glmmTMB/0000755000176200001440000000000013616106055011554 5ustar liggesusersglmmTMB/NAMESPACE0000644000176200001440000000754113616061432013001 0ustar liggesusers# Generated by roxygen2: do not edit by hand S3method(VarCorr,glmmTMB) S3method(anova,glmmTMB) S3method(as.data.frame,ranef.glmmTMB) S3method(coef,glmmTMB) S3method(confint,glmmTMB) S3method(confint,profile.glmmTMB) S3method(df.residual,glmmTMB) S3method(extractAIC,glmmTMB) S3method(family,glmmTMB) S3method(fitted,glmmTMB) S3method(fixef,glmmTMB) S3method(formula,glmmTMB) S3method(getME,glmmTMB) S3method(isLMM,glmmTMB) S3method(logLik,glmmTMB) S3method(model.frame,glmmTMB) S3method(model.matrix,glmmTMB) S3method(nobs,glmmTMB) S3method(predict,glmmTMB) S3method(print,VarCorr.glmmTMB) S3method(print,coef.glmmTMB) S3method(print,fixef.glmmTMB) S3method(print,glmmTMB) S3method(print,ranef.glmmTMB) S3method(print,summary.glmmTMB) S3method(print,vcov.glmmTMB) S3method(profile,glmmTMB) S3method(ranef,glmmTMB) S3method(refit,glmmTMB) S3method(residuals,glmmTMB) S3method(sigma,glmmTMB) S3method(simulate,glmmTMB) S3method(summary,glmmTMB) S3method(terms,glmmTMB) S3method(vcov,glmmTMB) S3method(weights,glmmTMB) export(VarCorr) export(addForm) export(beta_family) export(betabinomial) export(compois) export(dropHead) export(extractForm) export(fixef) export(genpois) export(getCapabilities) export(getGrpVar) export(getME) export(getReStruc) export(get_cor) export(glmmTMB) export(glmmTMBControl) export(inForm) export(nbinom1) export(nbinom2) export(noSpecials) export(numFactor) export(parseNumLevels) export(ranef) export(sigma) export(splitForm) export(truncated_compois) export(truncated_genpois) export(truncated_nbinom1) export(truncated_nbinom2) export(truncated_poisson) export(tweedie) export(ziGamma) if(getRversion() >= "3.6.0") { S3method(car::Anova, glmmTMB) } else { export(Anova.glmmTMB) } if(getRversion() >= "3.6.0") { S3method(effects::Effect, glmmTMB) } else { export(Effect.glmmTMB) } if(getRversion()>='3.3.0') importFrom(stats, sigma) else importFrom(lme4,sigma) importFrom(Matrix,Cholesky) importFrom(Matrix,solve) importFrom(Matrix,t) importFrom(TMB,MakeADFun) importFrom(TMB,openmp) importFrom(TMB,sdreport) importFrom(TMB,tmbprofile) importFrom(lme4,.prt.VC) importFrom(lme4,.prt.aictab) importFrom(lme4,.prt.call) importFrom(lme4,.prt.family) importFrom(lme4,.prt.grps) importFrom(lme4,.prt.resids) importFrom(lme4,findbars) importFrom(lme4,getME) importFrom(lme4,isLMM) importFrom(lme4,mkReTrms) importFrom(lme4,nobars) importFrom(lme4,refit) importFrom(lme4,subbars) importFrom(methods,as) importFrom(methods,is) importFrom(methods,new) importFrom(nlme,VarCorr) importFrom(nlme,fixef) importFrom(nlme,ranef) importFrom(splines,backSpline) importFrom(splines,interpSpline) importFrom(stats,"contrasts<-") importFrom(stats,AIC) importFrom(stats,BIC) importFrom(stats,anova) importFrom(stats,as.formula) importFrom(stats,binomial) importFrom(stats,complete.cases) importFrom(stats,confint) importFrom(stats,contrasts) importFrom(stats,delete.response) importFrom(stats,df.residual) importFrom(stats,dist) importFrom(stats,family) importFrom(stats,fitted) importFrom(stats,formula) importFrom(stats,gaussian) importFrom(stats,getCall) importFrom(stats,logLik) importFrom(stats,make.link) importFrom(stats,model.frame) importFrom(stats,model.matrix) importFrom(stats,model.response) importFrom(stats,model.weights) importFrom(stats,na.fail) importFrom(stats,na.pass) importFrom(stats,napredict) importFrom(stats,nlminb) importFrom(stats,nobs) importFrom(stats,optimHess) importFrom(stats,pchisq) importFrom(stats,plogis) importFrom(stats,pnorm) importFrom(stats,poisson) importFrom(stats,predict) importFrom(stats,printCoefmat) importFrom(stats,profile) importFrom(stats,qchisq) importFrom(stats,qnorm) importFrom(stats,residuals) importFrom(stats,runif) importFrom(stats,setNames) importFrom(stats,simulate) importFrom(stats,terms) importFrom(stats,update) importFrom(stats,var) importFrom(stats,vcov) importFrom(stats,weights) importFrom(stats,xtabs) importFrom(utils,head) useDynLib(glmmTMB) glmmTMB/data/0000755000176200001440000000000013614324717012472 5ustar liggesusersglmmTMB/data/epil2.rda0000644000176200001440000000563213614324717014203 0ustar liggesusers{pT7JI Q( V.a vC  (jS)F c"Z(b)Z< #bw_SNwg|}9wlnH!$=JA4$ H^q8u>NE G5?gOW|@87~7tptͣ\h,ݷ\ur,nI"_NI9|sWzmꤟ8KfuL@Y~l꽃r~CE~9ҙ_zrsGkޒ #H1bRޯy|n~|:=Ez@jHxʇǷk1= iW\!J#}߲x~tt&ۖϏ9|d ?l *x$9<k&7IӞv\w9vQn8x~K7 ms'#?qAsXڪTh,+%߆/ }˂/n(gSoZgwWo7mª뷎<ɾCΐf3gk3um?.>{] HŇ3?:'v|zzzzzz}]~mqZW}}. Eip`HQaZ)7zvs?lʣǼ)7+ϒ~hc}$ʹG]^8wQn6实,ʣKv֩//fO_V\KW}6o_\k\}{BΌyI:@;}Xv5c*Vtn|U]?QՆtnwz)}=tN>$\8>7g_4ڿ3m\onqkw_.>7W߷]_\)e֊sÎ؄R| -UڧcEUJXP AQ@Q E :P4B@ -B@ -B@@@@@@@@@@@SM4h )@SM 4h*T@SM 4 h4i@ӀM4 ht@ӁM4h:t@ - 0@ - 0@ - 4h @3f4h"@-"@-"@\" %r\" %r\" %r\" %r\" %r\" %r\" %r\" %r\" %r\"$b?#(Ăx+J\JglmmTMB/data/Salamanders.rda0000644000176200001440000000461313614324717015420 0ustar liggesusers] XT~ .U[ ՠ#([%"K V!(R5JQĘZb?Ez-*q[BEeY"KA93|}syt^Qfv8NIeRN"Ma8K^[M XQsԖwni~F"o)Z~P/Ţ}.]Ί^;/ZWx˫!6b#6b#6b#6b#SGGE*N4@7GzUoћctכ)pflƆe塵Yhve1=۝!v-g"*|~X*%1[2?62Z#bhgց 6b#6b#6b#6b#O[{qO$*`J""ۃdfx} IGkm%yq\ic$9,Ik$ ';WUЪq՟%wo}c}Y/rJ:5>+pɶA?;> uѦל)Ɇyv)և>}[iVVcޘ7ycޘ7ycޘ7ycޘ7ycޘ7ys[g G+җ((Xo7zc?zfi:]׮9OqŢ'9Nca~N'>dޘ(ihw&kc6z؂D񋛱36_j_hcڛsYAf[.2765F~#o7F~#o7ۤsºeSzUʍvƳ36',nN8BIOƗQ ~}hciiGڼ?KF[rΚY|7g7zM]&,0-ޚm>N;E_V$o_;e rwKM$kI՗ܰj~ɽҟ۳~\c+]A>*%}ɥkzϭ# K^ȝ7\CN5)!;G4/g治?s뢏&:ؒ#UaISz}W*N|#{AoḦFcWT)Mn#;WSicn$鑔(}iYٱiHDKIM"mAk׿oY痱VĬ_1p,9s{ y>ݙGgeTȳ*RXUÆ+5}k.#?v&j5$ǝay|K#z4=O8E+=Cv-KL?=Jlw;yo-zDZB8HӺڬƯ{q^sE("VRe kmɢȆ-d0_\7p/Z,\8kT>uNoVЂ%;n3/4A/L:/3~#~943t?&+>h{VL3Ѻ`c~bÞǞYSڽiM|uvTWT|qs6G;eo7F~#o7F~#ߦ~, ˗Q{PP9JK+Ǣs³P&LkjX>K;^&cOl4]G6יǩmp+gPUE̸g!&5ˮdBq#my'"̓n~g&3L,hTX#:: 5cy~Tփo,V"5cm: 8 ذ795r7vm̘u%9cuVބٽ` z{/_Cgڋ` k!+cLҐV03v/GGBn@[J5]+|s&jЍW|o ߋ:˅|LTڿurBLrC|,x_ ԡ;Zq@ذ>;OXqΆc[MS=@|bז݃M3Aq2N 舐pk?FZS8V#tOϏSaSqR)pψUGA`@DĊr\:njIen!!#Cc)\#ak\glmmTMB/data/Owls.rda0000644000176200001440000001013413614324717014105 0ustar liggesusers\k\U>w{>zo J59>h^Krn;q\2-1!F&ƐhG,D`!$%PLD"AQT4:[sΞ9)N[}^{:Ι6}Ki)-5С:R?6|4it:t/dM٦ڝ4Y{/ڧ T kԁs-C-mZPG.`\\f PnAեJ]v-]5y"u^;7[/=Knz~g bzmP;܃huJ%gfcapm½hwo8%R(;еiJTrfgS&۝r/8s3lqf xg-srZ engtyV6޳uR֝%V8T;uvp|];wkgḾeOѺ 3XrwvRGsjןU9ƫ4+l?qrI];nnf3w77lQD3:W}&LQg6L"wԼ0a"QsEwIވg#k&5$/nNtot=,ɛTI|"LQzYyQx q<,}qIue0]$bk\I-I2MRg5/ s/l+yGbaA ZT8j}Q^f֍Q{ok Cd[$Ak4&٨= O(Yqr|fp׬?iKRHsA$F>G&n^O$qNex46r(kI_ fm=BO.|JvY[s-l:v.>=fg=vǓn܎7>zuC>#7<{Nt7y|t˸>s[l64o}ce|6 {m`]=o~9~˽rZgoxvۏ=y/yoźv-Ƚ[GS9qC1GЋYQnž#3R\¼ӛg. =O?2mn"`yXo e!W|П8O}c='x:> o@>ՏM3WH-ǂ}A<y'!_ ^.L60>W/ |eoh7!q^uqz5gA.[#c'w:б׹AWGS8<9s~;P>5/U2.<~jj9d+paq̃/_Guŏ?j}}7(g8cuoR!;7x?go1W?$?z?!>e?<6/8)i?qς$O982 ڷYF2rBΡu`T~yȷ.η߰_ #l=Z27-z3L~Bobpon{V{ÿ~.>PZq:ui2_[ُ9Vo A&"!ORj㉥[~H1JomMa>731HX2!3ZMG.ӏ[AumЧ5fbւ72hs[4)ZM.18>j>,rqꋺa4|L_>os.eOL)~M$o٨>V{ďAc:1׫V:{`|kho|Էh?Y:˞Hܳ|b̀KzuߥQ>yib2sϽy#XoЧң8kZ~ɳS Z|@{ڮ\`|F?rϚo ;ʕi1Yjo NAvi5 iŏa̱=٪?ry5Bۺhś|ߢ|9vgߥX[f\KKօa{è==?<5=TBSU9Nz}Iy=@t8q&88Զ4{R(]D.]O>clj7ֳI'/,g/? Ӥeh}+u %OSiXϨJPbs/)Fy^ K[W?4#,P'AaqqIpA>QCȐO-q [wr4>wVaj8.U4ԝS'~<9hLQ%9yؕ:BL{\T?dzrZlI8Q. B%߫P5ϫӃ"]aT? ܊>S03|NBNL_q}(8r?w}^>R>DI oip\}~8T𺜏ZNϪ ?*ʏ~y~|qeI_΃Q%>(5](5P:>'OL=P:zOtt~hw=1Coeo#K U6)wE_7~lGo* }͟y%z눜XwCNj=?:z-/WSOkߣ|}_}^u6u)}.} \item{digits}{number of significant digits to use.} \item{comp}{a string specifying the component to format and print.} \item{formatter}{a \code{\link{function}}.} \item{...}{optional further arguments, passed the next \code{\link{print}} method.} } \description{ Printing The Variance and Correlation Parameters of a \code{glmmTMB} } glmmTMB/man/getGrpVar.Rd0000644000176200001440000000123513614324717014525 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/glmmTMB.R \name{getGrpVar} \alias{getGrpVar} \title{Get Grouping Variable} \usage{ getGrpVar(x) } \arguments{ \item{x}{"flist" object; a data frame of factors including an \code{assign} attribute matching columns to random effect terms} } \value{ character vector of grouping variables } \description{ Extract grouping variables for random effect terms from a factor list } \examples{ data(cbpp,package="lme4") cbpp$obs <- factor(seq(nrow(cbpp))) rt <- lme4::glFormula(cbind(size,incidence-size)~(1|herd)+(1|obs), data=cbpp,family=binomial)$reTrms getGrpVar(rt$flist) } \keyword{internal} glmmTMB/man/sigma.glmmTMB.Rd0000644000176200001440000000761013614324717015225 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/VarCorr.R \name{sigma.glmmTMB} \alias{sigma.glmmTMB} \alias{sigma} \title{Extract residual standard deviation or dispersion parameter} \usage{ \method{sigma}{glmmTMB}(object, ...) } \arguments{ \item{object}{a \dQuote{glmmTMB} fitted object} \item{\dots}{(ignored; for method compatibility)} } \description{ For Gaussian models, \code{sigma} returns the value of the residual standard deviation; for other families, it returns the dispersion parameter, \emph{however it is defined for that particular family}. See details for each family below. } \details{ The value returned varies by family: \describe{ \item{gaussian}{returns the \emph{maximum likelihood} estimate of the standard deviation (i.e., smaller than the results of \code{sigma(lm(...))} by a factor of (n-1)/n)} \item{nbinom1}{returns an overdispersion parameter (usually denoted \eqn{\alpha}{alpha} as in Hardin and Hilbe (2007)): such that the variance equals \eqn{\mu(1+\alpha)}{mu(1+alpha)}.} \item{nbinom2}{returns an overdispersion parameter (usually denoted \eqn{\theta}{theta} or \eqn{k}); in contrast to most other families, larger \eqn{\theta}{theta} corresponds to a \emph{lower} variance which is \eqn{\mu(1+\mu/\theta)}{mu(1+mu/theta)}.} \item{Gamma}{Internally, glmmTMB fits Gamma responses by fitting a mean and a shape parameter; sigma is estimated as (1/sqrt(shape)), which will typically be close (but not identical to) that estimated by \code{stats:::sigma.default}, which uses sqrt(deviance/df.residual)} \item{beta}{returns the value of \eqn{\phi}{phi}, where the conditional variance is \eqn{\mu(1-\mu)/(1+\phi)}{mu*(1-mu)/(1+phi)} (i.e., increasing \eqn{\phi}{phi} decreases the variance.) This parameterization follows Ferrari and Cribari-Neto (2004) (and the \code{betareg} package):} \item{betabinomial}{This family uses the same parameterization (governing the Beta distribution that underlies the binomial probabilities) as \code{beta}.} \item{genpois}{returns the index of dispersion \eqn{\phi^2}{phi^2}, where the variance is \eqn{\mu\phi^2}{mu*phi^2} (Consul & Famoye 1992)} \item{compois}{returns the value of \eqn{1/\nu}{1/nu}, When \eqn{\nu=1}{nu=1}, compois is equivalent to the Poisson distribution. There is no closed form equation for the variance, but it is approximately undersidpersed when \eqn{1/\nu <1}{1/nu <1} and approximately oversidpersed when \eqn{1/\nu >1}{1/nu>1}. In this implementation, \eqn{\mu}{mu} is exactly the mean (Huang 2017), which differs from the COMPoissonReg package (Sellers & Lotze 2015).} \item{tweedie}{returns the value of \eqn{\phi}{phi}, where the variance is \eqn{\phi\mu^p}{phi*mu^p}. The value of \eqn{p} can be extracted using the internal function \code{glmmTMB:::.tweedie_power}.} } The most commonly used GLM families (\code{binomial}, \code{poisson}) have fixed dispersion parameters which are internally ignored. } \references{ \itemize{ \item Consul PC, and Famoye F (1992). "Generalized Poisson regression model. Communications in Statistics: Theory and Methods" 21:89–109. \item Ferrari SLP, Cribari-Neto F (2004). "Beta Regression for Modelling Rates and Proportions." \emph{J. Appl. Stat.} 31(7), 799-815. \item Hardin JW & Hilbe JM (2007). "Generalized linear models and extensions." Stata press. \item Huang A (2017). "Mean-parametrized Conway–Maxwell–Poisson regression models for dispersed counts. " \emph{Statistical Modelling} 17(6), 1-22. \item Sellers K & Lotze T (2015). "COMPoissonReg: Conway-Maxwell Poisson (COM-Poisson) Regression". R package version 0.3.5. https://CRAN.R-project.org/package=COMPoissonReg } } glmmTMB/man/dot-collectDuplicates.Rd0000644000176200001440000000044113614324717017051 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/glmmTMB.R \name{.collectDuplicates} \alias{.collectDuplicates} \title{collapse duplicated observations} \usage{ .collectDuplicates(data.tmb) } \description{ collapse duplicated observations } \keyword{internal} glmmTMB/man/VarCorr.glmmTMB.Rd0000644000176200001440000000255313614324717015504 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/VarCorr.R \name{VarCorr.glmmTMB} \alias{VarCorr.glmmTMB} \alias{VarCorr} \title{Extract variance and correlation components} \usage{ \method{VarCorr}{glmmTMB}(x, sigma = 1, ...) } \arguments{ \item{x}{a fitted \code{glmmTMB} model} \item{sigma}{residual standard deviation (usually set automatically from internal information)} \item{extra}{arguments (for consistency with generic method)} } \description{ Extract variance and correlation components } \details{ For an unstructured variance-covariance matrix, the internal parameters are structured as follows: the first n parameters are the log-standard-deviations, while the remaining n(n-1)/2 parameters are the elements of the Cholesky factor of the correlation matrix, filled in column-wise order (see the \href{http://kaskr.github.io/adcomp/classUNSTRUCTURED__CORR__t.html}{TMB documentation} for further details). } \examples{ ## Comparing variance-covariance matrix with manual computation data("sleepstudy",package="lme4") fm4 <- glmmTMB(Reaction ~ Days + (Days|Subject), sleepstudy) VarCorr(fm4)[[c("cond","Subject")]] ## hand calculation pars <- getME(fm4,"theta") ## construct cholesky factor L <- diag(2) L[lower.tri(L)] <- pars[-(1:2)] C <- crossprod(L) diag(C) <- 1 sdvec <- exp(pars[1:2]) (V <- outer(sdvec,sdvec) * C) } \keyword{internal} glmmTMB/man/weights.glmmTMB.Rd0000644000176200001440000000200113614324717015564 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/methods.R \name{weights.glmmTMB} \alias{weights.glmmTMB} \title{Extract weights from a glmmTMB object} \usage{ \method{weights}{glmmTMB}(object, type = "prior", ...) } \arguments{ \item{object}{a fitted \code{glmmTMB} object} \item{type}{weights type} \item{...}{additional arguments (not used; for methods compatibility)} } \description{ Extract weights from a glmmTMB object } \details{ At present only explicitly specified \emph{prior weights} (i.e., weights specified in the \code{weights} argument) can be extracted from a fitted model. \itemize{ \item Unlike other GLM-type models such as \code{\link{glm}} or \code{\link[lme4]{glmer}}, \code{weights()} does not currently return the total number of trials when binomial responses are specified as a two-column matrix. \item Since \code{glmmTMB} does not fit models via iteratively weighted least squares, \code{working weights} (see \code{\link[stats]{weights.glm}}) are unavailable. } } glmmTMB/man/getME.glmmTMB.Rd0000644000176200001440000000117413614324717015125 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/methods.R \name{getME.glmmTMB} \alias{getME.glmmTMB} \alias{getME} \title{Extract or Get Generalize Components from a Fitted Mixed Effects Model} \usage{ \method{getME}{glmmTMB}(object, name = c("X", "Xzi", "Z", "Zzi", "Xd", "theta", "beta"), ...) } \arguments{ \item{object}{a fitted \code{glmmTMB} object} \item{name}{of the component to be retrieved} \item{\dots}{ignored, for method compatibility} } \description{ Extract or Get Generalize Components from a Fitted Mixed Effects Model } \seealso{ \code{\link[lme4]{getME}} Get generic and re-export: } glmmTMB/man/formula.glmmTMB.Rd0000644000176200001440000000122113614324717015562 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/methods.R \name{formula.glmmTMB} \alias{formula.glmmTMB} \title{Extract the formula of a glmmTMB object} \usage{ \method{formula}{glmmTMB}(x, fixed.only = FALSE, component = c("cond", "zi", "disp"), ...) } \arguments{ \item{x}{a \code{glmmTMB} object} \item{fixed.only}{(logical) drop random effects, returning only the fixed-effect component of the formula?} \item{component}{formula for which component of the model to return (conditional, zero-inflation, or dispersion)} \item{...}{unused, for generic consistency} } \description{ Extract the formula of a glmmTMB object } glmmTMB/man/epil2.Rd0000644000176200001440000000341613614324717013642 0ustar liggesusers\name{epil2} \title{Seizure Counts for Epileptics - Extended} \alias{epil2} \docType{data} \description{ Extended version of the \code{epil} dataset of the \pkg{MASS} package. The three transformed variables \code{Visit}, \code{Base}, and \code{Age} used by Booth et al. (2003) have been added to \code{epil}. } \usage{epil2} \format{ A data frame with 236 observations on the following 12 variables: \describe{ \item{\code{y}}{an integer vector.} \item{\code{trt}}{a factor with levels \code{"placebo"} and \code{"progabide"}.} \item{\code{base}}{an integer vector.} \item{\code{age}}{an integer vector.} \item{\code{V4}}{an integer vector.} \item{\code{subject}}{an integer vector.} \item{\code{period}}{an integer vector.} \item{\code{lbase}}{a numeric vector.} \item{\code{lage}}{a numeric vector.} \item{Visit}{\code{(rep(1:4,59) - 2.5) / 5}.} \item{Base}{\code{log(base/4)}.} \item{Age}{\code{log(age)}.} } } \references{ Booth, J.G., G. Casella, H. Friedl, and J.P. Hobert. (2003) Negative binomial loglinear mixed models. \emph{Statistical Modelling} \bold{3}, 179--191. } \examples{ \donttest{ epil2$subject <- factor(epil2$subject) op <- options(digits=3) (fm <- glmmTMB(y ~ Base*trt + Age + Visit + (Visit|subject), data=epil2, family=nbinom2)) meths <- methods(class = class(fm)) if((Rv <- getRversion()) > "3.1.3") { (funs <- attr(meths, "info")[, "generic"]) for(F in funs[is.na(match(funs, "getME"))]) { cat(sprintf("\%s:\n-----\n", F)) r <- tryCatch( get(F)(fm), error=identity) if (inherits(r, "error")) cat("** Error:", r$message,"\n") else tryCatch( print(r) ) cat(sprintf("---end{\%s}--------------\n\n", F)) } } options(op) } } \keyword{datasets} glmmTMB/man/getReStruc.Rd0000644000176200001440000000235613614324717014720 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/glmmTMB.R \name{getReStruc} \alias{getReStruc} \title{Calculate random effect structure Calculates number of random effects, number of parameters, block size and number of blocks. Mostly for internal use.} \usage{ getReStruc(reTrms, ss = NULL) } \arguments{ \item{reTrms}{random-effects terms list} \item{ss}{a character string indicating a valid covariance structure. Must be one of \code{names(glmmTMB:::.valid_covstruct)}; default is to use an unstructured variance-covariance matrix (\code{"us"}) for all blocks).} } \value{ a list \item{blockNumTheta}{number of variance covariance parameters per term} \item{blockSize}{size (dimension) of one block} \item{blockReps}{number of times the blocks are repeated (levels)} \item{covCode}{structure code} } \description{ Calculate random effect structure Calculates number of random effects, number of parameters, block size and number of blocks. Mostly for internal use. } \examples{ data(sleepstudy, package="lme4") rt <- lme4::lFormula(Reaction~Days+(1|Subject)+(0+Days|Subject), sleepstudy)$reTrms rt2 <- lme4::lFormula(Reaction~Days+(Days|Subject), sleepstudy)$reTrms getReStruc(rt) } glmmTMB/man/bootmer_methods.Rd0000644000176200001440000000267613614324717016030 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/methods.R \name{isLMM.glmmTMB} \alias{isLMM.glmmTMB} \alias{refit.glmmTMB} \title{support methods for parametric bootstrapping} \usage{ \method{isLMM}{glmmTMB}(object) \method{refit}{glmmTMB}(object, newresp, ...) } \arguments{ \item{object}{a fitted glmmTMB object} \item{newresp}{a new response vector} \item{...}{additional arguments (for generic consistency; ignored)} } \description{ see \code{\link[lme4]{refit}} and \code{\link[lme4]{isLMM}} for details } \details{ These methods are still somewhat experimental (check your results carefully!), but they should allow parametric bootstrapping. They work by copying and replacing the original response column in the data frame passed to \code{glmmTMB}, so they will only work properly if (1) the data frame is still available in the environment and (2) the response variable is specified as a single symbol (e.g. \code{proportion} or a two-column matrix constructed on the fly with \code{cbind()}. Untested with binomial models where the response is specified as a factor. } \examples{ if (requireNamespace("lme4")) { \dontrun{ fm1 <- glmmTMB(count~mined+(1|spp), ziformula=~mined, data=Salamanders, family=nbinom1) b1 <- lme4::bootMer(fm1, FUN=function(x) fixef(x)$zi, nsim=20, .progress="txt") if (requireNamespace("boot")) { boot.ci(b1,type="perc") } } } } glmmTMB/man/Salamanders.Rd0000644000176200001440000000326413614324717015062 0ustar liggesusers\name{Salamanders} \title{Repeated counts of salamanders in streams} \alias{Salamanders} \docType{data} \description{ A data set containing counts of salamanders with site covariates and sampling covariates. Each of 23 sites was sampled 4 times. When using this data set, please cite Price et al. (2016) as well as the Dryad data package (Price et al. 2015). } \usage{data(Salamanders)} \format{ A data frame with 644 observations on the following 10 variables: \describe{ \item{site}{name of a location where repeated samples were taken} \item{mined}{factor indicating whether the site was affected by mountain top removal coal mining} \item{cover}{amount of cover objects in the stream (scaled)} \item{sample}{repeated sample} \item{DOP}{Days since precipitation (scaled)} \item{Wtemp}{water temperature (scaled)} \item{DOY}{day of year (scaled)} \item{spp}{abbreviated species name, possibly also life stage} \item{count}{number of salamanders observed} } } \references{ Price SJ, Muncy BL, Bonner SJ, Drayer AN, Barton CD (2016) Effects of mountaintop removal mining and valley filling on the occupancy and abundance of stream salamanders. \emph{Journal of Applied Ecology} \bold{53} 459--468. \url{http://dx.doi.org/10.1111/1365-2664.12585} Price SJ, Muncy BL, Bonner SJ, Drayer AN, Barton CD (2015) Data from: Effects of mountaintop removal mining and valley filling on the occupancy and abundance of stream salamanders. \emph{Dryad Digital Repository}. \url{http://dx.doi.org/10.5061/dryad.5m8f6} } \examples{ require("glmmTMB") data(Salamanders) \donttest{ zipm3 = glmmTMB(count~spp * mined + (1|site), zi=~spp * mined, Salamanders, family="poisson") } } \keyword{datasets} glmmTMB/man/nbinom2.Rd0000644000176200001440000001024613614324717014172 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/family.R \name{nbinom2} \alias{nbinom2} \alias{family_glmmTMB} \alias{nbinom1} \alias{compois} \alias{truncated_compois} \alias{genpois} \alias{truncated_genpois} \alias{truncated_poisson} \alias{truncated_nbinom2} \alias{truncated_nbinom1} \alias{beta_family} \alias{betabinomial} \alias{tweedie} \alias{ziGamma} \title{Family functions for glmmTMB} \usage{ nbinom2(link = "log") nbinom1(link = "log") compois(link = "log") truncated_compois(link = "log") genpois(link = "log") truncated_genpois(link = "log") truncated_poisson(link = "log") truncated_nbinom2(link = "log") truncated_nbinom1(link = "log") beta_family(link = "logit") betabinomial(link = "logit") tweedie(link = "log") ziGamma(link = "inverse") } \arguments{ \item{link}{(character) link function for the conditional mean ("log", "logit", "probit", "inverse", "cloglog", "identity", or "sqrt")} } \value{ returns a list with (at least) components \item{family}{length-1 character vector giving the family name} \item{link}{length-1 character vector specifying the link function} \item{variance}{a function of either 1 (mean) or 2 (mean and dispersion parameter) arguments giving a value proportional to the predicted variance (scaled by \code{sigma(.)}) } } \description{ Family functions for glmmTMB } \details{ If specified, the dispersion model uses a log link. Denoting the variance as \eqn{V}, the dispersion parameter as \eqn{\phi=\exp(\eta)}{phi=exp(eta)} (where \eqn{\eta}{eta} is the linear predictor from the dispersion model), and the predicted mean as \eqn{\mu}{mu}: \describe{ \item{gaussian}{(from base R): constant \eqn{V=\phi}{V=phi}} \item{Gamma}{(from base R) phi is the shape parameter. \eqn{V=\mu\phi}{V=mu*phi}} \item{ziGamma}{a modified version of \code{Gamma} that skips checks for zero values, allowing it to be used to fit hurdle-Gamma models} \item{nbinom2}{Negative binomial distribution: quadratic parameterization (Hardin & Hilbe 2007). \eqn{V=\mu(1+\mu/\phi) = \mu+\mu^2/\phi}{V=mu*(1+mu/phi) = mu+mu^2/phi}.} \item{nbinom1}{Negative binomial distribution: linear parameterization (Hardin & Hilbe 2007). \eqn{V=\mu(1+\phi)}{V=mu*(1+phi)}} \item{compois}{Conway-Maxwell Poisson distribution: parameterized with the exact mean (Huang 2017), which differs from the parameterization used in the \pkg{COMPoissonReg} package (Sellers & Shmueli 2010, Sellers & Lotze 2015). \eqn{V=\mu\phi}{V=mu*phi}.} \item{genpois}{Generalized Poisson distribution (Consul & Famoye 1992). \eqn{V=\mu\exp(\eta)}{V=mu*exp(eta)}. (Note that Consul & Famoye (1992) define \eqn{\phi}{phi} differently.)} \item{beta}{Beta distribution: parameterization of Ferrari and Cribari-Neto (2004) and the \pkg{betareg} package (Cribari-Neto and Zeileis 2010); \eqn{V=\mu(1-\mu)\phi}{V=mu*(1-mu)*phi}} \item{betabinomial}{Beta-binomial distribution: parameterized according to Morris (1997). \eqn{V=\mu(1-\mu)(n(\phi+n)/(\phi+1))}{V=mu*(1-mu)*(n*(phi+n)/(phi+1))}} \item{tweedie}{Tweedie distribution: \eqn{V=\phi\mu^p}{V=phi*mu^p}. The power parameter is restricted to the interval \eqn{1=5))}. The \code{optimizer} argument can be any optimization (minimizing) function, provided that: \itemize{ \item the first three arguments, in order, are the starting values, objective function, and gradient function; \item it also takes a \code{control} argument; \item it returns a list with elements (at least) \code{convergence} (0 if convergence is successful) and \code{message} } } \examples{ ## fit with default (nlminb) and alternative (optim/BFGS) optimizer m1 <- glmmTMB(count~ mined, family=poisson, data=Salamanders) m1B <- update(m1, control=glmmTMBControl(optimizer=optim, optArgs=list(method="BFGS"))) ## estimates are *nearly* identical: all.equal(fixef(m1), fixef(m1B)) } glmmTMB/man/getCapabilities.Rd0000644000176200001440000000155213614324717015717 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/family.R \name{getCapabilities} \alias{getCapabilities} \title{List model options that glmmTMB knows about} \usage{ getCapabilities(what = "all", check = FALSE) } \arguments{ \item{what}{(character) which type of model structure to report on ("all","family","link","covstruct")} \item{check}{(logical) do brute-force checking to test whether families are really implemented (only available for \code{what="family"})} } \value{ if \code{check==FALSE}, returns a vector of the names (or a list of name vectors) of allowable entries; if \code{check==TRUE}, returns a logical vector of working families } \description{ List model options that glmmTMB knows about } \note{ these are all the options that are \emph{defined} internally; they have not necessarily all been \emph{implemented} (FIXME!) } glmmTMB/man/glmmTMB.Rd0000644000176200001440000002050013614324717014117 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/glmmTMB.R \name{glmmTMB} \alias{glmmTMB} \title{Fit Models with TMB} \usage{ glmmTMB( formula, data = NULL, family = gaussian(), ziformula = ~0, dispformula = ~1, weights = NULL, offset = NULL, contrasts = NULL, na.action = na.fail, se = TRUE, verbose = FALSE, doFit = TRUE, control = glmmTMBControl(), REML = FALSE, start = NULL, map = NULL ) } \arguments{ \item{formula}{combined fixed and random effects formula, following lme4 syntax.} \item{data}{optional data frame containing model variables.} \item{family}{a family function, a character string naming a family function, or the result of a call to a family function (variance/link function) information. See \code{\link{family}} for a generic discussion of families or \code{\link{family_glmmTMB}} for details of \code{glmmTMB}-specific families.} \item{ziformula}{a \emph{one-sided} (i.e., no response variable) formula for zero-inflation combining fixed and random effects: the default \code{~0} specifies no zero-inflation. Specifying \code{~.} sets the zero-inflation formula identical to the right-hand side of \code{formula} (i.e., the conditional effects formula); terms can also be added or subtracted. \strong{When using \code{~.} as the zero-inflation formula in models where the conditional effects formula contains an offset term, the offset term will automatically be dropped}. The zero-inflation model uses a logit link.} \item{dispformula}{a \emph{one-sided} formula for dispersion containing only fixed effects: the default \code{~1} specifies the standard dispersion given any family. The argument is ignored for families that do not have a dispersion parameter. For an explanation of the dispersion parameter for each family, see \code{\link{sigma}}. The dispersion model uses a log link. In Gaussian mixed models, \code{dispformula=~0} fixes the residual variance to be 0 (actually a small non-zero value: at present it is set to \code{sqrt(.Machine$double.eps)}), forcing variance into the random effects.} \item{weights}{weights, as in \code{glm}. Not automatically scaled to have sum 1.} \item{offset}{offset for conditional model (only).} \item{contrasts}{an optional list, e.g., \code{list(fac1="contr.sum")}. See the \code{contrasts.arg} of \code{\link{model.matrix.default}}.} \item{na.action}{how to handle missing values, see \code{\link{na.action}} and \code{\link{model.frame}}. From \code{\link{lm}}: \dQuote{The default is set by the \code{\link{na.action}} setting of \code{\link{options}}, and is \code{\link{na.fail}} if that is unset. The \sQuote{factory-fresh} default is \code{\link{na.omit}}.}} \item{se}{whether to return standard errors.} \item{verbose}{whether progress indication should be printed to the console.} \item{doFit}{whether to fit the full model, or (if FALSE) return the preprocessed data and parameter objects, without fitting the model.} \item{control}{control parameters, see \code{\link{glmmTMBControl}}.} \item{REML}{whether to use REML estimation rather than maximum likelihood.} \item{start}{starting values, expressed as a list with possible components \code{beta}, \code{betazi}, \code{betad} (fixed-effect parameters for conditional, zero-inflation, dispersion models); \code{b}, \code{bzi} (conditional modes for conditional and zero-inflation models); \code{theta}, \code{thetazi} (random-effect parameters, on the standard deviation/Cholesky scale, for conditional and z-i models); \code{thetaf} (extra family parameters, e.g., shape for Tweedie models).} \item{map}{a list specifying which parameter values should be fixed to a constant value rather than estimated. \code{map} should be a named list containing factors corresponding to a subset of the internal parameter names (see \code{start} parameter). Distinct factor values are fitted as separate parameter values, \code{NA} values are held fixed: e.g., \code{map=list(beta=factor(c(1,2,3,NA)))} would fit the first three fixed-effect parameters of the conditional model and fix the fourth parameter to its starting value. In general, users will probably want to use \code{start} to specify non-default starting values for fixed parameters. See \code{\link[TMB]{MakeADFun}} for more details.} } \description{ Fit a generalized linear mixed model (GLMM) using Template Model Builder (TMB). } \details{ Binomial models with more than one trial (i.e., not binary/Bernoulli) can either be specified in the form \code{prob ~ ..., weights = N}, or in the more typical two-column matrix \code{cbind(successes,failures)~...} form. Behavior of \code{REML=TRUE} for Gaussian responses matches \code{lme4::lmer}. It may also be useful in some cases with non-Gaussian responses (Millar 2011). Simulations should be done first to verify. Because the \code{\link{df.residual}} method for \code{glmmTMB} currently counts the dispersion parameter, one would need to multiply by \code{sqrt(nobs(fit) / (1+df.residual(fit)))} when comparing with \code{lm}. By default, vector-valued random effects are fitted with unstructured (general positive definite) variance-covariance matrices. Structured variance-covariance matrices can be specified in the form \code{struc(terms|group)}, where \code{struc} is one of \itemize{ \item \code{diag} (diagonal, heterogeneous variance) \item \code{ar1} (autoregressive order-1, homogeneous variance) \item \code{cs} (compound symmetric, heterogeneous variance) \item \code{ou} (* Ornstein-Uhlenbeck, homogeneous variance) \item \code{exp} (* exponential autocorrelation) \item \code{gau} (* Gaussian autocorrelation) \item \code{mat} (* Matérn process correlation) \item \code{toep} (* Toeplitz) } Structures marked with * are experimental/untested. For backward compatibility, the \code{family} argument can also be specified as a list comprising the name of the distribution and the link function (e.g. \code{list(family="binomial", link="logit")}). However, \strong{this alternative is now deprecated}; it produces a warning and will be removed at some point in the future. Furthermore, certain capabilities such as Pearson residuals or predictions on the data scale will only be possible if components such as \code{variance} and \code{linkfun} are present, see \code{\link{family}}. } \note{ For more information about the \pkg{glmmTMB} package, see Brooks et al. (2017) and the \code{vignette(package="glmmTMB")} collection. For the underlying \pkg{TMB} package that performs the model estimation, see Kristensen et al. (2016). } \examples{ (m1 <- glmmTMB(count ~ mined + (1|site), zi=~mined, family=poisson, data=Salamanders)) summary(m1) \donttest{ ## Zero-inflated negative binomial model (m2 <- glmmTMB(count ~ spp + mined + (1|site), zi=~spp + mined, family=nbinom2, data=Salamanders)) ## Hurdle Poisson model (m3 <- glmmTMB(count ~ spp + mined + (1|site), zi=~spp + mined, family=truncated_poisson, data=Salamanders)) ## Binomial model data(cbpp, package="lme4") (bovine <- glmmTMB(cbind(incidence, size-incidence) ~ period + (1|herd), family=binomial, data=cbpp)) ## Dispersion model sim1 <- function(nfac=40, nt=100, facsd=0.1, tsd=0.15, mu=0, residsd=1) { dat <- expand.grid(fac=factor(letters[1:nfac]), t=1:nt) n <- nrow(dat) dat$REfac <- rnorm(nfac, sd=facsd)[dat$fac] dat$REt <- rnorm(nt, sd=tsd)[dat$t] dat$x <- rnorm(n, mean=mu, sd=residsd) + dat$REfac + dat$REt dat } set.seed(101) d1 <- sim1(mu=100, residsd=10) d2 <- sim1(mu=200, residsd=5) d1$sd <- "ten" d2$sd <- "five" dat <- rbind(d1, d2) m0 <- glmmTMB(x ~ sd + (1|t), dispformula=~sd, data=dat) fixef(m0)$disp c(log(5^2), log(10^2)-log(5^2)) # expected dispersion model coefficients } ## Using 'map' to fix random-effects SD to 10 m1_map <- update(m1, map=list(theta=factor(NA)), start=list(theta=log(10))) VarCorr(m1_map) } \references{ Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Mächler, M. and Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. \emph{The R Journal}, \bold{9}(2), 378--400. Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H. and Bell, B. (2016). TMB: Automatic differentiation and Laplace approximation. \emph{Journal of Statistical Software}, \bold{70}, 1--21. Millar, R. B. (2011). \emph{Maximum Likelihood Estimation and Inference: With Examples in R, SAS and ADMB.} Wiley, New York. } glmmTMB/man/formFuns.Rd0000644000176200001440000000240113614324717014417 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{inForm} \alias{inForm} \alias{extractForm} \alias{dropHead} \alias{drop.special2} \title{test formula: does it contain a particular element?} \usage{ inForm(form, value) extractForm(term, value) dropHead(term, value) drop.special2(x, value = quote(offset), preserve = NULL) } \arguments{ \item{value}{term to remove from formula} \item{term}{expression/formula} \item{x}{formula} \item{preserve}{(integer) retain the specified occurrence of "value"} } \value{ a list of expressions } \description{ test formula: does it contain a particular element? extract terms with a given head from an expression/formula return a formula/expression with a given value stripped, where it occurs as the head of a term drop terms matching a particular value from an expression } \examples{ inForm(z~.,quote(.)) inForm(z~y,quote(.)) inForm(z~a+b+c,quote(c)) inForm(z~a+b+(d+e),quote(c)) f <- ~ a + offset(x) f2 <- z ~ a inForm(f,quote(offset)) inForm(f2,quote(offset)) extractForm(~a+offset(b),quote(offset)) extractForm(~c,quote(offset)) extractForm(~a+offset(b)+offset(c),quote(offset)) dropHead(~a+offset(b),quote(offset)) dropHead(~a+poly(x+z,3)+offset(b),quote(offset)) } \keyword{internal} glmmTMB/man/expandAllGrpVar.Rd0000644000176200001440000000110713614324717015654 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{expandAllGrpVar} \alias{expandAllGrpVar} \title{expand interactions/combinations of grouping variables} \usage{ expandAllGrpVar(bb) } \arguments{ \item{bb}{a list of naked grouping variables, i.e. 1 | f} } \description{ Modeled after lme4:::expandSlash, by Doug Bates } \examples{ ff <- glmmTMB:::fbx(y~1+(x|f/g)) glmmTMB:::expandAllGrpVar(ff) glmmTMB:::expandAllGrpVar(quote(1|(f/g)/h)) glmmTMB:::expandAllGrpVar(quote(1|f/g/h)) glmmTMB:::expandAllGrpVar(quote(1|f*g)) } \keyword{internal} glmmTMB/man/splitForm.Rd0000644000176200001440000000443313614324717014606 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{addForm} \alias{addForm} \alias{splitForm} \alias{noSpecials} \title{Combine right-hand sides of an arbitrary number of formulas} \usage{ addForm(...) splitForm( formula, defaultTerm = "us", allowFixedOnly = TRUE, allowNoSpecials = TRUE, debug = FALSE ) noSpecials(term, delete = TRUE, debug = FALSE) } \arguments{ \item{...}{arguments to pass through to \code{addForm0}} \item{formula}{a formula containing special random effect terms} \item{defaultTerm}{default type for non-special RE terms} \item{allowFixedOnly}{(logical) are formulas with no RE terms OK?} \item{allowNoSpecials}{(logical) are formulas with only standard RE terms OK?} \item{debug}{debugging mode (print stuff)?} \item{term}{language object} } \value{ a list containing elements \code{fixedFormula}; \code{reTrmFormulas} list of \code{x | g} formulas for each term; \code{reTrmAddArgs} list of function+additional arguments, i.e. \code{list()} (non-special), \code{foo()} (no additional arguments), \code{foo(addArgs)} (additional arguments); \code{reTrmClasses} (vector of special functions/classes, as character) } \description{ Parse a formula into fixed formula and random effect terms, treating 'special' terms (of the form foo(x|g[,m])) appropriately } \details{ Taken from Steve Walker's lme4ord, ultimately from the flexLambda branch of lme4 . Mostly for internal use. } \examples{ splitForm(~x+y) ## no specials or RE splitForm(~x+y+(f|g)) ## no specials splitForm(~x+y+diag(f|g)) ## one special splitForm(~x+y+(diag(f|g))) ## 'hidden' special splitForm(~x+y+(f|g)+cs(1|g)) ## combination splitForm(~x+y+(1|f/g)) ## 'slash'; term splitForm(~x+y+(1|f/g/h)) ## 'slash'; term splitForm(~x+y+(1|(f/g)/h)) ## 'slash'; term splitForm(~x+y+(f|g)+cs(1|g)+cs(a|b,stuff)) ## complex special splitForm(~(((x+y)))) ## lots of parentheses splitForm(~1+rr(f|g,n=2)) noSpecials(y~1+us(1|f)) noSpecials(y~1+us(1|f),delete=FALSE) noSpecials(y~us(1|f)) noSpecials(y~us+1) ## should *not* delete unless head of a function } \author{ Steve Walker } \keyword{internal} glmmTMB/man/vcov.glmmTMB.Rd0000644000176200001440000000147313614324717015103 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/methods.R \name{vcov.glmmTMB} \alias{vcov.glmmTMB} \title{Calculate Variance-Covariance Matrix for a Fitted glmmTMB model} \usage{ \method{vcov}{glmmTMB}(object, full = FALSE, ...) } \arguments{ \item{object}{a \dQuote{glmmTMB} fit} \item{full}{return a full variance-covariance matrix?} \item{\dots}{ignored, for method compatibility} } \value{ By default (\code{full==FALSE}), a list of separate variance-covariance matrices for each model component (conditional, zero-inflation, dispersion). If \code{full==TRUE}, a single square variance-covariance matrix for \emph{all} top-level model parameters (conditional, dispersion, and variance-covariance parameters) } \description{ Calculate Variance-Covariance Matrix for a Fitted glmmTMB model } glmmTMB/man/fbx.Rd0000644000176200001440000000165513614324717013411 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{fbx} \alias{fbx} \title{(f)ind (b)ars e(x)tended: recursive} \usage{ fbx(term, debug = FALSE, specials = character(0), default.special = "us") } \arguments{ \item{term}{a formula or piece of a formula} \item{debug}{(logical) debug?} \item{specials}{list of special terms} \item{default.special}{character: special to use for parenthesized terms - i.e. random effects terms with unspecified structure 1. atom (not a call or an expression): NULL 2. special, i.e. foo(...) where "foo" is in specials: return term 3. parenthesized term: \emph{if} the head of the head is | (i.e. it is of the form (xx|gg), then convert it to the default special type; we won't allow pathological cases like ((xx|gg)) ... [can we detect them?]} } \description{ (f)ind (b)ars e(x)tended: recursive } \examples{ splitForm(quote(us(x,n=2))) } \keyword{internal} glmmTMB/man/confint.glmmTMB.Rd0000644000176200001440000000641613614324717015570 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/methods.R \name{confint.glmmTMB} \alias{confint.glmmTMB} \title{Calculate confidence intervals} \usage{ \method{confint}{glmmTMB}( object, parm = NULL, level = 0.95, method = c("wald", "Wald", "profile", "uniroot"), component = c("all", "cond", "zi", "other"), estimate = TRUE, parallel = c("no", "multicore", "snow"), ncpus = getOption("profile.ncpus", 1L), cl = NULL, full = FALSE, ... ) } \arguments{ \item{object}{\code{glmmTMB} fitted object.} \item{parm}{which parameters to profile, specified \itemize{ \item by index (position) [\emph{after} component selection for \code{confint}, if any] \item by name (matching the row/column names of \code{vcov(object,full=TRUE)}) \item as \code{"theta_"} (random-effects variance-covariance parameters), \code{"beta_"} (conditional and zero-inflation parameters), or \code{"disp_"} or \code{"sigma"} (dispersion parameters) } Parameter indexing by number may give unusual results when some parameters have been fixed using the \code{map} argument: please report surprises to the package maintainers.} \item{level}{Confidence level.} \item{method}{'wald', 'profile', or 'uniroot': see Details function)} \item{component}{Which of the three components 'cond', 'zi' or 'other' to select. Default is to select 'all'.} \item{estimate}{(logical) add a third column with estimate ?} \item{parallel}{method (if any) for parallel computation} \item{ncpus}{number of CPUs/cores to use for parallel computation} \item{cl}{cluster to use for parallel computation} \item{full}{CIs for all parameters (including dispersion) ?} \item{...}{arguments may be passed to \code{\link{profile.merMod}} or \code{\link[TMB]{tmbroot}}} } \description{ Calculate confidence intervals } \details{ Available methods are \describe{ \item{"wald"}{These intervals are based on the standard errors calculated for parameters on the scale of their internal parameterization depending on the family. Derived quantities such as standard deviation parameters and dispersion parameters are back-transformed. It follows that confidence intervals for these derived quantities are typically asymmetric.} \item{"profile"}{This method computes a likelihood profile for the specified parameter(s) using \code{profile.glmmTMB}; fits a spline function to each half of the profile; and inverts the function to find the specified confidence interval.} \item{"uniroot"}{This method uses the \code{\link{uniroot}} function to find critical values of one-dimensional profile functions for each specified parameter.} } At present, "wald" returns confidence intervals for variance parameters on the standard deviation/correlation scale, while "profile" and "uniroot" report them on the underlying ("theta") scale: for each random effect, the first set of parameter values are standard deviations on the log scale, while remaining parameters represent correlations on the scaled Cholesky scale (see the } \examples{ data(sleepstudy, package="lme4") model <- glmmTMB(Reaction ~ Days + (1|Subject), sleepstudy) model2 <- glmmTMB(Reaction ~ Days + (1|Subject), sleepstudy, dispformula= ~I(Days>8)) confint(model) ## Wald/delta-method CIs confint(model,parm="theta_") ## Wald/delta-method CIs confint(model,parm=1,method="profile") } glmmTMB/man/simulate.glmmTMB.Rd0000644000176200001440000000162413614324717015747 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/methods.R \name{simulate.glmmTMB} \alias{simulate.glmmTMB} \title{Simulate from a glmmTMB fitted model} \usage{ \method{simulate}{glmmTMB}(object, nsim = 1, seed = NULL, ...) } \arguments{ \item{object}{glmmTMB fitted model} \item{nsim}{number of response lists to simulate. Defaults to 1.} \item{seed}{random number seed} \item{...}{extra arguments} } \value{ returns a list of vectors. The list has length \code{nsim}. Each simulated vector of observations is the same size as the vector of response variables in the original data set. In the binomial family case each simulation is a two-column matrix with success/failure. } \description{ Simulate from a glmmTMB fitted model } \details{ Random effects are also simulated from their estimated distribution. Currently, it is not possible to condition on estimated random effects. } glmmTMB/man/get_cor.Rd0000644000176200001440000000223113614324717014243 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{get_cor} \alias{get_cor} \title{translate vector of correlation parameters to correlation values} \usage{ get_cor(theta) } \arguments{ \item{theta}{vector of internal correlation parameters} } \value{ a vector of correlation values } \description{ translate vector of correlation parameters to correlation values } \details{ This function follows the definition at \url{http://kaskr.github.io/adcomp/classUNSTRUCTURED__CORR__t.html}: if \eqn{L} is the lower-triangular matrix with 1 on the diagonal and the correlation parameters in the lower triangle, then the correlation matrix is defined as \eqn{\Sigma = D^{-1/2} L L^\top D^{-1/2}}{Sigma = sqrt(D) L L' sqrt(D)}, where \eqn{D = \textrm{diag}(L L^\top)}{D = diag(L L')}. For a single correlation parameter \eqn{\theta_0}{theta0}, this works out to \eqn{\rho = \theta_0/\sqrt{1+\theta_0^2}}{rho = theta0/sqrt(1+theta0^2)}. The function returns the elements of the lower triangle of the correlation matrix, in column-major order. } \examples{ th0 <- 0.5 stopifnot(all.equal(get_cor(th0),th0/sqrt(1+th0^2))) get_cor(c(0.5,0.2,0.5)) } glmmTMB/man/fixef.Rd0000644000176200001440000000224613614324717013730 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/methods.R \docType{methods} \name{fixef} \alias{fixef} \alias{fixef.glmmTMB} \title{Extract fixed-effects estimates} \usage{ \method{fixef}{glmmTMB}(object, ...) } \arguments{ \item{object}{any fitted model object from which fixed effects estimates can be extracted.} \item{\dots}{optional additional arguments. Currently none are used in any methods.} } \value{ an object of class \code{fixef.glmmTMB} comprising a list of components (\code{cond}, \code{zi}, \code{disp}), each containing a (possibly zero-length) numeric vector of coefficients } \description{ Extract Fixed Effects } \details{ Extract fixed effects from a fitted \code{glmmTMB} model. The print method for \code{fixef.glmmTMB} object \emph{only displays non-trivial components}: in particular, the dispersion parameter estimate is not printed for models with a single (intercept) dispersion parameter (see examples) } \examples{ data(sleepstudy, package = "lme4") fm1 <- glmmTMB(Reaction ~ Days, sleepstudy) (f1 <- fixef(fm1)) f1$cond ## show full coefficients, including dispersion parameter unlist(f1) print.default(f1) } \keyword{models} glmmTMB/man/downstream_methods.Rd0000644000176200001440000000524513616054060016530 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Anova.R, R/effects.R, R/emmeans.R \name{Anova.glmmTMB} \alias{Anova.glmmTMB} \alias{Effect.glmmTMB} \alias{recover_data.glmmTMB} \alias{emm_basis.glmmTMB} \alias{downstream_methods} \title{Downstream methods for glmmTMB objects} \usage{ Anova.glmmTMB( mod, type = c("II", "III", 2, 3), test.statistic = c("Chisq", "F"), component = "cond", vcov. = vcov(mod)[[component]], singular.ok, ... ) Effect.glmmTMB(focal.predictors, mod, ...) recover_data.glmmTMB(object, ...) emm_basis.glmmTMB(object, trms, xlev, grid, component = "cond", ...) } \arguments{ \item{mod}{a glmmTMB model} \item{type}{type of test, \code{"II"}, \code{"III"}, \code{2}, or \code{3}. Roman numerals are equivalent to the corresponding Arabic numerals. See \code{\link[car]{Anova}} for details.} \item{test.statistic}{unused: only valid choice is "Chisq" (i.e., Wald chi-squared test)} \item{component}{which component of the model to compute emmeans for (conditional ("cond"), zero-inflation ("zi"), or dispersion ("disp"))} \item{vcov.}{variance-covariance matrix (usually extracted automatically)} \item{singular.ok}{OK to do ANOVA with singular models (unused) ?} \item{\dots}{Additional parameters that may be supported by the method.} \item{focal.predictors}{a character vector of one or more predictors in the model in any order.} \item{object}{a glmmTMB model} \item{trms}{The \code{terms} component of \code{object} (typically with the response deleted, e.g. via \code{\link{delete.response}}} \item{xlev}{Named list of factor levels (\emph{excluding} ones coerced to factors in the model formula)} \item{grid}{A \code{data.frame} (provided by \code{ref_grid}) containing the predictor settings needed in the reference grid} } \description{ Methods have been written that allow \code{glmmTMB} objects to be used with several downstream packages that enable different forms of inference. In particular, \itemize{ \item \code{car::Anova} constructs type-II and type-III Anova tables for the fixed effect parameters of the conditional model (this might work with the fixed effects of the zero-inflation or dispersion models, but has not been tested) \item the \code{effects} package computes graphical tabular effect displays (again, for the fixed effects of the conditional component) \item the \code{emmeans} package computes estimated marginal means (aka least-squares means) for the fixed effects of the conditional component } } \details{ While the examples below are disabled for earlier versions of R, they may still work; it may be necessary to refer to private versions of methods, e.g. \code{glmmTMB:::Anova.glmmTMB(model, ...)}. } glmmTMB/man/numFactor.Rd0000644000176200001440000000267013614324717014566 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils_covstruct.R \name{numFactor} \alias{numFactor} \alias{parseNumLevels} \title{Factor with numeric interpretable levels.} \usage{ numFactor(x, ...) parseNumLevels(levels) } \arguments{ \item{x}{Vector, matrix or data.frame that constitute the coordinates.} \item{...}{Additional vectors, matrices or data.frames that constitute the coordinates.} \item{levels}{Character vector to parse into numeric values.} } \value{ Factor with specialized coding of levels. } \description{ Create a factor with numeric interpretable factor levels. } \details{ Some \code{glmmTMB} covariance structures require extra information, such as temporal or spatial coordinates. \code{numFactor} allows to associate such extra information as part of a factor via the factor levels. The original numeric coordinates are recoverable without loss of precision using the function \code{parseNumLevels}. Factor levels are sorted coordinate wise from left to right: first coordinate is fastest running. } \examples{ ## 1D example numFactor(sample(1:5,20,TRUE)) ## 2D example coords <- cbind( sample(1:5,20,TRUE), sample(1:5,20,TRUE) ) (f <- numFactor(coords)) parseNumLevels(levels(f)) ## Sorted ## Used as part of a model.matrix model.matrix( ~f ) ## parseNumLevels( colnames(model.matrix( ~f )) ) ## Error: 'Failed to parse numeric levels: (Intercept)' parseNumLevels( colnames(model.matrix( ~ f-1 )) ) } glmmTMB/man/formatVC.Rd0000644000176200001440000000226213614324717014346 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/VarCorr.R \name{formatVC} \alias{formatVC} \title{Format the 'VarCorr' Matrix of Random Effects} \usage{ formatVC( varcor, digits = max(3, getOption("digits") - 2), comp = "Std.Dev.", formatter = format, useScale = attr(varcor, "useSc"), ... ) } \arguments{ \item{varcor}{a \code{\link{VarCorr}} (-like) matrix with attributes.} \item{digits}{the number of significant digits.} \item{comp}{character vector of length one or two indicating which columns out of "Variance" and "Std.Dev." should be shown in the formatted output.} \item{formatter}{the \code{\link{function}} to be used for formatting the standard deviations and or variances (but \emph{not} the correlations which (currently) are always formatted as "0.nnn"} \item{useScale}{whether to report a scale parameter (e.g. residual standard deviation)} \item{...}{optional arguments for \code{formatter(*)} in addition to the first (numeric vector) and \code{digits}.} } \value{ a character matrix of formatted VarCorr entries from \code{varc}. } \description{ "format()" the 'VarCorr' matrix of the random effects -- for print()ing and show()ing } glmmTMB/man/profile.glmmTMB.Rd0000644000176200001440000000642513614324717015570 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/profile.R \name{profile.glmmTMB} \alias{profile.glmmTMB} \alias{confint.profile.glmmTMB} \title{Compute likelihood profiles for a fitted model} \usage{ \method{profile}{glmmTMB}( fitted, parm = NULL, level_max = 0.99, npts = 8, stepfac = 1/4, stderr = NULL, trace = FALSE, parallel = c("no", "multicore", "snow"), ncpus = getOption("profile.ncpus", 1L), cl = NULL, ... ) \method{confint}{profile.glmmTMB}(object, parm = NULL, level = 0.95, ...) } \arguments{ \item{fitted}{a fitted \code{glmmTMB} object} \item{parm}{which parameters to profile, specified \itemize{ \item by index (position) \item by name (matching the row/column names of \code{vcov(object,full=TRUE)}) \item as \code{"theta_"} (random-effects variance-covariance parameters) or \code{"beta_"} (conditional and zero-inflation parameters) }} \item{level_max}{maximum confidence interval target for profile} \item{npts}{target number of points in (each half of) the profile (\emph{approximate})} \item{stepfac}{initial step factor (fraction of estimated standard deviation)} \item{stderr}{standard errors to use as a scaling factor when picking step sizes to compute the profile; by default (if \code{stderr} is \code{NULL}, or \code{NA} for a particular element), uses the estimated (Wald) standard errors of the parameters} \item{trace}{print tracing information? If \code{trace=FALSE} or 0, no tracing; if \code{trace=1}, print names of parameters currently being profiled; if \code{trace>1}, turn on tracing for the underlying \code{\link{tmbprofile}} function} \item{parallel}{method (if any) for parallel computation} \item{ncpus}{number of CPUs/cores to use for parallel computation} \item{cl}{cluster to use for parallel computation} \item{...}{additional arguments passed to \code{\link{tmbprofile}}} \item{object}{a fitted profile (\code{profile.glmmTMB}) object} \item{level}{confidence level} } \value{ An object of class \code{profile.glmmTMB}, which is also a data frame, with columns \code{.par} (parameter being profiled), \code{.focal} (value of focal parameter), value (negative log-likelihood). } \description{ Compute likelihood profiles for a fitted model } \details{ Fits natural splines separately to the points from each half of the profile for each specified parameter (i.e., values above and below the MLE), then finds the inverse functions to estimate the endpoints of the confidence interval } \examples{ \dontrun{ m1 <- glmmTMB(count~ mined + (1|site), zi=~mined, family=poisson, data=Salamanders) salamander_prof1 <- profile(m1, parallel="multicore", ncpus=2, trace=1) ## testing salamander_prof1 <- profile(m1, trace=1,parm=1) salamander_prof1M <- profile(m1, trace=1,parm=1, npts = 4) salamander_prof2 <- profile(m1, parm="theta_") } salamander_prof1 <- readRDS(system.file("example_files","salamander_prof1.rds",package="glmmTMB")) if (require("ggplot2")) { ggplot(salamander_prof1,aes(.focal,sqrt(value))) + geom_point() + geom_line()+ facet_wrap(~.par,scale="free_x")+ geom_hline(yintercept=1.96,linetype=2) } salamander_prof1 <- readRDS(system.file("example_files","salamander_prof1.rds",package="glmmTMB")) confint(salamander_prof1) confint(salamander_prof1,level=0.99) } glmmTMB/DESCRIPTION0000644000176200001440000000571113616106055013266 0ustar liggesusersPackage: glmmTMB Title: Generalized Linear Mixed Models using Template Model Builder Version: 1.0.0 Authors@R: c(person("Arni","Magnusson",role="aut", comment=c(ORCID="0000-0003-2769-6741")), person("Hans","Skaug",role="aut"), person("Anders","Nielsen",role="aut", comment=c(ORCID="0000-0001-9683-9262")), person("Casper","Berg",role="aut", comment=c(ORCID="0000-0002-3812-5269")), person("Kasper","Kristensen",role="aut"), person("Martin","Maechler",role="aut", comment=c(ORCID="0000-0002-8685-9910")), person("Koen","van Bentham",role="aut"), person("Ben","Bolker",role="aut", comment=c(ORCID="0000-0002-2127-0443")), person("Nafis","Sadat",role="ctb", comment=c(ORCID="0000-0001-5715-616X")), person("Daniel","Lüdecke", role="ctb", comment=c(ORCID="0000-0002-8895-3206")), person("Russ","Lenth", role="ctb"), person("Mollie","Brooks",role=c("aut","cre"), email="mollieebrooks@gmail.com", comment=c(ORCID="0000-0001-6963-8326"))) Description: Fit linear and generalized linear mixed models with various extensions, including zero-inflation. The models are fitted using maximum likelihood estimation via 'TMB' (Template Model Builder). Random effects are assumed to be Gaussian on the scale of the linear predictor and are integrated out using the Laplace approximation. Gradients are calculated using automatic differentiation. License: AGPL-3 Depends: R (>= 3.2.0) Imports: methods, TMB (>= 1.7.14), lme4 (>= 1.1-18.9000), Matrix, nlme LinkingTo: TMB, RcppEigen Suggests: knitr, rmarkdown, testthat, MASS, lattice, ggplot2 (>= 2.2.1), mlmRev, bbmle (>= 1.0.19), pscl, coda, reshape2, car (>= 3.0.6), emmeans (>= 1.4), estimability, DHARMa, multcomp, MuMIn, effects (>= 4.0-1), dotwhisker, broom, broom.mixed, plyr, png, boot, texreg, xtable, huxtable SystemRequirements: GNU make VignetteBuilder: knitr URL: https://github.com/glmmTMB LazyData: TRUE BugReports: https://github.com/glmmTMB/glmmTMB/issues RoxygenNote: 7.0.2 NeedsCompilation: yes Encoding: UTF-8 Packaged: 2020-02-03 18:18:40 UTC; molliebrooks Author: Arni Magnusson [aut] (), Hans Skaug [aut], Anders Nielsen [aut] (), Casper Berg [aut] (), Kasper Kristensen [aut], Martin Maechler [aut] (), Koen van Bentham [aut], Ben Bolker [aut] (), Nafis Sadat [ctb] (), Daniel Lüdecke [ctb] (), Russ Lenth [ctb], Mollie Brooks [aut, cre] () Maintainer: Mollie Brooks Repository: CRAN Date/Publication: 2020-02-03 21:10:05 UTC glmmTMB/build/0000755000176200001440000000000013616062000012642 5ustar liggesusersglmmTMB/build/vignette.rds0000644000176200001440000000067313616062000015207 0ustar liggesusersRR0,DQf^|A.3Ҵd&i:I*$%)C~v&/=|=K=^WߤR`!; 1#=n$Ri0/$R -)+Ibԏ)cC0Oֆ1b ͠"<)jZoLB"Kʥ[qfؐ׹vL)L0$RZ>Oaxm(Pa* }f#`L؞a+ŨaE+ozPwNۏ4#* *Zۧ0\U-biWhil8\6|f2dcJ OsAT ϓiOp\h|PWu`i~U! Ud^ "kCaglmmTMB/tests/0000755000176200001440000000000013616062000012705 5ustar liggesusersglmmTMB/tests/testthat/0000755000176200001440000000000013616062000014545 5ustar liggesusersglmmTMB/tests/testthat/test-predict.R0000644000176200001440000002326413614324717017324 0ustar liggesusersstopifnot(require("testthat"), require("glmmTMB")) data(sleepstudy, package = "lme4") sleepstudy <- transform(sleepstudy, DaysFac = factor(cut(Days,2)) ) ssNA <- transform(sleepstudy, Days = replace(Days,c(1,27,93,145), NA)) ssNA2 <- transform(sleepstudy, Days = replace(Days,c(2,49), NA)) data(cbpp, package = "lme4") set.seed(101) cbpp_zi <- cbpp cbpp_zi[sample(nrow(cbpp),size=15,replace=FALSE),"incidence"] <- 0 ## 'newdata' nd <- subset(sleepstudy, Subject=="308", select=-1) nd$Subject <- "new" nd$DaysFac <- "new" context("Predicting new levels") g0 <- glmmTMB(Reaction ~ Days + (Days|Subject), sleepstudy) test_that("manual prediction of pop level pred", { prnd <- predict(g0, newdata=nd, allow.new.levels=TRUE) expect_equal( as.numeric(prnd), fixef(g0)$cond[1] + fixef(g0)$cond[2] * nd$Days , tol=1e-10) }) test_that("population-level prediction", { prnd <- predict(g0) expect_equal(length(unique(prnd)),180) prnd2 <- predict(g0, re.form=~0) prnd3 <- predict(g0, re.form=NA) expect_equal(prnd2,prnd3) expect_equal(length(unique(prnd2)),10) ## make sure we haven't messed up any internal structures ... prnd4 <- predict(g0) expect_equal(prnd, prnd4) }) context("Catch invalid predictions") test_that("new levels of fixed effect factor", { g1 <- glmmTMB(Reaction ~ Days + Subject, sleepstudy) expect_error( predict(g1, nd), "Prediction is not possible for unknown fixed effects") }) test_that("new levels in RE term", { g2 <- glmmTMB(Reaction ~ us(DaysFac | Subject), sleepstudy) expect_error( predict(g2, nd), "Prediction is not possible for terms") }) test_that("new levels in AR1 (OK)", { g3 <- glmmTMB(Reaction ~ ar1(DaysFac + 0| Subject), sleepstudy) expect_warning( predict(g3, nd), ## OK: AR1 does not introduce new parameters "Predicting new random effect levels") }) context("Predict two-column response case") test_that("two-column response", { fm <- glmmTMB( cbind(count,4) ~ mined, family=betabinomial, data=Salamanders) expect_equal(predict(fm, type="response"), c(0.05469247, 0.29269818)[Salamanders$mined] ) }) context("Prediction with dispformula=~0") y <- 1:10 f <- glmmTMB(y ~ 1, dispformula=~0) expect_equal(predict(f), rep(5.5, 10)) context("Handling NA values in predictions") ss <- sleepstudy g0_ex <- update(g0, data=ssNA, na.action=na.exclude) g0_om <- update(g0, data=ssNA, na.action=na.omit) pp_ex <- predict(g0_ex) pp_om <- predict(g0_om) expect_equal(length(pp_ex),nrow(ssNA)) expect_true(all(is.na(pp_ex)==is.na(ssNA$Days))) expect_equal(length(pp_om),length(na.omit(ssNA$Days))) expect_true(!any(is.na(pp_om))) ## na.pass pp_ndNA <- predict(g0,newdata=ssNA) expect(all(is.na(ssNA$Days)==is.na(pp_ndNA)), failure_message="NAs don't match with na.pass+predict") pp_ndNA2 <- predict(g0,newdata=ssNA2) expect(all(is.na(ssNA2$Days)==is.na(pp_ndNA2)), failure_message="NAs don't match with na.pass+predict+newdata") ## na.omit pp_ndNA_om <- predict(g0,newdata=ssNA,na.action=na.omit) expect_equal(length(pp_ndNA_om),sum(complete.cases(ssNA))) context("prediction with different binomial specs") tmbm1 <- glmmTMB(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) tmbm2 <- update(tmbm1,incidence/size ~ . , weights = size) test_that("fitted & predicted agree", { expect_equal(fitted(tmbm1),fitted(tmbm2)) expect_equal(predict(tmbm1),predict(tmbm2)) }) context("zero-inflation prediction") g0_zi <- update(tmbm2, ziformula = ~period) un <- function(x) lapply(x,unname) mypred <- function(form,dd,cc,vv,linkinv=identity,mu.eta=NULL) { X <- model.matrix(form,dd) pred <- drop(X %*% cc) se <- drop(sqrt(diag(X %*% vv %*% t(X)))) if (!is.null(mu.eta)) se <- se*mu.eta(pred) pred <- linkinv(pred) return(un(list(fit=pred,se.fit=se))) } ## FIXME: predictions should have row names of data dd <- data.frame(unique(cbpp["period"]),size=1,herd=NA) ff <- make.link("logit") test_that("type='link'", { link_pred <- mypred(~period,dd,fixef(g0_zi)$cond,vcov(g0_zi)$cond) expect_equal(un(predict(g0_zi,newdata=dd,se.fit=TRUE)), link_pred) }) test_that("various types", { cond_pred <- mypred(~period,dd,fixef(g0_zi)$cond,vcov(g0_zi)$cond, ff$linkinv,ff$mu.eta) expect_equal(un(predict(g0_zi,newdata=dd,se.fit=TRUE,type="conditional")), cond_pred) zprob_pred <- mypred(~period,dd,fixef(g0_zi)$zi,vcov(g0_zi)$zi, ff$linkinv,ff$mu.eta) expect_equal(un(predict(g0_zi,newdata=dd,se.fit=TRUE,type="zprob")), zprob_pred) expect_equal(unname(predict(g0_zi,newdata=dd,se.fit=TRUE,type="response")$fit), cond_pred$fit*(1-zprob_pred$fit)) }) test_that("type='zlink'", { zlink_pred <- mypred(~period,dd,fixef(g0_zi)$zi,vcov(g0_zi)$zi) expect_equal(un(predict(g0_zi,newdata=dd,se.fit=TRUE,type="zlink")), zlink_pred) }) context("deprecated zitype parameter") expect_warning(predict(g0_zi,newdata=dd,zitype="zprob")) context("complex bases") data("sleepstudy",package="lme4") nd <- data.frame(Days=0, Subject=factor("309", levels=levels(sleepstudy$Subject))) test_that("poly", { g1 <- glmmTMB(Reaction~poly(Days,3), sleepstudy) expect_equal(predict(g1, newdata=data.frame(Days=0)), 255.7690496, tolerance=1e-5) }) test_that("splines", { if (getRversion()>="3.5.1") { ## work around predict/predvars bug in 3.5.0 & previous versions g2 <- glmmTMB(Reaction~splines::ns(Days,5), sleepstudy) } else { library(splines) g2 <- glmmTMB(Reaction~ns(Days,5), sleepstudy) } expect_equal(predict(g2, newdata=data.frame(Days=0)),257.42672, tolerance=1e-5) }) test_that("scale", { g3 <- glmmTMB(Reaction~scale(Days), sleepstudy) expect_equal(predict(g3, newdata=data.frame(Days=0)), 251.40507651, tolerance=1e-5) }) test_that("poly_RE", { g1 <- glmmTMB(Reaction~(1|Subject) + poly(Days,3), sleepstudy) expect_equal(predict(g1, newdata=nd, allow.new.levels=TRUE), 178.1629812, tolerance=1e-5) }) test_that("splines_RE", { if (getRversion()>="3.5.1") { g2 <- glmmTMB(Reaction~(1|Subject) + splines::ns(Days,5), sleepstudy) } else { library(splines) g2 <- glmmTMB(Reaction~(1|Subject) + ns(Days,5), sleepstudy) } expect_equal(predict(g2, newdata=nd, allow.new.levels=TRUE), 179.7784754, tolerance=1e-5) }) test_that("scale_RE", { g3 <- glmmTMB(Reaction~(1|Subject) + scale(Days), sleepstudy) expect_equal(predict(g3, newdata=nd, allow.new.levels=TRUE), 173.83923026, tolerance=1e-5) }) test_that("complex bases in dispformula", { g4A <- glmmTMB(Reaction~1, sleepstudy) g4B <- glmmTMB(Reaction~1, disp=~poly(Days,2), sleepstudy) expect_equal(predict(g4A, newdata=nd, se.fit=TRUE), list(fit = 298.507945749154, se.fit = 4.18682101029576), tolerance=1e-5) expect_equal(predict(g4B, newdata=nd, se.fit=TRUE), list(fit = 283.656705454758, se.fit = 4.74204256781178)) }) test_that("fix_predvars works for I(x^2)", { ## GH512; @strengejacke set.seed(123) n <- 500 d <- data.frame( y = rbinom(n, size = 1, prob = .2), x = rnorm(n), site = sample(letters, size = n, replace = TRUE), area = sample(LETTERS[1:9], size = n, replace = TRUE) ) form <- y ~ x + I(x^2) + I(x^3) + (1 | area) m1 <- lme4::glmer(form, family = binomial("logit"), data = d) m2 <- glmmTMB(form, family = binomial("logit"), data = d) nd <- data.frame(x = c(-2, -1, 0, 1, 2), area = NA) p1 <- predict(m1, newdata = nd, type = "link", re.form = NA) p2 <- predict(m2, newdata = nd, type = "link") expect_equal(unname(p1),unname(p2), tolerance=1e-4) }) test_that("contrasts carried over", { ## GH 439, @cvoeten iris2 <- transform(iris, grp=c("a","b")) contrasts(iris2$Species) <- contr.sum contrasts(iris2$grp) <- contr.sum mod1 <- glmmTMB(Sepal.Length ~ Species,iris) mod2 <- glmmTMB(Sepal.Length ~ Species,iris2) iris3 <- iris[1,] iris3$Species <- "extra" ## these are not *exactly* equal because of numeric differences ## when estimating parameters differently ... (?) expect_equal(predict(mod1),predict(mod2),tolerance=1e-6) ## make sure we actually imposed contrasts correctly/differently expect_false(isTRUE(all.equal(fixef(mod1)$cond,fixef(mod2)$cond))) expect_error(predict(mod1,newdata=iris2), "contrasts mismatch") expect_equal(predict(mod1,newdata=iris2,allow.new.levels=TRUE), predict(mod1,newdata=iris)) mod3 <- glmmTMB(Sepal.Length ~ 1|Species, iris) expect_equal(c(predict(mod3,newdata=data.frame(Species="ABC"), allow.new.levels=TRUE)), 5.843333, tolerance=1e-6) mod4 <- glmmTMB(Sepal.Length ~ grp + (1|Species), iris2) expect_equal(c(predict(mod4, newdata=data.frame(Species="ABC",grp="a"), allow.new.levels=TRUE)), 5.839998, tolerance=1e-6) ## works with char rather than factor in new group vble expect_equal(predict(mod3, newdata=iris3, allow.new.levels=TRUE), 5.843333, tolerance=1e-6) }) test_that("dispersion", { mod5 <- glmmTMB(Sepal.Length ~ Species, disp=~ Species, iris) expect_equal(length(unique(predict(mod5, type="disp"))), length(unique(iris$Species))) expect_equal(length(unique(predict(mod5, type="disp", se.fit=TRUE)$se.fit)), length(unique(iris$Species))) })glmmTMB/tests/testthat/test-reml.R0000644000176200001440000000276513614324717016634 0ustar liggesusersstopifnot(require("testthat"), require("glmmTMB"), require("lme4")) context("REML") test_that("REML check against lmer", { ## Example 1: Compare results with lmer fm1.lmer <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy, REML=TRUE) fm1.glmmTMB <- glmmTMB(Reaction ~ Days + (Days | Subject), sleepstudy, REML=TRUE) expect_equal( logLik(fm1.lmer) , logLik(fm1.glmmTMB) ) expect_equal(as.vector(predict(fm1.lmer)) , predict(fm1.glmmTMB), tolerance=2e-3) expect_equal(vcov(fm1.glmmTMB)$cond, as.matrix(vcov(fm1.lmer)) , tolerance=1e-3) ## Example 2: Compare results with lmer data(Orthodont,package="nlme") Orthodont$nsex <- as.numeric(Orthodont$Sex=="Male") Orthodont$nsexage <- with(Orthodont, nsex*age) fm2.lmer <- lmer(distance ~ age + (age|Subject) + (0+nsex|Subject) + (0 + nsexage|Subject), data=Orthodont, REML=TRUE, control=lmerControl(check.conv.grad = .makeCC("warning", tol = 5e-3))) fm2.glmmTMB <- glmmTMB(distance ~ age + (age|Subject) + (0+nsex|Subject) + (0 + nsexage|Subject), data=Orthodont, REML=TRUE) expect_equal( logLik(fm2.lmer) , logLik(fm2.glmmTMB), tolerance=1e-5 ) expect_equal(as.vector(predict(fm2.lmer)) , predict(fm2.glmmTMB), tolerance=1e-4) expect_equal(vcov(fm2.glmmTMB)$cond, as.matrix(vcov(fm2.lmer)) , tolerance=1e-3) }) glmmTMB/tests/testthat/test-varstruc.R0000644000176200001440000001145513614324717017542 0ustar liggesusersstopifnot(require("testthat"), require("glmmTMB"), require("lme4")) source(system.file("test_data/glmmTMB-test-funs.R", package="glmmTMB", mustWork=TRUE)) data(sleepstudy, cbpp, package = "lme4") sleepstudy <- transform(sleepstudy,fDays=cut(Days,c(0,3,6,10),right=FALSE), row=factor(seq(nrow(sleepstudy)))) context("variance structures") ## two equivalent diagonal constructions fm_diag1 <- glmmTMB(Reaction ~ Days + diag(Days| Subject), sleepstudy) fm_diag2 <- glmmTMB(Reaction ~ Days + ( 1 | Subject) + (0+Days | Subject), sleepstudy) fm_diag2_lmer <- lmer(Reaction ~ Days + ( 1 | Subject) + (0+Days | Subject), sleepstudy, REML=FALSE) fm_us1 <- glmmTMB(Reaction ~ Days + (Days| Subject), sleepstudy) fm_cs1 <- glmmTMB(Reaction ~ Days + cs(Days| Subject), sleepstudy) fm_us1_lmer <- lmer(Reaction ~ Days + ( Days | Subject), sleepstudy, REML=FALSE) fm_cs2 <- glmmTMB(Reaction ~ Days + cs(fDays| Subject), sleepstudy) ## these would be equivalent to a compound symmetry model with *homog* variance fm_nest <- glmmTMB(Reaction ~ Days + (1| Subject/fDays), sleepstudy) fm_nest_lmer <- lmer(Reaction ~ Days + (1|Subject/fDays), sleepstudy, REML=FALSE) ## model with ~ Days + ... gives non-pos-def Hessian fm_ar1 <- glmmTMB(Reaction ~ 1 + (1|Subject) + ar1(row+0| Subject), sleepstudy) test_that("diag", { ## two formulations of diag and lme4 all give same log-lik expect_equal(logLik(fm_diag1),logLik(fm_diag2_lmer)) expect_equal(logLik(fm_diag1),logLik(fm_diag2)) }) test_that("cs_us", { ## for a two-level factor, compound symmetry and unstructured ## give same result expect_equal(logLik(fm_us1),logLik(fm_cs1)) expect_equal(logLik(fm_us1),logLik(fm_us1_lmer)) }) test_that("cs_homog", { ## *homogenous* compound symmetry vs. nested random effects expect_equal(logLik(fm_nest),logLik(fm_nest_lmer)) }) test_that("basic ar1", { vv <- VarCorr(fm_ar1)[["cond"]] cc <- cov2cor(vv[[2]]) expect_equal(cc[1,],cc[,1]) expect_equal(unname(cc[1,]), cc[1,2]^(0:(nrow(cc)-1))) }) test_that("print ar1 (>1 RE)", { cco <- gsub(" +"," ", trimws(capture.output(print(summary(fm_ar1),digits=1)))) expect_equal(cco[12:14], c("Subject (Intercept) 4e-01 0.6", "Subject.1 row1 4e+03 60.8 0.87 (ar1)", "Residual 8e+01 8.9")) }) ## FIXME: simpler to check formatVC() directly? get_vcout <- function(x,g="\\bSubject\\b") { cc <- capture.output(print(VarCorr(x))) cc1 <- grep(g,cc,value=TRUE,perl=TRUE) ss <- strsplit(cc1,"[^[:alnum:][:punct:]]+")[[1]] return(ss[nchar(ss)>0]) } test_that("varcorr_print", { ss <- get_vcout(fm_cs1) expect_equal(length(ss),5) expect_equal(ss[4:5],c("0.081","(cs)")) ss2 <- get_vcout(fm_ar1,g="\\bSubject.1\\b") expect_equal(length(ss2),5) expect_equal(ss2[4:5],c("0.873","(ar1)")) ## test case with two different size V-C set.seed(101) dd <- data.frame(y=rnorm(1000),c=factor(rep(1:2,500)), w=factor(rep(1:10,each=100)), s=factor(rep(1:10,100))) ## non-pos-def case (we don't care at the moment) m1 <- suppressWarnings(glmmTMB(y~c+(c|w)+(1|s),data=dd, family=gaussian)) cc <- squash_white(capture.output(print(VarCorr(m1),digits=2))) expect_equal(cc, c("Conditional model:", "Groups Name Std.Dev. Corr", "w (Intercept) 3.1e-05", "c2 4.9e-06 0.98", "s (Intercept) 3.4e-05", "Residual 9.6e-01")) }) test_that("cov_struct_order", { ff <- system.file("test_data","cov_struct_order.rds",package="glmmTMB") if (nchar(ff)>0) { dat <- readRDS(ff) } else { set.seed(101) nb <- 100 ns <- nb*3 nt <- 100 cor <- .7 dat <- data.frame(Block = factor(rep(1:nb, each = ns/nb*nt)), Stand = factor(rep(1:ns, each = nt)), Time = rep(1:nt, times = ns), blockeff = rep(rnorm(nb, 0, .5), each = ns/nb*nt), standeff = rep(rnorm(ns, 0, .8), each = nt), resid = c(t(MASS::mvrnorm(ns, mu = rep(0, nt), Sigma = 1.2*cor^abs(outer(0:(nt-1),0:(nt-1),"-")))))) dat$y <- with(dat, 5 + blockeff + standeff + resid)+rnorm(nrow(dat), 0, .1) dat$Time <- factor(dat$Time) ## saveRDS(dat, file="../../inst/test_data/cov_struct_order.rds",version=2) } fit1 <- glmmTMB(y ~ (1|Block) + (1|Stand)+ ar1(Time +0|Stand), data = dat) expect_equal(unname(fit1$fit$par), c(4.98852432, -4.22220615, -0.76452645, -0.24762133, 0.08879302, 1.00022657), tol=1e-3) }) glmmTMB/tests/testthat/test-mapopt.R0000644000176200001440000000501713614324717017166 0ustar liggesusersstopifnot(require("testthat"), require("glmmTMB")) data(Salamanders, package = "glmmTMB") context("mapping") m1 <- glmmTMB(count~ mined, family=poisson, data=Salamanders, start=list(beta=c(0,2)), map=list(beta=factor(c(1,NA)))) m2 <- glmmTMB(count~ mined + (1|site), family=poisson, data=Salamanders, start=list(theta=log(2)), map=list(theta=factor(NA))) m3 <- glmmTMB(count~ mined + (1|site), zi = ~1, family=poisson, data=Salamanders, start=list(theta=log(2), betazi=c(-1)), map=list(theta=factor(NA), betazi=factor(NA))) m4_nomap <- glmmTMB(count~ mined + (1|site), zi=~mined, family=poisson, data=Salamanders) m4 <- glmmTMB(count~ mined + (1|site), zi=~mined, family=poisson, data=Salamanders, map=list(theta=factor(NA)), start = list(theta=log(10))) m1optim <- update(m1, control=glmmTMBControl(optimizer=optim, optArgs=list(method="BFGS"))) test_that("basic mapping works", { expect_equal(fixef(m1)$cond[[2]], 2.0) expect_equal(exp(getME(m2,"theta")), 2.0) expect_equal(fixef(m3)$zi[[1]], -1.0) }) test_that("predict works with mapped params", expect_equal(vapply(predict(m1,se.fit=TRUE),unique,numeric(1)), c(fit = -1.18646939995962, se.fit = 0.0342594326326737), tolerance=1e-6) ) test_that("vcov works with mapped params", { expect_equal(dim(vcov(m1)$cond),c(1,1)) expect_equal(dim(vcov(m1,full=TRUE)),c(1,1)) expect_equal(dim(vcov(m2)$cond),c(2,2)) expect_equal(dim(vcov(m2,full=TRUE)),c(2,2)) }) test_that("confint works with mapped params", { cm1 <- confint(m1) expect_equal(dim(cm1), c(1,3)) expect_equal(rownames(cm1), "(Intercept)") cm2 <- confint(m2) expect_equal(dim(cm2), c(2,3)) expect_equal(rownames(cm2), c("(Intercept)","minedno")) cm3 <- confint(m3) expect_equal(dim(cm3), c(2,3)) expect_equal(rownames(cm3), c("(Intercept)","minedno")) cm4 <- confint(m4) expect_equal(dim(cm4), c(4,3)) expect_equal(rownames(cm4), c("cond.(Intercept)", "cond.minedno", "zi.(Intercept)", "zi.minedno")) cm4_nomap <- confint(m4_nomap) }) context("alternate optimizers") test_that("alternate optimizers work", { expect_equal(fixef(m1),fixef(m1optim), tol=1e-4) expect_false(identical(fixef(m1),fixef(m1optim))) }) glmmTMB/tests/testthat/test-env.R0000644000176200001440000000253213614324717016455 0ustar liggesusers## check that everything works in weird environments stopifnot(require("testthat"), require("glmmTMB")) data(sleepstudy, cbpp, package = "lme4") ## need global env for test_that sleepstudy <<- transform(sleepstudy, DaysFac = factor(Days)) context("basic examples") test_that("basic example #1", { fitFun <- function(dat){ glmmTMB(Reaction ~ Days + (1|Subject), data=dat) } f0 <- glmmTMB(Reaction ~ Days + (1|Subject), data=sleepstudy) f1 <- fitFun(sleepstudy) uncall <- function(x) { x$call <- NULL return(x) } expect_equal(uncall(f0),uncall(f1)) }) test_that("paranoia", { formFun <- function() { return(Reaction ~ Days + (1|Subject)) } fitFun <- function(f,dat){ glmmTMB(f, data=dat) } f0 <- glmmTMB(Reaction ~ Days + (1|Subject), data=sleepstudy) f1 <- fitFun(formFun(),sleepstudy) uncall <- function(x) { x$call <- NULL return(x) } expect_equal(uncall(f0),uncall(f1)) }) test_that("dispformula env", { fitFun2 <- function(dat){ glmmTMB(count ~ 1, data=dat, family="poisson" ) } m0 <- fitFun2(Salamanders) m1 <- glmmTMB(count ~ 1, data= Salamanders, family="poisson") uncall <- function(x) { x$call <- NULL return(x) } expect_equal(uncall(summary(m0)), uncall(summary(m1))) }) glmmTMB/tests/testthat/test-VarCorr.R0000644000176200001440000001521513614324717017245 0ustar liggesusersstopifnot(require("testthat"), require("glmmTMB"), require("lme4")) source(system.file("test_data/glmmTMB-test-funs.R", package="glmmTMB", mustWork=TRUE)) context("VarCorr") ## --------------- data("Orthodont", package="nlme") fm1 <- glmmTMB(distance ~ age + (age|Subject), data = Orthodont) fm1C <- lmer(distance ~ age + (age|Subject), data = Orthodont, REML=FALSE, control=lmerControl(check.conv.grad = .makeCC("warning", tol = 2e-2))) gm1 <- glmmTMB(incidence/size ~ period + (1 | herd), weights=size, data = cbpp, family = binomial) gm1C <- glmer(incidence/size ~ period + (1 | herd), weights=size, data = cbpp, family = binomial) ## make glmmTMB VarCorr look like lme4 VarCorr stripTMBVC <- function(x) { r <- VarCorr(x)[["cond"]] for (i in seq_along(r)) { attr(r[[i]],"blockCode") <- NULL } return(r) } expect_equal(stripTMBVC(fm1),unclass(VarCorr(fm1C)), tol=2e-3) expect_equal(stripTMBVC(gm1),unclass(VarCorr(gm1C)), tol=5e-3) ## have to take only last 4 lines ## some white space diffs introduced in fancy-corr-printing pfun <- function(x) squash_white(capture.output(print(VarCorr(x),digits=2))) expect_equal(tail(pfun(fm1),4), pfun(fm1C)) data("Pixel", package="nlme") ## nPix <- nrow(Pixel) complex_form <- pixel ~ day + I(day^2) + (day | Dog) + (1 | Side/Dog) expect_warning(fmPix1 <<- glmmTMB(complex_form, data = Pixel), "convergence problem") fmPix1B <- lmer(complex_form, data = Pixel, control=lmerControl(check.conv.grad = .makeCC("warning", tol = 5e-3))) vPix1B <- unlist(lapply(VarCorr(fmPix1B),c)) vPix1 <- unlist(lapply(VarCorr(fmPix1)[["cond"]],c)) ## "manual" (1 | Dog / Side) : fmPix3 <- glmmTMB(pixel ~ day + I(day^2) + (day | Dog) + (1 | Dog) + (1 | Side:Dog), data = Pixel) vPix3 <- unlist(lapply(VarCorr(fmPix3)[["cond"]],c)) fmP1.r <- fmPix1$obj$env$report() ## str(fmP1.r) ## List of 4 ## $ corrzi: list() ## $ sdzi : list() ## $ corr :List of 3 ## ..$ : num [1, 1] 1 ## ..$ : num [1, 1] 1 ## ..$ : num [1:2, 1:2] 1 -0.598 -0.598 1 ## $ sd :List of 3 ## ..$ : num 16.8 ## ..$ : num 9.44 ## ..$ : num [1:2] 24.83 1.73 ## fmP1.r $ corr vv <- VarCorr(fmPix1) set.seed(12345) dd <- data.frame(a=gl(10,100), b = rnorm(1000)) test2 <- suppressMessages(simulate(~1+(b|a), newdata=dd, family=poisson, newparams= list(beta = c("(Intercept)" = 1), theta = c(1,1,1)))) ## Zero-inflation : set all i.0 indices to 0: i.0 <- sample(c(FALSE,TRUE), 1000, prob=c(.3,.7), replace=TRUE) test2[i.0, 1] <- 0 mydata <<- cbind(dd, test2) ## GLOBAL ## The zeros in the 10 groups: xx <- xtabs(~ a + (sim_1 == 0), mydata) ## FIXME: actually need to fit this! ## non-trivial dispersion model data(sleepstudy, package="lme4") fm3 <- glmmTMB(Reaction ~ Days + (1|Subject), dispformula=~ Days, sleepstudy) cc0 <- capture.output(print(fm3)) cc1 <- capture.output(print(summary(fm3))) expect_true(any(grepl("Dispersion model:",cc0))) expect_true(any(grepl("Dispersion model:",cc1))) ## FIXME: slow ( ~ 49 seconds ) ## ??? wrong context? # not simulated this way, but returns right structure test_that("weird variance structure", { mydata <- cbind(dd, test2) gm <- suppressWarnings(glmmTMB(sim_1 ~ 1+(b|a), zi = ~1+(b|a), data=mydata, family=poisson())) cc2 <- capture.output(print(gm)) expect_equal(sum(grepl("Zero-inflation model:",cc2)),3) }) ## eight updateCholesky() warnings .. which will suppress *unless* they are in the last iter. if (FALSE) { str(gm.r <- gm$obj$env$report()) ## List of 4 ## $ corrzi:List of 1 ## ..$ : num [1:2, 1:2] 1 0.929 0.929 1 ## $ sdzi :List of 1 ## ..$ : num [1:2] 3.03e-05 1.87e-04 ## $ corr :List of 1 ## ..$ : num [1:2, 1:2] 1 0.921 0.921 1 ## $ sd :List of 1 ## ..$ : num [1:2] 0.779 1.575 } vc <- VarCorr(fm1) ## default print method: standard dev and corr getVCText <- function(obj,...) { c1 <- capture.output(print(obj,...)) c1f <- read.fwf(textConnection(c1[-(1:3)]),header=FALSE, fill=TRUE, widths=c(10,12,9,6)) return(c1f[,-(1:2)]) ## just value columns } ##expect_equal(c1,c("", "Conditional model:", ## " Groups Name Std.Dev. Corr ", ## " Subject (Intercept) 2.19409 ", ## " age 0.21492 -0.581", ## " Residual 1.31004 ")) expect_equal(getVCText(vc), structure(list(V3 = c(2.1941, 0.21492, 1.31004), V4 = c(NA, -0.581, NA)), .Names = c("V3", "V4"), class = "data.frame", row.names = c(NA, -3L)), tolerance=1e-5) ## both variance and std.dev. c2 <- getVCText(vc,comp=c("Variance","Std.Dev."),digits=2) ## c2 <- capture.output(print(vc,comp=c("Variance","Std.Dev."),digits=2)) ## expect_equal(c2, ## c("", "Conditional model:", ## " Groups Name Variance Std.Dev. Corr ", ## " Subject (Intercept) 4.814 2.19 ", ## " age 0.046 0.21 -0.58", ## " Residual 1.716 1.31 ")) expect_equal(c2, structure(list(V3 = c(4.814, 0.046, 1.716), V4 = c(2.19, 0.21, 1.31)), .Names = c("V3", "V4"), class = "data.frame", row.names = c(NA, -3L))) ## variance only c3 <- getVCText(vc,comp=c("Variance")) ## c3 <- capture.output(print(vc,)) ## expect_equal(c3, ## c("", "Conditional model:", ## " Groups Name Variance Corr ", ## " Subject (Intercept) 4.814050 ", ## " age 0.046192 -0.581", ## " Residual 1.716203 ")) expect_equal(c3,structure(list(V3 = c(4.814071, 0.046192, 1.716208), V4 = c(NA, -0.581, NA)), .Names = c("V3", "V4"), class = "data.frame", row.names = c(NA, -3L)), tolerance=5e-5) if (FALSE) { ## not yet ... as.data.frame(vc) as.data.frame(vc,order="lower.tri") } Orthodont$units <- factor(seq(nrow(Orthodont))) fm0 <- glmmTMB(distance ~ age + (1|Subject) + (1|units), dispformula=~0, data = Orthodont) test_that("VarCorr omits resid when dispformula=~0", { expect_false(attr(VarCorr(fm0)$cond,"useSc")) ## Residual vars not printed expect_false(any(grepl("Residual",capture.output(print(VarCorr(fm0)))))) }) test_that("vcov(.,full=TRUE) works for zero-disp models", { expect_equal(dim(vcov(fm0,full=TRUE)),c(4,4)) }) glmmTMB/tests/testthat/test-edgecases.R0000644000176200001440000000077013614324717017612 0ustar liggesusersstopifnot(require("testthat"), require("glmmTMB")) context("test edge cases") test_that("profiling failure", { ## data from https://github.com/glmmTMB/glmmTMB/issues/399 dd <- readRDS(system.file("test_data","IC_comp_data.rds", package="glmmTMB")) expect_warning(glmmTMB( ProbDiv ~ stdQlty + stdLaying + (1|Year) + (1|Site) + (1|PairID), family = "binomial", control=glmmTMBControl(profile = TRUE), data = dd), "a Newton step failed") }) glmmTMB/tests/testthat/test-disp.R0000644000176200001440000000264313614324717016627 0ustar liggesusersstopifnot(require("testthat"), require("glmmTMB")) context("Testing dispersion") sim1=function(nfac=24, nt=100, facsd=.1, tsd=.15, mu=0, residsd=1) { dat=expand.grid(fac=factor(letters[1:nfac]), t= 1:nt) n=nrow(dat) dat$REfac=rnorm(nfac, sd= facsd)[dat$fac] dat$REt=rnorm(nt, sd= tsd)[dat$t] dat$x=rnorm(n, mean=mu, sd=residsd) + dat$REfac + dat$REt return(dat) } set.seed(101) d1=sim1(mu=100, residsd =10) d2=sim1(mu=200, residsd =5) d1=transform(d1, fac=paste0(fac, 1), disp="ten") d2=transform(d2, fac=paste0(fac, 2), disp="five") ## global assignment for testthat dat <<- rbind(d1, d2) m0 <<- glmmTMB(x~disp+(1|fac), dispformula=~disp, dat) test_that("disp calc", { expect_equal(unname(fixef(m0)$disp), c(log(10^2), log(5^2)-log(10^2)), tol=1e-2) }) test_that("predict dispersion", { expect_equal(predict(m0, type="disp"), c(rep(10, 24*100), rep(5, 24*100)), tol=1e-2) }) dat2 <<- rbind(head(d1, 50), head(d2, 50)) #smaller for faster fitting when not checking estimates ## suppress "... false convergence (8) ..." suppressWarnings(nbm0 <<- glmmTMB(round(x)~disp+(1|fac), ziformula=~0, dispformula=~disp, dat2, family=nbinom1, se=FALSE) ) pm0 <<- update(nbm0, family=poisson) ## suppress "... false convergence (8) ..." nbm1 <<- suppressWarnings(update(pm0, family=nbinom1)) test_that("update maintains dispformula in call", { expect_equal(getCall(nbm0), getCall(nbm1)) }) glmmTMB/tests/testthat/test-basics.R0000644000176200001440000002513013614324717017130 0ustar liggesusersstopifnot(require("testthat"), require("glmmTMB")) data(sleepstudy, cbpp, package = "lme4") data(quine, package="MASS") ## n.b. for test_that, this must be assigned within the global ## environment ... cbpp <<- transform(cbpp, prop = incidence/size, obs=factor(seq(nrow(cbpp)))) ## utility: hack/replace parts of the updated result that will ## be cosmetically different matchForm <- function(obj, objU, family=FALSE) { for(cmp in c("call","frame")) # <- more? objU[[cmp]] <- obj[[cmp]] ## Q: why are formulas equivalent but not identical? A: their environments may differ objU$modelInfo$allForm <- obj$modelInfo$allForm if (family) objU$modelInfo$family <- obj$modelInfo$family return(objU) } context("Very basic glmmTMB fitting") lm0 <- lm(Reaction~Days,sleepstudy) fm00 <- glmmTMB(Reaction ~ Days, sleepstudy) fm0 <- glmmTMB(Reaction ~ 1 + ( 1 | Subject), sleepstudy) fm1 <- glmmTMB(Reaction ~ Days + ( 1 | Subject), sleepstudy) fm2 <- glmmTMB(Reaction ~ Days + (Days| Subject), sleepstudy) fm3 <- glmmTMB(Reaction ~ Days + ( 1 | Subject) + (0+Days | Subject), sleepstudy) test_that("Basic Gaussian Sleepdata examples", { expect_is(fm00, "glmmTMB") expect_is(fm0, "glmmTMB") expect_is(fm1, "glmmTMB") expect_is(fm2, "glmmTMB") expect_is(fm3, "glmmTMB") expect_equal(fixef(fm00)[[1]],coef(lm0),tol=1e-5) expect_equal(sigma(fm00)*sqrt(nobs(fm00)/(df.residual(fm00)+1)), summary(lm0)$sigma,tol=1e-5) expect_equal(fixef(fm0)[[1]], c("(Intercept)" = 298.508), tolerance = .0001) expect_equal(fixef(fm1)[[1]], c("(Intercept)" = 251.405, Days = 10.4673), tolerance = .0001) expect_equal(fixef(fm2)$cond, fixef(fm1)$cond, tolerance = 1e-5)# seen 1.042 e-6 expect_equal(fixef(fm3)$cond, fixef(fm1)$cond, tolerance = 5e-6)# seen 2.250 e-7 expect_equal(head(ranef(fm0)$cond$Subject[,1],3), c(37.4881849228705, -71.5589277273216, -58.009085500647), tolerance=1e-5) ## test *existence* of summary method -- nothing else for now expect_is(suppressWarnings(summary(fm3)),"summary.glmmTMB") }) test_that("Update Gaussian", { ## call doesn't match (formula gets mangled?) ## timing different fm1u <- update(fm0, . ~ . + Days) expect_equal(fm1, matchForm(fm1, fm1u)) }) test_that("Variance structures", { ## above: fm2 <- glmmTMB(Reaction ~ Days + (Days| Subject), sleepstudy) expect_is(fm2us <- glmmTMB(Reaction ~ Days + us(Days| Subject), sleepstudy), "glmmTMB") expect_is(fm2cs <- glmmTMB(Reaction ~ Days + cs(Days| Subject), sleepstudy), "glmmTMB") expect_is(fm2diag <- glmmTMB(Reaction ~ Days + diag(Days| Subject), sleepstudy), "glmmTMB") expect_equal(getME(fm2, "theta"), getME(fm2us,"theta")) ## FIXME: more here, compare results against lme4 ... }) test_that("Sleepdata Variance components", { expect_equal(c(unlist(VarCorr(fm3))), c(cond.Subject = 584.247907378213, cond.Subject.1 = 33.6332741779585), tolerance=1e-5) }) gm0 <<- glmmTMB(cbind(incidence, size-incidence) ~ 1 + (1|herd), data = cbpp, family=binomial()) gm1 <<- glmmTMB(cbind(incidence, size-incidence) ~ period + (1|herd), data = cbpp, family=binomial()) test_that("Basic Binomial CBPP examples", { ## Basic Binomial CBPP examples ---- intercept-only fixed effect expect_is(gm0, "glmmTMB") expect_is(gm1, "glmmTMB") expect_equal(fixef(gm0)[[1]], c("(Intercept)" = -2.045671), tolerance = 1e-3)#lme4 results expect_equal(fixef(gm1)[[1]], c("(Intercept)" = -1.398343,#lme4 results period2 = -0.991925, period3 = -1.128216, period4 = -1.579745), tolerance = 1e-3) # <- TODO: lower eventually }) test_that("Multiple RE, reordering", { ### Multiple RE, reordering tmb1 <- glmmTMB(cbind(incidence, size-incidence) ~ period + (1|herd) + (1|obs), data = cbpp, family=binomial()) tmb2 <- glmmTMB(cbind(incidence, size-incidence) ~ period + (1|obs) + (1|herd), data = cbpp, family=binomial()) expect_equal(fixef(tmb1), fixef(tmb2), tolerance = 1e-8) expect_equal(getME(tmb1, "theta"), getME(tmb2, "theta")[c(2,1)], tolerance = 5e-7) }) test_that("Alternative family specifications [via update(.)]", { ## intercept-only fixed effect res_chr <- matchForm(gm0, update(gm0, family= "binomial")) expect_equal(gm0, res_chr) expect_equal(gm0, matchForm(gm0, update(gm0, family= binomial()))) expect_warning(res_list <- matchForm(gm0, update(gm0, family= list(family = "binomial", link = "logit")), family=TRUE)) expect_equal(gm0, res_list) }) test_that("Update Binomial", { ## matchForm(): call doesn't match (formula gets mangled?) ## timing different gm1u <- update(gm0, . ~ . + period) expect_equal(gm1, matchForm(gm1, gm1u)) }) test_that("internal structures", { ## RE terms only in cond and zi model, not disp: GH #79 expect_equal(names(fm0$modelInfo$reTrms), c("cond","zi")) }) test_that("close to lme4 results", { expect_true(require("lme4")) L <- load(system.file("testdata", "lme-tst-fits.rda", package="lme4", mustWork=TRUE)) expect_is(L, "character") message("Loaded testdata from lme4:\n ", paste(strwrap(paste(L, collapse = ", ")), collapse = "\n ")) if(FALSE) { ## part of the above [not recreated here for speed mostly:] ## intercept only in both fixed and random effects fit_sleepstudy_0 <- lmer(Reaction ~ 1 + ( 1 | Subject), sleepstudy) ## fixed slope, intercept-only RE fit_sleepstudy_1 <- lmer(Reaction ~ Days + ( 1 | Subject), sleepstudy) ## fixed slope, intercept & slope RE fit_sleepstudy_2 <- lmer(Reaction ~ Days + (Days|Subject), sleepstudy) ## fixed slope, independent intercept & slope RE fit_sleepstudy_3 <- lmer(Reaction ~ Days + (1|Subject)+ (0+Days|Subject), sleepstudy) cbpp$obs <- factor(seq(nrow(cbpp))) ## intercept-only fixed effect fit_cbpp_0 <- glmer(cbind(incidence, size-incidence) ~ 1 + (1|herd), cbpp, family=binomial) ## include fixed effect of period fit_cbpp_1 <- update(fit_cbpp_0, . ~ . + period) ## include observation-level RE fit_cbpp_2 <- update(fit_cbpp_1, . ~ . + (1|obs)) ## specify formula by proportion/weights instead fit_cbpp_3 <- update(fit_cbpp_1, incidence/size ~ period + (1 | herd), weights = size) } ## What we really want to compare against - Maximum Likelihood (package 'DESCRIPTION' !) fi_0 <- lmer(Reaction ~ 1 + ( 1 | Subject), sleepstudy, REML=FALSE) fi_1 <- lmer(Reaction ~ Days + ( 1 | Subject), sleepstudy, REML=FALSE) fi_2 <- lmer(Reaction ~ Days + (Days| Subject), sleepstudy, REML=FALSE) fi_3 <- lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject), sleepstudy, REML=FALSE) ## Now check closeness to lme4 results ## ...................................... }) context("trickier examples") data(Owls) ## is <<- necessary ... ? Owls <- transform(Owls, ArrivalTime=scale(ArrivalTime,center=TRUE,scale=FALSE), NCalls= SiblingNegotiation) test_that("basic zero inflation", { expect_true(require("pscl")) o0.tmb <- glmmTMB(NCalls~(FoodTreatment + ArrivalTime) * SexParent + offset(logBroodSize), ziformula=~1, data = Owls, family=poisson(link = "log")) o0.pscl <-zeroinfl(NCalls~(FoodTreatment + ArrivalTime) * SexParent + offset(logBroodSize)|1, data = Owls) expect_equal(summary(o0.pscl)$coefficients$count, summary(o0.tmb)$coefficients$cond, tolerance=1e-5) expect_equal(summary(o0.pscl)$coefficients$zero, summary(o0.tmb)$coefficients$zi, tolerance=1e-5) o1.tmb <- glmmTMB(NCalls~(FoodTreatment + ArrivalTime) * SexParent + offset(logBroodSize) + diag(1 | Nest), ziformula=~1, data = Owls, family=poisson(link = "log")) expect_equal(ranef(o1.tmb)$cond$Nest[1,1], -0.484, tolerance=1e-2) #glmmADMB gave -0.4842771 }) test_that("alternative binomial model specifications", { d <<- data.frame(y=1:10,N=20,x=1) ## n.b. global assignment for testthat m0 <- suppressWarnings(glmmTMB(cbind(y,N-y) ~ 1, data=d, family=binomial())) m3 <- glmmTMB(y/N ~ 1, weights=N, data=d, family=binomial()) expect_equal(fixef(m0),fixef(m3)) m1 <- glmmTMB((y>5)~1,data=d,family=binomial) m2 <- glmmTMB(factor(y>5)~1,data=d,family=binomial) expect_equal(c(unname(logLik(m1))),-6.931472,tol=1e-6) expect_equal(c(unname(logLik(m2))),-6.931472,tol=1e-6) }) test_that("formula expansion", { ## test that formulas are expanded in the call/printed form <- Reaction ~ Days + (1|Subject) expect_equal(grep("Reaction ~ Days", capture.output(print(glmmTMB(form, sleepstudy))), fixed=TRUE),1) }) test_that("NA handling", { data(sleepstudy,package="lme4") ss <- sleepstudy ss$Days[c(2,20,30)] <- NA op <- options(na.action=NULL) expect_error(glmmTMB(Reaction~Days,ss),"missing values in object") op <- options(na.action=na.fail) expect_error(glmmTMB(Reaction~Days,ss),"missing values in object") expect_equal(unname(fixef(glmmTMB(Reaction~Days,ss,na.action=na.omit))[[1]]), c(249.70505,11.11263), tolerance=1e-6) op <- options(na.action=na.omit) expect_equal(unname(fixef(glmmTMB(Reaction~Days,ss))[[1]]), c(249.70505,11.11263), tolerance=1e-6) }) test_that("quine NB fit", { quine.nb1 <- MASS::glm.nb(Days ~ Sex/(Age + Eth*Lrn), data = quine) quine.nb2 <- glmmTMB(Days ~ Sex/(Age + Eth*Lrn), data = quine, family=nbinom2()) expect_equal(coef(quine.nb1),fixef(quine.nb2)[["cond"]], tolerance=1e-4) }) ## quine.nb3 <- glmmTMB(Days ~ Sex + (1|Age), data = quine, ## family=nbinom2()) test_that("contrasts arg", { quine.nb1 <- MASS::glm.nb(Days ~ Sex*Age, data = quine, contrasts=list(Sex="contr.sum",Age="contr.sum")) quine.nb2 <- glmmTMB(Days ~ Sex*Age, data = quine, family=nbinom2(), contrasts=list(Sex="contr.sum",Age="contr.sum")) expect_equal(coef(quine.nb1),fixef(quine.nb2)[["cond"]], tolerance=1e-4) }) glmmTMB/tests/testthat/test-saveload.R0000644000176200001440000000070213614324717017460 0ustar liggesusersstopifnot(require("testthat"), require("glmmTMB")) context("Saving and loading glmmTMB objects") test_that("summary consistency", { data(sleepstudy, package="lme4") fm1 <- glmmTMB(Reaction ~ Days + (1|Subject), sleepstudy) s1 <- capture.output(print(summary(fm1))) save(fm1, file="fm1.Rdata") load("fm1.Rdata") file.remove("fm1.Rdata") s2 <- capture.output(print(summary(fm1))) expect_identical(s1, s2) }) glmmTMB/tests/testthat/test-offset.R0000644000176200001440000000411113614324717017146 0ustar liggesusersstopifnot(require("testthat"), require("glmmTMB")) context("offsets") set.seed(101) n <- 10000 mux <- 10 sdx <- 10 a <- .1 b <- 0 residsd <- .01 x <- rnorm(n, mux, sdx) o <<- 2*x+100 o2 <- rep(c(1,5),each=n/2) r1 <- rnorm(n, sd=residsd) r2 <- rnorm(n, sd=residsd*o2) y0 <- a*x + b + r1 y1 <- a*x+b+o+r1 y2 <- a*x+b+r2 y3 <- a*x + b + o + r2 ## global assignment for testthat dat <<- data.frame(y0, y1, y2, y3, x, o, o2, o3=o) m.lm <- lm(y1~x, offset=o, dat) m.lm0 <- lm(y1~x, dat) test_that("LM with offset as argument", { m1 <- glmmTMB(y1~x, offset=o, dat) expect_equal(fixef(m1)[[1]], coef(m.lm), tol=1e-6) m3 <- glmmTMB(y1~x, offset=o) expect_equal(fixef(m3)[[1]], coef(m.lm), tol=1e-6) }) test_that("LM with offset in formula", { m2 <- glmmTMB(y1~x+offset(o), dat) expect_equal(fixef(m2)[[1]], coef(m.lm), tol=1e-6) m4 <- glmmTMB(y1~x+offset(o)) expect_equal(fixef(m4)[[1]], coef(m.lm), tol=1e-6) }) ## test_that("LM with offset in zero-inflation formula", { ## don't have anything sensible to try here yet ... ## glmmTMB(y~x,zi=~1+offset(o), dat) ## }) test_that("LM with offset in formula - variable not in environment", { m5 <- glmmTMB(y1~x,offset=o3, dat) expect_equal(fixef(m5)[[1]],coef(m.lm), tol=1e-6) nullvalue <- NULL m6 <- glmmTMB(y1~x,offset=nullvalue, dat) expect_equal(fixef(m6)[[1]],coef(m.lm0), tol=1e-6) }) test_that("LM with offset in dispersion formula", { expect_equal(sigma(glmmTMB(y1~x, dat)), sigma(glmmTMB(y2~x,disp=~1+offset(log(o2)*2), dat)), tolerance=1e-3) }) test_that("LM with multiple offsets (cond/dispersion)", { m1 <<- glmmTMB(y0~x, dat) m2 <<- glmmTMB(y3~x+offset(o),disp=~1+offset(log(o2)*2), dat) expect_equal(sigma(m1),sigma(m2),tolerance=1e-3) expect_equal(fixef(m1),fixef(m2),tolerance=1e-3) }) ## this was broken by an earlier multiple-offset formulation test_that("LM with random crap in the formula", { m1 <<- glmmTMB(y0~dat$x, dat) m2 <<- glmmTMB(y0~x, dat) expect_equal(unname(fixef(m1)$cond),unname(fixef(m2)$cond)) }) glmmTMB/tests/testthat/test-control.R0000644000176200001440000000362513614324717017351 0ustar liggesusersstopifnot(require("testthat"), require("glmmTMB")) context("glmmTMBControl") ## Some selected L1-distances between two fits distFits <- function(fit1, fit2) { s1 <- summary(fit1) s2 <- summary(fit2) glmmTMB:::namedList( max(abs((coef(s1)$cond - coef(s2)$cond)[,"Estimate"])), max(abs((coef(s1)$cond - coef(s2)$cond)[,"Std. Error"])), abs(logLik(fit1) - logLik(fit2)) ) } test_that("profile method", { myfit <- function(...) { glmmTMB(count ~ mined * spp + (1|site), family = poisson, data = Salamanders, control = glmmTMBControl(...)) } m1 <- myfit( profile=FALSE ) m2 <- myfit( profile=TRUE ) expect_true( all( distFits(m1, m2) < c(1e-4, 1e-2, 1e-4) ) ) ## ########################################################### myfit <- function(...) { glmmTMB(count ~ mined * spp + (1|site), zi = ~ (1 | spp), family = poisson, data = Salamanders, control = glmmTMBControl(...)) } m1 <- myfit( profile=FALSE ) m2 <- myfit( profile=TRUE ) expect_true( all( distFits(m1, m2) < c(1e-4, 1e-2, 1e-4) ) ) }) test_that("parallel regions", { myfit <- function(...) { glmmTMB(count ~ mined * spp + (1|site), family = poisson, data = Salamanders, verbose = FALSE, control = glmmTMBControl(...)) } # Record time and model capture_time_model <- function(...) { start_time <- Sys.time() model <- myfit(...) end_time <- Sys.time() return(list(model = model, elapsed_time = end_time - start_time )) } m1 <- capture_time_model( parallel = 1 ) m2 <- capture_time_model( parallel = parallel::detectCores() ) expect_true( all( distFits(m1[[1]], m2[[1]]) < c(1e-4, 1e-2, 1e-4) ) ) # expect_true( m1[[2]] <= m2[[2]]) }) glmmTMB/tests/testthat/test-zi.R0000644000176200001440000000464613614324717016317 0ustar liggesusersstopifnot(require("testthat"), require("glmmTMB"), require("lme4")) ## simulate something smaller than the Owls data set? context("ZI models") data(Owls) test_that("zi", { ## Fit negative binomial model with "constant" Zero Inflation : owls_nb1 <<- glmmTMB(SiblingNegotiation ~ FoodTreatment*SexParent + (1|Nest)+offset(log(BroodSize)), family = nbinom1(), ziformula = ~1, data=Owls) owls_nb2 <<- update(owls_nb1, ziformula = ~ FoodTreatment*SexParent + (1|Nest)) owls_nb3 <<- update(owls_nb1,ziformula=~.) expect_equal(fixef(owls_nb2), structure(list(cond = structure(c(0.812028613585629, -0.342496105044418, -0.0751681324132088, 0.122484981295054), .Names = c("(Intercept)", "FoodTreatmentSatiated", "SexParentMale", "FoodTreatmentSatiated:SexParentMale")), zi = structure(c(-2.20863281353936, 1.86779027553285, -0.825200772653965, 0.451435813933449), .Names = c("(Intercept)", "FoodTreatmentSatiated", "SexParentMale", "FoodTreatmentSatiated:SexParentMale")), disp = structure(1.33089630005212, .Names = "(Intercept)")), .Names = c("cond", "zi", "disp"), class = "fixef.glmmTMB"), tolerance=1e-5) expect_equal(fixef(owls_nb2),fixef(owls_nb3)) }) test_that("zi beta and Gamma", { suppressWarnings(RNGversion("3.5.1")) set.seed(101) dd <- data.frame(yb=c(rbeta(100,shape1=2,shape2=1),rep(0,10)), yg=c(rgamma(100,shape=1.5,rate=1),rep(0,10))) expect_error(glmmTMB(yb~1, data=dd, family=beta_family), "y values must be") m1 <- glmmTMB(yb~1, data=dd, family=beta_family, zi=~1) expect_equal(unname(plogis(fixef(m1)[["zi"]])),1/11) expect_equal(unname(fixef(m1)[["cond"]]), 0.6211636, tolerance=1e-5) ## need *both* ziformula and family=ziGamma for gamma-hurdle expect_error(glmmTMB(yg~1, data=dd, family=Gamma), "non-positive values not allowed") expect_error(glmmTMB(yg~1, zi=~1, data=dd, family=Gamma), "non-positive values not allowed") expect_error(glmmTMB(yg~1, data=dd, family=ziGamma), "non-positive values not allowed") m2 <- glmmTMB(yg~1, data=dd, family=ziGamma(link="log"), zi=~1) expect_equal(unname(plogis(fixef(m2)[["zi"]])),1/11) expect_equal(unname(fixef(m2)[["cond"]]), 0.3995267, tolerance=1e-5) }) glmmTMB/tests/testthat/test-methods.R0000644000176200001440000003412313614324717017331 0ustar liggesusersstopifnot(require("testthat"), require("glmmTMB")) data(sleepstudy, cbpp, Pastes, package = "lme4") if (getRversion() < "3.3.0") { sigma.default <- function (object, use.fallback = TRUE, ...) sqrt(deviance(object, ...)/(nobs(object, use.fallback = use.fallback) - length(coef(object)))) } load(system.file("test_data", "models.rda", package="glmmTMB", mustWork=TRUE)) context("basic methods") test_that("Fitted and residuals", { expect_equal(length(fitted(fm2)),nrow(sleepstudy)) expect_equal(mean(fitted(fm2)),298.507891) expect_equal(mean(residuals(fm2)),0,tol=1e-5) ## Pearson and response are the same for a Gaussian model expect_equal(residuals(fm2,type="response"), residuals(fm2,type="pearson")) ## ... but not for Poisson or NB ... expect_false(mean(residuals(fm2P,type="response"))== mean(residuals(fm2P,type="pearson"))) expect_false(mean(residuals(fm2NB,type="response"))== mean(residuals(fm2NB,type="pearson"))) rr2 <- function(x) sum(residuals(x,type="pearson")^2) ## test Pearson resids for gaussian, Gamma vs. base-R versions ss <- as.data.frame(state.x77) expect_equal(rr2(glm(Murder~Population,ss,family=gaussian)), rr2(glmmTMB(Murder~Population,ss,family=gaussian))) expect_equal(rr2(glm(Murder~Population,ss,family=Gamma(link="log"))), rr2(glmmTMB(Murder~scale(Population),ss, family=Gamma(link="log"))),tol=1e-5) ## weights are incorporated in Pearson residuals ## GH 307 tmbm4 <- glm(incidence/size ~ period, data = cbpp, family = binomial, weights = size) tmbm5 <- glmmTMB(incidence/size ~ period, data = cbpp, family = binomial, weights = size) expect_equal(residuals(tmbm4,type="pearson"), residuals(tmbm5,type="pearson"),tolerance=1e-6) ## two-column responses give vector of residuals GH 307 tmbm6 <- glmmTMB(cbind(incidence,size-incidence) ~ period, data = cbpp, family = binomial) expect_equal(residuals(tmbm4,type="pearson"), residuals(tmbm6,type="pearson"),tolerance=1e-6) }) test_that("Predict", { expect_equal(predict(fm2),predict(fm2,newdata=sleepstudy)) pr2se <- predict(fm2, se.fit=TRUE) i <- sample(nrow(sleepstudy), 20) newdata <- sleepstudy[i, ] pr2sub <- predict(fm2, newdata=newdata, se.fit=TRUE) expect_equivalent(pr2se$fit, predict(fm2)) expect_equivalent(pr2se$fit[i], pr2sub$fit) expect_equivalent(pr2se$se.fit[i], pr2sub$se.fit) expect_equal(unname( pr2se$ fit[1] ), 254.2208, tol=1e-4) expect_equal(unname( pr2se$se.fit[1] ), 12.94514, tol=1e-4) expect_equal(unname( pr2se$ fit[100] ), 457.9684, tol=1e-4) expect_equal(unname( pr2se$se.fit[100] ), 14.13943, tol=1e-4) ## predict without response in newdata expect_equal(predict(fm2), predict(fm2,newdata=sleepstudy[,c("Days","Subject")])) }) test_that("VarCorr", { vv <- VarCorr(fm2) vv2 <- vv$cond$Subject expect_equal(dim(vv2),c(2,2)) expect_equal(outer(attr(vv2,"stddev"), attr(vv2,"stddev"))*attr(vv2,"correlation"), vv2,check.attributes=FALSE) vvd <- VarCorr(fm2diag) expect_equal(vvd$cond$Subject[1,2],0) ## off-diagonal==0 }) test_that("drop1", { dd <- drop1(fm2,test="Chisq") expect_equal(dd$AIC,c(1763.94,1785.48),tol=1e-4) }) test_that("anova", { aa <- anova(fm0,fm2) expect_equal(aa$AIC,c(1785.48,1763.94),tol=1e-4) }) test_that("terms", { ## test whether terms() are returned with predvars for doing ## model prediction etc. with complex bases dd <<- data.frame(x=1:10,y=1:10) require("splines") ## suppress convergence warnings(we know this is a trivial example) suppressWarnings(m <- glmmTMB(y~ns(x,3),dd)) ## if predvars is not properly attached to term, this will ## fail as it tries to construct a 3-knot spline from a single point expect_equal(model.matrix(delete.response(terms(m)),data=data.frame(x=1)), structure(c(1, 0, 0, 0), .Dim = c(1L, 4L), .Dimnames = list("1", c("(Intercept)", "ns(x, 3)1", "ns(x, 3)2", "ns(x, 3)3")), assign = c(0L, 1L, 1L, 1L))) }) test_that("terms back-compatibility", { f0 <- readRDS(system.file("test_data", "oldfit.rds", package="glmmTMB", mustWork=TRUE)) expect_true(!is.null(terms(f0))) }) test_that("summary_print", { getVal <- function(x,tag="Dispersion") { cc <- capture.output(print(summary(x))) if (length(gg <- grep(tag,cc,value=TRUE))==0) return(NULL) cval <- sub("^.*: ","",gg) ## get value after colon ... return(as.numeric(cval)) } ## no dispersion printed for Gaussian or disp==1 families expect_equal(getVal(fm2),654.9,tolerance=1e-2) expect_equal(getVal(fm2P),NULL) expect_equal(getVal(fm2G),0.00654,tolerance=1e-2) expect_equal(getVal(fm2NB,"Overdispersion"),286,tolerance=1e-2) }) test_that("sigma", { s1 <<- sigma(lm(Reaction~Days,sleepstudy)) s2 <<- sigma(glm(Reaction~Days,sleepstudy,family=Gamma(link="log"))) s3 <<- MASS::glm.nb(round(Reaction)~Days,sleepstudy) ## remove bias-correction expect_equal(sigma(fm3),s1*(1-1/nobs(fm3)),tolerance=1e-3) expect_equal(sigma(fm3G),s2,tolerance=5e-3) expect_equal(s3$theta,sigma(fm3NB),tolerance=1e-4) }) test_that("confint", { ci <- confint(fm2, 1:2, estimate=FALSE) expect_equal(ci, structure(c(238.406083254105, 7.52295734348693, 264.404107485727, 13.4116167530013), .Dim = c(2L, 2L), .Dimnames = list(c("(Intercept)", "Days"), c("2.5 %", "97.5 %"))), tolerance=1e-6) ciw <- confint(fm2, 1:2, method="Wald", estimate=FALSE) expect_warning(confint(fm2,type="junk"), "extra arguments ignored") ## Gamma test Std.Dev and sigma ci.2G <- confint(fm2G, full=TRUE, estimate=FALSE) ci.2G.expect <- structure(c(5.4810173444768, 0.0247781468857994, 0.0676097043327788, 0.0115949839191128, -0.518916570291726, 0.0720456818399729, 5.58401849115119, 0.0429217639222305, 0.150456372618643, 0.0264376535768207, 0.481694558481224, 0.0907365112123184), .Dim = c(6L, 2L), .Dimnames = list(c("cond.(Intercept)", "cond.Days", "cond.Std.Dev.(Intercept)", "cond.Std.Dev.Days", "cond.Cor.Days.(Intercept)", "sigma"), c("2.5 %", "97.5 %"))) expect_equal(ci.2G, ci.2G.expect, tolerance=1e-6) ## nbinom2 test Std.Dev and sigma ci.2NB <- confint(fm2NB, full=TRUE, estimate=FALSE) ci.2NB.expect <- structure(c(5.48098713986992, 0.0248163859092965, 0.066177247560203, 0.0113436356932709, -0.520883841816814, 183.810584738707, 5.58422550782448, 0.0428993227431795, 0.150917850214506, 0.026354988318893, 0.502211676507888, 444.735668635694), .Dim = c(6L, 2L), .Dimnames = list(c("cond.(Intercept)", "cond.Days", "cond.Std.Dev.(Intercept)", "cond.Std.Dev.Days", "cond.Cor.Days.(Intercept)", "sigma"), c("2.5 %", "97.5 %"))) expect_equal(ci.2NB, ci.2NB.expect, tolerance=1e-6) ## profile CI ## ... no RE ci.prof0 <- confint(fm_noRE, full=TRUE, method="profile", npts=3) expect_equal(ci.prof0, structure(c(238.216039176535, 7.99674863649355, 7.51779308310198, 264.368471102549, 12.8955469713508, 7.93347860201449), .Dim = 3:2, .Dimnames = list(c("(Intercept)", "Days", "d~(Intercept)"), c("2.5 %", "97.5 %"))), tolerance=1e-5) ci.prof <- confint(fm2,parm=1,method="profile", npts=3) expect_equal(ci.prof, structure(c(237.27249, 265.13383), .Dim = 1:2, .Dimnames = list( "(Intercept)", c("2.5 %", "97.5 %"))), tolerance=1e-6) ## uniroot CI ci.uni <- confint(fm2,parm=1,method="uniroot") expect_equal(ci.uni, structure(c(237.68071,265.12949,251.4050979), .Dim = c(1L, 3L), .Dimnames = list("(Intercept)", c("2.5 %", "97.5 %", "Estimate"))), tolerance=1e-6) ## check against 'raw' tmbroot tmbr <- TMB::tmbroot(fm2$obj,name=1) expect_equal(ci.uni[1:2],unname(c(tmbr))) ## GH #438 cc <- confint(fm4) expect_equal(dim(cc),c(5,3)) expect_equal(rownames(cc), c("(Intercept)", "Illiteracy", "Population", "Area", "`HS Grad`")) }) test_that("profile", { p1_th <- profile(fm1,parm="theta_",npts=4) expect_true(all(p1_th$.par=="theta_1|Subject.1")) p1_b <- profile(fm1,parm="beta_",npts=4) expect_equal(unique(as.character(p1_b$.par)), c("(Intercept)","Days")) }) test_that("profile (no RE)", { p0_th <- profile(fm_noRE,npts=4) expect_equal(dim(p0_th),c(43,3)) }) test_that("vcov", { expect_equal(dim(vcov(fm2)[[1]]),c(2,2)) expect_equal(dim(vcov(fm2,full=TRUE)),c(6,6)) expect_equal(rownames(vcov(fm2,full=TRUE)), structure(c("(Intercept)", "Days", "d~(Intercept)", "theta_Days|Subject.1", "theta_Days|Subject.2", "theta_Days|Subject.3"), .Names = c("cond1", "cond2", "disp", "theta1", "theta2", "theta3"))) ## vcov doesn't include dispersion for non-dispersion families ... expect_equal(dim(vcov(fm2P,full=TRUE)),c(5,5)) }) set.seed(101) test_that("simulate", { sm2 <<- rowMeans(do.call(cbind, simulate(fm2, 10))) sm2P <<- rowMeans(do.call(cbind, simulate(fm2P, 10))) sm2G <<- rowMeans(do.call(cbind, simulate(fm2G, 10))) sm2NB <<- rowMeans(do.call(cbind, simulate(fm2NB, 10))) expect_equal(sm2, sleepstudy$Reaction, tol=20) expect_equal(sm2P, sleepstudy$Reaction, tol=20) expect_equal(sm2G, sleepstudy$Reaction, tol=20) expect_equal(sm2NB, sleepstudy$Reaction, tol=20) }) test_that("formula", { expect_equal(formula(fm2),Reaction ~ Days + (Days | Subject)) expect_equal(formula(fm2, fixed.only=TRUE),Reaction ~ Days) expect_equal(formula(fm2, component="disp"), ~1) expect_equal(formula(fm2, component="disp", fixed.only=TRUE), ~1) expect_equal(formula(fm2, component="zi"), ~0) expect_equal(formula(fm2, component="zi", fixed.only=TRUE), ~0) }) context("simulate consistency with glm/lm") test_that("binomial", { s1 <- simulate(f1b, 5, seed=1) s2 <- simulate(f2b, 5, seed=1) s3 <- simulate(f3b, 5, seed=1) expect_equal(max(abs(as.matrix(s1) - as.matrix(s2))), 0) expect_equal(max(abs(as.matrix(s1) - as.matrix(s3))), 0) }) test_that("residuals from binomial factor responses", { expect_equal(residuals(fm2Bf),residuals(fm2Bn)) }) mkstr <- function(dd) { ff <- which(vapply(dd,is.factor,logical(1))) for (i in ff) { dd[[i]] <- as.character(dd[[i]]) } return(dd) } rr <- function(txt) { read.table(header=TRUE,stringsAsFactors=FALSE,text=txt, colClasses=rep(c("character","numeric"),c(5,2))) } context("Ranef etc.") test_that("as.data.frame(ranef(.)) works", { expect_equal( mkstr(as.data.frame(ranef(fm3ZIP))[c("cond.1","cond.19","zi.1"),]), rr( " component grpvar term grp condval condsd cond.1 cond Subject (Intercept) 308 1.066599e-02 0.040430751 cond.19 cond Subject Days 308 2.752424e-02 0.007036958 zi.1 zi Subject (Intercept) 308 -2.850238e-07 0.127106817 "), tolerance=1e-5) expect_equal( mkstr(as.data.frame(ranef(fm2diag2))[c("cond.1","cond.19"),]), rr( " component grpvar term grp condval condsd cond.1 cond Subject (Intercept) 308 1.854597 13.294388 cond.19 cond Subject Days 308 9.236420 2.699692 "), tolerance=1e-5) }) test_that("ranef(.) works with more than one grouping factor", { expect_equal(sort(names(ranef(fmP)[["cond"]])), c("batch","sample")) expect_equal(dim(as.data.frame(ranef(fmP))), c(40,6)) }) test_that("coef(.) works", { cc <- coef(fm3ZIP) expect_equal(cc[["cond"]][[1]][1,], structure(list(`(Intercept)` = 5.54291514202372, Days = 0.0613847280572168), row.names = "308", class = "data.frame"), tolerance=1e-5) expect_equal(cc[["zi"]][[1]][1,,drop=FALSE], structure(list(`(Intercept)` = -13.2478200379555), row.names = "308", class = "data.frame"), tolerance=1e-5) }) test_that("simplified coef(.) printing", { op <- options(digits=2) cc <- capture.output(print(coef(fm0))) expect_equal(cc[1:3],c("$Subject", " Days (Intercept)", "308 20.6 249")) options(op) }) context("refit") ## weird stuff here with environments, testing ... test_that("various binomial response types work", { ## FIXME: test for factors, explicit cbind(.,.) ## do we need to define this within this scope? ddb <- data.frame(y=I(yb)) ddb <- within(ddb, { w <- rowSums(yb) prop <- y[,1]/w }) s1 <- simulate(f1b, 1, seed=1) f1 <- fixef(lme4::refit(f1b,s1[[1]])) s3 <- simulate(f3b, 1, seed=1) f3 <- fixef(lme4::refit(f3b,s3[[1]])) expect_equal(f1,f3) expect_error(lme4::refit(f4b,s3[[1]]), "can't find response in data") }) test_that("binomial response types work with data in external scope", { s1 <- simulate(f1b, 1, seed=1) f1 <- fixef(lme4::refit(f1b,s1[[1]])) s3 <- simulate(f3b, 1, seed=1) f3 <- fixef(lme4::refit(f3b,s3[[1]])) expect_equal(f1,f3) }) glmmTMB/tests/testthat/test-utils.R0000644000176200001440000000031713614324717017024 0ustar liggesusersstopifnot(require("testthat"), require("glmmTMB")) test_that("addForm", { expect_equal(addForm(y~x,~1,~z),y~x+1+z) expect_warning(addForm(y~x,z~1), "discarding LHS") }) glmmTMB/tests/testthat/test-downstream.R0000644000176200001440000000726213616054060020046 0ustar liggesusersrequire(glmmTMB) require(testthat) data(sleepstudy,package="lme4") if (require(emmeans)) { context("emmeans") m1 <- glmmTMB(SiblingNegotiation ~ FoodTreatment*SexParent + (1|Nest)+offset(log(BroodSize)), family = nbinom1(), zi = ~1, data=Owls) em1 <- emmeans(m1, poly ~ FoodTreatment | SexParent) em2 <- emmeans(m1, poly ~ FoodTreatment | SexParent, type = "response") expect_is(em1,"emm_list") expect_true(any(grepl("given on the log (not the response) scale", capture.output(print(em1)),fixed=TRUE))) expect_true(any(grepl("back-transformed from the log scale", capture.output(print(em2))))) expect_equal(summary(em1[[2]])$estimate[1], -0.8586306, tolerance=1e-4) expect_equal(summary(em2[[2]])$ratio[1], 0.42374, tolerance=1e-4) m2 <- glmmTMB(count ~ spp + mined + (1|site), zi=~spp + mined, family=nbinom2, data=Salamanders) rgc <- ref_grid(m2, component = "cond") expect_is(rgc, "emmGrid") expect_equal(predict(rgc)[2], -1.574079, tolerance=1e-4) expect_equal(predict(rgc, type="response")[2], 0.207198, tolerance=1e-4) rgz <- ref_grid(m2, component = "zi") expect_is(rgz, "emmGrid") expect_equal(predict(rgz)[2], 2.071444, tolerance=1e-4) expect_equal(predict(rgz, type="response")[2], 0.88809654, tolerance=1e-4) } if (require(car) && getRversion()>="3.6.0") { ## only testing on recent R: see comments ## https://github.com/glmmTMB/glmmTMB/pull/547#issuecomment-580690208 ## https://github.com/glmmTMB/glmmTMB/issues/493#issuecomment-578569564 context("car::Anova") fm1 <- glmmTMB(Reaction~Days+(1|Subject),sleepstudy) ## lme4 is imported so we don't need to explicitly require() it fm0 <- lme4::lmer(Reaction~Days+(1|Subject),sleepstudy,REML=FALSE) expect_equal(Anova(fm1),Anova(fm0),tolerance=3e-6) expect_equal(Anova(fm1,type="III"),Anova(fm0,type="III"),tolerance=3e-6) ## test Anova on various components fmd <- glmmTMB(Reaction~Days+(1|Subject), disp=~I(Days>5), sleepstudy, REML=FALSE) ad <- Anova(fmd,component="disp") expect_equal(ad[1,1],18.767,tolerance=1e-5) expect_equal(rownames(ad), "I(Days > 5)") ac <- Anova(fmd,component="cond") expect_equal(ac[1,1], 160.1628, tolerance=1e-5) expect_equal(rownames(ac), "Days") expect_error(Anova(fmd,component="zi"), "trivial fixed effect") } if (require(effects)) { context("effects") ## pass dd: some kind of scoping issue in testthat context f <- function(x,dd) { sapply(allEffects(x), function(y) { y$transformation$inverse(y$fit) }) } fm2_tmb <- glmmTMB(round(Reaction)~Days+(1|Subject),family=poisson,data=sleepstudy) fm2_lmer <- lme4::glmer(round(Reaction)~Days+(1|Subject),family=poisson,data=sleepstudy) if (getRversion() >= "3.6.0") { ## only testing on recent R: see comments ## https://github.com/glmmTMB/glmmTMB/pull/547#issuecomment-580690208 ## https://github.com/glmmTMB/glmmTMB/issues/493#issuecomment-578569564 expect_equal(f(fm2_tmb),f(fm2_lmer),tolerance=2e-5) ## set.seed(101) dd <<- data.frame(y=rnbinom(1000,mu=4,size=1), x = rnorm(1000), f=factor(rep(LETTERS[1:20],each=50))) fm3_tmb <- glmmTMB(y~x,family=nbinom2,data=dd) fm3_MASS <- MASS::glm.nb(y~x,data=dd) ## suppressing "overriding variance function for effects: computed variances may be incorrect" warning here expect_equal(suppressWarnings(f(fm3_tmb,dd)),f(fm3_MASS,dd),tolerance=2e-5) } ## recent R } ## effects glmmTMB/tests/testthat/test-families.R0000644000176200001440000003522213614324717017460 0ustar liggesusers## test more exotic familes/model types stopifnot(require("testthat"), require("glmmTMB")) simfun0 <- function(beta=c(2,1), sd.re=5, ngrp=10,nobs=200, invlink=exp) { x <- rnorm(nobs) f <- factor(rep(1:ngrp,nobs/ngrp)) u <- rnorm(ngrp,sd=sd.re) eta <- beta[1]+beta[2]*x+u[f] mu <- invlink(eta) return(data.frame(x,f,mu)) } context("alternative binomial specifications") test_that("binomial", { load(system.file("testdata","radinger_dat.RData",package="lme4")) radinger_dat <<- radinger_dat ## global assignment for testthat mod1 <<- glmmTMB(presabs~predictor+(1|species),family=binomial, radinger_dat) mod2 <<- update(mod1,as.logical(presabs)~.) expect_equal(predict(mod1),predict(mod2)) ## Compare 2-column and prop/size specification dd <- data.frame(success=1:10, failure=11:20) dd$size <- rowSums(dd) dd$prop <- local( success / size, dd) mod4 <- glmmTMB(cbind(success,failure)~1,family=binomial,data=dd) mod5 <- glmmTMB(prop~1,weights=size,family=binomial,data=dd) expect_equal( logLik(mod4) , logLik(mod5) ) expect_equal( fixef(mod4)$cond , fixef(mod5)$cond ) ## Now with extra weights dd$w <- 2 mod6 <- glmmTMB(cbind(success,failure)~1,family=binomial,data=dd,weights=w) mod7 <- glmmTMB(prop~1,weights=size*w,family=binomial,data=dd) mod6.glm <- glm(cbind(success,failure)~1,family=binomial,data=dd,weights=w) mod7.glm <- glm(prop~1,weights=size*w,family=binomial,data=dd) expect_equal( logLik(mod6)[[1]] , logLik(mod6.glm)[[1]] ) expect_equal( logLik(mod7)[[1]] , logLik(mod7.glm)[[1]] ) expect_equal( fixef(mod6)$cond , fixef(mod7)$cond ) ## Test TRUE/FALSE specification x <- c(TRUE, TRUE, FALSE) m1 <- glmmTMB(x~1, family=binomial()) m2 <- glm (x~1, family=binomial()) expect_equal( as.numeric(logLik(m1)), as.numeric(logLik(m2)) ) expect_equal( as.numeric(unlist(fixef(m1))), as.numeric(coef(m2)) ) ## Mis-specifications prop <- c(.1, .2, .3) ## weights=1 => prop * weights non integers expect_warning( glmmTMB(prop~1, family=binomial()) ) ## Warning as glm x <- c(1, 2, 3) ## weights=1 => x > weights ! expect_error ( glmmTMB(x~1, family=binomial()) ) ## Error as glm }) context("non-integer count warnings") test_that("count distributions", { dd <- data.frame(y=c(0.5,1,1,1)) for (f in c("binomial","betabinomial","poisson", "genpois", ## "compois", ## fails anyway ... "truncated_genpois", # "truncated_compois", "nbinom1", "nbinom2" # why do these truncated cases fail? ##, "truncated_nbinom1", ##"truncated_nbinom2" )) { expect_warning(m <- glmmTMB(y~1,data=dd,family=f), "non-integer") } }) context("fitting exotic families") test_that("beta", { set.seed(101) nobs <- 200; eps <- 0.001; phi <- 0.1 dd0 <- simfun0(nobs=nobs,sd.re=1,invlink=plogis) y <- with(dd0,rbeta(nobs,shape1=mu/phi,shape2=(1-mu)/phi)) dd <<- data.frame(dd0,y=pmin(1-eps,pmax(eps,y))) m1 <- glmmTMB(y~x+(1|f),family=beta_family(), data=dd) expect_equal(fixef(m1)[[1]], structure(c(1.98250567574413, 0.843382531038295), .Names = c("(Intercept)", "x")), tol=1e-5) expect_equal(c(VarCorr(m1)[[1]][[1]]), 0.433230926800709, tol=1e-5) ## allow family="beta", but with warning expect_warning(m2 <- glmmTMB(y~x+(1|f),family="beta", data=dd),"please use") expect_equal(coef(summary(m1)),coef(summary(m2))) }) test_that("nbinom", { nobs <- 200; phi <- 0.1 set.seed(101) dd0 <- simfun0(nobs=nobs) ## global assignment for testthat (??) dd <- data.frame(dd0,y=rnbinom(nobs,size=phi,mu=dd0$mu)) m1 <- glmmTMB(y~x+(1|f),family=nbinom2(), data=dd) expect_equal(fixef(m1)[[1]], structure(c(2.09866748794435, 1.12703589660625), .Names = c("(Intercept)", "x")), tol=1e-5) expect_equal(c(VarCorr(m1)[[1]][[1]]), 9.54680210862774, tol=1e-5) expect_equal(sigma(m1),0.09922738,tol=1e-5) ## nbinom1 ## to simulate, back-calculate shape parameters for NB2 ... nbphi <- 2 nbvar <- nbphi*dd0$mu ## n.b. actual model is (1+phi)*var, ## so estimate of phi is approx. 1 ## V = mu*(1+mu/k) -> mu/k = V/mu-1 -> k = mu/(V/mu-1) k <- with(dd0,mu/(nbvar/mu - 1)) y <- rnbinom(nobs,size=k,mu=dd$mu) dd <- data.frame(dd0,y=y) ## global assignment for testthat m1 <- glmmTMB(y~x+(1|f),family=nbinom1(), data=dd) expect_equal(c(unname(c(fixef(m1)[[1]])), c(VarCorr(m1)[[1]][[1]]), sigma(m1)), c(1.93154240357181, 0.992776302432081, 16.447888398429, 1.00770603513152), tol=1e-5) ## identity link: GH #20 x <- 1:100; m <- 2; b <- 100 y <- m*x+b set.seed(101) dat <<- data.frame(obs=rnbinom(length(y), mu=y, size=5), x=x) ## with(dat, plot(x, obs)) ## coef(mod1 <- MASS::glm.nb(obs~x,link="identity",dat)) expect_equal(fixef(glmmTMB(obs~x, family=nbinom2(link="identity"), dat)), structure(list(cond = structure(c(115.092240041138, 1.74390840106971), .Names = c("(Intercept)", "x")), zi = numeric(0), disp = structure(1.71242627201796, .Names = "(Intercept)")), .Names = c("cond", "zi", "disp"), class = "fixef.glmmTMB")) ## segfault (GH #248) dd <- data.frame(success=1:10,failure=10) expect_error(glmmTMB(cbind(success,failure)~1,family=nbinom2,data=dd), "matrix-valued responses are not allowed") }) test_that("dbetabinom", { set.seed(101) nobs <- 200; eps <- 0.001; phi <- 0.1 dd0 <- simfun0(nobs=nobs,sd.re=1,invlink=plogis) p <- with(dd0,rbeta(nobs,shape1=mu/phi,shape2=(1-mu)/phi)) p <- pmin(1-eps,pmax(p,eps)) b <- rbinom(nobs,size=5,prob=p) dd <<- data.frame(dd0,y=b,N=5) m1 <- glmmTMB(y/N~x+(1|f), weights=N, family=betabinomial(), data=dd) expect_equal(c(unname(c(fixef(m1)[[1]])), c(VarCorr(m1)[[1]][[1]]), sigma(m1)), c(2.1482114,1.0574946,0.7016553,8.3768711), tolerance=1e-5) ## Two-column specification m2 <- glmmTMB(cbind(y, N-y) ~ x + (1|f), family=betabinomial(), data=dd) expect_identical(m1$fit, m2$fit) }) test_that("truncated", { ## Poisson set.seed(101) z_tp <<- rpois(1000,lambda=exp(1)) z_tp <<- z_tp[z_tp>0] if (FALSE) { ## n.b.: keep library() calls commented out, they may ## trigger CRAN complaints ## library(glmmADMB) g0_tp <- glmmadmb(z_tp~1,family="truncpoiss",link="log") fixef(g0) ## 0.9778591 } g1_tp <- glmmTMB(z_tp~1,family=truncated_poisson(), data=data.frame(z_tp)) expect_equal(unname(fixef(g1_tp)[[1]]),0.9778593,tol=1e-5) ## Truncated poisson with zeros => invalid: num_zeros <- 10 z_tp0 <<- c(rep(0, num_zeros), z_tp) expect_error(g1_tp0 <- glmmTMB(z_tp0~1,family=truncated_poisson(), data=data.frame(z_tp0))) ## Truncated poisson with zeros and zero-inflation: g1_tp0 <- glmmTMB(z_tp0~1,family=truncated_poisson(), ziformula=~1, data=data.frame(z_tp0)) expect_equal( plogis(as.numeric(fixef(g1_tp0)$zi)), num_zeros/length(z_tp0), tol=1e-7 ) ## Test zero-prob expect_equal(fixef(g1_tp0)$cond, fixef(g1_tp)$cond, tol=1e-6) ## Test conditional model ## nbinom2 set.seed(101) z_nb <<- rnbinom(1000,size=2,mu=exp(2)) z_nb <<- z_nb[z_nb>0] if (FALSE) { ## library(glmmADMB) g0_nb2 <- glmmadmb(z_nb~1,family="truncnbinom",link="log") fixef(g0_nb2) ## 1.980207 g0_nb2$alpha ## 1.893 } g1_nb2 <- glmmTMB(z_nb~1,family=truncated_nbinom2(), data=data.frame(z_nb)) expect_equal(c(unname(fixef(g1_nb2)[[1]]),sigma(g1_nb2)), c(1.980207,1.892970),tol=1e-5) ## Truncated nbinom2 with zeros => invalid: num_zeros <- 10 z_nb0 <<- c(rep(0, num_zeros), z_nb) expect_error(g1_nb0 <- glmmTMB(z_nb0~1,family=truncated_nbinom2(), data=data.frame(z_nb0))) ## Truncated nbinom2 with zeros and zero-inflation: g1_nb0 <- glmmTMB(z_nb0~1,family=truncated_nbinom2(), ziformula=~1, data=data.frame(z_nb0)) expect_equal( plogis(as.numeric(fixef(g1_nb0)$zi)), num_zeros/length(z_nb0), tol=1e-7 ) ## Test zero-prob expect_equal(fixef(g1_nb0)$cond, fixef(g1_nb2)$cond, tol=1e-6) ## Test conditional model ## nbinom1: constant mean, so just a reparameterization of ## nbinom2 (should have the same likelihood) ## phi=(1+mu/k)=1+exp(2)/2 = 4.69 if (FALSE) { ## library(glmmADMB) g0_nb1 <- glmmadmb(z_nb~1,family="truncnbinom1",link="log") fixef(g0_nb1) ## 2.00112 g0_nb1$alpha ## 3.784 } g1_nb1 <- glmmTMB(z_nb~1,family=truncated_nbinom1(), data=data.frame(z_nb)) expect_equal(c(unname(fixef(g1_nb1)[[1]]),sigma(g1_nb1)), c(1.980207,3.826909),tol=1e-5) ## Truncated nbinom1 with zeros => invalid: expect_error(g1_nb0 <- glmmTMB(z_nb0~1,family=truncated_nbinom1(), data=data.frame(z_nb0))) ## Truncated nbinom2 with zeros and zero-inflation: g1_nb0 <- glmmTMB(z_nb0~1,family=truncated_nbinom1(), ziformula=~1, data=data.frame(z_nb0)) expect_equal( plogis(as.numeric(fixef(g1_nb0)$zi)), num_zeros/length(z_nb0), tol=1e-7 ) ## Test zero-prob expect_equal(fixef(g1_nb0)$cond, fixef(g1_nb1)$cond, tol=1e-6) ## Test conditional model }) ##Genpois test_that("truncated_genpois",{ tgp1 <<- glmmTMB(z_nb ~1, data=data.frame(z_nb), family=truncated_genpois()) tgpdat <<- data.frame(y=simulate(tgp1)[,1]) tgp2 <<- glmmTMB(y ~1, tgpdat, family=truncated_genpois()) expect_equal(sigma(tgp1), sigma(tgp2), tol=1e-1) expect_equal(fixef(tgp1)$cond[1], fixef(tgp2)$cond[1], tol=1e-2) cc <- confint(tgp2, full=TRUE) expect_lt(cc["sigma", "2.5 %"], sigma(tgp1)) expect_lt(sigma(tgp1), cc["sigma", "97.5 %"]) expect_lt(cc["cond.(Intercept)", "2.5 %"], unname(fixef(tgp1)$cond[1])) expect_lt(unname(fixef(tgp1)$cond[1]), cc["cond.(Intercept)", "97.5 %"]) }) context("trunc compois") ##Compois test_that("truncated_compois",{ cmpdat <<- data.frame(f=factor(rep(c('a','b'), 10)), y=c(15,5,20,7,19,7,19,7,19,6,19,10,20,8,21,8,22,7,20,8)) tcmp1 <<- glmmTMB(y~f, cmpdat, family= truncated_compois()) expect_equal(unname(fixef(tcmp1)$cond), c(2.9652730653, -0.9773987194), tol=1e-6) expect_equal(sigma(tcmp1), 0.1833339, tol=1e-6) expect_equal(predict(tcmp1,type="response")[1:2], c(19.4, 7.3), tol=1e-6) }) context("compois") test_that("compois", { # cmpdat <<- data.frame(f=factor(rep(c('a','b'), 10)), # y=c(15,5,20,7,19,7,19,7,19,6,19,10,20,8,21,8,22,7,20,8)) cmp1 <<- glmmTMB(y~f, cmpdat, family=compois()) expect_equal(unname(fixef(cmp1)$cond), c(2.9652730653, -0.9773987194), tol=1e-6) expect_equal(sigma(cmp1), 0.1833339, tol=1e-6) expect_equal(predict(cmp1,type="response")[1:2], c(19.4, 7.3), tol=1e-6) }) context("genpois") test_that("genpois", { gendat <<- data.frame(y=c(11,10,9,10,9,8,11,7,9,9,9,8,11,10,11,9,10,7,13,9)) gen1 <<- glmmTMB(y~1, family=genpois(), gendat) expect_equal(unname(fixef(gen1)$cond), 2.251292, tol=1e-6) expect_equal(sigma(gen1), 0.235309, tol=1e-6) }) context("tweedie") test_that("tweedie", { ## Boiled down tweedie:::rtweedie : rtweedie <- function (n, xi = power, mu, phi, power = NULL) { mu <- array(dim = n, mu) if ((power > 1) & (power < 2)) { rt <- array(dim = n, NA) lambda <- mu^(2 - power)/(phi * (2 - power)) alpha <- (2 - power)/(1 - power) gam <- phi * (power - 1) * mu^(power - 1) N <- rpois(n, lambda = lambda) for (i in (1:n)) { rt[i] <- sum(rgamma(N[i], shape = -alpha, scale = gam[i])) } } else stop() as.vector(rt) } ## Simulation experiment nobs <- 2000; mu <- 4; phi <- 2; p <- 1.7 set.seed(101) y <- rtweedie(nobs, mu=mu, phi=phi, power=p) twm <- glmmTMB(y ~ 1, family=tweedie()) ## Check mu expect_equal(unname( exp(fixef(twm)$cond) ), mu, tolerance = .1) ## Check phi expect_equal(unname( exp(fixef(twm)$disp) ), phi, tolerance = .1) ## Check power expect_equal(unname( plogis(twm$fit$par["thetaf"]) + 1 ), p, tolerance = .01) ## Check internal rtweedie used by simulate y2 <- c(simulate(twm)[,1],simulate(twm)[,1]) twm2 <- glmmTMB(y2 ~ 1, family=tweedie()) expect_equal(fixef(twm)$cond, fixef(twm2)$cond, tol=1e-1) expect_equal(sigma(twm), sigma(twm2), tol=1e-1) }) test_that("gaussian_sqrt", { set.seed(101) nobs <- 200 dd0_sqrt <- simfun0(nobs=nobs,sd.re=1,invlink=function(x) x^2) dd0_sqrt$y <- rnorm(nobs,mean=dd0_sqrt$mu,sd=0.1) g1 <- glmmTMB(y~x+(1|f), family=gaussian(link="sqrt"), data=dd0_sqrt) expect_equal(fixef(g1), structure(list(cond = c(`(Intercept)` = 2.03810165917618, x = 1.00241002916226 ), zi = numeric(0), disp = c(`(Intercept)` = -4.68350239019746)), class = "fixef.glmmTMB"), tol=1e-6) }) context("link function info available") fam1 <- c("poisson","nbinom1","nbinom2","compois") fam2 <- c("binomial","beta_family","betabinomial","tweedie") for (f in c(fam1,paste0("truncated_",fam1),fam2)) { ## print(f) expect_true("linkinv" %in% names(get(f)())) } context("link info added to family") d.AD <- data.frame(counts=c(18,17,15,20,10,20,25,13,12), outcome=gl(3,1,9), treatment=gl(3,3)) glm.D93 <- glmmTMB(counts ~ outcome + treatment, family = poisson(), d.AD) expect_warning(glm.D93B <- glmmTMB(counts ~ outcome + treatment, family = list(family="poisson", link="log"), d.AD)) ## note update(..., family= ...) is only equal up to tolerance=5e-5 ... glm.D93C <- glmmTMB(counts ~ outcome + treatment, family = "poisson", d.AD) expect_equal(predict(glm.D93),predict(glm.D93B)) expect_equal(predict(glm.D93),predict(glm.D93C)) glmmTMB/tests/testthat/test-weight.R0000644000176200001440000000407113614324717017154 0ustar liggesusersstopifnot(require("testthat"), require("glmmTMB"), require("MASS")) context("weight") set.seed(1) nrep <- 20 nsim <- 5 sdi <- .1 sdii <- .2 rho <- -.1 slope <- .8 ni<-100 dat <- expand.grid(i=1:ni, rep=1:nrep , x=c(0 ,.2, .4)) RE <- MASS::mvrnorm(n = ni, mu =c(0, 0), Sigma = matrix(c(sdi*sdi, rho*sdi*sdii, rho*sdi*sdii ,sdii*sdii),2,2)) inddat <- transform(dat, y=rpois(n=nrow(dat), lambda = exp(RE[i,1] + x*(slope + RE[i,2])))) ## aggdat = ddply(inddat, ~i+x+y, summarize, freq=length(rep)) aggdat <- with(inddat,as.data.frame(table(i,x,y), stringsAsFactors=FALSE)) aggdat <- aggdat[with(aggdat,order(i,x,y)),] ## cosmetic/match previous aggdat <- subset(aggdat,Freq>0) ## drop zero categories aggdat <- transform(aggdat, i=as.integer(i), x=as.numeric(x), y=as.numeric(y)) ## only difference from previous is name of weights arg (Freq vs freq) test_that("Weights can be an argument", { wei_glmmtmb <<- glmmTMB(y ~ x+(x|i), data=aggdat, weight=Freq, family="poisson") expect_equal(unname(fixef(wei_glmmtmb)$cond), c(-0.00907013282660578, 0.944062427131668), tolerance=1e-6) }) test_that("Return weights", { expect_equal(weights(wei_glmmtmb), aggdat$Freq) expect_equal(weights(wei_glmmtmb, type="prior"), aggdat$Freq) ## partial matching expect_equal(weights(wei_glmmtmb, type="prio"), aggdat$Freq) expect_error(weights(wei_glmmtmb, type = "working"),"should be one of") expect_warning(weights(wei_glmmtmb, junk = "abc"), "unused arguments ignored") }) ind_glmmtmb <<- glmmTMB(y ~ x+(x|i), data=inddat, family="poisson") test_that("Estimates are the same", { expect_equal(summary(wei_glmmtmb)$coefficients$cond, summary(ind_glmmtmb)$coefficients$cond, tolerance=1e-6) expect_equal(ranef(wei_glmmtmb), ranef(ind_glmmtmb), tolerance=1e-5) expect_equal(AIC(wei_glmmtmb), AIC(ind_glmmtmb), tolerance=1e-5) }) glmmTMB/tests/testthat/test-start.R0000644000176200001440000000100413614324717017013 0ustar liggesusersstopifnot(require("testthat"), require("glmmTMB")) data(sleepstudy, cbpp, package = "lme4") test_that("error messages for user-spec start", { expect_error( glmmTMB(Reaction~Days+(Days|Subject), sleepstudy, start=list(beta=c(2))), "parameter vector length mismatch.*length\\(beta\\)==1, should be 2") expect_error(glmmTMB(Reaction~Days+(Days|Subject), sleepstudy, start=list(junk=5)), "unrecognized vector 'junk'") }) glmmTMB/tests/testthat/test-formulas.R0000644000176200001440000000267213614324717017522 0ustar liggesusersstopifnot(require("testthat"), require("glmmTMB")) context("formula parsing") nrt <- function(x) length(x$reTrmFormulas) test_that("basic splitForm", { expect_equal(nrt(splitForm(y~(x+q))),0) ## reTrms part should be empty sf1 <- splitForm(y~(x+q)+(1|f)) sf2 <- splitForm(y~(x+q)+us(1|f)) sf3 <- splitForm(y~(x+q)+diag(1|f)) sf4 <- splitForm(~x+y+(f|g)+cs(1|g)) expect_equal(nrt(sf1),1) expect_equal(sf1$reTrmFormulas,list(quote(1|f))) expect_equal(sf1,sf2) expect_equal(sf3$reTrmClasses,"diag") expect_equal(sf4$reTrmClasses,c("us","cs")) }) test_that("slash terms", { sf5 <- splitForm(~x+y+(1|f/g)) sf6 <- splitForm(~x+y+(1|f/g/h)) sf7 <- splitForm(~x+y+(1|(f/g)/h)) expect_equal(sf5$reTrmClasses,rep("us",2)) expect_equal(sf6$reTrmClasses,rep("us",3)) expect_equal(sf6,sf7) }) test_that("grpvar terms", { sf8 <- splitForm(~x+y+(1|f*g)) sf9 <- splitForm(~x+y+(1|f+g+h)) expect_equal(sf8$reTrmClasses,rep("us",3)) expect_equal(sf8$reTrmFormula,list(quote(1|f),quote(1|g),quote(1|f:g))) expect_equal(sf9$reTrmClasses,rep("us",3)) expect_equal(sf9$reTrmFormula,list(quote(1|f),quote(1|g),quote(1|h))) }) test_that("noSpecial", { ## handle parentheses in formulas: GH #174 ff <- y~1+(((us(1|f)))) expect_equal(noSpecials(ff,delete=FALSE),y~1+(1|f)) expect_equal(noSpecials(ff),y~1) ## 'naked' special - left alone: GH #261 ff2 <- y ~ us expect_equal(noSpecials(ff2),ff2) }) glmmTMB/tests/testthat/test-bootMer.R0000644000176200001440000000152613614324717017276 0ustar liggesusersstopifnot(require("testthat"), require("glmmTMB"), require("lme4")) context("bootMer") fun <- function(x) predict(x)[1] test_that("Bernoulli responses", { Salamanders$pres <- as.numeric(Salamanders$count>0) m <- glmmTMB(pres ~ mined +(1|site), family=binomial, data=Salamanders) b <- lme4::bootMer(m, fun, nsim=2, seed=101) expect_true(var(c(b$t))>0) expect_equal(suppressWarnings(c(confint(b))), c(-1.579923,-1.250725),tolerance=1e-5) }) test_that("Bernoulli responses", { m <- glmmTMB(count ~ mined + (1|site), family=poisson, data=Salamanders) ss1 <- simulate(m,nsim=2,seed=101) b <- bootMer(m, fun, nsim=2, seed=101) expect_true(var(c(b$t))>0) expect_equal(suppressWarnings(c(confint(b))), c(-0.7261239,-0.6921794), tolerance=1e-5) }) glmmTMB/tests/AAAtest-all.R0000644000176200001440000000052013614324717015073 0ustar liggesusersif(require("testthat")) { pkg <- "glmmTMB" require(pkg, character.only=TRUE) print(sessionInfo()) test_check(pkg, reporter="summary") print(warnings()) # TODO? catch most of these by expect_warning(..) } else { warnings("Package 'testthat' not available, cannot run unit tests for package", sQuote(pkg)) } glmmTMB/configure.ac0000644000176200001440000000433013614324717014047 0ustar liggesusers## https://github.com/USCBiostats/software-dev/wiki/Setting-up-optional-OpenMP-support ## see also: https://stackoverflow.com/questions/5298830/how-to-include-m4-files-in-autoconf ## https://github.com/wch/r-source/blob/568e8affd870537f4f8d862e61f131848a6a9a86/m4/openmp.m4 # -*- Autoconf -*- # glmmTMB configure.ac # (with some code borrowed from RcppArmadillo configure.ac # and ARTP2 configure.ac) # # Process this file with autoconf to produce a configure script. AC_PREREQ([2.69]) AC_INIT(glmmTMB, m4_esyscmd_s([awk '/^Version:/ {print $2}' DESCRIPTION])) ## Set R_HOME, respecting an environment variable if one is set : ${R_HOME=$(R RHOME)} if test -z "${R_HOME}"; then AC_MSG_ERROR([Could not determine R_HOME.]) fi ## Use R to set CXX and CXXFLAGS CXX=$(${R_HOME}/bin/R CMD config CXX) CXXFLAGS=$("${R_HOME}/bin/R" CMD config CXXFLAGS) ## We are using C++ AC_LANG(C++) AC_REQUIRE_CPP dnl this the meat of R's m4/openmp.m4 OPENMP_[]_AC_LANG_PREFIX[]FLAGS= AC_ARG_ENABLE([openmp], [AS_HELP_STRING([--disable-openmp], [do not use OpenMP])]) if test "$enable_openmp" != no; then AC_CACHE_CHECK([for $[]_AC_CC[] option to support OpenMP], [ac_cv_prog_[]_AC_LANG_ABBREV[]_openmp], [AC_LINK_IFELSE([_AC_LANG_OPENMP], [ac_cv_prog_[]_AC_LANG_ABBREV[]_openmp='none needed'], [ac_cv_prog_[]_AC_LANG_ABBREV[]_openmp='unsupported' for ac_option in -fopenmp -xopenmp -qopenmp \ -openmp -mp -omp -qsmp=omp -homp \ -fopenmp=libomp \ -Popenmp --openmp; do ac_save_[]_AC_LANG_PREFIX[]FLAGS=$[]_AC_LANG_PREFIX[]FLAGS _AC_LANG_PREFIX[]FLAGS="$[]_AC_LANG_PREFIX[]FLAGS $ac_option" AC_LINK_IFELSE([_AC_LANG_OPENMP], [ac_cv_prog_[]_AC_LANG_ABBREV[]_openmp=$ac_option]) _AC_LANG_PREFIX[]FLAGS=$ac_save_[]_AC_LANG_PREFIX[]FLAGS if test "$ac_cv_prog_[]_AC_LANG_ABBREV[]_openmp" != unsupported; then break fi done])]) case $ac_cv_prog_[]_AC_LANG_ABBREV[]_openmp in #( "none needed" | unsupported) ;; #( *) OPENMP_[]_AC_LANG_PREFIX[]FLAGS=$ac_cv_prog_[]_AC_LANG_ABBREV[]_openmp ;; esac fi AC_SUBST(OPENMP_CXXFLAGS) AC_CONFIG_FILES([src/Makevars]) AC_OUTPUT glmmTMB/src/0000755000176200001440000000000013616062000012332 5ustar liggesusersglmmTMB/src/glmmTMB.cpp0000644000176200001440000007045613614324717014367 0ustar liggesusers#include #include "init.h" // don't need to include omp.h; we get it via TMB.hpp namespace glmmtmb{ template Type dbetabinom(Type y, Type a, Type b, Type n, int give_log=0) { /* Wikipedia: f(k|n,\alpha,\beta) = \frac{\Gamma(n+1)}{\Gamma(k+1)\Gamma(n-k+1)} \frac{\Gamma(k+\alpha)\Gamma(n-k+\beta)}{\Gamma(n+\alpha+\beta)} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} */ Type logres = lgamma(n + 1) - lgamma(y + 1) - lgamma(n - y + 1) + lgamma(y + a) + lgamma(n - y + b) - lgamma(n + a + b) + lgamma(a + b) - lgamma(a) - lgamma(b) ; if(!give_log) return exp(logres); else return logres; } template Type dgenpois(Type y, Type theta, Type lambda, int give_log=0) { /* f(y|\theta,\lambda) = \frac{\theta(theta+\lambda y)^{y-1}e^{-\theta-\lambda y}}{y \!} */ Type logres = log(theta) + (y - 1) * log(theta + lambda * y) - theta - lambda * y - lgamma(y + Type(1)); if(!give_log) return exp(logres); else return logres; } /* Simulate from generalized poisson distribution */ template Type rgenpois(Type theta, Type lambda) { // Copied from R function HMMpa::rgenpois Type ans = Type(0); Type random_number = runif(Type(0), Type(1)); Type kum = dgenpois(Type(0), theta, lambda); while (random_number > kum) { ans = ans + Type(1); kum += dgenpois(ans, theta, lambda); } return ans; } /* Simulate from zero-truncated generalized poisson distribution */ template Type rtruncated_genpois(Type theta, Type lambda) { int nloop = 10000; int counter = 0; Type ans = rgenpois(theta, lambda); while(ans < Type(1) && counter < nloop) { ans = rgenpois(theta, lambda); counter++; } if(ans < 1.) warning("Zeros in simulation of zero-truncated data. Possibly due to low estimated mean."); return ans; } template bool isNA(Type x){ return R_IsNA(asDouble(x)); } extern "C" { /* See 'R-API: entry points to C-code' (Writing R-extensions) */ double Rf_logspace_sub (double logx, double logy); void Rf_pnorm_both(double x, double *cum, double *ccum, int i_tail, int log_p); } /* y(x) = logit_invcloglog(x) := log( exp(exp(x)) - 1 ) = logspace_sub( exp(x), 0 ) y'(x) = exp(x) + exp(x-y) = exp( logspace_add(x, x-y) ) */ TMB_ATOMIC_VECTOR_FUNCTION( // ATOMIC_NAME logit_invcloglog , // OUTPUT_DIM 1, // ATOMIC_DOUBLE ty[0] = Rf_logspace_sub(exp(tx[0]), 0.); , // ATOMIC_REVERSE px[0] = exp( logspace_add(tx[0], tx[0]-ty[0]) ) * py[0]; ) template Type logit_invcloglog(Type x) { CppAD::vector tx(1); tx[0] = x; return logit_invcloglog(tx)[0]; } /* y(x) = logit_pnorm(x) := logit( pnorm(x) ) = pnorm(x, lower.tail=TRUE, log.p=TRUE) - pnorm(x, lower.tail=FALSE, log.p=TRUE) y'(x) = dnorm(x) * ( (1+exp(y)) + (1+exp(-y)) ) */ double logit_pnorm(double x) { double log_p_lower, log_p_upper; Rf_pnorm_both(x, &log_p_lower, &log_p_upper, 2 /* both tails */, 1 /* log_p */); return log_p_lower - log_p_upper; } TMB_ATOMIC_VECTOR_FUNCTION( // ATOMIC_NAME logit_pnorm , // OUTPUT_DIM 1, // ATOMIC_DOUBLE ty[0] = logit_pnorm(tx[0]) , // ATOMIC_REVERSE Type zero = 0; Type tmp1 = logspace_add(zero, ty[0]); Type tmp2 = logspace_add(zero, -ty[0]); Type tmp3 = logspace_add(tmp1, tmp2); Type tmp4 = dnorm(tx[0], Type(0), Type(1), true) + tmp3; px[0] = exp( tmp4 ) * py[0]; ) template Type logit_pnorm(Type x) { CppAD::vector tx(1); tx[0] = x; return logit_pnorm(tx)[0]; } /* Calculate variance in compois family using V(X) = (logZ)''(loglambda) */ double compois_calc_var(double mean, double nu){ using atomic::compois_utils::calc_loglambda; using atomic::compois_utils::calc_logZ; double loglambda = calc_loglambda(log(mean), nu); typedef atomic::tiny_ad::variable<2, 1, double> ADdouble; ADdouble loglambda_ (loglambda, 0); ADdouble ans = calc_logZ(loglambda_, nu); return ans.getDeriv()[0]; } /* Simulate from zero-truncated Conway-Maxwell-Poisson distribution */ template Type rtruncated_compois2(Type mean, Type nu) { int nloop = 10000; int counter = 0; Type ans = rcompois2(mean, nu); while(ans < 1. && counter < nloop) { ans = rcompois2(mean, nu); counter++; } if(ans < 1.) warning("Zeros in simulation of zero-truncated data. Possibly due to low estimated mean."); return ans; } /* Simulate from tweedie distribution */ template Type rtweedie(Type mu, Type phi, Type p) { // Copied from R function tweedie::rtweedie Type lambda = pow(mu, 2. - p) / (phi * (2. - p)); Type alpha = (2. - p) / (1. - p); Type gam = phi * (p - 1.) * pow(mu, p - 1.); int N = (int) asDouble(rpois(lambda)); Type ans = rgamma(N, -alpha /* shape */, gam /* scale */).sum(); return ans; } } /* Interface to compois variance */ extern "C" { SEXP compois_calc_var(SEXP mean, SEXP nu) { if (LENGTH(mean) != LENGTH(nu)) error("'mean' and 'nu' must be vectors of same length."); SEXP ans = PROTECT(allocVector(REALSXP, LENGTH(mean))); for(int i=0; i Type inverse_linkfun(Type eta, int link) { Type ans; switch (link) { case log_link: ans = exp(eta); break; case identity_link: ans = eta; break; case logit_link: ans = invlogit(eta); break; case probit_link: ans = pnorm(eta); break; case cloglog_link: ans = Type(1) - exp(-exp(eta)); break; case inverse_link: ans = Type(1) / eta; break; case sqrt_link: ans = eta*eta; // pow(eta, Type(2)) doesn't work ... ? break; // TODO: Implement remaining links default: error("Link not implemented!"); } // End switch return ans; } /* logit transformed inverse_linkfun without losing too much accuracy */ template Type logit_inverse_linkfun(Type eta, int link) { Type ans; switch (link) { case logit_link: ans = eta; break; case probit_link: ans = glmmtmb::logit_pnorm(eta); break; case cloglog_link: ans = glmmtmb::logit_invcloglog(eta); break; default: ans = logit( inverse_linkfun(eta, link) ); } // End switch return ans; } /* log transformed inverse_linkfun without losing too much accuracy */ template Type log_inverse_linkfun(Type eta, int link) { Type ans; switch (link) { case log_link: ans = eta; break; default: ans = log( inverse_linkfun(eta, link) ); } // End switch return ans; } template struct per_term_info { // Input from R int blockCode; // Code that defines structure int blockSize; // Size of one block int blockReps; // Repeat block number of times int blockNumTheta; // Parameter count per block matrix dist; vector times;// For ar1 case // Report output matrix corr; vector sd; }; template struct terms_t : vector > { terms_t(SEXP x){ (*this).resize(LENGTH(x)); for(int i=0; i(t); } // Optionally, pass distance matrix: SEXP d = getListElement(y, "dist"); if(!isNull(d)){ RObjectTestExpectedType(d, &isMatrix, "dist"); (*this)(i).dist = asMatrix(d); } } } }; template Type termwise_nll(array &U, vector theta, per_term_info& term, bool do_simulate = false) { Type ans = 0; if (term.blockCode == diag_covstruct){ // case: diag_covstruct vector sd = exp(theta); for(int i = 0; i < term.blockReps; i++){ ans -= dnorm(vector(U.col(i)), Type(0), sd, true).sum(); if (do_simulate) { U.col(i) = rnorm(Type(0), sd); } } term.sd = sd; // For report } else if (term.blockCode == us_covstruct){ // case: us_covstruct int n = term.blockSize; vector logsd = theta.head(n); vector corr_transf = theta.tail(theta.size() - n); vector sd = exp(logsd); density::UNSTRUCTURED_CORR_t nldens(corr_transf); density::VECSCALE_t > scnldens = density::VECSCALE(nldens, sd); for(int i = 0; i < term.blockReps; i++){ ans += scnldens(U.col(i)); if (do_simulate) { U.col(i) = sd * nldens.simulate(); } } term.corr = nldens.cov(); // For report term.sd = sd; // For report } else if (term.blockCode == cs_covstruct){ // case: cs_covstruct int n = term.blockSize; vector logsd = theta.head(n); Type corr_transf = theta(n); vector sd = exp(logsd); Type a = Type(1) / (Type(n) - Type(1)); Type rho = invlogit(corr_transf) * (Type(1) + a) - a; matrix corr(n,n); for(int i=0; i nldens(corr); density::VECSCALE_t > scnldens = density::VECSCALE(nldens, sd); for(int i = 0; i < term.blockReps; i++){ ans += scnldens(U.col(i)); if (do_simulate) { U.col(i) = sd * nldens.simulate(); } } term.corr = nldens.cov(); // For report term.sd = sd; // For report } else if (term.blockCode == toep_covstruct){ // case: toep_covstruct int n = term.blockSize; vector logsd = theta.head(n); vector sd = exp(logsd); vector parms = theta.tail(n-1); // Corr parms parms = parms / sqrt(Type(1.0) + parms * parms ); // Now in (-1,1) matrix corr(n,n); for(int i=0; i j ? i-j : j-i) - 1 ) ); density::MVNORM_t nldens(corr); density::VECSCALE_t > scnldens = density::VECSCALE(nldens, sd); for(int i = 0; i < term.blockReps; i++){ ans += scnldens(U.col(i)); if (do_simulate) { U.col(i) = sd * nldens.simulate(); } } term.corr = nldens.cov(); // For report term.sd = sd; // For report } else if (term.blockCode == ar1_covstruct){ // case: ar1_covstruct // * NOTE: Valid parameter space is phi in [-1, 1] // * NOTE: 'times' not used as we assume unit distance between consecutive time points. int n = term.blockSize; Type logsd = theta(0); Type corr_transf = theta(1); Type phi = corr_transf / sqrt(1.0 + pow(corr_transf, 2)); Type sd = exp(logsd); for(int j = 0; j < term.blockReps; j++){ ans -= dnorm(U(0, j), Type(0), sd, true); // Initialize if (do_simulate) { U(0, j) = rnorm(Type(0), sd); } for(int i=1; i::value) { // Disable AD for this part term.corr.resize(n,n); term.sd.resize(n); for(int i=0; i::value) { // Disable AD for this part term.corr.resize(n,n); term.sd.resize(n); for(int i=0; i dist = term.dist; if(! ( dist.cols() == n && dist.rows() == n ) ) error ("Dimension of distance matrix must equal blocksize."); // First parameter is sd Type sd = exp( theta(0) ); // Setup correlation matrix matrix corr(n,n); for(int i=0; i nldens(corr); density::SCALE_t > scnldens = density::SCALE(nldens, sd); for(int i = 0; i < term.blockReps; i++){ ans += scnldens(U.col(i)); if (do_simulate) { U.col(i) = sd * nldens.simulate(); } } term.corr = corr; // For report term.sd.resize(n); // For report term.sd.fill(sd); } else error("covStruct not implemented!"); return ans; } template Type allterms_nll(vector &u, vector theta, vector >& terms, bool do_simulate = false) { Type ans = 0; int upointer = 0; int tpointer = 0; int nr, np = 0, offset; for(int i=0; i < terms.size(); i++){ nr = terms(i).blockSize * terms(i).blockReps; // Note: 'blockNumTheta=0' ==> Same parameters as previous term. bool emptyTheta = ( terms(i).blockNumTheta == 0 ); offset = ( emptyTheta ? -np : 0 ); np = ( emptyTheta ? np : terms(i).blockNumTheta ); vector dim(2); dim << terms(i).blockSize, terms(i).blockReps; array useg( &u(upointer), dim); vector tseg = theta.segment(tpointer + offset, np); ans += termwise_nll(useg, tseg, terms(i), do_simulate); upointer += nr; tpointer += terms(i).blockNumTheta; } return ans; } template Type objective_function::operator() () { // DELETE when we're sure this is redundant ... // #ifdef _OPENMP // Set max number of OpenMP threads to help us optimize faster // max_parallel_regions = omp_get_max_threads(); // #endif DATA_MATRIX(X); DATA_SPARSE_MATRIX(Z); DATA_MATRIX(Xzi); DATA_SPARSE_MATRIX(Zzi); DATA_MATRIX(Xd); DATA_VECTOR(yobs); DATA_VECTOR(size); //only used in binomial DATA_VECTOR(weights); DATA_VECTOR(offset); DATA_VECTOR(zioffset); DATA_VECTOR(doffset); // Define covariance structure for the conditional model DATA_STRUCT(terms, terms_t); // Define covariance structure for the zero inflation DATA_STRUCT(termszi, terms_t); // Parameters related to design matrices PARAMETER_VECTOR(beta); PARAMETER_VECTOR(betazi); PARAMETER_VECTOR(b); PARAMETER_VECTOR(bzi); PARAMETER_VECTOR(betad); // Joint vector of covariance parameters PARAMETER_VECTOR(theta); PARAMETER_VECTOR(thetazi); // Extra family specific parameters (e.g. tweedie) PARAMETER_VECTOR(thetaf); DATA_INTEGER(family); DATA_INTEGER(link); // Flags DATA_INTEGER(ziPredictCode); bool zi_flag = (betazi.size() > 0); DATA_INTEGER(doPredict); DATA_IVECTOR(whichPredict); // One-Step-Ahead (OSA) residuals DATA_VECTOR_INDICATOR(keep, yobs); // Joint negative log-likelihood parallel_accumulator jnll(this); // Random effects jnll += allterms_nll(b, theta, terms, this->do_simulate); jnll += allterms_nll(bzi, thetazi, termszi, this->do_simulate); // Linear predictor vector eta = X * beta + Z * b + offset; vector etazi = Xzi * betazi + Zzi * bzi + zioffset; vector etad = Xd * betad + doffset; // Apply link vector mu(eta.size()); for (int i = 0; i < mu.size(); i++) mu(i) = inverse_linkfun(eta(i), link); vector pz = invlogit(etazi); vector phi = exp(etad); // "zero-truncated" likelihood: ignore zeros in positive distributions // exact zero: use for positive distributions (Gamma, beta) #define zt_lik_zero(x,loglik_exp) (zi_flag && (x == Type(0)) ? -INFINITY : loglik_exp) // close to zero: use for count data (cf binomial()$initialize) #define zt_lik_nearzero(x,loglik_exp) (zi_flag && (x < Type(0.001)) ? -INFINITY : loglik_exp) // Observation likelihood Type s1, s2, s3, log_nzprob; Type tmp_loglik; for (int i=0; i < yobs.size(); i++){ if ( !glmmtmb::isNA(yobs(i)) ) { switch (family) { case gaussian_family: tmp_loglik = dnorm(yobs(i), mu(i), sqrt(phi(i)), true); SIMULATE{yobs(i) = rnorm(mu(i), sqrt(phi(i)));} break; case poisson_family: tmp_loglik = dpois(yobs(i), mu(i), true); SIMULATE{yobs(i) = rpois(mu(i));} break; case binomial_family: s1 = logit_inverse_linkfun(eta(i), link); // logit(p) tmp_loglik = dbinom_robust(yobs(i), size(i), s1, true); SIMULATE{yobs(i) = rbinom(size(i), mu(i));} break; case Gamma_family: s1 = phi(i); // shape s2 = mu(i) / phi(i); // scale tmp_loglik = zt_lik_zero(yobs(i),dgamma(yobs(i), s1, s2, true)); SIMULATE{yobs(i) = rgamma(s1, s2);} break; case beta_family: // parameterization after Ferrari and Cribari-Neto 2004, betareg package s1 = mu(i)*phi(i); s2 = (Type(1)-mu(i))*phi(i); tmp_loglik = zt_lik_zero(yobs(i),dbeta(yobs(i), s1, s2, true)); SIMULATE{yobs(i) = rbeta(s1, s2);} break; case betabinomial_family: s1 = mu(i)*phi(i); // s1 = mu(i) * mu(i) / phi(i); s2 = (Type(1)-mu(i))*phi(i); // phi(i) / mu(i); tmp_loglik = glmmtmb::dbetabinom(yobs(i), s1, s2, size(i), true); SIMULATE { yobs(i) = rbinom(size(i), rbeta(s1, s2) ); } break; case nbinom1_family: case truncated_nbinom1_family: // Was: // s1 = mu(i); // s2 = mu(i) * (Type(1)+phi(i)); // (1+phi) guarantees that var >= mu // tmp_loglik = dnbinom2(yobs(i), s1, s2, true); s1 = log_inverse_linkfun(eta(i), link); // log(mu) s2 = s1 + etad(i) ; // log(var - mu) tmp_loglik = dnbinom_robust(yobs(i), s1, s2, true); SIMULATE { s1 = mu(i); s2 = mu(i) * (Type(1)+phi(i)); // (1+phi) guarantees that var >= mu yobs(i) = rnbinom2(s1, s2); } if( family == truncated_nbinom1_family ) { // s3 := log( 1. + phi(i) ) s3 = logspace_add( Type(0), etad(i) ); log_nzprob = logspace_sub( Type(0), -mu(i) / phi(i) * s3 ); // 1-prob(0) tmp_loglik -= log_nzprob; tmp_loglik = zt_lik_nearzero(yobs(i), tmp_loglik); SIMULATE{ s1 = mu(i)/phi(i);//sz s2 = 1/(1+phi(i)); //pb yobs(i) = Rf_qnbinom(asDouble(runif(dnbinom(Type(0), s1, s2), Type(1))), asDouble(s1), asDouble(s2), 1, 0); } } break; case nbinom2_family: case truncated_nbinom2_family: // Was: // s1 = mu(i); // s2 = mu(i) * (Type(1) + mu(i) / phi(i)); // tmp_loglik = dnbinom2(yobs(i), s1, s2, true); s1 = log_inverse_linkfun(eta(i), link); // log(mu) s2 = 2. * s1 - etad(i) ; // log(var - mu) tmp_loglik = dnbinom_robust(yobs(i), s1, s2, true); SIMULATE { s1 = mu(i); s2 = mu(i) * (Type(1) + mu(i) / phi(i)); yobs(i) = rnbinom2(s1, s2); } if (family == truncated_nbinom2_family) { // s3 := log( 1. + mu(i) / phi(i) ) s3 = logspace_add( Type(0), s1 - etad(i) ); log_nzprob = logspace_sub( Type(0), -phi(i) * s3 ); tmp_loglik -= log_nzprob; tmp_loglik = zt_lik_nearzero( yobs(i), tmp_loglik); SIMULATE{ s1 = phi(i); //sz s2 = phi(i)/(phi(i)+mu(i)); //pb yobs(i) = Rf_qnbinom(asDouble(runif(dnbinom(Type(0), s1, s2), Type(1))), asDouble(s1), asDouble(s2), 1, 0); } } break; case truncated_poisson_family: // Was: // if (mu(i)<1e-6) { // nzprob = mu(i)*(1-mu(i)/2); // } else { // nzprob = 1-exp(-mu(i)); // } // log(nzprob) = log( 1 - exp(-mu(i)) ) log_nzprob = logspace_sub(Type(0), -mu(i)); tmp_loglik = dpois(yobs(i), mu(i), true) - log_nzprob; tmp_loglik = zt_lik_nearzero(yobs(i), tmp_loglik); SIMULATE{ yobs(i) = Rf_qpois(asDouble(runif(dpois(Type(0), mu(i)), Type(1))), asDouble(mu(i)), 1, 0); } break; case genpois_family: s1 = mu(i) / sqrt(phi(i)); //theta s2 = Type(1) - Type(1)/sqrt(phi(i)); //lambda tmp_loglik = glmmtmb::dgenpois(yobs(i), s1, s2, true); SIMULATE{yobs(i)=glmmtmb::rgenpois(mu(i) / sqrt(phi(i)), Type(1) - Type(1)/sqrt(phi(i)));} break; case truncated_genpois_family: s1 = mu(i) / sqrt(phi(i)); //theta s2 = Type(1) - Type(1)/sqrt(phi(i)); //lambda log_nzprob = logspace_sub(Type(0), -s1); tmp_loglik = zt_lik_nearzero(yobs(i), glmmtmb::dgenpois(yobs(i), s1, s2, true) - log_nzprob); SIMULATE{yobs(i)=glmmtmb::rtruncated_genpois(mu(i) / sqrt(phi(i)), Type(1) - Type(1)/sqrt(phi(i)));} break; case compois_family: s1 = mu(i); //mean s2 = 1/phi(i); //nu tmp_loglik = dcompois2(yobs(i), s1, s2, true); SIMULATE{yobs(i)=rcompois2(mu(i), 1/phi(i));} break; case truncated_compois_family: s1 = mu(i); //mean s2 = 1/phi(i); //nu log_nzprob = logspace_sub(Type(0), dcompois2(Type(0), s1, s2, true)); tmp_loglik = zt_lik_nearzero(yobs(i), dcompois2(yobs(i), s1, s2, true) - log_nzprob); SIMULATE{yobs(i)=glmmtmb::rtruncated_compois2(mu(i), 1/phi(i));} break; case tweedie_family: s1 = mu(i); // mean s2 = phi(i); // phi s3 = invlogit(thetaf(0)) + Type(1); // p, 1 > corr(terms.size()); vector > sd(terms.size()); for(int i=0; i 0){ corr(i) = terms(i).corr; sd(i) = terms(i).sd; } } vector > corrzi(termszi.size()); vector > sdzi(termszi.size()); for(int i=0; i 0){ corrzi(i) = termszi(i).corr; sdzi(i) = termszi(i).sd; } } REPORT(corr); REPORT(sd); REPORT(corrzi); REPORT(sdzi); SIMULATE { REPORT(yobs); REPORT(b); REPORT(bzi); } // For predict if(ziPredictCode==disp_zipredictcode){ //zi irrelevant; just reusing variable switch(family){ case gaussian_family: mu = sqrt(phi); break; case Gamma_family: mu = 1/sqrt(phi); break; default: mu = phi; } } else { if(zi_flag) { switch(ziPredictCode){ case corrected_zipredictcode: mu *= (Type(1) - pz); // Account for zi in prediction break; case uncorrected_zipredictcode: //mu = mu; // Predict mean of 'family' //comented out for clang 7.0.0. with no effect break; case prob_zipredictcode: mu = pz; // Predict zi probability break; default: error("Invalid 'ziPredictCode'"); } }} whichPredict -= 1; // R-index -> C-index vector mu_predict = mu(whichPredict); REPORT(mu_predict); // ADREPORT expensive for long vectors - only needed by predict() // method. if (doPredict) ADREPORT(mu_predict); return jnll; } glmmTMB/src/init.h0000644000176200001440000000241713614324717013470 0ustar liggesusers#include #include /* FIXME: Won't be needed in upcoming TMB versions */ #ifndef TMB_CALLDEFS #define TMB_CALLDEFS \ {"MakeADFunObject", (DL_FUNC) &MakeADFunObject, 4}, \ {"InfoADFunObject", (DL_FUNC) &InfoADFunObject, 1}, \ {"EvalADFunObject", (DL_FUNC) &EvalADFunObject, 3}, \ {"MakeDoubleFunObject", (DL_FUNC) &MakeDoubleFunObject, 3}, \ {"EvalDoubleFunObject", (DL_FUNC) &EvalDoubleFunObject, 3}, \ {"getParameterOrder", (DL_FUNC) &getParameterOrder, 3}, \ {"MakeADGradObject", (DL_FUNC) &MakeADGradObject, 3}, \ {"MakeADHessObject2", (DL_FUNC) &MakeADHessObject2, 4}, \ {"usingAtomics", (DL_FUNC) &usingAtomics, 0}, \ {"TMBconfig", (DL_FUNC) &TMBconfig, 2} #endif #define CALLDEF(name, n) {#name, (DL_FUNC) &name, n} extern "C" { SEXP compois_calc_var(SEXP mean, SEXP nu); const static R_CallMethodDef R_CallDef[] = { TMB_CALLDEFS, CALLDEF(compois_calc_var, 2), {NULL, NULL, 0} }; void R_init_glmmTMB(DllInfo *dll) { R_registerRoutines(dll, NULL, R_CallDef, NULL, NULL); R_useDynamicSymbols(dll, FALSE); #ifdef TMB_CCALLABLES TMB_CCALLABLES("glmmTMB"); #endif } } glmmTMB/src/Makevars.in0000644000176200001440000000043413614324717014452 0ustar liggesusersPKG_LIBS = $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS) @OPENMP_CXXFLAGS@ # 1.2.4 Using C++11 code CXX_STD = CXX11 # Besides of the -fopenmp flag, here I'm telling armadillo to use # 64BIT_WORD which removes the matrix size limit constraint. PKG_CXXFLAGS=@OPENMP_CXXFLAGS@ -DARMA_64BIT_WORD glmmTMB/vignettes/0000755000176200001440000000000013616062000013553 5ustar liggesusersglmmTMB/vignettes/InstEvalTimings.rda0000644000176200001440000000064013614324717017341 0ustar liggesusers r0b```b`f@$X84OInbg^qkYb0P EwY'ec0 ?``qcgi n* UGeN0q%rRRs,,D=='77 eM-BȚX 7--1$,D>oAlS|;ͽ`pb.ٓUzNt!?%JfCr]}BL<36(`pP4A/Eb ZC ByL _hppgj_%>5o'f488Y@gQ~^^bn*k`j"p2A+Mhf^\)%ziE 0KglmmTMB/vignettes/parallel.Rmd0000644000176200001440000000704413614324717016036 0ustar liggesusers--- title: "Parallel optimization using glmmTMB" author: "Nafis Sadat" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{parallel optimization} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- A new, experimental feature of `glmmTMB` is the ability to parallelize the optimization process. This vignette shows an example and timing of a simple model fit with and without parallelizing across threads. If your OS supports OpenMP parallelization and R was installed using OpenMP, `glmmTMB` will automatically pick up the OpenMP flags from R's `Makevars` and compile the C++ model with OpenMP support. If the flag is not available, then the model will be compiled with serial optimization only. ```{r setup, include=FALSE, message=FALSE} library(knitr) ``` Load packages: ```{r libs,message=FALSE} library(glmmTMB) set.seed(1) nt <- min(parallel::detectCores(),5) ``` Simulate a dataset with large `N`: ```{r simulate1} N <- 3e5 xdata <- rnorm(N, 1, 2) ydata <- 0.3 + 0.4*xdata + rnorm(N, 0, 0.25) ``` First, we fit the model serially. We can pass the number of parallelizing process we want using the `parallel` parameter in `glmmTMBcontrol`: ```{r fit1} system.time( model1 <- glmmTMB(formula = ydata ~ 1 + xdata, control = glmmTMBControl(parallel = 1)) ) ``` Now, we fit the same model using five threads (or as many as possible - `r nt` in this case): ```{r fit2} system.time( model2 <- glmmTMB(formula = ydata ~ 1 + xdata, control = glmmTMBControl(parallel = nt)) ) ``` The speed-up is definitely more visible on models with a much larger number of observations, or in models with random effects. Here's an example where we have an IID Gaussian random effect. We first simulate the data with 200 groups (our random effect): ```{r simulate2} xdata <- rnorm(N, 1, 2) groups <- 200 data_use <- data.frame(obs = 1:N) data_use <- within(data_use, { group_var <- rep(seq(groups), times = nrow(data_use) / groups) group_intercept <- rnorm(groups, 0, 0.1)[group_var] xdata <- xdata ydata <- 0.3 + group_intercept + 0.5*xdata + rnorm(N, 0, 0.25) }) ``` We fit the random effect model, first with a single thread: ```{r fit3} (t_serial <- system.time( model3 <- glmmTMB(formula = ydata ~ 1 + xdata + (1 | group_var), data = data_use, control = glmmTMBControl(parallel = 1)) ) ) ``` Now we fit the same model, but using `r nt` threads. The speed-up is more noticeable with this model. ```{r fit4} (t_parallel <- system.time( update(model3, control = glmmTMBControl(parallel = nt)) ) ) ``` ## Notes on OpenMP support From [Writing R Extensions](https://cran.r-project.org/doc/manuals/r-devel/R-exts.html#OpenMP-support): > Apple builds of clang on macOS currently have no OpenMP support, but CRAN binary packages are built with a clang-based toolchain which supports OpenMP. http://www.openmp.org/resources/openmp-compilers-tools gives some idea of what compilers support what versions. > The performance of OpenMP varies substantially between platforms. The Windows implementation has substantial overheads, so is only beneficial if quite substantial tasks are run in parallel. Also, on Windows new threads are started with the default FPU control word, so computations done on OpenMP threads will not make use of extended-precision arithmetic which is the default for the main process. ## System information This report was built using `r nt` parallel threads (on a machine with a total of `r parallel::detectCores()` cores) ```{r SI} print(sessionInfo(), locale=FALSE) ``` glmmTMB/vignettes/covstruct.rmd0000644000176200001440000004053413614324717016337 0ustar liggesusers--- title: "Covariance structures with glmmTMB" author: "Kasper Kristensen" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{random effect structures} %\VignettePackage{glmmTMB} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} params: EVAL: !r identical(Sys.getenv("NOT_CRAN"), "true") --- ```{r setup, include=FALSE, message=FALSE} library(knitr) library(glmmTMB) library(MASS) ## for mvrnorm() library(TMB) ## for tmbprofile() ## devtools::install_github("kaskr/adcomp/TMB") ## get development version knitr::opts_chunk$set(echo = TRUE, eval=if (isTRUE(exists("params"))) params$EVAL else FALSE) ## turned off caching for now: got error in chunk 'fit.us.2' ## Error in retape() : ## Error when reading the variable: 'thetaf'. Please check data and parameters. ## In addition: Warning message: ## In retape() : Expected object. Got NULL. set.seed(1) ## run this in interactive session if you actually want to evaluate chunks ... ## Sys.setenv(NOT_CRAN="true") ``` This vignette demonstrates some of the covariance structures available in the `glmmTMB` package. Currently the available covariance structures are: | Covariance | Notation | Parameter count | Requirement | |----------------------------------|---------------|-----------------|-------------| | Heterogeneous unstructured | `us` | $n(n+1)/2$ | | | Heterogeneous Toeplitz | `toep` | $2n-1$ | | | Heterogeneous compound symmetry | `cs` | $n+1$ | | | Heterogeneous diagonal | `diag` | $n$ | | | AR(1) | `ar1` | $2$ | | | Ornstein–Uhlenbeck | `ou` | $2$ | Coordinates | | Spatial exponential | `exp` | $2$ | Coordinates | | Spatial Gaussian | `gau` | $2$ | Coordinates | | Spatial Matern | `mat` | $3$ | Coordinates | The word 'heterogeneous' refers to the marginal variances of the model. Beyond correlation parameters, a heterogeneous structure uses $n$ additional variance parameters where $n$ is the dimension. Some of the structures require temporal or spatial coordinates. We will show examples of this in a later section. ## The AR(1) covariance structure ### Demonstration on simulated data First, let's consider a simple time series model. Assume that our measurements $Y(t)$ are given at discrete times $t \in \{1,...,n\}$ by $$Y(t) = \mu + X(t) + \varepsilon(t)$$ where - $\mu$ is the mean value parameter. - $X(t)$ is a stationary AR(1) process, i.e. has covariance $cov(X(s), X(t)) = \sigma^2\exp(-\theta |t-s|)$. - $\varepsilon(t)$ is iid. $N(0,\sigma_0^2)$ measurement error. A simulation experiment is set up using the parameters | Description | Parameter | Value | |------------------------|---------------|-------| | Mean | $\mu$ | 0 | | Process variance | $\sigma^2$ | 1 | | Measurement variance | $\sigma_0^2$ | 1 | | One-step correlation | $e^{-\theta}$ | 0.7 | The following R-code draws a simulation based on these parameter values. For illustration purposes we consider a very short time series. ```{r sim1, eval=TRUE} n <- 6 ## Number of time points x <- mvrnorm(mu = rep(0,n), Sigma = .7 ^ as.matrix(dist(1:n)) ) ## Simulate the process using the MASS package y <- x + rnorm(n) ## Add measurement noise ``` In order to fit the model with `glmmTMB` we must first specify a time variable as a *factor*. The factor *levels* correspond to unit spaced time points. ```{r simtimes} times <- factor(1:n) levels(times) ``` We also need a grouping variable. In the current case there is only one time-series so the grouping is: ```{r simgroup} group <- factor(rep(1,n)) ``` We combine the data into a single data frame (not absolutely required, but good practice): ```{r simcomb} dat0 <- data.frame(y,times,group) ``` Now fit the model using ```{r fitar1, eval=FALSE} glmmTMB(y ~ ar1(times + 0 | group), data=dat0) ``` This formula notation follows that of the `lme4` package. - The left hand side of the bar `times + 0` corresponds to a design matrix $Z$ linking observation vector $y$ (rows) with a random effects vector $u$ (columns). - The distribution of $u$ is `ar1` (this is the only `glmmTMB` specific part of the formula). - The right hand side of the bar splits the above specification independently among groups. Each group has its own separate $u$ vector but shares the same parameters for the covariance structure. After running the model, we find the parameter estimates $\mu$ (intercept), $\sigma_0^2$ (dispersion), $\sigma$ (Std. Dev.) and $e^{-\theta}$ (First off-diagonal of "Corr") in the output: > FIXME: Try a longer time series when the print.VarCorr is fixed. ```{r ar0fit,echo=FALSE} glmmTMB(y ~ ar1(times + 0 | group), data=dat0) ``` ### Increasing the sample size A single time series of 6 time points is not sufficient to identify the parameters. We could either increase the length of the time series or increase the number of groups. We'll try the latter: ```{r simGroup} simGroup <- function(g, n=6, rho=0.7) { x <- mvrnorm(mu = rep(0,n), Sigma = rho ^ as.matrix(dist(1:n)) ) ## Simulate the process y <- x + rnorm(n) ## Add measurement noise times <- factor(1:n) group <- factor(rep(g,n)) data.frame(y, times, group) } simGroup(1) ``` Generate a dataset with 1000 groups: ```{r simGroup2} dat1 <- do.call("rbind", lapply(1:1000, simGroup) ) ``` And fitting the model on this larger dataset gives estimates close to the true values (AR standard deviation=1, residual (measurement) standard deviation=1, autocorrelation=0.7): ```{r fit.ar1} (fit.ar1 <- glmmTMB(y ~ ar1(times + 0 | group), data=dat1)) ``` ## The unstructured covariance We can try to fit an unstructured covariance to the previous dataset `dat`. For this case an unstructured covariance has `r (n*n-n)/2` correlation parameters and `r n` variance parameters. Adding $\sigma_0^2 I$ on top would cause a strict overparameterization, as these would be redundant with the diagonal elements in the covariance matrix. Hence, when fitting the model with `glmmTMB`, we have to disable the $\varepsilon$ term (the dispersion) by setting `dispformula=~0`: ```{r fit.us} fit.us <- glmmTMB(y ~ us(times + 0 | group), data=dat1, dispformula=~0) fit.us$sdr$pdHess ## Converged ? ``` The estimated variance and correlation parameters are: ```{r fit.us.vc} VarCorr(fit.us) ``` \newcommand{\textsub}{2}{#1_{{\text \small #2}}} The estimated correlation is approximately constant along diagonals (apparent Toeplitz structure) and we note that the first off-diagonal is now ca. half the true value (0.7) because the dispersion is effectively included in the estimated covariance matrix (i.e. $\rho' = \rho \textsub{\sigma^2}{AR}/(\textsub{\sigma^2}{AR} + \textsub{sigma^2}{meas})$). ## The Toeplitz structure The next natural step would be to reduce the number of parameters by collecting correlation parameters within the same off-diagonal. This amounts to `r (n-1)` correlation parameters and `r n` variance parameters. > FIXME: Explain why dispformula=~1 causes over-parameterization ```{r fit.toep} fit.toep <- glmmTMB(y ~ toep(times + 0 | group), data=dat1, dispformula=~0) fit.toep$sdr$pdHess ## Converged ? ``` The estimated variance and correlation parameters are: ```{r fit.toep.vc} (vc.toep <- VarCorr(fit.toep)) ``` The diagonal elements are all approximately equal to the true total variance ($\textsub{\sigma^2}{AR} + \textsub{sigma^2}{meas}$=2), and the off-diagonal elements are approximately equal to the expected value of 0.7/2=0.35. ```{r fit.toep.vc.diag} vc1 <- vc.toep$cond[[1]] ## first term of var-cov for RE of conditional model summary(diag(vc1)) summary(vc1[row(vc1)!=col(vc1)]) ``` We can get a *slightly* better estimate of the variance by using REML estimation (however, the estimate of the correlations seems to have gotten slightly worse): ```{r fit.toep.reml} fit.toep.reml <- update(fit.toep, REML=TRUE) vc1R <- VarCorr(fit.toep.reml)$cond[[1]] summary(diag(vc1R)) summary(vc1R[row(vc1R)!=col(vc1R)]) ``` ## Compound symmetry The compound symmetry structure collects all off-diagonal elements of the correlation matrix to one common value. > FIXME: Explain why dispformula=~1 causes over-parameterization ```{r fit.cs} fit.cs <- glmmTMB(y ~ cs(times + 0 | group), data=dat1, dispformula=~0) fit.cs$sdr$pdHess ## Converged ? ``` The estimated variance and correlation parameters are: ```{r fit.cs.vc} VarCorr(fit.cs) ``` ## Anova tables The models `ar1`, `toep`, and `us` are nested so we can use: ```{r anova1} anova(fit.ar1, fit.toep, fit.us) ``` `ar1` has the lowest AIC (it's the simplest model, and fits the data adequately); we can't reject the (true in this case!) null model that an AR1 structure is adequate to describe the data. The model `cs` is a sub-model of `toep`: ```{r anova2} anova(fit.cs, fit.toep) ``` Here we *can* reject the null hypothesis of compound symmetry (i.e., that all the pairwise correlations are the same). ## Adding coordinate information Coordinate information can be added to a variable using the `glmmTMB` function `numFactor`. This is necessary in order to use those covariance structures that require coordinates. For example, if we have the numeric coordinates ```{r sample2} x <- sample(1:2, 10, replace=TRUE) y <- sample(1:2, 10, replace=TRUE) ``` we can generate a factor representing $(x,y)$ coordinates by ```{r numFactor} (pos <- numFactor(x,y)) ``` Numeric coordinates can be recovered from the factor levels: ```{r parseNumLevels} parseNumLevels(levels(pos)) ``` In order to try the remaining structures on our test data we re-interpret the time factor using `numFactor`: ```{r numFactor2} dat1$times <- numFactor(dat1$times) levels(dat1$times) ``` ## Ornstein–Uhlenbeck Having the numeric times encoded in the factor levels we can now try the Ornstein–Uhlenbeck covariance structure. ```{r fit.ou} fit.ou <- glmmTMB(y ~ ou(times + 0 | group), data=dat1) fit.ou$sdr$pdHess ## Converged ? ``` It should give the exact same results as `ar1` in this case since the times are equidistant: ```{r fit.ou.vc} VarCorr(fit.ou) ``` However, note the differences between `ou` and `ar1`: - `ou` can handle irregular time points. - `ou` only allows positive correlation between neighboring time points. ## Spatial correlations The structures `exp`, `gau` and `mat` are meant to used for spatial data. They all require a Euclidean distance matrix which is calculated internally based on the coordinates. Here, we will try these models on the simulated time series data. An example with spatial data is presented in a later section. ### Matern ```{r fit.mat} fit.mat <- glmmTMB(y ~ mat(times + 0 | group), data=dat1, dispformula=~0) fit.mat$sdr$pdHess ## Converged ? ``` ```{r fit.mat.vc} VarCorr(fit.mat) ``` ### Gaussian "Gaussian" refers here to a Gaussian decay in correlation with distance, i.e. $\rho = \exp(-d x^2)$, not to the conditional distribution ("family"). ```{r fit.gau} fit.gau <- glmmTMB(y ~ gau(times + 0 | group), data=dat1, dispformula=~0) fit.gau$sdr$pdHess ## Converged ? ``` ```{r fit.gau.vc} VarCorr(fit.gau) ``` ### Exponential ```{r fit.exp} fit.exp <- glmmTMB(y ~ exp(times + 0 | group), data=dat1) fit.exp$sdr$pdHess ## Converged ? ``` ```{r fit.exp.vc} VarCorr(fit.exp) ``` ### A spatial covariance example Starting out with the built in `volcano` dataset we reshape it to a `data.frame` with pixel intensity `z` and pixel position `x` and `y`: ```{r spatial_data} d <- data.frame(z = as.vector(volcano), x = as.vector(row(volcano)), y = as.vector(col(volcano))) ``` Next, add random normal noise to the pixel intensities and extract a small subset of 100 pixels. This is our spatial dataset: ```{r spatial_sub_sample} set.seed(1) d$z <- d$z + rnorm(length(volcano), sd=15) d <- d[sample(nrow(d), 100), ] ``` Display sampled noisy volcano data: ```{r volcano_data_image} volcano.data <- array(NA, dim(volcano)) volcano.data[cbind(d$x, d$y)] <- d$z image(volcano.data, main="Spatial data") ``` Based on this data, we'll attempt to re-construct the original image. As model, it is assumed that the original image `image(volcano)` is a realization of a random field with correlation decaying exponentially with distance between pixels. Denoting by $u(x,y)$ this random field the model for the observations is \[ z_{i} = \mu + u(x_i,y_i) + \varepsilon_i \] To fit the model, a `numFactor` and a dummy grouping variable must be added to the dataset: ```{r spatial_add_pos_and_group} d$pos <- numFactor(d$x, d$y) d$group <- factor(rep(1, nrow(d))) ``` The model is fit by ```{r fit_spatial_model, cache=TRUE} f <- glmmTMB(z ~ 1 + exp(pos + 0 | group), data=d) ``` Recall that a standard deviation `sd=15` was used to distort the image. A confidence interval for this parameter is ```{r confint_sigma} confint(f, "sigma") ``` The glmmTMB `predict` method can predict unseen levels of the random effects. For instance to predict a 3-by-3 corner of the image one could construct the new data: ```{r newdata_corner} newdata <- data.frame( pos=numFactor(expand.grid(x=1:3,y=1:3)) ) newdata$group <- factor(rep(1, nrow(newdata))) newdata ``` and predict using ```{r predict_corner} predict(f, newdata, type="response", allow.new.levels=TRUE) ``` A specific image column can thus be predicted using the function ```{r predict_column} predict_col <- function(i) { newdata <- data.frame( pos = numFactor(expand.grid(1:87,i))) newdata$group <- factor(rep(1,nrow(newdata))) predict(f, newdata=newdata, type="response", allow.new.levels=TRUE) } ``` Prediction of the entire image is carried out by (this takes a while...): ```{r predict_all} pred <- sapply(1:61, predict_col) ``` Finally plot the re-constructed image by ```{r image_results} image(pred, main="Reconstruction") ``` ## Mappings For various advanced purposes, such as computing likelihood profiles, it is useful to know the details of the parameterization of the models - the scale on which the parameters are defined (e.g. standard deviation, variance, or log-standard deviation for variance parameters) and their order. ### Unstructured For an unstructured matrix of size `n`, parameters `1:n` represent the log-standard deviations while the remaining `n(n-1)/2` (i.e. `(n+1):(n:(n*(n+1)/2))`) are the elements of the *scaled* Cholesky factor of the correlation matrix, filled in row-wise order (see [TMB documentation](http://kaskr.github.io/adcomp/classUNSTRUCTURED__CORR__t.html)). In particular, if $L$ is the lower-triangular matrix with 1 on the diagonal and the correlation parameters in the lower triangle, then the correlation matrix is defined as $\Sigma = D^{-1/2} L L^\top D^{-1/2}$, where $D = \textrm{diag}(L L^\top)$. For a single correlation parameter $\theta_0$, this works out to $\rho = \theta_0/(1+\theta_0^2)$. ```{r fit.us.2} vv0 <- VarCorr(fit.us) vv1 <- vv0$cond$group ## extract 'naked' V-C matrix n <- nrow(vv1) rpars <- getME(fit.us,"theta") ## extract V-C parameters ## first n parameters are log-std devs: all.equal(unname(diag(vv1)),exp(rpars[1:n])^2) ## now try correlation parameters: cpars <- rpars[-(1:n)] length(cpars)==n*(n-1)/2 ## the expected number cc <- diag(n) cc[upper.tri(cc)] <- cpars L <- crossprod(cc) D <- diag(1/sqrt(diag(L))) D %*% L %*% D unname(attr(vv1,"correlation")) ``` > FIXME: why are these not quite the same? Not what I expected ```{r other_check} all.equal(c(cov2cor(vv1)),c(fit.us$obj$env$report(fit.us$fit$parfull)$corr[[1]])) ``` Profiling (experimental/exploratory): ```{r fit.us.profile,cache=TRUE} ## want $par, not $parfull: do NOT include conditional modes/'b' parameters ppar <- fit.us$fit$par length(ppar) range(which(names(ppar)=="theta")) ## the last n*(n+1)/2 parameters ## only 1 fixed effect parameter tt <- tmbprofile(fit.us$obj,2,trace=FALSE) ``` ```{r fit.us.profile.plot} plot(tt) confint(tt) ``` ```{r fit.cs.profile,cache=TRUE} ppar <- fit.cs$fit$par length(ppar) range(which(names(ppar)=="theta")) ## the last n*(n+1)/2 parameters ## only 1 fixed effect parameter, 1 dispersion parameter tt2 <- tmbprofile(fit.cs$obj,3,trace=FALSE) ``` ```{r fit.cs.profile.plot} plot(tt2) ``` glmmTMB/vignettes/troubleshooting.rmd0000644000176200001440000003216213614324717017530 0ustar liggesusers--- title: "Troubleshooting with glmmTMB" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{troubleshooting} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} params: EVAL: !r identical(Sys.getenv("NOT_CRAN"), "true") --- ```{r load_lib,echo=FALSE} library(glmmTMB) knitr::opts_chunk$set(eval = if (isTRUE(exists("params"))) params$EVAL else FALSE) ``` This vignette covers common problems that occur while using `glmmTMB`. The contents will expand with experience. If your problem is not covered below, there's a chance it has been solved in the development version; try updating to the latest version of `glmmTMB` on GitHub. # Warnings ## Model convergence problem; non-positive-definite Hessian matrix; NA values for likelihood/AIC/etc. This warning (`Model convergence problem; non-positive-definite Hessian matrix`) states that at `glmmTMB`'s maximum-likelihood estimate, the curvature of the negative log-likelihood surface is inconsistent with `glmmTMB` really having found the best fit (minimum): instead, the surface is downward-curving, or flat, in some direction(s). It will usually be accompanied by `NA` values for the standard errors, log-likelihood, AIC, and BIC, and deviance. When you run `summary()` on the resulting model, you'll get the warning `In sqrt(diag(vcov)) : NaNs produced`. These problems are most likely: - when a model is overparameterized (i.e. the data does not contain enough information to estimate the parameters reliably) - when a random-effect variance is estimated to be zero, or random-effect terms are estimated to be perfectly correlated ("singular fit": often caused by having too few levels of the random-effect grouping variable) - when zero-inflation is estimated to be near zero (a strongly negative zero-inflation parameter) - when dispersion is estimated to be near zero - when *complete separation* occurs in a binomial model: some categories in the model contain proportions that are either all 0 or all 1 How do we diagnose the problem? ### Example 1. Consider this example: ```{r non-pos-def,cache=TRUE, warning=FALSE} zinbm0 = glmmTMB(count~spp + (1|site), zi=~spp, Salamanders, family=nbinom2) ``` First, see if any of the estimated coefficients are extreme. If you're using a non-identity link function (e.g. log, logit), then parameter values with $|\beta|>10$ are suspect (for a logit link, this implies probabilities very close to 0 or 1; for a log link, this implies mean counts that are close to 0 or extremely large). Inspecting the fixed-effect estimates for this model: ```{r fixef_zinbm0} fixef(zinbm0) ``` The zero-inflation intercept parameter is tiny ($\approx -17$): since the parameters are estimated on the logit scale, we back-transform with `plogis(-17)` to see the at the zero-inflation probability for the baseline level is about $4 \times 10^{-8}$)). Many of the other ZI parameters are very large, compensating for the intercept: the estimated zero-inflation probabilities for all species are ```{r f_zi2} ff <- fixef(zinbm0)$zi round(plogis(c(sppGP=unname(ff[1]),ff[-1]+ff[1])),3) ``` Since the baseline probability is already effectively zero, making the intercept parameter larger or smaller will have very little effect - the likelihood is flat, which leads to the non-positive-definite warning. Now that we suspect the problem is in the zero-inflation component, we can try to come up with ways of simplifying the model: for example, we could use a model that compared the first species ("GP") to the rest: ```{r salfit2,cache=TRUE} Salamanders <- transform(Salamanders, GP=as.numeric(spp=="GP")) zinbm0_A = update(zinbm0, ziformula=~GP) ``` This fits without a warning, although the GP zero-inflation parameter is still extreme: ```{r salfit2_coef,cache=TRUE} fixef(zinbm0_A)[["zi"]] ``` Another possibility would be to fit the variation among species in the zero-inflation parameter as a random effect, rather than a fixed effect: this is slightly more parsimonious. This again fits without an error, although both the average level of zero-inflation and the among-species variation are estimated as very small: ```{r salfit3,cache=TRUE} zinbm0_B = update(zinbm0, ziformula=~(1|spp)) fixef(zinbm0_B)[["zi"]] VarCorr(zinbm0_B) ``` The original analysis considered variation in zero-inflation by site status (mined or not mined) rather than by species - this simpler model only tries to estimate two parameters (mined + difference between mined and no-mining) rather than 7 (one per species) for the zero-inflation model. ```{r zinbm1,cache=TRUE} zinbm1 = glmmTMB(count~spp + (1|site), zi=~mined, Salamanders, family=nbinom2) fixef(zinbm1)[["zi"]] ``` This again fits without a warning, but we see that the zero-inflation is effectively zero in the unmined ("minedno") condition (`plogis(0.38-17.5)` is approximately $4 \times 10^{-8}$). We can estimate the confidence interval, but it takes some extra work: the default Wald standard errors and confidence intervals are useless in this case. ```{r zinbm1_confint,cache=TRUE} ## at present we need to specify the parameter by number; for ## extreme cases need to specify the parameter range ## (not sure why the upper bound needs to be so high ... ?) cc = confint(zinbm1,method="uniroot",parm=9, parm.range=c(-20,20)) print(cc) ``` The lower CI is not defined; the upper CI is -2.08, i.e. we can state that the zero-inflation probability is less than `plogis(-2.08)` = 0.11. More broadly, general inspection of the data (e.g., plotting the response against potential covariates) should help to diagnose overly complex models. ### Example 2. In some cases, scaling predictor variables may help. For example, in this example from @phisanti, the results of `glm` and `glmmTMB` applied to a scaled version of the data set agree, while `glmmTMB` applied to the raw data set gives a non-positive-definite Hessian warning. ```{r fatfiberglmm} ## data taken from gamlss.data:plasma, originally ## http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/plasma.html load(system.file("vignette_data","plasma.rda", package="glmmTMB")) m4.1 <- glm(calories ~ fat*fiber, family = Gamma(link = "log"), data = plasma) m4.2 <- glmmTMB(calories ~ fat*fiber, family = Gamma(link = "log"), data = plasma) ps <- transform(plasma,fat=scale(fat,center=FALSE),fiber=scale(fiber,center=FALSE)) m4.3 <- update(m4.2, data=ps) ## scaling factor for back-transforming standard deviations ss <- c(1, fatsc <- 1/attr(ps$fat,"scaled:scale"), fibsc <- 1/attr(ps$fiber,"scaled:scale"), fatsc*fibsc) ## combine SEs, suppressing the warning from the unscaled model s_vals <- cbind(glm=sqrt(diag(vcov(m4.1))), glmmTMB_unsc=suppressWarnings(sqrt(diag(vcov(m4.2)$cond))), glmmTMB_sc=sqrt(diag(vcov(m4.3)$cond))*ss) print(s_vals,digits=3) ``` ## Example 3. Here is another example (from Samantha Sherman): ```{r load_ss_ex} load(system.file("vignette_data","troubleshooting.rda",package="glmmTMB")) ``` The first model gives the specified warning when it runs, as well as the other symptoms such as `NA` values for the likelihood: ```{r ss_ex_mod1} summary(mod1) ``` We can immediately see that the dispersion is very small and that the zero-inflation parameter is strongly negative. However, we'll develop some fancier machinery that checks the variance-covariance matrix or Hessian of the model, finds eigenvalues that are negative or close to zero, and identifies which model components contribute to those eigenvalues: ```{r diagnose_vcov} diagnose_vcov <- function(model, tol=1e-5, digits=2, analyze_hessian=FALSE) { vv <- vcov(model, full=TRUE) nn <- rownames(vv) if (!all(is.finite(vv))) { if (missing(analyze_hessian)) warning("analyzing Hessian, not vcov") if (!analyze_hessian) stop("can't analyze vcov") analyze_hessian <- TRUE } if (analyze_hessian) { par.fixed <- model$obj$env$last.par.best r <- model$obj$env$random if (!is.null(r)) par.fixed <- par.fixed[-r] vv <- optimHess(par.fixed, fn=model$obj$fn, gr=model$obj$gr) ## note vv is now HESSIAN, not vcov } ee <- eigen(vv) if (all(ee$values>tol)) {message("var-cov matrix OK"); return(invisible(NULL))} ## find negative or small-positive eigenvalues (flat/wrong curvature) bad_evals <- which(ee$values Warning in nlminb(start = par, objective = fn, gradient = gr) : NA/NaN function evaluation This warning occurs when the optimizer visits a region of parameter space that is invalid. It is not a problem as long as the optimizer has left that region of parameter space upon convergence, which is indicated by an absence of the model convergence warnings described above. The following warnings indicate possibly-transient numerical problems with the fit, and can be treated in the same way (i.e. ignored if there are no errors or convergence warnings about the final fitted model). > Cholmod warning 'matrix not positive definite' In older versions of R (< 3.6.0): > Warning in f(par, order = order, ...) : value out of range in 'lgamma' ## false convergence This warning: > false convergence: the gradient ∇f(x) may be computed incorrectly, the other stopping tolerances may be too tight, or either f or ∇f may be discontinuous near the current iterate x comes from the `nlminb` optimizer used by default in `glmmTMB`. It's usually hard to diagnose the source of this warning (this [Stack Overflow answer](https://stackoverflow.com/questions/40039114/r-nlminb-what-does-false-convergence-actually-mean) explains a bit more about what it means). Reasonable methods for making sure your model is OK are: - restart the model at the estimated fitted values - try using a different optimizer, e.g. `control=glmmTMBControl(optimizer=optim, optArgs=list(method="BFGS"))` and see if the results are sufficiently similar to the original fit. # Errors ## NA/NaN gradient evaluation ```{r NA gradient, error=TRUE, warning=FALSE} dat1 = expand.grid(y=-1:1, rep=1:10) m1 = glmmTMB(y~1, dat1, family=nbinom2) ``` The error occurs here because the negative binomial distribution is inappropriate for data with negative values. If you see this error, check that the response variable meets the assumptions of the specified distribution. ## gradient length > Error in nlminb(start = par, objective = fn, gradient = gr) : gradient function must return a numeric vector of length x > Error in optimHess(par.fixed, obj$fn, obj$gr): gradient in optim evaluated to length x Try rescaling predictor variables. Try a simpler model and build up. (If you have a simple reproducible example of these errors, please post them to the issues list.) glmmTMB/vignettes/model_evaluation.Rnw0000644000176200001440000003740513616054060017612 0ustar liggesusers\documentclass[12pt]{article} %% vignette index specifications need to be *after* \documentclass{} %\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{model evaluation} %\VignettePackage{glmmTMB} %\VignetteDepends{ggplot2} %\VignetteDepends{car} %\VignetteDepends{emmeans} %\VignetteDepends{effects} %\VignetteDepends{multcomp} %\VignetteDepends{MuMIn} %\VignetteDepends{DHARMa} %\VignetteDepends{broom} %\VignetteDepends{broom.mixed} %\VignetteDepends{dotwhisker} %\VignetteDepends{texreg} %\VignetteDepends{xtable} \usepackage{lineno} \usepackage[utf8]{inputenc} \usepackage{graphicx} \usepackage[american]{babel} %% for huxtable \usepackage{array} \usepackage{caption} \usepackage{graphicx} \usepackage{siunitx} \usepackage{colortbl} \usepackage{multirow} \usepackage{hhline} \usepackage{calc} \usepackage{tabularx} \usepackage{threeparttable} \usepackage{wrapfig} \newcommand{\R}{{\sf R}} \newcommand{\fixme}[1]{\textbf{\color{red} fixme: #1}} \newcommand{\notimpl}[1]{\emph{\color{magenta} #1}} \usepackage{url} \usepackage{hyperref} \usepackage{fancyvrb} \usepackage{natbib} %% \code{} below is not safe with \section{} etc. \newcommand{\tcode}[1]{{\tt #1}} \VerbatimFootnotes \bibliographystyle{chicago} %% need this for output of citation() below ... \newcommand{\bold}[1]{\textbf{#1}} %% code formatting %% https://tex.stackexchange.com/questions/273843/inline-verbatim-with-line-breaks-colored-font-and-highlighting/280212 % \usepackage{xcolor} %% see knit_hooks$set(...) below \newcommand\code[1]{\mytokenshelp#1 \relax\relax} \def\mytokenshelp#1 #2\relax{\allowbreak\grayspace\tokenscolor{#1}\ifx\relax#2\else \mytokenshelp#2\relax\fi} %\newcommand\tokenscolor[1]{\colorbox{gray!20}{\textcolor{blue}{% % \ttfamily\mystrut\smash{\detokenize{#1}}}}} \newcommand\tokenscolor[1]{\colorbox{gray!0}{\textcolor{black}{% \ttfamily\mystrut\smash{\detokenize{#1}}}}} \def\mystrut{\rule[\dimexpr-\dp\strutbox+\fboxsep]{0pt}{% \dimexpr\normalbaselineskip-2\fboxsep}} \def\grayspace{\hspace{0pt minus \fboxsep}} \title{Post-model-fitting procedures with \tcode{glmmTMB} models: diagnostics, inference, and model output} \date{\today} \author{} \begin{document} \maketitle %\linenumbers %% TO DO: pipeline for re-running stored objects <>= library("knitr") opts_chunk$set(fig.width=5,fig.height=5, out.width="0.8\\textwidth",echo=TRUE) ## https://tex.stackexchange.com/questions/148188/knitr-xcolor-incompatible-color-definition/254482 knit_hooks$set(document = function(x) {sub('\\usepackage[]{color}', '\\usepackage{xcolor}', x, fixed = TRUE)}) Rver <- paste(R.version$major,R.version$minor,sep=".") used.pkgs <- c("glmmTMB","bbmle") ## packages to report below @ The purpose of this vignette is to describe (and test) the functions in various downstream packages that are available for summarizing and otherwise interpreting glmmTMB fits. Some of the packages/functions discussed below may not be suitable for inference on parameters of the zero-inflation or dispersion models, but will be restricted to the conditional-mean model. <>= library(glmmTMB) library(car) library(emmeans) library(effects) library(multcomp) library(MuMIn) library(DHARMa) library(broom) library(broom.mixed) library(dotwhisker) library(ggplot2); theme_set(theme_bw()) library(texreg) library(xtable) library(huxtable) ## retrieve slow stuff L <- load(system.file("vignette_data","model_evaluation.rda", package="glmmTMB")) @ A couple of example models: % don't need to evaluate this since we have loaded owls_nb1 from model_evaluation.rda <>= owls_nb1 <- glmmTMB(SiblingNegotiation ~ FoodTreatment*SexParent + (1|Nest)+offset(log(BroodSize)), contrasts=list(FoodTreatment="contr.sum", SexParent="contr.sum"), family = nbinom1, zi = ~1, data=Owls) @ <>= data("cbpp",package="lme4") cbpp_b1 <- glmmTMB(incidence/size~period+(1|herd), weights=size,family=binomial, data=cbpp) ## simulated three-term Beta example set.seed(1001) dd <- data.frame(z=rbeta(1000,shape1=2,shape2=3), a=rnorm(1000),b=rnorm(1000),c=rnorm(1000)) simex_b1 <- glmmTMB(z~a*b*c,family=beta_family,data=dd) @ \section{model checking and diagnostics} \subsection{\tcode{DHARMa}} The \code{DHARMa} package provides diagnostics for hierarchical models. After running % set to eval=FALSE since we have this stored in model_evaluation.rda <>= owls_nb1_simres <- simulateResiduals(owls_nb1) @ you can plot the results: <>= plot(owls_nb1_simres) @ \subsubsection{issues} \begin{itemize} \item When you run \code{simulateResiduals()} you'll notice a long warning (actually a \emph{message}: ``It seems you are diagnosing a \code{glmmTMB} model \ldots'' that explains some issues with \code{glmmTMB} fits in \code{DHARMa} \item \code{DHARMa} will only work for models using families for which a simulate method has been implemented (in \code{TMB}, and appropriately reflected in \code{glmmTMB}) \end{itemize} \section{Inference} \subsection{\tcode{car::Anova}} We can use \code{car::Anova()} to get traditional ANOVA-style tables from \code{glmmTMB} fits. A few limitations/reminders: \begin{itemize} \item these tables use Wald $\chi^2$ statistics for comparisons (neither likelihood ratio tests nor $F$ tests) \item they apply to the fixed effects of the conditional component of the model only (other components \emph{might} work, but haven't been tested at all) \item as always, if you want to do type 3 tests, you should probably set sum-to-zero contrasts on factors and center numerical covariates (see contrasts argument above) \end{itemize} <>= if (requireNamespace("car") && getRversion() >= "3.6.0") { Anova(owls_nb1) ## default type II Anova(owls_nb1,type="III") } @ \subsection{effects} <>= effects_ok <- (requireNamespace("effects") && getRversion() >= "3.6.0") if (effects_ok) { (ae <- allEffects(owls_nb1)) plot(ae) } @ (the error can probably be ignored) <>= if (effects_ok) { plot(allEffects(simex_b1)) } @ \subsection{\tcode{emmeans}} <>= emmeans(owls_nb1, poly ~ FoodTreatment | SexParent) @ \subsection{\tcode{drop1}} \code{stats::drop1} is a built-in R function that refits the model with various terms dropped. In its default mode it respects marginality (i.e., it will only drop the top-level interactions, not the main effects): <>= system.time(owls_nb1_d1 <- drop1(owls_nb1,test="Chisq")) @ <>= print(owls_nb1_d1) @ In principle, using \code{scope = . ~ . - (1|Nest)} should work to execute a ``type-3-like'' series of tests, dropping the main effects one at a time while leaving the interaction in (we have to use \code{- (1|Nest)} to exclude the random effects because \code{drop1} can't handle them). However, due to the way that R handles formulas, dropping main effects from an interaction of *factors* has no effect on the overall model. (It would work if we were testing the interaction of continuous variables.) \subsubsection{issues} The \code{mixed} package implements a true ``type-3-like'' parameter-dropping mechanism for \code{[g]lmer} models. Something like that could in principle be applied here. \subsection{Model selection and averaging with \tcode{MuMIn}} We can run \code{MuMIn::dredge(owls_nb1)} on the model to fit all possible submodels. Since this takes a little while (45 seconds or so), we've instead loaded some previously computed results: % stored in vignette_data/model_evaluation.rda ... <>= owls_nb1_dredge @ <>= op <- par(mar=c(2,5,14,3)) plot(owls_nb1_dredge) par(op) ## restore graphics parameters @ Model averaging: <>= model.avg(owls_nb1_dredge) @ \subsubsection{issues} \begin{itemize} \item may not work for Beta models because the \code{family} component ("beta") is not identical to the name of the family function (\code{beta_family()})? (Kamil Bartoń, pers. comm.) \end{itemize} \subsection{\tcode{multcomp} for multiple comparisons and \emph{post hoc} tests} <>= glht_glmmTMB <- function (model, ..., component="cond") { glht(model, ..., coef. = function(x) fixef(x)[[component]], vcov. = function(x) vcov(x)[[component]], df = NULL) } modelparm.glmmTMB <- function (model, coef. = function(x) fixef(x)[[component]], vcov. = function(x) vcov(x)[[component]], df = NULL, component="cond", ...) { multcomp:::modelparm.default(model, coef. = coef., vcov. = vcov., df = df, ...) } @ <>= g1 <- glht(cbpp_b1, linfct = mcp(period = "Tukey")) summary(g1) @ \subsubsection{issues} It is possible to make \code{multcomp} work in a way that (1) actually uses the S3 method structure and (2) doesn't need access to private multcomp methods (i.e. accessed by \code{multcomp:::}) ? Not sure, but both of the following hacks should work. (The \code{glht_glmmTMB} solution below is clunky because it isn't a real S3 method; the \code{model.parm.glmmTMB} solution can't be included in the package source code as-is because ::: is not allowed in CRAN package code.) \section{Extracting coefficients, coefficient plots and tables} \subsection{\tcode{broom} and friends} The \code{broom} and \code{broom.mixed} packages are designed to extract information from a broad range of models in a convenient (tidy) format; the dotwhisker package builds on this platform to draw elegant coefficient plots. <>= if (requireNamespace("broom.mixed") && requireNamespace("dotwhisker")) { (t1 <- broom.mixed::tidy(owls_nb1, conf.int = TRUE)) if (packageVersion("dotwhisker")>"0.4.1") { ## to get this version (which fixes various dotwhisker problems) ## use devtools::install_github("bbolker/broom.mixed") or ## wait for pull request acceptance/submission to CRAN/etc. dwplot(owls_nb1)+geom_vline(xintercept=0,lty=2) } else { owls_nb1$coefficients <- TRUE ## hack! dwplot(owls_nb1,by_2sd=FALSE)+geom_vline(xintercept=0,lty=2) } } @ \subsubsection{issues} (these are more general \code{dwplot} issues) \begin{itemize} \item use black rather than color(1) when there's only a single model, i.e. only add aes(colour=model) conditionally? - draw points even if std err / confint are NA (draw \code{geom_point()} as well as \code{geom_pointrange()}? need to apply all aesthetics, dodging, etc. to both ...) \item for glmmTMB models, allow labeling by component? or should this be done by manipulating the tidied frame first? (i.e.: \code{tidy(.) \%>\% tidyr::unite(term,c(component,term))}) \end{itemize} \subsection{coefficient tables with \tcode{xtable}} The \code{xtable} package can output data frames as \LaTeX\ tables; this isn't quite as elegant as \code{stargazer} etc., but is not a bad start. I've sprinkled lots of hard line-breaks, spaces, and newlines in below: someone who was better at \TeX\ could certainly do a better job. (\code{xtable} can also produce HTML output.) <>= ss <- summary(owls_nb1) ## print table; add space, pxt <- function(x,title) { cat(sprintf("{\n\n\\textbf{%s}\n\\ \\\\\\vspace{2pt}\\ \\\\\n",title)) print(xtable(x), floating=FALSE); cat("\n\n") cat("\\ \\\\\\vspace{5pt}\\ \\\\\n") } <>= pxt(lme4::formatVC(ss$varcor$cond),"random effects variances") pxt(coef(ss)$cond,"conditional fixed effects") pxt(coef(ss)$zi,"conditional zero-inflation effects") @ <>= if (requireNamespace("xtable")) { pxt(lme4::formatVC(ss$varcor$cond),"random effects variances") pxt(coef(ss)$cond,"conditional fixed effects") pxt(coef(ss)$zi,"conditional zero-inflation effects") } @ \subsection{coefficient tables with \tcode{texreg}} <>= source(system.file("other_methods","extract.R",package="glmmTMB")) texreg(owls_nb1,caption="Owls model", label="tab:owls") @ See output in Table~\ref{tab:owls}. \subsection{coefficient tables with \tcode{huxtable}} The \code{huxtable} package allows output in either \LaTeX\ or HTML: this example is tuned for \LaTeX. <>= cc <- c("intercept (mean)"="(Intercept)", "food treatment (starvation)"="FoodTreatment1", "parental sex (M)"="SexParent1", "food $\\times$ sex"="FoodTreatment1:SexParent1") h0 <- huxreg(" "=owls_nb1, # give model blank name so we don't get '(1)' tidy_args=list(effects="fixed"), coefs=cc, error_pos="right", statistics="nobs" # don't include logLik and AIC ) names(h0)[2:3] <- c("estimate","std. err.") ## allow use of math notation in name h1 <- set_cell_properties(h0,row=5,col=1,escape_contents=FALSE) cat(to_latex(h1,tabular_only=TRUE)) @ \subsubsection{issues} \begin{itemize} \item \code{huxtable} needs quite a few additional \LaTeX\ packages: use \code{report_latex_dependencies()} to see what they are. \end{itemize} \section{influence measures} \emph{Influence measures} quantify the effects of particular observations, or groups of observations, on the results of a statistical model; \emph{leverage} and \emph{Cook's distance} are the two most common formats for influence measures. If a \href{https://en.wikipedia.org/wiki/Projection_matrix}{projection matrix} (or ``hat matrix'') is available, influence measures can be computed efficiently; otherwise, the same quantities can be estimated by brute-force methods, refitting the model with each group or observation successively left out. We've adapted the \tcode{car::influence.merMod} function to handle \tcode{glmmTMB} models; because it uses brute force, it can be slow, especially if evaluating the influence of individual observations. For now, it is included as a separate source file rather than exported as a method (see below), although it may be included in the package (or incorporated in the \tcode{car} package) in the future. <>= source(system.file("other_methods","influence_mixed.R", package="glmmTMB")) @ <>= owls_nb1_influence_time <- system.time( owls_nb1_influence <- influence_mixed(owls_nb1, groups="Nest") ) @ Re-fitting the model with each of the \Sexpr{length(unique(Owls$Nest))} nests excluded takes \Sexpr{round(owls_nb1_influence_time[["elapsed"]])} seconds (on an old Macbook Pro). The \tcode{car::infIndexPlot()} function is one way of displaying the results: <>= car::infIndexPlot(owls_nb1_influence) @ Or, you can transform the results and plot them however you like: <>= inf <- as.data.frame(owls_nb1_influence[["fixed.effects[-Nest]"]]) inf <- transform(inf, nest=rownames(inf), cooks=cooks.distance(owls_nb1_influence)) inf$ord <- rank(inf$cooks) if (require(reshape2)) { inf_long <- melt(inf, id.vars=c("ord","nest")) gg_infl <- (ggplot(inf_long,aes(ord,value)) + geom_point() + facet_wrap(~variable, scale="free_y") + scale_x_reverse(expand=expand_scale(mult=0.15)) + scale_y_continuous(expand=expand_scale(mult=0.15)) + geom_text(data=subset(inf_long,ord>24), aes(label=nest),vjust=-1.05) ) print(gg_infl) } @ \section{to do} \begin{itemize} \item more plotting methods (\code{sjplot}) \item output with \code{memisc} \item AUC etc. with \code{ModelMetrics} \end{itemize} <>= ## store time-consuming stuff save("owls_nb1", "owls_nb1_simres", "owls_nb1_dredge", "owls_nb1_influence", "owls_nb1_influence_time", file="../inst/vignette_data/model_evaluation.rda", version=2 ## for compatibility with R < 3.6.0 ) @ \end{document} glmmTMB/vignettes/miscEx.rmd0000644000176200001440000000161513614324717015530 0ustar liggesusers--- title: "Miscellaneous examples" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{miscellaneous examples} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- ```{r echo=FALSE} library(glmmTMB) ``` ## Beta dispersion model ```{r simbeta1} set.seed(1001) N <- 1000 mean_pars <- c(1,2) disp_pars <- c(1,2) dd <- data.frame(x=rnorm(N)) m <- plogis(mean_pars[1]+mean_pars[2]*dd$x) d <- exp(disp_pars[1]+disp_pars[2]*dd$x) dd$y <- rbeta(N,shape1=m*d,shape2=(1-m)*d) ``` Fit models: ```{r modbeta1} ## location only m1 <- glmmTMB(y~x, family=beta_family(), data=dd) ## add model for dispersion m2 <- update(m1,dispformula=~x) ``` Fixed effects look close to theoretical values: ```{r coefbeta1} fixef(m2) ``` AIC is insanely much better for the model with dispersion varying: ```{r AICbeta1} bbmle::AICtab(m1,m2) ``` glmmTMB/vignettes/glmmTMB.Rnw0000644000176200001440000003502013614324717015560 0ustar liggesusers\documentclass[12pt]{article} %% vignette index specifications need to be *after* \documentclass{} %\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{basic examples of glmmTMB usage} %\VignettePackage{glmmTMB} %\VignetteDepends{ggplot2} %\VignetteDepends{grid} %\VignetteDepends{bbmle} %\VignetteDepends{mlmRev} %\usepackage{lineno} \usepackage[utf8]{inputenc} \usepackage{graphicx} \usepackage[american]{babel} \newcommand{\R}{{\sf R}} \newcommand{\fixme}[1]{\textbf{\color{red} fixme: #1}} \newcommand{\notimpl}[1]{\emph{\color{magenta} #1}} \usepackage{url} \usepackage{hyperref} \usepackage{alltt} \newcommand{\code}[1]{{\tt #1}} \usepackage{fancyvrb} \usepackage{natbib} \VerbatimFootnotes \bibliographystyle{chicago} %% need this for output of citation() below ... \newcommand{\bold}[1]{\textbf{#1}} \title{Getting started with the \code{glmmTMB} package} \author{Ben Bolker} \date{\today} \begin{document} \maketitle %\linenumbers <>= library("knitr") opts_chunk$set(fig.width=5,fig.height=5, out.width="0.8\\textwidth",echo=TRUE) Rver <- paste(R.version$major,R.version$minor,sep=".") used.pkgs <- c("glmmTMB","bbmle") ## packages to report below @ \section{Introduction/quick start} \code{glmmTMB} is an R package built on the \href{https://github.com/kaskr/adcomp}{Template Model Builder} automatic differentiation engine, for fitting generalized linear mixed models and extensions. (Not-yet-implemented features are denoted \notimpl{like this}) \begin{itemize} \item response distributions: Poisson, binomial, negative binomial (NB1 and NB2 parameterizations), Gamma, Beta, Gaussian; truncated Poisson and negative binomial; \notimpl{Student $t$; Tweedie} \item link functions: log, logit, probit, complementary log-log, inverse, identity \item zero-inflation with fixed and random-effects components; hurdle models via truncated Poisson/NB \item single or multiple (nested or crossed) random effects \item offsets \item fixed-effects models for dispersion \item diagonal, compound-symmetric, or unstructured random effects variance-covariance matrices; first-order autoregressive (AR1) variance structures \end{itemize} In order to use \code{glmmTMB} effectively you should already be reasonably familiar with generalized linear mixed models (GLMMs), which in turn requires familiarity with (i) generalized linear models (e.g. the special cases of logistic, binomial, and Poisson regression) and (ii) `modern' mixed models (those working via maximization of the marginal likelihood rather than by manipulating sums of squares). \cite{bolker_generalized_2009} and \cite{bolker_glmm_2014} are reasonable starting points in this area (especially geared to biologists and less-technical readers), as are \cite{zuur_mixed_2009}, \cite{millar_maximum_2011}, and \cite{zuur_beginners_2013}. In order to fit a model in \code{glmmTMB} you need to: \begin{itemize} \item specify a model for the conditional effects, in the standard R (Wilkinson-Rogers) formula notation (see \code{?formula} or Section 11.1 of the \href{http://cran.r-project.org/doc/manuals/R-intro.pdf}{Introduction to R}. Formulae can also include \emph{offsets}. \item specify a model for the random effects, in the notation that is common to the \code{nlme} and \code{lme4} packages. Random effects are specified as \code{x|g}, where \code{x} is an effect and \code{g} is a grouping factor (which must be a factor variable, or a nesting of/interaction among factor variables). For example, the formula would be \code{1|block} for a random-intercept model or \code{time|block} for a model with random variation in slopes through time across groups specified by \code{block}. A model of nested random effects (block within site) would be \code{1|site/block}; a model of crossed random effects (block and year) would be \code{(1|block)+(1|year)}. \item choose the error distribution by specifying the family (\code{family} argument). In general, you can specify the function (\code{binomial}, \code{gaussian}, \code{poisson}, \code{Gamma} from base R, or one of the options listed at \code{family\_glmmTMB} [\code{nbinom2}, \code{beta\_family()}, \code{betabinomial}, \ldots])). \item choose the error distribution by specifying the family (\code{family} argument). For standard GLM families implemented in R, you can use the function name (\code{binomial}, \code{gaussian}, \code{poisson}, \code{Gamma}). Otherwise, you should specify the family argument as a list containing (at least) the (character) elements \code{family} and \code{link}, e.g. \code{family=list(family="nbinom2",link="log")}. \item optionally specify a zero-inflation model (via the \code{ziformula} argument) with fixed and/or random effects \item optionally specify a dispersion model with fixed effects \end{itemize} This document was generated using \Sexpr{R.version$version.string} and package versions: <>= pkgver <- vapply(sort(used.pkgs),function(x) as.character(packageVersion(x)),"") print(pkgver,quote=FALSE) @ The current citation for \code{glmmTMB} is: \begin{quote} %% fixme: would like to deal with smart quotes <>= print(citation("glmmTMB"),style="latex") @ \end{quote} \section{Preliminaries: packages and data} Load required packages: <>= library("glmmTMB") library("bbmle") ## for AICtab library("ggplot2") ## cosmetic theme_set(theme_bw()+ theme(panel.spacing=grid::unit(0,"lines"))) @ The data, taken from \cite{zuur_mixed_2009} and ultimately from \cite{roulinbersier_2007}, quantify the number of negotiations among owlets (owl chicks) in different nests \emph{prior} to the arrival of a provisioning parent as a function of food treatment (deprived or satiated), the sex of the parent, and arrival time. The total number of calls from the nest is recorded, along with the total brood size, which is used as an offset to allow the use of a Poisson response. Since the same nests are measured repeatedly, the nest is used as a random effect. The model can be expressed as a zero-inflated generalized linear mixed model (ZIGLMM). Various small manipulations of the data set: (1) reorder nests by mean negotiations per chick, for plotting purposes; (2) add log brood size variable (for offset); (3) rename response variable and abbreviate one of the input variables. %% FIXME: I get a warning message ("NAs introduced by coercion") here, but only in knitr, %% and not on a clean start ... ? %% some weird package interaction ? <>= Owls <- transform(Owls, Nest=reorder(Nest,NegPerChick), NCalls=SiblingNegotiation, FT=FoodTreatment) @ (If you were really using this data set you should start with \code{summary(Owls)} to explore the data set.) % fig.cap="Basic view of owl data from \\cite{roulinbersier_2007}." <>= G0 <- ggplot(Owls,aes(x=reorder(Nest,NegPerChick), y=NegPerChick))+ labs(x="Nest",y="Negotiations per chick")+coord_flip()+ facet_grid(FoodTreatment~SexParent) G0+stat_sum(aes(size=..n..),alpha=0.5)+ scale_size_continuous(name="# obs", breaks=seq(1,9,by=2))+ theme(axis.title.x=element_text(hjust=0.5,size=12), axis.text.y=element_text(size=7)) @ We should explore the data before we start to build models, e.g. by plotting it in various ways, but this vignette is about \code{glmmTMB}, not about data visualization \ldots Now fit some models: The basic \code{glmmTMB} fit --- a zero-inflated Poisson model with a single zero-inflation parameter applying to all observations (\verb+ziformula~1+). (Excluding zero-inflation is \code{glmmTMB}'s default: to exclude it explicitly, use \verb+ziformula~0+.) <>= gt1 <- system.time(glmmTMB(NCalls~(FT+ArrivalTime)*SexParent+ offset(log(BroodSize))+(1|Nest), ziformula=~1, data=Owls, family=poisson)) @ <>= fit_zipoisson <- glmmTMB(NCalls~(FT+ArrivalTime)*SexParent+ offset(log(BroodSize))+(1|Nest), data=Owls, ziformula=~1, family=poisson) @ <>= summary(fit_zipoisson) @ We can also try a standard zero-inflated negative binomial model; the default is the ``NB2'' parameterization (variance = $\mu(1+\mu/k)$: \cite{hardin_generalized_2007}). To use families (Poisson, binomial, Gaussian) that are defined in \R, you should specify them as in \code{?glm} (as a string referring to the family function, as the family function itself, or as the result of a call to the family function: i.e. \code{family="poisson"}, \code{family=poisson}, \code{family=poisson()}, and \code{family=poisson(link="log")} are all allowed and all equivalent (the log link is the default for the Poisson family). Some of the additional families that are \emph{not} defined in base R (at this point \code{nbinom2} and \code{nbinom1}) can be specified using the same format. Otherwise, for families that are implemented in \code{glmmTMB} but for which \code{glmmTMB} does not provide a function, you should specify the \code{family} argument as a list containing (at least) the (character) elements \code{family} and \code{link}, e.g. \code{family=list(family="nbinom2",link="log")}. (In order to be able to retrieve Pearson (variance-scaled) residuals from a fit, you also need to specify a \code{variance} component; see \code{?family\_glmmTMB}.) <>= fit_zinbinom <- update(fit_zipoisson,family=nbinom2) @ %% FIXME: caching may lead to %% ## Error in ICtab(..., mnames = mnames, type = "AIC"): memory block of size 3.1 Gb %% downstream, in AICtab() ... %% for now I'm removing caching, but we should %% (1) document this as an issue/make a MWE %% (2) fix it %% (3) we could also cache the AICtab chunk as well .. Alternatively, we can use an ``NB1'' fit (variance = $\phi \mu$). <>= fit_zinbinom1 <- update(fit_zipoisson,family=nbinom1) @ \notimpl{we should have a \code{getFamily} function: ideally it would also specify which are really implemented (although that's harder), and specify default links} Relax the assumption that total number of calls is strictly proportional to brood size (i.e. using log(brood size) as an offset): <>= fit_zinbinom1_bs <- update(fit_zinbinom1, . ~ (FT+ArrivalTime)*SexParent+ BroodSize+(1|Nest)) @ Every change we have made so far improves the fit --- changing distributions improves it enormously, while changing the role of brood size makes only a modest (-1 AIC unit) difference: <>= AICtab(fit_zipoisson,fit_zinbinom,fit_zinbinom1,fit_zinbinom1_bs) @ \subsection{Hurdle models} In contrast to zero-inflated models, hurdle models treat zero-count and non-zero outcomes as two completely separate categories, rather than treating the zero-count outcomes as a mixture of structural and sampling zeros. \code{glmmTMB} includes truncated Poisson and negative binomial familes and hence can fit hurdle models. <>= fit_hnbinom1 <- update(fit_zinbinom1_bs, ziformula=~., data=Owls, family=list(family="truncated_nbinom1",link="log")) @ Then we can use \code{AICtab} to compare all the models. <>= AICtab(fit_zipoisson,fit_zinbinom,fit_zinbinom1,fit_zinbinom1_bs,fit_hnbinom1) @ \section{Sample timings} To get a rough idea of \code{glmmTMB}'s speed relative to \code{lme4} (the most commonly used mixed-model package for R), we try a few standard problems, enlarging the data sets by cloning the original data set (making multiple copies and sticking them together). <>= data("Contraception",package="mlmRev") nc <- nrow(Contraception) nl <- length(levels(Contraception$district)) load("contraceptionTimings.rda") meandiff <- mean(with(tmatContraception, time[pkg=="glmer"]/time[pkg=="glmmTMB"])) @ Figure~\ref{fig:contraception} shows the results of replicating the \code{Contraception} data set (\Sexpr{nc} observations, \Sexpr{nl} levels in the random effects grouping level) from 1 to 40 times. \code{glmmADMB} is sufficiently slow ($\approx 1$ minute for a single copy of the data) that we didn't try replicating very much. On average, \code{glmmTMB} is about \Sexpr{round(meandiff,1)} times faster than \code{glmer} for this problem. <>= ggplot(tmatContraception,aes(n,time,colour=pkg))+geom_point()+ scale_y_log10(breaks=c(1,2,5,10,20,50,100))+ scale_x_log10(breaks=c(1,2,4,10,20,40))+ labs(x="Replication (x 1934 obs.)",y="Elapsed time (s)")+ geom_smooth(method="lm")+ scale_colour_brewer(palette="Set1") @ <>= load("InstEvalTimings.rda") n_InstEval <- 73421L ## seems silly to require lme4 just to get this number meandiff_inst2 <- with(tmatInstEval, time[pkg=="lmer"]/time[pkg=="glmmTMB"]) ggplot(tmatInstEval,aes(n,time,colour=pkg))+geom_point()+ scale_y_log10(breaks=c(1,2,5,10,20,50,100,200))+ scale_x_log10(breaks=c(0.1,0.2,0.5,1.0))+ labs(x=sprintf("Replication (x %d obs.)",n_InstEval), y="Elapsed time (s)")+ geom_smooth(method="lm")+ scale_colour_brewer(palette="Set1") @ Figure~\ref{fig:insteval} shows equivalent timings for the \code{InstEval} data set, although in this case since the original data set is large (\Sexpr{n_InstEval} observations) we subsample the data set rather than cloning it: in this case, the advantage is reversed and \code{lmer} is about \Sexpr{round(1/mean(meandiff_inst2,1))} times faster. In general, we expect \code{glmmTMB}'s advantages over \code{lme4} to be (1) greater flexibility (zero-inflation etc.); (2) greater speed for GLMMs, especially those with large number of ``top-level'' parameters (fixed effects plus random-effects variance-covariance parameters). In contrast, \code{lme4} should be faster for LMMs (for maximum speed, you may want to check the \href{https://github.com/dmbates/MixedModels.jl}{MixedModels.jl} package for Julia); \code{lme4} is more mature and at present has a wider variety of diagnostic checks and methods for using model results, including downstream packages. \bibliography{glmmTMB} \end{document} glmmTMB/vignettes/contraceptionTimings.rda0000644000176200001440000000155413614324717020471 0ustar liggesusersՔkSgǟ5V]lu]ig+mQfju]a6jR_(?T:a"E"CqcSĈ ' 4}^s۴lB(¤(B1q/A$4>^M׻}B>冴LAl-$dBRt$L"sS'"iD$d,2$d\IMb#gz2){9u{z5WSV{ħII:m<%{7޺_^irܳnREʃE6]^K3a;:Y^]Ͽx` gWg yxbP_s׾a[B˹`@ACfNvml`kܜ8HI_jV۱bAuҗ%+\]@g}vDe|/STTKjj?lWaIy 8: TRϵ >4PxAT9w@DuL0n0iws( %\VignetteIndexEntry{simulate} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- `glmmTMB` has the capability to simulate from a fitted model. These simulations resample random effects from their estimated distribution. In future versions of `glmmTMB`, it may be possible to condition on estimated random effects. ```{r setup, include=FALSE, message=FALSE} library(knitr) knitr::opts_chunk$set(echo = TRUE) ``` ```{r libs,message=FALSE} library(glmmTMB) library(ggplot2); theme_set(theme_bw()) ``` Fit a typical model: ```{r fit1} data(Owls) owls_nb1 <- glmmTMB(SiblingNegotiation ~ FoodTreatment*SexParent + (1|Nest)+offset(log(BroodSize)), family = nbinom1, ziformula = ~1, data=Owls) ``` Then we can simulate from the fitted model with the `simulate.glmmTMB` function. It produces a list of simulated observation vectors, each of which is the same size as the original vector of observations. The default is to only simulate one vector (`nsim=1`) but we still return a list for consistency. ```{r sim} simo=simulate(owls_nb1, seed=1) Simdat=Owls Simdat$SiblingNegotiation=simo[[1]] Simdat=transform(Simdat, NegPerChick = SiblingNegotiation/BroodSize, type="simulated") Owls$type = "observed" Dat=rbind(Owls, Simdat) ``` Then we can plot the simulated data against the observed data to check if they are similar. ```{r plots,fig.width=7} ggplot(Dat, aes(NegPerChick, colour=type))+geom_density()+facet_grid(FoodTreatment~SexParent) ``` glmmTMB/vignettes/mcmc.rmd0000644000176200001440000001151313614324717015215 0ustar liggesusers--- title: "post-hoc MCMC with glmmTMB" author: "Ben Bolker" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{post-hoc MCMC} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- One commonly requested feature is to be able to run a *post hoc* Markov chain Monte Carlo analysis based on the results of a frequentist fit. This is often a reasonable shortcut for computing confidence intervals and p-values that allow for finite-sized samples rather than relying on asymptotic sampling distributions. This vignette shows an example of such an analysis. Some caveats: - when using such a "pseudo-Bayesian" approach, be aware that using a scaled likelihood (implicit, improper priors) can often cause problems, especially when the model is poorly constrained by the data - in particular, models with poorly constrained random effects (singular or nearly singular) are likely to give bad results - as shown below, even models that are well-behaved for frequentist fitting may need stronger priors to give well-behaved MCMC results - as with all MCMC analysis, it is the *user's responsibility to check for proper mixing and convergence of the chains* before drawing conclusions - the first MCMC sampler illustrated below is simple (Metropolis with a multivariate normal candidate distribution). Users who want to do MCMC sampling on a regular basis should consider the [tmbstan package](https://CRAN.R-project.org/package=tmbstan), which does much more efficient hybrid/Hamiltonian Monte Carlo sampling. ```{r knitr_setup, include=FALSE, message=FALSE} library(knitr) opts_chunk$set(echo = TRUE) rc <- knitr::read_chunk rc(system.file("vignette_data","mcmc.R",package="glmmTMB")) ``` Load packages: ```{r libs,message=FALSE} library(glmmTMB) library(coda) ## MCMC utilities library(reshape2) ## for melt() ## graphics library(lattice) library(ggplot2); theme_set(theme_bw()) ``` Fit basic model: ```{r fit1} ``` Set up for MCMC: define scaled log-posterior function (in this case the log-likelihood function); extract coefficients and variance-covariance matrices as starting points. ```{r setup} ``` This is a basic block Metropolis sampler, based on Florian Hartig's code [here](https://theoreticalecology.wordpress.com/2010/09/17/metropolis-hastings-mcmc-in-r/). ```{r run_MCMC} ``` Run the chain: ```{r do_run_MCMC,eval=FALSE} ``` ```{r load_MCMC, echo=FALSE} L <- load(system.file("vignette_data", "mcmc.rda", package="glmmTMB")) ``` (running this chain takes `r round(t1["elapsed"],1)` seconds) Add more informative names and transform correlation parameter (see vignette on covariance structures and parameters): ```{r add_names} colnames(m1) <- c(names(fixef(fm1)[[1]]), "log(sigma)", c("log(sd_Intercept)","log(sd_Days)","cor")) m1[,"cor"] <- sapply(m1[,"cor"],get_cor) ``` ```{r traceplot,fig.width=7} xyplot(m1,layout=c(2,3),asp="fill") ``` The trace plots are poor, especially for the correlation; the effective sample size backs this up, as would any other diagnostics we did. ```{r effsize} print(effectiveSize(m1),digits=3) ``` **In a real analysis we would stop and fix the mixing/convergence problems before proceeding**; for this simple sampler, some of our choices would be (1) simply run the chain for longer; (2) tune the candidate distribution (e.g. by using `tune` to scale some parameters, or perhaps by switching to a multivariate Student t distribution [see the `mvtnorm` package]); (3) add regularizing priors. Ignoring the problems and proceeding, we can compute column-wise quantiles or highest posterior density intervals (`coda::HPDinterval`) to get confidence intervals. Plotting posterior distributions, omitting the intercept because it's on a very different scale. ```{r violins,echo=FALSE} ggplot(reshape2::melt(as.matrix(m1[,-1])),aes(x=Var2,y=value))+ geom_violin(fill="gray")+coord_flip()+labs(x="") ``` ## tmbstan The `tmbstan` package allows direct, simple access to a hybrid/Hamiltonian Monte Carlo algorithm for sampling from a TMB object; the `$obj` component of a `glmmTMB` fit is such an object. (To run this example you'll need to install the `tmbstan` package and its dependencies.) ```{r do_tmbstan,eval=FALSE} ``` (running this command, which creates 4 chains, takes `r round(t2["elapsed"],1)` seconds) However, there are many indications (warning messages; trace plots) that the correlation parameter needs to a more informative prior. (In the plot below, the correlation parameter is shown on its unconstrained scale; the actual correlation would be $\theta_3/\sqrt{1+\theta_3^2}$.) ```{r show_traceplot,echo=FALSE,fig.width=8,fig.height=5} library(png) library(grid) img <- readPNG(system.file("vignette_data","tmbstan_traceplot.png",package="glmmTMB")) grid.raster(img) ``` ## To do - solve mixing for cor parameter - more complex example - e.g. `Owls` glmmTMB/vignettes/timingInstEval.R0000644000176200001440000000136413614324717016655 0ustar liggesuserssource("timingFuns.R") data(InstEval,package="lme4") library("lme4") library("glmmTMB") library("plyr") ## load before dplyr; for ldply() library("tidyr") library("dplyr") ## make sure this is run with optimized build of glmmTMB, ## i.e. "make install" rather than "make quick-install/quick-check" ## (or at least document) nvals <- seq(0.1,1,by=0.1) form <- y~service+lectage+studage+(1|d)+(1|s)+(1|dept) tmat <- ldply(nvals,getTimes,basedata=InstEval, form=form,family=NULL,which=c("glmmTMB","lmer"), .progress="text") ## reshape: wide-to-long, add n values ff <- function(dd,n=seq(nrow(dd))) { mutate(dd,n=nvals) %>% gather(pkg,time,-n) } tmatInstEval <- ff(tmat) save("tmatInstEval",file="InstEvalTimings.rda") glmmTMB/vignettes/timingFuns.R0000644000176200001440000000171413614324717016042 0ustar liggesusers ## run model & extract elapsed time form0 <- use ~ urban+age+livch+(urban|district) tt <- function(fun,data,form=form0,family=binomial,debug=FALSE) { argList <- list(form,data) if (!is.null(family)) argList <- c(argList,list(family=family)) unname(system.time(do.call(fun,argList))["elapsed"]) } ## replicate timings across models for a specified expansion ## of the data getTimes <- function(n=1,which=c("glmmTMB","glmer"), basedata=Contraception,form=form0, family=binomial, debug=FALSE) { if (n>1) { if (!n==round(n)) stop("only integer magnification allowed") ## replicate data c2 <- do.call(rbind,replicate(n,basedata,simplify=FALSE)) } else { ## subsample c2 <- basedata[sample.int(round(n*nrow(basedata))),] } ## run for all models res <- setNames(vapply(which,tt,data=c2,form=form, family=family,numeric(1)),which) return(res) } glmmTMB/vignettes/timingContraception.R0000644000176200001440000000156113614324717017737 0ustar liggesuserssource("timingFuns.R") data(Contraception,package="mlmRev") library("lme4") library("glmmTMB") library("glmmADMB") library("plyr") ## load before dplyr; for ldply() library("tidyr") library("dplyr") ## make sure this is run with optimized build of glmmTMB, ## i.e. "make install" rather than "make quick-install/quick-check" ## (or at least document) nmax <- 40 ## max replications for glmer/glmmTMB nmaxADMB <- 2 ## max reps for glmmadmb (much slower) ## slow enough that I should consider using something with ## checkpointing instead ... tmat <- ldply(seq(nmax),getTimes) tmatADMB <- ldply(seq(nmaxADMB),getTimes,which="glmmadmb") ## reshape: wide-to-long, add n values ff <- function(dd,n=seq(nrow(dd))) { mutate(dd,n=n) %>% gather(pkg,time,-n) } tmatContraception <- rbind(ff(tmat),ff(tmatADMB)) save("tmatContraception",file="contraceptionTimings.rda") glmmTMB/vignettes/glmmTMB.bib0000644000176200001440000001426013614324717015551 0ustar liggesusers @Book{Bolker2008, author = {Benjamin M. Bolker}, title = {Ecological Models and Data in R}, publisher = {Princeton University Press}, year = {2008}, address = {Princeton, NJ} } @article{roulinbersier_2007, title = {Nestling barn owls beg more intensely in the presence of their mother than in the presence of their father}, author = {Roulin, A. and L. Bersier}, year = {2007}, journal= {Animal Behaviour}, volume= {74}, pages={1099-1106}, url = {http://www.sciencedirect.com/science/article/B6W9W-4PK8B6H-8/2/e43cfbaad4dc0bb2207adfc54a460c89} } @book{zuur_mixed_2009, edition = {1}, title = {Mixed Effects Models and Extensions in Ecology with R}, isbn = {0387874577}, publisher = {Springer}, author = {Zuur, Alain F. and Ieno, Elena N. and Walker, Neil J. and Saveliev, Anatoly A. and Smith, Graham M.}, month = mar, year = {2009} } @ARTICLE{Fournieretal11, author = {David A. Fournier and Hans J. Skaug and Johnoel Ancheta and Jim Ianellid and Arni Magnusson and Mark Maunder and Anders Nielsen and John Sibert}, year = {2011}, title = {AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models}, journal = {Optimization Methods \& Software}, volume = {00}, number = {0}, pages = {1–17} } @article{bolker_generalized_2009, title = {Generalized linear mixed models: a practical guide for ecology and evolution}, volume = {24}, issn = {0169-5347}, shorttitle = {Generalized linear mixed models}, url = {http://www.sciencedirect.com/science/article/B6VJ1-4VGKHJP-1/2/35970065c78c14ad30bf71bd1d5b452e}, doi = {10.1016/j.tree.2008.10.008}, abstract = {How should ecologists and evolutionary biologists analyze nonnormal data that involve random effects? Nonnormal data such as counts or proportions often defy classical statistical procedures. Generalized linear mixed models {(GLMMs)} provide a more flexible approach for analyzing nonnormal data when random effects are present. The explosion of research on {GLMMs} in the last decade has generated considerable uncertainty for practitioners in ecology and evolution. Despite the availability of accurate techniques for estimating {GLMM} parameters in simple cases, complex {GLMMs} are challenging to fit and statistical inference such as hypothesis testing remains difficult. We review the use (and misuse) of {GLMMs} in ecology and evolution, discuss estimation and inference and summarize [`]best-practice' data analysis procedures for scientists facing this challenge.}, journal = {Trends in Ecology \& Evolution}, author = {Bolker, Benjamin M. and Brooks, Mollie E. and Clark, Connie J. and Geange, Shane W. and Poulsen, John R. and Stevens, M. Henry H. and White, {Jada-Simone} S.}, year = {2009}, pages = {127--135} } @InCollection{bolker_glmm_2014, author = {Benjamin M. Bolker}, editor = {Fox, Gordon A. and Negrete-Yankelevich, Simoneta and Sosa, Vinicio J.}, booktitle = {Ecological Statistics: Contemporary theory and application}, title = {Linear and Generalized Linear Mixed Models}, publisher = {Oxford University Press}, year = {2015}, chapter = {13}, isbn = {978-0-19-967255-4} } @book{hardin_generalized_2007, title = {Generalized linear models and extensions}, isbn = {9781597180146}, publisher = {Stata Press}, author = {Hardin, James William and Hilbe, Joseph}, month = feb, year = {2007} } @book{zuur_beginners_2013, title = {A Beginner's Guide to {GLM} and {GLMM} with {R}: A Frequentist and {Bayesian} Perspective for Ecologists}, isbn = {978-0-9571741-3-9}, shorttitle = {A {Beginner}'s {Guide} to {GLM} and {GLMM} with {R}}, publisher = {Highland Statistics Ltd}, author = {Zuur, Alain F. and Hilbe, Joseph M. and Leno, Elena N.}, month = may, year = {2013} } @book{millar_maximum_2011, title = {Maximum Likelihood Estimation and Inference: With Examples in R, {SAS} and {ADMB}}, isbn = {9781119977711}, shorttitle = {Maximum Likelihood Estimation and Inference}, abstract = {This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free {ADMB} software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statistical {paradigm.Key} features: Provides an accessible introduction to pragmatic maximum likelihood {modelling.Covers} more advanced topics, including general forms of latent variable models (including non-linear and non-normal mixed-effects and state-space models) and the use of maximum likelihood variants, such as estimating equations, conditional likelihood, restricted likelihood and integrated {likelihood.Adopts} a practical approach, with a focus on providing the relevant tools required by researchers and practitioners who collect and analyze real {data.Presents} numerous examples and case studies across a wide range of applications including medicine, biology and {ecology.Features} applications from a range of disciplines, with implementation in R, {SAS} and/or {ADMB.Provides} all program code and software extensions on a supporting {website.Confines} supporting theory to the final chapters to maintain a readable and pragmatic focus of the preceding chapters. This book is not just an accessible and practical text about maximum likelihood, it is a comprehensive guide to modern maximum likelihood estimation and inference. It will be of interest to readers of all levels, from novice to expert. It will be of great benefit to researchers, and to students of statistics from senior undergraduate to graduate level. For use as a course text, exercises are provided at the end of each chapter.}, language = {en}, publisher = {John Wiley \& Sons}, author = {Millar, Russell B.}, month = jul, year = {2011}, keywords = {Computers / Mathematical \& Statistical Software, Mathematics / Probability \& Statistics / General} } glmmTMB/R/0000755000176200001440000000000013616054060011753 5ustar liggesusersglmmTMB/R/methods.R0000644000176200001440000014571513614324717013565 0ustar liggesusers##' Extract Fixed Effects ##' ##' Extract fixed effects from a fitted \code{glmmTMB} model. ##' @name fixef ##' @title Extract fixed-effects estimates ##' @aliases fixef fixef.glmmTMB ##' @docType methods ##' @param object any fitted model object from which fixed effects estimates can ##' be extracted. ##' @param \dots optional additional arguments. Currently none are used in any ##' methods. ##' @return an object of class \code{fixef.glmmTMB} comprising a list of components (\code{cond}, \code{zi}, \code{disp}), each containing a (possibly zero-length) numeric vector of coefficients ##' @keywords models ##' @details The print method for \code{fixef.glmmTMB} object \emph{only displays non-trivial components}: in particular, the dispersion parameter estimate is not printed for models with a single (intercept) dispersion parameter (see examples) ##' @examples ##' data(sleepstudy, package = "lme4") ##' fm1 <- glmmTMB(Reaction ~ Days, sleepstudy) ##' (f1 <- fixef(fm1)) ##' f1$cond ##' ## show full coefficients, including dispersion parameter ##' unlist(f1) ##' print.default(f1) ##' @importFrom nlme fixef ##' @export fixef ##' @export fixef.glmmTMB <- function(object, ...) { pl <- object$obj$env$parList(object$fit$par, object$fit$parfull) structure(list(cond = setNames(pl$beta, colnames(getME(object, "X"))), zi = setNames(pl$betazi, colnames(getME(object, "Xzi"))), disp = setNames(pl$betad, colnames(getME(object, "Xd")))), class = "fixef.glmmTMB") } ## general purpose matching between component names and printable names cNames <- list(cond = "Conditional model", zi = "Zero-inflation model", disp = "Dispersion model") ## check identity without worrying about environments etc. ident <- function(x,target) isTRUE(all.equal(x,target)) formComp <- function(object,type="dispformula",target) { ident(object$modelInfo$allForm[[type]],target) || ident(object$call[[type]],target) } ## FIXME: this is a bit ugly. On the other hand, a single-parameter ## dispersion model without a (... ?) trivialDisp <- function(object) { formComp(object,"dispformula",~1) } zeroDisp <- function(object) { formComp(object,"dispformula",~0) } ## no roxygen for now ... # @param xnm vector of fixed-effect parameter names (e.g. names(fixef(m)$disp)) # @param nm name of component (e.g. "disp") trivialFixef <- function(xnm,nm) { length(xnm)==0 || (nm %in% c('d','disp') && identical(xnm,'(Intercept)')) ## FIXME: inconsistent tagging; should change 'Xd' to 'Xdisp'? } ##' @method print fixef.glmmTMB ##' @export print.fixef.glmmTMB <- function(x, digits = max(3, getOption("digits") - 3), ...) { for(nm in names(x)) { if (!trivialFixef(names(x[[nm]]),nm)) { cat(sprintf("\n%s:\n", cNames[[nm]])) print.default(format(x[[nm]], digits=digits), print.gap = 2L, quote = FALSE) } } invisible(x) } ##' Extract Random Effects ##' ##' Extract random effects from a fitted \code{glmmTMB} model, both ##' for the conditional model and zero inflation. ##' ##' @param object a \code{glmmTMB} model. ##' @param condVar whether to include conditional variances in result. ##' @param \dots some methods for this generic function require additional ##' arguments. ##' ##' @return ##' \itemize{ ##' \item For \code{ranef}, an object of class \code{ranef.glmmTMB} with two components: ##' \describe{ ##' \item{cond}{a list of data frames, containing random effects ##' for the conditional model.} ##' \item{zi}{a list of data frames, containing random effects for ##' the zero inflation.} ##' } ##' If \code{condVar=TRUE}, the individual list elements within the ##' \code{cond} and \code{zi} components (corresponding to individual ##' random effects terms) will have associated \code{condVar} attributes ##' giving the conditional variances of the random effects values. ##' These are in the form of three-dimensional arrays: see ##' \code{\link{ranef.merMod}} for details. The only difference between ##' the packages is that the attributes are called \sQuote{postVar} ##' in \pkg{lme4}, vs. \sQuote{condVar} in \pkg{glmmTMB}. ##' \item For \code{coef.glmmTMB}: a similar list, but containing ##' the overall coefficient value for each level, i.e., the sum of ##' the fixed effect estimate and the random effect value for that ##' level. \emph{Conditional variances are not yet available as ##' an option for} \code{coef.glmmTMB}. ##' \item For \code{as.data.frame}: a data frame with components ##' \describe{ ##' \item{component}{part of the model to which the random effects apply (conditional or zero-inflation)} ##' \item{grpvar}{grouping variable} ##' \item{term}{random-effects term (e.g., intercept or slope)} ##' \item{grp}{group, or level of the grouping variable} ##' \item{condval}{value of the conditional mode} ##' \item{condsd}{conditional standard deviation} ##' } ##' } ##' ##' @note When a model has no zero inflation, the ##' \code{ranef} and \code{coef} print methods simplify the ##' structure shown, by default. To show the full list structure, use ##' \code{print(ranef(model),simplify=FALSE)} or the analogous ##' code for \code{coef}. ##' In all cases, the full list structure is used to access ##' the data frames, see example. ##' ##' @seealso \code{\link{fixef.glmmTMB}}. ##' ##' @examples ##' if (requireNamespace("lme4")) { ##' data(sleepstudy, package="lme4") ##' model <- glmmTMB(Reaction ~ Days + (1|Subject), sleepstudy) ##' rr <- ranef(model) ##' print(rr, simplify=FALSE) ##' ## extract Subject conditional modes for conditional model ##' rr$cond$Subject ##' as.data.frame(rr) ##' } ##' @aliases ranef ranef.glmmTMB ##' @importFrom nlme ranef ##' @export ranef ##' @export ranef.glmmTMB <- function(object, condVar=TRUE, ...) { ## The arrange() function converts a vector of random effects to a list of ## data frames, in the same way as lme4 does. ## FIXME: add condVar, make sure format matches lme4 arrange <- function(x, sd, listname) { cnms <- object$modelInfo$reTrms[[listname]]$cnms flist <- object$modelInfo$reTrms[[listname]]$flist if (!is.null(cnms)) { levs <- lapply(fl <- flist, levels) asgn <- attr(fl, "assign") nc <- vapply(cnms, length, 1L) ## number of columns (terms) per RE nb <- nc * vapply(levs, length, 1L)[asgn] ## number of elements per RE nbseq <- rep.int(seq_along(nb), nb) ## splitting vector ml <- split(x, nbseq) for (i in seq_along(ml)) { ml[[i]] <- matrix(ml[[i]], ncol=nc[i], byrow=TRUE, dimnames=list(NULL, cnms[[i]])) } if (!is.null(sd)) { sd <- split(sd,nbseq) for (i in seq_along(sd)) { ii <- asgn[i] nr <- length(levs[[ii]]) a <- array(NA,dim=c(nc[i],nc[i],nr)) ## fill in diagonals: off-diagonals will stay NA (!) ## unless we bother to retrieve conditional covariance info ## from the fit ## when nc>1, what order is the sd vector in? ## guessing, level-wise for (j in seq(nr)) { a[cbind(seq(nc[i]),seq(nc[i]),j)] <- (sd[[i]][nc[i]*(j-1)+seq(nc[i])])^2 } sd[[i]] <- a } } ## combine RE matrices from all terms with the same grouping factor x <- lapply(seq_along(fl), function(i) { d <- data.frame(do.call(cbind, ml[asgn==i]), row.names=levs[[i]], check.names=FALSE) if (!is.null(sd)) { ## attach conditional variance info ## called "condVar", *not* "postVar" (contrast to lme4) attr(d, "condVar") <- if (length(w <- which(asgn==i))>1) { ## FIXME: set names? sd[w] ## if more than one term, list } else sd[[w]] ## else just the array } return(d) }) names(x) <- names(fl) return(x) } ## if !is.null(cnms) else { list() } } ## arrange() pl <- getParList(object) ## see VarCorr.R if (condVar && hasRandom(object)) { ss <- summary(object$sdr,"random") sdl <- list(b=ss[rownames(ss)=="b","Std. Error"], bzi=ss[rownames(ss)=="bzi","Std. Error"]) } else sdl <- NULL structure(list(cond = arrange(pl$b, sdl$b, "cond"), zi = arrange(pl$bzi, sdl$bzi, "zi")), class = "ranef.glmmTMB") } ##' @method print ranef.glmmTMB ##' @export print.ranef.glmmTMB <- function(x, simplify=TRUE, ...) { print(if (simplify && length(x$zi) == 0L) unclass(x$cond) else unclass(x), ...) invisible(x) } ##' @method print coef.glmmTMB ##' @export print.coef.glmmTMB <- print.ranef.glmmTMB ##' Extract or Get Generalize Components from a Fitted Mixed Effects Model ##' ##' @aliases getME ##' @param object a fitted \code{glmmTMB} object ##' @param name of the component to be retrieved ##' @param \dots ignored, for method compatibility ##' ##' @seealso \code{\link[lme4]{getME}} ##' Get generic and re-export: ##' @importFrom lme4 getME ##' @export getME ##' ##' @method getME glmmTMB ##' @export getME.glmmTMB <- function(object, name = c("X", "Xzi","Z", "Zzi", "Xd", "theta", "beta"), ...) { if(missing(name)) stop("'name' must not be missing") ## Deal with multiple names -- "FIXME" is inefficiently redoing things if (length(name <- as.character(name)) > 1) { names(name) <- name return(lapply(name, getME, object = object)) } if(name == "ALL") ## recursively get all provided components return(sapply(eval(formals()$name), getME.glmmTMB, object=object, simplify=FALSE)) stopifnot(inherits(object, "glmmTMB")) name <- match.arg(name) oo.env <- object$obj$env ### Start of the switch allpars <- oo.env$parList(object$fit$par, object$fit$parfull) switch(name, "X" = oo.env$data$X, "Xzi" = oo.env$data$Xzi, "Z" = oo.env$data$Z, "Zzi" = oo.env$data$Zzi, "Xd" = oo.env$data$Xd, "theta" = allpars$theta , "beta" = unlist(allpars[c("beta","betazi","betad")]), "..foo.." = # placeholder! stop(gettextf("'%s' is not implemented yet", sprintf("getME(*, \"%s\")", name))), ## otherwise stop(sprintf("Mixed-Effects extraction of '%s' is not available for class \"%s\"", name, class(object)))) }## {getME} ## FIXME: (1) why is this non-standard (containing nobs, nall?) ## (2) do we really need to document it?? ## Extract the log likelihood of a glmmTMB model ## ## @return object of class \code{logLik} with attributes ## \item{val}{log likelihood} ## \item{nobs,nall}{number of non NA observations initially supplied to TMB} ## \item{df}{number of parameters} ##' @importFrom stats logLik ##' @export logLik.glmmTMB <- function(object, ...) { if(!is.null(object$sdr)){ val <- if(object$sdr$pdHess){-object$fit$objective}else{NA} }else val <- -object$fit$objective nobs <- nobs.glmmTMB(object) df <- sum( ! names(object$fit$parfull) %in% c("b", "bzi") ) structure(val, nobs = nobs, nall = nobs, df = df, class = "logLik") } ##' @importFrom stats nobs ##' @export nobs.glmmTMB <- function(object, ...) sum(!is.na(object$obj$env$data$yobs)) ##' @importFrom stats df.residual ##' @method df.residual glmmTMB ##' @export ## TODO: not clear whether the residual df should be based ## on p=length(beta) or p=length(c(theta,beta)) ... but ## this is just to allow things like aods3::gof to work ... ## Taken from LME4, including the todo ## df.residual.glmmTMB <- function(object, ...) { nobs(object)-length(object$fit$par) } ##' Calculate Variance-Covariance Matrix for a Fitted glmmTMB model ##' ##' @param object a \dQuote{glmmTMB} fit ##' @param full return a full variance-covariance matrix? ##' @param \dots ignored, for method compatibility ##' @return By default (\code{full==FALSE}), a list of separate variance-covariance matrices for each model component (conditional, zero-inflation, dispersion). If \code{full==TRUE}, a single square variance-covariance matrix for \emph{all} top-level model parameters (conditional, dispersion, and variance-covariance parameters) ##' @importFrom TMB MakeADFun sdreport ##' @importFrom stats vcov ##' @export vcov.glmmTMB <- function(object, full=FALSE, ...) { REML <- isREML(object) if(is.null(sdr <- object$sdr)) { warning("Calculating sdreport. Use se=TRUE in glmmTMB to avoid repetitive calculation of sdreport") sdr <- sdreport(object$obj, getJointPrecision=REML) } if (REML) { ## NOTE: This code would also work in non-REML case provided ## that jointPrecision is present in the object. Q <- sdr$jointPrecision whichNotRandom <- which( ! rownames(Q) %in% c("b", "bzi") ) Qm <- GMRFmarginal(Q, whichNotRandom) cov.all.parms <- solve(as.matrix(Qm)) } else { cov.all.parms <- sdr$cov.fixed } keepTag <- if (full) { "." } else if (!trivialDisp(object)) { "beta*" } else "beta($|[^d])" to_keep <- grep(keepTag,colnames(cov.all.parms)) # only keep betas covF <- cov.all.parms[to_keep,to_keep,drop=FALSE] mkNames <- function(tag) { X <- getME(object,paste0("X",tag)) if (trivialFixef(nn <- colnames(X),tag) ## if 'full', keep disp even if trivial, if used by family && !(full && tag =="d" && (usesDispersion(family(object)$family) && !zeroDisp(object)))) { return(character(0)) } return(paste(tag,nn,sep="~")) } nameList <- setNames(list(colnames(getME(object,"X")), mkNames("zi"), mkNames("d")), names(cNames)) if(full) { ## FIXME: haven't really decided if we should drop the ## trivial variance-covariance dispersion parameter ?? ## if (trivialDisp(object)) ## res <- covF[-nrow(covF),-nrow(covF)] reNames <- function(tag) { re <- object$modelInfo$reStruc[[paste0(tag,"ReStruc")]] nn <- mapply(function(n,L) paste(n,seq(L),sep="."), names(re), sapply(re,"[[","blockNumTheta")) if (length(nn)==0) return(nn) return(paste("theta",gsub(" ","",nn),sep="_")) } nameList <- c(nameList,list(theta=reNames("cond"),thetazi=reNames("zi"))) } ## drop NA-mapped variables ## for matching map names vs nameList components ... par_components <- c("beta","betazi","betad","theta","thetazi") map <- object$obj$env$map for (m in seq_along(map)) { if (length(NAmap <- which(is.na(map[[m]])))>0) { w <- match(names(map)[m],par_components) ## if (length(nameList)>=w) { ## may not exist if !full nameList[[w]] <- nameList[[w]][-NAmap] } } } if (full) { colnames(covF) <- rownames(covF) <- unlist(nameList) res <- covF ## return just a matrix in this case } else { splitMat <- function(x) { ss <- split(seq_along(colnames(x)), colnames(x)) lapply(ss,function(z) x[z,z,drop=FALSE]) } covList <- splitMat(covF) names(covList) <- names(cNames)[match(names(covList),c("beta","betazi","betad"))] for (nm in names(covList)) { if (length(xnms <- nameList[[nm]])==0) { covList[[nm]] <- NULL } else dimnames(covList[[nm]]) <- list(xnms,xnms) } res <- covList ## FIXME: should vcov always return a three-element list ## (with NULL values for trivial models)? class(res) <- c("vcov.glmmTMB","matrix") } return(res) } ##' @method print vcov.glmmTMB ##' @export print.vcov.glmmTMB <- function(x,...) { for (nm in names(x)) { cat(cNames[[nm]],":\n",sep="") print(x[[nm]]) cat("\n") } invisible(x) } cat.f <- function(...) cat(..., fill = TRUE) .prt.call.glmmTMB <- function(call, long = TRUE) { pass <- 0 if (!is.null(cc <- call$formula)){ cat.f("Formula: ", deparse(cc)) rhs <- cc[[2]] if (!is.null(rhs)) { pass<-nchar(deparse(rhs)) } } if(!identical(cc <- deparse(call$ziformula),"~0")) cat.f("Zero inflation: ",rep(' ',pass+2), cc, sep='') if(!identical(cc <- deparse(call$dispformula),"~1")) cat.f("Dispersion: ",rep(' ',pass+2), cc, sep='') if (!is.null(cc <- call$data)) cat.f("Data:", deparse(cc)) if (!is.null(cc <- call$weights)) cat.f("Weights:", deparse(cc)) if (!is.null(cc <- call$offset)) cat.f(" Offset:", deparse(cc)) # if (long && length(cc <- call$control) && # !identical((dc <- deparse(cc)), "lmerControl()")) ## && !identical(eval(cc), lmerControl())) # cat.f("Control:", dc) # if (!is.null(cc <- call$subset)) # cat.f(" Subset:", deparse(cc)) } ### FIXME: attempted refactoring ... cat.f2 <- function(call,component,label,lwid,fwid=NULL,cind=NULL) { if (!is.null(cc <- call[[component]])) { if (!is.null(cind)) { ## try to extract component (of formula) if (!is.null(ccc <- cc[[cind]])) cc <- ccc } f1 <- format(paste0(label,":"),width=lwid,justify="right") f2 <- deparse(cc) if (!is.null(fwid)) { f2 <- format(f2,width=fwid,justify="right") } cat(f1,f2,fill=TRUE) } } ## reworked version .prt.call.glmmTMB2 <- function(call, long = TRUE) { labs <- c("Formula","Zero inflation","Dispersion","Data", "Weights","Offset","Control","Subset") components <- c("formula","ziformula","dispformula", "data","weights","offset","control","subset") lwid1 <- max(nchar(labs[1:3]))+2 for (i in 1:3) { cat.f2(call,components[i],labs[i],lwid1,cind=2) } lwid2 <- max(nchar(labs[-(1:3)]))+1 for (i in 4:6) { cat.f2(call,components[i],labs[i],lwid2) } if (long && length(cc <- call$control) && (deparse(cc) != "lmerControl()")) cat.f2(call,"Control","control",lwid2) cat.f2(call,"Subset","subset",lwid2) } ## following https://github.com/glmmTMB/glmmTMB/issues/134#issuecomment-160805926 ## don't use ##' until we're ready to generate a man page ## @param ff name of family (character) ## @param s dispersion (results of sigma(x) for original object printDispersion <- function(ff,s) { ## dispersion if (usesDispersion(ff)) { if (ff %in% .classicDispersionFamilies) { dname <- "Dispersion estimate" sname <- "sigma^2" sval <- s^2 } else { dname <- "Overdispersion parameter" sname <- "" sval <- s } cat(sprintf("\n%s for %s family (%s): %s", dname,ff,sname, formatC(sval,digits=3)),"\n") } NULL } .tweedie_power <- function(object) { unname(plogis(object$fit$par["thetaf"]) + 1) } ## Print family specific parameters ## @param ff name of family (character) ## @param object glmmTMB output #' @importFrom stats plogis printFamily <- function(ff, object) { if (ff == "tweedie") { power <- .tweedie_power(object) cat(sprintf("\nTweedie power parameter: %s", formatC(power, digits=3)), "\n") } NULL } ##' @importFrom lme4 .prt.aictab ##' @method print glmmTMB ##' @export print.glmmTMB <- function(x, digits = max(3, getOption("digits") - 3), correlation = NULL, symbolic.cor = FALSE, signif.stars = getOption("show.signif.stars"), longCall = TRUE, ranef.comp = "Std.Dev.", ...) { ## Type Of Model fit --- REML? ---['class'] & Family & Call .prt.call.glmmTMB(x$call, long=longCall) ## the 'digits' argument should have an action here aictab <- c(AIC = AIC(x), BIC = BIC(x), logLik = logLik(x), df.resid = df.residual(x)) .prt.aictab(aictab, digits=digits+1) ## varcorr if (!all(sapply(vc <- VarCorr(x),is.null))) { cat("Random-effects (co)variances:\n") print(VarCorr(x), digits=digits, comp = ranef.comp) } ## ngroups gvec <- list(obs=sprintf("\nNumber of obs: %d",nobs(x))) ng <- ngrps.glmmTMB(x) for (i in seq_along(ng)) { if (length(ng[[i]])>0) { nm <- names(ng)[i] gvec[[nm]] <- paste0(cNames[nm],": ", paste(paste(names(ng[[i]]), ng[[i]], sep=", "), collapse="; ")) } } cat(do.call(paste,c(gvec,list(sep=" / "))),fill=TRUE) if(trivialDisp(x)) {# if trivial print here, else below(~x) or none(~0) printDispersion(x$modelInfo$family$family,sigma(x)) } ## Family specific parameters printFamily(x$modelInfo$family$family, x) ## Fixed effects: if(length(cf <- fixef(x)) > 0) { cat("\nFixed Effects:\n") print(cf, ...) } else cat("No fixed effect coefficients\n") invisible(x) } ##' @export model.frame.glmmTMB <- function(formula, ...) { formula$frame } ##' Compute residuals for a glmmTMB object ##' ##' @param object a \dQuote{glmmTMB} object ##' @param type (character) residual type ##' @param \dots ignored, for method compatibility ##' @importFrom stats fitted model.response residuals ##' @export residuals.glmmTMB <- function(object, type=c("response", "pearson"), ...) { type <- match.arg(type) if(type=="pearson" &((object$call$ziformula != ~0)|(object$call$dispformula != ~1))) { stop("pearson residuals are not implemented for models with zero-inflation or variable dispersion") } mr <- model.response(object$frame) wts <- model.weights(model.frame(object)) ## binomial model specified as (success,failure) if (!is.null(dim(mr))) { wts <- mr[,1]+mr[,2] mr <- mr[,1]/wts } else if (is.factor(mr)) { ## ?binomial: ## "‘success’ is interpreted as the factor not having the first level" nn <- names(mr) mr <- as.numeric(as.numeric(mr)>1) names(mr) <- nn ## restore stripped names } r <- mr - fitted(object) res <- switch(type, response=r, pearson={ if (is.null(v <- family(object)$variance)) stop("variance function undefined for family ", sQuote(family(object)$family),"; cannot compute", " Pearson residuals") vv <- switch(length(formals(v)), v(fitted(object)), v(fitted(object),sigma(object)), stop("variance function should take 1 or 2 arguments")) r <- r/sqrt(vv) if (!is.null(wts)) { r <- r*sqrt(wts) } r }) return(res) } ## Helper to get CI of simple *univariate monotone* parameter ## function, i.e. a function of 'fit$par' and/or 'fit$parfull'. ## Examples: 'sigma.glmmTMB' and some parts of 'VarCorr.glmmTMB'. ##' @importFrom stats qchisq .CI_univariate_monotone <- function(object, f, reduce=NULL, level=0.95, name.prepend=NULL, estimate = TRUE) { x <- object par <- x$fit$par i <- seq_along(x$fit$parfull) ## Pointers into long par vector r <- x$obj$env$random if(!is.null(r)) i <- i[-r] ## Pointers into short par subset sdr <- x$sdr sdpar <- summary(sdr, "fixed")[,2] q <- sqrt(qchisq(level, df=1)) ans <- list() x$fit$parfull[i] <- x$fit$par <- par - q * sdpar ans$lower <- f(x) x$fit$parfull[i] <- x$fit$par <- par + q * sdpar ans$upper <- f(x) if (estimate) { ans$Estimate <- f(object) } if(is.null(reduce)) reduce <- function(x) x ans <- lapply(ans, reduce) nm <- names(ans) tmp <- cbind(ans$lower, ans$upper) if (is.null(tmp) || nrow(tmp) == 0L) return (NULL) sort2 <- function(x) if(any(is.nan(x))) x * NaN else sort(x) ans <- cbind( t( apply(tmp, 1, sort2) ) , ans$Estimate ) colnames(ans) <- nm if (!is.null(name.prepend)) name.prepend <- rep(name.prepend, length.out = nrow(ans)) rownames(ans) <- paste(name.prepend, rownames(ans), sep="") ans } ## copied from 'stats' format.perc <- function (probs, digits) { paste(format(100 * probs, trim = TRUE, scientific = FALSE, digits = digits), "%") } ##' Calculate confidence intervals ##' ##' @details ##' Available methods are ##' \describe{ ##' \item{"wald"}{These intervals are based on the standard errors ##' calculated for parameters on the scale ##' of their internal parameterization depending on the family. Derived ##' quantities such as standard deviation parameters and dispersion ##' parameters are back-transformed. It follows that confidence ##' intervals for these derived quantities are typically asymmetric.} ##' \item{"profile"}{This method computes a likelihood profile ##' for the specified parameter(s) using \code{profile.glmmTMB}; ##' fits a spline function to each half of the profile; and ##' inverts the function to find the specified confidence interval.} ##' \item{"uniroot"}{This method uses the \code{\link{uniroot}} ##' function to find critical values of one-dimensional profile ##' functions for each specified parameter.} ##' } ##' At present, "wald" returns confidence intervals for variance ##' parameters on the standard deviation/correlation scale, while ##' "profile" and "uniroot" report them on the underlying ("theta") ##' scale: for each random effect, the first set of parameter values ##' are standard deviations on the log scale, while remaining parameters ##' represent correlations on the scaled Cholesky scale (see the ##' ##' ##' @importFrom stats qnorm confint ##' @export ##' @param object \code{glmmTMB} fitted object. ##' @param parm which parameters to profile, specified #' \itemize{ #' \item by index (position) [\emph{after} component selection for \code{confint}, if any] #' \item by name (matching the row/column names of \code{vcov(object,full=TRUE)}) #' \item as \code{"theta_"} (random-effects variance-covariance parameters), \code{"beta_"} (conditional and zero-inflation parameters), or \code{"disp_"} or \code{"sigma"} (dispersion parameters) #' } #' Parameter indexing by number may give unusual results when #' some parameters have been fixed using the \code{map} argument: #' please report surprises to the package maintainers. ##' @param level Confidence level. ##' @param method 'wald', 'profile', or 'uniroot': see Details ##' function) ##' @param component Which of the three components 'cond', 'zi' or ##' 'other' to select. Default is to select 'all'. ##' @param estimate (logical) add a third column with estimate ? ##' @param parallel method (if any) for parallel computation ##' @param ncpus number of CPUs/cores to use for parallel computation ##' @param cl cluster to use for parallel computation ##' @param full CIs for all parameters (including dispersion) ? ##' @param ... arguments may be passed to \code{\link{profile.merMod}} or ##' \code{\link[TMB]{tmbroot}} ##' @examples ##' data(sleepstudy, package="lme4") ##' model <- glmmTMB(Reaction ~ Days + (1|Subject), sleepstudy) ##' model2 <- glmmTMB(Reaction ~ Days + (1|Subject), sleepstudy, ##' dispformula= ~I(Days>8)) ##' confint(model) ## Wald/delta-method CIs ##' confint(model,parm="theta_") ## Wald/delta-method CIs ##' confint(model,parm=1,method="profile") confint.glmmTMB <- function (object, parm = NULL, level = 0.95, method=c("wald", "Wald", "profile", "uniroot"), component = c("all", "cond", "zi", "other"), estimate = TRUE, parallel = c("no", "multicore", "snow"), ncpus = getOption("profile.ncpus", 1L), cl = NULL, full = FALSE, ...) { method <- tolower(match.arg(method)) if (method=="wald") { dots <- list(...) if (length(dots)>0) { if (is.null(names(dots))) { warning("extra (unnamed) arguments ignored") } else { warning(paste("extra arguments ignored: ", paste(names(dots),collapse=", "))) } } } components <- match.arg(component, several.ok = TRUE) components.has <- function(x) any(match(c(x, "all"), components, nomatch=0L)) > 0L a <- (1 - level)/2 a <- c(a, 1 - a) pct <- format.perc(a, 3) fac <- qnorm(a) estimate <- as.logical(estimate) ci <- matrix(NA, nrow=0, ncol=2 + estimate, dimnames=list(NULL, if (!estimate) pct else c(pct, "Estimate"))) if (!is.null(parm) || method!="wald") { parm <- getParms(parm, object, full) } if (method=="wald") { map <- object$modelInfo$map for (component in c("cond", "zi") ) { if (components.has(component) && (nbeta <- length(fixef(object)[[component]]))>0) { ## variance and estimates vv <- vcov(object)[[component]] cf <- fixef(object)[[component]] ## strip tag (only really necessary for zi~ nn <- gsub(paste0(component,"~"),"",colnames(vv)) ## vcov only includes estimated (not mapped/fixed) ## fixed-effect parameters cf <- cf[nn] ss <- diag(vv) ## using [[-extraction; need to add component name explicitly if (length(cf)>0) { names(cf) <- names(ss) <- paste(component, names(cf), sep=".") ses <- sqrt(ss) ci.tmp <- cf + ses %o% fac if (estimate) ci.tmp <- cbind(ci.tmp, cf) ci <- rbind(ci, ci.tmp) } ## VarCorr -> stddev cfun <- function(x) { ss <- attr(x, "stddev") names(ss) <- paste(component,"Std.Dev",names(ss),sep=".") cc <- attr(x,"correlation") if (length(cc)>1) { nn <- outer(colnames(cc),rownames(cc),paste,sep=".") cc <- cc[lower.tri(cc)] nn <- paste(component,"Cor",nn[lower.tri(nn)],sep=".") names(cc) <- nn ss <- c(ss,cc) } return(ss) } reduce <- function(VC) sapply(VC[[component]], cfun) ci.sd <- .CI_univariate_monotone(object, VarCorr, reduce = reduce, level = level, ## name.prepend=paste(component, ## "Std.Dev.", ## sep="."), estimate = estimate) ## would consider excluding mapped parameters here ## (works automatically for fixed effects via vcov) ## but tough because of theta <-> sd/corr mapping; ## instead, eliminate rows below where lowerCI==upperCI ci <- rbind(ci, ci.sd) } } ## cond and zi components if (components.has("other")) { ## sigma ff <- object$modelInfo$family$family if (usesDispersion(ff)) { ci.sigma <- .CI_univariate_monotone(object, sigma, reduce = NULL, level=level, name.prepend="sigma", estimate = estimate) ci <- rbind(ci, ci.sigma) } ## Tweedie power if (ff == "tweedie") { ci.power <- .CI_univariate_monotone(object, .tweedie_power, reduce = NULL, level=level, name.prepend="Tweedie.power", estimate = estimate) ci <- rbind(ci, ci.power) } ## tweedie } ## model has 'other' component ## Take subset ## drop mapped values (where lower == upper) ci <- ci[ci[,2]!=ci[,1], , drop=FALSE] ## now get selected parameters if (!is.null(parm)) { ci <- ci[parm, , drop=FALSE] } else { ## drop residual std dev/trivial dispersion parameter if (!full) { ci <- ci[rownames(ci)!="sigma",, drop=FALSE] } } ## end Wald method } else if (method=="uniroot") { if (isREML(object)) stop("can't compute profiles for REML models at the moment (sorry)") ## FIXME: allow greater flexibility in specifying different ## ranges, etc. for different parameters plist <- parallel_default(parallel,ncpus) parallel <- plist$parallel do_parallel <- plist$do_parallel FUN <- function(n) { TMB::tmbroot(obj=object$obj, name=n, target=0.5*qchisq(level,df=1), ...) } if (do_parallel) { if (parallel == "multicore") { L <- parallel::mclapply(parm, FUN, mc.cores = ncpus) } else if (parallel=="snow") { if (is.null(cl)) { ## start cluster new_cl <- TRUE cl <- parallel::makePSOCKcluster(rep("localhost", ncpus)) } ## run L <- parallel::clusterApply(cl, parm, FUN) if (new_cl) { ## stop cluster parallel::stopCluster(cl) } } } else { ## non-parallel L <- lapply(as.list(parm), FUN) } L <- do.call(rbind,L) rownames(L) <- rownames(vcov(object,full=TRUE))[parm] if (estimate) { ee <- object$obj$env par <- ee$last.par.best if (!is.null(ee$random)) par <- par[-ee$random] par <- par[parm] L <- cbind(L,par) } ci <- rbind(ci,L) ## really just adding column names! } else { ## profile CIs pp <- profile(object, parm=parm, level_max=level, parallel=parallel,ncpus=ncpus, ...) ci <- confint(pp) } ## if only conditional, strip component prefix if (all(substr(rownames(ci),1,5)=="cond.")) { rownames(ci) <- sub("^cond\\.","",rownames(ci)) } return(ci) } ##' @rdname glmmTMB_methods ##' @param x a fitted \code{glmmTMB} object ##' @export ## modified because e.g. "disp" component didn't get a $reTrms ## component (updated fitTMB to save a separate "terms" component) terms.glmmTMB <- function(x, component="cond", part="fixed", ...) { if (part != "fixed") stop("only fixed terms currently available") if ("terms" %in% names(x$modelInfo)) { tt <- x$modelInfo$terms[[component]] } else { ## allow back-compatibility tt <- x$modelInfo$reTrms[[component]]$terms } return(tt[[part]]) } ##' @export extractAIC.glmmTMB <- function(fit, scale, k = 2, ...) { L <- logLik(fit) edf <- attr(L,"df") return(c(edf,c(-2*L + k*edf))) } ## deparse(.) returning \bold{one} string ## copied from lme4/R/utilities.R ## Protects against the possibility that results from deparse() will be ## split after 'width.cutoff' (by default 60, maximally 500) safeDeparse <- function(x, collapse=" ") paste(deparse(x, 500L), collapse=collapse) abbrDeparse <- function(x, width=60) { r <- deparse(x, width) if(length(r) > 1) paste(r[1], "...") else r } ##' @importFrom methods is ##' @importFrom stats var getCall pchisq anova ##' @export anova.glmmTMB <- function (object, ..., model.names = NULL) { mCall <- match.call(expand.dots = TRUE) dots <- list(...) .sapply <- function(L, FUN, ...) unlist(lapply(L, FUN, ...)) ## detect multiple models, i.e. models in ... modp <- as.logical(vapply(dots, is, NA, "glmmTMB")) if (any(modp)) { mods <- c(list(object), dots[modp]) nobs.vec <- vapply(mods, nobs, 1L) if (var(nobs.vec) > 0) stop("models were not all fitted to the same size of dataset") if (is.null(mNms <- model.names)) mNms <- vapply(as.list(mCall)[c(FALSE, TRUE, modp)], safeDeparse, "") if (any(duplicated(mNms))) { warning("failed to find unique model names, assigning generic names") mNms <- paste0("MODEL", seq_along(mNms)) } if (length(mNms) != length(mods)) stop("model names vector and model list have different lengths") names(mods) <- sub("@env$", "", mNms) llks <- lapply(mods, logLik) ii <- order(Df <- vapply(llks, attr, FUN.VALUE = numeric(1), "df")) mods <- mods[ii] llks <- llks[ii] Df <- Df[ii] calls <- lapply(mods, getCall) data <- lapply(calls, `[[`, "data") if (!all(vapply(data, identical, NA, data[[1]]))) stop("all models must be fit to the same data object") header <- paste("Data:", abbrDeparse(data[[1]])) subset <- lapply(calls, `[[`, "subset") if (!all(vapply(subset, identical, NA, subset[[1]]))) stop("all models must use the same subset") if (!is.null(subset[[1]])) header <- c(header, paste("Subset:", abbrDeparse(subset[[1]]))) llk <- unlist(llks) chisq <- 2 * pmax(0, c(NA, diff(llk))) dfChisq <- c(NA, diff(Df)) val <- data.frame(Df = Df, AIC = .sapply(llks, AIC), BIC = .sapply(llks, BIC), logLik = llk, deviance = -2 * llk, Chisq = chisq, `Chi Df` = dfChisq, `Pr(>Chisq)` = pchisq(chisq, dfChisq, lower.tail = FALSE), row.names = names(mods), check.names = FALSE) class(val) <- c("anova", class(val)) forms <- lapply(lapply(calls, `[[`, "formula"), deparse) ziforms <- lapply(lapply(calls, `[[`, "ziformula"), deparse) dispforms <- lapply(lapply(calls, `[[`, "dispformula"), deparse) #FIXME only output nontrivial ziforms and dispforms structure(val, heading = c(header, "Models:", paste(paste(paste(rep(names(mods), times = lengths(forms)), unlist(forms), sep = ": "), unlist(ziforms), sep=", zi="), unlist(dispforms), sep=", disp="))) } else stop("no single-model anova() method for glmmTMB") } #' @importFrom stats predict #' @export fitted.glmmTMB <- function(object, ...) { predict(object,type="response") } .noSimFamilies <- NULL noSim <- function(x) { !is.na(match(x, .noSimFamilies)) } ##' Simulate from a glmmTMB fitted model ##' @method simulate glmmTMB ##' @param object glmmTMB fitted model ##' @param nsim number of response lists to simulate. Defaults to 1. ##' @param seed random number seed ##' @param ... extra arguments ##' @details Random effects are also simulated from their estimated distribution. ##' Currently, it is not possible to condition on estimated random effects. ##' @return returns a list of vectors. The list has length \code{nsim}. ##' Each simulated vector of observations is the same size as the vector of response variables in the original data set. ##' In the binomial family case each simulation is a two-column matrix with success/failure. ##' @importFrom stats simulate ##' @export simulate.glmmTMB<-function(object, nsim=1, seed=NULL, ...){ if(noSim(object$modelInfo$family$family)) { stop("Simulation code has not been implemented for this family") } ## copied from stats::simulate.lm if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE)) runif(1) if (is.null(seed)) RNGstate <- get(".Random.seed", envir = .GlobalEnv) else { R.seed <- get(".Random.seed", envir = .GlobalEnv) set.seed(seed) RNGstate <- structure(seed, kind = as.list(RNGkind())) on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv)) } family <- object$modelInfo$family$family ret <- replicate(nsim, object$obj$simulate(par = object$fit$parfull)$yobs, simplify=FALSE) if ( binomialType(family) ) { size <- object$obj$env$data$size ret <- lapply(ret, function(x) cbind(x, size - x, deparse.level=0) ) class(ret) <- "data.frame" rownames(ret) <- as.character(seq_len(nrow(ret[[1]]))) } else { ret <- as.data.frame(ret) } names(ret) <- paste0("sim_", seq_len(nsim)) attr(ret, "seed") <- RNGstate ret } #' Extract the formula of a glmmTMB object #' #' @param x a \code{glmmTMB} object #' @param component formula for which component of the model to return (conditional, zero-inflation, or dispersion) #' @param fixed.only (logical) drop random effects, returning only the fixed-effect component of the formula? #' @param ... unused, for generic consistency #' @importFrom lme4 nobars #' @export formula.glmmTMB <- function(x, fixed.only=FALSE, component=c("cond", "zi", "disp"), ...) { if (!fixed.only && missing(component)) { ## stats::formula.default extracts formula from call return(NextMethod(x, ...)) } component <- match.arg(component) af <- x$modelInfo$allForm ff <- if (component=="cond") af[["formula"]] else af[[paste0(component,"formula")]] if (fixed.only) { ff <- lme4::nobars(ff) } return(ff) } ## need this so we can get contrasts carried through properly to model.matrix #' Methods for extracting developer-level information from \code{glmmTMB} models #' @rdname glmmTMB_methods #' @param object a fitted \code{glmmTMB} object #' @param component model component ("cond", "zi", or "disp"; not all models contain all components) #' @param part whether to return results for the fixed or random effect part of the model (at present only \code{part="fixed"} is implemented for most methods) #' @param \dots additional arguments (ignored or passed to \code{\link{model.frame}}) #' @export model.matrix.glmmTMB <- function (object, component="cond", part="fixed", ...) { ## FIXME: model.matrix.lm has this stuff -- what does it do/do we want it? ## if (n_match <- match("x", names(object), 0L)) ## object[[n_match]] ## else { ## data <- model.frame(object, xlev = object$xlevels, ...) ## was calling NextMethod() on the model frame: failed after messing ## with terms structure ## could be more efficient to extract $X, $Z rather than re-building ## model matrix?? if (part != "fixed") stop("only fixed model matrices currently available") ff <- object$modelInfo$allForm form <- ff[[switch(component, cond="formula", zi="ziformula", disp="dispformula")]] model.matrix(lme4::nobars(form), model.frame(object, ...), contrasts.arg = object$modelInfo$contrasts) ## FIXME: what if contrasts are *different* for different components? (ugh) ## should at least write a test to flag this case ... } ## convert ranef object to a long-format data frame, e.g. suitable ## for ggplot2 (or homemade lattice plots) ## FIXME: have some gymnastics to do if terms, levels are different ## for different grouping variables - want to maintain ordering ## but still allow rbind()ing ##' @export ##' @rdname ranef.glmmTMB ##' @param x a \code{ranef.glmmTMB} object (i.e., the result of running \code{ranef} on a fitted \code{glmmTMB} model) ##' @param stringsAsFactors see \code{\link{data.frame}} as.data.frame.ranef.glmmTMB <- function(x, ..., stringsAsFactors = default.stringsAsFactors()) { tmpf <- function(x) do.call(rbind,lapply(names(x),asDf0,x=x,id=TRUE)) x0 <- lapply(x,tmpf) x1 <- Map(function(x,n) { if (!is.null(x)) x$component <- n; x }, x0, names(x)) xD <- do.call(rbind,x1) ## rename ... oldnames <- c("values","ind",".nn","se","id","component") newnames <- c("condval","term","grp","condsd","grpvar","component") names(xD) <- newnames[match(names(xD),oldnames)] ## reorder ... neworder <- c("component","grpvar","term","grp","condval") if ("condsd" %in% names(xD)) neworder <- c(neworder,"condsd") return(xD[neworder]) } #' @rdname bootmer_methods #' @title support methods for parametric bootstrapping #' @param object a fitted glmmTMB object #' @param newresp a new response vector #' @export #' @importFrom lme4 isLMM #' @importFrom lme4 refit ## don't export refit ... #' @description see \code{\link[lme4]{refit}} and \code{\link[lme4]{isLMM}} for details isLMM.glmmTMB <- function(object) { fam <- family(object) fam$family=="gaussian" && fam$link=="identity" } #' @export #' @rdname bootmer_methods #' @importFrom stats formula #' @param ... additional arguments (for generic consistency; ignored) #' @examples #' if (requireNamespace("lme4")) { #' \dontrun{ #' fm1 <- glmmTMB(count~mined+(1|spp), #' ziformula=~mined, #' data=Salamanders, #' family=nbinom1) #' b1 <- lme4::bootMer(fm1, FUN=function(x) fixef(x)$zi, nsim=20, .progress="txt") #' if (requireNamespace("boot")) { #' boot.ci(b1,type="perc") #' } #' } #' } #' @details #' These methods are still somewhat experimental (check your results carefully!), but they should allow parametric bootstrapping. They work by copying and replacing the original response column in the data frame passed to \code{glmmTMB}, so they will only work properly if (1) the data frame is still available in the environment and (2) the response variable is specified as a single symbol (e.g. \code{proportion} or a two-column matrix constructed on the fly with \code{cbind()}. Untested with binomial models where the response is specified as a factor. #' refit.glmmTMB <- function(object, newresp, ...) { cc <- getCall(object) newdata <- eval.parent(cc$data) if (is.null(newdata)) stop("can't locate original 'data' value") fresp <- formula(object)[[2]] mf0 <- model.frame(object) rcol <- attr(attr(mf0, "terms"), "response") rnm <- deparse(fresp) if (binomialType(family(object)$family)) { ## FIXME: check for factor column? if ("(weights)" %in% names(mf0)) { if (!rnm %in% names(newdata)) stop("can't find response in data") w <- rowSums(newresp) newdata[[rnm]] <- newresp[,1]/w newdata[["(weights)"]] <- w } else if (is.matrix(mf0[[rnm]])) { if (is.symbol(fresp)) { if (!rnm %in% names(newdata)) stop("can't find response in data") newdata[[rnm]] <- newresp } ## matrix response else if (identical(quote(cbind),fresp[[1]])) { rnm1 <- deparse(fresp[[2]]) rnm2 <- deparse(fresp[[3]]) if (!all(c(rnm1,rnm2) %in% names(newdata))) stop("can't find response in data") newdata[[rnm1]] <- newresp[,1] newdata[[rnm2]] <- newresp[,2] } else { stop("can't handle this data format, sorry ...") } } else { if (is.matrix(newresp)) newresp <- newresp[,1] newdata[[deparse(fresp)]] <- newresp } } else { newdata[[deparse(fresp)]] <- newresp } cc$data <- quote(newdata) return(eval(cc)) } ## copied from lme4, with addition of 'component' argument ## FIXME: migrate back to lme4? component is NULL for back-compat. ## FIXME: ## coef() method for all kinds of "mer", "*merMod", ... objects ## ------ should work with fixef() + ranef() alone coefMer <- function(object, component=NULL, ...) { if (length(list(...))) warning('arguments named "', paste(names(list(...)), collapse = ", "), '" ignored') fef <- fixef(object) if (!is.null(component)) fef <- fef[[component]] fef <- data.frame(rbind(fef), check.names = FALSE) ref <- ranef(object) if (!is.null(component)) ref <- ref[[component]] ## check for variables in RE but missing from FE, fill in zeros in FE accordingly refnames <- unlist(lapply(ref,colnames)) nmiss <- length(missnames <- setdiff(refnames,names(fef))) if (nmiss > 0) { fillvars <- setNames(data.frame(rbind(rep(0,nmiss))),missnames) fef <- cbind(fillvars,fef) } val <- lapply(ref, function(x) fef[rep.int(1L, nrow(x)),,drop = FALSE]) for (i in seq(a = val)) { refi <- ref[[i]] row.names(val[[i]]) <- row.names(refi) nmsi <- colnames(refi) if (!all(nmsi %in% names(fef))) stop("unable to align random and fixed effects") for (nm in nmsi) val[[i]][[nm]] <- val[[i]][[nm]] + refi[,nm] } class(val) <- "coef.mer" val } ## {coefMer} #' @rdname ranef.glmmTMB #' @export coef.glmmTMB <- function(object, condVar=FALSE, ...) { model.has.component <- function(x) { !is.null(object$modelInfo$reTrms[[x]]$cnms) } get.coef <- function(x) { if (!model.has.component(x)) return(list()) return(coefMer(object, component=x)) } res <- list( cond = get.coef("cond"), zi = get.coef("zi") ) if (condVar) { stop("condVar not (yet) available for coefficients") sdr <- TMB::sdreport(object$obj, getJointPrecision=TRUE) v <- solve(sdr$jointPrecision) ## FIXME:: sort out variance calculation, using Z and X } class(res) <- "coef.glmmTMB" return(res) } ##' Extract weights from a glmmTMB object ##' ##' @details ##' At present only explicitly specified ##' \emph{prior weights} (i.e., weights specified ##' in the \code{weights} argument) can be extracted from a fitted model. ##' \itemize{ ##' \item Unlike other GLM-type models such as \code{\link{glm}} or ##' \code{\link[lme4]{glmer}}, \code{weights()} does not currently return ##' the total number of trials when binomial responses are specified ##' as a two-column matrix. ##' \item Since \code{glmmTMB} does not fit models via iteratively ##' weighted least squares, \code{working weights} (see \code{\link[stats]{weights.glm}}) are unavailable. ##' } ##' @importFrom stats model.frame ##' @importFrom stats weights ##' @param object a fitted \code{glmmTMB} object ##' @param type weights type ##' @param ... additional arguments (not used; for methods compatibility) ##' @export weights.glmmTMB <- function(object, type="prior", ...) { type <- match.arg(type) ## other types are *not* OK if (length(list(...)>0)) { warning("unused arguments ignored: ", paste(shQuote(names(list(...))),collapse=",")) } stats::model.frame(object)[["(weights)"]] } glmmTMB/R/utils.R0000644000176200001440000005677213614324717013266 0ustar liggesusers## backward compat (copied from lme4) if((Rv <- getRversion()) < "3.2.1") { lengths <- function (x, use.names = TRUE) vapply(x, length, 1L, USE.NAMES = use.names) } rm(Rv) ## generate a list with names equal to values namedList <- function (...) { L <- list(...) snm <- sapply(substitute(list(...)), deparse)[-1] if (is.null(nm <- names(L))) nm <- snm if (any(nonames <- nm == "")) nm[nonames] <- snm[nonames] setNames(L, nm) } RHSForm <- function(form,as.form=FALSE) { if (!as.form) return(form[[length(form)]]) if (length(form)==2) return(form) ## already RHS-only ## by operating on RHS in situ rather than making a new formula ## object, we avoid messing up existing attributes/environments etc. form[[2]] <- NULL ## assumes response is *first* variable (I think this is safe ...) if (length(vars <- attr(form,"variables"))>0) { attr(form,"variables") <- vars[-2] } if (is.null(attr(form,"response"))) { attr(form,"response") <- 0 } if (length(facs <- attr(form,"factors"))>0) { attr(form,"factors") <- facs[-1,] } return(form) } `RHSForm<-` <- function(formula,value) { formula[[length(formula)]] <- value formula } ## Random Effects formula only ## reOnly <- function(f,response=FALSE) { ## response <- if (response && length(f)==3) f[[2]] else NULL ## reformulate(paste0("(", vapply(findbars(f), safeDeparse, ""), ")"), ## response=response) ## } sumTerms <- function(termList) { Reduce(function(x,y) makeOp(x,y,op=quote(`+`)),termList) } ## better version -- operates on language objects (no deparse()) reOnly <- function(f,response=FALSE,bracket=TRUE) { ff <- f if (bracket) ff <- lapply(findbars(ff),makeOp,quote(`(`)) ## bracket-protect terms ff <- sumTerms(ff) if (response && length(f)==3) { form <- makeOp(f[[2]],ff,quote(`~`)) } else { form <- makeOp(ff,quote(`~`)) } return(form) } ## combine unary or binary operator + arguments (sugar for 'substitute') ## FIXME: would be nice to have multiple dispatch, so ## (arg,op) gave unary, (arg,arg,op) gave binary operator makeOp <- function(x,y,op=NULL) { if (is.null(op) || missing(y)) { ## unary if (is.null(op)) { substitute(OP(X),list(X=x,OP=y)) } else { substitute(OP(X),list(X=x,OP=op)) } } else substitute(OP(X,Y), list(X=x,OP=op,Y=y)) } ## combines the right-hand sides of two formulas, or a formula and a symbol ## @param f1 formula #1 ## @param f2 formula #2 ## @examples ## if (FALSE) { ## still being exported despite "keywords internal" ?? ## addForm0(y~x,~1) ## addForm0(~x,~y) ## } ## @keywords internal addForm0 <- function(f1,f2,naked=FALSE) { tilde <- as.symbol("~") if (!identical(head(f2),tilde)) { f2 <- makeOp(f2,tilde) } if (length(f2)==3) warning("discarding LHS of second argument") RHSForm(f1) <- makeOp(RHSForm(f1),RHSForm(f2),quote(`+`)) return(f1) } ##' Combine right-hand sides of an arbitrary number of formulas ##' @param ... arguments to pass through to \code{addForm0} ##' @rdname splitForm ##' @export addForm <- function(...) { Reduce(addForm0,list(...)) } addArgs <- function(argList) { Reduce(function(x,y) makeOp(x,y,op=quote(`+`)),argList) } ##' list of specials -- taken from enum.R findReTrmClasses <- function() { names(.valid_covstruct) } ## expandGrpVar(quote(x*y)) ## expandGrpVar(quote(x/y)) expandGrpVar <- function(f) { form <- as.formula(makeOp(f,quote(`~`))) mm <- terms(form) toLang <- function(x) parse(text=x)[[1]] lapply(attr(mm,"term.labels"), toLang) } ##' expand interactions/combinations of grouping variables ##' ##' Modeled after lme4:::expandSlash, by Doug Bates ##' @param bb a list of naked grouping variables, i.e. 1 | f ##' @examples ##' ff <- glmmTMB:::fbx(y~1+(x|f/g)) ##' glmmTMB:::expandAllGrpVar(ff) ##' glmmTMB:::expandAllGrpVar(quote(1|(f/g)/h)) ##' glmmTMB:::expandAllGrpVar(quote(1|f/g/h)) ##' glmmTMB:::expandAllGrpVar(quote(1|f*g)) ##' @importFrom utils head ##' @keywords internal expandAllGrpVar <- function(bb) { ## Return the list of '/'-separated terms if (!is.list(bb)) expandAllGrpVar(list(bb)) else { for (i in seq_along(bb)) { esfun <- function(x) { if (length(x)==1) return(x) if (length(x)==2) { ## unary operator such as diag(1|f/g) ## return diag(...) + diag(...) + ... return(lapply(esfun(x[[2]]), makeOp,y=head(x))) } if (length(x)==3) { ## binary operator if (x[[1]]==quote(`|`)) { return(lapply(expandGrpVar(x[[3]]), makeOp,x=x[[2]],op=quote(`|`))) } else { return(setNames(makeOp(esfun(x[[2]]),esfun(x[[3]]), op=x[[1]]),names(x))) } } } ## esfun def. return(unlist(lapply(bb,esfun))) } ## loop over bb } } ## sugar: this returns the operator, whether ~ or something else head.formula <- head.call <- function(x, ...) { x[[1]] } ## sugar: we can call head on a symbol and get back the symbol head.name <- function(x) { x } ##' (f)ind (b)ars e(x)tended: recursive ##' ##' @param term a formula or piece of a formula ##' @param debug (logical) debug? ##' @param specials list of special terms ##' @param default.special character: special to use for parenthesized terms - i.e. random effects terms with unspecified structure ##' 1. atom (not a call or an expression): NULL ##' 2. special, i.e. foo(...) where "foo" is in specials: return term ##' 3. parenthesized term: \emph{if} the head of the head is | (i.e. ##' it is of the form (xx|gg), then convert it to the default ##' special type; we won't allow pathological cases like ##' ((xx|gg)) ... [can we detect them?] ##' @examples ##' splitForm(quote(us(x,n=2))) ##' @keywords internal fbx <- function(term,debug=FALSE,specials=character(0), default.special="us") { ds <- eval(substitute(as.name(foo),list(foo=default.special))) if (is.name(term) || !is.language(term)) return(NULL) if (list(term[[1]]) %in% lapply(specials,as.name)) { if (debug) cat("special: ",deparse(term),"\n") return(term) } if (head(term) == as.name('|')) { ## found x | g if (debug) cat("bar term:",deparse(term),"\n") return(makeOp(term,ds)) } if (head(term) == as.name("(")) { ## found (...) if (debug) cat("paren term:",deparse(term),"\n") return(fbx(term[[2]],debug,specials)) } stopifnot(is.call(term)) if (length(term) == 2) { ## unary operator, decompose argument if (debug) cat("unary operator:",deparse(term[[2]]),"\n") return(fbx(term[[2]],debug,specials)) } ## binary operator, decompose both arguments if (debug) cat("binary operator:",deparse(term[[2]]),",", deparse(term[[3]]),"\n") c(fbx(term[[2]],debug,specials), fbx(term[[3]],debug,specials)) } ##' Parse a formula into fixed formula and random effect terms, ##' treating 'special' terms (of the form foo(x|g[,m])) appropriately ##' ##' Taken from Steve Walker's lme4ord, ##' ultimately from the flexLambda branch of lme4 ##' . Mostly for internal use. ##' @title Split formula containing special random effect terms ##' @param formula a formula containing special random effect terms ##' @param defaultTerm default type for non-special RE terms ##' @param allowFixedOnly (logical) are formulas with no RE terms OK? ##' @param allowNoSpecials (logical) are formulas with only standard RE terms OK? ##' @return a list containing elements \code{fixedFormula}; ##' \code{reTrmFormulas} list of \code{x | g} formulas for each term; ##' \code{reTrmAddArgs} list of function+additional arguments, i.e. \code{list()} (non-special), \code{foo()} (no additional arguments), \code{foo(addArgs)} (additional arguments); \code{reTrmClasses} (vector of special functions/classes, as character) ##' @examples ##' splitForm(~x+y) ## no specials or RE ##' splitForm(~x+y+(f|g)) ## no specials ##' splitForm(~x+y+diag(f|g)) ## one special ##' splitForm(~x+y+(diag(f|g))) ## 'hidden' special ##' splitForm(~x+y+(f|g)+cs(1|g)) ## combination ##' splitForm(~x+y+(1|f/g)) ## 'slash'; term ##' splitForm(~x+y+(1|f/g/h)) ## 'slash'; term ##' splitForm(~x+y+(1|(f/g)/h)) ## 'slash'; term ##' splitForm(~x+y+(f|g)+cs(1|g)+cs(a|b,stuff)) ## complex special ##' splitForm(~(((x+y)))) ## lots of parentheses ##' splitForm(~1+rr(f|g,n=2)) ##' ##' @author Steve Walker ##' @importFrom lme4 nobars ##' @export splitForm <- function(formula, defaultTerm="us", allowFixedOnly=TRUE, allowNoSpecials=TRUE, debug=FALSE) { ## logic: ## string for error message *if* specials not allowed ## (probably package-specific) noSpecialsAlt <- "lmer or glmer" specials <- findReTrmClasses() ## formula <- expandDoubleVerts(formula) ## split formula into separate ## random effects terms ## (including special terms) fbxx <- fbx(formula,debug,specials) formSplits <- expandAllGrpVar(fbxx) if (length(formSplits)>0) { formSplitID <- sapply(lapply(formSplits, "[[", 1), as.character) # warn about terms without a # setReTrm method ## FIXME:: do we need all of this?? if (FALSE) { badTrms <- formSplitID == "|" ## if(any(badTrms)) { ## stop("can't find setReTrm method(s)\n", ## "use findReTrmClasses() for available methods") ## FIXME: coerce bad terms to default as attempted below ## warning(paste("can't find setReTrm method(s) for term number(s)", ## paste(which(badTrms), collapse = ", "), ## "\ntreating those terms as unstructured")) formSplitID[badTrms] <- "(" fixBadTrm <- function(formSplit) { makeOp(formSplit[[1]],quote(`(`)) ## as.formula(paste(c("~(", as.character(formSplit)[c(2, 1, 3)], ")"), ## collapse = " "))[[2]] } formSplits[badTrms] <- lapply(formSplits[badTrms], fixBadTrm) } ## skipped parenTerm <- formSplitID == "(" # capture additional arguments reTrmAddArgs <- lapply(formSplits, "[", -2)[!parenTerm] # remove these additional # arguments formSplits <- lapply(formSplits, "[", 1:2) # standard RE terms formSplitStan <- formSplits[parenTerm] # structured RE terms formSplitSpec <- formSplits[!parenTerm] if (!allowNoSpecials) { if(length(formSplitSpec) == 0) stop( "no special covariance structures. ", "please use ",noSpecialsAlt, " or use findReTrmClasses() for available structures.") } reTrmFormulas <- c(lapply(formSplitStan, "[[", 2), lapply(formSplitSpec, "[[", 2)) reTrmClasses <- c(rep(defaultTerm, length(formSplitStan)), sapply(lapply(formSplitSpec, "[[", 1), as.character)) } else { reTrmFormulas <- reTrmAddArgs <- reTrmClasses <- NULL } fixedFormula <- noSpecials(nobars(formula)) list(fixedFormula = fixedFormula, reTrmFormulas = reTrmFormulas, reTrmAddArgs = reTrmAddArgs, reTrmClasses = reTrmClasses) } ##' @param term language object ##' @rdname splitForm ##' @param debug debugging mode (print stuff)? ##' @examples ##' noSpecials(y~1+us(1|f)) ##' noSpecials(y~1+us(1|f),delete=FALSE) ##' noSpecials(y~us(1|f)) ##' noSpecials(y~us+1) ## should *not* delete unless head of a function ##' @export ##' @keywords internal noSpecials <- function(term, delete=TRUE, debug=FALSE) { nospec <- noSpecials_(term, delete=delete, debug=debug) if (inherits(term, "formula") && length(term) == 3 && is.symbol(nospec)) { ## called with two-sided RE-only formula: ## construct response~1 formula as.formula(substitute(R~1,list(R=nospec)), env=environment(term)) } else nospec } ## noSpecials_(y~1+us(1|f)) noSpecials_ <- function(term,delete=TRUE, debug=FALSE) { if (debug) print(term) if (!anySpecial(term)) return(term) if (length(term)==1) return(term) ## 'naked' specials if (isSpecial(term)) { if(delete) { NULL } else { ## careful to return (1|f) and not 1|f: substitute((TERM), list(TERM = term[[2]])) } } else { nb2 <- noSpecials(term[[2]], delete=delete, debug=debug) nb3 <- if (length(term)==3) { noSpecials(term[[3]], delete=delete, debug=debug) } else NULL if (is.null(nb2)) nb3 else if (is.null(nb3)) nb2 else { term[[2]] <- nb2 term[[3]] <- nb3 term } } } isSpecial <- function(term) { if(is.call(term)) { ## %in% doesn't work (requires vector args) for(cls in findReTrmClasses()) { if(term[[1]] == cls) return(TRUE) } } FALSE } isAnyArgSpecial <- function(term) { for(tt in term) if(isSpecial(tt)) return(TRUE) FALSE } ## This could be in principle be fooled by a term with a matching name ## but this case is caught in noSpecials_() where we test for length>1 anySpecial <- function(term) { any(findReTrmClasses() %in% all.names(term)) } ##' test formula: does it contain a particular element? ##' @rdname formFuns ##' @examples ##' inForm(z~.,quote(.)) ##' inForm(z~y,quote(.)) ##' inForm(z~a+b+c,quote(c)) ##' inForm(z~a+b+(d+e),quote(c)) ##' f <- ~ a + offset(x) ##' f2 <- z ~ a ##' inForm(f,quote(offset)) ##' inForm(f2,quote(offset)) ##' @export ##' @keywords internal inForm <- function(form,value) { if (any(sapply(form,identical,value))) return(TRUE) if (all(sapply(form,length)==1)) return(FALSE) return(any(vapply(form,inForm,value,FUN.VALUE=logical(1)))) } ##' extract terms with a given head from an expression/formula ##' @rdname formFuns ##' @param term expression/formula ##' @param value head of terms to extract ##' @return a list of expressions ##' @examples ##' extractForm(~a+offset(b),quote(offset)) ##' extractForm(~c,quote(offset)) ##' extractForm(~a+offset(b)+offset(c),quote(offset)) ##' @export ##' @keywords internal extractForm <- function(term,value) { if (!inForm(term,value)) return(NULL) if (is.name(term) || !is.language(term)) return(NULL) if (identical(head(term),value)) { return(term) } if (length(term) == 2) { return(extractForm(term[[2]],value)) } return(c(extractForm(term[[2]],value), extractForm(term[[3]],value))) } ##' return a formula/expression with a given value stripped, where ##' it occurs as the head of a term ##' @rdname formFuns ##' @examples ##' dropHead(~a+offset(b),quote(offset)) ##' dropHead(~a+poly(x+z,3)+offset(b),quote(offset)) ##' @export ##' @keywords internal dropHead <- function(term,value) { if (!inForm(term,value)) return(term) if (is.name(term) || !is.language(term)) return(term) if (identical(head(term),value)) { return(term[[2]]) } if (length(term) == 2) { return(dropHead(term[[2]],value)) } else if (length(term) == 3) { term[[2]] <- dropHead(term[[2]],value) term[[3]] <- dropHead(term[[3]],value) return(term) } else stop("length(term)>3") } ## UNUSED (same function as drop.special2?) # drop.special(x~a + b+ offset(z)) drop.special <- function(term,value=quote(offset)) { if (length(term)==2 && identical(term[[1]],value)) return(NULL) if (length(term)==1) return(term) ## recurse, treating unary and binary operators separately nb2 <- drop.special(term[[2]]) nb3 <- if (length(term)==3) { drop.special(term[[3]]) } else NULL if (is.null(nb2)) ## RHS was special-only nb3 else if (is.null(nb3)) ## LHS was special-only nb2 else { ## insert values into daughters and return term[[2]] <- nb2 term[[3]] <- nb3 return(term) } } ##' drop terms matching a particular value from an expression ##' @rdname formFuns ## from Gabor Grothendieck: recursive solution ## http://stackoverflow.com/questions/40308944/removing-offset-terms-from-a-formula ##' @param x formula ##' @param value term to remove from formula ##' @param preserve (integer) retain the specified occurrence of "value" ##' @keywords internal drop.special2 <- function(x, value=quote(offset), preserve = NULL) { k <- 0 proc <- function(x) { if (length(x) == 1) return(x) if (x[[1]] == value && !((k <<- k+1) %in% preserve)) return(x[[1]]) replace(x, -1, lapply(x[-1], proc)) } ## handle 1- and 2-sided formulas if (length(x)==2) { newform <- substitute(~ . -x, list(x=value)) } else { newform <- substitute(. ~ . - x, list(x=value)) } return(update(proc(x), newform)) } ## Sparse Schur complement (Marginal of precision matrix) ##' @importFrom Matrix Cholesky solve GMRFmarginal <- function(Q, i, ...) { ind <- seq_len(nrow(Q)) i1 <- (ind)[i] i0 <- setdiff(ind, i1) if (length(i0) == 0) return(Q) Q0 <- as(Q[i0, i0, drop = FALSE], "symmetricMatrix") L0 <- Cholesky(Q0, ...) ans <- Q[i1, i1, drop = FALSE] - Q[i1, i0, drop = FALSE] %*% solve(Q0, as.matrix(Q[i0, i1, drop = FALSE])) ans } # n.b. won't work for terms with more than 2 args ... # @examples # replaceForm(quote(a(b+x*c(y,z))),quote(y),quote(R)) # ss <- ~(1 | cask:batch) + (1 | batch) # replaceForm(ss,quote(cask:batch),quote(batch:cask)) replaceForm <- function(term,target,repl) { if (identical(term,target)) return(repl) if (!inForm(term,target)) return(term) if (length(term) == 2) { return(substitute(OP(x),list(OP=term[[1]],x=replaceForm(term[[2]],target,repl)))) } return(substitute(OP(x,y),list(OP=term[[1]], x=replaceForm(term[[2]],target,repl), y=replaceForm(term[[3]],target,repl)))) } parallel_default <- function(parallel=c("no","multicore","snow"),ncpus=1) { ## boilerplate parallel-handling stuff, copied from lme4 if (missing(parallel)) parallel <- getOption("profile.parallel", "no") parallel <- match.arg(parallel) do_parallel <- (parallel != "no" && ncpus > 1L) if (do_parallel && parallel == "multicore" && .Platform$OS.type == "windows") { warning("no multicore on Windows, falling back to non-parallel") parallel <- "no" } return(list(parallel=parallel,do_parallel=do_parallel)) } ##' translate vector of correlation parameters to correlation values ##' @param theta vector of internal correlation parameters ##' @return a vector of correlation values ##' @details This function follows the definition at \url{http://kaskr.github.io/adcomp/classUNSTRUCTURED__CORR__t.html}: ##' if \eqn{L} is the lower-triangular matrix with 1 on the diagonal and the correlation parameters in the lower triangle, then the correlation matrix is defined as \eqn{\Sigma = D^{-1/2} L L^\top D^{-1/2}}{Sigma = sqrt(D) L L' sqrt(D)}, where \eqn{D = \textrm{diag}(L L^\top)}{D = diag(L L')}. For a single correlation parameter \eqn{\theta_0}{theta0}, this works out to \eqn{\rho = \theta_0/\sqrt{1+\theta_0^2}}{rho = theta0/sqrt(1+theta0^2)}. The function returns the elements of the lower triangle of the correlation matrix, in column-major order. ##' @examples ##' th0 <- 0.5 ##' stopifnot(all.equal(get_cor(th0),th0/sqrt(1+th0^2))) ##' get_cor(c(0.5,0.2,0.5)) ##' @export get_cor <- function(theta) { n <- round((1 + sqrt(1+8*length(theta)))/2) ## dim of cor matrix L <- diag(n) L[lower.tri(L)] <- theta cL <- tcrossprod(L) Dh <- diag(1/sqrt(diag(cL))) cc <- Dh %*% cL %*% Dh return(cc[lower.tri(cc)]) } match_which <- function(x,y) { which(sapply(y,function(z) x %in% z)) } ## reassign predvars to have term vars in the right order, ## but with 'predvars' values inserted where appropriate fix_predvars <- function(pv,tt) { if (length(tt)==3) { ## convert two-sided to one-sided formula tt <- RHSForm(tt, as.form=TRUE) } ## ugh, deparsing again ... tt_vars <- vapply(attr(tt,"variables"),deparse,character(1))[-1] ## remove terminal paren - e.g. match term poly(x, 2) to ## predvar poly(x, 2, ) ## beginning of string, including open-paren, colon ## and *first* comma but not arg ... init_regexp <- "^([(^:_.[:alnum:]]+).*" tt_vars_short <- gsub(init_regexp,"\\1",tt_vars) if (is.null(pv) || length(tt_vars)==0) return(NULL) new_pv <- quote(list()) ## maybe multiple variables per pv term ... [[-1]] ignores head ## FIXME: test for really long predvar strings ???? pv_strings <- vapply(pv,deparse,FUN.VALUE=character(1), width.cutoff=500)[-1] pv_strings <- gsub(init_regexp,"\\1",pv_strings) for (i in seq_along(tt_vars)) { w <- match(tt_vars_short[[i]],pv_strings) if (!is.na(w)) { new_pv[[i+1]] <- pv[[w+1]] } else { ## insert symbol from term vars new_pv[[i+1]] <- as.symbol(tt_vars[[i]]) } } return(new_pv) } hasRandom <- function(x) { pl <- getParList(x) return(length(unlist(pl[grep("^theta",names(pl))]))>0) } getParms <- function(parm=NULL, object, full=FALSE) { vv <- vcov(object, full=TRUE) sds <- sqrt(diag(vv)) pnames <- names(sds) <- rownames(vv) intnames <- names(object$obj$env$last.par) ## internal names ## "beta" vals may be identified by object$obj$env$random, if REML intnames <- intnames[intnames != "b"] if (length(pnames) != length(sds)) { ## shouldn't happen ... stop("length mismatch between internal and external parameter names") } if (is.null(parm)) { if (!full && trivialDisp(object)) { parm <- grep("betad", intnames, invert=TRUE) } else { parm <- seq_along(sds) } } if (is.character(parm)) { if (identical(parm,"theta_")) { parm <- which(intnames=="theta") } else if (identical(parm,"beta_")) { if (trivialDisp(object)) { ## include conditional and zi params ## but not dispersion params parm <- grep("^beta(zi)?$",intnames) } else { parm <- grep("beta",intnames) } } else if (identical(parm, "disp_") || identical(parm, "sigma")) { parm <- grep("^betad", intnames) } else { ## generic parameter vector nparm <- match(parm,pnames) if (any(is.na(nparm))) { stop("unrecognized parameter names: ", parm[is.na(nparm)]) } parm <- nparm } } return(parm) } isREML <- function(x) { if (is.null(REML <- x$modelInfo$REML)) { ## let vcov work with old (pre-REML option) stored objects REML <- FALSE } return(REML) } glmmTMB/R/zzz.R0000644000176200001440000000056613614324717012751 0ustar liggesusers## Startup code # register emmeans methods dynamically .onLoad <- function(libname, pkgname) { if (requireNamespace("emmeans", quietly = TRUE)) { if (utils::packageVersion("emmeans") < "1.4") { warning("please install a newer version of emmeans (> 1.4)") return(NULL) } emmeans::.emm_register("glmmTMB", pkgname) } } glmmTMB/R/VarCorr.R0000644000176200001440000003511713614324717013472 0ustar liggesusers## returns a true family() object iff one was given ## to glmmTMB() in the first place .... ##' @importFrom stats family ##' @export family.glmmTMB <- function(object, ...) { object$modelInfo$family } ## don't quite know why this (rather than just ...$parList()) is ## necessary -- used in ranef.glmmTMB and sigma.glmmTMB getParList <- function(object) { object$obj$env$parList(object$fit$par, object$fit$parfull) } ##' Extract residual standard deviation or dispersion parameter ##' ##' For Gaussian models, \code{sigma} returns the value of the residual ##' standard deviation; for other families, it returns the ##' dispersion parameter, \emph{however it is defined for that ##' particular family}. See details for each family below. ##' ##' @details ##' The value returned varies by family: ##' \describe{ ##' \item{gaussian}{returns the \emph{maximum likelihood} estimate ##' of the standard deviation (i.e., smaller than the results of ##' \code{sigma(lm(...))} by a factor of (n-1)/n)} ##' \item{nbinom1}{returns an overdispersion parameter ##' (usually denoted \eqn{\alpha}{alpha} as in Hardin and Hilbe (2007)): ##' such that the variance equals \eqn{\mu(1+\alpha)}{mu(1+alpha)}.} ##' \item{nbinom2}{returns an overdispersion parameter ##' (usually denoted \eqn{\theta}{theta} or \eqn{k}); in contrast to ##' most other families, larger \eqn{\theta}{theta} corresponds to a \emph{lower} ##' variance which is \eqn{\mu(1+\mu/\theta)}{mu(1+mu/theta)}.} ##' \item{Gamma}{Internally, glmmTMB fits Gamma responses by fitting a mean ##' and a shape parameter; sigma is estimated as (1/sqrt(shape)), ##' which will typically be close (but not identical to) that estimated ##' by \code{stats:::sigma.default}, which uses sqrt(deviance/df.residual)} ##' \item{beta}{returns the value of \eqn{\phi}{phi}, ##' where the conditional variance is \eqn{\mu(1-\mu)/(1+\phi)}{mu*(1-mu)/(1+phi)} ##' (i.e., increasing \eqn{\phi}{phi} decreases the variance.) ##' This parameterization follows Ferrari and Cribari-Neto (2004) ##' (and the \code{betareg} package):} ##' \item{betabinomial}{This family uses the same parameterization (governing ##' the Beta distribution that underlies the binomial probabilities) as \code{beta}.} ##' \item{genpois}{returns the index of dispersion \eqn{\phi^2}{phi^2}, ##' where the variance is \eqn{\mu\phi^2}{mu*phi^2} (Consul & Famoye 1992)} ##' \item{compois}{returns the value of \eqn{1/\nu}{1/nu}, ##' When \eqn{\nu=1}{nu=1}, compois is equivalent to the Poisson distribution. ##' There is no closed form equation for the variance, but ##' it is approximately undersidpersed when \eqn{1/\nu <1}{1/nu <1} ##' and approximately oversidpersed when \eqn{1/\nu >1}{1/nu>1}. ##' In this implementation, \eqn{\mu}{mu} is exactly the mean (Huang 2017), which ##' differs from the COMPoissonReg package (Sellers & Lotze 2015).} ##' \item{tweedie}{returns the value of \eqn{\phi}{phi}, ##' where the variance is \eqn{\phi\mu^p}{phi*mu^p}. ##' The value of \eqn{p} can be extracted using the internal ##' function \code{glmmTMB:::.tweedie_power}.} ##' } ##' ##' The most commonly used GLM families ##' (\code{binomial}, \code{poisson}) have fixed dispersion parameters which are ##' internally ignored. ##' ##' @references ##' \itemize{ ##' \item Consul PC, and Famoye F (1992). "Generalized Poisson regression model. Communications in Statistics: Theory and Methods" 21:89–109. ##' \item Ferrari SLP, Cribari-Neto F (2004). "Beta Regression for Modelling Rates and Proportions." \emph{J. Appl. Stat.} 31(7), 799-815. ##' \item Hardin JW & Hilbe JM (2007). "Generalized linear models and extensions." Stata press. ##' \item Huang A (2017). "Mean-parametrized Conway–Maxwell–Poisson regression models for dispersed counts. " \emph{Statistical Modelling} 17(6), 1-22. ##' \item Sellers K & Lotze T (2015). "COMPoissonReg: Conway-Maxwell Poisson (COM-Poisson) Regression". R package version 0.3.5. https://CRAN.R-project.org/package=COMPoissonReg ##' } ##' @aliases sigma ##' @param object a \dQuote{glmmTMB} fitted object ##' @param \dots (ignored; for method compatibility) ## Import generic and re-export ## note the following line is hacked in Makefile/namespace-update to ... ## if(getRversion()>='3.3.0') importFrom(stats, sigma) else importFrom(lme4,sigm ## also see ##' @rawNamespace if(getRversion()>='3.3.0') importFrom(stats, sigma) else importFrom(lme4,sigma) ## n.b. REQUIRES roxygen2 >= 5.0 ## @importFrom lme4 sigma ##' @export sigma ##' @method sigma glmmTMB ##' @export sigma.glmmTMB <- function(object, ...) { pl <- getParList(object) ff <- object$modelInfo$family$family if (!usesDispersion(ff)) return(1.) if (length(pl$betad)>1) return(NA) switch(family(object)$family, gaussian=exp(0.5*pl$betad), Gamma=exp(-0.5*pl$betad), exp(pl$betad)) } mkVC <- function(cor, sd, cnms, sc, useSc) { stopifnot(length(cnms) == (nc <- length(cor)), nc == length(sd), is.list(cnms), is.list(cor), is.list(sd), is.character(nnms <- names(cnms)), nzchar(nnms)) ## ## FIXME: do we want this? Maybe not. ## Potential problem: the names of the elements of the VarCorr() list ## are not necessarily unique (e.g. fm2 from example("lmer") has *two* ## Subject terms, so the names are "Subject", "Subject". The print method ## for VarCorrs handles this just fine, but it's a little awkward if we ## want to dig out elements of the VarCorr list ... ??? if (anyDuplicated(nnms)) nnms <- make.names(nnms, unique = TRUE) ## ## cov := F(sd, cor) : do1cov <- function(sd, cor, n = length(sd)) { sd * cor * rep(sd, each = n) } docov <- function(sd,cor,nm) { ## diagonal model: diagmodel <- identical(dim(cor),c(0L,0L)) if (diagmodel) cor <- diag(length(sd)) cov <- do1cov(sd, cor) names(sd) <- nm dimnames(cov) <- dimnames(cor) <- list(nm,nm) structure(cov,stddev=sd,correlation=cor) } ss <- setNames(mapply(docov,sd,cor,cnms,SIMPLIFY=FALSE),nnms) ## ONLY first element -- otherwise breaks formatVC ## FIXME: do we want a message/warning here, or elsewhere, ## when the 'Residual' var parameters are truncated? attr(ss,"sc") <- sc[1] attr(ss,"useSc") <- useSc ss } ##' Extract variance and correlation components ##' ##' @aliases VarCorr ##' @param x a fitted \code{glmmTMB} model ##' @param sigma residual standard deviation (usually set automatically from internal information) ##' @param extra arguments (for consistency with generic method) ##' @importFrom nlme VarCorr ## and re-export the generic: ##' @export VarCorr ##' @export ##' @examples ##' ## Comparing variance-covariance matrix with manual computation ##' data("sleepstudy",package="lme4") ##' fm4 <- glmmTMB(Reaction ~ Days + (Days|Subject), sleepstudy) ##' VarCorr(fm4)[[c("cond","Subject")]] ##' ## hand calculation ##' pars <- getME(fm4,"theta") ##' ## construct cholesky factor ##' L <- diag(2) ##' L[lower.tri(L)] <- pars[-(1:2)] ##' C <- crossprod(L) ##' diag(C) <- 1 ##' sdvec <- exp(pars[1:2]) ##' (V <- outer(sdvec,sdvec) * C) ##' @details For an unstructured variance-covariance matrix, the internal parameters ##' are structured as follows: the first n parameters are the log-standard-deviations, ##' while the remaining n(n-1)/2 parameters are the elements of the Cholesky factor ##' of the correlation matrix, filled in column-wise order ##' (see the \href{http://kaskr.github.io/adcomp/classUNSTRUCTURED__CORR__t.html}{TMB documentation} ##' for further details). ##' @keywords internal VarCorr.glmmTMB <- function(x, sigma = 1, ... ) { ## FIXME:: add type=c("varcov","sdcorr","logs" ?) ## FIXME:: do we need 'sigma' any more (now that nlme generic ## doesn't have it?) stopifnot(is.numeric(sigma), length(sigma) == 1) xrep <- x$obj$env$report(x$fit$parfull) reT <- x$modelInfo$reTrms reS <- x$modelInfo$reStruc familyStr <- family(x)$family useSc <- if (missing(sigma)) { ## *only* report residual variance for Gaussian family ... ## *not* usesDispersion(familyStr) sigma <- sigma(x) familyStr=="gaussian" && !zeroDisp(x) } else TRUE vc.cond <- vc.zi <- NULL if(length(cn <- reT$cond$cnms)) { vc.cond <- mkVC(cor = xrep$corr, sd = xrep$sd, cnms = cn, sc = sigma, useSc = useSc) for (i in seq_along(vc.cond)) { attr(vc.cond[[i]],"blockCode") <- reS$condReStruc[[i]]$blockCode } } if(length(cn <- reT$zi$cnms)) { vc.zi <- mkVC(cor = xrep$corrzi, sd = xrep$sdzi, cnms = cn, sc = sigma, useSc = useSc) for (i in seq_along(vc.zi)) { attr(vc.zi,"blockCode") <- reS$ziReStruc[[i]]$blockCode } } structure(list(cond = vc.cond, zi = vc.zi), sc = usesDispersion(familyStr), ## 'useScale' class = "VarCorr.glmmTMB") } ##' Printing The Variance and Correlation Parameters of a \code{glmmTMB} ##' @method print VarCorr.glmmTMB ##' @export ## don't importFrom lme4 formatVC; use our own formatV instead! ## document as it is a method with "surprising arguments": ##' @param x a result of \code{\link{VarCorr}()}. ##' @param digits number of significant digits to use. ##' @param comp a string specifying the component to format and print. ##' @param formatter a \code{\link{function}}. ##' @param ... optional further arguments, passed the next \code{\link{print}} method. print.VarCorr.glmmTMB <- function(x, digits = max(3, getOption("digits") - 2), comp = "Std.Dev.", formatter = format, ...) { for (cc in names(x)) if(!is.null(x[[cc]])) { cat(sprintf("\n%s:\n", cNames[[cc]])) print(formatVC(x[[cc]], digits = digits, comp = comp, formatter = formatter), quote = FALSE, ...) } invisible(x) } ## original from lme4 ## had to be extended/modified to deal with glmmTMB special cases ##' "format()" the 'VarCorr' matrix of the random effects -- for ##' print()ing and show()ing ##' ##' @title Format the 'VarCorr' Matrix of Random Effects ##' @param varcor a \code{\link{VarCorr}} (-like) matrix with attributes. ##' @param digits the number of significant digits. ##' @param comp character vector of length one or two indicating which ##' columns out of "Variance" and "Std.Dev." should be shown in the ##' formatted output. ##' @param formatter the \code{\link{function}} to be used for ##' formatting the standard deviations and or variances (but ##' \emph{not} the correlations which (currently) are always formatted ##' as "0.nnn" ##' @param useScale whether to report a scale parameter (e.g. residual standard deviation) ##' @param ... optional arguments for \code{formatter(*)} in addition ##' to the first (numeric vector) and \code{digits}. ##' @return a character matrix of formatted VarCorr entries from \code{varc}. ##' @importFrom methods as formatVC <- function(varcor, digits = max(3, getOption("digits") - 2), comp = "Std.Dev.", formatter = format, useScale = attr(varcor, "useSc"), ...) { c.nms <- c("Groups", "Name", "Variance", "Std.Dev.") avail.c <- c.nms[-(1:2)] if(anyNA(mcc <- pmatch(comp, avail.c))) stop("Illegal 'comp': ", comp[is.na(mcc)]) nc <- length(colnms <- c(c.nms[1:2], (use.c <- avail.c[mcc]))) if(length(use.c) == 0) stop("Must show either standard deviations or variances") formatCor <- function(x,maxlen=0) { ## x: correlation matrix ## maxlen: max number of RE std devs per term; ## really a *minimum* length here! pad to (maxlen) ## columns as necessary x <- as(x, "matrix") dig <- max(2, digits - 2) # use 'digits' ! ## n.b. not using formatter() for correlations cc <- format(round(x, dig), nsmall = dig) cc[!lower.tri(cc)] <- "" ## empty lower triangle nr <- nrow(cc) if (nr < maxlen) { cc <- cbind(cc, matrix("", nr, maxlen-nr)) } return(cc) } getCovstruct <- function(x) { n <- names(.valid_covstruct)[match(attr(x,"blockCode"), .valid_covstruct)] if (length(n)==0) n <- "us" ## unstructured v-cov (default) return(n) } getCorSD <- function(x,type="stddev",maxlen=0) { r <- attr(x,type) ## extract stddev *or* correlation from x if (type=="correlation") { ## transform to char matrix r <- formatCor(r,maxlen) ## drop last column (will be blank since we blanked out ## the upper triangle + diagonal) if (ncol(r)>maxlen) r <- r[, -ncol(r), drop = FALSE] } covstruct <- getCovstruct(x) if (covstruct %in% c("ar1","cs")) { r <- switch(type, stddev=r[1], ## select lag-1 correlation ## upper tri has been erased in formatCor() ... correlation=paste(r[2,1],sprintf("(%s)",covstruct)) ) } return(r) } ## getCorSD ## get std devs: reStdDev <- lapply(varcor, getCorSD) ## need correlations if useCor <- (sapply(varcor,getCovstruct)!="us" | sapply(reStdDev,length)>1) cnms <- Map(function(x,n) colnames(x)[seq(n)], varcor, lengths(reStdDev)) if(useScale) { reStdDev <- c(reStdDev, list(Residual = unname(attr(varcor, "sc")))) } reLens <- lengths(reStdDev) nr <- sum(reLens) reMat <- array('', c(nr, nc), list(rep.int('', nr), colnms)) reMat[1+cumsum(reLens)-reLens, "Groups"] <- names(reLens) reMat[,"Name"] <- c(unlist(cnms), if(useScale) "") if("Variance" %in% use.c) reMat[,"Variance"] <- formatter(unlist(reStdDev)^2, digits = digits, ...) if("Std.Dev." %in% use.c) reMat[,"Std.Dev."] <- formatter(unlist(reStdDev), digits = digits, ...) if (any(useCor)) { ## get corrs maxlen <- max(reLens) corr <- do.call(rbind,lapply(varcor, getCorSD, type="correlation", maxlen=maxlen)) ## add blank values as necessary if (nrow(corr) < nrow(reMat)) corr <- rbind(corr, matrix("", nrow(reMat) - nrow(corr), ncol(corr))) colnames(corr) <- c("Corr", rep.int("", max(0L, ncol(corr)-1L))) cbind(reMat, corr) } else reMat } glmmTMB/R/effects.R0000644000176200001440000000276713614324717013540 0ustar liggesusers## modified from contribution by Sanford Weisberg ##' @rdname downstream_methods ##' @param focal.predictors a character vector of one or more predictors in the ##' model in any order. ##' ##' @rawNamespace if(getRversion() >= "3.6.0") { ##' S3method(effects::Effect, glmmTMB) ##' } else { ##' export(Effect.glmmTMB) ##' } Effect.glmmTMB <- function (focal.predictors, mod, ...) { fam <- family(mod) ## code to make the 'truncated_*' families work if (grepl("^truncated", fam$family)) fam <- c(fam, make.link(fam$link)) ## dummy functions to make Effect.default work dummyfuns <- list(variance=function(mu) mu, initialize=expression(mustart <- y + 0.1), dev.resids=function(...) poisson()$dev.res(...) ) for (i in names(dummyfuns)) { if (is.null(fam[[i]])) fam[[i]] <- dummyfuns[[i]] } ## allow calculation of effects ... if (length(formals(fam$variance))>1) { warning("overriding variance function for effects: ", "computed variances may be incorrect") fam$variance <- dummyfuns$variance } args <- list(call = getCall(mod), coefficients = lme4::fixef(mod)[["cond"]], vcov = vcov(mod)[["cond"]], family=fam) if (!requireNamespace("effects")) stop("please install the effects package") effects::Effect.default(focal.predictors, mod, ..., sources = args) } glmmTMB/R/predict.R0000644000176200001440000003525213614324717013546 0ustar liggesusers## Helper function for predict. ## Assert that we can use old model (data.tmb0) as basis for ## predictions using the new data (data.tmb1): assertIdenticalModels <- function(data.tmb1, data.tmb0, allow.new.levels=FALSE) { ## Check terms. Only 'blockReps' and 'blockSize' are allowed to ## change. Note that we allow e.g. spatial covariance matrices to ## change, while e.g. an unstrucured covariance must remain the ## same. checkTerms <- function(t1, t0) { ## Defensive check: stopifnot(identical(names(t1), names(t0))) ## *Never* allowed to differ: testIdentical <- function(checkNm) { unlist( Map( function(x,y) identical(x[checkNm], y[checkNm]), t0, t1) ) } ok <- testIdentical( c("blockNumTheta", "blockCode") ) if ( ! all(ok) ) { msg <- c("Prediction is not possible for terms: ", paste(names(t1)[!ok], collapse=", "), "\n", "Probably some factor levels in 'newdata' require fitting a new model.") stop(msg) } ## Sometimes allowed to differ: if ( ! allow.new.levels ) { ok <- testIdentical( c( "blockReps", "blockSize") ) if ( ! all(ok) ) { msg <- c("Predicting new random effect levels for terms: ", paste(names(t1)[!ok], collapse=", "), "\n", "Disable this warning with 'allow.new.levels=TRUE'") ## FIXME: warning or error ? warning(msg) } } } checkTerms( data.tmb1$terms, data.tmb0$terms ) checkTerms( data.tmb1$termszi, data.tmb0$termszi ) ## Fixed effect parameters must be identical checkModelMatrix <- function(X1, X0) { if( !identical(colnames(X1), colnames(X0)) ) { msg <- c("Prediction is not possible for unknown fixed effects: ", paste( setdiff(colnames(X1), colnames(X0)), collapse=", "), "\n", "Probably some factor levels in 'newdata' require fitting a new model.") stop(msg) } } checkModelMatrix(data.tmb1$X, data.tmb0$X) checkModelMatrix(data.tmb1$Xzi, data.tmb0$Xzi) NULL } ##' prediction ##' @param object a \code{glmmTMB} object ##' @param newdata new data for prediction ##' @param newparams new parameters for prediction ##' @param se.fit return the standard errors of the predicted values? ##' @param zitype deprecated: formerly used to specify type of zero-inflation probability. Now synonymous with \code{type} ##' @param type Denoting \eqn{mu} as the mean of the conditional distribution and ##' \code{p} as the zero-inflation probability, ##' the possible choices are: ##' \describe{ ##' \item{"link"}{conditional mean on the scale of the link function, ##' or equivalently the linear predictor of the conditional model} ##' \item{"response"}{expected value; this is \eqn{mu*(1-p)} for zero-inflated models ##' and \code{mu} otherwise} ##' \item{"conditional"}{mean of the conditional response; \code{mu} for all models ##' (i.e., synonymous with \code{"response"} in the absence of zero-inflation} ##' \item{"zprob"}{the probability of a structural zero (gives an error ##' for non-zero-inflated models)} ##' \item{"zlink"}{predicted zero-inflation probability on the scale of ##' the logit link function} ##' \item{"disp"}{dispersion parameter however it is defined for that particular family as described in \code{\link{sigma.glmmTMB}}} ##' } ##' @param na.action how to handle missing values in \code{newdata} (see \code{\link{na.action}}); ##' the default (\code{na.pass}) is to predict \code{NA} ##' @param debug (logical) return the \code{TMBStruc} object that will be ##' used internally for debugging? ##' @param re.form \code{NULL} to specify individual-level predictions; \code{~0} or \code{NA} to specify population-level predictions (i.e., setting all random effects to zero) ##' @param allow.new.levels allow previously unobserved levels in random-effects variables? see details. ##' @param \dots unused - for method compatibility ##' @details ##' \itemize{ ##' \item To compute population-level predictions for a given grouping variable (i.e., setting all random effects for that grouping variable to zero), set the grouping variable values to \code{NA}. Finer-scale control of conditioning (e.g. allowing variation among groups in intercepts but not slopes when predicting from a random-slopes model) is not currently possible. ##' \item Prediction of new random effect levels is possible as long as the model specification (fixed effects and parameters) is kept constant. ##' However, to ensure intentional usage, a warning is triggered if \code{allow.new.levels=FALSE} (the default). ##' \item Prediction using "data-dependent bases" (variables whose scaling or transformation depends on the original data, e.g. \code{\link{poly}}, \code{\link[splines]{ns}}, or \code{\link{poly}}) should work properly; however, users are advised to check results extra-carefully when using such variables. Models with different versions of the same data-dependent basis type in different components (e.g. \code{formula= y ~ poly(x,3), dispformula= ~poly(x,2)}) will probably \emph{not} produce correct predictions. ##' } ##' ##' @examples ##' data(sleepstudy,package="lme4") ##' g0 <- glmmTMB(Reaction~Days+(Days|Subject),sleepstudy) ##' predict(g0, sleepstudy) ##' ## Predict new Subject ##' nd <- sleepstudy[1,] ##' nd$Subject <- "new" ##' predict(g0, newdata=nd, allow.new.levels=TRUE) ##' ## population-level prediction ##' nd_pop <- data.frame(Days=unique(sleepstudy$Days), ##' Subject=NA) ##' predict(g0, newdata=nd_pop) ##' @importFrom TMB sdreport ##' @importFrom stats optimHess model.frame na.fail na.pass napredict contrasts<- ##' @export predict.glmmTMB <- function(object,newdata=NULL, newparams=NULL, se.fit=FALSE, re.form=NULL, allow.new.levels=FALSE, type = c("link", "response", "conditional","zprob","zlink", "disp"), zitype = NULL, na.action = na.pass, debug=FALSE, ...) { ## FIXME: add re.form if (!is.null(zitype)) { warning("zitype is deprecated: please use type instead") type <- zitype } type <- match.arg(type) ## FIXME: better test? () around re.form==~0 are *necessary* ## could steal isRE from lme4 predict.R ... pop_pred <- (!is.null(re.form) && ((re.form==~0) || identical(re.form,NA))) if (!(is.null(re.form) || pop_pred)) { stop("re.form must equal NULL, NA, or ~0") } mc <- mf <- object$call ## FIXME: DRY so much ## now work on evaluating model frame ## do we want to re-do this part??? ## need to 'fix' call to proper model.frame call whether or not ## we have new data, because ... (??) m <- match(c("subset", "weights", "offset", "na.action"), names(mf), 0L) mf <- mf[c(1L, m)] mf$drop.unused.levels <- TRUE mf[[1]] <- as.name("model.frame") ## substitute *combined* data frame, in hopes of getting all of the ## bits we need for any of the model frames ... tt <- terms(object$modelInfo$allForm$combForm) pv <- attr(terms(model.frame(object)),"predvars") attr(tt,"predvars") <- fix_predvars(pv,tt) mf$formula <- RHSForm(tt, as.form=TRUE) ## FIXME:: fix_predvars is ugly, and should be refactored. ## the best solution is probably to attach predvars information ## to formulas/terms for individual components ## {conditional, zi, disp} * {fixed, random} ## and fix things downstream, where the actual model matrices ## are constructed. ## ## There's a fairly high chance of breakage with crazy/unforeseen ## usage of data-dependent bases (e.g. polynomials or splines with ## different arguments in different parts of the model ...) ## Can we detect/warn about these? ## if (is.null(newdata)) { mf$data <- mc$data ## restore original data newFr <- object$frame } else { mf$data <- newdata mf$na.action <- na.action newFr <- eval.parent(mf) } omi <- object$modelInfo ## shorthand ("**o**bject$**m**odel**I**nfo") respCol <- match(respNm <- names(omi$respCol),names(newFr)) ## create *or* overwrite response column for prediction data with NA newFr[[respNm]] <- NA ## FIXME: not yet handling population-level predictions (re.form ## or new levels/allow.new.levels) ## append to existing model frame ## rbind loses attributes! ## https://stackoverflow.com/questions/46258816/copy-attributes-when-using-rbind ## at this point I'm not even sure if contrasts are actually *used* ## for anything in the prediction process: do mismatches even matter? safe_contrasts <- function(x) { if (length(levels(x))<2) return(NULL) else return(contrasts(x)) } aug_contrasts <- function(c1,new_levels) { rbind(c1, matrix(0, ncol=ncol(c1), nrow=length(new_levels), dimnames=list(new_levels,colnames(c1)))) } augFr <- rbind(object$frame,newFr) facs <- which(vapply(augFr,is.factor,logical(1))) for (fnm in names(augFr)[facs]) { c1 <- safe_contrasts(object$frame[[fnm]]) c2 <- safe_contrasts(newFr[[fnm]]) if (!allow.new.levels) { c1_sub <- c1[rownames(c2),colnames(c2),drop=FALSE] if (!is.null(c2) && ## maybe too coarse, but as mentioned above, I don't ## even know if such mismatches really matter ... !(isTRUE(all.equal(c1_sub,c2)) || isTRUE(all.equal(c1,c2)))) { stop("contrasts mismatch between original and prediction frame in variable ", sQuote(fnm)) } } ## DON'T check for contrasts mismatch with new levels ## (hope we don't miss anything important!) ## what do we do here? ## the new levels aren't actually going to get used for anything, ## but they break the contrast construction. Extend the contrast ## matrix with a properly labeled zero matrix. if (!is.null(c1)) { new_levels <- stats::na.omit(setdiff(unique(newFr[[fnm]]),levels(object$frame[[fnm]]))) contrasts(augFr[[fnm]]) <- aug_contrasts(c1,new_levels) } } ## Pointers into 'new rows' of augmented data frame. w <- nrow(object$fr) + seq_len(nrow(newFr)) ## Variety of possible binomial inputs are taken care of by ## 'mkTMBStruc' further down. yobs <- augFr[[names(omi$respCol)]] ## match type arg with internal name ## FIXME: warn if "link" ziPredNm <- switch(type, response = "corrected", link =, conditional= "uncorrected", zlink = , zprob = "prob", disp = "disp",#zi irrelevant; just reusing variable stop("unknown type ",type)) ziPredCode <- .valid_zipredictcode[ziPredNm] ## need eval.parent() because we will do eval(mf) down below ... TMBStruc <- ## FIXME: make first arg of mkTMBStruc into a formula list ## with() interfering with eval.parent() ? eval.parent(mkTMBStruc(RHSForm(omi$allForm$formula,as.form=TRUE), omi$allForm$ziformula, omi$allForm$dispformula, omi$allForm$combForm, mf, fr=augFr, yobs=yobs, respCol=respCol, weights=model.weights(augFr), contrasts=omi$contrasts, family=omi$family, ziPredictCode=ziPredNm, doPredict=as.integer(se.fit), whichPredict=w, REML=omi$REML, map=omi$map)) ## short-circuit if(debug) return(TMBStruc) ## Check that the model specification is unchanged: assertIdenticalModels(TMBStruc$data.tmb, object$obj$env$data, allow.new.levels) ## Check that the necessary predictor variables are finite (not NA nor NaN) if(se.fit) { with(TMBStruc$data.tmb, if(any(!is.finite(X)) | any(!is.finite(Z@x)) | any(!is.finite(Xzi)) | any(!is.finite(Zzi@x)) | any(!is.finite(Xd)) ) stop("Some variables in newdata needed for predictions contain NAs or NaNs. This is currently incompatible with se.fit=TRUE.")) } ## FIXME: what if newparams only has a subset of components? oldPar <- object$fit$par if (!is.null(newparams)) oldPar <- newparams if (pop_pred) { TMBStruc <- within(TMBStruc, { parameters$b[] <- 0 mapArg$b <- factor(rep(NA,length(parameters$b))) }) } newObj <- with(TMBStruc, MakeADFun(data.tmb, parameters, map = mapArg, random = randomArg, profile = NULL, # TODO: Optionally "beta" silent = TRUE, DLL = "glmmTMB")) newObj$fn(oldPar) ## call once to update internal structures lp <- newObj$env$last.par na.act <- attr(model.frame(object),"na.action") do.napred <- missing(newdata) && !is.null(na.act) if (!se.fit) { pred <- newObj$report(lp)$mu_predict } else { H <- with(object,optimHess(oldPar,obj$fn,obj$gr)) ## FIXME: Eventually add 'getReportCovariance=FALSE' to this sdreport ## call to fix memory issue (requires recent TMB version) ## Fixed! (but do we want a flag to get it ? ...) sdr <- sdreport(newObj,oldPar,hessian.fixed=H,getReportCovariance=FALSE) sdrsum <- summary(sdr, "report") ## TMB:::summary.sdreport(sdr, "report") pred <- sdrsum[,"Estimate"] se <- sdrsum[,"Std. Error"] } if (do.napred) { pred <- napredict(na.act,pred) if (se.fit) se <- napredict(na.act,se) } if (type %in% c("zlink","link")) { ff <- object$modelInfo$family if (!(type=="link" && ff$link=="identity")) { if (type=="zlink") { ff <- make.link("logit") } pred <- ff$linkfun(pred) if (se.fit) se <- se/ff$mu.eta(pred) ## do this after transforming pred! } ## if not identity link } ## if link or zlink if (!se.fit) return(pred) else return(list(fit=pred,se.fit=se)) } glmmTMB/R/utils_covstruct.R0000644000176200001440000000525613614324717015371 0ustar liggesusers## Workaround to associate numeric values with factor levels in a way ## that survives through the lme4 machinery. ##' Create a factor with numeric interpretable factor levels. ##' ##' Some \code{glmmTMB} covariance structures require extra ##' information, such as temporal or spatial ##' coordinates. \code{numFactor} allows to associate such extra ##' information as part of a factor via the factor levels. The ##' original numeric coordinates are recoverable without loss of ##' precision using the function \code{parseNumLevels}. Factor levels ##' are sorted coordinate wise from left to right: first coordinate is ##' fastest running. ##' @title Factor with numeric interpretable levels. ##' @param x Vector, matrix or data.frame that constitute the ##' coordinates. ##' @param ... Additional vectors, matrices or data.frames that ##' constitute the coordinates. ##' @return Factor with specialized coding of levels. ##' @examples ##' ## 1D example ##' numFactor(sample(1:5,20,TRUE)) ##' ## 2D example ##' coords <- cbind( sample(1:5,20,TRUE), sample(1:5,20,TRUE) ) ##' (f <- numFactor(coords)) ##' parseNumLevels(levels(f)) ## Sorted ##' ## Used as part of a model.matrix ##' model.matrix( ~f ) ##' ## parseNumLevels( colnames(model.matrix( ~f )) ) ##' ## Error: 'Failed to parse numeric levels: (Intercept)' ##' parseNumLevels( colnames(model.matrix( ~ f-1 )) ) ##' @export numFactor <- function(x, ...) { y <- data.frame(x, ...) if( !all( sapply(y, is.numeric) | sapply(y, is.factor)) ) stop("All arguments to 'numFactor' must be numeric or factor.") asChar <- function(y) { y <- lapply(y, as.character) ans <- do.call("paste", c(y, list(sep=","))) paste0("(", ans, ")") } fac <- asChar(y) ndup <- !duplicated(fac) y0 <- y[ndup, , drop=FALSE] for (col in seq_along(y0) ) { y0 <- y0[ order( y0[[col]] ), , drop=FALSE] } facLevels <- asChar(y0) factor( fac, levels = facLevels ) } ##' @rdname numFactor ##' @param levels Character vector to parse into numeric values. ##' @importFrom stats complete.cases ##' @export parseNumLevels <- function(levels) { ## Strip initial (irrelevant) characters: tmp <- sub("^.*(\\(.+\\))$", "\\1", levels) ## Now tmp must have the form ([0-9]*,[0-9]*,...) ## Otherwise it's an error tmp <- sub("^\\(", "", tmp) tmp <- sub("\\)$", "", tmp) ## Split string and convert to numeric ans <- lapply( strsplit(tmp, ","), as.numeric ) ans <- t( do.call("cbind", ans) ) ## if(any(is.na(ans))) stop("Failed to parse numeric levels.") if(any(is.na(ans))) { stop("Failed to parse numeric levels: ", levels[!complete.cases(ans)]) } ans } glmmTMB/R/Anova.R0000644000176200001440000002227013614324717013154 0ustar liggesusers## Type II and III tests for linear, generalized linear, and other models (J. Fox) ## most of what's below is copied from car::Anova.R ## main changes are (1) absence of F-test (K-R, Satterthwaite df) capability; ## (2) use of [[component]] to pick out relevant fixed effect parameters/v-cov matrix ## copied unchanged (?); unexported utilities from car responseName.default <- function (model, ...) deparse(attr(terms(model), "variables")[[2]]) term.names.default <- function (model, component="cond", ...) { term.names <- labels(terms(model, component=component)) if (has.intercept(model)) c("(Intercept)", term.names) else term.names } has.intercept <- function (model, ...) { UseMethod("has.intercept") } ConjComp <- function(X, Z = diag( nrow(X)), ip = diag(nrow(X))) { ## This function by Georges Monette ## finds the conjugate complement of the proj of X in span(Z) wrt ## inner product ip ## - assumes Z is of full column rank ## - projects X conjugately wrt ip into span Z xq <- qr(t(Z) %*% ip %*% X) if (xq$rank == 0) return(Z) Z %*% qr.Q(xq, complete = TRUE) [ ,-(1:xq$rank)] } relatives <- function(term, names, factors){ is.relative <- function(term1, term2) { all(!(factors[,term1]&(!factors[,term2]))) } if(length(names) == 1) return(NULL) which.term <- which(term==names) (1:length(names))[-which.term][sapply(names[-which.term], function(term2) is.relative(term, term2))] } ## modified has.intercept.glmmTMB <- function (model, component="cond", ...) { nms <- names(fixef(model)[[component]]) any(grepl("\\(Intercept\\)",nms)) } ##' @rdname downstream_methods ##' @rawNamespace if(getRversion() >= "3.6.0") { ##' S3method(car::Anova, glmmTMB) ##' } else { ##' export(Anova.glmmTMB) ##' } ##' @param vcov. variance-covariance matrix (usually extracted automatically) ##' @param test.statistic unused: only valid choice is "Chisq" (i.e., Wald chi-squared test) ##' @param singular.ok OK to do ANOVA with singular models (unused) ? ##' @param type type of test, \code{"II"}, \code{"III"}, \code{2}, or \code{3}. Roman numerals are equivalent to the corresponding Arabic numerals. See \code{\link[car]{Anova}} for details. Anova.glmmTMB <- function (mod, type = c("II", "III", 2, 3), test.statistic = c("Chisq","F"), component="cond", vcov. = vcov(mod)[[component]], singular.ok, ...) { ff <- fixef(mod)[[component]] if (trivialFixef(names(ff),component)) { stop(sprintf("trivial fixed effect for component %s: can't compute Anova table", sQuote(component))) } test.statistic <- match.arg(test.statistic) if (test.statistic=="F") { stop("F tests currently unavailable") } if (is.function(vcov.)) vcov. <- vcov.(mod) type <- as.character(type) type <- match.arg(type) if (missing(singular.ok)) singular.ok <- type == "2" || type == "II" afun <- switch(type, `2` = , II = Anova.II.glmmTMB, `3` = , III = Anova.III.glmmTMB) afun(mod, vcov., test=test.statistic, singular.ok = singular.ok, component = component) } ## defined as a function, not a method, so we can hand the object ## off to car::linearHypothesis.default (not exported) linearHypothesis_glmmTMB <- function (model, hypothesis.matrix, rhs = NULL, test = c("Chisq", "F"), vcov. = NULL, singular.ok = FALSE, verbose = FALSE, coef. = NULL, component="cond", ...) { ## what's the least ugly way to do this? ## match.call? test <- match.arg(test) ## call linearHypothesis.default (not exported) if (!requireNamespace("car")) { stop("please install (if necessary) and load the car package") } if (utils::packageVersion("car")<"3.0.6") { stop("please install a more recent version of the car package (>= 3.0.6)") } car::linearHypothesis(model=model, hypothesis.matrix=hypothesis.matrix, rhs=rhs, test=test, vcov. = vcov(model)[[component]], singular.ok = FALSE, verbose = verbose, coef. = fixef(model)[[component]], ...) } Anova.II.glmmTMB <- function(mod, vcov., singular.ok=TRUE, test="Chisq", component="cond", ...){ ## would feel cleaner to have this external, but it uses ## lots of variable from the function environment ... hyp.term <- function(term) { which.term <- which(term==names) subs.term <- which(assign==which.term) relatives <- relatives(term, names, fac) subs.relatives <- NULL for (relative in relatives) subs.relatives <- c(subs.relatives, which(assign==relative)) hyp.matrix.1 <- I.p[subs.relatives,,drop=FALSE] hyp.matrix.1 <- hyp.matrix.1[, not.aliased, drop=FALSE] hyp.matrix.2 <- I.p[c(subs.relatives,subs.term),,drop=FALSE] hyp.matrix.2 <- hyp.matrix.2[, not.aliased, drop=FALSE] hyp.matrix.term <- if (nrow(hyp.matrix.1) == 0) { hyp.matrix.2 } else { t(ConjComp(t(hyp.matrix.1), t(hyp.matrix.2), vcov.)) } hyp.matrix.term <- hyp.matrix.term[!apply(hyp.matrix.term, 1, function(x) all(x == 0)), , drop=FALSE] if (nrow(hyp.matrix.term) == 0) return(c(statistic=NA, df=0)) hyp <- linearHypothesis_glmmTMB(mod, hyp.matrix.term, vcov.=vcov., singular.ok=singular.ok, test=test, component=component, ...) if (test == "Chisq") return(c(statistic=hyp$Chisq[2], df=hyp$Df[2])) else return(c(statistic=hyp$F[2], df=hyp$Df[2], res.df=hyp$Res.Df[2])) } ## hyp.term() ## may be irrelevant, glmmTMB doesn't currently handle aliased terms? not.aliased <- !is.na(fixef(mod)[[component]]) if (!singular.ok && !all(not.aliased)) stop("there are aliased coefficients in the model") fac <- attr(terms(mod, component=component), "factors") intercept <- has.intercept(mod) p <- length(fixef(mod)[[component]]) I.p <- diag(p) if (!missing(vcov.)){ vcov. <- vcov(mod, complete=FALSE)[[component]] } assign <- attr(model.matrix(mod, component=component), "assign") assign[!not.aliased] <- NA names <- term.names.default(mod, component=component) if (intercept) names <- names[-1] n.terms <- length(names) p <- teststat <- df <- res.df <- rep(0, n.terms) for (i in 1:n.terms){ hyp <- hyp.term(names[i]) teststat[i] <- abs(hyp["statistic"]) df[i] <- abs(hyp["df"]) res.df[i] <- hyp["res.df"] p[i] <- pchisq(teststat[i], df[i], lower.tail=FALSE) } result <- data.frame(teststat, df, p) row.names(result) <- names names(result) <- c ("Chisq", "Df", "Pr(>Chisq)") class(result) <- c("anova", "data.frame") attr(result, "heading") <- c("Analysis of Deviance Table (Type II Wald chisquare tests)\n", paste("Response:", responseName.default(mod))) return(result) } Anova.III.glmmTMB <- function(mod, vcov., singular.ok=FALSE, test="Chisq", component="cond", ...){ intercept <- has.intercept(mod) p <- length(fixef(mod)[[component]]) I.p <- diag(p) names <- term.names.default(mod) n.terms <- length(names) assign <- attr(model.matrix(mod), "assign") p <- teststat <- df <- res.df <- rep(0, n.terms) if (intercept) df[1] <- 1 not.aliased <- !is.na(fixef(mod)[[component]]) if (!singular.ok && !all(not.aliased)) stop("there are aliased coefficients in the model") if (!missing(vcov.)){ vcov. <- vcov(mod, complete=FALSE)[[component]] } for (term in 1:n.terms){ subs <- which(assign == term - intercept) hyp.matrix <- I.p[subs,,drop=FALSE] hyp.matrix <- hyp.matrix[, not.aliased, drop=FALSE] hyp.matrix <- hyp.matrix[!apply(hyp.matrix, 1, function(x) all(x == 0)), , drop=FALSE] if (nrow(hyp.matrix) == 0){ teststat[term] <- NA df[term] <- 0 p[term] <- NA } else { hyp <- linearHypothesis_glmmTMB(mod, hyp.matrix, test=test, vcov.=vcov., singular.ok=singular.ok, ...) teststat[term] <- hyp$Chisq[2] df[term] <- abs(hyp$Df[2]) p[term] <- pchisq(teststat[term], df[term], lower.tail=FALSE) } result <- data.frame(teststat, df, p) row.names(result) <- names names(result) <- c ("Chisq", "Df", "Pr(>Chisq)") class(result) <- c("anova", "data.frame") attr(result, "heading") <- c("Analysis of Deviance Table (Type III Wald chisquare tests)\n", paste("Response:", responseName.default(mod))) } result } glmmTMB/R/family.R0000644000176200001440000003323213614324717013371 0ustar liggesusers## FIXME: I would like to use the following function instead of repeating ## the pattern, but I'm worried that lazy evaluation of arguments will ## cause all kinds of trouble family_factory <- function(default_link,family,variance) { f <- function(link=default_link) { r <- list(family=family,link=link,variance=variance) r <- c(r,make.link(link)) class(r) <- "family" return(r) } return(f) } ## suppress code warnings for nbinom2; can't use .Theta <- NULL trick here ... utils::globalVariables(".Theta") ## attempt to guess whether calling function has been called from glm.fit ... in_glm_fit <- function() { vars <- ls(envir=parent.frame(2)) all(c("coefold","control","EMPTY","good","nvars") %in% vars) } make_family <- function(x,link) { x <- c(x,list(link=link),make.link(link)) ## stubs for Effect.default/glm.fit if (is.null(x$aic)) { x <- c(x,list(aic=function(...) NA_real_)) } if (is.null(x$initialize)) { ## should handle log-links adequately x <- c(x,list(initialize=expression({mustart <- y+0.1}))) } if (is.null(x$dev.resids)) { ## can't return NA, glm.fit is unhappy x <- c(x,list(dev.resids=function(y,mu,wt) { rep(0,length(y)) })) } class(x) <- "family" return(x) } ## even better (?) would be to have a standalone list including ## name, default link, variance function, (optionally) initialize ## for each family ##' Family functions for glmmTMB ##' ##' ##' ##' @aliases family_glmmTMB ##' @param link (character) link function for the conditional mean ("log", "logit", "probit", "inverse", "cloglog", "identity", or "sqrt") ##' @return returns a list with (at least) components ##' \item{family}{length-1 character vector giving the family name} ##' \item{link}{length-1 character vector specifying the link function} ##' \item{variance}{a function of either 1 (mean) or 2 (mean and dispersion ##' parameter) arguments giving a value proportional to the ##' predicted variance (scaled by \code{sigma(.)}) ##' } ##' @details ##' If specified, the dispersion model uses a log link. Denoting the variance as \eqn{V}, the dispersion parameter ##' as \eqn{\phi=\exp(\eta)}{phi=exp(eta)} (where \eqn{\eta}{eta} is the linear predictor from the dispersion model), ##' and the predicted mean as \eqn{\mu}{mu}: ##' \describe{ ##' \item{gaussian}{(from base R): constant \eqn{V=\phi}{V=phi}} ##' \item{Gamma}{(from base R) phi is the shape parameter. \eqn{V=\mu\phi}{V=mu*phi}} ##' \item{ziGamma}{a modified version of \code{Gamma} that skips checks for zero values, allowing it to be used to fit hurdle-Gamma models} ##' \item{nbinom2}{Negative binomial distribution: quadratic parameterization (Hardin & Hilbe 2007). \eqn{V=\mu(1+\mu/\phi) = \mu+\mu^2/\phi}{V=mu*(1+mu/phi) = mu+mu^2/phi}.} ##' \item{nbinom1}{Negative binomial distribution: linear parameterization (Hardin & Hilbe 2007). \eqn{V=\mu(1+\phi)}{V=mu*(1+phi)}} ##' \item{compois}{Conway-Maxwell Poisson distribution: parameterized with the exact mean (Huang 2017), which differs from the parameterization used in the \pkg{COMPoissonReg} package (Sellers & Shmueli 2010, Sellers & Lotze 2015). \eqn{V=\mu\phi}{V=mu*phi}.} ##' \item{genpois}{Generalized Poisson distribution (Consul & Famoye 1992). \eqn{V=\mu\exp(\eta)}{V=mu*exp(eta)}. (Note that Consul & Famoye (1992) define \eqn{\phi}{phi} differently.)} ##' \item{beta}{Beta distribution: parameterization of Ferrari and Cribari-Neto (2004) ##' and the \pkg{betareg} package (Cribari-Neto and Zeileis 2010); \eqn{V=\mu(1-\mu)\phi}{V=mu*(1-mu)*phi}} ##' \item{betabinomial}{Beta-binomial distribution: parameterized according to Morris (1997). \eqn{V=\mu(1-\mu)(n(\phi+n)/(\phi+1))}{V=mu*(1-mu)*(n*(phi+n)/(phi+1))}} ##' \item{tweedie}{Tweedie distribution: \eqn{V=\phi\mu^p}{V=phi*mu^p}. The power parameter is restricted to the interval \eqn{1= 1)) { stop("y values must be 0 <= y < 1") } } else { if (any(y <= 0 | y >= 1)) stop("y values must be 0 < y < 1") } mustart <- y })) return(make_family(r,link)) } ## fixme: better name? #' @rdname nbinom2 #' @export ## variance= (Wikipedia) ## n*alpha*beta*( alpha + beta + n )/ ((alpha+beta)^2*(alpha+beta+1)) ## alpha = p*theta ## beta = (1-p)*theta ## -> n*p*(1-p)*theta^2*(theta+n)/(theta^2*(theta+1)) ## = n*p*(1-p)*(theta+n)/(theta+1) ## *scaled* variance (dependence on mu only) is still just mu*(1-mu); ## scaling is n*(theta+n)/(theta+1) (vs. simply n for the binomial) betabinomial <- function(link="logit") { r <- list(family="betabinomial", variance=function(mu,phi) { mu*(1-mu) }, initialize = binomial()$initialize) return(make_family(r,link)) } #' @rdname nbinom2 #' @export tweedie <- function(link="log") { r <- list(family="tweedie", variance=function(mu,phi,p) { stop("variance for tweedie family not yet implemented") }) return(make_family(r,link)) } ## t not yet implemented in ## t_family <- function(link="identity") { ## ## FIXME: right now t behaves just like gaussian(); variance() ## ## returns a value *proportional* to the variance ## r <- list(family="t",link=link, ## variance=function(mu) { ## rep.int(1,length(mu)) ## }) ## } #' List model options that glmmTMB knows about #' #' @note these are all the options that are \emph{defined} internally; they have not necessarily all been \emph{implemented} (FIXME!) #' @param what (character) which type of model structure to report on #' ("all","family","link","covstruct") #' @param check (logical) do brute-force checking to test whether families are really implemented (only available for \code{what="family"}) #' @return if \code{check==FALSE}, returns a vector of the names (or a list of name vectors) of allowable entries; if \code{check==TRUE}, returns a logical vector of working families #' #' @export getCapabilities <- function(what="all",check=FALSE) { if (!check) { switch(what, all=lapply(list(family=.valid_family,link=.valid_link, covstruct=.valid_covstruct),names), family=names(.valid_family), link=names(.valid_link), covstruct=names(.valid_covstruct), stop(sprintf("unknown option %s",what))) } else { ## run dummy models to see if we get a family-not-implemented error if (what!="family") stop("'check' option only available for families") families <- names(.valid_family) family_OK <- setNames(rep(TRUE,length(.valid_family)),families) y <- 1:3 ## dummy for (f in families) { tt1 <- utils::capture.output(tt0 <- suppressMessages(suppressWarnings( try(glmmTMB(y~1, family=list(family=f,link="identity")), silent=TRUE)))) family_OK[f] <- !(inherits(tt0,"try-error") && grepl("Family not implemented!",tt0)) } return(family_OK) } } #' @export #' @rdname nbinom2 ziGamma <- function(link="inverse") { g <- stats::Gamma(link=link) ## stats::Gamma does clever deparsing stuff ... need to work around it ... if (is.function(link)) { g$link <- deparse(substitute(link)) } else g$link <- link ## modify initialization to allow zero values in zero-inflated cases g$initialize <- expression({ if (exists("ziformula") && !ident(ziformula, ~0)) { if (any(y < 0)) stop("negative values not allowed for the 'Gamma' family with zero-inflation") } else { if (any(y <= 0)) stop("non-positive values not allowed for the 'Gamma' family") } n <- rep.int(1, nobs) mustart <- y }) return(g) } glmmTMB/R/enum.R0000644000176200001440000000144513614324717013055 0ustar liggesusers## Auto generated - do not edit by hand .valid_link <- c( log = 0, logit = 1, probit = 2, inverse = 3, cloglog = 4, identity = 5, sqrt = 6 ) .valid_family <- c( gaussian = 0, binomial = 100, betabinomial =101, beta =200, Gamma =300, poisson =400, truncated_poisson =401, genpois =402, compois =403, truncated_genpois =404, truncated_compois =405, nbinom1 =500, nbinom2 =501, truncated_nbinom1 =502, truncated_nbinom2 =503, t =600, tweedie = 700 ) .valid_covstruct <- c( diag = 0, us = 1, cs = 2, ar1 = 3, ou = 4, exp = 5, gau = 6, mat = 7, toep = 8 ) .valid_zipredictcode <- c( corrected = 0, uncorrected = 1, prob = 2, disp = 3 ) glmmTMB/R/lme4_utils_temp.R0000644000176200001440000000154013614324717015213 0ustar liggesusers#### COPIED from lme4, until next version of lme4 (>= 1.18-1.9000) gets to CRAN asDf0 <- function(x,nx,id=FALSE) { xt <- x[[nx]] ss <- utils::stack(xt) ss$ind <- factor(as.character(ss$ind), levels = colnames(xt)) ss$.nn <- rep.int(stats::reorder(factor(rownames(xt)), xt[[1]], FUN = mean,sort = sort), ncol(xt)) ## allow 'postVar' *or* 'condVar' names pv <- attr(xt,"postVar") if (is.null(pv)) { pv <- attr(xt,"condVar") } if (!is.null(pv)) { tmpfun <- function(pvi) { unlist(lapply(1:nrow(pvi), function(i) sqrt(pvi[i, i, ]))) } if (!is.list(pv)) { ss$se <- tmpfun(pv) } else { ## rely on ordering when unpacking! ss$se <- unlist(lapply(pv,tmpfun)) } } if (id) ss$id <- nx return(ss) } glmmTMB/R/emmeans.R0000644000176200001440000001043213616054060013523 0ustar liggesusers## methods for extending emmeans to handle glmmTMB objects ## NOTE: methods are dynamically exported by emmeans utility -- see code in zzz.R ##' Downstream methods for glmmTMB objects ##' ##' Methods have been written that allow \code{glmmTMB} objects to be used with ##' several downstream packages that enable different forms of inference. ##' In particular, ##' \itemize{ ##' \item \code{car::Anova} constructs type-II and type-III Anova tables ##' for the fixed effect parameters of the conditional model (this might work with the ##' fixed effects of the zero-inflation or dispersion models, but has not been tested) ##' \item the \code{effects} package computes graphical tabular effect displays ##' (again, for the fixed effects of the conditional component) ##' \item the \code{emmeans} package computes estimated marginal means (aka least-squares means) ##' for the fixed effects of the conditional component ##' } ##' @rdname downstream_methods ##' @param mod a glmmTMB model ##' @param object a glmmTMB model ##' @param trms The \code{terms} component of \code{object} (typically with the ##' response deleted, e.g. via \code{\link{delete.response}} ##' @param xlev Named list of factor levels (\emph{excluding} ones coerced to ##' factors in the model formula) ##' @param \dots Additional parameters that may be supported by the method. ##' @param grid A \code{data.frame} (provided by \code{ref_grid}) containing the ##' predictor settings needed in the reference grid ##' @details While the examples below are disabled for earlier versions of ##' R, they may still work; it may be necessary to refer to private ##' versions of methods, e.g. \code{glmmTMB:::Anova.glmmTMB(model, ...)}. ##' @examples ##' warp.lm <- glmmTMB(breaks ~ wool * tension, data = warpbreaks) ##' if (require(emmeans)) { ##' emmeans (warp.lm, poly ~ tension | wool) ##' } ##' if (getRversion() >= "3.6.0") { ##' if (require(car)) { ##' Anova(warp.lm,type="III") ##' } ##' if (require(effects) ##' plot(allEffects(warp.lm)) ##' } ##' } ## recover_data method -- DO NOT export -- see zzz.R #' @importFrom stats delete.response recover_data.glmmTMB <- function(object, ...) { fcall <- getCall(object) if (!requireNamespace("emmeans")) stop("please install (if necessary) and load the emmeans package") emmeans::recover_data(fcall,delete.response(terms(object)), attr(model.frame(object),"na.action"), ...) } ## emm_basis method -- Dynamically exported, see zzz.R #' @rdname downstream_methods #' @aliases downstream_methods #' @param component which component of the model to compute emmeans for (conditional ("cond"), zero-inflation ("zi"), or dispersion ("disp")) emm_basis.glmmTMB <- function (object, trms, xlev, grid, component="cond", ...) { ## Not needed anymore? ## if (component != "cond") warning("only tested for conditional component") V <- as.matrix(vcov(object)[[component]]) misc = list() if (family(object)$family=="gaussian") { dfargs = list(df = df.residual(object)) dffun = function(k, dfargs) dfargs$df } else { dffun = function(k, dfargs) Inf dfargs = list() } fam = switch(component, cond = family(object), zi = list(link = "logit"), disp = list(link = "log")) misc = emmeans::.std.link.labels(fam, misc) ## (used to populate the reminder of response scale) contrasts = attr(model.matrix(object), "contrasts") ## keep only variables found in conditional fixed effects contrasts = contrasts[names(contrasts) %in% all.vars(terms(object))] m = model.frame(trms, grid, na.action = na.pass, xlev = xlev) X = model.matrix(trms, m, contrasts.arg = contrasts) bhat = fixef(object)[[component]] if (length(bhat) < ncol(X)) { kept = match(names(bhat), dimnames(X)[[2]]) bhat = NA * X[1, ] bhat[kept] = fixef(object)[[component]] modmat = model.matrix(trms, model.frame(object), contrasts.arg = contrasts) nbasis = estimability::nonest.basis(modmat) } else { nbasis = estimability::all.estble } dfargs = list(df = df.residual(object)) dffun = function(k, dfargs) dfargs$df list(X = X, bhat = bhat, nbasis = nbasis, V = V, dffun = dffun, dfargs = dfargs, misc = misc) } glmmTMB/R/profile.R0000644000176200001440000001702013614324717013545 0ustar liggesusers#' Compute likelihood profiles for a fitted model #' #' @inheritParams confint.glmmTMB #' @param fitted a fitted \code{glmmTMB} object #' @param parm which parameters to profile, specified #' \itemize{ #' \item by index (position) #' \item by name (matching the row/column names of \code{vcov(object,full=TRUE)}) #' \item as \code{"theta_"} (random-effects variance-covariance parameters) or \code{"beta_"} (conditional and zero-inflation parameters) #' } #' @param level_max maximum confidence interval target for profile #' @param npts target number of points in (each half of) the profile (\emph{approximate}) #' @param stepfac initial step factor (fraction of estimated standard deviation) #' @param trace print tracing information? If \code{trace=FALSE} or 0, #' no tracing; if \code{trace=1}, print names of parameters currently #' being profiled; if \code{trace>1}, turn on tracing for the #' underlying \code{\link{tmbprofile}} function #' @param stderr standard errors to use as a scaling factor when picking step #' sizes to compute the profile; by default (if \code{stderr} is #' \code{NULL}, or \code{NA} for a particular element), #' uses the estimated (Wald) standard errors of the parameters #' @param ... additional arguments passed to \code{\link{tmbprofile}} #' @return An object of class \code{profile.glmmTMB}, which is also a #' data frame, with columns \code{.par} (parameter being profiled), #' \code{.focal} (value of focal parameter), value (negative log-likelihood). #' @importFrom stats profile #' @examples #' \dontrun{ #' m1 <- glmmTMB(count~ mined + (1|site), #' zi=~mined, family=poisson, data=Salamanders) #' salamander_prof1 <- profile(m1, parallel="multicore", #' ncpus=2, trace=1) #' ## testing #' salamander_prof1 <- profile(m1, trace=1,parm=1) #' salamander_prof1M <- profile(m1, trace=1,parm=1, npts = 4) #' salamander_prof2 <- profile(m1, parm="theta_") #' #' } #' salamander_prof1 <- readRDS(system.file("example_files","salamander_prof1.rds",package="glmmTMB")) #' if (require("ggplot2")) { #' ggplot(salamander_prof1,aes(.focal,sqrt(value))) + #' geom_point() + geom_line()+ #' facet_wrap(~.par,scale="free_x")+ #' geom_hline(yintercept=1.96,linetype=2) #' } #' @importFrom TMB tmbprofile #' @export profile.glmmTMB <- function(fitted, parm=NULL, level_max = 0.99, npts = 8, stepfac = 1/4, stderr = NULL, trace = FALSE, parallel = c("no", "multicore", "snow"), ncpus = getOption("profile.ncpus", 1L), cl = NULL, ...) { if (isREML(fitted)) stop("can't compute profiles for REML models at the moment (sorry)") plist <- parallel_default(parallel,ncpus) parallel <- plist$parallel do_parallel <- plist$do_parallel trace <- as.numeric(trace) ytol <- qchisq(level_max,1) ystep <- ytol/npts ## don't suppress sigma profiling (full=TRUE) parm <- getParms(parm, fitted, full=TRUE) ## only need selected SDs sds <- sqrt(diag(vcov(fitted,full=TRUE))) sds <- sds[parm] if (!is.null(stderr)) { if (length(stderr) != length(sds)) { if (length(stderr)==1) { sds <- rep(stderr,length(sds)) } else { stop( sprintf("length(stderr) should equal 1 or number of parameters (%d)", length(parm))) } } else { sds[!is.na(stderr)] <- stderr[!is.na(stderr)] } } if (any(sds>1e3)) { warning("very large standard errors for parameters: ", names(sds)[sds>1e3]) } if (FALSE) { ## would like complete solution for assigning names to components ## (cond (fix/theta), zi (fix/theta), disp (fix/theta)) ## and matching order of parameters in object ... nn <- names(object$obj$par) drop_null <- function(x) x[lengths(x)>0] ff <- drop_null(fixef(object)) pn <- lapply(ff,names) nm <- unlist(mapply(paste,names(ff),pn,MoreArgs=list(sep="_"), SIMPLIFY=FALSE)) } FUN <- local({ function(p,s) { if (trace>0) cat("parameter",p,"\n") return(tmbprofile(fitted$obj, name=p, h=s/4, ytol=ytol, ystep=ystep, trace=(trace>1),...)) } }) if (do_parallel) { if (parallel == "multicore") { L <- parallel::mcmapply(FUN, parm, sds, mc.cores = ncpus, SIMPLIFY=FALSE) } else if (parallel=="snow") { if (is.null(cl)) { ## start cluster new_cl <- TRUE cl <- parallel::makePSOCKcluster(rep("localhost", ncpus)) } ## run L <- parallel::clusterMap(cl, FUN, parm, sds) if (new_cl) { ## stop cluster parallel::stopCluster(cl) } } } else { ## non-parallel L <- Map(FUN, parm, sds) } dfun <- function(x,n) { dd0 <- data.frame(n,x) names(dd0)[1:2] <- c(".par",".focal") dd0$value <- dd0$value - min(dd0$value,na.rm=TRUE) return(dd0) } dd <- Map(dfun, L, names(sds)) dd <- do.call(rbind,dd) class(dd) <- c("profile.glmmTMB","data.frame") return(dd) } #' @param object a fitted profile (\code{profile.glmmTMB}) object #' @param level confidence level #' @rdname profile.glmmTMB #' @details Fits natural splines separately to the points from each half of the profile for each #' specified parameter (i.e., values above and below the MLE), then finds the inverse functions #' to estimate the endpoints of the confidence interval #' @examples #' salamander_prof1 <- readRDS(system.file("example_files","salamander_prof1.rds",package="glmmTMB")) #' confint(salamander_prof1) #' confint(salamander_prof1,level=0.99) #' @importFrom splines interpSpline backSpline #' @export confint.profile.glmmTMB <- function(object, parm=NULL, level = 0.95, ...) { ## FIXME: lots of bulletproofing: ## non-monotonic values: error and/or linear interpolation ## non-monotonic spline, qval <- 0.5*qchisq(level,df=1) ci_fun <- function(dd) { dd <- dd[!duplicated(dd$.focal),] ## unique values: WHY?? hf <- with(dd,factor(.focal>.focal[which.min(value)], levels=c("FALSE","TRUE"))) halves <- split(dd,hf) res <- vapply(halves,ci_fun_half,numeric(1)) a <- (1 - level)/2 a <- c(a, 1 - a) names(res) <- format.perc(a, 3) return(res) } ## fit spline and invert for one half (lower, upper) of the profile ci_fun_half <- function(hh) { if (nrow(hh)==0) return(NA_real_) if (max(hh$value,na.rm=TRUE) treat as binary following glm ## yobs could be cbind(success, failure) ## yobs could be binary ## (yobs, weights) could be (proportions, size) ## On the C++ side 'yobs' must be the number of successes. if ( binomialType(family$family) ) { if (is.factor(yobs)) { ## following glm, ‘success’ is interpreted as the factor not ## having the first level (and hence usually of having the ## second level). yobs <- pmin(as.numeric(yobs)-1,1) size <- rep(1, nobs) } else { if(is.matrix(yobs)) { # yobs=cbind(success, failure) size <- yobs[,1] + yobs[,2] yobs <- yobs[,1] #successes } else { if(all(yobs %in% c(0,1))) { #binary size <- rep(1, nobs) } else { #proportions yobs <- weights * yobs size <- weights weights <- rep(1, nobs) } } } } if (is.null(size)) size <- numeric(0) data.tmb <- namedList( X = condList$X, Z = condList$Z, Xzi = ziList$X, Zzi = ziList$Z, Xd = dispList$X, ## Zdisp=dispList$Z, ## use c() on yobs, size to strip attributes such as 'AsIs' ## (which confuse MakeADFun) yobs = c(yobs), respCol, offset = condList$offset, zioffset = ziList$offset, doffset = dispList$offset, weights, size = c(size), ## information about random effects structure terms = condReStruc, termszi = ziReStruc, family = .valid_family[family$family], link = .valid_link[family$link], ziPredictCode = .valid_zipredictcode[ziPredictCode], doPredict = doPredict, whichPredict = whichPredict ) getVal <- function(obj, component) vapply(obj, function(x) x[[component]], numeric(1)) ## safer initialization for link functions that might give ## illegal predictions for certain families ## (sqrt() behaves weirdly for beta=0 ## [because inverse-link is symmetric around 0?] beta_init <- if (family$link %in% c("identity","inverse","sqrt")) 1 else 0 ## Extra family specific parameters numThetaFamily <- (family$family == "tweedie") rr0 <- function(n) { if (is.null(n)) numeric(0) else rep(0, n) } parameters <- with(data.tmb, list( beta = rep(beta_init, ncol(X)), betazi = rr0(ncol(Xzi)), b = rep(beta_init, ncol(Z)), bzi = rr0(ncol(Zzi)), betad = rep(betad_init, ncol(Xd)), theta = rr0(sum(getVal(condReStruc,"blockNumTheta"))), thetazi = rr0(sum(getVal(ziReStruc, "blockNumTheta"))), thetaf = rr0(numThetaFamily) )) for (p in names(start)) { if (!(p %in% names(parameters))) { stop(sprintf("unrecognized vector '%s' in %s",p,sQuote("start")), call. = FALSE) } if ((Lp <- length(parameters[[p]])) != (Ls <- length(start[[p]]))) { stop(sprintf("parameter vector length mismatch: in %s, length(%s)==%d, should be %d", sQuote("start"), p, Ls, Lp), call. = FALSE) } parameters[[p]] <- start[[p]] } randomArg <- c(if(ncol(data.tmb$Z) > 0) "b", if(ncol(data.tmb$Zzi) > 0) "bzi") ## REML if (REML) randomArg <- c(randomArg, "beta") dispformula <- dispformula.orig ## May have changed - restore return(namedList(data.tmb, parameters, mapArg, randomArg, grpVar, condList, ziList, dispList, condReStruc, ziReStruc, family, contrasts, respCol, allForm=namedList(combForm,formula,ziformula,dispformula), fr, se, call, verbose, REML, map)) } ##' Create X and random effect terms from formula ##' @param formula current formula, containing both fixed & random effects ##' @param mf matched call ##' @param fr full model frame ##' @param ranOK random effects allowed here? ##' @param type label for model type ##' @param contrasts a list of contrasts (see ?glmmTMB) ##' @return a list composed of ##' \item{X}{design matrix for fixed effects} ##' \item{Z}{design matrix for random effects} ##' \item{reTrms}{output from \code{\link{mkReTrms}} from \pkg{lme4}} ##' \item{offset}{offset vector, or vector of zeros if offset not specified} ##' ##' @importFrom stats model.matrix contrasts ##' @importFrom methods new ##' @importFrom lme4 findbars nobars getXReTrms <- function(formula, mf, fr, ranOK=TRUE, type="", contrasts) { ## fixed-effects model matrix X - ## remove random effect parts from formula: fixedform <- formula RHSForm(fixedform) <- nobars(RHSForm(fixedform)) terms <- NULL ## make sure it's empty in case we don't set it nobs <- nrow(fr) ## check for empty fixed form ## need to ignore environments when checking! ## ignore.environment= arg only works with closures idfun <- function(x,y) { environment(x) <- emptyenv() environment(y) <- emptyenv() return(identical(x,y)) } if (idfun(RHSForm(fixedform, as.form=TRUE), ~ 0) || idfun(RHSForm(fixedform, as.form=TRUE), ~ -1)) { X <- matrix(ncol=0, nrow=nobs) offset <- rep(0,nobs) } else { tt <- terms(fixedform) pv <- attr(mf$formula,"predvars") attr(tt, "predvars") <- fix_predvars(pv,tt) mf$formula <- tt terms_fixed <- terms(eval(mf,envir=environment(fixedform))) ## FIXME: make model matrix sparse?? i.e. Matrix:::sparse.model.matrix() X <- model.matrix(drop.special2(fixedform), fr, contrasts) ## will be 0-column matrix if fixed formula is empty offset <- rep(0,nobs) terms <- list(fixed=terms(terms_fixed)) if (inForm(fixedform,quote(offset))) { ## hate to match offset terms with model frame names ## via deparse, but since that what was presumably done ## internally to get the model frame names in the first place ... for (o in extractForm(fixedform,quote(offset))) { offset_nm <- deparse(o) ## don't think this will happen, but ... if (length(offset_nm)>1) { stop("trouble reconstructing offset name") } offset <- offset + fr[[offset_nm]] } } } ## ran-effects model frame (for predvars) ## important to COPY formula (and its environment)? ranform <- formula if (is.null(findbars(ranform))) { reTrms <- NULL Z <- new("dgCMatrix",Dim=c(as.integer(nobs),0L)) ## matrix(0, ncol=0, nrow=nobs) ss <- integer(0) } else { ## FIXME: check whether predvars are carried along correctly in terms if (!ranOK) stop("no random effects allowed in ", type, " term") RHSForm(ranform) <- subbars(RHSForm(reOnly(formula))) mf$formula <- ranform reTrms <- mkReTrms(findbars(RHSForm(formula)), fr, reorder.terms=FALSE) ss <- splitForm(formula) ss <- unlist(ss$reTrmClasses) Z <- t(reTrms$Zt) ## still sparse ... } ## if(is.null(rankX.chk <- control[["check.rankX"]])) ## rankX.chk <- eval(formals(lmerControl)[["check.rankX"]])[[1]] ## X <- chkRank.drop.cols(X, kind=rankX.chk, tol = 1e-7) ## if(is.null(scaleX.chk <- control[["check.scaleX"]])) ## scaleX.chk <- eval(formals(lmerControl)[["check.scaleX"]])[[1]] ## X <- checkScaleX(X, kind=scaleX.chk) ## list(fr = fr, X = X, reTrms = reTrms, family = family, formula = formula, ## wmsgs = c(Nlev = wmsgNlev, Zdims = wmsgZdims, Zrank = wmsgZrank)) namedList(X, Z, reTrms, ss, terms, offset) } ##' Extract grouping variables for random effect terms from a factor list ##' @title Get Grouping Variable ##' @param x "flist" object; a data frame of factors including an \code{assign} attribute ##' matching columns to random effect terms ##' @return character vector of grouping variables ##' @keywords internal ##' @examples ##' data(cbpp,package="lme4") ##' cbpp$obs <- factor(seq(nrow(cbpp))) ##' rt <- lme4::glFormula(cbind(size,incidence-size)~(1|herd)+(1|obs), ##' data=cbpp,family=binomial)$reTrms ##' getGrpVar(rt$flist) ##' @export getGrpVar <- function(x) { assign <- attr(x,"assign") names(x)[assign] } ##' Calculate random effect structure ##' Calculates number of random effects, number of parameters, ##' block size and number of blocks. Mostly for internal use. ##' @param reTrms random-effects terms list ##' @param ss a character string indicating a valid covariance structure. ##' Must be one of \code{names(glmmTMB:::.valid_covstruct)}; ##' default is to use an unstructured variance-covariance ##' matrix (\code{"us"}) for all blocks). ##' @return a list ##' \item{blockNumTheta}{number of variance covariance parameters per term} ##' \item{blockSize}{size (dimension) of one block} ##' \item{blockReps}{number of times the blocks are repeated (levels)} ##' \item{covCode}{structure code} ##' @examples ##' data(sleepstudy, package="lme4") ##' rt <- lme4::lFormula(Reaction~Days+(1|Subject)+(0+Days|Subject), ##' sleepstudy)$reTrms ##' rt2 <- lme4::lFormula(Reaction~Days+(Days|Subject), ##' sleepstudy)$reTrms ##' getReStruc(rt) ##' @importFrom stats setNames dist ##' @export getReStruc <- function(reTrms, ss=NULL) { ## information from ReTrms is contained in cnms, flist ## cnms: list of column-name vectors per term ## flist: data frame of grouping variables (factors) ## 'assign' attribute gives match between RE terms and factors if (is.null(reTrms)) { list() } else { ## Get info on sizes of RE components assign <- attr(reTrms$flist,"assign") nreps <- vapply(assign, function(i) length(levels(reTrms$flist[[i]])), 0) blksize <- diff(reTrms$Gp) / nreps ## figure out number of parameters from block size + structure type if (is.null(ss)) { ss <- rep("us",length(blksize)) } covCode <- .valid_covstruct[ss] parFun <- function(struc, blksize) { switch(as.character(struc), "0" = blksize, # diag "1" = blksize * (blksize+1) / 2, # us "2" = blksize + 1, # cs "3" = 2, # ar1 "4" = 2, # ou "5" = 2, # exp "6" = 2, # gau "7" = 3, # mat "8" = 2 * blksize - 1) # toep } blockNumTheta <- mapply(parFun, covCode, blksize, SIMPLIFY=FALSE) ans <- lapply( seq_along(ss), function(i) { tmp <- list(blockReps = nreps[i], blockSize = blksize[i], blockNumTheta = blockNumTheta[[i]], blockCode = covCode[i] ) if(ss[i] == "ar1"){ ## FIXME: Keep this warning ? if (any(reTrms$cnms[[i]][1] == "(Intercept)") ) warning("AR1 not meaningful with intercept") } if(ss[i] == "ou"){ times <- parseNumLevels(reTrms$cnms[[i]]) if (ncol(times) != 1) stop("'ou' structure is for 1D coordinates only.") if (is.unsorted(times, strictly=TRUE)) stop("'ou' is for strictly sorted times only.") tmp$times <- drop(times) } if(ss[i] %in% c("exp", "gau", "mat")){ coords <- parseNumLevels(reTrms$cnms[[i]]) tmp$dist <- as.matrix( dist(coords) ) } tmp }) setNames(ans, names(reTrms$Ztlist)) } } .noDispersionFamilies <- c("binomial", "poisson", "truncated_poisson") ## BMB: why not just sigma(x)!=1.0 ... ? (redundant with sigma.glmmTMB) usesDispersion <- function(x) { is.na(match(x, .noDispersionFamilies)) ## !x %in% .noDispersionFamilies } .classicDispersionFamilies <- c("gaussian","Gamma","t") ## select only desired pieces from results of getXReTrms stripReTrms <- function(xrt, whichReTrms = c("cnms","flist"), which="terms") { c(xrt$reTrms[whichReTrms],setNames(xrt[which],which)) } #.okWeightFamilies <- c("binomial", "betabinomial") okWeights <- function(x) { TRUE #!is.na(match(x, .okWeightFamilies)) ## x %in% .okWeightFamilies } ## Families for which binomial()$initialize is used .binomialFamilies <- c("binomial", "betabinomial") binomialType <- function(x) { !is.na(match(x, .binomialFamilies)) } ##' Fit Models with TMB ##' ##' Fit a generalized linear mixed model (GLMM) using Template Model Builder (TMB). ##' @param formula combined fixed and random effects formula, following lme4 syntax. ##' @param data optional data frame containing model variables. ##' @param family a family function, a character string naming a family function, or the result of a call to a family function (variance/link function) information. See \code{\link{family}} for a generic discussion of families or \code{\link{family_glmmTMB}} for details of \code{glmmTMB}-specific families. ##' @param ziformula a \emph{one-sided} (i.e., no response variable) formula for zero-inflation combining fixed and random effects: the default \code{~0} specifies no zero-inflation. Specifying \code{~.} sets the zero-inflation formula identical to the right-hand side of \code{formula} (i.e., the conditional effects formula); terms can also be added or subtracted. \strong{When using \code{~.} as the zero-inflation formula in models where the conditional effects formula contains an offset term, the offset term will automatically be dropped}. The zero-inflation model uses a logit link. ##' @param dispformula a \emph{one-sided} formula for dispersion containing only fixed effects: the default \code{~1} specifies the standard dispersion given any family. The argument is ignored for families that do not have a dispersion parameter. For an explanation of the dispersion parameter for each family, see \code{\link{sigma}}. The dispersion model uses a log link. In Gaussian mixed models, \code{dispformula=~0} fixes the residual variance to be 0 (actually a small non-zero value: at present it is set to \code{sqrt(.Machine$double.eps)}), forcing variance into the random effects. ##' @param weights weights, as in \code{glm}. Not automatically scaled to have sum 1. ##' @param offset offset for conditional model (only). ##' @param contrasts an optional list, e.g., \code{list(fac1="contr.sum")}. See the \code{contrasts.arg} of \code{\link{model.matrix.default}}. ##' @param na.action how to handle missing values, see \code{\link{na.action}} and \code{\link{model.frame}}. From \code{\link{lm}}: \dQuote{The default is set by the \code{\link{na.action}} setting of \code{\link{options}}, and is \code{\link{na.fail}} if that is unset. The \sQuote{factory-fresh} default is \code{\link{na.omit}}.} ##' @param se whether to return standard errors. ##' @param verbose whether progress indication should be printed to the console. ##' @param doFit whether to fit the full model, or (if FALSE) return the preprocessed data and parameter objects, without fitting the model. ##' @param control control parameters, see \code{\link{glmmTMBControl}}. ##' @param REML whether to use REML estimation rather than maximum likelihood. ##' @param start starting values, expressed as a list with possible components \code{beta}, \code{betazi}, \code{betad} (fixed-effect parameters for conditional, zero-inflation, dispersion models); \code{b}, \code{bzi} (conditional modes for conditional and zero-inflation models); \code{theta}, \code{thetazi} (random-effect parameters, on the standard deviation/Cholesky scale, for conditional and z-i models); \code{thetaf} (extra family parameters, e.g., shape for Tweedie models). ##' @param map a list specifying which parameter values should be fixed to a constant value rather than estimated. \code{map} should be a named list containing factors corresponding to a subset of the internal parameter names (see \code{start} parameter). Distinct factor values are fitted as separate parameter values, \code{NA} values are held fixed: e.g., \code{map=list(beta=factor(c(1,2,3,NA)))} would fit the first three fixed-effect parameters of the conditional model and fix the fourth parameter to its starting value. In general, users will probably want to use \code{start} to specify non-default starting values for fixed parameters. See \code{\link[TMB]{MakeADFun}} for more details. ##' @importFrom stats gaussian binomial poisson nlminb as.formula terms model.weights ##' @importFrom lme4 subbars findbars mkReTrms nobars ##' @importFrom Matrix t ##' @importFrom TMB MakeADFun sdreport ##' @details ##' Binomial models with more than one trial (i.e., not binary/Bernoulli) can either be specified in the form \code{prob ~ ..., weights = N}, or in the more typical two-column matrix \code{cbind(successes,failures)~...} form. ##' ##' Behavior of \code{REML=TRUE} for Gaussian responses matches \code{lme4::lmer}. It may also be useful in some cases with non-Gaussian responses (Millar 2011). Simulations should be done first to verify. ##' ##' Because the \code{\link{df.residual}} method for \code{glmmTMB} currently counts the dispersion parameter, one would need to multiply by \code{sqrt(nobs(fit) / (1+df.residual(fit)))} when comparing with \code{lm}. ##' ##' By default, vector-valued random effects are fitted with unstructured (general positive definite) variance-covariance matrices. Structured variance-covariance matrices can be specified in the form \code{struc(terms|group)}, where \code{struc} is one of ##' \itemize{ ##' \item \code{diag} (diagonal, heterogeneous variance) ##' \item \code{ar1} (autoregressive order-1, homogeneous variance) ##' \item \code{cs} (compound symmetric, heterogeneous variance) ##' \item \code{ou} (* Ornstein-Uhlenbeck, homogeneous variance) ##' \item \code{exp} (* exponential autocorrelation) ##' \item \code{gau} (* Gaussian autocorrelation) ##' \item \code{mat} (* Matérn process correlation) ##' \item \code{toep} (* Toeplitz) ##' } ##' Structures marked with * are experimental/untested. ##' ##' For backward compatibility, the \code{family} argument can also be specified as a list comprising the name of the distribution and the link function (e.g. \code{list(family="binomial", link="logit")}). However, \strong{this alternative is now deprecated}; it produces a warning and will be removed at some point in the future. Furthermore, certain capabilities such as Pearson residuals or predictions on the data scale will only be possible if components such as \code{variance} and \code{linkfun} are present, see \code{\link{family}}. ##' ##' @note ##' For more information about the \pkg{glmmTMB} package, see Brooks et al. (2017) and the \code{vignette(package="glmmTMB")} collection. For the underlying \pkg{TMB} package that performs the model estimation, see Kristensen et al. (2016). ##' @references ##' Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Mächler, M. and Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. \emph{The R Journal}, \bold{9}(2), 378--400. ##' ##' Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H. and Bell, B. (2016). TMB: Automatic differentiation and Laplace approximation. \emph{Journal of Statistical Software}, \bold{70}, 1--21. ##' ##' Millar, R. B. (2011). \emph{Maximum Likelihood Estimation and Inference: With Examples in R, SAS and ADMB.} Wiley, New York. ##' @useDynLib glmmTMB ##' @importFrom stats update ##' @export ##' @examples ##' (m1 <- glmmTMB(count ~ mined + (1|site), ##' zi=~mined, ##' family=poisson, data=Salamanders)) ##' summary(m1) ##' \donttest{ ##' ## Zero-inflated negative binomial model ##' (m2 <- glmmTMB(count ~ spp + mined + (1|site), ##' zi=~spp + mined, ##' family=nbinom2, data=Salamanders)) ##' ##' ## Hurdle Poisson model ##' (m3 <- glmmTMB(count ~ spp + mined + (1|site), ##' zi=~spp + mined, ##' family=truncated_poisson, data=Salamanders)) ##' ##' ## Binomial model ##' data(cbpp, package="lme4") ##' (bovine <- glmmTMB(cbind(incidence, size-incidence) ~ period + (1|herd), ##' family=binomial, data=cbpp)) ##' ##' ## Dispersion model ##' sim1 <- function(nfac=40, nt=100, facsd=0.1, tsd=0.15, mu=0, residsd=1) ##' { ##' dat <- expand.grid(fac=factor(letters[1:nfac]), t=1:nt) ##' n <- nrow(dat) ##' dat$REfac <- rnorm(nfac, sd=facsd)[dat$fac] ##' dat$REt <- rnorm(nt, sd=tsd)[dat$t] ##' dat$x <- rnorm(n, mean=mu, sd=residsd) + dat$REfac + dat$REt ##' dat ##' } ##' set.seed(101) ##' d1 <- sim1(mu=100, residsd=10) ##' d2 <- sim1(mu=200, residsd=5) ##' d1$sd <- "ten" ##' d2$sd <- "five" ##' dat <- rbind(d1, d2) ##' m0 <- glmmTMB(x ~ sd + (1|t), dispformula=~sd, data=dat) ##' fixef(m0)$disp ##' c(log(5^2), log(10^2)-log(5^2)) # expected dispersion model coefficients ##' } ##' ##' ## Using 'map' to fix random-effects SD to 10 ##' m1_map <- update(m1, map=list(theta=factor(NA)), ##' start=list(theta=log(10))) ##' VarCorr(m1_map) glmmTMB <- function( formula, data = NULL, family = gaussian(), ziformula = ~0, dispformula= ~1, weights=NULL, offset=NULL, contrasts=NULL, na.action=na.fail, se=TRUE, verbose=FALSE, doFit=TRUE, control=glmmTMBControl(), REML=FALSE, start=NULL, map=NULL ) { ## edited copy-paste from glFormula ## glFormula <- function(formula, data=NULL, family = gaussian, ## subset, weights, na.action, offset, ## contrasts = NULL, mustart, etastart, ## control = glmerControl(), ...) { call <- mf <- mc <- match.call() if (is.character(family)) { if (family=="beta") { family <- "beta_family" warning("please use ",sQuote("beta_family()")," rather than ", sQuote("\"beta\"")," to specify a Beta-distributed response") } family <- get(family, mode = "function", envir = parent.frame()) } if (is.function(family)) { ## call family with no arguments family <- family() } ## FIXME: what is this doing? call to a function that's not really ## a family creation function? if (is.null(family$family)) { print(family) stop("'family' not recognized") } fnames <- names(family) if (!all(c("family","link") %in% fnames)) stop("'family' must contain at least 'family' and 'link' components") if (length(miss_comp <- setdiff(c("linkfun","variance"),fnames))>0) { warning("some components missing from ",sQuote("family"), ": downstream methods may fail") } if (grepl("^quasi", family$family)) stop('"quasi" families cannot be used in glmmTMB') ## extract family and link information from family object link <- family$link ## lme4 function for warning about unused arguments in ... ## ignoreArgs <- c("start","verbose","devFunOnly", ## "optimizer", "control", "nAGQ") ## l... <- list(...) ## l... <- l...[!names(l...) %in% ignoreArgs] ## do.call(checkArgs, c(list("glmer"), l...)) # substitute evaluated versions ## FIXME: denv leftover from lme4, not defined yet environment(formula) <- parent.frame() call$formula <- mc$formula <- formula ## add offset-specified-as-argument to formula as + offset(...) ## need evaluate offset within envi if (!is.null(eval(substitute(offset),data, enclos=environment(formula)))) { formula <- addForm0(formula,makeOp(substitute(offset),op=quote(offset))) } environment(ziformula) <- environment(formula) call$ziformula <- ziformula environment(dispformula) <- environment(formula) call$dispformula <- dispformula ## now work on evaluating model frame m <- match(c("data", "subset", "weights", "na.action", "offset"), names(mf), 0L) mf <- mf[c(1L, m)] mf$drop.unused.levels <- TRUE mf[[1]] <- as.name("model.frame") ## replace . in ziformula with conditional formula, ignoring offset if (inForm(ziformula,quote(.))) { ziformula <- update(RHSForm(drop.special2(formula),as.form=TRUE), ziformula) } ## want the model frame to contain the union of all variables ## used in any of the terms ## combine all formulas formList <- list(formula, ziformula, dispformula) for (i in seq_along(formList)) { f <- formList[[i]] ## abbreviate ## substitute "|" by "+"; drop specials f <- noSpecials(subbars(f),delete=FALSE) formList[[i]] <- f } combForm <- do.call(addForm,formList) environment(combForm) <- environment(formula) ## model.frame.default looks for these objects in the environment ## of the *formula* (see 'extras', which is anything passed in ...), ## so they have to be put there ... for (i in c("weights", "offset")) { if (!eval(bquote(missing(x=.(i))))) assign(i, get(i, parent.frame()), environment(combForm)) } mf$formula <- combForm fr <- eval(mf,envir=environment(formula),enclos=parent.frame()) ## FIXME: throw an error *or* convert character to factor ## convert character vectors to factor (defensive) ## fr <- factorize(fr.form, fr, char.only = TRUE) ## store full, original formula & offset ## attr(fr,"formula") <- combForm ## unnecessary? nobs <- nrow(fr) weights <- as.vector(model.weights(fr)) if(!is.null(weights) & !okWeights(family$family)) { stop("'weights' are not available for this family.") } if (is.null(weights)) weights <- rep(1,nobs) ## sanity checks (skipped!) ## wmsgNlev <- checkNlevels(reTrms$ flist, n=n, control, allow.n=TRUE) ## wmsgZdims <- checkZdims(reTrms$Ztlist, n=n, control, allow.n=TRUE) ## wmsgZrank <- checkZrank(reTrms$Zt, n=n, control, nonSmall=1e6, allow.n=TRUE) ## store info on location of response variable respCol <- attr(terms(fr), "response") names(respCol) <- names(fr)[respCol] ## extract response variable ## (name *must* be 'y' to match guts of family()$initialize y <- fr[,respCol] if (is.matrix(y)) { if ( ! binomialType(family$family) ) { stop("matrix-valued responses are not allowed") } } ## (1) transform 'y' appropriately for binomial models ## (2-column matrix, factor, logical -> numeric) ## (2) warn on non-integer values ## 'start' should *not* be (reset) to NULL here ## as far as we know (i.e. searching src/library/stats/R/family.R ## in the R source), 'start' is only referred to when family="gaussian" ## AND (inverse-link & any(y==0)) OR (log-link & any(y<=0)) ## and then only to check whether it's NULL or not ... etastart <- mustart <- NULL if (!is.null(family$initialize)) { local(eval(family$initialize)) ## 'local' so it checks but doesn't modify 'y' and 'weights' } if (grepl("^truncated", family$family) && (!is.factor(y) && any(y<0.001)) && (ziformula == ~0)) { stop(paste0("'", names(respCol), "'", " contains zeros (or values close to zero). ", "Zeros are compatible with a truncated distribution only when zero-inflation is added")) } if (grepl("(nbinom|pois)",family$family)) { ## see enum.R: this should cover nbinom1, nbinom2, ## poisson, genpois, compois, and the truncated variants ## binomial()$initialize already has its own check ## (shared by betabinomial) if (any(abs(y-round(y))>0.001)) { warning(sprintf("non-integer counts in a %s model", family$family)) } } TMBStruc <- mkTMBStruc(formula, ziformula, dispformula, combForm, mf, fr, yobs=y, respCol, weights, contrasts=contrasts, family=family, se=se, call=call, verbose=verbose, REML=REML, start=start, map=map) ## Allow for adaptive control parameters TMBStruc$control <- lapply(control, eval, envir=TMBStruc) ## short-circuit if (!doFit) return(TMBStruc) ## pack all the bits we will need for fitTMB res <- fitTMB(TMBStruc) return(res) } ##' Control parameters for glmmTMB optimization ##' @param optCtrl Passed as argument \code{control} to optimizer. Default value (if default \code{nlminb} optimizer is used): \code{list(iter.max=300, eval.max=400)} ##' @param optArgs additional arguments to be passed to optimizer function (e.g.: \code{list(method="BFGS")} when \code{optimizer=optim}) ##' @param profile Logical; Experimental option to improve speed and ##' robustness when a model has many fixed effects ##' @param collect Logical; Experimental option to improve speed by ##' recognizing duplicated observations. ##' @param parallel Numeric; Setting number of OpenMP threads to evaluate ##' the negative log-likelihood in parallel ##' @param optimizer Function to use in model fitting. See \code{Details} for required properties of this function. ##' @importFrom TMB openmp ##' @details ##' The general non-linear optimizer \code{nlminb} is used by ##' \code{\link{glmmTMB}} for parameter estimation. It may sometimes be ##' necessary to tweak some tolerances in order to make a model ##' converge. For instance, the warning \sQuote{iteration limit reached ##' without convergence} may be fixed by increasing the number of ##' iterations using something like ##' ##' \code{glmmTMBControl(optCtrl=list(iter.max=1e3,eval.max=1e3))}. ##' ##' The argument \code{profile} allows \code{glmmTMB} to use some special ##' properties of the optimization problem in order to speed up estimation ##' in cases with many fixed effects. Enable this option using ##' ##' \code{glmmTMBControl(profile=TRUE)}. ##' ##' Control parameters may depend on the model specification, because each ##' control component is evaluated inside \code{TMBStruc}, the output ##' of \code{mkTMBStruc}. To specify that \code{profile} should be ##' enabled for more than 5 fixed effects one can use ##' ##' \code{glmmTMBControl(profile=quote(length(parameters$beta)>=5))}. ##' ##' The \code{optimizer} argument can be any optimization (minimizing) function, provided that: ##' \itemize{ ##' \item the first three arguments, in order, are the starting values, objective function, and gradient function; ##' \item it also takes a \code{control} argument; ##' \item it returns a list with elements (at least) \code{convergence} (0 if convergence is successful) and \code{message} ##' } ##' @examples ##' ## fit with default (nlminb) and alternative (optim/BFGS) optimizer ##' m1 <- glmmTMB(count~ mined, family=poisson, data=Salamanders) ##' m1B <- update(m1, control=glmmTMBControl(optimizer=optim, ##' optArgs=list(method="BFGS"))) ##' ## estimates are *nearly* identical: ##' all.equal(fixef(m1), fixef(m1B)) ##' @export glmmTMBControl <- function(optCtrl=NULL, optArgs=list(), optimizer=nlminb, profile=FALSE, collect=FALSE, parallel = NULL) { if (is.null(optCtrl) && identical(optimizer,nlminb)) { optCtrl <- list(iter.max=300, eval.max=400) } ## Make sure that we specify at least one thread if (!is.null(parallel)) { if (is.na(parallel) || parallel < 1) { stop("Number of parallel threads must be a numeric >= 1") } parallel <- as.integer(parallel) } ## FIXME: Change defaults - add heuristic to decide if 'profile' is beneficial. ## Something like ## profile = (length(parameters$beta) >= 2) && ## (family$family != "tweedie") ## (TMB tweedie derivatives currently slow) namedList(optCtrl, profile, collect, parallel, optimizer, optArgs) } ##' collapse duplicated observations ##' @keywords internal ##' @importFrom stats runif xtabs .collectDuplicates <- function(data.tmb) { nm <- c("X", "Z", "Xzi", "Zzi", "Xd", "offset", "zioffset", "doffset", "yobs", "size"[length(data.tmb$size) > 0]) A <- do.call(cbind, data.tmb[nm]) ## Restore random seed on exit ## FIXME: Simplify ? seed <- .GlobalEnv$.Random.seed on.exit({ if (is.null(seed)) rm(".Random.seed", envir=.GlobalEnv) else .GlobalEnv$.Random.seed <- seed }) ## Generate hash code for data terms hash <- as.vector(A %*% runif(ncol(A))) hash <- format(hash, nsmall=20) keep <- !duplicated(hash) collect <- factor(hash, levels=hash[keep]) ## Check for collisions rownames(A) <- NULL A0 <- A[keep, , drop=FALSE] if( ! identical (A, A0[unclass(collect), ]) ) stop("Hash code collision !") ## Reduce nm <- c("X", "Z", "Xzi", "Zzi", "Xd") data.tmb[nm] <- lapply(data.tmb[nm], function(x) x[keep, , drop=FALSE]) nm <- c("offset", "zioffset", "doffset", "yobs", "size") data.tmb[nm] <- lapply(data.tmb[nm], function(x) x[keep]) ## Update weights data.tmb$weights <- xtabs(data.tmb$weights ~ collect) data.tmb } ## FIXME: export fitTMB? fitTMB <- function(TMBStruc) { control <- TMBStruc$control ## Assign OpenMP threads if (!is.null(control$parallel)) { n_orig <- TMB::openmp(NULL) ## will warn if OpenMP not supported ## only proceed farther if OpenMP *is* supported ... ## (avoid extra warnings) if (n_orig>0) { TMB::openmp(n = control$parallel) on.exit(TMB::openmp(n = n_orig)) } } if (control $ collect) { ## To avoid side-effects (e.g. nobs.glmmTMB), we restore ## original data (with duplicates) after fitting. data.tmb.old <- TMBStruc$data.tmb TMBStruc$data.tmb <- .collectDuplicates(TMBStruc$data.tmb) } ## avoid repetition; rely on environment for parameters optfun <- function() { with(obj, if( length(par) ) { do.call(control$optimizer, c(list(par, fn, gr, control = control $ optCtrl), control $ optArgs)) } else { list( par=par, objective=fn(par)) }) } if (control $ profile) { obj <- with(TMBStruc, MakeADFun(data.tmb, parameters, map = mapArg, random = randomArg, profile = "beta", silent = !verbose, DLL = "glmmTMB")) optTime <- system.time(fit <- optfun()) sdr <- sdreport(obj, getJointPrecision=TRUE) parnames <- names(obj$env$par) Q <- sdr$jointPrecision; dimnames(Q) <- list(parnames, parnames) whichNotRandom <- which( ! parnames %in% c("b", "bzi") ) Qm <- GMRFmarginal(Q, whichNotRandom) h <- as.matrix(Qm) ## Hessian of *all* (non-random) parameters TMBStruc$parameters <- obj$env$parList(fit$par, obj$env$last.par.best) ## Build object obj <- with(TMBStruc, MakeADFun(data.tmb, parameters, map = mapArg, random = randomArg, profile = NULL, silent = !verbose, DLL = "glmmTMB")) ## Run up to 5 Newton iterations with fixed (off-mode) hessian oldpar <- par <- obj$par; iter <- 0 ## FIXME: Make configurable ? max.newton.steps <- 5 newton.tol <- 1e-10 if (sdr$pdHess) { ## pdHess can be FALSE ## * Happens for boundary fits (e.g. dispersion close to 0 - see 'spline' example) ## * Option 1: Fall back to old method ## * Option 2: Skip Newton iterations for (iter in seq_len(max.newton.steps)) { g <- as.numeric( obj$gr(par) ) if (any(is.na(g)) || max(abs(g)) < newton.tol) break par <- par - solve(h, g) } } if (any(is.na(g))) { warning("a Newton step failed in profiling") par <- oldpar } fit$par <- par fit$objective <- obj$fn(par) fit$newton.steps <- iter } else { obj <- with(TMBStruc, MakeADFun(data.tmb, parameters, map = mapArg, random = randomArg, profile = NULL, silent = !verbose, DLL = "glmmTMB")) optTime <- system.time(fit <- optfun()) } fit$parfull <- obj$env$last.par.best ## This is in sync with fit$par fitted <- NULL if (TMBStruc$se) { if(control$profile) sdr <- sdreport(obj, hessian.fixed=h) else sdr <- sdreport(obj, getJointPrecision=TMBStruc$REML) ## FIXME: assign original rownames to fitted? } else { sdr <- NULL } if(!is.null(sdr$pdHess)) { if(!sdr$pdHess) { warning(paste0("Model convergence problem; ", "non-positive-definite Hessian matrix. ", "See vignette('troubleshooting')")) } else { eigval <- try(1/eigen(sdr$cov.fixed)$values, silent=TRUE) if( is(eigval, "try-error") || ( min(eigval) < .Machine$double.eps*10 ) ) { warning(paste0("Model convergence problem; ", "extreme or very small eigen values detected. ", "See vignette('troubleshooting')")) } } } if ( !is.null(fit$convergence) && fit$convergence != 0) warning("Model convergence problem; ", fit$message, ". ", "See vignette('troubleshooting')") if (control $ collect) { ## Undo changes made to the data TMBStruc$data.tmb <- data.tmb.old obj$env$data <- obj$env$dataSanitize(data.tmb.old) obj$retape() } modelInfo <- with(TMBStruc, namedList(nobs=nrow(data.tmb$X), respCol, grpVar, family, contrasts, ## FIXME:apply condList -> cond earlier? reTrms = lapply(list(cond=condList, zi=ziList), stripReTrms), terms = lapply(list(cond=condList, zi=ziList, disp=dispList), "[[", "terms"), reStruc = namedList(condReStruc, ziReStruc), allForm, REML, map)) ## FIXME: are we including obj and frame or not? ## may want model= argument as in lm() to exclude big stuff from the fit ## If we don't include obj we need to get the basic info out ## and provide a way to regenerate it as necessary ## If we don't include frame, then we may have difficulty ## with predict() in its current form ret <- structure(namedList(obj, fit, sdr, call=TMBStruc$call, frame=TMBStruc$fr, modelInfo, fitted), class = "glmmTMB") ## fill in dispersion parameters in environments of family variance ## functions, if possible (for glm/effects compatibility) ff <- ret$modelInfo$family ## family has variance component with extra parameters xvarpars <- (length(fv <- ff$variance)>0 && length(formals(fv))>1) nbfam <- ff$family=="negative.binomial" || grepl("nbinom",ff$family) if (nbfam || xvarpars) { theta <- exp(fit$parfull["betad"]) ## log link ## variance() and dev.resids() share an environment assign(".Theta", theta, environment(ret[["modelInfo"]][["family"]][["variance"]])) } return(ret) } ##' @importFrom stats AIC BIC llikAIC <- function(object) { llik <- logLik(object) AICstats <- c(AIC = AIC(llik), BIC = BIC(llik), logLik = c(llik), deviance = -2*llik, ## FIXME: df.resid = df.residual(object)) list(logLik = llik, AICtab = AICstats) } ## FIXME: export/import from lme4? ngrps <- function(object, ...) UseMethod("ngrps") ngrps.default <- function(object, ...) stop("Cannot extract the number of groups from this object") ngrps.glmmTMB <- function(object, ...) { res <- lapply(object$modelInfo$reTrms, function(x) vapply(x$flist, nlevels, 1)) ## FIXME: adjust reTrms names for consistency rather than hacking here names(res) <- gsub("List$","",names(res)) return(res) } ngrps.factor <- function(object, ...) nlevels(object) ##' @importFrom stats pnorm ##' @method summary glmmTMB ##' @export summary.glmmTMB <- function(object,...) { if (length(list(...)) > 0) { ## FIXME: need testing code warning("additional arguments ignored") } ## figure out useSc sig <- sigma(object) famL <- family(object) mkCoeftab <- function(coefs,vcov) { p <- length(coefs) coefs <- cbind("Estimate" = coefs, "Std. Error" = sqrt(diag(vcov))) if (p > 0) { coefs <- cbind(coefs, (cf3 <- coefs[,1]/coefs[,2]), deparse.level = 0) ## statType <- if (useSc) "t" else "z" statType <- "z" ## ??? should we provide Wald p-values??? coefs <- cbind(coefs, 2*pnorm(abs(cf3), lower.tail = FALSE)) colnames(coefs)[3:4] <- c(paste(statType, "value"), paste0("Pr(>|",statType,"|)")) } coefs } ff <- fixef(object) vv <- vcov(object) coefs <- setNames(lapply(names(ff), function(nm) if (trivialFixef(names(ff[[nm]]),nm)) NULL else mkCoeftab(ff[[nm]],vv[[nm]])), names(ff)) llAIC <- llikAIC(object) ## FIXME: You can't count on object@re@flist, ## nor compute VarCorr() unless is(re, "reTrms"): varcor <- VarCorr(object) # use S3 class for now structure(list(logLik = llAIC[["logLik"]], family = famL$family, link = famL$link, ngrps = ngrps(object), nobs = nobs(object), coefficients = coefs, sigma = sig, vcov = vcov(object), varcor = varcor, # and use formatVC(.) for printing. AICtab = llAIC[["AICtab"]], call = object$call ## residuals = residuals(object,"pearson",scaled = TRUE), ## fitMsgs = .merMod.msgs(object), ## optinfo = object@optinfo ), class = "summary.glmmTMB") } ## copied from lme4:::print.summary.merMod (makes use of ##' @importFrom lme4 .prt.family .prt.call .prt.resids .prt.VC .prt.grps ##' @importFrom stats printCoefmat ##' @method print summary.glmmTMB ##' @export print.summary.glmmTMB <- function(x, digits = max(3, getOption("digits") - 3), signif.stars = getOption("show.signif.stars"), ranef.comp = c("Variance", "Std.Dev."), show.resids = FALSE, ...) { .prt.family(x) .prt.call.glmmTMB(x$call); cat("\n") .prt.aictab(x$AICtab); cat("\n") if (show.resids) .prt.resids(x$residuals, digits = digits) if (any(whichRE <- !sapply(x$varcor,is.null))) { cat("Random effects:\n") for (nn in names(x$varcor[whichRE])) { cat("\n",cNames[[nn]],":\n",sep="") ## lme4:::.prt.VC is not quite what we want here print(formatVC(x$varcor[[nn]], digits = digits, comp = ranef.comp), quote=FALSE, digits=digits) ## FIXME: redundant nobs output .prt.grps(x$ngrps[[nn]],nobs=x$nobs) } } if(trivialDisp(x)) {# if trivial print here, else below(~x) or none(~0) printDispersion(x$family,x$sigma) } for (nn in names(x$coefficients)) { cc <- x$coefficients[[nn]] p <- length(cc) if (p > 0) { cat("\n",cNames[[nn]],":\n",sep="") printCoefmat(cc, zap.ind = 3, #, tst.ind = 4 digits = digits, signif.stars = signif.stars) } ## if (p>0) } invisible(x) }## print.summary.glmmTMB glmmTMB/MD50000644000176200001440000001764213616106055012076 0ustar liggesusers18b11e0957ec8605b392339e62bf3269 *DESCRIPTION d45d58880d921b53f850b2a47dbb4966 *NAMESPACE b4885f76302abf30f00df5ce4449e704 *R/Anova.R e8adaaaf94c0b4aa0f4b6b7b7abf55a1 *R/VarCorr.R 45d52a5a30d64b4dcade074263c761d6 *R/effects.R c0aac50ee218aea96c8dfd4980adae3a *R/emmeans.R c5af7ccb3228a0198201704e22e598fb *R/enum.R ef32f8b3c19edae3e8eecca44424fba3 *R/family.R 7671cef0217879dd41b426da3cbdb2e2 *R/glmmTMB.R 93b0f1b7c8c968b8e7dd29d09994c226 *R/lme4_utils_temp.R 413267162587a3ae20d79eb21018446a *R/methods.R 7f60d2af9df9b51be0087e7dd5c9acb1 *R/predict.R 68c748404445723700cec8b197ff5a3a *R/profile.R 7998d4a7e7aad860a14078dc51311dc0 *R/utils.R 6b77ea031cd85ba1f6ed62229c4fa577 *R/utils_covstruct.R f7309602936cf35030f40c24a9235ce4 *R/zzz.R 00d06faead58bf60e8c8245ae1b01205 *build/vignette.rds 2ac532068c08bd745abd9252277243c3 *cleanup be6cf89b9d668c055116770aab838ba7 *configure.ac 2f23441e4772a923495e419252c42637 *data/Owls.rda bc57897b90b44d732bfdd98c4bcfa15b *data/Salamanders.rda 271155911d7ef5edbb3be14c3ec48947 *data/epil2.rda eb69a31b48c2bfe14b5ed1091705a5c9 *inst/CITATION 4a4f8490b1dd252c80bd6d5c23783611 *inst/NEWS.Rd 1bdf09f28f75c1aaa560692fae774f8f *inst/doc/add_link.md 5b39ceef56591e8f7e63bace7f997e80 *inst/doc/covstruct.R 71179ebc2780f9db75a4c56744d6a980 *inst/doc/covstruct.html 80d2ec07ba28cb6ed4152a5acc2ff526 *inst/doc/covstruct.rmd 4408c104eceba2e0e6a121a4f548141c *inst/doc/glmmTMB.R 6824560707dcc648e90ee3d0c52ed1de *inst/doc/glmmTMB.Rnw 2e2487b00e65d08b6c0bbcb5ff17413e *inst/doc/glmmTMB.pdf 7838a8a961c22ae73263ae3cc21fe8d8 *inst/doc/mcmc.R 12e9cf9fd77a0262e7d54efa4b4b6ff5 *inst/doc/mcmc.html 07059c4d4413758cd51280d09fabcf46 *inst/doc/mcmc.rmd de046dbaabe7711f81f9c696b22239b5 *inst/doc/miscEx.R baab9794a4bdf4157763f3ac1b9e6a9d *inst/doc/miscEx.html 6abafa88d151a2672bf86c1bec64badd *inst/doc/miscEx.rmd 6869ec7e3168bea6b324593d2ff5e248 *inst/doc/model_evaluation.R ac5d97b95b015a6e653e8146c2bb41c6 *inst/doc/model_evaluation.Rnw 63d38cb8b8173a2958245a6407a60eb4 *inst/doc/model_evaluation.pdf e2d9d539c373a99c5eef42fa9809da84 *inst/doc/parallel.R dc43222f02e3076cf4605a10ede91e82 *inst/doc/parallel.Rmd 7e8a9466a17e892e520e112318f8d3eb *inst/doc/parallel.html f8f969d346050bafb9345feffd54e18a *inst/doc/sim.R 6f0abcfc9ab841c16c692d00a3c20ba4 *inst/doc/sim.html aae72461cb8ac08969da937f07e74bd7 *inst/doc/sim.rmd a078b39157673dca1974997c063636c3 *inst/doc/troubleshooting.R 6a48d773ad0a1782206737ee800a577d *inst/doc/troubleshooting.html eaf0d7ba9717e612953f89dbe6482249 *inst/doc/troubleshooting.rmd 25c3877f52ff515a248b26786a557c92 *inst/example_files/salamander_prof1.rds fe8adf47bed5e09e324c57173aa3e7e4 *inst/other_methods/car_methods.R 7df5175561304717ed8ffcd64a74de5b *inst/other_methods/effectsglmmTMB.R 1b26e7f975ea5d710640b88a29ed0a9c *inst/other_methods/extract.R d12dd50f9358e1ea6ba06df601f08c93 *inst/other_methods/influence_mixed.R 4def18f578c9f6eac8508b0faec67cb3 *inst/other_methods/lsmeans_methods.R f4d4d8c5b777ebbe48b2fc191b60dd28 *inst/test_data/IC_comp_data.rds e72c943e6be5a65b373e2d328ff1655b *inst/test_data/cov_struct_order.rds dd01e42f1223bdaef5fc9923bbc517ba *inst/test_data/glmmTMB-test-funs.R e9916b0a689def020413335c205982a0 *inst/test_data/make_ex.R 790bd6dfcaaf65f45be1d85cc3600894 *inst/test_data/models.rda 2e3d717f6377e96dd816caee3b6dbeb5 *inst/test_data/oldfit.rds 8dd5523c0c46047e6cc98e8da6bc1f68 *inst/vignette_data/mcmc.R 404247ce94d61cdc173693093492ecfe *inst/vignette_data/mcmc.rda df99fffadf6621099e814ad4dce76123 *inst/vignette_data/model_evaluation.rda 41b413594ef72cfc68d9b8289b67083c *inst/vignette_data/plasma.rda 431d6f658e02589ca61c71a2401173c4 *inst/vignette_data/tmbstan_traceplot.png d004fd81b051e929d9b7f2270fedffae *inst/vignette_data/troubleshooting.rda 3ab4d5ce5576d6c98c38052c5ccba5a5 *man/Owls.Rd 530dd9c9e55f4b0cbffcf28c661d94cd *man/Salamanders.Rd 81d512a280cd8660a2b1d67a6da9a57c *man/VarCorr.glmmTMB.Rd 1f88cf3f535ca5f3d87dc414945a4ec9 *man/bootmer_methods.Rd c5fb51be9f34f98b3f648c4d60d8d928 *man/confint.glmmTMB.Rd 48f1fcf5af60c3aa2cde95944427f6d0 *man/dot-collectDuplicates.Rd 3903a0ffb5047c60953b46fee0ca9602 *man/downstream_methods.Rd b55757151c3eb5306125ada45bcf0bc7 *man/epil2.Rd d6f3a6120ecb5850b31e534614d193aa *man/expandAllGrpVar.Rd 944cb83c15be644898daec4a236e759a *man/fbx.Rd f28f22e3c741f23b32a4815ea0aa7f30 *man/findReTrmClasses.Rd 5836cd1cc3fe4bf17ad0a7a936cf9852 *man/fixef.Rd 762d7c76dfec5c45e2d28ad25ebd17b6 *man/formFuns.Rd 263f97ae425fc1ad1745911e42012a71 *man/formatVC.Rd e608ef3ad399f345edc9a2bda63b84e7 *man/formula.glmmTMB.Rd d9821cc78c58f6545bf38a8d1aa88190 *man/getCapabilities.Rd 347f4d011b1fca8349b4d1939620781d *man/getGrpVar.Rd 6df3779f43338e54952bc675d7ede7e1 *man/getME.glmmTMB.Rd 38ce22b37be907fb4d542a8738d6446f *man/getReStruc.Rd 7fd2d9f1316bc0b06ddeb23488f8aa70 *man/getXReTrms.Rd 05ff440bd32c10822046fa4d4e49c3c3 *man/get_cor.Rd e51b4f4a38ba9ba636fd79e1013c136a *man/glmmTMB.Rd b3856db841a933b187d804705126b074 *man/glmmTMBControl.Rd 2a6a9cafe1d433599f9c8e4131e32def *man/glmmTMB_methods.Rd 511f380224922af4ce88999e9de935c8 *man/mkTMBStruc.Rd f209459a64df428006a0c0a9d34fa6a7 *man/nbinom2.Rd 40c11036286c0b0a7cb4fd3e68e2d128 *man/numFactor.Rd 398719c606a31925d7e0b243a4ff9586 *man/predict.glmmTMB.Rd b07c65cf42e40bddb81a2cbacd40a7fd *man/print.VarCorr.glmmTMB.Rd a8d795883f24a330d0f61b4a4cfae3e7 *man/profile.glmmTMB.Rd b361315116bde393cb55e56c52b4dfd6 *man/ranef.glmmTMB.Rd bd6815bd8f26f924806b27dd2b1c6407 *man/residuals.glmmTMB.Rd b0d0fb26cbbab23bb6ad2d2693dafb38 *man/sigma.glmmTMB.Rd 06a2b1cdbae0227a5cfa30bee50ec51a *man/simulate.glmmTMB.Rd dd437edfccbd535b287e9e294101855d *man/splitForm.Rd 6ffb4275fc91014c0ae06263497038f6 *man/vcov.glmmTMB.Rd 1eb9e248642541bc7f0b11b229e56b63 *man/weights.glmmTMB.Rd e0e7e7a6585949b6156978b33c9243df *src/Makevars.in d28d9c12bf491f99452894dadd7dd54f *src/glmmTMB.cpp ccfd07224d29830c4422a2c3caf66d2d *src/init.h c76ddd59c8ffc8be06f6819bc9541f30 *tests/AAAtest-all.R 0fd542cf1a13fd105e1ca2d7b22077ff *tests/testthat/test-VarCorr.R 84b777110fd0f9b0ec4b953e1d3754bd *tests/testthat/test-basics.R ced1999d70edab7e8d0468a3a181e121 *tests/testthat/test-bootMer.R beefdd7e1c1d2f3b217b94679d9de4cd *tests/testthat/test-control.R 419143892eb5a4876887bfc121314046 *tests/testthat/test-disp.R 563fc788356e64ce7c74ffb0152603bd *tests/testthat/test-downstream.R 9fc67974787108fa55f4363202c52388 *tests/testthat/test-edgecases.R 02e567cf2a237ae9f77803a8b9ba9e02 *tests/testthat/test-env.R a7070cccc0b790378532be0157c66057 *tests/testthat/test-families.R 4e1b379ce5e4f3c6aff98e35ed3728ee *tests/testthat/test-formulas.R b58af3dc2abb27a0d1962b4b0c3c6cbf *tests/testthat/test-mapopt.R ac4d9fbe96ab97552d2efb0a317fac3a *tests/testthat/test-methods.R 44c703e870fe83038a00c8eec7363c61 *tests/testthat/test-offset.R 7536286a3dad724f34211c47d63c63bb *tests/testthat/test-predict.R 526ff86d73fa92d800d6f6ed4e2b3504 *tests/testthat/test-reml.R d65a5720a8290ac721f9d3c24d60eac1 *tests/testthat/test-saveload.R cda4a98c0598df1866fd4aee441fd535 *tests/testthat/test-start.R 3c7345021f8b877ea5d5731b2f96a53e *tests/testthat/test-utils.R 12826412c86ab2700d7de832de27bf60 *tests/testthat/test-varstruc.R eb04196c831f533a329d8639fcd7bdda *tests/testthat/test-weight.R 99291cf3d88e41ab1accb704706fa9df *tests/testthat/test-zi.R 250ea2c1b773c427c364a588d70456b4 *vignettes/InstEvalTimings.rda b3b029bb83c89ce104584e5b12ae8f0e *vignettes/contraceptionTimings.rda 80d2ec07ba28cb6ed4152a5acc2ff526 *vignettes/covstruct.rmd 6824560707dcc648e90ee3d0c52ed1de *vignettes/glmmTMB.Rnw 1620c08cc6dc73385642d31e5a42c0ee *vignettes/glmmTMB.bib 07059c4d4413758cd51280d09fabcf46 *vignettes/mcmc.rmd 6abafa88d151a2672bf86c1bec64badd *vignettes/miscEx.rmd ac5d97b95b015a6e653e8146c2bb41c6 *vignettes/model_evaluation.Rnw dc43222f02e3076cf4605a10ede91e82 *vignettes/parallel.Rmd aae72461cb8ac08969da937f07e74bd7 *vignettes/sim.rmd b4291db25f98722dd2d66a613e759709 *vignettes/timingContraception.R 507d6f5d5490bbad3e749b333a93d8e1 *vignettes/timingFuns.R 64bcdc5418a33345efcef31aa8da3ae9 *vignettes/timingInstEval.R eaf0d7ba9717e612953f89dbe6482249 *vignettes/troubleshooting.rmd glmmTMB/inst/0000755000176200001440000000000013616062000012520 5ustar liggesusersglmmTMB/inst/test_data/0000755000176200001440000000000013614324717014506 5ustar liggesusersglmmTMB/inst/test_data/IC_comp_data.rds0000644000176200001440000000615613614324717017532 0ustar liggesusersY p(! ("XTa ( )K4@C*2Xk; u(EyQ+ꌏJ \xCb )/*ݽ9_n;y߳{5(JӃ7 sfaJEhd_&~_gGNW i7칾N?Š;j=2۲/SL(Y7ӗx_??oc+gYZڴN[mSҲx[irਇ^Klk3mUgdo>Z&Awr%IK:מtNӣ?t5?9#ݑر6޹dLݍڂ&M{:M_Г-l7;?3b CM?1yyf5 sG|4Vs>|pwxߛʎG&;4s5-yl~nkw~CKw 3^A;Tf={]xѦAd~40{rznț _nڅ6J?Jӽv.Ѱf.˄f|gU8!'ı'7na q C~Qy7#ջc}=ubɵ2͉{3vhօ/{.0^≣{T<0fX˨[v<10}̿lkl~cV'2GA< !yG=D=ߨ>:|@Ӹ!A]x;I+Ѓr1??=5E`##"_qoqU?o~U5xޣo/H?} χz/4Hlhz~D\_HsbizmU?^}Ol~Y)gI焸|1Xwʘ-Z=h}c;ޫz71?S=475'=, yH]GVC{xռ~Gk^z`"$!PP  ;~%*zXW {Z k߃\>}{@V5詃uqrFV Èΰ=ܡ gd8 gp7e53ACż u40uDw НH]7&\ĝ:apdsS-!6_`IbA̝Zee JVg\bђE8N-ZT:i<јWtHW,{O_TV4rA)?Q6glmmTMB/inst/test_data/cov_struct_order.rds0000644000176200001440000161725313614324717020625 0ustar liggesuserseTJn1aֹQnL[ 0 ܨtHwww{?>0mɗK ҕ|I%_/CɗKrC !Hn$7 @rC !ЕЕЕЕЕЕЕЕЕЕГГГГГГГГГГЗЗЗЗЗЗЗЗЗЗ0000000000000000000000000000000000000000OUWX_$]j׶?nG,d*E$S)! LT*HRE2ԑLdfHjdHjdVHjd6HjdvHjdHdNHD2Ug$SuA2UW$SuC2Uw$S@2UO$SB2Uo$SA2U_$SC2U$S @2"j#j"jLd*tLd*}$S TFH2F2p$S@2H$SB2h$SH2A2$SE2)! TL5TL5 TL5THdiHdHdYHd9HdyHdHZdEHZd%HZdeHZdHZdUHZd5HZduHZd HڈdMHڌd-HڊdmHڎdHډd* $SB2n$SA2^$SC2~$SY"" TLuTGLuTǐLuT'LuTLedH:dH:dHdHdHdHA25$S]G2 $SD2-n!6 TwLuTLTLTLTOL TϑLedHzdWHzd7Hzd*$SC2##>"># T_LTߐLT?LTLH!TLTLd*W$S!THD2Ld*_$SC2Ld@$S!*T!H E2U‘LdH$SE!*T1HE2ULdD$S%!*T)HJE2UґLdL$Se!*T9HE2ULUdB$S!T%H*E2UʑLUdJ$SU!T5HELd*E$S)! LT*HRE2ԑLdfHjdHjdVHjd6HjdvHjdHdNHD2Ug$SuA2UW$SuC2Uw$S@2UO$SB2Uo$SA2U_$SC2U$S @2"j#YJIAl\ϕT:}C> 0Pі|H/]ɗK_e 2|I$7 @rC !Hn$7 ] ] ] ] ] ] ] ] ] ] = = = = = = = = = = } } } } } } } } } }           C C C C C C C C C C # # # # # # # # # # c c c c c c c c c n(hkK?u駮SO/4~J?k:k:k:k:k:k:k:k:k:k:k5@zM &^H k5-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-%{"'vm)?*6ۭ5NqMũ8uq0>CAG[#Ht%_z/}ɗPe$Hn$7 @rC !Hn$7t%7t%7t%7t%7t%7t%7t%7t%7t%7t%7$7$7$7$7$7$7$7$7$7$7%7%7%7%7%7%7%7%7%7%7 $7 $7 $7 $7 $7 $7 $7 $7 $7 $7 %7 %7 %7 %7 %7 %7 %7 %7 %7 %7$7$7$7$7$7$7$7$7$7$7%7%7%7%7%7%7%7%7%7+]!+VڶSU#nm>@i9!B0[B!†onfB!6}{B!O⓫; !BHMA!†j_h!BFW!BaIB!X\>nM1B!l)*= Ban!B" BaHoB!6rxrj!B0O6k@!B0ş>B! #& @!B@xB!l ϚB!6쌅B! d\ÐqJ!Bay׿Df!BFJT}YW!B0r֡c!BaHRGK Bam)'B!l9WC1B!lB!􍻝q!B@x>t$B!lB=B!YG`B!wxanW!B0ͫ.C!2@I``S!B0rRUB!}9lܻ1!Ba$p!B@&6_S B!6Ηsl3 BaH!BFNYFf@!B0RhDCB!a8}f!BF4Hwy Ba7y!BP]K!BFZeO\w!B@jB:B!l S Ou0B!l NəU !BFzYj!BH/B! Baoȶj!B0rŽGG/C!†>y|\9B!l ˟@!q3އB! # 8k8=B!l 3Ƕژ!B9k&@!†GM8!BlE-'C!22'Fk!BaHl>B!6s۾B!a$Oծ\1B! #ּ9}w!B0R5"[A!2c|J!B0ߒanKSA!ơ} BaKU0B!lɷ׷!Basr!B@&_aB!l CyDŽ!BȴQB!L8u$B!l9CB!M34}B!l Cmt=!BFqzqk!B0rE!BazB!aP6 Ba/dҗ !Ba->g@!†QNNnmٌha]9f΂ ui FXA1W>zLZa]ºcBʕoN Ȃch ukLM֕D+BX.wX1BX6+EºRѱ˪GA1Θºrp3ca=esBX&. !ǘBJ] yqk;[]0BX!LהccG@J!cZ4BXWNy>͕}֣=!+O9߻_:>BXI v BXWhݾEgºϽA '_cMaºRbqj!u 9MBJ%A?̔fcY^!X\Xa]9m&zLw ?mՌ&!ǂֻ*U@Jfη8C1~OC>-n]R֕šCafo!G#kcmcHZEIzuºGQ~ºrD ܂֕Xqºr{gCa]E Z=!+~~;a=VNW ֕?Ls>3/zo|YQ5 BXW.9BXEӲA1{IzĘ-֕& <}BXyK8Z !Ǚ_|kCqBR]ºRhײ|!u吁_L֕L_Z5o!4[ųw x:]sQo!+o8w_Za=7r#a])7$E[G5a]9mhe!ºR!+iBXW\r%bY]a=FM߹u*a=F?-Z;tzӫK!0a=MR^M֕J37#@1 BX7ٵ!ǀ&)v!+l*ysRa=ZG|6Ϋe_ !+Xf2{uM֣[jZ a=t6}^;BXWNy~q!u%ͮ!ǔ!u_*BJY ʆ_=;+, ueQm^(]֕ _j^ !+WrK߆֕bW}BXo,?!rBXnUcTσcvإV ~qȣAJ93V`!Gd0Vλ|a=E50ma])zpNMa]9,!u!{_!+]:a=n?rUa]9KfCXត!um:= XBa]ƈa a63!uJ%ύWA_=n^BXWJ{-BXAjWBB^A]l;h> !njAc!uGa햟 ֕wz!8oo_!u&4ոe5/,Zz\tjK"a])|Gºkev[>B1dM@Jy5Afºrh֤OJzp/u,TKa]BzKda]wӳoBYjla])S|z[]y7\>caºR*]c-ߗ_|co_ºr`Mz ]2BXOhºoǣ? u%E?c֜}@1UTa=u]2;fPya=ƯTX!+nyu)ݴt_!+]l?;zt>e쎍ja]rjBXW}uha=ff^(BXWN4kPa])ie+}+a]9Q8z/zpQl«朿 Ÿ7)b_d (?5|.~Ec /3/\:>:?DԎj1 J45.W>~Sk̩'^>"K'STCϯ9ÓQT?ˎATz 2wL)wPbVf~JE+Jwte<kyz0ԶNJCnVݠnхr l-Y{%^6`ny=r{n璴/]uDqN:f⣞+ʿQ2GOpADǬNXك%_(s f:B& (gB$*ٹ>ʙջr=Eu\ d7o=ʸrÒ0!}Ī45g1}P>[=̛sK;f5ڜ:Y{ ? /俿{53GXN$rGzIw^=2[ -v1-҇G uOEnM.?VA*h[ zB*ޏ@jloqف:Gp/;t˕+b!R$Rܳr^\3#3?7e~;(ⰇvF"<|=CH7L\fKNk]1 ?N֨1tcTkP)?NmN 7ϥEKLJPMʔymT;r3;I _*0LEPk"{~6*iB6U;5o:-5=XoI$,;wUzUAWqMۺl*-oT{+p|im ^]QMSJ2VDQ=gq=[/.7G-}4S[ytO_l%Զ fDɫERUEVnTln։TbeJ0:*}_JJLD#MY;w\HϜkth/O9Eq 9/ĊfMp3F5{;ӷ}5p;.I݄c_Օ00R~)Ǿ?eB~D Trlٗ[(`6=GOن(YrSu^u7[۽VRyf+$Ə4 Z= ZK [}N3Zz\痽pMl0Ƿ)}\*|0wy3ٽu{b#jZ;I'U(_w]#{u@iwfU]Q [5M3kV *ZCڢ[S'^[(~ݳr([{ݖ- (ùA'P*%c/(IʯIjNT2g}{ӧv{wPN)V*C*S*56÷r;*\2BךRzs"Z6S)emsOQLd~W4oMa {=_t?ܐsٲUss̩z.E^h3J -_yZrϼHKZ*3Yx]9}KQuoNRZR,Sܗׯk"7>0^_-.'Դ [+ >Yޡc=/?O5YM-;\8DANu]>ώ]_Hf4e~{[m W$n{0B%G4~|*^^ xQeH.~(°WO)l܍(tl;w_\o")>-gW\]?鯵WޡZb?2&W) oRvzm"_O:-VO?(Zݶg wXn~.](a:3֡=,!f/ӿPYǻRaNNЗvv1!3vW'U Jl}uve 7Ln8B3_?%jؗ3nqKGكm3}9`S¬g^p̈e%M^q 'R.Z9w+.H#J<ҙvyf.JrpTo;5܊%틹KtzpAcʨ%K)T}{=J8x1]x e/z1=*tbjTtj={)J3nsN`np[r=cg;sU\eZRϼ{5lʏ]4qWDS._%K=sK+k]\MkvO${yO׸čGc>Τ-,ؔ#uӇ8QuWAeÌ{E%* ^goъ'}=ǜ2ہ#g5K(+W(f]Ex.elP1BY;WYSk\4Xǻa2qm;K ?\53M7؈MR=L?CӖiX_hyj#{hiN񠠩ǡTezon,ş}}\Oe*T,~I ñXty4>;{9vFR̘P=mM+J<_J.}g7dJlǴ$-UէSRg5y5-6rꆓW竖~|bBy^/7o8s_qPh-R nߵdr>3sوSGඡclC/YK qV5^v >Փ +Y{=?ߡ6m-=|(h V.#P $ܦBKTm~]ۨՍvk9\V0E]W5JfLq}/ż:޺֍{JZy_Jg}r4Fiޏfj6KОSg-K_S(IiZׅɛRjG_RIo|IrVRAf>_QM5ޞvZPVHU?s!٫)a:\ؾKWZx& CrQUd7ϳyݷv6)pv'F^?48s췧p;t-MDpW˩tvWh\nߖcwoLC;;D+χ4~#n}nc/ 꺧lt2xwbh2K9I =\gY4[rxO]="W+ёS5-fvZiD׸~ks;GpS럼y-8mXpw\25Sj%cO(k:O֩(D.HalhS/'(|\r 1>&{'fOqeמ栣'Lخ%-aW 3kGs~{kwQUKG O.Iy=s,&cҙvkBʄڥs/Y6YQK!55qZyuK{^%\r=݇ .{ο9vs5+3FZ/LF֛@6}q 9QV7h@יpM_կvmZ]Uo<Ȼ*Qc'/oTqΑ4ߜx7}լ6OۻSIv?gIsi8W設)Zx]_|35¸F`&mJEG͙%7@Sܚ%-|W}"Y+[p5+Uo]"wfF.Z|E,'uadW?H㶎;7 ETe߻<4>umϻ !Ŀ,ݰ{u1h:;-|=>]S6R}w?p/fe;5TZ3]=uZpuQ$go]8<>Fm {sᛔl6̅zιk)KTp=*_8ý3GMosH.f1ƥT5ˢ_W-M*՘Rnߝv>R.=Wŭ2%); &Zd[S*G"NSw֔}f 2I?tLinICWwV!6>Gna!.sϸQYdo;vFR<.M(m7=sZvwEoZ_?Gһ vTvs_- 5hȝ)EGU}횃ſ(P.ſfm5/jaǦ()"=|Lo<*nqŸ f# ;2⎝VV|BUE-$]C))=s5h UU'LN7597zx/CvPwL﷎jpEsHλSgv=Pm{#?[@weP>.NT^%]YqsՍ٫ 8U󭦢uvͿ oߺQ[>ޣ*]#Fکߠkm8s{ 7u9Lubn``:az xKYe}9haY8?Oe WwAIrV ngt~JH22S2B2vpڛz9y{R۸у3n>A|~)kb含CbF8Tk 3 [4hal'̧uM N4[*DOM߰J;TKelPw(@*~4B/N~k_ 8o缵QsմuWZTs#V!*-崿uK[ٳW[S}~4~.ݘ0Yvi"=m>Cُ?|?g'T>}nkV*2qpyky%eY< ;&Z_\ d۬pM/uJQQ'=_X8LǙlJ{l2҅3쥉'D퇿kլ'W8N&ϖl UY3hq&l6I>kWN!TfWU(3>j7zJ7;07;=UU\Guŧ;} RƖ\.fO̾ܙ@_%.|D\~VG M7sҟ;s~Ϸvw^~=q\*輠K)ŢeszYozNcWo_=u25,qtrQң'qv+1hu. r2.׈xK!W>y&hErn׎qqDW;\՚7>q }TNsQ:)ۆto72DYzLxDʋ׶ ₔ2;:bq贸^Komz1MqWԲΧmIPn*ŏ(@ - q<2&*/gz#ż1^~ie՘?&%51 zMۥ;P[iєwy}QdGtQڥ}+M-{MdyW i}Swׯ(%9ɤɘܫ'QO;{nyQZي}yr.OFhlFً˵I=3:tẂ MXE"9YVr1HPy驋3z]]E%:9 [Aſ y_TL캏hR{9#:_cN4)xep)nL6Z>sj7H.A .]]nXsvuorI{!Rp{>{>ۏb6tZmݏ-w*̝zJ*j1`+O1ڶ䖺0b*->+A7 ;'f) )I͊bES2Sj΄;]?5?߮%'R;倽+:=&cOi&R~ 1z3#ԇGo\߇:޻)'\őaJ⟻"[UsgYeS^kvÕzYuZj?KwG$~gR ;):>OUb~Pȥe6\Lc۔bd@fU{hCsHpDJPw3kNa  ;H^C]yaV": Nnyԃ~UbfgDɛ̹nnNEr{tzB0y/9SQ˜fI[f9qܢCp!LԸx;! ڎYn@ {ȷ,~?wjtp5C5ڹ$2v6Sͽ9#T,‹/n9-y B7DLEجh ㄣzq}$K8Ng߫ \ػ{ԸNgKZ\L3:t^r'BN3sM$u]ta|~?s&G8p9.{- ߦ;VpVu8OyÒ=i_r }ZW[.Aw,eWO}uQf*xu)j OE ՎuAsѿ[ٱo-rbkD9N_lU{E29>y)՗\ǥF".k܅kw#\pM?{Fg-vxH\{ᴢ*k/PB+iR۳׍~Jq{^Yٌ4WRe5{:SIn$^#c-g҇sw1)ߔ+'r8zӫ35#GcC _.4P.a;~ j~sh$svG/ۉnwYm/i5zQ~nuROTQ6eŝB*N&#J8cڗ4zdW\6Va||k}Rڜ P҉Bg.Ҕ=p͵,vO G;<:oq6nJ>oi<2@.w;(?9j&w_-ZCMpL].l/ͽ7 vgUkv@L?T׶]Rvk!e~ӫ99|Jph62*|uֺ vY]$+T[bߔSwzwzؽD %rpBcRq"N7}'tGvO:6b6kY==guLHC/0I.} p*ݸKEr2kr)(^WǭŻŧ,&lAJZxki0t7mg]J OÇ*?TS~ݼ/ \$Ѡ6gew\C78y.<9),O].+PO y۱B(W-lUi[RS ĿϻhNٙ|?m@ה[ %>/j`:="9ǜ2< EmzЄ]Os %떓ɭ*M?N&\,T7BB{f{烧kxwʬxsOlG#ngRc!1vϝ3QvEgROC K){7* Qrya]hW ˪tQ}B) 7(dC[!Pħz Es! ^?El)ZQT;zJ*tŔnZ7rG>.})hҪq_.p|Jz;"â;7.t~!>5[p=WQW t԰{\b]Q}\9AZ5)WglYO"?zrs-[DQ@Jr9סUj%K}W:"C"JvQkωӦ5zߖ͗}YEU5l*kӹ):xVA?wX]m~|[RH]'F7N|HiysZoJNZD91n Os[rߞGyDMl-.aNo(_F[םC{<~\X 0PMZrlm憣?9`)]?}rNfWmvV 9JM5mvSNs8/{v"HJpʺ}Ē[u _kd7$}PC~/*g ¹_K255A^F^Y1e3XKGLMn!Gy=n[{N|`s*Xa;F[|N_s,n^mw7l+ẍ?t٦JjRgʳdg~>p`,|]{lA#k5Ї cի ScCs,8oM)0ȹ)]I hƢ?֞ [~xsGNxeA,ۤuþr|RtPUN/E/_Y{f7F&=y+n:v--+4&J>Gpx̧WE[_^feA3oAzGmMgGI^\w$ϣWbGS‘wn2}jcŹO,;?„ǟz?(]/,7B⾳ .(]p֝]\}^M_ܾGtEg+j{ƣgDrZۮ}͇mqVIATZckQ(4nH[;mcMRɌmGMH֣Ny6-ӗgG_)|f&Cz1Z_(A玔{hFJD'7EPHFj{eܩcʔtGYOOnT81]'g{R/IX(HĢ暜W8דcgSFyB Y m(uvMMߚ 0'<4j=Ur{wTezˏToQZŻY8y;Oqƿ4.Oʟso8;QLO4(A|6L\>?REcuo{¼nq䇲=Ic:^G<;?# Y~r*SfpZ>7F߻y]8VfXn0A#ky;Y\[(ӟSW{@hX%n'l  YcJfQN  O>_BKweS_\쭹)NΩ?(-iEeբ!(biћ/Od"O)^ M *HWn5ks(ⵖoÄ˾}N>+2QnQʄMg [pM?9U>wpds{ۘrnG6Is$ٓC.冮yc/ ꛐOi/¹Z GW \HKuAޑQr g=<)aꜿBKW[^&&fFMk?V-]k]vؕ"(mN׷({ޢh>TyA5g23ʿ?lb ^La*?Bo%Q+-8㽌#f⿿w//)}lʼng~ɵ/U[njh^)yclWtz{)WP1|g:ncCO;RUèp[7ǚ2ۣ|JjMbpEʿwiūsk;ƝNrkũ7py ΪF9~_iמCG8QRԍ?ìn\ɄVSDFK)k%c< ~tN p(%]ަ4P٩?tu]En r쑛:ǨkuÇLڊ+3(`볙OrY̳PWOǁߏf=葃s e8uQ.wpz_+\#Χ?deo|/\vN}}kB8ξvPQeҴ\v//Ъ ߶u})qLX E3;k%:&ij 8(̶+) b?^Fűr8_M]ʭr*wKmQyя»5/15'N]be,\-gi_8yn].d٥-kkvTX9jw{ n}_Yub 59ӟU= s;ىs_>a$~,#=<?/ܙ㻯_޵y7|'ŪYv8DoܱJ͚v}QcD :IhIQIuAݤl.icb U X\,GX|l3(.8 IsW<2K N\G-ڹSֱK(˒UϛRed'w)+OO R:8yrcԳg{N㥫)WazJl372Yt7s=:q(br/ޱR_\xnѺ?29gn1HYȺ4oJGqp-\L2W5jQo 1Aqm.j{MZn{J. 8S?Uk=@]5 TQ[uT2F>0hU\]~m"8W;ݾ=la0QKش[^_Pe^/ó^qvu\Q#ט\±p=(qXJe!y7xWr^3e_$,RE]4v[_heQgWdqܫ[C8:yfv~28!gSv&3(M`B˯C9] 5/T~wtLS6'x ٭T>;g*_UoZ:y9w\tɳU)IwP޷r}M(f27܈ 3N.7@i7y-pu%rPΟu} X='.;(+uϯB\FğSEO\qʺ#E8sp>KpLs䜛}f(si^}|Ym4uvS9뵔KVqBiNuph ξohu58/}tVMpyIϦTLJazzcR@MӔ1;zՇwHA굓_ͅ!D˓SE*[!J$kDn/o}k[ϸ)q#:=82=BNZ4=}{o=3Wr۽hK齝>#&r,<) "orQfu綜}1.\i??W^\ޅ 3fe̵W6 m'QMW!É(sSئ]S}NSчO cPqN %]x2\7\#VLsu<l߃R޷NKH):6U}o.ow"yd)Z>7b艱M7sʉ9Ӫt\C7J8{:zo;lM!䵙r-d^"5㣧*YONpFϸ]ϑO˥_.vњ,:5_5K䯤(Sw=n ]@YL r֣GlX@U=_&Ogmۑ*һ&).v-+ƵK'^}GT(QZ_v ;REKzN9+9eo8~fpaԡqڿ}o,Q%*s k3,cBbM [X:> v~um*mhع&TtK()_ѣgxovY/8xx؇޲qB G~@h wpC&uTZs-,;Paؘ7:qj{RI#a*[SA^Nq;i;<:/;BVu5ܜ l ew9vj*VVekO{êTrw]o&_f2zaȨؼn"_r MG]»\rJq2p} m%<(͸'uj|e|]\͑Ir9.-R8oBrQ#o`s9{`Hn߄@7neQ8ߤ>U7p -g+`[4UK\+Y;\nj0gv+M-҅:raO>z2fzvm؇\}3dj.TeYm=ugN 8g`*sj;%)c<_R2w lc!T<[Hү;:QQyrg* cڎ|w߼.v,B )XqgOCŎ^7rؼk~ӆSjѧfT¾N(sdf VƩ9'@λi[6>_XؒO|e)vNpq 81H18u%R<;2]H^y9z@u[5DSbXT_6"[w]YNӯ+\E]  СwNkZڦ%qIk8}Bo=M8|>Y$,챉9sا ^\8Ĺߚb#q`ģ&\voW.{fZzH^e.1yoUq+tN bs~"α[E "G/r뇙\r쌿"3okӷS/nFۛn+̯]2ΕSF൩ٗԾO%NT_>. ->:GZQN݂M;L}L*7V&Kv>NEgH.9眢פɜcym=W 'y&N]'⢓YΤ8k[)R)?9{c]kVͪg|"SŁ5)N.ֽ~E/_ԭJǍߵbKOޗ҆ iG1V>*Qܸ=o? 6x~ܻ ->`u,[wo=c99sӜETry{(0a9y*O/RjeHb\)^4.jF.{pI7"i!v?ǒuT9y>8|B:ٴB'zʽxASWu*lj6줿gE {<*<fiw5IB)UWGSť<"*=/f8'?Ln^32Vl*yD֭ڻOvf%͸@yRݜT Jz{$q^ϱ]Zp͂C8Fbb1ݙDcػa.W%D'54u4'vH}\U_HMo߶o!vt&C}t*a6~lʜ3q$}k8e4ϷG.yB?{|לpdOm% !|Cj\sмN\xD[+y71黟18PNLwl^ TҴ믫wyMSV1ӧS >OY!CKfR6**xC-ZBǵOjbQь.OR)/;:QMW*>S_,Tܗ*jx%7[۽οOm ~L2}Gy¦}? }u9c5֙WjQLEmݽl¿5& דhTWs񔉹lٯ^TI ⿿YۚJƄu*L&)w{a)WwџyETN9ϥy=$ouh.Dވhփ ,ˏۀo<}og[8>`9g!UZҒվzҞ~ Lb8qh,Sί1EYfvdy]&J8gOw9omwiL "Qk GӉ)..rU1-ƼW◍.|GEOOnyL:or;;o;*ا?l`NeggMIyXJOkQƉWK9i=\<}@P45͇QfQ/U4'C wy*x{H~q[*7^FOìVݦC[ڎ~6%w|0U:qjMVSْ\݂U|,q.\}!Շ=KZ9Be[z<=8q{VQ_]>fٴs~Na˝,Iqmus}_' 2C`zH&sM8 n ~ՠW  rT7v|YʣOXxE{mMy h!=zUO1&_B;F=V2D!,†Z$H !Xd{64fIJ2zt ;[e8r:`Ŧ-pr|"Swi1}Ȳ۸(ltg'2O'2~d҈3DKĥjU8i罎-~U559'd/ǂe,7o2cđ@ct u',CQ$4ZAe8:LFOj}8ڛ]'$Mi0>"Nyɐ#zўګ8呹vn_>uzd Q07S3:qF1(^l"G.IA}(dSu_Kӆ_g3k3j"& 7lDHUaP|+[~;XfwBwRJ6̏.Re#v!\LYK^Ne(pKuo?4ľ$8'r>{zɮ?E{T U+Xz.Qxe~[w6W\yUB`@䯎Nu~=PycɴPREdf)~,Uwf lquo Wո/s rZQhuHO0d6@JQ&J\YQwGsҙN ߽CV%$Ovj&9U'_6a`yN&L5R@? ο0`1$Va[WST|m ~w*N8&Zr˭iLf7*u;ta4Mi=z`85^x Q$Fs4xqMCʝ??Vm\qz 2ڣ^›',?vF; +҆oby锃D Fu%>/BӁxa>WoW-C&Yalޒ! Xcᰮ]HIYSϒtkP$Y_NVݽJbW8vkT#%}=i·J}/*K1?{jN|J߿pxz߳oP=Qh{=x|aaL{OS6C"k\g.ݏӁWߨe޶:\2f e\H 1GD\pMWbN2؅jsb9 ;9Rh^{נ"6Z|jo_ƶGofnqm׵T$88oޏ@}JzH<w~<N Z| ;%q%wxaӶG~l3ܹ- G暸3g2Kж7$ _@ Л$J~9.G)h`m K`ɚ2AfU +m؞Yz, 9{"ȲI@6:5st_ 'ZLLuϷkỲ-ؿ!S^6P?o]>huh)N7n,NsE8kgv;@V͔:pMDKЍ J흂 }nknא#בF?c#@~8@=݌\۰k#ǑѰ㊽8tn@yA?x_$X,qn9,S Gb8rI>8?Mt*xзѣKo i(?ŏq|nrJYEZq98JieG~.w7 晹Ao Ld5SQGU?o~ qo`foOy4^iQcmaFTmw 3(;"[Rˀ[9aI+0$|zl+w`f5txoV)>zXH_+?VH{va]SrpBs{Ppө{҆ /myoWx! $0I\ԡ<_2$&.or\k3mp0 \ /.}5\Z[h'0,/p ny9vVIg7KA=?OIXa';Grː\ .\}1z䮩T>"HDf#9DCepxw$XdVʿoSOΞ@V\H)Qnx_CZ'fqWSN7/sp)'?;7H_}_r8;Ա;FJzWvI>KP+0" ~|ꊿrr\96q|_RK._pK\80SH~08nJfxpK$C7YX *IIS$2 ءͫ8+[s64>IXp1W?C[*ׁ=AaZ{ԓ\XY1kX\p{Rď-/ lewJjJ`{aMMo[;܀g9\|H͘:Rp heolRswW  ꃞS=a{1?Β#aiϣY+15v9wG;=n#[(lE^NgƱ~:D3{A/W|㡔8N?Sȼq.Z+ν2|T~'?ˏ60 E{({t]՛ qRG Wz Hl˜ll/Hhr|8I"c@݂_ID޲|v&m8#ѹ{^jM80V~bBaI5(@u{Tvx1',_3!FH^>'}߾XFF/ѱʟtW܁\sl}9kw!cE{vkI햎΀6~Nix2ⲱ#K.&p@[&p&t6kXyoS*%]f F^^QOyKF~',+\Nkt4ɻ,/% }n? C\2Vq0KMlAY#&2Ö $ʝM0|~I{9"4_^s~F8®[c.d(N8ܹklB"{aXQ] ,޲]Ꟛ qhoǫc08f "F@8hx"w 3$mɯ>*aW5%~>r/-#5gf\1^Mly?yFE@Mq+w3ϔI,lz(U2n%|zVHL< "N܈{b/*^s q|\(vER=ZYway۔ӣXfzP›iHsK6Rj2v} solcG_*v7åWa8Gq[ǡZ1%%$SHE͙V1Gvs7)mU BÏD$}S6: Qov*yv\L-̣ZepUAsd;GTY@ƪ)D٢{DgnD4 Q}ξZ&kǷ a?yӣVؐڗw?2-dnYE5[&|b-O4I.d: RFkd/f[=uo")ɉ8g+>5o_4Zm.g3rg}Z , ˖_] `R6o9ld)agYmitX_ ._sޘS>cߊ*2]3`ƾU.qp$<X^F?2jXli0!zfmWaTx^"!6[v"S)$sbYm8Ӱְ4֥<"E/|0vwhV )~o{iԛ71.}'%j|G~<ߕgG[}A8|4IIOr5Dk8wNEs}8X*XWO2F6^|&kȖֵ͂&E&S%vO ,{|t 9h.za^g׍#Xl [^uW(^&HFs@| *#kZ LvSwIUܷ4a? 0Í0iHtX;0"[ώ1gCgEv,D(ŋݾ: Ǣ(EV9QWH{Kdr?5n)6NJ'+p~v>5"{qbAHm(MiK;#֔^˾,aWق3^)g9NS&IDZWLeн[rrD N`&7FS%گf#DXZm $ɉsR@o8X;ۅw0Ԛ)o8j_Lh<׆yLu'p m PW¥'WDN9I~*Yy4Rņ֫X_%4Yk+m32BK-VCX&à'-)^ {d`De=$UJjUqa e0`j*@rE{l7M}>F ͬ6qkmwN`/8s=谬û]%ri`N ϰ9 ]v&Dlqpi7u`$'Z27UVrvۋp q{̀Q/IXJ/z(1 M;6;30b*|=}1j ̡dNl~2WwGG񽙞A. \q>X jWZ0.88Ɇ&#-GI\ˁ=q']MЅ:r%y|yj#"r^¥It~}S i -7>ch>"K0 wh2V{NC^1>ؓ{X~;f?n;?JDOf>8VާxEH O|bmlV|>PuH.Iy KfNn[u:U~,AZsp3H9[#}y>&+WUG{5xݍSwi޲lo*nn; 1 mS=ԅ]_bܠXSNX z3M@ s&6]ҙ>fþ/~;đW{k/!3,8fC84AoBdYUH7^_7<>zPH9 ٰv}<`c±>T>NyK:#3ct~0Rvz_.szTp{Qq:++L3t~(E`y:"^=>_ٮ.e b+`fo <{q8 ,gQi\{(Yoa䋗iJ%GI0gQu0^nq! nF@ʉbcjXG9<;f]AJ;KpXz^U7&'r,;ꦃa㵡;n_@:B}(ʦ_ـpxZݚ fB |w;2{ D{ Mium1` ZV ί~,ٙ u><`,(uAiVv}]H'0=6/j/*?cPή*` ʛ#Voz%ʶޅ}\OeqNaw mNQ4'n{JA{I~$jmڀ3'La}ԧC 6eM^nx%WӖ]xE/\W+_4!Ge (t8;lYu"N#Ximꡀ#ׇwr5h@]=2.t+D-37$ի. :Դʾ%8rR.`e#κ[04,Մ&N|O8dԱW=|9fr.^K v.Y&\ERGx(zjq]ρ"xuh|;tCC}BV0py. ,oIo!ye ,3u17 wı XK'̊'O=YÚM6KKwҷ(`o%C)1vH ,kUfFaEra&v2QsWw!169&7L>KQ\fliHIYOflRnBS"L蓻a1;a {Z:M9{NÞn!_{P}Hطm7Nmx+׏p>>L`w12gaD?,18 ,.du3IUᬂ& HTkd7Dzy\YPZ*[9Ealv~[~O=;L_U: ga#gD$MjS=W N=ǚk\14G#]m4ě8y,aWoMEڦx\m>Od{wPȢ])\ϴr;̋cIYH/ĝ{p UXޭO{.|!hl4f{Lp&gޤBxVK\`Y*xU6%jcz|8ycwy\; VkLZW!*d  缹 L.1J͟LS`{1A=KRq !&0 vL58?.J)OJ6sT_2 wѓqeIXgN5NXFw4AӦT!'` >tl=o31NݔbC,\swJJ~@YS q%e}Y0ұS4-5`42,3{NMSw'kUDz3aQ *}}`f\ a)OzS{F`o Ɇofԣ/`V*?(s0|>ls0+?sPWj8Y6y~io KEbc"3}TT焞fx_,q/@= 8biU-eX;VQ<'HzrwMuT 3uW#<[uf3 ߉iSW$XRXLTkY{(k|6DZ; ŦX{TT|o&peb׎!.H l #_ YiiY| |q-Wp2l>{?"n>w,rl6C9!5گ'[,3TAw Cm!Ee(<넢zJ F8ȁS;c±IM8d;rCf$_5\h"){;|5u^MN(#j0jwBJS37ld%ה_Pa<4Q+طq=s?M`tj#&@=f>KRڇ X,YਂM7`oI_ ط6}yhd{5hJлCDfsG]q;dak3TG '9܀%gф}wJxTr9"Og`rsGW~<9Q9D#5~M> zqrpcMz v40|&ﭾ;nf-{`M)|vI3O >W4.sYV旔`( +Z͋¨tZaҬLX"풼ߺ8gzcqCF| _.gx8%Ɲ{Tb gMZԉUb05l-ULM6Kw$Th=Ys\GŨL|icknUqLY&Kzrj!Tsk=_4"4 g߀[@J ##%9oקI=|[r$ٓїH.tiXL=Մ\b?Sxj8b.}فb&מ^5h37rtYdEg~ۮ?UQ-m4sECaqpUN+To/L>aA őu<֋i^|y5|w8(ZBoq[_v*k\H3טʒp2Vi z،!?d(q8QM4|ۄXDReKwŸ( c跠`1jȨvŖُB_셪ÚHL:>Hr7ZX7PMߎvv'P6Yfnۜ[ǶÒ6-FH'* HJuCXpåc@:Ξ܏* lQ{5ɓqa꣣F:lhp'd̲]aD?ygZx* 7 \ ˟)!UC@/2.Fjjċ#m̊L P.\$xq;|? uYzחm8S/̅cQEr򜹺$c 繚;)UMbL +;YN%A ]_TƖfuPߎ8kmt㧯1GܸR\̪vęm,E'tSQC )ܙqL񭊭8>_H[Ԟ#E{Ȟh<onWZ?[/C҃6e="p;7sV OiSPEL9{NGiOZD1;VGxXłbwp?c/m`}P "~ԃv ~NT Sҙ\zဩ̣>|aq [`T^.DŔG^оm{%v0CG2 9ᐜg8a/szywƑŧ>fE9 8v~0؃?N*WcuXбE+hZNfc?VpЕ?&$c{0<\[]4פЈ.GWz%̸7`o'CN4bBFH㠐H*mԄ%L޹g+8^^apMO7Aף'J满ZRN "m+Ru'Coڟp|R~;g/r.$og*yXeSĆ|dơ}jDWTeD|@D 8%1Tj^-_Zo'=Kgϻ}OyC16>L'{]\)+ٻj+*\pM7g6zWqbqU_#m,gRU)Hv)C'f34 l!ĥmXfͧƄF|_Id*Z4Cpw`'s:쵓3z-%CBwp@jҵO# ( .L'W&뿘Cz#'f=c&@~sc_uO˰Cfx)N҆@=*Bm:/r< T1, g~#OsB˯tn9 +i"<_bK>ʉQi^HW %5y_cKŃ*;0Sgw4lR4?s5v8B $cQ5濸';z}t/ U.3^"bwF^Sn{pO0TD?\EyٰgunLF=#❖@ek>ͻS%[Đּ:.=e'˧o `[@3yh9RxկCMRQpQ֕!מsKvzW2⡿Fj& %};s޽GdӔKYL90c0H,{v%}]M}PK T_i<£v$x!uXќEB|β&O=nGK" F'DÚg瓩q,H*u2הs\WB]l7҇Rms.89>L[N\Pr0ܥǶy国C? `NRΓs/آu}o 9= q=%Wr"`(*`zБXb̫X/aѯ6=H+E|ɯ冘C&H `G"H%9)ɷszR[ C'?ܟv$ڍr?)V=O$|:5^KAs,28'{XsXK^/v[1$E>\|H+1D'aCH#44ņ\P !uzzf-vrь%&5\5Z,+#CʾPFA:>*=~`rz^qP˨X0kND~ћؑ$+u??Q4%ԇ,8e!%vn`?s , 1ޥ\vQ@鳇pPC@jǾ@Z;WyfےTݓ&^n/+4'0&k;#iX [5`mrx#]Y]P:sU[vds'}Y*ed<^6UaWBTX C,jڔó/M@U ߏ}?`3C0m3bKOʿW5G-]j% C>mꇹCu- XO*Z V'~GocO@PF#@K38 &;yB'7)Ǹ0fPxjJD* aS }B>ϭzh!{$vmh1-&.= mk|PN\}z/a̸L$V@Bl PÞ#PS#*J 5bç[y`:CR,y7Ɍ{И>&3DNٽZpEjm#GcCʛc"2YlԊMkpX0@z -VA^ȜzfacUDH ]ZL\c*$mgS |.H}w".;yo8Iㅍԡ)򤙶g{TDT`YG4n24bI-phsqHh׏]oSc%YIeߛe wz[경mH?9ތS: Kqqs|e x`0.NPUzT܅"srP:/q,zzV`o[ ,>hz9RIjӊ0ݶj}ԞW@+kC3;a F7FOjτD?`g0oLo /nNT?bV ayV_q2Fxܞ7uwmg̺a.@u,wtN )hg$5E7S޼BU[.ׇuOWMԅ]AXBmv +}N| zW͹+[uk>-e:7DD.Q{ 0\!lrsdfFL~CYƑftj,Nzl+`+ӆڛ&)eM?~֧#p`)|3XyA`>\O> J;a%䐔! Z9^DxSL o/29GpH%ߒO^\$:(~4 lnx)nr/m` * ӠӼt8VdܿvXu7/ aetM$xAɎ'w4"Y~MXFwbzY::My/A6ۆ}t]|0Ǎ9(ܿy- fC8Sb I:6I8 E67^E@KPGjNC!E3x_xv9`A/,XU 2]',.'HaEֵyPyB\nG94ǫ|:{W^p6 G T/B-NJXu;GNyC Em|s] 1z,y'=Յ>?1Pϐ_ _F{qW+`|#w}vLs>ygWb|(j4+:M<sםS|WxՉ5]Bk҅m0aPǶ +i o|0VTtxְZ~d]ź$O=c,2&0sU[Ɣ]~=9H;k\嚮 g e vj< -2lof|º# 2=~m 3d|q+\wK?fh&q}c*\}v0Yzqԫkw#PB3t=̺MI[qp/̻tG"%w?Vk#&qVU}vWWU)O+anmq`(wSyCKnr8۲_55>{,mؑD V겖,tYO߫%"갖P8ztL@U+GסY)_[6xQo ,ݲ'[rm_1#;7Ro>t,] +wC7@|3H0yWjs9YKH|J v:Қ `̊$ Kמ !#([9w-4،qwnW([+\tp`a G*VEWoa'VhoZH!iSzh7ƊR4'qmk i0caްot]ae(9wN`U7Rlٓ%}ɇ5}Kņ0-Eaug o o?|2tn7TZ ˼#u2a`İ6hI[(hz"P"7U$@HJջ5S< &?8EH0{0d8j#Z'<~?E|r ;چ- )ul ۅDOlcZB4eNQi֫Ƿ,o}*LT]X8e%pXQ֦/b qܰ ƝH?\XKdzc=Ub9=wߗ=a+`ܸD9 d 9KolL|mwm[㹣{Kz k<>u0^q hUN@X?ӯ򃦨iY0ݴ9ى|g@IM|0?t/&5[ 3"3{D+Uv-]}/6boL̞|0+=!د%3,?ʁlpEC([bgOj셸7/=SEunNnJK|(8 $꘰8yC/ ܚ]08j,"HrvP2߳ˍYj,Gs9F0,K*0| ,/Udw*a( L;_.,lEF'`.L&{hz67xt%QV-1l;>A`Zx85eǟ CG,>I5_M77'`PGöq;0im>2K<`VOF%^pB싂;GY/~oFꠠ P(Y j՛glrU`xk8rEݧKT *UΓ0У\Vg (!Foξb P/UUxˉ.ES7f7O~ hA}zY~=bXi!6zzqcgAOp.QUvATƮndVd\1Dꆑ}3[W\EPǺ 4|Ml'8mtݘ=٠Y=4)yZƘ^r8#nf|ob}/ymbul=%> ]};ttgrp֙MXlMGD 6GkǛUopM"|7 & b_]+yB!ͤpEexXgN_1=l4Z%>xi܅MH?d|G)N߲*nI,,gS7%~ݸFhΉϰv0$pypA̷-Nڇ-7=9_y'Fޞ&R&s•\3C{]nR2Ld*pQ^_,)ޅCܞ+ԯZӋHף 9KQYb꟣̶ C_fsswOADD7Se{Rڢ K〹*sltVn@a軱2uS%'8vնZG<6ڔ|/~yD3Y"aow8x=De z MN:~$eUxr)6w;/b/۱t\2os|֥-,|pkE9kxto7<Ǚ #:}SM}$wvv@2׍䰫X'olChb#ӷ3/]t٬W+g}X0tA`0`?3fruS+.8-2']AWS-]6fۥitf+o7cz ,ܯHZ#0E7Z@`5}y77a kf G8ޮ' /JR5 ɂ X)Q'WM`Q߀qm20%MgBJ> c|D*gZyB~Ǧ[E9lTs-hg4㔿uf,\=$8MKN>*no.~Oi3V#`4yR*v2OhT1[ 5˦ 9NnQ\һAq!.wo*ɠN{x s7CHZ-Z`bC_-+@X[<l1̈(GbC -(ցr5o8)BM,)uigG=aw5fd[<i^hao+TuU9nX|0t_?6.:kC>ϷH..}86ҵ1˥VĪ:@qWZisQd#.9>a[n!*3|[HY<Σ]=G75}H9ȆiY{O | 5wߟL40r0(Bc㗉o63'{Bwo#| N⇅? a>RL8`rWNt)da֜!`8V' %%y4ɵ{Bk+qW CV+R~7by:eE/10WIo 46W]?:;`z#10Y&,%ᬊiK6kF߫;`1"˝َ^C$! h_rҦc|᷁p9-elF?f~xG=0jvSm5ܚ.˙,RN@ydMUXӳ ˩6w:j;~l;j2҂ ?+BS"bԓ[a~+"uG8L<W_sv3XWly56}.XqM i5QbvF?+FrE8C҄X=g|?sl1sח]s 3V}{qȻ'y-p%gjO?TabeHv$_/M<Hʳ.,S}?3쵃mdq4*;Ǎ>4zsHU00Eg!aV s흯(C¯ڡǾϰYವ(حR'T96ρϽ̩n\ؽr12PAǒAۭ"0{E<[:ܮT@.;ZyL' oسIp4O=Jח@SH0)S4ƁkCx:Δc9o%)[WٷiHVЍv^IODŒcPnx bWL vR9'.*MmY;:;pr{^5{s{D OLʷ8f&U1Gܘb׿LѶz->t/Z.˝XP NW>WHEOF]Vεg`h=S0 F= sB gBժ2O^^gJ-Nm,V/<2sQ= |k[c, 5=fSsB?{>sRW{qꀟp"snI.v|Vm9[`|)?A\ sJ`;}cv)VHVc*E#0f7%gO0>)!*2ra@zc SAņOӢ܀^II‚|^,dc[{oibS4=6f|9'2UYۤE(.<sjw<ᬁL<6~0} Ϣ|shk0tbqjU|551>5{%L8~׭`2nr8 ]ReqrzdP< oeuu+ RWnZcYae)1=m"`'N0厒&y ȿbݯ,OAѯs4EGcmyoD=Fq~tNJ+JCEq8r}\a{myз2WO!? k*Lؠ"-W'E38RŵsɣYp\qKmo%]$sov8߁'BC=z f)\`ZMps#p4|v!+ } K_ Yv Xi8п}MAM]Q~:l8;/ࣵ2%+㏲KarNSPd>"bv]N8w__{} Zb{WApoNho0\?ZB%Ʌ$9qs.\V~}YD8hא-}˵.X/Ư|Mwǂ vhh?փ.VBܚa8I\&;BbD[`,Bye6yZD _ hav Yā+gtUv:h?GSpcK_Pٿgq4¬uI-f"U8$ŕnрZR!iՙ8\2bWnF8YYb+;Nl҇pl?LZۆzJv4i}`!3^aꅹVIx[[ajnNhf_(T*J8,LI{9-Hxva>*OwqnDh3r&SgE`yf'v[ [ jAwm=u,",mk ly1a7:g3)2rI_1tk58Jx! hcwu_:@K y !'a\3 /[//#>6ܽ3 &@~B)AYy}Ot \.xLZFkUkUe 軥iNe|#e 07$kto{>L UU2%2nS$PxwH^=fc1{`}6迗SY.)v8r~~;RvsL~A;#՗FJ~R~/FK'kP ul b3K6'.854t`~T֟Йlu>pS@3d nlml^ L0)H c1%0GGiW(иz\qN[-mM'Xg :/cNSq 2wGީ¹nI8񥱯 %)9P \$adK Ն@j~s7h>xMnpdi@9{iTE:*ׯ֡#':9, bͰh8,CK"0wBoV5 |/g)^Cj ;~ ^wow1aRک/9/.~5owV歸{8ʒX74`v+A͗>69Ų$=N"{ 1xbK8=#]LowwΙH Y2DcabH J3(Hd49;8Ų+}a<J5V#f~p$2=(~"r|c>Z֋(k Ѝ}Ij77-y=cOcޅ>HۺaE/"]C<3U'0oХ[ tO׏'_Am0R! ,=١COlrƟ0&6 /Z #bYJqG+u&SHM\99m]궾ꆸz,) !}A`i4u9Y}l䐂)ktY svk% mV5mrj̀ƹ< r:}|m(V[=11Z5G8w} ||93SߏO'.kCq%b LAl-E^Mj 4{* ն/y,(+v=fa'RptJs lJ-;\R8zԗ\*\/xƴE/V = s%i&C`}7JŹt# 4u҅]x6'XlBw԰;0P" HY:gw: ʒX`,uU7 μ&ɇ\D&Os*>xZ9 ^!zsч%T)~ ?,FU$.>v?i*hu T߫36`0Rs9{C݊HR{jfE]OaKb8wr\{WI)˷xߊN*bQпޟG z։CZS2tNmg6h;lg|9gDm߼aFSTxL_!FzZk Omv/ט>G?,ܺӉrTuQrm5%=__k^_D_4Xy/xyjJ (r}=l@Ц$b̅#&<[FE c@wt_0TY4 9 S}{2v)umưӈjXLvɞEUl <%A jtXwݼT)Bw9cHؑݘ.z ;%..!9KGYyd{a $EYd]OJ֠t7T,@i. (qfۈd1 -K& )]] іǗ﮳ L_:6'bxM0+IοΏ w4Àe8Φmqj;4 &ĮvL j)ئ`Lp=։'+aVOvIߢ9,^q ~*ԏ?)+# >r`Wp L3i{d¨RD3_ }6~S,CW:$i; ? 3;J˿?K_R{H~0{ҥMH~chbMpw`f6&0sZԮ+&[7yyg[0Pi˔ֈ gpig.$N)H*ꋚM8ys@ Z Yh ݴ1O0Q? ޭaڶDZn 0MPHfUm/6  1@VbOYswp|3z?0HfĎփ\ƽ6?5ζBًqij 6aRv k<4B24ݰ`PGc>c?"m9$=o贪/A&TŴ{ӣk?rL0"0AU3MSvuAWa+vb1޾D:iL3!mh,m'`+NUJ:)GcQPA@.{GѫG+*_У˳E+ȝ0Zq0vvm؈K/nMp,PuEM8,sr6Ͳ0:ދרrD&>6RrU&E-RY[Vkh0n,\T~~/ %b`N<.ecZ}g2d,<5< 0sC6a$DZj6Tg*i2 cʦL$KhO _+ oLSgb%)š0I,]J`jt ~!Z }t3հ,tb?*)V)mXyuFE}h{u38^hv9t/c42_s Wd*d8m9@eXgŵ+jqFd?)hmƮ+}3DyWNn5<]{\pW@3:\Jiuj!FTek p:M0ec7ssjM  lW Yqʉx#'O>kI0O?PD,4'7ev%gKۈjC-m{phk:6O6/#.mXG[w[X [lU?cϡ??u97`[Շsn0h D݇{0,02pॅR _`a͉10zXyfo#g|`RŞX +&8' L1eC10wqʶjϑ<ʔDdܢ9UYۏpk'˼G\?H "%G XT4ep.W=f6 g8*drO$~J}Pt:E0ڇvϰ8;ёaBg<`Q~Ji+ĐA3%f=i&ʏ TCV&s&0]0 F_X㒌-mj^J.=@iԈ_X޿޷b'iC[HJ5̝a, m[.[>>^2m:/y/f$3v&ByWplؚ٢ 3:_Noչضxi5 vPLMvA bo`t`w{'N,.bљ. GW2?ֳ !jWh iI)XhXsV[V`buiTX:}Y*',-1b g`:+bikY[S;+-РC" T˛Q`hxWaAtݯwN>d$ou:c`a;K0q A`RJ۠A)cWq߯, &~Z-2.%aAo0'XKUuI9=z_7;˙.5'T*I;>w@gJW w WSXf>e꽏7#}-1'a˭;}]#/ԭV9jH8Zr2x_YhFPa=Xgg([gJUЛ٣XzD`0̈Ϭhqq W,NdTK*Djn@I_֦MhGpyj݆cN_qF}V9gZm6B`~ZR (=zh10N~>ɂÇal/Y.[y=˽rhA"i7,x& c/DAc>Ei։ Ӄ `8igꩳL RUgrO8ꢻjaza}}NqPfJ[sJc %rVuh<?/ 4uz(pg*M >cl&$+>ȓN҄ik?`XtևŃ,X͓Yxz'7oY^KBIkm{"aA_nIvAG &@]y.`9vn'c c@30iݳcqaA]]@:/~e=[+'9X{P4ah81c1E}A$ft/)TXH9n3U,g&7ݸF?qK)#;aqUQ'ا1PtZ8偒 ^]UX6TݮïGِw@gnC!xi;9TކS1Bp{glvk4_eWr#{mNr~'3_ٶ$X /1|:[9X3NTuX'bkRXEF2濋^76%U_!2o<18E%Z"q:>8Yv@#o`z{jMXIRۉNBG H lwͶπ>%axz?Ӛ.fu;'e;⨍j>b 5NaKebܲ6ʒI݋V0gSݼlg *LZIB8]O|{V޳ wiǾG{њ)T?kD&-C!gGe?{]od+''yܒuGV9{L&}Ry튴[*u[0ٛN8[EV?o/+(CUB6q\8\'ײ8$Jm%`dFT&>j#0)ޔR_fW^9'gq&?hr!ó0qeN;g/ S|rֿ6l+(b!l6zBxXZ"`߳Nc@Rvq/;=t A}?xj3W~DI%8Tobӊ i \ l6R*= }R?H)@ K`\ok4$犕`)=(ȁ#g1%gU*VE~>?M,(%\M75'%$\Y x zu+nbPʫAC׳%څD O5vv,rq45S*:#={:ɂ:rahl0MD!UyLݰ_}Q̠ ;áLͿVCn '2 8 !x 1.+mX>'~'tG$|ZWVAWU8ۛدfF2.84E"/<$hBR0c<3+ YGITj 0XYU6ZDq`fUKdm,daR܎"8ԙmY 7Ouvz͹js0QWJH)~x cǧVv-h+Z<}#qXumt;Gm 4 |ɹD%igPqOm81om1U0}RXJɸ: ;u0Iuu rc=B2 *- #&e4eUrA|M:p=g v5iHAOKLQ8?& "~d^p"s'sVA䥣=;1Zv2 N {5@~XΛXeo`I^0_mOHZ8D`mu6  Ta[e&&ٰ`6Z믠# d3}jz d]87ہ܉@ٜ)`:%ƣJ%;g˖ȫ+ff֥@|U7㜋-x8SÇݗ΋3c *wf +\5#?^k |kr'`TPyRu]2umXrI٧ Jl`ZρQW_ X>)C$ l\|w8me@FKTܧ*[T)]!d%}>8~~y>:96/ny N }ѭо*([=8|aBoxWכS{`sA 1mg`bj[fbycRBWSο8VJ|Z+|;XFb.bFF}HyuBE`C[@j+w0ߏ+|=9$4}k>FHHi|3R"?BMc/>3D09%/|jayYlk)z5qng[m%[)#i &>P VVQ[:/q ZN4?+Ƿo^%|΄{iH$?VI_f=a<ҩ?I>6;7tH8Ȋ:,QwEG [u^|):c4m c{P jUPA#%pL {֯zZ7̸*J\!iwzt=”yn3Xb7$?|Io0eMd{ax sIT lEwN91!-5Hܰ3:YgyqnawS-:v{‰-Oz D)Cgp~6CH#;~YpZJ:=;# wrA>F6nD`~(8C DXo~I6|oι"nDZm+]ǥUƉD0d"N _~:$"{_:ڢicU ?? }1'O5b\>e~m߶> VעuUa]\AMe)Q]"۬IƉ,ݸ[N|3ъӺcX~I~F{J_ü;j OAY}o<勣>%dȄ%J.#X 7ި;`3AŐfOOlOz=)j 5DM%xXV94N6a(iO.y3r>{B;mpviN>T`%֊=^RápK&l|hz,L'Lna|ks$дm / Ss.>jɑ0QjNOW/_)tĹKzCh%pr@y )}DŽ]J{+Zq;55a}2@QM匲0cpM(xK6Lqj֤\=.OȎۍb[Oifr8{ TL}F""sh/r#;P>d7w5> cgZyu_5&'JK/z2ߏ1~>]|gNTr*ZF)v } ҉HUZ*Afp.W&(tL:[v9h3YB8Tr~ ΚbtG2vIl {ޛ 91X^O8S 3OBϬE=+L ܷMAnvK0OgUٝIpnO"0~=xմ@W,I:R2YR=_A;~{& r_t7Q.șgn6Vqe2Kj}4TRe}^# q>⩺mxWbDg~7!/EX"߹Gi֮ ֺ*˙v::l}H 3:!8ZsK)NggZ32?U/V\u?n]'.gXAI0N]32qwp zv2H؎x7P_zwGv|dY ^Q#ca4!#Jo܎&af0L<q{m>j~-q=f +_A7Zfq8Te'5XZ’C?j|Edc`^&$t#44]d$o|`@sF WV Yh8@PO}edR^Ǡg׺Uo㌽g%f`웃RHڵ]as6)y58DsYtxIv;amx\  XSCZ.+2wnI(/N;wϋ8(.ȴląԹ LD:F=F9R $]r}~0/yaphB]ƟO(/BI)m%$<5> ^]_w֠^bD}`ghMh~o}OHŌ]{g^#A;Wn@CPD+gPg g{s q3879/m3> 5̐Gex&r}k)8QcK.`埥B2ʻA8{K0t$̵኱* p*ih5;xS/ºkbvcV.{3^ƻGq׋;p@?7$#;GEpʞvnu9cOczSh9 DS N/Fx_BSLSʗPch^Mzr|'F826Tݧ{Kv:ґ7wnڂ:q0tv~wv]{guϐR9bÂU–_/aiM4vƒFz5LVH$EޭߍNOՙpl&B k/;Z83~}gɇa9JWMx_I(Ŕr#c\yG. ]<5Q:& ?t& 4#ENo2s-hmBs힙h">c48}M/m0&S&ѕ0 )!YL8p\J1.͠')lLc,oJA: ɸ^\?m|e+Lz6IDñKw~_vDyݠ\*Ĺ?dB+EB6M[5m@!E`9jPTE`h~g;G|xy2ϲbu&q:pȳK'\1с/ۺ7/l| f!zl:ӹ'kO¥}l3s8- X~~+Lw~\$PLT !sBXTh 4 󣝧_5?^>g`PnvΟ{FW~;uFwŐrmb?4{`NıP ZOZ?%O2`WoY.4|%HH.'!Z! t_}΍89w_EZ?T u4v;__vN%v%[2D=Õhlyϫ߱}:D> i{"+0CX3] .C˷` }L]=z7VLľFFz~\+ \+|Xh \"3SpbSK'pзU.wuHۛ)34[=ul:H8Pwc0_JN?τ1&KR^O8yG[jSKK SX2OW;bq}p]yX$Yp"e *ڵq 9EU8UsU@3ʿ兵1և[9y!uĸzlskv=)d-=cGEB4-ܭR`,qODnhRyk2wŠDUMW021z9R~?V"k̿$BRv}$s<֪#qrVYw2c GQՀ!o}z[4NF>:']{NJq#kr8wZEǞI ,Va+RA~[1SHC{rOs@ tƽs .?nYXJ_+r/g`xf(6Fߘk93 l)$l &x9"@['%$8GisEwv-[ ga˳ L HL|7$\;/Řln4E){ӑQ,$x޻XA?45KMM>eĎIw>PO:_D@'=lCD/l|Uﴅ2seQE}TxXSGk޳un0 \rE/h(6aWSq ìzsaSb7OIK҂q0/Ss[ʗ@~#l| OOf!gF_ =g7wIejn=/V CId|R.0V4L`=X俣yf? z1KqOGK& )CLB0FޥB RZ;+~RD.hWlaZUʵ +U=M8S;t-j5f&窡%:£A|rap?c!^0* Æûn58*q߯|8vm\r G9JAvŽЙy߄-/vѾD gjp62G3= xPvuT$LNڍR a2mEglƄD^'/3r\SIT9NU'uȏ|5 L"g֠hL 0ܱpȷ}P²uQڝUq P]b)Ѹgu* ŶKre~˂c0G\f ?L*'Eﳵ/윇3[}f/L2l `a8$ =1[ WqDzg/)buEt못3rpK3@Uf-B*h!8n鞜&]& o48Xf†>j0Qfy9BJ:|t(E=SF L.aØjֺd:`~- #;{-[q<+8š-.{ǵ|gfac04q@ì[ }\>YzVC!Q0|ؘ' 'A}죉Ґ˜.)K擗q^j \`'liFﲹF˹8gё TH(C|ynlI\*˒ v[.ÈW׎a秼PL2źi$d.-QXp3yQo)2f5adÝ]P|'Lsù4peB:nz7&doXgm&RS,VK nspSX֜fZ &nS`}1 [软ā.XL>z*nh2O0z>)8&p$i r ]&z1심IswEl'[>yrw)6Wx[&'c4X=H2_3#D:s[>g0|p%'޻gc^xZhy1zpFG9lBI=Xߪ5\w(^K+`?Sshek~ø0)>}GM >ut&1rVPߖZo`d7#6H##CV߫DWpn7G\{g &5n@Q 0Gq.Ng{da"D׏JDFCrD3*Nb&NsN &2 Oژ~V0{+=q >Ju?߆=\Hp)`H"]GH_s噟V5SXnwTp%cGէY*ut}=/m\|ߦaލH 7zcNfH 8)y3Fɾ !>}8zJU sڠ{pUU迭ts8%$=Ӗyxȕ_:DXlǦUa^8կmToAMg Y߄]y"0u Gj+6ͰL,pyB*l̜f mEuzt>z",JwwO-?7i*KSU+Dd7%ENQY]C!tFtK̬/{6 ( a~:.$J O=&j0gu'&ޝOI.OwgS2\q*ԹUp OW?r'2\he%n3q9s 74pEtQg8!Ei"M{-=Rz/i>/억OVl_39ד"ls0"=" EqC8X[/ ]K *y0j:·]q7KXɹ8wsJ뺽Pӥ86#wr0}ݶLeEvЅ֩DHSm59 9duijКomwЛx;/F[h!K};NC`ᄐT;\]%+DFa?#j28l{qۙLT5,v՟W]:TcCZN#u r TlCwbKB{͹=TGfm16;s&P@v=c$! ]|ɏY1ƹ˳8z';GW [eYcfCtzi QEM`T\wdFv ~dokRdQSh~(s_~V&!gZ38y7T$igM?ecHL]eVnhm 'TOx49I+ZfGa˙ d}Vb0oO24WdOQv6d5}< };\; 4W>^uHIxL2(7OxXk[CJ 8\ڔƽ|$o˟_7y8_lfi) ;$ai+?\tuvi;th8l2AyËʎ:U,4$}㟾+qI2R0듙,iZXHtr/,WWշ{+E/W@ș{;w^4&Cbvc\FvlX*1H`NrGh)R`w؀M+v=Ưj6߃ֱ0^B%qDVy66Xy[g,2v7]"Дz@Zx nh%?--h:ļYK"q© sWN2.L{W rTQ.X㱕Q_&bIpċ=0g`;[P>90m(cM9|nI8d1Q*z6<Ha<^ ҕg¥F0A|m;o.?:9;6N~o^n?ۀt> +&!utf#P0bD#zLvrKcknslD Glez,Os٫RN׆ iM\ ~sQFIfҔ^er kgIh}='Z>$UZP{@Ҵ,򷧚DiVG\K2M'hiXz`F2\uf}Zwl[_O`̐oHKFc§ b){/o|NK W % Xa^[k֕hH)<mh1F_߅,DvR8qHC^:cDx&2<:-"qHo}~8[V7n[R?0+ۜwp"j yy1`0&Kƾ?,1F]$)v1bzOucP[", ;Ҿ6>ȫn|]N;' w9TAQM0!ޗeXr -ꞀVf\98[HW3Ȱ{"=Y?xe i&/‘b ,ٟȵ k4R@}^!؜T1Sy!$JՠU_,qWX.v&N,ۻ+tra(#3L~>Bz0XʏwZǡmlugtS|0M?kw= ƙ%sExTax X<~Pra7*9/5J@3l,OxOL0{H9BHǮ$ hs%BsR$/~K >_djp<&1##m<iW@6qm3޴{-bJKaZd`톜_8(,*76DZon.EIu,񓇱s6Kg{NOp]9njn ~0^_ 7b9r#7ƠkYE9/1/\3JS{?}秗 pm8y…HBxZp*<+ i=KFg\ҙI0Ǽ (77wV?ao`Lr&Mo&]!V8! ʣqd:4}ҵyRι4hةqs,K3?xgIз;GI UB,zpk'Ъ:IC+Ĭ01z`FtG)\Ц~`xQ.& UH"UG_`{E~=,:C} }Où'x~&֦4v?zL΅U(CGoiDybep3(;>ϻq[ ZM`To#gvMg5]8]s9Qk\ڦcn䈦OaC"{JЖ3g &7&a\='[K6A5! - WY|3h7~7j.++fu g&t1hNwc8vuz<d AVNxd,ջa{Ig82`M"XWD,GNEӇ%ÏLr;͊qn䭿%[؇5n dp^7sdW?j?3,qɿsΟ&һvT œ͟ځd׸aQ^ kz`E#9|3npFX*PQSuK|4LB2[a' ~ _Y&Xm7_}6ZDY|H!°Yn嵊jpiF0;}\gb6NO9='$`9Mm,lG٩k f,ϥqُ[3sG\cz/]tvj1s7{v'(|G0/9 ڳ 9"1J`n<# o_d1Ɲ4VDݓi -ٜUh\glQA{!+i0 F>}Q_c`:Z(?0fo`H+GbӁ'0ЦqWdHJoQo,#3pX{Z*gceT6h/<#N'F>ߴ5jūI߱:*p Up @hȬPHdPY!#DZɆ93~˜JU \a=$6Ժv|t)k'c ~jwF79bAh%5&) d2iߔ4,/g2ōIkÔAl6s\*Pk瓟JBq`iN6}V; vl.I`mK!ȝS,ѫ3\ʼ3?5Dɶ֯.UyfuXsb9ZᇳNU幁m4él) W?PoUyRdRZ̎Xªua3V?~GX.B:{5aݕzٷ# 6Y>r .}/~`NS'?6Su%OžC:/(C*m7:qF.)ѪÌPBn TvtR\Xp.T;-4%vS8L_P+_߳/chy}9'@Ч\{_. .LjoiH?.1\ $iVKԣ;k?SkJ#',l~K/ibzU|͹:Jx^~Y(\)yZJE ÏioeL/{(ij߰$p(=%j]waZcafcc4'bVK2p5l#Kd3 \+K7ͱ)@m0[Ջm=4-СZY>m@MI>;{f2/K! J*˜06𥏷c0} ^輣 L"jEW6h#ok^yn] S)?CכU˂2YyN2 㚥RRcGɿT7^K- G5|m{yrdžp&J0C/Bft'Їj "{ob9XriK8AҬ_ 0Sg ƂMK6aCY=4U\6^#=bt 2PTG`+c7Ȧ ބDǧVӧaؖA9 `7CM;ّNeOpXlӱPq?:,<cA]SP3ETTJXns6}c K]{fYp!0I)æ钵N>re[AOo\S%nlӽ6㑷qVAԟq}5 ;.³u0XLa>>8?O8n"P_UC̟!@2meL 3G3%C3b d~U!)Cέ>7z /J{jEmAnS f{Ҏr`_ı)~v2čk #Wܑ? }l\ G`qdQl ̬8=.LS|[cQ0WC ze9wV>7WRW 3.]e K&-_n̖Y)_0r'-ihԫ^?CŅ~ӏBc1X71ڏ5TL ׃7'T&U; LU;w*kG2GeXO Dϝs `Ih u$Ô֧-L׀YyA~KO *)R ˃%nf? '8Ёz97s2+}&rƏB/̷:zX(tݔ $ ͫ(E&:y^ٌȈtH%!H{͙;ܿ;ABR$Gx41n/% rP-?C}>G!'bsR/&9Db-wبbZQ=P(E: h]8HBu,O3~ uS {{KPT$l\Cm=4Y} KFM}+?4gWvLsDq=E^}]UB^wsbw\jK>Ф3Y^/ZϧÖaT'[P'^ LGd-: ֿ[TMhdϵhOXyg}@C%W0os~@s?k)l0Y]y9!(78rIaڮf:އ$c7Xe1xet+0Ӑ= :`lRfVbodQ0GF/Tc$Dݼԋ}æ{%ĹZaҫ'6c5 {^p :{1*D #ׄz=?v 5I. ^l"S ̒M L(%<eǕ z <5~]\5 UONVR9u& p #*+}ب ?nȉ43-8tY ;L)8kQ桔_}w^W\:`IA7խ%@wGi9,heA$j%U)L2\Aΰa[9cߝձ/)oChncl?w{{p]fdfZ]&sa`7!$8(M4CNlI~n}bK-Ya>M.4Kt`W8b/?}}n9 u~ueBlNS d˗ a878^>뷦4gv]jrGE\{D+}m3y OE)@:\7kR=8qWϾn˹njF-|g 6s'h~<>+J`<1 2W;jOK2Ka9]^|ؗ5 ;B@v] 6ڧòjhwN܇ K̙Y.XH;'hbؙw3p tl;w4`,SC=bvsֿ9[h}OI@ӛza@Ma:kWbn|EB}=XlM8| ݟ\7T !b23Ig]v@9gdȜ*y{̔h +dneNq?Y`%yTLyc**mmHWi̓ϡ3'.\e.kR8;/X}rߍŷ{f/^ ?;~apȎa2 KōHnßY&'GQWqyJ>\[X6Pو朸Q2 ydV v|)>~n/E{ 6 N~oNv60zHaPZ54`رOVpb}V2΋Oʈ65<S>]۱˦J̴'ly5Gzkn_R^ȼu]`x˻g/^;X0+$7QXEx>d?MZ(v WexuaCNzB{5Ѹy(Xu0.\GRYC Nv8uNXK~OFr9rSڶO}0]]AC NHQx&HD`}Mb.Iǻ3Ev7dc߿*$p=cGvڃ8l}2wp!umKnW['ܰ_g[R…twB+ -61Gp4c[q R7ls|i,PbiqG_`:c0)"cT_[}K8Ͱ%{}䔱P.EO\KdfoZɠ3$1-_R͹%\j7'tlMSO3ƾxsZBpk7U/CJ_c4alտ !~y [+mU$Ϻ]hΜ p:7&hTZ䲴8fȧ;K*)/eqk\ھk3=Nohuk ee ,Dzā@8Ǽ(Kﳴgoo*TF$TK?FByĩ֎" `DI^N2{,y2 1  *.VB?sUMi`]ЏX!n_ża_<_5*__}\an_8Z e; 7z>V)_:o㊶haRNOҾC V@ ԣ. 6# rN} +p} [}D gsL}+fO6 դ"6пߩ>n=Ct鄯轐!>Vhl[h_8b%zBU<>/KtL p\b^ސ.ıϏAn{Lp2dY8UpoT JB? G\g t)D)Vd\:M678,3;pٻx\|`i#u8%j+ÊVAu:89B"26 8+4z &NBElq \[OE_Σ:vπO%H~U s|q'ᠭ|'ݢ5zf v&{g3eԬ zܦ~yw03N.|o`tOr/-zc!xd+ ߞI`S!BPBlkwⱨčSC8^ibsGʮo~EUxaI+Pw= bzšNO.`ۏhͬؼl7s ih+k#=oLcV#s`KAwU8| J$m!OQ;{iDh %*!X#IaVSXhuv1)sul߁^ڐ,w-v| p9T -Rf}6\x4aS[TkB%rH&7Ua%s,?̷4:J9de;%qX=wp[`t_bR,? =! +k; [^Ȝ̹ҡj H.;q#FXbi6uh(בі z`VkP@uK&jT X܅#;?a?8_{ȓ`!> U:feVG"+ `y졜̲ӹ.UiKMa$5ݩq H<?p\DJ_E=yz;):b"ߣrM D9CY]j0z2$,:SQPYbzFFYh!JFp؁G0[p=kB;էQ~ͳФy|糶x ]n6ޮ92'/`lo_)O-2Re{9 v^n BwNIQ]%yimHx$@RS ׉M+z z(mF:>Hɷݳ`iA텩[%O#Ejq؀5.޸X/LZ)PciG7q=rb/r Bbއcǯκ.Pf8hy *n1S ?܌Ű}{|Z 3fWYzIGV/cN/xcg>t{K%_`({n5?6F nCELxTuLR_}kSeޅs+Tg|^yys 6hUoq'nhxu$*fyߦkph%PAgfzv[]%2DVm\?{La_?~\HsjYDT}UF3 M;oy݁wj/-bzSq09 Oͳ<4Ws:DdGDO7? <ُpshS4LRujWO0m*O:e>% O#+ߗqٺg%x +uu >w=O%*\2q=WcɣTgA!VM ꣞Ng *2RZqŊ&p= k`Ғ)'/oagyz~q⤋{u"UFF~u)9BȌl, \[{?U4u@.&ӃC9/a18{#X^6CGaql6L6C¨y9\cu68*f\UO{D;GGq@R8o$KHNb# Q ]9/vS]w۠MSC S3Ca"_Y<I] 8*/R`-w~\Q2ޜI|?r"8i\tac 'WG;/c=z [` d IFjAy}*[謑ݮd3l" Eq gY 8IMB,ď4cy&#uHR20K˃Rlj`&(i'+#Ź+ +Nϟr@rd,K5WZoU\9_uWET9\N*+1,_y7Eƙ3?dqtm2,F9#Hec8y\wV t&ӬK60,xAU);7&tbO~,--Ox bk#)(} K8|QJxCͿ{h`.wK$_%_6& ?\ҶЎks4%7A'V9ЦEo7maQIXZΒǛp^H֮aƘq?X<, %+qHվ53{LCvH3 ]LS=7ZDkƞ=WI3~ka4C"V¹c!ڮ ) H_fҥWOއ.F-=ue'X.SP@ KcXi!@k^⬰ lMqϩ'5qž)^gG6c|sH;:PBt Trcߧ*Pޖ-v~e-֞Ypӭ>y9iLKDƣאU]#O G˽}Z)kl{ubxpێ`wa1zBP%$<Y)EqR ?VdvfXV'K80w!r62هb'qR8w\|*wvN 8q0vPH3q{jƔv"X2"*=6K.z0ߨKzK|āC w3|zs 3k4@\09P3f\38.Yq>8XN\e"WK:C<^a#x+haUYI6Pێ} RJ^n<0tU?YMڕICg4gwwh\"`\[mS<,O+z+dZG P}O>߂n—4*GK^4,pRY=[Yncu,u;k'G$ ߪaۡꡢ}d%uKǹ8@} lxogxk+ɿ-=8[gV&2?.x/'мl lbX{8Oj*ae".,, =u M_ށE;NIH:ڬfcK;b:Ǡybۢ;|:])d)o*ufsg#Is#H"aQ7v;.`'e-cg[s nsqVƖ>8kxH 3B5\_ֳnug,}#Y\^|\vAW>P''o{_9molua =B:-@_6'`I.ߓ8kDt= ϼl 4Zǥd[={:aITP$.|c{7Ja>ư4(Rli[/=HS5:\@YV$2[^8fD'av1ۈxfS4۪f{R\{*5H_Zn;B6'TLR4<]d5|iaճ,`ާ3-'<~5ߤ~>݂JwoQtkFGe r<o眃l Oh;^G|X](tE>%8pѬbY{2:vϼ<~bt/TT*2Ϧ-CP:̲uQ o| GNu"`0{"8No2JбJHY y?iifM.4ɐ~,'臿Rž*[g_m@~ir*?.kn=G^ ހ 9! K,S"ED*VΐV;ntb#O /a1@"jCϪqzu9h7rƏ/coYUXWep|Ss1'`T><9JGꌡPg]֟lPGEY.]9crJpA=-e@+@b{:+4 s^c[Wݱa Fn(<Xwz9_CC*H@zVN= Q98vrיg~Dڟ۞Ƀڑj S9>;W֫nB`M(i-lۙ k{?7~| v(\𯩚8ZAA\4y }]-M߼$:agd!X~ru8m^m8sp@5,/eC]QH&9^bWgXnzGs;D&젧5 ~LUjATvcxP.'i#'>pҋlq. ?q0[ Ϗ{z?b}'N]7a Sj0,i$wc)G;Cq,{82l0fHk,r]'gD7. +DJ ]Xuψs3ͻҲݟ}n{/ ؙ|gjsc. 6/-8WK\2)IZy_Hɻ;K2b9rEM6}Fwif:*o[(x=[=ѿ8nN?iqGxJfRHAY#K8#4~&e]CeH;>|kl; 剺ㅣl4ף2iHja;4Ot{kYRd`7G[<|.eOyAް+0w+ +ۊ~@Bc7|)P\]$ K|GOj}n*)]RD:Hu/OZ8#!B@Tl_I/~Y(RҚo8!t\c>Kkpr H&ށ{~LPSD0MR^xSj'6 #9k[Wd5ÅO8@™ ]',pήnf,G9i[[4W\q|^[H:#/tҔ>]Kvƹ{2eX3dS>6Re%X;Wɪ4*:y~??dEī\y=Mg}"-'l5Y\g#_<ކY 鏘fI VALeG hlU?K͗4aii?m`r SNW4FG{9HL0@ƾ; Ч{w ;*5/),ag>IsBRMat٠o?g7J[;N@! ]U|__ަfc\_Y^450>3(0OF/T~ Bٰ+GѪ EԕC^`a7W{bι^=6;7P~Ӎ%:WIHE>|M~z\0%$o.cqӜ:u޹o^$Eb繒GMH\~}>. =ΐ<9-n~Mл:8rNnhڊny].QOjz)`̃3H|a݂}Ϗ|H͇V[`A;<\ۅD&x %UQfn3>} !wEYZ$Xձ> ^,a6.ӴKN> ޳[}QSBtI'?cHjNOFNſ!\o&,_ҰP0ypYd׾p٩ϧ8a󿽰L[Pٷ$ ϝ0Gt${{\T_`M&?F<2Pu\22Z'BvzsZi+6pkx+\~"R.Hrmq7kX+$y ̓KņV8%\<u3]e BR]MZ \v`߾wOZ[:2w"rv=VP&9DyZ"3oEuԉ82tU0v6kz bka?3~g d,$\{޳0Ek炬& @eحE|9!ouJ!j} \~>%Qd}U!_vƧw⃞]G"2`!+ĮZ+לBXA<<̿o)= _'֠-U` i4 2Л۱?$G$r6i7i=w$y湻)c: m@P;b"a#%Nx=9 a-6 {Tx/=:NjAuzPr_WaUO,z,j^z gߤġ"e`1t.G縋)"nNoqG\W1Ua7Gmq\˫>td 韩AYϘȴ!z|–+4Enc3%Oq_*>" QzKJKw'ŤNUC/AA=w7\5'h4qV~:U}_ÿO@]HV-- GV*W8kRIdxԓ~ |~2RZ#)Psn鑝rs}(xw,-ɳBmlEgԺ Jpsgh~]HtP/EKԃA:3z̼ i*NT1ۃ& P*=WVF?03ȟk8IdiYUH{z;!3?!㙭>\>^+G A֩6aU>Q/O{vgN`0pZ8o gܵ`S#ݜ@WwC@ y%Z?v˚=H6p]J>6iAs#B'_,t3 5 *z6ssyupjkؼT=>|R '74֣q P2ڢN&>jAe:_zn? E,'s`Ņ5@fMNxӯ!4(0@]7iLt3@揉5կ3f$sSǏ bC#wƊ ?pUE'~%C_HKok,7nLZkIv ]~dL6ҩWӱa `ڙm9qXb{t*6*vW\gxEdd2w"n$8.9 ZO^q%m`+;!%2`ug(Drv~_~ BBv6:y< Iad>vgk6j.%%ŷugO#de+l1X A2xRۺOej^ǁ U {<87wIPQOkI/Vp* e/vyr$=$`\kn>WN5"*hǒ@^!l I#zG*n{-KOs"B/B+Ru$Y3$եAG%QAm31Ě~gKv;U018 l|~*>?KnyP$O _\P1v0Y'H+zI$^@Maܙtclni&_BQt˘зwX(d}ZP I""B )* Z_>{s::szs=I~UI$REƥZ:BA\细} {ZW=9,^Lݍ+ҽ8ˤ7'?>ςĹ;G$_W.>.(߱BojZpPQ8y;bṿqZzR=lzmO  ;z@ޝ|g%0i74&ƞ*_H<|h97LU}%r 11S-_ϸ ֲgg`0uBR݇S~Ԯ, 38W%sx[[sK%n-ʺ(Nzk\zѡ댽8Xisvz%"x 7`~hx; < dnͰvHF5;e]9WCB:$5e !&wh#Ҙ7_ń~iV8엑|;  ^Ja)QjK\mt1Ko7`}Au!㫴Qü)]7GB P9sBq/G0{cy)ѭ!3P"A Ma&}MqQ#,Jz8%{Ň6y=~㘏Vzϱμv>?)`kG~9CX0 ;~|?6w/__M rI01 9[=eU8'ೲh;6տKXBƉX#lf=tpƎGf|/&YߋPw%a_l]:D54o@)@PJϡXy].]IhG~>ck_ÊaahobO>I֘ żՒ%M_,"/:da6$ΫME2sDpHW~49RGjm؁եLo1?oq|j}iVw0ǶShmj4Kf {xg3qyZ?Xr j9 l8pXQy$T?tXbp,{}+pp^;Ʊn P6Z<:?P'T>% NOLI?Wafc-]8׎^0,hF,%1ÿ!<݂vvu$ )D˓[x rxL+v/" ?'!&QeU?KAa^WkbXq~il{]Z t@(Azh#+~~:]3xD㊋k8}".w(iɥՈƩ¹a"kh9+wH_ )#TW%;9_دk0Z7&AS?aAsxCf4%гt='Z7ӁRF f \]+B9sx^`W-"덱uQ0[^Smg&ͭX٠=~ ׶_`Tu o\_> Xk}E.&KKiwB΂[KC3SO.?9쌃znu9R {v i?j0OK4QH Dm~_LŁ@ 5޾mG|se"v;4&ƵygQ0LHnVY<`dV 0Gu3F"fd|]<abl"6e~19 6aɥd?̎:@+gڞi:XvS)Xȱ29+3u7\(2@Smj )w',@ o !j~)?~/\K|YInXo4{=[ ٠[0ʪƺKGnH|J²fQ>ߌ^ <ʋPm- W|9uAø4#ZWwcl&y"W jDgpq zHOWyn߇K\H}XE'˙Uccr~k&=yӉ;K[0[X~,iA23YؿO>ksfuq5%±c,%aַrnS/,t,|C"0lT %an}y?I|[l}Oh͞Wa3IJ|03p=wY{VO`` foh`,]6h2]-:49hP+Q+V9o&zMAcX/V/{49\@ ;_ =8\Y4qfw!Q?WP"_Q4мUWW^: o'YfYIJѩlXyqH>h0}Z*v~/|(V1]?nsADC~0czϓCẸ84 I`[k?csթ%(WcIqK .!Wζ%\VɻI#Gk `&X_{9)AJ8x;-{CQ\Žܧ5BYY @u'< na'on 0-kA?SoJ3 &H|U{OS_~ߒ{#g8t+qu"ͭ( }JITQBs/,VAvS;gT;%ˋa14* Ûl{~1uPpZEUx,-f\zՕK:;z)~P#uHaA:I/m~ YZ/OK4~:|O? v%G3=;(P?Ob O2bLS}~Nw` Ԉ87η9%id }s pxXh߈|dg Q1*=E{p:L]_~L5Kn0V7V:MAj61-fK@2}|lQO.ߡu0u]`8yq q G>G躷K#Jćk{@;یSX.cZ%]#*#578üœ|ۥPln)SrTz> "֠q"9Bvv"ۍ{4 ?ZUF;'c.(YbřO%H`hMN&APT/hr^]5fs}H16\rxCOhùe U?vTJ_H/O?-^%`2f :M&գimp|vw1w[|n((:f$g@) HϾb+`CfcPMuKfsУ<`diH3QsQC4TNy+O+H㦾ieR ]L@mW䦕uw<f;L=;}6'vVV&ÔIe ":<=jǒ?mŢ@U l$O,ÿ9|oyВG)o}qxM~wV;Nӷhes$z'%wzw[:2{J7b_Y'ҬS:>os} $WtWu6yORw.AHJc0V9M.6x_fZeHn=#)EaFןoEE!) 4yа)Yi"mF3--| ξⷞ'Y9Y.½ p5EA.>xugNND3$u*Bݷzm`Lh֢o5+y_!} {MBlhf~ f Kq*uLMkn\QHV0X7NyS>/N|͵d:L;]E_P'}F v6JMDԾ>'#ο9tfC{33`hG'`k70p㏀sF05.7t5 c3À棴@w?zo *[ۧ܇vCK@iޞ<$tl_TB'@Sg #*m1AUhv Hc/ֺa79EX+GO/i/@ۗPRsTE++bRi,{NƵ2ZXjㅽj0'ŵ-޽辔#nR*,#iwg޵,$ ='>;o0DuFcT6XCJُpbw! D}Mg7fbFnD+u ^g^ 2OQOӅ4h)g!yaxme= l3i&0/qy N&:YLp<{?6Y 'ނ#_U.]@0F3s `ڦO;Qm*h$8c;Q^!R?xcez~8آ%8y`.U9FZlAr)ْZ'mvF8?wЧ#.Xutp63cC9P1ldb`0s=Wer^nS֏Z#T b)o q}]@/@;IO{Z0MUЗ*拰Tr*:/; N@=|$ɮz 8,#Ìcpoߋ3-V#g(}'HZ,4xn͉lH1*=nj>Ĺ^쥏V3 S %e`0}h Ga^Y:h+~OaM2spܣE8f$2JEV7|ωs3ԽK݅]sI OvtpZ%Aݐ{c[b»Hj>'mX`1ہGLH`vјHA論S}[iHxs,3=-9s6BezLaK50vjٍo0B&+X/A71mֹ$|$&uKKqxǐ? E7+*vw:ʗZĪoPz'j)1JGNv$1א \3) ΦOBKVŘqVyX,ZpnsAO ^:#Ǫ樳cGZгS&3M:/AU0a%%fwBΏ`LjFB(sK]ծ.!|bo3qݛ5LH-.~>\ ~O4_AEa׷poQ:[6@Cua#&Fj9ۉhոer^׽8ՂRcYV]g4ƾ^XbKsQ, x#01ݶwDSCGsXkj!l* ˄{PfW>!]&8= rt`̏>} oZ= HnqraM.-Theлnu-s'^0D¸vfuf6S_ʸsGU4 w/rqyZjڷ ܿ ݎ#yJS_+qzUZCb" hvVދ)_U$0s%\?n*ߒH)Lp 1"׸n,r-n40fw#sd g 9 sC n!E܍j1՗C#*ttv" jW}AɅw`%/Ē1>[vS:ud .e6o#01d Rn._h)R!-i+Tidxy;N4c,`ݰU'hИEъ$"ML&n.~?Ǭݾ& p@[W~8޴O< v/Y I# -c/n^ H+)% Ayo=Bfy5B_MC,>XdUY Bx07 ~lJv1b"O9~s>ް#yn8G7ܦ6"ZvuA=㩱}ǰk#v=bSC/7=KF@f- .epvc ʟ2}җ&1ǫ..'6|PME;غz*lW0 6`R] 8X%\[A:t32w>'*LJ)]iUD?yhi(zˁ}v7u'j;XT4♹T ٍW*qn>Y~۫Swp(i $,7I)zWp&Y(4iCITUkbGOQvLgu_ՁEOj4ԘzVODʱqXYz<>_LnCOњ l5RtpVp1~GZ66`#v9`~1$cg<% ?up&[8|sWZs`[shEp̆c 7kEŮ\u4e ^\|ڢReppC$,=7Mvc+2dvh}p4 4k NTr!>3YܹHϧ9њ `Ppn&M 9 {]\e?ėOߊHG0$lVh|y{FtcI7f/:~l+$; l iy,9!Ԅ;u`Qr/ }gd`Ƃ #̻]9  @s½dg3}ՑE\!Jwʵ+/qWq,x%[b\O۠+*%W>,#6R;C8 u 8Ba ZmSp໮ll} mjp]lv) .9rCi:ǖ3^ Z |)E^3ؖ[u532*q˟8C .?kr8`Y٦DdF$ǁՎoya¦a=&MyyG<_\ mI ^{/«=74k)z'q[4[ƒo)vLkW-Wm6ĝ}cORZԷkxHf=i=,ͽyӹҼ]Ub1#+@c0kC)}F´ wl_ &Z7x=SS hvM2-ȵvdcqHM0ȳF;b׎>!MO"s|+9qѠ{0ɺX 璟> #->WhFo~?x<{\`opX{eOAXL`rTlQ='0I1U-)eq gsJEqW#oO^6]][b6S- 픞 ,l li10Q ず SZb3|`j~GQ+G`EѶ@he=iփU5Bb~᷋jFֈ[' 0N7,f٭obeg=EOŅiF r)xDžEoF EO R]L4U1bobCċ{gXD?S䵆u$s}?90?GC :[jtRl.~'/GA٠CW0JS L J=X~%QY&}?:`qPUs22 [^.K9;u`3GK o0WCSǷU7̊ 7@ HLH>>'(k/^ĥG]Y{z)_ CP}Ʌ'̘81酋E~]g[ljnZV"K?٩D'̡ޱq=0mZV㷜J~}/-~V Ч3 ‚1Xw?iw"'MR%{#X:hT3Vm2[O0l_d->gЗUHk{G z#=nedcjiǡaȫ_Bpv]= 8lp~ǿ){'%qYɏ%~5:N$dPǕ[bnp4!1~yIgKM}!_tG;z {A;jmHOpWtYV`׭M$[]KSC&([s>8_HJR\m=yozM$Ypy`(vRlǪ_!n![")g/"Cő_ thvXW>]LFҟj/8NdbGʕDCtD@ \y/*:k.^4WMpul᠕HCሥwd7ԂR{ iGq =F(f  &xOᆽN#f#ٕ1 gwMCՒ80o*RgDHF#Z/2l$1?uA͈ >%cJu ytZ%do 2A$H,y)כ/IkCX`Sv"X_,=g6-G$6ŽZ8q^$Ǫcs7[uM}{R0Iǵ쒈O'Ed<٫+|$ gt2s|> ,ls5\Sl Σ/[8路-<VD_M#]mjz CeH7ò/FddKψ& ᘦcOpv^s=%;$GxR`3HkE,7%DPkJxźU62Eq;Wmpq}{x9|qveMY{L7W%ԌVZ@ՙ3L'0؋fl'[*Q>3`֙08¼qN@~ڊ20zKuT,z +*r s-CHWgm|$+I/DpCHrJD,#׶]Ǹ3R>Zzt`كPuLws1:dG#PM~w2aNMQ&Ac*NXo\o98CzX%oT!G*M^wh!DRiz{Yo_vB|PMR98S̨cq  0ez򧁅.'J%Sփvdp†iD>&|AK?-:l6*BZAĶ>ڛ觓D;c4ϧDQ1س3fWn#3{e%-lM ~&uH{UAU$ nmi:w{gf+ra ,^v$'CU>`^ljlX0,i-[',zÜaKs_ \Pz[1YwR]}@YG_+G44aM!l}AWRWxbF;l>'-3$nm2A>K'>ըj&iuGN5fh}-W=aУ0|l)fzlw`aɐ<к&V'ˋO@^~8h=И`mA.)slOҦ9w( H=Vr+X/]p, <3wqJd#7/ xhaOD<JoMdjFqǝ\ ^w"Mୢ3i*UZ3doǧ٪ȝ١I'֑{ݗ/{h w)bg]@v}|(hab)=$D]Jys'WeZwTdXH ziUv8'2x7ylcȴB ܿxk/L/aO;K |Hc6w1I _xwI٪Dsv$[D{BP"(K[S%L$I3N(CC'q o{fpa~oHUs.L?6l8agΖWW:X9COHh)$0?!а>? 0R;FgeTݽ%wBփ4_`rϾN*:+.ܾno h38So釋2e0 ʜw~~!llmiv,GA8R٤1RBkB bl8T茿*ɘ "ϼ.c$\{zs3\)5xqZ<>;hH`.'Y 8dݫ`bl?=%;oLae\ 3Dd 4tF Q..ʆܭI-#xNX:_;="Alh7t\"Mmx#u:+5*qr@ S6. ^>qFdš0+:$|,O۷>Ggopϳlηqũwp)"<['y?z_b{wOM;֞?` 5-è۷``Q&(`f-7\<͂A|t(rʴ'>8TB@O%?MCF/(Y~sK<+@ʤ{Sqz_)7~5g_a >D:OIM\Uf5'.K^- (./:)7j?h]=bD\X2>k~ILtw筴~״VwHSεVhA)+koNa~p}uȺDzHRr+L+*Ki2ct0/L)qJ]jAXYl ssS#MAlkT%TƉn'$N hEZHc.^G,K!Ċ $}?ooVFث y൒MN="KN$0hI1ƥQ PɈq\s QbW9R'vnhAJ#S{Wfy kL0d2tΊR` ui ȽU06Zn/L )Km$UCOD~0B>op > \;6J&0vh5?:B<%yGi# zsS<j*C}ZI a,)M: )΅u+3;C EuT؅#^Gy2K|-عܷؠd6tZ@2A2XZX~1u\30f:״# +gY-exc4Fyt %a:y[ЈSƢY_r 2WІ'aUV7BRwBErzv}0yTݳN@eJ(bi7 ,N`hev +ɴBy# 4~G|' .a qgTPZO%D{âv%"[7ZAw6Lvf8K\L,?N-$ILXXbShع=6Ǿ&%p\T\2#;݀:s]ś\SN. d}Ȗw=Iބs ]ة ް 3\U^]ȍHg\~w7Æ&~ ʼn5QO|CVmR5O1LXm?R:&|m~@:[) OT(߆&lm?]DQ&\>T qlKҾ|"7Ak>V. h-]`VpGIq ilm+KЦdjt*@?`Dqx-Cwk<yR 6g':3oa. OߘަRe/h\z'OW @Uj8bONZZØOۢƇzr*_my?]svp\WrLR:Fރf  mVS CP]w2CF[^-s[,V}^>5' i]/"FU75>1+QĦA%T0\t[H!kjajfSi|TXUwŠ@njÏWU]hd74|w*s.1ڴ=-_1(7e<騨_UQv!$o[̚D&gfV/J} AվYȹ\(lF@ݖȠ;)"uܒgaƭ"RnzЖl OujphetW9C+{k];rO JN?DI}C`QEǃu)jHiXhTpӇa0N*O?E'kO:"p\?GԈ.HgzG 4J@؅994$~ 8>VyLzF^9|spN )cA;+2l&2hns;K5K (RK`l-;$.r6N~Hx!䗉Z5͟#tkHuj1;Lg9ԙ P*F]n j k_.tܵ؛W;e5?o=P%}^zL,Rl[iR>*4Wio<1ީl3,,s=WBzJMN~DF_qqUI>K~;|k_ áC/}QOĵ?U$x Kf=I7#$'?oXx;Q?^f~72KY`[sѪsN{ETq*h7+炑}c[K9Gwlӭ]&=:.ze@ޫw&_< &t1l'Ef^[)WXÍtgF>YL2js ,uv8q'sxr!ĹV.H qNQnWR>)Gˉn-baj3[e?"s;!Hd~y(qĐ>>\F{f.HlZt¤oW^2vE"LUr[Xʵw4NAߧ C̠\ O݁֎?S`(uOR u2B{`6N Ӿ:KaX<*۷ŗ7j,u 4t@g3@+8稃$Y^}S,if|_S &HfL*Dqc d̓0@1JbǬӬ5[쪼q⦻S!dk]H 儭>cv&H{%Ys)W&ԱwyL*63v& f  6mMg&l>&bz;#%7t)vǬ?g` À{dHKQ%N8k.ު#6M;^nmt4T+ -]\1(qp, И&N ^pM!u(dޕ8EiX!z70|(4wsنTB3-+ܡn ^Ga" XfYakЌs83E xS<1⯭GmTf(BMո>ydJs .{Ao 3/!U,)7u.T):76Lk5>=70K n6g27\|>+P4S8L[/p?=[jJ 7T< $ұˌ0젲07t0=!MJ]X.]ƾ׏;ahi1Q?1a,{9MdeYOܖ/, ?6Jd.s}.8}郑ņ;.?)@Jk A@;Izϳ%鰯; uЛi] >p ݣgM%OCgkn?p]|[YՏB|+çF_4e"m 0w(!D#,{;Nh*':e ":-p7M=pϱH[ a0cS҆t7rv5okwh0k!?!20$yTe>WF痞8Sb2,9=%L0߳t86Ď郻w Š-gDO񸣯X%å.6.:@۞=nh3H:Rp({δ*H?qi2[<8;"Z]v&h=?#+UIhLÜqe|phˊV->?/bZe1lk qX'&f%ϯctum}ݖ>sɃ{xڝ֯gwab(a:eD`I}mPBkq`+w'`͠ʖipJĉ'ѹ|"H㦩},~v. Cof)]!"[_ȝt\k;>- GrH{qksLR2TvKFEHz'\I7V &yl׿K0p+$y7lg/=-_{YCؕ!K}jR7MzE8sb-  9y>8D-.>>Y<`!Jy):w<ɂ7o3S"|e:FA`z%'l|BZ'bnEH-^Pj ܸOgEtrop1\f{c5miM]@RBE`kei+]/ `b@}r_18ksÄ^UA imjM=FO1 Ϭ͏ X_zh]K3|rI>[ٯ$]&[ުoq?kXNٗ>Cׄ죷|p vU 6ﭴU㰡̳("r$̗yennj o@9U  5瓮4M8pF3S™sSmXKت`TC]pڛxlpHS9NQgg< 58,wB+0~|iAH]6\oipd:S:yJS8bkYa'(:^o/_qW)ʏNhvA:?\[PvIMU&qG v\eǮ~cx?c!>+g;Vű-ZқjpU9\J bi\X5F-$3꛽ŗ#,M'LHIsYBcGWǡh8q;'ZL`uj )I,_w*5LG;pwSLiWڐN; =ǒadFuMl:R %2)0DP FaT& ?Fo`ހu W=Ca-]L_ yCm@Q8n}H<ÍV֏5٦` JS~5Ӳ}_ƿFW.`렮_vN&{#)4ERl wv+{b[w[5a3|,`ߺ+l>⌉_ 1ؖ',y<-IQ k:wUW Vmn}4?civ7?Γ&qq GS"x-郕JQf غ9gg0OsAbXi<$[]&sUx qOϟL敌Y](}n> ϦoAghaoIsXftr "Aa?4Vn\W;u~垊rYb+%="sЖp=괅7y xo0LJb7z+A; mkrav2I4.,_mlcwSѵ ՟ V}k#0NJv7nW?!??;.q\vm?vm7`~n+L*G3u`:!7~h.),.O{݁R]ި0q-*[z[ wYڪ&m2Č2B!1D#,l̥$_yh}q%,Ν #lJ'ܐst>V[tN`?˧ғ8bxp2% }C\\yw,qL MNbg=Pw$ W,Vur@W[qomw3Lj|yqo@=kPGV#|a k>Q BCwm\%זWkw aV7pkR]Θ=t<:bf A>wǴg6\GCI8ugԦ'cdoaoִeYސF U `3waӗb6U[K:1zOas[Gz1(i' qGm QR8Ɖ }";1"}38LAJ{mƜV޵8,Ba[fYJ0,yC:DHB;aȮ l& l,tۉP`/ ℻Z0y]s H=y[|pXεg*3VN-C3M_tt+.5BoNIT׆=9桵&F\{&&feQz礣k8-p^襝8sfJMoZ`ϧ;.?w1[f] BϚ7ucjy7[gNlAs `_YN>߭ǘT{!;J|JJ/To,R^x WfT4_.ׅ '^`c1qyRV5k;w`U&&HD]Df"t%wjd+N"`EmNد+uk<1+u;$rg]"Qgv$q=nDZσav_"~樘~ ֽ<ĺ[6Q,) #}F&&V?@g0]P;- t%w&a"HX.uEG}[uUrQ݇ q۱8ѩ@DnI3¾U"tO8al36KIgqQI! .pʺqܛUuH뚍If=K,0N8Ѝ-t7ʱZtr9s?Ca) ZeIg,p f&z''/|Evb^ ?p@7 .R88?ٌUEg8+pi3*̟H{={ćȰ|N ixM)O]E^XF5X47N\ >ٙO/\KLZdo_@tq.vgq5RMÄmb%@#9V]η&Iw~ˣmO$.ր+!{35q5wx{N΃0:Y{thb@}ix޴ٿc=QrVTr)5[ow~٭W3:`k#&?;Ww?~{grHb8T6?hēm{eIc5ʌj"~*ǁqA:]rA?'NBQ7{O@vr()c]AWCo⃹Ժin$6߷ͻe:$>rDJw-#2S<%Hu 9e_GqZt6. -/}ZpmVyUMOZ~nB~.rXs.|+,fxi)Q\ZaFu {97LUM:o9N6tgbM>q`t $THrJ}U*%Y NE(x;KO*$Bn"9cvrJŞY"d7SsaK^WRUoDr^{28'](Bk s0YqWP[dY㏢gU跁e2liqGC0'ܔcc.[I _R!eFek_׺T*Qq;A) '>T8]}2oM{$olwuR2Yf^ƾa{ڡGnMu 6!>3N K̕dV!s=8(b1‘SCI%ps_9#UsۄRK<=L6dXQ; B$s7Lp3څs? 9/T)(a1Tt±_7]8pqL#MiՇJUӺ8ۓs)Os y*0B+W䂩O_I~ߧаo M?*|LS,uN;R\GI4 [I uxUH$03g%iʇ(XC]y%7qGLj+n( iYKBGVp30r / +*xy1Cl)>r1Gu~Z=Jb VP,;d'÷8w(X4x\c<㝋}MvȾgW6NDk;v)肔q|%c-2[yzcQ<,?LC^pd]}7пEkE K"vz)*M8-t~yo{-&Q-WR4Xۂ~}gbb1Ah<]u/Jd$awbx$nE0}oOCA(rFW,rwɁiMLXwtҥBS7G'YD8w_j:?J *Kʮը.ο8Mܦ| L}.&C#0rеwWDžx!uֿ@>YB?N,?Ne@ou9G-]ÎtG q䏊5HO^&JRX#HPTr/ژ1d Fnu`n'@qۢN4s~ECaoxilI6}>Bߐy=X_[f4Ff|Go6Ȥt*qQ6 ndjݬD:+ҏEfd|#=|- 6&MhE (Sɼe5| aW*l+?[|T<2~ ~?T5ty?qpʿDս̉ bmqDŽ:bjT}S4n4[H}c4iBMaNm(`jXYG4&d?SD``drtW6y@ ek*ڗc t; `+9Ex[k}`SJ|wy!.> :K0[o37i]=) ?i֣lqrXF)̝2[ dsځTen;4T<)ڸ?=: лӯyY&5pZVK$EMzə*Hp;~(wouн&eؠ/Vq٫sPRq: Pľy0;a +g 4O{պ]0N]m(7$k{T+^vUmX1h.q o,؁/O ?7vmЬ \NX60qdX&ly ,PxnE~ii }Hitʿ|kˆ7n燩K,xlԞ?iEYԀGi0D&u7@ٽW!Mľ4!Ԇňi%akPgnn!v2W@6FYرUZ8iz<\"{_э`{@Q0ZVD~·nkmFI8B]V WR_Ǝ >[r[E?2a) %6MoRӌ۽u ✏KwD24L#5SpmfŋBcq^@9EZ)5CsPU6St  3Ղ`5o:@,Ec7n<=?נdka^0&z =nbH؍EDf́cX%xV+~λ8 E`WksnkL;~YHf"wCgӝ:SP*Yj(M uzz{am5E.чbdjEh,:4BѝJB[p$y#3AW<y"6,ınYKH-֟Г"4axQ-l91ɏslJ>)kgv86eTȓ~8n6)7`;6^ɉm Hr}'UO>~&fg@aI@nf9L\nO5s/΃׻\m*a}79f2ys'>5ce+Ks`v; 9GUy߾les0W/2ίR&qPL]}+z:xV=acM`TNme[<|… cvG5INÃ1H=7ಆm(y6yWXkZFYf)_IZ8 #"68]ZZ]a\ÖFsm6hH$фp0sOr\l\5:*BZl|~Yz3r98ic; "ݰ, RS 9Xyv*vf98&Un[8fNHUJ;ȅkik;0”o tW|yti/5sU0w;Rr'F|R^ڜXl3$D(^,\8TESSLBx`~: ~|cc$^hŔ]E|{4bvԎ(wW_?- 6WI-8sNE[?@ }]]t!@ͺBv`U=DCcȟ'<7hx)5<(_c猹ʑDl0u\$T5PE~g>d#+R58J5v|ʼn_sq ݇V9IN0*5]ZaV?ѱĥs|Z s}d`|"yRl7LM6Kѯ"7qdQ XσH?+9cwzAVݽWJdl`Ț{h2 )Xi)iOU)-/-jD}jo ʾ39ײ& YN _AZElX`΃\gX_t~Zh@ 8Y0p`Oc$gl~8#aQE|,;mLqהVH`bnSDyzq6>ϩ |}OzلW}4ʮ]0}RxOA5];1T 7NM]H9.S%uZ[1NH.'o@Mggalj- ,`;P*0DZX92x?vƾMQ(m☚ i]68u XD"0Pw65 hd8%a:ȼBS؏:e_C3*\MD;pH[K(.0K0p^C :TIH `2ھt_94Ӫ7ה}'{nξZv\Ʌd'e~9aIVé+{ngǎc˒zX݌77i,* {qpn̓YC}H=({ {b?GӗWpQlփ ȟW['eirh]r'kq#QtP33(B"QVZJ "!)2EFxu^?qw{mV}5wO[cloШO񚹒DdS?hw(N_ f/a"E2;,'g)ÕPjGS̶}HTfΩ#""C9U8թ?tD\SJH3Em}cc.GW/B3u ;KoaB ?!t?gQ =0mqT)vݵ;ߚVKoky p]fلmFӋ80|uz]ЦFGcya\vnhpSR{3^ǒa\gʨӏ:]v|ޥoK&ħv)=ό}"v}}-do0A~?Dzg+W1(y{xo컭h$`jr/yi9߂E֓mKBɷ|v He";.Ga3UlrFNOm'N3ñw[" qV.O}$iI8pyЍeuTlFa͹2ب^w!cwIC#zoॵ{h+?OB[}] 0jP 5>+w=A r! Y)Y 8P?ʮTCń|tyٖv-G@=wYm25shhMg?c;e^/bg Uo9Ծ}69 @3d+LF~p9\LuS0i_vr5_f"*=z;m2a2wpKvIJ -.(f%vɘBuK ^0uF/X!n{U!P:W+ _;a'Qߡ鎉a6z.)"> BL8P€xHq8&/X/ʩهw'h1V,r9EV|hhBIQ[ځD7)iap*οu ȗƕ"o?qĢNG,;(3e>gnw0BKYDЄ)}_ʽw.6RT°-`egEE^$?oo?Ҟ Fu%2Ug-$e]ۻ+V^hS89d<#vM\񼏥 űe{ .x9?ۑz"FTl"SNO4O]5^٧| Ւ3baK5jV2ÉiJύ`:SQ!/c8q~IܐO39=Vo}=P(.u jIaϧ6HIUo2ƹ8TMvAd#^l!!"zgn<+K#wkUÁF1ΒKv_ 84fދ`{DzC` :\6ia}连XxpPٲz9}#ݩD2#O.$4}9jچvc(zcY$d\k9_:9/AWͿ @;n( )ůt`PJp1}٫Y&h~Qat}:V\/ބiYW<|?GM_@돚`2R#w_`}eEAGlܶMUu[7\m) W8otJ REMה ֵ;|5 !2뾏;})nD[J /҃zWإn_G1y$>,Rů{q,Ż ip &zTXv}&^I~$h+< w C YJ!:XJeeJ51S8*~WHH.a 4mc0$Y},*WLAO݊{ _~gW8P=o+4Cy…m܉8QаaKЁQo3VzH$Bu5~=ui,'_ѐgrAS#8k^(TOeakVn;0oJ%,K ^Ao0lm7ݹɑ 3!aq@|B5/#Lbpބ 7Uʺ!rd6{kY[jW7 </`1i–6LJeVC{T℔st&/a; 1}B9g2O?F#yv̴m;'MC l~kåI٦Nje8Y[ 3'NFgqt^\Or2HNٲҮ$ a)32Y88OɆ NIycL0ߖ(c FX6pr[(z}/A?No0 oFj =dߚ;X|G]z㧸 ݲOf Ύ.lљ?ԘW(磈tǣ["\q.iEwj5DwO,$5Q\K/@[H_ȨCosh}č0>a&V[5֧Qſ38٫OPwUJ4uxכfPv-s狇ݩE/sɎ=㘮ZbY{>L0(3 zjճk!us47c^fRn]ȱ=h`kJ!F]3-!o TMjO?g ;Z_MI744;鄑 3;Ϭ #CV搘)tK/bt Ϳs=\nYIBFa֛uf|Pꀦ4_; 84jS& VU{Nz-̝snǹ/aS$2gGC٥,/Y{uyւgÿbn@j;H[Fd8M5_|Mesq[wƄ32ߞȞ֍nohٞUy\ x=C EoGB3`Q-n[ɮ~ĘV rRέA8kF{>aE30Xfw'a>`6>dһM=`` ho:% $#6a^?@N:w)? 6F]Jua!ji;$)D؆2?̈lr#sDV!+O 8{xsp gNJaBqNK&/ϋbõ]S0@EH \1;A \%o@Z&wK-(KyGpvngoÁ?;a9ɐTĆMvbqsGc_y=nm5VCѓ+ /ar,}^Ѽ SfC2* O"M,&F=fqi tUܯ}w 9|ӌ ?֔r+38wvi/J2o#D1vxZV¬KJQկͼ~~v4}: 7xuc>;Nԧvګ`ָo uv+Ù7; "mqX}c:ay^ FymI=tU=vvyV55G `MTHM_)? ]E2cA+|щC !TȎ+P*h$ zڷFI|g>O j)6y ofq4xV $y~88B0wB8°- NY$ϙzt HZ +wmTs!0Gt($^/N +w ̖K 0)H aD/_a\g9bmGlT~J`y՞+&=UrkR_ '|I\-ct2qJb}pBH=h;W J.4%7*7 F,m9SN0e{u'F,'6oLsXpj@H7"QtnF'"3Qfy}W;HxJyDX~BbXhg=f+-iTh×=ai[=]FZ*'a+F}iN\@rBa@z{zƻж(3a_ Ԍwf3ӻi3~RDV)(丩"$׿C6 kG`Ihz;EŒkDpyrf^.ǜJWicddqS{;4.`uoʐEjl JF_c6wסK:$|[l CuU,R~;0ɨf#R>պ) f?%5fq 4cũ `'E0Rq ZdD Yq%$;MW0k`ګ{ aF7uwM*Hؽ/|6";&bOe $%8K{A=a.:0Zg~ʽ_w\wZӈjYw+[ -#Q- |aXM{;6\XkD4f1QٯsvFuM8hK>^/ԁw)f]Q#c͠c WQ̰YEqt߿bڔi@p}?saZ^j:徝HQ>p}GLL_ ivchVش~PL:"c/oJ:8j3P-aؤƒƙCnBwIguHqt) K=t61GqE3b&/dcUt%2x \PEQ?@녑WAR;̄Vg+8;kʬ:>p2I&]Br2~dH:g\7Tٞ$7J%j\Lp+J]Hz;*t~RDۆLŽ]S M⾈+҇΅h : gpR@k"- 716!;#+Hܝꠛ oD#"k/.-+1-7z<ߝzog;$-WY g;b80g 2z0G vj=i+jam1}LkY- Þmo| n5Ͷh oYmqufV>1k8rZDY_l]©@=- {-#ݥ-bڽ$Vp(v}~{OȜO鹒s-ԂNMxo0yZaLi\B ^_v5%;e!D{n,;}7z1Է'g7"-pHSl/?5ım*x%I^qJiUԵp)O:  tǶx O tr*H%g}VM5m@.;~箳kTK]=8h}x7:azvX}'њʦ(;[{r [E_^!0)K=yVu_j;Ӱp.f/7?/H1K^FyVW(V5cHYo${J$<\loJv狁?8/u5-7Y`y<7(c?<_"Y{of!VA|~A_ypYJj|P&Ea .L ^@طwWuK8ބj,㄄&9é)@ݴD_bδiwyp1bEΜhϟxrXXag_^Q$m!U)tkҾdx{|M,|I$6Ǯ+ }0AHmĶLa#8obS|/tAj`ҕUvk#>2bW8p+zG?p(}GDrcO>!x˴~.[0(i~7kBjƃv ~Qa\ZXJWѝYztrL GS E% YH )q|Z[qzW _ mMt.]Hw"ǻj|!Λ|/OxtmG|gW^uBe _%_ TƗ8?7܎_З4o~xh͵r [;kA2R>/`,E@-f%:UaZ󨼠m)$ièQ/@`*ˆX#r`a@lӰhb{(0ѯ +t߽`⑴DI-)ShĆmY :ģ&l % ㎭v*#kƏf8pX,ed*Ӓxc􉌺OJH9h"FoKNaiţ@:\qb cIؿ&4d*}Cw T롛cy 3~ LVsܶ>i=B u?9C^<@ ϩOpؼ>yn]:qf.i9hwpɀSi`G"4ޑ7q˼._ AYC^ioJWluc7j?,\^>Wy75+_m&XewoAko8{٫r24HN*\?*DI݇FU7>&2 jīuq-k^Ld#O#Y h ߭1d|9, w.8mVI0w%x'70푂C0JD0}??l_]ytؠ3暒%l7>z%V0uF2ԽKS.6ڟ3:U:#.I)M `NBא D]-hD`6{d ޿R5mr~_#%'xĺHk&?A\Ӄ ElaY8E2ʛI/G.[-m60w\60u-Am} 9Sf8)r疝߰Ń0sx&~{+~7/qEAzXOaOo#mn`19 p4ĘHNތ1l?d4L kVS P[jƆdU! EߢiMܑF,yIGOt@GE+.E$=+#ïz;?ɽYj{qk8Q[x`س;_TxC?._v7٫ÜS@9+D(DU_nud/V4GI֓JOWO^^%G585.^]8'&_t\ظ(H?$O:j`L} 7S쎞PU>X\ٺO,7}Y@f0|=r?{m;Uޖnj\$nWe*RzbfZO+os oI0y`Rlv9&ׄv K|Of,QhlxӖTݓ%y,C/{}KUHMCn09W"~oŻ̉DEe5VoAV}^4\zg*,S"+Or9U|}7f T=rv?EKs}VR ͇n3A`VCWfP\E.dAX-}3xE?gͽfZ0_mJ 5fKnzټ,'`lF,jXOaUA_I&t2\ιZ+ r2&b鉔H,9۬~]yh*47Bowwuwrb3y&&2RLK}2{pt2\V#!:{#Aٿe͹һ|n1@R Ls–e# 0S13} d|N⟆8sg&-F\&8xF"2{ w} /Q0$[?47ՋUJK1ė}9`c&x@;iysH7~gE!^q }rv1rV{u}'UabFA#,z ߨ'm˥0whr*d_{cn[BLC;Fj~BZm@G/@g."ХX~Q3WSdR-)Afo`FI x*k}q?iz ?͇=Dy;ǫɆ8n͸O֖mǡ9Nǫ8#r%&kDؐ0y"ha?[~Î/IvoM/1ĸtNB R2`&2I7{q-jd5.NaA} &, DC7)]\Ʊ7!Jp fwJOL ~Rg:V,%JoR)c;tY8Z1f ݐ5<3As[`RT+#Aپ^+*9Xz݆Lu( G #at]^1xB 穑Gt71g.I!ҵ^c_}|虧-DO)<8c}tK#󕳑Y7,{!l;t.d8,;pʏ*I䜑VW*p؜r[8QY즿:e@!/AC|nm  | S> {wn UsK}"q Az6vjUxEA*\YԶ[F' 0L ߹ HOGTX3e0i"H2s>Y@WǢCZ,Bip4f{2OǛZd!E3.OW{ɤ{Ki GF@_7.7,`ߍbW%Ю[ݻso?]j_mǖXmD7wOڅ"\R19}G,4`a{RˬR(h)[ų!@0ԃ%.?mA>X["%JkC SKE`?|U"heS }^P L|&9`.!㽯 'bTBol*$7〿ڏE><ኵ%aw#v'X|=.72]$򭏞{qUNUL-\T)0AyK=zF gݞQ u§TW..L>"B⬈^Sx68 [.'!K)e"}߶_f fF3Up_Q 9nְ7uzIo8\a͹6"΄"Bŧ;[Uir7">@K0oz?CI'OŠ8ǡ8/BE=H?^R۞po!Лw kNÈʺv^ y8UA7fi'*GBd'?nagV Bk^sG~ӯ;>\솁 /óM< ͢U\W+> v:@, ґ6!o>X|-JZ%0-|@dח>ISu1A= 4!wZa!*9/Lw]OCm[ٱ*Y#dsꨥ.f'y}h\=3Lp[^tHB ASO4MDZ$e azHV.Sa Ag˴t ?;y`C-)3PgC {Ŝ/~y Urbm6vnケySǜ?#>t0s_leS UtO{qZ"= +@iM?BĹcwwW>.YNJr}T[yK}C۬R#gy^ D*-oHj@ad\uy޺ot!6)*\KL%Oz Nh uT E|BFĂ^έ;[fEpĹj~yGGbCVjK0XF-;Zq2St(9 I ]ʶ{r)LXJ;Dk^nYnmÇ 0`Wr;'<=Q: `{}9KfC7^ 8ΎϹxG,^>TxCÖv/UJBGt.Pv̏fӮm# s'*{n;1I;M'}o{a,"3[^֌u:njSymU0b"w2_V@CCis'x!ik$vpz{=Ek6h4cQ Yd54-]9oJ|~>Pt0~ic@4v;Lp  qw V Jo#A(L=ߤ-Vq#]W+?W#|VM!Vo>I\{W 迉z/8-L E] vN[M[ehv8[S'u>cZME)m0`@jJ# [bsꁻ8p|v6ﲿ'VQhH;3Lt4 Ul [OԑKϠنE*\ɧwqo~Fi8bQ޻wR?GS\J!\h_!e3XW)G>kuEvzR}}gٮF}A?uOFi7Kѯ08EE%'a87/.FZ l嘯WG`Ihc*A *tN@~g+%R11UPgZYG&/G*l/ 0&վHQ`aN&y0S9Wp5ވ)dhL,?Qԃ{F?S@8d ʼnljݫq@;a}e+w6 t֦;ìVA=}/l|Hou4yd!Oo(!=vž~)lM˚ߜc}tB*Wӿ 4C8k0d"CF޴XTBq+1|j=ilcrALAN 1+Odrn߸-v_vG#qsU] }_oR>6 0p$`K>3mAEb\&xw+;v#D7&^L Ma(Y{0?z2$kQ)&6T-Rv]ѩ@]׾ES z_K5r15J/#U`Q?Fm؜< \ʻZ JQ(aˣ:рnG ,=.nY7xye̪bXks#Т.w0%V&]'D„ <<0 0̧OE]|q#N_f0aF؁ޡ]y&Q}pju"T=Hq3b)3E0!974{U~ɿC~Lz5xZ<zďAm&'.Lpy,,TE}툃ʿ M=fj>zvc5~+>% Cxyh c}JCr;մҤ,1%TƞBa|]^8'Ƹ2ە:bkwc`\bpV?K{-`]5IuƂ3Sd\)wH$&%B^+NCe\ ߏ8X\%)￙2ϛ7ApuSM-{Natx6%<"æ|0@Orihm*botA PiGTmqgR ?*3A?zYC_7iԇ!H^1s: &C5{ X\7>Q_U˦yNnsa>'aHS~\>O< ) GhNɄG~™ cwŹ@7w[czL{5<}&1o@܃RWJ.!?|JH:317œrH(2!z7a`#q.֕98.]k/ h3yXqqKU?i^ho~@RSqI%t%Dtʽ Tߊ PktÏB4o#szv5tb}҉OT/ʌ쓟{9úػ5;XU>8íG1506P-gJ&\r2G$bLChӆ*qUh=vxοȤ%'q"]k}-L]Fb8`_eTLR:d/2+ bNI*Ju+.4hfgI G7@6{7+/nRubpVǥUeElwt- UobܖF36Iln7 n0|/cp4Ƴ ;#?T AmTu5ļ$ qcAЭ ;¹hc%\ּmeɚt2`i]aC"KQh%ҩ'1gG&>s7O 2Ss2Ȳt+O>L8V"cx FSDW㉄9 ]kCq{vTyF=+xH;j4Tw y?=TYҟ=0aHwh慶O؍V"GӮ,M. zg${H@Ϩ , )W/ wr/LP2$諢 ]X?&*Nމ_F[ EX>R=w4r%4L`ǥy.) ЇcYzRHsRν^ pшr.:ԡvKO:Ί7Rۧpږa<{ 9fo`R C{:¾w==1g&ǐRUegʄMqpI|QpRS.܀i7jmDL oWYKU?Rcqq~b)M-r3h,"U8xK.K|*Wll~zf3 Ijlw 9.dV0q[E&DT.Ɉ}ɤV?-_1'д+pBXОr5וoQ &-ØNm0l{Y)GYӄq` halܓ$kN%a#]h#JvJ1f-MNTa c@h\0ui"X VUpl$+:;^W4d^|s-"fCOO, Y Vz2H`T+>/@[r|~Gآo8(NZA)*pgχ^w<\6y\=0"<&Ϩ=wJ ()JB6WYAI=B0Oů M9w6?N n'<$0VyY=,ա~;ד_ų1U_Szf ]AvNAk?RBd'`8ƣ$T$@i[zq8[w{o$?\'Fbm~+=qV*[اv2k;E82MŹfIyfo6, w.>\\7bB> ?8 l'@%?~'˛򝼝G <ف\]8{KұSq/&.NmWMdn=Kq$y&6&3 qy#[iǏ]ŬߠMXg0V:%9-y?Z.Uv(^䀛ju>CՃNm^~"&aJ5lil8?[#ȧωY=j@>>ۖF?Ba.$fVkaXtL~Tͷy_.ظ^V_=( ^=c躺kߕ>|fGި+[4Bʁ'QQ`.-}f$cu~lBod:`4/+6^,3qwgBhd֬|V?X䃎Shb^ ~Pg.=Yo(? {pT/\i'b:4|cP쳬S =U x`<~uGv ˶)B|g]'f͂}<Ǜ~Nd#)]zxwzfohpM͹V[3eC K8,*\ҁYB5V" -+?1RȔ `8MxG]<˶b̲r'.\#xCLd4v۶$H`e@.Ґc!$שmz+ eGųԀ;yZ C؆ʢ] hU^T~h9Xn=mյ| dVOI۟Zc{&t) _g> 07~X't =S 6z2wW\aTbBd ν-ַv씈Cĥdbm9"[ZFM0>|J8UJ8Ce()؃4~9KlsXA%N6=̊ɯ;`3; ~`i'GId"pbu:؞X[>i5KH7a|pnc1=o?+[g7x$(uP ;[c Z\NK"s)~w*?ygИZ-)\݆+ T'5l6Ot!InS}nBi Z"L^r8N.v%J=8Ԙn\'n ӐlyO=wR.\pCu Xu]@ ۷[^%oaX|hK3g)[ڽ2vÈ3QB!\s悓3}38Fse68^>\4{$Ɋ &4ߥuw&죂m7 _Ի.~'?BTC$mgNɧOVhB+ ӕ_a8䵞Q*{J [ޮaz0zM1XMQt},H<u@waPI?b/vaP'd_y.A<{Vm4ߞ.E*wc:R +mاc!SGaJ[kJŁ Mص?ct**Rz /DCN.QE;mM@]?m]XAR'^w+[i'ZqA|[o*O킩₻4a4DK Lr-߹.i]5g?ǠmV^*+$}:h^cSN~lT|cr8gx!

