›?c(™?·!¦ÅÏ]šiñ 2iñÏ•wÑâ»O'-þq@¶¤Ågn¤Å/Hsd(±5M‹n/ܯÞÉ-þ±Ù:iño¼’ŸvuÓâK†Û4-¾$Æ´ø@Lì'-¾$uÏ´ø%B–Ã×å-yñð^xŒ0öVóË.^| š&Ä‹/°Ô¼ø!11¼º„Ó‹ëוžbu“_’³(^|¦‹+äq%?›¼ø@t(/>‚Ži‡!^|Éóâ#T™>ñâÑŒ)^| š1Å‹Ä<ý¦ŸâIž~SêD­5/>>Žˆ÷àÅ09ï ãVL;'-~ È&Z|ÉD ¦Å— ÄkZüŽ83´öR¢Å{§%/~Gš±ÔüMÉ‹/NXÄøUÎÄø@üøůëùã(´hxÙ#ŒEgÊš‰ñLª|UÔ»‘È¥Àx1¾$ÎÄø’ñ£MŒ/32‰ˆñÅB ‰0Œàé{bÅ¢XtŒ*xeӤŗ$˜_"ºâ .duÒâË䳓€&.±âË ”DV|§e|uõñ"ô8Sz.¾ŽM¸Ä¸••èðD&Vü íhV|Y_–Ø dÅ—qA¬ø’÷[fÅ— NeV|±£a²âKsX~³âË$}Š$Ëàiæ=™Yñ%ÝdÌŠŸÁ0ÍŠ$iòxžÍö “âK; ü)ÅrÖ)~ÆÝ4)>;T2[œø¼Óœø¥÷”e»D‰ryP&¯E‰2â]’_ÒùÌ”ø¨d>>9ñ¥¥#³hñ%C˜™HK¢<­‰ÜzÀ¾17->šÈ½W"->3YðMñPE)/¾ô$™‹$9ïŒû:‰è y»!ø"2r›ˆñpŠÛˆñ@Ä1"1žH3ò8¨«ã•s[/Éç>6½Û$ÆIŠ»JŒ•O½Û2T¥Û‰xñÒ´Ûx@^ü¦˜)VÅ'?EÍÉgÞ‹ùäÅoÃä…ôZ†{ß2¹Ý$ÆoÇ¥õúFˆîÞœ‹¿DÅ1~{ÂC¿ß|žÚõÔgrã±ÈOüÉAŒg6i}ô‰çÛFb<XHŒ_ã×÷˜f¼Ž¤ÁŸúÎÌâVFµ–Ü8ǯŸ‰ñÔkàêÛ—H^üúÁÿéú6E5$/~Be´êeŸÐl\¡Ûmú yñ@L¯ï üë4fâÅo? Uë ºæù‰œš4ï…ôÞÿ×>¿TÏ­•äEŒ”TO²)Õ¡ód;ÖzÉ¢fëWBÅ[*Q×´-ÏR¨ø¥g ?lc?l7ÏN-^×î«ZtU6ÛQ,ûmÃyÆâÉ"]Œ| Y"ªPyá°Ø,eå°bP¤-—Û‰±xùvj¡E¬2«.Zb¹Ã=?“œe™eE=€»—ä"“eݾÁ!X<¥1E³Ð*œeC ßS¨„Ч´«bä|oåÙù+¥³i´0O9a‚§}ýþ¬bñ”m&áÄX<¥¨;Š6’©„1?Èw OÅÎ%]+YßÀ‰}”c§ú‘Œb5ž]Öø‘»WÔ%ã/ÙAdМ{Áâ)¹P¦cŒÅ ˆQ·,m1jbØ sø9,ºÔ)XŒ`4ž4û:÷.â{J€ÏÜÌ:p¯Û¶ Ähü 7+h<«'µÐF}/%YȶϟF“õÕ”zÁã)/ZyoÉÔÁ,”¥mšAò…;yËjáŒpS¾>¾vUáã«nø+_m›YñøÊ)ÊÆ"kÂÆ×b<ÁÅkxìzg< ªõ'À`<%òK±ÆWû‚ñ ”Ê…5ËÆ'(§d<ˆå½™Œ¯½É _-WÐø1øÌÏ ’eÂÆƒËíEaãkŸÆ2_» †°ñÄ>œ§j=0Y1¥ôE—Í[‡*`<4Ã4>Œ¯&K­`|µ¤xã«~éCÑx¨sI"õåÔPˆªú°Ü€°W6Zl|©¦Z#l|éR}ÂÆ—.ï"l|1¾BÙxSÒÂÆC¦k1 T¹”ºg6¾¤8”C¤SM6¾te;aã˜IƒgXµØG”/–N³€WKÐ0²0§Ga7‰0:upÆ&±âÒ‘dJÁ >Ožy¦gDTŸD[fæµØ'bb†¯ë»å…É:£'"ÓìͲè$5Óò{Ȇ¸’xŽÈ`u ¥¶3 K$¬¨ã½L{„`.f!¸3Û*3° ‰+é Ý΃j}Eƒ°QÄ0Ô4ë`*³–pTy'eRø$õ*i39³šÞ@Y-èbrèÁ#È*ÏìÄBÔ¨IµF–zi'ï­ÌZvip!M«.y”Yq.ÏÑz!à)c4,å0=”L)Ðà§kÐÕAüSÑ…uXb^úA•èhýÂf)e¯c –G ‰s™ÅBx7½!Ä@²WØÂÏjA$'C~#o·…´XC/¤î•zïÆ‚g¤3%1P(÷e€Íaî‹Öyaݺäƒr!‰½Œ²‰¼EG4¼¼•€°˜·A¿KHTJn›±*Ò”RZtì‚¡%°>S‰:ˆ+¬l‡z•å]½MúCè¬hT,è„b×ô+,u‡a™Œ KÝaÌBŠR¶àQ¢H¨ô'Ãë!ö5ˆÂÒwX •EÄB°¢,’‹´#ú JX±¥Ø ½°ÞÒåK ,…¥KÍ:i@>‰ ÉY7*P>“W zh¤ŒÉà•wI°I38Õ9HʤXÐCSê¬Y £QlZ!ìÕ5ú˜©Xð:IvhÒ ’ª‡tÙ…¹áÀ+¢b)$qd›œh„.$K%$ßÛKêlôRô•¾¬ t´bôÙÎÛðŸ“͆à¸ñë«W+ôè+ž!ß߯¾[Í«»+1þp5¯F}NÒyì‰%™—ç¶Áàå'¼œæ¨w®h¤“¤6úáÊ­¾ê×®õƒ%K_tÝÕmº—YYé½îŠ7ÝË,£—¨à ^j¼T§{™%ɚ̵©å NbKÁI-£—ˆê ^j¼Th§{™eôõÁK-CªäM÷2ËP–ŠÌt/³Œ^"í2x©¥{™žŠyuK¯S1¼Ô2–%Â!ƒ—Z/Uìè^f½D%cðRËèŃ“zËÛÌ2”$Ôàe–ÁK²Ç/³Œ^œu7z©e¨SÉU½Ô2”¥²ÇÝË,£—èD^j½Tf«{©¥{ýíê_W«Kmè Kk9, fýã´[ýcu¸è4¾¿ì¢Òq´î©ü6 ›ýê¾ÅÍ+ü'Ü>®þxsõ»—Û¸m¬Ñ^¹«›·­lòYU‹ûÁ»:¬n¯¦4óú§† Slts«ƒµõl£¯Øò…g%«“R¿¼iUÅŽv_Äçø™ûR 58õ œÅÜZ\½S·d×Ðr×®ý$¹eÚ>õ¿¿Gèž>ò Õù4q«““= 1x‹àÔïöç§íávwVß*{AU›+~)õâ’Ç(ûÅëÚXÀõ+t­-ñzËÓýÃñ ® ¯Žö^œ¾üpû°¿Ûm0a‰¨ôKm±‚µ–<Ý Áà\«4Ýù¶WÖXèè„­Š9YkGOZ ú¤‡Ýý5@§Ó´=í>ë¦çhm¡¡æ!z¡ºâ^ÀmSÛÄ‚bÀÑ»´fç>òØ]m=µ¶?À»½éæìÚ}ƒ±{òÎ.رUÖúþádÓ3ôô"¡wú‹¯§;êY)™ ÊC¦„öÈZ¬Dº÷2}ßn¯˜Ótû´G¥ˆÞ:Uô[8fž3W ÿÑ*pHB(­1¾ö­šž¶è…œ§S\ºïO;*úÜmZvëÛ[÷óã4ôd[x> stream xœ]Aƒ E÷œ‚€Fš˜6vã¢MÓöƒa!ÔEo_µ‹.þOÌ0óaýp¼[){¤ _°Rë¼I°„-i #LΓª¦Æéõ t=«HXSñý‰@sØïjölÚª½IKT’òŽsÙY+ xów%ö†Ñ•¢–(γ“îÒHçÙ3 ‰Ê( ¶•±-h$*£ÁYç«el pîKõ–øSbв¼óðûˆbé¢Yä Â`2endstream endobj 426 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 803 >> stream xœ}‘[H“aÇßoÓï}5SÛ×Ðl‹¨ ƒÎÑE”hP¹J£sÚVjÚté,³ò´ƒ{6g³•J¥6g5§b_ZIPD”EÙÁ¢#DÔE'z7^Á>o»ˆç¹yøÃÿùóûs(B†8Ž‹ÊLËX»dùòÅ“‡&4Kš-‡ªp_xc$ÄÈ!&Â~® 1Ó(÷#É8nVRб¨¸¬Ô`Ò¤õÓ!M†±(÷f­±Pÿ‚ŠÔ2ò‹JEihZ´ˆ—Þ"Œ¼\,7 ‹“ LpÉ{Qì„lú:dé®6‡7—+º)O³¾'7h œ¢Ô]Äö"5ËÁyþƒ­¹°¶WænË6§Â:¦Ž2D㯋ººU‘,šr×Bµ£H™¹1 M°HÌ2Æ[•#¸Fï[<-îVèî£mÅn[ƒÕi%ì4nè·è²VZ?[T±ÜÐ8²öÐ]49ÀuIqÖ‘Ó9´LIOó-ž–ïÙ˜š%®Ñ°)™Í™}Yêþ]Û‰—…W}/ N7¸‰·¶¡ºL•5*ó]I+Ïä^ûxI‚#g½{رz«[UŽ¡,. ‘0<}ªGDz-@EQA§J³… ‹èŒ¡²s’Æ×ñŸ tô‰¸€^{¯€Ïv±Ø_è6€*pŒ·æ=ÙEãïõÝm®k<¹ÿÒRЪÒÀM£l·mÍý{®˜Ï&Z]—ÕM„¡OÍß> 4ž wXÄ)¢Ù%_àxTßih7¹òá )ÃkË1˜ J÷9 Åä¢ç"§ž[®ðÑU,‘&Ηêúè mRê°šœM@„áŽv›QÍ>¤êè qch!“các?­W Ï êJJògæu ¨<|Ðã÷Cé-æJäåªÉ9Pœ§«’¾%ý¦+&7A;?éÞ†…W~Ÿ½PÍÞbaL²®ya$•næaÐ9Ø~µ­·70Dtj jÜ £µ¢$âÿˆç0ë{*.—Š{¼9°ö.9P[U}Â~œ8øš×Ú6-¤CúÎÊMDsPY$“ó±ªhù™ä˜(„þ=ž{Žendstream endobj 427 0 obj << /Filter /FlateDecode /Length 3108 >> stream xœÅZK“ܶ¾Ï_HSº“ÚAÏä¤XŽS)Ù­§R©’S5ÃÝ¥=ÉÑãß§»ð1ËYǾ¤tØ! ÝîïûÔ‡¥àr)ð_ú»=,þx+•[Þ· ǃ[~Zˆå7 YÏ ³´Öúåa¡Ñ\ªx¹_|cî’fZ¦?ÛÃò/˜ÍêeàÁ*»ÜÜ-â*r)µä^Kk WÚ,7‡Å;öו/¸^±óqÛÕ§ãjm•³\(öºj·MýH7ÿ½ùûâëÍâíBóàÁÀÞ8,zl_ºƒ&^3¯î9û Ï•h«ï«ÝjóÓŸ„à^[xo³/¾>¬”7”gïWkü)•eðæº( ‚g»²+ñJÁUÁÎm}¼O—^2z¢ÙëÛ<²CÕ=œ`*³:¶ã‚KÓ×ÙŽµ”<#Ñöá\îëîË5³ÎfUî·ç}ÙUÙÍÊÁª«µàÂ}¡)WhŽd_È\x¤X»=5ýÛ–Ý5§ÃàC÷PÅiYSµçÕZ‚;Úlßå'žîf}“l•)ÄW7BY.µ i#.‚TH3ùi÷§îêÆº¡ਵñÂ}š3B¬ésáÅ®>¬ÐÏ`5»­v¯aç_¤'KYÏM!L2ýÔÌÙ.5·.¸ñÜ·8¹´!@~ÝBP÷ÝììÎÃŽ“ß§×=û¸° V¬lêÓ¹…^\d¤ @V»øÜ>WäfºI 3¡Ú}‹0±{S·×s¹O[´>W`Ì»ssk´DxªÇ_B8¶.¹ÀʦÜvU“G9ð ¶ Þv'z q÷!Je—®d€ô¥EY×ÙïÓoØØúð¸¯Ö£¢ó˜@Úz—÷J‘Œ?T£9`µÏ‚æó‹çÛÏt€ÏÛ!ŠÃ<…±ÒéÿO×G¬÷µ}5ÏÃ}LíCU¶g¨>rR ™Ò/5"ä|ç9Bž× J±4Ârg£ZØôj¡|¿ï S3ù'ˆ‡Öl“«•²b–‡,A•„¢„͸+·Ub1xv—´G; qF PI…0”å^$ðH 4“5…ãvÄ%æûyá ø¯¼_ ÜIXl’l\YàË~©ƒ"U«û;¿>ªEàƒFN“I…}µ/Ûì<à÷wå¢fÛS‰öT%3)¸Õc3ÓߠƲvÓD5ö"Æ82êÓ@{Ã¥ñ=˜ÿí´ßS>¥!¹§íMjÌ“jñ‘âÃÊáçë[Þ¿1kƧ,éNóÒÆ~¬\~`?¬æRÃr+LаœªÄõ^ç¡KIdE9Å®²åCd®,åê;Ÿ—z•«u@‚Ê| ºJ1ÂÑ#ŒÔ¬ÃBr«ä S0£ƒ*0õ] 5¯l²Ê"ïfV¾)£x¡Ã„Ø ÐMýy. PƧߌtöq7k¾2\kŸp½/ ‹çæ66¶Ÿú2RWèF ŽÊØ"®2&ðkÙlmO6ÿ¬›P9£’d[¬Ù›ŒXèܶj‰N"¬ù †edÅý[83›3Ý…èD–¡¿èÄæ²#èûQ\ë õ ÒXŽùá=©kšêj&¯ °L0n’z*ææDXäèü¢Æ|Ês ê¤ÐXã#¨Kw~="{,iµ,‚âJ˜ç˜Î25Çtßëao)- TÞV$ü¼‚N‚EÂg3>CoúØ ÿzsƒ(Šô“éçAýÞW9¯ 2A÷cRPm€Ú®XB“5¢UœäSÝ=€ŸR-¤öC„h“ê{4žRÀš3 +ìÓxˆîì¸Q!v#ÇÝ誾ÊÚº#Ù©mkr¤ÆzçDiGïÁ…Í¡u„‰ŸÐã€K—Í.=q¡‡)"ƒ½Ylþð. %HbO{P5¸K…F(—ÇÇ䤄ļ¼ŒAåçe@@I3ïâIŠ%c¢:,ãO¤³sÔÿš(ÖVÍ:5rÞ¸|ЇBMZGÃDáP‘ÐTyâdŠmQFbáH †p)(Zñ®?ÈÉ/Ño5$ç *NÈè;¼@=T F×mÎM1΃žPlLÍ‹ì YX? Ô§‡zK¶{ „tÛ ß°Rü XŠ+b]cÒó3=À Ú|’n*@{ ¤1kªŽ_Œð«¢çü¢d%ÞÝpÎ{83Ó9 nŠbJ“Óe W¡pù4ÎÓ€(ɵ“=OoKòK9våÏ«”ÙYÍÚ®<®ãQ‚B÷¤>žA”¬5 þf@yq4X^۾ǒp<ŒéœÉ¶xÍp=ù¾„8MDùmr(Màžwh[ÿ~›ì‚Ø<–¨ÍS‰K˜Î˜‹„‚nÕ„NçèQPZ\ÄïzDu ;º°lNçû‡ùÜ—Ø4ô½'YçÀáY¥ 5—RôÕøgœ1XžWÉ& ôñDO&›ŽçïëÌpÄj)ôNBvT“-›*º(ã˜Üg†4ñ(.Md·]uW‚¦Åi íM’Dø6ò½ƒÔ?µÕ“Gýõêúç2üÍ„ØáƒÒNUd5Bñ7‚vÔ€:¿Y;Nçs®%H<ïRxœ¿ÚL,¶ðN¹í£S{Ð^…Â]5$¿|d‡-ÒRyih×wõïª%I` Œò>¦ü8MãAëMÎ0=ÁbËUn4&zwŠ„–Ë¡³ C:ÜTmé.JmB³6Y ÖGÁH-ø .çã©XaÍ8 Ó:—Æè0H”6·Á5Õ¾¦ž ]GufIa%EfcËxî€2òõUÒUØ©Ì|š™¦%´¾è Õpž·L¿`3/ët0ò5Éñ›¥/S›‡¤¦ "½fÊ(ë‘s—‡¬'ò´*rðF ]6t¢»ÊZøKLB_·i¼‹Œ6L0’îñ 7?ˆg¸ñj8ÃE…›Îpé8ãNã$ù½ÃJO«(‹¨q׊”ô‡þ\°8šªc·:>ÂÔQ]×í0KŒEDe¤Q‰¬Ebo4Ç@Z؇ÓÍ“†_NËdtl>?M‰*p 0½õ2–¼‚ÎÙùâ¹’ž0>Jf Q,Û/ù¶aë–ÎD´p$3ªÏå¡>–@e­4}•ŒÕ‡C Á¨çH{Ñsä!O7m¶ðs±¸øœ8­Åûƒ¥áÐ-õx膞 FÝ]ˆk,'å$ÙgÎA§ÚTBq´ ënFÝJÏ•*ô œqJв±@dÓ/‹SðP²GÀ þ  ·”>tÈà}V:5»ªu§á….= 졾HÏ$fW•û©‡ä&K ;M ࣋»ˆ´Ôñ¶‰$<‘Ò<ôuû4 —n2CDE–Áuó©n ·Ñ;„Œ.~Æ¡éÒËxBbå¿Ê_=û:¦ï¨£ŠJ­0V Ê‡Ð±ç·“óˆúØ£K— ônÔÌŸ†óãèv•FÃRùÿ¤•#ôI%tâIÐÄPaÐ žÔT9ˆ]dáL6,רFá‚ÒNZÌ:::{»ø/o–2Îendstream endobj 428 0 obj << /Filter /FlateDecode /Length 347 >> stream xœ]’1nÂ@E{ŸÂ7ðÞÐ6ÐP$Š’\À¬ÇȶeL‘ÛçÏR¤ø+=ã¯}ƒ§:œŽ§¡_Êêcó—-e×íl·ñ>g+Ïvé‡bµ.Û>/O♯ÍTT‡·fúþ™¬Ä Ö=ø½¹ZõYo­¥<¶v›šls3\¬Ø‡ö]— Ú?m£q®×‰ 'p›àÖq—àÎÑ4`]'&œÀœ`vllѫ٭½W‰ ' ‘Ñ5""5¢kÄ.1@Lµô„]ñ® 'ìŠwFB+q+‰‰FGI Pq‰ð"ñ‹³ çŸW0p"ñ‰Ó'ŸH`$´·Rüéžp!¨”T—T*%Õ%u“àÆ¾Jgug…¯ÒYÝY!¨”T—T*%qú7~}Lÿܾ8¯=)ó}žmX¸]Ü_š~°¿œÆÉ[%Rü 6±_endstream endobj 429 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3779 >> stream xœ¥W tež¯øª84²—¸íV±ˆ»ã ¨Ì(‚È!äRîp’@§»º«ï;þºÓgú>s!€ˆrLT” t–‰‚àë8êàùD¿f?ßÛýºçͼ}o÷u½î×Õõ]ÿÿïêj𠪤¤dhÕìêê‰&L(|›—ÊßVjÇÊüÞ«ó‡À¥pÄ`ÿm£p9Z6 ÝVöýHjPI‰ô®™ uÛò٘ʆõ5²ú1Õâ¶¥l3¹ó7¿PÅ-mØöøvY£\±FµöI±rý‚š 7-Ú¼µîÎûVý E=L=M-¤î QUT5µ˜z†šA-£fR÷RË©û¨YÔxj65‡ºŸz‚z€šGUR ¨aTõUJ ¥xrЦò%Ï• A5ƒ>/­»ú7 }^ŸÛûzª¢%Њ@&2¡h¢S Cî¬×fsÙ¤*QàÙŒ2jJq0 {#[n'só¬7­ ©86c³9mÒ»€VÑÔXŸnJò1‚‰åQYº&½!]ÛVáv¸›`ÓL7[íV‡—ຊ&³C«‡ŒF½¸-ëˆñ—»Úçsú¤©x(MM" çÐû¹’ã§Qû@)r埔àáÆ™càÆD{pÉÅCC!hxë™+ð&D7¡ÒIßáaÁX”@Ó =ÌÙ×/|üAïÌÇœ™~ìÙ»àšÀc¾§-癿.‚·çÐø:•«Î•‡ÐøYÈóÎhö/hrþVI€î\"7(Õ¹2f"§ÿó«?u-ì9¥^¯b¦,mñ@6­ ©ø%h سe¿x2ˆþÓˆþq:xäÊ•bÝfyp¥Ä:}éôÉ™³òÜñ°+ Ã< 9Éó'_yóâá‰sì°Éiç~Õïò (10š=|!ß+ùI·V‰ϪT}†cû}.ŸÝXUˆL%EÐôψ} ÍÇ“x¼Z“R1¶óìáË?é$yݧ4*ïÅwŒ›°óx°‘ÿUÎô;•åN£6²â…|Ùë\[E«tF¥&¤Kñè Ð ¥R†°ÀWåƒ]Z¿R©µ4p"Í~¹góêÌ )~ÏX< —\À¥¨ìõÃmûöñ8‹î.´ÃCÚñÑ©>z«w~¥Ÿ{šž1§rÁÔ%o_0Ýp`tñ‡9¹Å¹ònT5‹l!ˆdèªdÝaŠlçðM@¥5 BÄDãÿç&v½Ü`Õam†g;¼>—WŠ–‘›±¸3.Ý•òvñ¬+i Ë8L#|ú2„næØŽ¨så Òl:ÑÙ»(V3wa튕üuÄ-@³ÑPtWeù»9”Ìfˆï‘<ßpØDšzñÇ]ߢÑx!œãük¢p<|&Ðí «vÃ×­þu Û³ÝïÔôHwzR)þ6FHùÌ;·9Zç¯ÌÃxˆâ.ü[tî=8†wÐóÇ5)&—ÀáÃní4ÀX´®IùihsZ¡•Q„õ©v_:éÿ…§r¨LY‚î@ 9îÉÏ”LƒJ'(ý G€Æñ5Bæì…#ñaºKôˆ ƒAÎYéçV*6V)÷á=L'³-]¤ OûìÔøT*µþçeªs(—+¿<€ª ¼œÜLÃz—"Qßµö¨ù| íédX•2llçþÒñ`6­mUñKÑEµÅj¹GZÑÜ †ôYþ(^ØÃSÕ=½a½7Ç¡6:cOÖs¿#ô2+„¸9ùKN¡wN”@"YW…¦æ‡K’-iw 2ož–Oáñ<§ßtßçëÎöþ>ضŸw»ÜîȸFµûÓóp'dÚ[cI¾…v&tA5dê€JéNy]…<šGÿÌÈÝéc6‚g²Í­ÏªÛ:Réö‚ÒU≒ßÒìáyÓ ËÖ<™zíøgÉ~n··§e7dn '¸&ÆÓû%—PÙŸpÙ UV 13áÊ- £5œêRzT‹Úx+ÐÃ&¿5(tVB—ÐiŠ˜b†ã¢C­Áh0¼cOïiÈk€~g2ÉŒ§+e Ëx|K÷Dâ3|Ìø÷G¿ÙP$IÄ8«*‰[-DŒ§ý¶Z\i£Ö(lÏÚ‰\e~—_qT†ô'©‚("ÊfQ4 Bƒ¢A”WXÍŽ&#d¶…Î$ÈÒö8¥ Ì~"ÌéD+aW†(œüüÉ!+¹\PËÒËa Ò[â¶tG0ÒÎùé,‚•ôµGàÆÃh€ZF1¤¸ü0üÍÿI5€¬h"ª(ŽÏÑ‚I«!âHðÖNıxúüpt’0NÊê‡~æ<5†å¢ÊÞ`sÙ¡[€­y]?Ý ' y< fFÓJDåš6*sùžb¯_ûŠpÀmòš=¦îÉ=SºéšSá1tÐ ½Ã(.SM~¶øÝ……º”‰Æz\±âÅÚCß@ÃÏwr{µÿÇçô%|qoÂjŽ% œJµtg•^5?_µº¬R¹A/òìk„U\7ø >Š::d'ÈF[ÓYmPàÇž´ŸÔŸŒšÚ®§?¯é/èCíÇKŠe¡mÐê²Û%³™øEÁË“)}DA\œ@Ó•—{7E6…koM<“Xœ|Ư¬ð+|[z`ôíögý銎3íg³g*öUhiÝõyÈIHÃú¬Ïï‚>þQ:U@éǾÓÈGÚý9'¾ŸÞÒQ“ZKü¿ìqx8.yï4ÈÌ·‚^x(½w/£¥ÙzEÈÐÆ} RÉ@6£mUòËòQ6Ee{°hæQmÈ¢?‹¿–@/±-/óÁ‰ó8xÕÑ»Òÿ,³”†F—˜™OÍ?uÕùÓVîo#Úç}HèÍö|^l@=-3º•p¸c{ü~bÚ_€¶p8Yìf= ˆ,i[š\vëK˜~ 31ÞÔî‡LìjI'ù|p'‰³ICXÎß ØD'²b÷{H÷³ÜΟäÀvDšÂkC®Õˆ©ý´B¿Ç¾{9dª #ŠÙNkT’BaÄÏl¾íbs%ùÛÞ-E,ª– WA&éÝõºöxí~ãK‹Ó‹IM‡Ü>Ky3íÅÃF@¦s¿™Ùs$@NãLFô‹uN•ÚÄ [jtàdXyL¸À¸NHR8Øÿ<.ôÌþY>‰± ò\ šOìk>±¯G€í‚L£^¯T$­Iþ{œû¹i-Þ4êÔÚ .ÞÌ£—A:I¤õa¹Åê„Vþ!”C ‰$;å$ÄâQ}à•ƒé3V³ÁÇt1K 2ñLÇks¼ ?¸îÁëœ&\]˜+é@íï”æ¥^ÉñNÿ«¾WüoÀk/ÛqÛ+æc‹Û6ÇÖº6@¦TÁÇœuKÔõöŽZûjç*¸Š!6²VŸ .I<ׯÙkÞ÷Af? 6Bl&Ûç%ê"2é d¢1OŠoŽ£Öˆ¶K¿CÓÉl:)±¶«: m¶ˆ=©‚Œè4µ)`òXøHc´1$cÁ¸nÏ6¦í{;m‡ y1‡hƒ1WŒi£}Z>F·@&ºág‡òÅZû÷r×:2h#ÒpnóŒu›©x‘5×BnÁп, ·n Í^ùqöðá‘ÓŽFÖ¯â°f-µyÒJþh<²±ÖLBQ’§ÀÛâ'xðŠåªÚMZø÷þú– 腪͕_@sf¡ø²‘—/ÝÀ’Eüá/ÐO$$I‘T¡àëQíàˆí@\Ȭ¤Yõ"ÿøÏz_8òF§Ú'Šj{çÔ5ˈ׳/Ë;ù?ÒÍe»¶î`Ø#¯dwŸhy™ñÓð½E'ge¶·ÂZê @(„¦ˆ©ÿ×JP-„IW…ï2³ÜV·Z˜&®Ü¸i¦Ñ,sÊà†}­Ì(Ë‹tY ù(‡GÒ2½Q¥ j h}d¡T­–Z'!³D¯ŠÃwµÐ´M³´“¨€ì’mM9T0ŠdÃÎîl{'Ç~™wÔqì‡Ãé^_4¯#œQÎ(‹%Ã<­"¬HXHS¾ñ–@F™Éœ“‚b+ðC@£pl#¢–æ¯[z«¯ªõíhHU*/\£Ù“ÄFo—ìPz•f3Ù,g¢h•k[ ¼cOtã°Aâ9¤¾'•¢YQ $_ É|Y1¨´…M¤áóýq¯›ÄqÈ€U[y¬ÔÒB!„mÄ*2ÑPúÿ5‚(ùî>Ó'­[%«96¾[-ËÖHka­F®¸ÖŸJájŠäRªAWçItÍfÔCUÊ3}?õq9ÄìB< SÓtf½jMÄáÔÛ‡örý线†_C4fú<ô’.¤Ž© 6C‡óÚôY"Ó?‡ÊJQ•K¶X¬e6vn;Èí&Þ{˜}Û»V_þ½%eÑaÒeä bêè<èŒEÓ cBåæñ%RX+ û×&Gß è÷V’§~2í­oߟviÚ[£ÙK蛫ƒ$B³¨m+ IvqÙZVT¸×º×zÖºe¶  ³Óu Éhö?=}îcž>—z‰}ùiGF•àçýSqÑZ¢·-++Ø?´¬q¯iYãj´ß8þŒç˜»Ïs ú\~èc¼×Çÿª¶3JócImõͽт‡Ýÿ–B|;£¦}xì{x9=hÚ[!“ˆDc µßÐÊÿë™…¨ÑB’7‰×”ž ùÂcú°èh†Nw37¬44mÄPŠú¹}Èendstream endobj 430 0 obj << /Filter /FlateDecode /Length 184 >> stream xœ]OA ¼ó ~À¶V£IÃ¥^zÐõ–†CPzð÷m=x˜IfvgY×_{k"eàä #ÕÆª€³[‚D:àh,©jªŒŒ›*,'á ën¿?i2 ^õ]LÈžÍéRžª5$ÂÙ ‰AØI À[­9A«þ¾š50èÍyP¼ Nþ¶x@â$‘$‰Iϼ q¾É{rã½ •Khc9«ÔÎmÅßåÞùœ¢ ä k[^&endstream endobj 431 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 960 >> stream xœ-’]hÛVÇ¥$-ÊH³,kÀÞZKPš½„| J–ÒŒmÑÑ¥ÐFaeÃMÕØ#þˆ#ÈNdËŽ-ëÙRüË‘ÓÈmFRÚ´Y÷°Qì¥{ÚHaÐ=Fžö&%2cr²—ýpÎÿžÿïq¬«ÃqüôÔôô'ãíÓEómÜ<×ažï«x4w˜>=ÐÓU:jöÁ7Œ¹× wÖ‰ãñdq*dCÞ9Cݽ4:k—1jlbb|ˆzwtt‚úÐG‡¼³n?5íf<´ÏÍØ—yj&0ë¥öx䊇a‚—GF¢Ñè°Û·8ͽßV¢¢^ÆC}F/Ò¡}‡ú8àg¨ënMï9|\§¾`˜¡CÔtàòcÖuóÚõI ›À†°¬;e[úðÁŽ÷::/˜ùÞ£+ðÔ4žâæOfÿÀÁqÖèöì/Å©J5€M¢–*æ]~ð>X€kòüØs!“ÌÇ$×YA["„ai)Áó™ëM«ï.=hÜtˆÅ| d(ÝÓv D©.éR‘P"d8,+Å¥H!D.áe´ ­’eíÌÌÄØ[_²1§Õk¹í–Q BE~mgW†‡®lAm ¦ØBÑ@¯'¥,ÉK‘"è ©j³i|e|á0ÎX¼ÂK" 'dÙ„'ŸF\[Iœ¦oÙ½.îK:4àl ÒEíX®Yç q#·ÖH“½G3ÿúÕÊb$(HÒ}íŸ}‡áøûçï÷WפšdÃ*¯(ÙÈB® \•ƒ@d— |Bª†TRÀ·¹të’õÜñ»ñKeW*¿§V½’]åý à'ãต ±“ùå5hj2ˆä¦XrÂ’ålm;2^13 ›l¿Âi;/eØ!ðÄ&³i'sˆÕuÛJ¢(–d P„*”«{{Æ;Æe£Ûa\´vK È9™@žM.ÛJ6×6¼”·á!|'l·WK¥ú:<;/=ŠÛDÎ9üÍܨ~«=þ£@(ë’¾š+óä×pWðÚñÞÛ£9Û§¢ ù5– ”˧,¼uÕa•ÌF¦!Ú­Nëüég[­®7‘ “Ö[­Gi:î›Ì;W–Q4UJäcØ“wíœ^ÚÂÕª¢Ù¡§ÈO ð Ôíï¦ÈšqÖ¬8ŒZ儌ª6[€¢²AôšZEýhfe~ÐiЇŸ¬ªP™Ð¸J*žKr9W«ûßñ,gÓœ 5½ÖPjªâêu½Ö5¾ÙÓaÿîûçÀendstream endobj 432 0 obj << /Filter /FlateDecode /Length 162 >> stream xœ]O1ƒ0 Üó ÿ ¡Eê‚XèÂЪjûà8(NÂÐß—èÐáN²ïN>Ë®¿öìÈGôø¢Ö±‰4û%"Á@£cQÀ8LûT'„ìn:¼?`5Ýæ»žH>ëK]VÕBoh)jI4Jµµ­ 6Òìî> stream xœcd`ab`ddduö 21T~H3þaú!ËÜÝý#÷§k7s7ˤï;…¾' ~Oàÿ+ÀÀÌÈXYÛãœ_PY”™žQ¢c`j $  --ÍuŒ ,sS‹2“ó|K2RsK€œ…àüäÌÔ’J°›Œ’’+}ýòòr½ÄÜb½ü¢t;): å™% A©Å©Ee©) nùy% ~‰¹© Wêçü܂ҒÔ"ßü”Ô¢<FC!&FF–À|?Îv¯ÿ±dýöùŒß'Ýaþþø§€è²Îž|9oƒ®¤nŽtöÅÝg»-çø3‰=«»N].5mnÏwþ¾ Ý«º¿ u,ìÚË£¼>•]½{Æy>9.óù<œ ïÑgqendstream endobj 434 0 obj << /Filter /FlateDecode /Length 4423 >> stream xœ½[[oÛH–~÷¯ 2C-bë^µØ}ÈLwÏövtÒìÉÀ %ÚÒD·&å8ž_¿ß9U”HKÖFA4 M‘U<÷ïœ:Uü=+ ‘•ô/ý/.Ê"XïLöôosw!Œ±…·™ñF*“!øOœ/ /}ÖÔ·˜nsJcžñ*xº°Þíè ¿_&—¥?ãEöç«‹?½WBe„¬Î®n/"/"Æãm&³FNÛìjqñ!ÿÃF—Fš¢,Uþã⦞LfË;º¥qËç«Ïu…òuÕT‹zoaŽÈÛu5®G¿ú.Þ]¥up ¸wq„]QÊcìjU8ïˆÝ¼^ÜŒ®þÑѲ>h£ˆ„Q¥ttLöh9W<éÓúË)§¬‚M¾© +¤>äój½ (´.Ÿ?žG¡R„›¡óOŸ^öä¶ô>§JíØíÊÒùo *ÊÍw{¿of«eàwÏCÊ=¯OJ)¸4uÁ²ñÎ72ˆ 5 õåÛ<¦Ä%Ô“ÄUw™­=s®’AØ ¿ƒ¥ó$+/ gé;[²²…’¡OêCÞVëQI·Öçë³e+˜Î˜i  y¦tedáÂP©çMW Ùâ'[Sã¤Î•­(‡¨¡PçIWª …tn/âÎéA'žˆ–9S¾²(eô€Ö‹w×óÕ¸šŸ'aé’Ò±b¸éÎæ("ö±ü§Ùr²ƒî›ºÝ¡Í¦Ë62ÿ\ÍïënâóÛU÷>ÿå¼ ‡-‚aÆs°z½¨¾œç|ý€Þ™p^ÂZ…©‡él<-†Â}G¨`¼uŠ9‚£×]])UvI^b¼Ì®&(mΧlQÀ¸Ï‚ÚWöw½¤…Ê€Ô,ÃhýW:mòÉ©þÞsãìy"æð‚V†@ÉBF ?ÍîîDŒ¸¯rUѵ 2o§«‘ E)󇶻ëòt³ " »Š[›i\ðÿé½+û”K_Ho$C}Èß.!”ÒÄÁRÙÌÁ9K£À[•Ö-J fã¤ùjt©À]°"Ö%2CCaVyƒyãf¶©ÊÔÌ;Èx$=€Á¨|Z-ïê6É tx˜ÖiiáóÈXº°yÕŽÈâJupÔÔ£:Þ:óõ~iÝ×§b‚³Kô×g`)òD6˜×Žƒ"°ef9 =-â0&Ø€›¸Ÿ‚%`Ôeš È\­7³E5'Ô1 „:‡ä¥>†bB¦”RL%,™´CR%=Àeå[H1ž!Å6̼jîê—ô¨d¿ŒXb#ÖMC)EZª­EÄg±z8n±Í&½$Øm(Äé.\š¾`HÒç÷H×)9NÓá°ÌVGp1aðåé(Š5Tº4›(ãm5ëc3¾ŸmˆmØ;ßÅ}µdl3\ýDCÂ3ët¯ ùꦭ›Ï‘Wc¶Oà«]jÅ>¨=vsб®×ÝOHЬֻé |­žu{-Ç×»}:ú=e•ü^†èöÛiìöœ-kÿ*fÛi¼“|<h÷RÀí”|R$9¼9”#Py£BÚSó$=‚kͺÉð¿] bYʯ5‡æÃŒŠ6<éêÜwX—f$”õ†K¤q³j·Ãpâ]µîêSo"›^öBµÏ~RI˜+y)»™­rc_ô;~$ºq‚óà˜Ê(ÊTm×Ín 'i-S®ˆå©Ä$¤Åß.Û)q½eµˆ\©Â‹†Fù™â†å¶1.I˜SÍÛUz‚ÔÐÏ0tÛ°®ëª}즤hd­Á!V‹5ç.ºA1Y%Ç*_@Ýf×´¥ýy;\DEñ»J“z<¬âþ±{⣿¶ä°Š,"Ùa£G5M¬¤@fŒ¥?$Mù•=T"ÛOhɤJÖùºYí\wrϹ›çKX€K”K›fö…®ýÖdZÆ2eŸ÷8J$Þ»— jŠeOA“4ó§}fÚ—”Q$cÉeÕæÃ%h>™-Þד74yòzÖn8Ù RÀÑ[ÄijŽ‘‡Ø‚iSxpåƒK··ÜjªqôZÀ}ÏyÆ›¸2‰ºP¿*®ñh ÷ï‹F¨O65>ZæU7LæŸgíýe4pÇóÀÀÐõ?+n߯øñ]ü(”AÄuV‹áh\ñ¬0ü] Ý®îcÇ,Ë:É­©-DÑPd]ìVò°ˆtÙ]‹å¼¤O°™¤õGX³†Á}÷·©³ÿÉ–ÔX,©™h%µ-7Üda m@>`ÁàÎþqQf½¶¤åD†¿º@ù×ñ6Ãë|À;šúâÏxŸ7"¶ÌñÿÔQÞM•ª0X^—´É°7SjDkE]NÏÌ„´ÚfÔÎq¥Ú›Xä3j!*7œŠ,§D†Ì.ÛŸz@þíÌ@ea¦\ÉÕÒ)’:Z ˜,ЫµSDuÊQ`8QÀˆ'‰ê ŠéÌbÅ#O“ÔEûÔÐQö4I½…‚„Biú}Ф^QÿH ý¢Çõ† ÖL¸¢:IRPð*s¨ŸÚ×î1I1®pà· ’½øIƒ4…ñ™…iÜŸzLÔ u¡)f€ì»D e2sX¡QEz‚¨ µKRM€ŸÙ×ïQráŽÆL½ïG$U¥"GÑÒüáyIUélW"·3Ä"h€aÈyQVî«è˜œ*PÈùÒœ$¨€óI ™¸s‚ ÂQºÎ<°]„}í“T Éyˆ(:æ$ðU²D Ô™µª8|•$¯Å Ë}-•Ö\0‰˜ywšQ©n”D¿ÅI¤¨á%X–¸“âTQŸ©$4s®Ðûü‘T™€ #óÚ(‚N’T!Ê,Eè„ÓŒªÈ‰Ì :¸ï„ÇDÕ˜€çHª×ÂÀ}UaË}vIª)¡‘Wé€ò'óŠŠ¡ÓàÈ ÞspY€!Fœ"¦!ÄÕYдì?)›*cD$ºœ&©Aé*0¥?‚Ç$µ\ÁÕʲ#‚RU·£ì¦ôi†ª2JJ¼_uš ÖÓ†q¨ñ§N³)Ut~¨ŠQ\"ª£ !2ªÔø<&ª3–H,÷-sLTçh‡!ó^Tð1Q©¤£„L•ó ¢RY ðb:L|ЍT—Ý÷@±rLToC¡4(œËý×{_¨¨êœ#’iI½Xÿ¢|ØwÂc’RY(fÀ¶8­B È£(AØU€å˜¤TÒ‘^U‰À;¥DÒ¥$v¾ET]ªP(ù-¢êÒøBøoU—È£ ‡E=²e­PZa5S¢Nœ¦µÖÖWè¼ÿCó:ö²‘±iw9`“Wø?5£KjBj¬ØïÇSn:ð giÛê}=[ÞÑÎ-¾q_!Öh¾‡Þ©Mþ_¯_ÿÈ/W¤ïàúñò‘á¦È«vóó_^ÅN† øà=?ÌnoïÛÙjù¦Zsç]7M™åÓŠô·7¯~åg° ÐÁ§_ñzb„J”oý‡oß¾ù)ª;bâõkAïé!_ïß'ñ\0j({ܦǨsñŸ0»ùíí‰!#t9ävùæ‡ßâCI*ÕCµýR-ªIõK5‚3—F›üaD&BÒÌ«YlE× ´úïL¯,©º*“v’™ó¤îž8•4È+Ë€¢ «o­K®[QpkpsÔq%7Aˆ%u:,Ï,¬þÿ¢%Í,‘üášÏM=£ÝTêû©g§†8‚òY~O3KáëI xÏ Wëi½¬7³ñõxÕ4õ¼ê>"EQ¡kh¿â°À:0ÿÛ_®çË_®ß_¿ý߸wøîún¾º©æ£?Ò5ŸVÃ%Ûm»à5Tpélq¡¬¡íùÅoFíî6ú8Ê[ÿdÔöÎn¢!Њ¨Gq{§7ŠÎEÀZ½QÛ;½QOxís¿u̺(ƒÀÒnpÊ‘fz€{X—Ïè@µ£KMöV?$ÿ€—üÐ鉤'¶ÿÄïÚ‹ïžeÃR +íà˜–¹ÙJr?J?9(D ²rýï£K+â>Å+ºÍˆùgÞ’>X™ÏÚû^»•'ú{ß;Ý´>_ÔÜ=æ!ùïÔÉG22ßvÿ™,O ®eØí´…¸wÚx¾â£Ëx‚#ö²é>ÔŸ¶eñÚƒ¢‰Î Uí¬³Í&ž¯0†›Ø4¨”ÔĦÀû6ÊÊÒ ¼´JÝnÉ;*ÓÙÝ4ž#ásR†Œ`¶g`bo›„å3+Љöf?lu³jZžwÀiŸ8§‰L…—ŽûÄ|ž¥äÓÓÙ<ÒáÞ:½•6Ò1—xÈ«;rDï€J7½=„¸“DãE;ÓÉF ©»=~»•Hqóœç(>9fìnâ‡}F¦RÐI–‰v/ø„Ρîº- ÕSU¹ˆô♪†D¾¹_²ãñá=›Ny%êq+ƒÇ• HÍ`¡Z¬çõËžû;“O^ð±¥iƒ÷žüðýîì ÿ*!í ]Ù–¶?irÜÎi»ãžõ—Ý!Ã4Õ<Ý=VSxÐæ‚÷1½ÁI¼­­Ûv‘ íéHE:A’Ž#Ä×ù¤‡Ätßzû/_ñ=¦Ô=Þ}IjFîè>ÈüþŠ E:Ë_ª\3ó“ö,']ã‡n@õ\ÇŠ è¤öv ÏrZ_°w LŸ"\ÂÎ…*íðdq—yΪyòYZ/Ô­ŽGÅÓ‘/n-ìHÏzŽ»OiðË÷û*‚*&CÍø©ó~¿g‘Šgúâƒ?g±Oe‹õ™>RÚ)õ/ÎÒç²f(Ü«ÞúáLµP“LÙ€Ñ3©©F»©Œ~±·¦mrp¡üâ<Ÿ©Ð^¸æõ˜|„ud½xp@™Õ:ÃjCYÍß^æ²Ü¾ïÝÅÿ(>endstream endobj 435 0 obj << /Filter /FlateDecode /Length 4082 >> stream xœZKÛÈÎyî9­èØ < ûÅ&ìÁ»É²Ø3AØ9p$ŽÄ5EŽEÊüúÔ«ùÐÐöb#²_ÕÕU_}UÍw›4Ñ›ÿäÿît“n7ïn4½ÝÈ¿ÝióÝÝÍ^ùl£]b]f6w7ØàT»½úº[<—M=lmš…ÉÕ§í­Í²¤Èƒz5Ÿa?q™?ì†-Ž ÆE3Û,@c¦~¤á…vi±f8·w0@ƒôÖÀZõÛÿÞý5`6yRd™#In3»¹ûÛÍÝï_«—¸HB†&«ðV4ê¡kšnk`\(ŒúP·iJ3ÕW»¥Ãš·¦ÀA<\í»ØTÛ ²@‘«” 2Xá[TÙN#ªÇòÒõ{šTërx°ÎÀX 6ÁÍÓˆÔ¡ÕÉõC}¸œ«©I'l×6ÉuQÈQ|Rè³Æ²ðeÓćɾÅoöýsxð-ýXžKh¯Î½ôã:–|HA«…·›Ó&ÐXé7ërC±G÷8Ô§úÕ>¾Ò Ýš²j_íj„H^se=—­¯ç–ë±Ù®éâTî+ÜeŽî‚ŽãL6·?2MÕü=£&óÀ.TÝÇ>AýraÃ1v3‹œ‰Ô]†i€˜&¤ƒG]ÉsKv: Ãy‚^©‡#‘ûcwiöÓó4à[p»¶<ÇpV3FÔ½L«=†ÕßÛq¯¶.ëR’íñ\³SŠÌo[ž3uN}hªý¡B“òõýéa¨Zékæ¾jÁ}ÍÑäáÑRŠÖèô¤îËž¤ÅÐ`‡,wçj¨wÇ¢Ø$N¼cÌX²õ¶¤ÉÀXâI[},OtÆyÚ\ßâëÚ't"ÁMaîµíÌÓf¯)Ü|êÉñ%ƒ>Wï.õY¦£P…>( Ÿwñ·»†CXþíxxÕãÅö‘YàžA5ž.ÈÞºs}À Éð—¢Y“2X€ÎÈÿLʽ(|`c1ß>5ÈǺí^Åßh^ ½ÝÐÒÌÙŽå›- s—{vròúÐe™ò*Êã¦; &S- Ó<íáqTÀ÷àÍ   •™Ó캸‘ $²À ì›ê ÖiÀ|â[°î#;@z8:´'™C«K[=ᥥ€ÿ™qÈ2óh$²‰Ñòüvd“¹‰t’ñ=KÉ€…2¸NбE_Ç(Küçaö™_/Ï…ðƒøpe?>' ‹Ñ,À:É!y'Ë—2ür_OÓY4¾¾ÏmÕÄ®šÍA|ó¾¼#xʘÒ0Ôbæ„Ox X8e‰f°!"£”ž®j­e÷#3¥ÌQà$&úÖÏÁFÈ#8ÒŒ×4ƒd€] DÍØ ûÙ™%中fÛÅŦéÉhjˆk£uJÔƒó?võ®úÕzô ²+ ÎOØ•´`¤Ô@cVȲz¶:ˆž>˸¬G7’cÕit³¹Vö{|Ï™ „üªE«¦Ô“ èò'DÐUõ\XCH¬A'¾ÈcÆòÔ€*‹•„Ñ%ÎAúûbÛÂ|Q".éÜçKÍa’ÍáqKÀ’e`Ç1P"@½A€ç%!'™'^! AÂjZØã §1&G Q0B0š˜×vDìá™Sª‡Ï, ™BV„H¥ªÓý*“‚å­qqÕ7[À3 [€nÜ£Yµ è1bŠ\>·ºÀ]bUÐÀr®,ÌÈínÀÕœM#á,eò«u}Ìë9Æ|3qg RXí¥á„™Ñ ó€h’vbÀˆ¯öÝ8-‚*¿6œàÓ†}Åks… »!àe™!FWlc|9ñîò% œ19f20Z}/äÇÕIE‰}0ÕfZΔ‚I=:Å<¹¥B /œ§Ta4U˜~L[™öø¡¦”‹¹†ñ0"Þ´röGBjk;i"= eF]PrR¢•BaNUX²+ `ûJ:1ÇŸh< w—¦ªi Ér©/n<—Qå4\SàY*¤šÀzΞbì«&bÆRœÏ1î!,ÔË‘NéDP?®1žÙD¨=¤œÊîA¦,’ŒÎ ]·à·'I$ðe„wîA™5#pc¶!ÏÀXT#ÑkefG2J0-H1b8£ž 9M<-bæ#9LŽg'^Ä#ÜP²³æ–ÝÊqÂMqÑ9®•ç:?P•ˆûÍ5ůÀúIUܦyÙQ^9 ÌäªÒÜPJEë7øœh¨8¸ Üç¹ãÈ °*ÄÔàT•äeVXÄÀÄÑ3*c¼ÊÖªkži[:ÏH©æ ÆD\ð•"®Ihs‘PˆIøk\òaT‹æbécˆíe lЍ¬ü~RQXR ógÔóVbuô„ †Îd­±¨m݉ëÀ¨njcR[Å‘11¦‡¯Åv’BêC2ÝHˆA÷{Í@ŸŒæÈ%"®s,sp|‹ŠÌ—–rx½4QÈ °ÄáÙ„΢M çFá ¶³·p9ª'ôœ†K›&Œl%ÝÅ æ~ÊÀ)œ9¸Ç¹—0æ>|SpJÍøÈPtÔô6ò@À÷c×S™KL ÝrN¨k´ÿÔx”±¸ð—zqÐ"øx½À |.=ÝGÉ2e' VpóTNyäj…ž{U½uNib}hëg˜|Vx8P80âÁ£¬Û i×c¾Á¶Ë°8O%Û.Ξ=ô›[‚Í´M„]ee½ÄÉ× øŽ3Y2:Ç4¥$AÔ8Oé D¾¹ep¯Œ$sËqÁ‰Æê…#€í_£a¤„1ƒ€E/MÀöë¾§Ë.»ñŒŽ\F‹á O’H åAq1!P_JFþÅüÒrÍ4£ÎŸ&»e‹çÈAnPÐ8Çþ‘›L@Û`ÇÁÈ‹¯›êc=Ì­Œ…†¡‡¥1bCñA„ R¿«v²~©Ž‹³:*I=5ò‰r7\P6zN)š5Õ‰¹0-4 õ‘ëf\½™í.އ‘k´ž×“œTÑö5{%Q o˜‘‡RŒÖ4QSž“}cü•¢ÆT Ä^½šøA/¥ °Dgo§k¨@!¤Ü1ölÊöp)xŽE}kRü癨9ôò¨EŸ×ëáåàl8žbÏÐãó k£77ÕíZM„N7‰*e‘9ÊÖ²:ù+º ¢3í¸ÖÈ-^H45bɘÄÜR(Xàa0tÓ´K,ç·ªo¤z ÷a'Qx&à|¦•¨7Ê$ZáRãU½rÑø»]-iâ€Ð:™¨$}lƒ89UØDIÁ C ¿u$kݬT¤ËÆó“Ê$ø1æ“,-&$ ÕqÌ‚–2Ìrþ$üC'£kÙàë+tŒØ90àkC¤·_ï–ÓEì†ÈU{zÈž¤ªW”NXÏT§)éYsAêXŽ•ïŽQœkªBâuoÜûÓñš3ÃÏ­Û$)Šy%<ÃúI¬ÙåW”º©ÛªœéÜ­º?—<ŽijxÄ;BÇ@÷¢¹Õˆ»Ëáø1—É·ÄÓ3®þÈç 9åé|‚úi.Ðøt¼pƒ¦±Þ|dW·}×¼—{m¾pÐD&W?N“ë+ñ’zÑM˜?n×Î,Å,`&,¦ó_&4~­¾§¾8é\˜YˆÈ ”d…ß°‡¦>Æã à†ÅŸK3YÄ88mÜq³þ›/šV‘môûÄhÍ"†ÙhçIš™\Nä-ŽÉ±~°¶€ƒM™,Û,†¼Ä!ÉúÕ°L®í~µ†/O4tµÔ§ù×6pE´q–ø Ìæ¢"Ç\sÀ´ùtŒÆ 0›ã14Cš™ ßd™@ÛÉ …cå±çŸïnþÿ#Msœendstream endobj 436 0 obj << /Filter /FlateDecode /Length 4722 >> stream xœÅZIsäÈuVèÈ“×ÓXŠº´I(7äb…šÑ„<ÒH¶fxPÄÐtHB¬j€ªfS?\g¿%Aö´BGG4 @¾\Þú½÷òûÈåFà¿øw{¸›û‹ï/$½ÝÄ?ÛÃæó›‹Ÿ}S¨ÏƒµfsswÁr# Ÿ[Wllár¥‹ÍÍá"{z¨ºêòæO@ãÄ„FÁ©ÐÝì.¾Ë¾¸¼y‚PÅÿÜüµ)òàœÅÁ6/œ ÅÆ„`E0LôÇËkçríŒÂŸ"7È]¤Ÿ.&m„T›9ù/^ИɚRåÚ˜°Ñp$í5“H$Á ¥Ò|ysñ ”Êmîû »°y¾ýúB)¤wÀŠ`rç6xÜÑ~x³¿øöUîΟ¸ SWqJ“Ë ‘»ße nÈo„ç3̘\À†à¼pa” ×ä asR[c½ðÁóØ›Åy_Ìﵓrs=#˜k‰ÌC¡t’xÝ_^as!mvz¨ð6L¶m/UÈ…°&{Y€ä`ê¬ìê²ÙV‰$d‡òÔÕ®.Wv%…É­–i¡&Õ½rì¤rÞ\Ë\Xg!šG¤Ú­œÄ£êú°™de³[ÑrésãµJ[9¿Ð¸ÅV„rú“·¢•ßÌHÊnÂ(äí “4¨§““Uf‚ž-Sä¢p>²4»>=àY¯•W¹T`– «ˆêUÕ÷Us©€6(?•àþ »RÖh5±‹¤J$H’ ø¥ôYµ=µÝÕ%­#„#¢5y¥Óƒ+ù œ´r;–ÞOµPYØb`Nñž”Ìê]:…WÙ©>áo؃̞Ӿ‹¨ƒ9ðZ£g)²›\;x¯ƒÌ†ÓÂ/%4dß“€*Š•—øSJ©a&Dögíø¾Á9pá=”=þZj“{+#×½âƒôÕ{Þ®4YÕ•{ 4dEYßîϧºmð¤Fø"»k»ø|¶«? ‡ÕBhý8´½[åj ÷·t܇¢ãœ 0t3#¹ÍöU9ªYÝܧ㩬ìAzã®Y®ñè ±÷5³‡¿&ö¬ìZZƒª4×ð[±–jí„A€…•øaÓ‚½ÎOáÉ€4H0°hͱ‚¶fðw·— ‘Îj8®Íþû‹_Â4ưg-›øà\öíŠU½…‡_?ÝÖѽ¿¼ŽŸ@‰Ëãq_W»4|mÎöewOj ¡ÒN&Ü•§2=¯«Sölœ¤Çé¶å¹¯âÜÞg`p¤ìà <Ä¥¹¶íáx>•(µr[Ô´£"ë·åõUÓ–A}û(UMÓøPäF.࿹ È¥Zè!Æ`r›qÀ®9Õ¼ÓfnKbÝq©ßs¤˜ËayÕ ‡<Û–¿o¼YDÞ_jælwàp%íîíMAU‚Ñl~ýö¦—RºÅ¦n/,›)ï‚eW,<ÔÖÓCyEY÷é)¿è°ù¾nª²c¥°¤eO5„«ø½ÂáµUX;×,rùHt> ε=)ºtp›`ÛðÞ¡/„߆]ly8ò.èÅ̵7¿ÃšbÞ7q0¸kPüž?/³äB¡ÐBÜØ‚«ªÿ\íÒgÏŸzèûê]WƉ|‡§®6£ØÙ§áýy;8ÍbD:þ×7ÿ~ªÆÀ¬ œÑy>#üFŽLŒ®Ï™Ä,C˜sNaè„ñ ÍN9¾vu-σo )eמqa#1ÖYÛÕ÷u“¾ ð#JáDéŰHõ¡îOi¨Ÿ® \xºL|ˆ§K“뾸^=YÍÊ¡ˆL JG^K¢ÖHqþ8úbxdK ÆGaFâ‰÷äàÌèi%â Póg¨iøˆ¾ð®kñ£à3ár€QH÷Ód°P×¾ÛÏHÜÍ}®¶d:y•_SCvÖŒ»i¶ T„9ô~Gë8d“Îví¡nʪXzÅs(ÖP»‹Ê]Oöw¸ Ï”_sp|˜Û^ŠŽ ý'P[ÉHSè§%VÅÑõýñ”(˜sWÃa)’ GGéªCµÃ-‚£‘ë1jzR0ñÙˆÊÅЊa¶é8§%QŽÐeG“ÀVÜdq•ý¹êÚqéCųúýò'`̹¡óã`"Àq¤/lâøx´]u¤(ËÀ°ÙPb›ÎÐÉÔCLÁ´‘dUÄhm4­»-ûê*Ñ謾?!o•Éø·&ÕlªmÕ÷e÷?ƒ/éÒb AU_wÕn͸5>/i^“@o‰öƒÀ]íÁ9ðà]Ïqãd\ÚK²~T…4FG<7[FĤ˜Á)§rÜ&»-é)Ä 8Äáx¹Ä$¸” ©àb^ÈÕ\œf­ô¨

™Ëm!mZÿç(fÍxéœPš‡Xø§—€ö–Ýø‰4σ>L ¢™·ärF®FÇ==Ž(ˆ›Ñµò£ŠŽ$òÂÌj-`aP(#a¼mù»êôв::˜cׯ1² ìN°÷ãe³Ïë–£#zÌmÛìb>E®²ÅäñºÈ'psÞÈ9Ÿžê-#\æ‡Öa¡X‰xzíÉ<Þê?2FsFAA瀀ÇúG4!˜8y¦A ùU‘ ÔÙ¡î{¶Ò4÷ÏåóêÃq_okª:j§È„1¶¼ •å+¸¾ %'n³I:àÒs¢¦©û‰tp(àƒ%Æ>æþ’>Ã1î©Oý úæèü´’œO9p–‹ïž\—,°«Ø€b©EâÓ,̪iÏ÷ Ùó£âïöÝ©¤ì†ž“§À•Œ.>±ÍEî°ÍÑ.uÐâHèDZݸÔãø2¼¢áÅ[f ^YýºÙ΋±¤-i0•=¨]H s^'wbŒªß,Æ.ZÆÆ¥æVÛpÌV€#‰—<–/ãô?æê-äë«U~Wà¦Ä+Ï,Dïs€·ÒäÎÆ­LKkÑÑs\…Ÿxõ¡†“"'èçRß§éJ È·Ù·Û¡€ùð—ýãоjÃÂ=œF’IM ¤,³ü*¥î:ƒ€ë±­ðjþO®Â¹À ¤çßpŠ/^0RNgù@åÒøAº¹Š„±¢„NupHðšµB×>-&íN‹' èü:iõ"ûuy|X6o”þ'õ>0‚ÿXÓz#r£*’6ÝýZêWQÌBÖÕ{§´(fðsRTóðc¼qî¯jZ|xó&F‘+…·!71¨¬gþy»²KjNÏi^ôf ¥]aÿ ÁÒ'EÝÑÿ'§Ä‹;+b"«ÅZË:ØîzÉ)Œ/ðm%ÁV “ƒ’üÓÒCήEø?;ºÂÖÊG”Ä-•‡Îi~®8‚¬ —Â>Ý'³[â%ˆv[°7ä62vŒxGäò,ëx+,ôÆ1”Ëš ÁÀ#Un•r<õ?¼èOc!,‰—E®g$?š P"µˆ‹i\{\¤sÇ4O7>Ak ñûö3MRR`ÅrFó£¸3%É'üÐ] ÷¿Æ^ ×/„‹×iæ4KV-›žÂ ýv'–î|éB“ q&ƒ=€ÿÀ¢áÅ›×»f&¯w! ö`º \Xow©OëgK7gf ,‚4r£ò‚PÑ+-æ¹KöÉ¥…‰èMÿq©ÁN,rX(ª°lxN²´¥ŠTH¼Í˜ßìr‘¶2_syý6¡Í=Hû5^,ò¬0õ{„¹mH¨ e=ûª¹§ª¬T"‹½6 ¸ºìÊCu"¤¯À?•Ûm{ž´%8Ÿ¢ññÆMÉxÏ10yªwÃ:ÂM35ç1à‰º˜êë‚På,ÏßãåÁ•5®ø)î…¶'n€!íš”ÿupݧtÇÇ x7‹K¥Çs?âRmOõlR¯`™¥Š¨³CÛÓå5V„m{8`s“ŸÃ¿‡j/Ou†—Wé☦ó&ðÈ­ç])SÜf_~ŽW°‰exE÷³ OræCho¨Öñ“ ÄTïñ²!VnWlˆŽî_Ð¥|IQk ;—š›š”ñ†=<ºÔ„òf>ê0t⸗֡k†é÷¤Ä?¯ªÀŽc?ÇGê{nÐÀT(È•ð-Ã`‡{7ü%¤¾@×£añƒ]ëø3•ÉzªD§§‰Nk‹X/A$ïðŠB,¼D ¬ò¦óôØí£.¿ 97ý¹>Å{‚SHöÙ!pû®ê¸æB_UjÊYNÔ£i¬˜un—–‰bhz“5íi|X¬.Õ|õ÷U{—îˆ#±_B\Õ"6Jø®ÜŒ\¹k1kúÕ¡ížÓ Øþ·ÔlpdÄZ\ý ì3'-ŠÈ} ¯õ!Þ3S¢È…›ù<æ(¡˜CÒ†9CñÆž[«w¯^Lœö£>ÆÒuvZò//ýxvmoqóÕîØl7±Ôw(;&>Å\ìWõgçž9yÝß•GºC7íTöx…òH/ÅŒ¯Û±z¶×C‘ ñëtwަòÙ—‡­MÍc‡—dÒ)Bò6:!Ø<™ ƒª×cÛ©ûbM¼üäÝgoÎwÜør€×/\`Bwg«fŒ£—¶k4áÝaÅàÒó]\D!ùøé«fŒ/nHp8H‚á4PN:Ÿ®×€[{wݧbŸæÉ©_Î"¥W~lâÒc Fr>¿îOÝ_‰^gÔMÞð¼/ÓÐÔÌ¢a/.aÅ•Æ;Ìše{›}@¿nW‚wEî9µCÆâh>RW<Ñ,@@C¡ÝjËÍCòö8Cì´q'4uÚ!‚çºÚSŒˆw¬·)pñê†COšZßßsWMQ¢‚^Ÿ”ÕÆìˆw¤²2]i›Oe_66&7pHc.±Ú€hÑ)¯ýÃÅÿC¬žendstream endobj 437 0 obj << /Filter /FlateDecode /Length 4160 >> stream xœÅZKä¶rœSrÎ&høN°­ˆ¤(R{sÛpØÉz€ ð&€¦›Ó-O¿VRïxóÃsN=HQêÑÌ®Á¦%ñQ,~UõU‘oy&9þ…ÿ«ýU¾Ø\½½’ôvþ­ö‹ßß\ýîµQ —UeY,n‡\Hã²ÒšEil¦´YÜ쯾~­ª,ϵ·×KúYIá×ëæ°¹^j«³ÊYÑtáwUо­›ƒ_ã “åRЇ¦ßâS‘åJÔïî|»ìêýiçc_'Žwiœz·‹cX±®ûØ3‡O‡u|¨D¿õ‡ð$>Å3ôb9@ÈÜü4’U¦ZÜüùêæ·Ï¬VP(E‹sÇ«…Ç\º0}«Ä×﻾ý÷_HÐ…wÇ–Ç”E)ΰ†ÇpľƟRJ-2EgNVÕbI29µ¸YƒÊÿäÛƒ‡~EihùìS|@M;ÑÒ‡×øWJúç·…hP¥{ЉrØ Ä½– o zÃ5A³É ¸”@QŒAaU¦­`L÷Ãh Ü®¾]Æ8ÒE¦¡EìrªWƒî¯M âçNÔÏRWÎD½ÒÚª$ÊR©<3yôRáxâî|XõÍñp}ó=L,óÉÌe¦]f÷,â«W÷§UÍÍ'r–2“®ˆb¾„s,N€U 2k€çé€pˆo-Žmß1’*WŠ:þ¬eÀÄy¿Ãj‚£6´„ߌírªJ¿ë”ù0¿%ìž;îŒÒTbí—¬šÊf¦tv¬šïÄ ¶·B“uDMu¨Ö”$Þ×·ÛÂBRA¢µïë†8ï¼_íå[¿;AO´‹±>Àaº+d­¤ý/vÌ,Ua2åä7 wž ~bKî½nö¯A!ç„:Ë BqûÔ#„j]ÑÚÚúÔÍ®®D™ŒùØÕàRÕºÛsOŠ58RÜ+pvïYõ¸Û§öH¦£Ä»fíyþ¥¬TfËrºó ûh*ê pCŒî¢BSÇ%*ØúwlŽ×ùؼ{ßouBå¡4º ñFü¾¾oÚ0œ…ž}øˆŠÚe/ãDF(ð=o®ÃWXÃöY±I€Ú†Ù\%Võ!I76•ðÖI„þ:NcDŒ_¬xÑ“.ÐqÏýòx—"yß2º|„&xË1ÚizjíÎõ®ù—O˜žÀbØ¡CG^“Ë clÃë&t`cM Su€,ŸEØÅBJ‹B$¨2+*Ã8Ù륔ʈÏvu×5«zÇá«r…øâE^•*¨m[™ž7sX–™-œ‹ƒÿm[ãv•ŠÂ®Ÿ” Û¸® °n„])9¶t±µÁùv´ ô¬&âÑ+ñ-‰´‰Ýx˜­»ôîEÛõ驵¢Ë¤f}Ë #Ÿ¹>¯x6I±ÿ6´ wsíÐKB=¶0lËÍ1rò’ßYõæ\Ÿ#x[ñU‚,Y1R*-êCE¶¾ÙpÈX:0•ÁìÎ>K@—_÷'֣Ǯaxp+ 1 ×)Ì h ñ—ºnº¾>¬ü 'ÔµÍdýŠÑˆfðKfd‰Ä õJ&1øÓ‰!òamæ­ ÆÚ32‚!ïkôÕ 0‡è"ȈË<¦4†ɑʸ\Á—Ãè ,=˜Ó…è¢Üš­†~ÇñôtùiѲˆeYòôKçÞK…[P‘Á?Ä|lï;|íȇŒ=˪>£¿ƒ, Ž9pž ð!ásëëŽì¦­‚žp*@ž¸'&Fß@kî8ïËaMæÉ+V¼õ«‘ÙTš`ǦŒJs¦$S¦æ¸fvŽ•¡ .œ#v‡­ƒÛH6µÐ¼NÃAIù7õ¨~ Qi&»›ÜDªÌ$î÷ÊjÀ+Ã+µ0«CˆV…R  ²¹öG]n°KΙ™À@.­Z,'Þc'|±šqm¹Kà¤Q&ÀI)5Ú§IÁp˜C.3Ó`I›<ÿùyµƒØJúô/B²ãWHWéû£ýÀÔȶùy\q»L¢/²cgãjŠÍ!`Áiíz›ZŸÚcše>^G FðÝF[UÊЪº# ¦bœ^Bë0IgLè}I^V3ðØ®»»ë!‹‰Q±‹ÃIf8y»­oy¦THP|jø¾ñ»uÚb®8¤&ÛÑl#À4“§½o}w °Ì¿Œs¬nÐ š†A׎¹@Çä¸=“˜f*S75ãh" Y]|«#äÔŸ_ÃAaÉ{Zd˜âˆoyLGú'rH3°iRSNÄèe®ub7u{ÛÀf´¸‘u™&½@nJ›Opå&†áZÈ<ÄÐ1\é-¥\~ýµåÁ]ÅÈ%ÒCžxapë84ÈrŒ!0͹бÂA¬òï(˜Bz+üaXÖÁsa ROˆïUHLšMs`úßWÁá+úº†½ï^ÆœH|fjQqîF+о&FVréé$àRéèUþ@žhQ®f\Íœq)¿Ei†üÍv΄I‚&Jj‘[6äbJG^üBÈyufÈ\$v1¯“%{‚÷þɈàY($•n”›ÿýÙ…‚E™2äîéu•@ Q`<>D ‡º>[Z¤ÿ'iÓ«‰ÀvK dk±œôY_J6 6Ef-8ux^Ü¥Á.%h`ßs¬*õ쪬ÔÖU‹‹þ]*íÔC6,ÑI6»zšAÌ,ذ'µõá¥ü— åÅXlÞ¢S²û#¸·Û]ÈD ,³!´1Ro‰úpL§^3÷­¬BÀÅ‘zÊŠUÅuµ¦ ¿óD‘4á²éãZi²n¤Íç¾N©.ukØñ¬ xŸWƒÇØÆ©\p­<<Ðï=„€øË°¢Iý, (20"´‘';âÏ“|êkx‚äó€&°YË™ö ¤±di‡gÜÄ£€më2¶üî|M~Hnæ‡`‰Oh•R bÎbKH!é«[Ø™hU.xˆÊ¨’È Î½_GT9•©â‚iÝl©"é0ê‹®÷'~@&ßú·ç¦õ±¨2ÕHPäƒ>¾!BqRª—c£æz(æ¼dCÜ9åéÌ€svOìI1á³@[ÀÀ&ÔT=â³QŠLH«/ø,VC&]D“ªÅ þÞï#Q£ ï˜Í€ÿŸÑõ?ÿ¿© ùødÅú'WS$Ñ) Á !˜HÛ11ÁàоÙ{pFQ[,RíF™˜UÚt1…4WáÉŒt1¼áríñ°{ÏOX×bEæC¥¢ìUò:!›j ô‚ËÇüÛÙ™ã2a—¦|:]x]åéyªÌ*›'G¾p>¥Dû¹p@Ìø@Sz¦õ¤´{î˜VSõt K™­Õ–3kr™”E1ˆù+Ó幑fÎIK`[©üüšbÔN̯0†*/¯cMÑŒÎ]a¦ƒ‚“Ôq€¨F9J5â‘߹ѡÌEIB‹Š«ýñ3õæ"Ïl*§ÇXV½\èþ‰²z•i¥bÿ鲺ÉÔ(Œ=sðÃykù\YöeØÄgW¦_¥(ËE社ŽÌ+ }èbÖ‹¼”yC®wJõG¿j^¬b±7$×`qì¬Ì”¼(¼4< °Õ8C+sòäÃILh¢áa  ‡kW°´ÕyÓò)çmì;pi&c†¬,ÖÉœÌ)oüt8Ãö¿R­ñ©‚b&D?/Ž ö××TŽØ1ùÕQB~%í€ýäš}¨'-¦ðÁJx*á_uÇ}}Jµî' ݱ맨_Í[?Êé m¸Œ ^„~¬=·Á½%²BcŒ(†½mÈ¥k>']{>eƒF©R„©³±”ð¦ú4äÿ‡åLY÷¶>ïAÅtl­é$EYE¢ÞeøÀgéoð(%ǨHŸ&Ýy³ñÀ¢Ö¡78*æÛžè¼(€à‡âcç‚áDccJÓ·çUnã+k)®ðHrÔÖa1íÐÜwëÙê’²–l(œà*‹yºØøPÒ·×ö>%}eq£”øêºA¿S[ƒ¬02«JòàW®˜lÀYlã”!­ ù¤Xµ¾z±¤ª9}ƒ%©Ð >ݺòþ” †}±¶$„sæ>ð‚N!轄°@q8øhàZcò2ÉÆûë@´c©˜K·ØìõLçÄ4f\ÝS• “BÖ=Zª¤bÙlÌÎ+ÆÉð&X„KfÈ1â Ë2Qƒ>˜P1 cÖ“šð:[NL‰˜¸å#ÿ;ÿ0°Y¾‘Ãm&¢)Š@Ð…»7:ø7.†PUr·¯é†E¬c•˜Ï£¹ømÅÏÏ ¾ Ö/¢Ï˜¤´w¡©z\ï{ŸF‡5ÿn%ÇݹêðôŒ.ÈY—ŽÔÓµ '¾h6Dâe#€}|—-‚©Üo0b;f7“B ½†W誹AïŽJ×Ç=Uý1À;¾l4 ðŽ“+än÷Ø4¦Ý¡º8riI‰ãÅ9vÁÀ4-ý-Ÿ)3eAº²oÝ”ÌØè Œ¾øþ‚¢tëþáDv&ƒ•0¯–îã ;•þ ê:X/úÑu ÑàÇÔu.$Bs‘|¹îfk¤Ê OúvŒV$ä«áèc{hÞž}¼nÀçµ%_—ÀCÞ?£3t³“ý gv!îø_¯š˜´¨’ÈE¼†º9¶°_û.Ü9Ÿ0s¹€Š÷Osv^É}ÆÛ ±Â#M@Ïw©iwªÛ82çÏswEúáp†ïÖ’Yâ!Ø/hü´:A2z=Gß°Lˆ¹Zp³Ï^M挜]q¾óÉ:ù36xfZN6j’9+æëÍ!Žbž¼‰ nâ_DÊèÛf` h)“ɲøð=T ´²"gróD½ünaŠXy‡3¾zÕðj—$–J ..*1Éǽ…±(b!Lãï¨|ÇŽ^¦(Gã‹ÂQ™gFÍ­1:³¬ÈDÚff‚€ØR•|¬‡p_²DÌiCwš…Å>¿¹ú+üýùW>­endstream endobj 438 0 obj << /Filter /FlateDecode /Length 339 >> stream xœ]’1nƒ@E{NÁ X˜±%k§q‘(JrX‹Â€0.rûüùØ)Rü‘žÝçÝât~=Ú˿Қ÷ÃØ-é6Ý—˜ò6]†1Û•y7ÄõA¬ñÚÌYqzkæïŸ9åhHýÆïÍ5ŸÕaû´ÛÅ©K·¹‰iiÆKÊŽ!رï-Kc÷ï§ò°­hûGkÙjv¬vÆ„€ |1øâX¬ÆŽSqTÅQÉ`Ö¥1! 1µæäÚ' öî+¾¯ QØ,Þ,h6 ›qá1Ä!µ1ÀÚQŒŠ£Tǽ1À½#Ž/TWÖ`ëFGÈ ÅrBAqAéâ¯?*îÀ*6J#u#…ÒHÝHa£4R7RØ(Ô6J#T¿ÔçíùýúKy>Œ<Þ—%+ŸŸ‹¿’aL/nžf_•#Ù/íû®Eendstream endobj 439 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 3591 >> stream xœ}W Tg¶®¶¡ª\âBÙÓ%Æ%Ï$êuÍÌD‰‚Ž¢(*­ˆ"{Ý@ÝôB/·W¶nv}Á m1Qc¢ÄÁD³è ×I\2ú·S¼“W%&Ï7ç¼9ŸîÓç?Uÿý¿ûÝï~—‡¹Áx<ÞØ-k6¯Zôþ¢EÜŸY.ï1®|`BþõÁó@w˜À‡ nù3&/ð@¢)hƤ_'ccx<ïù¾‰ñIi©{Å37$Fî'ÌÜœ¿'aæªÄ¸ÈÛÁ0L¸2!Ñ7é#qJjÚZÉžðˆ ‘{£¢÷mŽÙÿŽ7†ÍÂ6b›°ÙX 6Û‚a[±mØ|l;¶ óÅ>Â`«±…ØÌóÇÖbïbë°%Øzl€MäÃhöé0/fŒç ¯"¦§È­äÀØ?­W2~òø£&M¸þZìkU7L ›4ï7Þ6%6ñ7>ÙŒÈËéÚ'åuˆˆ/Ìîhiž s[e±ÀL£¼ñr_!Bθò ZÈÈ×(ë¼Ö¡ ~/>¹ ^êJUQr<´©šŒ@fÑfÑfæOûxÉ´Úå@¢´Nð•ÿÄ”»OümÌòï¸Fz<Ñ*Ÿ§>hZŽÆyR·]¢*‚º\w@O3ŸÔm?ÊwâÔ€Z†ƒÃPòÒÑ[×;M[£„LÍ‹]?d  Cß‘Ñ">\ëÁo·$¤n»3ΞÇ;åvMèá5¡i(Íà#µk‡€'[àÌ[$C~ÉðÐb4ùñò9uvßaèé5Õk€\Ì4®—mßßîoÞš/4‰É ±ý6$@tVrfb\V<$@¢#³^Òl=¨m'ÙïNÇN×3§Qêq-ö¤]³žoüYõ¡ôïÛß÷‹žoÀ5+Žÿýâ»Èm⚈º]€æ’6¢Te˪pE®NF« Å|ÿÅÌx€ uG·ž×Þ‡ïà±MBäÙ–Ò®üxÿ˜c×’©Í¬ÒWÙ¬µE†"(¢QQ¬³gÅÇé¤B®M~ž…¤ºšÃ‚+¶ySƒjPÚ@ަƒÙêDÂ×ØÃ¼›l6Dh:¿’ËQEÆB ««tRz¤ø%Ü«ˆ6q·¢‡M넇7Ñl„û#>ó֞ݲäýô!Ƈ@ÃŒY”Ëð—¾µ»ƒF*ÂÖr¾¹È[6fö5{°šf™H ³Dˆ—<ŸrÂ(­–z OD£ÏÐÛžTñÁ羪Atodh¡õTTuµ¡Úû U~þÉ×›Â0 %Acö”“”Ù˜%3ʼ©b‰Ô ñöûïÉ죮¡kÄ0<ˆ¯c¦î6†@(©&RÏ|ÈìNüw4“£ ½ÑãQ>˜÷prcóTÁݺš >««Ñ%ÐÌy‚d/]Á2°nz¿fBo<æfk²!“¤ÎD×'u¶·è=ç_»;46-L,Ô*ó”ú\’4ü¸Yçþ!K>^Ñ,¯Çõž”×~mºÂGþ,õ¢´‘šqRjv4Dú㻤dzYà/ä–Yá¢=R…šrS%[TJ\¦QËhf<¹F¥]GZñj¨¨+Øò¬ºúœ&mC×zŸ|µíÌšrZäø“>!Ouíé˱ -Yšt–…x¥¹ÈNß#욢œ,™ B=®‚ì|¥9Ó’aÊ ·8:ðl³ØjAÏ{"œh‹Ôc >y·ß“úÍ>Y°6…ñž)Œ ¨«˜Lñåâ†=ŸäôùYÿ±Ûe†2(¥ƒCñ}ÚMaáºÛ…¨M!¨>'3m!FÉ–×#•¸Þ8ëñà÷ÂOo…½ê æ4’QhJ,·m»¬9Ç ¿©ì I5ú»#ÿÓ\œfn¢]nÌ\"BåÎê«l®‚‰ «WíM6.D¿²{ìMì½\CNK¬9üv–R¢á‘¡ù"tÏ9ß54ìäâ`ål4N^­+P :A”ƒ!Çš›Ÿ‘Ÿ^q‰ñrÄÚw–§¨Š ÅÐÖš‚êÂêv=A/{K•©Èb'óW^ `Í%uäé4zmF¨WVTöÞ¬¨¬(/J«Ò+ÿ ×ÇNŽ¿f³ Qš×ÃkD¯¡eh­p½#¨0VZ*€üÖîDK f,³<†yíýû®8Ï×õ—Óf¹AnSTE÷A'Íx™ÃT{hC‚º…f0wøÍžÅ@úùä½I[ö7¥¶ÉRó]@èËUö\‰f3« Ðì 2R|¨cènû—fz4)e×’¤“zÜDnŒ›™hš'õÏJ4¢ 8¨©Ê‹§G~!N}ÍQ§2û`ò¸ÿ#šÜ× œ™µ+,;)ŠFÝ/4`Ä.Іš‚BdŠŒ¼L ©áè€æÃ4ÒÖ¦sm¼köùˆN"@ Jƒ’#Þgíñ Ñ’°ÃíÜéƒè¬ë-<[dLCBwwCSçÕùe̼>Ìdæõû uq é|³ÐR`s@i"tv…1H-ž ú¸l‰4)V äÛ Ä Ûªëœíéí’R¡„Uþ`À9ãªCSùœì°¢3@È¢ôqÂÒ8ãðø8SmtõZ¥E’‚ôi§a?#<ͼîØWãØW(ÉÏ®†°•T^B~ÑÚËh­¢°ÂZa¹âÅÊ×çB×Ð='‹Ç‚V¬”ÈcsöËcç0%^¹É¹ÉŠdM–:K+#õ¸¶L]ª)UÔç²k*ñ’·æ´É[•ÕÚ:ö ¯ÔÎ’^.Q,Dl’ƱÉb•+æB¯!jk¸Ö¹™kˆ- ’™þ‹T°c[s8ݽýbü›ˆ‡á£­‰ G§ %¨ J Ó¤ÖfÚõŒÍã;âœ&>5"òa[§,©JhÑšµF ɨ‰½"v‹SíÕ”VS¯¶› Š?gÂ+~x†ßÍÅñ#áÞQµN\99ñÉæjÈ|‹Ê¦±ª§¹¼FJËÒóÅÍ0­ª°°Êf°•v}AT¶šš…-NF+jÇ[õ’<ƒ´ôI0?¸6e—¤šXÁ»±”#ËšN´¬—×€¦£ _øh)Š  ¼¼°¨üI0â1óŸ¥>̤U›zÂè£;%\‹¼dþª£áK“Åh éd'åK¥2aJdˆ„l®âŸ—éN·K¥÷®^­|ÛŸëï#®W ;£l·ø™5,n—ÑTOê§ŸYÉØ$ú”~Ù#î.CÃØß«sŽàPb(…Ròã¢+÷„Yru:¤“ÔOQI] Mg·´ù.MñÊ“ ÈQ“„ô ¹¾èEñ=6©Ç!D YˆÈ¼ãI=½ƒvÒ㳓 ¢Ê$…(Sw±1cвÌo®=«ü®Eh)2A1“l i ´n H é@ŠðD³¤Nß@Z°[ -ö®œvù!–¿ =:ô¬;»!µ•î(ÑçÔ ™&®”Ö×WÕÔµ&7ƈS”r‰P£U«Ôú\H*“YIê©--Õ”ê½tnøÌ¨ò-ét=Ó,³Áf²½ú@ð>~êŠnÓºÅé;6­,¿K÷¢§‚cD_É‘3BêÙ§öЀúõk$’‚²:§ÌP­¯$_1„­‘?Géô¢;\›`ý>qI=1 ›îŒ«Ãü ¦èIt¢úƒ¨Á9ê>R9»–õR8ïñs!ª¿K´@¥ê@be²9âÈ÷êÄ;7cÐDo;~º°³N‘%ªâÌÐÖw`­p;è¾Wwåµë»ä-²CÑMjoµÁ¯0rf]³ó*£/Ì7Tÿq >Ñ5D•IL D&© ‹NNÝ‘ ‰QÊÕ=ïõ8®Ädh1[ó1o¢EÌ®æo´sm³’u+µÕ/ÜŠ§W®ÙÌX‚ºÑôj0B>=¢1¢_˜÷ä75C/ٓس]8Šºâ¤ëù1Î¥þ‚ì?{Rß"5ëSßV¾»˜©°ìø·ãZmÚVe«ªM[+>jr}øa6¾Ü¶¬Cö0¯ª¨1–ÓÛt­2›f¶ 7ÊzÒ‚7Aå‘23iÄó¡8·@Û›ò±’u hÒ÷7ÑÔëa߯è¤wUn·ítlvĆ“äùcÏÝù‡ÿ¼b¡5Å¢+ö •–DD±¾X—¾ rX«qUz!ëì‰ûmqÞÔ·P®•Ͻ¤¬¡c)ô”¨â%sÿ`Î £<–9ƒ~ˆ›Ý?33­r¥&Eï.Bbg*!L“¼ZÚèu*ª?ª_gUçƒ4`Í·XÌ׿öjh¨7ÒI„êÜ™y!x£¶@£T¸S7š™ìî d%ô÷”q±4Ò™ ¦yT ©ÁÚšW‚1:ýž{Ò1xõ¿E+^ÖÁ ®îü>]ùc<ºó²¾x¥¾:öÃÿ©‚ºõvýÐJ¬TA—¶;­Yܾ«8D, #©;jU^®Z¥¹è[ë`udÚzÃc¯C7K¢•xŨA05<â¼ÔöÈW…òN(ÑÊÿ•Ků襑+_…F+ÿÐÏûŠßTñÿ)¨"º!±³³©¡ë\`ó¶ˆ(UÖ^!k·ò4ì0#·+¬é…‹ÄHfàÌÆ;š°fd‘€ñ»Ç½òÖ…ÎKÂ"Üaphzivn&¤@¦-«(§@cÖ‚œ›I@MNŽãÿmÂX û»‰Áèendstream endobj 440 0 obj << /Filter /FlateDecode /Length 268 >> stream xœ]‘1nÃ0 EwŸB7°ìFQ \Ò%C‹¢íd‰> stream xœUT{PSg¿—¼n•B%Þª«››•Êú <ÜéúÅuÙb­²EÜ*VA"Py@X†‡1É!(ˆb"PDQÒ©ƒÔר­îZÛõ1;;Ìêtµ»ÖGÇsãç8{c÷w¾™o¾ï›û;çÜßùM‰Ã(š¦%É©é+B‡~.ÍÏ ã.â Vë$.‚pqË<ÙÝ(<8õ‘¸ó JDÓÕÉÚ’ ]a~A¹#á„\aKT&®X±,V¹4!a…r­F¥+ÌÍ)V¦æ TšƒpQ+7ks U†Š—UCÉÊøøòòò¸>N«ËO E‰U– ”é*½JW¦ÊS¦h‹ ÊßçhTÊPq¡-Y«)1T:eª6O¥+¦(*J[bÊSå«m_’™¸teÖê…•Fm¢¶QïR)Ô{T*5ZE…SIÔ *Š’Ss©JA½FÉ (1•Oý›[æiD~±X<_¬ƒ„‘l’LH‚Ò¹ÒLég¼5‚o3÷ñ‹½tÿM‰x²8+ú ‰$ò%™Ifþê&ŽžgéÝ4î¹,Â3¸Ÿ…¿ïÁ°­(JÃȸë{€©µÕ[-kKw~+†‘y@N‰.%ÛÉ2×fÝ·,ŒÕQßÖ~÷k¤Ï*Nïy ÎegàYL€Æð€;ˆ“ ,|ó @濨’EOÆ÷àDÏvÓ|D@Ü"´×Õ=nTräK;¡ËXeÕ 2L†eÕÂÑØ 7i%˜ÜÂÇ.Ë^Iôºh¹èY™ŸýàEÌÂl™Ði£7å¥ON¡K°! ^gáŠuªàÛ÷Öx6Á°F¿sIQŠe%¬÷‹«Æ~}³rþ ßô|ç»Òü-Üfˆšü•Õ@²Ë„’Ú 0% ÍU¸Õ>Ù}çËÃp.—wÅø¬† ËjÓʈtm­.dPm‚7÷ÓX~C„ç‚rÖkwè©âAÜ.¸g2Ï]²ÝÖ=qŠ"µtÈyN ë. ½œÊ"Yœµý8 t=yä§Ï<Á¢ïDü.|—ÕJm5õi5•{ëR-1$Eúà.Çù—&àÑ”ÅÞ¼V¶:!a[ÀÒêöuùÊÜj‹ìûžk_œæÑ±Ø”IË·oåÈò‘Ù,„a/—†$…!Eÿ)fð¯³>½G£Ñë5ÅÏçñö+ÈßÄýz¯ð¦+Öxô›ǧêäõÜž¤_ía[HŒ 2÷p†?Äé1‡{$BãQÀwô¹àoDÁ üëêÚn„*îùSi•ŒeÝp㟑l¶Ã îTsÏ_Hkʸ¡ãÉ>{Ô±Ðduîm!,NËÃ÷“ã}˜†¿ÀŸíßïpBÓbÙß°'1™Ð*¶/Ñ¿d:$·é$™vDþë·íÀ´4íoá"ÓÄ˺Ã_£¨ÿîüÊÖendstream endobj 442 0 obj << /Filter /FlateDecode /Length 243 >> stream xœ]‘Mnà …÷œ‚xœ¸4–¬Ù$›,ZUm/€ñ8bŒˆ³èíû']tñžôóKs<ŸÎ)®¶ù(Kø’ÕÎ1MEn˽±£\b2íÎN1¬RWŸMs|óùû'‹Å™7~÷Wi>»¾×£v Ë$·ìƒŸ.b"晤éßU»ß"ÆùñtXEN¬"Ú!~èFVÁÂ* _:VÁV@׳Šô¬úŠÈê4³«™ZpÚ†«m8qZÈÕB¯˜§ŠlYluÈç4uÞº¹ç¢l¸—"iÕõêúêÖb’¿ÈK®Q2¿ˆù|Ñendstream endobj 443 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 2264 >> stream xœ••klÕÇg³vzAÁ<”…]f¶¢Dm‘M!Q )”W‚ó”8!ØÉ:6~¬½ï{Ç»žÙ™3³ï‡gÞõ®½±½ÄyABIœ¦)A¨*$E´|¡”*E ÔÎÚcªÎ:´U?ôCGºW3ÝsϹÿßù_Ö°S©TKŸhiyö§õ·µfUíî%µ{Ô ‡æÅ9#,Sò†ØÝ7ÿ艿]¸Uj¿ S«TN2ô„±ßaê:ÐiÑï^½fõ>ez@ÿÀÚµ¯Ô?¸zõZýÏ{ ¦®}m}ú–6K§¡·Í¢|ôè_0îë2X‹KÖwZ,ýëV­²Ùl÷·õšï7š‹~s[¯A¿˜èý‹óÆÞ~«Å`Ò·÷L}†ÝÒ×Ú?°is׫/v÷ül=†mÁÖb۰籕Ø*l#¶ [ƒ=‡µ`·a÷`MJÙXvQµ°ä}uoCµ±­ñoK‡¾÷Ò"¿éöÛ4—ôUkwUUµÊ5µtJúRøèÉQ`Àâè6µ“ÛAC &‘åcÙ^ø¸\­: í>—oe$¨~_{ÀJ™èÊDÉ@#kn(ŸÏ¥3q\ˆ&f"…±Ï´±‰p>ZJš9wäHaôÄÔy@—¡Õ¾u¯Þñ2A;)8Q멾:+iÇ.íðp;»¶·okdÎ ±\¢Hd޽)5Â,ú¤åÐc;7¹Öo›æ=p¬öõ1Uí‹Zƒø@xày¾P–VkÇK‡ÊÉè±ÒLlFù€2ŠÒ _Ÿ|+okÈ:e“GäÂÄ7Ê€<~OϺ ZŠjÙBú¾/m×rB D‹â´€â"_qi× ™+ð4`;oƒ³Ëîµ-†DCC›; …KQŸ3AH?–+Vû®Ý]:y¼ÆÐ±’ñp^3¢¢Ã |ކ§¡ï1•zˆhÆE/ <¼#9ˆð‘¤(ðB„ç%‡Ô­•–ËÞð°ÀBP´ÍÓD”‹3³™-–C0¦dô>P€Q®PW€1vP:͸ÀÛHä}DÓÜòöcÒ}7´O}ª¾.ߢ¡8j/x†2ŒXžå‡D8¯…'!¯Ì+éØD!áBá4„YÑN@æHG¥3ÄaiEùÀó[ “´R³„K÷~óø{­{n# —ZÒ}°̯z­æ6rÇáUüCyrú^NŽ ú‰û5‘ùBõð™êi@g¦;6wÙdõþÍD׎Ý}m€6Ø®Å#B”Mµ+ÿ)éÃOÕµ7ji6M’{;zí¸·Ôyò@òò=r³¼BV]ÝüÇ·N•ªG Žé‘ocÞVà6rÈí“?F'Ê¿ C™ÈCžUJ/²y@ua2^pÕ+@ˆä ›ÖtÚ÷¿²Ó´Юž#¿>YújêmâÈås•c€®æ×¬§±i>ù¨ßÔVh¸ƒšM}ýÔüùlåPö`â5!ÉðPB1:6l5²`ÆÝÐnžä; Ú¹jˆ(q@A¼ƒ.†eƒÜâã§ÙàÂÓòií5érü5!þ1èò"ŒGؤç©V°pÊ o©saSȪÄTàwÀh~¨"> —|×B^ë?¤6²xÁ4¥R7Ø*Á?%(q¥zŒ1g‹€bõƒ!a0èÁAØ ¥ð1ÊÔÕ‹–Åw@H‘—nÒJÈo*ˆ¹_æt¤ûFäÉß…a’ÈAŽSŒ²Y@©Ô"¬ÃÄ~X$ÇPÓüK7No¾¡ö&õFaü£"_JÒQŸy+fâEÞƒ!'èœ/éÎBœ8ÍzaŽæhyÉÂ&­_ú÷LÏ6O°Ÿé! ùât*+$3^‘^lÌ ÿ_:A 7ʵ ,pˆåɜȇ&ø›RÓô IèOKG×N³róÂI-e øŒ1° 8¨/fØÃx €8Á›«L… ‚‡ ¾S0ÅMÕéž„*; ñE¯û—ÕQÐVä­¼E yå šæ~è«JÕ/ĪôÊÛ*IþäÝ¿ª¥OçVjø°…dmÉÉ ~­“órŠã+½–Œ±Ì®@TzM¿0«e\J7‘©àÏ$óáÑ<6r\Z«^ üÖ[•vˆu+Æ<Œž5\¼>#­ˆ/ФÜwÀø˜"²N¤²ÀG D}‚4\ýIùÑX9SÌŸ9{ò`D9‹„¯“rauOPâØáìÙÝÕ]Ïm}iß|ÇË=Ûû|Õ¹%o«®þ^-û?*iZpjÙ¡ > stream xœ]1Ž1 Eûœ"7˜ÌŒ»r ±{à8(™( ·ÇöÀ[|K/ù_úv·Ýïö%϶;µ h¶)—Øè>=’½Ð5Ó6fœß¤o¡šn{õ÷YɲÒÂÇp£î¼r^Ÿú%„S¤{ H-”+™s°I •øïë{ \ÒÛ9ö rŽ'ã*ÆApã(AÅ=ç¼f½d=‚ŠÙèÕìÕL b$Æõ¨œã)=?¤²,ÿÙÕâ£5*³^H/ ‹çBG¬S•”e™¼‚mÿendstream endobj 445 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1162 >> stream xœ­’LSWÇßë+}GêüÑ(›{m6‘_F3C¢+$€ND‘†AiûÚ>@JѶ‡‚€(?% T*beBL [aÓ83ÙÐŒ¹Œ‰’ŒÌ¨»­O—=Xöã¯%K–{sroÎ{î÷spL(Àp÷Û"OZ7{ö¾Ž{— ¼oÿ|»o³ ¬]æ·/@9óQú«ã…%•[´L¡>ç@6+Û¾6<“7²ˆèè¨Ydxx´ì=µJŸ“©ÐÈä 6[¥V°ü%W–¬ÍÌQ±…s)ïd³,³!,¬   T¡6„jõÞ­"+Èa³eI*ƒJŸ¯RÊbµV– P«d³m†Îš-Z5“Ǫô2¹V©Òk0 ó×(çª#"×l°D,KÅäX¶[„-ÆhlÿMLˆ•`¿á£\0HD¾ÐOç5‹}QàòŠzp´|•OÞä‘üœÜÿæš”}iúÉ…•ù)ɯN™öH¹2ñ´’¬­¼Y5ƒpÃ\ou¬p‘±F¸"E[I$xÔÿù—Í 9Íþ=XìEƤq  |ìGdšï#¼Z4$yâá„iܼãQLkÞùî³íöÖò–Â:ÚÙä†z n{›¥:rŸe£%FÏ~Û¨ÈgºñïÝ]j§k?t²½@Uÿ ÓROÖ.ÒéJ% ÖÓëÝ’AGíÜít|r%ÔÐbßp¡g.!T*™y2ìöTwB ‹,µî7‚PUQÉ÷«$ÏXêÊá(•—kîÙ½tíCc½Õ5MÍ'OÓ.Ò`‰µà0$Øòlsñ£pÖrŽAK¸åKkM•V°€9"¬¬LÇd©¢­”’l¨¨êF¸ii·Ì RZiªƒh9Óp²Æîèêîêš\µ´-O> stream xœ]M …÷œ‚”Ÿ¦º0lê¦ Q/@ahXëÂÛË€ãâ›ä1ó2óèÆi?¿Ò¹ÀJ6Ã=>²:Ãâá‚ZoÖ·ªÕÜt"ÝxÐéúL@˸¦úݹÚo&-Ü“6uX€ìS;ç`ÿZC3Ìîg‚ U$W 6oP Õ`%ïUEˆ¡/R"˜D¯T…I¹­«?Kð Ìó9ŸšGÎÖº†Â,>À÷_RLè¢ò ob½endstream endobj 447 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 653 >> stream xœ=PMkQ}¯ic˜¶jŠÁšÌÆ]IS¡J¥ˆRÔí¢…‚PИùh&“L¦†&&išNãk&é4L¢4…Ī-úª  (n¥â?pçæÍtRp’‚‹{¸—Ë=çžAo€§¦ç^ïtW•ËPîQ®¶¤©úـ̽H½—±Ðù`„0΋õæë):¼Âø½>–Xp»<:Œc7Fˆk.×q‡"¿Ç"¦Ý¬¤Ü¬>‰9Úã'Ù•îɤeÃ7GGc±˜ÓME4ã½Õa!b~ÖGÌ’Q’yJ.÷èK̸)’è¾êìâM…—Y’!¦éE’ …H¯®@‡¢AwÔ$£Q2²ì†?EŒº¿ž‹.Ÿ—€¯ ‚›àŒnô‚Iðd!€~¸«lX´¥Æñ¹ˆg•_µ :­%I(oª¦åDr=½šµ·_œü]åÐÊÙø2W¯Ë¥-»åx³‡ª õ³ÖzµZ J8NÎ ŠDš¨î°(ýx›!Âf±h}j½ EZôÛý½½ýQ ¡ìî@5­Ä¬•Š(¢²Iæ«\ZR)»–Ð’Zs©Ê†˜F6Žç¹tA¨¤8®/ôJ¥¥m\•—óETìÛEìÂãG?¿?ÀcÚøó„˜“ ™äjUΣ¢ 9r¢6ƒgæ?™tiíñ!¾ÛPtùê°µ&•‹¨Þ•Ï­£,o?Ò¾Ä3%l(Yêõ‚öù’¼&¡ÍSÊz¦°²íhÿÁ}Êïö·Ó"(Ù‰!ù|ßP¢;ð+®ð%`•jù Ú2½¡[ïã»F´oç²$Øâ2›¥Bi»`·ðÓÔ0Õendstream endobj 448 0 obj << /Filter /FlateDecode /Length 239 >> stream xœ]‘1nÃ0 EwB7°Ä¸vƒK²dhQ´½€,Q‡È‚â ½}Iº)ŠÀ“DüêŽçÓ¹,›íÞÚ?h³y)©Ñm½·Hv¦ËRŒ›–¸ý˜Öx ÕtÇ—P?¿*Y~@y÷×p¥î½F=ò{S\ÝjˆÔB¹™œÃ)g4TÒ¿+Ø;æüç©àY=î¸yÜqIÔ÷¨ ½hD…5ˆ&TXgÖx2‰òÀ=³ö縚iPqn”ÞaD…5‰TX£èŒ <é’md_Iî”÷Ö¨l¯Æ'©-…~ ®Uº,c¾&K{£endstream endobj 449 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1439 >> stream xœ¥“{LSwÇï¥P®ñ±5‘ˆ÷vKæc©dQçD|-Ñ‘IâA-p"mµ¶ThKО¾ßØŠÕU‡tÁéØ$¢Ã¸Mç²™Í%sºÄýeF¢ñw˯!»Åeóï-ç—_Î/çžßùþ>÷’HO#H’–n+ßUœòróI./[ ìœÜ“èÌ€ld§{ó„î¹hlŠÏB=³‰$Ùªsú{O ~z­Ty E%«oP‹+%…’~[!^Q\\´L\ ‘‹Kä¬JV#Uˆ·IÕ ¬\ªæMâreŒU·L§¬iP«¬ÊÏ×jµË¥òCË•ªúµ©[–‰µ2uƒx;{ˆU5³µâMJ…ZüTΊ§å.ŸÞK•ò5«oSÖ²*EµTU[ÝÄ6±rV¡–)êd ™º¥‰=tˆ=¨‘6¥¹¦¦¡^ÅJùœ”KÄ̲ýY×XŸV°âõ¼!!mÄ)BETUÄ"Ni'¤“t9<-"°_ä\2F~“¶'í¾`•àVzaúõŒ®;'qC3Æá1òæcnü± qžS‰PÞÖ'8{eÉ.v½n‹t˜(³\=ÇN7}ºßå÷ö¹sêôÑÞX<¾ÔÄíbœ‹«ð[x7.Ço"ZŒÞ{Žò^Ü`¢Á“}¦<»E†¯c Å‹óP!ªD—QºNçpìˆNn(w ІÄ^ÑQˆ4k@ÝJO-Ílõñ(DŽÒhߤDÔšfжÑS…™m ‡>:'q µ “BA¢µˆúÁñ¨Z™äˆ°U ÍšcÐÏä !´ äÈ%Š«cMMj•B1 :sf ŸÖâŒqÕ'¹ê‰~/@Ÿq?ˆ`OGúN÷^qí>€ %K*רhìÏ´Éï¿ié´u™ÁLé6}¯ûóš@¥£¬Ð@áŠL¨…Š{õ£ÊÛ¶ Pa?„ƒ»…É÷4}a:Õœ§ÐÛ™‡›ß0V1XÞ‹¨Aø.S¼fìŒN–ótfòhV&ªx)4‡[è©M À±þW”לø[9š'²ŸûÜí·»<à¡B»‘ÞèÜ}ÉpÕêçkž£¯ì"Œl<¿ãÔV‡(:ô››ùÃ|f—÷€SÇ믧0¯LöÎ@ùHãØL5Â&ØKá-™PêF¹¶U~¤ª[o3詎„ž>½úÀžú%Ž(WÉ _Ê™‰™\…(tºÁK… ~½ÑfÕëh\¥x?j´¸,`ƒ\Á 3ºº‚zíÅÓÖÞn³€%W0„ìnàÛíçŵ³³Ë¹Á€?ì²zºŒÕ…7¢²A*'Q²sR‹|tYÀÝäÛ¡/Ñ㇡…I– h6"PÊ ÿ‰àB!Þ€iÞŠðj$ÆóÑz¾/b ˆQ†ͦr&CúsÜkçȱij˜€ëG'E•ã­Ñº7_+óÕ…³VcgáÌŸ°e¡ùQ֗瘫e}Í”w?7^à‹gý‚H>–¹ ø/çᬠL¼^tåÁÏOÔó›‹$ KÖ­,Úq‰2ë÷‰ªÖ¼+Á|äÍÿ|2ñãý_ŽnÆ¢ †'—£w¢ÜW‘—#°…{&ò»‚~òR°­0ëèämk7™- Ë…Ž ÙßÅÝÂ'æõ˜\|/P½žoØè2¸™äYÊàŽ&/©i -5DmÐ4G áŸ¾&ÊMEÈÄ,îQØësCˆêÑy;ÍV›YO'/àÑv£Å ¹ ó›}]Ü⋸øÎ÷!³³ÝÇ$h(#q ý¿þ3õøÜC¨Óct%/¢ÑyzÕnªSgj×ù,aÃùñ…¤u˜Œ) ÍQðÒ‰hü?¦æÐYéE‘ìñÆ6mendstream endobj 450 0 obj << /Filter /FlateDecode /Length 162 >> stream xœ]O1Â0 Üó ÿ i±T]ÊÂBÀRÇ©2Ô‰Òtà÷4iËÀp'Ùw'Ÿew½\Ù%èñE ¬ciòsD‚žÇ¢ªÁ8LÛTG„ìn:¼?`1]ç»I>çCYUk½¡)h¤¨y Ñ(Õ6Ö¶‚ØüI[ ·›óT·J-œý»’£¹Ä~pŽ‘8•¦¥I.à˜~Ïr ˆ/0CS1endstream endobj 451 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 483 >> stream xœcd`ab`ddd÷ vò541U~H3þaú!ËÜÝý3ø§#k7s7ˤ9Bßã¿Çð``fd¬nlsÎ/¨,ÊLÏ(Qˆ105H† †––æ: F– ޹©E™É‰y ¾‰%©¹‰%@NŽBp~rfjI%X‹MFII•¾~yy¹^bn±^~QºÈ…òÌ’ … ÔâÔ¢²Ô·ü¼¿ÄÜTˆ;õ ”kiNjcƒ1Ð' ,Œ¬?:ø~¦u¯û¾zÝ÷ƒë¿¬{±î{àºë˜¿/ø~Nt=Ûw­ß5S«§L«‘œTß×½¨›ã»ÛÜYÝs'·Njê•O›u¶xuËÔȳßžÌ~¸±û;7Çwùßê»sÉý>ÇVYÝ]Y5¯{ò‘ -‘ò:Ù#ÛZ‚š+º«*gwÏ•û¾ lÒœªî† öÉ{俇~_,º|CßîíÝ»[doÙÒô.§[­Û+7B¥‚ãwè÷ZÑÝkN>Øšñ›ë·hNÅo#¹ß2¿Ï‰NžÛ½¼{ Ç^öî©ÝËšçr|gc««î.ï®áø3‘½»±»`r%Ççï«E'õô÷LîžÕ½°wVï¬âï ¿ÝîYph±ñÉq±˜Ïçád`]3Ç1endstream endobj 452 0 obj << /Filter /FlateDecode /Length 2533 >> stream xœ¥XK{Ǽï_ˆ{Ó ß‡É¼¹)"¥Ä"›d”ƒœÃ X’H°½-'¿>Õ3ƒÅ¤Â²—»3=ÕÕUÝós-¸¬ý_~κêWRùúnSiƒ­¿T¢~Wi'<÷¦6Z;n]ÝU*xÁ½ž,ñÄîíðD-x”ø]â¹Úÿ®¢ã^Ö³jx"•¤'Ëý#÷õ°¤’Z²lZ~Ÿí+O–x¢âøíŒç6î–~-{ÒåI‰k¹R"–,';FcVÝ"ÏÛvÕ5»«~®d¸.?f]ý§›r¨#N¹úæ¶ÊèKÐq# #Í“õMW}bg‹®]mëU³\l'Z"/ʰOþqó}%5 ªžJ<¶_Ì+Ö·óÇÙLnþ‰­¬ªvr†v¿Dô¾ž*Ï]ð‘>øÄÞà]¸V³_&8­2°ö×´ÇùMõc¥•Ž\¬>òàq¾ÝµåR·ë¯ŸV‹Úñèu88­×\ Sk¸¾é´o'Qaû¨Øãr™öŸâK„­§LjQå˜7“)ÀÊ#ÒÙ¶o–£h¥1” „\Ä×h"—”g±Ê)Ñ ÉµÆy]à†ÒÖUìüq¶\ÌÛ&!-¹Š2¤(½Ð9óÅfÛ¬fí†^H¡)kNK$Ò™ChàYb¦2Üë"SÏD&‘ïè´†ëhRd?¼yM[±\TìͲÙl3àôª²Ü¹(M Ö§X7øÓbu7D*#èÄj/ô¡«¤G9 z`,×ò$ -beåBÎø»vL¢z<Ø7obN»àŸ«‚¨ñ%DCEÙ„¨IA,£=¸t ¤†>D©KÁIÔdÙ¬»æa38D­•uÜùŒ2ˆ@¤wôó|ž‰PkøUÞö}Û¯Úå”öÕ\qûÜlÚù O)*c]L`Àƒ5%”ɼÄügÁðH;vS@ÕÓ®”µçL ‰p”6ZÄŒ3ðòãßÀ½'J”ƒ€*ÍuJš@á8 ÌäΞ‚ž…jÖ$ã2è„ÝÙâw›"„¨Þ(ÁÞgës„ôÍÈ1~¨®@&Ö‹SêSi(š~Xë¢ê%´Œ` äÚì%L9¯¸&Û4X1é„…;ZΞNG€_Ñáp"gr Wm·†«@÷ՠެ¡´Vx¶¾M!þP€Ùæ¾é3ñ¦0ƒ9,ÔÅêvÝwÍ·$bG9‰øgò3!….~6…ÔD%ãa–úö®o7»DøÑ^á‡'ÖZâÑoÏQéáG.WßÙÕÕÓ=%dLŒ=î¥Ns ñðöÀÙõCÓo%§ €“^ýëÃÔ¼Œ€±0t­¿ÁúˆpN@¥r[ÚÌ֫Ͷßw°Ei„;`Á'ö%eXhÍÚÅÝý:]•l;¢ºÆÉ 0£šCIBX ‹nê×°{…`jî¢MTÍË¡lèrÙÅbÕ6“T¦Q²žþ@=fçÝçò‰ÃæsòÇ}ÜÊ€mQ¢‚´ q4/&~K‰Fˆqr8JaÈÈ•B´îïˉBÄoû?ÌssH ‹9¬Ú»¾y¸OÔÂÞÒ—Jþ|Ñ<,›Ù¢ZÀÆÖ“C’M£ÑÈS’c`ÿˆÀáLº´û­SZ„Tì|q×®eÑè˜É,¨psãhHæ!¨—Ãys£ˆ”àŸ'ƒ#®Èg¥À¦è¶Té¨á ˆs’ò 4Û¦wÑÜ™'v³yhF^£ÁC®ô¨4b¾¡4Ž:3Ÿ[ÁÂú?“t°*Ç..οfÕùPÕÍï30ú¸«0³C9o>&5’Á?íÍéœøCdô0”ÅݪÛ}’óh¢ÚÉÍeÎ#à¦6Îc4 ÿûð#ÍX¾´Òxœ]çýÃz•:'ÊF.° ]´E›f4öP¡GcÐñ+cÖ z/ùh1éì %ŸõÈ®ÍÈÝ÷÷aìŠsÛ¶ó]3ÀssTÍ_›?†žvË(Z´¶^·¹€à’F:C׋'z–uUhZ“fÃ2ÈôËAWAì±®^ž]¿DAvÝtÝzõjƒ–‘z£ÒÞW‰™×Û¬uÉIf÷Íf[f†ñX³gãýšÒ£•ì×E‡!š’6”¦ƒ–LBO/… Ÿ½ÒsC9‡Ä(› µdCëÑT‡“<•œÂ×VÐ8é3f¯K¡dÏtíŠ ¾ªŽ‹ ­YnÓ¤aË¢Vä³;µR<Äã±™¥Œô¥·Àþd¬îÖûÞbÞ.Ç6m Y|mÈî4É<¥é‰}yà1Ï1‡š¨¤GTL(@žÞ”Ñu¬F—ÍŠg —(é©•ÀÁúí¡+G¬¤±:)‹J¨ «à×'åJÓµ–„,ËìW0åGê» ’†ÅC Wív°„/ÿÖý¿ÆêBNjƈjT'0¶þo_2³çÕÐUù´ ¨ÛÕâëGª˜ÄzY»š­ Ù¥D’ûqŽ1ã¡ï@> w)"'Óå—õw_l«ŸË"úïzAº2˜mf}»ÍM.´ <8îTv%?—Œ–üa–ˆšî߬¤_²ËçÀRÔ:Üc¾ÎX]·ËÛb]A³¿öwÍjñ $“OYP±t$cµz×®ÚÓÎ/m©›I ."¾~ÈØKØ:5`«¼š ´ÚÃŽÀI‰–YÏ®hG¾©A4n‘^ v›t±…B7f]Êœ45Cõ1X! qEˆ²Â˜åÞS6’Z´Jî)é»v{¿ûR@@Æò!ˆq£ô©h þ& ü/ùγ铚“#YX²Í»þpž¯=­jœªí”^zõdY }õ‘Üæûôç2† òU’iÒDM†«ps ÞN&¼Ñ·réÝñ­çºGç”,Ÿ ƨ£ ‹ßøÂ'Æt­³÷séBJƒŸÓM‘T´ξó¦÷M×Ì›éû½ŸIúæC`Í⸈ÉoóDÞ`J¼ß¶}׬ЎћÁùõrNpŸõÜ´¥;­2"‚ÿÓ¢|z§.1{ÐK¡ÉÖ²´[ow=u¨†ŠP2ùÇÉ”zgL%åžô»Y¾ºÀ+¤1ÛmzÝ! ã+yE7`–®0ò vt_>7»ÊHM¦ò¨ ¸™ñ ’ì²üî„£ªÉ áß‹Ýh£?çW"4+#^´ÔÎfÄosÛF˜®äš u˜€Y:ª´yÅîaÙR‘.ü!gĦü´ß®/sc0QJÐLÂî*Sðs‚FŽD:¡öIF/wG÷Þw» ËÛ~ÝíbŽìã$^,M,ô4(vÖöå¡ ˜Í¶]•!wÇáÅfÉ÷/þÄúŸ&<·Có…  å;*3”ÑÕþóù=endstream endobj 453 0 obj << /Filter /FlateDecode /Length 252 >> stream xœ]‘1nÃ0 EwB7°œØ&\’%C‹¢í‰ 4DgèíKÒI‡ŸÀ³Iàù»;žOç’WÛ}´%|ÑjS.±Ñ}y´@öB×\L¿³1‡õI:ÃÍWÓß|ýþ©dyÒÆïþFÝçÛ£~; K¤{õš/W2³s8§„†Jü÷ª·‹Kz®jœãiæ©Gs<÷¨aÜ òâ¤Ë“.¨a¨a<Ô0ÁˆÆ(H¨a$Á„Föža‡çx2²¨ˆ°¨ˆ°¨ˆ°¨O©àõ­Ò†ôúªÑ†GkTV-_Ë•Ns¡¿ÿS—*W–c~!endstream endobj 454 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1836 >> stream xœm•yP÷ÇWv—˜`›EC\‰ŽÝ2e‚CRO¦ñEK ¶ÁÄ ;`Äá‡Äes IO˜C†’¸RNqz°p‚íÖ;v aRÀ­3¥Åm’zÜ”Éý¹uW8qg2ß»¿Ý÷ö÷yß÷}ÊÕ…îÒ°ã¯9o¶:|][„@âþµkíxÁõn ó…mÆÍ‘ÚD¹âÀ·é™*eR¶_¤Bž”á¢H“û…æ+“2äIòïmRµ1C±/;G©J(H”'IK§¨ÃÔêÇ””Цb¨£TKí£B©0*œŠ¤Þ¦6ñ¿F1”’z,HÜr©pù\)|äZêú›‘ÒïÒ&&à© dåùÔ¥xŠ2ÚB›×$þbÛ×ÛÆx¤}¸åIÇa‘ÌÌpŸvwèÒ%d†á–ÃdXc§¹;a¨¤ënÞý#°“'Jˆe}' !ýp~o†ýHÝq8;ßÍ‹`¹eRÄWãÆ'Û{ŸÒŽ9¼‡ýè&ô¢Å+Š)O¬LÈ<˜p&ö±V©M>-]Èý=°¸xßÀWˆç}â'!/’6Ñ&«®ôwt 5 ‚ lÅÙ)'ÙtN飩JERQ2ÈAÞ¢êÍé3ŽW³žO…Yvþ ™¹kÞS†Ü<îYÛ$Ú™@^ü‘8…áþpŸ4Ðð^ÕÙvÅû‰7ŠìÀ~òÛ©•C ´Hd t²&"ú„zzBŒVôg8»ø£”y¦mžŒàº€Wõº®…몶2íÐe¸ b‰Ž!žJî]ÿ¨õfŸØ¸Ç C¯ªèå…_K ÙÆÈÕn2 ÓmÕeHÈ1fbè.q9}’«´× f°€™Åßð¯ñ™¶/;3ùؼúÑ“&4Ê|¸ÇâxUÔYÛmìöÆ´Â_’ÃüËö%'¨RäÇþ7Î^›ïüÈ,¾P¤+®+jK¹fv‚æþÚÜPÓ.áÃä®d͋٠nð›gÑü´o¤ZÓ'%#5æn賺¥¨™ÅCdŸh;³ÿX|Dü‰žé?ý³wÆ$n2^„¦*ž´Ë©Û‰³¥`€Cj÷êF¡7ÜíxG$›fZ ® º¸'ê¥ËÛ/Ž¿R­®+5«g B«Ñi‡ÒöW–CyUykd,¦F+XY.s0«ãlr^FFÔõÔ‘¹„‚ãâñãŸÿ¹}´}´mÌdÛn'{eôPe“FS@܈†x£ÕíšækÿŸ'N/Ø8&qúÀG ¨¸¸¢ Ø3=™C–¾dsu‚¸Œ†ÝJYäÙøsqÑ­Qç¯Ä|ªšƒ9Xè¼[m25BÛ\RU&®¤sÁp^Sœs*>‡ï>âž³úÙ¢ Üh±êôfÉsIxÛPÇw oB5|­(gG®"òF cL`2Ökµjù¢ŸdNõ%6Çò¡^"»Iñûf¾,áÓp¹m¼Åˆ«L9¨ åÀ*ójú$‘0$ï‰It…YüÕ*ºOŒæ§½/®ÖÖh–œg@šJ­âô E,¼Êõ¢³:ž«< <4€;mëÖ¨þBˆ;P!Â[t«©®õqº]‘…‰2IlBv8„ÃÛ饸éãóùsð Üëù¸¶ÁÔ M†¦’ÚRP>·¬03>:—§qæìK¹6ý$Œ±®3mÿúa÷«¿ó%>éôþR òúCÈO0ˆ¼àD±ô³KxõF°ÜM‹ÙÉb†÷'µ=ÒáO†[Fˆ›MÒ¥§Ê_–÷ʧÆF&GÓGãt•`Ð=½æ›çeÇÐg„—ìNÀVÞ麬º÷$O®òaø˜{Øš/‘ð’~øƒïÏ¢„gˇ[ùnÍ?7Ì•oçÑÝõy´øñï½Ü/ýß> stream xœ]’;nã@Dsž‚7ÐèÃj&±k,Ö{j84˜"()ØÛ»ªd;Ø x{¦Ù›§—ç—yº¶›ßë¹¼Õk;Nó°ÖËù¶–Úžêû47Û];LåúE®å£_šÍÓ¯~ùûo©-¨ã_ûºùsø§í½©œ‡zYúR×~~¯Í1¥|ÇÜÔyøï¯}wï8_î†ì¤ÄÚÛì¤ÄJ¸êLJ p|XRLJ ðø"ø¢‡ì„Ù!> ) B‚ , ‚/~±Ð‹]a_ÈcvˆüNÇàSRb%Ò&l2 Ú„BFA›°QÈ(h6 mÂF!£ MØ(d´ …Œ‚6a#V­Ë÷^hs´ƒß+×–ÛºÖùêEõ"jÿ¦¹þìòr^ÔÕ2Í'LÁ|endstream endobj 456 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4890 >> stream xœX T“W¾ÿ"òݯu«ÄhÔ6Ÿ]lm«#óZõµ¶u·ZÔi-j1l! ¬ÙWrC²°kØ Êâ¾oíXK«Ußèœ:jgœ>µíÜ8×9}7@§×ž7ïÀáà˽ÿÿýÿîoù8ÔØ1‡Ãy"rõÆõá‹Âÿ<˜9&ðtıÿîÑŽP8>Ž[òôÔ†0´{2zfÒ7OQc8œ©³WˆEéÙY ’YëÅ»$i³6ŠEqiÿëE½°,Mœ¾r•duæ»YÙÒœ¸ˆÜëòâwmHØ-Lܘ™’*úpÞLŠzŽúõ>õ5›z‘Ф^¢¢¨9Ô&j3õ!M-§æR[¨ÔÓ-¢|¿p/¤I,í,Ú>í¿ñýɪ6pHL+JȆŸ ÓÓ-,J°ÅÔZÐ$ˆ,Û #à⤬÷î-Ó7цàÖol ÔmÖÇÙó'tövò6ò0P`ú ˆYF Jð 4é-ô$D¡M¼V‚¦36€XÌüÏà—±…&tÀc¶ ƒ½¾z©öÁþ¼æÄV¡íC #Mñ1â”ØÂ8ø|ÿ€ìLQ9,+*gFúÆ›ühŽ/0£-lÍ_| í»3ûÝ`°óZÀ½çk0$°“A¢Ä!à~—l,“g[ ºä"Óz ÿñÑ„Ùñ”÷£¤»âØÓ `-O³`Ó«s` Œ©“øÕ.­–3èuKM¥°Œ9öÅþóbÎ"=Ô›ô‚mw)sg¡ôÑ3朰“hsøíÀªï¦q[O>ZÊ‚2Xf.… ·©³EOŠr¨3ë Ž&ë“ÜV¹Ì¬œ)DÇwk]½©n&@Ä^8f{zûà>ˆ^Ã4Z€WÕgY2ÍYdÖÌ,SÖLt ÿgÒB-Y)(1w-y.=I““ ó mî(1Û¡ äè6¹¡›ñWYßÐà ɱ·{>p/…«¡Žô  é­A|ö£?½ög”ÖrüÑ[¤|Ò²¹ 2­z¡ÎDêf[A)].7C¥@ø€>TšD¼®œAZ’&Ñ”<Ÿ–ÈìÍ,ò| º`Ñ+*—šÅ0ƒQw º$5€&±L*í4î†ÌóHK7UØêh.}^7ìYTžlÝm2´å´q}0 ôAôÂê‹«/OãÞEùÅ¢üæ(Ê‹ü@ &%9«3Éé6?û%€Õ¦XÍ\mDG` ­^eŒØ›×ÐTU[»/¾nWÄQQr÷¦ Ù2Œð›÷ÈTÑ^?êö‡G[çþ ;Æ~q*,÷9ÝŒÑs!p#Gé5?Ád>[÷³Hó ðÃ^cMj™Ôœ%Œ*x*%¦t¹4'5Î(„Ìd¡Û«‹ÉQ'¤«¡×\ ™}]ºx­Iµl*€» é â„ÌmêðU8·'êúÎÓ²/à%x¿åÁÏ vž­=Ñdø—9uxr1™hd*,N‹l€{Ýatªdš<¥F ’Iâ4Ðh.*.*VºøÜ{ýÑ+ÖÌÄÛð:ü[‹E( ¿ˆ6 !Nåù6vo„ÝŸØÖç„¡ ×’:ÐsíÓ¸_ ÅǼ·0ý¢@ ¸Wïb' SŠS<é;ôC?l«ô¶Ô¶Yº`7Ó ÌÄÙNÕ’ ‘…' P% Ü?GëÁ‘©šãzìd“)#ô}e˜¾ ±»(-V@òÅàß .&~}ü|ÃYŸÀ¼½ê õË€(ÕÒÇrûPàùÊPî!èm‡[X¼¼¹ãðÄí%‡Õ‚"¬‚†¸aôªT˜ãç´Vð„•ÀkžÝ½‹ü¯ïYè›_"³xa ´UØËuòŽ7vŸ€Œ,3Ì·† ·º »P+ÓÉYÑš”÷ÒÖèU:¥Q©+1:i??õcñ…Ô F»¡:+°T7›«‚Ÿ&ˆ˜¿ztç–àÎåà„ÒÖe{æ·½º÷76™MVk¡­ÖVÑúYãPóg%•%•6SLÛòK J šW4-oYa+´e{Éc–2{yË|y®y¨¢ÛÓ&¸ÇrÃ+Á ë`£Ü’EÒ…¨ ¡pWa‚FªÎÑJS/I.¥]’åKŒŽáêì5Í0XÞ"ôÕË’‹õ– 5¨5hŒzm¾®@›¿Ó| YA›|#åFâ ²ÀH{¶šF³26?=*ˆ>ñ~´³±ÍûÂŽÝ ã"Œ!F¯¼¦ª.{ì‡{¥µñ¥ÙæL˜Éä<G&áik†bþzâRãÉ:ÖLÛc„ s´·û{*i ÈÐ'¦&üõ´9(@ÃT_ø†9yo ¸ûÓ=Ù­¾êŸWQ™í žÇ{,‹Œ^¹#²åÈ÷hvû‚·1é<¡²@`”Çæ¢­„?ÿ‹8]üUqº9"N€{õÓ (7Éɳ7“R ©¢V4”—ºOâ—º+\®RÆLWfVgUeˆŒ8Q¢r)‹Œ(æRžª­¡·èvâ|ˆñÉ„RgB•øPZ×ûW×_ùàja5¿Èb°@+téi¨inðÕ77œ<ÜóEp>°Ìo!³õ˜jÔ0—1MZRž4÷Å…/-xiCÝÓfípÏt O‚`œHÙß ÆÑjˆÞ †z 8 «ÄM)Ÿ.æ—ÉJóËŒ ,{wdzøIÈÁ ë7ÁÂÔ-8Ûé°Î[Uá©©­õVÕ“¶J—Ê©:ÉwË«ò!—­ÒÄÑnˆ†rOìà’?òåòªÂ2Æ >=áˆÆ!ùú$Ëí2UVn¡¬€Þ¨u«œ×ôø~•+¯–M‡eöRó𠲺9ðŒ•äpФËhðvÈ`pJ µÙÍ>¾ÚÍþS{cfœ†ÓÑ$4þÏĽŒî!æmÜ$MØÉ¢‰}ylàcµ±iI"aLÎb¤¶{ÅÝ·Ö41"àØÿe÷Qâ}Ƶaz1&á»1Çæõ5Ð9ŽD}A‡BnVÍ΂–a œ%ÅãñfȼLgç[}l ìé°µº]&ètúñ ´ÔŠÇŽÇøÄ(,êãz‡'䇡#¹éýÞð¾ðžùÎ<~±‘xg#¹ŒE……ÙÚI´hÕJ(ƒvEIµÃUAôœÛ[%ɳ¤›Ž‰gͼÔ&¸?xà¾wmßùà–ƒC¨ñfË s)ØÔ5©kS×Ô:u‘JV©nS։ΊΤŸ3–è¢-ÏmqðEJÕ˜ÙÆé»à^ਔr˜3=YM&¦³²¶é+< Æã)xì<•Uã;QóP‚C~ß§Å%v'YÔ©±ªs‹2 ÔÉö-™ÑÄóD}ýíºE ›9{HĘŠòxè"í±Ù+µú+Fè3ô·øü4š0MºÕóe k¶˜­ÐÂX€É¡µjÈ  ‰ò‚´]Û²·BÆHÇØÚ̦ø^í)xœ17òÜ—Ûÿx¨v³Ü—RŸâÜãIëœSFÍGã8h*ÂTЅ›øsúÇ TäO¥“Ò¬$O|†Âüxê}Ðçj*ïlnßcal´ ºŠ\F…Z¥ Œ•Q•ÓÒ\ÑP{(Ò·rUÜê,.Ç”s˜áÀ±-hõ'WZ¬Å•vùË ](ãZ±vß+tàež‰NoÚì$¶zѼÍó=±­Ù¬ pÿ¢”æªÅ3`‚GÒ«ß·1sÑ+Éwn¢EPæ{_,¤·'×ïc­À\^â¶•¶J÷¨ö@æöW§nuå·JÙÎêÆò½P¯Ók šÉ+/¬ª./÷¶¤T§ïÜœ'ÎàÚÇÍ<Èó(ˆ ª3+“ÿ_¯;ÐXÆ à W_oÌ·çYò¬K=|‰MbÍrÇz…½ðcŽÿºÜûü~µ² OZ^B¾•f·“EBPRäRJÓÖk ‚üòÂò<÷noŒ+†ð_æ,ÅO¬:ðî91Û hÔ5ê.çóÛµúæÜžŒÆøóÚ¾õÓOú;B]úe¡Q¥àD„TîJWc™S`w•8mnæ'×І¼9$e¾:|Tƒ£h¼û«h¼OИ9‚ÆÎ`Æ´˜¬ÄÀ”9ŠŽþN¾¥Øb±Bbl°ZìRtì<»¦1 …®œõv?xî GceY¥¼Êãª(«(=¼÷ÄÀÅ î¬1„. ƒªå$^ºXuÓaêæ4qvŠ$Y’’ÉÒÀ~ôbNر‘ro –[ŒÄ¿VîMR®tä-Hûˆôä­+~ñþh8ƒÜþñÒÿ ×·þ é“wÿïÿgÓ餔>Ñ~…_ˆÚ’'hÔz¥F­¾´´v#Œ€o&g­e¸·Gß6•k¨bé£ùÅ9Ä-4“6¹G„µ Ö™Êä¥rk޽ ý7ü²IP V( æ;ò> stream xœ]’1nƒ@E{NÁ Xc˜±%4Ó¸H%¹,KDa@¹}þ|Û)Rü‘ž=+ý'¦8_ÎÓ¸åÅû:ÇÏ´åÃ8õkºÎ·5¦¼Kßã”íʼãö Îxi—¬8½¶Ë×Ï’r,¤áÎoí%Õ¡æO»û£8÷麴1­íô²&k†Á²4õÿþÚïï/ºá±ZöÆ„€™5ÕΘ0{c€{ÇÊ`åX¬Å 8ŒÆŽ1ÀÎ1ŒŽhT±UÅVÉ`ÖÐó„€ ,–Žè[³sí6B#q#Á¢pY|Y°(\.CN((.( Š ŠTGÈ ÅrBAqAÐHÜH`#47ØÄd0ˆÏÖ(䔂ꂊ¾ÊÎê}•Õ;+ú*;«wVôUvVï¬è«ìŒéñüò~~eÏ£Êãm]Ó´ñyj~aã”þ®u™•#Ù/Ë:» endstream endobj 458 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 4359 >> stream xœmW TgÖ­¬*wcÛ#‘¤JÍböèÉÄè¨Qエ¸ (‹ìÊÒ@o@Ý4½Ð¯ènh šE@@T4ŠbTF£11jH&ËŒ™9'Ѳ~í_ÌÉÿ˜™9sÎáè9U_½w¿ûÞ½WD„N D"Ѥ¨uQÑ‹^[´HøÏÁð ÁÇB€Oü¿gäL„©!05Ôñ˜8a’=‚^ž¦Ì$&ˆDϾ¶&;S*—%ç΋ÈNJÎÍš••7/*97=eÞê쌤ykU²ä¬¤ä¤ÿxŽ ˆ«²²×HßZ›».Oö¶|ƒ2aÓ͉I[’·¦¦mOÊÈ|1?DD[‰'‰mÄSÄÓD±ØAì$ž%vÏÑÄjâb ñ"ññ±–x™XG,&Þ&6¯‰%D±…˜.šL<Û#(¢S´XT?aõ„ !ëBN„Î Í ˜5q„|›ä¨ÔŸé¦IË&L&&OÙ1åîÔô©·¦}:=jÆÔê™OÏL|$쑽³–ý"*È!¦ÿ2áLjE£=w'¸_9K,EWl”4êr5™yÂöñs£ùGñß$>$̨5h@K«êô^ÆMŠ{\.seøY°ùº¿qùÃ*œÝ 4j'›Áõb[-–ª«ëËëÃøQ‡Óì ÷ÕÛ*õnS%‰–ïEG£Çbóhqº!è—H=à_39ºO‚hôlj$¢ù?NÄE®>O4*‚ÌG6å¬a4ŸŸ ÕhÁñM´;¸PκSQ™Íì's K2ØÑ™TB›ÙÏœ"ÅWû+Zü,Š Ä7=fgî‡ï ]e*ÉA=—i¾›Jö™sd{µ·EutAOa-î”F:w…o†­y±±4.bY¡ù}>"êÀŸÏA B7˜+áCKø)i˜\Qµq öLôÇ%×1 ÓPX?Úq½øÆ¾A6úüoÝë~’o“œ¥®W~zïJÿÁ·L…ä  ‹© ¦¥¼(ã`e“Š‘àˆ±SøÚ­½„ìƒ}÷+”³® …sÄ=H”ÈMø%Óª’UY;·F¬W.„Eð|í‚ë«?~MTü ÁÏõ^—Ýmj¨1yÍ5ty¥­JA[ª7D%ǨWCl¬Ž=µû]Ígpz=‡b/ŸU%flF»ÑŽß_…ËóQg«°ƒ :øYÞ]ZÜé9ux¾¥23=~+ü*Ú4‚n)ºŒAÙ‰žAûƒ«%%íjÜG*r Iìh/:³ttn¥²‹9M67WgÑ[T·¬W}\ëþ´þg)šË/Þ±»0'†EÑ|®Ä°N¶zЙÑ5GXTLYýªÚ€þÆùÔö2\@;ý—WîÜ`íN9ë.z28=9G<‚fbËL:(AÇ Ÿ¢„7ð¿âÛ1)‰Do ˜tì§4õ‰Ûìö£Ë}ë€æí¤x@«å´áø%3î‘£ßKÄ#ÁZ4‘B3Ñãù|ÉæWìdw§l(ß®D‚C¡(æ.Šø»è.Z‚ôH$Aq¨†²ƒÝ캡Á`ÝÔ@ä2| Š ‚Œ?Ýiom`k)Q”]Bæ)´ÙÑûT’¿ÌÏ×Mµž6¶‰ò›’ 9æçãgã9˜ø-žƒËˆÅ¤ÀüŸ+1[ñ-Yñ8ñtç9r™8Rž¯ÁÇÑTZµº#îk¬ °h-í\kM pâtÃm'«¬{™÷x ö’mkS÷KÜ“ìógò¨´BÎ e*M†ÀÔ¥ƒ¦ïßE}JSôõ8®×%èk¾…<Ð ~æ]²ÍS׎w¸ÙàêD—Ëì&sòµ,_ÎÊ©.™CÎD’yùÚ4vô2s ”ÐøÂ»ðËþVègǧRs%ø‚R4<¾%C‚3$IM†FLƒú&kœN–9eÌ.2E/Ëeù”pÂA›­_޹vТ´Â{4:Eõɬr\B¦ZÉò 2¸Œêì¶–‡a8ííïÇ ŠLÅ=ب§Š0{Ù&c6H!®"âèÑê@ÀÔÄ\#k-žj®–þƒê͵å1;IÀ8¶I~áÇD(‡(>H $ Ù®L‡ÔY³¥&²zOcùa ¯’â»Ãì?ÇÙ}¡ÝaŽgÀÑbñتÀC[¨òº»èCä~Ðåé²óWÉ×(V—e—e—fkõ‡õÍò۪巵݅ÞTØåºTþÑTþ7az…Nn”ëjM>Câ¦ê–⦡ÖÔPä)vã•t:©T—ª4¶‹†íäÉOuó$-ŽOt{‹ºÃß!Oƒ³ÕÙá»ê»VuÍVokà„®ï$4#hÅåŸnaÉÇw1?ýí„$Y¸‹3d=ÔXm4ꦠ_דÝwj­#è(~ž29¶×³.ÎárØŽ÷ y‡€>ÙœÍ(¹´„Ñ“üt~y?ûõÖùî%ß‘ã¬ í¬¢vÅÇoÏì9z Q¾‹x’CfïÃßNƒ°!%sÄiè>‘xä ªjÅкók‡Öù³S ™)&—ÁRã2A3DA°}n})êú©Æ‹p«nGi\ž½ê5ð6Dz6Ý÷NÔÇE˜‡aØs®£Òæ°bvw•Ÿ.ÐdfkÌ!uZi ÐÏi¾øÃYøìšu[ÜnŽ®Æ+¯»èÔÁñ•W\u…Ë5®,P+u:ÔÅ;b…*B¾G¿r3cvð²ÀÊ ¾gÏ–è«90ÀÓ§xr'ùv¹G]£ô››€n$‡Àuªû³A4eM=…¦9ê\>K=7Z&ã¤ÇQ§Ëì ompô±Á Õ™mU1Ï“‡ P“ŸV”¶ŸÁÏÛÎ/0éŠÊÕt9Y^_ÜPæ‹Et4šƒ(M³¶EÓ¬îÖ¶ïz)©Ê6áu‡æ±Êåâœá.òð³ÿÁ‘ôæœ\/InÙ뎅]¥NN‰‰)^›!ÂýÖ±˜Þ„ ùçaú¼'Ú,%a•Jø€>E66Úq¹?PXG]à¤I±Êa79¶~÷ŒJNPïqwQhÓ¹¹•áµTÚvYJN–«¾€É @±‹þuËÿ:m³ƒÓÐì9âŒéMŒ©µÄ©±k*U•*·êÿjØ©%§—œ|Å­pËýšj½¼@M6ú­ÇØà{¸9,ôQ…SʈG´Z³.\OÊsM ìh€z ýÏkhÅbôjþ‘¢£û]4?™L0gå±£w)¹CÞÍô’MÍÖ~'6¡ß½x‘‚u ÃÖ54-CÙÔK¶×¹#ѾŸù7wl×fìc7Æå¾ +`¥oÅû{Ϧ¼¯½´‹¼È]¬;Óê´8ìà‹Ù–òÖ0³·¢¥J@]¨ÑîWïzIìÕ›¬å ‰õÚ±w°þèpôfáû·¶ ÒW÷9ªº3&}GÐã‚ôù$h:6øh£¥ž/¼˜ØËnxïyxÛ°lR.Ó¥ “¤´J{˜a²¡ÙÒƒWܰU¡™Ô ™»Ò[r,ÉØ5$–Å'ÉÓñæ$xèÑùÄ›øTrà&Џ):û}……|Þ.I.VÅB*ÍÏB/üð=z¹ =Š~Çøg˜ÅddVèŽÒV ìÎ1}꣆~|ˆnB :umêV6sÀh3ÛËí‡ÍÕ¯i-Hˆ×%³†rü+XM»Î’æI³¦ÀRà'©Êø¹ØÜCº3¥!Ûb´cµ3©‹Ô¦SI9V[ÈpË«¥ôÙ§%ãÒ¾ª¦l€F®hyn˜ ´Ënª*G—U–iÎÄt^lÕ_¢¡Ÿ%ê8wòÓs¾œMŒžJ(ß·*!»ú¼žùWZ‰a¼6× k&&ø¼5Sc¶d¦ui ;úí¸//¥¥•òNºª¼,ZIA•¹ªèOŽ_¸qÁš–Âðÿ=$IqB‚-°UŸ  3qn·›íáÕÕ./k¡ÌNƒÝèÈoËëËë•õÅ|¦­)­ÕxÿRuë܇!ù» ëÏ½Ì½Ž™²™g•–r¥á™JMÊË’Ûr»q­c†Ý Å_ÏAs¨^8fîTV¹R! ÒJÓ©Ò”i#¢Än …‚Ì„|Œ“(LZ( L8“æïQñ~C s’lñ¹;q”Ń…¾¥ºŠªÓ1–mŒy%ù&M¨èõTb ÜKè³57³g°c¶æ`%`8«½"wl¦Ë¨å›U+–·ŸÙÎè­‡ äå%Æ,\yPêÐ;Œ'|•wG*1GѦo7}±¸“}£_ ƒû´x䯇Ug/yÑpº` Öf°éÐÎo9'gå¬8B´óÓÚ"pÔàŠ‹ 8üWd$)Çy„)-ýéTr‹Ñ‡ÓoqÔC#ý`:Õ—]¡À+óŸ¶.¤xþ¿Åö13:Û?û/±]–_œÉŽÎ â…ÌpŠÄ¡½‰Eiø8Ÿ­¶æäñŽS@_´¦¦°|•ÜV.¸Ù€·º™E»)ð˜Ýàk'.^åèaû¡d–?LÉœòæ2Ùm÷ãsêÂ)h§Å§3·Ûw†“;±ª„4µ:¬èò›îØ‘Š˜ 9Ú}_ŒXs ÕI J”EùUùøÙR]ãcÅ¿k(¨ÉaÄš2)Ãù%¤øw¥ZLA!”êÇn×½^h;ìŠ}…çï- ÝW8a¨ÉœÂb™²Z`køÛ$~^§Éƒ3눳'´¿^ }Uõ8²‘h yÄÚÿ^]­QçeªôUù =œÇÁökÊŽ±;²­";öm°¥4>>+£$Át€îå×I.ÿvÌ$²×Ú¥£±$ßÏXMciÈeqU²W¨Ö­– FMn€7Õéë•)¦pò¹|( G_¢@oÈßbjfȦzG/;™â^9uAü?€Ì*Lendstream endobj 459 0 obj << /Filter /FlateDecode /Length 409 >> stream xœ]“1nã@C{B7ðØÖðÇ€1MÒ¤È"Èîi¨ˆ,(N‘Û/I'[lÁž,QüÔ÷îþñáq™¯íîy» ¿ëµæeÜêÇåsjûZßæ¥ÙÚq®ßäsxï×fwÿÔ¯¾ÖÚò†:ÝøWÿ^w/Ý)|i{h¸Œõc퇺õË[mÎ)•ó4•¦.ã?O·'^§ï[QnJûS!Öb¥Ä³9wûb¥Ä“x,ñ(ÌÅ"f!m$bûb{áP,â ‹E…|gç÷v~ïT,"Ç8gÎ#¥Ä“x(ñ d¢ìTY©rW,b'dÀìY!3ŠEt…!gÐv†œAWØr]agÈt…ag6·µ»bï„§bU;X \TX \TX \TX \TN°˜p9¡r‚ñÃ#„FÆ!?> stream xœeWiXS׺ޛ@övdˆ©¡xëq¨ZªÖ§:€  (ƒhD’È<…²BH PT'TÐZkÑbTƒQo¥â­=_ò,8=;â}î¹÷<{ÿÙ;ûYßZïû~ï÷†$,-’$Gx9{yÍY4gŽùa’ÑÁÂ8…p éS˜ÍB£-5¬GØAŒ-L±þư I‡«##¢„1!Ñ7D‡DïŸè´ÿàD¯èðÐÿ÷ AӾݹ:jmôA—¡È-èÐ.÷ØÝâ‚7†x„z†íÙîå½å»­³¦Ä$ƒð$&›ˆ©„áM|Il!¶Ûˆ™Ä*‡XM8¾Äb±ƒXKÌ&œ‰9„ 1—XG¸ó7b>±€ø†Ø@,$6ÖM|É ˆ$¢ƒüš,µ -f[ì¶ø•åÄJ`]·\f)µ«+½Õ ;› T ¥¥-èEô±³FÄŽèyr¤iÔ¶QI£gŽ^?ºrtó˜ÉcÊÇœsï/r×8bì_צß‹À·Õè*&kÜ'ìǰ=?Û ªÙ¥Yðv«l™.M+Ñ®„ÍËÁk%x%ÖÊN ½„-•Ë3²dÉûy+°ÿ"ì¿ûJbSce±4¸C>÷˜áTOÍóÂÅuªzZÁVÄibUñu“¿87fÊNŽcÊyívÏ;`·a<§m¸w·QœnˆØmE¿¿nmŠZ–$ODÉ|œi€d iZ¤£ Ø–ÏésG;øš×ãð‰´[`è‹íjžÃ%f½ó 4rñØäé_"<ŽÆ#ß`K˜ cÁâwàò9Ý`û%ŒÀãsÎKer©¶Ç™\¹1ÍéÖÿü ·÷Ú·_½eñW‹½ÛúRùLªc„ø¶±ï6Ù1À2þ¬¸¢”ØDQÊ.‘_ÆNDãųaü&`.¬œ’ŸNoˆ/OÓ&—¥–öòÜ*6;3ùãéx5ÞŠ=á ì{î].i¸#ÈQªHƒgTʯ{;<½Eê  zÁ‚¥Æ/¸Í ‡ì A ½,¾Šh°é„q@< €)˜v[·k»r±W²Ìså7hŠÐÆTeäIÔ¨ˆ†©*¢BúÂÍšæg­‹—g  ¹”?Öd«x¨bo“¿ °~3­ã¹%€àvüÄmnScÿ"÷^5fsÏNß½\?žÓ `ûz¹™­[zðc¿ïx–ü{§gÚ´g›s²p.‘Ö ¯n’õÁëë,°¸™1iÑHˆ¢ÁòPQV™¬•#úNõ‡çKK Áš%*t•nj)ª¿v.éÀU~ÑÝmå¾ÞÈ~ùŒˆ)Ž/÷w%NI:%È›öÙ”¼{£ï÷5[øÃ"Ý1ãõ»™£­e²+\ã óØQxdfvüê#?¼'àKZšS„Müò”ÒIJd†žµÇݵN =ð7xÆËÀ/‡-‘‚’¬by ¢Ûavõq•\…”æ\Éf±ÝoŽ˜üÇcXoq1g®»Ë)oÕ\ýO—‹+/óãn†:Šì}2[ë ÓÛðtàPçµbò™Yû¬gÆM\ÜC¡påžÊ芘Zi jG·K®œ¡ýõFÏù¸–b ;”"îòK@t&{ÏNE›ôf^Þˆˆ ÃŒ§ØŽSQÂ,”“¨IR%¬ÁQA(EåEå«×ðªdGeUˆÎg_RW·”Ñ,m,mü¸×`üUøLSš[ªÖÒÎf9%Ê’vNö›IFY (ž–³ÑYQs©ˆûûî†weIФEfVºˆB‘qJ'Ù``×1>ŸžŸ”ˆè4ö×ùݨ›îiyö¡î„$©†¯M/IѦ«ËÕUÌ8hÄ3 “ðçŽÇc$üd [¿Ã$|víJáÑË|2W‰òQ…´Rþ=S‰Uö˜áßä&&?èM=¬¡ÑS ãR”'ÖˆíÛðÒÛxI;vÊòT”‘rR¡DôOìœlENvNþQÞ5øüG˜ÀÜEuÅu…õjm®V©U ñô&7lÉNÍ:´ û ¦Š=a$^e\+>—šÍðN¶7Šh¿I61°¯‡b Ã/åVÆI¸– UðBqößôÑb²á9äëYFkF ø&å{Ü·b#cT´ Y_]Ã|qãzù¹ó‚­“…û… 5cTjúqKÏuõ‰ûósdJ™BJcÊ×)bß¼w¦›%ÒûïôF[=ëÝ0Æ! ºûó ³¬ÀÚä¶ppˆ»Œý©ÅÉÏÀPÅìmáu`·“õÝ,ã* ¹é²ôŒtén¡_‚?¢W.¸ö§ž°ß‡;âÏ`[óeT6¶ýs*ءѕâ G4JMÊcx©WÐø&¬àê~>ÿÓmT*£t¢ÜhÍ3_62B|Çä(®ÛµƒÆsº£LÜEÉ.Ñ›6®Y6 M£±3Ø`?àÂfp†¥a^]Ï ÷ì¸Xe¬§[*5ù}ƒ£¸%Œë„…°¦>ų1ÛøâxJ?9+)+Ñéll­Z#ÅÀÎÔɵY:³@×h̶aÛ{Úå°>0ü-wï´eª üo6Ê•ç¡<ºõ‡Ã͵GÒS«˜Yx@•‰ÜÓ¾ÈyiQ(EÒÃ1‚I\¿À™V…Ø®¿zzÇsÞöDÁ‹2F?@0†æ<{Ì¿‹Çò9ocã䱨¿ã˜O=~íãè°å `w| DŸR¼ü‡WívÕvwƒg·îÁx~[¸rJ,NÛƒ¢PTn”Vz(b ¢§Ã¤¾ ÕºsüóºK'Ô?Ð >Ãü¢Eü@v"J”' :8Z[_ ,Tç ì#Â& Óý=Ï;úR„Ç—”½2i]V]²—±·¡íI¾ñ* /üûðâÝÌìé«–-ØWtø  ûra$ûŠA²Ù 2DÞ:±äz]õá*ÁÏÆIÜ|öÍÚÛ¶DyIil¸îo¹üã±³W5‚KŒæžx¦‡Pfl{&ˆ¨ÿŒŠ :™ÕwâàÅí¥>h+rîõ•ÃS³PÃ3þíÛJ2è÷õ²†±ï‡˜AgÁvÜVeõŠCàá#í»[è=#œ~ÀŸIo\`Ø¡î `K«ç)S•©(•I—Ø>q>ÓTÄP¸y›OìîÌfrÒ-=£”AOfŒ3ÉhH¹SÌ `ã$BüÀ¨ï"[ LZeµÁDn²«\*gB™½ŒB ÷öŸJ9|Nr=G/ëš_UåÖ ôç’‡Ž•1ªuŒjsé"-zFßÞØöÓ‰{/ò󘩔—QØÎS¨j…ŠÎ¡J¦”fÇæñ¶WznFsѤÐàɇdb$FK¯®ïü®*¹&£Zr#¡+½ÖY“¨L@ ôR'¿5ÚcÛøâÂØâCfw¶¸'1Ÿið ¿°Mk¸k jppÀ8UælhÑ=Dˆ[M“ÅäÛøÝÀzkŽ®Úªö;º³å›7;~C0ù¢¬••ˆ¹h£ËüA ­M]å¾3B–ÊXáþF”)ÊP™Àø9õ?PšüÌ#òÓ|Ô37÷Ì™‡±.;N` SM#,æ‰nàYر ;jƒtº ÂïxÙ²liN}Ïœ|˜ôæP‚Ū|]ïlîï§°Y£ËÓ©Ëèùlì:è:=z…ô°'ÌÃkΌױ֣škSŠíž=Yb€`ó=žs­¹]KÌá·Ãböâw¯nüý‰©ÿ|—J¡Ræï‹‘^8xœæœ;µ£ ÀÁ mÞê+¼±µ|òF«ì÷1Î4[BÑK¾ïe½ÍÓÛK ¿2Š RL¾ÅzÏ2ç‰ÇY]`7Çê55–?’U°bô‚ø‰aoendstream endobj 461 0 obj << /Filter /FlateDecode /Length 189 >> stream xœ]Aƒ E÷œ‚ˆ¶411lìÆE›¦íÃB ˆ‹Þ¾0j]üŸ<˜aæSõÃup6Ñê½zA¢Æ:añkT@G˜¬#uCµUi't5Ë@ªþ&Ãû€æ0ßå Õ“³Õ[“ò– Dé& c¢3FpúïŠo £Ù+y#PŒe'Ýå,PŒeÏÈ*#/Ø Tƶ ¨Œg¯–±%À±/UkŒà¦Äeyëà÷Á‡ÒE³Èºk`)endstream endobj 462 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 774 >> stream xœm‘mHSaÇŸ»¹=7«Ý†±«Ñ Âz ˆÌÊÞœ¦« ]‰ëÎ ‹m²J‹J§kÏmZ³|‰H³R¯«Mm%·‚ (ÊZïYÔ‡$"zsåvWߢçÃ9þÿsþ? %¨EQSÌÙY‹Fc¼I“RUÒl59:›ÈÑ$5IJ85qCI3€šöm:RQTêÂ5û¾*·Í™frp6geZÃ^R™–å¨àþÙ „4œ­`¯¡u(-E›P.Ò*¶£Š¡zUÕÙIÊ”‰’'U‹ÊQ}Xb"àóèB0¶ƒVF€R˜Ÿ04±FoÁAä› ÝÙY_ÉÊÛqEׯ‘|bÚ¿»¸dçÁ|’K˺·ó€10R”D[ûºi+l¾ƒ‘Zÿ1B»=M+I2‹å•¿ÚôÃøøk¨§ÚÑe4øzZ&˜Ëß½Ëéjík™³¼Êê/%ñ ôQÄ‹Ò0êz KžF91Îçc”÷O3$4s¿ã|ÐH¶jE“´@Ƙù¨PÕ3Ol>{7‹ëånö‡†ìE¾â÷)«W§ÇµÕa]dÎý>´°üo¥0c]qýó˜yyé‚Ï®(cfLoµÌãlpi‰o^ú*¿e+_Üd^TÆø¿ãӘDžC—]C;ZŠHÉ/un£ýÚº{fa=É!ëJ˜hfÌÿCNõj’ ‰ê3«’¦ ôÄÈmòendstream endobj 463 0 obj << /Filter /FlateDecode /Length 436 >> stream xœ]“ÁNÃ0DïùŠüAÓv½K¥Ê¸p!àRÇA9F¡ø{f¦ÀÃXz­ãÙ›Ûû»ûyº´›§õ\^ꥧyXëÇùs-µ=Õ·in¶»v˜Ê凴–÷~i6·ýòúµÔêxåÇþ½nžíôÓöúQ9õcéK]ûù­6Ç®ËÇqÌM‡™]¿8?[wC–º+°f X{DuVà6KÀ-q—%àŽ¸ÏpO´,˜²LDÏЉ‘%`o²¼!²< L6Œ6 3Mss 3Mss 3Mss 3Mss §šN6\²,Dc*ÇXŽ¡S9ÆrŠI*'±œ„&’ÚHl#ÁQ’«DW¿.ÏNÏŽ®ÍÎÍŽ®Í®Í°ïŠàŒà°ïŠàŒàèÉÕ•³+GO®®œ]9Ò¸9ù)KÀá\á\á\}Ì—éÈÊÌ°ŠŒ°ŠŒ°ŠŒ°ŠŒðòôðòŒ•·ö÷zòó)üÞü¶|®k/z/z|Ó\ÿžÔr^øU 5ß-ÝRendstream endobj 464 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5477 >> stream xœXtTå¶>“rΡ 9ŽIˆÎЛRT.^¥&4)€IH¤Aé™dH$ÓgOŸLz/$$C C@À6PPPAQQ,Ü‹>Ô=áðÖ}ÿ–uß}k½µædÍ䜵þ]¾ýíï;ÊÇ‹#¶†¬zÁüùžSÜA^îǽºëõ…ÑÞ0ÚÇöxÀ~?ÔÇy 5ŽòDsV¦§fäH³&nHOHÌJ›¸"=%abð>ibZBb¿ݤ(jÎò´ô•«‚³B²¥9kc÷Ž”¿!acâæÝI[ölÝ›’:gîü§,\ô̳Ï-þ[EM¦6Q›©©T(5šNm¥fPaÔ6j;5›ZAEP+©9T$µŠšKSó¨êij µ–ZH­£Q/Q¨ÔXêj<åGqÔ£”zŒò§¨@j‚`$5—$M1”Uà%ÐxýÝëŒ÷ÓÞm>ã}öø®öm ÇÒÏÒ_1e¬û4{~ĺÃ#+G GéGÝ}wÌ®±~cSYùÈà#·ÆYǵ»8~Ïø^¿™~׸繟­NÞ|¬Æó¿¹ßQcÿåF\8ß厑 ú %¨t1)[ UFƒÉ`—·V´;Ú*ÚíMF»ÙR¨§›À9¹1œ+ÁO]OÒêÖü®ÒýÁ¸,—®Æe…½êj•#Rô ÈÙÃ{„òS7ðS·ñSK2 ù»4R­¤À¢ w‘ÅÃÈò‡}ÇþË+ã ‰Ä=Òé7€/̸=ƒîÆ€{“PÒÈp—Ú[´©bþ2ÃÝ‘ ¸hîÝ|‘†J}%T±ŸžúúÛ×ë·‹xÇý»!hf GכוñJ¨=Vò؜5,wC_Þ‡&.ˆ¢Ô½î NAŽA;>â5îHá2Ūœ¨¬„â(Ø¡ ›Ä E~¸ïœ‡†N9Rÿ¼oåžwEžZZ ,?–¯¾ÉÀqÃk½=--=á2¸"l«Œ2ƒ ö±© DkÃÒwKÓ‹vA$ÔH»²pDÓÏ’ú?µ*q û¸ 2¿s8ÉŸ»àÞ$|F±´`Uä¼õѼÈgQç¢7×]YŒ£’‘|pöÕrœËZ™r½XTF«4Åb%“ÇžµŠsaæá˜gTàM8g=ßùú±/ÿyè{@¸ñLÓDS^€©Ä¤®ÖAW[,b®åŒCç¤î–ÉD%%:½N§…@ ””«-Û{67­–» (õìƒVñÛ\8ÍéöïõëÁ^@ºeÅ1þÜ/=žn53Ü­¶fí^ñ½J†ûåa?ÂèžÔcùÇIçýpôeœ‹£žÿŸör^²D|’áWùºŸàÕBõKEk×&( ´ùÀÆ.=8$ÆbÆÒýaÿ `mâÇ…¨H*1)]ÌXiîpÀQ½Ì§"çÂ'ü¹ºþá•BÎ)ùõÞ­IüŠáRš›õ-A¸×ÞD=nä}p1osuÒl½4höû“‡Ý·ð9ækõ×qÝókcLQ†(v3£_"fÅö¸´ð‚ð$ýÕ‹žIpa­K@N ðî~QHN¹9I2ì˸°ÅWB—lT®Ú³#z­fÆd8C…ãêê­æ<ØG°àÂ’R²õÙò\YR¼v°aX‹3èà}Õ@pãnK¬%žuÑiXJFBðŽäáHôàâ§~xêŽ?w½çá4\øc®“úV‘i8»'ÒßXHh£Dz¦¨L™ylR{v·ÈJw™›š¡‹}õ厨ÉÞ˜\‘ªD%×ÉYîº}xÚwìðË$¹NÏç~r¸Ðõ—üÜŒ‹ÄΓÌQxE]fÞ÷—dæì(Þ$ ÇNC’øŽ.oÜE’ˆû3‰ãm”ª§8×½üÁxßy,:”pÞŸëÂp2lK•‹Óà)à'aBÝ»Šk÷A„…çÅiÙ|:66K?ÑTs-¥‹5Š•Añl4z¨Y.ÊŒeå:ÖL—ƒÍb³ÔW˜M‹XùO}a y¦«¬µUÓtí§N¤?ÞôjH­xKÏáûösïÙ£Ò5¢"‹¦Bd§9g­ÉV)¾Á€É` ËÕ94å%y¹P"R@ž£Ø$³ä˜H4œS©Ò+ƒHv aœÉ.Ü*óû Ž9êÏ}ŒÏ>Ï™$Jf¸O?ãègoEöÊ‘w.Öêk¡F$‘Љʵae§Ž‰°§1Ü ‹Ÿ†[™¦vºÙ“ô~@„Þ÷i°…i„­-—åËH3¦Öd¿¨zNÃûM-o–àò¡:[jê»Gñ™D…¯¤‰ioÖ¦‰ù4F¹>6t9$A"¨_×7A#4±ø:yФÑò¥i·Hó§dw“ ’ ÷½[¼·sñÞd>¼]ž¸&ŸðÄõ„Óω>+p$>ã¡èïp‰{¾ÐÀ´ZÚMmÀ¾u"u¶x/Cx1<ç OÎ'â úUÓÙîº!S‘¦ÈVÔ|TÛìYºÊ쨬RÛ ÄJ:ǸǨkf1‹³Y¯líŒmжD“J_ åí¢Œú §Zl£»:›û 1nàC„ó˜ÕáÑëEÜw;£ }u§ó]»¸ÒP•FÏÀ†Öxö®KÐâJÒQÒUXTecv@oL_tÿN³Ú®«g@¥Pi4³xŸ€‚Ù¾dc~ŽÓñ‰)ßò†EíÛ-ÆÁ‡ÜyÏ ÔÆiÒ“³Ó ±ì\ÖC¸SÎX^ê#܉tÅÄeâLÊ@¡WxêÓzæaÏ=„ù€.Ýo0÷‰¬lb"?š_ìÒúÀûá’rò;œÉ8ÕíòkýÍŸëkõÔõ4S«Sgº¦Í2ê в:RNµR«*LȉHÞø’¶J¥&ÖÈ4Ù*š ™å2z2Òvå§el?t}^Aöú!ÑiqÙS8²®[YwÙS¸%¦èŒe¬–ù¾äR™l§L"ÛYšS&•çòvœöD'¸sÝ3‡þ}‚>ãw ‹‹Å {›r»U¬•>ØÖîüŠoŠÛ¸©hW¤xklf„@hýÆØÁÈÞƒᣎî÷L6{%”³„WD Z†|•îìp×ÜLpÇÇ1‰¢ëÈêãýøQ/òOñc®MÂi§OÔö¸Äá(d†¬¾.ƃ¥2`¥2K—Ø}ï>ùÜ{&á ^7¿²·¥®ÃÞ0°¯=Ù¬1« *–/!Ø•F•ž +!î Õ{:Tè=”žü{1§w—÷îÿßµ¤‹ @_lrº¹Iìîc"G‰ÀGøY8†\ãù™¶2‹Ö¤éÕvkØ}‹iì19««ôP!rñU¦ ª ÕÀ:»µ2ñ½˜{³Ý…R£Gƒ æáÖøÂ}UèOa–ÏÑÕV{ÕoáwøE[B ’bÄÛc3WÖŸ‚> qúåÏ{®=+ÃÌ:ʬÅ9ziž\”‘I4äŽÆ,WN¿n\ìŸO;¿¹yѹþ%›ÈPEÆ"OÊÄ1žªéÇS÷w/‡¯à$ï?go¹&a 0¿ŠdzԚê PÈûåG›Y~3ÿ£Oáxæ8¼­sƶd`«` "w¤î–Æèãîwž^>ªÜü¸ œ™ßk¿áòß,×ü¹Û8¢R˜XºC ÛÙ)87çÇqN=2äˆÀÆé™zÈÉAnC’1£œà06:ˆ¨*sh[”mšV=[C_Gª}ú ™íâΪCåZ…NŠÀì†Â¦–º†æýÙí&¢UwCº<-O£Ó¨Õ¥v•‰å°&9ÞšôÌÉä=Õ{Z²Ä&­]Mö;aåÒ}2už¦XW E°«fwG6«™+´3ÇúêE·é“ð­¾<”Õ0/NÊ ]3§æb©èÞ:™cæw¾ø°úå5aE[Vff:ê D…õú&m3û£A€xåSî`¼g‹ý2à)y‘®-Md_Þ{÷Oéúÿv/ÁÒ„œ züG€gHoC~ äs]ØçÄ^×}‘Ї<2¿ð/ý½IúÛ‡^ÌÅs‰ÏŠ×0°®n=NÍc¹!}uµ®:hÞl©¸ÌÚ˜ uy~†%1O!’çæfÃb°â,m‹úT‰3ìp‘=ß‘oª²Ôë\Û»ƒp.m9³vÿšý++Ë*ÄÞ_˜Wá=}olk†)ö@¬::63.+Bå‡`q ©ËðD™ß ¾È‹p*ï圃ÝA¨¡Ü`'ÛølS£šh‰Ë${¹kƒûIÞ—Ð~Ô ¹ »•é»'$v&Ùè^ÛþèeûÓzbDJN\sXpî¼ô 1ZÄã„©¶ÆÇïIÊ‹€˜îÅo²úKލúKß”_“ÁLöo«×=ÉûDF*Ò:}+Ôf¹¨”.Q«JÅ|cP™4VîÛ§êLDîY ¼´\s*í\ñYx.4œêê«‚!ÀK®ðÞ­Á5é¶4SfUR]úAÝabž®^ê8ûóky¶Zd,1( !”Ó•Vs…㉱*—«ËÊÊDÒLF£PA ž&Îî1Åôlvl…?ưXFä9A‘Gœ?DÐ…?äçe&£icÕÉ£„ŸæY‹Ê,¯¥®&òLûÚøé¸9@mSÛTVœŒ¾û­C&_¿EÂthìÊ9ÌOñuïd`êaŸÈ±G{ô?«v… ‹y†,GïÁÿn­w>¸ü¹o·×ÿa(¾}h¯ßÁh¨ÒWà_{ý‹¯WDnñ­ÿóÞ*gÀ©;˜×™~|³-‚ÌÄÊé&VO—~¼º5¶BxNRlI±¼@“ÏrßêÑë÷¼Àà›‚JlÎÃS7™™6çâT™à œê3pšÐ2ØÍþg”~+qºÿÑ£÷”f4àXîÖO.*]•¸g¾ô%ÍZXÇòA•|Ê0¡·¢HÄ]Aa!îæ³EÜ1µJ¯šuo†PO4”Ã;ð¶ùmãAá†D‰v7öÖ÷uÁþâ&i¬j…q›!Õ©°6*Cu¹Úœ2Y^bbfðc  «Î?d]Rüa™‹Ð×û+÷7dœN‚Ëúj{¯™KÜ.þ ÷ ˜ V°²UšŠ‘’–ƒ²´L½9n©"øwî6àH·Â%x q ½‰ß}KØÝÝÓ0ìÅ··Í—2¹|ÐÄçÌMN…T6ǽ˜¨¹½DÍ©$úð]­Í„l²ÏŸ¥OKc7t³‡Ò»$)é~ÎH½òý·EåM–h/׿¶¬¥ØTd.2°ÜO—;.úrRü¸îùKfížU"R3»ÚSûû÷ïïïÍnOþ=h²RiÏ[-?<#y/ô"Awá!öñ4/à×l¤o¹f»×Ò5Jk‘¨„–‚"W^¸cCÀê…!‹Ö,\ûl€šÈP°ƒv!ñ8:üÀ—ÿ€yˆ³Ãø³ó'ôí–ùAnÙ ¦c€?wGÜöv¶ö;³º“Ò2âgü°þk•¸š&N)è-œ‹Ó>æY1÷[D•$¤±8‹!ëSß_Ã']o\´•[ìà`-ŒÎª1«ˆP/S–éb £Q áöèz•QeR”@`ªdù÷˜³¼¶ÁÑTY%:Ðv¤ò„öÂú´êtã.Hfw0Ïçþ}êËÛöÍýô½îÓ¸n·§™â69ý¹«¸ ¿’Y¾nü燧Û{*{ :M²Tµ”(h–»•ÚœÚÛÙÑØm•3Ÿ­>²bѼÝ+·‹"×ä/†%°Ð1óÍUïæ¾C6Ä8 Ÿ 'Òtát‚Ämø¨?wË-Ä·…†TxZÅ?ÆJ,Õ•éK!¤ö½µåMud&»s:víÉÊN˜ý}Α•>oºØñÊÉs盿ƒ›,NLÁmüÎ¥Ë3×G‰¸_2v•ÅÄLà…7žÅqgNtžiéq²0ŠQ¯M{þyH¬JY;18N}§Þ3Ò-l±ù–ÏnXÙJú(83jã©)ž-=ðíHãäd§±Æ ÿ˜uç²þÜwˆå\.ùˆ¿û`Áá]L¸ÿ½Êµˆ|§]ü(²¸®Õèkj'œªºzÝfÓëm¢¢âÒ"Èa¹“Û²œ½Íg¶uFÄÆ*óEj­JMFܤ°+L™Õ)æT˜ |PNÊ“šb ’“Åwg ù=ßÓÜg·?ïü¨µQ­jåÊKó ‘f7åƒì¾ÿ!nZ4Ò»béèõ?¸:Ô7endstream endobj 465 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1367 >> stream xœmSmLSW¾—KKSVÙ][ͦkêXœqcÓi†Sœ s ³Ð+)­ímùhÚ¯ ÂÊGËFQñ{~ŒI0‘,8$.Sg梋?Œ_,â™ zN{.f·cþØŸ“÷yÏyÏû<ï9MÅÆP4MK³sÞËËŠD¯à—hÌÆà—`'ͬ¤µ_ $ͰRv.~kžŸ„ç=O%‰uTUKy©u„꧆©ËÔMê!¢cè$:…^m0VštEż곌e…â²Dµ$+k…Zµ4##Kõ¶ž3é 5eª _Ìé5¼JU› …:ޝŒ–¬,æy㛋———§kôætƒ©hU䵪\Ç«r93g²rZÕC¯Ú Ñsª¨ŠôèšmÐ-u–^HwÒ7bÖÆ\d¶0>æ3»»ñ•)&ˆovÓháZ?À «å~è±ð`µ)„«qv°ôìƒ`@ÊñÕÿßI ¹Ø'?ÙYË»iüé]Ë’*9 ’5hdóŸ«ÆÕwù ì «­ƒ]pwÔ*QYyGcXÙÞ à•µÕAÝãq»׎’íÛÈ-!%C8‚ÈØwBʤI!J&ò€-`oðt¬ÃmÊgûáÒ ÿ̆7ˆÇ pÉÅÒ4TH’‘ܰù= U «5:E5Jœ,¬;3õ,§— ÇÈAQ[ npE¤uø½Šfï±ã§úÑ-œò;>Ø!Kd%i3 ‡ÙØ {§N {;a¯,`÷Û¬õ»œŠ§;ÏžjØ“jóÛÁÖ¯Ûš‰á«OíÂ/öÓÃá|{„N¹¯MŽ ¹ÞGnãœüªô:\wþZþÀxããoÈI_Gu’©1©Áã)QâxÁ%к/ê<.p¥Ö´ÁWŠÐ˜ôj–¤†•ïnÈ0T;³-$ dÂZ©ÈövÝacÿÙJ¶2¬dž˜£9èšXI8rÊLô ›¢¥ØÇD6"“ÔÈ{íö ¦PR ¾$E›á‘)è@Ê’ÉÕ}j‘™ƒNJX²ZZNpîv;¡jñ©©Âá €êv ÜÿPÿ0‹rô޳q»Ç{ÐáÏ'˜°úy¾ÓY u2ÝA[ÏþÞÀ‰ó[ú7.ØHR‰:_±3“ÈWš0ZõÚVr¸,²mÒu.Ôƒ¾Ñ¼o ©éødßóN[ñGCÛF T¤PôÞCrì~ŒïuýqîC‹Î õ0´Â÷~^&NŸÅ8ÈJQ ZÛM‡´ýLH+¦ä}ÞæãJVz-ÎA«Êm 6ï‰4¬$—Ì'‡»*o£å±~ŠâñéÊ&»|æ¸pEôœ5ØÝÈ# 7‚ø|ôXxh^W7{* RI.Iw8œ%Jáì§q_ܳ&E%w#œž\—C“è™r ¥G¬• xÅ(Þ„~AÛÚDÏ4E> stream xœ´½K5I’¶Ïß E.¿XÉð·‡–‚$‚‚D€dZZïÔtUY5ìê& þzºsÌÜ#§g4C( ¾4»æfæ÷FøÃžÿáýúHï—ý§_Ÿo×ûïßþÃ[ö]ÿ¼>ßÿ×ß½ýÓÕòûü¸{¯ï¿ûë7ŽHï©Í>Ú{oã#—öþ»Ï·óíOøñ»ïKÍ÷}û›þøÃw×ú³¥{~ûüñO?þÑ>,×5¾ýö7?¼~üøîÿýÝÿù–ÊÇL÷ýþ}ZÄí~ÿÝ_-Nÿü·_?ø›ï¾Ï¢ÿÿPP¿ýúËø"ÈØýÓ5®SÓ«}Ì™—¶àøÿ}÷ýšïâU‰Ó²IôÄÿé?½¾Ëããž3}ûƒ«‘¿ý• ûüé—#n}ÎIƒ õo¿|—çúc~ûó§ýuß3ûwëã{ ¿Ó7û ²}?³ûõ¯1£o¿üøÓïÿâ9ÊIüëü¾O¹ÜÅ¿¡5%èøçß~ü«ï¾¯W7)ßþô«þ^ ¿~Ýßû/6íûî­Ýß~ûÓÿüú鮋šÿ…/î^fžÿ°/®}\mÌäÄßÿ‹ñÏ>¾û¾·k} ßþù_KXÎKØwß§õWºú·Ÿ~þöÕk·s”M$}= øöóüýÿdýó")6»_ü;™þ@áû¼…>qÿé§Ÿ^ä¥ü?þö£ôÉóÛ¿ûùGÿ¨~ûÁ¸~ƒÿ÷ÿö¯ ¨‹¬|û·ßþŸ~ÿç?‚´+¢JõÛÿö;Ó«ÝPý§¿öOn>;ÆxÍõôM@}&vŽ¿õU·”¿ýöùÃÏ?býû/ãþö£+½æù=_B}ÿ×Ûïþçóí·?ÿü§Ÿ~ùýz]׳°³ïÂD”ñÐè¯þjS­Ù¼~ýd©.q?üôËoþQýö‡_þñ·M¹¿ª2o{Tíë¢°Åæß~·¡¶´ûÖŒßþúןþ_̸óú¹ £³=ñÐÊÞPa×·ô?ýòW|ƒlNüªÓÀ—ñëßüé§õý±žÎÿø]³çdý¤?üüçõý…×bÌt§¿ó­XëÇûúqÆèF\?ÆâÖÞùò]wµQß>øÏßýîßÿ­%u­##Ýï'é¿ùöOøýõ¯qqËi-X常ͥLŸñBÿù7|w6õû×*PÓGÉyø iÖorå¿8ßµ~ö–Ë»=b=§ÄAë÷ú¾$›ÖZ”Ö×ýtK÷G¾zyŒ{ýñ§µÎþôë/ÿDüŸ¿ßz=×#j/Aâ’÷ÃÔZy¯¯~¶ç»ýúíÏ?üüÓ±sí@ß~úÅþ]ŠÍýb…¯xkþöÃÿvÿûïÞþåÒ8­ïá÷¿ÙÙûR ¾¯—ª”ùžÊ,k÷Ki´ÖÞÿøãûÿóþËÛbuçÜÞÿÓÚ.×»õþï×þúÏÞÒHó#ßïí*÷Çúö>¦¶E×Êìk/þy!FþÈù½Ù’7‹afÊk£}omaÖ³a˜5|}c ³¾´Ì\¯È\˜z›V s_гµ¹f š»ŽzÆ6`Fý¨Kx_‹QÏ “¯Å±.é}ÑbT¾Ö·4×½~-m˜>M³¶¨LºÖo¸4ë+ÏÄ,ŽyIëm-ÄŒnÔ;èœóU>ú’ž×7:0åúèé½Î2>H2ì©0Äz0÷^ÆvD›èz æG ÓÓÛGÂØDs]'ÛF­¯²SòǼß븋ԩcýë‡íkôšð´ëúXƒúú¶o|;mÖ½©sPåuà«'bmçéùDU|§AõüN“NRÍ3•0'ÖøzR9æAµÎøé”蘕­÷ƒJ˜U[ßÒxHæy@ùÿ_PÓZ1Ž·|!?†=Íë$¸.›Ü#ÖÕg-ýzNƒ.ƒì2þÍÖÆï¾¿‹ý¨óÛºèÙ®°nÐöÙ;>K—ÝYû·÷ôøÌXÚšëôZu>l¨ë$¶N”’l—–ËŽoíÛ÷™/Öëü¾Î†KÆúÛÞ@ðÔß‹ø=øò\ÿÛÖ©ôWY/3œ½Û‹eî;ø¶Ö’y¯ƒýÚ…ß×9ÖÑ7h|wúleí³¹nþYûòÙCŸ¥cÜ:^=Æ¥¿-/Æå¿G^æ8|eNjб@ë¥Ý¯ã×GõëÞ_Öò<ìtZßCí·ÿü?pGzNÏVk»íŽÇÊòœðw%ÿö¯"Ìÿ°äo2K²³NZ‹äºÞ¯ È~–ÿòßág1Ûí|·ch1û~zÿãïm‹¾qeš÷·Ï³ÎÛæ7ª¹ê}Ù*²ài‡Ü€_kÄì¶ÁZ¡Æ}0p˜"l@` ®Äb°Þe” ØH‡ ­ËX"ðÔw˜Ö<Ëðëµ¼< /›#Öyb­×åÎK'`BY𰳋ï5b½&ëä²)ìæ2C8"›­c3¨¸ˆl„m„+ᡵ888L6"0îÁa=‘¶Î„ Â6µpŠÐ[žóð siE¿ê°±m‰³«ÛçYg»¥Ïú’3ábŽƒ§]¿ƯdçÏMqÛ•àÞ¦ ŒpL¶+׿p >”.ƒ0iá¡79|™ÇùËŽlq⢼úµD¬Ììv¸˜Ž?/VsØ“`µÍöÞðúâË…½,(Ö ×Ö'g $€žˆTÍp¼‡›¥zcw“ Ná*ŠÃ—Iœ‹rY‡›õÿuÊÀÏÛªÝÅZI·‰ü<0¶þß0Ä—õãá¥]Gжaûê,²›bt»ñmSF8änƒq l䮂S„Òåýë 4Õf“¼ÖÊ·æ¿V)ü°EÏ”ÙZ ~ØÀôØ[ª9cè©°Ko¦‰ÙaûÞÍ*^ ³÷ƒCÀa#c-û¥ÄaÏarp‚m„´ ×Ò9<ç¡ cïiø…óºžòÕðŦõÍ\Ç(aì—±S6ƒ–Ö—LÒÀfá0ž³r|<±HÆhÉ^O%1Y§2m?Z9˜ÆJâ"ôÕð§þþã`Õ¸èµÎ>FoOÂUpŽrL‡Y½˜ëè– ÙfÝȯ°-8Kõ4еœ˜Í&88L6Â1ÚofK:D4z×AŸ»Š>ü9‰óW-³âÍZ§YïqÂk ²0ö}ÚÚXLå6óa-k„ÃX]üfNq'¬Î @JÀ©B˜uÄ«8UˆÙàÊ!‚0–c)ᮣ8|™Å¹@-{ˆyŒZË÷m_kKvÃ]`cÌ-»v±µW›.ëfn_`ªæsÐvÁÚá7 3ÚÕc|ÀYgÀÀLœlƒCZ¿©ì%B    ñ¹kèãŸsð%ªèÆfŒv­"k kæî+¼÷fÚ¾v¸ÊÖ‰¨˜FÕVÄܶ­Ä.j÷A±ö»2CF³v'{€ƒÃ:÷Ûk2c»’¢-ÅáË<{-Ž5€w}Ñ/‰9ëñãØë€nxaìíqоú~ŸŽÊ#‘üq$¦À™©áë÷1S²3'ˆAÒÀµóÑOýý…Ÿ–/ë:\›ûò.ðÅ~û}2_3m߯GµÖ‘¾õƒ"ñᦌ×ÛI\¼œƒý>õA¯«´ÅÖ›¾ÌÃW'{v3Öâ2Êó°Ø¥>.Ùßüö3|1£hÑ ú`cŽ#¾¯=CÂy 0OÛûf°fÓ–@P—€r|î jøsšêÕ÷}V»Îz¹[ç³ ]Ç1ëiÀ×¼·›WIî)O¥`»l^Ç4aOÌ´»·¹_ͪ°œÀ¯‡íZgô² Ö¶†XNß €^˜µÈâ–¤ñæ‰-€°D\§p ÅàËÎ_w-]ç‘ñƆÛÂ(<#;¶:Xÿšî4SÔ ¼³ëb2ËÁ à¬=0¹Óoâ¾o €dÁlw| jô—)h®å0.ÒF¾èé>¶9ŽÇfØsÁˆ©\'ñŒ@Qó2¥ kc0›_P˜M{N<ÀnÌ%Ã\,!‚0ŒVRÂ)\I1xÎâqŸÅþ“eq[—|[üÖ Hnü9 ¿×&ÍÓ–(÷ö4#ÄëÍõ8 ËK±®5‰Î´;Œ5 »~PÀK‘6‡ › ¢8‚ÁZ€ò8DÆ%%œÂ•‡ç,Îß¶` g^ƒ5{Ýϳ^8{Jš-ð ê¸aÍŽC€@ûÚ-†¸) 1ÜAòÇï$Lž|œAÆ¢Â×C üs×ÏÇ?gpn=r~hëɃwŵaW\z6f`}Ë×í–Ö¿™)ˆ-uŽ˜†­"(ö·Í!`È€{H˜Ô— AØF¸NáZ:‡ç<8ßi«ÒÀV›fÕÁ"#Ü¥6ž¡ÑpΩH[AäãòÀ÷ë°ŽØóÂbÇÁÁaŠÐ±˜ÂôàP*¿—QtßZ8…”tIœ¡kÕ²Çøâeˈ}'·™á?¸Óö`W,¸ ÏLß0¬boXP¬kœÁÁ!`“€BXÕ{Œ7—; ¬’ þ$êRQãÏ ø<±ÃbqJI7w&aûg˜#ÖÓo÷d;ñÉàƒÏziÚøE_ ¶§(vñ‚À^nŒÁÒžÅl‚q°'l\§…Åá1óe-0Ë„z]·-ÌÎ…±2ŽaÒ×ZG*œy}Ÿ0O[ÕÆžƒï4nð:‡)[Žc²ìÀd`âù@k™tpŠÐZ ž³8Ÿ_ûU«L©—…äØMë‚ ìóÀ$¨—ñ˜:Ñ»YZQJ™zP˜‡©¦ Œp ž8|í8È»ÁF.‚"”Îï_gp,J÷"ªÅ*ì6Þ±mÁØš§ –§a>'žî4=ÖUcŸ[ÄJ9Æ;L à˜‹'J1hm(ÄyR8Aè|Å™õ˜Ãù ë<áñ^u=hv'j¶Ä}nDFDÖo¼ 7²ã¹Õ¶ cs¥û0(–ÈÞSFsYxõûæ°n½2Û×Â)¤¤3xLâ\™:.;9ùÍŽ1 —mçL«pÌZô¹Ü0ýXp$ŽQ gÁ:6Áv$Š¢Pg0EèÜD ®›ÃÚ±°Wº ÂØ¡¨„„Öé ,xŽÔVa0.n!_ß„ƒw0óccÌÏm¾ ¸it*'³8Ø­qÃØBšY½³^"&ÁŠÃ†)¾Ç\ôíˆÁÀ4·ÂØt¤„S„ÚdðœÅùëÊüÔGì;‹‰ ÆBdÞÊlÙo°u„×r?JÀÚwf9(ÖÎ2OS„ö`.‘6spõCam>ÐÂ)¤¤3xLâX£.ØQã`φ,÷•ÎÇXNì;ò…`Zê:²(D±û™Æn"'=Ïewü1@˜5CKr ™É¯.àë-4ðÏ]?ÿœÁé°”M†áˆ”2¯pÂÝès#reˆìŒË±ùIxGzmŠÑy-sS„Gzƒ”áÍá²Inw¨W|î*kôcúMyGÇc\/ÝÔ-Ã÷˜bþûÏC±E´s1`u–Yž0VJd‘m 34܇€!º S†Ý6»?”CaáZ8…kéžóxŒqÛ©Ú|,É®EÍB§x&ÌmWx†iÀ­HR7Çq «ÍmOY|¾Þ»¸iüg7;f42¸Gïb”Äl 9þë4Ùrkч廭õާÅÀ¬ÝOÅš!÷öÂaᶉ ~ÑÙÓA±Vá~0 ( 2‘q¾òáëy¦Tã-§ AJ‹Ãsz–Ç6³%Ýd¯¥R)ôàÓó¾1ô Ú_`5¤gÐBÔq*'ŒÃ_’›_¹ËÆ'{PP`Cz‚CbÈOÈHZ8…kéžóð #ùcj ¢»r~(.šQšŽ°LÄß!6ïi™¾ÅºaxNAa~ðqpp˜"^o†!ÖÁ!#Î~Ë üzÛZ8…k-I< 2¼þT-Éæ@³%# šÈ7Æ r¹…Ä"p¶A UA.PP˜ì~pp˜20Â18.nö&"b™’ú<”Öðç$/n²m¨Õ×Sl9›(,òy`î*'wÕ[q3$d^4V^¢ƒÂ\æÁÁaÊPb1Ya¬â0°m„•Ù-œ"ô‡ç<üÜxî¸]i!ÉÇä)PjÁ‘ßVÓWÈò‘|ñ\êA0øÅx‡)A·T`FnÞ¶‚ضFŸ·÷­¡Îá<5êïÏòâÓpOiÿyb··uQ¶_ÂVK\>:2§–òvê ŠwÆæpbŽÃÆtXñ7‡u+÷!ƒ0¾RiᮥsxÎÃg›)Ãq»~Üõ…AùâÓuS±f’f·®Ze]Æ{…¯vSX½ƒ~p¸ølc÷aÓÕ9 æb… Â6µp )é “ð³cV9ïAtÁ3ßÝo@ÂXF`† ¾2ËÙÂEm;ï—Êþ -¦ë/ ; öƒƒ`É€ Þ1×{ ¯HRÞÃÿN‚"”¾Þ¿ÎÀö‹&DÍ(O×$cýx1tïÊ´~d„©/øfí"ºê¥ÁE'r8à$7^`®fnÍaáûuõ|ðs§˜[ƒ¾Š-J…ÏÃçFè‰(ˆëµ{ˆÅ‚Ì1‡qöCTÓ¦°ÐãƒA 9áuÒi¸&s4ö‹¾ù ¶Ò (\eçð˜Ây…ˆ1HC×[Ã'ƒYi— Œíß¡¼Lâ¡;Μ7LÙnš¹X6Æ)òZBJÛ¦ ŒpÌE[‹s°ÊåAøõ¶µpŠÐ›¾ÌãÜvg} -Q•é)w†/åóÀX¶ÁàAžþ´›¶r&(ûqšûóN]c¸ÃYåЃ4˜Èçëæœ"”‡ç$ü°ˆíõ®Ú}p«Í0r!g ”#&kßY¢6üg€ÄmÍ#¬ƒÆÛ ¨·\tâà0E`„c ‚vƒCGý¸PÙæ­ìÏ]e~Ì@¿+²y`e”f­Ò‡çøÀt»td……q[Ü3 ( TÆ>Bzô¹Å¸£ÔºˆRƒè£3VÑÍ>kUÝòÂõsÏh¦W}÷5*U…iZ¾žÂ¦˜A–È—i…ÊÖŒcMa’³SLF¢‡€³‡i:fm¶pöŠ‹0n„×9ÆAáJŠÁsç&[áñ|ws¡$„´ãý<1ð#‹Ù;a°Å¼*%@!šïÉ?Ïž¨¦áC€~ª*OwÓOçÕŸ($V"uN…T ÏIœ1ã-‡–ËÓÍØÖ{zÚ¡0ÛÙTÂc¾$Ø/!XÑ#©P^‚%Cá#ÄÀß,®º–-Cðë-´ŠÐ[žóЄɇÿ7F{! ¶Ù™å¼Ü$b-V¡¶Þ)sšes¶(»=ìÁú¼£>åp„ù8f=³Hwqùv[a„¨H§pÃsÙb=nUù=£1=Þb6˜ßã˜É ΜHv-Æåª±ü@ßðN`Ù÷`"³sp˜20B˜ËÑæÐ™ 2ãŒ)-œÂµtÏyœnLWóÔÃÎ\æw¢>0Vm¢ñˆlNòdÕ(&ϯ¹¬#réÅ„—zsp˜2tD†äž¹d…Â:!C§p1ü9u7’×ZjÙ¹eý˺usëÁšÈy³4>xzl+W»¥ƒbèQty/S,°9X!ãC@ÄNI}î*úðç$Nóñ¬¬¤“ER¥Ï\Y°bcdœE~Cã‚Ø³‚ßcçg|RPX ã|pp˜20B˜4é q UT¶ °°K §p-ÃsçõGÅ’ü¤|kM0£|žÔ3fšœJž¼YF¢]¥Û)ÂCÀ¬5+!™Oì ™„uO³µ‡/óxœ¨Õxw}øsçN4qÊÐÚ\æ-¯b÷Ù†‡rĹnfù-0JÀÈõ)ˆG +èÓ÷˜­c¬@æÅÁ~¼ûAXÁúÐB¡¥8|™Çßs©/Yá]W¢À¬åß.4fÑGÌ× ?§"[Xà‹ÚW;ìN^ñ'¥Y˜ ÷›àp5½Šq):TðÏCgÎá\—å#z–³òð-qYW]aîÂ<›ìù“õËJa§[ÅoŠÙ.æA`Wôû`à0Eàºë˜Ägb0à,Øã%œ"´ƒç,üÕÍʨÝ~»AÀä7¦›cÙJx˜ “|Q,•Ye׆•¸†þ N‘ÍãÎÁaÊБ˜Lõƒ…V"âQ–ü|+#Áõ˜„ßvŽ6e…„Ù:Γçà›»1±Ð n<«–I8%žf ãÈÀZçA‘³ŽÇå S† ¢©7+pqˆˆu\:èóPZß“8_[zo·ÑæR"'2Ë? ÍzÈEŸƒÖðÒhV¹RÀ2Û¤tPTÆù‡)C–`¬jþxߊÕ=dVF<´p ×Ò9<çq¾º…ÅÀf„!ÀPañUÓÀéÓ‡ÖÉ7ËI ÏDŒŽ&¬0x7œÂʕ̃ƒÃ”!c"0üws`éš-ËÛl-œÂµtÏyœ§ V<Ø9§°O®ãÊíÆVaìÂ&qù_/T£)§9„×"èãÓ|)Ã@ƒ‹ýëíÀ ÅÇ'‹ ¨Á^ ^Ûrl…9þËÜ(7Ã+¡pîd²ŠùÜÓ-Š ³2Ö>çöc Æ•9=§P`[pp˜2Žà¹lyï›AiŒbp„_o[ §µÉà9 –#oáÉ,òƼ9T‰fl˜cº‚7* s!w 5D*´~ñvŒð§hÑÚ¦ Ý]©ÌÓ •ƨA†iᮥsxÎãñæÒœ.×J¹U‚<0뻲E`Ü(Ÿ¶X­CÞú*m¼„Ó-Vâóµv–¼‡\|ÓÚ¤n–PY „_o[Ql¥ÉáË$ 3ÞÞT=çÔÖ¿+ñQvk€ Sð¯*Ã!aXÿñ&mŠÆh°pòº0ãÆ3ÆÍ±.C0¬ýøØ”‹±‡âç]/¡£HY²B«Œˆ(L˜ NžHohHü°“x½Fe·%Ô×[Sp|>­Àí`V(_h.®Öu§nö‚•^ûšSH¿àðœÁyHX—šçp1–jVÖê„¥Þ×w¯§×¬™:7ß)Á¸Å Ì1ˆ0¬-8l"^o°Ó%²¼8Þ—¨Q# ‚_QpSHGgð˜Ãù³Ò0—<«Â9¸-—îÇ `jåþÑ>äJWuîj댺?®™×uÌUY‡\[÷øL§óÏîÕsñþy¨«ñOõÏy2ÆMÆ 6†’ežˆ“m_â]¢N“øávøEóÆ(EEûˆÍÁaÊéËF’é!æ<…ŒËM¡…S¸–Îá9Ÿ0Œæö»áÍÊëÂÎØóçÀ ÄÜ¥Á´Áj–^X|+³ª¿¢¨ï¦¸aqÜö700EU‚Agµ’AFd)ᮤPq0¯æAa9uãàpÙÁT@¤¡(q1H™ç‘²GS¹N!Á9…ó¾ÎØ’8+VV}̪ˆ»Ƚ°cl,X¦¹w@qñúñGÅP€šxye4Ç$fʃëÖÆ&×í›+áRÑ<¦ ¥qŒ´«<kÚÀsûêä˜;Þ®‚3/.>Iíf ˶_òAÁÊ›ƒÃ”îc²Š‰‰ƒŒ!#Ìgµ–#s½Åá9ý w¸z„ÚYG%\UŽ]æ¨V‹ÑGÃ]«£7™;Z6üb–µ§ƒb¢ÇÌæà0e(šö•‡jÙxp†ÉÃ+ŽûÌZ¿Nz‹ÃsþûbÛÁ©"^Z+½uÐlÄä ’è$c|L™IiGŠŸ)¨"1öçYYK><`ŶlŒE¿à/ŒŽÙ<~f«àÒÐ(\KçðœÇiOdS›x†š9Yvu>L¦·Õœ ])hç ²_Êñùz‡J9Æœ™¾¸1­ÓÙ* &Ô@P/ 4p×ÐÇ?ç°ßÚÁº3^Øü‰fó¹-P1BÕnl fi2;¨à\âs‹“Ï9F;(ö ¤'FR4ù?e Œ j¡29|™‚/ÆÂY1ùjl%ád fòÿÆL¶Þ¨j{Txݨ^2в§ŽgfŒ©F˜="Á1ª±hô: ÔŸ3'ŒšÄ;…kçßúŸç'F¨n_GÆ‹QFfÉ™3u‹†›ÝHí^y¬{x:/3Á `À cUƒ…ª¶Ca\Ü¥ƒS¸ŽÎà9‹3¼| –ÂïXÕÆz“™ J´pIÙYp%5µ +b¦Q§˜0¸lS†"6‰Iø†‚Cg\bÈ ¬ Íz¡·8<çqþ¾÷d´ =;“¥;Í$ÏN`PzwÁHL°Î2fÆ4/ š> o6­ûáÆÀ3ƒFRb°áhæ«gë‹s`¸-ƒ°ùv¤„¸ŽbðeçÏ«Þ'¥z©iÛ|˜Äøé¤®#ÉcšF¸@a'§Èêl"RÂëíÀ$1ŠA¹Y¶ÆEF •ŠÐZž³x,xùñP(+—¸u¨DI`îÄe–…™ª?b%è6übº­É¤0'²¥^‰Á½@I`úàJ㠺ʸˆJ\ §pÅáË,4]ÖNeÐuLWõÄÆ­~ÊaK>fЫûâNwÚ¹ C–0s ä.ÔÍ!àq{W§Àµª«o\„=0¡·8<çñü}tí!$튋höNº™, ¸(#ã­õºxw-ÿ0þf–[‰áCn¶ÂôÆ–RΠ_‚%¡«†÷VÁ)\EçðœÄêZÒûQw\ð÷Û&M³j`î+ŽN½1@¥|fbáKÂ/>ÿó>(îÌ ‰sp˜2ôtcwØ÷Í`(FÂEÆEBJ8…+)ÏYœOsSSÄ!?mÓ])yr`X‘õ—ú°ÜË5˜¸/®× žh³ß Nòã¦4¥‹A¦) $d7„Ná::ƒç,Îé~½È«>ÈzëyésÄPÎEŠt“Ô“oLOËɨ°²)2â_‚@x½m˜ee}pëìFäì cÛ’N“Ác‹÷ K×ëçTùöË髪1y9Zcឤ Èa?±§ƒâ1üà΋-×Ö¤,` D=ŽÍ nVcìÏCW ê~žYsÆÓ¥Ç¼y{šØÂ>ÌÍ,NÛäÑHå¼_]—*Y ¿]w6§HpÇ€§6Î7SªÃ¨ì¼ê2†êµm-DZŠÃ—yhÂ]>鑱U …òúô¼DÇ 5ƒ°ŠÌîô °²òaÅo™A!(¬b:88Lrª“ÿçÖχø?—AX«ñ=ŠÐ[žóЄqFgíc‹Ú@ÝVKÊÅâT%º¬˜veÔ`)Š Ù0²#˜´ë´sÍ ÀL# Rgñ0ŸØ1$ÆÚ$œÂUt9hª,:ÂÀZšÆhÑ­””cžAHUÞ§à[°Êÿ5p^ZþÁ=ÔÎT Îê½1fL±'Q Ì[aœ‘¥ƒS¸ŽÎà9 N·ãV«Èco RYAÄ‚–.UT&¡á"êá{l¾™Û-ŒŠ.Ø¢ÏP~nfóî0h!F}>ÄÀ"›ÐÅ@¿ÞB… ¥Åá9‰s9î,ï – vüFþyG¦îç‰a„†£S®ÕƒÕ?o×O”5ÚEåœCÀÊÞ˜ÖX¹Í94~!ƒ°Â”S:(\Kçðœ‡?Íøaw&ÎgMŽ?Z‘¡`x¦[ ÜèÒ‰°oøµ}ÙAÁŒ#ÞÞáìwÇÌÎ~áâçdß2ËãÒÊA!%Ácç.”ðâ6Oâ²s©j¦p`3¤ZfÀ—-{¨ <îEÏrŹ (úÍäPç°zlÌlô½ŠCe³­!XsÉ…kéžó8[âªúæôe¶£ø<1­¾@º™ÜR:&Q‚uÕ.ù ¸£,ªºüÆÈP òÍÞE¶®„S¸ŽÎá9‹ó̈YÉ; X„¶z›Œ¨fQUŠœAÄ–c…º7Ž3UU¼š­žé'Eo¬\à ¦Œ&O9yÅ!:y]aA?\Ggðœ…f›ü½õB©ÓÌš0Ÿ'fÚ·‰¤¢âµŒËª•UüîVPõxSÕ§t'®²ý58؃:Ó–!X©#°=;…kéžó8fÛó{C^«˜ÍR^Õ¥Ö1•–-3£X^ÆÕ.­Ò8 ;Œ5¶!¡0(¬êÁ@ % ¾Hˆ¢%YÃóÔ’,yÆ’,œ"”‡ç$ÎFe Xñ»’ÇÖ €óë牙4ªY:™’0}³bõ× $EAìæpR±À䦺>âùÓ…Œì?nhᮥsxÎÃ\56øöL÷ û÷óÀ䢬|ùšòTÖ¾¼Q„_Ì º7y9ôx)ÐÏaÊPæ1ŠÓs[Ù† Â0̺ÇK¡79|™ÇyZ¦ÛËOfʼ*Ò2µ1v[\KOwt‹/}vbUf+ž 0GFÙÃL²J¦¡NÂfÐК*$Ä¢L üs×ÏÇ?gð¸Çr<ËvNeÞÆÅÚªáÛ8Ù²Zb¢Qîb?CÁ¸ùQù °Èƒ¼9lXÝé7¦òPÊÔÍO2ÊŒ›Ÿ´Eh)_æá?-jóŽÐu\n»§°¿îçiô*]ô¯7ëôœq„H´!VÄ;z¸8-›ƒÃ»«¯cÊ-;‹8”Êê.£Ôhj%-œÂµtÏyøýMÈèØô:Ð í¶@f7N•iF…a}µ#Å +cNÑX\=88 Šm$"¿ÇèÁû`ðŒ]‹…+œßŸÊkŽHËcÈ…ÇÑØ—€ðw‹2úÜðRÄnI…·,W=Ô,p«ŒúÀY—Dчú芃ÀŽ` Þ``“‡Â(,%œÂuƒs çu@æ3w3)oc:C»RVø¢RWÛ¬ >ŒA±Ž÷¹¾ÜÐá˜YÙ~[Ìœ…à.ÉŒ µ ×Ò9<çq+XÌý¶vXe6Ò>L/Jš4 °‡òZ9ªR½§‹L,‰å™CÀ”ŽagGgPUo×ET¯ÈJˆb« _fq,ØœWu½q’†¾w_ŒcÉä…>ù1¸8ÏB§üðFï¶“À+ï센98L2ª£½Ä9´v`pCÈo:øS]ߤê?¼˜°ÁÅM ©YŠˆ!!äaYoáPÙGø$וì.ÃJšP‚>(mDÁ!àCÂd†_;"´*ô¹4ôÑø/zÇABùà£É5hÕµùü:†uiÜÙ¼ÌʉÛÏÅpn‡í+g@÷¦@C·Í@ %à'Ñ{¸Uð>ø4rW@Ÿ‡Æþœ[Tý%Ì—rÏ+bž3…ÙÂ2UÇõ4 XGøÅvecª…–6LysÌÅ…Å9˜õì>dFd†´pŠÐ[žó8Wb¦IXRKÛ%V³¹¦bce³m#ë]åïát+°7møÅ"¬#ŠÉнàà0e¼ÞLf0«8Øù(•-C0bK¨EP„ÞâðœÇé¾äù)û- ±.‚³XT(0“]¿WëÄx©U™#‚AäA1ÔšÓ9¬+ÉÆ4Ú‹ƒCÃ¥fËh—÷?u-œÂµtÏyœ§ŠÂ@θtçë]÷¼À f‰ÙЇÒÚ¼‘v»¿žÑêAa%OÇÁÀaŠA‡˜ ‰ÔÁ¡5O¸Œ¦g)ᡵ8‡ 7Ü–A‰3ÒÂ)¤¤3xLBëÔØ×JjÄ¢Y ?EÁ9¦\¬«f†y˪YTD€xQ£wÜ,°ãÎ~= LBÄæ2#Ü$"e“ þ¹kèãŸs8·]NY–F“[ºŽ·Ìpr̤cR…»ªEûÔKí£æô@Ô¤SN‘™ʆ>0èz²9t†¬† »|XPl½ÉáËI†`…u¢ðS¸Öbð˜Äa¾@eÕâýN-Y w%¯Z²1ؾ™Ûl7[Û7Z~$/YbáüfD Š +›†àõJc.žq ·˜Ý‘·Á¸`Q… ~Áá9ƒÓNÓýYö™âÚŘœÏÃV3{¯Eå$êÂ:ü·‚3M[Ö6E½˜žçŽH É¼Œ;‡4Ø¥Âe¤á},\ §½Åá9ÓM¢t‚RžÉãíbS3èÊò´íž™ ï‰Ý„Ïäq§ðÔpçðŔΩ•‘@‘~~Ó ê·gËG »(\Kçðœ‡Ö)L³îSe¤ÒÅ¢–æNc‘`ÇôŠBµfKA!ÈŽ&Ú5[5ãa|±ÓÍþܶrŒw˜^ojÁ ªå—Ôè æ8Aè¬ñÏ9øš<#ÀÑ3žÜ¿0ªs¯c:kUÏœ}ØQ:ˆç· ã—*Ì vŠ¢à çàp‹Î½I*Ë+v-¸„qj”Nz‹Ãsn¹ ÷¨Æš­ƒo^Wmaªü¤Õ«¦+­ôLh£Ö Óœ MbwS„³Ä5€‡LŸƒ‹È ´ƒç,Îëc¶ÂHšQ']¥h¤ùy °Ò7ä^•Éæêc]7J€ðã6öåq‚qqïà6!¬áÔqêƒîѽÓ&$öáÇ¥xÿ—¢zõƒ+“#êEMË”Åt7ëègWCÔÜé hMëŠ88\Xæk#lO|ßã³"^]BŽ˜X×Á)\G1xÌá\•Úu–?¾Ù·Eáߘɳ…rPaŸ‡2p²'öTs;æÕc|ÀÙKð;&«ƒ€sȉ¶(¼žT@Ÿºz>ø97QÔw/æÕ²ìììÇÓšýàGØÖy@rCªXûì|>Ä>ú¢ÏQù¸ìñ.^­D˜ÂH gPnEºR€@ÿ[;¤¡ÿ2‡ÓÏä?þ[øBjOŠ3éù­1SÂá½–LD 8üRo9(F6·Îæà0e(̶ë4‚ÂÙÎÁj¬ÔCa¬ÃÒÂ)\KçðœÇyp’ãçö”=¶¶…T¶rÇ$Ti½h@kæ›±sý5YQ]°ÒƒG9(î~ t€×tKy`2 `‹-¥¨@%‚ØJ%‚"´‡ç,N/HŸL!ÐMÀlí¨æ9<ºÄ1¥ÒkeÖwõ2½ÔÂêÞ0LÇ7¬A±žê”6‡€)ãõv`hé©+J]2Ëç?7æÐ›¾ÌÃwŸ瀧1œ¦ÓòÝÝ%¿1ê8e-–ì»jHÕ-øÅâ–!cvGÓ*Ç4öœ ÷ÑÜ%Z8…kéžóð ¿{oÌèrušI&êö5¢ôÊkÞˆµÙFÀ¯]þ-(2š2” [°¶gÔðá£*P]¿vñ· pÃsgVfˇIµ^©±~«uâ»YxT˜z1hÜ à.™6½kðåû‹¢L6êtSF“Yr38ØŽÚ„m„kᮥsxÎcûºXkURfSG¤Ìð¸Uǰ^þ‚'20¬p¤}¯ÃÌö¶uÓîä÷AQÙs588\=°mcSœC9(ëÍåã³PWŸêŸK²-”;`VH3“°#ÜçFþ@vrEPDÅ;Ý ÆËÄÞªAÑQ:usp˜"0Â1…3Cš´<¸Œ4=ÆÎµp ×Z “Ðd™QL{›Ç^6°°£CW‘Ú‡Óf•6Œä2ÂØúÓÏDaɾ°{“A€ðz;…‰…o¶4;S‚`…וzP„Îâð˜Ãy<ÖMÀ˾±yL³V¡½Gj"|7IW6¦1WéTÚ`€ÊLÄV«ÏÙñfw˜t°¦ë¤å zå—å{bâ<(\EçðœÄ¹6©H˜‡¾uØtÖ‘äR‘°ñ V»B‰ W´ V ,´çpŠ;ËŠ#_ â˜V^'•ÞùA{•´p ×Ò9<çárß7‚êåߨY§ ƒÖçF°Ê ‚qrªVÛ³#@„éfù—øù`ù²î0ùc€0™9Á 3ç $Vd/…4tœŠ:¿t¨(™¦[Ey}¢W6(ƒÑý–q”nÁªæŒT|§°îÉMÅÎŒsòÑuðÐæü ãö. œ"T‡ÇÎwV±$ ñ»¬÷œŒ´“ucõµÑ=¡ÅÉÌr¡uöõ½•ý´‘Ž~ t˜¬µ±5óDÊ·_çôq±J¸S„ºâðTÿ<'2YBuqÁBtAVùç©…e¤¯ÁV![ i¶ŒS*k8E®úQÄÀaŠÀÁÉ1¨a¶9¬+jê‡ Âº¶ƒ ´ƒç,4]vŒçÍÖýîÅsinÛ½>Œ•Nк‡'ö¢ßœÌ5`îzPX)«q0p˜"´z“Y‰Æ9”A+¬Ë(Ãí´R Bk1xÎâôhiŠÊÞt{_¼´-C]í¤‚LL¶›èy,øEãF™…UÂM‡€Õýcc²ÌÎ!ɼá2¿Þ¶NáZ:‡ç(,é4K†¢mˆIŠ•!³Y¦-‚ âQOŸ‡ÒþœÄaQ1N÷]æÂ†ëæà Ó{žÌð]‡=–+,-/XQ}h¡àµñæ%ŠZàÚ£fߣ­3È8ø–%'¥ƒÂt‡þç.®R<+$34ø¾Ts³Ã‡ GšÏÝØÐnÆ6~±¢òI0.d;‡£~t`MÂÎ`(1À%DýèÐÁ)\Gg𜅦‹ÅXíMuû±˜aV.CŪÏC«­¥Ÿ ²=£½R5 Ú0ƹ]û‡SXìK=8|©…Y`.^Kƒu¸D€ d~½…AáZ:‡ç<ü°ìŽÚÃ)b]’P%æ’Ýbc: æî¨D“°¹Y!ñ啾÷ǬL¾G|Él˜5I8˜4>±ñUðOÞ+p WÐ<§ —V£ª,óBXf÷·[;f*hðb¡ÞKYtýtm»'JônŠÌbÀÁÁáq{°u`²vdqà.²eÖž~§ƒ"ô‡ç<ÎÇGUåBsTr?0“E-J þ/¼ë›D5õ]ÉG™y°GÏf°ÞÄa!ö`À:í[‚Wrß:8…ëè ž³Ð¯Ë¢ˆÌí*…v[Lô;êN1 Æw’CV¬Ra7»±ÝÝ=pó¥cÜᡠSF3˜½»hº€8‡K}. 9úË ÎE*¥Ãøf¡½ì>±ŸÆ+ é%]õö!ÊVˆ+ ø.Ec9àð¥ƒW`:Rmß„•‰ÙçAáZ:‡ç<üÔäž>Üñ Û&¼ÚŸ¦`ûÂm¤àöh^r\V`Çøb›švïÏÍù3áS“ÔóÜ$4ÝÛãú#œÂUtÏIø*µÛ&FR:­ÂɬGÀu½=“¡ÎÕŠ&Ò6ØÏ’ð‘H]ÝJƒÃ”±®q(±g=RQáw¸u|Jkøs~D®‡ k‘â©«àÙÿ<7zt6_ ^е€ð\'ø%'~:(Ì}^7§ÞÁ@в¿Ç”5Üc‰’Ná*:‡ÇΪàDÕ²œ\‰aIVöa%©,•>™¬Ë ªÆf\0–jŽƒ¢”û` ^o°Úƒ÷ûn5ÓþÜÐ箟Îà´Ò\të^N)%–ç±.ÁLãrÌZ'xQE>ö‚§2Š ç„_Ì„Êé `µÈÍÁaÊP–1 ɶÁ!³>TÈ Œí\Z8Eè-ÏyœW=…GÉA%}ìÐ'«c{téÌnÕr "übvP*E„Å À¤ŠfY¬f{ß ÒÅ‹ üzÛJ8…ëèž³8“*ÝÝÕбǒ>'½]D™ö¢¤Ëë5È»€ëåÃ2ŒÏæ¥>5(Xœïæñác¢^rp [,……++Ýýêãµ½£ñJ¾*^¼Ã1÷¥Þ(™ÉVwŒ¨‡_ì|’˦°/õºÅ!`ÊP±)ÖúIÄaduµ— ÂJJð”/6G‘–âðeÏx¡ä–d$±Ve\ªë˜Ë†µ®/°ð¡Ï²b[ øÅ:нÖû`NòåÆ~µ`òâͲΒ!j®¥sxÎãü}ÙÙ5Œ×­‹Iá$3x ³Øœ‚$ÕÖÛ®Ÿ»:CŠ¢$š%œCÀÉ ö8¦¡DÃæÐ®è‹ÎN‘—âB §p-ÃsçKÛÙOÃã…¬"“;ú«/€áf0ÍÛ°€´Î†…FzPôª¢©âà0eÈxAŒ¦n¼äl„e»€Nj“Ásç1YW[%JŒ 4¸Š2üÀ‹ƒ½‰KÙ‚ö±ùÞj"7<üÀ ¤ŽƒÂ\Q{¼ °ÇV+øb䀶Zwã`O›­pŠPXÐDqÅc½ƒR•ßTÄziòBFö_¬Ž‚ì|ËX§\°ÊK¶vPŒ©º;âpv£…0¯ “ƒ8˜«& ÉŒÕ!ÉŒ!Šæu¥Äá9Ó(•õ0³-ŒöäÝä(0lr4´©{“£©m?šY§®œŠ[ï’ä 79 L´(ƒha$»É‘+ᮣsxÎâ|ŒÛMtùª‚4-¿>Gtv²nl*lav诳Îêf w]Aø èSõJÅ!`•® D­ìéä ,Áa"ÿ'%œÂ•tYh¶ìÄv¶Ÿ‹ŽÖ<(é嘎åKÙ~ƒ·ÞD°®vP¸aW ¼¸km̺â"ÊT54s„µ­C §pÃs瓜ؒ@ç(‹+bbÇÜ\,~Äu‚`[wê>\«Aa‘þùàà0e`„0cnÿ°7£ „±eI§p1ü9ƒóöSs%䨉§‡ŠèÏÓ ‹ŒØ¥ÏÈd„TfU€ÊÛéyÞiŒáS€‚Ä$ED‰åëÔCa¸¤‚S„ÒâðœÄéÛcé¢Na ,Ãú?Ìt$¥À‰x#ý¸QÆ^;XíÏ)¬T;88L*BKÌ¥Pq@öÀ1hÙ:èóPZß“Ðliuƒ{¯z'ÐÂÅì**V`Bh}y ‚0† æåõÌ÷ƒÐNÁ"{›CÀÉKî:&«,Ÿs@ÁÍ-B9·úÜUôáÏIøŠÜ‘¤w˜XLØF,u“'‹ÀLt|¶ ÿæ—;UÜì†üŽ4PLDªmgO pLB ŽÍÁŠË"*U¡ÝûsWч?'qÎ6¥3ÖÏ:rÃei¡kr‰Ã.õb;`d¸DnUÔr`]¹E—)P”‹9Ä@ %Àt(=D1¼4…KaøC¤‚S„ÒâðœÄéß{úCúd™€lNûi±¶±~˜~óüžÍOQ Æ1Çaûâ­¬Ã&°S\»7ƒ€!áõv x¬Ôðõ°Z±ÖàOxчN*cüs~jÜ5ßâ­ i¹ÒÅîz¦ãÑ0#žö[Z£ã¸(×4*ñ8AG±Ÿ=>à¨E蘫2Ñšê½îryºå›ÎÇ管ÎáÜ|æý°Î öè¸n–jÜ˜ÔØ¤#©ú¶Õi›ïž½ì°Úf:(Ö h ^î¶ „úÌs´YjÚüãØB ‚"t&ƒç4UƃÑZ~+\èVN²`Ï3X®Û2”†*ºV·6¬\´–Š?ðæpRýêÀ¬o£*¿åvMܺá×ÛÖÂ)\KçðœÇùßGA°õ¸«å´u[|cÃÚ1Ý»PÛIÅ^(u¡ˆ÷Jÿ|\ƒÅ«5|ÃEÇŠÀ$ ö ÖCa{e]§pÅáË$ΫžJñß:[T™Õôp,^}„à é sÄj]LØ–Q0®2I2Eq#”msp"0@sS½ïñÞ}Ð%VN+tˆþ„ÒQ sð¹û-OמÙä*ëEù¦¸qŒ7³B¦+ É£>P‡uc™(O¥E"s0P­QáE||ËL&u Í{£†Ná*:‡ÇÎW65•“å ¯é¶p«PT`Fcy¢vé}± .3§Ö/¬†¼8Lºâ]Ò­”÷`Ðд4Ä•AèóPY£ŸS8ÔÑÜ4Ã&§*l¥€sí˜ÊfG€­¢N–³Q…દñæiomÎ{¸Ã€ð5Ç$úUª‡Â2†0¦C¡´8<'qþ°•=œJdœNX^½m`Ô~ÖœQSä¦lÐ{Ã/F·¦rP žjƒƒÃÑÀ60ì? Ôž6DDÛPÂ)\I1xÎâümu (*V˜QP¹™ã—á}ŽX¿ B íûCîÒdèa,íGû=ÏqAQ'SƒÃñz;‰¥¤œ™UÇ!‚ðëm+ᡵ8Ï9 }ûÅöžL·kÍo¶Ä 8÷í^y# fÀ¬`|!ŠqÑàâ6¬+âÆðEÞ:¶Ê-ƒ°n·ÐÂ)\Kqø2MQ×ìÒ%gWtî^Y50¶?âe)LES¯Éâõ#ʪ¦ª˜RQXóªz w¸ïzÎŽ¹è¸rMES]F‹²ªPAo9üË ô,#“…FÕõÔZêØf}É"°ÃêúÊÌ"½é N~±îaNq#{:xVЦӲ ÚÍøѼTt(áã>Nîñc&ÖõV u««Ž8;+–¡à>ÇÐ5g•Øqx™à»ÊfyB®—5ÿÛÄî]98pâvcZc¶¼s°ˆ¡C@\›¥ƒ>w9üë$§FÖ)áÅÇ^ \¾+-P°ìts÷ä3ØZ‚¸F½b‚á0n¨Yàù’Íšãÿ×ÛFdωá¹ð"îü Û×@¡ ü9‰óêƒô!—ùRÒ¤«Œ1S7Í )Ép–1å‰Ò‚_ª“ŠõÀÕzpp¸´£˜0Y9£Î!+§ÔeäÈ:u-ˆÙZ’Ã×yø|åË㉃– 4ß„€7frÕWÄCœxXGâ<ñ46öŠ^¤éκ fmÌly+Ö¾ëðõ¶uÐ箢NâÜuµNmïÏÌT´…÷gê%èòþL•cÂ×8U¾‰0^D•xrŠÛ¿q¸÷×Óäý& 5‡„$Ý-#)wkᮥsxÎã\«h…ó{åbUåk°XûƤ²¥¥±æcÒq¦&Lq੃•œÂR˜êÁÁaÊð$'`<¶b`•–·ÁJrªã µÉà9‹ó©ÈïZQ­ÈÍyŸ&3~Ú’áÐB½¥j%ëmCììDq›ob`@.ÆW‡ŒË#°C §½Åá9ßuYŒÿl h[ «€ž“ ›%\I¥Ìgd>Ö°ÇŒƒ"ÍÈå‡)#“Ø,AìF޵\2+uŒÕÌ;ŸçоÎCï/›'f7>òœ­¬’ÝyЦ]*%Ê,±†…z€:5Œ˜“Æñ¦„3ï%G6‡RØvU"úV}|îúøç|² Y"^Áûî`gÙ[e•S/:/ëxg`ç–Hc?Al¡^þy¿•=¯Ñ‚Å„™xð‚%8κ%Æ® ‚ÀUvÏ)œ»n.g¤,íh.€d¢ÏS*»+4µ´.