?'EjAvi8;)j:vRSapt~7nNēhx͂zB8u;SNxeֆ7[OUl3Enr{𙏏.` WCWpTzsÃ8"O>?UKI\yMNN ǗL{>@tp(z&4qW ;7N=9;A;m*L?$멂&gP\n8 g̒z:h8(89*4b۩Z ni+%O>S'`BO&j}Lb} C j`C>.l[K}!c1:ߜ<wݵ,}BaX8vKރKٳ軕蟦\`E'z]Dַ%xơ0hv3XjE{#A v{Yy{ 'e3&sqbI!L{&Lq 3wYL*0,EƜG8^R*ntŸYQP>rV0XrYo!icD 4^y,S7h W0vF P6NHHODcu򜠷1Mc>Ij̓EA%iXB)v uO8,{+ 0'yEhS׳~@) TKyKu \?򁷜@Zth2]֌aXrG5Hx^0 7l@g燑9Tzv=TJiJ &?^͖gZ&dG?Ecμ1.H*Ҍ>{k^9ÒGCi@]\7/>-\ šײL#*7O~jǞc/JU)D˒bZj(UINHT&_ \v?rc gnk7;559YlHmO*؉clPy*~I Dqn;uQ 8eI6c fawu+Ps^R^ƫW(YR ?&5w`(B2TH{nQ3RTVy=Wa~¨$]}h*Dzv0T-z\?ƍgfA1sO^FhZZj!STe=ʢ9 5=H *j=.e.>3434 A'Ov!ᯠR\:킰Q>ۊ+(IM6]剌<|q?y+;Pp,!'nCg>ˍFx;%&W uB6 `%s#{[і@d=l~cfcw%ݍqMp*$ԇcaN5nkH:amJI9 n,pڵqQV g x$a/t=#?QTQzY< RtgNN@mF7]{D\>[RQKW0iƃG-KBJUwa?~ϕ3ܖՆװ/!@}Yu:-ڍ7aŕ}ju@ 63t'ߍ򓰛'EX1.% ^3|YXraY[ܗzE$Ң=KwOޥWz̒`5:Py:z>>_{ێEa%i Hˍo08T Wk~9;˹c,%!d{}jxaUԘp-vĎK חcͲf,Q\N_Sy FWaSc.f&ѵGTLc`wIdO;q88LEpR;ص-G^ݑ\1Ӷ%)cAGnbϽ8NL4`]K ?:Mpu4LdadA 3ZyR\ <$ mO6 T_eqn0 #*F0;pmK_5 )R!ul cȲ`T KؾוG&̧@|mYGc`d)[+{L2q/ .bGo|f!8̓r+3$|lUAgnؗť9Kp2ŦaFe8=^[}ut0ڽ#HPU)"  ]D}cEFx %C"gcF񳧰P1I9l5/R9N/]ENGѷqp⁕yD1̄pUɅ0sySBfk~& 2FCxGv\28!+׾@%k|IY7◗W ʠÁGOv*n#ArlL.[:H3Nf(ɇY&4byjԈ'rbtp Vq Ezn/cGl}U/h-Gx"w""-xG)Y/Oc-':1WYȠ\s+GPғaOpx+6c8oPMe *ĵoY?}QGd=\~&ĀE|.1 \9/Y;y3rPWH0GH;K= +6Z'R]րFН%0p}; I孵ral&y|97D}+ēb양?=A^8Iky%9ǚ0j*BrVd02YN> ªBFu]i'ҘC۵qVJ" ~$rL $g?{ƿȖ.I ۜ\ sIcdܿ:5~ }\6)>O _9c[򕡨>+=ǭ0-'q"D% uSSi:L Qo؅fpӞ5e4Ί&c : 4KSج-`z2bïZ2x{^)/6nvD!㮐~"KC;؈jQp)/'qMWF |d58pJ!k ͦjHw+`rǘյ| 5οTs4c8{A䮎Vi)o1Kůĝ-?Ckeol(u!9Yя+\.q7sra5]uX<{Drfow i7,2Ɔ\ B;;N?(>|M =lf!v`q5B_F,8v3jZxd13- &6N7[y忉Qlpz.$4' l}>Fߨm~ {Y%|zv<- kK5(&t[^~E tf*\nֻnc@򣌵_+g[U9*WUH\H4a8ʗVMܒkv0%:֮b"v-oDgkiApyr8yXG@.MF!S,.T[*2 ׮' |RHc{, [? c zQ<@98rX`* [Tua~38g`:~ok f\T7߉m:n5;[D[) =dʕꚹL`xew]?=qWud|qlM~zbo@K#:E5dw E iۅq#;s N:1Iջ"Pqt@0fO'GVKW>FJ{=|) i8aeh ;|N<[lrʠwI'.yRFM;i# 5"=q~~ lMZ%1gk%z^ Vq&8L<=<| MC6~~@K0ؖكba.vk5d0_ޖJ[ak(U6ou0|=(3arOm7ixaTJWfBե(;6|ꢪ YD@テ{V\c),I=ctHBO+Td a<?ScdXʀ9umMS`n W(;~W6U܅]l"8 ZFȐ.ƞB%[B70+[G>fWefX 0^,r}_ jmC+y5ݏ%џ_`ѭٜehsΤ=Kn̰KWl7"_\F\ &I)67}k;p(Ώj7&`h'E5[޽9K c 3l`H̥X֬LW\Kvf.Ïѳ/l٬jM܆m|q#c6W}% lq! 终1ϯA1+IgnpmS01`ޤlַuƽ\„z5g`:\̩Q?q2/͹%IgM2L:WkΜx8]$Y3VyC$Slb6^QTnjOKhz`mvn1#{hOmߤ[h}WGUFKj5Gz蛿WG ˿aLEi@̓2Ҧa? tL񩐼/@_i:ں+2U0g}طi>ee ߻({>*pWBX`F&]jO{?}2` cRJS۱{Dp(IJ'Z}JEBHe7Wڬ>wǤŽ0|Mr'0{Flzo;Xܫ*١a80o*ec/ ֤\-O6 g(ˢ}6~N"㇆6ٲ3rL;v#U:|bq?Umz F(ujC]u2Wm%J~\f6c ˂PyVȓ>)0^< 7Sԣ(ت-~'82?:RP\LυQlg~M;;7Ũuc bP;Mh gx?̵D]=PCy%u߬. #{P$u{q Sl|r:[|}A^YƋ`zt߷N?J+*;&#`=R(N"^0{wLKm<Wq9v)$wX;pg^>**9, 7!k}z*?UZ Q~k=v*k7DXֳg-Vf @N6ŸÐ fjH*`WvI\clfC䊕/-{`RjJOL8rDKC;sjUT3~R.K|UkqF4KME{pG>6"wA!3-]<$9pqtp?dUH0` ˜3M/Rd-T#P[;ۃoĎQP;VLBʚQh,#{}c ܭ R{ H`>ԤZ$ZD!3mm6dT惟bمc?0`aMSy_qgүv.29[:(dd3>BG\(II&7?;TK#uk0d|i>T@}6OةW*Xu\KU qr/YľCUcf8uH73V?y^ |H8 axQYyutǶɢh}%Y~jcb$ZbH{J~99S俭pefx &Kk[>G]'~nƙ9s#"=K×-3*Dz~ a-;a:wyJXZM[Mb_ql'Y?f l\-挷w~za뇄2M%b1G-?lpQЇb~8gmJ&.U8sG;vV:IޯR u$pZ"jV Pt 0iytZ\UŞ\2RfU{LQJxagңF=ۜsV㑋$(6\4Otn36co$vMlrS[o=oF][T=>+eL}L9m``~^Wy%/Ժ_L{,A1]YGWvMkAJ@ (6~`/:0UM}?vVC5h!>(&FȔ@m2;h nZ=A1B!4ou(où5{Yt#Ui-* |(R~y%#yKFj }Yw9qE]<|_CEoAY4>擷g*ւSt&<>Jw~O ;{м̙'b IFa7k+Ww c =1>-HF!J9a)ocnbXT6^ vmvO`4 U;+K;8A_T~p09,t8T/eٜ$V \5MMH;;QM=DQ2'd>lV@VJ%`>'9{f7B/ Ų@ہ fp[ ƒpy iUF7BO;h(zZF8֘߆NYJ{apL q,Q6e>dl>m[-j*[\pL=$+||i ,ty<eNbַCO% '<c t~2[<E|Vk0rEN+~lQF1l5pPG>Ans} ObGO}zAr 'tnK3>[rc1c8!m_&BaXِ Q _|ЃPn+Z vQ: Nc_H0G4ӄA5`kU Рw^9: ;~ v)9sv3&/7ĢW^",OY!KX3kZ"~-La!sKہjڦ8_\X%a!-0; %DX+yfތ}O{[ na&}`]<>LX$^Y˝86LgebaD%<): `ul 'o} ZB_/ca[ GrI3C_?x xa}kir]){uoS[olVӪNKdl r] >}z^f0l݉sVpeVs?|&HҾ#囻8h[U<3[Rn10kPO 0ݺwb).u>e (گ*Vo*`~u-j~rϲ;W'K)nu8nf畕0hSO=R,%vIAwqa|W=q"XL_nm /=\=y+vA\iմ|OV~ ps҇o08z5ߺ}u28g9 #֎D="YBZI(%K()%D+}^{r].y}߯u<f r@t)B6D^-H BVH؋ 1:k;JU%8Ku/Q V/|r؟@}_vpf(qIZ]UE#wX>+FȰv{wHmK;>~_g/*L )0(S~ Vrv)^!0 +aM_7q`TgXu}jM`NB| PygJjp$0қv0̅ɪx?lm-JV?o𷹎@o{m45 SI`~\"반nn>8M#ItE~ ޶qy'<`2"Wh2e5TC_C_uu1Y16:m6xaXV>iYʙ*NjI}1a lAGtʪX&˳N/cJ6=ݜ0y=N!a 8,<հzIyyV]Apt&@ )W\G>; ki@"(+`U o ]p~u?3kBӁsr =^bQE%.CGrٌcִ\I8GĶ67oMFe[H K|2̱ M,љ%fjsn14}TUe8ő\")<ȆᛓxWLhg MfEvM5ZO:g]`,Ffst/ԧ1qL9@S y(w3|:M AQh|WvqjӟzS,#KSLwLb$_Ζa,1ڇ_ qat4q$2X&n&F&qJ7H`@P5ȳFFN%]ns(Rou)QjJw6ПkB]9(i=$kW̗CmKǨvNNƮXkSTKWle$C@tr|${{{Xy7rʸ؞BH9NWffs`]x[~)^s8]94EC6j<97x[D/)7_&mǠPW7t~M9Qχov+}m/U@ w>Un7֮iac ;l(_ #l*$Fv 8GuY+cfNQ>>GaoǰYK9`J sn]h} E$PgΦjh3? "iaX/0aCn x^bgb⡋0Xj?>z;|)93GqN32 QqRQI'5)`֚U+H}oZ#eU3VBm۰T($ n^M^'0+dZ5; d&JɅ5hrj 6!D s5rq֠}N(maˇY޶;`ҝ30P(Z+*`N{Baзs,I4ϐϱ\GB%'KUbdǹTb" ["C =gDŽI*q7gV6SDFTlzLq Ikh|g"t8ିVqx7 5w$G ά|}G!5k,8غŊ%-MQ?iyó ѭ97 ꖪwPd(JFV/8Tn#/ƁIh[36Ėͫ ǔҁ>* e,J-. L1_ +B*qy?`U<{HML68&SZ}hĸ{U:?RR~g0HX jùsYok%Rxم< "SрSD"h&!?4ӍKvX_?MqȾoFkŕ;gBuo8U^l;@4r1z)݂=asg] uUб,r[,xZ(߃'kT~[JZvjbviF?}Q[^YBHQq*\xd8VSC D*<1Cr>, .4Jm3EG}oq N:,*i#9rdek2R[=a8E-!Kf`pJPP(vg5v \NAqFXT=\keaǭ^@/o'2߹O/6%ҨJ{`6X9:*>Q Keaqc2GX![3`a8emOx0Y&ݖ3Ca\쒎7F.R nkt~#そEןYf⨍ϠuqwۄŧBWF5L[raPstH.UsT,I{i}Te)ݧAq^wS)8%vіd ut5[=K'#- gGnGx_Gκ 36nR6X`X>;==PKhvf݀ILAgwn2n3|o%4O|Pb% Y7t߭7%|A˯Yolϻ_~Ó{ea ̲z&A?y|/_Ȫ~ R͛5iVP&u*Bov Pv&#;QƉ{/bIOG@RJ|Hz ^51<:[ `q!'3DcܠM4JRGCXG;(dl`y]۱í?AǸԖ\ɾ wd!hY'Roќ\`PDʱ2RPod9VF ] :_gyш*φ`ֱRf긷 3t]>fk݋0dS;k#f?n<I|sw6q.R#/3];|ƾxZ+<Յvh=s^~?4/?okqZ^[+N\R;4hYuGXt3=T1R~9'eP~Ù^~\&b:-M{:v@-;_U.AyVi01[tԢsv,׆jz-[J֮37Ry/zS ˡ:S' E0B8]f7{~œ0z8SHzy|NK?+$W^x̓.`fqdswxo ]F8'X24#߬4DwsEy!~xAGe4 o7E}Tb^7!O _XM*O2!kCj=Pw7Fvbah6őal|n߁+[sѠc%k)tWB[z!l8hÏ=O{kbM=tX^wy<}kmWWOth^B=+g;@se_:,UVJC {C:|MCZw=4df fX~0cӳPSz6?1"CÉ+Y0RovMgG os: l";$%p&U<ѮۂEqm{uɛ4> mto@GmabBj˫#HB Av.XtT2^.l ߑ:[f%̙^F3fXuȴ9W yvgWAPoи1}*rF| v`DdCwvP'PC~F] 5, , x6M\nKKĵꡛ=dxp uاBcKc6|d|%L'߽H u$ j{),{9: 8e+ ڼ b?;qKj-y}DYm-,Hx >tG9& (BkZ1 ۑ_֦'o8 (|Cۘ>Rq3@j}\$lqLź ˃THEXU!qjR l|M8o7 MvBoy>d{: Hݑmn.#p@4͑m3zRmgQy|@] 6liSx8 3;ٚ}:~O`O]ѳ˖ 0N>}9,fza!=vϼWLeY9Q_`eIy&\IUYu Ư~|ɜh'qFq{H&bd+3 [MboTwo7`"]ŷ#^98z9@[> |ů T "OICzfCSU/Pl@&vJ\:{T S>g|a׽90-ৡc hhF8$Ui ZCi'Pn?ޯ}τH't;1)z<- 7Xʊc@=Ԝir D ?{ 4l%?? ܰ(q{cr fkxaCGE|E?+]Z ?-I A@W,-9oG{ Xf«50wxՓ R@8*KgR蚘VI=^Mw^"S[C:-_St<*R4{h{U.BW.0wUOjF#TWؤ_K_nk. -zOe08vYOj|_LN5e<;4/ u HCG~HCO=f(rW|47xٌYcb@#z?LV@'v({R6o> T%[+Cث ;>\tqmʙ",Ł*Ϯ|EYhp2)JIm7^^+""MAro&`Yl\IHp_]4 9?=Bt,n:L?5gbR qlj8&)K>.9a__"qrW f Ԑ?p,Y 4381$:_<ULJhb*!2쮥aK'?7pIU=2LOOVNb',ᷮoؕmQ7C$3_I,8,۳m+721J`si?gۗGŒ İήDgxXF<W<a2IS!{,d*T }a$.h6%OhNIbZM"÷0vSE +ϝdotiпr \!N} 208G2#jt@e6(ۙFwa2x0(nup-+׳P)%м㺗E3.u=$~`:ih%4|Oan)_}-Gܐ؞hU{ zQ$b(HSM}.~9)m}+q;,_&n…t'W_h3nzR@ F,]^B?b-(o1 i.r)[bc~O,*uIw- fS@^U<4+^xl||U^3՗<˥QE-ľ4u!2DD03U/ˌ8zqt/t GklSs<E 0iՐ:C b4b8Sc} '؟Չafy ^H0k?O6$:st]q6~Nk ̊/o 6d8ݛ+Tb `v! '¸'Y+:~?|YCr{<ս~]ݚS]ean^Ƅ^|J/;"2?t鳾lƗ.I -g5@R)el0MwuP:=N8TT&>Ϊ^ԉ73)D%k׎,z'p͙{ =Cm]ѣZ=Ϡ?`x^>KބYV',;4qQjӛ$ ']E,ֱrv%A𹼁B*˺/yڙ\^סCb_|{7V(Ƨ0[Tvy)$ tr* >/ >IF $O88\r/j-Az48t$&Xv=5[ktar{? tj"L! w9nTUiA .H.@?_]0'̢"#i'4|<wBvE㤲PO(X pX+_s|]R`T~lJ~hYҟp&4.+u__`#^Fe̯~ʶKIpz(1I-o*]@&K>P 2u3;`ǰ ،0t %B&?ٍWHl,c6anq8<~0&XFy#if%kwZ_*c[Po4od|m#Ay!()- zZlnc3 HV-.OjW'"G'piC1'\6HN,!Q8ttǛaj_ Y?ГipkWpf1> ǤKWRz&9>oyj֠^<*H-]8 ͊j0}in 9_mHXxϠsj@%_G\ `ݶS+8aUpq;qyyVöÈHKpz>oKlVB/\zm2$Vxц[#߿6.?` N2 vL걃*Xf`oM~ۇCho34EqZ%PR?ҺreM2$4҈os)ܘ0Ov-L|U*Q(b7daxSWki5х"흆כѺyYWVC@as?@ϤÆ_Y1Dl{qiqhazuw&mO,wiٍ`z^èV9=C%>(x{cڛ{l#RppX,7{E\[W⽅Za[m,&V˘;gն>u;*^[o5+H=DwG)R:+ *Y}HddaXhm͒w zfĥ+Bnt^W`ڂDXB5TX`+K0A>:̴daSD0&;vFh1ߗE}C( XtZ ص~ly}_c~/Td8iST'κ*t?Ñ'!']z} wҖ?M+[ I>XC^q s:5NIm9{N:eU$c {H6tjx\Qfnr'Q$1_՗+pck#T5^ƀ+>re yrReSXj!$?.Vۻ?d{DhCFʴy*Fq)^Uv^pSfvi\A{ʖsH5d& g됆R^Prbg ɍX>]r*Bm>,rn=9hVXٹIG^S3ZҤG6PW>+:|?{UӫKlPA<.fXXaт !nfb!Fs2 gjT ,6{\\D٢߇ //:hcSq?oO :b/ c_n$Vȕҹ&aN?hOyLqǤt:WV$PTǎK-!΋zЀlo$=N eXCaԷc&T2<,`%Dp a6b)jvk8. {KpJ'Hɸ|-nեRw꒸{07r_2VI>]$ {bnFEE7߇ɭPsNlCvKn GfWi3si`W~J%EM |pEf·8):m4I= I㔺WhcU;/`='oŴp|cNWkjl?FYb?ci>m>| /~EYB1}4JeB7}jq2cz#DWuDYO3PK~fKÚBޱ'_tUG5.꽍9jc2h#$u/s8Y h̉y8d0Ij/BqU5@U҈lQ2t8[}5TҚy0B/L^9sc:WnJ?pZۃ@r0y 4_Ӻ*(VZƖ6Ɩ =˰s!h,. ɣU{MQ-(ȨEKe(34$y6 GFqJ!ƿLrqd0%E.6 FX#Rõ}ގ.- \9TVIc@җφIj8gn[B/ΪM'e79߀Bα[Ps]|Å$f!7/ x F*SCO} }*^EvwqDZ9{^"W)o(  H+-^|WLa`iM Gƛ.aYOs1V>x(l钗៦8 h:rTFt<t)f G&ݲLQ ӧ45`e[ypEq+.49^Ez_Hb/\qQG r=z Oۺ#aqr1%_\sѲOLM . Fa:ZpwX}]C0lD _*(of<gF33C ? pvlǣݸSJ1y/{ aA5 +U7^cǯ"aebvH e-\V*{Gנ7C@}C,xYn\EoD'6]+MD$ /llѻuƒ@&>a(-Ä7@W2mOw@)3\6̬ G`m\藪#7B@J( {5^ Ҵ޿cəgu˵2aWW}8׮¡a.%yWIܾ#WUW/a1jK uB2 mõor_rQJFo(1OV ɾmp6Eg{pL|76>v~RBt<gs^E>npR]of0 G'OS4#8 =/i}cGC[2Ԍ[.7v̷fX7:X ׎{]"9N!><{˚Mo 7cbe""o^bR̸jBCԀ}S_'ҩGʻYOhЊթg@u].@s$V., \ұ/*푶@>`>~:aB'\~\^u6NAQpuC-%ۃ80m # T(]Mm ٭(=)j3wf+]n¯/~M ߉Li`]axS?ݱÔ?(8/h4\]qH:scX"S{<[Tt_y'kADz&mZC8#ș9(Џ+&ο~\H1>1FT*wۃK{^\}N/5nmE :) GkcDh&sѐԃ1IoabW~خ B8MҰH{ͳc+R9wi||=t7[ |QoHt:4rjiZeT14˫ᡥswt<.x`B;AQ ^ʢw0@JvWIc]ݚ0xO`ͮ%P6XN܂ViFOq4q"w)i72$,,s_`]%w7aq\e.%bEXR6t,G(w>͂=S̡ HlG4]cv3m2îÐCj 3[߁/oj&/fʯ Hƫ@ %20(!ҏ|"2,E彊 NDGoqD-F\ɴ|o6-o\p|)v pޯ4l`8,dٷ[~Dv7 U Xl|np[VP/wq`Y[zlLy|r707׀j<%ywG}9`d=5˹S$cpϸ &;EaVE>\aXIs/,*<ss"yf|饌YJjQSrђ 1ӿ 0_G-OL'滠-NR$z:^'_"F5}/V`I:\9I׭~{Ι2mHI*s?qyJ6k8C { XA0 =] uC'=s[^tɷ@aFZJ,S!th5+ &֗Z#x`裪s0O}/,\[C8皯E@;CNLW!:]Uk |-&Oxq ^s~_+?.;ZqO%,IT~Q찯Tq*TgBF uuF|&G@.cS^ BB0TgD&"q3E;saݗ)ˋlTaA@5x/Su2 dqp^}& oہe̪1!}$dONMNd²<@e\p_.B -c{ƠIl:qf!2D#F( X]QQx zqp5 /{O-4=~7ta2a,7g$-nCr%CRz_'b\U)N},mm؄us=lSU#W I.l;ؐ4Gf. e”7{~%οa5a=ZT+r?U=t-kO^\.7c\o0t*KO>\UC^Y0w x <~ =Q߁j5z?G0!-"|>L`ӏE0habv1LlWI%f8>lǝ K~9q}> [;gwz_AǾLW{T0]w+OڶbӉb\Y&>[){`s wpc7Hn4p+O&?|-Cf%ʅ;?vmpTiq-僸<ޢ\$ _qF _ɞH;zo˖8Y@vF'3\(}t?5=2IlvbKn4LԒ %3D_8{+$7~9Y㫩:WANtNk,LGW]g+n G'˓4&/fFÉ{l?YxZsc 7z8)8͌?݅ ]q./U CoWw7T$tSTͶ,!(CSPr֟HQ!;( fM; ]'ax˓$Ewck-]#eboߝ 4Y]Wn%,ѥ+b')P:m6I{V8_5\䬀2K}E<-} ]:w]gws(,u^fݷwԢEZ9U$6%`1V7YO`MX'ר+ ɷC3ö׿@wU0ϺoԪ/܃Mvhiav(Iz!FwզMc\ >Z0ux76zrjC58hpEZvLI BnO4`&Dַ]0uSnNwv)9⬬} 2z8{HDܒ}k?Nt ~SGzޔtb7'fPq!7?a 1/5a/5tdf w2Uco,ygaε?^@ xT`;[I/,/ Տ0ŒD||ԩJi=}{le"F_.n| dF׮>ZqV%))=->rQ~_{Zr`v{h3+Pb#_0]py=>oT(R):UB1b#i~MKjA{g!F{I6ua$Ҩ翪?-jRg?E+$Sэ%%o @җ/L/V2">vG=aè''z f˟N(%)X)D6f#FܾvP.ܨ:tQENˤ{\49Qr*7Cܾ:Onk.G^R&1p\506P@؇כXܻ|sp8NWd3`X nXrC ܰwzq4.Lc`Xtq&)y*]>ʤw2۴#8&Xˠiyf )(Z}fNs4o9[!g)=[Ӱ&B!Xf*c eW]iHJ8ˆg>vƎ_wRiVG9RDhJM7G Hs%ΜfdOJ@?4@wEna͟<2У̽E ;@ "a_<_wjGޝxT/[9bcxN`vw4<CXx|<'UӹpȱeaȈ{=OYql 36g{sx`QI1ԳYE8|,(XR}om /’ʘ,ǖZ~|zQPsz )SNTF&GRôtӀSs gw=3^˗@YcG$~y3c,wl0]sa)5޽\։tG[@JEGQ~7#|PʼnP>Ldxʤ˵%?OiUU闍kpBu8-I Q/^I}mԿYH锹! '^ ?bNڬpAv4.uh0a CN8ǹޏ?y>uF +IW l{vNX}8]57V9?m䥡nA]]fƁ,QERhj@ۊ=}v`,y \?:L^vaY H; $,i"Kd ta%_~V n޿s3|ޱ*wwÔnm?LbyǼO*1۩t [/^,<-q\=A;3lheWm~pSXq;5΋hWMfLq|9oX8]?y0 *bęJX~wvE^PFMaЍ'`lNXËeﰮi6.gq ` #8{!:w:qƔ O?h.ʞT^L3 ^-M ̀{b/q=?/s &yW~0tӻcF{Yp;? =bpf=زoé{Ts2yp8"ܼ00pHpӋ~@9Tn˒Su=;TP ֿTH(,]V\~DYW%}%0rޑ'Ћdy,K7iVaοjߴC"B( HOD|cXh=%0{[Y'͎ &QwG}%6ݯ߰׾mⴰ^!UZ[X4 tjEߕm{ߚy&F\;ާ)D&ҙHr:#W'q|4>5Z% `FC.L\850#gW7WRpsz\2Fv8B8vRd?. /uz7o{N5vw#Vdx}>^5}{+HwW{h׻}HIʧuDauRv9Qx;X-%O 6ȅʃg?_+~310<(aFOA3vq;w9`u.Hu>Cr/Y]UO@)ov#DN +|Wn>r%1ĉ@s^ҟv &X&`=kRzXK T ]o9hƑr+8g"V9f7t3muf_#T3eK!xɀ0%rǙZ v=CwWqW@=BSHXw&1Ct+g7.s݄A,1T+K8-@ݨbm 7c~}8A$[pB.+sH2B.OW#2uxæ+@!:]m X”.|z?do( B~jTl٣~>UܸPޯنBZ$T]76h}e@^Yʴhf.c諺_L;,2~f/¨3OKEyuDd}:O3ЖZlM8ϑ"-ۛKؗvԏΟm8c%XMvjy$4Eqnm`"׻~-XCSn~|[%˒S̵èR_w=!2q5|ֱD_ W=t/-:ipboy}Vp#r{>qf'a4:2 D9O[,0EX~zF"pڻ2)ޥ;ӳqf⁔"jXHY}IY^k:q4|H#T(m8++6j!kHz*n۳캟>Mǔ{W>>b5H9}W`#& &=xE+Z6]`IYJ^ތO=S}7XA`KycW݀kmcW~I#RpjYƝ~gvh ElKZ `t1.C杵Co9qY eGtHS߯ɾmBXХ3'lM}# bL~]]BUSXxeV S4~ER缴]$Q\lqun.Y>sİUpKde>0oKn%&R?p0da)i]aR]׳pn6LNz3fusOr.!=9w7Z]q/N,ӆYñ/aSK ^lzV>w *#[vtl7awou_k@|f!3称lqݺGBaLJIcXpw^_1/*Y7G^jߚ]#]iH:{G)>joOl,.Jq ~zkI4zdm$T g"5|\|#N~tf1~9Mƕk, 'OX]) [e2bőAKO._eBBjZg\L!- ޻~6nmҷ>`XtZֵZhjs,}7XyiA Tg_fw2N.@\sw,96砉dBc!ͤf{ KGώB-ܚVYXfo?d~@R6C]h-IvY8,gnZw@__'yLd=L79ABי欪>ư`;$ݬvBԄrBL>^V:-?sy:i C`~ғ20a(Yt Z#J\UXT$k:1 e Urr>X\:s7m@U3aG#$zONao].]YVk)d$AO]K}]fqWW U^G4"'hw<B7LY17/yUN1tJ] E#MoZ^IԫqBP}!sy%b+`ь_,:"z9sEY뗰'ӻ*˪Q`bݒKUb{jWW?b 0:8J|Fn} #eůR0owN0 ?qyllU29sή8'Wd+6*^\hD)ΌYOQ7?s,-;KVㄇE%ʰl̓ˍ03n 4GDO6uѹbg_-u/ T r$n)#^|+M4ŅM#@6Yq h1v6}3OZAuJH,5=JCec0eKJ&nC햍0KkO}oWqjGE`˸vf%߮i|.ke;čq^|w#4C㏤ !9P}>*n n/ĿaJhȡ: ~$o.IД|JJ.Ȣ%V}RRq^/RN,;[Y rIжRv Y Hn<ۻ%XY}O ÷\I\%0zlg˯$0_ MmKao'a6BQFBa94u[Xey֤U/o!1:_y=ǾsCiwl 2t?eپYQS"vz/=~MDŽiLK5@Ř9U)}ca`  \>:[ K+ T z;>R gwVv~^N{_DV଺;P+ؐ -o b'M&DHpn6nIGt0,rñe|lѱf2Sjgd|Ig]NDKB[{jΪ\ʠ!WAvS8v=*tRqElq b{imnǚϼaS4'%[y5@8,M﫶7 cMםy7VO$Exgijp4$W*1MIV8$IMuGWR_`[ɬxWySCX>ɵ,Vc & „Ȑb1lP;ͼ+&?)>=_֋}cl,y%~7evъS᳸p6ˌz=\nKΉu$苣C5MTDέE\r){z f/9ہsΙ[ $~׉8zaҩ{^w g2Ԋe{mpO+4|К|˱8?W.?0]mkiA҃l"x#aA0F'o>.};2IpP!NK6%~y4s Ay^0]& lShihU|!7mՀ%swn+ Tt;#Mm<"-(cOO⵷q¾ci?u6XAřz90u\d B+B̋ᛌ5P}F즼v|;ހ3wʱBl!ܸ|Bo ~~z+e>a3yq<>Ye@i־RPk3{Y {xwMffv|cgy`Kˣvvae[ZPl <,J(o\ާq4"*F<4`N {@̟) j޹@t;MT9 n pGҸ˙C_`9WϜfOvlHB9xa,3[ǡ_?# cqs;0R"Wq.\X \޾pM6R-v =NT?(-OBJfe=UϮd4]䱖# ]u޵xVCw@].JJӀbf/Z'_#|A :ajDt˖~@d^\Fdh ֌+?#irO\~7ǭ[@VcQɋKajQ(ⵠ{ q8"hd> K%O9i혀lAC&x[xW+a)S! ]?>Zjˈo*_g YJ2lˁ9m0;]8Y\6m.Ö]˷}Ϯ:;Һa]r;~cх&mQ9hGHQ}n&xꥂ+icc^0̭n0okxȊg&Yck^OFzۜ!k춦 sGG'LW2ݍvUKp|%hE珈RvVe6Sx-}” J}.a^&z#dp`6idSH]x]zxiF2fBm7aAw tސz"AWؐT|) -o/;0rMIX=?r\r .YR*l`BChLFw\CXֲȫQ#vXl/8ջDaNĔrUMZKXG- Y+*!svERoW;2bH)'"^3/HJ( %) ;N$[{6wǀay~y$ZGAN8Ogn#bZ& {& C͚;}h/ՔotKZ/M4g:q?>/KBiv $ #|vR,$?NN<7F* 9#Scϋq{隸=4z*H zb,70CS??o4Z-!YæIh=Z㵺Ǡ}+PYG!j镻}n05$rj/[.3 0ӴanTy&JUl-Oo;cjF҄Ɨ*6gj%šH.Nzl/ gm ߅K;p΢ce%r bp_YHa}T"[x E/wmˠݹ9M5ey}q"飗_YDүH{XM]4^]ϟ-3H5mơ' \شy Uy|30h2t.N+M`;Q%# $v Ci;5t$ӆbt8 g,3-@cc^^> b `9qgO{X.מ1d4# 7If3 F,`IjX8e<O?G@XᱳKpvU e0)_֯鿂_gnD]aKJ>̟ka 3I1iCg1r+|g=ۧH8u-~T1<#1pC4(Ii'N'2:˯7 ǒZa)UD*eyUƈ\09S.L[R/в!hC_77U|N\QNɖ0,lZӶ,i~Я`T$ɴA >6CJ;V{ B] |0G/\7E Siu]>|J nybǪ8xҒ7NwLFvGyWeܽHYIo'M'%]9r5q]ܕ{8zp&u8v;O{ ._/7V~ez^lߍS8*Ql/J.D /qX^e(/bW HƵ s3 :q8 wGơ7I0nqg4%UU 0^Rh)^,C~9Jy:`8<6vg$aO$] #_I!04я)DB[Qσap`v9\IWt EJ"W*:{ ܻgj$=c{DoEʡ] '֠cmS!s ~>snp Nj,aЊs&>W9y`e\tvl2!esA(,h0Wmaƃ#ArߜδvL+Zʘ+Iػ̡ c0}4-IUM.hur5]٫$b֕Nj}ā3)f\:G66FMDK)Q4dU^9Zrqb#)k*W'l#Mesllpi"M湁_?\}).>sy7p7Z l?G V)FrggI4,X< RTd`,td|q4 ["q7-.L~3. T܃%Wdtq@KW #aF +no?PkMMqJgqAvM57"_7_}:e|*9|[mb/C@%&\Pr|dw1\Jy) Aʭ΃2Ó]CaأZe3 fWnGА+X5<ؚ>˽3npohu#NM9(!bId9v/#ؐ,RZ[\:yh"dp"§Y帬8$ lB0}GM;}n&zLZp낥)ss#9Al oC]Twn0aY/pr+V_Hu cw*LJn%z֌M0؋@kzwfibz50VTn6ڝ#jfԡF䉋w5M,gf'D)i{.I‚c3:XOca k@AȊ?/|νC ƞ9Ixjl4n^Y*{f6T#_YH!AqB\O8M!ʥeyre W\{ cơO0 SÛ{?_=ŕΓO Z߆jq Pvbߚi(45\z/ TR]ikӿ:k sW" ni״?e剴R9BY&M\+R&X uE\~ ZEjGWH|#{'[ ɥlUQSp]3Lf-t}"p 8#)<{ :.)A\ud|C>فFշF_j`z♦LvOT?)UAM ؔ}#BwO̙Q#i"-$mi/T6MTTu裱L8Bȸc<"^8⼡E vwt)BJ]oEU`*t~7/54|/!yf*c5nَc%l#q *WI}Aw8k.nKk#zvnɆouc: r"TXQ$  \ٯ?LAd/ jU 0JajDQ8$%{m;U??lwlif6]?rɅ p_{S-$`NSmI*[V Ȫ>2 M.GanlsmimsUcj̙:h7tG[*. \7l?}RW~Hʇ|oIu/[(Qf1R~JC^]G(] ̬ž~m 楿wMe7UXDo+,f(~d%~&Ń3H%Ÿ]I"@a0<3w5 [1u?4m|1}#@8!'om`sEWS;X0zn ZLl[q/;}R 2GYLz/1?S0&X*N{(| [K\0V.f86ߺ=}d2u*Fm{Tj5TC>=Ta!y1c] -i.'Ҿ{},t/ ?zZL2-ıW/E,? ?s$~+*ۓ!/w8흯-QDJaED$)#٫2*%EdQfMގs~z<vIy Ӝ϶bבb0'0sđsUqDӪpTЗ}mߗu{$&EV 31Gw%@n%4 +|'7S};UrxmPqn a&MٔC_#mN݀  0C@`!,}|,vrmӢvq!Nw1+ooz;a.JA;Tiʅsn=]*; Cۭ;cS=uI8%mDcͶOg"-Gdn $2 W֡a7,9|7Aii4cmDlpJjE#0|5čҩ}lpj.qHdv MAϾٍcsΏ;uPO:qLzv΅@R?8QGv\cՓtwFBojbID:aO8#Qre,3/|wlB? >8fb|1c9BdƷSR\)Hkj>Ԋ9Oڞ@ˡD9݋/3x939(fhfU)DAYEfؓ'{t|K_=qU.2Ήmq#?&yҒ%5hI/uڋMci~n"7G¤a u1asD~_`!tOsШ'$ش4sW|$084cq8b|00x=N>8yFziL~xyX=+236їrsjnYhhw9BRݹn"}cXuλ/ nz7+ۡ>:y~ӂei0~ `u*g4qoů0}g0ծ%g_esoXO`xn!!CೄPp_5ı7յCy|,fBhIs Gi[큲f?_tqG-w["v)\q.W{ iKҨ#oڀ tʏ}L:QuG,n`ҁ2[fML+>9VRsN̔VXޗa  q-KH'=Хg9;"r)qдޟYG>8,|uNїlsey ޜx:#~+jkhN`(KݞjX~/$v^ ={ NsȰp͙̓l4HgD;1dx%׌XFlz,9d!器=w ߓ3L;O~E٬:cZ}ռI[p>ns.<`&l`P.ƽr;XqOl iSifqPEw؎4OmXzղ&atz ܯi[Gv2SB\W%Ll,JG@>\صF@m¤械0kvk ,{vb1o)j3T{~@z)X^W5f lfW q'6YT^^l ~^2у4t`6P">i9N>zFCLo.׺$1hIx9F?̼O۫bǛrX"9˝{i?R$wߵҨQ +DVc/뿯LZfjɼyM˰o7g}sBf}q1XNwB__8y4n+mm~ Gd9[$DloԒ$pҶBF?wp釀Z{iۡ@WQ[v9U˅WE~p6r𙣾.u}6)y2߫˜MH !FtxQzݠHfVds[^g{~ ˣTa?s{0Z c4Sod 86v;|+{ o}qSbiQ\:4Ƣv8}HCIA#tޖM.5%9h8WgN7?vB ޝ8N.?9QwSd{GI#Rm[s2u\6hO~c?g1WPO@c<aˑujV `5do+7,MVV/P绵'x\%gˁ+aQ@y yw L6} ,g_~h›׈o`} Vuuey:$C}[_H6Z>Eb{j]86R<ˮӜPC+Dyo)yn*equNV#Yw/Ykp cg82BB"@y9+S<-1XcOdTzȒ kǞcv VcH9+4ȔQ]@ UBBT_>#IWa1ݓ`V(m &m7z984))8li#|> NoA(p݉)%2ٕ ,cloY'ࠍˎ[_}J$k;oV8p Ȯ<^%D);Em-a#Idaœؖb E;qNW:*O8mM'=*bokE¶?T?' f<գ6C>>vX"+buj-^)h0y96 ~>'9'_/\Kq z^$.xlg*&&ևs:J?La^ vh)|N%9[Ė ebmG*4.|b;ӎΑRSn@( rbj_Kp~\Y/pD6.W6V]E3'*qcPifU\l|X |/bg}k8nvWL?c &}a5] CoH~HhyLBZEb+loy)}{KmJkUL; s~ gc:@iRVԟ65Fh{]f[+Tz.-t}Cp]x;k\[;-@Y0GlW" Q>#^~<*w=o1f17lXa\oi ,qfۯgf#l;]@]yT6$]퇮WI!0~vY#d!e7GmHw﯌Gj4k~ ۘ5 -.ki ,&:Fw rխa59@j兦L0c~S.w߰dUCi"8D{npxd= 8UNzд(e_3MMꜽzLl湵.mIr~Zؠ̛Q{u`:6-;07%+XxD+l3L= L!tE R]8Zo%swLG$=vC=aBK9B*Bh-P @v1h狶հN! C(>旚,bfaO p4zK)ة{#0kkU{+?ĕ0C 'P⮙}-8M؏׮"nn;?_מp">87 YGڰ>?G'a8'R k6w D 0[ ũ2lFq0pe~82Xь K@;C`&qʽCCuz}?=Kl)Gm0mi#K™{?לws x[.^҃BbpVfc!γ9~ {7Zscƻ=lqNFkK DKˣ0w[{rL19|00<|Q9&I_Ͱw.ܬIWYnLf!Üj~oͽ2W=%+awñUPq[iکK 4W<|ɬb5H jE #?gė:5Ln$XoBPzmj-V }wx9qn4noN70^A& 7i`#jtC}F4o!-ܕ1q4vpZ]'{v0{O^<$ % SZ]8)q +3dSɔ@6!q7l4{#/?bBiV"M B>3hQ|jw0MOwnC7wN>Ifdk;tnN?V uzGd ^0B%yƸ/ ?0m~4ig-+0'+wZ5>9KCxaT3,*zr^V+d? @\!0o>$ÂUb/͌P!T}Ù0Y)fn3zV=AG7R9 J^1V[5 ~EYNwA$uFT2\C}3x1VmC*W/Cy!c]S\f~C=.kv:YAfI2{5b^KBm߃I<+NrO OQ1;}@O #_b Txz̫:u;p qh){H'?S>vy2zS0qgSa:74H Rfq&kvټ,,gWŠ=F G,: `cLH|Rq ?{R1gqжdrSS5+i}N8*~Z0@)J 7,TWp/TyPE(€݇5bJoMAlWofO5Yߘ>&%ICxAї8s\{j%p`΁p`s?)#~eZ/aҫ俲 W 7WHbR<[av9)7|3'Ri8L:.B|޹`=5ؠT8%)l}i#6YQqީpp|+fN/E  CK!ZtQܮϢe?_ft LL6t,?mV! E*8@o}J$N%`> &;TSh 9v%FeDi&%Mk&[&̟ e΋rޜZ\Cz8 CM@FۆQ5S@dijZJClT'iZ!#:sVMҚ%&zCv/9E-͟Tz$~TQ>u8gf@}ƞfj}/nő=Ɂ^MQ-ȍ=0c_~o7eÑ%} )m^WE׶ɴMN6/=b}yڴ; HXd:q3 +Gwgy_-L;¨ ŷ斔}-ɞNGq;q3O`l[|w6{]<`btN{kh8B=95L KUta)3纡x뮩x˹ٙF60*wWHƿC]?P'S!?m_0Ȯ_C`qmߠm=W<Q}?}D$Ӌ-|L [;ؑ!H"w pvѫ?D~[ ZET=)'|<OjC?`!@;)9AZߒŬ%tȉG ?JrvNF`'p@ Dklf.lH GaP\ɧ2mwϖ-x)VQ?0O ;7ǡN ua^łUq݆_ca_ą0sabOMxV a1S8ϠuT_]'\ CY}$ɋ=ۍsLoOÙNN"fʃ96ASgCkT &WG+/E%zv_n)pIA280\||R`)yԗ07\8÷&rxc,2v+11}StGmr8ssæ0P% &6ʶX6G8o26z7&{oJvQ6heN\ڹ6S͢JC0(sigZ`ФyGO_A%g"I+v81 D`VFx`7tzqD_0pFcw@6+}`KwW!Tumg*f/G{ k I|^<̵BՀz ;ι<$Be"b!,v#Ζ ^/ReKL8Cy) >ݕ>swo-cMY8&qEMzowo1Mh"n);u %r&Ỹf@]Ik 0%Xee 4\gAioac)*|HO_!/`9MmPNuAuM _|oj b5^=8B_w{>R|6f0L?*W *m {Y)_Oc}I1Y'xW=EԷlu<8dp0Y&릗w@Q~w=\f4ڇ`Q"3 E%q?BIb.7(ՈaXri';DsUqG(gcO `t.x74Reȩ:.X[mW7pvoߑ $?j O -&(?x3$5¶N4?ec\?d/301\\RI='m]V* 1cQ2ikD oT"s)"#ݽ\N`1XW:"ӣNDDJ8+ č{~0|5K%}ϊzUw }ZW6D^**TzF~7Lk@ĞыpM {dj+.T0y x*Á ;jy荝<UI[Urvyre),*| 5tZImع/s^>y=oH :^9q3T|l+r1L67 t_oWSMJ%, z>"mjkF^Iz7EQY;&tTcSv]NH1DmrV n\qL.6˙oLIA;N3"k_d< q8~p#_D2Q(!3I_"fbKe ;DCŢ'LM,=ҵ㼕U lz5,ICCr5H޲B&Mb˽u}7Nɩ=%`ki;nA)v'Ӧfyt?7aF K XN:8ijӚ1 +[{C`_'㏇G^b,PF~t Q$+GLx̠3hG5/ia0tUЄ?mCZq:q\$FƩ8Sؗ4YE~!v2*o Ey`н`5G:wt~LGI̸v}?( - Mh>X? 匃7~ʭ'^a)0E#p%<{x!"~;uyvW\CXs2k2Hxܞ*S얱>{'4tZt$$̴ !~&*^Zn0;2)+[EmrzHk:ql٬Pu{#:fW͟aS6a"dQg򢥱ıhQYV%$ Wݰ%n3_`wَ&6߁? Seo<Zdr~h߰Oϕ@o=ɼ2M8jN`UW]Y[h:i K.pʬ CCIrTR9znea g{n$'ň| (L;5a^H>2yv3|^x{ 4}WW:/ c 7w6uAߤp3? 9'wp*(a?+v7i ,%R kOt8ej-.އ^9c!WaD_D.#R9|&z>8%z:\kfwd _>.|ogP"[竂Dz֫D/=T>1ьNdsS˳'p"&8y{ø Ʌ쇶X QB\ämVX qhW䝀I6}pp-{'B??K0nW^!Jd{R"ߢC{,ȗ鰕c%7_6{ `tw[̾+8ڳuB{füIeXF+ G.n09fL>cl -2 f҅K~ Q^dǕ*2cei 610)ɰ-UJ.G hl^ շ =omW2ͅ- xEn#|e55l֭)&|<`aqsy$l ,=Qƚ'0Ό 1/p%0Lf蒵h~X$͛f77ݜ Zʕ[Gp޾ak-<]7^:˷lѣ+7cK]8ۜ~iU1 8+r4pW1o_o'-YcZT79ClG433܃,z?ź0Pnnh=_c:G%Fj〤ŕ(9 䶺/Xp;Gq;tCoqڊMmjP&LZ٠F(N''.K^WHH F S5Rw%q ~3ϐ$vVaV&)>N'oߗNfI_ҥqf0*_9ng\x˪`luÚ9G4{xҰNWcƟe KݮS0p0^"Fh ø}gR U?=HКQ| h;~N@.'nWGԜۅ$RqeM |N[mVr{8?CT^F6EHR` Kگ~iUwO) ڨHbŶ;/,:ӑ5-ڜuݽ9 ï)7BXjyhTa-?qMaX}l$lݙZ!~w˱@7hp{/:963YԬ~ n] -blanFKXJ`'"LydtgU63laJL/oH՛-E>Ar|9.73Y/fȁ1I X/ )_h?|W)é7I]ECLٸ2?ӃZwƚ[6& G`_ʏǹT.aSaD0O\$&jwY롋W`ѯJƒ E-}{`~0}nH[;Iom^ܢMCJB{_^y6B0ٜtqnj߼ #536N.Y,:j;_$PƗcG7}d{' h?3+ůDb,pݶ8HK ڑQyG։Cbp#} K~;2t;?n]G/1a~P9_C<.brFTis-=?nEe44r5*Gvt=Dzk,.8CT1rZ?i_c lz:+ܿeC."*Nh3}C:]y/@Qǰz^20j;E~m8=yứ;bo @͗ŀ@:~Xzx@0KJ  2!z,E`oiPC.Lƻ?nKOXyT>,}fFwñ~%"}v KΧ_Nn׍6TmXoM_O?N˃H "ҏ' {Ћb{o_e^].,wx#N#y^.1/ǖ{Iӧ{533NV_k[ ͵ .IhW}2a5 ?d!q,"Vzf--@_Ze,&~1(IBx =h)M0s51H8^Frǎ<`ޘ6x`g#(fJ]S]$0̾X`!9 sr;i1STQ5-ASZ`=ϑ8FG6E?/hc[?קt*q“4\ݻB+l[BJ#l9#|D { q$,:H/o:G)'yc6vHq&w;wJn ZYqOY<`BTsXV "B/]k/l{ɅzW54IX(<@0n+Et.ʄE!`N\Mcܰ\pÒ:n?>K*c_C l\>GėpƋW:.Oك5r()fqA::t`oQ}|wQF .YzC'[vnr.cvN,}ASR* `\ c5`ޅett+2tStPb"in[@zpD 5mF8tSУ#J&&pv8C>H6m0dݧvn]!)u<@^Sf>m5먊:?=|i*c~r@/<acmMxg(R:ږIsN$D3q/<0qyB8ex,7X6:1ĉ/²N9жH ;(#D Hһ|uw߾#>(eq;,R2i,=f˺]mt0py))}J==@*/q߭ R_za0MomoG[11NlʿWq@+k@eips̀Vn3mbew^^u`T`({%FjA*]ێ'tt/wտ !_0 a+gߡGD;g~lVK^{8]g_C]vrcߵ#Gm\585P N}՘ü݃2K 犰VW̞-P1aM9q#\/.^h؏mWt^6x)A! +dl};r*"fKz_zw aJ+?SV+FWLu9 _g7#>ú&>Ʋ%0dm\ 5>]sXQo^O cwa4v[yw)֛s4S)׈D}qcZVU~]tШ_ZnNE_9qZ-8`iTIHmHͷ"6icᨸ%;\fr-&oazLoh:M>e'E&ؿh.^c}]G4%u_da>N [Y]8.D"|6~9_4Vr0pwwM>Xؾ>rT|~ѣ"&̵t%Pk4 TnCXzw)1"~m  K-y*F;W*vt66},cG9\c? ~UOzf񢹂=Q^mWH K\ {6T돯Hk9gw웈ĕ';^ᜤ#E@9;<fdlYxQL j NڕZoW!0D> =ݻ)CQCnkMБ_pLBW~ 2t1SndAU|snNr*[Vt/ɮ/k*oPdC{t DV ]Ӹ5gt/]x/x|xwF4jKN#$iM%2]+~9`JyQg %|&l0sw}u;m^1킾`G1,NwMifVCWs=+DR1ԯ3ՂFiߛaz]K:&s;&n'Bm![9c>H!`Rhɾ1qi{`mNAX HԇUH<ftg8G~? -fe]@ƛ0R5 +S*c0sȕ*X?$K([O38DȰ ' 8tk6}{ypƢ"@+)1-: ̹_}N\^uo.f߅3ϔ<{t'`YPmOMøj[ ̜jO׶]%Og\#'>b}b{=c6x{+ŋaCnTj,{ҲV>qx< ߡB]~yF,o1{o0.(6P.&*ȋ,i0sbT24_f~5h1+y"chyޜZȂM?]e;ַyM"K aK /o8<G2I@*0a^l\{Q:$\MkWt0z3-OHC-8},?zI9,+L[6\(\37j5Lr,MPe[(6i"LHYok+_.pg\G69!YbNEUĸxd_~a'/}sۀT7dֽ}ERYd~ (ZO؁r"!4bNp`Ѹエo˭r glN^+o8Y]*4)ȓD:hP| jCAx$Z oX\6lB9!a!ۉGF0,rb(q6>6]32ǒdB*NNm!&`^&(BUksufnѯ!=LF6,쒹V}> vmdMOGꙩU=XμܪUĩHS Ol=>,Jdn 6Jk8;~ؿg>5qv[Ym2ZEqq[4XQjC,=au* _gX=U$OXPof>tkd?ٵkG8=m o3°8bw,qxOB2.>ۋkiFaKɢHMNxvXyD[hf|F d^{e02G7ɟx~F"B9$в: ͡]]*PB)-J v}o_w_yCVsƨEsVT#- `V9"Y0½rM] %zܦ`Z؉W/e1&;PY6x. \ +ǽȫq$%<}?>Iy8#wJ;2]{kКt';9or!#:~w9ͼ^Ԩe/{~yY>ěR0~y??*LQr+vLW͛!QTv{[ݘF+QGar7z>4`Z.8*Vx=0J-]*zz.jHP@Ծ5{>SP.pF rekBJiP<[Y릝`yN (mJ݈P߮Q2 ׇ8qUlG,Q}StM]jء0a?E8q#e^3_ d雫'Cy O!_& gga]si8킕¶+i[ql[ Pҿql/1~;[K+н/av( T\sCZI// HQ j4GwR<ݡ48o ڇBk=O{`&1: H'bsU4pF@c0ɛEMgr-x -_$<¼[^~VF?eth~-s3d%a?PMO,Iz䫘كߘ-TjSvndTV=1XuQ "0_amۼ6`|K;Hȁ-RŘChh],VrOtץT>fL%ĶQxOƎ+!7yZH [o1= ]Ś` <@j3|!tSb"XM*3~P IaAwK_;aIPҏo x }|w&lcX%Zy.7ٌKiX o?j"؞O+Cn]t{:[)mc»pƷ|&6) cDL$ݹH'NC%\At & k, oIKLJ>sK$0ތx@aV;a+Gc[`Z&}YەW6W̌xpLw8X6 І}`ȢT˖^FNcBPR}I k~`mE){3tVWЇ^ƮN}ȵ*/|ƚr6X9dbgڊ}M,Z 8wVs έ5}ԍc vƍH/:x9p2B"}XV1;"s݋l3DZMVfmc4/ "͔Ƶ["Sϊ pmzrI\فvOWFGMpɣE v%J LbQ^   Jl j\mbyn0a6mI~$ 7ސÏ(#.WXZo/|_!ewxk7梾5)Xf .\UoۼdNmp_\v^+  @ C_#.08yCei05%rd=U&\@;ҫ4LxN Eȥ]lLq}:J-o^uNv|אW˦\> 0L)4̮~=>L` e*nz#'a3AG'Мg`sOЧp>,3n5>O=Qubko-`pzD\%HG@㴼+(s(qzg.- 觉WjIPvߋϾ@7!Xy Tf}0Zdyt;F$Is'k-5_;gci3W݃#c[`ȝ\82oXc*aݎB'.9 I|] {ֱdoa4%~y"|g֥M{#QzMW~CnzDxCϟiN7Acε3/űލC7-'/SK!>3=Vvs*j515OgtgBq%sA8أXR=}  (hc*>uH SSXzʑL ޝʴųiNI&qɉвF`Nz3b@w5Tʉ^qz8>qׇ7}n? c8~m Z,uvP0#nq'2i:,x3JϜni9M|8wv?\Æ;& >ر_UԄy^ǘU0/+$@Im V9G=c:-[xa]ߪrZ 6<ý8-6gq"ƺ)?^ `V"%5 ?ɥjB&V@ite. dЇV6Mbqw/r?g}WbqÊ>"˜ZTc .HUZl0pbկ&Ǿ,n f;q'|z;8 c"G?N -Кe i+L·k1qǡ,i$IԾ”AjP}YXqaജ;Id#I6DL[e{e}rHW-_T,3ے!2ohy)aZ-Pxϣ[RPjTL 1'w &7dhȐ䜗݅/`rNXqf> ~$T/}oa N>жr87XRzy% OoPAUPpW*uL~; ҿN [_($KQ-]^ Dg.ręuTLs3s˶/ .H/Մ*b)SLPN5к[㷺DlYb+pHTÁGpv)( Uny|󶟨ߎova;~?WWMO~N~V|M[zYSgd] cW/̞\7+OESSH?s\v'Y饗Da53}U\"Ո hbYg`nGyJ?铜`V)I&"(΅B]H+:.lnY.;B! ت`6|ӷ'#1NuChd(&_sӇzZtBcД_% EUonA5VuKXLb}E#8b*3՞[Fv(鵅],}Y&!-0+#r|D(Z]>Wn..Һ<% &j]xHw8 G~UES/0ҹ# b|050dbx)0/޻ N $̢y*%PN9+2BU2Bup$/*]\·w*JUmVG]%<=:O{7{0)R_カHu^Ƚqgp[G6cNH`@N 3_aR CuX;UoUH7pmCXTƲg'Pwвڟ`M%Z WۯFtn)pon G?^< ӋO;EH|-?kkݰ9 2}@텗RGY1irn $Sߜ Oc#ǻ7ʂÇk<8б-(̶\֜@iJD,P$ؕo3SsBG;9=xR4e_&daW>JXԁXC s8@ѫ0/xn-XBVqF Ҳ#B4B>Bc F aZܝi4uQR':sD_1_eRLN8|ݦx,-f2$v7ߑgvw[pΧ?rk' r^uBK-PWcdKE)582[&nv?yF^mE]܇1U>ltZk,EhMDz7ݖU7*`F}fgG a+{ '֞}N9*!TY;^.Grmb#gb*#.VE gH1\>ΊTҖ7r!s ^Y6:8$?sc Z!;.H#?p5qpzڌ󲔰ύWB|ϳ9EYͥ SsGb=Ιs8a瑃}q!"ȊaB&['Qb|rK:St0-`, ku_i`0=t4_S}&WSrAɀ@E$u=~cNWc'{ Jd_2TԌ\;I>1/jp (h"V(Bd/LiW8b*7زTMlfͩ@}mgī6B䙏u0g𞸙ü;` z^i.:ZhF>+0=ed;gbZPS(*~Ыp`y#L|gu ,afCm?9+,w7@FPΘ9 1d \=R*E,P!*Hw ; .yܭ[{nS8tMk.=3 VűG胠woh>P>.vwօKU2Лk֯alF),YQ +Bݻl5iP}PpCQǢ/=M֧>Sf~XԮ>͌P?^*蹖N![ޟjl*+;pE#X19a.kuy>B Wg[Q(r{5} D޽{dbs8r'VGZ9$U;iF6KQd=w-4$?&Rbp9l!I&vG]nDgs :'r߀o:܀U5 (j O͇ՓHIY:Z@glJgM;hYyo$zb%FtIϗ[͠v낗L*1cq j*@:s& 70kc}ey=%O}2_퟈n5>ʇa'TmM e3a ot õՆs'ITƞ]Kdh7{fC*k:8Gdf?G >>XZ+/|q/R^žġ7shZ6.X+p==U4Pdny*?⶷׎? Gp+i9oO/$B6vs d%7M 8N0̈́]UYOpvi[H"CS]97l˽*OSN.wyH"2XO)ZLk(Z竾՘3Ŭq n~oƮ ռo|Khvxne:Z6DZ,?P )MZd~DL joF 玔vK ~3S+od\)^}{d W6%k9C_K^UWF]*O&A\u& NL4oɺM %p1z"sN}K~>%N7XnvJ-{$G@me)S0*d"Mm!wBOuu;C<.BΦ_;C_L2r&wwbp`ވ5/H.{,ã)Ȣ#-`^'XR_:}лcٻiAy:3d'_{Аj/k㼔,n3P8&M|-$ )(RĪ_2zٙVt8*+:ut RDCĬ7B]Le%7rD-6/,䌭w* qT>-}ަO.܈9{'myu2*DO&ā;![6;.kwt#tg ޏԦ"-)q,tL:̺gWR\x8 9܈얄)9W0^6xKJp(O^ T ʭƾ8/㐲{ZۆJSw}bTU{.\fcYU>7+#s.JT)=9^}~=?-铐3rW=uV15tdݺ1 O<蝮WxcOAWf"Urו%nlxyR??tDmaB='q_)31f6|#m 瞿#՝Ws X)F%#X&txZE&܅eqXmq(ovd{>N#mc{jgޓnYDڹV H^!4 Qjm/)I|Vݎ"c_Ntu,\NW6{@e+lO~_3`[& qyZ1gZ3T+Q|7 Cӝ)Y{πr8- 9fZ~Eg/f_i^jk?q:)ɷ?4!mg cn_{e%Gqx:\~89xE\d w/&3/}{XՒ# Bd1H{a7P=ΑMtlnop?05}ҳVY\F'tgcK}ܶ ~Ɍ\@Wt&M<'o]|6O ,w>4ھ7,>q&x{5?oGD.{f+tAԯJo jsQl14 ִ'Rv+.stt=MoV%VUMS0,0v{ ̏#>Z+Yr}l&jnNn8k^O=`-Dcط `/Fzz.3hhāػ@I{3 j,]ەJ`low0u, `K)mwm]К,X6|q,'=: '%NO *rVkctO9ƘpcѪ6v@鞴sGvUHOn~B>6ܙK:p5fZaPin Uk9Xi@O&.B3kX]GU5kl|u`!Ҟ{cZ&-9{p3Wn0RFYi^Ag"Ծ8: Tb7OzQD6P?ay<6 _~tzimLpΡ$]J|$mo bspzchA؂dojy_v8N̷cFJ)Vjb%s7Kݙ ݴ X9s7bm2dxyK'<ЩOE7mf}Bkm3Kp۲敯Qbe>ǷP2 w%;>)cO|%l25ksJ_ 9`xh}oW##Wh]4fHM[}ΜQ a'`h :W[]VC텁w8"ơV?Z4B-A`ӥ[Vߖ 9n} ?ȏB9˵KX wvf)0G߷B˱<0t>0 $>-l/FOK/&# ~W!rJ_|)1G?+ba1쵏zNR%Rr }ۑWnG]V>T6?<~a82u8B3<c6̑L!nŋCjI#?:FsCQlD?EL?7·;z֑?quTP#f%#百ӱjҚY]?^opTs{M>&?n͓:x3" y:i ySkwϕ|IΎ5X彯h?~'{ ZwDS>3z\ly'S.Ժtt)+c4[-s&!oKPY_DļsNȂ]即dE >Op5{Ӥ*J*D.v컉3JX>.B Qt\o=% iP36@T$UD$q|;Ǫ<^(Ug@(M3#(ShQzQ4aEsɢo*OK:M|u{Po,oQ%[RN?\& cOޜ=O=D?єe`=HIu^hn&+W3_(g4345 :lw^I-VQmZ˭kT̿8 =vk(#cŪxOF$OWnv6ʚtx-?@CsӉAK#x8X(3A4p& wh֢͘wm.mI|26 S bn֎_32]&> y]t w>?pm;+T.}?gC-B9kT^7bண}Gb辯j|ɡ q<*l/~GF(ɣ|losh"pd,dfY&Z3M9z'hw*n+TIƯ۸+u>fH0CO\܆ N8&YSo@4-=qۦÇi\ɞS?ړY\UT1pHVHsʌl3XW?7nQIt935nk^Yr3+v _s$&I}C :<%7jObh;=#ZOS~3^d vf^sӂh.Lܴ6i@٬^濐Y1Gߟ=*Y _5j޸}/Ѫ\<_ļZNw˵Gx1ߴ⡻ C:TמkICGͽs:_^iYni%j̰SY<6}!%h qʺc'QQqO bxĆW씆+"?6$_9j:Q¯ko6LxfaERZa3! qH0mM ^zsDeX飯T_vڼh8XEhT=r:*DmACzs{5YU}14F Oeڗl3ă\n}*}n53SۄE4"<%FXvPsa(\rs=mZg( |6g}ޜ'i[.c{# nIE~1K']_&P9}suY_kx{-w,Z3ӗy#^ʞ!U tQv d/oh,2`c<_dews@ɍ *0'Fa(깡%¾ >4%k!Ou F#z//H:(cXG0c=]xFKep"ohFu[Zԏ_C=.hZx"XsSB'4=G >vD='ƹPk^3-[/6Ԩ{>@EQޏfwqSѪl$lVڦʹO؍,UƱ3A4~NAȯO'ےiUݬxyMڮ{KE="7VQ}%2NGxsc5!|bB&nS^$,\yEٮ?%]յPXs;v {F 뻷{cVxpRܾ90G<^Pc/`qltk<כ{}_$zvvWlM(@eBpykb"^2zMKw$%BَF5yx>Ƈ,j%uOxy]+(F,xsFh|bj*j^elWƕOr?ƬP7ۂ;P&>xʬi~aLk(2F^ēEz++p-7zpg0u Npᅭ:oqσ |^VkdZ^ԋ*{#w#Z-%PQm{P=QcXa8.sy]|6gYITr^:yB4կju2B9\E_Yl㉝wC>:4אl43Tc(C4joz uQsͪ;v0רտEшs4$D/EY"Cx.m]^,0!<g& Rmzm?}.szk$wyW6կ;geC q\; H<}.{et(qI2S ,{{W\75%g0K/}oO,e& Tw.].q5-.1f*ޖ^]B;v 9Q2cYf"Gwݥ#,{{X~x% 䄦Q榗_-BGl{ieO>G9[M9aڇ%ZrqgAzv<ኀVMP7fҘ"ٲU{x(%=ǭ*}>m_;g(KW>W,T&qn9N壨yK'l`]&~$ մ08!dG\-`}}>z@P:nxs< lԔJVܧUuvl*M7:LpZY'o ޻/)hxAy$۽r}#座Є8\$/z/7Cn&uzȨf_X6 }.־ۣ FCo"\!k𿋸#Eeґz`wnhy6ꇺӡ%QrfQSmTk#ؽ - ')l>*ApbS|e'M>VE?~N \BpoV$&*Jp6C'7{yoq\ؗ+x}N?bTPFӷyVڃ3nkZ]lNiߣ zR֬kϞGi6Єl`>_`KCASi-Av.KZ9Sr>l{X {A׃w6ʣ(_Au۵Mľx'DC~OQOhNQ\xFQ:ﵾOM=Teg;HN Z(8z|7Y8 M/<=p::MC'1$swŰ#q)E̾[Q藮W9oۊ}yB*M֨j @:GS⬻V.5ьEх6A[4+was]F|3 ¦a?)Zס/E'b#"syWQK0V󿘞-ތ=9P0l U~=+8Kcijz?Nr粮]ǯlcÓ!_|-v̔a /?u}zf7xcS͸1nk n-ڟ'xV*CN: jQo)'VWZ}}G}}zIR B-f'4wԥuz,`5BRJ";Qێ8b`-=75kL1}[:ˏ=p^[ ~=68rjhb$[[d2yL[ J&Ъ56o&(}CZ"83Uwe%>gf"LF\ >.h{>IN[h%xw.W:ی!{pŞvҹ,ox&rs>64i_89%uKS[GߢQFl&ieN>^K 8PhE,QP\4FЛ=eesrCh|wEdJ~/ҟ3,hXo'1q,}TQ/In?jnmĹnLѬdRMX ]]U7>oc jr.}UUm ~dM =Q"}B]Yyu1D-'$Hj8%qrjHCS/YDǞ2jtQݜKIҳu}!jl9]Wemxat&K *b{Kܗa$|礧rô0U~~ղÃ>~rm _Z4~ѹ$Rnx*xecf wB}@"^!?J_sw-<ޔGS} |9߰O.{t}ĝ͋VT|o"E--H~#KOC2ga&稅;;?؍\Sý2ߪoŇi.*x9w6|O~A5G@c'xb]Spч8eG3NG8h㓟_F_ #/L5q 2qZ lO@+K!b]lɗJ,SG Ss;,hہѐ@=蛏Lsa1 ۬r-A[lP}cw!,N=n%> T><31̻;!Us)iGT8y- <ݹDqu9ihV¦_g³{C!nj ᙂ_`ڷ\&p/8gPD%LDmbfCxas@Kץ,Bo[75mܔ6ԕK{ /܃Y,G Ck_>Y g#mvY2*zyP p;6<}ݨ%4T+;"lu^8^e NT/2XQ-Qy5p Wr? Sު}Az[S|P*W$Ӯ<}Uv-x#xH<3x`hJ.ΒNx~1&E+oᯂɷ:2W_v>Q79,+3"Aq0 ,`kW1iCv~*29N%A"gp>=ʸ6_jyA khi oM·wIߨ-bB]M3P29&@]1글+3hji/+gi.ߵ%|>aUM= ({h4'-/ @+u/,O$ct^* Cx[#M޹u4Ծ񶺎~`#KHGuQvqM NStG6+5xq2QK0l}`-GpC,of=NͼZfUmѼFỈ6d`A-}wiHwl9-O ^x,iÅGY{ҮzYۅC̛TiO4pO13RhT)n^Hr}nDbr*NW5uP#{JihtED?^k*,ےAe INV6p]D9~G8-/J8W;ObUs/po n{!n_1y_RO 8qNfz7-ʾMjE%Co5P=<fÞ7Q|`\cJЇuiE-D}6klCC/dmtN-8W?UpfokBwrja{{Lbmb'獞-L\6.LG9YPo'h}$?Z89`Iʺ,Ŵvѯ SwlPQhqW`Y'g9],@m}[GpWtS (oCJ3闗 Z-YwFo5WT8N}<<;c*uwnLp 2S׷$!m!]C$8`V|e肇Kʷ?(ܯ:.]6EkrvߺjhھhTM{Ckt5X,BNFS޿dk8}؝`PΉMxT;gqOC'pD>Ew+xլKjEJnW^J!W )I[\%UGչ_ܯ;v@`DF[Urp#OGb %ZE{oj\KC3'Güܺ+VvgʇGCwR[]^`=S6-/2P?;{yJͿ0L]6M:rCovORy[\0ˏNI/˒ <ʫ']o:w/r ƹiZ'p˒Kr/stL?M׏RƗH87߀j{Q*T@%Oٌ3WnMweu'<:ҝU탗vlblb_ó87фx'5X&V[ ʭW}uxGRm-R TT5~=ei/- sYS&k}Y; &-5:mAi{? oUxQߦ~_ C,GV~n<Ȣ"G Յ9 > ĭd6nF nC; U{RЄ¥B] -[x=P H低t~MOg.}i鞾R+G0~ă>CTMvՌe`a gf##fQ6Q`+v,_.sxO莽x+H4hPOg+λgi^r Fs8|ƃD.E<ϊP"ǫHy^512uŊ \[p [m,IH#iKǤeq,۹Ӳd\&Ù{8k+C״6%}hègUSh+3>EћuܐwzM.P&i ɪ%MK0Tf[}6fMÎ ڿ>89{n<1^Qт6gM* c 2hE$>C귲a{p"xܐ$P|U6})9K'w(G XU~nq_w<`w|z+txfU<Ebl}r(+$MOAgZyq*w^Bҁ~h+&5g؝=%$>D5LF}[j+[MC*W~2,'IxVB>(4{яw_|k42>VCG3zht mhMQHXoˏ)j:4}GQ. 9o{:=44gjYV4c<RT= xp@PWJOxY}wp"Z!ۏ -24ctmmᡇY/1k؉-(z>$SM7$)*%f⎀먧 q=``nXM߼r}U`I{i-e:lFcc޲Ջ$us\G;kAl\0hS2P江ؐM>PEf3խuhwz[9$XىF|0SprD>~+ula: R=T]q{ŞO㯑o:xsŲ8fOA#TbukF-ױ[kWgp-}tx޺E4YBb6e1戃 OVݼdژu%"8 IaxZ0or3v"nƥ_Y' S{mQSNUF|Ux"M~:,&O Y9hLRA XL؆ޭq_bkxX>%#󷗢K*f^-:OBV4ޓ)N4h*l??!`2mrxb%~[tj]L 9ƻ3=TCi۠6#Q%^h8_Y:P~ьVrk6%OF_ ш҂ f^Q=6ܥ~@S: {h?ݷIh7}D`}QjhE=,g9iٮ2zj~1zveU]) _wWq#(n,6.Q3ӯqgms )4B4Ξzڰ, F =?Wl0'ԝsڛpTݶ/:Zu(=>/(u8wFѰd){1'\"|+<[3#uvt}4F[5G n \OI*{fGG碐-Mh6ha./RUm(T}eCO~82 ڬuY(^^+\?B.Q׃sNe['OC>uˍX+8 “p:ЌNjrH p~2Rjn@7Y]_64ODK xvf*gõv2(2EƏ7>8KbTG(\r(STV/&cӥ5=p8U\lZP oiw<ܤvAI~?ltvn=؎;Tz8bA1 x9{L,dUzNۄz:$prJ)(1ivGԺ>ajxDī7r£j|Y{"rƭ'Рu(Nj`iM {K-5]]]Pϧ,Xس+{j_:r[xԘtM X/+E|8t07ƩڡIf ihTbe\%"v=ww5 |mIW_^l/<ֿEu݊_J6Xǃzz/K+l.}(Ɇ,@DiEzo<wOj^]`ZYB>+wSq*4Wȹ'L^^%;$f^ٗIx}^rEBu4̲X/{KbZK3ofo~8oU5`5\+.<Ub{5nu.Maj<4#M4 VU<bpbr ix(wpϨD Ϝybd#5c*jk^qGD4CG'4l4s!*9ջx᧮8 Uon5lBih«$Ͻ]8M;M7>q)w_sxZR2(+/LfoSf&R[9?۠"~h<y/83\$4ϛzܻߒ.%>reD-:ǒJ z2%ԕ._??ν#ǛQL]K s ,iGC9De])hԹe;<;6!{P{SV[cf:qzwo2VG-F'؏sЊޤhGD,/S$28EC G&]; (I.h|l%?c&_$?S'̠?t͆OPqS[Sru:;sP(u;<#z@-E6&hQÝ4 {1NyO\ L+?t߷G#,a7]ODU陼9RG PDŽ#hndTl\g1W['כPOş1Nce\ SX{T)߆h-_oq[)綿!S_36Of=PO ,jU+g+|Cho+:ӯ>-gF«.]ӧ>[9ҼLwO4ro2Nٿ[/7߶,$T8^]?lKolB?ʢN~ /ۏÙQӕ[ 0yslʳOqgk(<Xƪ/h\iKxJQya;4$33g9D'GnY~79YyⴑSxB/[<ʔ!=ڼ)L?*^zƃעГp"tgmᚪ)~&qvom~^?^o PHԻ}\q *ٜ:xdAgweϯR\gn.3W? MC˼d&4^⚫k>xdP$n\@57䠆˳~ /LuفV+ܸg,r%р!E*`U:?} S~_6-,*xRgchfԖ{(ϩ 4y'Ցsh\B];*6`Tً:s ѣ"DA<ɩӈܑ[Q j)xD@*;6x -8Q->T\nPGEەaXC?:.8ƳO~KċO'jG̾/vxfi<ڡl+yW=VMg`D +,9!G7ȱЊV 32  MU`̌qQ}@lق/зV?.7`rS|oZ)m[d (ꂈ~ٗۗ- %J^5U>T5 {3k #}@Z^1ϿS VU fᄨOA4EFf0c}%<(k ۢf50w= xD:kMe| 5+ Wgٓ`euh"!  6"*ǥD$/>")g4A$;nyw[2~yKgΑnt)@$( @4n4\}bh ev*Aut?gF (XZn:P^wQq!hɲzy3 Ug Px/[ymD(PԬN婲)VYt+}",ChznQ؈'{sN#gy}['؉ׄ[ۆ ąU޳ x:Z<$M>%@UoA轆!ns4`X??2qs 2@;to!.?sui!~-gv]cO#0l_2P2fv3Fb;IV 6g<Xw68Wv  $)y( @?TT0<7(S!3ZS> wv*Oyc HsF%={D,շ9 @I2I VYhգb?4C W7K/*b_|+@st=+ǟw2uPD?jׁ. }2 sdU0֍e)€**k z8r3M^}2Gc`ޭ| <^ Հv t }2B+~j/ S:=n K[&tKi+J@\9n +}\ec 㚊iπbxjjL|׻< :x؛ xNO{>Άg_e _S~|Z BMxV9R!Ow=+Rwo!KG@8}' q]F/mڮ)wrjw 'IZ ڒd#n98J{\.n_ R7s|*:^(Iȃdt@c;wXf#ǚ؞w@"ܯ[" - z^ ~l^ ٟb dsx tdת? c*J{A ˨\wԠdl)!c{ zjWA| /^TRfZ2׊^h@U|,# |oc@xmDȥC,@wF;(雪. "{w |\. Fɵ@@LpN~7@4= pG{\_0̷K fU8עԅT@\$Ht3 F>LUb !* 5yy$[:@vû:8߹"0syn"~)Sɱ:ضBǟρjsr$MJ_˪ 6K~6SAAbI=K 9En^ *&d0P .+ʉT;߀(ܵ&UD~R? Wu@k iXXzg{^:HXy7ܥ^~v$|-K' 'F-s_=v8M~iM ?դߙ?FR7% k+ÜkAE -}Px<+ bS-*bDf  mF%i_A@|by2w\|M%HnCA<7L{$Nt=/v8_+O(ӹ7yeι#_ot\Alr7k085.'AxaWbU0| %ƫj=U <2ܙK+ >3τfCރdRp;:o# s;cswVnApL';'0\u~{xMk]<+D>Vr(Ly dҙR@x'9@WC0Ͷ?bٷS!D}H @9%p7/KSJX@TWX Đ3@:cJ~3On!B5@L?&Om*}JjQp:i{# hC=讼t&S/X#5)/˽M ,wLtio> LgvCDSN$'a=HD;xTixiSD [<کKApt)/48v Bv%"$m/Px< ĉ? zvOsWvVm:fvw{hs Zw?5of]݅#E^GZzHwҶ̥xg\#8< /Ƈ {/ޔOɳM6ľC_ u֙]Ht)Q@nOA|>069f1P sEWAܣɼ4ȧ6?K ZC&cߏߡ@KihssMYr 3ط o9u 7ep3u<,<n~)3 _)@$M@VE?>T|!}@]wԌ)4=A\a20Z2qc*cc5,>:rΥ @hLf:i`,}A@>l@pi/oA8?[@/Y_ƙ籜@}Yޭ@h쉶\/ׂu/^>U| ¤Ɛ }m+fր:T}nx;5^3S.GpM^+G@RmPybF:£1'Yϡͧ!kxNT&PUBngo}mivOLP6O>|ﱅ<_K3Ҩ+WVN8):r h \" %dEMh{p/PJ<2{@pp2D'=ok.΁.b@ddn2N7\f{LMJ@=c.23@vRDMii7/ŕ=A:b7tA7) \!N jt<.D=VG?1%H Mos%Vhpmi rtrUo*nzTh>ԗlJ]>UMz{ZO` $4 IfN sne$HH1}_eDŽے. dž^ {ÖH/e?ZZ"="[J1rDTH b%iE) O9v]EV?mGrXl[ef\/+^Y*| cIW9M>[4n[qy8o_l#|ҩTq|៨@7)|P.|5ȦW9##|8n%.t`ɺ ]. |H 'l6H!z ƅܧ~,\%xZˉRls-LD7S*>Tpv0d.ܕ -6yhM&Gy|c@P/[ 0: V=|])t^"IԮo=@{~3Pb~%(?Qv3aq+/$ʑ׋׊ ?сVh=i,?1ʍG$ =Elo\P1 v]@2'Ruv]RtSr7}g-_ͩ^oA(3ë(mfǡ@t &f:_BݹDo~Ep~=v\QVʘϴJ:P&A^n^>.`bXy&LA0Tu+aQ&5™Cb~7jm30<#zkXJΖhjmkvhma[v%مI?9~ ZTt}Ev 2Ӹ ; =i7~^/녺 m}|1u YY@I骄Rgx~_26ˮgg Ti<'Ȅb~FR %##.@w&3@vzD  n7N@.%ĿZȔX? {l0':=ix^ @<ۃ()_--iwqm؃@YCw ɘp#R@p&D/KFȪ $Ҿܫ>5) *{ճ\`H}qp³o ޲+ 2w R)L &yyx d z[A}:KyOWn^*-e9 (j$>s9d5} q9{婏Ha1o b=@@Ljx=O7o޺x/:jcv7mI¹,{H$:OɼzOeJƂFeixs[ L"7׊RҀUGWvu[ [儦`h'ɣ\o˟=,HڹG柰jM ]9tFiC1`t|PO} I>f@Oj@K~e!Y은vU"w?< 7{h0e/ }_+S@N,{緊c>S*ڙ{X$h vw m h_M1WRqGk ^u!6;m9q]~V:V|q5i'9/C8Lit\W>*-{@@u&-=vFK |Eoa=Zى@^]# ԧy@8rP g'ۿN]}}@S|笡뮾L?/F}d_Z}ơq'=>[T} '}Oڴ;]wL89'}LQ`2+!5: ;(*vW5H-w|@WO@y.HNADdayHL#3k}`ʵw>NzkzD,W&_8_Z_cV& ~LS1 (e2ʶiYʶ nDF5~`_6*`Ea^u@{u9k;ľYT#|^?1Py%eB]@sqgoJ[l8Rt cq{TZx 5 }-fOD>H%8@\(=[ Cmk'`Js%w}gUrz8w46@YUX rGHpI̻^`3=cqEv1k@ҠJ?U5@UpK h!~y(Σw<̈*S;^ GX1͉SvEboDܲբԁZ`8'LAQh/KE ".'%lc3/0i{7ƛ]()b{AhЅ-@پdmB'ݙ`,*x9ɓ@L^OEzuf/??35( ~> pF+-BUS$L%8z+0ҥlʋ5ApϽ@H"1@{ШVDN:gg&=:dQn͗lA䯉paݰޝzh?^Sfy~iUV5F9S'@uՠ*o{[^>hj1ͥFP>%ԧZm@QsQ=7r>wX.?sY"gw΀S*%K\)y(m*L9?s$)YKbDFoكHY=qgHmhR@06)ϲD5?׀螼d@gӪ(H%7*7_/qdD_ cAR@e܏3 :zC3}?˺gHS<'V]Z71·Oߑ ԧNn&|"ב N h?=ͭ9??y#'J[ .C }ް[ D(+ "I  ]Eqt} f=/IRK >C] c%?р-(֯tvtJXTy  /hD9T Y\t=yoA=llBa4*^"E_3%|]]u Ӛw|q- ;Ӏسz#󜐧Dr%PPu m=I6= =uDlH$ңcTaђ/|φs Q]O֭jFp!6Wf ^n"O/! r֭ V{e=Lz;Bk?P'^]1+ eA!B x׷ >3xHJb N}"κ~B uC@Iـ2ꁬ?\ЏlҸ {Gq7AHA|e8Jpʲ\8̍Ne>v u)M@UԺ r ]Z _3,-yY'ßԘgM@aNE yFui9bNC%&N{_/;$*[2Rt@bIX*b\;>1(0bl㣢<@|g>/&M`S6̵ִȫҖ·[}7_]lIeqWJ-@_|]fiyw ]n'|0z3g d<̙ 3ORy֫ R(~~{wen_:E}ł{@s~7^4 b^6hj¼,0-`nBJ̮41c30eE~=FpL׼P[~-7X9@}s~%k[Ion0D[u,XLρ_2כ+@r|aǩX tyT$`GS@=yRVGϳ~Gxq`1OVov#׫ܰ EwxoyK{ͳF^ rg|9(i ~S ?1-c!MssG;%񊏖N'F§Eb"ias wD%M ^;B@\s5{kq:go0 ۺ[/MV7 >c Lwv; {Gj,0OPV%$Ґ**0Y33GNmvm3+wLwJ{Z~xNzC[0wʉ #:u@s 1@^Wmz"Ah3WxtRElZ{mKmx(P;4coɪl?nq(cTh]˭@{vYXvE* @Ys=%4Rta'M9I|4p̛rd>Sep;t<ʡ3RĹٱ"7X'zRm'Pϗ6^R"Wy&w0@ȷa넧jJy O?ֵ M Rp5mPEpց{,+?G-hWd]};Щfބ/N,l:ꂄ(iKM҉ze dGx?zX|k"4@Xz!u7'3Yf\j bwO-˖s{.C^)y.JVo0޻_ q4sjAԠ-2P ;[>* +"]_At}7ryrǁYYTzUWOb:BvݥUg<~0e^ir@*P{?O /wq?7we5]nLۺx37PeDeFs N% Ti@Tq2a9? "Ϳ>4x^C&8.e=gϿ:e(4&TvѾ @(b& h2 fP>^I הqZUu 9,[~VJQMTi4u>g9˯SM&K!Pi􍴃Iy~ zĺEk??r?u Ф=aӷphG꯾A8<q i//Z"ܥx/OdN YOi<Ӏ2/#ܷl@dG+SD.nZ݂[7m t קxY}d`lYd2}'JY@TJ8~xmk`Lv#xa/7 HgH93idcS'F3٤90xܚԙ%!_p\<>e@r"7̠lmل_mHDYrO>_Mlph~"pʒ`כ~I+e 9Є& .l Ti^[ Ca\f%:m5+Ą~/|2Cl@oMxckD7'C=zBZ1^)s#T#VMi+L)US.ChA:0Mdho ?@Uu !˕! \ d[~u 0_t>n!$J> 9yoBH<>sq >wG'QM_:\v@qǨ@?I'&7(x) 5X~ay^$_y(*7žl&k>-_!;ͣmUFO@9VnᇃZl1odUAdWEN%7_yNRK@F@t?HƨpNLf/ʦT࿣3n"o8r뵷2j71lt7G<KoepR9P {M L!ck"}^=Q _3ܿTHYuh+ ~Zel#|[-[ߕXwF V+`Q`T KP>iyF Xsˀ6:#UC텉@)]PtFZFiޤ>^ɶݫ]xX7csS+H0Ȕ]6@yOxrNi[c%ÊňO+rSWBaH Vq}Ђn`Vkw`bv{4'),fTˇw@Hk )e-bF{;f]^? ү`C >Oe FT<~ ׏J!5&e0T)+ fx@b T8Lt#dAT{""?7&zҥ2_PĬjOzAB+ Dw:))䗚!ѯDny,KM%"PmWg,``V>>Ԧ,m8hrDM޷Kha87H#B U hK= M`Q 74Vt!=sl)nJ UπZ繴)b|rBk tu}_"z偷"Mu3Ԁ&Y" a!JpۖQ:Y@78|6D|ӗ)ZG1Ju5o>T "5@Z7i/S;68MsyoX)*}"H2fZ󭉄u|i> ήbgHߖ|Uۚaty#P'$g/ 7=uDI&޾iaw~{J^vWƚ[ *ܺ!Gx$bt D8y41[|C){ svQtTq9ΞH)#.RD% P)-"))E**22"J%IhWuxy}_KM|f~P4gҙ;}Zx]]䩯sD6D>P5 ~_lTl>'|Q't W+o} ^`UjnQ>Pꉯo}$bv=[V 5,GA^| ٵPl~| by&x[SƢJN.#|T~_)dT8w"Oy(MKpպ=TdHMUKAuvLGvv5ФW+Ͻ>9<܅J vjdyh=9SFI wB(v\?Ji醴ZV &y!).[Ѿ`jOpS?^ ~} MHΙW"]eփb PAU q&83WA]h)VepY(%NAQ45M)G]8_ySFE [v]E9+X[;]\!X ؙF$H7kaO=o#5zeg [5&3_a4%3-mKW a ItQ5PJ7y_"E 7@5 jg?;lY` ~/_!.8HԞgij51,N e@1zE(a[*'=wQtq24>cv:d. U#p(X;Op+xY^ԣI2{W=YAKy;B"k3E?Kf2}/?q2isHsw]̂zWψS Ib1H9|rΛ}VXEr}6oSrSvތ^̔$YsѦxH]=l)Jۼ?(K g˪.1u6M^pm5/ 0]QJՅ}W u ى&V 5/^fk.)OB2.cdDXڿ(2~wNCfE5HfJM .%UqD-7Kg? J7KUA{qކXۛ*7V 'D=s.9;7}D5hq~SJ_Q vԳ&0]сLh˔FPcȢB&>#\ِn RnW' U4e 5.r.llUW,RL3 gd-cG9䲺%Cu{J`'}Su<ZZly qn6m?Ct͆{ĺ]u73}ͻehJuG@fΜ0~e%| ee5 ޘ%uzM۷̬ Q33+S?C?_$Dv]<%rh-?N_<41=s*RRm/Xx+2YTd'M\k9B縕!S5(!_蹃z$gZ0j{: ^!t D0*Fhe[IxYؿsyO%?,[v(9yzSHU mcadHv)kv6wW/8 ՍQ j?SLH.K?rܓM=r@Y."p#N.1Y{y[1ͫ`uFū'C8%>L*s_.;WS %XCjϪg!sdfT2HѮ@gw$ӷZ~NWWޱ$^'r@}1g[V:4Sy݆;`P3{H좸$^hz;0'n-dH$gl8x9s.0.RewJ7C"#-K_os"v 'nq@RmiVhMm2vnU. 9cF{@J^ҧ 4Ò01H;Zr6${AZ"vd3DƚKo4;!T'揶#b&Ÿ*A%ent"Zof^\by+9JҲAj;6k[׌? a^`$Xy<5ob:ƤN1YhZA/,7G83^Y#hw~1뛆>ʼn:֠ñ_K}Iъ]y 뗠|a:g"8^m9}ڿT'^\ ǭ}e4F`vlڸ!8+fǵw{oOmPv*,nƹu:{'ˤ8ym<|w|3>؋:F>vyIx˅OIL&<~hLsŮ.9pO<?*E N[kCU^L'~;QA $Kvu#j{N?^t67+BXRX[^Ұo(6gu>?W*ZHg!I)LQx_Tx`#s:,wŤR0j4כ@^/8sʾ3)gNldO lo8Z@{gGUp7y`֙7&r8I>%jȀ=UMM-DAp%G!u)C6FפV;7(? Н[Rr]bO3Lk.47dmK*u&&4q*z0)}7zsA<}D&UbK`=+LikOկs>jϋ_=Q(vg/0~G$^0uOe__y)ED6&H Bᑪڐ ' ._wS=ni(m mU; M6O~/a(^쮏!jwк6mKA`z\kW}} wrPN%Z.U4h*Sr%!9xvd2ѧ+ݻe/=Q΅$VUps}Є|]dWu޳Ix_ 1KiXQ ޞ viVT;7]LPȳu*1E9΢ ]q`8%{e-뤄t@Y7џ-9wi9ކKNLfl ƣqޝr 6l_jbXVyrg_P}[;` t9rJ@p[iȈ|\죩zo` 3*ˬR ;v'1'cWi <͡qme@0]<# NQ; ;plW.gH"X*3+^ 1}*I 䯉qkN^Jo WO6d0V2sick3o<SD MkT: ޒ'u_$g79yDѻm ܟ9(ԃV-~ &O6m0ƾNob7vTGOV?6-}㾣}hE_~6S C`E%rcM{bSz/ȻPG6QI5[B@f\& k-4kة R~[i-(M%}DH~ (VZjzGI4f"ҩ azh}C#R WJ L^rF]J0l: o&%RHbj}9 nq\چKϮz8E/@|ks g/b ^rޤ^O&FN{۪O JЃMW7 lӟv@UnIp;sRys y`n9z_0ȭt?|uu'hEU`g5>> SV_6!:wF$ |ݥ{oGv>ޝàzd$򼕹[8 wlzгr92{LglaI Ǝxѿ/?`zyHn"rAFU<8=2| 0EvJo\m /( L6*Cs /RI 1#>}z?2gi9j`yP CꁞRbXe/=tPlKxȦwV^j6$8k-)0WW\$z*'C?:;ye `,~ErES`4Y{ ;d$KM@uzVѹTb)kR!޹ʏ;|C67f '1M5ߖa‹J}MYȁSKuv>D_}[i+@3=~9}2G7ճ5:=  "7(OeZl;3z 0O<gGoYϡn_k|/i'>޾}/YJ^ʹ`/3 zَ?xr˼dVNp'|qѲ~ :O]/וVz/@F1=`c1pr~Gm{Z@p[՚vKzw7k,yFwkfn]F-RE~Øāt_sc;r|=鮁&t>˂6){ _;|b/ ޯ]aJik׃;X5AJ r}…`G/_zH̠<1^[=Ƀ@7Zf6 ֊'vYKv^|4&,e>OL:zŏpv&j z(*ݶS䒱NȿU'q pd|RWrX~T=.h#xw˙xbv7Aozӑmg}+V'p,n,9 ֕JvRy̯,H} %ӫWAM`d/r빣{(`C24Z*z|s},mEBPPX*-2O@H͵Wؤq=x_ﺩ=~끘w$'̝oj ;Fϝ@J(ؽ/>;ۺ}W\8Ru]RAs=P]qSf]T2*/ 2gOCQzGcW;gYBxO]::|ט`^X'H[AW<" U?E!>>4DTʭzs PIi@UUĹՙSڠGnE]تYR".' o(I_TX<=z|PɇY x[YPoٍ]gX3nS%oA۸/pagkߞAn(nAr6g= v*?G7Sz/q+:`wpb h 71\7/ǵ7w]@b>~v DYG)(AV)fV ڱ]^A|WnA7mXIfl8f'0&)gw?H<||K@{I07n:dVm^ Qz{Qٖ˺ ՠ$9{?f~,3=Y -CL@,u-d. G\} w 0vIw7þ>^x#5yWV}Znp!t\n9JsX;Ez/^dK4p3M+ܟ.gB_(U 9pS—oTKx$W%&}_F:([ tֺ yAs?p$1_O\`Ǘu`8<=<%=c|NH}8!~|;qM=tt-&`NYJv?ydw5RcCn U8~l>59-m I_BwGI0oprr@Ȧ>{7ˆ\ygcew~|ﳿW'rI6t.跾,lq޷i›ڊ/ԕrcsp߯y ֝(]HTI'xiXqu2ż Nl-5tP$Y择qޱε-;C>Cn9#6z'\9g:[u$y:]&sR?i8l,(vcs1MYY l3j̃1} XɝpwAfJ}P!Fm72&8s]q7z=*)"W㗅w*s vޅ4k|kܒъj  ?b4[%X~+I' uB[[0zA2syAItFn*/9oZ'6BΠ@n yn$<{ɾȯPV}."֟LwL$hCre^{] l+-"5*f͕_DLq-)ƣ`Z[OGX7"vy0q D+S8UMyu Az CDo_?U[S!;,=`ICNfIɧ 'ـڳ=Hx-\|UzIOSn5%t=6s>HHpmZ+1/~֐~j>f۬k~t[h_yA-8fޟ]S ˉhWvuQKQ16n\U Bmr[swBYЂIp#`䷺,DF&տfDq^D n`udW?F}$)Q +?,3_hsx2{.*nLYdq}` I28# z>ػz+g#-$?n0C%=O\; PwKW^Uީ:+r)<0n W\r?+_ȚvyЋm[Ցs`8ݓry)NI28'v@Rogċƌ4 =^tN7&"z1>]qHVY;s cY>D@ $wZ ARז,Ub y1@jV.#}*"RܐM] KbFf Jg`X͆U-7= ۅYר$Y@h擻YH?{,DlMӥ n14xޞ~H^pEXdDw{q(|}X4uueE5/d}sQz> ag.o:fp_^n+GRQ%z&pA'tĺe^qYbˬz y"Cn\t <*'Rsw.Ym@׾ϩ`ɵּ] c`n>+e)L(4Ohw~4f)%`/һ*G?{0o=,MirZKƥẍ́|ճnG7>yVəE+$ݚ }W:K, mHcs rҽgx sLj>;kg~[7=Aw:g`| %V}ŠD =C?}L@S _S6Ui0n=5]x?.K=8n,O/KMЕ:lAjӔ };ހC&`Y~˼GZuãg`nCr1; 1{BbJ)%=8hi>dtL}?a!B5nBfX)`UPeޏr}Ó`M9Aq:GP)2~BoPyS (  .q'&N."I̍`K|9c=;t EPr$n`Lj=q\ ɿ`vnz0 ܉w`ߛSQ2|-A-kW)_]N[| Bf`ʚS`mG0e}s\R fwdJ^no ޜѰ2obm 9|Qi(!xW۲XQn%&چ'>rC$ }@ y.G/=jր13:c4]3@Ί2\)&A杣։A1ki'#P69XexW@긊ȩk󖭁qise_BzТO >aeH.J6 /^Ja#]y`Y\rU0wM;EH]aZm"'29 渮ȇ]ֵo{+~ {]!4?P)1">+лn_ɰb(MXMHJkZ']O-u AnvSgr90vV3XnH-.<0ZcY;.vd21k<ހLuO0܆}QB}2H/};NԤ!c@](ly~*pq[<+ ~3ˡ L5퐏Q=ssM34_nRʩ 3G^A.TD|CI2]6+>&k**P޸a$(hԂ:$Rcz+F倣?{Ij%PA$TL'o׬1(E|KWpϡ%0B"#Pf ZoAn(P 5J[C֙ #PiI'mן<(A}䑣&֯d_sOР d}28J/yhPƠWX(2hWX+'u]UƒҹCV/9E : $u?5p,"mhc9({LҢ rhh'tӞа(Yedp)m,qi~rJ&Ybx`d)gɳ)[Rh9F[@wtV ƹ{`;{.<4jn%PaOn 7X؂\?%pOgey7 p&,;"VU _dt[W9v͗W*N􍸾\ o n$عI ˥>a|J:_c'>wݕİ$yn|m3>gA%$(T/}&mosIt]v_ŒcGR2 ?;jl.u͑=Q#aP8uk(/di9/ɚs2_Js։wCM{9J_O@>0QG$C"luu'9h}7w$qVVNC`XzVUyP D.1`$yD 6=Ye6HHpp<.Nߵ~`k=Ap|~opo/" LZK/O nŵuPwvSVk\ِϲzRLݽ*N:2-<'>|s\C[F֪oE׻fbz@>S`r—K.j(p$ccTY["S-2m[S-oc Kz Xz% h?k眡A\o#5IvOX5 f` ֆ17+cY}^z'n^Hpeu'Cfn۸d/?1x 'Y OAz.y _HZ&CͲsŮׄmA8kSwCkg!HeԢE[[J0aC 4 c)|P)guɶT=_<l IT \[-c`l{}N%aDsHn0(_l@{ڷ%5% ̫K2r=W sUaQ0R,ރ `_!z2(?Fo#!rm .dӜw2}e=}}TZ4HּL |w̼h->xPZ0v~BT]w#`Rضt. fHz:S!ٓ%a_?Yw=}޲nh\Ȍ5퇤e3QHhd;'AG< SL.8xw'%>`fPbmɎ=O N)@8t`h"b,G)]hsLmzC-]Z Eu ؿ̅t7LCɣu$9yjIwk'ɀ) NӁfl9wنMf-/r5ÞκFt֎u`UU@BumĹ#,膏+B Ԧ9!qąuBW:h;4, 2. }ƍ' kp?wɇU}VY &ud7Iw .YU`ؕ 2'khC̝b6D%'CslHE׬{ 陆C bk}@`&d87H^+뒉u!>^\ů?ZfO] 7 tRjЃ܃uWCfC' ݒfm?^#rwutYчmK꠆: r~p+~;d[ҹ߇!,jpyh~9]g3̽Uʲ`\=˛U*%A6Dx$ǃ.vJ$q(l\lYKBbē? 0k dQcܝfѰH ;T%$|]6\WB櫃Ц'1m-BN?n}){fgBFSВ~P4rl`Rf!Ѳ"vېt@]piit5o-]ڳ:%_%v:k$PWv،5<vsV0w4 `"tϲ翂 UTAb}%]:/)_;P'{$^Q х?^C*mH^2ߗUч_4wA%GV{itK ׌y# uwA+ᆦmt%hIOI rmk!ӨU=r$ Tᚼǐ4Ɍg\($qZ!F\r?;/ \Cbe;?u|rO|H~Rq 2CkO@tme\ $IY)OumcEį`KEi"哛S"#Xv` F閐yyMx`'s8Og֗-  {x_V{;̃;8cP i50| D֟h0tr-|]I H߮/{Aɡ->22r99Kk p|Ypzb [JӧQ=i )oM+{@]q6(1Ev^yV ]y_wKTs J kNt| jjsV`_Y5n]& 8\?PM[ns~5LF=tj:Ȅg?v>!6d0ΰ:0zW"ծ'Y8r 1;Au\B tM>FPיx]{4-B 9F@{ԣu 8M\qpW.vothrL`>.d5r,sf^TLŢ{G7ו4c)9?`Lb ~.%870N LLA_ccq1o&u^ T/-;c8h: `xi -auՐXtr]^`Grzq=XprlhLITj'M>;΋nxd>N7}>X{?3:a+֛Cx+G repr&2 7Bzl[PgrzKjq]ݬH{rUo;= B2YWoG=`wImGwc(>XzɐՌ)GX+Dq=Ss*Y;TcJ(gL)/f3\c|Hx|e2P\nJubt0۽T&wu;ms{22LXWm(;Rޒ?@AOnal rT98k}9kA&*v|0[zBF3MQ= 5PD<(i?=oyz7~ ŎPp\;M{yWČ`t(d*ԃ/ywer0%#U | _,e1f'w\V.؟Zi͊9 lGuz]5?q<_}ؗqpb“hUm ߤ o0 Ӌ[=ݤ3*yM=7Ad\K;!}G dƭ"EN1!  v 烶wI! YNEC*C+;XGyYw9=m]֗.`ϱ\3\:d%\!{` PN+}ߴܢЀ?oQ@5n }nI @)w6fëwlDq1W FؚJ|ЂjFas[? e&8qog@% )- g ?!i7g$YvOS uNG/.-xڕB7 :fNӐѰK-g^O]|(VȀ>iGp/6x/Лv^$жGl'Ĺ##rw_`>yBOf|w?:f{Y=TA,#/>7kT큙o.ŔJZU68cXzIa Y4Σ`5; J!`o\+! kN)%~a77&)#d9\ӎbQ Lؿ[x4qkA6z9A/DO^dui~2-⥵) ʤeֹEAuR<)_+(U{"B!fXtHJ蘅ރtݐU[+-CE YP\ͬH!$h#iZʎz+38s>0g+؂χxWũd0;֤k,хkҷa0/*sK΅Qop";U6 -?&ΉWݵ`g<kA)Zhjy vH4s<^p_ >|x}B3_)ys:\o7kggq"d20E?=kҰE_֝:2n]_&.l!]OÛ2P:-rB|ҰΌcPϮu- R,\_2p ~=!z1ؓoZ֪cAo|Di؜K92w8֟sV@/Zw:x]hiB/V"aM9i[xz`kyӣ)2scԼwN&[iF%:`/Sq[!Wo6 /F ew?s .o|[|r3"%r$j@ V>jI: UPSOxS^Gy-"&h~X\g"DtRr1/ߤXpU<8{O_;ւnؠ< fى`,3v| sL`V2#0 ^(1yB=>l:K̇QɾapO} G51pJ}y$lG nzzcSjo [[i?':h=L.F_&pߠUWánod!օ2SYЏ8᛾ް!ΗѺX XdsH\u:j=F:ew' #FY Ϫ:x/tsd yutF䗮:"_t@A׎+ܠefG <^)X{̞׸?CJ@K*F)<޻&\ =4k[?.E $+M a֎9.9Rw1_8ݐ 2k6ӓkp rf?NT~x^Va*Z ڮ<&qʬϫN8; w[<%Ȭ\ _Zy]o,i{( ʭ!?<ޖx2l0/^޳FAutHCI&h6łv)@n0.|bCuYE[?CnuH=cEoe7Ee+ ,s`q:d^Dw~x'!y\2?RzRΉx ɚ\wZWϤ-ϲ{"':CO?CեY4^ڸQkok-`qi)N锌@n)sƒu%b!{a7_rK!^8V&<@hEP:%J 5Mv:G6qUPA'<#I̅@a moylZ*rD^R,A-b08C^a^zj?>(C6뾏Ne;?f  )G||m )-%5uX.Fy"2:,WB5`?^aXEq{|S}|M,I賢yqcs}s2@ozi'q`^:4- م!B`w,3{OCVtȪIQr/,=>ǥ}_,; A^_|8) j%mcA5mp"%wU9X#V:Re%HݼjaAFep;\oOiPbdd.k;y?1Y}0 L,0{ ZD&7,. mZ!H.CVּ^Ho:z{>dn8Ivj$&h! }s#ϯ |.C4뚏n6qvTlzYrjS$8sxd(;U_jJ h"ӥɷn58W \xIיMЎj(&tã$+WՒ fх;ڿrA_Wg: GyA33.g-ťF}z\VN+45,~u2T7 Uul/ KKVטVws4Y3bj6 ̖5K/>߳6-fୢ01揈\sdk2Li̼0wJ<gS/j8G]-,U.`F5~q97;sKFσU 0͵YgN7O}*"R[o*{F~_7eD1VζuG7=z~W:j <=#;A0噇 \ uT_[V8guGuŻA/AuGp'%mNz$h :uC<_L`RfP2<}(-M&O~aXW䀡S%F%G=RVlQ}!-ZŗӐг:sYb߂=[K?8{ϮiK.> 0%UɅ_,_h%e~ĹXAp.jr@#c>)x lr7TB&yRdzȷO^}lU10?o.%2١ߵ'#ߕ!KeaRڪ07.NsGՐ?a!$ F1 AU ]vig N*0~xt^u -2$/iU-ݫ- TF@ȃSnG '|}ȂdÆ (6GSA;xtk OU4m}My;Ҿ{`.Urxv N]8@^$[(~< c' `Ydw )jp9k~Ҭ?T K?j!Xz vw«Z7IT=|r|GڄWlJ{@ΫSM6A>`oh_Ls$ᶁO`KzZ޷k՚[ݪϓSѳw{ի+~ZԇݾwXN H.&>&rǙӣeAX$ԎtS5kMZ鼸/+Ckfx#awLK3U}CAGg5WjĹ;$՜-.MT W P-}"v:ɗYn;L?:M4Wq,~!*+ S|@?O0J%ǚ@>Iy*'>ϻZ:[omjNЫ:< egZAɞ#3\ NY9!p:0L Aןhm‡Tf:? ZDz=?~ẘm@ߛ g)lp=lMkqfWrԏ׫=(c ﵝZ ^HKv]5G>]1%>=mjdx:rnߝN{EKFoN\}H;z's 6AqzL=6C Y  OG>)A^o;uj0lcH`n=00Dvģ!9nw*yҀBZ}"y/p/_DJdDN'Ldmssm u;fa3wf yrY`e~ttLBwz`d蚃nkg@oN1pƛ+,_eܲG)E 5)w5^Z=`cӉ;M_i"XNf&-9H2f n 9Œ/Phm}-| % s2M8 v~#NErNr6kQ˅̏h^LU={mkNC6KgB[rG)~9grykQ9E-$ޜXok Uq@vϖ!5[mm&ݢY<3= r80Bw ? .9Cr^5'2jgB@!T0BĮqݢیP"PM3h,3{ h&98{kܻG2pǞ'rYw觚O)g>oxY"E:Xܫ 9I)ֶ{b톳 ߣ2VΛpw^%`>bm*9'8t9 QC5@ַpszN ?Y`䎊,vR\Nq?{du7 sr]A2X0 |{0d}+ urPNM>ʒj -_ߚY}+*v6f0< קk^$aWGp P-uANo3djr}AcLc!#=R' cO+3&r,J%U3ה(2+55P 8i Vyd!}Q DCV 5ek ];0:K# !ՊϦU!JHRjj`R^'ptMȨ/5}Z5qor)^琽u/g_ 八?]iUW1n/2ޫg!8=7C0sn`ʖE' 7W & h,Yu. z܅wK6ny`ɿO> G&E*ΣmK I7L0}LD?\s׉}|,MB?.m yVe}jt!Aתݧ&g_է۲TuJQ= o!:t q- ښy^ϊcBCN;yxo6> ރܴH-ULY})Sk>/d$<'R}u?7_ r}pDJ>ORL90/'#rc!+*W6P]߯Bz\t*NGv mr 3%Avے EHgZN~ ƃ1 kH Fh{!hs[ dz-;̃3C@q!HHDU-%sa! *Kډ:Zly'AFx53s!0=x:ނ!ų':K!XDTT)#vPN ԸgsC"t˜NH27]Э6i%$x5fUl`bҸnzSV/dJYBzPiPu(ޙx +taa(2 _^V`lۜ1Qoҹ]z[>eBE(.ؾjjN̋ŽkWIwڛ`I2 ~Pw<%Sү\ duN](++RG/+c.w& /r$\s`Zu5_ﳈnyP[U>x],{֝ڳ,.a .o gt]dpggl~{q(TnQІo ~g ꕐ P%[:V^r+}+C;+:Sc18/y_?a~  eo\1ʍo&u^?z;|0=};)an O({{}nDT;j eZT'(o[&f%uK4?eR-".Țx~ؿC ? ' 㡭7ʉ׏>u vJɻRp 2]twx GQ{[u Yt-m(MW\ ݞnTX7yEJew7,4 (ZQ9憐58ԁ1ӥz#'5%9,uSSp]>X&-GdR.ZN`n5tc!\ȡ`;uh:/: <0oۗہj9%8뚪(bA^oSP+VKxn҆M7q8odh'XH{q^$lY`]j} va$e_<=t~7K&-tP6fPٟ7 ںg /s : WX=:q(g79 / @(}Ͷ `sUam6dֵ7-yv| |mq[lISe-">;FoCcUʫ) OMB*d&|<^֞# 7-/uQEv>FBfKs*oidM|2D[~8jWmkO l:քo/eJ>CkGcD/ _\g6CQJVJBهĹtSKY#k`jHeUw5o˶?Ic] 7=?rLwp>T1>PJ.iy?vMnV\NE!!3hÛcH~7܏n !q$2~Z7!GFhYPfzо/m(+eE/z&p 3z`'}w:en >z%lY'+#@5={k,ݹ;^ {ETħoRU/Eg b#Jy_# VD%R @|bkduՍEg@{9yK@L&zC͛@kިgX'{[%8}[ kuY/p_y`D*W@(U`/Hjy+ hJwHp/HnU;?da%'wv. c@xoI?ogFD[bmTF/?fG9OЋJgBFP{K/}q}a)h(:+Ll>(73 J@yUN~ܺG6)沟ՃyI7֩̾ ~FL_Z3yF삎H%xVvkyUn˧@Yw[}Qw.ZH'^k*YO-ZTǃQg{ tmtՖ7k_41:il s7}y>װ:۲`]?g6nҜYP7clm/m6XRt"Wv5*@n6Sw2fmgz0N.nʹ@g͛ɄLp˫nJϻ>O,ޘ~{qH &>Y}/ޚǺ%ڴHpI|Z8~?5S׺5g{Y)x*4pިfp8h&fOpv_ ]/ρDC?:0]: M3cΊA0rnѭcgFk!(HF쵮Ji d3] b>uD. B {UtpZN$@Iqs{=|y=XSDZv+.`kT]b|tϫ6w~9-V9$`,K/*{XMw:DEu`CH1/$eF;M 3 P˪&l/}ocl `E8Xkg2yD Ozg^v*l"b.#dy+J?{nG&ku!ܪgC~uˮmʟ7wLMZ 67xo U acs\Q^sצOEh8mmG㩫ljyZoP)PN>v|>1Ϥ*_DD[f> Pt(u< 'ύdPN s5U"x 2 z}ț?zOf|grooep+Z*<J1YT=W6YZδ+ {̐^e}؞ٖ4^X [\&fث|9؇C ֬O Zwօh}Tf J8yU|FJ-{SZZ'kbu Mf]W>l'#y_0k9!] պa41V ֘+y( ҅W?AQ[pr8_ X?X o#t9kֆs0{/'T>=j3g;/tR@y[7- W|CȊ+>}ljm7?M\Gjwq,x+QZ-`[ۏE»aYiMz w0#_,nZw{hmf]^A>*jA?a5}''%.侃"fo'87t#DĤ`z3?!pKojz$Di[K>R#~gW d/+uVUΣ rAb % !`7 K!2k(b{L@u$CBeH"~cms16glc6W`'D=$r#9TGu@Owl0~/_" kN隧+2A(5}Zi曎/!{g 1䵲}ië`yw7ñ0lwo+j+BD*DIBRa%3RIEK$%IJ2J%JBpy~}_y:/s.9_ryo ֆZ \ 23zqIn\O!д^ -Y{a~dH564Ù g'0=1}m PuU.&4*ZVAh((Ra;rI&QZd *k-!)`D]j9gC*eō۞AӉq7O}VXe%$ C*&:=R_?V@zKu٦\lR+HwuuNQ_rϊpW$h\J .$x%Hi>p;'D>LW i[wV} D%$:$td{dϔyrՠGsy-!5W')P'MM.m0,yJvHpÞA{*d=H'| x\F: Y&o{|c; Wp`e F >}l!YH̸CDbT JU:G'*~qOݨ#Χ~rrGn~]QԚN/APYEȷd]4q sBlڛ4z ڗAM'dA~ӛX]Ws9YPug)ی7e#ѧ>@3}hZ>F'_jwR`6W&?̠_s*bi%x7͋u Zr3̽JnC8{cp:>߁"d"90Pb7gd9W, cA\P\7waOSf%ZUʾ;Ux{*MJ +YPtmP-`7x_-6.`H<7AjO*kH'|Z/o7%=%x) m'̮#UxXa+ ,%@߷t3 aSF:6yS%*"Λgm<ׯU𙑥2zIh ~{""' tOONT̲aϻyx( 8Jp*;94+2/\r ;>i Bc)0F] m'D^ܰbQ>~-G↷ȲtBxd_i]W}f bV*pQodnNg)dYb\8ucp~,7q2cXRr:7P|uTx:;p8_XZU^$Au{WᲿKFƂakn7{4 N~hzw9cL,=Me┣ S z gJ ȕɐ=wqDr1@2*dLy|Jl&\zF?0[׷~ڙJp$_е,F ]`LoA1o]mZ@*uЏg8~}bU0'\͏*?UϜ냜Xrȷ󫗏zҚ`?\;b;!Vض<߄A16b Rek /=Qܿ9J7d Yvb?@s:;RP=t UdR Mm;98'Z6C"l@d޽aݻiCѵ/ sQ&OA~zb.m+(Jnm\=mhˊ!GMuՌ`جܪ f_*EJ`&rjSP|\_ ϱb`Hqyw3Zh]`,@!ݛ .eSX/4f5$oTV +dwb;}Ac{vhn||qe9("m} 3jm-qKV1&Rg>9ܹ.%ܜsc(#'D=RG8~A5D}2UK ~RԠ-x˕x-''cB3`/5M}w<ɣ#7k]*3d r؊-zs& : - dDg" 39"cG4ݴWAe)cuʓowi6H ǯ[Nd~WK(Hirf."$7<.82?̏Cg>Eޓn97Oɐ@7WXt 4?ѹR+(%4#p%ѿn\FA;{R8[Bl@v}[C IZbu~)M8Cq%`X=&ñMF|R9/W55=!>-%+迋T?A',| Kqx? ]+|tTULR9 \ϕrPnadN;a0֨(n6(A% &˃fx@/(g~Z#x_M{`˟A {D?/m4j!s7)d3ls`FS:AskZyRuR (׷o;  Y|71!;HH+5 Cn1p02ݺ2@MSYyByD ތھaH?}V{0\ -jt uTo!ΣOV^bɃ'3w˥m?d]ceˮcs~67z(I:9LZ.WJ,y þ}V!jUU1s۶ C&ttm+I[wX) 9ۯWRL6:V3{豄 m;f|uqt$Jg{24ܷu"\ d>:iUz`3PI`ScwǺ:0GHMt'.`- d(Mxɝ=)x=y-lߘj᪶hG~kG% (G fU!KmQ dfiM*H/(5؂H~S 柠ᮖZ$nz8RSM>SX VXRn~oT3 ޫAq2Bp4g8|4A{J @ȿ^Z{@ }XE<=SVW!.͡y;; QUxpZ&4hːi p }zB*?oj=n;ƺ"`"O)|8>%6$~v-fʻy`~y [ҍ[\ֳsج j٬_}jPwbeށ&OCL!oP8DDWr|5A7jfR]N7)6I5}B bE5 ©2( \o8[8Fp#V&J>Yal);I*3]1@q?xmD\>O,^vpB'3fgE!ѽB:gs7 Ⱦᄕ2n zNn` UpY9cQm[%}:1WQM/ m*}hljҢsņ~2B,Xȶ7A0ٯXɦ gNmh̝R˖ͥN?!"1w ϭs+X#y$U ky+t=+"-]&gNIŷqHyF]ة `)D;==)IÞ; qg]oȄ=?PApfn~ nrzW %/5\bRrJBӌ:+YqHמ;2ZXlb-׀M+'?˂|01Jg'H RtqvIѮ`OEhI9Z93/b*pҋ0OsP_h:Q;>?Ir#pTݵw^] ]@δ%FYi|36Dlt u{OJȕ4ݮMaEDUeyl2ë.~9bI3* OGAybA#SŴlo+2,TA.|DDO|5>Pi"Jw2@rzsbZXYjQV0dy* :^p]xO.L7ჲJxne>{nV@Q (M'mU2gzvP.eqӽ~fп;AQ/N#r᱃wh{VFU5n%c۩`ee$6_?͝lЂ:n[ GaAj5,&tg]c\q+GO`iOc7aCGi;:ܻ}6<Uηf~WV鴈UARo PSmmnxWM!KV'9J{ c67"rC_id|zEt sʠJ gPAMzC*/k^hRJtr\@gݜ! %A;7RI׃,c@,'f;4~vImbv]%;/AF:Mn{b5${Β!`HXb >|IDV2eCxvn7׈x:F9J2h0^I=Qؠ&"[<^J ;@;QX|+h4?=5'\[}zgAc)~-4ev4tŗ۷` D򔷕烒yjdNZv(K;<߯ch+^'%5q-dߩL`VJpBV^ fb2sPK+R FOO[ 8[o0CQ>X>VƸr.4~d!uOU#c ;>5j.ἃ9Y\ytGOjAnZaR/Rf׀SKomyͳx懄*w]'?RBdOs!|uÜὐ Oc1 r_$xwjo"'wzӐ [9Leەm[tH40!sפ&:$c>tL@Zn_OA*6\xtfRrAxnFw+ lil2(}j ~#]ޗd<3'H{>~E*AʇGqUFP2S~z@偕ˢqgs#L9ͨüZs`2e.; zo'/IM.{ɞa{ ~ϕ^,d~/9AO\B[ܬ<{}RԞ۞mtö`yw4)3QPҰ\wMܵhx2XkEւ̰#Ձg_⺴_RlqЮ~Tt _=W)HC>#EDOXiuAw߳xH|J #fB5 oP1S<iR Izs.;VXuOQKHs)1O";#^.ivTUګ? ֓f*sp-VqcF 1f%J\Mf B+z6f Eh #q}fZɸ8|턢=P7l'zjUb%soekӿ10OoK`*׾VMjzU`w:YoYVX4GwHA$ oWXCQ$x] 9k'Z~Xwj.}C2/?Ш/7<ʺ>%/J>X ,zBnߞpzAyctq'X:Zkygֺ.;5nP.!r^e*ՐQ`=u}]벧A>## 묕 wLmBiSPul5}]o,D)*,iC`/xKy`zu1eZ%8N{5}vu"Y9oI;[MԲeY8AEr(LO!p|;}RŒ ;DxEF8}UϳTvҿ>}»zy'NmkjntAA,dr#<3s<=zE~1;[ fu͡񐖽Ow/1(@K8,3y]VV/Yxp7=J\S-Emyݢu x7vRQg @Ud6)qsӁ탐mQ(tJAݚS2L􁉀82hk.\or場p xiݜ9N/x-<E}޿ ]~ťԓc@RAşJ):E֌kOpMy|{6G-Q7U.e,5iI0+ mHWpq Wm,!jv̉K =Vq%i '{^wEG$KntF?2U,"EV %m2(AYhq.!HvI>"1`m((gצd/ 0O's@IIP:IsT/8?=Nj:e/k FxkE7_lt_ 0շaBkB_|tsԜG:n5H &ԦoH#Ck-@vWg]yd jfO㝣^0˫E+2o TR=ʲuB9D%&rT%.]v&2nhvj7x#_=@?!R;hW;Vo wo17͈9!T0el*.&:@;/HC(c䞅Qwu>|ccΆZ fBZ6/ {%!L!9h/JMJ?[HGl \z1sWC1MjjhIwR^+IPZWj:?J/ h_?ر˝A::sDgHn=$ RSq.@ԓ9:J*jܦWW~}y*0ţ!0”詩!ߐ44gσ<:}wm"TAC b־5Fq !†Z뷀C_ʔVװ99C_d1Aޮ a0-W I5WK*t-AD |[<9z.ԅ}ϯ>"?RBOXs\|.He3 sI"H/hc*3w3u gƓCԬ3\ҀʳA W_PH1k7fvycj ̜[v!O>_7 _g\GJd7 빛eҏN8[VgB2n~..be@>۝ 2R {˻Ϸ(M(ʻGr ;Az|(/h~ (zXJ{|%P.j4&^t:q ^R>Y^}iAN`\w$ ^|tŎ] ?B!9zac$K?rV/H52*:+BHˬ$dsF+q@z1g{MV4(g8Q=7 [e'klz20 #=HnN^Ig~&]%/:.p߾0W][Rµoqh6sJ$4% S=b(m᭐~rU(nV=LxibS͆? 1!{z۴q#q;5T@{X>kD/`MT#t\q-g7<ƏwԷ- JQ[Exu%c`Ye}g $kiV^Ԣ.g3Mݍۣ {yNxh]Exș%`ir7gsXT ԥr'TȖB|I HK%į?/ b~jȍT_{$4+PdO͏p+*2՚ UwCȧ8\MLLp8SxȗCɌp_Zj@^U? %Oz,ybL*bkZޔK8-!>x#H gTBמM>qy u ij1dӬΆԅCt&5"$ʅy]w@oB7qFW.;BO٪ Aͅi}z FWkV+̭X7|y^#oZV] f͏wVt]O8[^]zڨtGI"PWPFpFu߀,]Jٸ)/Ou7~~u0 )Tg+p,[9;ElS(zC7ώu`=ACKqNC0n6cwcAŝEK_C~r(zqKx.\owՀ˪1ˁB',(\+7 ['VE>(׃,MMUՏ?|e^)d9'Aa՛8pN>Ѳÿн6y,\7jԡC:Kd_֗3mu?Cs>Nl'a4Uhm-S硴?gঢ় :=D%sR|wWeZ :4w|höگ3R=$X|rpm  rFx*?,d2}kS~șksH `~z/B槣kPezzpƫZzNV3"qĮM\Oֱ0^zG{mp:>u?Ai6H<qSY0=6 }#[msNɏs5{ BX;Xִ2z|8 A;~ t} 3U|J?NA1nѳLѳ<"~M{Yڊu~ - UZ<Ϥtw ·c4^~,!ȩvkoi_4v='{Z#٦I5p=|PCjs@!H=q?H&nCqai0v0umUvl]f4D|_V4Mѓ&ez}U'{!ݖ &n"^[O_wr#U&@}ǘ m[2q mO*@jͬ{Ex䜒>^Q.z(㐶IR*iֿt'<@5qam7Y_k#ks; Ojd{#_( zN0<'A5:{A  ~H."zdy EKuХ Ax{x2v %NRޟi81_2EV&e]e)GD/.Ydϯvk:^iMAxys7h:,H£stmZJHi)@NeEk]B,Nl>?L!HbWƢf h*B.> v 0/?ۣ WeD>, | ԟ׹%q( By^5Z ~~:xGWsAPONE_z{o=<>}jYLb?^Ŧs[y"`"8=}=Eyn;Sq  x`ohфN#S> :^nb=&, ^ħ'i7SZ: Sf_Q;01r ?~5}.H0wn {/DNz}6\i+GUgk8A;'9 ,m9^u\ԋdkg | ۢWe9Sx9˛"z4pO0OWiNG.PIs}q=`x,;ւ6`N:?X}z, ;w+JW;EٟG A*pw" =΂&X%xT; 92~ 9D|)̧q`_d^]onFPKfnN5`> ˂չ$y]z 5dM4dD6tsA5tmtW ٶջF{Wqpd:&x gV`dzFkX/LRq}0T"b`]ed PO<n~ j90Y Pc,?VBVٴ3 B>cxm(n3]JndȴHz2դ gl* WmsWxgb .r>f᰼נR^+ˍe%\@a_ޑqq_'->WJWL;=oLwPV^[F#g<"?Nbyu*&rnAnn24 lAhJ}wꕭ]A}r,mSZ `9- vYGk>Ց\P\g ΍[S<^Sd }`TI62FinXif@tF 8j̡^9t*X|ؤ}bEw[̗>Oxw^ \ʵuքOkxyQw΃`}s{ [%x_d'r^E2v}0W$j&b0>E@m34 |+_A"= !j0~tW^}#zhiOvj-lӓ ;;V]n29sROJw"=d>ZMϽ69 R{1,L0N=8_(G} <Y+'7WP}dzEJ5m|Hp2d\S |7=ycq]`>TkRyA[ճ]g3@ H&SFmJr類]j"%6gJ !7fz&[[:B.0T-oI: ;_%*Uj!/qR*G wu1 `p׎3["FW_kl}k ׷Mw$(&϶ro}LEY] }9笻_,8  LF,Z:2N'JX1Źu')AQ`x\(zil?ʙg^J\rK8*)VCk>qJS)E V1'$u#''osx`*eiw=>SN"ڎ8 Vw߻D!n{uH&d|) Edu\u?Xn򇐓 X-8U_-js]{,k__ ;څȫNj|ErxԳ`{pt+ށ3U``FiO:qЎ+'4 |J,GNh53nScF”k}DM_KҠҹ:+@[|'('.:lAT; Ҳ`:FVK@j|ץA9_X/;[yWnHb} ˨|>r+䉼}zCώx/K~xz$~f/r)t{SuDO̵ߗS;-*8O̷Ɓ{ceO&ؙ'Ik!=wU%2VP(6]> Άp~"/~o^7"oA |b2:EQtI5mV=ڢ{?u{| hDn  壾=\ I1ZUrh;ϛvڢz+)QPo-@iӻ2Jytꐻu޾ HQn)哃p!(1}ww12M`.g|Al9cC ;v/zqo = !{ Tl^0m Ud (O7Jjb/dm.'oO$D7xv; ^t!egV ,o4\r|LD'?#;iqЯJJ!fWH׍땺 ?o9KZfZH~]m4s 3q K$~CwzsY&M.\/V3+}aN@{CĭGF-]`Yʹn]eZ^Tkmni|QPJ35/R!nAL"o4{*X6 ݝ'vmܧc#@>ԚwTŬgCzvbdSqEЌK<񗞟ٙ.yMJ0=O}tOd0p.Xdo&8(wt,S0br 6a~l^]]!"N-ȃF y3b3uE|UߛVT(SfYyePXz%Ʒ5Ѻ cαֳ; y/i}O~ s8:S!{n}Eqso/~_eh9mp^Hm/qk`wF<}wiGudX0l!UW1v ~{b'9.x_fzv"բ*X&z`f ]ySAHT3w s!taסnO_{ blHҘ R2S =qE; ҅o}3@25ɉx.3\X}eg_wsZf;0o^pk& ^`PKηꕠGل^l6-A 쩆[r!/xA;^LD=v^w1ҍl֟Gh08f5Wep^l H;.8j JrE1DG%:J{t:,ێ`\^ᝠ%^ACƎ[&hKO]-P/ٞКK7V|D[qZZl _RdwG-A(,bKrW$<$)vòp1+;g2M"Oj`*wib];?*9{ۦ'*^6jm<9 >jun %Q OQܺKyK3G`$o1s$Dk|y0foZQY]FktX@Vu&S#\Pvwb{b@1< W o ls뗖qHl7 -ʋU+{7vko{Y%R@!yT-`V?9uJ'RɃyqmȜ=X賂IA6l=0~0DO6yE~BWz-kk۞8"l= ޓd'W WX蟴a0g }oK04,Hg(} =v?t;#ڶt(ٸ~kk'nPa,!^5?m*!gp[*$L'@bwyR,JR=CP -_Ʒ&wwmHKq64#Zm ȓ 5AV7׺9ͷXViIiCF{s#t(VMJC޶E#3G뾄\+岢v%s}c`3&U;՝$v\ss_T̀f}- |۩Y ΛsU;s`kB]LJy@augJ @1Eo*q1w~D@mTO-@}gd7M2A_BaS<@p9ɚݑc[qz@{ݢ!QiLw`p0L\ .uGePwnF,4 smh{n޸RXeB|@n< .cNϻ|;d*D3.uY107_x溢w?p]dk+ ݿƲbPUkAO2%iC '34;Y+ʷ \(XѴ] -!RJR!ͺ`~hF&[%xүɟҼگ{|`ΣaסX1jFxf{65f>3oƓZ C G+jxZ%Ĺ炣s{R5vsL@S~ VK_FLWMo o(g6V0hܓzG'qZ)o~>]7EL){ǷEkӇ5y3Ff`_z\9.1u"Gm0J!ϣih x Aї~ JTi%6]d3o%@+!|v5^gg`~tV:/"yLƁe2zwd^9I.åG`<\{^"E.3ggZG2x^!Hx QXӧ&_yW˞?^vM l;, k{aFKj!]s)Cwۉ) ,w kJ)(_eC^D-C2Wz9fT~O`j  c'_ău]I:bGceIP<4o%I_sھY$hOKKf`DMr91ZG% OX,i dAIl\4+_oTT< l׸Mg7Xpm. wUlr._"pn{9CgdԂ3{j:&8w/O&}I_pX?=mW۪Joq{/@ig1Jw.ČA{ٖi흹I9{BN(1vZB[9X nӸn˿+_md(c[vD\-pgGrUbb*/5JlQIW0q+Aޥ+*ãև@RXp;ݰ)U` ,g@fl Õ_Jԝ0U؋KA/k4DOu[7iBGĞYuq2}UW@=ZHBҡo<$ct(Xk,`9T7 d:0*ҊAWb&]"x.%z)c7fY^VFMfay"ZBD/ +Pv@ϯN([}d0 ˴Acَ &lc I%=c߉Z?K) ^:Aygk|%rDT, HǀzfjSy/h6p%,{{k/Μ;|W릜`_Wb&_alQUS5~r}{ 7ݓۿҦ Xf]l??ᄏi<\8wӲD-Uͳ"zD+'<;8?w"T+׹iqo|_m6(m0Eޢݐ2p<ws+%w]n+|ՠRcP1F쵃P<W*S>k씟菏em3xXGHZHOe1'd4yijhY .H%0#->X-$cC/լo=y.iPGJNJ: {G=Z#سXga{{ܘYGZc1}DY%G̿7Z#eɋ|8v?ׁwwKmwc~(5|`Q .㳆_wk Rml]rqȗ/Wky #C1`b8Cp"OUP`D%dηwͭKhQč, }{h(%w}œyh ps!rt?;wY*L+l\,]+A喯 [\bA/o |UυBU??(k[Jgen͖B^T3DƣN|0dfZL_XL2/1JMBao= <#n5pLB(( B1hoB  Ng1UU)"c%b~#*UU({Z4~ $%_uB!Je(Vp|uGp䒲{+S /#゙H'IkWg[@yVy&O0%1heTΎeE (q%&Fm(=S T@D]N:c;{!?CG =WboK>p^eIyAAzKm^`o3Mα;cNK,͘'I髽gAck?r(IkW®QO4 Nuia3p;ݥ*0QoӷdـQLųIqk>:y7\+|@7?)rؖ/Mj1%ι1C)0XY nO= Xʣ?OD|^JelPFgbr`4]5WZ $u #(,3#3`j;;'|Q0o7 P_QXd?4jM#Sz4kAo༸h^8Rrѷݵfgtgśm3 1kf>ȋ͛nnDPG6>cQFK1`g+If?y|5Zܜ َQC`'c.Hp0s^?WTs0S'.zPG0g;H`4 *%;[RnPs+#0$渱@;f(t t-cjg0VyFПh<ۘu|o~Ф$$_M!yY\9pnj"xƃ͚[~wo_^kc"(cf?Iut:p6ϝZ^yb_6 ]6ڷ􍻮D )hBmk@-*7bqb^82|_kȽ9B "؂ePoHǏv"xGApY pdnDTgZ.$땏Uce5*Kߝ zsdO.K@>*`| IbrjjN'8Tc5Kpz2ɺֻ7@ߝhȦZ\RWAR\F ِV'eqHv52_%e?}7^m y\{ Cź }tyu+;d~ͦЮ"m[ .ۮPH,8O 7{S-H\zBɜf^H/{'+#{H|_kS4bAWYC_!!XNo`d-0ZD ԟgs@1Lǒ'O{? -k_뤃=y5^H3VJ<7QV/&`ڟ?,m!`!yw| CvWs m鞬5YHpJIMŷwA` C2>+T2Ԗ)EAhexvDzD6Cv4c>XtL;Ow'ZX%ȁN_u R;̞YEbZ50㞔CͳƎ^Hm`qT&0g< oن  uK>׺ Y˱2iIHJܗ-{y%|~YI`%%(cuoR{Q =I&{#lW#?݆m:ofYq1uYh][Wֳ kZ<(7&JY:%ZcqmX)4jgd/!;^]rM+ܻ `uA qvTxlAN@ 鰜鲣Y  iMl.lڮbP*+I+~;{d2bnB40ڣL.4ȫ5{V@~ z(;¯ǟX<ߙ".m*oHZ\ni3W5Y\6܃iC px< /S@~A`6{lnOǛ5b j%6 WAq$;B)-F ~٩`_-J#Z<{~+[x7ÌX;".(5\8`y0_ׇ=AHyPņ6a1#>s?_BɷPq̒+; c8):r?|\Y6=ք n~ PNq?{rr* (}>xӗӀ '%<ᥗAtOC`l&>ր >agPH]' 2_k~*my%/oh2gRkZvF|swY7J:NTiEXi ﴽZҫ9qq`newmϋ ?]ȟ2:*-STrQxwP1 l!ᚼ| l\g)4;=fY + W^ VTEwp6{Y- z Vuֵ||u}c/*/t^M-L%x;?Ie7lX RYs%:qy`k .-X3+1D﫽Oy/zL=﯋Ihq;m.\~ ?2vKO:@ V{ɐ>+2 0bKo<҂SAriwPL*j'M!pp;7TD1mrkvrF>`h(Mucu\2;?m+ǾUTA٘րwo!qe+!ն?D#ۢoU\3QR][DQj-v!80<Χ4B<峿D/efU$e|t,H>YO9M0Ȭ'ӌydKO ٱ2ޗ4PIxwldoha1J!J/e_L!&٧ DBh5BF?C3n.eLO zB ;eBR,?Bc Pz$FA_:6xK^uMGDVwoH?ʶyw\4w RR-߀qBvV h*3IӸv,[s7Bey'8& cK|ݿ3KZ}us^|oӈ.{-}b untbnG뫣piJڊ.0Ixw9|_XJJuؽ{ORh :=DBLϯhqlicG[@:RkPoޜuXd!0G,Y>o)9s]8\#՛|³- Ak8^ A Ǹ~1,-XCiI`gse-%w/✥^@_5(6_X oʼRξ!άf[t@z;OW9ɳM @1Y®KCfZ9tcz({.n>-$icbW]HxẼAOt1Z)L>2}F 4.ҬYTْE.qa X&H7߱Nk^MR"v5_K!a1b&BtE-7_6rM }i埳.n6y]B!ۚn0$=1N.pﶛAZ/E (o~sHAuMu5&>@"sƊ>"_S Ԃ퍠Ĵ`rXla*5@ҫjes!T=QT'^k0*٢@Rgݕ!&2 `-1CVf։ה5)trS y/ywz H{.ỵrf\*h&h PQr[dz eq;QȌ(a߼@868VJW/ o*mD* 6FCn~ϻ*P|I2Kƅ}|پ7Ol0tŀ;l#5=堈g>jG5iOAW툣d7ɂ4R!ʟ]!4FDV]1 iҞg' YjQA2y^ͭeF/[!/x:n[`0޿[ԺL1q9x/{c?AOG^xZ]=^ jwl@?Wĝܼ<ȼLCusLxCB!}Jd~> {O\HlM[ěvlҝ)a/#r AS{Of[2y=wyZV$~?悶;!AٴgoPkowܞOq#34HFiv>blP䄄 Av$oSI(ߚXn2cz }4W6%pz B6k BRpk?,Dn *]aH"vrne>dF[o]e1}oaNi^%L [l9HZ[g; {VYS??mA?6~4N@ϽSܞ٨ވhP3[&oa .,Lmۦ8^:XmBHP8y=E?iȦ[J3$ ,嗪JH؇86C{!;Qh?>Po4u̍m !ȁOXOL3.tnUW"wélGxKԏLH36Hnw-̞l)rw,zn Q5/8j#Xo-%9Kg{O tV\{k+MKzAT4):"g?[vǚr{XpW vCly uǩ½OD p&LE0z IU?lGVC`.2wx2*6xLz(mۯx-?>;km`]g,)qX>sFE@3 )_ߙ'1cnV`w/v F2ɶt)w92%RsڋwQ^rC`&.U[>OHVeA!@e?t|:&dk~+M Ǫ@5ctDNtAVI;[\?.+[э`ZQJ5 @ TW K)Ufπ|P5KXw!O,r.flT@}T'?w=9*k΃H20 S̀g6IJ)F޳\oj_o"#d)J~j Φޗ~0OqO(&γeD-+a~{Our[$-5Dk| #Sb{b'e5f@+~}5dg#ؓ~U (LpkO;%Mj}Wz3`C7C2o0g^qb09l !%ZzzdU)ϕ*= 5=π ̣B}ZB@4hm'Չd#gԢt,Z"?L n|Iȇ L)%2s;MXi@Zd|qb>{>kq݀wdYGYpG|lQy~OITf̈́gYD; 瑏F,YZNnHIЧu[ku91mz _hlۃϲp?gG}ASPy.>-Y1a! w"rgm(捶~|ri(Z͇e8scǐʂUތEcPu~a '#DieQٻ{}2?^>z }^E[eKzRվ7L< '=v2|)(wL RRR{fvg#}qxvK`ןq@˶j zn' fzOp{h l~'  1A]R1';g\\D >/c9z 5*L{f{̂?q9psWێwmϘXj,!Ujd`~^X+g34/?ʡo`G} Ϊ&]c`5Hڨ}`Su4t~s)G\3}Mrp^ca^ ( sx{ܞ/xo z'.nQZ@iXǰ J`5~zq_3E~R`םW\nԜapu 6ޱ?A}; چEvM4yDwL_fh'I=zʛA;pcG6mP/4"Yyiz'ob@{1h֮ sVDnNǥo -+^ˠ/|O{WKm*+|y)xM|I@﷾y B|JD³:Ȳꝇ-8Rc}m4w$UuRsLoMI =|8;%7@!~, _yD5.4Щ>v%r^@^iȔy@*؂7CGyhY 7K{˕.ghFbBt%}" n#mKނPvъv&詒,]tYe>H}Lؒ/oo?;6 ~BfِJh eFQ IQI%*GeW繯vP{_=tkuQsGs((ADxig`m-9{6`H dv*HЬ(GH΃M R[[!]=GԷK)r!1!xiyP*<0vm`No;9%?KZDK}=L%s`?yeoLy 1 >(in=$ ipco9(.ς3[:K#66c9w 3im|Q(!\ފ8ͅ6Q}yN{_yw]hL2JMZWn8j ԜDox6ֱd՚y`5Wod_'7f|9Oŧb0D?ꨨB9k o[^i3`9[Sm٠ݿ>g`Ѓ\!y? u])uTs (O T܃"2UJ@לgH/UF_8z_ʁ%2sXO49١xRoo]]9Vs,WݗZndWu\N| hyN_Mrx`~UϞ9v٧ PF}:Z<~l{. JV^/^k<Y;Hnהf$ @of="qKdok o\wwͽqi\d"w߮9ِ\o[ܯc8).¬#/LuSͼ A"ݵ^P@VY]%ҐwNQ;WnB!\3;ss{)`>~4_NRեwpY%mo4ĀiX+(~)/[6c6/L]%X96+Ieh~KUP1=oV_]$H*(۴0I//R {5@wG${XT)h}m8 )'M/ICJͨo1 Oo}cE=HNTTDK0o(ћ[VPL7Jr,XB5IPV7:\j~{ U3QxA|7S{[?'k;LS=_grߩfT^ kR*K+3[K*D} [; .tK'/\b@[gi;={Z^WT Lˋy }[W/y"V f}ȓ ?fCG*.ZM}G<xW8˅lK޵=~Z<0hc|#r}bf:ç.hMc\3[nN(L;:gt{N~[Wv Ze_u̓hbSw@pG]⬰vp68(Aƛ$Wb/) 5ϭV׾Y Nwvq4_P;>i0<{67M]юpUD.pnxcܶ5X1#!LpZu[XW*mG<m0Ůp3Uw6Ɓ-`)&>;f" {KH>j9H;7 _26 @a'ײ<0B-ύ+qoU w[I"cG$yr4pZʅ$}D%_mkX g`Y!a;.:/ðQܑ5t`Třzq>hI*.츮\m,M﹌+< }T_~y`:kn$&VЏg_'7p%wA>Cv8aqFں$|VY&X3=#h`ZvM2l`5u|,Z vُ@QJyz {i?uS [ϟ1ſjsѨĿJN: 'ѱx|qP蕂w<]f3`\mFz Q<7O#?~h'T@?"IlQ֓`NhޑyE ?jʼ #Pae' ǁVDž K{A,9o='k ]>?UDBuEPMͭ{‰ҜӇOk† lr]8T~hkAx ɫnߕx %}_/uױSPԢZǛ5 0?# ޑ^k -R,693L8?Ny̹'zy#kn /p2yڨ /#mj}Eκ@z{]pNqȟ>4J&h7vƦ5\7x9i^oa1 CEV.`_P Sՠ P;(;25N"vt?_C[Ånʻx<Fށ1]EG9_=*)P3e &&n8}*,ʁB_(&ufAŶbȆ( 톐=v:(I8+g Ayz"? )*tg}-.ޠ'<>f"[3| N%OemZ^QP~dv.knϮkto@Yh>%>HIW!5^CH><[pސKt.@M>W &L珯jtyW2ήlEzp)}es' teCո&P*'WDz~ƀK(%4@ZNٿzcȔS,7B줊)K0,j>AzΛ !S<&W kOdF&rʍ W~:.Y5E\rdf۵⥹YĚ0 96Z%9 aE| >=Utۇ7YDu=7f@L]9b>wEVݰ[9xf_x2ǦAg)[ubVO=u2=?rF?Z. .>]jb7GV^3%> :QpgY J;6^0iNV+#!7f'ޕ )9ocwU8~ְ7GF1p8ۣ 7WnѬq}w]* &L#^cu:B%)Z\muw m֒My(]AὛ|W{p}k%q=4(X(?~eQvɋשM40wFtrχ=$j}3M"$]jGn f}@^3Q ?)wh%penz u5 >u"%Qf!/k9_-Әvxj+%3YBp诒M҄e &J=k_ G/9MX_.m,oCxMBB:XY{[Z=* s7:{s!X_wѴ:/F'ǒEmL68-R=!iV'՜!;JJٽzN:sz~W hHǡ4-^tغ7k 2C \;BW;gҗ-K_eh%ks6wN J$<kn ?VbX_ lـ2Tfْ5NJ^^zF[ 憤N[o.17%?62Nj=vMF -PIn7r5*A8')Xo$ss|t^G9hXWB3 N> ՇwH5`i1mʹ[w߸Fm>PDi9~غȹ m6 ּkAo>[b)3un\r*m-lj_cNw VH'&O.kE{V (֙}UUi{:[f׌O5(2sDGfUa(G씛r`] ܤgBYh[ 2 ڕ:9\+IT| 4fYQ6S̎zN#:;EhVpNKtgN W4h;~WlzM_a,i ,[[+ҙsỉ]*|l^fJ<@}H\bnZG`x9O[vwX; rZ]1(&إ W@l8X)We-%{(l+gw//jxඛJmfǢ=v`4TTz坏Y2?nl8 y=@칺YԹw!wdV0U;{oOd<GuU|yJœ6{r_l^{s6F-/~W.k;]c B2e_`)f?+̗Gr|ԌOAܩc-6v>l\M*`_Ybg8XUIz)U&[7ڥM`Js뤸RY.weWActq7;KK23ЫqNፌ"pv \8̀i畂CS]uMt\ [ޤ%PmB R0?>EoO6~"i.WHrV~x4' ?}qHT[I/C:=F#K6>#t=e} k0d7 \f2Wp}E~h!aKX(YEu}ύ|:~` z ?@ɗ̓%IK`=Vy kb(S>LIwІmN^A3` z 9lQ?A/Ap\̱q*XX/މV{ϫ5s) V5b}t,޷iѠߟw}(^"IBV%aw9*Grp!POIt+w@1zV> ~ >zU6g#57N}~:]N?=^SS=FJ;E{ yG,֕S A=:o\ Pr nmo7|wM@:h;Ba>]l@Uk4 S;Z=ȭFp۟| 9A 6-ubCwoCnwT ^u vrĂ?{pmG>4|ck0>WA~t?Ks r#FГ7ŏ6ڿ"05.o^`o!9`y~a/2k]ٯǚz[$p㖿\ Wo>pNI3kopN*Hrum!=~7}4AznA{uo'#&SwzR7W+{9Ql<9txFrۢ:#?dB%=Y=HHNk"]2G[ɑvoЛ.fG$3A_Oi;k#Oi7;bR1k_}89u^y5}7WͷrӱuPhnXcd9D^?%9-bOIHڷ6l2u{ϐX/ƨ,W1F`J-}LpDGv#0i"ڢ~-xMvlҢ4A8{r`\s>ޡu7w3O< !7*A v-V> f*KE}!8k7mw6U pbpsݚ{PqG|E8 " ˁ[;%!N΁-/H=H*d\0Z.`Ի[7Gّnږ&H [yAH|( LR xC; g,t=LyRW+Zxf% -h{ JI@e@升{V$Ա܏<35NzUεP<-GʻR_ےs}NS"ɀxJ7y[L ޾!;ucsU7u`} E<{ g +Z[!X%*@zz%\ Fس~Y__xm i]d/w5'P9E\(1T!lMJAtr|r!Q ,7(#]:6tLS'yt ׫] qZ#<}n`@Ifp8iV?-IYḜg,)hto!}~w2m3AKoV"9v({ǃ^1Jsh9Aw84p֭`j;^اĕ^s |@@|(p/&,y?Y<8?G}raJ^|W m;R`UA|Q.x[Wyox>87Eq/]Lyz(1Xէ^5%poQC[}[( EySKRrJ@:׉Zj3'B8j} TW~C}Ŵȅb39(^ ټҟ>k)sᅁwu !nu,e$, vrs=̯5rtuY6t=A9:]?VcL?N&9KP:Y걧n鋄"=UUjIZՀv+_r"@eƛ#늍?RCP@9oۨT=߮H| Ξ/ %_Ao?s3ᅦL*^y/( ם|0yAg=`ۯXs vUYP[s/^dYAO"UtY0 F:߾'PV JS^6C#"oI5O%HEhSZWGdLJ:BiRUw_v4H#'7N>m+ꡜ46c+ެ %4}6/?SP" 4# MV^XNnR0ܮ|BV: =3۠$|_ [A j"URF,.>Kp*_{;>[56&db@QY\bҗ7RjpUPq? †˸#WbXk!Ȑ@`M4)u;"J ciMbWj(7XΤC*!zf-;xN[SqQEi3Ew\'tjE ?k{%ӣ0~MJ7NکVBA:Ng'y/|?Wpb$i(]9őf#O&Y;(3+|څPNT>M)en/PLy~Z^Y|?F=oזg ";7t^=G䎠yAP;"<}ɤndE> TOKVߡG72A"ߕ6@١U@P]w1ֻ$BZb +5vnXzߵ_dP].~@RKPfm <{Be3ù1]Xf ?SCw'q-)?Wpǯ^?sJou$Mg񗖀BT ǁkʳST7Sy&ߤ}WEnHIش( JC,!}\+N;܅ZALLϜJ?uWtt#=(M;%霦*ⷭnGgtQ Խʨ!\)[\x6B*A!|}8j*}Ԃ߻mmpLXBĂ3 ;t&|9ܢXo4C!sxn TՋNv%mwN }֚P%/ *anAM=#*ŗ.fA嶧  q±޴ڷp2-ٱ.<m\@tʛfV'ӊ oZt`Վ/RmCɂE/b7D r[h jќc?}5N;^YJ`7\_F`Q4뵤2^Zzb_lruCyCY-/`I m͗X# fҨ[I|CP8N> שlk"P98{P,unoe;D\sxh8[nlDۋyz0.9j8//o_p1BZ_xP:DFM=NzG5 ~"aǼwb23뷞݇ srb;/=|p]2j3΁Q`+n-A4`$-`yg߻7wu) N#~G٫22R_!T7'ٴ̊A/c߿JS5JmV= jR-zw~m+.CvȖ/!.{*:i!ydbc[Һ7IoE=uoFТثK6n]˟q_n0}_?]r&Vk _/1i_hZLmu~^o뵍3Onh6}=u'3U'hL'W{ fT[?/&fQ0DuEA5V@^/'q\f(y mj ߗDÙAydh7ܸ  Kn(ϛ~^)wrs; yn^kmIJ9u7 D^yu nY"0X&`

}@4Z8i#Ӫdf~zWܿx =g:Nr oSf}b>(q9g2ѳu>E-wr# .9`e[dY'CGtv܉hF7}`^^dY )Κ_? qtPdú/@9bfT| Ŗy~/C2h2"ʳwJA(nȉEP5J]=eg߹AGr^/e~!Ǘ[ᆜtm(p<;npJ%;~xIj_'*2]Qg&υ\jZP <==wh~N׫zA5UcNa`~p2꛽N@0KT^\j+mJ{|7>}6ݧCx`SpyQ 03%ⓛHo\T?ݏq勍>9z`\V՜SO,\afʃ#l$I{ 9wF)<ٲ)yd{u%}` rORkAܟ \kQk?ᬆ LZ>#?:?*9`ڊ&ܖwxrgZ6j=f=}wsgپoగJNrm1Pi$. Jsp4գ>4e tA=ݝtK&j6/W=-VN֮GT&\6> p^d*4UW9<2)wZSҫ`ϘsyCw];犓e?I"*VS…ճD9o]_vZ)PD7nfxAre^ ˑ/{Ϡ,.ipYVޤ'"9T' [5j%=]OSn {r)Kye0|[Yz0c{p*>ġ Cv(;su5'zgWB@j)8ȶ߮xJK?J?W5osbԅ O^l2Ґ۽`o5۲s a u9~[FCC_Gy>OЈm̗ mIo8,Ru^19;t)'"\u:$Z7OH2XǫۀN.ܭ k,*JĖPo̥.owUu_ ͕b67(NeكosVC0|gBN-Uqk6>97NҶYtlC:8'ŀqlsPSC>{nB0 O_wz 4;[ؓ[+k5k=O2,u`z&׶e,nXz˭/po0Â&jaOi]2q?Swa+$C6vBn). V{!DbݜZK+3`ËV`G>4"|beΪ{ :.V䃕;~v,kFAEP~5̵Բ> s39wl i[V|ftf1P'pmGp3NfW _"qECZ%3v . |@6GE3fr<:9o #j`j^xݳW_H<|x6\d(ͫh3׃1eOl5ȼ$~ĽTeΕ䰵>dEz$-後GU"ف.u1}e|Wy@mXjB|5x^"e{—ZxxȺw:8wʭFWor}8WBfpr-'%Ȝo] ?j r.:(AObr@}},tۏ?O:^1l!K<\[7?z_\F c_;ݳ9 Kc>*y8o3QWF:u-# 埽IIyD0Ƿ gMS}뿂u=`0xKJwO+MAy@;쉀ׁY?tĊpN@xB nQ(j|s3>^2%6R`Zy&h V}Bz|P0[ M1 y8T V^OzUhͲiY ᢉ"yڌx5+t.Tjqnb% /-؅K操^r 7>}eP{10h#T.^vFCltݭܮQ ^wܱF=]jseܽ|!0?_xD.!z _XjI+o*0^O3?u<=*Oz6p ;u(o9>!8kn=1ᠧvǑS>cj9*9{*w#4Q~ɮ#^}ythW# =Uy+[ջċ*Op|Gni\/[γU =%~&{2]`˽^W *,ӤfX7:xˁSlϊyLx.\` ߈*saNбܕ\h׆,[ƟKu[N)ؾ38츰 rsk^' } '4+%c!c3b7w2=?s[Q6UgP~;ۻ",8ݧZ,/o*n znD[P71 UǞ|,ho.{ᢡP!د{;LV8(\YΜ^ݑ?$=t׿|kZ+U\[ /X0E+b:(04\^|22"ST`QHi>:R[7iUzKE+vnd +6|-]*g#38}O#`WbԿݛu9ꉧ:{S;$9 ݮV橦.P܉o~,P4tFw@?pLsNA"uLD2MGE!7U(~߷l%Ԗ Ϝ43z#O)h{|ٱ|Z%.dNOX.Dҟ4_16\ouf>Zغ>tD+g(. j0`8ֱcsF ]=ĥknB7$TƥDtf徟' mZ 3Σ- b4YH,9鞷d~ [KvʄlCl:d-A:dQ4k0]ѧg@j]!7fރ[n}| A\Zy`,)q>[ {ڬݳAi}9ǰ.b7x5xB`nJx>Zf{/7AI}|Rŵs-%!zo$ާ]FR{; r,Y_d>%U%[jWf`>Ld soK;AOWYCZ;w<ޜ5*2SO{vucr1;y~1pO1oWxX/(Go95el`߳7I8z\.l@+:NDi-@ۯ|r147-|E $q&Xe6YnطJn`΍}oLVPE/ϛq`=Vx5Xu =toNkV(9{&DO '}kzytRfi.Q+(Ac_ )GEjYl/;}cg[7CV-Yݏ %uJ `0D3I,kκ3i`]+y7U-HB{v 7!ĺBM!;ͧS _-$ޡ㑎Q.d\UmٗOE2|V4y@|ǹ(&{1pXC.O>l f>_]tŃ%=1vb+,_./pGyxl32U[`Ͼ+zhdoO=ӬJw+SB;?wԫfuV+M_Vb?`Z] uz9&~ΑεoO8va c J7DpTW*7[!%ſ<PtN'$:o)]Q =uPu{wV%!)7wʕ5]:J[M{-]€V'.Lu#lG/XS\Noy8)WޑV%`'% mTn`=B u.pn_ѐ?_< ^/?i*p>nP.O&|ʾ fvC,q5E++y[Sצ8BE\ΘXu[~xr٧rvz`7{)Y Rz~A'H.K Zշg#Q#`8$N%=3XBF"u뚧XCq ;om}.n0 rŧ(Oyw 9[ LZq  R!Ah1ݵәb Gxo2Yp3[ !6?i^i;;~ѽ:, Pp1[W ?;_T~e7k&6FO3?itE.&#qSz=si:} {ϛ>4RtX*g^4YbHmcZjlCǯK@!jv z.Hڻs"Ȫƙ UhY@~HMȆ5| NEZ[Bh G7䬩x r*eS7#!oII|aYCbٱ^"!1Hf/4JZfyFo Loݪ4}&3&fyؾ \QOK=}Y Zq)`sdO}h99㙕BꗞsteE{AM6r;{^4\)ޢ$/)AIjf(Lg@)ڶ,KY !aӤR3vV5;/ma񪢼YKqbZPce_i =İ ?CP'8Ӓgo-(X{8XG|m8$ Ӭ@w&ZDpSQ!Xs5z x6{[@hI?]ڥ[ hM=H |Tn=wf7x!n(Cv_F-N=(yW6 lS= s5r+b&p8z /Dt+r,[ο=;d,+jP xWkC)3q_ Qkp^p~H\{cYb`ɱ\-3nV۸NpM)\p*GumQ|XC88I vܵqP%#PzVG&$Td C},e7> Q`˞hޠ TEM1DxUsۤLŎDI'?^w&6In^{K8fݍI}E̫WvK s:u3'"jd!|8p&}Y-Ǿ찎&/Uzh^ W/]M?# ̕ `nIef|PzG&|a\,k\Ϲ~7$A##wMArW̚ T 5?QzJli<,Ssx/{_ǃEӿٻ:/G]2#:lR@rgRK_VyP"ձ}|7r])A]@869 [ܜ@cP*$-S]^ צlDATn +Z0x3_-m@e^=mr4f/SZy`UOCc>wLo_K}w@0ZZ(0J ɾq;ͥvzw`ؔ1nDOYq<|.eߐv *y2LMV5x 2~,{YWq 4I?'7p2zi++ρMYT 5 3̫P&gɏv@9aR X_gl/m2p p^V`?)U23zwu䔬>ʊ9 /+ʛ(g sFSZ1wfb!XFݤ$|.͙Z*ܱgӜ'p'ٔw7ez+/巜|A%V~ e:.G \6v47=?b 8.cumJb7}uW2 }avI J!Y%T<*-i!趤#28l=ou a~a cv uǪU@L?մ4X`}vy@ X!s\UY3| {u~ i(w+_ BiKt᪸hxڦi$d|7ᖚ;./#̏կoY`Ǎ"wcu$ك+w9߸`z:.,IoLXv7U[d@1'},d+P0RW3S"ɍ7ZGXD'%2k8F8Er8f v.-;FD˳%eV2p=ĶudkAϢ. m3s (OVk_닞rkB-D),ذjߖf-Q`[ޫwejɿ[3zh ޡhfx,Pd;<ߦ}:g#Gdi3GLv 8a6%=Cω_]< gtV0tjO9BQ% wȔ~{ }oۧӦ EU`_jݹRD)3yaa]ǃ(7x,xU}Z{8v._fnX|1xf?W&swbKֽm `?y^LGoC3 oFIOvz%YLM%/Oˆ{଴}"ŷNV$G,8vuGD<>zdJLrG[\wR ň尾ՄB>籲A<ʷOi6 U :E`(?8NLgpBtѾׂ߫xkuz.\1g,-K!UNB9P>*Ie|GCp~aɭnؽ~`vj*ԙQ|0)xֲ鑅` mS6,P6һƩ/.K}g40|< ^3z5:W6kA/\UI>w4^GܰHMTH̝v,h}$fqvy2쉡n& ʿɀFM$KGcA]2 hIq_<pLvX5pA@aN,l]w!#849G~ s yU#*,̶'*@uY 3H-5KX m-`BfP;?!@Oʾy qg+/9r.,9Q,50KԦ"%*ര_ռ@P/0FP1Z_* V-ijպ"oJKBR~؁)wpt{{7`VPGeeK\ ^ );g[93޽4U=!zM4}:Z"]Ø)_-_'C!URڼ|Ü-4! e!T9 EYQNS/1oh?[Ćv{cms'_iO(BM'J%6^?  }sr,s)xl'E; ovO;e#)ZT'cie{_\ZZ pMq`8%V+= 3b}(v.w|wv]Gx cOv8, 91ʮ[ |(P<܆hU4S}S2R鮄Jڒ1Si0f(6G}% -&$(nT_H>qjf#v-Ss/ 8z﵏ x ػg8n^Lz+"wrއ+?;H_$㠨S|1[W^/,52>7ek-zⷞ,J 'r*{0%2ݼC`Я=ک(3Vc ⏯sLg⟀h~*'$J '\ǗWrskvSEY>:ą`4S;A/&yJFqo^Ȍ_ώn88'PeRIfdv9DŽ#A-v)ɫXmm"pb<=|z Q166x]}:P\(g`2릌_37>ܫ&BN>wg'x[ZuQpj.]45&ևA?olCG(]SY&rWöPMTJeϸ!HyLZ[mG -DKNv9E L^4vzm ^G=2w^(]Sf$gvfE-hVgO:3(;ZN'~ 'UoV~CrWقh#&>8(|"!ϔߵ?%do+tXNlo-5V&U@([^H\p'镰DXpqp$\.0NnCBk$bj\橇{>ݫxN-8- 95"qGrkžC9Xɺ 󫆻̀7nFL$UG^zOQ3 \w^))..!X]{eH|iSe\|p>75N z7 +]e`L} n兵Z`?dٺwD4De8Kμob;ҫmWmH=n }zu~^HW܏»75igBG`gN%)2nc--{M=hHfZm-1YTYFl+}Opׯ-73ݹ̯jr0}~>Neɚ9LHh)9`Μ1aXMk|# !)]_;qcvG [L-(]qg5 &yŦhFAǸlI&\?~%|2掀c2o MЗڝOz"R.p.S? ƬAwz`Lr\w)3Vu;5"pcn B߀Y2t&;6勃cơ^λ^p̓~E8[Yn6z˙cWAү)ke *&9k8>+Pa`0<1 hYzăݭL 9vr`T]x{WϫX5O׷ARE=㌴rXN[4o|f'l&#Kj$C{ӆܻt@)sȁE#ϴ13_SY5=ּ>D][t4+nS`>x;kJǿH::~ nMq /˺V Ied*-."*~m] ż~/ s0A?qRFmlQ 7tL;>X@Ĩc?o V5 mlED8J,qԂug/Z@d~TH~-wLH(L<~ {g~w?&όo+ {uTS\]Ⱦ#Ɲef*B)v)k%]~~)g#~Af >~t[ (gn۲VB$%D{2Mj wXN"ή.FBf@*z(dz8J$~] 2~7WDgU@V_ߝ vGd>:3Ԟ$`|XL[l ŶķtA`xyG7m61!H۹͚ȵǫw|7x}{aU*4ť5$Km,HUX{t6$ɦքߠu+F+ף.Il0r<Ż!oh@i  #ӻ"2_"۲}@=QQ<8 -GFs?r~δqȑW@\!g@"]u_zԕRfV[h@Ay UAukh l9zZw`y({L%oߌSmnc-H;;km=?v;Ӳ?\w1|ԏCέ[zO=Tzb#'7Dl\9ܨ[c?jc0}l2-Fzj@P`Vn'èwu߳(P}5):_fA5Z>I(L:d 7+ws{~mw?f2#'^;z%3h}˪?i_%d]>JpNeJg?Xfq `}8"Fިnqnpl2 MqIx{"x9K.2~p];-L[4+0սܚBCN`޽(uWMmäo)QpG&dK,o ]N^MmI'Ƀ=/ӥHtp[rp6 U ,O ,\`4^GT}fԥnt ΋25J]|CK3~j0mt}߃غ2/:] ?p {]IRzq%|0R~V7}}ABa[ũr#̗-w5de Osh҇B>[z)9XLi*|?8-u K"yAiGСBp_v>5~{@y|xܫ~%K}pb__!/\6 U=!fCXaF/Zd3 Gx/"`ޓc1`ئҾؚw qQwcO|hߌܡ }+>b!XC _ORҪ˕NC>nbt`_! @ c0I,α9%|0ʌ ,fA2NrȿvxʬG\{A\;YC!6qxt}~ O1ϧCʯ(~ ԶԎ ߚ.#fG6vt{}442i>[X.E[wwg Z:_o'Elﭪ7ǯ`_1 jQޗG@1*ԵvO\}RtuE{!a'v@^ļ__q+]SƬ]0!2;U&I0emVܸo y<ҭE mA^psZ)n峄q!=9:J\5.R_r=E&΁4"2x3n';QQ<R+~X/?߻+iDr@[;#fO/kmDM~*Q™L~YOmٝyuA%Lz(\CNW$o"J;C꼞V W{uyg v!y1 o#a򡛠гmlg ?g}dOY7v|:ky"01 MR,'_~f@Ł5[B| ^5A2lɯ_kn%EJvg5a՚0Լcy Wq(Cp̫~T\ăZZl .$|</xLu/A}Sp=Hn ]T [Ob Wo&DtN= (X-sѫ* x MP_=lX 97{\ \&Ɓvc0>p#njܢPkD6Ɋu$har-N!?zCe kU v&a cv΅gY}OI%-K%@ Xi$ɜH%{a򋷕\MS.o!.Km+ Do ь5ɪ`涩9 n|L-H=槝G۝X[?0c叔Xyo:0Ң?3qFFjac1#ts=\gte޳M1M=|6cPxVƶ> [T(N{D+2O~xY%Ce.`JMq ^kr&0Ǽ~qtdȜ(=r:* .;-$X Aew`kEl"%m*w꯹d$w]*֔Ӥs:. Ub}!Cp!<)ɭ+]44-]=:zxȂ?~(-(\-*͔wvr3Uqstt+;)xOz]"`=JD\.dڦXN|*PMrZljII#cC`|MIr:/7G35`nL+{dVdS= Q&G!iJxp}7|H vkAYcRy Xoig2m [ziVu{S;} U5 S:F$nn}%Kt-fTiE|w潍s80 >69{$H}H u#Yid>Mfy"+!ƔgH_LK;f X ZLmtyv$E%F;>x׼S_tw&z4y2E^ ԔXu0fnL`iH%GC]0j*~]ҭ+x#7R *O U$VƖy2K#c{ 0]%Ϝ aէA[ݫPz p"$~Oiv P27m~.y^ __.]Zs Fx0/\ #cx 2!U; YUVF$qfk`&pk.|1}yA P^?6,AlK$6J]zy{$z[7~ly˕ˀsnIVyل3:Ă78yͻim1`En*sSڵxP`i9se+ܼ{U ?Tߟo=_|9ƂT-/QKMCr:ZxHm4]"8%k?z޿uAŠ,4yw't̚0(p86GOۇq{-#E"%.i!$#%mTfIRJEZBD|_Uq羮[9-$0._x!-);W8d?wqY XUfd7ObC9!nx~|MpQi@S1~ZϜ@_09+ _֯ՕʄLם?![xO%x-HA(?͗R\uF0lm"'7>3$ bN ?@I$X:us9Wu>_~LA,unļq^-6 #8=YKfG[f'w– {=o~*s̻j'昍h^3cF!$Θ=7*l_1ǹJҫqtBXзľiDnRWW~sxTiS&Ă\Mǁ[ t_ftW7ήOZ ?&-|\kn:2ҒŹw@=B b^lj[I,~0* iR|liH5D0@f(2!ʼn]f1khmxL>zW^))s>84n:jX\\HzC -_} Ǔ~xQpf?n2/> CȄ/Qo.Cq.gAF慱f.eO26}vcgCeؼFHuX]a70_9([CCVl/:2,5w0 YOOkt auw?ss/K9adf'ˁf[bw^$H}w_L n\M%HeZ}ֿq|8L7ɣAbi^f$f;teA6 2e]ýS ej B֞($2(ݐVU!G\g^K>+JcL.wb?o m:s j,vaLIH859 ^Si'u̿;Xav s˭[&rdN^(i#R nzhPNNA2A;CļiYlv}3dǗdNq}WКI=MWl><.OyHxĀfە`,Q MeÜ7Lȋ~~Va>6}of'+7QK xqzl%$lY.ҢgHB:wsTܻ{bG.ApMc*`Y|"C2ZA9!+lX8~/}W5>ד0}8moHY[bC5?ԇ9T?ARr7 KӵY`1q k'`K_oܾz^X{SXZ۷A +桎IȖ"fQ[hjiZצ|zv}?xWߞ#n< W~++\>j՟ro/8q+,@ڑ,^KgvxO3^d0u|'kt"{Ѽ`^?6{F^i^Y 쟗/8}!hCw?A<ѷê._rڕ٠-S-!}y3W")GZR+X"53SŚ`H7벽ZxV~Ysb v{̲2F [~D̢#/z,n6qyσ{f>C:PZA YgOU`0 oUW+~ҜZ#&Y;(˓uf| ʯB],c6gW:f6cPwRlruIB Yo1d_}],l"KZ>Iv>Jov 1x?Yb'`^foWC౞4ܹ2AdP_V|Zh!Plg; U|`O[bC7SYHyYH$>2D{=^s6Gրt.؂="(`t,qca!X^;s#ew%|LFfq@[9|wsON}տ.u 5OFW0^ t5. Fj\Fޓ,&'8m,Nl p_NҏX>!/䬌EauĔy*C8v='_KB0B/: UeI‹n |O:q%Fۂvm,+VOCn#ا+UV_<z 3|7UIphoE,pI)>։1zXs/t—|-a bn(ԡ.9_"J-k k`||_,y svMBdo[O^ٝ3#K+^ͩ{ȗ2uKIo0[;sk#9Mv=;8o}@ Mp.  ~/8륏(LX ZX1n';ܸ7:e{W9Һ-<Msjst3O4/)M17gDdK3Gzp-ov|Rެ }ׂ@-L)`*-'w@ԁv/O3;J.r97fyZ5GIsmc@_=e@+6VXXK,IXp8NBʵq=zAPCPypr7=N4XNv fn4߭Sʫ}⚩>~usMEʃo@VM(X Ӧ}z[X7ㆂwV(x\ #UNZ^ʄȁ3п.uUoGA) yh;Ft|"rr}G3"$jOLrs\Ipi% 5@[1,Ϫ{0^4\A* wɡ)EݢE_%zu)X7Wgt8xBL0}mPiV(>L: ~YB5 "W#TC|fksQ>nXfs0K?2ȷimKplByn {evz1!i{C4 $ڹ9Z}̋*0uϵm6̤i@fPJ}FVEX)8| z}hSiI^^ v>ފg'6 {wA*Sq@ (aΏ`6hEm{ 7w3sA@ʺ|zP?ʅhEs}A])Tq# crH<} I/7%vXC|sn߂s|KE`v,>YGGޓmk3z 4ViPBnD@^%O\w1aw {ۥySiYA6H,3k+ևM+T/ 4teC4{Vq\ u1썿?8]g Z5C}TϦj]??v Y`_*YWE;^)"U RyyF^<2s ?vPsg r1?rO0*E1vzs@+H'ǓrZ߃a26dΐ\a.d} ^4cУWT$\c 7ՉMw\=o~ k'MU"H^ &CE], ߠm@9z`w{bg<bFK*q8Xe&Sq[48e3&{3y#5Nfqmv7?N?!r[K])0?(uXcgw#++Ƀ.3on )kw罜C| S.N+oMߴ7ۃsy;#òȺS٥I(v,ZM*f>^w[5''ꏹP m:{\ ^F%`tw ՛}:Cx%qYz ۚ說 ݒt^0F\s-sgаLmwӆ4 "6UA^d9Qy`b/ǂ[yhOݼzɆ:Ur~KYpÌ6*5qQ[U8)mnBtC;_s;J~M}b_[(E`|+ HoM;&Ξxc ?4|xz`mx~2 ܙ P\p6|5 /UPmc ƃ_}<.oVa ˇVʇF9Gm(:rj(l+T rD @~Vn +k~eI=d3*[տbŠ^d 4|!*%#~J'!&rRrU&_Y@0̮J9OM X;ojx_{ym!»?tuzQB&lwo}_, nm~d T⟱ +A839n^ZU^ᓕlCQG Pw<ʲDAx`N\7\[-u.@8rBUCe};!?Μ=9⤡dfnPךȞWIqN(k'&؞n{ V[*z&z y@ܾo/z8тԿ !uKO ez; S 9NUE'i<>} sDt}Phlߩj_?ր{pe/vwDo8Dtw:8+=zq[Nhfr7?Q왣ݾ!1-#`< Ƙ"{aQހt>=񳶡ep)WFUY vD ,j)EAv) lyo`^;Vv:CWv1-Ơ];h|R UAY)iH쿙@R>$h5m`h5\-NO5!g:h4q>6bUKiI?;3ѸE?TFU:w=OvGީ*UCbC06{xu:S=әYq_DžK !۸ru-/Qzs?VfI_W6?Fcyffz’ƓԚľskr|g,]LjRs\wrq @yoVsM![r7 { Eۦ7Y(~*)Vm\֩:e8| ^0܍ݨDN O`D ̰)y`2s^"fw>$Yw~,,׺wpa_9- d,[?nGu_5ؘx8 ǓereJ^_߁+'SoO[)qftg?f]D_ˀNdga5+&ﳀ >koM'k#ωCޠ-pS ט}Ma`zzjWtl/ RQk:f#OSʝ'R|<+D|- !ܡ`F:M2d9VC\THNci uI}1,'e9rݟ$ ^H[+Cj1`q⳷5.%r {vAS'DKU6P]{ݗ6lk!}Z֖=`vX;I.|Πhȓ ވMLED~l]n_:[Ep͍"`{Կ{dw-PN+ƯMDm;o=|^oQ/cGq0Sn@&C*u 2;˳&e vnAyj ׸-dBw{ 1l%s_-SOzޡsL1aʩ`&ܜ '?\Ys{ xqkhB!UgvbТ3T|ېUC?s4q^ a?H=g=nWtǞA`p8 khԿب)^' Mi]P涟CU+-Zc|‹hqW|>~kyEvN])( etF~ n_[x&oJ̮~Aj(* #/ΔOmUdpuڻvVi~@: T= 3]c`:[䌂yn/WJ>b>:~INȒ^N~}@gDub@[΍XKm&W / $ɷ`r~ܿGK@y=?oMBv*:N }ue-'9e{9_g٤lf{TW_sDműPO5xfB?5zɇ kL.$8bvedKWgf}m>H L|#e2 :>K(12ķIAKP" ?E]>g<'@OZ@ 2H~]z<#~l^Uf#!s[@md)A矲f-֕B< v %(zuFnvAz(n"z受A\{D"Τ==T݃W5x'(n$CâDu8ߟގ;ZW9Y4B4/mI:$N[GoQ ~ddBvB*T- Ķ9Wg:.e=e֐ wuV9Gp+AvDk%iM[L@|DA]1>ZБߦI*}u@zxhnr 2ʴ.YyAc#"բ j>ga1XL} DE-0Me+O]UsC.@w2jAUү_p99 r/GÌ5wpN™o/Jl$g7>6}`yPpTE$.(\[JOZ ෬N{KT+*pͺI9Υ#{uRl-k)̬P گ ū=Bؠ<=Ni(X%,[Ԋfvw=f vWЧby"WgVO-C6t"'xg$O1t6.ό<1eƯ +u nܚy[{2`ZQronhj73>TKܩq`Hni %Wb4!W;Z͇SBTjG v=[Aq+߶Jc`37lP8Gm5_2.wdnS P<,J`k|Z)ij\XȖLְeΉN-`ſLK.?u{,% ##^pA5,wU=n +]L -'~fL*D^;N@ioedd]>\ie˂᧡NP`t:]3ugoA(UyP|c>q©EA(7_949EuW*f~ !Ic/_|)F TVS @U}U=Xi}=6Ehִ qLmy(]:"eǪP76J^~ $~Şr\3$t性bQ sbpzLm:d&kB([b+ȿ^C죥sBUPj&;޶ۡp{*/{? %bsCŏR_*LBIQ(;ػ³έVosD[btIӇ{haz}xڣsFeǕXs q+ `k BSmu.o豂d*2m+ݽ evd(I1냼WPm3?YTEgRΑ+H,qY}suԣ*E]7 An fqoDPA1|ӍL}EmS׏CԨK?f: :|PQJ̱MP}"Q*& N6dBeȿq/rS˓ǜdjoKkm_{lQlI|=Ի;NIۈ>H~]/`<[8c+KU=j vP ke/ x9yՃxGy {QeX1 >bբ8P0y.Hq|%e aFHWM|wQ mm7҈o(ަ%`X|sGQx{g- WiXDZ 8"j*+=rnF< [ގp8_B7!銦6?I+};U :8wۮ5Tn9PFWQ^}"#[onr#yӌ5UЭ 8o:q{8s_[8V/ +b5VPek;%YxS!yF"Nsy2x<2g%'<6V? +iAnIre)\ M]!{:4`hx_-p1}ou뾳K;y0R{/3:/*,V:՜4Щ\ӣ`u\0~eߤK7梦oz!N}:FDZ'l m`y.Ȕs$9׋yAƩn#F0-|NO6 zWihfz3Ul0ؓҵ $M Σa_W`"H[΋^*[ё;kϷSk+;_pcZ"cedQ8*]s -Zaٰe"c MoN?Mm.'0<2MnSFyYNN##>n3:ZnPt9xg.:2K3}yɋ,ftWǭj,{zj%:ڗnM>l Ζq_nƪyfdě[w(vg7 繮܋:_h*{,C;2hϿrh=xug=A9BZV_.^,wK߁u,ّ ՗ճ{X׌TrtB1K B0S='~A5Cp%(UقH&HG|Q=M6{ZrIE( L!)q6Bi0of74Eg[ F^KP>Li"|BoYWPhwoS#2nM4 ~u:{$G9}fZLS(=dՓa0zԜ.}sfݳ(hcF!|7PNX; "1L{\8c{=?>)G.] VUu*p_壯5q ¿y<x8m;'_{}ȍ>q..uZ&~@pH6<^dQ%_TmeG{M:x֙n9C̡N`ڜU竐K Cic]6TJVP^h %g1Sv_'%n%=l1p7{F *$Dļ4k|FlZqn=f~9rDOӻJ^Au@qD[8y ë k MOwm+-0#be%rV>s\X ˣ7@~yx!Vٿ I/qTo$F#>G/@qwɋP`wM%Kџ Rj,?kMbEfӊ@Dhf g tJfroI趯X]]bd9yZHT~B녜`` ԽȂD3; ƚC]37 ,&xYfflY}}GW-z۲U#wZx o!82G+s{o[sY_~ t/XkdTfr+!ß!{ݱ4*$Q2;sd%Ms@(vNb{s`89nYɼf~.v=aVw0]"@1@u1\>/k\Gθ[~e>y7~^١J\?r,UGI{q]^&^ϯL;~@Mp叫~aqy]pg|,d`[/Yi Qُ _x]%Fyvۇ5>'9Dwp:7I9iS4SlZH/fSA2[4q҅Ml4K@3MЗ.qA'({qu'*A(9jCV@٠e P8f5_*"1ի*ĩS0#@li ԭRFA{_DTiOpQ7ͅY]mdׯ#|QA 8 $ػ]zfuZӤUvZDv" |s\t㉓m=] Ʀy֧mϸ$ixM  P`Π]<ئAK J;^ȭK-o ~j8A!Dcf.j3c}=m?YXH?tȗN^}y2/ee}rG"7ށtoeӋ߸;` nLXc(x'dX([.II\͡P,Tf˜k=(8PݛDke-2viC:g-}E~&LҒՏECd~(ZxJigN}’P֚C'f!0eKRZZe; vÓ<zK_Ĭf8imfwwðJuގO V~/KYqT'`EU5W ڪ Z`8^QH;`%7cCy*Y׬m^Jן@9(9Qx}f[Pۨ7Ws!{~ڤ=wqf9}m*s5#??l 5*/ J:k$x%\_RsH <ҩ 9{/ZHRJ^O|D'mRMl$nOσm08v9ֻLjGG<"8J&GqGQ͗HE:Pbi,yN5`=!em ,6uo_.r:ǜBِ翞^G/g=[l*3ef3'^ot@NpٜX0.3LЛ)zvL"_\жZYSHVcd|>ye;~qj缝T M'_sq(oμٝ2{ =8 5`e> WWkٕ,C~< gCCܓzQxA 6m#&7]cwnk]}n17V7O)ھlurf'R{ %|oWbvټVj~Vg?adeL33D_@`$uXDk%ں<™̟KA(ly:"O>c0;ݶLc/2Vqِy$xKk϶Oڠ2n万'2^4@y"&*D@bDA˴][R|h]{h'k7{qڍXyB@?`wm$(\GL,ڒ uדcC.ބ[= PHխ6IŒRWVU]x8-ЅYdoH>T^J +ܵx_@/B"2 \!Tz­ w$ <#?ng>j$aFme X r6w.E)J%iIzk;ox{DA_B/l~䭿e׼yowNre џ.BPW|X mZd#ph99chE?h%ˍ~ V^dэېSY? ߵR\sVmS].>3g<+2V Հ NNocpU7KihM+hͱU%˱C5o0 RkL.`٘mw'it_ T?>q֣ *<#.fK6@nR֡p4&QQɌIx6?ju3Т6s 6C!Q8Dnzu̠8a ͢ G$ `)S9dfV%TepO}bU^AZȣoH3;uw4@m3_sɭ^}B|LX}@Ѱ[.:NWC߾~)}b=oJWM7sf[fBx׵`$q9* 5W^+x1z^Np =nv%:k}`k֛,0H>ӦyUtF.ozvM] +(V ;J2Iw x/}="Ͽ6"pD x9\?OWC] zD 6 ֫]7tW.3RsΌ yM4Nd5tG=DŒN)'8cD8E)7bzX̬7 PC{7H|v1yj ృ|͓׻2Qz?G`={}mS`kj v>v|W(>0T+TT@ł}P ~z3:!V/z5;_5Ş(=(G4=19㤜vBw&V ?ḿrg0_=4#xs{5HCU@ZrwP.e/R7v}kP_k4 كunqDsZV5?g.yv kV$}=y(7"AbIAT>adƃN+Gv9HA=p%+.ށpgp@"O o|߈)vHH'xpby xϝZC,x>ҰA`v5]Q?V;oMJ1E?> ,'6;sgQ"X=RQdkpC_h!u4 mJ}i »W`__i}-Z(5ܳ& ouOs1Ͼy'~-뱿q3GހDuM:"} ւ;w.ޟArɑ^g7a2Ϯ;aϛ`Ll:㷓R፪Ѡ.,p[s.:ܢ%A9 O/_]',;=v(.v*<[%j[m&|H]+AYꚾ"A-&ݠf\H`z=P/JQ LF 0iC>^P枿ENﻢ( J-|vuϴ |\'}3>e5"T-.7Gc"-i+,Smq-5}0^H/3fY{[Rl8- mh{a.X;nӭi)vǒe%GAǼ- / 8}rٚP9>/%֗b[v$Y6r߇x|w~JuN*~[`=9GWb9%󾾟SJns끎#kk.ߣ9ζ`qz89w g'SFI:,X\ Kó تn3sr<`.l?5h+$)wt o:?cNuf_W` h ѪtjW^s-ůYN7>L Zܠ)^St o7.7qWMj>pp HG0y풉 t 6?9=B\"ȯ-//|-?i8-ppk#wX)u`|[lt-T'p.bg(c[I2p8}@2=9'گpGwϕZ߯5W82 !~]3Ur^?9GTx^ $UkP5lWLbӀu@}6yqf+{z8_$!R2 JPP%fSo.BvK@6{ EHyڪck$־ ]iׄL6s#N^6Խk~Q@z,٤0 FnD+N xY^ S{+5M>E&iz2f+>mCFN.d6=tN(D眊z٧ ]5tkC$(3׬q =h ѡoh#AVcӶ^tهJoKGȭq2慬Y0^ȝگI`Օ/M)դiG@Sz5<7 H glia(yfւKv(MJj̿"\eXac/ "D?r>d(/cGWM#Ȕonػ-< _XtĻH0Dڶ 6OMɌ=lr2×ܾE\vDrՖ)^' %%պ!~ WRI}˫ }k#~Ot[=UVK5k!Y$3^-z9q[w%s2VqQ&Vq XbtFA- t9wǤ?@=\hdS_ܡCepS*$l!xLHK_@ ۥ $M-3 F k:꼸.mZǚ x=4FJs!t wWƑYP>CM!7 5|DkΠ?.XY+{hxVJOP@!Ν^)gG&`kMOGAr7˧3zmo8_ο8 c93]m:܏tgf5%qiѓVeXa[}'{z~w/~2м򣏿 7pE-(T2j_"`3g~gy4tH/K@+(J DyQfܫXgtb4ryf&ugз/ߜy)ذz? lgYWRB'ܮ .L@xӢ{vyep#?ߢ4]5` zhTUiRFbG=:)[NEC̗3}ͽ9]U俽KظӦu eؽԴr8 9kݠZ:_YO߶@ 6˒Xt΃3/#OЉ'}5<%|(gIQ>n ȕVZ&̒Phdin+}A2Ր{ejcnF P˨ %xնݻa;s?q(cѢs`$n&DȌ̷RaM " =ꊃ`u3^8 ԜKUx2t45z=vXnDA-!\(,U%ිs4܎e;^'r93ܞwu,:[jo*-(92 <b(?Ws<5O:폂sR!y>Lw=3~ӟPp e~B\D6yZC0{~z5:Y^\11XGYu~Z2`z]Sj`6nO՛zsayD:5,@z5@ 3uؿKK#3RX/mwm F89CV: E+&Aߴ.v"_Uv '2||0NMlu tV]麙6)-\U=4 #@5[`s!KɝQ{$"vgS/ x,'f 2mDsolR ˏ)Ss@'a6#4Ո䒟E ]y0 KF\tTS%k}͋Vz|t[nJ]D @RZ/㿇9ӾVcߕOC Y<=Fp.MqMX= 7lRjȍ$IdGrfeN^}%þ"Gg2 `)Hs}i.|ve07>P77z%>WޖdwٌK73snJ ' ܹMueQ-kИso-ޮx~iȘ>_صKHCqǾeQ.>Ctv@?ݹu DnS%~<=+̇8`DJ]Q3)0?1s"j:왷>w/{k?Q[ ?Ro{g_[ !_DU?|#[.?'Ѓk`K)!j&P&s{-Ge7m{IX&NeGa: 00|7ߧO[Uκy@^n'fmդ5):/tL@nS>gҞ_-Y&<8#فʄD.`a3 .XA|ra> FG w/wt $2Ve Acݻ}^M2tt/wXbZ4-ŠYrxCx>=L7K`mspgg/Q)M&m;p$âoskP {X7!y'{v$Ҫ1TAY_z^+5ȅ롇,a\«`^ %NuJ .u SR+8{<L'yJJE0׼9 ƺ%)v[V3dzw: NKl%(O?Kϟv2 |#8gTq 'ttqseY>?} k0 ɥ2wHGvWVK1qA?H/6n僾ꩶ!0\\uy$B 9H Nr@^[gNJX_ể!X|(̧'.1'8/?+ǻBc- @vt m >/6,#=O'&֣\{}7O*\9 r=~y'}8F6}M1*>ZwM1@}ly{7!?{8kM xq6€E,hz{!nkz`ۺW`ΛR4q?0ov!8X$}KQ>z̜K(kLR rvco@WP8(CxE2b?W {|\3XϷ MB0D%qE}UrMAe`FJHHw4ĥbI YE]\s|eW}m$|:G+HHm s%5\@xÊ/P&UOA>v+഻#B0>_'IF"<E6W՛+Fh't?pMXꃛ{~N /7^{_xUu*fX7s@YW=g<1fSւhUml0mܓSN`f*3&Ǫ* tkICd%p6i,J2؇Lq*XelS`M]-;@\ЉpE5̅kz|2R%"z!!q0D,\{gLkK𚌧e~aK5۶||r\H(0S #dYH9:S1am?k|>YRV< т-s}Doe$zP0e2"__ ␱0hH# osMZ"$Oխw=c@pʑ3a&??k<9۴9tX@\ґ䥠F~9AVh*$6ӃΠf=x 4d*h܃ysf]Xc J{έC͟ >g[a<3:< `72CvЄsAn61'<b:SD:B^#=g-@|<rAo1[cl1̘2Q 3{E1 ,{xHW2k"fss&nu bn方s@[u ^g1?\BKw>xFAj>pyFZEVЖ+oю#`lZʩ^ Ȯb9ZUz4yׇ]}G!w|hn豯fSM/B,e_usNZ,qKlL,S^7D[6h*^ '2oYp^znȡU.@,(vM5g-QmH0tZ[rrsNq"!gybs!%I늉|~C-^}6`!ۗ[gk#e t~פvaf"(ޤUwC.@2QF݃`fϫ2 '?Yٯe?3>۫qԖ ai?FL; v}ܗi3T\+Ǖ۽um[e:c 8FR0XJjzhEDsdO箂Qlғ`n+Tיg]G(R>³gS9jYy3X(3=Vy g4y7*@M7t ZBj0,Ʋbv4pp?l馳{%.'c"j~{Qp֭* bni3/+U{$| eΎ;8:}\P IЎ bΆ,TuMy+{l!;? 5P[ʇѧO%c>_2fu}m5w㢱9skÒ¯"ԯK`<~}W܊sT(TOǦȬ]rߺw [T9p榊mPiYW0 j<# R~_N ZPs_? ~MRNN"n`׺9ZyY 0sy>'FyE~ TYTlU29Mi:2|֓0) v.XA2K=ݒ}]]ˉT۱uΑͶ5f#;kAL$ R'Z2x/~-ikA5#UA[sdj;kK+Gl>)4 'Y<*?"֍5_^&zɵ`_ p2zŠמGHscyYb~#6;bw4l^Ϸ"/w8ۋbˌm? sΤHǼ`ȇVf|ց7i :enT,d(h/!7w\!|yp>θh 6v `79rt\~p)ẉ4#ZПW*l+4<}OY_ySSGg:->7@%enb T rWbOil6ޫ|\2^3!w |Vf$7NCg!}/)poz?AY-PX"d%xьwj9莙(8w.}h>9WNgAĽ["uЯ~ _NAza3o-xeM7=7[Fc1J{,> AE/cNAJfBfMZjDΒX^@4xɋ2r7D>3fO $:pE _қBx{*i*kBe}[7loMY.49W:4>BNM|b֚,b}[-̠,xqȟobm|_V1@cJ ٚ2$o"p}iϨ|CJ%j&|/DD'mCm|d^SD'O,1fwomt(>76SP0/,1LE,I0coKuZc>ZmB?`v+LxY}M??9y=Q$.L"IOj+h@޷}Rcs3:9~{()LAXr**XX֕<ߜ^dž/uI5,s'_ x jP(ɛM0G])|>Py V] ,/̷W' [| MEBLb,a+*ls9lŗ5+ /S?{ƻ`nzzY9(YRߦ Շ :;W0o$B;`S:}>QCz[G oP7 փgKGx(Z%ApxP5FvA |n@~ㅯ?;> <-i nhBK("!Ғ2HE(EIy9ՃPN߸ Y%p_õ9\AQRE>->s<-`}_3 X>xf(Vv|{N[ .h;^0 w,@YL5n$dsV \'>&pVU4v́ Uμ7YK*F@lf"gMP%Q 3wBLg=[ێx9yYؖY:#A؞H')_7" Σ1] >9P45z=m#_k_s% Rھ!T䠉{`n01UgSx-o㇣&s/dnU,&rA~R<On.On H/OEOcmX}|s/o0TeqsAb6ZNx+762Ycs+Njs8x-ǯ?9t Xn?g{Lr8cS Ҕj NQ[\Ǜ-8as8Χ%w@voÏ*n<08ζ`R5Xe"'wBU#}o(.(>rA;5sm8U.oxmi5Vi±7*bE6* iGp~M7RZf3 5jw|z.5eM6Q5Q?8٭f `6~4Vا`n#M҆yfL~#5xbo'T+yYV90L!C==Êo?8%q+KVW_ M+ͫh}=;j| iZw5T"7} 00bO=#wog^B$ -5F;76AVR(t?1Vϳ,Ə -2ExW%,d*E-V*PzB\=CH:{V8[Kf RpZsQ? ǹ7'6{bI_c(}UT4nzDvnc-v1坕9x[ntڳt>(1(8k27u01,龻"AUay '>L)t`m3&9)pvD { m_j+E.Du:_T<"3>|cL'|mϛ|`Y2>ΓS"bnY##dIp:19o_\YϚ];\goܙ)עBdAO0w l ײvr Ӿ͹b>U3|_}z] 6W G`9p.\$CE4{{LStfI=3 k;+g[gN&F R/+WtܙCjg髉9)# nGf\+!4vd%7}"ܤUOwPEv"?$=z;pL\Xr>+],!}KmKJoqۈsN6L;vاE;v~ Ԛ=òԢ{AҾE[.V_5tPk:=];|l/YJB=O8{{覉nzYћJpWgF"L|˳AKf- ڷȝ,@5 ,v*rاѺzy"hq@=5HEb>GL=AcM![lm&Ȏr^<^=6ȼ߷l2K$?GjKI[?=l k9K7 >8emTcBx 7I;s^F .PIu,5'ΊC xT>}k%;9h# ע8"ѷz7XYZ#6.Hm4Ì+ S]9+zv.\݃.I7=o}HKd ^`xq貏E a5;Ai^ T ;:,e B/awR}_=, fk]e=rcv٘=DLs9ZH8doOyϚzX#"  N:K̃~WXt j~7a4[ʾܾNS(8j6.9cgk:`d=i &8a{:? @qj6o8C0oǬQs#ڹ1LՍ^ s3=BWE}ɜXWˆY1|?i}zڬM5/ ?;;dF՝&%4pχO?U.(Fqb k_TlX?Q7삂ݠ-]v3W-E B2`gh+ wN&cA6Eԛw@n?!ɌK \>3oR7-쎔=x4Q7'axV(ax|е;`}Պփ6[ OF  <"{c/bO$?8v̯%k19/OF?<Xí D>ӓkl[cp~؄FI.}oLj *aXϞou'(ptt خqb1Ϋ*pKbA?)}WLM~Rf@5ը=rձ=AgA`L\yHxMO?1  @O%ȡc/y- $AT|2q}1tyL[Pg-?0Mcuv=q?Z>KbIٺݢ8'D 5] IcA>g`ظIKOukɻ`9=|迒^uilख़(%CAOkPI_p-'Oiusڄz.UF:TȨx,/'7X9fޔ}`{ _g*eb@LF0NXW!8Xp/(s?<}%&z&jWks3Λ:O,w^C(sxir+ k ?+X? <-j:~n侹p|H31>+guX~^I;;%˗ДKJh`~~\:*/|6-B PXv 4z1%THO6+\z+m* ʉb!#G>Ib .v,^3s ;׀AJl:aY>F`*ƆF]`+5"coIbv\.pzvx!h-Eo^"; sF ̃緂|Bh3nObD*_j Ok(Иtb&/E > :@JoUl P dfvc(jɣ|?'p!2P9υokLY\q͵3!ѿO$/D^o.ս׶-xAe.D--b{^FMKP>{E%?LHŗ7Ey-o< ͥÃ_\G> qji*|'@+ U_ !Hs "Sy'PAѿmfog7_/% H|`v'dzo).7BɯL[x#gL`S3;n+A2- Fͷe]xP$O&~<#EL&_CH0Dwm̮ޚOX{j0Vw6MZy`ln얟b]>]3Nv`?}YCoٗFųj Y7|K`F65{nc-;@u~“؃mP5zVPg|\3(|sm!,|a0:_~߫UL==:Lrdh-ei={C[',iـ{~S>PF j@Z۔i⯯K@X ~#dagyH<ܝ67('O?$G>}1H,+36RQ9"+z9*(1kAݻyP2\sr=iOހ~^>+W :Dڔrg=[V @Xޜ1sSPM&΋2`ȕ8!_` g y鴆Tv<dC:oag+bM*`ZqW2FXFɊ!x>)ڛ,t/~I%2E 1r;lrbAͼ"$UY9C|wЍwQ%"y(ʕ`3Q ~Wb!e+R i"~.dbEԊ/Qc}!r@%-fL[-Q\|U,䦣6+`re&|20(wO+IRjY>S! TTPo^&|TY<uU-δDĺ4XJT+^B {O<#Jw{T2ҿϵ @lx zrQT+":E =]yjVRi]ѝg!Pu8P}8@~x$DyEJf޲ |yO xiWgYI:>m)I>̤ PGK @*m 6maq!{ `;8 gSV(D|`<h>fGLŷv]+ZRddN]!ecϖ.%H7yxK@j,^;"IοvG-G R?p3mw+#ո H;M{n"+a3$/U(CdFskSȤGyἏkR@}\1)m~t"j%$S>0]FQ=c?JւrkvkUiٜފfzpM` v:v+myL5G@UiRhjYźkσkhaM0Tx)jcf jƂ, PE@Yh8"˟u_4ٴ,wz,7'ge5( %ֲ tC m7 ő穃sPp{#/x[뽑`4ߏ5cd`Q:]/H:+ α pM]mJf|ixJn*6^(uȫOgAнrQQ/uv=K!"}32`VxMruO+aͦ">"w 6dҶ\Y( h.񌘷OZH {7)h.?6v0ÍDfK?Z ա|;v?p~r`>][vg]" yڶ{ܟq\^X}y 4&=`u.ukԤ_q^u0RA+ V^g8`j^иm FR(9vt6%ѳ}QrZ737^ay)>|%梊g}c X.:s}zz{@at|"O ,N3AMpFY Gl;CwmCD=wO\z! 慇uTnFcuYจȉIw?x1 9z)Ϝ3OH0evVJ_DzΔփ5$nx%{F4kP*U;<Sgλ`yj}esy`|\s>loǂֱآ1=pMizp>yn=⣂wFlW[(8ߦ 4sAxm'l Bdଡ଼?=H0[&{e 71`2-9`id{NQ@۵j|JG/;klֳĹ\ltD'0%fݛ%4hrZp\hhI-z>_[C/!e:2h'~O9#\R?n\-w}v+oOkqR=)LĐȾwQ7}V;pt`lUyj 55u,Gu8'ΧΩ@Ngf#wuYԥ7T\sǯI`7uGG(}N[Azȴ:R:M:viJ8;Iu!"5bo4Amy/?!Z]?C8+g{@s//z}*q?W<3Y!GP#:˿v6[3vFU+?uixE|n`HZwd.//̿>reWo3ĺX2)|v`Y\{G-%7e,n"`mfAY+i7\Lf .?|0&WJxGPkWͼ@3=r1:3i8Xegkp'd:lk7sy@wO(X$nnɅR5VTmɺ)IK'ϬbxA$VMQ e!3޾W<鼳D 9c߳\ ګ|Iz͌:d bpn5/x| Ujo65-{AzSrA!e9H*7v0o~E^nw"7^<dQx0rɦlǬ 8vϪO[zad ^ MYiviuWnSW= kMm >z wy#B1Dn-Ԫ A^l^frL@PaʩSb̸]!it74"2Sqk l}L6Hm) J/MHyX|ɟ_z Cۂ:|87f[`[zV* /KAhҊ?v2CX=vWF@ ,tF2u-cQb^{GST)~0fW=ݢe&%`eSP7v7g.c8؞_$s^Ou#6}T C;v "-#笡=3`$Xmwt_ (Xze'^[h1?ʼn9&AŇ-ճ%/7N>ox^ቋX$'v%?0[5\= mYR*I쉿eA_ be`jy]`ܙ\M z.prsg؞g3kg@i9 jҼS@ d;!":)0J^xK72;2z}QD]NV4bp7oLBk7V`I]Ez~R\trk2pEpgDӼՠ;u(!|D/!J ?ehi|n6q P(d5@>6&(}=~*83V MZ xfvM _?þ=I̪ʙ,LX*N!W@~m:V8x 4⛛*]5nV%k`6/%Lx㊰ߠm(@}7WІ. Bo]hKR6:ͪG{/o#xIhGdoN9 ʃ./3_C:F:)jEk?~3$0x>M,%ր{5 Y *Xl"|̚;}췖-!NaIQ.0_ʾ+VTŇ'!}6MN>U6yW>ss{xrcIتGS߀~pqV2| OsfYg\pfE pݢvJC $($RkmڤKC>wuODS~/8Y,Y $k,J 6C;⼷i%BeE:YNvt=+6Bj~⯐UOwy%1\H?[wT A3re5F{oGn^_K$=2{RV%  { qwU45#fj@ͯ>@s!bwZ~| 7 8J 䡂p7YUlϛѦD6 zXQ_P nЀN~Rz+|,@N76]/ɇ y2 ǼӇZ!37l쇝> nߩ^7Ɣ}D $-cVM0l7W/:p4K#ib:XYmVQ)Wy2o_@ߟAkbW7fr+V羄L^ԇacԍTiu1oڗqP󃽢||*ZؒRb Nв&b^p}3&AdI QȮўVB6`m]oV1zƽ]nrV57CFO`n^n.Ḳy҃b ~4(Z fyCQrϞO(DOo}G߶[L>amϹj7$Fj:_xy :tx_]>l}|E+Ykp.4MrOq6ODN,xS څ?![;; x}v{SBǶ t5RyaAR;s8ț3Etw{3:?ATڌĞޭjd ~C)R s >׳K7{vU0ދ *2}/A/~ G` < \﹡RJ``mlQ>O IUӊĞ]j fRIhyB΃7Xʙ9̩g]QV-cڭH:;_fzԐ}˷Rҟ=]w=$RH"i!@>HgѸ^'!8Bi!g"I#ר.H~mݻR3P*S[ Ug`,8|;W+FVx)BFϷ2> CW7U/!^c*3T)w#0EՒ}H|M=3ϽHowk0THۇ;>=hl3W'i۾U?pv6k 묵gӵ?(u #Cǂa!>Ó &@/X'EJ }u0pmŸ^xIO= EȔ\af;xYfç_q=^X+nd6/ uCCDpdISӖBnbT}?p* ƀ7$A/om' 6`Y"nkAɮqp{I-4.h8ԗA`>ľ&y"7(;}?@]4sSy`lΞ3[Q8Uv:Vknwt!dN Xۿz P ^D6}63@ח6}E6I&8Ow?Cqk?]ÏKAuDL"[mhtZP3o7){ 0z=swѽ( ƥKKhaZvLUmOE[@ƸMlUPdt ,ٔ&ʮ| ŅF]os~R#e_hz {4;ƖGwяߧlWM/W]Ȫ탇A{#mH=oV@Uܽw }Uh4:ľw-yk2HkפD4c]cG1Aw[A3\rP* zeSr*qTrgn8i;m" NLM'i]< ˶5^Ph5>C_} 7D7Z>ȝwӍ=ຯ2`B.s!%Zľ`4G:TsDl^F*p<8 ʯ\!6N?E%!ϾWѱ q_H%H\:ȳG'|}4ZT:hu?cb?3-fS Mnk+GAR5K}n*9ܨbcm@6']功2gQ9?!_kqPފs%ƅ9}n}:W>+h7_ ZV_EFS6MG 1%PD}>D=wX;f=> oo3}Xi6A9iwd$dvoR;\l$iKboE}w$qRSgxM}`F9K/5)WwOeb w!*s=~?Elamq2": vz}H@QbiU*(xYR `\g\t 'n'GwejFWX<Ԙ0PewԅtnK_GAxpE]Cj eAY-' g~ή~:W gG"w^Y Q I7`}% expl!Pf NyIg$q{.V*\C~`y/\iA{9PC"tFEWi*X֟΅ū:,w2Eˆ\?{5WraNTt}KΊ8 OO:Cn[as#d:~-򇬔L9d,ޮ|5MʡE2;r WOmBnTaP:1O<|0:`9TQpu)^ {b/HlvUK~U] ԁ, ׆_6B%ul_W፺FTv:-+}I=S 8ۭM^ޟ,iOE_^"z[dݚ > dƄktŸτWލ`H@a>\;d/l|`]r5 ^?Y*dV| nۯ\(Ҳid J~ykjAԷƐl8]_Oyo@6I4xɂڛ*sh^p<{d8rPȈT^ $% d:e VW`X\WBgnd#6 Cn) sf_Y?/T"~/$*,lP\aHDܻ_~l8琊26g{Q-,4e̿Ƙ9 V\ΧƉ\0ohD^ya@̝67okXJȪwթ9l_׉k640s‚#WUl)}*@%C8{Bd"VH1JTNOڽqm_ JxM72`h95i;fw xe&tTFb_yV BNFS9~?(դA(`+)[pJn ?W!cc({6(m y%ٜe-??6J|i;P}䛳NzBS(:~z(~=v&CȻIlSLVoqGW:C~XI䊣P=g@>LĆ_2*1Qh"mvٛQchބB[!{T)vU ZJȅ$lLDt27ť z?$6 X?uA5̺86\P=Kue c7VM"@rې$' R}e#Q77ECZ81$۶Ͻݹ.Tmx:Aa dH52_ f?hy@u` $~Cɳ @/ @Xb4cn,VxBwkzdR#d5UKVcmPsH{05B].quKVkBZiMa<J斓w@TNRe 37Œx3bOCq "k;]@p׉B7,UfN4[x{P*3%ALHפ.os[d8ʼnSf4 D5-!oEdv{Q@O<=szg\A/ηHrk;ToG5^![[:b]^;߅ĹJh`g/M@*Dkz$f )ǜyc5]|/;,E~EQׯ?'i9{}: =|0%'w' S`Gف}ߕ[.p7,LflP1 ڡ,ѠDm1~﫷BRhݣYzx{H=Ϲ CwArZQR@dy$؛DϟݑgYch&G*0cƦ+`h{űv}m6R"Oʏ܇!T=ia~<{;m$#EmS`xhh*[`ݨqov\ ԙW[gG"@}:XpҳVaہVwi4t32s3/`]dR >2p_>lMlS~+'C]*%S0Mt-szPuIg8kA"NxWu? Jm10)==q`ג[)-w$%m~7aְ?xC /I/2_dFAno)_YHez "]9$9=-xW&3_zor5@zzN(, Ŧ?Ȑ[1z7- Bc 11% YTv݄M/}[ x}2ǟB}1f&N ۠ekP|R$:Rt (hL4@Xqz&je7t/7_-(~o%x-H- yyNrxŎuĒ,.{gJAp }(oZ gn rZz]?d@q/oz%YukE 묦ȟۻRCi)s _([^  7y2 5YJ (9|/HAӀPu3*ubv@`i o3÷ZsY)dC;)/ x6x2J\*9"䮍p޿_>m<>]E $w@Psd/xk9uA:@~0cx^!NbjVt+Li8ҏ{u-u'g{S`/ܾ;F^Re(Lǒ?C|xPH>/d!o0plz; &|| 2w.Equij (7&6u¿ߩm<FZ'y>h-;AJ]t?km$}εۙdI䛴F8P^I-$*oxEglp{}IG2+}Yw̸\,;'G >u=~j$G-"Mk|-4@-_XT׿\U]WזZՌƈR0$¤Gs _n;,sVZ=ֺk,tWnETBb2W`.6 ){qF_c*FA-ܲs$w=ꆈLLbТTnpd'8 "+~C~h냋Y9m=AsQo ?ipǿ'ڷ&hNvOԸ-7Vȫś AsR8{1ZW@g md3u"dSof`{X,úO -3 F+ukAG*]X:h5ntމӚ3@V}:P&`&Q =ڠn|= F#^ۢ@ %8CNE VLо=E ?ԋ:Έ^zEfɐ:}KԯRq_c9 ({o=ՅI?dρr;}Լ:JV3n_6 ŅrMG'e+Pқ4/ZlZ5:>'p-5'bc`G'( 3L8 `Gre 훶\ 2ٿ!˂ed[p,[,5!{eA#g0\}-X%1G-㞵B#']ѕk/>תp}y:G۵,V(d~K7uz@fy:k Bh2h0S+is~VfVyD%{ Vu'@_z^"Ub{1adx&+_V]f^Ty, I=B甯ANJ!~0OMw ykP\WRσv`gefe`L=ӯ36wefhy _2'Bnw{D 0nk@ֶ[ug4C|r?d,FI{z=Z0gm{e2msO>l}+yYU|3 yȧZ$/ՀTUG>b4ֱ͛9֯9uoT,>l"M+9v%NB!%)$~ e6(eoX2 |ޝhMbnq9y2ր;wY}؃r_kCS_ ;MAYN)( ja"*{drc 5Y;i"OUu) |0}m=_|ŸY*-Ql+&3;Xn] (H0\ݦvcơVqyN#rk^v?I}Y;@ӟKWD躆r/0zW %[e;Z . \˝Q/郹NREônH[@jBپ bKUu #/6,}/(Iocݫe~jzE+I z ZʼnMOϒwPP:d]n3N cz0%~k"]:8%U~ٛ~/oQ0 i7$z||+vjV[BZ/EVOZ+-$mw9{xqamffRsVV'yJ 松 z;7U[I <޺7Wa΀7^+~4 RߵT)uYĿoz4*կ yOPJ yٿ~G_iuV% R‹{fڒŘ%ЦImgAQi10̎Kh |hLp|u|wB&d.TY %),[]k!3|h6=Z%F/݄\&ʚ5v]O<;hO.>%>D4ӟ!9TZ'vcH1/cqsP۾4OG}5l49E˅yث{ v!g])H.˵~JSl,P=]=/enxʍG`4p0v rVFS//YS6W"M΂7_ N' $jLz08~ :DP: ymLH8\S [Cc7S3~BɈFlިj4xFU#˅% #L%r-?osu!8R+L:u\QDwsFc[%=c.R( ] > qfY3=yӪ| $)݊J{ nxv+DWdC:umU55͙A 4::oy1G>c*d*B/=~k͙$hoCFӵeE4Y;[.x8a4 /^]dwó>4/~#!߇5:p]!N3}*j"곁RuN2] m*nш ̴0TχtHl l]2Wx߈jDMʬ@c%dĽģL@eM񌄈Cbk_[ j-xXsk GşKCm/bJ-,Ӧѳ/P\D &< pd> _5?:o{k֥Ã3z!F[Y$ku'je 9nw 9HDi4DH_>}ď;cF3AUտ7?aꓝX)}lH '_:ėtARK̀M~͖JhYn36V+MNA~YnO{5ݕqK#sCS TOCŦzNpAl`Q ^`\K0X9.%-`ڀ'U6c$(^Zk(ѽ Խr7#@sYnnj\4# c]'e! 5a=2"03pd=`vx rp='P.]zg6- 7BmJy|H$,_ۏ%-Zc2•m2-@7 }opo\Ɨ5_VQ ; $vQm= \}!ViU`羦^?L Ձqt`oV5s?=!Pnj]4P7Q^⠔&DB.QuVT#qr_;:i9`hiSkW :8Z>> Y ]NM/zZv5ͬ={\Rn{0V7QX=A6i<: L{}3]{c a9ߧ{$ H: Oit5="E_ޟe=rN)E,hv{܃ss= lT l 1ZjқtKo@)*SKFRR .]B?Mf|i:.`G6ʏ4|-܉~&7׶,wɞtv/Ꮧv#r/=/C\!*:ri,\%ɥ2A>k;6C<~i37IRj|UǵH! +Vk價YF?j4j|s[$N+ݳD{ s~gWle*Dx} n>\20% )A~#`Q<%8dj[6+}YYnC^kiAQpí?>zF6^m6[ +_ 逽.&@+V?c_Z5πd?VƤ!ɓK,hw|"术4 oB7G@Yaz".ǁAz54W_?6k4R ֎wcUK)zQ4S^8LŧS)}w )SgW{A R} }?7__p$$v(]h$(qA5[;((9zIy[ EAxh# i%߮!r}uU=ÂkD\ P(d(;oZy!'*Cݗ%cm)i|g fA jSK A^$ '8;6움^ߢt'VP] x5jg%Ğ/.l(LuN@:,S;\$8>W:onx3(Ɩ9:竔L.hU $I,ڻwUJK@^<3=T=^b;#B\p+(m$嫾%A z5֞϶V},h~1fwBb’ %H&ɤ Nβ'L!(s??Af]5MWewۢMjrs[ƃYzu :GWнA:)#?kk}g4C~ɺ hSd^{yW{[oڈ" 6C]ܑ^A;+2P4l !=RdulSȐ6=9(uMpww{ ^|C2Փjk`h9 m [9>jBKg {``:V.ڠ-~'p]1' YZ_O"d24#}dwYa?mMA7/L=c;u xwioN]tZ%g>jB<:Z(cק!ڲtM 3`t^ 8.'+b!!}WP<ⳮ%db{q䌌C(Ӂp;~_n@MqA#~t2Lΰoƙ;W:t#"X *KcNKG)=KMnwuB2a,_Co2M!;oZauz&{71'Y7!S} W0A3({w6AjHIu!ȚH!]6$^f)sA?β&m8MW C]²&v5&j 3x0q|-9͂BF⅄b=Დr#`Qz(vbފS\)c0 ,i죃(Rz S=nR;% GZ)QHPK\w*溗:l@|4TI58O58>סFb{̅BΟSQEn/?(a4{Ϩq?6rO}_ϝh]jхyK@?Ri.QU+*%rVMM9\UnZϏW!]aسYR-3@9O?Cw8Fe_, VڻkqS4R& V}#(~4bk`>JS:[ZZkC-yy|>،__*u ^s|74|!K|zntÔ蝌_' s}0o}=W{^3ףr:L5[0'Co9j>"9uj]0OC6/90z l٩VJ[*#雸PA>|fjjWBΥnj >ept?[|b׸$^NgptX{dWb~T^k僵㐖)+QX>[&&Oؼ0ŋ!D&$ֿ M/O _~7/^gy?py a3A:o |Y*EK .%rPS}sCt49&-.UTY#eL_P&]u5"u..5rd ]LSiB]<}S؜Y#2]Qu/p•:%!}nkm TH -cl'Op`^JHH$Iџ@vh0їNwsuK!Z!}Hu_256z]v($mR1)r;@[ >J[=`YM'&Ռ0~>X Vs;ӦN{`!]ߣ 2n{zD=*ԲWA`[TTrnt+2b^j+S=$i^| Ҧ,%qe Q,HQ6zum8֘Dp¿[;*":=@m75._ Z>s{g});ӽ ! $')Q+-i5|He|xw!=dcw +f F~A*~ks$c3\9P{ R&MBjS"{Ǯ+%Rگ@wrem&xs- Nn~V~aȶ> ~q7R_@8^=2 DUO-M?BإH ?Dcٺh9XV-Z՟?KU5\]3 Ǯ&1|ԕ6"?@\딇(`{2|"y ͫ8^Op'o37KTQ& ?Io @AtXh|` v`tpmlۨ'2z"VKޮ9 @,5x+r#Q` zvI磠i*gbYǣt0'"scϯiS[qT, k_kEˎL/枔T֛hZ Dx$F^_x 2L~~|S_<~YOyh;; k? ~ѕaZUjQ{T$3w!HvM(tI=hR2RgBq 1Cزˎ9"|޻-)b Ons b5ozǠ3.&D%;U=E{jREq7͸ 9 X࿺2_v<fijǭه#l+=`&5? v[㝠򯋯|ׂ5il{;)%rGsWr.U}8QYg@]rF>soHh{Vww!b0 Tدڲk+Bgu]^AәTa1ݥc٠Ӹ{Ϛ?_')2>Fs^,Oȟs[j>P7*}HT˕{cI8 R93 N]Uh6G$Ŭ%ո h͵wh1?= Jp@d0>5l>u?SSel96y j극lj'[K2x}6 ߿wLt,4v{Ib9ZeP=1Q!܅H/ :mﻯC!CC԰\,*:]=/AM[ d6 j}|Ri`w^ -V:D yl!&\zk!% B@opJP 8J 3k#/951 8`D7^vq 6{_ԖO |o~~_DדiH}0 -GK`[_WhNp3~fx0~ԗ'YZfV.\]ꯏFX8|%hR7~w,#1˿A_"y?#oúł+zYc Ak̿ ±~Fm?-d4Wk}HmB *\/W/i'2f!uemoU0ZUw z]"%^OG8|{ߊ;2C%/T[ѝJ`V{;{wZpA}ec q?S_UMd'Xi{VE;떙_񻶭K ~xG$*4l{1tAp +nוj*%>ݱR'GSw+B<ফO5=4_3Qwa@.\VCk~\_3P cu늜|bU b G^KˮZ_}ZS3 /J: a;KzeG.WfpZƕCnNJ19 ksP쭇|!~mjơ?;6gOS WҔ%eBE**ZRV($BHBB%RR!Is羯w}9=@ϱn`n^v#Wݧ,;' a>B/ckmޓO{#;K*i {BfD0♟'NXY%Rxi@H7N&i8A1퇤ue)m?n]ޯAdjW}"qݫ3C?b7Kwl5}]?=] ''%I Uu狌V)t;tCa]0/Nޱ:ZJ,+K˕؁/;y~+XaMaGhm(l)T6@!ړW>i䊊օH'(~ %G̈́@ɁYu2cJzoR{s+ y9#A`ɒ=`Iրnlk VC)<2ءrNE`M>(Zr7phSWS]:k!CT8nJ=h7}۶ā)ТwuwIZ; jTfP7Uv CUPV<ګl/m#k \] ڣk~BmpѨ5ԓg?gytgy:ܚP,[ڵg;/Bܑ;i {qx3_@gSHuzU A`:~^] fuWȳguKŃX [rj?EmDӔʶC8v77QSĜ}hYB~bDjnN,c]Ξ?E\@E0(w^;e/.h.%`i_Z|tb(|k-tBs>>K'7gTu I/q+U:ȕߦ?Z^uM'p>Eitb%MNzhN6g&p '/^, sCPz.6z[.lͦh_rtd" #)|OP(Ѷ_ ΉwJO:\Ipe_Ը6:%X+٤O@! zPSmnP[-ylѝ?$PuJ '}u=9 Lh[ASqtUhfu68Ԛ}wBeBavpg#Lj܏K]vKfaMp*$ꎖ}+*28NݵiGEDr*IĀ8NjnBFWd^,5~4 pOt!yR~"sʲu[xh?-4?vniVv8y0Zhf(9g ߫"iYPȸ́l+Cݨm1/dW/~cM{xEZ;|#AK4sh!4J7oȅ2vl]u JQ[X~@2a.K* ڲOժ')~9;:M̏Wdaג߷?'|*bHc&: ;.7zצ[|!0M_IY PR<m6Ip|7Cн)SΎIpn)2sx&-H%cV|`+WwBzP퉁 \\[gͳݲ0d<Ȣ:WXG ,*޹RBRl;KsDb~boC{OV1UJ>V}Y\%STY.͛WtBPxcʟ_TnS-O+-I1 =q !O&[\ׂ&]1%Joe^Iq C.і^HBrDBL"8r`, ~ {8L^#wؘ!rqn`n<s4CsU}KXY`o#4B:w!sF,TWS׃aD,eD}\6i6zd}? i HYoVdH"G kpKi-$+mJԁHZA4# YRw.B ԋ]g.=h_n/*f9)hD.}x2 >K SVv~M^sJAs69K{Ry>%τG_i-jDY\ 5+H0xOyP#ml֤ym0$$D/O{^ {"Msѻ>0Tͥz/vY\^NW!K0˹vMjb{; 2_[<#7V4dxo៉S;! .XS 1M1G[ hsFS Tw؁e6LO?=x7׺ң_=} @stBCg * vM^B‖;HcM$pL7!A7\reJgAhDS-3ĺ[d?G]H 0>A_GYo Pus1Re# 'nmÒ`rIBP*W V DȎyf-h%8a6C{emccWV(d2Ƶ3bZ. aS Fxc Agp/=H F)~}}px9nf4}eA}.?<ٜfJ֝['ZK5|"GASZkO(s!ֽmrJ,% wH<4GZ@g7U 4XҘW' @Xv0ZnAp.oClu&0EQkL0՚C؊Dk2$d*03/jai8wZո=!oXY@n,GxoSp%2w,'@."g^Ky=$.ԚK_]IɢR?pUCJi42W,9NhlLmZhT $JvZK/_k7@F]k_W|-+ɼFCzlkPyO$s>AD)cN}k6yS3y!緋g<5f %<^\ϫZSnC~"H#ٝ?BIN-ğ{ 7+Z4 mV+ Ɩ$oiNAOZbMENzh 7)>r-9fĴ>Ȇ+6@Ӧ\]/ Aw+:^^`Ǧ|V_՛=R;K 2ļX4| @ +: Nx=$9hxс 5߁73'Ύ'ran5ؽeuD>& 4ze>Д5rļQ.tԩA+hYPTwk }.]!x*ľ%M[ggRS֩sLy=@%x-yѷ gT zEVWDڅA{>Rqǿ=TmiO|'+gLnT$'l=(G.yh% H=6Cz;/ YFzw z3,S&p :1. zeYwЖ/[JwO| /~^}|'4Դ H {<~ ʋێ }jmz6 }v@zwI⎯z3)Yy9?V Own s2¤#:A ;&Nk"O6\Q 2_xu39#>k$9\z|>"-/>vc$ȩK:`3lGu.,hI|u>vMρW@_x+6D>juʞ{C$(I>"}>왘wG!Sv1Fmn8$Er:+o4/~ #D|汜r `n U*]b 3U@ڱ4>!d`5+&x kV(:.} Kgbͷy10r 䚣?Ї|q^ؽ.-s`{,5`6miH=OGauaD.0On@H&e 'b{ƾk_\^8䦰}C _J0Ao7_.׿TKBo*)^? U^#8hd 䐕A^a9s Re@6_K0E?L׼&N;XMs Xqjs}Ϣ:հBl5Cvȷܻthdpv[CUYkW78E2o+C&zm9p?B)hP~ 9kEBf(6쓻2Rw[j]iP$8k>T?i6?Pv<{RMx߂q/@ר!vQeu]墳LWFx`.Z'IR@Я8W`>8@ܕ 7z]d|e6!(yDіS3z`e0mfVAvk^Bvr*Z:So\$B[,LJ^ꬥDss6fJNc lD}t7 ɿ=MzwFH_AJ\IxF&\нKoU$K9;yPߴ:T^cu`yMpGUecYsa^k}{+Xq0-n=cSiչ׎о).JYvWO|n}!cNX➓@I xalʦWߙ!Ws/ ugl׃"gT?JDo jM.ʖW.O\@E:+>*5S..`'z\jj[α)D\RRLhGF`I{ME ,>A?"ne MG1mC}}eQsȏ?cY('Vj΁͉f6U(zF۰ǹE`l ˍ5ݓoz}< m,ܨ:[mriGj f5 A#9?ɠIy<{,UPV>"SJ8Ñ6O ~|Zv(Ʉ̡ Qߖ2xvSTc?}GV7+ ]ajK vtkZܽ)t:ڱO!{#hw.q[ Φ:ҕ- &z)ؙݣ`ٻ}v{hsυ95/c̬sCR,h15 :}*}֖ߵxr`\+؋~ʾpL]ȧV+WfG L|WLAԎCj%7$<#5&P}lwoU,WԽ '?EѳUͻ!Ⱦ>-V: 7byϴh79Nb.M7NEw`^/O[AmOƲԞ`FP<@iŽ}'>tԃȏo'wOm3lur,+VCFf_״ko4[ͅa"'|bY>j(UcIַry"7$.< VSafhyUc Sw*ՓG+@~jfFc; 0Bp{@R5Y=d+y 1wsֽ>? C/wqQƟAb)Lm_<zQ̐* U`;֏{w]Z@9T2 |Uz!cO_Oi쇟z߈9r'F;9u[ -2;>ؗ` X>;\ LLi "j5JC^IWy*)4d<9j gV{gI?@45&rOo÷ק}- r M@i!Ht,aj@m%XNpmr֟A9GNuױT%Իe>l ־җBfR|áS,&9l0vAe7I'}a z!%~WO5iז?KboX$ M *:(Do_ S.WAc>?} 9()%U#ʠUI K `{}2uiOQ5uw,%H[$RdV&Dҫ)P#LSiX2֏%] ^[c}K~6# ,oU `"5@9/R yzM^ڴkk5o#iycA(6 q+#A;VҾȉxuvHZj\km/H=7xV@h޿ ~s$iP/xdPMC"_~sHKO%x?n+x'7-7B.kc/]Uq> 5CDRg S.GpHu9^'靟?M4(GcO`}{VxxųO?MbmBJ+Po\hK.+vs02/b<>A%r^ f2.6U!t~3? -v/iM /Zo5] =Ci5ISܑQ R[!e%/`ҕBJ Yx:!J@ϼᔠRG$jԆ>CG->QZ͆uAu'`Ipw A HuzLCL0:,4H {Aڱ-< :}VuL AuKy q3wxkb9>]ۺYPWr?=\\H8\SUgS__pm>(['‚*~ptGui}Ѡ+8ACK6-B`{Fs7-3 WΪrr7(Czǟ| !}ZύF[!W=*M+bR__f /8"H0r?}]Ose%GܺsڿA:KmY  k><"7XZc$Kp&vZ>틹" W/wr` ݺ ?`àq2lgi'h ń`y(GE/ ]&w/I>z~WςCtU]HA2]NGe޾\tkrwg}ܐ1})/ ur L(F?(Zsy/H qCyS@ב=̗'@zlut响UzP jY%s??DU+sr“/ʓ8$Z=+'@Nh7s#~}R[Cdᑭyߒ9Y_w`\ C5Aa%k>2V>lY.H>4 ڡt&=)’6<}-&);ky qNOYHՇ.}BC]P (nސc i7;{!;,+cXV*{T$2^\ {_M]W9`NF-s)CKMUȐr^ay;!Uճo03yURVF %ȓ<<ս.m#X>E97l={$`r]ݏI.g?P?jtBvͳ`v؏^,KpiS}wגg#-yTV[A٫twHkn}Yś#LZqop?EOkG||OևH򞬛o,ߌJ4Yv:DŽI/T̍#6 mɱ@˔0e495!*&H?֟G(čNG -׌J| 0;n>L̆}^߇'n9 y6Ȝ~Z6'3 >C\ǷΞLSm L̋ `|y %SH X?ʥ*A^FxI b}FZ:=׊TkaHo[r+G!﹁ bWkq(+D= n#:48ֳ|A`F>Oj[c06 0$\'ݯ@cæHg$D'D6- [{7(+)YQ*$.= *?Uw-EEZĵrH MwƄOo7g7?ퟁ*vP== zamb߯U_:i7@Y_-؝g.K^?uv|z+UD )n'>H/K1,e@%Ȩd7@zh&`ej'-l4?]isU7-5Tj#VP 6Alz"HYN()E+}[֞MFon51d_#r܄3ao|DЂbn__uK/r'י~D$-9m Zx:bwsP?vㅐ2SE`ɟayfjXݛX!t;PJ Hz/t_rPECgc"&׭i!8ZjAoEPbȳA'u }L*AW]ޱIӐVL,v)\Yy-$#0P#n8j Ń\sD]qkϛ.-CzLӾ+l:1 P{O+K" :#WV=647yUo^mW#M8!ɬ~jt+ ?/48ZE&`uppxȟdHw4 =Np)=nwP<Jc=POIT"#VX~R5(yZh6qc ˞m@?-S+C J5 ꩸#|^λE[5fawKASОkQ,j!h)_ lw`p4΀))o_ Cq*~/F[/C]K:> B56ou*)xܯnHU$+򜦻cl65:V ,=CjP] qA7cͯ3蛘*qN  2}/:6&Y"8l/23vnemp@c a\v HQ ׃P$GSnl9FVLi{l-tɻV[$~ 2xmR8fQQɱ&cM{~R^@ [ͯ"fߤ/=8f/Rzu@M{J uM;OC,jȅcGn\.[kHы+B&4h`lV[ڽ"&l{_To9J?A;h#yԭr6찊/b4[/z1 J7ow[P݆ZVm:-z_+%w^=t &?fe-zv"}A9HMSG@85U;xUnvlj`XNEn?=Qe*|>a!C̳9^4:5ý5Ki!cO VӴ _JiϭGnC~ՠȎwk V5e- A2W$v2n4;bߊ׻ əDɨPvfS yеdHob $w\rBv]r5t#?@<{QKu<<+P}O,OڀN2dwo^ߩ ]Lt8ңdA~{C `|UnS{/nd@\a\>oi_;oDR-gL9R:kU'~* iCo 'q%U߁$N' >vrxW.UHRttP^cvށe#G+ 5LΣ͹爜`U7_4nKtJz}P$<&nź066]M8A5m|6^vuRuv;S(Hhp( [!m4ty{ 7˄D'AmuHY)#a~k_muH{e~$#?@6߃ɟL1D$x.gݎs^3ߗٜ |}_SP_5]OԗbY )Rβ<к\TI={ 1w#&ւ4oḾ]Zxy ۩R'$9v9 5S)܄eQ g>>XWm\l]9ąDŎ!E񴮝<g*Z Y~bv^t6_l/7I9- =: SM hS/dRHai7J{,y;g ?{S7o[Ašz0J`kV;7BM`ow}jZ5ky%E0U摗vz)8|_]vAQjl0:Y`Uʖ7{ EFkciӗd(ew ٖ]R3,;i% ͱg$tqd"Mo7|g%$nAusVԌ(tWnh6鿟涀ѢzFR@Mo dV1{g@1zE:?X?i@桇7dnym^zD_nra/ 2cw ,7VwlZT] TԨBžP9h y^u8a6 U{g']10hwk(,2 M!+KzB^kO(DJo҂' (1ZV" as!L'}տ%csl-#r8Z&[[KOJ)RJk[KW՝; |ß 59gD {:?%2rNS4gn֢ O$kl/@8:&DxBOab=fsN(~HӎO1}[?IzƿJՐ;1-KzNFC# 9":o1H6du|%5e-68Cc+o]ct"<5aAoPzPJPZ_ rWKVk) Q @Sܓ|ҏ2}f! u0ga(H_&!]%X{l9chX{\%6v9¦@}vM_WArPsU* os+d,Xݧ.7g%AY߽XJ̥ιGO襂%}x%"9 kpe&EyA>c ߀eAFʠD%]G~e/KvaI"\)"H7j5CyTV92?Y_ \&-/>#OƂwz9gtk{=0+ Ђ-^CbňS.H>3w #4힙i M !̜ ow{n?gMdCR_q$V[%ix:"kof!YU厍|zz܌_.OM3}G̻kx7.)UO}g8KD PX-V XL R ?s| 䟿ϯxv.a&4E _N悱7Z4BF!.ik}\;^9n2cy}ZNOļ2+; lTKYs&K,*7M?ݰO ˡ6U q DBρtB:S 08WW؃u,6dOy~d<=qp]P|C/H4;.w8\Jl t2N,߼bcE`DT;>pW^<;K6r!&A%'@rWE 9z/qZYN@Q 8MAFP<(Via5U%8yCos$9gl2E vq7X+I`/Z\uґ0+CfE=A Jpwh5h:wnp2> >vjvHx'z׷<]s'HNEy,B 菨[漕 +ujs/PF{:@. z\ L=b ^_R6{}yMدmŕ: JIg7^)n`iQec^Hl;G䬍H}Hw:[Ҳ">5&,/k1Xէ\!uW PȽ|Z4f#7i)ݐe{: T,ehz|Jr0({AyZ5Jd^ ᗑ/!&I0I8dX Yd HpNU&:SU!jdW\bgv :ОMh7EDO[ f9W+y8 rꃂǿqKWmZ/(Owlh? n{sHGǞciJ!3qǟL/ƽ2@M.c; @?3 rlI5FQ:FM;#(r5`w!sWkܽM[6XL =iЛh jVyP-\M冈\w@4~Z[J7ipL NguOO~<> dP]vf'}WGp/MymدwyڹoW5es(Lj)~}W8st9J hM'\"k69 D>^myXa(-+暂{No00cq4J2T6ǸtAxEo^NS|?U> ,ږAK0傼?~ 9s)Zw?8{z"KK^]ى@ֿ8ݣ oׇa9Ra2E{\7x@6 A+p- ;'=LpFI.`u |{Rc.XQ p&A d(t"'? W=>a {k vQj*BH\|>Xk]]_xv@8yVv@a/)ȱ^>ry}@k?85{M&g¯F5kGoom?4NxӧAuYV ȭ5%lѿ{\pk{r~ ~`׭~r!‰!sDp-3aAN.O_ 8NT[;5ծۡਏ :?X*?]9 *.[yuDF(jAAQO:q.ׇ$3v[n8򆱞vv?HxeN6F|*ڬuo<6B^,HoO Œn Tqu%1g KK?j.!y[:`N_y0 F8Ȓg'?B?'.)3Ah[Ad7jK@I@gry@ȥ:g\_2sI|/ k|׃zV\AzjNGZ-;Mh?,7ܸ re仰bMzCg^Af2$ܐ+[JxXܭ~PGgAg; O{lqb!X6K̛/wi u\]pƤu8uP޸D@5y#:P<ϫX9Hy %yޅ o̘pi<.O^^(7S- `{sNCNR' zFK`(X9 7ȼrzQ2`yeFF챗ڿYPi22vp+4^FR۫fZ I#&y|\Q1A:1+H}kփ2`C{Ъp\[iZExmoQ8Hg7Ajcb%Z[ X9\ Vyh%6| VXi5 _<%K nt 쑺}<?8{1`jO QO· }KW<⹝*h?tc MPj.xw Lp;*[s)o2&|{%n##|G@K |ʺ*+w~w 8z~[& CJ̨19T 6[|7HTvbΚD]m+l;cwC_,pfݒІk(t9z-FKn/xqb-d|4C{S~V-G\F!4O,X)Up=%4L?7ˠ{Zw]%6EE{ =/`x ]$~O;&&,3E@,駂-{Ċ+E1=~Eg4LA.v ǜ&kkCA׾}P$ŜݷJRޏt<,-BcPyX>Q㫺 x&<r WOC~/ִ/P(4[YyiPҡUoa-b(?H6bgOO@fp߭!dD}6 I&̭PYv& s귤NBfE^ĸ: q\??z~'^sDuU>͞ώCtKA dߎAvmg`Wu " ljW~ݿn˰ܙ.ܤ` ՟wQ\]9uy\&~RBD29IN%>P}d@="^7.0(}ކh\|G8:.7ybBa)DKΈ&N- ::V( dݎ rz]s>I OOґg y"M,?nzϞ`>{ :T ș="R(y YO#糪dCsaĸ<̵-*g]ٍESA2cDN]-aX ym@a}ِ -\>NSg+HKv+ fϔS4?^X:M]_2{?7hѝ&`EΝ>OFRs_q٘2(DJ8/Bѷ?!gJ'O=% FOSq-[WRoy;]!Aa֕Ų7^5#?Ȳz_(xyR%!E\aCU4~Kj\[ GȐ]㸍O΃>8] 2uܴ^2'ՎR/iU.`rdR4If#g06C "g럌n[ xo<z={;/Th~+3۱_`Rj^y wKe>Z -ۿ=r6"Z/֕Bpα fs⭪9^뻗0 k)wXɮC(S>m`/+,MTȽ$kD~D=gBCܹ`z=OYvu|"ٻB(}; q}Aԟׁ;BV߱w,_gh hD+Tų@wF:ؒKRJdڬ{lςnN$l/ڧB+zx,4 _6,ihk~ȏ@-}b)ʖn S=[$SB5gVoY{PZ_;3 ES-B): ^s*2A{>38,mUُhS[{_N 4<%geFgPN|K AR~R>Rѕ}K:S^ %Yd['r!~+T~߷ Ij^8COt 5PA݃kM^qn~T;!Cw Xq J0Ɏ-RAv?r (BF (y<{>Gpÿ3 >_vB4#!z\#M7s3ez/n\$+>R_@쒈R?ģ ?S]uDQSE=.Ûe  ߮ONUw5gz#֊gܐIёI"P5A5C殫v) zhl͵NKP40Lݛ Vy58tc ލ\ښ4,ϥރ9ѿڹGm׵; x0Ƽ A_F ?%}\PҚ(NNkAʹ?~C `eJGL0JKr2׊ |-*Ey`Hއφڞ}X<: $㇘7^ArV4k_?!sGju^ O'܈`Ht6&WgCgY\~Cط6( <)r50kpo2wC]n3D/䜗ŒhK]\ |Yő̾ ~ 335Lܓ//ߴR7}_%~BF{zC@]dlUEslq*HNB@\fHu[[!.n:D<%cܙ;{7AOI Vӡ^WC 8^$~BrL/Y>#8"si?FO|Nqj7z9(=-bΡqs4E~"\NwaRn,N4~|Q-D-h^LK{ rІ'v}[l2/tdш͵bv6z'q.F"Kyus[F[B Hچ֮>ljlj?\ U߿}!k;!~P?K P9 >BpQRL&xԪ: B}r."M̞0鐰+M=P'Ntv7?)dCŌs $.&s<Ǚ_gjU<5h>Ex=:lLxt.i]{HӜͲU XoVy北PX0K~`-`A!=8>j҃;;o[ Z=P TKoוzیVׁmtO Z 84@Q\os{V blv"[A  Z.ƴSh0 !WB3uS.Xu͈#Jl{A0-|)>.?izjE6$ ~l=fϝtM%#/ԟN5@ḡ$GQgDW#^O\6u9f"M9ow_.f.cZP,K5P0󐸭 '**m/&lٿvv@ە+O J5Z hG?pj否e ؼ]Ee>]9}R_ޢߡVxqx| (ʯM^oG9+&zgX{: y.Q ͟NXq\ v_N` MfU'G7Mx8 _Ȋo VGDz9sy{Q9Oȓ: c^Ȩ]L{yxp@ekX G6q0ڎ@.?RÜ{;Vf }kC6+g]:y3}| IʏZ t {cݠ!W}7?9-Ц^#F$m!gmDzu3W>NxuD?=-u JΫRyW ێ*Ί{oe@O\(; ]dAizCyvFOC[5PVnx/sGAV>ԀRg_:Pc%.>\H饟$_pZd+o:v;y2V"W8A!)&#X\؀d>G¾5VI5Zv4Ӡ~uYv /2f0>L&rq̈́+$(^`+O^kYRkrPӞnVF] X5bc\kMlYrѽ`d{eҎIwf/SOyf G4ub.h%5z՘ jPAо.;k- }z6}]dwVoExu\JC&˻J\:W ,Wl؀r8"V%ض17;b(Y,w$od_yTuջexⵒ;F ٦2~+ ,YoW/߭x.½ӠYdBoS?^~};ZƟ3v:z3? xLu) ^*_]RqP5CP򒾮cq͡B3%f<PPO/ieήO2[>O`FܖRȗyɾp vvAgϮ_ r40V67'~=W l_F 7/C $~'0 X^Ոq*R0UPsScePqs0V?= m M}uP-!'qʷi'ȋ&nYf.wa7H:vvbȱf~dAbܪd"NChN/y>ok6/xF*~E@Wtٱ$B#;!3/H͒=J&MgZi-Fw:^$~ MHnߞ`mq#DOA@I_ݿVfVܪ׏o^\U9 y7NUn}rQlo`yͼ/+2 ~^`G䁁*UΜ,Gq9u{KM3쥶 X%X"Ikz Fsm#`m5C8p$vv1FhcCGwh/ 歹<8!gs$^\~ }3ƍAkc.XWrq dI|J0X?}:2b93ˆuq=7JFaK=gA2syKoHheQu +6зă/XS2Ə;}y<ߋZqW`y+MuQH<QHte}vܽ ߵG,H&{_1F ~ v"[7x^prs$^sGmYp.̫=aa٭[f f+Nb;F̕l`fːN,YEƶZY]eĜu>&eEu"w ~,~Nk862tsˈ/#]jb­ ^Mpח`hF*S";pF:fsQy4'y󍵯%XisZ5i%j!yA}QO_iUo]ϬvPS?z-DۻAz(Sj~{'Y(7|zI&{|w/sɆq{"@zj8q6 ~\O)*tSM csȅ&IM*P7;{$d ?W#&-?O VCZk]0ê#}珴@;{ ''T;yƢRȓ` 9([}~vwJZWw*7f D? (h}Gtݙo.*ZuY/{TI >cZAO)7Q3ό.sFώAaOO0.v {mܚK1[+[7`3.k)Xv 6pRrYM Akʱx|.j/Sd _Pj=4)`\<.t۽D'1-|:'iJ0(upsiUD}PM v,5$5M-c5PoPM|Z>fAfP!6 ULϽ`2M^R]fD4qRV FLky]OhL>c~;ThQ`.ڧp ;A}$%se_lQ^B\$  PʙSV{Ju?|y#-ɕx ^\9͂_IO; g9^ .gm!^N Kk;Q?~È?pt /V-6*`>E'd||!L@y,wҖV@V?vt,H̶!gewH̀窆$34s!8tD0T[Fm0<5]78->4kT0GROTmLxdrΩfl1AlmfBHuN΃TxvH]ֻ~7kGz=BR6,0~@@P ڎw@qQ=mŕu`ָmF|$q~s)!\ Le؁iS`XψW( uSvvky‡RKP ub&@,|1hxp5my Rļ>q^W~#eWMAUwhA="2iVEYTg8V]*=W@tՂE֚X:f'H /ܴ,%/ Ñ7gvà9k~YG("WL5#b!givD$_hs PlT] nAvǘ==H*Mp4>ɶCZ Mڬ@K 7.pa]7H7tMm RP:R߶epv%oXk|Ȭ[=8viSBNs΄_Vn_FpWfC=7jns&Pg7mKy4GmQṭjR-H^pC !h_HC9b.}Ugn:qZSPwۯmG@\0I6`."C\#NWAzmןAʁ=;?m !|6xISo/,f=IZ؂nCoaQwds΃OB~L.6 MG__9.RJLfH$yC$~zՓr%_{soT0hLH&@:%U nv?-WI1\QR 0ge^/[d_ zGR۲dSbRb1f.C׹MᆐY/Җ݋R3 lhөrA)1ț߹~zE_`X[(3K~ U|ߨ:7h~mgRն["v b¾K^D/"dXi\evGԏBunA/*A_;K+L+/FܓVԩ3na[y-8HiUPNH,gd+/gZ~isx* i|) Wu\Zg>{CAGD,h sOB!|lt/!Wt;Duƌ@r:ӥ  \B3W 3Dv+$X ]4ϣR[Jz kT]uP`}J$OY"UB*JEYKhA(HHd뾮18z=g\yzÂוN6= V>o߈*# m= $t6` 7 * PJ[~P{oj\^y_A' KE"U.\ m7- ,B$Er1DY50kb6p+WɈ'q84?p9iYv9rO,Ñf,/ 9{zL `̫ ^`%ZbWԥ6.56WP@/́IS|kR Af'uPܡ13ԋW \n#у1`즎bmUq݀DHQ䯵CVܵ!E)..%Uꉗ ִ+ `d}s{@huc?:϶Uc"E;v~!+Xg`X֗ ZF'q.$M/D:3Nym,oP( 6izPa-P Yig}xD6 Һjր{Vf=D^-eG@hm9/Q T,:]+V֙;vj.uZz cp+ж\?u/nӣs.sQ<̢ PX/R aV%2:wcp ͬhHZl[ϻ >݁2<؁A97P<9ȯ0 J?5%Vѷ^ q p-X? SdŖQUpnZdq=%Wusp0~l AߐNĬr޴rNp}˻gZ\%!cnn.Okݗ@kp!9pH@<}F~zIw:RԠvDkՀ+2}y9X'|nAr' l{8F>[n3+=hι$0\vq@纹jkzJ´w+$\U^%(MLz)ޭaB缊nZB8(^B]fh}"<ؓYb`ݻ̰p^g;?6fC)o5P)U~dzmt@1wkz+@ GSǡ iV /}@ɪL-U4$6RY=VtCy^i'B( Y"S8ui:0cHy_Pt"Yno z\%ufy'5?Z烥WNRQt*M#ڌoN[R~mW|,aВJ}GC񦨗 oԪϏ=ø/e-bqV_|JLMeWޟNɮ{>.Vrgz 8j/ж6?jޚZ`8VWڔ߻IF+spzi ǍWl㕂ك`&FM꧟slh3l_[G`L<LL/0wn Fłi?] Rsq_A9Ϲ_G x^~;N3ցq[ȌD*sm0=KoQjP:'X+A[ΨfǮۭDX}:(JY=a@Knr/w'.7O46Q΀mWwaCP捃D^| GF50_m vƖS/= ܮDž!7/#jg}A`|/Pj5AvUՁnxĩ]t&2>Zq#Hsb![ 㒠*S[&8I '3b\Q7Od@0hO,4`8Q\=\?JjC^57Bn~|:$ [ s[s@+XŹֳK*ǦKPd/@s;ߋ C`>{lGU5_#qj,hs ⟽5O;q0GnKBlrUTB7)軡YtA*$?}Bӵȯq CO6ί%ֵtu1ZWh6.6%ux;LZ877 }?ngWZԧ`uЩw+8ԩyOs ڎQdёwY}ssN#:A(IT dӝzn̋*?Pw˯C #n{sh?ͽ$G#\3R=U%*#wi/ ޒ[v}1r)LAbSN/KS>.'D&"VA Աa[iVIܙ24\-D.>NV.o:vcŴo:Z\e1yE~tOBw ٛu>l nqŌ*&?XDl/AD~S}|QܵX߀}Kyj Uqo1&n|XU^}Ă^)[!zn!+SD P<ɳlKS%rf+**FWz?i :S VY"{P~3*'u@{D^ڿϭ\~DyC {n;T6I4 %'| < 'ӝ!:~Ĵ"e}Y Aa6ߑ~uW/(jX??Nϥ;)y2yb p` b歆cgk{z~raLH{'_8A%{1M'eߣap?PTɁ y'! W^뚅⨁3l.`E̓ϴY1|UI`mxAF{\H2oj?C]Uf?߼h?Ak~S;8 ݰe7+z׍KʠmɄJ㑠?9Ґz׷ #Vۧ@M*ɳ#uo˾_`D*?ԯ7Ytr8f\5)N?N-i. V^_ԡ 굵G'@ܰ\#WATsKΎQhZ\xW RB=4C=@3 +wg3@c m!M0NP1c+p^..<(WRk{GI$vEs] ڷKCf> ַnSAuNJc6JZކr @;jiTa/޵,3W?]TSq ξ6|ڞy!~~2G31ov\󃨓I1pJ__ x`Lgt 5焮k5 C'//8;lf5`UW}, NYjp;9+.1)ia/=PJ̃ו`Y:íJQ)fHo킒sifh8g)e1{}TBoO$wuOL͜ãAv#9)F']kxU#]Hs"{.̈́0_gP[t4Wn4KfT&j@y@](䖛?(>S?^yk'%݂WN/B&XXT`iZI{q7\Ǩ׶$`.OP;Dm5K&XC`C]6"T3K ^*׮Dȫ (3[a}y&,Pm+P.y/9ZQҭ xo"V[]Iw;jz/~{4<1't[=O^Jq6[ "#A p~[[TaGu"d*ogĦrH3?Ep{cmzH2IQ 62١g"d̅UF`ZpTXe!fTttQOSk ޶B]('x!^ļl݅E~yÍ vxUcם ɍ+0Nɠ]xuR/չ\ L9EŠiPoPYtg^bOj| $iJ 9Sƅ .$ g=BsL -5574j÷ԏgMC=лt,vAf<+uZ=~337|gwp)k1햓h"3D-Zas R?>0֊\.C/er t.wmlI/޻3j5yBK㨥E>l]`l>X& olUZT9ƕ-K}°Pʯ)8JE? ϨM7_Jq.~y _G:~ZmL7pkIooEPB=0JBw=‰+`8Ѫ ʯ_8{6,RE{u5@(GJ@sI*}uFoJ="r]Py`_n8]#ApV[![χ}tQgysjos7ߧ8EZ&7XʋT"P9yw{ ~bI]%c͆DY2Iok4!| CjA7*_;86/F.}ô {{?NA&M`7o\9gX I&O6G4 cӱOM]Y/|'J~@}yEs PdtX@gƓ}Ime)H53" %0bͮ4@7JBu{:Pjiнz}3Y&[){Jk Akg)qYKn@Qҧ7QH2 F3 }=.pqs<"lm;(etL[tkraпEn,6weރ-e\=q'$fK8Y5/F>B> ifa;:f,7.J%rfsD3fOyCX3D9լ]e }o ǟ}5gߞv$}z'Ei䆬%cz Q?]6Ty5{ۗs;U?C;ϲ \A y`{sv8{DǾ| лX~ ys@J@a& ,RU h٭jDK(țGv8Y)ĪGLN@:}a(..5[ d/_ӇۆV 67 ubnL4e$A)w1}e<'En4 ɬU sF/P{#* &' gLF_)%ֳ˞ M[t@S8]?.dլP[?ⵁ)d;3J踩c-Y9Rr@I*hU?YA>jPΉTd6244 LJgf̂UП.{jHH,=AX-rS M5o]xĤen.Qo]o;zҶglm{IBw> M`HjY2;9֪3sgݴ2.,~Z\wl.:Z?=nYi`:Sjvp!8YcqR`ЏǼ^OE(.8*Mª]o{;+HfIAXe?o]{5JCTHO$Za NzfCi^}P6-$mnئ w#*B։+prn_v:vF#P,b00V 7eK>xVPm5\Q=^AI2#(^wб`qk3x+K7l-=c51tՇ0Sl;dz]ռK=00n|Hc/[@YMZk~@Y63;To'd*-Bm[xWny.>&X·]!֟?f6֞OD:ΏBѮk^#5s=edwҸ 70)ݪL8 b"[ZL˗A<94'/)x ^i~A3}+믄f[p OX,N)䆹RHX.' h7R_dQ($_n;K'-e{A6R}uok`ung)c {o (q~ 6w?F$-H;*\PV0t~As43\r 5zsĉq*p(YL.&Mɘ]eaWe\8=4O@bwVZcO3F8WDS {W8* !ʱi3 #|C5>(ST{FlnR/k*;缂b}fع-rG<~S U]?G_xf1ZqorOOYVcE}PU*_c[Q#8 [;/u#Wzz}t`e_zzqhK>y Vj7k{S&r{͜;gl:b?ͯ䯾 i5gw}҂HEuh|Ro247CಳU6 |]@8qG";~9PksUj Ԧ}+kږ:ԤBVCo5n8"ɾ2R$ _PvT¢pIޚiՆN;8ࣨ:爺~~"{'8 -1~@ )G~5R̩"Y}|Y0lh`ljJ%]!Ɣ<-PFoE5`,m|P[H礻ZF~EfI0&!z/KgAU@n}ee%O@9WB~s6 -j4ni﫨CaՕ>[=FpiʬU'A/;"X(: cW U+7A/?#M 76sSϽZɎ eoCc`6?n%rd!|D6pELKg᭧wA ::j&#LGԁtl(?p`:/;ɁyW^W6{':}?0S3kC[`|0vjTZ[d5- ͞),k6`nok ցT0tֶm+B|'|v/ç`-1\̼{u 2#3 ;=lRC4(O SQb?_%4_ )NCIIvuk_&vwh,NdY&g0/X7s)6?(''"0p< \@x`b];iذ8{Pmək&yk7>LTA59ER3VAeބ5NqwubZG7A)pR2 |Vݏ4ihL|d<Ʈ3G R/M9?}<_y`P|M'/ZAFqf%Q"` 5P Qj̽37R*\9 __ތ"r;4{=yKV9N-~yU`Lw#rӻɯ9D%ng!R#gx(*S\lqL'^DpL~H_ijJ{ &ݙ(oח{be'j"ZP=ns;BW Wc{Q黯"ь/=5&of33j7 Xf]o@mQ :_W.,AW0v5s4V2?Z{@_l ׾޲}w`tcY1i̠D~ ק̀p ~e墯OKjO ΃?K?-*s>CMIC eIrg{2:!l]Aݮv?M S{:>Iz?RҖ ׷b[:3(S^@ie8obLfh1OKb)%OMm"x{ٽ)-獥z]6,j$rX5{M]0KԈm nݞ}Ž B_'NݿX)g#gq mm ttwr<xA3Q22oZ4!8- {O FI$X5=I:q6Aq?ro?:ZKεʻ^PTv"尖5-P9nho~.*.%L -!;^@9gSq3(wjC8*솜QV%7/aӯVP%ptcN<]`8xa &D>2c RuL`77U{ώO\bpGCzjݸ} f}Ա<;giBx.@9L2 2 ~v *wkAUwn]Zq?BUӜYh38kJUu +gqqW5r{ xeRuɃgԠXj>舋{nKJN._cڜàv[ڵIY|U0M,HKrp3ItO0z<'擑9$ZfxH&v8e Gt U_)ʭ3l)AT$zo}; վ^BU P;Y -V[CuV"ghKVmջ j. {]q;Ev.Xc5N0}dMr5 .^cmPlVfq1ID%^[A/TAT~YPh%t[r1BWb"KV5rFA(& B~nA ^dM赖ۛdLmqp!ަocׁ&/LI"g+nSsU6vjp3]'w,$0nj쑙tU.嘇SA=R@ *c^:^]u8Zi }mWt@!.#/{=Eǟw?3jgMzЋUN ʕaFPl_ (3E .ZGWtM%`o{j1 flu_?+Pքg)ݯ r=`J{yNf:h%3h`z,1Tmjw{Ta~Uw|~$NcMs9m]L.SbU"O/5q.dqLi'A[f}ptZĨpGKAwO^59G2u|vbbU!:-=\3ZiDn1%9J*c>fxw (f0665_g}A_4OEoӎAAP~%1 4,"*+hmOz 4j1|P]h ؅c^~Q]^; A͢@ťۅx.;O N'x|lP_KeVC!aP,vfn}6.w}?!qmU$'Sޟ JC=Az8'g; -VdW X}Rw?L=ns\,b2`b 0{>XT\0GnCc]{r DEv }ah1&{ k-C`uN瀽L·)b("_IR`(V~/vﭣO@4 ;P?x`wN 5|h7! ҭ?jN=O :ӗUA K?͵h)Or*awgip}?]_zZAvz VFwSJ,I{0 jEڭi;( ]mM JjA hzOе 鶐G_Zzg/hCdOzyPA_5)? )s?j@\+ߵ {OFF?ҕ wYȹE\Ё}* 2#VW{cJD3/J.FkBR\>bkf Jjȱ'C&X,";dU"^|' G.j6g>E<3շ万_eRωΜ5CYb<;=ӧɸ?#OW} ]:-b V'-6;{M~C!b͏.C& ⁶$ȿwoy:{?Úfg;ǀ~mK(?*"gQjcPnVfӚJ[;xQtpo =U%M9ǃUډaP }qH|20R[zQx%l04Gr 'wlo7 dQ\Ux&~ƣS,㉭-jL!E%oUb{@w^2b*fGj(\s!1Pgt.MP0%.=iRC9/E[D@j'Wր2hJ.Lo4d3#:Ǯ)۲JM3@b{tנtɁ!H1f|'[ěu`;*/Z<T5wPLJ/6^z̧j}Ha*LKSma'ϺeMw|>7PsȀ:ZqW1 Mj -5/k>#ɅLѠo->Ӯr;ychܿ+5DF?#}P̚Q]ů2B(Phk5GV>5عq[Z(Wˏłt:fݵ#t [ @yyYb]gaBf2 V ց$ 9kBZqS-֭sφo~h/(C*gCY_@ j^7Ȅu@®9[$ .G:uH L.u)4sb)5'Y>vc H#J>R76B4[PT-b'5s<#X3ӎn: Fr{eb 2xlwt=ϝ8+q:84B ~[gǃ"U3ǹ|"H{ySχRu xPfA$~έuYA!!7[ޜ#,iO➊PwKE6Oj2 JLk1u$ÿ|wKܛԷk"Q/;.kY wP[84H`!&dUwO]j<w ,i?M9C+ҐF>$\~ UKV{t҂fA/I/g(?}>y}k+ |\_-E )(Ryo0cHs!?̼ӛBv킛J=!  ADK*slji6|#׶JDpBm/-3+,j J]O:A?Np㲝T]LSJK_ZgȽ`,<7'STGg)bG+ ?%ao. vչjP I猈ܦpSKʡ B~11) 111q1)19^:hcO( Aӭ[accЦېI^vmD,ejwG i㎍zۉ[R?:glmmTMB/inst/test_data/models.rda0000644000176200001440000261036613614324717016477 0ustar liggesusers|8$T(DG 0MKӌ I't'1{v=ͤ9NwI:)v Nql;3s{{ℝ_̽{͛7UWv^Y)RYo7;dh*[f޶ںJJ ; i fT#snČ?E`A쭑x'_KcZ"fY>LR1ah> p3G 7'hCS}Ȁ w3S= n5 X000ӞvCj3`X"~&~/]t!tER Oѭ3<3 m}p0C. WqquED"q=]1D9v+Ek#%}Mt/b9іݥ66Ҝ;̱8 G]hXN\ԹPtc@٪AB1%=¡păF6e*Ǭ}(G؃mdȎE~H͔ӿ]Lw\2w%?)P*e[$vw3۹N \qs5hUZXtt{CKQh<6z㙽u+F@)S))ourE".2v7`tSWJg蝑Hr 5ĨeG 񬊊 Puv3B]1EWB;)~:;N>uGn]s2EuO!:4)F>En=H/0|i@ 3݀v9 fxCmsnk,A &xpn"0| t q*?{n3 8ǀ5v]tyd 2 (-Wf3ZWq=V <qV0o5[;fQ 2N: m`6AM̍d،:g~ يiZ8Fe44&htv!QÐ61V<1m1.χb8ȷmB>Hw<yoUQP'_IB9*3G:gx =%p;|t>o?_.Bz2z iBTjrW[L);_]*C+D}xN)A)/W`Oˋ=19oF\/YΉuw;y1Iȍ6VDiBs)'"r$bF 2adZeSP̳cXHLLA9huu6/<e :MA.ᦺMBV^ *r"$ݥ?(1;/TQ^T'(tsRrENEc/R#eAnv](+/} Ak]B' Bl|(_\1=PCR t1DÍq^8ps]|_4Dk[[b>D2vGHk{2q7ý:E=粂'_niI^ڴh!UL*R{p}E<ܼ=$E0 Kx2 d㑹*SdT (]ܒ-(R,°%&8}X/.={T6E^ʻ"|/Evߨu+j#hS48I"/6c?'ToW<. bBJdN\e-^\FwۍT0ն7Ӕ{)Ge nPʿb!hhֱV@}HIt{Sĭڃ6H z1M:8eRs6GN9M;=Wyt^/7k^ wo <U['T,WZdȃw ( _GSxg{$ D'TKZ/gVʷ& "w7A?}dj}5ZSA=tlwjijJxɰ۫4ouӫ0aEB'@MN M_%CN_lG$tNŒISbޱMRlKNlkEMl›F]0bSYn0 nT3oR.᳔]K1|d^Sf x`~)ir؏lEʭְ?彬Dӈk4A)N%2O  %Xt1굋\$_RWBn&t `R!Sem!P[ _~nJ!e@^f 〲s&*F:H@M%mJ]Gͥ>RRcEzn!A*ROqvac"~rlצvՖ,q/H<^Wе:.R * DMlfS>*Pmץ Vq|9l-άCB@vt8P?+g}.|rѕ^v;d;/:lNں98Ә ' zTWGduZ^phSnʵtQ&7;dVKni/';''g09pLF KK( }G̦R~h70,'4A~n'@Y,@on/2}ϒY ?Hu9Q*e,:FN:b LdfW}T49QfDk$cMSȽ´%K)zf%ЄԔj!i e_FyLW~deAÍȔ [M.uJ/mUF&̖hNa:pg3WMd236c h=c# w7 a A'00H x8&0J&T @bLd`6= GX`1 ,aaI+5 "C8a=NE8 a# 0llA؊Pa@8"};m (#(]g ߂A ap_/`/>e޺ p&>pJܺjp1RKlAU/K\ʀp5zEv- nE[Uܩ[W>p'{xYeޞw#lCofR\EFEk:ZF!^MkJr,Pe!-p F%_HM*u2lE?[`@Q0"t+F7U蟅|ry|-p6 xsN|; iC>4C6ae&He a !B&/k-BK?Q{<x\]d~ Uo/V*3B|;\ !,|G>iAB[~:g7-#ڬ0ZVSE;e136䁮S2/|ۈ2%|Y`a=Eh}r^nߒ"TRĥKGT>}1^&r#K[^0>lFJ;e>Gu6Bt;Pg*F1.A~F*Du.<itHT%nidtgTohT 5~\B\B&^,Ecʿ7P%7tM7̷̷(;B7Q+GA}~ӇYugÕ ]&,ņ` ރh]e:G9a(|Dmr/P=TV_Wv,~a~ _d?1 ÃlWv?;M2B f:B=W#?~Rc6:o.w4~G#.q Y^>8qÿ6_8Lj:81JAZ̰B,S6-[ٷ> aP+XDWt!fnUiߦu2 UF=a;-<ɗ_xR`0[!;c#'eRn nmݯ~MT-H:f5;pfAme'K=uXF/3XDIt-!wD<,oEHqGes'Uע .!k^9k]cc!8E /!F3@YѦ*t٨}jnm&,'IpV#[q#HUɸvcJw:q,REܢE).jENV4v'+Ҹj,nf&6ƛ/'q̉G莳s;(/g=yC'fXR*7G v==5#"@/g]=M@?;2H@_~4>ʷ^#ū:T@D>S? rYhO*Yl۵X E8Q"I7G)T:־9 tʝAʿ. Uκ.`۶HM<ϯ''{E;ֵ?4 \]t[0囔fb৺_&GPWgZ͇hg45Gw՗݇$v_1Ͽ_Yoغ9nE6702S j9Ym֚s]T*bOq*ȫki{LʴU+t<:/4]yMgkmMU URʫ P5M/_6@QO U D!'9}~H9hLOqˋG̙' JPql2Go^UO{??MKSgy 9ߗ?ÉtAx6#YNyy#IHWOl'NMYAz^&Z+[:H~`N ~s{]ta;\Ih q:ЙO?kr j6Tm|l-vӲ9\+.Vm.6WK|txt%Ct/UЮ'5bj|2B:.W.,UzLjś2I-WFx5 |Nr_$X/WJ'MRw,Z;ޏOJC^ jDo&="md5GDE.{ڲ>Ҹ=IG7:@"ڌ>+*a.Bǣ*8ՇzRwpt%"rٜNvi7nm߁֛Sm㧐 *llK;I/+j쯋tK>^@ll!sNY ĕ>7?SI (I':|oSuzn,&eMW.HLʈ*0Y'AAuF`*X;"SbTnPm™XήVn ,r93fN!1jr֫)= ʂD[Wmh6Z{.{.XRSHŊ+LdU""ܢ+dH=N4|Qރ$i|ۡPF1pS> 1T{א,g"lTly{ɛ#/|wE|sL;݊ybPN+sy|g\];Rk>n:pAP/A2bvxH>hg$~%&czm'3iwՇП^Ҹ\ef\GGó7A9΃ytyCTFR{)؇9"M9GdPN7 w9(4ǪQ Ac9qh=Wݪ4ʬ`Z4#>nLp&9EaS$8|5X3ͩhc觐,3-v_S7ihhV|n >sќc<4磹h.G+,>w'wl{44]4h.3GOBs龉W*)LMalo yrr;G@5L&|bհIu'-Es)ͤh[ ܯCRt]o=hjm-)tTYOBjxV2d7dmDӾo@stn%~[LoFs~;D}A5.6>WC!ҝ#x@cc ;nͺ`X.Mtw3MyvfV{h6)OCI'dYl%sd)_6ۤwݦwKU]wR4[o M'*u Q)ҙ>RIC.|I6~ϓ+究u`W;g֭{R5] \ ( gô8B'2q6*¢} q>1szBp ?敂s9(%BbeW.ʮ\ Ns=UZe}ќt?+?q]j8δ Oo t‰,Iz?6>w:hlT)g2<(n#(sTrGQq籃;y]jĿ{qCGw\lY0qA7ٹ !n3n[ Ҭ{P(aEqz@>AÔy*Gx8_b_&\rJW)E:]AHYh}:3},rCz'eA: nՅV@/ta891`D: q`?Re=M%=ߒԞi)dz6_c)m6ť_ѮקGcD?%)D"I]_Z׫}ln>t -\rGwt -.ײP?#ٷ~W%MNճ46֕]/wR?nJIijO?H@k2(ŏ[srϛyj,J@ jCn2]Rr nv8ٿz;Rve+Ss.t3g?C`q:yH~sXyP%絲VbHW-}4ًݝq,0$@ȽgJNXo">| 6;S\:g;x?h^aQ#emTh]7;* QnJ#Dc҄$Gi±F)G#y5W5%Ywae [;Y\n'9楒f)xI'ŢO@` F`BPC Gp#D%)c &#bOa0a:JoOe@5 Y d>! f#T# z2'_}1_"2ܠ u+G84=`p[lMDg1NSЀЈe+C[:aЂ-~8p Z8e@p> ξsQF.Ae5 Tk\pYϒ܈@񽉁 Gvpx gp{; hޅp7w1HGp_^G<1KPq'<O3xc³#|WR|= |; FWR 2xF%_0x ;?x .Ÿ=]#5/'pIP P6_uBI_ :O!t#Z7.¿ņtf$fcϬw$9ur݇kTbAS (0RΩKЏFa%pÔ9db2vEZ}2< @1^:PG$8eNGݾL>,ҀpQ^P EhP}S lpk x a<8SF6iEơ9yW0aG2,Ô= ݟ1uRixB B'~&#IL(lqxSQG䝉nnsHkҚ8  Zr]2rIHcҀt8i.T<Їq#]0HyL҇cp^8 1>F-E-0mVDPo&DjwmGYiSfγPf<9C3f it`Wq1x@gb`2ga2sP'&4Yc'd>:3:?2_zeHM^sapP~CkмNu}&pBsù1Mpn -s+砲ߝv-s yQy[Mʪ!t>ڒ>r~|OɪH|.vLrMa]?GDj2irV4lBMlJzC4MD<տ3'*h@d|fu_l}~/V=nK4Yn2,ʻdGYpS}&rRHsՙo)E7(;{HbՆD_%ʻ)Wږ!lgS$ˉojp!\W#Bvɭ*R^ WͥZ"ᗫb|OK=ch>)/67Gjۢeq֚UkP_ xjp]"뚣 @=x~ (KX~wduX$.H;I wd͵W5>Y+k$K 7 L+㠖;jۏN0n8ɯ򯅆9i^#IQʽk$#)8|z)xD,\"hUޝ$%X.L.b,9Ζ&z.T>s<}>ynJ2r @K+?1ɣg=@EvUYͶ'4n行ĝö́^ b~awY~-h2oe *h7'D0ZzA2KuotV /E<#~1Sr2]6@ x͎Mx_zqf%+)BI,w OR*LCG 4b`ߠ&ZCF+~#M]|'n# 뮴()V*76ڲ>$z,- Mxfg_mnmcQk8ae˖r9Dd,q<kj626] 6FZ[#z]jBij)Д}ѝ8Y&^be=~+M;^ϝm{i>I|Lc_L/pLI74vVű/o]U٧mZ30]K(Li>MKqb=K{$4KMqh4ݟ!w&DZ?Sq ~&g_|9EYDn@[.Vhy]1XUG/~_!,dqҔ%x4_oצmM9H)4Xϛ@j6 4a5:jwh}e{i049JW_piPvB}JNXXOLSr`.Tda!T`#Г8z`̦a.a A rfAXh@hmGH6l[hr?0:H c}&uC\c}Y{G#ݱ@_)sF_GBѾGZZtn֮ρ ѵ#H& EuOlw6ۥV BbrF2mПR7Q܅N"].o2|S%6!'Rje:~KƧJ#rKl>.+ e|ghUʞ ϡ ?Xtq6bVǚ)U,KWxp7*3GaR=HpC JGcq/o)!R6TΨQQPןpqkhװjE>)n.&5eCFYrpA?tK YXp*C<VRz84' Ul?d#}*畹?U%ݺTWVo<_S"IְmҽX.L)~T3{Hi{K)") JE ! sm! zGxp}Pt9X֦)7\>>*>I%g[ !+jtQ|u3 Lr(tpSќ4Z#[DrOFs T#ZP' C0$;T$RI}p{}V0YYbV;$Mrv Xhi5W"v{7zbǧL_O+wʊU@?Kh~g #^T49O |! ?*#€bzV;34$woXG Td AG$8q4^dG;g@  HOU &y@0C%_`<=`2H* kPkTLG`J\Ig0VUv8΀UG4f _%.lprpB+4!sg@0 s\仠 d EepNynG uҽ:N[ƶ7g>[8x_}nw6F5{o4> ~ԯ)W^Sf0iwā~DweWzo٦XhGV(Kawy+O}hJ2:M0=~}ӪwZx^?W&2 \ fx`7P6TcxH7x(7z17q5U ^8FNL`n}<0 COp0y)KDc*Ҙ4~1i|Ky~򚮂5?8s|tPdz"4QfpitZNPb˘?m5u:V{9.vRK}(lB@=5Iqz&LC$KyD: Yz:/9 |'9͑xNwEmx C 9qîdwjNp;b_xHWsx^{nGQ>jOg@+Ќ+n \&= a:1Q^%Z%X,q o0$//X@X(@/vYWf0+3ϯp<2̒Wf8_q+uioj~taזX]9hC]M^Lz(Eg*^/h= 71i7G3\?WvoHH+[.pKtm+펢Z{]O٫z02tCzX|ʕ0 e@+0PsUVmVN?_aݱF\~ s u0 ɨ%ҙt{Opӕz>iFY̏W\y?<[!B&|ڝW]ϥH\q;V hpgVC]::e2wBSQs:d%)e9(?ae?XZcq \yFp|rmS#e'o1ʷ1KaҮGRL9ʻ6_;4miilЯ4i,ꪸOR@V/{0C]}BQg2^ë;2x@g? 2H~FsA>/4='yg)'