ˆ-…1yåv{鸰‰ÅhÊw‡)Cb`UÛRgï—AØó ½Åá9ãÀœá ŠùZ ±A‡a«Þmeé+­…–ØA—!Œ‰¨{æ ç5´ƒàÌ8ôñSÂëíÀd;llü‘BDî*“ þyè¬ñÏ9œ»® [Œ]4˼NùvÏ—å*áéB…k2Ϩï°Âß8ë.4‚)BÑoD¤¿Ùø<åÖ’Á kõ ¥Éà1‡ó°ì÷úö)´Ü´Èì*o‰$«W´Û)AÁ›xªÉ«™˜æA‘ñ mS†ŒTÀŒ›A®ÎÁÂHîCaY© …(BKqø2_¥£ KòPÚž9¡òý0>FÆG{«Æa|4R~ßÆÇµbfE+ˆÂ®Ÿí4_:œÜ?ŠƒŒ‹."Œ®ƒ>w}øsçš¼¯€‘ ƒP’ù1ÖÀQÉ< ˼XK¢æ°?z,¸SX}׃ÀäöGÁ:ÆàKGmgÅaÜp WP 8äyFÒ˜[¼«l‰:R]ýlåXïjg[o9ZÀ/µËiÅÍfhÎ ÀH$f°®|0°u ­Ò%B°|ù†5ƒb²]bp¸(^ÛÝú)ìñ=+B¿Þ¶Ná:ŠÁcškaD3‹ÃÙn–d¾p ù<0æ|/½3YÉÒ£“yºìÝÙ°ÙÉÖë…æ«Naõ½çfàà¥ö.W``EOhX£Á6BJEh-ÏYøtSèŽêëSç®gaÌc ÌàËo¹&=âmÑòýëDÇr<¢˜(/ LJ™pÃm÷ðr©™·º¼™«à®¢sxNâñã²¹+ÛÁ¬¯-ÑGnájX79º F3¦õÅeô2íkÍÍ9`üºSÙ题x{6‡€“\Xa´à`‘òm‹ ˆ—:øç®¢NƒLŽÕ8íò~—z;òÔè3š¦ÓXqÝ4,LÖkøRq¿º?gMÎ=\°¼ÞŒ' ‘5Ë¸ë– X (×}P„ÒâðœÄù$óz[¼AñËjó˜ÇX×îJ÷EUÕD„ÌT]MKÔt¶4é h]M%ÄÁáì¦À¤›Pç*cf\Fª~!v-œÂµtÏyøª\Ž ÐîfËêýèf‹7‡mÑÐH÷¡Íls€²ˆ£†²Xm¤rŒ, ¯·séÊSU ¡E3ÛàëÍUˆÏCgÎÁ]œ£æ»C.ÜJãþ6‚Qì(è… ¢Ø­“:­Dòû&øç]ÅC|xÀ‰ÇÝ©ªÙé *Vâ-ðëm«àÒÐæAaý˜/u´Ùˆ„Àcnžï¹†¨«?³(BiqxNâ\ x!ˆâ£wÚéaXŸQQrÍKpZ­ƒYŸ,Zëð‹ý{:(X78 ¯·q©V¯¬Å¥ôCa3{œÈ‹Ê™–¹9ñ ìñSÂëíÀ »‡3°%f´ —ö[EîD:küsþ¿{~ˆ×´³^¹¬Ht³ËÆ$Úzt•0‹èXø m·¬ÈQ4ÖR S„ß´wUOèZh‘Ö'‚_q ‚ÐZ ž³8ŸäÄ‹]wûÓàµiË,sËþ”Ùl¾#çæ¡––ý©çƒbÞtì9‡€!C¨.ߎ› Àa£¯tÈ Œ´p ×Ò9<çñp[²š¢Vá6^g”BÔ¹Y'´O:-® U¯ª\;•(¼ˆó>(fcXžs¸x¥QÇÌÁ47qÈ3³ò¨dVxÊæ:…kéžó8÷Y¢´÷Ø {îp™Ï“²UÌÎ1Ë“»7üb…;…¥á䃃Ôñz;09Ú‹&yÐK;dÆM@Z8Eè-Ïyøë‹ 8|—†1þ9‡óœQXjHewºU·ðø¤ö½pè÷‚€–mŸ·º5±–-a{©êàKã þŸÍ!àä~@Ç46’ dBaáZ8…”tIø¦‹ 'z×ýËÚÙµUå'¦ãQÂ×j¯”yÎŽÖ¼ûo» ì‡Cß 1˜"ôÓS'[ñЬ—Caý´½®£3xÎâœ.û.˜%޵8“<½E]6æVÕKvË€”é=Þ ý‘7E®r?‹CÀžq˜6XØÌ9˜C«2Ã|!-œÂµtÏyø®;"°Ñë ÝíÖñ|¨4€cl‘i‰~7¶½Gð<Щýòp'‹™ã ˜lýî JŽÌB$Â9ÜÜv©‘Áò¢Y³S„Òâðœ„fûî†Gï cѯI&î¤äbÇp:¬ Üz]9…Å!ZVm8QØé`à`–eÊEe²}x¹hxq„²*œÂUtÏIèQnÇ/«4/ëÜx©§„6 Ç܉ÁÜ3+@vµÉœuÁ/wJ;(n—S†Ì/À YÞœÃ(Ü^\ÆðBá…S¸–Îá9Ór®Ü'5(ëyªÅÎòŸ¦²TR/¨ø‚,£•ùR^`¬Ìß~P44ýÛ¦ ¬ÌÂXÒ!VbqÈ…yÂ.ƒ0VfiᮥsxÎã8a𺫼6„…g=Õ…Ú1­© µò@;ZW°öSסt|\Tpч;L¯·Sʆá…mŽƒ{™Ñ‚Zò"4Öðç ›P-ç&dq7I1`Hù<0S›¹Õœ¶ •Étt<<ÖÅÕv› ¸²98¥5ü9‰Çzqç^e‘1s©\j<'ÌDÔŹ£~íœ Æâ‘U0Ìù<Ö“Ôƒƒ”ƒcô ºVÑ£€+ᡵ8V[Ú´¨ײJ¯#Þ´j?Yò³Ÿ——»Ä·›9Ô½Ÿ-Ä&<{µ¨u³Ò µ†°^ŽÇÀ¤+Ô¥ÚztOÊØó>u§³úÕ™¬›ÿ»ìJa𳵩—-ãhcwxªK4B3”; 1¶5ôî™Íû!áýaô°kØX7*×"Uo—0^Gç,7ì«fùÝbrIZœ‘, 9fŽÃH—‹ÙhrîÒdK9\\u¬qv{¬*B,Ú š0âFêR?ná̶€5ðé*¢*íÆ‹ˆkMõ·»8?V„o^àÔfN#ƒTî«G«ÐågIuèN-Zö¿^i¯ã-¶Ø˜¹¬µ 8µb«­`c½y\…@„Š!a¼ˆþ™µ“OM¨¹Ä_Ž~š­3Ç)6µÕäP¡gU§W󱺿5ä\Á×Úx÷ÓlÙ´D“°e;«Æ[ŽÓlhˆÐÒ%L×nF3ªžþ8 7œ¦í›ECÙüÄ6Û´Šn—½o·š˜£Ýº»r‡ðT¨ÃÛë¡b¨„“íÓæCnò¯3ìÍÐ U_—Ðé?kpç?‹…â­XABÙ’éëŒ:¯ŒÔëaŒI"(BƒŽZâgêWªíë÷§Ægn¥Âª6s™Ö5|¬CÓ¢"BË0^G÷²•-ê ndiP£õ¹ÅéÐlBú}èA:©­Ð½ípZÚXâFTPòæ8; 1¶%ô1£$gU€4ÉÝ6Öó¯+ˆPÚ>?\‚_f²«ìÈvÔ1{o–.ÔÍ8Ýò¡@-LÎN¶£4W6Ö#u¶/Ƨ–©5u¼E˜3f.ý³}úÝs¶Ô‰·±3í¨õÓ£þn(>5#·v2ò®A’?uìæ'ö™txê¿“åÍʽ‘?ÖCÀjmá]í«„Ûê*Ž™Ý^O.A²¼J[†ê+v–!ÿ{UÚ?>^İÿj‚jxž¤í“œ¥4ÓéÀ|æÞìD­¦h1J mÃõ+{J°FUþá˜lo$¦3âÚ=ÿ´¿?¬¦O¹|º?àêþºÅçGí{ÛßÒpoAK¥›&t§ÃI ꌴ)èw´¡¨3i·½¾Në’!•6w'!Æé¨q>ŸÙ´M|“°#‰5¶ ¯Z"´ ãuôû¯ûLs°ð_V%d”¾ýÌcM˜,±ã²ü³æª¼Jd]æ ®÷~úçc´GVb¸]/K ŠO[«¦Îe-«CÂx ½›âÖŸX²f‚ŸQ«±¯dÚÄ¥<èY{—ëÝã÷èµ{×±Ç%Ò^â~ÊM@:éS8goôÏŸ›³û 6þü4*†„áüFÖìùg¨Q;“ð<9ùïÚf.Kv}MjïÚŒO}’6èã§_Üb·:É*¡ŽÛ‘Ôgì¶k’EÂê)eU‹@„–!a¼Žn3¶:Ú3|ÿ’Qæ´à‡—GøŒ±íb5¡wx;·Ü´XRåtˆd,«€ÅO7ã$@.¡’ù•F(”@ÓÚLWÑ; žJ8j­/­ßˆÔ9Õh¹ìFIÅœw[6"Ñ÷ L¹ŽýV˹C¼?³±|¸„:ޤå:s[# ¬W[ÂÇòW¢"BI0^EÿäžGcÌÕŠÖKóTKPm3‡µqš Aòª4˜1v·¾ñ>„ 1¶5ø£î u/ PU¶ÏW.Íh³LÏÊsóè—~ºUQg¤ï¯ò¸)½žîøZ0•´[IŒ?ÆÒ–î‘G¸„ŸÞì½›Ùtã®%·nkØXŸo×"Uo—0^GײŠÓjXäÇzÞOp¶ÇÌ£)Gê>4>jeü§e#ÆØ]äZÂÙ#R'!ƶFdHèLöà IHïì¡?_ÃÇî#?îQõv ãuô§kïì:ïYHC¦»ü»™Ýå4uinËmùðâø®CÃôÝ“eħclò??ÝŒu+°_@nÃÏO[=U_ÿô¨s.†ã-â•Òæ°÷°™1!=r$’赕¯­`uü·…Žm¬ÕFF3_Öë  ˆ¡. ø˜HÞ%ˆëÍÅ+øX£›Q鈪³K®aH”Ñ;9R«=C]“tÌ;fËñ‘2•KÆrÞc,ԾšSb˜?€ßG´eˆ™KcóñùËyºc+Rª ýóã5ôN +üVžðKƒÄÚ@ëÛÏÜbÌ(SñÕ™}â¹ï:Ö ±V7Äk­n©“PÇ9(|F;çO•°YËÓº†??U‹Šp-«„ñ:â$üY­`„ÄG½œ»ïOuBùìƒT¸ˆLÓè6+Ïò±2ûÞnH:ˆŒCB7ö^ïmæpf÷p7¼¯qD¡ª…ÍT%¿†‹6§Íªˆ=ûv·¶{B°·NÌ쇱l[pQè Šy[hÂÇzFÝ+å"‹m„€Ú ú˜ÙM1Qî–°±“\‰@T­]Âxýœÿ4~’ó8ͱ¿Ÿ‘ú3ÅšEœúzäJ$ÕJƒ\Å£q»‡÷=+©<Ýc¼×P\Ù,q+>îüœUze𬋢ªëFõO…E)«F)µ[×?^ƒ_ìfÝšÔPv6°SêPr­÷úv3Vòõ޵yç±K.°ZY7 {D~:D6"É*!Æ{u3Öw†„ìNÄX#W7chˆª·K¯£ß—ÍÙôN˜ÒTË5‹Ó×™c³ÌϬÜ(Ñ÷X /ö?­+ò;ñ(«lü½w9øçcl+¨ÖgöÛ«iL€hæ¶€ õËq ÆçÇkè/ÕIcc—º@XS–Ug4qY ?-[ûÒDç]ª-R¼{ÊÓÚ·äjÚ8Gå~̧;C‘,ØkØXw6×"¡eH¯#¶e}f­ŠSR³åö(W7£aªý¤Ó½ Å!¹O©Ž_eŽÛ8+âÖúû&¡Ž=ÕfäDsÿi.k.Y׸¢ýdÕ"¡eH¯£™sêr:¡ã´¾…{öø6³k»Š'Ѿkíß»t¶Tè=X&w>¯!;t'À‡µð®Nh{û¸$}vò“Õ¿7üïUcÿøxýFe…MÁÁrX}Œ÷,øöV1$+wmT1‰T¶6 ‡é4„ñ4 uì}êÄ%|ÇíóÒƒàêV°±~—®C BG0\CoJmz7ßQ9œ ¿†›¦›q£WQºI'ë—-ÃÅÇ^º_b7þÀ*¡Ž·xÆL.æ· æ†ik„£¦iˆÐ2$Œ×Ñÿ¸ÉROg­8µ(J»in湈™]ó˜Õ¼IÞ³SBWbþä6þØÞ¶ßÂI5 1¶5|ßÙ&V¶ò*A\þÝ:TƒÊu𿇊ñññ"üjÞúÜ»C®D}-FøøÕÖ™ó0£û8œ>Hëo”hY›ÓØøcí€ÒÙ!Ä‰Ø ð¡­ðùiÙù¥ý㯑õtòu¨¾gWÀÿ^5öW”ÖåéÏ[#@n*¯½{ºP›y,•-òV„;ï1—¾$øøc÷þöt¿ëª„:Þ-•§Ídu7 Y3_ÛÙsc›6Ó´4 óuÄo«Y9zÇë6u«kýݺ‹ êÌ£96ûñxSôGóè^ËÅ8{}ì¶ŽÒv"iÇÎ*¡Žm µÀ|æÒ®aM‚üê©[ÃÆ²S…ލZº„é:ú_8é¾\Ϲ×n~0I´x¦OHœã°ˆ”žYyh¥äS‡#OÜŽð¨5Ð>c]àóÓ&òmÌÙþù¼Û“à ØÐƒjw÷÷ÐÏ?>è[”Æ RÒÍ\ɲÓî¯Ú6£tïû%~{üµíŠ0Ó–:Ö„R­žjˆ¬ ·š€:Þ£SiÌlÖŽ¡J® O·†ÕÙnJ8 ê覫i¬b"GËøËÈÇîâmåêÌ£'­òܼ‘Åáu ‘èt råñ<–¥blk|~ÚŒgíU —ØÈm ~~šþ÷P1>>^D¿#[ î »ÀsYÀÁA1“ýsëp¼ûçIÖ?{¯‡ È~v„D9¬1I¨ã‡ 6“•Eùìò§À×°±^®kˆª·K¯Ã®×ÜR¥6zûËó}•Kî²8±ìlj”<T=Åêd+J hm¼}ì§-àDQ»&!ƺ„~àñÚê)>/n¶t¶|¬-Ó¡"\Ç0\ƒ_«”ÈÕîž•ŒÏ?KSr«»¬3Q„Ë¥{m±œ3i$z×±'>^?²ÖY[÷§ý¾KÞÝ’³ÍØ>cáÑÍï ³üÎã²›wÛ"õç´î›ñšCùê$Äø~"ý§Îd/)þþ(ú>þüT-*Â4öwêÇ&ü´hHd3Êì´4Aãüj3§ùs÷¨¸IñW†•»Ž5¶U;Ž8¼ª'$ÔñGþ˜)»ÇO\Âû„jŒXÃÆŸŸ¦E BË0^Gü¨šô¦ç€z€?/m¼¼ð§ÎÈkZ¬§SkµS$¿î¸6?:GÃôãR:Ȇ¸“¿]BŒm =æÅŒeÄT ÇéN_ãˆ>@U‹@T½]Âx½UqZŸ-"Ô§1iojw~û™ÛˆÐ¥ºæ¦ÝÚ&lÖxÕÇžsB*€îN@Wc×fŠ,eí3,}U’ar]‡޻Ä8ŒOÏ—0\«6èõövžÔòóÈvÚÌûþÒöp»zJФdi‡ì²;Wm®%ÌMg‡8ìLP%Äx«Ýµ|æ~ßÖ"Û$ÜOñpÚîmJ„Ó\‹Šp-«„ñ:ân.Íoî}—åò8¥­×י˽²µüŸtö#·VèÛX•¹ÍíˆbmǪ„:NQL3V;Ó$XñL[ÃÆú†s-Z†„ñ:z¿Åe>š;xrw1©4†qY?È:£´ˆZTvißVÍU”üÙ»=Ÿà9Ûßóá9¾þñ:ŽBž:sZúIpš§®p†¨ªˆP1$ŒáïÚJ+wµ7ÒÈ{Í]LVBí3’:§¹ Ù+A¶ËÆûá ‰®à߈²œ@”ÓmÀ<Œ} O·™MÙ[BÂvmÍyþ|}û[U×?8ªï¿ªÅ]ì'iO+I0¾Ø6#¬‘fQ²…w|›=”½”ãvÂò÷Ž+FÕˆÝø«„_Wô¬3›·Äs §ýÚuó®ÇÐ"Uo—0^GÿÐpeǺBŠØ­³ÎdO‰²ŠŒwìTEâN¬C? \íïbç_{û|Û ~Ð)€ö“€ÿ%D,P9#ª ãóã5ø-¬¿ëãJɽ»µnLÁ%Tg²²Õ¹}Ÿº’Ô‘C|,X”Ú_Åï ––ºŽÓÓÅqlÆÞÆ!@Ê3ÄÛÀ]ëºzü¹êïòAÿ¸Pãÿ-ݾ¬£Y5’·:s)м䲆,4EÞ‚%×q$Ÿæ‘,.]%ÄØÖðíá\±š®N£Q©kØØ_µª…Ítzoµ×fwýËöéÇi;ú¦.²o7“ŒÂXüîÆ/£Ù¾ïøvv™Íó¨#¹iéLtb¼E•6£¯Ô*A"@ånkøøóSµ¨ˆª·K¯Ã_=X«Z?è)'Jò HïD\g.#©¾lß”<Íl,×{jf€‘4Åß­i¯ãˆcF8®?MÀi Çë 6þü4*†„ñ"úÇÖíª“ñ(Fò‘NO5¯3Ra¿whÖü£÷‹>œ:rž$•ŸFoHˆqŠœ§6ce›U‚dÂÝ6þtÆ{ ªÞ.a¼Žî ÿ×£<~ÅãçéµÛ²{Û¦3·ñNIÒ¬žÇîÛNt×nV6þ˜K§Üâ.½©blk¸»Åf¶ê^Q òpÞÝ6ÖS¢kˆª·K¯£?Ç[“ŸÓ4Ê©}Ýy®Mºtæ¶=_úcinËý87X¢?žS Ylé¬‡„_Q@Óf¬u•pjŽP[ÃÆŸŸ¦E ªÞ.a¼Žfd¸×Ü›tïiÚ*ÿ¢I|›1¿Àq>ß߬üqyhi‹&ñrг DGˆ#âì$Ôq´‰¯3·¥Q‡ÉaÛζ†u¿z*»Ž"BË0^Gÿ>²:Åèœ.}dŠŸã7§ßÙjiòŠ_/:T^51êPm;ã5®€ÝØcêçcl+|~ÚŒÊjÕ±K(ÅâW¾„ ??U…ø{hŸ¯¡÷6nzð{"åoWûEˆIÍȈ sä¿ÃÓúLnFHø3‡|ü±þ²æ÷vÄ¡T8MBŒï°3ÚŒY !Aê%ë5Öð±|µ¨ˆÐÚ ÑïÍÜóB‘ÍÊ’%Ùô´xHQ_ý;>½€¸Õ@Ê^>\*ñ„–‰7Äk©«{%$Ô±÷Fk3–¨Ú$MÛ®KoW^u𿇊ñññ"b_ŽÃOG€v[Kw»™ë°6Fwé!ï×¾Ù,ÓÝ#àZÿ©Ùžþ÷¤¯ññ6Ž{7ci&UÀq›3#V8‚ö¾ª`3Ò{íæ×]Äà\Õ°üµy¨šê¬ áÛͤbTšÂóêþ÷à Qî:üØ[Ë8¶pziD|>ƶ‚¿Ql&KS›Ú϶„Ýíxu¯:ûçÇkèZkñã® ë%¥d éÏê¥WšžW¼>;ó¿£gÖÑ!,¾Iˆ±­áŽÉwu<¨„¼›c"Ö°±—åÔ!BË0^GÜÉ*Ac„©•·HƒoðSg.+lxe@G“ú]6­¢‹±ß˜Oîé´N&¡§ k÷éè¹ùÍþ¨}¼÷º¯áãÏOÕÂgª–.a¾Žð]¤?Q]\-ÈKÉ\”Öì‹6£9*šì¢•À—æÂ¾'³Íú’]žûÎ\Ö™Ìç– Ó%´qdßÖ™C_¬MÂanøºÆŽúªE BË0^‡_°Ú޹+”¯[I;ºÜÀˆm—j¯vÍ{Rö6{ù·qç&®ˆ[Ù«€nþ$Æ„pFÍï,ÝÁϳ[ÀÆa]\"T ãEij«²nWõ´+\Û’¬üJuÂÈ‘„`M»/–ì¯ÏÛhøJÐ+Io¥ýî¶76 uôJu&+;RŒ<©.‘‚^©*×Ñ??\B¼nÏ}ëê‰'H£Îw8Ð}æÞ4èû¾¸ÝG°YÿCÙ~¶TÇj]œö‚Äa4%U‚} Õ=f²7í3 —œÛ6TÛÂtˆ¿W¥ýããE .G#”ºâXðX1óéMæbâ6›WRB³{îÉB7Vžuy“9)|-w‡ü»«“c[âóÓÍ©[•`Ä*m ZiZ"´vÃEøÅêe>Z._YÛ‹Ópì²~û­Ä<ÚÓ£û»¿ê®6þüD¿‡†ð²áP‡»÷&ª3nTWg6ÚXÂÆž |"t ãUøÕW‹ÜfÏAx­ñýŒ¹­·ÅãÓ¢›Çã¯:ôpüÝý½<ÆI¤®ƒd^ö:‘ŒC&>œ6ãëvá6ôH¼®€P->?èÞÿ¢Æl}âÅ“¼³–Ý¿uƸ™Õ!¤>„à 2$c2·±z!”û³!.ëñ]%ÄØÖðW‘Ôp º„]©Ú6v·T::DhÆë° Þ®ÛãÓí\+ÆØÝÚûoë%iäê=Þ¶ZVa©©=ñçìíûâã1¶ô1³yQ€Kö€'°ZZ¾~ü¹j쯠?øìŽ Ù*6¯µOv©1³[BÁy˜U"àš{xz‡õ6ÚŠ¸"‰Ä%ÄØÖÐ[Øg„âÄ ¼UBÒÔƒ¶†õ.v-Z†„ñ:ü‚í$ ç÷j;ÝÙÚc›E êÌ©êJ¯¸¬TŠ©¹†ëЭô£Nhu÷Qêç»ñᮘqåCÀf¬±À®Uƒ„†ñùñâFVZ u›ßõ™½}×ÍäÛÍUIŸ!qr{Ç$yÂÎ?]K%±b¯®éÒq[hý|Œm5‹cFx®›€|ùŽo+ä°XBƒø{UÙ>>^AÎ?ÑŒëñ­XìSm³ïÆ_ÞÍXn“kƒË3~¿ÅÍZðD&²~ïÊeˆ×~ÓqH¨ãèêXg²µq©²™[un̪E BË0^Gÿ²µ_øqB%‰Óh³+s`}û™Ç¸P<»THõå@#Ô¸êcµ±Û­êe Ä®iãMBï~è©3FÔ$\Ùãó¾†=ä¯Z"´ ãuô쉫NäwSœEW¬l/&.‹>H´RØÝ›±óŠç¨Ô±¦Q+ã[C¤Ë»¸„Ÿáco3–€ÍkKØX7fWÂUiýüx ýsërRÊ¢žkIóu:š:s{Öôc…¾’¤…À‡Ûøc|ï= ÆVàÚ8{’ÿÓ5ÿ‰Ïï킱€??U…@„Šþùéz_Å¡½3ŠCn³.·’œbµÍ\Κ˜-)êÈÖ¡ðQÖ‡šó¡nü]‰÷Þ>߯)žô˜±~ÙUÀn9é±€ å» úç§kˆ›X¬(Kª›ø|JOõlÛŒ|O·Ú” DSº•ÄÍØb¬¶B2b @¼/žrv|ìk|~ÚŒ?×!a¿‹Å­| ë}üx¬Ò¡wH¯#Ld-a;£ ZŸÚüX_[qIëS)›×c÷Žî’Á!o”¢1€Ë¢\VNñ,œ„럟nbÓ²,ÿ¼ÐâiÕ–¯àcù€ëPUi0\C­¥?ý\ÖÉAÛ ÙUg/½KNÊ[4úÜÖÂÇêsÛõ‡© œçNBïN.\g„¯Fýx.AÎtw·†ÝÏ•žZ†„ñ:zSÊØ)ï (Ž_}U•»ú¡|æ8Ü¥¬ˆÚqÑÆ§µ¯´±º•vç‡tÄy;ä1Žm ýDÌdc\ ûeŒŒ±†Õ›ãZ¢êíÆëðß×ÈßÌvô¨íóx{œÊ[ßf.+sß¼ÁޱÒkôâicÏ2Ѧ=®£€¦ÊOd««Ÿ6Fú&?Õ*¿ÐÀ9뫆*`¾„þ t Däk•£Ö•½ºNX{Bÿ4ÉëöÆšrmcµ¦6£f Ä}8K¨ãì•ÔuÆ:Þ4 §Ò ·5lÜn††p%CÀpCz‰VÃÄûöÊÙÌ.Ï.ñ‰²Yõ”dþòԺɘ÷_ÎõpyýݲÀÛÇ}ìòåuÆú½‡€ýý$u$Vð±ºéL…Š•]Àpq ï-oÈ=ŒGò²%Æûö—nuéñ£‡2í½[ßag“ìu!‡ptßOïh¯Ãô—Ã}â¶2ÿ¸„ÓUÅûPð¾~„zñùAÿØ›þÄÏÚ~Ð]‹ÄÒéùQ1!i„§5ò¸u|YcaZÛëøcå¦iï·íŠUBŒ““øw3Ê¡Ø$ln#Ä[V-Z»€á"ú؇mNOõ‘[‰›ì™F­ZgN§AÉZ"'v5"ºk ÕCîT©(òoŸ±­à>u)B‚ôKm ~~ª ñ÷Ð0>?^ƒßÀ–S¡­­4¼‹E>½Nٳў<Ö÷B)Å•¢ìP[‹*É®Šx¿`ë—kê8Ÿ•6-f6‹„„t(gP,¡C5]û{SÚ>>]İ ?Ü*aæe¾Š˜¹,É{ƒé㢠ԗeøXÏ›ºÛ6Äm©UBŒm Ý…cf7¦ ,ZG·†??M‹@T½]Âx½åi3§WN_Ùúì›çµ™ÓÊî¤%˜¦2$oÌéT^Ås×µu§¥Á8â)–êØóãÛLVªù&!iئ­aãÏOÓ"¡eH¯£w [¯Äj¿ïs©¦ÊB`æqÌìÚKçß–´´[™Ñ‘•¶*ƺÅ꛾!”p´ ð¡­ xŸØÌÜ‹ Cî°±îÉ®B ªÒ.a¼ˆþv¶èe$ I¹«±SisÎo?óX×ÔeÿFGríÉŽµ{–H—úòtˆ¢äëMBg¯^ª3é´²Üð>ÄJºkØXÓm‚À¡eH¯£7‹V=…#ùˆjãt‡Ååú½¼f[O!’ë\S©}èΊ|µ¿'õ ¶×±Jw_…ÌHjH9ÿTB¬œ¾‚ÝY±µÓ/>ÞëÞßÀ°¨ÖQ‚é({bE›¹Í—¬üÆiºÅE´±ûÿ® -¶ÚÇc”=-.&ÒYC —¥Fâ8ëX‚¾~ B½0^@\hò$(k4g/5x”! {§˜y,´úXÛ[á1Ø:çhc÷:X'yG¤bnP‡QÄYºöñ¬ÅPm~š Ž¨*º„é"üjEéî ЫXÐÛÚ֙˚ÿÛUß4šÌvKå¿£} ˜rÏÙ!²µ×«b|FûÀ6cýÿª„ã6ÛÔ—8¼}`ÕÁÿ^•öÑ¿vb_rŽƒ­˜%iÿúo7cLZˆ_‚g/Y¡þY‡ºe$gp€ñÝ41¶%ô>³]Îj­¿ýc ~~šCÀxý`:ÆJ¯‚½&Q}»I£R³Bc†Ú*yæúÓÆnVØ1Ö·ž´ªæÚ›!&,·¦~ÜR¤Ú©¶fQ•v ãEôWkýnN÷¸I.‡–ºŸÉ#\mæ²€ÏqZÆÈ¥ÙÛ¯he'‹±3óÑ!.ݬš„:Náª3G±MH(5‘‰5l¬^ ×"¡eH¯#žÝè±ÐYéñâç#Ü21“ŒVHò­–ß³}v'„µq$˦QìØ|h+øâ°Ò}Ë­µ«eu·|¬ÇâlŽp«„ñ"ú*:k»{QY{ÓsÅ;Ö&ò¦oÍÃ:¾Ã[y\éiØÆê\ܬx?Ò`õj|è èb&Ù{Òhcê½-ácÝÖL‰Š]Àp ý•æ;È…ì]ë<âÆÉüígNÍ8Š3ïšÒ£õÆ•<Ùà8õÕÝÂaœ; u¼y¶A‘ƒ÷Ÿ&ÀˆŸÛ6ÖïÇ•D(鯫èOµgîû-ȉPÛ1Å“Iê̹ÕS푬˜j÷3çÙÆz[nêU«ˆ¢ÁÈ&!ƶÆç§Íï!Š÷‰5lìÛ#uˆÐ2$Œ×`Ö$:õ¨×›J‹:6-øíf.ekÒr¸ä®ÇI|r,$¦œ^Ž o?›„:¶5Ü´™]ÃU¡Eäm ~š¨z»„ñ:ü‚eÞ鑯¸kÂÍK1ÛŒ×êZ§Ø"ÛË鉌G{"£æíºÓ6 u¼E_̘ÉÑ¿Ö%¤ÇÈØc {&cÉ"´ ãuô¾ «ëŠ,Õòx«s2Úð6Ú¢¢Ä.·úÉj.1TCç1Ò ÿ»9Áêgëø ÿb›ÙìÎ ça¹­±Â©6¶¾ÿÙµÏöZ÷w¯wì-¾;mvfi³ëŒõê~u²Ð¨6ëÖ“­Ñ³ùøc{·ÒXBòÎ:><ëVJ9ß>~Ü–Æ ØX¿W!Ui—0^DÿK^µêÔ‚5‚li–©3ÎÐ&,Fÿë-ÀNe±zÿ.+]Ä%ï&À‡¶‚:™}"ˆýãå2ŽXÀÆŸŸ¦B ªÒ.a¼ˆ¸Ú?Ñfát.%ý÷¢ý”"Ó`w†“ì}³”jXb¾ºžF¨nc5(²ùPáíª„:Þ£©}ÌGN“`:m`ÙiZ"´ ãu Ï©j£Ñ¶4öÓl‚NHžõ’¬wn~w¿;AºOæìþ¾›ó¾~>Æ[œdê„e½ØÇÅ$Ð$ïC÷ÈìG¨ ÛÇýý:•—d×äêxf_[ÒêÒŸÛ½O1“7qß¾~’€ú;´¨oqš<ëδk´-‡Sï¹€ú ú˜ñà­ H·þÜu ëÎdJTDÕÚ$LWÑÿ¬wÏ×ñ6É&¼,øýí&¬Æ%O¿ádk©™’µ^´±ÁÒeOL ²ºGš„:KI*»I&!Ý:ÔCžëàw ãÓÃø•™]îãYò·jæÇz·™'7åe-[$ FÞTQIûC5DÒÃv“c[ÃP6³דKŠ»ýhkøØR¢ém¦ëˆ;ùlÕLÁL¢á9,Zý¡Ä§#‡ÞšbM{ fÄøSKâ0†æCsAÕáf1ùúiÉ!¹:ù6Ö­Ì5„ëšòa,i…bÝ~h/§úýÞW׿l$mÆ‚6åRâ^á(’ЦrY¸åAº­X·"žÍxÊB@oþÅÔ™¢…ÜM®q[ÃÆò W"¡c¯¢7'n+ØòÜç?Æ)/÷‰Rœƒ\óO´X5y3÷}¯ãO£\¯ˆ’¼¼Õ%ÄØ–OÔ™d9/!![3±ºFŽæuU‹@„Ö.`¸ˆ~6’Âx\…ñû<íѺï`-?O+ˆÕt׬Œ!âêÑæ„RoR‡+SxJ(–ÐR?ïc_áóÓf,ØQ%HÂÏUê>üü„ õï¡s|~¼†Þê?ŒÓÚY!C¹½á^ñîð>ë´í`ëtœ‘ÍáÍá·ÚEж]§Å ¹Òäx_¹Œ?¿JŒ‚»[ÃÆŸŸªDBÇ0^…^®§yYµV +yQºý[g²_j¡®r­e›¬ÑŽõ•cÍx*"[/©*!ƶ†^kÌ(yf“ ÷FéÖ°ñç§iˆª·K¯£¿‘­È¥†³n5ȵµ N1q{Ÿ ÅhLã¶t¦s¯ãeÃEE­gÝ´ãP•ÐÆ9Øx|Fo†?U€Þ ¹-ác=#›a:úçÇKˆßUBÞÁÈ ô´{é~±vî·q#(í‡uòðæ6ÖLwšB^o¹“PÇ»3mÔ™Ã;Å„„Ã;ÅÄ6öÓ‚jˆÐ2$Œ×1þ¦/®¸³Ng)µë­3B+§)·¾ÖSr@)Ö`2UÁ±Õꊒ”«“c[C?3ɪS]‚§r[ÃÇjA›Qõv ãuÈõþo?ÿÏϾ‰u–­ Eþ}\ïOý¯?å|¶áߊùןÿëçÿóßÞ[⿼ŸM›‘þñÿ}¾þÍ?~þ—/- „öçýòÿñŸ’AþìâSG"ÃçŸ|þöŸþåÿõçßþãUCIÂ_,v–tÉ–C}~ÏïY5å¬nýÿ÷ÿü#+Ëééýeþ¿Wð¿{ÿû¯¯*ÿëOºm²ïæ{üþ¼ï߬=Ÿùןÿ@PmÆ^Š’Ü9¡5Ti¨¼Ö†·­Xg:TÎzâêPu¦CMºöÚ7Ôï_ùkQÿ%ýI†ï\ —oÙ#å›}÷¯÷Kÿ?þö÷ò/Ï2sïû{~ÿ-­TžóoÛûO)å¾Êßrûgù—ÿøg?R’7æ{|Ú¥á–WÌ©N~nûú*é3JN?z©(ŸPRáµ=Êg”ót(ŸPÂt¾Ÿ=ÊgzT\QCõ×øOþ òü]~ ©‚z$á}…•×2¶ßáÝ|ÿåïÉZ[ÊhÓ‘œgÿö÷Mÿ&Ôòüm“?½OìÂÓ¿d)Ô{?%ª¿O.~Åü¶dIÓÀãq K.»ñ]VZ¦¢Ä^Sg)V ItPŸT»U˜(£Ö¿´D ;zr~±r,QB¥–œ~½âãíøîz£ç$ú÷¤±‹~eáéS7ziW³jåé»— ]kÐÞ3N’×ôtè ô=:i„s-){6ã½Ô»èM™þWZ+ƒø._Ìí_’4ò³¾ENPóÎxYézö,Q»»NMZÊ2›é:÷¸[˜¨b›Ô£íMW¨÷†Ó\)¹B»eä‹Á³¯ÕºÌ'q\ñm¥ÇêN4ò|èV&ÇïÍ‹´Ò $Yœê ´&2+QÉz¬IC¹Ø‡™,#—8ÞD–· Æ„åZ+¯{”Ÿy¹â“,þ.£¸ÆËªº…DñRQ‡V¹+mо¯@×¥‰ .q²ò·Ýc]+IêÜÖFf¿¬å¤ùŒuâ5•jY‰rW¨¼Ù¥‰ùµYEåä=¯µ¨SÝHEŒ¿h%Îëí¸Ú¾ALò8?–þ"K3ì÷»~éÂæ•”Ô.›!)˜ûJZ¢’5ᾌJ}…Ú-¥sõž×+zoéõw®Q‡u3—ðͤԷÊep®ÕÒãu×b~¬bKk»ón-Nw¹›ök‰º­ÿ›¶zZË:ÍYz_O}Ù0Y×_.*öv¦–6LPQÇD^€l½bl}Ä3ÔkŒeçÐsÎ(Çߦÿ_¡â%,ÁyÊV;žÝF$tÕ^ ¨]CíÖ´V]³å RÖ =¹«0nPåÙK†“öœ•7ü£qšŠ=8ˆÚw«†ÏõK§+Ú©I‚a„TÉv·gå®[êÕ\q¿ixéQ_$’®¥`ûf©Þ¿ÊǤå¼$¹rXŽgJ+ÐfÄ)r>ÖËIvØ;®;2$y^Í÷<+A÷fb4V¸ÀøKë4ÞÛC+-,§Ö´Êz{hÍrdW(aôQÇx3OJ3ê_Ãqkf*YQÛŽ‹v/EuÉiËw®Pgr"qîå‚BÛªQi"¨óoÚûò‹9]j5áó9Óe±ÕÍlä%ÊZÖ¦¤„+Ôé/hÙã×zšY´mX^Ë*Ænô1¿èU¼Á]¼Ç‹äÛ=ff?P]¶>íENP§µñTòY¢„/Y0pɧ}Y›2³¬P‡æÁë­U?ô Q„˜ðX«î©JÛd‹0αù{[’NÎgñFÜwì uhâžuç>–¨]/´Ûo, *[ò¤Üq’ez UbVªõz‡ùÆåLô¬%ÊôŠÒxÙšÙRÈNë´µØþªX‘„ø¥Ÿs‰"›CÆþ”Ž8:3Ôvy÷ŸgYª}ªD»y º5K^<’•P MS=ïQJ×Cmúx ê§>c%„ Þ~_£Œ/\éÒÃX&¨l­ºë¼\Q³F”Tå7Y·w‹/aº¾›lÒýSZ4ؤeÚJ®°·S;¢ÈÑ‚€ìŽ0.£è´ZûÐÍ õÚ»vȼ«/…-ˆ§"j3ŽÕªU:%F,ER›¥µ%‰&åhŸz¬@ ø> é§ÑÌ»ÔÓ,‘myóR¥óÉÞÛúªíÞXvo¾UÒHg©ï¦Í*Ð5@ƒÕYšÒlí`¾BÉ›õô{j ‚Ø`h<Ö ZžömÞ§å‚»Ö3=íHÁ@N‰ñjw=kµ’•ÁŠ­éßCöžYÛ}ûíò¾2µ”PºùA”¡pãF Û¸ J‰ç‹Ü¦û/²4V¶G*,–ªßöÆÌÕßBEá›b:D|Á_ ¤9™žŽms[Éb”uk©Ðk&ÙÀV²ØÈÚ½wG÷îR+²äŸ)KÁ}Y¡I =ZÄÜKÔv˜[åi¦¢’´0»4Ç%2Ðc-:„ ¾,LÏf]e^Y¿¨•”í§U^ظLÖ¥§ì…A6&¾`/QäxAPäx(r¼ ¢ÈñPôà@e¿ÈS-Ùˆ5õÝPs‰ õ¸ìEg?Dñ× ¤_N±èøs,Q9‰ÃŽ*Ê#÷!oôß”×Rÿ½ºn9 ÞbbËw+…ea Â8¢b»>ž§lUì "]<®{‰bxD½—¨T¤éªÓâ³3å n¼%Šø%Åœ0ˆb~I‚".G‚"{*Ñ~vL¾w‰FzÔJKz½7¯â<Â!GQZ ÓŸJ Š? K^A·Í×zE%ÏÒÐÀ–Ö+²'WÌ–üþlatÍÌ/ÑV¨s7º/Éä9ײÈÁQÖ¤ÈI£îõD³JuYG6Ñ«™(ËrÅ•2ü,×n„i¯AArÂ@Ômä?òê¾×²ØéȲÖ/×¾ÇmÏPæfµPÌ/²Ô± èµÖ½1I,pɹЯƒÕ,QžjMg»× Ûì^››z th·¹÷ Ÿzøf(£¤—üѵR%.Ë—~S¦•¦ö¨gç*KÔéÝ:^YÕľNk2/>þ¸kô€žBuÄìÛfÙwY;V-k‹rX×HªZ­h>/5ºŒõU:ÐW‹ U*Þ®bÿE’¤îýѶLq™b_ðó¯P‹¨Å„zÿjVÆS7&‹Æ6fmL(Û˜/b“Y¸2'E}Ú(‹y«ÅÑ3Š;¢ÅìIºâdOÎç‰/äK9a *NÊv¶ã$ èƒÈÒs¤ö8)ë™?”^£œ|„~$6y/—‰F»Þ í5 Ù?2¢ ¥x¶ BÐ!{§î³Çz5Ùu1ßa˜å4bƒõbd/îŒzzroy©=æ²üÞ’îfm2”r½—thVô %=„dǾš¯QÖª¾HÞáù¬Eó‰XùÒ…/.‚÷H.Ö”Qé%ì¹)§6¶×®£Ç³FyÅp.uGf¨ÛRo^®%è°ÞP’¤xÞ¿©%ó•ïúÂa(sA^æú^¡ÄW¥T>[uQ\ïêVCôÄ™îJÆ.G‡g‰:Sm›¤T‡ v²†VVEA†¢ˆ}D@Ä>BÔV¼ƒàÖW(j6&…Öä¼!|á‰Z¡ˆ§–É"{A‘§Ÿ ¬3‰ìáå^¢Ø(Ü#4ÁWž©ÍT¬‚݈b1j@ÉšÕ-_3êVfò"áªüËŠ$™®xî¶â¶\‘Å»=­@©Ž{i5#ªø›q¿[r0¢ŽÛÞÅÂö¿‘bD±b¢ÖœDL–»ÔR<[û}XdûÙ~fñ9 ›Ð?ӿɷ]“äŸ È®O‚ì᎘õ8Õ,Ï^óùf„xb“Õ²¦k¹Í Yr]g·qIÉ›)¼gAë%#¾Ô¸³ êØ­^"âË’Ôë[¤Ü¬&!T²å$)éÔc­È-'g…Úµ£w‘ÐaMh$²Ôñ^¤]pÚ[¿ŒŽK»ZÖz´lSÑ ê.<5¿QžÚÔ_û¬Q·–Ë¿3w ‰2þºÍR}®õzÄ# ¨d9³»PDÜáÜzŠ7S÷˜îEëÔNó˜/P9{ŸDó_¯d]VrÕç¤2”9Èf’öµZÄ3‡¨ó²WÇ^ª›ŸÉÒì‡( ¶çF¸Ý¼åê¶>9ê"Šùa‰,’úCe)«ðuÿ¶bQ†=õÃÆíÌP·ÉïTŸ‹éøÂ7¸B±› ðÇFys ˆÝˆbw‘wÄt6ZÙK¢ç.ÄNT3ˆ¨@;OÍ ÔF9Mâ¥Ô!§œVaD]§ÓSï-Jd‘`¢X˜†È"a@Ñ0 YÃ4ÅZ½¯ÚÇ- zžBÔqyGÖ£ÍŪוµRn— ÷x¤ Šù6ˆ,R˜F´GçÆæÏ¦¸ÑŽ[ÕÖ˜[®ÛA&ýz·šÔ‘ Õ 3WÝE¸¬¢zí5ó”iYM`·53í!Hk™”­ó¹"ýk®óéj!I—ì{ÊÆ!¾Õj# V– rysåöŒ‘åHQÓézÌкâ—é ¦/˜Âì§Y 1žf)h9ÍBn;µöÕ‚³´¬f!hVI>Œ¦JíJI¡r4'¯¤rT—8¢$ \mR+jZ¡XA)t:Îÿ@4E—àQ]!L+RˆEÖƒB¬ô\JDÕÕZg«Î¼o›šÖ‹¨s7" ¡¿–¨+²s›;Ž­øǨ¶*úE-ej2ÏsÒ>^Úé)­ußœÄôŒ×Ç\pú…ŠÍŠ– ¢,R‚Š¢X *Š"0ˆ¢%¨( KPʼn/æòkeF.ø×Þ‰}oŽWÝ[ÒŠ éFÕâÑ J^IfŽšâÇdšÙ&ëéZÊbîYDO•^¡52Ê{‹HË{N Ò„`HPò|Òˆe¾Î šø:ƒXÞ+`Š7ÈÕÂ! – zcjìTsúý™«6—(LGÝ!g”ìÜbF(3uZÊb[$€èÉPsêd+!%h…-Ò_P`c#ŠÙØD/bcYÄÆ&²ˆõ<ÚÊ_ðݯP£EºB±h¢˜õ (³ ( ×ш¹ý;×u¯@çaMßs®gA‚z7êS£×­¢“¡.§I;ª•J´šëØò¾vĹzÊû~_k®:Œb-̬ñÝ·zg¾ ÄÞ†uXšêûú _A1ÚD±3 QÞ²®îÕ• …(f!ŠüβImÉ™\-°¡ m(áý/7——Ÿ@0BD1F"K[Þhƒ½ëX£6‹¾IÃŽµ¬ÃHø¤y_%¦àÚOô SmÙj³V(¹”jv¥^_Ë=¿–¨÷¦¹U–¼W V·F$i…µfIÁÊü—(B[€¨Ó¸ëÅ ®‚ŠlWé~¶FÞ1Þ¢<òŒiò_žO@·÷Æ:[ @Œß‡ ì ôXªZÙ꩟è´{ÆåÞêÐtÕ&[ìkƒOå <0 Ðà½àN~3 ¢Ü7d5$µ½§Í¬¡´™’Û¾sŽØÄÒÝ%Œ‰Êzy7'3A‘¬8\¤Å¡$–‡(HŒË’ ý(7›7òÑÂÃËùÛrY¢$©ý©é2+”ÏHt<ÿ& *qgT’XÊ}[ÂQu,¡¬ý±,ž³…ö J¸¶%ºôì5ùb²V>Do ‘7=¢X7‘…öÑ|* Åj³GWâÒÿ(ˆò"„ùªÉrÌQ‰Ë_%€ØœiËÑ÷>øÆ·öU!ŠÙ¿D±l Џ%~Ñ«óÙÓÁg(â³ßå 4‡s™È6CHšX ‘§enMi¯£ ,Guƒ.˜â a>È ÙÓ_ãC>ˆ–^E1!‘„7È ¢´v3ˆÞD3NG ƒ^Ç©¢ò;W±/ACÝâÅ 1A-ÜY¬Õb%– 5—XNÕßEþ"¢˜1Œ(,Ý ’Ñ É«Älo¢ÔnùAÊoë_Öè[9ÓµkÏ(°žP‹€õ,‹¬GÔ*`=¯ˆ.·é!_úXE4Åö"‹økD},( ÷ b"÷úÎY+Äís\\ç Eù¾P!ü¢¢òc96OZŠ"”_ä‘óKò”³Å²¼dËßñ0Y &†pÊa©Í†dLâZäE;cðÈ #íÝam-„ôÀêidSÚŒr´ŠkDmwVÒûí¦%H|Y"©VÐ1ЮÇÌ’ŽÞº^T)\u3c²4nP¤AYåºDÔq˜îç¯î÷Œuxß­ÝŒÉÅùPûéM.kJÚ¢²ˆ‰·¯A¤Â‚ ²>œ÷½uGM†Ò&ÁïÏý‚Â"Ö‘®‡› D^ñˆ"ätûE–¶Ú*bòÔºXDIŸP§K¬üÑ#Ï݈âV(vË#ŠùMÈŠ„êüxˆ"ÌwD¼+ãùoióŠ%äM ì­ßo>ïKÔ"ú6/HìG‘TÀ1»ë ùQ ”újNCÝ÷Zf…Y–‡öÞôW«^@s‡"êÔ0µ&¥% 3#æÄÅ…“€H*#¢Xš"¢XôªÞxª×”θXqϾiØ—5‘’È—52®P#õÇ Å˜D™Ù‚ÀR‚(Ê—(R65¦ë|Y>¢„ôJÖåE~è{bš£N„ŽÍ<\í)¿gÖrá€FÍsBÞd=–æ¢Ø…¨ê Y Ñt–üNDz_0P9 zEQì (z E«¯ÔtÎÔH©ª ¯Ò+~@ˆÂT²Ö/¯…W™EÅê-µ{¶þûu6SöêÃfÊÛ»ó¸ÎØ) ýQ“3rã2ƒŸß E=ˆbžG†BÏ#¢±¢Ð?9FþIB^YDÑo QÄ㋠°IPóäºÏÑÌ©­Äʈ@ÔH–´BA; ²± ( M Šq?QÕÕi¤.úþÌ´X+%ðšQ´ò† Í.Èh¾E¸Œˆ(Bó5ZD+K QÌF"(V0 (Z0 (f$Q½àŽ (4¥¦ôwUR(ZR('+²b”ÅŠEfo“I|{ì:àž-¨³Bëß(’Q ÒÒ€hE »EÒ®‰R˜gµoÚZ™[²óÓÜ–Qj7+‚Êfi)òºÖ¢ÄÐ}%õ¢îÍDÜqãÞµÜgÝgkõ ¶-‚JlWœAlSœ1¬|dð,~„3ˆ±&#ˆ§ÍL ž3‚¨Ÿq1Rh4»"§ÞSß^E4£X5“ÅjÅ2å‰^¤Bˆ¬HzVYx#ô†þÊy8AÞð² Ý±@HDè‚ g„ÀÁa‚ìÊTÒÙî€h`§? ÌU^«› Hº/¢XDQ´­Êb ËPÖ£LñwÇGÈdá?±^lÙˆ¢]{fíÇ ÚQ¬ªÅúñ ,èÇ3èW~‘ô0‘Ä/Äï €ˆ§ Mþ™¹©ç÷gnйBáoÌ@ZÞ¡žÿmb½@‰ZšûY]):ÅzY¤èpA_Î  Ú@ìk@Iä[yhŸ‡aê¤ó]tàAí޲tgyìÕ•@e±Îàˆ"ÁÄ:ƒ£ZÐ|4ÒVF"‚zú†Ùˆ(ˆØ"L&€!p"™L&c່@"ŠR \Œ!9}L$D'b+ëÃåT%õåĈêK“V¤AP¬z Q¬€Š¬ˆ¬ì‘•cŠº¨<›#O<ù×E2~Äâ0ˆbq¢‰° ŠãY‡™G_p¿,Q—:€%]t»W(–TÊW¯Šbž"Å(„©ZS¶h:Ÿ¤îØãLVŸ¿èô (Ö u‘ð_oN'(rÛ°1|ÇÕšÓÉïÛ{~§ eUóäßñ«U)+Ðå?¡µ]€^“H)ksup0^^Igå @ÐkW¨Éð‚ï%èÒYoŽ[Û˜ƒô¥éMC<Å:'Še.!Š•Ð ŠÑPÐèSHÙÈãvý†y ¢²ðëN$]oÓR&g0&g°Ý·ÖïL/Ï‹çp 2%i©²CZïw•<£I$“ÅÒAMMô…‘©E(ÐÆ®{ßE‚+¢½8¢X†+‘Å ™^Kd‘n}…<Ñ÷{×ê!XŽÕº‰”ÝR‹»Ž3²f/è¬V% ÷ögg²†¸]êAE¾n= •%H¾mqªåÖ?0d¯Øš¾?”Ô A#'Ò ÅHžÈ‚3_ +‰ )]¬·sš¹›fƒq•ʃ(fBˆ±´ Šš¨3!qEfB¢,4!§=l±C"ŠÓè" Ë*ÈŠ”$PŒþ•gô¸ 0äÎ\MßÖõ˜{ (}C! (êÅœ…NS¡…Ï… ˆÏQ”•QŒ–Ÿ¢ §¢>¹FtºŒ´2ê,!d-EJœEˆf´`~]©ÕqµPµ€«Q„!vÌ>øBq±£(‚H²©[DI˜Ø€’Xm#JÂî3]—¡ïص‡ü™7µX}§=‰| ÒNh°nB#ÂŽä{y­³8åÏ2 ÝÐ|bür 7†6}'¸%HÛ?½&D o1CÑó(¢²Ñ¸åK¦(8GÎM?V[¢hG”Å Ê›‰¾÷vMÔ#(Ò€ê…ME°MÞß•÷™ ÐýŒ æFIR ¢ß6Š"„ÛôL×»0›4rì®P¬xQ„#AŒè— ´…Ð~¶ò`ª)‹ ßU hÆ¢° 1,­ƒI‚Š5Ѽ@Aý˜œ–4`Ô>Cçžн5 мÅ&ËDkE„(lE4wø.­5v?[¡Æ–+ë;(vö (rö ÚÏôXs‚–'cÍüE4t¾Z¡X-¢XhQ¤“Q ;yIØÉkÊÕ[åøÍ(öVd²XSH" J ‹ŠW+N)ƒÉ€Säa‘ËDP,Ad‘ú1‚"Á‚"ÁDA.‘ˆÅD\ÙB‘û‘¶æ6G³= Š˜•ˆz–Ý&êy”¨…¬˜z1Í‹°ƒ÷RáÊÝMd¹ˆbl¹ˆ*—EVe X£.]ÒÉ‚|ñš\³0E’"G*ïÅ{4ˆÿ¾¢"\ ÚØA§þ„ÇžZý‚%‘ ’D1úC”„쇑ê"I?[ú³rG" ÚÖA¤wA÷Øñ>‰×Z–¯ÔoÔÌ1ªt¤# b[ž©)ïêM(š (ÖÌQŒNœÈ"iã‚w_o&Ó7Vž8D¹KY¤ŠQ,9„È"É!ˆbÑò>’ð늫6½÷q¯s®;D r+eÄ›Q”ëEݢλ«m-×#ÔLTrÝM¹¾ßEŽ0¢Xß‚Âh‚˜'ƒˆÂŽ ¿èÞ%&O)¯_šÈE0$‘ QŒUP„ËŠ‰"Ew(ФÖYX𗳿ú½OÊ鉄”žQï_µlrÛZ¦.¢²~Kš*v“µ[Xe?[4‘u[’D3ËUÔÁ©Æy^ëµÝA/U%ER²¾‹´0@Ñ´0"‹¤…Y¤5ÊbiaT¤…½°d?™O0ŒqwwÈyTZÇU4D±Â;DcAÄXF3–‰(b,ݱìn¢ ýr*L‚"M™,$¹D£­! "&E˜0™ZÈ„™Ÿ]wOuèÕ´øõÔð4® ‚ÒÛXŸ»r®P’Ϫ¦Ô^“¨,Ò– QHgF@—z u‹8…ž¦Nß+·¢X㜥¬¾C8‚(ïÙ„âÂQsË!Џ寰éʨ‹î"ˆd½ˆGQ'¶Ðûî¹ÌYýË(ˆDvG{oeM"Š8ˆ,bs"Š‘"š“D- ]IÄšëï¿Ð©€£æbø•,V·(V·+²º}D‘º}¢<Ôí¿ß XEl™ £&¿4€ÞGL“œ«aJ@&G±cÒ¾±=ê„?3 zô‰xjb=“s™Ú{ªÔ‰ãõ - V¨tubܰdAÒ¿È"=ˆ,ÒsÈ"±£ÓpålDíç(Ú©‡­yµdEé&(’1KµŸâáéöôŒK2?=%‘ÊQ4!6!f(VM‡¨Söjõ´¬KDYÅ“B~YQ’ ’%DmÛdì-LI‚b|éEº†ŠuT`²«:‘EXÕÉ5‚-9S|5Š•ô­"9tçÄrèŠD»Šä¾!бY„«Kzü.2%'Ș}H!¬®h‚°LÊ ÂB™3„Ä1ç+" ”»†yî˸>xÁHzɽ=ñ †rgÌf]`H¨ôßÁþ¼W^9ògÉ ÙâWIã9Ù ’XÆC Ö#%êx¼8H*ŸöÕ©QŒkƒÈ"uŠˆb®h"‹¸¢Å\ÑD{ˆQÍ é‹Äyq‚8EZ‰Y,i-ˆYƒ¨;Iœ§(Hœyœ¿‹’D±šD±L8‚"j¢ÉqC#'²°´f*®_½EK÷Q¾< h¨¬_¡¢ ¢ÈËs¢¶úÎQK!»"(ÂvEPl«Dá»B#D×èk¦H¶šTvxÏñ‰Â!ÈšŠB-¾ (Fˆ¨]v)ç|Ö² 21¹>WÞ×DSC4ö[€H‚=`X—2Ô›xzQXÔsiç—̉à0Y„šP¬Ö‚€H­¢X *A!§öH"ñ]1TÌ JP1ƒF‰ˆòSˆÑSH{­è~¶Q(,&oe>h¬ã[€H#ÄÆA±zCÔ›”2м!NîÜe& ˜×Qä>' rŸ“‰Q¤òˆ\!zžŸC}¡ï¶+\oßE¯[±&¶:õÕ?lÃb%¸l¹SLU‰QžK¶¹E•6w>µWÑB\Æ'g OΠ12¸±è䌡ÁIÄb“ 7cÌ…•„ ÊŠ¢'(¢ˆ•´DÔ¡ˆbÜ¡€"%È“®«/@ô‹@QŒAQì‹X¡Æ/Qì‹iË6ebù6l¹ˆb}É5òÔ®PìNõ¶\²"á÷á×8åyMÌ•¯Q´7%¢ˆ¯PÔ×Jôb}.Që`‰²0n_Þm\£À×V{ͳ–€b-!ô¾m²‘t~D‚¢#pAÙí‹üæ­ã¢Ö…Zt=èXõâõaÒ’ÏŠÛ´íz%nç ÄNÖb%3H’þnm¼ºuácDñô¨çW騷µ$ש56œã¨CÉEã{ ÅÒ'©¬MMà»%O#Še3YU¢¨wow8¢ 'ÐØip)ª×s¥ïc8Kúg/ðÖ-ónÝÓGªwÐ!s¢'ÅŒ¢Ï ¢s‚s Xu‚ÂîéSÖÊÏŠ¨EzׄbÕˆZ¤wÍ+&u—<-×›®HêÈŠ¤Ž`ÈÉ^ä#†ä3ÞbÉåÂ{ļqaÞøÄ?«‘Ö%PŒ)Q˜&‹(ΧKô"ý[ÈŠÈ”K”G¦ÜÉc¼pGIô!¨Eÿt@ÑÎè#êý.õQÍçØ}B§5¢ˆ;z"Pú®È™f é@¨…ÓŒˆ˜–(Ná4¡°¹%íVDõüÛú:É–#eukP2í^‹‹ˆñˆÐ°†v¿šAŒmUB2ÀÛ2‹ßÝ£XÕÅ;£ŠkÝîý JsA5Ï >Zˆ"ÅçE2&É‚jÉŒyœ€b5êDË«Êu˜j-ÂTŠpd’õÈæÁ$¯ µˆRͲȶ0¶ûÒŒ ªj‚:7u…;°®P¤‰‘.fD-ÒÆŒÈÂ>fÓ}y:¢^…ÔÕ/~Û°¸™,,U'²hË7\Q·þwÅ»¾V Š´½H©ú”Ó÷]ä"ŠxSŠäRä½XÜ’é¹€ˆ"q˱;¯ÝÐ @¬?0J"íļý(ièñ»‘ ¤n‹ëé܇sË(•œ¾Ÿ,Á^è{ë Œ HØ Qy³Ý»U—5[²é  ÷w[n- O˜sžáª¦Q,#’ Hå  hF$Õ jJżӸ"¾Tæðñ*f(›Qcìø—g ² `ã‚,€(`O©ß_–-Žd ËËÇÕ0[œaælq\ ³ÅEËí1'¡Õ:–w×Ôùi›A±ŒOD·ûÓ›• ðû#!ªc?±ße˜[é4CÈM ®Ò¢w®Gn‚û×C²«ÉÞ_&Šœ&Eh ˜¨ÁÚ_¡È‘ƒˆ"GÔŠÑb=sÁ‚ZÝ,@Spd‰ÂØ S‹4qBiÊCt']yÆt³ï*™ QÜtœPŒÈ„Èâ¦ã,‹›Ž¨3'šŽ3AÈ·›9®Ž˜P¬©¢‘ ‚Ÿ>¢Î÷GÖ™²Çù…ªEú“2™L÷å2. (—œQ´c¢ÈÄWœ_1Y$z‰—ˆÙÔîB³gYO@Ѧ€"´Êb­;D éÅúràb®ñDÖû]8 Šr £,F*Œ²zâßè}èÏdŒÁÕH&¢­0j¼Â3uŽn»¬  h”Åú+ŠÒŠÑá‚„*‡*¯UÉ©åNÕIßE±¢X @¬ÒŠŠ‚R+"«/™úŸêÞ§¡ d¦^ý®:ÀŠv€Q´yY‘õ‰Y¬O,ªÅúÄ₤k×x“¬ž D±'Qr‰úÄ>µâ‘­Hž‚ºŒ,QäÑ (¤Ò_6Ë̱WçâoÎYMû™%Ñ·+€XjÐ "E'S7w^@;D±V ÕwCXX¯D •„ü¢òî–¨dÍqäéxÖjaㆹs±ú%¼³´C)¢˜NPĶf(,'!zmf,J¤¹eñ¢^MDaû3ñ3·Å¹¬k»ÕÖ˜L$L0Ô-Oƒžªï5ªwç¦)++KAëÃŒ(ÖQ¬-òU³ f"3„ľ+"‰„EAùª(hN€¢Šï»ZhŒ/}YO"„°ˆ ¢X¿!D±ˆ Y‘Dl¨,ˆp!Šô.“DÙ.ÄhEyE‰Qf¼µ"JÂ<ó©éRHwýR§Ù‹bݵ®æìQëjÎEȇˆ(ˆlϱžUØ Q,nEd‘ÀA‘ Y±@-@’¥'ñ&y[cWÓ{HjÒQ‹÷êŒ"™1•õ-w”Ö"•€n#uOÊZùñí¸@‘×êÄÔõ]ñ€Šqµ#в…j$êZ¢[.ÈØÂPò€Mn™…=MP¬¹:‘…f7A“QÔçKôÂëBgîäÙаa°c^5Ý ˜ Q¬e]Qª‰ÅÄ­}¤ˆ,M뺃3µÐC$‘^hY>äð,¿D±ïQì{@é¿@PÌEµ‡ï”è5§sÒîw‘8Œ(FЀ(–8LdÊ7* 8& Š$#Š$ßïVœµ 3Yô—÷ì@Ôû è+öiÇMD1ßA½[„˜;²K§µ^Yhõšþ²"éÊdy¦nK3žöâåKcÑ·Á ¢/1~IX޽ ÈrH |_L̵ßEQ"¢Ç.¢XQ"A‘rCD1Šj" kÛ5‰sû½a,ÏNŠÿJZ¢XD™i­²Í&®xÛŒÔ7–5Š<·;Õ 4§Ê®//A# R‚FP¤ Q¬ÖšÈÚ½Ä}o5aEê˨^’Ý-»VµšÇ#­<@BAù~õ»¸åÓ …çs„°ó9¢X*¢X*‘Er%ÉB®äì\úEüŽb`Å^úˆ¢ÞI@Qï$ê…¦”uÍš’#¾¾xXÛ³DÍo1»@§fr¥÷~-—èÄlï D¼D¸5³èª÷›X7zÈvžnrìf(¸ dˆ2Q d"Š2ŚъRÉŠPÉNœcæäh3Š“£M(NŽ6ƒ89ÚŒ(Ζ(NŽ6£mSƒöÚxRú!N(ìȼþD1ÿ.èg³óºk³"‹yˆ¬Ç’&ß5²z&GÍÊë„(ZÊ;£x)/Êb¥¼ ‹¹§ÈЬ”¯OãO+_ë æEI¤7Ò š~¯o\ŽÜ3Dn+íÛõÊÕÄØ­¨ã} ¯ö¥#ª6@޲ˆyØ`¹ÙÁF0¤8{{mlÕÀš(ë~KZÊ# zÊ¡:"Ë‘†ñ€b±:ªÔÜ2ž-¨ ºV§Øc™Ë×ka';¡ Dœp3J“Í­¥÷Uï‚zÚÕý¾µz/º"ôúDYМ‚‰zÏ^‡ÞÅ¥>ÌSFÈwÁÜ€ ÆÜÀP˜(šºÂPØýQºB@AÑZ¿ÌVøÊÝHP„™QÌ)‰(æ”$²HˆPÔuIPxª˜Âß«h>‚X4Q,š(–OQóù£^X¬6Å= ㎨Uw’µˆÐ¢¬‰iš©Åøó‚„öžª5w|¨züÅFDØéA(ÖƒQ„°AÌK„F³Õ±2¢EÌ#fL1ЬGl("‹ðg’+„¤È‰éÞŸ}a‹’]¹V Fû„’Ž0¬Ï ‚Výµ¤™Ÿ©=“ñO†åwÁŠ(jMYXHHd±[Q„+–ˆ"l@÷Ë X-fY€$ Y̱©E@XÀ$‘xÅxÊ]´ÅÚˆ"m²àp^ŠÂƒ6Ím1:þAúê[¹<À"zÄj|1j„_ "ކ¡Ðw‘Š ’à Ö ±ÎD3ˆ¤wâb¬y¬Fzm,VC‘Nꈢ]9؊ЕE ½5V¨w³¸ŠE¦öõ%’®“{é“õÉ£,æmGó¶¯õêh‚‰^—e[V AŸüt¼ý.òÍEk°ÅÚgÔe糈–(8®S«ÁžPó©ÛÎ]ã~ák žð3¡?³,’¨C–›¨YÈjÿÜåAÒÏ”b±: Šíˆ,­y{¿„[†"DZ ‚‚†²_îÝUȘL•Í„(f4YX f6«áD©áDÉ”»_¬׈¢}:PëÓ(rn¦¨™q˜ë…}:ÅútŒ±þE~A±>ˆ"}:ô:•`ìîʬÕêR긭1ïû…T t¢<ô阋Œ¾¼´Š HiC‘¬D±¬@ѬD‘Ò*& ™FM½oNc«;jaœ¡d ƒ\ ¨ëª’_(Í\ÝS5‹®7ÕçÈ\lˆ}Ó„Wõûíi-krÄŠr5Ôͬ@¤àfb•û.2ÜÅÈïˆ,’‡(Æ‘GP„$ V•€€o.Yb?3"ÊíÎÜ­pûÅ*­E~g¢¡3" "Ñè§Z9ÜDÛd‚$Òÿ0¤ýåŒaþ6DZdÎô·ÍÄë«/QŒŽž ˆc’ ×<¢˜oQ³üRé=†¿«@Ñê@„ËYQ¤’@,„º# bÎÅ2ŸH&εpþ U²ñ³ÜOwT2nIЭoDQ3\‘q˜¡öøÐ3YÆË!¶\µDG擯¥i£†ûj–(¢ÞkÔhDEﵬÃnç§UF!Jø/‚¡ ,e±$9²";æYJ^¨ë+Nÿ£§båyA-§­•ÃY±¢ˆæí;ÿ ]qÊ™œ)H—» è.(ºKàŠl—@KtÛ&PO)—ßU^( hÒ'Ê"Å…e$ýê|8Ö+ªÏÀBkÔ ú‹¨9=ôÝX,Ó~ÜÌØÅ+^¶kkND•ËOÈ{KqC£ @Ô¡Ù’.·†¸gâ}×^kAÌ9KP»¹ks3ïÆ,™•@Ûn'Zñ­$JÏã·ßþ4_0€Œñ½k¶m¡N„å—?[ò}æR“ï¢ÀQ¬q2A‘ƒ HHƒˆÊÎáø´®D 5ÔÒ,„°ÆLø]±еx#²7"€(7"Šb܈L­©­!C!¯û{žRßµ–k„‘ÔÛ)A«ÊEó×QYP~Bd‘å'áÃwQ— ÖŠ@Œã@Œâuº)¬gŒÌ“NH]1æS~¹¡‚ÔPDÌP\‹$†¢$l‰‚†Ð²Bç¹Õõ# scÂrcq9–‹²ð; ¢È—À4Ÿhç©Uº‚X" h" X"€Xi/…¬nL-H÷šé”¿?œDQ»Z1Z6YÖ(ÀD#‘F#‘&+’&Yq •6#s¤¾XÙшbÞ"‹ØÑˆ*—Ùä’¼›—(FåAVh;–Úƒfδø®’8Ų8PiåGP}>Æ Ä’=P)–íë‘t¡)¦€X[3’ðÞžxö ˆµ>#Pržä}±ßÅ¢‰QAK@Å…¾ë„§ÄžF Oxš0<ái-ž&0- aÂÓä"s'’ Î(ê¦#¨ÁõµBQzS”E\kˆ¢®5¼Flñ7uOÕôPGW:»öˆ"m^ĸ"J¬æçOOYü‹ZR–— ±ïë EzÁŽ•«+?$€˜@¬Ç‚ô¸¬Äõp Æþƒ’H°D\1ÓýènJ FézÉd‘ç PôÉAspYäÉ!zÁ31Uá|W¤¹bÕB3ˆ²áˆUˆæÎ ¬'š‘¥ñ(j<Šm1ˆ"[ Å,ÌÕ‚ýæAtÇFÒ“õ]Å.ÅBwˆb&¢˜éHdíúr>ÎÖ¡–¨…- Ù‚H7%A}äg€¢õ€¢)õ( sêQ+–T(B„JAVýD@ÿ]µŸ˜AïÅË çå ’H_ ÄÚJÌ Æ¤«‘Ö€¹Lí½q¯Œ V¦3€R¶‰ý¯5„tÆÅHƒ ‘þ í)$'ï+‹ÅÚ#ÅcUMP¤› H6¢ÞwØ­Nêí¯_ô"l]nºóokQ¤ »ÿf~¹ z½¿&Sú(ÂoAé=A°EüØ"WÜžB+!¼øîÄœ« tŠÑ#Å4ç Äœ«¨Óæ…¡õê ˆõñEI—§ž²Ur³˜Arɲož–¢CP„´‚ X„QEé×ÀÜ1/‡¼ˆb¼Õ±SØ2zäÂ)(²Úû’¡Xw Dñ:Ê ´¨£œQ¤.QŒ‹‚¨…U§dÀÝœvÖѬm+ {¢hCV@ÉÉ__¿[uóã¢:>· º»Î_šî H÷œ<ÝPämÇPCS¥•N,ß@HÕ®´>š^rj¥ÓwI\4ƒx/¿Å{ù¨ Ò„J·{ÞJ}ÉŠ $Ô~â7šóè¿?‹¢{@Ñrz”Å*åQ«”g(¤ELJ€Š0ˆOÉßUΠ˜o” Xf hf¢†.+Ô˜¢±BaÚÆüVÖ£ÓÌ‚®#:A1ãQï5³±Bdi^Çkîžýº "ˆb–‘Õ[ e€P4B (ÖA,D (FŠB•Ç 5*ßÃĺPˆ½6™(ÆD cRYj#‰'ñùM¯ùµÉVÄå” õ]TÝ"Š=üˆb¥²5”Å®Pìá'²° – È!¯u0¾[kçigTMHêI‚º•:õ9êïÈPšzÓ›ÖÅÛÜ¢^¬Í-®ø(O¢Tni½"ô¹¤êó }° JÜ÷¼»×B1±6A‘6[°oi½\p8L¯DìÕ8&)É{Å¢$òE†iCêöÄ¢´( ‚´s‹ðÕ€(ÚQ¬':¢þ¾¾%Kv]…²Ÿ£ÈÜeÉÿñx­ªVtjþ2ûr†ÏëÜs!  ‡,!ؼ5Eÿöë­+ú_©×¶èߪ¾ŸªgEâ¿2ý¾¥Þ2ý^t}gú} ½Õj¾¨Z±ÛоíÔ[±æ‹®¯¬Á¿¥5ÿŠÅKý£@毮ïJ¢U )©±b¹lðEê­˜èÅàw5Ñ‹ª/ˆŸ?`ºõüÂÊý–z+'xÑõ¨û*ô…­übð¥Nà¸5Ô ¼H}× üÉþð´¾#èÙ}Éø-õ–ý¦ë;#úMê;%úU× ìÀ‹_ß ˆßª^sŠt>ÿ(z‘z+4ü’z-4üÖõÒ›í[êí~÷EêåæöÅâwÎß\×€á‹È LÑ—ÐK^Ë‹ÐKbË·Ô[fË‹W/ˆGoBOÀŸ?Õ&ÿ¼¡ø+ôVaó­éíã¯Ð[η¹—òšo¡—êšo¡G% …žŸ€u|K½u¼èzëø–zKý6øÒ¸å[ê ¬ã[ê¬ãÏÞë_»È©—â·ÔKRà‹ªï}ä‹ÐËFò[ê%)ðEÕ[ƒÏÆf¡óFhœ}j Ìð"ô†ú-ô†úfïôMêôKjAý–Ï7§^Z€>k?ïNoRß5”ßRo½^„÷û•éßR/å˜oR/= ¾–^êÏõè|ª¿;n#z³ÿSêûõ[ŠåO{Û³ú›E´c@uý’zÅ~ý¶øýú&õõHü½Øý× ÿ-õÖÞêE×Ëmö·ÔË=õ‹ÐË›àÅà÷aûEê»ûïü_GÍo©¬é¡¬éo)sîÆöo]÷w¼ãéZ‡””o©—¬¯©/¬é?oš¾¿¤Þˆo©×ç›ÔßÖ4ßBï}{»~I}fý½Ïø×-ηÔÛ-΋®·j±o©—»žW©ïj±o©—[œWïÿb@ýyþkñ"õVVð%õVVð­ê¥`à[è BòKê­¬àÛ©ïjË?@ãÿúa|I½wcúÒõÖé[Õ[7¦/Uo½à¿u½ölúÖõµ£ü{üü×™û[ê-[æE×Û×—Ôî[£Ê¡}‘z¹úz;¾¿¸õ÷àB±–Å{…ìQ“ÚcÑô“ùŸRoÆßRoÐE/Rß DßBO˜¢ªú†.zŸ"vs^×ÿ=«þQ#ñ-õ eò­ë%^ð-õ xò%õ xòí×àÉ·ÔWì¡Å½Iì[#—µ³Qæ¼ú·Ô[öзÔK^ЗÐ9!;y¦ÿV-Lï‡iË¿ ¾]þ½Lñ%{è e=û‚÷Ý/R¯(ߺÞP>¾¤^Q>¾-¾w³ù+õbø–zký(ÒF‚Í[+èo©—Òôo©×†ÑoR_EçßRo=¿¥žeèÿÔõÕóðïÍè¿nz¿¤ú‰”Œ%Ú§íÿTõ ¯ü-õ†œümð;wæM×Ë¥ñ·Ô ÐGdÆ¡ü}FRD}#§µéXyþSê Äã¯Ô;ŠÇ·ÔŒÇ·Å7o©ÈX€ÔKä?½ÿŽl?0v?ÿÀþ’yƒþ+ôŠ(übí»=ø—Pû‹:üæÐ_Ðᙿþà‡~ÞÓ×^¤^AS¿¥:ßùqü·Ô´ê—Ð+´ê—Ô+´ê·[_]aÿžÆñFÙq«m¦“|K½½¾¥ÞÞßRoo©—@Å·Ð[ â[êû…ò§ÖâóÊ’o©·Ò’]ßµ%ßB'²c—¨Wló¿ ¾” ¼ü./ùzœ0puûIØ4ò¯àÜ·Ô¢½püáÏJ¬àñ’~“ê8ŽÍGÅ2¿…tmà¿…î•‚ïK®Ž/R„*¸%þ¼DãÍôÖ-ù[êmëð-õ¶ux•úÚ:|K½m^üz´Fþ§ÅoT›?‰cŸ÷l¹¡7xöo©—l¹o©·l¹o©7<©—öMßRßÄÿžÑþyäü’z=L~K½àà¾H½9¿„^œon ÇËÿ1Å¿GÎ? tØL¾´áø–zMü’ú†]ø–yMü’zMü–z{ñêk/‰s\3†uw¸)þ~çý¶våß›¼¾¥öŒŒ| ½ý~^T5´W|ß´þ[×wà÷EWGJþ|Y‘ó¦ëåšóÏúaUwú"îæðã‹Ôò™›s$À‹ÔÛKãEêû¥ñ-ôòÒxñ ï{Dê·åŸR߯–¿›<oR_Ä·Ðë‚ú­êåxÓõrð-õ¿qþñˆð±yÔè|þU˜ôWèÖ1Êó˜üK|z98| ½Ö.ýz-]ú+x€3ZÿÇìžEJ<„-Œ‰m뮾G“bVTï@ú›ÔÊò½[Mœ¯o)töÊÕEP¿}›3yíEbJs$Ïÿ–RŠ[¤#ž]¬3®3*s€t<] 2 JbÁ¹QÓ€rˆ‹C†Hhƒ~WÝÍøsùæÑß5ÇŽ÷N|£›–áÈ“@¿»ˆÚ1àaÆ ùM£b™½ø‰xŸJ¯dà¦DÄh¶£4=i6ƒ™E¥ £ä½LŽ©Ú KØIixΓ¯r^ðµÞO1–áûÑ^ׄ‰ü œ@ٸ׷ð´7yÆ[½p%I_±+ÇÄý~cÆûP㓤È› w9|–Wé'+°=°DºŒñfÀ©ø‘Æ»&þË™F¤aÏÐÁgä Àtâ;£¹÷îz Í6¾xZGôÆ;rfKCÒͯs"A(^IÖÑæÁéa/,a/­á9Î÷^žý{^––èNŸ$ñpº™7ñƒ2}±fj%6ï¬!i¸~Šsà%c ¸"ê¿…72äéC~ÿž˜²=pÖx,xØÆ‰Su‚Q‘¼ˆ®R ìÈ×hP~ýˆÜº­ŸS3Éë§L[À®YÁÓy-½˜åÚùµ.|‚×ÎS#‹º?#gÇQ%ê«ãy/öq w8È‹EÚÀ‚Ðç÷[í<:ièæðx^ î/ä-¾~Ò ØA+xNs½íÇw¹žÃA®¯¸Ã1Hìgàœ†`+ÞX:B%¬l²úíí~ ;6ò¥Á4mĈä Ñ¿4 DZ&@b¥—ú<Öðç$Æý·qÄá9nãnã\\“$ÎÊ“Ñ}¦jØ®¬jnš¯AÑØ¦MÓ]€RV Z&0@œ˜8~­ b¸÷W•Dã¤HRÂ^[ÁsÚ3ñkíñ8ß.M'Ž–.3ü œW ÷ö­3'‚U˜H:þô¼·+‰†Èki0Ma’œKþEžCÙ =¥¼DùM æ1pæ ûaOXYŠŠ¢FR½ó~fmXÕ+îÞü&i¼9, ¶+ IÃÆõ“œø>mºøÇ´!úª[¢”—©á9½lñÝžg,Uí^°¸ ÇE¤Qü> þM¢‚%Vs,φý#õøø¯÷’;³§¥ X”ÅÙqêI;Ÿÿ´@ë²|°„\ôøÇôÝòW‹ ê¾p»8±_øŒFël&ä,õx|æ(ðãÔ 0Ñ=é‹÷Hs$˜·\’žµ)ÎýP/¿¥ ¡B¥LÆR.',a'¥à9 N÷ÞŠ*»cÕã2ëÌ”üÏÀ™bÚ˜i1Ç« røAbÝÙyû¡ÏgºšÃMÓ@ Hæ\ ÚΣ³-ÆJ%,‘NKÃsãéîœqß‘ ^¶ së3pN¤ÕÝÏ’ÈçÈϺL…ÒEú0­$y½ûQ’¦ëgàôxÝ–†ýг,¤ñk‘–H¿©áÏ<´ÇÀJÅ/y]šÞ»¬çP9Âgà0›y8Ô5À€Vé‹E}àES)0M`.i¥àÞñî9k ¦¯ûPéµHD Ó0^$ „¼ñOžñoé'}ý¤H9þ9Äñ[í+î&»NïÑ–Ùéjê(IÑx´NeÍŒ+ÝË""Z¤ãÙº2Ó:HÄOç4$=khÆŽS)ˆÍó`¤~pAŸËAý÷á.àx½F@ƱáØw«ïÔgàÜ›š]±a]Ét…†Ûš´BÃ(f°ÄŒ@W)0M “ªSÁ‡Tëßy†•u~”¾rØÓuï™RÛÚ¸gŠMóœ9Ÿ‘sFèû™Ýû›þ[Y¤DŒß%b‹·´ÒPôÂmGqvd¯”†Wöeƒ´öeðÂöRþÌãI|ï"‚Ùû¯;}cZ½3!t‰ÛÓ ;Xõ"}1‡¡BIÄ nP rÖÙ´¨Pªá] M´\°D:- ÏIŒ79'nr:CÄ-ðø)á3r"ç°ª+î£äýÃHd’Ñ È õd2ŽÆ'ÙxûPœ¾Æº[ X«’HÆ»`{hÏ9h;Ì[:„N›"m;ë« ¦©8Qá¯øCf¢èçþKÅcƒ<,ÿ¨ù«ìÒÇDµ}ˆŸO4˜¦‘œ)vO¥¡¡ aÙ }ý”–H¿¥á9oбJáª]?]Àkôõ×ð‹ŸâD…8Î+¼ùü Î3l}± ç%âþõ4ˆ– Œ8òÝ'kX•‡ ¤c„¼H‰ô[žóð >|‹ ߊæjÐö8±†íýNìÕ«t‰´¼ÇÓg‰ØªÎ¥À$-àá4›÷RàŸŒMäO&°Dz- ÏY`º¿|éö”Ð<¢Ú?ˆ(q—{¢gÔMÇ3‰Ç3 ä LèÁg÷­÷˜4U_?gÆæ.‡»¥´“ÆÍ´ŒK¢Ü¥†?îk1ƾgºmÕžÉù‚ìPù8+ª Ñ1éT+ò3ª§åª Ž›£„,K8_K DÒÂõS œ7k8ëTËé`$QNSßIèÇŠŸÝ¥ëÑE’µAP?§# ²`ûÊU੤/®¡€Ï±åÛ ¦iC/9¸9( ÓŠ§Ý&@êÑ…ú<Öðç$ôæÁ>qBÂ^$a)FƒÔ|ö97¹3†âÕ™…4ïÔ<Ð÷91QkH&b„9Ñ¥ì·,Ø(• Òxòå„%䣯?¦ ë¬ÅY?‘˜Ï©–»61µkàl ™­3;<Åõvl͘…m.¼KbÞ–5$=1íª8÷…ì kДy°Aw$òÂöÒžós;þ{2È¢HDQW‘ÏÀYPsqÿ&f\Ç,ìV¨&$$†Ÿ”?žÙv3‡'M!N¦†uaéÈT—±[´}lÿ4üÏ |píPÑÒäˆÂÐ6óG;pŸ‚©È»ì³S癩'¾G®ý>H,H‚) IÏüMg:xF²† 9iäõS>ès»èáÏIè »;ºß¶.zîÅ"ê°•|þ9X6nzC)õγf¥«“F€`7–@iT^HCÑM!Åäpé) \kÊi„-å…%ì¥5<ç¡íâ„|¤ n™/²°q‹³>‡E8EEÇ—Ý2«œ‹4Îaìb‰>±ï¤5$M8ë™7v¥ âöÁéë§œ°DºMÏY8‡1 ¼‡"ï?ܘ/î~F.ÑÖu=ê¢9K}ó*º3[¸$¢,¿’γ!9¼Hî¿ÖͲ1\EË‹’ —¥á9=Ð\šñóݔ˙ÿøÃ±¬î3pVÔÜôùŸð Ëì:<Òøz'}’ˆ¬çuP`š&®Ÿ3ó` ¬¾/¤Ï£H¯¥à9 ½‰ƒ:~ćNèv.õÏÀd±Oä40¤Tˆë¤õú'T‚$î_Ð2(¹3ã¤h8Z£7d€”þM!å%ÒeixLAë2ÚNi&n/ZÔ&̀ʜõ§8À9‹øøÎLî":"½3Ó[4îaúð±Õ9<Ãí0pø+‡G)bìè­]tˆË~J¤Çþœ¶,z˜yðáÛ6¶1(99Om/ÌYyÎÆ¾È'‘Ä[ü™˜è¢‘œ4W"%·¬A´l`„9L>¶†ˆ`-gÙ­Ý×Ö‰ô[žóÏðL7Xµ½ˆô¥¦”‰U¾ÍÙxMµvâ˜Lq–øMàvÑ‹ôŽA`*¤$=)ù:9ÇúëÑ+Ž#S⓾~Ò”°ƒýô_{dü\¢é»2ä²·q™À ùætî™ùíídS Q–|¶¤•ÌEKÌë0œÕ»’2IufdrÊl×55›Vú~N–Hg¥á἞ޘ݂3ÏæÔ‘è“yð’Ò$õã] Œ—Ä â‘¶3ŠÅòãó`ƶ‡' !NÔF®”5ܯvÚ‰ë§ìûcûçáÏŒKÞyâc«Îî³ü9'®>[Ä(#Pp›Zl¯Î̤‘ž00` vI/ IÊqÄéz=YCGЩlÆvK^XÂ^ZÃszÛ Ï‹ÛÚTáÁÛÀJŸ.N<‹Ñ‚dWvôù[ÆH£\ƒÛ´”86fôáüéä(:‡7DÊéë§\°„ý³†ç ÆËg–*mZ‘f< (Cþ$yp<($¶{q’UˤUs´ëÊôtkHºk)MkÅKÃÜÿM€¼~Ê}ÿ#çDPû˜ãר$¦ëgVÝÓ½…Y¢8Næø$<Ÿœ†Ý~Žoø*Ê@óן.XÂZÁsãÝ+/²]bÅr¾#Ýp÷)Ç6°ë“¯77}CêDBI _÷𪘦 Œ0§óˆb ÑY~/$õƒH¯¥à9‹1ÃuÉ×;q(œU$Ô´.™³3Ø€®öK$xö ݤ†´ª†¦6H¡$ ×9ÿ±¼>¦9m˜Ö²tô±#gcÑ©*ƒ"9!bÞ‰±« †u¬Ë ¡Ú£Ôô¤3hrVô£, l™T6H#)]^XÂ^ZÃsz»²¨ã‘…Jaб ]2ö8) cè1óõÖößBp&} å\‰}FejHº3/§8 ?¥¡µxm– Òøzå…%ä¤<&¡ žà wQD‰ÉªõÜtœ+ήr)JdÊ|UÕ*Z;¡¥ì@QLo§ “ƒÃXi`”¸l¬:Ε–H¿¥á9×?,Êéâ˜3áÉO†ñ>#oî%›^+jª…CEZœ}$–Ø,”“]¡n3'ôð9vŒó’LãY† %a­á9‰qsÑÚX'º-XÀ>küc úåâÂ[äyv?»nšê30? ¤<¸›Ê$§¢Qy ¤C,2OIÃÂõ30k¬ïëß™t!ëñQ¹ÊqO×õæAdñîWì>#IÓíA>gPÛã¢LÙt2W5!}±-Èq +{§Ó´qý œ‰ù}Ö@<ë²Aé1òÂé·4<ç1Þ¹s )º«FRÉ¡j3vdŒE„{aC³ˆ‘¦3g×X§$î‰o’ú1ÀÇJAìá×ÁieÑ ØcL`Ü,nºŒõÞ©±hƒÍ >#ç䓵l<)Ÿ¨M¨ö¤ñúÛyÚ¶ÄÖÔS’žÅ/Ž úSCÀ&@†¼}ÐçvÑß“ÐNñøõ£¬Ý6ǯ¡‘>cãYK—‡ý˜~®¬ œ¹%VTbgeÁdˆ©â ý¸Ç½vlr{#2‰RÒˆ4pû«Ú’XCÒ]o's"”ÊJ+jØïElÞˆh¼ŒéEJÈËÔðœ‡î™öÃKý^gwÍÑ%‘·9ÅA4ú¦†_ïò7`/ýÿñÎ[UZ­·®KgMÚœäÌèZ f\XJ= ÜÚʸ?¶sþtx€W„]@9©ç;±ê>#1YlÅ‘q¼«·#}nÚ &K—†¤gÂ%ƒ‰X¥ ±wd¢°wì„%ì¤5q#—ß4Îà¼=´D”ã ‰’4½0pPœ 8+¥aÃ5jÙ À€¼°„½´†çO„½«>$')t‰d\fÄ•ãÜXK‰ŠÀÆ(¼Áorþâ¢w~9:§­Ô“¼~ʾìŸ<& ß-§”“J‚ï·ší°SÐgälüžÖ h±aQ·"ó ¨úùyü„ú0<éIwɉ,ï(–‚Æp5/ò9]H »h ÏI¸ì,O<íPÆDäůŸ¸¥Ÿ‘s2!á^ïð² ÞÙ}ö@Êšiœ_*f e÷§†¤g…V’³í±ß+ f4˜yý”úÜ.zøsN@%ZÁV‘”ïµã×=>'ò;â]9±ø@pu!®4ïò%ј.j&iÌé,]°‚ûÕ‰[› ׳œDyM f1ȼ`óýúʲ¶•°aŸ‘ðœHNü$'ݲPN4Î0'S-,G»6hHzRÕerXÏTNV6Hëd/,a/­á9ñ•Ë]ò¢L‘ûà©'Èágä w"ün¶Æìèsâ/‹ô¥>ˆgI`%~›ÒPô”~qîÇÔÖ@(ŲAZá*xa {i Ïy¸¼¥òÇ)Ò#¿R€?#‡IÂQ‡Ú{%góÌL3ŽTѽQ-;$*í4ãä0M8(‰8Mdšq:a ;)ÏYøüÓ/’§øx#Äsâvg‹â¦7½Ö¤3SH"„ûX¾tvGòð¤›^Ñɉ:.¤”HÁ}˜F ¤c„]°„]´†ç$\°ä-ˆÑ&¦¸ßÏB3npr¨ôæ‚JÂæ›nüއìóÔ’ ð¥!éFÈÉäÄÙ´G«åguê!}ý¤)!/SÃs*m©L™yrØbÅõ6~Ê”' ¦À}ËM¯ ‚+9H# 1±!Ž%b·LÓFˆesH–‘†yå_È6Hã"[^XÂ^ZÃsãwci°—gâaÿ3rNÖŒ.Q¸ :Ÿ´žÏå$ˆv_’Î0–9Ý( ¢JecÊ0–½°„½´†ç<ÆÒÙ;+¡ ö¦[ˆ(š&àmqNäEÚ;–däñ‘4røW>󖨦a8 cÝ’œˆS›Ù½­T“¾~ʸ%ìœ5<Ýמ —Ò¼pÎ|k·ÝÈ(9¨“Á|õc;gàù!2zzÒˆÕ¯¬¹·ÄLLÏÔôÂPZ2ÚÁh¾4Tå• Ò×O9a xèáå¼¾I|‡ËºV¢mo“Ц¬þ8òj&–Ç=>Šq Å~*$}svø•M#JƒiÚ¸~Ž€X¬=ÊiäTÈ K¤ßÒðœÇXºÔ‘-¯ùÆÙbÞÝ€ï3rÐueSzñÄdfö€6­ãŒ_=貂¤£üÅaå}iX0ͲA',:aûhÏYø,/–eiËœàÛ]PðÌ­Haž™€Rų3é‹?ís$¬­Á4mè÷GÛJC'ÖDÚèF£H/,‘~KÃszž&“àä79Å*Pz>I¼j™ Y‰Ñ'’‹wÞI‘FªpÄSKà^aû<(Hº«|09IJu¹N ¢‘ZÜ$“ôèÁycÞÏnœ~Tööã§;àÝz„6Øñª¾i†ëE£`—ñü”ØX¢’LÓF˜ƒå©4¬XžÊéa/,a¯¥à1 Gfšö‡Ã.q3.!ZRNbZ\ÐýÕÄšô€£‡À¥@$-@^ !åðW’©Ÿ¤U„Väç鱆?gàDqDSñk5䯼ÀNÝ?'¯"²#)CÍ‚«<é‹ÍÚ—6H(O"˜¦ ÄAÂ^)P~ršÈ fû`»¨ñÏ9h &¶8'ëÚÁ1ªEÊgäe´ Àqã9±šªøÜÔ…s”ˆ…bP`R'ÓdE»†…« $òWº` »h ÏIŒ 'wÿÊG®ðz½¬¼‰6gC12Z†â…CøÏjûi€Ð½³ñQJ̼áH¦iasÂSd&”E¹ é„Òk)xÎB;&d|1·÷ºxßU1ÀÞbÅÁh‹b㮊‡½ñRüX’FPi!ª˜%Vô* IO¾F7G¹ˆÖמk/¢qñN/RÂ^ZÃs ³¸òT-ô¤ž3ûƒ{qމˆmÎk3âD\ŠLã f3“”`gÕÒ`š60Bœ¸û-úX”‰M.Ê KØI)xΙ#(†æöImKV¶]Us–ÏÈÙò'ÀB¤/vMiÛ (/ƒ“ºd¬Öpd„l¿Õ.¤^pì»ÆÏ퟇?g C,fJœÅ¶ï‰ 4˜Õ›œMPØ“"4‹¯ílÖ{¢Ÿ\JÄÉy륡èI_lr°Ô–¦¨• Ò…)UvR ž³“RhÌÒ¬ËÙÎLÇÏÀPù½qA—[dÃtlmN Hc/´$>$–“Í‘¤À$-`€8 q¥à^‹¦u0A»'9a ûh ÏYŒé2çò(ºÛWâ„y§8p°×k›q/ؘÍœëN ˆŒK‰“Y±©!éî2=s¸ß+È9nÓFnÓ‹”°—ÖðœÇˆ9¾ /TÕK‹ó¦Ô´eàÈÙK5méÓê¤/5m¹9çÛ °9¥K ’Ö}BqØq%0º_í/,a­à9‹ñÇËSžR¬{?7ƒ®¤]=èÍ9¢¾ì>B¡“ö2÷Gª¥'}±·=ZÇYâÞ™Ú’žõ H1mKAlËi\uÉ I¤—Òðgz ñóeÿ‡I!(…2ÔW SRœs!ØQc07à·6@>2Ø+Z]!³DüÚÚ ÁôáØât®oÖÀæÆecðzya‰ô[žóðÉÖņÄ%'ÄüÉ®]M¯ÎÎêõM™Ç|uqK2¶x*Jà~nç  éæjnsâ‹Òœ4Ü«öY@]?å>¶ƒýœ‚Nøñ*™Þá6V©¯Ýg`ð.‡¥sñ¾Ÿº¹é‹ýua±D´ôž ¦aŽl„ ŽÜ.MvýÞ1HØIkxÌBÑÔ¥åR5o —G¼];†ME³æ­On’ШŽ|’X©p PÑá$Ýøì›ƒ"ÖåB¶ (ƒ‚ “*2`Wm ÐÇRðœÅøå‚dˈáíQ•Ù}¿ª®t†²®X8Úya¾%‰u‡Ì)@x˜R´+'“uøX©¤a`Cš ‰…J>XÀ>ZÁs ÐàfoÍ&S8ÔŸêOÞOöÕ,Žö “륥í>{ÒH%–rI´“a­ÁtwÕxqTÚÉŽ¶Ñ\5ž^3ø ç1^LcÃ{–%bœ+wVæÜ«ã¤ô%re;{Ýû $j›T¯ø%ÖpÓM Nc¥’5Ü_â²Ú ìªdß§ÇþœÑõO­P꤅® “«b‰ÿŒœ“È÷±³ëä3w¦KÒ{=`°ï0JCÒº7)qõKÆ;Œ²±éN£¼°„½´†ç<ÆKj¢¥Înq®„ñ%–ǧ8mšxÑx(€·Y“}2Û‘4 ï ,½8öÒ`Z60Bœ€Œ+Xi˜FelCôõ“^X"ý–†?ópý‹ÒUÆûO‰Ú‹YeÉX˜õa£,¬ àAÖ,®ˆ|wtâ°Ä¢NÖ`zVÝ@1˜ÿŸ "¢Ñ¤û€–H¯¥á1 ÁãÄÁ80°‘ë·Ä5'š:ø@×™HÔ#´É”äE(‚åóócÉÎmhê¿~NXŠ0©¨,ƽ=°@º,Ï)h»,pý¦\æd™R4¸¾9;p¬x ¥‘†ävL&y*æØh¡y ’î‰Æ/Nx/ø™C]ΣL¼~Ê ØG+xÎÂÿªYšš'ÕÓéˆM½"ÌVœÛïí éÙžO4öÊñ#K0‹&$9 7ÒœíD[ÂT…·Ó:t$­²zZB>¦†ç,|‹‰ Õôhz"( ‹¡÷ç¦rŸ%º¬  ›b uS¾µA"žÔuPôB@çdìQK¬`:¿Mì‰ß/,`­à1=É8ò©¡€šž,mãùbÂÄgäDU6šàîx™¡üí¦Ù÷]´®hˆ1&‰ÁšT¤+îÌ™Øp4ÚW_Ë„èë'H ù˜ž³p9Ì/»C e÷y- &eÂãD½\¼—¶ŸnÇå³iܬÿ­ƒÀÉKæT´“3Ÿlî)ÑãñÜË‚h\Ї”©à9 ãíµ™kíêÏáJñâ0LÛm{Ó+QžæwU®Àïðñ²3)ÈÃM»„»8;ó´9|_°ní¤õòá}›$쟇?g0¼j™‡­ ’ádU©ƒ€9kh þEœ™ò¬M73Á̦¬–¸wøX­Áô¢táÓÔˆR¿‘6f¥$—’(¿©áÏ<ôÅ"™½NÕN -ê³ZO™Ã\çŒáN¹Î8c*¦q¦#•òÜKb¿]k)H²qO”ŒuF _±7,¤…¨plƒ„]´†ç$ÆÞx<äv…x9g¯»ÏÀX‰L†‡“i{\vÜšÛš4’ÇcGQ̳(¦ÕMo`šÌãÙÝ® Ì×± –HŸ¥à1}¯¨g“<ÐGCü•;š}ŠAt—@¬Ðg,PÃ@ÇÖØ±b×Ò"†ˆèºrï;£äÆô•ýKb9 ÷f ¦aĘ™í˜ æ••6A¡g9a ;i Y(E$,6cÊ$“ˆ£3dîfrÂè­÷< w.§:x‰ú˽$·3mÐts¢¼9êŽh ±OgÙ-0– JÂ^ZÃsãá‡ý˜fßk3( ‡6Qâlh@2’#¶“—ÿjÀ)úâþ´q|ß ¦iCrfÏ[Âö€eƒôõS^X"ý–†ç±ÝŠ%}IòÒô¾ª´>“îl¥`[y)˜Q«U‰wé„%ì3<¦ -Ö§ŽíÁ6yhŒ ÷ug¶y26õ¤Ž"²øÝ }Ü÷½ˆð"N˜ëðñÁûºnúQÊcFC'âT° a‘ô“¸~ʼ?N5üáÿµãövvQæý4]¬±cvqެ§]éA‡•¾&­ãÌ1Äù2ŒOº¹¯«9ÜDI2„"ÙMLã€51åHöÐãŸsKmϬ– Œ5÷dÑË{e6\rN`D¯\AÏl·­¼f#}±ÉÜÖ c•‚¤g¯5æLÈq, ÓÌ—³m¾~Ò ØG+xÎâqÿ£@£á(wܵDVì¼rqg_Ôí¸#ó;ྰËgá§i­NL‘S?JƒiÚÐòD^$©`E4¸LÖê',‘nSÁs?ÂQÇoFmÒ¼7·N+5Ú¹¨KN|ç‘FÅ$o+R"¡þ¤ÁtsÏáBëcËàÔ0±¥põ¹épza {i ÏyÎOIŽ „¬7¼?'’Ït3 `9æI#¤„DÒÛÚœÎý:Wj0½Ú19ÙGÜÇ6VC;¦ÙyG^ZÃs ÕôžW@Ëê+ ]µÍ‹›,'‡ gѺå¼GÒÝ–4~“N:’ˆüòuPô"d¥äļßÒ ži#»rØ ØG+xÎBeeCØqFl{Ú…€ob,H¾Éƒw• LçsQ±ëfxŽódÍ$"¢;¥!išˆHxr0ËÒÀ˜yÙ xµ¼°„½–‚Ç$4Y¾‡rAÈòÆ÷<‹e?#‡¹ü÷† »rù{c°“4 DwD-17fHA’*Ð-Ί¢ÍRÀrÙ2áòÙrÂöÑž³¡÷÷}(¨n½»+ûigØ19hÇØ· ŠòˆMm,ƒkÒ7˜™$o ­¬©!i• §á¸["4µ6HA^XÂ^ZÃsºÁow╵+eîÓRœFî×$#TftVfǃ‡ãJG†e_ÚÄ‹Òñh¬$ú„œ‘Ô`š&t­C³Rý§äµŽlÖã/,a¯¥à1 m“[]ßúÀmÛvnjÝÝ4V®ãq»€˜¹vë–ôÅ®,­ Ñ@® ÓnÙ]œ}U«^i øhÙ øÔ>|lÿ<ü9}­§o13ÿZ` ¦iC¹pW€·Ö 8jÚÈHkza‰ô[žóÐ+ˆéRÜ.kMD1”äãòñ30; H2”ð8ÊI¸«£%} xÓ– HCi0 ×ÏÀ‚èjk¨¶ Ó×(‰ôÚ(¥ã,tB葯]W|<’Þ¤c}βp+~"ŒrÓ@án‘|Ýæ¤M¹óÀDúN IÓYs„­o )^eƒ´ðBå75ü™‡›@ž ÒTJÍgFV˜c•JÆŠ´ýû¤1©¿([:ûbF4Ž*¼¼I À–Ó‹;ïgâ²m 3ŽÈecvç½ôÂöZ “pì‘Çc¸5hÛŽâÎy#¾ÙgäÖ Wm ÐÛ+#‰[>â™ùóó H”F›,@52§_£#ù`@d-”.Ø·„ý³†ç t4XàkeìÆo ùŒ~Fή¼´®îàp…Í9D#³mÆÆ7%€iíáó‘Ú![}¿k qëJ5iݱu¸$ìœ5<Ý×ò„«½6s¶êîÉøç"ˆÿÏÈaQàB\ЉÙoh|¦c?·²'iJÄ…õV ’twñä¬;C:V°Î éØéë§œ°„}´†ç,ÆûLæÚÏYš€\¯ƒµ^fqV¼éS‘¿Ž¶Q¨ÂÈ`g³ÅÁîX‰¾²²Î’îÿ).Æ®&¯V°wVÇÙiÜmË KØIkxÌb,’QœŠR#} Y(Q8ŽÔ5ßô®µÆî ,•0·þA€K3/í¬!éænæLÛ'X+üËiœä…%ì¥5<ç1¾l ¡%$¸}Q&åzøvÍ`l‹pV;Íù$ÚÕÑ“F$e㽕%6Þ¬Á4LÄ€d UM)`ç¥2A7)rÂéµ4û‘´nd¹$²³…4$M×ЯcvCDiˆ¼˜e°Aw¸òÂé·&>桽N@Ê1Ù ¡sÒFp1@'+Z+ÞôŽÄÐÀZN¾.âKZïàüJ"à7ûV’† ás’1áëO÷‚Ó·Ái¼ä„%ÒkixÌBïÚ¼òr\<éXßï_K(’soL;®£x4‰„¤ƒ÷Wk3‰ ,ú=ççqrF‹¤zìŸwJ¿5xÚ™˜i퓪‡Ë¼%Òa*xú¯Û[bUòQ^ÜÐ'0H¬óJÿÅ«,–Ï#þí|ï"_œôE$IB Kâ~}N}Ð`š6ôf&‡‹š5¨Z3mˆ¾~Ò‹”H¿¥á9±š€åZ£6v´Ù‰fcÅ8•Ý͆ä;ÚÆDˆžÝ8«Ybc:ˆÜ‰ †9r8oÊiáÂK¤ÓÒ𜄋E*Hc˜¿hW³*<1HcNtžŒ­ùš 7ÙËé?gök?Ù˜¾$ºš=HIZ@TÇœ™Ý"¬û‘²ç ¹ ÏÓe NAë“L0ãÃP-Ìn¾w/“°=гñBø`Ür9ðN¸Ïà¸x2])Õ)Ñ ô”Šžˆ…î¿¥ac㜴AZ±‚>JØKkxÎCÛ ÂG!¡;-™¯Àçë¼ÊLΆ@|ôF­`c¾Îº0òG‘üIõ†’`χTdSÿ„ä¬lñš VdU”‰µ9ÉÊNXÂ>ZÃs#Ò·Êê1‡mê©”…Ép朮@% ª]tìcUëžûLx+0MH½'’rKcÈe‚´6×ë `5þ9‡ñšúðÝÜuñµðŠe'øúgà4£n<”4Žî5£óÐBZ S$¶®rqi0MZØÈéL•†-š«ÌeC´ÊKÐÑé·4<ç1Â@8QLádt`]Ô~AäZÍÍê$Þ|Cc°3iô´Ù‰ôµªýBDŽÔPô’ý’ÓÕ°"ЗywðÙ^XâèÃðÁ}·¬™–AäûõDо+ÿ:93Î`7½³®pF¡% „ûš4ò¶ŽÿŽA`ao¸T`š&f΢©à^–ãò*-F¥…|°Dz-ÏY<À³PQà_l³«‡°.Ìx¹(¯ ÏŒÀµ}MÇZy/'qiž+nÜJƒéY¨´‡á©!ºú &:oË}n—5ú1ƒñæ‡Æ> Yù½›`ÂÌA[4¤ïøÖšÄª3-àªs‡$–IçiHÚxÉ™ñ/ ì™]6f ¤–°—Ö𜇯ncrNW™‘Íë"¶·Ÿ1 súDCƒ›æô¹rÛèßS_â´y–ħͣ4$í-u1Tôa‡Ý¤Ui1ƒDzM ÏY(hž ØbŸ"@N-Û‘}45ÞË“ùG€×ä²éGmcµÍ´%­òœ­ñbY¢eBùä.,5D ãìeC´âÎë ^KÁsCíÄÖ+ÝÏÍí¹kW+׿ZꆆÛ}ƒ"¯r>“F¦åÆc–8ø=YA’“Òñ“C¼ÐR‰ƒ×O¹ ÏåŸG?ü÷åt­NYÅovu ì£ÏÀ1àäÊf˜3’4Á®{V'.ާ6Hìj~i¦iásf â¥Þg” ÒXÐÔ‘Séµ)êèT(VE÷šÕ,àœè/X(·ÓÑ7Ýß`.N÷¥ <•m$˜ÜŸ LÒÂõ3pè|*Ø:.¤¯Ÿr‚œÁëÆSös1]b“  ¿W… ?×dlA"l$àú’´žÿa)9Ýï¡éªÛûÄ—¹$=)ŒnƾIã÷‰I6°OQ² –°‹Vð˜ƒëଊHôBßšíî°P¶HØÙé ?ìKN¹® ;aòóh-Ö‡áI»ÃBr˜_ 6öOH ›;,¤ –°‹Öðœ„[·¢âóF’nV÷¤ƒý$ÌÙÑ©ñ‘¥ÛÛ'Ÿèå0‰§ëd¨>' ™‡Mx€Ía!A*ˆMS,V眓38 '1b½ñ`šõÝ2‹néÄåùŒœ“Ȕ̻[zàåá’L"GÑè8°ô”‚¤g#ŽšÉ~¿¥€mÔÓIÄâä‚ì¢Æ?çðèVå¼ ,ÃÄíÖœl%aß 7¹óÏ7±(G›3éX&yOZ+KíRƒišˆÉ™YÖn |…” ÒØfÉ KØk)xLbÄ7Xˆ¦]$¢0é`Ÿ¹âôEegÄVØúI€—ÈÜnI#¦Òxr·„²ÁSƒiÚÀs·H ~|eƒ4¢0òÂé·4<ç¡ï–©äØQ ì¨Ç΄«ÏÀiÀ;lhKØxˆvÀ Ü$€•„GRƒiÚ¸~ÒºRCÄ€«"¢‘ÆJ/R"ý–†ç<œî…°8“3 "õ ›C`ÐÉ9‘Þì¥w‚ˆ2giåÅ`¢4rwU”ˆlŽc/ IÓÆõ3pf.³Ö°ãÚ²lÆ&J^X"ý¦†?óðÂì§Ù@ý¾ÔIW×fº˜Yxá€×8YvHZ`ÐÇ:HܯÌù4$=û­bνQXößÒ°wÅøeƒ´À ÷e“Vð˜ÄˆÕpƒ¨~lê:3—˜EîL—_€£\™ —)säM_ìnIÜ6IÜÏáä!ižzDj̲þæðÈâE*¼ ˆF"]H ¹˜†¸õ'»œžãMV?ó‰35ƒ1«{M_ò  Ó—$üX´O團ÞY¼]Œ ÕÝ¥€µLia3Rpº`»h9ŒïZöœTãeæÈ6º ªšq,l•> uà8Y}¶•€´kÛ÷Aâ~!²Ó0x3fö<·ÛÊÄæœ×tÂéµ4‚™¿—‡Ž`èã}w&­5j^‰ûÕqƒ†¤¨Þâ̧ÁЧ‰ªO',!5þ1…±q Ï{§úû Ú/JbæÅm§Ía•# m&¶,jN ¤iÓx7p»–3pÈJƒiÚÀqø6Óð¾ðªÐH_?å‚%ì"…30 Òå‘“Ú”kÜØåöˆ]Oyæx@¥ Áàq\îh¤+ò":Ú¾3‹«Riš°‡9Ø ”†mç*$¯ŸòÁéµ*­M©LË­ú}:ÙI{—;p:Ö0+`înYpvoù` ûÌñÏ)èØ3³nÅÒB@žw¥ ¬ÜR$c°!@R†êWà®ÍôÅî¯ë2HO!5˜† #ÊN—ßRpîP$c¤¯ŸrÂvҳБG…‡³¶ŒX›V`N-mQŸøâ¬hö‹Éý­'açïG©'‰#^g~·"‚z L/jä>p!½L¼~Ê ¤×RðœÅKÕÅ€âÑ\öÐÎk'TTr°Ø÷vává îɆ $‘W•îùó}Æ’˜,¹©-›ÇñTPŠI#x)Ë–°gÖðôÝ©ŠÛ¯ ß7勚“OÛŒ›—• â¸:´¨´gà-ÂÚ¹¡½uIÜ;×u4˜†‰ëg` ‚0,'ßP6!Z?’ã$ÒkixÌbŒ@±ºR³½ÿlö‘E#p\s–™Ø¶‘ «4¤Gïhx.’_›IYà Hu*0=Y7nN¶­4täh¥‰î„°ôÁéµ;äRóF¤DKÜç“6Lg6uqºؤAÉÒi#Ó©Ó K¤ßÒðœ‡v˜ê»•m#¨WX½8‘³³Ï↋ñã~Xø±1¥h­NH}·ÄÎÖ–© é–7œâ,ÄþI ’ÊÆâ4;aûhÏY<»Dl)&½h£yÎ^鱟‘ƒú͆:>A»Ãó$¦?È‹ {æ£>?O”ÿåð¤›ÞšÉa‚l*ˆÀÆÙË‚hñèBJØEkxN‘ Ü A†}æP[¾ëâH½/“³±{e[¹ RBT«ãv…4ê×·l‰YeÖ´ΓCŒ‰Ò°Mjo)›ÎÓ KØKkxÎcl™x`“<³À¿ K ^æ%ãDn´vCFŸYig™#iÜXá!. •õ¦†¤gÕâ™1«L3+ílbš]‹g',a'­á1 §Þ"Ú6 ×ÑèK €°ùd¹Vq@ÀB9[1vFT·%;.ÀšsÓ«ÞJÐP4m`„93Â+©}~Êi\rÉ K¤ßÐðw#žêž-@}70)£§uß ³b4óÒ  ‡Ibx0+ÇQ*v ’î„(N~Iiè¨çN]Xjåƒì£á°4Âg¾„xÉÁ’qÓĹ D”?5âàˆ¾Ø±m9‰'ŸÒô¢ˆKr µÿ–†H"9¤ñó•–°—ÖðœÇ˜Ïׇ ¡~ê¾tfó œÚ 'Q”5¶Mp€²Fú"ÂõÝâ XTfÍë¶4¢¢Ü-›AØy7•ð}~0(Júb™ñ(°1b’ LÂ2œÈhñ®ÌñÄŒ)¤¦ÞF‰ôY spÞ"RI€Æ¸«oFŸÙgs]'¡>‡­ã‚½£WëĤ¡…;E_lFàpI¬‡€Æ¥!éI×Dɹ×m<„Ö°Lƒ›Àí·ìã3;çO÷Gd6[[UÐKÎMQ7qF²QT®L܈\~Ò{§á§d‰]Dk m1"9,o’ăDE6Lë/ÓŽA"ý–†ç<Æ/–[ªûW \·HØ;ˆÏÈÙÿ |Cø·ä>IñMAúb´®÷A‚¹¢© IXP(mf=zãXAÄ& – ü<Ôð?SÐF yšX ºn¸v6ÎÑáw[+cGÞO4[Á.*.^Öo’ˆzÏÚCñóuHdcðµ80Æk|òoƒÒÈ$‘–Vðð,FqWùw”Å3“ ¡“s2¢¿¬¹ÜvÒnIª¸‰ˆ ÈsPtB1š“HŠÒH‹4QHŒöÁöÑ ž³Ð ·Nx·Pe_Ô‰«¦9+1Yûý‡ÞV¦#Íúýõ$ñófáÍÓ™iäŠHõ²ˆÅ5²cÙ$9'¶òѽ "í'¾Î¶Â¢/6PGËKÜ;zYCÒ‹îj“3áõS"wl¾~Ê KØKkxÎc¬à[hSñÇÉd^§0ÎŒ¶íd敳˜ÛÉôÞÊjÆÉdØô¬˜vÞôÀ™p|°‚ø¤²@O|°Dz-ÏYŒ{c>Ó®`RK»3›‡­…O6XÁ»3@ŸN6X1à§Z³X‚m`JCÒnNœµ–ÜÆâ÷@¦qEÀ.ò)a/­á9qËÈý¦òé¾:Y±—kq>.2?jF€¾DX˜ù‰'“ïqÓ8ã2&%ú¡”†¤gAš%‡w«¥¡áºl¾~Ê IÐE ÝžZ%Yã<Ç›Îü'ÞÜñ*‹>ó~õÇ«l¹×þ¾ 9‚7'`[K`Ç"Y DgâÀaìU 6â¶ÛÉ—þ<]ÖèçÜ vV•lpD4ÍðúžéâD©+Џ;λJË…ç±=‹Ï•-P+ïÌSƒiÚÀs:ò¬Àiž6Q‰ vÂé6ԯȜ‰ùÓÉkñ©åëþÖÐbqröÚÌ–%qïçiµ†¤½–ÀE¥‚ØèÃK&D_?éDJØI)xÎÂ\uRL'a5¢eÎgäœD²ÚSì DBÀWëø1[Öð¤õyMÎvèVE6f?Ò _-ãÇöÏß3±4gT ®29rcs³™œNĘÀôàh{, eeZÈ+m¸wÇ(iµÓ4qý œ'}Ÿ”^¦Ó˜ÈvÁé4Ç?çà^s]åù`»5¶Ÿ8×À‹³MK6•p ŒíþÕãæX4– Á±”8TDË6q„Æf +Ž´±úñI/RÂ~[Ãsî_ d³ß‚æk܉áÇÞ˜A/NüÜñ‡\x²F]¤w`k&Ù+›¹ësîk¸hPÂ)9)XŽƒ¸h² Zû.TøX"–†ç$þµJ™»ÌÏÀYYgäYpã ¨ªž$rš1œ,pÅç À4M`„9XYRpo)–% $ä€ (§1þÏ\ÏtfU^ŸŽÄ„Þ![WFÎÆ^†ºb:Øüx­ë‘´0a‰x+‰ m¢JCÒS^Á‹³£Ïxi`;ì²AwðòÂöÒžóëÁ¹ w%‘œì~ÊtZÝZš³1G3²?ã}s6bÚ鲤/6Š^–A"*·÷ACÒ“oỎÖJí·40¡¶l8Á¶¼°„½´†ç<\)Q}Ò·½òËOÜ©.q~ù œø=,,~Y•´ŠzÝm`Ö¢§­1„Pû.È,i0M*®hNJí¿¥-ˆ›.––°—Öðœ‡+áU;Œra¯FÅÏÀ‰}øA\#$pÞ§ŽÝŸiDÖVÐ-T®/21“/9šð‰¥>ÓK¤ËRðœ‚X•™oÝ éמq‚˜R"Ï‹Ó#1ÙÐkü0nš?ÆKF iÁ)F8#%ZDÿRHYy3&>hx´H¶òþkîÈó]XúÝè·¤u–Gµ¯%X´_LÓ†Þ)àL*ö²†û½ƒ Ò:Íà KØKkxÎÃg\Ãb),L©Xß—E½ŠÌˆ´@atbËgG¡V-gÒa±P³b‰íZ°4˜¦‰ë§8l­VØZ­l¾~Ê KÈI+xL©Œ€ŠšÜ?ÙX‘¬ÁµfDŠˆ*›®«º]sÒˆ~2Ï#%…Jƒi˜¸~Â+¥€fËDõ´µ–H¯¥á1‹q{±ì†Šu——I–{s—rFƒ£á€sœ6¢ ãƒ3sk£CËÞóóhà‚^É^ôìÜZs˜ÛU tµH_?å‚%ì¢5<'1.Qì½5ëõÃâq×E}FÎÀüXØ7ª½®÷šÕ;¶EÖd ÄÊ4-¥ èΛÆâq"lèA[H_?åƒ%ì£'.½ÓÓpõz¿b›¶ü·›RS’¾ÕÇ­p£Mw!‡´RÐ ššPBË ØA+xNÁxÝÀëÀæbSvɤö7‘i¹i[aÎŽ² Ý·!÷woygú"üÆ´ ìГ L6›±lÄ_ôð¥iŸ!¤u,a­á9 ­ÈLŸÇlýÍ›¯Mð“ÅAªx Ðä3°Ç;.I_ì‚è#K°Ì¨4$ÝÔF+9€0.KSŸL,.íK',a'¥à9‹±’‹Æ:ü‡@ÛZ‰¤þ8÷kzW‡kt|‹24âK7äEl#@ êsîÜj¸éo/ÎÌØR°œ'dË‚èë']H‰tZž“p=ü™×"¹“š¹c[¯þ œ mìašz¾`O ‘ÚH1œ.!‹¤Ó4qý œ‰—‚ec™»,,ªW.,NsüsÊ.6 “.\‘ÛSöÔZ˜s=pNf™±]󼩰?Ò½I£Ö—Ø‚)I¶ó !é…ÑÅiª@¶†¦ dÛhÃ¥–°—Öðœ‡ß· éåÀvpf®w‘ªÑN_W-€©G7ÞÝ –XÒº,œ©%˜žZLÓ„î ÈÁ)¯4Ä}Î`¤n àƒ>·Ëý˜ÓéÙÇJ‰ù¢5÷×¹ùG›œM½&ÕÖ4õf`Û(Ññ›:[v*†Ä¹1¬e I7ÿnÍé±Ä”‚ŽX@™èŠ”–°“RðœÅÛG¬DÙ9ˆKå½;!Þ’ ¦Ûà,¼—ºÉ] ;Mø¨ËÄVß–ˆú1\-JAÑø¨Å‰«ª¸e·†Ž¶e£»U¤°€}”‚?³ÐsÜ ë9óé÷Uï—Å)É9»d¬çvqP^xÓž4®ušÚ˜J‚è¥!éÅYæD9×o)X¥Ééë§œ°„”‚ç,ÆÒZ†iã–ÇÞ+þ.;J±?ç˜2è2ãjz yÿïLò8Ï:œ,ÔH¦ikqî¿Öußs™ ©°|°€}´‚ç,F¸Â员wUN «JÜr¡Äâ*Í®F4†ØÔ¡F7N)¡ªÔ`š6®ŸÓ Œ` ÑBxl¾~Ê K¤ßÒðœÇPkÊËÍvèHA•ÖŒ…lÆÎöÖmv"U  :2ÀLG@ðþË 5Ç !iýÚ‹3m$²†©ëØ6¦f4d{a ‡‚¤à1‰QU]áõÓà4zböÝ7½òW£#NÄ»ñ»ÊCÐÌôž’è?Lk0MؙӹüYÃÆ Ê´AAtya‰ô[žóC5l˜9‹.ò+§ÓçdCsHÙŒkÄ1§sk‹´À¶r\ãMVN§9NÉ´‚Υκ×ÂtÁö0“BsÐÑ{e<Éî[´!”ý‡­Ç‘^º*ìEJj7 _Nf\Zb[X¨j ¦iÓ'¢ÁøƒJCg”-mtÇáÒ KØKkxÎCá¾wÛ€cÞHˆØS¡¸ät¤WßôɆ…Ä/…3Çœ4ÜŸômIbC²4˜nÆ…(ÎŒPZjàÅtÙ Ë K¤ßÒðœÇ˜} ¯œPß±ÝÚ<ñU4pVfsLÂIqNa$޶¤µEoUKÄÁtP`rò[ —jxC9_ ¨µ\Dº( &¡Ãr;¹kžáRXëÚØaÚœyb+Öƒy=}VádÞOŸ3ÈÀ$Ôˆ øY LºÙI2â›@S$ oêÀa-{tØKØEkxNb¬ÉdËô¼ÜÜÕʺm0,N64§ÊVíª–=iì‘:“),ÁÂíÒ`š6´«ZÕ´æÀi`Ÿ²AZÛª³ é·4<ç1^Ý{ÞЮ'i CTæì±ºùè­nQ2«0ˆ¶8õú|ƵH6Mýˆ8‰s/QD€”‚u%À£-F‘9=°€´‚ç|®¯Û Èââwc†ôðÏÈA:-¼O€%|ª4bÿoxP-Iw÷ï'b¬~ºý?u)™êÜjZ?zPÂ>ZÁŸYŒm΀*€âæ&*5žëÍ9—}Ó+ï\O"GºÞÚ“FB.!K"¢bmÐ`š6PeNG5ej¸·‡û2Ø @ya‰ô[žósY™­¼ µ= ;ãN< )=Z%/±vÞß+ú¢™V9)òC,qÈmÐô$ìÑä¬ —†¨JܤQ€*/,a/­á9·ƒÄ×{lÊ*"`Q Ç*s¢oR¿ ”—²aùMŸ¸TΖæ€ÿÝæAbGãàÒ Z6®ŸÓP#` Q°‡fG²!úúI/R"ý–†ç<ÆÜì¥HÑyGÍ@g[탫˜>ñÞi€«†„~†éEãÒÓ’8Öa8‰®’;ªárbKónú´m û&OçÿG³sE¤÷P¿*qN4×DòúãBX€ÝÈü' Œ]èk’hhmÒ4möC(À‘‚{Iß·Áéë§œD¹ f1¢Êê ìÔý|”÷ÎìÂA„âx~¿õSç;žÈƧ©«¸ à€‰µÄÑØ:Ì’VåYq¢A²ð? abûó´Aϰ¼°„½´†ç<}Än û‹f€äèɤΌûcx¶“çhø¶pk7'‰Ê$ð~ 4ñ­ èÎÔ‘â°Ð 4DšQYuý”ü8Ôè?SЗ‹!î¨!t¶9ÛØPæ3rN6pÑ”ažlái‹¥ËÝ%Á “Òô,”ÍäìF†}f>¨mFà@^XÂ^ZÃsZŸ˜Ž˜BÑí HóÄNÓ‡}×ûÉJ†p*‚ö‘& ´ ÒÊ«ÝÆR +(zò¥‡9‚İ‚v* ¤±×”Í1>ùhLç,ƃx…DÚ'öùÆË)’/Ũ[j+.AúÌû°6c¯ÄªÙ—A‚9©Àäjì•âQ,ÄýÝ:˜ R9a‰ôZž³ëR™• ´–ÉÓÌY\™©\œ{îv/“¨öØVfËLì"K2‚eMf-ÐvAsKéÕ=G’³œ,ܵ†h%RuIøq:¨Ñ¦0"I5.κË׉:l7õ)NàÇsÉŠŒ›T7J…˜Žçr[™zk‰}â&] D.n³XœI4©`!dIšXÜ1H {m ÏYxcÌÕF\4½…¶E‹sƦ$Oq"f†ôɃ]dûÊÓó:«z5f¦Ú"¤Ä†jÌÒ`š6´/"Él¥ab JÚ˜\¥’^X"ý–†ç<4an‰¬;mò hg!´ s:1œT™…FS¯ÒÑCyPJ¨ø'˜¦‰¡4öÂé·4<ç¡‚5ìLìžlýÔž|™£•\G—N&ÛG'k½&ö#é‹Ý†Ûa‰†ÔÖÔPô¬Å<9D*- 3±AÒi¼Šä…$ÒKiø38lªu8æºN)Ò%öÀÁôMG ’cç™ÑB"-ö)âÅh—f‰)R¥ iÝ/‡7Ð¥7ÔeÃwØé„ì£ZÃsÛÈU Âó¤ÍøÂrƒâ´‰éäÑía#„`ø—I~5Öâ™{$"Ö¿ LÓ"äDFâðSCÔX6Dã6‰^¤„¼L Ïy8ô¼“6aÙŸ—Œë²+g99ëÌjfu%ZWž>b‹ò6Òp†89)1V'5˜¦ Œ0-4JC€ß &@b×,ôy:­áÏIŒ‰Týî9Z Êø£0»«W&a¢8ü@³L@C"Ò¹ŒЦ‘®·ÿ7+°+Ki›@9 9ð©ÅãíL ¦QÇ‹ÿ+‰ôZ ž³Àl}¶ê¬{¿‚¡d9oýº^ 4ˆÖI·ç NrL¨}±­Á± јt4$Ýx#Wœ8Šÿ¦‚¨ÖFxM&D+À¹Ïƒ„”‚ç,túkšÒûgÁÝþ¼Ew.ƤïcèÓ¬ÖÆ¥õ~ß¡+ é‹ QË:HììS›LØч ÖM÷I2A뽜°„}n‰„u”¦*#ÝEBîÈË“U½sLÎý÷i—´Ä&ÌÊM³T4Bˆ¹Å–¸mnç Áôácq&žŠ­AÕËi#ë›Ó K¤ßÒðœ‡Þ´ØJíãÕõ½T:vÔ09|qÞôžmAŽ8[ç’46‚A %°"ÖX LÓ„€¸È™‰‰.Ný²…V .äƒ%Òk)xÎBÓå¡ášl£2[<°=ÕÝ69{ÓÞ/sÞ^4ö®§#éK‰ó wœû !éÉÝmÍ™×ìM ³Ulƒ4ΉòÂöÒžóл¶»i$; âä‡Õý^¿ÈÆÄê8¡¡úþ«¢Jo@i¤rqL %{¥Ó4€æ0µÚæ“©×¶!ZçÄu$豆îki⯖; "±¿ýÍE}ÅÙø{à=ì½àè"`V|¯® f•[YbQÌÐ’vQ_rVlJƒ/l£® ì…%ì¥5<çáV{­Ê ”]ƒžäjcÇ®lÉ@r›š#ßdbÖw”¿îIkÿØSK0ɶ4$=U‘é$¾´•Ö­– #§”–°“Öð˜…6Pø¹Îx’UËôÆÿHº"2gr˜ ÝãšX™c ç&>¶¤Ã±<%â$º LÓ¶æ°Ò'5<î`dÈË}œ.kôs ¾¯®.™»»dò–?ÐLYw\œ=Áyö“x¦•sóbRñÇðy*‡'ݳôOœ}Kp(`‹œ²@úú),a­á9 £âr%$M­qø| à¢FÔæœ¸®Š+&ß ´mñoKúb¯›i/‰¸èÚJA’3 ’±£5A ßyšH‡»` »h ÏIŒM#—F˜~aóÌD:]xÕò)Î×1'³óõÛ‘Ï·%Ú3ݳûã•Ki-×ÏÀi¬4’†åØX‰´lI(¿pY†Óc Î`üÁò<»æyV¡‘}qŠIrN¥˜<Â-7}2K–´Ê(û>HœÀM&¥˜˜ÁXK ß%Èi¬NrÁû#žów.”Á<ÙOQ»ã(þÃÁp=Upœœ é•ýþA<°Rçtð°IQm:“÷vuˆ¤EÁwÞ1#Îîá Ëé`,‘NKÃscêßq.ã…׊ÆuKŸ°t}FÎÆû¤ˆŠ.]›„Pß…#‘Ò-Æ–DàóõACÒ“¬“U³¼ §TÕžeC4â·ô"%äejxÎc‚p³W—ʰÁC$p³_Yq€ie(xÔbÚFÙÊÑ“¾Øš<úÕ¤ÄÌRL+H2_Ìéì6– :»‘¥‰ž€/vÂöÑž³ˆé6ŸÝÝ¢9ЬÀé»nD’3wÝ];±]c™$"­R»y”PÁlj0M×ÏÀiD£´4o( ¯ŸòAŸ§Óþœ„^>ʃ;Æ Û†¼Ot@çA2T)·¼i:3Ä·Œ<}µPÔc‰ÑÒô¢Ü*3Ø$¯쀻+¤ñS‘–°“Ö𘅩³çåž²iðûO¤”™@x汪GÇ¢Ãè+ióž´³I I;›œç²Ò°&ºlÆ:%/,a/­á9ýl™Î‰; CfÝ9ÎýCæbDöJ<˜ì»‹å_"ˆ{&¾Å’è C+Ö`š&°Ë4§³ó‹5DÐll¾~Ê KØk)xL˜ŽÈ`e‰r¥Ž¾0 kÚ PjNë(½WÀ´MØm »Hã?1Ú¨,-"iòbLì~©áÑpØ£2 ‘+ºé´4<'a —ö›.B‡ÛÃ7Þ…AgÈ›fÛ™jÂp™ö¤/ö—‰"¥”ØØç&5$ÝU+œiGGÑÔpo¿¶y°A×{òÂöÒžóðu‚48)¥óÀV~ÞÄ?ň§dR<»®y–ͳ7ÃÎîh…ÆÏnCËR“¦fD˜ÓXdááóFTk'R8—D:KOßµ>Í,öÚÆ8ÅA„™òOq–‰Ñ@·¿¬öìÑ`n;“FíÖ¤Ø%]PYƒé9+L‹ƒ”¶Ô0¬° шoЋ”H¿gEHó‹ùvL{U¤1€}Ð wïîûšœƒY=÷ˆ¿ìÑôB.–IUã~ɼÂ)Iw·}5gl±5l‘Ú@ò\èc;èÑÏ)Œ‰~ %š‚ž‰Â·ùtö8yÓÏ»–ƒi@È ØzÒH?à}MJìè¦[LÓ†âJ»ŽrR¤acÁ²Ml.h¶ú<Öðç$ôÅ6Bý5ÙÈè`;3œ?#‡à7QÊ–Z³â…³º±ÍÆ%‰íÞ‹ «;˜d/3v†ø;' |ÑͽÁ‰ÆÓ£ú:ì[üÍKiX¸~ŠñBt%“âɦΖ °‹V𘃡ݗ<¬:äEù×Ft…™± ëKø! ÞõI#/\Uˆd#”XAÒ/4‡M¶K{ê¥ ’€‘‹ÿ˜‚Ó*FÅs< nÑ߸¹Ä89N,xBDºñZe[ãC5Ƽ(‰}eãtkHº¹ÆØœ×¥!*îçÁi„éä…%ì¥5<çá{Â~XÜK>â)ȯA1ËgäìÜ y;@Ü/ãÂÛôÅÄ1tW¶o JCÒYAcÎ,˜k˜QÏR6æ*¡‘–°—Ö𜇾á_¢µ ëTàŽwþÎÅØCÄinÈŒ>¤hFÅ@(š”çyË6¦§šmH"êÖ"—Õ63&…74|^Y¦e³åËK¤ÓÒðœÄX†ªî‚~ûl;›lŠWƒÑ†@H†óŽüæ›ÞÕpÐ…z¤•[ ”†¤¯HÆŠcj)ˆxã`äõS.ès{èá)ŒÏ13f7îÚ‰Œxà¹ÿ œ}q A‚?3AqLÙzÒ›g´ch„aH ¦÷÷INlðÔ¢aÞ`$NVòŸ§‹þg>Í®ºŒæE¦w»šð$9ggGF@ì eëÌ_?¶¤µ¯XÚ 1³+`*0íµgbok`™aÙ ­ÍÅ<¤×RðœÅ¡ÅcÛ*Kï‰ ÉÙqLV^é}¢BjÐÎ$‘>°3¹Á[c2„$ÝÝÊœFÀÒÔÐZÂIVnk ØG+xÎBIõˆ»u~»n½R#ü,ƒƒ±þ'¨sÄ­—‰ë ³ØM_ÜŠHÛÄŒx)HrÊ‚8}a‡T+è@+¤¯ŸrÂrÑ Sk¦•Y¹î£¢œ…ýt{qs ²¡o;n°³0’r²%}±{ü¶ 79(I ×O1æÿÎÿOÙ»ôÚÒ3[Zýý+vóTã¼äýÒEBHÕ+8 Dk Jµ@P þ>7gÎ§ŠÆ§ïuî±Âa§Óӎˈ¿÷_Ûn{ÈöÏŸ[ƒB4CÀçÒx|Þ;Ô4ŸÞÂ}Ý»@ïû…<Ç-Œn?qÏþ~¶¶ÇìybL„æ—‡„jGIoO¦¨äYV®½ûˆöÏŸ[‹B”Ö)àcÏpëH©!KΙ¸*ŽSøiëÉá‚ÍmêžÌ5âqÌ­ºl­í~×5Ãj±gÉ—’p·“ñ~bN÷즄ىï>¢í¾àÔ¢¥eJxãi¯˜Z9߸Œá¿­a*óúžKP¯ØéÜMyÑþ‰ªÂ³Uˆ=̓%¡µçºÎÔ“)¨Wš„ˆÀ¿û˜æ ”,- QZ–„Ïqäµ6Øï|k^²ü¶ÏwŠÔïãI$Iy}¼ÕÛGÚ£ÜP¶â7z{ ÎL2, ­}ä/è˜q„a:L AÓx÷QDŽ·…hz§„ÏqdD}ŧ6ã›ûG½Üݹ‡ƒº=9O‚›Œ¹Üyö¯Ÿýð°nÌvú6Ž`‹ZM@¶³‹Ÿ?'Á•Œêà<ï²í÷¦Ð¡!šÖ)àsgQ.½û~kU¦,Þº›}{Ôz–Šà™DF3gÍÓO¹Þòl‰%è@óŸÏpѵ¿ní9ÙlÚ“(~ æä¢ùóçV ¥` ø³žJ¦gRñ¤¶»ÿvý>žC’؞ɓëç²ÉnìQ“;Ïi“•ÀðB…¨Ú(%¡ÚÑG¤Ç“È^»%X–ð£ ofšœëÿ^*ÖŸ"?[¿úœEQíÓò î}ŽêÇ¿uŒö1z!+Šûô6W3ÃgìÌ·èçrÎ?¿Ûsù#ë‰Åžo×oʹ=zˆ¶Ф …(KÂç ò(åëw˜ùâsèþ©ð„þ>Ÿ$ÉŒàÃê!¿ºµ¶Ÿ.Ž(`T£ü}5ÓùÚXDÈßû¯·9jº•ühûé"(@é—ÿ9€òL{ÈæßÈëjž÷©oOOˆÇæ nòÈðRÌd’æÇá~Žé–ÐÚÑGyB¦8å•'dLÊ3Á´>¢ž×¢Mïáö„,>î YÛjÌŸ¨(êŒQ2¦=©ŒèyŠÎ=™.ŽPîȰƒë…ÎA°XˆÅÃ!n ÕÞ3*àñd ¢’°YXÁÝÅa·ùïMéüóÏA|°<¸ijÉz nûpfã«ú}<°È OðZyûT^Ò5ŒeS󣚽e| ’Ä­ ¨¶÷”ñ`HJŽ0l=]]DÛ 4¡CšÎ)àc Ïý)è•¶¢x¸>}·ãD~úïóÉææ´âá¶êô烧;Ûž»„5)ãà_a“p·‡ô ´'n¿ CDTÑ¶í¸”(D)^£ÈC…§qmÏ d;›œÁ1Æ žDM%/Šá$©GÒËÙuýhm¬œì0QO&K9æ&ánïõ¥ßO† ½( ¶<>úˆöÏŸ[‹B4½3ðùsEý}Ünø"’Z¼`’ÎZ õäºPz†Ø:Yu0ð;3ˆ…-eû'bnœ÷ª›éߪ=gÜìãÉõJÂtþs>º˜Î,ÇP:ä¿7¥óÏ?ñcîqoE~0Œáë<ΰ5ÞO¢ÞÃÕ^=Øc†´ÚDí¢lçuÌ„ aÄHÙŒ~þܲVþ¹Y˜Žõî Û~ ¢)>ñŒZ<ÔoϘ7‹­ò¸œÉOà¿Ï'~FŸ,ÜÊó¦0Y_ã26•Q;.a7Â.aëC@kOiŠmOÌÆ’^Π”vãÍÝG´ÝOJ t,Ÿ£x2Þ…ãv—æðšÓà>ïåðò'«Ç¦¸«éLŒ¹ ̵.­íî«äîN„¹³ªú„ÿ<7Õ÷ÜØ£ú„—ظ%©Úñè#ÚéðŠ’ê‰(-SÂk9`±Av^áBfìöÜn'Èü}<±ª´ö›b!ûn×Þâúµ9«í±c”H,ÄîVÿ[Bµ£ÿ‹z2Æå­$Œ[üªTÑv³]jQˆ¦wJøÇ“¥%BýÖ¤ˆ^œÕK]æxÛ“í?œA ²{ZÕhµ]—±µÓ‚8L„¹Ù¶[@k5ÚzÜ ·€ ¥¼»X+#£)QˆÒ±$|Ž"-Ê7Ûy»í%'þÙjßOŽ,)7gV½®v5ýSÌüÇT¾d hí*BÞžd ñ&!kŒW­yÓ¡¥c øÅ“a)œ^c”#Dɧe ÛE{â,$žé¥YZÊÜλU¦a®@æJ@kzSOVwÑ7a[½{ˆvfaÎçQ:–€ÏQ;©CJÇð9Š<'ûKǪñ<ö{&Ù,™ ÓžCD‡Å7æ·R'QßZÓ~;óÈÞf:<ª½áp{²e1‰’Ô­‹­‡›(KÀç(ž‘@PÆFcp’”= ÷“3 YÌñ;—v‰Ù˜Î¦Öö ‚à²mˆ)Ía%¡µËvÑž„ñ¡ Ø‚·uíŸ?·…(%SÀç(ÊÁ÷¨¸žõ÷,ŠavKêœÜÐ÷“Ó}ìC|fó1Α‹bÎö¥µÝò¹?þÙ å?oí9_U=Ùƒ×2þ|¿^ð²ÞÒ³í1æÑC¤~íÏ?G𬵑•÷*ó'JœÍG0ý}>Y³ò^‰´×séÜíTmϾ æÁ†˜¢TQÐÚC™×Ë¿Œ¢8É]h‡Ãùî#Ûž˜†æ¤ŽMÀç(ž´JQ»l)§×ŸHcüÞ–¼9î“ß,í 2®àŸ\´=žÀêwÝã]ª=d‚?™¬ÄXûû)Š`¶¢í©B!RÃüó<%EÊ®zl¾º_eÍb@õ$+™Gþ‘{V¢„‡PVÛO»¡[Cq1oZ{N~•ö$8Ân Áv÷m?c¦…(-KÂç8žr‚u§*æÃ98ìB•í‰×µô47—Ía‰°°'n›«Ö“…¾DÕ”DD®Ç-¡µ«ÚS{2F±¦&aŒbN­±Ê=5- QZ–„Ïq<3O³êz^p'«â§ˆ‚«Yñr öZgZ°yÎrµU1s2â¨õÝ[Bµ[ÑÌûÉwÈ’E1[­lfÓ¢¥u øDÞæýí^‡è¿Jè¨0:¯»5ü>ž~XÍ82¹_`‹j³Qs´ÚžËYÀ •Qo ÕÞ³dÒã‰ßÆn [X¿Z[Z¿n- ÑôN ŸãÈûI*„ÏŒq´’5£ÅèO™ÇÖø!ÛÛ»ÅèOq6ŠrÕvCþøÏñŒ Òþ¾µ§Œ¦nOŒàÄÎF)`÷$ìÖÁžIÚ¥@üsi—û©}ù0ßÎO•Ò5%½˜Y{Â×Õž#jåNÒ¤tAW¹µæO”¢ï'WûR híèÂÿ¢žDÞh“`!dwÞÊ5<.ñÏMåøë×*È|oßk 23ü¼œC0}?ž¬AÙqÎGèA,Çœ…L[˜Ë–Æ8£Xz“ÐÚCÄ)ÞOލ(Z‹@öñàH-¢´, Ÿãxr­þ[{”·Ë*·Láéö[íý$çÎÊ8…mfÆÙ:¶öOÔØˆµDXmô‡€lnGU¨³3<¶?¿¶éu~tíŸ?· …hJ§„ÏA<#L"Jªø))ÊêxIÞßÇ“=æ& ëõµ.¢ýóçV¢¥dIøEWý¼èQŽU5*±z R0Z´'FG¼é©Ç-¹gÍO楚™©òøçiŽš¼õ×Õù?Oœí ý}¼Î[~«Eß(DS9|¡|çíÛK¦7#ß:’ )دۓÅ3?ÝN4{©ñ£¹ =`%Úî¬[œ ©óI% ÚÑ…ÿA=™£A ‚·»‡h§±Ëu(DÓ:|Ž¢2œª>‚u+¶Ñ¢åŽàÈàÆzÜ÷W;y,Â}‰”ÙqomO™=Ý×U_º$T{©ªÄ÷“Ù Ž•+°¸=ºˆ¶çñ¦…hj‡€ÏQ?òßreaÅ)‹BUBìïóÉIæõÈJ¿„\í HͶÖë 4À´Ù o­]ÌíIäÄ6ÉRÕÃPÌM‡B”Ž%àsy*ÃÛã?çÅËøR‚¿=‰ºÞÃ2¹wåðÛ¥'n[vQ4‚·vúØ#16Y7½Ihí©>Ãzr½Ã3Ëw¸KÁ]}DûçÏ­E!JË’ð9Ž'GãìþŸ²[˜Ï+&ïÞÅïãÉž¥1‹4ZuqÏ tµ=`+S qú‰· ÈfôàaùÀ?ÏûÏ7§>»;ˆ¶çѤ …hJ§„ÏA<£ßÆ ¤Üâ(5_ËdÏk’ÿÜÖƒ,=v"Jv9£bã:åÏÁ™g‹ë–6ëBXÕìã!¡ÚÑ…§«Ö“L . ¶Ÿ>¢mQZ¢´Nƒ¨ O(öÀÆ*»g7¿\KÄM4íÁUô¬ØŒðONnñËØÚQ„G áõmJÀÝœþ Û[¶wwÁݽ{¿·üh{üAjOn CÂkyýñjh®L?!geN+Ÿë‰ÜÙÕ>­$ϘXn±¶_ÛÎÈù-ÄìP% šÙƒåƒ!ºâ¯÷ÃKÞ4ùÙþ¹«‰6DÓ9|áyƒ?üÝfðÁ¾ÏINë9€¿Ï'–&èLjÒâþ '^ úÛ±.ão9>Q°¶ý}kV-ëöäp7Q`÷ý"˜s>Ý£jY§ P–€Ï1ÔáØ¯µ±Ž·JÆôà„JfùmO–!â…=«ªg¹¥iÂ4íL(^ÏâÂÚ]¢}§Ð<žDÑÚ”àù,ž[}T;3Á–ýhz§„Ïq<‰ÁbOÎhsóð‹Üú}<8œ³Ø}c®Ãìu.§ÖNòÂãx –1.¿%¡ÚUä«=ØÎÈÌ*[*W[£\.% QJ–„QÞÔ¢Mï”ð9Ž"ÐZzW…YXÃqçSþ>žlc­ÖßJ÷8‰óN ÏÈ’u| v/°u ¨v%q>žø¸%„Q<;(›ytïÿԔͿûTþ™‹¹FXý™‹8É,D|ŠÀÆö$ŽCCðÊ\_ÿAãIÛœmOrޝ†˜=oâ–ÐÚK^dÚ“X|·„<µ>¢í¾¢Ô¢¥eIøÇh»Ä½6‰ Ý¡´¤Ûì÷ñ$\k^ëÞK‹Ú¼Ù ½ÎIëØÚžâ¼féDX9Ó‡€lF™í¢>jûó°ZÜDÛíUÝ4Mé”ð9ˆgçè©!u¬˜÷ D±Ÿè°WÜO¼Â¦×7_¶ð—%'î0Vó'J¬¯ûýïaÎm]Í!ÍõÀ¥׿í¯~ðÜnñÙþùÓúoˆÒ¯$|Ž ¯xáõùÛhéƒ1nŒÇ%Ê«·'›ŸV®íÛm½¶µ¯Þ><4š?ASçY¢¸è|>´ö˜iíɰM]I°sÉ|wMwc§(KÀç(òö¾‰†0Ê…í!¡ÚÞE†XÄÄ-`;²$ov±U‰ï¦D!šÖ)ácÅs½ÿ­ŒÌ½+ŒYÐó³`H>ºiŠë¿çYÎÎ~æˆj»åaöëWCLAwÕ$T;ºð¿¨'sTû( ÛÕ@ªh»±"µ(Di>Q¯6È,ÂEnø)·=Ëo·'×´SÛ)=:ß=þ³³U;c¼ªg!‚'ó–PíèÃÿ¢žx*ð-a¶ÖG´ïÿF4½SÂç8ž,õaml÷w/êáõgÏð«Gy¦ðšEϋٞmMŸø9\°êËC@kOUe¬žDLí-áz…FT]DÓþ tH@©˜ÿ9„'»ÐìîŸýÈãqu§Í™¼…íɘ¦ïÓ}GW;ŽfÓྫj§Mì W_Vù÷ÕŒ~þÜœ2©þÚ¸ˆ¦åŸíÌuÛˆ[åðBž*¢ Lºõòš+hÞå÷ñ S®ö¿ A¨â§Ê¿f¢Ø¸oC¤ bs œ[Bµ—HE»åÊ- èûî.¢í~ÝT¢¥dIøųþZþ™ªw­g=9ýbøû|ræyfô“›g½¹'?àüOûž<)ÿ}Þ“q0ÿ¼µç¬ÑžXJÚö· °Óí:Ý=dÛP¡BC”Š%ás9Ú¸»{GÚÊÇYöð©)>õätˉåQyù¬c‰/dö*ÈÕÎÛs~ ²øn“ÐÚKŒ·'ÛA¶%a[‚2ºúˆöÏŸ[‹B”–%ásr½¶’¥r¨—”r„»vIz¨(ù²úénwÚ{×Öþyò/%¢ñ/ -ÚÛ[VëyÐ#åÏU£GZ‚¶úˆöÏŸ¦D–ññ×åŸ%XBí¶´.²™6ãò4­SÀç(ž•BÆH_Ë«ì.­]ïö.«[@kOí½ºMÃëÔ´¿ž"z¹‰Ÿ*¾¹)PˆR°<ôÏÓÄ>ÿ-þØ­÷ݺÄÕîñä ‚Œ5ª:˜ÙgŠº;Sµ~îâàõϧt>þºµ—¸xµ'ëyD™®ª.~.Q<:ÈfÖõÙÖ Š‹—€Ï!T†'·P#c™#(ü*¿Ï'»»A-YÙ Î` 7Û¶W³ýd,ž^Sˆ¹Â”SBkW `{²—==%/ÔÝÇ^1€M‹B”–ûm³Œ#7ã,¬°ý½K¢XL© šSp«Ÿx²;EÑUW®ã·Çy¸µ'ŽãS,±8²'"R$o ­=U5®z¡·„9«ÝWÑvò¢Ô¢¥eIøÇ3g`ós…—Çjö´ÁÅ|ÀYG¯ž˜a0«àYÊ‘]Ì¢JÞ´ûÑÎí?P…° ý!¡ÚãVuôÚ“¨=Þ$ n@¾ûˆv.éaz šÞ)ási'wûSTp*Šàë|á{¡±èÿýÄCÔ'+Lè;s¤š\‡´qlí è²BL á·ö÷՚ʙž¢úÔýׯeÿïM÷!dÿùï¥]ýù§þAo_­‡Ló]ÅÃã·%ël·'û” G8ºö5©pæ¬Q²6*œÓ©§ ±µß$´vôáÄùd=³JJX½äÝG´“ØÁµ(DiY>Çñ™~é U3ð2¸v¨ÈŠöÄÎhWs±óÛi½\ß9Äe4Úþ¦Ö¬´#]ç&ànU’¡žDùð[€¥ ¯.¢ío7•(DéX>GQ %¾Gù•Ör¨ÃŒF¿ù íÉîNÓ¹8#£ß #{.G´Ý#¼ƒ…HZÂPÍ1r Û‹þø{ÿuú9›ühûïsjPˆÒ0|áYû26©ŒQõß™}'wúþ>žÌæÞ)Ðóˆ7?½œÛyÄ[%AÇ{#ŒNs½ÿ¾šÑ§Ô“1|a%`܂䰺ˆ¶ïP¡CšÎ)às yBö *˜üÒs9&í’ì®±#דÉË—Œ–ìè!”vJͲ^é4Úƒf°ÉñÓ$T;úð¿¨'Cäó—„Á  Ü}DÛ½…©E!šÞ)ás·W H£¦©H£ŽàôÙÖ¢i¬'{V³<ëÇ|•pÃUÛ3Ö-X­Îá>/Ïc¶£ ÿƒz2Kc X£˜euàM'¥J òß›Êñׯ!<“Là ŸY×ñrˆ"¦ÛžâíIí€:&ÛçGý°jç y~–!«Ÿ¥€jGþÖ“°–3¢‡äñ| šÖ)às9Üàá¬Äül-öÂã",i3‰…ê‰m¨Ws‹ôÞÁƒ@G  ³ü¶Ý뉳Ê5Än¥ìÛß·ÖÐx…âÁ±$­Püõ>Ž&ÿ(/HÓ !JÁ’ð9„'!å±>ìPÉ0ºÅkŽ\Ç“¬uìÁ_¼xÝnp>•h{´D”#-„]º–ù–p·‹«®= Rƒ[Â4…% úˆ¶‡p¤…(-KÂç8‘}c£XŠGä5îg]·G¸Ó-+Á®ZFµoþåÙÊ Ì­í¨9³-q„±I¨¶wáP‚འ؂à½umû‹R¢Më”ð1ŠªŒ2ßo7)‘Í>âæ0Gÿ>Ÿ˜Å:Ê|é‰,B1·öO”Ö>–ˆÈ[@kÞµ¸ãÉpîabICÆn] w1îT¢!RÇ&áså÷ù[©Ó˼6J–Ùï›C¤„<žlø³únã\7GR²,Gk§Á(håõÐn ­=4£s>‰q5 }rwM§d êßKÅúóÏA<#…–9ÂÇZî1ƒQê÷ñ$ŠFMñŠnÚ‚pZTÛcËÏà½mÌs²¤€jG]~>‰ JÂtTôºwáÍŸ?M…üç¦rþõçò£uïVfÕFŒªg±ÚÝã°›Y¤š¶'G¤Å†-Áyª¦È’õ4Úž%ë‡Ã±ûÙñÐÚS†8µ'`zK#/ªõ1VâT)Q€Ò±|Ž"Q~F†¡Vjaß"i×~ÞÃTSOìb!M‡_›Üîµ%kÑ\ÍŸ|4òÈú÷ˆÂºÿ¼ÚÑAÆ%‡ô‘‘’É>ii²ãÝC¶=95ThˆT±IøÄ3_mzçZµq¯ñ½¿Ï'§}ïW;²5ÖÙ¹¬<Åsé¢íÖìíŸ'`Ú³M@k/i(mOÆ#lBÀ¸zõm»O Q:–€ÏQ|0;ÄuoÉÔ¦`éuvˆkOö)ÈçœÕ×}±ƒÛ™œž¼Ú?‘ 5„%"=þ>›ÑA%*…£uÿÞ¾zÍ¢»ƒu+r„Ô Måð9„§Ñ<ù+´·€)ê‘WS,o* )ÿ9†'mîî;Õœ÷cÕöÀ—¸;ÿ>ŸdvreóŠ´Õö0®¹"×L€6cüuk ‘:r? žÎöçGðt¶²ýó§4h€Ò®|êÿ̼=ò8íVÓÚ ‚ ÿ÷ùÄ·qÚñóÌ9…cãtª£jÿ…óÉ&âºJ{ž’p·‹0§= Òý[µèP«õíŸ?·…(-KÂç8ò?Þ kGÒǰ\5¿û‰Ó½;[gJš~ 7¡ÛÆ¢í¿››¿†ÏMPÍÆâ—ÿTï?O޾ÖAcñk*¢T, Ÿƒ¨<Ÿ£…$!¿§&Îf‚~OìgÍs&/l=#ÛÕvâˆj{ôÃä—‰°ðˆa¿%´vôñóçñÄ9Úš„!~–ZC Y.-¢é^ãx–"‹×»åÙÂäÖpc8ÛA{4~äñ$ÞÈ/¹Ú^{²Úþ²–´A$"òðo ÕŽ.ü/ê‰ÃãÏ× ônd;O])TˆRyùûR?¿Z_ÅÁÜ^,£[:DÖÛïãÉìÅ*ŒÓùûæ#3x¶àï‹öO*؈Ÿ¿Úßgëγ«S1Ô_[$Íúí$öt ÑTN ŸCÈØÇèŽéFÌh¤Lq\Ó/œ@e̲:~[µr{0ñVû'Ò †åˆÚ>·„ÖNbñûÉäËô–`ŸåÑG´ýÖZ"•,ƒÈ·êË6¸ì²È{XœÍr/æò|`fé=#),Ì.<Ÿ­ýu÷Qf¨óo¥Á/•òv*›Ü«w?Ù"Z)"$Üä3gCU4š3 ~lql-4×%´ö˜A‰íÉ!¬MÂ2FaÔê#Úž1´ŠFŽ(-KÂç8*Ég½µ9ïå·Ø‹ ¹žq‹™£îÕÞƒ 9’ªýDÅûpzúû- ÚÑ…ÿ6×#oì°7=zˆ¶+R‡B4­SÀç(*ëý[¾Û ìˆýv†Ð¬ãÚžlQsѢŷ¸Ç¸eéÚϱµ“tÙoÄ9÷ŸgcȮ޴ëKôÇnQ$²‰Î¶[S£ó†HåJÂKý:»_zþ¨¤™Ôžr|DÍ›öÄka…§Ü¹îuræ‹¡Ëv2ý8Ëo!ö=“BR@kÏÅs?±ãéï-Áj#>¢]þþ t,Ÿ£ÈU¼Ì-ö8NO˺äÖw$™j{2{àÚ²F·ý®1Ã’»ëQÄt{äÚ7„qŽí·€jFþõd f†`ç¾&?n‚­{ÿ·¦lþá§òweÄLϨysÞnyßÌ€ãz2W¼ðõ&ç3ê^]?fNÿm¿`NQ³²æßª=µˆãö$†K˜ñÄÕÇØ"ŽK‹B4½SÂç8ž‡Ä ˆ3Óÿš_+V˜„D¿Ï'Gþ&˜OÛŠgÚOJ„æWû'*±Z wC¿úòøóÖž+p žÌ{I+ óÁEÕG´ýgê|üséWþ9‚Ê=¼¯°kѳQÜ`‹ÿÿ}<±3¸‡1 é£Z³ÜšÉQkÄl\'›1?­DØUò! ›!7³©tHÙäÔŸ)Úüè Ú~åM Ñ”N Ÿƒ(îÔÈ>,k[„-ž‘ pžY*£êÑCV•´zõökg×âHóóCoþÄ/òxÿóQâí¯£]ò_OæŒu\ÿÉLkVùÕvËÍu` ÑTNŸCxFŒQ×'íNóÑ8æ2‰{l{rFuc»”xíYÈÅmûé+ÁBLsÄ]–„Ö^²hM{rýh:çPIˆ¢twU¶îÖ¢¥eIøGÞc=Y8øú¶ 9§Î3_òÙxõd=„xðªÎWs‹¢.ãµ)¢íÁÎÝ}#¦%6ŒPÍèáçÏãÉù~%àÚ›†õÑE´=;•(DÓ:%|Ž¢âÉÌí‰*˜Á×Wé9k”hf¿_íÌÆ™×p·îeÛn%hݽr®–‡€jOU‚¶ŒU“0þþúì¼âTumÿ‰­¡D”Š%àc OC[¬èôáMCò•­ñós? 'Âháž¿¾™qÏ¢•Ù¶ûȼ…A´Fwº=$T;úHN4Þ›[Bxkî>¢í g©E!JË’ð9ŽJ+ Bkÿt«$¼%jd…ÌyªšKUúô=uJn¦ªãyx<Ï£Òç²$¿S"–#-“)¡µ§È ºŸÌ[ KBp¼ß} ü­E!JË’ð9ŽùJÐx•¶¼ÅŒÌYk =ñ*Yãî\j×ÏÙ…Â8XíŸðê΀ñ<þ¼šcÕÈSòÝå_;ÿÊ-Ý›~ýÞóŸK·úãOíóµúo­GânqqŸÆà€¸ÞÈX\IíÉlG׿ØÙ,ÜÝš»x¢iv’Í}”íßíÖ}<þ¼µÇ"Kª'Qpá°¸µìî!Úžš™*¢T, Ÿƒx°`+G‘¥è<Æüñ¹ŸlÉ¿5EÈ9½VÐAVû§QNÞˆ ”¼%´öØ*¦å“Ý3}o »»;î>ödN¸µ(DiY>ÇñäÜ$µ­8E=›y1›e NÑ|$ënEاˆÞXÿÞtùÞü‰’lÇ|ÿû5ÈHÂÍ?¯vtðóçñÄ-O· Hœ=D;M!®B!šÒ)ásµ¯÷j_l®âe³âFFÎßO"îÝ™äŽ ‹Ÿ‚hÎùw£mW»H„]¤ŸÍ io"æýþ󈉿;¨¨ù¦AJÁð9„gµ±+oÅšÌ4grjŽ8Bµ'~ »Ú{VR˜Ã60Ïq܉væÄnDZÌí—Z{ÎܺödôF·cL>}DÛ]©E!JË’ð9ŽÊ¾-ó–?<甲ûX·ö$b¼ðí„W½¹NgãÒÚn¡8þÙ€qê¹p·Çªo[O67D5FûïJ¢”, £ÈòÙâG¶áæsó5·'å~=ØÜ<à\jõ³íÁ ±Ä”íŸàss/q!ÖH÷nª]ø_Ô/lzKXüÌu÷íŸ?·…(­SÀÇ rWtð²gB¸Õ[pŠÇÑ“~OÂþãÇO; V›ÉjD8gd´¢BfÔ–I„e€ ÕŽ>~þ<ž áô* f“˜}D;_çü@4½SÂç8òåz ÔÜhËã0e üº6LfÓù}<8"¿;+À­_æìÝî2ªvÆø¥²kĶ4 ­=¥K®=Ù·¨dö)Ä«‹hg‰+QˆÔ1ÿþcÏâËZ,¾OÔòòdGÜáëÉá%V& ’ B|Ovõ,7ˆ[í¯Yæ¹!’!²I¨ö¾ÕþÚžxLø-aó˜ñ»-ƒÊo-që^ãxrÅb.–Í1ZýŽx†ó½ž¹lŽH\Ï\6gØwׯ12Yî|#¦¨öØ$´v#¹ŸxlÓ-a;ýØÛúˆ¶/ÿÔ¢MïðÇ3órðdø=~ƒæï!ØÎOìÔv5=Á{ÞƒÓÖÝQvnÈþ%r1nDän4­9d{ã·€°ÖÜ]LCYØK‰B”Ž%ás6Üÿðç¿ù,Ôà?þ—?ÿ÷Ÿq±UPÿÿ^¦küç?Ó:~þ·cþóŸÿýÏÿô÷ÿü3üýö·ƒ¸ÿæÿýüþýoÿÍD_¿ä×Zº6¬íï¿ýoÆÀü§lõ»ëµØ¿ÿöûç_~þÝ¿ý§?ÿÝ¿]ý‡TÅ­£–þlc2¤ÝÖKõúÿŸÿõ¯õ½˜áeûûÿ^’ÿýõ¿ÿt)óßÿ™Œ»Î¾s;szaé×þ|1×k ?&ÝxÀG3„ÙÌž«Múÿü/ÿºü»½Æm†Ñù×éßýël‰•Ó¿ ×Y@ôõtòÿ4£Ê¿,ÿîù·ïhÚÍŠbÄÓË’vË|²yíœS¬ a ëxò2Lðº*Ÿ| ,’lšž¨|òDùObÄA%ªž| BÕèÖý¿rrmbÿÕfxÚ,,o3‚þkIo9»×¡ïš_«¢>]ó{ýb\­õú]ÿeð±<µkŽã¬tÜxþ‹ýM›gû®%>ÕgéÿŸ¢1'~ü÷ÿÏWÈ}A-[Еº¹¹+Ê<žìâ¹ì]Q-†ãË×ÐÊB×þlÍ^×r‹¼î4¬‘¡hž‡>jð@öK¤—íé~Œñó¶zuÃîŸ5ò#Nrýò~¦H¯2o]¿Ç}Šc±•;é˺ދÛ!­jX|¶–«ã>hóÿëì±´Ã.σI:¿=±Ï[ÆÞ°÷E ~žßÇùÛ4,N!â•ö®òÆâ䇩qkÇê1ÊŠYÒ¾ZÃÜx’¿,š9Ó†'%H¥z²Ö!ü)ûÐ,“$kÈÂgSÝäQÖ›Ö}©!YFäŽèöñ,ûÄÜC1üÓÔÉâÓÇd:z¯ÐQgÇX¿ÈŠ‹µÕ×Í_DÍʺ ÿôçÔêj{Y׳ š-ÌÀ£ŒvÏé¡ÌZNûóè‹rV]ûßz(rÜ49]TPÙš×|ü²¶ü ÏçüuÎñ›rFá­/ëÔsöƩ̸æ£nïv4pæ=C°âõ¾¬y'$ؽã·õõÓ÷þz¸~‚½Ê\)T>¢Ç©~‚QÔì¿f£ì÷gÔFgìÞ{-žç5F»ëæá”QÓCÝîpN½0«ÅÖo_^OìËGdùŽë… Æ`:ðZx³¥]zE™`Äë ¬„Ô|Æ—Q¿›„š}³Y£}µeÍšð³÷P²7(w·u]Û¥PvA4«GpÉvÕŠzƒGT í¡æ1KÏÞÆ2šT=*‚,ÝÁ e92%²öça”t/>Ù†3~—û È)F Ô ºØ“snoF%åÝÕ”+(~ïêY¶¤;‹Ž´×rÿÞ“N[ðÙNk_’'1eõ£¥7™ö‚ÍM0FM˜¾NÎXo÷˜îdŽžÉí4KW§ÅƒfãùY»ó´äè¬(awÍ›Œo ݱͭ IwlfóàôÁÔ=Î(vgÌîºÜAà: XZGÐäFúÅ‚'–îøíÐó×YØ†ÞØÆsˆ’Ëí®„±yÀ”g|Ïݵ´yqÿIîKšœ䌊8=Ìì÷X«øûeÝ:ª­zbö,Š}í—ý) ¸ šú+òô›Ô1}ÁX^—½°Fÿ#qâÅë×*-±“Vý"°UäÇ9¸Õ}‰Ìžè8\a'Dù‚:Óþ<Ž=Ôæ{w®ž}Ô5Ežû¶.õËO¨uhÅø¦.h΢Îãø­Ãs‹'ChMnÑ©Ùåx%̾ªæ/ÓpYãk»Â¥`Fk½´3 ¾¿±•Ò>ú¢ö03A[Ù••aàÓðE­óúÍ>Âeòå«_b3:Žæ`ÆyX‚>h©d|…éí§v…zE<ýЧ¿ƒZ¦! ÿ>¼v€—0úFzB·GY· 9hI,?æì¢›¨C‰nQ’¢'P¿~vÎf¦Ô²DrÚ±·@­Á¼cosî+áM„Z¼¤Ù迺j¹}ßk¸õß´QôÚUrúö)Š´Ò(š ["å5ÔˆÄ;Ôˆ´ò¢×;šC‹Wé; ‰t3©ð+£ÙÒ€$Iô%Îaò÷o¨)-“3¢+ë»Õ¶· šS ê¾EÏÒû=Nk²¨Oßv§¢ùÒp*’%áT¤ÖµÆÆ£Y ^ã/•*êZ|‘CIµ=Y´¡**.òžxq|ÑK7TцªÊŸImõ™»(ÏÌóIs_yØva„iGºîÄ_@kÖ”8¾ p8ÃÇi¿ _fôH^ÛéÞFE[³NÃq…TŒvQÁFk‡Ï¹ÿiÛí—¨ü1œýÙºÎP‘ä>yFDWÔ6¢¹EyÑ*=#Þò°¡Õ0$çúÖâØhJa—Y銿ÎeîYô[€Ÿ…ìàðz|¥_‡·£ÅS€,Ú›aº`o†W {3È‚½¹7«Ÿ».Ìì§0FØOA–î§0DÙO_÷ú_9×2¨Ƕç±' ¬Ð·|é%_1pÇ×Á­é0±‹TWm5(î÷06½Þ«Jp»WÐîï,$ué N÷ëþ¯½þkgËùCw, "hº_—\nŸwX"rõ‡ÁËͺÒ+½Loô Ðì–õ%Ð{ëñÈò;-^@jŒZp…¼  Ií°DÄ,/V­Òë>è-·}P[®ñðÚäÿÞîØ* ÍþúÇ~«¨yði†;6Hûƒ=I%™¹ÜËÁuŒG­öø*·áÞº´CÚq[Ž‚hÏBôL–×2¼z<îˆ%•E víqòkÅu?Ýÿé¿CŠFB”ùƒ×çÞïgõß(/!ÐTÜ‚tˆ°Zÿ¤¢(þ Þ"ìU0Ä)RÁ·¹œ@Ø#ÄRÁ„È&EQd®TÙûàÛ‡Í?3»–.ûÖŸÕÙz6g$ïÐ&@E$زìå¥Å÷ùÏvÜøòaSÌ=D@ÁLè~ kPÍ¢¯Ì¥_‰×ï¡(—IQ”¦¤(JSBYÁ>Üž}ÐË=ˆ¶w5ǯ‚(ãIP–%î÷`ëïvùG0DÈ?Rå©^Ó Aû|gÔ€,H@R% iFÔþñù“(Ê?QV­e^ÎãÛ¤$%!$)¡Zï$%IJðª!IIGh[—ýjLký0âWIJ°!I æ4ȯ—yýºœ¼ßMß´"ƒÇˆ¾¼ H,‚uš'¥iù§/‰²`N㴃ݵ ÉG¸q7\W÷8šmãömB"Ó+”é÷íçïìd=FQ‘£¨mŠðªí±½ ÊêßîÎÀG#‚,ŠJ½œ-ïZ€k_)ˆ7RÔ¾†Rçü­»Ý‹&Ìvñû“E!G k [zPþweAd¼Cˆ:R…!êw¤ Kõf,™',¬0^ûÙ±¯Ø4?nV5Ñ¡”DEq¾ó±« ¥€šÎð‰~uŒ)ëþæ5ná¿Á,êí}¦!NQÏÒ‰Ýé2Ú/ß>Î;P‹[jí÷dîÏ–Õij'×Ñ¡îå¤üê»ÇæLJy\Ã2ئ¯úîµTfÏÿíOÃLVëꛬ¨¸:jå4äþ{¿ô{œ‡àp_ï™Q‹×€=›——fë þ>µä zÕ[u¹.>CÙ\/1Ž’Í¡ˆzíq¶³Ä†þLÌåYÿS5› ö¯S/ý!.S8ߦoÙ<Çïý6¶C½ ÙÎ ¾¿|Šë‘qF¾üm#yŸ9»Ë«Š\~Yôs’&Ñk;‚|y¾qÉíæºPž}YI.iuéyy”د(ÏîãÞàE™£€‚ÌQE‰W‹”¯ö'^-B©W ç’PAwHUåÕCF(ñá<ˆï«£–¤{JÚN¢ˆJQDÛ²Ž8MË?}Q³; æs;oŠ!P^3öi”'JAë‘—×ó Š’ÿIV0Ùõ¤<04Ä(7eå~Î>ŠØ¤T/IþŒ&ÿ³RÂ8ó®Üá;­ŸdyÐŒéÇ/ËTöéëb*˜RÍØ§—xf©¶{Û%½4Íž–¦Ù“ö@:oHé¤`ˆ@'…ÛÈ;Ëž:Ò)øÈâφøåÛŸ"ßÙh¿ú“j–4_ö•õ?k`z%Ìÿ²+JAädR8ÚD‰öŠ¢$zþ*Aa½ÊB2S-ȶlj—•¢ÈeÅ= 1ª¢ˆ•fU)O©Gql,plÁÂ!úT{ OUQDŸª“ >+@ɪ¾Æ%¬‡Ãr;¾A/ðŠèSuRÁKÓ¥ž-©7 @â‚YG“¢ÈÑ,x‡`±(½i%UíÁ·²ÔÓDIœ=÷åQÞ͹1Ææ¿Ù¶;í»xcÄ´öPVXÁîxçp‡ŸÊ+ Y¬úØe®îŽ:+REy ¼3J¡õD^ Õk—Uà"ˆšý°ÿ‘@²N§ñ›[à—0¬MšP×.ï|»S<©·-K­.[«/BFˆÍfì¼SQÿ4퇗ȱôù½? Ge5Û!j¿øYj¹.GweÙšñª5v±ìq"ò: NÝ1îÇÚ¯•†¯Ðs™ª@Õ—‰ð’ÇçЂ)iR…m€×»3æ;âž@nµ9n?4ªžñ|c3„õfÔ®+ãTûp±·²X§õËWqx!ï³Ü:ߪ»ä¦½Å¦Ó\¹»÷¾âW±FiûùëRžÈÊÛÖåNZÍ1£c‹Û&Q~—qÏÛ—OG3öYwÛ”ŸôûbÿËŒz€Jµ}¼ÃÌÑ Ê_ã‘: (â„VØ@÷pZÝÑŠøÙ@- —X 'fÒKí¨¼Ø)`¶Ô¯,€¦j@” ¼Eå¨¢Õ v ìQÌ ‚Bó‚ʪjø0À"ʃE&,0]BVEºí5ÌpUÃÁl=*õ¨Æ˜-0.€(0À—f¢^õ?Ýù¿âÅbú÷E¹÷DÞ}‘s_@äÛƒ,ïÛÃÅ\ûŒîºª}NAp¼½¸‚0#ˆPA ïM£t!8@çQbT! E(\þúÒ¼jâbõ5ûjSX€€(*€@ ³1úv!$€^œD¨N@:½=ýôy‹£_{?¿N8¸ùõó– U˜%ˆP½ÁÅOKW<ü"¿v'þýw2|'Ñ^QÄ»¢€QOQÄ•§(àÊSqå©îš´ ¢.OOé¾€ˆuOQħÓ|zª;ñé)Šøô´G¸.óëy³î)X÷T+H¥þ”›'þͺ§ e݃e¥¬{ ’²îAoÀ§§s|z ”¦ßÓ'¨¬{Ö=\/º²€u–‚²îÁûÖ=øœåÞM¢€tF¨¤{0@¥Óƒ7y£ŸGÇ_ éï è\ (N¥9)  ¼¤9)„ÒœEiN0Wà YÀ„ó. LŠ"ŽN–žuYÔ;IA”šºCjh¥gzÑz*&Yzæ¥!‚kÆ LÚ#Võ>­Òw¡'QšUÈs‚/Q¬¤—žXyÕKÎ~ûïC+õ¨§Vúø5m Ôo|ûÊëÉ•–ä:á'+¨Ï„z÷²Q"¾ ¨ô¨¢0_P˜ˆO²4_õ‚D|a"¾ È[/(N××ÁÃŽ“ªIý:]”Ô/(Lêí1©_gB}çÐ!eþ 3ÿµCJê׉ |}Õ‹òõ©GÉ×WQ”¯¯o‘òõeæ1__?FÊ××5Hùú‚Â|}•EùúŠ¢|}Ñžòõu B¾¾ÎdâëÚ¢L|}=”‰¯ZQ&¾Ê’Lü·oþWœS”ÙUí kæùæÜSùôåFƒe²åÞùu™Æûj@jx€ŽÂuúj™®åZ—xêPƒ`J!ˆ@EQ¨õ"€©òB‘žØ×œB ð=K|Ì(xþa€žµçl¡Ke]û¤¬L×Ð׋<ÿ0c¹˜‡²?Cœ‰-…vè¢(<^„@‡Î8zÝܶ/:Ϧ9÷ŽåŸ/˜zþqv;RNÇ—Y Ç?¼hpüã+\Ãcðeµkp~©€Ý½‚°;qûCêö‡é\âkµ¾*°ø£}ç\* W•ÒˆÜù ‚ÏÚTxÅá´ Ý›žºÿ»€¨ºó„™Uñˆ˜^‡¶ŸAwä WIzüÅîÞñ¥Ð–lAz\U9PÜ^AàÝÖÎô¨ª 8©¢¤×T5‚zÎ"ÊÕÃפKí J> †*>ë«ÕzöÐxÚõ½iÍ{üâÞ%ïñ‹“âË ‚ÚËÚ’I!èp Ÿ%^ÖyÒºË/PÏ»$(¬ê$¢°ª“ °“ ¨“h~# b–XRݩǍ…%–…%–tˆÊvÊsúv )ˆ 1Iä‚R%&šù·OÍ»“.¨Ä¤s•˜tÒ©“êD•˜DUbÒ÷§<§ôyA½&Q½&ZVZ¯IeQ½&]1P¯Iß2ÕkÒï‹ê5©,ª×¤C„zMº•¾”æê5é‹V¦ç×-ü—cíE÷r@­IŸt> ¢ôö ³JÚähu5P”ÞñIy¹ãó<¼ïø€‚;>u(w|Áí:|ÝÞAÐî®ÁeØÛa§Jïø€‚;>©®÷r@Á½œô’7­†#³õZÒ vxøR¶—³~Y3z{§y׋9ÉÒ‹9M—\Ìé-zÅbÇäï³õº™÷gËB‚çþR†›9¿ÄÏ›9ö§-šcýºÞåþÎÝ}ÞÌYÐûfNJáÀûŽÞË;£3Ôdì^-nê#z³ãðC):…oÔ0Q°)(ŠØ$­„ø ´’‚B4Wý©ZQø§¾ˆÿÔy§P¡F€ªR*(ŒÕ¹’ŠI4> ‚)žTQ+ªkFË/ CJuJ)\T×ŋқրQÕ È¡P/ ¥_cFuR)T;ÔªP4ÚY¯˜PZÍ*(Œ Õö ¦^iŸ^¹ñéË—°'E}æ—öPäYWxÖD9õŠ¢œzE‘ÿ]Q”-ÊC|Qrêaê!Š dAΗøòQTŠ"?, exQàˇ‰€ Ô jéÝ@zŸVݧa€pYVL¡G¸ƒ,¸ãëy»§e?e~pžÊkG(º-Jíª ¼Ñã;|¥œÓdé%$‰w@`Ÿ…™û,,PµÏ ¨}Tr嵪Æ:OöÞñËcÞ{·wXÇGœ†ízÐÿ&èf¯Fo渌_7s$7sœöÏ›9Ì'gñ[ã, æ¼l·Ñ_ó+ëþ]SùWjŽöPPePPeYQT™PZPË ¨%™Iµ¤½TP&G†}Ó¼‚óØmH––PYP™P`¥PJ«8ˆl€ÒÊÔ¡Ôz"Q4Ÿ&¾j0Àâ‚«> ´†2éuï9}S¸žÃ[„Û²¢®·7ÑãÒ_ôˇˆ²¤¶ý;ýè—ƒHEÉM€‚Z¤Š¢ä&E‘ zT¬‚(¹IP˜¶¤(8êòtIÚL˜:EFLÕ‹Ò–@X1EöIíj‘ª(J[QZ‹f r›`„`ÃDµÞ¹M r›àUCn“Žr›à[„Ü&X¨Ûs ¹M r›¹Mª=ä6Á:ÕÜ&˜-Ím‚U öPÜ’Ä ZAnÈÒ*£¯Ü÷´­¾ýPŠBç¿Ê"^(•EÞõfaRdÖ , Í™'Ypᇉ€ ?~Øâ‡úô:ýr¶¨¢^ÚŠüP€R?”‚À õC)ˆüP: ש‚(Pšo (rh©R•I·ôn/˜Qp{) bDaÉ€× æâ:qù½}c0BõáºzûÆ`FÕ7’Ô7k]]Z ¸º´øÍ¼UŠ"7®…W)~Ë⪂™RWv÷rU¡ qUát~ºª`À (pBá‹yS?¿<ò½½QQ´7‚,³Wì{ ¢}OQäWÔé…Ÿ£“žû(ÚˆE‘¢È³Ó{ ôqè‚2§/‰±;ÀsôdºÏå(g~>obaùÅçÒ|.ΨnDð w£¶¾vãùÞÓñì0ísÔ¬ÞÏú+‹¼ëÝwóá7µ`ÃÂ5óÚ°ð“ _Ž3¶Šq[²`[QsÜï OÕ_›L¨gtú2þò=à ³ðÞ!ñ“—P°CÂèþ«vHÙÕ¥ÿíT½V½WYŸÕ¢»=BÕ{EM~b¿džwsUï—}ú†}#õƵßã¡ë8}C­Ñãñ ¬¦™ðõ··)„:Ì'‹DûáåüÅî_^£Û⯎×fç€×hþ×OýêDûkÝiûËáú0ڢáÑÎFŸéðù+-ùŠ¢d{„ÏŠ¢VEÁõ_ADø ª‘@@ÄÝ¢€@R¶ @dP(ŠÌ0B-ÈÄoG®ö€îhÐK‰—v¤—v|ÏïK;€ô>ŽËý†ªÓ u–hëÍF§7{~1ï›=ôÜÑ‚"ÐJޤ°Ôµ½bÍì‡oYÙža‡”}œO9nÂ$h6>ðU°é}GÏùÍ’(²(жGEQÄ?ôvèQí ";¨vE‘& © XEÖE‘5AQ`Ö„™“¨&èÒÕa"Ô#Ì–p²Þ™ï°ÀRÐÒKè–\/KbÈRÓ®6ìÂ$èí{“Û=hþ¾ÝÃ{$z˜L¸ÝÃè`»Åé|ßî-º×~C-pnY{·{@}žt;¨ùŒzuÿVŽS÷vÒKïíŠZ®÷|xàwøÝáe«ßÞõœt¯_&ôÈPò¡. Y0ÄzßÂøËy_ßi-Œf¨¹Vß#¼¦Üé* .æ4Q«%®\Ó°¶»-p̓öšôI3¡—|Þ,,l´­±ß#@b xeeþv2CE™¡€‚ÌPEQql ªS*±ú°¯i°>P˜K|C\&[â{ÌÕàæRkl o²›ˆˆKD|$ü ½L㣊 )¾z<íYg%~æpz±7Ä~""?ÑÞÞÜÐ"†ØQtøn’ð.ˆ¸QTk F1£¨NJy¢ïO´7 <¡Æòº+—¡U0§è4)qо9àMQЦXShºß¤)½éþ`CѯdqúØÑþ¡«‘r¡ÐÇ-T(:Ê„Bá/ÑÞÞô%:®9~éÆ .£I†˜PŽ~‚üvRšEÉJŠêE½Òý»z™¨Ê‚èSE™OŠ"ÊQíò£`" ? &UyIµ? Q¥ÉÂQEM0Y@8 #ÂQÔKÒ@/ P‰â”d%•1£$KYBñU K(¬ ,å! —(¼ á…þ ù ^0Žâ” ã(È‚)\Í’"(H2‚1*ã((Œ£ø¦…qTQ/ÆÑW¨Ò¯…ÿDòëj?à]…A è3  ‚((Õéôh=»©Õ¶¦ Š”RID»k3ò€NM% ¦"Å%–J@cÚ.®CþÚW</»Ù_ºSpýĹߥ¥RSoÎkogݳûR( KA¥ ÇR•¦{ºîý%7xlèõÜ.8èNc±t’ K@c¥„X©Fa¥½Aìug?1æÜºSI1Q* B¢T'ˆˆÒî4ÔI_Ü잃}?¿¼8 ‡¢ïR¢¡t1ÍžütNß>Š…¢¯éä4\7›”kךý„z^Ÿ¿Hì“+÷Â4×û WÔÜ|r épËê9u³ÝÍ&rÓ?®¦Óîöä¸cÁd¾^¿ Ÿ-C{³ì#¯¤1¶ <•džTó6Ú6ÞÕ{pÛµ”¦vàTÕ´=çú!Ÿ¾`ìpqnCûEQ‘²Ødo÷'“íÅ2n÷/ ÌåîÇH»8Ý`VD»0ZDãñE’g©[³öÃè&Ÿ£Ù©HPœ3ÍIQ¿2«˜GtßÛé^¥Å~ :˜ÙþÞ'{´Ý¹·²#W÷¼«gÐûß㓜ûkÒ—Û2}zÊq¹køo—¯stÆÍeïΑ]bmçvìP•Ì7<å"é¾þÓÞh¨ÝÿJf?›¹}­»"§°Ý_Çìþt¯þ3êCëm×øãçÔ‚qz[Òµ?œCsÒáØ[ÿËñ廵[Šz†;(îu¨ë*E'FEQt½vGFEat½Ê‚C#(O1ø‚Â|Ò^cð…1øo¥ÓÓLPt½Ê¢¸yêQãæµGˆ›×颸yAaܼ (n^ÅÍ«( v—yÀ`w¢gOÞ}¬–þ`â)n^;¤¸yí‘âæuæ)"^õÒÔãnÇ‚ëÀ2·ìvZ8»{°†í6^ JE3ÊçëœþéNý¿y‹ûóà%Û—qŸ¾Ìn¦÷—n˜SMkÒ'·¤{’ëÒŸ g‚þ®Ÿ#^ÎÞýÇÓ·ÈÐmš,­M,\áAwñ9ÍIÑ_ ×Lñ‰õç³òï¤aZ GlHË|[`‰ž~ƒ¹C%p§Yì[¸Þ_óhv¾¯Wýd¿Gš]tY+ ”Î§Š²;ŠÅ7š]µI€º~9g€»Ùàå9ôóº-÷•PQóàÿI¢÷ú˜'©~^Iùï2 "MT¸çÕ"úû(; û“æ)GåÇ Mxø5Yˆ{r/-{WÔ±GÜpú1‡ Ütæþ[œ=oýêñ¸¯õŠÊ»Èº·AQhd+¨SºS?ñ{±\2û¯zrªÅy±«}tÝŒœOóÒjìk5†«s½CpA¬þ»é´*ý™O{Ú¶ÌuF¨‡XxÓæhKªõ‹Z“ ÌU1ôÔºdüÈÅ¢e“NË^é½êɶV\îôv’e/Ï#?Ï/Ê;!Äõ¦·/³5ÌëÞÓ©ÿÁαæ—K­¥/+JÐz4ß—Ï:¯òÛ6~“e,Ó祙>þ]âr_×íÞ_Qp—Wùˆ C¸¥ƒ,¸¥+ŠnéÐ#ÜÒEîþAѾ ²è.z×EQävõ.“ wy"ìô€‚Ýz„?,A¸ñÃ<ÈNýYçá}áG­ä¢à*²à*¯{%õ¨—t˜,pù€(¸ÊƒZ²íòW-÷}@Á}f îû¸ß*}¯ÿU[¥ZÞ¡˜½0OEQá9EQ4¨¢(ÒSQ © ŠÐå!Ô‚LEQ;˜TÔí!RSQª©(*b§(ŠÖ„!\SPF?µûÍú ³ ±˜*‹ ÞÃ|iÈ&¼lˆÙm¤jÔ&è¾Çý{ûöeP­»îëùˆîÝ¡Ö.›W|'~¯à Ó®ž0 Pï¦A«Ýa- º¿ÃEaíA,(L'T»Ã©z‡Œ¾Ü<¾ÉC“¢È²ô ¢à «(:Ã*Êò|ZîîÖﺊ¢ƒ.¨]@ÁVQdù½4’ •7»Ç¹÷É fKžD6d@ÁÁP`åÁ: oì¾(KNÖŠ‚Ó0,f8 ÃÁÀ Ê«´‚33Œº <t¡G0‹BzÐañS”Ó)¬S\=a"à ‹™x£àƒ§O‡Ñ/z£Þ(@Q¶½ hÔ§=¸‡‚0@ÿ ´ÿ饻 M*¤Êƒöºw ü_¤—ú¿¨GÝá¸Ç÷ÞÅc|{£Þ(Z9âh¢E‰õС:šh"t¤‰}:G¡4oªn©ôªÕÓD³¥ž&êQ·TR^·Ó÷E»›øùFqæ§ 0õSP¹W=&ˆ’òšü)(Ìþ”)ýS@˜ÿ©J¨ P*JÕ—C9 ª:% ³@U/HÕWHy Ú!%‚ÒDh&¨Î;¥‚ª,ÊÕé‚dP}‹” ª(JåƒÒÄKBhoâ?3BõÛ¡”PZïœPúì5)T'²B ¤i¡Ú¡ä…êè 1Tg“2Cix’ú™pùÛ«v÷Fqµ;‘E©¡*‹RCUTµY”ª²°(ž (5fJç‰(HúTIô ¯’>U–±T ¡É‚ÔPxÕŠÚk…:ÕRC©¡Š¢¤OÐ^“>IŸ° é•—¤O˜zIú„þ¨âN<$}â÷*IŸ ‹êâÑjÖºxª=U©SYTNeij( RCq=Hj¨¢Þ©¡¯8¦ßH?pö:«o²vQ%²>â z(Š’RDI(ˆ’µ þIQ×\±Óqí_Pÿ¤(£g‹«S²(ü û“ð'è›ðõHªÌ„?,MlR„?)ˆÂŸ%áO¸ÞéM ¢ŸÞ(l‚ï›`J!£ z„ð'X6þ¤²(ü ôZÝ`ûä—¯‚¤`" H V3I ‚¤à5B~$낤p«|gj½¼;f À )A‘³ PJ% ¥Rµ yJQ”<¥( ¥¢5”JPJ¥²(”JõRt¨¾#˜ ·RQn%( ·Ò!ÜJHáVoR‰, ¤ÒHT:ÂÅ?X‹Ï˜¿¢$ÜJµ¢p+š ·"Ý5ÜJEQ¸•Ê¢p+™x ·Ò!ÜJ'‹Â­T…[©Zn¥k\U0HE P©èk•\üϳa÷|*(<Ÿª,:Ÿ ŠbýEçSEçSU¢øAy:ŠТøAy:Å O¨$KO¨Š‚}Eá9VPxBÕù‚êDQü*‰Ž±Âc,¡ô« ¢øAc_¨Î9V{¤s¬Ê¢ª.:¡Š,<¡ê«¦ªö'TúÊô„ªë”N¨Š¢ª¾ :¡Òš×ªî$tBÕ¯_cS_D%½-UPã°ÙB¾ž¬wú”ÊúàèhGÕ5 D]ûÛi÷ùh¦X@« ˆÝðv\¿Ãcw€p\Qd;Píº0ïz\Yja€÷¬ô+ :²’¢ýÿ—i?ƒÈf¿.,00(ŠÈ\ Ç-|ZËm5$ÔïË]x…ôÒŸ¹óÖƒ(—n‡tÔ¥¯vÐ=Œsç¼~[Êd;€ÏèXà]ÃÎ CÔ£'é;3|=zª$ÔþËãÛVÔ-ð]ÀnŠ; p®@‡@ƒò±Iu¶IÑm_AzÙ ÝÏß ¢¦Rl¤Ú]ôDws•¤WsêMb?UoݵUÜñu*!">Z’/BÄï¢oY €ú~ÂiaGá§›uÝf)ï;¨UçV\;´n_¤Ïø–?)ŸUÊ›ðYµ*gò&rĵã[L‚ݶ÷Î’T¦gP8ëĽ œiulZºSµÖÊ:‘št¤r´¸§®k­Ú©:kÑN|öa?kvÒ‹}¥é¸4÷‡Äœ¦x#ÙAºb5óGí iž­ÿQk5OšD)Ó©_¬à|;::.@ÏFQXDek[A‹(u¤H=) ;9ÀAwu€+2Ñi²ÀMÊ«;…{|g¢Ó«g:ô¨nÐ^]»‚Èåo\îØ¡¸ÜE.wè\;èÞtx=àM‡/QH–¡Cp¹ƒîàr‡e .wüòÅ_8À^’nrÕ ÜäðzÀ¢Ôþ÷ø¸Ó-×i£ˆæß ŽÏ…g ˆb‰)F¢øšÁ†–éÛœ:8ˆßÔÁAø¦€(zS@F$ƒfDñÔ›„w*¢;DÁ¢ØNA@¦`(“@Ž©¯¢1UcÊK¡XLíB1UDbê«:€(SWŠXÒW ñ•ºP ¼RA]©Á•´ä$Hçª4éFñ—úù5è§£s°ÖMRYP7IEA‚¢°º’ °º’ °"õ¨‘…‘Þ(¢U"í!æPT7IQzQÝ$•u“tR©n’ °n’ ¨n’..ª›¤ºC4¬Aå­¨“L)–`Ò‰§ºI:§T7I'‚ê&©ö+©^P7IAT7Igžê&ÑûѺI:T7I§žê&©öT7I¿~¨›ô¹»øN9—Š¢WQ´ñ‚,ÝxAl¼ ê4{Êu=ÚïXTÕ"14dÎÄ5]}#‘¤3~ˆÇF´GªÛÅ×îóØx IÖá¼U»QŠMý)U*&EA›ª×áTg×úùM/ l½€° dgpýØ…¸¯<„nJ™˜Ež°j”>‰”ß|³´ä/‹ H–EA¥0©o*&Ò‚JaÙ(,ˆKÆäó0µ£3 Ë&̃fÙúÚSÔ(,Ô1– ½þD@°'(Ñž KÂ=_§¢Þ UQÈ ¢(,°ôu ,½Õ"VA!+ˆÊâbMo½¸XÓ Õ)ÖôBuÊ0½õâ2Lï;D;î-.ÕôFÁQ:ä‚N/T§ Ó»G,èôž.èôBq¦÷2å"Lo݉;D;ä*Lª¼Ð‚ZT…é-Š«0½eq¦OT¯ Ó»G¬Âôž-®ÂôÅU˜Þja&ý\© Ó{™yˆÎWaÒñ]9éÅ>܉qP.+Š(—±P€RÊei&êðÝÐ!0.“(‰¬¢)uÛy[ׯ) ¢ ‹ÔzE`Ñ$(ã2½ Ôâ7øŽÂ¢Õ V4 ‡ÇŒoÓ]m‹¦A±xͼƒ¬h&„ã™§ëÍËLÊK,½ Æ¢•¼™çÔìîv€è‡‘ES*!Y$Ib²xB_ÜÍw󊸢ñ)w3©.QW¼9;«ùdûÓ‘W$KB¯h„tùÇøÛɶTÙEù–Š ýëGì>N’^Ï”©/ú J/ú¨Õf¿jïÌÒÌL9PpÑWep*ŠR8Eæø 5{$ÍÐ8dhÕ@Š&ŒqÉ"`ç·9£êÂÜŸh9 vLž½ _W«ùÌSÛµ‡—§šænÝ0Æ!ÿzèÚ &sÂ;„lNEÑ­:„TMx‡p7Yp7í![z„tM˜T¸ÂÃLÀdiÆ&¨%)›ïãWï`ª(:˜ ¦Š¢ƒ©¢ b àøª ¨B¢à‹ñ®+BCÔó«‚èdªÊÉ4‡“)¼8™ÂøàÌ ªÃiRQ×OÚëiDi-ž9sÂŒÂqdÁq&BÏ€ ‚*<ïC ,e-àA/øz>£óù+|ð YÐã$v÷ÅÏ‚ä0 J½Š|Ð èyf\‹|ðH1ÏOC^Ï^ª(¢LYB¡C°„ lœŠBÚ$êQ\ç€"v%AáÑ„•æU™/¡C0L* I´G5Lœ¥‘ ‘*Í+Š’µG0r $V#¢5"Ô› ´K(ÎÖÛŠº‹%DG’Ê"’$}=` …&I'‹x’T%©Zj …m,¡0`ãÄ(Éð½B8) Qí¥Ÿ¡íãêçºëËŸîLrÁh ¿€(_%Ù2w%¯m\º’$jtš3Öoo|$’XwÀŒž ï*m]A”/ ;;.ÑÝÚ×rá{þ‘ /Ó¤!ê4—¢ÝY¬ýÀÍ-MW1”Œ®ÓtDLëЂwH% c§e9F¾…kuU‚äw]•®½­ž×³Ûe½ûæ(y]ßä¦Ó’›=ë·Q[N[dØ^;ãòíSy…ÖÓB‘€xú2ƒûf›†nw˜¯ƒóB;á%Àyóúz!s^giñ˸<ë/ï¤â¹N&{÷íjþü;¤¨cìTÔõŸömÏ›½º¹+ L¢€“(ôT *Ì í¨Gµ¯‚,µ¯‚¨%?ÑÇO1M„ØW ¤¦Sz?IE²ÔÀ ² ú‰Pj¥Õ¥FQ^ƒïH*èñúUX?Ó€´–Gëlé­$êüÇÃyî°gå?zךZT=­y‰Ü¢¥¥¶Z1Y$K-º¤–ÆdÑç£v_šˆ3KçÍ,E†~iÙøÍæy\ú(ˆ·¢1ªM——ÚtI–ÚtyÑÆ[Å©ÍSP;¸Éf±#ŽZ–S•PZªP§³l:7äÜE!“¢¦1¸?6C@Ë’êe ÙÝÓMG=NvYì:Q¾PBmáû´SŒ9™öóæêQÔè9¶$B¹ù༯§:üš‰ÅÝwxšCزµ-;§? qXYKêê«E\P°j´40ÉÒ(@ o”b€: ”R%-©DLsµGúûöíÓ9݈äΣéË´ŸÎaÿ²v§ŠŒ¢¼fóD]¯rëO»~ÇàèktPŠš½8­›a¿ÍD’¿.sý9æ(èÏ˨.–çy|Yð@1—»LÖ/{–RD}º>:N!!»Ó„ìNoìÜ ¢rôÚÄ3)é^  w¥¡æ»€¨ä»Î6E‰ÖÄÊô!+¼eeŵ&¼.( O3 µÞu¶‰ºI$A¥wàn‚E"ÜM2ÝÀÝ$r€» æñ]â_ˆð2u&û£ ¼®É#V’2t×?0<Á·&5àuŠ€ úzÓ@¥…Þ5âu¢¡ú»ÎÏœQ -‚tV¨WÜâoǯ(òÁ ½ëŠ<@) €æÈ7\Çæw@µ48G(Îuuìtúè¡9.A+p®k‡â\‡Þ„Tälá@3&סÛF}«Qò=š*ðÓÂØPÐ~ñ˜“åúúŽóÛÂ’ØP@)é¥aŸ¸FÍ ;OE«…oœù8[õ Ê~Ï ù úÕ“xl¤?¨”ñuÞÍ;6far3¡e‚m}µ(ì>‹Õ €fæï¯erÃç*lzÜŸ0å}’=<ÜNoT§ø¦ °ø¦ °ø¦¢¨„¼ ¨D§*OÅ7Uy*¾)(,¾©jQñM™z pRQX¡“:Ô Š¢ ‚ ‚ oßQT|S@X|“PZ|SßTYT|S^"ßÔ©ø¦Ê¢â›ºl€ó Ö •èYX¢SeAñMúÊ´ø¦.A*¾©(*¾©/ˆŠoÒrÖ⛺ÝPñMýúÕ]o ¾×ËZ¦Ñä;áö‚ZçXªf';»²°r‘öh„€f·Û;ÐôÒp{í )jIkÀõmÌsE5ŽT-*`¤(ŠWÅ¿CZž:ÔúD0[{X÷¶©‘\Êw#¿„ŸÝ®³û..­Ž»Ž,¨v¤Ê¾Ó/–‚ÚUÞƒòMùqi¿xÐá:†…ö<븈¨!)T–;µ–Íu·‹ü‹¹?B³°»Å¦ÿn¨¼L¨ÙÐÖGž (´Ú-ã±~û¼ l–„ís‡þ¥®_¾T¬‹=B¨½¢(Ôw#3õŽví÷H¡ö°®’üöÚã‡þ§ å‘ÜÑä>ƒÍæ0]Êgšë‹­PöÙ›òGS‹@«ŸXÌôÚ¼~‚Bg¾¢ “ˆP’$jîŸrƒPmY€"¿³vH~gPK’qh¶¼–ÈÕá|HÀëñ#¬ý:ÍÝ)õŸäîNèlW(ëμðýñé¶F I#¢þÎà½Ýö;6‚gêµC’¬=x®ÃÔÒ_Éä ‡¹:Cù}j7z9[Ïf¤è¼œÁ ÄÃו%éMüú¶l¿sGÿÛ‘}’fk¶ÃÀõzîŸ{á‘+y°:WÝÁÊùkqŸ9y•úž»L_ô¢ÝdmG¸•®èøò~Î$–?Û±€Ö î¦¤—{oï²ÿFñe_QtÙW]ö—}EÁe_‡”ÏÐp>ÃÁ"ZÁ]_ÕÒ(WBEF(!¬µÄ"(°(Š,ª—FÍ’,²( L "“¢Ä$kL L:d€×(!¶¨ G0ÀêâÈ$zÁm–Üö·}˜{¸íÃLÓ3|ÿpÛ‡ùÒHÒW®Îo'IQTC^QH¥( ‡RµˆöIPHû¤²ˆöIP@9ª d}"å%o :$n(íXŸH-!¦µ€AJ'ž¤E RÚ!1Hé $)"‡Ò‰€ºò*‹(¤t1…”*ORÚ!QH©òP6&‚Ø¡T{b‡’‘J{v(b‡RQÄ¥ë†(tˆDé$C¤t'ü…ú³&Ò¯‘K[¬¹×Äl+B@¸¡*Š6TE‡}@oÕ6zEÑ^©ÊG˜¿Ç€ÔdÁ^) Wµ–n‡*c…¤ûÊž¢`¯ì•0[À©¬((*EÊoQ;gºIN©GØ,A{-=Åz½KO‘,-*EËy(Þmøöã‡qñÊDýå ›%L0/Õ®_µš<Ç .K¿C­ÞD/Ñ3m>,y€"vfPËL;³h¿¬‡Š½íNô!Â/Çï.jêÏ(”x¢µÄ-šÓ£”ïpüô[óyG¾*çmäUY@^,Ê6‘Ã"ü×HÊ&†Šå©JwÅÓBCû©/¨5'’´3H¢;¼_j5HJ1HËÌé Ñ*s„‘Âp¢ºpúB$îŸÞ‰ä²ÒtKnKzýÓè<Øz>ZŒ a ö&izeD’@!(Q§ËjÏé:’bϼ"_µœù‹”"vúhE9}µÏ‰TÓÉ– xšîw¥dVé}C‡±i‰»éº2Ú¥ÝÎÚçÔ9tÈB$íh)7}Q×ð|3½–ùÚ—e~;£O·9P»ÿÒ™­ï‹(8*ŠŽ€ ëúuqSÒ6}"Ôbbåí¤ha‰sµ†ñê<ï2>Ý€º{AP‹ PKæ_ÇïZ„ÚüÂ|^w‡/so—\“uýÿ4÷gu‹ÏØ|R$j3_ǼYÞØ—éÝve[_Öõ’}"æ¡ý6Ò ZâJ3´üÔË ~Ü¢1|Ñ>æMûú`iRÊm1ÃóÙÙvV±¨åQ òkº¿ïÝDÉQ‘@³ŸlæóËÛ¹~ö¼(ª |Ù!ô¤H¬Üh1k‘%^fÙ¶ÆAЙ¬Ñéo£!ÉŠ+®Ù€÷®,*ØôÚ‚:ª‚hCÕkÜâ·xÐ nñ¤—݃¬Ï ìj»3L*ì»0F½{Sz«&Yz«½h‡ùÒ[5öpœ‰÷­šæöpX…r÷¦!¾ Âþ“ª7tš.¹¡C‡°Uª$0ŒÒ‚Ð:ÍÃ’Qc;áSz'åuslθ–_w}zͰ7ÃÂ’›7í°ÃTÁvÊßák;}í¼¶SE¡QTQT$PÀ¼§(2ªöd:…¡ºˆÊ‚M—zÛ©¢àHL/Ê“ÂL€YPàÉ“ ûê¿ ²{bYtýÒ»¼‚†Œ$6[ÿ%ÎAœ`aÐG„–TìT ³ ̼>ù3ó¬ Q.óðíëÁ’Pz°$­À† +l¨°¶À† [XGAÖî.p£¿¨¸ƒWêå¯%ûv™-•¿¢|Sù¦€Z5Ö½…Û½4+•ô’|Sê0jB¬,RÞ‰l¶ó¾p’RI© ;$¥J )JÒMA-È$%”f’Òli&)½DÍ$¥÷£éŸ¼lÞéŸô‚$ý“‡h?w‘cz‡¯QštM¥™z¥ˆò*~|òø™Ù’Žþ”Oñët}]{wtTÚ‰æIsDI{-¡Ä{Ã;û“ôÒìOêQ -ÑtÍÎ5´Ÿk‘õ×ÞõyÍß¾‰-ây²?…´ÝöÖqjóû¨¢h‡T킲c¾iìT§\Ò öQE]¿¶×Ç]’dÅFj«§"ÃÈš غaVuëVµ.¥Çнí 0B­u¢hO†j}z¡Ç•\÷åíŠ6RÐKËØJËØó”íVeÁµšdþU¯ëöOq]¯ÚŽÎåÞ ´Ãëàê&›ë]_^ÐéakË#ØŽ^ü @°5ÃëÑZ÷<¥²ƒ,ØÀq5Ë(ØNaŒº‚ò°â›–íTQïíô•ùÛ‰U¥‘‚,H#U¥‘ ÒHi¤ 2DaˆÀ,¥(âŒRE³‚ò©*(ÊYD-…=J")  ‘TQ”H 3)¢°p4>T'ø§T$›*ˆ’M%ɦ°l ÙdA²)È‚QxÕÀõFqê'¼(…•3 ¿É"…µY¤€‚,R˜TÈ"Åu*œQ°G@)|ýÀõQM£s@òJ ˆª8 ˆŠ8«N@=¥:)§”`àÌ© ðU)J3 F’  3+ê2ëØ€–J@ÄJ% *ʬoª-닊(]âä•ôÈ =±Â èQÖ’a¡f³Ì€qáJÁfU8tºõLˆ«RÊ5ë;jͺ X³J‚ZÍ—òÉ¥ó5˜utÀ ¥’´³H¡® ðà¿N¿f<=ÜW³\ÝÕ¯,¡Ö0ò÷¯¬¢Ðï²ìh=®[ñý \[,ëøOÚ‹k ”'§<Šz‡áó¤®û'} À9zMa)7ŸHsœ‚,õ ¼CÐ#xÒDžt˜u!Q‡êo‡Áßó $B9Ã÷µNßætŸä´zYÝ:û‘œÖvZ”Åá™,;ˆv—3:ÉaºÖ [¾&uú‚Úý´Xµ…/zY{rú6Æ!|:ví¿¡éôð3ßÄû{Ä”×–iù§¯UüæØ%{ì¿jp4ñÎõv4‘VqùÜìHûe5‹£éEßaÓU²™<²¢-fK¾‚”$_1À‘¯ ¨7¢cû ÆîRÊzŒõ*ë´ÏQ ùxTeÑ™TR{Õ 8ía”ÒF§Œö0ßP»DAÊg: =®%û¢lö8ošz¤UIh)½Hê£GD! ¨‡À ®Ÿíæ"&¥…ÅžßÇ»t‰~·§ÇîXÄVÿ°_Ù9¦ºã'6|)>|oÊ…ÿÿ1v'Ù­ìH·­ëÑŠ¿gˆbÞ¨Ýÿê#Ü%RÄüÀûJû Å ƒ¹!!`ɲ‚¶šÜæújÔÑB—£$lùTh"ËŸbüìî4f*J™ŠRk¦¢Ô›©(5gˆ=-úÛej{&(ŽþL0(z/¥æKE©ûÍž#¬(4ú ]š°Ц E &®¬óÈ4¼>û$Ë=í¸æãvo&HꡈÚ望5yþæ#oiô·vMX£è×Äu55lâLÇ&س-›8ÜÔ³‰‚Ò´‰FïÚÄ]z<í¥@—µ õm‚âhÜôç XÜ3gˆZ6½Ct ϵtš!m¯TUÒ[i‚Ü·ÒèÓ÷cýöñÌ89Pc•ÞPg!êÍ4AÐë.†ëi Û¦áÒlôQšÕí=CpZcÓ>iþèœÀ0ËÜ/öok¥yšÑ2i§íñòÉm–Ô59ʱlŽäÈh#¥m:geù¹9Ò¼ N[{×ѩ󼘿œù˜œ‡ñ~BÄ|FÓvTš ÒæuQ$‡Ûœÿ²ã¥<£¢”g„‘AT”2ˆŠRÖOQïËolÖD!aÊ#a3(&lÕTLØ©˜@!³ˆ "X ›˜käaD$lru%ƒÔ„M8'„"ÚtJúÁr˜s?1ËÈý„ÑçÜO|ۃؖIÂì!uÈ#NýAd'ä~òœIVg¥4$|#2ŒVkï=è¨)Ãh~+®žÐEéq\”Çñ{»ãŽö͇û…×qAêp\zÜKž¾Eéé[”µ0Þ«ñ¶]ÓÇÅ÷¼4×x>£¢ãëê²?/K3¨Ç½Péq/PûÒËî}úbýµ-½Pí¯ÉIŸx­™¶€_ÏàÛãjáñË•5=~¹ÁòøåäÌÍäe÷>‘!ªç­úô†AÓIÞ:åµ +̯m˜¯m ðÚ¦ÑÇRø¿•¿¿qo—®Õ}t±|(’tg HWÖ §Ìø*Žkm@ºÕVÒâÒÍ7 ]|käÄWqÜh«8²ÝcL%»÷ëë^ÅqQ•N¹V'$º„¤+Ymƒ Qhƒ Q*·¡Z3‘›dµÁ{A*¸Á¦£²´šÛ ƒ6È6èÜÝ ´AÖxmƒ¼ø¼¹Qì^Ï¿Ïà¢Æ:34¨—OËìÁ7âÉY”žœÐÁ æ`O!cŽ…z½¿E)$TCB!$„9D´(¼p1;ö@­ëÞVíòi-+$Q[2Àq¬Öõ òI/Dàk&OjîÃ<©9… …˜vëæÜÜŸlÚ¨¶áakõôê\È/œßçPé´’CµµJ A§QƲXçåöÒ+~*$ü·¨‹ ŠœÆA±â±#~ß÷+çõŔ؊zc0]¡Þ«¥–ßXNc˜ lÅE‰‡(ðÃ\¨±, u‘·fu/.l P=YÔiK?»ß窴jñ$ÆCñ$ÆÛ½-ãt¾¯Qâ! ÃPþkK×À÷Ú*‹„,”EbA€a¸(1 cD”Xbg Ä’+"lÅ…BÌž(Ää1b„BL,›ŸÃæ|•XÂXÛ[y[6_k3 s¢þljB¹(5˜ ŠÊ• å‚Ô ¢Re‰h#¢¥]Gse©¥æDË@h™ß¢e ÐœÚ—h+DËE©…P c®éEÇ\TªRýå€Ï2Ö`{&Á¤åY†ê虄õe ÊP«Ý 2jdœ5h‡„ˆNG0h–¹þB³ŒM~Hïá’«0SPŒ3…@S@Œ4¥PS@Œ5Å8RPï]¡—#¶±{@7õ oª±p JÝß!K!§~¡bN±A§ÊB_wŽØ°Sª¸SQ—Ýsz¥ ¥ÐSW³bOÝ? >ÕöŠ>Õª?u¡*þTåÛJvP”ª¢ªZ Au®ƒ*Hñ¥î˜´ùÓK²‡ª!ˆúû¨Ýü«à›Ar TÃP3Žƒ‚„šu‚C ú ›G0+ÐËz¹€Ä½áUH1±,E»¢8‚]óhð(T‡ônÔl†0h–ÁêMÀ§!f–å]â¼j¤PXÖ¤"aÕ%Q•ĉWC"ÀL ø¸ú8· \Å”Š[eM‚ï®’Àw§¥ÔX†+Ýt1ú·`@JwT ¾÷Žo—ûùiOŒøø!ØÇOreõú ®ŸR«×OÉÊÅÒÎÉNÒ=K™,ɰ—A –dLbS × ÛoÍyÛË÷Ç"] Ò­¢p«ô€#Yýþx:_×&ÅÝS¨Þ=¡=îžÒ«ÔͰ{/¨R«WAµKZ[{C®û+„$”¨”1b.ŒúÄf-yç‡oöò©%ß˧P½VjɃ$™'åù§ æÅöÿV÷ýoQ¨+•*‹m<‚bê¥Õ«Ž i—‘zÿd³Ð€ì¼QåÕy£†@ç€T‹DåS]”ZoÕ|Ø5ø@¡ÖRZ 5øXêõÑQƒÏ%Ø.A¡Ÿ ¢ý9:×sé<&¥ó°Õ\:µQ:O´ëF®®q.Ç’AýÏ”Î×XìàÑoTsŽÅ’™šs57çx¿4-îœÉ-ZP½¢ÁÈ).¸ÁqŒü¦ 9úm§s¹<žçµÞpÀV§zV¥w’ýg½¯µ7üª!‘¿ xU«8œªµe¯ÑX–Hä r‰¦FqºÖ”ð¹gj÷|©ý6¸RkoxR«›5Òï«8œŸÉ÷pß…NõÖLÈѯ øP»âàB­êõIßã¾ð¸kþñ¨ë;Ÿ_aÚwÈð Ž$ñ­ÐÉfðÏãܯ{nÚ0áÍBÆiußSÎŽ ò£æöéã×ûö !NÇÿ{èþzíÅ,÷m¢î÷?1ÍYÊ÷žÿ;ÜSÇ¥q·Ô·ãñ9I3Dðé£GÒßåÍÙ!›§üþ[ZÄmã´Û.œÏ@ç¬ìFuþ¸;|¯”}¬°ýæw™¡½èrd~Ÿ­Ëñ°¹´O_߯t¥|ÐÖiá4Z*­ {‰ýv¿üò<+K ÓøèÇÏÒae—ÓOîüa¹,‘^Ÿ6*àÓ}[ÌÑõü“vþ½T÷´Øû“`¡Ëñ¸?S.‡å4>.î›.㢱Påkÿa5&‹}¦Ðy÷ü×yÏ£¿,ÖžºöØ­/¢„Lôq{(ïr·îW°ák¾þ¦Ç¾8¯jÛƒbm{Q"g*JðE)¿(•­cÄòÓ©m‡¨V­¤ªõ˜ªu|^©;5êÑ‹R=:'',ÈЫUëX (!€Z(! !Rµ‹¢j²PµÎ53ó Ãò-m‡¤ò Ó¢se»'g¦8^Úý-YËõï\4S²>wj’õaªÖ¿s¸©þ‚Rÿ¥æüz˜¥íP©üžÓmêŸs8 Ò­²(Ý ‹R¦gP¼<ux\\î·ýp¿¬?ñÏ¯Ë ¢+$†û¹—}¿ø‹d,Ü51"®›4|nœ˜Ãë^]tyñO¥«)Qóݳ ÝkqÚ Kî¨øB\SBšgî³@ᾊeŠ NX [XwÛ¢¾·}º•Àž>lE\_¹žs÷ĈÍÎ(ٙح½B'\B±´påQ“«(öÅè7ò8Þ¿?‰Ò}”qº’·Æêœ,JçdQ:'ƒâ9‰çÃá]ú®É 8! ' Mš°(€Eé¬Iñ>§¨ù˜,ÇdA:&a“@á˜Äâ˜,J/ÈÂaŠÅ…Ã6Åa {á0-J‡iµ—»VÅ‘‹åŒ##â9]Ýóâ<ÅÄyÊ#)ç)vYÏSÌÎSnë<ñ׫­Wó}k^ðS ¼ýårúõußÈ䎧#8,E©Õü ¢<ŽÕõ€ô…–pÕõñ¥îjE©½ZG<^~Š‚ž=…:|í`#hºFý´†¾¾"”¥²ö¢PÖ.ËÏÝ‚`‡v ‚6:†‡¨g×Ãe+%»ÝÿÔÇkiØÔýð|c1´[o4ØIuï]WÇ­ûßýøÁš#â¿5€Á¼µ¡ö&ä|_¯„¯m‡¯#si…±ªŽÛ =~0Ãýë²wÛ)Ù–B[©aþöäõþLjícÈÚ«é.ß_ÔÚ¶xî‡]ÚˆŠ¶ÐõÃôœ¶èÈ`é]o®ïŸº¼ÇÏÎoBÜRý·¡¥zQ(”¬†Ú R¬=(•jB¢íнõœ@)(_”béE©˜ ŸØÚPÈBm¨´oøžŸ˜ø=lÚÂ(Ø%O˜jDðBÊ#†O½REY‰¾sg=,yDÖñ‰ˆšCùÖA+ÔaÕlå/oñ^)è:FDx6mèjý0’¼Ê $ ±s,SϱÇZö);4Æ>%þ[$wÅäÎÊRrgQJî„^Hî„^Mî,HÉPÉPÉ0D“; Rƒ%*ŸäN Ü T“;a$w…äNØi›˜j¤mÂòHÛäâJÚ&Lß´Í‚’ ƒ"!V˜2¡2;hédN$dzÄ9!ÓŒ„LèUZ:ŸIÛ¬,¥mbß—žk¹«uõžÛYÔœÛ9øø{çŠãuu¤s´ U{„Nï{rç F¼¯$©S¾®:ªÓÃ\‡&æôüå…N( ÍphçcŽ€ßãb~}þŽTPOâÊQEh ÐŽ•„c¸PE¨ÖÀ°Òé㤠wH%¡$²z·+@í RÐ~lÞ–ër84ó€ÞÛoÇV±¼œ^uüÀ²Dfm9·Úm ‚uÒ¶ õˆîpèøu‚Ìš˜ýºÓd?Þ_LŸÕ©§3$͇ó–#t|6pÿçfùOÇ :mŒsüôrf0Çý}>^¾ÐªÔ4¦~[[WÐ[“û… Ëþz?Ÿ.¿Ö† 4.Hn×Z^×è„ðÀoñø¦×~Ýi[K§ÇÏóíþa $ª ¯ÝÍvº½Ò{ªS s-_ã÷ïk8ne¤Ëæ´üú°ºáÜÕr›3 ŠinSz¼_/Ûïéé7^¨MRÏn•®c—s6§Hu°->³ïËO»>þkÜ„ÆÅeùmƒaທ)–Ã=neßÛÔ~Ú%pÄv4tìÈI²•6l‘åX_;CäÏ_ö“ô¾buœA柟%‘÷c‘÷c‘¢> ‘ƒÌŠ“ :ý!›^H"?ý,‰ôô3ˆœP¼t™;Ñuäë@בÑJ²1CH²‘±@L 862˜héõaa¥$1qdnÅÄ‘¹ÉF )Þz€Âđͦù|›ˆæ³ÚÄ3Ÿý-¶Ž¨$¶¬¤rlD'qÌgq‹b~Ž óY("˜Ïpå—Ÿ.G‹;%PH¶/JWO p÷ª—O€pû”Z¹~ú ç,zY«·T Øk*DÍYô’ó÷÷oÂUVFï5UFè=UFèE(ÜT½d櫪P½«J¯\V½ú¦Ûªæ¦ùø¶Ö|aÕ€¹±z‰NWVrg•ê½´jwåÖ*Ísm]Làto•©z'õœ/¥Ú½•JV®œ:?rçôxÓ¥óû>Né»önß÷Ç/í˜ævýMÊêøõ8¸Çú» %ê¶ûþ&¦@ÎaûU~üåû¿Õ`L.êÇè÷Óý—!‹ŠöZ‰Ãá95…F’µí—ÇÏî÷¯“ŠÚOm5A[  $Tò43‡ís¸|ýzX….¯±%V¸­•§Ç¸ì=δßjËÚ8_—çvjwEŽ\ÀŸâ¢Žÿý‚×3x¿îÍ_ƒÝÚVÍA²Eç.Z ×=x{|2ûJ²¼HOßo9˜‹Ez¯•ëùÙE#¶¯ÆÂð÷=²y]¾54`»fhÕÜÇ:Ø?ñÃ>£ÌÛY|ÀÅ|FTX¨²Í)Š/ýŽ(ТDšö!ÒD–o_‰hd‘ç³(yºnä:ÐêJˆ¨#’dz(pv ‚]³“¨÷zD)NY"جZˆa9ËEPC´3ˆ– "A˜lvEÆÎŒ¨`,!/@ŽH;+K¬ZÐÛ"s°6BK@%¦ÿ5H‰ÆÃë|{¦*î ®çñ¬¹-Q×íÅ=|9/:Ä4J›Û_ÎH;;à}[6ãeôb팬ÇËè¸õ?xµI–ÈD+k;IçËóÙ#ÔñkóU½º6Yù™n (ð-I­wpûY¸­e‘˜´¦ß³íÏÃu½žkR€E Р·=öx­$½g”¿í¸ó¨¿XâqÿÍŽKåGÐx¾o¿÷k¡~ò”Ï׿„¢AƒmxƯÚz‚¾ö¼ÔÓ(šXŠúÞÒSާq ÿd­í¤¼|˜é‘I:®ó£)Ðo;‰h /rÏ~ x;+k|þÖöèþa·n&[ɇõðs¡?®¨65‡%äì&»m¾­ÿÇisßîGïÌ5²§·Þ4ß·ç:e8ÿûŸªæ b:}Q¨aJ™òUK™ò•…Lù‚”·Ž‘·ŽODÞzQÈ[yë°8å VËù% )éÐ )éE)%²Ð«K°%¯ZƒÈIÇ7"'Ú7'½j¡ðR« ™ëP¾30‹HoÇ€H\‡ò)ˆh.ˆ÷Òš“Û±‘¶ÞáPÀ Yj®Ñ\++ežÚùÈ¦Ç ‚±î½†üߪl>(5’+Šeó3Êeó‘…&Ÿ@¡Ý\AjW”ÚºõÞ_j©(M`z•êW–Jõõi”Šð3A*Âï\ß¶‹úåñïµÔH†Pé|Qh$åU`_£žöŸô¯Ó«™!´Wé|Qè$Ó«À¾«^ö]ªm8s©r^+µ•ó°d%…¬én¾§êæƒbݼÖVšÄÑ ‡ÍYñ*™ôY9ÎOqž®P ­å‹šü¸+”¢HE)>T½Ðè²*Dñ¡¢ªñ¡‚PU.QmÎ.»#ò"?µhëØeö¹Ž]‚Ú›]ˆø–_»®Ûî‰"ÁðˆAV;ª…Zv/åD‘¸ EâôLÝÙ3=‡š VCM¯eñÒ)Ìb‹ç…j³w)ß°&1öÚùˆmÁ¤‰mÍíxþ-:#ÅÎH•%—gQêŒÔÑ©¢’( ˆÚ5^»UÔãÿÉŸÚ‰‚“&…“²#¶O¦°}Š`t âÆE ¥à|¤Zéf„ÕeQ#÷n¬™ËñÓˆêŒ:#Aûö<¢çVémg"y˜ë°VþñÄ߬u‹g©;Ú'Á¦hŒT”|§øDøN¹§Óó#ÖÊ݃–G\‚ñ¦ðòœ[ikœöçÇœ¿ØKß² §E™k9(•1…:¦‚Tȵ@ÈÜ/D)SE¡– Z‰9–¹£%•rT:££â©²TòS¡æ‰‹¡ÜÎE¡  #¶¢‰ëj.i*5M4CŠš0^«š¸öæ²&€ÀÙÜõ‚Â&l›V6Aó–6yþBÿ\S¡$ –i¹‹uKÜñåc®V-]‚¨Ö.ÑT!óB÷¹ÄiŠT,PÁ¯ZP•¥ÐRe)jYˆA/DŠR@¨#‚ݲ6*J|G…°´G؈ó8s Z¯—0"‚KX^.W®QU*@¥J•J‚ªñêåÔü ä›6äÕò*SŒ‡ˆ6"^0V}¯Ú°ˆ‹A÷ÆÅJ\ ª7.†µ€ˆ–h£T8i¥ú>ìWÿó×SþcÀ­²k+½º¯Qwïe»¯ÝŸÉwE!‰ ¢Æ/Áx~ß_tÅU¢=x¿À§û‹Mº#~~ñ‡Kõƒ¬ÒãA–¢TQ*£F¢Øõúê?Ôa» YK{1þÔolN“>ñºgž)°T”BFÕj<øn{Þàq9‹ ¡“îßû:½¼*›e¬=Åè4\?ËÕ̸Gü¡89µÕÕO§Wލ6Ùw’t€úúá°¥ë]vÜïV篫y$¤m/£?PÌÏq#(4›F|ì²ìåOêºwÙ–Äù}}µ—ê¶ïëÃ3ì·õqÞ\_¼ôDmL5_·WÌ+aªêuß³š®§?Ï‚w¢ŒŸ8A˜›ƒssE‰¹‚¹¹(ù Š‚¿  ù  ÖaëR-¼¨‹Ò+¸6s3dá­LsÍÏà‚𠆤>pi¬™m™Ëab[Æöå •úrµÍç—+tºoùÜ£4ÿ´4”8™¡:>°qÊÜ 8™¹^ÂÉ YàdÆR(fœÌE‰“›°ïn âfØ¡ÄÍ\3yÂÃX%nÆjqóIî8m‘¹‰›ƒ"qse¸¹¢zé”ò­Š$Е…ŽËÐKüÎA‘ßYÚ§ërQj» Y⊮^`n®¹à¤JDÊU}Ž!+7fé.å pÍJlË]§b[®îb[î€"RÖˆsV¾ ^Æ%ºåê%ºåµwSéRæ‚Ä·¬]6_`…êV†h†¨wF²ò‹êÕt&9úçþÇ@µ²@%‘*JÜO^'ȱ“P©`V 0;Y­¹öR²¶¹>³üƒV¡mÒx3o0 n²&æ&BݤñÊÝ´ø¼‰¼I²ÊÞÊAe«R3i‘^ö4«û3ÄÆ]ÑžÇqâyò›»Ã\¥ƒ‚(´K’MË%;”JjµTŸxHŸc¯å™9 #‚ ²@ %½~ªŸïÏŸN­Ô²GI¯ÐG͵ßÿ\‡_”*ì! ö… {Éjí¼P­ê뺗þŽDõˆY™Ú—?¿²DJì*·²P-±‡Z(±ê{:G߯w#¢x²›ö¼'H–Ÿ¨ {‰ºÇþéþz±HTËð¡{ËðµZ:Ôx22£ïó³þT¶À^kë¸;d5mÊ#!3 †( ØT{,ydÑãœùÞs˜.÷ß¼\Úû¬T/u/-JT|ãiÜÚ¶Ófm­&ÂÊ×=?$דxØ^úëÏùé`Ô‚ØnI­nÏíªqÜI‡[i:öèÿýþÌcêëÇ·{z]›1‹÷-w$ú¯ÜÒDgêzóŒõ{¦å×ó*"+Œ½zþódƒBç±4w©ó§=¡Þ¢0':Ñ{Äm?ì¯Q5»%‰¾òS¨ú‹¥£ØÑ¸(ò¤¼‹‡®^ë¥Öö1MJ¤|o¦Sºó£ŠB~”@bÙÀïYT޽Êi•P¥QªùQ4¬E¯6÷i!*tvEÉ¿ ³§ÓšÜ'5¹O YSî¿q‹Šo¢&¨RDMRÂ$CJJÁí‹å', Ü«@%Aj±L§©•­Þ¤(kN’ZãFóý³hÖ«!ùQo¤º<~-î¯<ø@°Œb¢ë¥î³?Tf(ßHžÛ‰66Ê‘E~TQ(ÑègÓq…RLKj¡Ü_Ê·ÜzÂB£z-ª%ú@!_ ^·LÓ÷« TèKwä­5b{§}ÄóRy&’.gñ-‘”æš©¤1‰-ˆÇ€-ˆ¨q(Zë¶³¬|_i·XÌÉ!Ò€ CѤH$Åzø© wšµ,NÕ`'é¦\‚sÑ¿ôjÑ¿Ds’4AÍ7…Z¥vÆ’GR*fI©øÂTêk™¶R<¨n[8ö—jJ¯ü¢ôʇ¬ófÊí}qYËùdI®ùÓZÖ÷æÁxüååöÛFÝ:&®Qð„ú, _P§ÝÓy>|@!êQÇ-5ðrå²@Òãó»Žë7øAôk,±åÞößÄëë%©™Þ~È—Ûå Ïwéµ_:/bËBÝwޢב$9Ò~+Ë|ü{ùo½´Î×Öó~z>$5‡÷½^æ1?_ËÅ<”/ŒÓvq™~Ëá½|Ÿ_4^Ês3Rþk ±ôi=Õç=Ä1êáÏ&±N¯À¹e©´ï^²ú8—¬<Îõ‰Ç-?üz?ÿ¦š/ÖÃY>¿2Ô€ºì Ý·g ç=R±ˆ?ĶQA)²TÛFÍ(·êˆs4Ã!T[8…hŒ¥FO2i¢A˜DƒŠb£§˜Tž$j„QA Á ¥–Qý@5ƒ êq(|ööóò‡-¡äô5J דȖQµ©šAÕ^jPe/uƒÒ¢o7¨ŽˆnPݮۋø4²Ó?l2µƒêâR;(5mÕíÓ ÷뀚(57åÅoZõE‘5(œÎ(œ%‚ÓŒH‚ÓÊÁiµGj@Q¤A­^¢A-êfñª4¨Ò¾4¨A©w¾<¨%Ԡȃš "jPâA­îâA­µÄƒÚOªF j@ä.ífwi„¸KkSq—j•»T¨Ü¥E‰»´#Š»T¨r—vu‰»4z JGÜu‹øŒ.Ïš€÷ò’‹Â¨¢TTKž RÉSQ(f h´½¾?ùñö¢w¯(3¥2¥¢Ô#¶L‰j¥L ŸØ–V²V‹™`x3¥b&È/e¥L †•? Ñ®VBµ/”Pí ¥ÕŒš'ìÔ<Á^¨y‚½Zó„%ˆš'(_~Ø¡=¦$ %OP %O˜ë–<„’'¬y”•Qi5¥ŠJ QiZRC¥u)”S,(1AãM]M 7Í ?΃*Š%\[3ÙŠ7õÜÍdªTü·(-J|%A± ´²T ½Z Q >)Je£A©3 d¡3ŠP¥5é€ï½>(ÿ§‚m…Rm)dµ¶´ Ô–$꘡¤&°ûÜŠÅöœš¬T®«4µO‘ @÷ÍÛEFGi)eM-O´ ÓÌDKµ¥âÎÍÜZD#¢jKU£Øö¨-Jõ ÕzP,ˆv)‘ò©q«G~P|¾–g Êò Xž¥VýýBù `¸:`£!*žÈé¿rôƯ(½ñ15xãÃToœ¥^xãsÉäžï˜œ>ß¹ú&~jÍ Þø´CÞø°o|.ÑùPßøPo|ì®PTKóPT/&pöÀTðpƵâÀÎãõ…3¦/|Ž7¿ð§\ðÿ3+T@d… Š|OA‘ïiF™ïiFî·q ?Ôo•Fc´´ßSUßSPä{ªê?éïßçO²”áÅ Õ™ßSPä{*|O‰ï) ò=Õâ{*J|OE19õ ÅäTíÅä”R顽¨œ´ºJåÔAåTP©œ´L·€ÒëÁ ÍÚœ|(.R¨®‘Bé¤))T½BŠBÈ $áÃZÈœ/J™óP¾—`ˆüzhf!@!¿K°We­AŠ =²Ýa¯f»W-Ü#µºå›ùA³ˆB8 j!'Ÿ˜‹«@óÅÕKkº¸j·"LT”Òæ! ióXY¹“jç£5 ÌÞ üÉÁµò’E/iQò’/iAò’B­zIû…ò’Âð’v@xI+*^RÈ©—´rä%­(yI15ð’ÂTð’ÂTÈ—â’‰—(xI1b½¤\}³—”_ÿ'DÕÿÉÅ7û?ªÿ þOì›ú?¡yýŸžšÙÿ‰ñÚ¢O…—”{0^Rì x@‹j—> X7)™ºI©TܤïEÙ›_B…ôA±D~F¹D¾(•ÈgD–ÈW–J䫽Jäƒ{~Gĵ²XnßoT¹}Q*·§¬WeðK´Ü¾Ú£> ÒÅBú•…ôA©¾º«¾Ê«D^²R"_PÙì¡z¯®Zª¶ïŽUµ}׃ªíkxUÛk/¶Ú¾†ˆ×•ûµùE©"¿ÖêeRº«"¿ËTùÝû­ÈŸò·[5RK‹RE~QòÕT¨…T €Zœ)K•j%K"K²¥ ½ê2ˆYªP«Yª…ƒ¥,U ø–ž·q4þؤkIJR…P*í±JáUÀ¾@ú)FDM;¾I£Ð ¯üލ¤QŒØ¤Q|"’F±lÚÈO"µÊ7µk >X ©¥XH-åNœRKç8Å*øT”‚OE)øT”‚OE)ø½|‚^ >ÔàSA >á Y‚åYˆoîðj´bÛÜíßϲ; ‚I*Jñ§ Y‚¬<«=‡s` Æj` ³ƒÀÆk`‰KÜ ,-ÍþX‚î,Á  ,q%°ƒ6°Äá¦À%°¥æÀ÷Öñ´ßÙ.kA ?Aq„Ÿh©9ü4õÓøÇ"ü¢ÜŒ¤¢Òf$rÔf$rØf$(¶É€ïýX—Ÿ—êzX*Éb‘ ØA¤–Po¡Úõ£zµÛ3D©éGQmúÑ™FKè¢Ôõ£¢Ðì™ 9ÍžBƒf¬uѪi‘Œ¨ÍX[ê3ÂéIŸ‘ÊBŸ‘nµ©¨™ò^ r‹ÐòhÏŒUªv$µƒÚ‘ÔòhG";´I‘´#9~_woÞÕÏæƒIiQ¿·ž½_Ï6èB¤´¨±è‡¬óå3oPòÓRÖÖúûIE½¶ˆå8_ŒÈÉMÔã=°wŽý:~’%çdQâíˆß»ó{8ø®·¥,8:1 EÉщá¬òã9\ùÜè°¸@¡<TkvtBÔ†<žÓôÁ¤×Í“ø@Ý?}áhé1‚/ßççÏv.ekIâ…M÷0â(ÜZIrtòH:l¼þ/¢tßùÝ.ƒ…g½lHPú–¬²r‡E‚Ò ”UJg“£*K<¦3È<¦EîÑ Ä=Z¸G«–¸Gû…à­IÅ=¹G;‰È Âˆb(­!AE½ÊcsÝ~ ýÆ¿æZ<¦E‰Ç´(ñ˜vkˆÇ4²ÐP›Ql§µ½ØNkU°Vyð˜vE g ÖÛiw™xLµçT+ì 1”E†ÒÊCi­UìT¹ýoÑÈ9(Öíõ¸(Ž\‰ëŸ Pªî‡^¨î‡^­Û/Huû•†K© ¨Ÿ Àãˆø ªUûݶ¦Y×?  Ôº(´xªUû°UûX ¨ÚǶj‹­ž!ª%ùø¾6”Ò¢$²PlÏ5:weÒ®hµ}Aª¶‡µÐɹ²Ð”Ij¡r¨ÛîT{|ê×ÚªÜDzAå>ŒŠÊ}|#*÷!«•ûP«5ùS à"Û´(¡ŠRª(ä¤ÕœT€“*µƒ¨1(«)©Ò ‘ªÊJ™T)LUT3W%ª9©ššæ¤Bsä¤Jê²`öf›ÊîÉ6õºš²M½Ï#$~}r-KR£b\UsT K¡Q1Hj¼ û!¹¦R<¹¦Þ¥ ŠqkÍá'Îñ~Âòl ©‡Kª(E  +I¤6UPT~N5}KBùñ÷nåñ§Úo%úŒ‘ r«îxßà OôŒy˜g»žO™ŒÕ7{ÄàÅ1È9ŠÄÂ2T_áÕ8oð~xs‚Q l /æªÓ\¤NhYõº0Î[¸j·V<ºkÁ>¹5T"v3FñºŒÕ‡{1}¶WŸFê鋽Vî{½Û¦ñ·hܧsØžŒ|1?c¶š*U•›¥]ïð…f"˜ôÁjo»{$öE© D#{X Íç! ÝB°úR¤³ß®£ëZ®x’…n÷˜Ÿv»‡Úí;½G`¬öÁÊjû)@üoQ½T”"ìE‰¿©(EØ‹R„z5Â^"ìP %NE©, #¢,‰Ê§“3d¡xÉ#ÎÅK”•Ž¢˜FäÀüC"ÿE)òsvßÝ×éÓzV~ôÑ– ÔkN€($@Të¥`-d¥z)œÈ"ÀâB½7c*¡€BÍÖ Bñ<»ŠнB!«¡ø‰bÓ¾Äy‰8¯¨E—æwÉî*Kdw•…ð¹d©Ô³z©Ô³ærÏä %†½ŽˆÐ¸ôÃf {E‰a³ý‡7ìƒös²ÄÃGÔÌÇåU>è†= À°­À;$ä Q¢Î Å¥] Œë Á‡õ>¨U>€Zª¥<³ðA'ìa1€`»µÔy8TYªM1·³ŸB±ÿaø †/JaxŒˆ{Qß-àã—ìþ xCÖöúÛbŠk”‚õ=®#[Ëq:-Q éW­ÃÖ»oÛ­çFmà¿¢Ž›oþríHz|þa·Âqù#–}ÛZt¾ŽeˆÅ>f!vŽ˜èye)0Ô}¿Ù¼ÞÌÔ~ÿÆñN»®G|W§ûN­ñµ¶ÄcÄáŒ=ýñCkÙ `±µ.£æÓ*M¸6ýÚ*âú´ÜÕŒ×Câõ\\‰×cEì‚GÑÃe-KñzXë¶óñÿ)oYÎõ{TVE¼߈x=d%^ÿÞpgüb¨º> ëæÈÝžsÅ”¬¤ TÖk°™Ïj£ú¾ ßw¸Rž¤Ú{é”Òû€Ty_I(¼ŸAìÖ4ƒä/èpª•¯â(•¯PØI *9 Vr4Bg¥&¼˜¯cà6µh’ÚéÐÔ‰ëû£¡ ¿Ã¡¿sRâ ×jübP@¯=7Ó–TÖ|Êç»S®ñ~@ñöez¥þ[Ýg£î‘„ºÐ`šH±ù¨„à|):Bï„Ø{ÕFd= …ÖkI” ôV˜¶…ç£EÎk„λ”;HÁó‡èyAŸW§ÆÏ‹A½[ô.ï†Ð«6bè]K¢w 2Uk)…©]ˆÇ×Èkï&"ß½‹|AˆÉw;}ïŒÃþá„KP¾‚PÔùî‡úgÇgAr|ŸTPŒ8%ÇgQ UŸ0„@Õ.Í¢Ô4(“j{¸4! .MÎc\š´DZ‹ÀöuVbIÔYYš†@w¸4‚KÖR\ªs­ˆSí÷(¾­EŠ’(“jx>¹PãùÄ€õ|Ï'†ƒS‹NÍ¢Ô5k¹®Op}ró¤kÈ;ÁÏ*¾(‘-%²%È­QQ÷Í{¸¹—¨û÷aw£þMO¯,‘¥$oØ ¼FÐë²×ÕÖª¶¸ã{V2P[:éýuåYÌáœI'ÁCñãoà‡¦j’7fÔG˜ÁdU”¬*c.#ô882Ö£mþ‘­‚ç{9ÇJ«ZÏñ‰¬%®ª‰D‰û&$J\ _Ãù˜ÈËZwäºCÔqï•öºÛ.TŸ2â9É[lèñ k(!V˜Y›0ZÓ®|À$³(p;ÁI­ŸýQ+gQ,ŒJ.OȪÏ¢àô„òðzÅJüÊ‚s´(UâWy¸P‹’•Ÿ'*Ô‚²àF…^¨ýׯáU¯_¼­@©¿jÁ)[ª€‚Ç‹YeñPïýD¼W-øf©W|ª˜jøK! S襒÷ŽX—)ÌSˆ‚g+BåóýD¸M¹3f—èñ¶ýà/# °¡E/ê!dœÝÇËíðIJÞÚ_ð{½8Œx߸Q0|_ê¥0ºdݶìíËxE-õ:Žå¾Q¤]ŸVêô“Mýgõ)è¾ûÑO2Tšþ²‡‡çD²ZAY‰9nþ¸¯§(°Eiá4(ïåuÝH¿^‰ñx÷ê¿ätû•ÜŸ=$*lQµÕ2<–ó³L„ËycCÝèÖãóá 7š¥I•) Y?G×ã·ö²6üˆ^|ï =.¬µ]E†øþ0‰ÇÛ¶#Ž£Ìi-뱾ﻬÓz—SJÚ·Ò^˦ñ}Éj|ß‹~[‚Ãnë5æ)Jñt„áÛˆ~ˆû”VЈò7÷홌ú,CÐy[£ƒð¹ïB—å‚Fåÿ˜˜ëù‰‚NS÷ä"àá¨N€ê¹,.Bi =޽ãë7. ÃîÔ»ß_!LîVu=’ÉŽËѾ÷&ž_“è¼ÒûxØ2»N_cI-UT¯Cï±—‡zïwéáPX7~ÆèüJ "è4 ~¹?ó``ðËþb¿?½X¶åîˆ|Ö»i¸ëÞsxdÓ.y<ïÅé[À÷j}Ë£ÉÍ;Þ¥‡Ç}g½SŽ[¼ç4î·¥âm– •êõ„-o?¿³_cë­ÏŠÙç¹Z§Ã×+õ­ Ë–*~ÁÄõÇ~ΊóýùÚ€™¾‡¤í—ñë™1õ—vçß*Õsw¿ïöšº¯$9Ñsn×é4²÷¥NHàœ1ƒÀþñµß‡g[4¨ÄÄÌtúñ厳ð¸}oÏüÍ-üJ…NÛº|ÌÀa ‰R@LËŒ¤²#Õ×Ý£8öÓræ[æÖõø¾Òû|ÜŽÜÇn²;³”:ƒÎ‡6ú~RCôõã 8ýIõÍÔÆÆ’u\.flfzÇ™s=ýÉœÎÜ‚ƒ©6¹ ç?|cÕø<–ëãâtþ°I˜ÎS+›SÃmÛí¼ÞnοŒNJ¿œAâTêîVŠ&Nœá>Œð¥NLãÌpe]ªÞ!]š ÷¶_ ð'¥X;d¡´(Eä‹sQª¥¬TŠBûVŠb@¤¥Ð ÈØ\YJ ò î[Ö\ j@¹pþ°Ð~°Wø¦a¯VŠbÝ R´(EäB=)>q{è…¸= JQÈB¥(P(…ö¨ïÄÎFå&–*8›gsGg3Ö Ê;; 蘹"Rʳ+5 @¥ºs꧳ⱠèqK?mUY߯ðã b[¦€Dubûmd(§ï‘±Æl—ôÇõO ¯*•æN˜;/tßöÖÖ`è‹ïhåË FDxmæÁë×oIÊû­j©¸òª’RNC@Ji¨$tjÒ×}ö+ó×êëØÍ©’¶{éã¦sYKR²Bç¶„t¬ý—VFzË è’IS€àß*>4£èô,JÎÊŽÈ(RPŒ"eÄÛáÇóyùãm–¬™îX(Ät Ý1´ºoQ´me?ˆRH§ó£0Le…~XÓ7)¦º.PØýüßONûréÝ„æa;–NpobÀûž÷|¹>üB]÷„‚ÇÔi½°ö)J äw…Iï»!®ß¶+ª”uÞo4§µQÇAsÚý؇õ€Œ uiÁ‰‰¯ØÖÖæ/8}ÒK~L˜ ŽLLP=™Ú‰}ÅO'ÿåEA±,¨²PTQ* ª(0…@ê‡*ª9µ‡tG-ÌP&Ђ@&"»£® ʃ¨·V«[µT 8Aa+”-QTê–ŠRáFDåP(]‚^­]ÅKØa¨^šQß÷ûæu8ŒµÃRT;q@+BÁ ¨„ÂòC)‡ÔaW ð¨(tâ,Ô'U/(aQ¡Q.QzÕ•lžV(½cJï DÚR= ’7e¸E Ó¤Ói/bQqôZMZƒB©–t¹Ñ4œ«2'*6š&×µFï ±'äR£wÌ¢ÒhÒÛ…FÈuF“Þ. štreÐ;hQ4Í/(‘ª¸ë‚²œT4éĪ  £¢ ¬Ê™ ©›2QvèìÚ¢i‘¸´(ç„*‹¦…Ë¢ép]Ñ4ÿÇ-æ;®fë3PµGïn¦UíQQª=*JþIŒˆFïEÁX‚PÅNE©Ø©(¹¡ü‚EÉ1XÔ{=ÄR\ƒA±Þ ¨Ö;„R&¢ÞAÌJ™€Ú:{œÆ±öÉZ­SÂT£N ëÞF¨… $Nõäoäî‰Ã‘““ $ؽ~IˆBUŸÜ—0h+¨Sœœ°Âìåä~NmP¨-Âסm§&}ão;Ãöyð¹ü\˜[TÔ¸n6vŸóŸ÷{eµ ²Ä#Y-’¬Hîx¾œ^-Ó‹:~mÌÜ_¯ ¼•ŸK}€B©ÔÚÞ[:ÿm-KÍE`úúþ<,Ç% ôK2LðhýQ”šõFlóA­ûuÏ—?®×àqë&|< —ÎZÖOÜùú×mÔÈ^|x#]o=A%k‚¨ï-Óïxº]ÿ[.1„ª!‰jÕ´+>´ 0–Þçqi‹Àß׋ù¸el¼ŒßK»ýô8®¯vœé4õÀV¼mï—ÿÇ™N&™>Hóf:/J—Ó¢t9- Ñó‚tƒ…(Ù‹Â=· ÝsaÜs¡¢ßEé6ŒùÁmÚã6\”nÃEé6ŒoüÐ\Î"Bî4WÂé@!TCô6ŒYÄm(܆a­Þ†i¬9òŽõ€+óÒ¤oWfèŽ+3×ÃteæžÎ•fïeØ+,%å ­æ+,lŽ(< …+,`ý{Þ¿ÿ1ET¨&Å’ÏÊBò§QsZ§ôJZ'ÔB*&PªÒÄ'¢´²¨÷:°•òh´!T3#1"Ê! R9$lÚÄH Ø¢I ˆ¢IX¡x¨ÕŒG©…ÀxQ£'Ñà£þ>?ï¹Z7Ç}Ä9¯¿U“Ð õFX7ˆŒ¥ÚJŒˆÚJ|cs?…jî'f¨¹Ÿ…ªIÌOR?õ±óäšS?¥Ê4! í?Þ²›7·ð–c°e<õ!å> å¿Ï Q’T²ß+¨„$¤^JÕiô)‹¾Ã!=¾ tH¢¤99^’’¯¯KÒ{@8ÚBÎ{@JfÏÜ`Gk¤~2Ù«8Ù5ÜÜñ¨˜²Ï£EÝOHtïô¢CQMY^dnƒt1ê†*ç1@å<ÆpÛôñóp}&”¤ú®&¤Ë÷´@¶|WäJjFýÔgrø›øà±®äßKoPSë¸Å¾ÏÎ…uÛSZž% Aÿ͂ƋeÜ#nÏy w@¬Å-ùüþû«.”ºt ¡5–¬÷n€ËÑ€–¸n÷›ñ²üÍjï‘1"¦çõˆêœ «¶'&Íí‡îá¼6„:g¨ß[Ÿªóåø|4CúkB­=åáÏEœ–GN¬tá„ZèÂYÔý¸÷“==ó$i®¯Í¨ƒÐá´2×>×÷=çúa®Ñ÷#¶L¨WŠAí¯‰ñÚ_³ õ×Ä$~o¿&—ÇïÒ}­UlÒX»§$°/·Çô|mùˆ÷¯§¿Lëa÷ÆŽ§þïÞŸÜPÿVµG3ÊÅGA±ú((–¥ú£€äA…(•)UyÔ)ÉZ-T Š•J¥J±V©¦X©FPµRçYåJUJõJA±`©zÕÇŠyVYST]Sm¥š¥ª¥¢¥UKÉÇJ;¤pie‡÷Ê¥.R•.izæÚ%mÕ/Õ ¨^Òpsù’µ~©J¥€©@S-®&™`r‹>vî×Þ}ú±à¾¿·UæÏÇ¢N›Çþxi ËÑ; ãN8y>^YYP«'¾p[rÇËùü:µ+êñe÷ÍñûõßÐ}»°LÎãr¼ËÎ:Þ_‡¥¨Ãþ»ŒgØÚ è{/»oqÉaÒãRùëàuÙ| Ï}´Ö¯ëôO,ßxÚèNs»Z5·×ñIû^çÛËŸvGÙñû·ª@ PPÓ —ãÄý°àO§½åØH±ù´ü†;÷xzªjíg•ºÿ¸›ÏÜîœqâ/÷û+ó šËǽüøæXÍ̸a¾_?KoËåܪ×x}ì†Q9zø]Ö_øó6N‚ÓzÄÇoÉ÷6ÏwŨ ëëÚ€dKÚØØjÖ’”ýD­ÆkîϾŸ~þ-Øšf‰˜"IDL®DL„™‰­i©V´’P* PŠ@;j@©w£S@btêp‰iõâÌíS­”šT5T'n.6匌쑑&¿žµTšv(”úÃÆ×NO//f ¼Pý²Ö|bÖ@ %ISÅg¬Óëþ_RÜPÔ:NÎÚ\Ɖá@ûÔ% Ú§ž% }êÌý"=–À„:ÏiW¬ŽÊ¢Ôø(TÄ…ŠxéÕ3µ ªAñÀÄ€í;LÝs¬• |zøÔÚz t²¥£•Æš©—¥WÏDˆÊyA=Ì*¥î@¡Ô]¨–ºË¢8õð=¬¸ÓÀ[§gÆk¤^óŒ£âì ‰9Ñ9"¡ÎHœ48$aTœ’E‰ø²Ê|µr˜n¾ØëVg·=µ·'b“?‚¿±¨ûNÄ¿•U]¿×#6Í($PbD–ŠŒ c¯_OoFDj¤,Qœôšz'2¶àX×ûÓÑ *Ž„JÅ@·-ÿ}¯!^Îô}¼oÇ k„‘—VPõPãqœ縶;6% 3 ŽÿýTc.çFnI­†¤~Ê ×½ˆýòiï õS¢ò[®¾¿~P}aD½hæJ(¡Zää–€·­HvóÏ~²W2I5`ãaï´•Œq?è>¼rÛÑv^ïÖ†§¦êç-µ UóÁ¨j> ¥=$ ÑĪùHRÕ|AèèYP8 ç«8 çkLÎw8ÎkZR8ßùEá|@*œhnäŒ ç«7 ç Bá|§ žÕÕõUÕõ©º¾ æ=u¡ ¿@¾Öe*ð«R+ð‹I¾–÷\_}P]ߣÕõ]¸-œïþFá|§…óÚKsáü»—~8*1ú€\(¡Ž6Ǹ!(Ák|[CFÔˆQ1‚w´9^1nCŸ§:bS­¡©‚s„4äc7âÅpâBšãM½¹÷WSÒP;¿nŽ$ÁN $qmOq$`F‚Ö"ÙHSèŸÖ@<@ üpOÎqi±cu72„íÖ0<4Jˆ‚<¢FsTh"û·s:m—¼Ñaé¼B‘ù®(ôîĈâÇ«,ðãU”øñ* í/R…:d• † ʃ v(AL 껊BcK)‚<,TÄW¯äa– JýéøATò`wPßê;¬ø6å”^%ȃEA}µÀE‡õ.º¢T7Ó§¦”Gq=w~Šë1`»mj_€"›:yŠ<ž”ûÝ”öñã‹ÙÒ{÷à tß20§ÑŽö°tÛ®ÛÇÓáëèþÃÐñ¸ê-GcÖS@Hz F9O!å)ä2ÓT¦`”£R”j#d(Í ¦õû‘STPïx![¨z7 H32gÓ$ ­È© },¤4¡.µf õ»š$DKÏ9BUú¾5á²Ór­)¨›6UX´Hª Ë>ù£8{i$¤u?6ƒ¨'Ä^nwy¬¸õ`Ê2ªÚ§íÚv>>lÚ\9ß"ËpÐÄQžIŠB<ïÆwÞRmÑaü碪¢ ÂøÐ»º Mº¼9 aÌç€ÏA´gš"T,ÍBÁ™ì¯ðÍQTf‚4$3i‚ Ê´VA™„(|2-JEEbÙ†D&Ó¢$i–¢IV\ã%™ÃK&» RÒù™KfUI™†Ù_B×û«Œ$Ê*Ò2íÃûXE»wÕ+A|\,ïÕKó'7R3µÊ^fÍ(u@sˆ‚w€Çq^!A1Ó(z¡ƒ;d¡ƒ»dµƒ»PíàŽ•ÔODªQ@Ÿ¨ád×µ¤vy×$–ŠD²”¶Y , ü!B•ôC‹+ÒÚ#.Ùyq™ uß«±_u’B¡ŸºÖƒr’ºî»ékþk½æÑuÝÚïÁéa Ö¼² júr‘H{¥AEXF€ˈWýe«(?üÉpêÙÕò º ÓÁ]†˜Óf÷* S”":A©ê(~ŠBÕ%P­º¨õ”R«¡&Ú!±¦¢PO©’*H¡$ 8Ç’`„ÖSjr‚àê­º U—^3‰ñàS›iCÌÌvÚ)O’¨]zaÍq+•™’Ôh0f.ì9‡ƒ0ψqß 3õy)¹´ )DA‰õ@ñ{`¨ÖSJ©¼âçUzPQêªQ”„‚b󢾺9]_¬ËÒk!T”R„`,¤ÿ@òhø$¥äžk<Ç3ÿ•jnQs PAh°Õ‘’€ úžt¿¿â*Z ûÑ7ú——Ê[©Ãã7àÅW§¼#X ‰GE)ó¨z=~ Oã/Ûéa=¢R† ëºwÉx¼×ŽëiTfQe¶˜Ö^ÚõaÄã^¸ö°Ûz¶Õ½j!ÁkF<’ÒÀŸxø)¨z=T4È2âŽÒŒfúîU½¨’&Q¨ç‹©ÏÓr¢OA‹U((Fx*KAž¢ç)J¡žµõ÷Ÿ4ýÓZ–bBýF…… ="C@Í5C…(8TãC©E5D, 3pPˆ(• R1iCÉ l™¾¯*,w© q*Î`âP؆Eq¹Ÿ¾ßîž1+nŠ„­ "W°WƒW^ sü j5„­¢Â‚G” ¶dº£dèý©öÏ5CÉ+P”¼Añ½ë†:¢ ‡ ×ì(D^¢ä€ê¨‚Iá;Àˆðpzâ;ÀL£z¨(yˆšÁyPªŒð…p`ñ”‡îxÊC/<å‹RVJ„ðxðs æ)½Z%PÊ„¸˜ç:!lé>ö¡8ûX3xìó¤Éc ¾UG˜g¼õ¹ÃúÖ{8þÜ0¶°ÞcàãaZ¼õƒâ[?(¾õ‹Ò[?(½õó‰!eæxrÔrÔr¥žoøB9ò‰×-8qú~Æë$ê½#Ö‡ÓÍ­(ú‚¢oaF©O[EÉ·} BշЩ–o¡²ä[ÈôзÐå[¨,ùº ä[Š^ƒ®ø´3êèâ’? (ùjzù´Pëèî×K¿;¶mæ¦F ÛF»¥ruÈjo$ ´* ½‘€RcÊš;(Iû¶Á€èèQ”Zz¥nL¥ÎT~ü ŒŒàãgYsï Ðüƒ çüsŠ?#D´Wz„`I I¬ú·©Â ¤{,Pè%‚Olÿ');1 v"…~"@m)%ýJn’öm¥~!XªmŽ$T›#aÄ6GÒDØîH^éôÁ³+­>€Bw—Ý*Å>(úX! ‰öEÉÛå‰-JžØ¢ä=­^òž%Æ%è+P³µåè+æiøï)fÞS à=Åz¸l¿e⵩ZO$ÕëÅhpŒB£XïÈáçäÄ}ŠÙû²àåzc”ë!ŽQÎÎìÅ€uyB÷¡£Qa«*¯°•>1otLÂV•¥°•¾±©ZU©Zot,D¤* í>ñ‰x}C–"R‹i|WÊ[u=+nˆí0× Hiu5 Õ*¨©§0R'Za¤ Fê†1Œ…w<•w|@™Tæ’oµ¦ßžl—û«˜ã•¿TÆÚ©6ÏÇW¥*D|ÜAîk¬Ä¥î·í¢t¹]þ¸æ4b=±t¢B•N(ЉJûÌèñïå¿õÚzLÏÖ è~úã™ëL—sÔÊÏl¢Z›_æ2ëñÊ*Ãm>}ú0‰{bÍèvtþ0‰ò¯jÎ\¢Ò¾]‰%KÞÎÊJWb}¢\¢ZÛ…þüü…jr‰N=¾ÿ-hžgÐq<#Ï{þÔ“36’DòØ›Røè¤ð.­Ý *Ýr1mìî[Æêõ<.©­{@êê.¤©{§÷­éõJRzº2ˆc†ãxÐ;/ûÚ^Ñ[­ùÚØí ßÁî[P{ÌÚrþ·? ÿÿáôtK@šÌwÞÐc¾6ºïz_¿_äÊͽã»MÚ¾jǯþÆxX†Æñ]Ièßí}ûY$_#¯l¥7zËk%¥i|uBÏø.\´ŒÏp#eaËk}ñ:b¡\¶ñÃcÅ}-W#LoÔåÍsF9Y¼ŸvDEâ3"#ñÕ ‘ø€‰Z¼xÅÛbPŒÄÅH¼´o$>(FâƒÂ!¬¯ï€ˆ×צoÍå²Q¼¾ËF·ØÎâõE)^ßYD¼¾“˜x}í©x}­x}R¼¾“¬x}Í©û$GL¼¾Ó¬x}õR¼>(Æë»ïuƒÕyÔ¨~dñžYóµsªþ÷?×ÍÅ<úÊBÝ|Qªˆ/Jñ”Õœüê…œü€?-ÇFuÒq­–2÷ƒRÝ×ó£²y¬ˆ¯íös¾¾Sumn–?OØ¢X\_Y(®Ç€(®/Šùö:»šo_Têæ7šëóÓã½8RêYº:UÎS‚æƒ:圬JhÂP{0Ú‚N?‘‚?=\a¦öM* ‘jW•ô½/•±áwiAè¬TÐh‰;ΗÛs+@P›/ÁL{6¨]› ’áþ>?#ð˜ºã~Çy©x[Áç=êq\/Axa„îF®Íðu% ¨ÇX—SO1|\úaÅýÄu¿OkL9DðùÛûtó°|­¾L'!4ڃȗQÓ¼ú4ž–çïÍû ”‡ß-~Ÿ8‚ë(˜AÉù Yh$ÜŸþÆcEµ‡œÝúÄ¿Ž•åxm¡!Ý·¸üð|׆GŸ é>;8¥T{q?¨¬'§¾g'¬/T¨ú9‚£S(×Ee0êÐÎ/ƒ _¯©öØeO:½?é'ëa/ö|æ|P/ìÔkrÔʨõÂJ~$ð‰u±.—Ä[ó¯æÙɪ#©¾QøsØœï¯CFÍù½u&»÷DªËF³ÏþvA±']QÈŠªiñ¡ë»ÔjOº~¡zÒÁ[ÝñòøéxöÓë€í!Qé69é39—­¬|ûEü:,E¡½¦¦Iý2×ÁTíH/íO›Óét?ÿþ^,V×ÕÎõÒ«=é¸F§šÍ`k=%*¥ ^¢sw;€Ú¸JµÍ½vW ¤y*S3÷ÀÃ’ùÞBÑ#/á²Öý§…ÅÈ8­ ŠFö@µp@¶Ã™¤ò[©¹»üû̯j”RùQ@*? HåG¡ü(³P©5JÅ´À½ƒ¡Ž) žŒÅàÈ+HµN5$jª7ŠÛ+ µíšÜTMÔÃŽ+`.­Òz{U“¬çv.­ê÷·´ªrZZÕMÒÒª`ZZÕuÝÒªš§¥UœŒ¹´Jd®šÒÔOÅNŠ;i¨;Õ†(vêÒG±“öGŠªS‹dë©FiZV‹kf@< ÒÈ€p@v´ž}Åôì Fg_ŒjˆG@8B+Gh­ˆÓ1JãΈÏÇÚáp„jús„„#´K2×E®£ù˜í¬DK{>‹;XKakÈžÅýúžÅ]û=D«OQNÇ|ˆV颚üéíºîõcå Hd%õ쓉þŸgn³ÇÿŸs:‹²Ï2²è³Œ¬û^x9’Ûîëà Aœ¢Å)ŠþÏ~c@ÚZæ=N°'Šdݶªƒë_Oe)r”ü²A)vTÔ›'} jð¨ E0=rÆZ‡ûžóý'šU#ßfQòmVyD`y;=r¥ FD ;a$|£’•…hΛ½àpÔ„]–#ž·½Bør}æQx9Ïa)¬æÆ¥ B` ’Ouë£òa°Ý^÷Ê+Õ»uøºŒ\­ÇÅìü*n®¬j\ñ®_ÏD9€Tî^Ôã‡iwÞ_öUk/õºÖW—¥¨Çê}¤>~óNË/שñc°•|­EíïŠÛc¯–f8ì­ãçóYzŽDéyQ*=‡ÝÓÔ”¨ÍYs¼¾_eÿEdŸ:ÿ·¶Õ ˆW•Çrÿ^‚n?¹Éãß“sßâ™÷ÓŸöKE×ÌX —ã'Ôý²³Ý^Å8B}ï–§W„NŸØ6Ñm÷Âêø´pÍ_¶EólÀmñµq_¯>¾Ð}O>¼ÏŸ–òeO\»¿˜¹¶$͇¬Ã‹ßKkj ʹF >÷tŠë±{öFTCûÛÚ¨‡¯fÃÛ§iw6^÷¯O«9m)ê´+¿þ\ Þƒ½«À{PêÕ Y ÏWˆ–! }?RxÚO=é±PMêtÆPqþŠB»KÙý-F¸œé†ðaP„ðñ…ͯÔ"ˆåPÎc¢<ÅúD\a‹R´œ¨Ó0ýåþLú–é-§é-Lj¸Ãr¥ÎÊÞÖ[~ÿ¨_XoŸãq¯Ð¸^ailÅôë”Z%Z–¹pÑåi3-/'û=>bê0r¢ª—Úz¾ÓÐü[°6Å[,P`mˆ`mª,]c! ¬MÖ¦¢ÀÚÔÅÇ„ÁÇsi©(1-¥ë.>×]|#˜–*KJ1J@C©(µ…U{³ì'‚h©’@´T:‰•N¢@¡G( Ë ¾|LX6¸2bÄò1¤¾ž˜i°6Ö&˜ }=¹jÂí„ n'ìEp;½¿~xn†}x‘ËL‚ò‘Zžüé¬,JO~(ÛŒßkAxʤ§|Gk[å! g)Œ…?ÖüX xðseåÁϽšsk¹Ïol‹û˜á}ÀµZz¤c¿6ÏÛýëY6æÇ;Ú|ØxïÆÌmwó7quø¹\¯¸P§-kdþ^­%êk¼ÅËæþ<¶€ú¹ZßþD¶ <Ê35â^{ý~•³õ8FßÙm4b[ê¥"NéÕ"N¡Zž)K|oA«ëH–ø`‰qzĹˆ(qJ¯ÃžwõزkÓ?”±ÕëãûÝ2j*=!jTa 3>,.•p5nÊ.J#)µU“oOôûz9 êR»g/,q“õˆªº”¬ŸPÚíü¼¯Hû­3ßöÃy[£Fêȸû¾?h¯:OoÅ-N;Í‡Óæ¶‡×9¯oÜ3FŠË'½Zªu²P—-QûzzfSL^´ j@ƒ¾b”óßž…úÀÀ{Ü¢É+j–‚“R‚óîÇÁEÙÑPŠÔƒ‡²:¥Æ¨ƒÁ;*Œºàu¬$”„Ê¡€\H>ÎZ A9x8k88«Óu÷#>~ãKÈ *ÅçŠ!íËx@; ”U%¤Ô–pÎ z?kîÝù©]Ú¤€TšÔáàE­1[˜4ž¡ƒ`k»P_où¢ðJ§¨÷—µ ê“ÜÑòþ–(5œ/ªof~^^Ã’¥†Ê•7³d©[2Ps»äBÔ/¹J5þMcÝv–¥qQº-Qj™ŒéAÇùêÕ§5e¡µ2P#ù{ûá_OaéüÀvW®æy£s-äżX}Ó‹™Z¡-2×hú"c¢12dµë1D¡£q?1y.¿<ä©ÕH»ÞZOž×»Bíß±æ×>Uï;~¢Ëý·`¿+J¼vE‰w9(ò.C/pä%vfÈ;sQ¢¿+J¼Ë°Hò`ÕR*c@0éÁ`Òƒ!À¼Ü ó2ÌõÆKûaÄpÖaD0/æe˜üw\ªá¿ƒíËÇgg.ˆ8÷ EâL;„ÄógŒgÌ!HœiÑ8CH÷¸¶B§WíE[½À¼¼Z5ïÌËEÍÍ覮‹JO¡Ð(´Íêþ}ØOÊ?¥C@é>Y”šk¥¾E©o´ŸoŠnsÁ¼Õ‡µåžÞ_¹†ýôZvoëumãìL劥^Qšo'Õqÿ¼”¤F°9Zt…æX {¤w€ïëIVó ˆæPW@OÎ}ÿi½~\¢iѽТzõ:‰ÕÐÂK¡ÐÇ·ÃhëV¾þÂ6û(HÍ>`†¶ñÀúKÎî¯X5 DMþ¸•G´(¸DbÞ)DÁsZ”\§EÉw ½æŒÒB”QÚáà`­(e p±b@øX1…Í…(xP‹’ ŸˆüN¨OkQò}•üNÞOš+îOŒÿ'Pp€ru% ”;1>PŒ'(æ^Pl²æŠByäŠÂôp–ò„ˆ·tµpÞÝ¥X„Çí16œ…¶¬¦S˜.Ó÷»ÎÊe:£è2…¨ÙeZˆüœEéöZ”n¯ÐÞP àç숺½¥®o°\Š@áÖ Tœ…ýÂ&ëH’®•lÅÊJ9Ø·SÈB×7Ì"<”˜\b¹nâÇÄÄU·(uƒ%pÕõŠ˜¯ºÕë)”‡‹¢zñĺéų ]<1Õè2‡#7O 7OLO=§4Ö|=JUþ-hì‹B•P¢žJwJÈA}A¢ž/JÔóU Uû%‚z*‚ú¢Îûq¿ÿ¡ç7†T¨ËvÐßïß´ÇýZs ~z @=OÒ"ß'Œ3õé,¤ ö é¥úî©Igå 5s…ÔÌRKcdøVaäxV1Öœ šÕž>Ÿýrø73’<óUp[F¶ïì—Ãe}à™Ѷt‘#—fôC3+¬Ý=«O›{N<8ÿµœA‘䩨ӞÆ?XOK‹9+ üM%þ¦ŠúÞƒ×ëÚ˜¢2¶ ù$P$h«t:Þ/²ËRwâ Ëc¡~jvïïýðK³ÉI¼îÛû+º%Y×q<®Çg+%èÕÊP,­V†$.(X\P0U¦…*S¬åön#ác=Ó¨2U¦˜pAA­ÛžÁú‡£¢Êf@ý(ÖêG¡;*ö¹ñSŠm’'îéã–ÍùLy¡,PAñLiQÍÓªW¤ÅDͤB”tßÑt_Q F¥0>a¦ÊRÒ=d!UYJºjN¥*DI÷UJI÷˜À·ŒãJI÷˜DÈ€B„ ¨DÈŠA:=To:}m…tzH:oÉÁ‹qù°mÒâêK° #"éžk4a(lC$ÝCVÃP…¤û~"’î±WÑ‚VMºÇŠAèk¦¡#¨Žâù· äÅE² •ÎWR+ç+…óú© ×WR‰Ÿ Jë:îýF¤ñë“âãW÷:²²KP¯È©¿:å 3Ý~ƒXœ_I­ºï·¡è> ÷êæÕ²ìí*Ý·5°%¶.×Àu{úl¯ÅåÄ©˜^*¥J¾ØÂ¯=÷b[…$ÔÈW'”È×–¨¯N÷ÍÁ6â¦k½·‹Òm¿/gN5ô²wJèkTÐk§¤4¾{®•ñ“sýß",ÃB•¥°PQ A/„… WÃBo»×àëø<30 ÂBð<~‰¯q?è®Ø¬ÕØQAŠ¥ØQuWì†GSe ÷øËã鸶–ª€j ÓƒàlúæÏ_ˆ’(®Ó*ëqß?î[“‘õ\·`Z!|ÄŸ²"LbC˜jĆ*뺵y܇O²‚^ˆ áO{gãý颔^ˆ AÖmlØÛã8­÷H@5€4y„–^Ñe¯hPôŠfDzE#K^ш¢W4¢pyоÓÊ‚ïTÖwZåå;­à;­Iå;­Zòvªå;͈ðŠviÁ+½¢µ•¼¢°^ÑÊC>Ö²¼¢^Ñ‚ä­Ýå,9<û…rxvÑÈáÙù‘)”—[T;¿nÑ.ÓÞ`µ/ä<Õ¦®ó´²ä<ÕI9;O§U²8)Ò³¿(½û!«ÿ‚ô^/Jö¢z4Kw<ë‹Ò»jáaµÊú,YxÿC¯¾í©ü|ÌK­àšø €‚£(x  | ¤|Y¦µæû“áãS( }°g¥ ¯jÝ Ð ~|!|دp`Dx 0b=°Vg‰‚㠢Ǯ>^n²Ù-0±/ŸÖqKDØ žùÃE=fq$òœSðËÝ-ÔyÿËãiù{ë/jxI–9 ÏéŠ5cÀóåjäêm¬žEô‹g·,d©(åéCVyC…*#¨eÍNGOÐÐëô}}¥§Ã^ÈÓ/JÉõ°D(A% øE)·¾Ó¨>q÷>žÆõmzåÖãÃB*Q÷­)Úéôêv§ùùk:P !Õ–Ý;Æž¿^¿ýZ7¥!•QëõÞ˜©CµÏêöª~OxÙÂãÈÔÿ W©Cµ¼©_½à Õ<6»~ªªþ·È - y¡¹SE©SPìÐ;4U¯th „šŠRï¥(¥ÞKÅÞKµ•z/u@TÝc¢Ñ¡©U‡¦ ”yŠOTW¥ª¥®JA±«’PíªT£ª«’ÌÕ®JU÷@©÷’Ö`{/i¿¶÷RGTï¥Î#²R±Ñ¡©Ê«CSM¯M:GÚ¡i±p¦MA)ù²ÔÇ©FE=ý{&Ë`syüˆ”ëÒx&FÅ,&È:ËÏéëúl&$Ô} m•.Ç%ŠÉNE©ò¾(¥1U¯‘½¥Â¿²?ŠºÜ~\.§g3pé…d' æd§B”ìT”Ø¥€*»ìŽ,&Ìôu¬ƒÓáûã÷)× ¨ä:a¼­zü4® _K3 ¢ª-•e¤Õ¬­ÐŒ(¬ÑÍa³åÈ/×Ù–+føSŽëu5Òp¶Õwü}Œ,¦0IXØ­` €,¤Wqï$½ #"½ VÝ®žÛÞY«…,Œ‡,ØôøSÜr{1[`À¦Wa‘º2ÿÏVù@Nò†Z‘“Ì¢@N2At(w4¤–VÔ‚çdB-xN&Ô‚çd6‚yN&Y:¹!Ël(³öói[ˆNÛ¢tÚb‘Z ÃÌ&74ôBš*F4EËŒEË„A*”‰…4ʼà̈́ҕ%&”®,±—Ì#â\³IÁq2HŽ“y@lXfB™$Ê êé‡üÿuú™—¤ª‡6ïý¶z楷yP¬î,êëkg/ùgˆzÁ¥ZQŽ˜jQ Z/ÚU1JµR3Š[ Ëã¥Yì&꧉ 4oi(t¾(•…QLJDú ®<ß—åš¡cÆBÁ)æŽÎa Ð .ê5§Â¨xåCªOñ‰xÀã€@êjá¼?à¹NS…Z”žùÏ|˜íšGtmxêoOê’F™j) ãe[S/8^Ž×§?¾ Ð@tú!Qûp èôõ“~ò8·Wz?¶ÞîÖïÈ¥J#%xüåqª]–fBª’nÛCôñq÷µ¤ã÷N˜3â7¿A—‚ÇþùݘÇÞ»n4Á÷g‘*@›¾Õôõ ¥àãáÁôâü h0*þo«¿-Í4˜ýÆ_FÄø¼Tü¾w¸2NÅÎ N²€³ñ}߇;-×åXÙç±RÎÏ8+¾®¤O•Í©Órß2¶°îr~o[¢ôÖ—ÿ–}ÿ4Þ~<š—˜=¯wd†Ö+÷º3ºgÐJ!E™ÞY'> æ´»§tûÝ»5#¾£á¶XI¸,”»bGÃU±‚ÀkTRÓùqóÃ…û¨™À¹»B£ù&YF+·Mê5ÒJOT$Ô«&æ¶7M|/‡Ø½„«!‡›î|Ô QÍTÚX©wG¬Ûæìc´Þ ¡w¯„\oó:5_[ ì%WK,¹r“`8“¼¥ ÿ[dáÏ &áGzÑ£Vôm‡íc Ÿ^ÍÇR.@hE_ìËçñmÇHóU ¹ð©Á|íLøÚíåj¶| Ðdù~?²àõi÷ÎäãÒH?™Åçë'IJ§¯¹/›óè<îׇ¨,ú:°•tN%߇õ]ßͤ¯ ô§¯Þȶ¯™lßµ„æô)!¿fB>¾6oÒñµR¾¶¤¶Ã«¦§¶¼m µKÆyÆ…|¤«·Eóí¿hô0Îùóù•&X”X™‹+sQbe. |ˉo¹¨ÇÝëk Š~2„˜”ñ‰›cýñ{{>Ť|³¡ü‰aeÆ•²šYe{%'(p7ÃÈÅÂÙªNÛ¦]‹Bæ( îf _¹›aÔ7ÂÝÏKâ=¿Fw3öFS¾€Ã3 qú¹ ^)´\©ánÆ€Ûf\ý} ž1¨›±hnû™t:>\ DÝÌU“„Pš!¤Ì<+gRæÉ_´½T*J^Ë ª,y‚»±(ù‹’ÃÚ×ã\Ž0|ŽuÛ®]I•%¯#PˆM%çdQðNbÝ ‚œ˜ð¯—i9‰J('%æ^Ê¢ä¦ÄˆðSbkÀQÉ J„²àÏìz>Üö·ÕãBõµÖ.M,Ôú4 ‚SËA ˜A hUéTÕ±ý n©(Õ-…º¥¢T’T”J’0bo²©"©(U$A*’€BEe¥"‰¦OEÌ…ÛgQºW­H‚(Ü+‹Ò1(V$A­·"’¥^¸1RÖ\‘Q¨HÂü "©(U$a3¢" ëI0**’¸7R‘TYª5 Š]A:bIR eKD¥l k·Tž]¹¥¥€ÒßÐÀâ’ò” µ ƦRljVœ±)èÔØT@ˆMÍ£165 blj16…klj–ĸS>q§¬^8¡RƒS3„Á)X{"Ò‡ §ôe NE’‚S™\§òý NÅ’ NARâNÙq)åÛRÊrSH)j÷ª •wÂ*iH):)¤”Õ­Ò<CJY( )e¸„”¾7ò©á/¼þÛ³ö[nåiÐ.ü¦WtÙ¶ãFö›^Ð÷vg~¬¼g€ @tþ¡‡»oŒs«á®ÿmŒã/¹•0çÍms?þzœ€9nÎè·4û€®÷-Åþølãˆk5Œ}Ú÷Ò÷óö*…6º®m\é6_Ái;Ö&ºo΀ëýÙ9 bôµ-Nƒùeùq¨Õ‚Þ·1¥§ïႹ/­}?àûZOÉFM7žÈ×'û8F;íL}ò3nÛƒoâô¬­fK­½=žåßË=2:ÖïÛÚDcBÆ©|øþ`"T0a¹µ€‰‹ä¼ÿÀ/—ÈP}ü¾Ÿ?m‘Û0Ñß Žµ®~™p,f»&\ÎΣóvuâvÚq‹í}ÿ²v Ôb$è¼Sy}Å£ÞX¸þ­‚î3ÊQ÷ÈRØ= FË3 ˜ï*JÌwE)ò^QŠªWw…Õk†”#é EDÚstD„Ö;ш­$":K!x ØÈyPŒŠO(@Q/Ú¥{µ/©¶…ñQ>µMO‘øª®({W©Âì]¥Š³k-OP‹=Ý z÷4ØêŠ[d­®z…8q6$_QŠÉ¿yƒ6‹¢íAÉ“YcòAÉßY”ü”Õø~µG|¿*¾”¼¢A±Ÿre1 @Ê7rOY³‡(xXi‰Fî;ÙŠÉ×^õB”bòA1&_”bò5ª¢íÕ ý”a.0CÁõ°b@xX! !ù~!ܰØýp°bÙÀÁŠE†Ê@Á)Úá…ZpwrÙ4(¯®Aù¢êîœ~QWO Ä% TYB ÿgPºÆBXB ÿ'Ôÿ'P`öĈeö¤Zaö¬pq–Êÿ “öv-µÀÙ‰ÁÙ‰µÎÎê•Ûµµ ¯'ŒÕ‹³P½Æ Õk¬V<:@Vï•úF0{b{û”^àÿ¬,¤yJ¯òbªÁÿÉ]=_d5 XB±Á T/²2¸D«}o²3»ÎÊÝY”\™EÉ—‰¿7wÅ 8ÜW(Q@œžPîÊ¢@”–EÉcY”¼‘0\¾ÆäQBMt&€€¨D¨ÐB TnÙý¯?k9Ñår’ÙÃå$­Âå¤%S.§õ¾ù8¡;œœ\X“—“»0nNÎÍÌž"³× Q¥{Ò†.á‰L"'kç*ì0{WatxNiÐ1Íߣ÷ËÆÒדc»í›“ù´ dž@fd~-™ß-˜–'A%Ôçhbc~nAÆüZp1O’ðx/È|Í•ºæH[ódLÓ0¿ƒ,Ì“ HÂ< 2ó;hAÁü>u æI%¤;Õfiž7Ió2ýò´ ̾üZ/O[ÓÜËÓ"0õòdL3/gˆxyÚQæ]ž@¦]ž†3ër@"]žÖ“9—ßuZP.Os×·üT8±)5:±m‘Wâb@ªk*JžÖ¢äC JŒËµ§Km¿×ÇÃ…’¥¢f^f©Žz¥¢T¯¼ž0<ê• õJœÄí§øxü¸®;GÞã[OëoTUQ[ÜàþÄçªiQSA ¨ÖnÔKå÷§/”›s ×(ôB‰QQßÛïì–®uZ[ ^O(B$.Á"aÀ"”B$ ‡B$L4 ‘° Qˆ„Uzßø _ùÜ÷§ñ˜9Þ_6Náqkú8Þ¸¶+ª•¦>.+—gQjŸYuŒ¤öIA阄,8F¡;Ú'%÷iQrŒBùžÞ¥ÎÈЫNV*'+¬U÷)¦í“`ÓØÄÇj>¾üµ…&K@¡É>[ê5Žï‘Ó{ú0×p³…öIXòðŒB­6FÂxhŒ„U³Ýßx(õ…p²By¸O¡Ú'aĺO¡üÏ+ý•M,Ið‹b1Ã/ŠØóTv€_”ÊÏ7Ø÷‰õÝ4¹éÄ è~KLý µ¤7zë¼­N8ImW{ŽßïsÃá„ì×ဠçc'¥~ÂZ[ât¬™p8öã~.šß¯fËhA8?ûu8>¥xNOs¾msÌgg·ŽÎ~ÏE¥^C¡N×N ×êS³ÃáЬ޹Í3_f¹”æSµ³–Û'6%Ë~=ÎJ.îù±ÿþîX=Ñ‹BS$ ôDŠOô¢@©,½æÇ7”Âã»(=¾Âã&Åã²ðøæôäñ]”žÕ5i[:YÔüö.oï‚ôöÆâí ÞÞø@Š`e•YZ²Þç,^û°)hG:"ú>ÉxÈs9ç!Û_Iû5“4 žòX7xÊó°ÉS¾(<å«;¨ø´Rñ”çV ñÈ;{ÿÿ™¢¾(Ñ“%z’¢Ôd®(QÔ%Šz~cˆGŠB9‚(‚¢@ð˃à(|à ѲÖ*Ý=¾t÷°Vèî¡T. Ôüf3dï¾(Q˜ Ì4øî¡=˜ì9=a²Çˆ C%@RYi —`(L‚b—9|#H깺BRC $õü$°j{ѽ—°"»ÛiìÔÍq¹-@Ì„ H…Ÿ¶ÔÇ }z%¾tÞ"ø—Ãé÷ ®ÑZ÷YLS ‚QÝgŒ”ºÏˆQIg@_£íËcÛ¿’­*hÈ^Fq—Ç w>/õÞR§ÇÚ¼-%-ü'ƒ—Hº aÃmVnÖ‰ü˜ý:'Û¿ƒ¹öÓp[çã¾}ýo©Ò"Õþýãn{{·óHòYšé¸1›<^&·g ‚À] ©øF¡wYÏÜá'åj½}]—‚œˆ?YÀ¹óÓ¤8+~’4þc«1º¯M¹eÏÇÇIùé¹w:]ߊtbï™k[¥\ËXà×ä“Á–·=7oxΟMëÞÚþ[5ãœPnÆYQiÆ›qÅ>›A±ÏfPì³ÙïSŸÍÈbŸÍÊRŸÍjŸ>›°ÏfPì³YT»cÕŒ³³£fœµ»šqV-5ãÔˆé¶ T›q£fœU ‹iѶìì‚W3N-¿6ãÔòk3ÎŽ¨fœ5ÖšqvD4ãì€jÆÙõ fœÍ8»/6¶í|ý°Ô³ Ý8¥ûÜótØÞ3[ë–'zz¼”Λ«æ•*\˜•$Š»€Dq—áÐ<®’?̇­†öôŒ$¼WÎg€JùÜáE¸{_?¼LÎÅ<^ ‡ÿÛþùåmœ’=câÊõ I¥z®$0=c1OO+nãØ}¼d¯Ë×m%íÞýÇœüiÑÐN•öøÃ׳–³[‡%f÷¾ó±ë¾Vkwco†ÃéÃ8]¶§Õæ8XZ ÏÐió9<öÓqmq¹* ½3æe«#?¼ìjÐÜuv‰Ç¿¬L Òf|]8›a¦ÓþN?Þ_v *­ãíqVœþÖr¼rwÿ1+ …ãƒRÊd)˽²*$YÈ…/J±ö¢k¯^Hà‘%šÁ#«""½‘ç %"Oíç,- $Í¥è>Qsྠî Ràv@àZ!ô k%5Sj!g¾(dÃcÕ4ÅH_ˆP;WsBíP«9ó%gž ~Ê3’NˆÆc1 5Ú8;ޤÌcgç›âì[eé¸ûÝîªwÏ[¹Óé×)Ыîq®AŠ„xOG»ì*Ýÿ=‹¯gÞð•4 ‡æö'NI‡¯µ¼¾Ï+IªR¯NsÉxÇBÅxA-—±çxG0ˆwd¬ãö|yüå=B?~l‘‡œÃ«S¼£ú4ÞÑoï v>nÁµûñƒTI.K§ü; ¯ÃÞ4nxF—fìc‚¶ŸëãuxgÖ+äk»¼^ÇO*]öØÚx ®7íÎBs½ß~Ïf™ ±m£Äj:Ü^d|y¼-–:í„[ð`½ýЉ ¼äa¦Óvé>Ÿ^±®¥ŸŠæÇ¯Îõé“úãZz:ß0ösÎbâåœôqNㄹ³bè0tN:@çÏ–ûs’Cçç,G®ÏYçòvçè ktÂÐ1:càç[NÑÙÆrvÎCÉÕ9Ϲ3æÍ=eŒÜœ³:!‘qêáœg<\›ØòvÖ:ëSn­ÒúHg}ä!…•ãÇ‚wtJ¾ÑyñÈ3:5Q6š¡ójKÔß9ûuv>?ì<ºJPú“¥>¨Óðvüc¼Ëy‰’dz¨ñ›ô8êFÂÛi)ëüuÛO²ë‡WQßÛMùxþëñ‚¬²ió±¬QÃásßÈÏîÏVÉ7Z”œ£Uë°‘2mIÛ禯糢Ž[ŽÇåþz¯A|ŸÉù ‹î®¿óñåV€,µ)jüžmÉB_ãY½4Öm÷Ù]ÿôŠ ^[Æé×+ñ#¾ù§–jÝw¦‹Ñta­¼| ˜Cø79â`‘>ýiR­'̵5I» VŸO >N˜ôk£èÓ‡ñ½×ï=îð×õˆrrâ“&¾îIèµ× ŽT¯D¼˜Ó"Yž§3Êçid·;÷fÔËZÏÓÈâIYíuRfD‚‘uڋ·ï?Ç[-ã-¢t¼E’Ž·~ ®ˆâ‘”Â-‘W§z‹$/·Ë'·è¥ã­ŸˆOQ<ÞªüVóø÷òßÚ'É׿K8=ýèZ:)û…áužv~zRV+””ÚÔÛìüŒÝ]r+9Œ­Ñ÷;ŠA…õo êÌÿõŠ™¶dñ[T÷Ó‰pí‘ H‘ °1ÒŸ?Ì´öS¹|÷Óú©öÓ~£vÊŽ¨²²þ/;ååç¹öòªššký[Ô 5ê’~?µEEE©Ä'(5o*ÝÛ0 Ú·Y­aÀtT“Pâ÷,Z¥à¦•ÒÐTSë5þvÆúdƒ©÷š´BQæE9°BÛ¯Éì(·¡ÙSnSÔã½ÕŽg´õ7¶™›Ø×ÅÓÚßÛóMZµ^R–G¬…ò¨Õq}"Ê{èË)ïéˆhýY*‚^(‚?·EœôJ¸™Šp{Ò‘gQbòJ­=‚bÓŽ Ø´C²Ú´£z¡iG@âó,ŠM;f”›vtDPz¥vš ´2†QÕŽ#(¶ã¨%ÐŽ£¢ÔŽ#(6Úè€`íÄ'ª…Fõo'G¼Ì6jyuLjGŒ×žq9^žÙöZŒê¡Qï:í#.¡õÒ/'d©ÓFQê´‘Õi£j¿“¨öã¨QÓ÷]Î¥¦ÚºÚ´£(}¾¥Olº#kiÆ0ii‰å3 1ˆÌ ³Ï’˜ü4ƒÔÚ¨’”ú4뚤J"r .þä$"’N‹²ž2œø“a§ò'Cñ&3E’r™b',ÇÉ€5¤¦DÇ£ú%x>úmÊuŠó"Õ)Τô¤|œ²“bI¤Ó¬£(„¤£ØQ9G™5¥Å‘q”E©„#Ì9‘±yÍ´4ÀÄ¥4½9®ÞÛ'Ü+h~qBOî oî¤G÷€ô¢ÞÓz$éM½’ð¨Pz`b4½¼4?½¡·wé3µÈ¨25ûxï”ྒྷ‹×õ*þÖq% oð¥)ƒ¥5¦¦/ìò¶<ŸËÛò6Þ¥„ÇñJêËwáé;z§¥æïãÕ¨äT„‚ i4ÕéÓÚVsŠU9’Y ‚ŠÚÙCÎã'õð…·êª…¨(d!**T¢¢QQˆ:oAëó¨>T~ŽJÖÙz$­uW¾0aXi5ÇNAìÔb§%vªñÞâJKTc§šÁÆNe…ÆNµ*; ±S8EE%ªQQ­ÃDEe­Æ;!j\kGnÕùòi©Ê7Þiÿ›ãÒëô“¾z²îiY4*Š•£6Þ©ïüyQÚ* Ë즢ôYûÙ|£°ý½ …7{éÕì&镌$€F§¹Ç4OÖ ˆ\#)¿?ÿÿy!“!òÐù§]Þ¸Ÿ–¨ãFn²µÞ»-eOÜÞ¾^+H¨óØ#·²œûÚ·ý\8Öõú [.ûãgöòŒÉZ}³—µ¶´‡ZßÏ7{9D_öí\;³óùùû*Óß·–Ñ部>Çk~Æx;?o~2û÷ÏfóõŒ€É cE_^Ç©}ü8²]>¬ =ŸC)ì¦2zÙzmǨËó%—ùÞwÓÃíùâ=ddÐÆÉ{½¤ñÈ.Kœ6Þ³ÛýòK FT_Ùºî]Q¿Oc½yÚr+ Š›dPÜ$;¢6É ØT”wÉÈâ.YíµKÖØ%â.ÙOÔ.©Oì.YvÉÚA»dQÚ%k-í’µ–vÉz„vÉŽøæÞKÓc—”¨)³ÉþЭTÖzÏ3ÒDg»íüi»­9³ÝöûµÝj¥v»í¼h#åˆÙHk'm¤Úgº‘ÆXÜHûÚH^5m¤Ae#}s³Õ>:ƒx"$íµi«­NØi«SO£Áh›ÍhÚe«76ÙZ {l0ÚbÒ«Ë[P÷×ÛkAØ]k%l®µöÖº¶Ö‡U—Cª¦7{fgeÞkmì†ýþy3¬`/Ôwe+ŒB:xÖÖØ.©Ó¼[ÖI°YjŸÈ^ŵUÖØ)Nò¾Q4í“ïÅÈ«ö`P¿>cT¾>cP½ž¡P¼>aX»>ËQéúŒ7ð<–ªÛg9*nT®ÓÂuXy®[ÏWµl}HU똈W¥ïb:[´eZ³ž¯FÉzf¼ë™p¬ÏbPŠŠÌóQ!ú…פ =#¡=Ó}ÚeOOšÌBD)œ¹D){ì‡Jv,ª²g,Ô±Ç<-c‡ã¤Š=l}z§åéƒ>qÄÞGÚöª¾1‰¶HèùO‡ú ?#ú?Î.¯ÞóA]~ŽA÷í\µBİÇFúÁ4Òs~ÞÖ÷µ¨-¹õqü3¹A顲@;lÙUç¯Û“ä—jm½©÷cÅuߎ¨Û[ÐiõzQâ^/J›5L¿qÅm½Lž¼áñ{Ìñù8R—¤×Ùk+3|Xâú—,Ô²Ë^eXÇ4Þ†'œÇj=Ôv„oÁk­RÒ®¼ GØø½>øÃÆx½=ôÿ×Ù=LOk”~è5ù;×ô–Rò8¶~Xàˆ‡©ZJ/3üä9=^w9ì`‡6?ïÇöËñùð.Ca[§†¬ã¬<“èß(ÿ­Êˆ‚b…ÐŒÒë;PàãĈj;Tk’4bk’ŠBMRdM’ÔjMRDMR-¯š¤Î"j’ªUk’‚aMR5G¹QuzëÚ²°ë S¥t©“£¢¤¢Ð)¨(u ‚IUàÔ9T“æ°N1¥K]ˆ(JªåUnÔñÐs_¨¢¤ª¥¢¤…ßLEIræ%År£Ž¨r£zD{\ë­Zæ°µ™øç¦CE©¡Pè(T/éöÖ·—ó§+ÕJç!}áö#~º>~~Ìõø²ûVõõß”æC’“ÆBsÝ›tŒ‚„ŸD¡ÿPDhjŠ€^èS$ƒþ¿î)úÆó‡:?Ž+?õb Çš[ Õ^EÒ+ÍŠì£ãÅqÿh‡ëioÕðaQ4b ô·ÎrÝ$"Y}jZ¤ñ¶NkÛ)i­úíáèƒ*hÔù_×Só“X=B®çõˆÍq›œߘ…<í=<;h“Iû"+5µ&š.-‚“ï ÝïÒõ¾Ãáâ>ƒx#¯N¸k¤Kt@ºC¤+t@‹pçd\ ;îϱ“®ÏÍÔ¡A y¾ E”v1L;apOï”ôš^À-½ ·ËÚJ¥^ÒëI¸~¯¦öíö]•Ž»Mwo­·\½5#á!­µ{=¯ Üλp›¨Kößo›/ðª©ü0µ£²±ãt{Ÿ6™aÓïUú`ˆûæ][²èÚ»Ê{¤/D7t¨õóòÿ}yÞÊô…[à4.ßßkÔø¾ï‰Š¿ÍY¥×}ˈ~óaz¶ØÛöd|_OÏí´÷8Þžé¶Ö¶GV™Hd®½®eœ;>}bš§s-–é=ÁìçUë|ÛßôŸ1èÄÜÏ€tž HOC!ñ3=UÒ>«w²Òe«Iºÿ6iè¾ñŽm/5ÏCgGköh0:âv´é_ìÒNíy‰ŸL Rïbé]¬:]ÆÎr¿…K•ôâ¥û¸óå• Zmäó•¾Ö†dRi-Ðãk§¶Ç×`ô U߯ãQ]ò¼ÅŽGàð²”ÔÇ#­È<õóû.¤±¦S®Ää[…æŸ~zÆ1«ÈêÔ·Ï>ï7ƒÕµ¼ \ËÒµ< m£éZ®åÁèZ^•ºCÖ¸q„w0ºq¤w„·ÌwA¸qkNæ·<`¾qWNoÜš‘ùÆ]L·#ÍÚ|›¦·ézZ‹œhèù6]AÍ× HWî1›Q±™:˜°ÞËkD\¹ë±¸rw5öÊÝÑpåîçãÊ];¶4HFJæÐû«Ýjc+J¹CE鄈qü ŠéCÐ ùCE)¨#²epdé¨Tû×H"ˆ8SA{¤•Ä(‘¨(v*. ­Š B.f‰B@ጆÙiÑÔj>@(î\ÎóÛ¡º«%±üo:ræ\ÈÉiwã¢2„ÕŠœ!¬Ã& Aùù ‰Ñ6Ľ¡½‹‹RóbYt.š#·§ÞëΪ>ÚJ]–(=›¥'q ð&>£Âs,Ax7ÇhxÇ÷áU¶Â³xQßð‘<ÿ}ùþ„ÒÃ8ô ÝñBVž½¡^«ñ±ìéûy&èíÁqÒ›6¾Ú…Wmø žµ1"Þµ! Ûô›‰X²ôþ]”À1‹—-Æ>ø3>¬D½Ãoð^Á1Cx/Jïà°=±²ñÎýíòÃ¥³\g :æ4†éx®GPh\«-‹ºn5gMâð ¼bDÕd¥šÌ¢Àˆ ½WÑýñz<þ!„Rå&dÝÇuù±ÐnÏ´µO}'P?ô+Ÿ©õ¡ ï:êö§[Œ¿0E ðˆò&kÄ–ŠÂmP*ZJE¡{JE‹Q©(”Ú:1=¼ôëùâïkA)4GA)ÔBA)Pèr÷C©(Œ…"P¢æÂM¨…šLˆBM&,šLì¨Éª=…í5©Éľ…šLLvk2GþòvƒÙnüc¡`_×±E?]žìTé-? ÇÆvÿÞ_ž~·ø‚ôü½Ñc¨’vÒ•ûCµËj´‘fy±Ó÷Ó+h4=ì¡æ_š«‚ð ^ Þ·«övE—•çëv„'ð€¼ŽóÊ"Öœ\ÇÄãÛ^m‹1^Éûqç½WÉýð3µNc¸ñóð»Š!é6öí/‡•$5=êô~ÿ0~×>pß/CçW6*@×=2s~5êè¸wâÿá¾\*xÛï¢;oÇÂïW DÓ‚÷ÿZ¼Ïÿu‚¶=ÂÇíÄj÷ÓåÓRÁÛ¿|njj„U°ßIîÇ?y,woÏåk¾~bjßëý &£,vË€¸¥­°(í…UK›aeiƒ,$A{$…6EbDaㄹ°+¥mŸˆ}#bc„öØ©W¶FÈÂÞH«fs, -á€j¿7‰j6™  Ñ«·Ç­3Éy­û[;±åÊxK¶Y®ë¿[Æj<´†Ó€Ø$¡{:È 4·³+ÏÛ-f¹ýáäWÿ—mÉQ?Í>¶'õÛ’­¸(Ñ…¨P#ìûÐkœ•ÏKY—¯ø|{RNP¯Pôø¥ßbt#}á¼D©MRP Õë¾”¿c§Ûã®kË?¾ÿ°›á´þ¯ûžSwx¾ÜÕë¾ ¿ÿårzí¸5ºXÍaä­•Á‘yãk\ÎVÖúÞ^a¹pÔá\·óO u:ÜwßWÓZ©µ×l^ÿ„…ºïwÿ45‰÷-¿uð\|­ÍuØ¢[ëÃ\?F-ôÎÂårçë³ÛòÖÓ6z¯žñÄçha¼&iÑCç,-˜½™¥Ô\®‚š¨…•ÕL-|\‹£ wSBé-S%)´(=ÄCV¨øyIŽÂ*mæÓ”©±ØBrdQlï[i<‚RàêE"Èúye¿½xý©WX:!MGPäé( DÃ]¢ÄÂÑÙ GQ¢Ø?Li—šœy9K4‚"ï…,Zâ‹ š|)»ï/Ô|_yyŸX44Ó¥ÑÝãÁ)¼ïÔ·5Jt¯™¡Ò]¬Än€B5IÊŸ¶gÙ-‹rí! ×’ÞÚùn'ÈÛ‡UQºãíø·$~‹'lOXÛcÕo@¨‡3Ÿ¶»Õ×3‹E¨Ë¶òÇ5å7‹¨ñmCÖåú ¾5~/õÄñþ XÖöœ|e?I¯-B3¶Òßð@‡¿±-ŸV¨Ó×m¿y|>ÊÚÞü²žGR¢ö¤âËíö –Úô—^ËR¯ãù§Àãî÷a²GJî@=þ=®eÔv»z¾QKÔu›ŸëÈZ]+?RËÇQùôõIùãq÷›ë+ DŸxØvùóXßk£þl$C¯¦Ñ™ýæ~ù j«;{üåø[&5Fæxy©h™í7‹Á\ó½üÄÓx*k§xêwøEƒ¬ZÙiã†ñÁŸ¿JhŽLú:ì´3ØÛúï[9˶‚–Ftç¥Ìãtº–tØ~2N§1ÞÒ›O{ct:¬w®Ë®úõúlx²Ø¹[ØáU—.Ôm{€컯ý·Ì‰E³(§>ÅÔ§ŒÈÔ§ ˜úSŸ¢SŸŠRRSP矼À?UÁÒIM!©© ÆB…RêStGdR(%HÕo” U½ UçR‚TQ¿tÌ÷çPÌ~ª,e?Uyd?Õ”ýTŸOWº+ù©n 6ýˆ¨*d.û•ö1MÇïµ^Ê~ªÛ(ûI²Ž[|ùø|`ó\7GªFUŽTµÑWÉR&U'»ÙOï-WOP-š³¿ƒ½Ùß@z‚NîßþbgâHêCVA‹îíï ‘Ý¿qP?€Þ'c²Áû4šû»Op{÷wƒ÷ Vê«Sá9 ¦üÞoïÁ'+¹³{tRËöI§¾%Ô§$:¯z¿gzÕÕý}8¼IQ§ù± ÆlOã ÖG$˜²oH4€:¿O’ÜÒ=> ^í“[º ûôuó“ôvŸö ä6íï 4Í|/PûyÃmHQz^*JÅ£E©x#¢x´(<¤§#( Ó¢Ta £â zá1§(=æ¥:Tu¨u¨A©ä ”|Â}^Áü .(Ô…ÂZ­ ÅTƒC¢˜““8sr]¤˜“fO1',Ú‡ˆBÅ'UŸž‡`ªÖ{R§¼!Á sU(Wjž™€B½'¾ïLœU…þ©Ôû·® }C™q¹²µ£óˆà\.jQa:£\a:¡\>:}"x—1žkLg;¸Æt¶ƒkLgÝ]=:)^励2T‰éŒµrQâV.jQ®:¡\‰:DÁŒùq%ê,Ë•¨“啨³s}ï1â¯×ÁGz¹^uÑõª³G¸uB-*QgÇ)3^…¨³ß¸uF¹už ¢ÖUˆ:Õ…¨óòG!ê»3­6ËåͲ(m–Ei³ ›eQØ,û‰Ø,16KØ›%ì€Íºc³¬ò§ëÏ›ÔëÙ (l©°C2jeK [jQÚR«×˜êóûƒdiã- oAÚx‰ QPØxû‰Úx1AØxáƒØx1"6^ø 6Þ¢´ñrmdO…ã`O {*l=–Àn‰õÿÚ-UkÿÞ¯õç%‹1±qÏý~3 :ž«ÃvXÖÜHÞ®Ši±÷ýqZËRûã¢TDOCä%©¨qѺ¾¿ pÀ<ÙÀxgÁ€‡=LxUJù–«ÃZ;çx8x¶î,ÞÎ{ìëÉAJµ¶—¾ó×ñöÉZzþòx³,<ÇõøËyxêcÖ–P«a5­†1"m`Õ­ èqQ?¾%ÓGÜæp=~òúÓÆ[rFßk½ôLWÅ3´ÿÚK^¿T盞‰¸K|m)½qàgŸxoo íQJ_”Jé1"ÚÃömo<Ê–Æ{öðÐóí7XÒ îiòãz|v'¨g^ ø½½>P_d‘ò´(%ü…„ÿ‚ÄUÚOÌ™W¢Ú)YJÓ¢DE 3 Q¿º÷È+T޼¶~Ûì\—¢˜Ï9œ“ë BÚ|µêwaø™•”N:e»Ã­šíޝk¶{å§ãŒtúèÅ`/ÅB-})@Íõ$Ÿ6¯:}øÀû×uŸä‘¹³VL§X‚ͯÇô¡º'½Tª—¢só“pøø5¼=¾ÞÞ—/÷Añé>(¾ÝÏ(?ÞW/½ÞÅçûÊÒû}P|ÀŠ/øµ„žðkU¼áw@=â×zů!ôDŸ â}Í¥GúB¯ôÒ«ÏôÕKïôEé¡^®Ú—úÚþ¾qO6$KµÞŸ€WZñ=_º÷A¿–ï‹~ÇÓ“~í®7}Ùªú•¥W}yMŸõ£=ßõûxدòzÙ×öi?¨ém‹Ž=êqG¸ÿ†un;è«èò£Õ WT%=@ãäü¸9üúg1Š®t½üœËO¯@m?n¦:˜ÃF?vÚ",+ÌOñÇ÷ì+;š›4 ÅKk¢ÃþÄû8?£„¾4 qgÿŸjb5i#Þ=²çÆ}â¸üþr$QÐiûË×ó·» QZ<&ízú lK•m :•qµ˜íH¹½oŸ£ïã ´¥Üÿ[Έ"²U»¾‡ úþÙIF|n9s"G­{÷7ñQs±2åȦøx,õµh'¥Ì¢mvBíóNzøõŒ3OׄÅÝ= \Ý‹Áͽ£áâ•zoïp½ECªZÂõ¸£áÞ[P¯½ÅàÖ‹oC=kôîu¶‚p›Å·¡U¦œ B5¹S=h?­Ò+çíµÔg2¯6rîŒÖF¨íüçÅF£¡¦´k žr¥ùnázµ†+åf @¥hA½XcRZÛÙokig•ýþÜÏ‹Áõüøõ³àƒœv6=µŸÐ¿ÇƒÁu…M;¿ÿgc}VuV”ª:!ª­D=àÜ%#ª¬²ÚÿSÚ·G¡Áw_£Ž{Áæõzü`.ñé …BRËš I)kÛ8ƈKÛ³´özÜh¶˜Ñ£qmˆÖ‘¤:Ò¢TGZ­Ðب6ö”î(I…±P’ŠODI*GœKR±QFÚ/üQkÔX~}ðš¯-vyÜ<ÎËůöŸ^e)Iå*›;{ ÕΞ%¢DmA¯ïW¹6¼ 5¢Õ«=çÀË"âYéòŠ]^Q¢Ë êtßû Ÿ/âGhˆ§¾Ô{ÕK¬zÐ |yqQYµ|yÕ°($T¯ ‘êÁX Ë«,áÑ!Bq×;…,áA-á"¼¢ÞéÒ–j#†"<˜+Dxð,áaªA„Wž’º<úièòà6 ËƒåA—K€.z.²bòÛVAϵHÕŠIøA1½¾(¥×Wû4pŠ eàw4%×÷û”\_[)¹¾j)¹¾#ª5“d5o¾(åÍÅŒø~#8¤´ù€˜6/TÛ<ÕZJ®—Ç7m>(¦ÍwD¥ÍwD¥ÍË»Úæ)²˜\“ë5bóæë7Ê›/JyóGåÍ×^ʈïšUk&í\mÍT{¡5SMŸê\ÎödKégQ*ý,J¥ŸE©^#¢^³(ÕkÅŽ Ð õšE©^³(ÕkÂö¨×„ös¯ÏBÔŨ–tÒæ"HBÝ' ÚºOÌ3ê>1ÏMG‚Ñ“ŽDÌ\ŠÑP # gèrŽßz†Ò«¦R®®r’S@Š©i)•šJC91si(GKi(¾o. ÅhhóÌ­#¤@¡€6HéÌñõÏ„xB•¯(’õŠ’Kˆ™à6 dÊ d UÚ<Íâ»ÚÒ»Jˆ§o¼ïû§I”£–6Oz•6O¨ÒæÁ¥Íƒ¨ïÃù÷Ûµ7‡[ ²æyãšùð4Þ~ݼŽÃÁÚÀš7åV¬.ðA1o©(´vˆÊJª¬6§ƒ(t§ƒ¨½AÏöøµVþ¸—ÒÜn·æBÏ&8wc’òH™‚ÒíN&EbÔj›% ¸Ó׎D‡SýuÛÓ î_ÏN7ЫÉUpÀfW„>u²(’°8`²° V@!Å ë¢í¤WC'! ³Óîxõ–ä³t-$Za~µNÛ âv»r¥QÁ™¯Û¯þíÏÉFÎÜ.yBµžwÊ)`ðØbÏÛõl0q_¶ü|uêöµ1ê«_²›¢D)z‘…ˆP[rÖù8j`>€¶r¯óñðºH­t,±.[=Àý÷!Ô}+äÜx”~¯æ0Všžírxº>6f@àDj ÏúÓ#E¦Ú^^—àgE(ç¹,W²U›HõÆV€BlEÚo¾ÿØlŽÿ­•É• 1 hçËïóg'ÝOdö66Ñ€ÛÛÓù0Î7kå8‘c¥‰mu;íí#?Øj>x¡ÎÁ)ž°‚‡{+XÐ1RSÄ@îyÚ­tø}D •vþ§Ãø­û}ñÏ­ø·H*JÜø@¿(qã¥,*ŒXÖû‚”…‘øT”Ÿ0"Rš€BJe%¥‰}~cŸŠƒ>,ÑÌ'ˆBæSQÊ| Š™OP IM0’š =’š8âœÔQàÙÇ,6`Ô{ÚÎÒoú£"õ‰+(©O•¥¤¦Êƒ>DæQÉ|‚w!ó‰{WØñÊ=.Î]俥ºúŠRÅ<DÅ|Qª˜/ ó©b¾(ÃCwÃCT[Û¤ÖvE©®ÆB]}PƒbbþyA¬,5­«?¨°²PXÏ©ž ë £$µ½tz£ª©î?¿Â‡g. ½¯…õЩ…õЩÕ0:Êï±R[Xßï{¸æHd©?×õÄ<¶’ãqÏ¡X»(Ëï¡Êï1Ë-¿Çznù=V*Êï¡U+ëi†©Þ2ÛÜÛÖºE ÷¯Ë¸„|¯@Mɦ¹ö·3õíúÚÿ9ØœŽµï›·üM‰hOU½Þ/¯–á®û!âJÆ‘îöõõüi.èðó+òØú.—¥¤†n±âóÆZøýazÇߨ5FŽÆr8DH B€Ã%¶¨}þépñ¸5ß–Ãá`‰áîÛ}dü6¬Ujðs†R®¦93 žaa€½áú8o,¿M¼£X(·øaïý¦uü~Q¶ün,—Á¨‘òŒQJÔŒQBÔŒþŒAl³:—+†(ó*Ÿ…¼«¨ÓøaÍ Žü背«£|«£l«èœ¨agéXQäù0ÏUœ1ìƒ9 քͱʌ"Ã*ðêÇÊM‚‘§pc Ê­ZLÄ[ÎT41?–_2¦bÀfBÁ§<(I‚S”™Ó›b¼D!ñÕHZÂWÏlöSÅ¿E5QPJF‚,tœJ•IE¡/ôRýRe©æ²PsT»×aDÔáÓ¼ ÔAjŽ0‰M¤’¬¶¸ƒ,´¸³s¥2©²×Tóš$ªyMòÓ9¤"' PäT”ŠœàZo}Ж®UV'ë•R(˜«)ReNðˆŽ…t+ÍuÓ­¼4RæD™\eNøÆæ[½óÒþûKâå eâåwЊxyeâå µ ^žP âå µ ^žµ?Œ§ŒÇ û²„Ü.» û˵0Ü}ûÕÙ~ÚNKÔx ì¹_c­gÇ<Ï“¨ï-,z©ǵE<Ïó€æyž†<Ïóä˜çyÐ ÎjÁà<bÛÏ#wék‰:üˆËÎYw_ëõι»t­ûÞ ôv|n\2½yžkTñ<ÏzÝÆoÅã<{x’zU‹Áy–eçÙ^fpžìa×k$~Ú!Dº<+oÒåÙô&]ž]â´±>Ž(ˇ%» fžõ 5ó|X_ÝÔ‹RSQºÑ¥;}QºÕC/Üë¡WoíéÞåqs/JS0=nïÐ ÷÷¢tƒ/Jwø¢p‹‡åq‡Z¸Éc@ÜÁaˆÞÂ1?¸‡…›8¬Õ»85߯á¸/Múv#‡î¸“Ó¦Z'´·r šîåø¼Ö'q´\ß±ìç <—`*€Â%_‡ÖuÜ‹æËþ¿^½…"€ðBTžˆ8^Þˆ ;‰€Â+FÄ3QQz'¢^y(*J/E…§¢ øVTYz,‚^x-‚¬¾Á\x ªòz *JAQ¯AEá9ŽÚ$x ðj„ñ.[ÛˆãÝ׎úöf±áq ºãu ÆÂóFìû@x`ÂL÷…‰+1OL@á vÀ#Vð‰yAšËÎþ9(U……ªÐ¢TïY”ê=)+õžÐ«õž±Þ³(Õ{¥zO5õžE©Þ³#ªÞ²PïY”ê=;"ê= R½'DµÞJN|!*9B%'敜Uþ½.p¹ÌÊo's¡Þ³(Õ{¨¨÷„×£Þ(Ô{öQï Gm)'lÚRN¸iS<½'¥àZ¡à²š:‘,nÞEÝ÷ -q;®eõ" .ÂÔ!@@Óìܾž1Œˆ+.P¸½J¯ã@¿£Oºb &ê@KïþÜîÏâ* @0"TF*wP#¤8îm_×g¤fºWjÉÚ_tF³³Ëeí冨‘"¸…ø—Sƒ»¹¬0 ‰Ž|ýàK§—nõ÷/ƒö¯e®hèÕþó^:ƒÞj<<|p‡Óö¦²Õì|²W.ûð°Õ—>féÃ"4´:ïÁΡ݇­­A¡ÿí×¶ñäóÌx‹•¬â¦)l¢¦)hb¦.Å™À4`Œâ¥3(u’ø0TklDJ«¥)NªI‚|@Š¥„Pj‘Ôê@j­|'ùäœfßÑše/?%ë§?=à:% ÙVNJ,iÆ9ÈÊID‡ã3*ÄZ—D„UŽ4Xµ“%9S|µVDä´ƒÍS­´ÄM BØ´:7j:1(þœ.ÒÉcF‰T¨òƒ~Pé5ñƒJPøA%­Cðy¡åx!þÔ€êRÚ‡@­pˆò Ñ@„ÊOL£TíA–>3h¾×æ ‰¨@%] &Qš+$¢”•Fñ4*š‰`ĈҕC"J@C‘¢JÊ BKzýD"JÇ ‰(­zPZµÝ@ R«5L£ÜkÂ4J£Î¢œŸvašRÌþ-Xîƒ"Ë}e¡¯'d)—´²Ä_íÁ_ß•KZYb¦‡%š%ZQ`¦¯$d‰âÁ9_Qâœ/J™Qœó˜êöë´ös¿Nè…ÔN|"R;BjgQJíÄ'¦_§@oÍ—NƒüOØ„ù˜ŸÜcÙŸðSdâA_A_Y¡¯·?L½?ç_ÝÕñtFùxZY8 BŽ‚¥C^Q8ä¤&qЇ¼¢ÔÊã·´üÛ!¯æÒù¨œß`zœßªW‹¯RÃ8 ˆã[e¡eÄ–G´nƒ“ ÔBo¹¢t^Ä\ã¼HOM:è…&t\f9{ÂopªÄÚè©Ê·ÉÖŽž˜k=a‡6£ƒ3§'±çSx Χï}^VçÓ x>-JuSE©"ª(Õ:A¯=½aÄùoKÐé{Ϩý:=sƒ$ªOhÕò$€.{:ýñûƒR*O …GE·ŸêóÈ#:¯?p^Çaq5×Ê먋™>n'¼ñˆvø`ˆóOTêþÉZ§=¹ýôd€’Ïô Õq„…p8 ŠuGt¿œ¡üeüšlOUk‹Ž§éñžqþs-ÀjÅ1°²t „Z§½mõáö ¥Ã"d¡Theú-1ÿ°–u¼ì5+¯ø°‹èx Kàx Y=žB­-iã<Ž.¿¹ƒ;Ö¿Pè”ú„V”î }B9`ú„vDáAú„B{ÐåUÖH¼‰ˆãY|­—Hõ =º‰ê=Ëš©÷(+Ô{´DHõj t…!Ê©W8õЧ^µ§^Qè& ÝA¼cxŸâ=Ž8ï$²<,kô…µ@–ÇU²<®²ô  ”zlyD…-~¶<¬ëö 2ÖÆO±š~¥ó"d¡6^¨V½ Õªw ”Z”²@ñ9} Ôƒ¥ŒŠ„RÈêñ²P÷”J;"b¨…TÑ‚”* QM…(´©î=¤Êkz°J9 °My :ƒÀ—ýþqf?®õBA;PÊ'ňÈ'…öÈ' ù¤A)ŸØ¯L߯ÌÕÚx,Œ&°Â!šÀ IM:BZŽ å E].Ûè|y•Æ¥6¡@¡MhQèÚOL`—ã¡Q(ì€F¡°…Bw4 ­ò S-t…$^¨•ž£@¡çhQê9ºtÁ?¡dÉBÓÑ‚Ôt”¨4…QÑt²’/ OTkRLZ“BšŽÂoÐN´(µ¥×§(\íDB;QXíDa ´ÅÊF;QX¢BaÔQ':†Ÿã[èMн @ . ê|:nÙµãdÿ<äU–(I*ëk3ÀÆTq[ê… &) Õ:mZ¾ž ¬0 BŒR+!FÙ¤$˜ÄÒ@÷ñ,¼õZ›]4"4èH ><öèVOpTãjÄ–iõ‡ó« ²n{·¬Ç6q^ê>RK.cUŒdÚ5J„$4{I`÷Q0°Ñpœ×†I Ñp¬ì:|á÷~`ÊrÀZ¥<øHèá#ÁÚi²ÄG½ÂGBïúi÷õpÔ¯µ"†:yÉj7- »)@ØM‹ÁSQÚMƒânZYÚ(‹/ÕÊn C` „å»ÂZ`\‚ZÙ(ñ}`e*JÛ)ìÞí n§Û)Da;…,l§E‰Ѝ?TAK»ƒ+ŠM#‚Š#Î[3×t¶f ª({sQ ŠÂ²Àå±5Óã³5¥M#bÓ…vÓèþ-NŠB'P È_Y Á¯(±àWyÑàu¹íÏ¢‚¿’%¶üê%ºü È—/íK˜ó+K”ùÕ+ÝN5`:”ʦ"Ö/jgÿ•«¿Ï'PüûA‘€¿#‚¿fP"ů3ƒº·§ •ŸiP¨V‰ø‹É~~¿°­@%J<û3ŠDûZˆeÚ¯kµ_¨ì ®}-ž™àä8Š3·_ÊÃøáú7Þ±F¢Ðã {x=ú4Ê+ÇoÔåòzÎ- \¦@=~3·†Ï×?ýé‚—)d}ý”ö<…ëZ¯‰¥TJm«ßÄïç«Pà2j¯ ý†NLºGÁî÷?­È «Œ§žž­ìîtzzfú¶×ÿ__•@=~9Ƕuür®§g N#bs?þ·VkÿU9o-|— ±ê ·WŸÇÙíøé GÎõø¹xl½×µ¬ëN×:~0¾Ö¨ó–‰sâûz~Àž ÔqËáØNóçµM£>õ±.žEÁ Ü“ŽŽÏõDmŒ>#†úÁ›7Ÿñ[÷Ø.—VÀ±S:}íM¨GÂÞúóNßûr>}šh°Ê•ï9ë\—›ÃyáO÷WI3g°d§^a×Ë~ó¹ýæ¿%Nÿ8Ì-îB‡» Bƒ;ŒÖþv¡ö¿ ôÀ+¨-ð RÛÖÕâY‰$ô£ƒÞmG×áTÊŠR‚ >¶C%(È–3I‰üä½Å¦-½ã`Ç´Žƒ…@=R}Ú^ó߇šå©5#ª ºÜPF éOæ%!ñ¿ÓŸÆr˜Y0Žt€J¤’Ú|×Ê€`TP4ã¿“›„ÿ9:³ ‰…(@‰%fü¢8-JÓ¢- !Q˜( (U=æ§SX S(ŸÀ)”Bà´(N¡úW|QŸd!( ÂE)ÜIT°˜j¼DaD„;9âîäzM¸"Ü £"܉Ûp'ì€pgPäÏ_ùÍ{P”Þœ hQ ŠbDEaÔíi|{›ü½¬l÷©û$ØC§c/ÚîÔ#3ë²B¿`‡í@|yÆ­ ëîüXn¿…æ)ª¨ëåçO¯|ªªµÿ@ÝÇT_—¢î—qÖ; Æyù…ƒPiœ·Äе¨ý÷÷ûq§>,Í€¨¢>ð´­ýï‡'^Ö(%Jav/Ôì Sª¨ÛãÊ3@—ÿÖ¶±œq¢{ìëáçÆ¦æübi¶¨Qý<ê,ok3 бñ—ë铬ûu'¢:¿b,B÷+çùõ;&½ŽÛ'~?;ø´7òºór@EDåHßÂâùÚxéÿá¾^†÷mÍ<~Ï/Ÿþë¶Ç O¯\x ¾2­G`n9? ‰zMG€Q³u_o5ˆc õõC:öýiCBÓPo—Û^ã»^d_{ðöÃÿõ—«æ-í'Ûí¶“3=¹÷€"µÔ„ZPKEj©¢D-UíC-A¢–ŠQKõóD-ÕñD-•I-”¨¥ª–¨¥ú…¢–’ò¥–ZyÃ;iTd‰4* ’F UÒ¨B¤Q•%Ò(-‹°À¨¢–ª^¢–ê\‹4*(’Fu‚D%.iT]B¤QµªH£j/FDÒ¨NH£º‹ˆ4ªFiTç§ù¤ÓO’·Ó¢|†- §Ó‚tî„Zïû¤ᙾG¸W'S æ` |ª© nmBéE§¨nmB‰_(Ü ×̉_ˆ8ñ‹'>PåÄ/Ho?°;“üú”~} ÀœO¯™¥ *ÌùPÏI´èVôJOañàPŠU(¾t÷@áPJ3¤Èé=¾zƒ*J=œg{8W”z8ÅÎA±‡sPìá\íÓÃ9öpÎpìᔺ3g@vg®EÕ¹ª;sÝÝ™kvug®Ùóä¥ÔÁ9(vp®±ÔÁ¹²ÔÁ9(vp*Y°ƒúÏZÓíà\íÕÁ¹öRç.WtpÖþÐÎU^œå\íà\—PçÈbçêÕwª7V٦ݛ1"Ý‹œ=GlË¿þ%P ´Ñ ¤ÑÕù{?µÞ^™Á€VºrJ*Ìaë@µ%&^VcPº6 «_M2éH)•t?ªDÒn½~xé¡;¡%‡–>35tõ)a^1e|”zÕ9lÏ…”ë¹óY¦g©ü‡Zx!§Ì}5aù›µ¶föæÊ)iŸ×ÃñC =s÷z˜«/ñX× L.ÿŒNE‰Ñ©(1:AV ŒNPŒNE‰Ñ ²ÀèTTË¥¤¡@!(¤ (¤Š… v¨¢À……v(|â}s®íWa­–Ø¡ ümÑRÖa[#!ì{­ˆŸ`S?AˆŸ¸ÊÂ鄹§LN'®Œp:½SÂü[Ð5%º¦¢D×隊Â#ª‹´ŸI :HŠ©P u‚áAêY uâ$†Ô Æ]S ßЇEÍœNÓ© q:áÁé8ð|ÈÿÔÐô4¨¡Ô ‚k –׬ ®©ê…ƒ¬úÆp´B•! +¿ Q0)¢à[`ˆâ¶†( ´N\c­Óü[³:z¥£'dõèYŽ‹A÷QE}zv>,¡;Ž‹Eé¸X”ŽxP¾Ì}…VyÒ«ÇE*Ÿã"¬Õã"¦ÇEØô0&ñüõçIX²p¨ ‡J|âyOθ~Ÿzm~´>8˜k*‹Â¡.C%>‡J(¿Ñ?lÁ¾µ×èä ßÚZѽ=ŒÈ8ŸâAL Y=ŸB­­oÝßôaIÂñÎŒƒ'Vbiòô…8žRù©Þü¶|Ùêñ—ómÏt=^V¨ñxßÒÿÿ>2Å, ”%³ª²ô…ͨµ”%•%Qͨd D³"ŠY½ÿ×Tzÿ¯©ôþ_íõþ/ÇêûQzÿ¯^xÿ—æý¿3¸5å{a¾ž¥v¶V³: ²äÈÉ(YU]YU œ›$Ô ç­<î0µ>xÖÛ»úrY( ²ð¶ß oûo~Û¿l¥ zœTÿ-rîß!L¹Ÿ¤(ã~‰òÓ@hà]ÒÛ~F<´|È?ÏU”G?A.{:þ÷ŸL†rÞœyû‰=-Œ{ÜB°È‹ß êne$_¯÷ׂNö‘rGüíª¼0Üykw{—‚•Un{fè({Y|òa[O[ÚåUÄ1{–ðÐäû•b?{²ðgóöüÓûýùfÈ×Ïñùü*˜˜g辕PÌ+gùþ©–ùz*óAãþ7øõmØË×!âû²ôk´±M¶ÕqY­ŽQ°•õüim]Ún~† QÖû(©=Œ³Îb %ÝÏSˆ„úY—6Gš¥ÌéôÓ¤.6¹¢´ÏA¶:ØÝ#bÓ^Ùó¶µ°ó… (lnÖkÞ߀ÂÔ(ÚÏ@¹FÌ^¨³ÊZÝ…ê¦(·é¾(·éÖvG¡ºAj®³Gjª_+nù}Ó6©¡ºSj’»YÊPÝ/#N[¦&°»¦ôêÆ öN­è-y§™7YÈÂ>«SÞ$å³Ùï#>zØk<6ò»ã÷8Ÿöuÿ{=êò³‡Üÿdã5Ò~ ÷ê¾Ç)¶(ìí¸Ök{¦z˜þûyéê¾í€ÛÂ?-Qä")J,#qdümÝ8/Xâû‡Äð?¡^Çí•iDZ¿Öö cI!b,)JŒ%@•± °Œ%–ÌômøÁã/­ . B3‚ñ¶ëùy4àøZûò÷iÿµ•7k3Œ8úÓ¯ŸÖÎ}K‘Øšq—Cò“¥_ôií}ûU{8®Wþžïöø•¾ü>-Ü!t+\;!RÁÊߢªÛåû“½~‚ýÖjGã!Ö:ýô×ý“´ˆçÚª™cæßªÙÇŒb·ŠR' ØÊ#(µéè€êÓÝÙ¨#²Ø©#²Ø…#(¶áŠ}8* ; PÝiùôô誩‡,Ÿ®¡­Gç}=Rcš@=ê èÚÑ™QÛŽ®‰¿M#–æTs ”ŽI·j{ª¥þõ4øè,«ÃGWŽZ|T–z|ÔòÍ…Ð $ ¶©±Ð ¤>Óf ‡ñpßÿvÚ¢#Ïò¡Õ`‹ùÍÜëEáqã%¯³(åuu<üÄ´Ç ñÃâu½(½uwÄã÷žÌ|=~Ôë¶=Œ˜ûqi‰ãa¯¥¾Œ¬ ÛR/½P{Ämƒ¿½y9â¶A ½–²Ô³ =PÃ\·=_îðl‘ Q£qãXbã*½ö¼uc¼ãö+0j'.Ë·~p; Éemw½bWÔ×Ïë`X.Ÿ‘µu¿ïu<:±ÆÐ©ýµ.·W"œÄã:FÄã:—âÆìrúzÞß½“± Ô÷¾E^ôÒ OâÐ뺳Ò|}?ôd‰æuj‹ÈóúÌí¿m]ͧ/ŠtËE©ÏFlâºd…½^(±ž`Äæ¤…œtÉj’쵟:/£Rö´D©·ôjo„ÑE‰ 6Ý(u éˆí-RIØœ!é{?ã]Æf±6¼ZÐS­uÿ©»}”5Îûc+Ï kíÕ‚nSîiÍE0 :‚ÀôÝSõ‰ Q^èÂ›Ž ˜ì4I–Ÿ¢mg1 A°Ý„æ~± N)kÓF¡¶§.nÞÁ )Ä_ƒAôµ˜Üñ«Nò ¹l‰¡÷Ó3$Èi3Ý[`Æ$§(BÆy|õñyʦ©BÁ Q¨ oï‘ç±üxä¶xÏ`ÅúZÉAòO0ˆ×s®›Ò#œ"ý¬dóÈ)¦\žð'-÷ûüßÒµ’ìSÓÌŒºpÂý /8MSP]¤r‰íÝñy™Õ²œ¨µÝ÷PøoÀIíôzyF5dš­îc9ÓˆÓ@§ |ü™Ég%î{ì¸Ä«Ø½(»Ï(»¥^H@¡´Ÿ ç+…ó•ƒÂy| ç1 ç; Jâ1 Jâ¡;â¥T+ÅîËy~+P¯,t9*HUìD¥Š†@;d¡@Ÿu¡Nè…uŒˆuz×ÄiG¿AÇ$L#â¦1eìpôB‚íQì«6ŒY"”0*ŠÝ±‹ Re¡Ø–o±û”Ø"1oóƽü,õ 1Qˆû÷F¡ò|S¡¨FN=àňwJVÃ…@¦Fl S¨2²¦¥eÍ!JÙþ'´}¾¾*lk‰2!jć¨Ç¿Ç5ªL‰ºn1h©¾Ö_8ˆÑÆž¾^UÕAQ •î ŠÊ¤{`ñŸä¤âï «ÿ-îBbÀ7ƒ›àôý~%Ì´Wfžnê7;œºsHÒõ¶gùÝVŠŸÇéçºWôÝV£©9‡T ù]F{¬­ì• •Î?÷×^í æ»ÎnÉêªvn"r9ÙqÄgFµåÚÖ§½èöô܇1ZmÐB#¡èp~ìUê:µ ¨«ÐŒ£3‚^š‘°Óu™\6â둵žØU%pÎu´ÓNÆ}¸­—ûkÈ•Ò^£+ ©¢•¤æÕ Üuõ”ë–¬xx¸Ü×Ò”úž©µºÌÏ(°ÓSÔ|³.DÙŸE©Ç\QJF*J=æð}¡§—,åˆB®à…+8¾qÎþ,DÙŸE)÷ ¨æ>a‘Ö„9DX³{ª…|SŽ˜|S I T2I¡²¤hÒdP¦Èm¢å“Aé/œoòð¿¦Pb@¤PbÑdö"k5 Û>Ì€öqEáÏœîñó\,ÞrŠâYÈ/Jùï‘;ƒbÇΠر3(vìŒöÊ¥‡^È’*}=a_Ï Ø×³(ôõ ¨>hQì€P}=;ÓêëYßBÆ=d©ûgQmìÙyn.=>°¹ôðwäÒC”‰Ö È’çD·Ýh×4voÈzË*ÿ°vÚ”´–h–Èâæ T7V(M(lˆEaG,H»ÕÊv‡±ßA6<èÕ¯“n:©Õ=¯¢ÀM'QØ«à5ج:bXçdìh0Cùä„*»›¼[¾{F,½›¾ôÂÎÖßÙЖ#¶k%¢p…j…)N¾…}vÀF ß*Ÿœ×ؼŸNŸ½Ø)‹ÒN Y"ß ´šE‰V³z‰ ß*Ì¢D…ÙA… åA…Y”¨01 ¨01A Â숥„±.ÛRå:kAâ¸ä†ãJã’jã¨ü¹}0<˜0‹܇÷®§O#Š/z•/³¾ÌŠ*Á—Ï×–%ùXû÷µME½ kT³(ìºúDPoBVI5áñ Õ¤Û„TÖ©&7Á‰T“î|ÞÃC_h¯ÞËYW%ë3Š%ë5—¬¢òÉ¢T>Y”Ê'¡9 È+KäÐk.Œ,D%E©êÆBÕ7Q©S ˆ@¥_ˆŠ@ºUXÞ`v°¼AøÛ0ÑàoƒåQ]×Ë[QïV¨w&³¥%P©T‹ñ‰(BÄ'¢¶ÎÑ:ó‚TgŽ©«Öa_ЙQ³ŽéiÍ:5sÏMY°ÿ ñE!!> &ÄCâ‹RB|QJˆ/J ñÐ~Nˆ/ävÙÝO/–£§´ù¢6ß•6‹"m"mîдy˜ió0{Òæ¡Òæ‹RÚ<ŒµýZlyK_K“ë‹RÚ.QÇ¥%n߇]ûË÷‡ù9oI——ÓqÌå „¦4Öõ´Ü>, 4ÿ “Îí?jw*uÿá?¼z/h}µÇ4o—ÏßÜçãmgÍ-rý·Çš¹”#÷ºþŸØÝàM>¯Gl3P‰:í=<ƒdÚf¶`ýVj±^„¿ŒÈÖŸe¿µ­4Ð#gó¼®Õ,JµGA‡?=t?ý¿È:nG÷W}ôÚ †F‚ð¥ÄzÈz ¾7|‘ÇCVSæ! J•ôÐù°«þ¬mÁ6a¢ ÔØ‹Î? -Ö&Í1ƒùíO… ¦z =vøë'” † }3æ…jƨëvÙy,ÄÃó1"æƒ"Å|F¼oÛÈõxü} !ê>¶µÇ¢¾=³$€:ÿ¼9üIÞ^?†ü&\× ÖÔZ&¡ZËÝ¿7¢ŸÇVs’t %úûz„øï«ðë6bÀ/ê÷$ü0ÄÒ\$Êï–)?RåW©Ûø¾‡/=3d°åWsÄ; –¨ðëÊâÂ/ê'=êñK}].ýÓ鲟:Sy\£W€ò¢º×D—ë¾ûƒÈî‹jQ”ý¡t÷ ±Ô×\[iÑfú¯?–ãö‹{«tµŸŲ²´VÖ}OÿQ›ûrD;% û)PØO‹zœ‡·ßׯÓ3o (íº°Dw]€°¡Âô×ýt:¼¶Jȶ[YÚv‹:îךÑÒçöýÉqæ1d=vÒËÛK¼@ÚP!êþßö‡Wù‡Da¬î-F•×8¼:£°uuøÚB?£Bç{½~pÒ•ŸžöH#h­×å¾_EîÇ“¸ ŠÎ–¿m7Øóèæº6ý×÷ž?ýÑuŠ•%°[BûÃî‚ÃnkoþI¿;ž?€ö{Á8¥>¬‹½äuÐ4þ^jÞ¯«ë~Q"$)JA €^ -)J¡ÈBè (ñ–¥Ð,vXµ± vì&0B …`.`¨W‚Ð Á < «†“¨8× T-¨|Â0}ÂaþíN»D!,Рۄã²páÇ7öÂéÁ…Ÿ3 Q¹ð¿ÿÔü‰?ßÛ%ðüÐüv]£.{KÃïgÃY xŒ­¬±´Æˆ—ëŸlÈÒ1–²¶#ññëO"Xeá ޱEé[”ޱAñ„ «â„Êy¼ütP¾,mÏjQ:¡V{P+ 'Ô‚tB…¨žP! 'ÔZ ½0eÓöÂĈ:|ÖZ:|»pøÄ7âð‰¹Æá³¨÷sØR/>Ú»\Žüüõ lÄûy請žkœ=á§={bzzö„¤ž=å·-¡~¼0¿;ü!ñÿ·hî1AØÛc°µÇ„agwŒ{LrØ×c°­Ç,G]=f}ÔÔc’£VÉ1³ú~ÌöQÛ sÛÇãû´´¡:ƒÌsªÆ ³ÎêæÑïj3y.ÔËcö´ò˜UV'Ù<çý$õu~uÓŽ™ÕìcVY½>&3«ÕÇìhâ1O–zxÌ_®󗫃ǬÎß–KßIy$õSí;f×A÷Žy…ªyGw§öîÀŠ˜¿©wÂb°„½0 –Ù„ݰ ±ŽD'왕4Îû[oƒïç¯ $uׄâÝ6að$"š$=ìsO¯ê)Þ½à ¤ŠŸ÷ò²ûá7ÉÈ:Í]•h§y-›,AÛ×=@+3a'†œn°ØBj€l¢ ý’ÊV‹5÷½w/yíp€îÇØº!c5™¤jgKfIë~ ?ʆ‹Õ÷qþýÚ®×ÃÖ þ§ÅËV“v=ÿ¾Ku‡ïqo>¾ÚøVÔ÷¦ñãàüõ uÿ!ãxlcë‘1 ­.?‡ðQ}·ïºàýðâ–(Õ™Vr3!ë´åÕ>®ƒ÷ßE.Ôák?÷ò€5JÕ¨Õ«ù5ãüvM§ò¨G¥QGìãûþjuI—Àûá¿åpÈ\¨™‹²'ŠQ¡Ó}»Ü7îóÒžÛ>72AO¯>¤˜T¬båöÒøñã·6:JQ! E¦@]÷ÜÚ [O`ó)5ËmH¤EÑfC’µñrŸ®Ç¯j©È3Ý"Sx;ŠLa¬ó¨O¼!5¦sTbÍ ÑÌ ͬ,E3‹dá[¤âþÊæ ¬D3¡ýö76£g²Ê+LY””p¾#Ûô @5ÖÆ4>þ=.Q @BÖu3ê@}­õiÒÕÆ-b="”)L CôάÌÄ€fÂ{}ô°Ãu­–BžP!Ïê¥'|ÁL|#‚™0’“€ÂK:ôB˜²–@˜ŽÚ$¬Õ$ÜtWêz==¯ÔÞ¹Û›Õ‹'NZ!š Yf¾»..è±24 †f4•ÙGêçRíh‡›ëâƒ@± ÕÎ× BÒqg˜7øÓ‡)™Û ÷ûQƒA½½£2ýj´-ôóávü¤ŠôëIÍêìÔ¢D¿£¡ú¾èµ@í}†S¨@©©ï2A h Þû2m™:Ñê„zz9ø å&ZÒ‡Vu®Qn©¸¯N(í£’^‹nŽŠNô~#DA6æ HÇ\¨–"×rÕÙrPd[®,Ñ-%¾å*/Âå È¸¬O,årÕçre‰t¹zuYÊ—v¹jw¹Ó#âå¢Ä¼\”¨—«<"®P^ ÍA‘¢Y#–£9(‘4wùˆ¥¹j‰¦¹æOsÕQs?QLÍÕ^TÍQ\ͱ„¦0„;×bk®ò¢kÖú™øEç°É*2”"£¥È(Dd´(TÜ…øiuGüZ!~Z”"£Ð½UëPKñÓ¢?Å'"~J›ß‹ÈBµã)ÈŠ/D•–Ÿƒ¬t­)È gh6h£!|ÚÏCøJµ†\ó‡ +aƒ¬!|J·úþ[úBç˜?„O±r>…,„O¡|#£pQDFa­FF1ÑŒNGèÅE(¥…k:PJO J·yÈRúôšîóR 9AEáF/r‡`xdAVoþžÄùê/c!?¨†o„@þÐ4¢‚#î …¤$èÞXPÈòHqˆ'È» …ùA2¬Ú¸PȈ‚Q‘ïD§OÆlÎ@ó »~xõäÈ{â~4ÇdÐÞó½Äæ‹þÔŒêßÿs3Ï¢Ô¢.(¶é¬,u²ƒ^meQèeWš'kÀ¶é,H-ï€jÏ;j5÷;J]ïŠRÛ;Œˆ^ž@¥w²Ôjw¼‚ÔÆj?dײ[©ãv=[®FµåúGè–h¿Ï‘=¾‘§·œ˜‹ìû¢~Çí𪼠Ù÷…ì{¨…ìû¢”}ÔñðÓ‰æáf‡µòJ¬/J‰õÔ>‰õE‰ŸÚï Ã/ãÀ{[[)ìuûÙ o¯ünŽ8S.iļóÈ\ÈM/j„ò·÷‚Û‹É¢(d°Ã‘ÁQÈ:¯¾~~Î è™’ÍOœž{¬ÖüÞ#Ãmkør{e½i@$ÃcD$ÃÃò§mWiëO h‹Hÿác—^M™è-¥}¹¿÷=âpø´~”2å¯{ÐýëûÅI½ú†¤ §w]—[jP·-9®ßkQÜwƒÒ¾«ñºïVwí»3Ê;jGÔŽª»WŽ2zOÚƒò (í»Ñ‹û.G̾«»ïvDì»qß­¹n»Óžñˆâæ”6玷=Œ”Ëڢܛ#Š{³Ì½¹«G{s'G{sÔÞܵ7×ðÚ›µ»7k)þÙÊ–ziCíˆÚPk m¨]ÖÙP#”³e—n i?WØEƒÇèqþ½nÙ³]îYŸSAÛpZ!öŸ§-Ýõv\FàcŒõýüuH´Lýt¼Ÿï¿A€F iÄn_Ï÷(|þÖúñt?ûÒ鸅t‡7|-­}¼îÖgÉT#\5ÂC·ûoÌ  Ãæ§ûýò*)h«á¼¿ 5%¨8ê”ì‘¡ïñ£ºÔ{´É™–cÏø^ª´ÝÓÎ_ã‡fí·w8§»¬uÚ_ûGšôå²þûy"X:‰è¡dɯ‘F8"íKÈš*é´×©<¶Š¯O>9nÿã am¥Óöîq>Ûãħg<²P"_îèP çN PÖŽ[ÖNµRÖ^; 9Tvhñ;¦Åï@¡¬Ê£¬j¡¬~вöb”ýÏV¦½v-saÒûþ³~Ev…Ú–ûö:wXÎô×ý¸×¾œ_o†Z=ˆBÀ¨£Çü Žzí);÷‡“?Ø ÇShãiQª£Çˆ À¨£‡(„à‚_û4Ž”èÛ[OºSÙÔvÒ--}Aª-J5¢E©ú3(ÒÓW–ê‹R(d¤Ú£L´(•‰âAÛ£L#¢L”ó˜2Q¸¨æaU“5QIÉqZLZŠIñ…(& Ť˜kmâ Q´ íQ´Y˜…ji'œ t÷0 @éÎ)…Z-( \35>t9>\¹Ô÷Xù ¿çÚIýç{6í?gàÅ*Ñ¢Ð"(Õ’B/Ô’B¯V‰„¡@©–´j!O_jµ–´ ¶¦•d¬fàC–ªD‹R•(¦µÔ+e›pˆ4Ù”ZMÓªiú2Dð5‰íççÜz¹ *Eá\sn½=>% øÂ·Æåô´»œ¦5 pˆ¶ë”¬¶ë\ÎÏ{=),JQ¬2TŠBV+Eñ‰­Œ³Ú‹Ò&XRGÒΔZÇ…SÉjƒ9kŸby ÒY VÔ„½¨6@J{%­5gÇÊ#°WB¯ÖÁcÀ9Y¤¡j¸–ÁCTSGå Mª©£PK%ÌÐÔQ£æ’z,ÄËÃÍöÔxÍö”gak†Ï`;…òØNé4sæ¨ô¦ ½PÄ_”¶fÈê~zyX岑ƒlŽ‹jQ,­,•ˆ¥Qè…QèÕâÏ‚@P‚U" åQý C´ú³ õ?.J5¢üÄ™í(°HVJ$* %2ém|L¿kc¶üÍÇOöåw—I·Z„‡V߯jSx jR1‰‡ý)ë~­ÛOSmŠY¼o?#S`=àÆw|;?/вziLd…ñ¶tyj¤Ðexùcïº|Z8Ø&eNôGÆ¢:#vô2Þôã±m-K5¤˜@”‡®œá½<´¨4H~ï °E ÔR¤(µ ŠÍB‚b³Éj³ê…f!3ÈÍB‚b³ Øf!2j›…Ô?̆ãÍqm.¶‰öl)RYj)[ŠdDµ ˆ-Ej.µé€h)ÒÕR¤–߉Îã o­¥Æ#ýD5‰ölàHÀT·×)”oR¸)š”ÂZHLÀÒG2V"˜ôjÀDvúoñl”Jø!KÔÎEéq¿#ŠÚ¹(”ðK¯™ÚJá;(½Ùjgoö…7{NbÞì‹Òk|M jçŠÒC;ÔÂ:3<0ôr6æ m†Z m†ßàý–Çû?ŒŠ÷¢<@@„§}š~®ô÷ÚH–u‰›! ïö+C¼Õð˨ n†¹Zwïe–îöoÇòÅ• Þø Â…¿ Ü÷)i¾îC§ÜöƒÑe¿ Üõi¦ùë¾ \á«nðÔ |A¸¿w¸^ß‹ÁífÒ^•Ñrw‡){)‡z'/¨ÕKÔk;¾­·ö~.í•tÚ‰Á[Ä÷R.ö˜”6…½{­Çp½ÕÔn¢ðÝ\êa¦Üéá¹½ÒsgšoôШzHÊ}~ã”ÛÞx¯Û›Ö§Ûá¼ßÁëc€ºn/>[ÜýÉEWÔqãVyœ7þP¿õXRƒ²|¼ž|­Q—Ÿ—˜û¶1Œ8(+NƒsîpYƒ.[hà~úýYè´š¾ÕIu»oUR§gÏ}Þv?ݾ_Lz0ûyçø9>«:©Ô%ß^¬ÏßKÔÃãØÿux&.&'lzE_ªíIþø{…êk»DGIÅúGyÚq¿A\?XtË„z(ÿõÁîâ݃J¼G§·Óî9Øý'ÏøûüßzM·ñ÷+o‘n\†>šóvÚNksŠ£oiô,:­çoT m³|úM_XøÕöæø" ã2½I ɧÅõ=Œþ·ÏÃÝÿÆÓæÜ.Z¼Ý „:ý¤žQVÝFvÒˆû«x–«Z¥SýDUEu)"&ÊÝæO”t?¸¾åÿƒ+Ê‚QØ4 ;Í V1E’Š˜" ›$$¡„©:•e¤’2 HÓ ‡½:¡ªÓ‚ juBLUœªŸ·P¸J¥RlV ¹Pª>×:©~   Bð¶!°Y+å©¥‚TÕTP‹šê&¨iê·!î)×M@³*µ ©˜Ô3ɹçr¦êƒ¨h§=ﺠ˜I `vN!×~j¤vÉý~¦f¤×#‰MtQx=JÐE‰ÚOoLtߨP¶ Í“1·(pDà v†(;c Kì Sئ ±3”±sQ"v lÌ@¹(1(u®ü؃kk‰g“žeNOx–¡×mW¿Hæ§<Ë\Ò[nêÈÐ]¯ÓiÏ.¾^¬Ç0=8›±Zó($k½‘%ØDænžöÓ;%bg˜ ÄÎ0W˜Þ‚ «HèQt‚(º9AÚœ:ná‰Ã÷³®'¯í»ÏÇë7ö AàsB(ê9♳*«×žM½€Ü·Lþ-7ý´€($:«‹xèQ0t‚(Æ9Qœó !º9«ò=æ÷|¨Õ$n5?³\«FúÍEÎ3t·…‡²/:­@6V£ó8æ-­rÚ }ÑÒ(s˜ržåÃf«,:.,«å¬,¢“å)4Ù5–¸älØ%;Ê‘œ¿÷çØøm=ÈŸ˜¢ÍzÞ7«Ç6w\M¢•ýà!å8*i+žÞ+ªþ-*5ƒR“ÈR=gQªçìˆ÷›i”¦Ý—z±ª½(Õ†bDÔ†…ªÏŽˆÚw¢EŸ¡@’Pô Š>‹Ré{Íð½-ÚÓuœ‰×Ó£¢OºàíüCþ¾vA<ÎË[FOD}Q*‡? ¢þ€2z(¿ø·uôÁmTŠQ"iDµfQÇûþ^¯25SÆ7¢(ÔtBûÃî8ÃnkC  Ê£B²æ ùdž¿?KÜîÛ¡ëç'/è€B縢t¼,J'LŒˆ¦oA‰T#¢¥[e©[eéð½&òO WbO¡Âìi»Ï¯Ëáu¹Ã$Ôs3wƒ¡Òþ­¼.Cñ6€ƒJî©iiw7x Žoœ˜™((tƒÑK'*QhÇ©™Otôôt‹Ã€hkṚ+0@(¾rÐ>´¢všé囟ØupšŸ$ÂÃñùÀ7íøÿ\Í™Ffϯ•E>’ ÈG”N¦E‘µ$Ú“µ¤(ñ‘Ôª=™âAGR˜FŠÓHPdÉêÐ ”øHê7â#‘wåhÚu4ª¥šòÁ`1Õ"©Qq€…,Q’T-Máô".© âhŠi‘HP:švDMñ8šÂ%DJÒoùGõ©²Ê˵Ê#2u‰ú7R®{¥Ï˜Î5J}ê }êŠRŸ: Ð§®(ô©ƒ(´ Ã'¢>-èŠôÑ›!žñP*Fu3Š-è*ê{?Þ\F燵!Ô‚(´ +J-èŠRs¹¢Ð\® 5—#*Íå0×h.Yh.×ùQs9Œˆ¶q…¶qð´ƒKüüb§ÚÕ4º¹d=~Ø÷ ø¾wu[z:ÐÁôè@GüÚÚ½ֲܧ›úÔaaßR1Ѩü[p3En¦Ê7FëF,ëRAb]ê€b]*J¬KøÄ².$Ö¥¢ÄºÄO ëP { UÖ%X „J@P Ö¡„J˜*B%LP •0?3¡ B%Xa&T‚B T⚘ž@‰v Fí’õz‘-Gí´ï¡Ò{HÈ™*KäL1GOy œŠš¸™æÖ)‹8fQì„TYx^†,5L*J“ŠRˤ¢Ô3©Ú#&*½Ð5 ¨¹mR!ê›T”'ÕÎI}o­âsøüý¥EÑ ¢/f‘€Bg$ Ò 3˜Çs©~Ûó»¯ü]Oè…^LXaÄz Ó² ë=› M›¸*Òµ #¢mì•€íb¢çæNPëo»£¥—¢»Dµ½@÷ÿ~r|.ö¬ônzœ]{ÅXO¿÷”©3]@‹hÀ Jû:`P£•Þ{ÜA ê“ :l™|§í ¿ªÛº”>mé…ߣá´üúÞ5r8ü¹Ò”w¥Ôó‘J›bPhCAsMA£6wLÚõôçNŸIËF­yk)N%u3—¤–ë`v³•ËÛj|Ìî×Ú–(èÁhÓfÈý¶ŸHFüw5ÖãÿßfäðçZš¯o%ܶ…<ðÈÛ^{sú´ÆSÚñÞÒégæ6[ @Ùܼ#]~®«m}é hÜ^F^à׺ƷtÅÛQ@z:ª$¼ URš* ïFÔ!€úT¸BUhM7#`údƒ_÷\™ÓáùÊI}Vª$¼$&QyÊüTI` F¡TæÏ ñgÔîcR1x%‚/õ‘¨ ±yV¥>$Á+ÁøY ”.ÐW¤‚ðˆ„Ishqh©/H°S3 à»%í¬”[´rÂr!’Ûþþ=@ÇÛˆ} ¸?#¾=މçÛžÇÿ{ÁHyõ: °}P¥Ë-½ÿú‰%1Ø”O×Çéê¼²’òç+i& ‰šú^Ð×}K¾Õ“§ÕP×½åèà|ùZé3&d šÆÞ« ¹=p‡Ÿt§Ûò˾÷·W‡S;àã’pÌ^5b¨_K |v½/¿mS4!åÁhMͧ•®§ýea¹J@9GJ–?ä„p„vœrô=!“¾ì¼ÅYÆíû²vÿ¤ÐsAŽ@Ùhù~^;™öü²qè¯K¯Uº=$5ážÃƒÂŸå6—-ýœ•R~YÊ/BaePJZ‚,•LVš •>DP¥•TkÎÕÁ€ÈÕ‘Zé$›¢L“ØLèžÒÊbT4IƒŽ¸÷(µþ`õô*Òx(¿´¥ÆUüp~•ŽBŠ41ÏME’­P~‰ÉAù%''å—q.¬äbMa%VXº#ÉZ¨«Ä¢d6IÊ—mSk§½Š K…•…•ð®ŸÕÃQ¿Ö>¨>rï¯`ÿ9 E)´(ewÅ–›•µž‘Âa)K9! ) Õ´Í‚Ôk¨¶‘+æ@¡UPJîĈ¨;*ðR+mä4H…±Ú>ƒŸ´û´Ë ÔŽtVjÚ¿e$c }€/J]äèîÉëÄ2l¯9¸ úÃ¥´N ˆ´N¸zºá‘Ö ½Ö YMëÄTw3•òJþ|K½ú‰›o“Çvt:,P‹äÏ ˜ü“?‹RògPJþ¬(%ö•üÙOTògPLþ¬òJþÌ)ù3¢˜ü©›üY”’?ƒbògPLþœQƒm<^žo#Çp%J¢1CT¨fˆÖ!”!ZYÊÍ$2C´#*C´²”!Z·Q†hPÌý¬w!÷Së§¹Ÿu®·|Ê¥Q•û)lîgÍ¥ÜÏîÊýìºnîç¤ë¿Å úŒòÆ[YÚx1"6Þ¢´ñ…·(l¼ýÄËÏ1¢Mëñ°;ÃØaìÎÐûn•ǾKQÙQÂŽZ”vÔ¢´£Â}è.;jAÚQ‰ÊŽŠIÄŽ YØQ;=ÚQáß{€¯£¦ô¾‹±ïÂm°ï¥}—NŸ-Þ…-($ÝÓ³¥ÂØR±°±¥Â^ûˆƒçú›¾õž9àÌ¥¢•DQïG‚(™´£%çH¢”KZ”rI‹R.)Œä$ÉRÆ)d%‡‰ÚϹ¤…(—´Ã5ùˆˆ4Q~ÿy”Fßk½”LZ”’I9b’IB2)PI&-& F2i2Œ8ÍI âª@j'ÝoÊZ¸_R;1"R;mÑ9k#6k¾åU.E5k fmBõdmr¢çÔ&zröÑ9|± Eʦ îĈ wB”¸˜f”ž« KñN ïì€x®‚(Å;‹R¼³(D2i‡Ô²C­Æ; "SÕx'´š_¾lõ9Ú P£ oZ Åç˜(dõMK΀òzX]ÊþQX¡¤nb!¥ ÐŒB©¹{,ð7êÃÇM\£3Õ¿ÿgf¼¢ÄyW”vѢČWÔ¸¢Œ8ÎùÅ…»ó¤v_Pdâ«,í´VZ½%&>̶™j/2> JÆG‡˜Éø`‡’ñqçVo˜ÃnDœÂ™°ö a|¯„}ø¸öyŽçvp°8hý°nÀØKu³ê€ ìT|ôõiߣNÙ÷0}oœtK+€c²À±»—cóœÖ å’æh=Áöûæ›;FÓ!W;Cè¦ñu`>mÙ+cØqy¿ŸA*#­¤ïíaàñãó¬nˆÍågÐy[P?œ_+9 ‚9íMƒ/¯»/©û| Ð2Ò z|ÓWŽ3Ô“òÏbPÙYØükÈã–ã1ŒtZ©¤Q 5¢œÜ6§èk'T?ÿ鸞áRÿI/Ù* ¿í™QÇy|ÿ\ý‰ÁЕŽ”¦ôÁ Ýü¬Ðý¼eE]Ï?¹?ZÒGé† 8giHŸÁ¶>pÛrùi·‡Okéè—r]º-ÚÃg‰´D{ÚO·×Ë€>ÿßÿP!:uöüçfÆ©QqP‡Ÿ<ÂÛáÅ”úõÓ]ôû… ôRÛc赟àoÇ˯Ù%ë±£œ¶ß§ó“ìT#¢=2¾ý‘aúÛæ{cÄãÒöj¯oD‹dè…ɱMä=bzã{äøÆõ<ª2f=á«mp\šc@t/†¹Ú<]æj“ãˆÆ•tݸ;OãÝãþÁÑçv@£cŒxHv)H«c€Òë˜^:7;Æ4£‘1ëo×â¥ÚÉx±vÆIñüü]:Î{ôpœkN÷ uÞQãüú»òÂN)YÛ[×íúŒPÔ×ðÍÓõ|.| °uÜ)¡®÷Ë“y¨=v|ÍX¯kµºçµ¯Õ-ýµVþñC~²¾¾ž‰URë§…Õc¿|øÄ-Óðt{Üp¿×Ú?œkKÌyþ˜/”gÂûcµ^?Xk»º{Í}=ÓØã…:nTT·Z!vo)ÞSzï‡ß3&•ßÓÇÓàemˆ¯-êñ;öõ\eqœOn ð¸žÅ‘ù<>ñðÉçG­1=ß#]z¾,G;,­ºåê ·š”Ǫ~QJùòªÇÅë¶V[®F¼o'ˆõ$ŽÔŠaÓÛýãôl©çÛEø¾žžÛi˜x\NkCüR RÀÏ‹l¼—\ßϘéT°-Ø= pÉß++Ÿ€BµF¼oaû·òÊRMduG•,T>Q¯y Û du”½PÕTÔO`çûᄇå a”(”¯%ªÔ¢TlµºÃ…#–SµÕËR÷Twa<ÔmÁZ¨ÛÂT·n f8oÊ¿âÐ Ô\T[öJévQØÝF V·AxÙÙx÷º˜ÅÖ¥bQ…µb%, ÔrœùJßIùÆi÷ñƒ76Ôóc~+æºlºçÐ' ã "i$ƒ1ÜåúäЭ$q‘JÒÆjz|•~Bñír{œQ/+ ¯4 Q‘$*Òš ¢š•ËOÕçeeK2ˆFÒ8AŸèǿǥ$ÑŒÑ`Ä ZAe­ 0ˆöÛ¶ÞÇ28®Õ>ŽæÔÓZépb­€ø³Šƒø³¸ì±ÈÇÞx\‚ÄØA;ØAûu`-è°ÿ^=¶ºåÜïÛi}KXú@»#cRJªé°¥¼nÅpï0ˆJÒm«Ç\”ÏNIïÝJþ-ú)Å~J•¥~JE]¶Ì­í'èúA/t]‚^íºTº.u@u]‚òèºC´ëRAêºT”º.ñÓu©(¤JIV».ATŠ dR´f ­™`R´f‚× 5&­™è§iÍ„Ylk&LâÜš VGk&XanÍ…К©Ã©é̉¦Kqnº„i~ëQ´Ô ­™ŠR;%L :%­œát»œ>9éÜOiÊC]½Çußjˆßy|=µW”ä1 šÚŦöAéá¾(¼ÜC-äÛ×Jkª,½•Cy<–wÄÓ–ñ8ˆÝa„:|í?­c®Q?‘ƒÛË™Fß¹9?óC7$õ¸è>D=¯G‹é™séé€S꜡ïØP¼Ù°9rš Ó};aªÒóz–G4t\7Oü˜mí RÃzùK{ÑW–zÑ×ú4ŽùCžòŒ ±œÍÇÖ‡u:ØïödÌã×a×kde¯ÕúÚûY«ÔÒ\̬çfóuÙO¨×µ!;´u”—u²ôß·ë'Ô…z¦¢Æw«ž€ò±rqq¬œe¡ž Ú£ž©²T©TY‹ƒì¬=Ꙁòq²pÜ­,wk d'ò¦d ždgQ×ÍqƉñk­üâ¼;MÐâ¼;¡š6/Ý}(ž­åCñü‰>wDŠgP‹ž ZœvçuíÓîì5>ÇΆ÷9¶+VçØ®Xcg”ϱóˆoÍ¥sùˆ:¯þÔ4MaãÅ»=@}k/OíÔçñ€ø.Ix¯$½K„Gï‚ô.UÅçw©Ž…w©‚ú.%kOçøz¼]¤·+MÛôl^L^Íñax¸ªûp% Í\˜2<\ÔÇpØïV„'©ª„צÎ^›ä´ymªN}x‡N}’êü÷Ù+²¯îT;¨T*ü`ô¸Uä]þÖ·­©•HT”hBŠ»SQbwªIIP«T!•ª 1@Uöã ¯1P )JPP$Q’(ÎsCŠ•< TRô¿9Q Ê7QŠÎ0Ó}ÀX%’‚¤’‚„Œ+X*Wðôf\Á͸ò쟼¿Ü!X¥à‡¢¿LüP\ÉᇂÉËüÄá& ©æ™T02©€*yé´?¯R›€šs› I8€xÒ¬(åI¥iQÊ”*JGÒå\©ÊÒÉæÂÑzá°{á´²˜8C󡟈##&¨gFú_²`-œ‹Â±") †ÇéÎ…´(¨…ChQJŒ‚!pVõTχU:jN«±'Q€z6ÄxÍŽÂô ó ®…Ô'˜¹O0|“Ÿ0ÓÍ~šºü„—ï P}Yè²ÅKïªz€:Þ÷\¤Û«¼(4S*JÍ”„J3% ˆfJVkîm¤ÓHÖÚv䇨Ó3&¤éÙŽF#ìôÁ¤}x‘îs$`ÆOÏPjüx~ø¾ôI(}’ôy;ÃÀ ½¯€nJ «OÝ”$«Ý”ä í¦Ôð‚±X/¯¼-ٽݔä×ý”xÞåî°??}}ôÒô\òŸߕ`Ôvf’úø$Ë·“ìðý“1÷5¢ãŸýæí1È?÷o’¬Ÿ érՊ»Йé-gêߊå~™ä~‘ã~‘â>:‰á>:à~Æs"ÆûY ï3q⻟ˆî>’Ävï™›Èîc'¤ŠöëDuÅKb?“W7ù¢Úо(µ¢ª„LÔkŽTP:ÌK P<½ã%JAh:#ÉRè#Îæ©<â °"T~â3¢òˆ/,}æ-¾ÐÛ=~šºÇÓéOYé¿X‰0Àªˆ0@¯tçˆ1ÐUÓ‰ŽƒCQ ` ^S'zúW¨–þ?_×’$»b絊ZÁ ÿ?ëɈîQNzÿƒNÎÉ)ê¾Á}…9mYp(¡Gø?ïýxz0 U¡¥âFŒ›ù➎›ù/P¨÷w£Ô8S–º ¼Qª¸+¤ èºQj˜RKU"&±õ¸â0§–C,ëF© nn”ªàæŠ!ps£TÿVêàß )ìÕ?Óø•F…TWŒ±‰+îê7 -Øü|–oç?‚ãôü‡Ô×ô\>Ãô\ê¦çR×0¥ŽRÕ”ZþÖ,ݨkœ,Ëß§€¥+,ްtå ô5£–W^WHñqÞ>ÎoëçÝ?ÔÎîÏW¶Â+gËo ¼/´“?öô…TÚ4JU M…Å´i”Zóú±|7`B‘–bKò© µi”Š)7îà¼üKªÂv*î׈íT,°ŠQ`;7b<¥ªÍ{u».nHÎö§¸øTæúã_R"Séý€ÈTx?îó+©q£_y_ ;•ô€îTüŽ#ºSi0¶•ûç­ü‡½» Hå½þqîx^p6ð{8\¨~o¤¨â§™0oÅÃö·ÔÎ\òÈíÜÿ~*¤¨òñ0 Ê©C_úëVUP= Ot§Qê Ýé ©ïýS£ŠŽBªè·P‰*:hªPE¡"¿Ô4 ŠŽŽ¨¢ƒß`è T†Žw  ­nø:UX ƒ¹ tÔ4¦´BEFûh®@d*TÑñl|¥¦­ASŽÖFèÑÑZ=:Þ€1á½*ðIG¿ |ÒÁ§ Ÿt|ä |Òqt>éx› |ÒA¨‚5У£ãôè(T@7³€ðùóï©i€°¢£¦¡ì“§…쯹¯¿~ ­pç”9‹…¢çé[‚Àþ¨¤:—¿L͈d®8žøCQÕŽs´V¢J} •€QÃèg¦ÄÍsbüš"Z+ÄsjƒÐ² ã ª0¦¿FWF}KDÐ5>Îçí•Z!T¢J BªÔðâ®þó³%.xu#/ˆFUÌõ§µ±/hñ»UÐSƒP=5­ÿ)ëäÏ_í>ùHÆôþ×Ó6¶-F9<Ÿ[td’tñÔŽ]CËd(¨ÈmyuVšVÖ`7Äúú©¥†÷¨mþÌlÿÝг°VJ Æ6FÅÃèŸo亰ij<’>‘2Õðˆ©P<ü÷eGßBZ訨 -¬õKƒP: éö£Lѽs[bÝ.RX¡ªjÛ˜!?ºT…—¡*åt\7ªî÷>è(ST9 Æâz{¬•«±ѧê~'¤VÏÛW•ÓøŒ ‰êÅà‡<õÂÔù9¬È|Û`¿Y•ßÈ1íu”)rP«ÇhH5åKã#2À†?lQ¾4 •I£ßcbéø@á£ñwÒJ¿3šÞdyŽRE–g!TdyŽR~H!U傎RU.h9ÄaÓ8ÏDÏòq=G©gR矷~ )<8“¥žÉŸõT9 •ù™£ nQØ?ÿCªH¬Ý*¦ÊBW‘6_I ió…Á"m¾PUeW–ÎO»•®¡gF!TåW#fðʫ全)&Áú†~¥ÍWBCÚ|eoœ(ÿÞWB|¥kœN«ßyœN«{5N”Õ»3N”…T1QÖ¿¦ÀJÕ8Voëê^Ý­qž,TU©¤…Á"´p~œë§ô{¬ü*’@‹—g'€Z`‚ým±˜M+]#bèWtþýGûÎQjDù…Ê´¥Â`ѽsÔU%7ºŠî…®"j”*R J營£TÕâ³p«H§*,@‹[_¤SRU:Uá}Ñqs”ª:nŽR#øh!T4.œ¯2³Š_±ÈÌ*¤ŠÌ¬QªÊÌ¥ªÌ¬âv=7GUEfVy·-:þñ«|»F ¨Âóªþi¾1  {c䬺¡ о£pöø{„Ê‹‰TÒío‹΂ŸðŸ¯EÑ+¯0¸ò¾ÏYJWMEX[ ÑÕ­ghê¯hý U…ëGUU¼¾0XìGƒE ½PUÑGUÂÓ¨«Šµºª8ú(UÒ‹!‘ôѯ"L>ªªâä…óE |”ªÊ4Ë[ÿO/ˆ¯€zq¯ ¨BS//~é1`> U…œÅS„Ì‹×bŒ™·½¥ª ÍÂ`€/~¢B³|J‡8}a±ÔOé©/ž™"T_H±úâ÷‹=‹ŽýâÝ)BúÅm»€î(°Ø–¨Vؼî™qÖº5œ¿Qª‚¥*ˆÐQ óò¶ÄÚào¡¸GÊãšï¿U!ì¶-s8JH¢£P…$ZÜ4NÙ¦ój+ÎÂ- p³ÉøßREŠkõûÀ¤…÷˜è(U‰ŽRLh1Fl·8¶þÛù K´pëŠÇe[bøßš Ñ™~úÇ­Èç¦ÿ’*àD‹ßúŒæÏ[&o%…ùj ôùÝÓ!Á´¾¥g<óËõ[Z¤˜þ}ããàjý[ª‚-Ÿš/HÑòÍ E‹Û>BŠBURku†\ÔÊ«™Íyæ¿õLäÌqîóyý½ÿÑèc”ªZÑRŸù'¯G«*¤ª¦!£TQuTù5”BUÏ­¢È(Uõù(,}>JçcgÎõÞÝ@j‹ßÝ@J]C7òN Ý@Š»èRܯ±H¡ªè2JE!ÞÂBÝão]UÏâÖ•Q•_LM‹èô·ÅªH¡«hRÜ®±H¡ªè‘W¨›†÷¡h¤7JU­EŠ™¤h-R<‚Ek‘ò•š†ŒREúBUѰ®œà¾«›*©±aÝWÎÔû„ÓAªêEWèª2NG©ª"t”ªòRG¿ªrÏQW•½ZÞ‰!/u´X̃…®"{uª²W ç‹zÎâÖé«…[Eújq#ÆôÕ­"}µ¸[EQgáV‘À:JU ¬Å(ª?‹!i®…Å"u”ªXG©*µð¾HM- !5µ°X¤¦¿ÐØÛ®ºEÖiñ@Y§Å‹¬ÓrƲNÿúŸY§…_EÖi1/Y§…Å„ô»JÇICAè·TYZ¨ú. EªšÐQªªå¥ªsÑQª*ù,ÆWÔ|Žºª¢ÏBW_Wxÿ]ö9ŠTuŸ£TUøYH•ŸÅ¯S°¿NqÀZÜ÷¢B´p«(--5¢…TQ$ZH U¢…WÅ™nyK‡ÚÍâi(ðíŠ;_œ±–OéPZ>¥C‘gù[Užõ=ý>‰-,Ž…ž…Á¢Ò³xlŠ2ÎÂàxzZ¼>ÅÁè(U@å•^}Cå}˜¼ÿ‚u¤JX§Aª„u-V°NƒT ë4êª`©Öi*aÆ1V°Nãý*`Fƒ¬Óx#*X§ñFT°NßR5¬Óx»*X§ñFT°Nã¨`*ïGX§Ñû Öi”ª`Fï+X§êaÆß±€uª °NÕÃ5Â:U#aÆ_q„u4xÐÕ¯S!;U÷jDvuUÈNÕ8"; Þ—˜Mã{Hæ?€8ý%õ ìô•Õk¨ý(U¡ÚRUÙÔ(U•M~Àö…ª¢¶j*k« ƒ#lý(T`RcÖèUU€5ªª °F© ß¾¼C™Vaq,Ó*ž‡¢L«¸c™VáÕP¦UÞÐï¬Bh,À­UXµãßXÅ/X”V÷³ÀË/îBQ€UJ}MoáXU܇¢ªx®Šr¨Â`QUþÎC¡Sa±(t*¿¢Ð©x£ PüBj˜n«bh"òµ¦ýk“ÿ%TîñGEß[üAKè4h©ö÷ƒPµq¬UàôãÀŠÍý(TìÚŸª”§Ê§s~³Ù«ûTì´+¡as< {ãQhØ¿nn? ê•¢´¾zl‡T§ñ7)2FM÷ˆE?>ÅV}ÐTíÔ«'nبx‘15Uöã-(vüå#ð½•5;ùÑïb‹>*wèƒLµA¹ný_c+p*¿¿7ñ_ñ©w'ZHUáýBWÞ¥ªðþ(URU@©kH(¼“ ƒEx”ªÂûƒTdZ誒Jç‡$€òÇþÆ2­Ç8±Üc,bdÕýÃû…Á"¼?JUáýBªï·«ï~áýâ¦áýBWÞ/¤ŠÈ}á}”/Þì"Ü^<ª#Žheqb™Yl‘þü…*¸ÑBW”U=0AÿñDtñ÷?Ôr´a9úœgÿZ~~K•ëÏBÕ÷tÔS¬@G=Õt”ªÖ £ÁjZ ¯X…RÅ2tô«Z‡Žºª5樫 ú÷«XŠ–RÃZ´*£…Ô°-~êb9ZHkÍò!›Å/V›Å¯X4H*,‹ÒBW±*-~ÅbYZ>ƒÃº´xê‹…é(U­L‹ûU,Më'â{mZè§…óÅê´P5.OG¡j}ZüŠÅµa±B-îéw0께´žMG©º\*ËõG]E¹þ(TâÎ?çïJѽNJe X‚íOÏ«ŠþBUQÑ_x^ëRU±~q«†Y¾”*ŠõG©±X¿ø™ÇbýQèÒQüÿosUIip(Ö¥ªbýâa ¦K¿Š’þQטoPê* ÿ‹1Ž…ÿ…PQø?º5 NWªŠŠþÂõ¢V¿x–‹Zýâù+jõËgùëkñÇ{?TáoÏ7„sùs÷3Ûw¥êÆSéÎÉ»‰*¤>‹Û(¿¢ýÀßRBÕ9çÖñ¡Ò…ÂרÑv>l¥jŠ@ÇçÓzç´U9?NRûÉ=[lˆ÷¿u€S•_ŒžKÛR+kì£lmú§÷߈S…T8U鱤*]pKu»´@9?Ôý·ÁJª*€[*‹”TuOG(©B*à‡bqæXHÅAEŒpþ×#øùDBé {KèO•½˨85¸ÿþuFø§Ú«oø§JÕÿTéÚ0ÉJÅù·óq³’Ò9ú•Å'Dq&õ·[¨I¥ ’XtÞþÒÞTýº¢•y{ó?¼Ÿãï³ÒÝÿv;£mž®LF*¤Î®ßë¿Ì•…QãÏÃ]é}÷•$£®…qÎ8…]ÿõS£èn]󭮞š“y®Ÿ±nñóŽÙôþ|…ÿþ~|6¬ƒþºpÆ÷yjÚÄ\9&GÛ|.ÿr¾,Ÿž­¢œ¡º©UùÔøHTåSãíBhy HÀûy`ÈÝšþ¾õUÍÓx#6¥úÏÿz}Š$þÊ Bqñ‡þ³àŒ=Ôzÿ÷÷]¨N`‹‡æâŒ´­ÿzŠ<ÿêa¾qlÕeÊÛ¾"1>ÅÙ‹ìyàúþ©[ÛREo»Aª,euUÝíJ©¡”©ðkl]7ºUõ®¥ªz§bˆE÷ºò¦íëF]j¦?~ÝÿÒUu¹uUeQ…®¢Ïݨ«èa7 UMìŠQ<Ç6v…Á¢’©ø‹J¦Â­¢Iݨ«êRW<]E›ºÂû¢O]q#Š¥â¹)êŠF©ªŸ]a±hhWŒ±èhWH-íÆ{_ô´+籩]ñû ¨j€#,~=¿ ò ©±„t¾¹o?·ûUù£T¹“/¤ŠMú(Um¿ ]ÅÆzô¾XzRÅÒ³°;•ø¦GáÍŸÞWqûBªˆÈWRcÁ}u¿Šýw!Å}gÔPìꪊ÷k¿¾‹÷ë{ÿPݯ!n_8_íÒG©b—^܇Ï €£þ6xâ …€ÿˆã¯rªØÊOàX×^Ý÷±b½°XíÒ ¿€‚£òëo©j/_ø5ÖÈW·kX¡VBß+ÔúÕ6éåO8lÒ‹¿Åíz7ˆò–Ž[ùê6õýÏIö%j%UåA Re†Ó Uf8UºÆ §Ñ¯"Ãi4Xe8 Re†Ó·TáT¹5æ. R4IùNÕÇ §AªÌpÆXf8÷«Èp VNƒT™»4¸5®œ«»U%8w«J]¯R—Æû0"“ªªü¦Ñù*¿i¸ÅʹÐUfA󸾮¤ª\©QªÊ‚üª² Æ'pX¡V÷¡H•­*UªšÞ“«1¡ª¯‚zÿQ@ú%RU~‰T¥£ß†ŠºÑ/‘ªhô[KQ1ú%R•‹~‰Tµ¢ß#* E¿ïËX%úm§(ýsQú=æ¢8ô)RV†~ß–¢,ô{ÌEMè÷˜‹‚ÐÑÝ¡ôÛÝ¢ô[¤¨ýv·(ŸË¡ôû7Ë?G;ßµŸãÃ2~~ßþ¡žóûÎÆáÜÞj‡ÛZ”qŽ£j8¿µœß7dïÂ6Ÿ{V$ÏÒPà9NT0G2ÖOAUú=¢¢°³| \ç"ÑÔfý4Êù7Öˆóïÿýï>ñe×L÷î83’€^ÛE`±Ç³ç¹‘ô+nßñ_/0Ïœö¤ išˆ ’ÃO Äx"ÂD¿~ÒK4¯õ }Žâõó??q÷–Ï@·øçúL 1ÚØ,Ä×4p[>«øwljÍÏGó² /Š?ÄŠ:4¯øŸññÑߨw¬]hšª_?gÅW0/ßy¤™ÚIÇ6n‰tWžîs˜ëtüÆzëŒ?TŒ3"ì±=T:Å»qŽ gXˆçãhrºqüà Ñ/o±I³D¤»¬Ѳñúé8@¤†ýb~D&y~ý¤)‘~KÃsðþ¹‰Ÿx‰öóFÅ€—ø~"ë’©xïžsÇw)NóÅIïãdKÞ#ýŠD M6 ¦;5 Iî‡çSMÃ[øfäë§ù ¿ÛE_þG»}–*?ïöy+âçZËu)¥ðÝqâ ù¼ó´aF;ð¦e"éó“ö£“8 ô[HZ€¼h]‘WO@ïNõ CÚöõ÷t˜W?ýç@ÏóÀcvZõ/“tÇ~÷œH³ÃÒ~ê÷&‰W 'M`Á^;¯Op8Ïc× >“R|Fläë§¹`{hÏ1è¥Å3|ñWÅKª¸c‚Ï÷œ(oÿéáW¹Ñ¡D´*‰ã@)h$,ÄóhÎŽù¦à£·éß!›æñ7»æ ŸÎë=Å:Ïx~O>¹q¤S€ ÞçŽ5ÀçC>ñtÿ&N{bŽoÁ‰ä¼&qrÒ´“´€ ÌÁº³)ìo³2äí‚þž.ëòçô–®ñ{~ÞmäPa¤3¾=†Cx÷$&¹Mø(O>ïf¬ R"òi:&a!äňåTxîË£wÈÒ ýjh )a­á9}W?¿e<»ñ»î\F,ÈÈ›³¯Ã»ç Ï: Ñ;û@€Â£xa}ì?Ï ßøêFCk\`÷uMAœ-ÍI½p@é | Ac]ð©‰÷àä»ÊÙ„vw¬=ÞgÙèÊÁƒì¨ï†*6H¾˜Ö®íïŸêrv—›¦\`¶÷MÁ„¦ft\a,‘NKÃslü¤Ÿ?ïçÆ GL{ž+¾{6=8íà™ ò$’ô‹Av,Ò-qqÓ›’† \!6MÁ ™4AúõÓœ°„”‚ç(8Ü ïl|j³ˆÑFjËQïŽsÈ÷‰†[$ÛFªzæP‘W>Oðqw‘¾vLÓ®ç³éÂ7Ê6:o _?ÍýÝ.úòç 8ØãˆO aOÆq²€=)0ÞgY°¨A_$f´eСéXÊ36¶‹iV`š&p93φ¤`âR*-Ž ìƒ%Òk)xŽÂ‹‰Øê,vnD9Ïã×°µïžsàøL^€dF†SÝ’~Eèüb†”%€]âËI@{ÈîÊú‰€H^¸²Sª&ýúiÆ-aç¬áé>Ç9ãé=.lN­…£‰ ï )’©«±Hݱ ‰ó¤øžÅºeÙ“~e•I ÌÄ„áõ¤þOO!}ý ÐÕf€4ÖÍrœæ1®ÿ€~P|[¹ô_?q,ƒo´pÍÌ»ãìƒ5OSèÆ=²Ê†4v 3 @,ñyŠ–³Ó`š6p…9“ö(Òðy#`š6HÇöBÍojø‡VOSî^wnr°ÝŽ š¿;ÎçÓ1s9Ä…ôŽŒ±“ÆöÀùhJlLÍ÷Õ"©;X1€ÛÛ.Ÿ.nym€4ÏÝŸÓ]]þtß §øÚÜz]±K_Γ!q5ä{7Nt)ùLa 2wµý8?Ë·ðýŠVa(‘j4ê”…×OcàgÏË#u>¼Ù#t\ R"–†ç 4 c´ûŸvã^}e„LE ïžsá@pÞðÕZ±¤‰gTe¢_L]¿ÎNâ³FÝ:&ï»Å¸˜ÉéË£ûZ¼ÀYgA:. )a­á9Žö³Èˆ_u¿»ݺa%¹ÍŸÃ„eqrfeÖ¬‘bJÞgýhJòEÀc49±Ó0›Ó4W$gÁ6%5Dvi&Hbš—H¯¥à9Š~ùÄUEì}°.º5;™½{ÎKo44AH6ç¿­õHì»®\ÙÄߣ%ÕÜ]žô¤…qr¦ “k*˜&®{môë§¹` »h ÏAhõÄŸu‰z›´|Š:â%“ÀßÇÛï §š“h¦“~1”5ŸM""µgS`’^?¶zírï¾m€tÌQvÁé45| ¢ßó|ö»ñ {´¦kÓßçfi^$½Î8BevH†ßIc¡;c5”—8¥Á4mà s˜‘>óѱv6Hcm,/,‘~KÃsúÞ⇽æÏã‚yùÀBð\ VsÆû€Ž—\0!Tv†Û™4¦ÍƒÙЖ¸P3Õ4$ q…9k@Ì7̪j&H¿~š–°“Rð…~_¾µ8J=7®£B.¾’¨v)»Eg! ÛŠ‰‘›ÈD»’ŒióÔNÝODSišˆ+’³á°†¥»Ò©×Ozà?§Ëºú9ŽuÙw‰ÇÓþýbê¥z)¾{ÎŽÓ§H™FÞˤÓ'Õƒ‘Æ~c¦®$îÏÖ3öÓRÐÈ)OŸÈ‰ÃÞ8D²‚(£›öfB´¦¶sî$ä£5|¢ßæÝ+bZaDœöW{÷œ;>…ÙÄ,Òž>N¶Žl¤Ã™83éb§¹v ’Þ<Íš³ {#Äêëì,~µFj)a­à9 -10Sñ7Þ·YÝ=>÷ê±ñî< €z ß fSÒú‚Î@¬–{IÃ.çä “°r½Y ýúi>XB.úúÇ|À¿éŠ÷UkdU¨ÂèÝqNt\âÛ0ùùÐf{š“Öve­–8œ|ëzQÔ¯£0xª˜WG¨|ïô“Æö]X"]–†çô³N±ÿ¹»‹Oñλ‹[½µÄÙ¸X8èîlql{ ËÀ4>ýLO‰8•©À$-àq"µ#^9+X´V° Òq…°„}´†ç(t>Ž×õs'~ù)ÂS¼3^¦Ê‰wÏ9Û™ïˆjÐX ¸Ö‚4ËÄ”ˆTµÓǫ̂Pã0C i8¹éM¤µ>=®NÂ^ZÃsÞîÅt_Û8©Áò´iQŽè÷»ç0N‡{XÖ3ª”к¤_ ’7%"#¬»Þ䬥‘G÷­ÇS×´s+iÛ§WšgwÝÓs¯ pÎvÌý êdKP%¾;ÎÁ…6V77éñn85‘´–s['psC’ LÓ.0‡?l´œH{vwéµMvOyõ×ônbÁÇv[ôÔNÚšbÿøî8ˤ§dçmÙøÍØ±‹ùâºyÝ;C¹OV`š&´ªuv>ÖðYûW3AO®|°€}´‚ç(ôÁªpBÞ^¤1cÁO¥ ¿;!ñÌR‘kõL2&ýbÞ%6[–ˆ#ù¥Ó`š6^?)©ààâ=MÖƒ'$Ñ܆‚¯Q(šµ9ù'B`î²¢vÖe&ïŽóùX!®Àb„«bõ™u)¤±áâá}J|¦™u \aNth fæ³§ Òˆ”Ð ¤Ó¼þ9†>=qÁ¿7OØPµ:ß:Ýåé¸9Ñc Ó¡ÜQÏõ&^h¼T'°’Ø>?Äz6 IÓÞssø1L ¬9h6H‡ {a‰ô[žãp8 ãÿnš¦¢IÚy³ÑÇ»ã\+WÕQޏöN¸5é;| K†%XCÓ4˜¦¸"9 7BÖp vš‰}‘|ÐßÓi]þ„v°§Ï×"-S¡žãf þÞ‡)¬? ’ ¨YK烘¡š„2ÂSišÀæpE‘&®(Òé×O:aôZ ž£ÐâpBî²PçŽÄ»½fí×»ç0\¨GKajÕb™Òu&ø„XÂõqÖô¤brfƒ¤†™QØ´A<ÃIÂ^ZÃsN¨À >G‘|‹×÷óúo­iì»ã„‰8_¼$LÅ;sƒÝf–ô‹åíH€°Ägî8®NƒiÚxý4Î$Ù¦áÀ™N³qèÔ§ya {i ÏqèæäŒ×÷P’›PT¸÷î8 OËt x.DEu¡ÉWÛð§€6Û¾ÞäœÇmÉa.t*˜tš& S·Ù ¤ÏRðƒ¾D8ºg¼Â— ¿€‘¼®Ó¶ä ø Ùдæƒ)VùŸi嘓Æ"`c-%¶‹Ÿ )09û´MŒØ²sµË˧Y«z M€\°„]´†ç 41#¿íÆÑÌÄUÆr2n‹Û‚Ý@ã 9}.Öþ¡w$§/îLâø‰9M€{© Ñ«÷áæ¬hÔ4¬˜yÒIDíåƒÒG)ø…–,ƒX¹ÿá‡7–7Ó™EVïŽë¶“?îõ†HKVemŠÄìëJ¤aýýóÓ ´Á—›¦×OÇÑj aŸÒé¸Â.X"–†ç ú];Sv-3 $‡áÓÑ4Ä÷‰;vžh­™h‰$‘ ô ì++4¬Àô¡SÝÆ‰µTJC,®¶f‚ä«aŸ¥€}´‚ç(´bÆ‹‹£™åTÂf ·ØÃ»ç03”bŽ%’avI"à M³š»¥6I;œ‘œƒA­ÔpLX¤ØÉ×Oóœæ#|BrŒsÃfèp:IlL–DÃxwœµ´ˆ†+ÇÎøZâgVØ22xRâÂ1PÓ`š6°È0LMƒrÈÒF&™¥–H¿¥á9Ž~¦â#½Nz˜/¬„ã*#9Û„…Ê|£§-Buñ©˜?{ûJúÅz}nHÐgÓ4m(ëÀÉ6Ÿ/ë>w&HÇxí„%ì$|B_!䀱öãØç¬ýÀ~j÷#9W‘ëüƒ ˆHRn5SÂal+0½{‰‘œ „Ô°!ÙlŽ+ä„ì£èïé´.¢Ö2̵)ÄéU;cJ:¤j1EÂñèy•(>yHY_K'á¹­S´Ï¨’sÜ1IAœAÒ¯Ÿæƒ%죶ê¸×–i!Ë@fB¤ÄŒ NÓ`š&^?gÅÇ35¬³Ù Å©¼DzMÏAh6F ò„¼·[9BÛshWÞ¿{Áb%~ë7¦ —êƒÔQ*1ô÷ù䙳/OzñºÑœƒÀ©ààQrZ ýúi.H"]”†¯Aøü © §57à÷v¬ûä·'9™ü!!ŒÐvü?"ˆ1í‰ÖwáÞ:‰}Sã*HrV¹WrÎÖ© *\öÎé¸ÂNXÂ>ZÃsZ&ã#»£ö峎ÖLJ§XÂâ~7N`eÇÞ1r‘äûy­âTÞèÝ¢ña8±L‰uaE•5ˆ– ||ĉœ-|à¨áˆæ˜{³!ZéçÒIØokxŽC[–‚ôÙªŸ;#L…Ïšs×ï+Näò÷]u³a‘†Ž¬kÒú}cýŸ#M&iA¿/8û…’ vþ®i‚´~ßõê$ì£5˯û­¼;ÎMø²ìµGçoëÐBZ…V1ó§Dä=Ó´+ÌAjtÓpîZaÊi|—å…%ÒoixŽCájf 1.¢ww#xϦÍÉyb¶äÊ¥Ì>#ùlÝ6.uD¿ØõþìöÿT`šú_?ɉb|o¨`»‰h ¢¦)Á”]Ý9ß=Â;Ž]rç6èÉȳ£wÏ!$âL¸Ö“È&ykAêð‰ÏÿÕ{wuÒí´ŠœƒàN© ÕŽ¥YŸ¤€LÏ!´åp|qæcÏÒž éäywœkg¡Nœ²Ç’䳩¸WÖÝìkÒ.í¹:‰‹¥Ó´¡ÒrX’€Ÿ6¤]Ûsvé·4<ÇÑ͈o™xpaáKÚIõ 0“fBÙ4ôw;¨«¿† ·“ÓÉrˉEjw Á)+éD^crÎ1ÂUmOFÔo¶¬2·ýóð ×¢ˆMƒiÚÀæ ¶i̵³A:®°–H¿¥á9—©å®g¾”`OßÌ“çI»s瀊¹eãÙ󼱯îJ{˜™X I˜ ’^]RhÎåb²›©,ˆRÑN(ôg;諟CpÊ*!Žv³ÄÒ+9ŸÏ‘’­“é(+!ÿ<гãz%-ˆƒ{í$î1Wk0M¸Bœ8C›† º›M`6Í KØKkxŽ£/¦%Öd€j¢e ᰣؕ,×}·¶1aZ4¶1ó÷r‡YÇ’ž•=–œ•Ë­Ôí6—Îim®à…%ì¥5<ÇÑs¹BÞ”QÕÖñVÄsgd 97ÓÌ#\É)Q{ð‹òëù0‰dsÀ³æß£vï.OzUˆ99Ó©íšL+‘ÐoåÞ@â‚igÑ›4 ¦iãõÓqÚÛ4ÌDðH¤qr!/,‘~KÃsýû{°”ØÓs,6W×Þ=ãRÆ ¤Ðôqwý¾3R¡Sá”Xn†ž­!i~K#BÛoSmþæÎi½1pÂvÒ£è kW¬¬„VäÝ8ÅW'‰wã pDê ÇZûeï ÑÈø?ÿëvNR©@´L ¦@œÏ,ß )²ÐÚ,ˆ~ý¤)a¯­à9 ­«žf”ÀIöHFŠI@ŒwÏ9ñ•Ãü¿3Ê´8ÿiN‰’Rb¾Yçm I †£q>Ë¿ÈZL ‘ûzv6H#J /$‘^JÃ×8ôûâ—Ýö½¥ê"Å=‚ê©ôî9·€8X‘‡×È6s&Òp†‰z–ˆ ¦¤¡Ñ«Js“³±ÛpjØ‹–6H+5^XÂ^JÃ×8ú ¨ùöoÀ{ $rÚ‰aû¢ðíøhFÙðÍgH´vEÈ£’ ¼¦!iÚxýt†òSú'7 µ/‚ú{:ÍË¿áí=~W–¶m‚xˆP VÆ‹aВêÎX1Å£uœÄuÏž0¤ñnò,%Vü[CÒ‹±ÐÌA¼Ê—ïÜ»§Ý»ûtÁv—?G ùbz 6‚ÊmÜ' 'É(ÃX˜÷Á)&,e‡ÒÈÞ­h(ªÝ:¦]ÁÙqˆY!×ÍPŽ-ˆVò O¬$Auuç¼Ñ ?mì…T/½"b1­ŽïžsÑÇõhÙ×1÷¨XüKî“WRB›ƒÔ´Éä0½[—O¬”Ò¯Ÿæ‚%ìâÔs÷Kꤑ ŽûDf)Òòî8ÇL˜ÅiÍ»—ÑZmMZ¹[/qìJ¦Ó»³O’Û5åmBö \66gŸ¤–°—Öð‡sÌqÀŠwÕh‘Ù¹p!Æ8—Ñr1¶d;á›±ã¢w5…x:ÑRýç¨ÜíjÓT ÌK^¿ŽÅúI"˜ û°¿¼üá½&^B“s”z‚^,>rê#õî9Èën:11Ì+«wÜwŠtÌŠ3ò¾R`>™Î¤Ë“\ë4gÿØb ¯ßo~;m@ôëÇXÀþùú¯ô`7w·ÒúˆŠ]JTbvÆ<\P¥'°LãD˜@Ü)1ÏÚSC£§ÿT"ƹ Á ΉÇ96q §¨9!‰tRž£Ð’ ©_LÆ]\î¿ên œä™¸}æDâáHÖù%zu`i§JDÊôß·‰}‡}­ijf9‘o Ë÷è,&šT÷çtW—?ÝŒ“U˜·#häûQ´†¢wϹçôìY¸sëDø…~Ó…@Núóõyþ0ïëòF¯vÜœ•ÿ6‘µuZ? ü 2ï?Û=^ýå¿GP5ÍÒ,¤ NóWB`5cNþ*\‚¸ÊVG‰-Vb2M‰Cy¿Ö´A°’s2j•Nu\´ ÒÝ·)%ì¥5<Ç¡ ,ÆK@Æy6TdìÿnÓy1¾•Œ é”@9¤pœy¦…C‚á–¸ÐÝ£i0}fÞnrV›YÃ,Úfãȼ]{a {-Aôy©â2ÈÝû8ˤ 1V›ÏÆFN×¥ÚµuI)+±,`Üs§Á4Là1f.ˆSÁÌD‚41;Õ °„´†Ç(ú÷–;9§XèÅ®Î[L8HN,}bGΠOƒM¢d WN‘Z°¶¿ÏaÃuyÒ4ðúé8‹`R°Ÿ  ¤±““ ’hN/ŠÁ=¡‡/.ÛFL*Í ÀF`±~­«a'Áù¨2ν"jý½Ð´[Ó‚d¼Š~_¶¦ išî䢶bçùÛ4|æV¤ÊÙiáN@zM_£ðÎÕ5ˆ/'ýÌîž÷axqΉÛÄõóÝÇDu"~7}’­þ& ¹¼Î˜rÔüê°ñnÂäûr´±[švÑqm§@:+OçµòÇ «äyŸ®M(¤vêwÏAmì2ó|'j0r«¶Õ¢µ{ŽØwJ,Lüµ‚$²Ìœ‹)VggóÞLˆÆñH ûh ÏQèèt›s~Z=³¾N'©lÎú‡½âÐ ˆñ'4DJϵ$ù†Ùl)±1Û-5˜¦ e}‘³©@W>Ûš}ïl~ý4/,‘~KÃsýïK’çM7l‚‚ 5ÍX7½þ‡röx+·IÍèHcŽ"VUJøÇ†¤as”«BðR°4sg‚4æ(9!‰æ55Û®Šb%CÝLΉøÚQ™J üó6ùâs¿níï^›vyÒ«#Xæ\\:YÁt­Œ`É‚hÝ,-!­à1wlÝÔÔGa‰IíôØKäÝs¢ÇÝ,<5ë⃫ÒXåâ ÓÑ=鸛‚FÏÊ×Lε35€ ¢PÈв «âI{`IØG)ø…ã“XAM(ìôÙŽÝžŽÍqO5&­çÎNàш„oÜ_Yâ@ ^*¹ÞžÍØTˆ ËÙë³ ýúi.X"–†ç ôco§æê€I–LRqmã 0a–K°è\îfØ»‹hwyûÏëÎ÷KW'é ÚäÄ™">âhŽ0+($å«ËgÓ¼%ì/úïR—_ö‰èŠ|UÅ+«ð’s £™T”>™ŽHê"q¦ÏÈU VÎ ’^»’œêK¦ü-W3A2.°°Vð…„Î<—Y}’z3ܽïÕuïä\LœˆG·_ÂCý|Ö$qȲ±¥¶ aI/Y)/Î!8TkˆÍïÖLÄ·G>H }”‚¯QtßZ¦Y çìf3ì)p F”V<2˜ñ”]<£@Á‘H,çÑâ<ÿ>3ÓW‹„vH‹^µ9ÐÅ3ßÑÔNÛ ™—DówÕ¥÷_¿)òŒÙð„1€sß…a|°UQãì33.wÖb°úr,Õ ‰ìI–âøï'zäÕ"©þõÓ€vmW¯DºNõ¤ãÛ·Dz, Ïô­ñ¸“]t¨ˆ‚娠ÿóÝsrµD‰3N¼bã$áI¢E%³šü÷H\»Ë“žy"Ô8m N¤h5 ¤‘t.,a­á9ý¬¨ûf›<ÃÎgfÂ,•.Wø?ÛÜÎc¹|©LÒz$Þ·Ä|«É¼˜žocN&g%h¤50З&¦[˜“rAqÀt™W ¡o@µ_݉SÔ%2eVq€Æ (jT.Þ‡¸ÕŒŽåd¢µ–&á}‡5$½_þ¸&gÕNE6®2ÓÆæuhza‰ô›¾Æá5ñòëÙ‹Sؘ+0Ã_™Ã<ý¬±cy 2>ï5ѯNÎ/–¨Šîz“k‡}uñ¼•ÐWºü\}%¤±ö °ƒVðB_ ­^'³P1ùéC‰¾HwÛËÁ¬e$­GŒS!ÑX±* d‰‹§|©!éUí-’î8Œ³†UëyÛ M†¼°„½´†ç8úD¶ ³r öašR£É•MŽ"«÷¼ u×{™K¬Àl¤’ÝÝßW¶ÉËMg`¶qYMŸÕÖÔ[ ÆÄrÁé´4<¡“'‚^±'“SF>?I„†®ýrʈ9:²‹ówÜêÏ\É„¾-¢‘‚÷¥IœLµM ¦i#®H΂µÔëÛ­³AIöòÂé·4<ÇÑo{Ø•iuÌ2Z:Äþa5Ž·˜ì–è÷ú¸Y[Õ ˹ú>jÒ1ÉZbah65$½:fNàí¿MÃç6œkgƒ4Ö\òÂrÒ ƒÐ6€}hñ)Џsq^·áXˆEjæD ÊL¤%4Œ£Ü˜xn/˜FÆáÌ2uI,ÓÁ(œ4$M¸Âœ ­ƒ­`fExš ýúiNX"݆‚¯QôÙ#BªÐ)ù¢,”Ig3ɘ‰A·0è„Ýlj|¹™yFóížÐ3“|SbAòÓ`zºÝ:9“ú¤!ê$ö«Ù­Ûãv|°×Rð„˜˜/ùg7µÏt“D Á©ïIrv>˜ÇIÖ[]MNˆ&ÏmSBmSCÒÙ÷Äœh÷ñÛœjjbg¶=±–°“Rð…ûµÎ™-¿»QÞ,“8¼¿…âFšH¡›hÌ '{LO-Ö §»Pa·H—%¶|¶“4 ¼wpØCª)` õf‚4â%rÂrÑ C0<ß’u.›rOW¢o3›O¿{3QÖk®#W"ÎlqÒŠLÜDÄ.Üpòž{zøDr&T£¥‚8Û9;¤QJ#',a'¥à9 ½µ˜ž¼µûä±Q*‹¡Æ+Í8Õz•ùQ f>z–>»ÁÃI¼ÿý³RG§I_žôì>sæÞÞ wô’…¥uô’ –‡VðAu"@»ºØr¿õ]Ç:üÝqv,ÔQãºÏ?[ˆujñ4liv¼q)qMÌ€·Ó´´sb±ß¬(Ÿm&VõhNX"ݦ‚ç(ú:Ú;ë ØÎfQIë&LÜÆaõ~,ÎPÐüya6ä¬-ÊîÞä<¾÷g'±s‚I Io<:iœIÐÖ0±5m( ¼°„½´†ç81j’©Ñ%~gE9ËÂNßqÏVUIJ?rc¯¤_ÒÝ·NâØÕÉNLÓÆë§ãÌ:•”†ø _ Ò¯Ÿæ…%ÒoixŽãÕG°Icõ}Þä«GW¢›™sˆyZÁÂ]²Çß¹'+»GŠ)°1è˜ LÓ²‡ÍY¸Ü”‚hŒ°uH£H>X"½–‚ç(ŒÕ§ Æ„EØ@…lB¶¸LÎExõ#9çE§F\­ŠÆ=MRb¾c¶†¤Í=æ %W«¤,õ± ѯŸôÂöҾơ›eÉØÏ¶·ØÏ†˜¥;Î U õ¶)°µØäg^ ú!'ÿ©xKwyÒjxÚ8zµÿZÁ‡FûQ[0­ÐÏ´tvÑžƒÐbYBWwàu¨¨„‹ÓÍÅ´¬C‰Bô2FëæúíB‘é¸ñ7:›¥D~‚×'Iq žœU2T0}îڪȄhœ=ÇHŸ¥à9 –Ÿ¢\i°¶tfÚäç•gÏðÆ9ЮíÖ2=ÞŽðåˆSŒ·j:Aäß#ybÉË;zÖO›œX¿MÁIJش@úõÓ\ §¹H ߃è‘÷ϳ«“&:µÕß§q.}6WÄ>4Ú÷àJZ(K/ñYì!4b ¦Oõßé8ünZÁ¡ÏªMùáµ–H·©à9 EðÞN U¯îÞ¤øÕÛ¾äDÏ/#!!tãžnŸ„f¹y×·³õf Ìk欮¹zÏ×8Æãõ‹`Äl`ñž/]XŒfŸ #öƒVËs ØzÏA†x!€ÍóîUŒV¹ˆÇ*É+b{Ò8œºøÒZâBîNSô¦×<9Ï;¬!’–‘Û ¢_?v"䢯 A?ëíàe¦—;Yl?Oå€%çºtd›ñ>qÔ…|´+i¥¼!™Å‹òY¤Àä™S’³àó” bW·w&H+åϰ$ÒkixŽBæDq±¬éØhçñ’ß\L%ç®î{Ô‚çjcÎéq®Ž¥“Po“Ôô̦•qåù×pÞ˜[Ú0ýú±MÂ^ZÃsÚáà‘ßÜ,÷(aÌé‹{#&gúòr É5¶6’<‰M¶º;bÔ$XB«{SéÅ݇4MÃÌXMÌnŽ˜>X ½–‚ç(ÜòÖ1Mˤ‰îÏÈ0žÔé&Ø}}ÈM‰D‰ ;#f5º‰-O/pLª ‚¤'uºIÎA +8PÆÕ,Æ .,!}ýc>»À™ãÕÅ –ó ¤BtŠaä«q€À½tzÇÒ a» o‘hW­xÓRâºØ Ë’¾vã\ا†óBwÚØ ½H {i Ïqh_°w ÖÊΧ…pÒÑ›’äœx|e—Õ<–TÞØ¤ˆFfÚ•Ù&X´¯³†¤g¬%'Òå óÊlÄdCôë'½H {i Ïqh²Bœo^9lõý\‘Ú$¶ OŽ wíÄÒŽça˶œIÇq N“èé£Ó`š6P^h§žÔ ¨‚´AúõÓ¼°Dú- ÏqôáM¦Ö¯ÂQЇ‰<‹›7[ÇãË(½FUÜEøѨÞ@«Ø&q3 ’vâäÌ»êÆ¤af‹á´1» qza {i Ïqô%1ʃS©i ),8_…MÒ8Äþ\ö™§Ø±A—ý¤ìªÅøÐTVÇ)´iHzÕ‰brö·)Xš&Hc7$',a'¥à9ŠþëK˜,Á½Eá’s€l`òd V¤ 258VT=š~egÔ&Á®¤MAÒ3$gÙyªc Ÿ_Ílƒ4B*tÂpÐWwÎ;YE¦Xù1³;õ‚2ùwÇùÜ›ûâIË¥ü4Óù|ù°Yþ ˆØ[º_6 ¦iCa\rÐý±i˜yú‘6f¤–H¿¥á9-/°Rž‰Ê`¢Ãµ÷˜ÓÞ­˜ÉÁDž.]ãDži¥šls'qnÂè•Ñ2+Ì™Ï) [œ7$•l²¶?§Ëºú9}p3êåä·ˆ ðÄMªß=‡¥ÌŒ‚N‹{¦ÍñçÏê&RõRB @Väfès\Ù!ÇÅõ¤MˆVݬ,a³6ä1 …p‰DÉÇyW‡uR²ãOrã°5ò,€¦(eFÐobj›èq"ѾÞ3£RCÒ“[¸˜sm‚ò§†Ð®Šlˆ~ý¤–H/¥ák}ñÏ•srZõÍÈq~wœeÓœ„{‹ìæçÊ8™7çä‡ÎQfÕ)I 8Uce Ì—OÀnoH«:.X"–†ç \ÒNjŒâwGl‡± A:ÎÅ´Û[gdËB¬î¨¥»’ÆY CŽ)ÕxgjèèÅhÞæLH h&.ÓiÖÈ rš—Ôð=MTÌ8Á°/C¯<°Ä®-½8+“Y–“¸'±Í‰— ð3ilщ’óÂSƒiÚÀæ°È'5pŸÓlx'Ô¼°Dú- ÏqhiAŒ(¤$,NM^NÕËòÝs€f ˆ²½²V!:Ÿ¬.$ýb4ôê6”ò4I¯‰.Îδq+ˆèÉÕY ýúi>XÂ>ZÁs=p×Ên.·¢0šÞlœS ZÈQ &Ä.`qO ßC*I|>‚sw½ÉűM1fôCÌ«£ÅÙé'¥8°€ýÓõÏô1ë¨vë¢ØÌJ»(CÞ ðœ[ X¬)³—VÈr™ψ…gnþ=ò¾Ïîò¤WGô͹®˜ 77 ¢U[BÀSÁs1V"“{Íë'UÜ|n;ÆÉ>ß‹2–‰g, ÛZ˜V¬)‚)Ás•¦!éEàf\…KÁ|q¶ ÑX=©2ÄvÒ£p=ü•ʼnTe›+÷JOb̉¦¨KX+ÅÁ/ºÓ#” ¥W“ú{L8gw¹iPm8ÛMÐJ+Ø”Él [æ:ÛKØEkxÂ[Q%qw™$kDwÑÞ8ªˆô›C$™éb»ù}áb à[Òx"1?¦À} ƒX ’žTGŸœiÓCNQ8; ¤ñËKØG+xŽ¢xc<`Zõã( FЯ©ãÜlÑÜo´²sÂMã|_­Ú-udG§!é• •’€ñXçJCtÛ› ’ˆ8(v«¿Ëżü9ˆGw*ç a"ž‰¶¬oá»çܘW_@3ý¬rv¬aDÇ<¹NJx–Äʆé!éU= ’ÃÏaÓpQØ6Ž9,/,a/­á9Žó`#˜öyÑÑ*,EA>qØÍÐù§Šà/7OZæ=éO¬ÎN@ùâ¾ÞäÜÎ’üÏ3H_<ÍB}—vÒŠüÁ¾%ìŸ< ß•yåXH ¹FÍH¹{wœ@Sè_†³Üådú«€µE;Áéî$ÍLÏêeÒq¸Û$(¡“á¤s¿µoÆ|Å ôâÉg‡ÍâÑ/¢¸#¡Ô÷Ì–ÎÖ`z'NÇ`çÄT°±sbšØ.CíÛ K¤×ÒðEw,€cð’¶Y…[s*ené¬åîÒ;ï;NA®&6Hë–†F»h49±½=~›†•›Ú´AKhya {) _ãèú¨Žx;œ!³b-Š[2æ ’†šG,Ç·•‘ä«u’*¼ì$eï$½(Õ29ËÉ@²5,x…ÓIÕ]rÓ!ûhÏQôG‰|ufy ðbj’—äÅ$ø¡3M.£Y“Ö$ŸÖåê4˜¦ \a΄J»Ôpp}”6Hëý…–H¿¥á9Ž>·oé’ƒ”tÕ¥B™Ñçm©‰ÈÁêv@úŃ$ÕY"B,MCÒN…j &2IA&:ÉDŸ E'Z*TzýH{¦BůÊbÄ}ñܼ¢Ñ—æøwÇÙgÅÕOž³< EwäY茈ZbYyÂo ¦ýeé8lk’Ö†ok@‘kƒH9ÎNÃsÞôb‡Ã©Ì ÿ¼'ØoFwÍÕ›"r˜Ùí¨[ß&+Eîà’4Vؘ5‰ƒÕ½©!éÉksötL soÒÆâìœôÂöÒžãp&#RJ€Ôxªd]V%ãoŠŠ4|>ôÉjˆ Åëç?ÔBl®¦ü6EË´ãømÍD?â4¤à`Úõ&W¥é™ÓÀuyLWKg€ôë'=°€´‚çú–k«m^ÆbWÉqÆ‚d/Ñ9yRYÉ%ˆ‰cM1ƒXl–¸X –’žoNÎů5b(‚Ć % ½H {i ÏqhY…|MLX‹â]׺±Äà³â¢*‹F×[ä–Ø¶-×¶cš4ÎÄ'Â["j5®NCÒ‹ ¾Ì¸T+/ÉÁÂÓMÕYKWñ5_„´†Ç(ú2bTü/î’i sàeoŠî5ze%jq¸€öœ +‘/¢;Æ“—Àyw ’Þt𞜿HÓ€ˆÒ¯öˆ¶Ž?Ù5_÷t^0ÐÝBϸ©Äf¸‡[¥–ÉY7½>¸©0wÃVÜ*µüÌJøº§D$rÓ´+ÌYÙ*¢ö÷êlÆœ /,‘~KÃsšŸ03±%¼à®q\€M‘×q®. !‡çø‘]Æ‚‰§›ûçD«$„]$ñYîlK§!éIØ-ÉÙ H LËh6v½³Í KØKkxŽÃK©;ÓÊuFµÆò` ÇŶ ä`‚¬ÓiWÑ ³‘â=í]é6ÓÀ;ˆGMi›ÀÇĤÙHӀȧù÷tYW?‡Ð— ð tLÆngê÷~‚gLÎ9 Wû‹ ¢'!3‰Æea€Í{Ê«ERýë§1Xÿš—ï¬I¤ñôNwuùÓý~uÌ'ÙEMõ¿üêíž7÷j‹›zð݈’þÈÐÇf–ØØô.5$½z·gÎ~r¯f q˜|v6H#h /,!'­à1ˆ~µÈýü¡ÜãhìÄ!öÊywvËY#щ“Ý ç¨Ó½’ŽÀó­•š%n­ì¬ÁôáRöÆáéjjØY–6v—‰¥–H¿¥á9Žþ U ¨lW{ðÔîý\6ËÕRÃÁj&› ‰%”|°@z-ÏQÞAÓFÞòFMym„v®ÖÉ$½Äq @XLÓ®0‡¸¢©áäž6HÇöÂé·4<Ç᮵«jj;¬Že"d|ô8ç)zr€hs+O60N¹N,8#­Xܲvg§‚$'õNΉZø¦àœt6$¤uð',a­á9ŠBi:H¡Ï—mþÑ­­mr"Y¿ÌDÕçÂ}ŠœIãÛÉ4ꔈ¤NHZÀÖPŒUg]®&ži€4¾ærÁé´4<¡2Æ©õÅ%ðö‡ WAïžs ‘?QI(Ä“ÛÒx«n,qž„°†¤µöjœcW+i8uÑlFF¯¼°„½´†ç8ü0Ÿ-ܧåÅ0ðûcŸÂagæ¦$ÀšcÕ=#¢«Èë­¼¥—¸P‰“׋¤×h§äbr c¢_?ö ä`*xáQŸ÷(oږʪ"õóy Øqâé~$ ¢ö›¥²¢cÙf5eÄv¨bOLÓ®0gìMÃDdÆ´1)7·ya‰ô[žãèñÝTÏåÏî©ì`ú¿{Ϲ?÷é0;áÆ£ÛÃ’$Î'SZàÞÑï!$½þ§ Ĉcb”IÏÒB;è° °‹VðƒÓ0Ngÿ-ÊCž.¥kmîéÚ8ìÊåV(¼‰]—êµ®%éWbW¥Ä<)cBí¾®ÉYc +ÒÆêÔ‡ôÂöR¾Æ¡5ÆÚ­1vÅrã|#ÂFÛÅ5dãì@i^b!<#4…~¢úRhêʦ›ð$AdŦÁôv69 S¬aűz³As›¼°Dú- Ïq¸âôú”ß~¨Ë‘ú¨ž‘Ƀ#åÆ9ÙÛ…-ÏmQëôe?Öɦ)p²ËŸ¯OrÖyrr"›Ë_)ˆÔ ½Y Ø ØC+xŽÁu˜ ¥þpVýMì“›]WÞ=OÔ‡f®ÃÍÆ+8©Æþ3[½ÄÙ6V«–˜™a v¯s®{ç<# 0_͆h”Ó KØKkø‡ÌP• +ÝVQGê}rv‚õèÅ@Kö­g8U´kÓî&—qi’Þ¼¥onÊS›‰¦ 7Mô÷tZ—?Ñ/2v5䣼ònz1¾“èñ@@@¾k;„ Â%ªè›]W'±?˜¤…¸ 93[ZÁÂí|š WØ K¤×Òð…1)YÛu*MŽÅ]l±´Å.BÕ]æ(²1&$BjLwg}¶h$ij ,%¢`ëè4$=isŸœ¨m64ì í¤ Ò¯Ÿæ…%ì¥5<ÇÑv¿VÌQmkQ•½ã3ço=Pw|â‚àü7щuÙxµjÝ{\Ý…¦©Y ëC@¡ˆ#øò™ôR;i¬”eÜvV ¾ës‹¸í…c©ùpêÔñŸ>•›2§Ä ¢znÑäo’zA1‹º,Ù-Á~ˆMCÒ+1O'RûÎߦaSá›m~ý4/,!'­à1#6ô죱#d |Ä}ó®àÆ vWHÐ…)Ÿ;ƒ¹‡ðrã;Èp®$>@GZƒiÚÀæL¼!ÔŒä“Ó†iì ˜Æ’é·4<Çáó¼ØéhUÀk'ÀœÚ«¼;¬àt{çñå…äÄžæ¤_\j2QK—»¬À4MÄɉÔ̦àd…Aš ­3ú½H§yýs θçárã»]…ÓïK[ sv¹óƒˆ³¦ç|"qrÄ6´)°ñä0ˆ– \a€SÃv]lËK"±%¦)^KÁs®Ø»•†`D¥XŸŸXòm¬×k B6EÇk€GŒÀEOìkMúÅ–Û̵•ļëÔH’ÞT¸gÆÆ\*Ø6–ªÙé×OsBé¤4KÁc ý¼Äæ\«>8Ç£›è»q0Î °¡–’¨WÀMÛo×±4jƒq&o‰{â¾5ˆnK)¸VͱД ѯŸt"%ÒíÕ=d=Qñ¹Q¿µ]ÇÇÌ,Aû¡5¦>¶™P÷ÊÚ˜± RšÉ9“PÒ,¯Ì ™¨ôu"Ïí$ÄŽ«8g¬=Þg!ôû˜™Ø  ¿${Òpïþ|߬5ñå¦g/w‡‹åÍ{•ëê´gÞ¢»˜¦ \a{Á¥†½ßÒi‹è„Òk)xŽ¢/¢åiË•°ä\oÛ"ÜÔÆagÅH[€3ÈΊ †L¿ˆÍ³®ÄÇÛøjHzñ‘§9ÑNkùmÖ…MþlcUÅPóÂöÒžãèÁ ·G†×2o:_W—¼Æ97¶»˜/ºÎ›ï&ÉWbÍ5•€8©Àô¡vGgEÖÀÈmšØ]k‘>X ½–‚ç(º²R'çK5Ò×·9 b0›±nœKo€&µsí}2št,Ü&@7˜³¢)Æœ ¸ÀŒop*˜×l&fE>›–H¯WÎÈQôЩêïw7"¥8”ÜœxkÎÂã»õæAôŸˆ êy¯¤_,Æ1¦%æ­ÒôìuGrT“T“6&/=Ò —ÎØK—Ö<Çѽ°3`æg*32×Àër%‰A•¹”Ÿ TgBI€DŽ·n­þ~zÁ—‹–¤‘›ƒm§¯÷®ÔÚ¾Õ¤DúLÏ!háu0žd÷+Ú7ä¬w”“i¨âlòÙ#7çvu\!Áæ&%"¸S ’0V2Ø ³]În˜ÍiŒU.XÂ.ZÃs:~áwî¡Êwêbþ^™xkι`a[™ªj–}»ÿ[’Ä`7}—$­VîNišÀæÌº[~uÀ&Hb¸òÁéµX k 3Ðuš Ò€%¡°VðE_iɾè–w½´Hu&­·–ÐÈ’¸Wæñ[ƒi˜Ð[{ °øÖ[Klã;^Îf‚´^[8a‰ôZ£è+Ô.lú”»§%Ííï»ãœ3cæ=N¢=ßNÐç+I¤â \ÛË©^&R`š&p…9Ó¸@ ö°1²° Ú¥¹`tš×?ÇÐgŸ2¿øØ÷,,ÅöòT¿RÑ7oQщ…Ð}²$y¹¹™$ýb]éÒ :ÅÖ)0 7cæy¥®?ù&§Ò¯Ÿæ‚%ì±®ïà~øE¯CY@x~ÙœÍËĈsN;ƒ‹ÛÁìô Ûu»6 X‚“ùí8ˆn D˦Us6žúJÃqÝ 2Ò„HäЇH¯¥à9Š>…zë@FÑ €?ÜÀ›1OŒì¥ ”{ÆNvBF°…ˆø)ñÙ³-W§Á4Mà r☠ÕTSÒ57¢¼¢)A}ýcÿj €Ð= ŽÜz Œ(˜9rŽD…[OkÒl=…•PJÌ;WÕÖ`&Ô€ €Æ7ó• ¨Î5é6Ó§D󚞣èÁcºTWÞɱ"ÕáÝsæ€é'O+—BŠÃD \#^°ˆuàÖ)HZù)â¿MÁ²2t! ‹2š °‹ºþ9Ÿ*bí„ÅÄ,èãlåø™46{LΑ ñ€;3js×Ñ´Z7Qlù› ’œ]Ž#F€Y-¿íòm³šÒø¨ÉKØEkxB?-;\@©è!€Ð,ùÄéÝ»ç D´F&ô½² wÁé„%ÒkixŽ¢ß0áVØ¢kL.ü #æÝs°VYçmÕ¢be‚@Ä’t´ÿèöKK)HzU((9´ý6 Ñ)¥Y…ªy ?ÛA_ýB_HÊtã­Dÿµsá±úÅžä¨Ò+ÊÕ×™h lq&:|Ì¥%#˜HC£'’&gå‡(5¬ü¥UíÇ›–°—ÖðG 5srVP6z© Ú~𨶍ã÷#NG„í9ô¹S „Š~¡}Ë['p¬|Ϭ éIÎæD3ó*¡@€Ni!žÒ‡”©à9 /.¥:âL_¡ØÃraq#¹äÒé3°\ja‚ågUÇrªÅ••-¬Sbe9BjHzq/9s>K[l¬aZØŒÁ6H#è./,a/­á9 ˜‹GBæN*pù¬øÐñx=Ô\-9jÚ–HÁÙqu°!Ô|³g*i!óL ÎàRHZ€¼˜gÛåËA\I \°D:- ÏAhK€%SåpÍýhŽ r41ö]8{Áµ÷[ù2lê,þÄ•K‰ÀI¹: ¦77Ômœ•8{Ö°2 m¬Zn^XÂ^KÁc:‹ÂÉ ;»³Ú@jýXÂ>ZÁs>¶@y?>D‡¡é?ß,„’×ÛÍÙ]DO’ã7›¼LBFom`¦èk}v[O"iòb08™—/lH”H#6&È霆†ïAôiPËÝE1×hß‚Zn—»7‹Õ£®õúܬÔ9ÖèŠ~±y%¦Yb¦QÓ´ËÝ“³±X=5l,lN›ËÝÓ KØKkxŽãýu¬k÷÷¼9ÉÅqOÌ͹Vv øeþîÏ-iìúv”8Z@M¦RišÀæè\ Ž“{b[ mŸ|°Dzí#öÇ(´í›‰ ¥oOÌpXÒÅÃ>ÿOÙŸìÚ¶ëêz`}<Å,ž[8Ë-Oª ¸æð\0\θ3aüúÑ™©%ÿ§¾¯7°±¦4Ø)JMEògÖìÃÈPŽŠý)/io dî½½º˜ÎQŠbsàð‹C–³ ÿEÖášW¶OÌ _mdÙ÷ü¢Q”ÜÅáÙr3v¯EæÉtk‘„cŒ9xFî›V³‡õx^" _¸I:ÝÜŠ¿Üè>ÐE`ÁèçA+i\o5ëùÄŠÃêé¥[QôÊ”¡JÆbðìEž¶~Úïj¿9¶¹aFXt«ùœñ¨î9“EÌ‘uunÙ$—µ̞ƥý¾çJ'Q5Çžù$‚ÁzÌ‘."ZÈb¦ t JÂbðìCv6t>¬©¼(žåÛO×ÿÿÞjÖÀHŸ†ˆ•3è1»ëMC Edù7üÿ¦åF1nyÔ'‡*/ùtw«™|ý6ö”wkb>2ùvÉ¿„ŽŸ¿:‘gíTù#—©+|¡k™“V8‘·Š<J7BÑ|¯Ö{HrƒCˆ¤° ã¸qhå!Ÿd[Íá8ÅÀªCaLhú(ßÄF‘2æï]È *mÜ+†„1Œï9Þ ã†|Õ¸9ÆŸ|§5ò¯~Ƅݎòoëµ(¦È¹Ü8´ò\GgÕDÖ‹Ã×­y.;DIQ%eqxö£éWàRzÑ[å°™ãaêVsØ ‚[‘›Œs1˜Uw´šÖLßÔjæH©4±.óšHq‘a-Ë¿‘z;Ü»’°Óo ²85u©*£ý|Œü­±2 4Š¢ ž(ëô•s¯ ˜Sà•ÚÃÁZ :^caºvý<<èË/,~šœ‰ewl?þÙ/‚q˜ó† Z9š°7¦ª™Îˆï‹ßDµ[Xk ÊÖ@‰P%bþþÙ‡‚%t»ˆ‡ŒiÞÚ¦J»*"¡ñ¾yøžc¦™g˜ÁúKa”ÝreV9©ræÇr`ú¢ØÖˆñ-U>ÒSáªq—ž‹Áî ñÕÄž*ó%DQ”ÉàًܠΩYôÊsfL¤Ž5²§ü½×„gÃXˆ#™ów,Ä‘–±e,Ä‘¢H<‘Æ¡•+gK«±@íñÏÅa $ßÖF”.)Š¢¤,Ï~ä M7ûÙáétåÑ¿öˆœ­Š3“îî™Ú*,OM9í£ü@onRãÏþÉá*Ïi¢k5v»ÿs12D51Ì}")JÆøý³ …·è.ª]MÁoð[z µšÉ5L·¦DíÍ#Dψ‘¬ræ»vÙ¢°¸ºýÆ¡ÊÑFaR{㋃©±·&¼øûsÉoBçÏŸ(x•ñOƒWIü6Ã& ¸”Êó™5-K§Å·Þòz~ʇÇXµ4Ÿv¬oÛàsoi>³|KóÙjË®LâMܲ|¦ AI] ž½(+ˆ¿Ë¸Ò“Ž›Ooûú6® }>k"rÊ‘àÝX‘SŽ\‘TðÜ —}¹1¨r4á?¨šŒAK•µZ¸ò¦– EѤNÏ^ä65G4×vªØÃ{ǀюýªù,¿ÍÌ~sF…[ù£ìÑYu+J sÑš.UŒ2œ+j"~§10÷ÌõÖD”3¢Ë…(Š&urxö⪷{§×!Ý -Ñ2gm«ñ`1‹ø‹\Øã±º†:;µ²‡$.‘ ·( Èv¿qhå¹rÖf…ÀzÆÙä`Ïf³™mdÙƒCŠF‘R6Ï~Ü=ýF½LÜßevÔôÙ3Mú£Õìî¬=/Ë9UÓ h±+vÝ]¦†á˜Ÿ›üC•£ ÿEÕYão¤­(»óAJQMîäðìG~à1°ùΫ¿æåa¾>ë¾$¬ÙUsTÂàÏÐóï\Ó˜/á^ô7Ãx§¨¿O¥Ñ~ÞÊK: ¶šÍ‘/[¸´¢ìÏŒ)BQ”ˆÅáÙ‰ûâ‡äcNìÅåL÷Û Ø»jb-ΙÃÎtšcXÇp ¯€=ƒÜçÅvF*ìâÐʰ×jŽ·+¾ç«,ÿþ4)EIYžýȯ_5¨¿^·9ƒ%®š#PAÏ0^¬»¿{̓…˜O­\Ï€Çbœ2ú'ÞЮòœ7ªVcÁMÓŸ‹ÃY¥[QöÍ<¥ˆšKÊàðîÇ%6¼®ÅÎ¥{óU³‡\«Ÿqõouœ±å߈yÛ÷Åyf8j0hÅ)÷æV³mé— ,Ôk½5ew?H!Š¢d,Ï^ÜÃÄc6/FmeüñÑŽ‡HŠØj¶H|±f–!<-GÍ6·òo$þsOڢضðÈ,­¡‡‚s›#|g3sÓUFB˰¹¤GmàY.öÖWåßI^÷…¥ãC+…L]5Ë6ŠC"¶6öa“¢(JÊâðìGYG.|‡%SÆ›«©»»Z†T¿9WÅâvv·$Û¹·ç3°(` {£‡j óâs}wŸÜäÐÊÞD¢6GÅ9à“AÝF«‰v]mB$Å%upxö"?a¹íVs¸½»E5–o«‰gÓtX,Õ§¿°GÒ©•si­Ç¼xƇVÊq¡j{k –!ßC²‰(_~ E ™ ž½¸‡ fÖÀLÀEê¶xëß}[2Ø#Ëv²˜sÀr£Ø=¯ÁÅ¡ÊÑ„ý¢ÕŒ¾Ó4ß¶ßÚˆòïÏ%EQ”ÔÉàщû<š¥2r1e*]í­Æ³Íz&‹Áçñ“î8s–.eJ¶'›ùFqÞqãÐÊùúqÕx¾Ù‹Á´d‚®lbZ É£„(Š2<{Q ïšfê°oÆEcÏDc„ßjµÊýÈGë®äå¾WÑ/ s¦Fˆ¿[xÖvûy+ùRÜj¦-ï%É`ŠLE­…(ûM&E˜2f¬D ïNÜá±"ȸâmíã»cèà®xï5{`ËÏS NŽžúc²n8êä˜ÉA<Ñùt#Xv¿6­åCáÔŠæÞ3fª¸"ø\4¦óÆ ÊÞÂïÏU1&pT1ãQ-Œ…›ÝD(‚±<úÌçµIMsîR§†ç˜R?¨š=²åœîÜÓÒ5 ƒ¿*ûªÚ² (Fß([¾‡«<¥\«ÂÆÓ8 Sde­6¢œ;¡K5—”ÁáÝ»'v„Ž”ѾMùÐâ)ÏÿÞk6g½o™pðÀ¤iß=r•=t¤µl¦¢ÝT1Ó¬· {þÞÿ´ŸÞPq£,»7Dh%bqxvâþ’1µd½±p×tÏ_"ÞëV“îys`„[*µengy•#G¥ŲfÐ@rhå%a ªÆ²Qï‰Sh¿´°D÷ðË6²ìk7¤h)eãðìG*»nçÛ󒹵݃Ì_¢héª ¤¤ÉRmúãC+xâ»á*gj<-ŠÌ±ÓT¹n5s>,&‡áˆ%TmDÙ·Bˆ"hR'ƒg/Ò×¾üWÛËœOíxO…¿·š´–ÎkÁ#üY®#hÚ(ÿ´~Ÿ¥£GZEDÉ·_ïˆÕøïyO¾$(Š&rrxv¡¼/Êâwiº(½ß6ª«bÏ,C€oä.dHntjûÔd'ÏàXÃŒU Z¹¶©V“ÛT1È]ªµP»Ô%CQ¤ˆõûGî¹P2Þ8#Ãe¶‰ õªši̤^k®„û°ŸxG+Û¨g(G£ØÃé¢q¨r´á±ÆUI'‡!²N´6¢üûsIQMîäðìG®YWÎGvÓÝÒ¦ø•s÷Ç«föCß½VÜ]vïcÏ0º·²oÉkº¦%…M¯íÆ¡ÊSÆÀßjârÔ8Œá~ÜÚËA¹IQMîäðìG^§|ó-”|µxÏ1ìÍ·ØjŽ|ÄÌÜ¢†à{8šÅÜ ~[ˆä¤íϳj_?¯r4`¿¨šílÑþ¸ÿ·ß^²õüc W¿}Š_ÆkwèüÁ^a$9¥j2åØUãp‰fŸÝjȧЌ…+Ý»Ù8üÆVgWæï«4d¾š¬0;÷E´Ô‹}Ó>âaÆù÷”®ýü)ÿ=½@æ¥óÈüÇù Û"kf‚û”p¥Õ=€·±•ýýÁñ. ú¸d±TΫbtdŠúõè¹!/þQö‘” (šÌÁàÙ…äƒ?I-cFDP½'4\h¨Õìñp;D@¾zê²Éw‡³•¯ YŘ·âÐÊSùlWͼ…±¨8|†g^nmD9cÎ]ФhR&‡W?î{SÀ+mû°»=Î_Ó»*öðÚ#gè6E´Ý˜0ŠYöˆØ€Zlgƃ‡VžÒ»Õ ±7ƒàµ&¼øûsÉO ë×äUƒ»¶»Kò9Í÷Ï]Ãk5¦+Û|w2Ï,é±:Ç—¼(—Ÿå|£Tº‹C•£ wý¬šx m>²{ÆÅj#Êþš“RE“;9<ûQ(ÞÇe /)Sñiì(÷0¯`{‡£Ž—&7´ºóÖÙŠéæpêE°ŽéGš ªì-¤{˜WŒg¢£$ƒÑ]ÚZ cb›]"A‰X }xø›»+\½D‘Ge[öH—~Õ¬qìqr­þ8=™´ÃMD9ß•<}GÔ\®ßÁáæ ¾ç!uÕxÆË‹ÃœaÕF”.)Š¢Éžý¸»-î¸çd6[aäRöWû¿÷š-œO‡#Ü— 78HÇC]*vÜ,”+™Ó±’Å¡•‡Ê”P5ÓšÞ§Éa „„ÖF”ݦ™REIYžý¸£Ý…w—fôšýí}ŠÜˆ·šÃ׉œÝ~ÂÍ[ñ7’²yê¿"8ÏL,‘ Zyªª±=Õ‘æË°¶¶b½ÎõFP2ƒg/²»þaÁ¼<‰23ýù¹±e&Ȫ ëÒd¾äs¸µ¬žš|pq–ÝU`K³¤pÂúuä\+¤·3žÐê‡Ûé‹u”ý•.Ú.‚­<…¿Cµ„çßšøÏSÊ™§vÞ*ZÍž—‚5!rüQs²}çXZÙßÿ¶ÈzW‹?\Zyª{EÖ˜éÏîÉÀ¬r>2ÙD–Ó¿jºS¤ÅàÙ‹|>¾pË›r7F6+OCŽp­&rP˜‡€¿Ÿ.M£¿žFÑ—_äØjsØ¡ƒVžRi5†O÷çb°M™S&ZئÊ)S"A‰˜¿öᎯ®±À´ŽZò•Â/÷ŠmHÔ67Ä~Ê…g¾¥=y)þaŠç®í,÷ç±äÐÊkxh\Ÿå|ú’Á²„sY5±,å~VBE ™ž½¸ã¾ÅT…ˆÌóh®¬ü÷^ãØÊîMëø¯Ÿóœ³Ë˜tQη`Ï¥U«§”¸8´ò”öËVÓbq“ƒeCÙ4‡¥öVã(—vdÚ·›ÓAæ¶VNëf£°gßõú}+Î#ÕjÆÀmk Æ9@1ª‰(»WCÈP%a1xöáÞÙH2·¤!Cà¨ía“Ž¢a¿x:Õ­ÃC¸Îg>Æ,gRO \ö˜½\ Z1±¾®ƒ©üsý~¿Zˆr¦ôqŠÂåË_ßD¿ç· Ìv™˜|„ühŒ¶«f³òtÄwÊçyTJZËs½Þ–%r‘ƒVN3úU³F>Ùb°jNk!Êü“2EÉX ž½¸GœfRôTd-ÕoäañUþ÷V³,á(¸eP@†}ÊÓTgù75ÁÁ1ǾTy®TlWÍìa³Å`rxã«…(»7`ÊPMêdðìEêíþuÏÙµ€ÂNo{­>¦B0šöto1<3aA§©•HtHD¤×@ÔHWyN[\«1ÀÇ&MöÆ:ßÚˆ²JФhR&‡W?²Ã~‡ ¼à3Í~{ÄQ¾ÄI›‹ž‘¯ŽÂ¸ï™EyH§ÿ‚ ¶8Ìe½QÖÝC+Gþº_5áÕ8|®ózk#Êþ®žR$E“:<;Q¶J·óËEwÍ»'ÐÜ#³ðVÅH†ë2Ìaó]Ýk6€²ü ]vØ5 s}žoªMøEÕLá WL)ÜomDÙ—KJQ%u2xt¢¼Ì÷¶r›—ù6‡bÊD\­bÏ5²7ò5×ít¶² ŽíÂÐÕ‡Vž*+FÕþÈÝ8˜ù¼^mdù÷§IÑ(RÈbðèÄguð3ö(ƒ–¹¦qm=*µ„×Ìsb­ñ®ç91 vì*ÿf^‰ñF± é`“?¯r4ðûs«™ân_Æ=PAª±Íûe½ý¹Iœ?öàî>žPK™NDŽÌ0Þ=¡<ãGçð'4Ì«ð•ÌUåò„o™Ž½q¨r´ñ{¥™7Ô+œ+Ÿ[ó°ÜÚˆr:Cí碤,Ï~äÌߋÙœ& ë³÷®ù _¨V±‚„%Ú±;®¥ã›ý]ÆÍ Yüd?óv#˜Ã|ÑTyÎŒ*W…'ǸL$\-L•Q¥‰PMædðèC½¢ú%Ñ3éxla´“#V«"ì/c½ˆ¬‘ùb¬7“(ûƒîÉ’bj¯.Áá*Ïÿä²bNc0G.ŒÖD”Ý8”BE ™ž½(›ÀyYò í--dærRá˜Us¦ô!Y“Ç‘Mfן§V¾ÙåÅ”«¨8´òÜÂ1‡–zq\.[Ÿ…dm·&¼øûsÉ/ëçÏNT„“ƒÔ‡Gn:0NŸó“léß{Mæ³”1ìd{¸ÛéV@¦7{L7 »o7­œ`©­f=Ѹ8X–G÷¤Ê6²l¿H)Š¢¤,¯~6òŸ²ûdŽÄÝ–s «ˆîfÅ·)ýéìJê jC" ¬[!d[8\ÅàÉ ŠÞ€÷5ËùÜ~=Ç{yãe›ú%AR\"‡gRç©w¶»ú¾…ÉðÜ2oÕDíâ±þPdµ¸±MQpÍÝó•çß–@¾j?Ìr²þý¹ÕŒ‰/?ßx#,îYv½}Ì|IÑÄMOñ ùÌ×k豕ׂqvlŒÅ­f‹„¨ƒÃ¥æÊ˜)*·Ä"ãJá .æÁ¸œq1hå±áßf;¦á=ì.üÕB”3±¦ËMÆdðêÅžqvO½SL[`x™M03™VÍp=¡â¾ÚgØŒÝ÷jnåßH«çžýEqÄîÒ8T9Úp‡¯ª +rã°GÌ@k#Ê'ãRE“;9<ûqworïÚ]#\æ¼ë¬YǼ¬ùà¾ù uYǺŠòo„îwŠÍA!/UŽ6òÉpÊÀ‡ê(st¼µeûEIQMîäðìGyVx<±».$Ø<¸Vé x‘O£*Ì,ì¸Q…µí1ëÑHÜGæÈ;#±rýùL0¸úu•4`ßju߆f° oŠÔ“cýü½×œîOg×y\ p6»íû#J”]à ×FaIˆ—‹ÁUö&~®šÀý¾8Œa‘omDÙ5¼" šŒÉàÕ‹»ø—MG-r‹÷œõªYæÈzyc pHT¤±.lI™i/UžË3᪙®L{ $d S~ØK„"hBÇïŸ}¨‹±«³1‹·Š¼<ÒùÂÁ¦þÞk"âÍ"xÝe2B>åçT–#Žx>o[ä/lZÙÛÈ·¯ —‹Ãè8eWQþý¹¤(Š’²8<ûq‡‹9}É=8Ægì¾jáUsL‰Z˜OñyØYNäM¯ãÐS]7ŠqÏì·É¡ÊûV¨…­&Rð6Û–˜„ÙÆ¶5Ô”"jnr’Ä£÷®Å·1½«·Ð§M)Œà¼V3‡þåöÇÔ[]CØçT{÷ªÛ!¾Qsê¾É¡Êцû‹U‡A5:5Þšˆ²ûú¦EÑÄÏ^\°¹¯žË£·G^o3€ëVº¢5=ß%;¢Ý)¸ÌuÙ®¿»“Zý6 ºÅ!23µß ·Õ·ÕZ.Š’¬8lUNçŠqºQ4gŠäÐ\)ÖŒ¿j5Û™°Éa[ã~–Mxñ÷ç’!ÿ^"ÖÏŸ(ˆëýO\î·w  =|ÐþÞjÎx¬þìž zF”Ž=$x€c”ý¡bO½7)ƘmÅ¡•úTWM¨ïÃA•­(ûcEJ‘—ÜÁáÕú¼\ÖD¸=ŒÆnøŠªÙ‡HAeObéÇûëžL{âXù›»í…¡Dn7UÞµëªY#\«qX÷ëjcMd°KŠ¢()‹Ã³w€úxmlŠü±…Ógèï5yccçð‚S<ÓÜœïQÎW±í"ðϵ\ ®ré3­fˆHËb0„Ó@k!Ê¿?— EQ2&ƒW/îèB³[öTk-Dì+‚ÔªOÔÆÇÁäME;£ïn„‹òo€í­IîØƒÉà*OáJR®Â-ê÷¦²mãÕ@–š"$l¿¿w o‘ &Mzg÷ó3~[3¾Õìchj‰›o¨j ow®Uü Ëõúsd"\¸Õ˜;¢ïu–HÓƒç;õݳÛÞˆ²ì¾Þ»ï–EဠçÅ¡ÊÙF>ôG¿.5æáy׳,ÿþ4)E“;9<ûQ`23מÞÕvÍv€Ó-"¬´jöðåX+ãsU}`J#Êy··m©QLñfÖT9šð_TMÀ@5k  ·6ÖÂI/!Š I=6ìÝ[/ò>±Ï M6£ò>7G°œksºj¶LûáÙÙ=…›½ŸÍhÅßH îA»ù÷Å“€]?oå–ð¶j¦ˆîn ¦|«¦{Â[¡(JÄâðìD…õxÀp 5Ü•#¶Âxø{«™ÙÇnEÀ?kØW«ü{yÚ7Šôwo ªÜÞ®š€j,Ffºµå|^?nMêdðìEnÇ™\aûs%E±¨½°íñ8s«ÙbJ\Á0‰Ni¸·rÆë,ÓbY2akrhå¡0ªÆ’aü¹Lž ôjbÊ„¥—EQB&ƒg/îA›ß.Ì·<æòäqÂ$}Ul‘Ö~Êst2íýyý¢ì“ùˆÌE±Tdzrhå ñnkX{ƒuˆ¼÷ÕD”}2§EQB‡G/ò±ÜŸ¡"ƒSA[Ò²Íw†íŸpªŠ ø”·8J¦¸ŽÏ¶ý-­ìî\{¸k…m©óC•½ wv«Š@j ,^~¼5e÷1K!Š¢I½(z[³îs0Í•%€Ám ?"c|«ÙÃos;2­tär37áôwâFpÌøR Zy à’«æÓ‡ÉQu’Ã>†Sf6±åµY2AÉX ž½xF[z|DåÜëª=•Wn«±\Aî1©—§ô¹]c‰²*‡î½(>w¹O ­8•SnÕÌéQ 怖iMD9ý~#7sR”ŒÅáÙ‹B#ñÊUZ‹šþ?*s¨¾‘p¡U ~|$ðÊœI“Ó8Ê¿•Éë"ˆ$ZƒVžóHi5ƒ£y4Cè2­…(ÿþ\2EŠX¿táž3ö¨rQµÕï ¿Ìß.sU©QKìCzÇz¼y‚®e9ÐéF mA•£ ÿAÕDúŒb0‡GAka.Ÿƒ&CQ4©“Á³ySöM*0ûÊ„i¸4¦ëCÅüWEÜM‡ÄY°ìÖ“CòV[–c÷˜æ¢°‡¥;‡V*°£jöÅÃ[YnmDù÷ç’¢(RÈbðèÄe\¨©Œ—Ûy?æÿÞkö8×ö9â…ÜèàÀ‡k¡ù9x¬áØ?ÎÌP–?oå}[5Ö÷ÉÀÀ¦[ Qö€Š¡(JÄâðìÄ=Â4¬ñ‰‚åÊÅ‘êsÀ_5á’¶DÏ}•ñXþ¾åThÖñFaZèí÷Uœ*++¶=ÂÛêç[D­µ¢üûÓ$(‚°<»} þIÌhpsþvœ–ˆÛü{¯ñ¼î®ï |DnN¦5Þ"9ÝåÚocdÉJ­8U‚á¬X¶ˆ¨Ÿ[Pé¿3^Àˆ¿7ùòç¯ÜQ'õöåyY&ÐqŽ¿÷wñø”#ýº…÷îî>®ûYv5løçNð™”ËycÐÊSÝVͱûC]üþ8¦Ðù³,»ÚŸà‹¢DÌß?ûpóë†jÄ\.~5±õÃ1—Y³ÄÂ_ÖÀ†ó§A·&-îM™e?F¡®QXæèýÆ¡Êц›Äªfv äÆa:âµÚˆ²Ÿm)EQ4¹“ó•e¾>nÁμ%߬§Ðã«ÆÜFmäöIdÞ_Ö¹•#«¯ï0EqÌá œ ª8•´¬Õø­¶ÌçyÄ O4QeÿºaAkMêäðìEY~þT¨ô2gb£)RšŸ~¦G©Š5S† 9ú{ïyÌŒC-ÂÏñç6™¢XÆ N­<ü“éQ²bɰúb°dØ}5± åTBE Y½¸û -sx3&ŠÐg…» |õèÍ¿·ó4{ÊYïÑŽ¹eÈËTÅßxƒõqÏ¿6 u¼~ÞÊkŒ¶K¢Î` ³ÖB”ݳ*’²ý|X#ç\ò÷bºý.ןKºúõSþ|‰ò›q ­g½EÀ[¾êü½×ì O4dÜ>&<ÑéS.Ëîg¸D KQX@ï~ãÐÊcÝ«f l¿Æa3Ü4Ûˆ²ý¢¤(Š’²8<ûqW›îÀ¸óI,,­U(µ­âôH£9B3,õ–k¬¹‘eË^ܵ§QÌgbâ$ƒV^R§­ŠñˆD¥Åà3½§[ ^üýiäŸK¾úõ£‡Ðð– hšö´•F¼Õl¾lÌ[p#„3°< Ên"Ÿ3g\RXr¦ýÆ¡•‡òô¬š%‹Ã’‰ÕF”í%EQ””ÅáÙû›ybî—wùáƒÛ4”wy«ñ¤›“×£;² î<~$Tv–õ΃1’âLøíâp•‡r/¯šq ÷òâ0&‚Vµ1¦Ãä%EQ””ÉáÕ;0îî;Õ¼%&–e#°cy›ƒåªÇSKäQÿñ(ìÉ…å6ÊîvFÔQ|¶f3(­<%KU¬[`°ƒu wújbʾ„(в8›Üç7^ãéGÁx¶r¦»ó0¢X#ÉVãålÂQ5c€è'û8Ûzµ‘e?€BŠFQR'ƒG'ê=êüSÑðK…þ‡’ìÏÝ ÛÑjℳPó9ߋΌ„8öVö÷l‡Ÿ¿(ö# YÅ¡•§Âí¨šÏõß7âdðé“Y8[Qþý¹„(Š2<{QQ?ëõv‘>œö&à7‘ûéï½æÈè… Ñ‰›y;ú*áÔu:&ÁîfÊ‹A+W©ªÙÏX*f_wô†h"‹¿?M†F26Ï^Tøÿú§¬·éâçðö®=8üõß«bw\1‡Ã7ÏØ-žh.ßÕz²ÌwÞcŠâœ+´8T9šp<ÒªYÁ49|V´g|ª6¢œ°þ.EQ”ÔÉàщº)»yz>ï:ßgÊs¼x¯¸Öj¶°¶ˆÙc–7ž9`ÞÔʦ}¶?§Šb=#æ¨8´ò›ÈUcoÈf–Löê½LWYN3„IÑ(JÊâðìGNæenÉGB;„—¿Cš¬í0'Ö¡Êž”24éÕô½®’_$˜ë·YNîöƒª9Î8f“¥ðÜžÙB–Ckºý¹Ä­Ÿ?Å¿’$fxx~TËyìh)æöN`­&üÉæÌ·²nc(–n£‰ÒoDz»×Dþ9Ó¹´_·òXQYUcžÕ럋ÁÚb5°”:Ù(‚°<»p¿/FÔ˜qÿ‹'=_ TzCóÉš>¯SáS>#IÒêø?YL=Æ#·‹à³fî¨T9šøý¹Õ̉°šL'X®&¢xmA“:<{Q‰—b»–ÓÛYÀ¾£;äÞ*öÌÓvÆýmtØRÓŸ­ìWœÁƒŒÅ!¿Åá*ÿ„ÇDU˜Idùs1˜ÝIüj"ʮ֦IÑ„LÏ^ŠjÄ$Öû[83žá{šzø÷ªØÖÖm5p×஌±J²ìΉ¾N.Š'oNUŒüU“:ÅàÃú¸µàÅߟK„ü{ |=­7ö—/ÉI|ê!Ê6J›O]/Q­f‹§ýÁSÐeópHÌDÙ4;W\Šbô,º‡VË8P5ö(¹ÿ¹8Ø«ärk#Ê’R$E“29¼ú‘*­Glß–=óœuñ™ðU±zþòyHw;3”oÿîxYvÿà¸6…a»'ZrhåhÂQ5ñ,Ñ8Ø“Ü|k#Êvæ”EQRƒg'Ê·üÈHŸÈ{é]"Ÿ±™š"…ëUAçÐ>øMp{¨ÜÉQ6Q¶ð n[ìÄC+™>¬Õì±z‡=Vok#Ê¿?—EQR‡g?î¯o1©—†zæ„v™ õ,jÜ—Ûí‡]âÞ ŽHæI¿Žôp dà*$ŸþscЊS9|fŶ§½3¾yÔÁÕÀ–a —IÑDL¯NT”iÀZûÒ­Tñc¤L6•=ΟVs„Þ2zúÇfòäHÓ” œ¦¦¥ñž]s%?K­<•šZ5âšor0³Õrk#ʾ‰§EQR‡g?nH,æ=T ÄÆÝÉ€²ãeµjÌc.CV+`¸é f=βÛÜZá¢ÈÓ³T1Zðd%ƒ³ÏY Æ5]»³‰q-³^ Q%cqxö"?¯Ÿ·î¢»…?OKÄAm[¢ ÝjÎx]Z¶´€DvúÏzHûG¢ }jöðßM‚-‚µƒVNÌŸ«f ¯b` ´o ¬)tI/ë×Ï.ܱ¯£¥D d9skr¿jÎ1`§=2«MfÒŽ+e7n±AEä8¼8T9Úøý¹ÕŽRãø*W{!|4)Š¢Éžý¸ƒîGàÚVТS rCºY\5wú)GÜèyú¤˜ &Ý¡ ¢ì×@ñº(vOæ}qhå²ñ¶Ë5äÁÕÉÁ€XnMìiâm2äßKÄúù³5?ßÕÖmÎa»dÙ#о΢wÕÁ±d’-´ »zš’(»Þ“‰LŠbËD'Å¡•ç Ñk5æ æŠNrˆHà«|ܤ(Š’²8<ûqO7žæ-SÓxÆÃÈx$Dn«™Âˆ¼Lsfxô(,‘›ªèÎ?~‰hÿœÿÛ~ûy•£ÿAÕÌÿ$Òÿ~tk Êî-”E“9<»P‘Ä×[żåñs áäyzÊ¿÷ÏúënZ~ƒjSX"ìµ/%ðÏþ1 ¦Ç¿æ?ÿüo?ÿýŸÿÏÏðçýüvìBý'ÿóû÷Ïÿã?ŒõçˆùŒè0­ÛŸÿø_~Æ ù39*õbºågß:þüÇߟûŸþÓüï?ÿÏÿøHôß;»ümiqoÇÍA)Æ)œÿ›Ïÿÿ÷0ÿõÏl–îbû½Ý€–Õ²¦Î­æ?ÿüw@uÕ nØ5ªÅ0#âºxµšÕ´†qã¢j57ª%±Ž.ªVs£zÉz—þ¢ú>蟑ýÜ6ÖÏ̽ ºåfl’ÛÈ~–ÙgÐÿ‡û÷é?ýûd“}þ·?ÿ¶üƒÓúoÃú÷Ù2ƒã¿ùÏÅôŸþÇÿøoâ#Íî»FKX‰²fq]|AV*ó|Ÿ÷Vó 2L_7'6ª¬yPí{¤olDQñ 9ç5¡GŠ(kîTž±l¹KU5ªìÏêÖÃÿÂ`àßíKXÖæP°¿çWÿù øhiÓöoÿþ9H>%{ÑÙ÷ìO“y~þä©ÂxÿËøùKû8¶‚ÌÒX‹Ùÿ xÙìýúöïÿ‹ç•u¬ŽZóÙ“_Ìÿïÿóÿûg´}õÛÞ§N?á>“êlTÓmÙÛV´ÅVÔ>d®óv?“9*ÏŸóÛú_̤âÐ6Çï‹ùÝ8ñⷱΔÊ2™Ïa9\Εy÷Ûn~ì² ¤Îý£¤vÛ³x7lî@Ò¡2s躄oVî]Øàä›ËŠxÍþV¼˜ß÷}fóשåv£ùÛ³µ¿;öÁòeßZFß“ˈш³H\¹oßöy[‚ØðežúÂXL¿œûø’x®‡'“ý2£+ùNÝå1ãf€:úuÏÈ ß넞¾UšCÛ—oŒëðm·™<Ùëbص]á +ÝOE³6ö··ió}ÞпÌÓ¡å¬Üú«zZïbÜ¿üØû·c‰Sg1ç¥b ž¸pñ†nƒ«¹·¤Cú—/½¦»¿{|}ù†[|ÂáËy>8Xܹ};ôg»yÐMŸÈÀ\|¾]÷æÛ<ÆûrÝÚ‡„3ñW‡®TkxúÄsG÷"R(Œx݉å—Çh<û›é8Æ5pvOí/«Õý¼M¾n'×ñûÃú¥Á5s¸™Ú~öO~ÖõOÄ8ëÜîôe3<´×ôg–=äåý…j9#ÃG\»¾1á/kz¼ˆ¾¬VWôçãÛukµ¸çÍíËh -únûÒÅ)À7>Týélklõ€Ÿý¯É}ÓÝáiïï"k×1~9V Ï54;BU÷3Ρiý£ÀÓÍ.±»}¹Í礷X̾¶e``Ç÷á/_1ÃÀí:ØßMÃÁÌ`¤ëFi!‹‘KÐ=|í5iÙål V© ’ÌÞÍÓlîͳ£ÊøËg¾¬ «)¢ ­Á.¯éÿ {½,EZ<ÎÈ0çN½ýÝÉÂ6Çv«5³+M×6bí7` ×[¿‹Ó¾m‘Ô§2+Öò9ÌŽ­ÛÜêîAþ|Øå3¥kËx ]V~`¸·ÄÑëß0?/°4g2ò7±ìÑfÎà§mí²ŠlÒ»!Œõ{¸ÆÓºÅ§¯Ý9ê&#wÏ8¿ŒúdªŠíMe£Ù°úqˆ="sæòà­©=êÐLŽL+[Ä:öxM™ºälê&ÌË9á“ÆÓðu¨Ü§ÛÃuÇöŒDŸg3Áá–Ë•ymè×u¨@-Ïœ»¬M‘¤é¡ì>uçƒi8ÊmߦéÐãGä&ï ÄçÆ¶ºâöExó÷]ë8›ZJ‘ΨŸ«âÑç5D½e–è/{š÷p‹ÁñÌ{¼ ž4Áœ×þ±¥Kôç¨Þ¾lòáLrFL¯ÅÓ±»>ÛÖÙ(UKXçAòÓÕÈJaâþǶhÔ)À£û È`ã"·Ñõ– Tv- ©æ.