Wf(gx 6t~r> nש`m5Ǜ\ts!Tl۔~C\nGz2NϸYeϡfZ.> a#~ )!ӣ(c(#(F L_8F@D.TB}FeYeEegY<}0^_Qf;>b)DWQ՜r?,JwF@^n7D;r,x>\e>văfԋb\F.#QI;;[bBT'yıbH:7PC4vtt;G<Ιoz7W=9 AO~c-UJ'؛|/1U0IM\^~[ 7F:wKy(N;?'A&푽Mir/UŮz:b}h]PbHH餬Ć߷Sf6Dʇ7k #۶ ̍F+?p1qHp!^.r똸^ #w*.bHZJt&%8)wFl7f:CaujՖoWGz)iA3x ε-Mu5k}_ˑP=V^hgͱ{˷F$hziV-HYP q -U>IݻohAy Vnjߧ3>=ZCj]z,| @*MY#|GY@?Feh{14IT)L_`p"7Vy{v:O}tQUԋ!uKt7^׹ TTpէ>q7zdѤ&`RrdۍDc`G?qOҵ=OSU&tHэ3:"f:Բ#(oF) V5K҇MS@OGEѤ7vk: `xbޒ+Gi`(J^^ZݱV)V:Y*E_?韴ԚLULeWV*x5N3Z[:/"7X y,3ǫv?_ޟί9՟NYP:ӹv{V7uQn+l|V"/{U$i:=6=`c*dK -2kej3ѫ"VaKg[tj GnHXn()άk9و"5IeCjIRl*"YHQpgt!rZ˽tj4?\c4eLb㾣#z9eJi{zv YAg ?6nz'w{i..PI7sR%q2QriF^Rk Tj|<`!A⑭Ӎ=3:ɔߪ|i0>֕q{Dt į#]ѥL{bqM>H7P~Z7&!! fa#ta##,D9^MXhh( V|֣(,>+5Ӥ<~F꾭4`EsӤd[# 4F1ڔI.B;VKa!U^ )# ny)Kwr ;^+1~0 +SZumnrqϾO,/C|ĦTҢH;:chI; rѴ})]e-ZHPJNehpePWy?XOEӺ:$4W͵.pQ Wd֙v떭SLuz^FvX|lHÅ%9 ͍n(3("z2,hnqmUEcmFͭ+zvlE=`ۑ纪CCruKkAR;"0 # - Fq]|e:<3ϏX0}`B|0mxEvb+SkSzP}=V/AY_a/Vptɠ2Ty&Ϯoa5gωE7)#?\9mb)Yr߻#yD%-R۔kZb- [$VIZc~Gݦo9m9#mIˍIHDqPҁ|m"6룍}" +ɻ.;{3ޗ)ːR9afok68šMJ[/ͣMxІ ʷhR^x*%=T)vհ9l2Wg4|5I-~ZYL"\:1j^Tw|pVv mأ|U9 cJ"leo,d(Ӌɤ^fqXQcc( >Yހ,ujiԙnKc7Oy:mGDãWZbYƥ ҦۥqL5xrDK5r>(} <:P9Q\TMc!`SƁf{0U~,Gf#^_ʹWpoSG{m<2ӳx&M]04,Ocz7M!MHc{q>hX=дA鲮8Nui7o?ʻϝP"X-QԍЏuއA!B 3('nҲ(Շ<16oտ]i 1]TϞXyɿ7u.)Z9CA\ȯ4*T.ʕ9 bҞՎ}^%[ك"[٥Ԡ8+sSl@69h1d2h,dH\dYb9C4 Q~!TUCP 1P'Aj5іċ$o)0Ak(k>J⓭ Douw_y?{}w QE>|9L~gͯk !emx>TPk-^kiGS4r5;#Jlu_7ױ<ز)裦)Sq.i)KGyh7,Gs0t:N#&e+4+ѬBs"М49 h6}&Мf5:9s>s>>Ѿ о ѾоѾK~"ODRߋW&L/N2}ƣI"CԿԻw$&Mg$IQ~K'G(Q~CJJoJ_JOGم|y*BELQk)C18N@".dr8@' )2$SZwQTV|:#>Z>hkԠT?q;a~_O)9> Lma8vKyAy6yԆC&+c?{G=OC0E]?O9 -uvɗZZ4yE,)*Ah?h1=P/ںY;jVeEju" h)u.΋Xw]pFk?B/ _h9ߏ:xw֗/;j>IJ3h}ekrh%hͥuH'bh:ArMKwkbT\S_ j5DD MlЄE4AC@4QC 4AC4S&MD MMP׌&zhB&Jhb&h #bMЄxM@DM MLEOل\2Jљd H-,`a0a(af0 s0+Y%O]BR ɒoW1>+A| 8[Nʱxpk`aj&6^ÎD1s eg+a(,m/wq2oxcДVH;eM<]rYiF>^SZ4ikM/[̵ʺ\lRmMzD:o@]F&_r|OI&7-9q=7~.]x%OқPbX}4Jy5df,mMjH WӒr}.{VSSX'7 Ӊh:3%O7iL;ڒ3(#o7/xē"؋v]#h ҰҒ8X m^"j5šLR>LrntjK6.J|ˀ0=xGv0~w2/݂_4ϝ/t CP+R{YJmg%pwnR~j5Pa:uZo^C+Q{<0&:`⎤ﭑx忶ϱ{y Fgg"?yUi?vyOW'[x>g;l94m]ݲ"ϼX;7MiliiwU;G\p3Wl;Y84hoʻC=Խ?=T0[V=s(/|, vW^ ƌZk [K4w~ó綋rwd_]g~8 zwQ|5K{N|oC_w>sUl*9_WwOi dOޑ:qgΓߺGMa[W}Ш>xˡ7|/l'>}3syοeziV;Wq9?QvPk54s w7޾χ4o?Co?дW Ө/=^۫W w~[M~Q}}['3G]hYwyd_=T^:X~Wiww}kv>XGvgɞO8Kmw0Z&V-rj}Y֏+(9dgZ675Gjۺ |0sbq{wg7S~Q'I%7XdJx^97DZ-,0aq6fn3uÐnOeRXqq*祐il8ʜ4f+4 lKaCtvZ~ą  d4i`9qG=?b1q<{w-GJěrpGB2䝉5=Oրt;i.=3煯rw zğBxzS|gbTl}Yܳ_|| ԋʕ7l]eZ -~VtXM>ad՜><ˀ(A I@KvOd+wMp]Y3?`$3F+UV+mfqyGPͷ Rӗp!HgLn*:hA &)Go_ rxO'J }_?>嗮M|5#]R[*{V! wW\|e`})9KggƩr v'[Wt0ìA"ByaL,:tTMi@Vrgr2:ġs42Kّti1vL<@ Ō]&%3:vyLFΗه>H{J63©'&Y^Cvʌ#X]@Od*B9G*.aYT1zW%,,xEݴ!^J꺸u/:SQW~C  \opppJ$n =W€),et'3}PXoCÊ3[a5 YLv2Ql7J5||(uzoew/a%kB={0YHD׋k{?͆ 3c*t_ޔT_< _{.c<'K6?K雊y wDx@"mBp{4&Bީ@e_-p `(c<` P0IÓT Ou #\I`0t HIۓ|'DצpIȊ5>esl_'{fmܼ~&,bNºMnl#ͫÍu7uP/ z.]ۚ YnFM[|yI˭G# ZAL˩M#PF`l*%dVNZGKCwzc|FIm83+ݖ9sÇ rs/l[_#aC4N%ob K]KbX¡hAZ/;4e#_ڒ:@p2'+tg)=g3[aҝjz|A. E~ӦCIV>|%p1֎E$~O1A4 浯1NGkSh)&$$cH61$\#^0 ˬc3`-5["JTW LMn)*DU [ ?NU'qbמJ֦`2_+@{JZΧqӑ7uT4_N4_eNmM']2 eFm&/P89͇0 M駹lrv\Bzf:z|fog@$Le>P(W'xseP#Rh")FX]%tBO G^Oh [eg!̓IɫڢbQjE:$z[t7{W;y]"^|R)gH9oޭ\wӫ4Fm߹ѝ0@Njef=| U0 ?4;Ks /_ٗV ?8A}04-dpV%.a,쉴b10νжʯi-?_{LݩKRƙ<(rߌsjvuG6}2< wjQ6L qdqrs`z{l ӨOHivdgX3[#!Or\n!痄 (,WwK\ZΛ4ʹC1]$crnԐ 7j3_h\DےjBlޛ*ѾOI g]]py Xe LrT&EY W vGRL g 77'iR4I搠WوG}t{]M>iԱs.2:xosxntkRm>oY4^餒vZۮE95(%prN/<@5‰6GI)avfa]G{˪8IzA:uA/|4O54"89Tҟ*3L?3L ֿ*D$dTţQixTZ<*-JGţQixTY<,U*GţQexTY<&Z<&Z<&Z<&Z<&Z<&Z<&Z<&Z<&Z<&Z<&Y<&Y<&Y<&Y<&Y<&Y<&Y<&Y<&Y<&Y<&[<&[<&[<&[<&[<&[<&[<&[<&[<&[&61}4K;2Ld -Ä^r.R7-{Й"v P掛re/7Nؗ r(,+eXnem@2V>׀ 8߀ Ѐ ؀K Ԁ \W,_뗯6e^}p7p7pppwp2@ۀ{ ׀p3~0A2fav+4۸N:tswhNEB@bP,OX'?6!T`K禔9S&ISex{GO0;0M<-XuXuXuXuX++E9U'E4&;`xZ ^0Uz腱s|Kzy껗?ef7̓{anq21Dq)GÉ}5/ O]аgUGz[7Oo|uGޏSzA/ڪz}[_}Лo4_]罱Gs~[c=nb/f˿sOww՛>h Wq\fՁGo^'2o̓Ly͹z9@3' .5S3 àP=q6{؛;_(N?!W-azK҈wͽ3]Vt;7E}~|8-CͻM?$ 灸+ ?7G 8=0޷&6:Xo6]VPDo~ T덍|f5zSB`ףュ^yCLnޜg?7a'Yw|gG.HIϋFC1zۦ.17}4+Xgk^f_z~k.IΧx7w e_szL=5avE/4_wz{t>~*ŏ.ЛJ~PuY?1=@ -_gK|9?d\}&=~l~D!zJC7 o Ζzs7[3ۮkͻՈYwj3Gۆvowx:']j&v3v5Z>K҄a4QubϞ\g}}Os \7d}W T_]}߿)Oݣoy2=ݡ=ɨw(89Z!9q*Eyݮ::OQOw|_}z:ul0;5mA 35ҁphn<W|,|7k}fHS86%NjiX^6晏ZB &(_ݲHMǗ.[P£dEcb{% ゅvS{4x|k͆Gheb%X[ONYYC}ѭ ͑XӼh=Zs۶"żu{nӺ'R}GHe47X<Qmᆺ}q'eu+#u5Drj]쨫An@)fg?cyĐw1OC>jn*d& i:2q傭vρVnѶRVjuZ+"7aZº?X0!ܤ;>f9&rW<ϙ(s_l5 IT]~ۀ!r+U3==͕24kcD0GDn7"8N=wnf[ȞxB:WW9G˫t,kԩ!.npMĎ]/Wm7GM첄 L֛)T:S̮.gUʑލTd~3PRUIBbi9)oo5z:;ҡ$ps!bT+k#ͩk5_ XAɥryIEB14eB`K+zUGbXj3|eI/xu]>1S 3B)B:hB Vvշ@W-z8@Aa ќ{SSyzgX 9 ϒ^xpl@9xx Db/?/Z2*9J|埘$݉טui 2 ?{ޅʾ9i4IcСGN0s9'5e4=JcV9|2+án!-zwQ~> /{ho:\Qt M_/&u)b2,њ͜!I$Fw-RW>ėZemr(|HyZa$!6, r!ƇX$?C4aP0# uZaAeHs mD7e0] `>BEm,{ug,$67F"򺆦HC1-5Jj6R+SQn6GmcHNv3/F=kFFběr(Fm=G'-bL>0+RR2y{V[Dg Y$Nמuv0s9'ճiY8;~=k&D#t]|zZ#/5>d 2A^k$c;=yʹŊvSǡ3O6MmL4;y>clF^قv?(Ӡ Jhb(Ez!=B28/n=[O|!,>?@9_v 9;EWN?I~;TÊHkmtG1c$~ݡ doyN@U&9?D:S8+':iFY̏W\, <[!B&|^~E<0Kr[&trn[' A:@Y킻Sw-prߔr(?m@:#LVylQfFm5EƏY+D7_yFI\;ЬC|; D6 z)edacH&QZL"M- +ne3=.>3 tUʿDb< ͳSvyAV?uB BPNE{UyA@2ԏ>8^4BW `3MVkoeo`:^m׍v ]qE72OUv޼M7vw+ѻ tq=.nUvoEh..b6lQ2=2=2=2QT)VB~$}Yf6Dʇqf1FnkvosobqSI{R~NR1)KG/#N#xysd{K}ܞB:|ȶpK}|^8?T?;ߗ+ǒ_>>Goi Ǎ,Uhg{˷F -7DwGjwJ?$^JzCd?̉wO!CXIA(>:a=t<?RyGehF$=kKQ镥N_v[+ qt˝TTpݦ>qWI RyOJCNWo+#t4Uof'Fur7pk2$}4( i V}tFs?C33Om,[.GN9*¼́50<_1oIN|BXHy,+TJ'kK';4M>H7.zHk\k 6$H pN0 &9~ he!?(l%Y3?!<<62@`^׭& ؗx'ݷ3bhTvwdy#c+hk }Xu$/΀Ty)t*4v5 GyAZ?2T鹭ыȹtDӞCh.wї Ae2\"*#Dd[$IhBs k]Xx6X3")d_oLVh28Mece\ij?ґpS%<-.-h,a6YVӿQV_"ێl;>\E|}Hnc-SPkp{Ô**4QǵvI{%rƗx` G8 ͠p.y G"O_`5.AWt9+p5k!\׹@P73 Vncp 2 ^v!ُXc:@i6 AO_y2#=q9Fl:76r&c<r)\-j(at 0:i"O-̃=Ģ;M/#@7js*/?KF 檶!ʎ,O*cؖqJ1NG"|7B:tU~I. ]uaX?J1ҎOpRΫ^JYORJ᳜婊tJҡa'<0sQ_q|r /,Bc4k y>yC>wHѣ2u!69z-JďLCvmG0%R֒97jVqіkh#@3aCNzWR}_>9yҙz_ ;H''Orv`>Ů4-YkW~kr# 0X{%DX7OںHcy1R;R^mii82RՍ9Ҽx/{_kCe×Oӫ;6}Μ'uG6oÞҡQ}COo^_بO|g|=M{Ҳ ~w{ ]>s~4>x_nk~94h:o}ɟ*i7~(LJ~i N_Q;_O{﫷W= ^6p=T?5.tO+|gлV/:в+zɾn7{腿tW/>jl32EѶv9?#Yrhb("Ѕt\4);\pm0jvB3Xlk7*Qf_^RBcǟ+!B}#/}nճ\{e͞7~q#'=s k_~o~ճfT-ݻ_:Z0˻>/3s֍{ail~.DW`пUB항+b)?)S>0 iOn~Rvʟ`*kxQ|*?v/hSU=w}kվDvGe?|ů=Czzi~ۯo2-ַ?w_f؛O׆q}[/oi~So.#wYՏAiwO#kgvzi'W^6|)n޷~x\=:Tx}zC/\:q .~Fک/'7 ܨX+/ۯ?[Bzf͢~̸z%g}~z~h ; j2e5gp2ѹU"bG KGCa:M'? paKӐrrnʜSpJ2eN+=PZm!l'Q.#%gDiot*퍐_piMll3m4`st*zt) oZ}h=eB~,kEalj8BvXи9`=?R42%ݪHZӳ'zl~x_?ժȱAڏCf=jU0QcHS,ROh/]VcKm])s1ΉM?G'{VMy-=zvczW/?^~wܦ{疍;O_7P5GnzX}zDՎ'0П>ӉX񷋾7r~SSL7ݛewʐb}lj 'jzC߿ 4_S/tTPɿ7'g uYp􆽃n\z*?;]otjی=7{ςh?rӝ]J@a^3ο}FIqW ~nqzt!#Moao1Ml=t^ޒm滖Z塈ޔN/UkFG{[l/釘ݼ9=8op}O|#]ώ\]͇cMyw]bp4VohVKK7F1|XA#TW#-w]MOn__7}7 |ww{_k^;킋w_h߳.64}"T zӋ]7W/4~=b{53=lr~ȸ?Lz`zfCvo27~-snϝg]ɛw?<~(g mޢtOO6Lc}fj6R} ilFC=˹yF)8^Xo1d^7@13 )B-_SGd={`Co[/V{Q~-QJszEh*h9X9z:uwkPOk!ztV@S@ !/ uz ]B׀|NA@( E{@(iN}dw>hpTjf0[NVSmlllm)6wJ;g[s䩦 >"'3 4%|4y7Y2gjHܟHD~ʣ IZ .Pަ.,=%e_iPHL,䠴=bnux]|E[R(X<LөbJxP2/Ҡ1h5GVh\7KFGf\:9h&xxKL<{s.1#5Ac`v15<(r+1Zr~q+EniVAi ) d'5=k,6[9 jyk0Dj ӓEMʏym2-h$*VwE;|.o |h_w2Қ}OӃZ4\c|zɃ v SYJˡR6q'rNqG릠ZH#̔0$WG-^RyU gV*8O:/qnp[\Ҭꮉܕr1<_5*V1:..ʦwJIo*OQ}7rSl4E&hjONQAJ]GqR.P4 ~FGc1Ǯ n~j5p21"|dheXh!X]-Mdi?<@ƺx,,В4Q9͍!F1;Bu\G /zsbuuWWҴӨDu,y/edǫpwU%eFr]`X-ڱ ܓW+(>]FU*݂h\6'uJ@_]Zu8%5 KsrdnOFF+֝UN}827h#cd:d*%wB]J$jWU2rb%"J,Y TrlAD" {H] 蛿>ZsU)pXmw%NjiXNpX|:e˄|PԘN?Z K7P_G8L ~*R i ,Wmغ 'I[<=昳pcCڍ"4/ZO=M7Fɍ7c=r6N͎g^`2V4DskzVGOV̮1[mRbxhI㶨x,aR sG:u8Bq]z:u;vz )ccu/CsVkq9z2ImI5TmQ{.N&vU(?#C\FBɢф%:K@T{ &~{ %zV;L:Rۤg괎M?>ms֙D*R"XeD6r7F epœFC]UCw*g(T?2uIn]O=K@!:W/F>Eѣ {{2F_4a>3RBm0nØtx@^cw T0Yǣ.'( ^W&9 W۝L)?t8"; i9|BgW5򚃺y[G]ǰ N!opqЉ|;f~ߖ+sx-+8OB~+h8+UZCݝi(cR nbz60z}0us#6p:oAyb N4ܦ7t4yՉt;aHyM+R4Hz nYБo#ۄ|.ĉyz {>N~j: g]̼i],pAw9Hl"ATһ]聼 yS-ʙ2_ma2]|ua0W1W1_u0+'7݄oVvp+ .ݡ߷)KgX|DwwҺy~?D}Ng1"C"Wf}w32/|27h<̼Cʮý=A!_|E'/(!.r tw(/:⠿gԋ8/c/^DI&V,^nڎcJpSB&iVfUp]C82eY1qo7GgMݦ\/CfK=*:J x8ׯfIC Hݭ0?WhSˏ.ȧ^54E~(At~seﮂܮ%j\/)K.~CKeOo}m[!|3\m-z)_O'{)bIDLʻTğ?/S꧟+|/]/2)N?/^ ʳ^4>qYR9Orcn|d|+Cy/s~_)s&ʻ>NU~=ſ m |fnt6_εRNuU? ?\Q^.=?/ Fʽ'YtZ|)Tʟ🤼c/R}K| F9c&ҿt}0?E-Wn7~So.;͉IOw˱$ssOg:7 >iק@s7xFov8T;_wo +~j$\]Uz}"_׼:_uif?|W[m4N_ėmtbIZ+z&Iʷ( #Ry;?NmΏևJ3_z+cv));z|э#6::8hӜ=׹7:~y"6n3qcG5z M?ov{Mo;I⤻cx։{?/*~[|t =%u]jT;dX|&%j3.Jm{XE=XFT\TT5 6$2C4l3x AÍPA'le*pm AǠ~i@gǑ=?c9~wT{YlC3`L_2 LA~ l|0 F0W"eo*"lKR qc|ERPU?(Ŧ5flpټ19iOl&j%I' G6qh,@k7C=7)|WY.Qvc2o/ҩ_UFۅD%z]^uЙ6lkU6k'S^.2*EmJ8#*ۃor5Oy/=&i'>49M);gPJStF Ɨ70(LJ[ic_27ΐIN텿lگ>~LcR!S+,<@m-LS'n^*nh0c03 G1)E::]ٯnc?Z~.E?]7.˓fD<=ѿN׋~rllt_[^( zǾSo_lo 4]r 'y8_Q- xμANf;zת+Y>y?CDu!}(wAWvXx R>ۅE|ɱE_V[>߲< ! }~ y'xߠHٷx@wЦ~s)(϶ga |> u|Qf+{\ ue}@eد0j{F7Nm@ʹ F;d;/:lNں:98ӘI+Q]v#%yvɼ6\IEhx#CIfurc}r"{s tQκn|{19Ͼ8'M}l-%fZ~rLSveq{2.,o0*x]R ҡs龂O0'}i_IʮSS#h4GaWh5ݭ+LZἔro'qhV9MtLyW~Fz@Қ6 R%tOVv 4KդR2Zedl 7 {iDi*3c16ڀ96p#13͙h@s7t4ќ\^;W>L;Ǵג}ќgGQ0k8~&B4y"K\ ݺ$s'FYqxVxSXk: =xe~NFsIjV(~؛*opOEfڷ}l$-a@$96Fț午J^aA|Qe\5ܢ[Ѭ9[ؘԱ.)v6G45WXM/N=I9b1Q37E Mc0( 2pD`c0a0a)0At%f!dP@ f3| #,AX` !*X`-:S3XT62؀Mf8A5A-ٷ3FɀH=N2qR-"S]g28Z]\#/ Ug2 W3 G=Z(n7!Vkʼ3w2|U杊^p7n8ep/C#{9S}A6{GuwT7aטj%{Bbc=ILCzC~ qYH `CQwQC KXu[6Vл)̭݊э/E(sg!W*0 Sl}0-9^ShR]`k7 B*u1՝00\E7|d٨jeO}u0G9ﰞqȟwzKZpPOT,:氄!^0@wB}[e拕/baj4(ng+' 9QݮOAZ|/70g{M6+{9AuՔGxCSu MyT;!6FH;G%S=qbXp}h߬ZHGϤm@G}T}'^&r#K[^0>lFJ;>Le Y[<@wu S4չF+;4Bѕ".S[ѿVjS}S7TFr s7x&ur_gro ?+ k-C!p<ߌ2ߊ2ߢ VF];=wLn4g!1Wζ3#tB2~?x!>gcC'{{@HʽAن2: .6O"ݧ]^' =x>,_x|0>_AC qwu M00g0/bXJ﹄HH㇌ˈ*!+:1⼉8?a8?C#[/o#/XPY}]_5 [f\, ^}?4? B/? _ 2HX<}qādz:p%Fٌ> #\@#(G*rej1jвLٴleߛ'l.C< kCYЯ`-_SsֆL1˺U9#ZW}rq@ːK+T(_YlJ:M?NR&_O|o/#;yʱ8+M[6+t*UI@[c ~r1q~ٴzu,Hڦ>hy yK#*qYqrߎNO5B|zkDKHGq)v˻/8JW;5։_(ްus)lnMqHjsX=i]I|,}/u@4*rs_QU][<ivAK7fBh7MpKeUr_gq+]ץSƹ<fvr~Ad˘ğėWMȹy1J_;]76UOћW]u4u&(GI3IWw;❔tdv>no z\j_tn 9)u_wC9SsFs59_ U6YH%bՆz7is=GoǫLJstֱJ>'56i|29~W.,UzLjwIW-WFx5w|Nr_$X/W\J'Nvߔ_* }z-$VfƉK~ dZY}tzs<)ƙN[.)>W.e{. ǣL(ִ]ɯH95q&6ĸ9EMڦ]~ߠK-ƶ@9ӝzzr|Ak k >vo?9]˖jo&?;%mNvgR:R :uNG#~/=RmEw)K,JYTjU&YKf'e:?7&'\m^FM襃ԭG9>pM_H4;Hq_l:|\~r~Pբk=H=N14 |Qcܦ0榿{H{O(m .|ȫ|3NNj~G*yM=M*k|{Ϳ2}vβk9a)yʻJ TFZyE.xM> #2/|^=!<$청||*t^|ۺ C]!):@mͅMu^"[w.wG^{D=(tXп_eʻtyj:2:,hY}ĭ4׫[RgLAϷ.ᓩ2hے*]|GLYf}ךWH~*E? ;)Ńz  =zx]0vd ;*IsW;wknDŽwUӔyBz$GC:hp2MdWN4C} Wz$NC} I[bՌ_ ;  WQcG f2w)s0r-B]Am} ]߁r,bq]G8X\~/N4GL\OQIۼ?n|q8eO6ۉѓ@_>K9NDdfN6IdjޤKaGay=Ozl!9SatVV>z>]!> GM%+8ieGnh^o~e?=Rm+s8rLni"f[G o\8χЈh0pjfKIz>i/q7E1[')R܀Hܺ"^7Vn W 4Τ(KwbO+0gP8~Q4 )zіmiH9Y/C(@V.WOדtxҡ[ģkJkSY7q͛kxkaymͭ㐕K ő# ezs.53XnŴC;YlOh{O4Z=Є> !YRLyʽNu@60:_uItZU/yc_Ynhf!_t{uO[iQ[@)^9bhum'}?q]̸Ώo0s󆨌DeߠiHEsDrȠ@or?Qhb=~Uɣ(Z.o\B ?ƴ_EqJB~rd.!.pܜˆ_%ND8D1bXx>T1ljڃװݪ4ʬ`Z4#>nLp&9EaS$8|5X3ͩhkݳxZδ ەGOl4YmEs^FМB48|e߱W@wKФķ^F> RJ=I)̓MM;^NnEίa2{ӭO8ϿOդ m)kLo&FSOsKщv=E<ՔZc7"g68bnn4<*tO1ɾ1\1n47yIVŴ[oFs~;D}A5.6>WC!eZM{Lk 5MN6cx2g$4cs7݁4ٙYy!gِ< '|I).Я7#{4M&4(6[M/P@\vjCɽJ϶maLH=PDUe$#5)d"9-wP)+ަƔ]oȞ5-3+ L{YzC~PZ#mRv7Ϸ@!=}G2}Գթod1Fp[Δ>A>|A7晦Cߴ$Yh0ݟ8}xxF2\ґgyП}mÁ3'V4Sm볞[ S] \( cô8B1q6* q>1sz<p ?s9(%Bbe'ʮO Ns=UZ[d._ќt˖?+?2q]/X8E Oi t‰#,Iz[ G͋мP0?H_ÁSGb4" }UJ)Y2@ZBE?z h~ 띔,!~WZEG+Ѕ ~9in/ā-Kp38s4Y~KR{OKNIꏥo~E^ ܏t$vIOi]I k)@П'r UBnӥ*@؟n\B(jdߎM^K؊78TXWvIf*NVȃk'y*= \?_oUm J>bKx~*( )[tI.58@d^XKەůLϹ@4V od^mn" L=baBZ!]r>u<B gwvw_¸9v"N>)er;Ic%q1ċLuph}5*NyFQM vVޏ8+G'=+)J< 5 v5W5%Ywae [;Y\n9楒f)xI'O@` F`BPC Gp#D%)c &#bOa0a:JoOe@5 Y d>! f#T# z2]}1_"2ܓ u+G84=`p[lMDg1NSЀЈe+C[:aЂ-~8p Z8e@p> ξsQF.Ae5 Tk\pYϒ܈@񽉁 Gvpx gp{; hޅp7w1HGp_^G<1KPq'<O3xc³#|WR|= |; FWR 2xF%_0x ;?x .Ÿ=]#5/'pIP P6_uBI_ :O!t#Z7.¿ņtf$΀fg) .P{.KN?ODyJK5(|6d1nr^]~ c, 1L]y5V(퀱lWK&s |]_^pKrS d" e2Pā'8 0k[1F ݀ƣ3kanXawQ}$s?L3OP'/.q"g2Ҟ/)i7u4q@ޙ66њ Џ(7E/.G4V H1nBe}HHoh7b5Y|?0=V1L_j :lRقqV@o5(KVkNe<~w vᜆ8h6وa`< e7̳Ys:14h fAƜ{x\my&{ /c:q s;ujoH5B惨3c!/x3!^ 󅨇Q拔]?PLЄ5W1׫?]A^j'870܂8b|*݉n2ggP;Lǻ*]8I[hN`+Wd 9OJ|g,-+vv'A{,_C`Oqwir4kGIz3t<{ة_ZeZG$#v鬓b~yM'활v[7*k|O{ȖTo~Qww'=!_ڐHsDyRJU/ {ӟv>{97GUPS 4Xp?Y( ߉Hc'E5HM|[|Y>\9)xZ9 ]"YkV]Beeʷ='^ND}Q+wW  w:'+l|Q0xod)A*T㠂;jۏBNWȗB8VaN*_߯ᯇk$H'~R7k+)k!yuI8FϠn+ (H 0{\ u}UFi^a?$_kK+ HP[{e rHze77:ö́^ b~awYe:?yo h6'7WD0z rz= N%7Rt:+gՔ"`7$c3 =զ|#͍N<Qo?.=🠼?W:= mUs>Ip/e!5n/kr:|3K2BSߑSwӔoH-}֌pw_S䟙%4G:V-KW VHg| RsH TR'ֶ2Xi n|tHnL?/ѣJ.౶>nr/Rb&f7Nt.3aK㊭gDjR}wRC-o?WkvXRn4^>CumNU,k mѠ~ANʼcb3`x6<|h|_$^^Ti4#b֩R<)覅;qwbQv5,ǗG Ĵf .ceϤt~ig8bn]_Į>nmr>ZBarLd/T1\:v^3;YEhYj[F@ u7w8c7_>h3*n@u(\ 闻R1sS gd%5FOɁ|'YHc&M" 3`6r+X ðs/Ao-c-L_hf dS( Y5Qd:#3_}*Y=>(uޕ ^-6Z@NB0sŐu σE)y[P~ID!A?AOrD 3A#F (0>p;)& B0RX3L#nY9M'u9uݫȬtݟaY3/sha\`xbu8G9ҧڸpqkܳɜjDIy1߯O||ڗ ]~֟t܄Ahz.H -'ߗiO%uS3ORA;-ea^Cf.}@`dCR2C/QÕ:ǡ-C;9㌁]z}Ec烙gaܵG}v|AYA_̾ =3Cԕ?`p?<(5_\%'dKsnkܟ'2?@O0WWqvlEz( Z3VTMQ2VS2f'_G;(9 ?(PD3"K:}^/dX!ÍÐQFG2%؏6}20O0JfH*Lb۱eXnӏvۤR0OYh 3!7 Ω`vN Sxo%F 27Fxc87V#m ;Q &*oxSޑ6Xim:S:iimCpFiTw 3^bs\uyDik i+מ-\FrxS Қ)Ip ]+^V+}]=N{~Eϲ;՝?a{Vdw7 nY_`{kG|ker~nR^)˽a0 fCM7)s4!MCM!6#F#e+>1drcDL/ϼyϤۄ_`j\sB jR-y x9_(VPWKpxt.#, FZ@⍶kL;_R3u›bL;om0SerzA.rj4xw.Qҏ|5>YH`BB`ah^ap cd}lr[Y.Vf$H<[x2<ʌij Za8Vf@vm#4y}^r0o7-ܟ)Ҩ{Zw,lmU{NE:hp?_tW)S.uw >t.j3=\/=Aޘ6F[W]Hjŗ"a/Q:K1̅zk92 'm%>H20s/U`ǒ~ 7֐N.2\S[QtRISr2 O@7]D2^(x\@4/N 2_BmD^AKQ˕>L{BJ:A^Tyjs!k`_TR'7S恿M ۄo;v Dkn8~8@7I<ay'Qwӻ>vW''>Cni3פK!᳔.SL92Ն9$C$é0W(LL_ y@wl1~ 28mSp"_#پNGS'w~ :5"8~jLs6UW?#/Ӫz utD'ڨѡe6bsD8oHm-ڀZdoɯWYAй5jw_1ݜZW%@*joGz%uAVf ZgTRWuoY]r{힆azxTG=oʱogcbs=նT}pΩoh(ۚLiyWɺ0%8?(S裏{(4 ~zL?яXnz'@>N?|NlB V]dE']6xd!O#!+{/+iҎc?Z]gH< q;=Vޭ2 !Xp;) q\O0-SD ?u;5M=(;;n457{ړR^"2?~ڣyEQRn'/e"9{7+Q+G+"M$^`L+?z;Zl?B8dx]1/j~|\>"W:5~Jg>Jd;Qbs[`wAV/zѫؕu4jqHwZm=>kYHy]hINbFi6k2F}xMٯV?5m~0+QQ5[vliQ~ ĘccOKq;ѕdžC Pʎ8^9&xg8ƇPC|U6GBkB<5ՏqzA0v 8rlF Ch_?;݋\wp!#q_ٿ|G>\>8ZjMJ- ?y<KsdFgzA_Ӟ8w_PHOή;"®Az#\{ rt>0H8vW]Rq+89ҵ2&GC|0(0Ob;bŌԸ,GjLB4y^.lwK Yw oXPa1]yec!ܠfSC ~Ѻ(-fPɜ &M(]$&EJHce!M;2_r@𿏒$P~Vf%n.o'-/c|Lo*td; ](atZ)BwuyT! s:(>BpfDHlaGJsC@bTWF 2ɜ)dVfG٫?[? |,2ɜA@sɜo[_rݡj[ZT\y8fb 5/p[ɖ햔3'$ LYCb2q7By&/@v"2ruU/#s)j5V>EF\>ε}2FHPnUYNЕd0`Qאy_TO #ӻx2גXѪzsxWBmpuO'v*}qUV27?Q6e9QN%ssxf#,id aв#.B62m_ ]u۱@mG^ಈ;^:2NdLp;c%v[}J}Zg#rި 𠀮= G < _B'* OƇML/þ%]lzN/2{y?m i L;N% $'\cdOx_ n:ru9@ tYF;4;)X;wr?Wi% iqZyhkZA4U6:}Ju6i8yA$F[֜wz/=?? NGᡞ=aha r:TQ%^nǭwס?/U a1`g~υ`:T9b'Oʹ6r#u*mldgdg=1˭/SxG*5tH\0}n E|;gstlgX?Nӧ0DgEzz]=vv5#ͮ\w(;+?Ƀ^~716C\1@_gKR_̣:KYUYu<BhV}ƇCC%>7[MdvR "7wiSj=Âux׉VP"-`֦~:}r`ZJ(Lo0cw;t:iv{\.CArM ެ< :O`Dxm1s+H`.qMpx~@Öi~@Rtz<eGr@ŷwx' Ї./ BH'a>`<5?OǯL칹v[F(DNPAU8T݅'2?OM!2LUt6ݡhnb+n̂Cx6]/Dx8Etu i;#qD1a7ٳa8ƽʹAG1Fn! Q}\?U}=NpFǡGfJC8֧+ފ6?\yQ~{r3Gi {{C =?PD0`"X'w(XX^[Ke2ds~/JH~d'qι@ qϿ= 5ۉ۞yy31hϿ_.pAW=y*4~6/&%H2ɤ@b,#s @ OL"s tp71̙dYA&Un*2g9j29̣Ȥ[ jd\@f 6\s!}}1} ٗCd_Jed_Fc~,ٗ}9ُ#qd_Nw%lssnOiȫ:Ud'=YOVUe(EY5QVDx'ǏqaYnedXy#OͼiXf`6cnRM;T`u.욿NjZӫ9լfn}bS.\<ؐi)N_6/- sOOW%>|u͓_X?)S+ŷ_r7~sޭy'4W7&bԻzb?eWּxε5_:wjި>c.Z3^H\?!T? >ʪĠc,}7|O8dbх,'j^_)-œ7շ}5׋:nbL_WLp?ߒGּYť_ybܴePwjVt?$ }w3߬y_ՐAߺ zĢ= O쳸5T7iWo^Wrɻ7tM:9+]N,8z;rh+ԒxìKH @M AK m5K.pp6ϥ>y&濭.Ʋyyp1bdH Eo0fx2e)SWSJ8%g@:#Dnm0!=;qGJ~D/ ;`U@t滤;ߡ݇sq1PƠZ#,{^a< /D  рua_I_N[xi}1decFwJNd$-{ y2_ ruUk{=@ IË[ '{x C@.~@\(JB+0ȟ^t /! $_۷$vwgAcw{xDݛm u } !qHO?6u/lM~ajakall u } c5cܽcu|貜xCk`xow{π7@Hkͷעq8ƧS=^(gv0K8Ho;t$k)0cH[mI{ac(M!?#LvNa~VOdqnpw](vx=FϖFm;-Tr|_/ A'vf?'_~?_@\ tuHzցfAKܖV3 =95~"J¢7*;;ba%-7~+H""G3vAK,9N< E?[rYNo_}=_yp<{bמjső Ë Ai4.rHSa lEv[[CgqcK?gsR}_tyМ*qy+0޲.S~Aёu8JC]a؀`ZO_~!dJڀogkGg?z4 f J Pis0R !uCՂv'7<{-\E s T3y=f_R?=??j!>mo{rD?}¾O?ӎyxswj[1oTWgj}?{/c x- ]>s}WrJͷޱ/K_rm5k?uξzj)gi/9桳s}5?[c?#b7rݻf3zvN=?bܭ'XܪWO{gUgzͧ~1__v/bO瀻kj^k^1^}7r%0-A,={wvO_?#zv]p ~?g> y}ާ럂 ~?_cxb9=7pǾ=~ߚ}Ϳw,^/nk޻ŧn*_ӁW'5O>v;ɣN=cšoMu_K_rO_}nSΐwc5%_{㊇kvjm,kػ귩XV݂/S=wp*<^xU5ߚ~%Ϯ~%祥;fQS_2m漙Gug8wOdםG~]4W<wQbA0ߋHcOd^f;^GB"/D v f9L_rN:Hx}rbUىGЍ!z/ d7\Eq27~ "ZfzǛ@&Ӈp "O8ńSB8 !nКH2`NpF^a ䷀p1~h,$Yߑn0,h9p'܃IQ>s3$ +'9Q$׈.)c$;<9 '37KD<}<z @ &ӛ{4cw>{&^ -m"?/h 7.xT/刱1z>黅+g6'ҮWb-8p캺#.Bi/MgGjMvoOmj~`4.B;J$g/?ݴ͚7؛5#>G㗯gSm*őt^~lK9R?]]wfsCzv35:%lgI3꠰Mijw[!Ȟn,ʳ!vzZYo Z )+[x\+k". $bl6ƫA ZN-ԏoT ~Zb~9ki]Az{^ ;S0gcUn&G) x: lڐ-]+d!jO7INZs6:'x\ATw\0ܐ}$p= sDUvp!"=Ztu?uo`C q-P)ݾS$~u+rph;Lq`(Ӱ`;mN{sPjY ~_G/bɏCCP*ᘎʗCC#LqA!+{jWutTWo81Wb*|>L{΀/#~_0Ӈ Ai$y#8¬'bT'yq:kD @i 1__tvgs0ka\GGewy Ώf|E&լ`և3Yf4Z3K?;C6v(q^ iF^8t0/;t8.M~ˮV1IW][ẅ́.ůϏC}tK‡R$J!d>L9M= 6]6D>Pwtzdat_|:Nex儜)CAia|9:oGYuw p.Q7Uܣ\ QbC@-00O0p `\Mc${5L""`jPP`ml .Qc\Ia^W lgMwĽq 6yzcVϭbm{nۭ]fk;[EDᖳu}[V'5ITDma=[> š!yd~٪C;v,ģn6_UBD)oKăkЎy +Y7|jy1{F`̀[-B5`.Ca9h !amN|ykH% "WnӈpG N<*0b4Oxyr0x&nk{mJjb0->@gn-k[M&6٫n4!mJSx,_d8R*ig/4SfiBGGmĐ)dJ"oD3I);T-%aդś'߯{"̧ f~֭nx5T^ jύƑgx'y3[=$iHr&pjUyty'uMqE"n%X OrKsjڠ2O#0TsYN!42 a<ŠFa `)n^L~u*~n^B*trO`MZmgrۙw׶$?W o [şe= M\( uP?.Cڌ\@m ̡`#Ө:hZx>_hp|^AS[S94jkWn6n0C7 {sL7nzu.k sM-X^G[?*?fl91>rgz_WU}Uy_W5xTx<*< GǣQxTx<*<JGǣQxTz<*=JGǣQxTy<<U*Gǣ11111111111111111111QxT{<=jGǣQxxxxxxxxxxxxxxxxxxxxe3grYa>+ge>gj9|n[Vnn[Vnn[VaUn[VaUn[VaUn[ViUn[ViUn[VeUnU[VeUnU[VeUn Y,m6pe2fn Ylm6pm6fn نlmVmUnՆ[VmUnՆ[VmUn̺N}&-olM6oKn.^Rmf88Cf*9?aG}^-AImM2QpFy nxk..Ogp&{o6m{:1#TR9<q{\p)E[n nXH{K,*c",&c 9x*ǧ`uD5na_ }6I)5!Qp)S=w[﷤Ԃ~[D̂Ӷ`Wvԃ{Lpoܛw4 U5{Rpv ΉS{Sp7,.R]SQp.Me)<W\\k#\m׃{S) [oI)-"·Rܞܙc)x >ܝOS)'NgRpo KqHgS` J<_]F9#!7荓a즾3=#@{F0dZgȴiۭ(`[aQ8"%460mfYryV7 zSnlmϘȈ0*E`LD,zZj>{ZꞖꞖꞖꞖii)8v4E97 YYYYY9+:!i<"Ӥ4I,f.n}U[6@fꖫ[nꖫ[n`s$)JY||{.ri;Yʞ6SWv"=?QQI҉l/ٮ-GgÇыYuUztƥ>>?Gg:=Gk[7ٕl6imv[k}Scق]ɺFedPwݿ_}uݿ_wx_;tW-vtfmv36nf<1[6簮$9kw8~ϮLkqS]26s.k4.([gm.&qeOl`k}cӮ0r2ŷGCӎV/0@mM)]H52K)?NsDsO>s6y{{6'[v/nj}HM۷$[9=s;v2d=Zͻ<] {9TC}㙜կiNokmOW;DvPc2ī|up)PBa fnt|_&>dXtnwӝ}Y\p=,_dYsJPSy8\ڜW|יø6{E#l{7s_n#2mFLhun0sZ\1puܒݐt|Yoi걫V/5nKz1uVDsU]N=W״jW&۝F/)<7:+B3FWq߈ tP%a v_(U* :@c "`^@Oŏaa-40a1$?Sw vPIa/zy{}c";HgSLtJ8"'.?ZC|ªQ|Aǟ0NQ%6:K=v6՛etuo>H4P4iO'G7;ţ3JGl-Ly_VW! ;e(2WE^NakCtED'ypq{n_2n!ً^B/▀y.͡ߣVvԚCp?' f1 4s"p2OEϖ̷'吝bпC0Sɢ~1ˡK;|E~Fu|>vyCa!MQ!,P6^\7ev:Cch'X[1}4 Ơ^(R ͇<:a -+fkm~x)H۠ 8D:g\ w0d/!EDkmGeHQ]@B e} eg vjDA<:Y`pg-xDPFP 235H}@>lѕ'ٚY>M{Zevl;L)9>s%mG ,x?do8R7?ޠ>7x?njQd)߯FOqQ^q]/^JC,=h 3 ,37tE>I(n!_UFI=T1>W|st jjxbug{0@bUGmy\@9O!"_vpq ?qJ@X MylK:NaQ#Hc(~` #(̪ ڹ0@6V+C q[qޱ@eMe{ev7$w%eۛR%.RvN}βƺ]eۓZ[9UCδrf}ȨY2an!vxȘ}ȘHcP\p7,t(+rR Y͊gM=mgM-׳,Cm=_sKʽK<;{݋G>[W]Hđ4wM4ɽ!`fZX &p@6~DoO;:ɎKuԹt`fx0ÊDk ݣNtmA~3S~g9鯒t0٤*T9ྵRQD& op ~ m_}1CR!Fy/v<rM&]rIHt`*u 6DϑL'"NBh'ezdt%cyKm+[u>2"ߠx= n[Й})(-jg ?N=3iֆ=@~=VTΐi=ҋf9چd8k3aXџ$}'y= ?ѵLiBþ!rr:wSE8Ö+[wHeRdH2U;Nڵ2UϴkyĿ8C?5nK2+*~o CA~i~eJOc(^9z]ӮdDwbw"5J5m;&mN&'5ԷERg^D& $q2dYֲ= ef4RQ}Kma+ۺ.vOC0<ܣoh~7mX119yɞ j[SYdie74mMd]BsH)=?m=&ğ/9b;pt`#d[wI6]AHC'CJ Yg%MqgI,M㿥3[| nY EW|L鄴+!n39~%@(r"l??2 ҫ#,"l:%oQBD6uW˼T6/yHͅHiЩO63j[FeA+PHȣq>XuZ [!oj#Ի5^?//k=P}'e\!i%~=` hni{}CҴegڍFcOcY{3[ Y_O;LZm{mrku G!zنe hJ |HIWė~~2B8dx]1/j~|@v ٙo*5Ocz_!uKή|ޏ?ﯗX^T%ITA :'F;EsΈtNӹ-;v qS^lKnźT8DKA;-6ОwIdF"-vE%9=BZ9ڬ%U_~:ikL[t%u~:XSe7nW~ ĘccOK>PnSx9%C PpT!ި&xg[6Cub}UgyL=Uvk!q8r_.;KnC+tlF C|vѡuFwE,:43|P2+Y}pԚ*}Y"󼳍y C\{,S6}OΒ슱#&'}29` tՃWA:?̴{G>ƉbJή;H\l h^>@zX+X#q1#5.ˑ;ӟMW%~ ,h?,l<BNA^٘v7f(_,}ɂϺ(-fPɜ &M;r'1^iLsW}}>䯳pg@CtBx^%;*t$P~Vf%n.˃oyv V 1d; ](atZ)Bwuyw.N'm=?Gc;2q ̙"^Ifnv4*"948.;yh-yLu^Gc/V:P0uC8Ve% OB2d֐L\Pɋ%c E]\ "= ]ʇ豞;衜]Xǹ| sUU ]IVu ',E02_dQ's-<1:w[2OrcF>uĪC+Cs D((9@<GY42O0hYġe mdnuؿ|eպJzB/pYBv JoSGXaS9UtF*4C{+2]=Rv;B -[0:#Q0G #‘L!Q4 fPAP*Tp[Q`i,pX`MX/ l(`SlpIZ#3pJ ؑG34X@.$r(`Miڔ"h|~=ai'+`X/@|\X@[\R\NpUXlB:4*amuwfV Q.uw|Nw\K vvvG QA]zPCad#xX0O|U1Chs?> JsHikѯScdȦ~sFCX#bŵܢC'|IкC*<8D!B,Kl &:zCG6^^2ent o,;<q[Z_azEn,yOn䆫:4_waX7j)ҎVEU}HK >^(vr*)Br*q&@_RdK&ԅW'@zsŦ[lW _ޣ=iGʵ֕cV|B4r=)/_DL;'wȹ71r@Ѹ]J !cL@69Z?2~lo$}>JbWugSۚ57x}d+hߵ5 S&l*SW{G}K5?x~/^1^}i3w4'!ɔBNmkj<;ټ#ٸ-Y6j2erZxo<>wOAӯqoλxb9=7pǾ=~ߚ5>;my5SS7ف۫ ܚ'[;{Qpaͷ&޺ʯ/恧/z}w 7)gȻwm{arq5nN]w}w5K~o{q_]DA 'ޱ_է{Uyno"oߛ//_5K]JQ5WwGhm&g6~D+zd^-jj_eMr#J 9oM6bkaٵ {|N=wj^b}OC+En)~!z2s"|ې;,vּ5qʏ}}bۇ}/_9j^Zj~q%L̓cWkjئe5k;$ktp/mvj{ڹvܸ[gy>'j_oߑ'"/yo}BY%f/%|?1%?a߾z{qMm)oЭ̆kx{ иâO0qk߸~zacOx+lQ_ُ)/w_Zk5rM8ɷm>}qϚ7rB5yݝǫ{įkx矧&J|k?tFOzD3Ā>_5O% ?ޫ??(w~C7f=_y?^85.AlMuyfZ&Bu?7_ڳ%~~ӀW>o=ge3~WUVϭbpxlxnS7_N"d>Ӟ0R9yX˘|p#Ibi $Mq9H<$1wʵ { cI^ֶd@WJģ^&ٯW琿}ck+7RqГKQ]}H> шL5Ըϵ懄빽.Zw; gϬ~I|~;녛ڕñ&l:((lAӡp(276mp6vRzBe lŬ}KAȏ5_TyvToQ(vYgKҋ+_'.꯫ң7.AzdOYL&$922M^7nz:J}i'"D]͍QwUgD("B귆>oDz0"E?"D_)9|>gz|VJYe>gjʰe2tg n6!x.ҧlr cbm=&Mֶ/-(sg%<"ڽ*޺=t5z;K7Œstρk ҾK,ikWvUv!PDNӛBu⸘Ifvn[L`V=Zͻ<^30}!HO3GCOJ`.Wql3yaa3|?}/d6oZ6ﱐw]mkx-C}D{ʣo9JtIߞcҥ}3vԷ۠g{T勻w9P[ڃmioBX?)\tK\<˫,9\gKn;71} 0oB! r1ݠ`Sh+i0q^o[34YLZ'{-)z7$hP]Z׶N#C8y~Xt1/n:F, !-7Jl[$:7ҍ"(lr;&ȣ.0ﱐޒǐ9ޕe#lb8bAtߎԡY+Mg5s'Gt)|0Mrp]:E˥6MN$QOrˑ^XZ15Cdicλ&0~cD2$ lcp:c0:(׌h)fd1B^!N_|i]./DacƯ >7{[WCt8J0>ۃVu^nAv)2tJfl*w_u_6:gtTH4-sm:OU87joոw  Im;< XNг_1.Yc^:\4 ήmŋae3L/ci`§ʰޟ?l+69 'xS9- Ϙ;a|s 19^v^HMxGS,.G֛wn ,houմ"CBv42jO߾v'Qpg-{|sѧ晚'+c\ʳ-nbj3.pxï#/5~~v.uҺg{ݩ]Tknt$ȰO/l#uOvOʾPn>]AgԠ~JcswWti3 87X_?|_d)+ޙU?~`{ L&Ek'i|rzzv $TokZ Sq/Wa3"zߖRkOKkd̲sZweQԽp JzW4&ӱ; ٟ"St3T/BO ͕UϽqE6mnoU#ښeUeMS Qmc]YĖ){mYE85Xܲsv&̆Ʀe~ÐU^k4{̥LqA2/t/hv/e o^A8}.}7%Ʊn)7)ݔսD]AiJ igIeF+L.t/_oD #BQD(#BI4}p(]9s}>+g0|2ga1Нe2tgj[mp+kzMבEղN^Aq7'@RP.On(KosCXip8T*ʵ)b_goせM$o)ʵU*n :q8͞B_H_9YLxfP`</3,m\0WvmoM~:(>m۰Hm:ͫ˜h/qr0L,-7GXSt's"xi*u}AãLIoUƈ0c[^ҰaN_9`SIeze (\Θ%`2Dr0`60 xGP3M!f$!2r#Ƒ6ܦ#4J8Ӆ3I)8UP*2gQJu{`A| ~/ .zrdF^5k!fb =FtF7Pڬ$Џ*pA@bGo5 g Z'|Hw'QlLi n'SzBNNs5f2l!wC ?]?Jip!nxҰp)ӭ^dǸsiN kN1,m`>OvȷQM|Y{HgxO!ħM n13 ֿ|yyD.Tz什L>h_,R/O?_A"zW z()JLtW Q1U1_< iGUy= 9o ^陋 3L 3A}DęIQf yu|4_KA aH?S{IW]嘦ҥΌ tQOhyfj'|W+! !h!x!U!BgM !W]zQQ!9ܜy4k"J37jX81oyۣtYX3P QG3a :2Hv=,z(kKꄚDܸVw Kp?&J k2yGǀ0K#ðan2[; !e:5|s,sZAո|e_*2L}lCke%~rR?Lom[1xZ=, ?qך4- A2ZϨei״kt>n6G^ ljgmQPfEgiq?>&n^:_8~Wfih'k,}.B]EVܞA^q_5f뵿L j]-Y'j97dt?IAQawK{jp_?oxb`/vYtZ:F˴1S9?UGY^li;v8A@$@Oae+oX4߹~( |Ar{}z>E4OMAdC? g,ڇ`4"/Ody-Π%1~ǶL2?~2 ᰶ+1BN_mtb]δ]Zom"wF~&7lRaO)vu)~^+Op 3ly lkj^($Mՠi7=oMo?I(;OL@9[v9vtU竧F) \@|3gR)e2"ȩ6T;ABlvpَ4"l%x}Cġ>@n.(Ts w}ӽ3+$~wJWbC`̷TB$8ч' `CG `6c( 3pj TEP?_զY_mV&KYSj3Qnֈ(M: 7ol8á<tĹI;ǵM7 |.r>Onx73A5.Yח@xwXޑt!!KW\d1?U[u4]`@y0eUt4:)e,Jt*NXݨ!v(P((&B[tj8zf9}wWafh_]f@p (p[_D~nХHkJL%Dg8A=@F ]q1_6åKE׀~rll _G[^z 6wHPyi? E +jT?٢ƙ7Ϯ^}A׫+E>Cy?C2uA.} kWK#ѐ~ps]X&瘘[ud7Eۢ ao?!`n1. TCjp>*ж=R0|>t|H&`vu8 LOJ}#V,ܳq:jQ}Wl nX3WB'0atĜwutјom7L*y:-,]e]㍨r[NԠhr.c(w+dMLwG9è_b=*r{I nL람72& h0u9&Cǡ8}5u'}k_`T`Uy r2q1!_!}Lk3̅%SX6r+jsi)Q~nc22 [FȬ:ph0Wl ѩdx(Fm$Fyy4Ȝa5d. sīw! mD ]{ۏ!s ]$/&6|c<d.?Ѿʵ{d$x2׺i o.?Q衷sk\^da6UFw'LIw}׺]l?LT׿EܨਛeP߃U*ruho%s[g"j܉1o]ZDMG43WXL/^F>SygZMG03W*9٦@i4ۣB6 ڡ`( O0QdHxsj0\@eMP:0 PBvx`)?`U`!Kp<k-^΍V#8Mc[,pZl%F8}3pi 83-Q{|D6Z2hу+C+Ȕp:޳xp#n IC|DxBN.F>.;np)8%xsA<*/< O|90ޣ n7z7uy[7ڗ!34Ng6_K%ZC`=E&.al%)­Jȍ/$s%ZW*8 SlC)/9#^4]iS+O98 ߧ`#Ut33^N W|W5uW|2q Xc[݃>.OavH'O_@3BaDo̟w-#?fKsX.0/B;'yb e-c"h_Gz0w;c^9AG0wb>>hLaw7_q wkSq뮭[Zv6$ԟWBz2w=S]jQ@ԁј![>էUU-{v'mi7i7-B)O/;fW#_ǿ1$TfS7kwpoSƥ_Wvr`9.2r^ J 6ϴ,]'Oxa{2]*(y=$ʮ Vyc\Xۺ,CAH]!\JP`X uGcAvț=랫nL@I_ ueKȸuXԲPPYid7 [2gsgg ,|UWFm[2uTeֺtG ,3T>!R_{|K*6^w 塂X[w) ~lo.Dp. 7Wv{Br=r4lA|+yv}-•APļ!bk_5'9>zp醃9u1xl ?~0ArYbpw~O Ym1b*m " qIr,q]3'- <6O$?W'#&@gm7:m'SNj~DEdfN"ɔl:Q/[dzGsY;vi-v{zxy'|CB~<"J=,s0ɷ9BJ\?t1[]>/(Jh;y2,o|¯Cp[!}/ Lë_3i88v Wnگ#eʅ?=Y9LՕ=8aeE@^`ZGn\Oχh |H_׾.s87#1 `n{E@ҳrLR[_' ɭHD078oXP,?yB~>ۋ R@gg~^4,q 1$(VWO׳txóà>'OG6PYwqݛ;tkGl#)ۑJOBnz. #?Fϥbߛrv@f~"ʮ78L{y[~4u%&tQu(`8uY%)hLl獳7. dA3☥ϫu|:Jۊ̥dCcm]>|:ދtL~y+]|e\{/)Lئ0OpyrBG$/~u~knxl}lGwXM`Vޕv:2ձ؝ $XNt10:hHɮ"?;Sߜg 6t8bn :*tOrؾ)\-?SLi.;{w| []{-6 69WLc1+ϵ)kct6Seܲg>tdG+]ٕn3csfv$=]1ٕEyluHCp~k ۛbԅz iӻ僦w@]3 x=Ɏ-a$`m64N8mg(ǡFzcWH6ހ64ѵWgXbnܫ +٦7tϚzЕCQ\{g s m,k0&4/㶚3ܗ:$^x/‘ۍ1͊ ǀ!G> XS"( 7<|)Wy%XG|]EWphڕ!xGu2SQƝDd"ɏ#yrz0}  UL~A}?BK>G ͑AD#!&Ͳc[q LKN:Ieot~E^܏QtS4X }f~x]]ttߗKTP oC ;.\Q68\8^a!'@OE!p%Kî~,_V JUIEX-, 6Lp!Y@PlLg{'L@IYY9`w'g.&PQp.]Fp9ξJėp#f nF7 O72@p]ϲ)t8?H|H$`y?Jqa4?ApGL'|P|\y_|Oxq/|U_Ad yJ! x9"^;)^?_#VmK gMd0/ _RvOavc#N?>83g@r,=]~{NDy=K,r6e1n%g&?^ 1px|^ m;p,ۗh sa2C.+Ux=VeY2p(zrC*I?NI 3ȜI L"' "<ߜ?0?I')$cg6ўnzRlī8%9=-cY*^X8&"O4V L(nR0HMv=h0yMcq^xo$SDPWˉiזT )ε䷕?6%Izsye2~w^B8 d"Xy>ɌM2/i.鴐JӬ\E'(ީqsD|r7~:q!"v -9$Mֻ2_D:Kw3 {||%$U`Η*8z#}cȼL݆yV0: 'pn88G#s"0uݝ},.CZQ{Ҟ茹;XN{g8:^M?j,KgWtGLl~GKɏ|[Ѧo^1X4~?~%Ёf"έR/#P@/{=N;M_C4}Y?5[>" kY,g5WGڏ_WshzW&s?@Za]^.,uOR2ރ:}H8Nيc HoC<¥8GLc.9FF?[uCtG@ GoK7c:g g՗ғ'hq<똪@OnNTP•~{.E 0G?%pq lMf_RC! l?h {(=f4,0( f3l!RQB> -o?"?H?RT&`ֹ@M&?<̱N0۞\S\E#40ۥ p;o"='3m. ]=@Q_mu {ҶFpjlVhZWZ>5 H_mM[Q[`mYYEjkþ/ (GaLiS^.߶MU,-#ߒ rinZFW1-\j!Y0v(? T.>.GvE穃?xti6[jVǛ) fɡB̎WxxgsΒo]U|#ez7 DN*??( \ b?\;q^89dw9D9 ~!`$s9?_+8|h=mbNMPR)Gjy\;=W>2c} էCkR]:b X`z $9!_)3\ Z^09N$+ RF5d& r^G ^^H1d.%s1D %<\is{:23إW=}>y&MF:]{Ymˡ˷o<3S9D]V ÃB]]CUGl?ծ Y2Bd>ָ;y2_ dO|ug&]䨇ѭu?cuJd!c9(8e+c1m|u󊒓{H?Í-@E0("X0MYB+~<*`> %`tD(ap "| cpjO)& C 1BRT0'A5,$ u18`y 0k_/`5/g8` Np&r1N'%*.*g83"4AeM#{-@N69s!\N/]!z/q($=KUۗ=!j7޵ԢT c%pO;ĩ6 T>wp==*ܳ=ܯTpB{pr"{{U;~'=ttWt^p^Pq{~!EzPSR?Ɋ~Oe4(!`FN4fA-6كM~iqPwkFC4^LELUg3cvDJj[> UzCGXSH{sւVԳүdJQ/ kh&+M1m>q[Mg[KVE}T+غwwr2PewGr(7vFvٯٞ%/YKr~%xؘl$="еR{k}R׵C~W,SomNvwfz~ηP&w(l/%of _!`6>:t]2Id:b`No9R`$?r>^溿C(;>6@Kq(L M f͕:' xA/ݢ-ceb%ż4IZ@"=o$h HȴU/Jxa;S'))ȴ3 <]&7R/&KL|%iM 8WPj6-(p<*K,'leFʌijg+33H<[ uMieoth6Aއn%wF(l|sLb]I":黧q֦]Z \D3AG~q<2RGx+[C璮6sI=CO] {Iiix)څ0Q|-rC\x*#,0pr(FXӏ)h0R,w pyc ["/Ce:Ew;-?%. )ijWI:El_AtmSy(0G7_q䶈/XLxeTȼd6'q`Z湂h%O s-t<.w'ĭwZ3O&Izӈ&!+2ONNat.c!O)Z<7&i,rmVʷ1_.@4 !6щ4ݭҴIis~xJfXWZҖl0Cq_YU=tp~JtxE$ㅂDTπ)(%FTe\T'>T@߬M&9I=mҸh<&O A%zq 1lě!Z{@MV𿃉n@6&ts!֛wi1.%zw1knw}20y3v9sM.>Kr?TӡA(SmL#>O2=D2< sNJt6-sV~9_=.5}d>EAz~締[#R?Ij9},Qd:jSU=2ډ׀WG'/Nt2/۩Z;i#?I֋Ԇ  qEzEщ둥n ;_ɩvgaK~IMͭuZIv=QR\ leЮȏ _%cm/OЏ>5.`l]Z69S-Sz9!̌ov%&665Xܾmݕl)kJÓvaM]ۜroM6O,koi=w\_x]˧\|"ԦXzt& ^&Ԛ,kYZܱ֜LWFS:oM5,ue[%ih~G{q ?k|6&>'/ٳ~[mk*K7 7ɔw5 SZXy0% ~zr@DŽEwDF(`EN&Yt"mli!Op,9g&8#z4cYKOgu@ܲ8b%/S:!JLq_e;P')J=+?ۏ #/U[v]f6́ S'6mԕBD6-Tl(zS-Ӄڼl!M7"A>Q̨mZyE1ڮ@#y`o#:S8e:~Ccq/蟀?Qw2.~0N[[ܴ!iڃSFSs{=-,/=JI;[q^Zl%vr^!bCAx~ڼ._~ĺ"D->ƴ'o#Ӂ@_ǷՎ#"}Û_gSWHy}-d'/<_㟡OwTAúY'xt6ptN)v:v.~/nr*ثMzɍ]XJVh4H{e6 -vkaj/cԇ۔0mI[c5u~:XSeɖE!nH9:>(l'˼]9pl(x9%ެEkilwl|hL5W%>k3xq/a/(SSshc/>j;/y/ߑ3ٽȵ{ 9'KwDs>ȵ탣Tbcm#1=GftWD>z슱C+|/'y9늯=µ I#t~әiw%_:#]l/so}4!{sT! C+Hl\Hrƺ'DU|' Z [)PmU~GpU|E|W6f jY?J?9ArhF u<`ҤNb_tZ4ڜY>JYDK3 S^Ay) (Jrj-auxNm&^2vr{2G^BxO'L ܅Fǡ"t]G`:G `#Hkk[gf@V]v47/vzOueN ̙"^Ifnv4*"948.;yh-yLu^Gc/V:Poq.lnI9sBc擹5d.&Wy#'ob d<-"H/GQW122BjV]cCPX͏aPK\{>W*@_*cZ]IVu ',E02;'s-<1:w%]tkrGW.XqheqN!sS(eST27g?H9F-8«-dn#s+UZ[Iv[.XuA-Sp=@S9UtF*4C{+2]=Rv&ZO`ۧۧ|>)  ~Ѓ  x$ @Ep/Axd|{{)ܴ$q21P.W߅[azȦ'"7АYҟ@2 n>f)oHձඩC/OQd@Gu8?gk~A^h>|'GsF_uaZ}DS]eӧTO]mv~mAr+h~nWCtW69YYKsΑ;gz@Ƕ~=P}TOP>8} C: }QWg.ϮcgW<ء8pxҿSag|8=THpCl8_=ϯ!_@Ak'@Q !!0H@q69&s8,_yh+fm 7/Q f3vG#HWXv`ǵXb1$ͺɣ0]!M?;̼ d!Y=l!EoZ|,/Q|{wW }Ұ8!>Zj~ϣ =QI8t˞[koLAEQ$x]I]H_p?-#4~"C{^EMa**F߸,X9gXl3ѕ"MtySiJ,N1Y{ܐ3Gv=fnLyyTcoFŠp8! MSEWWatxa?l}/heﷇ.W A;s$ <cPE F .,u!n{Apr9Ī/ &_|G.c'|⌵Ёx[?$uɢ^pC̷m=mKĊ?l/K4mY3vĒ9ǥ?Ν[;[lGgQĝo8Rƍ 7؟X2&e.#${/03<:.8|/УιJ?=``4ƳX3Gp0X.n#=s*GLC:mb0mǮjٳ;,ѝUb2ɴopc Gt՜*G=:ˋ JDdRG21d9qd2JbSȤ߉d$ 2+ɬ"sd!s.GIG9d֐`5}!}}1ٗ} ُ!1d_Jd_Fed?ǒ}9ٗ8Gdvb%W}WxOd_M5d_ ݟr?O @?OO 6\;?kO13Wܜ&E6+i͋lbd3#&G6;͏ld3$"eI:E9uzs9?Džr,/r%`IR% K,,UX`^ǒKZU}V4{j|lo,wx[ώ}$gwݭ?V%屉oݰgjEO'^Fyꚟ?o_[7~{K&^缳S%^?BY⾇Ok{%^?r⇵Mq?|AM~{^O aj _%9'|ӿ|xmo7'H<Ɵg}s}ݗoIjq ,{?N|ى^>G_N?o_<27eD=n?I&I;$֌~C{"W?|ĿhˏM=rNkϻ9q?~?鎛$q{Ny/q{k~Օ{#oqǹT$`/~fx7ǿb,mYz ܓ~XuZbnjvd[ve[ve7\vew1z0 _k|"ܾ:RCZ9߅u&Ÿro]t|_Lp4m'7bbYzX/aYu~ ך1LO2{QXe7ךQ|Ȅq0 NQ+R)8" r+nL-}onwNGA۳"7 *?PO:9~8i}Ccx`6yQh[|')lN~(﶐ȡl_ CX%ỻΦѳwwvޝ x["i!DY2yý}$O*9Ʌ-G=@AF@EC⟦75R Z44pq1bYTIUIѤƤP'D]-7~+"GNK,  ;N<ڍ E?[rYNo_2moW9c^:ϨtRyrcBƯX9N<-i89dwĵ4ޖ 4U> /XA) z -&--ܡ?B[Aٟ3{/ﻯ7w~~kˎ˟w;O|ϾGn}Ş{?z_~}ʗNq>o9C}f|ǩ> )>\>7q>N$s;qs6qD}9ǹ\q~89y{8WRoo) 㴝>|q{_w]5N G.Ώp7+?HvH _Fh*u/P&n[ p{N_C8N'b)!a}L$s0 x (v @~ K"V1:bq *TKj)Ju=%Cedsʃ|6k9X7 arP/zt5g#|2azqhHW?{/cnK%~FyM:7+ <\ G>E;=qHOuݏtcǗf!-P)YS$~u+vhg;jsq`(Ӱ`;m{sjY#~_ǹϏCCP*ցʗCC#Lq.V(CԮPbݕ&oc(\g3T*p3 ̅_G`1#H?(N Lk'{%7ƩMf=~>ɋ_['n "NQU9 Y5\0Wf;|kW " c23@%$p;[tK9p(eq@,",GAqUb܂fJĨn$R.Y3_ǝ-"c"pV:Or@$*ٶ p~]Ӟ `LА֞<>ڔt`Z|8o}[v6$43MBmGőWݎiBڔ*4YDZqfU9z_hT3{A~9ڈ!]9RȔ>E߈fHSvZKªIu7O8_wGO|[k=ds՚u#o.W$4O"$4gNzI8Lݹ@3O2țEcJ˱@=嬡ԴA!dF`޳Bid xAO5Syal?7~~^?UMq?qoy7/! :`^ʋy&}YXncݶ3k[ZuրpZFɭOϦ\.tqx?ao!mFL 6ZW/l2 Vn^מFP'@GZ;'zyj C~c2;GxX$p.aK](86h᡺A(jp;s2˃GAPQAZN0j\@/@.`%À-N[ LEa(!^2/{@z?'F4^ol}[VgZŪm\Sm(5^TooնGn6ҳM}Cb^JW۸2?@YD iEm67|QuѴl}h4gG󶃦rhԎ׮8;'fmva 'h>QL&YCȤ-h22tM^7K1ق^J~?*?cjs#|U}Ux_W5}U{_s/GǣQxTx<*< GǣQxTz<*=JGǣQxTy<<U*GǣQxTy<<<<<<<<<<<<==========jGǣQxT{<=j\\\\\\\\\\[>s,7|VYs6şVnn[Vnn[Vnn[VaUn[VaUn[ViUn[ViUn[ViUnU[VeUnU[VeUnU[6pe2fn Y,m6pe6fn نlm6pm6fnՆ[VmUnՆ[VmUnՆ[ᖪ8gd䔷vo/4p2=pr8Ur6-SpM s1_M7&po%ඈ8JSp{ >;Rpg >)DDRpw >O|:I)/Gy M)x(S7F!#t=D7NAQli!ӦQnmL.E?D`"AW7)8h FFQ,"c"BffXR\RWTTTtOKuOKAƱS)*ϹAϊϪYA&O|偟A&IJgygc;ପ.[htPRDml^D%F|_gɗ/~j1(7;w޽ݻ;3gfΜ_o.n}[^[6l Kru!W\ru!W\ru|8w׏; =Y||{}avfa ilu4vu,t,t,x;tcIcIã(Ncb܉_T ]QwGu'o]QwF] +6רYT 5ӨG;:勲3ۻ:3ۻ;ÓlNl!;zvsu :].oǰ :].';l (%.x[6 m[B6u,ufa~Ps!kz@x&®Sv$ǬM%octd1JO=_u?vzCNrT{ "zȿMWMx{ZȝzMeU29~Dw/m$tȽ7Nx̽į썯l~u*~w/7RxܛOn=rQ6j@%:Dgo_Ȯג2ɽdo dGtA?T☇S~$W|R|YO&^׿ꘜI}d 9=]9n$rZO<4S=dro'|q9Bc,Kr7]̗i[YM*>$#>\\}_.NG7?S8'Y$~sq42m"~:y.|MrDyESU]hU@z4"3-{ϲA i<wӿ|xu{u]ŞՉFÚC rr8fDSka]e"6swė.]Ӽ}wg+aǹ;{Aߺ?QsWkSS呲(>ȡjpZՐhJ$4#GrWU.vK>J  o럅H=,_wafT 9n|fk;['Ĩt R(;:;Rzֶ+ \/Z\ˢx/ZҐ%joskGa<4aI'ЛL罔ul#0mN=G+?o%k0̾0M(W{9m 6LUMnm(H1D)*-/Ͼ>no*V,tDKU&r2?X:ctt,]NFHhq>ZP쬮YbA3zE AUn';fbn/S۴E/`N@Of 80zXp%ZӏCI~b?_($ MWDx]p}c${3J)!:=8 &Gn_=oʯLa޶/b()K?u/o83y 2 xv)"v)˵'5(2|/J4 'f: Vt2Q5z }18S/sCP^t]YEy æErR:Bq.JɢJxf0U!J"2~77$'UuKk+sݢJv)G,qx!>XB!KIWl-b7`2 >zv&ܮdv#d/&{I.$OTۓW2C˩쎀c{טi5ixEE-?[22H+吝bw*`@ɢСWb|Q>)vyFԫ4!uQ VCXM٫5DHd~ "+Lr]9tU ʽD?7.@<Gy`}X;mG1@;pX<. {i2m deQAc ]9߰$]1Oҩ6۝؜@@IݛT1>W7Dm !G՝şLR~my\@9O-E ƐA/[985r8}ްb4Ct1dF7)׃xN&M%L's?$:9) ??^OT9 ?g_On (O 4 ŷ3์h J)5<@9{tp^Rtx$aya2g"o!X^^yy2J+}E"9N} q .xyR'7ύ`s& [[o0}q7Qo IgC<7ƸM:czא۽n=Q9t95$]#=NKЖ})(-jgFLSVI,k^X\_ *ރlkrM^T2G}~ST+9!̌~S$JG:#if&XZYi]#MUMG٩|'ˤڠ7Ig`:)Qڴ!ԛ"T%uTXlX*K,L(onA~E{0q/r)j 7tUuuDR5ua;UGD:L HoGj1!H?d# 7]@' 6Bu8:eЉpc4$H4dXȊ?+i 螵&A4ޏq$0W[^O˔NH{*Dm8џf;P')J==?Ï #@cfvf&͂ ܩkթ"yP):QR78!v1~!Ri͌Vt 9ҟ6,m Ʋw+%cKwwNDǞZA'~Ls4ڱc,oJ% rf{c ۇ@|0`2! E+HlXH rNv鏈&ϛ?ۅr^VDK3 S^!:]!ۭ|_n/vzsd2dNdNs͈7%~{~@6"d$s ڶ &sm9|m˵ǫmAj?SrE+>"]|Ve% K|2m2\H&F(O"nyZ@i^ c%d.V]cCPXϭ͏aPΥOYg8|/#sEU ]NVug9,I d΢Ij2גyv+ZC5ul?DZ@*> !F27?Q6g9Q6%@Got-6=$~؊ebQ?=&yd\k\:B9ʑ/CǢ\xh Irs/,!c4k"|ar1cetA69ZXr;]] WyKEMiW]%My>t6V4W7%rz9 -wW 9yyu;/[(^.>a_|ڐe3]X۞)>?TŋM?T3ύ'w㿭k[ьեVœ9t9ujJ4cH}>dSm,v4WW;RN.9tqJYI mc7)y'-~fm~G'MY6#RO}3' o8Zf'!ޞ4a%_If {7~W_6B>cw7ݷ&-!yfA_/h֕n~kٕK`ҿ+OJW<p3_dǪ;=š¿|uΞ$hm+a@*p n-F^^?mKw.hIs??~iE;eWYiE?_eUڥ_HyFG߫OvƟB_-QьL^vY g=\_G>WVG&β,3?-T'.+벰^rٹ2eş~.Z\aنsuUYg/eNž/VYW{}m.,Wʲ.n.{me=uG-9e~6/O\y߇:nkR[~szS٦9oe]vz6n_ЅeW]p-fٍלZY8 B鈭@pzxr<5RUa,'>,f*fU禂;5D*etʵ) '!Sk>Xpx'<;yCaaaqx<иU 7'SH>><=7Z?v'sj 8'p_t 率Bc'.+ ;$د(sȯLFvlẏ8ȥ|sNMZϧ6V4&s[L  W;nÓp[kyK-Sl6pe~kW} sHܪcRƺZk}c$]I6ltj 씧]?19fSc[B9fCc"ɾ's߾/&Ev į;':$ٛ(\dr^H%?|5{#o 9XoMo"{-{_#_%T^o,7&2zk嬣xmtKtjRo]ѯ%9XO5-d{#@ɾ 1Ia9,#L[r19<@VszrH&|qyh{TObrmY> n$/lOU|IG|\n~p\O>Idrid:Dt9l&]Hf n'$2K ^z:赕^jVD'7"D)"GP"B% ]"B׈lbPJ"B3r#?{Iݿ'SSӼӽ3ݿ<===3<ܙLw攐AurhryrDyjh[T~]_LgQsA{LuM_`X=<%?MHE\ \mU|۴BPHsP9{LYfo݅t7/UDC+pokCz9R5`ڞh'΄Y4>&i~ -߳!%seySx x(<,_r443?몽݉C"u;4ݘ*|/_Rk+9o ܄uה4h$TׁVW쪪M(~ FܧOK9~엑r)mʩk)xS_%|7Q9yϏPXlq Ϙ %~#7(m+Yž>d%\?:N XWk|uJD]Xد9F<㧗v:%uI~HOr{G5reߪu U;KJ'vjjAڿBú2H&~~~JPE~duQS$zΠȄ oQN(i`%n0؄S8I(J jZz>ؐ yGAsl/rRÃ' CDGr'k; Y8n*n|9,LUtXRypɍD 1l0&I3CC)^\U[TU^]u(^nNEu u ࠺spRi ss~yuuDeio]ڴ+Q:rY`:mn.CX( )c wwA]{Ufׅqd{Q5`.C#R.#u0M z\`ֵړȜߧ8=9GPݍ4Twk +U "^IS!3J(ǦۀEV4vFEE'KlUV_tnN̓>W^uAyJŬB z`v]L:_&7u]Q|`ca. "7L86,\軇~{0ؤx^$ZrKUGxw?x-"Bq,W*{`7TT*$بQuY&[y Aq o#7踫:mjQ9?ÀiWS:s9y Ni洅_&9@GyLt@)MNP{5t_ )kp3vm=Qum>/"oG(n%<.G>zu?*=w A>GU7[,4z4zJׁ'k0}pG6:ڛ2C7@C;F_ۺ] ճxt'*e=TG~ǝˁi^Nȏp]x*D7o>)o4XEiл)m1Z锵y1iazψIoKV։ªjh* ٓ}Unmj!/K*߿sD-ɶ sn@K{4U'Ò^ըNNJYŤch1i;1Zw ;֎SST ;OAz,}2Zz9cc/~np> ǯ,:0tgc Œ0ձ2бY?cc7snfܱ[#ʫ@{\ىzT\\\7!ɴ{g|KMr#5N->4E{੣g9dͼ9ZZ۔hH7LcG3@QGӋ>e 5nA>?_Ε󐌚89=9Wl3phS+8?#*i`2gN9"UNUM~yYNm׶ug=h:ڳHhR@5 X@ R@z]'!ڷl}*jrUwt2:::9 %_.ɵ*uqc1)9J@s<-^]Wg5 #x-Rg6׬;X *euZz4hH eǹd2UNijhZP;xʃv=}Yg>Vl_$I+:o6Mk붻5}C~a]5wRw6ԯs_OB%KRSCycoH +q"^yO[{5}mwTq-̫HwۍUg$rM^Z΍QUS6+If,"k֭>NPљ\N] a Wȣkßhsu:r^&;>t]@S7wb(~( dDZ59ߏh$#?w%\N|py @f.U p ^gC;'Ѓd'p5wo@+;KpHC~Q0xcvЧ9~߃OJI-tZyG c^2N,dC yzI)OL.Sr=PL{ KsCH?x< 0 iP7 }6xG8HMpȜN᧊=Bg?[ð|"x~$\dZr;dF^ek>fotž&txHÔ6I6q7|&[I8H,Y)h&5$:96`ћ¡JDo }[˰t<1 Rm"6g;iT*LUג)ӭJnc.Fm kV Ii[Mq|>ՀȷV'> Dw/4z3_q֦515 ֿxCD$ޕJ+=\@&./]D/ix1A&o +ʻQɛ)_m|Mt xj\_OanC4>KxL#9ϷOvnCఙpALard #2%Gɫ gP=}F޴ H/>ffH7+h!gyIUD5,v<),tHy,΃BxjҴ=zo Cwi=Np%KuBY>?$7.0aIJ:'(i(ORw mjp1 0FCHj)%`s<ܮ%nyz5._Dž)K.ݵ?겧!~o}/?$ol[1|oxZ)__?XVg浼4~yQjm?~N1$0L$@˵ <)^)f58t!~3Mr 5ƍohlS[ef<(7_$H%= A^q_j`LAպ 8i{ ~s9,v$FS|S auY4NceZL5ߤO3G^ i;I7qA@؞@O4a&VXa;,0ϹZ[)~=|Ars}zk[S9Os[nd7/CoW 5ES0yB/2DF :[d wUd8nQ=WF/!mt2?n#rj]z"ޙ`;zEJs<xtG2ݿCgC|pRu`N-9?d>Q U d.A_:MygH*jwTrA5n-`[a;gJ!:u*^/7˱v?_=]7$DOi] h,X^S_h oLRV77UՅL@\9H|6HM}8ۑF %~6 X@*H#=Cm?IgQq$'xv/t^M?[rG;=\ti> 0dH'0? yC`.-2-oS1 Ks1]_ 5Ui)~Y)+(6/en~LDY#4Vvܼ(&>rFPXtz<DZ&>rޛOn̐E5.,JrB ܃` ?cZNIN"S0g,YOSTmfxSڃo Ձh5=i'>l9(%әJtF C!@.8& b=*h ^?R=ff3ԯ&Bp )p[_ ޥa^&Y&@&G8 ^=Noq={Tv+e_mq1_6å勴_U?]66#op -/qPcL[WuEy(Ƽx5?+T?4٢ƙ7Ϯn} A׭+E>Ey?Cw$33 \'qdǰv54>Ǒڅ%rEUtO>rC &(}y8 }0'dߠ {@Ъ~s8uж=R0|>t|H7.SSR> nh[ZsndǑ}?vs4;_QPv3ݰ)z'(z\W]vYE`e#鬋2yuޡWvutl &R<n| 9/Xr!YSn˘n2O$$]~ ),l/"rz{Ȃ93Rco2P2K!zC˙@6ay: `<49+d~G8Ul^:EH2ǒ9 i&s><|&9nw"SȜL&n:<+Y?=i͛{wa 1 [uJ/m[FCv42g XYݧ:-l &2>c#6<<9du2Mf\p\hCۃE3|>.|\'I4+$~6b2O' 2ݽ$s9gkDxN]g =tVzt8>~"sCmVl?MŸ<}܍}'ב̭ث^G%עhkUul7{P#Qe\mCdV%ޖ;1&mK# SmAo#ԩ3-^VG03W*9̙@i4~ϫJ"@oA  Bp#&+`\L0``d3C+1T= >G<vDXDXK XaY*4gkMV!@`Ml5l#NPA8;T}]=8T :{CI3>zs#yGH!p% 2嫫l#{1p}DQ 7)="7|v$  ]+Aa};|TG#>N O|R<9 ^I{$ƼT.Q{Ry4Ng6_K%ZC`-E&.al'?-/wS rIn)!.){Ӱ863╂&8h#>É6Fa&pn a4xC@lzU3>S>wU]o)LrK&.Ubbl;QgS *n|ty2>C:;P'>-elpKHޖ,>Ta^8wIb}8b8e5c!"_CZvƼr|I8s\/߬pk+x夏 2+Iy Bo­Q 8wTc%}""Hz(H%do"Vkݜ!}&k#.G|PɍDCvxWNBfNi|."ْ}(&l_J8%q_.Ln}14ZCitKr4-:F׫4Jd +Ъz2D7Bz#Jҹ[z7P2_ =NVd2'' 7?췓ww?ߊۨ[snrG#\do{'0t|?J|o)!Q?Fr>D؜B}DA=(DIq\lc{ <^BiI=3DY$>Mx ϒ(/'/||9 W)y*W(+"  7M5-AU%o C#1N~ ToHS_0o43"<'Rx$y1?'/!?&3c`SN!τ{4 ,ԋq1+&. ,;#߅Q kY `:Yyݛ$MCدouR&+9˽|+Ѿ uJeCV3W"gmG|2$_!o毎#;y;~WFҦ[M/nZeSj ik?$O57C\mQSN? 7r˙!e'~kzkDkLGu)4} 3le`.WttM`~~ =Bwn#Ef:ה|OC+VYethE=\jcc֎Ua߯I+kH[m_FG zLkwiWc~pH@ɴԟ~% V/ZPN3)wjV0~K-@%sz[z6V.imƐe\wW Ƽ7(H^?}L-1wʏ{4beY,{Z#%Tj,Ѳ@+jU!K1jͲ=e?lM ~_6/fXm AäGo}H\S5kcZ+ ~_נԦI&܏j!C}~O#o?h (Cf==P H& ~p{T8ݪi=你u>&m7cb7="0_*~g9K~{Bw ?Nឰ4 3- quǂB=^qyqe_%oCyLu[*zc[}h{>4?#\;+W[ o{c=ؖ6˓6lבB֑q밨eAeEAް2n_q<.0V]mɔ.QaGYZJ2[/@M4*SA6Hޫ FMI4 x].LغKn 6g{<wC|Bٍ󯚟 #X=ױ׳S='ɇ7=RމyC=ĖZ5%9> T8t'wb XG~2|?1F%A)8rAK0U.cZ9xxbclC|ux?bx:(nn?~v{y~eB~}kDGC<<6 oSf@ANʼqi'h`kw3+ڴ۲jk_G+:zUuef_ct$-^,uƅ# |R $͌)χtu0࿩;<S{F֕ V,Hnq& űIz|C<CXg{LWm-#Ko(=$sU@,{^ l0Sѵ~*synH-d^$ed $f2 [z8cDl.fŔ~g2{:{o2{9{_2}> !GYs. !Nu@;0Nxbut [ ӗW/y }4s/Y:^ǧ}Wv%@ 2Ս:yLmSkL.q9agFS?8|-X3YdҋkseZ {ڻ;Jϒ<2giY, s>dFӏo]>|-:ދtL~y|e3\鸻/)Lؘ0rE켺z9ңtv:VăBuP2edu保Lu,?v~ x?ד]cqꛍ|VÆG !EG9}37GQg-dйms[da ~y{+!1ޘ s-ǦC5X'm"8,{n̪h򸥫*hz7DE{'X@vnC^vr,i׷inlCZ>8S:U3t^mj#xY@P:/ʱױ'ؾOį/?C=hS;n_n($~]zAA!7o_ G4-}|hף,o9!ǾyqU=ui .H ɼL!MV~ٿKu}K!zx?Sە謄2t,Wcvva6E:"zA?ƑTz:83~--G/ /~9z)9zW>)8݅{bmM|-n<e2I^pҎE Oité#,izU[ G=ien#yXCX.eBz߈gNi'XO潲.nqeG_n췱lCf5aMZi|Tm%Mg/uHȭEx+xmK7#c=tQrHC?'8/& 2/c+H*W9r}$/W2Uzq>F.lyp >Hgߍ*!>BSq K_a @.fY1HҭXY~KZ{fe%'迤27ZuI@]/A DǨ~JZE~_KRzb37CѿYV]ttߗKTP aU ݞfr =};7/q+i> q山 ^ e HxplKw<{ėӷ@sE|y< ot^mqZ7jbHk[a]ɾr9u<;{{=vbN 24ȱi> r 6;3G\>Z?zc'LӫɼIZ +ڨZ&E@+ۏ8$,#F6EirGQ(ehe]ɼqn.ɽ k ' :D-!,,ww+ }`~8x0 e >"@cm 8Jwa2J< HO+ѓ+=[- (oG_{"83PL!?h`H^o*<>YeYRp)ZrCT9^pKƓ ɜD'#G "#y>I1t2%S'dFAw)6ͤ8&YS= 7Z iDk,~/cq~ɍߑΗS|W$+Y5Ds1xHv->8gj!3^ 㽞78s)>4ZF8(䷝?[ɒ U:SuL]d8 2k) ̨zyHsI&2NcNP\tD@~Xp#'WMh|gz,' vؚv'|E{\CJwmJ<k/-ݓDgt'?{OA :-MQ|]:봿ڥc|8ڔgd}ݚ6,^~ߧBdK+{%`̏=iOV7wn2e7.b>h}ʹϏi[P}k]E5Q`n?.h!Y@?ɏ13J+M;JWW$άݘhUڦkW}Z cQ{^9ȏ)}F+W ݦ/耈wIxw[U 0_, ۦY`Y*zTЗUzU;BN6+sZ! ~L/#kMMU(niݬ1~go : ױfqDϠA+h.PE{ww=#f0S8u&xIIdK|/}1/_M_n a(./+aY&C=%c~;!G@gw]e;?ZV[ӛ+&Aΰu%ifNgWMIOo75M֗75%j/$LQ0?=OS+M 4mt_jwµR:&L(͠`cJ/(ڌ"yQҳIS#C~ğC1TU,Nj4 <v~;@!gkzgYHX9B. 4-'2e A^x[>Ar/sz_o\slgi{8ŧ+hqsM2y<~#$;3ĝՐz ;$ՄgXjiB ƫZmHO;AU6+hp?E,?t^^ YPh9wxeim]SDSiUM}u&Q۔PN]Lj`Mq0yHo·<_1;c1s¥-ZH˴IM9 '̧;b^M_ĮhAta^ 1\>vG/=/o%d">ч̾ٝqV#p{Ez'9:1 i̅=ܠh+]:Hw pv$ 07x7 '>^䳈N5IsQ^B}'Ob! x 1Ux YOMvsrP.s)ژ}wS gٝJjvnn6K4GJ= #g>eI4 (L_ [Gcb 9Hk'&:=ҏRu+ۙǁwlt mRq]EƱDw#3Go_}*>: }p-˱WxXoj-}nN>C. -EM|'"uyHۂCH'ɳ #= ~D8<`V0CB`1m#L(`7^|0ңğnٙ؟5-P_ͦ>)|M\׎n) 22m"uy\:H (W[ 3vui><#&O#=յ~32πwQ;~ղ̱PE{c$s_*&2V9d~+|/y*.M0Q%;[ؿꔪɼ?*BrLpVb:[L+%'r5~!YaFqDxONW2{4k?pcB0d!T{.!'qKxCP{Bo0ZPp'L&"4U`V́ 'X(`Q,bcp2`3 V XmVJ_0f p26 8`-\̅mTv;C`=/ۮO!HL[٪|_pA4a . `\xq o&%npkNy2@{c: <q/$Ŏp IjU5oN8=!qݽ1%~7$Bv wGvb? <8eJ{w~T%V5wގ"ʻngc_exSvBps׏vۤ^=esC(L_2 ΩID7P x^* o;Y #m ;R!F*o 1o,njp@x%Eca0Y@iTwzFEKς?/1YDc6:ˊd)55y,$g͏BǦ2qzxtsI:N 2 c缍aQ~].+o3ZNy~"5Sev 6)yg2[&Ի5]ؖßj#ai8ĴCj>Eqnv5 *f?*ܷ9\wsoppbsGT~}锘|Wa=i-jO_ oH74;"MYPsA&85E!SQ oMݳj;Wmj[pUo*M]m Voݔ:'K7.2%`dhWMm>q[M[[KVE}d? ݫjytdHeuu8co {dQnlG(=ϱOIB^^ڴc/d#9i͔$vR/]+®؝0Tw~[[ݝ(8^f{:nηjQ&(%o9L__m|F^r o.xSXWsHt67VTWSU`+" ^w4٭ZO>xʔK-㝎l9KBz%wo. BAޘ6F[Wݝ¡b/E^u-> !iD /2/"Yyxu-\Fw"s5t<&w٤ĭgԟZ37$MD\Y:BSm9,?؝'lynMX[)N(6ʷ'cJ]M4!&І4WiZҴ!Ih8iJS iu  OS܇W#~Kx}osd<_8L4/L2_D-DAQK>/O{^ruU$I@x4!/O}TDq1lě!Z{@->ڸ(掤̳!֛w~c\&zw 1k p(xyar{I^.tyD26h~T"ӓ$'H O%\ddezdzdݱ GHx̗(^%hֈi7ѱz] VIs6U7#/Ӫz ::yqyNmhղQH.HM"^6d_ms-WFGzP1tNN;c)+/y;7$*j2Iv=PR\ LeY+4~ _%%cMګ}c\~OHIS)Sz9!̌oƩkj#k+jF&vkkuc!+{/+i1? 9x?o_w-\!NoSwF'eJ'=6SO3CNğ{`Ɨfvf&͂ ܩkɮS'4mԕBD,LT Am^󐦏 ҠMmfԶ߭<ŠmWΑ0fVm Ʋwƴ'6f@ 3͊y]㛏jGN,gHy}5d'/1<_g[{t̠uhaݬstYP:tyP:tFL؅oV/\lKnŸT8NKA;7ɬ@լ_iIPhS 4U~>ޢWlNS_?yǘ'¿Bb11~ӒZA,sOt@eQF(Xz%YXKc3@gCccrL)yt^GBkrxjA0v X!rnw Pޢ}q}ab^/#qٿ=}/ZjJ-[ ">+35ӬB~PD뾵,C's4xiEr1/:UzEcm,sU7Q Ȕr=~P^>J>%ZbʟGDXӪk/ws;޷QW25ǫ twѱhqQ}x##HkcLHuQt6iXyA$F[[֬N ԌHS~}ޟux܅|nPꞰ Ҏ^aѵqG?~>Nm#.?9B|Y.@: ^﹐\>[1KlT197U/7MiS"&^W1,3GWz>`矓W. 45W6B rE]MMD./5eOD=&k!2LTt6ݢu3b]W#6+ tm&2^Nr7aq0 t i=#qD1ka7ٳa8ƽʹAG1F! Q}\)ھN'cQ]]%qe|YLoYo{Q~; r3Gi {{N=?PLp ' (';=?MT6{ۼ>!rsRl/vqwԿgI(cJ_r̓*/6Nc菍5H's)/ɰbK@n֊҄qпozL CAO)ryzZ-}bK,'w'KNeLۘ{Oruo?3a*;/ۃ~zoZĀ?oohOMca1{nzoA D`<wSF#;Hci⌭Goޠʽg,[wq ԉ/޲/x+NK9N[(p;NWB8N1  ~ 9?Ž>Hc| 8߂-)"; - 1􂧅^ °Zj ==_ڽ2kW#d+|Arl5vjϊoLJ"SKRO{/sqm}\n#>|kY>+%f4:%N;󷇸ncz:mNor6Ը>*՛q9"M@pSW6z8*>aW:I9nA2US=}2[SLj)Ju%CoJ25 3D>ꭻ-ZFBa3⥫-:PM骶9t%}[w@h=Lf^,Uw 8vw{-KvD4vЋx˓\ܒ[^sۺ0KQu7#̈dx\7ux{Qΐ>]C>c$~RUlyhVB 8mt/w軷mҔO[/E ,[\8t 2-ꈶʗEC#L|Qǵ_HLu5NPVWxp )^ zEDu΀/#~W1x]11]$֕?Nm0kɭt4譥sI^Nvq 2\cyi9jpgs0kao94qFfݧf^UY^,fu0hn(L - @xM fq{lo_kQtI.<ߝIUk.g>f/Ot["Iv]Tލ_yd0: +ЂG#U2tg_*X>O,{η.%{*v_bGw; Gܰۅ~ ]?Lt[.h)u/x i隴P_b>½C# ӱFw*N8t_>(e]< ڞo Yww I"]o&:TstE@w%! ہ[|r, ؝q5A~?40` o &T !`%EǸ,œ`^ lgMw5;q CUdsW}FҴ [))>Haܞ̝-8 m$:dN"aW Q( Ƀ&oޚy/̐{@,Rx²+ܰJVVmг2|i혗GrO41_/q8t(A>6!}+(P!*eEa9h'(,'$[3)DRpg.xa?OTΣ#LF)4]5א2%gVЄ`_51u]8o]+ʛ79`$xJ9*wMҤ4U)M!J&ʈ,5&F{B3˘joԨҕ#LSl;h&4e$T$N3/q)mV{g'\!K%`ּy^8'y'8s:OƉD,ggΩ&x]JL'yYG+Q = S> CiJ`|=)dFaN2O5 "L(%Bpr?7~n^?_2wR/AWKy1֤/ mخ{&ԗ76&*?W o[O~Ϧ\.tIx?a"e'W&eG؄%%&#۸yy^̗@A#HÐ>jLk "CC;Y>,sG2*W@X -{.vmU~7ϭ2q}Gt'{~p9cgzٱN{fi}[O5uèkmyRQ]g8rԜ1#?lלNJWՏ~{d]S ɮ{QO;vٵo`nYgg/nNznc^ڎ Avcۮ[9ү|S]xyjJvÏ?FEznrwvc%a#O,}kݰȊ}g'{vͦ[v.|orTݸyu{omXӚ;>u߱>IgOIЁ꡻?_dWvte7|zapv_C}M/W_֋o֟7M}ͣ޶ hvӷϜM{BTv;vkI'bﭯ/ۍ|bewsޡ *ޮ~]_ϼzOw^WCu 3׮}^XaTi|ݮ90ë?]ß=vo\ޟ tj~=f?cO.C]zoܩ>cLw]xNE~<Ѯ[v;r8|IO9w\vc >不7Sf^ukɂ5ɮ{'ߢtob' '=|m}|VGGx׮[þWͱ^9Ʈ#ޫ\ߝ[ʲ-vcd1]2??h`? 5_?>PMv ]~ft{ϧx7|IvSmuy?_O% v-NJR{߈n[};*c8ݡSWb_^?wwS?4~I: fr K{u2_.:[p]=!)vͪvkok^w}_\Eu ^<.^^Z6Bz.܍ߜ|yy!Xu;v4&8.|Juj&&Xu(A;5%j\)w?vvjUCia]%*#GrWU.vss=7$hJr|# -o/xTW]| >ѕ#Iu\ QN I2a^L \G&Ij³MA*zD%$l%zy"V ͳ8$!wFQ~tYPS: y՚K.MYgiP˨ePP'^w_ o_6jeFɩ A7&YWuabϠKLK]W/ ]P>DA<'7 4 љIt]ާ(l /KߩDs~&27P|EiD /2/"YOO·3์h Jm%Ej yfM:2!ܳI'[Ί˟#y&s.,de])6pLrdNq]űz?M jHQ$.2HmoO\5Dhj Cx9M iZҴNiC~%pJXW5Җ8 m?}x~e=rP༤0 HDd+(EBXeTd>/WMY'*\Er^AH]_L8^O4n 怿M ^arDkn8;2xXo^q)t!{p{0則'-rf{sjHN2< smirt6)sρVπSƞ"%2_&_x}~痠-+Ψ&:jnCjN8#E7w7׶P0G9m_yuxtfSo(7#ή.HM"ܕ pj[:*?KQy"rrm:w^'f)y;7$*j2I߼>Ǧ6/W- 2ݬq؏DŽ a_/c\~̯?)=:/j03JkItƎ,MؑKkkuɟںҚ]#MUMNKwLzS& zuf]SiWySiCbgsuyC7EJꨪ<ٰTn?XZQ\4:L/*`0R_LX7峡19zQs}uUEyS2KUzn|퉤k%*Ôw2īG<{'@>nn$6B!].t2ʠǤ+iHh!/ V$=kMxeim?7?ﯻGI`'Ӟϊ2Ҟ u)AIRyO!'=ب x]{IG zwDu[ӴQW {U^{2Q]'yC>o6DJ6 |Q6b]:GsF>?sXGH<q[{62N[em>_zUqA8. )pE?9S1lUCݎKu FjosbB~!z=Kwhq^lk%R^!bCg@x~ڼ,_~ĺ"D)> A~=?u!t J@b4+uҏo\(vqÝ_gS'Y~= Ϡˉ1טUwkzue\bM֙Աh9LQ7ET:tP:tE:/n f^Ʈ\KQ+Ds3hoK v?w|[ _{2uItuբWlNS߸J?wXzQQH)+$Sw <-/cCWmj=?/MqPDwL5a?{祝8-@?̲huq~Irnw Pޢ}ĦײNab>b&7ދ̞ױ8b|!󼳍y {,SQ Db~Cfo{jqv[W-qƸy8#ʉ='OI9vhc8 ƕt&P g:}C { &shb[bĆŌ԰,Gd'_h)]ؘhA+aaE][`BBNA^٘SC XuZZ͈94#լ]fZW1F|2wQ_[u%/΀Ly)tKv5N WIZ-1#"iյŋ̻y{2G^t_ybBw:PXR(/\s: &8DT٪˙N}!=ΑN2'9Iڧ9 w7#ޔ9Y48h.;9T-yL˵^Cc/F:P<tA[ɖ햔3'$~5W*jamеw2nj||(ҿ]wFp;'nn xcR<^'|<<%,óO)xS\8<˷0sɭpUG^88Bב<𞧚'p5wuiPsh"W>Tρ OUJIyf{){o)@p*I @_RlK&ԅW'@'$RʀzsŦ[lW,GCj ^;&E>g;x®OW&nȟx{?g`W}:]g{g{Ƶ}VػjGow?;v_iyڬ?M]]o nu]?OJ1j G3X1"Ϻ|2{ ՝߳kjO?:u/ |Ǯ_5?Ul7 _9k/{?%)]/| wl^vK^_b71<2nsu+:WՃ/u3{_M)n'h7Y^ڍ_n8{@bwd7 qiCo-6Y {v;îtuRpˮυm[\ 7N#vv}vַQq kZsq'|GU;vg3):P=tK}wn_/ n #ykzS޹&/ްy?nsi];ݮ}g5׮{-S_⑟{On7=7>v;[^A۵S;ϱW_ij~w1{^>aڵO +욪#>큯5|xOkycb7^naN8,G}|E{b}K/T};?؇|ɒ`\⮴6o)u?(؏'u>ٮ}Sn?/i79n{,asګz]8Y&uo\?[wݾ5[ϝD'򔯭־mނ>j3-j&n'6$Rv#<]?~eZmR}ʿRp7.J*Jg{݊$Y`nܝ"/}Mw<n5e77^׿Rf(Y1%/?\s}n.$LW(&mサZdG4s8y4_@eE>BD@OOGm3[]L6Ӏ 4s4}A&" EOm!H6ƓTG]P> +gnb[kbmhNUq [zG:/zW4䝵wx6V[h,\lq蘶tuT>](xK$odzHA1 `K5~[g!E<7}'1MSݛ?i5aAоXV'uzvitr{>N'ueC0VB{qh51@\R~vFEy-^45*ml*ohYZn<:Qޘ(mOTT8XX#pILgpd(ts/DAr#ݥYn֊QF;q(>]F7'G qɨ2oBRJb-wUUMUD?6JeQxXf7sh..eZ1dwI]lc1 89PZ4sJzg=_$wJ]!!**qHST<{rRȵ|=E6VNijhQt$y4WAloJb0^MmFI-eJ:~NiZA8 p87Zr4eUtMv`ay*o5Ӷ|8=6|OK8!ǼLߗ=pV,3XuwxW*=pw|tѾP__F z z(F%o| i6!5嫫Ux s=AA*;Jq^7O>vѿ:Nһ[ѻfwWNyD "ZP1?"P GIGW?~LqpIOS"yB/Hip'/)iVh|h|F2s o!V<^{zσfNrᆛW3Azbɑa&h84*Lp Qfnf>dAO"84$ͨEzΘ0:jgg֋iv8cvD/!BܧқDҵE f#,o I*4ѱ=En) 3_HO]GOZ6须YX'钥:,qn0bYQ4Ec{Y658fq|V#q_bj!LG50u|anW<wB˔ %|uSuT뾗7?^m-ĔL^,[JZe?(exQ?'BxI|n{YZAN?CmORC :K?A&9tUWgu!No}o??V&~#!>BQ~Պ~-_6y6}_ǂ1mVV*Hgr_)^GsY!5$FS|S auY4NceZL5ߤO3G^ i;I7qA@؞@O4a&VXa;,0ϹZ[zY6'-_s\ߪĮO\?mA =޼ q(k]3TM|0 eF^ 3lA'߿2(n&cf?_|}pX[mr!~|F/6:r},gڮ`*! ƺWx4c*Ow?+jk;ZϏ?̗az 'XFrCm/ްY)vn6W)zs1At6AnSƯєUr9AlP  V4㙄Rm~{N5lHrlWO SZץ!5W'9T(թ;BX& s.j$E$Ħl>H#†? R,x  $ޡ6$(8s w}<:l/&x-#|B,7S!@y y~0 %[X6c؞*lq@/u%m̿jOjSS^jRV6Ql^SqF-FiҩDy#`QM9}c-AaэǞʛk@\yo ?A_1Cqx yEqrZ/a_|Y¸@0~u7ܾ`d1tEoFv 3q9zD9zwo1V4G_ub@"(n >Lqw]].F 0> Νap>*#p|'x >)g|/d={G5(+郞1/ոK޶2{{ƾ ==rᐇ=X wQcKXuۉ6o{ ݔ­z_JHK|!^i4,N pxm%x:Nm$dpaQX i-Bq ۹ c,xwU9L$$O&Oj]|5[?撉K_NٔvyF !=#?~ ϐE"<}O y<0(g%9,aN!gX_NXN~YMv;א1%xwb>>hm 0_nt1>K70$ ޲s9飂JvGk%.pnCCyT՘okIdȺJ),7} ٛȾZ7gHdDT釺=Drc>]uYSHdʺ@}*,ۗeI187%0xwu_(_ 9P]Es9/4N*(ٿ~ ް ވR~t'ގM:B? n~nU7ٷ '!$$$Ob6ﱽ9p?~$۞I/LG"gz] ߏ_|G1{쏑d?6~:yu~h~\m;?,X'O$Pri }:: Osd>Gxp>#9NjdD<,p Kz0_0_U s  0 h|h|KxpCw ۄ=}oPp~L8_~B?e{~*""͆e5x}7^L % 'tqz22xX ?_?o ?o 32"'j?ˤ`'a_|m1P2ܙ~L[[ThsQO&xJ>kW,~:07T;zkQE O_\h@6$0l~z&)1S7ٛlfq)40g~hw˃'fQ__5^8}Y|L>ˠ=1u(GisiWw❖l}: iL)[˕,(4]S>-tO~ Hgέ&=5%Њzo-c?ZQ&v!%꘥c}kl e,~W.,]GUf+>XsL%Zf9GԷBjV饽tL1fv֏G~y wFtY :=J@ Ʒ#=eAB"5C'`;V{&y4ț>랫n| 毁2uЮud:,jYxPYid7 [2gsfg |UWFm[2qTeָtG V,'2kS>u ү=zESM6^׷ C1R2Dp. 7PvgsB}$":htul1|O)y>@apMzAiwbސDVŰsI{`3IC<֑ ߏx $,gx 8;G}ʶu1vP qX"G$X#<_h8ޏ; i[?Ǐqƞl?'O:}ܤ~y:t [A'SiQzG/6Xai; ~}6hڭ+8W.dъ^oU]Yĩ1I˻1k-qB?#I3#DJ!]Aa,o=8 ﶷ$=!$5u%n­; 7?y7Cq,{R,Ckc?)YG|^2SU[znKs@Jr8\i~t=A:<[: srytm_ʺ|eޢ[;f I*ق> Lx&Ȗ^8Q/㟋er{1~ߙ̞ޛ^eޗL*|b2mqC|BdGN.SE]2e;ob8?H\c߯i--n+"s_;+"򿨝_t9LuNqh8OA`3q])dg\gcѩ?Jp#8od5f'wE!>Q1E9H'ܵL,cȤz:飨Z.n\B$?αu%j|(%$ٵStO Ȝdd."s1yz4=~׼O|Ƿ_"%d.%_F^Ar}L2W:K | 6)̳m;^j""]ůί2{ЭEOM~4/Ԥ mkog!Sˏݹ_GeDdnpvyf#d/(<ﰡE#Hv{{HfQy{cjo"s :td~V2;w{9{ؽ±v&JH~7"\ iAF1I[ki3N-y^ *ziUA2<@(CK;"áB2/0yHӹe8_qo!h]Rsqs~< 8"hz@ыK9_^J'ONwCX[d._m@!`K"ퟛ?v:vҮ,c,zSGZ""pK^VrQOZ} /b(@u_uŠK7Sں8 ֓y[\٢}纛>&m,kYvMnEVq[Iqprkq ^MƘf%=b@O!G/]{UVN׾DyiPZ4leV` NrdJGN\I7Os>txƝ.Z? t϶>BI.Jr]geEp6?8BiRF0MQMMR^I;s]JvjQs:8k%R k['~qE׀ГAo AŠBB Dx F"S:5G`"dȀZ)rBߧ0P`2sF@v!,VM*$V", p VZ^3(Dgc`+)C(G@d-AW>`P=. VC8Q v8^'0 ND8 dfʀ❆9JGNG8 x ڍx|O ElgEQ{).K\J*kѼ:$eFG $?~=;@w=gGmͽ1x@1a "<8sO_1x& 󍄗`[>Ÿ% #gFGG ^G4|8o_6Bb|3gh] Vq\K)xh."p4%Ylu%7=DyjPj*s1ʽzu:n(̱`ns,Hewa|@`|XVg\ 4 ^(D>Cz|DzrvK;*g/=BY+PD+4 ^=ce~Hͣ4 j9~GfJ Ǿ EZQDLX:,܃1 u2:_2EG㔕?QΥ؀70 &&#;MgL6њ و3ƽ0A(7?B/.F4 ȇC0mˑ\}o`SU|(?+1?1c/H* _Z@Eh!4aX1 (KVbnhx^mDnFM(K)Y8e薣[q`< eWYs:5֢[ts%x;:5tFGc`"(`eߎGG +AcQgEXi7x̧NCOUN@LA,j߰ s *o>*m2yr.4N\p. sis9\9V9mݕ vv- FB>^xݨBY{2 R[˼GXV:+e>+3^eiOStF\L_S<^";cV(o!Zn(:",:uJ+<9=mL zUTANuեe6m,)-t`WIs?Wfb;Ht g뚌Az=/cYCOi=P18L/^+hWCy$= X\.b^]O$Pv`o)=T@O5_TX"~+!A7ۇ_w%<巶YhVb+"6ANuR$]ү %r7MqH=%T9W*7E6*TWdLQۙ_.á??v{g;,GαʿRlWǹ=+/yVl {EXtj (zd&-'*')mKȸ+5llA<)❩o*ԳNy?O>]*T1T+Vٕ2șn˥@*fEcFg ȬP9H,.4'  ѣ`S{/)}:V/p7zKܴ#9ۋf̞[WxKdC P>_N/|'54jK/%Ah(EJ(wt/uxի)`^k7V^Foy>,2wtզHiK+*kwFjK˫"告ڈXuJI(]#΃ rn8{7l1j׎"!@ }0ŊװlF*;vn_L9~"+xgN*shW&Sqkj"rұ0zN^4|f`gnn?NwRw ?Qi _{4ƞp@gJbn8"];K n裬#W97RVO ;35NJ<3QkԓQf9=Ig?},9.liv?#}-@t!9[N|`r2Tlxmp\`ST=X!Swb7e+&{{2&o'8YiC5d(}7OCfL#gfbNŘFc:BG^ {!2mbYjH?(:E` #sa96uY9f\aʹ;CpKg 2w^+\Xgx݇4|ajCv1w dlB7h!mZR>aЍ[/fc6B l݊0cMȆ.qˏ0A6xArgcp |%LUc];G1 W1wR!(06< T!!MW)g+h`+OCŃJq#Beu֎J?3#}*է79߾r5WkrUB[1t|'C9kY*Nk`;D'QTHc@IҪDB{^ORB2@GtG<  0Pt9pQ+k8]\Q莴@Ǣ;,}b {\2؇Qcte/]Zo)o"TRU6N|C3|D(3t(<&-?fBWaByb .D}Բf?Sk⿌+ނo螆r `3ewNQ V~)Q购ו_c 9iW(te"|`.@Nf'4@rwA?nte ONCz1д|aK3]@Ѕq_=`|3@@T>"B̀48#`LQ|20lǀ.օ %#,eLD%}.>a pkU ٰA [l *Ja;NtRiK8ܗnP+O( (\\uysH . \́D+5tC Ia Bv~K*"Vd_w+Y|=1Vi,'*Z,k`A9;iY+OGܶW \cYjcr.+u`G9OQSִtB uSTWXNux=^w'z1 /_ax^׏ex0?_`x`7 xC7ufȂj8VxY#XCA0}놸4΁eT(w0z@ăE(K*wY"$m/)HWʿMWΓPLGxcd8ی:t30C@i|OPbX8m5CXƻLO2<.O%~RNd/[;H] VBv8քjF ¦}9) cq Dy80]nǻQ{ {EĻe"]+5:렏מebڃ[ ^ *}& |#ƂRd'b ӕ^LIxMg3n]ori0kUy{[l uhO߉^O}ę 3}`H^~01WܲAWg03OWg8,:tuƋԥ"(m`0ꨬދ[wSnC(|D m5'i4D]]MiŦj(BƗ gW w>ShɔK MlI):uzozh~aӔ7hJ30AYR_<@?JCAs*p+gpz෎[&=^O|?[9V/wroR * ŷEtj:Aw;@YP * _28#ΑHg t~^@'U@)] LKl.s7s!krj4|((i"ˑvҔOgP"&iJQ%G1OEB[U[jHWʹd~y;Sw訌x\wǢ0q7+>#~=ҿч6g$SEMQ>} "~]qc/Q'*wxn^rһ蝉߮o{|Q9efvI|I/| xg4z| GQ{PP{qN2DC@NQߡ2SeչW>ǔUf$cO!cPָѿpjI$|.hk )(xVXb=䤄INm;aѨm}*fX<{Hd \`K B #s=k Y:?)3m#Uյ%5R1†!Y^@Wg3Z&3[uR ϊ{Kv~VC>iX~JOl\Z~ ¾"I:A-l.`L]^YX]TQRY>0?q#[QT/v a*~T/+C./l0> kMU#(ztpem$vsQm~udS]YQu\)ꨴ(ڱ/l,+짗nҗ|w2; ]=uO}]WUV6ZJ+7<GiYY~q$?-g?7 S'G($nFL?Ѝ/XoC>O>|| Z]xdF'컼mp./8_>$A|Ia&^?[dw [G*}8Nv__|cTpK+$iDžǻ3M:9L*x7uy,:t R0B(a%|{4US% II*P4i W5:wyOQ>Rܬ(>?Ӕ%;ݍO:P}dvPy7 3,?nT{e'1p9a\hk͉-XZq~Ө(V)o <7~̣h9_#gS(.u[s@ _o,˗Kx1,v˅/h nva`bޒK#"}DD鰗YR~7 ?.Ӷ^z_SU*WC=v:fQJ}2Taaz:,/Uz:"rL~v:C{}h {هB CyjO8i@Vsӳjtώ/W#u[{巯PΑ8vTS Q#rwN_,qDMSne,ۈGrEILi*_Ӟ8}_|WM16pG]z◃a9L>wsD.4)ĝti?'Ur[%^9*jk /d%8Q}x&!Ote#d-GPmXU0 l7, XzW"V I?m~_EK1qt+'O҅.7#( W1ѦrL2 }&HYˀxe)I*KɊ@pwI!ށ-ѕϽ,OyծI/};92GX{kv!3ixZ1pQyrG9J*ΌP}?Qmߑd{%vhtG;Ǡ;֊5LgrtDzНD59hНer-gxxY]C/Z:P銽Ņd~˙5 ; ] Pŋ*i&sTl= + ;WžŮkr=scˣ=s]A? ]/{1@wS-Np.BwC,vV  w xEƾj巯{:W9y]&{v} %|IpZ0MGCBm]x [^\u5޻j˾}GC綈޷+wm hrFÔ+4X\*5Qtvzs%r/9t~ҙt %N_FL=ګvd:zz1!$ ur ar{@~n8#FF3;W50M)@5af/DR XV084BX̀ k B}K z~HT" 6Ł- ȷA2!T8]ž9cwy o\p./c@"\ 2o1o70o71V.ynw2hqН2/ ½@xHY<8G<^~}72Iø "r;0SVʹȦ5⤡V9uR΅hӀ-(v@\c(M? hWY}jW ܗt]#:fo(IN/I0$d$S2\\M#/ٍХE>NG[)#'9澶Ho/94*?f^6h-VD:ʃb|/YF_tw?<гπV^ڑo>#};ȺXNX~g/%{w괏rgh}OV;ͭcgk`;f0Oo/%O󵩬zKIy#^[=G_l#d~Y^o06LT !Y9ƾR@yY@\3 mig>ǎxQ8I8Qk/3Br=S}oKfsM/UWFj_WxR_ģL9XUP:>-bx+T̘L뢋G靀R|$#5\ tBtp \&)$OhSo:_H9k-r@7u:!Y A}\7&ΦR<$VG.x)g]uV%ν탲#{CF(oj\4|zw y>㌘tO>Ao ˸\X%$2}YʩVmh0,A$y%Q%Xx]!ICH_tB 叠ScdxG';v:-#Un`utVbpz%1#3je gG ~72Top.1Y~3*Uv#bOjn4ڌYy`iV6r,~U؟w&Cs!h?Ïvp-9z7d#b@2in=Dȏ]d"@ɠׂ#HXP_曳GveQ5UO}Ǧz—߽3#/ Qx~U1gg[=l)*܌NxMݴ̇Sg]oFO:!Ar> o\nFv;Q+>wSfd}r~cuGƟhp7%{{eN)ޜ=vu8q N]cqiCHw붼p}sY֣~Zv,=N7ˡf+>ob'|O7Ok06#W7;9^uǎ4#suߗ;}7"{I}/י-ؼM'ǟ9{k/(c*^,b?ow񏭘bFy.};^v C~)J_S3nܛov¯VY~U.~IΞ, 4 &T/ `Ϣ=hvrfYHrf4^7,722Ȁv& =5LSΊ.r!M(K<+K;ǐFjbZy^({oLvY\$&ߏ|?ǭ?ˮvH~lkOjv̚*RmE̖{Rd ۺX-o=OMxL2QftŁ]l|td29]lLL>g)ݏWl^7T}Y/oc^>/ӯ|^'/y䘞_1{/?gy!}n?^ י?]^ˏlUŧ=Ǿdף#1/ߗʼNͥc138͟D7ƃI~wb^^?+4;NFfZsVA+Ã{:OWm1/wr~|}qԊ)=wa>>o~OOQn>V3|K/Ͽ 2}C7߿ԯǾ;wУ31FS{6nxukO?=?#V97׼!Hd_3+}ט L|Y_zCACkW?/!=ۃv׸[W4_i~avNWoәwVv{0f~c^ZC_-Mj~ιyЫ/^TւG.V~[5旗qykJG>|񬏿9u߮WxyCC273xT{>#yKncS?O~;U^=ͼk &~|5}guФv ̛ιwIe>]]bVky y,^>/g~㽔tyve=]LancN{[z/ 5y^g1o}G6Gv[ͯ-6o~1-vO_6JWt6i^6o}.G(4}п>i Xrp\`(|`+V%>Xrڍ(inMǺV9/S32d AlNt:6[gLAwoj7O{7f%c{}^gOھG[l=$KDC\u A؄ #-${JobQaWOzGm`RqŘSҽǾ5I˚n5ls$x i+iMhoA}]R9~J}A+kh#^yQ͍>7@2| ,N^>tx/>a7I6%kFln𐺽"2BRbr㷂㷒㷢㷲5ʋ?re+o%\~+k~+l~+m[y[[[[[]#r#G]3Ij'|GO`OXE0`X-REo;`O{sݣS<Ǹ&!]imm|ٵ3 u3'O>ae}s ~7{NIdO<{{ 85Lιw؞dIp۽wp\Ix§g]mCWy?wUz osKY'gN7L(+?='|ļa*|p1/N]xw [Qi_x=OnU^Is~ZxYn_xc{6*{ isnz텮%ws_SIzyu_9QgFW?_=|ZQ#D~]#.0jGgUޖ-}s{.3۸)v{k}>o׷?Ǣ=ןg.yW貲_һT[z^i&~};9Mɿ:h?9p=מRh?p']7y|EG\3vr3r[7kge~ ˍ) m2o~ e/z/[JhYjj:p44vb`i6<_9| Han9A7 HxPN=+OhLu؀ x,UgTCz;ۃ^OWNy!<ߔީ)iH~x7eQ$0ʶi@$)+kdhC$_a'y@gVX],$7Pa u7Ls[eMZK47Rq'ohҀO'J:0](Q^5]~1*K9_ t#Z,=6B5{-^m\ryQFz]Ӧ'7*b\Ti՛\f}_J_y|4i_#JxTKfc.?Ǎm4׹*|^Bn91CNzrxDwZ)GnO?k7Wt*^LW}s=tb\?8%0 />A9h%+Ǡ.IEW8}IʹM"KzyMH}CnNҀ1kJI~*xOܡmNAS_iBi Ӆ Z?'?i)sji~;OGDI CTCt~`:)K@k3{~k7,8+[h[񧡼 ,J6)W9!_wFX'9XY 5]7J&G%vL=ι}pF&~)Ū`§+ f{4j+ex{=66sRb̀a@2 vBt̶+K~~ =۫A7k9aװ9*/G%rԉl˿TS-Lf]34Ø{\Y uBFȾ7vBz$~t_x:Ƙ J@C'' -CuS+@+=Tm@[p_ʣ'{o<:GEڃ\|"H Y>zr!A^m@FOa-O`|`Q>0F9wfsw<s0AzK24Li0A~‘4"!U c h*U* o6<6bjwt8wb`  vbĒ+{2}Nbԉ5Du ~ԒʺⲈ7BoL49kƄn&L7 2i(u G$kdy܄=1^꠼/;گ?%hd~2?*'M@ C1BŚnrn2y*Bp]Vq~IȗL3{ a|edt"T?atSJ: X?zt` e#]NW, ƤǽhL ֮&b? g}0fJN#gZɦ1B&UO0*1W i[(^L+}Sdx[A;1g 'S#w;xI6 lKXtV~)>k57F*RfY絚Z #ofռ"4-""RT8I$"=ڻ WѥgZdw+`dk1j/I) 䒳4O F| w覼$RCO~|~P8?9ZQ?6M i h~5m!0:x y&v[XnCƶ۰9akAUQMM:p1Јpܒ.ۅΊ.{0Io҄?]4k hlÖ2$PF7aU쬕fZ(kY+)f>9ؖA|?Pgrf =R7#.BNH e3 + ,6܈'] =O 7Ћ jg2>wxY .&z&ruq&l,i@mT eJHyR,gcrn[V۬YFKC!A7_qe۵y?3aTnSt+~m A/d3aF3^߈m?B_+T8r,6e_ )i34}~Ow6S*>pfжXq$ӋCc-~A-9a&@=;`9YJUT7D$ s{6Z؅1Vxxi6ӕ{^)w&>3{.>Wiɉ$õ+fyIⶸ-np&}a{O z-ZK,k \X- s{VC21~1~LIFڿFٿFۿؿڿٿۿ&ؿ&ڿlmmmmmmmmmmclclclclclclclclclclcmcmcmcmcmcmcmcmcmcmllllllllllmmmmmmmmmmllllllllllmmmmmmmmmmlllllllllG#cc㜟㝟QQQQQQQQQQ1111111111qqqqqqqqqq          hAfOTF7Dj㧔E;kx3WFrWJJd2LaI6aY/S74r%*mFMF2Apz*x&_9`pk.l gp+ 0 ml@YUVXes0p')kbJ@ξ[jgFagn"ۊj 0ȁ͓Q88 K,U 2e]iBYC;, uMHQ8BYT(BL7c0NMʺTYg*8ʺ)* ۢPh]TQ(K;KY7,lRPۓpRN)Q85 E(3✥ۘQME|e}a.q.¥Q, G(\puµq~p}nQ) 7G(;pgʺ(ܧplg@!9HI?wvS ȽL6 Rt`|;, Br΀˘ABYx5H\?tFֽg@B' 33v\g}ز,ejYjYjYjYR-R-R*R~NT sQ?G{sq?'xt'Q?G{ttsc o+dT6rKEZjEZjE?XLkw9 H}{ 2r1lJyn8y</7wl\mq[mqt?F!eǪeǪeٲcZvZvTwh2vOajeV䞏,3έ9ͷï9Ӷ>zֱFsGmo^4DsfןhVY{_>~ېoQe}6]2ܣm?iaVlߩ}Y}϶̺͟>}AٙfSegκx7U=|]3KsOfեrߘf[+oDln5_d||fME,0k9hY-@f+ʗxyI?5>^YQwT3+9m0Ktu/GdS[͚߾ˡ[͚;mՓ|J?=a7Q@;g^{M4sWz(}æ^ f >xm~T}|jG+lVܪ753{ͺgيG̪=qXYQqO.[aV%ύVfgWlV֥~yw5~}*[^`gͣ}~gV.CS&O}IĘUXn;=ʵpi[֬iE_dYլ-]tcͺG-xl8sCVo60k+2Vt0ZVͺ,\|sV|ES,;vyͣ[t6rΫܶjj5+?b[dwgD]Ppw몝ͲAQA2˗F[qYſ"_?Ӭzgz Dm mϪ__;fYꝨ7P?063mWY:cmύQoUc͇VDԳ5>ւ^4wt>>̪Aqon|1h;WY%*ER틧f@1k?ͺzBsGhmwPq pOYe mW-----?ֿvNZ̅ZmqĮF7ha*oC@kIup%"4Cӊ*7l]q}X^+7|8|{šUYM3늷D6Zd!knV?ռ"_M!6TVWGEkx6X$fD*N^mLZE|,&=Tͪ,Cojƍ5ZU.q{wDJ7m%R)5NnT<<;KvRҊǻJVGJJ76d)*?v;6nL ,|HA%ҵe/<[\_&Da>Oc>|o7sHd2cܺ :c, G?TISo zc]@6@-WOt7FmH,q?Cgm| 8NrƔs-q{Im؂ ?$EٹUDVEGڅhCN%j,RlqZr'ų6nsTj,گb?1|?VʮȮHpCx+ [o*+/_xgP|@Ds7zJa5S<  -zo*;$J3U\3pE$]P`Xk D Hұ9=:,.>q4XK4Xn*{wMzqVRm1{A(M3A(Vl>~DKpV r⑬R! u׊r?}()ѝxWpO3 1ykDM8:۫RNb0ih3'!'&̸uAL /7(WYYLJjMLOLze]m:|ӆL!9q. dF[=o@7:l&[Fr7pc7~9cFj0[sjњ8h㖯va]J\́ĆkD!]9!f@Y|YTtf n(~7\TEoe57%7U9S460QH].ӽ#BU&oe\Lx:i搙A/9O<۟<f h.4HF`\izh<^9B 5beeѠXݯvUT_6Y:NN$.Uְ.jooݚn~^{ :"hg`<:A#q# V*z#\tiE9+-$CWq1#IO{ד'{*v]+`ԹuYه!L3 :Aw;^}A.y6 "x υHk1-:Um !.xPf{D0=uz_zx@:G"5LVyWV^:* LKwr.ڈrmFDFyLyXː}:}7!ODVOߤ(gD^U}8i2;n`A"yhSO@oe/f:H9}%B;xn.2ݍ2݃2݅2s&ttr} џ*=(<:0KP'1{} yƝPMN1Yn=,[Y\52,2b Rd"j|\TLX'g2_8rk31F NbgkO†2Ŵ 4 SNaE𗥜m[-)-J'dY2 B⬰Kz n:|)OgI}Mv~9"Ӱr_G ?[wv+^~$]IwWwzeH@kaw WGjK*`YvUEﵑe5G٩Ϥ|[& AWFk7WG6ՕU;XҨJkKI~Ƣ~zpP{)}9w.{ÿc_WuUejE)pwGZ.)S^_$~Jze?o݈ G$f|,8X) dF'{GOG+B>OH4x oT4܍ /p%Gx_غ8RQu2|;\zO@{ xi?Vv rx7qfNMФ/#t:wpSGnB DUvTMW2$C&@yФO>3h_GN Ds?Eȩ S8MiYRK_|Giw pS>Cia!Fw\ƙq83a&υ;ʍe?7*:mu8,si 䜯m T9{/o W7K VZHҥg&=.CXڅ@ÃyK/qk2aAȦtKKݬi)i[//S)*O+[dp{n_r.9fQJ}2Z{%ˋaz: Jg_9\O'/(z:{ǎLJ߼QЍv4hqHwd =ȸ |_J>BV9,r7$Ub7= b/IGη\A!_SJeZ6!KR``k5B C6ޖm 8 qCӂu>) yơ=pp>]6Ja;t{ѽo>]4p`{Ѧ3N$L#"d ?twN_,qDHSC cx_St!oO7H$_7 NT^YAINQM[*Wrց[׾%ۅ)8dc5|@]vyL隆 tMt ѝ.Ol49*НX~"w*AG\`}{}O%Bt{e 3BE.cP{?NuC-`tC=X/ط!a_eL38]%JLYL9ݵ9a$\` Dw^"n @un@ "媫SO}G1p =m o{W;4["쥜0 # m F|Kt:y'0߱t&]'%1HI0Skr_Jx/tKzl~ЋA!I@e03%" 0fu @`480 &k` 50SDl,"8aq`C* (OɿX`I"b{ #Pي00#Ve8V0XxVƁm5 /1Cۺp B8v#Ǡp‰ NB8TO`9iNG8_t.8p"\ = (n.gp¥W2fp&µ u M nFy kt K0$fhZ`!|Mprft%Kp൶ht{[I*Ok_@ ejV L^ 8~wm:#9iثͩ6_2Ju( u7S5Pwd}JSYZ;U0߲\3 7ᗤ̿Е}/ kMGLIhWS>Io7xdw|y 봘;Gs\N+ IǙZ%Sx:= <~{'KM5LޯX:|F~$]Qj;Q{79r 0t ,.|&)>ި,>Gv_[7kx=+÷ꓓPY c;SϤkmsl=J@K2ǂ \IujYBME%Z3Ku$ #՛""F] *<+sazyu_9QgFW?_=|ZQ#^D. t?*o閾gC?|=̙mn>]طßcўˋ_+|K^~m?1s#‹r;n9 O9c۵߳y;'w6~wᲭs_Y)KFqˏhD}tQ,a?6ZoC:>mima !Eչ>.uE/bc]Y%Er l M+c@r,}mW8?m[ɿGۛO[>'.{Oosǧ)砗?==o^קu䬿1om1M2^<'}e{܂NA³\q6<':oo=&O Ӑޫ|MF^!{Ş?[?^=|={9d„sba7`:]|$zWӃκɝ[Gs{~o|jwMiU2^YR?U좏{Ƨ {2 [ǟOK/D=h8#~7=V{ӈ sG柟 iI>_;ׅ/斎7jG]5qdaœa-_yUn~}f_v wk sV6PXX47}r-w 74`)]T޷33>^Xfݧ_͟a~aњ'}ǕQz^s5탿/Po^)wS r%*_~R\:>}f??ח!'D^7RRYo=Khuz/GE %Z+iO:J<4D|PaҰ sk7wUz*3cP{*k8_9JE9h_^SsV0fR )9yC%MӢ#ЂGE(,-ZU`g2hri TC%hSr}n{-))=K}ޛMNzce5-e] c4d%TЕq(v(t+i;N:w2CJc @eRM6cU[} ˎ}af(Y9꣓{>̬:72+cvNYǚ_WW͝yш_Yg%Om E.6˿xH7+uf%>/yY[6-̭L7Ͳ~םf?tD|%GAӪnxY H3nS_hn=疼x,/1_2+NKzGjV-fgǬ,ˬr7041='*j/o涷~M6/_;pҌ/̚ 㖞fMK^s{;o~(ͣ>m/7(٬~3k~96旕f]#C_Yے.[ڬ>b-z;&E{AfgD7̊352@f͚ n0kܜ]̚u_ŗ]~Yw߶^WYmCF::]GlVw˼s6-ZņY}~f?r72egO9ͺTM7>w͠/?"US~cnoVlCfVwj3ט~95]"ݳ$ì}!fދśc 3+_z'Ԭ{eEݗoV~Sͬ{?,/9׽`eOL5oy6kN~/n5kz3cVO:+TGk=x5]90s1z'oM&'K̲QaV| Yr̸N6RrWe+1RwafE?lY<7ZF^yY[̇+/[E掇{f@sṛnyɃ5ZYNdV?'cVcɻ(ͪ例~nZm~-~fMWhv27m౵̭Y鮾~ìXh7ZAn6^no?s^[}OU_u4oѩh̪g;㏏۬;[sj}׬mY"ߝ-wA5cܭvN7UG,_nef[>/}L˞ 3̺h">>o5Z˗meՏwھֺC5|ܶ6D7]e߶V 1=7jGaV5[gR~Ԭ8Z {bN3~qP@4_f͖Iu/zƒכ?Ǭn6jNzg ٳ SyCvqjMmB.@7>B^ z-Jai# ݀NA >[Ԁ: ioc^Bz@h!+ t旫iM1#':?'?Ga?G9?G;?8?:?9?'?:,9t9t9t; >ԍEpd[.$DzHߧO]\^'>AeG8wc ..r/f,P.4 @Rʽ2dh '*%=R1*2"a#&c-}g~srXTۼZWԕGK7x{҄rK2E.~_22"k8i5<)?,^g:*5+ tRNO¹@_ 6I2Hnq߄o: @}|~A OL6^N r{C${;a@t/:BR W /LMV2ܸ\N/M/ha8ۄ8K'CnK6a TQqb(jJ+6n\[_T_]R0rԃۄ8+_th!"r;8)xה]>6ɓ}JY_ࡅ$xTF‹B_`ȍ^!2 ٻ#1xyrxbrE*D[*E'u81_󚕱 *i|Eeʚ҆ "օEee;"%ѹq~HYEe;cp'pK2ֻDKè)cskg3ű~랚rRNh {WC@ǧC=q(gxrʧ9v@7KLqoOS!e'@~j9)kWՔ)>S(ue:iEL@Y4F] ߩohPuuR,B]gwo:j;@ŖgNA_Q6aS\@ץNkQ绕sB.yKc0,]N:(}ℋ8t$Nh.y.| T.Vs݉it'ѻe[Km-kį_HFn߲w?]%okٻcZ C-+N_)RrGSWgxcVrC;SDӱ)0o 3|>{ᆄ$tu6Q"_lT7*} rIQh咢Kb>evavAAƹT]%c/":G,>R&|"}?B(}Oȝdu 9@E 㰔 v[m,+uUh0d4lƓv2-e2Ibݠ.%@ *W TT W1o]o@7D0G"X~%mț$D7ΫHд [Ej\; +_fUD4ʀ;}Z4,jAڮR.E%fы ~A!/'x6*ˋFIv9rHhwmyIj\QYl7F9kլ2 nZi?qEKvmuQM-Mp5wWXRYFEUNݫ,B?7P"Lo7m 7]bcZhrSYy3YcCkmrʉgb|c)+8-VF{Pye̛=`ͧoa9mbòm'Ґ۔ۇϴiv[fKETH)Zt׌i{D<`iN`/x{wx1ꭷ/÷>,N_m6Y:Lj⟆;7PW>C]zm=&)NKcA^j2sR' 0zcL4(+ V߀v>~). oCϞk8C&H(lx1Xta1,>vr@{Ob .V(LQXz]ߎAW!򚁺YD]ƸsN!o󠃢p3" ¨-V<3Zi= <q0o9u(ʷuwͪh5hb|7)sDŽ8O&z#$-1I44œe8m#S;Yօ*P>_g|85Hyi=6MFz!CRJ&6>ç4Ե V:Ň yȾ v+, eG8sCay~Xnen,T2Yە܍Ka>eto:]W?w֤/@>Ǎ?Rǽm%_K~CɍP 2a9>(b>Hr.LRQ1q3=bNCO 돖j Or¨)Ea# 㥄M ?aLԌLbDhapȈ2't]rQ;d&o?Y9<0zoE5E%_h(DKetFl;4M#0HbFև&==yH`y-oBs8|Wl`ȏvGYov6D\ۆm$:c_(9  2CB>x+ WipLr{>s%O>;` 46??r\^9O za XLNʹSҋ\yba)t#"H蠜3Q^o7r](8:>q1nVEqy 7Yf1l_6p-ϕicc- f54 Xw8)ևfzEg=jukwt7V2Ec $33 P;Ѩ;~4bN}J# s3}KD `7=4c,ܕBMr|vvir4MA=J6]9Ψ6R? 5e@ FW{ ɝջL&m_h4mw*?f3Ӎ zVygN~ަM#~K,tit!':\@t->=9ɹ'*w[7D?Ug:nא|[HtVR^ ǙNe~szZ<.l!*xӖ 1_JiS[PtXqOXC?Rkm@w4c Ї&ʹʘʩ$T2-mJDv[GƢ;@ca>%$drnd!13ݩNAwׇLt ѝLݝOs58ΰsН,+)_lK2{0ˬިvpLhn+ӾvPB4LJ!.hǨVY ptS1j˿+]:+|+e/?]+Y\!Ǝ[^߫؍EU*r5D) uL؜ejP'J+$,0 @ǐ@'J+V$tKd) R} E2=՞Aڮ O>/ F``0a1q`<(|`2JLC SLg`sGXb s&!2 `p(JV1Xpk]: ɠzb A 71HʀHVdjH!lgPC|_%(ʺhB=4pjцS|4+W3X,3psz.@v) @+\~p wTnE¹ #Pz@8p'g@mƁP9{G/2Q]wTWИj-Tla{=1LC~ʋ\q qH =Xb~tH§+ǼnJ߲_P1|0VeXXbhcJNuX[4V"~_lMqa\}r`n-aru;1CsW5HgGGr?UMw]S4ta C_ > .h-2[NVb?uUP3뙘,> c2y= <cE8 Q^h/SVX !no7/GwrvrʹaHp.G|f)g۹E%"mrpK-Hc(KYwTC@c"x{Ouq{ 硿^83G`8};EnwпPxcs'QLMc|G٢c(X.n8'GqVN ?w+>aʣG#)\ʣSy-Gg(:2QjTaRj7Tv#HzW\-:Nlx-ur_avX7:LJ (e(()0n }EU*~5ӇimO*w HGF cSYN oE;ycw w"]BoʻA݆wDtܛ|"ʩ7 ^+S{|݇1"c,?t<LíB_x ܧ :rޱ01ȧ/݋qydz:Ӱ# `tF?iO4 +=@{;;^ه2Yq CoɖlFrMqmq ōC0`#M)ۀ5LFt|rGvHJnVT.#S%ĜQX7)8=Co95ܧ T{9KѤ7M䝼[2zo/ǕQii Wʔ&j|2e}ur1>]zӤE&Hކ>%|Tu6zIoK'!e88s_8$I.NrvS+";j++)FCTGp`s J]ސg.EY8ԷItmmO0.*ѿ} p[fO93s'yB|?YwvZUL~./ ]_+]U-?EwWONS}:Rz=G|[Wy_MW~Oƫ7 /w'}8~LG ύ9K7w7@i /30'8KJ_Nĝ1Pws}Ź3?F_gFOYjk"JwhhSbNFΡtr>+H: J#4;y~ϧi%/T{ nDQnz<3!cl򻲾_sy*}avr-V5_^5!^(Itx>Q79I!u&(G1S1WbwSLy0M-r ^AՕqt_ar{6Ջ>ЙsNOa]wojD;7)mDWhcF 4z;P`X*%蜥scjne.qW,,TZ= +my'KrՏo;,uӋywBOoA eҖ$ 72\͒iއjd eTy4\4Wu{ N x{^v؎Ԍp%Jĸ,NK( ]PrK<1#PNH7Zwx\A[uz]U/J+[ŹljɯDi^O/yu#zHMěuH٥AtY뤌nг,[\/eYL(eARѪ2Ya7bX%>pKM[VdA7\:kr&SowGdwxy\)'?yo^Ky֤_ڦP:5w~cxW{lO&o^^#o+m{w=1w^;|'*Or5\G'~L|˶V/>t/.¿*HPv}}<1^}]!O[ ^ըNzyҶW ^~i%۞ӕ6߮oJg剙͟Dgfm#öaA]^uEF^үm_a-IT[o/YaGY^ӁOg7"%\^iPkd3RNH+*c m$3Fx] `azШml}r 2X5s392Vp+4ڲjk(o_*Et~zVH;ᴜ{3M97.TChFs853$=K@*MݐpLQʹ;oa0JM!^{-eo{rny& ETb;.^?*P8m6}鱲/MRG(0 KG${DkISѮ^kT]pxkGԭGx.P!W!9P;O # L`=ron$nd ]zbGta omvCz)E&6 uWN[ @]6*_6c9LF0giizҢ">7SY=5 㛉iD+=7ꄚ6ϓtKO/f^31Ar`#At*]OC?B9(rVPt>\΢nhjd ?N=Sv|Dѩ(@q-Ѕ_W?*/P*\SS)Ȣ@ZP?PKߧ+2Zm_ē{K_^sٌ|i>ȲfaZ{z1Z-kynŐX9E_:卧Aks;;lYZaZI~;V9)e;Is%m08BEJ dGo;f7ox?!|1x| kse]`IRPw-0Z!s/Q0ZN;@=Bs ̊Дdeye,\ݷw%+TüԀzWSA6Qի1vCas#cA:(k :e0m:+dyBV&l;[Q9;0|IZ"ݘ]pz+SDhWdU|e ` xci[4*gCC~C@譜.CY 83}AWaj&u$ҵ.G g=Êm@Y"wC[j#w3mBYJj)C si(3 eөA:S-(A+y1_{7<ӽ 1@8|,v<>'OVX 2:w-dLJ+!= d>p|r*g `Qs6`cPy=CѽP9mɋs!pbsIK\@ LϱidxWwu~ طkO70~ -z0F 'a 1b;:Y$) +Sn!h{t9}5G#{b i,Oݏ~3i:/_N?gLY)Åh]-M{*ݘ+7d*{G|jDy?r+GQrU/{IO;F?]zGUPW/ hʁ wȢD]n,Yʙc=6CeuudCmEEUeE"WVTWyHEGeyJ[bt?*ˢ^z~I~n|jya֩ VZYm,eҽT[ǥ t".-[lcIiѦzL*qGǯ7E2|;X?K_d |?؍3"N3}0 !^a*x_QG{(̣ iPgr zR&iҶ{x;?%?oLȷi/|%1<%8//_9\>|f./B{hZ]0 r=tr'~=k(9mi@r/$ jT)/ݰy]UQmm'cXJWwH@(_!|;\C?aј8rUg?Y]y[ 奴bSf,ǢSSPPG㕶?'4k>Q7<>Ii XB}^霬Igc ?MILxSuOM?-?=|1RU`X ^ZͮP' PIEt_.P1+3:K@fAfitmhv8WhC\Ulx=O2|;k^䦭d^T6cܺ%["jAp}ѧ8;-oWg^}h, BC)//o|W@q}%{ƫ^MZ}24~#h=aY6=VVDN__QY3R_Z^U)TFĪSNBqL0st18xܻaQv$ 8ǗG b#)Vf7Rٱs2`r)']c?tVE׾2r[;܏ `PT3s ݆Kv3[? tspvuK4Jc4_ ݮv }; SPTk%+'`AimB輮 ׄn}a6"L`cVkB6t0[~9 rd;Ӎ4T%? `G.aSr?aOj7 QF1%nȆV pmJ9]yj?O<6]\XձWZ+g5Wt'rNSn]Ur{ ̺rģC J'7$9Wm/K8JO\{WCd?N li =)1=DК%Q 젼n #mBI51^+R)F[y*-Tz .SŮvT#W>I>ȱ*\+ڊyGG ?YCRqz^0ܙ%8@OV%23:z@8Š;,$!dǠw d0M #oZYT m}Bw>1g8[ڗh>Zs+{Y̾2~KxѝbڨwʳE=GrGw "OjOQk ] m&GirGӂ.Ӛ!?Z+hh1]w[G7},_M>WN; ez~==O2?z/DT^! 0~{sН,|peaPe3*0WG9@4iq,Agf7;H] C [ӌ̀slNv2;0< t+\y*vҋAπ=ӐX0..! 3Sz0ah1 }`໐ Y f<t.t!,d/8a)e +,Q t CX(p#LFX`j\̆E J|X&`k@TmW2v2@{L[Y'txz^yBa' ĀOf@a'083ͳ@_p\bh \G u ^H ̘]RYW\o#[΀_u=%0BNc|@}Rr5]0r,*r3<׋dx~ /ٷ"@w(3A o03FTٷ|Q[7ĥq,B1"(BYzPј4&! h)hLARemr,feM?g&Ùf4c]"-uF_gN\|zӵX©lChaŠ0eIpy-w#ur&+9np7:/AzR VHC?)քjF ¦}9) cq Dy80]nǻQ{ {EĻe"]+5:렏מebڃ[ ^ *}& |#ƂRd'b ӕ^LIxMg3n]ori0kUy{[l uhO߉^O}ę 3}`H^~01WܲAWg03OWg8,:tuƋԥ"(m`0ꨬދ[wSnC(|D m5'i4D]]MiŦj(BƗ gW w>ShɔK MlI):uzozh~aӔ7hJ30AYR_<@?JCAs*p+gpz෎[&=^O|?[9V/wroR * ŷEtj:Aw;@YP * _28#ΑHg t~^@'U@)] LKl.s7s!krj4|((i"ˑvҔOgP"&iJQ%G1OEB[U[jHWʹd~y;Sw訌x\wǢ0q7+>#~=ҿч6g$SEMQ>} "~]qc/Q'*wxn^rһ蝉߮o{|Q9efvI|I/| xg4z| GQ{PP{qN2DC@NQߡ2SeչW>ǔUf$cO!cPָѿpjI$|.hk )(xVXb=䤄INm;aѨm}*fX<{Hd \`K B #s=k Y:?)3m#Uյ%5R1†!Y^@Wg3Z&3[uR ϊ{Kv~VC>iX~JOl\Z~ ¾"I:A-l.`L]^YX]TQRY>0?q#[QT/v a*~T/+C./l0> kMU#(ztpem$vsQm~udS]YQu\)ꨴ(ڱ/l,+짗nҗ|w2; ]=uO}]WUV6ZJ+7<GiYY~q$?-g?7 S'G($nFL?Ѝ/XoC>O>|| Z]xdF'컼mp./8_>$A|Ia&^?[dw [G*}8Nv__|cTpK+$iDžǻ3M:9L*x7uy,:t R0B(a%|{4US% II*P4i W5:wyOQ>Rܬ(>?Ӕ%;ݍO:P}dvPy7 3,?nT{e'1p9a\hk͉-XZq~Ө(V)o <7~̣h9_#gS(.u[s@ _o,˗Kx1,v˅/h nva`bޒK#"}DD鰗YR~7 ?.Ӷ^z_SU*WC=v:fQJ}2Taaz:,/Uz:"rL~v:C{}h {هB CyjO8i@Vsӳjtώ/W#u[{巯PΑ8vTS Q#rwN_,qDMSne,ۈGrEILi*_Ӟ8}_|WM16pG]z◃a9L>wsD.4)ĝti?'Ur[%^9*jk /d%8Q}x&!Ote#d-GPmXU0 l7, XzW"V I?m~_EK1qt+'O҅.7#( W1ѦrL2 }&HYˀxe)I*KɊ@pwI!ށ-ѕϽ,OyծI/};92GX{kv!3ixZ1pQyrG9J*ΌP}?Qmߑd{%vhtG;Ǡ;֊5LgrtDzНD59hНer-gxxY]C/Z:P銽Ņd~˙5 ; ] Pŋ*i&sTl= + ;WžŮkr=scˣ=s]A? ]/{1@wS-Np.BwC,vV  w xEƾj巯{:W9y]&{v} %|IpZ0MGCBm]x [^\u5޻j˾}GC綈޷+wm hrFÔ+4X\*5Qtvzs%r/9t~ҙt %N_FL=ګvd:zz1!$ ur ar{@~n8#FF3;W50M)@5af/DR XV084BX̀ k B}K z~HT" 6Ł- ȷA2!T8]ž9cwy o\p./c@"\ 2o1o70o71V.ynw2hqН2/ ½@xHY<8G<^~}72Iø "r;0SVʹȦ5⤡V9uR΅hӀ-(v@\c(M? hWY}jW ܗt]#:fo(IN/I0$d$S2\\M#/ٍХE>NG[)#'9澶Ho/94*?f^6h-VD:ʃb|/YF_tw?<гπV^ڑo>#};ȺXNX~g/%{w괏rgh}OV;ͭcgk`;f0Oo/%O󵩬zKIy#^[=G_l#d~Y^o06LT !Y9ƾR@yY@\3 mig>ǎxQ8I8Qk/3Br=S}oKfsM/UWFj_WxR_ģL9XUP:>-bx+T̘L뢋G靀R|$#5\ tBtp \&)$OhSo:_H9k-r@7u:!Y A}\7&ΦR<$VG.x)g]uV%ν탲#{CF(oj\4|zw y>㌘tO>Ao ˸\X%$2}YʩVmh0,A$y%Q%Xx]!ICH_tB 叠ScdxG';v:-#Un`utVbpz%1#3je gG ~72Top.1Y~3*Uv#bOjn4ڌYy`iV6r,~U؟w&Cs!h?Ïvp-9z7d#b@2in=Dȏ]d"@ɠׂ#6$÷0ڦ/Sd7ڧ{ru#gy wjn/DZ}vŢ&a5.$R-rg V{Ʋ}{=,Um{6Ή5gid6">߾,^c y۠v<ߏ~*!h Ѐ!yܛ=AT^5=ՙLk:yNkC/e2Z뤜uY\\am#N{8' qc'eh2'#N :@Y!yh;[AcN@/5!i͡/0}grw(񆡞F(^xo ^Otamzx m `:6xJe;׃rK;ehǤw*c wһ#^!MgDar7'?4\VM~^17W@tyQFz]Ӧ'7*b\Ti՛vޯfߗo`iGyACW6^Ɨi֯0yъLed6Fsf)Hs%C :i ` Z)GnO? 6旺|f>7~N[lw'ùf6P6+sr8~s-x{+|/"SM=e?Q W˼S&OG vb$ Y͂)c6\ SC8~'kt6ʩ/d"h_jѷoi;MkŶDLd^lꁆNj:WLmv6M/F Lnk.]jp3_[AmB,10\,zKCzt\m|)gɏe*2=o`- u4 P^XNrw%~Ҕ bsa Or'r籲j`oLXK92F{ŵj1/hUO=V:XiN=Vc>mw>I9],64b)i$&@J#C@~~{;;ë4FW7\N=N+gXb]D eE7t.~tHWtS j 6j n; H>nGD tP'im(.R[BO*q { rT"~Nȶkh.^^%ckbB;1&HS:9a@8H#2T7; C51Ytu<,_o<:GEڹmi8 2dn#5[鸝(yp%@a' `0ar*#1P;A9DG$L&`3'I,ڏ%6.BC~*EQLCb[+(!Of'nh14؂VKfx`rV: d(S'-͇SKHtQI&gޘ- }0B/RpPO\F7M(㕭 &~ ,A#$Op\ PNIkq>t#T)(f+I(f-wr#q :iuAn|4NWVLVN'BOg:먤À3:IAzIW,ۧQ͙ W, ƤG\1)[ң<g}0fJN#gZɦ1B&UO0*1W i[(^L+}Sdx[A;1g 'S#w;xI6 lKXtmAԜƙVZ -C"ʳYsyfFۺu5o8ٓ"ɒ\q9-r7lclOV{jB J !!ɗ$߻ٝ7+ |Oy3N4 @Ӭh4H$ze8kwf5A4P"4L2vqUVB@N9K(^Ph*̧i.tj0A^F0ȟ˟׿ ].KW} l9~nZB*ctzX x&uYXnSkmנ[.z)r[U?~>|7%iŗuޞAe~`-W:eF KJ4MFAty.?ecQC:j9`Nk2BS4G}h'/@|U~T#4j,f}pֳea.5iCu.`|w9K7vџ)|wѠZgᶦ5.bk 0ܑfl'-d&a(V27< b }k')kgk/2 Y"[+ @[wNyma(}0]R;6e[9)ib .ojvP~w:ӫho],%A8F.^ҋhCS-ھ~-ڶeA&@=]`% @zu08I֜V@:2 nTn4-k<^/x_GŠ/KQ{z2d4xlGMI.NJN3c&}̢1>GhT^W6[mLiV3X12 {_Ctc '@x,EC\\>}$ϳ &dOM3Et=8-Awсhvh͑hFxSB*8pڤ3e>t3_ϘtcMKt<ќfSќf%ќa-Mhn+y;}U]cSC]L]ңiW]`%^ݖoƷ9.q }lfv9&gBir4UfDҼ gSmmk"NֳuvֺqkN⑴vjc u(T}]sn}KmISMܪPБSgMn$O) j ܕXmrqr+?Л !v%›~^e%atW)g&MhRp.%F+6:0\/1~V[| ! k*bڬSZq3NJ 4ui>J}QK/>v$;>c 3RV!KNiaӚŮJ k|pKFquQcu5z*VgaD[a}$؏n;^Ự6i-sKKN )ET^E\Zouȋv^X;AyΫ-迎#ouX#M%aL~6b1Oa,BGo}kpڣ9rrOV4pXJY۷bi&ܩA{ύVRv1. ́ueldno 8Mxe,OiebgNsg&/x7u^)sWәn $7$W | 6͎Y=AFFt?U "H ʅu(#sAedg`b`Fa*'{gn&{{(. ڙteE<什t[r^RWdl{^~Zݑ;80HvqA.@bȵN;)Fb*٨IKVe I>h/{{_XNeܥyzYvUo .:X=^Mmpî‚臝IEnђb=gV=5YXgŽl{B!dU&."p~ OJQe$\^:L7j6IlR|1įKBȺ x w[r[5B&\E=W q堏aH4W :evNʑ{9].U_z(<R5K/w:|'';O}\p67.D (F3J#A 46-!P*9~Mu|JɾL}<ޑ`TSڴ|] no֩y EN]-AtY U1`#~Ks f8C~چ܆zħFa`#0P;@k߆4ǣD1`w`' H]НNN$K^fi MMEPW, ƿF:~.o>\~ _-BO*ٗ 23'&EsdA9 {upvBktx-xsQsCHD.J?:g%EB$='yg9~NS':@ q:C!^Ưmjv-]=K訮5hXjU5X{}7 ?Wúߤ^Xg#sX["K5nrpU<冦}7卂`hH)A[9e-//{C;^L'圢j\ px0wr[^iOw*sy-l6mؕR=։574Vo©tU悯4o鷭'x @sEx3R۸ /98~rӧ_ _dh=0Q44tPh0ýMf?~@&*z3ќptm;ye>hmUǪmQ*Y/CO:P+%D]|Vy WZ"4hF\ZQɋeZ +\LU@=sg=%Je*ӞG\/kG>e2AWA@UF͓M`=5_k܀&4Oq`b{I&l6T[o1~jU ӝD (g8QNCsxG gX3 e+-;ЬF heiB=`ۑ,A]rqJkRFXnS SP8ns`iKtH-/)xO 10 tk1Õ@/bϔEln00!$` *L #0A&3@0A%Œ4P`6'xxbs,EXK`v' X618% lAƀҔ[7P@5}[q ȷApy^OqFr^'48=.4$OgAxRB!|s a Ňj#9|~?p]Ю6 *l~HO\"y*v}$v!kMr?9!ܢ.e5:8W-̃=|Ģ/#A:{6]KF Ch/RRz#N9؏q `_2<fաZᗤ)5B7BZp%wqiPCU@ m= O<KCsTE{i1[2a/rq:=Fvs7sx=++6}z^IOL+Hkh嶛߭(%!޶kŚ 5'޸PVZ^k%DM$Pqv}Mj@|.Ft]@?K߉v3'm U}WK.؆ [ M-AOM¦R:b,ѩg][%d{5DvYɘ`Q^oJs `!"]t<~~?o vg,? Nr뤘tnU\ѮxSJHVD]e̙HP2w"SDUPa"W폓_aOskIj"4d\`-G͠걧jT[3YLz.៣{F]bG~J?7$"/L"_lK"!oy8ue+-V(.Gǣ9M~@s*ЬDs:38iΘrgvnk`*4[f2[g30=Pk k*\2dgT7[3鉦3_u4oloUKkC6S9䱍[u)^eOjw;L.egM-VQ6؁G2@Oױ̐ը%^U]cSC]^oUfbUc:5TQ0q0P {Q~1Rߗpj0TP9 3.f@N3hjFF|VK*{r)#QqFU#U brc\8 ?85mOG!ѨWE{ b`,NDI'z9UJ>!I}7&OW%*__~U{RTEAB`1{~"EKC`HUo E(S]#X GsgTuC#[CT<${sNjR~UU6}Lfpw+1S*Fs-C8URd3HA2"ȬB&K\͗L^);7U?WN<ȸ257Ρ3L9nyyGu?b1Ӆ ha{7=nC)ws.2Yfk Hu m;zEV1O3/Krsc} uU]z+F~ͻEL\R'8E%>H1Cо};7ɲJ}rYpQrǝ~:۱?a`xGu>f:'k.q`COz_OWm!ΙWOذWil=H~I&䋦GY{ LK׭!po}~ ;\)Q9sQ4Tsy~Aby.^Dn^w&;m=?xAw8t+GdR~qvyFt& uQcy.*mgWB!It^qOm{#ٷ4W jl{ncaEh[u)84 3-MU-:ݖoI#y2F'<{゘Tv,E>E6mncv5;ۘnNf[ӭ>ۘt+d[ӭnCMgSX#! 74í,4逪N' <5wͳi0 Z;ud4udD%oLsI7:f^vr 5ڦޙ |@/oʾ->3u=:WuLSK~dJnv1kT>VGd3__{?)GGo?4:QocZûF8 oV5)&5 VVVXbsJLx8WquS{c[F^i%*{^t[M7\9CMO5%װ%=,վjtWm=Qc8Ư5u5ЙG BڦpxxܘqXC]IƂڎCThGb5iZ{&peԷ747~[oQևZÍMaR!W%y}%VegY-"kvZd8t*3{頭 the/_A?{`Az rf/KtPg/z˓tдg/LMc-W쥃2f/^:G쥃K-d/^:tGd/^:L'{`f/쥃n0f/(]:hMmvqb-u1}M|_Ei] Տkk޶Oohw9_@S?.8koφ4l3xrx==t3QM|}`#ټm#BtkmM}m:꥗!4YxlzVN3Ei4VD+9ht?Х$!D%×/-zL2a/rq:=<0~^v*覗t^z;bӗgnL#v#riC"#\A,s=)3k1+!~KJЭe`!Cѣb׆Y]fδò-=ѯ@ &Ӭ?G BwZnICۺˈnDf}D(Gma7Fe6Y]CEꗆ!I72*XG[}R꟪2uInx/`߼H}Ro]r~` q0aA`ahm$ncxtxC^wT0Y.%L Wf9Ogn0@OgRg#\Oj,synRuѾyBn+n} .beL+rS jMQ~[8H-dCEdYhn@)(fݩ6[`2QVLmH4F4oH)`;Y(Oi5j5&O:ng]}8gwwcD^3Jg)m=E1̴W|fӂt"NU^oGK8 _Iod33 ˄z8;v>:i__.Ez0zJmBtj'i.N&ӕ`+Dxj s-y-;7b\oƸޔf>EVu`aw7 vu,w#G{i݇Wy!=:zߏ#"Y݆<~ >f~2(3o=P}>u "e|փHG4i*=*w/)'Dy=w9 xs /fXaw#L8as&h(>I^#PxH}:CDI}LL3tI]NWrL t)LICgqgԋY;b'cu#H.x]gtq7)7=cvpsB>LҬ)\'n᤻Wy[؞ B\^x%gfԦxՑNz(BbtPq/rɍngY4d݀=Mu;,?:Y3s]WxRA~ xe |cnW<0w'\KenW_#~J2l[Ur=\m K~/J^ Z`'It~bm?~[RnI|>+{=[RaN+^If7a8x,%n#tN^rЍs5#N:)hoޫ%:NzotI7l{9oic q(m.E:'J]9L%ES;Pj*tS9[Nv!*T_tcNi޲<)Ӗt`7$Lp,oSw1Niz?ѣ +ggrQ<|קN'ݸDoa8Dt gWYjg B>̊ג4:[LWߢ=}?r"V=n˶n=7:fgzi+v6/'p{F;xg4pLB.NS)['T1o9vuW.zJTC7dXCs}i3g\%V2sT 6';1dW4|l3x PPtG47}9 tLx{2?v$_:64 krPy(5ѧ#MB:7Gc1nnaKT–a1LϲWJ|j3Ԕ جM2F7/fnܬcQtb+Q7nppkyNrhȴ'&>r^+< \VBFۅd%z^r:LŨI,?Uw><3 J3~Dew-::*ovm%=J3RHǭnvɢ(bPୀ@:x+ 8Cz&9oߪ3/77);?Jٯ0W`?jkQue@^f9r"r@9dԿ)y#__uCe6N"~HCLk= %k><3(Տ CCEon5e<% #D~?캜mVcSh}2'}i_Ov|sm]~Hܤ~b^aO!$ @5tkf%T)"HOWiM{F}acQ.$x)w?LV -#3Мt`fa>ݴo'\FyʱX3hCs7hF\bV.cG| ܜ.25d_R4q_Oj|\Ih;*n]͵hn0k#=DJo*y=~ COO;d4כviT w+fw}3a!1@3$9N3?kEw#oOG!u*GAEOWYݕ[ؘTjQ;H#XM/X|\ϔA:\"eѼ.+brNC30q &@c\` LO '0@P]"aA',EXoD8 !EXf6"lE؆p:8AN*j8©eP@] vw08' >ßFx& <̀ٳ!|. Sn!M \~Gu3viZȳ-$!޷iSrϴJoշQEN~rrSC`EME[WT i+`ooQz7[)Qe9'JUSl0-9+0[)Tۆ46#(1HŽư4tv0ǃ}W2+OE4W}:wU+;UMw]SmjRT]vFEAj>ٌ~2BU쩿Q@z1a) UT}2y<T ޒEV0KM!kQ^U_fXf~ـ*voDsw;rw`Hk+ʧi3@(p x{9FuQec B8bz ns?i ~J?*joQD8R1roE }ZID8 .G|@A[S)s޾rwgr(]Җ)([eTl_8'pVŹ.D<} Sm4%M!s);4Z5"(ѿ2~-Ta| |Ə x\,t.'&ߎ+G)oL;8 ?+,[BxUs~||;S[UVmMU{1tÉQuǽ@o{E4P|?|UTSe##h|%]}~%HH *p.l$y"͹)=H>x2Ϡ,s<0_B0狈mF:] CobEo`o0vܿ"Bc4~?DG"q~8?E3_"ίW` ,}~,^0ea^ci6y^'`x% #ALWU%~Tw,D1uHy7}!$+׋?1o9运W῅qx'q }=H2a S6#{xؗ=cģz(G+X(~ ~j:!Z荴SrŐfHނ$^N'r=qy'o NכֿR646jU~A*]HV2Q^r1m.]zu oy K qvYqrlq'!_8r_8$I'N syښc¥y,/SE$HEAOmBC"/vj :%YY O'yw8|q_o/xRB_ܝY_ 뗆~b?@zW1F7wu EӫD`%Z%?2Sĝt)2;𖮆ڮ* P>KWng@^E'g}VtGw3}wyv?Gw;#w7< 'zg\@yЏ~'w>w槴|R}M=5Thmw5xЦ89L]C|r6Y}7uhTwrLuvd!OI k9vS3&gBh'M{gt*COsɳ;ل Lq. L3uw˃'f.[%l_^5!^(}Itt>ConuawԁsLQ R)WR^;͵x(h? umA7r/vJI+,JoW'~7DOm}Eg7|C'NY<-DD=M:]۱ccΎUa?I'떱HWmʿ⍎n?IǔvWr#܁VBʱ[m'׹:NoM/@nzk/3&7;p:KA>CV'(=qӖwGlop,V>_nM۩?ћJH-Z%3)w"mijNi,ij*w靡Kin42;u1L51ɯʛ_ڜ.eK~wI~59?nɿVǿGM7ꐲKpw2G#^-R=%*K,4@'jU&K6e{@֤?5P:\m^FM覃B-.9wM[KAҺqmz-#Rvp>?.S[ 0椿{T{GA6@{?<u?#VMJ'﹝7y뚼i[ydW.Yv,ǜ=.kop[] iV˺a'V:n]e^xLط.|vVH>o{P=Ջg[}H>$?p}\;w+g1a%e&~OȺrLR>+I_ ueȫ[Ƞu߲SYi![]V/ϠICϳ.oے.]\d%%h.Es9<џ|sM+? {hD^F^jzy-Lw>I)̓M>;^N*::D LvWx\şjuleZchztZGLq`Ѭ'U2+}Dw7{ʳ'OtD!< 'H>$_xWѯ7)|MݨfHMnw-ӻi(vUޒ8LãԆɽDztSRo &+L>)Hg}6L霖;WAfʍz#~􊷩`gMN=LJ=N},~!1z`owS| D;˴~e?&=Е@NKәҧzmClQr?h4> Z=iQAA<<@(CK9)yhMIN|3BkcgujstmnoRˠ3yrciqUs:umeUGWcO%J 8hz@Q@LQ v}Rv}Rp{Ȧ\b]@aKR韓?WOLF; ނc,zт':D‰#,)z[u xCyfGeVAGTYtrC;RF4s[>4vq%>nߩƭ~!4AoYeJ#F)G<rCz =~@Jƾ`z1B2a\#(;qȓ~{?u9<|ߒҞiC2rI'/)4N]~ЯKP#1n^E_<¿G|JP=Kc(rp!NA5<՞bO>/tsr#fn ~R:Ўm)LԿy@a{ėҷ7Ppsٍ|i< z72mAZE~1Z1浡bHW+}hξzu)+o0c'rL (I+yS؇TMtG.ZIh^mQ ڨF&@+dG.*q Q QE.EiZ G4QJ˺TԮCZS~=X$3xk'k5ӼT,/ GW F0h(x& wǤnYA870y2< "Q]`î~"_NBPր'U:'g6#a+6[\`;p;TS؃#4 4"41؛!)bЎZp6!5Ct9 3@8KpB.f@u (eo@ir+\!S]To+W׃wn`p- d=K7% d8 w &w"C{c@2Atq|G3x A Q]$§<aYx3"| +> $|i%?u_0 fNp'?/>MK`Nv1;i? KGe5iJ`l!/ V$iW?p}z vH(\u477{.KN{̾S.QqMU1tg.G?Z Uc,56Rc,`wUΫamFZ0Y< V1Q(_oW,ZP5|I)`@LA=ipCP^e.KDh=JAɠfm` NpMx qxGx5eT]t0s"sDZ{y4Iee'83 i3Rl70栎N@%|t[ܢ趘Z![{U?VW'jZit8i.{^W[cM#T*ldV8fRނXV"30>*^;it8Я ?j%z1y'2V݈ ec841+/@Q,9V4lG:-st'xBgcWbj?8Gt$𷻤&?)󹨳x8S_l'C̗.C/~|yv\j:X1(^*hvݦM`_8hpns|s;܁9N1nt݃enT՘-eՏ*t>v] 嫅Vt@K}'c6CMQwRo|^`1PARc5u]F!:睪/~cǤ8ݿJʋW1[K :~J7k4n@guz)8 gPhO.`{]O"VxK2JS8끄arg|]烯O/t[(./nY&M=U󵣺t[/.L'jAV;R+"vANu'I_WMiKwO煮LN囆X[ͱxKx%a2]|ݫIwړ^(i^/!~Nؿn4r }+ ]K]nk ciQ,ߒ??+?<3XF}N<#(<ΗD+z~f/7_/ .v*3+ VMz < mRuۥ@Eɿ3 $Vޜ]x6Rt4.S-{R c+I]o+uN5;ɶJ)^/VhuUgƫ<ԧWSw\w]I ɷ@5:\M="3)']cW4툹u]4~+{}ڦ?ZFaLg^ 1\:vD/ԋ7-}4,7#t,u}8Nt_Eo0<Τ,GL. 9~k`@ )7Ѿ]+I o8FYu}Hp0/~_CE>YT)'Ki5_, reڭơ91hNl9U)xR'Aj8-*uLQ cP/d7%R %z{F[e`8YShF5/@G_LG$1J=0{LiXacT YqTr,d򩰪_EkG:=RӶ԰?Xu Gۙ'}lum\I`_GdK!)`nw>7XO s-ط[]-Ⱦ)]}MYpblFhBn _4^wHĶ׌.*blBoElcȂ+?b;( (w25XB{mS C oiVՔrW|b1Z(Vrmd@3P>9~]{ˇسLlv,^>aY:|# >`6'_:xN~AȾjg<~%B~o{%q2n` Hs|AM SZB09KF9/8_+p[UW(ڕ/8XS.a\_9bHg#3G9WoGLuj9!czC!/p=\iZ^0> ͩ>7}&f aT>G/Ŭ.\[.\HjBTa3FZ}䞅~}y?Oӵ7<)9Iqˍe_O/V>X zoh%>Uv56oM,mfR.L(+:MqK=eyqBn"4% J:C-Sv2=|T4irXYijm;X ݾ/P; /pf_*HL{jSZN2=e5ƴk\gh>)z~'y/`'/]]EEe]m0?!urդ#c:8e*c^Du񺐓zH9_ pz2C>( j,^@Jf_*M{=ApcrC!u2f@a,t ƨ!]]L`8c a@c4J fts\`^aa .]U'1+X 1"$`+i N@8vH^.fNBd'4AeM Z|> 1>iK8; G`&wE bwK]@]\uykHnr݁G;=;Hsp I{K4WMO}B!+;YK>R yp˄~v~T%V5;`ϕBܞ`+*`OcؗOQ`cTڤ29?o0;sjcxCp7H7x(701"8v,'&0 o;MdxǣF;&3 +t\j1K5=-©E=/9Hc.PuyHdkQ׼GxYp":^tUfV`.E&oe: ~?rF.h͂RWdw'6Aܭ/Q- )<Ž2FUmʹUqj+SU˭zWiVoCz#Y|#züùf~=] `IF#3^lr(h+ mmm]*,\ct>75&T]Mx\ہ8ʀ 1o@{d`n쎍Ge(_=״=L([or{!/7eʴEKacfJjb;\]Jn}i>_^ nFl7^j`8mLn`;-d/%oܫ?-@7>t+;?e.ƥ4)T}z[øwM}#n[G9ZiSq5fPz8M{Ô:TK jnў+cb^Cˤ<"=80x#aT? /u@wmځn;ѝHнe)75yNCMGDs_tf#ն=ba^f4Ga~m1Ӡ_ !ɼeUm̋*ZyK<\?} }⟌ A噍<qOA(:0A̭5+; 霁tNg)`9U~T~lZ zq )j~q(IɷIX Ұi#M)B&"p/ /w!ME64mIЯ4i"TUmiKuJq_^=:8;!5:ݹ(9!y^"`g%߁bUxг"KDI'WD"Cpo+ƏS?>qi\4F>%M T73;F]qA7'dzTy'ǐLgDJt^>vx2"4N|ty#avBL1>2} ezex2b!S]((%@G? f{̶s x2,P/a<2`; ۽\W{MXlMlO}KiSC2؉!׀($:FN-۽)#?9֋Ć myO AE \b7̝)vgWvl775:H%ۑ.p*\Uf2I{<~_&}vWK{5 ʯ=)?)~KO"U;~-\x>1cSC<<%X0.U6ᚦ?u.yFx\s%okm;\؃O칸'Ħ@zt& o_펵[c-a{ 5RQ]k,ѰԄk⵱ nz֯;uI߽ʱF焥uձDk3YuxB M5nKi+:?vS7F'{(oIcux8_>hݐ|,|`\(r*xI'=tmoy?u'fݻ=×4Ix? ;idҿBn[AT;|~Iўu.Ngx@N?K;0_=vݑf^:S'`6mؕR=։574Vo©tU悯4o鷭'x @sExfN6.ϲwB.\AyW/z1_zSqq8.SLKu9`rh=^T[WۃDԒl4+[YBOyw&A^/9OupWW >˜ ?YWHx1ė~;Zrc;HB1\뭘_Iu:|DtXSu4?O4;.u [y?EODF!uN#MGs՛Ptyӹٱ;vޛAz9W/9+ϥR1Z"ui=Mz*;dgj3aMgU:5j_>xtL㭭B\SLe;l`'ˬ]!p86\ f^nV6"k)lwlthODNi5op|;a!:Ckj@8C8| ]}s&{9Q_7p}^ڑ=^lڭ녋>ǎ@;"IroJRkTjBw+*6 1=3:T~~O{} 5bl0s.v(_Fb3 |܇ t&uIPp/]\I7aod}# s@S@+X+bFjt#5 ?֟qFr^'48=.4$OgAxRB!|s ^~~72I5W2cWTKmE6SfOO&S XAE\,qh_x_f:~9O_ :Qo ?vf'9'Ðs4|#$su/I]xE>KG[r)S&'I9_[c: ynm >fp6p/fDy`|׼Y;{ӑnxJ Ҏ2tiXޏ~%ݼYdϬ _ӑ`Ϫ=RWgk`=f-*5o>=J:@Rڔ0}炽ג-;Q^f}qlU5,r+uaԙUs&Y3=s[?^O;:U_;To;:UJ"8LٴzjGLʛݹo`wU~,Gf#^E_ʹWtoSGwmu<2x'a+\ookU'7ByLA(Ev]LM./9'eЧ?OM%Ot6n`qf+f MfN@<6]/DhXTq1 t5 q:#qX1a7޳!8F͔FFFntФQ}\/ Zqw\}1zQٮβwR7o?{=P"pڙÁ\g^ PϏ# A`eBwQ0r}KKOFkdݳt/ͿǢGg\7N忣=1ڧ/Em䮗ovtɋ;ƩxYsmnQM5rAtrƁ;??0Oo,.3wh/g_Qs+]_+ogjFwz/]3p4~'?s⿖ξD?'ϰzѥMSM|-G-Xߥ}KNsg+/hgW/~z%oܻjCvW/l79.+v~ڦmWG.}??Z;^?ouE.I{^٬%վߣo__]/<5ɧr/Y>Qѥ[j4iV|Sf~%5Q7hZ(F=rs3ڤhEv.#3척^*W*!yȫF^=*UTUBQ(.$?M$C2oSf4Xf)`ohWu{jHR={_tgEo|{u/|ftW:wDokO~ywGϏdKNy'l}kG?7GjW}͏[}m9=8EwD_oDo{՞2'2fG呭#?q{_T~ω>g&}7-~=y׼S.,xUS{0zǏWExwFLR?_Z~aϣRMuPoMO,?Eoo_WL+I+aBCBaGo};lǣ{B䬜?i-ߟfZzD3y{F_uů]=V>0 n~~S&b͛SgkXmz vu oEe=YnpV!+R<`>gHF|4^HI=4BҼ`N|qw:~џN LqWeu&L~OGzpҼt<ň4\4/Iy~IMO 0MҿQыL?Gno/7 MnIF -88A!,P$ !m>cvkٽx;q `~A >=V}BUnÎ'<9PyFUd`Wbr:+O^AswN։ RyxaMw$_~Pv"]nU-mTe?C鳆,mm:Yqw)X,B# l@~w?LĈ^~x_b6b?mKF;,~~C>pZ͉n)vԻ(zDnr7~غ'J?xSC#7? :r;{eٿF"5žW}AC# 3#c-Xss/놉ܸgʘ%E?CwFpEzsM^dwV}wD3.z!T/l^j|Όl(+F2-[>:Y^͖l2~2p?:Yv`|o+knLSc~7?;ŧHS>y/u+{ 6/waW׾}g},mk7pn3/ vx#í'^rII㧗|ÿt{#B mM]B A,M(&&yH |> cL|F>Db_qn;+¸27 xN:'6J~$?}1YKN2?9YMT*DxSϧd$d|cWsA]_\68%Er$ҿB]S3>6qvz&e.d[Vi69,M]Hu Cy1sHj?sZ̺c8ts]}Bq { Ұ Fvg!1<${v:"M^:RRtVtt )Ԑ)ab8zO]Uw7lz$ƃb*ctB=UDˁT߫g|_{Ps(g,Ʃ?/*ZQUԷ;lB$ /@ytmda7Br|)6*39sY 4\17MFGev~ ι}pF&SYf3:vin;(.}᷁ه=H682©'&Y@vʌ#X]@R߼Ur%Z.taPS)c/%,,xE@O/t]Ftu5 wN a7}ѡNU '^.PĠx; 2>ȫ WOLcG` L0}g6j{g1@ ;ǟ'0CpI&\`.EX̀ ;H#!U 3ah>X'7>TYn{  1/i5XM[@G"[W H pKAJ]Xs0,PhBZ0%e _ښ9Lp2 Y>snD|FL|t|'O9u?) xσ%GL>h 2ֻ9f~0eJlAiJ |=)dF.0$T0П, ]\9{ jJ GUMh KHR^5¢wh5wxXkkpNЈpܒ˅.I/@ISJlӨn'iB6 @̼F78EyAꨕFZ9 Y~$؇{2WGY9Bbq g= [BQSm:TWWxT#(^ k_y wЉ zexnkQ"/zrilvAf.~Ko.sʓayp!ҷyBn vV۬嶌BֿJ?kvk C1[J}AܾP@tm#6~Um|wlʶr0Sp no\6*,lJnuW] 6pߺXKq\'ц[}[m˂Mzos o/J@l5w"`p9-孂Zs= ubez>ݨ:hZx^@_k4 |Y (\>qԮԓ!kW5f̚~dVg;Gfeeeee^ʵϘ-Xн$[G%}L1>flCs#4m5[_3,k5xTZ<*-JGţQixTZ<*-----------3,3,3,3,3,3,3,3,3,3,3-3-3-3-3-3-3-3-3-3-,,,,,,,,,,----------s,s,s,s,s,s,s,s,s,s,s-s-s-s-s-s-s-s-s-sGδSig9aδ?gٟ9mmmmmmmmmmͭVisU*mn6J[ͭVisnsnsnsnsnsnsnsnsnsnsasasasasasasasasasasisisisisisisisisisisesesesesesesesesesesmsmsmsmsmsmsmsmsmsmsKTt`t5~ec[:6r L|Af3Ng_ҖaEB8j^M ¹+}A'-pЖpAIomM2~py& ƒK[s88 0ߨfym*ĩseh9uZm/ "<8[:6,Dvqy28D0o+VW[ 9jdM&`O`na|^SkBlKi`;̭;310WQYʎ:08`ܜ hI@,B[/gQSpZ:7%ۓ\ pQ.N% 4%\+}\m׀ySu [oLM '- 5%ܑ;ܕpO{p_O<PN#>qMc x<O$`d> OQPY>kC' Myg? `^n ݦQj2_^J|B_P| ^'{>M|ܔM^ϭ;00}0'mffپrZj/;-e}eRidRi4.*\OΟ?+?;~p9CN4JO;4JioU[6wז(%Ŭ\Yreʕ++WV\Y̟@sw` )JN~Hu}BE6lK$PaOr)G˻g+Uf̚Y3kvti~Fj+b]ʮXٟ+ȮXeW +V46R뛧F;Së*M:DfNl+1}My+6̓~ݽhDtgv7ۍ d"zӁȯ4Mhop-w/?@t"Vto-1}D-׆H v,܋Z~'.$G|~'н6#ި.g{oηU/iD:{úo]oD9HO h{+[ނѾG4'u(W+<$_3ş }h6Izk?0MJdzP}hGuסt)R~mFzT14)5?S؇@y;t3ɇܭH5%yڣHMӬG~Vc|v@!*o@Ig;u)R|ZS!f>S^3VHN47֌U55&}/_e_/pf̚YCly4a%\t7a/ )P}ᛋUM{6ě[5u'鰶a{ZTwM-VCUgƫLL(k=oUuM `o\ 9MV7$KEK,k.FܷXwl>C[MUxkz5ֶVpNֳuvV;z[,IxmkC|n}K-&tDgMn#r#aޠk Pt1sd&Df>oػdD#i7VIhF[tEKBdIc4ǵtJ&atL?|ld(x!/<}%os)ᔀ]1.^b )L^cF7WZ5gF!U.-M=bڬL[15NBsDMN_;7o5MkXly?=< =f]B3#Q~uW$ݛ6,藏aUї0$=vPT+:Sp},c`WX둏"UEѳ[X =}A(zSUk[/iALװe I&yo_ВB@/ ;1ū)W>ͺWs]Lu&''콈09鰏N8A*d:4 ': tQ5zs} ]/W/9KVV^i`^& H}!Ϊ t詹 Oq sOqX|Ov^Cbg@ LJ[䕨+~j-#jc~NDhA"ąV//_[ #-N ,GP i;ih?++#(9~d$W/vʋELV$KECvPuw|JA;Ā!,ȔdNk@FKaFֈ*F_H?(s-eq%o>>5 nj~ydx#8(Ƭqq|WKӏ?tȠޝ@z=Bs4a`eIbHmE FcR*FYonC460QH]E.y=#~*le?7cFUN1dON3>'Bq`[N+0PH96QUAe>BEm,VB1^}y'5mẆxC-^mJԦx}kXcMSC8^[nk@r+)}1Q Y32dܴCF1l1/!c45Nq]MYhV=ki[=kl"Az88sL{ֹdTϺgwzQ@||zn#75o>d 2~ޭ̴:cy(2uqi\4F>%M T73vu ڸ1:s@o7Vqһ]nw;v'CfZ.tyx"N~)"'QOLO O&\,dz2}ezeUg,sςV~.σYƞe%a4_@_x}~W+S ~[tA4?W{N/mj/oo\GzE58[!!cH.*QFG yGgپX{tOL490q''5pф9=]ɴB?47NN@?{J~+;y{ěZjZRdH2;Nyke/xKyĿ$MzRWWySuOJ_ӥXAynx=w3'vn1o 4%iX[XK½-2.\_zIzSwO: 8A2~mS[<ܶ;nji,H]BGuDR:&eYr|&G*ǒW>@7UYpgׇ -74׸)o<3v`*Ntwu%`؆=lN,Eo8#hkEltHpFA F|'0Z9O2v^6Ndž V(^6ש&/x'w3bJcМvwndMBDF۰OK?yI HBH7+^}-;V%^ +SZnؗ}`yYG^ t9Pib Lwtw1pH]G|Qb؝#ӱ}KGiL_u[?Gctq ޓLT9 ͩ,}:3poSYtϫIL4g9]EstmZrձj[o~J qœ+}!udvr EhFьM - .DW2{, Cop^A֯~%w%=R67`0#S >xq&"QdS2D*FXX,`]`).D&-P} ]`;@O*ֳO@y+`W8A0.;a#iiS؋ʀ}/vmAp-9.py :\< \".e@$ 6"\(r+AW!pN1p#Mp @Nw8] Dǀ>΀` \<g]<d 3O x3`^93xC>y!P~$ԯVg?S}@9R~#1T؇]mR?ʯ1]dSh}!ѐ%& }[`Kin@鎠Ii]@ jf #}9~Wm ٫ͩ_2Jeu:WF*;<Bj[Zo)az5<J@,,@:tS:4_tYft_օao•M_9bޮ|iI."zDAܐr:eA OŨsz{ Ke|mސR8AhM^Kc+SgvYn|JECmwS ZmfB͉7=>t5@23aCJy#޶tHS^,h{~wƅ/YZr?+7AD(yV%DqImŮ&Gg!\H3" QkIB]-xc 8%Rݾxq_eW:?cjU^Y#w|~e͍pv_O{qg7?)z*'ᄉ_rjD7|K =8w9mwyjҝ}/xuWyp"ٶ}ia= oY!CN$Kw_~%ʹ65;|ggM5{_ "Nm3>\'rcm^=r1_q|a䱇6_5Ev7%&KFU(ZV`MDA^SϺxKLVBշkN .˪,jM)rl&@3W()kpK۰K5:}Ƶg(?#oOMZq|g s;HKܥoe,SWoo{o{!/yO=9Gs,YF\ "?}]ދCeH/f=?|-__=|}%^|ʷ齁x_<<=_9l(3w?һr4}ᆬi\{wS76Koq`' Ry7w',M^ZqX '!RT=ڱ;>6}Mr,gl+ r)pb}8a٭rjy{#e=&}HqzҗVT<6kA$^sW)滽ϸ&~9+3yC$ۖWHU_YMpORֿn߀9ST}5UMAUl@Aa+oٟ2{p ҲSdʩ[BKZkFqUqtQ2CHLJ`?IQi?UxXUT.j,UZ9c*s8 PZ1xfSDDn ~C^sMrgi+SQ1KqM]lW9's 589c9ofs\6Ay$aloc-a aظf /T_~SQܺ\ƪƦJkKc"Kؚ F,9 AgMѤgyi64Ͷܷ4gb-a<}݋N~& gv7ۍ d"zӁȯ4Mhop-w/?@t"Vto-1}D-׆H v,܋Z~'.$G|~'н6#ި.g{oηU/iD:{úo]oD9HO h{+[ނѾG4'u(W+<$_3ş }h6Izk?0MJdzP}hGuסt)R~mFzT14)5?S؇@y;t3ɇܭH5%yڣHMӬG~Vc|v@!*o@Ig;u)R|ZS!f>S^z,TG-@M\EDsa4G*Z w9''|P }:^>O{''5FRO:k}Nj}NgJs9iζ>g,ftgtgtgٸm6JAu^mLІԹiijo!K.Ojv<4w=7NW]0R%TXC&q@8})M9ԩi[\PP3WHf{GܙێT7;UxKqD}Bzk@C\ jgp'D۷O swRZR{ƥ$*j `o,,$C4o{X7w74lZԊʊPvR\E #}Et?j/rIq2Y k} q T #<ՈE`oVȚ+Q~Q˾`7̃h(v/axwgry1`_5 YoVp>iMBzċ^vl'_C]kk].dwrlgֶV]:ͤlmDn]Ф/v; |K>sĜF:"*jq,M䅖S^ !j숷8h3+$^iBN)x,XqgVF*GJ]:6{5i4/7zz܉y,d.Ϣv6@k[S3~:J,7] vʮ7p n<0XUbf!,%բZd]%djӀd"O2K0-'x]S@3Lr2:c N{)}v Gǜ:jU\]ʷy?uxM8ѻ'ְõ<]Ob森46FckD{GŁ)~Աfiv Aҏ?Xz@\o8ko?AaWUA,B}A&Gշos9ա0s WC>wX y>]T/Y4MK\ok~zgp|3(t2:eE1ޔlΓ}Kc/Kb/vIw0OqaKGaCnrfJ>/=擑K: l lXh|$6QKt@841wYb}ei?sqiŠJfh`}B̓8ځw!N!i`ػ큃`dv`5( 6ANIpXK]kkK Z.5} u5US.9oη:OH =~- Ĉ45c-mjK8Q$|}u-M ɃlR]Nې4vaPk&9udzsٹxeg ˒gVٹl'C >ٹx ?;%sٹ\j.aRZyi7q:R&mpq{?l<8 Gӟ5N}e g!;wNNg!;dfNgtN[x)v?;ow`0JT^kvTIk> `Q:,cI;+3}kC"껶[+jK7(LX]KEn3N$Ij8G "*ak4sФ(5~ec[:ܦ_0|~Q^r:CO( }}B?^r NE_eQnԪ<~)֍ ˵LC{ TyޞnjP3dYKDCw!)Ժ"Rwf(l`5r|T(?ͭnӣMW0dǨV75FulN6Ggst'steVA)Ly.\kM]ٽ5ל䫴D~!!v:S ꛪl7jAM;kISMCQE*dJsZکp#[w/} ?ďeu 'IV>zj&Μ;ʪ%MQҼz[&r~[KL]M-Mvׁ-Z ɏ׳xnXf5bviZ7UIuQi!9s6$&+FummftNJRܒŞ=èV;#.]mo!ῷD߶\scg;D[n{xhd͠Q(1>3d#?{䳙2y4̔>gt_>P~s~汿u8=e~k~ǝ_#o5;*3KsrtOw"f˦R ~ot5NPJ%{g޵Jh"8^ߍ~}E~4ԎY~4_#?36W}1"?ٽ_]'=P)^ZL{zĴa+֒Z^{@-"+ {%f͝kO}MVۖhHD-½G}ӮDZٺ[*4iMb/t4SˆҮȣfj=I'A2%(]-0]W_;\{3{%uʿ/Uf? M 0KIr|GЏl1(p&G!ѨWE{ bHWLDIX4#3Fɾ(@.F.;!7Lr0ȉ XWQ(IhF]AZCYW!L7w Fp 6يߌڎ r^lJêգB U.{ j4kBU`_jn+U=4.o\&?]r0ORI>/~.֔].r0t^U _9:ٯL_-M\M{B'Ը+~I>2[8)8NDSb)PQkTZԈ-mij765NKt|v[Z*Ίڝ|Nj؁"?eu_%K|]@9_Sԝ.RZx4EnOct~TLoO\8~Wޑ7@׮o (2k3ȟ.Ld?Y /\HsVc,O.em>i')HU@WaYߴB:xKPYLnE1gJV#xjxԖF&$cLYPѠe|ne0>t}EwLa7aٴzVcM:>|wpLKkd&եYz\n#yBTwRȊOi?Mw0lqw e!@pG@.àL.9%bd0]3ǘWѫEH/ׁBt8HÀڴb ~y `0Ѓl{( ƺǻdS| |<` D' XI84p*.p.p;b V pdLgPIP X5>b}HȌ&OW%*_o_՞U~ke ?HRyXc8R[CQ7TuH;\D?@4UH{,W3ً{oX] "uUjSst&VI;HI썘([T-q!?Ƞg0b?eENY܋RUy1j K&}߃qIߝ@'Rf+'E|d\]si>7$?7t3fwwY#3]0/x33f>rq_ 9q_!i6ƀ$k!8Q޶;顧{1Y ]d󔝛aV|qE^7ㅮҋ_Q7sp}dn,D/d"И>ٝI2%>H1'޷sYim=&t*7+Ge+}ܩw9!{TGP^aq(ψ_PBF/KQt`@KBUpHs&US56,dUm[O-Oy?|2MUtңB_WʝdE_M~4 ' ?Xuk%js_Bc|N"x}T\sy~Aby.^!6u ;m@c{^=s<@?LLnXUiuXAan^GѺ~a ɻlץاӔR6Einil ?u'Ycջ݄ {$ORh.Y?.Iվo"[dQd6f[ӭAtkv5;곍NBv5;z[;3L=6p(M{B4逪N' Z?͉Vt^6c7}l2ir҃lktqzN~£KْCmw0 9@5 Կis{̎߳7SףS{Q4Ez!GfiKcw~A6SUk~Gxy)FJZ۫J"5ñuCUc|pB2> *֪0S*U\ؖQfZ ⥀J^׻] rPSM`5,@"zO8d1K'nݤU[;aFOb ib )tQC:nEU7u:)XP KMv$X6g W&N}{Cc!R?|xK\ۭaR!W%y}%VegY-"kvYd8t*3{頭 the/_A?{`Az rf/KtPg/z˓tдg/LMc-W쥃2f/^:G쥃K-d/^:tGd/^:L'{`f/쥃n0f/(]:hMϵsv_' ZbvϚӺz;'VGs{5ֵRv4_C2pvLc/}ۖ}]s ȹh%Qό{' D ? E{i7gnX-yFdCmђWG垇_o?bc1W3QF'=hSќf%ќenZmF=tO-JѣG)2E)P斦fr :m %Umm dl Ĭ@hopobLT$F5u$Q)H耍4WܺDAB.뫻c K8)2 [vkHƚX+j,:f*.J-WISmmkܾ5v70a)jE$}|_ե"M6C16Y z%k\̕jI]4׍E'~wD]X>=]_0[MZ[51݉zsCӑ>AOB3l; -44`,(6xCn [MCrcy&ߓjus=%F5.ܷ $'"6 dn p<p,pB ߖ2JYDc },e>Vlj>VO5z̖URw- C>3DeFIxӽ"n%4Fe`ϦvЌ9M3! P֔Hx΢bgIgbaFXb#,Km6RaFXf#,m6 apppFXi#VlU's]ȯU.ZZ⍻vS?*VMDzIyzIʔ֎6TvaCΞ8׃'ℋ6*v)sңm71-T qdh=B{^vV QH3̢|shV]+B?iEc*Щ⣊=,i9Ynup}QQft_BMG_~"Aba7hAWnL&`pVUeޖ^:DA`Qk5hh4DҌ1I)41(7{g;};3gfΜ+bnEtiKh3 38_?| 8mbY.U%2LB =%I`*= ij(!ۗ%~ڷlBXiXT*,ʵG(bYoSGmN|]؝7\Cop7sN8t,fkqL\OK'E&1]ItAE!mgwpcaȯ-Sh? eMNs2+Z,:KtoAtR/7} }ھ 3+q-TNwD5@IoT0[^aFz<*rLu')Kv r=uW*$ӓiג&E8#Nc~䆴 mLnCpr)x#^cw4']n WH&9OQ{n{E-S a+8Mr.8^אY$L%7*"^sH7s>xۤv"n8]YFox])瓈 A' As֒|HwPڬO1FW nRzF6zZpc6ǁ o᷐<[)MviFip)ӭTncw. kV.̣-`>Bp5&o&{ &DHGt,iLl=/_t蜙D,IC$9s9" #>HSDbwM?u"d|u aTᯢ0W W _ z3('W'ܨvѿ:VݮWNY;)c}hM<|pC  }>dn&yg1/S%B/H1p֗o ^F+DIVOh|h)}r i!@/>H7-h!cYID5,v< ]:B<ۯABxBҴ=zo C'fk=䀱Np%MuBQ>'$75^IJ:3(i(Dc{Q658fa|V#Lq_dj!LG5\0:wy>0e[^V!0E~I5_T>G]-Ѻm+W[ 4??1äbI[]]ώ_Wk)0 $|u}M$wYeZ~Nf/C :K?IA&9tdSB>{YP7_{?ԏr&~k"5_A1k95pWWY[ ,Lsc]xEqf9}Wn Bkd`5I`cLSf4I?cb?nGcH_2Oc qS9OsKnd7;EIף~Jhj1ls! B>Qf5/t Qm/E~(.6amusKbȅ'uԏ2IZEI$0]c9tY|0 $P[X\6c<6' lW ӝpj uEPW&kY)-(6/nvLD͸Y#$Vfܼ(&> ސ79|~ vý= կYv!2D/#=̿OkIV"_T7> 'ESM#c?9BPlQ(v~{Y7I; mNgbJ.R2D'nvx$ '&t bcޱh 崞_'@l6C<LBݯH0W\OyZ,Zw7s.J%^])h!r&#:]Ɓrt1 6Gi|ՏG7ŀ~y מͲ1yc@oy7<ߢ@߬ -C1]H4'׎(<(RE3o^y烐[W<}N"(SЫqC>Iٻ1] :,<@iqvacb~zlרv_ [f8O /]fw?[,@vn6NڶwL;goW^֑lƥ=H7X&G~>}i87j(+6]7,w7W@'0atĜ{u187Ә/o[*rQ:-"hTȵu ^uWKnc/`;'tݣɹD;e#B柭_A`=}Jo-e={;FlSi^DeqsȂ91|)㱿2@^& rMXE vOfPǾCS_{Q _t6i}xZQ cZ|;n ,$sdPD>5oޅ%l˧WX6r˩wh)Q~nc22[F&9U>ѱobtHhF\{wU]o)TrE&.Ubbl[QܧSe U8 dIWEM}t0wXϥ8'򲹖0"wے0 H^/~NX N~YEv;W1=xwb>>hJa b}:ɗoVpk3xŤmdn']luz^ znpM4v(~(rmɜYB= ?E/"{-7^3Yq>*PInlǁB۾rxw!@]ni+:\-чhb saLlE"uv>?]0jJK_ߔu.oFW4J|uP%W[ZoX/@ ;ް^Fr+sD?ᙸ#3p8T|}ˌp2@L2J2^~+ol_ۻ &Y QȘB>}SO~?ٿ@xAs/я89߽B'A"ڏ͇޶BpòQpDߛy>+6'c{< )3UQDā $G_9J29a- ܷLG6+ {d_¶m&LWp:!e Ձh:i%r -+UrBҳ Bq6ɣ`>N) /o毎#;y~ e KiحAM7R)CZՄ5V2%ֆwƾ(i7|Bu6rfoK aQ}J/O}$e'슒&p)^#ٯa3z@4%~ {4N~ߐf3T^8ܶtrXΎX*g6J9zܐq3m|twfWA$_/=)̔0A & huEڿ<;?Mb %d,7]]Cڮ"~+f*7 /)㧥}F\ r]O*; H.xc!f~k~C.=nդa1A?QY&=s>Qw'+"$}_i=֖o\SU\]S`qvmCR#ɄUO'sSFc,cjGWoTyUT n<nL:R?T ^^ax D?5!yڠ2pN8e\3 ̙i?ES?Տs/AbwBoLtf[X]u:So$~+QIwC;}NG6~: fiL)[˕0(4]S>\tOn?;A|3LzkJ Јzo-cQ/FԃI%z0.9v:fiX%j4Bf4ߦaUot4KA>KǤvWtr0CkH˱,GXS\J?Nߔ_*>Ռ_V1ܬoI/(u^kՠӛ:j;m|e{=QO5AJ5D"5gbI0nNQ6jׅ) ^jgU66*ӴZl6뢟k vo_ʜek~wh~k_bÏlQ]Eq[XǏ=1ɲ,=Z=*KY{,ЈZUȒRYYi*7&ʏWݗQS6 ua>$Gj?Tk&Oj$wY\u^>O##ވ sP:-H{P{!JM wapU;R{v\4MޔrA:}c{w˱wY|CxK !--@<Ӣw]|!H>j KBu^7@C<캭|oG{\=ՋK>=PEnk.F՝ˋXwޮwM^b7{X=1iJ@I_ue+YȸuXԲpPYid7 [Rgsg |UWFm[RqTeָtGF4ˇRkR>ԕ ү=z%6^W5 B1R$^$Dp. _RvgsB>cr4g:*c_Gc/ U[znK3~> $Sd. h}eóe.9<:C_ʺ|eޢ[;f=JF)ق> )Tx&H^8Q_?Z3"e18N_|-N)q-ux#3̧F"}g2vj8eKO"M315SȜF&=KOK W} Mt2m2>70dq}\H2Gӣo;9Zt."s 2r29'qw_ _ S<1Maoyurr3G{"/~u~߫n-xllG-%s#ͬdc;HcatоSE~Q>z3c ^}#p: ;"to [ZkY~dԱf`($ci֋:1SGXj zSy%fGG,\~gBr߈gNiO;eS$wik샲Ʋɾv߮ hJ2n+(n?}C@n-n+g;׶tT8r1YA.A'"C N2It>̋ɼ#>.&d8_0_B&^rt%:+(.}L2Zyp >H;ߑ;%>B{V>G~Dt{n\ Ͳca[ϱ TJKNIꏥo4~E^܏QtS$X }fx'|<~"\),w.UAyfr =};7/q+i> q山 ^ ez ֐\'IymO?@w/փ4_G@bs-OOtz7uk.ocNޚ_N"~<粋x& 輆ۆ䵎* :9{Ԙk9a]ɾr9u<;;D\WQ\Y~K;{+djGNX4Nc9xq#.Zy 22tҨÊ6BI.. `QIQs&45J)8ZtYF2vׂܿK2wHv QK:8-K%RȒK[wyqEO $/`0A> #p 9 O0`NoO5LYt>af  Ї]}1_ 2IEX!4: Jp!I@P- TT ؛&' ( #$8D3D% kl\@p/.!~N\&45ZMFru-v >#@׳~}n$$@c;c[BF 彝Na4"[= \^#CK)uͣ x_S<+)+}/6~"7B ~-[oC!kGxOk~  gC NQ 8&IF WXSX0S{#A{_A 3Y=ǜ=˒}|I(q@Φl8Ɲ٫KɏWCqc#ca<3WXpv Z=0i$IC|?@egVKaė -dEcKx/Rqq gm lpk y <8s`6h!Ƒ9x:-9RD7W|sxb@:)LxJ "'~gR4 AyO &\h'B~,O$|w9$h`:Lq[M47 11=Ha /Qz2#04'u:9FK g ŹRzF޶;2V;Ho'R*pN#22ɬ08VE2H"%2kɬ#:Պ9PtZU3)K(LY糅۹4Y7|6,1޵v+ )0/"%$//W4qG͕8z }ck xupR8s1Mpn -s+lߝvpxVqy1[3ʭ1tXp#Oܛd j@YlOV5V~9 ܟڔy<.Z'Θ/ ?S'XEv4GvjhS vcc7˔o)eɁ}%D xOzB>̏CܹиaÞiw7Ng?ڿH׺jj\~]C>0>Y@J˒ {I*K쨬.XV\UVʊJ+kiIE5.H|0(QW5?~mpWn+w2f㫎{4K  0YAYkK6*.۱xQ B2؏lPc7Pߪ_ao2pOf=E5}mX76й]02˟!z _D{ w (J;1Rıfu}CGid=Vo6&[{.[Axj#?aYP\+aY&E=mc~[!G@7/_qҝX-tj[S^ g؃ߊ4]o}#G$p/ OoFm6W֖TW I&t35?=O~}|cES9 /g?{Ki΂]Y\Q@Yfر)=~ki^t0f9fI7TMM =?!=&#x|) 5``_YQ.@@sXn֊ǿE :6wĊ՛ø3Hx*S-0G=Br lɽ̕b& N6pr+.3a]ŊK*RK CeÐwVC[ oA&?"vG/yiԋdv!>эN8F+|^o2{ǡ GLc.YE(Z!@tu g|3@p3KWP{":$iGĚ!7ר'K 9)4X$/AjtxSsH it9vqad%s#;[|}}-^B}4$'Ob! x 1Ux ~ ݜ^ rL6f8Yivdv 5to;hGH~7"ȣ3%6#ge4 s)Lw [ȭGcb 9Hk'':= $m*RGC 0R~#ȏ3D.=KFwwG1mDǁy#!?=jq(lQjk٣5ҔS`Ӻ@{h-Ԣjnmi]EjlBoEmcM˂.U_SYE9:Ŕ;Ǐ45 MT5?H0K!ڪT?U (j\ F#bKm=. e|N⧱f"sO<.]qgZ7dQ{!f+B<9Kg7*_R=zIJ'7dxWm_ҟuba,[T{l AM ZB09KDGnrƞ6|1<,hQ-ϹsÃsq#r yGfT~>Z }p-űWvxXWHk-݈nF4;}:7 )Z^09CDe@[|$Jt"( IH-z\}p"9F`CBC`j"'` pk ׿yn,>y>̉}2$g,p(h{eeQidN6.DmpqkX)d΄H5LH_>!/4_,EyobysN0:hM/n> %ğnٙ؟5mdQf{|5@zjc|NY$+n) "2m"u琹̅d΃ğ+ tnC-[vswfD'}VwhmePq3"2OwQ9ղԱPE{c1O"s̗ɼW8J~Jkd^B2xWWqvlEz( *SVTMQ2VcS2iWo'_c[(9 ?hȡfDuYIw= pŏtÐDpC4Nyn3@sc: Kq/$Ŏp I;hm^YGz^oa_ ZH؎N`]aLxO0J۱uEWT++>ܭc6 xOY ӝ̞S9[x}^/ 7P x`7H &!m ;L*)oF onjpKxDca0A&\4*;="'41h`Ec&.=Yy͆yͤ?CgOns"xб,x,2c.3HQia@:a9ZJZNr,1 8ʏ0e~}MecMrfB@)?ˏK_W"zpQv!Izj`},EnBkF݅M96JZtSm@L:ĩ6 ÁfsT8\Gsp/sNp/pssU~trt^Ut^p^S:rq[MS[KVE}N)S.w:e >t&j= ^zh-ۈ ƴ4LN0P|-rC@/qR8}[&`Mӑ)]@KA_单į %ExfGuHAwL"_',# so"`2SHB3`(NIf|ќM~ɯH!1<[@B!|ۘkR%x_ ?UudBkI'[ 6f$J6ӉF!+2ONS`.c'kX [Bc!kxo5SPMoO,Dhjg @x9H iZҴRiuvJ!*M5- +>.qa+ˇ؁VlLI0 UW'kKh W{0S{.J7"$¬'U֖*-.YWV\]MWFJ:*)N4, (^vD^?U`~LX7峁19b~]UYD*2ܘee[KZ.W=Lyj>e9؏$JÔQ'> O,QA:nЉp׷ 5?u#gEa%MpGN7iʲ4Əqx0W( iOM q$E'ǐb審x]sIG zw꒲D)p6JaaDW((^RVjyC>o:DJ& |Q6rA1ڮ@#`n#:qZ !qFƩw ̣ /c=nT}'e"I~=` h^Y]k %ڍFto]Bz mI9ZGImX߀6Do,5˗4dz1,/h t IfżWGDp#D_pWYT~o?ﯧRDz_ɋ*kZc~Nԙ)Ա }/;u>Jg>JT3tN3ӹ!;v_AV/\lKfŸT8NKA;=6I@٬w$[b(4שQbQ^WKtO'ii_?NxlИ5UKjj?Ęcc1%hg8YʀcCˢ`Q(feK/;&xg8ƇcrL+ytVGBkrNxj#㴅aCfa(>>@x:;Rs{p'ĉrf.;"wwa{h5Z+o[Gyg]ž!3:ԶbT{Arj7uآa>v]l>I^ƺb88S}s:3溤+8ϱ7x`/ ?znъ53RAN3yW⧻1V&|o6*(hXÂ*> ">+35Ӭ6J?AҲhF u<I{]3Fi9>䯩pg@R&Q!|(S<"Vxɼ {%[s >0B@'pJVw]pGH{9B(>B:8TÎfNюۉdN sHO$snJ4+3M&s* hpд]Hw:3m k[8^m V++t0Ǭ_t,ZF "]|Ve% E2m2ȜG&F(O|HoyKH.GQW1"2BjV]cCPXύ͏aP%ۯX':l/%syU M< 2"J2OvXdwXD*2א6j{%:^tcwrZَLnOX281H1͉Myq$ܔf O'sKA"j3׳1jw.mV z"zq)8u )9U\q` ۥZ_Y/S>H3nE/C@V_ƽ!ne D `&`DD{/Ս0`xR@Ms5 Pd Z |K.:`)`)`=i8Mپ^$`zC[Zzn+U"`g - |{@.Ô(B Ӵ2%|پW@AXE30 $#&uxCg!sGp .$X XMp AK!ͱ6c\pm#33X7&w.vvW}N @ F)!zH)Q xT_B 𴀯LJ~ML/þe%]xٴ&d]hH[`pr[J2 ng>f4iS{l_ә.Hu>pL[~+?NJzFg j} Hjօ).jqf*ښVMuN.:~jkkkC]AϭpskVYm[ՌH7S~}ޟuxmLGᡞ=ah]ҭ9SkQy?|G?~>Nn#.?9B|Y\.&~zLH^in >[1KlT197[_fP&Mwxx]ٟdg=1˩/PxKj#djmպͮ4,h ֿ]sΑ;gZA~=hT}hROhTm>8}:?IR\Ǧ;yѱEqٜS2y;թkT9}6xy4Vg# *pO:6;GUѐ>v/I O4Ny~ ڤv)9N3 Aܱ:MF/38,x8 :RJW)oo>_< ;']acxځ\IěuEaPgd6:r-xt%D$^.q@@px~@Öj~@Rڪ<aGp@\ŷ]x' Ї. BHh'a>`<5?Q/rzSmu񶆍P)(jDWS; kNeOD=$!2LP;t6ݢu3b]W!6+ tm*2^Nr7aq0 Ot i=# qD1ka7ٳa8ƽͤAG1F! Q}\+ھN'cQ]$qek|YLoio{Q~[ r3Gi {{{ !KO@_`q{c XX^~Ěy +;/s>>> Ⱦ ɾȾɾKȾ'D/a=ߒ~6ߔ~VW } UWs՝d'>Y*PV*աe(FY=*RT\Uxxr8NfYYFa7̛qUnvކv̭ia xúUzJѵz=vn;G[?N& eGNpmkqKAX7h+ԒOYTЁhuۆr۱׎tD qa3 D,=,X~uaZٖ"-,{o^fV''7 t@;n=ңo7S!9xAfkz v3%ޡOo+5>j*YQhj)l'Dօ}y'y8i]ק-2[% M{'+z;Y3 NNXjC ?!/2gIZdF&ꨊ,^&$ /bl1/l )DAA^x ] ڰ% \7[}#lKجKK,LlLجLL,MlMجMM,NlNجNN,OlOجN+?9ǦNY46uͪͮͲ/l-l-l.l6.lV.lv.tztӏMrwӏMrfUmM^)X#pC,ۙoXLL޷~Dv])f~'J Pix,R7[ Z3ῖv?Znaٗo\;r& 샗({_?qྡྷ~|>yx~ւ wxo?;nl n=o;ܥ|GaO^vo8g~c޻-[Ͻ[?7[bC /8}7>g=o>vWCns7ٻsOA«_tdv򯎇G>q7 2^lzM߿p9/Gwٓ|~Gr'|دrx.ޮKxxbe_͊F3wog/dOì𷇻T#޶T/uM6?=O|{gnpx͏~Ϸyy0oc7-sx 쾫H=Oȧ?xs wkuՃvW=Wn3/ Gۓrs>`w(Ztv/.*zO7o;<ͱx㽗)-sy.J6Ϡqv}Kvgɞ#zvo8EpzWqZ.`=]݉܄&.&'m#pNiO8Nt&\#f7` #3lNhF^\f#:M%4^,o?p6cq ]|l B#HGQ1n4i8\Gx &({ 8ׄ.3)c;8 !݄ϛp"<{u+l oj=1;}F^$$(#7Wpw4\cj}wYF:HWmO($]6ZPN Uuk]T(qLff$:P>ұ<;1_]twu"_mt6c{W|coƌ܀_O_6<Gt#P.rt2ȑHZ5,e5w)a;;Bܷ6eW!n1UmpZ}!v]U%_o * )+[x\k"3?blVhMJUMd M]j)Ju%Cen3=|6i9z7 arO/ U2t$5gx>0X4$ċW0l ]$~s:Bo#:_dr_wcxgw4G>M<H"uݑtaٟ+ΐB8TpwH Nʇ,:q`+Ӱ vd;g;m>sۂ52.AVD=T//F(rʁzkQbݕ&p*)\g/oh Tm]}v)%!33"]$ց6R5K:MPY$/N'cmf8uoiUSݪ3,.Gśf;|N=w\CS>Ңf?jV0뀙Ŵfڿq~[}׳zυlr/{b:-u8.M~ˮV.I}Wm]SwMVF?/%["Iv]TލHu atXWLC jkt;E@~xxkwS{ lXőC#9 Gܰۅ~] ]?L9MlC Ov {i$LI u'Fl&;da=20:/>kbxe7xP!}"/4= Yww C_.Q73*Q8$1NrC@ tRodaA_ F?}~?0 0`!0N="`,%! =etf,C&+`;h# Ml>X2fnu·5n R%-쀴w#Eᖳv}[V'5ITDSLau[J1}rCCɛ65dg@g3kD|&Bru|' J9 ?ܢ GL"КgCMUquM{osI( pF9n߹&IHT%45 (@+#ԬJ<=K ͔jf/e"ڿ_6bHWROA7$Ҕ-ĒjRԽ|S5_o~֩nx5ҹT j͛u#ofW$4O"$4gNzI8hL9@3O2{1r࿣Ǻa,zYC[ϩiNz{r g) <O[VPK3gSר+)VwRA.Ky1$/ mvl3d;57ԡQArk) e3"^rn(eg'W*eG|C>Omܼ<;U^k|z>y({G<: i,whoCX~5܎8+E.a.jNP] _{\Β)Qv? (|sѠqTËp5ji 0ܜbo'm-l&"0]zwS4b}w蘭i۵ݝh-C _~e[e;e t3~y߾Ao_~qF;UHmh?Rb[3 M4 ܶCl} vH~{Xik΍Zq^6NtLzQmhRU78jU۶ lZg?"VZa] ҈5UH+rn$OLw§UMϴM}~qǫ?VTCZk'}CPb-fl6C/ {r` z-ZK/k pL-X]=2NBc2LᏩ1?GƄ~Mr&_Sܯ4Q(ty< ].BGˣQ(tyLtyLtyLtyLtyLtyLtyLtyLtyLtyLtyLryLryLryLryLryLryLryLryLryLryLvyLvyLvyLvyLvyLvyLvyLvyLvyLvyLqyLqyLqyLqyLqyLqyLqyLqyLqyLqyLuyLuyLuyLuyLuyLuyLuyLuyLuyLuyLsyLsyLsyLsyLsyLsyLsyLsyLsyLsyLwyLwyLwyLwyLwyLwyLwyLwyLwyLgƏ>'xDs9}N>y          B[ǭVq+z =nB[mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm-QqYǩ%%JjKqENf~ Vf/J:ᏸe'mQp>]gLx )K㭹>,"al/ǤIs0xOgbfDϾ&`8WQ,s[1^mrpdyNJ8+¾ +-ր,lCzwOvI YC_cyP.¹Mt󉃦]z]vwݖۻ?^Flw?1j^i`_&aݷ~.㟆_{ )wQ~⬪{hg鴋N]jwn}./?ﶲ+6-xŮZ9v_ZWv]9-_bܭW s~k}_\;[6M.:g{ɜ5gti+ށ__ԠXp]k<`|]WɨWmWpSe7onmWo8|w~ y]ᲄ]q}:{oN1*ԮٸܚqݽvھvCOf8֛׮ڮ{ _{ߏ[o|Ů|&wo/ze+:^ܲv<3خk/캁|eϻ\GU3>hjs 6{3qkz\ڧOaǮ{ xb^{#)vOOUt^YQGٕm8{oG9#O.vn\7w y5eWOwҩn'~Ի98 =>0Ħ; }( v( ŁxNك9ή\Uv՛[rS3ge9߫lyĮz ~vت5vUDoW-xvՏ)nysP }<gf}7~qʕ?~ {J-G޽&cW}4 K75D~oyoH/=8`εv3|ud{WxW{okVtZ3h|ޮw_ǹy[o諧]x3;t>~+.3W.4~yIWm]|tY"_?llxuB Vl̵{9o]wS^H6&}$J9ꭄm{޻)Q͔|lI e}awxݮd?U?";Rp=M(꧘{{܀$Q`ޮٝ"osص<Ǯe\7/OTLz 埦,P+COYURBkZ~-O믥nZ~-OnZ~-OePb-wh`fe,ܸ87/Xgۭe*9.=XBN+_#ިvUn/ ͼ;V Vm]=of08,L2L >mUVW'DlxD ܅[4^^ޝy:Pݺj^eY+w),[o[UˤjTkU[R]hx/(./-;J+pZ,]Y]t[mCҒrW#9tؿt.vs_s_ <.߆^tחΤ7}x>^Iުn-:eu,=g, FV !~];"G]Ŵ'[WpF/aD~ĄG/g?83N.fcE0̾0%ka]1ruܜ]mC\,W$*/>tJܘZKI*Mg?>n߲W.V%%-^eNYe Iǒ{cpr;BrƱ߈tP׃β5:G$8OU6U*}Fd֢ IQ,=~-'dN$H0ï!+-x/BKxcr #5s=t+:D'LC}(+YUX+VXEwoencgzFUUqv"'WE(Vl%?F z_9dxL: aOg%{EƏo TA&N=㫞tja_&u%3uW>aotuG)H4(\4Q=N8?ɉG2:[(y}.Ng~´KP^qe%, U^݂JɢJߘg N*O-P~Վ3X6BBKHWJSl-(P^Cvہ̎ۉ9d ՞q{Ԣ|ĥTvΩE' ;1 4gQE`Qexd ck.okH+ ;NBU,Kk%,ߌh*Q͆hF| 8~7*L x~â6{t9S|stYԶYԆDVQq= 9fBWEXɷ{.XcħL}ƙKoTT(-(-*+)/-^2QR+/UP]\dǎm5c!gRw_ 9>dTCִ 07Q [=d̎G:(NIf=h&YW$\c"(<[@B!|&~Y<Kr[t ح \E00Ϭ]G)tڸk)7斄!֛~c\n'z 1vxyvӽt8!$]$=|C0[A(SqLL_"&MP&8tcyIpSക$D(л*{g_E6 GzQtt̐9: G'đ_ߏ&& Rw O8ɟ#= ?5LiBü!rr:wQ'ڋ۔/yUTUVn/- $ɐ4ev.Wĝ"dhcDnw6t_9.`=Ij!T;Qoܽra0-(./)^im UW'kKԆERg+6AoN~ ?vWqmAuκo4RQiMqa^@ue#rs>.f*ǚ) J&Ti/-++Zry徒a*~#Q"7OOPjC7[> O!Ӻ[ 7Dw3 B?u#gEC⟖4i 5&FC4Əqx0W_o/ 'KNH{"Dm8џd;P')J=9?ŏ#@cv͑f&M KnQvщ*8ନAm^󐦏ҠImfԶ򿭍aA+PH&Om,0+~gBSAxG_z80/F=ܨN87ELz8"/7nrGiYK F]E޺)-,/'^Zm{Mr.6:Jm#%lC2tOy%JcYuE$S|z?s?C2<ɬ75 ?qy W;lJ;Ϛ{~= %*HO^\mVy_߭˛Ă\.3QgP:s4ZE+)f:oGL7Qjif:7v+_ezɌ]JVi4H{ަs/L@٬w$[b(4שQba]]]+a:꧓ƴ5HQOCcTEO?!1tLiI-, |j "/2E(-j> ;͐E]'oߕi<-x:jbg:2.cъ8_h}.ZԱN>hE|Cf.d9{wZ%~Os!Kyw1,cϐej[Q~)]Y^M]1=qO&{e ]}{ rt)H9vhc8YLԕtK`g{c@|0җ^2! E+HlpH Ns9F]|GZ [LqY^NBЎA^阱7fQ XuXZ͈94]FW1Rжdn!MM;R R&ّhl_%9JxkĔ?:INr)toH'_7̩dNAvA d΄-'mx-[_Lb~1ұhgWXOJl!1^ȜCMfUɝ-Os\(0_DBIj5V>EF\}cfR2]e BLed0`QWyTO&M$2W̵hU W;dJ9~c ;|*> !idn %~lLsl sSxG 7Y aвEf3׳1RKu۱@mG^ಈއ=(ue NaM7̩=SK.mLWbziG"w+z  ?{~y!Wxw]ңe D _ȔaDDE0LHՍ0`xR@0,`i ,  Xbe!pb+SkSzp}!I [`빝@WyD[@(3])Q a)@ie KP#}:g8`A3HY!pH9C/ .dV\BPRAWH1 L Jf[Jpmn ;\Npv[+>'_ r^= Osᡸg?ܯ3ϰB7m;v4?ז1R]dNxp}bKX#7#.k砹E;BnF'?]u54y(GBXt^Att? ^m`xy(и248mi+ ǒRYVJn#/ICe}65|3љ.{mU_ 'rސ36nbY.U%21JzI?WߤuU*= G?rFQbYq-G+#_ޣ>iEʵƕ#rN8t,|.)휄v! 8\9Fv96o(9`zt)-++-q$l*]Yyt=/Ɵ8pO';gN~W/~*"vք߭lUK8F˷d]?-OHy#(ujg%KUꒄBJlWRb[II#H-#Z>zpW:t\y緼xx #n^h{xk:Zt^[aV{~]*~oSJp~{Z+93>b;~nkyE0}I7C7L8x[%X++sN߉ =t J|ې>T_ "{7~c^kffpg=:o\xO1>YEm5R*n5*@?u ls~6w@cWػ\}﹛~~`@׆]G7mw\?Vm񘟿;e?t}k:%w;+>_Xt{?mg}؄=l7Ӟc˴rhs~ YaM¿t?om~b{Gί~㞟}T6S>s<|gۢC~#4xs_]g3??oxvusrϥc풵'}x%k5.i7`?dAU#amns-:*5arX>>~H -䘿AS_ h`.W[]ƣuEnpYr! ᜆ)Pca}k^Ӝ)N3N[P%qh^LG)M<%8S0emCfo a[aO{u5m< mQzF M7llslxiT=䒳xXsnl1OX+q k zGe5UQ k3bl̒VPh*ZxeK1N!Q7Ib谰NMYQI}&?aWNx~OF-97S.)>kc=o{ۥ_8vin>qKo^x.Nr{'F;=SLˤ7첶6v+`z;!9OUuv?vѩK=Wݟέ'\m3ނW쪕gWueG۵=z'j};}7uîeC]󻱋~vM\W{O}%{K J9` صvw*_k{zvG?u[vv#wwg'.Kn{B획˭k׼k7k6mipWg9~ma"~(ˮGi]-kG/3뾶®(ܮ=\vε~T5ók_`0]uӵ/4GyvŞ/޵Yv f{?`9ÞGg_Zɮ}&|)׿+&:鵷?bW]]GGu|4]چý֮x./=䂻`1U_?.wCyЮ7}0j]s﮺l[vt'vOj0ڃGlO[`.0Y>?هyG`⮰^锏_=u_ŌlWI)75s~yv]j͖K쪬pJ]QqgZcWe.Lv_߂aWᶛ7gp0c)|q}?nƈg|G/Ȯ\ʰDr{i1vGZt].Q KFM/DS\k=aW7M|ʼnw潾vmEuY=?_& 8|u{ڟzڅ_o`￟>cCb貟?w˯z{OsꇚtyI{0uGG%q}; ̶ˆW'._nv/~\雿u;mumsk"~NyJS>Jhk{on_L۝[JY& }IS*+(܄b.~q AV_ )2?>q]{Әq? ]v]_y"{DŔwPJsv2sɤU'}, s ~-ZkBb"B̈ucZG6mD[>"tQϧt9!7"tyǗ3O>ƻ}N>'{SI)Tw;0dPO0CJ&OX*)kY j$l7z6"l]Hd@\*ҰE ?3@L \'o>$=]/*Iz{zM.6'y)ŬZՖTB{K ŗRa+KK[ݼ҄|BS2Iod֩X!3N)#TV7 'B Qŵcwki/ "34OɛD<f2i_Нu^@~\k5$綤oW"J?^pqv#9Z5n_Ì䮰Ma..nzvjC4%goƆ Ϭ̆Ubr+x* y"Nݟ^ۇubWL<4F77?`UaW'E}7ozSۥ-XLt䑭a&UWq$)ۊ+ \5յ; (*+)))*V@AM%%N2YR‘q;Xι?v.uzwt&g[#NE5FҲ<1mqsb\zt;e{NAvҊDt77dQx\gnJgФaj0y_RQ[R=20VL;lQ#f&C[Hy8qUn_×i8em=K̖<l,ߺ0ANvߡ=HoĆGY[(1JWYU#pDή.%k_UJ@2U /iyqh>yC[wRLdlg9%軕[Æ%;*b;,UB۶VU,N7h53h4jDjjĦF`Pq#5j,XS6,dc ܯBk5e@i6%>`n 0w.6) `aԢMZkarCIGz̍@2Y)dRÞ+sty0ӛN42sɜLgOg-P),Tvof>tYo"Sl?6T&WYnk9hj3+Rwzf*vVlM7Hu4zdg8Ka~䆴 mLnCpr)x#^cw4']n WH&9OQ{n{O梅?]ð"y\pYB!HJnUDn}I)EpO~fɆ~ߖ3Bقu8O"~+iL8+UZZK#ݝBi>Q ])Ju mo&2l&O EBl4F8pHkMҔVm71IC6I5+meC(.o[E|^© ?:4cC4&ƂƼ{蜙D,IC$9s9" #>HSDbwM?u"d|u aTᯢ0W W _ z3(׃s:pɍ*n7n8!;;Jsx]ԛhߝB> 7 K~fapn+|%p7[i<NrB}=Ix )g i$> -c:i{zfN2ᆘW3Azb#L0eϏ84'$75^IJ:3(i(Dc{Q658fa|V#Lq_dj!LG5\0:wy>0e[^V!0E~I5_T>G]-Ѻm+W[ 4n1?1~0KJ-RͿv2ZO>^?c>k&r/rtB~x506{q8`YRO 71Р7/ CZf˂3P?A W)EicsWk~5fEnt6,Z-?T?%?r)IɌfo#gd`5I`cLSf4I?cb?0 > F=&п e Ʋx7 st?&?/HΙ`OOoV|bקHs ݄Dov8ߪh*a6? eF^RlA'=(n& cf$ |}pX[mr!~|F'/6:r},gҮ`EC; uGXaG/r U~+Vwh5?̗az 'XFrCmo]Q=w%ls ݜ_:My$VYB.'H ASosqc,X7GOIΑL?۱%1Ʊc{hr;ߑ d r1nI|8ч' `Hm*ưy*lN@خ;MٿjOjSS]jRZ6Ql^JSqF-FIҩD͸y#`QM9}c-Jaэ ސ79|~ vcl/ԯYv!2D/#=̿FliS~j'k+q*on}O4B3F~Dasͅ:آ:P ov\Ŕ]d:NXݨAަd8Ą.|VA,| -g 崞_'ȯ;q`W~uGqܾ}d1׺tEWEy?C'$33 %\'qdǰv54>ǑڅErE_N|\e@:#~QFy'&EOȾA.C]B_hT?ڹٜ:Ahvm3)nd>E:Y^yYGn `vuFYut@;ߨ Ԣtܰ\O^s!rPwgK8 jLcf^oE몠[.봨idȵuK&7;tI0<^vONd{hr.cF*ȷg+K#$ bWzm)If2:zKLQng{ A! [ʈ~,m.g:)ۄeqXt츯`Adu+>:ou0ad"sv5A}qc_ђxm=# dcCؿCCּgx`/^`,/ޡPDudHoDT6 DǾ!=cm sYF d$s7l2ȜM\W΅G|-ڜt8vmd's_ɽM3/$s1'%O/w%#v-n% ]%S=;n/'^ 8_$x, H |Ϥ={GueWQ]E]c^q(m {4Ng6_K$ZC` $E&.al%?-/wS: \r#7?CWiXbEx J@u;h#A!Di-Dq۹}1 KtƑ}<'|W5uO%YdR%.ƶ}:]Z~͐O֑?tUWIs\|1bI!/k-"W?-Y|aüp 0>w䋕Ua5kJ߃w+S֩$ .ƙާ|f 6\LFvVGᕐN]M Dc`(;1V̉>u.$S=pSXt!"ג}3ﵮK>#>u{}x!t;+gw'BFN|%}(l&l_@8&p_$\GnC}> s4%M\r]^itJT][Qe4ް U_oD)WR:qKJ:B?7n~nA7ѷ'$$$-Ob6z ﱽ9pl"0=%0)t|#7 $9?G،C+tr!|Xm+?,X'O$Sri8}:Z ' ) 2xG:UcoQ9Sy¼ p ?"/ /+dJ/k?Lp~I8o_"_x_zFH_?1£lo.ώI)AkD9X9Q?XMK@:# h@XV(G/-c(Na]@X L$Sֲ}td7I!lk ۆ8l~XmOo 2Y^XmVB.+ҲQX%)$=($G0n< ^ Mj8A Z46jZT~q*U2UMH[c \nm?}l qѺqG-O!(<^˙:nc,g`z1ѧ'}O>]vrͮ(_[YaiR 5_:CDXR觰Gs?H iM?SIpH关mL'eeno:?Ca'{}P>O )y!;9]Iwgv_ MuKABoJLI_] gi*ѽ ^Vw_@zʓST.\^BrU>뾩*ivr? "?~Zg;@/ߥ)3Ƞ2?؏؏7bw7rY_MSe0ug~R0n"(I_)O?Snm5U5%Ko78$9L]|2,0u`4Ƃ99vtVOinxyM]UIu)ƃ1ƤC MKƈO_g * ;8Sƥ<&-_<1S =4/z+ƤJiՅQN3F?JŸOE=t7,|d`q{[0̔\~ A59)_oJSsD7ӹ[f"05bhD=4\bccƎUa?I#kHSm_FGzLjwIW-c~1$I+ro;լKzdMb3LoQ(e5TnRg8 Y :9J@ >n [5m#g7Nυ{NM*M\0_w*~g9K~{Hw>?NᎰ43- qu {0̽$]/*(y=$σʮ Vyc\ۺ4CAH]!\"hTPXu~G$%yus)힦Y^W[E-Fyʰ%~=w@ zƺ']ueԶ%UGiL]fkM+}4?HnDNs|(&ӨxXO] z3_XR[,XhuU2!Tc./@Ҝ5~GB7{? %e7οj~8'$8#9ѱ(G{cb;8G{TSE^7i |z40 I[êvq ZLS#:{|pv炳{(ls Pmů;A/W:]$"5=r&jZC|ux?bx:($nn ?~v){Y~xɗZ?GdJ5mq[nq4!%w&{ -.J]hty2,l¯QrW歐O[^F_3pܟ pK_Фݖ-W_dʄ?=B덪+[;qce;}LGE@̶ൎݸpb@J|P|H~,sz{֟ݕg70fQu"Ǚ|32bI*Y{lρHOc?3p^g4,q@?ILѧY:<[aP̣C=5;\-#a֓ym-KgtȏE{s5Xnϣۑ_]_ɤ'v#n7g]az ]:AYxua:OutC_^4捳9B$8fiz">5S^8"s%LT7147K@zu&:Cd89CZ2;t-: !d)4ʉ9`I&WHETwptE юj+UuF.!Ȯݜ"_u~D$x> R#DעkXĘrLLR:2?| kL.q&9aFS$8|-X3idҋkݳdZ {G;a7 dN'&sK=9̅d. sq4=fM?!cE{"2/#/'sフ|+w>ɎWW/'7Cz|.WxJ֢'^&4/IR28_M:sKщ<F<Ց]cq },Wy -:AC2#SFo&WOg7~<ݡs+w7q݋$}]lmr .xc.rx1N= цwt=z YOJF,tG`ykA>KHepIGBd8Cf:ti$:"דy>4zY8}֠6js;\H c8Db-l⭬ȫp>Ѥs~< 8 hz@хK9ڃ_.J<ꓮ'9p yC-IX~&]uLOLF;i B1fh#-c8u%Iqf'>1Xbv_/`~:bP˥w&$x收ɼS9lQH}纛>(m,kg0&4> 㶂3ܗ:$xxmKG#ctyB.+`9$N$ !Nȼ̋?nb nJC\%dEQ*W@JW 2"Z$%?~ x~ 냴S C\ #/8m?sQ|GqN4lAȥ=,=F >KoIjϬ1!iXF.? W4%(OIJ7տHoxuI WOl&h7w2רSn'r ʕBr7Rg,p?#ݷ~SX"Y˭{Xm u2QtZqo=~AUA|, /v?TNQwp;^[V!0@;{t^) s./gߟkm8N^ҠcG9ܼy-ޯ֕+g)s_#8N8o?n:OuŕHy)hAL=ac0ߙ> l 0M/#J'*0h*T o?ܰzO< I 0GiBSEuaԮ!jK~-$z'dkk+ӲT,, u'W 0@ 0X07\ʝ1` A!Tff4\#$%@v)`6A-`n,0`}ؕ0%`)/#XΞTNN#X`= X"`k `:;{NA9AAi}q:lLC8CtYPO_8Ov> :b/W*4ZMp)e.O\# (To*Wׂ9n 3t='FMt8?%npX F.LlK@]ܓϥ =Hx8Dp.\L(x3}7' „ׯ.qg ў NzKo*a:M# r-lr+h%Z |Y(^XDΗQ|O"+Ds!xHÍv >8g*!3Q 㽞OqB]-!^S|0^ipPo+m$K mû.iv,4)# cY$3꿊d-\ҩ!:S E'(މqX<⽄˄0Eq>[K:Oo I5g]k¿oB/"=\B2_ ^rEw\I8c ί7πWa -A87#B8R|MIn ggpE;Jǻ> 'a 1bʽI qvLa.[nhk MI!qQ{茹;XN2gqP;u_k7NK~.:>j:v6 :i i7&?&~LFR/WBdK*{`̏7j~'8Dʝ[] @@ ˿?)vw3$}?{o 4}Y? 0ScTY@~,GTY[d[meUeJN8ϻTZj*cQ{ZϏ*}U+W ݦ/耈wImҊ}'C`6X@MQR *xTНUlKw 2+kZ!U?&~C\M ka~&*cYj~nHST׆uCh (I8gРM@x(Ľ)EkV7tƁxN aefcAB8"Í5 尲eR&:9w5rtBj.),BGڜ\18 r=(Ne7rtځjJHr 4ʙʌmT)/ݶksUqmmIu񹐄ib>Jw=]Sۓ^/_?7[41 z!(g/1V,؅kujƎ[BS_OcKK/(3 llFg|CҳI#aϊ!?ώ!r Xc V%4 <fȹ~[@ kczgiHX9<. $͏'2_h#$VO܋\.oKkD?mc'g9Uغd["Ԡ>_O? ? qg54jB?,S?a+ұƇ} a68޷qWiTp6A+ףٓ)> ,bSM本q;O|#z㫜bOc}M2,@Gg95qkLwcwWFP29G8r%$GCr-"܀pS@a0ɁEQ/wϤhcO#/E6mnGfRC'vw,<:Sr Il8zPN0t0ͰJqD9f 0,p㋴v~s@}ޖZ/u4!7x;hM!o۳k4xpGqvND8۝7p멶^. ^Z= I]#MYa8 6 GvB-V-օ[&--IV6ִ,"]5eQa?^SLsIS^.ߴMU4-#߼rI宫S0b1qZ(FԶ`lQ~]$~.]o+< 4ҥ٬oYw5xLbv!"}?=t|.S}O*:Ϩt~㘟QAw*Yg/j"E5 !ʹǶt 0%#D4΁!Zy&oicsMZJ2;;<87{.Yyd O7룕]{jWWubэf@#ӧxsȹ嵨 =D.J)y[PvID'tJG Ї' (h 0$p;< IO&XqFͬpƒY?︟Ȝ'CrfO̢}`Hq}N]\[FtHjBԦ gA`zBLT#OjτՈ~BsEzj_Rtm& ?n YY͐ZBَijM [JkWө?'/ER^0zh/"ӆyi!"P7}{ \H<>AJ@y@8tߢeh=g1KH{ x`J4yr,qQgu,fv^;/"DHL{u#Y-K uYw ;$2W8?!||ít췑dF%d'|ug&]䨇ѭr?euJդ!c?&8+c1v|5{H? Í6!NaFNDx_+`t7ݓWxK@W< /`@D(aH_"| cpjMFC 1`ADC`i!0/.0`!H_KKN"X)`+)<)KJA 6Ab.l!(&*`{lU3v *!Jax˴5H  J;;O!W]i^!*:C:7@sD64?0TBRǽfu[Jy._wu6Ր.~ ypJޭ;k;m+oO[W`\}Mb۱ :^?}l5Ϲ0I~9 S^_G++Px7P x`"܆Dءo!  o)F[;K0N9 [o~Nb>*(b^zyiL#ӉQ4fBx^ ޓlLc<1p 6'g "h)323t%$2y`}S] 'TvI?6$g& "4E|k-+ev *y;R[&Իj4]ؔßj#aI8ĤCj>^qnv0O{u4 2d w?1_ޫL'LUE55#3RČ5e~?Bo_oH+4;"MYPI zj_Rݚ`S݋(qtjSl@ Vm\a՛JSWokl[GcI3 =g-hE=+N$ crQV(nՉ4ۺDmUDoTZS *f yݢ;F7,ʍͱE|Kg9ʱd-e%M[9lm|Zt]2IdZbFa{ s 3/}bǡDm¯Uj+3B jR-Y x9c UW̻2i/]} @ 0dT;_R3uiT;oM0^-erzA.rz)it ҏ,E>ƙC`sC`Nh^aP^^Tf0g*3Tf$,I2#Le&e6Ne! qШ]ۈcr^C8ܭojOiԁNҊsj+K@x/ B gv-,2RKx#[Cg63I᥇⻍n ^ oLL+KDjŗ"a/Q:K W/eKn݄[!>^?TD /\XI:AZPrYNm&[t$ur 28L<'&&9?I/$:SmRnx'7Kq8rK} C#D/2'YyY<y.%ZrG/ \E00Ϭ]G)tl 8[kF?Io9l.d 8e{1x2v8[9-?ύ%4BvVc> D$xRipVUܷ.K"MʂtTQHmlA%Dh&5=ToF;sy{[$|{Ι33gNuHiJ09Oi(ҴAiS~5L&j1- +^xr}~y=r@ ༤{0 Q E[#~Wu%BJ˄>H{V M:Q,(5Ih\4~n Azq1lmmVTn@6&=tsgR9{ O՛w~|tFE{=p{c扇a;-bst.t$S0;AJ G>2=2< s3I) ˃rWmʣ=v[\>v{( v4_D_x=v+D$~ %WWMs)m {C/ӊr O2:Ql'6jth0&Y/2=/6`DY C#s=2wE&؝ǔWnjJ464T5{HeRH[{8*+lY+$~ׄ/ €v)чףf~bFڥetǥO+b o%*ƕ$vTW%K]:qMIDӸښ斓zyȥ=oHĞMl7NGl0eDIĮڊw 5RQMsEa.A6TU$TM&SS[[RHjaOyb> i?%(zctzrXcRt|ĢsCֻp eFȧ`ԅNtmMiO*s"dD~e$MR8Cx4,MߒStT_vG-\!NKR0DI. vT3#ȩg_m_uEt47p'oH&NɞݴaWJY'@I]CuM5Oj2$}* :5 fm+ȓ :vy\џ6Rܬ!>Mm|0~[>oGj#Ի__gQp;.㢀8.LKt9`hO^԰6%FCShךo)g2?QJٚEm{Mr.7:my++ |نeN=0frB&L/0պoGKmD@(k̊_㛏#"~Ù_!/Sz_ɋ*ϑu=tݿ?kuf:6!u0ӑg|l6ӑ|i3,,-f:yv.z/jrzɊ\JVGiK{gho[Y`*͊|UJ#B ZXIsTY6aOg:5*_>jxTt5zsDs)c0<);2DW < y/ 3„-vZ<3S qkNgxQ/va/К!Nxp2!{o5+ﳣu |}A;R lsp>GQɿ#r7 Z8~R恾_Wyvlp%1I6|St c WuPOr0]{mO GI㏁tzәhw%*N#tr%b77^bN-EoO"[b vyg VS7TS2oX`a1GČ^4駧O "?("uQZΈ)Asi[r72Q^t(hLd)̽> ΀z|t>JFZbʟXXҪO/w@>#v5G  tAGOɹvT۞ChЗ"AVg8AWC@UFlzjVk\F4O`b{Mƹjmw{:ö;W9mȮV.[peHlAs(ek,4y.Dp[%<z-X«hVYihe5]eQz#o,b.W{LAM7LB=m/T]ʑZ_S>7g~A/ ;/ZkB1yF0F#APer !Dp{@~QdS"LcP0#JEh 0X$@a,a/DR5 N[P}3> BTY gM@y+`WaE j eax9g.x6>fė"mk8~B;b\ 88E |" \2d@$ 6 \P/jHs̯ 8d Vats'>p7<"|πd@ng'7 d|AW>%xgF_`,CO]&_"r Jw0=&qip ]2("U}boGnS/).БgH|KHE[5;Ō-KF^'uaX}D[)S,'I;_[ce{ ynm33[zxj[3"Ǚ0z~ r4s3,@+/(K>p [kay?d ?z>viC?9|IBWNG[?z,H_iwŶxT*lįSiS &^GvWvңL/61خLWCtwmNgePg^;gT[ ΙTwmz=P}TOPm>(}}:>+3gn뱳vula(ovjYL9xAG*R_/ަM}yd`We1xi0){o3>dAp_9/!Ak'` ȅcu6b7c\_xih%ܵ)e߁t\ pZa^a+U11L,ϣ 9Y$2~m-MUP)W^UXTمt Gi2GOw~Nz-,n7.6U q.^1̫XYgYlx!8&]FAP 2( '=XY={O_7 };[~ϴė}/+x%g]8ǿ?޴.,<ǿjBOs^|^VA/:m_퍯}t+՝C?1oǿu[ygQOݹ5OmyKx񇷏<ɏſʼn_~񷦮<G|םHC_;^}lعC~c* ,hpeo}?MCr<1δRK'ճ;%p)O??[Y͞7;|jiC'k1|oW*rr-;?Ԅ c߯mt@KM7쓧6 ><^kŪʃ*?AuH_Uarð*}T7ڼL8J[ Na^Eq1!t;WN}S}G@oe-Pdzߍ*@#~w:]bM1?s'b4^:? PQddC=uˡ†xBc]X;i C6>ma/na6fkt'lΝ8qd4_BigF2x*Z۳=z4Q?#?Z|#E@kjKZpra=vԝYYYYYYYYY4װ#S2fȔ777FL?Y77Y88Y99Y:2lI?2I?2mwpgLƖ&K|X#pc,8ĞOfl;&{6r{gӚNFN T0@ߥ<I1><垏N@E u\ bt:Rk)0PL 6Ľ0N,)& ';L?8od.{5:s!L{C3⑟-P=vZ>/_%yPؙ)hOx?|AjM͉͞skZ47/s\c3 z5q"J5*;*)ĎXyXI%/gZ R CDh&.]#4 ӉFa!亐gJ.CS*xdC K')1w{+<~BֹfiN BŮa1ZX^yYXiI|hR/Tއ/x isP8~7 4n c w8|zly܆qO8PyFUduV" w&6ۭt=P HLe a'`eW&Z*<~h*ˢ f~J `iu$TПw.hG#6*V7Y,}o,N //-+Ӹ~XmJMQ,j<QkyaoҺﭨ{k;+~/<돻o3?Z=Y[Ѿm_k/_^͍~v~qboϫC4Gr=c-nsSQW?ZY~%6by䬊VZ#짇7=Ok_/[?5sۮ-?Oϩ\Y~󚝷_=o?6ןb3s~m箭;i}s{ k?7}U>C/yկ΋+aJOK1ZTvg>;wgÁQ݇ڽԭ_yhWNg+$kOw}5Yyk_ڰf摇.wM>}_Wfu˞.#WyM۞Y4'kk+:pW{o-{@y=5dMӷnt52'k?m&k;x}'J~zcguS6/f/ng}kuVv3]~>qðd~ѣ/|gTvM[GFuoӗ_s) H{SMldg>Z^~UMקMo?pv;=u^tpSE1G=x~tP4h(qoa۬dEg!hԢY3LGOOZqw"FאO:ˢprM-p=ƯHKLGnO q Nop q  BAkʜ4{Cm zjI,D   Q/p7kQ$Ҥ _tlPMOp1$Tǹ!^)MG9 Uƿ?8TRrDgzbB5Q iWqY-> *doKىRb[^:6$I̚,EhrXqm )Fެ9IG˨?E_Sv~qqUmJ˪h4a gBͻ+z]oz)ݔDͿi> }, Y8j͋VP5O*5/R?DOK8]CZi^@} lr 2ʭ7 ~r`Cޯ UB擮ttҚaq>A^,XE+J*l wheQ.29/[;Ux~zoi#`\"Ðc8a)1ȮJ!3wXĮ[鐃C'ڿez[^(${o!;QvB!diyC-ǶыXr!C6t8ѱphSC( ޕ=+ZGPtUTW#o8QW;Tp|;UE/KwT߫W>;}9 34O(Էۊa6[!hۈ磼j:Y6mSp7F|}5my,F.ś.#f2;|;*h󣁏ķcf1lFpcFqkwԆfv>B !-c d{ ]+;KtU~&K}V!ʉhݫ6y4`tMPh2"q̽C#Cӱ+s@8 ?MC cEo0Cvh[oN_ht At(ω?Do3JC}yeJZ)Q0x &T} {9P;s9p0dqP0 XqE HI;^0p{zl Qk^ǬJǭ¨89)N#wMPgKu@z;q#KԖJp:'I #mub,x86፩Q( I&wޚ}Dmπy,Ҡh-j#Y ׯr'2Uޗ{(K{ch˧2U nIsqr (=y+ [An?зn1yׁ{ K8( aFȗf2J.Y6"T>GS>J: Y> / SN=wHbyTsHi'Q47V45' %&6șWkc&JeNWug&\!K`y^ڡ(vZF4L9&IDw3vgWJ%K4,#WQ=J^ 䔳j`Oke3 qk+C Gk6n<6L=vMM^7nz2K/Z§mS,U^í飔>c}̤Y1>\M|MwJ2k5|v8_RGãQ(ux:.$:37YuFm۞rTC│2s4:{b^Hu-}Q`R( ┐8Kx9ط-Ԇx: k6$:J`?I 5!apSg}.loOŽ$T*$̢6L.^o SMIؗ$$"$5 pNH5} aY-^E pQ=9 %I4 %$\+pUN5I6$u`|=75ߘ5$ܚBܞ'$ܙpw>{po>$ܟ`>'$61!aD( #Cෙghi){Z{Z{Z{Z Rɩ-*\O2鞟e34wv?5=/E:ߍvȯ;kD:([0\GKhR>یͅ Zн77ЎCB{=_3ڛ_ED>o$"4#Flxk6KE:Hg_.whQS]ތf7!VG:"?XhOkQ_|b|و&Q7d<]tMKk#ңЊI~G`ۦGI> nF/Gof-s[/Pys\N~pTO>[QsNGLtҷ6tb]Ύ:=&[U-5 Uuݿc]Owݿ߱뮧ݿ_Z6n6;g Sf6[R ϊ$k)X:bͦ5چ͚Æ trXZfc-nNx&8v%Z+$ZlLZe0ʞPPj3HVmîyU MMIR L[f-gl3=[}4۔hn\PK ;w6'Z`fϭ֭$jvn!RnzhI49쮩Mnkm^'{ >3sO{YL|4a$r#eVť}H,pzYdYSRTIc4@Fg{B{|׹1Mˑr}u*ݤkCmV8WN!b6x0'iIҞ*SujnC\Z>zU[dSk%J%bls"h3ɪq]ݰzS&ۭz')ࠝYUG MG+GWıo:J{%aں:+U!!$DTF]c,B0#ѢsTaW]g!-zYG:?槽ÙaUQ}ل^4QAJqfl(:BM(Xĥז!Ua >@LR&: z4V4 =b:7P״_~iMteoK}u T07.hc|GhtF:qq̈́ . {_w}N*yT>vUo]-R$߼zWmi$HmP^aj5uN*>R~F;*,B{?_Z6w^@Bb/ , }$l 0iqp3fpҘ4. si2l deP^c 9߰r$]O҉6ӼC0*F]gonC4 6 0QH].nN='je??cFZiy=t1dAH3>'q`[dN`XaQHsm,D_p 0 UAe>BAXw.HcgL}yUUԗ7H5&-꒝ ɒPm.9ewISE}uC]IbDUK$'bșCΌŐ5#CF1 2ak9蘇8zU w@L "5-Ѭ{vz":=kEppɘ?ucgwzq@;fzzs\!{& yx3(xWG@WEeIڻ n-߻D#;}dy=yَ| Tz;Q4IAδ 3 E0C|",>%?ơ]vgզu̾;a5 $16H~Ӓ~Es: u0Y)ҙt` ??ÝnOd3? Gra|dU/FS2_d^.OSiFUB?}Z? N3qT2~GQOL O$\.dL'ezez eU.sπV>σ]ƞa"ƣ0^σ tf߸}!t .`C٩{KZ+kK[D_M؋~=Vϐi=3C蜲?:G6zMyLKM,U4$&b/0|OF0{yC{dLNa)կՔhlhjk$ɐ6e*v.E"7ke/nsLݢdA'8!Q' 92%>HpUkwk>xqK8|_8.[Kn+tPo>]c~^Ѧ3$L#"d _'b47 Z8~Os~RWyvlamN2A_{|st0vgW-vO':?{Xx۞ZA<(3vd*Ntwv%b؆7^bN-Eo<ikEltHpN 'k?ӅN`*lY3?l!R2B;GČ^4駧O "|}GiY8#t< ~']F&*?oxlzU4&2ږ{W}JBY݄Kjg@P^!>ЮxMb:UÈwVKL +SZisne}`yYG^(t9Hib0 Lw:PXRծ ʣTs1ΑX01Ŷ-3S!T]~ghl6~Y> ~{-]R499NgqjLLUf9958.Ew.mɠ-E+Au^#/F:P+-X[3^k> ьYb4*oL^,̖Eh(쪰 ͥAUH=sG=% WSm{WC_*csdBs u,4NAs=<݃) 6綒M7d?öm0U&V},\R8[%JDٚD9 mQ$ܖa Fs^". 0ѬBo# eQz#o,b.W{LAC#,))U*t4{+]9Rtaua JSof1azRj=4 vQˠ\v&!ziCChf@|ɾA+_ڶs0 y p>>p>E.Ae#\ɀIl@ ^0kCณ|(ndpS[ p͝ B0 {\Qv?r{}C@r()] OfFxBSB"| C5SZULXHtPVviH.+<'.Ȧ`~cl!KNuj?9KZ5ht-$gjt⵮f }@3R"UHG@?tjs*/껧 /2[+C[Y c-az5< A,?n5Vu%i GM R߄+yať@yVEWz@x* zg婊nbYbatzNR=$ȫU Lz 7A\xO>Gߨ?.6E?sl]0rmIl4E5DBܘr(t,L~"Wg9|ϽQ|F}b>7o) z4VVnE.DjcTʔYO_ m?J@.ѲlMFBJw=>tlkhIŊ턍)//--Ӹ~]Xp?SLH;2)wf[#Xk8gệ?O}'gT?e%FZ_Ւ>w5UT$[OAMBj'J'v%%gL@Lj)F|L=?_m'oce|ms_{5҆533~7 +yEQ{M[_7䑇Q]~G%\tJ?^o/r(<#jz>dm~+zZWKy UdAެSDS*r̈́_Q۪9%k]Nd֖"J? =1FIY Y6+%o.o-z;c,o{9_"oOg> p۲/y 7 _I:m;}_^ٟ`K_z!U?p\?zK;oK wj ?ڠ#^PwR^RaRB'2F+89ֿ P^4߽=¯Rp‚wN26L5h1Q[yi;yy[[Vcm^//wxA5?境^1_-׵O?µ彿yU'{gkm[>'←˷1~./ {oo/x3 m{g/)?OSx͟FjO{Y445\eU:n= #7eqsR֝vS7O*0t8'TTa}./ciNCY)5TWԴiI54U`OGSꔤr-=PZ6dQ.LJΪjQh^7eg͹ Ki9թm-lN/EC.5(Zsj=4\#b2Sz5+'\Ά&5tQ+HXhf%I~HS8NJg]\8+M^@qkN.lv֙ NEaLR],:Oyfl)lM(~ίm6hߋ5CCsϋhG9jѽw#_G&EmN#߀ ׄ|?6{sm':oBtoFM( P^>׌th>tQ?⻏ 1<ɅȧHu90u͒.`|N=WzT׆&7MHιw~:Z׺<$_#ş h6Izk/&9(~4Es)=9nDRڈ(G>T}.1ՓVSQ4ħmA:4Y>=B4q%>͡h9 _7nzu,ڬv}6+$#$䄄ܐ3$uk CBJ~H( !($ j|h_6m9>,cR~t?g;3\3]3]3]\.lwvϠ:gg: -Y4Z_=~}",.8ଳmhsJsgxk3g6ª%wU e٦Qbgm: k3nn:-:LщPfƸs[M5UV'gu>W#3mewRZtR{ڧ$hS4f,ALRIkWy>һ^8g6Jp0UOFUSa zi~#K^Z#HQ!Gx|tGl~#/9)L`zy++9auVlתzOw^2ͨOw˦|틍+jkIT$%-%]q%;+jjӦv8AbHR#4^T 㽢2زwnTTs4t-8/l DaaTJcߨ|6Q3hlzx5yq~3$џHAOX/kWdjLg@otZ [t.k-ԩ<13S ֱag2>K(~Q˶gyv]:_ z:#9eU~s'q(W|yu"FY1Ɣ(Ft x{2yIЙ|)`#{Y uJWs]IiWܼ03eYE6ua#"M 1".ňd[0)~ƀy$tJSAd@)IN`{%1ZtpJd6Ӗv}@y*yah >'usg oYqtwuդnWƔ^c/ |DV>&>4gPOc/q|ՍƂd:9J8򔨂@ghs||1ilq87cQQ^ON3Mwrҳ4iE-j:W=kGPr^uoݩVQ.u6E͛ʛ4 /gi.ӻ)ۮ#Zc9xQZϭ5y)ы+jkir}Eh:7j$Xw%ַԴ p|jGvtҫV騇]=O4R)l1Zw}5tC4*{h}K|OAz{{?a [+lotӝ)v 3Wvez;+,æ)Ҽ:ȁ觻mna9駸b3 cFn(2B-}88al=C*n`[sҳS&t]U(ښ]mZgÐ=]PO:0Y9;Gw0G;39[rZ]M,4U%5Bl;{OĈSXWF߼چ͚7尦n#ZP0(,_)"bYުĆVJ5.Tz1|9l/𥯞9gUC]$9IgCoU^ԭT*29Tl\PK}]Mg.1i^24U4P؜F+&Vֲxe?e*U4we