Ñ:‡›šmòcwL×=ãú-îýë¶ëá _Îq¥ýR øºçÕ~½ÒÔ ÛÐêÁÙÝ¥¾™žøË°;rÚá‡Ýù·d&$wuè~œ|ÜÅÿËYà0Ÿ‘È­7ù`8x€î$= ûu‰Íö¦åq_ϱ=rƒîöÕÝ·¶|Ê,ßD÷ßHuÑãsxHغL_nc²°„ÜýÃÂÎCO,·ïÍæ@T¢gQýg÷+/‘þéÞðeÌ3À*óDö&Ÿ%Þ9cÉÛŠ"²ÈÜ’æî—1œ0"®çêa¦«¶/g¹Etïô/æ‚Ý¢¶€Œì~çœ}a©ýr Œ{<¯L_1v ´Õî–µµÐµþxYÀטÐBýÛ«qúúÌ÷/ÛÑ rm£éOx7ŒºÏHOžö-½ÿæþžå¯¶™´?O—)Váümn‹»ÂÙ<úßp­`oóÁnO»× _önËýHÜ{3Lð|ðäÛÇ·­tÉmy·/×{<ò8có²éoË«{sØ‘¹ô•:ƒ°ƒõ˜¾h[¸wØÝ{èÏÒ1sÏs{¦«°GTÌ[ì_DÏ/yÎmí¿´T[Õ³ë|†ÞnWÁ•áV¹_ÛlQÕ]ªu Ø9sîéF T  Rƒ¢×+Õë`›Úoêõ²J ªöÇ¿µ?hqðì 6ðýÏ*"p=êb.cÿK/‘~ÅrNìýÚûRB¶v$T©,ëC¤h¸ŒKРj®4Ò`©æJTª¹‚ðgäü²”;sƇs°c~¡Õ•Vâ_1»#1ù“•a€œÝ¡'­”xPÑO±=¹Â×âó9—vrÒ¼) ÖíëÇöýÃAÝúÒƒLÓÙ0÷<¿G´H f©Þj0Q9z™¥Ã˜ºDváZS¬óËúQ]™&×™žRs;Èú Öâž»¬H¡Vfó²31`Õ{oj…ï”Ó·µ 5uQjšK  &Þ=£†À¦µÐîH fœÙÃ×ßo†@Vñ|1G ÿmgèÔßç-A–OçæhDŸ“lØÂ¤¿ïŠ®L£0Fê 2íïH +óÊÏ„H_XÕ&b`M]*P»i¤üIë_|›)®…Qüåˆz«Ê4sÂ>ÑöªÙ‡á›\ªvÓ™¸;¦‚ÙѺãú4pZÃÅÈRhŸýöÌ›xŠCÿË¡òV»iOŽ8ƒ#ûvJ¿õi¢}šæ‹ªÊ|ü¾•`:XÌ:u6UçòúR‚iÂИa¥}¹@ ¦íÃ=ü~ôe[U™°·LK'ÁÎ÷µ½äÒ^4„ lô$3_Fâ­ßòÖíX—6^ýÃBµ`"-˜°1¿(*ñ¤ï—•/W@;þx"­þ­Í³©™eÓÀ$¾Ü´TW†ÁÚÝõßu.©Ê|à¿UeRŽpÿ²S§?Z *Óæ}„Qy8šé…fªÁta÷³©¬-·ÜÒS]j×€ç?ZeHµŠØuÖQ‹¢²‘jcD¥Ú˜R͘eîC¼Ý÷„WE‹x…ÑÙïñK·E˳âcÛVOÔ¢…{>¼¹ŒDõ¹Õy® &鄪$Ö!æû1ÕiG]œãZæò~ V›ù):Ö~EÐçykÔ\èsŸCvý Tœ€ÙæÀyGoÖ8^€úëT6I’ËNØ=kúÒÐä[åÚ£ò0Pϼ˜O½áR¥ôŸÇv~™[–ÈÐ/ ç?_Âcé6€éöpÜ"áì6–n„óaù°Õ‰ŽDŽúìŠÊÔË \à[݉*ˆtgüêQ“†›y~YiŽîäR„„ߘñò÷¡1 Dt÷CZúbm[ƒX»ƒZËuÊQ–ˆÌ égõQïÚ]䩪t>¢?=®G%ΟéÇIןñª«àåï/‹£2õ§iF\Ï{ÙÄqÆ/ަɮìC`eÎ¥fá’δÉó—-ÞW˜Œnk»gàüs§(_j]±HWé,ÄÓ£àöº"/Ñhð€šóÔëKTçÙ¶ŽíË„°µåwæï¯ýÅS>ûƒáÖß·2€ö¸œ÷ñØ÷‡c_ŠýÕ3eš½½2ã¹rÄé3ìßÎDsƒ]"Íg—Š)’ë"w\âºhˆÓç3ôýÙµ/bFþeÄiW¼‡/7C³r{ú«l ƒ©%Šù2éø>öïn4í£Õ?… DpËÅØ?Éli¬þþýe›ÿȳû³â~9ïÓWTõgWè"†aÚŸÍ[†¡íG6»Ñh=ãSw×õ5×c4¶èÖ¿|¹r½5·Î˜Ž‰vÓÝàüÁÆSúmgÿ$óQrMd)ÊÎIæ .ó· øî¦„y¿üñò‰½>[ÒÜgµ…ÝÁ˜/×ɶ_—¾¾â5»¯ý¹BP÷…²£‰ÌŽT4}94@¡ä¯hËÂÑĺÍYVPÏÆú¥†võ/ºçy~|Óú>w…ö l=¨½tÕ¿¢õ2Õ›{‡è¸Ô"qJ¸D$†W’Jtj "Ã+5¨†Wà¥&Ux1©'0©˜T¡A5©Â‡VMŸü\s×Çfo„Ã+ ©ÚTyš¾mªD¥6U lª@¥o Ø¢Z^—¼@Р‚ᕆK ¯D¥&UþŒo“*Í5©•Ki¢Š±8&ª>zÐÀƒ”vyôÀO­vÐþ*»ÙA,œ –¾yИ‚”¶·÷köPÍ Àꈰ>;}úÛKé,Pc)}E5–•KYú·±”†KŒ¥@ÆRKß3h:ËŽ–UyUÿê¸#s) ƒZBiãz¿.à”Ws)õPŒ—t®ˆñˆÀ.ITj—¤CôsÜäEóÆ}òmÀ¤Cø­wã¦%uç|z›&é ªiÄRÏÍ·F‹®L ª®Ü»)¾,¦´îÕÊI]e¹sB½­œ4ãÕÊI›ˆZ9A.QƒQ,5…òÆü6…ÂRe¹sŽ½Íœ¼ôßfÎÎöýP–;Kÿ¥wÖëÛJëõ­,ÓÀ«²Ü¹Ã¾íª0òjWeMë¥à¢^ SÚkÔbJ›¼ZLiOz+¦8Z¢˜â—þ/RLÉSyÈä›cüµ8¡-òÿ·X¥¢PV¡•S‰– û5P£æÀ¯ B$+°r”e_¯@VŠBT•…¨*•„¨Âhˆ*È!ªJu¸ÙËÓq~aªÀÊÏ'yë³Rýˆ @T*BŒ÷y¿B€t&@è©Qè)Œ„ž*/=ÙU‹VT ¼Tׄ¹W¹@÷[¶øù«'c?Ö†©AóØ“ŽÍËv ú…O­N¾<}k÷j¢]ᆱ­]é1Ú¨ÄÍ—†ËÑÐ|3úòÏÈÙ½¬—OgU,P‚iW°ãåûÄùÜW ŒØ°Ã÷þ¢ \kô¸K)¹ö§áB‹g¤d2kGŸê³°=$vø6ªª«Ó+`‘g‹é! è…>ú :[üÑÖ?! ˆN·«8«/gO¥àÝ®Ð*˜ƒ'§°#±¿=c1L{!†5„X…­ÜÎãË!üVF S‚ƒû;êM9§II€×áz“ç•è`Qˆû…)Ù4zãKÕ™™†T™yTÍТ û¬NwÂYíZÝßF(„?ô;„÷-›3æ]òåˆ5µïÌÓºHI¤1lG® ߯1 ý"<}9«!ÄN»Ó¿Í÷9C>Èý»â#7y ±Å“SBlaׂàY8«Ém<šÞMWôÅýJl­}“ blaû>â í[¢ñÒH\ ÒH\<ìlZ¨{š.†%¶EÎØ/!SÓ¬ë— vñv-»°ò#YÏN_æ„ââ¾õŸÅ+Þ;|öɸ-Ztó%ü†Ým §ˆ€„7C 3„÷}ïQóoŸy±v©Ž=®?Ûq4_*jÑ3æ=Òºö¨,{nî$C—*ßæ<‹áÚï㯠.ÿ ¯Ä—v!¢1rU-ËX`D¯žJ56".g=¢Íïf›S_,pg&^§Ÿè6Z]±–aŒW޾Xë)®ÏËøxþ2ƒ§Øú_¼™Aª!À®íTؾÌSñy¦ (>ÏÀé³Oúex›§E—¡€eq.«Ó3}uzf¹ü¶8|®söK©C]Œ}ªÏ<µË…àƒÒ«Ó3Q‰?3 ýI3†ž‹ëU½žj¤KðÐÌ6v‡°t¤[¿‡àMs^ý™‰Jý™i§Œ3Ê`Îþ¼9ývàófë×´¹×©ÁÛ _ÿàCo^g_.p{î¯Ø›Û3êÛW™X±7W M®Èo—ˆ±¿7§+¯#õç 8+S‹â¬Ìsþía »àìÏŠ±bû«ˆÙe¯Äsä‡HÌhÉnÇþW´—ß-RQ®ýX×x°¤ ßþ·K3MÔzµÙ¿l7¶Xƒ»e“ür¹QgeÞ”<·ÍÒ‚Mh´Æ8α9ÕÓ„]K2d™ãëº~û=Óî<ÇÊg:Ïý3]½£iY«w4ƒú=ÓÁ¨Í|ƾ•»×·‡2_ÞÆ´ú·¸_·ðC¦9¨~È$—zÓØ‹ï0Ýnv_ý~3û² ª‡1Q-‘puÙ[Œuq T7K+öålQ?dš©îð6/Óøe¦’·rW;x8"Óáï6UO0õjËÁ¼|Y6 Ǻð~ÙÕ™v ñDæÓìí‰Ló&2ì.æ|ߟƒà¯L÷õWæs*²-õ„ÕQæ-¶¥o‡ÿ˹£$==‘éZ©¶ÜWvœ¿‚SÜ¡¢|9Jùrˆ•äËN/‡Xi&ê¡fÂ^ ä‚L8Ð"dÂ!Qi&œÎ NÏL8D%™p@xÍ„ÃR½3áð˜¾3á@ƒ ‡ZÔ7ýysÏqTšã†§ü;Ç OÁwŽhrÜä¸!ÇMgèŸ9nXøwŽ¢š¯{½ÌÃÔ f¡ɥ™phÅj&hQ3áð”eÂö µ§™p€d¡٬™p¨EÉ„C=ÔL8D¥™p`B&ž§¯L8<ß™pxí¿3áЪÖL8túh&SÍ„ri&`5„j½Níµ³¼óåðp½óå/Í—CSPóåP5_OT?b?ׄþ¤§¬:ð4«m•šU‡XIVÚ)\d-v·³~Þ¹wh4÷ŸWî²êÀçѬ:¼»½³êð—~eÕáaxeÕá-÷•U‡Ö´dÕ¡F³êÐLÖ¬:$•fÕ¡C_³êМÑ|9¼Z_ùrˆ•ûï¦ßÔ äÐEȪC¼4«t²êôÎÍGVK³êXšU‡/§ï¬:D¥ùrˆJòåÐý[óåÐ8h¾¾ý¼óåðêyçË¡MDóåð9öΗCûƒæË¡¤ùrh7Õ|9ýIÏ—C¼$_Nÿn}Ë—Cû¤æËyé¡=ýU¨(+,ð²Éµ‡GX™Òêsw=Ýoì¼4E¥:Æ0-,WÈÊ0š j.ðZÝõeû4xt»ˆÊ°¶8ùiïïºý‘'-¨@ËåÑzk¹ØÅ·–‹ Š‹ã ,ðÕÄ}¦ &‹á!Z§R‘¦È}|iŠØ hŠ@š¢vÒÀX O¤MQy¦ˆÓæ­)ªMÚMöÐar¦¨¼ É¥ú$Œè“@ú$Î-Qá#j 2ß1»NYÁ—ÍYsÅ•š¶ƒ/ÿ|,P“*Špú€¢K_“Åð6"ê$ C˜1íPø²%‘Ò ŸÇüTü2·H5¹@5…AÕW†¨¦¸ˆj [%¨Š¸4DU¹@UÄñz«Šx®žzaoþº´¡ªªˆÛ›¨Š8òoU‡á­*ÂN©Ùgxg~+”0i†ÈÏõQ‚úÇ´¿Õ÷‡íÒ• ”SÜÒ;}ø2•A7…‚n Ó´N\®o­XÖ T O"¯pývºRFœÞüÔ:a¾ƒÖ #ŸîKãÜ‚IxÐMñJ)º)Pn Tª›Âî°»ÉtݯÀ--ÐMñ¾%º).WÑMA.ÐMáiÚ@7…Sqr¯sî‘‹çù<ÆŒ˜¿ÞtE….F¨Èr~U(Aƒ…[™dáy; 34P½ì»=^èlü¢B(ch]’U.rI*tIéÑ%YûÎÆB„nÄÊ Üˆ…°“ eäa™„'—dáµe`Ðg£ë Ë4!ÀoY¿ù-Ë—F—di]’un·±ˆ…ÞÆÂ ½…zë¬!oc]>äm¬ƒJÞÆ2\«;ƒ›Gew>t܈U,r#V*p#–ÑAX·7pÖ!%aä ,ƒ¥0B8OÉX©ÈXw7r#V*r#ÖµOnÄ:mÈÏ q#Ö±7b%"aÚ"ÔõW'8õÒ T§^ùÖèÔ+b¡S¯R‘S/-Å71 8õÒÑ©N½Ú âÓ>¯8ÅÔ"¹þ*¹þJ‹€SÌÛ8ëÈ“ƒ0­EuýÕ-œ\õL×_]Šäú«g§#Ó8ƒ°žeä LÇ¢:w.S/a:®ÕAXW?9ÓI¬º ’ƒ°Ž=¸þê-‚\u¸ÈõW©ÈõW…'×_Ý•¨øË@<„u>“ƒ°JOºd]˜nJä¬TäLsPýƒum°nàL7õÖÉEþÁô­Õ?˜´7õ¦#Oýƒé®þÁpl¼ýƒQûyûë(HÅt©¤â§’ÙQa…Šóì/Rt‰JcoµEÌÙ£¼@Ñ¥UÑ…‘Påˆ@9%V¢œR!ߎ¼b#d%R"ÊJ¤²S¾!žò ÁhA¾!奘ÀDEù†`¢ /MJ%_QS IƒŠ½‹Pó )è¹ %ÑUÏ…!¥´D°Æ á¶H ‡´EJ%-B’ ýÔŠrKrQ /Ubi¼ ·P©KSrûäöQ*Pba¼}y©ª ¼~—F‚Ò ñ©ñNÔ]Œ÷DA°YBF]²t‹ó2òÀLÕŒ<@it`G}#ë’T •ªÃÐ eäÁ³S2ò/ÈÈ[8däUÓ%*ÈÈ£-RF/Ubé`ÔŒ¢Énéö”ùÙèË¿V›Sb¡!/cé³—¹û™y™ô8Í †kNxSykçðXe¼cí:+£7$2È£`Ç0|÷™ÍQ¼²c+'ÅÆ!zyÃX ¤°Ò¢0Ì#V‰À‰Y›SÐaj{'ñÑ^ë¹¾80Ãh+.1Œ¤:9#ÑÛ1戂ÿâ€/ŽÒ¸5 Qíø.+'õ…!P´^I¡saÇÙÃ=nh¨<À €sa~Ÿ‘£ÉñzƒI°¹úYÀZÐ\m0sõ³€û3Œ¸ æÂž«ðµð}½V‰¼VÅÇg%¿g%·go€ÊÅÝò” óMrq*½qraz϶Ù~VÓÔý"äŸí‘ c¤>ѰNw‰¶‹@ÿ¶`»x¢l&øÞ 74Ô·–ÀágÓúm x\Ø7üÐvEÇd<˜ß~É:Þȸ0!'¯X¦þÞ=Ͼ?z¿úG87ãñµúÉ4üÓ?uª.]êÚŒkûåC ŸCaz»×—;þ.ŒuN‘cî__ÈéˆÔç:§.¿°Æ>Êciž›_æÿw†I`wFPwU Í¯RÛý&„¹«DÝùÇý[»³„¼aµ©Ó-ŒöέC{äûÄmVel¦æHß½OÇ-ê/Ø^蜺Ûâîí ›²"ûÂEAXÇ7¢1 £Î—› ä­SòÖÀ}òÖÀi`Bh¼,Âã;Û ÈÙf`è!Û ýêªöz¹ê㲆œ4°@¶œ’mö] Låƒå­ó†úN\ƒ³ë­óòÞ¶yHoƒŠˆ(¸ìÞ¿ ¬$D„«¤D D‚„$4„ ¬r¯þ`èhÍ` S°$ PT&@"ÒU&@ VNŸ±4p°áJïª4šGUû°LÊÒ¨'…nâ¯;=‘›tyú?gÂê©ÿáQX?\DüˆnÝÚ9…vêNË;è°)æ0Œ·&uÅÕôÆ‘NšÒUETb˜LsL¸éfîN€\¬‚®¹•Ф1Ì%†]@Ñ£`ÆiÂT[¦”‘a–îáÙóåë •Š TJèR ¶BDŠ¥€ƒq–¼pƒñû¿£p}¿QƒaU*h°f0œ(‚ñÔ_p·ŒŸ¸tߨM8oP&˜K¾m/Ãçëîýæ’ æ‰"2á™údÁi v]Á†}I!€‘ Ãî­HL0Oüð!]º[<`öê()Žä ` WÜ _ –€àÁ¢TŒ]øþ cûÄ*(FpÂ)À.|6¿|¶¥õË&pH¸N^hHpRh¾QXKn“XÓÔ»ß`zµs€¿ 2i®ÑÎyò@K‘, 1ogcwÂT^áÞHI8Ž]»Ï—KrR4% 0%¸1+Î/0R$\roŒ$ØN" O”7z/ì _E¡`=)tow©Ü€“÷vïž7Ô#Ø*¶÷eàìè„JõR];TdòT*2y/0y‚\jòVà›K!z/É.ÖSâ¤0Á@J-46Vè¡ÚXÕÛÆÚƒ—vTÙËý{{»‚PàÊÊ“ô­jÁ(€Ç+·7+ÈfO˜~`ö¤W³gg¼ž ±R{&uQá©Aö¥.ªA¨À  -ªrF[Z= ¬‹0\`]¤ù¬È¾Ð"Xa‚,} Uåhí«y‘ÆKÍ‹ôÕpÈsð­ôAÁ[¨À¾HÛ¼úËÂH€’ŽŸ·‰hÀÄ퉑¦³ÓT#ð#ïƒo½•E5DÒÈ«.ψ·L«QÍ•<ª/#M.51ò’}Có÷V„ ‡yɾ!‡‰J|vù´~Ûi'Q#o©/Ü^úÔjˆ¤¨†HZdjˆ¤¯(†HÞG^†H:ñÔIàz15(&Fžñ/u–>¡Ú!if)0Q©70]”Ä?—®§j¬¤ÃZ•½Ãú¡ùÒÌR‹&jÑäËç[¯¥.ªÝ“¾´Z4©EQmi˜·‡·ÞJ; Gé,³'vo³g2ßNžÍo»gÿ~Ó9ù‚ú2ŽÒeD£´ª‹ð Gˆ”Š€ !• ‘\ Œ¼Ë¤l!ê£b •` ‘b Õç“ù›ýР(i ˆº¨D@5›Ãxl=¹§ˆZTœ"¢Rœ"¢ZäÓâüOÿû(˜QÅ;Œ _¯#0oòçàòˆÆT pž¾!p>|´†Àêöh@Ë×ÅH¶v§ ‘\ŠxDƒ•ýÏÌŸº³ì‹ ¼‚'јÚá‹zj–ê¢@,á±¹•Õ¶€þ¢V&-Åa¯(KH%K$—âÑ@(ÞÄAG{ê"E"á©w°/ #ìâ§þ6|98î¨s¼¾àŽpK¸#;ÂKàŽðdQ )í\C8 Z2n: ‡^ “J “:'Ë :‰>£‚"}®›[UçdyÀuÖõ îWì4nó~áúr¸#\ŠwD Ü~;¸£Ž¶õ‚;BõAàŽ:Ë î¯§w„§¢ÀñÑò€;ÂUñ†;Âù w„“AᎦ±V¹‡¸¹F³‡QÜ’Æ©¯ÀkuÏ¡ÏÀî¥{„v«pÙ?/ïV%"µ”TÔ ÒèN’Ê]dül)3÷ðíãK J (Œ»*Ëô Å8® ¬ÔaX}4Äõž±)®ÀJÃWi@Õ¯˜ç¨£Ñì×S Q©nNTê6LriX-Ì?Õº•ˆÂji6hX--CÕàIxu&*u æoý~  i£®Á4#4®–WÏ;®–¦³¨ú4¨VËb™]ÕŽ©¡?ÕÕ&¼ж¥¯4QÕÛ¸¿`oï$»Fè¼€ððj@Âúù¹b¬ýo $½bQ/}[ ±AÝÓõÓô×)Îþ®KïТ'þ°µû+Í}§`¹Þ/4ò¶Dð¶bÁÛuÑan?3âøv C8,o7ã¿<ÐÁÚÆAß)hGC 9÷úwð±¦j0,mo Ëw–WØ)|xÎàÅÿNå]÷œ -Âðòé蟊vð›zq~®Š_¶æðv³L>ç×}ð{õñ刢Gè >Ðþ­Š~ç2ìÛÖöí:¬´òUÑçƒìíãL“YUxÚ T…§V#X;3ðåçÌûé[;§y*àND$èN|ܽý¡é|Ý}!žçúeÿžÂáÏï?ýomo”çô/2ˆråõcW›ãsãèë é(Ë´ª‚K™»1û¡¸|™˜d·þ¡ÿ 6õ…|ä×kÀUR*pV*Ð_•ˆ`}¡A€BRV…¤œŽD'À$m“”J°`¤D='™Tñ*€UÂî ¬°RX%OÀ÷V¾ŸFa•`‚¬ˆ°JÊ `•ôóG3 €/)Á*Á„X%R€UÂ/-°JÐ"À*Á ¬~ 7Ü/KÿÖ‰J!š`P¢I©¢ >£‚Óö@N <9Áp“Rð '\fä¤S‚€œ`TÈ ¤ '{r"r‚€œà3=ä“€œ ErRá ¢ Oƒ'D­¬Ó€•à„R%‘& àÓÌŒ&vA_‚™¥¨Âôq£ O²7®0ßÉ œà’~Æ7’“²Œ&8ï£ gÖ£ ÏA_©^HÅ ÀÓÄRø`ú6½Ä×Ò—&IG"&á/€IÝ›Ûi˜K¡†ù¼ð%<^ߺ+ÍxÀU‚cp•àš$þÌt\¬ —(¥D$J)›½¤¢21iФTŠMLßPœ`>>ÌfÕ\yÖ>îmoP%¼+¾á’`Ǹ$T0þµJJ€ÀÃ!¦ÞR²¿}}•J3’*•¿™ žþøº“Q‹àë+¼ÌögŽävÿl¾¾ÊëÓ·!w®¡ÛÇtvñ´ÌõòC}uw žŸû–ݤ<·v_ø-¯?ŸKq´Æx±OÙ#úŒ¤›-?R]ÏdÀjr¯iïa_vKNíksºÜÜ€U8¯š–töÖØç$l:Ì·§hÜ¢a‰EÈ»Ù[o–ú£m6ËpóÀE­ŽÑ*»ÅU«q¼Å`°$c,. É‹Óatþ ý9³ú×1š¥¿¤—T †›9 VÄãÕчÙ5”Ùvè±ßÃÏÛm{¸…ÐÒ®.Ï@å×\C÷?úó!ž¢?1\¡ðy2Ôi¸bvio;CÕŸ¦Ë1 ¶š¸RZ‹_†~ãÕ_ˆ†¯e‹zÚ¿ŒdÄí D‰Õß!‹mgUÛœÿw—wìÌ’ëûxúýgŽ´ŠÝ¡ßÜqز¬ _¶·Á?£-ë³ÿ-øÍFu¼…¶Àì:bÅ®WÂ'ÞP§\‹_Fܬq:¿rÏRƒ¶c¡Çww®Ït'£XØ_6¥1ºx,_Ž}ÍcÛ™]ƒ,c{^ ^’íbõ£sûŒíÚ?¬×5^›Æ©» ²¿9LÔzÂÛ¿l]¶)™Nc Iÿ¼;â@·W†/û¼f±ÅÝÙ®³¡Ï|Ùw-¾ÑVÆç>úóôs«öW·[Ì$u|Ä¡S ×°ôïàîxb·k·éô?9cÊÝbþµåÃcwmaŸ¾É5˜—üœW®þŠ%ßh ßh˜^’0¿»ØÍ†ÝÖÿBÞâŠçgïý©ª cñŠêO÷Ÿš­ßÇ0Ú^LßÎbMÛ¹2ºaäsD~™«kFn44WÁ‰Fü£átÝ[ù_Œ*ù4ã=ÜlŠ¶Ò¾|mÃÁóól¼œ &RS‰ÉøM„îÃo"²äjsO3q‡äÇQNä‡,Dà†¬ŒÀ¿XˆÀ½Xïb[œ‹µ5õ-Ö§^ÃòÝÈiXϰ0"—aaÃ:Fà0LsRü…•Ü…•¼…U&p–9©¶bXà*¬ß<……“ŠAlpF`&NàJLS@<‰u.#±Îð#¦u"nÄ:¿Õ‹XÇœˆI$ñ!V"u!ÖñV{.ÌJp î-Ë»g°JŽÁ:+Õ૜ÈyXå¯`ù&ä¬2©ázŽÃÒø «Üà6,ŒÈkX/p&Nâç«r«›/L“+Ⱦ»4ŽâºKËûí¹ÛÝ'Ú1ðÛÕé¹*78äê?®“D3Ö«¶Jü"o¿^Z”â°KÛ›øë ÑÛš©êªK'®xêâørÔÕ5«&Q¾Ý{‰Hw‘ÕÛq—ˆÔ\ßH¾ÈKã ²ï7YÜ9Í^Ž»‹ÿËq—ÏÌ0ÞøeÿüË.¹@6X¥",ð×]ày^ ,µÐ¢Zj•Ì«@&QJM¢ÀêmUð(&"qV"2›Â8©+Mõ`%©Ô…Ä;-M+µÓ‚\àÆ £vZàvZú‚j§…>ª–X©–UýTiPÕšK]T;-P–v5ÁÒÄQ‡Nžƒo,ŒØ`IzE¢µ¡–Zà–Z˜ª`©¥©ªæUÚkÔ¼Jc¯æUÚ0ˆæ„ayB¿°0`„…>‚y•΂·yhÀ¼ íyzæUšƒj^^`^åðm^坸6¯ò÷yNé[+þ­F5¯ò¨¾Ì«ðÀ¼ [œbñŠ}Û`AvðÖ¥ÑRK-P¥–¾¢Zj¡‹à×Ëwˆ·©–ö5ÕÒ|+,]¥Ô KB­°´`Õ K3B¬°D$VX:>Õ KàVX:¦Ô—Ä[-¯Ä—­–>´Újiª­–¨ÔVKǺÓeCýéÖ¬v_:ˆÕîK3PMºt«I—äRc-}k5ÖÒ·Vc-Í.µÃÒþ¦^¿´¡ª…•ޱ°òÙù¶°ögêÝÂʧÁ ‹‰çóÛ ËÞbQŠØôÂæÍÛ”i¾¶$Ëw_©ìAê ݦB%€©¦B5™:iO•Ÿž6¥SyÒ)Dä ²Ï[Ü!ìîò"a¥2GÈÙÕÅóº—i!rä"mXûÚ°²mdÒ \š Šý ¼4•‡ÊÃk¶K³†QWY‰Hg†y:³òÒ¸ON†/CŠ5Œ((ÖðAƒÅxñ‚\v‡·™¼]ùÙ€i° ½F[’\I{ÈW¤áÂb^€‹K3P#yv‰6¬uö]ûÓÇýºQªô¤3k‹¤3ë"=Æ^ÐsiŸÕ>6¨¦J¥X¶ ûç ^rŸìê¯JNÄ0ò¤åâþöå¤ ê+N­w0'MyÁÅ¥9:.ì#K¼ûšé·ÿqH{…Uç`ZcбK“t\<1Þ»4k@}…Õ“x©_÷ÔLaGݶsù"¸ýò ,º¤N›w()MäÉ××25ºD)z.ŸP«Ÿ=Ã?_ÎM'¥KÔ0¯Ëñe+%EÆÉîMä-Jã©Ø¹|òˆº©Ÿ™; ZRYZžuˆÍOžõ£ÊÏý9JJ"|EAØåE!Ú,|Ðþ`è%l”ˆ$nD„] "=R©a¾Î´Ç[Í>¹¯ ‚+z´Í6©ûÁlžu~«¹ Üx¾CCiéÇîí/Ný›i›¨©¼õHè"è‘xí|ë‘pü—è‘þ–ãÏÌs‚¡KºF¶ÒA­øÀ/ß¿l{U*pç%*Àô*ÄôU*Âô^€é ¼ÓˆÓ¨Ó—L_-ÀôU*°¿ò¾‰•XiA*E†þ:0°t` t`jQÑ—¢Ã0Ž­ U—iHU]±˜&¼â+À#†ù xÄÄJñˆA,Å#†a¨$ÚX©Ä¨aújª¦ï#È4éܘÄpcºÛ(¸1íô [L7O…-&^ [Lr) 1Ÿ-o<*:[¶˜V¬Ó©¡O tCP@bÚyõY€Î~µÓ¨*Ô0I¯6ZúŽ HL÷]…¦…­Pô°j˜oƒo¨aV¸ÞPôÃéÓ "Ì×â7<0óxà§õó/`• Q„… Ì´Ð ÿjƒšê•ÚÓT¯@X ° k‹o{(õO‹¡5@.ªÑ®Š[D¹ÔÕŒðb쟠ÃlPhb˜XjËV€) ²¨0ÎQA*€*‹Ñär½p… ÃÌRda%"ham°…•€ ë¬ Ýí3{Ö [F0ˆáS±ò"ì`˜¬TŸárpÕµ½•ó˜¾íÕÜ @•bÃ880Œƒÿ‚ìꫬÕ¶Iµ|C‹`ù¦qÌ^XÈ«-‚µ&jœJs‡CÄ%¼ âNUA\‚%ˆK°—(âž@‚¸³ —ðc âªo‚¸„' .áe]—è3¾—X±±Õ3|“üXÿ9þ•à„ÝôòðeíT©ÐX©^Æß^‹à?¬Tä? ¼Àx©ÿ0ÿ0Pÿ05(þÃ0¦à?Ì£õv ^êõ R×/°¯_ ¯_þˆt/çva8\ê -ªo0ÍuÂVà„K‹.±R'\Zd¡ºYn¦³Û ¸ê+ÕÒI,pÕ¥õª®º$ü[M'ÙÁŸ—†TÔt\=êÏ TQãÖÿµÛEðú¥ÝM¼~¡=ðú%ÙÕS—WâÛS—67ñÁ¥ ¨>¸4ðêƒK››úàÒ^£>¸ÀK}pij­1µ¶fîàOøvÁå»àòB|½tÆôí¨Kcê-y²¤îFIïH%ïÍæíL'†ºÓ¨ªk0Íu ¦]W]ƒyì_O øÕ˜–†:óiðvú%^ï'†ÎZ|;ýÒž¤N¿´€Ôé—ÏΗÓ/Í›è¡=Â}ùŠà̳þíL¼Ô5˜†K]ƒéûˆÓ/ï¯÷œôêLb‰k0]€Ô5˜Žu ¦K¥ºóê½¢`‹ê@Lgº:ýÒ †›ñajT)ªg0ŸÕ½â¾l]ôv€×õ¦o-ê7—zÓRŸ_ê£(é‘x)éxsVÿaÚ#Ô˜öõæ‹ìÛ˜®·ÿ0oâ/- õ†>‚ÿ0ózû¿ {ÿvÒÀ &xU*€ V*L+T”àU¤¯ÐEMð Ri‚Wà ^•мjƒ”àU{ ^••$xå1x'x*]"Ê‹ƒ`sÔqç.A%ñ•Œ²0G!£,~BÉ(«rQFY£”Q¾d”åñz"³ð†„¹¯ç—%ygä± ï¬e”U^Q§à;W,pRÌ%Ê ÓrÅêä¢,° <$x…•¯ØÂ4¹ )+NIʪÒêPQêV¥¢Ô­ÚGJÝ †¤nUJݪíQêV˜7ºæ ¤nU^”º6%Egâ N¼Â‘ ^áû@‚Wœ7’àGõº&¤nÅev¼S·âv#©[•ŠR·âb”Ô­@¥©[ñ–Ô­°G@êV뺷ÊýÏ3u+|iHÝ k ’²ÂGÔ¤¬¸¼Pœèô¤¬ÐAHÊ jRVœÊÓuKÊ _’²ÂÄR _¢‚¤¬pµw]ºuBæV8^!skçx}fn…9™[ñ¶(9YAxÈÉ ßP|©EͶ =„l«x±‘l«¸ %Û*L…z¢mr²Â¡9YáÜT¤'>7%skwa<2·âÊÌ­Ý+ø=s+^<_ÞÆt¯Q<(ÚKê©þe'%‚ì9BDú­r‚ÈW!"íV‰ ðUe‚ô:Ê ‚cA&Ñmµs?+D>«­b«S½V½ÕZ•G1¢€FÀŸ´óë #$q 0#5 $Ò(På¤A :@ =ÃÔVµ@#@a®©R¬œ@'†/«*1© c©@G “‚+è°0N! ;Žf䙢¢J1ÀIq‰pò¾±ŒuÄAa†qÒ¨O\öèÌF\CF‰`[R­>&ôQ"0…9§ê;4'á¥:J »+¨î: “Ãÿ SÕ¶DiWÐÙáT•¦¤êâøAÞŠ1LIu…¯¦¡®xZ¼#]ñ<}'ïÁÖ8W§—“DupmMAšàØÑ@X¼¼‘‰`û–8X¼¼õjû+ 3‚…mRƒRá«i†XªQã²}éÊ0Dª*C÷5ÐO“7ÊÌ[…‚Uуàâ!º-\:Uµ…ÃD5[<ßIg´9@™TcU" V…ñV\$ørª «[uGü¼ïèRØÞUuÄÍû­9âÞ•Wïþüµ¯p/…¶\Õáªð_ R„*ª^ út¬eç^¥"ç^äõp0îñRaà…á¢Ú"…‹*/U"uî%* *…5¨TeW·]bEA¥@á¢:òâ‹á¢ÊJýc©‹T ¬Ä?ç–øÇ’ðâK¬(Ц)D±‚X ªRQ€* ¨ÂÔ‚ÐSøÒoŸVb¥îªØ Džâ4•ÈSX®y Ty ³FœZqL!>µ8µR‹êÔJ¼ Š7ʧSk羜Z;ŸGbqõH@,ŽéË©ÇTœZq‘Ap-PAp-î/§VÜO!¾5×Â&Áµ|v¾ƒkqì%n¾#ÄÍÂÒ§ÖÎ.ѵÀKãfq-Jܬ6¨N­8qÞîªÈ Bpq¦¾Q‘êB!PÆTuq]K .LTqDE^¨‹;ê;P6zqDÅ 8¢vV¬„óB‹Î ÂCt-±7 TowÕÎÉ/a³°!l¾"ÄâŒx¹¾¢\6 7ˆˆ…!"¨ "ú±ý‘¸ÇºÂ”€XW˜„âl‹ÒCDlOyFÄꨪ³-þâl‹;D×â­X¢kQ’èZXB]‹GÎÂѳxlH°«Ž»Òz»¢PâÛût†ýÛñí*@ýU"tVj×^`Ø$áÕkWó'±·] Òä¬Ð"¹íjÁmWY‰Û®Ê4ùÂòX½óËwç^ìßÛ¹ç^¥"ç^àåß×ÑΦ 0Neq†Y .À8ĘûørÈEVâ rUxH¼JbC.,D…ŒåñöµU"òµÕÉ×V¨ÈvHó›/©rÒØRœ'/uÖå`Øe¼!J@cª iİW,¿}qª+'P‡Ap³Ë»rìÒ€Æ Dª0ã„{k°}©Ž S@U\KÕpa«®Jš+Œ¤ª¤Ð˜­¸e2ŸëžÔ¤µÂ1§J+l'ª³âÆôŽ4…‘T½¿î[­…¯«ú*Ȥê*ÈäÉu>»À…Ô‡+å­Òâ¦óŽ1…UÕ^\*o­dR¥‡à¥ÎâÉûÖfaÛ=#ñÙ>ÿÓ?RT—ž½´TØ,UIÅù¥£ÂÇUV“j¨¸¼Tlí°Ó¾5LN[•XhMâSa&©ž‹‹é¥æ#ÕrH•\äôÖq;'ê#œ¦¤ßüŽÞI¤à‚H›ç’×éÛœT%¾‰ª¤ÀI5R …V·ê£0”ªŽâ­ê¶Š«òµ 2©^ …ëõŸÿˆÝBµZørªÔâ±ûÖV»‹à¯ SN5Úîõû¦Ð¾,…0sªRuXAd(±Rë¨R½rêôZTx$%"%XAä§R‘ ÂC€( ØPAzÕ4ÕÛ†J2iVš Ê£ðR5i@%Pˆ R”&ƒ†Š‚T ·B‹Q ã ÖXø4 ¹ÒjP) ©*¸LõVLi6¨¡•‡þWú ,ð‚ÐR %¹4$”v5í/ˆå™úŽ …±uä}Z 0Œ=(³4ªJ¥mé3j´&P©Ñd…¨@£*PiaäÁhËÛà#°š嘦ŸZli*KöQš1ªúÒ^£j-æw(§*¶´v4R”¦ŒlùXyÇŠÒœQ5™Öަ2¥m^#8i§#+mº¢•ò1ýVKaö½ƒ8i‹–nZêÉÇô[Ãå³îe­¥™¬a£tÓRM˜·†—rJ_FƒBû—š{*Su…Ñ‘¨Ti¤.ªa”V…F¢Ò÷ó)/Šw)-|ÕAiP%á)IÂS ±@†X RC,|ÐCi­ª-“¾Žf<åÛÊ;&•µ3ùày«‡¬¨¼ÂR©‹ªòEñe̤^#S鮢&OºÈkl*kˆoÃè¼Ç^Q”P„ˆlžÊ‰t[á†Q!"h$åÖS• ´_aDʯˆDš¨pETýÿ»—,ÙvTk·ù[Š(A4w{[¡¢þÙkÒôå}]vþÜn¾Ø†ˆ ‡®À*M°ŠB£Lf„´z„4¿Kñ`XB¶ʆ˜1<)d OÀ!êJÀ!©‡¨¿®yS,„À³§[¬"ȲÉUü8D! ìD±Š )E¢Ê%–Œœ$–qĈ½MŠv%ÀU1lV1 1kRˆ!H¼C0pˆZ«Z¥½k¶"P4š_§0³Ž !dH_íf 3óÛ„…Ê!ÊÌJH°ÒÌ­¹Sž\Ñ:9Ä¡:¹5Á @Ú«Y,"J|*ߊScæ 3ÄÛ»&j˶"ÙJ©ÙÜ!›‹ãm6—oD»µ(†ò&/ =i^§[Ì"ÜË&Oq¼McØzC„°ýýM°Âó×,% ‹s+þ/Ô¤V!Z®»@€Û÷@¡–ðk܇u¡–àU(Wá'׫ #KyÏ‚¥ ‹eM]1 ´V1 $ˆb@IòÁ€òoÅ€’:ÊfpAwÒs$ÃHiË¥'^1 |¯W (íX (ýÄb@ÉgdéÆõ¯ðNº‹…wÒZ…dÒ3¢LR‰B2‰ªLRœB2Iö[ÒilI|lIÏÝÂ(ÉHFIF¢0J~~~,0Jº³…Q’Fɶ~…Q’w)Œ’_ë+@’×ZÐÖˆnÇŠ è¼+•Ñy»bÏR÷TÞ-•€wË="FsäݮՈl ž·K![£Gðy»ý`ŒaG@ýBô@ñ-_Bñ_EñÅR@ñ…Å·ÌÅ·K Å·K¼Ã^gø â\Ä·+ IJˆo×:Šœ_Js}·£ ~Ku\ØÙ]|Ý_aýbG`ýRçƒõ[IëTÅú…në¢Ö/ì°~q÷õK‹ºÂøRå½ËŸè]üD@ïâfzT€Þåµô. * w!z@ïÂrz×.o…Þ¥ì½ ­ŸßægsÚ[zôBŸÐKë€^8ÆYEñâëþÛŠ ã æ?fûÚÇùôß7¼ëöX¿ôe+Ö/TðÃóóöŽw!ók‚"0±ˆÀ4AÆý"0-êŠõ[9 ”;"0ˆÀ4$AÆŽ@ÆO"0ýuAUD`¾"‚ŒëD`œ"©A_@†Eþõ¼yüwÿ$ ðžùß ¾8E€øBo⠾⻋Zþ‚øâIòEõÒ²­¿6ˆ/L@|ù(^£Oé3àya•^Êw¼ß\ aøB#€á ªùîöéá-:/·û¿ãÓ»ÃùÕ]ñyÞËçmÿÏ(H¥:]îGïð¨nøÜQ , T@K*Õ(9xh‹ë¿HWl]/‡­y9ÅÇö^gGÇD,ø®öƒŠr®F§ÊK¦§õçvÇÓáɧƒ}C4A^ÎÇOµ[©FnýüÌ¿”óå_æá9ªD·‡xϱ²ìÙÝáÿ™ß#>¶DÂ_Ò/œð/]þøç¹Vaš¬€ãùó¼ÿ*¯jÍIkMk:x·ýظ¯ŸxûéÅRç#¢ü<½ÑšÑO56<¢—­ .èÀ‹êÝ}:ÖúúËéãòF\—ÛìÔ}íø? S†ÁÜž ©À°©$†çqG›È› ;KLfü½÷+‚§óEŒ‚B~Ú«pw‡Ž¾»…óáö<¾áíÍòlâø<®ÎçVìB[’¯û˜¡ÊP™Ë~ÇÓ|@¼þr}gL¸d§2úÆ7à7Žó4‹'/cäí^iN³+dúóë^_Öírx•½ï9½<ÔH=Gëüþ7IlžÉêóë…÷¹WA4ù'>Çíy¼qE_Uà—ô´þ±Úñ’zsŠ­$cSÜ$ßýQGýxœÞ<ù‡[™‚8šf¶Æ¦ L}–t7®Gq4Fm©>Þ”ûgóíhC‘ÁÇ{z›o·awþE¹+f7IXfûÑ㥯÷ÍJ.8ÎJ£]q|¬}<~2éëJ,J.O¨IO*IÎJªH^‰”Ưûó a³’ê‘C¤rä¡94ª Ž˜T\–&ÂÖËÒ^~ê» ƒ³ê‚Cƒ²àž ª‚³Š‚sp¨ În(ãÍ:ªâ­R¢ˆ·w5¼½-á ÛªàíïGoÕ õ»½ ç¥nûËÄßš“–ø†#UøV’G+Û zl¥¤*`Ý¥W¨.QK€«¸¨îÁ¡¸gv¶O±Ÿv|«°Wç–º^‰2e½úq©×ímB¹n‰P­[2Ü͇ÝTÝÛf%—êÖT¢R·Ö …ºtÏKÂG™®Œeêo«—-¿•î¦ú6bRYmXRÁ¬4%õ²] å²2M©–­˜Z,«§Gje«M(•íJϹÛýeZ÷&#UivÖšÛJéóp/Qn_C¬¸­EAÁ­nfêm»Êm{ŸÎósßxzì„*É•Ç\s°x)ØQCwÙù0Ööê=ÒÞ^_Töv%ööeºÞŠe½%BUoUE½=`ÔôVŸPÒ[žPѨ ·^•ºz¦PWaAêt«™(Óí¯C•n/Štu,÷ëñEûs{v˜‡ÊGxª}a ÿæ[—gd®T CÅà°k)ð+_ŠüBÅЯk)öëZèX-‘‚¿þDµ™ò'¦Í´k¡Í´l)”ìRŠ%K¥6Ó2Òbñ…˜³;"èÄQ#¢ìR )Á|cJ,…>SÜô™–y¨]J*Ô4õÇâªÑgWRø Y!þW@K…Êb©CCÐ.¥øl!väíIð+ÒÀJƒÈ2Eh[ƒÞPØô†B!RXlÁ'†¤Æ§ë“‚H A´üXÁ&¨mòV§7¦A)±$ ‚Iûá5š¤ìÓ ­où±¨šBëÑAJ㜶T(?ÖŽ tÁ|Ê}cÃ(¡•þnm3… ¶üX"¶æJpµ]C¯qˆ¯iH`ãþ Â[ ŒñhA3*ÜBc( bc’ÇØÑ1~""_ºë„¾ Jù± kq}×â[~lXËÅ‚äýŽ¿j†%zÄ­8l®à‘+ãZ3¬—3\8lt¬ÂÞ æC60£¤DÂPU„Âô@‰…á “j­õÝ„\k}—º×ÿ¹Ö·TªâªxK…*Þi ˜Ü®Øú=©gÇÕßTóv©G•L[7¬µ:Ü|¡º;¢Ø;¢DWT-¾Ýu)«õo\F×€“dðQ0 q¡`V?±³{•ø]0 ªÌ‚yà[»Ö©4س B),vD)ìæ€þ‚›ùuX7Ú°#Z±Êju[V‹;ÊÕÚ¼ÌÊ&µ`ö ³âªCp°# f¥óÅ.–!).±Ñâ[Qu^«u)¾µ®€Â:êNÁ‘¸:ßF—¿…¼òe-äÅŽ-Ñ•‰èÈ1__I¾ÃMµV yÅ| yewSÈ+ËÕB^-•B^kàŠ›+o%¯¥µLœ‘>´ÜT(÷•L¹/–êd˜ÔÛn­“i|ÐKQ°å¾Ëv0zŠ‚¥£-ä•kñ-ÖBÁ¬Ö*Ô®¨:˜gˆâ[™­Ž¯ÑC0˜¼;7ö§BWrh…®~akoý \§£êâgšŒ–j®¨R +/Ö]Y‡Ž¯Ñ†-ãõ½Xg¤jÇûê|:0GF¤e¼:Å–ñÊä¶ŒW©cu´VŠ})~>þÌJ•1M­ï€mBSP!4-•fÓ€ sg@…™2 B+îÁЍñ$¨®_•·Ó;¶:}K!œUÃÉÍ/\ÂIÿÄ%œô†ë¬Ëa :µVÅRi^Up¨Íï5RÁFŠZ«‘âæ7þÛ¼Ô·‰ªbÀ<¢;±ÕèTȬKD¦;ÖˆLû5ÖÂQc–ŒÔ¦±øB¬%¾FFz&ú>ßèV2Q5 ³Ö¬±˜G¬*Ìx‘©lDÑcŒŒó: 4#ÁwЋ¢“^ä¤:êEw¿! íÈ:F2m è³^ǽè¬;E|5è_ :}ÖQ-6$ã„~aæ°ø­¥øj@iI,¥]ì:ÔE5¡¢­àßù.¡›leC7ÛæeŒŒNºsdt_;#ÆÖfdE~ €W2¸E:Ó€Ò·gžï—ê|Q5êôZkÔ©_ØxR–Ä“;'ü'žÔAw~‹xo<éwàO‚wL:•:ÃE;6ìUÂNY‡”’i§ÆøÁµ†¾ÓkØ)¾vÊ 5ì”AjØ)—Q5҈Ʀrû:íö×¹7û {»ÝßEn}³Îÿ aõĘֵvWJ *4¬®T.8îZjYÅŽhGíŽ*KîZ*KË’Á=Ê’»Ê’K¤ÆU,Õ¦Ô©”¸ÒR)q×R_*vD‘pwD‘p‰ÐšŠÓA%q—R%qÏ•ÄÝÕ¿]IÕ¿ÐR4¨†Šª¸-.ï*†P$ ýC‘0®ÚT¡-†i£j¹R%1DŠVUüBÔóŠ¥Þr@·*¨Z• ]FU2UÉ05èX-ZVy†©7¦LÓ´ eFU2‘ªd\EÔƒ õÆp¨$ú[!/4¸Âè¢*FUÉvékU2N•Ä4»©†>·ú—JŸÂÞŠK®eKÕ¸TœTãb-TãÒÀ¥âj5.Ÿ6©Æ…v¡k¡áTèx¥íZ+{!-ô¼Â<£²V •½¼²©ìÅŽ¨ìÅ5Cã+ú_zâÔÿâÍ…ÞW8*4¿òµ‘2a\l” c-”öâå‚XH° B ,Ô=°8mC¿PL ¾PL\I¨LÞÀ|¦˜ñH €¡«(¦£M0n €yBi‡¥KH?,Ÿþiˆ•ÁüÓ»¹Îï-(%K‰K¥RâP©”Kµü·+©ü·¿°ÁÚEÂ¥B"|©ü·|©ü·;ªüT(ÿµP×ò_Pµü·ÌT×\­I],¥áÊT5ÂØ5Â[½ùS#\*ÔSå×ü°•+5ÂÝP5Â¥RpwT0Õy­&ó©UsÍÚ5ÂP.ÔÃr¡F¸;¢F˜*¿Öw?Õ—Ju½ÐSÔõ‚÷d‘Å;Êz«5ÀÔµn­e½Tš”õòV¯È»º‰(Ø…Ç@Á.¤ÕÔ¯¼AËzy«×l­±æaµÊz¡6(ë¥+KY/•kÍÃú*®yX™Ý–Ãp¡DKµD˜ÚœaüB”Sòk‰04%Â¥R‰p%Â<õb—bX+viÚ–„®îa vaŠÏ+EY/¸jBWε(¾R™¢øÊס˜·uÉûj©æ}!Õ$c-Ô$÷'ªÚxãÅþ–ƒ-”ƒ-”ó©˜a2¿‚øj-Ôƒª5Âx3£FÒj²Ö/–Ôó&¦F 5Âôc+Ô¯¬j„‘%Y«³F!1n ‰·÷çwVkµxûhþ]H “ÛBâóx\~Õ¯&Õù<}Îü÷ãß:Q†­ˆÜ®ß—¬Tã»Ïø¸p¤ñvK ó1oõçwÝ„–:ͯ壎ø¾]Ký²Øñqdù^–òúÜ©$loÇ#}\£íZcTÍ´”§Ÿk½lÑøºxùÉó‰êc–Ø>ÿ}Õv²#žÎS ÷Ûã@1dGbLKsû<ï7<Î÷ûy|ùøJùj©×e˜_ÀnßîK]¯ÓOŸ®ßîI*zšðX×Þ½aýøu; îÖ:ŸËó;BÄÉ þz…Êf ë~|—{±÷Ü2?Qc­Ëýôœ[£Mþ6À{ö‚À pÒfìxŸŸXÎã³ÍsÏט>1þòx~‡âþ~Dú? p4÷£ÊîãfFk]fÎñÂufŒTë<  ¯·Ó^ ªF¶ØguÉãã»ðJRh5²´ô2£àá¯{|ÿú¼z€&¾1º·Áýý;;A]ž£/öÆ|ÌRÉûÇÇÛ¬*iÝ‹Çt×··ú<>DÍηާÓld*oGïÝåNó+íçýÍký¨zÒL‹6ùÞ;u­Šê±N²±ë¹N§2¢Ü­ºÌçxèîõJ¥ÏÒ˜ùtÖ±öo¨Ö+ëvàÎï9ÙzÁþ=jn#;ý‰§Ê÷8¿y‰ Çóy?>œ¼û‰­2Ö5|kO‹ûÇdk‘}s¦ä‡iÛªûi|4_˜¯oìûé~”õŒô5ú<ª O—wo”"ƒj|Á˜¼?¾ AÕ6Yáe<@¦2ìOcp†(ùÕ~áÚÇwÑÈFkÃü=ÞoUóÚ,=ö/ûÊtýRˆ²ã¾îõ³gäx®GRÿù“ãГ&%¿›ÀaøÛ1?ëMìw™?ñü«=çO›ç¼‰Í»–Ê}²¡bŸìJ…ðVD \Á<ÛdCÅ6Ù26Ù°…À"Ó« ›éÅŽoAµ†· A2¬# ÖÙ¼[*5ïRîiÞ-šwCĶܲ¥¶ÜŠKm¹nuÒm¸ R¥›ß¸¶åjöå†y6ÜvC5ÜÖŒ4 ª[ÝxÓg¾Ü^jõåf)öå®T 7¥7êËíR_n¢ZnK¥–ÛµÉR«Mûr{ŠêË ûrk›Õ—[SÙŽÛ¢zië¢Ô%Û «.Ùò®þWÉ´ý¯•©ú_{Ôê-_ê•ûY³³RúÆ’2Jô¿JÛÿÚ ¤þ׺²„œWšd#6ÉÖ ¢I6L5~µÝj'­Ëtú—䬥žžÜÚIõ䆪ÙY[‡ôÑö²ª¶j¥ÙR©ûµÇÜ,¨ÖR¬vll¡Ù4zdË|s¥º÷j’-ój’Õ{«M²ažM²¡jÌ© Õ#[*ôÈÖ‚¨G¶*¨Ùn¨Ùî¨îמ¢º_kiÔýÚSTck ’[å]ÛØZî ;¸KËjwf=‘ä:Løú·ìu¾†Šák©¾† eÃ`KXP¥T©ä‚ù†¯ BÈ ™þÉ切òÔ (š÷5UCÀrÕz`q§R)šì†¨ÖŽˆ9©€yâ!&š¬š¢ˆT(âÝHb‰9ÉVbNP "æÄY·<k Šºµ†œÝO!'D '\ê–çJmrâä ¿g™Gy®õ!Á$oÆZy«CD0 K™0û˜ æ»5¼)BNp•^é0žà¡½Ò@½‰Ç“¸Vq)ô'õ4ˆK¼ÕA\ª¼Zé+ëÖJ_-•J_p¥—×'.¨–Òq&,-ÕxØ |=]î{µAH ¸.á ¸àeŸ—ã3ßþ"¢Ö×l­µ¾ú…:ÁVÁ›Ê ‚¥Y-–j!Êåu]  4GmÐ̇¼ÑeÌ B(Ìwîĺµ×x`}?ä¥1©yÖÅiͳ§5ÏX«5Ï’Öiš†fñ|cZͬµ¦óz­õQ—êóø¦5q3ÎûµÎçCµN?Õ¹Rˆi9ÎçîO_/÷—fœö§ø˜Ã)Ï#‚ø´ù€ÖZlóµÖb‹ê2 Íã¥d§ý)¢ÈZ*ø/‚9øóP«øÒýÓ~©ÛD¸yýåúýΕZÕµFØs?ðÞhªºµãóxwŽqƒûSDí·ïâZû-¡Nœ¼ )µ·ºJÙëSû-‡ø1ˆ^⺽9kUˆƒ â j…¸½ÏŸªn‹}­×~c ^Žÿco([Õm!¬õÚÒ¬VbKT­Ä–.Ïÿº|¼Øºï×B½¶Äu>dǃq+÷ÖkKiè†r¹÷-ÄöA/…ض¦×ç—óÙßõ[»YÛ¯EÖ¢J‘µ«õÓöæ$æñÎ?¡èÙ¶tÈêñññoìö›×Ýï¢gI´E϶ËkѳýÓxŸèÃ7~s| žúúHJã[-ïúõÅm|òØß±Û„Á{ÉþôýíQ/ˆËŒA>‡T÷ŠÓ j¥‚Ú^ìó«zðMœ‚:kÏã+­}cUí«±Gë|Zöl½YËžõ,Í z’yÕI·TÙQÈZ^¼”¡n"WP!&-J‚±Ôív”Á?~ I©”yÅZoÁÖ××€Q:ûÏ(‰ù–*ƒ/dqÁW£`,…zf°…ReýÄiÂ/÷ë"…Ý`« aì·ÆæR¬F¥â)´¯]©Øa­vøy¨–޶jXrhøªûÈÜãú±“ØÏDæí'¤Uc-Ô5_mfÕ0¹ƒûëOH I4_ Žt[[‚ŒµY×€;"!,I4 æ ºXòJضŽìàK%nß¹D¤†=:ì†=2à {ð Q‚ *des[‚ A`4ŒÄŽa»$©Aƒ$µ”´íºRø„lÒ¾¦Ÿe‘ZmeXÃ?I½ÅÓºa ¥X í1ÖðÏ^lm×µèÇ“läß(isçºÒ­°–_i(Óœªh{à5³ M^ƒD]‰”;ë ÕHÒq)w–&7FÔ»§¥Ì:æöØê®6‘mc´T<ëhÚc+©7´[ÉR)+æ[¥¬»Ó@R§˜ZfëûÚc+óÐ4¯ð×-T)ëÛþYPµ–Y§ØQ÷°åÀ>ë5øÓUl¡¯]Ϛݴ\I1ß䦟ŠK¸)ëÝžW½iZ¬GúÿKPª¢á¿qÉÿþ?Öù†HÑfˆlv%Äš] ¥À!R<Ú•h–§Æ™]a&dY|ä²ëö8 ¡¶Dk„Ù½ 5¾ìVˆö¨mAæ­"5"¤Œ‚Þž^?jÀœ_î—ý PÐA6f,O@îíB +ñã€ÛÛÝÛÛ×ȳD¦Éæd»’"Iœ]Iê\€#Ä‘%B ƒÚ(²rB #¿ˆ%A|ØÍVJ‚!®^6:ìJ¨M†kI[uEÆ‘â×5 Åé¶ìz„ážoÃQ¯cbÚåQ´óû­'lÀJO¸Æ«[Ýýƒô+å]ÃU¾@—h~ Á*ŒbÕ_Çÿ6yÑ…DIÑ¿$ʈ.‹(º(˹îƒäå_f.—¶\QÎraE Ë…ÙÊ…¥*ÿ’VxÝæúƒí\yÌ•Û&1WUAsù=J_.« w¹üb%.—_¬¬åú“‘²\H”¯\xQ²r%A¦²’Kšrå9Ê…D ÊõG#;¹ò‚Ôäz‘—\VQR² •Œä²‘Ò‘ëF.rQ%"W¹4 YSù1u᾿‰ÈR®Æ)Êõ ‘Ÿ\Íi““ËOVfr!QZrµ¦ÈI.¿Y ÉÕ†­ÙÈe—¦"å!WDrÕëf WmCúqµ+È=öˆ“x\劬ãzr\ùÆšõ$ë„’i¬p×4ãªnÈ1®÷ ÆÕò#»¸ÚÒ¦ëë’W\2IÅU§›Q\+H'ÖI­¹ÄU!‘H\ùÁÞô5í·Ê 9¿^ѵ¾4BCN°ž# Á•[äùVE’o•m3|Õ¶¤÷ÖKˆÜÞ*–Ô~ÂÍ%õ·0«¼ßúTDÒo!AÆo= ¤ûÖ»\ß*ýւ☓ \oµúÉÖ4­)Àõ!ÿ××ךü[í(2ë âÿ ¥˜ókü²$üÎÏóñF’ó´gä~ùÄZ¢ÓôÝÓã_Nˆ^?ü°„#àÙ½œÕçŒoÇÏ€õu¥ÏÃÜ/?¶[<]ç½½ ò›_7{üFRd¾¬ÞÇNNc`í$úøþЫ_÷<®çÈFmW:Rk¯¿ü{ûf<µ†Ž\>ÿA‚èï,Ù Ñí<ÆC/O›í.¯÷îsÝÇ?c«íf¼=Ûä.[¢1þqˆiÇÓË©~=Y^×õ¼£ù<Âæ!¬ Íœßþœ§ûü…^lQŽßvÙ*øð2‡ ¾mÏíµÀ}¬ó÷bë}¾—¾Sï#Ç>åmw›>_VoÜïËǯÑǽÝæüðVHÃV…>?ÿõê÷?úº × ß¯?œ¾/?ãØ{æÛý¥no/Óc"“}¼BÔËÖžÜ>gÛìð­[MºÎs${•¼|½Õǃ|orŽ´Â zlEyžAÇdþ¹•ÒëÂÝÇ­ü‰þ$¥ólÖyÜž[3ø"ºÓÀ~­. / |ü‹Utº_Oïl¦L΄Hšb?íø~ÞÇt9½Tá͹MÿvºïÛåx¾üò¿Á×þqCJãÇ·¢¼ÁÍãâ>·Îb´`ö¶—åyl/ïóøÌ;¼îs«ßÏÙ4õû¶Yé%‚çüìt>æ½ïìém~Ÿßö>ö&îcÝ0Ͻ{¾M ¢ÇÖ¾þð<\Ê+ººoïÊur›j/ñÑ'ý²qGlº×ÝÛðó×ûϬøˆé<;𛹵ÇùŽŸóÞÈåççç¿—¦VzßÎ.ÏýSçy½ßw>O;«3Ÿãä†Âìmóó_Ä}o,Æý»Ý_¦uoRo÷£3éÅÚsûˆ°Ÿ#ò¾ü+î‘>Wð’Òö5ô¼Ì.Ãó˜8¸·„£eèîËa>¶O×Óô~94î¼Õ¸Ç ¾_OÏE™P@}¼<öïÁ†4D9B±½¼'vÛKáoüóËyÏ“û¸ìßÍ_ïÁÉ÷îö¾~øi¾vg&ao›fViڨϭ˜^FbÕÏýÝÿû¼tóñµ½½·/0–ûãß'Y]æUy\îÿ¢%iøíø8õ2ô[Ûô<+κl¯¯_5Ò—A¸ïÏn>`^wåùïK DpŸX ¯WÚíͯ%ã²Ü[ã4Ÿ„ó{ýùòFů__ìÊ夙…ã|¿¿}Ê™ŠÑ‰¾}¦>Äãÿ’ÓëXî×âàs{v÷ùáÑ]þ¥ü £qß8ŸëhšüüçÆ_·æ9#àó(!½üg“Ó+âGP!6ÔZûJ¥ÀTˆü´VC?­Õ¸NT ìðOù`;Œ§Ç»Ÿ8rd—_•0Z*Ø:éy~ Vñ¼;j…›Zªñ¦¨îLj‡yˆû_ø8ꟷŸñ•¸T;&0•°¾Ò¨÷óýû{­´&±©6lpÊŸ¸F§\ê)Faæs+‡ÇWt2j’ŸÛ êòŽ%Œå†kˆªý£RK‹‡ƒµ¥Šê0³ƒ~»BPÚ­5Õ~ Bõ t£_˜0ts—8”fk1©Z 2©¥‰2iÛžÇãêAž÷;ž/ߑߡ&¥^¼}^ø —˜usyn—~çôæN'j¥´fà;‘‰·&PÁ-©Ýn ĸd¯òwuF‚`Ê+.Ï:.-eBÜì'RÞ@_ÞkWƒ\*ýãøÚuý©'ÀeØíü1k­ç¼f××ýèWo.ìXÓ¼fÞk䧯[É×9åð2¬oTðøãûЛ£n”¾¹K˜Îµ§S×ù:¸½ø»îl âôo Éõóþ$ì'ók´ÎWÒñf‰÷ëÞÎ7^çÃ3ûÆŒGË㊻vL\χzb_ õˆµ#¢Ùßê¿›ó¡ßó|ýÄû 5ï¿êÞõ¶I$ÍI!„$®DÀŒ‘ ãcL LI$RÞÈk 9¼ý[K¢€šþúè&xÅ“ïügãîÍkw ¼é[ ‹¯F°›µ.ÓO}þT`ü ù¿ÿãTJ%8ÚRiè ¨ÐŒY* ]ÑRéEÄJ_ÀmŸ·_¥`•&xjÃ6-J¦§¢µþ ÀÙI¾¸µ"*"-ØÂ¤OuÀfÁ;¦¼ˆ­BÄj­ µ®@²…8ý+£µ 7ëóY¦Ï@¦>£ý \‹ý0}bú tþèX˜H—Ÿû_ˆ5ûû3ÁÉ·|]n³Òøµãçþ*ªŸKa ¨0È;bĪùZ'Ùè€Ú‹*茙ˆNO…âHluÜ•yw¦0îLúU\u+vÄP1ß¾UQuv*Ôón¬\Ë„U_Åuܮτ‡ôù{XÜ]‡ÔÈIeüŒäÐÁ¢’|ǼØ+®ƒEem2ÀE·º\´T¸Ènu¬¨å°ô/êt¦¨³—½ |½B®ã¶ŽzŠí†˜+jŸ¸â¬úº®ƒEµVÐX}„Ë`Qß°eªŒô=#Cu¿:äEÚ×!/ò)Ì"•éd9‚Nf‘m+`+¨ØŠßˆ)¥àþcÜ.‡#Ø» ¶î<ÁŸÑ,b«£Y$®]ñskmôO\‡®h­ŽSUÆ©è¡Ûq*²"-ª ;NÅ÷g§¢;NÅ®`§"cÓq*:ÆNJÑ ºÁ4±¥:|õxá½9ŸŒ@‘6”VF÷6ŸnãõüïQö7Ú¦!ú<Ï.Å—¿¸O<&â,•l§Q*YI“T²©„FsTB„æFa°IYÂ\m—±&e¼SMr(cÎÀq&ÿl;N·ƒO²ÎKæËéãçãxÂp”›f£d!ŒF©1EŠ›Á(%Â\”a,JyjzWSQz¶Š’•0¥,a$JQº¢DO4¥z‚q(ÕLC ÑK–Ã.=®ßñïR¦T¿_mÜ“ÏEÅ>¸LKÛ–R¢ÎJé™`TJµ“Rv×ò÷ ”r„9)Ƥd%MI)ßG+Çóµâu{&ã#óí?3°¿á‘Òí0û¤ª;›’¦ÉÜê‰&ŸÔ}aðIv{L÷5½æi'ËÏ×F¡àøt´µ¨hR†fÍæ,йlm—†žèzUº]Þ,¤¹(Yè4Ìgp¹7ñR"‡’%ýqQRAbBIeÙ%µË˜O¢c[Ç“èVŽ×£H{oá5Â$D™`RSúz:²?YL/¡\†—Ô`v‰Ž,ÕèŸÚqBJŸ/Bí^ç£È*g>'¸×ë>~*C¥à;6nÑË›œ†°Î§Ÿ‘R!t[ ­Ç|ÌÏÄúiG5ôcÜõÉn'­ûíx]}þ$°c7AÅ:Úîx™åG¯µÎÿÝ þ(Áœ_oþ½Äý×0ÌŸ—vùU7YÞQdŠ3Lx€íŽXí%÷뛥F‡Èõk­çö g˜9ÏðñSåÓU‰ZÕ‹;~Ÿû?^¡òe{Çô&ÕØñt<¥÷÷âq|îõ€Û;¦ÖBb 5qóû.×R(ÔÄ)~ Møó~Õ½@¡f©T¨ *jBòçãyúø®Õó£Ìû«ÿ輽ϣzg~“½ìÙjÿà››xÿøÎÎé|¦`©‘€˜î÷ñ Æ`±*>êÔ…‚÷/¿y>ï5¬ÛüÀòrQ÷ÿn-„Â]ŒYÑ>¿Z=vk±.¿ðc&+>ÎßpC²³¾o¶rlm¼+>»Öõ(œøx>ú x©S4‰µNã)>ÝëÞa|<'@ÎÑ=²·º—Ó¥_‡xýé–èù$RòmM5$üùÚÀHœF:ŒÇáV>î{gÇp ;>ç»îEõƒ€ŠN£)Ò­j¡i’̯ŒÛÇ;wÞ¶IîØªPøž†h’ÃãpÂ/iíÝþãùïAyû郠2§ÂW¿a¸Gœ&½9‡1Öe+ù¯—õ8Äí†??ñ×§_¿3ÖèÉÖm Ÿä_GÃØËª~þTBS¦©BÅC÷> Äxgl=Ô”ÒŒ0.ßP›ö=sÃ׋rûVĦ§Ûí¿_oÅóþeÐÆNžNš67‘Ö}^ýó7µBšÇQ*4¾8¾1I³õìu†§7V^±$ñ?{@±ÝKI‡Ô?Þý¾×[ëñü¼×>—Ãf½×…ÇÌöÎçëÏÄß?¹½ÿ¶TLv-¥E»–ò¢]K‰Ñ®…Ìh‰”í†À†ÅZÊ †*SFÄyjuE„,+yJšRhžçÜ$j‰ …^!CÚ¥"…#¥Š&I *dIA…4)4&ø¼ºÈ“âp(íZÈ”BZH•âx+ÅZH–†ŠÙRh Ò¥PäKK…„)¯E2¦<Ÿ¤CÉVò¡ jB’GFˆ”èö&þΉ‚+$E!dE»–Ò¢] PÄÚñy oÊýUTfâBj´;¹XêŒ *ޱ)T¸:äP» ŠA”b0¯„l×*œ±îÏš‘åá$Ûº·"¿S©P‡ K³ Ò+Q§WºŒ¼,ýX³2³(R³Pšæfá œå®ÙYÚÉd^K•Ô+žlÅèµ7OúTÍ¿Be€¥3OÖ/É5»J[šô*Åžü*®*¬;2¬´ÞI±Ò‹%ÇŠ{$+î¨x× ƒJ©&…J»œ*dß$*ˆšE¥¯Kçƒ)•>9ÒþB$I!øâ[!’KÅ; ÉTFF_ñÌe+w þê ‘re¤²æ\ÿBýìbÍa Jˆf%…£Y ÑèJ£)Ý­S°P¦”!E«åº‘hBM°vK"„¡¡A€¹Ò(=Ü…^öç#º ‘®„ºÙ-‚Æê6bÆ !cVBÄX¶0f!Å‹] ábq`”sJˆÅt%Œ‹ž ê”z'žìv=ƒ£+ŒyJÈY¢FœSçØ”“lp ”Öæv,*øFLÚk€´<¡·+!ÔÔÍ\§ã`;šQ Ñ©Cá@yºÜ ‘1gë›0(^¡hÇ<pç¹Bé­f;Œ²¡ëù†fŒ¢ÁïGõpÕñ¬<ÏZ=¼µ„¿CÞªI§ßà)Ðá6ÝN¡lõ»sg ²=ı:•e†M*(\"])ÉèÊæ¤ YF>ÁpˆZd¬C‚ΞH‡ÍøQ¹¦u;8C$xݽôþÄ®²Ì 7åÀmÖv!Œ¬¿DÙ÷p‡‚ZÖH³¾°£l §Æ™¥i˜Ù«‹(³n Coð°ºÏ;ð|^ßXx ¾¡9Impu pM¸àˆŽõOp\sÒ ¤ð:,Ãd /?úã툼/×ã7ã*þv-þb­Ñmþ•Fù÷*ìZ*÷Hy‚ª‘ˆúi©f*!ˆÖ#KòÉAb%-ƒ EË<ê‘!xTK&­\k®RTÍU‚{Ô6ƒûs=jÂþ° :=×/êówõ¬øj0,¥o 4¨;ÄŽˆAÕ¬ T"5ÐX ±¤…èžÆÁè;†rH¾DÈÑyJCZ(”–¸š£ÃZ-§–n5¾’Ö4E™¢è;"0ÒY·RZT³Búõ—ŸÀÜ#G½é˜ 5•Ò B&˜G=µ¼Tj ­k廿R2¨¤$†Ö-ëf4L’B$ÿ&o0JŸçÞ¶?P¢jé¯LóùËï~¿eæ[ Õê8­…2bÝ5²S\S~¢JÊO¾:µÆr‰­5ÖKªµÆvvk 'g׊dð…Šdt*’å/ZE,‘6vÜ¿ð~‡|²ZMWê'¶ØØþu u]›ˆ”qk±T"eÄb«Ñ¡Ïš‡Ä)¢$Y¢O)¢„‘öúk¹qP ’mD†Ùú<}|Á•yH©±oþÚA¢Í{ʶ>ØÙZ¬è¡õÁ2mÍŽÊõ´>Xv+u½ B]¯´T}«¯MüZ*£e-"…J(E!"LQ¨ˆSÔ ›¸ÄRB3ŠþJù [Å3ÊZ+êñ­(+!ÈA²¡PV"íTŠ„±¡Ðz„‚?’.ÿ¨T@ ó„µ–p’".b Uå‚”µ„‚ÔëÚ˜ZBXRÏZhI]KpIá‹xIUA&Uo„˜*A&õfI‡X<$qU@¤R)ˆÏ:'UO…œ´»û “Ê»°“*-'e-¢'åxˆŒT¾TA©z*p¤ŠèHõ‰ýl ³îgQõ³˜'ÖR¨¶$¯¸ -IîERÒÍ”ÒÖˆüÁRªjµŽZˆKÕ?A.ÉÛs©rèR*Ô¥* `—ê^óiÁÜ¥.©v´xIrÒL*“zÆ‚L’÷-fR¡@“Ê–P“dü ›$¡7©÷TÀI=!'Éí©ê.X¤Zá"I…3’!-žQå@£ÑH¥F´££[=Ýêx„|¤›Qè£KØG5F(ë¥û-DR6Dx««/$¥\A)UkþŸbÒf^×ñœÿ°8FÝéò=Q6Tš• *ÌJÕZ•*¾:+T˜•ªµ:+UkuVª¨:+U¿ñïÌŸU&œjÃN8ÕRp*ªN8•¸ŠÌD¾2á””±¤â«cIÉ×:–”Ke,)µ>cIÅ|Æ’j©ëœk}¾¿u¿aa¥ÈÕ +¥•:»TTÅ•"W™]*ª"FIð™]ºakKJ¶2pts1–£¼ûëÀQ*MŽRÿ2p”"Gyõ3p” ±BTmtyŸÚüÄeJ(bÀ§¨òŸ"UÀ§6÷u™Jo)¡}æÒ$}¬ó?EU$«÷ü‹dEM üÔæd)Þ K‘*sIy72—tc—‰£ôž–âŽ+´™_¡¥6÷z™KJÓ•¹¤‡÷w.)Õ9(UÜ0sI7—q™Kʵ2—”‚È\Râ:qtcnð,ÞÅL%[ëÄQ¾Z2q”N#G©€™8º1J ÆwÌÄQþÄÙø|¬oú‚fEªjóÔâ?âso;½”§ªF,Tä+3Nßíøóq›¢ÏôRvæ’’ûÌ%ÝüÆŠOçÌ%ÝXúì‰Î?ÓKi•2½tó(^¦—RUgfå|ÿá³ñ@ t½l&¡’*pO›µ–I¨»˜ë/–Ó’Ü¥`CeФ¬EФ¬EФ¬%Фè¨KŨK![ª?uÚÛýþ|SØ.¨£ž ŽB$¨£HPG+V»¡‘*"Iý ˆT*"•J€Hå °—`“z+›ÔƒlRÖlRylRZ°I]K°IRˆÂ&U›Tµl’ît‘²¦Wª6 \iw÷ÿ€+•++UWÊZW*óhxí!*· ¾ÁÔß(&]ë´Ï‚{5õ®T"´½Âq"OÛµ®$G¶ "u;´™R¢ÅM’Xs«{[ó\©ª%¬£!:DÁ¼°Ž*+aU\À:ªýÖ‘'XGº®é¥,"R¨Šˆ’fWéÌ‹‡D׺dWq…‡$_^<¤(Ÿ²«~J®ÙUJ½¨I»gâ_Ô¤ðEÔ¤žP“d–‹š$÷TÔ¤Þ0¡&…{å`aÙ„­T,l%j|°•jj„­Ô¶R‰€­$WWl¥ÈAm¯ðÓè{¥LO+4M­Ð.a>ébó)’擵hN=j¡+)8*ºÒï€i”†ˆèJ ‘ѕ֕ˆ®´®$t¥u!'­ëi!*‚oÙlR¶lÒJ„ÀW<Zi%lÒJ#D¤ü2!"­DŠ.K$ؤl'ؤõ`›¥lR¤-ؤu%Á&…mÁ&­ 6)+ 6)‡+ؤUk ›´òDؤè¿`“¢L‚M‚ê6)Û 6)G'Ø$ðTؤ6)blÒJDؤ(‚Ò^a+Åâ [)?NØJ¹+ÂV OÂVZWØo·îx˜Â“˜Â“`“r, 2K#h¥¸8„˜ÑpB+å|­Å´RV*¯¼Ó‚¬´2Md¥è›@“v6î R¼·°Žòóî›íˆ} R~‘"I"A˜DZ Rœ“‘p¶D‚¡( Ìw‘Âö × 4Õs¡ I95&魸ƥu:M‚ š´yçýM‚É-hÜWA“b•šo)Ð$©@ðâ䄇)4ÀCÊÍ|NñòbÒªÄC‚5)RŽWxH¹(ÂCÂû»xH±&ÂC‚Ê%n”\á}kt¬ìÔ?¥ÿcÝn‰P¶‹•Zµ"í–5»X©%»X©» jÁ.~]ëuK„Бø•¼Þ°Ô’^°ÔŠ^µ T|ïUZž{¹~^&Îi|¬ýK]_ÿ:Ó쟼[©TŸ[ªQÕyx>—Ÿç,¨.Çû~õm¨Fõóõ‡ñ »mÙD~âãóx\~¢_±õœßŠG±åýòU„óyû1øØð:³¯÷êù{xž6üú:ûbï«!€çsŸ?.ŸÃd¿aþ:¿OÞ^ylÏgäg^;ÍÙž{cÇÓÌù̳¾m׺æõ›aÉóF<Çst’Óö7ªüÖ’˜ŸXoßÍ ºÎϘ/oûËÑ|Î O/kôÜ õt WŽÔÆçž­WÀð¸}æ§íaÿS¯Óëß·|]n3×: èÞÈôx¿ÜF²½×/•8nì€zÚßÅ‘%Ž>{¡¾\é@Wþ¼?ßžÏL}œï¯;òÆ*½^Ÿ×ñeàö ¨c<¾Ü~}߯Z·ùéÅ×çw†K÷l–o¼Â°Ë7Lvð‘É?¿×PÁñ ô¥Í·ý/_†F1˯§ tõ¤âê>¿6]Çsn+ùù7ööNéǧˆq>ס°[EÏÔñÎ~œ~‚dQ¸~—b@»^\?_×Ç1tpÊýOA‡±|ýÔ½!¹Þ§ê½üÁõ ÆËpÜØÓ0tÛ1ÄD”»ßÞ˜çë°7ãþܾŸZ :¨×CãùÎ(Ýàeø…½!ß•G¬ôx­ùØëà}Mq÷îóú< ÜÇùû/Ä ÷xs>/qèe÷×ú2rÃ(=>ޘ𗎗鼷o¼ÔÝ=0ž{;r9jXîï,øåð3ÃqÙ[ðcTÑ饉í†×çóÖý¼–ª]mlFÜôxÝ×Ï­n¡&Ö};ÎùãÍKãcÈêù¼½»aÙw=ëÞ˜ÀÇq+ÞÝûq(ÓqÁî{ë0Êkî‡Ê\ö¾gd¯ÇZc|ÄþžfÃtÂ×ý ; žgáÓÇþt>/_™®w^å2ð«.‡ïyç¡nÓÌû¸×øé¡æx‚ý âzÄ|óÑ¿WšÛÈ+óp=½£z àv:2•o¬éyF*São.õç¬züt:’ê>³iwïŸY©pÿzJíµùuÖ#n»Þ>jÃÓýŒªÁ·>q¼Fçlíx;@‚Ægñ½¹~‰ëÀ¼ÌÈyvÁ|^Ïß…ç:Æ™'Ÿ/õ½•gæ_ÿ¿¥:Þãéùæ|.GÈxží_6­À•9½Í7å(wø÷Zü » NW"ŸYWâô™¬¤á3ëJœ=ÆQð["Lžéns,úßùùqîÅn þ ðŽÉnš:" Én­Õí™h.M¤¤±4¦ÒHã2”¦D˜IÆ5’&Œk"Mˆ4¦ÑBMĉSDÄY*¤qØt*¶—r¿Ä¥ÝOq)ÖJÊg¨à—U»Ðšf ÷×çwð Þ›7•BÜ2¯Ì‰‡¨@¸Tq±!BÜ.õ8ㆋÚ[7Âpq¡qÉW‚W¢ai‰––-…¥ðœ™`úæ¾þ^!-Ôw©Ž9ݘ¤5Þ[·ß0x/è‘p¶¹5Ƹdˆ©qa› óë”SÞ׉V3‘9ö¯†Þ´#+-ÖRP w‡ º;6¨Æã ‘0}p¢W!¢×n¨èµ?Ñ+\ |ýž\£WžÎšA•©AŒ‹Ÿˆ—þ51.T1.ìb\kà¾Ò€'|¥¿K` [TZ_ë5*gÐ ·D»û´„Q¸> riN—Y¢›qBáÊ¡0C­Ä¯ ¿Âè"2íŽì) ÑðÂBøŠ#Dø 5EŠöO ³‰^CIJޕˆÓ_²jC„ÚßШ¬· µ¬· ¡¬7D˜¶ÒÍPÕ+¶SÕÛÝ:‰4G‚Êßžm‡•fþ†HSH³êu+#ÔëJ%S¯["Ôë–¥¸å “dV"ÄŸ¨éíÙ¢¦·,¡\7Û©\·+¡\WÇ›rݬ¤rÝêÊuuRŠ[½l)ne‰Ñ.b)¥¸%j)nT@¥¸Õ8TÙV”­²-G¨² ‘ hËæ±Dܪ²­‚cKG)n¶C)nùF)nB, ýF½n=êuµ]JqûãZŠ•âFãÓý­×í/C½®Ž-õº2k½îÖâü®×­ˆP¯ÛWGBYÜÔôö·¡¦·rDMoEÙš^ÈZÓ«Û!*²“¢QáoVjY¯C§7¶û<æÁOWþ3Ùú°‚éRfù:>A¼,¾^ú—í%o¨çp†¯ŸøæµÜ4©ù1Ñ|ŒáÞ?^•Mu°6v¼<Ïÿ>X­‰n3-•êyAü#R¥9T;¦\UDíÕU+VÅVá$®‚õ€jŒÛ¾Nƒz{#T€õˆ*…¤<Ÿ4XŠªe›bþ¥óÓ݇ÛÛ1vG-uI£9¢ü«E‘dznj»v;JV­¸¤¦‘Q¼«G|«GT¯ë<‹ô_Ú|Ýz%®^’ûótÖÛóݵNU%—šÓìǸ¯Ç^НC}¸úpû÷6 Ñy|…žÑi«ñèPäE¼Î/Ú#myÛ_×ë1òñ<ý ¨Iu›o–ÇÏ rŠt­åó­Ó¤iN#Åu›y¸ow÷æºþt;Ѝ}Œ+ò·¦ssˆóàÈÞî­iû)ÒÔ~ҮşTÓY>?!=¶Ta_ð*ºå}mcä•N#5k~Vž—h»!ÀˆDÔŽÈÍ=I‰ÇKV×7k²ˆ^,E¢jÕ)ùº¤×…|î¯~{07×u|È}üRèÓ…I§<"º•àQ·>f½‘¶T*w_íèä­Oýœ7ñ±×õ}Ò'Ûˆ;žŽ„ÃëÞîÙ.zfg¾Ó¼’V q)­4‡jÇç¿~³Ûw7.Ðu~Ö~ë ZŒKíZ¸áW±ßý±×fA½û‰?->ÜñsVéÜÏßÅŸtÃkoèFZ³¡ó ¾µoK)-/ÿÚAºqdK)_e+ÒÆ‘=îÇ—À7ïŒâ$mb­¥Ï”AMêw7ÈyHë¥={Ÿ2_ŸÏPåÏñTÚn·6¬Ò˜® «<›4¬R¯Rzüú?ç+á<âíÓõûí3+.ÿ>Œ”êõ3 Çû}Gõy|S}ýåóÇÈcÇ©Y/óýñ/ ÷þùõ†ýy#u­WÜ÷²“ó»ÁÇn­Öôõ—ïú/­uŸâÏ×Qº_ë(‘=_¾3"ŸëGàòù¯üKT‡W9_®ß%Üðø~rä:vÒº<ç÷“óO/ï¤5’q—Ÿê/­užß|_kþ+2Ñx„L…øø‰ Ju?Êç!î”ëõ—çôPãxÞ°uûJ¼^x{9|ñqH[•^g‡ç‹«_×§KÖaþÂ=ïqQÛ·½.ŸŽHò|ûõ2([¯îc¿ï¬¹öÓ—\ž£rÿ2‚Ò7×õ>¿]>N?®×µ ÊûëapK}~þ< ¬çñÁð¥‡×½Ž1/ÿøWLKuøœYñ‘ÙëÌužÎ ¹ì/ëå+éõñë; ¸úœé’ñIðsOõúË}\éŸ,"- ¾,€ª  ZÇëó0¦[KóxÌz¦™šýØßÃÓs>'//xÞïx>rcÇ7B½_aÇZû+6ÊÇÇu=ÝßÈaH~|4¸\¯?Þ•‚øÇÖÖlù3¨ð™‚·zèüË‘ý«²¤Íy±ù9úùF›Ÿó‰ôú§Ÿ§è6cÎQÒóñƼ}ÌÃ×ú¹?ìQ‚8dÿùë‹.tðqÜØëwNcPO_wñìñI€J‘ëýçÛ ‡Åzyê­åšŸD>_ûQú<~â+ŒÝ«óÇ¡7Ãsžß¸Œ£{äüüü—‚áZ©—ËsÿâšßN‡ë¼½d{ÝÊtDù³¶á󴵂þTE}·ôC¼1Jç™ÈÙ´½¿{}äÚߨùã•x¾2÷㦽9í׎—éõ>¿‹Gpœÿ¹&8TFÎZD•ê‹Á—pƒKÜ`78DÄ îRÅVÒ~.•À…±ajf!w ã ‹@Ü•4§K¸*#â.ÕJ^ ÄÔäƒ Ä 1ø*4 0Å8çVòjCÀƒ 0Å=jÁã¨SŒSLq50ż+à’ô´`Æi!—Ì{ AU0ãž´ÀŒaif ˜ñö&þ3ï3.•ÀŒË¼ÀŒÁ<ÀŒ{ˆ3†»(Öä1Øäq—ä1üÀŒ¹V`ŠÁ|aŠ+yÃQ€Ì[¸k [ÚÕªf[›éáú@ 3bÈÄx±7ĈaÞZÔ¬ŸXœb\EàcÔ+c)ÓŽ̘|E‚ÂŽ‚<îZ3¦«N18Åå İß@ öËtE ¦Hƒ@ +b:²` C™-Ü…- [0§Ú¬Ä0@ ¦“ 1¼"ˆy­ƒ@ ÷S(&è„ ˆiPƒ.\¾PÜì7q0ˆ+U`—­æsiP.ŒWƒñN$0ô¦eËK¥ì&~ ã×®¥øµkê‘Ñþx äßs ;blkwÔØVüưZª,~"²jÃF°X«a§Î'a'VÂàP!8…àwê6¤´r­!¥¨R‚/ÌZÅ)bÖ*¨0kU|5ˆÅZ Ou3:ET)ÁBJPuÖª4"a i5b7Ü}LQÅŽ˜¢*9$v¢20¨ ÒB¼¥Ÿ˜$«øB£©¬M¢2©i£2éVqq!yÌZÅŽˆÝ¤D#ªÎZ÷ˆ!zÌZ•P-‚˜½`1¥^ʼéð2ÔÆâóÿöQ Ýt3•é¨Ó 1tÖ*ˆ#‰ª³Ve¿;kU¾ 1’N'…Ë´ò#£»Æ[öœk©¨ÒG*W94ò›Èª×O'²Ú#®±¢œ]cEð…™6:éD”òÈ*Ò(Plu.O£@‘F: LQ•–&ÙIª$;7®` !yÌZݘï?EÄ›‹8®þï)ªºb0ÞA¢*Y%íH—Ò)ªÖ)4z¥ÝW0ii:kUž 1§$ñ·†˜–&a)ˆ0ÏFÓàUï#@ÿÉumb×qTMVÒ¨š¬4¦®„y6¡ÊRw2RWÒdœ•è²"éÎÎéV˜Ó…0GLg.NeÔ¹8=ÿμ Ms­õßìÝOÃ8idÆÙ”ãlJ„q6å ãlªHÁKÂ%Á8› ÆÙd¥‚%mŒ¼é¡`äMWÂÈ›•ˆ#oª'y"¼‘zgäMe‰q6:•»‰Þi“†ÞôT‚üï…q6YèP%8T‰Š EoñwRä˜!4ººëš­ ø=„¦G¼'èHœ ¡â8A%1©F^gÅz‚”0Î¦ÂÆ8›*IÇÙÔxÁ‰G»Î¼‘ Ì8›­øM¥è,›>Ê ÞDß7t¦ËÀ›ªQA™èº3‡ïÄuàŒdÞìfÞä"iàM¤ M´É™Š#§”©8½%˜ŠÓ[RÀ&xSLÅ‘03§Sq*ñNÅ)M§âÈse*Ž<×l<]ö/*¼éñb–®JfÙDJ˜eÓƒ+â•i|b$´ 9ápÿ_âE€/-Ïú]T*ŽI ƒÏî¨è³k)üìZˆ?K¤´T .±acG,…àK!z$[ ñ?ö1XúÐ(³+i´j—B0Ú¥4€µKa+U9á(¨‚ )Ž)®ÂM!âM\ĦVÅBÎò¥˜k!èä1&ê„F ìÄa#î,US¾¾=‰N¡ÎÈÊSLxJÞŸ‚ª*Ž*!êö*þŽQÁ‚TÈQj×R˜ æ1ÀµÇ£ ®à‘j×ÂxV°…P*Ù«ðvˆV»–¦¯‚ùŽ_-‘æ¯ÒEýXÁ9†«Rì liÖÈvoi~‡¶¬Bÿ“‚yÄ›Nˆ«g/BNÎsò¶fÐ* `BÓR%6…¹MpŠDài§¹Dž°2=é¥{Âgb$«Ÿ’kˆJ©'FÝ>ÿ©¸ôˆRéQ\Bß]Â6`è*‚P¼W…ZK×0”¦4q(¤Ú@DDéŠÂibB+-MF´â†!åJ8Zi!¥›N¬Ù¥4‚w¿éWfLj…B te<Ó1¬†zþo7†u¥òÖPq ëJÅ1¬aëñy€Q\.¿FÉuC kÍ~Öš ¯ó…8'JýLê†éZ™j¤k׺Nçs{1ÿï‚{ŽtÍŽéšÿÎ:z'ÔŒt÷é"Îa óœÃAÁæcðs«7žÖZ¡vô ¨4­5Ì¿dùñyLÜ«³§µ†êSV)Ôÿ,Vµa'¬†ùçmÄ çëíök@Z7Ô„Õ*½f§f-ÍN•n oðgvj-„f§v?ÍN­Öh*j/Y¯ˆyE-•Æ¢F5ðTúЧ=žN^Õx(Ž1{›t½?àúËõ͵!9ÝíükŠlí.Æ¢Öýh,j¯âå€ä8?ßY›û3ŒôÞBxxj…:ÇÖΤí;ЈÕò¥«rSÓ þ±ZC¢1¥ÒÔŽ)íÝИRýÆŒ)­FL?Ÿ{—½qæ0Óš. 3ÍRæbk3¤ǘ·½×yÍE•D3µ†ërŒ ¹¼5oŒªKý•{ÿØÿ>N<­Êh–©®Ef™†+N)톚RZªËWšêWñ,ÓJ«ó^ô6È$—[Æ¢V‹Ú{ÿ…x÷yþNÒHžª§[‡§ævà‹–ÒìÔRavjý¦f§ÖÎÜçëëýç{»¯ «eKVu[;aµ|iÂjϺ3md´4aµg­á©}kxj-`'ßȸg(2u~oM5bU1`F¬V#:ùFŽ ƒX—üÔÿþ?'_CÅäk×RZµTH˜–H ÓR)aŠ ›0ÅRH˜VèFÕ†H«’ù¤U!ˆ¦UËÒª8é¦U»[A¥äk7Dò5D,îRH¾Bì(†|’¯e^iU!Òª] u¼¸‡È½BȽBòȽb-ä^Ë—r¯Pä^qÖȽ– ¹W^±ä^¡Íͽò¨“{%ïɽ‚ª¹×©¿W‡ˆ -´Úí}ý¡ïÈÐBZÈÐv-eh{<ʽ‚/ä^a¿›{…´{…Ê#÷Šói51ü&´Pˆ¶÷‚-¥q!‡¦qK¤4.çß4.~Ò¸<Á¤qiiÖ4îÞhýNãBHãBI‘Æ¥Km1~"’½(’½j“½<œ5K+™m©’ …MN‚–N: ZP5A #ƒ-=y´p¬HÐúéº&hi"“ Ý>8ÿ$hq‘ ÅÙ Ž˜Î)i\è;Ò¸° HãRI½Ò’&õ y5õ ¢¦^év’zå½ORF9í¸:d^y3’y­°y¥ûMæo}d^q©‘y…-Eæú€Ì+Cž5óºŒ!ùŸ+}K…y6 Â<­ÕI5¥Ò¤PaRÖ꤭•I5"ê¤QuR 7\'ÕHZT³‘Ö2©k!Ɔg#Öÿ¢Nïök¸‰ý:ó†fæÖÊÌj|£MɪÑ&6Ìü*iæçh©ÎÏÑAg~—Êü±•ù9¼¬™ŒÃ‹ŸÉ8Ú°Coø 3ô†w'Co¨ëÐÚ¶uèöëÐ*|£:Iës–oŒµ{iu€Îæ".t¨òm•™\èP·2@‡‡˜:4“ Cƒ”:Z+t$‡Q˜r:fvÜö:ß1;›óYÆìlĵŒÙÙ\Øe4|FãûŒÆ¡èoëhZ®ŒÆ‘Ö¯¡«„•é9TÀLÏávëlt—;Zë9Uþ:^{¹gÏæò,ƒxÄUñPã3ˆ‡wlÄà 3ˆg£¥Ë ®•A<Dñð,ë×q=¼ÄC¶ÖA<’CñÐdÄ_Š±Ãµ2<‡|e,ýJÆâð*fà =F»eõ:ÈÀZÝV!ëÁÕ*dvÞPªxÃÊÀíØ7|Åfà /vÞðbgàÍæ%¸ ¼ÙHËÀšÁFÖòe³y/Cj6k­Cj°¤xøoaèÿ6Åábñp©T<*—­Q•p?ʲþå'@õRœçDÜx~ghA¥Bd0ßBd¡x2Eñ0ÖBñp©®_p·Ó›ŸÈ²`PýÉÏ¿ák- îOœÿøÚïç;¹÷:ýuü SaÜ UaŒQ;\ DU0•y|ÑK~n©X;LµIípÙ1õ,ºúøþ~…µTal¡.Æd+Æ :•›×Ÿì«6D…1Ôf~ùy1ÿùSå…ûƒ:äîˆ:d*óZ‡ :dì‡:d˜¤£ÂæóöN›Y­ŒÇ4Ü9³âsÏ–Š•A…bejMêyhú(s=íQuÈêK5Š­†™¿ü÷Íñ\æèz~«€¨U†·C­2 ÄxÝ¿êÅðQ«LÁ§V÷µÊà µÊà µÊj•©ÍÓ+¾Þû›q»~½Q}f•yCÝ3•>uÏà uÏ”×Z÷\AœŽoø—çý;ä*ši’R¬LɯÅÊÃZ¬ ë†beZÓûAôf©ûüjðºÓ×7‡3ª”¯§£`ñ²ÿ¨Ž†Æ·:š\=¦=º}8ÔD 5Ô5Ô¼®k 5–º7ÿtúþÔ"*ÔPs­ÔPo<âß’fh2Jš!S”4ƒ-”4óe’f:ýÏYÀúÌk-Ô4ƒª5ÍÝP5Í)ª•ùFJµ2¯kª•aµP­ Sƒ:dx²ÓüD7RÑ{"+Ó§Àx{3n·ûO&tðøèyy¾ :[‡¼ä»þ·IÁ†Š)ØP1Ûµ”‚]©œ‚ S°]K)Ø®¥ìj©”]íoTâ4TìjA$»Š¥š]-WÈ®ö*»Ú¥þ~.Ùñþ8‚šçíÇ“iG¤W»#Ò«”¤5ȉvCåDñ›ÅRȉv©¯tÚø‚òÜn¨Ì)î2§¸¯ÈœV¦(Àó#Öš9†Ûn)'a¡Ë…ùÅZJÂBkš„…uk¶û) [Þ•„ïH¯ò&&½ Žô*L`Ó«PS¤W¡ñH¯ÂN"½ ‹„ôj×Bz x=ðö]°a)K¥I–×õ6v¼üD–ir°]ëzD¹çé×°‡RÝfÖwL_yì¹W>nù\Hù\œ5ò¹°ºÈçRª³ièeÉßA¥t¡ô¦taßÒ¥ÏHJ·k!¥Ë»˜lm7T¶–vÍÃBoÞGóÔ›ST¶–úœl-ÖB¶‚@¶–þ'ÙZœO³µ´CQ‡ò¿‘©rº`¾9]<“Ó…kANïSäti#ÆÛæñë[¬vDæïät!Ô#?ü™¹ý…Eâ—çsÝ_ï ÓÃÄ}~^¼ÿú$¨·¿Rºà«xÂ:F$~«8JéÂ}"¥ ”.²IéÂÀ!Y ‡€dm¹W²–k­ÉÚ¥ÿïÿߦv¥r lÖb l¨Ô"¶À†Š-°Ý-°]J-°‘[`»¡Z`Å|[`³£º[{ˆènÍJìn »[³¡º[W"w·®TË4¦Ý†ê­ÜÕ+LqÙÂhW­¥NÙ*³z`{ÇÔÞÚߨöÖŠ^í­]Kí­á‹í­Õµ·öÕÞ*µ·VQѸ9°qU\µqµTh\Ú°qµÇ£ÆÕ*—WwWñOãjyWãj¥¥ÆÕ¬ÅÆÕWË—WkuѸZi©qµÊ¬ÆÕ:2õ¤ö¬Õ“ZªŽœ_ì\­ й"v®Êß-«•‚:Wu„í\•IçêÖýé\­Ô¹Z-Uçj™WOje¥žÔŠ =©õv^ë³IãjV„[QuÂm©›¶Ú[ËÝ&Xyé6Á– M°5Xj‚•“nlݯš`ùxM¬Ìm›`wOοM°µ j‚íÙ¨ VŽ®M°½:j‚­™Q¬$Ñ&XYå6ÁV^h‚-š`åÂÚ+Ò&XÚ÷µ ¶¯ÉΤõÍhl„¥&X¹ò6Á6$Pl/µš`k–Õ[}Pl̵‚øõH½ÎòÃñ ½|5M\è×_¾ƒøR)tÅZsjúéøèñ¥\¤:Í‚‚Çë·~=£Ä×(áøz0_wT/Ý»~Mü»×Úñ~Lh¸=ûß8?ÿŒ÷>òÛµÚ*+¢¦i¹ÔÚË_8gþvú:Ÿ†Ô¢J,¢F¸âý1#¨ù¥è´;j…¥¢j”(ªÓs¼_Ôçù(Q]æ×í×_ÎÿÝK«A¢ôá:çvŸïÃr«5#®ÇsùÎËQµÖô¤ˆÚý©ýŽðwNÊÞ¯…ô¤„Õ8‹·çz¼‘®ßµÚq<5î_vd_?Žš¾ûsˆóãöx”øù•z㪑•yK$¯ÏÚÉ{‘ÈIZZÉ|š7bÍÙꎥÓP|=gd{`.ì=Yúé ÒiH­I§áÆØ¬ÉXí˜NC2ß ª(¹Q»á57*ûyd:^!Ïù±Y[7Oˆ5ªë“H*D¨V®¥M’|¥’¾3ÉXmØdìæ¥F¥饤 ¦K’|5Íjq­ThÄËÌ%Ú¼b)ѦLÀ#Þ1_ƒ Å×4ë÷ Yf”hC^<âYðˆ–2€G»×ÁZ|MÙ¯_!tŽý¾ «ÑO¶ó à×jõ5ïbª¯»!â}] Œ§á•ÍWmˆJnêóúU@k¡Þ‚è·I~…2ÚÜþ…CéûAlåÓ2¢¡ï=ÞúÁ·?ÕÞØ±ôQ¢ oÀ#Š>_üˆHY5.l¿ ø¬×x_;6Þ׳%Ss¨7¨˜†èÊë°Êë7¢bïØÀ"ÑF4ü–@3Ÿ¨køíðg™tC%D¡3M}j˜á‚¥C…XÚ¬•y8bG±"Jgiˆ &œ•Ú1Ú•8\ž ƒ'g%a¯D„$î¯"qVÂLØÐ´8DÂ,^% *°Ô©±¥°C(âl&$â°1¯ÙL`Å!Ò(ز¨â¬„¹¬Õ@g!!G•@Ü…€?–,œÍë.|¸WØÃaIxÁf¶VqÆ\ãU¬àl&¨à ƒXË6€‚uO‚\‹“Ž^%¸ºàž 0‚k–\C„଀`n@}%ïÌU•é«+Þ:€ð–q`ðV–€à­ÑoýÀ:PµBø® \ðr«on* ZnµCKÃ’nu¸Á·íJ€·­ŠH[Ôl0éÆQšqmþzr–€¬­Ò®+3XÛ>`€jÛ•W»2.%H q D€‰§µßÇ•¿\¢@߸@ —ºY ðIpϘ›ZuJÆWD龕Šchj»U ç–'LLí[躵)×­£¶®žhÖUÜa©UßDAH9 @ôÊ>/m«~îÆAØŸï 93”¾¡R10ÖÐ/Ö*ÂÖ‘¸Ò/¨Šá« S ¬Ÿ _mX _¬Ut^OÐy±ÐyAt^OK”%-ïJÅÔµ ®˜º¢úôµãþo/õŽûb*qÇâób­”aófžTË[ËUap¥ÁÅJ¸…€]Û㦒±˜J”C°kA¼Y0ß kI ¨´ú‰ù Ôb×ÊÚ»VjZìZéV±k!ùVkkG ÜJ#Šp+ª"Ü‚{ ÜBôÅp¢Pƒƒ "àà‚ù–X‹­æé×âé…øü¿}T1nu3Šq«£.­œApiAÈYQrVö;xJ¢j/O!¬|ð”htW[ûÄÁVTA°•«^!—è¹Ä×O —6qÕ³+.ø*0Oz->¦¿äEZô]Yš"æŠù3m<犘«‹XÄ\¤"æê°×ºb²UX];ŒVçSø¦^!s7®à?Àp}©W0\]×rI¿°X¸hJ|éxR–» ¢h#¾å ««WbDØ£‚ïÊ_|WvòÿŠ%Qã+"`IG õ{ ¬¯Gë„`ùŸB$¤)D—ñ†}ñ×ï·kYJR‰^Æ}æ!Ç[ù²#”øJRÙþr៷ŸÏ¦X¨(I÷ùÀ!Öï´[éúõ ëu‚[¾/ã•ó:ðËìyL’%° a¥" õ×}|Îó4ÚþwG'¤­ÄçŒæÝv—¡ÿfá§Ÿj¹¢$ñèV¤îv¹·`Ü´­‚?',Ä‹ïoCÀó]P’ÀR°P±z(·™aÙêÏïAÉÐË u» ï u3 áò^#~ûù<]*ØEʳÅïsoŠÔÃ}L¨—nþ@–ðpWü#^”ûœ\Ù_9áá¢Lñ:¸óþ×ÄÑülu¿½±:@@‚Ýý8@[no´(I¼—ã›øíñƒ3AY®HP”ÂïÂQ›VØ"Þ¹¶¨pkCSÆDà­=¹üe¯[£3>_L´•ïIÛåITð# (FV FRÙÆ@“žÉñ”=  ûV™Š[D»´@AKf)Êë2]÷BnŸLŸ—£D`káŠmk2[%ç¥Ü¿îó3ø$ºoMÀöã¿ó÷?ö·{âèÜmÛÞ·áx,BÞíõÞ¯÷‚·T¶Ì|ÃmÍ©@™Ê÷ø¶r9\ÜÖ , W$ð]$>ÏV$þ¸ç4‚çïo€tò£æú+í‚n„›û9žèÇël/Ê¢ñ™³¢Ñ¬èF°]E7¢#œbúõµ±¿èFprA7ÂñÝ×iV[̉۷§Ð¶×év»ïc¢ËéxV7óÞ þ6³Dã{Ö7zÝßa9‚J๡"zn©–êò%ªD÷; Š·TÂâÅo,/ØšŸ,/÷ë""Vo©C‚w@ív)aíú®8º ú¤µãê²½ùAÛï€Û¥J ,]OÀt{Òç£3ârÿíªóý«´âqýÁHìZãM;Ôæö“ÖÝÈkæ%óÁæÀy±!€wqÖN!ˆ‘z›p·w‡ €^jàŠÐ‹•€¾[Á?RÉù’Ûk3Y)* |»–°|Á}^Ɉ¿ý‰GäõÒ­Û u+˜¿e^ ¿P þB¨€ý-÷‡›Ÿpã½ ¸4ÈÕËPÞÞ92Cmn3§qýøX × ¬aZ®5Œ–´€6ÌS Üp¹ÿœ…èç+¼9j€ƒy ófL˜Ö&hÂ¥œ0¯Fð„ÉýÛÁ,׺‘°ÙZBaÛÀžúÐ`X÷(¾8ê„þú£fï7Ž/üØs"Ô^?žä}ˆ%€ƒ­ÄÄÒ@óò¬ØÁІ³Úà|0^”—£Á`(Íö'ŽZ÷±Öe||ãVŠŒãò/˜ô/Ÿ”ÁþÅO<.êèßuc_íü_PÒ¸/ŸRA÷åͼ/ %ð}+a÷ÂÊ —£|ë£ ñ‹³Æ/pð{··ìwˆëk˜ßí£ÿW”»5þoSÛ»R¹¶7k±¶7k±]TèW-_ª_¬îŽêk_èYÅŽ(®¼T(ÜR¡p×B¡0»…Â]I…Â¥R¡pÏG…•– …©©)J€Ë—J€ËW‡¯Š ޏ(î-•Š{«‚jõÄÕX‘‘%-Tã¨[Üí Ÿ,Y©7ÀÝQÀý…¨.‘*€Ë¼*€+-Uã'¢ú€‚Ü B¹=JmA…RÛò¥RÛþF•Ú¶ԶD*µ-ó*µµÿYKm·×çw©-xGmµ õ±Pˆ6\ÂP¶ˆ¶D*¢ŠhK¥"ZHm°¦(µÅZ(µ…ÍE©-<'ÊhAÕ2Z8²–Ñ« Œo”Ñ¡ŒZƒ¦I8Û–{ÛB#Zl‹C Ò/ 8JréíÒ¨ ‹„’\üD”äÂnê—>%¹0\(É…â´$BEã'¨ÐùIÇ’ÂÝžµ wí2þó·$——?%¹¸Ö-É-ï(ÉÅÅ@;fåŽÂ]HM›P”÷2ŽJy/^à(ï¥ÇHy/^x(ï…#Cy¯bŸ¥¼š¼âüÒ˜¶¸D¨^ºí6ák©˜b­Ï÷þã»T×Ë1ör*-zNA`m˜ÎT-utªßo?_ œÚ°§™O¿g%JÓõœoŸç=óˆ]uÒ‰]±bWP!vņ_‘ÃÇùûɉ¥^Ûc΃ùü±T¡$ö6ÂZá×(XT‚µã¯ñâëþ -Õy`ߎùQùûæ +y;âÀíEl,¾æWƒùžznÏçüztÏÞýÇùÛ¥h­Y/ôZë'•ëc\oiD»juØÓ|œÏ7Ü#òö7ñþRÓuN|n®Ö]Q]@Öã¥>§-‘‚x©às8ÕH}¾iÂsq5_^vòúý-Pzz?ê~AÎa-„úbþøø|­yÝ ¡¾¸o¯LsÚxÅVÛx±Ôã¨MžsoOõmA>±m¼Òˆ~[0_ëW "ß@„ïvŠ“ôû&LÎlǼ¼±ßó+Íë5ùS°c#2þðë›ï{ôzl|l©ôaAºÜö\1>ÒGšb+«™›¼|¼Û±Ÿ2,ööxùü½Êà+…oþHšŒo6×·frܰۯW'vÄ÷¬5‹·ŽäÐÖt¯¼væë§‡þûéAv­èI2 ý^ ÿÛ/›'îÒë³R||üƒ9ó0ý ¡$ÓÐðÝ>lí•Õ­h`. ÒÀ\¯š¯¢‹‘@ßS¡YÖw¹%¯ËÈØß¯?]h":þFÞøÚP+|Ÿ—õù¼¾1ð§£"p¾|ÞhÄáR¦¦îmÛ¸#ÿxœÞøiDùzî7PÖ}m,“ÛXGÝžSG=§iÎ?TÛób_Ž2©Ûõ»2T·Û‘ýüºþ¡bìÚµÎ×£@íòëåÖµá–H±+–j슥»–ê1³ç‘mËU‚R,Õ ´Dˆ7CÄH²K!’ìRŠ$»"IH‘$~ "IPàŠu½Î¢¬Óõç+ ô$$~"BÄî¨k!Däù$DÄQ#D,_({.•Êž¥7y1IBös(åyT$^·|1”UCIâ¨m oŽÅÑÒTœÛ»ø;à„ÍýþùVo–Bë–v-…¥ø‰K«© KÁ×ó(Õ# ök!,åíÜŽbØwçƒàµ*x펗Û;ú¸¿s¯·ÝÇé‹jÏ—BÜ^FÔ‰Kq>fCͨðÜ›úóQ 3«E?÷0}çß¿!.”!.àâîíéï·Bøzÿ»fâ./â`hé¬ëšSûµ-C숖«3­$ÇRωì}ïܽ¨ѽ× ð¦ÕJHM‘ºT„ù€H`ŠÃyº¿zi¤ _ý~]ÃWx×c[Z riãÇ3wÔ^î¹gø eFø Óö8vM.{Ù+|µF¬á+œpK¨¥7 _AÔð•1á+ÁçÑ yº¼Óf¹4# rqÖ3šœ3ºöÖ¡0ê …aFZª¬SDd ×s¼/ÏË¥øõo™ã®&x!rIðJÄúÜ•H.VBÝmxB©lhT"ÕÀ†ï¥Êd³Ä @¥´ëv˸ÜÝÉ¡bU<¥`µmD€rÕðaœ:“«f/ÕªF’*U­¾Ž‚¢q5·š‹À¤<cަ¹»îÄÍ:Õð¤2ÕˆIUª!´lhð^ïS…jOwš)#TÙ.”i˜:^”Ãö¢Ìa#³Ñô¶³ƒ˜)¢ÌË”¼[ UÂæÇ©¶ö{ù³3ç²å[Ų»»û»V¶'×(¤ Ä•é?Åk²9K BX†rŠí¯ïÂçóV+]â[[™(wXº½(ó̬ÛxlVzñý1áY>^zoæ„ÆYø3ñ/é“`ÆõüØ)ˉuw—™—Z %Ç!R•pˆTþhW·r™c)çÜÒßШò·Î…¿U%Ôêf;•êf;TêÊ£¦P·|Í2·­“w1o·[çsÊ¡ ’·@!ovS¯4w™à©»‹ZßZf”úVQZé»åû×÷h>—Û—Wã¦5ì»l‘¯D9Àµ>>Ï?Wú@½O#ðÚµ÷»uÀòs·Ëù§…+g‚Zá¾¼Z,’àžJ€5¥¸Ñ €«J³+íun§½õfaoWjÑn­`kv{$€í­&ͶÜù¨üWcñ7}ô?§FC4.=?ìBö´DH‹b·Ó|ÁÍÖöívcÀäãã[q»ÐËMÜ‹ñrKT ¤nö·¸‘Óî·)OÛÝN3w4aDî;"@)u¡ûñYû_0~šì%Ók·DÍâVDG|0]ÿð]¨9U(ds—਩ˮt:P5.Ïï Y1ŽVä)Éë÷ 0ü¶&7K„L#N­‰FH©yF¬tgr¹Ÿ¾qX(ËË,hº}×—s»5É¢ä!¦K„ #~>ÌÄë’_·§‚Ô!$М ÎýÀ0yÉôs»ÒeFÔç›tÝR}°&Mâ•'BA˜§c¼âKNÏœô‰ßž~æ,ƒ¦I>¸fïptMÞÁÂÏ/ŒçË;C ¶»N÷5æDoù¾MêŸ Tékìíý¾ÿùÊB•æü—*¶'"ø'ÊqMÿA»/°iÀØì½÷ý .ð9¾w·ñ—ûÏC:Ô5C15Aˆ#i~§²¤»P³ƒ¸oc¶ä;k¢ "5iI Ò7¯™AøÛ}ýÚt+m!Gá÷/å¸x¼Mk<ØÞ领Çßd¹.Ð~}S‹Ð£f·¯¥ßÕ³Ñ#³EérÖ%nI³Šxå4©ˆÌyŠ`¢Ý¼ÑÛ5£ $¡šäé(×Da¹¾Í‡ÛÌŽmNpL%Cßÿ3ƒnÛ{‹L"·‰Dî°$×Ç;yù²¸‹í]Lñõ„ßšn¡ñ%ø|—i둌ä3ÍE28»L–ÎßYˆåɾ‹*K¥±TŠC…RZ,… 1D »‚½.¥h¯T åðëRÝ+žð•ªÕ½þy ±TãÂ5+‹ƒQôØ¥>BT-ÉJrµVÛ6Á|Kr%+D¬] !+¸jE®DŠ kµ"k)¶…#¸Å!"º¥®U´ÚA0DßZ[™,ÄÊä>Á2¨-C¨—K¥x‡€Jßô¸¬2âjüÄ–äJ¨¿K¥Ðk!¶æeLp I´BV²Gx î[!«j€ "DØð*±qŒˆ±ádCUecdžÙtRCèþ>ÅÐP@Ñ{ûö«BÖRHˆ ) ü¥+Kü 5EŒßˆ"EL©®1p—B '…—½F¸´"k‰¬Aað¾°xJ"‚…¡A Òj[3"]?^—:Zy;»i¢Ýí[ñO¸ ‘"Þ¥‘OÀKϹÖäêö .†GG`låZªmeäC^ ŽAÔè˜Î.á1‚„¾<âZœ"[¾›× YŸuâ_Z·5¶åãm[q†­µ•eFxËp%½¢Ÿå_‘ApŽBÅŽÒR©£´Tê-_èíR pA„l&öSÛi¨»Šñv¦b7t¦– ©Ø Jüyé_ņí_…Æ´µDèLíÉ ÆRèL…ЙJeOg*¨€q*ô¯‚/ !AERë¢ËµT ©Åš\q }µ;ª} ÆTj|Sq¡Rë^ }•´†Ôæ>M® j“+Ä…&Wcƒe©3š\aáÑ¿ æÑ¿ q¡µT–µzNÁ“xÓt y¡é´k!¤Ö %XzNáàJqÐ'ŠÃN€kOö·O´w ®'}¢{kó»”RH (¤Ð×Nj pýÈH(~#z@!Rô€– íðhïä®í´§iÜWKTª÷_£Òã\Œpí`DOFQœ Eý,]BWy´€ÒL¦tûTüƒs¹7tµÉM;)=TÚIq/Ð( ωFQJ"¢0¦h…¼Ú( ¢6Š–H¢tPi…äÑ܉SDs'ߺiîäY¯¡«íÖºú‘´„®:C´‰Âæ¢M”qȺ.S+ÿwÌÏšuñ_ÃjBÅAª¥Ò Õî¨Aª¥ÒðÓRiø)øêðSa®)¨®óããíµÔc˼r¸`ÓO»¡¦Ÿ‚j¾šç-{¾ù‰˜‘ÊŸ¸ÎH冿æm©0þ´ÒB=­•+CR¡\’ʳÎÔR²…Qþ 6-›rà 6›ö'ŽãfÜ~pßÅÆŸ– #K©ëÈRÜÄX_>5ki? 6…Ú`iwÔ0R09£ š½í¾ìø¨3gsFK¥9£°‚˜3ZªN…ä1´WQ³Aá 0WñrØù¡co$ ¢&ˆò|2Açƒá à ÃAÁ×ìó}™ˆËÏp9œÏ”Àìy|ã¥4h”÷:ƒFaº4Ê»‘A£àëèX=¶ûÒ8Rz¼Œ#…{ƒ½^Vi»ÔxF˜ìrzkPç·À×å~GI>žÛq:o¼b§ŸÂ^ŽºÊË;S©©Ð,ÌH똑J‹´Ž?WY ÅÂ4R^Äu)–œQPaÎ(×:"ƒË7D‡äp›±â¼{ØâØãü;Œê>ýø|[¿Q?,Å/ÄÈR¾ð2²´¿…´ j‘¬6ÄÄRPub)ìÌý˜B|ÿùž.Ác®)_R™kÊ;¹¦à sMqÖŸ#~:»öÆiú)ükçšB!0×f²eÅ~@dúéöVÿ™~ A`úéö5ÿkú©^xãõó²Ìÿ²CS3ÿ;>é~NÁ?~ªB¤Úâ•H«YHåÇ!RõñJ¤âãr„®Ö,„i6e UÌÙM­¯YHm­aI•ÎÙN…Î!JsåØ2çòƒ*g1úå »åËÕH&g!Ô%÷§¡,¹ÒJâª?úcûÓPmœóPïk€2â 5½=~ëê×¥ WÛ¥·D­ÁÍn*Á­P[[¾QèZ€>Ó¬¤bØn‡ZØJ Ù=ª\êe³’Êe³’ªeW"6£Vâ­••«H©l-%ª[«(n­¯hm«,ÓßÒÖ**[ul)l­9A]kµ¤-¤QJ_«“è­Q+{šêXù¥ÇVL¨í‘ 4¶Š‹®Î©èU°Ö¼Ê5¥˜µ¶²]Y(õ®Y¥q5Þ7(‰­¶%÷Horý<>$í}*k{ú(™å‹k­˜­Q0[=B½ìîÑñÿ3v'Y²ô(Û®ûÿ(r¹¼.•óï“Yì(t_òï´òÍØ, G€„Êe{ ¨–ÕE‘bY]p©•­)¡T¶TÊöèÚB*1¥˜V–”ZÚʲ¥´¥i%­.ÊÒæ§©Ï4Dh!í¹¡Ô¶€J[½ShÛÃ=ñÙ¡.k]J1nšQåq§¬'ßos½nµ庽(P­«ÇyšQSÍͨËbÅËøóÕHÞ´h©”Ò¢¥º ÔÐñòþ¸ÒRÉdb¥¯1`çÇÏã¿ð¾;ñý+ë¿§—6lVTÒº_‡7»,׺HÞüµÜq¼«GÂs;~à~{à ÌÒËxÒ—;"y*ª&O¢Ÿ’§¢JòÌïÿ¸qõóX3Ws†Õ2ýõÑd%ÓãsàÐz^+²µkíºœ~’` zìö¶‹~4Œ9¥kœ“µØðö˜cǦ‡­òSzû!= ªqÍ{}|Òf¥‡Åû€£Þ¡VÏÜ[³Ã¢jvºõÚóŠ›}¼>¸‘¡¬rÔöT­9Ñ iØãr$×iÜwê/î½îýt€¥?Ÿ<8’ȺY†al6öø¤ÌÈûZsFWk5W+åj®Ö×✫µ ιZ윫•s>éÎרè¸7ß|_;Áº'œNëÛGY_ýÂf}-ù)ë+ Üÿk‡2½­ï•ÓU~ÙþåµÜ¹aŸá”妄®à”ª•¾}ÿh÷¯æv7°©çPîTÏõuT­®àÓÁ:”am;ã+üeì8>V­)Ò¾¶Ö)틟xÙ?¾íï‡û‡ ›öó×ÓŽ?n±õ]‡\­Øj®Vl5 ë§âœ…5óïסʯÖÚ«¨’`Õ›ùH« V¿Xæ«mlN°ÊÕ4Áêj×/Ô|ù‡&XuŒÍÊ4îGŒq¼7þ¥ÿÕZÇËf¼‡?œb’¢ò“ýq: òÿ½(§÷ý"~-•úVK¥(TˆrK…(l!£‰¥æBs%®°Ø¡)¸oBDÈHj©¶¥j­&.ñ1K#Ò—Š£FX-曽ÔZ ¾­¨sÏ©T°!ºÖjgª¨Ú™ ¡þ5Ïåol`½Öçß5¨XƒÁ0~"ÚI±BfüD„Ì: FÃàëtÙïë×ý;4ò¹8òþÃWf“‚3€$‡„Ìà !³äЄ­´¹ÉXìˆð»TçãƒõùpÔ¬EÕÈ;¾özš}\Ùe}µ4²¶ÁÎ1³L±1³î²ÆÌº€ ËW65 ª/qÃÖ"m0¬£n0ìËs†!‡°rI `µTX¹Ó†¦:ÃF BÔ 94êô}7¢ý÷óùñ™Ô’d­•ä©Og sm‡S˜ëËnnî”í$ÎçM²Jýçê®k+i« ª¬o•9‰*'ß3øtÁ=BXñÕLª=óûzŒpz­ïDDºzT&ã*¡6öOœ])j]Q%ÐÕS·®–j+gÓàÔ¶?çg}aÌ!¬œMCX‰¾!¬l£!¬\_£Ö¶0c-/„°RÔ&såuÃN-Ñi¨8è´kiÒ)ÖÎák`æ}É—¢‚{LDU«€E”ˆR\u¸*–BÜ im®ëõ83ý»;ÅV£S¬Õy®:ê„X S_A…±¯Ø°ÐJP ~…à1ÔUÂj4l•Ÿã\Q5‚÷Gû®ÌëCJ¼?mÎ÷ïG,¨¶;ö>vE+óaÌŒµþÌœZ"F×êÁ‚ªñ¤Ô&“i±‚Nü@̦íñ¼ž{Kç>wñ´>Äñ|~y·5_ MA„ÐÌc>-¤…µWcS9›Ì±•j5€•Ö44…L1ïVþ»ÃluÖT+ª}BíÆ×Ï`p0zóÞŸ‚»Þ<Ök]2¬D˜V æ1®VWg¦ÌÚªÏÿç…XX?°“_¥ó몣N\-7?¦Çî‡óX* Æ±Šª£Vås¯_ÏŒŸ^ùïNd•ÏíHV9Êy&«ï±9ÊUâW]¯ݪ[¬³[õøéðVßOs˜«§bg¼‚/ yÕfÊ«||‡³.^ŠS`-Òù¬b¾Z}ÛÍÁ°L¬Á°\Mǯê°3Ul5öU0ÇÂ8Ÿ¯°`œÏšyľ^g £ÅMðŸ?“ZmÓËœ7íy¯u«cXm®s` au«­y6ªéŽ*OÓˆS>¾ãQåF2ûD~ªÓéôS)`cÜ)Åó?g`KE`¥R X)TÈ­‚-!&aÃ"&u?$`±!°ÚèKiÓ´Z M¥B52~#R¾à ¹U숴©¨åäš¡œ(‰ʩ̷Ù\ï‰2«‘±!’¦ƒ *@9ªPNx7+9ʉ¯‘@9Qãå÷('X+@š zà/áÛìZÿ +a­$`ׯØßÀJðZ¨!þ‹ìò¿ÿGd¥R5©DÂüņÀMÒ†EÂŽÀÆŽ…EÂR™ÁГ@ÕA±%R0 ÞĤµ ƒ-`1A,ÆR3b“«Iæ| ^%„ a%„¥XêO§øR‘‹/¬X$óJš*5³z’À’ð0,¡6þÃŽ@K’¼ —$î‹—$÷PÀ$¬Ä$k× tI N_Û­òÜE~r€Ø€HØÑ$θI’}€“ä' ФÃ.*¨ ‹Þ¢ *€(ë*h̉ó9Ò›» ü`ZÍiÏö^˜ò}m±Àu’ÎŽIªUÔf( ¢W9¸¢6[f( ¾¨Í2ÅEI·Šå›e†Š’rZ¦Xˆ'ÝÅx‚ìãÊÕ7Æ•«Γ–Jˆëû|†c.U0£d;Ò뮨QXªP²ŠbBéÝV4f{š Y2/*”$U0'éBCIQÑXÌÑXVQÔ'I>ˆN6Š­I†_Hclœ%½˜;ÕT…cÒµY„aYE‘|%Ó‚-ùÉ2£-É| ·ä«géuT0¡2é'£×oÊ ¼I~¹ÀLzŠÉöü&Ç3€Óé|Äq#;uýϨ’ÚÞ®§ý“Çíû)¢Ëþ|xmñ¿ïV3Ñ&„ÃIŽPqE´]‡ç=T~¼^ßbÏJçãêºÞ~](àé¾ÿÞçûôý0-O›ÇÛûúþ‰H»Ò&ŸÓ&Þi%§¯Ú“§ŸG~Ýû@MËr¥#3¸ÝæßïÈÒŒ7ßøËíüý9»DÇûäº9·ï»j~”.h¶Àq¼ñ‡_,uSûñž¾}6Xj)-¶{ïukC”+¾·»ûëá´™ú’ïûîž¶Óý©UèB—½^wçû¶Rð÷öÏAóÕ÷p7‡1ôû9îð•ꎪÐË®ºïoÿ ý~îæ{;ý|@„~×õ=‰—ni,4|ìÒÂǧ›á75¿/øÞÔärð};}JPïVââàÎ{ýö¸—‡{Ÿ÷w’µ–ܾžýãa¿öGf½–RºîÊuøÃóR› <‡1ýŠ!€ë^Zöz¼—Þk#ÚG%Ž;ôµT“£j“Àé;òÁÁ}=N?ùKxŠÖèv»ëQ7¶[ üy\=·Q0úáp÷Kìò\ `È{|wÜ.âñ‘-,]×Dǧ€ÍÉgUྟÇWÇÓÏcD-Ư{ïOÉM¾œpqýcüøŒyZ{¦Ó~tÃÂß«íiìËyÜéµvpˆ|q$ïã>9ÿôzÐ^¾,wu$›v߯wÙçý®-à1.ùûÏ“:¹w”ö½¼+OG`<2Ø×µ‡?>^ßçïw(VzíZr»½×ïœ÷ý~|T:_V¾kwŒój÷Áy¿÷…ž›[]»ÓÇó(Ûv}/'ã >^â·ïïĸš u„þk<¦öoÒ˧Ðû¶×»^G6fíOGFkXÀJ¼–ïŽíiú¼w]j\ ›ao­k†”Nû=ðQ×Òén÷>Nút[¾‡÷Fñ@Ý“'Ëí¶§ÀkÏý`TѼgXcæãp¨ç®p/çntû«ji½¯Z¾çëûû1ˆn»©¼nÏïø õq|þÚn‚•‡Û”`ï¿ºŽÆ÷µl?}[7‡ð\^ªý…³ÔOÁiEðÜkC·gÜcùëŽ6Ãq§¼.îð×^P¼ùÔ×ÒƒmD×#y±Ý®k;¸ ™ÿUõÝûÀ®ÏçÇá1vb´{¬²cfüëÿæsuÞ$p[^«ûF.hðò€_½KàüŸä0K¥àT ¹c"CíØÐPk56‚C­ÕèPk%<QãCQ5@ä†s„(im׿øÄq…Õë³~ï¥åûu½Üp³Àý»ìpÃ×åRˆIµTƒRQ=¿ý¨W*¨°Tk%.Ñ;Y50•H_{¨4¾?Öº|9â’ëè@;¯íâqF­ú{-†„ÂZª±0M,Á0Ùš]qÕH—ÂJ¨K…O¬ËƒžãXº­9Õ~dÉU¢Ô…YLa*=MâTRÍ*U+‘*ŸP•þè}<À¶óºÞ±ÁªÖJ´º8Ã)\]H~ŠWÖ󸵗õŽ ki>GXóz_þ•=ê±ó5â„×úælŒLÏœ ™òJÌcLÌ;1!ðêuð7Â]È~Ç9ˆÑkõjK­>âþ]ö@î s­9^˜Ù kÃñ-p˜ÿó;¬¤m$h¦5žŸ¸…Wkjh½Ðç)¶æZ ®)ˆû~ ?¶¹¯/þÄà‹'Þ„Sé_‡¿õ&Üàaó¡‘›ž>á3o‰ŸÖ?þòúi½àŽ ³ùóuЗ¢?¢è׈0>½¦™›à—k=÷øðùÓÀ·FÂ_2Ÿø—z“Ø–¢OpËÃNtK¾Þò›ø–>".}D"ÜÅës qáÏãR ä.\ýåò J˜»x†O!ìb­Û~¿‹2¦·¹ÃØR9*æ7±#œÝQή¥g¨˜ãìZJrv-d9K¤4g©”çĆMtVZ cÒšÂX­•0V\)µÚ¥”[-UÃXîˆìj×BzµD c©4HÂV¤ cµ_ÃXÚEÂX±…Œn—RJ&†œ.ŒI]0߬nyWZ"E^fÄ.Ô¡I[8·fm»ŸÒ¶ò¶à‰[šX2·ðZÍÊB‘–…à‘—…×J°K'‚Ìl×Bj–g˜Ü,ešä,ml vâJF–`—T v" aøod„!/d{qŒH÷ "ßK©Na,O¹ZèsÂØ…sNJk5§KJR·6Œ¥Ö#÷ ;›ÃXnˆ 155)b¬…1‘0–’o*™O¼ä’¡Î cÉVÅxh S Ž,0oHÓ®§0–;"[ŒŸˆ,/~#Ò¼¸çÅÍÁîâ‘l0Ì™^¬•`—/äz¡7HÑBôÈÑâ°‘¤…¸¥Å;iZøäiá#¨åë3™Z†?IÕB ‘«¥«O²— ²µ|†'˵æ0v}ùßbÜM¨8î&Tw* ²é†ÀU1€±Ÿ¦Ý@˜cÓµ4ÇluŽM‰4{¦liö ާ³gJTà^¡Ôàb@ •&£gº£FÏ`-Œž©´ Ȥ¥0Ÿ¦Ki>MõPK*¦Øt-̧äw`å½ê½\êôòƒCT*!ƒ-MÄra"N×ÒDœ®õ¸¯ ¯íÈ/Kæ9ŸVù4Ј÷¸év$Öó‡ŸØ)6=ê"-a%ºatÔM FÝàbˆM×Òü -‰w̰“/P0”Óa­Zó ufØàÂÀ \c˜aƒŸ¸WîŸênk5Ť›µQÿžtÝ*n¯ŽClÀ†ØÀvˆ ¼†Ø`©±ÁÅyÝ?½FëûÚåbÒ N“nJ¥I7&Ý”÷à[êópØ<œ†7]†ÓÀ(:œÆ/­y8 Lµ£Z¥|aƒë#l 1aSii„ a„M£FØ”{°_a³¸yþ`#‰-L°áý4òJ¨aߘ6¸[Ÿ»M¿ß÷Oר²?2><5Ä64³IΓnøhΤ^+™tgƒI78!Lº aÒ ¨:Ãâ „’Ôƒnàt´4匜ƒ k„±RK„³’*„» „C¤ú஄ò஄Âߡ½üusAoWj=oYB9oBnYzp:ïMþ•7`»ÖòâT’¹O¨ÒQëo¡s-¿-O­¾íB(¾íB_c&n?5§à(•·]…·8“ÖÝv¥Ûé¸fFæi¹jsKtæ~aÝ—F€ª[l×¢[êî\s ëM1-Ô¤µ´eKiaá­¤…]¶–žðv<ô^K‡ÒWþ¸¹ò?nÏ:îáäcɪcAÔâXÚå\ ×ÒX¼5¯p(-yõ%6U¼BåîÇ(™Ëë_ –e®Š…† ¸^ÿ}ÇQ+g¡á-œ¥Oëfq‰ÝÆí_÷^+a¢¶|Ÿö÷íéú¯õÕ†9—ߣ´ú–7ÏTV µ<~ÿø¼f¥·´§¹ò+µðhÝ-.e·ôsÕ-Ì©E·`)5·Jnáå[q }kÁ-Ê\o‹íZn‹×j[Þ½ïÝ.?>RkË×À\j Ci¥-Nî_æ±¼Ãv¸ï¹€µßeÉ.\ê<ÃF»µ^wÍ÷Ïço\«u¡(-ÖO­Õ]ÛåúÁëü#º]—4ËyášZÍ ¢óBy[¥ ·óøï×Knm(ä…´ŽDû|;ßËŸÚôç"0òþ•¾ù“†YeHg"&Hg"æGC„‰5!Rµ eM×Qn4ÀìäÝŠIÖ®ÜÝ0®DlyØÒtk‰”«ÍSª¶zÒLm lùF ¶+u"U7iZ*Óœ¥íJHÒêxgpâˆyÜn†4n6~qvSª7 §LoåDïÊæ~Þ¡9á8+)5"å\³&åX˜åï`.w! Wà­CA~7š‚ÄmXBÞVš;'dÃò±aÓ]Á°‘³R¶]©Ûþ6$lKÔÉ8Õ7¥k¥”s¶Vf™dm ¹ÚÞ–HÕö–k¶èPœ r«ºS“Z­Ïifµ>‰Õ.Ô¼j}2¦À ŽÛ#AR5DÊ©FHH©Ê(çÙ/”öœR•ÌÕªdS¥Õä@«#Hf%e@{´H€Ö½#ÿ)÷>M†çBŠ4?N¹Ïð­Ôg·CæÓ®ûoâ³,!ïY)!¡©‡Ð<†?.IϮԩ1 ÊÐ<<‘ðìBÈwÊ’@¶S.7iÌÚ7²˜=$1kÈa–¨)LE_s³Z‰f\ÅLY!'0Kµh"©ÜD𵨾Ø:S¹=4k±=4k©=4Dl ÛC»!ÚC#-¶‡JZmÍZj WlÍRl ÛCÃ|Ó§äKM¤ÙQM¤Õõ‡f)¡ô‚yt‘ÖÈÔ¶ÔZëQçg-QŸe ŸáŠŸƒ:?«ñêü Us©tÔèZ•»i×jíG]«e]«}ÿ¨kµ7‹ºVû¦TתI»V»£ºVûSŠ–?Q¦}©Ó´g ,Å¥NÓ:MûÕi*ILYX>œÕZO¢~Ôzõ£êÛ~TÅ[íGíÝ¢ÒpÏR­5÷N-h‹äg©Î×}Tèö’} #YP]Ç7ñ->îßß…°#ÚC±¦¢b­6‘‚èy?>Ž]~rrZ* G-uÀ€??ùdP½ö¯õ×ñùãÃ~M^š÷9{© _û—¦ÇùºÞð¼ðù8Â.Bê'VÚtfÿ&úy`©ö¬b©-8º‘c´új©ÍùíþáñOJ ÍªZß猩¨š UÓ˜âë˜XûÜÖZÛáR:¾CÜÍšÔAu£üvµ±Š¯6šú€æFSu[HuŒ»Å__§÷÷+Ü*? ã¹çe)ûó¦¨ãóãèÑ[;·×^›x“Cïkª­qóÇøi­8íl•F´um¿’šÚoMn^ëþýáPjÓé°X M«bþçõÞÖ¼¯?®áÇö—ÐÚÌ®ÃÙÜ«`½–’©Øqp?2 ãÃÍšù¶Éb©×‘º‘ÞÚ ž·Ðýzl¸Ö@uÀzÇÛ×vÛ]–tQ츅_ßõ>¾|þŒ˜OmYµØÇËàùü©Ñ°å-}Ü>-…ÆVý¼}>óžŸ\;ðóõzÔn¡ÈúnE¬~áõH ˆ¥@OûìÇçéôé^ùªù8 Å_ê;¢ú§öWþ¨¡ù…ûÇGÍ–êôÞg“×k¥³Õ·ëøñúZEAï#–z/™ÒS_®s¬tfù†³6UtÀZðC¤¯ÓéûÓÛú ø{ŒÌ~¯ Ø4þòÁ…\1šûèÛµsPâV†ÑÞVð5¾dì÷æû;u¢DG§êvÝßl×1æw½–òÀv¹ïëñ¤|­¯×ñea¼ ~b(_G–÷ƒ´Ú& 9Œq4—Û'SD¬×Ü+x} À½ð§—ã‚Ú-èšV!ùçQ¹=K"Mt•›ÙåÑ óáØ¬Cšy*ê¿ï(Õ;/ë{K¥Ú]P¡x;ޤþ>ÓõñýÕæwÅÙîãe·¥º}UmŒ‚ØëzÇçy8Ómǽ@qEµãþ…ûös]ë7¦®XlíNüö¼§ µRk†u>-ÆZ÷¯Æ€ÇåÓ/¼ìéË}æÙú¨/­¿]ˆaªˆUª]ÁUË]ÅÕeÿ¬sÿõñÇb˜ ^µVëT¥¦çý‹Àýð:q®T…>\O·çÏÇÅ÷+L½á\b*ªý¹xVt]Ú˜*Qu>-EÅZ-!µ>L5¤²Ã‘j¿ˆBðï#·µ—¥­5u¤R›½ºfSˆ÷wY|¥ÜTrh½)˜?>E_oÛ3ö½¶ŒñìyhàsýQNª£>íå]cTøk횟ïc(÷íþA\·£öé:þ÷µV®Qü4<óí¿k·u¤B7·õøtù ¼_?*së\¥5ã+ìéçÛ¶îÄ#óx¿üÔÿøN‡øx>âýy¤É†·_»¤qÔã›ûãòÉܯ{ ò~¿Þ>¨`‹y­óûµ½ÖVö¸=cUj³úÃ~Îß]›ÆÈŠìµíëµP®ëß8ÕëúR¼ïcáŸßÉhP¯Üë¨}®U¢U´ö”»õ|º9Ï·ýùsÿ ¬û}ÿ®ƒ»µ¢î‡w;Ê4Ö^÷:¾´oRxgsaÛê¶»ÓÓ÷(Ló>—÷J ÷Qèq¿áï¯ÿîbx}0jøÚz¦ _iÃõøêvzð¦óí0×Ëåû³‡¨î{ôp¿}”éYï%-CiÖ?±e¾b¾u¾:ž¯ªóõû‹†˜o9°Ÿs=°~âå¸ÈŽúŠåQß÷¨óþ+}¬[7,ª˦[9,ÉŸöôþHN>>¢Æös…±œ[KŒÁ=ʇuI]ö2”ɯ‰Pdì«úz>ôfmüÿ¬ìñx~ˆÛ?§Ýé~Œ:SŽÁ8‚{ÈD”#xÀášÚ¿œîu[ÿF¡!--öyú÷ê Ì$v@“°!P“@Ø$p“èvœ„{ÈIرÐI`¾ØIxìuû½÷á­!ˆ%88`,ñ*›A–`@Y†€Y¢]g ?J8Ä‚(Ñ'E  %°U%ÜÀH‚j$‰>)(IØ0I`8I¼ˆ”„;vÏel¼ï¼×*žT‚ùQ §H%jD0•À@•à‹ª´fë7bNIÐ`&á'4‰‚j}`“ð@nÜ €“øŽ rôÐIðJÅNâ-ð$œ5ГpØñ—½’ëüAo²Äƒ²ªÀ,MÉ¥Eî´Tü†à7îþ•y—H V-uÙŸSû—®õZH–j´æ^ŽÏ‚÷%ïʯJɯ‚÷ÍìŸÞÇœµ°š…Õ~ÍÂâ~U Þ/?_vµV±›ÀÖe¯ÝÜ#ÿ¾åAZÍÕb©Óóødûú WMÔšó)Q "ä`%ªûþyûrÿþ‹¥¨ÅÏÛ”ï¼ÿÂûw·…OpNÁ.vü›\õRsrUR¿ï¹=/ßÉàÈV •EhØj V¶ú<²§ŸÆ4H~ûËø„rß,û¾V$N±#§Øq ØöÞfÿïõ!q y/Ç×ò_Ý«:¡fNEU¨y­ýKØõö«`TÇg«ÝÌÖZ¯,,ÖoÝã'®µ~dbn_¾f}@JÕÊ}7U‹ÃFªk%U ¤j¥Î__mž?Ù;)jºRÔæj±rµº8oÇÅy}ÖP›½ÍÿWL’oF×j3gt¥‚_wÔq±Ô›æ}eÍûÚd缯Ìÿ5ät½ÿ*ÇZÈûڰ缯\ïþÁyT^×BmÚ×÷ëœö•e\vƒ½]>Üaòev?*¸¶××þuhO?Ö6ƒ,lYFÝ ²]Ò”ÖÙ49,Þ›ö•Î4Á*ª&X½ÖQúƒ’§ŸøØ?ÇìÐdký{^ó9°OfñØÓïtšÎ§iX?ßæ+ØzìÞ·º}½Ò° Ù‰ÿìõ*W+曫UrµrHÏ£þâù? åj®V¦Ïuhõ‡ë§™Sù‡ã.ØËC>ÞœsæÔ1Æ×sþƒ%"qêêÈ÷µÖøó¥1¾_—nd„‰·}Ãë÷ 5uÇýÏ}« z<|ý´-€ }«¥Bßj‰ãbÃF¯ B®Ð( ¶‚jî$„tÜŠ§vÜ‚ª·þys/­–J/-äyÞ#¿ë¨,ÿ‡s‚¥Ú¶*)´mTh[ÕZm5•2$Æ•M´UÂj?*ÖºOšÛû»-@¼w:ª¨Ú´Š Ÿ_Íö¯û7~‰Tôz r<~š|uˆmZµnÍM«Ú±±·„Ú®UÐøz÷éÐõ¡·UTém•Pâ²Ñ­°Ĩm¸ïyšŸN`ÙÏõð’¯÷w•´<î¿´ÉO³˜o£¬ÄÕFYPá#„Öjs«øjs«ñõ8âžµ¼ÔÝ*Ù÷ƒ†dÿ8vüAëÑ{¯8O„õU oRœ~ƒÐaçë‚oƒ?-°º5žûpæØÞæWw«Ôáº6¸?.Џ[úwÛ#êQ8úáˆÚwÔcøùçB‹_·ýuwþ°–úiu:í§õ^²ñì_/U*Ý+mºµÎLM·ößs;­¸$ççwúBï¿Ý£í<}¸Ñ+«o ¬Nð}l¿>Â.^œS ¬.¨FÁö¸s£ìúåö»QV"ýú óº~xI©QÖ—ÝÜ(+»hs«.á6·Zss«ürCjÉ+Í­"Js«o±¹mg€Z’oCªN± ©~êÎ ©:ŸóQƒ{úAŒ³FÌ©önSTêWÙoê¤Ûµ*Ï|<ǧŒÓz-ô¶:ü›c×éùû¿i¦2~ÓLeü¦ìHü¦¬Eü¦¬%ü¦¿©K¿©K ¿)TÂoê~ÂoïÅoê†ÀoêIš)Mh¦,%h¦,Eh¦,%h¦ÊJÐLRåB3•JÐL¥4Sù4SÍBÐL=CA3uÇF¹Ø‘N: B3õ¬¯€fê1 šIÚ\h¦ê  ™*.A3‰­B3• ÐLÕA3­,ã4S÷4SÕFÐLY‹ÐLe^ÐL<¡™Ê— ™ú͔͔ âê' À)À©öÓèU™œúÍ4F]ãXê×Èß>€Sy€“§NòpªC€S… §¾2®pªÂ À©:Ó°TrÌSÅ.˜§P5â[„yÒ9æIN¤0Oò¸…yŠúæ)kæI7uažxoþg‚yÒ\§êŒœøNœ¢W‹´N«7à_§:8ÉÇÀI·Xœjp _pª€Sï`8QQàTg#§ÊN%€“îÍ8Epê¥/'9®8U#àTg#'cœ"y8Õ š)~äµwãî×ùíƒBÀI1Mœþ;þïÿ-œf*8…ŠNÙ‘N¡"èR¨ºT¾ºT"á)•ª5º "žR˜žR–"žR©:«t!‡ .é'uIPIr( R× ÒL¥j^«à¯.ð¥ þ©SX­…¹ž‹ßøŸ vIÊUØ¥R v)Ì£2Xl œ)T‚]’Bv©–(Ø¥î'Ø¥5a—ª6T _¨ ÖO¢R©Zl…(¢RýnËtAED¥úJ!*EªDTÊZ@T •zÖBTêY ,©÷À’jÖ-Àµ‹(¤Re*H%u!•zÖ‚T*_‚T*_jÛ(ð’|D—ê¼$ *ðRùð’$1Uàúö,ðRe¦ ÚÁ͸þ…çÿLèLuƒ­ÀµÛ †SOZNµWa8ÉÛ¼fx¦r%H¥ªÃhI2Œ %u)á •J8HZk.Ó•Z¦«§FÊtWWç©T%¤ROZJý…‚TÒ¯Jù…¨ø•´©Ô©T*@*Õ=´LW’¤’S…T’QR©| R©‡ÝÂ`y$/õÂðR5BÀK½÷[dì{¿ðL+³þ ÏTAžiõTÿ5-VÏ·VOi—ýKWs°¡ÔÖR¦;" ªfWA„쪖JvµDgâ†ÍÁjæWÍüœ^…L;ùF‡˜ô*VÚTþ2,q{Tž—K) ‹ ›„…Ò~J"U‹ ›ª•Ü›ªµÆÏ©ZQ5U+ª¦jÅWSµÐÀÛ^²ýåúßåRçc–êîNoË¥”©Uë‘uÔÍÁê|šƒÕæš÷tÔýƒB(Q+=M¢Ö\Í)XQ%‹Ó_¾?x‘ lQkšÎ]ÛØ¯t®xo:THÔ‚ùÓaœ6ø­wD:ǃt®¸o¢k5Q+¶š‚ÅRHÁÊ%u†Žî±¦`¥7§¡ ²ækž´#A$ ¢í¶ŸúÇ'Á¥ofÒW?±]ŸâœÑµŸŸ2º\Ò¯Œ®äÐŒ®\e2º²Œftõ ›«•ãj®V2ÍH¿3¦,,Îð¾Ç)Û|ÿ$Zxˆ9W‹µ…Õu¯ÓMð÷O—brµ¾ªç\íââü›«õ<çj¥ ÍÕâÉv1¬/êB<­°SÚ×§3§}åšÐõm7§j¥ñMÕÊ‹4U»Ð­)½jw:§W¥òI¯ú"›3§º9›µéÏ9QùïÑ÷¾¹œó÷—~¯kå¾dk aíÑÑí»Ûц1çM!ÒæMõàÃÆM°Öé ap VÖP9X½øïc ÈHÅ>–l)Q+Õj¢öv{©Ô-8>½Ï,MÁ–J)XP![ªþÈÕ÷ïôW‰âjÃäV±ß×uq~ü4 IUƒ ‘[ÅŽãÛñÆüxø¯wTô ¾6AŒhò2ŠÚÎ˵M‚yds±BÀ…ä§l.˜ïxlˆKÎ{4yŸ)—lÝŽûËò¼T.å|×z³C¬/Åu{ìm­ûCo©‚Š&m>súXk5æ”B4æóïýÛ÷öOß>ÉJ?%™Å|ÓÇ`«¢´¦C{d°{›Âv ý|s—r5PóÍDk©†m’CòÕàùjPa´xÏÐqÕ³œnã1(ÍkO(næñú.÷°jGÒðLka![mÓŸçÿÈ\w—¼éÃõƒ €ìþqîùøàlµ¯Îã±QÏ _ bNå‚-„ZR›&iÅüûð”§ë‡Ÿ¨$­¼îùÈs¾>œõ&úãRÜüÖ})ˆÛxJî9«ïæy‘dòòM÷Jmöûd—ím}œŽ¯—M_˵ïó‰í|8ãlN?I Ëv^‡Ž~´Õ×i»ÅyýRÄh¹£æqukžvÜ×qÌk}X#—±ãh__›È Û¦œ°«ñŸÌ°ñÄuÙ»öçÃ}­XÛûöq;n±õ]§(qu‹ýI ‹­&…õ%JòM û©8'…-ˆ÷ë°×Úò—ÚOÎq©^ÖçŒÐñ»fÎäÚçL®Bò5Grï¶yè÷Òlwæî‡s[ë—ÐtuÚEÓµB'¯ZsD/~#:wucÌ» Aç.ö‚/~!ú{¥]íïÅZè﵋K"—§8ýú|’îÅYèWvV¬$y¯Fn–ý΋cDC16, ’-vîÆ/ì’dŠTu©ÐO¬³n?±o„9¢ôKcnÕñ¿Ž|íúÊFë®\mÝ•Ú7XfÝ_iÄywÏcÄÛúòo°®Ï"K È1ãš*:“ØzýwÖëÑQ9wÌâX{]tëf)8“^ Nõ ¾íe=ÃÏ­¹±Ô¦}Àº= ©$¾ .¬*X’¨}ÀR‰¶åÊ)5ˆ•<¬ßŽéÁË[#M²¾çÆV_ɬÒÑÅ#Lݯ~¥N˜Çº~‚f¼iÒiðp=b«Cß/Ç$ãó‚hÛíp#Èûú~_¢óqË]o?€™Xi»ªGž}¾KŒ3^ÐlRÞÓ”Ûß½ Xèʼ àÃo»îóËn—ѪºîpG¬ö^ýþió‚hs(Ã,ŸcPàb¥½¥ñ²›åû_ŽK¶ûÜ_h·Óϸlð4 U¯ïñÙa)Êá¶ÆBçó¿ [Rz˜›ß—pdš7C9ý ¥ç={?nÈ¥–Ü÷3$·¥yß¾b–1 dÍÑ@]G¡êy­¸ÇÁÝ~£ä–ö·õ¬x-ÏíøB¼ñ}úlI’_wþé¾vñï-œÞ? lÏšër»ë‘VÛ­Åô<ðÆJKçý¸Zòø—xð±í7ÓåùÁ\÷ÿÚüÛ}TØ­íäq;Ò®—µé>¾ÛÒ ¾îdÓë}ù÷éDD§×æy^ËÛòr|¹n—Ï{yrïã2 )Þkõ~ï¬M«¾ÁãxûËiÌ%?­]ÜiW”aàkò8âèáW–DïQ¤8Îîü]Æ#~ÿžm·{ù2Þõ±Œ‚ŽÍÅà\kszŒWáý{äv®í}|–X¹¸Í ö²£Ã¬Ý×ùøq¯Ûú½p:´i\Î×OzyÚïó¿/ZéuÂ/+g¹[ïP¦¡žë‹àýï+ãsí_…g€ñÜþ}}×£â¸åLJ’õEpÛ“¦×QäøZJitï #ØnÞ×'ë÷üë§kCÛ]Ï‹?áŠ~Üiÿîñ‘ÙÊ¥ŽÚ“Q©²‚\ ür#^¯ÿ]ê÷ÇìüŸ—w}>õüZ>böãAÂûƒÿÚ¶yîÁßóçã–žÏÝæöÚú‰ú8RZ›Ÿ_;”£jî:š–mj{@:Ä´~4íŽëóúÿÓuÿd¿ýå±T‚£€t¸ð×e}A½Æ‡Ä¡â×ÚíŒáž Ùî×¥bŽXæü¶ñ½^ðú|~|£ÙžQ²|¥¾GÖâõY˜ûÃy$ª†¬Ïn4]ìwÏùgbåßÄÎÿœ%•´†JYR¬¥1®] YÒR)Kе%_˜öŠ “%-‡½v) {-ïÍ¥b©L„-OãJÆ3ÆKuŒkˆ”qÅRšªÚ“ÁTU(2¦ª‚wLUíZ˜ªZ"¤Rq4?ý,óR˼æ¥ò3/;b^*Ä…y©à«3N+.Í8-•fœÂ5•*¶0½zƒé¥¥ÒôR¬…é¥TçÌ%í!y+ya.)¸oZV Ýé¥ ÂôRø¶ænuŒÍÝÊ/c*Ô “P±c'¡Öå"u‹ŸˆÔ­®±9u ¤n±Ÿ†¯Bkš”…sFRÖ‚Ï\US¡ó˜… ‹Å,T88ÌB¥¼æY¨=Ò­ØSqá5ݪ›sUñ ;W•îm®Ìõmé«|eÌyTP!ª×VS¤RŒV…ù4EªSLŠTDI‘êVÄVJ>CZy±d°*ØJŠTÇÓ)4)R9pÌhÅÅ­x 7Eª; 3Z¡6M‘úÎüUð…ù«8 Ì_Å5E Ù#E*G‚Y®ð\M‘ʇ'EêëgN‘Ú9OÉOëàœüô³røŠ+£\f¤Ê÷ï;y¿‚JU¾¡b•o×R•o×R•o¨XåÛµTå[¾På‹ [å["Uù–+Tùv©Tù†DU¾ j•oˆXåÛ¥Tå[i¢Êʇ*_ðŽ*߮՘âĨé1J»¡J»#âW¬õ×zW‚P•/TU¾*ª|«ªò÷¨ò-•ª|áiPå[îšJ½š‚ ¡©ÖB]1µ>uÅ=!ÕC^¨+†Í¢®¿uÅÕ{L’Þ£ú>ÕÇ8mTÃ3£úZˆêc옂Pñq¢Šq‘¥ø¸4*>î~*>®B¨ø*ˆâ㮥âcOÊŠq<(†¡`ŽÔ×\0\Ñ«`¸¢`˜¦˜‚aÜS(îZ*æ…"_>4Rä ãG‘/´«E¾xo¡ÈG"_˜Š|qŠ-òQ‹|q{¢Èb@‘/ïŸù‚­ùâ Qä ­A‘/8Š|ñ@@‘/ÞÃ(òÅU†"_¨ Š|y]§È|¡È„"_Š|¡(ò…#A‘/<Š|á[äËë'E¾t»SkLù.ŸŸsù..ƒF°Z¦v® ôðP©XT—ýâ]^ßÅÀØq€¹}²Ü—T¯çæñx½>òußñ9JáK*T ƒ/” ‹¯Ö ë7¦pD¨J‡µaj‡AÔ™3¢Bѯغ8ï#2[S¡XW’o•-$ß Ú±¦UÒ:@n?5Ò­µb%TµŠõ–µb­#Bßä~ÿ´#ª_¥¦÷^ãþYå_;šÂnüki¡V|µÖÊ5ÁŠû£úõx2þÖÊJô­ƒ•)î_öòÓË’-¹Zsqª”«Õ© B婨Zz*'زRQ혻Þ<ÖâBa©´«•¥‹«ehêéõÁøÿYìóôx!Ô¹JÕ®rÇ•¸^?5ŠY¥‚­fµ›ËY¥ƒû7¥#îµ*ª^msÙ+6D%ª¨Zej3—™J©3õ>šJQ[iªµÞû†ÏÍi~p–çû±±÷^cËV%­óq¼Ïß]L:êÖ¤Ú®ç¢TyçV¥êê¿®Q¡¼6ëëg6îôçš-T¸êbÜ1T¶ ¿³ÅûÞmñ§ãeù2Û™_»ÕÂÊ®[ ëk}U¶]Üë‹ñõþ*úøt¡hV²?€sÆ”õ;âñ5£âùú ¯R6êènÏA ™oøƒ±Hl¡®øjîòI;m!×Úw©ÂÖOƹÄÖê5רJí[d+ûü÷ë ÷I-Å•F´×Çø¼Јçµv=÷DÒïá3‹»eìøðê+¡²ü—Ç8ŠÉÏÞ@{d34þô‰óÇí:õkzÐT‰8b]A‡JÙZ¬%¨à®…<,Ö p‰(Œ¥ (Œ¥(\ªæ<µP‡É{P‡±aQ‡q†¡‚» ‚»” ‚» ‚!+@SI *@ƒ PÁà PÁUå&›e;€ ÆA*¸k5Ù,ÞÜ¥„Œµ€L…R0t«ãwl†620ô À *0dz=\ÛöøùÆ„xi‰¿A€Á@€¡ÍGc-Aƒy@÷x ¾šÛÖo 0Mq΀‹{ —{! ã°Sv-¢&­uqv¸k!Ñ æ(ÌÛî/0x0' Àô3ðÚÕü†–¹ÚÐt®˜¾/d|ßR5S+÷ݬgF¦åß—Î4ø¾à}¹ŸIÁ}y—Ü×7ëî ÏpÚÃü‘júôvp•OÀ~oÎÀ”z €—oÉ?Àð2€¦ïžs¹¾Ã ÛPpùP0[“¹º'l]žá„!Õƒ¨@Á¼éÜ_ˆ„¯®iÀ ÓkNgÝ´°¬ Ã4Æ€÷¬:Lõ,÷×ë“1 wX°ŽzRBüw,ãÿSZCÅ)­¥Ò”ÖPiJ+–êüÕ®¤ù«Xê«vi3£ó9`Jk×Ò”Öò¥)­ÝQóW»£F«‚jOŸïÆøþp>­Z¾0Z•¦Ú¸Ki´jťѪØ£U—*ñg´j©0Z•Úäaj׌ʽ¥¸¦T«µ¶Kl$µÏÏ÷¦0uð:a “­Q‚ö¼¿ê¼A… alxàb=~×zAm0[f†ÙªÝSSÁ|ç¡v?ÍC-ÕóP¡¨Öïš Þ15µZ£y¨¥Â+pX;"ÆŽˆ…EÕXx!ú)öoÜ¿ë>¾3Ç ºïÝ&×áO®ëŸˆXâB,¬ŸØXx­8¿caP5¶e̱0~"Zo­ƒsÄ ¶1ƒê¯×øt@#f³5GÌø‰£Éo䫯ótín1c-DÌ2ÆFÌØ±³µyŠ˜å¹1k¿ýØÉóƒž*®–67®–‹h«øJô-94úÕþ»¶Ä8EßVÀ9úÖIŸŽÄ÷ø²þA¦»~n7ËýƒL£ëÒH\­»³}¤²ýÛQÏw}r‚Ï£æwÜ0kÇ¥]çÓ];6F÷í9ÇèòI ™Á¢aëà Ë4çZSœ+hœ *Ĺò‚‰símFúñ5v!¶°¦hXŽë¶§˜G8üÁ½5–Ò4Е¯i +uhpj•Ÿ‚S°…°SÞGyûi•Õí+MöéZQ+Çõغ»­=å¦,ûùŒfÆÏ÷ØŸ8Wrhœ«_Ø8×ïÀ9ÎU#XQ%‚Õ=ÖV†ÿ<ºŸ?åg’Vã\±Õ8×66ǹâ«q®è<^ž×q£­Ý–â\cCX½›‚ê ì`o—_+jCØõ‹øW+oÚvjtw+©ÒÝZ* ÄÑZínÅZ˜›C¾Ò+¾:^GkµSTè”åoL§¬ÖJ§¬ˆÚ)+ªvÊrùSVÒÊp­ÔFY-Õñ8¢ê|î˜vZ­•á7"ÊôtsµTçßHҾ˥2Glý_í×84±Œ·¡‰Í­À⪭ÀCZ©¤iò¥…¥É—ê0O¡ۚGራ6S¤G"mP½ÖÒj»ðÂĦvaÊ!í¤šÛ…©€™­ÃCLS1Hçè'¦©xq†ÓXœ…L§ÖãÅOœfÞÐ|ÒzLª´/¬z{û' ʤJƒ2å•ñ8¼0ÒÆL'˜6æÕâo3O(]Å ·;õ SŸçNà…ÒOÀÔÔ ·[í^¨×4º†k¥«xáমbŠkî*^¼’¦®bjWºŠ¹VºŠI•®â…ïúÛUÌ7D¦áP¦é=¦Ïо¸Ò¡ÌµÒ{ÌŸ˜†aþÆcÜÍxsÝ–’ÀäœÅÝ?µÓÓ Ì‡sÆÙð°Ó™KªtæR Ó™KÙ§ç–ç˜é8ä+¹|£f>}IäðMÿîâÍ8õï.‘©—Z˜þ]J"­¹¼8Òš»pÐS;íâ!>µÓÚ}ýi§R*ÿ[äag"¦aC¤,l¶Zq‰C"¡w%€—H9ßþº¦|ËRpб2¹=$r³jš»RñŽ»Ò³üýsÞµDM»†£–)ƒ£V)ó÷'}Û•q•æ&KZÍE’T§›iÔèÄ\)i͵rBR³§‚œfVB²R*0ç*kpHUv3d*#J€ú ›YEA23+)—Yƛʬ”É”‚'ûXWäcO·Ðº”8àwá¿gôÝ’|’l‘16k.´jRà]\rÈ—ÊUÌÅÊ$²¥:Ý$K{ºÊOH¨–'äSes13ýÉ\Ë\"%SeÉ¥–'¤R%‚9“ª«pFä……—|ÏiMùÊ©ÆgRÈ^èw±xùŠ› xé)&$^r”jò§Ý-»P¤Xe's†µG[ ^ìÖa! Ûw^ñw—åߌhùFB´gR„^ð¤©ÞpÉ™öÇ]â‹Ó-:/¶CòµDͽÖ(‘z­¼‘SÕƒ))U™w2ªuKH¨†qeJ{ï¤ Ç‹dª®ÝuxiN¿«iO3èðòÕü+“:¥Eþw@@Œ/Ãüûš*fREÕLjwT&k!“Úµ”I_ͤ‚/dR±2©¥R&TÍ‘‚ÙOã"Ðxe^VÌ‘Jl%“ª¥ŠH%íÚ_ô×ñ}â±þ‰H¸bÇ"6á‘•Նͷb­æ[Á‘ ‡"#a¿¦n¥YMÝb)¤n±Vó­2‹ /k)$I!†ãy¿©Ãã;8‰!•*-m*U XÌ#tR©ò[I¥‚+¤Rå¶šJ•´ Œ$94áj›®rºM¸‚/Œ’ 6ãªó L–BÂ?± WŸôœpµLç„«áœpU“¤ºVš$÷MêÆhúSޤéO»ù?PLòËY’2_÷ï ÷Ñ·Ö¬ÛrÇÈÒ¹1Ùê«ç1¼çOÅîtNÉÊ.’’QS²Òå¦dÁR²VÀ9%«µš’• ’lÕCª R(Ä Ø¤kº‰OáuwÚ{)í׆ô¨sSšÒÒ";餛øÔolâSWAŸë×ÖoÌ&FŸ:ž×þ&ЊË'Ó£Rˆ&>åÜšøÔo ‚’ˆ‚ ¤³n ¿iOÙkÓžz²4íé¨`NhJ»šÐ”{;aâé“·8’.Œ¦=íç´§±sÚÓáÊ4YGOëºù;áãžs3ÝÎÛ!ÞG>ã¼üóJš…“•NçýÓÚö~}ÏÁJ^S" ¯)¦Ò€§}àoCˆ`{¾Ÿ ÜV „ǰ™aŠLÜëÈ{½õÑnû­º­týïâ·i‚ Îäxôð{Å6jKµRæÇ@’3,d„±0ýùc´ð×J+¶°àñøõ=ªÔÉ1åéø²·øÞŒïáøàÚ”ó¶´&Œz©˜Êø¾P×BÉ-Õf®¹…U£èû¡êjƒbYXªeÁ‡^>ÜwâñÌ B”Õ\m ï!zÓ¹(·Kiˆ>d.¦Åv(”…Æ  –6—Áb)”¸BG„µP ËGihÏŒ -.Ä¿eµø…¨«… Aa-~!*kù¾Kimácÿ&¿¹® l$Ž‚Ðª¬âZPµºn˜E<êkùŽJ-M:¶à %¶8k`Á³¡gKq¡¨Å…—d)Ù]ÚþŸš]E»ËWúoü#¼ÜŽZ§Q.ô=&r“Íþqÿ> }äO5ˆþ«@Ãn˜¬*¾3X5Û%Y«ÓíXÕ¬³YÂeèöd=¯âèÕì†É«3Š}«JÏÇ1{ñüöv7 g­´1›U&Ѭ%ÂdÖð=àrïÇ—ü¥ÅKï>VÚœÙm©¹ñZ³¼'7éÏ¥0J5+iúiÃO«(j@…/Ž3MKÔ‘¦‘w³ã!º¾Çƒñ­wTˆ,E‰y¦¡ÑÒI³EûÛ04´z‚i =Ý}ÜÚî1>xf ð¬,“°Ñž¨Þ¶ûiç-O¯}„ö~µ\–.ƒ@C³¹ï‘„¿–^§ÃB%íL•™ÌC@ko˜Ú–ô±T sBË7€öl,òÓл¥ÏIêý<«ß¯±žY§iX]öü˸N–æ6Š¢ÅO^–2ø3Ë4½Še:TwIfƒ–¨£Aãk’•‹Äôо¸’õM’ £½I0`4|7+Gšœèâ÷ž&•V³1¨tõ0û3§´¾cJûë’^•¶µ,–7W&™Ö¸1È´¾ sL%§ŒÕð¾÷ZZå×38ð%OšaZšŽ0ÕE™ ¦¼J†o?ÿL”ï£k$nD§Ÿ)ðu£igämüµgÞh‰q£}ã¶ì¶úÖÜªÞæ¯ôb\nK8},mö¹¼'€•*]:µ‘W'›Nïwv;À÷o(P=G›òë—› ƒÆ®u½ Û¯w^×BlÙ¥^G“Ýëô£-]IÁ%ökt‰¥^–êµ×&^ǧ‹K!tÄR»¿ß–º~X Ácˆv)D†]j{]½ö ÕóOÌÓ¥öAêˆûðø ‘¨°¯£÷¹­õï³;Ôï~ß?p_î?Ÿd``—á7®÷1„åÃA·óTl!FìŽÛ+k¯by]-ÖúzÿþTò,Î:'Ôgùz~uLl.ê½êè¥Ú;œñï ç¥T÷zÌëH9Ý—;2‚UCXüÄcÀ¤}8 çí aŸÄu¹½GíÐ^ïrþ úƺpßÿ %?jÄcï<Ûåý»—_úÜFV¬¥ð?ñÀxokÞ—gÍ(|½T’Q4·\k˜ìÞ¢zú,zDëåëuLÅI·õŽ·ÇÑ«öz~º`GmÌå‹jÍ—bÿZБÞ6~|£—Nœöê¤qy®}ýõh ÙSoç÷âß°¬ï }{ävûpi º§SšÃûµûßãñ ð:}§¤Íˆð¡[{íØ¤xZ¿ô!=íÙ¹çéôáú}Y£#ldºÖK½÷ž‹ûx¯­zÔżÌâ«Æwº‘y6­ß?÷÷×…·|Ã}Þè œq8{ÕÒþ‚½,©_ûm:‡Å¸ÈÞûþª¥èyùðü>Ó5ŸŸGÃú72ì…Ê#î…Ûz;޲¢5÷¯¯ZŽ‘èú`ˆqw¾Žsb­ƒ~AÔè—YÂ_8ùóÑÚw¹}ÒùÑ2ôæ}ÿà¾/G­Þþ˜Zk×õ&÷~”µ{»_”÷ÏS¨PÃÙ¨·£~yŠMq­©ùõå£vÀÊŒˆèöÜ¿Ì."ØR6ê÷ñVÿ÷K!Ì-•Pu±Â\°\]1ÙÍG\[r¯zcðÕ˜nQÛ^Ó6®²5Ux±ÀŒ°ÔeÇïH—Ï¥´PnŒ¥N_ÍÈÿ ÚK‚°Œ#ªŸ—P*ÚP\5ÄZE‚ PC,Enu°äÐpRS˜]¬…P'ØPk5Öb-ýÆ" É=4ŒÒa7@’I?4ÊÓw?¡Ö:vlècMCðŒ_IõrŒlòz¯å…ÐZˆÂeP°…DÔ(J¾¦ñ‘»ñ‘¼éÞ®½}´lEQÚñ¾_QcŽÖÚ¢œT(§† /ŒµRN  Kç¿ð´žÏ‚|°?nÒÀbéx¾:bÂ÷ÁŒAäën-‰)pÓQ·€·FÃ;ÙëW>ì£OR(ïü8 &oÄ  hñ>%…õŒ*l<`Ó°:›Æ€Ò÷BÛ§’d‰ª! ¤Ðd¥¯•9¸“’6 ÓK£™©Ö°è¼Ö¿9jÓ¶%¾çX |¡øWÜ~T-Öù4 “ÚÊWѰM6ÖZÜÅCc Û¬]3¶.Œ–Ùú˜Ëlí('Ô ýÄVÙÊÌîC_v»^ÿB„œzŒ´×ñÃÿ˜Ž¨í¶3ýîÌþ‹7³€< ‘ÐŒ@T ¢¨¨D**ã÷ ¢â݆ˆGd|„P·Ÿ~ l8£®¤¢®TPY¾UÛÏGW<£Ϩ,ýiŽ^qHV,@#œ\±Š MÅ*êvÀ*"O«$U0Ô#0^Ô#Ñ/¢쩈F´ñ шÊ4#¥‚Aã V¢‚Ázƒˆ*g¨SùË¢Ù_NhEKSù…V7P´" |F+ÂnE+QÀP¥qE"‚6‰+‰,‰ÖT$"ÊŒD7pÙ³!#B¼/Ù.\´²pEØ-À¬" âª}Ü |„ëbFeµÏ¸G°¦âa¥BÑÅMhEðº™E)}Ë(J»Š÷ÛÛU}À‘àN Ž÷¨ú]´"ˆ»hE¸/‹V5)Z¶ Z 3Zì;0³R¸¢Qug´"ðT´"œ\Њ°[ÑŠ@DÛ?2(´2‚ÌñOGZ½åÿ€#ñršqà,‹{Ä7êŒ{S)î¼epx_θGÐÀØêè ŽÄkGÂvGâ}9æòèþóÉAÑþ€#ÁÁ çp¤©­k„ªè‰„v%5—†HÍ¥å uÂ%j0hR´ Ž]â·¡%»µ%´D¨ëívm ÅÁ¥ª·ë %´D¨üín-ü­–4ºÆn(î™ oânm0Õ{. Q+ƒËzB±R«‡»RPŽeLm …Zî ¢ÖñòTæ2^è@«xK„ÂÛýéEX/4WÝ‚(E·7úFáò¥B§ÛŠÛ¥¥ü*¸- ª_ËR¿AààPû ï5#/ë·µ¤µ ¡¢ºÔ.U¸øVªâäÚ¥JžæTH ¨¥AjY*b²~\kYirçÿãÚQ*~[{PáOfcie«Xaq-O…Ò§ õÎG]if- UAÔFU¸ø@Ë{· n®KÅm™îQx¥6†òΙë[qþ-\-Kh -O vÅwâØÅnª’…ºµü. }¡øqí å¥3×¾ÂNZú oÒ–Oþº¹¤•þtnùä2—¡âjj})½À\^ Ïœ~NÚî„Ík“››>ariúìñ6Øõ“q.d­¼ÛÊ€hnúÄë»MŸðmú„‹oÓ'ÊJJÿ?BBáåBuSÇ;Ï\$&E•Q¢¥Ò(Q­ÕQ¢X £DÉF»”¯ŽÕZš*ŒåoÄ ˜®•£"B–THÓjÃy”¨¤uÝ«ƒÆœ¬ëm¹Rg„j©ŽÿÕóÀ*Ýg©‚Êçb­ Q&{ò ›ÆRì)uÀD,u$+Gê{eªý48f‘Q¢4Ä?ƒ –†Ø)<CÓÖRÒL¥…a~Ôaž$J·5OWÈ\KX™$Ê_Ø·MlšJ9`°¨:µ ˜¡œ9ú“×j`'ÕÚe¶›üòYTs\'Í*’Z %{ïHI‚hô'¹7úUë•¥¤ÅH’›løgu˜Â?y­)a¥" ëtD¬žbÅQòm8ÏÎU†çøªê> >\`Åmò9Ç­‹gä‘J­k®G¿cMM›ìàçˆÔ—Ó‘Êt‘Jôn² æPS‚H)¢‘` €L *Ô’äÞXͺ<Çj¸t¢$¹wRŒOzQ’¹DIïžÖ ;ü˜@”ü:šà‘¤ÅíõþÿŽF |ô·zoQ;,ªÖ—ê=¦9åhî+*VcGT‹/ -•JpKåUÁâ ¨LDª‚A$ì¦R ¼ ¦*D(øÕ†÷£­ddÇÖT‚fêY·”D-åÕéå©K¡”g0¨nØ"]¬$4¨r…"ÝR©HWŸ"]ðþ·þb©3-Ò•Â8 Ç“‰ T‡”òÊ?¤”û „ "m)¯ä¬*Ï\Ê+i­ T…«‚–¯ N€U¥jù­Og.¿µ´æò[©)à¯`®-Ò•‘ T@ÀÂU,Pí¯²]竵X¤+w <-ØO‹t—õŒ¨…~ê\¤+M-8Õ9 RŠtÁ–Р@8(º®àAA„âC#ˆP ja­¨€ EO2ÖJ-™•, (¸Pp¼†ÂåYd(X ¡ `CñZ ðSU5ºË‡à_è'Ü-­äõ!èO°XÀ?a- 6Aª…m‹¤EÁ*Ð@x'¸Ô‹ (PÐAÀ@/@<á–2_Œf¢âÌ…¼Rh 8Á² áÄ[6NЀ8ñ€‚ℇ`œxk¢‰ïþ¹r˜žwªþ›@XdTK%ä¤R± ¹;ª¾¸k©¾¸k¡¾¸DH©‚JUÁذUÁX UÁXª‰I³•²`üÄ–ã¨;eµD¨îá {‰¥P; ) v˜ZšÚaPa~*¨Pa ¾Pa\A Âf c!*Œ»*ŒÁ;*Œqˆ¨0ÆZ¨0®P…1t ÆPÔû–ªYUOŠ‚Ëü䀇øëá’÷ÖCðM½JMQí»4×ßÃSÁŠ}ñ QìÛµ4µ"ÕÀÓîˆd¯øBá0~cSÂ* ‡¡ÍŇÒ1&«ËÁÝQ ü“/Ÿ¿µ¾` U¼”hªxiùsïÚ‰ü®âÅA'Ù+ýCy./¨9A«_ˆò\å¹i´òÞ¨¼å Ε·tm©©-Õœ{•#MÙ-cM½ú*ŸS¯‹‹õoêUªÐ¬ªoòTã튉¨~IÎÕÀô¤©ó]¾ÿþÔùÂè‹ ¥l†Ö¾;5üYS3 ÃÜT8£¢GÉQŒ§ê)ûTÓwÏXT:¡Vƒ¨•żSYL¯•:_œ5*xif©à­Šeµ™Ó½òMäbC @é1\•áÌœ¤}Ü.G5ë}ˆnT#ú¸ ÚÛùÛ߀êv$žÇuA¥‰¨ ÚþkO`nè¿*°R©ŸkaÖ)¨^çã›ûíç~Õo|ïe`cúÊRèÕJ_õOÛ¾ç¥äïãsôp]Ã9­¹º}ÛÎüÃ/ìDT,uÙÛèö£þwS/Ä0. áG>ë¾µz<¾cepµÿã¶ßÏÛG\]öO5÷ŸoV 1 ¿5þ度ºìj°›Ñe­ò·½Òà:¨ÏË“ÖTTõþÞ 4Ëߨ~OP¡“s!‰!ˆŸv³uözÞZêôøÕâ£SÜ«6gxþþ U*u_bÇ‘›ëGó¹ÔÁŠùXÏ@®ù'YÀýž;vØ}À‘¬a§ò5·çïñYÏ»äïC×*xIôõ¼f~Ü÷ÏñÉíþá¨Õi­Ù?Œlzú\ÿĵ—´ýÔµíkª¨Äõ>F¨ÝîÄ¥Ù£º2æÙ£â½³G%øÛþJº_?©¼Z!uuî—ïz…·çóx>œÏýydÇ¥ðÁsÝhÇå£i“£nŸNó×ýkøkû¯µP/G•Ãýzþ`eû×õgt›¨6«?ìçüýŒµiŒ̸4ÉñïyúÀ–F”‚êx™nâz}¤4[çñ1úñéê¼¾we¾}º_Ï{¡ÿ¯Å ¥:êóžukÚA¦º¡ÚÇiÞ_»y|)“ö×ñ>ñþúï.†×s}ŒÞ¬±á(ÿ[Î׋ò96^kÃ5°÷—­üùvXëöv¹} º ·2EG¨®×öz®®×-@úļƫŠùÇ>åá|ÿ®IZ<—#ºûàäÑÆ©£îLTíxÞUþõ“¼$Õs¼½FáÁZZ§½¤bäT~âåÈíÄØ:Š$_×ç§µ.#¼ß×Á{¯zÞDýþÖ"/ßîRÝQ—½—}DßkÏ||ºÛƒµrižëÚÊç‡èN]×õ×x§D÷q»›½ò×U *°¥B7«ˆÚ‚Z*E¦ Bd*時-4ªbÃûþrSžë÷ñhð¥RÓ«Öºïjóؘÿ÷Z÷hz÷ s±ÔÜ ž.û³ozЙFÂþ}S$ "„¯b«á+~š/!*„¯>è9|Õ(änëùþL¿ño`ê çÀTK50•!¶Òç3E“Pe$Ñd­9±!bNìˆ^HiD£Ið…ŽI ¢á¤¨íߥà•Öˆ9èÄZm¬ÄOÜîêÛ—¯Y U‘©\s#SyÊ9æ”¶—S јS÷X£I™õíøÄ:^zkÞMJéÛÌéCœcN¬…–ObƒN©`ƒNýÆ=»«¸®Ýà}—Óž [_°êù”lhj3›CSö1õiLóYkZC-®)ÊõÍ9G¹ Ñßýx,—BŸ)$Šd§}óÈP¾Æ—ØõÛ -¤>èÇqΧwuâsyùÛÑ6yûtc ^–å7Æ•^5|UcNó­¶ÉáöÁ‹(2õŽbÎí»¹T'¸@ðG›ßößKÞ9œ¥¿ðz”%Ý~Á†º¹ÏåBGpR2ƒ“š…Ñ,ýÇP¦=¿¯ùêˆMîˆ!(D†lr©NJ)ïhœ´ÞŽŠª×Z±Ðì¨ãÉœM*éÞV¹ç&k«ÐÜPanI©4‘‚Ÿg{ê'vn'}îþ©pÿ¤{[3¯$K¯ïå!Ž©u;[—×ÏØžâÞb±ÆÚòG£ý^Ht½®ÕFÓB©‚;Îà^ëÿZÙ>礀­Óø¶Ôå¿Ë3Ä0Ð…õdä tëhf´f‹PÊWg‹.L1P°VFŠª3H¹#& àîɨ҅{›ç¤Ð`çL]¯i®ÔíÚæJ]}JÞ1¤Ô¨Š¯N?_º¸9çžOýÄLI[èùÔŽGÿèktÒ}zdx äðš¥Ò7ÿë3{|¸Ê†eÜ÷þ£~í£8ÅÖÄR»Òd*¶0ST˜)ÓSüz…X?ÛGµ#¦Å¬^à›þ\×nPãWé"æÑª‹[jš­Ê÷Ïð©›Á3°kŒ”Á#/¨¾<3wçÓSÇds©Ã‡ëü¦ŠË H½>ë?=¦ÜnSÀq8§Oœg8,Ï9ÓaùZÌxذer‚ “_g*O~íZšüšµ8ù|!È-_šüÚµ4ù5TœüŠßˆ°ºkaòk‰4ùµTšüŠ ;ùµDêZ™j¨+Ö¸֮…q­%¸VœƵv)kí"Øï†ÄÚ•ëCK1ˆvA¬°‹~(ïÀx’0® hÝA¬ð"ÄZÞoÄ aa+¬ƒXiÄ 9à¨úyZŠA¬8 b…Á§ŠRaÄ*Ï0#V)ÓŒX…šâ³‘A¬02|Ð>hà*À PãIò Vøo b…{à V_éówœ±BS_‡õß¿K4n7ãZ±V?CÐ4òí BÕ¸Ö²¥q­T¯ŒkÅZ×J7˜¯Wǵòi“ÐÁWǵb-Œk>VÐÃÍŸ! - b…u+|±Ò°óá;b\+~"¾VðŽÍǼ“0Ô†ºò‘ï0l uÅZˆåñ&ÁèWHa:¨¦C¡1úçˆÑ¯ÐŒ~_æ+ ~ÅmŒØš/ËÄÖŒ42ÔºŠœm‚k\BêÊJNgŸÑ¯|Ôgô«\á àô`äÿoß4˜i^‰¸LóJ„ešW*ÓLC¸¥,´¥,$°¥™X»™ð˜ÀvᘲИrncšh1ÆBlšÒ¬×,$¸¦ÈHhMPÉ‚5…HXM!TSxRÓ¬·jŠ•§)g+˜¦y%¡4…m4Í £)+ ¢ *P„¦è’š¢'Âg‚y)ú à¥ÈûÏ<±5KØZY v)'Ô¥…Éý] KÂ\ŠÆ ri^‰ˆKá3X#o¢2…'Á-å× m 6—Y®e\ˆL3ãšäÚóSh0Ƶ¡0›æ•4x5|'ñïûkÂk ?‚k‰­ N `M+oò«):)¦œ?f¤–oa0EF‚`š‰0û´ŽYL8‘à/Á¼3øTN°Ma;M3šp/zI匼ëð®åâ.ͺFØ%½ƒºYtiñ ü‹¹?"È%8åb)áÆ)”R¬DHJ3ORŠßŽR®JÁ(Iq3ŠRü„@”"q`(…J¸ßŠ 4 @£Y{/c2«\W¡˜¢˜¸ZË\,³hM³¼Öµ,VSNWðJOft¥©þqX†J5ÀXKðÁX«#p°j€Å=‚Y­•ê^q?’ãtnky!|ÄZ©¦èb¥í¼ ½^¾/P!„Ć!q<­L–HŸãyþi•°GZç@RT$Á}+¦Åý¦T{Ñùþp‚êò\oÔ×ï^0ñÕàk¥úšös9Îzüˆ¥e(ÄÓY7Æ“-Îå×Zª¼ÒÀyØîo ÇÒ\S~µÕŽºóÁ0~Ez B€æ[É-i!D“Gš+¹©¬¤4ź…´šE¥ÓmàA´–›T{ ÷Æ×°¸p®Ä•0 D@×[­Ò– 6ùÁÆ~ê¯)Ó6ýóÿq©üšÂJù5=Òõ(b|?ÿ»Ô-E‰ú…AΕ¦Ü›—Ïàf׆^¤Ó¤J-4o‚ë×c䧯V·J*¦y¤š>wuSÏEμSäL—›"çÅU7„Ò™F„à«EÎü\äL3Lž’?1Eμ/RäLÔS?1õË´žFr[ uØsÍñâ*˜£>ˆ«ÕÄ‹;qêN~¸Üó÷·tõT&¼°±aÕçËéûK¹ll.&–°ZL,i5fÃR©ÿ•š6­¸ˆ´¦Ê^F¯éqÜbk— D_ÝEô•jÍŽôHsq/åžâ^êLŠ{gЕÿý¿8n7‹×/”¦PA¸TBîŽB.•PK%Ô_ðUÔ_ÐTE:•}Ë<}»”}AU°£….ì/â ûË ƒèK9ÑkÑ7T‚D² ÷*Ü_jDpKअ$&D_nD_P]~c¨­~âß^õÕZÀê¥BÌX½°D`õb?`õö¨…Õ µ oùn’ø*V/ä¬^P\Éú¬^8ç""JX½p¨Àê-UQxK#^ˆ(¼8j ðâú /¬º¸IöÁê…´€ÕËS V/N0¼à 0¼à«ˆH:Å""Ù€é‹ßH_xA@úÒ‚é ¾Š›dyÍÀ¿¼bü _H${ÁÇÈ’Ÿ Š,†BµEvà3Ð0”@Ã`@ÃtI3†0¸î/t¾´±ÒK¬TëåZ3$’äPH$=Z‰´º„ÿ"úB“÷Û~§P?áþâ÷—¯Åàþ‚ X½ *V/ì¾H’}ùH ¢/ 1ˆ¾à ˆ¾8 Â+ÉÕ÷÷]}qŠ@ô­ƒÉ×~p—¦ø÷‚îïò¡þ ÷W·‚0mŽ`/»CcÞ{…°ŠvAõx•Þ¯Ÿ‚R)8ÅZ(îÅZ‚S* ÁÁZ‡Á×ëh€|¾¿ÚhÃŒ·ÁJÀý-•j“±!pñ  c©÷<µ‚YD)<Që|A„¢Z‰3UµÒã–ÕŠõÖÕb­ÖBš©±Jk±Æß`­çWÃÂëþýB§Ü!9:ž–×ZEçúZíxßõáö¼|?÷%ú–Øâ7bJޤÚ"[9­½[Ÿd¯Z©WkhA”d­ÕÚWký\× Ù#Ú—T‹¥,îGóÖ([]_-€Q+`åÛ:™GÇxÚ½÷p̧õOà²L¨õ´Ú1€Ëp¹øp€Ÿˆñ=²³©:W÷áüm4ø¶–€É,Åê·K}Gø5ïDR/ö±o͹WæÚJ^ ´¥¼–Ä4BÅlز`Ý+­ ¶2L…ÁöÌsѯŸs*ŒîÑ#ªq°ñ}Œayý|¸’27Z–ä3–GD ©uCu,o‚¹Ø7Á\¸+¶2–GÇÓY:ò¥­ÊÕõÚ²\=ZRëÛ;ºS:pGZÓ˜Ú÷æ\w ¾€E,î;KG§ØÒ[b'îÈö[¡+gÓq4Ö®¹þÖ—ÁqÚ¡N¨¿ÖÁ9àôoBý•›?^‹ã|Öµê‚%­`Ïsÿçük©8§T€ªaïñ‰òþ34KuMWú*H:?~ž"Z ƒf ‡NJÅZH¬‚¯ñMøþŸ½‚sÍ×ý|ÛKõ.ã¡w^îˆüëB\Sf;vVª6lfKmøQË{NiÉüíøt·×ž×g­‘4ËèóÏ%_·ÇpîÕxõtNÒZo2·¦Þž‡eŒ‚äµÎ¿÷ïÂó§oïlíš’´f+Óm@Õ$­6Ä ˜Æþ]ëv¹üÂèïZM劭Êé~S*ŒJ•na¸ xOúU¼c¶MOúµ¿u7m}ýŒ}¢>Œ’±Q¶¼¶ ¶¡%ÎóTe=»ÃÚÎðúá'Žo{ÂóñÉ jÖLùÚ•yÓøÇ'Ô@Úëœ2µ¸2Dkað ” ƒ_ð1ø…*8§9mŠsšSõ|d _ôf;ÆãúÙüé}í¸FiúžÐùŽÜÀ•ÆÑÐ22ŽrÀ8žÏEÍ=`JiC5Cmþœ¬ÖBQ3Õt.j†KBQ3ö+>ÖRé34¥Ïر¥Ïø…(}U‘§ [*¦ÎÒT­HÓªS ™žJöŠ2jÜQ(£ÆÑi°U( "¥Ï8”>cG”>óÂKé3\eË•á’P®Œ¥Z®L=M!2 …È”Ö\ˆ }@!r©Tˆ ïÖBdúšʧ3—+SXs¹2ÜVQ db­1†á£Æê‡cx-ÔãÞDù04 åøìP>LCœË‡û/{Gÿ~éß?lˆòaP, ?QEÆxxRju%þ-EÆOD)2˜G)2ߊ)EæOL)2ÖB)2¨ZŠŒG3J‘ákŠ)¥ QŠLƒM)2vD)2¯¨”"Ã%¡Lj*c˜ªŒAÕúaFŠsý0œnë‡'h”ÿý?c7•JØM¡"vS×vS×vS¨ˆÝÔµ„ÝT¾€Ý„ ‹ÝT"á-•+à-u©à-…DxK *ÞRˆÔùŠ¥¸Tip ÊÀ%ðÀ¥®À¥ J©B”R×”PJý‰‚R*• ”°# ” T@)á7þiª_z€$á7$ *¤R $ k$‰š¤JU I]K I°³¦ú€R‚FJ D€R‚Û”PJp¦€R‚zJ ;J©ÞTPJý‰‚RÂÝœ¤Ò'©û '©ú€~bi ДºŠ}<Á\Âñs öÌ%X?0—à္D©Î˜K= a.uC`.Ñ^çf]@@fêZh(¶§4_f*• ™ ƒiËÕC øMPà7ÁȀ߄S,~ˆŠß„køM¼¤‚ßa5úöU”'0_”'œ4Pž [mËÕe,(¼€…ç0`žp+æ ʘ'Þüy_pÂÀ '¨D[nånóÿ˜'xú4Àú* Ê]øŒòD Ê_Ÿ3Ê. <1f ÊÓ_Ôί·Íy‡}~}S.•fÄb-áº_û{ä¨]-¥(·lÝoGÅö>XoîÏ×—ñ/7¼Œðu|ÙŽé;È-[r»áõq¼!ƾ¤"BqÙBqwTÄ\ªÃèásß?iÅÓ1ûùx}(Æäú÷®s>:œ†ßÐÑ Ó•ºï)¯ë()x,BÈÉømkË™GÛŠª£mEÕA³R¬~:€©âÓäŽO] Ÿª|ÂjÆñàŽá>Ô<1žßQÌûqÇLŽ2¡Óú¬ÿ à^m¨o` q<\ÛóxPn?õ¼ö4ŠöÁüûPÔáÄŸŸ”+Ñ>µi±–¢ýPi’§q<¼7¢j¢êR!ª¦§ü *Œ#DˆËÃZú|þT©È#í¹‹½ˆí´ö[ˆûØ?ë\>‹*.4ë¶çÇãá¾ÞPq0=ócø­Müמq0äŽ8ú÷Úï‚ûGc\Ê“žƒá‘Fuçþöþð ÷Š¥ã »Zg´¾ ]¿ü|AÆ jÿ¯ïµï—؈SÞ›úÝ—k]ŽÏöïíþy/•axøûùøtòáÞ9íùçñú^kŒÆÌ.^ïœáÃ¥©tù¦y¼ÏŸžÁÿ4æuýðz`àÊ+e<–GçЇ{@Ñ&D_La b<8ßÃî×*Ø„¸n#ê~Þï\äå¹wäî‰×õ~ Hû…;\ªÍ GH·¾ÁCÒ.†^›©­­^3st†çùèôݲКÀÃô;DZÅò}4‡šPšx¸‡_A°„PT-½‚ª%U.ªNi^É¡á­ÄÞðTÍÍ‚-D·>ç)ºµ{¹’Ñ:~ÿøª™S³P?@aa­€\ùžÜÅø7Àõå:G¥Ò™ÂW-^€Sìj‘αëúu÷;v•£)œ”½÷»úæ™cWÆ^å·Ïý»X|(J°q°îÍf]Š:Âr6·=ÂOÊט@XD „}#ÎøUÂe]çE¹²ãšQ®¤ÍòÂ`_%—ÔØÛ&;ÇÞ8ŸXÉÍÝ Ìm‰jÓPØ1ÍäÎP- ä¦P)|ÅZÂwUñÀðÊ—ð°#ðÄWñÄW›@ä&-ä&ýÂ"7á|€Üª"7ÈMàÈM`ÈM’V‘›°›@ä&P¥™:91Ø[ê©@ tÔꆗÍí¯áûZ¤BŠë í´à¤À9ठPEÉÿôæ¯ÖP”Ö*q¸ù]ó×þAP:ÃÂ;InU›ð¶„ßøÚ?ôí>ú²t6‚dÂZ÷ç~ï kî’­nƒ ¸im¿€›äÞ#É~¾ZÐOѯϺèNÒ® ;‰¨èNòAwW@wUѰ!Ð|ÛÍèNZ«èNrºEwÒŽEw’›O¼ÅµŠ%7_ (IµðNºðܤ›¬ÀMºÒ Ü$í*pvp“(ÀM¾Yfà&là&ߊ3p“ˆëT”¸/TÔâ2û e»¾N P²Ø€@AZ‰·h>Ed’í‘IR("“OgÆZr¸5c-é ^¬%_R3Ö’^•_ ‡›§x~ žúÒøÏܦEèóŸ?¸Mr¦ÁmQq›æa «ø5TŒLKì^P=ßLJS³¤zr¬q£ßÎÿ *JåèŽ|ü×íg¢žvTHÖµ:ÆF|!@ÂR×½Èávù¹]!ù̺•¢¨þBDQذRWRTƒÓùƒ†ýa­½nîô‰­=Œa£¨à¼–»bh bŸ¬ÕÔ— F®ú«¡ãtÿ‰ ú ·Ð{oÝnÏëZеpˆó°›…jÍHºb>j¨€ÅÈU1re®Ûp0clV>pŽÇ–6ö;+QÔ,Îgš=à Ê+ª÷áNÏße’i²dTù×ñÝãþ]ªL=Eœˆµ'‚÷yö -?³gæš³Žôóû¨ä½¯yÏj|æØ­Ì±YuBNXÏ¿ôç'G©0;"L¤;@€åå÷(ä:À?Öúð8+ã.ØîÄ×G72CkÇëÑ6þÓ®Æ[¿q)\3âRÈ'l,YEí¨¸´§ˆ¸”zâRÜÕŠ#¶½bÇy(ÎâÉ’r@ð GðJû™†â¯ Å¡F4Äņq×Ìÿ%¡Í{ÕØu©}Ðæ-ðÙÛ=ÁÚŠ/„¥× N ½iºpqá͸Ãò¨Åö³yÆ–1"~…§oüÊ{8ñ+4¢ˆÂ:lD¹ ÊåbÇŒÅñ1N1'Y¿íƒÎÿªIÕÈî´‘)´áÿGdÊ\îxõŽ:ÌQÛþ^¦!Ú„}ÀŒžÏån]©Iήt>_¶Xå§$<% žŽß{ݾßã³Rê}ùä§  üºÝX)¹YÐ4.Qó·ÚmNßBJ·=êÝþpÿK*)Má=Vºî;ÛŠßÍåè±?¡¯£žþ²€ê…»ÙxUí wúê¢ç’ºkÀb¥¥÷~KŽÃ]ÿ¶ÇW‹×f;+Iªº· ¦è¡+‹{ß÷¨lûï±WYèpM»–¿­ß?´Ðªd¥÷‚ííOC“®¿z¦»Y¿È(àñ‘ñX(÷þÙtÔ…ÜN?Èð¶~ÀþIãü3°BJ–Y¦”iDò‚»¸Çÿ¿-­»ßb$€f½–?®ßklpÓ´"¹®|­QÇ W—Žâ­ëðËËk ßjäßò©Fç( Û­žÁH2ïóÑ“sy®€ìº%ð¥•ÜMn¨åv}—›Âçæï>çúþ5ĵ²Ì#9Ó~*ÃæÞ+¯›f)_A¤Jù¾a/xùúÃò>Ñd])îôE»õƒ„ômo†9lwyÅ7Qn59í.þüÝ ‡•’LׯÀÞÊò~tŸ/ÿýô¦ÊtÞ*e>}ØüýZ¡ûû¸uG¿óÚé6ï-‡šÏzS嫇VÊç ý¸|‚Я;Âóñº­D0Z0ÆsxÇ\YžJcxÝãp_çׇÃÈå_¿Þ9K{j2XJ,¯„™hZÇ’`ZJYœS¨dÇœB';å”>`r MêÄìÖ- êTªÒ4”,½2“×),`©sKù`œÇ–öP0µ*Ð ,Ø®“MA”Á¦0ïÎ5…¼;î…ï¥yª)Å<Ô®3MyïÎ#Mûë0Ñ×eFË@:ô”OŠyüÌÒœç:¶ÂÈÓ¿•]«ªØG(D.ÍJ*WbélyBélxRélVRéìLÄÒÙþ:”Îf%”ΆF¥³!Rélwkél¤¤ÒÙ¡*6›©*6 ©â5Dªxív¨xÍJ¨x ŠY«(fÍB*f– ˜µ ¡˜5,¡˜5›©˜µf‚bÖZ%ŠYk•-f Û*f­PÌZåF1kàw-Çb!³V(f-K(f•¤˜µÎŬ%j1ku Ŭ•7ŠYëP§š‡:UIêT%ÊÔ©êÇ¥NUÖ”:Õ^¨S-ã¨S­cFjý êTçíZ§Êûûo«±$‰bV9¸Ô©VßZ§*LjU %¨aI%¨Ò€” v%” V­.Õ³#Õ¥U%T—v¥€4‰(mµösjo]Ô©VJ¨S­¯Dj0¨SíJ¨SW~@1kE€bÖ:y³êRM1«lwÎoÂ2Qñš•Þ@ƒ;e±U§´™Šµ³UqÔÎö€Q;[UAílyBíl¨­ãAíloCÔÎê—ÚYÅ ©­ú¢v¶"@íl¯ÔÎʉ§vVoâÔÎÂþéÇÚÿσV@õxJðú5"*TJ;b-íZÈN–êögÁ}ßC©º’˜à sD±á^òq{Þƈ†ˆB»”„–÷Ë<í>ÿº\*SDËSɘñLþÄRü"¥;±¦žàd0=ŠŒé™àÓ3»¦g–Hs1ñ [“м€·çÏ݇Ÿ_Îêuÿíe¸o©Ç¯¹¥åKó:©seªvÄTOˆ¾TÄWçuB˜×Yª¿ã——¶@UÚ…ÙŸ] ³Q°–fbÇÎF±idögè}X{žc­Ðšý îÇ«pŒ=Y_Ž"x¤'oÛõò^z·Mè»ûžù´æ^ƒD¡9$Š;H´ž hüÄãËõîå_ë*yjÐ Qý4» Ñ 3|8RÌ|Æ’Bð8 uîD™,ŽÂwaà(å5jÓF¾m}ÔH~cÃwѽØÄ¶. 8Å/ì€Sú·yŒý<Æ‘9— *$“õ(kX ñ>F_þ*½‘ù4Y¬SL¶XDCvÿpúpžwÕú¬òœrÊ›%“IÁVRÆ:ž&h¡ÈÐÊcÈ)îôwÑ£ùv|r•k×üþÿ»—$ÙvT‹¢õ׊lAZøß£Q·ÿÕçÒŽÍ!ÏÚ±8˜„#b L9…Ú4™k› ¦àë|¸Ÿ£O|{@¶¢jBW&ƒNa“ŽO×ã;ÆÖ:'£iDzf+mv¿"ˆ7×ç||ì¼~þÔ¹ú-¸N0…3ÀlRÆÛò7à i©”ý2›ÜãQºcs›ZK@»¡BvSk Ž·kalK‰„Ù[* wÁ†îRi5ǹ‘Và»VR¡âª¹P-Õd¨¨š óÂ_IšjÇdM©5I‰j©æDÉüšåRÉŠòú¹Ì'yª¥–Œ›˜ô)Ù*Zr¹jn”ÂÂ<Ü‹dGyÒkz”Öí÷‡¿í~À]æ½XrŸ45K†:$±IaR¦ʸùI€j­d@7FþúŸ¿¸Ë<œ%Oº|ÆåðZÙ2]ò©”)žq{€ô * =óê/)\ÚoàA㬓Ÿ¥uK‚v#Õ /ã„€© ¥\2­î’§åZ…Kæ- Æq7Æ1½ÏŠqŒ³Æ16Ĉjê’÷åZäAU’_óÛ{èe(* —ÁVá’ñ„HfW¼ TÏ2€*óÆT;T?HÈx7'+KÑL˜.=`¸°ÉËnÎ:0ÁØ0ÁxD$K½Á`ˆÀ8l ã7x²üEÆ;6 Z:Ùdhio€Ìge€þ,IZª*p‚é àJ¢9ØÍZ+€Ñ’t˜©€…JÙZP![‹bÔµ­ÅZÀ:êRM°b%a¿¢a)À•ª‰Qí¼#òÀ#l˜ô©Ô¡G!"œQ—žQ— Q—Xd´"ê{àŠ@¼"P‹|5× %m®Y×°¹f4кVsÍâðG] i­”$*D`’ [ÀI*_È[K¹§Ä;¬$ˆ¾¹fï¸$P/ ?±iP!#-u®ÒöZ`[Oðç£êV¿Ô …¿æ›‡v ¦ |5ÀÅ šÊ×KCo_3®û‘×ml \^ÀO8ǦÀ¥„MnÛ-þZS@ZÂÅÔ ÉŠµ´·I¿Á–ð€h¦Yz ¸%hM3Íú‰@e‚DËTª¦‡å šøõ®ÐLཉ_ÛÓ5ñ ª"&Ñ ÄroBJ#¬#¿:W°£P)Ykiiû¤üŠD{º¦tí}‹m.lM³µòŠÍÖnôæþŸ¿øIpeÍÖJ^EPQ!”è}‚¡Ëܼ¯\çc^ŸÏÏÛ›K@&œu³ÃºûÍûúåÀ%jWДpŠÀ7‚Çh"ÖË ƒ´t[}ù»áùG©Â¿w#TlhU;Z»£ZZ±zZ»–šZK%¼^qßÞWpæW¬…î×R©ýTmmÚVqØ_ÁÔíüq!˜[éÕR 楃ç2à¶îûŸˆ>XìØ`‡ˆnYmØNX¬ÕVXü†‹X© ³Ò™vÌb)´Ìb­¶ºB•ÑëªkÑfW]×v»‚-´²B¤GäKiîßwÀ=:^¥Ëmy•š^Žj¯5o;3¢ÎXÙÀ5õ+®Ð?+94 Ô/l­¯ØÚB+ÓÜZð…zi)jÛh%ùû,¾1J#ë'¶‘Ög¸vÒZ¦k+­áÚK+‡Ñ>YñÕFYù‚vÊÊ´UÖüOØ)‹Û€Rj:Ûì.·ûy„—­ñydÓ¿¶ K©÷¶Têª-óÍÓŠ«ó¼ü³`Ë–Ba°…¦Ú!˜Ä†êª-óêª-Uf!ª¤˜ÅS£R-Õì±_šo!ö6ßBG“=–º7VÆR‚õ›òõÍYS¾R†6ûâz¡Ù²B³o×B³/~a°)Z‚!R´ÞBEÑTKA¬±«w\¢jëm7Të-ÑW¢õ¶k©]‚@»,vìä«`šj¡ÎÍ(b-5ÕB^ KíŸÒS ‹‹>X#ú`ázÚKø'°“GAS*g ÿt›*”:$H´¨Ò¹ ýk()¢¿•6w %íÓ q¡ §ƒ.Xhé×ý×§YJt¥RÖ®T:»ô›ÂÎNž‘ÍÙK+áŸG ììÅÖ™/¢ÊЩ_ã:YfL¥ hõËnÉ…J h\¥]Nãêöíó;FÔé4ú“¼ÐK7¶fLuÇÐ¹Š·:W)‰5êÛ“ÎUÈ+ñ¦ˆoÚ#¦»µg}Ÿ¯ž™ÛÛŸõ(%¿]¤o¢Z`qÔhnå-[“œ:Ä¥V›5(µ9]»[ùÜZûV¡MªÊ »•ùÿ“ŽXlì8<¾ ’þbmbÒRq´i×RYp©Pð["Õòb©Öòb)Ôòöjv)6D1/™O1owÄøRO‹y»’˜–J%¿Ý%¿]J%¿¡âÓnˆÂ`È…ÁÔåƒ …Á Ba0øBapqå_¹üw¿”J~q1ñl¡æT¨æåY§šjƒj^œ5êtK…¹§¼c)æ…Îwò)¹J-/¨ZËÛ“ÖðSèªt·7ñw•.¸ÂŒTlˆÊÚ K•µØPaN;l¡°¶K©°jŠQ©ðP(™Å)bX*ùÊ T¢“PK¤Q¨eK³PéîþÖèB ¨ÑåA§F—æa­ÑÝ[šß5º&¢ÂÎd¯päñß-W,äÅ/D‰.Š]È´£Sy6kñmYƒQyñS¢K+™Ýðb˜ ãr_zóLHµoý-ÛM§r:ƒš`?Lך` >Õ¾ÛGçŸj_˜Ì@¥Jµ/TÕ¾°4ƒjåZëxir3’h/ˆZÇ‹_ˆ:^¸MTèÒ@¤BŽ 3Sq/:µû©Š—#U¼•;æ¦"&ÀLTÜV E…aÆTTkÎЙøúFµP\ŒÇ0ð›þVíð›V*ã7…ŠøMØøMݱå¹ZKøM¡"~S×~S×~S‰„ßT*á7aÃâ7UZÂo¢´‚ßÔµ€ßT®„ßÔ¥„ßT*á7•yá7/à7uGà7Ak€ßÔ¥„ßæ‹ß„¥€ß„ëü¦2ü¦.%ü&ÜDà7­â7•+á7AXÀo½~NºøM°nÅoê~-âÝÜ‹à7ÁÔ¿ êü& øM05ÀoÂÍ~S×~üuÁoâá¿  ü&^‹à7Q¦Áo‚Lß„Ûü&P¿‰W?øM°ßÀoÂY¿ Ö øM~üŸ³‘}PžpŽ@yÂÕÊmsPž°VQžxƒòÔ …òDµ¢+ƒßÄð'øMPBà7ÑÔ¿ .øM•„ð›¸ÖŠß4ž¤c:÷ÇË]¾^YóQ2¿T¼þòknÑJÅl©>Nsˆôë½ûü™À*%jµÖ,ûóm|5 "d(A… %ÄõœÉ­©²ÿæ‡À<’Xë(ŸžÉ­ëvG„oÚñõN½¿Œ|ûþ€š ÔY7Ë*dæð/ÇÙëOÿ~!†{âx’LÃvGúò—ÜÞ,¥<™ð<~Øk­çÏø»òþº>ó{ùí×ßò5¾&?¾.ÙžûãËÍüÄxÛ ‰2ñ…)Ÿ]«‰2°uš@c3è8oUKÉ-u‚ PS`º 6DÕ`ƒT 6(®¤Ó@„t~"Òi2ÎÓ1Îøòºg^³:·Wñõd:mÏçs¼?ç—éçÏŒ>Þý%íæ£^brõõ øry£\JÎÉp%9'mž[³ã¹¥ÒwçÇÁ7æû1XžnöÝBnNrÇ$Q¬u©¡éíöF~DׇC?ýŒù.2xâ #Gᡚ烱IžÏWz‰3èÏg•Ô¼‡û«3Š Ï‡¯{ì®áËl?·2^ìo^RÍbÇÏ™ xQýÌMÑñ|ã%ø­–ïú9oØs¯5/æOÇ[äþñÎù€)­ýåÑÓ éG âyxá—¸öžóùùï“òþ3¯š7c Ëh¿›¤”Ji°‘Û?4µ¢ÿz[SÜ^ØŸŸø«^J;bž)ük2‹–Öºm ×çW}ÌÖ÷L 1,×éü±wÂÊeÚCM¶®—ý£YYJ½·îÿýz,^öïGÅéÜGÐ0“ˆÛcÆZy÷g:i®4yêàá2ÿRÄ­‹bò”Gýwܪ¶{)éúÇ»ß÷z‘=ÿÇÏ{ís=ŒÖ{A>÷zxÿùÅþ´í|-ºU±úPµT[LK¥SìØÓÝž§ãËõõç­¶^vo¼7ÛµÔ®Zªûõ6k{î/ÙþkKñQ" ¾ÐÔŠßØQ±Xjí|O­µ–δ}kµ0Ø¢šM<÷ïžVI=}¡ B_¨ôªUºàê6{d^T?°c»G!ôA6å~û7Àù½®Ìèø¼e-[¹·ÇTÇÜîQ‹kí_càäÐ÷ûcÅZh ÷m _E"C¥-uµv­-ŸP‰1rì8Û5m;¢1²?Í„ýlÁ¼îåÕöQÙÉ6†êÛ ª6†‚÷׃ìúe'÷ÒÒUP½<Úy6uÝÞì¨a«¶oŠkåŸÚ°jÕZ‹k¥ÌiEÕÝ¿‰‡‘£Ü‹ «’Õñ©æv¹¼»ûhk•:´­Õ¾`mk•>tŠªîE[QevÛŠ*+˜þQyŸÃ‚?>Þi)&ŸB!ÖVT©èyÞœëù;™ GTûUí6Gžðùz쩆ï¹M¯òñß7~³ýªzDÍÏgÓÌìM)&¨êdÚˆº‰ü.À•ÔÛbjŸ²¶˜B¦Ç÷’éÏ÷ܪG?äõ;{!Aܧç¹Ý>¿¿èî´]U§x9D?æx¾»:kªÌC'¨Jô©øQ*~Á:úPA…Y¬ j·*Nçü8æ?.o^"ã•õ˜1Ïǯ>TëÖÚ‡ª«Xï9yÿÚÂÄVÇ KO«~b'¶ú©¸t¾Ê´§U¯•£2kÔ]ö÷¯Óùú·j¬¥Î×P±ó5T®S* ×)_ê¢íZ®ÓµÐk["õÚb©öÚb)ôÚ– ssÈUšh±T'âयi¢íA«=¶K¡=¶K©=¶K¡ñRGã+U9¯ Bã+¨Ðø ¾Ðø*5¾âî`"í±` ¯ÝQÃn°ÚcyÖi…Ú =¶|iØ ôM´¼>é…Ò·?¢ÇD²•.ZPµ‹¶jƒ¼¿]´Û û»‹†³nÀ;zmK¥Y7¼zmq50Ŧk¡×¶KiÔ dŠŽÜn¨ŽÜî¨Q7¸‹uŸˆ¾]#FÝ@\íÈ­ ª×l¡‘zƒFZ’µ‘vo“~7Ò⢑/›6ÒB›ÑH åÂDÈí¶0\h·-&â”-MÄéQ£<À/›µu—"M¹4ÍiÊ-[jÊíZm·¥GO,ÎÓu 4褅o*{ó8ý\úm)ÓôÛÂ$¡“öÓuèÉÒo‹›~Ûò¥~[AÌàÆ ëàÚ»K/•^Z˜pÌÄ‹EÇ--I:nqB˜‰SýBÊ[6=·|a§ç&-°åK-°8!´À2²YCÝñÙnˆð4?¢ÍïD§C½ž?ñVˆFší:Jt¯?ï·]N¹Çñž5Ñu¼iþó2:·ï,SYzœ¦ùÙ3¯%BN,}Î|Âèܳýõ‘ùµài/¥ËP€—‹}~‡4]éöU)ò:-ß#CõÚf¾çÿý¶Õ•Î35å}ßÍüÙ¼€Ÿû_÷9ìÁì8ïÅ”h%0ÿïÅÑÏ „Â÷Û/`pJiÍlv·Ó 4Ïã3ái»ÝÔy³Î»“»~¡jœ?®ßm‰î3:_cïÔ{X²±ëé2ÍÜáè%܉é¥Çmz)ÓÇö¢ŒXv°4º¶·²Ÿ©†My|~[D |Èûçãù¾Œ»{ûüÆAt> n?á,v;*Ýï¿P¦Ùþâûôý°Ç›_Â^fÿç;w·)«ñÙâ²åmô_p¿Š±P³«°L×£ªçþFwG;dyê¹SËûe”ËÏ—ãiËÒðå‘b¹½;¹£}ü÷G®*Ós&¿^wáùÆTŒžÈÇ¡»Û›2cþ$±µ'ʪB–Mª–èv™ucªÄÖ£|_Ý÷7¦yÜÇ™•|§•ó¢¼nÜýzÑ·óϬ3šŠñeõþüùºßßD)ÏdäIï?íeº(Mm‚§Ëüþÿ¼^ÿeO³Ü}žîeëyo3K<‡½ç=cÆób{î·¯çè"ƒ¬åíp˜/+Ûzž×¿Ž;÷SãÌû4:ç¦aÙm7$ýy:"ßíÙ!k[1ä¸sË·@•ò¾âþØ{ð‘_}½Ÿïo¼üåsޥ뛗ÀøE3òòš[9Þn3ù0SI×-×Ïã2½±8³Fåt\ÝýÓë1£¶IôØÚ®ËlZ» Ö¶,Í\à|ê~ì/Ó}|€Û½.Õcïä>Ž|ÇØv»Ðõ¸ßçó÷W5ã»ñq³;lo—OÌó¿×$$_ÁÒ}6ÇnçýJãYy?¹×½#Ѭœ>¿¹¹¯ÇÐH¿<ß<½æG¡Ç×n¯Þ³ebtƒÞ÷|ŸŒÝø¦»7ß2Íóòx³Òù~„sãSîöñy›½¯S9í]ÊúŸ{O·Ë÷øóüZ5rÝ{Õ_fÔðÆz7ûÕïûýñ]¶}?Ç‹oÒ¬ø;€%Peâj© ÃÔµ:qk¬ |¬©| ¬©k ¬)TkÂoXS×XS‰ÖT*5aÂ5•HØI•©°“°ðŽºðŽJ”©¥<€"u)"õ Š„¥ŠT¶wÔýw]ÜnO òö©¼  Â(ô HP‡‚"ÁÖ©û  Âú3lËûŸÖÿíÅOG0© °ÕÀ€%˜,uG,u-,ñ ƒD™;‰‚*®ðŽ@¼#ÞêàÁa<ŠwId–*¨H0o@E²K_Q‘ {àASwD³¼#¬U¼#^àAS3ÝTl ¤ˆê"¬"p"ˆ« E|Ú¤:"¬õX»‚7¶k…2‚ß”¤•)¨4Ï<€G¼Ø<ÂŽ<‚ xId¢*K&ªn|p‘pe‹„µE<Â;ˆGPœôÖ’*sW©ª@O = :ô$ðô¤JB¸H°8ÀE‚7._–ÁEb¤\$è*p‘ à"Á ‰f|™Ïºy®=IFîOO솩`i)­úçÿXé*Â0u-ÕcGÔð‚ªÕ¹"JÝm‰Õ¤¥:½T(¼… û$Á§ð+ T(Ïņ-ÏÅA@ ¢ˆ‚Ì”ß*^«éZÅ+ªVñŠªU¼à¾õ¹Òø‚Qé'¶òVT­©µèךZukjA…jYPuäŒ/ÆZR+EMI­¹Z‹eE•bYœ! ´d ZR+­iIíþ’ý*©ï-–ŠeÁü_l‚-órƒãi±¬–j,–B¬”¹ƒiä0Zળ.*—ùZÓH)ƒ´ÀŠeõ[,+½i±¬-Äé»»ËJ-–•L±¬´¹Å²ú…-ƒ•±i¬dš©3º>-pÕ†)pÅRÀ¿òÝ_Ë`µVñ¯@…2X9²bVÉʯŲzÊÞu­¨•δVg ?°8S2ò-»Ý¼:—²[ŸáZv+SÓ²[ýÄ"HÙ'®e·ºc-»•ÝjÙíFO—RYðuÌ=ÙZP+×ÙRYÛ‘µTVÎ RzŸ¶RV×'°O8EÀ>ù©»–ÓB¦‡r@¶b5)|(V“¬|ëwuùƒž$9=I§ÓR`i`J×,#SP)Y+ª&k±ã¨ŸøzßvTÖŽH銯&kA…4,¸GV|5 +I$ "$XµT¬ jp**¤aÅVÐuŠÅ-¦L›<…L‘¦ÄŽHSJ\+p1Õ&YJ¬„,%–B–kߘ¼7—) r1%äâL—i£7ëˆñ• $–*&1MWò’V3}:êNI‘6Ó'ªfúdmšÃÕ|EÌS¼ïo,rx:ëæð6–~ÉáíïÏÚðF¨ëø-Õt MÄšè“Þý—*˜t õtMbC$úDÕnYã ")<;¼5…§ $Ñ„$˜;~N¶/ãôÆ(!(Ñ'(™6Ñ绸&çdw›œ“÷\£7^Å` óq,aÊ¡Ù@9 Äx_¶Àï7¿€7ŽxÍê^7gh÷¹„o4ƒ&_Í?ê„Vh_z¼&)%Ô&)EÕ$¥~b“”à«`ÂïÄõó%œZß„§¸o*sûÂþ3Ü'äS©™LQ5“i}^3™ºgÍdÊà¬p—·¦;¥‚MwZ#ÐáMü¶²—·¦Ne–š:åYÿMnb–ÿü†¦=]b>*/›ÿ(TR*à„±Ж@%mXÐáR t;tNKNlß ;(T+0¶kÂZ<(Êœ¯©h‰=PR¿bc©b2Iê–"ÕH¬Õk(' àR (XÂ*@’t¡@ÁÄ ,Á7!*ª$D±!Єõ‹&,æ‹&,ëðn»VÁ|ô‹9l\Ñ|@œ`¨p‚%¯àÛÆ¯`>2€EÖ1MXF>hÂø…@Æ)؆ë°Ô¡À>è5Ñ)¥ °ºbû‚ ¨½{Q{mMWÔ^»§H‚h>Tro>T_`ÙÓâù¤—„¨=ÔŠå#K0a,µ"KEƒ¬M€å¥Ÿ³õþVîù.°T´ÀÒ…Â ù¦.Àb½ Lɼ0ÁR¾¦9÷¯•ß`Â:À‚ Û¥¬Dº`EÒó¡ˆ@:Åûæ¬ÀD }Eh_Y£B uƒ À *°N§øC:é" IO› …ÊLXúP0aëÖ &,+R0aï&XÌ&ØÅ&Xާ0Áz¬&ØÁŠä n… ^i»ˆ´T 6K¥`3T( .Ñõ«Éw¼rÿ­õÀ†ˆ5±Ôt×Çí'Ô,S "»”‚ÈR%ˆ„ D‚'‘¥*Ú°^"M,ÕH³D­AM¡eâ*/4A+tA+¤€ µk!hï­ÆR G±Vk‹¡{—cÝõq}wéÄ+=¾9£ûO)¶ŽºÈVÀµ¸X;"䯰×|%äUCnˆ !w©†×œ‰¸_Ak7D ²ìm{Å|‹¥õòÁWË‹±Ö_/óæ2&|ÇŽ­B†J`ddO྽ºŽý"| €¿8°–®/÷ù¹ý‰Âõ•¯Ãg¨*>+`Ç~V(óú`@'õ÷ƒAHnÇøäO÷7÷•Ÿ òø¬°·•¿J£¥Z÷ãéóñÓe¹çëäŽï ¸øb€ßˆ/<¾PªãÉ<"ýRE–ÃÃWªÃúUvk- ¶ËÈ·ˆ·ßœkL ÷ƒ˜šÜ'¦Þ>ÞþÄԴ͉–éÊÖÒa™$ÄÔpžˆ©ñf¾uM³ë­ÿY Œe›zC^ ½AÔлD(U¶'K€ŽÇn š%-è8kÄÞ¸‹ˆ½ùtNìËx]j‰7:˜¨š¦k—ù~[#a˜JDÂŒEÖwÁÊüÇÁ¥B0¨\*`ƒ-àÿjÃc¿¯˜ÓýÇ¡cÃÛü(:ñüþ}ÿhâ K¦…ÖZâ * ã7v|½œù¨È<§×~G ‹ªðÄ›Zð‰-‰ Ì¡Ø\­Å–éŠQŒ R Éy³?ï´Ugaï5õ7˜1¨Šf쫸Â[WpÖfÒæãò[â^ì7D‚ñ-ß@ñíJñ ‘0|ë›ážŠà[^ßÚÓ`;Ù£ä·ZŒß°$ˆßð„ßò €_¾ò– ‡xßÚ. ûöÇÜW¾9ؾ½M€ö­²ox ~ÔF½Wð_9‹`ÿ®»ÊÉN5øÀõ΀–Ñ :p}SÁC#là^ËBËÄXïáGÞÀVÐXàF @®(puiÅI’Í)np…Øà[Qƒ—f¡=£%µTjI Õm$ÜÇ_¾K³»–WC¥ÆÕ±qµ¢qKµqµ+ #©¬«½µª½µ"=ÏÒ¦ {¸=ÃöÀ–'4®’ñ4®b©6®–=©8ct›Bèí6…£Û¬£Û´k¡Û´Dê#íɨC´k©C§ŒQ¢<étˆbGtˆB¨è_íý„ ÐûY*õ~â€ÊÆÞO0ÞOè z?K¥®N¬€§ú5!/ôk‚/ôkBªí×ú5aѯ‰B¿&L<ú5¡^è×ÄŽí׬]ÐQƒ;ŒàVŸÙՉ˸vuv»Q¹5þpýïöÙùY–Ôù …Gç'Ô=<›ôtâlÐÓIœžNpžNˆ=”×ÚÓYÑ_fiúüËu{@êü„óAç'Ufíü¤‘OO'_·‰\òx#ÒÛj\F)î;/ ø&"ºH¡òs‰,³W®Ñ“všB½ýw+S!AÁÙ¡•ž ý¨<žô£Ò_¤Ì?ó¬fOt4b˜¢o\"šVáÏÑ´Š÷2šVázÐŽJ—˜öPìˆÆOŸêmfEo?༰hÅ+í¡°#h¥J¤=”Þàr:œÏ‹Š&R*N@—ø\[MaÁÑjÊè!pJVà”–IÛ!5!Ò,˜¿D37J²ÇËò\~]‰ób"‹YWâ´˜u¥ñþ⼞þm§‡Å€ñ]Úd ‚Ë„3¦æ-¬»qR̺Ûóè¢û¼Ûm­t ÷žxë;¾=&fåû<ëL/—çÇ/îðt™pm×ó÷w,t`QˆàsÇ÷ókæÉè"þÜíöùbeŽyþ챇۬ ijM8ÂКü|M£Y7ã0šp¤Y4+Ñq›æçÉÛVs¯_ïÐ7?n sÏœaN{]Òš\¹?Hã;8je.ÃVì>gcÆ|q|lUàüy„•çó/DþÜpM½É½<¾Àž®Û;w¿Jpÿ÷QbÕíÈHàßݶfàùœ£ufzè¾e‰³sB¤Ñ9¸˜#È}™ð_Xö±q¯“SÑÜœXÍ‘ëÉÔH¼óp¢âI2ŠH3s¢âÏã–ß¾‘£mS;W'Š©±:ÙSuÂ÷šdÔ:¼“ržÏîµÞöfîtàyÝïöõûÇÝÛ³Í)?¸*Ó;þ ¤µ’&E·Ùþ|ñvÛž‰æÁ t PnÊ¿_¼{›êÁ=°©#Rý3·'f~fô.£ml«JŸ£AoÜË—~¾³í“í4Ù'|kÎüjè„è|$)Æ`7ž¾ÓsrQ4<''§©8ÐÛ,Û›ÔÍäœXK ÎÉnšˆ" ÄÙý¸?3lr¼amzqâŸi+áIcn;,SnòüHÂR^üè ¿<ÏûG±'áà)ÛA8ÑpM¸‰m€¸°Î·‰¢h¼MÎWÓm²Ò|Ì¿”༷ΘG†®ÓÏŸþÍ+mB§¿¹Ø¥0ìWÞ–Š½ ]K½ ¥B—g‰ÔåY*õobÃöob)ôob)tf’­tfâ'&ËÁ£}gØöÍ®¤öÍR¡4¢É3Dlò솨ƆhÅá ” ŸVPP¡Thò_MC\êò„Ò Ë× œà œ8F4pb-4pò°ÓÀ íB'T œ¥B'ïëš+ÖÕh›'O1mžä=mž j›gˆT­CD3(ÔÍ ÛËÿ»¼£ÒB3h×R3(˜oõ4åÓâ¾c…°ÖŸz¤­Ê£¯ž-£]K-£`+åÑ RË(âß–QpÞªf 4¥4kcéÞÒün,…Z´,ÍB7(˜GŸ'd…>Oˆ«}ž½êóäá¬}ž4mk†Té…!M7(pú<íÿó·Ï–}žô¿éó„7lÕñæYºvƒÒ®¥”G“nP\gtƒâlÐ J’nPè;ºAaÐ Š—H“¨–WºAi$Ó ©¶Dí¥GI7(]ë‹mCÖc":KyÒYZi¡³”®5=£]J=£¸ûè…Ém}°M£P®æPÈþp½¥\/¨×[*ŒR[(ÖR’е§Y6¨þƒA€`ýă-ŒRÕR…þUA}±#Ê„ñ[&Œ¥Ö2að@_QÐw#ÐÐ×RX}½áŠÕ *`õj­âëBV˜€êk±BçJã;'ÕJ³ì‚  ¸Iüç(®7\AqÁü¨&Wìþ=œ:W© ¸ÖˆïVwúÜö¬‹d‹µ0´TlÊVT…²õù¬ø³WG‚ •¨²”E©UÊLÁ;ÐgåVŽÜçíü]Ûq=|ÁåóW#7°Ò÷7V µ’i+5uŠ…²_…²•L ekM.cÔ3îïõëNú|ú~UZSWZíXZKb µ÷YKHeI- »Û©¤¶+þ¬Mø2pÔ§³€ÔZ  H­,Òõ˜Œy}g· êã z³J_m–ªVíW$[éU1j}ÃŒZ-u=.