wP\MrfW%;U`~.YkWlpbTҢjHU[Wq"W+kg:%n9i̡X{e| Hqf=?/ B / { $/ v^@6;0n.~;0LL9Ч4wj=1q&%3$RG8(}cH_VnX7a6MZ*ݨ_w1I7rӬ*XG;}R꟪2=@ASR=PC>ѣ'x0x1`ę`f8)%6wGp5q'!&4$pn31| tMBc~F KXD:9 }Iu#]2r+^k!f#8b =tVnjtj´Y)?o)8*=A~kG< q2ou:ʷ uwd1hpLL-H,F,p7dlcn$v$w;PJL*ĩ8* wV߈n&On{Ю>u1i0ɼf"~`:^g|O݇8>Wy?{"؛tR:15zFտ갢ʻyI.z;|t1Ҿ%Gѿ,IL9һ])yy\LkW׈*̇D4xD#[OTGn)Wx1$g. {3A}Xșaf/ye|$_Ca^􊇘0tIkFKqV1YاKNgj~tVZ)4q8W\(`BE/+q>}ޤ啮]H/>f?5[r,I.4s_m1#c{, }!T>/3SÚQ~!r |v,Qsq9>'䗠ަ!ݥe?CR:4ol[UzxZ"Q:A^ZwRޕ`Aj&^%GMJ16{y8`YZFkMr2ƉEo:o}*o??V?K^q_)zAw{_6F`?Q(Ocڬҭԕ&L(l)(^St39,fvI4))F0:,kNKXH623$&Y]$[8~G]O4a%l0-(9`L~ۤI 啟|^rs}z9_K7~{[rݿBuJ!(SY4 $"/OdYZ%(Sty9JUuLOwV]F ?UǗmtJ_ѡUf9vcUFNo Xk`uEt#G?D̗~z FrXo}l/߰U=S-:As.ƋYcǔկ5|9jP?;voxLB.^S)[Sf9vuU麑>zJTAd抺DwԴ3.JuWR_TR2 t n`Gl+!6<\ڀ`v`#lpX6(ϠPΉD?ǶOAӶO%{^8'sLĮK؆f{0y5ѧ#MgC:7 ƽ Agu` ou=X:D 꿫ap^.2JEmvd]` @~ev4K\{EW$:eHǯno4| }3gj7Y,bf3e_]*}wG`VMSm]zeK[*$p_*DN@9}v__tG:S|Q ;.KW+cR>3nh;s F7EIhzM^as!|Pwp8 Ecf5EoGumduZ؛{vr-']I㍰ř ϶S> +8~XuD_ 9?Eʢ18鶒Bx4zKV}DDGdPnw ,˻BEone<#f oHpr&BѶZr?F}ǀ[m]hNn ZМl;7N˱8/4m3NEhM~#=E_5m %*A nWfS2:ed&d@s6Ӂ{mFIB96p#g'96(‹Y4Azw>ڨkLEwmw^)<%h.,U?~)<͕h7*j\ 5hw?z-*'1,T>6[zt^B4Gihi;Z퇻RmqwhzwmEMhnCswZWvuܳ$9β?kEv#o"PÂQeTnShVu&;6&նڥE sUK)6EA7H#q9Y65F]eϠ0gu0 a'00L !LgP '1Nf,` K2Xa%  NAatMg lfa™[28 A5 p6 ;* g'jbZ>`0oEϠYQy  m .1с+|*嫫@P,^kk\p#nzTp܌p;w2 Aݵx^bTp½ `'SG<QO!<b$gPg <\gB;FRDn[H-C:iުoPUe!-妆s+D~FB O+*jVM pJJNPjմ O`)h wZKMm8Lwڹ">8ܻ9LE4OG{)Zj埍nTKbVŴf4rE8/&<`!wX/8,aշʟ9&/ u5ATpd1, RStW;_;G|v$ ;7ܻU^9M{pvU u&ʧY3FNs jE-5迋m7S5}))yT;UG}"bHzʽނk>u+\H?ۃ(jߧRn}p$>ɡt-SZQdʺ+STپ q.Ons+]%'Lij7ŨΥ4C"it-oFK7oB ް~0WB2n~b#%-p8D|}X#D@B7~ߪSj>0}xќ8/~m}#t cWMe>U $A9?i>d:yG)8|L˟*۪=vH{.4 )4u `xCgϧ||lݗ'>{˲SnN}✖zsLZHΑ0չ_p ĜB_^!_?4SM?OHp ڶN!܅!>BQ߆d~R=ц6|]S>.AK|9/źݙu˼rI/u0A?MS JK  *7#2 Sg}VtG>:O+;']#GxcƂ1]{I?";>~Lz|"OkNׅ+4}M?d=UnonhjNl9XQWmMqHksX=dm\#~Pј䘪SM=U/^1lJi`LəKyuzA ^D4B<~Oɫ&o`syf93-/lF]6K:jBνx͋Q A>Ǡ7+u&(Git+QiwCZQL:e+s{k -o5{w[Tuwns+:Ktn3)f-ԃ|h9t&Wv!%옥c}jld,~xKzLkwiWc~'5zeRf9Gط|jb:MpP|}}-&lc~Co {pW:KA> Aw&Oia?x_F>G7Pִ}ȯ؊%˚*p&nĸ#&Ю Sςh%Uڑ(wN/Mӌ [l7bk #__`N%{$j0^'wtFRv)c6~)cy4beY,{;"K\WZ,JY*%1 Lzl5F QǗ˨~:n=LZz65>?!Ҥϖپ?hҺqmn1I)W+zics#[0cN~zAg? |z"lդ y/옼*M{1L{]Y9K}Jw)2?J423-qu'cg{=.£¾9Lf˶B1UBQU/ƶ.vO}H~SW:Tw~ʯ\^ ƺ#~$Uyds5ΔE;3/?@S4,> z3{,)MTx x]%LغsnHQGp./7nO qU>!yvɱ9ZgFm.BF|! SbHz7 I[jՌ_ ; +©L7S&"a(2 9^(O"(]LB}\n*߻Qe,}㩓'#&CƏۍ/Ndulam4:Tz2O{l!o순AtX;Yp"7Ac6'ǂ{w (5A-  4Τ(0Xryo#{s h>cS-P1Y~P' TZy_>]Oᅼϔ?%} CeƵo>2oI ͋l' ټ>Y@\ 2#=F%` ~ebrr&]g>84UYWP!L=Nu@6;ܺ0Jx|uItzA/yc_^hf!_5fzҢ">wQ^2$UDw07D΍$ea6+̌Lt,b:ͶO%t1&s8~mWE,e&ތ-ħF,}L4g~)pqDekf9M|qy{>O˸dR7Y͹h,F|vF\R4OAsy8=:fMk? {eh@^F^*yy kmwu?Ii!;^N*::DLv)ml"9-wP)7U+ަ6[oȞ5-x3+ *9 c>XVjꑶVP|GM}-=9}GezQLnӀ6] b4)}*ѮO-hg?Bm^_G@ 2d#!<_f:t. N/(y)tzY9}V6Wjs ^C+MXL_ߘ8[h+Ո8Px*WzPu@3~$)G1r]b!G?p' 'Pil+ߩ <.Yٺe2I^pҎtE 8 'UIc"͎˜ʏT穲Rwh?}h6G}$ܾSݍ[c6chޮ ĕOŸ e8m+pvcfEAo$Ǡt t+Ѽ#:Dx8eږ1 MuGuWtփ[1TNG?z h~@j{%"~ZGP2_p?sc|92i݁@f^8-XYP%=#C2rI/iF.?Wt%(OIK7ѿHohtI/LooC(f%*J}Х*n?3.\Qɾj+i>JP=Kc8rpps!NA5<ӞbO./#f~ ~R:ЎmLԿ y@憓{ėҷ0sٍ|i< z72mQZ_1pZambHW-}h"=Nz+o1c'rL (I+)rC`*^ߦ~g|KGVp4?dQ ڨz&@+G.* `(D㨢v}4='Q(p.Ѽv4N.hV@5Wui^*iY + F`!a08 71`@&lsNb@M9 F0'>r8E>p %Kî+*`IUiMklF8a >W *EPtjg0hEP-Ap>!2hC8Gv)e3:J*74ڀp55 +nbTo܀p YϒIa2_ngp+Hޏ Gg@2 $|ikP '~>K_3MH?Gx:F7`Vmw|mDWpaIX +9xZ ~ ᤠ ".DP hv Y?sl,9u]{2NDy#ƥ*|6UɦƸe^]~XjlX*cWS)`j,i dEs2(ZGC =bYjq஀8KrO{a2HC*ppw_!@D jֶ1V ьPgxNDZQhNCS&xNd8<eߔ?T<㭾W1qBv1-'M6)/D%ǻ9c퟊R2_z e嵂Q!VjAFVoBp6'oAK6s{#3=erbO\/'54w&OaKy':#>v?S[v˴4G)#vlbhS-_}2ݑ7irY &-1?.t'Aq[_FL_8=34}?'$}ԙk0 4\a<|AeA񟑲;>qMCKIUCSSdgCSɪڊĚ-u޵&Q2O P00guAI4_/_-t>",܇Lnxfx{$Ku/4 R  4n]QbQ f|Q*do W יf=$'iݬM~@tzYt3&ړKFaz3d3SzAFi*v^$/ :- } /_IŐ_}a(./ ~Y& Lgzï]VsO~mjAVӛ+"vBNu&I_VN/Ыx';+g"=֡|SWR{{cEKK^GlINL3_3?.U{2 ?˿/= ;-* s_6x2l/5Jv͊:SL) P,0foGGcH+'ь ]ko$ə[~Ϗ _}1p XG VK<4 E:R|HՑY+RoNmAFD[AԠGH/`g[/r]o+t5{vN)8eE%K[VITR+ S;>>[ jA&Fg>Xt<:Pa}7{N^U NrGe4E432/b*654U'S]RRr RRSXKԷ$ĬSoҴL=u5 6"[X3Gl@x.Ӧ \(6U2 KlUM+wucjaX'BKl=*  el2:tٮxgP.f}E83E2Y^ٱTz~z&g FU.>`6'3,dzD0 ^ _ПubT`?N-i=>!aZK(~)&}`Zض;WhXh-!ݘt9}C.&O>d" Rc@IҬD>B_^ORD8 GP3(f0wc0a; S.2:4(MAv:OGs~ @vτ}`F5sgZ̹Beec9h΅6*D=pxQkoܳМjDIy1/~@||=/6_& ?'xn =rA @w,iELCɷdGY눙2?z^f.}  <ͥh.DW[L՞3K/(pQg,ҤaEgm>`t޼@iș}Bzf;PW٢~ԲҶS{הj=As} 0?pl#4_F*4LtueMTvLgD޶U?*D}qT":LDuzHY_ pb"|QX]O+E T 0=Apc0 A0d! {·!CƲ8%` h toOd00#2 =1e.FѼ $ n # ~R~p!ꅤ#B>~υKZ+kǎƾCa+Y}'l_|gtNՏQui2%>D;?hv+w(wNs 諾NpZU۱ Uݧv~(p1WmR1OYӜH 3A7ܝS95D ex3aoJ(7x o4ancDq,X7NM`xw"ÛND̍vPMfnSa*KsFm܆ .s4wfU^zD4 HC_4!^[*!|^3ň,A!ujKƵhL3P̼naWy#S}$ scWl8-gG.ٶda!pӦl{n[D6FlO LIMlZ)ޠp'w3tܱ @[[(ؙf}l{_ Z-bE 71b A 3܍6Oˤi2-l UVp.+=%>Qh'x^iSq5F PzxMw͖:TK jn^@˱}P@?_1/eH7n7|K8ovޚ`[ʀKf#ȥ`AKsNb@4NF~ (Y%B2X =@S(K%8+LefSx2Le̊0g*3^t. P:^MV8.PǁzC@,phU]MI" ;\SkaKC]MU3-(dxѠ~f6/>MS4]j1ez: u z\-=;ܴQUڨ4ڎ| T^-R[:xQ:DK1 `s<3ݎcn Hp/ PA_RP' wi/֩ $1O{m*MK!騿2L4gg0Hg6Qm~.; e擑(\ʙBt[}!#)H/e2/AYUTpZi%OCs=SMhNn ֚۠&; 霍t2YIG˜*?*+}1l<7&p, [0NJ]oo|uHiJ09Oi(ҴAiS~5L&j1- +^xr}~y=r@ ༤{0 Q E[#~Wu%BJ˄>H{V M:Q,(5Ih\4~n Azq1lmmVTn@6&=tsgR9{ O՛w~|tFE{=p{c扇a;-bst.t$S0;AJ G>2=2< s3I) ˃rWmʣ=v[\>v{( v4_D_x=v+D$~ %WWMs)m {C/ӊr O2:Ql'6jth0&Y/2=/6`DY C#s=2wE&؝ǔWnjJ464T5{HeRH[{8*+lY+$~ׄ/ €v)чףf~bFڥetǥO+b o%*ƕ$vTW%K]:qMIDӸښ斓zyȥ=oHĞMl7NGl0eDIĮڊw 5RQMsEa.A6TU$TM&SS[[RHjaOyb> i?%(zctzrXcRt|ĢsCֻp eFȧ`ԅNtmMiO*s"dD~e$MR8Cx4,MߒStT_vG-\!NKR0DI. vT3#ȩg_m_uEt47p'oH&NɞݴaWJY'@I]CuM5Oj2$}* :5 fm+ȓ :vy\џ6Rܬ!>Mm|0~[>oGj#Ի__gQp;.㢀8.LKt9`hO^԰6%FCShךo)g2?QJٚEm{Mr.7:my++ |نeN=0frB&L/0պoGKmD@(k̊_㛏#"~Ù_!/Sz_ɋ*ϑu=tݿ?kuf:6!u0ӑg|l6ӑ|i3,,-f:yv.z/jrzɊ\JVGiK{gho[Y`*͊|UJ#B ZXIsTY6aOg:5*_>jxTt5zsDs)c0<);2DW < y/ 3„-vZ<3S qkNgxQ/va/К!Nxp2!{o5+ﳣu |}A;R lsp>GQɿ#r7 Z8~R恾_Wyvlp%1I6|St c WuPOr0]{mO GI㏁tzәhw%*N#tr%b77^bN-EoO"[b vyg VS7TS2oX`a1GČ^4駧O "?("uQZΈ)Asi[r72Q^t(hLd)̽> ΀z|t>JFZbʟXXҪO/w@>#v5G  tAGOɹvT۞ChЗ"AVg8AWC@UFlzjVk\F4O`b{Mƹjmw{:ö;W9mȮV.[peHlAs(ek,4y.Dp[%<z-X«hVYihe5]eQz#o,b.W{LAM7LB=m/T]ʑZ_S>7g~A/ ;/ZkB1yF0F#APer !Dp{@~QdS"LcP0#JEh 0X$@a,a/DR5 N[P}3> BTY gM@y+`WaE j eax9g.x6>fė"mk8~B;b\ 88E |" \2d@$ 6 \P/jHs̯ 8d Vats'>p7<"|πd@ng'7 d|AW>%xgF_`,CO]&_"r Jw0=&qip ]2("U}boGnS/).БgH|KHE[5;Ō-KF^'uaX}D[)S,'I;_[ce{ ynm33[zxj[3"Ǚ0z~ r4s3,@+/(K>p [kay?d ?z>viC?9|IBWNG[?z,H_iwŶxT*lįSiS &^GvWvңL/61خLWCtwmNgePg^;gT[ ΙTwmz=P}TOPm>(}}:>+3gn뱳vula(ovjYL9xAG*R_/ަM}yd`We1xi0){o3>dAp_9/!Ak'` ȅcu6b7c\_xih%ܵ)e߁t\ pZa^a+U11L,ϣ 9Y$2~m-MUP)W^UXTمt Gi2GOw~Nz-,n7.6U q.^1̫XYgYlx!8&]FAP 2( '=XY=}5뵼u]Iu#:7n?(v}x RmfX nUOuhHTaw$oEXK KU/^1d';9+Zj"0Kc 'MYSGloQWd)-nQh 4Y(4G2q, hA49R4МL4g99hE$4ad4磹r4dB/D"/Bb/F/A)h?KѾо Ѿ+оTD;vо ѾkоkѾо.&hio矯;Iw? Ѥtt@BDGKz&/BҋFz$Iēqi-7 z Lt?Npg7#9*W)SI93ʇ_)P~|GN4czNAN1c8C9.֓ SW}SL@_P {'?E݃O;X:]zw7t(Oh=#xH@,Ga=; 7~ / e4ZI;)d擷} *N^|+\>*q&46 n =F!vz~3hNCS̯ߌ,RoMZQG[1[rffrf߰gA$`0CSLeY-M1f*'Tb/vķa n=@[tK3`JݸN>PN~ekY)dX{>{ ;q*{5!t^p)wmTG%KHv~JCLHg4ovtr,Sq8;5}`3OQ9` :%Mik&~bj+n R?SQ01R]4qݳ9rnsmCcek}JJv7^dP_T&}W%yGT<*]3-vAA|tb'}NoDr]3%!M-|cCСxOOÔEB?\3HdbWy✁ ^yYXiI|hځ_*kšLsACzC\ԇ9߭ ˜8}0i?>w*GܓwrTQY?p+1y쉕HăݹI;v@<"]TSi=̚?m;62RmUvJdiZ{,X), |dF%͊oߩ5"Z._/_=?}.*;+yepn.o?_~ͦ'5vW<~şhdUzo}Mob .Q#ƽٯ-}=YWk3x.Ο=yow? o+O|fv<'m{.߾ߥb<~ުs?p2/E?i tsRh?NGǮlcW^xSwC'ż{sNi[=Njf粢x^+^GO\/Yw/yݽ}.k?leݍ/-Pp{WO<7~s.G1utbbVbt/FdkT%Z!o4%?){. WU=^[}juS˯}g _S7]f}.jՒ_6xGw~5a&dY5*9E{1S}'{Չ?a>sm{?zyE׽xS?te}z1[N-uC5zoد.=չ?LJqu/^ջ\{m/~lı{C'?l>3ӹ=|7\b+7} oCuƋ]i~|:7^-7F9߹O?|[{Kw1:?ɿ֨(u*^wUE1G9,7EcG1etKCޏRVdI;_ ,㏠p>ʍitD%7x; -rc2"5mS=n/8/)@")D~3kq(sXi-p0'&[*~+GEo#A|pv7_)<}ȃ^-/7ІNߓ10go#LZtc[.>O%mnt)J{Ilⳣ;1'qLF4(u 6c?qT$ҿ'w?KA^,X&+*lhe{297Tx}gzoi#`\ %Ðc|%R+3"*x`"A(n<lJg_ ny8콅Gi };rlo72:y9~L ~NNJʉBAP*D¡O +ȤkaAUuWP]LGa<^ S1å7^T

r'fߒbV0kŌ=fm%ҿQ~[} z/l#S/zb2-v8.T,ͻZ('uu]Swg)f?FM[҉w]Dލlxu?:3QWՏt<;W+)M:, |=۟A<= (,nv;P#t!'t!!Zׯ2sD?۾(U&3Av/!Ӏi5iCȈ1YHD׏N* :Q(!mjd.+z ϷØG;}sG0K CqN=I>Ϡx;pàA^Ap ??*20$*`!@m,SxI #\IA</`1 9N8&Bz 鱱4G} *7-)<}kN]u@z;q#KԖJp:'I #mub,x86፩Q( I&wޚ}Dmπy',Ҡh-j#Y ׯr'2Ux(K;h˧2U nIsqr (=y+ [An?зn1yׁ{ K8( aRȗf2J.Y6"T>GS>J: Y> / SN=wHbyTsHi'Q47V45'4$&6șWkc&JeNWug&\!K`y^ڡ(vZF4L9&IDw3vgWJ%K4,#WQ=J^ 䔳hT45i17z&> @_ԧ2ێz$5+Oзu]k_۠6nOJ]cPZK{1pt(2A3c}̦91?bӧ9_ӝR|tf9_9ΗãQ(ux:76F෿oL~F|fYhA=ҖWALiM5"77P^`Z+}ny 7w]$Ejzv]< x c},%q },e>Vǩ E."aEX",vK\%.).).).RaEX",s].raEX"""zRU߹6͎v?xpDcl Oru6{`ψψ{d >= _zA^ٵO';GcL6aO ])vg_;wkڱ~]סM 2zѶjko5Wcx[{v'z"*CD[7 JwLrm9Qus!5{M\vG?m݉ʷ _}'ćp0^rl+w:K&]1]|I/x6׳)Qe7םtu6 Lp1Ult5<ëKfp̎o6 +kO46kj&СoaMkFvQ:a1Xv_RYRz)抺Z F vDhtvU67Tԃ;`T'[jZ0|U-C6dؤFc Movn|6"*IM 4ҰsgsrFVs5vf7 {$DuŽdgE]M U[S`ͺDuMUK*iѡ9kvs29yd5 \SO7Aק1H릖ُ9>Z{ lڇ#=.YZ99 ,kJʒ 5c|˂:7)t;?`XnhҾhÄ[\I8,Zl +LN}✖z?Wm?7!].6G]Ź5-N&lJ81VD)Y"6m/f?7 ;r"AߪwڙZuq$r~$]JH?JKV8 W۸zRBKDN'd=ѢϪPf!-NG0^zߥaUQ=JR>>KUxACSa>q io :t( yо\ wiǩ=rde/ V^7N RҡnQ 'd:aG=E>dڗ"@]ݳCB:ET2}z !JRBZQ|n?Cˮ̵% d0 4gaE`aexe !c.UcW/vʋLV$KE^힢U]](FTЎ1;Üp%'* DƋ6]]NbT[2}$ oA)䢐02πg!SEjEP " 0_ƣ W;WHq2iwTXͻHkEm}$Ĩ.m !ki"2>qH]@B :<y f W1P ?m#"`4ԀcXΠG4dЕ#ٚ/Y -]U'2:c:k) dV/3|or{7 xQۏʼnݝ7[Oq9f ; 'c.Lx._74f=<\.YԻCopCh΀7,l;IWt~L`WY웢59m !Eԕꢟߡ,HuJT(3R'<^cȂ Ǘg|O>4Ril:aNG!_n/a[SEm,;V{jLjϘ'R۾JZJ$ZJj2u5GdgC6T'jKΩi]TQ_PWع3Q<.ruŐ3CF1dȐQ sb!cN4:!c<=^qp3&¬HMK!d4+55NZeݰ=p2rg݃XYu%D#(.mz g t@q|P{,:**/l=Oޥm`wk%߹'{v-hc8 zOf.hb$&B;B2 8#3ݎcn pvPAQW=סN~ 3"pD*Ndt'' l*MK!騿2L4gg0Hg6Qb=ba8EZ4|GW",Jňw _KKPIy*`ߤ"\r^!AƵHG機^aG7 !& [ۘonpmM{Τs@o7Vqһ]nzvZ;']A=2=2}ez ex"r!g:)ӓ(S(@G?v{$|2 Q0hz~W3S a[tAw?2N؛Xz_oik= u _"_?3$dfdt̐9:쯨Nđ^cGR wM8ɟ/= ߓ5Lh䅡a:9;"SEoɔ M-5uR;ҦLC⺨SfL:^'L _dX^ʯ?gK߂S L&ރu74%Jpf.\RݐSu{ɸƊ{Ki\ImMsQ$qv )G6ztE5 --%M]M%4j&dR]Ry:e^ +0M?RK|6*>',imhIfz7M.92r]DNhhPH)Aӓ=ÒXkؖw=cf >ioDFȴE' :aǙt> ?u'fω/F$=HMhei-[|8jY qh/z J'E 6(^gI Syό Ÿ046*lC<Ү+̤9;yC6uÎX$OY'^xyC\m3öimIDh Qu9aW!ҁP טsV7.ՎYpi*i-Cfs$F?]K,?v%+7鲒uf:6-/:g&,f: KL3aal1ӹͳ;vQ\lKVŸT8JK^;;@{"hϹ42Pv"_술BVUmV2uIdu&WRTWz4L ΀C:}?/e]t$h!VƋ,p/E򲊏ؽ2Pr*`* t )-hn%zlp6(n˰gCBe ThVYiheղD=`ۑ7\1{ܫRYԡp{Ô*NBN:LQ]|Ee:m<3xb 3 }?{-Z~>+ὀ_3.鑲#Ch1G0!$0ND5` Ti Jf@)sd(7"s,AXK,g|` r`#`3d`lcBB%zV#pi(o% = ȷAQ'S ) 0<> 0 Eg<"a Ňj#5|~?ʱm==jӐ+]V~yHO\tM/1FC~,s!BknB[Ik]B jf,!"E?ӫ6G<T^wO_2Je(u:VF*;_Xh.F|~|GceVB69z-LŏLٟq۝T*-֔hh$ԬD~CCG[暺ڊ-PNؘRlN|ǿ|{\Vn|/!в +""<+|P${ǶSg]k@?Kq/_hb(;[Z)B]M5oPS"]DPUSTUkM_YroU$$D&:tދi*`0n{%q4I;)N7ljcnnnݾ; ;3oowggfg{e៎1k; N8/j{ɇ2ߺgGw`K{;`O9M{.>s 5*PFU\{'l⬿:vjUR3>qƲʀYmxfli8+3؊nCkVѩUimr !Evչ2ʣe6ZWVfI^Y LV&h3 e .<}+cb-w:%t[f'Svk_ûzv?NW3RW0O\/%{Wٍ{ߚF~S>gB5Gާwn؏ٴb+,}S~sOZu;[-|QHvf3u♭gp6}ƕ?; Bz'Uٓv.>}7zŘwlxs[O}!۳/z?>O\˟g`sոKߊz8߿:푯.-:{Ӧ]PѬ-{j٪Ϝv)l墷26~ulO=Ց,?#5_oR\3mt3g\C_\[+.upB#Vx[LHK)'SÑ(.jkM#%k6dYP(, 5l% \2GDךKG3 k,b[E܉R+C>AE3ߢm-ȳE??ʽt"i/x/61~%hSox| QEנI|Hn 4`\|$ -5/cũc<|zi?CXG&bN`J7Ǟ~{VZ@d@K3tA3c}̦91>ԱԡԑœD=r#G9P:0ԉ ufCCP:8ɡN=]6|ta0A pf83La0A vf;9a0A u9y|a0Rrjx=HNsnl8beM1f#,-Ɩ\ *2([T鷆GU@ǘ/k@ V*w#`EH~mS^բ6R]nf{v{s.\K Ψ+T%+Cbg:$+;n|ҍ +GZ bzXUIQmpU9 Yn:&Y)  g6R̶:kAZD{cЌbJuEHE_i(gEzFbu#tg+%=>[4- VZWZ~ypgʤet%TIJ VVd8'= 3Ja!cPV3V8ʎߨhJx#] r0wgyH5zGk-i*R+'7\+ܒW1_xYK'Hi[NN鶦K0YR4i eVm++v7 eY FnpGg%Hq!%Gz9ɂ ".tqi` Ayђr-;Xt8#~I;G|ߕ2O0 $A~*,>ФגP p崀m9 tPDG4mDH!dݟ^݇HgubSpt+s0"H=E=Mh9sKYe呪 6永|%_laͨ,a'SbY2Gy+pp{ܧpخdydEmu}R\?tSn[qhǩQQf7{oU),2;JNۡ5T6{|HbՑe\nZ]6ְɍhI.ՑNnb]%6+mE iP^T$K^,n:r5%$g.ȱ UlcTZ[ wRn++/_h#3ѷ|$nV-҆"Jf k K8bM @{mKۖн%|ے|RmKG.>mvCU67uZ͡妫O]ϚBYK`ϥGoz%'ccW4a G}woByJhOJS(QZ1Td#mC}\䓃a3z|}htF]g Lt֛Em f<{ a;q3YG.G)WƠ9ÏfA;n;!O?񃰴E"pnMOU֍וvP|+*Stw!N!סwGyFS11\=7ȻΉQsNz8ۏ򝢜|t*>i韉Fzg1z :!o|Y\L󔓯!"2""]\qz`_|rUHj b ~rꯛUo{#Ҿ%|;-w17nwNԏc|oC{E|SV}w5󀲮6|È7h&|wxH}zCDI} N04DwCP5%8n &%MgD:舭RR/(؆j 5@~ |Fq>KoRn啮MH/>'H 7k!eaIE/t<$Yڪ@yLU)AMt1?cE:=d0U![i;]T'>|rt]g,} }V[a~p/LЦz=j>st)A0e?Gi\۩y>E3+e [\K> A~I4_ZW>]j͓o)m+/W[%cBэ??~'m/慭Qb)?ύ?5^'OW_?zwS|Murw˽PCt/+Ps!_ˍ _'Gon츞??Z}4qHy/:J˼#_.n?V^q_!WJ!J6Kt+u女z9WI9W'p7q^AsOya.1Fʻu^8(m#eZ_/ʿ>qz/=o}Nc_;a?pv;*æ.^Y_*yxYuw4r;R\Y/'p4oT7 h&!oNS)[n"ۚmqu|u)VMŬ5Qs͜qQJBÉ>,#*q.R*pq|7HM=ɮ,{?r{r$.m@0p;T{r6OCQD?ݲGaҲ {f0qdKRنf.tGc>>ȏ4H'q M6WtDOqw<6C)n1_ljcSlVJ& KIRb3Qn(N: 7oxl8 <'t@LeZ1,Q=bcy·rgҕۋ0kJj˳D K4et_W~ j'¤k a"oj}hӃ$3~DASQ^uu ?-e48H\[U$:_(_T9 Y CB{}V@(|3iǶO^,yqkkN"\~ _an_a'jkakQrov3_99r"H@9)Nl GJ|я6G7E~y ݽ/qzOn=z˳eDX1Q&i` 12'?1]BϘ[0ɕ׮]o_dy!j(Y, IggN8~aiK&Gl9&'!~ j~Kd ej7eԟ}\1J(K~6?)38z6U9N({*~<}fI87h5++6]7$w3WWC3~t؜}u(Z7ј."Q]uQ>yw)4췳KAA'Wne';'18~XruۉA %a̼Kn- f7^~" )w$mL'2)dz=p ~w.㑏m7*xS 1r_B},2KO9uv` `+ 5ap˾C9/\FZnkwhB6S Ї=sa 1SSH7Rˮh{)A~nc22V%As<Ӂ}eH*9cI56Z檣962p#13cќ 7h9*\;]>ZkL;ͲoBs&3, &w1Of\4磹yɟ`_dK2V_G QEdƳśJ_JYR.-Qp6U w;E8㮳Ⱦ͍hnwf^F"^N$9[7YzXț _aA4\2,W4QgE & )6A'H#+jtSdi } M4|R r@^=Bà0#D`t0Jx`8t%  Le`E" <&",FX`V2X85 @Xal lF؂Pa@8[ } (!J|n5{' U]'2U.Fs(_`Y{I=*jQ O;kLK5Em! C{!oEN@Tn0{V݄%,ں-H*g{ ݔ,斃nFy4""4U`0-9^rSF?~*P9SO)13Yx }2y\~nG|lɢcXStb/*+,G|ۋ+\!,rI9wB>>iE _gt!>7O8I9Eb4KP[,y<ċ6ʙ-e;VQ|[2GDƩ*ވÂ{ 砽훔^3p>"@PnhG(?n'+gIʹ&rK[^1>l>q2TP@38'*Ά\n#ʹ}r'LiRΥ4:_9".it++[o/UzxM7weܢ;qPG ep*8g+D|}˔p<셲_2_2_ VF]\;{hG>hNA;nmͨ#t26.2.ߍx^Ǧ,wɭ] #Bo[w aeh7tLGS)mC+! ﻈ8O`O I FoHu@LW>gCyxNy ~Esgq7Oe!D#$FRP:+a(m#ՒHSνI<컚%Qh= ?12YGe2ck?bA)wr*)+U|34>Sq$?S*^iqy'o5R_zևJ(@4ti{cMDyJV5>|me}tr1>]zE&Hچ 6D!~NB;m-s',sE} KD=ywO8 OuNmtwwf^P'1 wt);M])P*&?/hJt W]gI*9I)m*OgcX_Ago못}cUCʧM$ tIin/wz+rHǕ>}DJn|~_!|?=$J.z=lU!@?AY:=R|"̏k+qƿ@{ʩ-߲&t_Qy6!adB'瓺rt1\c"jGVoT?dE5uUjd]ڍTڴ 7M/;%W"?ڍOīF/r,LQ4nyV5_^5!^(}ItްD>A7)!u&(GqqWwL4}3lJ_L^ /ץ{wEX3޹Mtf\SXP6͢9J[sUAwߤ<ގV= 9v :fiX%h4@&4&Aot4I> Vqx#*EJG~c^m'߹nzqo1-s__<> _V(m~Zt__!õA,J#FW@Oi(kY8ez7Pi{'ڐ_b+RfΩ.™5iv]b^K-ʆ@9zzr2!75_wE/aN%${=(ou$oN4ꐲKp>HKG#:YveUʲ!.Q|e)r\5VeDnGiV)[Nhr~5j:-݅~k|r|z^wKTKq_loi~\:kr#SvGyX3)L'?yo^JyO_ҦP:5|^Ip;E8٪I =a')7a\7OJe(er~)ʿ3az 7љ*)-<wY%_CB? yC1O<${]zǰzѶuIЇ{CS>uupۚTJ[w^/7xu򞣑7{@=6nmL͟dב&#aA^eEF^үnI_aܓ.IV]mI.QaGYZJO%g7 ޷$9_ޟ^iP<.P z3Y-̷I+u] nb>kwyx^xHص󯒟o=ղW]Y{XS<·kuօk\zNC}$|-j/r}ep)`xNȣ; fv(kwrA] Eyy\nj'sX\W*3'-V0<2W Gq ލOn|q8aO6͍ԓ@_>I? <H:-@'Qi`zG/61,u^]/PZV&ʫgj?MqNqQqb:Ҳ ((c Gqk5,@wtH9F'WK{)4v&g 8cc )izk [4e)<-MwZWJmX7͉hhZ| >ќfw'hDs6МLv{toﰦk^;yhȋ\h/#/FsnTOaF7̲_jeYGklG/zu~%˙n xll-@s%դhc;Qhc~t͵"?;S߬Sg99lhq]xTg7}C0j8~2܈kfn; -^&r/7) شϴF^#餱@I&_xY;^R&ԋnލmMr/P@<vjC^f510^RMס^%MNyA:3EsZ^u!27URΣWMQN!{ִ<ճN < rf@NQCy ikŷr7sd=z 2IOJF*4dG!yk)S)hdQ[r櫼@#f~ ~R:Ўu.Zyhz'K5&mX+9ȗ3iݟkm8L^k+ ˲*v^Vy{[1+WN美F~qPhZv8\W` NB9G2%L^c' |ȱAMDGw~copiz.XiTaYU!ڤ`h8]gp{~q]ب(cp>J v1Y%%7[ae [;Yx\^9x楒f)xI#"/ `Kz2  P ! M:1307'0y22dS L}`î> !"eIX`Y`5k"c62 @t6v"2r Jxu`aS5pt3d@u (9ӯ@i¹ K\+.aTo$*W(}.epe d=KGJU d8?dp9HndG&[LdA];1V!>@ꚇaxO <=$ 1x $7f;df>3x1O?|>//"'W ,'MRr@k!= ~]?pbmZ :H.MKU)XGX{u%}i}cq(TqϦl0ܳWЏVCac#cA<+k :j;`,iuR΅@72l(_W,)g嬀v%G(kva20ạ`]g88lp+ xe<8S_6i CF9yg:9bX+g1 uRzW oBǠ~!Js)68LD InSnHkҚ8 XGwB"bi@:,ø@3 !!=܀aW"RNf!Xd kj:M\~[,[;VڊݎxPRq,GXy B4tjЬET :0qm/{ ;XN{gq;u_;;LK~.2>bj/vh/ٲܴ)|#M.K/w|d+{9JqO7 wnWeDya{QO;NߕWyGUPSSC ~h.wȢDYnn',9cY\Y_\Y])ZY8b]λF*j\jVuWڢ)?$Q{ZwW  wN-Ҋ˔g6GMQRA/ 'U(#`Smui٦Ee[KJ+R!}~t)}5_$몌z=\"Y$/: !zq AW (Hܳ0\zu=+4Bi끃 s ɖ /_IP@B/kh!a?/$G:?|x~ES x7I ʿJ$M<Q8n:ϊp SBSO:&*T!T VVjnk@Y*mCzgIHP9 .48 'K2, ѣ/`c[/(}:Qs7xKnNEefήXeGVZQ/ ޟdboEn~E{DcIJyxHþ҈w (K4^ X! Ѡ~A27'd^^PY]0_I~EemHm~iyUYbf-4ʎۗigQL9 +ΥVuܾ.{msڡ~ӵ=I!{rұ0zM^8|l``1hvܿKxUd,8~MuA3ͮ'_74ž p@GɊ]pDv$13ʹ٧7Ƨ/~_CiE>YT)'Ki>5_,ͷxR 4mLI?m=J^h"ijJj}}Dzۏ @?YߗPIHUX`3(h ͑i>і >Vg `(hi1 P薆&9QOQ!jY3gzdFԞW#oM}yJе17%^|0 #C{C?3ղ?Oxk!d&{|5zbc|L)(+yn)B4Mu9/#/`OCsќtй: 7poae +| G49 tY&vК6*/tf|<BKԟZXa2p/?'b4X@|ͻ|-סkh9hA˔tue&]-$ur$ c>8%+cV|5g!'Rj4nV P3s:}ZlҤHGÍ<tWÐ z|4!;tCL0 t/`>/}F!0 =f0F U߅ !`00u1`1R5@W2X@Z &!l`Q.a3B%>E6`g@TmW22@{L[$$tTz^iB~!d@~18s\@_p\ h \G ua/$p IH-,Ro?5~Ň]!X|¾=1PW/'hMUn%Y}vٱֈJ9 U9Sv,QePnVN?}h+)ksa:(gTrvNux^W]dx=^z1/?Ogx 7 xC`7:17A5 GL,!mܺ .s``Fʝ1i@CAc2kSd)5Sk:8LtPSuefcnx4}: N= "c! aQ~].Oqo 䯓3U˩p9㧹 b;H] d'v y۠wG[&j$]ؘßb#aeq8ĸCb<Znч]{µՇ ҇{Ee%]5:kזõ)bڃn>pJ+y$@ު e Co@{d`nlMQg%{e-,([rOWB^ZܴeOwۦ̈́hC9-U5SRVp{rc_;a5LXwBlZ[ܭ(Xf}칖-s b}@+%o)LGT0L&uSm0{p O[&^hFo|!b|yO0~! (f~-<)gޒ:ҔR-\E[i M-ǶM9r8L8^ p^x}4h\jvx5hF2] hOo^ 7A. Z08Q^"Pſ*q!7tBx zCЕy te ӕ+3p<]+uMiojЮmg9/և:FY߭E7BA㛪)Z?ISA:mjJ+M,/-Q`" ^v4ٶ^5V0}є)ML,RnQ>t*j#=B9s9[L 4ڄ, ~W1Az9Ў!Zeʹ@.q Y& nv s뮉O[׃'_9RTݤ_u"-Ce: n;M7}FȨ_;9 7u0q1tm{OOp|,Ҝ~S3ѯMCGb7 AL(+1SH/pKK1<qWNTY۠>R֚G:# LVylVV^w0~,Fr^s; ǰ \[Vcwȷ"Ұi!M)T&4_+5"MDV4/4iZ-ZMR@V΅'{0<둽BP'FeC)};e<؏4OS9d>]>ԁ =g} YBt~ ܨ߫ʿ !ה~hH"q8lr`l ˕LpLk.8^塛k2OPv޼N97zw-;npVە'DHKʱ>r/>L{0GlVM|dzezezex8L!ӣ1,.m *=(<2Qg1ѕ< y/3 vP΁86;y6:4w" pN;xa/a/RN>f.9d7 Ajtώ/U#u;=۲ g)H;*!W#r{G;K?YE|3{?OŧvcW \s|~vG=HWt]lW[A](3nKj!NݕG~iJo쟐=߲J^*\>襒^O?zn52R}>Vy'AV*^P*hV|Y|W2f jI?-~R/"R e&.#JW1Ѧ|L2&H^Rr_R]~%]|xGkD?2oOH&_7hNP^ќ߶\mGmb?Qr&#+>UP߶lnq9S|C9 MB4g ʓ=y1S%pH'^/B~P&0(t10a$1 ]߹)(tm}`&~%Z~b-F+`iX`UX)0l@g"%*(oElK;o'2 py^+,MpNgp™g3 }L+Ap@ſ9cw  .i\p.f@W!\Zy71 [m w"܍X= ~M_ a$GxXcQօ0O"| a/?:w$ _}9JUwVʹ&q2l:*BCVΒ~p!.1+M>GYmjOUya|.БgH|Ím7$o HinT/ĭI]"V''-iyWi/';澶HJo/94 ?f6p!fD"û >Hw?<гo_ч .wy8ћd50YaKr(rioPQW3z`[-8hd<fEOs@Tx'ϐ.OCψh-)'a:`<k$?V/G92ccmuQql#f "+Rd/D* NBb IAϧ '{6:M#Rn`qtVb+VJa̼x6]/Dh؛8x'q:8`MWqX1ka7޳!8F͸FF!FФQ}\oڮOǻc`@]m8Qek|IDoAoy~[0rE3빺i{zy]PϏy !`ЍA~cA#HSY,(/s =?}C36u*Vff.vI( B~Q(4=rQL_mdIiY )po{nv.38/c*{&}"g L(┍Sγr qz)q¸[uKa} LHKӪ/܎Rۓݙ%3.T[se垾MV.jK=i*0X~/Q?Lԯ4#`vFhFips ăp4G9 4G9ͱhCs<М$4y,SМf!&9 >3>3>> >s>s>>>  ~ܜ~&~F }xUǫ;^jW}U yUȫC^%jWzU$&\EQ(.$?M$C2o 6+>B9!t,U{ ]q[x˷>ֺ·~ݿV G'JpN̠8x;rOwmxwqx7wuxwwyrX]] ]!]"*wSY.ؒ~߲/!.5 c,[L7@6 >P& mQb(cL@Pf&ZP6Z)P(syp@[Y ';NN^N{e89&֒uRΐtGu|S]Gݕ{J ~+k6\}7Z\LwIwhC5< ![兠򑆇}E,@.=- 0^k Ǻ+į-pv}>G%fcFIw¦iɊN{'kk\/hBi{]wZ=C9G[(&h% -blW?>#?aqCrE..@~mIiJǘ{Ϻ)g_Ȕ0~1dYY2嬍,l߬,liǥ,l߬,l߬,l߬,l߬HGeYSjzƷ` &K?+ v&c돰5s{ݚ;v^O X21{d?!4<垂z +F(N1: a1LoHvD^{#1 ӣ#y~S:u]ɊFvC>R֮\ %ϸ0A>#r1 0~rDO ~^'GzŃOy B|7у4[DjO)uy<fW.d6*ԐbG<$z.PCDh&.t]?#4ӉFa:'K.M7!/U ;3(ho))·xr"؏v]Æcd2Ғ8X0퉥^, C ^hK5I|H/XI#..ю3] [%ޟ33EzqNi8<Yr*1eP/*Aswjր 3^0;I$ͦ4K-:vKGc?Z>KRѮ5N0+. K#\Ғh&5v <,,3"dVuȋlym9C3V'oS?2·f<750|`ܛ̜Ƀc̱is}ߛ]ovy٧?[qh`#_=p1f}硥Ҿ~5t9qᤗ`E:4uӚS՝gڹи#s~7̌|3~}9O>!V<ߞwwۘ^3N_25Kߙy(zf3_~'=~=6_d8oѱ-1>e}33f.Xu_|~ھk\E%97ŏ7!AH39{{wY_|(e}^sͽg~۠§q[;8O3xܷ[Xhim1lC]ϫc{ٱkL~GX{>C^d_3{ßnv^g߷bxsfZߧ}|-!~{cx}h~s|| ol9a亏!og>#׾ ߫[RT>>sĒN_}({l1(ZWf~=tߒW~_ߺ4os~oi'?ciN*7n-N;__Ce//o9 { .2 PL.-xm&' A^VΎ: nt#nY'`')iAMP`‚mܖ AֈӖd#N;A\F(s*Ҙ!+OY&I,`".oi8CY( i/:uyCA(wGC00 74BY\x#F {DY׉.1c,;<*k[n;6SY<+E.WS_hOo)HQx7ŷe~Qn͌eV]b ~+k1Kb|j!A.3 gյAw[ea\OLMyq:"u 6}c?N*wäMkD>/93t6m?|Co ,_##Od եy.mU凟Ϧ O$ȑ#å.|c^>C??RoRqëۜZ^TQ#YWiIJ-jUE$jut}֯fu($lEܝfzYMqgbx͋Vj*%QKgoVKA*|ZBcrWL5dBxlA'7RZ͂~&瓧¥kKWWt*^#IW}st⚳|~z1pH` e_S6ʷMu F+U9bT(p=E97O`q]u2ۿi/laHmQ)8 a )qCw;4bխto2-S^(${k!;Q6Bat'd-jr?#ZC(ƲY!*n(LCKDC0Q3{hS5tJTW#oVս1Tg/PS{KN9S^2sZ%r!Q?1NT坏nm aoYn9Ho%t2Vm*SlK k3[?=Pxdt,^rω0i\l_ &}x1aLv18S;jo;'{2U9*. fg{:]++Kbw!?Q߼r= U&.wgHAزt]wC=OBJu~tHWkQWfw[$'2o r|C`;"PX:ƚǀ’weGWC+z,͚N8l5.d{^%甉\˾읔PCLf*띕ӽ4⣓ uDFd?7tBz$~t_x: J9e> MCuQ@/n;h[ww_ʣ}%h&CqJ=U9%> x;pX;>ȫW衜;%N D`0F+Njc0LbL2}`>`"Lg@rp$M*1ch:|+Sn{ 3b1=fj1{$قHk;2Ndil9ۢk$:hno<^RY,颐MΜ1[>F=@LJQ ]=p*Y^!7"COH)Ľky *Y?| rM[@{#C1Bo\J] &`X¡h!Έݍ2ݐ/m!dX x*iD|EL|t|&'<#H9?, by#MNWL =hL 3֦&b_/`~0nJlF̒m+)MTqJ 2(K̪3?L)f&,r|(}5r'M$l`Ejop 02):VuCḁ֜y^ڡ0f4&i&iU4I& ;uU(]xIfyFnAh r))5uO#TSO!42}w.{AM5PW'sS$ckЕzMh =|ʥk◅E6jlëjj"%׀p\Fx-߶O&_.tNx?)}S%wwJlӨ?EGg*6l^(/-ktC{wswH$eMk1L[9[1,Qc6mmBH 2 +vY?%<*{xoѡ1ԎexnmQ4/zrM lvAf.2 C ֥{i!IK{.~aѫ?VC c׮G;cϱ8s9trrrrrrrrrr8 n[íVp+p8 nnnnnnnnnnncncncncncncncncncncncncncncncncncncncncnnnnnnnnnnnnnnnnnnnnnъ=j=p^Em8RU;jPR1RJyX~E$ 9N璓rJrl1g@@ql?7XapemW@Yrc/U:خ8QY^Lez8= 3uyV@ʺrnҰ q8 K,U֖:"RYC;. ku<<^YFfjYfjYf7:ܝr%s W=Nϫ|mAJC.nRK$NwarTSȗwǛ:zfl6flm}6XoikY9gxrY5dvͩomV=dv'R޿{΅#N7qOޛ-/>'ryR>a7w.fݧVoxʛf1_A7;Ϛј7Ͳݛz~޶x_J1}%G)U,aqs3Ͳ{~9ᬵ ̝׾nuяZ_d^5YI>iv~>og&g^w]o?n08pi5 ׻z5\uw'_{wZ?>bgf̗c՞ɬ^fu/KMfËvtaF7̊K]EPf"cҥ5on|fͦAq-W]qYgl|լ=G*o e՝?'.i{"ìggfqc˿g*;ou?ɗo ?7w4œfkVUM1+߈r3UUɴ |ofM-2kI"f7mHT2m L6sNuTXnxKvAoKp#w'~;xY>{>h7M89ʩӦϞ ^SJA"Sʢ)ʋN(3]uQqĎ%QO18m<\duqVRh]F" ZcYGT=3GO1߀t@70c[YyE}AՋHa N7zDa>?_GoJٯ<N'FH.vʡTb\PTNEear**Bp໋jkQ =]GzA(GIkA(McA(c)?~EIJ rѕR!: ~Ľ^.;Ag*}b{ Z⬺r]LJ/G0y鰭fWA*X:KӉhc|{ptz : ( y> Ü((}q? ^{bʋ_2 g/P ٕXE t$z)#1kr' ,P-Z)k =ǁ1iGc-0E*t8vG=F=Qo'*픳*v#t|;Ҋ`gj8yn$}+6o6,RoʒHYME%[#ŵ5Ñ!g\w_ 9>dC֤ 07Q [n=w(**/,ܢy.mTV]^[L`lB^iv?(Ӡ Jh&B:+gd8] n0Ez=X|r?a7>M=/E~rf0o? +!HN&m~#~(hX4ǡ0Hg<ҙgN!Dd 7I9=cT(~oM> @YHf2DYYW?\BW{_r yfj4CU-U)G:# LVylVV^:Y?g#;Wp &ڊrmGHvFyLiXː}*}/QU"M+EVG`4i uU&mN ]Aw+/G CB^d$c?<%NgTįGw1P& !yV4ܓBg }vo Ps~*6h4^SNr1"h&^ +/WNu%]q`5Q'(wxPo^r=һ蝇n7zvw]VZLt%Xtp=a6LE>2=2=2=2< sFtrp6wUPV[TVV{(۳hBaQVy՘}) -bg^ tS̬R]W)2"l|L\TGg2$8rk3߽CNbgkKbet5i"Ah7NN@dr;t$oHUeumIiyT:)N)SsA8?i^+C%~_$9 Na㟛_{aX~1~(Qz]gw_{ͯ(*TF`Zx{{mz@~YiMQ$qvc)_WM֭ztŕEՑmueE4j4ҚhReo~IdkQ]Y ?p"=>?ʱgCs̺h*p2ܰ=ee["Q-W) Wyui?%~nzߍO] GqKX2Qҭ@N1:])R:I3D%E3}⟔4xtnCU4̍–őJ_!ron3/Q:*nًMvTcC _$j7^k4h "R)G,G{%UTZQϷ{S5ýڼd!I7QJF |A6rF!.OJF>/S/;Սox~/PmdzPy7 Ӕ? Q72NOnL0yN[.ZZqڃv:hU Oo ^7~ܑImNι9q ?O/*`~Sy%Hc^uE$]|jr}?u? M0\W_< 1!aO/u./Sz_WU.WwHUn{./G9I3c>^sYttJgݱS>VzYzI ]hJVGiK{'ڳ/L@I?KI6PhU 4GUEn$~:T (qR5U_P)'S㯎0<);N @``00 Lp3!F86;V3d`+9~O #֩Z@Xᲁ NG {k5W \ߧv0Z+tfiC\Arh?"{`5'4GrigHC:[Iz2:+i%ScׅOdRsLe I߂tvәh F;4}]I7[OKTfo=Z7p IT+?~`]؈ F+Aak<idž@(Y|W2f jI?-~R/x'73b~hRNwvdyc+h]1[ }_cu$/΀Dy)Qy)k(A_% j.faexJ6NxMUAinѾ W: ]vvZȣ20NCsWv]PENN+--pf T}4mrR}@BPKk).hBs$KFs 7.M Ƣ9 kpи]@w"Uۖcm9h-['_Ηdd~1pܧ*n1P߶lnq9S|C9 MB4g ʓ=y1S%V~NG= } ~P&0 0Fu G0A˜P`<40E.`}`& i`,F+`iX`UX)0l=P%}[aɠL\v&" KO %.u~i[N`W}'2:(>Fv{>7o) z4VvjSP9)3ek}mݶG+c(HUGj55R}hkYSZ^WVTJio%l (Ymd#/6>e}`33f.Xu_u;'iӶDEG&Zng>J0ˢk>=N(߶i6؄Kֺڨɾ4RQxbuD5R;_\Y;R-RQ8feP5>i9{ /ЌmPS8fGYSnpE[C-,u-Oslaz^ev~^~صo& dC{_?]h=g{ˡi/]2fmf9{䡴lŠzik_rˡ04}+{+y?^u3/L>wγ%W7s߳>23{?\3~^nICS].K;}a+}"יYƷ4{n_Cݷ$啐fG144eϕ.Sfel5ZFС5+*Ԫ6R]e"\N:h]EYl++Hmj? K=)x HYKYH_;j yf'9wkSxU5߷ۑްBuCy?kƽ_9wfLlڴ'nx#Wn{*W>ru.z៧Լ~GxJ'[VYOB oz2k֠ W ; _m=vz軅Qwc6Gd0i,Ƴo>/maGuϡN=g`:m(C}ukO ?hv2ktw6sw x?Cn^:6ν얻3[?3.y{~/6R{Yvu'z{~رvfNNKf*s׬wϯye?,˫;?Ifmٯr(gv]4e˅̮K'<ͮO?՚Yifs[^f1MfY5]R_ot\qf 3lݲK&_u]fE7Ef? 4.ə}nY3WiϵҰQwehp2U"b>3|s?o{m*~JÖD:|+*uߒd,6bz̺j9S C't1Ƞ4Ptи"JB $QayI8 %!Pkrf胲􋗷9m=إԐS+i( ZzB2~.6˖E6N+bmGҢmÁ96)a1͛KqlMM r*FXaM+i%Jbm*4WSi#8X(1⋚X d{*?nV=\nV ]soko<~2w>uE޿s=}S{K~ω\aﮏnxt]Yzjf}&,gwY"s/d&sCvm&|4M,s,?sR knoQ>Jmo2˻|XL_N8kswu󵯛{F]f)WͪgV||z&t?頹'bz5Gs=sGk6-7bڧf{f1W]?ϵlz9duYk55?|2WEY˒,zSY{{&F{||Q bf|RsWv(ԬٰȘtmf͛3_YsPU}kW\d=`*_5+w wBYfuyÉ殅Kڞ0}Y}wߘu/e癵ΛqũfϪ&}y%f?h7?ͪ.ye䟙f;iuS7L2wU2-Y9rCK'iǬ{xb^zqf/{y5>^YQW?e͊N)fyκ'f \̱f]{f͙!;͚߻]tŊ<~Nh1ƮAa^z0?xϢ%,?]bo*=5oGlV*75nyf]|{#fUGWhVTyfUhiV~zNf1zS痛{vQ>Â֘'K' zމjkfsW1ߩc殍j&z+vUGRxQ? jD>;~~SfRpO=N*ꗐǙ:]$Z@ڬ"f5OB1klu5g|{rgF+h\S=M8&͖h栉(fg4fo5kL^3ҋ-B=m !!= d!3 -DKhPBv@ Bn0:~x} DsHs4|81Xs9a1֡;֡;֡;wp ӷe?qJ#E|:mf^{lEpwF nߥKq {AbPr =n'2={‰ZAAI ʰ Φc#3MnNJr\|ox2+,UҊ[*ٟT^7ܙo,JζUIJ$.hq8NzY2JaCorgqQ2X 2+|yJ/a܉9Ʀ!mV9J܀[=sF(5U]ТMqGB4N[ sOaZii3 ӆ|4'лW΍o@D3KZ㷨AÉQAE\^3]qȃm%7'[vY^|ȅF◄z$G])ᘵA䧲qM{-er .PWN [Fd;7tF!?-;"c\OgꈅoT%ȷ˧"&KC0,UA˟GR8Vc~LjJxI}ϯ3)+ q/r'u ^>VĹKnir=>*rW}$ $L_tera-^S(|nSc00fg[tt3M|t̐9A3?r >+A9m ~"Lݟ^݇HgubSpt{~, ō}4c2))(f<ͯ86R]~ĦgqSZDyE$44}PrEWՐՏXx%XHPbVB?v#diZq[w])φ!{L+;)JoOXJ*:U"*NiI-%싮%5U*dF"ro[5E)nJWQKC-e;Gj\+aۘ쬄5$QTW&DȊ:f+%GwiIۡM,~ | eFsjmuQM-Mt)wUEee,^ig-ZH}*'\g+ϭ֔iQvU[HGcOK̫ZiǨj2VV^rtGgbk(\ k4_W4ܶL0ajqĚr[TWͷ^{W+ ֫[W]|f-47mo\MWMQ"{5?=8)OLwD][kSR=sOmm H ]1| RM |t[63=08Ù#QX%WƠ9ÏfA;n;!O?񃰴 "ەzNB' W!򚆺D]İN opqv'B (-R82Zz^ \8K刷ZFi&Z 10Z3z땳n#s#6G(,ߌl4-FiUYWl@it+HD󚑣-6e0l6o[|.ĩ?:($l98&6+w=/yw91wIB'|QSNEڧ4< 3"3H,F]'M6+w|trչ"<@C\x^~@0W`\/WֶKOq _:Zл^лA9VSNu͛Y|oDڷ$wҺy.Aݩvm}ʪFyP>RV~2G>C9u "e|BCi=#ѴOi!_c}yMʭXҵ O&x#,6I44Ǒ$B[(cN^;>q<6H~i=yB,J=d+m`KB<}OneuAҐ Rw+̏ TG_0}V>e:(m+|;<ϧhv,asq>'$/[ʇt\MyR#mjkwLH:'老ż8(] ËG/nJϻNzJ9z(tnEx*6{n8kY\z{эS>VG&N){_=^_ǿRɿ:~}NJ1k>+$`7J?Difnt6T/*)07D? ?#r)qGGc:YGei1R5h= c?#>Q9#MLߣ'j0?^i˖_⡕ۋM~'7JIn9X|^rNVX&'t} 4inҍ^&CۿHn-B޺k)m(ӕTDZ׌: rxMvHqG;WUMF !w6:_с닅z9v.Rz8b;}5n#ma׺ú_kun\_}.O/G&ŕ[K+rgA?>F~[fr6D:euv/˱7_9]GOq]bY,R5)D(=2"Z7p۴ߓʲ#;!'O7C})Ph~q$?L-ptF--g{On t!mhN@w;Hi*`{"79T asEl0LGġ;w{c3h#Ŧ{flؼ4!'65f[[pdž@8 s@T[Â)=7)|)0pF/]ڍqS =xHb~*!?8QG4UX^VASN `}ЉĵUH)[%QJ3Ս=xCx ;$Wo׊߻km!=lŒgG$_] mF({b&M\K/:(~h0C13 G.t trFy~thS~tn\p~y}ׯ&ѿѣ<[Ao_lo .8~ (YE 3o\y2&Ja`2QzyH$]P׮zTiOqvac"~rlנv:ޑTH/Hߵ|C?K 7Q}_hP?۹ownS1nx>:iZyYnS3.턺2A>谧rWgԍ|6Prb^pCr8s.y5tehmRN]NtJ&, Cf_} ߲/%{?ԩNۭh@s+ 4Y;D-*弔ri!h9 MtLyW~(Dz@Қ6R΅%LSN  K/ޢQ%X22Lnі}#'䌍&)h= 4Es2S,ބgYT4ptuTh34n9 ͙hΰ#?'?~6sќ4)'}e/\b4[[Bao*+Sz|C+O{CgK-vDT ~k,턻㔻βo#j47I-{ً,{9ُGXoQem]U|#o7 *~pʰ\ ܢ[,nLD-wlLjQ'H#+D,.F>S~g\ `bXSM1H4^hFJ% x_#d ~ B``0a `(}`Еp,\Of0f"f0a4@8Ba)X`j0Xa-: #@SI3(ba B1BleP@m 7v2p)•ap-ܵx\Fep3 ne'ʺSnA v!܋@~ Ax!<c@ 'J{G5&,;>,A]l1/ۘ޶+g @[?G9ʺm{{#nO 5hZoR{cdGC}+')N ,myREPLSA>qΌ✨:s+Si}0 L/oJ:|oF4Py*~k4woaTo?T 5R:qc/u@ܗE}㨟-SR:Z0"h>x qf>Y4b|AC q;G0̉"̏1̋, O<€O392⾊k p8o!Λ+-⼭҇7,{,zy|?Cb ?5$'!=2R\0A?P) G:}a'GHV1y?ч/bj8_jJW>CꬰTK6#M9&jf`ؖGaP*+XT~ ~0gɈRUi_uЊedlg,VE NЄLGnLrzɗoK䝼K~Z+eKiЭ^6)MZ 5w͆M i6|.?S r&h˙&eǛ|kzkDKHGq)4t?y;Ϸnӥ{ݙgxB|$7u@LN_\#ĻP+y*\wɟ%'qy2uT+0e3F3X4OSZ]Hn|yՄ{%z¦'ԙx@Ov]"z_iw\>2'`Q{[*}2gz\ap'z6݋>ЙsNOaMwoj@=7(mRU }׃4z;Z`X*%蘥c}ojld,~W$,PZ=Ƶ )m~'bw9R%z9Gз|jŽŴU~[P3H~YjҍM~ d*^$?qӖw&ʣlQeh>/@I՟hC~9HM9gRCԤ uz.ij*wӋinti Zl뢇߬<|=9]˖nJ6W?Ս9ѨC.e 8"e,ud١V)ΆbDL/mRrՀZY^;ln;u rFe~:Hztk]z--R/} }Muqm}Nz{qcBjQcܦ0楿}z+=Q%JBg={'d&7${4NބrF>*m{w=1w^|+p5Fg~Ls|e]p|  #>2/'k >|vVH>ڷ=E%AOnkR ;+g+mye{FYPt1蟫'n4+]G [-xFyJ%~=wpOzں@'Yueж%QhGILYfkMG+}$?݀xߒ|yzʧA񠞺@jrπkbfA[0&d ֝ v[9ۋwx!aοJ~NHGr c`T^Eve>a!O8 Yr=; e!تv q!A릜Sj;!(79Q֎}6t1ݶb:")qގraq]G8X\~/N4GLB~UCLDC<<xɗ?RޏGB2͖ʹq[na&J!w =u1[ɝ?62QN{H+uPFcm$3w# 0=h.|>v>mz]9 GCŝn+۲jkô_*Etz +Nut˾pZνc,!4")5ӟ$=ƲK@(M]pLSʹ'ƻJOnaJMnm-sBls03f(e.X.,dV~~gB3v^'˶4EY~Q' <گ'd^'K^}N6*Aeµn>2oQSlCl^u@\"<$K/Gz(/xr{ \ rf{Lr&]{>4omvC|Y EK]': uUN]D]*/yc_I^h"_4{uOCiQ[@(Mf4ō:yDGƍ$Ӌtt <x<3뫒>ʹAӐ`rL@o|?hb=~S(Z.o\1B ?Բ_DJB~rePhbnNa/yR7q"_0H>T1ʼn󚂯װ!\9.h^F| ۙ/Es7ŽtMQ;)lf׺4i_Av*}bɳT4'iYhLGsޝg9hBsn0=fM!Ú{4I/#/Bso%RR?I2~UΫeM_CL&|/g5IN߷jR͕WW)ܯFt=4Zrۋp=x@cf([̍D7fi0yU\yn!RɕV'Q0$| ͳ| 6;\:Z9rh^`QemTh]Gw]@Q va4*=(jlp4.h^d?D(;To5odUsyupJ%A⊼ЃA/ Fɠ/Bw~ 2@20XS<6C`$djS|BLE(D0LY f"f \?/,@'` eIKAX+f[؉t**Jf{!@˷O'"GSNbpz=Ni H@8g3p p|NR 28/Ip14R\]qE1,_+(W1N C yG͛na@2&atqkH@#[܇xB8W?kFxcjI#<<c#?/`>> FGu >Idy____%# >4IIF x% F+ t‰Ak?bEh-3#p4-U`XwYr\ݗ0wJPl*c={uh5X061ģƻ?j?ƲmV'\ 4{#Ϟ(F>Az|ŲrVKQ (o _{fn&c~C e~8 0k1 ݀G_ƣ3k enC0a#p, >ſrfoOP'Qw&q gY9bxDě:8 66њf!3Џ|G/.B.FK2 9[9@ v%B/}0ajLLf ױ8!1>M4Z81E?[1AXcuO툷 e)e8 r4+0 ̠*y*KsNZ4NcxGǹ\HD<7|/d:qdv*>'MVZ1OFEǻ&cB=2y&쨹a:_/o )n{?S[˴G+#v鬖bh]-MXN!17d+}GJ΍|j@~?pV{_FG!1Iɍ]W}$K]5A |zG'ݥ?'#}IaqCE9F_ mXwt"/fQE>fÇ'P8/w+🨴,)>xNijӟwP:M/?%?5ߟc©B_RL`YYi!NiJ[ƿF :6w ՛Bۈp(S= 6{Ws<皽d玲d]T6m캊%[vDkpOv;![淏 YjA44<+{WMU{Py g.s|Bn_M%SWT旖W}|U$$B:B% !HGi!y@ Dw]euum]qE溟kYX]Wys̙f$/~;s9#Uƈu'48&h>iN<]c԰ï?#lb#)fB عuvz09)']c;tI9[Ec׺21CǭmZG0]s)LiY>Kn%'z]f.Lh0ݿGx5d,c9~7ڂ/fo4t#~TӐ {.;'*vnZI) gt3 eVݔ} eV_؇֋|ISN8'|j=Yo$hhLIz7d@4a4L;D%>>lڭՆ9 ͡hRr #)e'$Ǩq[,ܱ..:(`;:MQ8G^цCG?9pp:*{kv'43P Ež # @O ꙅc2l-#1a_  ڞQۧm"\G ~#я3Q 8UvL?^۝7*e=''m]x=4[{.xjAh ‰m ]=j_4^KĶׄ.}m6f!Dlٷ"&dAq,!rL f+r~T%?`G.U5usU @ =TwA.,kh*@.EW){+<3c٬Yk(MٳLlv,^aY:|#r.S}7O<:ϠtxyI ɾjW<~B{E{qЮa Hs|1]95]\$i %H,r`W~:0}P-kڭ+WpX7Z5=#$h/td*{9[iy5lsOsD >IDIHf=@60ПA~ `C0(F1 ]g0hf ?<7B9r/@s~ODt܋UlfL}`@Q}ʚ n)n2STTv8MakHIhNSjDIi*q5b|ؗ8]xQ*?'nbmiZoqlM_iEDɋ2}X_B@n,4EssTÕ>t C5[vsF )><Ð&M=ֶͷt*Y\b39@]bSRbL]]d?e/e4_A.4_pM yoN^ d.|ԃI`V_:j :fNf|zHy5~r7:z@'|(‡Y9t>dveiH^GÍ 1SÐ |4!;CL0 t8/`$>&  {@0M^=,9 z|t.43  ,S XZ "l`QE/`3B)E6`g@Qm02@{L[$ttfniB~g ŀf@~g08 ͋\@_p\jh m@ p7:a/$͐;Κ[^Ӵ2bqئ,wC 7y}#l|kt m'cL`4UIhg *{N;#n'e+.ЇVeOB۱LٗBu3HhMUS4>@QΩ9Gcx}^3|7 dx7 Am; o)F3Q o4dnj,sx٘YCAP .s``F#ʙd1i@cAck3d)5]k~#<1qf36+3!^fpitNPcK?m5C"wo_|K'$?9 S8~m?/v ~GB.F!o8NnBkA݅9)6JZsSl@9)6 Áf;D)\p^p^pYn@ :u ţ-I&uo@FV4fA)dw'6Aܭ,# 1<Ž2 FO6qfܪ ^B67:Uz{[r޺uD8s֌VгK*\嫄For[P'lim+u ڪpv7SFPVy]îA;FGHƶpPYE|6SL;d`e{RbL{6k.6FamOWϵR[ks0ô߁~A72c ٳcmr7`fzu.α֪a&0T-idUK|#f?P<az){㣆M7)s4MM!`") p7#hBso|"blyO0~ހʘ_^i6NTK jnN>"cāl9y -p>vʥVkg7 hWo!.ӛ|• ȥ`AKS2  p?kTJY~`r Ex ,D+3 Wf8_x~efa+3ϯ̸ѕ&@x7^h6尽CuWfwQ΍P&+{jOiЁNFSCEY5Ue ʻy\D!ˎ342Rx)[ҭهNF]mD';({.wGސ6FWjƗ"A/Q:DKC% ugny>+ʾ* Qs 7NQ9]e(,B[6?mtG1c$~)smi@̏7B߇b9w,ҟsQVhc^<)%_:U9З!hpgVFD=u2֌B?No=9 l`d2HRe˘cqֲynXڪ0N ߶Vʷ1]aҮDRLYʻV϶"MkEֈ47c 4i uUOR@R'1C]둽BP'2^K;e<؏4O3ߩ 2H.F3Aֳ>1=.yg7&