ëùü苪µ^ë¨å|ç/n¯7Ùm~øüs¥ \êÓYàn¥í…»•qø*:]¾¿<ê×/©¿óMAÕÉ¥Ú°øº¢ ¾®ÌÌã(ü|F—à‹¯« ‹¯ëÛºâ늯âëê¬;PU–­øºr‰çYþ?Bï7¾ ¼²’ºjo¾– ë'¶xÿÒý…«‡Tª:´[G¥.L#BGÇi©Lb-tœb­Ûó¨Ê¹‚ëŽJ-§X )øjc*–Bô*¶Ò¾Z"Å¥X 'Øjĉ¥ÖˆJY¤öQê´ÛGi%\ƒ\HA.¨äÊê6È…¼Ð”)o°†Â AÇ%öCÇ%¤…°k¡ãk!ø¶!\g¿X#ÖîMI¾!º5b Ñ¥]íÕÍn'¨e¿toJûMÀ×ÐÁ’“D×€ Ñ¾Ž±Ñ¾¨ÇÛ§¯q¼lW[A¥Ï t¥63ü:ÄÛ›_¨~Q]ØÍ:ëô‹Ú&-‘µÜgûE%†Æßrfí[éÕ¶TªÕ(]TÒå¥ÚUªÇYâo½bÛT*wݦRéVp¹ë¶žêö4÷ÀõÛÆ*h«4¢m¬ÒÁ×2•mP•kI+ÛðÔv Oí3ÖI2Öú5ˆõ‹wic•ûi«Œ`CÝeºÞ?NÁ–ŠSK¥‰©¡ÒÄT,ÕY¨]I³P±¦œB˜rÚµ4¿´|i~i×ÒdR b9Zî1Nbœh—Ò ÐþD ÅŽº=Æ?ƒBK…A¡ÔÀ ¥FdPh7Ô ÐRiP(õf‰vÍVF€‚ªÑ®6Ä P¨ …âj`PhwÄ P0ßA¡Ý‰SéF€‚«ŽWÚ“ÖpOžtævò’en'ާ!¥®ævÂêbn'Ä…¹å s;á2áùÂfº'…šéžX Ó=˼¦{â'bº'up ¸|3µ3@a“0Kuh¹Bèæ«‘I¡&…ò|ÖI¡ÐfL -•&…ò×ñžü…ëxO·%T”f5TS e :O óDÉVæ‰âbž(\Aâ;yj …’·Í,èÿÜÛ&¥}XG“b©”¢ÂhÒ2¯Ñ¤—øw4iEªÑ¤` £IùXÌhR2?'r>.ßa”½þ¸iGŒ9UÇœvC9…L1攤Œ9åÕϘS7Œ9¥͘ÓþF9…ëL+À,TÜ2ÌB…Mjœ»¿e&¦bÇNLݾÓOL…‘ïÄÔ%òÏÿqb*¨„!*Tc) —JÂØ°5ÄX èÀ!R¢:T@.WB‘†»¡†û4Ü¥‚4 žÚ*,Åjû+ÖŠ0DU|`¨(ð»Ÿð»ð+)$£!t¤™%,` ãl€ *`úR\k£&¨×[*Áõâ7®|bÿq¼?¾‘p´–€x©]k; ˆ·§¬¯$Qˆ]æ@ì¶ÇX\XæÂâö"› *ç– Ù\H^»4J!v»]!v¡XÏ…Õx.T9Ã=¥W@Ø…iµ•!8¼z3¹º;:*Ŧ/]Á:NÔ1È¿< ­J ´^˜­¯Î·¦†p½0º÷£èòú户ʵ6£êJ¤†ZO¨Î&µ[j¨¥É@ýŪõÑ:f`Ó̬€¾:}·Ï•?P½zÛLíè æ[¯¬[¬^œO²ªÖä€ðBéQúGíXç[Ö‘-Õc ¿¥jQ³Îh¾¸…­øÕét2©õ!h¾¸®Í–Ú=ó—VrÅüÅOæ/Š+æ/,<0ñîi²To 3¨[«‡ÜNC—êõ ‹;BÀ?Þ•êtx¯Ëõ—#ÀZ…_Å@„µVQ„µÖ‘|9ìï×$ˆŠ5,ª‚ sÃC®å´®?÷õ—Û· ¶´àb­äbqUèb-5†Ê]0áûžêqôøÍ£Þ)—pÉW€µãýëéö2{™žŽãÀwDÂTÖRUæ/\Q•¹T`•y_ƒ«,欬¥Š¬ÌëzTSŒGÂýÍÕL“4°`o[™‚Y¼c;–:¾á,$Ò 5óŠ…™Jsš€_Ãýï5ë6ÏpÐ\÷æ¡XÍä*`Í›‹¸ 5Ó¶ýFëÛ +HÌ´Zb¦ ̲ÖzŽl¬µ·ñcÞÎtœçÇ;ëp™šþ2€·Ñ7—gAvæE ´3elgÞ±€;“*èαÀ;Óß™Rýœßï^ZöH#MKèìŒgžcð›©ôpÞXðÁ™k­èÌ›[¶@/kÃb/óM´ÃÃF¼±o+D3õ&Íd+ Í­_Pš¹V`š)®à4ó|V æXš©ôj&[+ 3_6Ç;c|’yãXŠÖÌ×bàš7·ÁkæŽl¦>Ï4ÔÌè¼êŠÆÌ«¤åÍù,(Êü‰QæSã1oÙ|â½yëÞox/‡ðÆ™dþÆ@ o$±` óI æ©¶©Tª[!VD%\D *a¿?íü»£F:; w ;¦ÈX¿àL<éÀ.•-Á.•J°K°€]ª¸Ã”m8SiБ*‘ ‡ØÜ£|€žp_ôÄ»¿Ö+K¦€ƒâY g 8(ð8(XA@8ñZ¯õʠе>@Oà @Oüc©ß@Otez½nƒ¨™?- J0JU¢\A• 6- Ö%ôÔ&]¤¶#+>S/’”ú@q†©–fꉷg…z‚6´ÕT T„âZ„ÂC£POx,¶Õtç^ÿBA³õÞõÄ^ žÀ|³¢Ò‡kG`=ªXOPœøH ŠÍCPœ`Û€âEŠže@q‚¿+ŠÎ(Npû@q¢ÛŠÓöÂþ.ö ÖÓö þë F¾9ÝÀ?GÆgØëÄzÒüœP½^¯Búúñø1o]KSv°#¦ì€ªSvD”É8%ú8Í»?°üXê9_¯—¡ûý0GKe0dÕÁ8:œ ÆÁJyƒ¥:òÇüœUæÇ¢ó~CŒ¼ÑÙtšÕof#ªN³U§Ùˆ¯N³Ò\ç‡÷—$.ÿ}³TЈª£e,Ôu´ŒN±£e@…Ñ28ìÌ®Ýhü:ZF*˜Ñ2ºsfåeXªÛž £eÀ{Gár­  ÁIcŒÈyËkÃç÷7|i`ЀùNß}sa©Ñ/ì˜Pa ~âÇ…|¼®âu¿#ÆÔ@!0¦T@£ ÿ€ëoJÐè¬?†‚þ™ª"¶2€Kj‰±á¯†'ùÍ©ëó%uÝßjÌ ÁZ##uÿš¿¸J›mm–I5o ׯI52#K™vž—c å+zÝ5†ÞHz#óÖ¡7ø‰¶KA¬£tyÉfÎm–DíRh†ƒýnPÅÇ+ÆýÜ[ùûñykåÝÞ¾~ÖY<Øñs5•Zûµ2ŽÇþ|Ž#étpu|üš\íïôif:^ùxçƒ1hÇ"]í€yŒÐ±O\‡ãè^t8vÄpùêÇÙ¨Í2G¶¦Ãqì£Ö‘6rŠic ±Ž´Ái‘¯¿ÜÞZÝex¬vD岟ÄëxÈ«ãqÀVç°Òêv¤ÖÊœU…·±óñ¼|È”°®Ç-{'Ò¹Æã~¸ýëåê ºóŸÿsck©Ô³*%`±–:[C…ð"—[*år±r¹`­´Ø°í¯ýjlíRjl-ïhlíRil-OáÍøÃk©Äð Bó+4¡ñ&-²Pv´È‚u´Èv-´È‚÷¸XJͯX«a0NHÌØHÌÒ´Ûâ,[kÖ8X;¢uÔ@X|%x• Ðß[*õ÷vC¯2¥Å~óK¥Ïè_8±–z…±c1©}ÓQÜÃVG1d_äj]!4 ÚGZ'Tiy4C¿Ðx\û­nár¯>`øÄ4ù–9tì§V`œ"úw)­tæBZ覅v¡O7¨ñ«ÌRãWKbí¹­PÕsÛ ?gÙÿm¼M÷÷Z-·à=ñ« É™Ú:¯‘©Ÿiß-rãzn5W­£F¯,T¾mO2Ú"jÛ-¼Ún)ù5€µ OC-ØJÞ[ÇÓdµ,%ºnáb¿ê¡Û ³,8šs¡M1ÛK¥ñ¶Ü#Ê÷h¼Å¦XÔD´.?úsam S\*dií ÒRKƒº¶ÔR»ÒRËÜÚR 3–ZFK³ìÚå6ØR© ThƒåŽóƒÆå1JïÛÛ,«µÚ, *4Ëj­6Ëj­öÁŠª}°úmqÝüÆ¥ÅUk¥ÅUlµÅUKµÅUTmqómq%_iqå1¦1U|µ1•|­©\*©Ôç4¦Šù4¦j©6¦j©äMÉÕÚqª•ÚqJY¥ã”\¥ãTTM=ŠªÝ¤Ü1ݤ_ºIyù×nRêß&íÝO7)ïkºI7¶òú§Qt£€Ksç†ù¥¹“gæNêiš;I•æÎÍ%[š;iÓÜIѧm“v$m›;Ç8>8<÷ÖFÍÔÔ¤(I•PjjZ@7¶ri¥3K^‘;®¢d~M>nnÙÒMJ‘nÒgùÛ'JLŸ(7LŸèæ-}¢\+}¢DúDyˆkŸèÆD,}¢¼?é%[kŸ(Ÿé¥ OŸ(0}¢C²ô‰rÇô‰ò'~ÌO$T½õžŸó¾÷ük7鯧?g©ä7H4¯OzNyŠÿV.Þ÷nJ©ä+©´¨G.ðcT×ï7üj…{<ßœÏ7ó?ßßyŠi_¥Þ¤}•|¥}uün_ås7í«|l$YKߟ&W¸4¹n²K“+µ~V$^?Üg¶4¹R%ÒäJªä‡7k-M®»hjÉ_f ÷¼¯#+„CõqšÍ×ÏçOUDwTq©PG\¢ñÄîõznÙRÊS¶&K‚ÒÏáûQ ð]{€ çºW4ññý]Ý̧t¹;¢*Gݪä®ôrçñ—׃d¯5¬]]®Ò<îGÉáé§K5e+‰¢t™ŸÒeP¡t¹Ì!;³<îöSº\ªWhsk dµ½šª 7ñ|œÏû~ì% gP¡Â¹;ªÂg g#*œKõzÉÎ:ÎÛO5;T°µËÜ/UÉ j½qQõÆ8DT¯T¯êssͶŒ=ó¨$.‘j„+,ÕõBŸÇÍÅ9[¶Tý 9 ú®Õ¿<ªA5Cï×_~Òº`þ9«€¦C;ïÍ)*‰Kôr£Zmk½1oª7¦_ùƒ¢ìÃI0/ëZ ¼¿÷¿ „!”þBÿPÕ æQÕ u8&ª} mÝû‹Qc<ð¾W,ÔØv%ÕØ‚ê<Ë ‡«ÛßÕñ9æxúü´Ë] Æ¶Ì¯@ÄXèø}\¿³÷N(Ö¥ÏOÜÏñÕà?™¥e#VüÜmwù|Î'ÊTõ½/‘ÚãxÝßøh”ℸl}ÎBÄÕsåÿMvLæ?öz¥bh;jˆ·oÉßøÈ2X¨4Æo|m./I¼÷†©GÆF=2¬ê‘)‰TÃh¡Ò¸šóƒŒË³ç `Ë" ز=k*›ív†8}íùÞKs:|_éR8É—D¯ßEž¾¯©E®DQ‹\¥y̢ſµÁžÇ€›áæöÊüñõ©öuÙön€uÍPšT¯ÙM6TÌÀ–JX¬…Ü*øBnµTÊ­b-äV±r« Bn¿¹UÿÆ5·Šµš[[È­b)äVA…Ü*˜GnU|5·Š̳nK!+æ“€ÕRMÀê5 曀ÅRHÀb©&`ÅU°X Xí×Ô*¨ZÕA¯¿Z ùW±Õü«ïÅš•HþUêÐü«4+˜¿¼ÓͿꓵH Þ–®YZÿÄ5K«ŸØ,­”¹YZQ5K뛸fieN›¥•o–VƦYZPµ¿uçb—\®45ý­›s\3¾ºÍøŠª_Ýf|mœ×Œ¯\l3¾Ú1_1ŸŒ¯ïõšñ•éjÆ×þnÉøJ›ñÕ†Íøú2®_­ÕŒ¯ÑŒ¯1_¥5㫻،¯ØJÆW–f|å4šñ•6ãk£´f|µc3¾ú‰ÍøÚ]¯_Q%ãëGÄšñÕõiÆW§ØŒ¯5bÍøŠ¯f|ßìø+M+Ñ7M«ÃnšVÜ7Më߸¦iõrnšÖ–~MÓê‰Ð4­¬RÓ´~î®iZû–5+ÿÙ¬¨š€õZkvrýMÀ.ÈœÿüA†K…¯%R#l©Ô« ;â;¢{;¶{K®XÒ \1xÇ´XPµ]VûÔ?3eµÖmVÅß_¼?·Ç£Ö[H«­·Xjm½ç˜kÎÜc !­°X °ÇXªM®øu@=Ö(ž±yÅ36Õ U,©·™|ªXâ*T±±^u£;»k¡|¬;¢Ó;¢Ó;þÅÉÛJ"^uŒ…4Õñ1éwá…L[Û1A…vLPu,ôÊ Bg§¬w1”qŠèÿÄZéÿ ú?¥§íÿ”iYØ.Q¬¤eY’"-[!ÖŽSI¾H˺‹+åj÷ª ý: VÚÕfR]¢6ë^wÌ+Ö³¯ìŠÇ,Ë›a°f~c¶{][Nu32VÏ­Žƒµ‡ñÝóeÞöT«‡T‘u_Û¼jk³ô¥JìíKÕA­XTE+öZ+Z±˜ï8XÉ4˜ÆÖåµ—T·º½¤~®@Ä` C\õ†m/)¨:ÄUl­XTA+–¯~­ØŸê3Yðbë&açƒy°²óé]Õ¥.v°ÝÝÚáê¸`épÕ/l‡«_•K‡«\A;\±!†®ã`ÿ>¯þ9ð/N—ÃC}Ïx‘°žV"¸]HN+‘œºYƒÛ.„ââ²`¦ì†p´ !„,KoÊvÂn QP™*ÇÔCƒŸ–Cc¡Ö9ó—Ý©'Rp§jdÚ.¨²Ýbâ¡–G[Œ¨Þ@Dõ÷!*+ *§Ð’’†ï¶[ëyAT¦ì&¦J q5øR Ncï®$(¤n$¤J …¼TË %UÁ[ÇÛ•„•´i&ýIð”jsÔRˆqÓÆý)ÍÅá°HG²–ïÂæ´0p™QôíþWK÷¨úÖðrltI£»—ôpÁOª˜ŸÔ#zR•²á'Œ%¤+àQM\BÏ®³Öõv•”x5ž¤óZ«zA”¢^zŠ%â„B~ÌØu<¯·z¤Š^¿Ý–òZˆ0HÕ#  íž/¿+pqj_zô¼ì„S’óZËoq•€“Ô‡`’zt l)¦µ>—7)@J•eênA“²[:Á -å§!8.Q£^.‘t™Ö’[œÛéóñ3ñ™j²†©0 @iLWì$=»VP¤*Ðz뜤Çù‚›äÀk *g€1z G=Øy„žšZS*õ¤b-– ƒê<¿É<ÏÏŸ2áò5&{}uÂÝvTê‚ÕŽóþ|î#AŸ@¥’ãr¯`pŸ©;’}úMEÔVR±ÕÙ5b«]¢ü‰·~ ÐÞ¶kµiSTmÚUæÍPSÓ³©ST-t°E´P›Ñ–øDد[$†6GR·2Œ…7ãv´eÝÞjs[(E¥âÞòÕ *ä먪~Þ?ßÝXTäâ|PÔ ¡¦ï‘Lj¢V¬•îHª J_A…ÒW%µ‚j>@æaß÷ŠÓ&Ê©_ËU·häÞx T«b)T«öö·Rk©ÂÚÕ S°Õ Sêi*Lav×fKµrãÊR~‰µÒmIÛœnKîø9?K<^rx¾ñéÉäZãôº!ŸûÛ¶Ì!Y‹GyÉRÊ ç¹¶\Ò+^fÃöðŠ7Ž?™äU¡Ý±-—<Åu¶ËÆ•¥ÀÌg }Fz<7~8u¨ø‰é¸¤yC*¯FêPqŒÁÒRÅÕuÚæçõñS²æïGÁÃË—½qêmË|'ˆßå±à %­öeZ.÷/ç¿u¯¼üKc&¯õÚ˜©ãQq,¼5Ê^qËŠ;¤ÇÍý¿_/³Ë~CÕÆò¨ãxÆG¥·qÙÒ0ÊgF7žlTã>Ç ííù aÔg=.Ïi¼ƒÞ?ÿù]ŠKkºÎÊá9wVÎÒõûNA…¾S­Õ¾ÓR)úNµVûNµÖe~ë¹\Ší@ÔæTQ56å†ÇG#'±“V;X7ÒZ:XµV:XÅU;XµT;XEÕV1ßVò•Ví˜VjM:XµT;XÉüÚÁÊ¥ÒÁª¥ÚÁ*æÓÁÊ;vTáË÷7÷õ1¿qæºÛVZ¾ÅU[X)¬Äè¼itåI¯-¬´[ótÍu§Û犥4KF¼§vsÇ–nXš­5ö¦j¥–‚O7,ÍV0‹Eõ8êmÕÞ|§evs„KËìF¤#>¿ÞnÿzÄÍåY¾Al¤µ4ÖRZù!ª~] U¾.l ÄÒXK+Ÿo”êç|"]>¿{yÖi¿¥¥LûíFöËçžcÚ\©ôisÝXð¥ÍUW¶Sb´áú bs—Ï âª ¬ôÂ?ð07oLåÚæJåJ›+ÙJ›ëæj,m®\+m®WÚ\u<—££^›a7æfùÃû“fX2¿~Ïàû'Ͱô,i†å›2ͰC²|AáŽi†¥ã?ÏlÍ,|#Ե͕·: ¬›óY> ð'¦5•o›Ç¼‹ó!¸W.䔥‰ã)Ô´¹òÓæJIä›ÀF^K¸ÏçuÚ\ioÒÀJ{“H~óÚ]X7QÙœ‹x¹½1h`÷¯ÇðHé…~ã[ÔÀúçòïõ5wZ"¤N"Ã0e%¥DוÕTž6 O‚sÊJJ­®DsꯖSVJH Á=…HÉÞî¶ÆÓ >SD)x¦²„äl·ìR¶êRhNGaöèö· ˜) —)‡ X¦.T¦°¸¥l¦Dqµ;­.SâY]¦&“ö™*$$œ«“mê]BЏZRȦڥ5ÜGBuª$O3/2ˆž[) ùI.ÀOrÑ%j*ºJ l¨ ¡j–þ|)Ýl'ø(\€¡$Ë%Èõ¯ ,T¯’Þ%BÎ[7‚%!IlÔ•€k$X£Š©¨Fzé$«^m¦QWB¶¼DHƒË8­ùí¾€TQž¯ò’÷ö…Fü¤'À'u%à"õÇ!Þ_w‚#qp݉1¥}}’ѽtÀDêƒ Q Îéã!{\Cò¸RÏhHå ™ãˆ@(G5€/ªGDW€)vXB?)òÁ2½uA’éMnVì%Τyú“™½Þ/ã19?Ÿ¾š´OŽôó§…0D£™ï:êM¯§ïoö%RˆÆèàÏÿ\Ïã%sß±¥½.æ çFÅãöÇ |Ò4…!‚(/ãò^OÃÜŸw+ݾnø+lß²t¡.tŒ}žgòo§ŽÛèC•¶,]¨Íÿ{möÓ=ŽÎSmo¿¾¢ð÷¯DÝíåxÆð—óhäßiÀý<uÖ(œwgrýip~y‚Ç^JóûÊe¬xz§+DQ·»>Ž‹2Jœ·wàs"0¼xúøn±°œ†˜~JþÉÒŠ‡¢óÑý|ûùbˆÝŠs˜<^Ñ黼+èh|ºì0n<®O?Ýl|ÊE?¿¾ã~_R—ûerX*&Qî9ÑY^:õüÎÏðàf“ðåÆÍ¦¸a*^?`{/";¸âþ`³ÂþÀ0ÏzÜG÷7Æ  ?àhhîK»ï{}.¼NaxwÇëäþüÁ§à™Œ7Åý×wz˜ïbï`»Bï@-çDšyº—íJçã‹ÅpÀ§Oã^ΤÀ¯2™ s@« µ|^ÿ»[èu¾Ó[œ_Æò¶µ^c²Ð°^Ï­#^oÓ Uÿ£.{rE ¢·\Á‚J4> Õ}=e[‰½”pã-/ŸóÂ]ßxÔÁîl7yŸ­„ÄçÙéz|úÙ^Ýç,nWwÿ8yÌFÌIôØÚ®Ëlº ÖÞ°ôüïümϽ ˜ ‚C“¶neœK#†ÞÞïÑ­<ˆFï×Þ}}¸ƒÿ­–ˆsd¯ÝIQ1’6~pv1í½À‘Ä›oïÓVÜ5K÷ÙÄuº÷+ ø¨‡r™áÄKO.߉O¨Àm~µ¼ýJÚb»(xF¸º§!çã ·¿–E3â[hÛ“ÝÞ=Æ[èyy¼Yé|? cGqÕöñyû’å¯ÙcýuŸ³?öut—ï!Jp…AN‚Ìöæl½Žp“¶×é~ìc«ÍÏñtü¢ùûˆÚE—¡bxY*Å—ÝQÁc©=–Jác©œ+îe‚a&„Š8³k)ÐìZˆ4»”BMPM§1{ý>ßüDD¤ jHZÞ“’«¥V¢Òn¨°;".¥6'æ„6=×j“Ð4T ;»Öè†íñù]쵑×’­„§ B|Š  B#¡v-„¨ÔÀ5FÅÕGŠý Ö+cƒXÊ…`;þ6ÖÛ_X€]ŸtÂY˜¤¢âêxÐBEÅ•OÜ‹ûŠÀÂBP‹ýÕâŠ!¬…»C\K‘ÀÂ*­1ñ/0øB ¾C¨ÊwÊ|ã:)ÓB$T†yCøŠßˆø|!€¥¼Ö–n8!l© ìíx›¿qE²õ/\#]˜·"ÙÚœ®1ô1ô!1®õó¸ŠÏ7ï çš«ÅøˆŠ±aÃb¨¢Y^×5œÅRUA…X•k­x¾;¿ù7¤…&#¦…àÔ‚-Dµ|Q&¬Åñ dÅZˆYAÕ µ*j…L¶ò”¸•w:+¬"W˜D¥ðd KqŠˆKéϘnoÆŸÈ:XDßý ü'€]š€fëP‘B¤2Ý•ˆÕ®] Õ®å Õ®] Õ®] •¬eIKÔ"þºujiWêÐÒò È¢î†1£] å®@0†p(-eK©Ríf¨R…Æut(¤”RÖ.„RÖ.TÈ#p”"Õ®(#hR1Šº`…¸ÝZ7ŠßÖ’PÜÝâáÆ¥Ú‡ÛjOhI«=Ëw;u¿[Š ×’P*Ü ˜Æ‹„kµ'ˆZíÉ›²V{Âæ´ÚÂlf·üEçzÚ_,…œÛK÷ & Ö«“?yt+”v+’ˆZ[ŠkЩŸPÌ‚-a¥ ‚¥@-áöÎ>´éYö>•¬0;÷I¿³Œû„~wÚ'ÅZí ¾[È h‘*nJ‹T±]JKaw[ hA(ÍÀŠÁ„íZ5 ¾[5 ‰~n…C‚+VÊLNºçµúw Õ§8Ý!QOV$ðÔqœ°¨ÁJÂn­uÝóý ·*Ð2Vh\ËXÁSËX)¦Ú¨:0ÀÈç‹øÍƒP˜EpÐ-ˆ…ÕiA,ߟkA,Œ\PèSÖRWè@K]q¾>ÂJ ªSù BD†ÖžK¨/ëàáh S´ ëÿó›Ñ,¡ºßÕ}žß¬¥Ì'Öâ —•ŠC\V¢ëW0>f8ü@ŠgCMhéR™ ¦8}%KqüJ„Õ¼'–ê–ðôœOìËøÈ±—&‡«t)LW ‘&§ôôŽY6×óêßÄFcQª š‹RÖ5%ki2JyŸ±ýMüiÏRœÒµ¾Æ9üj–Ç)_¯w}\ ZÊŽ¯>×ÝÿÜÊtÄš³ùhÓ^i8´EZ3üúãåüÏÛµ<Û¥4Ü—‘J¹m¹÷t—Ra¼KÅ¥ù.¡ðï³ëë÷”¶ÆÀ„­—Z]† x¹›ÓÞÝÿ}å¾U@'énhòLù:ºê?_Ô·½zqöLwÔð]ì–‰â`8¬NH£eÊýýxƒ¿ìÝØ4ú­ù>Òž×—ÏûÜZæ—ÌgeÎð*{æ9¨¦ªªI5Ý£j­T–5Õ š:~Mªéóûzô Žr€½¡äy²éŽœ*¡>¿òÒ·7FI©]ÝXš©ziÖLMÄñUùz|Ÿy£6#÷fì-ª2š~ fàLÍ®†É(Y§É,¸Î|–ÊX¼]«èCX‹ˆ½à+øCâK¸¾]K¸¾¡"®/~#p}»p}K$\ßR ×7‚P`-¶Šþ[™ ý·TÀõí~Âõ-ï ˆ±ŸÀK%ð_°Xß®XßòްKI‰ú„à.%„àj)‚±‚˰»_“м­@†}B0ìC‚Ë»‚!, ãî!JS„`XÓ"w?!CXM"ï@æm B0 `p“HUa( p„q<À†™Ž0¬V2åZ hÔi ‚ùþË›(^¸1@ñBÅ qŠ& P¼ð=K0,a‡—ðüXv¡ZÏ¥þ<êXܲ%,[žt°l±°lÁ=°l!®¢Ôò”Z¨PjyõW”Z8j ÔBÁ%¢ –-ÞQÀ²ÅZ@©ÅOL–™¿1àD´Í@¼¥ë\Ä›;¶F°ºfÆ…˜-'¹]RȈê$#ž oqÚ€¼_€¼Ås`¶°³…›˜-f³e(0[èj (‰$zéŒKÓ» m^»ÏåŽK*—ïë±çñuo"ûÍS›èGqõøÜrÚQaÚ©Ö:ý[f13<;ªfWA„ LKŸF%Ñ–Õ¹Üð°ûÏ7m8¿•Ícÿê ™_3ž jÆ‚ϨSžáuvZ¼桊ê¥åãçµ G%þæ'„ý†¯ ø9kYOß¾K5‚•Øg‡Êœ|Û*éPåñAóóñóåPTÓTÎê»û‘^ŽjÝÓùóH5CSAMmh4¬{˜Y®d«YdQ5?ìS¼~M¾ìuùr94ðü“tÓY7óëÛ³f~¥¨¯»uŒ|}#$~ÍÖšøU¿8êN¢¥EJ•7U°)ÝýU|éþyo˜‘ÑÕÀyÕHûãA98™oÞ‡8¾TŽazã{ÅÉ÷z” m¹? îçìÎÏÿ¾‘éü|7+¹÷Vþô¼7àŒ÷V÷t|RŸîõct7;^ïǨÓóö¬O#Ö†äù¢¢—Oü¸ ÀÛ«`ë¹éÐgˆ1¿ ¾qH±Úœþ§FVrÈL[ÚÊËQ…ùùøïÞ¡ï‹[çï>5ýÂ&Xe¸š`•LL¾¡ûï^#KVgØÉ·›»¿æNmt×Ü)vì´Z­õñU¼ÿ|ãînhíå«ï,óQ7âÏÏ·®úcV?>ßx¨Óe¾¶Ž»³ÿ)‚¦ùNóî™»¤j}:kVæavˆÏùó{S3üØ(OŸ?߸×ó¬2|Ïí;ô‘ù8 kÆç÷ýíA~u£÷q@çïìÍéçåxy>ß\ŒëH!?n?ÑˆŽ££'öî_/¼û»`eôhŒSü¼}‡¹¶"s´ïùÝY£(Zk!Sëû³fj!ÓÇQˆ>ò{¢NL¥ÍÍ,Tz»Ù0;}âõBœïûǻȴñëúåØIXRaLÌJå91]Kƒb²'Å€/ŒŠ)_šÓµ4,&Tœƒßˆq1] óbJ¤1¥ÒÄlØ‘1%Ò̘ÊTCcÀ¦Æ`GŒéŽ˜S" ŽÁbrL—Ò蘞4fÇtCÌ…éJ ]ÆdÜŒ†Áíél˜ò®á0¦Ã@ÿ0—óa ‹Ô 1åJ#b R̈Á/Ä^±L‰0&T]Æ "&ÅÀ aTL©’Èܜᯮo˜Ï\ ‚&ÁÀ`Ê ¨0æ¿s^`(1è† “^ìÒ×Q/ÐTÌz¡©\ò¢ÔÁN{¡¢fÜKÅ¥y/eK_¨8™ø‚µ0ò‚è8>G2Ïzƒ.X ]@…‘.´$ëLÈóZ`,1°6[x×]íˆÁ.p±3W0?Èì™4÷óñyó¨Ô:ϵ—WÏ$Ì’Ù=*'óÛÛï‘3|Fdæ n?†Î౩3ÆÎ€ sgp70x*É3PBŒž_˜=SIhø (ËðɘÉ2Ô‰Œ–®b¶ ~#†Ëàv`º Ohí¹µGȾÖ3…FVuíÍýƒ'2_BZZ© µTªÆ” "ØRø"ÚRÖ"ÜRÖ"ÞÒBµÁR÷SÊŽDJ âEìH@¥®%D¥üFA*UôÂT*[UªF0)TDC [‚Cê†ÀCÊJDª>©Ø ;8I|9©rtR¸'vR¹o $*@,UŸæ‰ŸÔ +%™›ŸÞÿ-[Gª ©T‚Gª…ôQ!죜"ÁjÃ…~Dø£Ý-ûƒTc#$]þ" uCA •JHUT U»„‚ÔµƒT¶€ƒÔ«( $]²"!Õ I.#XHÕf!uÃÆ‹¶‚…CÒ…-RVÃ7Û·à&Õì 8©Z#ä$™ˆB'uGa'ÕD4æÒOÄRtPKržYª_ÊÒæýö'0ÓŽcÒó hL½Š‚cªr IŠZ@¦ò%D¦ž" ™º¡0™JÕ@ðÍOüÝTvS•^àMåKèM›è`o’k)4S œ`—ôD-îR/PAÙAÀ3É㟩!€¦£š¾=fqÁoL¤î( 'ÐÿŒ åT*`95D˜Sµ¡hNËü„vÓnV*O» §Ý¬TÃÈ|>×í†c*ޱ)[c®^Fm8˜ [Þøÿíz ÙnÙòHœRÝf‰ÏýÅÖÏd‰ð5“cÞåòkLøz]šñè?¦èíZž‰S*ÍÄ¡PG)П™8ú™‰"²‰ ¨ôYrð3” ÌkM…zš[®/EýØãõ>AŸf=Ý[ïLœœgâHo:'TœvC¡®Ón´a§Ý„ùè2îâ¨EÛ³Åi7574îÂþFíÏZšv#ÝÊ´›ZM»é~švSÝÒ›^Åó1½àWS©˜ÇìÖjà+¤U_£\øíIwÚM¯i7¡â´›gM»©P5£¦3jê~4}¦—ìz|Å¿|¾aËÓg$ÔNŸ©P5}¦g­é3åKÓgä€:}¦&Bc¤ƒS­×ÄýÆLŒ©çŸ3ÈfáÝuoœ?Ž:îó(}Ø?4W&K¢ÇwÖ½yóð¹ŒÛéPÁýŘAÇá|¼ñ‰cS»¥16¡ÒTÝüñbþ3U¦—UóbªW£»“Q0]J£`Âûy‚»Ì$û‹ï1Ú±cúü˜ß<‡ƒº¿y5ß秤y÷/Ý—nÎCóAÞûºeBMå  55!šPS9hBÞwPÓ'ÒÌL`žËþŽ<Ç1re¯ËcS*Œ±©Éz0`ŸN* ^clº¡ÆØèNwŒMùÒ›žõiDb—qo÷×ÃnzÖšcS3yÔ8Nø´7žZÓnʽæØì^ͱö%usdÀ7 Áߪ,§WKe<§P©©k ƒ©| ƒ)TÄ`êZÂ`êZÀ`*‘0˜J% &lXt¥JKèJ”Ö’ÖZÀ`*WÂ`êR‚W*•à•°#à•ºà•Jà$( €“º”€“*x'a)'á&&a-æ¯Ô¥¯„‹x%\jÀ+ùÂ+•wÁ+A¤€WÂå¼”¦ðJ0n…Wê~‚W‚°¯Þ¯Ä‹x%ض'AœÁ8 ¶ ÀI05NêZN‚j­¹öÍA/EÉÁƒ‰ñ×·àíKÞžTÉÛo Dðœ`äçIÏ §<'XJà9Q^K²²¤Ô9iôðÖ*ðïO€ŸºasßTzÀCáš­rn )Þë`Ha-`HAÀ‚ä‹!Å )¨30¤ÀV1¤ð†L8СðÂ:ïõ’lçŽÀÂO†~#0¤à€€!…Zsß›GD€¦p­!…µ’¯æƒ@SЀCAô‡Âa â8»‡‚8lÀ¡øø 8c¤€CA ESp(8€Cñ­Ø'®µÂ>-þù?Õ†ê”JCu°†ê`­×š‘ç€F¹î¨4Uk!§ ¾:{Gföˆ0U\uª–Z§ê”SuDô¨ìоÛ/}ÇR@1‚4;0GÊ×9â½XGX«sð ‘4•7iŠ 1Vˆ9X s¤ ˜qIkuŽD_D$Iõ|dÉn?ÐPúr*L¹‘=êdp#¬…i2RÕN“±Ö¯Ód {L“‘$:MFw¶¹aýÆÎœÞ#ƒ,½ÿƒ¿=¡‘ÍíÐiN‡ÎhÇ ÁODž„Ñ4rQ—iâÆ³rKƒÙ4سipÔÈkK¹:uk!±ms9þr~¼áKltˆ`£ Ô 62q…N²T—Ù48 dÒ±a'Øø*Î_8F³ìå€97X ‰tOév+X“Ÿ#ë ™ˆº‘¦~Λqý)ÑÒ«lÞë¨oo~¢¦áè*ÎwéL$í•3sD”¬µ¼gGæH Ím˳tŽØÊ0a‡áH·š—™ïÈ= é¤WsGæÈáudŽÔ¦¹f;õu°Žøê`Pëè€:XG*ÑܯÌMAdß:XG–þ^‰ôq?ÀDO?Å¿V¡„­‚+”°¨ % î‹!%î_J5«ÐN·Ÿ¯Ü¥z·±ã+à¸îÔ™àÅX«°Äº?@‚uÖ Ö]\ŒµÔËN ÔÛ…D0¶k²d\_]êâúvGô*‹¯z?¾ÌÛVð@ÿp}ÁÞ?áŒ|ñse˜ÏãÁ5]ÁÖ­e×ÎnEÙUPvåƒW|"ººôÊÒL>cúñxgâë+ÿTX_ðõ9F_ÿóÜ_Vÿêê¤;—?±Á²ñéÎ¥¥)ø¯~âóð=/A¼ñÿ•©)ø¯{m©Ý˜ïÕâúz¥ÉïÙbïÆ|3yúI¥ó"Ž«:üT¬à"ŽR©×®ß $ˆ¡­²’C‘x±Tº[éRÒ‘º‰Ž–ŽT¾ä ý+Kó… ñºE{»,€`]Ÿ¿Ý­Ô«µo•æhí[åÑ´oU SÌb¡˜Å+ª‰ƒRPÇ TÀq*•pœJ%„¦r/„¦•ÊMä+MÝQM]KØK]KØKåØK]JØK`«ØK8E`/•JØKe ØKذØK]IØK8i`/u-¡*qÇ *áU©| U :T%PU ' T¥2/T%\2 *ñò¯¨JÔ­¥:“ºT%PU ·¨J9ŸÆ3:D*Á TÉuUÚ^Ÿß J°"U¢äª„ ª*€*AOªå¨Ö*¨Ø*¨n"@•xǪ;P%ú‚T Ê P%°¸$ÞÄÀ%áb.©âjüǪDóö·”V JЀ*ÑBT ;T ¦ Jø‰UêZ î$z@/Ñwz nÐKxCz ;z‰¯ƒ@/áÂz ÒJœHu@¯FšÀ=š h†hÚ3ÿz Š è%\ @//@/íô¡—ª]³qSh‚±@ß±hÂe@Œxšè=Ð@MŒËЄФc\šÈzš@U€&DHh‚6$Еf!Ð]ªºþqý0¨P?\*Õc-Ô— cc±!ŠŒK¥"c¬…"c0ß"cm˜"cü@Œ¼ÅR(Eï-EÆRk)2xj)²_ÇÝj©,—HËR…,ãdZ°,moÁ²xoÁ2ÖjÁ2ˆPd¬_ØÙ¬8@”"cG”"KZŠ ¾0ÁÕ ±,kÇ,Kô-X_Î*A´^T¨WƆÎ*+Ùªf1ߪfiêã€ôú…( ¾:wk¡BZ;¶BÚ×l­Æa£BZ²o…´¸oí³.Z«šeNÿÔ(m|«š¥_­j–N¤ªöUÍ`UÍò‰kU3hPÕŒýPÕ¬£n½²EºÖK¤­1– ¶ÆX׬C\e»Z‰lI,•È**‘±a+‘å[‰,ÔJdýÂÌ–µMZ§ÆÚЯ…È~Œ¬…È B!²e­1–B´ÆX£5Æ:ÅÔ‹(5Ærx­1¶ä׉°ök±ØJ±Ž§5Æ2§­–·nõ°žÃ­–3hõ°¢ÕÃvxkõ°øjõ°Dßêa‰¾Õúü­ –µi]0lDë‚í Öº`Ô¥.Øz³Öû•·ÔËÌ·.ØÄ2v-ÖúgW=¼Pmª‡×µ\=¼®…á²Ú‘5ÆëŽ®1ÎoAçøû:‚环Wq؈ÏßżÝP…È ‘»¡ ‘³– ‘{Š(DÎJ,D ‘s<¬1Ž´Xc\9¨ÆXŠÚãR©Æ8ܳÆ8ܳÆ8T¬1._ª1ÎZª1î-Sq¨Xc¶Xc*•WoP>œ•^GÅZܳ±ò­XÎ)²b¹VþÞZd]êÖ"÷º¢9¼«Ê8rOŠ–>EUÆŠ¢ZeÜgºªŒëô3q•öHµÈõªE®>¤¹öeÆ!b™qu4Äëw寯֧ Ùüü¶Ý RŽ6Tƒ¥”È-•R´Øðn·7¦ûü8ðêÇôœ7×éͲŽ;z-# ZªâÑ"»‰ûÕ)5:Ó|yß?~ÀÉ­ÃÎÜžï쟦Ԁ/¥JiÿÖT)~"R¥|Þ­©RØn¤JñéÀÇkBÕQÝu2ù©ßÿÛS¶ë| ;_A…Î×R©óµ|u,ŽÖRl×RìJåþXrŸþØî¨þØRuNvT-ÖB-¤ŠYìØY6dK¥Ù²…YlØY°žÉ+ÚOm´P´ÑB“×ÓŽj¶%_i¶…´Ðl[îÕl îÑl ª6ÛBôh¶-ój¶ÅE³-íÍÚlK=M³-˜ÿÓu±Õf4ÛÂD Ù‚ÈøšgôÑÚ<¯}´Û[ö»v}´júh±!úhA…>Z¨ úh¡7è£ÅZí£[í£Å%C-¯Oúha"ÐGKo°öÑBOÑG‹ 3 …T½²±‚éÉ…ûYG¯lnuwqÉи‹µÐ’K#¸¶äÂ6£% ˆ–\Ú‘´äbG´äÂŽ %?-¹t±é£…_D-Öj‡,ŸéÅUD‡,4½¯Ô®ô¾‚/ô¾Bôí}ņè}Urœï~âïYè :d¡©è_èÝ=üÿvÈÒµ¤÷½¯|¢¦÷ZÞWX¸ö¾Òã¥÷ÞW#z_™¥÷;¢÷•oIÒú—YþÀtÈ‚ª²ˆ‘Ú! A‡ìßWØ6ˆ]©Ä–JAl¨Ć/±Y‹AlÖb»Pm‚Xqß 6;2ˆ ƒØìÈ ¶k)ˆ­TÄvG±=l±¡b¶ÄvC±e]Alöc[…P[T›ÄН±•–‚ØpÏ V*¸ŒåoT¨[*„º= …ºa‹¡nïµB]Y¥„ºÒ憺e^¡nuèS0$ u+…º5â uiÄêîîâŸP·j£PWBm¨Û ê–J¡nUP¡®¬à2@”Ú¥€¸;" .óˆ{aë’5 ®¹Q@,Ï’€¸Ú¬€¸* .•bYÔÄ=Dĺû ˆ{w-Ä2• ˆkçW÷|wGÄe^¡®qCÝzO…º] ¡® u{Éêö¬êJoê–/…º5áu»¡BÝR)ÔÝþÄ?¡n5B¡nuP¡nùR¨» –PW®¥¡nM—B]=dêVëêÖv!Ô•Çk¨[P¨ÛcT¨ÛµÄÊK5ˆÅ­A¬Xo[*±‘ÄVZh¼€íŠƒK¥ºßPÀ©k©:8TD]*•jˆ»#jˆ±aë~»’ê~Cźßn¨ºßÊu¿]*u¿å ØLd<ØLXªÅÁ•”Šƒ»Šƒ!ôCQ ÖQܵP\™«8b@Ùo×4S×Rq0tÅÁ Bq0Ä8%ð…âàR©8òBq0Ì’ \@J‚â Ð¸T*!ÆZÀ@¢>§Ð¸'¤BcH…ÆàH55*GÆ µD(G†œ»£de㺄µZÚ\9¨h¹Ì«u-GîvE\*—à QØŒkÂf¨j–)õT#CýPg 3‚:cú•ÔÓO§Î’ÆŽO”ýZ³ÜcTÍr7Æ|J–©~+z½~p™øIa3x_ ›ñþCÍ2L)Ê‘qÎ(G†Ø[Ž ˆrdú”à-Qì)Z†¬P´Lÿ”¢e\ ”#ßp /›-ã¹ T&¸'”6Ó¹¦ ¹;ª |¡ ¹T(H†äÝ„SDÙ2Ì@™xÖ)H¦ÃH©1MàZjŒKRc>×Rc˜o”3vH1ú¥ˆxbŒ÷Ðåñ9Ì¢3«¥zñ~Ø­~ã-…êt8Ëõ×+k©¨ËxË~Õ¯fiA…,­Öj–Vk¸/?ûý&QS¹¢:^ŠzùŽƒµá¡\ÊNZ×™Þ|IëöòBi-Ya­u™½7¯5¿í¸jRXK 8Œ©ßfT ©uõN¹”`&_I0kÇû×[êõÀÞÉTYh-u|Ùš?ñók®šKùËr}n!2ÚbþÅÎÈýúà¡;vè:ÃßßÜ×Ç´#×ó¢ØZóÞâjؾ™>ý ^@XÉŽó^œæ¯ó5¸£jF›úpš¸`Ã‡î•æ6ÏpÐ\÷û57NÞ“ßܱ%ëM³µæ³©ZG³ÒeÔ¼l ²Þ4[ÉzÓŠ(cÇ7âzí0c­½‘Oj|s„Ó'¾äðÆ<\æ}xYÀÛ¸¯Ø’fßÈôß_¸7”HÆ‹ªÉxR¥:V>){Êës¾¸^ZöýR×Y'±OKù1õfXˆ½IBž'” :•>ô_2è\kÍonْЦµIB›WcÎT?lÄ+¸¦½©I{“­¤½7úü1ýÝéû“†ÖJrœâJr;*Ö)®)ôXRè¼I¡“ù59ΧÍñПRÞ8©¦Ðù\L }sû—:wL >ý<ÑlfRçP×´7/lÚ›óYRÕü‰IUóÙò˜wq¾ñÞñÏž?1x©Fí:€p¯?©P]Çóã€?ÝPo7Ÿÿ¹žÇ‹ê¾e Ãq´áçŒÝÇÃËÕõ Dñtÿ1Ï’Ãe„ó×Ó°‡ç톷¯j—xnÙ©¨Óë/àõÍŽ/MEç‘­8mw<ϧäïÛµ¦ Îÿ™·ò¼åþ6tp,õóé]v¬ –ú8M¨ßó€2ß2=¨“çÓ7ÓŽshÑDBû7pÞãù¡=¶|]ï3kúÚñ´×ˆ¡§C¹ÆÆ§-•æÚ`Ãë㸯x¯ó#/4ØŸ[ö§8#Ã÷ÿ|Ã[X£Ÿx>ÐÆnÝçǘW4uúÎÌéjÌâŒW@rý† _˜2¾Æ[vÀo^ÞHKƒaôo°p`gÞ÷æm|f(ƒ¿^ ïšñ—ûT¶ôô4îÍå6ôu«§÷ˈúgpszc¸>æ#õy¾½9ê¡5Ár@ïÅ0"QTpyw/&Í0o¯_º7ãí3nây½y»} åû;S9¢Ý‘Ǽü$GpÔ£Øð ´õº×Ày1^·çþF™ïG0u;ÿ|ÒôÝï–ûóÁÃB¯ˆû¯W—Ôf"O¡^öÊuû<ŒàÇåÍOÔÔñõ•Bùõ¹Rf÷t`§?ßèÍë'õ2o·­ ®’z˜·çwb\½®àq1~­óã]9ÍÉ^!0ÌEÒ:z$Èòþ¯‡sš`Ë×½cy=Dnü½®Èó-÷§1.àþæþ ëö8ŠÞxaŒ…‘Ötà‹®õó¸ó»øœ³ó¾ž¶bl=ÏÕcï:/sæÃe°÷†­Îr‘«þ˜¯þ¡Zû;6êÔ΃­ÍîoõÈ´ª1¸bo!¾ªúãGì—ºàeçó÷Cl ´íëá÷žóðvsJÁÓ|¼/æ ü´ç}´Ì [s;¿£z9áûù@`Ú;²Áüç´[—ïÈ7q´O|•¿½qçwr~*¹ï-%&̈ûÇ, {¾{¼Í¢ŠÇ×;ðä?æÇºÝ߈ë|Ì_³Þ°u$¥ž—Ç»µÎ÷ÇwÔ{íÍíKô¿àèñ?gføõ—Ë7†·^†èHofuÉŒö>j|Œ™±ÈñÄù÷çþzL탲QW5Sõ¿1§Çüùrho,ó}v" àóïšå¿Ÿrˆ%Uß”JéZ­õ8Þ§÷çó§á;¢©¶;6©«µÔz*¶Þ‚{´Þv­$uE¤þÜR5©Ë פ®ˆÔx *´ÔVòÉxŠètoiì¹Rsn—jZT§ƒÞn˜T¦VR/ô/ Oêr[xËUS™ühô…6$•IUF /zMeò毩Lq¥6_ðŽ6_ªrxñ ÑÀ ª6ðBÿ’ðäñ Í ¼¥J*ss:K–r#Ó%KI5E30±d)y}Ð * cá7&³H;‰–a›dwNqm¦¼Òç Ù£ƒ:ˆ^šÊtðb­öæRéÓP[Ñ7³H­oCmyW«,µkÉr-4ÔÒ¾¥¡2mC-_#i¨Å; µXësnøxé7ÆYm·4p3‹”Öéð,Ÿ§7$6çÂt¡9—÷úsmÎÅŽhÎÅODs.]ìçÚœK§žŽZÜXtÔâ°ÑQ‹Ñ+ ÛÕ^Y¼5’¥¤ ÐQ *tÔâ'ÞžÀ—syc,Õw‹ÃFß-Ô }·à}·»âoßm¥Ú¼(-únùúLß-ãŒ%ãIµGw.®v»sé§Ò Dw.U"ݹô@é»et°$b}Œg÷,£òþñ ØRiÄk©4–;žþ½üã,wT·ëQîðxüûùD˜ð *´¥jÃÌÕR"ia¬6ìX3¿¶¦bÇN‹ÕQgZ,V´XPaZ,6üœùqùN5Ai0,KµaVíDYkü:QVT( æ1+T˜«;+V7±c`%‰ &6á*?ßh`óÌØ#euÖ)«cœwþòüø|ÇWÏJ3xÖû­ƒgEuŸZž¯#?o‰4wV‡Ø\ôþbüš( "L”[˜( aa¢¬äÐY±²n™+9tV¬T«³bå0>¦9ý¸ý”_é|:+VT&Îmâe "Lņ˜«ŸØd´Ïgí`õ}=ýÁ$|wõ_Îøcol0QVŠÚ‰²b¾M§DæÎÊedî¬]õÒŠ•0œVTN++ßá´òN *Œ•\ÇÎÚ'®cgE•±³!ÒØY½;PÖ¾n(+_ײ` eu:(‹¥0Pvó4ýü;PVúÞŽÙýƒòwÇ,á´D‡ÓÚ%Ž÷ñEù Æ[™Àްµ$Ö¹³öëDY#&ÊJª™$¢Ì ²>e÷7Á &Øúæ¯luó3ÁÖ—z´?ŸçwAAçÜBi0œVQA‡ÓÊu쬜JÇÎJi2ö²ŒpÿgE*çiK¥Ö}® u“rà¥.R»”ǬÛH ÈZÁ›jJ´6<áâÆÇ6q*Ÿ·o47JœVôH‰ö'*ÙY*%;Ë–’‘|c·w?ñOJ´|)Ið'.ãÓ,qoÙ—ñI¢T§Ô¦IÌê¼’˜½ÖHbÊÅ6‰Y­QSGÝ$¦â²LÓÁc=QåÆÿ4!ªçn¢°ô \±£Ÿÿü"†,1že"þÛXõϦ v%R’6Dì” ‘eW"õɆ%¤^ûãž§ãutýù –ÚJŽÔI›Ýn`o6|îXº_¿Ð_¬}Þ÷PÐ’Û•n³_èþâû¹;6äF–È—'5íVQ’â-ßêë-Ñü 2úÜ+zËR©”åDP¼_ö|ß&@áe´N\¶: îàŠšƒ+ôïôòOkpˆÐ,µœh¼£wqgØñ"5üf»47îÓãóÝ¡Ì4ÓåñºWçã·Ì:ÊÆï?dqt\Øý\eWRKpo&:‚£rM¯–%´K+‡EÿÝç[‡6ß0„Ä*8š½-/ËôØk%û…Ë7z|Kt½ý.,©2ýíŒÙß¹tø–ñÏcÖúõ¶gœ]ÀõNh®/hßnN¥¹FHé2?2=_†õ¹€ºqåÒŒ[ËÔþÙZ´Ïv¡vÏÖ¡•UÙoL%»]C¤f×Z“Ïã÷?.Û߯Œ&¯î¨µ} …­4ëÉc»§ö± ´C·vâz€Ë^ß4ÕöJ¢§¶‰–Úú%´ÁV‘Ð[w‚&Øðtž˜èÓWÞö+Ý,öëf1ˆ®_µoœûdk˜›šÜ¸Š¿½´ýqh¥-ßè¤Õ£*´úqé£íJ§ÙÈýü‰ EÔÎ×>=ÑøZkò˜Qííqy£(j{íJèg•H;kÍ ºY{*èSí5@›j‰Úªlm?­V&÷){šÕ‘c^–J¡#¨;bG ÃP–J¥a8Xëõ`üœs%>¿CQP!ÕoL0*¶22G+5ÐÔù4ÒÄZÂZ™ƒ¥ýmİDv¢JÔ® ý$® ýd1¬ Öjàfe^‘˜¤Ì§ioÖÀ›£^ƒ· ÷1–¼Ôs‰ªKÚ°Q—ΧaÖj¸d}Xâ%ÝÃLÚ¯Á."fÅÈ>4f’Úc kaVŒ¸“¤Õ(Mâã t¾¿„F·HÁ T x‘_§·€Ó[$¬Â5i¿tÒ‡o‘·+\“ Ä ×$‘ÉÊaÇ߀:é¨;%E|5"_ I­ó+ô“íÈ ý*@1YéW(&ñÕÈÔ’XBS;Åu|‹®õýx¼¾B½â4γ¥\˜t·Û.Çí~~~ûEðô8>üšú ð8Þ‹?c»Òu¶‰^F^ô¶æèܾömK¤YªÜó~¤È.[-@V¸+½rB—¾äô¹Ud{!ñûÁÓÏjºónºµ8¯÷Çp1—ë»»² ßð¤q‰ ®,‘ ¦ýŸ{ï{czú‚¯~üD`Ô€Þºt™9åÛ¨ØÛ*@ÓÀ0×£Néò¹ÿùãH&Rûóãgä|Ù0.Êu~#½k~|} >¦²ïí÷}0þøFµ¼ž¾œåÞ¥|ÌšÔÇÇÇÞÊ++Ûôœ>åöΠ\Æ÷¹Ï#a¶÷`…m‚ÝCÑo¯õ¶PÞ·›Íê¥Ócÿ¢/©Yµ{~óÆ»LS;×Ö} ×t;ß›öÎòc-§ó^Gn³ec¾ñÎÛUÓ½âç<ý·º-|"ˆñëôŸ—ý‹bøœÓãø ó†ïûtó+ØVNÏc¥ñÁsûZ|1>ë­G:ëÖNQƒ³S6` &PBô”³âñ|}ó€¹ÏÐëà®û3Q¾µDcŒÃføµõ¦ç~oêÛÇNã™ô˜ÌÇÞt_RÇ|PüLd¦<‡%y¾1×/‹;+2Þ½ò¿Õ{ûŽ$_pŸÏã2m}ÀרÃq&[+y:1Äe{OŽÆôËý@?ÛG^×É÷åçóÔ_þÏ&•*ÄŒ%RÁn©5jÆØ»Ø±#–Bä(i5[[Þ_‚ªµ¿Ú)Ýþ@ĪZ«m¦` Ñ*¤ÕpK­ñ*xBw¨9_ʃ½TÒ¹UBM,…ò`,Õ82@ ©›ÓHÒÊ<-©ÖÂ_M#Nð…žL‰ )ØŠ ñ¤î}cE¬…`|¡ô;"ÈÃŽˆò¤ƒHÂVª%¯Dƒ:l¤jAÕM™ÉF BØè”Œn×úã²vÒBE²vÑk¨”Í,Ã×R¡ß´Tê7ÅZ _Ë=Â×.¥ðâjø Þ˜b%¦]JÁdyG0Ù¥Lú×­µÁ j0Y"“¥RœXÎR“Sª E ÈÃI X¾^¿m ݺ>®onØ:8á1ï?¨KI,½d+‘)6DdеP ¶™ö‚! ªñs¢‰Þß¶ê~K¤À´‚P` MEÈY½QÈ æMâR¥¬×—UýÜjãDêMâÄr,¤¬)BÀr¯V>!`iv?…€Ð„€Ð„€]K! , B@Z¥”-ÃC!PÄù P¤F¤º;"+iÙ<Áx€¾Q.D“¼f©“¦½It©Mò2&šUE:Øаm]5[k1^#ˆî ô-6†Ö Ø÷"Ž: ®66k4 '…h?Ñ$6l­1¯ÅZù‹snëªÔÑ+¨½âmÓˆÊv®Ê¿".…: .åK0qiùR\ î—âQ ¾rBkLò¦ZvòÀž¿Ó[¿ÒÀî)ÝkÓ­Îÿ©Ã¥Ò'2Ý>¯âò鹆¯xØ4‹+cÚ w¡îy2¤Ê<™R½x?Œü·TšƒµNÇ÷×Ëõ×WQñ•y2âë%Û&þ™b­NÕNúœ¾üïÓT™M#¢‘tÇx=}U'ØpÃu‚äð²IC¹.ãSÅuKu™_‡_ÔßFû™÷Cå?nß/©.…Ê[ì7¦ÇM­ùø®¸ÕãH Í3ÜêéçøËó8­°^ùz,¾,Ä^X™9Cm˜ßä^ùÅÆRç9(gþÂ7r83M.÷oœ~íøZcüá×ç ¨rGáðZd/âcz\?~¾d‚­Ž¹ÁZª÷†CϘõiŽÑ®}¯·ÑÙ6i®ûÛzýŠ¢>¾gQZÇ#}P=·º¥šeýÂ^ÆwÈÓ^˜C£›9¤ºÿ:¾8?÷jsŒ‘{ýåã;èÔ!~½’>~y¢f¤cFáØðÍùdŒÏF¦çÖWc+MMèÉ»q>˜Ý>øW ™µvMñ)×ê(Z}â}?6©Ý—Òj»xÿÌój¥‚¯ãör•µQÂ$ZQu­Íàßp—ÒJ Kž@–¯¤²‹{=µÕŽ wù‰D+GœuáúçÁ°º± >¹ÖsÌž?õ|F$øäaw2¬¨:VJ˜à“²OðÉÓNðI¾:’hðIƒ“à“§S_ýdœ‚ÏE 1φ•v6¬=èð.¿Ç¾ê‘б¯¶âóV¿Ãÿ_‚Ïi«™ºí9ÕÎnpÅÎTŽO»–âӬŸ|!>-_ŠO»–âÓP1>Å7">íZˆOK¤ø´TŠO±aãSÊ!ñieš<¬öSÛ¥Äb-±] Al‰Äâ Äv)±)‚X,• «ØB¨ÛýêâZ ÔÅED¨‹‹ØP·¼+Ô…°êB•êBêÂl5Ôí~ u!¬$XÉ;b^žİ4ˆAÕ€ ˆ€ǃ€ö1Œâ®…€˜'€˜’O@LA$ÔÅ%C¨ *„º¼û ua™êBuq@ÉÖR^b¡]biPÄb­±Tç±ÝpX¬q͞ϵår¨ ­o¨‹ êR»êb-„ºB]H¾¡.ŸR u¡‚ui”æðn?ÙXÊA,¬3‚X<¥ÄòÆ&ˆÅŽb!±D²±ô-uéúêâ^#ÔÅZuñŒ@¨ õB¨ *„ºPB„º8!„ºÐ „ºà ¡n%¡P¡. B]>,ê2fI¨ ]E¨ I Ô…wA¨K[ŸP—¯õ„ºÜqŠcgÀÓ 8l¨ÔÌ)DDÃb)´iêZ¹–JV|b!¬eK˜°0¬ BÛ¤î(¤k?H×.¤kyRÛ$‹ê2áaù}3–[*áa±¦àT BÍRლ….5KujÖß8!]¹T®8h ]˼z0- ]q]Ñ]‰1cXK$ k7†5Tl®½ÒµâÒŸ¤+¨Ð7©Ü«oõ&H×®…ŽHýDÁaK¥¾I= Áa»Vá°¥8,” pX(à°]KpX˜ÀaáÈaåQÂÚ£V¯#œ5ЩPTô:â †—‘º–0¬¼fÁ°‚/LÕµlß$ bì÷K/8,nFû&ÑT¦#}Ù܉²:OÀZ¼‘¬Åõ)°º `-n>€µ´H3f\ Å Pà *`X¹V:0áÑ ']<,$ +ØÂ$¾ñ‚t-[Bº–JH×R¡ØB&P ë€LP.€f±†×À>4 ¿R8,ci`jš¥hÌ»|7ÿ†Ãò}:ÃañÞB7'Ɖs7§óøQxL%éÔAt¹=1E#˜<›èú~îcš¶ éÇŠd¥óuï•´y”Çøk±Ývï·ËñƒÅeEt߀›"?¿dš£!ù{à©4§óþHÜœØOp[¶Çx‹ƒëBºí“•N6;oZwj¾=ŸÎ«…Λ´÷A‰§ìPw£þ¿=Ã|Zì¶½.»¡:_»maÜö¾ÜTêü­&ä>¹íú~œ¾,Ô’}¼Çó§ÉˆöǶ³ýéZ¢ë°Š›(/kžN·ý·øíë®ÿ»<·#Y·›•Ûsùq»˜¶XçÇŽhU¶ý´5¢,oC–ÏÛ·+ÂÉ]=¹ü´+*ÑcWýëëô^òt}Çîöÿ·è%”i‹j†æž—ØSŒ»¸Grêºäè6rׯíü.«ÍÆïÉ÷»½×î2„³íöúþ!ðÉýÏkIw`Ó»ËÒ–lR“ÌNcäóêpGBz¼sO›æÞ–+ÝŽò‘÷éùíW*îQòøÿößÌ—å­öôz­¯îéø!fÒRç=°©Ò郋»åïñËÀRóþ\xöé°+“³ÏHÞŽäòÝ@÷:<Êö‡¥“{½¿•ï_ÝèvÇWÃ#®Ÿ—½ÿæ¦÷ï fp“ÏnPßßA|¿\Ž»;~4ø ¦ñÓý{ÀÍW,·ôqV÷#OO˜ËQ‹³¿b×ooLf¥Ñ9=ŽwÎR †ªíÎâüJ—fü"ùÏËÝׯÁ‘:ÛÄ}ûîÅJ?ÆÓmýÐÛÙ½¾^?ØãÊûyܸ½ËÝÆ(÷ãQu]¾àžû¯TÛ®ß?Ã!hxcæ‡G]^”í÷z`C–Ö{\ðñý§eô±¯-øÌÑ&ÈÛa(>žÈkŸ»¿r¾²™ÓÚãGM Fú—J™Q¬…17X Ý„K¥nÂX YVðÕnÂX ©X±•FÁ%R’K!} ¶š>ÅRsú UCJ­]óRHùSqßü©´¾ùS¬u{…_cÀèÚ"Ë*%ì°RÝýö–ìO»u†k­9ÊÅJ'ڛت:glÅW2¶2¶ BÆVf¾mŽåXæŒ-h±Åñ c a!c+unÆk!c룞›KZÍØú¨çŒ­Ô¦[]ì¶&¶T§ÖÄR›&}¯ç´.ØÂÌT¬…´®,oÓº¢J.Ö.}ÎÅÊÜ´5±t0iO)DÓž:ÄÎFÕ%krT§˜®Ã¶SU~±]‡%†æYå¥:EUl¥7±Î°m‡¥ZMÙŠª)[9–nÕ«+ÉX¡9±v…k•W¦ºk!U \5„Šdu×R"jƒLt©6_°ÿ®wÿ 6J3CkN{; §¥B0‰Ü£¿-ŒßrGµÉzGdˆK¤qÙRޏrPþ‚x:?~ü\2¯41ybèÃ>~_ê“Ã@¦çƒT1¨övÛñç÷ð¥Œ2ñû§åÕ†J)Sò#|>ßP_Ÿ9Í‹›ˆÄÆP B æCA¦ˆ¡@ÕèD(…†—6p4[X"¢#iMzÚò¬CéVïÍ‚öZÉÇR¨Š¡$®ÄP Bí®\Fër%ˆ4«ýp•ïJò­ßÅR(൙B;qÕê\‰´¡,eêsu}ÿIO[|+æS}«›Øò[9ŸÄ’ B˜(uH—®Õ`TåÇ&Bò åÏÛ±Ìwc;éL£6숨 ;6j³¯{ï ÿZŸ!kÁ"@Y­ÆvúÄÆvॽÖÀûþsôwC4ÞÄF€2”¥)ï•AjÑ#ü ˆ/)wrû­ñµáš‹|åî(ú|öêÜóõ×€™¤¹Xw?á¤Æ\Œói8©—Tj}u:Yìo¤eÂÈT1M#S)àžáØNçòk(XýX#S­•ÚaYÊ„¯’{ÃWéLˇOgûï¨b;ïpà×÷h§‰D¹ÙyT Ï$(ž7ju¢¸¡#Ó¼Ò¬3+­ž)îûûg/i»,¤ò¼3«g¹‹uó½Éõf“¦p³H3³`uNËFj»·¼>Î×+MÈÎë£l{~}l·äë1>/Ò¬h>¸)Qhìœ I“¡!i¨=IunFK¨#û£+Ûãq¹Êå¨6ÛBÒûJ*ý™ ÒoÕtVéÏ9åþ:3,ð*9´ö¹æÅâW4„;}/s¾4$AåFr×Ãvm†ãn›¢_ ÷ã×ádï*ºÙ”û÷”ë|rç»Î«àw„y•Û¥_G¥óÝâW¡wØm d.äš}WA xŽ(ã^cõ[==“ tz&iEt|TKŠ!¸9ƒºº‰¿2£9¡ QÅ'ÏUÄÑ„Û^<üÿ}±*ƒaØç!¬ùæBccN{IãótZÿ¦oc*[ ¯:enaž†f?~½ÔbžÒ±i^dž|šÑnMvNv_ÉÕ$³=éìQ¸º9ªÇÙ”n„ùšÑ¨‹ÍïI¢[„ÂÎå½°ûs®2v²ajôº¥¸ñÞ{êá:ŠË/«ëÞ,æD¢6¢Kf2IKÂ5Ìa+\Ã\Àñ·â6‡¸Ëì:·"A&2â?ïoìÇégÔ2TaŠÇüT‹§ÆTîš#l"OèËn3®+’ýÁ²ü·èr;ÑÊ9Ó°ÅíL€æL#xfÖQ Ü™ç]Yæ…¹O;ä†ã 7» šãÎ˨éíÌ1ZÞÎˤ᭾hndš¶±IÔÄv¦Q Û™_µ¦…ަ1mômiq iJ;ógt ΞCœ”ÏÔþ6Ë ­m>«ØÍn…–¶ù¬¢;ClgÍE‘¡ÁC=<«+î,õĪžÛëvVuºœÑç6·¸øËʹÏ~©F:ÜÎ<«uíL£Æµ1§Aæ»þ-¼ŽšÖÎë¨emÎ ksîhW;¯£fµ1hU ó3äüxÖgŠÐ§rFÃ[œ{ÚÝæî)9OȪºáâê¤Ë-LËþ"ý™Vu¸ÅõJÛд%-|dÒæ¶Y-lß×(º¾æ° ~ì»}asZ>ÊÌcãN z쇣µl¶ ”Qš¼ÿ`=–[U±ŽÕ4§ ZÓæÑf²yȽXÿWìbÕ-iñ K«Ù™5š Ïh3›Ã*±ü´{lô]aq‡Ç3ãu}.iØ6æ«Çš÷öŒ×B/Ø\>t‚]èòãñ\.ì»xÈþî‹ßÜ'6ï‡!kნ‹€\IZ*U’‚ 5¢Ø‘Ã.Ë—æXfGÔ›jG¨ì7¦*UD­7ó-%ÕZ-%ó-• RþÉ¥:W²DÿæŽp÷ý‘÷©®SrHÅ&7ì,HÈ}®ØÔv­Ø”¨Z±IÍJŦvl-¦Öj¥>±”¢J%¯Xç7v¥VYRg0¿±rÐüFÜéTlRî‡><¾~Ò¥©IYçB—§²N~b 6E¥ù ÂüFâ\Ö)­)4ŽŸ˜‚Íñ§`“2MÁ¦–jÁæÂ>ü-Ø\Ï^8±Ý±åMTY'Eš²Nú±¹¬“·ó)¡Ì)ëäZO‰/œk?iDRûIƒ„!–ô)óxJ¨ò1€sÜÚ5ï)Yæ[mº¸ù™) oŽ™’ݱզt›©6å7v>eoÏ\’JÁDIÚL”Äc.o¥¾§$UKµ$U²JIê™O%©t®)I[-IåŽÇ4Ìט¸þÂT¤R³R‘ºÐÒ©"•‡ˆa˜=ŸV¤Ò»Î©Ÿ˜ÿ)¤‘–¶ò“zŠ)—¦\R\S¨4¢¢ ß3Õ~Òºa&Ù… {:—ˆ.üX†\â€RHºˆÇ¦BRjDJDéS"ʵ2 “Ts!)mÒ\HÊCL!)_éèC»½ÉǤÃËøÑèû'±ýþ¼~õ •ÊIK5JÇÈ1[æ»}_¨Æ/DÛU¼ŒçðcIô¯fäüøÕ±Ìß÷jŒÛy¸—Ûú¯Ç§aÂ.ËÇËnꨕ[ïˆòOµ¼T¨ðóÛ/þËè\¹”< =q<Ç/…ûñ<>0ßRM­ÕyŸV›¹¦k!™ªµZü)ªÖB¨§ó¾Öeü¸¸üÆÛñ³â)—;jxèZŸ/§ÛIÜ{­èG¬…ŠªQ,µ‰~¿‹£éÏZQеÞûÏÆó§ŸþpÄ(”Wöùþt@íª"€âû[Û†çŸÆ°¸ý{yûö—Û§[ç "iJ3¬\mö1~üy¡R-֔η;Ž·÷¸ýˇ£VÃ}b“¸P›×žÛTÿõÁFÆiu_㜖lí"‡¡ß>umHÆo˜ûÏÇ'±—lêúø.ÐUlÁ§Ô¦ GPµJR‚ïXMõcÝåp]»Åûû0o§ëOKuÁóÑ4ìõAð›Lß¹ÙÀûRoãú “ô:}ð­ó”Íí|NÙÜݺïò¿­ åéøï²)Ïk}{F>ð~¼4Ö¶ •Ÿ¢Jñ§çqœÍZ±0 Óq.ÕÕyêþ骪œT×~ýöûu^Š}¤}_—ƒêùÁ8-)·yÚƒš¡X·5Õefì¿°Þ˜öi5Wªêâ·X’¸ì½È÷§Á}­¦‹|;ÜØÚÙ©jß8ê4þ¿½Óßú-¢êV1¿ÇÊ{øp^›-Lõ'¾_Ç{}x-v§žÍçÖï­èr„5Ãû¯Å…¾üsi,¤ZT¥=Ô.ˆ_-Ýd’öy§›P¯ß`i‰¾ó>u7îG”qTy-ßnmø£µŽ‡ÆxÄ®—Bm®lócRöXO?×/°¥Úÿr9~Núߑ겗¼6½~®wl·ÚR©-v|ãõ¯×Gî÷ßm®ÏMô÷õZ›JœþÕÉœ>ìØô±¾q¯I½Þ¾Á9":~Ѽn¯ìï¼°Ñ3ÖBÊW;¦Õ©>)_Q%› ¢Í]R¨ç˜¾½\ yZbò´bê}d¶³¼¯÷C¢V\íÝŠ¶3<}mòxš¨•ÖÜÄý“n¡=©¨ô_Húb­ÙöÛOÑ)¹¿îO—×ãýI!šõÕ5Ÿ ¶©õµž2µ:Ž˜}»d{–u¹T3µb¾™Zé|3µ¢j¦V6é¨BE4ïõŽïýá²k×ãÃåìé­ÛõñÏXßÅ_©Z‹kΜj©fNEõ>*mÎ?%-Òˆ¦;¥‚Iwjä;­ÌáXîß@^Åã¨Ç›ãºVÁñËînHÞŸœ'2™¸ÖÈdÊÜøèfœÖˆt§¨ÞûRÏMZK+¸kñþ"Ù6~¯Át§­Í”îôõ™“”òŠIRê^¤í|zð÷Ó^­üEšëãAÂ;6ái¯8'<Å|žÒš&<ýÈ›žöû¯½Ìð;ŒåM|e„çŸâI«ÉSÙÀ&O­ósòTÜ7y*½IZTžö‡ó(êXëék¼íF6ãöü.jÑ'>¤Àæa—VWM>‰ëWºV¥=mp¿c]?\þ&b—ð?‰X™ˆ¹_-ÍÃÊ[7ëg윇սÞ3"×çOÜLCŸl­}眭•rwpÛï¸5bÎé:Ä›sºöcÇ×øyðƒ½Ùƒó‡·Rµ²ÌIÕêœÛóg‚øü·À††ŠèЮ…ž=XK(ÒPGÚµ„$-_À’v)¡IC%<)x/¢+SÚ¥„*-ïÀ•v© KË“@¡g»Ø`7áB! C¡}À†R A‡–/áCû‰BˆB¢Àˆ–/ D±p¢øD EÁ»R¦‹ÈÂgR%ˆ„ -OͤÂW7ªëgÝeaœu„MÂ~7?Šãmz€FÓ0£=•BFå ƒíÇ0Z¿¼h·+\T^~NžB€”ÖXQª[0çDÁð¤U”E»[¢ j>´‡‚DçZ¿a©ÝHÒ:ÃyÉò=ülÚË›'½E¦õ¼šöÊ5s‰×Pa¦òMA™VÜ™*Ü Æ´ýÌ*ñ=8T9°9±  ¬*Ž÷oò ¦Z“[”jÏ Õj¤0ª~÷ýÏ“JJ5J0ÞGFìÃRÈ´–J™V¬…L+ØBUÌwH øB¦|5ÓŠ¥i[›ÕÝ¿)¯™oª\a< –BªÌ7ÕŠ¥æTkI0AŒcŠ>/ùX)r‹ˆ«ÎÁZ/ ,uojWrè(iLS»X ©]`S»¢jÖÖ¢ŸÇŽˆ¯fmA…¬­äÕ$2HÍíŠûN‘yɃÓwÛ­…9"Ú±ÙdkýœM_È&KªÍ&CW‘–ì3YDDMË"5,›ÛÔ®Ô«©]©DÆ•@Èì‚ ™]|"r¶X+9[Р{±ô¡ÙX‹tΠÊ%6ƒ*ïÄO‡¦ØÌsSìîæl¬nl²±:êfcu}þàøh"”•IÍœ;á97 g6T‘ú]v}¿]¾@^|luðŠýÝý|dð?xáÎVÑ6ǪKÑ«/ë”>•Л>•<;iÅþb¶"Mn¢R2MÓ_=›Í´ŽÎÙL]éf3íÆæl&øBû_qßl&¨NìÈ>ÖzŠ”§N±£VtÃÚäwáõ§d¦5bž¹¢«Ø^¿ösÎÓðß üÃÍ@ÊÓO¼)›)ëÝl¦ÞÉf.ƒy.Œƒ¶y4ÌÔ]â¿ÿq‡¥P±wR©0h¦Tê°"´æ†)µÅ~jÖ9  S7¼ÿûqíqù q»£š5õÕa©|©ÃR×ê L0¯K]J–,ù¹+R™ß‡Ëlþ ¥[­(ÆRjŠTÉ«)vDS¤¥ÞüiŠT*4E‚Lщ×g®tÖZ¨ ¶Ô` jƒK]K –x5¦fëü<¤S‚h 3ÖêMi º0áò£ S7Ä@N0¿·¯¸¾Ÿ×O‚¿°ú÷æ÷îäÐ^Må]½šJ¥þJà}T-ì™Äór)¶W‚Og©–š0QçöJÔ¿¹äØf$M˜põÿôzXJ«Å½Dº.‹/4t¢˜k{-ˆ¹l©íÔ½šÀ9LëÖßy$¥M§CƒS±¨t¦Q§/ÏuJŠÕ†ÅŠŠªXQ½›7-•ò¦+÷ú'‚Õñ4¹*æ›ú±8ǦúÄ&WuÔjÇ6ÿUæ°JZ MýHšCSßü94•¡lh A 蔕oÒW>*VuãW»×9绾e¿ãW_³9é»~¨ÿ `e™›Î~þÏãkB% +ÖˆU;"» ªûí€R<Ÿ_¾D£«â°\—ŸÀMKe0M‰€cå†×½ùùø9P½öwéu¨Ï®: Ç_8çiµaŠuq:áR2-+uN­–jZŠU@¯6ì0[m8ÂÃáÆß¾Gbo†Ù·bžÎ#ªÎÝUç£ü¹­õ˜BK#¦6´HZ6-,ª&|}>ÓÀ^*D¾:ÅÝ,\_§÷'¾Ë•¢Î gŠkÇI^Çcý¾¦ÂÜQ%-ŒC,bš)i*WÓÂë«øk„x?O°Óû÷ëTôæ‹­&óMDã;ºXTÁ`sÃŽÂR]Lï8 9»f¢¥b/øšÇI3:ZD›K<=Žß—ÆY j¾ ‚¢¦víµn×çóç7O’¿“}?Ù¤_£…$‡`¤ùd™göRç›®Ö^GÙñh\®Ó)>O§lN *¤«E”D´ß5Óh!0UÔõÂŒÌ9mÛïûûŸZòLµÖš‡ã.œð<êGÚp²¸ ð˜æ; âÕ+wd‘a½N§¯ž4d?6g¥ñÏ#+’³ô¯ÿ~ÞñÈš ™hÝyòŽ}Ôœd–SlÊ×wNùâ´;aV–²¸_íˆh¿cç™:Wgꀨ`\ÚÓ`hùžŸá¯tw…¶J#2gî³±ê®4S¹½R¨™bG͈_¢4J®o篈±#»'uÇ÷.Í}Á×(|c£2ñ¥J]«—øR{¤~#Za©Ì›Ñ¿y&#ÅüþÈûŒH裄 ÛH ro'¥n§VJ•z)AiÐL©;ªR×R¤~bŸà¢B$ÜžöAêJ}Sg:mFM•pÒíªûÇüBKÓ| Ì£±R©ÔY Th­„ãiÛ¤êƒú&Áè¢qÎIË‹øk$$Ÿ:ÖÅÍÿ=,Ž']˜ÀÚ0A¤èÃç3Ǽ¯^tÿ(S™ÑÓ kµ©¾°]`ÐÖ ¦æ²¿Oüç¾æj4!_¸E+~¯¶ÚoíšwMÓóêÅ›Ÿ6QpÁ_XôçOƒ˜î¨Ppˆèï„oÌ Ü‹9ô¡ÎœwLçÀè½>Úô“Âë¡ ¥J¤ŽR¸hÕµÔ ªE+(:óô‚‚sE3¨²¥nPØ±í  xôƒ‚Ð ZŠŽPÔø´„_è ÕSlHhë¨5ó¿›9UãQç_Gbõ×€ ¡(®´}ªÞ4_êüK‰ÖO|2ϳmd›Ûü‰>1ÝŸp@hÿÄ€,ýŸ èíÿоMXë¼ÿ´x»ž¿G¡ŠªÍ›`ßÚ½ ‡ˆöMxË#Èýû#è¿DSÒ¯¡R—'¬¥Äj×Bk&¬…ôk‰F7¥á36ƒÿU‚‹ ÑÝk)• ¶šÊÅRHÒb)ä_ÉVò¯Dó¯8ê¦VK„¤i%жKX éPHéPjiÒ¡ B:TH‡‚/¤C¡Zé,¥ËÓÎR:B$M»V;K‰wdVqˆí¥µ ó¯Ð-ä_¡6È¿–jêKÞÒö¼YZP5K‹ói*i3ò¯Ë[ý;ÿ ®…Úî k)KÛµÐîJ;¶Ý•¸&b¸ªvnŠ%¡"M ¥GǘvWòœÈÒv)´¨U[TÙE2¯ÇÚÕ)º6¿S¡8Á½!Îv‚—µ ÔJ2h(©¦tcs·()Òª(Òª8磫Âi<Ã×6¾} |‚sÆ”0YÎRÍ} dn“âÄîm ìðG^â=~«YÞÓËÓzo¾úýÁ0´Y”ý}2¯~oΉPšÈ$B—ï¿ÇûüÕd[÷KéRœM{JÙ(Ï=¥ìœ’zÅÝAêw§ý©äZ‘z¥T“z¥¹M겿²ôçýþÁD^ž{~v/Žþ $qéÂæVW:ŸvžÒY#ñÊ ”Äk¥…Ä+ñ|”Ÿ¾ûá/”knOå(kj)¥“NJuÍÌžþ¶ˆøÏ­›B$tl‰Ž ú6a¡Î>Í:èÇÔo»ï–t‡Œ$ên˜Z)µ±SW’µŒ£­S·C¿¦n´+ˆöçö~ûÞë“+"DÄ–ïâaÉQf¿J”3¶»¡›SåfNà©°Ú¥ÊýnåT¢vrâEÉ0Z©e¦Ìf74h*:/u»ÑçmܧçûgÄ,Oeš0+¾g`.ˆ0_¶»– +*··™º]‘»¼p·›·["@m¡•˜*[¶¡Û[¢}„ØŸ_ȪKhµD…›:-Q•2ÛU|kÙ6Kp;ÚB¬D‰9«º¼ª¯Ë4Ó®Tè)¥½“èçæÖI¼N3:Ö2•¨0:후…R­JµÌÓ^‚6M¢(',ô¤}•J„¶J÷€ÞgÅúp÷Ÿ2·+÷þâxnS{& iBÜÒtÍcW{—Ò› ·»­™ ‘¿‚#L@­¯l_&(RÛ2Á{ËK9RÍÇ]ö>黿¯wÈÔð¾M ŸóÎ –Ú ,ÌÊg^ÆžŠï¹ÍV*FD¨â¡ÛKÆ¢êI1£Xy™2:µ§V:”¹» Eq®8ºbSq ÚZi©à&°v¥4VZ>P_­¥l[¥¿?uî¿5+:“š•IívHœ–¨ÑÒ ‰‰…’à ШحyNìÖ4'ùž³œeñ£8¸ä8»N½‚ÓîÖdiµÓî|iwk>Òn:•Ú=gSAÔd*ˆšKOM¥Vá ,íBH‘âÂ]ŽÓ³¦–÷R5õÉ“›3ŸÐ“&>q¼Í{ò¢ÌMènP§ÜmNT‚(yÊÀ¤0'Å’B™šÊ\^¹_™L°ÝDf‰¡,߀‘‚ï¢H{&‘‚ñæ0»R¦`© Ì.˜)ô»INø¯¦/¡(Ř’§b aZLËð¥ø¸¶0æÉÍèÒµAù•,ÅÇ6 #Ô(¼9PðÝä&ŒNs›SR›¸NE•òU1%6» 43”uÎv;À@áÁRUí’G¥ Ÿ¤ö©ó£tÎsâšTÄi?­€S˜øâMý†²¬<·9É CÑì)ÜœðÄ=i¾æ¤HS¼Oší´VNÉNZÝ9×I6'(á/ 2¥©˜1¦=`@LûÚ”>g0+‚&0ñ’/pµ¸Q¼Ò…kA-Žοv_–ŠíŒBÅÚÜî¨ÚÜ®¥ÚÜ®…ÚÜ©žKµžK¡ž¶Thz„ýPtKÞSt‹ [t‹“nÑmZýŒºJs»”:u)”æBV(Í¥*§4T(ÍJsÁJsq-Pu‹3DÕ-vDAmwTA-ÖBA-1µÐÔâ°QP[*Ôòb¤ êÜ®G<ªnÉ{êiAÕzZêi¡‚¨§]^Åßõ´à õ´ÐSÔÓv-ÕÓ‚yô3êñ¨ŸøBÕ-¾U·Ý½‘À<Šnq1Pt o‡zÚ®¥~F`¾ýŒJ¤~Ftd«nÁy£M‹=ÍŒhDæ ^|ÚAÿPP ¶P* ) T‚h©l•T¥²û\*ËÛš¶A4€)¨-U janSPKœRY»Ã©T·¥²ô¿)•ųMŠüHœ j)õÔ.€ jqQPK{›RYú”ÊâV T¶]ŠàžPP ¯‰‚Zëò\PKSš‚ZȾµ jA-}X jáZщö(]‘pÖ(»ÅmEÙ-/cÊn+S”ÝRSP ñ¯Äª¬M.»"A!þŸ¢RÔÝþ…nüwLf?_˜Æ×] ‘âÛmvªŒDÍuµÒîÖx›]v²·_í&®Ñt·qX·Ûôñ¼·£y—ì„H³t Ìà#ar÷j”ëíÓ-:²DG–mLÑ¡üÊáØþÌ$_ŸÈÈÁ.5oX®fK›_~¯?íúo†üï1!P¥1!íâ0i™g€%DРânÌX¢†ŒPÜxºO7Na%5`Š*a¼{WÁm½õ÷ÏÁbWÙžœƒ›Ûåû÷N<” ¾¤ƒ›J%ž¤£º=Fô¬]WCN›Fœ~ßM¡$Ô¨‘$Œòe¼î¯ÁO;G›8µâ2iÞçX“ni5a“û×íóKµE‰£»î7iòA–sü1%0MâÂ2ôØ_-›Ý¾­mÒè¶_¤ëÇ…8ŽW`ã*íí±ýÜcœÓÚt E ¾’o¥÷pÛÇ-¡ #sLíîæ ¥küµÎJý”BayŒ£œmüô°~µ ž›ø/æÀ”jI°ŸõíëmCª½Šúú|Ÿ¾„Zª½t€‚Çú¶äkÌn9ý3‚§ÕZ_ýį·Ó·ç×Z˜<ƒµ0yÜcòŒ¹Ÿ'Ï`GÌ”Õc¥pªqY#fÊh­÷þ“ü×’/Mž‘è÷¢Òíº9‹­Ì§‘Þt>¤uöúÌk©í¿†KŽßž×bèq•!6X ói¤4<ƒµ0yÆ;îçÓ'æß×ý¿ÿb|^QqŠpÏí'xã%»î¿v¿ïO†¤cl¤4P¶¶¸t®7w}] cll¹¦16VÓy@˜ï€éiÔˆªjdl‡7 ý{¹ã{ %‡ó5§µ>ðôzä¶?\E̱Y8iŽÍú.þšc#üÓ&~¹T‡Ïˆê}Øùóϼ/)jçÊØ{=Æœ,u°Óg´c¦ÏˆùLŸÑµîô_ÅÇømíþ QêŒ{ŸiF´¹3j´áq3†ë\?[4ÉFÇs?~è:_þ÷ƒšv.YÙh­ç‘¥Ø6~`>#jdç÷ÔâfÞî”FCjlGæ!5Úñzü”÷ó'ó§ýwç8Öž¥“eìaçÉ2rž,£µ23ƯƒyfŒîØãx^Ÿ?Ù-ÍŒ±rÍ3cÄWgÆÈ‚gŒ6ü×óùúpÔš#…ØËÁ®£KÙZ!43F|ufÌ2‚ø33ÆÞ`ž#›Ôi0~ ÎÓ`¤ô;²ëúüiÀDÓ•™1~EÌ3ctÖç=™ô“e´VgÆPôCMÏãñò©ÛùïÀQe`Œó£sÆÀ˜¿>~Á†Ê“L³–â\P!6•æ–{Í; ÷œwJ¾2ﴒмÓò¥y§ÝQ“LË=&™b©N2Åù`’i©â 1Év’)$ÚI¦ÝN“L+*M2…:`’)ð~t›¸RSÎ;펚wZAhÞ)øj¤ˆµ0Ku**4 óNq1ïúÐy§ÔÒL2[˜d ]Æ$SPa’)ìCE ¾óN«šw ÓŒy§6ºó¼Óåuý=ï´Dˆ}>e 9`H)üJ‡”BM1¤ˆ!¥X«CJ!¬)ÅÆR^±9L”Á(Sº‹y”)t¹a¢[F™ö5Ê”—:£Lq{0Ê´;j”)vlœ(¿‰§4§óÀS膙Ҍd˜)žfZ" 3ï &uÇ0ò´;jäieŠ‘§ôúy /Œ‘§eK#O±cGžò]“‘§FžB›1ò”7##OÁFžB#:Ì6|ýÀüï‘§X cJù‰SÚ³Ö˜RºŸŒ)…ĘR¾‡3¦¨©¬s‡™Ò+f˜)Da¦ŒÉ2Ìa¦ðÃfªcü¾j»N2…që$SœóÿC`ÊÆKS©Òžõ* {)•*A…âR©†k¡†T(Ö7¦¨Iª’ø[ml¶æ‰+Ú°5ÉZ«5Éb«“Y@Õ*V›i¢ŠVÚ Y¶ëóü®žÃ¢ÖXjÓ*b(êƒÅWf¯è [D¬[Ýò`ëÃ\¬ æQ¬ *ëÊž¶XÜ£XWv~.Ö Šu±Šuu<-Ö•Úü)TZZˆÂBmmæ’^ɴź>ë¹X×’˜ l¥-°ó×Ì£ñý™Ëpm!æ[P¡ÀÖh.°5÷S­½â\`«Ëß[³5 fÑCãvTÞ>Û·ÔêJkZ««;Ö*\)DªpmF¦*\¹•Váê[…« S_+é¨_žñ—_U¸Ò†VájÃVኪU¸^ëh¤ó3ˆ 2m®Þ­Â-•ªpWžúÏé_KuýXœ‹pÅ|‹p¥-ÂÕŽE#ª £‘ZÏë7Ò3¹à 9Z8ƒähÁr´t;¬ãùødN•£W¿§/u ‰\ø×†“Ò@¤hyˆIѯ ûJmN^•w?yÕR)¯J¥O^TÍ«ÒÝ%¯Z*åUÉÖœW¥Ýš3¦8DdL¡[Șâ›1Q3¦¸‡{ë~/>½N•}彘³¯Ðd_±!²¯ Bö )Ó…Kü› ó»‡Þ¤õúþE@‡ˆ”)˜ìȶóýòa-&Vñ‰H¬B!XÅŽH¬‚ª‰UÜüó8—̀߾g°HòH¿ò‘”ô+­HÒ¯0ºH¿Ò“áç_ã­ñïýÇ€í¯ßãœä~š¤…F IKW$íò.þIÒò2&I»|‚ÿJÒN ¤ÿ<³&TÉb-Mn-Õé¼[ÁÛéýú™a\¾0¹T#¢ xWÈê Rðq :º­eŠA0Xk4n=„u[‹á–I0XiSÀ˸Û«ì¼\JãV±aÇ­BŠîÕ†Ê Á?èóü=H¤Rcež§ÔˆªcjÀצž§ûžúÀýæwîc­ñ+ÑRå5ákçÌ;v9ÎzÔ8<×âêèVQu(«qÊ*½éPV(N@ÓZª3Y¥Í™¶Ší š–Ü š¦hš'ÝAªëKök*ˆ0ülY-iaø©¬[–ê ;(Km‡wÿxZ[75Å)ZM‡Ñá§:ëÓЗ?s?Eµ‡Ì_?¿{øoÓ U 5ƒTA„Aª`«¨éwìéLiuયþùÿò‰šÓ#»5©ò·*Þ3ðF÷"èd:ŸÁÍ~‚ìCQÀ¤ºì¿á^׆ø^z‚ wi'¯Ó0UyêlKÓö: àéùÉ,chιcRÁVÁ¶t®3Ø–ÌF« £]='§‘;º÷¸ªO ŽV;b ŽîE'®Êˆtâ*ø Ž–luŽÍ÷%£Y¡Ê˜¨ ïú¯¸a$ª×ƒWñ.mªW.¥èX;Äyú vÔøUðÕü,¨0¥’ý+ƾÿŒi…B4Õ«³ÆÈW˜‡²±FdT+üfµÒÈÏ)N›À©ÜWW¿N?çɯ0ßw£7f¿2xÈðWÆuséðT¢ôßÿ°(¸T‚´†ˆV,Hkפ5T‚´v)AZ!‡BZË» ­¥j|«ý€{­ÝPˆÖʈÖ.DkyVÕòœ*ý}3¢•ÎÅÅ ¤µß'´*/Å\6,}¦•L«¹ÿ[ì¥|ŸеZ6ŒOðÌøŠ‹H+5bª‘­ÝPˆÖÚ!Z¡ƒ@´V\B´âVÀª°€«R»æÂa¬°j?Q`ÕR ¬ #°jQ`Õ®U°jiV…ž¬ l ²ThÕ®%´*ÌM»IY!‚i¥BÌEÈXKhUhp¨PgàPyÍæ‚f]Y U»–Ъ¼ŒA«‚/ Uay‹V¥ ¦Úhûê Uq3ŠV¥A •~qÆ¡RVS•µž[«âú¤[ö¡µØºùÀ½Òn͸WpÕÒh)б :–k æŽÅ ™Ë×[бÝPèX<‡Ž-бCS1 -¨Š¡Å½†j -î40´ðŽââ÷J—Ü+ؤuù"þUÅë—çŒ{Å ¸WF‰sð:ýNúßÿ°kS©T\Œµ”Ä a,¥ì,–BÞµÌwÔ¤oÇôcGdgC¤@l)‡Û •ž-óJÏvG¥gK•Ìk·k‰µxºîb>^ŸÄŽâißæžÿ¼Ñu„ÍõB•‘ëíR#902Ÿ_ä©ïsý±N°ic\ ¤ñHw-¤{ÊJW“•6†H‘6†^!‰KAÌ}¢t<§=‘8ºÐŸÖ‚PªÜ#‰ ¾ž…©ièµ”ÄÅ7¾íöòùI»’Ä…¦¶Šk)‰[PzRmzÖÉR#’¥¥B²´¼+YZ*„˶oÓ P$/yÐCåŸÏä¿0M›t_ºZìsè*)e«ÃA¶”F7ÙRHyPhiƒRAd/y†cðõkØ€µájò²+%-ÙuEêIƒÜ%¼æÛÞ<Ïó'wªý÷ñ1©õ½äJñîiD*[ÔÂbßÔ9WŠl¯ÎUÜÂónn_§Ó×°¶šÇûüé!¬ì,]J²³tusɰÄÕÀU×™^hDs¸¼…ÉÎB\·qŠÏûýƒå¾<÷Zà=^~ 3¸¥Bn§ƒ|*¯Ø\™ ¹#Ö”ÜÛ¯ÉúÜ,¬r³ æ¬+_ds>úwˆŠwúàuÅÓYW>ã“ueT—†MmÝïÅù(’ý‚ΆŠmJ… .vT[§R©­S¨ØÖ©k©­S©ÔÖ ßØ¶N`«m°Ú:á|ÐÖ©k©­S×B[§.¥¶NÔTUÛ:•+´uWhëD1¤­ÖBÃ&*s6A™1z‡G¶NÕµuò7þÍÏzÃ4l6aC4lÂ)¢aS×BÃ&jÍܰ · ›°FïTðjë+‚¶NP.´uêZÐîÛü ÒBó'jM6ÁØ`ôŽ › .ŒÞ©èÕÖ Î mJ£¶N)6a¿6l‚Ö a<'6ÑØüjV±)Ú:áѰ ;6 ªwüíÞÁëº^KÍŸhGÒü©TjþD¥Oó'ðÕ\©%1¥Aí:Ó" ×-¢Èü”¼´¥œ[DáxÐ" ÚŒQ|Î-¢h æQä*ÍŸðhþ„ Ûü :ƒ¶N4—©­Îm°!Ú: mðVD[§…ãüÛÖ Ì£­ŽmÀ<Ú:ñ˜¶NøD´uÂQ£­vD['Pµ­n+Ú:AòhëħTÚ:ñæ§­ÌÚ:•{5l‚ûiÃ&œ56Ñ §aÓò–ýiØÄk–†MË'øOª÷ú÷`„Ñç½iÏ׸ûË1-ù_dPª-?ì÷HO>Ÿ+ªóñíõöóË)wÜË[˜{úªvÜÿ8ë”»]–km§xú‡ž8­ÖúBëo|}?"´Öó}„Ì#ÚX¯uDP×ÛwÞAD#I0þr;½Du¼i®ÛÕýòèÜðø¥åȰ¬¤µ’ñKËuütpû$­‘¼ý£…ÅÆüé+"£Hÿ=GNßñ+MÍû€o/®ëzÇë‘î;~×óø‘u¬µ6Ìû¡4¯dÇâ÷u79Ü> ~¤Dn£ëÖZ¤›à·#}ùp§ß_¸6n¯û(¾Þ—¯zR=v¾^›Éy­=çåøqdsw_ Zæ\5~¸~Pù÷þ+Ħe¿&Ô÷¬û‹kÔÿœ>ØÀÓ®7ƒŒÍþ:-8N¯µ¥Üe¿—6¦×뵎çëY;¯ÝÝvc/ÿ®õ‡õfÞŽtô‡[ö¿õÝ¿³"Úp¤ßGý¾×k4<Ì¿nÜþéЛá_¯uð´{ŸóWX͵^Üîö^¿Ë¶O¼ï®ó±Ií¾vÖCâ·Ãt}|– µªøAï¯^ÏVð5ª,Ço·¯"/>‡>2üœÁmÏân6â>ôuùà:ïù㑟{}¼±Ãï¿~~ôäŽ×£‰ÀO ÅO<í?Ú¼ÕG‡”×ÿ!ûMšï=Ý4þòá´·µn»;;çbþvÿ[5žˆÜOx&b£à¡OpiÚ&x¦a—à,„ÚÔ~ºÿf!4ÿÍ:êê›…ÐÔ7'¢ž¾ÙM-}+Hôêí·¡Uo‰Ð©wf|xúû^>ôX«;ð–ñ£´ú¹m·Ò\véíBh¿["tß•ÀÓ|·Ç‹Þ»!zì÷c ŽßKžØŸWê=<Ös;æËJuÕž7›©;oÙ¾úúצ —GlàÛ«‹þ½U´ï ßÇ/]ûµ¼¯ÔD-~ûmûƒró×÷ïÄA‰Ô8§.Àý¸óþ¶yo€ûòàÔ)8DhÜÝÐ'8 ©Mp-<:ûVÐØ·¦bH÷ óc%K¶õ­ÚÕ74jê¾ÕÓ·Þr¨ìñþm©–×öý­(Ñö7 Àbo²ùúþᛆin ¼´p¿;—í½1Êöm×õM™úC®n º÷Î]ߨÀÊĵŸ÷îr»sz-|ûºÓž¢:]¿‹´qyѪ8DjB,ƒ2RãW€ûRãÔ‚¸^ˆ³]Ëï¦ipßyèŽÐ ¸6½€ù|OM~%ɹø–€£êÃôþzÄ>~:éʃ§Wp/Z×2¡SpG£`*ÜÜ'¸¦m‚—øôb“àzÞçþ»ïû}_» 6Ž:©E°¬eÚúêIœ®¾‘šú*nJOß,¤–¾=Þ=[²Iàò­‡ÝEÛß®´ÝÌ!€Ÿ‚Dí \I¢1pý<úÿ…œü÷?†§–JÀÓP xÚ¥Ôb¸T‚§bCÀS»€§!"ð´ xZ*4.WB§†ŠèÔn(tj?̓»T ¬à èÔRQ í¢´KQ y+ =V¬+Úµ€­8…íÉ+ a+Z*5Æ1£y0¨€;¥Pƒ;_@”–J̓! àNÁp§°!Àv-áN±#šSSƒ;-_j ywZýîR-î”þ"marN…J ‡Qtj¿PèÔR ZÉ«•/­à_ +T VX7`X¡ZŰBgÐËÖHWa®(®¸=èLg¤+ýfúSôsÇ_( :þâŠ4 oÐ,•fÍÂê4KgžŽ¿Ý/ÐZh{¡µxŽZKg7ãa¡ÈÀÃâ”Ñ;˜·~FºBœÀ°.5Щ'ЩtŠ‹t*ÍߌNóè Ì×ÝŒa…:  SÊ nF§N?Xþç†I¥R^k!1 ªfFA„xMK%Z"ePµaƒ1mØVAf~NÇ‚ªߤ­Î0Y[¬„‘­ Br6»‹¥¹ÅRI%öæw­Ês‚WTÍðŠªÙ[ñÕô-°ù[iCceÝÃÎb[M‹ªÙ`Ÿâœ–B4¬³nBTÆê+6§„¥ÍÉ ›«¹‘“¨’ÆI#-,ÝjÊw}Ç~¥sÅUó¹ BBWl5Y ‘"[+¾Ú8 k5©+¶šÕÅRHëJ™;ýUn¬Ù_uÓ¿ækNíJÉí‚É]°…쮽ݟ [RhâÖ=Ý6"Sêöƒ=ú•»•¨š—•ÌìWñÞĬDÕ̬¤• ±–úµâ‘võÅŸó®¶’ódìˆô¬ÌòœzµŸž{B-¼æßžPvÀsWçÜ<.>°‰ÜųtJÒZîs–vý˜üË64™k÷4ç`e⛄• iVO‘ŽÙYhà”ˆµÅ3±’Wbe%V¶«›óµò­MØj­fl¡\HÙb-˾?sÒ2mÖVÏýfdu©ÿ•ÂlñÌóƒÍmNV±yR©M{996š"ܲ¦†ŠÓR LŠ&-•À¤X `R¬œ(¨€Å7êoœ! X«P°(–T€€‚ù–æ’¯EuŒÅ€‚/`@ÅW0 ZªPi}1 `¾P, (–J‰.¹ +µþ–ûÜ ªÖÄ.vœ›Ú±ÀMkó ÜÔµpS']ঔ¦ÀMÝý7u_ ÜÔ)“iœq”þÄG©OL},õ´hKQméK6£-e‹¶”è‹£”)ŽT­¸]¹¼ m)MM=íâgL¦îFªeIõ”óÁ¢ÎÈM¹¼”¹òžß)¶æbXºþTÃ.îõ •U*TÔ^j‚ŠJa·?|!¥¾Œ3 TkP*APª£ Ôæf”ê.P*¶(ÕS£€R9J¥¦”Ú(Í€RíX@©>±€R{â÷~a?¿"(õû`”ê’PªSLÁñB#fØ©ø*ìTÖy.'æ†E~`þç·ržbQ§Ò›¢NÅWQ§׌:µ;˜ †ùB(êT¦«¨S?wgÔ©ô¹xRY¥Çÿþ{3~¸J# :Uê”kM ÓU`öÿý©TžÊsþûׇУmº–*ŒC¥ ã.¥Úá²Õt®öCq—Òü›²…2än¨ã.¥Úá²¥Úáî¨ÚáR¥,ídð„Úa,…É6ü¾L¶Áá´:šL´ÔÅÊ] ÅÊøÀ&†}s2$TM KeZKˆòhHåÑ] åÑU+•GCð(|†à›¥•"£¤™‚HI3wÌ(P%«ODE3ØBE3Œ*š»–*šÁ<&éP¹RÑ EÅ$®¥ŠæP±¢RmE3ì2j•K¥ZåR¡V¹¼«V™–òo}1õÅ<ÂÔÃ"5‹)l2šÊaèj‚!vÌÈÁ'6#*‰bFôå¾°n(÷åÎå¾°H-÷íJ)äí:(äÅÛ…¼tO™‘ªÎÈ¡…Ÿk‚¡V¨ †ýÀô¿ë¦|¨4#k–¯•?EÁ8Óv§(˜.%#k`AP: ë‡ÒaPK‡)®9iê«“cµÆ jqYWép©PŒ3DQ0ïEÛôtT:ŒÓAé0µ&¥Ã¸ú(fÔ0—ó}4C0ض¥Ãðä(æ+>¥Ã ×2‘õ/^dj–J8ÕPid ÖRD*E¤ÝÓoJ¥é7X ÓoÀ<âVlXÈk?Pi—R@ZÞfíR‰ZËÓk¡q®×'£HK5Ò,ÂChBësq0é ìéÀ:Bº®…®D Öð…-âÅùaî vâºÄ+ŽA$õa®âÕŽ5!ú=kt£2îKîDB€Ø–J[#RɯÇÇÃFµ¯4Ám©¶b-qy¶öÄ…T¶‚ûÇ‘/èÙµëAØ "qaLñ1·Í›½—vr“ùî†?­?Q2”2vl \qBøDÁuqeçp®už%ÌK Ìq-˜Cý€éåÙ$æÆÙ š_ˆ¦!PDӔČíP…Ãí†ï½@å>ª×FDq9•aŽËiµæRe»‚¹TÙ¯• uK…!Azµu´l´PùÒùdˆŠÅ…K—’OpN‘€leLާ³}dqOß· YïåÎö‘SA@M—œ-v‚BÝ«föLàiõ` .,bjXˆ£béväì?vâ`Zðy®Fã`ªD ´|âÍÑ2¬.â`Fs„;YâÿœL-•"\¬%Øk×B습Ž-‘À±XªàX,Øk©Üi?`cÉ{°±Ø°ØXœaa¯!" µKÐÚ¥híR´BV´RIh­  |ÐZUnÀ¬»Ó€Y Øk×jÀ,ÞzíR«µ°±Tˆ`c¡[ÀÆBm€åí ì:_Ø+$ßxÙl ª‚c!ùFÂÒS€c—÷õ78\ =m¸Œµ¡ó€Ðöx¡_ ½õÚòÂκ¸Òǘ ZD ªå8´íZ„íÈþ"Z±­”h­¼ú3¢umE~#Z¡Zm"¬#l»&I`ÕR5”Ímh±ÏV^Ä€UiÛVïS$EªÒ©jw8!UqQ›tµÿ ž§ÜhÊ'Ô«Ÿ’3 •g@ëò™øÐZ¾h¥ÁãM;žÀ^qw{-_‚½Âf5,•Û8Ö?ƒcaDŽ…ì ŽQÁ±tbÇVƒå¡¥m „Ñ`Y7Z^ì@h+y@h©¨s¬¬£ N¬±«ÃžÄ®Mú*v c×R!;‹áv-E¸] n—j®+) Æ~ ƒ±ÂàR! Æ~ƒÉ{Â`lØ0êÐ0¸DpK„Ð߇Е:šÐT]A…Ð|!t­b!tÅÕAèŠÃAèÚµº‚w„®]J¡+ÖBè*†®Ð„®å yc)\Þ‹¸=bWî˜ØT]ñ‰Íë€áBá./ìïÖ»ic}!â`(=â஥8Ÿˆ8¸;"-¾ãóö'÷ˆƒÁ}SÐR‰FË B´ 'Œh*Ñ´ô15½âߘL!¦æé$¦¦MšcêµyûSãýÐ4®”‘7”‘7>ͤJ…È.‘7g޼yõyÓè&òïsä]’F޸ϗéó.ãh.ûÅ9¡RJÕM¸¼|Nþ —iqÓ‹%†*#†¡Aˆ ïŠת5‡¸Ý™WÉ«!.ˆâÒ?%Ä¥çIˆ Œ—F$!.Î!.®B\¾ÀâR»½â½Â] ze´2G¯ëVai‰•†H%Ã] 1iWB-pˆT Ü•P \žÜb·Ô—¾å¨õ½]h.ï "_Ð$X ÍãrÙØ÷Ÿ9ÃX‘\…Ø@ºÖ8l7ŒëJâ*E`0¡´PÓÝèu;Ôôv%„f8þVôVL̰R+u!ðoU”ÛåÀoߢX|]£²¡L§TGkU"D>X©¯ÁÑôXPy 9µð÷÷<ð›ú¾¿Zséëõ"xŠ‹ÐÀf°¥¹8à†E0Ì-Ì…Ò5tÂv)Ë­P•ÛCQ.ü×\p[ÔÛv³sËm«£‘Ø>©æçÍ k±mW:ý§î—ï6‰>“9’Ù´W¥qÌÜŸWÍB˜¨³íJ õxv¾Gaèòãv¥í­~\Ìó÷›6|Žóø`˜Klq{[a Myïjy{}x0R„‹“k˜‡KÐ\œ\*pAsš páè,âûï£ÝÎup¶äHA XJñ-έµ·P“Û1fj{‡-Õ[Q"¼xƒD¼b[ ÇÓzò¯âùº~Ç+¬O­ßÅ©4\é´zJpÚ[œNHÕvŠû`[à ›z٭Έ‘—7Õ½´–Sq/Un®íå›p*í…ýn|Éøb/'K¼?oû·Ï#Á± R€Y*E˜ BôX*…X ñ#¸o‰¥0ˆUâzﯙÑLö¹æ=Á¨Vú烷}ÏËãQÌ Þ´b©9jO÷½YÙãñ’‚1)dÞxKÝwwpÑËu¹”E+òP«Ç&±óòhOúlö d¼ÝÖED)±7Z\HbâçB›­ñhyÞßß¾6lP©µ0Š­£=ôã×Kg¸T,­7s€¾Æ_öËóü~™AˆãÄW9i}#9¨¢4Éþ´»ù×åþᴧɶ5Ó 5³î?íljÿÁØ ¨­É~w0*$ N~eŽê@ƒ°û!®“6°“6²ÃZíd¼:@Õ1G€’|¨Z#F³¤Ç哉S8©›ÝxÒ²Ÿ€›¾Œshãµ?¹ó‹ ‘ ¯ìã|8½ÇŸ~üìù<}ºeI1êÑr;šèŒ–­K}F`)…hd©KÖ¨Q&"a£íÈ7Ê™5pÔ6rÔ†‰ ­ñ{‘ÜXr}„¥Y Eu?\Æí£Ú-IïΆòw¥ ý~\Žãû~Iâ¾&¨ÚUI'ÝHSÌ?÷‡Òk4¦^«VãQ)D[/ÉÊ'Ø”³kO%;»9&]+óãñüð´QXº~_¿Æ“ðÓÛs ^å.½Ê¦?ÓÜ1Ò&TW‡Éà¿L¨4øF;îÍ¡·€ùôuŠÚãq°Æã”Jãq°Æã`­#h»Þ¾ë«D„: Â mxü.rÔˆ­¤…A;–Öq-‡!ùQw»ïó}>bž¤ëÓé?¢êôßêyú,s§ÿHïýç…M¾çè€:#Hæí”A’j§ìHÿL!XRe~ŽÕyz¶0ôF:¸cOŽ+ûÁÜd4Ž6ìÐk×<ôFkuèÑ¡7:Å ½ñƒkz#ìÐ¥Eýz#·ß¡7’Ãùðïó‡žFãèÁÕÑ8¾±óhíØÑ8Ä)£q$‰cèÍxLÝ–ò¸ü^؇V|ླqtc;GkužÏý2îO®µµÄ@QÝv­m1ãu}˶ExÏOV co¤{#¾:öFOÔ½tl{v=ÖßÈ628hã'ã<ÐÆ‘Íùë)ûÁ–tì$щ6ò.hc[?¨^›~-½ÞþÙ«qÓ>œvçÞLÓ¯ÿûCTg¢1ý>@¸ç½^ÌD§óþSØö(~ý²ð©!ð44˜@S"áN»[a§]¨ÓHi<%Tùv_îv*èT|sšíFÕáq&·¥¸8Í:›]¶} Ϋ…Øœ)»º:Óh¤LUéù8ú®œ²³Ý ØJX] `KløÞTÿ´¼¿ÿà_C´Å÷±ÒhÙ½Ô\!i{-/ÇÉáPË .Äj‰EÍvB¢VDíÑa¢Í¹ÿÝGq¥–íŸÃdrj‰ @ÍéŽ:•,½×—ðÓÕmú+ @ž’ºõÛˬVoY5ÙK¤vûôÁœ ‘¬,OãX7Y>×W|üT6<Êùô“j/O¯\²;²ËÒ nŽ`àƒöAìŸ<Á_¤¥$¥îÒŒ \^ÊßÊ:½šâ³ŒŸ,ßÀEÖ2?ÿ÷zÈñ±ú6á³Î}OÛlFðýõC›ˆ.”·;åõ¿ÏŽŸ,jY "2ËlÐév˜î¥}jR'íŠJÔnEÍöŒÛ}ÿ¦ßçåfDhö]ö:,ÒJÖ>(Îút3 ß½ÖW@Ï*$œ«—Ùg¯?Ú•ñýÓ÷¯[{SL¾¡3 ´w8К$ôC’œ‚ï”UN£¨Ê¿wþ°©Kž-M ò]€Òº“|þéÜÑW×þJ܈N?½z¿ÇÙ› o?}jtw׌ Ѩþ½“npyûìãü5ˆŸ´¼§ƒ¿·«·4ïc…×®¯$mU Ó†^)ï'ï?QïXÜM¿Åô3•"K¬Å\+¨-•2Ÿ¥RN³ß¨te¾ñtÞ å~;{I¢–v|í¯ùýw•ËRïcZìþR¿-×?àÞw›ÿøpB§ÛþÃò¶ÖõWÌ3O‡ó9²7£‚ù½>E¥àú…×Ãß~%•°ask]é@“îS‹—TzÖó¤/‡ ¿8~Эûñö¹ÒÀ÷‘ÇßÍã}­[Ûsý=¸ßôõ¶¾?ʈUG0q9î˜oÚ ê€„nÏUÞóT—wÿ~âãë°P­ÇíL.´tOqmB{üdÕ¡€Hb I,¤§ øëaa__¥ý:é‘Ý~ïÁëú^¿·îiÄÛšùaO‡ž~ýÖ½¼c£¦pyiþÆóqÌàSOÁ§ øT†¾àSYçVªã)T+ ¿]²ym€Õu-TXŒ§?c<%øöðÑŽ{Òv»úßè‹…Ã!ìHä}ðyúVÏ O™¤‚<­ó3ÈS|?ö_>ÞÖ T†ë}Tª<¯ë‹1~"¿ê®Mà°5#~ +¿ÖøÑèûéƒã< ÎßïÇï*à©Íä<•ß|×âõÁç,ªí •.œ'Ò¦ÑÏ5Uq ZªOð~Ù»±m_xûp¥…õŽG£Oîé¾Å¶÷½Öû;¬GF0¥+O·—K}°ÊG ¹?Ò?h ¥úÂÇž[9ß/Öð_X°¨–:ïæ×OŒHª€EežhûùSå%‘Rª /GIè(@Z¯u;@x¯ëóÓZ—Ç#Žn,k§«lÖ.Ìí|®ßårcºê¨÷ ý¬½…±vÓ3 VŸX¨ëúÉü êªgTð©S»ÿCeB¤™2!Ò°˜™H%»3+…PX°„¡3Ý-­Êµêƒg"´8êfs‡#¨UÆ¡ÁÔ±œÒà.Ôi4¡A±nhPb;Ó„ª¯ÇÈ—œ*&¾T­1ð¥Ÿy/Y ã^Ê6jg³†½t%ØF‹ÐÖ©Ûi†Kõ±­Ÿpº¨Â•¾eÌK·kã'œ FÁˆ§Ôá–¨u¸æÀ„¡º›¦ÀÔ’b¾KùÆx—j8¦»”'ŒmÉJšÚÒí0´E73ÓX¢èyž0‹¥7ª£XJƒI,a ¬pt˜ÃRÓfWÐ9Ìj Oh)…[7WÇ+¡ŸT÷B;)h%ê•—öëw-r5 §(É |©$Û× Z‰q/ý:T5WÜí%LaNý¡àT0F‡;×GËTdŒls¦Áèù27}ª/ð+¡1ƒ^²R»4ùE9—×ñ`Œd™:b™ÝŒx)ßéãD–âßJÛ8ÁÄaL½*FÀô-ÜöLp†“íT´+Ç“¡-}bfKog&ð„¹.=_Œuéù¶{S·Óè—j/J‰kQÚ'˜Vî_p±´©h~“ŠÉ0 æÒÞ¿5R‹ÊÞ©dD—ý·”×ö*þêŽT¢çñÖy¼^Ÿ¶kío‰PúÛ¯CÏ#ðÔòà®ÔŽG¥Aq‰ÐﻥÝQiP=\"t(K­0ÆJí<y·]PåÝúb¨@Ë‹K„êbˆ2ÅÅØ-µÅ]m{ðiíÚÓ•P¤ ¶ÛÙšÛâ㮄Úcò47öOíëC›Ûú€ñÖ0ƒ(ÕÉx‹“q/[› C˜.<ÀÜ^‡ª;—/ƒïV/C¿[¼ ¢Ö.ÃX¶tD;ôhצÇR–è«3ж:v*SÝòòöþ*[¦ÀçzdZÔ¹Dmôµl12 á¯+½üSÌ´¾s•1îx;ó€¨-whRæêa|]îЉϥÃP¹Vc¥÷¾Ûs3‰kSˆºaš© –°­vpr-æÍœk†±]ûìÀÕ§®³eÅ@ë…é çêÝÕËêOY.Ÿ„SU.ø\”‹‹Ù~>P¦–äR-çŠ\ðÔ‚\<õ¸Ø­å¸ j5.>®=ÖøU± kß (xÛñ–þ®ó*á[¬Ëwã\«K½œ{á´žæ2å¼t=s5/¥Í‚x¾sÅ/ƒµ¹à×®C:•¿…¼ŽSþÖñâ­‡ Ý?›E„9::¯D´gˆö OÂzÎ<ê)žÒM6_'8hx4Û æÆòìBy†FÏ â™o³»àYAÎ-b°—0 ‘  U @«o€†'á?³àŸÝèψ àÏ.Tìg•ÐÏÞ% ?{¸~JÝ‚û,K€}V'ú,@Ÿ½ÞÀ|VÜ…|æp…ø¬©à³bÞsuá~Ã=C#´§%`Ïî¬g¥¨gýÀõxT½Ÿÿ»¸» À •­°R£½•À‚ê2 Z#$¨ ü ­æ*»h>N(PÝÝ€@{Q€Ív‚€v; @ëâ•­œñŸÕÀ?e*‚þ¬ÿ.ø34Â~–m€:{Q€éÌv‚tF”@tÊ7ÐYw @HãIüX²¥) Ø°S@»ß¿ŽMçǯ™{ÝàOmˆa¡iÁŸZ«àOpð'vø;ü)ª‚?¢ŸÀŸþÆyi™ßÿqãê§â +iDi—ö2=À {ÛÍóR…]kו<—|!êë“É©TÁÌD톷çqaGÞõU|ïx™ùÓwi vŽtq@ÓäT2ŸÉ©=EàHµ!f¢B¹ö¨¶¿œ¿K,uc‹6ÅŽE›Zå'´©Ì[ѦگhS¬5^çãV?>Ý ÎMÅŽã'¤=d;0‚› ªBR¡¯θݢ×càª0SSi!Æo’ã/k»Åy¨¸û—ÝB\†]]Škü°¹ÿvù||òšb /誘ÇHQŠ+#EqŠð6œç $•Ù=(ËׇSÜÄuø»Íê®ïþmü>·ÝNk¿Â‰¢ÔæLÅõ)ØÔÒšÀ¦ÒšÝ7í…z·µ_ÙžG÷a‘6}}­_o®Ú"͘TŸá„Iµ°&LªŒ†¡â"n*UÞ‹T÷»ó\»D…>íñÐЙ Tª/Ï<´Ìoª 1wTÅ›âG#êÛáÆÖÎPR1_(©Ø*HÔoÅL'UñŸ¢ê°P<‡ÏC–Ç£l- D%- [E‰úúÌ(QñU”¨ÝÊ-pþù=œ¢(Qc 2º÷#È8žKªã92žºN±CLaû»stãþ~,þõ4«6T `K¥6T `Ë–Xlضû)€í† `±!XÈ,ÖB[îÀvG°ÝQ,¨ÀZôsËoœØ2¶+)€íR `+S°Ø¥vý `K…¶Ì£y‘U0l7T[*°ÝQ¬h `É|Ø B,6D åB‹‹¶;"€¥ÊÏ,ÌX쇶k)€…6#€ÅŽ `ñ…`A…¶¨–z:°TÀ°´ `¡íÏ$É#Ì……@˜ ¯ˆ0^ª,ìH»*‰y„¹jÂ\œ5Â\ìØ®J2Î saÞæb©†¹Ôæ°¸>`)‡9€…> €-•XXʰ´H `ùšX k`aÜÀâ"6€…Ê €…ÕB ŒÎ,¯ÅÀ–y°Ø,¨ÀöÀ¸µ­ÒÊÙý sñ‰sÁ<Â\¾(æ‚ a.¨æâÑŒ07a.6DËë“;"€¥ÃH „æ,¨À2RœX˜À°S7½Eh *„¦¥ºµy­)¾ ÚÞ*{…ï¨Ý¼­¨Ô k©Ko©Ô¥ߨ.½`+Œ´šô–êþ¯HäqùÄ{;a)õÕõÎsAÕŽ¹åª1§¸B[]Š!mu±æRMÓåjŠ.·<Ät¹­> MP©Ô'k¡QÐB^SÇ\2ŸŽ¹ º]Fï?´!:æB#(BhòƒÑW—z:÷ÕÅJè˜[Á£[ŽlME)*ºïv-uß÷ '%´èí'¢ûŽu+Ýw˼ºïB!Ð}BE÷Ýr>=r,éÑ[´ê‘à›•Ú´ÅŽ,ZùÒr ™>^§çÃV¾<Å´ò-÷m¡££F¿_0ßøÕv$=zK¥½Túôè%_s÷]:ع'.lû혭¹i.­ÛÜ'½w?ÚnÏýƒFÄvßïØãƒ¢Ã/õÜZª-~ÌûuJ hÓ ¶ÒåG:ƒ^¾¼s/_hC›iCtüzùâEÙ~@rœm´rœÛôâxЀÌ£/Ÿ”iÀ‹Olç uþhGôéUûôBZèÀËGR:ðòæ§/èÀ[A¨·.ìwÉû´/Îxé^Ó[wyËç‡èŽx—Ïù_aîõkæïÑ‘ñ¿£ùàhI4,Å×ÐáR äùøÍæh•³Z ÝuµÔeží&b¹Öe´’ ±}éWt‡Û<·D _ÁÖõq¼3†1\®uý×üu¼Ý.˵”[Å'¢c/øºìM÷·ÛsI…0KÍ}ÅÓ1‚úùx}8œëyÂ_Ç¥f¡ã®šF¹ B§\©L[åb­öÊ…¤09BG ,aµ§®Î¦mg-ˆSx éZh< î‘æÄŽè=«o¼7ÿõþN(Šû¶ƒ•}xO·Ó7¾Qk¡!¬$ñÞk~âÏO:8·„Å¥F, î cÇM‘÷2›¼ÞkýB”+٧ì e{¾ê°ÛôTypµ––‚\P!|…L¾Útýé3+ÕjY+ÍÜDVÊ|Ý#áûã²»r¡>œ¹¬dÕàU÷⶯Ãß—J=imæƒûç7xnáçÖµÒ‡FÂ2Îí9듞šÎÊ >Ž©·¼+xÅ~ûï¹Ç{q©¢/£÷Ñn÷¯[;¨ÑnsÄùï“^®u9~Hý“Þkc4õ»ƒqõR‘O{~vB±ÓwWƒ…nßï¯OWãWÀBDÜ©‹®>±¢_S³]9‹vÛÕc¥“\ôFOSÞEˆxÛ™¿~ÿ;¹†]ò *Ì…•B×Pa2L‰”yņˆ\±T²¥XI!iYW°Ù l–*q$$•1â Áf©:IÆŸ7’ÑR™%y*¸íRn!…ýÜëûqúnE/ª”Ñ17PÆ•@  1 PîZ”Á{§ÊH¤±VçÊ@ù1ÆŽÈK‘›1ÖQw¶Œ5p.£æã€:^ƇÈ}~ UÆÐH¨ø- TÈQK%ð‹ŒwGшù΢‘¸ðëC©ô»Öê¤_Ùü®yá·ðÕa3’j QÇÍÈ4ã­êÀ9;üúõ¯ر¿>”yýb@ÿó÷ƒ.¤_  €øÅ`mß~Í‘jõw 4¿@gð[ÄŽßèó[ß"ù-âêNÙø€¦4<–ú3âƒ6Ì¿*ÐÊÏcj´ßüƒœø-Ê€ØRÅãõýw‚sZÜy Íú}÷'„‡°ÂÓz'„§³›ÖH—và w%1oïq]?øDDçW£s5:§›§Ö(¼@tÉwÚŒN7Äó(ŸuBjÚš9 æ{kpaà2xHè {ÔÐuê¡è¦À¥RW`P]Î_ýÛNßcŒº#úc-ôü_ãõs°µüD5ýóÜ iµ5°6|߇ýÞNüüýäÐÂ’CZs©¹‡°ˆÚDxÁûí}4FüúÍrHan8÷æáÌ„µ]; KTm%LÅJ/aíØ>ÁZ«‚¥Y+ AŒ6{{›µËw„ª4æ ›; k¥×«½ßÖæ‡%­v¦>Ì­‡iCNãX¶ãy|GcÖå©C1â4”êw£[~b‹ªŒI•VÆ<ĹM±˜oŸbšï4*¦¸Ò©øÃ¥þiUÌó99슗vY¶æü˜xõ=&ïi|LÁ§ó1ÝÜúXr8~½Ü˜¿|c¦tÓ!™×'-’¹ÖÜ#™røÝ½qiÜÒÿxáŸþ6@¦Â§2YO di|{ /¬ÈÔYT킬Û™.8-ŽùsciÍéß{}pæíqÌ—ÈÜäXDírL}Oc­ÕÆ’Uz/Sc:êt1[mcÌç>ÆüÂô(¦f¥IñBK§.Å<ê´)Öù œÐîÆÞßáŸÎzîfü‰ù_?l˶u©Ì5j;9•¸ÒÒx!Ô©§±ô¦Mjêj¼xXO‹iOç–Å ?6õ,æ¥iñ"h›ºS#Ò¶˜>1}‹¹ÖÜq˜6in9LÁ§ç0Ÿnm:<ÁNþûC^K%Èk¨y-• ¯¡"äµk òZ*A^ñ…¼‚­B^± ¯å °–€±] ÀØ.%`¬Å0cAU`l¹0\K1‹µŒ¥2 e0–G`lµFÀØR¡ƒÒBä•lò *@^±! ¯8k@^»À¬Ô­ÌŠ;Ý®GÚWWØ@^¡‚€¼‚¯‚Y!€Y˼À¬¥Bo$ëV ¯ÚI!y…Py÷€¼Â±ò ÞyÅñòŠýÒ@Iº\,¼0p±4\ÁÅB¤ÀÅò¨ƒ‹…ä|òÊ›ñ Ò´¢ä•W#Wò5C^é:y-• ¯dk†¼ÒÎW" ¯Ð@@^qˆ…¼‚¨WÜÃ=`ÛÁ¬6‚¼B €¼‚­B^¡3€¼RãgÈ+´WlÈ+¨yŋׅãü fóí ¤ãäÌòÊÇb ¯øD@^qÔ€¼bG@^AUÈ+ît{6IòÆò)`,íC€±0”Æ–{cáX yÅYòJ÷Èëò–ý¼òšòº|¨ÿ‚¼þíè÷ϸÍ=‡C¤ 7Dè%¥gKÔÂân†FÂø¶Fˆý6ˆÝÁwÊ|KƒÒÜòÂ]©Éâ~"Ö)UŒokñn·CèÛkPÛÝÆÃcÿõïò‰¥V w74!îé¢1dÙØx©–¿;—¨ ˆñq-%†¼ˆc¥Sæ”{ùFc¨åî÷[¯Ë[€"ân‡pž÷i.4Æv©ç…Z6þ†Aikb(ï{øß=—y^‰ |¿W?b—RRfŠ’_úmøA Dˆá«LHëC‰àÁvx¸”fë«Kß©pSgcÚ“9v‡h—a¸Ë6ÆÇ5Õ]žGó‚Oyîµ¥øU’K›3ÇÐÐÜf¦q+[ø …kŸb 3{`½Ú¦ž ]ŠÁ÷ñcʨhXÚ%5.ú w»äkyO¦°Š›¿¸% Oq"NáâÚßÂÞŸ {ÙÑÚÇ!6ån MésæjX(ؤ}ÿ $èìk-™Ja^àOTZy#(¥«˜Ó¥eCR~ÜÞÊöyýþ-N¾yW9튧ncHèwƒC^‚96Ä#®¡!ߺs].Í÷Üò·_‡ÇÒèw¥ý~—×àw숕Òxù°ü8ª#ðdcWáe¨_– IÔR) ãPl˜Œ&öS$Z9`¤¤…€µl)b-_ Y+Å£åKi×ÚÎgúÿŠK„°µ_¨¸µK)&ÅZ¡³8ê9t­»B ^»”Ó¢"S|"BÓ¥¢þ‰MK…à’GtÊûšðk!>-[Š=¡\>»–ËrI;¾‹S6l!þ„n!……@ DZÞƒv)¡8ê˜å]f©b‚÷†à ñ#|È*"HªÖBòê'†ÄuE o‡(Ÿˆ0>ªqäúºþyõ%B·&B!ÒÁ&„=Í@5ÄFËÜQ5:j‹¥R´X9t ˜oLIN3h|ÃæÈúÞÐ÷ ±'tÁ'|¢O3ÂO¸ÄŸts •AŠK´‚À<|¢"U«òª.¼ÅßXl!X¥OI´ É#\åÃmΠZ‰jñ|@XK«•¸|%ƒªw5¢_,…ð—W1ñ/ `z•·05ˆnqŒoqß‚ª±ëòÙù;x…1EôúÇיȹщˆ¹Ñ‰Æ¹Ñ™H¹Ñy3æFómÊÎ߯Üè¼s£3ßÌ{Î<1ï9¯¤¼çÌ7óž‘óž‘·òžóvÌ{Χ¼ç¼óžóBLi·”fĤ”æB›þ¦4g"¥4#J¥4#J¥4³’Rš3KÌVF™”­œ‰˜­œ·c¶÷iŽuSšÑ KÈhFá”ÑŒPF3j©ŒæümÊhÎ 1£™Ý”ÑŒž £93š33š³©`F3@F3l+£G Œæ¬oÌhB)“Ñ„9iF3F@Í89e4óqÊhÎ<)£ óŒæÊPüÉhÂä4£ÍUF3·RÍ(œ2š€2š±& ¾VŽ oM¥R£ù8¥=£'J{ÎDL{ÎÛ!í‰Ë”´g´iÏ\%¥=slJ{Æ *í™QÚsþ6¦=áN’ö„ójÚ3Ú­´çÌ7ÓžÒ’¤=é*¦´ç,o¦=áOšöŒ(•öÄ.a¤$ÐÜhžÊœ47šç°r£a\¹QÜ”æFóTnïáæFáš¿Ž¹Ñœr£¹PÊ.îÊßÜhVBntñBý“…Kt¹wDyŒÇßQ%úÕãr@¯ÿN¤ºìšùÚ.Äs½Öóx4=^¯/4×ÚÇ×çûôõ´Õv2§ÔNKª¨÷ëíô ¹!_é´¤µìâõöÝ©QD£Éáe¿P2¢:@×íeûå¹áÑ.kôn¹.‰{#ëðW—5[Ç ½tò¶¦Ú^Žã%2¤õ­û]7ãñL.Õf4vPõõúúî(ɧ!" ™ÄÖ¶Ñsì÷ÝYKmÑzŽæÿ+ ÜÛþè¬÷Xbz;‘÷¹·“Vòšx>ES”Õûè3²iþ}¹!Z@‘÷Ëñ…·Ó€‘÷â~4¹¼c· 7OŸñ¾î¨¾ëx¤Ÿ×TÿŽúö3?…|]÷¾ˆ¯Çû“Iw' 5}›x«Ó·ITÏ£ŸúmtÏù$‡Ñùèvß»)}Pù©o™OG&ê|:2‘*™hul£eü{½ã{_ízóX usHs3ÆxÖš:Ъû]¼|¸ühÜôáÆþ4nZˆ~ê£Ä¥Þ‡?÷Ê£ ¦­Ñ ½¹½x–:˜æGÜqn~D½™;i¿Ó¡6ãt]‹tü°¼’÷§çAûQ÷£­òyLfùð:˜ÚQÓÖˆk½÷ Ÿ›5ü`»-ÚÙ{¯ïbÚQZçÃпÏ_3 êÞ_ç:žŒë“~_1ÇõÙ|çë㵞š$qÇëѪú•Ç ›.IÄiG?GÕ~qjm´~¾ýnZ´x|þmZ´ðü¯ýEü?óZ?޾¢çOv­š:µ6"_imDÑÏM‹¸á¿DÈóõá¬_ã·¨‘ä¸=¿~üÄÇÑåeóžÌnÛ$Q»î;Ž{üÊóA»6‘ïøÑqŠ„šHëâw$šÁÓÞÞäþx}¤Jk£…¦îÓ ~œðnì)“ëó×J+1·IZ¸©©Mõæ¼÷]ù?„ÚfJ ×2Özr‘•¸6‘¿÷ßV†)ùä¯÷†®çO vRâ{1M’æ®}‹6TÛ×=Æœ—¯¶Tç£çúöùžI µŽ¶¨×1Yá¶æ 1l©Ãb-İX á)¨žâo{8¶}ãýû­îoóMn?¿ÿj­Í’îŸøýs³ØB¨‹¥FÂÛx>ÖTãeöøw@+•PëaòÕ°YÇØ°|!l_ ›µÔ%‰ï%ó ®Á|ƒk,…àK5lW ›±ÂfP! W ˆ!ÒöDÖZ퉼àk›ÅWÃfߌ9l–‰H@,­9šÕ_ǯoKæ6ËŽ¼Wøöz¹®w¼SÆŽ·µ}KSä…2Ïa³?ñkõµQp-op-ª×¾°CŸ·§ó·ƒ•Am.Ñ7¸–Mjp ªöN^9Ù)—¦¦áñâç\w#½ŒIÕH]w£‘ºmø©ËÉ6R׎‰ÔÅüܦ˜?]!?Üþ_§oúi@êœfÆ4ƒýÁ—ñ´»ÅóWb›kõg}bfÐ!æg››ùgÝÅþÌ ¶òÓ€ž-Ç#bÌö¹¯ =~ö§¥ù§íØŸì¯çp^T ÔýŠ˜u]Œê:Ÿê>ë9P_ Ôew¨`ëWØ,É7lÖY7lÖ'6l¶ æ°YOçÝlÁÇ'½iß`úþ£AÝT~2]Ôý(žu»–9nÖ16nU/Öºí®øüg]Ä\O]òe¼ RßP±o©ÔÇ7TìãÛµÔÇ·Têã‹ol_°Õ>¾X }|K¥½ÝÃXñ…èãÛ ÕÇ×b˜ŠzEÕ>¾Ø-z)‡´èÅZhÑK=M‹^è)ZôòÓ¢·ç£½¥ÂŒÑ…$þ–Éš­´èZôbC´è-šïR!ææ»X mu+,µÕ…B anú|9z)þ„±ä«muñ…h«‹ûжº<é4Ì-ó×Ó1uÐKq±a.,%æ–{5Ì…OÃÜÒ¨an÷ÃdMÚêBmí˜ ‡Ž¹°·Ã“]ߟl’úêBòè«KH_]Êkt)µAó]0滼ei¾K;2Wäú¥ù.ùš›ïÒߥù..?šï’­¹ù.žû{÷ÝOö­-z¡hÑ‹;†½8ê¶è¥™[ôÂCuä§>Íw±a›ïv)5ß嵘›ïBÐ|¢ù.¨Ð|—kã0à#éæ1w¥O×/Jôñ •f‡®<õßn¿Ð?ôñå30zÁ<:ôBС;¢C/¨Ú¡r@ï]¾‘Ò{—æ!½wa'Ñ{Šz˜²ë¸‘†:ô‘µC/ôzéÏÓ¡wyÿtèå]L‡Þå;ýW1±Ì÷Qü6~–þžåyÝáGŠãñÿ9KªT—JùZ­Õšc¬…¬.ùJe²øjîWk5÷ *ä~ù˜ÛµR¿,¢&ˆEÕ17œë—EÔ¤®dÚ¤®¨šÔåŽI×j­Ç¿yí›K_1¿;|}¬¿°‰_-ÕįNl±T¿b+)]í×”.5>õÒ¼cÏ}òòH6Ý—ÒÒ0ÜòÞÌ/…•‚iji2¿¼b)…¦Òœw öx¬5뾟ᠹ­ïa³Ãéñày­¥Õòâ"N9dÊ!¥×¤ê`]¨i2ÍqÊ4/îë”÷¥ÃHÞ—T)½æ7¾÷ñõýk)¬|rÈ4oÉ!cÇËóxi<–LyønºŽÿáÃãòÁ‹5ç»0ÌS6—ºÜq²Tø)¹ª ›](Í”åZɈòç\çâY“I±Ð¬ä:¹VJªI•’ê…­ù›7åË ySJ+…×4ºÉ®ò‰”ì*×JÞ”Ÿ˜bi~ã‘7åq·¥$Æ@ôñÒgýá Ûôêâºóö:¸–W“°Zk(Îx¾®ŸÞnÛëàqý÷*[_Æ–8“*%ÎTè”8ó“…¥N$ K¾0½¯ØäWéñ’9¥÷Læ”T˜ÞÊXd*q¦F§Ä™’ÀW8 dazªK–¼Z—lS8Õ%ÿ©‡q" ‡H5ÂÝN0×™ˆ(׬$kV|5DB¯æëP̯›‹ƒ»RkƒË’P°Y5¿e %¿Ø@Ùž p²áI0ÙòT”ljµ/”HÚð mŽ6  [ŽŠÍ:‚´æûQšÛ•P™Ëí‚gí·Î*­ šµ÷²0Õn‹r¡%€²öî¶$7®¹8¹äRßcÕÇÍ司8@]«•@º–@Wݦ¹Ö `Ø (ך €\C„2\»§[½l.Ï.8Ø^ƒ–à‚XÙ^@eeRƒ”­P¶Û'[¾S| 'ÞÚ[^ñ¹ô¶éOIØJy[y‹•€ÜÕ­›ën±нý:€{{rÅöÊ¢ÚÛKdoY*7@Á-| ¸U8 qevÄívÀáöã°•_ ¾¶>ó|ty|—íi¥¢kõ¸¶× ØÚ/ µR” kË€µµÎÅÕ.Yú ríÉãZEĵ— ÑÀUf~.Á…¯o.¼/²z¥([å¶f§X¹§à_{¼€¿ö|~íJ-õåvs¥¯£§ ×úתï¾~ï˵…,¿N%TŒEg*Ç™]KfùR¤Ùµjv-Åšå^qd©¶µž—?ߘp³k!Þ,ó¯½OìþcÍe%z“]KÑ$±?"¶¯ÿ»üBÆœ`«ñ$” ±"äÐ`±K)ZìRÁUãÅ®¤€:ƒˆ±k)d䎉ñ…q_q §í-5žac—RÜuøÿ»—,ÙV\k·ù[Š(A4w{[¡¢þÙk0}ùƒ¯cçOÅ_jÀB “ÆÇ.^‘#5˜’pÄ`b¯aÒLbâ>ÂN?B $T !$T²3Ž'ßYÊ› Ré›e #·'ö7Ÿ¼‚Mnc¢MLˆpRˆ7q€pžLb¬F“XVÃI~Ä“<ü (áºQòŽZÉ èH-bYˆy¬æád ÎÃŒ ôàœÄa§Åñð'ŒÃŒˆã°xrPýÇq½¼ôÞ(ÜÇxc5à㕞ˆ&[˜f“ ëBÔ‡Ú°‚Ni¿øßÑ! á!Lñ!Ö…‘êJ„X‹PŽÓ_þ»ð’¸ÔIÂÝ ”ä 5±$‚I¸ÁF“¼NÂnOÂ$Pb,D”ÚÆ%!ÉE%ê„ÔÿKØùz&[ÿqþ‡ù 5„siÚÑ(¨ìÛ³øt¹åÚ£ÊÿÓBŠr;Òø¯ëhðZÀý²iàž5Ýw-Ù:ÒÇçÄC\>žŸªÁ,ü¸Rç÷>¶%ÚĺÇËüõreß%im¶¿ÂµŸÌ{FzéðóPÀe»ì¶5í8¯Ûè4ÿrúFëTèµq³?Âǯҩ¨»Ñ/´tŸ@¸×´?PQ( ­khLã!ó¼ÿ@% 4]ì|©Ý6_'d,|4cÐÛÏëO™V„^áÐuL÷<ÿ”KvMm•Ó‘ØëœŽ­ëßÙ÷ç÷žwÞ“šÉTèõr+z¹ƒíö~¾,nàÆ›b³"âøþ—1]¿Fznfsým¦øÙû—?Ùié_k¦—M¶û†0]wãthi\Ó œ¶öí¢Ú¬i¸Ûq^ÓÞ¶&0>pZ£{k”³FÌ÷ݦ|¾ž5×ó1ÐÎW*ØÇthø;6[P^¶å1ƒ÷ך~ Æ]øËf/·ã/§Í!p•luyž=¥F¢h«ï×m1JÐýc»îæX’ª_{Í­·½Àçÿy7MÀù{u«› v÷h¼õ1ì|÷ý×£Í×Çóù"¨Ði¾Dǽ³=»ãG•ãÿü”Ô}ŸÆ‹åÀŒlý‰*Pë™O£q^»+=`xÉwêsâ[¿tUŒÐñ¹=pËñÌ1ûöŠ K¯^0Ãç~üàäx{}ÌççcŸ|¾"ÎϯS²]÷ëyó1cØÇöP"Е‡!°4yüº8þÛmû|̦Eóu²wpÏÇññëãö úÒÀQ|]bh#„°T†‹ÚVyïçù8Lí‰ûzX}o×­æ5vÌà ~þT†ëT'ðyúø÷ÛªÜÀͼ”t+Û|ÛýPÒ0ÝoÈ'E¢µEB9‡1÷Ï?a“ߣ…Û¸)vg—¥¬u8_?‚¾ÕÖ/i&Äu\'{'ø7¸”ÃYBÈü¿Äƒc„ûíxO\¶Æöºi¦S¾Mw1ãÏ¥˜e“õ”T;ÒDjÃù›±Ð·F3¶o f$3pÆ"3ð*efà®^ÌÀ«Ým DúàH‘>¸¦» „Hù’ò·c‰¦7c÷)¡à>¹;"üÍP$üÍŠð7Ф7#‘¤·VÚ8•¢“ç\¾Y;¹|«†¶À‘e‰Ë·Ç¢Ímd+¢“^dEtjUäû­JƒèäŠX‡§¬ÀÕC›éH ÜÁµeqwÅ\WÓD2¤ÚrÇ{¸ :7:]óȘÅ0,E”a¸GQÜÁ•wp/ ±Wªy¤¯ CéåÅ0\'(†a^éá–îË Ü}ßoíY|¿ráåûíX`òÕ*ýnTÿ‘ôƼʙ›Å“3Wn°œ¹U8sõ*gnmPœ¹«­y$ÕÖ<öpáß­¶ÚšGN\ü»õ]âßÕÁ.ÿngÿn?±©dßÄeéík*hS^TA›n^%óí‘™oÇo_.Á‘RÍíJª­rdÐÁ‘rÅæ[Ë›o×Õ 04AžÞÞÆâÖÕû³ÜºŠGÖ&8²ÕfmíìËÓÛKH<½Ú¡5!k7¾ö·ñÓíoCWø7²€êñb{|ž_ï¨M‚4Bçñ[ÿÝ^žõ_7ãŽôù¯|âãû'šŽt¾ì”—Ÿ$KGº^ŽÊW`¾•OðáµNço"Ü Ý¯Ü釼³%ÓŠúýöCP…%ͧâyðgí'k¢•˰ÝÇõç§SÌ6ð|ÍvÞÏÖlle¾òPçïÌAwíHžïó?è|4µÃܾÇÂç7ÍJ“\Ó¬jšBÍ{bM³ ðµðû77n5p½N’ÆÓõÝ)9Ͳîëë}ÙoÛáOnGJr3Òé ³|½˜®{UÎÜ÷üý¹Û“ó+äšþò5ës»¤ëìÐýé‡ö7BJê–šÔ…Lÿp~|<÷ G`œ“ûË`NÛí}Ì¢Èóà½nwî`v}Ùîí͉{­i¼n†·ÿØÚåëë~YÞi»sã?†{¹§ëÞç>ÇÝ;ÓhŸ{]&?Œ͇÷Ë¿]¿©ç €ûAIý‹S®#!ÓŒu¿?>_#^w›òº‘æOeƒDy/4JI®Ç…²R¦™ó1ÉÜß™RÍØºÛ1Ò/î¸&‘;ÐQ2¹S?·.u)ÿ™Óûe¯dEXÏŒfÖï²upÇ/*¯‡Î훓œç{I×îÅë¦ÿØÞð%F‚µ5¥ËKç6|îý‡ñÛ? Ÿ}>¶óëTOâȃØr§ìÉ»zÿøxs5Í ç}™¿F^ßÞÞ·ƒ3{üâ°wñ#“÷üº+¶§d2êÞ¿Ó•HfÏ²é®æš··’ÒǾMÿ¦a"3.l¤×­±!ëë—â’b¥®‡ÿûÞo¦¡$k±!å¢SÎÁr{zw+g÷øÉvöÅYzÓ :ú­ _„܃Bu–æOw¯m9}3™4ï _áóýzÝ{ÉÓýø%w ïÐÔ0o¥™|:]Þœ·£µÃ|¾l­é|¤=ç/v['x:Ê–¦…ï…®sšWP{Ú; ¤™iLƒàýúxìÏÓð”÷ãRºì_8I|:ð8M¯tþZ~ tv´RæÎYq;–øn».ñÝFŠ|·K|· |·ßm¥Äw‹ Ëw[mϺÑÖ‚TÕXAªjU"ØíP"Ø­”v»ø¢^¹.ÐðvFÐðÂjÀ°Û¡Ä°‹Å—aCaG1Z-<¼J<¼8‰àáÅ©/_Þ®]<¼P)xxqzÀà {(Ã.¼[v;Ÿv±*pçòŒ…;n«¬¸0-°âB¥`Å…Û d—^ܹ ܹ0š±»ÙÂìRñ!Øå[Ò±††: F˜'1I[J%i»q#!þÅ]â_h”¾°PúŸ‚Ò—º_Ò±ÜGPñâh$»ñó!ìÅX%ìåY ao',‚–(IÛÍ­øgK» ¿—aH!ŠHþ—š/0Ox„aÎàƲÊý‹G ¸áèÁꋇ X}y®—œ-g÷/îaðõB©+—‡ D¼ÜŸAËOLš•O Ðõb¯“¥T ´T*ˆx± â…&@ÄK}-Z¾‰A× º^øÐõò‰º^†R¡ë¥O4® ñöE±Ë±Úõ«rK)ù.R›"ߌÅ"ßΨ"ßÌÈ"ߌÅ"ßUÊE¾]½Š|3–Š|#Ä"ßH±È·¢È7B,òNYäÛeàÉU œU !•wU œ¡X œV)p&T)pFb)pmY¥À«”K{zP œµ³¸jP)píO¥À=<*®9 ¸¾¥ÀYK«R•÷ U ¬#ÖRàêA¥À•B)pmY¥ÀÝD•×!©8R*Ö¶X:m)pY¥ÀRDK{U \)•÷ZQ)p¥T \}©¸NW¥Àu‚*æÅŸRàîŠ|k©*ò•sn‘oÇB‘¯ŽF‹|£TùfY`ñµyµX®E¾UŠ|õj‘o­KE¾KE¾•R‘¯|×߀‘:U‘oݳŠ|ë•Tä«#Û"ßΨ"ß~¢Š|uǶȷ¯)ùö R‘¯Þ-òí‘U‘oÇR‘oß$*ò­&Tä[)ùÖ UäÛ}T‘o-GE¾]—Š|£ ùöžU‘¯^–-òU<Ò"ßÚªŠ|u…¶È·×‹Š|µC-ò•o‘¯õ-ò…+\¸™þºÙM+©•‘2oÇo¤ÈãÛ±ÄãÛ±Äã[)5é7Ší—ßߎß.K<¾•R{™N¨þ2]¼81#8± ûíºÔcë*)0†B—Ø3¨ƒ¡úRw(Qw(PcU¥îH¢Æ| +!%ê`Îê`Ìê`ÚiÎàX—:; ê` ¨ƒqöAŒó R`úÊ•˜R`~bÏàA ;u0¤@ÌCê`8APCõ †Aÿ™J‰:ØWÞJ K+0÷1¬À8`†Xq6À L¿›>4¸ÁŒËŒÅ—;póô‡;¾ ÜÁ¼ËVî`=zÖ`B4­á‘ 1ÆBÛlb[ÒÐÝ„¬gdÅÐ|ÉŠq€¬¦²bº›cFcñ +æbH•a˜7†q0À0ŒýÃ0÷: ÃX†áwË0Œ Á0¼_üo†aì"†a7`ƺÀ0¼‹Zþ2 Óч;w?¸ƒánÀ̇l¸ƒaÏà†')w0o©pÃ"ÀŒÍw0Æw0g 1°³?ÄÀ+a߀Îw•2ŸoÆ"¡oÇ£oÆ"¥oW„¬Æ«oW/ZßJ²J-goGio¥ÄÚ[ж·zo/-"œ¼)o×%VÞ®K´¼•//ÖbÞŽf^˜3¨y+%nÞ.Kä¼8k´«¡@á ³)‡o§‰ou%_œ±ôÜÁŒ$ûíºÄö •–î·BâûíâEø[ŠñŸÊ_8›Òù´@Õ[m‰«žd½Øk°õB t½]½øz«.öB]eì­({»xqövY"íÝž×߬½t+m/FJ¤K5€Ý6z_Dù}a[ ty¯ü¦{Ü ‰N<À¸0@Œ=0®PÃé† —p9|q#‚ÄÞ,¾¼ëBã‹k <¾]—ˆ|±=eò…Þ*òÓ²†Wháj@ù‹Oç/R"Jž1PÃ#&Qr`Þ!þ­RÅü»ÿÄße¹¼:Cì»`aæy E0Nb9‚«¬FÒ¨„;¸„aÌ(£…FÁ&Ì(*tˆ À' ‡®`\ Æ7þMwÒFÿïX’œÂØ@ ìÊ*<@ûã‡ð~ÿ’ì9—]~èJ u9êïÇK}#u}½#gÀË*þ‘‘@êõ4‰Óñ¾l¥^aØs¤Ü^«ì¥ŸÇïü—Ÿ—VÿœÜ#å¶ýÄËÁp¹_¿—é6èó~ýîF©ëäQ¸½æ{lõp»~ýÀõzc¼ùÂÓÌqΪœý&jžë±‰ÿ^€’š¿n‹_ØÍwŸeêב Ø*þòþ¥Ò¨Ó#-w=Ÿßù¤ëñóýífL{}Ÿé¨¡·7†úz²œâãµ¾Ç^«§£8þzþ|c7ÃELf•_4 zûã˜ýD“šñøõgDÕ{}Õ?Ü?Þ™óé$]ž÷ïpÅNiäøÃÑïþxw¿”úøþeÞûs°ÞÞ\x#‹;˜˜×Þ ‡z?„Þ uŸ¥F¯{}£ÒëuòÇ7ì~nñå¨1Ù;çóà~œ,+o–>³ç1ï»ùÿK¼»VïÕˆ%Gšâíûgò`މ÷Öp>8Ù>žoåíórÄñÂy#u=î‚Ë[=|^¾¨t.ß?Ã%½®Ìi/§»7Òy½Î_Ýß8ùûW•Ðçùû‡­ê6³Ÿ×Ó{o·Ûé`&zãäÇ<çQαÝéë¬qºþÂéjÆÏi¥ŸL!¥îóÁõ™ù½¹‡õþå—N?fÍÁH`ÞÞ(ât¤äÆÜo”]>Î÷wcnG8ø ÷÷ÊË?ÞÇ6žßÞ£8süšq=ÿ¤›ì4ʸ†í_÷BoÜ|óŸ·çg]Ì"”a?o/ôóç—5¿¹0Ž{»Ýßn§ƒðòüa¥Ý?ÔãºwßjiTq}3¥þå¨û߆¸R·Ûaô_ôn‘"]pÇ_pÇap…DŒ¡ÊŒ¡@\)ðsUáúÅP%û­Ø~#¤ -†)p‡z^ÇËõòq¼nvCZ/0>ÄÀ30¤@ ŒuÇÄ¿ØC0ÿbFÐúvFñúb,ûrÃì ‹µo×uÿe<®ß¿{Tj”Ϻ¸ÛÛO0ÏOˆ‚aõI0kƒ@'Ìe…*Rå †¶Ž×åþñî ż=±¿é‚á™ÿÕ¾5± WJŒÁX<(ƒ»=ÈUë˜4¸c5W¡ÄŒÅƒ6¸¾lýúÕ»þ²Ÿñr;ª_¯„7WççsþP9¥öë 16ûcþ¬{yÖ{'N²b(5m- dİ.°Ó)­tÄ{ÿö›¸CÏGÂêyÿïþ®#1ÌlÃøBÐ Ãqo¸Rω‘¸ŽÌÐþþãp½îø vür=ÜÜ^è6/ÏÏÇÛ7ËoJÐ7Ž9äÅ‘Rnc•Á˜zø‚±ƒÏéã/¿~¬•É4 ½yu®äÃô¦a†³0< Xƒ±‡3­0½êÏ,raœ ° wõÈ˹„·0Xˆ©ÕÐóŽ 50\3¸«ÕóÄ`^>ïçïŸÊu ßçÑx>¯o\3‰†±Û`î zÅ<ÏÓß ¥ü‰ù #1.ƒ¦i±.äDµ`Æ%u<ò.ÏË›«LÄÄ‹ÚŰ•R )·¼ÉXìy“±Ôô&C=–ŸÇÇwÑFbכ·¶7J}o"¥Æ7ZU›Út(tµ‰ÚÚDH}mV!†°JmªOµ¶éÒÕÛ¦Rê[ÓÕ¸&&£Î5=j]ÓÍQ¥æ5]»º×d(¶¯éXê_£­n›Z:جRƒs` t.÷Ÿ<V¯`¸c)† ªiŽÎX»ætÆë>¾S2yõú©ªO?Q|ªwuò‘êGÓŒËíÝ£á7.<5ü‘5¬A3}MÛE }ô„hûœªá°Ÿ¦k ‹kå9Õþ˜›ñìÞ»ñÈç¶‰Ž®¨vÑ©«Q‡œ^Šj‘Ã]\ƒSÜdC÷ã¼î-B]r*„69º{Ú'G·Jåô™„0—G¿ýtº‹j¨Ó“¨Ž:z„·¥NþAYq9 Ýo¬«]uº×j™Ó ,ƒŸ5€]Ê}þwÔ¡Ì[¿²¾‘b±q¥Tl©Ëx­üçåv®?5œ]–êƒ1aëƒ;ߨçóös½bÂëìY6ùΑcB”C§ç£Œf€.Þ,ÅÆ]ý¨¹ºþg†oVÿºZGö4ž8Û±Xm )T[õkµ1¿q­6æ„©6®”ª«ˆ×ƒyüâ|E9{¥e6ó­÷¹µAV.oÍëôñ«"´R·¿ÎÇ×Ûó“"è~¢Š i©)‚³îêµøoÿŒ±^1Á€+}ÞŸßžw³Aÿù[PÍe¥ ºŸ¨RiLˆRéŽu›n¯Å~:²ó÷»×%ó«x¬3¢ìš6¿–]ÿ¡ìó¡ìºcK}ëÛ»“Á²k8”]c]-»†Pv )”]ÓNGâ`ü ÷ÖS›Fm6tŠªkœý‰yYÍù"T+ hŸ×I¼ý`p£T¥ÒøDAS©)‚Æ.¢¼3Npòë(þ´vóM<óÇùÍÕÿzF÷âË9¿q*‚¦¥þ*`{óŸK4,bÞ;ó±zÙßG’ÿ4ÈÐ·ËºŽ²ßëñ$y£yÔSS§·C¥o.ë–SÃq¡œ×ðã0æÇ›'ÄÐäc<“î·ïŸÂtzPÞŒFå2y­\î²Nóç¡y¡ïÏk’!…šäšÃ_ŽËçÝu›/üy>öVŠÒe|âüm{>úß œñ‰(pæs1ÎBQ2¤Z”Œ‹ìsìËñ,Û›¼J—¡S”.cY(]æ!Ké2Ö…Òel#J—áFPºŒmDU2Î×#Î8[©ãA2»ov±…Äp”·ùò¿?}·ÕùÃp·¡#^…Ü.gBkXM‡f9™N½r2’Zå¬B씓‘Ô('#¡ONdÔ&'Bê’ÓÙÚ$G X)«Ê2w25ÛÉ@êµÓ‘ÐD'#¡‡NdÐB§{‹:H t¢IôÏé@¥9î’Ðc'“©ÅNO:ìôÀ¡ÁN\ûëdÙj¯S%¡»NíÍujíšSÓ¦9™ì‚ž9UZætÙ蘣c’†9õ%è—S¡¶Ë©½¡[N÷ÍrêpJµ ?Q¦åŽ„~:ÚÜ´Ó‘¾ÓMGH›œž&tÉ©šä耯Ëð¹h¤S CNw rêâЇ7øÚ§GwœÚ%šãÈí¦7NGjk‚tÆ©]¢1NA8‡»lõΑɥuNG*•0>íuô6ð§qNM}sävFtó»ÕMoð´FÕÇ¡N/ºáô1„f8:™é…ÓéÐ §@'œª-nzc Ãnñ4¸é¡C›Ž„ö6} »MÍ Ím*„Þ6µ9´¶é¶ ³M­mº&ôµ‰ Ô֦Áph}£7a:ß(¼Hã›Z&úÞTh{Ó;]oäzÓÎFïët³{úÛ̆ ð_§f`H±/¤Ð§RêxÓu©ãMÇRÇ›Ž¥Ž7•RÇ›UJ¬ÃKmj*¥65ýF5 ÁXh@­¢ flkl6šÆTJý`º,ôƒÁ„탥7Â|tÁV‡ü–&Øf¤˜Q½e¸®ô–¶Ð[¦«/ûíÆÓߨÀIRíSƒ BœØ¶µ¿¹,½eh§é-ƒe¡k ¬]c …®1pƒè§„~0vÏK”±?e?¼¶44z¡RÓè¢Ñ ¤ÐèÆ…F/°´pÁXmá‚eµ… M>ÍYpøÑœ…~~mÎÛBsLˆæ,BÛú·5XÒÅÒæ,0y´]mµ¨]ÒTÉŸ¢9 ŒÍYxªÓœ3¢9 ž+§0~8…©ôyée†ßÍ›f0¸Ãð»¾ýføåŒm,Ã'DËย± ,ex¯¤± Ö…Æ2ØÅ6–Á„h,©F‡o>ñwûØ)ÚÏàd ý Ö…ö3»ààoû^?i?W‰Æ2|Ʀ± ËÀW¶± oÅ4–E ± ¶e½-ÜÜígx+®±)·qi¢ê@ê«0]àÊ*Lk(«ðHœÞŽºë×Nüï¿|Î\ñã»>BÃ-<tß?mþæãn²¿íF:(dÜ/þG·Ó£ wI/g6K§FaÀn¤ór‡v#©p·Øl×tšø»ÉÚyß H¸Ÿº~è_û¬§Ø[ɬ (ôäßß˜Ü L¬¥ è¶ Õq§{Yí|î¿ôôÜš *n¡ñàá)çonçË»³"¬a…Æs¬h«%•ÑVU´U%¨‹é¾þ aJ?ÒJVT#,÷<¯·ÓVÙ*±åެFè¨e¸8—™·÷þŠ¿SŽ*¦½‹¿…ß¿Ÿ´ÚÜrú󲸾;àB3rs0#n”Tßò¦\ˆ;Ù¼—ÌÖÎ OÓü/§oˆ^AÓõÍïÚÞ9§£3ÁˆvŸ[G2rBó¦øøïþü˜¡÷@«mw_…¹<µ ¡0nœ"/·Ï‰ßJ¨úËBçýsB°Ëî>ªm!Ôb[h U´8$…obçÂ$Ì3²¢2¡Ë€2!Lft›ïŸ Ünœ8„+4rÿ™<¶[SRé,, 8KÛ–±bK>ÛïßmK+Èǻ̺]ˆu-|½»/;UŠU—¼çãHöm/€>ñ˜(ñ.Þˆ2‚»ÌuŸ‘ßÿöÁÃ؃fb šEÈhV!6 Y…Øfbû™,Ýg"£¾2R[™EH±`×­¦2ëlì)!µ”‘ÒQ—†2˜­ýdV!¶“ÉHê&³ª!Ͳgb–j8h¿}Ý‚ŽÔ@í6!5›Y×Í^3Y’ZͬBê4H£™œ8õ™Édj3³î.»ÌÄNÔdf]{ÌäãÔ=&Bjhï˜uMl³ ±sL¡ǬÊdߘøÝ¶YEØ5&Û«¦1Ù^õŒÉÅ£–19¼ê7І1Q¥úÅ`{Û.&Û«n1Y“šÅdMSê´¡ ü@ûɬBl'ƒ³ eפ–3¸èÚL&^®Éx‚9ú¯ö¤Á·}®ÍfâäÔk5­f²¹ê4“c©F3ð'i!“©ƒLB™‰úÇàœ¤}LR_˜©- FjW˜| •}U s oË¥qLöV}c²lµÁû¬]cÖe#*„Ô3&Ó©eL„Ð1&@ c¢Jõ‹Ác¨íbprÛ-&kR³˜x%õЉWR«˜\`èP£˜ø7õ‰ÁÞ61›sù·KL4 &1›§õŸ1y{!Rý žÿŸÙ‰*5hP§ŒlãçNJÁ*¤­V Fñ>ÄCRD)…0#È‚ ®rõBHùB 5!ü³ƒöc«-‘õâÁa¤½[/6!°_Ž]ÕHÙ&¸2ñʸPk¬¶œ‘TY}¡Tð!ÁnÀ‡$M4öÞ[ýo>$H• B—ûqb_Fÿ±·.ìb,0áÁt„_Î{¶¯¸þüÎ\!pÙbÀN¤Ó_v")"M[ ÎXj"z¬ !½ô€Ä,¬¹d°˜LG•ú<~tž\ñ§½5#d‡ÙŽî\#û°7®ÉW–ÃUÆUvVH}yˆQŶߞÆÀ2ˆÁ¾bWF!9Át4‘K*í†Jßß°kÖ>·Á2æŸÔÐpÙ—âø1à9ª°÷Ç™Mª}!Ò>'¬ö]·ÒÏêè„tH+/û¬Žý¬|'çsë%E`$çÐf,º?fIç0™Ë^ ÍXt‹5 ÷µ2ÙêH·e 4Î$¬@[˜<€¶Жçuå’?ª.©Ì@›ÛsíÂÇå «RÀãÂêÇ¥s^ùˆt{µ‹‹ÚÅâ‹Úå‰ jN ¨]^e+j† Ô.&j—Çl¥AÒXÀöBÀöb‹í¥#ùÞÚNXÔ.^åB’£¶¦l/I°½˜Ø^|"¹¼ˆƒµ…Tñ±|‹ƒ|,¼ ð±Üëàc±.àcáQ‹Ý/ë7¦ûL+,˜V|"0­TD0­x—ÉŽ>ÈWÜêåP’S>–¯ÝàcaÏÀÇò ô› è+¤WåX¡7rÈõ‹:‰Zž§ã÷•Ëý?›,k¤Ä”„±Æåב:øœÝÝ6cƒ=ê/ƒþ÷ûf¿r}µb¼î¤^Æ7k\.ÏÇ÷¯pš1ÜL+ìFúÆñÔ-kïßTðÐ*2¨kôÝ;Ôuy³AIb¤—[>‚^Wÿ~¯?_{=3߯i¾üMÒÖ}V2Îß?Ï[)%P%ÕÔ(Öuà—§Eì5?,aþþyýÎŽ@êF\ÇŒ£~g©LÆb¬Ë|Q½ÖuþïÞlŽXpþRwÙš³úêh¬Ñ®ÖÞl¦ âòßÙ’ûs¿(»ÒÂh‚ü5Ös7¡£4ãÈCÜ¿¼ÍVYHŒB‰Q,¾|QÒÖp#ó蟾+ ô‰á‹¢¹ÍÜïpoŽ~Ó§2š&F¡Ó²JqçÍÄÔeö3~}ýå§VëBúêzμÀü—Û~¬ÇNsþm@èõè¼+£’ác¿øñúübg9ïw±ꛓøÃ*µ9ÔŸÿ÷µ2ëÿÿÅ+ ©fbå¿ïÿ=›óæP_ ’çó»ÎDÎôüu ÿË1ÏZÝã·Ô½ƒ(]îiÔ«M'¿½0˜ô”T’žºWÒ"^P!-â3ãq8Êû;÷ܨ|Mâ-Þ=³_úqxöŸøœI‘—Ôc\A¦ÄML€G/š$Õ¾¦ÙX}âã 5|)âͽ‚ܨœÍÇQÃ8lWßê ¥Â€´¹ Ö*vñë¡>vqÿ‰ÓÍwúù?õ±.âóôñMw¡;~¶~)ëòÍ÷‚µße“ñÆä’Iï¡,¢F·ñ‚ Ñ&@ZȈøL•Nã†Úúñ×¼¨î•Ç‘!÷دû—؈–ü“ 6’ˆd|3Á<_5ÿ0ýËE³‹^W)G¯‹ÑkÆBÞ—Rˆq».ŸYcÜÎx?úÁßý7:ÆŒˆ„«/EÂÝ!E ‘06»‘pGR$\)EÂÝEÂÕ–"a,1ngTŒÛãVJ1n¥½âh z­”¢×š`3º<q«SĸØêƸ]T©“µ(EÂÕ¨"aœWDÂQ‘põ€H¸BŠ„»xEÂÕ©"a|""aX Â×*Bá+TðR_».…¯ýF…¯p• _+¤ðµ‹Wøê[j _·‡ìwøŠµ#2­u!æ„A¬YLºÓ¦R` ©?¯Š­®ž3Åw9¹ÇŸ‹ðc!|…ÏEøŠ›á+¤¾â"køŠ»á+Þ_qÛ!|…= |Ååƒðµ«WøŠ;±á+6á+\3ÂWÞv _ák¾â¾Â#%ÉÛA.\‚\Nƒ\(A.¤äòÊHÛ½VëË` ryøäâX7ÈíÚäâ` È­ÞäB£ra4rG%ÈÅ A.xá!ÈÅ… W±ÏäÂ’ä™6È­‚Ü…ýà†¥Vê|»YûÇéÍXâZÂXàùÅX dªÔå Z<ð©çíêÅÜ„u•CßIJ Á“Ö>¯ÍËýúAÔH¥ÂP xÂÚËñ„¡VÂ_¬ ¤KPgYx1¨™°&Ð.Ù’WÞ%Ùh‰—¬ö•y ë:…8—û1 qÿj„õ:´Ï½5 Ù0‡ÛOp¾Ñ×_²' Uf_}béž4a©œô‰%÷…Ô³fÝíÍfºî£ˆä‡¼ØÖµîB`tҺʦ+«/ñÌ ÌOÒ}©Ÿtª¡ËËù>·F(v^íPéym^+‘¾LR•”\s¹¤  IéÊXÙ¤ :)ÌÊ_h ¬S²ÁÒNa,ðNÉy•xÊŽpež²Ý¬ÂÚŸTÙnV†*Ù`i„u²ç¯ÇþÞõ~N@Ãy ßj9±|°W*+;Â•Ë R ³òñ_Ù¬$bbù›ÛÁxózw¾¹fË ¥­.5”¶çyϾ½Ä ¥ýùœŽwà-övy¦tå•ZXj(•& •-~ášÒƒë¸g³Šýq%•¤ÊI¥—R¨¤ôð¼­ª4zc€aXFSÎ)ŒõztÍÇüéòùÕ¼²Naõ Ò7–X[]v*™M £´Ù¥p’ß:p.—ãG™ím']Š%hò¥¸24íÍù7E“íyåhòósáÖ]PÒay·p9­¿•:J©äC!…|h¥”•”·]W³¦\½z»Fн]óìíZMÌèî|ùî !!6míPõQK¸b7Öè´™N.+9Luûz½ÐnYJaÒ Žß†Îö_Èî¯ÙC¶lÍ„ÇÏ6ãâ»mítüÂ7¹îº];»fñB¥v(ö­=•Šƒ¡Î®UjÒ“ÜêbWq^'üxÈìæóãx-ŽxýñÖ˜Û×µ_¨¾®•B_×LÈŽ­‘ºþt@Ww8‡˜®ùt³ªáàÏËõú«YÆjž“&¯¾®•R_׺@õu­Tr¦ÔÄs†ÃççïnŸu6ê[;(ÕWY:ÉV÷è$[!õu•O B&ˆŽ­²Ó6cNßàã8?·ý©fÕJ©ƒj?½Qu¿? ‘l.¯Œ#sFõY•‹HŸÕêáóðͯ /o.uPÍXì )uPíÁPÕ^ÉæRê³ÚK*ØÍ}×F«u]øsw\þ¯·ÔÒhµ—Æi¾ñf÷Â7NV{®ÕiU×õ’¨¥T?Öî#z¨öArŸ§²…ì ;­VJV»øÛñcØëžÚzT¥`ß)âO×Öž umíêÕ5ëJ¦–Ï)5Z­”­ÊR?ÿ½Q÷Û±Öá kõ v¬5.µcÕ^·kŸ7jǪˬVõ¢™©áßÝ×iÇÚ§ š¨þ¡Õûú),|Ä‘"q¤ÈG)1 WHLÃ]¼˜†ñ‰`îŒb®"À4\!v&íP`ÆX`î'Ši»X¦án¢˜†±x0 c,0 Ó¸Â4ܱÄ4Œ±À4 )0 W©b®ÝˆišÓðÖêÿ0 W LÃØ Y¿=ßBÏý„â#îXâ#îXâ#®"ÄGÜÁG\!ñwÅG >b(¢|Ä1̹|Ä]•øˆ¡5Š­Íƒ¸3Š8Rä#®Aˆi¸c‰i˜Æµ2 óÀ†i‡ Lø¥À4LÕ·ûj¯©òãÀ‚Æ>âJ>bøˆy‡®²|ÄpIà#ÆPå#æ=œ.¬õÌà#†Ñü¡ÊÜ©|ļ:ÃG ©òSí+1ö¹|ļÃGŒV>b¬|Äpà#†õ.|ĸ6ÁG Ã1n1ðó‚ 1Ž4øˆ« ñwõâ#ƺÀGL'>b¬ |Ä8‰h[¥‚´˜ŸÒb=H‹ñl1Æ1üøˆyøÃGÌË'|Äð6à#†VÁG ³1žeà#ÆXå#† ‚¸C•xE£ì0®«”1®‘"â4R§Ï¿_}Œß6vR×ËAãöòôý„œvñ‰v>€D;’@¢•H´~½‡?Î?¨­îޤðywõË>pU–ð¦Ð{ƒSi üLR×$) HR,¾›¤¾^‹?¿n”T*v±á¶¨T˜M§IPÒªTPRœžÓñsóø ûÍÁxŽß ç7|îô 6â76ÿpZ!N»xN±ø£NãùqÿÁ­Wó‚¥V ÔK˜ÔKêq8ëñóâÖ%» wú1áô×o¦DZ®™DÛÕá u»Z!aW»xaWq“Í_NçSã²7T`W¡Ó™“›ÌìÛ{E4Ã?²Ò8í]Ò¯Vk1à-êùÈ=ïÿÝÚ)y£`§¡"æâW–ažê™îœ¹­ýk„(^HŋۘÚ*âãËjÛ+Š`Yø\À`yq‹-ÀµËÀµëÀµîAW|âçQÇuûØ/Þ0X¿—xX 0X(0Ø~£`°8€Á»ÛuÛ vÊ×àºÿÄ·ïŸÓÁ¾?oô7ÏôqæÇ=¯onŸÓÛš¯¤ý6 R‹Wì}žê?,@8Õ…ÔÒ/ìÁÒ)€·xþR ½,Ë€,`YD"ËÂ´Â Ì 0XŒUŒ+|`1®Ð;ˆœ` !rZËo¾BÊÅÆ•R±qfd±ñ"µ)6ÎŒ,#îºTF)–gõ,#î7¢Œ8B,#îP(#ŽPÃ\I±Ø8šg±q¯bãŒÅ:âhžÅ¿‹Å¿UW;ÒÀ Pû›‘Xû›¡Xû›±Ô·kW…pm^µSUK§K¸±›Öõv]ªë­êz3!ëzëºP×[ªb·f3ÕVc@Z³êz+¥ºÞú$ÕõVJu½=±ªØ­Ý¨b—÷A*vwgñOÅ®TŸ.2ô‚é"ƒÅ«®·Ö…Î/0TTÿÊš[ý› Y×[)ÕõƺQ¨þÕµØêßN¨êß:zUÿvÆ0>i¬F”w“áêT5Â:‹­î‹êß2Uÿöq£êß~¡ª{M©úW7^«7›¥®W×u+v{bU±«K¶»upªØíºÐû;„ºÞªK»•RÅn¯ŠÝ˜+v·ŠøS±Û׆*v»zUìöÎ[cÊýûoKœkÿö=¥âßJ©øWæÜâß3ÿÖ“ øWwY‹k*þ•Ù´øWá[‹u—µø·^IÅ¿Øëÿ,Å¿ lþDºt§k¤Ë—g#ÝÓ0Û(~­úüZõçD ?¾™ÿ¯£ŒòµÕ¾]¿k‘áÈžµÏ?^äup<­KiV6ÓœæÃpÂç=ÏiÄã¾z]6ÿ˜Ö¥”ÖiçåK'÷Æ(C°È ¥8Qžœ6ª½_F€ÓOÁî:hšV‘•~)ZKásÖѪç Ò’g|ÍZïÝÏߌ_9ï–ÒDxLvFÖçQ²þ/K´2‘†o¾}§ ò9Í3Ãî×$sDZ²‘&¡c(a½Êù:ÍÎÁ×_|=Ñìá¾tf”ËŒéσ3꺱8ÔÃâV&¬Øm3Éë(àÀŠænÇDß¿äÕÕ–ŠjÕ*2‚±ƒAk÷=÷ƒ‡â¶ó³ o‚b׊ᜎ&RcçÉ&u½Þ¨deYŠ\&yÒ¸¶w7;˜“àIoÃóÜ¿_ºýæ ©9?ŽR4köcòÇÜ?>¶Þ¶Eͱ¥Çtê×ýé8úþñÍo®—V Ç«ÌîêƒTfóÅãìçÑPü´9=çéæB6®V…ÂI•0¼ñõóà÷ÚÝ ³Uêà~Ù˜r¹zU-YΘÁçô)M§woˆÛhr»ù·Éóîæ^òó~Ð\ö.}-Ía?ŽQgÞf-/n®Iòñ1Ô²¦E£–”ÏFâè3>(Œ6& ú¢Uäe®·ƒýgãóOðcÚÊÆ5©Â5šý¾²Óšµëcë›DC´®õªx`½|/> Ê¶–5Ž´´CxÖ×t;Û.0 zÉoº»?˜ƒÿÑ!A5+$ŠÞUpÎ.I䵭ܵ™ °ÐÎT(f¿mUYä(FºN¢«ÛkÝß|“Y8Ð¥(ÎN|&„ ¼´ÂD%¿náí;تŒÈtóq@SVMSâ㊥ÜZÊo(e…Фä!»o>Nä¾2¹pûfI@dVPËN¤¥·î?y}µîÁ-y¿>¿_3ÕÀà5—Çí‡q³Ô7#°‰“Y¼f§L4ãýtÞ«8L¸¯Â01Ùd°{9”ûÞt¯„}ƒð·¾|¿ý8ÐýVh–wüùÅ…·à/iK!ñíÆÃ·j9oOxqœ¸ ½Ä] Üžp0àvÝ ­•šÂYÛM)8Ó›ÉÛp…fÂët ‡ŽY™\(fkáÅ\R+ mm °Ì ý…m„±ÑWŒHé1®‚5“I%-L8Ë8\Þy¦2a%ÅPÂ{¡¶PÔ#Í{%¨Í’fÄl ž­Ð<3ŒÞÞBEÂ1Ýft:ÏËÖ ‚æÖ·Î¬»Ú{A &ñmÅCòîÚ  ¡û|Ã<Þ<†˜Äé¾ÔÐ÷Ÿ_w1[A•<'ã½ð8ÿTšcº/¡päö S@%v¥xJ¼c §„ËnG ˜rûD}ŒçÕvçÂh+O ¸åßRÿýn<ºJ”™±ÊìXjš±ÝìêÝÄX@evõjZ)`7¡Ôb7;’°›•v³:,³zà‹GƒÏΨŸQ >+¥ŸXÀ› àM*À›•à²ËàF_Àe‡BPDQ™N¨ÌêJ¨Lœ 23#Û€v]j ••Y!¡2»x¡2«Sá-ñ‰h 7RT&L ½B«-á-á·Ä^o )tíê…·¬ºÔQê**³BBevñBevYê(º=¯¿Q™t+’## 5# ›üѦ°-`$±øb$q­´Ñi…‘„ ’¸/RË»Naj¤¶ž9pKÜÁ…[âÚDoR¸\€2y!”‰» Ì®K L(¾ Lh L|"@™¸/Ê„?ÜŸ¸%¼à–8ˆ€[Âmn “(ÜJE×Q^+[Võê'ºWÄoP¦/Œÿü…Hò$¦ë(^n…HVY‚HV€Hv(@$¡wt…®¤d %Â)áÐO· €”øÆµŸ(l´XK8Àb-±ÀZ¬€µüPØ(+¬â"49o®³§ÆåÖ‘„g\…gÌH÷çÑÈhä¶#ò™QÝ4Ñ—Ï?,CH°H}ܨ'¼ü4&ƒšÎ³Tfp™£2›0‘™íq¤Žž·Û´­#=gåÔäß­›ÝP²îu|>?>~ÊÈ»¦Ù·cüf|ÛÚÉéˆFwÉçnÝ/tßH}?w³=_KÀªŸ^ $gͤøÌ®¨ðÌŒ#tfupfF6³Ë43Båðñt³Lïãjññ<ð[Ÿ{ƒ,³g¨Ì ”Y[:Š|ÎÃ1í>îñøjŒöñóÓ=^‰óvºóQÒ5¦»lÏåízÊí_M—Í;ÐN}ܿٶ®ä>:@VàOÞaᯫà´Q?x/@´ ò³ž ÀO^a+îS¢³@g…ÐÍ¥Æû8ùõ»æØ~7ÈÐ^O†vºâB»î5 õ™ t´å4óB£¦÷º]Ñà†^ÝÞ,ï?Ñì—-œªŽÊǼÁ>ÿ%34°¬ÕÀuæþo¯µ]·{$«Ü@€¬=)ÿ:,ß÷.•íiêÁg`vy–­™ñžhA-ªb: ­¨Î?Õ#ÿsÍí*£ZÚŒƒê×È€ gçL†)cÌ"¢*ÛNZ™L^,9Ä2«[©Û(µÌ: ªt#ƒÝLÕî*‹‹x3:«d*pÝDÇ »•†í&2 »‰ øn²ž#¨¿¿ÆùæXXí«•½F”79X­ýír@i™6mÑn­Ä5ŒÖwGAŽ³Ê´xX§fœ¬ûk÷O[[Ny±VÈ”BgÝOT×§´ö¸öÕ~0»Ó÷›Œ'+žù——¼~#«"ƒšã,Ç]r»Àd#P“Ü5ƒØg§õÈ]˜}ÖaÐ!¦æÞªæÞY­V®e´VYëYkûé©-Ž*‹³Ô÷³Ú E»¶ xŒ¥¤xëx~3 åË[N\G˜†+µ÷Ö÷«ÀÇB h°Œ@9ZmÆ¢ÆJø³ƒRdyƒñD úëwz}~Ý6sWr/¶v|Ñ…ú ]¢ îâpÿÄ.Z0œ%·¸®»¾|œ>ž!ìDˆ†â Z¬[+$A±÷–õÖc´¨·ïP ÉÂV¦ 8Ôµž·VX:!\[kç”Þí›"w°vMɶ£ŠŒ9¬Bë§·„·OóVÊÖ¶¶ïîÔ­öFJ=*6´ÄAã _=~|]âÿ31j¥>®Çï_#ÿöï1R©Ïã‡Æóå×{«Å­•Ru+¤PÞª±Zߪ±Rà*¡V¸Jª%®œpíü!m]fÕæK[×ÀX¤N‰Ì:üðãJ—šZT¬*•·ú¾–Þj¨q]ŽbØÛ^ê~äE¦Ñl¿%ºëöõ3üËýlõ®P§§´§RiÃ@,ëóÈm3Ü-KõŪƲ‡Ts¨”k¨Ökñ)2¦{HºšûüíkT3^÷Új1·g–žG¦ïº?Ó­¦m}Î2ÆÆ{¼NÅ™ËÞÓ´ŽXkG”(m}ÎLÐë±×V‹’7§z©JæÁxŽ’‰y­\·.·uÉ´À&Ó˜S™LÇœÒdz·Ô&k¬´§‘ÛÚé¨J¼ím~°R ©ÓýÉËýYZÝlÔµ”:oŽõR|Ì#ÕÇ\ýsº·óóöÓD ªO‘2ý[ª”©‰Ô ÓºR8¬„XÐ~w©/ÖXÏiÏ×ñFÜ+5Æ›“±TkU-¦9ÏßxO²?‹©2æ„© Þ˜àRḆRCLE¤ˆ˜›ØÐW›¸ÖÓæSGÌe­ÝièÂSHÌ'e*‰9Vª„ù˜:Š{ÇÃì²½ðÆOxãç¾Y¼÷æyšú^:úÒáB]-ÞåÕŸF?Ÿoû«Ô¹ºÔòJ«©»å7>¾rÍ×$ö1å¹|ÈÎGÆët{cϨ½å‘Mñíæ™·Tßn"©¥— \)zåêS\»yï.íH6c-ųkÅÿ\[)å91"âJ¡‚C¡„VCµ†‹G-fl,&Dñ+†Ba+–…d-fDi+¤ÖºUL×¼¯ÖÔ¬®†j^×ß·fvµ9 še¤-ºÅPÍ–jíÍ—ÚÞ׌©ö9Õ¹: t¥†º«U¼°”ñVJu¼R| ye}­¿µ"Ö\mbS’ë>ٖσ¿ù¹Ÿ5¸ZW‹påjZ…‹±P†«ol²ÏÖµ6ò¥6ㇱP¯ ›@-®´šb\yÓÚj ©–Úbí¨µ…êhíÿô‘9´FÖ½æ å’š”™¦àV§ºÅ´ÞœµšV¶ÜJYmaKeíÀ×ZY©« HíNÃNY|ËeåP[/k{X2‘r‚)˜ÅHk¡+Æ)ã­o±5‰(©¤}],õ°2¾ÄÂúP+ÕÌ¥ÖÞ„¢,¦)Åý«æw­ö¦¶¾-֨ͷؚ¢”Ïj‘­ÎN£6mcjq­®5S飳–ìJ©ÉVJ(5»X:Šv!Õ‚\ía£,Ÿž5k‰ÝA½­v§·¶šµâVG¿%·Ž.–rZ?É–RY™Cóœòðí‘¢·CënýÚ_ oÖ-•·k¿âŒ i¤N^ó8=þýÌ)0ÙVJL¶’jÆW뺅c·Çã#¬Õ—óRà3Â7‚ÐHë*£‘ôJ#®HC­¹\ ‹šoB”Ë ß-g,gfLBTB%Å¥q­ILîaI’4aY’0V‰‹``.„ÍP&IñIbReVòI\©•¤­r+I*äJÚÄ'aY%Ø•T›ÝYRŠm-)EžÄ²'é•IR¥FÒ]PÚ#I…Ñ—šHz’þ´J:%QÚÜé ‹’t_ò#ûÊ•ØH6Ò"êÊHu5[¨eJHR¥ Ò'†Èoˆ•H–&^ŽõœÞ_>ó¯W}ÄßD \)~t•­„½´ÓörU¥ Òý’ÝÍU¶² éÕ’Ìãþõö›?—ž>ùÉÍ¥¾’锕¥È7ñÂÅK݇]H¯ˆ$1©Ô’Iª,Drƒ¥!Ò¹Ë.-µDDZWI†0cS¼Ë $©RÙ¼–$&G™†ä»B5$E”kHvS²!oãÊ6¤Ë?¤½›û`Ìø½°ÞD‚ÉÀÚóþ¥ã]~¶Û¤_+E˜i¤4íX‚šV `Ó !±ŠOD6c ºŠe¼Š¡M­¶Ð$FÂÊÅÄÚcÅVÈÚ‘eíPªÂ›Z­”úÍ`BÀU¡QViñ¬B  Õ.­k4À­0yàR«Ôæiu\_…º`Å.6O«±tíºu…qì ‹ÜµR¼vY€³VÈ1{U½BªÀ×Ú– ¯Øž&¢e€¿nOõo,ôМ6†¶Š|Ú€Ÿ|*,èS(5yhÝv©bS…T[ê`ñ‚³VJhUÞdÑÖ{ ¨<Ó+uï~ÃQaZÉCërjµC!Ã,+t•÷Øša–¶q…Úr…i抋3u¼Í+Òµ#¡¡†ZÌò¶khtK2˜ÂTa/Mûö œÕ¯Ò%)¬MÎtûJüÖiZoêØ×Np«0w Wá?€]¥&‚L¥» 6ú*:BÉ÷úÚ ˆÕÞöo?=íÚÆOΠT«àTáfšîõõ»¦{õŠêǵýaäpŽ…=4á«7n’´kAþ.ýºJ9)À_5z»`]J†FŠÉÐŽ¥dhÇB2´Bhð)¥L«ˆ"[7ŠXÁ`¬v‚Á²”~íPJ¿VªxT-}e´.$i;#’´0dV;”2«X|Ðh¨v Ñ)k ,©Ü¥T.R¹XV“´]•’´P’´8cHÒV mfdM¿Âq5ýÚù”~ÅÚ‘XåKb©)S˜VÒHñH¬Â#µ%¼H{Ò`,¤_aZé\ã-LŽ–‡gmpcm%G mµÅÎ2¹B&—bír#/|/v9Zø@äh}ñ¯9Zê~mu££Ñ^7’B¾G£Ýnìç“ÆXÍ ó,&+ ŸÔF5¾ï–N5²›¶ªÑ„H0Óê×f5 ih(¢íj¤ù&«yú“¬†Ñ·c–Õ3-psÛ×[{Öø\¯Mkti ¥Å#Í{8fH¥qŸI ã(")ŒýiïïõÚ¼Fëj÷š73þê#Õ#G‹Ín·­™\~ãÚ/Fobä{qɶ­Œ< ²Â|¢&+Ì()Ya˜*²Â¼’ðÅE…„o5¡ô+ÇZ° EøÿFþçñKÊã'[X©‘=>/?L'B™J+¡B[±x´~úºhñÏ Æ¡Æö €Å„×ùóáë){þ†›iÂ6‰‘TÀ`]ƒƒþuþGZêßÏSX×ËöF•àip‹lǺ&¸pîõm;–z¼l”:~]åñoTŸV0BŸ(âtP"ŽÄǿ԰?íeþltÚª^HRHÝf–sgîOশˆµ% ¤<`üÖõzßöc u mý <áÚ^‹GWMض0r7ÿ ~Ø÷m#kõù¤Ò±þ?ð\>ž M_díÕ¢óS€¨ÿ1Ÿ©Óõ­êÛ¯Æõ ¤Æ¯á#ëùv«gRþ%tß~ D!…v,ò»Å‘Ê ®½V´=—yy^Ïo­fóå4 À{¿õq„\×Ó¥ŸNb!¢úÀöR±âÇ‹äö‹œDŠoÙC› h]3_ú:û?üy¾¦ü8¿»ð^§ë°ùï’×5¯ÝRt~®è‘ð|î/õbD­ˆ¥«Šžç9ßHŽ^öüã z> Àþ1š“\Ûz?aa©¾0,©7çvìÍÇ›qŒp~>oo®MáM!õñ8ÎÎãÍ=>-:«ÿu¾^¸edVŸãÃ^;tÿ.Ö“Ôå8`ã±?†§I~öZüåÍ‘VÛϸö}ÑïcþÎ5î§Û^ó@®Ê‚I•RŸ³øçô|ç»°n>Ò?ßxå¶‘‘n³9Ãçõôf¬ñp»ŽLæ›× «*tU¶™Œ¤ÒMFΨíd¤øùSËooôp:JOGÙÑŸuä­£ïÍÃúv$)aÊþ‚îVNk*óµ‹çonkíõL¹Ï§üþºîÖ·ùÚëF«o#гe¼÷¯­Bj¯GÎü<œÚý Z\Ò%HÝnÇoŸ*ŒJ]‡uÝ›ú_ͤ®#+:jÞ.;©ñóã鋢埋ÀX`±úr3a(D¹•B”«µÏ–Ëýúäj¤†¯º~Án§7(–'|a;˜b¨• ª"à<ÆÂ_Óø%æú‹Ö ;S $iê°öu~n•®ÑZ_CD(á|ü´x¹ÿ~šÿ©D–Ó*É­ke@‚RѰTæÜ3^nÇoóƒtvïCÎ#û=SŸÛ#­(‚åVîárxï—nþüzŒ§l¯èœ2’ØœÖ5‘Ì)'.§ЍœV!19­K‘6®ŸvJK©y­Õâ[û)kní§¤Zû)oÓªN©«U:û­êÔ}0ë†f%ïe¿zÔ~îOìx_¿1Áëø}ð(³zëmÖ2RMØ2RIµŒTæÜ2R;ÔµŒT–Ú2R͘2R->e¤:üó/³Xîý]‹MåºZlêKj)6•Í·ØT¶ØÔ~w-Õö¤@Ôb-ÕQl¨Æj»S;Ô¥ŒT·A DeZe£ÕX-Õ²Z ã:E3K´ÝDU‘êŠý<گ߾yA8VjMý†XkMuzZkª­n­©Íf­5ÕºZk*žž¨š°ÝN%Õn§o>ñWq«Ì¦Å­2Á·j]-n݆Š[}gL©Ëùf"ŸÔ²U?vײU¤Êu¥Û©¯²µjUѪUmc»j¬Y<÷ÚìÓ¿»v(Ý,j-’•ÔZ$ËÀàåÕþ6`Õ>_Wsû݈ã+Û§‘ÚtŸY¥Ü}¦36ÐÅŒìQ“±Ø£f•ršŒÅ5K=j"Ä5‘bšNxü€r”ƒí´ÅF6ÒVÙd,5²ÉªØÈ&C±‘M¤ØÈ&‹g#›®Kl2£ÙÔjÔÈ&C±‘MF6Jlz|ÔÈ&‹W#› ÅF6=‰jdÓe¡‘MVÅF6U–Ùô\¨‘Mw-jêÝТ&ó±EMW¥5:=mQS‡„55µ¨©JÕ¢¦I-jêÔ¢&c©E®‚´¨Ñ¶E?~¸\¯ßw°OÙH§mdÓÓ£5•R‹ý¶¨©ÿV‹šêë9ŸH/+ûÕܤ{­F6õjdÃ7DÙH÷mdÓ}T‹š µ¨‘o‹šŽ…5:‹mQ“ Ù¢F7YZÔt(5Ÿ‘¥¶ùLÇRó™~¢šÏT§h>£sÝæ35g F±,4ŸéCCÍgêÂÅãM-jt®Û¢¦‹Wó™¾›O³:qÖ ¾Q*šÏèJoó™25ŸÑ.¶­LgT[™>"îóüÌwÙ›êí(y¹ú7.‚Ígºj>ÓoTó™MȲ4Ÿé;VÍgz}ªùL}„šÏèYÙæ3 Ú|¦¦ªæ3râm>ÓËEÍg¢ 6ŸÑXÁ–>f…ËëØ¿þv¼6šˆ]…„íHŒ‡+tš…]Óã'Κmùbìºzé`’±M¨Þ÷‹¸Ó!bîHÍÀV…{B( MÈ€ ¡Ë}æ˜Æï÷ÍlÌööãŠÀÄHGáöTøö〉„Ðë!|¿EìÿÆR^ññ|¼¦;ÿw«ï"±½ ÃjM% Zg+hP¶Ô8­û¶ 1Ž‚´,¹âê± AYwóÉ]ÒÉ]Ó(M¿¹Ší±D¸j* PkjúÇò6{ÙŒ“·=L…úáãÕ… ê®ë'¡`ýdÞˆ“òub¤çDÍý½íÖô9B©y žÿÝm/…ø¸ñ3ÌíøÃy»½ }vg÷W*2 ñé·Í*ø·›bÚšeƒž.©¤;qQ½÷ „Ìõh·õñ|î ㊎tÙÃyëìøéüuï~þü¬Úéž3Ö¹¿ðØ_(³*õø­sïu›ÙÄ…roãy5ݶ'|Ô$žŽKî¾;M£ÝÕt©÷ímáØ¤Øc0§i»¦çÄg½þðØ^e>y9…>§×¼'¼üüÉþác»¿ –ꙂŸ”ÇõôRÓþÊ O]S ‘2‚d<¡Ë&>'Ðéè`·Qº˜âãÚÄtk)£ƒÚ}·&´0íºÕžFÖ”î4™ír?Î܈é·Çé9©â_ùøaJÏtè„ê]Y:ÓhÝ+¨µ³ŠÚ‘n³ÀàµîÏŸ6+=tí”ÚéГF¦»4S…gj/ULV´jG¿øsy{sئn @T¬©½hª´¢©PѪ´Ê¥+í-­cäÆÏ~£çÖç­ }ˆ /0»o½lé¼WÓÈYÍßýî·½—G'V¸ŠÂC±ntp‘.ÓÀ¥;W(&¦kãTÞ˜kßTøæÏã§ÈÇÞ^º<®¹—kÞºŠËøùh6uüØ_)ê¶ÒÓÔæ«ÔÒü„™´«j…ÐT¾2=Ué—VX'ðùŸ?PἊêĉ{¬mPa$“¶gž€ûö¹ F,½Q?fì1övo¸è”Ê#°¶aɺÑ&³¡½J… 4íÇ¡G*œWѨ›ëëok•~Ü#½O±î65åC/}U*T€(„Åõõ9ô|¼¼¶ÏJ H1[{ò ¤íJ§kR(¼ U^ƒ3ñóçgVy6)ÅÖµG)|åõ އÃNèxzŒgì~çÚº¥î6Ÿ•ƒì;wù÷¼]òr•rö2c1} )ä/».%0³.f0;ã  çÇcÿNtv]ª›Åº­V•­2¢RJ´‹Wº³‹W¾Š@³c)ãY)¥<+…œ',IÏîµ²ž°Á¦=a6ÍiVH ËΧŒeÕ ”%,9Kœ $-».e-+¥®,]—’›X—jj—¥¬$viI¨yIl6`,¤/a¨È_B už•R'¤çì1S³ß¨,¦¯5¹=Œ¿ó˜B"~™LR™°Áæ2±¬&3iÍÉfÂ97‰£ˆúMH¡2³*7ÊË3ÉQŒ…ì(n¤G1#ò£¸ ÅXÈâþAŠ”g1µ™¸‰'¶>™TØ R©PiR¨¾yRÞxI”bñÈ”âjAª”×ur¥øDäAáßÅë¦IN(YNH!͉e¡ú´JU¢sÿ‰¿3XR¾¦–\çîéü·D•g1)Qœ²æD»=JŠâ"F+Îò¢p–MŒò‘Ì(·:©QfÉâÝä(/©dGq-"=ª½^ò£Ž‘þó7A Ø )ö¹)Ò¿¿¥Íßhš"R¤BŠ4BH‘vI Î­ò¨XRò¨]ò¨¨)R¨²)RŒÔi…®_¾ñvÚk@yÔ® yÔN‡<*„šGµÂ—<*U°äQ»îùo¯ý0ÿsEã`^ªã­Ê5!ÛÙÅt͵vSšFåA¿??wBʵÒ,×\k—„\k…kítȵZás­\÷šk…Ðéà´¾þ4wÁl͵˜škÅém®µÓ5×Jó^r­ð^͵b²æZá,›k…é6׊é’FÅ·5 ¡¦Qi&kŠ”çrM‘bwËÕ 55EZ¡ìBI—ùÞ¹žßÙ[¤¸RLåõôÍl`O1²¿·ÇÏÏðø´fQ©î5‹Š#PÖ[¬©©V¬©©V¨©©Všî¼y_ï”í!^`ìÊí‡A~° Y¸¸Ç×IùŸ} ÖŒ,ÞŒ,•¹dd«¦æQésÖ<*õý“äØ;¸û‘FݸûÇÁ}þz9mu4R£×ÓÁCzÙ®¨ Yζ&d±ì&d±·Íµò ,¹V t9NÜéôÝq§ëFB#5!ËéÖ„ìæfú“FÅ’šF…¾Kê‹%5×ÊÇàšk…Ps­J®/ÝæZ¡¥ùKÛ€]Þöën®•>`͵Â4׊óÝ )®‹Óøµ~ðí^·2È¢òŽ[©·‡àv»—nŸ±¿Ò¨ ÷ÿܾ¥Rj бFÓµáwn×ïg\¥Ð C¡ –Õö¡š¯-c0zÆ`Yíƒ ÑëC¡ –…–¥˜\ µ¶i‘BÓüTkj÷S ÕΦþ¾µµ©6gBe^1ùùͲÚÜTæÞF4ª Gõí8ꓳ¶•T{ŽJªýDeXé~££Ú®£Ò{ÛŽb¬vÉñ¡MŽtÚΣÚÄ6ÊÑ&~¤¨E»àX]kϸ6û”Tº}êÛCµK§ÖÞv9ò’í—ƒ±Ð0G_Ø&œ¶ÓÙžæã§£«l¾½:1:ëH©iˆ#ßf7B·HµÝÝéŸÞ2ÚœvޱÚ×nœ:bmµ)£I«jí#›ig)´­aì¾×Þ0RD»rJïmË ©öå”ùµ‡Œüd›ÈØ–žòZé"ƒ‘Öî/§í_ôkÿ_‡k«OIýî1øæ®øiñæ2\‚n^ˆKGPL[‚îß=¿ûÉHëm(c§üy?~¡8½½PÖ¶ :c¬ñÛß~]¯Ÿ`Æ/ÿ{ƒhë«km*u¥5¨„Ò|ƷΤ=]Þ½0УRí?£=lP[üÚ T»ÓÎ1¶‡µuŒŽk{Ç8²XúÂøÝ³ô|ÑF·K¨\÷õ ¼zþdü†_{Ã8X[šÃ¬Ð¯È6`ÏH!ЬÐuürq?^!ÿžcª1$ÆB^R˜â‹0í²ij(ÀG#¥xTc@Úu!…"ÚZC­A+Ö$©º"Hù}+„”®yMH iб­=É–ÿ¤9ÿY)Á6ýs‰ž0ÀMlt1|¢ðXž8Ô yl+2³‡q†6³ËB+Q̈ˆGÖ g•*'„&¤ÑìêdÙº‚ÒìX ²ð‰‚iV ™J¹y 9»è+б’Ñ”6ú“q5ñ)ãjëPŒ…Ü§Ü ¤Ð0¤8@ mšv,„’²ˆæReÎÀ­â\Å‘m”(ÇÛ§c0§8þÂó&˜´"Æ|¿¡©¼Ñצ¤òáÅâø$2…F™ÚƒÃÊ+v :­öŸË_³ô&ÕqBÆô)¤šî”°¥+àR|"€£Pi‚I¦3µ,`GùÆ x´ËB ©Šš@TH‰Š³ ”)̦ùQ)N+0¤¸ ’ØÔöŠ3ÝðÕWâšu¸²¹úÂv?õËs …õFjÿSljkøºàŒJ­”P© xSÍX¼)fÞ”3Iʱ‚Õ7#*©`D%TŒ¨¤Ê›+uIªO,’RJíaÆâM5cñ¦’*ÞTRÁ›Òƒ7•Ôñ3Ì\ü¿ÛvST*-uE¥J§a㥮ÐUÚÃeáãÕšŠ\•B‹\å¹rUk/rUë*rUÊj’Bƒçä~ 6ž{û+¼U:-y/?1 X:ˆ•¾—öþ^i«PYîb@°” ¼Uë*ó®QH*±rïJ¨¸U-¾¸UŸàVß×Ü*…‚[å·*Cm>N[p+-p·ÒɯˆT Eº¹8)Ç Š”>>(RÞÁ‡r]Á‡ò¾>”7çŠüäe¢]nOŸ¼¡Â¢«‹¥RW|èæZYð¡tóÁ‡Òº¹8|(MÈt©ˆ Hé’‚"åqDkã9»¿a˺K“X©T}©” "usg,Ì»ÚÆ"Rߩ둺»3þókº9± Š”gqE‘J¥E‘JáÖåQ ˆTDÊÝ ˆ” ˆtG- R‘n.ƒDʇç×Möò'÷7QM ¦¾þ@My*V¨)]î 5¥1j*Îó!õ/eúp0Ö4Bš®BʽVèåýfò<«/¡ËW=ô€\ž·Ó ¶!ÁVûu…­vI³Òår¿þ ^:P«Y‘P«I€ÔŒÔ„kԔ߿¢H+TiViW©¾?(ÒŽ€¨,7àÏZ.ÀŸÚÝ€?c&ç£Øåþ ÷¡ÀÆtûù Á*ø›‹å’‚ë¬p ¸În/p MÙÒ ÙìÉd³“²u# o\g-¸ÎŒ„ô+^ðgµðg>îȽléö{“-üYÇÔœ*LàÏêàÏ, UÜAˆFä ®:TèþþŒ´vÒd*®KàHåt‚#­–€#ÕÎGš…ÎÆ¾ç‘ Ùï.°¦]7°¦:AˆÊŸ!!?u þÔ—t&¯Ë5›‰Ã{;Ò6¯WÑ}kMbwÚ¬y´Ùûœ¥!£®eë,›£Ä­óœéßåÝ\vП=M@vIÿÎïìO¢:+B´{;Ÿ9GAßÖ{ FZ! Dû¼-›‡ì>nÔŒ‘.£~FÚ=B´ëBT½ Dûq§ãF9:ïv÷:“®×£ûän:`M+T¬iµ©Þ9‘êèFZi4 i=óÁbx9~óÙ])Åšv{5Õm¬éî8ýÁšê<­™ÖíÓú7¯ï_¯·‰+õZÍasÓO½P¤XÜ[)D˜•Rˆ‰±TÜÕFŠ¡T' uµNkO,ª‘P&\)š˜PÀýBû׺]Hµn·BªÛå¦n—fº†‰2@TäRó©È­N)´î_‰ןb莅€r£‰¥ºC¡nŸØ˜R¢nŸxÜÝã$>·3žGRp²„ÞÞm#z³ÀÙüë¦þƒ7µ ®…  GèT%À0g÷vÆËíhûüŠxo{O©`h«\ Ô ÃC4 •æ?¦;žr?–À˜¶æTW*®” …q P¸šP¡0.© W‘-æS91¶åÄ0T”w,•Ó£®1°®ÎbN¥yÓ"RNŒ#;ï>@6{ïÜZÆ…šcžë5^¶¯\fH©š˜G6ÕÄj 0ïô”ÃÝ4jö²Öj[zðŸWævŸGhõöbQt­MLxm7²Öãêl€­D¥0&Lôlƒ_ûÔ`˰Ps )ÔãyÚèXzÃãÝ…þ·[ ÜjŽqsvê÷ijŽñ‰‘µ‰ ’5cˉ¡ óY–®5<‡i[ØÐUwAˉyÙ¥xkÍ¿S›sj€·Ïù·¡©€® ýæJª”ª{1Öç¿BŒÉe²“* „@p)ð iÂÐi¨ÒA¨Ö„%òâW2!)"dBXVK޵ÓaÂH¨K†ê’1áW)ç ÜN(Š# UŠ#©½G6ø•âHR­ƒ–T)Žð‰`/ÒF—½c•½H§µuÐRWÙ‹´?e/ÒX_4-¿jа.T^Ël·ž~‚NYDù’ ÕÒkÄq\ï/û9½±ùÔ^{«Wæ%¯}e^’T˜—*¤2nmbù™dÍÏqÏ*ÙÏ7Û“m­ýsÜ*/Ç|ýγH[åzÂX(öÆö Œ[ë*ד¼|ʸ¥­R=Éä[ì­‹óc^+/ Ü1#ʸõ‰)І ´}sþa„Ò÷}ÎjÏ×{ò²€ÊNäó/Rç?úE%%´†[ö7¯OßUtZ|Yœ¤«²8I]©×MP~&oÎÂÏd8NÅíWå¤V‚&¹Û¯úúÇßlM™—$æ%ù?„,ÛÛ°5×›Wéó/õ’ýÚJ½´Kþ¦^ÒAm ´´^‚&ß(+õ’,¹%Ð:õ-Ös¥MÖ×ʽd'¹V7K«ah’Pš|£|~Q°¼‰SŽ,È|‡ì-uÒÚÄ24ùd¬ MPVK }³®Mzì·ÖX‡ºUÄò¥­"–=”¢É1OÈ—þþ&6¿ü½•BêµRJ½b,ÑüFJ4¿YÜJ)‹‹±ÅÅâAŒ “zÅŠå·C‰å·koRC… ¸kzÌ$ÏyìwFô½ªô½ç.,á ©º¿‚ÈoÂÂn paì`ÀÅÒÁ€Û±À€[!±ÖvgåÅXÈòj—›å•âÁ“Ë^C:Í6](uÂóÎ#ÑqÝ®^<¹PDsÁB.XÎ]¸¿&ƒµø†k²APóVJ¤»ëyülÿrÞo¤DºÛmDþYZé.Vßü³t_j^=gíÉê›lfYÛØÌ²\<È€a„ ÆŒ%®÷FbŸˆ”±ŽìJ,ŒKsÍ*CYe,IÅ8 (†ù5«ì½ û0ö¼Â8Íñjõà†ÚÁ+L}-ùb¨ùbLøœ¢¯ãùºw5"¦É¬äÃômÃúB|Ý)ökeMC éb½ÚZA-“o’WšO’WBIòêJl’×: 1ï‹°cYIKñÍòÊã‚Z÷9¨…ñn–W—J³¼Úê&p}q†7ëjjVª|ñb](¡ú&pu`A/ Ñ|ªM"ÄÁôókBÕ^ð+.xs2OõCp¥†oq0£‡%v]¹Ì©©Ij1“õ—ï¦à’ §’f,§R¥Ä©¤¿ë°ˆÇãíêü$©×ãíãKƒ[©/êóåã»&‹ëz'hT¨îÇ:êiÏ—ïÇ›„Žâ¯—9—Zr¨ÃTÀN¨ôL’ºM¶‘ó0ÅÓ›e…x‰c=ç¯ßC[oy¿óùù ²–NÇïŽC¥§ï>ë*Y’Œë㨕wÌí¡®”J´­•-I#3?î²ÏÏwÆ<~Îæeˆ×í„ UâÚOÇ^>þÕ¸ÒLC—Äí ]Òf]ó!ûñN]Ïó|yŸáÛç^êe‚÷aó?Uµ\}˜(5_yƒ&ð±z|݋ߵ·ZV™èQÆ»ËÈé¼ÓÃøaþ2vqÿ…/=Ü.Gfï´?×£hóñ<}wP—ÔmÎ8Xk{þ<.ÏA×÷ÜÛM©—è"n³”j°­ì-u”¨Ì³xúnq¿¹€þ²*½9±÷oV¥RgAÏˬ÷‚{‰RÏù‚QÉ}ï_þmXÄ$²ÝUò%šóJ¾´±ùÛ¸¯ß½4áÇa7ã·Ýó^§ƒ¶bz’绫ü;~šz}êuÿ‰#cr9NÿÞPK÷D©çêþrto\)š6Žd„x#­³÷‚ÇoMó÷áË›³x›WÙãLO_y>~Ûùyîòº^9¡xÈ Å×ÔÊ’í5¶§Í·9íßI¿)š6×õBÑÄSv;Þ»Ÿo)šèºBÑÄuÝglsÿ©p§îWò%¾5îó,Î'ЧŠ&J…¢‰Ÿx;RH¯+ïG-ù-uVŸ½.³Ï7–ú¸ÍwÍë0~óßìŸá/c<¿ñJÇdp:_o·Rç#)p¾üû%oc„óçþàXšxþW–¦Íݲ°4Ñn>'žîòº[î{,—Ó&~[¸œ6·ÆÂÒD/ñœY¢á–Þ]Å×?üK»˜åÿÝÛʿė`ù—–_¢þ·Á¾FŠØ×HûZ)a_#EìkÇöµ«öµC û uûеûŠ‘€}­”°¯PØ×~!°¯*Ío¬ƒ[)!_ù}A¾ÒHƒ|…ùùJ½ùZ5ùZÃò*òÕšX¯ ÈW|"¯˜ÈW|"¯•òµ3ù Wä+>±È×%äku*ä+ÌÈ×Î(äk UÈWh«ÈWèÈWø _¡y _a@¾Òšƒ|­"„|­”¯¸ €|­&„|Åäke„|í|B¾b«|…¡ùÚ±„|¥G ò'¯Ð<¯´ˆ _qd|¥VWä+Œ ÈWžë _é+ƒ|­”¯<²A¾BªÈWÞèA¾ÂÝùÊe­ÈWzðù {hRT; |,6±ÈWº‘ùŠ«ÈW| ¯˜°ÈWüŠ|Åù ÃòR@¾âq ä+.t _7ú_ä+ÌÈWÜœ@¾òéä+>ÈWl"¯˜±ÈWèÈW>Ë‚|å9 òÈWÜE¾ò² òukͯ4ç _·ÏùßÈW¼3š©]P#S äk¤Øý¦c ‹…Të‡%Lk…ÔÕFC­ )ÔÎB¢Jñ¢b$Q! *&,.:˜ðyJzSŸßˆO(½v¤øâUm¦+^URÅ«JªxU¬¾½vdñŘê‹1•TÑ£VýŠÕ^= )TÃ$ÚÝG&\¨ç[Ÿ˜{4V*±‡À…ÊA´½¬¦¸Ðý!û… …°œX÷hYGÊóãþ}Ea{€ …TŸš°ˆO õ¸Žëhþvº÷Â…êÂ(.T{]\¨×µâB¥ˆàB!\(–…Æ=û3ö“<¦ŠÅP#…yûÊ­¼Ñ|ð£o<Ò/ü¨ÖÞNARiQ¦ò§ç#«õ¼ÿwôE•ƒhá¯Ù̙ΔÜþa£^A’j H¡¿nŸvîÁ7iª=Ý}ä“£Ý\œ¿0j» Ñ·3¶o–ÕŽ<›§âZ•=´ZWþ¡pT}b;òøº[ᨲæÂQål GźڑNJXѨvÍ+Õ7ÙŠ!Õ¥xŸ…WÏçõÒTn>HS½<ïó$þÎÜ錥#ÝéÚ‘ÇØ´ ´êPkm£À  U9ÝÂQe5éX#7’Ž5RV3¦ÚÂv¬‘™$»º–M q¤˜b,Kª…ÆX ».kÆ–k¬„¹ÒD©›$•VBM%ÕØTêBu0>±¥ÆBu0Æj[VIµ-«¤*Ò*Jªá,•ƲÁÔwÂrÑSh¬^C@­ ÄPhã6Z|â6­uÆXêŒ1cC2)¢Á×Õ b×5$£Ñ$ŒÒ'¢‚X[ݲ_mP‚-J¥ã*¹%ÄøÆn ÅÁRêÞI¨á>±áÝîfY*ˆ÷çõW±„Z¬/L´E‹hÕ¯ 5U¿ZÖÇøþ×P§ÿn½¼Jƒåå×î­jD¶¹9×r^•¸WAº·òZItÇuµ4X×Jb@^©ÔÕØJ]9ÔVêjÿÊm¯»ð Q©k¸¹}Ö¢_->±"ý|Kƒ}¿®¥ÁrI‰5#Jƒå¸Z,Ÿ”(›Ò`)µE¿’jѯïŸ%VÔµ/ë;Eü* ÖºZô»¹þÄŠ›»toåY\cE)¾±¢´•(‡¬uÁ˜°uÁ¾Ñ׺`齿·ÖŠ_E N7÷ÊZ¬›,!¬ýߺ`ŠÔË™¦.XÛœ(—Æ×(÷¯»ÛäUW!¦U#„P²BJ½b¤æK»¦¦8+ƒäe…»¬š•ìHHJöã“ìt +ôxÕŸÏÛm¿uˆ!ÔL#l ‰Fj`Í öãšÎë·%ÞÓÆ%ã×¹Êëç#I£lŽ®Ën¨‡5}œ?|þ”ö  C×5!AW5!óV¡&Þ*ƒŒZ?®1žv÷zìîíû‡pxŠæÜ0PbEmoór8LŠ:Ó1·í‰k (¡@M¥ïä÷*ƒô^?Ù=8ùI™5Ë–.Ûu7DÜŸÝ_iBì\³„IBº“%GHX­Zv3„Ø“&á“ÄÙmz%¡¯Ö½µrM âÖYCZÈ ÇÈ£»´©yHÜL g!„\%®¯¦*»)ÉTòä.ðU½’ÍÄõ`WJ3ž0·’æv:ä;y£.1¬ÖÔtg§k«Ë¢iL,¼YÌ.¼©Íò:k¸Þ8]%:áu›çÄ'ÍY]6Ú|óq¿J®øXsœ¸å’–¤– ª]ÅšºÄ‘Kæ’.~M\VÝÍHâÁ´™¾–SÚNˆéˆhM"²hö“¯øóÐäËZ>¶·<2¤Ú¸?Ñ¥æJ ®+TlZ¨°µD–«ÙdF+Er%H\©3Š\i•2¹fmR¥D›T)"a]ÍŸâEcT)u] µ®&5Tù‰ ÓƒÙf@oŸû½‹öºüD˜°üDX:˜‡:Ÿ˜‡°‡ÍÊÀ<ÔŘÆa{³vñ!Ñs…騟ˆÜ¨u¨Žp2þÉï?œiYOÍB$ÜwÍzÚW®´I°­ÏÙåòòñÖ‘„6  ‘à!@ˆ„[ „HøÂ¦Y1£h“:cÓ¬ZV¨ºÁ­ÄãDo –™w/0áTƒ€ z¬L<K4ËÕƒ¦ Qš&L&H€iÿ‰¿©•ðœµfµÒî©þ—Z‰÷Ïš•G_»!`µo©•x-†Z { j%l¨•½…Z‰qÆân.Ï0ij%LWj%8ÊR+Á@­ô©þ¿ÿ­m"Dú¥Œ$ö¥UˆäK÷Ò*Dꥌ$æ¥,ÄKH¼KUSi—ºì².u.EHœK™M”Kù60.e .ñãW¾¥‰nIÖ¥h”¤È°(åÓD¢‡R• %íÛÊ Ô@ ÔRg}R?ìIyR¦wRý¨“ê–Ú´¥BbNŠ.EœT»oR¦mRìR¬IUSI“º½àLÊ’ÐøN¼JÝÐ*ÕPÀª$©RÔ$¶¤,\4H½,‚‘ e2q uã@T‹RF’Z…ÐÂ…‡7äHr„áFЍ‘t0ÃŒT¡#éÞ /Rý h‘ävW£ZøŽº¹ ;ê‰k£ìnÙŽzÍì¨ß®£ÎVª#Y÷ÊtÔ-ÑQ­ê[ ÌGÃI½7Ú¸>¿6åó¨4xüšmº}ÌåòyùézX!… «Ð8*Ïñ‡ëOL%)’ëlä2ÙWëìÏÛ¯ÇPf»Î–‰/C8ÿìIgC¼WUž‡ñ_>Çpûu_§Ü^ëþ~VeáãRºþgò×ìþrr#mu/ÌÝH·Ã]λíF1ßå«´ã¹ß^DúºÙüöÝ.µëžÿöZÑO½Ž#:ß ôñ9iŽNÃnUyø¶YÉù¹³¸Ç>.G!Åi·½ÿ¬éôñëÕ¡Ûì£:Ëß”Dϲ¸Æ™ír?Îå@ñnÜs^‚¯¿|ü\™î_½?ïÏŸÀ˜»²ÆZ÷x Ý¯Ïï6·Ý¹ñÌWïí§* ³!0®1}ÎÜç+î¹í¬r¾_ó4 nŽÀXæ½²×{}ŒGçËéüÔïa²y¼üÉ}o•3«3ÎîíÍ!`\ÜéÍöÛÍVhV«ü!~«Á=fØð:/½;V9ÊàSÔ;{Kœ*/0 V>_ÚÚú%’úö€Ïßé^frÞ«iü¨9ã·n”×n?¿ûèãÊUßç9>^Gî±µ¸û,Íž8ïÖ=®¹é?ÎûKuäA&Àc¿)/ wÓËWnÏîeTòÇôøØÞŒÒjÞGÉÈ(‡~n=B¹nî¼$fYôeëâ?pÁéeSÝl×0]Ã~ßfÞâu˜žß…Ü’Û±#û µlºõ8³xb—[·4\û<ìvÿ‚¹OR )tßÞL ÷z~Ì<×0€­uß¾Ocº‘ƒßú®ñ+ÆeuïÓ9æãNó¸y_÷³!(¬Ðå+ÚysŸ\F•ûå¸t¶7“â½®{þz<_è[[º!†¸žÞ)ÞÓºŸÃ¼û³û9`xü$%TÊÛ|ÜØÝû×£j«¥×ÎÍ_Xîç7v¢˜PÇ)1a§»Ű£úÖU\¿Ôô òWqžø©Ïëù»p[7ù±æ}ë¾/§ëñØ?®ûÐñ`Ïý¦4p\eÀ9$_y›/ÆÁ†öï¡·ÔN¸ü¶R†vFŠØÎH܉±€îìºï¬ð•À³‹/9-t*h'4c¾YmšÙ¡ZW»YVÀ™ÐC‰[¡`8±¬‚8±;Eqv:Á8«+á8arvF4;–˜ýD!0+fUšÚ[$ f¿PHMìa¡š8øÀjÒJÖÄ&­‰Ã¸f¥„ׄ›Øž"6»x¡1á™Ç„º€ÇÜÄ߀Lì™JLz‘“É­(k*Š,÷Xq™Õƒ€™8@fâ$®ÁüÂâ7áDàäuñ·Ô—¦œR_.=E¼Z–à ôÁƒb,B+%°'nD =»Õ…{òàï‰;¿€Ï ñ‰«O˜20ŸQ ÏÎX’[ßÓ¿ªãv ö‰±Öº[^P‡â í„‚‡ÒLƒ…A¤¢V«BQˆè~ñ¿áŸp[ÀâáVŽ[»À•ãVêJÝíF©“Ö…'Å©~PÊ*ˆÒî ¥xßSÊk, Rl"P¥ Ç+ED\)l ÀR\œ@–b¬Gá‹Åî:Š÷X‰‡Ó¸|Ìs÷¿£vk4µ ÏÓFê ì(¥‚Ōףàd¼n¥^WçÑìàöxüÜÕk\s³ëñçÏm€uaªuÈy”^öš(R_.|vcþ÷;¤ŽúÓóåu$÷BÇÅr¾\’6]üèV3<ýä@5ácTè\޾Û¡Îó•~¿ýdËe73asióÛ~ñ·ùà<O;©ËiTªxû9üÝžñV™fóñvÂçšÌ6Ø[m}ܾŠÕ^~~ÿ…§ã÷ËóçPw¤Ï£j{ìän¤—5Ìßô^–õë¼v¨Ã×Ìܪáå >Æž•RÃH ì¥ÁÅ £ê¶=®Ã¹ŸFyÔÇÏÏ XÖ(äRŸŸ?ªô¨E|Íí»”«/L˜¶|:VùøN ÊLÏG×ÌÇó箆=|ÎÆD£~io4× ¼2—½ý]¾ê7?~ý^µ‚Cê±7À—ægzü­s{žgYêydö>÷Úúúáêò« XN7°d­ë2Ç8"ã7îôxK½ôõñó»öçvO¿q3|ËC½Qýˆ@†wa컞õB§ûþ §N‡ ¼\¯?DüÂË:ïuZX2×õœ ×Fý<4p–Lwó1‹çƉ}n=×pó£ë¶½.^xžË×Ûi¿9çñcûóx@lÛK£ÏéÜFIîýÍi= Ot€™ó~£¿bïóXÝÚr6€PÀ¿´¿ùSõq¨÷w~q½£ù˜wÁçw²Wc=Ž’½ËóÍ{k kG5Ü8úo?Ï)tùË­Ÿ`W63랎rÂí5}\À¯çÃÞy_^Ÿ?/¨‘]|ã´Ç7!AûÙó£L@į’KÙòÇÌV:ǽ™‰K÷}šoÓ¡÷7¯Îb^ß¼¶nÃÞŸ c¹=ù&»>Îû'ÒëÚ¿O›ŸO¤ýñ)P•RªÒÞ¸ÝËé¾sH—Q=}¿^÷&ÿ:n•‘Þ}s òʵ#ô®¶ŽŸ_®Û;=̺‰ >ÿ½÷·‚Yé*?2ÛwžkÏo–õzŒM0黵 Ÿ‹¡ŠÏÅ¢üCµ°WºšD ‰}ÝZé°åñ³åóþóSª¤fåÇ|ÀþËbJêüó8}ÿH¤uMtÞkõ÷ïßÊu.N㜾ØŸl˜öðp€·#ÝÕŠc-kþž1_]Ï­æÏ¯wþäMÿEo«±&ÿÁk¬Ÿ +Ìpf™Má̲ˆéÎç›ÕŸ^JáØõûwlŸžqÆî/û9m÷¨goâZ—ìµB³q›}ì õåšÇ¾,ñ´ßi”%ËNŸãRqàçÅçõu@Nû¡n³Üðå¯ß  é¡Ç sµøã§ÅçkÌë~{€ØÖêŸÇá—Ðvõ§Ö0õØ»æÑÁþz>`1{³A]òÿÏØ½d¹ŽëÚ­¿Vœä°-K–•ý¯>‘tøƒ5©¼Åƒ„@à2~òvY ó‡ QeÕ3ˆ0¨Ö.ê'³Wœg²ÅÞ®ÅãñicgóPê”O,Íñ@¸L©T,ýËâb1¿Œ& £õÈTV—èz\.g;¾Úâ]š¶Î­÷½'¬­çÞ¼µœi?ó5 pv[[ð¥ýLtâ Z€âùr*sgWsvenk ¯½tCÏã5¶Î¯àH"k)¹ÏùÝB*®ô¥?©÷¯£^˳Ij¿\ÞÍæO»ïT\]ç,©•Ô3×ö¶wÞ=ÄsÓÐüN{z·_ÁOì-f®Ê‚dI­¬_vÖ£æÕ̺ÅÜæÊµõ_`s¼½Jl•ŸËxšîs?)Â"Šaû°Zé+ך•¾¶GµÒWÑýN×ú¹l׬ÅË÷ývbDPxk媹¿ºû¯Ÿ¤27¦ªpÕQgO%㙚Ø[Ò2&xT˜ö’TJÆZ@¥X yÂI¥Da¬…Lað•©ÂÚ0²wA„Ì\p•©¹Xªææ&Ém¥õþšnp›DJá…œ2‡Wj•pM\%\ÃZ × ($KC3ÙÔaG¤ûb-Œ’Ñ1gV0Ä$¦µ2çW¢ï!¨¥%Ø­S¾”« * ‹‘ ÉI0à Jê• T( ÔZ9|ÆZ_§Ï@öÈH–¼2%Y·1s’õ9¦zÔeé}€1å™ÀÌp–JäæL„–ªf&´vŒ,gH ÌøDd'ËÕôdÐ ?û!AY˜ÉÇÐ-d[ð5³X‚Ï„`ÝŸ$# —0Ñ’(ÙÅ*Ò‹±aNœñM¬IÈrS‰K±r•mé+äô ¢f"ëîgš±ÞH™¬S̉1ÒùÌ"ÖE±ˆb° dŠ*Š¥5™Ql?