ynƅH5e_*g}Pqi\4.F>)gx 6f:J9+U6r5.ΐyr{ n!.7"Έޅv7]nsqCyNtL)v$.r7^#fv CQPP0g JBFQB2cl+0IeX< jGGsuw%~ >]Z3hL+vb5褄Ne;QEvT̈75pzؐX#̵֒_zAƐCbw_S}E*?)ގpoBr_/ 8׷cث!}(,nʟسsiY_8^zI~$bυ#Ǭ/.ٺ.4p.zFzý1R?>ߞBT:h(5-{#[K*Gz饿cAqS?wr,A!9rnSmeEYi* 76wEee媚]r/%' R'{($aN_>hݐ|,|`T(yt|uᦓ>:aC~iT:Q 3Z%D^%$M8N7iܲ4։Ca_!87IBA .Ru/n']a')H]BN<0_%>JH3?MVcVF*06JAuJWՔG*T86/yH҇MQҠUmfж򿭍ꣃm΁4FuZq-{Ip#y=Tޝ<ʻYʷv? Q2Ύ9N\0N:n'fkEenwFM}hko ^|'~̣5 ɹGQ\n/T˶ X"n^ X/_j"D_| 1g_N|9oGnv"d@_?"GDTk*5M!ruK*1yqS%*'ӿ?Nufu<:џNi^hmZ^֡5!\OMu!t~ L]}㳃]\p}^Gv{iT8vT#U#r{1{K1?QE|ӕs?t\wxpaQy;Ga>J*qr83^qD^GJ=@BSFB4 МEhN4}N&?~@"b4KМt9Mm9F9ږT"Y/LC!_:P B]m+ټr&yxMGs:3ќ&(O\4cUl9 * 9Ožb5T>T鹥ыȹt{iO%b4Ze TKK\"*#.Gx忱ꃦuqh@s'U1^iZmڭN4UNkL{aU WgD (("F $47H, 6YӿK{W|vlA=`,C r/wKkR2"0 #? - F|%:</Yl^00!IP(  FucC0A!8PȀ.B\M>0f okEs."8ǁU Nk14%<`#> Tžg}?k[aɠ#ƠNp™ B8\O`%yWoyA+8p[W"\W@P2 \zkn`p B[ۭ v-w"|y ڪt J0<𠀇U0#|jIKӔJT.ˋI>E4 w Bt1iOo;Zf"9 t9]-1zm5ln'+%)kKe&)[e&|΂ Mz3`,TKK+$n `F6BQ]>1}tԋl4{|49M~G9 M<0CshQ;ӺkMeڰzdG-: Uv᫘*܎^Th1Mcmѓ"<[*QK^韀qS9 <UktarB _$ݢ_ %-f:Z0T열 i WW89 [:n[OKٯ1Qnrk7e%SKWyğ ׽tu@{(;?̓R bͲw/nyW$N"SpSV=Pp̭:.9IGn[sC.]l^T4{Ͱjk<5댓Ir4_FOᴜ[PB|MT͏i>Ay5[[&YɁN'2= ,N^9tON\ _Iȯe=uf6Կ^~dZ$6q:ЃjJla6W6XTVVMLÎlTC㒎r)i <0{:'8@ uShg70Yfl M8o.B:O=|=C#@ćЩ"<\;u3BRLrur7t pd>Hc@}~;m =}d HǙ `~a >]>w[HY!@EJLna)dJܤl8Ca&4 I=hh5c!^MʖHc˷hҖq;ξ˒Ya2:([9N#C:.?yXIT~vw>XWHcV?xSe<=>oйt럜o.(Okߛ1xs 8zmgؽO.u;{Ces?N>ůN]ȣ7̙*! Ux|hpרj XNv83IՀvF?f10 n di}͘N'`"b \끴"_&\h p;2N8 B89G9Bp9iP'X0̣6V ą-t1 W!"MZ<"H~Sn,z+@ Wx('V+Jϓ1cX̛k36 Ui:ųF\Bbz?C'yzS|xLNGzE7f֠09*M&O _U0}wR)jNy u+25^1JP,:1jX&ƕ$hRb137ϹRⰝ\ "N1,맂oEW^<-ׯK%\?IuW$ȑ#Y|m|^? W:k>} ~tcUi:~UO8Dݡa{imENGVo7xU}Qʽ) +ww8Ճ`cuB))nnUS9Bt\'o§%C(eCOv/T$~t(+Y|zpG~*nHWt94gy|^zۭ[inꄰ62rC`$ Et>cdݞɀ4\OR-HYE{L;opDc" qߪ킺N _Mk搂3ڄR#Fqm3VڌЉYŽ./( [ok3eIz-te9yR |7 ~i-rA7CUP*&ƖC#La6f#z˘aBFA+{)>2wUTteJW8?g({♇qꡜ7("t@7 fe U~: _[®F,Nݔ% HlIND\fC YOa>ϤLef1lFˌbs]᷆هc8lmq SOL|G%ɂoF9KP޽Jgt|{<;%,,xEPW/u]ZԕЂG:j&. _ Ÿ_ǖ9 H\tq7]1f@aΏ#b]kN'jV2WDv2c7JU|.4v/4?4`tMP2"{w! z!~hEAq ʇNn:G^o4<&η*K  GU= Av]A"\I?B @xPP,I !Ov #\I`L0t HI;UH]vR }1y涓ѴE-bjԺdZ|8Ι@lADmxl:O|@*I~^-wLlϐ4h쵒NJ<]2PU]IVgU zrU_^vKP^ &a7i.Nn!o xpssK(f#w/a iB>̾.|ikf!,FtQIgy³S͒G3mBЍs"Pf-!b]@)9`$85V4Q(M-H&,1#sFO{<3ًbotqLF B;h<$e $,TFNU̧Ln YЄk=$r<[WkHFeW-W(sFY r6%,߅Sm=atW_b8IqA{v?[AQ ­3j%@/@e)΀-N[ 4"hJ.ջL )OJ1 15tLtT[6?-#a&տ vo CrnuPLW0㗣cr_ضQ6nG]h`泃){Ǧl+>% 7fܗnz3ZZqN6Nst"ИxoHx0rۮoۋl%ҕVUE$ [s[ 6:؉f3|QuѴ;+碽Rir,_%۵\vVEu_nfn#>N^;vzE/:GLf {.gGp+c}G}LbD%1>GR*W5*&[_BGţQh(xZ< -BGţQd(xY<,E"GţQdhhhhhhhhhh(x[<-bGţQl(x[<&Y<&Y<&Y<&Y<&Y<&Y<&Y<&Y<&Y<&YzyB ,TܸާrASx2߲\~B`ۇaW0}> kaX0L%xCNEvQ)J]TgYhٟbN";UT-SR"[KE]Уy^l7vl7MsדFy$MrD$ȑR_iYS}P18U.Sh~8z[nQjz4?Z}n}n}nlTss*s4rl1qn+`xZ5zy ^33}ZzkܪӝKƟG?m?)CwoW|-bӢS|W|z⳿.R}Wg4r;6}gɱ?^kӯWF\} )F ѷ/2Z47;U}>*pA^y/'v޻ujw?|zU]^?SVW7>M;Gޢ׽'gVכ6^w[1zû]\w]zݿڇ_^*V{گ澜{Wz #_^?Дoݗ\)M_pS ힼHZ!W6\eB KWܮ7={ >\3qz}f;~U橻GM8Ј߾=0n'uKu9kйyb^wM/*/szj~qz?tÈ]|\q~-Ыw~n׼apraL^}>L8co}I3+>FݡW75ީ7%ԽO1өV3~Y;r}}sAaS^sόW .+_׫6Gۧy{^Iz[r07+Vm'צ<gsUzm<`Mk>yGXO7\)ݏcp}5^b=skǹ1z;u\kzC'~`/fCon#T_z}gҾ'2>XL)4׃FSoz仫u뻆swc߽o'gIbk<6zufp QdRFȗsAwo읡W7QZnhZ-u֠y^YzәfyHގ3WRs}|Ծchkf. }XhT372ayC?WEy~cRv韮3ܣJ d̾*Hfx\ߙʎ}Mp|HE  :Y tQ5zs}9#^VyG̻GnyŒ0djXym'bߓ*% +z"=I*qhX|SGKbG x P-B ZK -"HQɟC^P>g=ۃVg'(_QG-Ǒ4,Q0i4L? + +Ã([8~NSy~IhaL Y/d94i/)߀6APNb zW] ~\7oJMM6D4]ffL ^w& .>{N<4(?ɀ=! ZF6FPHFu9BuSΑXQaW ,5NТ$Ĩ.f !k1B>p3 1xk@c8: 6;01q`xPP 21.ހ%>+K1(51_ >}ge:45F󫶕Mddi%C PnFW끛)9>5:njAdL_x#hott +Y}O0.]%.M[@9@Z6Y!4g@YxޞRtf*;}0**OfTe4l4lhG"uewżh(y3Rw!_pq ?w*8p& h&4HFð< 96 Q yUASEm,V{PcDۛkF+j+#UHy֔G*wW4nϯ/.ʏl)kldW 9cbș!&d(qb!cj8:CF=6nq`MYlЬ{Ӷz"Z=k"az88sD{)dL_WϺسNuwzֺMF a>Q=)Ͷze ?L tt@q|P{,;l3utrIڻQZwf{wȾ{ yڙLPOh@Oz'+H 8}N?t|gG~lFnRuxm9=~*{X1iBM(Fwo;Al Ac|ğdko!i-E%B*e<+0䙕.<qO@n2_X/ʍB?No=9 l`d2HR#_dbX,ts0lk+ʵ o[+i.Ұ iW"M) &,] g["MkD1b֋4'mN ]Aw)Ƹu/G Clx/UTc?<3|:7#}zY<9Bt~((߫ʻ "ה~Aq)Ҹ\fm*X{+@*e]@+U6r5.ΐyr{ n!.7"Έޅv7]nsqCyNtL)v$.r7^#fv CQPP0g JBFQB2cl+0IeX< j;qC13Ry7~SKKwF4mk^Fz7}aKp >CB\TαJ+ȩM31GNbgBbet}&L4҃89;?)"K~e+;y;Gjk+\Rd2;Nfker×vwω/_*}_7ϯ?_t/= B_ewocVTEqf7*Ґ_^cpUicᵥ{c~x~eECQ$qv)__-֯zteq5mM4jQECѰoٛ_ZT8K/ *埏JNc/ ϑsj++J,UQmg+*+D -W슔{)o Wyq i/%NzrH_ ; |,\sLhdN{w?])T:Q 3Z%Ds=⟐4tZncT4։Ca_!87IB^O/v xqv?' ;IA*r$'qF +WڵEh 2RIF,=r։*k[qnm^A>A̠m[9G!.Wiʿ<&|j+߲w 'Oi}D\p WdF tvQÎuFsE,j83t2s1'c Zc8~Os+!KyviOdJoVA~)LY*6[b{0=I~Lt50(H~G8v`CӇ8YLڕt`o?%{i;p`J\>z䢇P+X!!#5$lL9~ h%#?(l3?!yldB;x%bZC\fQ' B|}Kii8#:He ~']nG&7`t\wxpaQ*_ԹtciΌWC?Gc4+//tz1eRfX:͉f)ܤ`:{UH$_Wf u 4ַ-(Grёj[XW\$i8dKGjpEC]m+ټr&yxMGs:3ќ&(O\4cUl9 * 9ODw**AE\hȴ}1K]e2HЌÌP"t \tYeho7S}|D=hBV*+M2m%M~i#ט<*c> :47>Q6$8Q֣E<{#,IhnvmYDe 24_eq؂z#CuYć^:2(7LB=iOBKuD{o_+Gj!~g3OKϤ[$) ~f)~9E9w~NpG C E29Ȁ0aQ0`x &ƁB%L>0f ,`.<`>CX `yX8aJSa62B)z#p (oEl;o'J0V3Xxā:ėu Ҷ)aHNfuxx~1hp&F8g3XpB.`]q 8\W. H71\71v+r}Fr^&8p/+8  <(aGy! O1x!Dּ]|; 3ʱ t~[e;leKGzrxt#?yohZݏ>|NGt%[p6t-$'jtⶮ=@3 R?ѫ6=tohT^#痌RJGV-+CCʎ,O*cؖ80NEl|,n:4]g(°7J]1Ҏ'VEW*'I*|';SO)r {7.IǙyJ^A\xO|\䑏ߨ?)XlrαevEK{'MRw% &+G\C'7  s=/jM;ǡ71|0Ѩ !#DՆPmr5;?2e~&mm~m7%RQi^SNHci-&Gwm**K#@If&bS}Χ!tD[3=g|)}i")H3e||]5}yG`ah=bP4ٷ՗WDO^#"e5ջ""eGzh` _.&k]O]@Ojg-Mׇi'>y=O_.y@qy?/I>F}>_˟~?T64{=^/xdIqRDrxG@,kp?<Uoߺ_Q;qO8e;"yJ^}9iHW&GOon=7\4S"6sѽm]];qjxڌ?}3]}xV<w9sra9z݅z+nڢ17_/k9y7e>P/;g͓kmͿixx0_G/;ŃL1/Y/G M+'0+AMI~9Swrj]yh汼{OaZmf[y#nSǻnvf:tѥ _XnnBLZt>0>ړ;dꡧ);:E+3Hub\{!F+\VCt%bO ?CjmytoiˤP1KVyEq@킺;6cF-rsvJS=¥mޫVm rRc mͤh~e&ڍAv"U6dYlPh%k >8+N-fg;g'.:UߵwUA;?S?~|O?RySM|sG5j[zŦEP-?#zg]tQ~i&}#wmΒc'gb}%wwzUKA<=^~z'<4@ou?|mw3zӏLYE{57|Oz[>7m,#7bw-߻ ݯx{磝=׽U^ ._}9n5zGF#~)Oߺ/vS^=뻧=y^CpM^9_mB* jS]oxs{W6}ofHKwx^W[ zݏ?5CWeꍏSGo{ xL~^_MT7}z'}Z^Uq{^g7V<}^u׻CPo8k>SoK.{GbSӭf|wU9=X;wƛ:>昛%A:]W8WmOOxfڷ0יa֭/83GoJ1]ӿW|ODMy'ԫyF|z属z1nvSgWwoǂqk=wtԑ{C~,usG'>cwLy7~9=NF1_=͆zF #Τ}YMOd,|rcQ3ՙSz]irwW>*w {m^:{?O^w}NWAŠ>yzmyu>3^3ӣ6ȶzӳ|y/o;CQor^nz[&A/ylk3Vw7g]|9f}֮z]ZG^Ѩf"_u7WWohe)z ^;Qyb^Q Nbk q^j F=Wga!ER^~^mzuClM g=s39sɨw\Gl4qSf?4vzkZztI$9 ݂! 1 l{pR!# "Bv@r/ɹ )g볈}؟g9,?Kω6bnMئ;-qKlܒBAuR8Db'WibE1-kl3H]dR.ir&$Ir-3hJO6Mשp;Vub1_l .~ ;WxԸK~^LTwGRcD䖦Ʈ2#^%w{SMOW^G_/V5§)6fcܬ..nz٤7gJU Ye#4;|hnʮhn73a­>D*SGcDi䰰uu7 F?><}X࿉}fOmNVXvW&SŎl9ZSX]ĵKl'VW[+cƊm@ Sk+# HYֽ 54(3y:CwST~``t{0M :ܝT%7n-8dw煪**xƴH[#UӼQr=dwh0}W9bFQN $+5e>v3"ͫ $_(J$Y!a! zg+! GWbQh{-jxВLu 96Ct07"mJY[A >ƛ CvSJYM5aNW&d*%wT]J$jWUrb%"b,YZ^Pb)$^h E$aw7ɭa[*kv68V}.Q㚪VS%&֜򈏢:w.t+"+뛨 [q)>qԭ-=|#g:\wDz- rZ]764MbP`vNM%׮:GFo/mhUv]%#+eűKPwN41-;sk/IΔ2UE-VobTա{RnZt-=Cw aUZٺ8?G4S)!ξz[hĬ0CT\4_*/jT/R _*t/6[0mj Slidz>}~7__tZJkG8l}c@_A,`L&c~Ȩ U(PVcmI e:+gzƗ, t|1l.]{7F/;7T?|t06F1X8㘬Pʼbhc"t'd.A)~0ٮ̧NWUv +]ҝtǡ3ʋG. "=~n{ɿ}{$7I[!(n#7euAҐV]giSˏ.ȧ^5~(A0e?[2wU|ܮ%ly`r5.Ux8%|ug!ݥ?2'~o}m[!|7gxښ/u)_'x=o{0l-ΥJyK3~\U~?s?^"诼 8+Py !'>:@'qn~r эWn>q2~ˤCy/q~_.s&ʻ>N~gA5?+%('*?Z27J]l'H9:WNj8'nA/s~_|{?OYctZ|)Ӛxȟz/V1O?%>}G+&ҿt}0_|˖W+7}N(:X`[~9Mק87 >S9Isndw7#Nf:K"WڇY7Iʻ p}"_ל8:?_7?Bf?|W[mr"'lc;eX/g̮֥ʷ* "w;rc@#? 4xprOQ 7  9觚q>;dO&X(|B27-E@ʜ& ?=@!c+l7C6%l7 qr]L\s U$saجM.F75f6ܬ`Qtb+QnpphyN耘r aXpz<ɴG&p r ÏcRݘۋ0kJhͳD/%y@:ӯE[:6xaҵK0@>|ӟB+ `?-f+:X:<{Ym7F;6AN!@)N% }B& 8Cz&9gu1q.?Bٯ0^`?0YLo]zMwA;دI9rN7q]}{KgJ|я֥GE~y \.1zOn.]zdDwc- mR<be,O`b3E?Xޢ7HMV}GSZu%S0QGqdqN=<0OuŁ.}jWK*4ѧ8b01?9kQ;lG[$xO/D{]!/ d+\@ZvnLٶ{d;ϧo V^V eK{nLP:F'tK;ߢ Ԭ;`t}/!z>t\EI[W9;QP63uQz}=.S';ӂ^ޱe)E64:X.$9=X,"{`r.cY׍oO&O/Q0{GĦb ;h30,%rHV?N , B qb~W캜(MX!2rlڏ'0ӾC]mF9h2î$Z#k[D3'} 祔m G4a1!_a&ִg/,<+g|ɠ^Y&m:%/mUFUbD4K4, E}#٧Č*h='ɱAh44xOGs&3Мջ j nL@hEs!.\"4PKMuI4Cs鿕W9ToQ9,dJ;O`z$@iq|hr.-S7Uw;ED3Ⱦ͍hn2wf^IR^E$9֛nYxVț ]aA|QeXn-h&;6&ul"ASl A{#)3&vG0>W,IM0Hnh-MJ%_;! `0a0D`g0AQP 2]0A 43a.< ",fg!c  X'"a a%ZuG`Ġf-eA9ٷ1BɀH%NaP v1h@-؃Ww1`@hfpw1Zppx| }1$ \R˅+@q:#]7y nV]Dm Cw*zFpù P|p/q^!|#<f@1]jx?Q]]cZ(Rm el^T3 }/rz%P%#-p!{JE &,alA?C[_@d2ltA7dE蟌|JWiXbh򕽕&0iF ١H^Z0]0RC@h^heU 83^B)j]t5ś_nфJ/@] muLF#M~ѵ*6F?~jDR;gc NcyA%9,daL!ǡP_|\eC؁,@_*e yx!矕}+ZzFL}P>#i=M^v.E}YbʣFoczۮ) il@e+jȷ('NWTB>hߤZ7IGϤGC}+(N=LNib|NGٌ>v*TPB ]gCaqnB3~e}>C94Zit>3MITR]bF4PoFFJ{Gy Ec^S wB2nF?1v\7}ʽ=6{ѷLJr ρ(((uΟo mUʑFtÍtāF|Bt.ށ|o*)Bn߃r~ ؤ=trr= ýH~y^lC{Py&i]e{J#ʮc=x>c'Ic<~3íE%d9  CKp)4^D?g4^FW| q_A/W&qF_A߱ ci G]f]d?1ÃlQv}c_.3)P}dg~@xNG S=E3!8 g0ÿ8v__! iz@K6eR}o;i#QXJ~hʿY2iX/zhH〖!QX)8='!sw!@ŹM:_Gw/c{k9+MKֻ_ش|Ҫo\n?yl|"u$mÆZ<ܥ!8{,g⸍o9o{q'!Q}/O}$e'[sՑݍ51iF[T{xao09.N ;%L>6d!~NA;m'l[N XSE}4 KD3ڛ;ݣ|gx[:mL;,\'_8{8ϖ=_)P*&/+ѽU-?GU)ON݁ʿ˽;?NSv] 8]^C]( Sr_3<#'h?O#>wǴb}u_{nڲ!b_iUmCLI'瓼jl{1N'xՎޚ>)~zKj#.~i7AD'x ^^ax~2<{[5ܯt2LLTny.$~_^5!^(}Itx>Go^ua[ԁSBLQ b9cDo =/4w;&i0I-erf*r;vKI/̊o*t7~W?T7@g?|UZP͢ʷLC/P-}׃ }vUȱK1KK*A_ؤX6IxMY|7 yVi4\}\]D^(ִ䗭؊ԬKq&ĸ6NMڢ]~_¥xVeCKzINz1=͍N`=M]9~AkM/75_Fo?9]˖nʕo&?%N[67:R :[NУ?YvregKdxR/R*ՂZb݁~qӬ_oIjw&։/WQ6z ~᧥oG\SkR+N/k~Zצ܍r-jR޵rGnaOx^yX5)L'/o%JBßփ^w#k |vVH>o{X=Ջo[}H>$?QW9G׫\|&7ku7nkM3Pyו#/RmZGÂʊL#yJ%~=wpwzuDՕAۖx;*L`2tGSq- Ηơת|ꩋU6H+ 8FFKl.iA <mݹ`:ྻ<^ /wC< 󯒟o h=ٴג];{PSޜ /\r<= E!v:q&ASj{"<,eVa(k6.oS&b*AxXe:5C}39Wp+je{fh^oiU)z43NMTӾpZQb,!4")R0{% >8(0e6 '70& 2-peLLbz|'}L~2ٳT'EuhFOыTٖ&)#Ky7qʥjz=Ouxt)hVa-*&yy o0f4O粍}s Qz8cD~k30-wNhg{74sMɽXvhBs(LʽNu@ 0L7$:U_F_)nh&#_}uOKiQ[@(m<huBRI:`O/f\3?@C!aZM{Lk5MNZ[ H1_֣{^MzT7 -M'J >u7ۈɦ=ϴ$)h7:CyxbF2\̑짡y?oI:?b8= Bm|Es-sre2I^pHciӋ81GXb*j x꨼AcJ9 XYȏTAYtA!NV}#9ŭ>4ovV%[>nߩƭ~Ih)g7̂+w-ø eq8g(m"pvcH,l! ɑˠ0LIN: R:h|GtWp`?ߔ>?M#H_" Pv#-c$ N@?z h~ $ ~ ls#]_p?sinOā-p38s4Y~KL{I%'-7ZtKM/AqLj~JLE~;_KRxb3x|-<fZ.Q裫-TmUEQɫ [Yʮ;(a^ 7M yP 4Oe~5G~srbyj,J@; nj瓔֝tI58@4d^5`Ss.ۑ/gR?C`pEAiM9bZ^S1+WN美D~qPhή8[W_c NAG2%Lnc' |7Nc>xQ.Z9_ 4/6Ө²6ZI.J;. Q vITn(6Jq8jxYD24/5 ˕Koi6vqQsp;8K%R K[~qEП@0< 0@F00JS<ƴLB/a0a*JoOf@54 d>!i f DcE@v%DaXK*sO*2'V#,a-:k<`#plDgk+`'ЩDBFaP -w3hBofNC8g0 D8 lTgˀ9F+G  xr+\p%YϒU|{ o0 $73y ­ H& .n3[ H~~ >.@b<{>8GCx)Oǁg0 sBW 0xA=??1s =‡> 04g-"|d¿|38d5i w&hR9N&S' mo!̌Дd~`˒0DzKWTrgSA6)G0Ƃ Ô9ޅW8e0@Z=}a2< @+ ʗeWevW (o#_{2gn&co4 \?Gq`6_c n!G?gF#(x4' qLcX?70*`,>՘+̀!{ cq]-D^'a| ^4Z81Υ?[AuO툷 e`8*41 ̠ZyKsNF4Nc=[q@{?< K q>:i67z*?*3cgc*M݌nW0[7gP;6L[jN?c+~$9K|çUݖxtI=!0G49}{5W#v<rw<];Ϟ)OAq[eZG)tVKKh<&[1vKoeR=![LV? Ղ8Dܝ[ʻ(2M,Bΰ'J=i賧{ҿHҗ jJy\!vk?|_#e9d+{=HYc֚%ejEkkEq'Geyʷ=.BD=);嫅Vv@O]+l|a0xod)*xJ`PARMK+Wn;2 쯐K q?VaNR?Eȏ_1_KNn(q˽!yu18FϠn+ (H30{\qx[<~@؟mI+H@K{e r@O2q!v_9L9J=e5޾B\0rz= N%7Pt:)g'`7$ ?iQ*m,۾1R_D|#aZ]įIw]._?.ϵ[TGΉʻRl[/yK!TTokuƍGѓo~AFĉ?x` sO<[Q8iN:?.o*Գ$FB~Kwj.`-)X ^:̭trOYʷ@]+9ۉ(StoI,7q F憓xX?G*𺶂m}䞯+Nӿsn-rdryM˶숔5 R}K©g[ o>&?s">U , h|a_iEػu NU,khP?Ex'd^^_?Г(8zfa̦a6a A r`AXhh9hmCHvTi[j?0:Hc}l#~=s( 2Fc]:Wv JYɉx`}^!͖. ^/Z=bpblBh!mZR>5 @_lY[`cm Ybk#~- GfH1Sʻ\6UO%hđKlU)wݜG0'.~"bKl="  e|'hUʞ ρ ?Xtq6GbVǚ)JS,WxX'r'ȻTm03(#ov{3H9H_Пǟ^^4kX"{LWAM cZB29K@U_+8t@ =mBN1\R<&-RݕȌM9>ߤLT vn*\-M%sMH7Z >ʞCVqZ^ 0>ܓE8z@:Of%20p"@8͠/L$!g`w g0 ѭq HE`n-Y(ύCt М`A,2ݟ'b/paT@Ŭ.`.C[ ;FcNS5B{TzR{J\&/_':N9o"yI:[n}z0X`zGr"[egi[ӗxk&d6{|5zbc|L(+sRE3ԕ弸l= cќ|spk! Qƀ.Aʾ20I@gi>`jmyhVa3|4wPԲش0S{i9ُCs Wм W)r~h `X#Nd·De,ө/8~-'Rr^ÍЉaFV@x]O+]@p7n T0d! {·!8%`4!]=.˷G1ɀq ǀ`B"P$`LS|d0 a0] " %!,g*˔1'",a=lT,،PAlv0jTe5 . v1ާb/Ӗq6 8E9/8[g1  D"0W \W0'<7@[#: a/$p I3$4mw}A. ,ka_]B +/'hMUn%Y}ޱΈI USv,SePn Rv?}hr5͹0=~}swNx^_'0 /_ bx 7 fxC(s*ga1o$F on=!^6xF60>KF|}E8Qr%1iLAPXИ4~ e?Y yMWxA g. L~ef>cAx23u$湤(Oy@} ]['vI?2Od-ۏ/] Q 8=KQțoPZjbwakcq p`g:e ?oDW(\WD(\D~Ft&N{]Bru(b5y~u) w4;MYP?M~1qwkB Oq/āSMܳj뫂WmP͍7qmi\.Bp35{l d*a@\4)(l+ mmZʄm]*,\c||oͬ6TEyƽ>f^rװ{>-6T-kG.M;ߡl䞪셼i+Ӟ͚ цrXS;@k&s{Zig\)0w`_;a LXwB,X[(f}9 sj5bu@s7ĈY+G^a v~\&GaS)6g CM} `[[i8 7_F2ojkM< E/ȥZ[.q [@rbCˤ}"p>@rڙ:Bx;o`[Ȁ&_p%r)hВ 1܏t3Ugf1\@c(%.8 B~eWf8_Y +3nt. P:-^W-ڵ 9l/EPݕz}s#4ʞ4EtPQmVcMUEYkQA.ͪ%|3LiTc:fʖtrQWQɨʞˡ4ݑ}+;m7 &"hgb8:xˁvђ-sPrenݙ[O| ,>~p/ `&\oTwi/֩MtQX#@q\F~ ȳW:(Fs"_tJmb)inA3o:p:d~m6!b#<&\ژWEʮkbŗx_U%e<+0䙕.<qO@n2A}̭5-[tNB:#<:٬2ҽT2fbX,e/(ga#8*<ȷ4xLiX+}}.ՆHZ5"M FC1MEB]蓶T' }nPzd>ɆR_NEOa<#ӌw*<̧#~3ҿч: g,sp }# I'"r^` q!xMyYa/A"eFi&^ 龎ίRw0Jxn3dAyoˍHz3w!M\Pv2"i.Ix=`܍qY]?d*~>A#BRPQs<;G22' xRe1l?x<,ie;Z5/ќr]]%rxs6E+/ӊr 2:)aNlhѲ!3bMM,^$6d8_ls-F+Gz1dP&؝/ᗭTo,jpOJ#f=\"\Wf32Fg9wKy?;NX'jG> ˯'l\Z)>bE_es1+k"KkGnK" 5^?poϯhhE./`|"{.n7"8_/#i7n/m̯lk,ϷP#*J<ҦƑ^zXP(|TtݯK~lP}T[YQVhdj;Í]QY%bhfWKyb>n9ĉ0H:!~=&ėO,Z7d}" 'X>U& 4B]_]dNm_Zp#TV ѽ3| I(M~,u&9);ePز8AWNMҿ}|xTpƋ>qWI Ry'9?3WO<Ү-OGUJd̦ RC(gU5|70έKt!~ST4h'hok# Ds?Mfm|ER3gpFwg*2]B-︌q?f4/L-<ۉ,ZQۃ]FQSm4+"𛧂׳?߉(%l¶~r.𑳵u[s U9Hy7W7˗4cLY_Ѣa:8ż%9j|Ú_dMS}xGx}JL^\TʉCoOFG!zuN#yYOG֟N^P:\;aʿz٠W/ɡ+ߥҠZ"uIq1M|M|OJ9BZ9,ufa?Kg[tb֘ʜaƣI To]ih"N 1T OJv:ѕ\ / 3@Ä5vHS6;y6:4 f}O{Sm<Z[uh vd*SS]']pf2+ {g5:W5\gG(Ǒeڭ3}$sôLRk OTjt!6③cv=gt)Y>)ZVc Wuy'~9銮kڣ+aҹQp:┧\K+W5v~id僁*q PSP+X!!#5$lL9~ h%#?(ljtV FCS7,ް1c![3M(~o)- g@C4,t@~V Q6cV7A z| ({y)2x񼛬ז!>bJhz:a$ӝ](^t4\)wuAyT!t#@kiΌWC?Quבd=Ɣz;4't{pSIt>oϯH@4'+AvA)hNSo[Q#նo~H Ӑqŗ+>CPGJ6oI!^ќL4 ʓ5y1W%#ݽ@ Ҏ\tat5, r#7c;a9h3럃ȗV>Aʮ=YŮ4){ƶxBxk*ٹ0nV_rVM6w7Z?cNz?BY_uՑɚ{Y:$+{mj%Pgn;gU3:Zӫ~8i@k~@m~Bo AgzzlM=v5#5Ͷ\0[+?G^~3f_ʹWv苷GR_ģ:s UKu< ?w6>}ޜR1}2_8o WKHe18稺@^ЃAWŽ!mrtOymt]m<<^ֻfQ6Aq 0 Otլ q:#b7bngC)Zmq؍z13 C\#W^=Iݛ{EGFf28e|IDoqo~~;0rE3:it{z2{3BПA?` a{+-bAyY0νܤg!|^_cox-u~f~%#:k4FX7h F4҄E2G1CLێ)i({dtz)l`ez]fp^FW.2E m eOF>OCʞѥQ.) egeiHRok_7<eq7-˗; LHˏniUzJxIIuwR9 64F̀9rO]ZX_&ӀLtr'K5RMDI:Wf6{|4 4>Qh]},@"4'Y$4KМ4cМ 4gl> >s>s>ǢXCTfjow?:t:iKLʳnC-qv%rG nv;ʿXvڏߛfQL91/n|L@ۢSP A27*K& t ltRKPh3ံ2NV \a8Ntz*{X:#<圖̚dߏ*A*^:}=bLIN0Obh=WCxpþ"~ɞxFemؑwbׂc9yuZlfw 1[{aSѴeőu/k򼗵V"/hB)s ]=Mǯ;(.h& -dliV?#?Z|$mA‹\|]$ݖ=Zìn55555#535C5S5c5s55555555ʋM?2e)k&L~^3k^3l^3mdy#4#ݭ#tWVLe9~րx͇~ď}e5@0aբ7S8ǰc"3trT1)~x=u FW:.WbtB5daA-L360ndDZ&=N/%;UL?H8kea=Zec ʺ[PyCS⡟.@[]v[>-xIOu ~n]vg?g_\ϥg._:#1z=x߁fdžH㞆ʚF͝\@쪥}TIVIҤv+,IuK^Ʈ!Ք Q/> 2'p'K|a:(,\rDodz;M-|yC JLjb b+l?m?H⤡]cWzm,4$V>4fbDuͦ8|ah a ܆qiP;[z/ܑ3'-OS n'|9<Y+1mP*Aswrւ < V0;IESff031i%XmihGg9Yu8qeEHat8PзK_]黚_?ycXJn7Ӈ|y`=~f~^qs;|,80p.=)z^qG?޼r܉mOO؂<Oz@3&O[p{g3?z`ăg>zw2C_]}QkݙYC~Oenܨgy]蝲|kGCNx{'o]x\a32~ߝݮ<}~^>b='?sŔ}oaѡY3s3eMȭğ\^QZ{h/W>ZX^?1Zh#2 Si]_voݾԉF;#hzty8/o{Io>@m=ǹzE?}_N8vIgz۞{].m=avg~j7@|xO9^?uc O|xӁng ݞ\/=՝1ӴJ|OڛKgG-ぴ;.0ځE'd~O8u]Ywz]w2ځ.2ɏ:zWTwL:/CM|n?.\q{oM|'3}_8g E;0c#uEz{o)SMis%־nfœ}IWh _lwAOZH &F\9sa#RtT1NBʹA҂4Gڬn'@ΈӅd!NWF飜W&F(s2Ҙ&a2MfSYQk5@\BP/p.27Q Ҥit*n#QMGcn i2& ^! {DWnԓ1c;Q*s;6NYnL+I?{`FK̀؏(;մ_\&wMt'ݘMNOЛJ> *'3cG<F.cS\HqR,6_>W@/۟ɿJHC5}:k\rUi:~UO8Dݡa{imENGVo7zU}Qʽ) +wwק8Ճ܀Ubx xTCf/?׉[-i ;/StzГ %"=|6J9zl29*\Q~2_*qFj}c|rit PܟqrU򉠳d2tg(yj+iWŁa F b0 ("eߙ́I !Ov #\I`L0t HI;^0p;M}rc{dZb!F[MŇ܉A-t"cG-;>Nbj&MxSkTF1=CҠɞJ;e+0ZoCW8JTvm&YW%+VdVW~ٹz !/A%KЖO0!_ SvIsqr = y}h0ƫح[BI7˕}!d K8Ht?K[3 g|ede7"T> S>J: X>nt?y#MNWL 9M 3P[Zg~0fJlFmbSc&f$HeQU9=RM17Mg:8&h#tH!^dȝF4D[MYi_0|kϚ MC"ʳf͍7 uTo4 M4 eNzI0L`ݙ@3M20Gu j/R)g R2UiJ |=)dF^GO1HLWt` .r^x~q Qoi7-!2:x \ y&vYXnCfmW[)G\c:47MnI~6x/|2r!oċ/)\7LRΛ4GeW-WOI3Mg.m%,l=޽LVŢmm %?64&ޢ4ޢm;6djg?"[t{U|{u08I֜VAC*vb oTo4-k<ʹhFGY9 5k+xr" Gp튶Vl7vt7Gvϰz=9^;vz%^̵&\tώV("H1>Jc2}L WUh}Y_bkUb}M,BGţQh(xZ< -BGţQd(xY<,E"Gţ1111111111Ql(x[<-bGţQl(xLxLxLxLxLxLxLxLxLxLxXE-t6,ʼvsyűq)&ʼ 9xԀ Xg2P= XkB3`2坤̭ l@2ā,9m۔yeG2T-UqySpu`Eh@ O7,,Rji4+ 8gpgppppa@y%ʼ2.WWpWpp7p7ppp2N2cgʼARÁz8OֳA~Z[I/wvSi Ƚ|#['iڭ ƗÂ5ශm3OguA 7zA)u700 ^@=UNK 1ݻOKY_RRRR}Z}ZJ%xZj9E9.@sggۧnvO;)ް [VՖ ]%vj]vj]v20wד}$ (rYT|W&$ebv)DN {̔rrD;{Rl7vlhͯ+}JXXX(ʱڹy6Wѡ^S_׎po5ko>ݡ=w>qѩϭ:ݹd?|S~{΋\2oX}>zŷOQ+6-뢋/w||K#7;/olw;o6{{mEѷb}"SEko^磲wr9k;/+_׫v\zIWEӫ?9euzcCnS~dʚ-zݫ?[zouIncug7;n_o~~7Mߕ;}eb]pިj˹w ?yuן;2My}ɵ_=ɋkzjz]V)(ToذTzzÛ_ް3P5CW^7goij^k{Ԅ S9h^v^dYjz'W|ǩ4/Ryx9W7v^7K7L ^{7gzPzwn9zSڲOgo~5 "W=,So|>z߫^Efz _<~h꽦/k^_Ϥ?;֗=cz{zo_zÍ^rA;z3n5뷏z})޹#77]9?17}( zՙ 2Axm|Լ}zꐷ5׾,7 n}9zSb{"zm3?q^]}7X&3 w+kpõR?JX{; wЏ _\+|^߳:Kf{;:I?ߌ׾c[wuXi/,ި7t2F~9o6k6Bew&˺\oz"c񮿽Ϥ?~Oo\J#=h;L^QYkk>*}9&f{tjz*//ksΫ\[g A-՛g |9wd\}{zzCvի2Wg zϛg뵏_Ϙ7i+x?aY!j$`2q5w^S5bΚ;ސ%j m*ivAo p+w( 1[7e=-C3/ymC⇇/$? 8N+Ɣtw0¤VGv7Fb]]!SQTWr9(]ءtOEK"VL(Qzi尯%巔s 6ܮZ}ffՖV18%G9pK´mUUtU/ G$8CT6m*ye4VdZ(v)3$!NOBH6/Z;_ +KW$\혁AfρA' qC\z6ErLp໏ }Sn9{LCmiN $ 葫Ƕbnu>Jx 9xxXfhb?/Z*WщG+BN<+4jf_u$3e8kto;]ara';&U8t>4  :Y tQ5zs}9#^Vy_>dW,YYy C{yk*8RҰҡ¼ę"(mG/e${tБ\-BZwQ JdIݖ{c{]p7ܰ-[׶z1`zN @ I()/^B / %BB8;ڙٹJWO}s=̙3w2@-"87 #=v { Ch%yENXjQTvکE1N`igQE`QeA<)oyпE0˒dQ_rЎ+__(DE;K$8ݨo!ߞ%]"~͎d ~"˗]t1 ʽ=D|G' |qIpwC Ǚ-rԝң/嗾wlx#Anp9b8~7*HNĿhUmG{ijT2P~1aHqH]ځ5z :@B:&%jMڂGEhE 3mYP q&3dVR=[8+Ӷ.QSTsQEL 1u) tV3o`7:BFN"N<77>1cFn4$g5<7ZkƢqq|K1Plc +zq~h |Em7& uNQĦߋ b8}ofQfQC8?ӛ=ꋥVQq= 9f<я+CD=l8?@h<X"t:¢Nď7#nGV}.o\^ƈO3'qUTKW%uɒZY(-[Z(cGb{]X"jșWCΌՐ5#CF5M;dTFs18U w@M"7-Ѭ({v{"=k"qz84sD{9d̓UϺgm@<|zAOGakܠ}^ :d<[׈i(OdWe;'yfpryk?'(}EC?,G JxbB&Bz72T8 Cn][_C|~">EO #;w gqS ׁ7#~7AFzEw;&į;AlOu$HHSȜJ,O$:ӈtp;3(3)QD&op6~smQ_}>CB!'y,/<#ZocO s%t<*w-' ▂_yx$'IzIDguvP'[)sX~0݋IGےO* 7 yn,MPr vYJl|[>aE[MH**MkK(P֨4źΐ\'0{gPo{)C+}JI&e,@ܝN2&x g$ ^yF$D>AQs>K{R<.u$EI! BS?}0xѸh\J|H 6*6_#t~5xm׵]Iq.@77$ev޼ r3ѻQ]Lnvg{>'-fxutH<@zaBP&L2=D2< s+MQ1<t6)sOV>Sƞ& Y2#ߢx= N;Д})(-jgVKMSN,VXX_+ .*ޑl+rM^T2G=eI?qfQX;Aj. '5µg:ɴ1(4"'{sur'BMM6@*j'CʔڹwH\wY+5~ _%iq) ~bݸ_W?Xw5]z,SfFwOqѫ*EÜa4[TQ\-*Lpyq]EêkuaEeuG٩|[&MG/ÏK*+I/+)H#I'mJ;F饟Q|\T5S>C#Wn/Kf /Í)[ZVV-ryDIAs(S⧧{(4~zL?̏?Ag-o'MQ|N׉i-Nt"ܻt! :D3 2!H4tn!^YPCneq<+ ~-_o/ 'K'= 6]O6CNğ(ب ix]sIG!zwDYÍ9jvq:xb^\h)+T ?k'4BS+!3yqYdﯗX^S% KdFk Vt~:3DLoT:t 쎝/n&^dǮ\KQ+#Dhos DU RbV$[c(ЩQ#ba]]]T tO'ei[NģOccVE!sLu?9,lC>5PE `Q[eJ5B)lwx{fȢ.VoK tSNOv3G ev Xԍh]>m_h}.ZԱN=hE|Cg2;9{7WwZ%~Os%<;ۘGñgɌ2(_{|{'vSW-qO\/'>?)^BW(|oް'{ҹNg&1N|S7u%9ȱ/ ן́znъ53R3AN3y[g1V6֙ [x-džP,cE|W&f- jY?~K_Kˢ12G&|u`~DX4F ږwW}m>TDK3 ]^": ^h-&-]\N+IǙ}JI/MzP^C y#Gu-6%~ dbQ{'MrTָfy+G\`9r=)/GjJ;'Mȹ71r@Ѹݙ@ʹC<ѭ,kaCʔ7kGJп]Σ\*u*KV+bDumiy}Yq](Y\+ܴW{=}ՌE=Cs|g_1{m[p%P.ٖ%+%|,^5aoo~'po+㾣b{]2Iؾ4QQGdI$T'QbOfgb{h)=IE~][;|܀%Y4?/{[{+N\;}v)uX\eN<{=kGq}_=wWozk7/4yvs_v}k| Y N \Ro|'V1Cϩٯ7Knd9x7xk^k%||ϹMC[ )'|};޷Җ:Iwk!w&HfJ{!>s΋ǺjfE?>[e_]wUmֶf]̯͋9?-RxO;]S}~y{~Яߜm}_>(w~a{_couxO~=? //߱{}S쒟m:i}w֠DU9otͫ풟_͵{珺p]ٻQ?(n93쾉 ?c..y9{l67 펷iyނ؉7wߴ{ʵ=h\e/>_?ÛbjN媍;W줼,(Y^?|o׀eGh;g~9p}Oz/+m蕃ʫ~akHd9X~<]/-[._\%"6Xw8,9ߋqtQ.F 3)K'G<<Hxߘq8ck7g>1O3.AA$2}c p ;̪e%goat~:vG) OrJv9 gnfsC?i ardE'F]9s=ҮW_+z[Clu%{Q?visqg{;;횁[(GO~A!wz/Ne~J]A3]zmyq?{Ieɟ>_[u^ivN~.߳z.__{ׯR l:֑YUw.ely돳w_v_]^wʮ(? xѮZ1 ?֖ox59iO?>c]6Ţto׾=okn.+x5g?:ӯ^囆hЮʟ?Gv|Tbbn[s,$AGU6h]agG//`=y>v߫_@'ڕO5ώ++?da[}~~vsS\'ڵ~݇v۵7uEo53tÉ_>v?kSNh-Qa^}<%.?]n} *.);qvگcF^xڹw|;9N[HU9>9vEŅ[ڮ^,Xހ>ݮ1Moj{}l=aG;SUGx>eūq6bN2?~Wk{U'CK_JvKyNk57*:dz$Y@~ކw{߻oWO]O.S:/]jrҽ%'=jl[lO.J1{8Ͷˆ$._nvk?yvՓ?g;d1?d9|_ z-Zk*du9;"Dݴ*"F:"Gu m#BPMP #BLj)r?;8~ ݿ ߉I)i)))ݩ4w;mbȠ:wG1 lX(k9 k{&l7z6!\~`Hd@\ҰE ?3@Ţl \,'ogA Izވ g mD6pےjU)wy΅1ufIUԗ'jJ[ݼ҄|BS2aX?u+d4e&ABԦx8mE>N9\$p)0ul& PKKuu6[i 9W<5~ pxyh$A~ 3(~''X=9aXewWHk~7kzOqY\ѐ'}Иe^F+MOe-bԺ{*wڝB/Cp\5,S\!NaSAwKw^<+ԖI#/H6Jԝ7A";o,<QlGvfL'_ӌ`G^>t=eO#c=|Յn ^nǷ*Sg*䋔f%pEqF1AKotб˃zDG4<"Q_KS<#X:ƩO29n`\6 ^ ؎[^;FΣu$~(#/uv#:]]N8:`Uɷ`ʧ@fjGE.UQ˟G8ZS~A|Zʠxi}VάHu8O:P\$6-qSZ?:^k_W/5ApG-HH> ]p촃 :*v33]2ܞRz]:b68D d;u{q^aUT[W\SWZaOQEUeDQmUb{}E<(;tfI GB9X`9ڹrMYI$(:]\etq-ʨ7:n.i##;BP36)Xi e{NAvҊҺdw4dQx\gnJgѤaj0y_RQٞ Ou1Ŗ4вRҲRRZQ-iYDY%T`q^ rSWCC(ۧjC8>/E r4DKN-$ 09+XځO4lr`rWVlvK?'VI"* @"2rbPE.5KVAj"3E'"IޚYJ@qjVV}DUaןnp|}jq"_Y0(ȢEuޠOn52KARvtsю z{eIrm<} 6<ͩVF1j2 Z랕9$V{՚񕀼2,[=*/|+wrW"ٞVm HJTtcTZW5_pR,+/_l+si. C}S:W̛,&9'D|rMUWkT89;'-yTM*p01=IGYh8 V³^8h^8roZs[k +mvaxr1DlZ8/7 }>g܍izNwJ?(}c_F"Lf,~ɴɍX`Ye1nX.٭-)\m}Nħv^nFы' ӏܐv xmpNn#~k &B 5&RdNDxn4Ÿ!aXތc]༶y&8ow^Wi$L%7Cn}>I (1B78_ f)Ɇ~ߖ3Bقu8'~ i@8͕JZC%ݝHi.Y ](@6 zۈY [HyMo᷒<(MN4΅M5I2JULv{Pay*ocm m[!V[M8!Ǽ^Oߓ=p&T,|_X3X˓wSx(=p:w;|t&>CY韓K'z z(%o|iV!嫋Tx s\\B;_^CqWOUq_^p# ݬfn޼]V}GX;(n({E~ z!p|ep#7[i< NJRyaJFxr oH}Vk[t|4w"H^oP<>f>FA}4Q CmrQa3. at&w-x]mt m_4!xB'O q7-7xk3ҋiiҟMGZZyfEDifQ ݵ?m5c{. !RSxW 8%?4m <@cCfk=Np%Cuœ<;}nHngeufQPʏsҴyGǀ0 #ðaF"S; !e:1-y#DY]-K j\/tmMCke'C~ ضb.zHSn~cwc{$njy{gG/ë c~0>|nYZ~Nf/"C :K?A&9t@~aky/ &CWhC'k7 #_ nEicsWi~fynt6,-?t?1?r ))7&Y'eMD01Zu$3d1O5˟R_}G)/DCFl8FMc;ÏYcAI$L0קG(>S9Osknd7;Mߦh*a.v? eF^lA'߿$(n& cf?_fz8n6zI X?nS6:r},gʮe`GC;uGXnGOB~KVwh?̗az 'X FrCoo_I]뻴vn6*zs1At6Bɦ<_!s*++vVrA5R`[a;dJ&:euÝN_lcgsm~zn@R.ۡXmqyUYBҽ(4(e ĆL@\9zJ|6HM}ۑF %~4l@h8TЗ܇{x ,#GgP$HǒvoDZ=?c$~wdsbC`7L}I澔p#O@>7'C)naa Ta;aPnç>vk/`3$զ$flؼ1165f[RS[qFH8,s@T[5¢Y!orv+](XA/|T^ĩ_s BCez^V{ЙFli}}j'k+q*on}O 槉6-fg?`@ys˚|S> &m2(%әDtF D!@ &t bS5;gX,_v텒g'Q+SzW'+.Ey?C$33 %\'qdǰv54>ǑڅErEQt|\e@&#~QfykrbOȾA!x7wTQjfs>m{Ϧa| xe-o\ڝte}aWgэ|6PrbC5^prgys>y tFGIW9Cݝ+(m3~z=nwgӢ޺e#bE!<ވ:9:\t;9"S}r,ۻEst]7RG݅?W_,9> YS=3n1d&ﮇQdǔvqdY ~NL{7"& rMXErvO`PǾCS_F(2G:aW1dq׫:5l-yxw182'9LtyW~C>5oޅ%l˧WX6r+8S|nc222[F&9M>ɱof (6H,HL'h2g9x6sȜM{I}EĽ7wTWQטj%\oB2ħ{Sƾ ==㲉ᐇ=X wQcKXuۈ6o{ ݔ­:_ IIM|!^i4,NpxEm%x:Nm k vv氃),޴Nm8o\G1 KtƑ}<'}"'wW5j-FnĥJ/`]mu+ JA#O~O֒?t5y"<} y\C~ncے0 I^/'_'$| ;@@\ ΘWNPr]1H֓|/7 g{D%:$޲s1c;%mpM ^?OĹ& ,'iB7eqit x[ѥ*.Sit1oF Шz.D7 ~\t'6<օtr!}n~nF7ٷ '$$$ Ob6j,ﱽo9p=~۞I/LG"kJ] ߻/Mu>E}d"OH{_uBN݃2Ospw m ݀0SSUQDNAGDDǂOE2_"ܟg*\p^'/o"} ^MV0ai6 ExO̢(뛿McB9_!we9ޱ@) H7=UECá8g ÿqXc@jT,p٬Ma4ͣ &lW~ p:)eՎh:i% #+UrBҳ Aq6C`>Ni /WN1_6Hj(B4viM{SMtyʐV!|#mLr u!]z3E6J "B]ws?[wܝNP.45 n~swm*b 3%}u=ogi*=!^Vwɟ{CfʓSTΧ\^@rU_}SUbtE:E~Hw띁^߅i3ȠwG1X t(Hq& )2q3?}w7_q 4wkRS並|ۖڪĖ%6GԓI8OeX0'8!Վ*{S}ZW%jMi7i7&B)o^w/NGobx $?!yʠ2tJ8e\3̙i?扩`eƟWM蹗y1N_;_7&]O7-.l:pFL7 Q L?~ʕ(큔gx#|N~Gm0S6)MojS'kOmn}L⚒1`BhD=7L_C#AߤގT=?D4vYM!_Eo07:% ǔvWr20kCkH˱,GXS\ ?N__2>Ռ_V1\WoH/(u^cՠ:jg:m|'e{#Qz%ݚvPX`QM1ͤDקI/Գ*NKinGi2[̺BC/6Yf6sٚ-_ ^ yMfj;i~Ӎ:Z(:eZR?~шIͲܩeYl(eKRU,I/mUeGVǿ4@*?^mt_FMIKߺ6kZ+5~i_נLZOj$wY\^BNog (f==P H& ~ipU8ݪi-=q&M7m| oN3uުr,eA-^{9~8[\H 6ϴ(]_ Oxa{"]/)(y=$ʮ Vyc\ۺ CAH]!\g7"wd8_>^iT<.Hm~W[-+,Y*u] e !wy^_5? 8Gr,cQFl^vp=%o3h8 q!U3y1,#.OLS#Z$7/gPO.F_7=7@uTwD\WșÓkՉ#ICr:ѻۍN3zu?'Q:٨Hu#KS6-s\or(}Ɨ t=l-3#g::rl$_kQv?Kf+<2[w0ɷBJl?t1[]>>tP^{ȷ+uc 1m,tcrF=h[!}7"Wf0x?cA)?j_I-[گfkFz;N (z9UW9qg:=LGE@|ZGn\b@Jᾤ"%v}Y0 7"1C?Ż InaInp@n `gPNKwSOe{D$~Q]ϲGϔ?eBܯQeun>2oѭI gJF)ق> itx&Ȕ^8Q/㟳dr{^߆N9ޅΎލL*|bW2mqC|yEkdCzWƩ{gPLAHe:oTKe0of61KK]W4L/`=GQ'84m頽^ʸ233ѱ $sy8g721AݠkiH!sxL9gPN7 w EH2@(*膖KW,ɏv엳}x]Iگ_6u Ev-Ar''" upL;ql2'/n]Ât'ŔcRf帒:W3F"}g vZ8J"M015SɜN&=KOK W}o/<8&s6s>0ydu|2c\MnY|dψk^%d\/#Or})|Oa4yc.b ͐m_cB&|ɲUɏ&GjGYTcwג`i:с}E~hz DE{+/X@vnC^#vr,i5iu9>){Xg}quܫCЍ{{JgA=Lʢ(GcO}_7H}9  { ykwxњut=z YOl9AKә'Gv֑yw~G|TՃ|P 2Rph?tth$g:$lh\r$Am.O#:! "ǘJiq~c>l⭬ȫp>Ѥs~< 8 hz@љK9ڂ_JN']O NEvX[dS._M@!`Kퟝ?r:vҬ,c,zSGZ""pK^VrQOZ}./b(@u_uŠKِ7Sں%#VYoteG_n췱lEf5aMZi_m9Mg/uHȭxxmK{#ctUrHN B,?|9"|2cI*:r=yD\*]J?ʸhq#L䷆1r',7ܮF'v /2vV+~CEťѰ[ fY10ҭXY~KJ{f%'迤7uI@Y/A DǨ~JJE~_KRzb3{CѿYF]t t?KTP4hQ Nfr =};7/q+i> q山 ^ ezW@0P_~%@&v> n%B`́?{ėӷ__sE|y< ot^mqZ{jHk}ú}rH7 wv_wq]Iqe-z;Ae ;ic%8E} mw;|Gku NyFVQMvVwqVaXG'GeM҄4QJѢ˺0jWyev\}A'dkk+ӲT,, u#W 0@%"`an#;ct3TBi%ӛp<`O}slB  Ї]}1_#@ٓ\ #XOA, (VMt **TgJǽ oS   8EA 4YX !8W pH|IR* .pq Aitz#]qJ_Yv: p|ñ1 !pDLp0!ebm$ܓ!Kw 2E q]3W|O x !4-ߎ%{|?~^jBk!:"V'c^92=Ka#?@4o9NdtjEW$j〩8 X *zH .ɆW;{M%7?FODy54K-,r6e1$^]H~c, 1.ǂvXޅHs O2 HvDOXvo+x+8F|Yq@1^Bƞ p}H^oy*<2m8cMn5!Ggp,F1$82BEAr/sY/7z9Hc=c]b CÐwVC[ o~&?"shW&︵Gkgؿ8zAxqxՇ%./$3]dvsܿtul-c$~"':O0>z4žE pH_莒ERn8}nXoN}R|S}jJs/YB$9YwXF~zȑbce|M2,@Gopj IT!7 >6̡d!s$xg˙/p_ᇃh Xcp`uLU &99P=) Am̾;)q䅳mlGjvn6E4GGJ=GT\iQn((l!s|NOtx{nkH=RT`9Fog ޱ֤]m{r(2"c.݁g&_ C~zb=6X!C?⫭dAvHSVNm!PQ˧ftm) !j lʾ5# HWmMvdS?~`! 7mS C ȷSVՔrZFW1w-\jY0(? T.?]F.7A ҥ٬Yw(Y& 1;֐^ᾟY:CwU>`S'gT:xzO( ˻je Sč{5dݢc>5$Li 5BH,s`GVq?9զpws2;txp.n{RYydOG+:;v.ӣ+ F~ӧxsȅ嵨 EK)y[Pn $yVA{AOrD:=  M} (j 0$p;< IO&XqFͬpscɜ'9q?'9qݧ@jfO̢}`Hq}N]\[N HjB΂!n =̙FtԞ #gԾ|OX&gEӋf5Cz䁿7S-;Ԛ@yJ5㫙SERa3-ea>L.}@`dCB2C/PÕ:ǡ-C;9㌁]z}E3PɓHgc>` 4@;qؙ}Bjf ;KQj9αPE{c1ۏ's?2J}dV8%2_&2_aK^ f.rCIV::j2N|C{H?Í!FaFADx'NW2; 4fp.B0H{.!}8%`&Dx/1B39\GsU9\"f<)[g?~%(!.`F&4fA-MSR֌^LDtUg3mWmj[0 Uz{[_+uOwL9\9kA+YߧK/Ɋ c0&\!5 m}:q[2q[ ? J+yhXݾ0euu?p@>E96|.-wG-[97Iv B^Nʴc.d#9!Қ)Ip ]+^V+؝0Tw[[ݝ(8^f}{{ [k([>E?8 x?_tuwoBH^)I&+>eq7>בxN M"L!s*?L#:ض=BgPgR[f>h&Y7G%yG1|;/"B$+1?U<e-#u"З dpgV%D]C:ARpA5# =OHtN":#<: N^ ޻(~"VxKRPؗl|[>aE[MH**MkK(P֨4źΐ\'0{d/}H~e=Ow?Ԥr0IDd{+('cx3zypO*}مN׷U("AHbxyg&Q/#K`3&^[kί;]Iq.@77$ev޼ r3ѻQ]Lnvg{>'-fxutH<@zaBP&L2=D2< s+MQ1<t6)sOV>Sƞ& Y2#ߢx= N;nc[? %:/+ޝ_Bmo+{GG^U;1ПttrD'ڨѨeC2b{'HM"^6d_ms-FGzP1tNN;dSW^ITUԕHeRHYW{8$(lVFk?n'J Ŀ9oǚ) ?WC?n\~]OHaS5]zY!̌oѫ*Ej+J*ˇ%v+E%tzS*bMQ(z~|e]nWq]QMbg}YqM7]E)Mꨴ8ٰmWTQ\_V7"L/*w0"ߴrt{q]2KVxnLҲm+$J”VDt?=C9cBa~|Ģ{Cpu`#U0"H' :CG@d>Ia^?M[?c[|(nY q1J>/]:!I]D!@(r"T?GiFi_fGX5Gt47pGJ%NɞӴQW {%U\$QVjyC>oDJ& |Q6(b]:G3FuR8 e~j#Իs ̣ /c=Q72K~0N^QS,E{FeMCQ_QZ]B^""?~ʣ\lu GK zنe hJqfr#&LQ/0e~=ac]2<ެ4r?v+T ?k'4BS+!3yqYd؃kufu5GC fhYgÅYo7* f:vxzeD^cW.ƥҨZ" Ii9Mz"-fE^K5B Z9,~aζ餬1mq~5%~:SjqVQH);$SO <-E;2DW .^e2E 7+[xށ6;y6>4C Efm{szxq/va/3N>h2j[/ֹ/ߑ^;w$N{;ͱݣhb161=Kft) DbT{Bjj7uآa>v]l_ғuv +qҹ tfuI-Ʃ/&[f?79>|wT! E+HlpH p9Fm|GZ [g0a 7,Ɗ LX[L~Z+d/"Zeьx#KJ g~i+)hs>f*}ȯpg@R6Qr!|S@9%n6o'g1>jJx}:aНN.0:;D3E/K@N_ƽ)Cgy ]@  !29L0 $_8#`,8&LNEh򝫣 0s 0O~[kX @^>tCإX,V" & # Ӕl A1g 5^筄idq-Rv&@ +ҀL4PMP+Z@=AXGS3w?#&uxg8g(8lKp' Bcam=&q(4 \!F6 *nnp#u7 1np1mvvG_$r^4=4G3 <1s! “𤀧C?M\&Cpa_D. l'6ཟ i LNxKCIH }qu8mjO y:R|.gk|ˏnA줤eoY9~lїi]VgiTW㧮I9濶 J 94:g>f նhfDnmf:=  @/nFn](Gnǩw2עϩ> ,W!W{NW?c={64灷֢z[<1;|zXMߗפ)o+G^b#fz9Z YsOC6x}nszxVus9Pȝ3q[?44'4H>B}Wg.ώcSW<آ8plxҿS<|wp5k}U}6Hy4Vg#*;sO:6:GT>vOI O0Ny~ Zv! 9.F# Aܱ:MVg/ݳ8,x8y8JW)o|G1xs-(LH/ u솸 \ ?՗JY79u6&[Kn.ğ ޼%H{CVo| T|wW }X!Zj~iϣ =NIXu +yj7l2LAdEQ$x]I]H_p?|j 0}Oogi4Bgwt wo\qWdT,3 ,x&:]F<)4+?tLr7h.nŬdφs6SfAUNg"N3zBG1sh{8#E#vGpmse=0fe﷕.W A;s$ ܓ>P9=aWmy 'rfo|z4yÿl {^4}~٭~b`/k"hCAs9 L cM,r%%'ikCdK8K/[YD?ϕ6n5wg]ҠMo7ͩi WǠ7F6A pfܾNr&" ?,&{W@53rTzC(V\o5za?Oc7S'>Ynͦt'C>)0" #^NG)$N펐Q7 NFBɟgWlwaG^o ד$\ ¶yL 2S<!;F9( 7&=gU7&eǝ=:lm"zd/x⎘3E<+9CxyKlK;pwhL,Axsoo%e!Gi <|CG\:5RU3UzM5؛7v׷φyҘe):uf> ұh5֫$\Z~j([-nCx2<Gt ʥP9?V]÷ƙV]h?^Sn![~,;6(/2Cj &dBVYªa$~nJfX]]]E'~^ټc(-VjOfk)X-E@p]rM?)]nz{6yUGlY(Y#̔|zBt<5xө)]ft5.9 Ӌ]nLnŰV:K||zmopKYrkx8vopW ikO2o&gRxpagʩS c؞MXq8B#rݚ4%ӆөnpeQC-*o*}@'7RRxꈦʗEC#L\LG7_Htu5n&H:8: \^B{Gj=>$& >xt?LǴvǒ[;r8¬&Bh"yq:kDص6[ĩ xp1L稩m?^brY ::j/|Gd:{~/MLy7T f|x0avLq0rk{3#6ĥY5mƽSsOLsE|G%q mw Wۗ.4>On+H'uQy74谮֓LC xGTrGHwVӝ! c : `)>Eb;߱ԍ@2;8,6}WޙN k]2D'Ǿƞ9^:g>= 2]2FU7vzdat_|:֤(C BCLCؓ>|Wz󭿻oN_htpܟRq* hlcawݱ>%`w4!40TpK/)(wl@ޱL:3C`!`rq4MDwdm0/%\7ڀH]^ؼ`0'ۓyGᖳmv}[V'5ITDSMaܒ1} CCɛ6-d1d#%p;dYnX%++&dVGGƆ|n혗NrO41_ /q8t J>6 u+(vPf! .aNaٓh ^C|ykf?% "WN9g yTan(4`p&RƸL &S.'g]mUqMmbYq]M)MzN3?2 GS4)MU)JS 2(KͪѳLf&雩;8:j#tH!]|#N"M٢jA, &ջ#4%\J|Y 8zRy!5oשvxn4y(zIhDIhΜNq"6ÙYs ^Wgd֑+bFui/9|ϩi~{r 56>੆~ EKgq= 7By7/!utZ`M결Zm}WbUŵkUo8Czۂtw]) e3]&^rnwpqГ+ȲͣVlBOmܼ<;]^+@CI:jiLk|C;F&|,?Xfy n{e"l瀰r Nu#Zx _{x[i˃n GAPQAZ֧5ji 0ܒfo'm-l&"0]zwS b}w蘫i ܝ՘׸_e8̡8aKٯl @i C:uzB'6FmCnv"lݨ:hZx_0_%G/5S.I3Fx[l1[ev6ۅdҘA&mAB^ z-2K%~<%wL-h36V g"&)g*'kxD$dT4tccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccȞ0~wwwwwwww6666666666666666666666666666666666666666666666666666666666666666666666㖬8vDDUrYPif?G W;fܻfSpkm;7U{0@'=ϗ ,|j/ l1[ 6Cek [ߖA0 [A0|`WkZٕ9ߓ+Q k|5rg5v]O]rgoc6.wЮod$Or_o{z^vϬ]٥[4?ۥ̞K?ӱt]f?>Q'ᕝiLW=[e%w:)c9ʏUu׫m^nQ]vϦ8{e/{'\_ʏހ+;mm١v]]]3n_,M֮~[OSx׮>3}x_?u.s}~]ϧ?iP]1{'\aY'k[bg׬w>Jo_iۿ3dWG-+v57Ͳ+_Irt]]os6)qk{$vݓ'0c}LT]1I~]?9_轲O+_\+7glK?1w.?e+>.!~]{}8j]{[]T]3I;o>4 {߂ooof8G(YQvםQ_gW:fd5 N{;]\]OcWT\xɂ5ޮ| S:t>{~>\uԈSVCbWyGe5Ͻdp䭾0uYy/ٮm,$wz]u2Td~ j뛧ػĻ^SNڜ_HG^=mxw{gK=j{yvOYЩ{X1U_M 7nq.S?J9yLHWQXU-할4YV^zټPg²M,mH ;W$5LSI0 $hHr5| ?-/ϣxSGޕ| юHu\ N!D2a^O%\支NI d#BE~<ڋh 'NQ~ xmb?ٕ?~BRkE7 Ԫ6<5殦ES it)u~ɠg| Z-P?68$K>E,Vtו)coS/ ų?&'kLE)I:f:ט gQ!6|^-V!ߢ͗Ź1 2s?Y^נ%l FoʷG:22YTXQeb{_]?ik5l _qKe 1@^d)uԋ0I(M~eBuTS_ uS<>uwb(],P)mQ6}r2Ӛ [Hiڗ  [E}Q9Օro5b bx`쪃e񵭬K~T"a'hi16fd1YϢԳ4C=+QԳ;NOAS GEPy#(t Nqb:ߗm5B &!t]}C95A&ˆ$?od MqϤy ڗdHި#.ċGm_߅Ng#v|a?#~^[56ҍ?z`ayU{J.Z;`3u*4Z'?ZulDq=jlQZEhQ ?ѓ ,'A>s_s$tP3Cj#H;2 <6h[!V*9~OM}0^j}.Yw@ ffx@Bn>xmƶs╣hwpvhSb(\/#(S&^un} iO~?QH(H[į#:#H[t$r NiOu$HGs*?L#:#~&$h9f ?g7Q|E1D/2/ Y'᧊籄D 20e!dsL_iLLL灿<;GN{$|27Ig(ϒip߁;J訹 =K9 834<ن)='5=b1{£0|Kqv 5pY=6T1(4̫SmCй:96,Lۦ&QUYSWRZ^ IJ96yA?^yIP.0f~&|-OGsGǍ4:|qu3~k?r (7 ,s8zD~=<0.$tq?wNR{J 94#@cv͑f&M ѫe G݊RC(}E%"7U;6t1~3 R4i͌VGt 9ҟ 6 6cٻDw!0!8/oCxsXbÍ奈q?eL-21Oڍ+j*w%hOݨih4+Jc[Y_ǿA'﷎\lu GK zنe hJqfr#&LYj//#@]PsY1i~|@+T ?k'4.+JL^\eVy_?Y%ה=pB.;YgQZs4DD3_GL7Q7Cl0\{ F0W/ zr1.F4iNJ1lT RbVd1Y/%Ae0LgtR֘M(ؘUBO!1rXiI~y,HݏRn3T9AlwR?"r09P]oK̝v\u0ˢ]|g2a(>'m+#6ؾwx78l@fGN[4dvrfnl-FKLh|cm#dسdFgB/dvqx{Bjj7uihx';IpSm\ퟩIHo ȜA@3Ȝ Mo[_rɑj[ZOW\녙8fbc 5nHlnI9Bcf9L9d'Wy#'wbd<#H-GQW1"2HOtW!(z0z(M=Ǒ,@_*cmwXd.%syzǓd `Eb!d:_Ds~vĪ%n@ Q'ʦ 'F27-đps%<̭\^ܲdns1Ӕ u۱@mG^ಈ^:2¦Tp±;TۅZ/<(S>D3E/K@NA^^^ {h~*@TN p0Pp!8|O+` .$H@Xt 4p+_ _A$E `;]|@y#0` ўKv4?1lk ۆ򉞺#E6UIV؅% G oDG\ ׎As $Wgjtf C3!%~Wmߏ˷^^2e(t7WjY!,ܖ֎pP.@>8< ˷0ȭpUG^88Bגl𞧚-p5wuigP޳h"W>Tς OUvsrwV.R.I$UʓjZt&= !OYUvnH568+*`&saOnu"/={eEvYN7IҤfN">dN^Jqr;{r]5ja홯fW췆|ٮ랿KN,ޥζvw5>Po5iC-_c~@_.♕5t˱f?=]g>]@ _'>u#Gz]/ʷg쾾e|]Q~]b~v{-;߮0kszӞ~|ƺmvE߽կ}{:bܰyʜgo׾5vgvoδ=ޯ?' Jk^0f+:vw+_5=^]3/]^%ϮHjc%馫bT]iuUwٵvQqm [u]m|Ѯ#ǯSkzz]N.o2ˮ`o|?i?]l=WvkδTuǧ_i׽7 s1]uݕ?=~v/ݶYv+Imn&;þ1vm_^{&}캏)W+&9UO+籟8kv՟WVɀv5vfvy_; vG5Ok}Gko~벋߰kf8T=|اd[0bm;<[bx%K]~6.@T]S>*_?3wʵ_njlWF)7ssgws|W>r}ts슊 or]0Yە?}]cJߒ'{KNz܉ٶخ?\̗ cƵqm I r]"݊'7g͵v[Um}c2~Nyb;)Uo$g]z̮ޜf7;W]ʜ& }W'W$K,g̤b.~q] zvI)Ѵnx3]dˮ=端}oӂdŔwPJsvk2 ɤ},"s z-ZkTz3=+r'gAZϾ['4@p4KNuXc,=u LË33`{sۖT7oX51A_xKWQ_)ݮRFQz( ͂D!<( cMك!6%ucwYC }?NyG>KSb+SxCЈ8'4hnȗ|6I#%F7ǵMӥ=Sd~]L|38簳OsHw+2m xt]Ȏzx 7TOy $~CIȣ.aNK뽈әhu%\}(|rN ]Hg,8Wht0L/"sxR%~hD֞juW&']EI/O/-:r׺$COh_S^ִ +kK+vMUW[T\[TJ2ML-8_Gܿk]&~^Sz"7AY?S_U pyE//t<:TI?A*Eq:X[pv EzzK Wh#^.F26_"$W2(W-ʰhZY6wժ;S 6ff0ZHYp ڝMN>B{k 4 @F^ܠqMcExS=sʎ%(88_k )_[yzjta .qB.sBL_}cQ}WGh% ;n xsbCΠ7z% m)eMW@C Ӈc+:QÔS[>44,|ru)Ԋʊ1U "*{*&JƢ]a #aE;KRG?!.duIJ]u8U'c&qao?\6")OLw#][[S|(o5;B Y 6-Mh!|ߠxh}CDi}L34J!h4$y#Qa3. at.I-xuHw0,K8_O >9}J i!!fUҤ?4$͊NkjG(];sCX9(٥i{,Sf=z(cK9!xvܐ8Tw  p?&J iSȏaḞa5ŒEvBtT3N/c[|G sZAո\e_&/ۚʇvN%%Z~]jk5|ǦbIY4~Qjm?~zCx)k{/3ū!ًơR6|Iݸq==_A8%ZfK򿉿:OoG?Roܞ 港#(0 j]lY5Z1~|}aIJO "8Bk]Lm` ̲t"-Ӻt`F?OO?OҾI#~ X{A1}N߬Ơ s&ӣ)Ҝ姹5H7aћ&soS 4ES0y`Ɵe2#it?ﯯ؞˜YODwk^C.?֏\_,5˙uQc9jFu~ÛۗoRaalf~8Dg#Xl8ZbGi\N,7T' 6 H&onSF9[7if9v6W竧)!W%j94(e5u!,>DNߢ b~cvaCn ,x %aigoޏ AG#~cKcݹ&רD{!#/@crK2|}y?RἁD?xwvRa v0_mP qohfI??YMM)WuJDy)ctscOm&jH5捀 G6qXH[5¢Y!orv+](XA/|T^ĩ_s BCez^V{ЙFlk _D: 꿹aO?Y.2&۴1#&6B-y/kbsMNC 3kRɠLg 5+ *OAnla=ֳJyk-lvy u=xT`ߟ8Yn]vEe,BaFS<3 G'Ӆ` GG^* y~)WҪ~tn\ 藧p~yS_6iz uTظ1]fiQ12Fg?1Oͧ9qlQfV^W|ݺR)sX8tq@NB=}87j(+6]7,w7W@'0atĜ{u1ݹ6ӘlK*5&:uthTȵuQH&7;tά0NTn\"3r_׍Tow!UdMn2{wè_c?r8K,nY^?'RWx=WFHfDoxu9H&,CǢ`}9r'}c_!թ^ۯd#s#28c|;nwɜ@&n:{bCּgx`/ ^`,C;NeulL46 $Ǿ3 3c76H#96h#13̣ɜI,o d!s6 ^;hm`shs&ҝ!s/&v|dKqd./}cw/\Jdtw*6௷xN]k(=x:`[?'¡KAަJ[bd>ǾkL7ouel/vK'rlt+_ Q6˛SH]A \2.W627%ޖ;1&mKM#Əh ~"m:|D J89YQ4ƏA@a" ڞ/4`! %`t0`Ii`*B(c +1h>SlvDX@Pb% XfY"!XKp": V'@IFl $l#N8;}]8J!P'@뿞`Z}Ss#©D2p (H.Y De \pu\Ep-:Hw-7 n'U;/-.8_"x4G "O |O={GueWQ]E]c^q(rm z4Ng6_K&ZC`5E&.al#?-/wS:BrDn)$'6){Ӱ8֓3&8h%A!D#xZ8]0! s>(Fs,Gd@d]h绪k"*u1խ(3(r<ECj>YK~:lN: ;Q'&es aERoKsX"0/B;'yx |1v"s5xw;c^9A;v||"ZOa(b}ɗoVpk xŤd.9X= /A;v7[*O&;?GQdN3!ꁄ۟¢{-[u}tL䏸|>~$7m_9 ;Or.7uJs&ɖCY 4Oe97s*xu6<zr;30*J _ߔu.%oF4LŐzuP%WZoX/@ ް^Frҹ[[d!=Nd2++ 7?ד77?ߊۨfrE#,dao{n'0)it|&7w? 9!~~l !:u ~h> m,')^y>^x q2x)9LVr}##V;}8*lgԯ,VE I2;)$83HC|_毎#;yk~ e Kiح5AM7)CZՆ5V2%օwƾ(i7|A6rfoK aQ}J/O}$e܊޺ sLSZ40)_/ĒB{?ݚC~oH3WmJ*/FvnNb:`,sG,sՊ骾Rtz wfH8 wulrwf9A$_4)̔0A#Dx%Z% )ONSy:rzM@xWW}!\MmW~?Osӕ3>#`wBxO~iS >E?o ?bo( 3,#'j?ˤ`'a_|I1Pܙ1~KMºm[jkj[JhsRQO&.xJ>٫ ~:0cT;z;OiK/^V[_ @6x0ݘL ~z81W+l*q)d0g)~hw˃'Q__5^8}Y|ޘt>ݠ91u(G)3)WRw❒l}: fiL)0+nP:h|07 y~M?;A3kLzkJǀY `#,Z2}_ }F׃K z;R`\suرJ>g56i|2ijMh|S]GUf Gs?"-ra#Ns5+Rb:]~ [T3J~Yr_ǿ!]<@Y:{AVNZOi鴕h?u^D^o tkAvWbEjE54ra\&mԮ S7BRϪljLT;O/iZl1뢟 k fo_ڜek~h~%`{5OߪߦwoO7вkp9whKG#&YN6rewcd}Rf.-K94V$&iVa-[^hz}5jcҷ&-G~Br|䚺ڬ/jiu_n2i?MufrCx{ 2F8%FA+6t [TCA6 0=ϧVt{Og4M޴AK:}c{w˱wY|gCxn Ks!#-@<Ӣw]|1H>>Naw xh>(n+4[Wqbl2mԇ!uupۚQua|0֝7+-AvM~B0۝M)H"<)!ty 4kZV *+: ՕauK:{4uOʨmKt1 3>ךTh~݈xߑ|`zMʧQ񰞺"A^g7Zo`b8XfdB ] v_9+nJxn,pNH~wɱE9ݳ{?r/#J*|!\S{У41oHVŰH{`<3]N]$kON_)[ ~}&li%8W6d^oT]ĩ0I˻1k-q~>GD)fC9}f (ۋ8 N>ﶷ.$=!$5#­7? y7Cq,;Q,Mr?kc?)G|F5 U[znK~_Hr8\i~5t=A: !GYq^B!Nu@ ^]A]2!ݗQ-qZ>G,-u^]XZVDfʫGf3$FX<дqfz)"̸DǢS71A90'%L#ɤzRZ.n\B$?ڱ_qu%j |(%$ٵSuO WW/'4Cz|.WW xR֢'V&?jRvg"Sˏݹ_KDudwvyfd.*<ﰡE#Hv}sHfQy{cM䪕o$s3'9tnd~[297{1[}cMNo̅s-ǦC5X'M"h [nh򸥫4tw;<3+ϝLd2cSAyLHEp~c1lFMVAnF.mzB)8{ bmM|7- ve2I^pR4E Oité#,)zU[5 G=ien#yXCX.egCj߈gNiO[e]pЕ-jI~wikƲɾvyoY4i~7ݟ !A  v-niV@PH1trtV!q: (Yt><#>'d8__@&^r t!:++(.}l2yp >Hߞ*$>B[qc~nDtn<eHcAg-)확?f?$#4Kh'f%?)))mO.IA Ffuy -0L.QA 裣YF]t;6*܏HֿĭȦ(z6xr+!p N5<۞RO/4_G@}r:,ں5Bܿo y7Nޚ_Nv"~}!xeL3 l3;a^DNU`XFU6)ZY~tYa x1j5)JRo҄F) G.¨]AJpsImyjCNRɳ$֍@^\3"0 LЗ`pFTS NpNoO5LYt>af! c, X(@veLI8,gO*r'd,W`=B`p[lKLgG`7)#(' P!# ( 'oN%8@3Dg& *8g `&8\\g/?xdrd&[1`lֳ-fMw5FԐBB !!$wNz2|lH|IVj.pIJAitz#] qZ,_p|ñ1܍!9 彅Va4o#C h~_%@}_#X?k xPCxD7 𘀇 %x[HNDDV<^JZ!; CD? k!oDw @ +4_>I4kXr$X]0SyA7A 39ِu~`e->r'K@˸r gSQ6㖂"PcXwհ8Dz݉V?.LFÉPiEu'zrŲ'x}[rOg2ID "y>]88zʀ S5R3Y$4Y|,9޵NRQ<:-a^( I 8_^h⎚qJWy xukpR8Ys\#A &u7 ["|~6}pcnhg[?b:~څ1r$K__W;|fb{rȰjiw/T'5tצᐸiy':c֧ӾNv3tN` ҤgڥV]:ƇMy&H|?%o)hSR7{$DW9ӏ|/hE~3?vV(Su=Vk~~oh~#M_*ur svFk? 2, ?ZBm,R[_X-jkOyDM59$=\OHDCnt@D̤.xw[eͮ!0_? ۦY`Y*~TЗUjBFm~oU?&~\Mk1~͊&*cYWiq~nxiº!킅uYt3h&ړ KFQgfJ'0Oz iZٟiM4Tw"H򴲟e%:w)rt{+q\SXzX-`k1bqk {P;Q tՔ& 4ʙΌoU.oܲ}c]yccƏTH´1eiwT/{S[TF^=pϚ_*koǵb: 'O.N`???+ ~_P<ڌ"yRҳI3#C~_C1TU,NKjk]4 E~@ɿ5 $VmAFēG2!ԠGH-`[[ sz_o\sli{8*ZdiS͊'%4*RGԇGSOBOCY -o ~~{(pTϙƊ(4hF?ڑބoy$>b(v >bkYhh!U;w/΋&%~&+x{N{]4~+wڣҵ:G^1\>vG/2/dwCf_N^8Ig*~="d Σo1g-$~kQx߮$o8SufT_ڇދ|Щ&IsN8'|iV=YZMN1g12&~Rs#Ƿ85qݑLwcwWCh2G99Wq%$'Bj-"܀pS@e=p>^MG^88]ۚݕ|w|I'! IH~@p"y0ŭF}dž (F,u9E$֪5?yn2%}S}:>R3{eC?kstwZ̽2r(l2@T.^8 k5Yd΃H5<\?%?lHOUdHi:[n}~4`~;GgegcZִELɏt'Yh^0zh/#ӆyi!"P7}{!}Kp q谿E{Ў{8c`^w_p3h0Yأn;X,Pݛ!/vf?!53C#Qj9±tPE{cۏ"ssɼ8J~3HKd^Hˌ4xWWqvlEz( * VTMQ2VS2l'_k[o(9 s?]ȡfD"y%L`7-`0C r2`3_ړӀ|{qgA8 FP"T*`F* 2  X u18`V XeF _0f p, #8A\6@b.l"(',"6+' j!Zanx˴5H Ng4 J;\;[!W]i^*rjkCjׅ@{Df?0HBRǽeᒊڦU K=χлu:~bHؗBwGvb? <8e{w~T%V5w ގ<ʻnWc_e+xSvBps׏vۤ"9a/o x;sj$xP7D+oF o$nT1"h7Fxc87AxȭpTd+t"ۆim r?Q1a!g1/= 4f9D)!<-Rk6Dk&1XL8r[QMePa1Qfef 4J:- H',GGPG kE2h,>N&9!\N/]#zq($=KQ۝ߟ&j7޵Ԡ¶T c%pO9ĩ6 Tn{p9ܗT8\s_ps|sU8\9]*d^d:f:/*:/qp/p=8\/s!ExPS"?q~gezP~C:\mi͂Z?d6Aݭ-/ )<ս:AO6ufڪ ^aնeV4uzkXP0ssւVԳoK/Ɋ!c00&Mm>q[M[[KVE}ʚd(Ӹ.1@(E]ݽwdo#Yc#^pi;hlqc{'֝s[Ir~%xؘl$= DZ3e5k wJc9_sNul/Db7Kl{P8ZEܢ,[:&Fr0}e|aѢN&Ӣ 6Cg܋7}GZy8M¿N~[mv ^eKzhW(iPA/b^ˤ wd7o$Z%HcxykxWo.ӛr"KL|4&~+(Y5B X @ C8K%p22#LeFʌ3eiTf$պ &tdo j6e҇N%wF(l|ź]>ցg+=*} JuE$I BS}PJqh\A4.#>W&x5Dkou _ w0]Eq>@77&e v޼r ѻI]Bn/'$ȚK!r᫔.wSMBCddt@2yJQIH_@̣= N[x N{T$ۓ|x?Cz~w[#Jjk,>(Z^#΅TTdLvb5ĉNe;QUv eVD8wHm-ڀZdw// 6\,vcNN;$SZon$ۑp]IqiP.0|V&j?'J Ŀ9oǚ+ ?WC?zڳriY__gT+LC%jυWV'ԗTV)Nl݊֔W'+jxҮ:1uIDʆƹ]Bj;Z>tzS*bMQ(z{Tmcq{ycq}b[SUy}7]ELꨲ<ٰTo]\ZT8.L/C*P0b=S9Mlx }[TWU1*k 7ʪ͉kw%*”V#{D:L HoGe1!?~bѽ!D8:Q *uw}>SZH \?>C|&@Ft _FҤ0xtS-Kk~[BߨK7E'KNH6]O7CNğ00_ KH3fCՉd)p6JaBtkvWV$T6/yH́HiЦO63j[F5 Fs?mYU|_j烱]xA{62N[em!p;)4q\O0-SD ?q;ȕ[+^{P+nַ4M5;[ Y?ԏ(%lmm{Mrfu G zنe hJfr#&LQ/0~=ec{2<ʬW5 ?v+TJ?kG4BS 3yqY$߿?N'4Xk>:LG LG st7ӹ.;v; q\KvŸT8@KA;16I@Ѭ7$b(ЩQrQ^oVtO'ei_?FxT|dL BO!1_iI- N' Pp(#X,JxYNj,  γ񡱷j(5oJ|;Ľ=FCkC OM`<>f.;d7C9_h}_s_#u;ؽ w$NױDby161=Kft)bT@jjuآa>v]`ғu[VAttәi%_ڸnCl/v} s CpVȘHp鏎&ϛ?Ӆ"2a 7,& LX[L~(d_E[Kˢ1(2ǁ&ݔ.W1^|2wS&J^RKW GɅU}wVKLssZuo%n6o'O-/c|to*t8;](at,Z)BwuyT!^u:)Қ?Ù).'3U)ݷKȜFTh/%sC73ޔf948h.;y`-yt˥^Gc/F:Poq.>k+ٲݒrfx's!6ed.&Wy#'wb d<-"H-GQW1d.Է]ʇ豞[衜X߇;\A}ԽjyH2Wʈ+vĪE+CsĽ$ne8~E(+­0Ȧ3w!mi)oI4ɀ= Ei WGӦ ࿜'G]}aƷw*v f'%,#}Vgku5$e5N8/mM+FO&+'(PWsk8ܚ)xVۢVg5#ǔ@%~3g ws>7axguuOZ}iGQXu7{;>wy%qL(u9^ruy t8x3C\gCJsgZTYb'wO˹f#)m s';Q^N}[bU!k.WCwtomngePgA;g-Ι:GV?t@Uu@?Mv@?UEP^<;vGm]wcy=W-JOerw+ZkU9 ImhΒGvUqO:6ڻ9T>I O7΢y~ vUo%} X&K, oNt+77/Q\K/ ;Lz%'} &FoMAͧJYOxkmћsWxyIbu[uHSy> ^YoנN]+2MSO|2yt5i~9 _!x-- SYAQ"&"^WawRu2Oz>5ECdt>٭w74l+Ef:ņ78+Kl2 *Vttew.nae:&k{F4R7bng9Zq؍{)3 c\CX\=Dɣ^V}=NpFǢGfK8֭=~.G$C {1! 8H>@@ ! (#㞼n&dtm^ 7oj)g 74?5[Iӛgϑ1Z_мߓ"Ovn #lg2~oE'9층`"_4A-*}ύ^WE, :rhE6ٜh,'ikCݒ :_iVw#YC^)W rb?7?1|mdЮyb"꫖<wSFF';Hci匭oʽU,[q:։C,e_fS9ءbbg:nەpN7!p 'N/vG(F ȟgWlw犰{^ 7,B ¶yL2GR<Q;K~D&Kj›Jx%7Dqgb 8nOxqF~&8+[r;+(#,Zp^@zUܝ)=1;}^-%&"7vW@v)~ȥcX5_5SwڤP3QY310O@3|,EgA:6S;x4[Sc$zU(|Arqkʥuj]7SCwjvRۖA8ˏ}\7ȑLZ5,B3OHv} CCf)u`ܱAuyA&Sf7-bwj^^h͸V U&[@pSW6´8*>a:ՍG9nAUS|2[%tF"?ZR]iЛ~RL} t"l znQn&G) xyNkSS!jN7I]js6Z'˻\ݘLa#bI||zmopKYrkxf8:%."^'׃teL"~f(gHm¡R%?s+N*68Ob{gh.^w֤)yן6Au{-jPySY+:q^HJ[m#*_:: P>2EKs%\2|-# ]Ļ>z8Ń#b*M#z|Hk|7} im'y'8¬!BD'yq:kEص@ĩ7xp1L稩?^brYi::j/|d:{~/MLy7T f|x0avLq0rk36ĥY5mƽSsOLsE|G%q ~ݶ;ݫyvc/y%wRqXY]== WޙN놵.dA&~^7]>3G^Z^Ӏ)5)CĈ}{k,GFŧcF2xB(χDqv@[wߜ> 5}?.wvJy@@Нz A;l.>;ۇθ`?F K0wB`n{g Lv?;{Q1.ˤ0/+X6",GAqwNg. s{O%٬UD4nvn-֭S|~¸=;[)pdyn9 n߷InuRX[DE446έhy.G04$9{k~lBqLJQ g3p*YY!!CNz:2t5hǼl?|j4x&-Éh[An6yWw l 8 D?hAėfQ2-xl.#ЩGeF, ύRN7ij_!eK jb0%>r9qߺ7ԕ7$7Wߤ4)Pj8rUl["IiOQ{LGYjV%EfJ56L<਍ҕ#tS`;h:4e$T$Nӌϐp)mv{g'\!K`ּy^8vnGy}OB$2OBpt$nڝSM*.O<$W\7zI{Y5)|NMCiJ`|=)dFklu S C' gO+C]}ۛy7/! :[-gx3Yl6666666666Vq+xJܩ7ZxMeB- KkC&# DO{avfa!͏1v:A1Ap 2<Qoʣt-C+v[ yl]7aiYjw9/o㗞aZ~Glw#cEĮ鞊|hy-&Ou??IWN;G+rV-lծx9OmW~'wa~iI<[qp_^fuNŮ۵kWc/I)ƎQ}/ծ-C/γ;q]߸%iW|]a^ne)wN_[o~mӟw>u//3O|7(;s^ O>w \يٻ}#~_=6iWڍ/Gް]'b<'SO8)eşYP /^Ey/]n>*>m#W_a7o:o}SߞSo{jbn˻ ;[0[S޶'ڊ|?^CT]SΡ~];ouo;zizaڗNxz?53Օ{q?OUOlW(Oa7]?I;ͣo>t{qn=(ӭfvKidIAqWU?딏ߞ;SڵČl׽J)7 r|Uk6ݓrzc욚nj]4Yڵ]3Joؘɏ˴1^ɏ٧{>e+wv_`B][Ow;/Jr6ɮx~n,o%Gza]ww2Td~ՙ{ f;q]Ł3 &mNkdnwWEcKkǟw') crC``캢 f<ީsҽE'=꿀ٶnz'=q]uUc듂bWLjUMi] v9Nyyu2yܔSw,?O^씏%ksGsCI|bIIno]7~yzMR}ɽqd)8'J*Bg;]$Y`n8))EV|8/؍7>n n75ȫ?(O$Y1%gZ?MYVs|]V%ʷ4VȺ:~_ǯYu_ǯu_ǯul0; k/\2׽溝0|^',LeEq OޖĖƖxR][_EZB:.Ϭu|yy ݹ>P[6$9.{*}~ɉmTNC}wjLWxy]-W ݉>1TU ^$ա$hN~ċ/Mj&^OSE{l.]"v*`K %򱮽St@灂.Niq{| .GpJg8h|-ʩc^0ar={)׭1Q_\mbEFÎN;*HEabX]>bEǩg-hzVgDw'ĥntɧJb>HzSy#(-tюNqb6B$!t]}AG:5A&˖$od Mqϣy :dN ި#ċGm _ߛw/]D jRŝ$P{!RYϠF 0ؠX %>{6zMEmNd3C M,<:mԍ+GΧp vhb)@#c(0@D8 r#Ӄ )&!=0QG~73+I'H4ǒxQu`DI/NJ&>>I*@٭tpjRtx$iDd;+(YL<[e=Wdǔ>WM߬."9/NmҸh^RD q2lī!Z{@NZڮϑ5x}nnL<ay3x7wӻn p= n_/OInw9i5KCW)]8ޛ گ2t?5>dL_oLLL烿<;GN{$|2ǷI')O4~8B[VQ%Mt܆ǿ՜q_#%-O.miaJEOMGGMsȮ̦g _WF]y+HM"܅!pejg:-#UǟF^Պɩ!NN@?7SvO7VTV7Heҿy!uMm^ЏX^ Le6߬Ä4iĸ__#.`LnݗaC%ƵWV'ԗTV)Nlݚkʫ ɿ-ۋԕ'c*C7 GwtzS& z{Tmcq{ycq}b[SUy}7ELꨲ<ٰTo]\ZT8.L/C*P0b=S9Mlx }[TWU1*k 7ʪ͉kw%*”7U#{D:L HOm=}h?L=& %v} 7CIy&QA:kЉpc4$HgȈ?#i҂=kMMxei}?}qT0W)+ iBtݦs醸uT3bȉ37k43h6Do^j9V4mԕBD.HTAm^󐦏ҠMmfԶkA+PHȃ3q>ޥZ !j#Իe^߆?Q2.J~0N?jj7FZYڃ]vhٔR^"~|mI rr[D/!!<m^8,_nĺ"D)>Gz9C&eV̫߸H[e=D^cW.ƥҨZ" މi!| D͊L;)B?~ú$jVtO'ei߸ ?PwXAQH)7$S <-/cCWmj=?'MqPD-&kMNwB"|,Eg~]y?SbӎK|w{c|2{wآMq:_Ԛ(3Z̗Oq>yw1cϒek(اZcK>1n|A $h+>rcoYA}yNg51N! q%ݢ ?ıbۇA|0 2P2! E+HldHpF8GGM| Z [Aw$wmEtʀvČ%8.J?YK_[Kˢ1(2ǁ&|u`~^OX4 ڜYnJVDK3 ]^":!k+ٲݒrfx's!6ed.&Wy#'wb d<-"H-GQW1d.V]cCPXϭ͏aPek{.ۏ syU } =2"J2vXꩁdʢE*2אyL+ZCLfcۏud:LnOX\$JDYD9 yq$ܐa O$sS!l$s f/_YUn;6h7 \1+R]VPzÜ*N8F*t5{=2]=Rt6d`l=+Tđo*HeYkL2MkN̗;4mS8En~*@T 8S@slsKpXl?Oj j\Dp6R;IeiJW!@T7`(& npS|^% `;ۗI) N h~н Kx00 "x a#<ba Ň82|~5}(=ib.+=u9Fl?8 Y+Zcވ*=-q)+@I$h]" jg,^!=%~Wmߏy˷w //2G[+C#a,OyLnKN8) m)0|r$7\Ց!е\ͣ']]),ڪ m=O<h ~!gS]ݤE[%t21JyB?WߤuU:= ' ehCYbSgp@+_ޣ>CʵƕrNQ:zC"W[9 ]C@νqr}"96o(9`z{+[[eN[#p&ibvT1So/L4/hVJoٕߖْ(;}\;FsjնV%"nB6rZ٘/Hʫ|N9|1,6UU9Rdc,PvOQ5-Cnz&oGZu킚f{ه ߼~K<~,9/D6^Dk~*YqEQݓG#YUvnH[kmpPW-$NZC1= $5ֱD~]ȧ6u\&ȊN]$kuސVu6ʫvqٍv<~wV{[] 'mYW쪼]y߽v==>ҿbH{Շϯ+]2<_>#5^Ov;ٵe^VϮyUڍf>){YWBn읯>ė{~ޮqÌauC;kQ]aNvhrsEw ߫}a{wa<s ;']~R!s=p[vqYPark_^ٞu톍6_?qv}N/o=~1%9jv#W8we{}|]O:߿_.dugM?Wٍ/c߷w5 h]Gs10fWo;vI#;붼xc5mگȷ;'I#?D5Nzڵ?]ښ?߮}鄧]s:s]]ca[v]^v-_~stjÉ)9t>V v>׏ˮ+^g>'^tң mg>H||q2_.ك_Y{]5>)-vʤvkn_u ϛu^h7㔷W'M9y RCN]R[6;;yo;7$'[YJN)/uG$N3bﬤb.~quAV_솓Rd5;·xcqƿ vSù2^KS}s=͕86.dIC?,&s8~:uAnV%MΒ N{opQA# '6܅0rS^>Q?x8S!vªKou]3͔O6,]n뢖? rWOfhSy~*A_X8#Z^o;V@vsuڴE N}ku>ײ{]|~y>ZdR|fު[Zx EK:KນY6N%7D(*ҙEr0 ҁuMo%[@/?Ĭ3 wN!ǘ&%LwuZtؽ!5'h?I>]2ܞdL>c%-#0"^/R^,l(ns747Vl+nYn[\W(oH7%Tn]P#pI=_3KJ8?:z9oVrxΠg9@ё,qkv(fWWV.i##dT59)XeO1eAAvʚdqwdꦔQxXf7h.Ŵ+jrWˁ˫DrVH0UyvIwg7TԻ%(I-n-V$r5jֺ1ll۪,_"JquɢpԙPR-;A_bMi}7½`w> CH`-;.BŎqp:.:;.CfK8s,#{O;hsߒ q Jt@ކ2 aFොe0/5";7XVX/Dp_)E^VF1̃(Cf!br.Fh6 C$H8SI ÕPdΠ"y8L(3Q=KޣD fiD?hF1HsQ1I'8% at.B-TPhq !h%!x!Cg қDҵEǬ4f#dYfeDiQ ݵ?m5c;W){8%?4m ܡlCY  X'钡:,q_n8bYI4Dc{Y658fi|V# q?CHj)`s<,ܮ%nyz5.W'䗒4%|u7Suo}7?^m-Ĕt^,[SIZ#4~Qjm?~1 S>7=,Z!N?f5ņ8ta~Mr 7ƍxDk!N -H3#(3h?AW)݂w@1k95x??i"HZWA:h-$?t?6?Sr ))'*7ŷ3LN3˚01ZuA t14˟R_}GH_2c qS9OsSnd MoV 7ESy`_e2#itĠ?_71us?_|}pX[mr!~|FmtH)ZEI(0EQ:+!<4)8ok A0H=89.*瘘[o-;2o 'Bwv_|"'dߠۡ)@Zvn|mm~6 Igx7+/kmx~,SR> nh[Zs;˛k0:bNڽ:D\GAiWoq]%]i]C~OGXdx#CQfurlp&2< n| 9/~K9 >d6ݎ`^Su;29aJeDcZa]Xy|&xeeh/翂fv@6-#3 ed:,,}@fFs76:cȢ(l2&sgYF2Azw>kLбϳB2; ?4[$~&R2#p2 sx{IdE*+'r2Y"c xǏzq|lMJ.~x*oq#Xqwؾ dntw&^r^d9Np[7mCQ6 H]A \2.Wf2%ޖ;1&mKM# SmAo#ԩ3%^VG0=W*Y̙r@i4O2F 0`Qc# `bL0`40`Y!0WdJ'8X@/@,p2#,7,pV Xe5!XKp,:+VGpGqF7] ]* 8w*_!/C*{6IapnaxC@lznFs2љBdFwW5j-EnĥJ/`]mu'JA  5%?~ oE%"<~cľ7lC~Pے0 H^/^'_'"| ;LF\ΘWVr]1K#0_ b}"ɗoVpk#x夏-dV.6;X/Aۄ޶7[)O"[?GQdN ;¢{%{#7^43Y'?}ĻUnؾO?ng}t$>Eȁ\/V)MY$[e!>s $ΩExwu)}œF)."~~S׹Fe]rF@Ai_Yz!ް E_oD)W)%-&$ýqͿש&YYd9dddVF] =w>h';nOv QȚFK:.&=$痉_ut/ |up/Ѿhާm,'s(^y> ^x7Qa2x kY `e;Y9ݛ$þfۙv!<_!'V)muR&+9˾ |;ѾuJe@F3W"g탔m|$_!N_Gw32轵WFҦ[M/nZSjikaKm }כ!.Z Q6n)+]ٛt9SmߎLO5|c5ݵ?:r_:IܥN!xs5kk1MiҼFrWNE$z){ȿ%_* NSytsv")c;#b۩(OgRX'ϓB~v`ηh"ݙB|}?OۦR*0SWAL4M%z+.A, (,ׯ=wu5uvX47]yN?#3zg84~JaGwGÏ2D t8Hq&)2q3?}w7_q 4wk2S並zƆ=6GԓI9Od0'!Վޚ=>-~^Ö74%Mi7i7)B)o^w/IG$F<ԏeH*&ݯ_Ky93G[yb&u٠gUz%h^ӗWMJ z ۣSg=?Ϗr%z{ n~}/)O?`)e+sk [֔uq/{67>YbsIOqM0o)lELN}V׃ z;P`\suڱJ>56i|2ikMh|S]GUf>Xs(C+ro;լKyhb3LoQ(e5 tnRg8 c tzC@Iԟ~ V.9fRn&Ԥua /Գ*[NKinGiEe6u1Do5 _nw/mNW5k~`{C5OߪoߦoO7вkp9wh+G#&YN2-ˎbD ,,ЊZUȒMl_ֲ4&ΏWݗQӬ6 }a].$Gwz?,kMZǟԦIFwk C]~?2F8%FA+6t [wTCA6 f/{OۡVM?N3Z'=mm &_{N[]X%ݫ;ko?4:23낯' xa{"]煯*(y=$=ʮ Vyc\ۺ CAH]!\|hUyoXu- I &"0R>fyRF@x]:Rh:2nTVt +tuiLՕQۖtbf0}t55 M?#4ڔOa=uDjzπoiIIq YL7SZ$7/gh/O.&V__=7@TICE\׀șÓǐ q tpwg3_6Nۓg)W5\O"u2U'RNVIlZQ/{GsY[f)-d׵FttD;>y=<9?Kf'dvao݃k~ ,cǷ |G %oW F[g۔Yfx*~zШ2o}|ډ2>[); ~}6hڭ 8W6dqg^oU]ىS/ױb:w/b:Zt^~>GD)fFC;f ;8 N>ﶷ$=!q$5u'- ~`gP^KwPw짲"$~Q<̖S-=CYdS0 'Rd. hZ}e3d)9<7C_ʺ|eޢ[;f3gI&(ق> itx&Ȕ^8Q_?gZ3lJ˓~W2{9{o2ؽ/Tv>db9@.\': ^]<(d:]!/yc_A'hf_t{uOkiq[A)^YB;!dub@yڇ饌!3:N!p2qy#!|1 D(2ƔslDzcp2 d'nh t8qŢ YD~ۧוĪjeXXdbnNįyj?p"I^d}tci)cLpk5,H4*^M5̧F"}gvV8JO#M0I53ɜM&=_OK W}V<0- s6e"2:}1K\J!dMn9%IעHP2/#/'H}(2W8K+!| 6)̣;^n&"ůί2{ЭEOMh_>S2#\5X~Z,M':#8GnwǩoB68bnh,:*tuپ>\ ?@&;͎-^N&űv& I~7SDc!Cdcf[̭L7Afe4yUYy`S L$2cSAyLHEp~c1mGMAnFmzBdzG0{s'ȶ3hcQL#H=HLw3diNyuVggX2bnܫޣWMm=k^YgBWE9v:w{pꑷVp| .d~GOzAn!7o_ C4)}|h,o#:Ǿy~ՃzRF:\ʑgyΗ53[_CYNd볞 }>kPӵ݉ H-HgH9Ү- ?u%!b U=n.0 g"K̎ T̏\aY a!ΆԾϜR`zٕ-jIb\w{de},2;]fѤƻeVPt2\Z'g׶P8r1YA!AKQ$CPit> <#>. d8_u_H&^r)&:+(v}l21Ǐ<`vx} wUH~A}'xn'O>G!Dtn<ecHcAg-)확?f?$#Kh'v%?)))O.IA= F||<~*\i,w.UAtrGq{vo _Vd|p=cczx!N5<۞ROg?_ j/h*RZ"; nnk}79^8ݿzkK|9} 9ė39F56'Piؿn^+Լ6ٯ֕+(s_"8N8o?n*+o c'vޑL (SI+)z `/os3|#@Xק8v4˜4QmR 辋 8=?8b.oS0imR]օQ+UۚyjCNRɳ$֗@^\1 " 0 I0`pW3 g M0W7g y|:< lBK Ї]0,AG,gO* GgP8 m9 0mHV .Ax&lTpL"dgl,9' p $_h5E $Cp4JR\]]- kzݯM8 kLBp0!ebm Ir4?v> \5<(!<"xLr'K@˸r gSQ6㖂"PcXwհ8Dz݉V?.LFÉPiEu'zrŲ'x}[rOg2ID "y>]88zʀ S5R3Y$4Y|,9޵NRQ<:-a^( I 8_^h⎚qJWy xukpR8Ys\#A &u7 ["|~6}pcnhg[?b:~څ1r$K__W;|fb{rȰjiw/T'5tצᐸiy':c֧ӾNv3tN` ҤgڥV]:ƇMy&H|?%o)hSR7{$DW9ӏ|/hE~3?vV(Su=Vk~~oh~#M_*ur svFk? 2, ?ZBm,R[_X-jkOyDM59$=\OHDCnt@D̤.xw[eͮ!0_? ۦY`Y*~TЗUjBFm~oU?&~\Mk1~͊&*cYWiq~nxiº!킅uYt3h&ړ KFQgfJ'0Oz iZٟiM4Tw"H򴲟e%:w)rt{+q\SXzX-`k1bqk {P;Q tՔ& 4ʙΌoU.oܲ}c]yccƏTH´1eiwT/{S[TF^=pϚ_*koǵb: 'O.N`???+ ~_P<ڌ"yRҳI3#C~_C1TU,NKjk]4 E~@ɿ5 $VmAFēG2!ԠGH-`[[ sz_o\sli{8*ZdiS͊'%4*RGԇGSOBOCY -o ~~{(pTϙƊ(4hF?ڑބoy$>b(v >bkYhh!U;w/΋&%~&+x{N{]4~+wڣҵ:G^1\>vG/2/dwCf_N^8Ig*~="d Σo1g-$~kQx߮$o8SufT_ڇދ|Щ&IsN8'|iV=YZMN1g12&~Rs#Ƿ85qݑLwcwWCh2G99Wq%$'Bj-"܀pS@e=p>^MG^88]ۚݕ|w|I'! IH~@p"y0ŭF}dž (F,u9E$֪5?yn2%}S}:>R3{eC?kstwZ̽2r(l2@T.^8 k5Yd΃H5<\?%?lHOUdHi:[n}~4`~;GgegcZִELɏt'Yh^0zh/#ӆyi!"P7}{!}Kp q谿E{Ў{8c`^w_p3h0Yأn;X,Pݛ!/vf?!53C#Qj9±tPE{cۏ"ssɼ8J~3HKd^Hˌ4xWWqvlEz( * VTMQ2VS2l'_k[o(9 s?]ȡfD"y%L`7-`0C r2`3_ړӀ|{qgA8 FP"T*`F* 2  X u18`V XeF _0f p, #8A\6@b.l"(',"6+' j!Zanx˴5H Ng4 J;\;[!W]i^*rjkCjׅ@{Df?0HBRǽeᒊڦU K=χлu:~bHؗBwGvb? <8e{w~T%V5w ގ<ʻnWc_e+xSvBps׏vۤ"9a/o x;sj$xP7D+oF o$nT1"h7Fxc87AxȭpTd+t"ۆim r?Q1a!g1/= 4f9D)!<-Rk6Dk&1XL8r[QMePa1Qfef 4J:- H',GGPG kE2h,>N&9!\N/]#zq($=KQ۝ߟ&j7޵Ԡ¶T c%pO9ĩ6 Tn{p9ܗT8\s_ps|sU8\9]*d^d:f:/*:/qp/p=8\/s!ExPS"?q~gezP~C:\mi͂Z?d6Aݭ-/ )<ս:AO6ufڪ ^aնeV4uzkXP0ssւVԳoK/Ɋ!c00&Mm>q[M[[KVE}ʚd(Ӹ.1@(E]ݽwdo#Yc#^pi;hlqc{'֝s[Ir~%xؘl$= DZ3e5k wJc9_sNul/Db7Kl{P8ZEܢ,[:&Fr0}e|aѢN&Ӣ 6Cg܋7}GZy8M¿N~[mv ^eKzhW(iPA/b^ˤ wd7o$Z%HcxykxWo.ӛr"KL|4&~+(Y5B X @ C8K%p22#LeFʌ3eiTf$պ &tdo j6e҇N%wF(l|ź]>ցg+=*} JuE$I BS}PJqh\A4.#>W&x5Dkou _ w0]Eq>@77&e v޼r ѻI]Bn/'$ȚK!r᫔.wSMBCddt@2yJQIH_@̣= N[x N{T$ۓ|x?Cz~w[#Jjk,>(Z^#΅TTdLvb5ĉNe;QUv eVD8wHm-ڀZdw// 6\,vcNN;$SZon$ۑp]IqiP.0|V&j?'J Ŀ9oǚ+ ?WC?zڳriY__gT+LC%jυWV'ԗTV)Nl݊֔W'+jxҮ:1uIDʆƹ]Bj;Z>tzS*bMQ(z{Tmcq{ycq}b[SUy}7]ELꨲ<ٰTo]\ZT8.L/C*P0b=S9Mlx }[TWU1*k 7ʪ͉kw%*”V#{D:L HoGe1!?~bѽ!D8:Q *uw}>SZH \?>C|&@Ft _FҤ0xtS-Kk~[BߨK7E'KNH6]O7CNğ00_ KH3fCՉd)p6JaBtkvWV$T6/yH́HiЦO63j[F5 Fs?mYU|_j烱]xA{62N[em!p;)4q\O0-SD ?q;ȕ[+^{P+nַ4M5;[ Y?ԏ(%lmm{Mrfu G zنe hJfr#&LQ/0~=ec{2<ʬW5 ?v+TJ?kG4BS 3yqY$߿?N'4Xk>:LG LG st7ӹ.;v; q\KvŸT8@KA;16I@Ѭ7$b(ЩQrQ^oVtO'ei_?FxT|dL BO!1_iI- N' Pp(#X,JxYNj,  γ񡱷j(5oJ|;Ľ=FCkC OM`<>f.;d7C9_h}_s_#u;ؽ w$NױDby161=Kft)bT@jjuآa>v]`ғu[VAttәi%_ڸnCl/v} s CpVȘHp鏎&ϛ?Ӆ"2a 7,& LX[L~(d_E[Kˢ1(2ǁ&ݔ.W1^|2wS&J^RKW GɅU}wVKLssZuo%n6o'O-/c|to*t8;](at,Z)BwuyT!^u:)Қ?Ù).'3U)ݷKȜFTh/%sC73ޔf948h.;y`-yt˥^Gc/F:Poq.>k+ٲݒrfx's!6ed.&Wy#'wb d<-"H-GQW1d.Է]ʇ豞[衜X߇;\A}ԽjyH2Wʈ+vĪE+CsĽ$ne8~E(+­0Ȧ3w!mi)oI4ɀ= Ei WGӦ ࿜'G]}aƷw*v f'%,#}Vgku5$e5N8/mM+FO&+'(PWsk8ܚ)xVۢVg5#ǔ@%~3g ws>7axguuOZ}iGQXu7{;>wy%qL(u9^ruy t8x3C\gCJsgZTYb'wO˹f#)m s';Q^N}[bU!k.WCwtomngePgA;g-Ι:GV?t@Uu@?Mv@?UEP^<;vGm]wcy=W-JOerw+ZkU9 ImhΒGvUqO:6ڻ9T>I O7΢y~ vUo%} X&K, oNt+77/Q\K/ ;Lz%'} &FoMAͧJYOxkmћsWxyIbu[uHSy> ^YoנN]+2MSO|2yt5i~9 _!x-- SYAQ"&"^WawRu2Oz>5ECdt>٭w74l+Ef:ņ78+Kl2 *Vttew.nae:&k{F4R7bng9Zq؍{)3 c\CX\=Dɣ^V}=NpFǢGfK8֭=~.G$C {1! 8H>@@ ! (#㞼rX? /zW ;{'JxI"1e/gw`s7?w;vk`_ {vߗ~f?W㉂ˏ,O_ұe:h5챋nC~W_nw_G/5o'{Ի޹[vi K=֦|o|7q}NvYܲw{<~_vy6uͫ> ;/]ׅ]N=?TR_̠k~{_xQ]ii.*;ɟUs/?t͊wC8h_ss>G٪׎({Ŀ|O=n׿fԽiw͝/l]<ܪ9YNVyړUd(AYPVZUe)I*xxr8NfYYFa7̛qUnvކv̭3iea' =ckWve.Sik*ͯ{MkGٲEa6|]|EeOxڭw+ו>Ϸ+an;լ}qW_>5{9WǾqKޝu_~g|>9k_kCӠS IٟZۣGNAǕ7۫~5G~y^zp|[;<~.{5޳g]sO->W}{xW|[[$>wYXWjc`v~˾bO}Ex_}s֯~ꇾEM 鶸1T?{or^']SN֑G?NpmsKqXQYo)7W%q/!.5͎1;?J]`t#.lK}M"r?]e ,?:c_0̣H EW^EeMˌS0 pz @/unңow0B[Y ໱ZO=NgKڽC[-?9̟3 j@ o}Tbs~6)RO N:p@Ż9$oO[ !mv(5J6LNVwfA蝬ݜՆ~N4#yϑg"|LQYrMI^ ?c?^r#?D+ڃE@eK.mq=vGٖYٗY٘YٙYٚYٛYٜYٝYٞY2cS:f666ƦNYٷYٸYٹY:6M?6M?6wpg.u3r3FG;Yp3)߲y OkB>7&W+lrv1!;eEx#=ղ}~1}W^œe_<>fM샢_N8)Qv-w=;^x7~}Ƚで~xǻ?C%3Z0Y:wd=#wdÁ:jϺwًo_4=jcv{[\MOac_Y95Yxۡ[^8խ]o/Užou+lx}&VM>:n '-\Xݱ){]|W}ǡO[{w./Ի=PV}~:᷷~ =K:~cn:]ɽNx>W۷##rzn^zB_AV3>9tJ3j&M7unGv gɞ:[N8+n8:Y1@ǰEE/Gmv;^AB"/D -fYL_rOx}\bU_C>q_n587~%ZfzǛJ8 8ӓp  5Ak ɜM4w7b Z=ܼ5WO֒- g}YðÈ&ofÉ(Gro?MpIOSyj›Jx%7D\#dMQwYS\Ox):u6ٽc?NwYM+"_y~)5=*7kF|@/WQ1&T#h ٬(C9 r$oM1g j=!#uJ^!CO 6eW!n2UmpZ}2!vuV ]ތΆU}Iܔĕ- B5TgYq6_k [tT/V)ȏoT׽!~Zb>~9k)]z{^ ;SgQn&G) x:Lڐ)]+d!jN7INJs6Z'xAHl6%1!bI&e y1zx7qT]uځ߿hp/jaX=HY8) )1َCw;,ԭ|o2]+/]8 ۠oNC]4?<'娡 ww|"!8t/ bi|X44BpTл'_Htu5 N:𦘊.O@{Ojw;xӇim'y'8¬!BD'yq:kEص@ĩ7xRcfp/`f1p9,45si28?5W^,ft0hn(.=ۢ#Ǟ{!d}̗{lo_kQtI. 'n[v IN׽tM.^XyRZ? n+H'uQy7ֳ$ ]%8a]G2 -~d#;BIQP|Eaz} 8,_ ò]sGVc?L'uZnu ]?Lr‡R5$J$du z0e&e(ԗpo퐅t0t( 9]oSxP!s s=|ڇA"]o::Uܣ\ Qb C@} @laA_~?< 0`!0E(j 0vL:B`!`,rq4MD %`ch.~{7n"hcb0?]H772^dyn9 n߷InuRX[DE446έm\Q( Ƀ&oޚ/۬Y&(q۳eWaېg[=!c^J-hb ^sqz p=x#}l0@VP- Bޕ]4527HsO),ۨ?!JE< ^#s$/:È3ڔt`J|֜8oIiS&6q̫ض&EHT%45 (@+#ԬJ<=K ͔jf/m"y?/Q1+G ҧ wtiU bIX5N O޾)ۃ7?T7<G\*/s:ύƑs;x'y3S=$iHtp&pjUyty'ucL2@=!Osj O#0TsYN!42<Š髁 ֈ`)v^t~Zu/*~n^B*trO`M결Ze{bˎu kUo8CzÛt'oYgS.f0M0 7T|fOt 6Z}&#۸yyA7f$i:jLkyW[SY4jkW0;a6C7 {sxz:u,k vL-XE^G[G t3c95m5*qJݯ k5~K s9}zܦyܦyܦyܦyܦyܦyܦyܦyܦyܦyJH>?Kg:=K#oi*4+kkW'**k\q Bu:~OQOw:~gQOw:~gROBGavf6:0;ϴ Νx(e.awqGYjc(vˎU= rpTSJ"@9ŧn|RbKɻt㌲w\YS[]Y^ޖtTUQ oKm}}R8xuWEZuǻYќݵYٝ ukxR֭ FJszrrF&%YD}ˣ=hj7 re}rKcKZr$'oܲGlGJ,/Cw!%)/̑?/?̎ܐLbZ2o; \.YTâx Z%Dޤ7 #D2'u8(ߥ^L[`d4v }d˹:/@7K|?H|#S^h顫0̮05kk\1gquܒ]aC\,74u.?t[nL#H* Op~˩]حX Vɬ֑!ESpr'BrUXoy$ $켭zEΨ$G V@7~Co(2 -~ ;Fkgz'*|rg DOރT)՝cH@:cBӋLP}4#y9UX+VXe@hI CD?kzšS]yܮ"'NC_P/¥ʵzcH9dxJ&:C0Z;R-Ҳw㟢SW RWQ2zf6HI{7{A:yNK:4q8:ߡL N8fBoϦ0g`;=*KX6-KYϲ݂ԗiJɢJXd 0*O)2~TH ),C!s [e+yID[Dq4x nWNf'{ Chu#yE^=fQr*;~f͢Bd3n"2KEϔ̷3ebпE0Yɢ~1ˡC;|~|>%vy;aԛs!-Q! N4^\7evZ#ch$P[1}4 Ơ[^(P= ڭ<:a[m턱,O+fjm~x0)H۠ 8K:g\ wx#)N" {/ Z-n;h/@BRj/ , .3 5K;PV$ģcHx ,.NP\@1 HAfڲ7O]2AIjiVԘ/޶en"S'syLgeJ--Ռ#&Xn?k㍞~QKĉǖrqƧ9f:ȍ&cgi7: ]xMcQ8N˃̥Wth1A8?to> x~â6{t:I(n>_THIݛT1 >[|stsYԶYԆ'uXR~Kۨ3r֯[! "_rq ?-/qpJ@X MylM:LaQIÉPhS'xh>BoEXɷo.XcGM}ya6N4WVU%5⭵ɒZ[j(>q{q}yMEmuqbĖƆDNwqՐ32!kFjvȨ2ƣc2کq Fӟ6eEnZ !YQEt{֘EphsYZ=NBŞu_׳=B<:C{s=;G{& Dy/3Ӿ=P6k6GYw?Oޥ tk%FߝwGCJ+GΧpe{H{;^ T #^HfZX (p[6DoO1:cȎAuԹtxQ +DI/NJ&mB~S~=4_)`3I35 ??'z0\@~ɯL-$EE|Qńw? .ᄿL*@٭tpjRtx$iDd;+(YL<[e=Wdǔ>WM߬."9/NmҸh^RD q2lī!Z{@NZڮϑ5x}nnL<ay3x7wӻn p= n_/OInw9i5KCW)]8ޛ گ2t?5>dL_oLLL烿<;GN{$|2ǷI')O4~8B[;Lqi.3N-/ߑXR۴*fPU7'/ي #753d!ʫ£~ȯAcGoI' ׃&40ojΝoT{N2%? KޮƊLR )Sj!qi)|V&j?'J Ŀ9ƿW~E~rq3>~gT+Y!̌~WV'8chf:P\Qi-ۋԕ'c*C"ShߖNoڠ7Igp=1Qܸ>؛"T&uTPlX*7.Hl-oj!~F{(q]?k|6<>-iRޘR5^T|reUUDRյa*ϑ~Q"7OOPi2[> O!Ӻ[5D1 B?u3gdDKB⟑4i 螵&&B4ɏ@Oneq*+i~ڿﯷK'] u.AIRyψ!'fhlT,C<Ү=̤{gGq$׼ +iQBa$>P(!vIZ L`1h  6Ns;s3XWofj>okuwuuuu;mS1{SZ$hBJ5Wԫm}_2cNHyУO>3j_GjAWHƅ`{7i.5 p3=Vݭ:In1a_v[qIHzsL˼z;"ß o 8~C[˞ƴTHc[N΀,/n^{M|06Jmc+!z݆u鮂y%_qĶ"D)=k A^=¾̃/3 G߸f-Y>J> Œ,ҲhF e<) ~gYHs_%T6Q +K R1iBJrj|auxΫ~]nd-B/kXY+C,*;B :0E@wJVw]pp#D01ö33!R[~Xhl.|=N2g9Ky/h2{MVg/;ydAvA S\=[NOr[0n־ܤۅqHǢjt_nb,m+ٲߒ|&c$5d.%Wy#'gb>-!tȭGQW1r2V]cCPX-AϕOYޫl{1WG^*c wDg!s>3(Fp2Ĭ#s#&s[Vsem}$qQĪE+Cs;X);)ÞÝy\2wp,bѲEfSW3_ZY=eؽ/we aMW\a 8mqБ`v}otH-Ɨtvɜc:!ҙxHK(3kZk@^ wI-F $L祿ȔaJD8`8.`LYs#/T,4@(`L + &P!6 ymvN O*j`YO g)ಕ7 ya d=l!d8^/ (o;#{ /Vp pt $x&V˓W DpA nD q+9np{7w>X6p p'FCC%6zKzRS!O%xZ3B|^g<bCYF3XR>V!m!lY._Sc]dGxp} Pʥ>|apGtKuܢE"bщߺE ~s}~{>\Pw7zk?^x[˓`/x/_?|_ןy*_M[7~~Рa׽K^Q퍟sϒt򚯕~Owkn'.|Ꮿ|nзC׼9_-<*]͔bcѪ'[Jr*kC_QSȩOCG-URL 4h(t66\ /JOf.A.i!˳ wEeaX͟'M?;=9 Z7_|kۃ?8+5OKSjjoqgm[7_xud/Vm~/j̍,{ _>yfKЧ{ͷ N82yPNxۿ{c/[#"2>$g-_ ) ^{|Of_ۻ2d!c-WhgjA7?XSr+]|̚mFG{#~Q s]dѪ:Yͮ~d Ιջkxw7=֚,/<5_[xۓ[jȍwm7s| Y \Z-YW ?dn/ 応y]j\zW7k^gx%+Xe?|EmOY6jWO}cqKR^O;w/nZts߬{/qV?ܰ5 Nw--JF kΆ?I?yr :'K}b}QW[bpyd-bqֺRÇs%ྌɧ9y; g1Q8+< NKSxJ (\}aچZ]\P£в7cOÅi+y[l[9<8}\*R{g -sv?4/m1OXq k-(W 6FGgV2nw9ok\IR:dmtkVMXgQ2&QOYg烬8=E) hY瓬<7?:&xr:oF8,|?F1jSzCp*:cMsyU~Wq**%ɞ,%LO%sdw1zw^O2 "B-kE8"D҈P5"B#""TFa`42y6w|)ٳs9Ϲݟ'?9?Ot8ɥ{K$.<w;oN3. q6TvzQuS:3Rmv\8_RMt SY;0b5sn.bmȞ(P"(7ixJĹZՄa9vpە GqH59qzxbBYb)P tfb7I~͟hpsg)PNa h<ԧ:R3up`Y%4Hy͓J?]ZԐjTE-{:[J:Hʶ|Osu\Et@+Lax {{KN_M5.Λζř}o++oO [=>%W R2QoAqmg] n,b\=[N1α$ aQ<9`櫊҂4P)HJJRnoexqD{<iO D 7mS g@tXA™A8ȜM<̡03\A$G|=e[' aZ)`ˌަGPIOB/l|R7*Bl"y!7Kܡ_f;`!W/pm-yM!v./s dVYN=hkhq!%_yLwm_vy%͖evZ`pzA@c"p#UK{y7ޣ[MFK<]Չcz=k׭J:ƉB>$r{ϣ<?`lb}WuE oO|ݕeg glM%~'bd=r{2X2'ؼlpۖMfǟ4G ow<'MGhY)G;_JEGM|p[:U6J|qw/{m ۧElO}F | X`U7LB,gvs`Rqt & # b^cĻO(l-%$~ox-r=fsߠ?'/w ~OG-BZXV/gGb5d&]cD s2m!D!f?{pWiRF z_lG^4jo_ޒrP!q92+x- USEVDd>A;^,Mb|>z)ͻ=<&cbvq3\^[xQÜ얇^̋GUsQaFd^\YмOg6W 7upo*=jl96gϼ_ʄmlrܐNC4o8&RJ2~?ǚO~' c|ƳXdF{bVo8VeQe6n=6Wm<6zltֈ}̱V86zlMvc~R,tbq8(l@n&P)vt!W.v_K7b琦Vp q:L>;~Zd䕣_LiHO>|suL rqfvwx9[ :O8yVi\{g]]AfCsuzB{Ʀ1>uCoMG| ,B񛕤38"41eaD5 |tPt,czx]:tϱKmK!z9ķhuc>vK]:ct0meإ.ąT{(Brk 7 (侈%78PڽۋC`Xm2~د01mcg K$7BsW*xT=MR,4=H٫$_Np?D0Rc\MrPj?$EEP,ϢR AbQGHE~;7KNV؝Urٳ{p⫷ CǢRxhy-!y%Aa .$ p7^2 1p8$Iи&f.Jú-}ȯCi@ڇEϴiN[fEKMCNOa%n9ޠӎȘ#sŤ<3QGq㨖1mҗm3 2L|Y/M UhG'e`%&Szz_{` 'x ?pÌ"7]Mncxr(&T(k:N#Y$8͡p'y+£l !)"> XeW}8庙.%(1k1f ٗRI2 {rp%YC`oxUF:o= 3 g6 Z[$(oetA¡ٔ_vp)ܘ]$`oEO-i+CGz=̷o> "QLY*)΁,(\y6x[)6{>z'@& K4&f/*\NR%ˈK-GWE^I 2&Wk5{7\or[t#ܬҡBanq*~=x۝RZGi38}.mn^pۯn7齟h?D!J?DŽ8QpG("'Tz? v{w7؛}4-rAl}2#p z"z&Q rX.X:yo=W蠙7S8j&H\LT >Bf&)Ȉ3AD )~x GC/j&Jcj ٧qk%]uAcʗ2/!tQWk~fi'<}$ o p?1k%nFAp>hZSB`"j i0,'mcM|5I寃h3)׼7ǽƯ^#D/~^;ڨ_Ec0)oʰ_]fld,-^a?? 3|zx9O~a6#9`lc4O\su'G =FooWO4aV0|0ϹZxwjSz,ݯ U~W ~ùⵯ~![f^?Bp:};Z$!嫤=oÐQ^1TL@-WJNjGE=ueVo&E'73ے.з>!uJpo (}[zsC`t (mXd9_H2$^yJn!`~e8J}#V,qڧjQ=Wl n;W@7AtĜsu1(Ҙwq[w;en6_+Xdx#àp%h۫Nh|.cm릪1!X//G氘|[ty<#lg=lynDeEoF0#;ζ}'ۦWɜD dگٛ>Y>öoa4'Y"L29Lte+>=y͛{ƀ{a $x̃ExUtٴ}ڔ(_X#'9O>׶d)ѩm'sYOid. s7d֐%]GUGZ9.l?ed.<u? 2Wd|}mw.\C:27{Hד9"\?6۾v|C%OcL27ش~i=T~l}{6gW=ǶeV2wm{#S|l_ͪQv;m]A QeX-ڢd$;1&lI &Sm@w#3'nn'0BC`O*ۅwTdpխRDQn[.C:iomK+ ZC`3E&.a j6/w{ nJp$K%< (+ N0 KΈW VrNد9Dc+N v<麝)@R:Nj4gdEdCUvtKB2ql.ByW(hp d+HV5N}dwX/4,7Oԝ>-es a$Unc+E u/\ll$| ;FC XVT|ܻ]E&\nt1ͬ{KeʛUsQGf=ɢFxi+)~أC~P?j,sF'{h d_N֝!љ䏸|A(ۋogen_;/|,wmJ -CY 4Qº}\6Hs'ܻ/}œG(2zS\Σ-2nVytʣ!~kQo}ԝ) lﱿ 'Gs!``&$=\EY`Pr{O2zl̀>$d0xI1[-?XLdނPzy }6ާ 9d>G,|N /y}QΗ}aDab_(DoAo_׉Ʒow~p_? '8E8?&]^~B?up9+gc|~NG}b!G\5_so+>O 9o<|ο;IJ|d"A}Jhp' %E>o4lI@rxZ8oX6oV!&ɰ?5-a3PB?o 3%ܵa=ީ:ncg;[#oF|TGrSG=tݩwn9}AGK99=\k$h|uB^t8cI~C">b%,\Jve:`sEs/SmO),]d+q%_|@{ ݙU^JB_xZ* SWL4M5zī.k7էk),בݷwd5e~鏂X8ތHڋs3}>ϩ; |7h^|_="(~9u|/7=jϤN zIS\Nԝ9 ^}wM@9 3?G^ӽ7ʎ]RMڜ>G[82k$?H`Ύ^[ݼu)S}+ֶw|My7 y7=L o^;7ћ#?׋[@ݯf`7Nt?(v?ϋs/~b,wBozX7--62So^+Q9wC/;=)GI|:yiL[ U_>hr8$%^;M7^wn#ef:3))=;v͢`wiЍvЫt\ij1.Q,DaߩI7땱HO6M˯zWƳrw9Wcy+ 0u5|Տo;lyL1$f nً0܇{Y:  Q8y+;ː~ .:}!WoiدĊeR4r/aҒvkׅ)!^ngUvtG4wziI|Q[]fY!~!ç}PWk/s:t|`,{5ş6`بCy"}4T/cAen:)\|{'`'g4#n#o^m#aQS~uE瑁ߠ2m _q<BW[o 0qh収Bn<'CFvf{hhٜtGʟ^adv #]2v9ۼ `ܸ/۽n+qUg}By$":ht/l/O+~Z>L 5=ފyC=Ė]5.$>>JT8,t#=u1J~2c$f;+=x S(i䶇7` P}r>r&&C|uh?b{:0n?oiPMЋדH_>{~P'3u"vNXiQvG_܇mGDc)Gd&Cf8{Spc,Dpo{M" cB\[?/ɭBILS9RI~mlHG=3'3{^4G8GX{4I+ۧ2L)ѯ ~ݪ6}ynȘ]d^!y;AI(nL/p1_?WV3J ~2W{l}0TwD)k8p!RodPH-GY2.]6ΗcٸOS,^ TVuLwT7146UC~u&:Cd89C^;t-: dN<&nb'9Ljof;ů.dAll *M)F.!Ȯܜ"ߪ^D$tN,>!R.DEװ ݹ1_>n'2v _9mv^4Kw"Or{#^K,֜L|2e2/޼ ?/>K~<$5vHEp~m-1kEMBnvnDE{PWBvlwQ<}h p4NQE)"i2.NNyelgXZu EnU+٧nh͚4|ʢ="}!1VN= Npo/B.h?(f9 ~K'Gv=vy_dR2/?q<'T;u9 .H ɼLÚ݌_Cv?]d^:}GSgsXۏ謇:tRX?ƲDʋKXgmoeŸZ cF2S9~cmh>QxG_1H1 B ;bm͹|-˴A?2uW/X8 9XzOité#,9rU[ z]y%fGe<~KՍx收tmd/.:bv'ƼI];Af x5aMZi|\m=M3prkqn_Ƙgb@ }0g(;9nxJ2%0G|я%U2گz#/򈢫JnG-1 ?F ?UI~~:8\})SQCEse0H C@f1$s,y,LoϬzH^.9ݺGKP|zSrM9O~.IA͜ҍfuy ҭ0}G.QA*C1w.UAt{r֣?ҺMA%nE6G!<6N.P[m2PNTNJ OH#W@ P_l=z*(л Omd/h.7z^~"}#eB3 h5;a@v5cXG5>)Z w?ʠx1bnQfD9I{- vg)%tau ${;\~%g)dMеm0bXD%`0`$L"pL!9z N&"'`>8>_  XDPC$N + `+#j_C='J^6 -v [@m0==HEy]d .! .p. \a+0o!jf_+]G %G'Ayڍzu;v[ +@~g"_vp)^ C'? ,c|T|\y1|,s%C%_/ |oC? L#/*~ -^!7BO x/𦀯-.!pDaID S" ψ;!/L6?G e:҃ڕɣՄҜ"ZjPnuKVoǝmd^!#K9pl"Xy!o%?!,Fڋ_-t>""&qm b|0toR'Oc"أ ,]m 73 Z k~LMs31*L񛚌f9ܮxsԬ^Cۃ@`Ar=N>N~EQWXL 4 _TS, %?j/Fbw CuyQ/ *2!WxA݁u3f?6 [`>Rr|};89}4#=ǟS>rMSn߮TGGًB@廝yTd??{?]hn'Bpl_O\奡yo>\L5WSi1cFuOcN ?>A"O ^k DW˯zV3q>FLfԤtۤꫛ[:;ZM掴ukPVȃ G7{g5.kGrK|}P@}İ]hh!U;w..'%~>+x3L爹s]4iΕ=n>@:Oc|6\Q.n^wa+Df<qmO;]g~?_i]/N02<#1,ZCr%Z ݑsu g|3X*poK v%O}(gQ:$i.GĒ w֓6Cɾs,kA?An<2q4N;|鎳jȜH2{E)9dp3 7{ wl* T!wv=p ^^@;ܣG^88nCf?C9ACBq xP4xSvװ 0X̰4"{8~EZ{ 4{lVKM$sB~y&JI,QxYEB ΕUbqM@7Sr%uaryH5!@Og% Rp<N$$%0^$`*('f`Y0@ukf_279l2gWdεݿ'Ana_f>0$øEA/8bu8VHy Nq%*rY"m|L":Oj/;z#^gj/Rob~r9MwM/&,(6'ߩ;lg7MK/W)?]HR3=-eA^Cf.}@jb2O' 2B/S Õ:wǡ-C;9め*V_Xp3h0Yiۣl;X P /'s&sf,ն_qYw o}m#o2#nmܿG+d^GLpP8#,N)Q V#"|,ӧTN<_w[*>YC*n@r(" :}^ dÍaahc"B]CFLiKxCP{F˷ "@q&*!8s 8)*  Xź"X-@^``c gVp6v9 EP+>j -{vpࠀt/˴5H] .Wt *RWݠi$; Ͻ zC IQ{!i?Mtƴ{qwbtW^@WwFwmiujp`h5k-Fs0^(?.°4K'sҏM7Y|-HB/M"5Sev v(~gGBҭv]K_.O0V Cjb!NQqn3{D6oC;;*c1^Kxc:f:St^p^Qsp,o(%Itܤ=i͂x6Aݭ- IOrTb4"J_5mЦx޴ ¦mYvԼ4u6o#ya>_3Qpg_ ˲/˪!o0f׫ͮ>q{MO{K^E}7 ͙2P_=`kz2PewTCȞՑ,*8E|cȶx.L[bm2'qJ5~E>~S]m鲹N@!/2Z[ rlT0eaH7e7ovV /hgd7a;oM0K#&\pR0%SN4N#~\*Y5b X}@p:PW$0ՙLuF3g3+CTg$ղ &&d7kqաw#vNb[$OFloh޻`+" ^+g|q!B2RKx[!$${s9P"~e ƍyy*T)aYr_ j9؏!^e^x)]&`vpiHO7Jǀ{/U`Ǒ|ww 76L.2\Sv*S,>{m& 8g N"d"9Dgi  ;eӈ"[(8\jbr[Bx/XJxy}wTmk9DK.HK L27R8,3|pyn! n֚۠6ONt%:;,#22 v]rJHU@6Mc!ko54!{{L U6Fy_$x_ 9RUiӶ zʣ m*O0- ,+Lp/<>G9{ V0׻ˈKE3>#W~L6J%g*%k2>ygf`\_Rezw!B7[~`.q+Ѹ-lx; Z@>!;&qS#dx~ݼAwӻq{aG-cv^$Nq%qZ@sρW~6='틔|~6?΅T_SdLvb5INڨѭeÐ3bD8gHm,ڀZdgɯ, \,vc;jwyǯӖnmiohjĥۑp^qq_)0rTi /~'J+C?~߷cMګ}߸U9>g#Ҳ^iaW$LC%jυ64'[&USM?'1%H.?`.^7MXo*gccsʲƆTGH54nz յ錔Z냄C^CQ$7KOk(u2iL?ɋXtnzˇ?N?|T,d2 oïw1}@<'jg#O5 F+s}Y[o\ƺw"/_7cq蟄-?hIq?gL-27ihLALҖ4:L "r/~Σ5{M|06Jmc+!z݆u鮂y%_qĶ"D)=Ɯ'e7f{Q 0ufH⛏jLoFSL[@y}#,n2Xo⟧x{{t Vs2 5,3}/63}.f:#9L}寃6/ܼKAŸT8JK~;7Dz;cHڄ )2 U[aJ31]~}jtr֘aWK-cH+ i/SS#Osjq9ѕcCˢ`Q(feK/=qɡ"\3Ӆ].A Ckt9;T)aCf0Gx:9R+lsp9GQeA9"1vl!rkWnqecmG!2,SYDbTAnntآa>t]Heo۳+qwA>8̴{ZLH)/=\IQ W?} +c CpVDOk?ߕ"hP|X [7,sް!҃qc"\nS _EKˢ12'},Q$XEJHcy!&JYae)RQ!x0S<$Wtɲ[eLڽB8O'L3݅DǢ"t]\F!*G(Ӊ%GH ̄HmaEz'978.{ }i[n:Z} ƭVڗt"پXB@Exd~KZHb2d֐L\Pɋe!E]<rVCwrny |~^eۋپ̵>rV#ds7|bǢ!9~ϔyΔda]A $p`^I^K \IW\Mp'ۯ:fCcA}=&q+9np{7w>X6p p'FCC%6zKzRS!O%xZ3B|^g<^~v72I^w%. SE6%SFfpO &SDq.ꘃ~$/$pD[^Gv f'%1~x/hu5$g5N” GS]egN&/PWsk8ܚU?mwD͈g* b-:Rs97Ax(guuOZ}iǠ|g=t-Q%~'޼;^!'>9D2_]]N2 n\>[1KlTw97U GyS)]&^\Y:GۋCJ] =(;Z].Gwxvds3}>ЭGQ'tH?r ^q4Uʙmx2( \6{s5ޢ)T'}rqwAwns-fy#/٧MyqYƑ]CNO}mJg|:@&d:PS8N934hxEU3jêb+vJMf~"<]jFWy7V-gVߗyc!M?8gD!w#f=&5X̙yyTco6]p0M! M}ES݃7At,jxa?l}{#^[卷}QjE^1̑ 4W3~ wO>RjK~¿{o,.蚯Wuw콗I5±US~kѧ[Lyqfyԗ/+J~';~ >v^^oqտߑ{ҳOۏ3+z/(v_nkw[>VE8X mJ+v`ӱ$Հ i2 /]5f ITG[#F>(# .$׹UtJ2AI%sd%s<4LT2`rE_|XUzM㧲=.Ic,qsǃ cZ pUP;NMկcqUmK$/yu펗pKr4MH%_=ƫkX=[zenϜw$46';.BJI`~)t%/UP2(,Bu%a>&S2B\ (p"9.V*܆ྸ;WuGܑw@osET=A5H;lп1 .5,o~度zc 7{=Ha#<3);>{xDpwW@dz )c1wg]EswUKΒ h~wc=2_!Es GT@ΝxCߏ}> 'J\70ON5;]YwkQ´P=]+Ez9|}GRe:|ZmKrNRJX1`0bЖu{Gi*-i8SirPHI*e]^ GHC(-# [%ҫ[<:% b *XMh."ڼF*'3 pǪ3ǰ`|wh Han25z~GO~Ni`|VW||C/ ?ݭ>zzs]o磭ۧHܔVcTK7txp*iMWzkDY[YݬYM4_/5 Xـ6TjxVЊ%~Wо!VIo5u_rSnb,}eUBl*@N&O$ܥT.4ItN࠘,[?)BM~k8CΕ-Dwp!JW)Z0oxQR/:<t}wSSf>6R[nO:w}mwG~L,3ؐ D}:(:]\ ln4ѹrޣ4$y]6R39K[am#E<دDڀ6H??,1Vr.ݗawқ"m&'j+D:[Vz7k$E=ұһ}^ -m!?.h$7"~ިzĚ,4eaRQoUʂ#jO0{ y*%H?92;A@M.jߗjMwstf< &W*38eh". 's^|L,-<6?Za@S># /Y\WApyз'L zn ZggcooG)u8S[՜o:/l$t?03H.Jsls+h8Hy)Vw|~ `xrng1</ҨTstށ׿KC<՟d06wV {H![: P)Y? v  xM7[_8 {_Ż8{ ogBMy2p˜ܨZygy9:~q:rR6 t0: ?2RGވ"bVSه=걔nW;4H-;UG { #~?p1#2}*rGnvPVI2F6S/N'IJnD]Hyi~Zs3kaoN9| }ԅ^fլ`އ>3yf4>39Og7;joKb>Κ{uU+;B%qT@,OeojU^ &u +yń}UK^D>IEX|p\aYò:deZ0pJ;Bإk QWOT@ |[l퀃 8,o'8,?/Pct!'娐 7ubm!7lI g{HO:}oNy+='ᖳZp|'I cmu ɦ pq}KgmcC20$9{k/oνzf ƣ .5AAVe3~5hDz,-hbnsqz X{"ōØ [Aw xlv ~7{n>e05SX4IfR<)҉x`p;GeFaWE>5]5:5g߄_jb0'=މ@8o[Smi"&I!9Pjq,߻9IT##45 (@ #ԬJ?=K ,jf/4L_㴨ҕ#0N4#M٢fA, .}lw,s;?k77<G\*sύᷤ4o< ͓< nx4N"kwv3 !|g9{h ) <0`4pcK k ô~ji?7%Ab]Vm~uugԁ+m8GQpߚ.~ |6r+C% }|.0uG؅%%&#۸eyQXYsj-܉%;j֥`Ok 2po >`#2maV`~{No_(@}qdXHag%}pW ~>oD5"l9(6\-V}Ҹ}#E Мto|t8|imo\*JP[R!\A*gnĚ2+X$9Q+saѴnL}h`~GH>+; W_k^oQ{ECyt$|3F_d{Oy9j^UaLp<3cxNG5gzlrv?_`g3}WfhTmwwvR-nkSd4ذXҖo!{ߥ-麎FYnL]jKsgdB4;Q.Ou68{V֧1ҕ - MIFiH9lZ]:Y ilhA֦ҵfjm=U=\PaoImȤٓwmCFG6a[:^et]ME#TH5kpDW u-. niOu-mZ2dlen kpߘ جoKmېnnn?x 喌~ԧW Qojv]9lOsR6/t2pKGjKqk)#HftkC4l9+Xg;ZY uJ:Ҕ Gut[]c ǀ2㖪s2aCKkgcpq[ډjM3uf]Ss .]{mGK}n =8‹*UK>ɛN%^3Yc}㱾1}#۵}}39㉤D&x6x< ̟܏SGM$ia 9{!>>8K,!I*|5>;IY"Oxc"7Yo0@É.m KoGm@s.x/^VD9 Ǿww,_ޝ߱|yw~Tw iTOU7َz,4{0 e OY]K[[F NQx. <[9 9Xp3ƒ-ߖno͌1onٳ'sZ.jK {9*{a{E6᚜8hTSC#+ԅEU5lhK7u,ͨpY`_flnvZ`^RbQ7J9d< keJZ p,wge8<ۤghMnlYqbd:^MxDF-w͊߈s-T[ |99}x\1WpKpIޚ"޵rIs)uaCmRk5q^RlǴEf'6KJNsȾha܈}ԑ\8!GX߈:docSR3zm7W*nV0=( |Aoxh6Q oVዐp xenx@?pfUv"ɊN%H&a4>phq(\1Q0^.Ѓt>[r_5]*jMڇ<,^6x;{|A䜓P{S_=woڛ%3rB+* 33ޡYP{Z3ů׶ltr'CuxEl> KN;Tģ3Z MNk>CJ seXs97{kë/Aaشÿv |(FɢF7v^;龓y+)od- BA8=JpgVG>Žc$5w+^@/5^Irhٍ{D׮|7Nc:ygQC`QcDž#X"}r ~ sY,f^J/{av\*E<( rkv a@x|'yq۔vڦk-?J `i#T(YȻr{mD{4ZIIr>G<>~o0?&Hq:ƏwT8WLUM;h/t Fu9 5Xˉ/ , .? 5 H[b09iUh3qDPFP 2C@~ l@S> rxPR=[S8+ӷ#VݴjEKLZg,͆njrXom>;PIw>wA:3x'njQx,xD8( 'E{8 ,cѡ@V73 ,wnhjmL7;{Z25>^}ACǾTs}KSuzϞt]G "U\5QՐ3CF5dːQ sCj!cq<:!c27~iUh3fӢ]K%(J͚4mGѬSEEլ X")ͺHݨY{;zu%#w\sJ+ `Z\>Vay>x=v^poL=BfLFrA}LF<}xzxx:j'{'gk[@,=v_ |:H/R:^ E%J`_O1DnQ=S_Ll6?,kK)^~ V|_ΐi=ҋʿQ3C~ #43߿MLOL"u<&.p_aNa2L, ٩;j/~7Ӗnmiohjĥɐ3ev.7ŝ"-7KeƯ7k~2$7CO7n|U`8C|?1?T+ SdFI0qiZՓI4[ݜjJW׷dpSn_T[ƽ#6#(:;xarI:#e򺖎tuǾTGu[zogcڝ"4ddОt,յ{RS2sQ r\CTur66<,lmlKudTC[W_X]H@>Hx ^9ދ(J&xi 導_Ɵ[O;Iœs:vBu82lp?$+H!OS<'@^d, yɓ,z֝|t/ _ŇY`ng{sʙK} ~aBtنُ)IQb'{24v*Ho!Ayyf|)ݘE-g4zD+Վ6>ïw1}@<'jg#O5 F+s}iyO}B0ֽ|y?@pG$o/F;ܭN$$K9e^=`hO7neOCcdlp~gzFH|g@v{s7&>Wi%|1nC:tWApyڼEXm8b[i"ɔ5ZaAGי#ދo\Վ,=Yp7x_O-m<S7E^7{[zGĂ_%YWi3Cı՜d9LQl3ET:g錌J3cۼls7/RiF(-I!=P"]fA9Cv+Ui<$RdV륓Tit{eV(bNN?<ͩE;EO TBeQAXeEZ͇x~N4;ܽv7dk?/bZ[}S{ơ?}rl.VGxEuF{E,Z43|P2_D@c>ضC4eX3yqCm{Bt橬 |)UvYa=]1=qÅO&2(='󈣜LO4ڱc,J%oڶc ^9+Ho4c}kܢk$6>f9QpbwexZVAEz'978.{ }i[n:Z} ƭVڗt"پXBm[,Żm%[[D@xLB2$̥d*oL^,֧%d(0_N ժkr˹1v){m/fj2YeB5dagQ7yߨN揘udn$s3[|U1dqn+jl/ؾͶd;29*Xheq!s+3eG3e;;}s?p3KnE,Z0Ȭ#bxuQKr#o,b厳L#)jÜ+m#N:LQޮx.yL?D:)z y~͟^+{+@^3<.Ѽhc"x X'' N `* A0`9' 8 Pc% +XFpF,BJ u+l6sp}Sn )Z{HY l oFHeYl-!p>A $p`^Dp)Ë\Bpi\"r]p+ #* d6\GЬzA7H n x/xDC~{ vvG >B M!҃TT<-yg V 3LJ:}ᡸg?w֫QF u@=B{HiWFaQ#?xoBl4r)"9'xRb7hw-Xktⷮf*3Q?߫6C@Y0tjs/KF@xuGק2}#**O%J>\Ea[᪎$ qpŗn%E\͸:vui;PU{+@h;Oӱ .C8LlȊ{R K21-a@@mo.]=)ausSʹKE6~SlL%e=-xxݍA}in>:նD(l_|Ыl^$$(989n.YdDZ(8] k5Ҋ8ky5&O\9.9_o=?w=vE_u~㪪ۖI^//Or4MH%_=ƫkXqX>U{eLi<<b}QK[ZǍY:aK8kc|j[݁U G}9E؛pϑhԵQNfi0~e?Cqk}vcm+.܃{ ɥ!w8ܱ-]Y_*m'=ak=a#|JBdnDdIXX_vKg[} ٗ9 1ۅ>ZZQ46ɗm锏{ɊMմEGjvQ,gԧ:R3n9E#θp<׮]϶JRW;Z|$䌹/9ݓMld/&~J=/yr?NAx 2L%'Tr/"1߇'Bc ›W_>D> #EL½& &s8-%|ۿ/M Ue&N_ߌFxWJ13Q8OkxI)26Pt|;MpXp|ɗ'u۶ ||噮̷+Smgmz{zϾd=8`O}6o6nm O>`nͻ)+[ݶ y6?6?7x>|2թy3QͫI^O%Ww|Ӷ_etGeam^`|)xdo˚Mوݲۖ=߮`4~=0̬omnx0kzv_n?cv/aE;6My?fe^;kY{oTf͗iS6?s~f{ѦMWm͋>lVoU6?hYGtk}izN_aste٣v{I~gKr۾k侊ed#/x쿪ܻl4iOf3϶Um֒*jP; NP&Uǿ[E+):JJo9WK^%|oٗ?co&r_OrYFWS۩Գ*dR ӊ*#]AlGftS+H4;Γj9s/4#;!&)>ޙB$sh!/p' ]nʓEڍZ,݃1?g\IsgSGޭ86B^o{e41"Pε,9ōT3wҺᢖf.n۟jnOqQ4ؐ) ҖƖpZxrwiKs3 u:ҍ Rm N-m{+2 >]͙̕lʖ *%ۥ3κekZ:EТftm`cfDCѵTݾtGCrmCݾ΂FچL[k񯵵 -.ҵm"/ץ1_zE}_#>*֞>(]֦/lkq^P}vK~Xֱzi%#M&v]&pp^ېnnn?x 喌~ԧW Qojv]9lOsR6/t2pKGjKqkڐ)M.}Je$ּaYjVvVC{]Ks{cu).`h39Qq::F<2rWaMuڋgʽ>S:f7Xu4g2 _Zm?:upqz@/;崚բ.qKDOPƯK(ɔ{:]wlNȴzb9syHh&pZ7?>Twk_x KJ@/l;:Dhofo1I4{#^:u-h爯']7%m\噳h%2;#7̎8X:î󀊌T3^:;nHudFMV6St]Þ-3#q;XY@;_DPrN'@ёv(f=5{RM d1hcLY*ݘyHir>$,mxڈ ,$c)ޥOcbkxl,3x)9\pw w9 }+)UDjw-ѻFC~Qs]v n\ݠcU:t[(̭"[ܯo^J(w]*m'w&CiBzTw_n>({?~(?߇C~,Ï 7#qѣඏPz?DO~n)_rqӄHi|ɌKmÃ}}4s#'jte/e^:3CL 69k~fiMjÝ=fo]77ODEǼpk:Ml)~Tiwe[ԞBT(^G/ E)ͤKO0ɡ,EZ`l|SP p_Pn4b]](y(OvG>տ挈0E8%}:ՌS+XV2?anW>wW˜6_T?GY4/Բş}+׫:b7؋* qouhRZ?̋(J2Z>c9a*&G^kMF}i6 71 'cq4eSoOǯ)IdFE:/JqM1}Ɵ߬Ocެ̦ܢ^9綀s{SzaucyV߮??1l?~'==mɓ_zDCF灱n{#~c{?ʓϏ`nOORnOB/~ ݏޢ4xS?U5ESeN/:t"#-3O1e܋_+zᠾ71BU^|G>:r{gήֵ`l!c1(j:֛1Lc;s&#o11e܂I>Q{5gAp9Fm^#;&KPa\uO6x7(zs1~tCy2_%s0u-{rrA4nN0]^i=G3 %t+4Rx.;}?ecooUZoznLrT:"֞jjmL'3s&Y VϻDR9׆I|6HM}ۑF %~d7 X@*IؽCm!4s*/3}:l/t/#;7bC`܏ F#DG/܃|8o,MqLwS1V0 oN٭E"mⰨR]oD n܎'l{lr~> U~W ~d_i_ !B2~D/t[[J V?'_D>đQ0gy,Os6/3]E=bNo[ ~mEm<.ײF9B=c>y%:AmCxP."&  bmgX̧/>K~mSW&z֫GS'Y_Lf=ҋ*po%Ov 3q %r $:UD9{xv7Wztn\sf^s˸үsz'F:Gm 7<6HPy?5?+jqQ_YxR)9,*CqE'nP<0siAaic fF9&O-b|˻\}+|7⋢[K]_p * (}[zsC`t (mXd9_H2$^yJn!`~e8J}#V,qڧjQ=Wl n;W@7AtĜsu1(Ҙ"q[%֏.۴Э?kˢLoDw_dm{5۩=Y\)]ƊMUcC_|8D9,<7V3ݡdOY#d-G{tvxY Qv5L7j' pr'CǢx}=g}m ඩd2'yS2E3lOqxemcܙd!s6W}!zH7,cI'[6ri)Q|N9 [GN$sE}mS ?cS36N斣96h#13\@Bo,%ɬ!sK ^67hs&]l۝#O'sKm4/wg?d"s5+-h_k۝K2א̍$/qd:sH7׏"GɁ>9 6m_Zp7U6wMYqϱ{پ̝dnmobd2m뫢 7;ny 5"!V=E[н̺$r'Ƥv9 ut;bd ~n2|$ J8ݜiP@q*F=T*Cew0`1L $` Lf 'V0/N0U H HFegXA``N'8` Ygl`]8W@JnZ:#{&e`8?:hwNprߦB`ňpK"B+ 5pU v=77 %"&Vە ;"ഽ! {]/aA=AGp!'8%xc!O|R<rg>Iwj|ZQJ1/8K2.{sFˋ@۸n8{6C]oo]Ah"p^璉 JrHnTsɿIAҨ4,N pxn%t:NC48aSXi-Ii pFsљIYdM9d ]h绪kN-$*Q_"J)wF zݐ[NdUH{J2cDӂ_6[N2~Y_,>Rp 0^Gb{+FǰcD1俉eLYDlvA̺_Y0].;Hud֓,jm~a&Bnm=*>JrLKsD:@"/Pz'n+|GK+>aJa.Va|MOt&h|h|K6~wwO_c'S?\W_WoȫS_0y6Dx'Rx_#E1?'CHȐӊf3ct'H!{' ̫џ) }W_$cQIV40o+N;e6U`f{o SC [Jx6^! z p:Ó}Go2|YVH!Yp!8qa0'{9+47Wm[~8y ʣyݭm~=/n^)C^ikgKO57CZۣmQS"]읺6zfHﱺOO5zkDkGu)է/_bm{gkٔwwf{酽3xc91ҁsl{qω`.L'y-/j8l =7/r+|܂hO)3F?_ϹE=s7Bܓrϧ`Q{[0ȔՀ^%W僦k*C[Ӕ}q_{؏>Yf>2,3`7,Z:}_hIv0nsuݱJTt^To7:z`<(ǜ~WsZ0kY \GPS\/?L/CArjF)/X^}x'JӀqo1jQ y5󝷒  ѨgAJؚ>я*AH-^-E3)!-iv]RzVeGw4PI\/Ms?e(2|u|BK:OWƲ7ʏ_Sisx{:4(2gNC/~ш̼,ŏhyiu_?d:~R&;|?VxF~ x[ڀ)Hn~,'4%~ Ro*մ0~/+w|{˯][e|W{Rn*ᾠ<3-pmGg z0=G}[ʮ r+Ǹr1uyCmupk[mAZ0T&~3m`̷{R? f~rF7Bp[6&62n>WWt j+ږu!m!|Q|1 ?ךV DFs|2^iT.#,R,!Ow|oV|@~10ۏ9߂1`JpC] fa۔gxC+~zШȖl>N9-"Lw^3pXs +hd*?=Eyj+K4um#i" fE7.TCxD4rx$IfI~>m?hc870BpO>Oє*0)5#­* <䛡8)ԎzyKܶ_ T/yԣx>|2U_zK}ds$%GSd)鿺}y d/霬r ׭n7p֎Eo~mv.  #{sl5Xo!s~W9vIuיO"(NZt ҝvRx p;aEg m쾔edAd&Gܬ8w;ވעHw9+䗑גw^F^Gzy)|Oa4ymDՑ˙}EHgŏW7 xQ"œyxM]5)i[MfYTc+[%o#logio΁J68b ,:*tϲ;ؾ#_?jv2wyMomwEfAvOIllmr tc)P[<601J<=2i+!oɴtd6Dǩ] !1ٟ_~f<3^[t7G^n+Lf7MVA]; x%dvGjKLţ܇)GX\o -&ӫ|YfͶ}qeUPdZp}j;֬yyO·,:|ol? 7r@NcZ#ow[ J) lrݎ^(o.X(PH4/y"hoOE}?/%G~B|Pw 3rpht>\e8_aE{{:Uw4uV>zȭHg*Ł c,NEpvFVVp>i$s~ú !~  ~-nyVAPI0  | W!q r /'9$Z2~ćZb ^%áz:2"(MTqbLo c}!Kóri^˭''7\Q<)>]pp_AmX9VemdW0,++*s_G4v8ws7͎~=Pu#{$S<7v Jq01m;Î#.Z dlQ3}Tꓢ]p{.Ϊ `Q#&%ivN4I Ѣ˺0iyqvRR@V@-_wZiY+yB]ȋ+EQ`,h FL0^$7Yʝ1d!y*p`]N}E5IKt 2&@5kޓ^yl#8`pԆOt  Z'8 //I=E!R "@Rm8u_oQyzܘ'M_.W9mwt;wf.Nplg K%`~?Hp <$yb |8O!:>vXG PO nPۚ >!|J ^O׻ &;!}? <"RO*7݀.~+ x#$݀7 o BG4I?*"(/`S' }]`}OWwgFq ha$pXO.KΞ{=]ιDy3dǥ9w.xg'?^ 1px> #ZC0i8GHA_?'W,Zz+8D23btFh.kTx=NyYj;(fr8Ƌ8F4s&xvњN<$s=C`HT>EOlɜODD$Ap/FySo>TA~O#E-InK%DtpFX"[JZ:h`>IiD4wcc~cn&nGgl(xF ya9"M(׹L׮L&ݔRr#^$z;l[&jw%^9Hf g+H乤NfDM1煊_3\kJ%DbJJJ7^#dRJe IWg@l<_F2ˌwՔ6=| :Zp.7*f8z^p6,w{ᠥp>sWG;? {(=+>!"w?!n\qrGLJ)"G .-,Ljɕ{/ vKCUxv=]!g6%}uGy3`}:d=Ӡv˿gNx&]>']:[ڥc|8Tfx+>MNy| MF SԽJ0ǻ4/~8DέA\GNUA/=,M{va]KGu]K[[zOK[Tkc.t[ wmH7w,ܼq!" ƪ(/g aY4t|^|jn6nkh>p&[{t:~"c fhkhܵ/ո!dY __co^UddL6v?ŋfM?L:G fsqD/~+hO`(gdJgE`l^@ԝbi/EW1"C?hˋ~YP iLtr~O>2} /஛|66 YjWnw;Mcަ)$i?4fFȏUnRuv::m^2(˦ݵ?'cM('Y|Ȳ%ll|<|6ƶ|`c0%0 1HIHB rcslvs|}{ͷ_6&%f7ِDWofkzzf'Cswwuu|!c 3\!uӢ | [3}U_y,6;Tuz >:CK׀eg煎|HkM:_Pt7q?ϖ)ĭ Ұ }0 lPkAn2ߤ$PXfsY8fm_$UcV!x`Gݹ^b5xԤጻ[rCH"uC|~y61Y @0fzJ1af_Y}44l4q1Ok]&oں[Wyw6+4uyf3}~Wwk{ήBoD{[PN]jKx0fdu0_ivW b+~AGy`L&M y`.f1^i Ps*I._" eK_:rmÃ#"wSپg_>%})X$/>?Ҝ9.͙!inw?;'ws]rN/~ _aA1DvXK,S5/R$.mvsq'Sq 6V߉^8,TC=1$ZABlL4Sq`:88ByDl ařHqByD> 0.p~EZaj^gԼʿ<:̋!6QM?ڳk1x.]t-_  C~zc=I y<w/Wdk-+`z@<ю;p5x=Sje=EJm6rT`#z+J,HW&"gG ]`KMUe:t'$TU# I #Jy@!C;CȗR=#ށJ1e/1 vKti7ԮNS4]& ;V*O/.h[UFcR>It8iw&Kr)y/sw*EK#G= !ʽ05c-FFB`Y%q v&gq3_Mo&$Q/ϵx|2>Y^<4}*fy^&W [/eŬq˧=:Hy=$2%U@'ɻcOrFj, LJ:F49.}|+8w(eTm@;k\׹FrW߿ߗ~7_EJye!! ]^зJ5jFT#d큾|OZH#Oj))ݯEHO߄W弉4MK' lh;OstEr)Ǥz|MϪRGmq^#D/`o$br/tbP^ty< H szgAh+<ɛHgO>kv\`lPc /seFL9DgX./+krA~Oomr_EwJMWqujEzn,N)dktH\s7O):pJ8LL"5Zܘ jlK@wJ| Qc$!/6]}leaw#aw xe 0͇Z-c1ZIϓ ~OCV8jt_qKkɖߋC{8!Oߊ호c-N`_L'X*Y[5kp0BG(\([8vX!}Ycp1§y}&řH6BͩjNMQxS9o›! ›%f Y o-P\m;_ĝ'+o[x޹mTKķF«rX*džynb9US$~t_i ~B`w ?!JPk-h|]8˟J0SъKJ1rS) ˁU:1xRu{*o;*ޓtt|w7MpĜ5e}7/TG*l 4KS4.m_$ʶf<4YbYG`GKQE|nm[gN:Q TyGSߙ_#yTB4":>W6WAxWٶUolL>#POTg,&{VJt4'c|(_wa{7ogOw? ~ڬf?gUrid=؏#Ur2NqΆPѣ.!ӣM6% !9_pg;~xp}h{O㸔Za [QmWu.*~Tˠj(T*ر P`[pt9x f:@v@>j 4S(EHҼu2ջBoMy. GL|\(i\D øSj.m)6Z@p>*G֗Xpv6#\mFڌs j3flt,.-im#y9Y^R[ P8V@E}5'y4Bgɞc{:ڎ@,؋1D3@~Y}!J2RO[)0$$ raZ]a`X6XF(JEaq_pGYuvwrDb@؞?-cx3z}xVOɳf`Z_Vu~b7!~ BoAX`%D0h1Z0BVL:H7ƽFlTy5a$7D !3 }{-a.{~Yք咻(\Or(,9 C7Bcx0C38*>6H>J<}xq :)ܳ)gocϊ| σ?3jD\G?;o,ğs4US:{"+I ΋BqJ#Yȯ& AGrPvLθUxGuNtuuXrqt;"JjֺX3otk~.!~?FhD3:\S<<~E;Ĺit.`\1?_8zv6wz]]F~B|{[O,|aJ?s$)Lrt[. -{7 N7w*H[QFm=Ł5r*Z8|wa\?y3:|+W;٬ \#ͽ*V%[-;n. O'vsLi2'7פg(1!|_?XzŸXC B1S,l2Y >* I!)s,{,eRq? 막mi_: _jiY2pwC:|DzrB+!llʑwIR |"&oV/]G\ Edp)Nř?T gby*ZhFۘW:c@2'혙vc#/t e9_ 1RYP:ul{i7;&13Y 1 _ ~ZP'yܔfxd &FߩNЋb }lUqӬt]X:t}X:׸LKKZ7[cw/kr{ܹ8Jvg&w0M! 99Au~/ܜQi6<}xOYI'rt $m>ZM:/8K%E`R]L9:ǿxS4ͲFW,׆ˣQ൲'y^X$c ؿ19P 3I|֝ .ejԂXƩ0O9<|_\ ^ ƕ8J*^쟔Kr[?u58J9Yљ>H|S] Ohiأag.vIcYs|9K9(gP} AC5%3>Zf3 >NI |s>-!?q#$q 25P'8BUI85䎂4$8;pqYMɿx:1u28xʏ2d@Gu3mwR9<~tx^Õim$reʋ:}\D[ӲTlt)6kV6> }om?s[Fw=F\DޟYw]n:{YSF;m;6zOٗ?s>~St=?4|Ձy,Džly>'il o_½ gkw;d:I:g_(mM%A |HoE >ǻ}7 B#3ɝE uIѫQuc xJwm&}5З.ˏCϜgD/Fky ~c/X&GWz?`NܓA.Gn>RRrlAlY,XW[)UxT= +-'i폴S#<|'w)EKq5p7*W\WN(ٚGxfDW x7џ2z6ߑek^!m?wD #@/ə 'n<ی<Π_W&O=ɫ \QO}{Uݮ1 tYL>3݊ G9!M3G4@j,x29xL%.`| CwcwIMt\m@X_7^oϕYE2~+J߽/'9]sd Rb }!Cɻ7]+~LaqNp6ya)ß2 O,}f u{èQsu*E ?+ʖBoY ɖTڵn{\ ?/$'?`@v1|HomG D^!ZnIX2\ 3Ҙ码3|AZ . m-*\Lsf3a0ޡX'+L"wO #Z"13p q3pgzr_gsXOπ 3t‡Ρx)-46\ RDf;1ҜK 7?-xINK|--#DQG|((cܛ>3Do/}[)rg{BCX_@EuDc6z.#vHWXtE_?tE:]guN":jOf6v:峔1poH@oٹZjl2vtYtz{&D>߫OßOoS/Tf~t'~_ľкBNà\_LʗC>j|˿Q=6׹_eSlيoXq]]#r=x€QgVnmnX|b؇9ٗࠫ;b҉3U<3Qrl  W9#~t ,1Y&Z%2e蠧B b:ꍷ|BqLg2d+W 6]vKW*ruοoΦIrfF Z)MqS/jۦRË5`Ū>PGz <_-3|O! %Yj"KPm.4 K$~U.aH]5pTIU>$mNZ{ r&zU._j36,gb:ZP=J7ZyS` (o6rzU#躦C,fh%/ELzZ@^谬!Y ?2nH!Ik˝!MRwh\ LI="o:HgkC )zJBȼ; 5o'zMꡜSML/훳!^zgiۀRh"%.YXL72M%TN}:.H 5kp2SavL[s._SE-$:ϨK P#`t 9ج1tM*ag\Mc:A`*g J{FKc\Iam S>6 `>8&kd]ŸՆF!ſom#SheO0Ȓ'@*yC NE]lD̲@07TZ@fRu pUk4;A.6&/={~ b7OJgg>p:Y!BN[}K&XD|'XAXn^VEiϣ>K! T ej8< DlŸBq=ǒ.fNW<\)xyg9^T SϤ}{ҴSaMWmgL㖳ڶ!hKWm Ftɲ6DswOaGsow,䜰?لRjf᳦.N<"4 i*Fa]?掞ub+K,ӷVך|\vCrT>|MHS[GjH qwCCn?w7E<*wfwkto ͛ȼ x4K&Fgw~7窼Pb̛:asEq1cm!P)@o9kQ\.mJ`|=-dF HS[ fhyc%gfl,lH?B# 7kR3VGy/D6i# Gnll9«qw,2.WjVD&@U,%i#F|s^ЖZ :W:wMªqW T 9P‚-&m v}QKa)!2#?eǏdz ұJS @˴ZFʃk7j0 ) 80U@ w&xV_ @MIc#ɶ4~$X;# : Ʀ+<5Fʱ_.B8r3]}-@YMib56n:Ʃ1rKK.j [}s[mg]aCf9^ԁRk<⏛"PtF9mGR{# ϏNZMu?C{!(*\\nV%.xd(O╏?2z[KJatX?V5Gn2% wN.\^d rMS:,?p"I'J4'ٕwa.`@B=N7Q@t6ՑK󻦳%u<ȝCYǣNtw|@tt."w1.#w9+]In钑k8Z-m]mh)ʈcm2B=B͑‘^0BWk\Ͻ~Zb1&M婮V),'6ws:z˙l5ڎeR=meBwGF*mhk?ű:oڶvwsWk!L#/n9v8 6h?s<$V 5k™kɤw ~Q{i.0q*#Jo[,~>~+1l}(z4*2\i ?4.q^8u M[87k$^Ug.]\r\i('Fh~Y[oP`hq7țwYT6p/K(Ob6Ux߈Iͫ;2ycMQ ;R ߭j8~-jR2߂t Tsf"VE,X?[ZX#!<Xr_Q=s m5y]Y <6>3DijaS ~ )(mTk )Dyp?j0Sp}F:X37GϢυkd%#t\ '/ @6 ,\C0՜0=ƇxwN zo@h%ܳѼw}Gw szv6,5kpqU,uIԲnJ^l5=987 /[Ls;IM|'q< W4|6e99AYLg/ N`-D;qj\`\]F!yԩxTQĉo? L)z^׳B(΋G NϜʛޣ19NfRޓi ߋHGpiH>Z@>C@`?iU@inӢEegmkugAXB#S)4en`wx;&^z&]M3]'{ cG.+2jve< ⲥFݳEgg=~|.Ye-|K(l;aRYK }^ȃP"!ҕ>~lKPA) 31}}Ak%iŝo䚠eiH_!\cASa++?8@o(3 \֤^7PZq})~u80(>=A]O+VC>+~3 X5 12bc}&׸ɼꋓ3&9n"/U cPNG-~v3u;o,lܲug ܴ *s?&ޭr=I|~!QF,QY F9,aaziZJ٣BkɥRZ/I)۸ϩoU$$c 5dy=,mVJAK|:c+_.~Yja-1mZ]XiX5UhR< ZG4>3887c|RC8SToK :|&6s E2A^ ΅ph-"'Eb7?gZJaˊa)${>Hѹg(ZZv\OaDk "l#}D/.&y zIҼ4/#Z;(r%o9oIWa9`cGՄ{q?q9w5$?I:s=9 xe_)a,fQK^RDqxs@)u:NnwlXLc*N45!vtezBi*"V*TݪLu- ,+3([(s-)%[Iy|EA<\q;Ѽ=g.#O ޭ䌼ޣy_1ާB<}xx^GO;XG?~{3E,mY?!޾@"_y9WwQ{z#4z\m)zsȖ-S=77gDz H2ʿ$⽪,Rv8JgRGiiԤ>H]J AΟTjnO];p•Ke"&Ǧ ʇlfkR<8ĿхIw?Lҫ7~dMH''y׾4l;/Qnlꘟ/=Z|kWή|Gs'{ m=JdS3 ے2MҙBxsopd{sw>"e\XZ-򭅣'{eiz7grc υ[Nho;[Rma[=R(JBkfCs:M㄀*<ӟgkwi&@k[\q1a &,I儴WBz&F#@4yDM$2sh5.Sh/]mCMp*&Q͝]|0iyC>o *A-|Ҏi?1B 2]V##/*C:ul{i7;&qX:{12K<7A|[2$ ,zdh/6?7:^ǃq4hld1!Em&4ҜDֱ%>GI=K8ҷmH_߀W7.sWH`3\o| [s[0;M|8_m'V.3iʟWzez 婋{"{MtUf>b[XWaUqsgc-[6:W0-n:5n:b,ktE u^@"s<*Mi#RO 3Dʇ܂ Kw1nJ>?Nf-&3ܩGIgӣ(L 1TOs*LDcWZ5sZTϯ%c C ZNᄡ?zleGZ|71*rq(?5q~GLk{tؤǂqF>O֒;mn 쟔Kr˷Ѥ UiT)'$橦2~??d`O=a}oCcƃA;ˊ﫜K'Y@9O=̴G>iX O=@A}/ٟbLVfBқA,2{tbdԜ2gj/xi^:~nlBAVOP^5xDkC6FL;֞0qX>J>9@iy#2KBk8%Zޫ4 \J7X٤KTrDg ץ cZ y;S%yZu@^Q+I)D>B!;JN;j]pœINPmZ/gBy_Wꗹ<K w9D9%xx秓s?<"Ƚ`[ N !w- ~l35`?yH k)G'}=' I/l9nI>s11_HnL.hO(o{DmGiO16rIuꚩrh}|n}be+8eLQcr0h9eD]^'[ꧦ=f rwܫ,IѩɌd2|'u?C >A||0&O |v0  ÇQZ8?9`"?* a_[MqGQX S1 hI. kkIB(:xޢ'ZTIrNljI.V QnO/}j3~Wc|idP n `lO5}& N:Bo#xqѷ6:H!|ji+/B{ϑ"i 7isߐ+VEX^$_MȓJ@VKRKUX}B$ #?.7%~qţ:Lu1*UyupsɑQ t3#63Irk/#k4k}}Cw8 ke6>ϋ饓)z(?Қ;|;o<{.6`ԊBaꡓd{sog&j`3o ?RK܆kZg=]0/Ŋ 0SGOv-Ǻ[ B #]7: V-̞#|d0jJgKŴh$}[nFхOFv˭XP$l7+n_DDޯ~Lvy[!|F/fIG?煻[WI1iaIRmOExZgX>\NfzVxܹPő.j5h VS 3>Th-jZ Rfn{Za/w<|쩢*&ȣ]1%-*~}/*D)O(ٶ~ {o)| ҵd͜T1Gmxo^?i놯\Um >C߿ז~wצm{ʍ={ nF5 vrKM.#w9+]I*nd8K*z~/Bz"S'q/']/zJ^=PHYax2'i!-H«pۥ·) 6_n`ZV9Oq0.N3,j M?8m#m:[aNB곉+ҞKtyogg1 /cI$/YFraYJtW &!⭸BF<~^{H x}cd6+9+ã r9b NRJcnKUp s-\CGxle5$'@|v}yko,]XAg%r[ J-/G*gRU`+5J+5ulM:=?WzN~җ%67uզdM`RjRG1CfZ"Lîh&OOC\SGN3gG;Qu7eG:]K:{ m]ݍ4JHyldkՍqfxgKjΫm5'.dOoƯ7Gl7[E}o,ߣߴF+ [Z;٤Z{o潮?sz%zL{-?6z}$?ծT4}wL_>]NK!˸g|qiFJ&Ӿ)ԑ;Zr Bֈ~>rNPC/c /g|Z˫.\○'PCCԘ, YgGgNKc"5ggr:/Xv^'EKӛHе96J9a BR秔QL9~Y>|Oo`9/Wu D9Jo%M3O|L'nMa1AmgoZ (#j[M=8 sL%CE'} Ki}c:)>H3zPG!-C+#ߚFAYDw㽈gg}!3DԇzNٴA9qoѕ8Ot#Zyk2X!i(>6''tt^V»m-\u޶Ȼtr{ ~ #@6q!ǭDWj/Z25`_.%,Q12-xUS"#K'"og>@]/ Vj0=˺Uʣ|.~ez.J^ɵRgm1ցvmAj1!s;|.(kLsnܬ~ {c{GyO\Wq3UR2nղ뵥6*S <9~bl>s7~ǀUQ8?ŵaet rRcyDp%"Uk&joa:\+&W?j.X*yv=~CK@9x|y ǂ>;JT(kazImIm1>npߖ@xM޶Y\sy0kvf\;bK\303+Y/ű~D5佨8IGd^EF޶ rpmt~1 -9 -N4o8_j |#Êo#ǃ )ѼQ˜S lG)[#.$?nhơ6oof6ooooc[axuxm`au͌$[zݓdz|MТއ,U,I\GizkK+ÚAAJf6B5]=G;O-. 6:t3ltLo?3װa6:aF~~6:\6:Xt°8XF1 ɏZb8C1 ꛛۚŻ۹uQmmmm.w_[?1C߿맶-6|羚M-]y?^GIJҙj )G4;ձ|tpZu`j7Pu*r wW)}}=ߌOy7uyGݥ*]%=`pX{kɖ11l+$7kU`59NᏗ{a*T|C{%J7 tF8g?MqrI wA"'zQ-=MRTIAA\kx*<))r3^d/ajS o=Uk'R6vOn.ر6kN}:zCw&WL0*ve&`{j0Lrp ߬BOB ~"o%O%{7zui {=߯lj#go (ucEяI)v:h|h|Fs`[iN3fsyFIΌ7_靋y?2?-NЂ4;QB:?:]Gi|hyv<% 1ﲅ+[횏%W.5& tQv5?˴\dtNY}^_2|?&77=やxm{_JJոxǺqtn/ma,c1oI#_L/JSM!=GPz-qr)S!)Ƙڸw )ژ)C4}7P}|ߐ0뎨8[SøaMmqbtZ7KۯgD{A|קqUʿ8H/Iգ]C( ۵Me 9b3>mL,M4/M7DƋYoeE{N>M2:OiW%bG&z>U]|Os}c:ė0wUJbK!ȃCf4M;Gk#ONwڗ+}J$]:y&6~]陶V{VnE}<_1Z^.6jYdfMyüĿچϥn> ?/^23\tKu׈LWil|wz~H?ELmFo}B6Mfxg-ƇG4&omNڜ -`fL~$)e/Iϖ%t~8n1z{R_L|=F/.wj~H>$+wԧNw>&|r+w=fQ#_H28œ|\iz ˏPq1qmdsIMKm:~N#]G:qLC4~}BApWCfx63Y&N;j]z.|bf)2u9CPz;Nd9+ͽm]1I .# ?iPȝ!x⁸T0 Z /&>1*Hߗw2|5^"Ϝ0?L/ Tf`L6lӨFG௄7Ϡ4QATq',q(D9WYL_2J3Wpy \)+E¢T6U委PY#Q;J4TJ9}#Ϝ/M?v@*0ƍtd%d_+B21D/\tKd@u(,O VC-G~vQB.8Y"أ>P^|ϲV E1]é2rtVQC4P+`\F[d{8rf>/_~ iW6CLz^=`)Wƅmrk lXo1PRzi\r5DM!k`<.|B p|a@s=ر=0WPްzd|+I|򲏾p]:dm} W g񽬊Ӗq~@ Ԣ&6];:XGGICﮒgp4zlDo};x~~٧U>_, ӳTC}yeNyS<11%~X}">;IW/ ˓T<&.cgCTS<%;?##3w0k / /Hor?MG @iğ a_tDŽ˳;W~z(smS |sA>E+i!Ox(F˴߂g1!_aCX֬3B%Xǚa`,k"wMpFh"]3FBf?}D◳o%r/%2rCX?ѿF2/' rwG9|?%">Bؿ~*!QJ3Jrwqi'#Tİ>qƽܫ^=};}'p1w18 zP#8Rիʬz[=2*wbMjE2FpFSŌU ~2*IJ; QTxsmU Jm4׫bB.h`_;9L#!`&ls XїR X,WpA \(.0uR}l;ev8q ` v^W# Ik r&h!8BP8Gpi'1O,}#mnO }v+d1bU(HW 8LvtG^X 7Ihk-1𤀷ooq |q{ l8Np~?@A'|c8'=Ki$}L!dQUĕ6OԘj#Pmt Fꈝi,o`}8/>h7\݃E&a Z6PnJVG&7+)ix8WmXbLs>q%qv.s(.}Z]w% sSs!Un#YJe_N_ jju_@֑G8_5TvHEC0=j[%lӆ&sO ~ٽ06WK!TkEN ؆/?^&|;SĝI{ mg+W*> mWWk? g{_OW:s3$o2(qpQ:mTc$s".کE3(.~!6vO&cq]GOCJ|~BCheQO9)ҹx+Ρ;D88¶}[Ĺ >I Jvmu)L{\F{\FAXe=ժ}k[W!7?T-oiW?P2y+Ko5 q1,W--s9K+'/E KE-qFqnSqJq.poKD/_ C$[ [._{חDp[6!'GfZuyQJm^Ȑ3 |sK9$_<0R.ZFEyxޒ>:<CtҾWˤyJ3I'nqSҼi,L*> }_i˸e+ڑDƑ7Pδm1VDjmʹ$a<ГH• [igU d*]oҋ4fM`2ܲCCovf^;Ěeޢkgݛnו~[uGMcfۓVwcw)cy57/м8^ VbyiwNK WEaeݚ.=0ic2jic G15>uO}[R6/^:4]|~$z~^ᷘ52O9Sl-k~osTk+=͟_nƻQӣ%;sp&}~ W[_lm2}P 13<ˬ-qet/eg]'𯉡xaBw]> |tޯz8*O!r*XWyhU:=SK=;?._ ξ},w } DVB|_Y>!>2k~Vt9+9G:+ӎ-I\|tu5A<{~ UOa?0ZgXزlg,vz0<.{d gƝZt_cQ~NixT{?~=9A2NlWz0(݆z!$ztj& î#>>FxXBxbdI4qkׁ=x-:bv7`26׽>r&UFÙ~z;y6~/6m84zǽ:*37Q1 u3s@7RN$)97e}ƨ:It?yl!g?1>q(xzx*y2]'õ`<J#ɭ0VnQ{p{=Ï٬s<@c3ul]`5eY~cT)azh/d݊te!5s " fxڹ -ǯ!ΕvPBE%گ$˯t$.b@8:zdq4B?+YTH2DI!c|)7¹`ZB)`|➿a k6Ɗomχ032r]ҫK2Σx?&rKXzKs`>ĥ?f3(O`YYƯ߮gSهK9'O91}7{d{\śP%Ṡ\rA,}9e%ө_MR~e/sYAeu~JNJy+S*;*:yL`p^Cג:NgpPE"yq Jez]2z|rWK/.ued|9~_o'(l=km"w9MnOBVr/&tr %g|]2ztn#w;2r/񃗑 w=x)|oaƵyck +b,amGɽ;8kYk|Nᅗ =LJ3#ݫ}HW/4:r{O N?Dn\[6z܂#1X _&Ͻ^֘.{c HQ6eXgt 䶥'h]m){3scyyӽ܎t,ztܣKH]BضwO@d{(omtۻ6$?;r3ch p&N*ǣzPp4^Cbnye/`?g(1Ƴ>z% =̺/q/f}9C | Y;Bu7[@TSzm} O YNL!|B@%h\DѮ1?{`U _ԝ,DV:^J;ɽMݚΝL_C]~?}6gbo9sVۘ1Dg'D YDi`6,n'|cqXC8 X:A8Hb9?8ǟ)h~@QO%^1dsDȤ"12`Qiݢ++1udH ,<k,CjhSWZR]"x KDq!1'^<; `/ Xöha!s#9%М`?os$L| 8Z9^u&_fG$Ϋd`q}sQ ,ᏱЪ0y|aQc锗DIНD8y7~l<ǃgIx%g/X|c@O,!5bǨyJ""H WOlF7׺;ME1|%cUAtĸ ϣx r 6;#._?;ĭ&k',}/N+ƨN5&3 Yuq)jl)b^=,-$>w6K )zd (?_A-x[W@r=]`8-[%RȖ[DibrJ.`f0`\s'x ,$Xs>O0I fj#%X'@Vz M6l/Kp_N|T,#ة`?5 ВL FNAI%2lx8n'; ^.enQp{pJU_Re~@P |y>O >-|s>*)+ o$w] QS? '?,M #B/?_ :ow~!4%?APg/EF0N Fo,h~2,;w@++ FE~_e,t%PZzn*kܕ`^Oa|k,\ 1.;p-;hM`2ҜEi 8J'c<iYv>|/N֟}Tψ3!/~ V eҺ:T,0幙ZC!^ $V?R_&(8#^εNng y(sI^rOnEל/Stl.sKTo'QS˅ ~|vɤ0L% ׻ ^>?N y*\/T4QaqQ㿆Aطa| BR1)y‘Ѯ'ڛ꼶݅] MgSfsnRpY^ׯC킈Kh+Z_oCvt:6tsZ΀&v:~ؙl@D d9[Jo.yfxor2ďLO_7 !` 'sGq16.K ~JTFi^ 3es%nq}Agi)8/~@/}ن"]MK)i 㪆|I2 ?7?Q>\ 15|\S\y;-hu(:\1,u|=4NeZ8;`O,InʀMGsN4;M/ Qڟq[;6@|Hj kĖ( .7A=f"'2;+Caea6;dmDd%T.v[rh㵎}l|owz~Po7lRs3⛛7nzsg #eab_|g1v*ńWemڿf; >*=Orw4i Do o_AId4|Vfߺ]ݭ;z 텎BgoA:vq]/«NC׽K|ّB%__1VJk1t|~L◓O6׾4d: +恹h&@x:e>@Zq|'?k|6\&Q.a~ȭ'8܉Ow2gF.K$~"7 EHo =ǧ,7WL3yt䦧\hBtAEi-hв, /y_ !GIR&kK~I~=Y,JXbe?+Js4gY9POl<6y%ww9]5-a!.Z`sL H ŁLY+(X}'BxSHS j(rǐj!T w1uDOŁLų2Mg"j#d X/ø8±9i#Ds!zmR*RFܮR3/D58jϒNDw ҵD)(|/$5XDsi_f:}"ꮩ0R-D;O+AR(5ֲ"]X:r|f{v.5UӝRU3%u0)W1O #_J{Tx*ŔSƀ.@ە/ 2Хݬ?S:NHw</XR#x?tzmUFKz&K$|S.M;ȅ+WMiث9.%(k\Ԍp 5e%{5p<#ƙ6|6Q`̣G<}~\˼7g{eh1Bȃ{z\mlXYD7e.Z ahϓDKȔT5؞$J`?M,0)C ],"ABRKķr \]*_N2}+_A'yP?{s`[,0w{@*)jr@tQu_k:}>k!U<#HO^t>"=6_& 2t*7qtп.\znc$>F-GӑW)_]GR~7=JY=o lyIh܋JfHA-AyA,t8#2W +Ҟ=<&o#?vrѲA郬̕}B2YtrbeGk w oOM?I߿E}a+!,^6] V"Vt}߲8hRT"rU,3UO@{?Q| L`.7c`ˌq)؜>de2xˍL2d)!/=ːD/cp @^$`ę` rZ)X`u 6l% `ú8\Jpi ]v;Lc W\\Hp@A( 0A3AhQp,npcJ肨.)fSn}+Dik8Lw MpƿW-1P4jk>' ?O:`(c2<Y D8A1~-]'[ ~C/F ?)~+&c⎵K;q}k2y`bުdm%֬x5vj +M Yu 5L81 6%1fmf>4M9m(_;E8m53h&:?fzbY ZiJ$f@"CF, fAhu:du6e.iG/5f:N m:֚{Da2PMuOgV iQm E 4_^A^edW[1@=RkY)ƒ`xIw;q`>,^h~|XgzT=b!"0`?JT~q&8M`9BGn[hbLB6N,?8|= I,rg홏>RkEb#"l%l!G]}>׹Q->ڢPc&@ `b^ocZ8@Mwě7IUċL]9 IV ]&7Q/ǻ@3 >]Cpq 㺶NϪq6QhV\Lت@Y_bNj3ڌsj3f'HoCW+H# ᣇjw eic`*ZaXWQ~y, rpe!>c":u‘IEwXߡ-eŰrJyO_%_At. :8=CPR !"_ُRdp[W[dE;a{F">}J=J}Z>%ei}YՁa߄1i0~1osς?V~=+'(_$KR>`߿Jgsi_Kh΅TџSO}L41Ouv*d'N)j y&&/8/R +,f#44aYAic3]J;W]8cť툜+W\qўB~~wsgkW|QQɷvÛv%s'{ m=+_hے䦔*2MQJn,=ܛ.;ܝH"mE4|˩|khޅqrnlZg_f\Xg2sᖓ'ێ4T[gXoikoϷR躹'I 0xrS&%&F3:|gm!.7fi iMʳ*Gށ&Ii:2IX&u#qe7ejH?]^:gFS)!ITs|GWk=̦zmc^됦[`P cfڱm! cUH-HeYg@Oׁ=|W_|4Ffw7@|&1|#8ak_~x@qSB73\/-2f|:]]G x8ntum7,4&ďGI=K8ҷmH_߀W7.sWHʏz1~vz˴VR6d@`W=w_Hl2)~ӷz 婋{"{MtUf@/~f}f8UMvwbwb\3--kt^o u^@"s<*Mi#RO 6Dʇ܂p0rsFl>?Nf-&3\?h5,zzIw19_iN=l7˂]9\7/*Gʞ^Axa-]3@gKcPB)L>'Yw/#j:FKk!P [Sc<Kf?8?"Fޣ}q.xo,Wn|`^+qpx=W>'RZ,UZn >yl4*!fWdEgj /mOu0?=cN_i$'ieb,|KrfCe4 ,e'鞸9y+τl`& ?rtщ51Ssʜ~d/wct Z6z0P-* hx`aA_EUkpm4˧Z'G ~Ѳ(-vPs]aVJğ՘0_Vi\^Q+Io)DtB!;JN;j]pWH'A89B΃*B}rf)˟㮔VĀe.>ۉ+]N2Q_I*?o8d5(gH!Bg gY@3Lsr `/`aJ8$/\-H``6&߹践l-1-8XW\`WpU'V) 8v}K GVL׭c p,(w@N@iWD#eMNĕ2Iަvw*!XWWt*oōA]xTk#x@Z `ټIo$xRx &=%S{@% < >h(8'7i gPč%8p.@` UaF@hf$Ԑ; &BhАT`J8 <ҟG< x9f=7':lL<)?8@}ס_{&{LII/LtfxWii+/qmmMFSSLDfkJ[yP&h}oaHvDrRzogwqx(ge'NV+1x?K۠Q{?f_gNӔ.U,g쇸IHl=^@sK!Wx 4dq7D6|AX_7^oϕYE2~+J߽/'9]sd Rb }!Cɻ7]+~LaqNp6ya)ß2 O,}f u{èQsu*E ?+ʖBoY ɖTڵn{\ ?/$'?`@v1|HomG D^!ZnIX2\ 3Ҙ码3|AZ . m-*\Lsf3a0ޡX'+L"wO #Z"13p q3pgzr_gsXOπ 3t‡Ρx)-46\ RDf;1ҜK 7?-xINK|--#DQG|((cܛ>3Do/}[)rg{BCX_@EuDc6z.#vHWXtE_?tE:]guN":jOf6v:峔1poH@oٹZjl2vtYtz{&D>߫OßOoS/Tf~t'~_ľкBNà\_LʗC>j|˿Q=6׹_eSlيoXq]]#r=x€QgVnmnX|b؇9ٗࠫ;b҉3U<3Qrl  W9#~t ,1Y&Z%2e蠧B b:ꍷ|BqLg2d+W 6]vKW*ruοoΦIrfF Z)MqS/jۦRË5`Ū>PGz <_-3|O! %Yj"KPm.4 K$~U.aH]5pTIU>$mNZ{ r&zU._j36,gb:ZP=J7ZyS` (o6rzU#躦C,fh%/ELzZ@^谬!Y ?2nH!Ik˝!MRwh\ LI="o:HgkC )zJBȼ; 5o'zMꡜSML/훳!^zgiۀRh"%.YXL72M%TN}:.H 5kp2SavL[s._SE-$:ϨK P#`t 9ج1tM*ag\Mc:A`*g J{FKc\Iam S>6 `>8&kd]ŸՆF!ſom#SheO0Ȓ'@*yC NE]lD̲@07TZ@fRu pUk4;A.6&/={~ b7OJgg>p:Y!BN[}K&XD|'XAXn^VEiϣ>K! T ej8< DlŸBq=ǒ.fNW<\)xyg9^T SϤ}{ҴSaMWmgL㖳ڶ!hKWm Ftɲ6DswOaGsow,䜰?لRjf᳦.N<"4 i*Fa]?掞ub+K,ӷVך|\vCrT>|MHS[GjH qwCCn?w7E<*wfwkto ͛ȼ x4K&Fgw~7窼Pb̛:asEq1cm!P)@o9kQ\.mJ`|=-dF HS[ fhyc%gfl,lH?B# 7kR3VGy/D6i# Gnll9«qw,2.WjVD&@U,%i#F|s^ЖZ :W:wMªqW T 9P‚-&m v}QKa)!2#?eǏdz ұJS @˴ZFʃk7j0 ) 80U@ w&xV_ @MIc#ɶ4~$X;# : Ʀ+<5Fʱ_.B8r3]}-@YMib56n:Ʃ1rKK.j [}s[mg]aCf9^ԁRk<⏛"PtF9mGR{# ϏNZMu?C{!(*\\nV%.xd(O╏?2z[KJatX?V5Gn2% wN.\^d rMS:,?p"I'J4'ٕwa.`@B=N7Q@t6ՑK󻦳%u<ȝCY#S (n;n<ӴE.&e.'w+]Э7]0w [ m!eEuWFXG9]8[h&j-Z?uSqmgn?Tja-rbsW;ʮG{ [ V{K^&Uvk!)twi<掶SF{m mGz7w>*mG`wVCa=auPF!ILz%&cNF"W)C)~+M0F7߂w)ȕ0LSn界SaӨܴu7sKUunU!U&rbo 旵vyEe.RppK~~$oS_5g8Լ*޾c+;:#Eݪrf$#-8HǍ>`)IgV-bXςuY 5C~%7y3u3@VZA!Nљ@hI\ a0U_\"F__B4 '3gѷi5ym,\:MR"l[JWR'L+&TΖZ3c.+p4Wtt^wϣBMnALaXctb_FoBGmXy5 e9ŸGGETpFz=k!Tx0X%4y+ 8z3Xo Z40Q@zTc3 f #'+K6\P 6K6YT>yvf pYoI%-9}Q;՝ZfYvqcg9uН8v¼"aW&î(.[ oY= Y{~փ!gͷbU‡r`ȶ%U.Z?@E<,+]6H?X@>0s ǁXҁVO _*•=4r_Kc  t6=U;L{ؗn^hS7رa=D`烹g2U 8/)/1A_fҋ̫82Sq ko.6iR]0 ta8S-ۺ[wPMk۠>j-O)cm,^L`j QKN?Â6:=*]/4U:\z/UbtZQ=V:IrLPA3(,of^Q0qħs9Z_Bޏ{ ;!BF5u6uXSQZv-ðuD/38c(s"_ُRdp[W[dE;a{F">}J=J}Z>%ei}YՁa߄1i yRy׬}˸!Mfl=]֮ѣ1Qɷvw49=?D6L?Ӻ)-In $iA. -{7 N7wm,H[QFm=Ł5r*Z8|wa\?y3:|+W;٬ \#ͽ*V%[-;n. o6dw6FڲesOi\㦣/.ҹMG_\{qڽ\^*2w.ΣҴ:"I =C)@|-Ȉ }tǛM$Sdb҉11Ýz|t^pzωK ==BsNu/4R_1AT;yU3UKJ[2vqQ/ܿ19P $~K qφj\fyEw~>ۏ)"G$ GM,o|i-咽R77_{}?)]i-*-NoIXYӨ$RSNISMe~ ~-{߆Ƽy81vW9N9/rz˙iJG;3}4ԗA{_?̄7Y9d:ɘ9el?^Ӽt<'8݅V"k-N5׆l"?V9v=a^T||rr-hG e<܅qJ3?Wi,3ϣU}P-3|'$a>M9a<q|y5Οq~s4_E~T⎢c$FWY?8\A֒>=!\Q*u*EOeH:ZΛC'_uO[ނPMbg6~ , ״n{`^忋;7aJU<[u7:{)-݅"m7G:o.t+t)Z=FhatΖiч"I4݌sǣ 774>([I=NoJW` =<ο?d1_џU C^\?/qӏ~j w+c’ *$8ΰ|`\s=#]k|Ѷ8f|:Z:}8>VR/à_xSEULG;QwcK$=h=ڐ4JO?*hm%ה3*&W DHM֑KɝJnYҡ]X*7lh=^: PHº_ &q>#GE?~~ /1=ſ;x9ٚΎ5pHE1T lV15UۖHQ1E:(*A8-d: B-`BnihknWGwk-mxG(UGV zwʥ"bMn!d~nK$].%Sz6!ܺ-H«pۤ·) 6]n`ZV 9Oq0.vt0+n6~o;j|Ӣ,oIj!2dkXZc~X\t1-0ͻ%(gR$)Ka?A獮?=-]ߤg;7Ӎi.Je/k۞lSu hM&9&~͏i>$c[Oh| n<ʣeR 黌?Yh_Ŀ2Nl56_Ͷ-vdzU2tT?P5q|0=&t9-,セ[whU^ȟ[#O׶y:s>}-wyEJŧo9˟{$>m_ ak!:/AC|\6lxM!);< PG8rkwY#8A+%Nk/8jr_.N_2gV&Bh Qc ( g5# U01>.PzgC6@dt/cٕzr/rLooD" o@ب8OȇUb| !KRFy26>e-S/(=\.(*7& ??3?Fm3Y\{B◻\6tm.|p_H6'G ~Y${3r_˹>`xK w P5MkӠWʘz3_< 24]se,,NC.k yD/#t&RM*|>Iv)b'4ƀϼM0Bs̋2a)aSZ.640FS~l%/ \)`O\-N>CqtV h '8*2{o7J㬯'!_0w.%X/Fl+` 9~B[~k]fy""IM.Y؇ (m܇h$~Z񝬵ӥSWS"zj3#f:e^׏8|yW$ qNC?Dx0pϠ+&MFi@,w@l{ޮy2dx|I>9u*En,ʝnݯ}Gu?㗋K`r'ޯᎻ_ym$^ԥk# rmT+` YvYsAY{`cmf $[>ޣ{;m}϶'<{B\2Ϗ'pQ2~q%]-Q9"d(`ΉcK8ܮ°<) k},k #G`/ 9Z5iWs}smj^5TJ7QsRt̛ZoA{K0/>߹]T:@\E^SNϕ}emNj9dv;s&sưl˃n_X3\_@XxQ·[z,%p&E%yO8r \* $B6o嵷uxdW;N6{onnok kHhɱPmvߠy#mwWKyVxO9V`H:MƜb`;Jqw1%!pF6ݴqxux5qxuxuxux53 ۭۭgnuKM )UbQ%.U4c-66s &`.$͸kôY"Zֽ?(0 0EZ;OCdIkЅ',K1޵Vܨ'f^az*_Փ8Ӌ!/_. [+/WO}[9ϔUv0&ࠣm's% OY? ÇÇ/!kña0ltalvðC@k3FaF-u |F6:h4ÇF F!}=ǷƏL5ltp.aFkeaF(aFt)a0lt0VaLF{cP;oLufzkbm.nEsuQmmmm.w_[?1:k\owsO/ǭ. ق9]r;.1HFj<ZviZV~K/]Gbk;6VޱMdh$sX^{a9G=Qe:>{_UtGߥQUwUgQ:3_._/̡qi4*4F-c:Tb:0՗(:Fp 0‹˙>oi 5@G/ac8ĴdK{6Q_ˍ [zf *q[ꕿA%prѷ(lrKRKJ4It,KYA0 6l7s(dcg:}Cy6K͡oķmHs:pNurynx+(*rϣ+E|BFq4E^ h(׽խ*1 F&oH[(B(m <xq}: Z@yD9_A$y%4wA*oj*fDhx*kuug<(1HK?EO iU8X+*V*ã,6Un7>+)Nyu*v t;E'(n{IŴcTњkJtn+JJwwBX"w2A_C%z$z z﵊ߤzu2A*>yXC5yD`;XzZTHOxB7+zo_o|[S Mc~Z|C+G2z($~qCSc[/4> ~XQ#!}}4%#Bޗ7RrF5.ñn} u[ XCNjfSHOs69Ժ^a8\'lk16nrsʶ6&-iP|8M T-7$#%֔0GX}k6Y.u~<9ޮ%k{i\//+K~hWu8r#v-zwO[:=ӨF2MKMb{[^ӟlOcň+Ous|_3|1y;Y$o3M+l.>f9d_њSS>ǝJ4IN_Wz^2t[mfG+#{u2vfMZV6F/"|^04Zj4sOh<6 \e`x]5"c4OJwW9 ?GZv:K49Otapɷ-,|טuf^ \gO?kݟ^dRdO:alx[ fx^ޢja#8 d9yƴ6'lC&~JIJkFl3 iҳ{;]bޞ/Ŀct2_ѩ|FZw:I piӝ: 1ʄfE:|~TW9҇2Nnq$)c!c~3mPr(庐uQ  JíLwg?'cɹU◺UUX!R_j!{BFK[n3q`yAwѼd'{r q raȂ&.a_ dĸ`vI:& 0}9.ICǣ~e>_;͙`Ϸm |GĿ9`޵+?Ox-Â7pcC8zr0K5=/_ ]WSz r(mYFJ. cR߿4ksZ]KgrmEbg瑻ܵ>Tk w=ݍpFhSG3 D~|$/eL^DnS?ѿF2/!Rrq?~-n')KD}ӿ~J!JYǧnie svGjr{{?]%w7V_G.q߆b nScpˎrXCBAHWiztE{/5WĚԺjWQsŌeUe\:v> 2hxԌ3<̹*TE@m4דPB.% ~0`) %`>4/ XDXXAX8WJ%8OH˧ hH6CN[ .U .%. p%.~ jv\Mp }N@d0!M?,HpTב.Xt !8.['ňpS Wxm1pWqn G}H xaGG"o#༽#@[|[O[{D~m*F&y|1>O 341i\Ϟ#x1x(x@Z9\i|TQTk cW (;vqnEo aa;5xWWp^phc:0[p^TZ Ia<%R|ih8WmXbO\%|:n]C4v4 iSZ}-m-ܮKyf }q[. : ɿɿKتF?۪f[לo)J [K.U|bPWSU U:= dHWl}tl)DzN{%a-P/s%?s*0/B`Ɨ_zrc)"AN0\0]_E&^^+by}ɗoޠtkcFArH|y񄗥BoGl6!Q-6޶̹9wکJ)-w ɿl=1嘛3yR<=P'Ina-` &BQO|n#rs(.ΩmA8wpngcy7S`lu*~=a.TFwܼ)}.}`,U=^(oVFox_ !Q} IՋJ:oybQ#-t8߷料LH:oN!%#~7QU3xN G͵}{ 0] _zÄc3G{{{P'Ǖ@xöiDn[*g{.Og17@}<%9g s"||/Q~@/cP?IW&/)WE.C4F4V:~o7 ?8pp ~}g}Qo7("EM 9k)=LRN vuBW=WQ?_B!Kr_&p_ *u++!yO_'cR~îww̸_v9GOCQ3f\ {K?R;;~γ\zzlv} @_6Smw}]]}'[9c'sqp>%6d?J.vݎz?>-/ӑ Av"pR6w$E>PD}8߬K6.Yʴ܎Of[쿤ub8u٥WԄ{ e qʡ?)u(Gkl(kxmwA=jO:{[0ʕwj +MU6h?*[?ߎ{*>VҺf(,͢-loB=7)ۙkkb*I簯ڤe-yW/\ N= SfYT{R;-en9Gҷ"j b܎{ܼ[R7I}i#n^"cI,}CVNMR..e\겕]?D(qgaaW Djæ-8a<ӓu•k!]igU34f `%eu1I=LN_lMWek~Y&u?l?вk;Ojmԫ,׻eyh14XD}ZV(WOqeZvw1x51JKK5>qO}̭kt+uנR.rDѽ:;`pc|# <Vm@0tZޛڀ_`Ӓlwc`"HAA[=ۇODa; Iwj~_HG5+|?}ږi%OK>ߑn+]Xz俆]J I[L]Kr$} TM\ⱋdc"ɍn 7k=dWyv7`WDS'ffCn 9`[=8 J0_>cm2{IaaIaogL ŹI~(˓jk Q?%K8c濢Wc-z,̀DJrOT: sy 녴Eu׷|m#9ۤl(> 1\ J#?FeYv{; L#;8|u~>\j~hrqma!h?.Ns dPI..Π^+u8&Wºqs>,) y򿭟'wʢNu:OAd7u]=f]W7)`p#:o:aXkH wvJ9gPN7Ow?ܹR?~?χUTK#+dA|_f*]FxbXSu|ML^LA̖߽ף{r/#o#?xRr/÷C&/l\['zct:Sċ+n=xlCl6jSv1;}e W}zrD~Eɽڗ;87@Y3z9bE9,3`bn= 01~FrJFJRG>v{Q?frO: V?)ezUNWIL[ɽMέEq|/ow@]gr6qc0sA3x`63,N>8oL8{Q|yu1tΏ2#Smh9(c(r)9FOFOjNϐc +' !WZ7J;_ ,>iI1SU=n/zui|`+pn;tuc4'Me]Ȗt$Rw؏y&r= IGd. e yxflpuc,Z)`NP,)&dlx- Oq9Nɽ #=H;/9M!$s ~2\G1*E~WR?F?` CpB(0gs_t'Q^Aw,ȋ<,=ƟE >g^L|yHI1)72~2W#(!5O)(75(tKe$'6 we<ָ&FTP}p]Q;M_<#=yS"Y^7yXf}2ќ< bB/XaUaPY\OSSFM|Xw%Bh@tz~֗r{.G/g*F56 WeP߫A]º6V JΕ+Ƚ3Qd\?9a9_y{ډ$S)lA\ak0Ϸy >@Zkkv22jôbjScR2Zs2UQI@GYZ,pXf!r?CPK*=ts}D-!i*yBH$S0` f.`-`\O`U f*#!X+@_#`z#6 rLk/!T\^"EpW\#`wn1t V6vJ zp;逛Nѭ7 Q@/ nsX7Ap(ӽ@K vMp{K +1qap$xr#9xt:s<{GM#'`yInQ4CFJq{|$= q_4|"3x^|O|!,+ /eBV$owCF?|O/E5~$'EO ~?mO/ E _&MZW ~8-ML xoAU տk8yj#p*@ o@++ RiXrFwB~]a;(q{u7i(pmk,L׻8?p~ײÈX0T9d@Z5G|È<t4P\",BwYB{>tH^Os.^GOSy@p׶5Jtc3k6Oa$BrBD>9"|L0;oOI'KrQ/*=a{HeD{9؈V%< ['(lh]@6fo<)6D2p9m fccyx$XvQy\!dF }awS5"O:k_.&F;@ ɒ%5},C#wdi8N Q\+%Q$:QNNEל7*:aέs UO͛([)7SoaNzs{#dYn]|a^(]7o?pW5o5ׇ7ܷ۰N>ࠧp2V8oOhyA8Q~n=.ޙ߻{7Yx?!¸=㚇-Xr|n! l,`\]3{P{g%-]l]mkw^q1*ΦsYN\MvWoW /~:Ch5~tHۦY꬇`[U0 ` `_wgs˾#-Ls+Z!m? ~\fi7Yv>W1ۭ5`5׎BL7p4.S(㖿A f_E{>DO (Iޫz&Qq[]_YZ~K_P/S-})+ax j/$B1DU~ψΟ+Qnݑ#u7WUna8v 8Z+`9Jz~C{8;CbH O﫜qnMkc#:m6" _ڟ8,Ct%vCeӢ1r. ن/L܆pP~ݦͰ@Vv ;iN&3r }>1E708 ֆk0gi2z1yx)Ї' ג[G(?>x0b4cp8};%|_<&"wL#_?"Ä?AP>_KW:IU甊Cq|y&,w!\& wBX`6^'3)\M1djĝ8y=D8E FB=KD8#~LgXS(L Q/ϵxDσkqjpu4WfQ`>Y>Q%Bc4D@˧r-Č ary]1ւ"`'ɻٟT&̈\ΎYLRpNaB DXQ;k\"׹.×+_=~GC! ]^PX%[Ej(jF4פ GH}^AH#Oj ~5Խ3K9oby sN蕛(:_L/A=X1VOsh?h:PɢRqk|גvM/JY='Œ=BDipr/ w3CoRʏ+tMC=[~sz烕g&a'}5vP٠Bڿԕ} Aae ;5b7<|߲Rr/N7t}-rM_xtW&X]䪇 X])U?*AzZp*Ub:Cz]+#%'ϐ*6_ rcP  "rQp->IX&cr#?^n0JD(\L0%! e2dLg6\A1 o0G\T0A׏i `=-<*Xkz)`ú8\DpiRp)2 3\Ep p.{!o\,4E#zGB;nЙp\I(4ASp3Fn#V&w;Nw7FGӼO4 7 xkNyw@c:< i D8Aa {d6QFfBᏋߊH툴C%8µsz0O0ުJ|# f|(sH*lqcmL3qǤ:0OYJ3qwSܜ:KMxg o$T7EMUx47g*,vo;GxPX7拰WKP9 EYFzsOtuYXE4V \XC4:0Ob]kuͥ?CF6$ZcWB0E>mffNrvt1kq纍iU~[q4 *:N6?"5DENn v+y{cn[K]_.ǟ"aq q O0wt_tQvJ!NWN!q?Nxb:n:RtF}[F hb5e}Q*3a w.پ#TwFO]+ȃ, V x*:?HAumflv6$k۔_pEuoʔ~Xl6BJ 7ɝ.;kA+?+ɐdp׏-=Ҏ>iGM_GKQEK4nus[N57>ё Ty9ܣȟ#yT" n?3Ia^ `Wپ ccA̔$nF,<8+ I0~JwNw¿w~5`>~J/n~#}pJgzT=b/C`E` [^b*}N3Fi+80=/2E1dz4b `FwH~8| SɝO ='q\JU3ࠈ7Qm{/u&*!AۢCPc@`b^Ǥ o7o$4|G$^ on޺`ջDoMyV`G 4#q\*Xj .m16p>6+Gl%p\mFڌsj3[cf$̈́պ&tIo!ukqisC"`h$o&] jn;`DςC:hG=\Aw~C ?F[Hqrq#bRrrW KJcӔ~5 ;1yDsŭq֋ ) COx-Yȼd1E`Zy1ђGw4c*VB4 ܇2Peڮʴ3Ghi*S쫺e} (3B+J'I7d| DB2,x"L{Fo#^!AەQ;>ʥ{^.Qu$=oB4%S`) ѸA2}d8t.͝Jg(ӧHOLw0@=X|6I/R>D ˔/?3(jD_Edz5~%5Fs6U+'>U71Otv*d'N]((X4LM"]p^.dX{.`1 NB摥m ];SθUW xtf;;[BrIv;/l[+4~ԅIژp?XWGSw5(pSw6 ?}Ǖ_qQn|;G0ޚ:>{mklv7vys:;sY-] ;/iԝM]H7IG]pe#=-f4ҜQsWcn`i?p){{N^&K*dpz;:~KW;]lj }|;WL_CsKKlN˭dzMQSGt$Rқa3W46fL?O,~"HXE BS.t2ۡ * ID疈9PG=W2O\nض4_`Z/mq;v>Ď,I=rBK!nF#@$r" 71+ؗV:UvQf.y;-Sn&m4BD5omoʶac^됦[ ʠO cfұm<סcWΑpʲNQ|;k]ggD>Tcd~w=Dyo7?.2nv|iL-2vzu;5dxP<7nwc=16C~R_ڱ%9GIxmHE]߀.$o\얯*a_h#ɕcAf/:Zb0,^Vw5e6<Dt[mּ_nmF-ޯnWi6:J;?mӹ>3FUEMrEsĤtqykt֗@^ww/;QiN iM=&^Hy[?ҒOZFiΨ6m>ޫwGMQ|4t~, ]]B֦sNupZiI= , @gCˣQeeO|^`M=4S&J`fNW<c5!P _M gAGc|?6Yi͓*-;3L{!_=瀁PX}=1D2;$\پ?~3\Lb&BH}I'ߜzKOt`  `?zHuщ52SKi~`3c_|Z[Xow'hx`aA_UkpÆi K}<C w2ty`}v*"6cy҇n%W2`K&Q ;S%HsY 5ul5˘u{%9>N#tz %G'E.OHǂNgTB_BHԗ"K՗G}RZ/uye N\Bbrr@Rr~V$ُ%~y@)"$w-v &w }l935 ou׿ܧ58e 5v--)g&"=k-m w=瓋 Sy J۞6{˜~ m5 W!(zbc=s""_1A@/!CNu;,KY6.% rw{e+:>$.{vS`'N}<:Bk&JBSBܽ!4-ב?D°cOGArV[{Wn=v =ؑw =q7NpLoN3Rp>Va,ZRW| ̓^F@eaDZk !YΊ!e$3M0'! l Wu, XHHe1DB\뀵X Z6G&X-(X\`{ pe &F)w {w8F(|K G&(|?k[Yczi;*Rv&@6c@i{ #|L@AT$p$#&uxS7G) 荀[NwIFO)` oEAĝxHE[q[B )Gn!1<.x{ #ÞaaAH9RxJ@̓RxZJ <A T?|5[`L8/ù^U}. 3!3!`OƠ!]Ԁ9ҟI2 9f7"Z4l<#(?8@iT?NJz'+,|/+ Lh# qZ5q50ʔ.:?eڦ5lWVar(4ݜݚ7 |Wۣ@#2U@%~Nog! w=wQxge'6QUn~#Eף;ɾ$R/U Yө`g쇸“`zԏy'˧Tm/X @lj+\ dK,/x{ !kا'D9Tu[k, u`ݜ9(gT\8?@QuD_rL=buY(:风`&i5g|:b=^(t\8+)z_CA1 Nc@Qrq0FiX6:SN |Nt1+l 7_^HJ3N$]akxkSI_IěuSIiPgkw3d. ['x""0 o,#SȝJ(;lq#Eoo:,zoS|wW Q"Zj,cGWz?`gIxujˁ{;/B9 2aY"&;z /'2IO-;2lPt0Qs4LT1ye%fnh+EO6ߑ%dqC~‹80{V|Ƴ͂AW)F! G U}\QM'Q]$e|YL^oE<(gpb#A\g@Yx̏L $`0͇36%c98/ 7~ޞɷ~`H>Jl>G{ȷ-6{zlٽIbnH0LC>Pts~Xm<9 $\&?&M=}4I+f(JZU d,Ģ@1V=/گu?+~'Er6O>O4twW4Tیg/^7rb71Dϛ|ynk]y+&!624&! ?+%HH5+ ֿU%T`UʜF;mD}dςK9nXr'.IqaCg %pFN-$~Ҋwxn<4Q<+8+ٔnhi)A_Z%bW=z*l1 \>B0[a=HnH lb>t5`LǴQ0 ߸줰Z<ү%yq;k;D]Nicl稭:>cǗrj`oΎ+9~, wĂwCծ`ɗ!;%]f4:!;_靱'g ZmxƳSLL' G|ϣS@ ӫk\jO3̴$Ev(:IW |#j GV˝! yc&F `)>ay~4@߼78-!R/^+o')dA)~M{/(q`eۀ5K1ĈExK#Ӎ&ɗX%T4t0^>d,(NۉB3]o龻|!d| %iVB,`hT 9ca˶X&p8jCj 0`.ض``{WX@~*$ey@XkX37ޚ]ƸBVT@F}ĤUy!)>?἞̓-Hc YW@0>ɫNjꪓV6UM1- )yd콕mVF,A29(KG;,FuCC^WF2My .a';+b q8}t*I> *(J(fw;#,(-4qEO |5srOī}VD}NuBru}ޑtD1n96($ hnkl1K1Pitxg.N@ijߒT4R*;zY)^l!5:ږ㼤ҕ+q]A4N"M٣nA !H4f=x?GiٟpMRׂ[3~{i؏ZoB&2oBp$M%ٝM*/.o<&μiQ3*-g > !~gr wixadd@=iRq~67cv|T' (/5jv4v#كGt4vue(>jW [?i" ]y\(ژ|?06C͏5rŁlۼj!D)6X٦2|Z&gp+֪x iN?`#j qu!i-jC𣺑.P~vVgbiM|{^atuzUzr! }1 t7i\`75bJ.+SSYbytS:'Y=$ vb:M{:l:}yi ̳Zt5;"x-._z+_+_+*eױ :nN[4.sQO7TN>`{gg`w޾oDI\G;0F^qM3Wh?řvuBުCtl7dfR]'{@w5[[Np涣{٦71MHn8|Fg]뼲~f>v!]PΤmL{bJ|}M{XǛ'%τaz. =Q2.bSU2MiNF72N-Rqa渖KUeonU#E`Jbol< ]\8һt!ɧ &| :&߿j8eU}' nimݹmcd0ja[vU1lx:m%=&$a  h-@JvF`l MA|"cG9f긋A:Z3dº:dIlv%^l~|m6~k/7>-2 WD"(uS}DRG1_{XoєPU6 (24!Ƣb6-0DjNRƟ~7 hżu٥eW;li(A.Y[@b0W -{tlgYm{ĥ[];~;U$Z7FFJQfdi7fo?ObIت#GI#IdTByԩxTQU߲6wrUhWS: ZK4MYq qճ(YG#gQ:a9p8(lp7I䧞'yMa*OO#{;I'M4gS\`&s\ۣt;9B[A<Gw࿄$:Ӕ~5 $0<֊8N@qE H/~>]@f!&|C mw7]F{r:#wWm9C|wQ:EZs#de_)~,Fс\<{5x#s (mRufp;Va+n!ZuB r_Cv2mWeڙDe4ʴS)Uݎ>u/~nѯGN($ܔ>vw xqhޚKA0e{}oWzFYP+yϻ>Go w cҸh| L{ƃD~P.7CVB珀FaodcÔǷ9W=!1/$z 1{)!aO7$`)C~YdVrɜQ.%=|#ǧriC̓P>A2}d8t.͝Jg(ӧHOLw0@=X|6I/R>D ˔/?3ˉdj|\ oS=mwlwv.8o4LM"ݛNC.IJ7W`apV$.Nu AΟT ?qlG{gwSskWT.) {l~Zjn56Q'Ikc?yi?2_k=-Q7cǕڭ2wr{<J#mC6t/ty%|b|U DI\oƗՑA0,]ԭjl|@'Vv5ozaeI~.pJWzĂ`"gƨc;òF*7'MI\?\sp{ _Zpw/{ yRsq&4iڳn?;Ypw| Vwm$UtvSptЎwwɦ;gwu\R6GssOK*w3Px;y%fQ+؄ J )C %c_oφ^fyt p&ri(?׳hxnl`}u|k|_Ccq̗3{}9M9:( gdSɵxDg؟ h RX{o!%>XZ툡g;L'լ#NW1Wz2U}M7R TA~5O OI^!3uZ⪟/:=հ^/Yw+* kV1?Xqϧ s Eǣ" [\G}b,t&A,˙/E◪/g:{2>yYBbrr@Rr~V$ُ%~y@)"$w-v &w }l935 ou׿ܧ58e 5ӷxIn O.&hO&(m{HP؎ c-nQN]SCPX(z(V?EE-D_)cvZ*e^Be!2"vr/Y.z)W+CXѩF d2|w2S>q א'L􅲧ąr-{C3i$[b #wV-=H?j;߭ǎ;z"z )txE8lKgY[pFgow_Wj)J^Y%D>3O*z%i@g0q {ZE JвEdSt&g !`. X@`%b`뀵X V)D96 PV\\`{ pe &F)w {wm$8 G&H׭1p4)LU a1 ˴=t `?& l{N8{&R7)8EpspUopodvM# xx #xK$;Ha)C >O yS >O TY|O7< x^C9oP>ݏ8\G<Ŵ(Lq8C6*|$e)b+`VtĥVq V'UTs54Ty(/!K}j3~ azid`F( M`lO,6pFQ-@><m!0Z k0<ՑF_l,t<:y+A{UE+@l?xg }!WWߥJu?J% pq|IU𤅺MԸ҃2xP>!D>!WuI{l5r\lqJrUuDLsrd4t<@sD{# k ur/jPr:xa# 3`"OCHkpvx)62JUkH;?$[ՙn`Ԋlq7; 5W+̀'F'_:~Ի+q3dPl:ǫ<#xǾT׾[_Zo_m~1y˴^y>>|_@˞~8$wͧg v/]oE/)`}?nPt*~I~~TH**(o*V|V]f8C۹?k 5ߘ8+)p|3|x/_UTEx C9RO+O9UĮ9{wY.YqmʶN?ސlX}wo>绝{o&Qo~z 8DN/NLMo #+ 3Lvvv9W@{jD;-k`[OkSδ[lt/hJѵÌAlĊrHScwC ԡX&((^wU4.ɟ^2-˒˺凿㦟UT~7*]2|[W."gBWrc~hi&f[g !gO~&/OmOq_)y;;|F4y9_v}5{\ZqG?9UNP+PC`OA#cjMG=tIל0iՍ].@.GOqk!v/7{T\SVn{[y>tuwoVVI&'l`Ռ?>-3L׷ Mϝ;\c9|3,ㄬ)Y!sL Dฌ_̗:т>#@KY pJ U`t#ԥ&ebBtRڲ#oClS}nb[}$[,͍-[[Nnr|vq:-hlyPOULəyIOCMärV vY@median(Reaction)) ~ ., family=binomial) ## binomial, factor response fm2Bf <- update(fm2, factor(Reaction>median(Reaction)) ~ ., family=binomial) fm2P <- update(fm2, round(Reaction) ~ ., family=poisson) fm2G <- update(fm2, family=Gamma(link="log")) fm2NB <- update(fm2P, family=nbinom2) ## for testing sigma() against base R fm3 <- update(fm2, . ~ Days) fm3G <- update(fm3, family=Gamma(link="log")) fm3NB <- update(fm3, round(Reaction) ~ ., family=nbinom2) ## z-i model fm3ZIP <- update(fm2, round(Reaction) ~ ., family=poisson, ziformula=~(1|Subject)) ## separate-terms model fm2diag2 <- update(fm2, . ~ Days + (1| Subject)+ (0+Days|Subject)) ## model with two different grouping variables fmP <- glmmTMB(strength ~ cask + (1|batch) + (1|sample), data=Pastes) fm4 <- glmmTMB(Murder~Illiteracy+Population+Area+`HS Grad`, data=as.data.frame(state.x77), REML = TRUE) yb <- cbind(1:10,10) ddb <- data.frame(y=I(yb)) ddb <- within(ddb, { w <- rowSums(yb) prop <- y[,1]/w }) f1b <- glmmTMB(y ~ 1, family=binomial(), data=ddb) f2b <- glm (y ~ 1, family=binomial(), data=ddb) f3b <- glmmTMB(prop ~ 1, weights=w, family=binomial(), data=ddb) f4b <- glmmTMB(y[,1]/w ~ 1, weights=w, family=binomial(), data=ddb) save.image(file="models.rda", version=2) glmmTMB/inst/test_data/glmmTMB-test-funs.R0000644000176200001440000000024113614324717020053 0ustar liggesusers## remove leading/trailing white space, empty lines, multiple spaces squash_white <- function(x) { x <- gsub(" +"," ",trimws(x)) return(x[nchar(x)>0]) } glmmTMB/inst/test_data/oldfit.rds0000644000176200001440000002734713614324717016516 0ustar liggesusers= 3;;,.(p*LXRE{gzf[rEEb$^+xhM4F$&5Fs5h~_UW WUU^U'>WZ5 }|`t}[j|?QBw +eЄĚ6$9G5»sc%2=2di$|?/`T,E4L<ɧeMMz34Ĥ`+ U?d[S˘$-ȕ2![g6SxhfMĩ1ҜR1V%&w sp+Qpk+:XaE&&!iZO %y{ A,! P _"*vR0CkRZqNՁIw#QH$,f Ʊ!v-1k)rc-)(qZe9/P vD"N>7 VRd᣾I+ʥn]RfA\ V\E,8\6"oTJWM"V!_@U5sΩ/X/Xe0X\F3NJ1 ͋"ZD37rY2 .Uc#mϥN=8\h72\gDlhf1b2TP6r 6pk\#5#-oH&$-P̥;d-P,dԆ&[TV a)-@4{:TȶՋ׷FFҹbHWAr(Ia+ Ύx$XsjFC\Zk(Nb].d/aJY JG3D9].Z>ˌC]U-60< Krh- | א>d4Zǫ$7R:R )t'<< X@ĉ AyC(imQB|@Cq}#c/p0kmJ6a0 ͪGr:#B.+fy pr eY5VPjt'LjuC} IY hYaB+|/@?#^X \GvnKׁMڎ4CG7)_W)[A6y0j Ew9ors!;#[@qzR^4/~}pפ p؋"m> Q?ρm4/4ws4.4B#8wsh-N`!uzxd8 ZƳY"Uj爜xrX|Cznb=\{L͆52qc4DǧҔAVR%LzNv׳b"^#@9%yLZE q~2^[K %6?ӼK@Na H@ {50Ax.]LxDA@X jp",3qYgtm`MgQ{.U [(:4kh+y-f;<:k+r6y6'^*[# bN>71xG0WywGx,Pƪ e-RlLQﻠ%ߡl6mbZ0жC!po9ybGq3^#M'|߂0lv8b91)@6 VW3SP.m9aQ,҉^xLry蘔-ݰ8Xƌf xoC0a NHcFSJH\ѱ"AOʷ{݄ !Ruv?A]0Ae<WAo_J%]x` zGXAp&ဌOfZd-г*_[q"r)TaLb$ {`H@ T;%ԫ(-aŴG8,\ȗu8,H_ƭ^\V\rPV4icBy| dZ yp l %Oz!gϛ_v:Ķ(sG(gŒ_Ƅ9ufA*$#.\.[H ]@@)_PxXGN̯S.͈ [B3|fσg9]ǣv  m4XҦS6eqk4pR\%9f̂8j:Wc] 0LCRKR=;k:'!'rZ ah9\{Ci7(k}Uby0|D8y̻g'wOw!Qf"K)S 0\<"I&t};Yϛ6^u: u"nȩohYDl*DX?L bc!, Vu,Ҕ ysb^f(}k<;b}j8^ .#qtb9 Md#HŘLN`BM^k2c SNV?,$yh@_3x}nBHHZ]6W#لrΦ5x͒/_ws$0M %0\|LwQ>}eSL8 7 75 pɂvJ!?ˀ|By÷z5ZKnHǚ^\i oL*늳Zdu3)D p& +]+6pμLrNLxڦmLhVckj-X$Pltr iiFJ8&" G%gJzml};36C޺ӿ,v5ïtJoɋG)o]1hA4LJhMpI,\"o(C"x*6!Ƃ3aM*eCJќY4˅WOo{/~)6lWwذI[5-Al߼W7Pw؏$4П>ӊ 5lDv-L-wh6@ǺB۹R7//|Ko*'BZ M.vبh ?(orm T`P?##[%>zs78x5ȱQ{ GZA HDVXz;4;.&CJ0H΁I:d&Y'q堲 Z,^:1F$)c%Wߋ79ݺ z ՠݻi$pM-ˆ=Т ZA4aw^>)ս LjvO{rwշ!d+vŶ]`{gGC@uS 'XU9pRBYk]W9z̜''׷~t/_trs 7vݷ8{Ooo^+[_~Ϳ9 zêص'd~;뉆gy -W>ݰ=f,s[2葉ix8N t&>6>9?o}3;yEo{w |a[GկeE/vm-ި: Kꉮ\>y~'_[N} ƄGH|7/v7C[.#l/Te_6UmUҏ7,:范_ݰ曢?⥭w6ԲksOϻ|3qxu7>cAשt~Jz޲pIj'is}4egfDGlR|h'[1΋jyE2V*JTLNLy] 'ͭ3!g:YXߺN6Q(q$,~.$`i6awJ(/DQ@3z$ARWI6%9I,rZ15JHAF1ؒYreo^E;z+5Si/trN8ND:(^P[ڎIe紁?$# THy+fa7NuHl 4o=ή`9r$'#R 5EJ]8xI\!>fУv#8m ߱EsባxeMq1C{60xFw,ve|<.[ѳڽ3c`K02IpeRV))dW̖K#(;dke*MTz4ugzT`?`U&xL+̆F=ZsNn S Dj9fmQ(FkWI,@^{ז8 <⡼vً/zv9>WqCzF/Y18qo M2έ mrnkwU\`d?h':RBB0ǘv ۻ`t:)GZSA{Cb|B TFx;D_ B1F6 PҜ)F1LNh9 :k G>-gvUU$hz1aj>00x:0py$XxkSg  eDv0OdʁߞW';ox,Ԗ/E*arKU-aq9\suw õ ʥ6u>){!F@RROH]( uh:azB^Wzs 73<"̕ҿx$^͚\!9ZͥIO7RlRߵ ~%US4P-lƨCa:NRFIwRi%{D_ԸKzN$CtYDN@+d[X]A.N0OѧmKTfIȈ8OP*PGƱWJ>[;Zȶ{7D1 5̙2~*w]`Vޠ/sSQ;$lxbĈ0AyaFڨ )0&sij̐fAArկ' 5\\\2I[XĤVҾJaȐVۗyDS /Ss^۸ P^9X$dPmѦA/^1 ˝DDul CCu3䱭W $HFFwp9E9Wx;Yqŕ/П u!™Tu(fU:-zŘ{L| "*9bxRjgɋsrϖ]'AC1c_e~|g;1k:k=O 4NW~ 4{מXȁpj̏9op0F kO=wg~yX|(^qj#xw9G\=x$<>wNsazM Ñr[Ϟ.vͿ*x0vMZfҲAhj= ѭAV[kcXhs_옠TnR{fF$þNbjųƪ\jϑEEr&6^h )kZAurFA\MhyOŞ=d9/)9Bj~Q( J#Csq9|y 簨pTz=;  ٫`x0!K5V 'x0{ƃYqƃ ]'`Vx0F Ȫ`5Ӕj<xjkr4.p!#fԁNx&O_ '^$0gRQU)*Mǩ0Fec,I*h 4&8GlKp(3h> 7Q7=5Trm7 [ȴm'zzj?#i>Fbh)Qyӧ2աsxչlc-N ]g,`t!*8>(8rF.(qc.T* QS4d\@j??lR:X?.oҿaYYr"*ͲnWDhN0r!Ԗ&lv9_ʭ L8p*<9 BZ%8%;pXdZd2C_,bq"Oaدqqؓ.qƀ갩OT{GkYVDɒ<K:viy-:QYN3/VY3םijII(BS>>۞gΡO,ʭzk53eJo"XM(%H, eC7)$$_M%#9-ZI/tTlh,2s*,چ 55*ANֻT!:0&6y9 J4hFң[4ʵF\bSWŨi;zf9s]"@SasK~ ڞOIyxU<~=@뭑{TV:6&֥ ?ßn5ll}fCcp-fPXZ8VEŧcu8}}+^-+~bGɻ?<.[S[k'x~[ny|+VXhޣ'_U'?gEl#ǜ9ou$^~oK3I8;|?X]5?w,t~;b{BK7^󵃻ۗQq9e .1ٛ6%:_4^ O o?zShgpwh O1zG3zKh얍Go36nQ|pwiھ|Mǜ> RGʣWї_|đҖmwe^|F!G$di#אPQAjqqE0nͫʪʪJVb\Ng:AcdP_fY~lLQ p}ieHXO#ՠ~RAϮPKAOjto `>lr#6v_؞FV)`==9BF}xxi]%9uwiλj|c|-tQuըjT]5SjT7Nzj]5j] swAtB5{j`H50G50dW?G{;glmmTMB/inst/doc/0000755000176200001440000000000013616062000013265 5ustar liggesusersglmmTMB/inst/doc/sim.html0000644000176200001440000020017713616061734014767 0ustar liggesusers Simulate from a fitted glmmTMB model