\È€/ä‹ûL*ÖYç uæK»2iX†$a§,WŽˆ‘uŽäb;–š8l³[2‡­Î5uØïÊ’;,gÉÃF#ÿ M‘>\aê¿_!øT «æZ «æZ «æZ«&‘¦X*¦X Ó¤J°¨ýU%ïUņUÅfT5ˆUÍ¥UÍ¥ÐÏK!ª Y!ªJ%¨*¨U¢ªà QÕTåÄòº;½â z͵zï½æR ½b-„^©z…n!ô µAè•·'¢ªÐùŒªBò åÍVDUA•QUHQUè)¢ªÓûúUWˆªBOU͵Uóˆªæñ(ª ¾ò}#b¯¼°õgq-Ž1c¯ J¸/ljm®ˆnGöVÅv«R¢VåÕ¯aÕ¹ù«Bµ0Å&ó«BV«&U‚\Yf„Uy85¬ÊëaUZÀ«‚÷g «&I†Ué¦#¬j§Yª¸Î«ÒKGX5•OaU?%ŸïØÎ<ª¹£Âª:ª4¸V¥ã‰°*îªɽª°Y«Âm"¬j]®aU„UqBVQ†UéÄ"¬šrî–Fð•¶-‚¯ÐˆÄÝÒ.„hye#D›’Gˆ–Š!Z5ªpb‰p {*Â-íÌ&í~ƒŠ|±ùæZjä+¾²‘/øB#_¬…F¾I¥F¾ ÊF¾ j¿í·º_ßsî@…v¿ù‰Âçb+ÚýBZ÷>ÊæÖúþ=Z&ŠÇZK«œèM¼–éRJïè ¶ ƒ+tÕcŒ}ìZ3)ú c­ì/ ÞL!­¦Ø/»K•³ 1–BbQbÕ;}Îy_ÙÑXw:{ËŠd¯blˆ^Å`9Á°"èU¬‹˜½Š%®„¯Ò­èU,Ó½ŠÁzK¦Ù«XÒJŒ+9d¯b_ýÚ«X~%{ƒ/„Ú¥ÎÙ«Xç¸T&0{ã³W±Oºö*¶Lk¯baíUìkÝnÆá`߈Lž3;‹ûìh,w—eº.ÑÑØ>ê Ë_$ô–2GßcÉ=;ÛÙÕŽÆ6͵£±4>:‹(;KK³£1ØBGc«Víh¬µ²£±qˆzËågbñ”ý…e&;R^ÚxÊ©<>þÚÑwë4wêU,ýK$¯“ŽRiJâ§±ê<ï¾1ºT>»ëx£Ë¡gb™šì,(ð«Î';멘=uÇF׺e¿˜ouÕ2^R‡w9Ñ®5û Ko²¿°z…¦2ßÙ9؆«vö#¶vÖ«!Úß¹ÏÿŽŽþ{Ìþ9ª†@î×1•öß”Tè1œT-{¡zoIŽÛ|©hÖ‹•^Å&×í+a _¸Œ‘Ñí¶Ý¦®¯BüíöÉ0Î[ƒ‘6SwYÎv¼ÞÇxÞöËûuºãHAé2ݦkuA´Ÿ=¯ŸÎ€Ø±·õ=–ú8kmˆäà\ê0õ-„y#Òg‚½åzØà:?Å[O×îIñ·© þcŸú<åë¾u\×#§Xû'•"ŠØðþ:ßšT͵ùÙSƒæ/ŸÌj×òÛl)9Ÿ˜½~¥ý§“ã/×OR)®FÏ¥èSÉos¾_}xùñ^_N¤¥ œ>qmm%Z”mzˆkû¢ýlø5)T1ûº}ZQKO‘¨‹/l½¼úlÌëtCu†Öì=µñÐüý“µHÝj¿¨·ë\Xh ì[ÝZÎ]yÌÍHs{Ÿ+¾œ|b{äö4ŽÇvfPÑh 8 ¸ï×ç¸cÛ‰Ê3#–¢ýt°íŸÞjí£+åêÅ¥]¨Ë\×ç0•—å䙡 ¾^õrf“Ú/ýM»ö½9Žq¸²Ã®SAÜ[° ýeÿ$ê&Wʈåͨí{¡ˆ{yçÈßeŽ1ô¦‡î;Ș»¨öƒM,ãô÷gÛŸ¢'¬5^\ͳŸø‚ñNßÛ¸‰¹aÞz“¸–ˆñnÁþk¦&6©`A¥!9A«¥rÚL®«¥0KrH˜‹µsÁ`.vÌÅŽ€¹q˜‹æjCŒ±É¥s!À\í˜0w~Øß0T s­§1‡z#orCÀ\PæbÇ–ïßôùñüŒÆ¡0læc8¨0øb¨ ”+!³®YBfì˜`XÌÌÅ~€¹ Ì•žbFx˜+Þ1$'µ0׺U`®•&&àðVW˜«›˜0Wf>a®¤…y2ÉWXù( ”áݯÖâŠA0Xké1ùý~'ÚH¹æêæZc /l…¹2ÎseÞæj©€¹²nRÛSj ‡°>Ÿ:ÌÚœ(T@¹8ÄV¥¹h0ÝPØb(PØf²N½úaì ˜ÂÜ؇€Â²Z?/Ñ)ï}wž(Wê—(Wú—(×7¿ \-…I: Â(dXxæ°0ŽXXl%ö‹2¦àùŠ…µÖµ+×þUίÁ£9ñ«¤…17|ýTüê›Xñ« RâWûÄŠ_eE¿ÊÝåœuâWݟįó›ñ_µVà×ùü ¿Êä~í¸«×”¶0ðÿ&³s‚HCq*‘’y±Ræò‚§LåÅJçHMo(cºRfò‚ñÌ«fæðëZãýónÀJ‘z ¾1 '‰2ñ,í{<·m~¾È••˜bÀ N.2WÅROyl“í¶ÉÁ)mUj9ÒÛoÏ©”"i aàN.”óvÀQŒÛÉu0"ê–³or¥qãz Ç:½à™;ªo‹tO]𜎃kÙ+Ŷ6?‚ɢƘì–Szæ| ÖÁñFÚ¬´i’>¹¢â)'ôPLuö x—ÿ9º2(9S‡ÏÏ’¡+ûÃrèSê¬oäÝêèržVêõ^ÇùÞN¬|û®ûçë æËé6x6Çp\̶©÷p†0ƒŠT9w;bî*ÖÂDUí˜UA%X›| ׂ/[|c-dQ–¨r©Z|*"!Ò¤$[9œUÒ–LiL&‘ðäú/WʺE²žU±–à"xºEªVÎJ•àsV*¨>Á€e¥2²¤r•jC~cNgUÂT h²%x +Xë'Ò*‚TA L0ˆ‰›Œ *€LAHPåœW™àLhjTÎ\KEšÓÛÿ 5)ú€‘4¨#A I+ :”¥O˜È›ð·? I¥„«À ‚HdFoÐ *l†µr¬¨rÒ«RzV9ò¨õxcëÁ·ìÁõÇhY]Ø-+98Â}æ8X{âÀ޳7×ßDÆ“wåçi;½°@ôýuЫT “ê(g ˜‰Jœ‰ 4A•ã`õ‰Qz&ˆoÔ El_€¤³ý/&…û”äë3°$u°T{ònäW‰¦tSL¡€¦<ÆÀ¦yuÖ«PâÊúßÏ|Ö °)v+!,•˜Ïú[cýïèaذb«,xN©ØH8×R#á jFæ9úª¾ûÖåRê#œl¡0ö»õ¿ô†äÓ 9Ä5ÙÊ98 zµ—]oŸ l¨öÆÉ|q#!ddì¶dd,Õ#í¿ÍÉy47†@³¹1ô*›'ÚC1 6—BÛbHm‹y%¢m1¨Ð¶Th[ ½Ê†Ä¸ƒhHŒÃACâ\ ‰!-4$Æñ !1ÖBCbèZ ã¨Ñj8©0å•2ѬÜ0šƒ*›CZh" ­Aáéíùn" ®ÐDr@á\KM„s-4E_hü A ¥oîˆÉBIÅѬ8 l g‘³y@¥Æ¿I•³ylä»Ãæ ‹=ºÏoëwã_(M42²¨ê4é̽GJÚ[åäEóÈ™;ÒRô#¦W©­“$.ô#Æé qRaÌ+TùÕÞæô"²k1•¦v-¦Ë~Äx¬ôü¯ÖRõDXÑ´¿nö:ãsïĶŠʶÅÐQ´-¦—޶Å~“Ö†Ä4¸1 ²B«ašåh5L÷­†q-Ðj×M„ñÈ@aJ"šÓ,Ga¨i6ÑM„éÄ¢‰0ÎÍz©¨Ñ¬2½ŽÚ˧išÏ:ºõâUƒªÄ)eþîtL¶Ñ¢;0Am›d¸V'Û”ÆÜ@šTmÜùÚJ¼®}à„êríõ‡´öO/ÎÜóo@•ˆTDØÄU¤åj)õÄM9´`PŸÅðø4„[‰þ´c¢?ìØæ: ÁŸb ?¬t8Õ[»ùËííz@…8Ø0‘$–ÂO³"ÛøË2?iô†ÜoZã+ÞUâM0ß*RûŒûõìoÏÆÏA½|z bÇÄ®X+R¬y]oã¨ÛOC¹¸pŠ*¡¤ÏºÎ¶‘Ú$àÔY'àUNisŒ¶ñ~oŠ*ð&N§®~mø<Ñ­Ä›ó;ö…7AŒ¶2x.aaÐŒäHR†r뱞f¾NÌVÂM©VIy•K ‡Ñù\š"ôšÆ¹iéˆÍC]/Ÿ»àk↓vßx›Ûï–W½¼†oL‰?Ö"P­:nO/-šõŠSÍo¢ÚUù£w.oõõ?='ЫäÐËàÿCò×e¨çãŸ)WBœúÂÄ’’V D¹¨ÆM?èmÎUÂ?¬´Žf —ã©øœïwæçmøà¹ÙºdÎ3–ÊÉ/’ifFk©¬³ÕÅX¢ÐÌg¥-–B*¶îX ‘![‘‹ ®‹-ae.¶4>³¬uÒuî íVû¢ýP»+®2ÇÚ÷¢fOËÔdö´¨"{Zª•U¾|æXË e¯ìCÖðb­ÌÄöî¿]&’¯ùÚ¾=5_Ûâ*s_x}2_[T™¯í»_«‚eš3«[òŠ2<ÆÌê–̬îÉó du[ö5a[瘩ØÒú,êµ ¯ ÛZ+R±}Íj*66D©­îFÌ‘ámŒŠ\m˜¹ßÖçZ“«µ2C\‚È qI>2ÄýÆ«âRúÌ·±,YÝziÄ€Zú¬òÕë-s¿}ûkî·vÌÜo}b&lëyý3üc*úH²öû ÖñŠ*SžõŠˆÉ5d+sžE•9ÏÒ›Ìy–è3›Y‡U¸â+sžõ98´Yc+‘™Ñ~}ÖÌh㟚-%ÌÌh›úšô,”IÏDN¸™¬U‹mËï9/¬^ë_ƒJAX¬EL ª¬’_¨’M¾öåŽ@ÎX+{(A†U„NE”QQQeTTâB,>1žZ °X+ã¢Êø£¨²y“t0"‹¢Êh 4B8:%·¹a©‰qÒ5b(žPp f0ŸmœÀ;ÊrÁÊr±#Ji!ˆŒ’/€AÜ× ¤ÒDœOŸˆRZ5ð(¢¤Šh •¨+¿1c†Z õ¯j,Š(#‹úÄŒ,ÎÚÙûÔZT}b62’ÏŠUû×ÀI0I?±—©IÊbTY›ˆò°£ÌTâä =K AJô‚<ÄW1ªøä²gù‰.Nnl‰.ò.Öè¢.JVDyÉ€·rìDµ¯P¹g©T­1Õ›?‚žQ+QõòŒÐ(=Y„Fí~«Zuw¢ªU&7ªZ¥ Ù™I*šÑÚ’Lÿï¤ö5¨Xûšk©ö5¨î¨}Í¥Tûšl¡öû¡ö5—Rík²…Ú×Üð0´}ÒBkÆ=¥b…l²¥ ÙÜñÖÓ-¾ÞÁ9QE-šu´à u´X u´ü¾¨£Åád-t4ëh¡î(‘Í¥P"‹D‰,oN”È‚ %² B‰,+KdqUQ" ¹£D6×B‰l*_ëÇÖõo}Ï×ñ Dǃ²Ö jN°•Z´@Ó:UÓ–HpéÅ€·÷t%‹+ª_ÉWT¿‚*«_!T¿æR¨kï¨X…•|Œ9—õSH›k©b_ˆŠUêi¯½|•0CçQךk©®5¨×}âÄ'HNÑg]+êZ“Ju­I…ºVÝߺV!êZy8Q× ã†ºV¨VÖµRTQ× ÍB]+ŠºVù¨X… P± ¹£b5©P± %ݳbÖ«T‡Z± Û–µ¨¹RÔ¢æ:íWÞ‘kt›_g¬ÒiFÁ*¨ö(X¥GiêÞZø9TµÒ±FU«_›µªj…ªV8§ˆ©ž¼´^•'>j_霢öWU­ýÒ/Åzh߉¡AQ+>1ËUA”åªÉÔÖ)‡±½ŸØ™\ïwb9qM¬i¥.GM+$ŠšVžaÔ´â"SÚÆP8iÔ´òÝSkZq„¨i…Q^Gèôù¹è7|T¾¬ÕÊ×2 ë_Ï[æ­&ÕÚæ*=Æ3äï=ªC¦=I·„î3ªûkP›pºÌw< ׳?|žo¨ ªý:2³îŸ }c ‚[ÝœÞëj¥œ ®0ka,ÖºõŒÚÞq™.…¯1Ü~¼Šjí¹ Ûö†‘à*§ÀŠ«œk14 Ø&i-s*Ìwµ2ס¬RækG3ë(‘89ê:ºZ³Œö„÷Çýä*¶Œ³žâµ}ëDÿûÊj¶êPVQåPVm˜CYuÖ9”kå¸UëV·ª;ãVµ_Ÿ vÜÄǻڂŽüÎ>Op®ÍÝ*ÌÑ­X ðIÜÇ€WI+¼âGþס[ÛÐX·êìV®ËÔ·íD¨k{$ÝÆÃfŸ;ƒGWÐÃ4¯'B½ˆlÿQnŸ«`›b×|ÁýŸ¹¡MžC¹¹;ÌŠ•Úlã7ÚËg°¤l‹µMªÃb%­^o®ãľa¤,¸¿öÔü¥½õNŽºÏîýDO1Ö7£N”µµ©eA… ¯¾u«¹/³[í`×þ˜z¼Ñ²®u/¶[ÚôÒÇ\#râª-e™¸*}ȉ«º9qUG}í¿û´_­æVwiÊÒß×ù©EIž¿¿R˜÷¯1ŒÓ ÷úî'QóV}-ʼUs#ÇÜÈc*«¨r*«^”÷QeÑÔaú‰í¶Ö½ýÔtâ0bv«ÿ*$¹.ïx˜ÏÙ­~,ÖÙ­úÄÛp>£.`zÔkë'Ïš;æ„WQÅ„WI+g·ú‘Tg·úN×Ù­29»‚ÀTVÙïQnrù Sï³[uÖ9»Õîu¹½™_kÍnõ5»tsú‰{ÍêŸá­5c’5œTœšS©˜Ã«µ0é&©4é&©4Ã&¿QÓYÁ=&¯’¯½š;jŠMRi>Mî¨ÉªÉ=¦¦b©bƒóÉ"LPiÔM~!FÝ`Ãu“+iõYð‰µ²àS¼çˆ,…‚O­•ƒl VHXÆŽWSºÃÜ<§2UZ³Ž: Q­[í‰ñ8Îü6]K…¨: /––—¸N¹W!ª¨¢Uâ¹eÍc+˜éMC?µœ:ì,j[±#³ü÷Ü?UÌtÕÝÈ YP¡öUk=G.^sJs*Ô¾B%â-Ùgí«¸ß*8àщ³ËÚW=ûÛ´/uâ 2y[Çxéµ0Í]柈j[©jVÛjǨ¶óÈݶÿù©ÉÅB¨É•šfMî‰üªÉ•Òd‚·%Z‹r%Ñ,·•>d¹­Ÿ÷ž‰w=YKE¹|åZö%YK=û”kë˜37¨Éµ:”š\[¤¦Yí³ç‰Y³â½”îÊeý«Îæ9u¿ªe&¯×Rÿ*?–‰ÔC­’?ð¾ë_%†Ÿ*ŸXë_¥ËYÿ*/œS]õúÎ$é‰B”2YùL¥–¼¢˜VDQLkg×C_·û‰š*GZ:Ø„í?œÎí–jnýn®5·ºù™fl·_knm·¿Õ´~¼•jZYÓ¬“5Æ(u²õ‡¥Yø5¨~¯•Êá×\Ká×ä^á×\Ká×\KáפÂÌsáהăj°¡b´I…q6`K‘\¬…H.D -vÌ -ôAZ"ƒ´¹”‚´¹‚´à*ƒ´¹’‚´I¥ð+׊ð+xGø•úPǸèb ü ª ¿¦.cŒ‹ÔAZÜ1iq_¤ÅËa/¶\5”K5P.Q´HøB›ð¾à+ǸÈp!,ŒBX"´È!,lTÃÂÓ{ýÆÕ@X˜‡aalˆ°0¨Æ5CX˜f·ÎÑÝ@ð;fðÌgð>Ác’ÃX"xLWVƒÇ¸cÃTã{]Õh­T#A \£ŽA5¶\ÓÆµFL›î Æ¡á¥‡†"MËqhìˆ84˜G„™N=‚Ǡʰ0ŸÆõAX烰0Ï:òŸaœ3,Œ¥ž³õÆù , @X|!,<¿aaúøâÓldnæk7ÂÂÐT„…aI2,L/aahÂÂ8l„…±¾: ð%Sð5Üú ø–¢øÿÛ3‘¢¯A¤NI„NA¤Øk®„þMÉxÆgs!´x‚˜¢ÃØŽ8/ÖÉþNI„ÆM¹‚¼ùmÙÜ)ªq`|éë”DhÆDm«ý“ HÙ>‰‚¬Ý“òÓ‹LA(BÊH$Ï­ôWÂB`ÄÇew%ì–Í•ðq8L"Ä s»ì¿;‘á@|\ôhÊ…¿K"„ïRÞˆÞAw³óRn‡Ø]ê.º3A”Ñœ RÊÞLÉb€0ÄÉeÊ”¡=^‚Ú*Å„OÉ8Âp(µsS’ qSn†!.›;Aã2ô—+¡µ­e;¹ïÎNpqC„³ÌîO<¹Úü —.ˆf‰ù%KèDˆ òòÖæP4–µ7T¡5/fí ¢h Eß\ûBÁžd[(²TºBÑ|÷ˆÚ‰ WO((@F)q+³o4 ÚF&ºFÁ¥f¬ßÿÓ"f~JŸ'[¶y‚&e—'e“'<*3| žqɉÿéð ÈOp„•ä›±¶wÂÇeäo \BO²$]›øöªM›xãjÏ&XÁŒÂD—%ú¸Ú>iª»ßÝ“¨¼µyÒô‘þ餧@FQ{ëçÖ`¿¼~h7¼³Ú?Û%•úƒ @5©Úuyþï~k¯ìm¾T€9¬ôj&Ý>}avâņtرy‹¯ß–ådGåÈ‚¯ÃµøÎ­½¯Óµ^“+.ËÉ!ª÷oRµ‰¥{/¥¼ž HÌgó_±•xK]®}¤Ë­´©îÃHT­³Eð\on—ÏûT[ÏÚ=v¼ÎUPÉ»¾Sk­LÞ[÷Ç¸Š‡:_¦ÊÕ´Ïø¹}€Özvßwâòv¾3[çk¨Yʕ݆u¯{5ÂýÖrÎæ|!I|%rÖR×>Šày ê:×½ n¾Ž¿ÌuÙ¨úÂÑ  óŸÏ}8º~÷¹“:ÞGk3o‡ZïÓµšä·!øË‰KðiXЧîØ>´ôôNï=È×/Ïuú}ê,®êû›¥Ïó>ñÂh$ìÛS¦Ô!sdÁVŸ|jîÇ”×:óP?Ð2/‡þ˜¿ÎŸ”#•©gk]çú€Á~-V iA<»YÞ0Ko–GÏüz>׿r!‡þ²Ù¦W¿ÿöõx=ñNt>Ѧ-nú’U¼) ‘=‚í~º¼> 'ôè$¬sÌö¿ºAë#ã1ñwãÀj­ñliŽo¾T"XÙÀ­¹·±Se}å®Ï lP•Àiݮ٠—ÏJª¬aÅ~‚°øB@ØüBAØÜQ6™„M*€ÓdKà4¨N!ӬŎ‚°)T@X0›laÞ¨˜Ï"U°%8œ§(8 :ø‡“ pŸ8ŒóÆZ€ÃÉ–à0p8©P¥Ššy+hæ- Ð q4ƒù(R•ÎYC™“-`fp•u¥ÚÈrHd_(dTBÖi“öño=îs¶€¬Á;5 u* 50@3­M€fX€føN€f|#àpò8LŸqýéxfF¾ŠAm’YS¦¬sG!kÜŒ,à”¢ƒ/`føŒÄ̰§ÀÌX*13ï~`fèÐpR 玗W~üþÏÉI'¦m«`w'Á0.+À0Ž`\ ÃQÿ<£gk Sá+¦Û 0œl [g*ž¸ž_0œ2Æe†´†ù‰sñÌ¥ ˜›ß(˜ËDX^Œ°xRÀÒ€Mî`!{XX$Ø©>ÿX¬•vúˆý°0[ `Ë͛ؤâ,פÒ,× Ì[¬Š s°j ×Þî¤ßŸ÷t!lˆù«)æ¯b­µ»¨í`þ=Æ0©4¥5¿À|!ê‹5ÌTÝtÛõ<ÑŒ|¥$êÈ×d#_ÉUŒ|¥Lcäkn0 É ‹/Œjê7U‚a_ŘDKu޳¹!`.¨M±cÝ.ããù™Dë*“hÉ|L¢&ÑbCL¢… b-nƆ±#æÕòbÔyµ0•˜W‹ý0¯6×Ò$Zh3&ÑbÇœ1‹/ÄŒYPõ©i?¿ZK<תƒhy÷+4•´0b·:¬¼bXÉãcáËÀÊ¥cz,íHŦjÌ…ÅZæ ¡&ê´»®Q__ëù û–°S†>`§Ì¦ÇRécz,nYt-Ô:c*˜8TÀ¹|˵]ÇCéä¨{›ÃãZ??3>yˆ%€laÕ™¶´¦3ëRf–úax,öK4ìkQçÂBe2lÝz GœÜVÍ…Ísž9¨ß‰¯`+q®ØÂÄW¾câ+¨0¥T9¥Ïá°’f¹ò™³\©Ë1˳\q1Ë¢ÇVض°suþÀеÀΟ§_VööçJÍðk%"| "¡×ØU¬I„*Ö$Bj '㉂+ ŠO±ÀmÊØ6Vh•²ø4å÷W™D‰1ƒ#@ÌäSß3v¾Ìí¥¹ötºõBMâøui·gIl–»šåÉ™ÅJ€\R“ЏòRpåfÀ[)î¬>…¡&K=$Kž‘¥È‚oD©&´t håéf9(Ä0–ŒgÍ(Ìw­ÛY3 q¬åf‰ÕRM²d>xN–"à\J2«AyºùÒYd'x,Lž€ u j’/íI` ŽÓU —<ÅIÄÉ]ÖzÐ$B=(ù®ˆJ¶²ª<“¬…~g©'q¥Ô4Qê‰ëO²/¿/Yú.{›iRÆ:q¶Y4Š•“0ƒY4:ñ–¿ø/ùüKygÑ(øDÔC/b~\âä²Ûj&Q"ͼ•š)oàL½˜fê~ÊL»Œ c¦ã‰U/`¨ün­c¥ß ªûTëX§¯æ/ Z² þmÙa!ðv3¯3ªëÒF¾÷™Pi” vD‚/ÖZr” ÖÊ4`µ&HM]¡íSæ5ZFÆD-•a´T7Ó}Œ÷ßSÍlÕ\a}bŒ„Á!¶¦2ã ÿ4Ò‡ûHæ<ûÀë¡4ý·üË»'¥–Êf,…Ôd,•Ól$ÐÌ_¶Â·‘ÏÇÇ·¥ë=0·aej²øÊÔd]ž£ƒÎÑ8X+G㈭L'ÆR£µ2Øg}ŽiË|-¤K#2T‡P›qÛ×w¤ÒW¬& Kç ØnÏõoÈüäï}ÐÁvv§·Œ#ªÈ9Öñä0éiæÏïëqAnó¥s,9ä,¬Õ"NÑ4ðä ‘¿Œãiýû°µÛÙåo©}xÄýýó‡vÜú¥­WóÜ~_Ǩ€nVçj£¬c¬µwo×ýìm*¯këÂÜÕùý;(ˆÕrÛÚjs³CcÄyæ[¢uhŒo~I&>1"_ÉÄBÿM­ãÍ_€4a1ŸiÂ’UÎy‘¸FnË¥)âÜ0çNáâ‹X€mÛêPÕ.²¤5û׸ýòðlÍ—ç·küRßó>§ibŒýo33Ïm?q(×¥?ŽÆµ™Ëse,õ:1fþüž£KßCû‡&ßÎ æÊØà~Mð˜ÞŠ9Nq}>Yˈ8]ŸïŸ=äyrFÞ+9£f¢Ë%1Ù÷¹ŒWç>7ñ9}FD1}Æî©f/ËkfƱíQÍ8ÖYçô_³:}ÒzŒNÎ×Ö;îLmêðÝýW£ú©Ìis8p·.û'ï¶Ûj}üÏe.ú?S•w†]ƒŠØ5×*M*àÍ$’ÄR‰$±d~a®±£¾Ï¥%¼Iæo掀’8ž„’¹ÒázoMk–ÛÇA%•gnÀ™K pÕ¥ˆmØæe~<€¥;`)u9`)¨K“ù–ÇÚŸHëÉ'¼æZ÷>váøËòÏ|)¡R\ÄÛ8êãÞ â,'Ï:'Ô€g À™Tœ¼c8¡ó 8ÉU@IP%”Ì“nÍÍ_>O4Prz¿¡$¸”L*D°˜"H_‰0º[Ï‚n¦ðÄIæR(…•2oÂoâ¬/M©~Aù T A$*M"¡Òd« ØhÌU6Ù)þbWHؕؕF¤b×¹=úÆ®°+ìä2fp<ÿL¹"ÀÅàB ¸i\øÍÆsטmÎ;ðm®´Žº“Ëóùβ  ‡xk¿¼zµ˜¶ËýÖôª»Í¹s¦Ë ªÂôÒq¡2€¸~½VˆK‘ľL ., .X­q• ,µBT(I[PߘPD %éÄJÂkJò攄…oã!‹s=y‘µ{ÑîØõvùü¸{±ÿÓñÓý=DÄ* 4åP H°|°æ+æÂ(…Å(…°zø·»Öû‰jºâ-œÐµ¨îº•æ«b-ܤº\{ÂGW|ƒ*a°ˆàŠ«>SýÇ»â pµa\PàbǸ:ĸX T¸Ø0.”&g¾jCÀ``°Ÿ×*_®¨á‚/ \­•k%ÂÕKì*A$vUbWPŮ҈Į vUbW)j RïWQ©¨•ât€JeFnMH‡6ïï1N҇ĮóKö…]AT ¶.#7òr¨ü}º–P©l`àM}aâM,¼)L¼)‡‘xS§˜xST=éøØñ“-nî+*•¸•‚¨l•J 9}«¯ÿåî&õ… &e¸LJ›Lê¾&˜”&ʯL ¨n €tÏ9·HB€r‰e'+Ô¶“§îO®Xs÷Ôf>ÆÛg;q® ¥ ÁÖ³¿oªýä‚]F~—è\ì×^Þu(Ãå̉—Jý—Ê:$âÔ'îÃ_‚8wc—êòdPÕÜW\j›[q)¤úzð7ÑŸìÌé«_ÑäÄ2ÿ¢I_êçË­¬s}æÔM ÌéwgÅœibN#­G¿Ë»ÔAoùD¦²‰Le¾™ÊD¬­bï”­C§îã*ž  Wz · 6. "ÁÒ\©fïï÷÷ÈkÝzZü~ˆì(O­þàõ^^'DÁÚ®þ]Çù­S¢çÒîMv™ ÝBN5ñq‰é@Ô°É2$pŸ]}¾vG±Í®ÕD¬í6yŸpv[û„èåqðÿœìÖŸãMH‡ Ûf4môvÓÊ–$»ÌÖÑÇ>õxF$<¡s 8–ëxž¬s XžíðxÝ”©êŠ~¯Û‰ê&–OK÷¤ûˆl̈úPÁ­ý¨2=“k/¡<4÷ú‡‚|QîÃmïS 8Û} ’Ûì Hs×ÞÕá2Jg 7JûöçíÏ»ˆhë¿]ï_£ÐqÁÇô²õòÆò"ê^½ëÀ6Ó¦„"@b ™Ý^Ýß‹cîÓkµ©åå33~zå—¿BYдF{ýe°ÿU«øx{mE+”¦ååÛ®3s8#µ¼7ßÚgv`o¿˜6§•oϽťv]–Û?“ÃíŠöì¿…ÎMe¿L[KÙ¿vή7xè·jÊR³'­Ôv¯S£›˜È÷²UZ5^§†0q“Áòò—ï2Q%¶Oñ®8.èsjÙÆµÚœ™Ò¬ýèú®3Y~ɧ.ýW—æS“+'ˆ&¶/½v÷ÑfUÎßLÐÀSâ3\…gvªÏ~/÷©2 ÂÉÍÝŠØßSqýŒëQƒe™³4fEö¼NŸŸ‰Þdšÿ"ÛÜ͵›²ö_®Ï<Áqµ[ÅãS ®•^Aû\ãööl±‡ûcjR…îN¾îó²¶»v‹òXÞ/þék÷8çejÀÇì/úB÷åìùÙQß²nû‰¹Ü—Qstø¹}êçýGýåñ)^ÕËjûçõ"\¦,m#y­ù–ùãã¹µ¸Lÿ½÷:½˜ "ýJ_šE9þãÄôѲâ¹ÿõŸÇ Éãmê}mO§C‡¾µ_N¾,`¨Î?P¨^z BKqø¿.$M*õ3ÂZÛ6Ê¥÷O%AR©í¨Ð÷(©î¯BÜÖ³v™ò¥öHà¾Õ®ŽÑÎë|)4Q’¸¢‹’x6JZ)û(jÍIØðÖCR½aÉ{,s~a¶RÂR—ÇhŸðšÈ tRZ áhÖµw¸­ŸÉäÔÑÚ¹HÚwíå»ëø1îDìµÁ¤° —v|M±Oæÿ½vÅZ?“å!ÑeLpÞ>ÁXti—¤¥Öþ‰÷ÇíÝsEŸ˜ “ÄüøK»`ÏéZK‹_µO\?¡Qì˜=“dCöþr¹ÁÊj=Ç_Ú£b.ùCmömXš9[jœ$EͦHØñÞ€[ZS£¹5]¯·ÑXãúxÇ*%®è°¤SÌK`«5龽ؚ b<ºŽoØÞíet@—nL›<ÙqüzÖmÄü^«­Ä…–Màí˜äVj?&Р!ö»ö ŒãfO B£'ߨÚéITÑÅÉ®º¶q’µÉ>N6Î¥I“ô!»4é¤{?öþ œë¼š9騣›“ˆ¢“¼â³g^Ÿk¼z5Éýd ¨ØŠ–N¾<¥¯¯4+Û5‰*û5Éd1©§ÙÖI~'ݲúOYt’jeg'ù×ë@·û;’ç§gíí¤OÌæN:êþƒê¡ë;©£ÎPD¶e²¨-—d(Çoæ÷ñ+ÎÔeD?%ûÄÚ+i®¨ßÍ’d’²[Òü©þÕ.IOˆQºu~Onø¹ý 5M&¨8M¦R±!oR©#oP ™b-5îM*°ÉoÄ›d+{÷b%M¦ *€NlЉ/DÿÞÜÃd(†“T“jŒä`r-Mm‘žæ¨•ÔÓİ>ÅÈç * Ó‰$ꨱ•£VrÃİZKY’- d©T°XK£V¤\1j%WÒ•ƒºúB¹4D%Ô°S|aÔJ~¡F­äÝO@i­É)*ÁürÝ—nÛ‰¸ØÝVW³V‚{õ÷…7ˆ¿I£¿¹¥ŽGS[RmÐå¾Sc[d“rlKÊ~yÖ9ÜE’( P ~À`^sbt¢Ù/íHN€ *ŽmÑʱ-â>²ÈwF3_\~tó%[1 %Ÿ#='¢cÅ3û†1*©5hû‹;†¾¿PˆlüK3R ¢œOBE} æ¶ä†Ù×:ƒÆ¾¼<1&µí±¡†»äc½}á8Îg“ê€ö¾|áåp—d½{qòÃ'ê\òº©ƒ½ø²s‡~?C´Ÿß§O®®8—î3®ïŸ4´Ö>»÷çÙÃ,sÉ)®>±‰Ó·TI&§výeÈ1RÆù#­º½ÌîSI´æíyÝÎúäáœé×¼ŒÛ0—׳+‹ŒhREJ4ÕkA°Ã@ÏMÉsô9Nèz"Ճ鼥¡Ÿ¨jäNKö£"çxQmóoÍtšßog4S£I¹Ñ¼Ù¯ô¾¯ ‘ô+R¨)‰È¦K¸ö°ÔH5óš%¯ã‰Ý‚Wívœ9Žõ'³¹Ž~ýúVg§&•¢µ b¶q¥j¿N=ÛÖ¯DÎJ¤4`žY½É²zƒ«WO†ëöø®}†D|ýœ²åäß”|NQÕZkÿ!e;˜ÿ$Ñ÷í—æ6pwYθ?Ô³ømi…Óµ®U¿¨½ óy¢J&ŽÃFC#K¢„~A„ .±«êø²÷o¹ÎÙB€x®^}ü×”¯ûÖ§ÑôF)S™:Z:˜™Ð±áý1îuk5¿±˜‹·Ù~f¸>žg§¨Lh1_cÍD Ë5Ø¿}zw—Ñ‚ìÖ~Íšn¸¶ˆè:^$óךíÚ$5\¶·$¦¹nµ,áq„—“WKÄ£eÝ2­ëº…ßOÞšç*÷zéå—Mîs+‚ ®¨”´›T÷Wê™Ã¸·_÷áVΜÏÖÍ|¿Ds5UÒn,…™­b>ç±ú‰—I»I•‘XQE$V¯Øœ¤ªëúyå«*7Ìx­µ93{sÇŒ×Jô×ö\š™›‘æ ZÏÊëW?=ÝýŒýê3`+K¹l0\û”j<Úõä‘%œ–ì,¸õ7eëÝöI:ü¹yt *æW*çs‰ƒŠYÂAÅ,áäYÂI¤à¤JH™TNæ•KÕªSðÄá¤JÐ9UdK ‘I¬ 3“8¨˜Iœk)“8dÕbü]\kûçD—3ß8uYùÆRšÌ7æ7Öa-•9ÂI¥ìß`èNl)G8¨”ý+…ˆìß\IÙ¿qˆÌþM…PöoÈٿɼ{“*±–:{ƒ/&ö{ÓP*±7¤ÊÄÞ4Í™Ø4Lìý˜Ø›¡ÄÞÔ%ö¦#Sbo^ëDw6™þ›’Wú¯4"ÓS#”Ù›|)³Ww#3{uû3³7¨˜Ù«”™½ÉW¢@cäÿÊufþ¯¬Ref>òó¡¡ü_ÙÊÈÿMµQþo^EåÿÊDjor¥¤Ý\ I»©JÚ•ÊGÒn.•õ¦ª P¼'¼Óó`gØò*ÏÝ]ÉÙÍ#TÎnòžÐ/®Ìì Þ·Þ|²'_.sßÉüß j©^ÿ멪sUv’p2¯$á¤B’pZ‡:¥ë•”©Äºø™Jœ|)•8 RBS½Ë”pœž ©Ä©\J%N·?R{%Ä©ÛÏ„ãÙ­þM8NA(áxöÿI8Î×[¦{0°A5)†ý¥jÍ@Œ¤Ï Ѭb¶.uëX½&a¾Ö¤¶PMjaë'²¶°uXÊþJj†|*…jµ¡Kf©ZŒåõÖ½0/\ÜO k ÷.¬-K%®žˆ˜)vÔÞæ÷¡ö67Tím¡šÔÞÖµ\{[¤@ÄœïÚÛTÕÞ*D:'ߘUµ¹¡ªj óĹ¡ëeë¥~Œ§Ûeý2§:k”ÂÖ;áI,5)˜-lM fËE|ÞF:Þþ<»Ô“²ÚÂý¤¬¶ ³•JÀ:¸ß{¯ó¥ÇÓ碟ÔÕ–µZÎá`~~fÅ·…jR|[ͼ‹o«ÕUYmÕ@ÌVµqÁlõœ.…­—_ˆ9¿Ð¥°y<*…-Çóxù•QŒ3=×ÂVår-lå>#°öŠ5«k¶7ªeý*!’tÅl^ UÌÖ++\o¯þûOÑ_Š Å·é_U|[ínWÁT+ù_/>™[pÃx¹²õ:´y~3k©£ ¸Úo§Aém½­.ª­ãzÙJ%TT.…­Ì U§Üªó‚¹Èµ²%À¬—Ja [ÌA%(œº¶R±¶^UÜT×ËÖµ\ãZ/«€i^VWÂV‡Á×zˆ®q­_ÀTQ•°õ]ãš5®ÕH®M?{5æÜ×ýŸpi€÷ÎÕòöu%Y¡ß±L!N*sM*!aP 'µT N¬„ä`ȈSÒÊ´_숄^È4çÇŠ(g¾‚ 3_Á<2ˆuÔ1ô‚GÄWÌçÜT­•(×X§«N¢`a­•)Ë¢Êéª*²‘¡ÈF–$2Ïõù;T™ "dC˜ÁеgŒOúÖ1&°_˜ÂŠBr°.v&K1:DªO Œ®€Ñ%‡L!–:çèTìˆâ¤ÒèT}b¢oQ%ú†vílº¿Ÿ Nµ¦–tdßëšh¬»˜ÉÁòe™,ÉÁ2©9:U*˜óNA•“Lu<‰_¥6‰_íc+~•­Œ bY®Ì ÖR‘A,«›èU'i¿ BÚ/äÈÔγ¦ýÚŒThªµbZ«O§@SßéMí9ë°VÝ°È ç9:UÖ¡ÏÀéì:=åËqfž±4«?4úlë#Èl?VǰêNçV|ãoætÇÖ î3mWP'ºŠ­ÌY–¸~CôË+½ö±¼l–¢&fU`f½›3gYKeÈWÆ&1³FÍ –IÌ,¡&–>g1ô“_µVäK3…Xö4SˆË¯BÿŽI ×þÃþ.¨O*¸"°ØpYÇOó÷ë§o6–ÊlRqNNîˆ99¹”*j!‡¬¨MÞ¦ÕR¨•MÞ€ÕZ¨•M¾4N'q:¹TŒÓbõWðÒ~ØØ¦ßÇjZ~_­€…¨ræN®¤2Ù\ê6~I¿??eŸ)„_!N­R¢h5©Thʵ¢†'ˆ™;)ˆ‘µyâö™Q’ߨzTˆõ¨P›e˜‡ýù©ü_!¯¯8ŒHF|±Ö½±]ZXtKUU¤¹£FóäŽæêj Ö4e¯Ñ<ê6 }ÚÆIqP¶ *”­ÂæfÄTº“Tñ…T¶šTšÌ·‚âÖ1®îFb\ñ5Æ©=êu®8@ÂÚ1‘°/vEÂâ+Ó¬ÅWb\]ÇÀ¸"JŒ+ÿziK ûä}Öa'–&Ƶ/û¦` ÀTØg›ô©j÷Ï’ðÕ^ªyƒí~¶0®‰^±òµ¥€‰Kõ‰‰K%÷Ä¥}Á¥X*q©œTâRkCÁ¥¶"í6XéÄá½Úñ×Le >AçäÙY@§\F‚Ncó‡à7è´=­pÒî§ÂI›¨0}'œœœcIB–—JÐ)IèQ€N]ÅíõÜ΀ ©ž@®ÎÏÞœ]X›ˆË6žSsíÌÕM˜ëv…¹2 s­ƒæÚÀ˜+¿’Ö¥ Ø:°©Ïës8÷/ Â¬XRŬXíØ*žcœç:£:”¯ä¶bÿ{}jÇœ(K¾bV¬¨r ¬¸Ï)°ä+¦ÀRu ¬ˆr¾+—ªó]E´wÔGZݦ§ˆ¯d+†²êoÏöp9NqùËË¢Lc”ªdCRE”“MÅVN6¥LA´RÇ÷¬NêVlª•r°)?0›j­„ÓYÏvÌñ§TÓÊãÙ{}|7'ÒŠq¤É·T·ËqAN"‡–’ûZJª:´”¢q¤bëÚOê³DosæcéDZeÐ(•kiÿÛ‘Ôm~1Ö‘”¹?oÈ“T1Ž”F0’êZÒDÄQjWŒ9 ýg„èÉ}\þJQ'Bí£ÙZíœùåUç³,gg3K'ö­Ì,¥võßHzIþ>WN6è|™lª sf)©béÄ’”i¤DF:ñÖe)=Ëòz\O<¦‘’*¦‘NÌMƒoŸi¤”VÌÜÅæðöOQ;-}L¥S¿çÔñœbK¶¼ oý˜I¾W⯭šîò8óx9²”.¯µl½{O¼ç³ß²}î®ÿÞ\ý熃Mycc°éÄa/]¨Ï—·?ÿ"6Û™o9.a7OÃ5žP7ÞÇkcÿgþBÈIªd+&©ê°—Ð9>q›_³Ï'~~覦ÆTVróVçõC—Û…Iª“'c™¤:Q¯2I•j“Tyÿ·^³3AĸUjDŒ[öc­6®sízôPÌqØË_ÂÄ·”Ñ­> Ÿ¡¬3ÌÒtùrÆÓ~ Øÿbé¹õ"î>´ü5ÿ浿~ÿ­Å¯AÄžK•¥¯A£ÞÃÉ´Ø-«cs;Çæv¤Í…P›,¡è5‰2Ú qg]l²œg¬”U±É2žSY› Õ¤hh[&“éRꊯ0i®ƒB×\(ßù](s…jg•+¾?#¤<þZ K¢èq”’Æä ™¶ùu¨o…À³¼5·CtrÊZ0ž‘>؉,€Í•ç£ÊÕ^Š5²ÉÒ]s;d»æv(ͳC},$ÁBXÊÌNÅùfà.‰275ÙF9k¡šn ‹YóP ›+E)k’`¾´2ƒ’Ðï¨v…*elj j]a¿²Ô•Pã‘wºâÊe+t)ÓréSjV.”)‹\aSѬ*ïe–¸Â«d¼Ûe+LxT®’ïR¸Jÿ]ëVƒ(²qqK¢ ï·LØ¥O-…¦¸™Ó‹§Y–™Ò–”*SH:C«P¦àæy DY‡ ¾³…15²Æ8q)³V5E€"T¼`3à˜DY¨ µÍîIé಺õ§0Y~Ê'E 4âdñ)=E­=å¾D,ñqYyʇ^IÞ…1ÍÈ'Þ YœJì­ƒöÿ:¿TÈïM*âÆ\KÀ1×ÂüÖ¤R‚/ÖÀL¾€0±aÃ$TK®€Õr©kA‚`Evoi2 äPµÊÜWlˆ!©R+`¶ÜQ -å‰TT¬…TTM¦¢âsÈ Ž™¨Ú@G™¨}Žx• “ I¦²!™>*ÅÉ4Më` ¼”—¸„Ã݆˵ò)UÍlNY‘ÌÓ”T3OS¶ ˜§ PH…®Óopiùòçà Ï%]î'D—_ˆÁ6Ò.€º\K¨Ž†°Ž‚õ)®ãùÔñ7:k€6ܳÌFµTK)HØ.Wæ™ú.Öѳà]èҺƀZP]³’NP‘¶¾&­úuH0©FãÒÚìÎ1Æê‘”c¥™%« ›ce¥×nxÛ~sçLÇP1ä9 Ì¤[1ÇÖ7±L¨ÕAÛC$s£‹‰;¢¤…ûÉü^=#²¨TΨºX ç™ù¶zØâ3GV§˜ãg¥79(Ç—¿Îy•}ˬ\ÔÌ·•k‰A9öp§šú=uÕª wú¨ÿã§l…ÂðQÈþM(o"ÅØš¤º¾’®×þB›P±Ú5wTk®¥:Ö\ u¬IÔ iÓ­ãö)ó¬>ņY}Š¥P}Š¥rnÙŠòS|b–Ÿæ!6p0Îð]G}ˆÙ6XéPš>­áòNkÓR(wÍ¥TîšK¡ÜE¹+>Ê]A•óoD…¢Xð…¢X\Ô»â QïŠëÚ³{{ õûtG¼&_*xÅZ(xåaß_©ýË|-•ÅB%P¤šT‡T›uÛ×÷оcQÉ ¥?n`»>×™*ÐlÞ£TYÈŠãÉ(²%ªÓ û5»G\¡Br@…j®…9@bu¬y<-/¬ ¶i”™æ ¬Õøºá='—e¬Pùœ$ŸˆÚÓ\ ³{Äü2fÖìïæõ :üXK™ls´NQz ÎQTJ±GQ)ÍC-*[šï¢R¡ÿ@×[æžx •‚y”‹BV(…¸b .*Ay8µ”·5*Ai£4©jäTæö•`¿ÿsr€9µgâ4çñÈÊdðÔ^:*Xá3ûj\›¹ TÁJ©Gmêô™øS›ŠKß'Aš|;1 ¬`¥ß‰ VÜŠ£# rS1¯Ï7•{B5,^5‰–mJëI5ë\A”u®ôNQç §‰ VZš¨MÅ CÕ)/PT¦´#a¼%ëO‰XtŠ[3mdr÷1·§•àœ<Ûr¨ñLÖ¦þ$·OkS+•kS“Jµ©±#kS Õ¤65vdmjò¥ÚÔ bmjpÏÚÔäKµ©) Ô¦kSs)Ô¦kSƒŠµ©É–jSãY›šg=âÞMsæYÀ‚gmjlÈÚÔ”)jSS·P›+±65–bmj¬ÅÚÔä]µ©©¦ªMMÉ«6Uj“õ¤¹£êI“ õ¤±!+EÓ¾¡R4¥¥JÑzeÝ2¬(ç™aE=Ib ªžÿ‚“ÎL]{²Ú’;¢NU|a´KRe¥ªó_pˆ™ô«ûŠ)10˜ÿBåŠù/0•‘Î+_U­ö5é×–òõœ?¹ˆÈùõS°Ž¥ýÆXX¤¬m5€¨ÃktîÙŸ=ë;) 4Ù ò^Úº_Û/†ÓÝÖ×/rÛmÎ÷6,m?”¿"ˆúû¤ç@<çŒ?›^ž×O‰ ˆ¢ãQ~\ÿ¿ƒ£O–9ªe¶@ûà»-Rîvà–ã{kÖz¦'­¸v¿D¹ÛìP®ÛåSÔ—D[Æ=cîìÔ’^êIí”»— _¹CO.ÓÛôìõ0ß—·'²,KpÉRíÔ¢,šÅnÙ_ zrí )×ã~n3…ëudÇM¹Ý>Í'r»þ‡åùXæRjšÛ¢×Oó Kû!å~ýDX´Y6N‚͹7ww¬t¢ºª§Åv-¼¿\¶¿¦¾íÒýÅ~[ç§ÛÜæ³±´î'F…­¼rf½ŽœZ á:Øï Øà+.£J᱘JT«b³vŽk²(.°ïw­T¥$k *´;q¶Ëf?P¸žÜÏd™:¹µwLê žs'‡ÊR^ðZ2šG×~øk×~þšZ¸µû¯Ûa™×©lùvÍ î—©×Qy*/J­N…F÷ò–uJ7%‡,Ý”u‹ÒMÉ!K7¥ZYº)‡‘¥›:Ÿž\úS(ªa<þò‰8ƒ/”JQ "”‚­–5ùʇœßÄ(•¬²XÔ]‹E}ñK±è‰ ù*•¨²XTŸÅ¢b>‹E%ˆ(•ïyü³ŒcÞ¦b@(VÊœjRE"4ÝE$BÓõôæ¹]£çöèr¼§/÷á æn,‹Jí\kQ©¨¢¨4ˆàÌÇd¤.Oœf­<•ÓÌÊS°• γ‡i©O•’f}êü9ù]Ÿ*k”õ©â>œ'±Ö§ê"f}ªL[Ö§Z_¥‡³ÓάdÊ+*OE•§v®µòÔ©Ö”N|J³ð×7²÷umâz»¼Ó¹t]Ûô“C¢÷w‚¦ob­NÅédu*”&óƒ‰ öñƒyóasa¡†Už kX¥4YÃZ~‹ùבѤRhTˆ&‚£Z*"‘Xé埮Û'K _¸öÁþ[ÏÎ׆Ö”´2®‰µØ÷í§ÕöËð²œq¨qC‰·–)wîˆ(©¨2L:}‰“Š*¥`>#¥æª†J-Ó+ņ–Bòã§Áþ(¾ÎU1Õ¹~UA•QU_ŸVµ¢Ö¸*6D`Tˆ¬bÇ–aÑ®Ùãù¶à“ú ÀšùÕR]•rexU76ã«Ø1¬VùaÅ~±j¿Œ±b-Y¥§eÕŽfÕfœUTý§ÉŸŸÓ [ÇZÛ+©¡ùSÕªA[ßýµÕ}í6ùЇåD ÊJ¦••ÿ‰°¬ï~ ¹Z5檵2ž*åÊ€ªg¨úÂÖh©Ìn„Ke¸2^ª¥"`jm®ÁP]ŸŒ†Z¦%*Ýê^§?yïsq<|Öf‘}ݧ®-áu¯–““îOÏã¾>ßÏfŸá6ŽðrâÏ#–k3Y‚¹º‡ƒ•uÈ ¬t4£°â*ðrÁc•beU1£¬¾­%ÌŠO¼õʇþ~XO6Ì@+˜o¿Á܇¯›{Äß×tà µú©Xc­f«[µVRE‘T½™3”*9d,Uf0Õ·§FSej2œjßS㩲PÕ1f´TJ¿Œ1^ÿ¡ÎßñR­5Þ,í¥{rŠU•Üú³³ý ¯´‚PÑ> T?íu¦zƒ–OX -Ÿ’ûGÈï¼íŒ/µ|â»2Z>Q%¢åT-Ÿp³³å½l´|ÂY£å|Z>ÑD3'¾û£™“lêO3§šê>‹›• FA…ŠÑ¤RC$¬…ÂÒ¤BC$,…òS "£¾à=z+i%„ss)tMïÙ5 KÕ®I“¯«UPe`5‰3M*ÅL“s4;²ŽFp:š-‘|8ÂL¾ÐIrÏfGI”à$ÙŠà$6ÌŽHZ+«HÅI…à$Õ¦'±ÂŽù…è($DØ1½‚Ä<⎸­ÙÈGÁÂäk¹ŒþQ·íDªñ”™|Žn÷õìš¡ÃÌw- :ü`?tø‘F „ È>@X µ¥2÷áÆ–ç‰´…ëÉžB:Ÿ¶ZòÎÉUl•R-Ý‚¤\YõªOD˜–׬V«ÚD6©PBêËaSr_¢ôœµ?‘lDö'2[5@‰gÆ}tɹŸ›Á cBk²(U÷5«R¥ÑéÈ&©t:’÷ÉNGú@DD±aT¦úZÔ &Î9Û!Iý²¤TTur­Ñè+­O›hš¤÷d6M‚©ÁÔ™«þ­òQÓd •Ä|vVÒIg%«øBT…[å#)b«¼ø[… ^[ÞÒnщ»Ë Syêì¿dO]kLç×ç'hÊûS0ÍŸàßQS>OŸ¿]š ÌèÒ$»œ]šJŽù¿.~ * ÁÁZ*‘͵ò%U„|ÅW†|Á—Šr±c†|ÉW„|¹coSùS8y¡H'„"Y¬•å¯:ì(ÅJ(Ê_q>9PGÒBý«5µ­Š*‹VÁW™ÅJ[A…ÒVPÝ{øáØqùg®¨lªQ¡¨æª#|$Ó,F•BD1*¶ËÙ<’êLu_#æ«3æ«/ÌjT¡Ì£ÒB5ª>1µÔ‡,!… 2KÑg ©¨²„|¡„ߘaLšÊ(4 MÁ< M'^ê7Šyr}>|È{V~B»²ZS Q#4§QÒ "TkŠ*«5e³ZS¸#mnÖtj­ˆNÒæfå§ükVuŠ*ª:åS¾'b…|Adí§¼]Ö~Jk"îHç“¢à¢ÒˆË˜Jqüeê è¤æÄÛ•à$-R–‘곌Tv+æäÐgd© W–‘Jqj8”B@'©"Ð9q,uêÄüï§öÓ׺Ö~êÂFí'¸ÊªN©|Ä/%ш_RV¿¤:Ddr‚£j±©^àYlj_P¢œ|»eIª\T–¤ûüÆB¥£u° Ídl#" ¶ù-~þw ¸öŸ öÏtãJ$ˆ›+aBN®„¾M¹&ßäJÙÛ)iÐÚ)wÚ\ ퟂ(B `:úCa«l……Ò’éÚö 2Š)58ÿ@½I“}š l݆-­šz[g e—&|~6i¢ÖV¸ ¢D» Ê®JУ˜äƒ;’ƒ|p"9Ç'WÊ1>R6p™äx¬”Mž‚H¨j’-ž Ùá)‰SóÔ?<”{O¿Ü%4Qô€‚¼sp.;@MoÜäG9ÚÈÉ>¹°{®„é?Ø.‡ÿ€ñl#1eƒ¨Ü“ »ù Ž.&úÀÁeŸ©\3x’#x’oüB+å˜zŸ¶P<‘Úïin(¾:9A–¿_[7—©&Ý{4º½Kæ—GËâfC(z¦­YïÇ;#QȦQdÝ–ÄO°ð9'‡ÇVúJÑÖQ:IÔS®Æ¤Ù«¬¬ÎÏÔ-é§Å/БKOSn«éù ¼û¡Xz-ÑNÖVKÓ—Ùw§%ÜÈDÈöÞBÍéNB×C¿T{1á $†ÆÈa=x›ä¬ ³vk¢Å­Ð6LtLµ ž“n¨¼µ'Ròà¢¼Ž çå])áã­sðÈIðIóøqlaQœ[6L"^¨Ci~iŠ* ‘Qe]‰¨²0Öí MÏßß_yËl!¢ÊÊR&' ‘gÝȳòÈ3¾È3¶òŒ…„<Át"Ï#gèg¥ò …ò¬ yÆç yB³y‘g y†yÆ=òŒò¬+ y†”„<ãL„gž}ff×ç“¡)¢>¶×_Nouÿ嬵Ä+ÄòrbËr¢n“zºR–ö$˜[Ê–•²Ÿböéíg“œdëÒÛø]–?ÔÛػ«ôÌ·ó;–ývÒBÜúS´•¹®sÞ[>e“Ã~Ÿ²uËèÔnäü Ýn'>1³c'·:ûíäõÙG§–Vµ=7o™÷ÊÕ•'Yä½NLeôîIÝR¿Ù‘ì·“þGývÒï£ßNº}õÛÉ/T¿X+3Z%ÓÈh¸álÝ“ö:Þ,Û»{‡ØbëžÜq´Ú[Û”³‡FvîI9DÚ+µ9Ò^'7cí¿3Ÿ:vʳF ÜPý}’Jý}ROÕß'oÆ>J7ÖäŽê4yÏš±ÌmeÏëö×õóÌáý­u_N_Äê(¤ÇnvÊk¦^AiéÑ+H.6{¥F¨WPjªz –•ŒÜ ÌXšè]<ó-ê;„ÃþÉ¢åv5‹–†²fÑR"‹Všµ÷.ÄýGã÷Ob¿¿4Ì"žA¥"Фb`4wT¾mR!4šD Db©Œ3‘Š;µ!‘Iµwø°´NÏ'\!hÉ/Œ¨%6̰eža“J2¸™+¡LK!šK=×öõÇ}¾~‚‰¹¢ ( Ô÷ˆƒ‚ PP! ¾FHýq¬õ×Âú—¥¤º`ˆ˜B2ŕβT1¨)¨åYG2.ÔSh"§I…Ð)¯X$äBç£V’ï mi bÖ9•â° Ê@lj Šj¥§ÅNïëw,\!›T ´‚­Q›ÿ¼<>‘Ö<ŠjŲ¹VŽx[ÛæRû˜Ò|ðÜœ2p ˆ]œuVñš¯ˆËBQy "TÞ‚-TÞÚqþFy!…ñꃎ`0MÍõ?¹BÆUúÊš.Ï<ÿÌߊõâ Ç…@È…L3’˳©QZ^üÖZ¥ý@·žÚÒæ¦Ê XÆ»oµÏ`­=p‰ÖÒ™G$çœõ´“Çk ØR¤±>9B¶¸öˆÙÒóD¨jŠX+¬C–·Ê#"ÚjåªáVÓˆ·B^pÑöî›:ÄG¿Ïçzb–5K*Ÿ0_k)ÆK¥ oJ QÞ$BQªL`’Ê?ýŸð¦"´45DÛ³zLóÖùo‚jÛÆo:û'#©ÔÉk!«7©€]“Hí~±aæìj©è¾ ¦€•±ºïBXÙ}KÕ`ð”@ÙŒW¬¥ƒ(q¤N/ñ&\¥ ‰×Äzâ5¬•9®â=á–B–«ÖJP‡SFG`ìøxõ'?^§Ï©LÕ7X‡˜ÐÏZSQvÌÆÁ: „uâ+›1º2¶[r@ÍôQ ¬cÌ4\°ð'#ùÏ:U  ?i}æâНDX Ù¸Ú1Ë7}e{‚ìåLªê´¬Ê´]q¿àØþ8sP™¸+¢g…ô¥NÌw¶cÖa_zùæU.óOD®°:“…µc$ƒytcÖÅ.Hî)6ƒ ›Á6ëZ$&=±§_pSê—m}65IYg“ Ⱥ½5bŸN0§*Õá$*µTKÃf6cÃgOúYÛ#wn«lÅ*0ذÂ`;Ÿ ƒýŠª˜A…NÌ:Äçh…ûÕµ^#;#KòÑYž3›[\âÚaÔ4a±­‘%Óìz,cš‰Ârû‰]õøÎVÅòÙªXkeç`‰kõY^O ‰ú ëþ$â”éJÄ©k=RÊî#3áä°kÒ°MxíäkÓUÒ†­µ‘¯_‚%»X5{ôŠTðZf÷¾nYÿýdÿ°•T­8ð~Ãbÿܨ0¬&©š¦¶±îíÍ»MÙÂPmCa°ßëÇÇëöy`õ¿^û$â¿—”6ÌÙ1’é2f@·¬—æ×®[ÛÁüßïH Z_É'Ûí]R‹ol)ˆm´î²œ}ãáòû0ßöˆ›ï8lW?ëmºV3sýXò<шœkcI”¹6`¾ÿçÁÕçqc®êðË´¿Á†nhÁ×ÛÝ>“üèÔÞƒ'ש:·Ñ8û}üÀu›êÍŸ¦öáÔS¾î[‡Þ=Pqz›9øžÉcu®Óv°áý1.kY<¿ÖÏÞºÿ`þò~’`ÇVÏÐ.ããùÆÖ“úÉcæëL-•st¤\½ôà`ëúFHº×ý¾>Dý6ç+gòXåËLÁKûÝæ°\ïÔGî—“{°Öc ß¾ng:¯É=Ú±Uô\Ý뉩ÌÁ=¢êmÓ~U³nµP@‹ Ÿ*Mîã[Ýl®‡<æIs{t_»M>ôa9Dû…µ§©<¶3o€i;òRíbwl{ÿ&gÃvl!ê µŽ¾ÑZ9¯FBíÜ.úe*®æˆ»A½,gžSmd¹Öá³»Îí[ ™4û¶_æîGr¬ôu@ŽnÙ(7i±ÜÑç©`wN=üsŸ;–ËȸµqÐÓ ×6^fO “£î¿4×úùþ•؇¸3¼œ¸ýÛckZòèRïãZì'o‘&Èý6îácî/0GÚp/¼6#âôíV䀭[ÿ%­;ý“ÛŠÑ7¢ÊÑ7Іּû>ÜØÜÙa^˜ï?Êwô0×MµUΘU̘ÑC÷Ú¤4Ró/<$ßÒx|¢’CΫ[9¯Æ_çÕˆ¯mÄ9ÛÏÛsÑ*Û“e]Þ)Òˆþ;YÌÏmn›‹ÜÁpÿÿ¡Îßk´Öxh´çéÉ)ƼY­­¿[JÄû÷«J3T°I%›;"F *L[樂JhÜ',„ ‹µ€`“J6wÌX.–4 ©¥U¡)?±BSn¨“rÔ‰µ€©¨ï ¨9rÕ ÐÜHÆ¥’* ‚ùi7cÛ>îlÞåZ‚w¹€¢7ÜW7ìàT ÊŽÞA¹ïr- f÷ !-€@PRßÁråôV)DNo•Pó€/”;¨Á@Ð (Á)b¿DŠÐ­ŒòÉwOÒ$ž„Hsàª:P'Ž:Csâ Ø|›òþÔ‰«¶IM“J€’(%ø ¤$* ¤®Ñ@焊4•ù… æðVðŠqÒ9¼U×'C”66ûï\Vo¸¼wbÃ>J³NyÇ*8…6dSæôVQÂr­€°Wý NÁ<À)Žçg¸å”­t2=ž vJãtA•@Ò„å³, ,¯k@Xð + ÷ƒYu>À¹tÂ5œ;¿?8—W£Æsçõ/ Û~~yîÃvîS›T‚°I…èj©öT™?Œý]Õ&žÄ)bGÄ:Á<ÒuA•Å¡` ¨3©TB*™fu(v6…P3"*曂-”ŠùLI[ˆ›â7÷‰†ç:ø7UÆMõ‰™¹¬óIø­µ2sl!º*EÍrT¬…¬¯Yò¾?5qY‚H(µ2%YÚœ]†$C°RçL6ó‰÷µTæKñ«xǯ ’‡µAݧ¾00ºxOŒ.—‘Å¡PÀ½C²ãB~"1VÀŠämGj¤Vw?c°òŠƒÕ7fé'øJdmoP*?O ÄW*®MÖ–i…ÌØ¥Ÿº¯™d+EMÈ,¾ Ë\žÜß~YÊŒæj©ˆæê 3Vº•ÁUP!¸Š£ŒÔ7±@a[­ruw" ªËÚÛ,õKq?N_ÅUÂW¹àKïÔÎf®¤­øëÖvlÙús ”ëkQP®´!ëQuw²Ì#¸:Ñ¿Ri:sP?(ç”+æj§2M”«·H¤ÚÔÔ‚TpH­ŸšúúThª'eBS;Œþ—¯vàVRMl*­Ïì\Ÿ¿±©ÖŠìü{ Mƒí·ø:Ò%þ÷ÿq¨MRÂìÕ7£­î„HÁUlˆXm˜3k°#B°Ø1+`±â´`kÙÆ£¹éþt-TÓ&‘¢¹àÓt´VFsÁ*s!ˆŒæb©Z™+ÅÊá4æ¼i%„¨”ÅJˆÑb©¬Å×juí¸¶ß‰¦êž!Z‰!+e­ 5kª£ÕÙdE*øÂ¼|#"¹}Fr±# W%¯,I÷Y *#òñ‚ËúÁ’¹ D­ƒµô’@\|!.ŒQ ŠÆ9".,ÙG©¬iuê°³¨TYÔ ÞÂÂrÆù ,œTQFŠí"r DŽ¥ÊYFªkÓi¤}9†^!r,x.yž]Ôšêl2¾¬Ûšss¤~Y·jU‡âHÿ2V­Ûúšfrj‘TG*;Ÿ‘cÙù˜h£¥"pl—_ÇÐ÷:GçÖïóývöâÄ ûàõ:ôoþ–Ä€=í2m3SÂ’yÖ¬JR{L¶ÁÑ ¨*ª ªŠù­WÉö ü¹ö¡hU’_†¸Z¤íLÝk5ª®thõ\ΚUPµÑ#–8?DU¥ï×*–vä'Ælü©Å¨ºÃöRìùk 1NC‚R²ªO̧ŸŠ¥dU¶4KVõÂØ‡g=üÆ2•ƒ [ þÊäœúËE[K}‡ƒŠ}‡ƒŠ}‡sGõN*ôN"õÆRÙw8ˆØw8—BGa쇎Âä=: cÃì(Œ3ÌfÁy„jœK¡Yp.¥fÁ¹šCVhL%fÁ B³`P¡Y0øB³àT4 Æ­@³`4šƒ-´Úó£ 0m€qÖhL•¿PÔìð q¡Ã/ÙŠ¿ Ê¿°1¹‰Ê…¿ÓKöÝá\¡ÃoR©Ã/ØB‡ß¼:üB³ÇÖB‡_°…¿¹”:ü&[hñ*to’‡B`|böîMµQWÞ RtVl¡1/ôyyùkcÞ¹ùnÌ 9 1/^Ù˜ڌƼyˆh”$9 }/LÚ÷&Uv7[šÄš ‘ó¤QzõÙT˜¶&š Ó|GSáü@5岩0=ut†b¡0ÌwŒš=:k¿`J+úÃl¡0¬)&³â¤3 lo]…qÇÐU8¹WWa˜S z…¯Fïaë`í=LWør?½€fRý öؤè+ŒsÌ^PÐBu†µA÷a¾œ£ûpž#ºÓýÔX¯ì<ºç'ªû0݇ ~çþþÌ1A B÷á¤bð5×Rð5×BýkR©ý0ÖRˆ6ùBˆ6—Rˆleð5‰ Í  Í¥"$ÀÞ" ¼œDL Ni"^ åKp‡¯S(4ÙRR-TÓäKÓä Mƒ±šë³i°¨V…$U ¾ M*ôð•yȾ» R:‘Éê¡Ð”—‚œøF9¡örâHA  …&Ü’Éf¹:¡l–+ˆ¸*4qUì˜qÕ„âªI¥¸j BSø•‡&¡¹ŸÂ¡©6(·•¢"šk)ÊCŒH'|""8jÄ0qRZ^¥_®ÎôS‰(}akµ-xW44×Bµ­ /b¦ôè鄉Ȇ¹Ò®ÌæÅQgɪ1{ïêúda«N1zïúî×`'<‚Ò‡áY-Š­¨‘Õfa«´& [E…,œâ¦xÀ%XÔƒ*£«xÃfG`ùNÄ`¡ˆÁò}Pq'øú ÕMÏ:¥Î: n¥]Yÿ*›”¸SF0» ËÐGͪüâ¹ôwÏ¥¯ñ\*}ÄsùF­ñ\øÄsaÏý Áÿ;I®DÊŽ…„Ks!äW¢[C’-“üøËoV"‚Òà ˜4$ ¾•4\‰˜,)8WB2pˆ ñçd\(9D FN~r,.Ô )ÅúüšQœrL€ë(Ÿ8B:q|¼ tHQØ8¿ÐXŠ©Ä"ŠLâ<5 ÞàIyÄñuJ#N#‹8¶rN9!‡8G qšdÇJÂÖR¹Í!¥OÖ±pu‹ p 3“‚ÓT»æÑºk°-àD­éò¶•ýúM޽ü¦¶Õ¦ÞfŽoª mšäîêdЦgó– q7u˜Wn ÒvSIfó– i7m†kkͯXkfÕìäíq"‡&ùöÀ<\zërr{¶ûH¾\êíÍüܺíëYûóö÷ã©¶Î×~Øœ}î:oã'„ÃßýñhšÇïåÍí?OtþÙß¾‡šý=yŒ[ÿ¿ýz91‚—®ƒ'Ö¦?Z®íeŸ›Ê.ûþCpëg5W¯~Ûi_ßµ%Ôú}؈õý3ÐÄ„ß^·ÿä[ÑÂaú>¹f[ h¬ïw©6l€ë9~/X§Bݫܙ?Øüj\†v57¼œjê¥;©ëß›škí#ÎrΟoÇ'®ÝÃn‡ÔÖ¹O_×ñ;Öõ6µ¨ýõÖ”«)쉞‰2cÙÌ`ƒV ôÌ}ç>ü~û¹âÄgÜ{öïÒÚÃìsiµž†í/‡·ÞOïu{ìŸtÜq0Ÿ˜?ñÒdy4ˆ85©­–¢ÅvzÔåDô·Qì¶,ÿ̵yÜúG\ç*x˜†nx¯§×ú¸ >>ÍÒøŠxôûÓf'æùÕ´ô±Ÿu†miÓ~NŒÒóUø©\âaïÞ6q<ºúƒey,ïLÔ9f9€Í2·ÇC¶—o³mþ£¢±9„ývæü[»v9¶ýÄ*µ×gR>y®Ð ÿôÔ¼O&#Uµ—º-O¿å‰©ß£Úãä±Þ ®öÿý!Ígû´+tâ6Z[¹îήŸ"»ßtë‰U¡T¬P *V¨æŽªPM*T¨&‘*T±TV¨+T±a†A…:Vp…:V~aÔ±bìcÍ3l‰“ãß…^P‡,vÍ•TìšK¡Ø5—R±k.…bWÅ®Ô÷(vŠ]A…bWð…b×Ô?»â‚¡ØÚ€bW°…bWP¡Ø•§Å®P»â¬QìÊ{Å®PÔ,v…¸PìJ¶¢ØTYìšGÝŠ$^l=O Jb¡‚(‰^Åï’XðŽ’Ø¤RIl2C.Ç-»ÏwTál¢ gq5P8›k¡pl¡p6—Rá,œŠ]¹Ö½}âáoÓSTIlήý¥ÕÍÍ. gÁ7[ ¶‹RW8ÎìE,Ñ£<5Gå©•êÀ 1z}ŸŠXù"Ž"Ö*ŠXasQžŠ— ÊSqÖ(O%¦©±Ú"è äÊSA…ߤ0M"ÕbÃÌÞÕRQ+ ¦„±reAUa%ƒ@Ôâ)±2¨+ûó* ÖR‚A”¨D‰7%„Ä›¢JôMÈd_éz¢?I!ÑÖʤ`ñžK!ãWk%„î¡d;¢dVzœ%³:ê„›VÀ 7µc&#ë€oš¯Š7ExSâÊ|dP¡’oÊÞf½¯˜OÀ)­Ïhñ•Pk! Z;&”ô•­ÉÒP $BKö™ -î³vX×1r¡E”¥ÃòY:¬ÃÎÒaùºL¿–ªfþµvŒl0”h;©Ÿœè$Qµ/¶C^´T>±ò‰­ü‚ÁR­L ¶Ükr´äž9ÍRù¬ãÕ7&Z–à-[ª¥&K%¤–ÃË i«C¶[ÛeT åB¯Ÿµ·“—iÁœrR™›ìo¬ÈtþÄûNa¶¯ÈÔ¯"S®Ì=–‹MÌ©—uV°NN» SYðLe–¼™‚ÈÔ®¬Ãêµ›øU‚È„fñ•­št™úí\‘©nÃZ½jê³mWÉXö®d#ËVf:²ÁH…¯¥œøßÑ”¦ýÔü” •àkR©»¨Ð7)©„_±JTÁ}¢\,…"U‰ëÙŸ-Óó1ç=³VÊRVPab,6¬Æf *–ªØ{"ƒ2¼Th„£IØi­“¤}Yj±×ÂOH(ÌJ¢‰}Ðef©–Jx§OÌîJÚ0 Iõ‰‰Ü@ä†s©,M7P Y¹*@‚P¤ÎÙ\ ; ASQQ*qÅlSuÎ6[[²" ¶t@ ¶¤7 £¬ôuN*Ä…"U¹‚¬RÅ7“ÉEÕ*TДa?€2u¶`’¢&ÜÂZhÁd“ÚÎú{æªgB7I> [}Öu~«®lêM¡õýev¨Æò—.N*T¥BëQ•J»U©ðž=q¢eìSy©vÌ_Ú8–ºÍ½5 \a”PàJWV \¡‚C -­ê„w•ÁòE,ÖB,2Xb–ÁÒD,îÊ`ÁV–Áâ=‚2X¸”ÁBQKCe°Øe°øD”ÁÒ]?û…=Ed,ßQ‹ëƒ2Xœâ_¡ß6wy]#ÖžFwbw]R;ßñ»À¢ÿ)•œò…Wr®xî¢À®®°$(påë3 \ €¢ÀJˆWú–(p…ÏC+¨ú û8ÇÛ™!ÌךjùÔŸŸò¶~­½¦ºÐëw®žÊ¾ÐuRµž®÷VKqÿdî 1]ìˆØ)¨ÕŽÅRko¥×ç1=§*.*q- ö߯ÍNŸ°•M~“ªÅ¶Žzuà_¬;ZÕJNo-–2]k?çõÚ¦kµØèý•`ñ<9ÆŒ³úK'_oXƒ± B3_âríõ<·ösÞ‰ ºVõ´ýÛôÕõT[ÏîÕ`§J_ƒÄ`Abë` ƒªµik ç;°;êo`×ÖNâÊÀ.>m„ÅV†uÍzQÃà>-±Vv­§íé|ýt¶”µ¹´‹î×ÏË…ûe`i`Flu­3+æ3Ì*ªñ›Òw‘´ù­´©ÕœjMŒêx²Ç/¨?•;Èø©lxŒêx2š©•Ú½¸ßZl~nEÌԥνúÀ SZð5L)ÁglQú°tȵßï?¶’¯^'{˜‘÷oŸç¹4xYÎü0¢™¾û5š)ó–ÑLߌÍ_£»Ì>OÖŠ˜§ÌÛsÔœ>–ùõAg_[¤¦öæ1þ?c÷’ôH®czž«È¤I.¹äZO˜ubÒû´“Ôç£ßšT]ý‰àAž3ß-™9ô~:8„ðïåñ¸œÔ÷µ3-yXÁÛØ<ÛÁýYQu—ùNÙÂy\·v»¿Ï¥2ᩦ2•‰±/½ReŸáõ`ã+áé+î°´•Àú°¨ðì<üÉŠj†ýïþëCîT3¼µ»Ïõ¼.m)w*©{¿!m‡—-` K™:õ­¦¦N½ÃjêTãºG¢­žp~^, z,GÓñxw¥^Þ/¶uBEVëÓ+Ë{T0wñGö \Sºšb&kçwæ¯d­nHk\?MLò°’Zº n»ñ¿ò°º§T·m{†P[‰F )äaSJyX+ó°h+ó°BRÈêÃÀ†r§êpЭîu®dEÕcfE¥ùLxªÇHeÊ 2I )ä¥Óüpý$çÔa$)Ñ’”š`&)ÑÖxQ»¯ázÔ#R™2æ~ÏßÛ:ÜHxz\5—©qe.Ó†Zs™}âðJ*2žR}æ2µa{nO1.Óa;׎«¤2­¬ k“¯©LÍ0“”Ú™¤”T&)åu3ý(o“éGyˆL?NΟ’~œoëa*µæ(íukŽRR™£”fŽÒ®²æ(e¨™£T‘£Ôà#Gé=Vs”>2JöQ¶•ÙG¹¤Ì>J*óŠv‚5¯(ÅG^Ñ»ºæµ12¯¨¶½Ãû®ø~»“}xùæÏ¥xfeZ™}´‡¨ÙGõ˜ÙGyˆKÿþØî#÷yÈQú´®9ÊéM°ã’Í}2™¾iÔL¦6Yf2e7™É´ ÖL¦Æ•™L©~€òœÚ׊y‡‰ ,©kß‹ÛZ^nê‰ | ˆ¯«¬+¬²çÄžÆ? V9¸LŠú[“¢¶Áš•ÕgRT~ðößóÆ8W„2§²ˆÌœzïë€g<ÏûÞ«¼÷@ðú®b¢ê›1Ÿn@™\åò:n±_ÀW¿ß9¦Ø"älbþµv‡Ç²)ÄmbŠ6Æ„ mÈ(õjRæ5ZRâµ¶”ïQS†Y×Ú“®!¤œ«´)WL.2®è-®UˆùÖhI‰TX\&?Ãâ”û„ dê³ 1ó©ÙÕÄ'z˼g)íY'Ǭg IIÏ0påf’™ÎX%:«óœáQ•æ¬BÈr†’”äŒvãŒE)ÎØºÊp Ô7˜¿² X“L‚Æš(cR 4Ƥ hèR Pl‚Ì dú3\œ²ŸØ™üŒ1)÷ =Eêçe}í ?ˆô(S&>¡ïÈ{bþ‘ö §¬'Üi$=c@ù^4…”…3‰¼h HiѰeE±—") )'˯”h´¤Œ(ºË„hhIùÐ"Ät(Ê’ ¹)nB¹Ð˜›R¡¸æe&4„~2a³Í­Dhh@yPÜr2 Š —YГ’ ¡qå@Ù(2 ±*J€VcbþGs¦?'{îûA+4 éäbý“!KU¿¶Gˆÿܬðï?d¹©Bûu²ƒd]O÷׉–Ä„“-5—ôäÃxÅ©ÑÒéÜÜõôØÞ˜¢9på¤PÂñ¢·ä·ÉɵTÍm@A¿À§Ñ[×dKI6ƒE ®™lg7Ý¥í¦ý¢wž5$>š\“­ƒÙöZüeª¥ûmpMœ?1!À¿´¸Ê3¡¤™ÉgVߨ_<Îë|´C`mÝ5fã‰í’Ô&[J¶ì”e,]ÿlˆ9&‡â˜Úa'ÇXçË >˜Twfy1P¸DKÈñ¢»VߟNg¦%ð·¤ ˆYrÜàeI-p“‹0ÆÔ¾øuDÊëûö §œ,0ʤd-uèÁÞÐÌ¡*“,¯›¬-°S[±õ¤ï>¦¼Uô/©ðGÇ¡ìÖt›¶”1)†˜7brH™õÕYX“¾öçÿy6%ë 6Aò¹`uס¤fçÓƒ ±Æô™;õ2ö÷Ê<¦ íËõXÆÙ4ÝßíUñ¸ |Â]¸øäLÁ’DVRÞ{iw¯~XÌŽ¯ð l¡ü£=}ú®ÇØ2Žé¦Ü®ã¾ÔòÔÓc0’‘ºålÃ/Ÿ>7tžp•2§W2Æä˜ÁbÿÛtãŠU§@ä=¥ÉÄ÷…/I²Œ{Übû俇y±á’)'‰b°¾5ã©!%/J“‹ò¼Æ·ÿ0·x¹-›8/§7d"v\âØp}c æ¸“‡%•ùD‘t¬sïæ}y;Ãå{k³ÇI1u§g%ξ¦.Wô1ð]¿ùFù‰õ¿íxÐÌ6âXN¢X[òÔtd¼ûø tÞH\¦”2—pH5±ö‚©UÌÝæM%Tn¶ô< Ï·/œÈœ!^ŽªC êB[™¿D[ÂÝÍÑãå(zD="‰)©ÌbNT_Ò˜’Š<&ßÿã>ª]€GX¿ÙŽB§ã›\¿ŸçÆ…¬èܺú_¦ãÂóRoŒÀ ¦ ºpvx½­ØBæù&{ôÁû_N@¼ì©X›sEæàk2VR@F‡@†qõê÷}ðç\.vl&dÑ#Ð…iò%%‹þ“…T+¨kûõöùP#;l0ÆžP¿; ~Ój¶ž•Û-;pxƒj£ t^îêöY¯%ïæ¾¦•N¶ýº4/7÷§ëi|F»ßŽ|³ÐrqfDîÕ»:`p©ˆ€®E[™ê”Ùd®Ó^MvÚ¸»–[1°kávƒÊSŽkçÝîu×¹{KÂOù-`åÒæ+zÈ «×§¤Xe§ýlêaüu~®œóî²Ûþ6í©X¯tI³Z %ÏjX|±[#?*Ò‹Lû6<¸HÝûWø.uŸÂÓÅ|ê5–Ídæ;¬Ñ,­ÇVj=w¦ÈÊzOWp^4ØÝT³|ûs§Øü¬ .:Ìl©Ÿ™P_P—ƒlÔ·ƒ DfL%L¥ îò.¨»Ü=º '’YSŸP]__%µó3oªˆ,|±Š™9ÕÎXGˆ1®ÿÃæp~ÑָشëðÁ"&Ì/Üä­ßMÛç®äÌaá!g®¢r†rưô3;ÄCÎh‰/s¥—ña³=þ8°-=¾ŒùøRãÊÇ—©=¾ŒÑgvŽ£×ãË”ÂãË´=¾ŒÁHV[QO4å"âõ¥,0ßUæàõ®2íTï*SJï*ÓCè]eªKï*c­3ÁFïÜ?ö#ö:=__ÎöâÏëËtIëÖ²}=ÒåÍìPo4SJo4ÓœõF3mP¯/³-¼¾ÌaáõenØþØ®¿ ;ÞŠùF3ÝMâÈú`‰—œiÍzÉ)/˜¯/µaóaeî =¬ ue“=êa¥¼`<¬L笇•i5zX)‘+³G=¬L¡‡•9E=¬ ¥FzqrÄæëË<=Ï£ÒèöfýãUCo4³G¼ÑÔ%"ßhæVÔÍÊœ& U/9eôù’3G¯—œ¹ÖxÉ™ê%gJé%çtŠ?o4ÓPõF3·†Þhæ¸*ÖÕH¸–ŸÄÜäê¹^¾0PÒ ê½§®»ùÞ3·™^r¦{ÆKN‹ù’3-B/9sõ’Sá[Éã²ÇÄÓ¥Õ×÷žz…Ü•^…f Us¹´$síhV¸[¥\¹R,¸M©õ:¼Ûþ_¶™KnsX¨”M!U¸æ¨že‚íkælT®ƒÍkÛ2»õ?U ÑÂ\ K¥Pi¿qîNäþÎA§( 8ˆïº[hþÜ«[•çôˆÒG‰¬E¼swº³§ù¹’ß8Ãø¾@Å£n—ƒË¸¥?îÿÍ—ª‹±1â#_¿/ÐAÄ÷`„ûjKÕÊtoíWû¤´Î·O~P*XƉŽbäWV#s#–÷Ÿ¬5†9 ú7›RùoNõ¿<ƒK€Îã.t¶UCo:yÔ c†(Î3¨žM ª¹ÇPPœ£WEqŽ%ÅóÁ^ðX Œ Þ½æ<Ö¹v7Ò? ,·¹Å×`èÀ5—pYêBi1î?Y[ m¡¸˜YTç¨T^ŒEŒØ•^Æh+¸`ä ²Èzÿ?¦,3.o–ÿº6R‚5 ©ö¬}ño§BK¿±tÖã©ÑRJðG|âå°v÷Ñk[*{:CòØ C€)…Ôås6`“å`ð€SÊÑ/=\ëÜöï—ö9z .eS§ûHx…4hGÈL9rA3A ØL^ ÎD]Ut¦ò†è¥Ô•8lR]_¢ÑúRJ ~És,øKì0˜rðWB‡@Wʶ¯qDó§õƒÀµ®Kð€Xʦ„±”Ûu¿Pv$Ðý6r°õÅ„ ,&L@KÒRŽ~ëŸ/½²|®T2e[í>?ß@„mJ)á6á0p|s 7a©Ý„3¸LØÖfÂØºDÅêR*þþ¤¢5aK® f¼&HŒ Ë 4&´8&öxLP™°Ð‰È„ $% PJ¼•–RëÖ¿ËïËxýÀö¤T+ ü·WÄέ†¸LJ˜ €™àA€§ƒ ö=• yÀ%Á=/‰'b&aôCbXÑàJ×fT½ºvnÌÀLr˜xí£º|å~˜l_Åg¿¥Á)µjøåKû vŸIÇ©z¹~Ohk$j.—Ç÷—æW–C Ô3j+‹‘ÕVPÏH(+–%•Ô3ì°RÏH[מÞܵµ~%™¤­RüŒ¶–­Ý#áËó¥¾ôÃ|ïø½{0ô$ÄQ{ÐÐS·¯O÷Ñ_û¼ÜMëô•Ë ©û¸£w£™µ¥Šlµu[jþ›ê}ÙF-ÈmäDgMµ˜O¬ñYS*îVSãCY×Ã|†YΦF‰ñåöý5:†µwÔÿðùàþ²Nœ[z|ܺ¶¼ä{¸·¡s‘¬Sm1cO^ *+x¸ ƒñ‡Fsî¨aí>·¬µ¯N“¹Î]H–œSYãyb“ÚæzÈÂôÉn-¬@ô’µäœ¦Õ?¤ïS<}eÙSñQ˜N/…éôG6¥õx Ôàš¬a¯D\î_ù8é´MñÖÔOöØìô²Ÿ@¹º²0£tty|ç S©Q¾N—´@ò÷q¯¹Ýæk˜åß4­(ÿfw§~û¾ŸŽ< ˆ|Øc-ŸX|©ìV‡YÙM3íU[cWx¤Zÿ̓£gb€§~ªœßWfµL>TDÔ’s}Ö®ˆÛOþ%×§òýÐÉ+û"ÊÒ9øZJÎ[Ƹ´@GÁ¸¸öÏûó«)ÊÒySŒ²t¶çœb”’sŽ#qÜ®nÓ ¯0jõH=‹tp7¢m´u9 äÒöi9¸ðßû6ë·²¹umÏ—ö-¸90‰à¹¡V£:š+ÕÑ4Ս޿öŸ/Ûrp´ îyrÇ+uϓЧðÜH«TñҞ˞æÁVÖPóh‰ÂçÉ•¸e‡šE¬PV"O–¥{œË©|v蛑€M)%`CŠÄ2)µßŠ{@Ùª¯3©ëóÅp:ºÌ{Tž6¥”§Å3O‹auD¿ë}ý¤iѰ) 'ŒIÓlJ¹NO°f1!•YÌUb3iT`¢¡"!ж¥™ Ì Q.b$DÓ.£°çzÿÊœ¤TËL4³¹}°Ž'š(iS+Ò¦q :DÚkPIh ´4´­š5ÅnEÖý!kšŠŒ¢ãŠÌ­€J2AäV³-åV1ú$º¶€Í)ŽœÝn[·Ï×_ÚV¤Vsðʚ 5…R‘5ÍÑjß^9²ÍM0s«)3Ê™wGy;:È”…ÙÜ:üçzúJêàèDž–>)¸q -äi¹Š‘§ÍÑŸû·˜KË|,5Ò´<Ò´ÜÁ}Coä7)¥,·F$`9úš5åYSlëÛÈì×¥ûÜ"¡¤§ìûâèncîU(çõ@ $¦ÁRŸ{PÙ>(ͽ.’8Çý#Ãu;}2:{…g’8۶ÿº¶ƒíÊì*7O¥Ã5ô›Ô(œJÔB )XÜ(¯ãã[3šéÛ›ÖÖµáÓ+IxƒåA ƒG –WÊHÁbŠË8¢Æ—¬éR¯ýëèúÍ«Gä`!•9X^’‚÷†{:ˆoà‘©Í)* ÿ=¾h^Ç ñéé“ä7XE¤sy¼F¢vº~¨m¸";½¨§sás‘©ý]³§wKòÔ*eöÔ"}j•1†E’Õ"ËjH‘f5žÕÑjêTL«Ñ–Ø”"EjJ‰#•S¬,¤À’SDËQ%—ªôdªÑ!0ˆÕ£8WÃ. ©D¶É'«Ì&¹Y£C  C èÂè‘D¯T}ezÕà“ê5¥ÄõšŠÇ5 !3v™è^£Gñ½Êäƒð5݈_³?Q¾¦ãBÈ k3löÖל¡h_ö€Al«IâWmØ /¬¥õkHÖ5•„ –²Äþšýþ5ÏDñ¿ÊA$·«Tš¼­Ù–8YÓ¶DÊšS+«,0iYµ«“—5(Šå¨XMP±\ ˆ`µ1’ 6õ *X­O ˜SñâyÕꇫ†^Ãeú¿.Ãd.cPâqÍ}"×t4 TìaE$ŒŠñ5Oó*–a%P±,Kô±ÚÓÁ›M‰@6¥D룮ðµ†NIØššckK”­ºu&gkh@Å>ó#ÈE"€M© r³Ã_lÜ©æÅ«ýš°éjD«Ó®ÂË׈62ðÀæZ‹Vu’¼ÎvÆ/Ëëìjý䤿vÖ*e”§h‹(OÙ–Z£-2´æè[‘`³ˆ]õÛ¬Gr´¢C FåÅÒŠAÓšm} ë“D­Ù’˜ZSJ@V¹<¨Jm‰¬z[+M0èZ!¾Ö½[sôblM)Q¶b\@ØÊ¶€…ýÖÖ”ÞUKxW)âVØMÂOeKû·Z¨sšûT¥²„?m‘â5{Ç+´•$¯)$`©¼€¥R§‚ŒÂAô Õƒéž+á§`Ìàz…‚ì55/ªìQøS° KA „¯9z1¾¦êEù ¥&²T ‰ô5/ü©–h_qÄ&þýHÅŒÂà„p&,ur¿â`Iòמ¤@ÿ /þWœÀSÂê€gP—àšu‰çkÀB*Y`qì'4NWðÀâ&"Xž›Á‹#`P9.Aa¥ çØ`¡RÐÁÂÓç ƒÎÏ×`„ÅF‚œ°Ø‰à„a–FÐÂæúˆÖNþßUèt‹%çkŽ ÈL© 3á°2ƒ¨@fÂ]ÈL¸\{fhkßÕæF#~Xøxà7Á·U†XøDoJ!¡7Á®’ÿõwQg±krèZ[bä-)p­-1nM!Äš1&…š¡EšÑÍÔeƙюÂÌR”ªTZRŒ)ˆà1…;Ƙ:Ƙ9†ÇâÆh acÚ.¢ÆRИž¸Æ1lDŒi0F_Šcú s3‡¸vÇ`1ƤX1€P1d)Ƹ(†*'æä&¦;Éø/­]hIq]®¶B¼cR¸P´–È`-d«Å¸ªÅ©ÍvÜw ¦­[ã´œ´´JDi!„ --(»é½3 Åq)„0.].¢¸tÞârÝÃ¥_F—®2"¸<¾Àåa™¡Y^ˆÌÒS"0Ó¹qYž9ËbLŠÊrá2(Ë%@oNø¼éáÝ¥ÇAØ–“CÔ–n ༹-³¥_BÈ–F[ê2Øn$d7>,"¨‹UQL7UÓ7 0‹÷iƒÅ- ¶7&‡Ø0Bh˜š VÍá£â˜ˆó†Žà1¯ ˆÓy!tÌc‘cª Ži· œN0cË\Y„–iG \MÂQcJ)lD["]…HW³GÑ©b\ðI(5)œ«h+)k4E0³bŠÉ¹ª¦‚MB`SõØKh¤¶À¹ m%窆œ«ZC©;³B¡EѲ’¾UVšô­è[Ñ#(W¡ˆŒ€$Ñ ¼¬h)XhÉÞ =€—Uö¼¬¶åÊ˪¥Ž°‹ƒOöVY|²·J*Ù[µ<5ôÒàAË*Ïœ´¬RWҲηë-+„@Ëj/ò¥M±r·jTÉÝ*•FÈǪr«p_$Á«Œ9 ^ÕV¼j†Að*÷¯ÞÓ•àU) ^}>‚W|¼ÚOV‚WL1ã߉¨4°ºe$ ,z ¬Žào9Ç µ¨Ô­ºeÔWB`nÕ9A.Çžü®Ú=æj\çj\Éë«AåŠÕ“+ÃW¬z ®X_~*W¬ô,°²ÓdµÍWX+Y`±Š;Óº‚+VÃJ®Øƒ)~±Àª­dnµ" ,ü®òo§`nõÕº2·Ê£'«Ï»ÊÉ*u%Ûª#²Ê¶ªUL¶U·Zõ¿œ¬ê.ØVåÜ‚mU·Œˆ]y¿©ÍoUôßÙ“Ô*å'©!Å'©UŠORcX|’R‚gJ)>\ )>\Í)âáj éájj^W£->\¶€¼”Mñu+gïVS ïVcTz·š£Ò»U©!ß­F‡|·š=êݪŒ9›j©ó±i˜<›†›Rõ©†•ÏHSJÏH³C=#͵Ö3ÒhKDe[ñ@4·«ˆfz šŠò܈ž‘¦qéiŽ ÏHSzFƒç3RYM>#ÕþÉg¤¹ÔzFš¾9Ÿ‘fÀA¡Ǧ©R=6ÍQá±iÚ •p&êIªÜH>IÕòä“Ô<1€ƒ„õp5­YWeÍù$U"Ÿ¤†VõŽ4šâ;RíŒ|Gšƒ×;R©+Þ‘ê| ॔ð/Iå(ã%i®¡^’¦Éë%©îx B ¼‡¤ç¦{>7M5è¹i+—rX|“šö§×¦Ú®ñÚ4mðLèPoRSJoR}º–7©9,½IÍåћԖޤêF™oRsõÚ4ÛÒkÓ”ÂkÓÜ­zmš:ÕkSݤž I¯MuÜåkÓ=_›æ…צ¹Šzmªó<_›ÎvÆïkSm^šÞÀ¿ß¤þ¢/÷Ï¢ ¬ )Öd["¬©R&¬ )Öd["¬É¶@X“B"¬I)Ö Ã$¬Im‰°†Ú šl \49*qÑdS¢™I)ÑÌäà3 ÍqŒ&{ ¬ 2Ù”d0ødAS`ɦ29®Áƒg{ 2د`Á°’A&G%( 2Ø`I©ÌhÓ’gÞ-yf²?ñÌ`ì`á ¸­diAŠƒ ÜdàEÀ “mA¦Uóì“% š*>hf¸ÅJÎ~¢Ó £N#g/©ÌÙS*rö7ô78 @­‚þúøSÐßP÷%ÕÎu¶pèçƒÛ&4±<ú6[[]á\© Àᆠ8.à`—‡Gg%ÀqE~œÃM·FÐä -Ðä@] ÉÉåM–:irèn‚&û49|Òäà–šœ, ÀÁÍ8t$%¹ÏA“ƒë¨m Ô𮿮ÿ ×§¤˜9ÅH1ó–œ4.±äÀ"P ¥‚%Ë–h,9ÔWÉDóþÃ3õ$‘‰žÜvƒK‡QYpéàlÿMŽ^ü7l«ðßÔ½JÐ~ÉY)µô)Û¾Ú÷Y[ŠˆÕÖ®û¶…nÛö®˜R}÷cýôú€ 3nV[(mN)ÄÍ}@£­ˆ›%”q³¤2nf‡5nžè¡DÄj*ƒ]JEèIFT©ŲR£Ïbj™MScX/ª)ÔRË#ªä°¢˜£Êx‘jˆx‘öñ"9ë¤ÑVFyì1¢¼‰q•(㊧¢”ŠBiÙVÄ‚TjJk+F,ÈmåÔŠXpâK͵_¢¼Éƨ•ÙÖV‰ò¨­¬ÌÖþÉÊlIee¶Ê‹[9Þ >­úߪdýǧxu[’Ù'¥Ä!ÅRâ”R)qH©”8‡¥Â^t˜…½Ùßðâ|û|=D‡ë£¿nèÚï8:D‘0tŠ"álKEÂ9úVâÔàþ÷6F¿[z»8/»"^à¬èQµÄSŽU_+Ž!•Ç9xTsTQqLFÅqv¨ŠãÔü¨|é¦óýÃºä© þð餸t¸É¢Ä™†%ÎÙ¡JœSJ%ÎÙ£øt¼@¥šƒBhH¡¢&ˆBhìkðéd(—æÆ¨åÒp‚(—F(—ζT kF!4zÌBhÌ…Ð%Ûúµª\švÚpV€×¡FM5=DÔTcWwϽÛÃå@¬„†NQ S*+¡qX£Æ™~$jœ©®¨qF[¨^† ¢z™qÐîÐP£Æ™›?jœáÁ¨ÿ†"gZ}9cô(r¦Vk‘3l°Ÿaûë:?Nó`Ùíz›v(âz®éníü™Ú èy¨¬ZTMwZ‹ª±_“Rö‡êeô‡êeXJ޹{jÉ1šB1q~#oÛ¸Alj•§54ȶë8Çæ§ “1,&cX(9æ•2JŽ!…bbHe11nÍ(&†PLÌÛHÓâƒàûeÂpóY& Í£LWÝu„ãøÿÖüS&Œ¶ÆE£]b–'éYá´nýFÙë>Qîχi6¥”-R“œh´Åœh•rN4ÚbN4ÚRN4„˜ )æDCY&Ão»ÝXËžä™FḚ̀Áxyªa!„µáÔVmekÎPW„°¾~3¬ øÍhëÑ;¼ï^úÀ;£¾Ù¾«„úCÄ£Rêô< ]óóÛ›Bkù® ­½±W=fh­Í`i¨ ÑÐ×­[>ã:Õ*»Nn»Œ¸î$ñB•†|cHe@,ƒÎ€X+”¡®l"C] ˆÊ©‰|¡ÊsXɼYV2,'C]`ɰՌb­û€T¦¯eɾ®×²d:¹_–Ÿep ^Zz7©½¡Kã§o×m}×@êvK½-ïÇÛºtVÀýNÿa†L©NÓܾsÝïÿM…Z$ܦ²/ø‹+-Ý×Qª±|jcSêÚì½!é½ékHý4ì7´ù¸wÏÜn-÷Û§êR[¿ä]Zÿ ©µÇèßtjªÝïM]šz2_ž.ïŠ=íþ¸oÁÛ»ZEJè%6—ÆîûB*€¨]%•<ªê±“wì㺿kFa ëÚ‹‰–õ]µ#3^zZ{mu¯»ù62•³¶–QÃu}¼Kg5öNÁÔ©Ä šÚã”ËúEm]ú‘òøÐJ_p»‰Ï7Îýé¶õ]V¥=q×­Û‡{Wfsêmm{È<Ÿc3ævÔÝwûY¦mµ"͘¯÷å]s­êÉ¡K+\ç1àb÷¿ÜÞ}»f4~šku?6Û÷o™[Ä} L¶ÂþƒÅné÷áÃÚwsw’Ûã] ¬ ôh'oÏôŸ§Sle ãzzh^·~óÞÝäú®¡“Rï£úü ¹Oãß »ô:]ìýXê_ÂÖ}ûH5B´u=Rûöß:¨ü‘V—ñe®ç£çÎyßa#2Øuÿ˜‰×Û¸Ÿî—þƒ#±ý°{cJèѯn½©ù 5’&{¿·wi©ûÔÑõÛ™8wõû±Úêâ.×CGxÄqýX<ÏÛj1R[Åû‘æïbòv0¿óó;Ñý~0¿e|­Ù/dŸ7%¾r¿æ‹³=?yn§7†¦´ð|4>™O×pi /Ýà2_éµ”ï ó¶–ÛeÔп©JOmí.÷Óéà¼nZÝšSºÝ4ÙJÞµô\¯#ûB·/t[s`G¾¦—¶Ï‡'4ö&r¾¿áoäBN=,m™ßKÅž«ì`úw98«Çç¹–›Ÿœí#s[ÁcûkÊjjØN§7øÝüÞykPæRíKÅ6n·¹•žÆE·•ºÌñÖ­³ß=ºÛl£­öhd>.À+MÌæÖVhyWJË}oc…š‡˜›`ûtÒ®#ëk[îã»n«[žßFÆÇß^„vžûšv$6Í/ד¿¶Òô>öíè¢1^{¡ÍÜ»µ›zÓö-ûµ­uóë¶ÅlëÈl=>,õ¾¼µÒÒ¶5‚Œe|ߺuæ­©Ï·Åëãz° Ö®ËmìÜ!õ;ëg,Òë·ð÷y&>XH1Îϯ’‰ÓÇ"²-ÅÁÙâàRˆ‹¦2~ESˆ_S ñ+úë«“¬½/à{D¹è0£\¬ôuÄ>Gw®šBÀœM%u®šBX ]!¬¦)GX ©þ]®×νH!øÆ¸|c[ ®Æ"®Î¶WcXˆ«³)ÅÕh q5׺P Ól}Ã"1§Ô®Ôλº¾Ÿ¤z÷DX ›¯ŒÄ\DÕ\ꈪ9Ȫ!•Q5‘0¬‘ðtWïÛh™7¥@z@ œm5’•ûø˜{°Ò —s“M™ãB¸Œ9>†#içÙÜ".cgôs¹ÛÍMP0ÎSÚÕu;XëFó|mŠØ×åà\©'ºë)¯Ž>=ð߈8é~I„\ÍwX £é§øÞÖò~¼¦a!H„$BÄàÔLlî˜ÿQí5þã‹ø¾-â¿”Šøžôɽýw°4ý ÷~´Þ¼_?ÿí¹ÉÇÜÔnòüp×Ò ±]k¸I­G 9½þ’؃ý ÷~¤,›žá&]i„›êÄ[5ÞÔlßÂC<ŸÁì¡ÊÜå‚{–K—M]'4 ]CH‘kÎýíû>Áí½_³;Ä­)”)d"ÒLš9·Vvw¸Nµ„8Ýe˜™ÝµËÓÐäuª¤ 2³ýL^š¡\–÷É•BD³·ŒCsmÛV¿ _|™ª;£P(2ƒPÚdA!”!hŽ»a5PŠóúŽ@Shy´±ì—7 ºËX6[ºö¢¶]]—ÿf2çQAÛŸª¿"%¨)ƒOeT™Ý!¨„ dL‰åÍ2…2¢„UF¨ÈÎjt¡îrIZ¡È³·ÇÜ–2´›î“¯È.eŒåNÀå´›÷ÔÞŠAcÁÁÝzýZóîÝðÍÀW¼ôZ‡c}+&ĸ3$„"ÖÉrÿï2Öí6›?½lg@{§Çã Ç¡¥ýœºœö{Ü_>M8P–ö‘r<ž™šÉuißú©3=š2bäaYFE¼Xe.­ßHºÝNÏ®V z¸ÍOæŒ(qÂe@™Czô«ë.´Í7îi¼‰êÚžÏ?S˜mÆ¥ð%pbÜ}æ}r‡§W $±ß2Ž„[Ê0’³«‘½w üRáÏ‹~SøtL!±!ËÒ+Õ˜ÏGEóÝç÷WîÜæ(ÎËéý¥;·=EÚµ}}W{rWÖ¤gšÉ½ î#»¼¡Üp‡ß¬b;s¦ @ÜŸa#¼ÀÚ R‡Ôþãý6ÎøëÜÞ2ülÈv÷öHæÒÿŽ’£sÿËöþÊ“R‚ýM©V½þ¥—¯Q¥ÐÚ`»î£@ëuİU‡K;•ó¼Çû¹WB5© /zÌb4Ìbi+0‹1ö=뎭hڡЈ1ögrn]>0{jkí[oû°¶©æ¯KvE|èB¡ˆ¥?!íE¦ŠRj™_ßï—†>}›ÎOxÅž_A"–ª¢<-cMe‚:h¯°»Ö7«˜6Źgµ×áGŒ¡"þZªBëjm²ÀSD’£ÜZŠé²Þ>ç‘”š0½2ˆÌòiã÷+rAyž·…ºRŒ àºèñ10€®Û'ÎA¨•9'/´z^Ðãå«ôé4™DõJ*zå'³bR¨…TVŒBûÿº>Û|}Öv™[þí4èsç¶ÞûžØµµôxcwVß › ^ÿ›ïëQµ«áC9,k΂WíÅž;ÙwÙ2_éÖQ¯K:} M±Ò€–SºŽ“úò8ò‚¨•âÇãφ›ànfäc\FÖé9¦:\Ÿ,µWÆÕa§ûmd¾É~¬ÍÿLr}U -€ {ÇVa9ñŽ»ØJ çSưÏóŠp}Üt)Ví¥oéërpø\.ݹ÷ òyn¥€!ö»ž‡-ϯ“ÈÄêvwí9òæKoÓÁ·ÿõôl§©ž²…Äò•Ôõ™*û`ÒkX·)k4¬¤¬AS £æAF£“Œfn7ßd4J2,’œÞ>•²Fme.ÃeÌ&³¡h Ä6Þ­Ê䋲Æ6_+l¥ˆ¤¬A[™•&c62Ö CäN1øäµQSY¤*=û ÆöH×FcÆ*a9ð̎´ÀXc,Œ5¶¿ÊXc7Rk´õ“±FY2ÖH§ÉX#ue*£O^»‘ÊXcuUÆ ™RW2ÖhðÉX#ßœŒ5}2Öè48š˜íÀnDk£¦nýø9oï7:òHY‰+ãJ*HŠ=FjÕûµÐÇØkúmž Ñ–îж}Wœ§ÓÉŒF•$3:‚O³µ­ÍÜ”Û7ù¥õؾ—ÍÏ`ÖxóÂYC¦F1,ÌL,«ä=gGÏ 4*müÌXJ[IXã»b _­ˆþ—ûåýqX7–,ŸµÛª©T]­“×FJ=¯¯,•ׯ[±òÚÈþP¼ÌFö­PÛho$±ÍÜ꿉mÔVÛ̯º_Ä6r ¶ù…zæŸ#ééþ…ÅR¤¿TB£Çæž…†ëLJEÂêÃhyRJ„;9zî`\ Ü&’p'…D¥ƒ¦îB[£:tÙ2]E’ä`X ÷«¶@’ƒµ$_)L:©xpä¤(krT€ß•â“Ø˜Ä6Ù’ˆm0AÛd["¶ÁØAl[NŒ^-ÏÖ?„u?2×–èo0.ÐßÐNƒþ£ý ¤’þª±M ˜¹r»†k=Tœ[ˆm`ó £Èhà)A3©Ä¹• ¬ d4>¥*ÍtÇÞO¯àt¢Ô`¬ASà¢¡ç –Ø Xf`¨É2Ck™ìP|.S }D0µ@ÉÔÂÃ:˜Z •¶’J[»ˆÊç=$4­|.ÜeÁç_ >œéµb—›,‘i¥PÃà˜ŠzÜɉ2³ËTü|ó“A{ 2¬nR®äÔÀ¥!˜Ë©åóEYÀ2N¿v¢Îm œ,1&„{)JÔS>rÔ˜À’BIC£‰öeá…LF]X”x¾(H2QX%hJR,%éO@R’Bà( W¯%¡|)ÞËbú×ßëtr¢'™í˯Ø.eZ€q{Þiæ®9ã?ô–„¥ÐR<©”YfðûNº”RŒbÇõð£ßn7SЮ¤Á%q(ýIP Ä˜òu¦÷e0 dKñ„S§E<á„P>áÔ˜À‘’çN¼ó´«<*ÚáAW’Çs„„8xÁU’ÇE¼ôÔ°ÁgÝ!hÄ¢ÔGœ>Tk\‰qŸÇ­b—.3¢Ø“ÂÂpÊ CЫ¤2î„×Ͱ“› ²›bLšÂ"2Eo`rI!¹Ä¢ä‹Ñ |Å›èü,“»õO‰}Y_qú¸è ]/GWÔŒG!–—ÜN yÑé/©K·(vªñ#oé—æ,vƒ9pó`ÉÃ0žŸré~#L (éNÓ F|‰µð²&†ÿºÆ7¥Tã )½b )Ôøª©|â™-¡z3\ûcˆ^<ð~3†ñÚÊJ`´…J`Œ•Àè5¾èå»’Â3O«¾”ïJ*ƒæà³Æ×£ª5¾Öi<ÍQ Í£XãÊJ๠~WC*+½}j¯ 5©f‡¨ñ…ªwÑc{,жÙýñ®˜™,Ðo¯og!•5¾êï]a‚Yä«}E¾è1Ëw½1Ja.úCa®úÃËÙl 廲f¼‰EQä«âµ+¤ðÚ5-E¾¶ÓRäk¬E¾öµÈW»:‹|u’e‘¯tšE¾:¥¢|×¢–ïZµ|WmáÍ%Œ+Ëw}ÄÖò]oØZ˜+ç…¹roY˜«¦¢0WÞ ïEióñ^›l|îkŸCÖFaY )TcyÚSÊuÜ€ì¯A¹Ò·±Ð§ƒ»ATÛ™–ªbíÖ¨*–ɪbYrVkTYU¬ã<«ŠeYY/ìÝZê…1ø¥Võ[Æ:÷ÞzGUñì¬û©Ö°²^XÃÊJ`_;ã!+¤ð®Rù®7ë,ñ•²Ä×7–Zâë}QK|åD²Ä×gÏWIìTõYâ+?™%¾sCý.ñU[Qâ;¿é~•øÊ·E‰o}åû×øJ)%|ß”¾:r:Lð^õ—ðJhª¥ÑšÕìãMbX ¯„‰„¦€v„a =íRÈH ¤c)¡ŽÕTÂ{~õ ® +@Še£ „¦8XcOä`›{…–TbK*!e3û!°×ÈÞ“½m%8ì àPZžd¯I©–'h8â­JsÛV"ÿÊÜÊÚªØP²š„Öõ m%¶¯ô0áµ*çmî%OÉÚ"˜0Sh 0SRD¢Ëšâ=f*¥ %Õ€”¼w‚>A  OJÐ'Œ Oö§?Ô.ZÂÄVòâT _9·Dñ•iNæl%«½b+Éþ5I‹“¨I> *j’Ô•øÂJ€a™r‚&É›&åŒÍ¡ ˹fZª@Gh'ŽtK #šAXR!쥠!ÉB ÉkEž\$ °¯ &‘}ç×£oÆ­MB+ÙÁW.ŸNõ«œQB+ië$KŒ(˜¬®údVê „_ Ä/ø%H%°’V'[lñzÿÅ:X銙¤íš˜Iº%Œ¯‚™äKTACÒB'F¯òÄLÒ½4‰dÓ²Òpt—ë(¦è:MzSHÝnkûø‘”à/ÚBØŠ¶öÿÕKm[¡åu&u}~ hÌ×~E[€Ƹ2nU‡Ý5_ïëÑ!…jbT ¬‹¦j<š" f•P©¦1޲)ðƒB›†Éø2 ÓØ3 Ãà…K”="‚Ö/£øçz¿mûóEÃb=¦=¶è¤ÿåö‰m1GA¡­ פ¯dõ”¾_„9öt~ß`i—vô7n_Mp"ýaÞ®¯#Ý‹‹m!“}%3¦MµÇE§£Ñ XšÈxM-S šãm¼LÛ´×ÜÊ1–§Ô|ô#·7yûÀí`…NÝQ6xšÏ!¢,'CDõ!"<%1E`ùê\©X¾–/úC¼‰¥°Œ+Á|ÑÀ|íY‰‹XN´%ü%,uœÚf½rk|òJ‰½Ôºo7Áv› Ñá£?gX™ÂÜY ï)gˆØU:*TJ!lgXN<\*«ªï#RjçÒò¡óƒ]@M¸–Æ7·óz0ÅËúµÛÑjYÒu—þùêËw_ù¦k Ô_Än¦ÿcû §T°Öö_WÖv$4ªïFg~Ï;_D÷²ì1E¹ºlœƒ U׿ëÀah‰øù‘4b™M¢û‚Ðã‡åz°3„3¬JS-ÐÚCëõóœ& &8¥Œ­u,Ýuµ€¾­lG¨Itá%¶ Va_eKЬƒeÜŠÛ׊×}¤|xÞ€"ñRL¼f[‡SJéÙlJéÙÒ³èéÙlJéÙÒ³Ù¡Ò³Ù”Ò³9,¥g³G¥gS*Ò³Ph¦g1&¤gÑÒ³œ_¤g±8€ËF3‡ sG7›BD—;'r¸B&“ÙYlBdg¡Qdg³-dgÓ¬”…â‘…â“–U†ŒÄ+‰Wö‰WH1:D¸/E ‡‹Á#ñ ׆Äk¶¥Ä+zÌp_Š@z–†Z? Èè‘ÄͶ”Ä…V3= ïô,–éÙ”Bz–žò7ñŠ%Dâ•jÄ+<¯XèL¼RU‘R…e!¥ …"¥JÏ)Užš5–ºxÅêd´,ûCæž™WÚCͼòH¬§|`æg³©ÈÏ⢅Ô+ϺH½B*S¯<.jê6ŠÔ+R¯¾$ÖÔ+L©×éÕç'õ µ#õJ©WžO‘zÅæAR‡~†›Z L½R]‘zåÞ©1©”š Ze‚–'][1A¥qS i\¬4Ò¸Ü=‘ÆÅ&õ †¥-ÝdM½òUS¯Xh¤^áâÿ/±&S¯Œ×Jêµ>&ž*¥1!LàìQ˜ÀUʘÀÙ£01.`§”0sôÂƸ€ M$&p M%&0tš PhJÈÁ)%ä` ÈÁÐ)à~S§€ûM!ÁýB[ ä «I _ ½ÙŸ z1*@ô嫄 •¢7¥Ú¤q¢7 ØN6›òÅä ©òÅÈ7‡% _*"0za7ÀèŸ Jæ $_HÉþ H¾’/ö5|a„@òõÙR‘|§[öÉ—ª$_úÊ å$)àýÒuÞ/Ì x¿°çÄûŰôÉ;#@±û )€Ó+(0´• À<­vúªã¸Ï’¡ƒ!è`:¥ Ì­p¿8÷‹ƒ8á~±÷‹±î7ÛÜ/ÏÅ€ûÝ“~á~yc,˜K>Ó˜À˜"0a\À¦¡Vt&ÈÁXÆDF‡À†01E`Ïñ s&0ÆLàÙ]ý׈jÒ ä`Þ+9˜öÈÁØg‰è$—šøÂ° s9˜A^ óü ä`-п¿˜ÀY~!›äÝë Là_ÅL¢ÓÚU4JKZîñ øRçñqu¿³œ?`yèh¾Ùã¸^_Zeâu>zþ†”âN´%làl+ãNµ/òÍà¯ç †¤ªÃˆN­‡–p»~J’¤ÓKÿ^»×û¾…þœ¢©†õØ âôcE[Ikƒ¶nÏïü{ 1¡â\45Øú°®3kV4¬¦FÕŠ^ߊ0æ“5p±Ç´ÃÇ>œvÑý¤ÆÕ”•±/’mGÃJLåˆt¤,@/ÃJ3þÖJŸ{ººÝøçæ°öÕi2×¹e G£ÊèÛ_ãj¹@+C*±•aZã;ò¥yÀù"ú–yŒ»ü~ ºÌ{¼ŒüCëñ@©I¶ã5ìwÅå~ …ûÞ=Mu½?÷[D~† Ÿ¹÷ÛÎØÏ¨F#œ.¢¡¯G?˜//ì_,c~Ì“#½"@S÷ÜŒuÌH^V¿ ±¾k&.¼Æûj+Ñ›¹Íu9;l™»ÇÈk¯3¥öO§íéJÜàyLq,ç_lϧ~”_év¶•ߤ€FCóñíÀ÷²@†Ñç·µ´gºÔŠäŒ›Æ¸C´ þÁùsí±é¥áÏls‚vÈ>"À£Ñc~‡ÐúŒ‹óÒS1½Lð`\PÆŽÍX^mø—¤ÛÑbûR?†yeh-ÝgЬÕÞFmðW¨q%951 ÷÷+Üm>ÇŽÝÜjQö0ðèŽ d^R™¡M ­e…Kæ‰hÉôÏ_œšG]Îo<¬ƒñÜ‹m®û…âÍÎú¸?ƒôÈĆ3±B&6{T&¶J9›=*‹q!›RÊÄæè•Åè‘ó )0á C%F³CpáhðHŒ¦"À†ƒA‡©äÃA‡JŸÂn2}Š¥Îô)&ˆôiö§ôiN¬8²‡¤Å‘5#ÉšãR’5¥”dÍq)}Šq!1 ©LŒæ°”òä†-ô8BÆë“9²äEa§È‹B yQxäE!…¼hÎ8òôÉ3ñô5/:Ý‹ßyÑ Ž—1²§èÙSX2ž0ÔÌx¢ÃÌxbû$Ï7FäE±a‘¥‹ˆŒgŽ \7Þe‘òD[Év£Ó énÔ#£ÙXqÔÒ§8’Ç®&Y¹¯#ÉŠã:Ó§8‡‘>Å¡‘ä8;’¬Ù£’¬XÅàÇñ™X >rt–!_Ë{eÍ×òùZè™X¸]db¹"‹q! ‹ÈL,:D&RÈÄbŠÈÄæ*‚Rç@]ßùZŒ ™Xœ×-Ó²‡óçOÅìBÿ›®ÅÞîR‘ÓÅý9]H!§‹ ‹l-ŽƒÌÖòì 6X†x‘‡å©yXi¾äa!ýû›‡…›Ì<,Ö&És~þþ5+N '„„ôBzJ! 8…œ²%à7¥ÐvwÉë;Ú” ‚ÌC ˆ'´“=)òì ï^sn •½xÇó/Œ: Bô–PQT@eÊAKInCÓ­àN°ÊsSÙ 3^|N\¹JZ“‹ü§Ü)€Ê–€þd=ýûCXÃqW¾ô–¯JÑR?aHIi“ìS¶”T5p:‰ E³,t6è,yjRK@r‚Y&DSZpw1¦`²ÁÜ’È®"1œhK•{&Ç ÌÝê\óc^×¹ ™ ÇEfJà2egxŠ5IT&ØI‚2áäML&º¯ ÉUŽØ·1»Í7/™¨‚‚ŽHp$n‚ {DWQñŒRpFÜ•ÚBÁYÃó²Baó&’‡Tdèáú88S…u„- FX¸À0âþni/#œ‰`„©%€z d"¬2Ðи  –6ŽÐ[A(9jpLà"œƒùFtrþÐØÀJÚˆw¸JOƒq'°.‹Ð]òÜ@(hn €D>âå¤Ò×pSVöø®$¯§üšJR×ðøª0KSÿFY¢…Wü¤é…ø‹·Ô|Ñ /˜ˆÃeÂO§S¹YSŠQhJ) )p³bXŠùÐa}Ù\Ñ!\Õ!¢Cè4\Ñ–‚È=\Ñ#\Ñ£IH-Áà:Q}7!•g>\=ªK©ÓˆK³C0¸Bó`pÕ¸äNmð›ÁRÉàêM3 5‚áì ®ƒ+zƒëdJ@ÌÁGD )D»èá.L0\µ¯“Á=",æÆ¨!/œ`2¸ª?DÆÙ\e͈Ñcƽ˜!_H%ƒ+, ®¶ÓÂàjŒ(š¢2¸jW'ƒ«Î»dp•N·â” WÖ\éG"r¥º"*E[Éó*LžWÄ•çÕÛ:BSø·¤p•£ W¹7„¹4úˆs±Ë’ÂÕJ­á0L0)\! Wh>)\í¸*…«±P¸ZY5§7­!8¶kP¸Êü’œUý!.ÆI䬲„ÆÜb56FSˆ{sŠ pU[sŠ pv¿±/†•®VR¸úÞ12¤ÚB*c[\­“ÂUz@Ì+KÄÀÜÉ Æžþ¡Šr}’Õ¢\M1‹rufdQ®áxS ÇÕ?RôûÈüú¦ª\¹·¬Ê•ç:|Íù1·TÕÛJ©xž )<ÏÌaíƒo‘MÛfóÁ«Þö@_õ¶žgú,û÷§Þvz½þ©·õîo^鼜枪r±<¨Ê…NïcÛŽŠzÁ‰P”ÛúÏ<±: ޤÐ`Ÿ›Û;õ\|2Šón‘n;`Ün}2Š]¥»r¹Qº«„Œ¯Ýý~÷9/ŠùkúšR˜‹¶檭 MÑBSþüòZc&•Ô-ê0âWM1ãWv˜/h+¢\®OP· ¥ …%•¡°:l_‡þí@W§Y‡Š—¥ÒŒ—©¬$‹±V²I%Y FŸºFŸº¤2Bç¸.#‚=/GmEÏMq¼¤FDŸâej-­ßk¹-Ðlöf=Xë äÕe°<îKYî£-òê1ùƒ±[â2_éUßÇõ˜ÛVFûÒiFûTjòÎÈqÕhŸfš´3²­Žìß›šºf}9 ?uzZß\ëør@©ør Ñg´/»ÉhŸJ­Ñ¾„2Ú×à3ÚçÙYãøÉÞ?ÿ¯ƒL„8š`û´ù^ѳ÷¸¼“ZêQ…rjV=?2j„.¡ŒÐ)±7ýwÄÞ< "ö¦ÿލšîô¹†ÛÜÉ‹TFRA*££ºñ<#ˆç)‚øÉYW©gtŒE¯qeÏ5¬A<}|ÞTi2âȇDàÍÁGà=9+‹¶X5¶/ÐúN)ÊÕDxÎÅ®á9‡•,6> Jà­õÉÀ{rržŸ•ó»|†Ô“íZ‚en×,Ovb%¨"X–Þ# æÁî$+¯Néižt÷]4÷ËpéFj`*!¼)ÕþŸS°ë”Lñ_§”‚Ü”R™1¤PfœR(3†jƒ1EÔKYõ‹QÏ ue¼,¡Œq!S ÄZÅ…!”á+֥Ța¦j+ –m5|•meY³ÚÊ :ͺf5•q)šBÅ2l ËRWV,ÏwÆwÅ2¤²bY«Ø?Uô+ÎcÚáû:üùê«Q±,̨m¡®êB]3zD\-‹È2c9’,3žo³¯XƒÏZd´„€Y;#*–1tT,KY/kgd(ŒQ׬Ág12 eÆ6›Rfì [ ˆµÉ²€X'YëŠÒàƒMösÊ 2š”N³èWë“E¿>akѯüÛy|Ü4¯š_55¿::ƒUî4‹yµÒY§ )ÔéBYY§ë£³Æ¯Ö{©Óõæ)uº>ÇjÌ©m…ºzF€Ú¬=MÚwÅy~;EÑ¯Ž±,ç•Íô»Aÿ(xà'Qôëó¢ÆœÚˆsbލúÅèQÏ«qeÐ9;V~ª~SH‘©ŸµÁ>¢jd*Õg±ñØÆöÙNŒ¬ –TTënÄj*kƒåm²ê×›¿†Ì>Wº"¾>xÊÛd±TŸ/iµƒ¢6Øá]© –þ_bSTWŽÚ¿ÛöÑQvÛk÷orJ1ê ©®Ý ²F~kÖáe ×OâDM-½t®¿‡Ÿ¶%%ôØ a"À:»ÞÜbX—Ûx]Ô¬zÚ–ÊbXk‡Îìh%Ëæ×þû¶¯Óۑ丷„9&Þš:ÝÄÂv›ÛL¿n^Ú‹Ût~xþ*%¬ý…˲~΋l [ÑÔ2ž ]Ÿ€&g×@¥û×v»È%©á> á¾à}l õ1ª¥ê«O­M!a\Øe_žÛçÓHα¡Í4ó»}¾ŠJõù‚Tš¸Œ=½=>‘ÆušøaqçߤÈéÍš¡¶®=­wiPEët…ô:=8 =î‘Og‹Øçø˜ÎQoH¡{,I«·¶ ûó¯ƒ]–oHå{uÉ¥Gýs©QNÑwÿy®ˆvcŸoFA1A XLòò Æ„UÚ 8&ÈIvš€L²ùKok½-ó5"V/[庮Ãðò8ò•Ï¿|£äHñ ݤ­xí¯dÛ bžc¨¤Ÿ‰ƒ ïàd¹µÑï–x™Ï OÚѱ­·~–­‡NéÒ¾Fµ9î2=“Õ¸ò™¬\}g¥[÷ŽçŠÀ+YŸú5*¥–~Tܘé[úÆ¿.G÷ÉK?º¦Îs[ÆCZÖëyXüTèÒÊÉúi·˜_#(º>†/½M€)­L"LIŸO»Ú.Gw$¼F•T·à®ÓåÀåÞú‡Åþ9inW{à×Ñ}Ž6EE~’{HX'txëåT®g®.;AªqþÛa~æ‹ÈàR¼â4¿,µû×Ç{l°s‹Q.ÍzN‚Æ'Øo?ï'"“;Rø[·#g*T&Ï»üüT,“/žmÀçÎ3éî“ÈLŽÿ®}X—/&¦^ y=-KÛ,³ç¯UÊÏ_£-“¦†éPc\d:­ãâ“UŽ+ILcŽzgšãÒ;Ólk¶þFñüÅ×ã“ 户¡h Ì£!DNÑ"]hèHÑ!ØBSïù€4»ÓR˜ž†f[zÎÉ“4Õ "Зž†¦"ô44¥ðè{ l¡ÑÒ6²­Öcî Ìz [hnj¼E…Õ½m9>sðI\#‹ÃgJ‰á3—'Ÿ¦=èa(\s2ÒH"åœm×ïç£)Fû¶ßâÔÉò$ hŽ ïU¡R¼WE["̓ì2*ç÷ÿfndÂ:šÆŒ²h ¬£9ö| '’l:ÞùI`š.P¦:Ÿ‚š4·Å _m{{>CÓ‰Æõp—þ!ùDóПhô¨'¹=øDóÀShZ˜Båk’)4{Shš<Ûf[zl›êÂc[žúñØg5Ûæ°ôØ=Žï5ÉršzÀ[[ÞÚÒP+ŽÆ%ÆÔ<`óEî|Xß/_a6"9MCÉiNQ$§RD~Et”_±‚xüšÖ5Æõ½ï$|M)ò³B ü¬Ù£øY«”ùY³Gñ³b\àgM)ñ³æè‡?íÄËë:W†èÒD‡Òݲí¿iS$„ESã;Ë(Ù› ‰ê5¥ný.yiß[–ƒaê5WQ$®Xë‘oê˜~íß¿.ûó!ŽLÅ‹ê5;ÛNíѾ-°}f¹~R“XH%“öþ­Ç­åt°aOý»Çî> €>YJô=ߊß|°ÊÖ~¤­âe„7S‹Ó+Œ+™^iAÏšÛçÒ_kŒ¯eó­(WHmƒzáú˜ŸÖ&q…ºÖQrp^þ›› ˜^Ñ!˜^qd€é=‚éRàp¥#©ì¬Ðéy¸ð}X׃ W¸ð ;uZ'Ó+¶"˜^qÀ‚ézÓ+Î20½òX ×Ùeê'8õ™Ì«Øý·‘ù9:ñ³Â ‚ŸºONU\5î}÷·ûâéà<ó*¤À¼ŠÁƒyþÌ«sE|3¯Âž3ÖèÁÏšã©*nJ K…èRiƒç×ís~L‰TN"IUyö©*ŒëÜÿòýõÀk]ÃaÇxAÐÊ[x«pl^éè¼®­ŽX~]y·$hÅE0Ó–¼ó_§”ØWSJô«ÿjJ‰€m¡~£Ïúa4…úa©+8{4ö`jUKYcŒ¦PŒ±g]0šªuÁ“Ù•÷£’Šº`ñR( ÆÈQókK®Ô2²Ñ¬ öâÔš_Œ t¬°>ð±ju’u¢¯_¾–"«Ã,EV[IS£ae‘±1(òÚ–~L{y+¤öS¢—ÖžŽ¤T> M |X…Á0/K«ù S{?yU¥Õ¬ùµáTâŒE¿Bѯ\sýbŽ(úÕ‘Q‹~!ƒ¢_ô‡¢_ÙMÒÙÈn²êm¡êWn)«~íâ*뎻¬ Öúdm°í¦2èh7ö/ÈýH?ÍÝeҿʳ4Ø›±ÀÚ-UšH¡è×[¶ýJ*êy}Z×z^y’¤õ°Î¿¯[eÎÁB#{H&XíĤ‚Õ"¬M©ÕÕ)•µºš`ÒÞ¨ÃàƒµÁ>­`’½Ê°’õFRYA¬+PTýêÞ™¤°:`³6XæµÁ¾0V>Œ Ä}Vk“VãŠâ`YM²Þx‡U>YD–Ë&­«NŒo.ÔéÁùSqû?¬ù›ôÆæ\Kˆç÷믗­¾U–:c]Y²ÎX °¿óùkÐ%H‰Û5¤¿B ñkJ)~E[ˆ_!%:YÌ1éd1¬MÕxbsTâ‰Í¶Ä›me‹¦Dk5TjWH%µkŽ Ô®¨]©† vÍEíŠAÚJ“¦U˜|†Ã6ˆàcMÛB8 )ñ±Z_…i•à ¦UHi‚i¦Õl ª´ÀÊ¡ŠUôU(>Ã\y$0­Â3Ö¸’izÓj±0¤Ä´JÛ UîÅ Q…Ad,¬qe”«ƒ¥F¹UF¹R<èXÑ_Ò±Âj2ÈÕ) ÒVº¤ m…f`êE jWœQMj\ €¥ÍטÓ~$¨]SJ|¬ÜÁÇÊÑ—˜Ól9!…˜ÓÃ*1§}`e>ÅRgÌ);͘SK1§„"æÔnMl&=Y¡²bX™ÊfÀÇÊ}QùXa ¿ªC°¶B |¬¸wfh:;8ùX1xð±by2~ÕàÁÚÊ+e°¶bŠ¿j©3~U`€…T2ÀbOƒš,¯RÁKÿ °p§`€ÍÑ‹ÇODÌZëyò!\_æzÕˆy~ÿŠ˜ ¤ò_c §”¨qRJ¤7è¤7Z¯ãUÃýþŠ Ô2«m©w}lÓa5ßî“–Oà¦5XM]z½ÞýöQ<´–u˜Ä|E FÉÅ£¥b´.H‹&˜q ¦.tز—íð¹½O é=q‘½/*Ɽ˃¤@Å£òXû5Yv¤‰ÄF[àâÑZ'j°¨ïùËvzôÆ™`0öÀ¸eåQUüaI][Ƕ/ù2­l>ñ®BŠ´>óMöe ! C¥ ì‘€XvšÄ²­äâщ‘,;R}²ìH*Yv0.°ì@ Ô8>3Úa};8{Füå~ÿ|êóF,Ä8ÚÓ R¬*‰qd5 e¬Á_Æ5c\p¦kô9òòAŸc}`a´ŽI%ÇŽsrì`X `GÞ¯ìø «Å’ ‚x™$Ø‘M$Ýÿ’`Ç'X;Ö –;<v&wÉ‚‰,;>w¿¶N/è…ƒàm7†Ç|aG£O†V"Aù «˜ÈÚщ‰,¿–<<ÖWE;¶‡¯@ưPìH÷×öâ¾~RêhÇ=Z>ÐCB"OΊ_²]î’¬G[?Èz¼«+ò04šd=ºa$Z << ~Èm¦GJòðÈhzXq]ßΗÛp]ª´? ]CÊܯѹ_CЬ®9.±º¦T¸JêWŒ Ô¯9CQ¿¢CP¿f[ ~Åò$õk¶$ê×”õkvê×4Q¿f‡ a%Å‹ *A,9b!‚Ø—¨_ÑH]³-ºb÷€ÔŠÈpSRIeã ‚XXbÓ$â­0M0 b³%Q¿æ¨2„ÞÅ‹­˜_\éGûØÛ'z>PVòæøasXâ‡M•Š~+™_1C0¿fS‰ùEÓ?,œ<˜_±Š`~市ÓŠH¶Ö[kKl­Ó}ñÍÖ =ô7•=\98|Àé:ßùßœ®ÕVa³¨,0¿ÂoU@,š<èa¡‡¤‡Å¾++I"›B"‘…Hdq^€'èaSI‹389]áÚÀÖÊC,ØZ±Î`kÍa‰­5ǶV >ðÔ¡8]}Q¬œ®ð!àtÅÁéŠ œ®Øàt…C§kŽ œ®8]龃Ó5Hœ®<í‚Óç½z<Öƒ£`%ný.rpu?,DÁŠšìê`‘Å®NÙ\ž„š\tƒk6×\³ Ú‚ ÁC¦ò6IýŠ‚ú«êWØiƸå®a™(°L)µ»ùQ^Ó^šN¥¸„¶Î`ÿrý´×¸–Iã`³—ö¨îuo‚À›8ÇoR[Þ$¡a–TB<±Ã ñ$m]:dÿ¾ËÞh)žÔT;É»AœÞß !uÜ}y¦&øØ·Ä¶=Qf3Ü7ÎóÕ×î*ç3 °(.t€E©©™Ög8{"C³©K?`/·7Þ…†µwÔ g¾^B£¿„°â¶+nÄ{ÿÖ0xÖ©¶ÃJcO +*+0¬hÊNÅ}èT4šsÿ4ÒÞÍ-+À©4ª¬¦JG e“ÚæÚJ «ÉF,@WÔÃ¥]Qª]ÑLLJíKs¹s'ŸˆÕt5ãNÙÚ:Pj€fMÖ°¿¦Yî3´ÖdНaÍ]  µ(ÐZ“½ßvÆ~½K¶uB¥€‹úzôòïËã Ìc%`ºè*¦kvÓø…éâ ×Ä9.ÚsÅÖš}ÁÖ¢¥¶–†•ØZó:õ“åü.W[À5qpÓ™êª\“»TAà¢u¤3Û l-J¶ÖÄwýbkñ¦1nŸéàÐH.:ñ‘æ½,@¤ÙVàtqŠ›Å9„åv3»N5Ñ>c¶ëu[냋sbq3 ïOÅÅ|*J>0ð©¨ûÀ”â:Æ2ÇÈS¼Éöç—ûíì6ŸãHÈ5g¿-G‡qTMn– j´€*ZaTQ=Ń#°§&ú ®iî˜ ^ÔלZ­"®"@. vøGĘå#×±m¸ˆj¸ W8Ãu,®“N„á"!xáÚHb WÅ%‹PmDØÃEDÀÃu´@.cäpQœ@‚ëœû·.sÿ–6„ú[äoiEx¿u°û­¶¤ßjq€ù-º 1°{ëX"žI‘Dí-ý²·º–Äë­ŠXo]f õVsLoFoõ è­"@ç­мuË [Ay½A¾ySs•Áž¥Ò×Äh×[MX½Õž¨·%d`“ã[R~jŠŒ±Ñ”csT`Œ–™ª¿ +!E2ØPidéÔcsXbŒ•É×8T{4¯i‘4£e‰æ5„h^sSGjK šW)¾¤Ö&¶œd°RDI­Q¢ŒM“elJ‰2Vûµ$àèO3ÀÖe-—”14¤È?Ë36øgÓžE-«uLÖØÜAvKJ|°¹ƒDõ*^£x±"„ÍA›ƒ!lÞ5D+‘„°éE«c1aÓèE›æ·oÙ’®d[ùQBŠm.u|w°ëJÚܱb Ía[6ï6‘bä$Ú4S1ÐÊu%mö(Úœb~ðÑŸ´±)ªW]H’ê57YÆûZEQ½Ê"’ê5Ç%ª×i?,®©z±¸æb‹Å5G/WÍ1Y\ó‚yÈÉy,®y‘ˆl%½’¸^uuN®W@Iãš§lFÓ’úá4=й~¢áæþd Ùeÿ¶§¬ž¶k(e¯b…j`-ÜU{› 5[oJ‰¨IC šI¡Ë:ð;®ŸÇYèmé÷ŸŽr6ëNFÙ]Èdoûíˆ ok*”ð»ÙÙÚ/)„a™)@JÙÈcBлÙP¥ŽÁx—‰ƒ®PJXþTär;¿‘ya‘ Y” %t½v”Âe}çêaÙKÿ”°6àÚù¨Çν„㤥e 5î…uºfàºÉ5j/”t.g»¼«ôRä4Xþä¦PòÉP—ׄ…K4 <ÉdR\2ÐSbaà÷€üU”‡sp–§÷u-]{ÎõÒ˜bÖéÚµ÷Ýëð¦s!pà䘀ú =-ãÚ¹«à15:PÛ@™·1¦Oa?Ï“Ó2n¦SßÕHLî#þ`׉ûÊÚö rêA|“ªŠ/áØ¬$)h°VÒIv+Y¦Ê± •]c`¸×~j×€ùÁ|BÇïÕs÷}kcºÊÓx 6 |sÊ@Û§N‹q?æN^ ÀØO—£ ~ÙoÎíEÀzx€%<œeÿð¼îíM ÈÞ쬂Áj—nþ×呎ëTw}}^ÓÓ«Lëy`<ÏÏÊ„)ÂÊ>ÉÔ:wdAê…“fz3ùÆ ‚â‡gÀù>à˜Æ}ëŸ2Ö}’—©·ÑRÃ>Ÿ^–“ò…V[¹\ @íL€öðä깞åzp× ®Á •›B-Í0@]oSÃÈ5ýÚi¾¸O åTH.X·õ¡™4š«u;ð“¢oÁ˜e–÷®Â¸¯œ„+8ß“o…·ó ÄÀëÚÇ}ù†ýÎåï?f )2†™GSJÌ£!EæÑlKÌ£9z0fSb…º’ycOæQ´æÑlJÌ£9v0fSÁ<Š1%§h ‰S4už1š .âQrÂDA<ʵ âÑ—ˆGS"Åâ€xÔúúåcQS ÅA)ŠA)Š)‚R4¥D) Oóú`þ‰—m]A<š£ñhêKÄ£}gÚ 'M#=)Vô¤p '…Ì8NëSa˜æEbšR"1…—‰ijB$¦8}‚Ä4eDbšý‰Ä6SØ HL³-‘˜ÂÅÄ”ô¤Ð<èIiAO ëÊ T;$¦Ô}%1… ‚Ä”[6HLéƒÄ4¥DbÊ$¦JSüAb S\€®#Ò¹~¸°dÏÉb ³‹)–:#PmXpb­“ë”>©râø×)Ô®St¸×)Ö4¦0-ИB 4¦¸P%).± 1űSØhLy·Ó—hL1zИ¦T·ZDp @cеA)¼Jq$A)E”òP¬t+¾XVVQxy°ŠÂ#e”+=D[R¥Ïzäúú² ×6[r¥piI,ÑR¾ŸL!W!VöƘòíbª Àj!“³P8žA¦^9æäXa['È«j%±±&ªu­B¬b­sSkô†ÖÚžEæôUø§2¥|?™cb)lío(Ñ]>‘Lƒ TS5„×0U®Ö¹á½%·îµV¤Â”²Ô4.0O5nš†QªÎ4„Tf.Gõ£±&`“KäTyfÕŽÊéFéèdÇ}½ÔLV—b岸4zSmih)Ueºª, ³TÉh´„ŠÑ7 Fcëª^;.ËEá¼£4ŒRe ðKY“YÇעܻY’{@™µ»„‚UwùàÇW>ù¤¯ŒúOlð,ÆŒ³9^uâhÎw8Qòe'†­šÎ¸zè,Æ„' 9¦€œõ¹›¤1¹€¥ÅðžÝ¡wŠ,D ä£R˜®ÊP± ² 5Ƥ"Ô0”xŠÞò*„ò ê|r?¯Ñ’ŠT}û.5ªÕ<ÖgJV¨†#Té)n¨Yyû)‚â†OAyÌek(<ßz2ºª¯=yÙÏ"×80ƒ…K÷ µÏB±lz÷³±mÓ’nCsVê°ÍÛ'÷B"` ¡V$ymñ×õüþ¦œBHƆPû0óhL²ë;ƒ•2Oöóíó%?'·öz“ë¹>ש.ƒï¸9¨eÖ]»˜µ?\.óî@â™ä]I!°æ¸wÓo—ý¥•¹ÍÜ,)“t*¹nã^_ÜÛ|nI€‚–úWŒ>¢ÇÌLD’[z´à¤Wÿ/³…‘Jª²gƒ÷É}ŠàÐP²¨dC§sïmiŸg¸Ž¯Yâ<RKòn×yýÊKL7Aç\ž©ézëeÀýS}ƒ±%ºÞÇo¬3SÓK¶ôèŸx÷qŸÞ>©öm¬íðûc¾rªáÅòöçà{Kç÷›¸þ àº´Ú»ÿµU¾¨SrÜ\|7ÝË–À®û^D|»¨Þf ·¶gàí³ßçÎ,%%‘'ì;™U²»ûøÃù¶ÌWWiÝ4­§®v Þæn ÙIchjŸîÝVHÙÜ÷>´©hßYÛnZ𛩩äôoƒ÷ÛÁï »åÞÞEØMÉoH¶¨òÒCÐmwãÛÔî¦kà2=åÖÇp:§Ë»øžé<ø¤¶¹¾w5“pwLëÌN®Í¾›«ØNóc'ëWáÇw¸ö â1íl8Û®ÑëÔy%ÐÒ¡§æÝòfë¸/L=9!„œ\‘ÛX©‘ôgí²p;:á’»df{°ÛÄ?‚}Û#³¾IÎ3e·ìè¶ ¡ûts·4×}ØÈuÚÝÒÏøN!5w”-“Þ„zätS‚ë›2©NrvKOÐOÝujoÔç:Ž“é™#¢“ÉyÒ!§g¼¸P0îwö«þyª&0¡@á·ž 9¯Ë¼¥¦Ç66Ó6?+Î=÷½}!¢BèÞë½¶ƒL¯¦¸?¯Bóí´Œ8¦ãS}/·Ƶ¾©¡€…J×Àû|NOÍ¼)‹ ðn¼ýú=uñíAtF‰Ö<ë$έîmj–Ék‡zë׳æ~^ÿ¿O¢ËRà˜BCc %¼)„ ÞBin ¡è“‹š[Èd5-ô±l¶´>¿hÝ–ƒqgÁm6„ BïY%”ƒPÔîæ°3’ãˆjy/•T w³7„{è.#9šw­í¥ Ô¢Ý܈­<»ß2[öÖJ½îëc¾ÁUd‹Þ²Æ+—AZ¶”±ͤ„MØ•6¡³,®…º³¶ž"Ã&ØIVÖbL-ëÞ“\çé¸å¸ÑLj!,7A À°ºY 5e,\s-oň²ºgEF{PwÖ¶bDÂL²üaV¿ÒS´ÄÆmûXA“YÕÊÕ­E­8Q²ÄcÊ0cÊ0•› ÖªÒŸÔRÕB¥*·J-TŘ2¥ J1+ÏÔZËšB(eå¸K\H_YêX±&YÆ ûÎúTÞôJy*d¢:~)ãK»Æ—˜°bHQ¿šCB  sË”;®£i´¡M$‹eÑ[ÖÊB(Ke''êOt‰!eàˆ5É X )G^k•,.kVÑRF—Šè›2£K¨2 dyaª!(·w»0m—ûAKˆSsàˆ.qîD-V.#PžÍµÊvº n·ûAl•ORKbtV[„\-w$Zbal ¡R5Æ„JÕÙ¾tvè哼!•³ÆäTÎã¾ßGûù}EEKªy­B¬yî@’B(ŒÍå]†šÚÐf+w ú¸ßå01nUƦ¡del4„ÊØ\¸Ý‘Œš×Ù¨]=:Rõl%ªgcتž1$…TbcR‰m¨©•§ô†åƒ˜Gn´„:Ü·ÊgsuQ›«‚ÒØÜ((M«Dil ¡465U¯!³Þ{IX'ZžZ“JcÓ7£46u‰ÒØÙ–û. •ÆÊ œ=³ËgsD(ŸMu£|6½×e íÁô”SõlÍagõlîJTÏæYÑFÛOÖ¹_R9kjå¬ÙRÒ›àõ¬i&¨gM£D=kŒIõ¬¹*YϪÓ2êYsr¨gͳ õ¬:å£V54°õ$y¿ Ínz.hîTЪm­éšO#•Ò¨µ§¾­Ù ZCá C™Oî» 5»CAkž— §j÷™çOź´E¯rMQô*?Ð|Óy9MÏT1¬ð؉êÙX¸ûX“¶1§ ¡äUGS”¼æ’ äUqS”¼fü±oÖí*0÷L¨‹Í“u±XÝR›}¡ u±il¨‹ýyùù÷‚ѦÀhC`´ÙЇR`´è-Áh³¥„ %.³7€Ñ¦P‚åˆFB£ÍÞ€'”“Ëìf6TÑ„`# ‹™Lì(¡_sö€~Í–ú5'´¡Ô`„ €„~M!ÀAÙ‰¡Äý¡.+ô+Æ”x>)8¨ Q]1¦DuÅÎMT×l ¨®4¹Š”Ý!q $&Pš À~ §l¥Ï­€­Øß —h@0‚‚gT×T€RÐB45 øÊ‚›}E"5EH…Ý&Jv@@ÈÂ"3G ¿”Ø?\þ ý]gŽû-ÁhaH‰ûÃâ‚Ñò¬Ø@Tx‚IfÚ»;±hq¢$-Ö–:Ø·ÎùýÕCM<ŸìA.µ•ð9XžriZärð i#©'TÇÇyOÔUꇹ> }ƒаšQ#fµ”³Tš3÷EDÌ\ÄGóÚ}ç™ Xó”„€“ƒÁgXÍÁŸ{EÇc¿+®ó­˜Á·¤"¬f‡‰¨ƒ¦¶LÒÜðÔÙ(D§£<µÕÛÕõf¥Ö†Í@žv<7ò“9^o#ŽZ¦û'ƒo e…²Ÿ!:O²Ñ6ì'ø¦æÏ½bð´_;§çŠBô‰·9ÿ¯#JC{ÄñT|Äñt»µV™6QdÍñI€ƒ¯Ñ>÷~Dû’ÊR|K*Ãjžd0K]§§mmÓãá2ýw“C¸Bi¡#Ö°2Ö¸"¦CŠ@˜SŒ@XÃÊ@˜) |9Å„5ú „9Ç„¹}H>0Âe>Âeúš:˜âá-IÐA:÷ïöëñXçgT÷#}—ÛÁöÉpy¢ù.«© —¹«k¸<ñò%\–æ£,˜W©-su"ž„m%f¼q0M+â`+á²­¾ÒÖð•zâß eô×X¶)¥ðm!0M)Õí¢­ _!Ô wÛÖýª´M‡%l\´…jZ +0mÕÔ(7¹ß>éxè´ñ[܆ſö…:L€\¾"äJ]ý$»ÜΗùàìËj"ØGKö!…`f°ËB2šj5µíËãí}»“Ú3Ö÷橸¼’JÌ]IåL¥ÑZè¬F[Y­Ÿ_¤®üº õÉúhµ•ß 0.|ƒÙä7YD÷W—íô8ý²«¾‡cëûK’¬9¾TxkM¶GU±|%umo¶ÝÆ–©>zhy²v[vš=æûõës†Æ~ngÏîr×7n‰´•Õâh ŸF°<øœ¡q%@°‘ß3d§½8­»ÕeºùQ®ã5?g C|\€¾ø û©šÖ 2Ò·F›Åßï :ïé鸇¯H_FÖ:3Зee ï³§Ö3K—ì1àC¦j?õªÏûét4®çµæÔlzîã³\Ùë\°‡!Tk‘å"kü®ë_#ûü­°Â’ \a™B-ûø­ßtæ·€Éݵ Ûû5/³N/汃»äwé²6}ðZÁ¬pö¹S‘µ+24—›ÉÐÜš¨¸¿ö¤56—¾®­fü¾®‡wý(tö‰Rãw{‡™KóY¢l£¯(ºÐCFÊrGYÉ죵–2ëŸA°öþóÛê¨Ìݤ‚`*µÀ¸”/ÿõsSHá-iJ m!tE[@ËM©ë÷©½¹{9´P]Œ+°ªÃxwšBŠ‚Ñ•bìùªMÕg¥ÓÖ“=—†¹5íL°šŠB BèùB÷¾u¯‡7X˜|í*;ΘNCϘmeLãÅ+šB´†¶.ãCîõþAÍD[xô*[ÈW¯ZžŒÖlí/÷ݧ.Ó¶ô„Vªïù™KCã\§£G$&EäK[Há©­(ã5ù¿ýáÑ2*“¥f()<ÊU[ìØ2s)¼ÝÅ2âñ®´š¯w5úþ‰s¼ºŸ*°I(ðÊ™æ ^-ã©ÍÇŸæSÄC_a¾ôUñÔ>Ïx1E<ÑÕ–-ѦŽÖúH2x¥‹!á™® +ßàZëõ}­´žÏbeðùäUÛ5ãH)4ãHk¢¼Ÿ…Rñ€>:sóÚn¦s'‚ÔÆPBR;ùõñ<§Š×K[HhX÷±DÖ"æëVs Kó$,¡x)«Ã.ŸÊú$¨a©O‚úVà 8a-O"üÊ—æsYÔO(ìÖã|W܇‡˜Kïjeù°ÖGb}5‹qáÙ¬FŸïfµ@=ëLÔ§yØØ`mëŒ^åG×øuTÕN 9íçëËXûÊò4ÖæU߯ú"øy¾z=üï°_ë³ÚçÝ *¥”h^R J)¤ÃB„«U ="vE»¢) /I[Áƒ±£ R,«¿ä Á夶Önñ·}ìÛtyxC[x£©xËF3Ÿê‘)!a´’4•!.f‡W{"Q¼Ì•gÆR•FZÏ€ãjW×f2·÷Kª+yd´ˆ%jG'ÚÚBd‡q(="fCˆÙÐ#¸b U3I_Ùi±ûŸ¯MrmA Ѥ2à ¼)ÄlòÞ‰½„UDd‡¶"lƒ Â6Ùi†m²Àä©‘fp‡¶ÀB#O’8L6ˆ(Jó‰Ä¤½˜PL2® :íèkòRÖ•1 ¶F’ßh_'ÖÚizLÖyÞÀdòà m×Ojg0“®[™ õ Û2˜[cC›ß ÀI©gÒ~ÍÈÔÞ¦R{Zè$p‘T2¸¸­ù|˜«5øÄh’Nɶ\Eíê }…­d/EÝa3P„T",iXÉ#© ŽÑY}ßYîŸR1yð$ÑNLP'¬BNùù`}ѦNX'w5zu\P¢WÍ0£Wß*Kôª£ ñŸÚÕèµÄ½“è5¥X[œm! )U g¨N!U g‡—B±:TiqH)¶ƒT Û¤„¬QƘP£ UEêUý¡D™Jˆet˜%ʰ«¬>†‰¢8›B10&ˆb`Z{C ÅÀB10¬/‚jm/T Cï¨ζP1 m¡˃Z`´…Zà”R•/–U¾4Óš7Ö.Ì0^Jͼ±(ª9ú¨†TVg‡ÈAkP CE50(«1vTC[¨N)|¨P[™‚Ö¸P ̽XÕRj†³-|ôÐeÍ0êš‚ÖY—*d7ù¡Rù¡Â§Ïoaqn1Dú^œ(,ž»‘ïša˜CÖ SU5„—ýep.…fpîƒ,*‹y©yc© õÇXÔã0@i1Wº–ÓéÖ<.¤¢·Dó<âbHeq1lÅÅ<Σ¸K˜YãÉ·Ó™FqñôøS\ ½£l˜Ž¹f„}ŒEq1L>“½:^3ÙkMDq1\nÆðÒWC(‹‹y@Õ„°tšI\­Š‹iôQ\ Í£n˜kuÃtI%ÀõMª„®Zß á©;Àño8; ]SJ,5Ù”hÐ(hBJA)zSM‘ª&‡%®š”YMŽJl59CÑÕd‡â«É)‚°&› ÆŒ)£`™ ˆm²­ %¥ª¤¿I!ñßÀb@€“m'5% œTº8p ,à`mÀ]CEyMŽ ÙR´%ŽŒü5l°ñÁ`“m‰Â†v6!¥Ì+Æ%ª›ìQ\7©{‘Ý@«Évß’,#XjR 459vñÔ¤”ˆjRJL5©yQÕÐ)ýrÕdwIVó ¼VP2øä«]°^Œ54† ¬ÖÁYƒÒXkxm Äà­ý”û¬4pó ¥×M^ž­AL“vÌ4°ö¤¦Á Ü4< *9 Œì4¸ž†¾¡RÏ@àž™Þ1~Èg O°Ïðà ú™<'•TæI¥pÙ`[€Ì«˜l6´÷ ³ÁΟ Tñš„’õ†§tÐÞäÅ{ƒ;uæe!æ›\C$Se[ ÈÁ¾CV9´ÓàȃIϺ`É¡Ë-Á¦¦žÞMKHªãâÿl’N7ùŸPvHµCáòoÿt´·Ðwây¼¥Þ¾I~ª”r®)Õ"™kCù¹ž¿˜ìªT«“ìhwõÛ´ÃL¹¢%@0a†k? ö{óå‹^1õpiV|=7¹L{l%<ë¿=74ï©R e~RÈobð»ÓmhGKû.?]$8!”HXèñ¸¢/ôí`†™àT[ý^×Gõ˜Ò h«•j7¶ 2]D%K¡Ó^x¼Oñ닦2£Š¦öKVëpiÇÊT×QœÓYÎÓaÝ–^öÞŸ¼/Ó]ýÚË~•Ÿ«ëzëá{G[™k‰WIeJ5¥¯„aíkÝÝȾOóô,ÚzôÒ¯]§/b¹PjsžÍ‘Ü¡d©¤"Y*ã:wXƒó~½ÍíæÒkW®Ëòu—šîد4(„d¤ý³6¨Ç†sz›ĺßKo )âÃ?B5d~Sû'3—è±]¸š»¹-K- #ÄÖã}ƒlîFpG6®†VÒV`îGZ„Õ–}sŸÔŽï¶­—æYçƒ_OÕî~;r7íÁC3ùÛÁVTòRf“(EZŸ÷Ô§x™Ÿ°ëcø·Óå‹ë<½à¹ÝVö8Ð鮈q ïÞfšÍµÙ|ó#Ûéà¼ËL¢œîÀ>oNyýw¥]ç®ù4 È—Ý.¶¹É·q—–¹C `$Â5+éµ¹¥™Cÿ$Ü.,·ÃÃ5“’ÚÛ0Ñ£M¨œ¤6tGî{â<¿æÞûm«Kݶ}éØþüóõ— ~ZØÝqÛ:ï>Æïö/^£xI¼Çýláwþùö ï¡Å>Õkû?Û´ù¶ ³öÁá™lþûõ—kçrê §õþþV÷IOßƧÝþYý%1ÜÕ§…×ïÑGÿ¯¿ô/&Ÿžà[ï>Æï?ÿ|Fñ’xûÙÂï<Æ|/§Û>Õu×\»±o}ÂÎüúþüð÷ë/ 1¡m¼ñ¸sÿݳŸã÷Ÿqá¹~K¬wìÓÂë÷èãÏ?_é߯öðÑùsž}¼~·1Fñ‘xûÙÂï<Æ„×ý2ÝÀÍÚ ïªhîèæö§¿_¸÷ÇÏývÝaçüØ¿¶¨þóOƒò>÷˜àùŸ·õIøóü×ïß½ù?ÿ|þr)µ×¿¿-ÏËóýñ»ýƒ×^Ïñ½þýÏøÇ<¯ë¿-éÕözYûž.ùüïçKGÅm.ðÔÿÏÔ~ÃÇï? :qP¶¼%®O'õlàõstÐþÁû/çöuðÓÀx(øébünÿâ5ˆ—ÄkÌÏ~¦0¦z¿ßú$›“º¼løù¹ôù áëjËú´í¿´äcÿì:@äßOÆï¾¡:öõGb¿¼ßïŸÞ¿Gý_¼þrz:‚g k¿#|ú¿ÿüóÅSâ3îÑB™ÇsÓvÞÆÚv n´²£î¶ÓfÿýþK¯Xé$‚×{+m¸o¢íñûOãx;wŽ··Äû›ú³…÷ïÞÇŸ>ilYôl¡E9¯>Æï?ÿ|Fñ’xòÕÂï<ž[¶¯ïùÜ ú>Ly_?ÿ~ÿåÞc ÔÃØõ܉YÞŸKÇï?íˆíU‰F8òÕÀëgïáÏ?ï?\ú¬>ÿü2Ðsߌßþù á)ñâ³…2‰çƽ´ÅÝ'ßam®í%lSÖ@âïç/Ûi„o·Ý¥7»ÚZ´³[æ râùûÏøVw|I¬ãuí»…çïgí_¼þÒjš:ž-Üwçµ_H>°ãwûÏQ¼%^ã~µð;ç»/h³å¶¸ë¸aìVÐ_¨]¶ý$»ß‡5?ÿò|¼­c»tn¯Ý®–a?ã÷ŸAÀÒ«d_»sìï/_-¼~>þüóõ—çã×W /Û|õ1~·ñÅÛz_ã~¶ð;ç„—~þ´E¾ ¿|yìAÂýß›ýß϶ñÚáñÄo?=ß"?ÇþþËe|x·péÕuŸ>Æïg`üøxñÕÀï,^wªv=žûw„õmEv³¹´rì~Éøüe¿Ÿ\ÚAwí^eÿýx¦:FQÕów3´F:þ%Ð>^¾xý]´ðþKOO¼h™°í«‡ñ»ýƒ×^ïQ?øÅÓ/÷é®ËXâë°ågÝHñÿýúÃ6>,×­—8m['3ûÔŒß=BŒ÷/‰ãø«…×ïÞÅŸ¾þ08Þ Üúç×Oãw韃xI¼Gýlágc¶µB{Û_á_+ ë̾ûï÷_î=)úv»ï«ûÝ'à÷øýg¤¤[ò-q{Ö¼Zxÿî}ôñªé‡å§…–|X¿ú¿¿ÿKâ5ÊW ¿óø¾UËF‹ú•ùvõ¦Ûöü†ñþË£‡)o¶¾Û£E1=Vk߯Ïg0wÛ>ÿ½Q3ž¿þùë÷èàÏ?_éQΧûö¼a?{¿ÿ|ßïA?[øÄóR5vi&½»ôç%£çFž°ë¿þ°65ã{ÔôµPo˜öñ»ÿ­ûKàvøÊ¯ÿþÝ;xÞIú_v“n×^ ÜzÆòÓÃøýçŸ÷^ϾþùϾ#¡Ë­_–_}½"ïNþ~ýåÜ)ŒÚ‰ñ°]LûeùùReüîWÙíy•}JìöÜk_-¼~>úmùõ—k?@_-´Â¬uûôñüÝþÅso‰÷¸Ÿ-üÎãyäö5}üÿ|]9¶ë:®Í=Š3‚·ÄF¢4ÇNþüƒ/ì$oPÔ}€!<–%ÍÆ©ò^§òýu묔ý­œÁ Ãéû¢(؉ÖúšŽÒÁNÄ”(<YäaãûIN‹d6#ÔО‚IP2A2žÊòAŸÛE_þÏ"ôõò÷ŠxëèÜ=Ö0 7 ýVJ5Ñ ‚snÃ:;ŒHÖºË"ñ°™;$  9e;÷ßÔP0‰pÚ ýý¤°V°¯‚Ë­ç©zl–KF©Ž<±Ór”ŠF’î“Ð9Ñòxti©ƒÑ(KŒS iH6p…8|HñòÁQÐi@4õBﱄ]Äåû ÖcßÓ*áîâݰ%Pà{Å™>9ئ½ÿ ¼ÙûÁmÚÁ㦵-‹@áŒk)XhÐ'çÖ*ˆ½¶#² :ŽôòAœé#ü» í.ðœâ÷ûî²ø¾e…aB 'Ðx[Vº0”¸¢¤ãU)ó²HÜU°¶R`š&âŠä(i$ ñŠ´mˆÆ N¤@z-û*}ŒïµáÿϦ­²îxõðýVÜíæWÑÀÝôG2¶±¶ùSàõ©>‹‚¤aWˆ3Ðà55D§wŸ&HÆöÁöÑ öUèÛ=ât#ãß1~·Ñ0xø?ø»MÎàïõöŸ¾2òõÞ8Ç•tü¬ÆÈ,ñjå’†IWž¸''‚Ð) ñµŽÅiìHä…%ì¥5ìëP0¿Ûz"ÅYuªWƒ’º/+‡?¾È þóna#`ýš¤qwb–ö”x°†¤ýóMC–SòÓ†CöÓ KØKkØ×á£_<“ã¥ñ˜쪉¹û[힀ÔN&<¤—´¢ÅÑy“Q~4 ¦a˜ÁbÚTðþö"È•&H?Ó K¤×Ò°­Â{*Ä⮲î©*Î\ê™ý-Œ ybc zÈ4O6Ù’ÆÞ®ÝýÒK ’.L{LÎÁ,¼ï0l7mô÷3}°„\ôõÛ¶àãvèëýf[ çfÅIô1pRÆÉµ¨W˜$6¾ ñó`¥ÑT`š&p…8+ÁSÃuNýLö¥u|d×|Ýîüš z ªŒ(Ý!~ÖÐ=+§-‹-šéâªyê¦ãQsâ–šWç£G×' ßOrâü@%¼-ÇmB4âíð!äa*Ø×  2ó|ˆ²†àÞ ËƒÈ€Æ|›seá›O”h½ôÃS'i<';»D,ñ¾9µj ¦iW˜sèI* íä“Ö6Hc×%/,‘~KþÅið>ø ÒèÄm¦¦ƒßÂp-’¨c÷ælS ýe‘# =,QOU§IƒiÚø~NcÄÙÞ¯9j¾Òi²ä…%ÒoiØ×á=2žKÈÔë'‹9ähoÁýò[º¥žú0Üûþ’PòÛðÃ4[•Ó)ÑQs15˜î:úOFE3c*hlLÍgÿtÂéµ4l«ðA«½ÌÅj£)4wì¼~+‡“ÆÁ_ç¹™{¢¸& _*O[–¨(hŸ’†ïgršª5­¡¯`Ú WØ KØKkØ×ÿñõ£ òû:ëg¶ÅüVÎóbC)ŒIÒÙGs+wÞOÌï„Âp]ŸdËh”8×­h¯Çñ¹ ýýL,a­`_ƒÈØ(â˜wq»ø>ï/lL©ÿ[9ÂzEŠN×}ó„Ÿ4¶Dò´À© …$]”4JÎ@Q½¯œì˜H?ÓKØE]¿¯A¿Wì&x÷ʸ°ÿ¼¿;¼a€&^q¡¦¶Žƒ‡<Ò¸ynM‰Æsm^žtS ErTŸx³Ë@篜þÀnùªÝq½p°5¤¿Ÿé…%ì¥5ìëÐiv8àõœJýp`ºA{~+]LhBmsΉòC@Ô‰O –øLIÅ7’u߈\JÃû&×NÚ ýý¤°V°¯BÆ&(_½\`Â’S£ýVÎ`1GTüxèÆ~PpE^ÞˆY‰Žšè© im&gàç65DËÙ³Ø í"–EÀ>ZÁ¾ \ V×PÔìâù\Ž?a(ý’ºxü§òOñâ6â’hÕH_«D;¸±†¤‹ª̸O†Ð¤ 34AH?éDJÀC_>×ýË2~°—êß"¬ŽávL³þ&'Îûë‚Úõ“°°Dñe»×y.ÞÈ—‹î™ØœŽ¸5t¦Yi gZ×öýñô˜—ÿ³½{xz ~¯·6ÿ7Ï¡lÔû-œ©b´bo¯gcËÁnåË;žÄætx0jÕÐÃiFÎL#ÿŽxÈ”`Õ¬.!íʾƒs#—·xVMý$•|ü¹Ýõå»ûÚ#²c¢ñ¬ÃWlgK…ûØ+çæôꨃV;Æì|'·X!/7óŠ© éæ3¬9ÑRP¨¶P[Æmäƒ%ì£ì«XOì,58µ£ˆJýãvCþoaD™8JûÑ¡+K ÔÁŸ…æÑŒ2Ú"q ÌêI ¦aâûY……Vp\*5 Ò¨f–H¯¥a[…öÇøÉ"*SUvCµüO΃ڲèVvTF¢NY¦QáÄ/5%Þ¿ø] Ig¦Çœ“ÞÔÀ©ˆÓÆéPqza {i û:t3ÇJ;Î;—ëH.$¶÷[8ƒY”zà¥ÙÛ“ø|ÃÝ?‘0ÄÞÀwcÕ·5˜¾Üý39ìÝI qL‚L/,‘~KþŽõ!Å{ºº›‡&‡>ÿ·2.Þ‹7šÝßÍîÁ{Õxû¤‘q-8L¦gVN Iº›Í8=ODGš&Hkƒ',a'­a[…^@¨c‹Èuò]=·)ï‚ßÂ)MjÍekÈÀÝ#-"nê”DS8.7Aí7§¨ç„—Ï`]¡ ˆFƒ]H‰ôXö¬Ùh¶9]~J1,DßʹXʰØûÓ`Y±0DLÕî{/ª¢M Iç­`Žjä¥á¥œ§„ô÷c/¦„½´†}º‘qgïx”Ä‹Þæ•* T$ƒ;¸;ª%šç/Òkד4RxP- :”Hä‡*Ìéܦ†<Âiƒ4ÍòÂrÒ ¶E¬ Zfµº2ZQy†Ë äò[8,ä!fâÒE" ýBzùI¥Ä­Zk0M:󀹫6Ÿ 7j¦ :ñÀ}n}ù¾ˆ5DÃGTÖöE§޾Í(3=¢*¢ $ÃG”&tÆ#s¦ÄsÿW&›P¤[Ï']ßwYô“ÆŸFXÂZö„Xj,Çw¾f+S¸Q ѸUL‹}kÇzé=i€É‰Í\eÇïî÷ž®O²«Àœ3C'„DʦžiAd\ R@¦‚} z£îø@‘Û£² ¨GÀN‹C¿…SYËýÀ’©˜~0!‰HãØÅèoJÔΛÊLÓ΂æ4ž­á@¿è´q¸G5½°Dú- û:¡Àª#$óð>ž‡EáåœVr¢ø²°<ü<ÙyˆYó,%\è|™ULSišÀæ(Y·‚(½ÓI”•É L§qý?kÐö/× 0gq{mçñ!·Çfxsû>ûzãýò¨èÕØ;<ÐVÖ O‰(K‹Ó¹=N†6·V›_™˜Ûc;a‰ôZ¶Uè-ËNµ0µsèølØþVk| ›"ßߥ÷hš4oêÄ(%ê¡>:iH6¾ŸÉ1(‰5ÄÝ0¤ñíöle=TóçVWhØ×¡x îâ ÙhÊÄ‚£™âáƒ;¨ä0Œv?Õ%Þn8ìI‡3ò["â×I{“`ÎñEcÙ¼þxØßa¢C^.¤„\ôõûÜ!ÑUñÅ1îå÷™qL³ßʹiqóN{Ÿ ‘ 5~IÝhìgK¼§‚¤aâ;+×£z =³ÔðÒ ÆÒ„ɸ€>Lú8ì«X·¥,½Mñr:®?±ýVã —w½'àf&téˆêF/à"¨·}Q´©ÉiŒƒZAÃpˆit\;oIØG+ØW¡×VË>‰Áä,»y A*ê·p"æíÌðŒÆØeÆX'ý%xlaR"àçÆT`’â‚ä0aÑ*_›Wȉ”H¯¥a_…~¸H`{Üš@Fž rý¿•C O¸ÇþÿÔÄûZV›i4öDcRâ©:ØKCÒ° Lq®ÀÙ©á*¼Çmƒt\a/,a/­a_‡ÞC#ÖX¥ÞO•×ñ„ø[88#¾äàŽˆ-í¹7ïn’êн¼‡ðÖæõ&i®“•ŒãÏ—Gø¬Lõ$Q”3´ÿâçòÎïî¯éžé<£[ 5EÙËd\,õ½Áà|¯‘ާ‡bã–¨„M “.J^&§ŸÌ–Xh§îвôÂrR öE¬ÇK¹Zí£®K¯7üJ~+Gãà댿3Ü™åJ:v±·Ô,q_Ú&ICÒ°+ĉ_¢~Ðp¨aØ6HÇöÂöÒöuhãxÿùFöæ"¢zgÉy ¿…ónŽÎ8`Ä=F¿˜Ö€’_"’•kx"ã\˜¦‰ïgáLƒ[C@#>ÓI3áƒÒk)ØW¡_,/·ÉŠX°ÁFŸ¿•ÿWÄ4Èß¿ Rž Î[Ÿ'~ˆ.OúPd292œ NT@L ¤V… –°‹Ö°/Byi1!â¼4A>Tú[8mõ€”bðÊÛ”ô—ÐÊÏ*Ñ¡e*I x׊Á_z^~ð—žH?ÓK¤ÓÒ°/b¹‘O„Ý{P5@–y”²4#ƒ<¸_šÅñ Ðz»|>àrÊ*qþ3Ð$š&¾Ÿ…£sŸ5¨n(mþ~¦–°×R°-bîã­S.…ˇö“sýç—ëÍBÉÑù¸yzÒñðàl‰)AŒûT¤ZF&g±Í °dÒH=á‚>·ƒ¾|_ +TÞº–Bƒ‚Ò›[…$É©ˆ‹¡¤ùÆqˆº¤UW=îE"ʦˢÁ4m¸°œJTk8nnÿlƒ´ «á…%ÒoiØ×±v]²¥6ÊJøú!‚|c{Ôor¢¬õDÑX{ZZ°×¦—»“ÛìœDË®çý—/(j@SË3mˆÆë‡^¤„ý¶†}úÕV7KÏ~ø* aÿNäé*£³^ýCÑ[¡!“Ö‰K`ºÐT ’t”£²„Ê—¿Ï*]Úéïgº`‰tZöEhw6ÄÁÕ&KX‘¦êÜ1šs

ZÁºýnñˆlº<Ô<< «x£=ŠÍÃæ¨…êŽÊ«8y¨3ø8Bxž *¢×G1ùã yªyµéš ¤ÉÁÜ’© pz… ”Ä$µ°Ãº~ó_{'d£™ pÕ|}8ÊŠo°ßÂàK®>C%Ix0æüSÑ_BæÔ)IpCj˜tUÊ>97±ž­!ÿû4AU ôAŸÛC]½¯@ß(¾Ë~ž³wÎzãLÖßÊÁL¶—¾Ùœ¨/sˆ+H; wšŸ B'/OúÐ͘œ”ø© bï8-Fòž=×,€K û"Öþ¥Ššy-6>¯@ëˆñä á~bþÚÅgèSˆ‡†è/{!ž²H|o*HÚãä4†{SCCªfÚ ýý¤°V°¯Âv|«lMën(ðb¥û[81_®1áÄY†ûh4{—$2TlÌJέœ LwƒãL†L £ÓIeÍàƒÒk)ØW¡[ùf! Žwª]ìDð(¤ßÊyðe…%sr{ðÎcGŸ•"G^8é¦& äÙ//?0tuj'Ç6.‰tNþq߸„ïíGõ?Rg:dÑÐTsC1?ÊL+@šæè'Ò_Áƒ¶E"ªÇ¢!éCɉ²ò75ÄmN¤¿Ÿé…%ì¥5ìëp¦hk87ˆ‘˜aeÂ.üN+ àZM4*Bn­²KÔCX¢WUPHƒiÚ@Å€8ÏâÚ‹GG•{±A5òÂöÒöu¸žqTütÆq©IC¸~ §áÌqqbÓKÞöÔ.Ò_ÆnÚ³H°w*˜¤…ïgá ’"¯™‹ßÏô@Ÿ§Ç¼z_€ÆÄ+çJ}/ÚmÐ>ý›@uF >¢{G¢~ý·ÙÀNhJDÛÍ5ˆ”…¸Àœ›+è70Ss¬8È— þÜ.ûò} + ÇÃýÿ£ºù‡ S ~þŽ0ãfÔ9Û '‹š$Ž"À±@@Ž˜nþã$'Ž587HÛÕÓDõ'}°€}´‚}Ú>¡è‹%¸Õmý ‘½>«1*nEŽÐgЛq*Üè#-”Šs¸:+­@´L(DÁ%¤ iwa ¢Õ ÔžE"½–‚}ÛrÙiù(Pà@ŽD™€ä\xÂÄŸz!ƒ_QºDãhʖДh§âüÒ´Qý’3:ž0©0{ÓFÂú¥–°—Ö°¯ÃÅ#è’æ6ªl0š¸ÀTÄã¼-0•{çÌ@Òß S‘Bq/LÓÆ÷“œ@-®+LÅÓÕS(˜ Òߦ†¥°†}:Ïb½Äa,]P£±_¹Wf>/îS†ÚW]º}º¿˜"å\T ž ’®B9ONc¼85DÚvL$6–°V°¯b-Pe„Ñ \'nÝø[ã?µo¡ã=¢¢€¼Ñ¨GÒ_¶oyP$wV¤“q,¯MÔbä÷3=ÐçöÏ—o X‹ež¾uäaªs‹ntî͈d‰úŠÐò6ŠjĦåÃõæãŸ5NoÉ MS3~¬æ=6/?oAKûé¶¡4n ;+›ï+Bù)ðP#á¢@Ê#6+P•Á‚÷¡×Y♜¤•:}‘¸*{4¤ Éæ‚]sÊ% PPšÆãÈéïg:a ûh û*Ö_*x®­öԅس”±NˆÙIÃ&‡UžøÊôWÓ#V 6‘M ¦iCykrZÂyACìÏ´Aúû™^X"ý–†}º‡ñ[åôˆcèÑô¾Ö®‹8`f¡ˆC$ñ—ް=êo Z>Zôà%p¢V‰Ñ„n&¦Á½pyl ‡!eƒ4p&é„Òk)ØWá#­[ XNzTìȹ÷ä°R0bKFŸˆÙ¹`ló4 LçµHœ…VkHÚð)É)'Ñí¬¡°¦)mþ~¦–°—Ö°¯CÇü~UE»o`Õü’$˜M#x@;9Ñ'itz“VéµJ0Ö95$ ¸Bœ÷eB„qiœÅÈïgú Ï៯]|Wø´—|B5ÉD½Ú,úø-œFÀ”ˆÄ¢+ð—þæxQ_Bu÷>?¿´ó妳Îdrªª¤€5ËS×™¤ –H§¥a_Äú}€är*’Ô ~1™59Ìä#Ë?}öcÍÍŒ x©™7%œI·†¤}:9œÍ25¨ &mv®ýY$ì¥5ìëPTÉ»3'T¹$UD¯Ná ÊÞ7ÔHt•‹ö'i•¤¢¤CUS}¬aÒ.yINÔÜj ‘k^L€ŒÃ»}ÐçòPWï+XóǪèLx¶ôor"äC¬Dæ‘#äC,Å¡"ÛÛ}ì'@;§DTK. HÊäŨDÔåå‚׸kÒßOºé´4ì‹0Äþ£G’Fp¡mþV—WS+„8 àíhC@©J»Ô· ™Ú¤¿ì…`ÊNñ–l‹Ó´ñý,ö¦¦†r%€§Ð3”š^X"ý–†}kšP©šš‡Ó€¸GWÓVrn`ÙÅòP¨ zΊ2’Öß¾ÔE‚!ò©Á4mà q¸Í›âF½¤¿Ÿé…%ì¥5ìëp³‹JQ'òââå÷,(\™…3TªD8ÂhÙMý¬`I‡,© éž3ght·56&MVfú`ûhû*Ü÷Ž×‹GéÜâD!(PÖß&'²(V'bI‚ zÿ€eŽ™ù9²è)S+Ê¢Áô-ØÈ…ÃòáÔ0xÔM¤¿Ÿé…%ÒoiØ×¡²°ö‹–M˜™ÄÙ~¹˜/9ƒµxï_[gø{Zn,.拱P€(±DÌä¬SCÒ—Ëù&‡Õx©áÄéiƒt,Ø^HbúM ÿ¬Ã#ç˜5MQxÿÔċ̲¯äÜ =õîœc¦cÏ[ÑØ){¦›$.îâSCÒ•§²Éƒ0ôÖ0*Ê6Óéïgza {i û:œÃľêØf œÄñ¿‰ô[8± ýÃ@’¸—n¢¡[?î6Ñ_"gÅý˜ã ൘Lì¡Ééê ‚¡™161{ÈN¤Dz- û*tCã̧‚0׸à8”ìš…œ- pî~'ÍÍ®$Σ É&}(ÛeNl)"Lg Ñâ(ä¶!úûI/RB^¦†}nùãÔˆ¥cൌ¡^ñÌÀ897°á^ZM?7àQ“Ó’Va8%Q1ïlj0Mý›ÃfçÔp!F:m\Š™N/,‘~Kþ㠌ִGà“<Ã0"LôTs·|ž›OÆ91·¶¤¿Œº£˜ÐÅ%*Q3}8:9x§†¦Ù¶Ñ<$½gñ›óÖ±¼Yr=2U]´ë?2UMŽJ¬8µ­Eð¡ å‘“Tªú¾ aß© i“ø“JUCC#VªM4ŸÓ ØG+ØW¡/…Çœ„âŽøLÄN•ßÂÀ&h'_de/°H }”‚Vá]sýó íêâ¡ëäÖªÿN ©Ú"ÄàºPä¨0wMåCì?J î\§Ó._8Ƈ’†÷k-c±AÚÛ’±H¤ßÒ°¯cíšÖ(}¿°×hQ&ç'‡eñÔÒp¼ÆOæ˜x*¬Zpd¥Î±H”“Ó±¨ Éêr 1Þ¿Ïø›W_D8Ký—Ñ ÒI¤‡TðÏÖ¸æÀôcd™EWÏ©m¿•ss.ÝÅIfÑ:5*·¿=Iʼn c.q³ÕÁ ’®œrŸœûѰai¸ž° ‘Ø`kššäc*ØW¡8¡±8®É…&­ <£¸Ð$9ƒèËÑ†Ž‚ã{!‘Èø]EܵÄ”sQtq‰9j¦†£°ŠD&H¢”E>XÀ>ZÁ¾Šõ8Ä‘MM)Íç&Îe)üåNÆEH®8W5¶>´“{+ìœHc/Åy†â‚í#jkNºx¶©9›º¬à] bl‚ô÷3°„|Äõÿ,A'Ϋū(ò,qìÄW==}r8üÜ3½®ÆÙèUƒ¥E£fñ Þ²%4F,5$íùéÉ)ž⛹¤¿sZJØKkØ×±›ÊâšÕ« pS—ÁÞÌ)•Pm‚hE¿ŠK{Iõ«ƒñ]KÖ’>Œb99zk8ÃÖ4AòûIôùtš—ÿ³í1ðL¾sÖÞÙ¯žÆFñ…óð™rÁq]L¤×b™ö.°m~#ã–«M6¶p'ƒí+yu$:zêE?i?%ìŸ5ì+ð×’…õ§'è˜]…ü¡²&q!ôKòÉU–8onòË÷6?rÌyuÒM0YÉ9‡0þxý‰àÃÔ*1°„´‚} ð«Ù ÓU¼zz¨§ÓBÉáˆN-‘å°(<%]ÝàÀ(Kœ•ƒ‰¬Àô9Í ¹5°JcÚèÙ€,',^Æ|[…~³xz$³Þ6.mg¦–°—Ö°¯Ãs!Ej–)§<Ž"%¨&'6ÞqÞ6"rDŒA3‹òü#¬I°‘'/Oºpáþ=¬á@#ø´q¥O.èãé1/ÿgŽ` ìx¯ƒCCW%ü!H ñ0éjv'bÊ-ä#Í¢$/ÅKó*-1ŠZ‹¤A4M`\²¯J)ÀÜ÷2Mˆþ~Ò‰”H¯¥a[…Žç~­âÝÊru ]Õî*¹G-û÷ßÄ ~ߢ-Á|M~¼` X×›¤—È móÒ¯þƒpdä÷3]°@ú,ûô”B–¯4.™‹RuÌ:¹pÐ pßœ?N%A}’J'€ÑñyIû¡“œ‹¦Ôpa4kš ùýL,`­`_ÅšÚdù}S½Iä>wÏÙ!æôC[6ôÊþ†9Ë$¡PÍ<¯!å¸ëÍ©šæÄËãm©žTˆË¼?NguõîüÚ"£º8u£6bk½‡˜¬@OÎCâ˜=„H•˜_7£ú³X:S"ÊÃïECÒY„nŽ É­AEæ6‘EèöAŸÛE_¾/b}Ñ2ËoíЮÌÌ'‡í ðª(õÎñÎ$x¹8’KŸŸ¿t]m2ód4bBäÕñ˜9ëT/Za©çZ$ä_jØWàZeu¢.Hæš-ƒ)sPwsTËh§*· g‘F¨f B<%"ÐX ¦i±sP%65†ãÒéïgza‰ô[öuhO#êKŒÑ¢™Bñ‡¹UbbΣüú¥š¾÷.éI£þcü×Bo­`ÒMèçæÄ·ƒNE*ˆ/oôiA4‚;—jNšŠJ>°“ØW¡×l&¼\ ™änŽây0ÉÊÍ”ÿNfš524/©`5’9WY$ŠO¤ é¢q0æDÔ¸¶¿ÔCÇ4A»c¸ í ¯þg JÛ”’·ó©ä^ì8p¨î®r4‡˜»hBDåÖŮ曤‘ô—PLf–D30³4˜¦ \!_?S_?Ói¼få…%ì¥5ìëX» Q·TôT²Ð©¨zHŒÁ½_T²#-[ÿµ/$Mîçü¼Vàúò¤«“°æ“õVpðלH+šÌÄ®$ä¡l+pçÈŒÑ4— ?,ð‰²`ƒMªB²ñ‰¿ý»ÿ{JÒÑÜZ¢œ¼VÿE½©V_%È·ÔKii}ré ”Žò5õãz*±œ뼕ãêñkz_ÀŽsØõ9…ã_S¿“ŽSx·ú"QQ(=5˜>\þcNÌçDS‰4t}m¢ š>}ðçr1/ß¡½a£PrP]¬‰A1>þ~¬81 Ѷ3ÄHzBp_†µPÛà¶Ó´ñ] ºŽÆ±†(AlE6D?éEJ¤ßÒ°¯cÅVâŽØãå¢G 7ÛÍ‚ÕddוP~+¾™”¤JßpkZ ÒMÏ¢À4-¨æ“þ=Rƒ†ÙIU¾ëAöY×oKX3ÓPîZ­9_8qótÏW'&‘? "¤jÎM]&|Ì)JøD« ¨±©•Cô—`œ½.ïÏç9 ¦'|&GéièÒ9²!úûI/R"ý–†}k>žYÛJ“÷‘}N“£  §å}à‡öÒCï™ë¿Iâ}RðA D½Ò³(0M¸ÂV}¥ΛN$ñŽ“H¯¥`_…§U-CÅ‹·Ê6ß/Ï6ç$(dÌ9À‹“'ÑÚÕñJú;#:)±”ºh0M޶èLHÈ\iˆÙŸ}±Aúû™^X"ývòt[ÇÚÿÃj¿[ùxüEN–D×09*x‰J:3b2Z2<+m¸x/‚š‹@¿…†!¦i˜SÛB¥ãÓéïgú`‰ôZ öUóÝ·e‰FE @k7zã~ G½Eý¾Y¢¥æ¢þ0¹&:NeÏ£8+%΃˜Öôíñ=“Ã]jàˆ—iƒtذ–H¿¥a_ÇV_òoÞ‹/rxurˆ›ëïZ⪞C•ñÃÈ«ñ¦–%ð±/'áJ#’ºñóBÝø©út™Q·„³†Ý}6Âï\•¿µ›³¯:ñ$~ çÁ9*ÐÜ·ϿhöŒx<‚f¤¿ìwS *ÕãõIÞñ’Ã~Y]ˆZ±F<]H‰ôY ö5¬ùöc–bèv”¥±î·r®„i8qþâÜÍHO–’ô—C„¯k‘ˆ>«Eɉ’GÆ}r„¥.`]X@òäBJØEkØáߟǻ:¤qPîïÖqNaø^úDâä,ïUúØÍ{Ú÷ËA%û”x½ïmÑ`ºú»šà’¤u¯¦‰ìoM',‘nSÁ¾ŠuFŠÆêq\†çÌêúm ~"{ÌiN×@©ÞeHAþV‡Í>œÈ ¨ÿÁ»À#P!„Á‰–¸oMê’†¤ö4£ð=™ ˜…œ&fÞÓNXÂNZöŠZª Éè<Úr<ÝA™ßÂ>-N•·QÌJ'©ƒ-‹Ð%@ϼÞ$ è`KÎÁ¡èTÐ  “:ØÞ}HŸ¥`_ƒ§€rÖé³¥¼8)î®§aKÌiB@Q-ê¿sš…hµpÜu‘ЀŒÔ`ºžÆ-1§0Ñ›JOXØ(ÝÀ%öÂöÒöu¬¯[N<4XJ…¿ó»²KþÌ‘¤±Å‰lÄ­ÇÓSYÅ>IEžsx7­ç¹(0}\ƈJ÷HÖ»¬ÑÒ„H€JчH¯¥`_ÅzèëÌétŒëFøû·pØ©UÐØ Y%-/”®ì³$*»žSƒéÛA÷É©L(XÃzËÉÆ~ËÙ K¤ßÒ°¯Cq8ÂÒ°üM#Eâ©>´ùéÅõªà4"-¢T¦Á–Å¢çÒÐxÝ(6½ç热 y¹iPµ*9žZ(ep¸²-vµêX$ÒiiرDÐ]b„ÃØ¢­ˆé‘ä\•ÝÇÉ™‹•¡å‡—G&—‹£-QõÈHiš@YŒ9²©-Óéï'°@z-û*–)*ê2î׬£¹ÐU øß‰Wµvh¡8]XdHZ¥4­/@‡V`’TJs«cpÖVÐõ{¶ ÒÞ´E"½–†}kÄ‘?_åç`ùT‰a­†‰æØQÚ  ŒCábh\Œí‰V{N]bèR[˜¦ ÁÃ(±´+‘¨a´P¢g‘H¯¥`_Å:U'¿G¿ÛxÁ\ÐU—œ€¸êìäٺ˱ɢñNá!%Î[~R`š&p…81sÕÒ@4ï9º í ¯Þ—`œ”Ô£tU4…bÓÕº£p`œÿèT›Ân0Õ'iÅàžs‘høå¤‚$g’sóT›Â:-T îîósùç«7ÿ7VÖ#«¼¼›:˜žÆÉGâ¨õ=#ÿ§ ÐTkÏ—êÒ&6ª%,e¹^$ @^Œ‚μüdW^ J)z`tY ö%èèÓØZŒfê¢ÎâƒÑ,VbýKµ€EÌ©BCsäÆEÇ]sCR"œ×¢Á4m øÔœ¢Öi`}×´A¯*ya‰ô[öuèì£Ŧ½#cRgî`¯“1)qJ% äÞ2Ü-œ¸ÏìháÃ8Æ,—g‘x8$5˜¦ \aNùxПk¦Õ‰îK¤ÛT°¯b®*W ¸EdEo#s•œ“Ýh'g»ô‡LZ`,\I#{±¹Î£(l/ IY†/Î@[ÞÔpqøSÚ (¥¼°„½´†}®s¼þÜ*i¢È1.ÞZ‡ó]É^äqÇŸùol‹nü MÙ÷^W a˜¥Ó‡Ó]“ÃdÕ‘HlLfÙ†hüfàD ¤×R°¯b K±ÓËmoLűi"9šþxWM²ÒtÈ{hŽUήmJ×’Îù‘æÀh_q5?R&ºçGÚn}ù¾í,°Zá„)N@ ­1¤‹‘…#0¯÷•†Ðá*œ6zM[ ìÞ¦ÄåLiHº:ãðË—­;Åý Ì"ùTn¾,åQ0[ô—s×Z_$ZÓÌ{i0MßÏÂé<ýXÃÅiƒ4*Öå…%ìµl‹pôi”Õh,0‘ç¾µØä\ÌO$:ñõpŽãMÌѨChÿ‹€­À4M|? hX© ßì"·Ò߉ãœéµì«XG+ÞØ/·¦﫚w¦f!-¥ ©þ,%‡ ð–4:m‰Îm Ô€×T0IÍ)JN¬ŠR«FMªLˆÖFÆ!HÈGkøg®ÙEîXsÖ‘üŒmgi‡[&çTÙâóþ°GæWû•´s¸u‘P†6$}¨”"91l°ýM ›ÿ4Qu8° úØúê} +îêÈa¡üj9B:úb/>—“s#çÛ9wkÁï!lÒ3G™ëçÔ0éʨÑäô¡ixOv¬r” ÒÅ€–°—Ö°¯Cá %øâ+~.—iHÎ(¿…AÈeàŒ{ª†ß=ŠÁô÷ •uQ"¶„N IÃÄ÷3•ÏØT¡s1Aúû™NXÂNZÃ¶Šµü¯.ÕC@ç­À•XØàtŸæ¿Dû¯BÆ!Ý=oИÀ)¡Ýnj0Ýâ=ÚX½»pê}²åU…î(í¿ªITè]K¦ÏÇ¡jg]ž´§m'ç`æ*D9E],Ž+ì‚%ì¢5ì‹X¿^n­Þ·–’vãs`~“8¶(¿39lZµ†ØuºC6D#5Ñ…ƒ!‰ô[öuh_…ºN<´ªR` ƒ{CÀè·pzaG@„÷§(ñŽi„Ò+ci–@œÌ—ƒ v†Ýÿ€T _XO‚#Z5iÀ¸%Ò]iØÝ_[P5i1‚ÐC]­œ´89·`$O%b°F¦Ñv)™#‰‹cSCÒU£ÍiÚ'ZƒÒ†hacÖ±HÈËÔ°¯C÷1àà*Ái w=üÉô3‹vÅ!e¡n݉‡n ¡rŒ4 q;kÇ,qã;5˜îg–îŠÃìp…4´SÕ»²A?uya {i û:ô˜ÂŠ³æ…‰Ý‹Aqb {HÄxNÂΕ;MaÔåIõ_$‡ßØT0Ð=-þ~¦ –°‹Ö°/bÝ@ò|©^¹ͧ]¬JHrÅÊ@#׸9Wz°ã]td•ah¢¶(0ÍŠ„I N]WŸƒ˜×VOú;±RR"ý•‚Åÿ5Òªm”‡ßrÜ âf,wL'aFI»>;2''Ĉćl)±ç¢ éΛÀŒ>àØ Q•ËM,ˆÄ.“.¤€\LÛ¶ºÎäýû¾÷‚5hˆ¡O;Ö_š°øQĆÙÑ£0ÓE\çO‰›{ãÔ`ºéï391ž:¥!ί‹‰ÚU*kô¹]ôåû"–ûWeÙÐÙªÓ aΑ:ˆÅtËÈ wN*2­¼#aH$¡C$Ùt»'§°@&”U¿Ny6_Ô×|áî¼çÞ6uÝN0È­íÀd¨ßÂ)œ‡|X¯Â08S~·à’îÁódJ ž?SƒiÚø~Ne—95`ÔDoiô2@V²Dú- û:V„¥v¬ˆC]èéø—±Uã©5Ôø%´¯Ÿ†c?ë‡JâºJDjó\ˆ– \a£nÖ¯Ù~O¢'€˜^SÁ?«Ðæ ÕžâΡV|ö¼‰‡ux¤Ô}¨‡3§H®S­,à¡Uº>Ƀ7ÚäD¤§)ˆ¶ðsZ ¹Nµ²€=´‚} ¾—ÇÌïi'J œ©Ábǵ›X˜ÚS’ÆOVHa–¨‡fÁJƒiÚÀoÖœªjiˆN[lþ~¦–H¿¥a_ÇÖ¾·u?îûf<4ˆþÎÍö÷HS–›õ[QŸ„Í(épFÈ$)q±‡<5˜¦¸"9,éJ Ë`ÓÆåBÙôÂé·4ìëXàÔî¥7-¦^#º’`çÉV9!YPÕ,óÆÃ´h”˜òÀ½sŠ5$hçæT•[C–¹mÔD;·–°—Ö°¯ÃõU5Ê1 »á”qÇñ[8wS]ÝÉmß{¿«Â\“Vñ–ˆ15eÑ`š6¾Ÿ…S‹¡Š›c³mƒ´Šÿ¸w•Dú- û:´½hËöâÔ¾ó䱫¢,ü·pàÝpðÆÞ´q¶ësܽ’Æö¢(Ÿ'‰ÁâéÔ`š6p…9l!I …Åçi£hÁÓ K¤ßÒ°¯Ã©÷ŸÿÎëI4ˆ¸uƸ4v>9<7½[P¦›Æ07âfýå¨Ì]³D4ö]‹Ó´ñý,þþRÃEŒ´Aeya‰ô[öu¸_s"Ú_º£#ÚYpG\:ÿ$§°,öäìJ–œ2¼×L)蛲3^È’®6}¨H ]”‚} ë‹÷Ÿ]s6ÈWÜOÎBá”""a‡ ¤ÄQ:Õo‰Øô20„”`ÚΛºðãήû*¤Ç!­8§¿KÂ]õÒðÏ:ôâE÷FTª\% ³6JŸUNNlKUäs=¬žÆ<²ÅŠQåßu/Ʋ‚ʺTžœ¦c°ÀbZp ÆôÁéµì«p÷1òô(FWcùûƒ»1 #Þ‘jêK|ˆ];f[¨»z¼ñdÿîû5`ÃýÎó½’ÍM}æÔA´"+ Pý4a(ûé„%ì£5ì«pĉ/NEjJ|=ü»œ„!ø­@ôSx1x)Fpñ/O26x壯e^›¤;͈ˆ£¯šej&7½,K Cê÷Û…ö I¡*N™Û³5ÖôÇ9sÞ¿29¶ƒ/ýÐNŒ‚Iã=ˆ Sâ}Aàac ¦›Ûþ'‡ÁóÔP‰ã‘6H#]*/,‘~Kþwó=ªD0îvà‘óç,“ßÊá:ÊöÌ8â{ú+i5«EÞ5%ÞÅ`†‘5$}èM’U䆩ÅÓéïgza {i û:œóš)‘œŠZª` ]Šž’GAhn—+wÉ9¡**/Ubc¨GTc•¤Q‡[õ2‘Dà- Lº§ÖŒ@¥ù›WsdñÔOZµ‘×µHØC)Ø—àám¦÷MŽ!Q•?Î2žŽ=ˆÄz»ãIÛ‰‡ÞoÒ_bò›Ò„h<óoµuH"½–†móÖ¯áêsG¼––,œ“GW›—1ñ¬5'­>CjC⾩m I'—8‘Ãê÷_j$ÖVþhÖ߬G'v¢ãðÒ°¯Ãýó®‘šŒ/p@ë~+ÇA1ac9ä wÒ«aRË”hEm¼Ò´æ´OÎ9q°†³rt“mœ¢>½°„½´†}:à±ÌšìâÆÔëÖÐYA OÎup’çžJLS#6¤…Œ%0ôd*y Ÿ<Ú5æåýdÕ· t ˜.XÂ.ZþUížã/ç–mŠÝ<ÀÆm‚p1çÂèCż/ùÞ5Ea$£¹àf,øÂ×T¤ç´'':$pø—‚èR>¤¿Ÿé„%ì£5ì«ðáÖÈZKµ€à¤^üãMÎÅŸÞYõnTðy+^¨i »¤DLª^˜,þéŠñþ¶ù»ÓåÇ!TT8ÿrí‚%ì¢5ì‹p#`¦Ïšg„µ±›'0°X…Ç2ÙQuW‚ŸFH‰‡6õõ~¬ï9¸Òô!l„ä N îH¤ú’–°—Ö°¯cÝaôa$ZÖ\°v‡Ž“CÌ›€öŠ»QÇ¡y/Æó« ˆO‰‰‰©!iú™s=<ZÃõ(ú*¢¿Ÿô"%äejØ×±>ª8Ó«Ý™õC!R [uÒo¨a8ŠP; °/¿æãP:AZ9¿^‰ÊΩ é° ”'ßSÁ‰æ´i‚4R~ôÁvÑ ¶5è5¤m§âʬPúU\FÖ2'ŽT8@û­Ê_â)T]Ñ_§,?ÕØ5sN…˜>rºxrÂbQA„ÔsÍDãP¯÷²%Òk)ØWáS.veI!•\4F©1*%&í ˆr è¸U†Éßh¸ë"qV85ˆ– Í($‡Ó«¬!fvqŠ9mˆÆ®“^¤Dú- û: ¨l6®ËX§fäDþ·0£ø»QT‰UöP¯ôð‘Ø8?‰ªL”5˜¾4F$'w©€o¦‰9eÇNXÂNZö =šYiÕæ×{0©#în(›Ó›º²4þðý#u÷žH€GJÅœ8••É›Ô`º)û¾p*v%©!®}±Azã(‰ô[öu¬_„¿H4åÆú´›Í.¿…s"ålãë"ºÄs! ]ò¤¿Äc‘8“m ¦—qÚ“ÌÐí.c±Aa*ya {i û:ÜQÿdŠDÛªz’DþßÂ)”Ö+aø1})“ë¿I~9Žê9§@Ó°"+Hš&¾Ÿ…㜈p4´ÔÚ„H¤HÅaôZ9“}ª?º ‹2²ñbøs0Ìù[9sCwÐx¿<ÄåÙDbG˨J ýw*Hº;É`#SCCz+M4忦°V°¯ÂïÝ‚ t Cx”8ù¯…ïjù-VUÊ!¸íîÑŒº”èjZ­À$“SI û0¯®ø¢¦þªäÎôÀù[—†m .¹üû)Ú£˜ᬣcŠh.“ó`Ï€ž:½PÑ5nÞI#ÂÆúU¬l I÷Œâ¹œ™iÔp©†Ó6®¬ò´–°—Ö°¯c…$\zâ…â£)u=9ÄC=‰¢å‡xø‚úý%”8‹%A°ß©!é¦Üµ9åJæSCy8Ù6D#ã@/RB^¦†}º™Ë’vÙ}@0#Z.I“\Ì—æÀ^O¢<ãÑÕ}> ˜ù¾4ͳ‚¤‹îÍ©˜þäëcEY FI.XÂ.êú} kW.Ã7wâ¡ßÔ“ƒ'Gs£IEÇ«áï[ÈÂEOÍÎôyJt¦ÏSä=‰Ðœ®Y‚ÖÐ5‰P&zN"”þ\.úò±bö­h,Ù `Ì)3â€qòà  !JŽ'æTãlù)iš{Ñ`:1§’÷_ÿ›*•&Œ9•>èsyè«·,ý©Ìm–[ _Jr‡A%'f¢Þ¶¨_ÿ 6’3„/¡âEj~~\1‰|µéæâÁÉœ®¯‘Y¬¿ºv0¨i‘.œ¼/a…eÕ¼yÿ^;4.®ýV!ˆ.Í0‰ø7†Ÿ€‹1ýeïqD‡SâbLjHúðXcs:QRƒ¡ãmc‚ËÛ KØKkØ×±Æl8™0k=ËÁÑ`·ËÍxÔX^0Š ¬ÑW^ k*Ÿì+±7e‘ˆÇD_˜¾ÕWžŒ¡®p+ˆb¤²˜ “4}°€]´‚m :`ŸŒûØ#’zS‘ýÉ"^L°¼ÄÃðH$d¢À£ŸšŸ} ÃgìE ŽØ}Q`šúUKNe·”¼?IŒü°Òø»ÈKÐ_]½8¯ ߯e?ˆ· Z$Ã1}ŽIøË˨ESòÔíâ0 kHÚQ 3×› t2œ_ïAœ¬å –„´†mkaöYuˆC9´tF›MžNÄ¡üXÁøÆÅiìsr0%nÂU§Ó´¡1Aäp*|jxŠnK€ Òjd€–H¿¥a_‡Î=¨êäùèêªx*B$ ð›ŒwÅïöähž ô”)yJªÑJ_$Je©“4$íI §dE4\Cq²qyNcz!‰ôš öE¬í™œ»žIÍãÖô <Ê~+‡ˆ]WaòüÔêÈ$¶–4¶N,ÓK‰z+ß, Iƒ/›S0noj(|h¥ ÒØ=ÕÅ {i û:Öl!Á»¡ˆ4ùÓ¼/b‚›CD‰ƒhœ7®ÒããN:^„ñxê‹Dol—´†¤›g²ˆû¤¢SÖÕsæxÚÈ©äéEJÈËÔ°¯ÃÇø™ :†~¿ƒ³X£çW0€b‰10ÿ”Ëgxsª ö=DW@JÀ¶€j»». (¦ÓFtX8ìI ÇIèiÛ Ü4ya‰ô[öu¬U¬,U¾NM`¿œ,ÆŒßʹkTr¸k¬é(˜&÷ÙÍ„f ÜNqKA҇Ҕɩš{j Q×Ö§ ’ßÏôÁöÑ öUxÖ$¾ÜûR=ŸÌ”‹—|c¿[rN‚¹=}`‰?þÂèÆ!­ÙÀвDìzÊÔ0éCP“Ó»&iHCWS•mt·]¥’H/¥áŸu¬UÙ},EÝ~$;S“fée¤¥XWõU5(›¤{ÅŸ³ed^žtcq~2 \›×,ÜL¤•Zƒ–ƒV°úÿ?†4”S Eõ“3ÔúyàeÆÑç8“þjäUY$4"/$]Tþ—œÐ©! Áî>mˆþ~ìD ØG+ØW±âÐ*ïõ(9Ï<Â{3üorήu¢õ£³¢qKò«J‰÷;z»5˜î±@’ÓØ¬i ïvøx¤…Ê/$1ýnšG´­Ã¡Fì§°Å(<ÂU2Þ}ÊúÂy€ñz=Ú JsìP¯¤{×Eâ>?bI6>r&§B’‚ŽbÞ´ÐykNô¹ôåûôå"ÄM•Ú(â5_…]ñ @œr£-Rˆy•#r.MX¾î°ófÄ ŸEÿX.-ÕßÏÂédøòÀ¨`NˆÚEc2(ãÖ>…îJÃK¬5GTÆ' (X$_C÷àoádüìÄï'ª;XN+ $Ò8\ó›8¹M"iA%¾*ê.8{ëò÷%röÅéïgº`‰tZöE¬Ví Ÿ4§ÝÇ âT‚8£*¿ª¬æHW½ŠàÜ/Ïð½. Ü–Dc]‹Ó´Ç·9,iN '¨N¤Q… /,‘~KÃ¾Žµ5•UÆl©1êâ$Žã©“sb—Dc8ðmÅHâóIoÎîI‰›“µSCÒ‡ªÉ Ü:¤n¤AÕ‘iƒ4þDòÂöÒöu¬èR…Of¥n£X’¿J7'ç}yvœ‚4ÆŒ!hÝ Cp;…Q¼ý¦ÓÅÍÇ“ãvWi8Ü+¤q ’–H¿¥a_‡7d-ÄL«JÎs\À"ê»ìhÚ žçaO$¤Õ`ÁÑE‰) –¸NU[ÎÞNÒB NF™Ï¿©à˜m—¥'­‚P8a ;i Û*´Z{\‰“0„ ª#½8™ÃnYôÒ<™§$­ðB_%¶ËíDHà¡Èð]£½OÕ¢ÐV‰t·$<ÂfÇì¤XioˆlA¨c0% á’ƒz¤3TƒDrfÀ7ž©RQ®ù±¡|uÒ]Å"É)Ñ3¯÷5õ“DAö%þñú ˜‚3œlì¡m‘Ã>p~ôjrNåkÉ7Dã½^L)ã¦>ŽV«g¹:i?œ’sudk|}ÀŒ©Ÿ¤²ð°oû§ë÷¬xažO·Ã©Gcn-a69ƒ‰š¦rÔA=Îè¯èag¤%-ù_Ű¢ ß],ë¬tU!Øjê%­„P» »e »ãk÷÷Ã9;Su7,+œBnÎà Ñ[•8‘ã¯ËÆ$vª<˜èóÜÊêò¤i@ñ9rŠF>IA”{^‹ÒÎ ,‘NSÃ?‹ð„œÜž:êôŠÄr`ìÃoåp0DlÑÎ[bžUÝ6‡Bä±Íë÷"qáVš’† mÑüp´„5ÄpŠvO¢µQlc‘—©a_‡€ÀÛæjø»±D½6{²Àì í ÅËòLÇ®õãÖAðåI;²˜n&x9fô©]´r`÷*!÷|õæþZ UŸ%I‰v?U©°(×O89 ÖR‰òyö¤#ñ¦E€±©@´L PÏœ‚ŸªhlxZXF•ˇ”H¯¥`_Vûç|ÖéÓk2P±R9³yá° 8Âa'ª\*#wØ“Æë1ò¤S`°M#$] 89 ±©@EØi´BrðÁöÑ öUèŽò:Õ".í¤q˾%Òc]¾¯@Kå‰1OO©7ð ÚU€Wú[8šÉ`8+ifoßÇ•#}[”I^óã/(ój“TÿýL†JP|¹ L¨=‡ù¦qœîUõmîëõZ=3’³Pñ$¾o%­í“ñ°ÓQƒnfnÎçä’s;×Á³£%®ãÉXÀ.JÁ¾=›ø{å^‚§„,ñî,§3YæTA?6v?G Ýµ|è&­ýù,'éÁ4m`ûaΑսРSÚ ­P+¼°Dú- û:9C¤ ðœ¯:-ˆþ~Ò…”H§¥a_„Þ?*n»—hÛÃY­÷J„ú…sã9ãÊ Ú9T+1èÒ;s|» GŸž%8{jH:Ç'˜£ÙÌ©!Îß‹ xÊ}n}ù¾=¥žš™;×Ç\\-ìá{˜ÈJÎC@ÍXËïO«c—^OüBD~'xb \š9fI75y%'âSA "i$QrÁvQ×ïkЖ%šÈéÜZlLÄe™ÝÁþÃÉÀƺÇHíG@XÑ]µ‚·“Öv€ÅY˜<¸'2]:C˾º`¦ïÔO:.°–°‡Ö°-ÁàŒ¨IeÛÇyæÄH<)Þ§ºJ ÌÄǨÆÎ8ꈘgZó"ϲH\C8¼Þ$ às «d¬à‚}“‰S éƒÒg)Ø×`(–ò—P,†wkÄŒìÆ^­ä(KÕ}f‰JÜ)FRy´6?޶›¶\ôÁ¬Ëäèo¼ü8P4‘êI fö-aÿtý¾';Á™‡õNï;ýÇÁþ)i&™FÅSÀîI‡œw=%Ôž’.ʘ1<–X ¢Ú°,&HmVNXB>ZÁº=—;´®5Lá‡Gä³C‹œ[YÍú…£èžº’üWª\‹@T°œ‹‚¤›^–æÄI¦ ô‰5èUp0!òûIR@>¦‚}kÞÀ¢ÏCÙæh"ÃM]<“s `©C4ŽDmLnÜjã˜O‹±¦ÓC}6“s=5h W'xz˹Q*ª’úÜ.úò}kÑ^Ak¥P/M4ˆ@ûKúg ‡p*1h…ÉdR}'×¹¨†"¶ Çsà`$ ï |©Z°O"¿û0Òk)ØW¡ï¶·ï™«þÛx_GØä°¢>'Ë8 §´´ã`©i5ý¢ËÀ0$YFÆÉSQ^~>,‚°Ñ/ÒKØEkøgëï–qã[鬈Ú4ã—áÔ“œ@OllëDgÝÉhBšú“4¢,ZI‰§øÅLÓ®0§17d Ñô{/6HÇöÂé·4ìëзËo•°VÊ4FɃæè¡ù±Cõ&CˆÚ€#$ô]W¸P‰ó©Á4mà sªfSC$Œë}ޤ¿Ÿô"%ÒoiØ×±âƲ¬À@¹1S’Ej·ºæœMÍô˜…/¯]D“Iê§‹›Ñ±’T`š&p…9U'+iˆ—j›&Hê§[ú"^KÁ¾ŠµœwsÏÆèCp#§²³É©‡ZŽ{ö¸¶Ê‘€q ;íâ½h‰[g%k0MßÏäŒá¤aå¤ ÒßÏôÂöÒöu¯½çqàÔQ¯àJ“°Cÿ-œÑˆ†eAÞŠ4Nµ ýåùá*‹D÷/׋¤ïg2˜0ÏËq˜úA†¸ìëãôWWïþ»¦‚TÜȇºfãÍŒ¨ŽG-L+Ç£YÄZÎâ#N?4cTg­‹·SCÒµœÁA ©aTïlä÷3}ÐçvÑ—ï‹p"dB7tÏ&Ùxn>§’sBb¸Næ}[ušD­¡6} †ëT Z&T’LNS ŒÛH´ úûIR"½–‚}úrÿˆ¸2ŸQñ+ï‚ûêÂà¯Ù^…ÖüΕˆ2 ¿tVÖ¹V‡„ãáD(_Ip€ÚÔ`º¸WxrØ+œ&™Óé¸Â^X"ý–†}k?©ê-@µŠ–ÇEtFqrþ_e‰tμUï’{Ó;C1PëZ4˜¦ \aÏ©ÀómbN´9cÐnSÁ¾ŠõffÅL׈.NE£r«lNŒ.×±a|vÜ?ìÁ2C §…‹ó¾þØ",“¦‰x&‡í˜©ÉŒiB¹tA§Ëºz_‚¶§ÒÑLf²8ˆõ®8ž±8HŒ‡XÄÝV­a³Mc§@ÈîY th²¤.7 ýÈDšáz )UÛil-Îåãô×ÅB«ÿ+»†³ƒÖ÷ ý[8½ëY ™}ýѳ€(¢U3ƒÓ‡%"] ¦iC©Î¢ÖÂvþM •íiiƒ´ªfzY$ÒoiØ×¡‚y„Ý*¿X9eë1^ØÜ%›QŠB¢,åŽ7ö ²Â- é/G1E@ö©À4,àqcçéú®;ÙD#{j¸€$Òg)ØÖ°¶ó'kn‡F’!zhÁº„uŠ:…³7 tüÛR##Ž´E94$—ãßE9F—9TI &#SCÒ‡ÚÍÏIìkiσ›mˆÆC/R‚N¦‚múÉâÔó¬óNñd<:û}ˆ59·"ÿÏŒ1ÊM! Ò’F½)ÇͤDܼuj˜tÕ6391³U ð—º’Æb$žßòŸ§‹ºüŸEh…»÷hK÷7ŽÁÀk¹â¯û[8wQu7CD—(ì.I«ž Ý–x€g DÒÂ÷3„1ÎË£¾õZ V.X"–†}ÎK£nóÍZŽDE½}ˆáH8ñºkLVT­ÇÇq°Ó´"Qh¦µÄÍû95˜¦ E¢Èa±cj¸.¾­lƒ´’.u,é·4ìëX'hBUQ)ãÉ—ò9 žÌxøïû‹ÈòÔéF´Ú“VBíø–xßóñ¬M I7æ7’Q‰-“ jÓlàšxŠqØ KØIkØV±á6 (Õ‹ ­´T9Ò¦s.”DFSgjíyÒ0ý%§‡ C‚§—T`òÔ}¶p>𬠳±?Mþ~¦–H¯¥a_Åú˜"nÒµà6Dcc #zª‘ÈQÒE¸øjA+Œ;é/Á -‰›ïŠÔtayÑä ÁøK ×]÷.rw¶1æ8¤qkª=}F;Üv²gÍ4M|? §1nf ãQØK6Æ“a/ya {­Á±Û"Ö’¡Žj¿¡»¹™òFÑÂoå<ÿõvZTñãXotMÒÈg646Y¢M“ &ÙÕ–œÀ„Õ°I(ð8MFFSNXÂ>JÃ?«X±ì˜Ä=‹"o£q†“'‡“#„3¦L¢¤å°kyaöƒ>ì'«k}mÒž ™V¿èêΩ»×„“qKØ9_¾»¯uâû$Z¹ †nôŸ áV“©8{œ—Ì à3q$éLÁƒDIš±ÊñyÀ†>/Oš¾Ÿ…Stf™ðÅìj•…ª³ÌtÁé45ü³ˆq…5~gËv÷®ªØûv»;8ó)9ì.²X˜KñîkðË%ý a)!|®Ô`ú÷©|ZÃ{/Œg±AZ}ïðÂé·4ìëP y•û°W"þ³]Éé˜åq£°D€¦QS€™:Sâ}ñpô¸4˜¦ \!N}ø+·†P,&@~?Ó~ž.êò±Â%1ÛUMfonžC69„Á@áÙPpŽ8Œ ´~%­HoH¦ÄÅnõÔ`ÚcÂ&‡sĦŽ›6<ˆlza {i û:VH7Æ¥|ꋱm—@øõ&§2£qrd(¼µ›ã1ï$¿œ Âz D˜áY˜.N‰L’SCà N ‡šIÒ}œ.ëê} Z+ª7¶×j¶i ‚yüPÀqr.9Ä“±D/”PÜÍV‘åh‹ÄÊØÔ´§–&'F‰ÿMÁ‹ Òq°„”‚}Û×£§ ¤ú°8„ß߉ÒÑ€(h¬aÀK`Qtx¢))S®©À$-|? ‡“kR&‹§ Òq…°Dz- û*´MÆ×ZЧõkó@Tº´¡Jóätn=/=•èÐ"&8Êk@~‰!Žú}^Q„8/7Ý\~39„‹Mššr²hº`‰tZöE¬ ì!pÄѵù#^ê9.1ýÐx @¿ôI€Õ°‰vCÀ" :T`¾ŸÉ¨Lóúúz®et¦¿Ÿé‚%ì¢lkp†o™ž.»ª#bÌ8à<9—êÌO½ Èd @¤:[Pe¨Ï‡ÚV|y҇縘׿õóN¤¿Ÿé%ì¡ìKXehšž;#€41ž“1è‡y¬Ó( ñª«'÷5¤QæâD¬$^Ü ¦iWˆs©çÞ.¾¯ÓÆå7zza {i û:V¬$Ž"óö"11– <*“JNeypÌrä4Þ‡£rO>EÇÙ3´Û"q,JLÓF\‘œÆ’5¸ÝØ6H?Ó K¤ßÒ°¯c]0gƒ4Ï)œYyD±«uÅÐ`“hßèLxãçó¨ \ô—ÈÏs‘h_5˜† ë’¡Š(+ÐŒé4AZ](½/éµ4l«XÇÜg'·Q=¨œÕà´msÊɼe([ýZ£±œ”ô—$Ê,áí€5äöàúÝä¨êS"møî¶!9ß¡„µ$ÒoiØ×±¶ j~º›» ЭU3æ&Ç-ìl·®^¾%:kuH D†€–¨]eÒtUÒ79s@§†ÂðlÚ ýýL/,a/­a_‡Žôø†Ÿ†óû žA(”u³¿•Ãq¥ÇQ9ßYãLƒ]!=žFi¹‰¨g½ IÚ™˜Ó4®ÔÚý(ON¢ó ⤗Òðï:´`ì¨ü¸¥·J¯¶÷¿…£žûø›¡Å² _!†º]·Éy{æçñ²Ëå¦g¹Í)Ï“·;† Q@êEã#KÈ?^¾»ïœ&ðë°Ñp{WìUpOug¬“s2á|Ña4 Çáû*‚™&­&wZ‚HSƒéî”õä0™3Òi£9g^X"ý–†}®?ùÓuýyÜòõâùÓêˆ"àÁ!É'ÃÝDIÃý'ø”¨…zÖtç(ØÉé˜s25pÒö´Aúû™^XÂ^ZþŽOõÀ»÷v¬„²|]¸JONãÜèeE›AëÌiic úËÑ ¦g‰®$¤5˜¦¸Âä¤ä¤ Ò8#È KØKkØ×±Vœ°tÊH”(Éä—ÑtÖ%ƒ7QÈ„FϘ¶t³^â|’þ²µT–x·×½h0M*Õ$m_SCL°y¤ñk—–°×R°-Bqì—·±MöDilL8?>9Ä„mEe§ÊƤU œÝÛûžDÔÅï ¨.¨²“>ToŸœèCެ»56m´vm/,a/­a_‡ƒ­ØC¢ìQÃN#oŽq1àÎÙœŠÜ NPv0 ¨ICúË|Zc‰GCm¬Á4m TlN%Ö”5pÄÄ´AG ya‰ô»&ví²ç ž™÷kU=Ä·w¶iŠswgž]à˜·Ú0€"­²és,DLœLÓ‘æTujJƒúrÓ†«è§–H¿¥a_‡›¡MÏ^>ö€}_ã ùɸ±iˆìׯØÁhlÝ!XÌ#ÔbIÜÍ?Ötc­[2ŽA„0+Pkxš ‘œ°„´†mÆEþsnH{ Ù¡S0.gNàWÀ×xÜ«*<Ž`6ª#i’æ1,ñ>¤X@& ¢eΛÃg´5DmB&HâYNüy:­Ë÷EèPäÜz F$:ÎÄ€lÆ(:áߦÀËáâ Ñ:ã#e CÊZCÒU»ªä Ê—Ÿ¬4O¤uÄ'’®$ìâ9þþ]aÑð«åyW“]ã×ÀRƒÁâ©É‰†O¸¸ô=—Ü:iá©8Ý,>žLÓÆ,p~9C¬  Î7µ ÒÔq/é6ì«X±RCŽgÄ(:·p©Ôqœs±A:ÞBöÂé75ü³Žµ6®­ò*ÙåÆD”¼Éi<®:-'ß`ŽZÐZ’Š›qÒ›úÃl¬˜®O¢½›ÃÓjj(<ÍÚDñq7}°@z-û*þ¿¶«iŽ#9®wü_&¤ƒ‡‘îêê®îVx/²d‡ …%ѡîØá„…Ö(YÿÞ•ùÞ˪ƒkJ±<™“••Õ]]Ÿ™/åáaÇîøÐ0OW¶:Ù€›¿ŽSèµäê†- Qø_!„ 9Ìõ»%H–V¼Ñnå‚c·Ûæ%†¦êÎPŠ:ß”„E&„M”†gàŽÈ‡©!n;±ó[qz½®n Ní>,7ŽŒ_銿"4÷~î'!‰¼2±'5ˆF^BZš»<»:@sÿçVH"즆};ú½ýê –çÁÁ›,¼Wâ¶î¥‚\¬H{¼.ÞOh"’0çRGg¡† QáIÀ§vhHô¨R u‰VH"솆gíÐ’Ù·¼èÓE1›ÅÁfäï¸ô$ðžwnwíñ•>ÅŽ“|®W¦™—ÄZ˜ ”‚ÎrºgXo Nnu€voøkò³È’è¥MÐÀež‘¦q,:ÐWðî[ÌÑw ±AÒ7€ :¶NhTá%ÈAšê¦ÐiQH_ÇlqQã²Q ö­hèºuÔñºÒLعÂâ Š.=™vÇk錡ÅãµDŸe¢”NÂWyMH¥D"|ÜJ'>…~мeÁµ7%d¡4ìš lÝ1BÀä2® {ÿŒ•ÍùÃQšwˆ“½ÿ ~oÞ%D zÿ“‘ðBRVlTèÞÿDaôÈ Ø]#úÍ>ø»qÂMó«KÇÒÕ4*ÒHX•f$h¿ðñwÓ$²¯ßCIÔàòd Pq¢¢G ­€LDM ûF´xÜ {\,s¼à815LptX`d¹;,¨ËSß#¶…ÝÄ¡P\¨‡ѨÃJˆCسÐp¤u$ú…’•Ò°oGïê™<ŽD ŒbOËVIË;lq ‡—>•‘G®H$GšG®î_ ‰!¡!èQÈpâØuh94 Lnu€æ‘«[! Y) ûvp߇ë¡Cï·eéœñ}g¬•ƒ³2'06mš¸.cмŶ·3rM…† 3wÅÁ±ÕB>4 „,:@sAîVHBVJþÜÓO]¦âq‹WGö_2|Ç:Ά„¹ã ÇZs¬\pº­AóÀÕACbJX!KCÐYùÈÅ)ž÷³i(Ù¯G£Ð}C¶‘Ʊïd…k¿Ž `ÆGÒ~ƒ€p¦X|„lD£†,džx.hiu€>]5+$vSþ;0µ×B§í’q1³Œ1^¯‹'ö¨ý~qt4v¼Š´¿¬w”’¨[!ß‚KCÐé7d ŒØ Ê UÚ{„Œ”†]+¸ÌXòA ´L:b\vp‹ýÒs vÜkj¨E­àÌ«ˆ:!b;Ííg;”ÛºÒAqµqljáÁŸ+ ë²*id€d ì› ˜!JJ¡]l˜óA݆7 ´Š“àJ9GÆ'¸^<Ͱí^{ˆ «´tD£ŽÓUpÒF j°[ve¤­Dä„¢­ ûvpXf¦†rè¬ÌðbÎxé9î¸Sé g¨uL ¬ÇÌݾ/¹“@ªå¦!h"Ù6NdÖ¤ƒ•]»:@ûwK+$!+¥aߎ>þ øbÃ<Õ½7lÍ'è¥ÁYx‡³ŒUPq¼øË ývG« Á¨AtÙ„WœL ,j˜7v©ŽyS!ŸõI$`‡†FHèÜ8iÆ–4àÞ;ªÐ½xØÀße¢ŠïÁå±I€Ô•¦ÝhxÜ‚ùN¢µâŒÀb3—~Çf1ïI¹ŽlEÒL™'N阙sM D£ /AΰáâN@²†™‘Ãþ,Uzß„vWÈ©qä¾GóÀ.=gëÀ f^•Ü^¯”¤âµùY‚3 tàóÜó8èòGŸ#¯œbÜAwê$6Ä»„ѨÃ_/9Ú~KÃèQ…“JžšÛï2QÅ÷ЕÏA‘ÖSžðŸŸÛÐÉ¢q¦!òjù]‹0çc­qré$,?]ê4ˆÎthœÑ$š.¶:FºY4+$!+¥aߎÞghÊðp$‘å˜Þ€‡©ÁAïð÷ðösÚ Î˜¤ý ÓCºCº"eÂÂãXÑ£Sɱ$ ~˜J ³¡ åVéÓUX´Ržµƒ¯_n1·,‘œÎsó¬Â‰kf‡äÉŽåu_ “§Tó¸’q9Ý$J¡5-œ¸à,z r÷UÍ!XVHBVJþ<òe1p‰”©ÁnÒ}¹bP¡—F'fS/ RB'®è–‘+»Ek?x¶7‰5cÕ( ¢½÷X̱¬ô…Ø¢Ž}Œ×m%hDHÈf*è›Ð‡¶=Ú®~ø‘ýHãÒsàz;à ϼRžá* ÚX<$,ÿìØizP"qlÃp¹‘iÖ©«4}0´QBVJþ;@ìé&@Õ!û2¯0ÅŽ AÈ÷mé¦üدÊôº‚WËßK < /tbP|p之@ûµ!M„L”†}#ú“r"ùËõ¼jqÑIyÇYîa™⮚гè¤Ü?;¼ ¬mš† yŠÝ8¥ðh™ ¶¢ŽÂÜÍ IÈJiØ·£ÇÜ]|¼Ê…þ«[ÁQP]Wã38eν” ²¶zf¼ ™ÔN%«¦ò"Q ‡yGBnƒTÁ4ë]àç0¥Ÿ5 ÕLî˜Ì³‰Q*Sš3QügóåÐ W_÷èpÈoº“¶jÃ-´$Ê€[jih´î³ƒ3–E &z2«ŠI×Ùa„$d$ì[Á|j¡m«p ~ˆëÓ£¯—‡0ÙqÅ=£ùèWÀx"í—‘ÅÓI`DN³(/5Xà¸7²ÌŠHû í&„@ØÌòû6(h ÇáøOÈÚž'Dd\:cLíúÛ¾¨‰˜óò¸‹v„Z…öfMƒèYæã°M`[ ­„¬DØM ûvôùÌðv‹Ö6…ùéI¯È©‹<Ë3’y8Ô:í¯7¿š:Ę,)­ü!gDÚ+*XÖ€´ò… ”hVÌzµk?]ïÌ@~×¥p#·4. qF䡲Hœœp£Š@;\Ÿ‘f8)±d"‘uÑiÔá£89H?š†Ñª4ãÜ IÈJiØ·ƒc²7Ô/§ÝÑÀä·Ýåtpt9]ÚÝóÁ“›:~ÓŒ#_ýn®¨ýÝvÐq5-N\MSnžUCw5]ž]^ÓDiØ7‚ïÖ;1€ñ˜)È·Ôå \ŽKÇ€ ¢mÁ1yÛÆ{ËíÄè‘;¥As¯SSÐè‰nÆÁq`Ž(oŒ©«4OÒÖIÐBß7@RÛA¡óÏj<÷ýŠfL@ÁÙj°œ à™M¶Íh¤Ï& ÜC$P‡âik -˜Æà$úgñD?PêOr (Zégö+hnGôà4€¦™¾±ˆgkGw6´äW °J‰ Å O8ëðyR8žA2ñfãä××RäÂVèÓU3B²Qö­BÀ|ÐU-}üü ³ç³ aNp¦°!Øóßø°ÌHEÚóÙ¸?u“°dè‘Yè6d,€AŽâ‹gn€æ¹­› ™( ûFhì—ѹOÉ—$ LãÊ­|p2—&´ë гaämfw0©“ r(=*X«qFï—¡Áf¤ÜÕÚJÐ „ÕT°oûò”Ãy%<ÜŒ([Ø œ:8q•€ÜwG5OcR·W±ž™¾P ['‘gl­¥!èDØ™à$ „†”pÂë}ºjVHBVJþ-Û"ƒÇùn-}2òŠûýÒql91ÿ23{Ù±Ÿ¥bCZaô!¶ãbuŽÏ’¨ÁåɼÿEqlB¿“§«f‹Y|ß‚~Å„©D@$êóÀ’ˆÂÁ(Ζ·MCÐ ŽΊÛJiVj±ÒV‚VH"¬¤†gíùÊÀdÓô›ÓÒ„ á]ÁIÌk; 4~ÅQ‚åNËAÛ\˜'Þ›S‚ P¡Aô ì½ÃìºÔ` ýüѱÒ>Cg.`(v+?ï®ýz4cm‡ ài`pqã Ç<ªÖuwnJÐ8F®Ú…ã6vuq<͆ g@HOhÂu€>]5+$!+¥aß (Û?ÝY™ù&8ú?޽ôœÅ»fض-8á]K#èì6—î牦U:È„ÿÆ™K ×¸Ë€3K?:ºMs÷³¬Sñ½ýT `ÁÅJ0ü`BF€KÏ“ì†D{Ù"±&n9§ô 9¶ÒIdOÚ D& ¯ÁácÅGÄ&FcÒ ™L„L”†}#øV}¶uŸÜ‚ ü”':zo¯åÅ1?uIêWµŸ’†eâe'ÜÊê炼Qš4õ{qà®&Óºáì´4 Âd*Ø7¡CÐ’‡ò,šƒº‹¹oå¥q’Pzª×°’Ãô Еî%‰º H¹Ó@šuœ®:RxKÄëÛ¨ƒôé*¬‰°›öíèQüºVt430MæÀÓŠÆQ™®È)pcà=Höâ¡P(¿=t Mç˜oÚ¡)0¨ô¥ÕÒ»1M€Ldù}Ô‹ëkµ¯–]Ø’.; n|Ā߆m9´kñèÇ $Asßãë’Ȱ*é&† O‡¦Àr%¦® ÐÜöäN@&JÁ® }þ2x•+÷“¥3÷5§'»ôŒ…î8ÂKô¿déS¨÷ A'欣¾õx5 Á‡òÜU11,«! ) »V(œ¸Wä­ÎÚqEptÚ0 {í³ÃˆvZ±9îSØfDhJAÐq^!ŽŽ¤¡®/K«Á)?Þ ü9Ž3Xzß„þÜ£±üç3ªõÞˆÆêõÛü=yÌêH˜$  æ‘ýœ;‰d•ÐôøŠ{q2ì }:4ËðGUÚJÈJ„‘Ô°oEç1ĈS,ÝÓË•¼qàîIÝá¼!åOaFP¹’㘨X&`\Khyywž–SÁÌ8ªAŽäÍI„ÕT°oEsd,8Råˆ÷ ‚OO@e'MÌ튄²6í™[1KÚÝG7l$±1‡­4ˆ|Óq26îÔ`Y…ƵÕAÚ½·aEH„ÝÔ°o×Å[8””Aèo#&=ö¥ç }°9wÈÅÒO‡C%ÚÝCÖîg\ ·âAÈFÖ8³{œ¢ô„ÌÚ¡ôéªU/ ™ÇÒ{û9ã&àî ÏHýàQä¾ÙàlÞÕ2#×m}àQ•µs®cж¸±[þµ“Xg8KCГ."ÅÁMTh°0kë­ªƒ´•ˆøyJÈJiØ·ƒ/Ö½¢r ž#Æg%d¡o/=‡¹”•×…0MµíK¨ ô#IŒ+ ¬¥!èLOqìømY¡¡-ˆPéÓUX´24ìÛÑ'¡˜f!´„Ô“¶ ¤_:."Gfq7¯÷4"“iëkø ›³S…† ³ú²8yñÞ(yDgU ÝŒFH‚6²ü® =6:s qòÔž“©gs¯…iª=µÙ—Uø°Hû|ì‚GNHÔtV2q½?Su{Õ¾’Æ(óÛ/mò&;†ƒÅÛèvØ)C]÷½´[Â:F£Ìí}­&ÕZr>ž®oYÍÎ2‹OÓvØ•»¹{ssº~ºàãXª•÷´8¥ãùñéærý䫎éC9^·ßUÁÑ^‡ñhÿZ|Ýñ mãñO/ì dJëñúöÃY¡ßÖÚ̾—–>h­ƒÇKë½ó´À${J/³£—ÌÇï®®/ç§óÃG\±¸ˆºâƒûã³·k¾y¸8®JÊñßï/×ß½zñéÍ·ã7Çëo^|¼Fè°ðÍÏ}UÖeüUÕÙ_óªÒÂWåÞúKr“×Úÿþîüp¾{a}XÊñÉ~²°>{ìí‡û·mÒf‘ÈùóâüjìEQögU¹%«uo­T Q±®^燧k$HLJúÕøË776öîëÒÏææ®ª±ÝÃ0«sžÍ¢m5“ã#Møš(:/×ÿkRܦ2o.n€øpùh£- k±3»7zÿÍÓ»îÏø·ÑG«ñûŸšm”H‡NòëcíY6mÛøòÍñÛÚ³^ð¬™ýºoÃýÃÍ»›;{X6ûØs|sýt-át|ÿý÷º}h9åÏìûSµ Fé—èoØËrüÍoþµÚ•ܪ%ž·¶}äCu¹á#ª~øÄ‡j7Ëú¹êÎXë¶Ÿrí/ìkª›Êíxò/˺yå{·´²ÿ`ÝÒ†¨º—=Þ}Ô˜ÙÂú?=jäúåtCŒ­â(ù•UcWôù8lì³è™º¨í†˜‰Ý€¼=×ü½É¥òcbùÞ mpØkÙÙ:׎ùÑ'g^õƒˆyBï%Í>3ÚúV?´{|^^³ŽùÙçõx¹¾½E;m:y8?~¸}²…ÅK[˜ahÓÏåøþþÖß¾ÿ´ÆOö9³É³¢çÚáÍÓ¹Ê|Ë™w,ìðþ˜l“÷eڇ~ÇOç۷͸U]{níawñ!æÃå€ üõÕëøúxºx8ŸžnÿòÂK™­™ã›µî›ãëNæëhcÁ?¿¿ocÄýãÇA›\Ûçu(ÃHžÚKúÊ„ëp¾®å£ŽGkOŸ?ØÏÛ´[_ýà`ÿlEes"_²¿ Û†Ù Ö°OÆß8!~Wû‡âž®Ÿêø(ÉFü¯O@Û|!ÑxÛú³%a^žõM˜KòÕÕÓ ïEË|ü3ª_V[Éáçn2y/¯OÑ ßßœëWhè5uʽþöö,©TÕÙðQ·‡µ=½o¥c¥å!µk|s<b¥e̹­×þ¿þ°ÌÝ8þ•Í–®·Ó0|t…eÈCé2Ž}ÿü#¯ììßþíõû³‹aÎúÔZ¾jIÃ6}ÞXól9Å)Å ŠO)bÌ·¦<[%¿Ñ'U‡k_äù§·ïîŸHÔÆ_÷æÎÚóq¿Bªž¥°zc©nq`'u¹¶Þyü E–ñx¹¨¶™ç»2Ëñ|­ýߺANóì!/i´yu'f9Ä?Ë5NãááŒk¶eY²;ïØJËݾëÄ>ù‘Â'7õ…›“B}¤ý–Ï’ßÕ ì¯mÒ}Ë÷ÓŸÚà¯ï¯ße‰7[bù|8—R§’¾IÙü´üžóÙ??`’Oý€I–@4-¾¥}|Œ=­µu› °~€ËÜæúþ UÙyú¶¯êŸ^vU-v¼³þ(U> stream xœ]±n! †wž‚78¸4冓—dÉЪjûĘˆ!"—¡o_Û—tèð!}€-û§ã©–Õ}Á/Zm.5uº-÷ŽdÏt)ÕøÑ¦‚ëÃôÄklf8¼ÅöýÓÈòÊ›¿Ç+ Ÿ/“×+¿á’èÖ"RõBfvæœÁPMÿž¼Û*ÎùñõՃ⟬#(¬£èÖh…5ˆ"(¬(š@aM¢VeÜ&h« ­ÂÖ½è ë¤s?”$Œçîï½S]51MD‚(•þBmK“*˘_ÚEpîendstream endobj 468 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 1611 >> stream xœuT{T“çÿB$ï uv#FDÝ÷©§Œ³SÖ²Ù£ëæ©¢½€­T©å¢H@ IH[Bîä ! ט\‰Ej/Z¡:uõt“®L·rvÚN‹ÛþpmߨÏs܇ÛÙ;ÛyßÞçüÞßsû=ZGñx¼„×_ÎËÍØš‘±üØ[ÛÀ¶ä»œ¯ÆÃJ>¬\áÚ 8—DÖþ€ðŸüû÷©8oMênYUM²\¾1WVV.¯Þ˜'«:Zý_FŠ¢eŠº£õ¥âã•Uõu€Ê§vQoR»©©,*—ÚK=Á…@!ª÷Cž%.-î3þ!þG+¾ŽÏ¤<â 8¨UâJ¿¥táØš ïü¹µÄ'gcy¢4MF±˜3ªÌ*¨ÃìS„ÞNVL6Þ"›H*›ü%›L³[X›Èƒà¢ýÚ[ÑÀø´{f`¦yB:yÌ•pд¯¼´JZÜ|¶Cötóçm}ànëëñî,Pº`lƒŸwq– ÎòIbHd„$to¾}?@(’À®;µÍ͈Yn8¯Þí Ï^nÌî£Û›,êAÀîŽînæÔkîjmj8©ÓуbG9àLv…jóÖ»µ×Z™qÊtO/§¼ô\Ë‘œ—ÆïªhS/t7n²è´ û=f«LXëhíéêîv:i§Óårr'…«ÊÐ¥åãfœê$²i‘è“… Wc»Db/:3dÎc؈MøCõÒ•Ãs#´íy²¥;>Ú€*+í3Œp†|ØmÚxႸ–"†ÝŠž/Üý“êòŽá“´Ömõs°/п¬x‡öGÉúŠ`Òõωaq!’,”‘]±T‘ ùc?àÙO”錱Iìa)›²åÛš›WæOÏ26AÉéÔùFÞï¤çíGÊ–ÚÚ–©Aš<‹ ÏÖ }˜Ä³‰Ñgö¤¶ÓÂs |bl``Ì«÷6ºhRÍ>'ÚŽ@ò&¹¢¬@U øHîÈÜ}òLàÏ ž¾ˆ²EÉý(ïll·H<€NÏê1xõ½}-ï\ë=9)¶"ЯllPÈëd²:‰¼´å(`19E-ƾ®¡A¯ÇËø†~åÄ6A äÓ½ M“Qkå@5QÊ“cU!ID96ºŒz'¶¡ˆ?øî™Àdà\?'Œ({@Œº,.“݆Ë”õõ--šÆfmóÈÎKælç²õ8ºm8ŠþÓÀÕAâRóȆÛäÚîÁN‘Ø‚\C~‰Â¶ð•é’Ù H!+ ýG’JV³ ÷ØÕû ëËÞ`Èo¹úÐ(²hÅ•’*iQýaȇ¬É†÷¬v°C&åÈ9õ§³—“'¢©?5‚Ñj\.Øæ/ÔÏÕ¼K_ñcé±4‘¦ÕÐMXáSüÞáá[,ß^Dë/B¶:¿¸°¤v/äbVDÓÉÚOç7ôÝåì.Ü¥sèTVe³ž–TüôŽß“ø[¥¿žb<ö~ðÀŒYÆÌø_"bKBdÇÍùQ‡zÔIoTó)[ŒÜHþMK~tZT¢Ë;oàMdŸráÂE—ï]zÚsaÜñ>îDd ›îMWÈ­  5 µiàD»lB¸×yÚE· :Á£í5èF-£pî½çú»L5 ×L„Oö³¡Mz\ïÕx}n·nG0^3 kÇ:Ak–ªÌ“ɸM`‚ÖNƒ ÿ¡í¯ªpJÖÿbcqZ…»rPÎØÍ.37ŽËBj¬75™5V h@â®U⊧DÂo´vk»}݇óýQúŽàž¹3 Ñ66³U•Å¢Ó7ôô,y(â¨V‡cÝåÉ‹ÿzº43»¼xÏþòðu=Ímž#sTG¤^õ`:é:ùÙ/o' #×—UÑ„ãAÿ².´ ¶ådNT[d´0R'Öˆ‘02k'Y…@¢î3±ï8‰ñï|ð˜,ötЦNºJ2^Xxa‘]î& ýÚÇÛƒ„#Úð¨ù5†µ"ÎXVkͧ…-Ç8¤ý£Ì‰È²ZûC²Ñ_>¹²ÈUûw]û V‰$5–*šsÿíÿèßv¿^À°uÿ­T×ÚC ‘"´M4ŒVŸßßs2áMYAºµóúg}…ë_­'”û0÷ËúUü*:‘ß³ceEýñ£‹endstream endobj 469 0 obj << /Filter /FlateDecode /Length 411 >> stream xœ]“±nã0D{}…þÀ´CíÄ€Á&iRääîd‰ TD§ÈßßÌ8¹âŠ!ðLJ»O\–ùÚî^¶Ëð»^Ûi^Æ­~\>·¡¶çú6/ÍþÐŽópý&¯Ã{¿6»‡ç~ýóµÖ–êtã_ý{ݽfýÓþöÐpëÇÚuë—·ÚœR*§i*M]Æÿ¶rº=qž¾Wâ}qˆ÷ÂcqˆGáPâ@¼ë‹“׿”÷ÅI‰+‘oÍ~sÖ›sWb'ŒâCÈ"Ù…² åsqˆg!kf×ͪÛQOI‰+‘5;×íT·ãÁ·;î„wC»q(ñ dƒá&CMF.1 Ùo¸çPÏÁ~Ã=‡z‡!?[øÓ…>]Ð&l2 vî*ÜÕXâ(¬Å!VáT"oñºÂ¾/hAF  l6°dÚÀFhAF  l6°dÚÀFhAFàýÀwÝhqÕäýŒ˜†Pãü3½íð¹mu¹zæ=Óåy©ÿþëeÕS-Óüc<ÑÖendstream endobj 470 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 5590 >> stream xœ•Xw”TUš¯¦éWWeIµí¼çÈÃè`»`Z J6 è\]]U¯Ò«^Õ­œsê š Q@¡EÃ;è ££ëxöÌ-÷±g÷VffÿÚ9÷TŸÓuÞy÷»÷û}¿P%¼©Sx%%%·,¯\°bÖó³fÿ™Y¨˜R¸¯rtáû•Ái¥pÚTÿ}å¦#Ý]è±;ÐÔ;ySJJx|n{«X&­“Ü¿¸½¶NÒvÿ ¥¸Ž–4¿Y ÝÔÒXóàñx¾ÜÖ>WÜ1_RÙ)•-Ó›)6¿®¬©­«_ÖðÆ–Æ–Ö‡6üZÍÌ|áAïÞRÞ2ÞÏyoðÞäý’·œ÷+Þ ÞJÞ*Þüռ5¼Wx¿æ­åÍå=Ê[ǛǛϫä½Ê{œ÷ï ÞÞBÞbÞÞ­¼Ù¼ÛxxU¼©¼ Þ-¼‡ðIy|ÞHISÉ©)¥¥‡§†Ê.ûŒh$þ›ü¼Ez«èÖ‰Ÿ¶rÚW·í¼ýÞÛ'î˜wÇÕ;wÝy×Ät³`Ž`ÇÝæ»¿V á=?½çøŒ?ˆžEþgÊ´ßñnŸüë<™"^§zA“f¢:WªÅ½–ÖB`†>ï`æíð•x'sïoÞ¹lCÝÒB^/~/AwŸGŠJÑ…ׄÜ]šY\…å~ âW<ŒJÉ0n‹þ Ý@Ó@Œaóå_ÜsBó «¸{~ ÁZÕ±·©ß{é,ºíKÜÄn[ö-X ®½ß0^€øý÷TZ˜õc©[&–Û¹;€‰_åxßA€ø~ñoÝ¿ÇÇðâctË½êæ€a¥˜”×lzk=K´—£éè©oNR±`ÒŸ„`o`Ucc CÙø.:iNÃèÌùrhšÈò„`$´1•^g5šIÆa·³,,·@MÜàUå^9¼^×1^ÈŸ)A-‚—~ÉÍVrJ%KszŠÈ'Ãù”6*§Ö{ÑÒ.EV½–£òÏÐâÆ[~ÿôæZ™¸…Òô·fá<Øöó¦ÃbÇÀ’<ï÷¥rÒßÞŸ âa f‡Én¡¸’«•¸™V]ŽþT˜#4¿\ÕΑÙ¬ÃAáðð…ÝߟÝF…¼w‚‘HÕ34;,ÔÍŠÑ£§ ?¡KÐ}çK %ýBÃF]µ¡ÚØ bÍN‚y ñ™ÕÀ·ª“t$&òÑX&ÄåÔ"´7:Þû—Â#"§Ïåƒ>Ö„5Æv¹‘” 4¤ë àî›Åý+ÇŸ=6ûòÈH$ÓGEzÜïåÿYÓ¨?dß?ç??í÷».?NbWjmƒZæëE:ÇQûø÷èéâPL _aUZUVåÌ«OŠì&ˆgèŒy»Y h¿º‡DŸï@x&zÀt‡q÷||{ZéWÁ6hUÛ”Ú5"›Î¥ape ‰ƒ¨Ê¸Ê.v£Í@š5'¼é´‡LŸwG¼Q-ϨCr<FÒn²ã‡ÀlâZ[†^&X™N•@pI7äFa.ã#=)oÚ›r…½a†qCLíÜo‰­NF &¤)Súú¨$å(Ž*¹Ñ‹×fýxaºP7º9ÝÁ–¥êu6E µ@7æßÑœÝ:@ ¼>Ϩˆ5ZÚ(±È©Ü\«Tßååò´6±Ó}xkLM}8r2¿kpì¹ åàC#£/V™•%èÞ¡TÏ›¼4»ïÕúfÝJÍ&“Ñ|ÀÎÓ¨nM½qÕA|Õv=«cõ3¯>-bµ¥Z ÕiƒP¯gi`ãËR¦<‰Ê‰l*Ø•cBª8„j1¥Ú¬ _§sÕ¨«?ç%ý‰mpd5!i=»EÆ’á˯-C•ÿß[¼Htj®ÝbÚ”ùáhÐÌ´ø zò·¥èõ‹Â@ØQÐ+Ê⦧Ðú=%C|5"¹Æep¹NgYSŠ´šp? @šRåÓÝÛIó™—b+áløL»êWÀʇ¿FÀ²ßØkÙ¡Åà1Xõc󠁾uè ½Kõ.­[ïÕyÁÍjŽ£%x˜væ g2µNNÇtYꡞ«À˦4Ñ«wm<ýéé÷O n¿' Oû•Mv)­' 5¨4ᔯ8PÔZèït{zÊ¿"r‰H6Í`þx‘pŦ‚v}}¤›ö¨ZXš¶P–NÝz5´C»ÓîdÝ"›¡ßéwá™ ‰’çç’ç<1&@Ô˜“ˆ ¼—¡^1GûtMe9ÓÙÙÚ A£¹¯ûPþxê*Ôé…}@°mOã¶·æW¿²DI:¬˜’¬@0¡ kóc¦·wu“þh4ƒÀï6[ÄÒ*&¿š*¸¼²kݹ]½©\yƒ 2ÌûW‹xÔÚ´¬ögWŸÙ PGÿ‚*»EÉêDík†DF"ÕãJêR‹Å-ÔbM+ÈÊþHäRá®R»(.HtêÔ eD—£n\Ó$ .<_ŠZ±l-7×Tw®7kŒ ¨Â8p+c–,ìƒÞ¤?îÉî… ä7Lvk¡$‹Z*á<°`Çë!ƒD  ‰÷d\Y˜ýìÁZšVÊM³ËDºðH@££ÕÔfnS¾ÚÎÍx±Ù-ÏÃð@×áä¾@.’wvã5#koB¼p+]òíÉRtâ€0¿eH¹þ#^æ£Äû¹3ðÀèÜ¢Têh–dùPï1zô½S õö&S“©YµXΕ½ An¨(2ì ¶¢Ü_ÆÊã†-7+VÒX¯YÂ,Q.-×UKçUãFväv^<>/P;¥{×Ñ £0xôA °†]>‹ÏâÔAÛ¤iѵ2µÚj¸ÌÝ¿æÜè®ÌpüFÕg Jǰ›~Ëá ýuLiQ Ó°ïHrp ¨^¬]2¯šŒ½™æ¦n®0XcÁl°Ë—¥ç♳® ;è ‚^uDÁhÌŒ…”¦èTQUîyŽ{õþùƒÏþaçHw× Õ‡dÿ¬ø]G, ŠÊª²©f^}£ÊiÖE®ahYʘ¥.cr›´‚2ÊDŒ —¿ßÏiÊd´©ƒŽë³ÔØÔaîS…hŠÍYò¶\+ú¹ˆMÛð²ûØôÁ@Ðïó!ýFäóûB¸8‘Å2}nžd¹ÒЩ 6ŠÛÂO #Q‡–w'¢¹tÑ>FÈUzÙ$Ü@ÄBô"VŽ¢Q, È‚3Ól¡ }/dŒ&56›e~G|ëèáš}KêÕØ¥T…Úá¸`™d¾ÝbÇê ^9Ö–aKr[–˜’C}[+z3Š&¥EaURjm ÕÊrì@°f•?B¹ø0˜‰Ã,Ë+3’Zõ–æE{kŽö÷‡’]¤Çíóy‹òí†.»Ë׉2Ú.s7ü~yÞ¸ø‚YIMTMšˆ&è’¨ZÏ@s[C…D–Ü×}"|ˆ í îÛq;ÝÐ c0`ö©okA5^´(¨áãR$Ç 3Š­mfq ÷”H»V½®•;žº2qòÀ¡mä¶C]§á8ü îÓgÀ@ÔÂ6M›jÒ¦ŒùºE.Ÿ³ˆ¹>‰KE>ˆu™¡é˜»³7úOš ']”îøMGòàUJdW³J²Ðæ´C¼½JÂ6KòÖ…Ž£Ð“ $'D×}‰—ϦTAVSFŸv•Èft«0ø¸g®QÖa"¥)A6­u’‚Ãf“ÃRÁÝFÈ&‰"Æä|~'ôÝprrôÌÉ›\ÿÒG3W ¥I¡rQëÜEÍ«ÆÊ@Ì K4ðÇ`t+S’Z¦±EçÒ¹ dPÙÕ8¨…å¯ õo ným¹c¾„3Ž»—V'íFi§•ÔUup¼&nΣ°¼^ß×w$8} õ‡rp.ì¯ê¯}½jÕ*)iÕY‡°|Á:jè>¤ý*{„¼Ö\ò˜Œ2ºZßFiªU닌¿wõG½½þXö:XÏL&‰Ÿb§?ý—ÐhÀnˆÁÉGMõŸ^Ù³ÖGêŽäøÜLîîߟJÏ]ôî>JÁ ÖÃ4VÐ ™II6¨«Y¬¨W¤~÷õ%Töeø/Å•áÏŒÇÞƒïäC÷Îw©p tÆðd ™ÄD“[4ÕvÌ¡›V$/œA ÒãÂÑc{ßÿ‚®^CËš%šZ µÅÚnF›Mò—ãGÑŒkÎðXaŠÕÚñªåÚDÆ5Æ5ºµ†ÍŠ95p2H;ÝØ8`_Ó'ÒÍ´¸mù{Š}¨´=ô^ŒìBS“ˆŸAežÛ—€à "›Œæ0·Ø³J?]4×Ñ#ƳG±ý:vÖŒÙÇ„¦à’Ä›Ðæ*†²½}'$Ö××Z¤”ªÓÚdi³ÔâàÔé!X@ȆÆÛusL«äÈ:ŽÌãÓ ’Opƒ‘7˜›vUVÖNH\ÖöPß…ÏïðWä‘<%ËhÂr’!ö ye—ñ(^Aw"bL3VÛCuÆÅÎöÉä c4 ì²T?gž@æ²Ä™®ú ³^\¸äÆHÒㅯ钔a¡YbÁ«ÓÌŒdÝªŽ•£Sërz ^ W“·Ðím˾°n'“ÄgðÒî‘OIOÊ“ú®@‰<1_¬oÍ`ûñ2XU­Ý ŒknÆ#ÜSÜ­/íyþË­C±T?NW¡ã…ÜíÀZÍÁ_œ@·_SâëjoÔÅ“ÿ8húE”½XŠö…žï¢ãµ°ð€‘Ì»{ƒ¶#@Y{Øs÷é|"²÷ýÇ6à Ì·MÌw¿Ÿ… ô9²†»£–û©»ËaEa™ó»ì'|Ð}N0ñ­Ð‘¶¦Ø´=êŒ)!*©MÒhðµSÍUžýgsÉq*1?Û{2=ÚŸ? AÿNãf ›ïFC½y‹â ù¬æg,‹Z¯7¢Sá'㨟 å¦tãüšˆ5°Øb°¸• }öC·7=„DûÐzt }~™ «›ME骙MšMf¹Q¥`Sï¦cžþÓ‘¨5¢ð’R¢Îæäxk!` ³ÓîǧHã¾dl,±'²Ï—óä`œ_=üfMC7“Þ„;áIô#þõø ãº0ã Û‚qxÓ_bžYHg'õb76˜oš×o–¬5iŒJl0å1c×€;“ þD0‰†B¢` ÄÎ8·¨ie‹IJiê™:M½Qªí´K€…¿joÃ2@œó½÷~â”krk{† Ê`„2#­kn­­Ç)Eë'’#Á<ßßßìŠ÷ÀnppóŽ7ÈïÐ\Õ¹R³AW­­2Táo¤¢Žè²}pÞG†÷d>Ë]Úõay¼§{d°ø³SŠu+ >½ð9ø4¨K׌e¢ÑLZ•“Ž¢;óÁè@¨/}8wÄûߨôVG«‚4E­1]HSx80¶heªë˜]"ÿ1Yl÷!Naèý 5vÖ4HŠ#Šž·ÂoÂ5{ânwçC*u“vBMD“t‘‚±p,Œf¡²oÑzˆ–ÁOŸ­;‰ÃU’Ñ䤂 ;ë°WüãFg;&7Ñ1˜0ª#ë|»¸…]Ü‚·ÐÓá¨ƃN¤(7ŸÝcÚcÙC£ÇeèqzÜø±Híµ9G+&qpãŘ5PG¤Ft)Ê;…t«XÞÌ0fÆŠ³»*¦LÅ’A_„<1xlþnW Wùp¶©¯oÙÜ–o¥nV·ÏíytTxl ±=vdÝ+нû~ü鬿'« wÎ}RRÙJ™•6¹U!{Rdn·7Kåâηô͘=­l5š¶.£ ;Sk3wÈ"3K¡ ¼z±ùc2L¤œ‘$LÀ T9ÛÝk½pz]^§wUˆ¼fa®_»Þ˜çÇÜ€ “­~{¦K¨€N Û´R¦Í(·I-²Vîv‘fñbýZèÐjiEL›¡üÄ9øinôd$íÎûr]y’î´?ß¶7¾Õ×åÞa‚;AB§I#!v¯ñÁ! ä=Éà¶Ð¶à6OÒ›„Iðù/R«”2siç &–£ÛÆ–ß '½v37ŸÈ"‡2( uæéëuæä99zö zd=7Ùß1)L®á)ÛL´c!SÆ4“3ä£ô ªck²A®H2ÉnoO:@F¶FG#[q ÷F 8AüÃS…"©Möyzs~22 {ŽPz¡×á`7†`"âL‚¹OFÖѱään,ñ>ÌQ}DªÛÛ—QG:)Œ „¼Q üªÃ*£Í¤AllÇ1Öi›Åmu²¬›|<<è‰bØ v¦ꨪB mb-ž-Âz)Ávx1¡„Æ¡Š“&Q÷ˆp± MIì(› ,»qA…Wp#Ñ=+‘°ØÉAt·°ÑÖÒ @KwÇàŽÑ‘·‡Úsí,ë€,ù :&L4XÚZëïméî"ýĨw`n£âL+y­)ŒxóùÒB/ž%ìvtz÷ÈÏå–›¸Å€áÃS³÷-Ž*S]¤¢ÑdB0…¨M{Uç°IDs. ùHô×lª/»@JQ±,t°äíä­¥á§ÝÂãý/¸£lendstream endobj 471 0 obj << /Filter /FlateDecode /Length 4308 >> stream xœ½Z[ÛÆ.ú¸!@!ô¥£Âb9÷™yH'Hk©»E[dûÀHÜ]Ƶ&%_òë{.3©åzm· öaEr.gæÜ¾syµ( ¹(ñ/ý_ï.ÊÅÍÅ« Ioéßz·øÓåÅ^XµEtÎ,.¯/x†\H çíÂY_(m—»‹ïÅM½_®”/¢Vlê¾Y/WF–EY*±i–«²ˆQíD¨–²(•,hù½³6Š5¾-×¢†™e,bÐbWºæm±\9KÉ(.oëå.ÿ‚¤™1i*ÒD ïrsûí^Ô›ååç'ж0Öö½¸«ÖKa]ãÄË¥u°eDuSŸH?öuOO¢9ôùµ{šWj/Þ´™Z)šÝÝr§*Šmç‘A±«Û½’N®ô‹,md*Õ¡Ù·pFëp±´Gr®¹­a&T†4< ˆ°) xwâz ëU¨;ü‚,‰p‘ËDXÓŽ˜±}ÇCJ L;Ö§Uûô¡ôpM{“•¨2qJüõ«Õ¡«‡iQ\ï;:)/¨Å峋ËßÃoñJ ÜR´¢­«®îü¢”^47·K”`µøÄO㥀ÅÒ,ÑÃ$`VÀ¬¸Mï„+qÝíwðlQ@m5' ?ÖØ$ /¾|þ|NiÐ2©¬&£t¸­ødĺjñ‡¢¡šÿ%Ú[øLæÌÝ&‰šÄ™–ñp#]Õ´i @½<®ÞñÅÁqFÚ[o6d7xJû6­I9x²ýñ‡¾>d@é¯óo'6Õ¡:‘|w"yß´ƒj‚]LṄÔ. *ÐÚæƒGÄMJ ŸøÑ¢Îí€Úا!!F–¡êî®Ût¼mÀ[Õ§ª–g¡m}ð†È{o"êáMž@¬Ï{²–¤e½èêp‚ ž”¦™d'æjpèAò½B ’1Z’öêõàËnÛæ:ƒæÜ +ɼÜÔmÝU[tôÕÕ×uסÀÐöÙþ)vÝUž ²vìªîež«Ä·ý~WÝ ‡¸_á¢Sü½Ù¾&ÅZ’:•JÀE.ƒC’ªø˜¥™®Ž»'8J#ÛUžÍ—e¶ šh3\a¢ÌÒ¢ Ž[*+ž!CJ#ƒƒÅ‘Õx‰º³e_É‚’†© ªðLT.°²Ä+ñty±[âmKû¸¤u@úf4b3Z"­Çn–3&VºÂ›©ÿŽmD™xPh mô̲:¢-Û¦N_¢'¥Ô1òWiÁ…¶¹Þo7ù£#/A¿¶Uye)nÑuÓ~X·=XÎj›GуAvTl…xU3Q†b¶º#}ãO$ž¿í» Ê|=Z%ž–nºdÖyp޿ų$&N“XÍËñ,éÍ_ñtwí1¶H @£Á†Ý¯Ä³gOÿÎÈk²/R$CGîÓ„2ák| ÇP·hàƒ%å _"×Á³Êó8HM"ï–oön¼²ÎFç–xkIêx X Ÿæ Q¨àÌCœ‚1îÝÞG©s‚h#àfmD»±ÐVÇ&*Ù ¬Î'VŽW…/AxÒà8€¡‰iaµ°ˆ+Wçeð ]†-iELT™iq£)ÂT)HýkÐë™…má­SÅ÷–œèè.Z|&d¼i0F! ¶«Niˆ,:öd.Ä;¿ÜP8§"ßàödUÙÙKpe-ã„CMмˆf`ù¼€Ó¥šµ°W€àp2Ÿ ¼‘ÉF€@Íl È Ä¤„½¥ŽênKN¶[™B[[†ÅJ®+í÷/¦Wzãgv*A($]²„•Jï2M2£I oñ>}Á¢Dæ[ÌøI)5G$*¤Z(]€¥Ý®:J‚ð%Zø¶0;ðÉ·Ç_œ3¼Ì2@)•$èí{Ùa¤Ò¥}Ûg4cO°'g¬þ)/Pfç®l¾u1"ÆÃû’ý_x¬µ*µ<ãñ=áðXáÆÅãñÔ•J¸t¸@pR:d/õ¸ªÑ©>BÕ&{:¸J0,g÷ÿIŒ¾·Ñ”oPê…İÔ= À õrV€?J¸Ï8’evvà G6‹© r…–г"à*$¥®„xùã8}U@ ³@ï/Æ9tí=FП횶Ù5?QŒ ULîµÌòc«ùûÄ*a OÅéˆý0UD‡£3%Là~½Ýsö…sœË‰œ×IY·•*a£)},òIPh?`¾ÊŽÀše\ÌA <`@9¥¬ÒG‚¡ƒã<ó/°®ñ ˆvA¬‰¼ïðÚ‚‚9Ûa € ´§€SCœµÂˆ÷Û$­ý §BÅV…‡€Êý\†óLò5-pOòá5H¾fš”|ˆGd9`JL–Fμ} AzÄhsâ-áõ’[©è¢P1&1Ë®1…V“¥!䎹V”vÕ¦æ(J4å¬ý1E˜t8K–ÂJeœ¯r>ë]ú(°OyU•ÉוCÌ!mŽhߌ訠?ä,°×ÇvóÂzJó`X§I ÊãýîžhÀ½E5ØO!Κ(m á)™£‰ØRbô Z>xdéü(piå/ .ƒþ%Á¥Ï¦ãÝûâ*P‚¡¤®Ö—ú±e ,¦s>[õá,FËõ?`K£ l©>[ÎÞù`KWª³û”Ϩ#g{~´uahf¤÷“Dö=ò!99¾)¤Eç7†ß‹Ïßk"LR&[ +a&x h¨'=ĵRùÚpŒ³½ dz’%O”„zûš3?Šrâ)«â†²3®ãN Q"&e03õúTä;áPJEëÓr›z½ßÝeµï®º“½ÖEƒ‡Jrøç}»®ïGv|ÊŒ@ ?„¹¢~I•e4^Á3l1U6¬±Ï‡:Hú&~8ÒÄ šág˜¬‡Ç8r’hKÉÄ™#pæ;ª ’óļ¦$KG¾µmÖˆýMé'¼YWT#3©Ìã{(K#é`)–&¤ú}Ã*AÚ7áSÇ[~HÅô’;`ï®>-P¿m¨i }­³n¸`K@õ0W- ɘ¢î°F…zð×ߢ0I.Œ¿x’~û€ÉÉô";x9µx¯BO¢JK`#ÝÌ»ÓlÆ’‹T“N2>í4™)+ƒ.¤Ë½ Ûm=SSŽ…QèFYk­¸6–öeš%04—”ÅÃ%%MPM6œIÑY¥8R€éàõq[Ñ5À;NäåDå¿Ø"œ•xšA >ÿg,Žö…3z D©¤gÄ?ZT‡#¦´I+càà†´2=ÈiðÓßUØ–Ö ¤0ó=4C s2š=×µ3=œs–Áêt{?N #À92©¦Èn7˜ÞcŸH*Õ4øÌÍ.@Š Ó«åÓ©º…UÙFÕ-Iu,Ž%¥$¾'¡Fþ µ¹´Vn¸ à$ŒÿiÜqF»âÙL:ïyæºh5-’Nc=kßSžtŸîº&‰)-âýÐ…Ɖ-95ZpY‰›†Ð’KâAÜŒ 1g'£iX3í[† x"¬øPáÛ;Á#ÊÑÛjÝä^l¶ÉêÜ“‰ýã¥ëgÕÝiyE9ª§¸&,Ô§W`Å]èRë1¸kn†°”Þaßáë¡fPo÷wÉ7ƒžq͘-dJyñ¤œ§H+´TÚcZÈgåö›z}èRånêeÖÛ#vwq«Kj``¯E_ƒæSS~A‘i÷íj½o‡€ùõàPê·<'­GÞJ¡a€K¢V>Å(ŠaйNÈ[¸Ô_¤ÈbºÜÑcr¬Ûfs?UÈG\-0´apÁã«ùvvý©Þ¾læ§Ï›wƒùÛß4¹K „ :·iÌ¢˜/—+‹ K„c²@NM2؇±uÉv•~OGø°CQüBŸV†ß·ÕP‡|= ¨óa² jzž‡zžn .¬–O£gkóuÓõ8ªµžŒ}•çå»O³5x+%†Þ‡yP—{ ždœ,>æ2¼¡Ëæ;|º5,±ªj¹#—-‡u†6K‚“(Ì«¤¶ ~83‡Q7HD`ŸWJÂ#„äÝÝËÓE×w,e.Jî[:Ž›f™g[ƒÆvÃlM {£&ËÔ~\ç–…ÔœJ¤ Â>ÜœÚ?a»g¡v-ÎΙLHÕzÝ\¿;³Wí|¶œši3•¿å#iãæ<¸/¬÷§ ó{œcNÇY7¨œÖÜ0Iëb€ææ€-ÊqI]LÔÚ긙77nÒžÔ#@ 7ïÃ(¦Ä@ôƒ0 ¨… §º8¾$X0¡´iÔdBR(™§U§Ñß@¬Ó7ÿbÌWºŸœiyy²Ñ][c§…´dd®ÀÀ§~tSO_«Ü´b $««ånµ£&ÒëÙ«@0†«XŸehã´ðàTœ¤ZLi SFûGÓÎ Æ 9¸Ï8q€d6¥`#`¹i¯ÀýœÂUœ¿?«ìq/¥5iv( ©‹D%Š`9§¶@$ÕG-:Œ ¸µ“:q/UÛÌ9˜º>ñ[:ºY`뺚ä†ùî@Ê3œZ¿b³Jí"Nã¶Ê£Ô F Ý5•ËØë÷;Ÿú¼Ï+Fx„“JŸ3ù¬ö£W»REޱÊnß OØUzw[õ”p„ø'{ÜG‚_ÂK¢÷!‚[­Mó`*t7kqÇ/f†ÛÌ (ýwÊ¥>Œåc£sIJ#ƬO//þÿË®Ïendstream endobj 472 0 obj << /Filter /FlateDecode /Length 4296 >> stream xœÍZKÛȵ¾ëþ I-©Àâe½«r“Eœ™IìA2Ó@ã\€-±%Ž%±CR¶;?<ëœGjvÛ^%0àV‘ÅS§Îó;§ê«"«ÿÅ¿ÛÓM±ÚßüãFÐÓUü³=­^ßÞüï÷F®|¬Õ«ÛûþB¬„ñ¹ufeË¥2«ÛÓÍÙí¡Zo”†ÙÎg»jßVq\&kîã;²kòBŸUm_}ZÿýöO°+& y›K§4,v»ÒõzSä6çxîŒ)˜ê¥<7«»õíO×äB®„’>‘Û!9Sˆ¢L/È•¶ÅÉ:w׆9!Ø"è)E¡¼MW0¹º°«ù7¿Áo4,c"ãbÆy€¬ms' ñüÂo”[`-ÀDbMæÚâ†è›3KÇëÂã7^8x÷ææö—?f?ÑfƒUÃfõ„¢ö´ I2İ, !C&ðw|!¥\P‘ "·’¹S6NŸäµlx{ âÓê¹>åõJ\6Èà®d\žwhZ`Q…ÊúÃ`sabƒøÒg§²oëO¯–ì-´ãA ß\ÈŒ—{*J“_Á ¦@Ën‰ üp#­Í /WL}6¿ºÜ7çòó½šp†cß»ìcÝp$a§&«Îk‰t쯭«niàM¹3âË-Ü€…|ÎÂg»V¹ ©óoòõÆ8°8)ÐÿωiØ9¹Ìª¸Ka³m™Þ{Ý7í)mXF½Ñ§2Û·åÃaœù¦|8–Û>^Ø÷FH0+ïç~síw3_õ¹—ÖØ™ÍO'_…§d¡f–¡AZDÊ~F9'3úŸ)û\JÔBœü·kÊóÈ+scÜÁèÁìdð$!Þ™†Ž¬†-ˆSzGš(y`aà³®‚è‹Ó¼€è‹6ÈoÌ ° "€Ë;"’~ä:8’- X´ÁßžÜî¡¥ÏÙVÕÀ¬ˆJ§o„ΚvÌÚêê#» ¸².Ámh¯l6 %dwH[aiIÉæ¾Y f¬Ì.k6jcBÆA’qÖç8ŒíÍåÓÝ¥ÝG¢à®ï2yîÝ:'.„¢°<µ(Êm”VŒž*)UÔ ¸õéûj§Í<BdHº{(·$°ÜìýÚ€ô=„€rZ"?÷Y}z8V'ôû˜({T PQä+ifyÜ7-D‹S|Tvß6iä³×Õñ=î]’ØGËøî»úq`¤Ù׬kr0J3÷'Bm íSBÿ-°fß\ºããz£…EÓA“ÐB£ü³7o¾}…#CÆ2ú0=B£­ê}u>•]ú& éQ'ó Þ%2.Û6§‡K_ö5…ORVä’s¾?VŸêž&°‰Ì‘ÜØøäѶ­€ØyÏO ²~ü™ueÛUi¢ÍNë"çL˜ÅP­$GáY Z2²97}|&wˆÛ[ý×@±ça¯²ªëkˆþÕäm̸Ÿ]Ýõåy[aj¹£;ÝŽVõäÊ ¸!ØRÆ™@ºDžƒBeàæÿS¤<&X·MÍàÌi¢ÿ0zXSO #½1$¶éã:»‘²¬Uf Ö™ ½mߤ%áhªm«..&³æ¼Û »&a)$,̘@b–(Èò1˜h=n¿ëÓ{ù„“ÁÑŽ’'Ò,@*e»¯Ú´f¢!ÑÌ’†°@I ¸ 8ƒ®³¬-©¥LsI¼D˜ÂàœVwóE°”* ‚èb HéMg”~&A‚VoÓ SXr ÙdæägÈÈå±þgµckv_L½> P~2;A™dQØGÐ)¥G±I  x8~ CgXFåÖ&ž%ó~ž£]ˆì£åËWç Þ̸ž`‹Ïl¢؇üòM[ýÙô¸5…ÑîjÓ„!”S"8 ³™à“ÁÑduG`G“àà e“§É/g =¾ÝMr8G…øw–“w'rN·BëÔ#ÁÀV` u))@…2Ò°º m‚v!«vYã0ŒvY)%A'³·å½ÓAZÀLë%@E›Ьo€“†Rá[JlÒ`P?×Ô÷§r|Ïy_ƒã¿)ïp_1×Úwk½ûò=çi ‡žBz)#-pÓ”&E5LÑfe7®VŸHÀ Îg—~!²BCÁê.ÛËrFÍ (û³Zia¥-Ï]ݳƒ ˆð®¼«˜ŠcNL_È" kôPÇP9,Ôڥʘ¶¸Mq™HWÆÅJ'醙³×pµëbT,~ 5ŠSޤdh–²­V–4Cáx>‰¦)–A€2„èÊä(âO àÌ$ëDl¨¾oŽ;ÈÆNYÊÞœº<Û÷U§pOqÃn‡0zÛ~Ì»¨`ÈHv͹J#„ÝÑþP‡® HG¨œ~»”kÀÈë\©`9ŽcÈø`1MòøH ­ ”¸d» _n܆úŽ„€/Ùrä]¤L ÚþZ= HØHsfhpŒ]E”» ´ù‚Ø÷¡ ó6}f8ž‰X ¤éµg ףކ¢õ6âi Yw€°Ý êíš®j© ¸@Ñm„A$¶Ï‚@UlAè„Qà©g¡JL/ı&?L‚8`ˆµÀö‚˜‚ÒsüЛìÛI-€ëKN8øCÝ 54{k¸gòz=Ðo€Õ´ËAh̹XÀù>e¬xõO¿!Ô—§4’¸×uëý+ @¸D-}è'm”`$<êƒgب%ØÔ¶åÈóq"Ÿ-)Ãi3+_ÉLÓ¶ˆKƒ9´< ¸F°1-\þ>Í”äÚ3R±×ÂCPÏ}ðt1.K(ÍÄѓϋ"¯F¬O/Ù¬ë+” §fMAÔI¬L{h,¾?s=t±¸Íi„&ÃÂ^‘¢›¡s€uwèdJKù‰Þ¦ô¹ÔpÝ&§ÀðWï*¬ K%PÝÅ7ñ~Ž—:²luCo¨è, 5kÆd?ã\÷G¹*Ε‹©)lÅ’ïZÚóyn»ª‹üŠ£Xô´Aè MÙXÀÞ -“}<Ô[ú0À` WòþWS§†ü˜„Ê@æ,Ñhì£th&ˆçдýf[·ÛK£Í}“²á‚}JвAîûí¢#@Ÿ4wóÝwú>(6°Ýiì,^ÙÝ!Š8ÜhÇ2}—uØbæáT#MßcÑØE´1„#jüPèïëý…D„óÀ¸Éâ-¼“ïyE ’ŽûiõyXúû8,c'>ö.+·h4õX]ß1Â0ÕÙ‡’ ùxLQLÅrV¨¡ÍuOLAlûÕ¯xT½Ë°>í|AœÏµêÖûËy‹Q‹:æ$§'6¤ ãòUDº…˜ä@(0õ²>–wG18«4…’~[š5î6è˜p]Oü,íka+À—cFM¼ØfM<Ôž´¤óß²;Bb…°{Vmó=ŒÀ€ blwQ Æ)›cºPJ)YâY(}Þ¥§¸ô˜X§©7Kaån¤SŸÇœÖŒc±¿Iž‡ÝOPjpˆ-AùÏbœ €`y(SÃ:Q°Ùw]ßþ‹2õx©€L}Iˆ”4íuuÞ×ÍHd¨ûøÌ!ŒÊ_ñ|Èš|IkEŽ};é«=í¯–œMe`³¬ÏKfe¬S)¯½ÐïÕ¹6jh` )c3œà`Ù¡ Ò2Í MÚù‹~hQîÒ¹ÔlUˆ©mmׯbúàa€Á6–Ñ‘è. ls 8–ÇÍBÜb#ÁH> B« äÌ_×l³Nmš&Ǫ‘E3àNé†f¶‰‡ ÏÅ‚‘Æž”ÁP˾ŒT¨Ïñ ì±»lΉ>ž0¡å2d„ÊeÏá,Äþý†-ïëÃ|BH–ñפ͞qÅÖÜõy84ëa@ç[:p¡tn΃)ãh<ßDó%Õœ' ë†,Àx Mêªñ­y%0óÛo~€…<¥g™ý¹½tï12€‘I›ÁêòÕªZ“ž4ªº‹´À5šÀàõ?cãF»Œ©gןóOk+>°¢èÃø|zPë&‚Úàm Äa˜Hi‘muOHg8jÏ FÇ*µo ÕÒIH~ Ëçô;>%s%…à8F.áác‘®ÌÏY-àögO{¯¯d8Uh·’E"f½óþª™_°¸\¿UÀÊsoÉ@ç¾½½ù+ò!Ýjßݨ܅ÕÇ›bõ‡¼Ö²’˜ÚØžn³çbxr¼ùáÙ[;bñڎĸìJJ@÷VòµÏß8ñ­6!X"ÕÓ;¿Æ²þ§/Ç`1²”n‹Dâ]vu§g¦g•Èe_qa¢ãW],¹:¶·÷6ÿþÉéý|Oêž”µE<©þÿ«C¡«› ° öá7³o¾à¦Æ×mlº¦Í ­4ÿãÄLôWÇ,zýŠìxéЀlÌ j&0'!B.ÈB!LèáÁ×(,ˆ56÷_l ›¶_i î‰‚GÏ,ô©fôÍ@óÃí§§'+3NM®á‹”™_ÒáUe ;T+¬Úø¿¯'y€5V¥rí]f¸4ƒ8aCBì„ø Xj§J)̘ԔÒÜ"d£'BëJRÁ:iTÒ#Ä«t)‰§ÜÙN¿ŸEKJ°ø{ðùG¾Š&tXô 6úù;zW…ö…¹ò*#»„;b¢?¤Ç„;x¯b <&m#¢‚Ó`½vZõñs:å $Y¥Ô´hw“Ù¡ÄicWÆ…o.=éBK[¤«?ËÝKRÍÂéìÓuÌ‘Ö~AÔ¸t ¿í_ß…¤2hÂ& I—±°HÓDšÂç M»ÃSsš#ŸÙð<:Kˆ¶P©ý×…ç/Ôëj[Rg‘è+ôF;f†Þœ@ôMDæÒ]5îø UpÔ€ý9Ú#)Ï8,p'êc½«â|zr†ÞMÝÅÇD"^ fè¤B1ÝÑmŸtÍ€°^œÀgÇÁÍîý>Æ¥‚‹¸ àO…†Cv„]÷]šUAÕ'G™`g]žyñ¢ƒ&×f–õpņ_à)^ÛÒ JÉ×%ŸŸ$d_%dЇ‚9¿ö&ZhZ XÓq,¢ÓàC5ö‹eZ·Æ% F{(û¾jÏtªàÛ„à¢)2³«*ãIÔdeÆMÎÈ Ÿpý¢úTÇ 2Ñ•Œ'žOÉxy»HXéx¨t4…£,`"'ìõ×›ì1Ghendstream endobj 473 0 obj << /Filter /FlateDecode /Length 4247 >> stream xœ­ZKsä8röYÁ—ºµ¡¢ ˆ¶}ðÆôŽÃÓ=áiéàˆ‘½Á®¢Tœ®‡š¬j­üëýe&ÀG‰šéîØÐAED"_~ÀçEšèEJáÿz•.®>_i~»ÿÖûÅŸo¯þùCaeâ­Í·÷WÒC/tQ&Ö [¸ÄdÅâvõ«:¼ÿáæz¹2Ež¤:W§mÝÖñѪ¦~Wô3K¼wêi{ÜÕò˜j£«õÒ”ôÓªOËÂ&¾LKU=Ô±G¡šChnÔ‡ð¶ÔjSY‡ŸE¦Ž§zÚ¤™:C+Wª÷çÝ©Ù4ûúÐ5ÇCµ "¡ÕͺÚ5‡‡ëåÿÜþ'V­ÓɲÓÄ~qûîJuûj}¼_þÓ¥f2diQ@;·èâ-WYn ²WïêúLËò>Õê)¼/ U6ô ñàÕûªi¯c«Lšú»eÂò¬´Kò£¯X’ÒÈ$7´fŒZZU·¼˜ŸËìu-Ò8ñ¡éö(mJõ¥!a¹3tÔìw54´4_ñùT ,êZjèªP÷Ç6Ì̛ÿ½úp=üžt©ÿVÑAÕE>RãJgI©½+õ´Põþßon–·¿]ªÒ—:*g]J›ñxPœõ¹ŽÛÂú‚bKU?T‡(ÀdЂ”åc‡§æ´Åž`2=˜4=ÐFæêþ|X‹bæLÆaœÌ”qZ›7KZa œáHj›™¿ð ºùËE]Ø£K\š «¢Å`ô” §(¼Ú¯o‹¤,µ ã'4úÊxofÇ:ÿU}¨w•ø©Ìhµ¯O[r¥`›.|JÉ%×»3Û›c¡nªý^L&t~_=>½è…cƒxÚ6kqX8ï64DhXqõ‘L8­êØBÔ· –÷ZUóú7X¨-]X§¨¿c©f, ’;ç&JÉŒI4> ñû?ccø™Û° ÑåC½™™$Ë“2ï âÂEIÆK ‹Qã©­çgÉ©Lf Û7ýåÌ´ç>ì9FÌó…Fä)Дžj­[¬ŒMRŸ•"&$Y®´6…úËÒS¤4¯í𤄅§ˆ*?,Wi’æ¹7±£­×l4™ËIkê=Œf9|?’ûû½îæ,UÛÄA_º·ú•U¾VmªSš»t¬^Ÿäy–Gýþ7ÄžT'YlµFÀ¨9¾bÜ©gsÃ\4SkrÚ4wX7’-ÖC;¡ôÖ»Ü&ö(É"ñ›â%:ÿ€ÝÜöb\‘oO1×ÍÃVB:¤(’ÛãËћҜéI2+}Já¨ÄY¢H“¢„ÍOüø‰ã¸AB–Á­¡ Bæ©á°VÑhô@˜cÁ¬›¦;U‡uÍ)º‰Sžx8ïã$ªFÚÃæêqhyD^ˆ‘÷Ô%Ë•Í,§í¿,Ë‚‡£b!Rš7¦UÕîáØBaû(3^WË¢‡ÔLV"šÉEeô¨e†{ù Ï™¶ãéâG¨ƒwUklþèm÷Ø"€uC7Êhü‘Ö$ãÑDFµu˜1L6ž˜íµÃúز\^¨vdV‹h‘²úCˆ¤ÙV-‡†ða²è·ŸÖˆºt°OR—1œíOÛêž`oQÂÜÈžRÖæßZ$”vø}:µ’ÜÁð:vò¼~nèhÀÇó®k¾ôòŽÚ݇­ c~…ý°ÌÁC¯¸0C˺î×+zñr´o#ƒ‰X M±-@aû,dm„…©=©¢ÏÒûæÿê M&;²ÄiæÔ—(ÛQ“LœùP·£ixÓè\8Œ¥³&sAMc¿unàÑ>Ñ0qé·d.°" oéãÇ}<ÒŒ³6†¸£Æ9ì²p!•L¢O\†ðŽ7…vÞõÁÉž‡>Þ,†œ³Ô%E\6ÞFÃ8iM#Ò Þù¯P¢úmx1·´<ÑÔœ•1X}¢.šbfâÇ•u{>€iO;î‡ð²²¦Ø‡¢îü°ÄŽôº>î„G ìè€wˆÐéÛÅj0€:ª3—qn}¼ ú€¦06 +?qN~îG܇‡ã)އê`]íêaøPðQúÿXmvÏDrÍZB%×ìj_zJè9¾öЋ Ù°ZÁ ¼v2 õ<>BoÁTK/P|oñ$ñ7¡Š§×s;ž¢ ­ÚŸ÷âpEƒi㸂x„2ÛÔlÓÅO@‚ËøöKïYÍ€‡,Ã~,pE»ãchëåÝaÓò%FcŒ”:ˆ­€m”%‘MÑbC)Ã`¬Ç}=< Nu\Œì˜ì¶Çö[#H}-…±p÷Ç‘¡M´êö¸«©¡÷#&¦ôì?UûŠã–ñ’ÅBM6„+Auhð“èOcÇ"꬚a¬;mC…[Yòv IW–ÌÊM{ËÎVÍ57P:¼[öRÚ©”(u,âö¼–­žÞÆANu {= ëýPC7ÇÛ³cw4•ª°‚8ŠcÄ>zCÖuÍlˆše͹ —r†>2eÊЛPà·ïB7ØÔz_µ'®è³f~;„»dÀææO¾É‰B«8ºÓxäBª¾•‘Ëf'¥©q2|xÍ~[Q¯TlPF(bžsXpÄã“ò“år‘ñÚÄ7E¨¡Jñœíד›È4CozÊuÅ Â5Ú”ï#Øu´Ó¬¬âñBs8ÏÂ]Ðô–Z£Êï$T{öÝs'™„ØÑš.¸Hb—ò|Hß}¾ã…½y³«žçÓ_)LüõOsDŠ›"I™f¦H¯B«Œ4ª}ƒ¼H.àYž]!äÈí¼¾ìrú9†î!4I7#LV$®È¦Zq‘3:Â9P²f!Màìð¤ã6 OÛ¶®ãrôج$?7S%ô4|Še°Áy9 ¨>Æ’xR‹F~˜;ÿâS>“Ó—áÁ¿H’^B'û.>Û@×ö'¼×Ó±8kÇYî3Ø)Ä¥º„(»4Û>`ŒÎešÀ ‡>G«`É™m"ÖÊ&3—¹æs@÷”OiŒ.Æm2—dEÑõ“àlŸÙbvHÀCãVqu3b-~;kͶ rv L>ªáS(¯‚5!‚l+¨d šÍáçžó'=Y¬•æßî{Úa.tsïÔÍÏoa >•²à?dW„^dߢ†=p*ÂÁœ |†Ò4·†ý#´g » &sñ”DyÎÐrõº7ÑíAHÔÒ¥ÐÇç3Å +&à‡,lÀL' ‚!ǧ~:ïv+9DðêÓê]Ý|Ü1Fµr¹ Ìäo¬×±7ø}læ`nâ³Væñ®‚—6,F8¿â¾e*Ü‘¤x¡å^e<çêž²@™£/Êž¾¾¨z ë#kýZÕS&¦H/«ž¡ (§bCÐ>ÄÅLY—lqjÛpa@+%â}|l*­Í ëëYê Ù´§¡Iž’ÂÌ¥”'ÖÐÊ·ð /4ô’Ù¹ôÅ· ¸4²òt ŠÛMðÉéù"O×Å××î¸KÿL’Ø£Ÿ]¹fÞíïºrõfÆ@²D»ŒØ3ÔÛ^‡¸ô’(ÊïÔæêÝïÓLyâ´éÍõ›8³ÿb[„ÇÛ8r9±E- Q'¯QW°“Ô•½¿„è ™gDv‰±¤Ú(ò’¼éfû¤¨¤!U~)Zb0ˆFT-²ÐKR4t²£N&±6³ñÜÑʦM8°tBã"î"eÎÌ^@ ©É&Î?¶˜‰¡æâ`à…s_ëž„Ð?·òô_‰PDŒ×´ÿn åèd0l»zø= €Z¢;±dóµÒ[í¾Aú··W¿Q·xè`ÍÎ/ž°?^ey›ð “'f~±^tè©û7»«›W¯ÒL®Òd¹EÈý¶r•æCöï[vcšy(žÃãPÞ8äéþæw9ÒÒ$Ý;‰©{Á‘f ªÀ`MñÚvw\­”áAña^sŽ´ÖêÇêÜu W±)ÓBŸFÇ+‡z'‘~ïø PÎ%‘žÞ~>W¡^H…72 QÂgÂ_2]É×ùÔ÷å|?dyßPRL¡ åŽLj¬3Ï9…óKV *Å“ç|ñ'óÂÆLòIxÉù$!$%çÈCU35‹ñò €}5ÏgI6¯?4Ý©m>ž…“#ÉØTâÆ'Ž‚OãBŸ®âu$d¶œæÈ1dm#7¨}®ßF˜“îmØ‚áÝïXcs®³‘gæ Ø!é•ß©AÄEFüY_Ђ` AÊüto¥:Õ‡AjÞfy(MG–óx¸ÝT¨KÎ7aÍž¯[…’æK_RFnÖSø*.g¶e-Ÿx”–rþc$?žcƒ"VëÜ„È9µÁWûk.ßm:âc,Šá»"‚Ö“/î|ÊÐà³AÊ&.‰™k© ,{†¼uSψ/ƒg°ªÁ‹´ÐSUý¹^#n°G;Þ'&}˜k,ã!޶µ0x(ëÔ—çÕ©jv=p_é¦ÔwèJ­6#U]Ï 1X]áõ÷›o\Z1>C¨Æº¨Œ"2ÞúX­¬‹\&.íÈíw¸4_ Ìû¢Šûpeˆò„œ|i‡ÑåúÉ€»[Y„ë›Ø¬P£°@œ—‚ü`½åsØ´ÞËÚõô~ “.ŠQŽä£Ú° qó®¿n4š›+92ßÌÈÝ•‚'§?åtŸr̪·§ž¦'ƒ'UûêSOŠÔ}_¯šÓð»îƒréºÅº gAôÕ¨îÜœª|Â*/„—V˜na„£— ‹8,v`½;wÄÃlfÊsÙ¹æ`ã¥Tá(Uîê¿ñ «>3NçD§Áôƾ­åÎ…Ô”áñ¾~XœÞÃgyà‹‹vS—ôI6ºÙp’£`æ>¿Öq2ÏWVe|(2!EôMh [Ùò•®ðp<RŸôóXµÕ¾†b¯åªÒØf[Ò1Ya3Ÿé®Š´\]èAµÇ82~Ÿ”ÿ-_ìqѾ|ÒRðÔ ÑÃdÉ—¨ÿæ º×|z2^U8¾¥ùÃ3ˆôÒÁ¡8ÑB¬wÃmÃðêm–Qðï9¾ƒP>( ¡—]7œ#ho"›‡mƒRÕçc4ºc‰ÊRn¾(’U0:ÿåêÿ\»™endstream endobj 474 0 obj << /Filter /FlateDecode /Length 4218 >> stream xœ½[YsÜÆN^õ”¼»R| 6•Eæ>äʃ"Û±l—âPŒ+‰™h$aïAXùõéî™ÁµØ%­8)=XÌÑÓýõ=zsÁr~Áð_ü»Ú>a·OÞ<áôëEü³Ú^üéêÉ.µ¸p¹7F]\Ý< 3ø·"W^_ms!õÅÕöÉ÷ÙÕ]¹X isÆuv[îʺØà.gBdõa·°’.k«- 5¹w:Ûß,þuõleÙ`+/rƘƒí®Ö°x»XÁŒY¥Ãà]2—ÂJ•/_½ü<­ŸUM\Þ»á ž;æ»åÿ‚Ë ï5qð›këe{á`ã½µ3tË\;Ù/¼[,9$­ª.tó ŽÔ¹Ö–É ”8˜Aã® „Ëæ(Q9×̺‹åhÒõbBÑ„9#Š~œ± ²×‡6 ˆ‹¬ØEé1ž•¿YUe—S&kÃo}Vmï7å¿yéyÖmµß‹—Üè\qy±ä,÷Ú‡ýMµ»],W°˜ÏÚº,ã›·YSõ*àBëì.}ðY±¹Ý×U{·mð7 {Ù¬½+ÚøÆ]Ö¬ŠMÙôïŬœ¹µ¹±þñrf’ÿ‚/˼ÐÝÈ ®ª€Yd{|öÀ~“Ýv3›q™+ÕüÌfˆ*דu6—L÷JV¾¯š¶IB0‰uâ¾ÊVôòáP(€• {À+˜‚${'Š7û®! ôìðÙ ,à0pG÷Fk*ÕðH2çJ˜Då%âlŒÌÚf×MK8±ÑiÂ}± S€Ë?.4Zx¹-1ŒÉa—yÿŒ6mFÇÅ£“4RŽ“4f¢OÄ!—ô)PÆR6ÃÎxnd\¶®¶—åzqõÃtë¥0"ç\5ò]]܃”¥’¤øíÝ,ו@$‰×A㹕xZ”#J̱²È 5¿ÍñU3ô[/ˡiÞ™ì»ô«£ôÝ”½Ûø…)+Ûø x.6ÝJ`çH A©¢^Ó‚>û á^8¬þ ™ç¸ÌÙ%åõ‚ˆþŒ35ð›'W¿ûñ]ï¡ÙÛá(U'ˆ…uÙ6hq¤‹Þ¿ cœÆa°õ»»*: ðMwñw.AÄI:ÕzÏœ¸´Û·i A0RvH¢*€‡©‰‘hâ éeÜáùå³—tÞxÊÞ+âFmL4wR¡e—ŠÈÝæQ]¸RÒ 7Qa\# Â4š$œh=jK}_—$A…|‘dM ðx]´ÅœýJçà’ø{ïæNÊsi]gÍ‹n3Ov8»­ÞG5Ùb&^¨=ÔÑÖ£ï¸ÝÊn¢kâˆás\ÄÙÂŽê8Ôò¥åô $äÈ€óà78»[õ%l*‚ÅBpYXVÁŠFcèNëD“ ¡(²&yÒHÆþP¯‚i2hÃ@•Vûz]¦!Àü×qŸ3jÙ”ÑøÞ„8]Z|\Õûû;€Ïi åÉZÀg‚G[W´+¾Ú}ÿü«Ãn ’ø5ØÃÉÝ#âÃÊÃqŸ„õ4à‚_`²®n«]¤†8Ü^vZ†|Ö\¶€ÎèðS'/’@ƒ Eƒ«hÙqëGÙT;ˆJ{;_ï{ŸÄù\‚Íîa˜v„$ס! œ'êÏm¾„ˆ'7“˜çÙ¹X˜oï) “™"‡Rê¢%Ü“iüìãgÌÑ’ožá\nk3Ìg2  ÐYÓ‚D"(ŠžËŠ|n¥`]è÷ ,&$ð¦x hsŒeÁ:r‹sq¡’df!å $§üäQ¡"…¤O´šd´ƒ‘Hü‚”7|rA±`Ël»GeO3ÞUë±N“ o= œ¦$¥Æô•š¦€ŠÆ"Å|˜xS4m0Z^“_g_~mEmÝmµ@eõhò2˜ïÉ]ûq˪84eZȵ¦a& qÚ¡·@?Xb+>¢Z#%q6š R‚øRï_º ïâbEgk>ôƒÁàq;Ü.~{”]ƒ’mzÑ ˜T ;HeBã­yœ²›œK.:U3ã˜'Q~±p¡‘D¢´#;Efµú7$´'σp4ŒP¸-‹†bú  ÒÁ îö»åŸA0 X]Ì$ÈjËè·—XÄhMQÛ•þeWÞÆpë(-xñE²™fX“ HWÓ ¿š–EÆüeÃ`íÉ·49N]/€Kž R£«;t­á3a;gâ£Nõž¸Ùz«ç¦çNµ>+!-Ÿa\öét»1 tÑÊF »Îlx쀖Ì„5ÍxÌgù åðÈ oüÿGòô׊â;TË;Þ>¬Ü%ü<ä T‡ÍÉP}‚_`^óoÑ‹æCXl`¹t0x¦6>2šl˜8i&a¯€€Þ?ž-ÿ3›7•ê£W>rðhZ(ÓÜhDÎ…½X ØÌ}~G1ú±–µ¯„Ÿ? ¸8½O;$xHéô ƒz˜Ôo¢&0‚Ð ÂÈY&ñ£.Üh‹Ô…Oú4˜ÐS|¹‚Ôìéä×ð8{L (Àc91¥oàs³(@Òõ„¼c´÷I`õ¯ŽØ0 -8hˆœ4#«T”r±ê…“Õ—ï·©¯a‡ÕŠU»ïC½ºo¾¼ƒL¬_`Åö¶ g#‘@øñèœ[÷‹ÇÊò˳;'°Ìãzp V%2Ng/\aZxwÊ4*9†ÌÐ2N:D˜ =oœ÷B„ Bš‡!MMYJüÈ{±Ò済ôzS¦¡<Š3-rg‹Ŷì?…ò¤ñ —Kí¢P“ê—kÚú° •]\†úÍl´ŒíiO1oÄŽ‘eá±N4ÉÉ¿ & ó]"(•¡¨òë&¼1€G€¯1Vš²ëãV{úRÜßÇh%‹©9ÖÆÞW]ª¢bIvç`ÆQlV‡ fÔðS¸‰1H …›¦†«°`¥°’fBÅäOe_¶‹åaC&GT¹Õ¡,¬¢;ÃtiA˜Âþ €£Ù„²-ÁEì0íü}ü™Ø–Åz-öRÒÝUciMà7–)–ˆ1¡²Àv„šÝ¢'4êÞuÕõ¢^Ç/XâKÇ+v©F6jj [U,ˆ{k*›`G„IHçÛ»}¬ªx *CΙ’’¦1S¬9Üßoªr:A³õžTâbÔå*ê苤3þQ%.Ë[Q“O4Âû¬˜º]ŠIÂUÕ©¹Ê.{·0 àÕqÿ:m'ÇÕ4ÚlXø8]é å5Iu}ª1-ØÒtâtï["f}|žìï¥ý|×7¡ÐÞoiʸùÏS)8çž>×Y ÿÇI`Qê.š¼9ìV©§ÀˆÃ75˜Ñ™ÓÒý¯GõŸ®"8sj¼×ÄÔЀu—iÐ2õéæxó¾ëø¹~p¸ìòòt2u”>wé6I5?%ev‰ðp^x% }[áyYÞÖeÓŒ ’‚ú;4”Êùoû^ný!¦æ×¸}Ÿ6óC‰ ~(ÓòY»‡ãY[îÖ¡šÐø–L¼ó±!úMq_Ôu~B«Ë>xj”KG:‰rMÅ1í •›^µEݦ…©~F¢ÂݪÔy¢’L\ì ¡Ú®‹}–} =Ûˆ½GuT°àÔ»{P↠ ‰Ú(cÈ- 8™ ž &ËÎOb¿rG†Õ5 Å’×sÙßÎ^ œS«~V…ÎcWJ1Rjð åºZÑí%ú%\¿Ø­‹hš,ϺÑv\ó£!ô r€˜š,[ P<¬³]7\TéâUÖ ÑkJ6±c«¾Õ®Ä°á¼ÝuJÎ¥3å¡‘.h‡Q× à…ü •‹»ep*u§?ùlaN‚š;ª<(ÈÕˆÄTx€ýý T®¥gfœ]Ǩ׀693—ªäÂxÞ‰©:<¾-Ä“„ü'µ–ÞSqŒÐ3'À+EHŒ‚€Ës=¢û´IçÎin’Âÿ—§×Ã’f‹Òã*Ãï“©‹ÉGYÌ'ò9Ïr™s ð'EŸR}xçBBÞyŽçóŒV§ýÈT|ÄéAv}žbìêboåg¥øø ïŜۓÿ”ÚÁùÓaí€}Ìá~îG;æÆ@¾>¨™ñ~YzP`?–ðì•翸֊~+u¬átûR9ˆÝ´CKÒÒ™Z,oõù'ÏÈ:-Ó„*0J}g'‰©ïìeÊéOÔ ,¬¢:全€E ¦²¯ËzWnÒ;$Õú¶û,Fùýb½Î¾¾¼üÛÅá®Í«¢=º„F Ê•eL ÊÃkG-üJW厮H„‰’bÌ0Lõÿ•PAå2ÒŽa™ÁPbXÃèÎaÆ9ªæçWOþ ÿþÜüendstream endobj 475 0 obj << /Filter /FlateDecode /Length 4190 >> stream xœíZ[säF~÷3ojÞÐP¡î–ºÕB H€dqñ’…*íŒlkW#y%Íî:¿žsé–Z²ÆÞ TAåk¤¾œëw¾ÓÒëM‹M‚îÿþx‘ln.^_º»qÿöÇÍï®.~õ,“›<¶Z§›«ë ž!6"Ëcm²ÎL,U¶¹:^üÛ´il­Œ~V¾«^Ô%ÞÈb›Û¨i›ºjÊ¢ã[I¢¢®¼éʾ¯Úïé86ÊýVZ|l¢Û¦z}òKXÍÁm‹hßïNC1À좞n·wÛ€é&Í¢a W"WiTmw ,¡³ÌFÇ-\扔rvûÇ­ŸFköÛ\ý ÛÌn®¾½¸úåÑu « T¨«ÊPµ4º.ú%BGû¢ÞŸjZojR¬Ññv—’y¢¯ž=sÓmݽ›XбnK¿OÒÞlÁÆh›¢ÙÊ…ÑPÜ”~’ŽZ¾/Lô†Œ'D•¬ã’,ïÌÆ»IÑ\zMÉð UšH˜‘Gwà§v7±5t˜žÁÒå%ü ‚PÑ ð…²Ü§¾t#­ˆª¯<”°"Ù>Ïp(½XeCÎ¥êB²&ã& 5á=i˜ñ‡êX6=''.V&·h| C´á8)PQWì˵t69'DPí5rõžh´m]Ëf@Ê[|Šk“$T˜ÍHÅ$°h9­bð"©Ž^miâü†sx\ò¸ÔÆBàr "IxõrÉõ$lhÅc~ˆb·˜ "nØr~_Ç8TûÖWáù‰Å2îkRŽùdæXò–V–°%Õyöƒæ:Ï?¬¯ó0c-ã(æÐ¯`Ã7=F¿½­ö4ßÂóÀÕûb ‚yhOP ìŰÖAÍÐBMc)AB3ÉÒŸ^ôå{çè ¤¦JµDË+ ¡=S2"Ip­ï)›•æ¹nXø(L´ÔPiÒšwßAÂ$i*åŸJüQ¤ $Zø¤ð›Ï¾s5‘^rµÄiéÉŠH-\Èc6Jƒ%’yJEòÔô'.ºäŸ²{S‘Ñd®‰Öì§LÃÚ]Ä5Ñ\1XB,âÕ‘<ƒ{"\ùòí‘TÜI¢Ã4»)ÇÝ1Õö¡¤9QÅr0b›z3T׈»’½¸¯‹¾'!¹~^KŽ ,•2a¢]t7åàæ(o¦ì誂Ú#Zé¬__3jùI‡b(üN@©¢‡Q¿ïNCÅhŒØìÈB–b²j˵ÿM?”ÅÁ//hy~.u!hn[¤øP㸬õMÛUÃíÑÝÂÞ¤ëŠæ†ôΘb³ ôXìvG™Ac¹^þ~›s-k' ïü*™=‚ ò›\’ÃÝN?&uIž@«‰^¥¯O [‡él0©E£^RŒsÇ,Ç\áFé]ç¡Ó€ÙÒ ÕÑ9Þ[C8Û•¾r´ŽK'Z\äÎâÓžÿ!:.P§ˆ Y&¡ÒP¨þx|î(Š® AõEtQ#ä/©c`fÃü]¡ë g’¿nZw ¥´)†SGJb‹Ô/Èå)ú½±à$…uåžX =Åæ¤,úo*½ ÓN¯O„ZžµÜª"l¤˜uù [îÝ]G,Sâ©cIɈ¾<;§£¦ÃpÃÉu¹Õ¢ÑÄP6~!@}ˆ@ )M„5 *P>Ûè%˜ rT ü\ú%²É$ ÀC]½šz¨h*„‡ Š8?DpdkæSšÚž£U ÿ©¹ ÄgPʟ﫲Ùßû;l!\ 7&Ъ>Û{ž‡[€€e×µ£â˜4\ÚUJî@zÌëQø¸k⇇$¥3C‚K£åˆÎga[Š,çÀOúÚ»Ú• WRö`ážJŒ¯ŸB3Ä¡Ÿá‰²Ô ä~Žkû¥ïgRw@_1O'a‚08Õ~DBxtáïJ@Ü)¯‹ªóqí²@rÅu!ÇõÔ$A=…¶IfrdQf¬ j¼R|U¬¤Q©¼ûÛ_¾žòˆY䣑ï¨Õ‘Œ—/|HI ‘×ôSÞññg~ ¸>“MTÉ냷oÇpXUÇÄKºr¦4•3SÂG¤N›83vAê¾ùv÷UåŽdPX(’Ó™\Hö[æ6ÐÜP„æä÷¿6¥§iÞ!L´&àIù8hîfÏì’9¤l·þ‚ µ‡ÌëN{—+t_sÄ]N®ŠËø28:˜faZG#[p‘Ì-E6ÔÔ›ŠÊ ?Ö¾¾[†‡ë®lqt÷¹hñ4÷îYãÔ<9K€L…¡ÜM# csK13õ=“ ÜØ‰vI ) vU¿?õT~è1ãTʃ¶kgnHHâb°6¨Ó©Œßf‹i»|ÙBø\NÝA £Òf3 à > oÆ"=žâAÉx²?{.ø‡ôä™à%š†á+1rOLÏbúAx'óœð®r¡sԤئÄmsG³y±ª{alÊ¡.ƒƒ?h1 m1´-a¸n¦ë¹>ÿxP¨YD(®y^?ý!U¸µ ÙÕnF¥`DTÇX 3òp“c¶+Ä*G«í«Œ•öí+¬ý Bóa eL <œR§ê‚ª$æiV:UÖ&cÅø?ε ¡ øŠ#t°5šÊèX›z Oy ò…BøK=hQQ"Ûbë÷œe›Ê™Ã…2!µ§Õ-GÏ+Áø-“JÒ_óiìy[. uAÒ²C–Xú…¸:Y<ö®¼L˜qØkndj²¨;º¢Aðª¸D̘·3ÂZpüJG‚`^þ¡ða¡ }|˜DÂOãÇ=u¾VCÙ[U>K}Nù4]¨'àãñ-óX+”o-*ƒ-ß=BC,’ @]9³N@>GL¬žc„€ ‰«u QÓÙa%ßóàv÷è…Ô%¿LÓØÐ/4Å¥_9åwüZ½ò³¦œ†»ž»×‰Æ4ÐqÛ…O$¾&NÍ{;}ò@†ïšV=°0f[º §DoñDƒŒj¨¹Q`9JØÊ‰¯¹5â³íO•ڳ̅šk#ìí™–Â.•y€·v"VäÅãT)U€-9`œÍ×ÀÒY(/V·¨] ±ðõJöˆXUr5:é)f3ŸÿUÀgIÉË U¢ëÇpÓ@F›l„ŒWËÃ2;¬¡Kóë9t!{Fw| hCoòÁ  Æ…ˆ¢ÊüÀ¶¯Ø•ÐàC_DìÙôß<0í¬ |M(>X/‘~Œ^OÍ™âm[ƒæ1KÛŽ‰ÄRiÌF ÄØ÷‡+ûŸv¢}Ò‰‹üøH¯} …øD¯i#ç^ùŸ]ò?‘'Õb¡Ê 0«¯üØŸ7S…`x혟//¿Ð0På±x Rq41ŒÜåD¢üÑ\s¸ ¿¡(êö¦Ýº·áW:øÑ™¦3ÔKÿMƒ^œðªà¹÷nA¹ùx‡h‰?ቊþ×g:œ,BáELóýêBËŸà+û¯oÓüÿúú¶X9-RùÐi$ÿþ²…ŸYàìÇw‡  ÷{ÚâçDmy¼[yÚ€x ð)%Àk+zγ*ß§ØØW‚ÑÆÿ¯ÿ;•@.+A¨oÝW!†¿–dh7ôý¾£ãOVtÉ©—[ƒ½µN­4eßIC%Ùù…gºB˜‹ ˆ%ˆLïJŒœ>ŸÕyòå(Zìèõƒá·ë¥û&gà$~uc¸Ø>ü6üž¹?sv¬AÒL. `’3míÌñv—eüõÊÕmåOu§é¢¹õïù5½ùpßÇÑ/!Âf_éœý{üâôÞOø9SÍ…Yçô=›ž†ç˜n÷M*^[úØ·â CoŒÆ—´TíÛútôaJ[Ð]º‚> stream xœ½[K“ÛÆÎyOÉÝæ0%"˜÷Œ]>Èr’r,;‘¼N¹Ê›¨`»¤E+€”¼ùõéÇ \,%Y¶K‡%€™žžž~|Ý=z5+r1+ð_ü»Ü]³›‹W‚ÞÎâŸånöÙåÅ_ž9óy°VÏ.¯/x†˜ 'sÌÌ—Kef—»‹ì铯ž\eóËa’+“”È‹ _HãóB„lYîñÁå!èìøògU|ëu¶¯›]¹Ýü¯š0Jye³Uú²C~Û¬Œt “íÊŸ6»¹Äá²ãŽ鬾ž3‹a¸¡CnLH, ÜO(„´Ûѹ-Ûy´dv·©¶«Íþ¦ßßaM;ñÙu½ÝÖÈPððú BÒ Yè\(7[X ’»ªl ÌTZ ³|Pð q›ð>{u©æ÷nTv‡oH„×ïEŠ?¼]1k‰ÌUö´JK2«ñS¡³r›?êÉÉB¨«ùÇQl#5ð*ÚÏRƒÊxÅÜ?Gá™ •!șɃs§Xø¥ 3CãŠ8éë9HÀƒÙì;œ¯'ã¦NJåÊ 8©ÑtPR˜d¬2Á¦ÊWáam-0¥­ÞæNfŸŽ P6Ø›/¼ü|€ê ”}dÂF:Ð1ZGþî¬HB.¥(&”—˜˜÷À†Ÿ=6ð ÖXÅÇf‹ αI5OÿumDy$^“[P"ñ x݉x…쟰ñ×Ë‹g0CH7»iefoÀùþýBzçñÉJ°0ø»»P A`©{³½øæA=â ¹hU¸Ü7³Æ8tÑ¿M†m©ô/!?isé<%/ÀŒ,ù„t±ݶF؆\)ÙéÅU&<Å ž«s9ð¾I‚g/<}³®Ð¯J¯(Zxt¯Ùë9œK€ÕÁñ+~(RðOï²¢¼¬›¦jo9TɬޯÚn#Ï^“ȳ§mÊýªÞÅQ.Æ8§Ü8ä 0ºu»‰Ñ„h‚_Þ¯¼3ñûÌÃXï{îe ’ëŠÁæéÅ埿瀢‘¡ìvÀOs]-é“|ˆë.ªÀ(¡³Ížb,I# qŒƒª!DKüY(bQ6w‰¹€FÐɬäæfÍ0ø!Ëu³®9, ý¢ ¼Êç mÑ–Dv9÷جî…s€ƒl!ï&·¢,:•ÄÞÛƒ AL;iíØ›Š÷p¦ýlv¦®:Èwô¦ ™BJù®îtH{t6 Û"W`ã#sO¡¤ˆ_nGV’ý !Ë®:TͶjÛ„ULD"R ¬ð!€‚—MU&ú!;îWU“>Ú4-ÈeËcóºƒL ýHÁ8”gˆhŠo}vl«c U( Žb"`Þëc2áTöí“0õàÄe^¡L¶ÒG mQ+ì‘TØ#cn2þjaõ؉Ž#÷ ŽÜ¹Ùh­÷еoW_á£úZï̇€núo:NŒB®!ÈB¬U¿˜ÒŒÁ9ëéC’nf ðci‚y¸¸×…sì`fN B©˜P“;c¥I£ä=㳎fX (]зiÚwg¹G’l°9l0ZxH×ôˆÿÂYÑù=’©,ÈÿŠ{\ž8ÿ\ä“PÖßJïbîðëÝÔ)!i«ÔXÃþ›q¾`b‰9¹’oÑ:p¿º§ c‰¸±^Y>`áºËã$'ó =Èb8çã³xBgâápÅ»ü¢²U †C v&v¹Þ d5²¯3ÀbÛ èAÖ¦GÓ—^¨àÂÑ› .’ÁÓ¾êœÉx¯|9g€\µ“hÉÙÜýnÈÏ @ê”—‡Á¢‘± 0–¶ëÄÍ¢]–Û AD„l`ãþ¿1mƒüÈžb–T,{ £ LJt-MÛˆ’0$‚Ë!bo{PqX—ƒ¢ Pk‰î2CÂt€B¶º ‘lûÌjÓÊý²js†ï*ÀÆœ•4‚6.{ŽE)$±%¹D¶¬b_rVïíÊC³ù Ÿ=‰‰krøÑùÓšñŒpi»: s½/¤@()¶†xÛOÇA°X ’È-Q)ãå0ÈpŒÒc£}³Þ,;†Ø¬lA…´q‹V–·°ða¥´/™­¤žÚ1ø(c°V › A.üX¡FuÉ-û4Hó›Šd…[bïµ­RUÒgÛÜÄn/g òj~ç'Kô rËf°Ê$Ê F®#uƒænÃÕÄY…£€âgN»§2@žÛ1©•¹fJlØÓšiägYïn”%¤ˆÝ`'$Í*ÏÄÓaª Já€ãB=ÁjVå7Ôª.XYªyÂì)TJ·ª—m¢â¹ÕMƒ¶ºãt8¯+ìu‹«ù'üd{äD>ª;UÙ¿ç=#¸9,VßµÕ>…<é„?êb÷ï ~VþPV]]ÙÆÆ;7á™›X¸¾Š÷<ùB­g`€Á`"3 iLìá¨"ÒdOµ€p´"ózðX<Àó-Ý\ÐÜÕÚ2ÄÁ1Ò{ý€#rÚ§Eïc€)ÔÛ>0ôê ü{.››Í¾Ü"ÓÆÐUõºµÕ¶N­'Dj+ž‰¦‚ ;­êT&²ØöYní¡j,òJcÐ䯶Ëңʣ{"}oö}°xYƒSîª-×3/Q½Af·ëîÇøÕjblûêȦíÇ.ëÛ5¾ëÓ††‘!ÿ®úX¡«q\eßÔœr"IJ@â1–\xéçõz{ý(} ™d›”wË>”‘ª‰ ]bq(d@Ãí!•Y»ÙÝâ¹Qž KòÀO×1‰E“*Q̊ǽB€h‚ÔÕ`؈Ðñ–79-tG”&ƒÊÔMºlc²mL›Àã¼Iµ¦¦Û-ø‰r³åÜ(°†¢›Ó}x‚~T]‰C]Ì0–4'€O¾âÔJ ¶ûUSß4å®í'½»DPEŸLK9¬•lÉÒsT‹' r´295ÖP"Âä8ÂÇœ‰l¶/wu4‚"™"“ü››ÄAа5¶BãÕ¸æDçc5åqÈj³Ã¤¨Þ“ºÅ—ím¹¤zZèã®"²ê÷Ã9'[º’†k†$mpXÒÆÏ}IãcŸâ1yà‘V‘A.f7«žG%y/"é0˜\Ùl*jùŽ-_°K fÿtZ3&×>˜w(i_˜QÑ(V„NŠFF`%²ÈÈRs Aƒ«àºìC(L!%¤AæÁªšES¡Ã7½z‘D9OÎ2e´§%6íÜ®4Ê—›6ØødÈþ¦ÞÁÖLÁšÕŽ« Ú)8å=¶ÝWÒNú)Ñ‚†ÎbâãïlVÇ>q@ä¹fˆÁâ{ç:¬,«nÀ™>ÐÌ«Øä—ðä³ïo7”ÇÝ\r¯¥€-1èŸ$T§²¯ÊuÕ שC ˆüÜ]»Â!nènéq‚‚n¥à%•Rµ¿úhÏFRj]¦*b8½k¨³r-ݯpËgx}¨9½~5nÞh!œœé\ݾ·dÎ:û¤‹Ñ¤÷Êå?'‡¡AAî_0:¹ šÎ[æÒÚ"¶Mþ{._È\( ™Ñb4çó³Ë¸ÜŸMÌÏíåü )j!*”¶§Þb¼ütÿ2/õÔƒG7¢ Ú¬ Ù¥½¨†ºÐ|·½<> -ü«SÚªlZtݺ0Ü;úsî‡@†–;™±Â {jpªg$1’qª6‡qÇMÓ<8l¿ãaaù°»9ç䮽è›XcI$.I‘Pßêé%Ö¡vJ¯õÉ“öGDmñ.'o xØGT1 à¡H(“]9ðúæêêžöÊ‘;§ %9iÆo¸½Y(€?roÕ¤Dðê—/0œO¡ÿþpD‚Ò;ڣȭ@š‹Ñœ·ïÈ|Ø~èRéhþð²`µ<­G{KyÌ) þ %{2îBå*æzÏ«e=LêÚCsìó·lA"fL‚›¦n¦â=euxãįìI‰®Ë lZ®EDŽš6³«é­ö1kØíökƆ ’—ÝvïÒGÁ=d¤‚·ÙÛ–®zEªX¸JUð*¾Ýï$Z\Í&KˆWÓ!€—ä±Ð7ÈútÚnS­ŽË”rqÒ ž’žL,yP^¨"X½—8áàdx¡mPy½YU”"®MtäðrÜ ëÓP‹€Ò]Ÿíúœ°ÄŒˆËñÿ(3ç›\º±Ù f :,{hµAY¤ yÊ–ýCÝR ôºí9àëB_S{ [:hÎÇNí²ø'j–Y9*/‡l‡Ø„³œJ¥6tœRGIqÞѤ{ž [qwÀ0!É&¯0\ÏÀMbû’»bBãé^÷³‹ÿ«Òendstream endobj 477 0 obj << /Filter /FlateDecode /Length 163 >> stream xœ]O1Â0 Üó ÿ )ªHU—²0€ðÔqª u¢4ø=MÚ20ÜIöÝÉgÙ]/Wv ä#z|QëØDšü‘ §Á±¨`¦m*Œ£Bv7ÞŸ@°È®ó]$Ÿõé\VÕBoh )jH4Jµµ­ 6Òèíæ<ÖmR gÿ®äh.±ßœc$N¥ii’ 8¦ß3Á‡œ‚â 8lSDendstream endobj 478 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 348 >> stream xœcd`ab`dddwöõõ441U~H3þaú!ËÜÝøýÚOVÖnæn–Ißß}ÏüžÆÿ=Y€™‘±ºq‚s~AeQfzF‰BŒ©A20T0´´4×Q020°TpÌM-ÊLNÌSðM,ÉHÍM,rr‚ó“3SK*ÁZl2JJ ¬ôõËËËõs‹õò‹Òí@¦è(”g–d(¥§•¥¦(¸åç•(ø%æ¦*@Ü©¡œós JKR‹|óSR‹òKB˜Yê~tð}ÿÚ8ÿ‡ÌŠïNógþûCMô9Û¼©Ýs§µv—˳mø®Ö?³»·{’äìº)uÍ%ÙÍr)¿YuÙÊ›º+'uÏ“Âæù{NsFGcwdÌš„Ã~W›4±½¯µ³½»½S® ZªË"c]»9r;—,ìéž×7]žOŽ‹Å|>'ãÌ€ƒendstream endobj 479 0 obj << /Filter /FlateDecode /Length 4187 >> stream xœÝ[YÜÆÎóþ†<Ì[8†éûá[N²+‹À€•ô w‡ÖÌpErtø×§ªº›×pW+ÉÎC ‡’}Ô]_U·^¯XÎW ÿÅ¿Ûã[Ý^½¾âôvÿl«¯¯¯þòB‹•˽1ju}sfð×.7V¯Œ¶¹zu}¼ú){[µåz#•Ì“ÙÏkás&²÷øJäÞˬۗUËšâôªÍ׋xg³ë}Ù”7uS®ÿ}ýØÙ²ñÎBçœ;Øýz{Á2,7Þ[Æz±Ò9<«r®­+â½a^…9ÍÚœÉ~ÁßÚÉDX`¦ÏâL¬fóÛÈàYqJl™¬:­̵^d]y[6Ão÷Õv-;dz}â\ÃŒ]µ-º²^uû¢[ä[Ú\ ø~èöLèÆu.„ñúÆ•² ¼P å|Â+²zýËÕF8›[ëqøª=}%â·9™:wV?Z;ÒóGhÇI¥)ÖÆ\hgÓí“zD¶=Ô`‹UÅLÖvÉ,Uv*«Û=éËY4Ò Z)ó<«Gz«o–TáE®¹SW…0fÎåÃvg`ºv—lÍ ’>¹õv… Ò )¯ÀR`_Áa0Ô8{Âl®¥ôn5™ü%NQ 8Ná&S¬¬wž`" [ž7øÛ3.–¶²9‡Ü‹êe6óº‰ d®ÒÅÆÞ†c³/@•VäÊ©°5ll•^ØsäMôû­A$Nç–»ì)¨EÂ`”ÿ™‘lgK#ü£ã„—ö£¢øL4¬›yÓ….¦¶:ÕÅ«¹@f.Ä¥Ô‘H »¥ÀÑ4>œ·˜ü<Ž ·ŸÃñaNàØRÁ ™=3·½ªÇF»°Y*¸Tœ÷Å|ð4 Hx˜Hª/3.ÁÒ(Y›ÃÈèÉ2¬u‘b½ÎÑs(YÃoLÐ!hân2±Ûì«¶«o›â‡ˆ¿ Wi¸áH1×ò ‹.uvy²u_`½³}0Ü8©ÿ#Á DLÎѧ¦óGüX!öe+L0Ûƒ•øe¤†HKlAÈ3¹‘~š¶õùÁ]×FYXŸíkZ™˜y‹o%Éë›§EߧͲ; 0ÖBÞ1ïúå÷ì@aÅi[êEµ,Â%Ës§ì$–Þë¿’×2 r[ËA4÷í¦1Ë3{T6“{t=ɤåÔoO‰k›iSO2Jä47åá X ØgÔ©©Y²þæÅÔ ±bJ´Å:˜” ûç·ÕáÆÚ¬>ÞßöÅ:éç ©l4+ãhÈ©>m~-›:¾@31‚*ئlÓX‚Çýor­°‰­·õ©8@8PRÑ*ÕMü V{¬‰cá¿!ljÏçW×þ‰ìC‘Sʸ,G¹‰ì´ñSk0¢5þäI½Úqm¦€ZbÌMLD[MLp\¨)Óv:pD¿]Úƒ…Ê5 ‹.€D©5qDoMUœnå“È1ø&í?Yì›ið¸Ã¡¸kËÝ ÈkQ7î ƒÑD½%½ . (iÑ•6ä@x`X Þ/GìPH:ﲨ&Þöñ-T>5ÐÞ€&5RP|#| ‹¡6…ÃSP­C- s-ª—ôA“>âÐi!ŠKC¥åù.ð ªô¤ eŠa¤)]0¦¾nØL†`(M2Ó¥QMý‡èÚ…go],Câgù`ÔÃÕ@ŒÅ]Ñtù  ¿­]0:í!ÍiwŸíÊ®¨Ñ0í]Ùn›ê®«@{¡9q‰"Z{ñB3š~×Ô‰(0™²éHÈ4cÂM\‚OgõEÀ-}ï#KønÒ`,RxÖ”Å%ž>Vm¢ ’kyS6͈z´³€ïEöüL5ÆîŒÜ•+¯úšYde— Ü!*ò—d[þr»çýBU#к³N"3ñSd2Ûb¥Pì8U„)è0ÛúxwîÐ}UÙ¹í×D~oΧ-i&äl1Œ@<©"ƒµ^Šž>ÝÖ‘¸—Y@B³Ì™$fô”A„£Aè›ñÊ'sÚaè÷MÕž‹Cõk™&Á×@ü©œùÜô©ŒHm º:·åÝ¡îˆèEØ"±œåC%‹e_%²Ì~Õ:ø¯Cd?Q  ¤]2PpÐcú~ü¬Üíf0«©˜Ú}}> Ë N™­Ý]Ì —B¯lTzøD {³Ö耠Óâp¦>Í;líâ@S-ᇌÞàv„rpêlý`}(TšÏ¾½Y\R#!! FDwÁÌÙ{LA(ø\}¬NEBã+¦úf‹ N ±Ñ™ ˆÍò!@rmerLÙ(½ÑìíCÈþ¨¯˜–ÆôÕ/™2_'F4Ÿ¸ª›ê¶ŠÕ‚Û®9o»sC"RзEtCƒA–2&M£äØgìI¾„ac$Fq;â!ŠÛ"€ \qù±ùE* O)•aá¼]'SÞ¨Ä\TJ´7‚BauiVHpåÑ’Ñ¥‰F8Õµq”UïÕµ±=˜ cSà6ä\£œé¢šiÆ æø†š—£yci þKx`\6¤¹7M}Œp5]iÐnxµ»ÒEг³!wöhkuƒÛË}ZÕ>tξ/߬S ¬·/eÛ¦É.g˜œËn_G}¢cšòõ¹jÊ~V ¡é+­6 Aq9~ ?NŒ¬pŠBn`ß…ªcˆ„,‚sGaü9¥Yqîj˜D1$[´à7-õÈ’ÅÆ w}¡¿•iŽp®Êž *ÉÄs„] †ÈC(˜†Ÿ2-9µØb°‚% dV·§Ô['¼J ÅDUàø¡G “>üÃ%¬@§²Ü•»PÂW€QÙ)E‡óqœb¼ bp`\ü ì§©¶mx²¦LÖä³H¡”#ù0"¬h¢¤Y4§õFÐ…­Ép(ë-ò5…•$?ðñwÅñîP>]ìáš\åVH¯„ôO+wÒÙ°0¥ïl í¨ï×’ƒ‡ìôãE[tzâ“óY'ë£Zœ½»Éê`ÊPCñi3ÓäVÌÛe˜¨­¶ VFóIó¯×W? DvuÛÖ¯Þ^±Õ߯$c@_I MªÕñ Dgr9¼9\ýóÞƒ·i_#¼Á’ˆvVÒ(êÔÓÁÛ«`‡<ö!À‚:°iœ[Á_á< É¡ÛG‰ò)´T¹ Íp‘ç™é°9Å­Zjc²Ü2ê«lÑz¦ùEG+NR£I°¾‘¦o¥|ZfbHÚ}™‹|%ƒ‘¬Ei¯~W¾¤ä†:.c¾.[²c¾$˜’2þq|Í{åœ3½Âgä#[‰Æ}Tûx²#¬YîgN÷p·Ö‰\)®†n­wkáT'¹Õâ¾v­õó)*[?*¯­§<• Ã9â'3ÅW¾¬£œNPÚ1JŠUÚ8ÜùpàÚ?Cù¡¦|A”ùlè7ï³6O©ö¹´ÜñÁ,…Ì(ƒq·ªGópè(Ó†:à£Ì6V<ÌáaÖ4ö‡ãD;‡ªu8? Gñ{Xyƒ$¸PKJÊ.¡À× Š€Í®|ÑV±¨Q.kïŠ-ÊÓIì©nŽ©°L+„ü(¸­ÞôY»L¯Eõ±xW ‰Ì`Š PíºH £a¦ÁC0=»Å.°°C÷eö¼¤*ÅÆ šðÎþµ&dãFêhAI„lú·ïÛòD¸‰ŠÑ |=}ñØ€$-¨Æº&Œ ûPÅ`'" €°'êò}"ÁÅ">Ò3«âq,]v¿œÛãÂ7„}€ ˆ¸ÀæR1µ‡ TKe!Z‹ešNXƒʞÇZOe·„Þ#ÏbG‘c“¸:õ}Ž01ÕˆßïÊ®ˆ´ ž=kª®lB[+rû2{ëK°àH__Ÿ)ÂÙ ªDÿÌ9?ÄB:œCbÌzþì»g¡«2±! N3¿ú”ÃÕßy,]±à½Q{¡Q:ô‚”:¿‡ðûÊàþSG›pC% þÃÃRr 9…k3Z¯èŠùJ€s'›Á.€©ú7ÍÀ³%.é° Ù ¹IÜ1lt tÁÖìdW>˜ã€Îy‡Z«:æLJÌz’˜=¡Î¤~¨"Ç‚b/æn PìÛjÓ“ ò3ÎPÝíy”¶úBè&kÓ %|8w‚»+ïB+Á@‰Þ›è[¤3SPò“²+/-U¨ºÎ]Ü y?.—*)áO,熓œ@·A8²+ÿxŠ}ë 7„x§‘ô"mÅHV/íh•‹Á.½GMpžc”Ö§G¾Ç"Ì"xB·“hh)åAMèéæÈd~N‡è”;Ô‡Òô}¾:1€5-(ºI—×°Çô¶êöõ¹®öÝM¥oÙ„A±5Cû+=<`  kNp-9”xÖa­½'î (1§Eçåí’­Ã)%-Å<<‡|øÐÅN¸ÇRtqNÞ[ –jÕJ¼~d ¸ƒ™éÍGX2׸$ž2Õ~š PÉÒm@¼ž÷a3™WV–Aål+§ÇÁt\Y¡ÐȱdH^3{Q„cÝãqcA"œâaÀJ~¹L9`º€[BÚL™†E–n‘á]ØÓßCúL\ÌÒ噯ÔD®5Tÿàÿú^3½h•~F~vó›MÿÃü<»µhè¢> stream xœ]1 E{NÁ u¢E†&6)tõ– E€!¤ðöÂ&±°øæÁþ¿¬ë¯½w™²G ú™ZçM‚9,I`tžˆ5NçÐõ¤"aÝMÅ÷'-`W¾« ØóÔ|kHsT’ò#–sÙZ+ xó÷u\ƒÝ&!Qœ/h$ª )x¾HçÅë¶=W׊{#ª—”Àg¼{ÖzÎÃïÔbMÑ"ò9ƒYûendstream endobj 481 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 680 >> stream xœ­ÝKSqÇÏÙÔs²1­ÕÙ-(|™¦Ù¤D ”|+4mÍ£¸=›­MM·=G×|e¾ô¢)ky‘n#B+o‚® º¼°.ºúmž›œCððåyàó}ø~q,I†á8ž¬+¯*J,Y±ãxì„,vRν§±šdPÈA‘4ï?Š,G1 5¦crwôŠ:®ÍÁ[ZÌÝ )Ò˜ö%ŸÎ×j‹³éFK_±²¼ÅÄØèrF0³VFØ?ZéjÎdaÇ¥Ä,móòìv{.cíÈåø–ÒÄ—lÚnÌtÛÁò÷Ø&ú*gè ÆÊÒ‰”¹ ÑqÖ¶Nåér®‰åm†É™.+†•auXÅA', óà•2eÌ­Œ—8CÈöe†ð­ôx{3,Í¢UÕîéu)½B"Ý盺ç^ÍϼyÙ;Ùç§B÷ò×Ǻ8;Xë.m».T2 'sÙ¹ùãsp-HùÌ/˜5 GQ ìª×™›„ &D'¨‚U•$“.þFuðCèÙ꟠”qDÑn«b:•ÍÃyšÀ FÑ<²ªÈ4Ó±<àp¹8®îvFcôÖLSÏE%ŒîKÞA0 _‚ž!¾€èùT‹R¥Ã ÏõÜçÚ›-…^Ò@,/ ¿…%Xñ.¹÷Ù(Ñ3쀦žLú|¯~ÿ’%ÂÌqc.`ìîôQbeä§ø–aÂC [Qαc®Q‰DŠ;ïP:6?ÿ[$•{[á!i·Q 1ò½kh]…Òr¦.Ÿ©ª7p¿sJl†,¨¬áï’é‚3Ù@|¨WK@´BŸžrR"#a1aˆxÃ9„ƃjTF ùßåoÓF=%qÿWR©IųŠCö]>Dôendstream endobj 482 0 obj << /Filter /FlateDecode /Length 176 >> stream xœ]1ƒ E{NÁ @c¬ÓX˜É$¹ÂâP¸0ˆEn@M‘âÿ™ûwþ²~¸ h#eàÔ "5u€ÕmA`¶Hªšj«âAÅÕ"=aý(ýûã¦0;ßåìÙ´MyªörV/‰3ŽsÑ# þûºìÉ“×Jqž> stream xœ%Q}lu¾[Ëüéš¡&õõîTMpk1H†›†Í,‚”0?P›öFëÖ]×Þæ¶~w½»·]WÖë–ƒ²Ö¡lÙ”LMÔ?"¤Ñhgbò»rüaÿ<ïû$Ïûæyò„¾Š IòŽ‹e‡Ù´ºnP"Õ‡«ÔGt µ—£åýkÀ ƒþÈ ò^ì¾;×bûÝ„Ž$£-œ»ßã<äà™7L[L¶ ˜sCÃÖMÌf“©Ùîb=N›µ›±Xyë²òÒÅìãlN–ï¿uÒèày÷¶úzAꬮÞ:ÎsèùÕ/›ÁÉ;˜½l/ëy—µ3­\7Ï춺Xæ¶ÑºÛ£…s¹󬇱pvÖÓM„®mo'Al&ž!vÝŠFè‰ÏÈbUDkË­ýïóx­¢ÎæÉóWÿSÔû®êÔI#®ÿoÄ­€÷#¼åQLhOi]š[´!mÖ?×çç™y*j ¼¨š~Ã5ËøåÌ‘ðH4$ G$ª÷Å6Âàtà ÒÚÆŒMçÏp ~8…»‚‰Ò¿+ú§Ô¤­Ûx@ójOÓÃg¥f@í¯½úŠôƒLí7uÂÒÂÙ…ÅÅÉÞ݃²ˆÒ=~W˜T[†Ã ðE_(êì/s×ujzØ<9’žIÅŠ0è2ÖÁ“ÎV»îéiï4ÒôÕ˜õW\s VÐæo´û)ílµÁŸ‚Éø$HtNJÉà…¨,Š>mÝ͹v)Ô¨U•…8=—Ff`.‹3pÞðøX¦2Aèëà —ŒÆ’ôw8·×Tÿ™Ûç uEx:Ì;@@ pô÷3+ãÙJÄ K”gûÛïñ€Þ +ó…䧉"¯Ø‡Ÿ^*¸Ó¨Vð+ø«kYw,’xéû/®ëðBùc Ò^¾9$õP!Ù/C?ò¥àØr< DAÛp³ª´yŸN=–Ê&©ÑÔÇØ’Ìω¿ÀCT H>É~´gÁváôôñ*ÿQæsˆ£tÄ€)¡™?ð >o惉ĉÄq:1 H÷»fŸÍrÅ≓ËÏ-}IˆA\ÎJ1‹ÄeãÒëbÐ>4é›>5«ÌŸæß“;z®…r²v;ˆj©»ô[§ wÄÿ›˜Cendstream endobj 484 0 obj << /Filter /FlateDecode /Length 179 >> stream xœ]1à EwNÁ €¶lKºdhUµ½1!Co_p’¾¥ßö7ë‡ë|¡ì‘£yA¡Î›a‰k6@G˜| âD­7e'¬fÖ‰°þ¦Óû“€V¸ïzö”\â“ØšL´°$m ë0é8WsŠ@°_—­at»ó\Mœ×ZQ(TEÑP*TEÙÐ*TE‹Ã1mOK|¤fÍBÁ³0vKëü.O1µ.ZE¾Æ \Õendstream endobj 485 0 obj << /Filter /FlateDecode /Subtype /Type1C /Length 678 >> stream xœ%O_HSqþ]7Ý-‡¥kYT»ê!ÂæVˆL3ͺŒIEéµ]·5çæví:hi2=8ÿ•¤Ö¦¸¦ˆd$„f؃Z”áƒD‘£¢w͇¦ràã>Î÷‡@Â8DD‚Z£U*¶·ü‚?Ç@M„‰ÈãA,±°'’‚íɸb.ßQ×èSÛn§Ådfé2E†Â%­T©2Óè3 …о`cœƒ¾ŠÖèY3cÓ³±£’.±, ëÞy9gfYGVz:Çqr½Í%·;Mç·UÒhΚi-ãbœw#]`¯béËzCïÄ”ï ÚnsÔ°Œ“ÖØŒ³ !$T(3rJF)è ’¡øX3$DMhðoxoï­Ž&^¬áÞ5_Ž—¥°Úºj^Ñ…Uƒz(†üêÛrkAkdC^§òeenæàÓÐÔÆèR×gøBFMÑe©®Ýá¦÷ðæa{çü8ñãà ŒÁ¢ÛòQ äBäÁŦBOšÖv Ș7„ø‰ÐT€ÀŽ~9 V¦)< V +E˜Ôì3rk@dò6*eÖÊ„qß:LÆfƽ3âã!«Héí› ¶k<Çq¿pÑ0N]K™ù]µßR%›üU¬“âDÕŸ(*-¯7›døº(ð`¬eH¼ïÃ÷ÇÝÞ®–ö6ð¶RÜý›Ü%0€®§l¨Ù×m@Þƒæz*:-rCsO‡¯»SÖ781÷f!¨ëuVtá)ùf(vé]ÆŠjäƒömݼ¯Ý×Þ䨓àÈH]ðNƒ¹E—±t )É&&ÿ†±„JŠ<Ň'±|’x9-ˆ¨ñªtÀ@-4P[ᄆZà8? PüFôš´—ñP[?<»L?•$Û+Ì ˆ÷ ô8Ö*©endstream endobj 486 0 obj << /Type /XRef /Length 365 /Filter /FlateDecode /DecodeParms << /Columns 5 /Predictor 12 >> /W [ 1 3 1 ] /Info 3 0 R /Root 2 0 R /Size 487 /ID [<5386a9b2c8f980714d6a6cdd288d9bea>] >> stream xœí•M(DQÇï»óÌ3š1æCJhJ¢ eÕì”-Ê¥%K4S¾¶(¥,ˆ°°e9”ØùŠ{~3ë™í}‹_ÿî9sî¹ÿzZɧ¥Âð]i9p,-Ë䯊ÏdŒö®ÅQ….ë(Ëò½Ô™ÏÝ,ZYVê¥áËŒñÒYÚzɲR/%å</ù^…}B}+Œ5 Ã/D'…ÍÂH9o†„°6i脦ELjâÏD¿ÐÍQ‡.zTؾ ¬K £+T¸:­B–Ìqa`½NÎ9Qj®º©NüœÌ ƒ³äoÒ±…¨C´ý —è»Ê ƒÜô]Úk =&ô¶Ðdz©@åª:Ä~žÐÌÿY쥇„5ÝèªÑ]ŸÊÆbsè=¶úßñžî_%÷bKúGXBý}ÃêÜFqcÞ6úé¡FØUäŽÛ£waž|^V厓û4šm»èoΕúpŠJ$ endstream endobj startxref 969595 %%EOF dimRed/build/0000755000176200001440000000000015001744211012550 5ustar liggesusersdimRed/build/vignette.rds0000644000176200001440000000033315001744211015106 0ustar liggesusers‹‹àb```b`aab`b2™… 1# '–IÉÌMÍ+ÎÌÏKÌÉ,©Ô-JM)M.rõ‚òÊÑÔJ¸ ¨U‚©%ÚÌ‚”44µR¸í:^¬¢€>AèdÍKÌM-F3ŽÝ%µ 5/$üM?¾™ÏøM=‡wjey~ÌL5lP5,n™9©0w…d–À9Ì.nP&cº1ÌGñgQ~¹̼ ¨lÿ= ’s‹Ñ‚+%±$Q/­¨änûƒ‰G dimRed/man/0000755000176200001440000000000014744717566012256 5ustar liggesusersdimRed/man/plot_R_NX.Rd0000644000176200001440000000441714257370067014405 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plot.R \name{plot_R_NX} \alias{plot_R_NX} \title{plot_R_NX} \usage{ plot_R_NX(x, ndim = NA, weight = "inv") } \arguments{ \item{x}{a list of \code{\link{dimRedResult}} objects. The names of the list will appear in the legend with the AUC_lnK value.} \item{ndim}{the number of dimensions, if \code{NA} the original number of embedding dimensions is used, can be a vector giving the embedding dimensionality for each single list element of \code{x}.} \item{weight}{the weight function used for K when calculating the AUC, one of \code{c("inv", "log", "log10")}} } \value{ A ggplot object, the design can be changed by appending \code{theme(...)} } \description{ Plot the R_NX curve for different embeddings. Takes a list of \code{\link{dimRedResult}} objects as input. Also the Area under the curve values are computed for a weighted K (see \link{AUC_lnK_R_NX} for details) and appear in the legend. } \examples{ if(requireNamespace(c("RSpectra", "igraph", "RANN", "ggplot", "tidyr", "scales"), quietly = TRUE)) { ## define which methods to apply embed_methods <- c("Isomap", "PCA") ## load test data set data_set <- loadDataSet("3D S Curve", n = 200) ## apply dimensionality reduction data_emb <- lapply(embed_methods, function(x) embed(data_set, x)) names(data_emb) <- embed_methods ## plot the R_NX curves: plot_R_NX(data_emb) + ggplot2::theme(legend.title = ggplot2::element_blank(), legend.position = c(0.5, 0.1), legend.justification = c(0.5, 0.1)) } } \seealso{ Other Quality scores for dimensionality reduction: \code{\link{AUC_lnK_R_NX,dimRedResult-method}}, \code{\link{LCMC,dimRedResult-method}}, \code{\link{Q_NX,dimRedResult-method}}, \code{\link{Q_global,dimRedResult-method}}, \code{\link{Q_local,dimRedResult-method}}, \code{\link{R_NX,dimRedResult-method}}, \code{\link{cophenetic_correlation,dimRedResult-method}}, \code{\link{distance_correlation,dimRedResult-method}}, \code{\link{mean_R_NX,dimRedResult-method}}, \code{\link{quality,dimRedResult-method}}, \code{\link{reconstruction_error,dimRedResult-method}}, \code{\link{reconstruction_rmse,dimRedResult-method}}, \code{\link{total_correlation,dimRedResult-method}} } \concept{Quality scores for dimensionality reduction} dimRed/man/dataSets.Rd0000644000176200001440000000262614257370067014311 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/dataSets.R \name{dataSets} \alias{dataSets} \alias{loadDataSet} \alias{dataSetList} \title{Example Data Sets for dimensionality reduction} \usage{ loadDataSet(name = dataSetList(), n = 2000, sigma = 0.05) dataSetList() } \arguments{ \item{name}{A character vector that specifies the name of the data set.} \item{n}{In generated data sets the number of points to be generated, else ignored.} \item{sigma}{In generated data sets the standard deviation of the noise added, else ignored.} } \value{ \code{loadDataSet} an object of class \code{\link{dimRedData}}. \code{dataSetList()} return a character string with the implemented data sets } \description{ A compilation of standard data sets that are often being used to showcase dimensionality reduction techniques. } \details{ The argument \code{name} should be one of \code{dataSetList()}. Partial matching is possible, see \code{\link{match.arg}}. Generated data sets contain the internal coordinates of the manifold in the \code{meta} slot. Call \code{dataSetList()} to see what data sets are available. } \examples{ ## a list of available data sets: dataSetList() ## Load a data set: swissRoll <- loadDataSet("Swiss Roll") \donttest{ if(requireNamespace("scatterplot3d", quietly = TRUE)) plot(swissRoll, type = "3vars") } ## Load Iris data set, partial matching: loadDataSet("I") } dimRed/man/NNMF-class.Rd0000644000176200001440000000545214744717566014414 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/nnmf.R \docType{class} \name{NNMF-class} \alias{NNMF-class} \alias{NNMF} \title{Non-Negative Matrix Factorization} \description{ S4 Class implementing NNMF. } \details{ NNMF is a method for decomposing a matrix into a smaller dimension such that the constraint that the data (and the projection) are not negative is taken into account. } \section{Slots}{ \describe{ \item{\code{fun}}{A function that does the embedding and returns a dimRedResult object.} \item{\code{stdpars}}{The standard parameters for the function.} }} \section{General usage}{ Dimensionality reduction methods are S4 Classes that either be used directly, in which case they have to be initialized and a full list with parameters has to be handed to the \code{@fun()} slot, or the method name be passed to the embed function and parameters can be given to the \code{...}, in which case missing parameters will be replaced by the ones in the \code{@stdpars}. } \section{Parameters}{ The method can take the following parameters: \describe{ \item{ndim}{The number of output dimensions.} \item{method}{character, which algorithm should be used. See \code{\link[NMF]{nmf}} for possible values. Defaults to "brunet"} \item{nrun}{integer, the number of times the computations are conducted. See \code{\link[NMF]{nmf}}} \item{seed}{integer, a value to control the random numbers used.} \item{options}{named list, other options to pass to \code{\link[NMF]{nmf}}} } } \section{Implementation}{ Wraps around \code{\link[NMF]{nmf}}. Note that the estimation uses random numbers. To create reproducible results, set the random number seed in the function call. Also, in many cases, the computations will be conducted in parallel using multiple cores. To disable this, use the option \code{.pbackend = NULL}. } \examples{ if(requireNamespace(c("NNMF", "MASS"), quietly = TRUE)) { set.seed(4646) dat <- loadDataSet("Iris") emb <- embed(dat, "NNMF") plot(emb) # project new values: nn_proj <- predict(emb, dat[1:7]) plot(nn_proj) } } \references{ Lee, D.D., Seung, H.S., 1999. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788-791. https://doi.org/10.1038/44565 } \seealso{ Other dimensionality reduction methods: \code{\link{DRR-class}}, \code{\link{DiffusionMaps-class}}, \code{\link{DrL-class}}, \code{\link{FastICA-class}}, \code{\link{FruchtermanReingold-class}}, \code{\link{HLLE-class}}, \code{\link{Isomap-class}}, \code{\link{KamadaKawai-class}}, \code{\link{MDS-class}}, \code{\link{PCA-class}}, \code{\link{PCA_L1-class}}, \code{\link{UMAP-class}}, \code{\link{dimRedMethod-class}}, \code{\link{dimRedMethodList}()}, \code{\link{kPCA-class}}, \code{\link{nMDS-class}}, \code{\link{tSNE-class}} } \concept{dimensionality reduction methods} dimRed/man/FastICA-class.Rd0000644000176200001440000000450714744717566015070 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fastica.R \docType{class} \name{FastICA-class} \alias{FastICA-class} \alias{FastICA} \title{Independent Component Analysis} \description{ An S4 Class implementing the FastICA algorithm for Indepentend Component Analysis. } \details{ ICA is used for blind signal separation of different sources. It is a linear Projection. } \section{Slots}{ \describe{ \item{\code{fun}}{A function that does the embedding and returns a dimRedResult object.} \item{\code{stdpars}}{The standard parameters for the function.} }} \section{General usage}{ Dimensionality reduction methods are S4 Classes that either be used directly, in which case they have to be initialized and a full list with parameters has to be handed to the \code{@fun()} slot, or the method name be passed to the embed function and parameters can be given to the \code{...}, in which case missing parameters will be replaced by the ones in the \code{@stdpars}. } \section{Parameters}{ FastICA can take the following parameters: \describe{ \item{ndim}{The number of output dimensions. Defaults to \code{2}} } } \section{Implementation}{ Wraps around \code{\link[fastICA]{fastICA}}. FastICA uses a very fast approximation for negentropy to estimate statistical independences between signals. Because it is a simple rotation/projection, forward and backward functions can be given. } \examples{ if(requireNamespace("fastICA", quietly = TRUE)) { dat <- loadDataSet("3D S Curve") emb <- embed(dat, "FastICA", ndim = 2) plot(getData(getDimRedData(emb))) } } \references{ Hyvarinen, A., 1999. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10, 626-634. https://doi.org/10.1109/72.761722 } \seealso{ Other dimensionality reduction methods: \code{\link{DRR-class}}, \code{\link{DiffusionMaps-class}}, \code{\link{DrL-class}}, \code{\link{FruchtermanReingold-class}}, \code{\link{HLLE-class}}, \code{\link{Isomap-class}}, \code{\link{KamadaKawai-class}}, \code{\link{MDS-class}}, \code{\link{NNMF-class}}, \code{\link{PCA-class}}, \code{\link{PCA_L1-class}}, \code{\link{UMAP-class}}, \code{\link{dimRedMethod-class}}, \code{\link{dimRedMethodList}()}, \code{\link{kPCA-class}}, \code{\link{nMDS-class}}, \code{\link{tSNE-class}} } \concept{dimensionality reduction methods} dimRed/man/getDimRedData.Rd0000644000176200001440000000050214255350572015163 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{getDimRedData} \alias{getDimRedData} \title{Method getDimRedData} \usage{ getDimRedData(object, ...) } \arguments{ \item{object}{The object to extract data from.} \item{...}{other arguments.} } \description{ Extract dimRedData. } dimRed/man/embed.Rd0000644000176200001440000000610014276434623013604 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/embed.R \name{embed} \alias{embed} \alias{embed,formula-method} \alias{embed,ANY-method} \alias{embed,dimRedData-method} \title{dispatches the different methods for dimensionality reduction} \usage{ embed(.data, ...) \S4method{embed}{formula}( .formula, .data, .method = dimRedMethodList(), .mute = character(0), .keep.org.data = TRUE, ... ) \S4method{embed}{ANY}( .data, .method = dimRedMethodList(), .mute = character(0), .keep.org.data = TRUE, ... ) \S4method{embed}{dimRedData}( .data, .method = dimRedMethodList(), .mute = character(0), .keep.org.data = TRUE, ... ) } \arguments{ \item{.data}{object of class \code{\link{dimRedData}}, will be converted to be of class \code{\link{dimRedData}} if necessary; see examples for details.} \item{...}{the parameters, internally passed as a list to the dimensionality reduction method as \code{pars = list(...)}} \item{.formula}{a formula, see \code{\link{as.dimRedData}}.} \item{.method}{character vector naming one of the dimensionality reduction techniques.} \item{.mute}{a character vector containing the elements you want to mute (\code{c("message", "output")}), defaults to \code{character(0)}.} \item{.keep.org.data}{\code{TRUE}/\code{FALSE} keep the original data.} } \value{ an object of class \code{\link{dimRedResult}} } \description{ wraps around all dimensionality reduction functions. } \details{ Method must be one of \code{\link{dimRedMethodList}()}, partial matching is performed. All parameters start with a dot, to avoid clashes with partial argument matching (see the R manual section 4.3.2), if there should ever occur any clashes in the arguments, call the function with all arguments named, e.g. \code{embed(.data = dat, .method = "mymethod", .d = "some parameter")}. } \section{Methods (by class)}{ \itemize{ \item \code{embed(formula)}: embed a data.frame using a formula. \item \code{embed(ANY)}: Embed anything as long as it can be coerced to \code{\link{dimRedData}}. \item \code{embed(dimRedData)}: Embed a dimRedData object }} \examples{ ## embed a data.frame using a formula: as.data.frame( embed(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, iris, "PCA") ) ## embed a data.frame and return a data.frame as.data.frame(embed(iris[, 1:4], "PCA")) ## embed a matrix and return a data.frame as.data.frame(embed(as.matrix(iris[, 1:4]), "PCA")) \dontrun{ ## embed dimRedData objects embed_methods <- dimRedMethodList() quality_methods <- dimRedQualityList() dataset <- loadDataSet("Iris") quality_results <- matrix(NA, length(embed_methods), length(quality_methods), dimnames = list(embed_methods, quality_methods)) embedded_data <- list() for (e in embed_methods) { message("embedding: ", e) embedded_data[[e]] <- embed(dataset, e, .mute = c("message", "output")) for (q in quality_methods) { message(" quality: ", q) quality_results[e, q] <- tryCatch( quality(embedded_data[[e]], q), error = function(e) NA ) } } print(quality_results) } } dimRed/man/cophenetic_correlation-dimRedResult-method.Rd0000644000176200001440000000244214255350573023134 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/quality.R \name{cophenetic_correlation,dimRedResult-method} \alias{cophenetic_correlation,dimRedResult-method} \alias{cophenetic_correlation} \title{Method cophenetic_correlation} \usage{ \S4method{cophenetic_correlation}{dimRedResult}(object, d = stats::dist, cor_method = "pearson") } \arguments{ \item{object}{of class dimRedResult} \item{d}{the distance function to use.} \item{cor_method}{The correlation method.} } \description{ Calculate the correlation between the distance matrices in high and low dimensioal space. } \seealso{ Other Quality scores for dimensionality reduction: \code{\link{AUC_lnK_R_NX,dimRedResult-method}}, \code{\link{LCMC,dimRedResult-method}}, \code{\link{Q_NX,dimRedResult-method}}, \code{\link{Q_global,dimRedResult-method}}, \code{\link{Q_local,dimRedResult-method}}, \code{\link{R_NX,dimRedResult-method}}, \code{\link{distance_correlation,dimRedResult-method}}, \code{\link{mean_R_NX,dimRedResult-method}}, \code{\link{plot_R_NX}()}, \code{\link{quality,dimRedResult-method}}, \code{\link{reconstruction_error,dimRedResult-method}}, \code{\link{reconstruction_rmse,dimRedResult-method}}, \code{\link{total_correlation,dimRedResult-method}} } \concept{Quality scores for dimensionality reduction} dimRed/man/Isomap-class.Rd0000644000176200001440000000573214744717566015107 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/isomap.R \docType{class} \name{Isomap-class} \alias{Isomap-class} \alias{Isomap} \title{Isomap embedding} \description{ An S4 Class implementing the Isomap Algorithm } \details{ The Isomap algorithm approximates a manifold using geodesic distances on a k nearest neighbor graph. Then classical scaling is performed on the resulting distance matrix. } \section{Slots}{ \describe{ \item{\code{fun}}{A function that does the embedding and returns a dimRedResult object.} \item{\code{stdpars}}{The standard parameters for the function.} }} \section{General usage}{ Dimensionality reduction methods are S4 Classes that either be used directly, in which case they have to be initialized and a full list with parameters has to be handed to the \code{@fun()} slot, or the method name be passed to the embed function and parameters can be given to the \code{...}, in which case missing parameters will be replaced by the ones in the \code{@stdpars}. } \section{Parameters}{ Isomap can take the following parameters: \describe{ \item{knn}{The number of nearest neighbors in the graph. Defaults to 50.} \item{ndim}{The number of embedding dimensions, defaults to 2.} \item{get_geod}{Should the geodesic distance matrix be kept, if \code{TRUE}, access it as \code{getOtherData(x)$geod}} } } \section{Implementation}{ The dimRed package uses its own implementation of Isomap which also comes with an out of sample extension (known as landmark Isomap). The default Isomap algorithm scales computationally not very well, the implementation here uses \code{\link[RANN]{nn2}} for a faster search of the nearest neighbors. If data are too large it may be useful to fit a subsample of the data and use the out-of-sample extension for the other points. } \examples{ if(requireNamespace(c("RSpectra", "igraph", "RANN"), quietly = TRUE)) { dat <- loadDataSet("3D S Curve", n = 500) emb <- embed(dat, "Isomap", knn = 10) plot(emb) ## or simpler, use embed(): samp <- sample(nrow(dat), size = 200) emb2 <- embed(dat[samp], "Isomap", .mute = NULL, knn = 10) emb3 <- predict(emb2, dat[-samp]) plot(emb2, type = "2vars") plot(emb3, type = "2vars") } } \references{ Tenenbaum, J.B., Silva, V. de, Langford, J.C., 2000. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319-2323. https://doi.org/10.1126/science.290.5500.2319 } \seealso{ Other dimensionality reduction methods: \code{\link{DRR-class}}, \code{\link{DiffusionMaps-class}}, \code{\link{DrL-class}}, \code{\link{FastICA-class}}, \code{\link{FruchtermanReingold-class}}, \code{\link{HLLE-class}}, \code{\link{KamadaKawai-class}}, \code{\link{MDS-class}}, \code{\link{NNMF-class}}, \code{\link{PCA-class}}, \code{\link{PCA_L1-class}}, \code{\link{UMAP-class}}, \code{\link{dimRedMethod-class}}, \code{\link{dimRedMethodList}()}, \code{\link{kPCA-class}}, \code{\link{nMDS-class}}, \code{\link{tSNE-class}} } \concept{dimensionality reduction methods} dimRed/man/reconstruction_error-dimRedResult-method.Rd0000644000176200001440000000406714255350573022711 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/quality.R \name{reconstruction_error,dimRedResult-method} \alias{reconstruction_error,dimRedResult-method} \alias{reconstruction_error} \title{Method reconstruction_error} \usage{ \S4method{reconstruction_error}{dimRedResult}(object, n = seq_len(ndims(object)), error_fun = "rmse") } \arguments{ \item{object}{of class dimRedResult} \item{n}{a positive integer or vector of integers \code{<= ndims(object)}} \item{error_fun}{a function or string indicating an error function, if indication a function it must take to matrices of the same size and return a scalar.} } \value{ a vector of number with the same length as \code{n} with the } \description{ Calculate the error using only the first \code{n} dimensions of the embedded data. \code{error_fun} can either be one of \code{c("rmse", "mae")} to calculate the root mean square error or the mean absolute error respectively, or a function that takes to equally sized vectors as input and returns a single number as output. } \examples{ \dontrun{ ir <- loadDataSet("Iris") ir.drr <- embed(ir, "DRR", ndim = ndims(ir)) ir.pca <- embed(ir, "PCA", ndim = ndims(ir)) rmse <- data.frame( rmse_drr = reconstruction_error(ir.drr), rmse_pca = reconstruction_error(ir.pca) ) matplot(rmse, type = "l") plot(ir) plot(ir.drr) plot(ir.pca) } } \seealso{ Other Quality scores for dimensionality reduction: \code{\link{AUC_lnK_R_NX,dimRedResult-method}}, \code{\link{LCMC,dimRedResult-method}}, \code{\link{Q_NX,dimRedResult-method}}, \code{\link{Q_global,dimRedResult-method}}, \code{\link{Q_local,dimRedResult-method}}, \code{\link{R_NX,dimRedResult-method}}, \code{\link{cophenetic_correlation,dimRedResult-method}}, \code{\link{distance_correlation,dimRedResult-method}}, \code{\link{mean_R_NX,dimRedResult-method}}, \code{\link{plot_R_NX}()}, \code{\link{quality,dimRedResult-method}}, \code{\link{reconstruction_rmse,dimRedResult-method}}, \code{\link{total_correlation,dimRedResult-method}} } \author{ Guido Kraemer } \concept{Quality scores for dimensionality reduction} dimRed/man/as.dimRedData.Rd0000644000176200001440000000176514276434623015144 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R, R/dimRedData-class.R \name{as.dimRedData} \alias{as.dimRedData} \alias{as.dimRedData,formula-method} \title{Converts to dimRedData} \usage{ as.dimRedData(formula, ...) \S4method{as.dimRedData}{formula}(formula, data) } \arguments{ \item{formula}{The formula, left hand side is assigned to the meta slot right hand side is assigned to the data slot.} \item{...}{other arguments.} \item{data}{Will be coerced into a \code{\link{data.frame}} with \code{\link{as.data.frame}}} } \description{ Conversion functions to dimRedData. } \section{Methods (by class)}{ \itemize{ \item \code{as.dimRedData(formula)}: Convert a \code{data.frame} to a dimRedData object using a formula }} \examples{ ## create a dimRedData object using a formula as.dimRedData(Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, iris)[1:5] } \seealso{ Other dimRedData: \code{\link{dimRedData-class}} } \concept{dimRedData} dimRed/man/Q_NX-dimRedResult-method.Rd0000644000176200001440000000231114255350573017212 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/quality.R \name{Q_NX,dimRedResult-method} \alias{Q_NX,dimRedResult-method} \alias{Q_NX} \title{Method Q_NX} \usage{ \S4method{Q_NX}{dimRedResult}(object) } \arguments{ \item{object}{of class dimRedResult} } \description{ Calculate the Q_NX score (Chen & Buja 2006, the notation in the publication is M_k). Which is the fraction of points that remain inside the same K-ary neighborhood in high and low dimensional space. } \seealso{ Other Quality scores for dimensionality reduction: \code{\link{AUC_lnK_R_NX,dimRedResult-method}}, \code{\link{LCMC,dimRedResult-method}}, \code{\link{Q_global,dimRedResult-method}}, \code{\link{Q_local,dimRedResult-method}}, \code{\link{R_NX,dimRedResult-method}}, \code{\link{cophenetic_correlation,dimRedResult-method}}, \code{\link{distance_correlation,dimRedResult-method}}, \code{\link{mean_R_NX,dimRedResult-method}}, \code{\link{plot_R_NX}()}, \code{\link{quality,dimRedResult-method}}, \code{\link{reconstruction_error,dimRedResult-method}}, \code{\link{reconstruction_rmse,dimRedResult-method}}, \code{\link{total_correlation,dimRedResult-method}} } \concept{Quality scores for dimensionality reduction} dimRed/man/distance_correlation-dimRedResult-method.Rd0000644000176200001440000000224514255350573022606 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/quality.R \name{distance_correlation,dimRedResult-method} \alias{distance_correlation,dimRedResult-method} \alias{distance_correlation} \title{Method distance_correlation} \usage{ \S4method{distance_correlation}{dimRedResult}(object) } \arguments{ \item{object}{of class dimRedResult} } \description{ Calculate the distance correlation between the distance matrices in high and low dimensioal space. } \seealso{ Other Quality scores for dimensionality reduction: \code{\link{AUC_lnK_R_NX,dimRedResult-method}}, \code{\link{LCMC,dimRedResult-method}}, \code{\link{Q_NX,dimRedResult-method}}, \code{\link{Q_global,dimRedResult-method}}, \code{\link{Q_local,dimRedResult-method}}, \code{\link{R_NX,dimRedResult-method}}, \code{\link{cophenetic_correlation,dimRedResult-method}}, \code{\link{mean_R_NX,dimRedResult-method}}, \code{\link{plot_R_NX}()}, \code{\link{quality,dimRedResult-method}}, \code{\link{reconstruction_error,dimRedResult-method}}, \code{\link{reconstruction_rmse,dimRedResult-method}}, \code{\link{total_correlation,dimRedResult-method}} } \concept{Quality scores for dimensionality reduction} dimRed/man/R_NX-dimRedResult-method.Rd0000644000176200001440000000244014255350573017216 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/quality.R \name{R_NX,dimRedResult-method} \alias{R_NX,dimRedResult-method} \alias{R_NX} \title{Method R_NX} \usage{ \S4method{R_NX}{dimRedResult}(object, ndim = getNDim(object)) } \arguments{ \item{object}{of class dimRedResult} \item{ndim}{the number of dimensions to take from the embedded data.} } \description{ Calculate the R_NX score from Lee et. al. (2013) which shows the neighborhood preservation for the Kth nearest neighbors, corrected for random point distributions and scaled to range [0, 1]. } \seealso{ Other Quality scores for dimensionality reduction: \code{\link{AUC_lnK_R_NX,dimRedResult-method}}, \code{\link{LCMC,dimRedResult-method}}, \code{\link{Q_NX,dimRedResult-method}}, \code{\link{Q_global,dimRedResult-method}}, \code{\link{Q_local,dimRedResult-method}}, \code{\link{cophenetic_correlation,dimRedResult-method}}, \code{\link{distance_correlation,dimRedResult-method}}, \code{\link{mean_R_NX,dimRedResult-method}}, \code{\link{plot_R_NX}()}, \code{\link{quality,dimRedResult-method}}, \code{\link{reconstruction_error,dimRedResult-method}}, \code{\link{reconstruction_rmse,dimRedResult-method}}, \code{\link{total_correlation,dimRedResult-method}} } \concept{Quality scores for dimensionality reduction} dimRed/man/print.Rd0000644000176200001440000000047714255350572013674 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{print} \alias{print} \title{Method print} \usage{ print(x, ...) } \arguments{ \item{x}{The object to be printed.} \item{...}{Other arguments for printing.} } \description{ Imports the print method into the package namespace. } dimRed/man/maximize_correlation-dimRedResult-method.Rd0000644000176200001440000000175714255350573022646 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/rotate.R \name{maximize_correlation,dimRedResult-method} \alias{maximize_correlation,dimRedResult-method} \alias{maximize_correlation} \title{Maximize Correlation with the Axes} \usage{ \S4method{maximize_correlation}{dimRedResult}( object, naxes = ncol(object@data@data), cor_method = "pearson" ) } \arguments{ \item{object}{A dimRedResult object} \item{naxes}{the number of axes to optimize for.} \item{cor_method}{which correlation method to use} } \description{ Rotates the data in such a way that the correlation with the first \code{naxes} axes is maximized. } \details{ Methods that do not use eigenvector decomposition, like t-SNE often do not align the data with axes according to the correlation of variables with the data. \code{maximize_correlation} uses the \code{\link[optimx]{optimx}} package to rotate the data in such a way that the original variables have maximum correlation with the embedding axes. } dimRed/man/getOtherData.Rd0000644000176200001440000000053014255350572015101 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{getOtherData} \alias{getOtherData} \title{Method getOtherData} \usage{ getOtherData(object, ...) } \arguments{ \item{object}{The object to extract data from.} \item{...}{other arguments.} } \description{ Extract other data produced by a dimRedMethod } dimRed/man/MDS-class.Rd0000644000176200001440000000502114744717566014271 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/mds.R \docType{class} \name{MDS-class} \alias{MDS-class} \alias{MDS} \title{Metric Dimensional Scaling} \description{ An S4 Class implementing classical scaling (MDS). } \details{ MDS tries to maintain distances in high- and low-dimensional space, it has the advantage over PCA that arbitrary distance functions can be used, but it is computationally more demanding. } \section{Slots}{ \describe{ \item{\code{fun}}{A function that does the embedding and returns a dimRedResult object.} \item{\code{stdpars}}{The standard parameters for the function.} }} \section{General usage}{ Dimensionality reduction methods are S4 Classes that either be used directly, in which case they have to be initialized and a full list with parameters has to be handed to the \code{@fun()} slot, or the method name be passed to the embed function and parameters can be given to the \code{...}, in which case missing parameters will be replaced by the ones in the \code{@stdpars}. } \section{Parameters}{ MDS can take the following parameters: \describe{ \item{ndim}{The number of dimensions.} \item{d}{The function to calculate the distance matrix from the input coordinates, defaults to euclidean distances.} } } \section{Implementation}{ Wraps around \code{\link[stats]{cmdscale}}. The implementation also provides an out-of-sample extension which is not completely optimized yet. } \examples{ \dontrun{ dat <- loadDataSet("3D S Curve") emb <- embed(dat, "MDS") plot(emb, type = "2vars") # a "manual" kPCA: emb2 <- embed(dat, "MDS", d = function(x) exp(stats::dist(x))) plot(emb2, type = "2vars") # a "manual", more customizable, and slower Isomap: emb3 <- embed(dat, "MDS", d = function(x) vegan::isomapdist(vegan::vegdist(x, "manhattan"), k = 20)) plot(emb3) } } \references{ Torgerson, W.S., 1952. Multidimensional scaling: I. Theory and method. Psychometrika 17, 401-419. https://doi.org/10.1007/BF02288916 } \seealso{ Other dimensionality reduction methods: \code{\link{DRR-class}}, \code{\link{DiffusionMaps-class}}, \code{\link{DrL-class}}, \code{\link{FastICA-class}}, \code{\link{FruchtermanReingold-class}}, \code{\link{HLLE-class}}, \code{\link{Isomap-class}}, \code{\link{KamadaKawai-class}}, \code{\link{NNMF-class}}, \code{\link{PCA-class}}, \code{\link{PCA_L1-class}}, \code{\link{UMAP-class}}, \code{\link{dimRedMethod-class}}, \code{\link{dimRedMethodList}()}, \code{\link{kPCA-class}}, \code{\link{nMDS-class}}, \code{\link{tSNE-class}} } \concept{dimensionality reduction methods} dimRed/man/dimRedResult-class.Rd0000644000176200001440000001001414276434623016235 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/dimRedResult-class.R \docType{class} \name{dimRedResult-class} \alias{dimRedResult-class} \alias{dimRedResult} \alias{predict,dimRedResult-method} \alias{inverse,dimRedResult-method} \alias{inverse} \alias{as.data.frame,dimRedResult-method} \alias{getPars,dimRedResult-method} \alias{getNDim,dimRedResult-method} \alias{print,dimRedResult-method} \alias{getOrgData,dimRedResult-method} \alias{getDimRedData,dimRedResult-method} \alias{ndims,dimRedResult-method} \alias{getOtherData,dimRedResult-method} \title{Class "dimRedResult"} \usage{ \S4method{predict}{dimRedResult}(object, xnew) \S4method{inverse}{dimRedResult}(object, ynew) \S4method{as.data.frame}{dimRedResult}( x, org.data.prefix = "org.", meta.prefix = "meta.", data.prefix = "" ) \S4method{getPars}{dimRedResult}(object) \S4method{getNDim}{dimRedResult}(object) \S4method{print}{dimRedResult}(x) \S4method{getOrgData}{dimRedResult}(object) \S4method{getDimRedData}{dimRedResult}(object) \S4method{ndims}{dimRedResult}(object) \S4method{getOtherData}{dimRedResult}(object) } \arguments{ \item{object}{Of class \code{dimRedResult}} \item{xnew}{new data, of type \code{\link{dimRedData}}} \item{ynew}{embedded data, of type \code{\link{dimRedData}}} \item{x}{Of class \code{dimRedResult}} \item{org.data.prefix}{Prefix for the columns of the org.data slot.} \item{meta.prefix}{Prefix for the columns of \code{x@data@meta}.} \item{data.prefix}{Prefix for the columns of \code{x@data@data}.} } \description{ A class to hold the results of of a dimensionality reduction. } \section{Methods (by generic)}{ \itemize{ \item \code{predict(dimRedResult)}: apply a trained method to new data, does not work with all methods, will give an error if there is no \code{apply}. In some cases the apply function may only be an approximation. \item \code{inverse(dimRedResult)}: inverse transformation of embedded data, does not work with all methods, will give an error if there is no \code{inverse}. In some cases the apply function may only be an approximation. \item \code{as.data.frame(dimRedResult)}: convert to \code{data.frame} \item \code{getPars(dimRedResult)}: Get the parameters with which the method was called. \item \code{getNDim(dimRedResult)}: Get the number of embedding dimensions. \item \code{print(dimRedResult)}: Method for printing. \item \code{getOrgData(dimRedResult)}: Get the original data and meta.data \item \code{getDimRedData(dimRedResult)}: Get the embedded data \item \code{ndims(dimRedResult)}: Extract the number of embedding dimensions. \item \code{getOtherData(dimRedResult)}: Get other data produced by the method }} \section{Slots}{ \describe{ \item{\code{data}}{Output data of class dimRedData.} \item{\code{org.data}}{original data, a matrix.} \item{\code{apply}}{a function to apply the method to out-of-sampledata, may not exist.} \item{\code{inverse}}{a function to calculate the original coordinates from reduced space, may not exist.} \item{\code{has.org.data}}{logical, if the original data is included in the object.} \item{\code{has.apply}}{logical, if a forward method is exists.} \item{\code{has.inverse}}{logical if an inverse method exists.} \item{\code{method}}{saves the method used.} \item{\code{pars}}{saves the parameters used.} \item{\code{other.data}}{other data produced by the method, e.g. a distance matrix.} }} \examples{ ## Create object by embedding data iris.pca <- embed(loadDataSet("Iris"), "PCA") ## Convert the result to a data.frame head(as(iris.pca, "data.frame")) head(as.data.frame(iris.pca)) ## There are no nameclashes to avoid here: head(as.data.frame(iris.pca, org.data.prefix = "", meta.prefix = "", data.prefix = "")) ## Print it more or less nicely: print(iris.pca) ## Get the embedded data as a dimRedData object: getDimRedData(iris.pca) ## Get the original data including meta information: getOrgData(iris.pca) ## Get the number of variables: ndims(iris.pca) } \concept{dimRedResult} dimRed/man/getOrgData.Rd0000644000176200001440000000047514255350572014557 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{getOrgData} \alias{getOrgData} \title{Method getOrgData} \usage{ getOrgData(object, ...) } \arguments{ \item{object}{The object to extract data from.} \item{...}{other arguments.} } \description{ Extract the Original data. } dimRed/man/nMDS-class.Rd0000644000176200001440000000414514744717566014455 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/nmds.R \docType{class} \name{nMDS-class} \alias{nMDS-class} \alias{nMDS} \title{Non-Metric Dimensional Scaling} \description{ An S4 Class implementing Non-Metric Dimensional Scaling. } \details{ A non-linear extension of MDS using monotonic regression } \section{Slots}{ \describe{ \item{\code{fun}}{A function that does the embedding and returns a dimRedResult object.} \item{\code{stdpars}}{The standard parameters for the function.} }} \section{General usage}{ Dimensionality reduction methods are S4 Classes that either be used directly, in which case they have to be initialized and a full list with parameters has to be handed to the \code{@fun()} slot, or the method name be passed to the embed function and parameters can be given to the \code{...}, in which case missing parameters will be replaced by the ones in the \code{@stdpars}. } \section{Parameters}{ nMDS can take the following parameters: \describe{ \item{d}{A distance function.} \item{ndim}{The number of embedding dimensions.} } } \section{Implementation}{ Wraps around the \code{\link[vegan]{monoMDS}}. For parameters that are not available here, the standard configuration is used. } \examples{ if(requireNamespace("vegan", quietly = TRUE)) { dat <- loadDataSet("3D S Curve", n = 300) emb <- embed(dat, "nMDS") plot(emb, type = "2vars") } } \references{ Kruskal, J.B., 1964. Nonmetric multidimensional scaling: A numerical method. Psychometrika 29, 115-129. https://doi.org/10.1007/BF02289694 } \seealso{ Other dimensionality reduction methods: \code{\link{DRR-class}}, \code{\link{DiffusionMaps-class}}, \code{\link{DrL-class}}, \code{\link{FastICA-class}}, \code{\link{FruchtermanReingold-class}}, \code{\link{HLLE-class}}, \code{\link{Isomap-class}}, \code{\link{KamadaKawai-class}}, \code{\link{MDS-class}}, \code{\link{NNMF-class}}, \code{\link{PCA-class}}, \code{\link{PCA_L1-class}}, \code{\link{UMAP-class}}, \code{\link{dimRedMethod-class}}, \code{\link{dimRedMethodList}()}, \code{\link{kPCA-class}}, \code{\link{tSNE-class}} } \concept{dimensionality reduction methods} dimRed/man/DrL-class.Rd0000644000176200001440000000505414744717566014335 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/graph_embed.R \docType{class} \name{DrL-class} \alias{DrL-class} \alias{DrL} \title{Distributed Recursive Graph Layout} \description{ An S4 Class implementing Distributed recursive Graph Layout. } \details{ DrL uses a complex algorithm to avoid local minima in the graph embedding which uses several steps. } \section{Slots}{ \describe{ \item{\code{fun}}{A function that does the embedding and returns a dimRedResult object.} \item{\code{stdpars}}{The standard parameters for the function.} }} \section{General usage}{ Dimensionality reduction methods are S4 Classes that either be used directly, in which case they have to be initialized and a full list with parameters has to be handed to the \code{@fun()} slot, or the method name be passed to the embed function and parameters can be given to the \code{...}, in which case missing parameters will be replaced by the ones in the \code{@stdpars}. } \section{Parameters}{ DrL can take the following parameters: \describe{ \item{ndim}{The number of dimensions, defaults to 2. Can only be 2 or 3} \item{knn}{Reduce the graph to keep only the neares neighbors. Defaults to 100.} \item{d}{The distance function to determine the weights of the graph edges. Defaults to euclidean distances.} } } \section{Implementation}{ Wraps around \code{\link[igraph]{layout_with_drl}}. The parameters maxiter, epsilon and kkconst are set to the default values and cannot be set, this may change in a future release. The DimRed Package adds an extra sparsity parameter by constructing a knn graph which also may improve visualization quality. } \examples{ \dontrun{ if(requireNamespace(c("igraph", "coRanking"), quietly = TRUE)) { dat <- loadDataSet("Swiss Roll", n = 200) emb <- embed(dat, "DrL") plot(emb, type = "2vars") } } } \references{ Martin, S., Brown, W.M., Wylie, B.N., 2007. Dr.l: Distributed Recursive (graph) Layout (No. dRl; 002182MLTPL00). Sandia National Laboratories. } \seealso{ Other dimensionality reduction methods: \code{\link{DRR-class}}, \code{\link{DiffusionMaps-class}}, \code{\link{FastICA-class}}, \code{\link{FruchtermanReingold-class}}, \code{\link{HLLE-class}}, \code{\link{Isomap-class}}, \code{\link{KamadaKawai-class}}, \code{\link{MDS-class}}, \code{\link{NNMF-class}}, \code{\link{PCA-class}}, \code{\link{PCA_L1-class}}, \code{\link{UMAP-class}}, \code{\link{dimRedMethod-class}}, \code{\link{dimRedMethodList}()}, \code{\link{kPCA-class}}, \code{\link{nMDS-class}}, \code{\link{tSNE-class}} } \concept{dimensionality reduction methods} dimRed/man/PCA-class.Rd0000644000176200001440000000515314744717566014257 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pca.R \docType{class} \name{PCA-class} \alias{PCA-class} \alias{PCA} \title{Principal Component Analysis} \description{ S4 Class implementing PCA. } \details{ PCA transforms the data in orthogonal components so that the first axis accounts for the larges variance in the data, all the following axes account for the highest variance under the constraint that they are orthogonal to the preceding axes. PCA is sensitive to the scaling of the variables. PCA is by far the fastest and simples method of dimensionality reduction and should probably always be applied as a baseline if other methods are tested. } \section{Slots}{ \describe{ \item{\code{fun}}{A function that does the embedding and returns a dimRedResult object.} \item{\code{stdpars}}{The standard parameters for the function.} }} \section{General usage}{ Dimensionality reduction methods are S4 Classes that either be used directly, in which case they have to be initialized and a full list with parameters has to be handed to the \code{@fun()} slot, or the method name be passed to the embed function and parameters can be given to the \code{...}, in which case missing parameters will be replaced by the ones in the \code{@stdpars}. } \section{Parameters}{ PCA can take the following parameters: \describe{ \item{ndim}{The number of output dimensions.} \item{center}{logical, should the data be centered, defaults to \code{TRUE}.} \item{scale.}{logical, should the data be scaled, defaults to \code{FALSE}.} } } \section{Implementation}{ Wraps around \code{\link{prcomp}}. Because PCA can be reduced to a simple rotation, forward and backward projection functions are supplied. } \examples{ dat <- loadDataSet("Iris") emb <- embed(dat, "PCA") plot(emb, type = "2vars") if(requireNamespace("scatterplot3d", quietly = TRUE)) plot(inverse(emb, getDimRedData(emb)), type = "3vars") } \references{ Pearson, K., 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2, 559-572. } \seealso{ Other dimensionality reduction methods: \code{\link{DRR-class}}, \code{\link{DiffusionMaps-class}}, \code{\link{DrL-class}}, \code{\link{FastICA-class}}, \code{\link{FruchtermanReingold-class}}, \code{\link{HLLE-class}}, \code{\link{Isomap-class}}, \code{\link{KamadaKawai-class}}, \code{\link{MDS-class}}, \code{\link{NNMF-class}}, \code{\link{PCA_L1-class}}, \code{\link{UMAP-class}}, \code{\link{dimRedMethod-class}}, \code{\link{dimRedMethodList}()}, \code{\link{kPCA-class}}, \code{\link{nMDS-class}}, \code{\link{tSNE-class}} } \concept{dimensionality reduction methods} dimRed/man/kPCA-class.Rd0000644000176200001440000000501014744717566014422 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/kpca.R \docType{class} \name{kPCA-class} \alias{kPCA-class} \alias{kPCA} \title{Kernel PCA} \description{ An S4 Class implementing Kernel PCA } \details{ Kernel PCA is a nonlinear extension of PCA using kernel methods. } \section{Slots}{ \describe{ \item{\code{fun}}{A function that does the embedding and returns a dimRedResult object.} \item{\code{stdpars}}{The standard parameters for the function.} }} \section{General usage}{ Dimensionality reduction methods are S4 Classes that either be used directly, in which case they have to be initialized and a full list with parameters has to be handed to the \code{@fun()} slot, or the method name be passed to the embed function and parameters can be given to the \code{...}, in which case missing parameters will be replaced by the ones in the \code{@stdpars}. } \section{Parameters}{ Kernel PCA can take the following parameters: \describe{ \item{ndim}{the number of output dimensions, defaults to 2} \item{kernel}{The kernel function, either as a function or a character vector with the name of the kernel. Defaults to \code{"rbfdot"}} \item{kpar}{A list with the parameters for the kernel function, defaults to \code{list(sigma = 0.1)}} } The most comprehensive collection of kernel functions can be found in \code{\link[kernlab]{kpca}}. In case the function does not take any parameters \code{kpar} has to be an empty list. } \section{Implementation}{ Wraps around \code{\link[kernlab]{kpca}}, but provides additionally forward and backward projections. } \examples{ \dontrun{ if(requireNamespace("kernlab", quietly = TRUE)) { dat <- loadDataSet("3D S Curve") emb <- embed(dat, "kPCA") plot(emb, type = "2vars") } } } \references{ Sch\"olkopf, B., Smola, A., M\"uller, K.-R., 1998. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation 10, 1299-1319. https://doi.org/10.1162/089976698300017467 } \seealso{ Other dimensionality reduction methods: \code{\link{DRR-class}}, \code{\link{DiffusionMaps-class}}, \code{\link{DrL-class}}, \code{\link{FastICA-class}}, \code{\link{FruchtermanReingold-class}}, \code{\link{HLLE-class}}, \code{\link{Isomap-class}}, \code{\link{KamadaKawai-class}}, \code{\link{MDS-class}}, \code{\link{NNMF-class}}, \code{\link{PCA-class}}, \code{\link{PCA_L1-class}}, \code{\link{UMAP-class}}, \code{\link{dimRedMethod-class}}, \code{\link{dimRedMethodList}()}, \code{\link{nMDS-class}}, \code{\link{tSNE-class}} } \concept{dimensionality reduction methods} dimRed/man/DRR-class.Rd0000644000176200001440000001100714744717566014276 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/drr.R \docType{class} \name{DRR-class} \alias{DRR-class} \alias{DRR} \title{Dimensionality Reduction via Regression} \description{ An S4 Class implementing Dimensionality Reduction via Regression (DRR). } \details{ DRR is a non-linear extension of PCA that uses Kernel Ridge regression. } \section{Slots}{ \describe{ \item{\code{fun}}{A function that does the embedding and returns a dimRedResult object.} \item{\code{stdpars}}{The standard parameters for the function.} }} \section{General usage}{ Dimensionality reduction methods are S4 Classes that either be used directly, in which case they have to be initialized and a full list with parameters has to be handed to the \code{@fun()} slot, or the method name be passed to the embed function and parameters can be given to the \code{...}, in which case missing parameters will be replaced by the ones in the \code{@stdpars}. } \section{Parameters}{ DRR can take the following parameters: \describe{ \item{ndim}{The number of dimensions} \item{lambda}{The regularization parameter for the ridge regression.} \item{kernel}{The kernel to use for KRR, defaults to \code{"rbfdot"}.} \item{kernel.pars}{A list with kernel parameters, elements depend on the kernel used, \code{"rbfdot"} uses \code{"sigma"}.} \item{pca}{logical, should an initial pca step be performed, defaults to \code{TRUE}.} \item{pca.center}{logical, should the data be centered before the pca step. Defaults to \code{TRUE}.} \item{pca.scale}{logical, should the data be scaled before the pca ste. Defaults to \code{FALSE}.} \item{fastcv}{logical, should \code{\link[CVST]{fastCV}} from the CVST package be used instead of normal cross-validation.} \item{fastcv.test}{If \code{fastcv = TRUE}, separate test data set for fastcv.} \item{cv.folds}{if \code{fastcv = FALSE}, specifies the number of folds for crossvalidation.} \item{fastkrr.nblocks}{integer, higher values sacrifice numerical accuracy for speed and less memory, see below for details.} \item{verbose}{logical, should the cross-validation results be printed out.} } } \section{Implementation}{ Wraps around \code{\link[DRR]{drr}}, see there for details. DRR is a non-linear extension of principal components analysis using Kernel Ridge Regression (KRR, details see \code{\link[CVST]{constructKRRLearner}} and \code{\link[DRR]{constructFastKRRLearner}}). Non-linear regression is used to explain more variance than PCA. DRR provides an out-of-sample extension and a backward projection. The most expensive computations are matrix inversions therefore the implementation profits a lot from a multithreaded BLAS library. The best parameters for each KRR are determined by cross-validaton over all parameter combinations of \code{lambda} and \code{kernel.pars}, using less parameter values will speed up computation time. Calculation of KRR can be accelerated by increasing \code{fastkrr.nblocks}, it should be smaller than \eqn{n^{1/3}} up to sacrificing some accuracy, for details see \code{\link[DRR]{constructFastKRRLearner}}. Another way to speed up is to use \code{pars$fastcv = TRUE} which might provide a more efficient way to search the parameter space but may also miss the global maximum, I have not ran tests on the accuracy of this method. } \examples{ \dontrun{ if(requireNamespace(c("kernlab", "DRR"), quietly = TRUE)) { dat <- loadDataSet("variable Noise Helix", n = 200)[sample(200)] emb <- embed(dat, "DRR", ndim = 3) plot(dat, type = "3vars") plot(emb, type = "3vars") # We even have function to reconstruct, also working for only the first few dimensions rec <- inverse(emb, getData(getDimRedData(emb))[, 1, drop = FALSE]) plot(rec, type = "3vars") } } } \references{ Laparra, V., Malo, J., Camps-Valls, G., 2015. Dimensionality Reduction via Regression in Hyperspectral Imagery. IEEE Journal of Selected Topics in Signal Processing 9, 1026-1036. doi:10.1109/JSTSP.2015.2417833 } \seealso{ Other dimensionality reduction methods: \code{\link{DiffusionMaps-class}}, \code{\link{DrL-class}}, \code{\link{FastICA-class}}, \code{\link{FruchtermanReingold-class}}, \code{\link{HLLE-class}}, \code{\link{Isomap-class}}, \code{\link{KamadaKawai-class}}, \code{\link{MDS-class}}, \code{\link{NNMF-class}}, \code{\link{PCA-class}}, \code{\link{PCA_L1-class}}, \code{\link{UMAP-class}}, \code{\link{dimRedMethod-class}}, \code{\link{dimRedMethodList}()}, \code{\link{kPCA-class}}, \code{\link{nMDS-class}}, \code{\link{tSNE-class}} } \concept{dimensionality reduction methods} dimRed/man/quality.Rd0000644000176200001440000001113314276434624014223 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/quality.R \name{quality,dimRedResult-method} \alias{quality,dimRedResult-method} \alias{quality} \alias{quality.dimRedResult} \alias{dimRedQualityList} \title{Quality Criteria for dimensionality reduction.} \usage{ \S4method{quality}{dimRedResult}(.data, .method = dimRedQualityList(), .mute = character(0), ...) dimRedQualityList(filter = FALSE) } \arguments{ \item{.data}{object of class \code{dimRedResult}} \item{.method}{character vector naming one of the methods} \item{.mute}{what output from the embedding method should be muted.} \item{...}{the pameters, internally passed as a list to the quality method as \code{pars = list(...)}} \item{filter}{filter methods by installed packages} } \value{ a number } \description{ A collection of functions to compute quality measures on \code{\link{dimRedResult}} objects. } \section{Methods (by class)}{ \itemize{ \item \code{quality(dimRedResult)}: Calculate a quality index from a dimRedResult object. }} \section{Implemented methods}{ Method must be one of \code{"\link{Q_local}", "\link{Q_global}", "\link{mean_R_NX}", "\link{total_correlation}", "\link{cophenetic_correlation}", "\link{distance_correlation}", "\link{reconstruction_rmse}"} } \section{Rank based criteria}{ \code{Q_local}, \code{Q_global}, and \code{mean_R_NX} are quality criteria based on the Co-ranking matrix. \code{Q_local} and \code{Q_global} determine the local/global quality of the embedding, while \code{mean_R_NX} determines the quality of the overall embedding. They are parameter free and return a single number. The object must include the original data. The number returns is in the range [0, 1], higher values mean a better local/global embedding. } \section{Correlation based criteria}{ \code{total_correlation} calculates the sum of the mean squared correlations of the original axes with the axes in reduced dimensions, because some methods do not care about correlations with axes, there is an option to rotate data in reduced space to maximize this criterium. The number may be greater than one if more dimensions are summed up. \code{cophenetic_correlation} calculate the correlation between the lower triangles of distance matrices, the correlation and distance methods may be specified. The result is in range [-1, 1]. \code{distance_correlation} measures the independes of samples by calculating the correlation of distances. For details see \code{\link[energy]{dcor}}. } \section{Reconstruction error}{ \code{reconstruction_rmse} calculates the root mean squared error of the reconstrucion. \code{object} requires an inverse function. } \examples{ \dontrun{ embed_methods <- dimRedMethodList() quality_methods <- dimRedQualityList() scurve <- loadDataSet("Iris") quality_results <- matrix(NA, length(embed_methods), length(quality_methods), dimnames = list(embed_methods, quality_methods)) embedded_data <- list() for (e in embed_methods) { message("embedding: ", e) embedded_data[[e]] <- embed(scurve, e, .mute = c("message", "output")) for (q in quality_methods) { message(" quality: ", q) quality_results[e, q] <- tryCatch( quality(embedded_data[[e]], q), error = function (e) NA ) } } print(quality_results) } } \references{ Lueks, W., Mokbel, B., Biehl, M., Hammer, B., 2011. How to Evaluate Dimensionality Reduction? - Improving the Co-ranking Matrix. arXiv:1110.3917 [cs]. Szekely, G.J., Rizzo, M.L., Bakirov, N.K., 2007. Measuring and testing dependence by correlation of distances. Ann. Statist. 35, 2769-2794. doi:10.1214/009053607000000505 Lee, J.A., Peluffo-Ordonez, D.H., Verleysen, M., 2015. Multi-scale similarities in stochastic neighbour embedding: Reducing dimensionality while preserving both local and global structure. Neurocomputing, 169, 246-261. doi:10.1016/j.neucom.2014.12.095 } \seealso{ Other Quality scores for dimensionality reduction: \code{\link{AUC_lnK_R_NX,dimRedResult-method}}, \code{\link{LCMC,dimRedResult-method}}, \code{\link{Q_NX,dimRedResult-method}}, \code{\link{Q_global,dimRedResult-method}}, \code{\link{Q_local,dimRedResult-method}}, \code{\link{R_NX,dimRedResult-method}}, \code{\link{cophenetic_correlation,dimRedResult-method}}, \code{\link{distance_correlation,dimRedResult-method}}, \code{\link{mean_R_NX,dimRedResult-method}}, \code{\link{plot_R_NX}()}, \code{\link{reconstruction_error,dimRedResult-method}}, \code{\link{reconstruction_rmse,dimRedResult-method}}, \code{\link{total_correlation,dimRedResult-method}} } \author{ Guido Kraemer } \concept{Quality scores for dimensionality reduction} dimRed/man/LCMC-dimRedResult-method.Rd0000644000176200001440000000221114255350573017122 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/quality.R \name{LCMC,dimRedResult-method} \alias{LCMC,dimRedResult-method} \alias{LCMC} \title{Method LCMC} \usage{ \S4method{LCMC}{dimRedResult}(object) } \arguments{ \item{object}{of class dimRedResult} } \description{ Calculates the Local Continuity Meta Criterion, which is \code{\link{Q_NX}} adjusted for random overlap inside the K-ary neighborhood. } \seealso{ Other Quality scores for dimensionality reduction: \code{\link{AUC_lnK_R_NX,dimRedResult-method}}, \code{\link{Q_NX,dimRedResult-method}}, \code{\link{Q_global,dimRedResult-method}}, \code{\link{Q_local,dimRedResult-method}}, \code{\link{R_NX,dimRedResult-method}}, \code{\link{cophenetic_correlation,dimRedResult-method}}, \code{\link{distance_correlation,dimRedResult-method}}, \code{\link{mean_R_NX,dimRedResult-method}}, \code{\link{plot_R_NX}()}, \code{\link{quality,dimRedResult-method}}, \code{\link{reconstruction_error,dimRedResult-method}}, \code{\link{reconstruction_rmse,dimRedResult-method}}, \code{\link{total_correlation,dimRedResult-method}} } \concept{Quality scores for dimensionality reduction} dimRed/man/FruchtermanReingold-class.Rd0000644000176200001440000000453314744717566017617 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/graph_embed.R \docType{class} \name{FruchtermanReingold-class} \alias{FruchtermanReingold-class} \alias{FruchtermanReingold} \title{Fruchterman Reingold Graph Layout} \description{ An S4 Class implementing the Fruchterman Reingold Graph Layout algorithm. } \section{Slots}{ \describe{ \item{\code{fun}}{A function that does the embedding and returns a dimRedResult object.} \item{\code{stdpars}}{The standard parameters for the function.} }} \section{General usage}{ Dimensionality reduction methods are S4 Classes that either be used directly, in which case they have to be initialized and a full list with parameters has to be handed to the \code{@fun()} slot, or the method name be passed to the embed function and parameters can be given to the \code{...}, in which case missing parameters will be replaced by the ones in the \code{@stdpars}. } \section{Parameters}{ \describe{ \item{ndim}{The number of dimensions, defaults to 2. Can only be 2 or 3} \item{knn}{Reduce the graph to keep only the neares neighbors. Defaults to 100.} \item{d}{The distance function to determine the weights of the graph edges. Defaults to euclidean distances.} } } \section{Implementation}{ Wraps around \code{\link[igraph]{layout_with_fr}}, see there for details. The Fruchterman Reingold algorithm puts the data into a circle and puts connected points close to each other. } \examples{ if(requireNamespace(c("igraph", "coRanking"), quietly = TRUE)) { dat <- loadDataSet("Swiss Roll", n = 100) emb <- embed(dat, "FruchtermanReingold") plot(emb, type = "2vars") } } \references{ Fruchterman, T.M.J., Reingold, E.M., 1991. Graph drawing by force-directed placement. Softw: Pract. Exper. 21, 1129-1164. https://doi.org/10.1002/spe.4380211102 } \seealso{ Other dimensionality reduction methods: \code{\link{DRR-class}}, \code{\link{DiffusionMaps-class}}, \code{\link{DrL-class}}, \code{\link{FastICA-class}}, \code{\link{HLLE-class}}, \code{\link{Isomap-class}}, \code{\link{KamadaKawai-class}}, \code{\link{MDS-class}}, \code{\link{NNMF-class}}, \code{\link{PCA-class}}, \code{\link{PCA_L1-class}}, \code{\link{UMAP-class}}, \code{\link{dimRedMethod-class}}, \code{\link{dimRedMethodList}()}, \code{\link{kPCA-class}}, \code{\link{nMDS-class}}, \code{\link{tSNE-class}} } \concept{dimensionality reduction methods} dimRed/man/reconstruction_rmse-dimRedResult-method.Rd0000644000176200001440000000227014255350573022520 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/quality.R \name{reconstruction_rmse,dimRedResult-method} \alias{reconstruction_rmse,dimRedResult-method} \alias{reconstruction_rmse} \title{Method reconstruction_rmse} \usage{ \S4method{reconstruction_rmse}{dimRedResult}(object) } \arguments{ \item{object}{of class dimRedResult} } \description{ Calculate the reconstruction root mean squared error a dimensionality reduction, the method must have an inverse mapping. } \seealso{ Other Quality scores for dimensionality reduction: \code{\link{AUC_lnK_R_NX,dimRedResult-method}}, \code{\link{LCMC,dimRedResult-method}}, \code{\link{Q_NX,dimRedResult-method}}, \code{\link{Q_global,dimRedResult-method}}, \code{\link{Q_local,dimRedResult-method}}, \code{\link{R_NX,dimRedResult-method}}, \code{\link{cophenetic_correlation,dimRedResult-method}}, \code{\link{distance_correlation,dimRedResult-method}}, \code{\link{mean_R_NX,dimRedResult-method}}, \code{\link{plot_R_NX}()}, \code{\link{quality,dimRedResult-method}}, \code{\link{reconstruction_error,dimRedResult-method}}, \code{\link{total_correlation,dimRedResult-method}} } \concept{Quality scores for dimensionality reduction} dimRed/man/mixColorRamps.Rd0000644000176200001440000000254614262553601015332 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/mixColorSpaces.R \name{mixColorRamps} \alias{mixColorRamps} \alias{mixColor1Ramps} \alias{mixColor2Ramps} \alias{mixColor3Ramps} \title{Mixing color ramps} \usage{ mixColorRamps(vars, ramps) mixColor1Ramps(vars, ramps = colorRamp(c("blue", "black", "red"))) mixColor2Ramps( vars, ramps = list(colorRamp(c("blue", "green")), colorRamp(c("blue", "red"))) ) mixColor3Ramps( vars, ramps = list(colorRamp(c("#001A00", "#00E600")), colorRamp(c("#00001A", "#0000E6")), colorRamp(c("#1A0000", "#E60000"))) ) } \arguments{ \item{vars}{a list of variables} \item{ramps}{a list of color ramps, one for each variable.} } \description{ mix different color ramps } \details{ automatically create colors to represent a varying number of dimensions. } \examples{ cols <- expand.grid(x = seq(0, 1, length.out = 10), y = seq(0, 1, length.out = 10), z = seq(0, 1, length.out = 10)) mixed <- mixColor3Ramps(cols) \dontrun{ if(requireNamespace("rgl", quietly = TRUE)) { rgl::plot3d(cols$x, cols$y, cols$z, col = mixed, pch = 15) } cols <- expand.grid(x = seq(0, 1, length.out = 10), y = seq(0, 1, length.out = 10)) mixed <- mixColor2Ramps(cols) if(requireNamespace("graphics", quietly = TRUE)) { plot(cols$x, cols$y, col = mixed, pch = 15) } } } dimRed/man/makeKNNgraph.Rd0000644000176200001440000000141514255350572015037 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{makeKNNgraph} \alias{makeKNNgraph} \title{makeKNNgraph} \usage{ makeKNNgraph(x, k, eps = 0, diag = FALSE) } \arguments{ \item{x}{data, a matrix, observations in rows, dimensions in columns} \item{k}{the number of nearest neighbors.} \item{eps}{number, if \code{eps > 0} the KNN search is approximate, see \code{\link[RANN]{nn2}}} \item{diag}{logical, if \code{TRUE} every edge of the returned graph will have an edge with weight \code{0} to itself.} } \value{ an object of type \code{\link[igraph]{igraph}} with edge weight being the distances. } \description{ Create a K-nearest neighbor graph from data x. Uses \code{\link[RANN]{nn2}} as a fast way to find the neares neighbors. } dimRed/man/installSuggests.Rd0000644000176200001440000000124114255350572015721 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{installSuggests} \alias{installSuggests} \title{getSuggests} \usage{ installSuggests(...) } \arguments{ \item{...}{additional options passed to install.packages.} } \description{ Install packages wich are suggested by dimRed. } \details{ By default dimRed will not install all the dependencies, because there are quite a lot and in case some of them are not available for your platform you will not be able to install dimRed without problems. To solve this I provide a function which automatically installes all the suggested packages. } \examples{ \dontrun{ installSuggests() } } dimRed/man/KamadaKawai-class.Rd0000644000176200001440000000562514744717566016013 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/graph_embed.R \docType{class} \name{KamadaKawai-class} \alias{KamadaKawai-class} \alias{KamadaKawai} \title{Graph Embedding via the Kamada Kawai Algorithm} \description{ An S4 Class implementing the Kamada Kawai Algorithm for graph embedding. } \details{ Graph embedding algorithms se the data as a graph. Between the nodes of the graph exist attracting and repelling forces which can be modeled as electrical fields or springs connecting the nodes. The graph is then forced into a lower dimensional representation that tries to represent the forces betweent he nodes accurately by minimizing the total energy of the attracting and repelling forces. } \section{Slots}{ \describe{ \item{\code{fun}}{A function that does the embedding and returns a dimRedResult object.} \item{\code{stdpars}}{The standard parameters for the function.} }} \section{General usage}{ Dimensionality reduction methods are S4 Classes that either be used directly, in which case they have to be initialized and a full list with parameters has to be handed to the \code{@fun()} slot, or the method name be passed to the embed function and parameters can be given to the \code{...}, in which case missing parameters will be replaced by the ones in the \code{@stdpars}. } \section{Parameters}{ KamadaKawai can take the following parameters: \describe{ \item{ndim}{The number of dimensions, defaults to 2. Can only be 2 or 3} \item{knn}{Reduce the graph to keep only the neares neighbors. Defaults to 100.} \item{d}{The distance function to determine the weights of the graph edges. Defaults to euclidean distances.} } } \section{Implementation}{ Wraps around \code{\link[igraph]{layout_with_kk}}. The parameters maxiter, epsilon and kkconst are set to the default values and cannot be set, this may change in a future release. The DimRed Package adds an extra sparsity parameter by constructing a knn graph which also may improve visualization quality. } \examples{ if(requireNamespace(c("igraph", "coRanking"), quietly = TRUE)) { dat <- loadDataSet("Swiss Roll", n = 200) emb <- embed(dat, "KamadaKawai") plot(emb, type = "2vars") } } \references{ Kamada, T., Kawai, S., 1989. An algorithm for drawing general undirected graphs. Information Processing Letters 31, 7-15. https://doi.org/10.1016/0020-0190(89)90102-6 } \seealso{ Other dimensionality reduction methods: \code{\link{DRR-class}}, \code{\link{DiffusionMaps-class}}, \code{\link{DrL-class}}, \code{\link{FastICA-class}}, \code{\link{FruchtermanReingold-class}}, \code{\link{HLLE-class}}, \code{\link{Isomap-class}}, \code{\link{MDS-class}}, \code{\link{NNMF-class}}, \code{\link{PCA-class}}, \code{\link{PCA_L1-class}}, \code{\link{UMAP-class}}, \code{\link{dimRedMethod-class}}, \code{\link{dimRedMethodList}()}, \code{\link{kPCA-class}}, \code{\link{nMDS-class}}, \code{\link{tSNE-class}} } \concept{dimensionality reduction methods} dimRed/man/total_correlation-dimRedResult-method.Rd0000644000176200001440000000263114255350572022135 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/quality.R \name{total_correlation,dimRedResult-method} \alias{total_correlation,dimRedResult-method} \alias{total_correlation} \title{Method total_correlation} \usage{ \S4method{total_correlation}{dimRedResult}( object, naxes = ndims(object), cor_method = "pearson", is.rotated = FALSE ) } \arguments{ \item{object}{of class dimRedResult} \item{naxes}{the number of axes to use for optimization.} \item{cor_method}{the correlation method to use.} \item{is.rotated}{if FALSE the object is rotated.} } \description{ Calculate the total correlation of the variables with the axes to assess the quality of a dimensionality reduction. } \seealso{ Other Quality scores for dimensionality reduction: \code{\link{AUC_lnK_R_NX,dimRedResult-method}}, \code{\link{LCMC,dimRedResult-method}}, \code{\link{Q_NX,dimRedResult-method}}, \code{\link{Q_global,dimRedResult-method}}, \code{\link{Q_local,dimRedResult-method}}, \code{\link{R_NX,dimRedResult-method}}, \code{\link{cophenetic_correlation,dimRedResult-method}}, \code{\link{distance_correlation,dimRedResult-method}}, \code{\link{mean_R_NX,dimRedResult-method}}, \code{\link{plot_R_NX}()}, \code{\link{quality,dimRedResult-method}}, \code{\link{reconstruction_error,dimRedResult-method}}, \code{\link{reconstruction_rmse,dimRedResult-method}} } \concept{Quality scores for dimensionality reduction} dimRed/man/dimRed-package.Rd0000644000176200001440000000304514276433351015327 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/dimRed.R \docType{package} \name{dimRed-package} \alias{dimRed} \alias{dimRed-package} \title{The dimRed package} \description{ This package simplifies dimensionality reduction in R by providing a framework of S4 classes and methods. dimRed collects dimensionality reduction methods that are implemented in R and implements others. It gives them a common interface and provides plotting functions for visualization and functions for quality assessment. Funding provided by the Department for Biogeochemical Integration, Empirical Inference of the Earth System Group, at the Max Plack Institute for Biogeochemistry, Jena. } \references{ Lee, J.A., Renard, E., Bernard, G., Dupont, P., Verleysen, M., 2013. Type 1 and 2 mixtures of Kullback-Leibler divergences as cost functions in dimensionality reduction based on similarity preservation. Neurocomputing. 112, 92-107. doi:10.1016/j.neucom.2012.12.036 Lee, J.A., Lee, J.A., Verleysen, M., 2008. Rank-based quality assessment of nonlinear dimensionality reduction. Proceedings of ESANN 2008 49-54. Chen, L., Buja, A., 2006. Local Multidimensional Scaling for Nonlinear Dimension Reduction, Graph Layout and Proximity Analysis. } \seealso{ Useful links: \itemize{ \item \url{https://www.guido-kraemer.com/software/dimred/} \item Report bugs at \url{https://github.com/gdkrmr/dimRed/issues} } } \author{ \strong{Maintainer}: Guido Kraemer \email{guido.kraemer@uni-leipzig.de} (\href{https://orcid.org/0000-0003-4865-5041}{ORCID}) } dimRed/man/getMeta.Rd0000644000176200001440000000045114255350572014116 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{getMeta} \alias{getMeta} \title{Method getMeta} \usage{ getMeta(object, ...) } \arguments{ \item{object}{The object to be converted.} \item{...}{other arguments.} } \description{ Extracts the meta slot. } dimRed/man/dimRedMethod-class.Rd0000644000176200001440000000371314744717566016221 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/dimRedMethod-class.R \docType{class} \name{dimRedMethod-class} \alias{dimRedMethod-class} \title{Class "dimRedMethod"} \description{ A virtual class "dimRedMethod" to serve as a template to implement methods for dimensionality reduction. } \details{ Implementations of dimensionality reductions should inherit from this class. The \code{fun} slot should be a function that takes three arguments \describe{ \item{data}{An object of class \code{\link{dimRedData}}.} \item{pars}{A list with the standard parameters.} \item{keep.org.data}{Logical. If the original data should be kept in the output.} } and returns an object of class \code{\link{dimRedResult}}. The \code{stdpars} slot should take a list that contains standard parameters for the implemented methods. This way the method can be called by \code{embed(data, "method-name", ...)}, where \code{...} can be used to to change single parameters. } \section{Slots}{ \describe{ \item{\code{fun}}{A function that does the embedding.} \item{\code{stdpars}}{A list with the default parameters for the \code{fun} slot.} \item{\code{requires}}{A vector with all packages R packages that need to be installed to run the method. In some occasions a method may work without one of the packages. Does not include Python dependencies such as Tensorflow. Used to auto skip tests} }} \seealso{ Other dimensionality reduction methods: \code{\link{DRR-class}}, \code{\link{DiffusionMaps-class}}, \code{\link{DrL-class}}, \code{\link{FastICA-class}}, \code{\link{FruchtermanReingold-class}}, \code{\link{HLLE-class}}, \code{\link{Isomap-class}}, \code{\link{KamadaKawai-class}}, \code{\link{MDS-class}}, \code{\link{NNMF-class}}, \code{\link{PCA-class}}, \code{\link{PCA_L1-class}}, \code{\link{UMAP-class}}, \code{\link{dimRedMethodList}()}, \code{\link{kPCA-class}}, \code{\link{nMDS-class}}, \code{\link{tSNE-class}} } \concept{dimensionality reduction methods} dimRed/man/PCA_L1-class.Rd0000644000176200001440000000534314744717566014614 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/l1pca.R \docType{class} \name{PCA_L1-class} \alias{PCA_L1-class} \alias{PCA_L1} \title{Principal Component Analysis with L1 error.} \description{ S4 Class implementing PCA with L1 error. } \details{ PCA transforms the data so that the L2 reconstruction error is minimized or the variance of the projected data is maximized. This is sensitive to outliers, L1 PCA minimizes the L1 reconstruction error or maximizes the sum of the L1 norm of the projected observations. } \section{Slots}{ \describe{ \item{\code{fun}}{A function that does the embedding and returns a dimRedResult object.} \item{\code{stdpars}}{The standard parameters for the function.} }} \section{General usage}{ Dimensionality reduction methods are S4 Classes that either be used directly, in which case they have to be initialized and a full list with parameters has to be handed to the \code{@fun()} slot, or the method name be passed to the embed function and parameters can be given to the \code{...}, in which case missing parameters will be replaced by the ones in the \code{@stdpars}. } \section{Parameters}{ PCA can take the following parameters: \describe{ \item{ndim}{The number of output dimensions.} \item{center}{logical, should the data be centered, defaults to \code{TRUE}.} \item{scale.}{logical, should the data be scaled, defaults to \code{FALSE}.} \item{fun}{character or function, the method to apply, see the \code{pcaL1} package} \item{\ldots}{other parameters for \code{fun}} } } \section{Implementation}{ Wraps around the different methods is the \code{pcaL1} package. Because PCA can be reduced to a simple rotation, forward and backward projection functions are supplied. } \examples{ if(requireNamespace("pcaL1", quietly = TRUE)) { dat <- loadDataSet("Iris") emb <- embed(dat, "PCA_L1") plot(emb, type = "2vars") plot(inverse(emb, getData(getDimRedData((emb)))), type = "3vars") } } \references{ Park, Y.W., Klabjan, D., 2016. Iteratively Reweighted Least Squares Algorithms for L1-Norm Principal Component Analysis, in: Data Mining (ICDM), 2016 IEEE 16th International Conference On. IEEE, pp. 430-438. } \seealso{ Other dimensionality reduction methods: \code{\link{DRR-class}}, \code{\link{DiffusionMaps-class}}, \code{\link{DrL-class}}, \code{\link{FastICA-class}}, \code{\link{FruchtermanReingold-class}}, \code{\link{HLLE-class}}, \code{\link{Isomap-class}}, \code{\link{KamadaKawai-class}}, \code{\link{MDS-class}}, \code{\link{NNMF-class}}, \code{\link{PCA-class}}, \code{\link{UMAP-class}}, \code{\link{dimRedMethod-class}}, \code{\link{dimRedMethodList}()}, \code{\link{kPCA-class}}, \code{\link{nMDS-class}}, \code{\link{tSNE-class}} } \concept{dimensionality reduction methods} dimRed/man/mean_R_NX-dimRedResult-method.Rd0000644000176200001440000000215114255350572020214 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/quality.R \name{mean_R_NX,dimRedResult-method} \alias{mean_R_NX,dimRedResult-method} \alias{mean_R_NX} \title{Method mean_R_NX} \usage{ \S4method{mean_R_NX}{dimRedResult}(object) } \arguments{ \item{object}{of class dimRedResult} } \description{ Calculate the mean_R_NX score to assess the quality of a dimensionality reduction. } \seealso{ Other Quality scores for dimensionality reduction: \code{\link{AUC_lnK_R_NX,dimRedResult-method}}, \code{\link{LCMC,dimRedResult-method}}, \code{\link{Q_NX,dimRedResult-method}}, \code{\link{Q_global,dimRedResult-method}}, \code{\link{Q_local,dimRedResult-method}}, \code{\link{R_NX,dimRedResult-method}}, \code{\link{cophenetic_correlation,dimRedResult-method}}, \code{\link{distance_correlation,dimRedResult-method}}, \code{\link{plot_R_NX}()}, \code{\link{quality,dimRedResult-method}}, \code{\link{reconstruction_error,dimRedResult-method}}, \code{\link{reconstruction_rmse,dimRedResult-method}}, \code{\link{total_correlation,dimRedResult-method}} } \concept{Quality scores for dimensionality reduction} dimRed/man/getRotationMatrix.Rd0000644000176200001440000000161414262545370016216 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/get_info.R \name{getRotationMatrix} \alias{getRotationMatrix} \title{getRotationMatrix} \usage{ getRotationMatrix(x) } \arguments{ \item{x}{of type \code{\link{dimRedResult}}} } \value{ a matrix } \description{ Extract the rotation matrix from \code{\link{dimRedResult}} objects derived from PCA and FastICA } \details{ The data has to be pre-processed the same way as the method does, e.g. centering and/or scaling. } \examples{ dat <- loadDataSet("Iris") pca <- embed(dat, "PCA") rot_pca <- getRotationMatrix(pca) scale(getData(dat), TRUE, FALSE) \%*\% rot_pca - getData(getDimRedData(pca)) if(requireNamespace("fastICA", quietly = TRUE)) { ica <- embed(dat, "FastICA") rot_ica <- getRotationMatrix(ica) scale(getData(dat), TRUE, FALSE) \%*\% rot_ica - getData(getDimRedData(ica)) } } \concept{convenience functions} dimRed/man/DiffusionMaps-class.Rd0000644000176200001440000000640614744717566016425 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/diffmap.R \docType{class} \name{DiffusionMaps-class} \alias{DiffusionMaps-class} \alias{DiffusionMaps} \title{Diffusion Maps} \description{ An S4 Class implementing Diffusion Maps } \details{ Diffusion Maps uses a diffusion probability matrix to robustly approximate a manifold. } \section{Slots}{ \describe{ \item{\code{fun}}{A function that does the embedding and returns a dimRedResult object.} \item{\code{stdpars}}{The standard parameters for the function.} }} \section{General usage}{ Dimensionality reduction methods are S4 Classes that either be used directly, in which case they have to be initialized and a full list with parameters has to be handed to the \code{@fun()} slot, or the method name be passed to the embed function and parameters can be given to the \code{...}, in which case missing parameters will be replaced by the ones in the \code{@stdpars}. } \section{Parameters}{ Diffusion Maps can take the following parameters: \describe{ \item{d}{a function transforming a matrix row wise into a distance matrix or \code{dist} object, e.g. \code{\link[stats]{dist}}.} \item{ndim}{The number of dimensions} \item{eps}{The epsilon parameter that determines the diffusion weight matrix from a distance matrix \code{d}, \eqn{exp(-d^2/eps)}, if set to \code{"auto"} it will be set to the median distance to the 0.01*n nearest neighbor.} \item{t}{Time-scale parameter. The recommended value, 0, uses multiscale geometry.} \item{delta}{Sparsity cut-off for the symmetric graph Laplacian, a higher value results in more sparsity and faster calculation. The predefined value is 10^-5.} } } \section{Implementation}{ Wraps around \code{\link[diffusionMap]{diffuse}}, see there for details. It uses the notation of Richards et al. (2009) which is slightly different from the one in the original paper (Coifman and Lafon, 2006) and there is no \eqn{\alpha} parameter. There is also an out-of-sample extension, see examples. } \examples{ if(requireNamespace("diffusionMap", quietly = TRUE)) { dat <- loadDataSet("3D S Curve", n = 300) emb <- embed(dat, "DiffusionMaps") plot(emb, type = "2vars") # predicting is possible: samp <- sample(floor(nrow(dat) / 10)) emb2 <- embed(dat[samp]) emb3 <- predict(emb2, dat[-samp]) plot(emb2, type = "2vars") points(getData(emb3)) } } \references{ Richards, J.W., Freeman, P.E., Lee, A.B., Schafer, C.M., 2009. Exploiting Low-Dimensional Structure in Astronomical Spectra. ApJ 691, 32. doi:10.1088/0004-637X/691/1/32 Coifman, R.R., Lafon, S., 2006. Diffusion maps. Applied and Computational Harmonic Analysis 21, 5-30. doi:10.1016/j.acha.2006.04.006 } \seealso{ Other dimensionality reduction methods: \code{\link{DRR-class}}, \code{\link{DrL-class}}, \code{\link{FastICA-class}}, \code{\link{FruchtermanReingold-class}}, \code{\link{HLLE-class}}, \code{\link{Isomap-class}}, \code{\link{KamadaKawai-class}}, \code{\link{MDS-class}}, \code{\link{NNMF-class}}, \code{\link{PCA-class}}, \code{\link{PCA_L1-class}}, \code{\link{UMAP-class}}, \code{\link{dimRedMethod-class}}, \code{\link{dimRedMethodList}()}, \code{\link{kPCA-class}}, \code{\link{nMDS-class}}, \code{\link{tSNE-class}} } \concept{dimensionality reduction methods} dimRed/man/getPars.Rd0000644000176200001440000000045114255350572014135 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{getPars} \alias{getPars} \title{Method getPars} \usage{ getPars(object, ...) } \arguments{ \item{object}{The object to be converted.} \item{...}{other arguments.} } \description{ Extracts the pars slot. } dimRed/man/dimRedData-class.Rd0000644000176200001440000000612314276434623015636 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/dimRedData-class.R \docType{class} \name{dimRedData-class} \alias{dimRedData-class} \alias{dimRedData} \alias{as.data.frame,dimRedData-method} \alias{getData,dimRedData-method} \alias{getMeta,dimRedData-method} \alias{nrow,dimRedData-method} \alias{[,dimRedData,ANY,ANY,ANY-method} \alias{ndims,dimRedData-method} \title{Class "dimRedData"} \usage{ \S4method{as.data.frame}{dimRedData}(x, meta.prefix = "meta.", data.prefix = "") \S4method{getData}{dimRedData}(object) \S4method{getMeta}{dimRedData}(object) \S4method{nrow}{dimRedData}(x) \S4method{[}{dimRedData,ANY,ANY,ANY}(x, i) \S4method{ndims}{dimRedData}(object) } \arguments{ \item{x}{Of class dimRedData} \item{meta.prefix}{Prefix for the columns of the meta data names.} \item{data.prefix}{Prefix for the columns of the variable names.} \item{object}{Of class dimRedData.} \item{i}{a valid index for subsetting rows.} } \description{ A class to hold data for dimensionality reduction and methods. } \details{ The class hast two slots, \code{data} and \code{meta}. The \code{data} slot contains a \code{numeric matrix} with variables in columns and observations in rows. The \code{meta} slot may contain a \code{data.frame} with additional information. Both slots need to have the same number of rows or the \code{meta} slot needs to contain an empty \code{data.frame}. See examples for easy conversion from and to \code{data.frame}. For plotting functions see \code{\link{plot.dimRedData}}. } \section{Methods (by generic)}{ \itemize{ \item \code{as.data.frame(dimRedData)}: convert to data.frame \item \code{getData(dimRedData)}: Get the data slot. \item \code{getMeta(dimRedData)}: Get the meta slot. \item \code{nrow(dimRedData)}: Get the number of observations. \item \code{x[i}: Subset rows. \item \code{ndims(dimRedData)}: Extract the number of Variables from the data. }} \section{Slots}{ \describe{ \item{\code{data}}{of class \code{matrix}, holds the data, observations in rows, variables in columns} \item{\code{meta}}{of class \code{data.frame}, holds meta data such as classes, internal manifold coordinates, or simply additional data of the data set. Must have the same number of rows as the \code{data} slot or be an empty data frame.} }} \examples{ ## Load an example data set: s3d <- loadDataSet("3D S Curve") ## Create using a constructor: ### without meta information: dimRedData(iris[, 1:4]) ### with meta information: dimRedData(iris[, 1:4], iris[, 5]) ### using slot names: dimRedData(data = iris[, 1:4], meta = iris[, 5]) ## Convert to a dimRedData objects: Iris <- as(iris[, 1:4], "dimRedData") ## Convert to data.frame: head(as(s3d, "data.frame")) head(as.data.frame(s3d)) head(as.data.frame(as(iris[, 1:4], "dimRedData"))) ## Extract slots: head(getData(s3d)) head(getMeta(s3d)) ## Get the number of observations: nrow(s3d) ## Subset: s3d[1:5, ] ## Shuffle data: s3 <- s3d[nrow(s3d)] ## Get the number of variables: ndims(s3d) } \seealso{ Other dimRedData: \code{\link{as.dimRedData}()} Other dimRedData: \code{\link{as.dimRedData}()} } \concept{dimRedData} dimRed/man/tSNE-class.Rd0000644000176200001440000000527414744717566014471 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/tsne.R \docType{class} \name{tSNE-class} \alias{tSNE-class} \alias{tSNE} \title{t-Distributed Stochastic Neighborhood Embedding} \description{ An S4 Class for t-SNE. } \details{ t-SNE is a method that uses Kullback-Leibler divergence between the distance matrices in high and low-dimensional space to embed the data. The method is very well suited to visualize complex structures in low dimensions. } \section{Slots}{ \describe{ \item{\code{fun}}{A function that does the embedding and returns a dimRedResult object.} \item{\code{stdpars}}{The standard parameters for the function.} }} \section{General usage}{ Dimensionality reduction methods are S4 Classes that either be used directly, in which case they have to be initialized and a full list with parameters has to be handed to the \code{@fun()} slot, or the method name be passed to the embed function and parameters can be given to the \code{...}, in which case missing parameters will be replaced by the ones in the \code{@stdpars}. } \section{Parameters}{ t-SNE can take the following parameters: \describe{ \item{d}{A distance function, defaults to euclidean distances} \item{perplexity}{The perplexity parameter, roughly equivalent to neighborhood size.} \item{theta}{Approximation for the nearest neighbour search, large values are more inaccurate.} \item{ndim}{The number of embedding dimensions.} } } \section{Implementation}{ Wraps around \code{\link[Rtsne]{Rtsne}}, which is very well documented. Setting \code{theta = 0} does a normal t-SNE, larger values for \code{theta < 1} use the Barnes-Hut algorithm which scales much nicer with data size. Larger values for perplexity take larger neighborhoods into account. } \examples{ \dontrun{ dat <- loadDataSet("3D S Curve", n = 300) emb <- embed(dat, "tSNE", perplexity = 80) plot(emb, type = "2vars") } } \references{ Maaten, L. van der, 2014. Accelerating t-SNE using Tree-Based Algorithms. Journal of Machine Learning Research 15, 3221-3245. van der Maaten, L., Hinton, G., 2008. Visualizing Data using t-SNE. J. Mach. Learn. Res. 9, 2579-2605. } \seealso{ Other dimensionality reduction methods: \code{\link{DRR-class}}, \code{\link{DiffusionMaps-class}}, \code{\link{DrL-class}}, \code{\link{FastICA-class}}, \code{\link{FruchtermanReingold-class}}, \code{\link{HLLE-class}}, \code{\link{Isomap-class}}, \code{\link{KamadaKawai-class}}, \code{\link{MDS-class}}, \code{\link{NNMF-class}}, \code{\link{PCA-class}}, \code{\link{PCA_L1-class}}, \code{\link{UMAP-class}}, \code{\link{dimRedMethod-class}}, \code{\link{dimRedMethodList}()}, \code{\link{kPCA-class}}, \code{\link{nMDS-class}} } \concept{dimensionality reduction methods} dimRed/man/plot.Rd0000644000176200001440000000435114276434623013514 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/plot.R \name{plot} \alias{plot} \alias{plot.dimRed} \alias{plot,dimRedData,ANY-method} \alias{plot.dimRedData} \alias{plot,dimRedResult,ANY-method} \alias{plot.dimRedResult} \title{Plotting of dimRed* objects} \usage{ plot(x, y, ...) \S4method{plot}{dimRedData,ANY}( x, type = "pairs", vars = seq_len(ncol(x@data)), col = seq_len(min(3, ncol(x@meta))), ... ) \S4method{plot}{dimRedResult,ANY}( x, type = "pairs", vars = seq_len(ncol(x@data@data)), col = seq_len(min(3, ncol(x@data@meta))), ... ) } \arguments{ \item{x}{dimRedResult/dimRedData class, e.g. output of embedded/loadDataSet} \item{y}{Ignored} \item{...}{handed over to the underlying plotting function.} \item{type}{plot type, one of \code{c("pairs", "parpl", "2vars", "3vars", "3varsrgl")}} \item{vars}{the axes of the embedding to use for plotting} \item{col}{the columns of the meta slot to use for coloring, can be referenced as the column names or number of x@data} } \description{ Plots a object of class dimRedResult and dimRedData. For the documentation of the plotting function in base see here: \code{\link{plot.default}}. } \details{ Plotting functions for the classes usind in \code{dimRed}. they are intended to give a quick overview over the results, so they are somewhat inflexible, e.g. it is hard to modify color scales or plotting parameters. If you require more control over plotting, it is better to convert the object to a \code{data.frame} first and use the standard functions for plotting. } \section{Methods (by class)}{ \itemize{ \item \code{plot(x = dimRedData, y = ANY)}: Ploting of dimRedData objects \item \code{plot(x = dimRedResult, y = ANY)}: Ploting of dimRedResult objects. }} \examples{ scurve = loadDataSet("3D S Curve") if(requireNamespace("graphics", quietly = TRUE)) plot(scurve, type = "pairs", main = "pairs plot of S curve") if(requireNamespace("MASS", quietly = TRUE)) plot(scurve, type = "parpl") if(requireNamespace("graphics", quietly = TRUE)) plot(scurve, type = "2vars", vars = c("y", "z")) if(requireNamespace("scatterplot3d", quietly = TRUE)) plot(scurve, type = "3vars") if(requireNamespace("rgl", quietly = TRUE)) plot(scurve, type = "3varsrgl") } dimRed/man/dimRedMethodList.Rd0000644000176200001440000000230714744717566015750 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/dimRedMethod-class.R \name{dimRedMethodList} \alias{dimRedMethodList} \title{dimRedMethodList} \usage{ dimRedMethodList(filter = FALSE) } \arguments{ \item{filter}{filter methods by methods that have their dependencies installed} } \value{ a character vector with the names of classes that inherit from \code{dimRedMethod}. } \description{ Get the names of all methods for dimensionality reduction. } \details{ Returns the name of all classes that inherit from \code{\link{dimRedMethod-class}} to use with \code{\link{embed}}. } \examples{ dimRedMethodList() } \seealso{ Other dimensionality reduction methods: \code{\link{DRR-class}}, \code{\link{DiffusionMaps-class}}, \code{\link{DrL-class}}, \code{\link{FastICA-class}}, \code{\link{FruchtermanReingold-class}}, \code{\link{HLLE-class}}, \code{\link{Isomap-class}}, \code{\link{KamadaKawai-class}}, \code{\link{MDS-class}}, \code{\link{NNMF-class}}, \code{\link{PCA-class}}, \code{\link{PCA_L1-class}}, \code{\link{UMAP-class}}, \code{\link{dimRedMethod-class}}, \code{\link{kPCA-class}}, \code{\link{nMDS-class}}, \code{\link{tSNE-class}} } \concept{dimensionality reduction methods} dimRed/man/getData.Rd0000644000176200001440000000040614255350572014101 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{getData} \alias{getData} \title{Method getData} \usage{ getData(object) } \arguments{ \item{object}{The object to be converted.} } \description{ Extracts the data slot. } dimRed/man/getNDim.Rd0000644000176200001440000000051014255350572014053 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{getNDim} \alias{getNDim} \title{Method getNDim} \usage{ getNDim(object, ...) } \arguments{ \item{object}{The object to get the dimensions from.} \item{...}{other arguments.} } \description{ Extract the number of embedding dimensions. } dimRed/man/HLLE-class.Rd0000644000176200001440000000433514744717566014401 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/hlle.R \docType{class} \name{HLLE-class} \alias{HLLE-class} \alias{HLLE} \title{Hessian Locally Linear Embedding} \description{ An S4 Class implementing Hessian Locally Linear Embedding (HLLE) } \details{ HLLE uses local hessians to approximate the curvines and is an extension to non-convex subsets in lowdimensional space. } \section{Slots}{ \describe{ \item{\code{fun}}{A function that does the embedding and returns a dimRedResult object.} \item{\code{stdpars}}{The standard parameters for the function.} }} \section{General usage}{ Dimensionality reduction methods are S4 Classes that either be used directly, in which case they have to be initialized and a full list with parameters has to be handed to the \code{@fun()} slot, or the method name be passed to the embed function and parameters can be given to the \code{...}, in which case missing parameters will be replaced by the ones in the \code{@stdpars}. } \section{Parameters}{ HLLE can take the following parameters: \describe{ \item{knn}{neighborhood size} \item{ndim}{number of output dimensions} } } \section{Implementation}{ Own implementation, sticks to the algorithm in Donoho and Grimes (2003). Makes use of sparsity to speed up final embedding. } \examples{ if(requireNamespace(c("RSpectra", "Matrix", "RANN"), quietly = TRUE)) { dat <- loadDataSet("3D S Curve", n = 300) emb <- embed(dat, "HLLE", knn = 15) plot(emb, type = "2vars") } } \references{ Donoho, D.L., Grimes, C., 2003. Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. PNAS 100, 5591-5596. doi:10.1073/pnas.1031596100 } \seealso{ Other dimensionality reduction methods: \code{\link{DRR-class}}, \code{\link{DiffusionMaps-class}}, \code{\link{DrL-class}}, \code{\link{FastICA-class}}, \code{\link{FruchtermanReingold-class}}, \code{\link{Isomap-class}}, \code{\link{KamadaKawai-class}}, \code{\link{MDS-class}}, \code{\link{NNMF-class}}, \code{\link{PCA-class}}, \code{\link{PCA_L1-class}}, \code{\link{UMAP-class}}, \code{\link{dimRedMethod-class}}, \code{\link{dimRedMethodList}()}, \code{\link{kPCA-class}}, \code{\link{nMDS-class}}, \code{\link{tSNE-class}} } \concept{dimensionality reduction methods} dimRed/man/ndims.Rd0000644000176200001440000000050614255350572013643 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{ndims} \alias{ndims} \title{Method ndims} \usage{ ndims(object, ...) } \arguments{ \item{object}{To extract the number of dimensions from.} \item{...}{Arguments for further methods} } \description{ Extract the number of dimensions. } dimRed/man/Q_global-dimRedResult-method.Rd0000644000176200001440000000214414255350572020130 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/quality.R \name{Q_global,dimRedResult-method} \alias{Q_global,dimRedResult-method} \alias{Q_global} \title{Method Q_global} \usage{ \S4method{Q_global}{dimRedResult}(object) } \arguments{ \item{object}{of class dimRedResult} } \description{ Calculate the Q_global score to assess the quality of a dimensionality reduction. } \seealso{ Other Quality scores for dimensionality reduction: \code{\link{AUC_lnK_R_NX,dimRedResult-method}}, \code{\link{LCMC,dimRedResult-method}}, \code{\link{Q_NX,dimRedResult-method}}, \code{\link{Q_local,dimRedResult-method}}, \code{\link{R_NX,dimRedResult-method}}, \code{\link{cophenetic_correlation,dimRedResult-method}}, \code{\link{distance_correlation,dimRedResult-method}}, \code{\link{mean_R_NX,dimRedResult-method}}, \code{\link{plot_R_NX}()}, \code{\link{quality,dimRedResult-method}}, \code{\link{reconstruction_error,dimRedResult-method}}, \code{\link{reconstruction_rmse,dimRedResult-method}}, \code{\link{total_correlation,dimRedResult-method}} } \concept{Quality scores for dimensionality reduction} dimRed/man/UMAP-class.Rd0000644000176200001440000000641014744717566014413 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/umap.R \docType{class} \name{UMAP-class} \alias{UMAP-class} \alias{UMAP} \title{Umap embedding} \description{ An S4 Class implementing the UMAP algorithm } \details{ Uniform Manifold Approximation is a gradient descend based algorithm that gives results similar to t-SNE, but scales better with the number of points. } \section{Slots}{ \describe{ \item{\code{fun}}{A function that does the embedding and returns a dimRedResult object.} \item{\code{stdpars}}{The standard parameters for the function.} }} \section{General usage}{ Dimensionality reduction methods are S4 Classes that either be used directly, in which case they have to be initialized and a full list with parameters has to be handed to the \code{@fun()} slot, or the method name be passed to the embed function and parameters can be given to the \code{...}, in which case missing parameters will be replaced by the ones in the \code{@stdpars}. } \section{Parameters}{ UMAP can take the follwing parameters: \describe{ \item{ndim}{The number of embedding dimensions.} \item{knn}{The number of neighbors to be used.} \item{d}{The distance metric to use.} \item{method}{\code{"naive"} for an R implementation, \code{"python"} for the reference implementation.} } Other method parameters can also be passed, see \code{\link[umap]{umap.defaults}} for details. The ones above have been standardized for the use with \code{dimRed} and will get automatically translated for \code{\link[umap]{umap}}. } \section{Implementation}{ The dimRed package wraps the \code{\link[umap]{umap}} packages which provides an implementation in pure R and also a wrapper around the original python package \code{umap-learn} (https://github.com/lmcinnes/umap/). This requires \code{umap-learn} version 0.4 installed, at the time of writing, there is already \code{umap-learn} 0.5 but it is not supported by the R package \code{\link[umap]{umap}}. The \code{"naive"} implementation is a pure R implementation and considered experimental at the point of writing this, it is also much slower than the python implementation. The \code{"python"} implementation is the reference implementation used by McInees et. al. (2018). It requires the \code{\link[reticulate]{reticulate}} package for the interaction with python and the python package \code{umap-learn} installed (use \code{pip install umap-learn}). } \examples{ \dontrun{ dat <- loadDataSet("3D S Curve", n = 300) emb <- embed(dat, "UMAP", .mute = NULL, knn = 10) plot(emb, type = "2vars") } } \references{ McInnes, Leland, and John Healy. "UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction." https://arxiv.org/abs/1802.03426 } \seealso{ Other dimensionality reduction methods: \code{\link{DRR-class}}, \code{\link{DiffusionMaps-class}}, \code{\link{DrL-class}}, \code{\link{FastICA-class}}, \code{\link{FruchtermanReingold-class}}, \code{\link{HLLE-class}}, \code{\link{Isomap-class}}, \code{\link{KamadaKawai-class}}, \code{\link{MDS-class}}, \code{\link{NNMF-class}}, \code{\link{PCA-class}}, \code{\link{PCA_L1-class}}, \code{\link{dimRedMethod-class}}, \code{\link{dimRedMethodList}()}, \code{\link{kPCA-class}}, \code{\link{nMDS-class}}, \code{\link{tSNE-class}} } \concept{dimensionality reduction methods} dimRed/man/Q_local-dimRedResult-method.Rd0000644000176200001440000000230714255350572017763 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/quality.R \name{Q_local,dimRedResult-method} \alias{Q_local,dimRedResult-method} \alias{Q_local} \title{Method Q_local} \usage{ \S4method{Q_local}{dimRedResult}(object, ndim = getNDim(object)) } \arguments{ \item{object}{of class dimRedResult.} \item{ndim}{use the first ndim columns of the embedded data for calculation.} } \description{ Calculate the Q_local score to assess the quality of a dimensionality reduction. } \seealso{ Other Quality scores for dimensionality reduction: \code{\link{AUC_lnK_R_NX,dimRedResult-method}}, \code{\link{LCMC,dimRedResult-method}}, \code{\link{Q_NX,dimRedResult-method}}, \code{\link{Q_global,dimRedResult-method}}, \code{\link{R_NX,dimRedResult-method}}, \code{\link{cophenetic_correlation,dimRedResult-method}}, \code{\link{distance_correlation,dimRedResult-method}}, \code{\link{mean_R_NX,dimRedResult-method}}, \code{\link{plot_R_NX}()}, \code{\link{quality,dimRedResult-method}}, \code{\link{reconstruction_error,dimRedResult-method}}, \code{\link{reconstruction_rmse,dimRedResult-method}}, \code{\link{total_correlation,dimRedResult-method}} } \concept{Quality scores for dimensionality reduction} dimRed/man/as.data.frame.Rd0000644000176200001440000000124214255350572015133 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/misc.R \name{as.data.frame} \alias{as.data.frame} \title{Converts to data.frame} \usage{ as.data.frame(x, row.names, optional, ...) } \arguments{ \item{x}{The object to be converted} \item{row.names}{unused in \code{dimRed}} \item{optional}{unused in \code{dimRed}} \item{...}{other arguments.} } \description{ General conversions of objects created by \code{dimRed} to \code{data.frame}. See class documentations for details (\code{\link{dimRedData}}, \code{\link{dimRedResult}}). For the documentation of this function in base package, see here: \code{\link[base]{as.data.frame.default}}. } dimRed/man/AUC_lnK_R_NX-dimRedResult-method.Rd0000644000176200001440000000347514255350572020522 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/quality.R \name{AUC_lnK_R_NX,dimRedResult-method} \alias{AUC_lnK_R_NX,dimRedResult-method} \alias{AUC_lnK_R_NX} \title{Method AUC_lnK_R_NX} \usage{ \S4method{AUC_lnK_R_NX}{dimRedResult}(object, weight = "inv") } \arguments{ \item{object}{of class dimRedResult} \item{weight}{the weight function used, one of \code{c("inv", "log", "log10")}} } \description{ Calculate the Area under the R_NX(ln K), used in Lee et. al. (2015). Note that despite the name, this does not weight the mean by the logarithm, but by 1/K. If explicit weighting by the logarithm is desired use \code{weight = "log"} or \code{weight = "log10"} } \details{ The naming confusion originated from equation 17 in Lee et al (2015) and the name of this method may change in the future to avoid confusion. } \references{ Lee, J.A., Peluffo-Ordonez, D.H., Verleysen, M., 2015. Multi-scale similarities in stochastic neighbour embedding: Reducing dimensionality while preserving both local and global structure. Neurocomputing 169, 246-261. https://doi.org/10.1016/j.neucom.2014.12.095 } \seealso{ Other Quality scores for dimensionality reduction: \code{\link{LCMC,dimRedResult-method}}, \code{\link{Q_NX,dimRedResult-method}}, \code{\link{Q_global,dimRedResult-method}}, \code{\link{Q_local,dimRedResult-method}}, \code{\link{R_NX,dimRedResult-method}}, \code{\link{cophenetic_correlation,dimRedResult-method}}, \code{\link{distance_correlation,dimRedResult-method}}, \code{\link{mean_R_NX,dimRedResult-method}}, \code{\link{plot_R_NX}()}, \code{\link{quality,dimRedResult-method}}, \code{\link{reconstruction_error,dimRedResult-method}}, \code{\link{reconstruction_rmse,dimRedResult-method}}, \code{\link{total_correlation,dimRedResult-method}} } \concept{Quality scores for dimensionality reduction} dimRed/DESCRIPTION0000644000176200001440000000320215002200162013145 0ustar liggesusersPackage: dimRed Title: A Framework for Dimensionality Reduction Version: 0.2.7 Authors@R: c( person("Guido", "Kraemer", email = "guido.kraemer@uni-leipzig.de", role = c("aut","cre"), comment = c(ORCID = "0000-0003-4865-5041") ) ) Description: A collection of dimensionality reduction techniques from R packages and a common interface for calling the methods. Depends: R (>= 3.0.0), DRR Imports: magrittr, methods Suggests: NMF, MASS, Matrix, RANN, RSpectra, Rtsne, cccd, coRanking, diffusionMap, energy, fastICA, ggplot2, graphics, igraph, keras, kernlab, knitr, optimx, pcaL1, pcaPP, reticulate, rgl, scales, scatterplot3d, stats, tensorflow, testthat, tidyr, tinytex, umap, vegan VignetteBuilder: knitr License: GPL-3 | file LICENSE BugReports: https://github.com/gdkrmr/dimRed/issues URL: https://www.guido-kraemer.com/software/dimred/ Encoding: UTF-8 Collate: 'autoencoder.R' 'misc.R' 'dimRedData-class.R' 'dataSets.R' 'dimRedMethod-class.R' 'dimRedResult-class.R' 'diffmap.R' 'dimRed.R' 'drr.R' 'embed.R' 'fastica.R' 'get_info.R' 'graph_embed.R' 'hlle.R' 'isomap.R' 'kpca.R' 'l1pca.R' 'leim.R' 'lle.R' 'loe.R' 'mds.R' 'mixColorSpaces.R' 'nmds.R' 'nnmf.R' 'pca.R' 'plot.R' 'quality.R' 'rotate.R' 'soe.R' 'tsne.R' 'umap.R' RoxygenNote: 7.3.2 Config/testthat/edition: 3 NeedsCompilation: yes Packaged: 2025-04-22 16:49:13 UTC; gkraemer Author: Guido Kraemer [aut, cre] () Maintainer: Guido Kraemer Repository: CRAN Date/Publication: 2025-04-23 15:00:02 UTC