Simulate from a fitted glmmTMB model

Mollie Brooks

2020-02-03

glmmTMB has the capability to simulate from a fitted model. These simulations resample random effects from their estimated distribution. In future versions of glmmTMB, it may be possible to condition on estimated random effects.

library(glmmTMB)
library(ggplot2); theme_set(theme_bw())

Fit a typical model:

data(Owls)
owls_nb1 <- glmmTMB(SiblingNegotiation ~ FoodTreatment*SexParent +
                             (1|Nest)+offset(log(BroodSize)),
                          family = nbinom1,
                          ziformula = ~1, data=Owls)

Then we can simulate from the fitted model with the simulate.glmmTMB function. It produces a list of simulated observation vectors, each of which is the same size as the original vector of observations. The default is to only simulate one vector (nsim=1) but we still return a list for consistency.

simo=simulate(owls_nb1, seed=1)
Simdat=Owls
Simdat$SiblingNegotiation=simo[[1]]
Simdat=transform(Simdat,  
            NegPerChick = SiblingNegotiation/BroodSize, 
            type="simulated")
Owls$type = "observed"  
Dat=rbind(Owls, Simdat) 

Then we can plot the simulated data against the observed data to check if they are similar.

ggplot(Dat,  aes(NegPerChick, colour=type))+geom_density()+facet_grid(FoodTreatment~SexParent)

glmmTMB/inst/doc/parallel.Rmd0000644000176200001440000000704413614324717015550 0ustar liggesusers--- title: "Parallel optimization using glmmTMB" author: "Nafis Sadat" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{parallel optimization} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- A new, experimental feature of `glmmTMB` is the ability to parallelize the optimization process. This vignette shows an example and timing of a simple model fit with and without parallelizing across threads. If your OS supports OpenMP parallelization and R was installed using OpenMP, `glmmTMB` will automatically pick up the OpenMP flags from R's `Makevars` and compile the C++ model with OpenMP support. If the flag is not available, then the model will be compiled with serial optimization only. ```{r setup, include=FALSE, message=FALSE} library(knitr) ``` Load packages: ```{r libs,message=FALSE} library(glmmTMB) set.seed(1) nt <- min(parallel::detectCores(),5) ``` Simulate a dataset with large `N`: ```{r simulate1} N <- 3e5 xdata <- rnorm(N, 1, 2) ydata <- 0.3 + 0.4*xdata + rnorm(N, 0, 0.25) ``` First, we fit the model serially. We can pass the number of parallelizing process we want using the `parallel` parameter in `glmmTMBcontrol`: ```{r fit1} system.time( model1 <- glmmTMB(formula = ydata ~ 1 + xdata, control = glmmTMBControl(parallel = 1)) ) ``` Now, we fit the same model using five threads (or as many as possible - `r nt` in this case): ```{r fit2} system.time( model2 <- glmmTMB(formula = ydata ~ 1 + xdata, control = glmmTMBControl(parallel = nt)) ) ``` The speed-up is definitely more visible on models with a much larger number of observations, or in models with random effects. Here's an example where we have an IID Gaussian random effect. We first simulate the data with 200 groups (our random effect): ```{r simulate2} xdata <- rnorm(N, 1, 2) groups <- 200 data_use <- data.frame(obs = 1:N) data_use <- within(data_use, { group_var <- rep(seq(groups), times = nrow(data_use) / groups) group_intercept <- rnorm(groups, 0, 0.1)[group_var] xdata <- xdata ydata <- 0.3 + group_intercept + 0.5*xdata + rnorm(N, 0, 0.25) }) ``` We fit the random effect model, first with a single thread: ```{r fit3} (t_serial <- system.time( model3 <- glmmTMB(formula = ydata ~ 1 + xdata + (1 | group_var), data = data_use, control = glmmTMBControl(parallel = 1)) ) ) ``` Now we fit the same model, but using `r nt` threads. The speed-up is more noticeable with this model. ```{r fit4} (t_parallel <- system.time( update(model3, control = glmmTMBControl(parallel = nt)) ) ) ``` ## Notes on OpenMP support From [Writing R Extensions](https://cran.r-project.org/doc/manuals/r-devel/R-exts.html#OpenMP-support): > Apple builds of clang on macOS currently have no OpenMP support, but CRAN binary packages are built with a clang-based toolchain which supports OpenMP. http://www.openmp.org/resources/openmp-compilers-tools gives some idea of what compilers support what versions. > The performance of OpenMP varies substantially between platforms. The Windows implementation has substantial overheads, so is only beneficial if quite substantial tasks are run in parallel. Also, on Windows new threads are started with the default FPU control word, so computations done on OpenMP threads will not make use of extended-precision arithmetic which is the default for the main process. ## System information This report was built using `r nt` parallel threads (on a machine with a total of `r parallel::detectCores()` cores) ```{r SI} print(sessionInfo(), locale=FALSE) ``` glmmTMB/inst/doc/covstruct.rmd0000644000176200001440000004053413614324717016051 0ustar liggesusers--- title: "Covariance structures with glmmTMB" author: "Kasper Kristensen" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{random effect structures} %\VignettePackage{glmmTMB} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} params: EVAL: !r identical(Sys.getenv("NOT_CRAN"), "true") --- ```{r setup, include=FALSE, message=FALSE} library(knitr) library(glmmTMB) library(MASS) ## for mvrnorm() library(TMB) ## for tmbprofile() ## devtools::install_github("kaskr/adcomp/TMB") ## get development version knitr::opts_chunk$set(echo = TRUE, eval=if (isTRUE(exists("params"))) params$EVAL else FALSE) ## turned off caching for now: got error in chunk 'fit.us.2' ## Error in retape() : ## Error when reading the variable: 'thetaf'. Please check data and parameters. ## In addition: Warning message: ## In retape() : Expected object. Got NULL. set.seed(1) ## run this in interactive session if you actually want to evaluate chunks ... ## Sys.setenv(NOT_CRAN="true") ``` This vignette demonstrates some of the covariance structures available in the `glmmTMB` package. Currently the available covariance structures are: | Covariance | Notation | Parameter count | Requirement | |----------------------------------|---------------|-----------------|-------------| | Heterogeneous unstructured | `us` | $n(n+1)/2$ | | | Heterogeneous Toeplitz | `toep` | $2n-1$ | | | Heterogeneous compound symmetry | `cs` | $n+1$ | | | Heterogeneous diagonal | `diag` | $n$ | | | AR(1) | `ar1` | $2$ | | | Ornstein–Uhlenbeck | `ou` | $2$ | Coordinates | | Spatial exponential | `exp` | $2$ | Coordinates | | Spatial Gaussian | `gau` | $2$ | Coordinates | | Spatial Matern | `mat` | $3$ | Coordinates | The word 'heterogeneous' refers to the marginal variances of the model. Beyond correlation parameters, a heterogeneous structure uses $n$ additional variance parameters where $n$ is the dimension. Some of the structures require temporal or spatial coordinates. We will show examples of this in a later section. ## The AR(1) covariance structure ### Demonstration on simulated data First, let's consider a simple time series model. Assume that our measurements $Y(t)$ are given at discrete times $t \in \{1,...,n\}$ by $$Y(t) = \mu + X(t) + \varepsilon(t)$$ where - $\mu$ is the mean value parameter. - $X(t)$ is a stationary AR(1) process, i.e. has covariance $cov(X(s), X(t)) = \sigma^2\exp(-\theta |t-s|)$. - $\varepsilon(t)$ is iid. $N(0,\sigma_0^2)$ measurement error. A simulation experiment is set up using the parameters | Description | Parameter | Value | |------------------------|---------------|-------| | Mean | $\mu$ | 0 | | Process variance | $\sigma^2$ | 1 | | Measurement variance | $\sigma_0^2$ | 1 | | One-step correlation | $e^{-\theta}$ | 0.7 | The following R-code draws a simulation based on these parameter values. For illustration purposes we consider a very short time series. ```{r sim1, eval=TRUE} n <- 6 ## Number of time points x <- mvrnorm(mu = rep(0,n), Sigma = .7 ^ as.matrix(dist(1:n)) ) ## Simulate the process using the MASS package y <- x + rnorm(n) ## Add measurement noise ``` In order to fit the model with `glmmTMB` we must first specify a time variable as a *factor*. The factor *levels* correspond to unit spaced time points. ```{r simtimes} times <- factor(1:n) levels(times) ``` We also need a grouping variable. In the current case there is only one time-series so the grouping is: ```{r simgroup} group <- factor(rep(1,n)) ``` We combine the data into a single data frame (not absolutely required, but good practice): ```{r simcomb} dat0 <- data.frame(y,times,group) ``` Now fit the model using ```{r fitar1, eval=FALSE} glmmTMB(y ~ ar1(times + 0 | group), data=dat0) ``` This formula notation follows that of the `lme4` package. - The left hand side of the bar `times + 0` corresponds to a design matrix $Z$ linking observation vector $y$ (rows) with a random effects vector $u$ (columns). - The distribution of $u$ is `ar1` (this is the only `glmmTMB` specific part of the formula). - The right hand side of the bar splits the above specification independently among groups. Each group has its own separate $u$ vector but shares the same parameters for the covariance structure. After running the model, we find the parameter estimates $\mu$ (intercept), $\sigma_0^2$ (dispersion), $\sigma$ (Std. Dev.) and $e^{-\theta}$ (First off-diagonal of "Corr") in the output: > FIXME: Try a longer time series when the print.VarCorr is fixed. ```{r ar0fit,echo=FALSE} glmmTMB(y ~ ar1(times + 0 | group), data=dat0) ``` ### Increasing the sample size A single time series of 6 time points is not sufficient to identify the parameters. We could either increase the length of the time series or increase the number of groups. We'll try the latter: ```{r simGroup} simGroup <- function(g, n=6, rho=0.7) { x <- mvrnorm(mu = rep(0,n), Sigma = rho ^ as.matrix(dist(1:n)) ) ## Simulate the process y <- x + rnorm(n) ## Add measurement noise times <- factor(1:n) group <- factor(rep(g,n)) data.frame(y, times, group) } simGroup(1) ``` Generate a dataset with 1000 groups: ```{r simGroup2} dat1 <- do.call("rbind", lapply(1:1000, simGroup) ) ``` And fitting the model on this larger dataset gives estimates close to the true values (AR standard deviation=1, residual (measurement) standard deviation=1, autocorrelation=0.7): ```{r fit.ar1} (fit.ar1 <- glmmTMB(y ~ ar1(times + 0 | group), data=dat1)) ``` ## The unstructured covariance We can try to fit an unstructured covariance to the previous dataset `dat`. For this case an unstructured covariance has `r (n*n-n)/2` correlation parameters and `r n` variance parameters. Adding $\sigma_0^2 I$ on top would cause a strict overparameterization, as these would be redundant with the diagonal elements in the covariance matrix. Hence, when fitting the model with `glmmTMB`, we have to disable the $\varepsilon$ term (the dispersion) by setting `dispformula=~0`: ```{r fit.us} fit.us <- glmmTMB(y ~ us(times + 0 | group), data=dat1, dispformula=~0) fit.us$sdr$pdHess ## Converged ? ``` The estimated variance and correlation parameters are: ```{r fit.us.vc} VarCorr(fit.us) ``` \newcommand{\textsub}{2}{#1_{{\text \small #2}}} The estimated correlation is approximately constant along diagonals (apparent Toeplitz structure) and we note that the first off-diagonal is now ca. half the true value (0.7) because the dispersion is effectively included in the estimated covariance matrix (i.e. $\rho' = \rho \textsub{\sigma^2}{AR}/(\textsub{\sigma^2}{AR} + \textsub{sigma^2}{meas})$). ## The Toeplitz structure The next natural step would be to reduce the number of parameters by collecting correlation parameters within the same off-diagonal. This amounts to `r (n-1)` correlation parameters and `r n` variance parameters. > FIXME: Explain why dispformula=~1 causes over-parameterization ```{r fit.toep} fit.toep <- glmmTMB(y ~ toep(times + 0 | group), data=dat1, dispformula=~0) fit.toep$sdr$pdHess ## Converged ? ``` The estimated variance and correlation parameters are: ```{r fit.toep.vc} (vc.toep <- VarCorr(fit.toep)) ``` The diagonal elements are all approximately equal to the true total variance ($\textsub{\sigma^2}{AR} + \textsub{sigma^2}{meas}$=2), and the off-diagonal elements are approximately equal to the expected value of 0.7/2=0.35. ```{r fit.toep.vc.diag} vc1 <- vc.toep$cond[[1]] ## first term of var-cov for RE of conditional model summary(diag(vc1)) summary(vc1[row(vc1)!=col(vc1)]) ``` We can get a *slightly* better estimate of the variance by using REML estimation (however, the estimate of the correlations seems to have gotten slightly worse): ```{r fit.toep.reml} fit.toep.reml <- update(fit.toep, REML=TRUE) vc1R <- VarCorr(fit.toep.reml)$cond[[1]] summary(diag(vc1R)) summary(vc1R[row(vc1R)!=col(vc1R)]) ``` ## Compound symmetry The compound symmetry structure collects all off-diagonal elements of the correlation matrix to one common value. > FIXME: Explain why dispformula=~1 causes over-parameterization ```{r fit.cs} fit.cs <- glmmTMB(y ~ cs(times + 0 | group), data=dat1, dispformula=~0) fit.cs$sdr$pdHess ## Converged ? ``` The estimated variance and correlation parameters are: ```{r fit.cs.vc} VarCorr(fit.cs) ``` ## Anova tables The models `ar1`, `toep`, and `us` are nested so we can use: ```{r anova1} anova(fit.ar1, fit.toep, fit.us) ``` `ar1` has the lowest AIC (it's the simplest model, and fits the data adequately); we can't reject the (true in this case!) null model that an AR1 structure is adequate to describe the data. The model `cs` is a sub-model of `toep`: ```{r anova2} anova(fit.cs, fit.toep) ``` Here we *can* reject the null hypothesis of compound symmetry (i.e., that all the pairwise correlations are the same). ## Adding coordinate information Coordinate information can be added to a variable using the `glmmTMB` function `numFactor`. This is necessary in order to use those covariance structures that require coordinates. For example, if we have the numeric coordinates ```{r sample2} x <- sample(1:2, 10, replace=TRUE) y <- sample(1:2, 10, replace=TRUE) ``` we can generate a factor representing $(x,y)$ coordinates by ```{r numFactor} (pos <- numFactor(x,y)) ``` Numeric coordinates can be recovered from the factor levels: ```{r parseNumLevels} parseNumLevels(levels(pos)) ``` In order to try the remaining structures on our test data we re-interpret the time factor using `numFactor`: ```{r numFactor2} dat1$times <- numFactor(dat1$times) levels(dat1$times) ``` ## Ornstein–Uhlenbeck Having the numeric times encoded in the factor levels we can now try the Ornstein–Uhlenbeck covariance structure. ```{r fit.ou} fit.ou <- glmmTMB(y ~ ou(times + 0 | group), data=dat1) fit.ou$sdr$pdHess ## Converged ? ``` It should give the exact same results as `ar1` in this case since the times are equidistant: ```{r fit.ou.vc} VarCorr(fit.ou) ``` However, note the differences between `ou` and `ar1`: - `ou` can handle irregular time points. - `ou` only allows positive correlation between neighboring time points. ## Spatial correlations The structures `exp`, `gau` and `mat` are meant to used for spatial data. They all require a Euclidean distance matrix which is calculated internally based on the coordinates. Here, we will try these models on the simulated time series data. An example with spatial data is presented in a later section. ### Matern ```{r fit.mat} fit.mat <- glmmTMB(y ~ mat(times + 0 | group), data=dat1, dispformula=~0) fit.mat$sdr$pdHess ## Converged ? ``` ```{r fit.mat.vc} VarCorr(fit.mat) ``` ### Gaussian "Gaussian" refers here to a Gaussian decay in correlation with distance, i.e. $\rho = \exp(-d x^2)$, not to the conditional distribution ("family"). ```{r fit.gau} fit.gau <- glmmTMB(y ~ gau(times + 0 | group), data=dat1, dispformula=~0) fit.gau$sdr$pdHess ## Converged ? ``` ```{r fit.gau.vc} VarCorr(fit.gau) ``` ### Exponential ```{r fit.exp} fit.exp <- glmmTMB(y ~ exp(times + 0 | group), data=dat1) fit.exp$sdr$pdHess ## Converged ? ``` ```{r fit.exp.vc} VarCorr(fit.exp) ``` ### A spatial covariance example Starting out with the built in `volcano` dataset we reshape it to a `data.frame` with pixel intensity `z` and pixel position `x` and `y`: ```{r spatial_data} d <- data.frame(z = as.vector(volcano), x = as.vector(row(volcano)), y = as.vector(col(volcano))) ``` Next, add random normal noise to the pixel intensities and extract a small subset of 100 pixels. This is our spatial dataset: ```{r spatial_sub_sample} set.seed(1) d$z <- d$z + rnorm(length(volcano), sd=15) d <- d[sample(nrow(d), 100), ] ``` Display sampled noisy volcano data: ```{r volcano_data_image} volcano.data <- array(NA, dim(volcano)) volcano.data[cbind(d$x, d$y)] <- d$z image(volcano.data, main="Spatial data") ``` Based on this data, we'll attempt to re-construct the original image. As model, it is assumed that the original image `image(volcano)` is a realization of a random field with correlation decaying exponentially with distance between pixels. Denoting by $u(x,y)$ this random field the model for the observations is \[ z_{i} = \mu + u(x_i,y_i) + \varepsilon_i \] To fit the model, a `numFactor` and a dummy grouping variable must be added to the dataset: ```{r spatial_add_pos_and_group} d$pos <- numFactor(d$x, d$y) d$group <- factor(rep(1, nrow(d))) ``` The model is fit by ```{r fit_spatial_model, cache=TRUE} f <- glmmTMB(z ~ 1 + exp(pos + 0 | group), data=d) ``` Recall that a standard deviation `sd=15` was used to distort the image. A confidence interval for this parameter is ```{r confint_sigma} confint(f, "sigma") ``` The glmmTMB `predict` method can predict unseen levels of the random effects. For instance to predict a 3-by-3 corner of the image one could construct the new data: ```{r newdata_corner} newdata <- data.frame( pos=numFactor(expand.grid(x=1:3,y=1:3)) ) newdata$group <- factor(rep(1, nrow(newdata))) newdata ``` and predict using ```{r predict_corner} predict(f, newdata, type="response", allow.new.levels=TRUE) ``` A specific image column can thus be predicted using the function ```{r predict_column} predict_col <- function(i) { newdata <- data.frame( pos = numFactor(expand.grid(1:87,i))) newdata$group <- factor(rep(1,nrow(newdata))) predict(f, newdata=newdata, type="response", allow.new.levels=TRUE) } ``` Prediction of the entire image is carried out by (this takes a while...): ```{r predict_all} pred <- sapply(1:61, predict_col) ``` Finally plot the re-constructed image by ```{r image_results} image(pred, main="Reconstruction") ``` ## Mappings For various advanced purposes, such as computing likelihood profiles, it is useful to know the details of the parameterization of the models - the scale on which the parameters are defined (e.g. standard deviation, variance, or log-standard deviation for variance parameters) and their order. ### Unstructured For an unstructured matrix of size `n`, parameters `1:n` represent the log-standard deviations while the remaining `n(n-1)/2` (i.e. `(n+1):(n:(n*(n+1)/2))`) are the elements of the *scaled* Cholesky factor of the correlation matrix, filled in row-wise order (see [TMB documentation](http://kaskr.github.io/adcomp/classUNSTRUCTURED__CORR__t.html)). In particular, if $L$ is the lower-triangular matrix with 1 on the diagonal and the correlation parameters in the lower triangle, then the correlation matrix is defined as $\Sigma = D^{-1/2} L L^\top D^{-1/2}$, where $D = \textrm{diag}(L L^\top)$. For a single correlation parameter $\theta_0$, this works out to $\rho = \theta_0/(1+\theta_0^2)$. ```{r fit.us.2} vv0 <- VarCorr(fit.us) vv1 <- vv0$cond$group ## extract 'naked' V-C matrix n <- nrow(vv1) rpars <- getME(fit.us,"theta") ## extract V-C parameters ## first n parameters are log-std devs: all.equal(unname(diag(vv1)),exp(rpars[1:n])^2) ## now try correlation parameters: cpars <- rpars[-(1:n)] length(cpars)==n*(n-1)/2 ## the expected number cc <- diag(n) cc[upper.tri(cc)] <- cpars L <- crossprod(cc) D <- diag(1/sqrt(diag(L))) D %*% L %*% D unname(attr(vv1,"correlation")) ``` > FIXME: why are these not quite the same? Not what I expected ```{r other_check} all.equal(c(cov2cor(vv1)),c(fit.us$obj$env$report(fit.us$fit$parfull)$corr[[1]])) ``` Profiling (experimental/exploratory): ```{r fit.us.profile,cache=TRUE} ## want $par, not $parfull: do NOT include conditional modes/'b' parameters ppar <- fit.us$fit$par length(ppar) range(which(names(ppar)=="theta")) ## the last n*(n+1)/2 parameters ## only 1 fixed effect parameter tt <- tmbprofile(fit.us$obj,2,trace=FALSE) ``` ```{r fit.us.profile.plot} plot(tt) confint(tt) ``` ```{r fit.cs.profile,cache=TRUE} ppar <- fit.cs$fit$par length(ppar) range(which(names(ppar)=="theta")) ## the last n*(n+1)/2 parameters ## only 1 fixed effect parameter, 1 dispersion parameter tt2 <- tmbprofile(fit.cs$obj,3,trace=FALSE) ``` ```{r fit.cs.profile.plot} plot(tt2) ``` glmmTMB/inst/doc/troubleshooting.rmd0000644000176200001440000003216213614324717017242 0ustar liggesusers--- title: "Troubleshooting with glmmTMB" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{troubleshooting} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} params: EVAL: !r identical(Sys.getenv("NOT_CRAN"), "true") --- ```{r load_lib,echo=FALSE} library(glmmTMB) knitr::opts_chunk$set(eval = if (isTRUE(exists("params"))) params$EVAL else FALSE) ``` This vignette covers common problems that occur while using `glmmTMB`. The contents will expand with experience. If your problem is not covered below, there's a chance it has been solved in the development version; try updating to the latest version of `glmmTMB` on GitHub. # Warnings ## Model convergence problem; non-positive-definite Hessian matrix; NA values for likelihood/AIC/etc. This warning (`Model convergence problem; non-positive-definite Hessian matrix`) states that at `glmmTMB`'s maximum-likelihood estimate, the curvature of the negative log-likelihood surface is inconsistent with `glmmTMB` really having found the best fit (minimum): instead, the surface is downward-curving, or flat, in some direction(s). It will usually be accompanied by `NA` values for the standard errors, log-likelihood, AIC, and BIC, and deviance. When you run `summary()` on the resulting model, you'll get the warning `In sqrt(diag(vcov)) : NaNs produced`. These problems are most likely: - when a model is overparameterized (i.e. the data does not contain enough information to estimate the parameters reliably) - when a random-effect variance is estimated to be zero, or random-effect terms are estimated to be perfectly correlated ("singular fit": often caused by having too few levels of the random-effect grouping variable) - when zero-inflation is estimated to be near zero (a strongly negative zero-inflation parameter) - when dispersion is estimated to be near zero - when *complete separation* occurs in a binomial model: some categories in the model contain proportions that are either all 0 or all 1 How do we diagnose the problem? ### Example 1. Consider this example: ```{r non-pos-def,cache=TRUE, warning=FALSE} zinbm0 = glmmTMB(count~spp + (1|site), zi=~spp, Salamanders, family=nbinom2) ``` First, see if any of the estimated coefficients are extreme. If you're using a non-identity link function (e.g. log, logit), then parameter values with $|\beta|>10$ are suspect (for a logit link, this implies probabilities very close to 0 or 1; for a log link, this implies mean counts that are close to 0 or extremely large). Inspecting the fixed-effect estimates for this model: ```{r fixef_zinbm0} fixef(zinbm0) ``` The zero-inflation intercept parameter is tiny ($\approx -17$): since the parameters are estimated on the logit scale, we back-transform with `plogis(-17)` to see the at the zero-inflation probability for the baseline level is about $4 \times 10^{-8}$)). Many of the other ZI parameters are very large, compensating for the intercept: the estimated zero-inflation probabilities for all species are ```{r f_zi2} ff <- fixef(zinbm0)$zi round(plogis(c(sppGP=unname(ff[1]),ff[-1]+ff[1])),3) ``` Since the baseline probability is already effectively zero, making the intercept parameter larger or smaller will have very little effect - the likelihood is flat, which leads to the non-positive-definite warning. Now that we suspect the problem is in the zero-inflation component, we can try to come up with ways of simplifying the model: for example, we could use a model that compared the first species ("GP") to the rest: ```{r salfit2,cache=TRUE} Salamanders <- transform(Salamanders, GP=as.numeric(spp=="GP")) zinbm0_A = update(zinbm0, ziformula=~GP) ``` This fits without a warning, although the GP zero-inflation parameter is still extreme: ```{r salfit2_coef,cache=TRUE} fixef(zinbm0_A)[["zi"]] ``` Another possibility would be to fit the variation among species in the zero-inflation parameter as a random effect, rather than a fixed effect: this is slightly more parsimonious. This again fits without an error, although both the average level of zero-inflation and the among-species variation are estimated as very small: ```{r salfit3,cache=TRUE} zinbm0_B = update(zinbm0, ziformula=~(1|spp)) fixef(zinbm0_B)[["zi"]] VarCorr(zinbm0_B) ``` The original analysis considered variation in zero-inflation by site status (mined or not mined) rather than by species - this simpler model only tries to estimate two parameters (mined + difference between mined and no-mining) rather than 7 (one per species) for the zero-inflation model. ```{r zinbm1,cache=TRUE} zinbm1 = glmmTMB(count~spp + (1|site), zi=~mined, Salamanders, family=nbinom2) fixef(zinbm1)[["zi"]] ``` This again fits without a warning, but we see that the zero-inflation is effectively zero in the unmined ("minedno") condition (`plogis(0.38-17.5)` is approximately $4 \times 10^{-8}$). We can estimate the confidence interval, but it takes some extra work: the default Wald standard errors and confidence intervals are useless in this case. ```{r zinbm1_confint,cache=TRUE} ## at present we need to specify the parameter by number; for ## extreme cases need to specify the parameter range ## (not sure why the upper bound needs to be so high ... ?) cc = confint(zinbm1,method="uniroot",parm=9, parm.range=c(-20,20)) print(cc) ``` The lower CI is not defined; the upper CI is -2.08, i.e. we can state that the zero-inflation probability is less than `plogis(-2.08)` = 0.11. More broadly, general inspection of the data (e.g., plotting the response against potential covariates) should help to diagnose overly complex models. ### Example 2. In some cases, scaling predictor variables may help. For example, in this example from @phisanti, the results of `glm` and `glmmTMB` applied to a scaled version of the data set agree, while `glmmTMB` applied to the raw data set gives a non-positive-definite Hessian warning. ```{r fatfiberglmm} ## data taken from gamlss.data:plasma, originally ## http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/plasma.html load(system.file("vignette_data","plasma.rda", package="glmmTMB")) m4.1 <- glm(calories ~ fat*fiber, family = Gamma(link = "log"), data = plasma) m4.2 <- glmmTMB(calories ~ fat*fiber, family = Gamma(link = "log"), data = plasma) ps <- transform(plasma,fat=scale(fat,center=FALSE),fiber=scale(fiber,center=FALSE)) m4.3 <- update(m4.2, data=ps) ## scaling factor for back-transforming standard deviations ss <- c(1, fatsc <- 1/attr(ps$fat,"scaled:scale"), fibsc <- 1/attr(ps$fiber,"scaled:scale"), fatsc*fibsc) ## combine SEs, suppressing the warning from the unscaled model s_vals <- cbind(glm=sqrt(diag(vcov(m4.1))), glmmTMB_unsc=suppressWarnings(sqrt(diag(vcov(m4.2)$cond))), glmmTMB_sc=sqrt(diag(vcov(m4.3)$cond))*ss) print(s_vals,digits=3) ``` ## Example 3. Here is another example (from Samantha Sherman): ```{r load_ss_ex} load(system.file("vignette_data","troubleshooting.rda",package="glmmTMB")) ``` The first model gives the specified warning when it runs, as well as the other symptoms such as `NA` values for the likelihood: ```{r ss_ex_mod1} summary(mod1) ``` We can immediately see that the dispersion is very small and that the zero-inflation parameter is strongly negative. However, we'll develop some fancier machinery that checks the variance-covariance matrix or Hessian of the model, finds eigenvalues that are negative or close to zero, and identifies which model components contribute to those eigenvalues: ```{r diagnose_vcov} diagnose_vcov <- function(model, tol=1e-5, digits=2, analyze_hessian=FALSE) { vv <- vcov(model, full=TRUE) nn <- rownames(vv) if (!all(is.finite(vv))) { if (missing(analyze_hessian)) warning("analyzing Hessian, not vcov") if (!analyze_hessian) stop("can't analyze vcov") analyze_hessian <- TRUE } if (analyze_hessian) { par.fixed <- model$obj$env$last.par.best r <- model$obj$env$random if (!is.null(r)) par.fixed <- par.fixed[-r] vv <- optimHess(par.fixed, fn=model$obj$fn, gr=model$obj$gr) ## note vv is now HESSIAN, not vcov } ee <- eigen(vv) if (all(ee$values>tol)) {message("var-cov matrix OK"); return(invisible(NULL))} ## find negative or small-positive eigenvalues (flat/wrong curvature) bad_evals <- which(ee$values Warning in nlminb(start = par, objective = fn, gradient = gr) : NA/NaN function evaluation This warning occurs when the optimizer visits a region of parameter space that is invalid. It is not a problem as long as the optimizer has left that region of parameter space upon convergence, which is indicated by an absence of the model convergence warnings described above. The following warnings indicate possibly-transient numerical problems with the fit, and can be treated in the same way (i.e. ignored if there are no errors or convergence warnings about the final fitted model). > Cholmod warning 'matrix not positive definite' In older versions of R (< 3.6.0): > Warning in f(par, order = order, ...) : value out of range in 'lgamma' ## false convergence This warning: > false convergence: the gradient ∇f(x) may be computed incorrectly, the other stopping tolerances may be too tight, or either f or ∇f may be discontinuous near the current iterate x comes from the `nlminb` optimizer used by default in `glmmTMB`. It's usually hard to diagnose the source of this warning (this [Stack Overflow answer](https://stackoverflow.com/questions/40039114/r-nlminb-what-does-false-convergence-actually-mean) explains a bit more about what it means). Reasonable methods for making sure your model is OK are: - restart the model at the estimated fitted values - try using a different optimizer, e.g. `control=glmmTMBControl(optimizer=optim, optArgs=list(method="BFGS"))` and see if the results are sufficiently similar to the original fit. # Errors ## NA/NaN gradient evaluation ```{r NA gradient, error=TRUE, warning=FALSE} dat1 = expand.grid(y=-1:1, rep=1:10) m1 = glmmTMB(y~1, dat1, family=nbinom2) ``` The error occurs here because the negative binomial distribution is inappropriate for data with negative values. If you see this error, check that the response variable meets the assumptions of the specified distribution. ## gradient length > Error in nlminb(start = par, objective = fn, gradient = gr) : gradient function must return a numeric vector of length x > Error in optimHess(par.fixed, obj$fn, obj$gr): gradient in optim evaluated to length x Try rescaling predictor variables. Try a simpler model and build up. (If you have a simple reproducible example of these errors, please post them to the issues list.) glmmTMB/inst/doc/model_evaluation.Rnw0000644000176200001440000003740513616054060017324 0ustar liggesusers\documentclass[12pt]{article} %% vignette index specifications need to be *after* \documentclass{} %\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{model evaluation} %\VignettePackage{glmmTMB} %\VignetteDepends{ggplot2} %\VignetteDepends{car} %\VignetteDepends{emmeans} %\VignetteDepends{effects} %\VignetteDepends{multcomp} %\VignetteDepends{MuMIn} %\VignetteDepends{DHARMa} %\VignetteDepends{broom} %\VignetteDepends{broom.mixed} %\VignetteDepends{dotwhisker} %\VignetteDepends{texreg} %\VignetteDepends{xtable} \usepackage{lineno} \usepackage[utf8]{inputenc} \usepackage{graphicx} \usepackage[american]{babel} %% for huxtable \usepackage{array} \usepackage{caption} \usepackage{graphicx} \usepackage{siunitx} \usepackage{colortbl} \usepackage{multirow} \usepackage{hhline} \usepackage{calc} \usepackage{tabularx} \usepackage{threeparttable} \usepackage{wrapfig} \newcommand{\R}{{\sf R}} \newcommand{\fixme}[1]{\textbf{\color{red} fixme: #1}} \newcommand{\notimpl}[1]{\emph{\color{magenta} #1}} \usepackage{url} \usepackage{hyperref} \usepackage{fancyvrb} \usepackage{natbib} %% \code{} below is not safe with \section{} etc. \newcommand{\tcode}[1]{{\tt #1}} \VerbatimFootnotes \bibliographystyle{chicago} %% need this for output of citation() below ... \newcommand{\bold}[1]{\textbf{#1}} %% code formatting %% https://tex.stackexchange.com/questions/273843/inline-verbatim-with-line-breaks-colored-font-and-highlighting/280212 % \usepackage{xcolor} %% see knit_hooks$set(...) below \newcommand\code[1]{\mytokenshelp#1 \relax\relax} \def\mytokenshelp#1 #2\relax{\allowbreak\grayspace\tokenscolor{#1}\ifx\relax#2\else \mytokenshelp#2\relax\fi} %\newcommand\tokenscolor[1]{\colorbox{gray!20}{\textcolor{blue}{% % \ttfamily\mystrut\smash{\detokenize{#1}}}}} \newcommand\tokenscolor[1]{\colorbox{gray!0}{\textcolor{black}{% \ttfamily\mystrut\smash{\detokenize{#1}}}}} \def\mystrut{\rule[\dimexpr-\dp\strutbox+\fboxsep]{0pt}{% \dimexpr\normalbaselineskip-2\fboxsep}} \def\grayspace{\hspace{0pt minus \fboxsep}} \title{Post-model-fitting procedures with \tcode{glmmTMB} models: diagnostics, inference, and model output} \date{\today} \author{} \begin{document} \maketitle %\linenumbers %% TO DO: pipeline for re-running stored objects <>= library("knitr") opts_chunk$set(fig.width=5,fig.height=5, out.width="0.8\\textwidth",echo=TRUE) ## https://tex.stackexchange.com/questions/148188/knitr-xcolor-incompatible-color-definition/254482 knit_hooks$set(document = function(x) {sub('\\usepackage[]{color}', '\\usepackage{xcolor}', x, fixed = TRUE)}) Rver <- paste(R.version$major,R.version$minor,sep=".") used.pkgs <- c("glmmTMB","bbmle") ## packages to report below @ The purpose of this vignette is to describe (and test) the functions in various downstream packages that are available for summarizing and otherwise interpreting glmmTMB fits. Some of the packages/functions discussed below may not be suitable for inference on parameters of the zero-inflation or dispersion models, but will be restricted to the conditional-mean model. <>= library(glmmTMB) library(car) library(emmeans) library(effects) library(multcomp) library(MuMIn) library(DHARMa) library(broom) library(broom.mixed) library(dotwhisker) library(ggplot2); theme_set(theme_bw()) library(texreg) library(xtable) library(huxtable) ## retrieve slow stuff L <- load(system.file("vignette_data","model_evaluation.rda", package="glmmTMB")) @ A couple of example models: % don't need to evaluate this since we have loaded owls_nb1 from model_evaluation.rda <>= owls_nb1 <- glmmTMB(SiblingNegotiation ~ FoodTreatment*SexParent + (1|Nest)+offset(log(BroodSize)), contrasts=list(FoodTreatment="contr.sum", SexParent="contr.sum"), family = nbinom1, zi = ~1, data=Owls) @ <>= data("cbpp",package="lme4") cbpp_b1 <- glmmTMB(incidence/size~period+(1|herd), weights=size,family=binomial, data=cbpp) ## simulated three-term Beta example set.seed(1001) dd <- data.frame(z=rbeta(1000,shape1=2,shape2=3), a=rnorm(1000),b=rnorm(1000),c=rnorm(1000)) simex_b1 <- glmmTMB(z~a*b*c,family=beta_family,data=dd) @ \section{model checking and diagnostics} \subsection{\tcode{DHARMa}} The \code{DHARMa} package provides diagnostics for hierarchical models. After running % set to eval=FALSE since we have this stored in model_evaluation.rda <>= owls_nb1_simres <- simulateResiduals(owls_nb1) @ you can plot the results: <>= plot(owls_nb1_simres) @ \subsubsection{issues} \begin{itemize} \item When you run \code{simulateResiduals()} you'll notice a long warning (actually a \emph{message}: ``It seems you are diagnosing a \code{glmmTMB} model \ldots'' that explains some issues with \code{glmmTMB} fits in \code{DHARMa} \item \code{DHARMa} will only work for models using families for which a simulate method has been implemented (in \code{TMB}, and appropriately reflected in \code{glmmTMB}) \end{itemize} \section{Inference} \subsection{\tcode{car::Anova}} We can use \code{car::Anova()} to get traditional ANOVA-style tables from \code{glmmTMB} fits. A few limitations/reminders: \begin{itemize} \item these tables use Wald $\chi^2$ statistics for comparisons (neither likelihood ratio tests nor $F$ tests) \item they apply to the fixed effects of the conditional component of the model only (other components \emph{might} work, but haven't been tested at all) \item as always, if you want to do type 3 tests, you should probably set sum-to-zero contrasts on factors and center numerical covariates (see contrasts argument above) \end{itemize} <>= if (requireNamespace("car") && getRversion() >= "3.6.0") { Anova(owls_nb1) ## default type II Anova(owls_nb1,type="III") } @ \subsection{effects} <>= effects_ok <- (requireNamespace("effects") && getRversion() >= "3.6.0") if (effects_ok) { (ae <- allEffects(owls_nb1)) plot(ae) } @ (the error can probably be ignored) <>= if (effects_ok) { plot(allEffects(simex_b1)) } @ \subsection{\tcode{emmeans}} <>= emmeans(owls_nb1, poly ~ FoodTreatment | SexParent) @ \subsection{\tcode{drop1}} \code{stats::drop1} is a built-in R function that refits the model with various terms dropped. In its default mode it respects marginality (i.e., it will only drop the top-level interactions, not the main effects): <>= system.time(owls_nb1_d1 <- drop1(owls_nb1,test="Chisq")) @ <>= print(owls_nb1_d1) @ In principle, using \code{scope = . ~ . - (1|Nest)} should work to execute a ``type-3-like'' series of tests, dropping the main effects one at a time while leaving the interaction in (we have to use \code{- (1|Nest)} to exclude the random effects because \code{drop1} can't handle them). However, due to the way that R handles formulas, dropping main effects from an interaction of *factors* has no effect on the overall model. (It would work if we were testing the interaction of continuous variables.) \subsubsection{issues} The \code{mixed} package implements a true ``type-3-like'' parameter-dropping mechanism for \code{[g]lmer} models. Something like that could in principle be applied here. \subsection{Model selection and averaging with \tcode{MuMIn}} We can run \code{MuMIn::dredge(owls_nb1)} on the model to fit all possible submodels. Since this takes a little while (45 seconds or so), we've instead loaded some previously computed results: % stored in vignette_data/model_evaluation.rda ... <>= owls_nb1_dredge @ <>= op <- par(mar=c(2,5,14,3)) plot(owls_nb1_dredge) par(op) ## restore graphics parameters @ Model averaging: <>= model.avg(owls_nb1_dredge) @ \subsubsection{issues} \begin{itemize} \item may not work for Beta models because the \code{family} component ("beta") is not identical to the name of the family function (\code{beta_family()})? (Kamil Bartoń, pers. comm.) \end{itemize} \subsection{\tcode{multcomp} for multiple comparisons and \emph{post hoc} tests} <>= glht_glmmTMB <- function (model, ..., component="cond") { glht(model, ..., coef. = function(x) fixef(x)[[component]], vcov. = function(x) vcov(x)[[component]], df = NULL) } modelparm.glmmTMB <- function (model, coef. = function(x) fixef(x)[[component]], vcov. = function(x) vcov(x)[[component]], df = NULL, component="cond", ...) { multcomp:::modelparm.default(model, coef. = coef., vcov. = vcov., df = df, ...) } @ <>= g1 <- glht(cbpp_b1, linfct = mcp(period = "Tukey")) summary(g1) @ \subsubsection{issues} It is possible to make \code{multcomp} work in a way that (1) actually uses the S3 method structure and (2) doesn't need access to private multcomp methods (i.e. accessed by \code{multcomp:::}) ? Not sure, but both of the following hacks should work. (The \code{glht_glmmTMB} solution below is clunky because it isn't a real S3 method; the \code{model.parm.glmmTMB} solution can't be included in the package source code as-is because ::: is not allowed in CRAN package code.) \section{Extracting coefficients, coefficient plots and tables} \subsection{\tcode{broom} and friends} The \code{broom} and \code{broom.mixed} packages are designed to extract information from a broad range of models in a convenient (tidy) format; the dotwhisker package builds on this platform to draw elegant coefficient plots. <>= if (requireNamespace("broom.mixed") && requireNamespace("dotwhisker")) { (t1 <- broom.mixed::tidy(owls_nb1, conf.int = TRUE)) if (packageVersion("dotwhisker")>"0.4.1") { ## to get this version (which fixes various dotwhisker problems) ## use devtools::install_github("bbolker/broom.mixed") or ## wait for pull request acceptance/submission to CRAN/etc. dwplot(owls_nb1)+geom_vline(xintercept=0,lty=2) } else { owls_nb1$coefficients <- TRUE ## hack! dwplot(owls_nb1,by_2sd=FALSE)+geom_vline(xintercept=0,lty=2) } } @ \subsubsection{issues} (these are more general \code{dwplot} issues) \begin{itemize} \item use black rather than color(1) when there's only a single model, i.e. only add aes(colour=model) conditionally? - draw points even if std err / confint are NA (draw \code{geom_point()} as well as \code{geom_pointrange()}? need to apply all aesthetics, dodging, etc. to both ...) \item for glmmTMB models, allow labeling by component? or should this be done by manipulating the tidied frame first? (i.e.: \code{tidy(.) \%>\% tidyr::unite(term,c(component,term))}) \end{itemize} \subsection{coefficient tables with \tcode{xtable}} The \code{xtable} package can output data frames as \LaTeX\ tables; this isn't quite as elegant as \code{stargazer} etc., but is not a bad start. I've sprinkled lots of hard line-breaks, spaces, and newlines in below: someone who was better at \TeX\ could certainly do a better job. (\code{xtable} can also produce HTML output.) <>= ss <- summary(owls_nb1) ## print table; add space, pxt <- function(x,title) { cat(sprintf("{\n\n\\textbf{%s}\n\\ \\\\\\vspace{2pt}\\ \\\\\n",title)) print(xtable(x), floating=FALSE); cat("\n\n") cat("\\ \\\\\\vspace{5pt}\\ \\\\\n") } <>= pxt(lme4::formatVC(ss$varcor$cond),"random effects variances") pxt(coef(ss)$cond,"conditional fixed effects") pxt(coef(ss)$zi,"conditional zero-inflation effects") @ <>= if (requireNamespace("xtable")) { pxt(lme4::formatVC(ss$varcor$cond),"random effects variances") pxt(coef(ss)$cond,"conditional fixed effects") pxt(coef(ss)$zi,"conditional zero-inflation effects") } @ \subsection{coefficient tables with \tcode{texreg}} <>= source(system.file("other_methods","extract.R",package="glmmTMB")) texreg(owls_nb1,caption="Owls model", label="tab:owls") @ See output in Table~\ref{tab:owls}. \subsection{coefficient tables with \tcode{huxtable}} The \code{huxtable} package allows output in either \LaTeX\ or HTML: this example is tuned for \LaTeX. <>= cc <- c("intercept (mean)"="(Intercept)", "food treatment (starvation)"="FoodTreatment1", "parental sex (M)"="SexParent1", "food $\\times$ sex"="FoodTreatment1:SexParent1") h0 <- huxreg(" "=owls_nb1, # give model blank name so we don't get '(1)' tidy_args=list(effects="fixed"), coefs=cc, error_pos="right", statistics="nobs" # don't include logLik and AIC ) names(h0)[2:3] <- c("estimate","std. err.") ## allow use of math notation in name h1 <- set_cell_properties(h0,row=5,col=1,escape_contents=FALSE) cat(to_latex(h1,tabular_only=TRUE)) @ \subsubsection{issues} \begin{itemize} \item \code{huxtable} needs quite a few additional \LaTeX\ packages: use \code{report_latex_dependencies()} to see what they are. \end{itemize} \section{influence measures} \emph{Influence measures} quantify the effects of particular observations, or groups of observations, on the results of a statistical model; \emph{leverage} and \emph{Cook's distance} are the two most common formats for influence measures. If a \href{https://en.wikipedia.org/wiki/Projection_matrix}{projection matrix} (or ``hat matrix'') is available, influence measures can be computed efficiently; otherwise, the same quantities can be estimated by brute-force methods, refitting the model with each group or observation successively left out. We've adapted the \tcode{car::influence.merMod} function to handle \tcode{glmmTMB} models; because it uses brute force, it can be slow, especially if evaluating the influence of individual observations. For now, it is included as a separate source file rather than exported as a method (see below), although it may be included in the package (or incorporated in the \tcode{car} package) in the future. <>= source(system.file("other_methods","influence_mixed.R", package="glmmTMB")) @ <>= owls_nb1_influence_time <- system.time( owls_nb1_influence <- influence_mixed(owls_nb1, groups="Nest") ) @ Re-fitting the model with each of the \Sexpr{length(unique(Owls$Nest))} nests excluded takes \Sexpr{round(owls_nb1_influence_time[["elapsed"]])} seconds (on an old Macbook Pro). The \tcode{car::infIndexPlot()} function is one way of displaying the results: <>= car::infIndexPlot(owls_nb1_influence) @ Or, you can transform the results and plot them however you like: <>= inf <- as.data.frame(owls_nb1_influence[["fixed.effects[-Nest]"]]) inf <- transform(inf, nest=rownames(inf), cooks=cooks.distance(owls_nb1_influence)) inf$ord <- rank(inf$cooks) if (require(reshape2)) { inf_long <- melt(inf, id.vars=c("ord","nest")) gg_infl <- (ggplot(inf_long,aes(ord,value)) + geom_point() + facet_wrap(~variable, scale="free_y") + scale_x_reverse(expand=expand_scale(mult=0.15)) + scale_y_continuous(expand=expand_scale(mult=0.15)) + geom_text(data=subset(inf_long,ord>24), aes(label=nest),vjust=-1.05) ) print(gg_infl) } @ \section{to do} \begin{itemize} \item more plotting methods (\code{sjplot}) \item output with \code{memisc} \item AUC etc. with \code{ModelMetrics} \end{itemize} <>= ## store time-consuming stuff save("owls_nb1", "owls_nb1_simres", "owls_nb1_dredge", "owls_nb1_influence", "owls_nb1_influence_time", file="../inst/vignette_data/model_evaluation.rda", version=2 ## for compatibility with R < 3.6.0 ) @ \end{document} glmmTMB/inst/doc/glmmTMB.pdf0000644000176200001440000042074313616061763015310 0ustar liggesusers%PDF-1.5 % 32 0 obj << /Length 1142 /Filter /FlateDecode >> stream xڵVMo6W"H}ħ.m#H@5aItI*;CJmj\vp͛hvhvyF߰*㴨*.MxS**7ٮ":36yI9AdmZ[{;8m Zp]tav;kZ~+rɘ(JQq4ș F,D˓Vnm5A.*d9$HHo6 'M=UMWɚSNӥg`ʙrɋqI~7%#YpH7탱?٣Lbh Q*f)H\pAԈ%y!xv=>s;c`{f[H@tT`)A-;BT)|jnQbS=̨m֐5czQ`>/GAPi?=1Hzh|ORW6F!70VarpINhQ C1fwٲZuQ9ljoБP pk:mQˣ!;R&YʢV.ʶ^X[`ٔ%N9 aV@}pz֒w5KM)6@fQHX-K5vOjYwjA;xd+ K5 *){ 5M^:ƐbOAɒw38,_03LyT AޢqK׋E"_>dau z ڼ,е8JJn#?DIz{@"W&5#^7{{l;(N ŚOE=T}vGޏ܌`$f~3yYig#p`e\ѹ>I 䡪j-2!?(:CW} 8|?JL}0餎?j?hVd.*&~n}-"f)iz-(Ndf0ipD:v#튩a~>9<| M.6RA<]ac7!O6ަrQRD *rn8Cn]!_j8{h"Nr^,k_wge% endstream endobj 46 0 obj << /Length 2535 /Filter /FlateDecode >> stream xYoܸ_hIQ-E4g3PjwÑP+Opf8͇n.>\|w{q^ )EfZnR"zH(Yn˥iдa ]qo&IC6qʪ~ 'Eү+~ .ֽz(iG|kC!!- Z].# ˥ e6_"%"bAEepo=vE zK~+6D+m]}qbl#o ?|}@ ]_4`ghy_-:'i8qG8"UkM8ѽHrډB22pvm󒸬o-3nv[I5(ClT_m5h,@65aS'=?ɟ''7丧;I϶4 ڜU`+-JT@Dkvgk39ݓ ,Ͷ9qϙO0k2ILPzFHHrh&oIl-e@ GyeJٍkwmh +8j^S{-bk11Kx!oHОHۓ?ei( UEe"ɦ;؆čg 5!2 KD c/]wsj+~8&becwa""DME鐓54=MU43I6M eUVe""~ͰRZlK.wҀvEc0aDyCt7+ EM~I'!76__X*9I# [4:އ]Bzą$ ܵHੳN5ɀgwIBpGA|;x1B H ܱD. t =Iy[;~৐Sѻ8yZR\4(d=}ZC84C^9YR}0³5R]Qh}U6h8\țw$XfFBSHݧC-{[ŋcxtEr"#S}3ې:7,h4ʆopG~nۓZ 'F'd YM>m_g`>{At(;k[&vvA.aM1{]@qwg'.5 ,pWs 5<):||gif {:ذB6`́}<ΫTqN( X{LiJTyv|W3WDWpQB\| kL(nJ "Aֺ+nQkWt0B=x8q͇G"etY(9S"<fr|I3 lq[J4xݨ[$9Ԝ N-pGZ lܲŪ 1[&4L["VCټ/yqrwQ  )Wl`mV(}Vy%[zꪩy5*Ssg`篨vۋ/(T(oSSr=uuS${Ž[Z-]nV.~ɴ[ÖywN`lb(2m[HC"بyP!fӒvLv}v dL0v@'ji@tvnUi{DwӠα.圹LDYj_@R_5x YqZ9CBflmWy)KO:ϛTG½%=841'=0Phݐ嶦hx9ϗEɦxK|LXU>kUϥ̡^ecp=1":ֳ7`S#S̱LAO9G4 *ͯo8y5㛲ٽ9 kxR#:ʾKY5U|GH>m@01i#':a*J }Fc $iAr_> stream xYo7b~p>S܇HsMw@.a%Q2}(]IpzE)6 HCr7CPDHDND(ϯNξy$%/DEWHRGisg"d [|HVf2cOn'@/;jLc\ٛ:۬zI 7m\gۆ\k%d1 %^6/WϣxPa` D L~ ' 78Ge uVT6tAP%/Lq?"xn@7AD]R\SVЗ6; .Ks%G☐dl&FAxLg9X7: T4X~̇ЅQu߯gg^1#ڵy[:+ޘ3sdP *, [m_Q-UR/yyVRB `?;0]mY=M'TM_Y}yl%G)g{і Jμ3 J|8NP\8 .!@͏Sΰh-R=$seWegt>˰XgpϚC1<. 9qH=Fggv޿{ݗk4399̓yxG&ܣ.ƨb?rv9t鸦Gպj{!G$ۮ6?(.x7LŢOGq3ۇ_i#y_Hŵ1U\k\@x4ǺlL;bN7ϕ߷? rc")0zwC{zgX?_WKJX\t'5=R ֗igj`T‡?uQg)Bنuٛݡ `Q%k7tcd:3G6KEg94󐔕 2dG)4zgʾI]D.WP\9Y2>sGI7=a9ȁa^8WEH! 2.J`,eUuT%{$4;l`rf޺YejXznm}l$LͲb3GM[m 5C9t^P+;iilYWU(6Ǖ0 l Ttmk}f( h|v/:^fS(L`ԁD`vԦC^gB) Sڊ#PdvԎxJj:Qx#T k$-+ UܭA+47czos> cB1 '<3芯~x&9`1jV5Ʈj\#>I1ʂtg/5q,< L :d[yD(G-|!nd}dv$ /U.T0n>wMc2{O,? x^w endstream endobj 69 0 obj << /Length 1585 /Filter /FlateDecode >> stream xkoF}T7!)>4]3tز50`09TޤaАo2.v+r.#`0F!lL9YXռ_,7VyO){V^TUOq?r5 ͲpU".ቲ8@Ee׬kztsȬ&vmn2$Ɨt6r?Έ/yC2M 8;σ]yEkS, ,G%?%wz,G;\ڗA敍2a j5o2`$!8*)0" TȇEBn/ kG?ZZ3Xp+,H4+5LTEò1*;tRı;O *8U Bl*6MC>,UEi歁e|\kirZ dH䪂`f9gt1Fl(z s ǘoQ-+!5VOFdV`(2Bi,ES=dH&*6h;cm9-`k 9 g-X,HYk. ] CXϸ[in,ǛC_SܦQ>+ }(z-@m?Z7ë )L?@Pv=ݧ8)`|M~x=zNMKhm٬kk-bL,]Ypk[NQ^~dp=NN:woݩ>⋶G>QnCA#IBH Qb,wwG)]"O_}Y.Œ~؁pO |Gf&/ +-xdxdQLf][uoضYfԽң>T1\~SC}Ig6r> stream xXoܸ_ȩS"ӦE&pi-Ц.N+$ J!933jŧj>oO V})2'?ЈJ̬E)W .(bcUWۓ=Y7"_ 1ru!gU(Vտ;c*4pvFOM)DҗM]TD5_.y6+v,Bdߋ,굧߲: Kvozd΄t:1]zQKf g;'Uŋ&E'GZrb/wEI2ڌξnۦ%W>n{ߢ~_5-r nɌrΜ,,9ELƧ@ g1o.>=*^(-L:!(hT3k5 i, ;.m[ނ(y. Jhp( 6 (? 4  6[Kt Ne0+En/u7˥|&V"bnpZQ 'V VLdٸ$>&,Mӣ-j mf K>Xp~͖+sX`Ӆ" #@ӓ?}ۤz[,# I!x C=79q.m9znga"SIs  F7HLmx\[DG"T@',07є=ͷQNn-0\x|lv^qv@Kͦ /-ICJEO 9X{Z7ˆieM/}B&EBm͚2z R_\.}GxA͠/-BM+x7iMŹ>p F 6꾣 Cr/HX@gΆ.毰Mc+0{.; pजNF?## `:!%<ݘ-L.~|hj> uF^/ ):Bv7Z7Ԁbـ0iCߖO>:աP^xV^;odEukTu *ž ɥ߂Zz:[u#qE=&;\Cy#6qx\B kP)+ϥ$Yv0[h 5+\2P0C$~1sdF 2 }ߊrxĻ_@ҘpR\Vq4,>|.9hC@B| -vб y7@Snm?T#Ϗ d5T!MYl_|&mYk"fɯN endstream endobj 82 0 obj << /Length 1756 /Filter /FlateDecode >> stream xYYo6~j[OIi)4)ɾA@kBtluiwrx5`,Cr8| 'Ga_>$y9TCK))7y>h3!0u;CJN(Pzδ*VE~Ure$L1cČa4u,M>zcIB$Vn!GCoϼ$.-kq{u3%9a,"/(8 D$gV@VH)7F~ BVaͽ*F$V* [*UaO IjA=וz+i5'c>LmgYyUqKrkʱр; $/AsD<:>qEj[sL_]ioUeMSLJqJ@݌[N`B}gk+>"R&^BIޚmvـb;|iIXVKWC , \L0a3e;1%YYԘߥ$pJJnߕ&w~~Wp*:^zy<)?xx`L|_s,.R_Q$'$I~pa]؟Q&D:ʴͪ$BLd|@)֕ytT+aHe.qv/ .",O]CQ؞ʬX0ekgtX:J/3Sa;.Wesȳm3ѓ[]Kw0@DA*ibtתU~W`=W"SjTyY_6m|꪿L8 >"e[{^WVxޛMΈ!`T jmݣ(ZNlWxcZpj?@ A4h -l$@9oba1Έl#vV5TWw OY~e޽5[i& +pZи󢱂PC@'9 ~im<7(*)@{bC KD(\=dZqE)!rh* BMqX8>&) eqy!DpG9 -A.xgSVuQu&D^ rڇAn'xQj@(u[=hB@]Ңe(`VPW?ʬp!5 Ss+p,S֒J)d@K',DpEviЧ'exqGǓ޽I0 %rh'r"fo_#*!r9^g8aŋNg}_hf Z_]߮o@H.5sY$~_܃V)]=N6r 0oƲ츷q))ʦ/Z[7J0@ ^+~7o^j`w2ƦNhèiչgcGs+2&A0ڴ*lldf)`6Vs+ehJxtP[Tufp B>4-1oc֏ *1BĔ+K|ZΝl+]{ i.M,ːѰu 'kXq,;"I~4fV~ue6?_  V6f~qr{2\~T0*DI"E+Ҭk2gbvugͣ !wF*p endstream endobj 91 0 obj << /Length 1848 /Filter /FlateDecode >> stream xY[5~?bUYࡧPH<|'ΌǛ&MD@gxf%x<ՑeYn. ŴU`V7ߟmyǽ6=_༝|gZD k*g|\rS߹Wg.H|3E:2HZx"x]Nxlz{u1xD'7.]7Ls?JXhqTJƭڕ>CqGtK_ޗ#+T|OF {7*͉DŸ^6#D G^fJWK٬`2m 5]MuYUaWP;ҧߩ|ܔeG?bNKYۺצ XߙְaX۶i?{s 1sTۦuL\9:WmS)A:2#{eMHHeHʸ߻t1ի׷@LiyL਻@xVm. $.nh-`/,n[KvI2]]o,ȏӺf2a ޙi|?F7xL)(2}7wHj B4bq +Җ{|)*f2}-SSo7oQB)i<Λm6QWM^twwO 5|-Bn!R/z /Wc8? sY`&D̳k[ՐAB2VJ$d a3s]ę u?P ,8 M@J4ږ{WA @"e"ΞOr# ٞ>m[oh6sMS_u; %ziGRt ՒTu(:H0XAZYY5S,y[h0}-AUӅCCݩ^U\8L(w<;6{˙/E9"&,W ^\[΄V@~"=ͻK.+mա"m]vH S,4 #wFݡ.ʦ.]*nZM9"Hʼ ;mDw(:)ƌzG"1P*ǍmeC /zJӧ4(󾣩?Zہ} QA GL(RPBySYmF".QNYz YӠSy!JclzDMxJgq G2(8nwҙaТARESK¥]x'tnK^/g^$)p6mYG '94Jv`|pАb/X>rIML}OKE4sL \d-}6 }eXR f%2gYƏRM>8RbZ}ӍlnY?iG;rI;bۚ .mTӱ+RBg'Qe8bCov=`2:D[8PHD"#Itty^,Pe,@+tD!b~iH4b)C6}~BEh\˺?mфD0R7Y*X„а,L ShaHYV $"T $ b=TJS,Õ{&4vwN>6S?<Ы endstream endobj 98 0 obj << /Length 225 /Filter /FlateDecode >> stream xen qNK*Srg pĿbSq8 x&R̷ ugwH(>˿Z"P:gmmj=y^TJ endstream endobj 85 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./figure/contraception-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 100 0 R /BBox [0 0 360 360] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 101 0 R/F2 102 0 R>> /ExtGState << /GS1 103 0 R /GS257 104 0 R /GS258 105 0 R >>/ColorSpace << /sRGB 106 0 R >>>> /Length 4973 /Filter /FlateDecode >> stream x\M\qݿ_1Ki?t٪RSUY^HyUOӸjLλRxC}tx%^~ӿ}!Gn??oO_×.߼p?׿W_˷O?}WKG@Δ.'5 k)wOk.^q4&cIZ)o/ L>^H!\{<^Pl*P^6(/䔯1/P^Q׺`2^h;K\l.n/T}^0I8^xr^pq3y۔x X:ۄ-ZגE3y{ak &ok5n@y{ئ&\{dPƵ5!ZzLi.qM8mEZ ^C>^xcq17(ozI7?]du< ` U<^޼|OO}C>åO8ȋ0`1Szb+uheY˛˼$ү)h.\U™[2i> /D.>nbv'5(><ό]xg>%UQ~M=91O/nB7Ok bnS%9 KQL:Ό=(:]C:Iiĺ'a:tE KuYfs 'QE3V,y3랓M]<*1DJ&dIhp93BO$ʤ$wlJ\&z i1$& >\Ա3.#L~ s|f%.ӹ:=քe]8c!@hjT!DqDd_OO2@!/b yY$=E0ev&0\:S:iudEeJcGTse̺&ɹΐg2@ģy"?E  S$4/2@z Q_1Sg sG(<~[tJ811`?KrgNqgO-`O6H._`|izM>3Y0~$[-[=8'YT>k4X(׆h$ņXO-#L g2:OKAXZq"n_V'X:fd'0؁݆`C|톖~F yLnj\!˞b 9>0|S44 4J-(G ѐ, CD }dtuTnhi>JTmvv-e~0|&rǮI$l̙ ru/W[JQtfC/U͂ɪX,vo!X[U`bCe5䬥6ê5G1ʦb]Ӛ͓(EWoVf Q%17m ^}+$;ҍ͏[zz\4U<:rPo{BXZ:CHgۖU *%'Rd1,$3|N'&^LdMG \?!k\Q~iQ?(,4RH/QL/@-7 YR0tޓJʌRqIR}0]o4bط͇mۤ4ˉ>޷-}?kMm<caP·WL|6|hkjX/nw4ps{^FeOܨ[ =^am^WnsC$>_NO(eB5j;gWY з[w-6AZ.Y6}lzb3i [bYlm;bkL2\6~]ꑻ[`aEOo>qnIA&_T h 9<0jY8@%/h@c.+h\̊q6-\ mh'v0#ڵ܋h'Sg/Ѯ9;ډwyEG;sNh=# -Th'l܉h7 #N-﹬Dv` cC;>r;C;Y˅vX{nS-77K,qhB'2MrYxΝ(!!ױ1#W20C.DC.VہvZ-En, c 2{i)wC;f[96KJ\,mhWd-$ɲǰ]U;ЮzIk\_G;1]s&LЮMr46KqeE4ju5}dxjJ-Z"kW@TA]Sֶj&+$pbcI=#dÈXwdJn@%# M ls=G+B(RjMw2ƈ4UԨs@ӭ,ogya؆' "NhTw/p$)q͑&^zKFϱ]IEbF$!u |B7VtQ <>sDAR"`_>D;_8pbe*|93`@+^ }>%=r|޿+uџWN)u| (4L/k pYk}^ayZMdnMҩj+醵]쒵nur^uէ~w{<]qon.{s3w{7qo.Eܛ{xK*Ibw7W;t]77~xon}>Q6H=|6 ;,> Zػ,zcSqџxS{-?G;fub[o?}?Hy$Ϯ?_|+wJMz g}owoE'fsu+RWCBt+> edz cob(JZϛ{w;~1v5{Rn(}X'&14>&N \*g7vslkwF޽Xvk?vdCkBTk(Z4;KgJ /)ܻrz$<8֮i-X;dE^D`uw޽E_wazo[җȿ_ w!6F endstream endobj 108 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 111 0 obj << /Length 217 /Filter /FlateDecode >> stream xeP;o0+ntÈ *yk#!!*15q"Q%{jSxK@@ d(e?L8@MmZ}OCҳ]|W 0Yap_|Է1YN,pߴͥcs^uD~K!mCD]p6>~3yyNȡ eGȶ嫦%!񾘲ņIgGRg endstream endobj 86 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./figure/insteval-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 113 0 R /BBox [0 0 360 360] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 114 0 R/F2 115 0 R>> /ExtGState << /GS1 116 0 R /GS257 117 0 R /GS258 118 0 R >>/ColorSpace << /sRGB 119 0 R >>>> /Length 3943 /Filter /FlateDecode >> stream x[ˎWRZc+6`b #ˊH>?u^s͝e1#sHvrsrJ{^LiiayM 7}voRZy=j)ƪײkPޣk e`b5jrSX Hy5aQʮA,L FK[ sc{kGW>V+'Lƃpܳ[s)m>&Rv :T\) c~ɥԺO@ʮ{oݒ77G-S2YӒ[8lɵ̺hŤZ#&Z\ >fA@OHg_F[nmu/AEűoo.gI{;J>;2SQGtSf~zcҩO"wOX X!9Fӻc:>`Y }ً+ic:sn3k >1 $/j|t)=^ϔ'L~^&`qZ BO$Ĉ PsBm{"k@P^HѪ6պI[!ōmۣ*@ax) '2~ 5$ÉpӿI<2chTyhqt:H"Dz/'ŲCUթD,:phN(<"1X LBK!Jiyrsz$6=$ NCrE];5LrˉdB&Lڕ+f<f6R}2OP\nȄn< 2~eKdxJCaM^.Ė+?4VW;ʀaO ](*eFZ/XT8"T' Y?RtLx^FO^Uy(DzD2Z$WbL0)(=z]nv./)4X0Rz,kr%Ev@nr=I6'S}#28;`2`74[žZOk`üH'+R]LJP`,W̻Ӱ*ހ:4^ gޑ?9|@~ ot>oc]+p0vƃ4`|QIɲ~7dڳl|maP>2X||QEX[v|UoschOƯ*S>Kqz|#>^3RS;[akYzI-x=<ޒ * -)zB3V3IhE=, qRVz .źPl٫AhQAd! jWNx5T+_#pQbS~9r*Nz@'!>,6 9V}}QrՠNQU( ;vUORu'ĵ*r&"hC)$s`|*D", nGpGDM;53X Sf'.+72 Zl^}nN16ai`w~pT2/+ $pxUq]xMȎrGo(a8+ &f^Bck hq?!2{mTuM=MҡMM FI fM۴s1/%)/h x ɼ)^ɼCWb^05/^޼ ᓟ^okfJ~^мz#§x?NO~y)qx(aތSTۥ!qxAFv܉tF?bCdIt; 4CLx Y] ɑ",BqSUY~;9VxJpA9G /)! 4Gp^şx,#^bm̓ 6T.f%8)1BpS>!8)1SBpt%fG.BBpt&I,)\$\Ep#cOoȑA fQL҉9!8>r"zvx;s<U%Sc#&#s'Y̟7l#P͌\UG#8.FrGt]5yaxMW7_ls6k9,̓lCLxG.#KX"80 f).ov=/Oql;O.Y"?&_o"p]6Il)~Ń67p l5t7$8!^P:V`ٰՅW6tnˆ p0h`WOC,h3]> 1xϔАmTgGa 62^>Ͷ+>QGCkqi+ߖz|p+_g;,P>ghYO፩T/ӓx6IA7G)C+og$}6=Đ^S:KoNI!S%DǧP,ŵ!'`O|mi9st=?B NqnC>oTu', a9OUlߪz.)^LƧs_٤}:-4F Qs˼Ȼce=nD!YǑgD`d/f + 6 tA mZ^0O( 1Q@YrF1 K*逴HA7Q#)Ps܁pxNd9zn8tQKs0z &0tQ=rXzL)yx(tzzp8[=meq7yOtY=i}01 5OgxtA4iPeN?.3,\tzrxL5>=O$qO$ucd^tmZ'R[#M|~0PEsC3޾ VG}w>q^^r?/1W>i\ߗIb"+\}hG4uLOHRgg%m1<+?%ԮB⮑hf'B?oP}]rpKQ;~VrO1GaNFC/vиI'Q{9T"`ԥLdb<}g˿{޾񏷿}߰n=<ٞ?vUqCY6G/~Oo_c@x#1M||5 "׻O]Z97"O:JVT~]=C2ݿ$ح5'ܥA}#p>$r"L=6@wN=9v>I;w@"!kƹW,…s,v9b'3V?t(_~X퓿[ȢS_PAp endstream endobj 121 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 124 0 obj << /Length 2172 /Filter /FlateDecode >> stream xڍXIsϯpBUYA\&'{Y\dvJ29,1梐|z=/n,'ӻPwUnmtrsPe֜$֨Ȥ'7˓Oq:umyޯ]ͳEE⏢?E=ȹΟN&LĚw+!KZ8_N}sLQ$|YWK"&PYYH(SVBtbn24lQk82/*1}R8VO`kߺ$x"u7p|.1%4fu>\pUV|L0?vzWgJG33H } І~#ba"dCmsqWE{ݒշʹQES3 }fH0$Nl 8"=z;E>8e\,~ pҵ^ @ -4<~ױf3-q<ܺP%PNK3k!~p5ky`grf/Fe2^7cj<[v%D8@?cvklpXJFueT90A+c8Խ6[K41Do҂&M)'R K8-vȳdA b苆JɊȖG|3` kclzBgs%f4@i:ȃ¹] Vv Xs%oxH:(!IQo8L1_Kv1@]Q$"KnE_H# eH¹D2Dx%.Vi`5qlZ!2M-$TRnC^J'*iՔ[D $U67`_c4YFm:GeyJ9c('cGh$Vű>86]c$Tqz ϮtMi0<`|.}\zJUBwLj9qg ))"|y:Fi T1调BƆ2cC4B8/JC4CPxiLf((Zym O<ͱ*7P|Y`<fP+iQ/T{b iU6;ٳ6%j0^x}v>&g='|ѬkmQ~”k[f  Z/T:L.ymf%XW%?Aε5R}"LCzMFHoRbo!_Av2j?F^HV(bR{oM"rx3HsvEm٣xw*2Ti&oy9 !!fNvK 4EJ˸P"`L~K_7q2D.S<02w u54_=3e3hp݋ A0lvK@>zf`Q)ͨ&WP9_b.$b1/LZ,EAZDP}KT+/po't؊e܊9noNYxQ:NDÒ|S, UNMD?;}#3灝&`~X#!c/Ġ, 2ȥ?zIFnKSSGJכ䢽u}QL<#ͻW endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 799 /Length 2551 /Filter /FlateDecode >> stream xZ[OH~ϯuH4L_V3-B-Ʊ;v!\:ҎpεΩdYszYL &bR3W0L <S )Fhi*ôaiɜuXbJYij Qr,r)u²VtXNh  j 6":-@I$g4@w m`FB1둍XsƀupbĴ跘ce(Y U3Orraek !LeM aF<,@<ǢbN-0 qR8s2(ctϳJ 1KA#Rfq84HӀGEF6 F IxRPнD%0y(Bbyor`3 zс1@X>؛ HH*a"T#h^HP ǡ<@p D`ha1VI  NӔUԈh%,-:G,9bK͒jgmQW\~XM=wo]]Y6΃0sŴҦgoe]|ji3Awz]3.s6y9{xM=PKP.1#!K %_}3jp泺k247qر >&h04UUy'[ݣm݌I$>NheZ$yaK6^qKu-L^Tn@7(G}u޶7I2)g4HgMѾ9%1_^y  D+˓his\/ס"phAAivmDa?omk%ßn#$':;!^(KWV,¸U@"J =<xUjP ̩/=dq&6  踁m<PŮ6uy7_'y7iYbSOn k`Zyf Fb:[`*+S fhQ3$Li@.LغsG5_UNDE卄ML)*]6E;R/oPSޠCBNIQ!*caBF[. :PX!F{O*dMZeSn&ɸΒiZui9K_ƐdpHjpdt('™D92m֛5=zn:Y34u[IVsf^^z/-"_kI2Dz %蘭a3~Km^A!eAVR%z&1w<`e@Yq}P$X2-m^g-|Ġrf"4)j4<Ɋ&ge~E9Qg *& Y#IHY1K8u% N2XVY]5InZ]ԓ/-7L#-Vt+q;)~})]=Ӥ6Or}{eb%$75)sה0zG?\eUYW)*%xSο+˵B=t 0q ]d9֢żҨh5Z(k*fMJ:_VW O  gIT[ǁ #V@9}I w| 9Rx}Eq~ p-;xܶtA QoN$W䚾>#~B'$,4 8&@>JF^*sGa܊иS6X5z. B]R@o^yr_ڑV-CX&^yvĭƼl>OFIQ endstream endobj 137 0 obj << /Length1 1815 /Length2 10981 /Length3 0 /Length 12119 /Filter /FlateDecode >> stream xڍP.)^\Kp'w$4;-PE/-RCq/wtw2YY~z3u-I+XuHHsx9x0!. `3CgK8ř{F4, 9:. CaP￑5je{ +W' ф_=8gv9B 70 77 b@d4ďq=ʏo& A<񈁒r Ud?N)) s|;:W\*@a?}<[vK- s 0#tc.~.7gYBߎ\3IAϿuuy.@su`VSp=$?qx!.OEs@0g?>5 <]Rj e<z??q\CapOT|'@#SA a?_{Nտ 7|,d/X_ >V|,/؉??m?B_F`|r?6[= I@c?wv9qQ@wؿsKp>*o= {-1f`!v_C.+$)96^3l%px›]qX?-%z;d^QyWih5{9ш13B5yW;SJ헛>w}t[2_ g\w{T~/16Y.y[480!"mՅ w|?cZ=(\oeIm62z2CR*3QFoDEiŰWʮ0&e/1P *X^}N f"{csN%2T5Z8UQWoUpˊt22iżzq9m#'eTbId*hCd%ADXtⵆvٽlI:GkUFVWT9sunjT77)3;xLHJ;9^aD{ZkyLZ,?f.Ju[ bQ~j[=4#34Ю>iKZ[G6Q0:9oɖګ\w` ^FjAQ"K"7ҏE)Abb3)J?&R*ټn7gq! J"D {- t'P62S5M? wR9XB| R0v SE&lagqY+cŸL=Ih T|C[܋N-mEDE acۤn%k1X&@1Z a IXk-!A-p;M AcO&l^PR]4侧䨎-Kkm|y2ezsJNXu5Y~ڮSjDKh)@|PkHWr;oE?YwL_f({D[P%PFuPj[7DaVQ2`Ēh*NFg|^s"C^zeo2Zir8N/Rq$$ t&*!/0:"32,1qW~e=:~X$gp OAsټJFI(u]ܰx`Qb8zPhUq;,~:RV}p [63}.0$4fa-+)E}"F~C,}T -x3&Y ϫRogX&(D (9)zng ӻ*ήJ"?64QY8Clh¼ހ(]UlAQj$Dl+GcU (O7.ɹOTx,|SljNfo]F1bҋIG7|x!!AF.4.od3 B;4zW?q86P6mLMu[FSk9Ӧ\)u/~53m`}AWI+>V9]Rlx^nL 79'V1ocFt{f/:8#+̪ڊdâNw3 Eٌ1)nH:iQU2cF͇m[woI\KenҹKc>ΒY+urFiA>_7{fB^m 9!R|{ݟPX7gdպB= jIVyjP*OnqhN9*몬4olAtQ. 6s~՞yL@Q `R8&Vz؂ 8O9N0JJެ%2œMv^)c dH5r;k,zx)cRLK̡FTdT>֘MڬQp ҺV)e>T\]1GeEq!89I~RW2b!TOJFޙ3LuM pq_P~)9sBhUQV_0 }ca QQV]( \]0NTĖsT]4=i;70-}7(<rz͕СlgW8KmET#!wz᪗*D (}ek `f@< oh 4H9*brdLR L}%V.H$DHs93EW>wAɃKǂBzq8)c [=+F$bJˊ#ŌeN1er= X lqWQӎ-qVLנhnF{zجR{SKLyi,׿A*xzi7'Jh_ Lfy t04RuZr+,Į\p:djL 1eWap7zY} XTasT ftޜ' fK_84"6R5/\?;l5+2cBcEOm[/bTڶ 2f(~1!<̽_q B0YQ;iv ^ #_30|)=^DE'_nY ڡn¤:^JyяY_TN![-6L2'}WNQNN>#[^+mRv5)[* d>$,v ^5#:Iċkt=7w $u%y:+ BcsIsAX`pX*@JogwV3pTfMS\+ %ե!Xcxm[:>EbدwCWFe)r -c95[ctwV)Hax }K~q9 cOgQy̍5t_EJ;6g[t#O5eͷ( GsH쟙rj?`]k]S?z"$,:}yNXXE"%=,)f֋Vd5ዅVIw͘{0%E,@Ƣ5@fo"&` ~I /lC]fΩ]Z_IҶA./Gzc9^[܌Hlߙ=2=QpW+# H$Y~8Ll4L5u"j}6M4“#:=ըmjYۙ/=*} # P;\|i yLx63PS0@k&>U=K{ 'N _7QCC2SY=m%RC2] Su&L7uϩ5 @18u2+'䡖o#ue<Rޡ|-,6Pbww;KU?nqܸfvјׯ3ӳ8(.twT%zWCȷت gof ^.c4zv/Ue͔= g_ Cvf>3`U;v s9,bf=beʎibWkIc1[zH/U-EOJ;TՈ]YƴGF %չPbPՉW.>Т4ߢxa:RśZō:=o&'P)=.I]]UA3l(D,cʍ#w #6ٯ0W^b9BٗT XT:OJ pʅ:R.UCI rҔ"D(L:?K}'QP$8bմsvxt Avtr-' 9Gz٢I@ϲ3B34䝄.U1h^ fP/ gp*:>`oPh-=4Ϫ/ipPI+)n 4|L "m-HVg5OhE0@a!y+ȣPcTl!6 -jաM{f0x.e/+̉I #+q|uȶtz_ llzURF&ŬiWW#?\Ӊr <ЗIpJe6kj~\IA?}6ͤM:uINE+*S\K(?N-I**(v{y_U#*2jNFl{um Ψl\/O |1#E/߻@T3dž<ʹhgo8mɥ0zvXVE"| o4pp($C B?ȉUƒN$"/2/j.G~Ne-}'m(RKOnF\jR!#X]罞sܳ]78>wkQR݄$[Ȗe'Q|>7^]8߁`Dm7'򉙶zr!I#1|ϗFXxh?% n~T4UkOT*1%k E3Zڱ߿id-Dj#UB#ڜsKɁT" T ^* |k* v eMk_:^=DJDg, ~L*\) 4 ^O52Wa<`"?l{6Vsc J~bI U# K}Y^PGiý{XQޮFKuU8H]?ɶJh*kUS1y3e| ϕ߳Aډ+ɰ8Y }F(&DCQJ׹/8;'{G LT<ŧ@MX&CQD쟇捈[x4܆t:Z(>.7qJ`FL \ _ئoWXV֮# E'@+(|Ģ .ڼ~e+&zG]ތljT<BOYvSMo# ([89 ~Z'nyB O~ /EdrsL8n+X `(;0)0Q !:vf⨜xWR;cc!Ô&F>֟{eQYag(ߕ5aa)j`\(vtPd>27(^?!Q%:BR3?պ!X6?` W;3w Ҵ:'v hIꗋo_fdaxN_'QaT7r;-vKn`C;Ɍ3&˭F= F/[ kOMSk!ٲ8j>K8<7%!>!u'};qJពOOsG+NÓâʻm4NNz*^U/Q3$^S5 q!DE}фrr !<&ѐOʒW\GVhA MЯ 8@2IݱLJGcf5^m/,v}4E{V`~KL|iE.$ "4;8^Q/-ZbMlٌ]e," /Zk}OSAvDNfS3+6߳w)(2 %X# vX]_:k&Gx1eUS L|իkonX*}e19Z#5ܜtaO@L)rywB,W"I>-U]: i?ɦE 1ԕcBz]ZZ[Yh8~.zn -CgYA\yPő{_ rD:~ s(a@^LUOS^;`r!k>}K$/ࣜ+Agv%fN77 hRgXc_>/6 wF * $4!swI;2!:ճ51vh,ndt Wa,Kv9j%Er(2Ȥ[H7n;ҡe*ƽ f m Q-*KaWyb1γ˖8ŅG>}. ˈ4a V-Q> .FUIKFR_GMsc0Lnۨg<i aoJ_hޓb^W%I//bhbO3_z~;bܞW]''d!W?Mt%k!P~2#4oR[|@yVuˆ:n2(Y,FqH*&h-U+% eR΀FDm^b*vF hh/b"WYϚ.{S*+t^GT DC+gյ v 2;A2 sٕK))#/u =?&5X >g$P528Izi3meRO@. ╌xյ*{h irn3T*Յ t W'_$#IOM,_Ϛ3ȢKsC6J,m(Z.!Sa#P6f^Ç%KŸ(,A?,nR y0i?epzQy.O;BRt}cr^JC[ہn.`ī<@F?4T. kϡ~<$/i[jT~V߳ E}ARcgd۸bC31}qfIl8o /2vkh ;]S_4X@qD}[.hp3$-t)/>"r1e޸`bR J^J~S5*"d_kI(Rjq~"B{Rgh)>v얫O{:u|u2E GIyZ^Ҭ$7"W 79Z<==_<FO yYy\g=AU KI}on@񲈥[Ơd8oL=2ɮRVEǑ.XH Vx/n{c 3HoGjivjgWnfo(?m!!`|;I^j~/Vl=q5z 3'3yK{~3/AocJPYHUl{K:%]v5T=Q1N~W|uel(p 7sUL^㿦+ܼ,K ybbT)qIy̡=<46es:vc}I;(^gabMu5c9]}8}*x_ьFNc1_)}\6ߑGG+rZBhH.x4m[iHwxNz^/eiDͲCx)!J*i"_.&MeM $ f5WyOgb(u?ߗT m4gNm9F<|GZķ6#x޸v6W#g_e|#%LᨴtWPIP5U Ҍ싄Y:2fX 8n҆"u[`Sݗ)}LGK1:x{;O6XQQoG>/(3+Mya 51/UjӚoيi B J_z]m9g0Cֵ?/U}[DMX2@="zZ7_"oUO&Ӷ^?u6g #lm ~(~W+"b)'8:j Td)- z!]?R%jXQƢ"~F3Ig 'Ǜ.p~hŨ 6:\?3C\ (hѠӌ_u&4"iSJws} ’b &6zM#J)a17 S[|F95F$Ccb5i 9in1n;s}:Bffɴ>wy endstream endobj 139 0 obj << /Length1 1594 /Length2 3725 /Length3 0 /Length 4729 /Filter /FlateDecode >> stream xڍt 8m6Y-Blƚ=o!1 ef̌=Y"%Y%!!B}-K4FBB(E|Cq|113uvu ZhI.HAJ% p$)&f N1kBHD(ZKcش4ӈD <,RPB)*!"(J6 FpDbZ$/rr1 H$ 4A #,tgTa iJ!Looo8֝ 'Q$a7DsA*HЀ15S t?<$K D*#Ɠ)<`oA y: gF"Hd,": Lt 4 DĈza!7#;0HQ 2 BnC"60Y"Ds?muD77$@D X C2(98RB> 75lqn4%QGDX3+!2[:D nhyK`}9 EWK<)f'h1b@ Q87nVA@hl~ E)a#obdXP$z;n(͉P1 #TMyR(cSՌ7)q$ KE2ct&8ݘG[]s2O6mwV+6+VLM)EiKv&3 8L&%1{?s 4SbmF'n3+&n`lzס&0=NZɜmR:sțam,""e;EN]{ 2Pͷ _~+ؾI{I#"pwխ3>*PZ4o _7^<;U@:m(3пm(fR#dƜkI9"wSW}L~?6/#zkUx-M_x݉a׬c }{snOZiLCe` aw>}u+9[@Ϗ ~wKF (g}뒼վ~}5f'sAa-> %ٞ|U]NVF,ĵ܎~:>#?, FVGvOWY& X1N d3a.piEg|OZ{z„3,cUK=YD\OUW=P $h}4ay\sa_:L/ k)nދ ryh#e`P L{ғ/F϶ڹWXtVC SWߗp'XZfG;Ū'Ϟi4_FLfk3d5y_MU0SلK@O 펢h;= 4] CR^&+I/gÌq(Uijף%*mh^\Ѽu(q0UGno+ #;cuRl͛JHLЙukt:N=%U4K#|#f|#FV~u!$RpfWfKʻ_K/%{Xͻ$?썑>v8X/%2YΪs%1g';ɝVRǩm(S#]N/ L2Z dEt=SڲvUu% lv9N\_\}!_\6T }Ν= WgU˛C+vuiw[Ŷ ^\9T#tf 1TlRmHGVOzꪰeO OW_;S&x>pR |Mduz.uKJ.Dd(usn=}c8!04{E ѼfT ;\^.K`ŰB/[uvz\Q/q-ʣ.dˊ'lO oveC:R=q{'Dwq:I-Ѧy6->Fejr5ꧥCq/2ZekXyhVh _9.m?"kkSIuU9]M2iNƅcfƝD3='w~H񽠅C"d RJ ϑsLJL$f9.y  (b- nY _㰼10b09ywAl=JNjץmI{/K>=uE|4P!̰ Zz}H֊N겒z$=0g- G;jeK"YXΆEzU.@8*&ܯdWxID[[:r$.C<Ǖ6&:lD/~q^B~z'nd t%+Z0m 2$7L7_7K~nZ)gNhΡ6A5gOZӳ-AsAޭ)&U0ffWWE^Of˿#Py"0cJ%jԎو7$>ĵ30M$cgu-_gzڧ+¬7K=NEJK4noݬgS_y#:^_#S]/>mJ$2 ?Z.vh,V񶓽6S?ЖzZ\MuӻqS kΫV^GG dž(L^"7[+O?Z}B-H!l7ӰapFaș-/잹J^]G޼RW]2BkF-O[_%asFiq|3\`~{˵c k ^3" " S䓽5*U/v"twrOU|$h̐XeģsŀXCȐ̀V2&e!Ҩ JMK}g=ojuDo6ę8%# ds2%O&F$әՠtkޫgu =%e?F}#)vgylmמGV6I]~o4e÷ǝ^wuӳo-+9kvk$)^_.xcHoX@peR`ǵ:>D¿qoK;-|hN86'Θ_ݾϓ;}0ڕUiyҺJ񉏴l_' N 36D~6Z0A_U~wƭC.kka'5BS3Д`z\sȝu~yZlVvC$5+Jy,Si_*nם(o}]G+{ذ)D`q8#ݬ<:MdAL }W9ϖrWO[j)XI?;k0]S”3p(_'ΣZs]t\l{~e­5]Gx5+TqUFiYjEr `ZtP`{ypGxl>ϨlϽB,oզ\j踲xwe5W1x}EK2?~N4:ң勵.5 ~NؓjqMڕ/e endstream endobj 141 0 obj << /Length1 1458 /Length2 7008 /Length3 0 /Length 8006 /Filter /FlateDecode >> stream xڍtT[6 4 4 ]!%HC ]"H4J#HH7H G~Z߷fߜ9:6pk  H55Հ!>Avv( 򷟀 a P7>% 9B$PLR@ ( 7(ܡ6M>c8 $`Wx!v}^8t3`M|#Ї׿JpHۣP.| g$a'z$r5;Їۢ<@C`ț7 v5x_ٿ AaA`0P'@[E`6 '$&:o[Tu  F@]PH>$׌2F S" srapߖ-fck 7~C E@\O= \ _|\.ۛ1 ~P[n?El`bbǾ`*pC? @ l0'_1ǚOPA xE@AQut@пO~ߛgHB8.. o>oNW'#7'q?#r:yF1j]M j(Ѝav7 C*POC?~_s :p$s% _o 7@ɡ~_/r# m~OPDB @^7c|72xf7Gݤnf.( wm 1.lQ BE!7&Mۿ&Bޅ4]헾X?աALMȅҁ y 1?KzGkrՖ|D ;d+fDTz5\ pkb6ŋB^P RmŪqDGB1MjYx:{9_W ElMX1nk6@2jV%.Ѭm qDudVp^^NGTa=[X{"4ܦV}X!ͤd.ETlƏ78΁}4;x {8t=ܳ{GGsXi0XQN%+0_mHB'=iL_:dl1}=ICJ4NN;~kxz@V} Ja;7;WPio.*?Sg g,5QJ[|^Ӷa?-y16yk&2<LR0BT U23eE阮$KpV]Pkr*]^hwo".aR#M5Q2j^F_)0mhj9zGǧ枪%/EFG#d͓27 AXaü#{N.xL^zێd253Zs L9M n-^YH>;մiC$hW0|5nqXDEssa>|T7<؛CWEPPPT0IbksL!J\ƞYMp oo2ǹeo*}ɵ:Ym`Yvwb ?(D44'U{-CT;%+>;&181LfqЧS.t?s YI$w:/b| (?VfE[;oh,3IڵhFkE̷~p9UTCOy̽sm*k-PPUmv]vK]vi1N ,A<WcCiiI;n'VM<"۲w=ȣgEԚW{> +BԆ(xNh0nG똑]U4p|aNũVM.E/]ܼ )Fx^ѱ6Gд.FoBâC$D~VZEN2}Qt/oߛJ|i?@VvzeǗ[Tr͟:LZ8 Ѣ:\3ڞ{,ۏ ffUT\Jǹg Fp{K^<>ix^Ȳx1cuY5I&+顧\lL/.gjCajt ;FU.7̽5I,WˆE,1 K,oM=W4Ҿ; pyLpz3%4+gwxvh0*n|,XOdVidwm&pW[ѷ y!]x/MY[h>M'-xa;sbNeq8gP6eUg>eW?x׈4\55R] KՉ"d*}LEGB;CBDl]EaD}ҢQYכ:38z uA Ӄ-.2DwѪkA%$?& jhxҟiJE~64v65t-7z6,3"4fS[cj k'ˎxNqΠP7 x,Xc+WDv[i`zeW1Eq CjARyMo`G cȼEZ@:fΗ{Gxgt $E!3d[.p[EQ pRv[hup Lp)#މmVMt)My1~.^GxrDߤs:Cw;y(3kw547. _dxmtv_yOmo:-vI%2SU>~ni3+Xɏs }Zalj:zkQ<(M tMbvc*vl+NnIJRǚ1R'"0)0>`LIa*4ҭh1q{ltC}p~8^p s9|kX2P,Y1ָuo dYqS>nTFc=+C B̮*ıł͕;uLC~\XwGKiE4IMYӭ4A`=1M^BDmF*.$h+]&9w81xOҦv"rxWoDWYn wbbֶ䅬XTGMq+<ȂytILQCyV˰=êl8gUs[;#M~{kF-3-7S}y(NZR"SE-dF; jÁ of7ę}mܭw]2Źtaw zktp[I5qt9Ϭ"|UjB"_aQ,-:XQC8|' i9toTͼBU%s]Sƹ e ͌*$DK~RY S㍋j!y%[T-,^JWW^ yn k6N6jD<_Iiu-^be74q6Ce{{&uR36k${ٖj5lfQ5w> Jf64}ưGkǺœ@Z),] {@`'¹1swQi/1)줕e&K*n9>3Qvf#V+i~ߍj?`iwZ#d#/‰ݛξ^&8rV;}[bܯX?J=3-^ĬO-0|сoÝ3OG=>05K(Xm/,awX?0z Y?WH M[x↲f&Ox#5g஄Dz-=6*|">}+pM(N^~Udd~@~QϳXJ v§(~6K eBMJ.h.wc|h"# n,;9Ι6d/eʫ&tMz3$єlUr/>ʺ睕5lOG5SR"`K[DCke.UU7{Y}.R°/P`Ǭp'j̡~EjsTh@EJ|: 8*.łe0q<JQӡ}jJ!AeDZTd}Zv@M噱]'MdIvs.[I.|B7ArV 9$iɮaƷ8O;d Z KG/G+'mGgr!vY'e5A[}֜!s>5Q~1-XZ2I"vM  ~ jn~ZhP&ҁ˕͌6k^<ïomM") mʄ> stream xڌP\ -wݝ -- :3s'{E.kP(29%]Xyb*,ff6FffV 5+W[?b =b@cWLd'`uX8yYxs+{3_M92[9e1~,fff.v 4d^ԁ#b:|T!̬L]&@ +{Ab|g+O.3{,_?~_ezNRV^Չ:x| ,nn3QbAS??Ao,ic`6bf_.]_j? κ/m ffVnv[+j { h"i 4Sr5,=PSt2=9\@KSJ؛:0VN3H)=00wpFQN/߈$q~#Ŀ$~#Vo`L(]7eL 7]7eW@~#Pv]7e@E<|:_t qڀ&hZ&Ʀ6@ _W_ f` bHI~JLf@PJV 33vCD?e8whмC#&lX~ ~eG6wu젅Zz9Z jZ4?[@3j?~rvԌo5(#k #/AU8e{A8ں$qP6'7WR*8מY~Ű K]n(i459η"i#h;7>m)?} T:''E2 }vl(prFQ*ĸlX S^b!N=V/tI.)+! Oٛۙ7IJIt~'ql%>:skX]ztp !oތMQ,l8eawo٥P{);^PRLR2AbnK'ە$ð^nx\q+&[*r5p }yo>ƪעPJk oD,ڳzY2]]ljA1 l ܶȩ:\S#Yt?ܡża0}<)X࠶=-_ !햧?,-'I qP~&c>rhBU;^6!"bk [jrW|MĖld uxfUs"f~ UQT$T X?eRapÃxhFYڳKՉsm? =CC[G,o }gBsSԅ? v Cw d{OowdbDi򾽯퇇E' uqzѪ~zA9^Lΰ]^ύ6**I;VDEjA+ Oةf8OS+aj\))4Bm%bp&\6y7|LzRi|,\N#T/~5(<@) J᜶օg]hO$"tWm۩KA1ԊbwѾPKe1'}.C 3}}T 8F3D3eap"߳f?7cF=R bG~:bN~(~'6ʛr4C>^/3.5φ.NțlМa&?qy3iIT``m#|j8G,fk`3#>|]x[!bɳEo[×V5$͔Rž,j&f~O k^8jHl($Ƨhc=(UI]*hķ{swvj]6[pna-n4(Q xHYu"ڎ:㷱>#o]߸pnVR;o= 0B(_a'@v«4ft'??5X)*36L^miPP&Gf! ` I8o;F<Q|5d_"NC ]ټF f AWgL =G+nQ]_$~B+ 1enVN Zz+?ڐmV{}qj|O{rm&\!1dt9FaT7<9](\[́ʝ- 9(7{L]oquSU܀8O{R%`5J_k5RUݸO:l£IV/xCьI9L3GVP[CFQ-?B۪?9Y5@sСJ!6𝰂cw5k!ŽV)bxFOpŜrm9 .}p$䳾zf׬ R8,VdQ&MvH͍2pG`!B;Ha7YL)F!m'^| xfؼ8$,GMH6Q-_|z/(tBW񪌮MyJ`)"*>qh,~siCgtUP9GaAJ 6]NEFO!p& F7ͮol sڍP^,1eqwj=yńȇt`HVBaxDŽ*!`|v- ,;?3/uc Sd>E}VˁQC U 6:w`BuEu!G!k؆4aKn vl{ 6E[E9mBmwnfK ō𢿝{Fh822pz dihcK%ksZ\eW}cr >WKe]0G!Ϣ fz(B W-p2n ҨT' 8X$Z,k?{ܬS?.]0wnQ׺ I!{E]ɂQnGQ@ufAtrTP$WDV&[/$ ]iCigO \"A5( moּSv&bfHÉWkML2ho Y?>$~2,v:7z/v8oJw4M2T'O~aAo|ax:ڮ]DMhi8j9~R7CWæizJ4דyδ3[a o}b˦ENFcN;Qf?o}c;ćk':bWyla0%جA*.;gx pЭv\z ϴ@=Hii2JlA3A\ˍ0O ȄUXE \X߰RYn9ȐW}+Cbf 5(27zI\)Թy釾os|@mb =~ȴMCKp6 Xh^2wѦDf]fD "7osfܻZ 6g%Ǖ+R[S(U"4IiڦM AdF6]<|ZK*mvFE$N7KcD*EM4]|u=3m ; ml~in A+rkHƶttf2^Srg6jZtK"Cj,L'^`HO)ʌXdDbDIvb-|-ʮ/;:oЭ}!ىc'pv\'+sWFHg]쳁fZwT9r_ : MwaHH'!9^z' ZKԅ deT)9g&VH(Yᗑ0Υ~S׬!0L)G$fs-~`iřGdąnke!A&Fw ` 7BW o2 j`5mxfRgKp@T 'Xfɔ˄s7iOJu(˰|dCyv,݂ojrhdކ*_E ~X6HMW{pca,ZpDk+lzC<2BVMSs9I#,޳Sڹ]ꧺ>ָN:){wNKEoD}8V;?3$b#n Wk6\e' 3腺C +rsgQq^g 8=OwhK&~+%gQ~+^ &S#Wwdj DZ>yIoUûK<zsl{1x Q\A@b!1d_ ̶MDEjP\1'Sj.U6PbG.C˦J阷^o|1ۣA˻f,{uxP􌐟 tђEey.YDyI-^ `$1 Çbt₳{mB9i[zum g>6Keszލ5sGw C Y1fWސBVё5&1WR[eͬ*sh#B^ҥknF Bo?]Kߝ&rg 5@;Kn%ۺt `Ð}F x);9tnHjx<GJ8XFe"..i]oc˭(i'Xa 7Nxv s^ )\] ;KlA0ʏ) x"wQAƘ IeTN/; (-]䝥1zix|Eh 0q;Ysh5^pπũ?5`NVNaf= X%[]nhf,:E^B$]<ِ"lrBɫw_0gi| H/lp|I8]KI44 Je 0}Z+*Re9N5sZXvz9Ōpzsvdc:G:v^fU%IkXqDSOS~Y v{ -X򱚫%E"N+=Τ A@ECyg&,.aV,49ԺEU- 7oܤHЁaުHj;붖A<ˡ1֝1u7د u3UbP?ȗd]=Gb-^f{)W||5hlgRq^a3Y~3wvθb&poBR-7I hF-rLE3UV6uzէPzKr4uN3Tw9pvѡ| *xoVğ 3 Q*EE?AV_~_ᙓ.`ƍqw9J%nfE|U6;( V f/%r]&_2u)I^7MX벇dZ݁v4!GY8Ol (D=Sw b9GM@s]167xdjyq>``uTE ՒGqWEjw|4P-UJ#t1.^S)z -v_p㋊#dVfNE7 L[L "Gu{S9_ n ~)&%/,N܃ܯQt.^iDx?$4P]awq降dC㶟±~L :ͿN0ɮ`TD$dZ@Ŭ{4)OGc=keȀR' [ޒ:)_MS1q);}QhȐz%$4W0=׳$96N\QmXQs,W []ܐSR3RTgeC6BG36iQi&Lƛ"FG RQ2{Gt [@K%"N]GA*&`9qZ6ti]łGs$cxAIN7;&dԷ!PKǞt6^߽ ʲϹYQz>m?ņ7I]z[0 czT |D%):-lɦjKNhs"|7]H7p 9a=G務cWZ t5}PRkIn7RFSl9]ұ$t-%R%L$'mdn~}umrv$b6 75OYɘ6w(`*ӺKT9<"9>Vh7a( WEu9B%UgxD5Xd<+cʮیYyfI$y^(? ),YĕuA#T1D c;("gEwGkDQD8u4$T>Ӈş!КmCUq H _ktZ#NU6BFR4:ƮzVIn}fWB\QGrX^4z;hXjY&tF:t- /V1vO\^0j">*7U%(4^ݶRiq4l3Rrέ$yﳯH"ځLX+eo">aZEɿ?!mԻ͓HC:뜴ypc@_C%aE\Fl-ͺ\\DtX&l.jEH 䟚eLra*/qlxUuo?wݵ(\fvlp+Oק/WI߹yu@- <(lk KY0l=R R-ZG qݤ`,F ]C?hwrk|J?n.s! (4q9:U)0:CIP_ z~pec\ I٩6aDl29_ZYgg{zSG4-םu:3ʹ]^phe4&uEZp W[ɂ\ݦPI湖Nj:~gLqD\*F50nFNHa`qw%|!{N'qļ<=`U 1}ӳ hCvK¸iqsx9"{14\އ}"B:hqYqrBl29A7궈$~%Zf7آ!Wл'ƉLi#kL5Ej+_T.@GC չ)/sb㘅|KKomA`t1+6b]ؽn ;ف >8k/c-`?8uρ2p/UǕΪ߉F=Eڏ(sSxtK1/J6ԉ6`:i:T/ 4SP2K->,S.I4h&R)lm:V$U/ \Zx\nS0^l%{9]'>\P$rU ˷xè P utWQ5 D,aZC5GȈ~iʼdCg<=i4Q﮹ /nV/&P}EG6ުi `ZGn؁rHt$yW],m'EȤVDž2>SȉoZk:Ωu}>?DL'OwdXdqWi⑦#^z+ "_w#Fe8Q"GbNXXXHJm։дXu3<( \H.w>X\ɠB NO6KVN'sCebh aQ}*bWtHz,Y[|cT^8]I":Oixlea N8wjТA=x,d HjM:is)Ȧ:6kt$ Ծa<7m}U$[hR-t}PAS81 Ѭ#z/GmmG2B0yޘ`]hg J!DKo&^o&y&KA5@"!?,o"4gPSgRl/% ToWekqIؑrdؼjamzj ?|\BllE1;nҏsۓҁ }>wK*OKwO0eGzgFsԩ$zQ"~HjoF[L[_T8CȲrEby%ڑjg xp&WoFk`EDIon])aQN{:bvș3;'blh/mM~u5fx×Oӟm$~s2]v8 >~Dj\W1<+8i#^н: n#))NHut翏~!4uS@&<1e*ŠF.!Vq a*AtN`;yzn2'.qG[QډD?!Li)Vo E3_rN92*4fUj=k体_т ި{S5.(QIG|&?iḥRC(gbgdOW%}9Z/2TdqDB(9ؓi3e]9dܥ gB%|1Wa@U"BD )w4+=~9OڞAS~pfor٣l|p OVC ‘0G%~7Qk0j ` tBL a$Y#w YcH_G|.s+*N@(QȠ'\BT\mz 𱫿MF,4xHyn`?xC 3,eqKS\#V#6N=}Lk4٢bS3Bʞ+q2[)xF*A&5 È)wIVOߡJs4h%G|aXG?]PorU~ )9)C' -^FsF˜ZҦgȐҟeC)G‹X8Omǰ\ e!{w|l %jcS+Mԙ&aЗyl55fV6M2>a* EQ{1'-Z$wtǂ`Kgm'l-$oXGYK5X#PPSۜ1R" )<3HC?׭7,Pk"hjo]}9Cҧ(^[bՑ7] V0 d>N쓵|#M-1(1!q4 =ܿ!#I,'0WNR/+".$vV*~}n(\D{4Z7r믺+sT;OatćXn9HjkmXɹNl; ]PΩuj,:/j޲!|~3kI ˲""3;u*IW戸K5T0zӀݗ@0c+}}D `)Z 0hG.QۂUɼY R+p:֭0D ^"6nϮ M%b!E$76]G!(q~XnSMȿ`4a0Rav@zs%ըΨ: [##m#)i-%tRCZTT5Ņ̑8?b:a[larK#kJ; 2pQyeXN*FsqŎK$n[w6ORiZۥlv@!7v8=P))j[Y: /I_*_ұ= Μ ] DhY}GMx[44 A>-Vq%)9,fً]8E٭~(|Xrv{&Ta$7ÕQ|zoNapPIB+ÉVףҹTT=YɅLS3OAdx0Ѳٸ 6S2 '; Ffبۀi\oʾ g `I׬JjgfzqS;<=7DPBʏ,9}o;_ߟ|:L{I:r!*ڵluQgYF3"=8^擵aǾFɻs;G5|. [^oaRH)Z\H+l^/}: /Q`j{KTWĒv7/f* .&nBDZ b/o"%,w۴ 6jDPBM<WMFԬ#ȤU&ma7F"'Z5nIʝ&W1v |.Yg@HkVAiNg;Ooqt|UE(78q<*K#*kΖ(O#Q,adEW'wy!0W;0lWH?ƕ EK2^45e *No$Ky5RVO"`őZV0!ۅ:_N焞2(Wԭ_y>3a8 x}y\u(*'-قFvT\EFzJȆ?vIlj@ZuҾM"}| \u{)M!ϓ!XMK%YUoIU:<צ%@Y[y-/FH)u&#DO뚍I6T}'kE&@ɡʃ )c&CF I|r0H^ g2&^ O;6OUh3"H{,ieB6bҪĨ ) tPa!:g0gz xmV+וcnY 6wd\mjc+}^%UVmCPsz~%`FUx:'ٞҟ1ShݥSl8G9RU,CmF,pa3[9 sCܯ'?fN;Ke=FaCrؤ3Y⦚qLt-Sy9^k!{R6J01'=?oq(S^o`ΘxJjSWʣXlfSrX yB"G(Gra,Yp,U$Jb ~Kў*&{>bWeTҞ/BP՚ڈ?+"૽4AM1 FF 5=>sU w~,dmo>m KPqlY6#!ۍhB:KCM/k22yo, aβ"S@LHTLr UOOeͦX#4DjVX̀{o8(QXup0-èoypI)TFúI0#jo[Joe$P]?\mF9RH:#G唘%;b)'"eݳ`g7 nriU 0~Y_yNآ0$#Љ!NG 'iA%9jBME<1u3Z}'8LzSJ M'`X?0pMNW ~(p D|.Jf'@ b–-853ŏQgbāt:O4KkD4o0𐨗~cNV݄I6p!SU륄plA8s ؃k.V_A"‰j@Y RsքVKHM1II H{.C9d CU?{ 2m8if('z2e4*k\#2S|hm!lc*OĦD3QNT/u:T@=3vZdt6m"'(Ap`>@ kٲJ^4A^5=("[ '\{ZRPК/gqW@Z8's䏵w)jͳ;;R6~`&e&^:xEst]3S1]6)pnWB@!d;" "3B?K [rF8.`ޯ\ F";w`i_߬aC^9BqY#!Ƽ!Hxg$Ja)X߫*-0* q,ndQ'Ȕ)á"JN<q*E`:>қhT9)2{J Rg[Zd5 Ϩ,Th 6MM;uAկa:!U2<赍%:w=3ucqG$t4> :zBM0ENi_(ghC #G2]wgBOy88 AcJ-#7.+YF3bPNvZ”lh[U:Q 7{ i &MJKޭV2$vW!pv63vv<6!pO7_lORSzFIASr8d\N^[ u:6v?8oMFHG}GUt:C9˴fV?dF'>9_ DAjG} w;ٿe-un _PHE3<`E$NIA^tծQ^COEqI]3Oӷ󪧡BB]-sh-eA4Ė|h8WZ,7{F-gR=ٞ Bu{L-84DEx72Ċr^RtZNJgޑ( Q荿3(ּ!ԫ񄕱gK9EzkqEL[;pfxhpdPJL^įf1TJ 9܋ DZ *jZ]S>KF*-)¦&cquLm}bت+1ANGHp·kGzb%Z;E%PǾ1n續PKȅbcRX% it6AvJi1[W%߽P}= ̒K@Ÿ|20GZw04 ^~D#mϗjBd0ҍ'lE 'P"!.T _!CvM1hniÎVt/axkqv.0veZ" ž<ʊA'NMs8ɝI}q֊16Oo2.ɕ Pg2nGY`sf"JlD#vDL@*UgW>_e5Xl,Slnp#`DbXDB{24ٌH]PAunFxK(9 q) &r'&c'͎LWBve$U Mmz{qWIZ )1DTigA ^x"ս#p>B ]t2;<{`ȘtCxߥbY^ t,8; {hSUC0Qai*soaWmp%khbXcgXe0Tpcqb@ P{ʂ42~]y}sv_^DzDZK7)kꐅ^KXjUU2Q1Q,G LFWXxn~Lhx'~m^TNWPJ(@@㓥`pI:h_s2"Nւ?ހFf'xB3I$`cd{ݗh*#"<Ճ`j0E0 _#P z!SݩX*)!(0Zo5l][i:;3cSqRy:ƎO sƭ7kXRTQzt_KA Feg<ޑQYjbŒ*`vq(bs7f;62*1.#Qܡ^O'7h;ܰZS"R%Bftf^lwpVM(2!CG._F:Uꙹ}̍%ne:k|?7 ҥ]gf_vsnH<`Iw/soh͙bU H)r40) :݉ϾSC;ággC&U虅C8j\9l&GmĿo endstream endobj 145 0 obj << /Length1 1570 /Length2 8752 /Length3 0 /Length 9778 /Filter /FlateDecode >> stream xڍPZ-k%www]&CNp . NGrܙޫ{mYg}>-&(p $58x\(Z 7fZ+G &e \7NvvB\R +2+@JB]@6n/'' tYn@Ǘ-K(lܜ<==Y]Y!.6"O-@ tZ~7 P1w+ -@]bi@@K; x9)Pu V+l;7'dm  @UFˍ`h y709[ #0i\-]@Nn -y4JO |7_7kx} &ܝش gw!/&lnvvv^~eMm~ ~i|{n.@:pp@n 3/r. /!8?e"/+?MKS^RA_'!pqX8y<^n~?`kb_=w\* Ѹ;gIo w?n?wf^ yYen/{ qA2 //ed 0P X8Y//"/GJ-!V7 EH<<_Uz0 q{IQ^o `3Y%`@/r09lN/T./Toln/5{5&Kw⏐_f/U( K0ZqOIY=tFe.{ w5!.FVwV(}#S;~=&iLu,}!*>o$C&elݣ@·V{9 0XuvGuRH6% uti&"}{--K AnE?Rq_M`'& }l} Yw+X_2x1ײŚ" ‰p [R5SR,E8m ەjyGUvoc̟#CxNt[&u+r~|nGw;xkvs;LhP™>G鏏/kQ26>vDž3k5SX|F2[gղF ys`uO*%&XPFګr:|rE*EQ6(1tvT wЫFDf*mss{hwAXG졓/ḯ^BD16FֶW6flNHm0mI$pG6Bo6ɻԎ S?c}ʍ)a.PKR|cdoFc0=YDFp>?"ZbeO+o{(̍ :[$C/$P4>)t}3/5mN/uǑ"3QC:pMk?ŏXdJT3t:H׷͠Z.کA7ӱSrpTGg` <$p>n0Z'DK4y\ rvqn*a兯L;p|iLkMđዤwLE j7 _@L>R".ual v%as~T{j:s '!fgߧ-kd,u1%MalYQb0x()!F"*zEo\r2~le_cmt/6i^V3d]gVPNЉOI׈LӏKz<\%ض$v̪^-WZQ+݊_k@%8%/+it\;N({WFFZu:4³Unc{}Ϊ K b&+%;闱D YX7K4mwK^ا&U, :XiIki>ty]vϲsNSp%nb&%p5m;1zM7"z/b3*c&fԼsk]bFy4$n<J\K-N҄Q U^o~efR犸n侼?Lx7 '=F1߈ij2%Kc2m94"eζbW8D8! yn_(fLٞ|Ʃũi*c,+|PnZqgU"<0- yaɑp_̛:zz1JZhZ_/YRH/cޝzMSkᴻ!FcFx_sŖcjѦ zO}/I-LX݌p $(20_0ߕ!١[~?lc^A/ oxZXVUΪoDtHm Rɵ-֜6RviSY1XQSb*4Lt~nqn 2E$жI#:hn^3D]4h=Ї\fB1smKPcMPύ4v'OAR  0Q;nࠟ D@ * ОپPq?x)%q~-q9ܕP0a" =b-u܏ ilG@+:&QuˈJ s>4M(BKiIѦM`i&+!!夭+NT^-Qk ݲ+˝1Gjs75kEm:(jcX Mx'klh۽JVRm\*#5d0xHM\ƷPhiP9 s?q&8Cy f%M(vIkMa N6*5=1'vl "- X%lMr4 Pq~亥Au{p@~ooZƮ<R 34^mo5}؆vi<Ӥ+b0do 3mb'|T 5P{ÁVC}s;ۉ]l ĺĵ/4;- *ܹyC3y}QC_F0y oZN#٘]ڹVL*%"i^75‘o qi*SlSE9T=;)(d@6e!\b%rJE^6@<,649B|U\=_7x1/i5:ժmCF!k֮<3sb3o+$΁%O6z LS^6h4=":vmb_$s,,>祂;d"]W`mc jk*9nTF؊Q? .^y܀Q}sw U wʌ.̷2s7 % MF(%k3[2F޸$* ߬) 2ktV.sz%SA!^K99qQs*G]tc=X GnɬIu3)WltdV$^(Ő&5t r@\QXnJ'~}L$~{ Ծ|A0lfQY-f[e$NןKQ@u*@| Āxje \0XW|kqtY1uOCƄ|F)C"܊9# ̏&ZYMh~\vs(Q [R+Yg'rsfFx"&fXpg,_#`sN*(tL휇Ol] NfG czեz5͵ dUK.*?\ .?,7c'VAQ[Z1U죋^=yAV^s;FBt@=DԹpto"kgJuS7g^s+5asLkSŬxL뜐0:G>o5sL]xT!еofrh!z\"MÐTN*P$"0kɛxWwR-NńiэZ2qU/06g[8fJb$ԬaGHٖ=pgi^|I9NTǏ ί~:֦gQO/%=W E 77EZA΢TϾ',[1n MP'fh"4K)Ď]z&${(K>IϹ_O/-S(F ; iy˦o241痑;}ȗo)V̝hbqDj^6Sp ![IQ'28bh\J7~}U52.yH7uJu 隁$G*3m*cûk, Ed\u *87n*c0*?pUM-5y[6í~:߻;8X\-_d1@x ÚG<'B⤳Ff E_["i<-fJ,H ^&̉I~S"NBsrDxXMӞfڭC4٭nƏVI0"{ t_gk;n oC;}5=6+G@B0?o uu}{LGX'H0"IʹrFqǩtU6?l8ey Z,CƸ%gqKUqy3>+Q8,$a|h{hHlc75. {ܯqnUX{XH͏T(؎++`lKo/qd?#u;~ᱟ#NWmMM]8 )_b@bAd` zdmj;ItI)d/KR)wۛd2LΔul633pfr](Zm )Jz|@x} 7'R9_bT@,Ȃ_&mTI!DŤ~  G xpf~Do#O/'U,tיحy+$FCY9#e6gWLቧmMigַuwOKڅHhV0q]~4Wa%UcilGw% Wp&0$iMV,hO4U,StXJj%< 6[?->Amp']D]DŽ)ʧ9\)aKQq:֚}ȷ+cEjƤgnaLll\G+es[m7sXːh𖡇~^IPNOkSC=eb];3e^/YNaG@vA $R>#;U~RƇ+} wۼ'`XF̌(ACC̏B,'ƅt[.GCҠ~Xۺd=ר*>"<(lTxC7rύܟq ҩB4K_y:5JrU䊃'mP̴:RU4(Gf%PGZSԛk\e$78--G 7]TDv|[\nUFJ';h*50EƉ2&MjlA p_}^-4K*$yfhU ̈́l-ժv+r7@;vBqP.D\P0?rfU <2P^ ]y1x?7i9|1p;EN$$gTh>BgvnpFĻm>޿!喨~T)TkD|ÈHm tͰ{VC?!aF٢p &t'Bh̺2EePy1qvC{" L]&ZGp  >qM6`@o; SaI>wfݏ`Ή~$6i6z>Êg#E&q| 4D!V)sU]kNju_ѹ~} fpZD&QPʊӊZn}4%a0{uN׊{hSG:wh-zgVb4tu7'Vjjl'Վ\+eUXykW]囇|j ;ob22N^ܷ_Ho4a;LuC/@^{s`(Og~?ĥXi> M 7od.eK7Q[_'HV>Gk܃P.a6U^m%M*$U3뱱/Ox+\㩋oۏ)hyo `6-BxG.Y)ֈpLT5Q K4ҡ5chOIšg)Ո*}[8#麱8(fه _QްmP0fpi=$uMi 4kӿ)}V(GUs%̙ݠIz 5,梭(a9w8_ H ՋJ ^ǚbsz#!q$Hj2S諏IfeE$צίUM? + ^K~[P/[X)c0 JI$*-]!\`-ͭO1L-0V{t=OfY Qq Bǵ[Vraf.,]=#Y@EteOϪĬS-! _Ock' ed#1?Mt_vbB=_;6fԝ.V fMhJdG'Pi:ii3^3|Ltvqiu>D<Bި^kFLj5-ΐAm!*]T8(W,hY&֏5B7Ǒ.ү>8 + :zϽȥQָ> stream xڍwTTk6HHI 04( " C")Ht -%]!! ;kڳz{mvf=C~yREmCC!a(" пDP$ K/" BclJ 44ܝB"!1)!q)  J D J -@("vE7fIJȻ@00.`3AJ%FJ zzz \Pn>' 0H(kdg4"v a!Qw8` յP_`|?O?ѿ࿃A`0v0g(@WEK_@3 y` [ w >|(0F `οfp" G~CB}sNp' 5UUWCQ (^`_]B̘|];P?Gy@h;;"@``4jcƜ?0b'0 *(=3 //0_XT ).; ?p;@n1w(G܀A` ps (w俲?y;;s? h)r{ HJ`/9P= ˇ @aHŨ%`̄E $MpIXT+#A8 `!DTB hD`w$GP/(hzq i8__Xj 5EsLf:hLU`)Kқ* xBϳ{6eђ%Q-ܱϟs~bA'Pg$15/]rxk3=Z+_QGMN[ID;/xht0o+EeV|iED+~ƾ/FJ{)ݘfyáJ1Àbѭ&6I*:(|Z+݄( gBCUJG@Ўu 6Kx$7?-+dne/oᩜP/Q[7rۃ~ZCD!*9υΔTq6u 8b wk3ZUq^EE$uwy+>_1(ih2X<k{}*m6%Na"4, }…zv Ge%5D£%#gJNǀDwi-L/z/pqK9Ò9ܡy~"g3J ޠnjvO` oz*hJN~:di5n-$<[+K&1ۺ+s \Tt20N E Sڜ+ݐu\9a޲`U@1<Ŋp |Oar892LȻڌ>9yfq~V=Ɋ O~Í3`y礭TLE~FU?xṬJJ:h l!#0=skZؿPr_-N N3.κz g.ʍ}'p_6!0 c׮VuLﰂ_JxKV+s~da{N>. J1ħ?xnrs6qnZ]uhd6xU8Vx$ PDPM77dNjJ~U_R_lZyywE%3&wpy(g_=}؝Fd#Qub,z,}CF{L =D$lݓ2jw+932j\.t?vUy RZge2.C/>OspO:ڦ*`Ra#5p WN ;_KDꢇ,DXCTRY3rzm?ةG)(\ƒ9m:>\8a/((=i*qd#twHNmydp?;r\ G)ȃ ݥo`3\°#CUsosmnše[3cl .v?nfB@Fe*L7E}נV,ͭE:!Kڜׅ^J'"ʜ6Zi~ԟ''j #Z 3lFgLv/Cߗ̗y5 wd$[aMo&E4_t_͌ ['תo=2WFDxP+TXޅ +nH^eˢB{!Rڊ[Y:t|mPV+d/ZʳHZY#3eYKV[t[84׷8ˏl?20 5 {5kMldpoxf}ݎS {1@pv K27 ُtwbى!<3QZ O'Ctd Fa|p*.1>(d 7sDž;cUaBЈ[e$4ey 〲W37Mɣ/Zt#)! E(E* \[]ތĶȬ}c rqG$y؛Qw/6&];wXi=괤(3R!3ݰ|tU␈E-Z92QbMnJ G/DZ ,&i$73%̗4'\.DC^^u .j?ǝ$46y{JڢUkULH}É*-46Cfd4SʩQ 5qn0{޳vԺ.Wޥ1RN\ccu[,*KgxMIb_X}눟xa'ǵr=\}Նݴ]ŠTAu2בM)R6Sp$/`MI>~DzXhDŽ4pHquHS;DZ97$Aw1#ikH,5KSM-K-#j}pcB\M%IJ\aQ!<>Xfa\ v;9ڠwӪFi[)2wXBkxݫ9S"7ۮU!Ưm !gL>^u%XNLUt52H|BKk˔ _~})~I:a$;#˹FKġߵm] -~ס+=ƒG7/?7::Ib>ȯf+gVEP ݷQNnEBIV|j͸ +r>oi*a4GǞ:<ܢ-um/Mػ; R,/g8=LYܗ2:.gD{ pj}ٱ *_hǻeȊ#YuE[kjQw2̩o|ehO͵є! z3!nrXpk[m4_^z$(ymϿ#.TT~<' 6_,e9ca⨏)Y=X Y%*Z^̈́l5N-3=ͼYTNH=C[Z.Sܛܶ6]c/^=,I}<9*0s>33{wQhחǶ4a1lZʓmӮhyWG^PvJ{txп=0dLo}tXrP"*"m׶$zyЍv[|-u1la]@t2ys q40|yyR'lq4;޳DPx'cm[WˇzֱsW>yց cm %d^q؂ņވ6vƱ9M?A6@pY&EIr )oʾ]`#Ï$*cb57 =%BH{Vw EmUغ G7pdL%, 2n+VWgL]8NkDvƵnM<7n3aUb[f>gԔv~o>nKSk\L~($<%FC˲|+Gh2D\nρ@&]b_0szhke-:#=bNKuq$bJ4PzEg}IRIUQ+T@V=If>)@8~J> Yvc`Oded,qg_ɊC1FkϬ ı O(?.'M 2Nqv) QcՆ>:kk+n*6K5DReO)̳@ pfSџ5 ̃qS" <~ddvCtM2p4h"υyNV =¢Ts e?I۞iY'=&O󾛺- 1ې,a̗V8?~~Yb]5vV|땖]hu3M׮!#cC(+dQ9Oa8ᙆx7zfz#R.>rx4!A8Ga|yVmfv=xFD-mR^B:} yfA}r;[l@ݤ+*.G!;>?A]F=v|ey0FB.%l8J8j7.rX7[kpOX* ?-p|ÙdF$vm3?s@m!Qj+yVH"v1f=W™[x UM#v`ͨ+5Եm!&REA+!+9KRj_ endstream endobj 149 0 obj << /Length1 1405 /Length2 6239 /Length3 0 /Length 7206 /Filter /FlateDecode >> stream xڍxTT6)HwHKKw0 0Ct# ! tJ  % |9=Yk~ykϬʤk+o)aH^A>I@@@O@@8L? [$jau(@P (*)(&) w<pǪwq88"Qup9b<. wвE:\PP!}#*g;p HG>r~ жu`A0^ A0*fr 4: _`Ϳ!e7^:ŚF@p% _>ȀΨE.JCMHD`n냇:kJ'R=7|08@~ r@.ۡE_z^V; -ÁRaN/kx?cuF' D ^9jbg̸)WSf.GLq\Nx? ^IWG) l( ?q1i&27Hm,0-SLz^})DlK\%$LtgyfL,k'$-2= Ռ&oc! q4}6,F>~|;8!|RW#ZAFCΔ7O=xuyDf7"9V lJiS8Hmd1h~ւ;n:N hq!p3jQGc=bp j 6 ?L(DŽN5MxPYe] ؖ+ף>dmuC e>ꈾw<ݲ4q{Պep4,anTWHFhZ'H=CC>ANxy~e}A?[)d?5a[F&-@MRt}GWyv%ՓܑPBKK@I^0zO<*KZb> ԯbYIRQ3<Ϥz-o?&RY]cǙCr*\cdF/r7} \H<Ƭ.A&ȗVK3-L$Tl!5glKO/['=A'lp sliiŘzhfy(Gs;Q>C.u+과JՆU}9¡?c Ft~pq}=ϞI-:rY)ǫ}43hT%{V+5&I@%^WB"W,bu$m^+ m k 2JBPt/rʊㇳG~YY i;W݃Ky!0zЫWr@F:{(͗;QuV>@y>•bW8"qðXfڻjXܞ}bĒTٌhe O\_f2dKxVu4UFa\ vaf'/r% M>p:+n9|̒k70/jzpX.6;>Bth; ~0iίP<БQuaM2dsPhmyٶH"tk]u^"`ϤzۓHw.z#U\o5(LCO٨*ExxaD/;%yfY1WEQ5؋i.}\h6˗VێwJ٫>w6BD.u-~"p 1/$>[z=m/WhkpvڔǙ -{='m`Mq~<2k^zl{X7tguSH"b{ُudf&fʋӿ:׿^XZd%@s {7A }WFsEuXs2e&3*5߽^H]>gE.c\#tzjl1`Y6 S%vǥrorlƨUAB4t&+?T+FjJ8"i|?7-hF?8ҾkS U˩ZdNT5֞$nB01U*O(ty9/GR3^ r%@M0, n3tݻ{%>8U,cc,eK[阃Mibw[ ߻o>F)#% dF-3pgH OΩj5ɼ py/k_@kc_4g'쏦:V@{Dqbq\J"2#~2,?1q}^f:ż?^<^ ?Os5KЊ(o>&Dnqӳח.P BKV=>7֯!􁴛#؈dt> W_ J5 ++b>V|*T^1wnNص-76KuѴW#sAEʃ"ޅ$(sU}[mDq)c|.<nW ZiJ!Rosɇ5$|_[G ӑkm1|^ GZ."ݠyדHx\mzzюLp.F㳧,GJmNx~^wkE/f>Wٓ/zhjFȢĩW`wU<gw_Z$}DXYW m>]X$_@AXjsՇNT`m]vR4uu}ю >,-/h}6l_B`K\6KFǗ2Lo]@#rPJ"[cE> M).+NU7z {^Zt%RڿSJ) ^Y"c0^rE:8;X>ܭ<[ jH(b˝~~zW"EKV4Z)n?I`dzo ]4|ualX@&)vs_sQ޸ށ 9Ȗ pNZk /}plذ.UБ21 !V[[ UsJe gz/YX^K~ YȕݱrX WЦϡrif}-ΓRywݵV&_+ `@_+>IosĬmГfBq6Z9P/6Y{(6Nѥ.N@%G9Ğ.[A[obշ)9/S8 ^2 4Qk ҷ2Φ!{\.]҉1 tF+ ޡAHE] -j#;QA8G+3`-Gqwl~o>b`/>) "]rڞ=ń4xtj7՚]]HxVub]҄F~b8I]ua qKMtԤd |=s#WӦ1?oEc܃2>5\vO;tuPˁ;O.5wC tSĐHbs_) ˧=8K]}0HK=^K= 2_ 0icוPoBӘ׵Gؼ hQhy=wiqsUu5XL"$|l8Ekwu#~1Ȍ86ڄƮiU*62v jjZ2Qp{"aHtHv4{ n%#M,,8q˓84$yo)i=ib#}bR}., w%X?fqHQy71{&`S"K_>yUmh6Z LU^ =Z<Ş᝙;${1%vG]7_TZ=O$CVZLEѨ,ב+bJR YJ,i\ {Bo1weL1" r;YDBP o:FF6U޶8UD36|9;HՌqG7GQϹsX5[5 O_HYtc3rc)~u8 ʴ" ujڋ^ڟB+$Y.uDVu7üb4VF>Owp)!PVre9.8 Gw7bpu)uMkY-SRL׸Q}B]a+ӊgI-ޙ^:K•[Vr>eTJo$ zyb8eyBaV0uzZsK0&mhϜRҎ{G'rZ]dC"Ic FlHp%8kb'nVžUC:935MBw< |>\ ,}${ps"g2y$XyN$^_~φc \/QLQԦUR͖ܗV+߯T~G|ʡLl mGw#`y;93`ğIgT}/^Rse5$_ 6{Ź7s0~cp&/ycwt+Z3DinN{A\/pZ&o$ip񥟕!xsUreZ/S ,rݿT(5?a!k-i.J5Q^9 ۓd%h)+m򂘰 Jl 7X8dHrhIhEfX0jm 3qIۋPoIt|[Nfl׫'vwQg5_=*Ǥ^dZ"oIsWUʺK*O pq2tze[Nb~RNڛ­_nғ Fw!Rpҏa46D ×暞2lbԳݯ?d|# zi˷HOCs/Cdt5歺vjeU Ahg85'[Lj{[ _)k}xQ0y,(JcמxPp$瓦RIcz=@ù/ɗHcO#zDɿ'߈o0Wby\ӅK8f}C\o[,Ŵ,l+Q`>RKdDXx ]WZK/|&t8#yݜ5{f(5Tr2AK,1,%W.F7mO`E*r̵Zק{ a5Oqxdy1;]2wt )XZ1N -,PiRݯʧS~[ (fRX;o{$oD8e7Zt2ϕ 4N>MAxt0/$6ڛQa Ո}jB+_R9MĆ?`m.%9Xkm5Tt3/F endstream endobj 151 0 obj << /Length1 2177 /Length2 16554 /Length3 0 /Length 17870 /Filter /FlateDecode >> stream xڌP\A 4}^cߜkժjJRe5sS+ #3/@LA]̊@IrG@ tv9Bh.7q}7TpȺX,,\Vff:8MAF=Rdi?f4."v@g=@ h`zOVLL&v.Ζ4@tv P4#%@ /3.]]́΀5y#_29F_@;99{- [ @IRӕ`boû M"*wb rtuatő0m7sڻ U8hw//nL '7mEd@W3337+zY1@/;?GG; b:|_0L {?@wyǏWf`o#fVSЦ7*EE<> lV 3qM@_?%{>{AhK}r]o:"I7[ۿe7z}r\߷@}_4_6[O4 ;#3 I'\jf\}\@a޽}l". CWec8;x!0O+}+́3`rrD qD . `xLE\&?$d vOzϧ_Sb0A1{"wd_}杋ǻGON1X?]irtps;tV2?;GwQ{Wq9nZ[ NO:9zg,T\hsetgXO`r'w=N#;37}|_࿟x@' ae/Ժ.WIVv[8] |`1e-֒fmfMh^h zi y7}n]c6{sKs4NW{ GRT-UVMHѰxlH"U"s]2.“gIDGc?VAn38 䌧s}xϟ?v}4uWoQUgO 0o?ߕ(MszK/dDdNM5-?#WRlM%XbLzfO# BZՖPEβ&BK?l^m\4}O݉A]T V=jgNh9_6XC*!ηW4HCQK kABЉc¬"M/?Q'ḭJWc)<|H b~ophQ[o Mˤ6ØL'Pf'RQt۫2e.` ⮈TJ+,׉//Q/ʻr;moF$ YX S1g›` sF zQ!ȅ>ZĢ@-(4QR_ǵ_d5`ОЂ_-x$\g#MySv.O~qW) Jﱃ2p|`ov*,)!5mՋMk*ؗCA_00jtO+=HfQ-kfQp06詹RK 7碇;'"P$4]ȧԊUUg ;gPJ<8vg)&練d H2q6u)63~>m Ye[6BOxT;(W[`,jı ŒaIn|Kk5C s:@8Kc$\A89&{˯ ҥ,ԒPvcuS laD2+F+G Ux}5j$mĿ-_z:׻7`yGsl&COPD g'ajtfjWͳ!FҮ?ڤF`Kx^!CφL?E7N\lfcT2gg7<]vZd"+Eh3 ۧvw('c)[xt ?\Pdrq<;l\ 㜀b/7:R ;ߪ{rŊPx DI.%"ݤ+6ꥇȱC^䄓f Ш6c|CʮNSnM@+VO+W -=J$"6i3; W5<~l *!5z dߟ? (L ~9XO 8}v$y DqClY)@tImce(S$HIeB޵#{I)cS$uO k] 6 SºMaFMIc[^7eJ$!{4Bx^[G)~@J]m*YJg"!gKg3]2!8**יe{Öh٧q0WI*k "WS3 ϰrK<1f1;)Wp=)#勹0]wۇVU˷ء ˆBai%LM|;-ё!}(7XL!&; ur_Yp|Rc@ 2g'-;*7{Fi B@ d_ʉATD(k C?2xY1N FLDõڊl݉ ʘZԚJ `bG1TzGD2*ܱWM0 B<}бovt䚃Iۣ![쬻tD_OX.ݷ!aOSpyQEjqSMw9̞>͸ajA[|!<(lLmUx7CS[p2}yJ;1 U #Aօ)e,V<$FBxY\`mGq_/CF7H>2 r$^FrZqc%[6$K]ȃ5l>Pmnl`3y)`1}6nwg|z>Lɕ}FGLv;6*b*YPy0~9֢ꈲe7AM#R|),'QOTh^\&XReCA/G ^`'ѻשӄ}gM$a%5㜼!#QJחoJ񖪿L]iF|5Vh"l*䣲5!.ݠ5zem9]y z:D!MT[fqǺ;}.Ur1&׼_b+Mg3w cJ>O`Cr9p C _\a50!vV, k`^w.ũ)tYD`t[#3?k'mC Tb%c]v*ibk67&0ح$y ?9|[+5"C8Bv]}%a:O5NJ9r= Y̅7j5o40]H-H>0k֢qDlu<q'mVlɅR-\)"[uX2f|q:z9kj'9p ߍ(LC~Rc+gL|ת:dJ>5GƬeYMT[I!*۞H甽Ra%&uƅ 6ƪ%}~"# 5|LJƑԵnYD$.#yZmLN[>eшs*β"v4٪7UJ ofX|L`Fsm!T,ضTߔ;+T|얨_"~AWoS8brNܐbg/h#01Gk]MI;kZV2Zo9X:yۮżD?<5ǝ: 6mxy*-yȋWR透ϳ _x*^h@[r Zy4ȏbrF7(Vʤ1ZWKWt1FqiN1AH#e36澟|{;KQa/XZN8=7[mf޸+"#^"%4:v2 Tv.r7G>;;Ni8/]n|}yIșmNHatd!n[ͪX9n(7#wq| ?bH;{Lۀܘ~Z5Eqi)$ݒ "g\:Ҵ=%zU S EUL!N߃_X8LC?'Ɩ661ulu[ 2s\3 E&ֹIT^iATR ~v9nۻQ~-Lڇ߫-V騦"?$ڄsz DӝgZCD~JptuJ!ĊИMV`3,ObwX47wU!dv<r m֔]ơ@MT;ԩ`kt0,W7| OfBߍ8^B0dYHS6E̬Pn=UDKK"yX?]e.GAsRZ'Y<6$z0`q_V髪BKܑa) ry9x4dnљЕE az-fȍ8ׇV%N#n,d0Wy}8p\}σܗƛhI܅Q!=҄r 9׽~8pr,eKYYbwڥP T{wGd U CӼJ~N|I-Z$q+N@ m"~0kY(adtՊ.L [Wx '1F=z C˰d[Ϩ3$P8'3ʦ'!p99r+gLDgi){EY^E*mKU_G sl;Zw/twh?2u?! I!(‰`1>!?7|z()cG%eQ<*_OU/{}CV̌p"&hD_Ȣn#F3Ҝ`$n__DsV?Edb[c {dGёN[_u|.>NE^:l #:@ hpAbd/2-rZEZ` 4gZ4̛cI=cU߮Uej60bYh:rD(O ${}1M,ʈɽ=yn2/|jP0`ǃ_te<.ӐDmRr- bK7(8 (Og*$ϴS%o̞"EOB䙕Ϯ!^(5V>d%)5#mlX;G83rrez\3t<" } qyraPN`K@N]MW@3Y3j<\9xV@elYKawvh]7Qu' /_[RZ4S rW:S`; xL̃+؄f=s*mVX~̪'3DNY*ҽ;'uV9@V)2T6<ܲEP&̊p"c`# Ks*OC 9X߇2l- |;e,D`/<YQM+}i++`uHzyj}b.jQԈWnj!Jwo!A9Zbb.k~H%h:74V6!PtdaR\!h3(V[BA5:0W~|=tz%L[_޹$eLbh"k#U`GUsaaH.LHcMϕ1 r9L1XHM|x 0:80 cuʌH_,T{0NN:wE)9j1Tt348G:WӉiӢMB4,LM9~z˝ LSH#V \e {ˉh KS,X 3ʰu V-tk|6 +^ 79\b( zX5Z)Ւ$M.Uв74 Iqn杛$hl>bl䊭lUZHpolg)X:$n> )vk#R<ůK/x 3LbqO9Ef Ul_|;4қFb~%}ˢT lͅ gp.j( Dٷ5V MJިqGAoe1:-NLC젧AHA|:ؗl*GcH ]jS&28<$6,i`}ݕ&Wo$e‡VlctVxw,i,R OIb/kѽڶY6U>KVe dbQ?{bl 4Vx|֐@Q>!~,Mg}eeyܶ~pӛ,**aj*m%zZUM gbɷ+Djz=o'g霁!ќRS팋YNp`Gg]^͝fɑ~k^IUz9|Kx!pt <1]%NQ[$Y+|3wؐm8 N3 0ŋyղ]ZL~ldi_E0cL+dV;xР{~N(R㵝WM[҆AX=&O҉96]Wed aپBR|[%b1]& Qe 'S.Sz?.0 #R‼~{cmONecXQi\2c~>a{@A7ogӉ@{ EED8&[j@Ls奺e{蓶5ª_u};Omқg~jb0uI:41؅9h2Q6e޸{a,sXBdkz]1~EcZBeed遻]mYSڣVexdjgj~n-& Hχ۟p/^2QT?p*"gimvB@oqf^ =tKuF'w"C)33% nvp7Plyxk!4OҤ5Mߤͳ]5Yt s$"fq Q_| Gy@͕yK?güiYs&R:707A Q b5s6f?TfjD+VP"] 5n]%ه+ޥwŖH|п5vw l/1d%cËlK<3_(2@R4yՕ5vGkm*kt{PuޝfwH}O ' ~HmEГv4;W%aG*wT=PoK/_T$ԉ+-1`]N{|,uKz6anxC(j콒#m>s@POTHۭRa} )ЧȤ %Z! ;B+sky@t p@ n?n|’!6=eM @8PFU!2Mgq/SNPʛMuwH\R췳m!;&WYz/6_W}rT麍 |[h*T.L4Z^܋_2Tq<nJb%zѭljp-_$SvHCt8 %5/e/z6# vZxrzO*QER5 #`uk@ #|)^GH/Ƞ7FNĽ&:76R>^ě2 (T%(r nڴgaiM)F eiL0J~7EɄSXu[&WBV|]8^ "~Kuj ^)J4b6d`ӗyQ'0ݧs)I#$4^h~{ {9s[y׷ihwS([W幄 Bhwھ#:SnX[X׫j (2פMp mİ7d`asMI~Qrz!jFrT'PԤ#A6=D2 [hp %MJJZgwUT1SQBBN+-BԿgr=u*%*\ԥ|͐^ؾƼםO h~RM ϳUIp6+,<>r"V9$.|hse5ZZ)4 (V9+T%7j?TH格z1qٽTwd&Nٜ;5%LxTLx㑳fӺb}Qt SgB$5,)1: {l{}1zЭ20S?M:/By19:A+1ԒmV-i'm!K@0mcq*4;J/KjSwbϚɪRL\Z}}$ҍVXIϽ!cOUTr&w`})3jl!K;\L--|< F2γCy(>M6vUlRN:Id=Ks~hJMĦ eS(˓ f:'A޹)ֲZOn5^ =T} +o0:;>2ah`~3"? D&ѕjb@MJt*xrxSTbضLB:S Iڼtb ]tZtA(dk4_ (/?&g*. yuQrheuO\uy%>랺 I57Ssj}4x{^2/5V&@#R%ԹצF%q=dqQ.K b}mZ}~L>bJB,+&Ì {-Dpklԃ}@U"UW2"@ cu!srF&zbml\d{έ-itc|IX-2qP{bFLoxib$ hD4|POn!ǽiimN.P A-%Is&) bztU&D^[d1F[,-QBps-G[v-3.Р[^ĔR 6B˞Aeb$BSư +ʡΫ>50d[Ci޳q G>&Ͳ5$* amp¸0kdnvl7C~E 5[Z[B%!ٲpm2Cyg΍eer8zaEVfXuUy;P1`҈AOSYaK/GO #ܝ\Y _ RG}7J >%}^CM\h44t@]pj E|)ދ!N0̷%Fu׿;PVw獮Csо`&s` m踤Kƨp+H.y@R4k9-ޙaQiyYv0bfd<t2ˎߑ[ g'4eRHGmBo#Ŏ{'({&Us,6m쉸3ٷwOV_~*b>x!,^$V3) 2!v ]gp?qj02 nA_4 ̇M?8MM]~=yj~5f01]z) x=`sD^V8E^+߁g>i[Kn;`Zς 40'ɰYedd?v϶AT5֞{&ԮTQeOIRv.ʕjq¡ݖ7 -yحÐ}]Z4f-M1 ;ץt w(գĀ}k 90+FQA;ʆɵalMYL#]xKdBfk4qłw#7JeT=8u<BL%'[{L7f燩0 L#\L#4/VcOKbmdjGSo Qi( #VUy/B՟Ynf+"WWeHl>80DPg3_UdQ%>m b2I' W)¥tsp3񷯺09` dF`dp⋱Yr!L&qO [Jk.3E44S&Jʮ(P8>c'\S]:'Xע&˔/Eg@eO$ ]PW5Wv¢r~lC"I dT ?ǫ hԍ=+wgJ cޖr_;!A;+ioH=a;^DdYw'c^t^'ogUIE%C.utHna7X6() kpTByF`f,chP%**'JٷdyŋH,))pȶB}SOge.+4K} DDJ%DPߔ8f(d՗iq bu-`{y6tq;}&:du47ǀ,svM95~_Y_r1eQj^%P}xU̓pM**h[sei|ygP zA =,KxŽdS-A^{- ÷)aeDm9|&lX<+G!0R=fŸH5)BAJZ»xS18=`LpSSC7cv.dMkH201Xy>AlQ?¦&s4r[t9r$LRQ,(f4Z,݄CWrH(srjptz\2ďP #mvaŋ ;4Xwk3v~ֶ&)Pc'&\$PG p/g"©@FߪWds|p E:\oD߯YKGR\JWU*$9ulJx/^[ c+1&]D3x_a;caK2~:/yƏº{kXs<'K$*4 5 *]H:fYA/612=ql^9]FVKFnpb>+ÜO W1Ebp O%yC=Yf?J%n՚={-nG QΥXv4u4[#/*BoIt"kS*ƷݦTàC$Y@z0j+ }e c/j\b̴s{U:|LrЀ撿}V~7D БUfcjP _iUs^,þu"b2íjbd6qgLwNi:''QU2NVyFEz'fพD#G-TnH2&-:ZU/cG,+#1…"گK+͈?=`4*|Z>@uŧGud^yEl9Մ Oby,ާ2i:Ep =oխa]:(yGy/"P_֋k$k~#D)XMo`V{sKbUy ho %RY^d?OeS[_JxAs77-DAdq{>љ|`"Uor> stream xڍT.Lt7 %%14-4HwwHKH ݍq}6}kݻ\ yzPdp48\YZZ66N66jj-{(:@0$$hI@ AW{;'GW CG@Pp!(ԒN`+k(~Йyr;6 5hnjt4xW:!k'VVwwwS#J nb B`7wS?Pm +4-]M@T`ocA. eh+T6`; )dTeX\<\ ߆GM2Sh18@X 6kdfiA h'?õ9,m@˰pub8PdV@7'' z[&td-BC񆘺.`WF( s*Zx ؠ`ߌf|2kĬ*j rRB`pspxE,؞'S~BP>'SAԞU A4O AtO_ Au"v):){ r.b@\ Vb/;CoL?ء{j)Yg[ ='hO.Yڸ)"ToSEtlLmxʘZC١OTX +R\~?UV}{YtËn:=N$h^.::'&8>M D'{ק"xg׽*o ~NMb84aD 7){S!<CnVk06h ק5rg1uq,Р@(:3G _-ן!@ei\0Ķ>Vԝyk }4IwSm[=HR挳 zQo8{-vzlv_}ң;,;3LA\9~(vw~ "8jv?'dr>ٚ)+DZ}Ue}Hۼς76 .xևj:] bId2?o?qpo .3ڬ;)g튤(RoIwҙA⋸H,N[\U)CrS?ki0X$l`.+I Uo9:#$'.D!bOh'9}q4_F$"DĬ.9e+64<~O/NzF}䱁`fy2N*?55C~^Mv} g)0%CpPTܱ{74Wgk wg帑=\ +'s10Y*6ՔsdP쥺pGne6s#x %L)dw^ίmps $]Tg4:|s.h`XKi&F0u׌H-+Ev5XbYheF3jyDLחm%3_񐷻O4=/V\Ir ]}I+ib-Jqn녭 @-MCz֜{F_?e,psWj=S/n UP(vɌ̲B77N7J8֕aIU@㏃i2-}yԩvak-55 ! Buc5N ]nAq;Ki'.x&D9D1/_bh0 {߈s&I5XK 9F6 2-"'T3)֥d~+al5j.ԛߛUV~FcIWfwH 3}/G!F*G%faL+Ԅaa/ɵ bt p9 `Ե6.'lcJG DW.\y(Xt@U$cXY,IdG4W:'*EBh4-6)Bc]SVYSFPY-VH@_vN"} S1MҔ9h5ovo$ֺ3K"ʋc'2gZŲ6L œWtmIx #ߋy%# tRɎ@*Hq޻[&4(JSIv+ (>>~,E #f"@šx\55w/t~;ns.si`03\5PWʅlsG؃3Uϔ;:g#DGp#g̡NQihꆟ+L[koӾ2m ޚ@? $>i.#oImz\#}m~vi*ih6R}~#0; *0dE,-7<]*<# -'> S}־vxqY]-7Ap@P"w'?+Uj|3\0hiϘ;R=rY!$Dɽzae;kt좶MbtZH6o'lLX$Iw Ur`we&sSSOb",Hw[VͲ;eT Wsti.ȷ-6MT-Y6ќ#UWf4:LߦMW|D\~mCD}+˜| '  9Rdh]W|\ Iej$+~VodoK٭1-7Ӈx]VBeX1P\@Z%> 6$ ,FUs^ =Ƨ#gݛY$4( H,e8OHƩkR зu'F<+״$2s2 i^9䍡V(Mvh?3XpmYF!A-F wc`ӊ$lNöE;T.!z[L*H}^ZMh[35 -xGDi_|J#w[)6rL*cJ^ Ȍ7A ~[>'{ey&R=Gc(y7yGn66`ԫ#]]}JwůfoA%4 \:<8[ʫӏguMӃPֺK4 SyfSZ3sg4\O7-rM2m^7u^%~FSwdI/BG>[´&j[ckS0$!9~Dg^T'*W!%Lqѻo\N8G~"4҃^W7~Y;X(SpV.TeR(v8f)Cc{OAD\5'DuHOj/)lML8^ymN'[: y >2qzTxCk:y;2QYYnĐNcw&5k7wl_F^}~SDx@3|.icmo73iS9"C84clk؃GS\޿~dPRl_ ra$)7KG% (yqTٖ+yp$X/2*̊(9^xIVJF;S{u׏+IF;GUL[QsDk;2Iw;l6 o`_h.­ޖL:6 TCHZIC1ڄDž&q֩;0svW]91>5?vy1[;W pbܶ&zh?+%r>&m~6eVh_&^'}!7;1nWͳ"%FR_Au ( l\.GkθK=gHl&~8~8 oM!6l=axHڣc2ʌrI]P˱Ŵ|BT nq+z`8wXHe]ϨM3C_]>t`\ 1)UgCL3ywy\]~=YΣm[bj9=ƻ9R׺ 'J<0EF Xa}xZ{$,*T媒_18I8H׃/I! ԓqsj958:87?e7@gI4g0Vbs>Vjc쫠9&gp=)C(pJ[[g) n{+o!| 8 Br%7 m9@ҎԷ\hvkLHBhte>΍^Wܸd)kh z,UlLlYOD498Z{WHs5@?-l<'͉}/&M iD6h>M3 d?qףx]N^V⹼чDP*@"q$btXXMqkb;"b@ k~awSSN븋e i yGɪfN]&2upjȲrs/;mGff\Y* a:ILH4¦3Iđ %drܐ_v.P}j.hl"pahg:Q{UO ezVGڿR&!zxgy͟1zA&pvnIJkg|83禴g9ߊ&Yxfi+j˷t Gw, '[ԛG3xf/3{S#+(?;B>re7w1`9D[kcṲoo__qņ2B]Çj$[ow`~PE(Ҿjֱ$~0"c l*ȕu=W7X$#ȟU펖w/n#?Tn6ODhS-5tC1OcD#/&m,t4;@ T?tj79k k9̝w8D;+/ 㼒o+{DPemMH9"{qUyIGͯ &JsPiͭ)=xn$hJPypܙgI-Y9Is,.9A}(LW%l9kY}{.mpAʉWBLw%mǖz!%»oU-!|܉QfRe^a OP; h{z wt$pZSy-'$bR &#_}4^2@REBTu{'EɊp[$wå>2'<c393Q-m\ SPAy͔AywFG*Џ\k>!va22eCeXTk.!(erN'4RG-'/gɇTLjճ/f )!9 >#1:v=p=[yt:7 RWD]Ira &^%nV j0KY9WEcHJt7`/i 8*'Dmdlh!p.kH4= )3sQIx;FY~'/#&N:IXZR6&vեTG|~1+!"`QUo^z(,@VT1E\rai'/mR`c(oue/RrƁ@!]U @1:p\Ť=Ίvך+ cݑ*^{h oRb9<3nbE}𠣡fC0#r:WTqƔXNGF؏{80)ZV[Ѽl( zuZږo2"Kgibu1휍T]aG .u,qr K+)spt{ݚ<+]8+=<$mNUzmhr ɣ!BPp} AAq~ KӮy5)b$s6^ɨ2%Iժ/3DXP4d۲RtWuAŏۣ y +^~ߕEP|ӄ>>a`qbxF9 w~Rk*qLz8/mlE~lߎYYڴb9R=mXϱH5mA!av.f|?JQ {uw@io\3MU>j ZX/3щ \W__~&q9@񡡟x6%rhPFɌΘd7tE-0.@g+5[mJ՘UE&݊YteΚ g\/O<͛X7/0r!V>gxtԅwDDSbW!0+Qx?:N h ?S56zȟ; TCi9?~ 7>rP 1R^A%goFF'Pn(* G壳B4q 6)Ip+J+Hr,D wޕҴ"x$Jb~U9.0[ 73""w W.+6&Xk ΰ64(9@EE#lLQJ/\3j $xQF*!BI =VK;rRݶ#ޓ/s* (5 qa- AVOLLo;GBZڢqaM3;hQp@̿>Ղw}a56 Ѧd'B靮l:gr|F^@L#o2RQj7=fZy@k;D'gzS V&2d5=yX;4]2J@ljj¸lw(l異Uz\ V1 wvPBdt~OXnפ?bي•!lL[{hFȐ*֓<Ts=0}E5פF8i.=jF Q i,S/8?4 S& gI+޻"0M@F+: :D Iĵ=sCl瘶ސ¾ Cl5䋱cH`f*PKx;壗xՍ;]{HBE_X(CJIX)Pg̥Kk7Sف  cYwzpIo:#'XrI aʢ5czHzn+S԰' SWג_{;cx;sQk}!O{B1)ZRxhOȄe9a=m0|m]'|Xzf\3.|do?-NQ^Č%./ȱԘMD J-sg>N?+}\R=yk#EqD1Q B^7!B;ayh h $B)8G]Oc!9&H~i'BӔC}lL}fZÖd[sFכ/AN;Rӕ_`=\]l El)0$ׄB2erÈ&q!?/d4Ao>_7j(|/a4Ā 2JѵSM'8/9A{uúXVBoFLT S;;e:;揍,}h;Ofr+,r\.P¾\k'8i1sX,75./m0rDGo+Nd @3O,qi䐖 l@ Vf i0<͍CB|bM 1r3/ѩquG? 'ʱ,GgG^j~̇]rMp0OxGd|:N4YuoeurzVv[#^PCpv2[l8s AN' `o鑸RtFd90*;5}Ϙ=OtGi& &Y3EZw6wH[E|L[#9b/\AG#B)F|^1|uG7Hϻ19LQ2ۼNM)=fݷևQI(ca+fTMC6%gk`p^}(qOGzKlNPdQ~=O&I+FFBF k/I}cu JSw^ByMPz"N4swttJ@=epSv(Fz:=gy]RrӞ5ۯ%\8[&%i8"w[R Z*PYSD>_aMm^F7\mG's!2sd=dD8<-1O+<"iFY@A 7y&!T**ݝ2˰4 Rz7Vz8F=Kz$52:Gf7vԂH}G/߉[;* 8X(YDt5d 2*BL,fBIz?09v,QB|'ӶIED"M6׀< mAF|ڼ(-͊A W\(X!C.kUڇ[Hp⸷RoP,|챢)Y&bqt yKг֭ ;$&N(eYQ- "[ TT\W2"w,.@.N" EKC/` OWq *Ƙ>nbh?Ya&E&|;[yn[KQ,JQDB~?zkbe]4\-^vhU{?-Q|2+7=*8m8\g'j>d/ c&uDNI7ǠXj\Yc9VzFXKXIz@fLwd&?ga6L}ă%:zûrsx_o +\dZmfmά{}H^ |u1k9``{mr7c cJ3{>l7JILsh;fB#2hӥ 0kj&?EaxQLA@F-vBlhwh+M5+Lɬ4}<8(̌"O>ƍ}ح* )F=6ʡ"K(n=\`kdݹ"ŐwBVUt\ȟb׵F5Kas:n ~~Vdžn\d!OZ,Fqx: aLN;qtFy{'+WC <ޑ\?e]nHNgP\[A%G/Uuug.l7KO2~17hBՐi{T2yo݄^ 9Fl{.xPb4S=<"6}ɳ[ 2]j>:BjDs3-I+E>BO ^A Zg؉/KhܾT[NZ'L2iYBHUwuNi> L0K"#󟝟vB}Mf{ȓh[@k-ܧ8V BJ]ƲsR-ck]{gZ66 -$#O“c/dr"Rj"$=tjOBf]M(注O%/bRir'%C.QWGOuui6[mҎIk9?X`4:-<.Ƭ|옏1m}݅Vuqvk a]XOYG-td\Sf}8IG?=P9A&zu:4;ӸK~ʭn9' ճn%5C!E,DZ_ {,ܴAPN?OHD\TV9`(@d V=j8Qkw4rݒ~,fXALF GI9>FSCg N# {g[#R3jx endstream endobj 165 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref)/Producer(pdfTeX-1.40.20)/Keywords() /CreationDate (D:20200203191826+01'00') /ModDate (D:20200203191826+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019) kpathsea version 6.3.1) >> endobj 132 0 obj << /Type /ObjStm /N 39 /First 329 /Length 2394 /Filter /FlateDecode >> stream xY[o8~c$i3MҤE^EQ(6hk[$iCJ6%i> Q#3HBD%ޒ 0 p ,2an,pX$%\"0F D&(O%DD\!4% O-QJ,P6ITՉfDD3kaDTيh0% ކ pl $)͔¦@XbD E2FSA e bR<uECh0*@c8 vF!d·9ŒlhC=(GE2 Ch R{(=4 0*|`֏W^?1/+og;UִHO6m 3(*0x/<ҿ9M+PQ EbMBXϋ&L`UXS!d FAX͐5 VJ (V0 -tiP1dh5+QO#%}Κ}ߐkR MÏ~4`sIi8ּa^*CJO\eBI 7pA)Ԋ/Dh5)f*{٦]ԚCLʖi[ki֘І0pU9F"\B &f L* +<cF.xXUGpZPLHǚӈ*8cWkz= thBHap,/j#S # ɓ:棃dH2LmHJq&SzB_ЗftDGŴ1uМ~S:s:vA̋1BKZjU7Mt9W烢!D%wZC%: c`wy78Lqts@ >`Lrrv*!"pïNϟ'AðX>bV?ْ.n6$ŷsL˭P驵Y! =?g=ySW}Mп;x62r]fϮOuKcaFlmuS7c<,)'˩ cŲ}vCo/n?[\V褐ه鲂eYn|=\m'0z< fyr_A޵Wʢ[b<9:}Kl) =h#RJ%%<n;~:vq7m@ %vPFo]Ov㳗go'oA}T:1D1j l_C'lbQaC]/{>:|ڎ='A)(DtPizl J'63T(ЉL8xq+ -1;8~X_=~&xӠyOHUυ~>deR oU;Uuv'ՓUqi|/c>*Jw-a_^׾ìr8yT0yY՘%"֞eM&7_7.=2_s]cMoQwk}ڹ/w;u_hgi]﮽$oTCU/Dwcqq쮽$>r^_=߬;QU" @X1~ >~!Gt^>p/}ptMz䥾4\L"VC6?¹P5A"M0Fyb0C@o(W҅RV&w-GGݮm0cwYWZu&/c!^: :+=<^Ϯ8qsWIpqMg3fr-LCy_#&2˧Ӭ8na Ge<ZY^\ٺCc,?^I>C+@"sU <480D4D0227D60390196D199E3C77AC5F>] /Length 425 /Filter /FlateDecode >> stream xNSQmiKJ\/B*P@P8pDSL&0`+&'9bhjkwgȿ@$4 I!aֺIM Troubleshooting with glmmTMB

Troubleshooting with glmmTMB

2020-02-03

This vignette covers common problems that occur while using glmmTMB. The contents will expand with experience.

If your problem is not covered below, there’s a chance it has been solved in the development version; try updating to the latest version of glmmTMB on GitHub.

Errors

NA/NaN gradient evaluation

dat1 = expand.grid(y=-1:1, rep=1:10)
m1 = glmmTMB(y~1, dat1, family=nbinom2)

The error occurs here because the negative binomial distribution is inappropriate for data with negative values.

If you see this error, check that the response variable meets the assumptions of the specified distribution.

gradient length

Error in nlminb(start = par, objective = fn, gradient = gr) : gradient function must return a numeric vector of length x

Error in optimHess(par.fixed, obj\(fn, obj\)gr): gradient in optim evaluated to length x

Try rescaling predictor variables. Try a simpler model and build up. (If you have a simple reproducible example of these errors, please post them to the issues list.)

glmmTMB/inst/doc/miscEx.rmd0000644000176200001440000000161513614324717015242 0ustar liggesusers--- title: "Miscellaneous examples" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{miscellaneous examples} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- ```{r echo=FALSE} library(glmmTMB) ``` ## Beta dispersion model ```{r simbeta1} set.seed(1001) N <- 1000 mean_pars <- c(1,2) disp_pars <- c(1,2) dd <- data.frame(x=rnorm(N)) m <- plogis(mean_pars[1]+mean_pars[2]*dd$x) d <- exp(disp_pars[1]+disp_pars[2]*dd$x) dd$y <- rbeta(N,shape1=m*d,shape2=(1-m)*d) ``` Fit models: ```{r modbeta1} ## location only m1 <- glmmTMB(y~x, family=beta_family(), data=dd) ## add model for dispersion m2 <- update(m1,dispformula=~x) ``` Fixed effects look close to theoretical values: ```{r coefbeta1} fixef(m2) ``` AIC is insanely much better for the model with dispersion varying: ```{r AICbeta1} bbmle::AICtab(m1,m2) ``` glmmTMB/inst/doc/miscEx.html0000644000176200001440000002666213616061643015433 0ustar liggesusers Miscellaneous examples

Miscellaneous examples

2020-02-03

Beta dispersion model

set.seed(1001)
N <- 1000
mean_pars <- c(1,2)
disp_pars <- c(1,2)
dd <- data.frame(x=rnorm(N))
m <- plogis(mean_pars[1]+mean_pars[2]*dd$x)
d <- exp(disp_pars[1]+disp_pars[2]*dd$x)
dd$y <- rbeta(N,shape1=m*d,shape2=(1-m)*d)

Fit models:

## location only
m1 <- glmmTMB(y~x,
              family=beta_family(),
              data=dd)
## add model for dispersion
m2 <- update(m1,dispformula=~x)

Fixed effects look close to theoretical values:

fixef(m2)
## 
## Conditional model:
## (Intercept)            x  
##       1.005        2.013  
## 
## Dispersion model:
## (Intercept)            x  
##       1.064        1.962

AIC is insanely much better for the model with dispersion varying:

bbmle::AICtab(m1,m2)
##    dAIC   df
## m2    0.0 4 
## m1 1491.6 3
glmmTMB/inst/doc/parallel.html0000644000176200001440000004421313616061732015766 0ustar liggesusers Parallel optimization using glmmTMB

Parallel optimization using glmmTMB

Nafis Sadat

2020-02-03

A new, experimental feature of glmmTMB is the ability to parallelize the optimization process. This vignette shows an example and timing of a simple model fit with and without parallelizing across threads.

If your OS supports OpenMP parallelization and R was installed using OpenMP, glmmTMB will automatically pick up the OpenMP flags from R’s Makevars and compile the C++ model with OpenMP support. If the flag is not available, then the model will be compiled with serial optimization only.

Load packages:

library(glmmTMB)
set.seed(1)
nt <- min(parallel::detectCores(),5)

Simulate a dataset with large N:

N <- 3e5
xdata <- rnorm(N, 1, 2)
ydata <- 0.3 + 0.4*xdata + rnorm(N, 0, 0.25)

First, we fit the model serially. We can pass the number of parallelizing process we want using the parallel parameter in glmmTMBcontrol:

system.time(
  model1 <- glmmTMB(formula = ydata ~ 1 + xdata,
                    control = glmmTMBControl(parallel = 1))
  )
##    user  system elapsed 
##   2.170   0.271   2.474

Now, we fit the same model using five threads (or as many as possible - 4 in this case):

system.time(
  model2 <- glmmTMB(formula = ydata ~ 1 + xdata,
                    control = glmmTMBControl(parallel = nt))
  )
##    user  system elapsed 
##   2.113   0.257   2.396

The speed-up is definitely more visible on models with a much larger number of observations, or in models with random effects.

Here’s an example where we have an IID Gaussian random effect. We first simulate the data with 200 groups (our random effect):

xdata <- rnorm(N, 1, 2)
groups <- 200
data_use <- data.frame(obs = 1:N)
data_use <- within(data_use,
{
  
  group_var <- rep(seq(groups), times = nrow(data_use) / groups)
  group_intercept <- rnorm(groups, 0, 0.1)[group_var]
  xdata <- xdata
  ydata <- 0.3 + group_intercept + 0.5*xdata + rnorm(N, 0, 0.25)
})

We fit the random effect model, first with a single thread:

(t_serial <- system.time(
  model3 <- glmmTMB(formula = ydata ~ 1 + xdata + (1 | group_var), data = data_use, control = glmmTMBControl(parallel = 1))
 )
)
##    user  system elapsed 
##  20.387   2.411  25.761

Now we fit the same model, but using 4 threads. The speed-up is more noticeable with this model.

(t_parallel <- system.time(
     update(model3,  control = glmmTMBControl(parallel = nt))
 )
)
##    user  system elapsed 
##  19.395   2.247  22.870

Notes on OpenMP support

From Writing R Extensions:

Apple builds of clang on macOS currently have no OpenMP support, but CRAN binary packages are built with a clang-based toolchain which supports OpenMP. http://www.openmp.org/resources/openmp-compilers-tools gives some idea of what compilers support what versions.

The performance of OpenMP varies substantially between platforms. The Windows implementation has substantial overheads, so is only beneficial if quite substantial tasks are run in parallel. Also, on Windows new threads are started with the default FPU control word, so computations done on OpenMP threads will not make use of extended-precision arithmetic which is the default for the main process. ## System information

This report was built using 4 parallel threads (on a machine with a total of 4 cores)

print(sessionInfo(), locale=FALSE)
## R version 3.6.2 (2019-12-12)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Catalina 10.15.2
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
## 
## attached base packages:
## [1] grid      stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
## [1] png_0.1-7       ggplot2_3.2.0   lattice_0.20-38 reshape2_1.4.3 
## [5] coda_0.19-3     TMB_1.7.16      MASS_7.3-51.4   glmmTMB_1.0.0  
## [9] knitr_1.23     
## 
## loaded via a namespace (and not attached):
##  [1] zoo_1.8-6           tidyselect_0.2.5    xfun_0.8           
##  [4] purrr_0.3.3         splines_3.6.2       colorspace_1.4-1   
##  [7] stats4_3.6.2        htmltools_0.3.6     yaml_2.2.0         
## [10] survival_3.1-8      rlang_0.4.0         nloptr_1.2.1       
## [13] pillar_1.4.2        glue_1.3.1          withr_2.1.2        
## [16] emmeans_1.4.3.01    multcomp_1.4-10     plyr_1.8.4         
## [19] stringr_1.4.0       munsell_0.5.0       gtable_0.3.0       
## [22] mvtnorm_1.0-11      codetools_0.2-16    evaluate_0.14      
## [25] labeling_0.3        parallel_3.6.2      TH.data_1.0-10     
## [28] Rcpp_1.0.3          xtable_1.8-4        scales_1.0.0       
## [31] lme4_1.1-21         digest_0.6.20       stringi_1.4.3      
## [34] dplyr_0.8.3         numDeriv_2016.8-1.1 tools_3.6.2        
## [37] bbmle_1.0.20        sandwich_2.5-1      magrittr_1.5       
## [40] lazyeval_0.2.2      tibble_2.1.3        crayon_1.3.4       
## [43] pkgconfig_2.0.2     Matrix_1.2-18       estimability_1.3   
## [46] assertthat_0.2.1    minqa_1.2.4         rmarkdown_1.13     
## [49] R6_2.4.0            boot_1.3-23         nlme_3.1-142       
## [52] compiler_3.6.2
glmmTMB/inst/doc/miscEx.R0000644000176200001440000000145213616061643014656 0ustar liggesusers## ----echo=FALSE---------------------------------------------------------- library(glmmTMB) ## ----simbeta1------------------------------------------------------------ set.seed(1001) N <- 1000 mean_pars <- c(1,2) disp_pars <- c(1,2) dd <- data.frame(x=rnorm(N)) m <- plogis(mean_pars[1]+mean_pars[2]*dd$x) d <- exp(disp_pars[1]+disp_pars[2]*dd$x) dd$y <- rbeta(N,shape1=m*d,shape2=(1-m)*d) ## ----modbeta1------------------------------------------------------------ ## location only m1 <- glmmTMB(y~x, family=beta_family(), data=dd) ## add model for dispersion m2 <- update(m1,dispformula=~x) ## ----coefbeta1----------------------------------------------------------- fixef(m2) ## ----AICbeta1------------------------------------------------------------ bbmle::AICtab(m1,m2) glmmTMB/inst/doc/glmmTMB.Rnw0000644000176200001440000003502013614324717015272 0ustar liggesusers\documentclass[12pt]{article} %% vignette index specifications need to be *after* \documentclass{} %\VignetteEngine{knitr::knitr} %\VignetteIndexEntry{basic examples of glmmTMB usage} %\VignettePackage{glmmTMB} %\VignetteDepends{ggplot2} %\VignetteDepends{grid} %\VignetteDepends{bbmle} %\VignetteDepends{mlmRev} %\usepackage{lineno} \usepackage[utf8]{inputenc} \usepackage{graphicx} \usepackage[american]{babel} \newcommand{\R}{{\sf R}} \newcommand{\fixme}[1]{\textbf{\color{red} fixme: #1}} \newcommand{\notimpl}[1]{\emph{\color{magenta} #1}} \usepackage{url} \usepackage{hyperref} \usepackage{alltt} \newcommand{\code}[1]{{\tt #1}} \usepackage{fancyvrb} \usepackage{natbib} \VerbatimFootnotes \bibliographystyle{chicago} %% need this for output of citation() below ... \newcommand{\bold}[1]{\textbf{#1}} \title{Getting started with the \code{glmmTMB} package} \author{Ben Bolker} \date{\today} \begin{document} \maketitle %\linenumbers <>= library("knitr") opts_chunk$set(fig.width=5,fig.height=5, out.width="0.8\\textwidth",echo=TRUE) Rver <- paste(R.version$major,R.version$minor,sep=".") used.pkgs <- c("glmmTMB","bbmle") ## packages to report below @ \section{Introduction/quick start} \code{glmmTMB} is an R package built on the \href{https://github.com/kaskr/adcomp}{Template Model Builder} automatic differentiation engine, for fitting generalized linear mixed models and extensions. (Not-yet-implemented features are denoted \notimpl{like this}) \begin{itemize} \item response distributions: Poisson, binomial, negative binomial (NB1 and NB2 parameterizations), Gamma, Beta, Gaussian; truncated Poisson and negative binomial; \notimpl{Student $t$; Tweedie} \item link functions: log, logit, probit, complementary log-log, inverse, identity \item zero-inflation with fixed and random-effects components; hurdle models via truncated Poisson/NB \item single or multiple (nested or crossed) random effects \item offsets \item fixed-effects models for dispersion \item diagonal, compound-symmetric, or unstructured random effects variance-covariance matrices; first-order autoregressive (AR1) variance structures \end{itemize} In order to use \code{glmmTMB} effectively you should already be reasonably familiar with generalized linear mixed models (GLMMs), which in turn requires familiarity with (i) generalized linear models (e.g. the special cases of logistic, binomial, and Poisson regression) and (ii) `modern' mixed models (those working via maximization of the marginal likelihood rather than by manipulating sums of squares). \cite{bolker_generalized_2009} and \cite{bolker_glmm_2014} are reasonable starting points in this area (especially geared to biologists and less-technical readers), as are \cite{zuur_mixed_2009}, \cite{millar_maximum_2011}, and \cite{zuur_beginners_2013}. In order to fit a model in \code{glmmTMB} you need to: \begin{itemize} \item specify a model for the conditional effects, in the standard R (Wilkinson-Rogers) formula notation (see \code{?formula} or Section 11.1 of the \href{http://cran.r-project.org/doc/manuals/R-intro.pdf}{Introduction to R}. Formulae can also include \emph{offsets}. \item specify a model for the random effects, in the notation that is common to the \code{nlme} and \code{lme4} packages. Random effects are specified as \code{x|g}, where \code{x} is an effect and \code{g} is a grouping factor (which must be a factor variable, or a nesting of/interaction among factor variables). For example, the formula would be \code{1|block} for a random-intercept model or \code{time|block} for a model with random variation in slopes through time across groups specified by \code{block}. A model of nested random effects (block within site) would be \code{1|site/block}; a model of crossed random effects (block and year) would be \code{(1|block)+(1|year)}. \item choose the error distribution by specifying the family (\code{family} argument). In general, you can specify the function (\code{binomial}, \code{gaussian}, \code{poisson}, \code{Gamma} from base R, or one of the options listed at \code{family\_glmmTMB} [\code{nbinom2}, \code{beta\_family()}, \code{betabinomial}, \ldots])). \item choose the error distribution by specifying the family (\code{family} argument). For standard GLM families implemented in R, you can use the function name (\code{binomial}, \code{gaussian}, \code{poisson}, \code{Gamma}). Otherwise, you should specify the family argument as a list containing (at least) the (character) elements \code{family} and \code{link}, e.g. \code{family=list(family="nbinom2",link="log")}. \item optionally specify a zero-inflation model (via the \code{ziformula} argument) with fixed and/or random effects \item optionally specify a dispersion model with fixed effects \end{itemize} This document was generated using \Sexpr{R.version$version.string} and package versions: <>= pkgver <- vapply(sort(used.pkgs),function(x) as.character(packageVersion(x)),"") print(pkgver,quote=FALSE) @ The current citation for \code{glmmTMB} is: \begin{quote} %% fixme: would like to deal with smart quotes <>= print(citation("glmmTMB"),style="latex") @ \end{quote} \section{Preliminaries: packages and data} Load required packages: <>= library("glmmTMB") library("bbmle") ## for AICtab library("ggplot2") ## cosmetic theme_set(theme_bw()+ theme(panel.spacing=grid::unit(0,"lines"))) @ The data, taken from \cite{zuur_mixed_2009} and ultimately from \cite{roulinbersier_2007}, quantify the number of negotiations among owlets (owl chicks) in different nests \emph{prior} to the arrival of a provisioning parent as a function of food treatment (deprived or satiated), the sex of the parent, and arrival time. The total number of calls from the nest is recorded, along with the total brood size, which is used as an offset to allow the use of a Poisson response. Since the same nests are measured repeatedly, the nest is used as a random effect. The model can be expressed as a zero-inflated generalized linear mixed model (ZIGLMM). Various small manipulations of the data set: (1) reorder nests by mean negotiations per chick, for plotting purposes; (2) add log brood size variable (for offset); (3) rename response variable and abbreviate one of the input variables. %% FIXME: I get a warning message ("NAs introduced by coercion") here, but only in knitr, %% and not on a clean start ... ? %% some weird package interaction ? <>= Owls <- transform(Owls, Nest=reorder(Nest,NegPerChick), NCalls=SiblingNegotiation, FT=FoodTreatment) @ (If you were really using this data set you should start with \code{summary(Owls)} to explore the data set.) % fig.cap="Basic view of owl data from \\cite{roulinbersier_2007}." <>= G0 <- ggplot(Owls,aes(x=reorder(Nest,NegPerChick), y=NegPerChick))+ labs(x="Nest",y="Negotiations per chick")+coord_flip()+ facet_grid(FoodTreatment~SexParent) G0+stat_sum(aes(size=..n..),alpha=0.5)+ scale_size_continuous(name="# obs", breaks=seq(1,9,by=2))+ theme(axis.title.x=element_text(hjust=0.5,size=12), axis.text.y=element_text(size=7)) @ We should explore the data before we start to build models, e.g. by plotting it in various ways, but this vignette is about \code{glmmTMB}, not about data visualization \ldots Now fit some models: The basic \code{glmmTMB} fit --- a zero-inflated Poisson model with a single zero-inflation parameter applying to all observations (\verb+ziformula~1+). (Excluding zero-inflation is \code{glmmTMB}'s default: to exclude it explicitly, use \verb+ziformula~0+.) <>= gt1 <- system.time(glmmTMB(NCalls~(FT+ArrivalTime)*SexParent+ offset(log(BroodSize))+(1|Nest), ziformula=~1, data=Owls, family=poisson)) @ <>= fit_zipoisson <- glmmTMB(NCalls~(FT+ArrivalTime)*SexParent+ offset(log(BroodSize))+(1|Nest), data=Owls, ziformula=~1, family=poisson) @ <>= summary(fit_zipoisson) @ We can also try a standard zero-inflated negative binomial model; the default is the ``NB2'' parameterization (variance = $\mu(1+\mu/k)$: \cite{hardin_generalized_2007}). To use families (Poisson, binomial, Gaussian) that are defined in \R, you should specify them as in \code{?glm} (as a string referring to the family function, as the family function itself, or as the result of a call to the family function: i.e. \code{family="poisson"}, \code{family=poisson}, \code{family=poisson()}, and \code{family=poisson(link="log")} are all allowed and all equivalent (the log link is the default for the Poisson family). Some of the additional families that are \emph{not} defined in base R (at this point \code{nbinom2} and \code{nbinom1}) can be specified using the same format. Otherwise, for families that are implemented in \code{glmmTMB} but for which \code{glmmTMB} does not provide a function, you should specify the \code{family} argument as a list containing (at least) the (character) elements \code{family} and \code{link}, e.g. \code{family=list(family="nbinom2",link="log")}. (In order to be able to retrieve Pearson (variance-scaled) residuals from a fit, you also need to specify a \code{variance} component; see \code{?family\_glmmTMB}.) <>= fit_zinbinom <- update(fit_zipoisson,family=nbinom2) @ %% FIXME: caching may lead to %% ## Error in ICtab(..., mnames = mnames, type = "AIC"): memory block of size 3.1 Gb %% downstream, in AICtab() ... %% for now I'm removing caching, but we should %% (1) document this as an issue/make a MWE %% (2) fix it %% (3) we could also cache the AICtab chunk as well .. Alternatively, we can use an ``NB1'' fit (variance = $\phi \mu$). <>= fit_zinbinom1 <- update(fit_zipoisson,family=nbinom1) @ \notimpl{we should have a \code{getFamily} function: ideally it would also specify which are really implemented (although that's harder), and specify default links} Relax the assumption that total number of calls is strictly proportional to brood size (i.e. using log(brood size) as an offset): <>= fit_zinbinom1_bs <- update(fit_zinbinom1, . ~ (FT+ArrivalTime)*SexParent+ BroodSize+(1|Nest)) @ Every change we have made so far improves the fit --- changing distributions improves it enormously, while changing the role of brood size makes only a modest (-1 AIC unit) difference: <>= AICtab(fit_zipoisson,fit_zinbinom,fit_zinbinom1,fit_zinbinom1_bs) @ \subsection{Hurdle models} In contrast to zero-inflated models, hurdle models treat zero-count and non-zero outcomes as two completely separate categories, rather than treating the zero-count outcomes as a mixture of structural and sampling zeros. \code{glmmTMB} includes truncated Poisson and negative binomial familes and hence can fit hurdle models. <>= fit_hnbinom1 <- update(fit_zinbinom1_bs, ziformula=~., data=Owls, family=list(family="truncated_nbinom1",link="log")) @ Then we can use \code{AICtab} to compare all the models. <>= AICtab(fit_zipoisson,fit_zinbinom,fit_zinbinom1,fit_zinbinom1_bs,fit_hnbinom1) @ \section{Sample timings} To get a rough idea of \code{glmmTMB}'s speed relative to \code{lme4} (the most commonly used mixed-model package for R), we try a few standard problems, enlarging the data sets by cloning the original data set (making multiple copies and sticking them together). <>= data("Contraception",package="mlmRev") nc <- nrow(Contraception) nl <- length(levels(Contraception$district)) load("contraceptionTimings.rda") meandiff <- mean(with(tmatContraception, time[pkg=="glmer"]/time[pkg=="glmmTMB"])) @ Figure~\ref{fig:contraception} shows the results of replicating the \code{Contraception} data set (\Sexpr{nc} observations, \Sexpr{nl} levels in the random effects grouping level) from 1 to 40 times. \code{glmmADMB} is sufficiently slow ($\approx 1$ minute for a single copy of the data) that we didn't try replicating very much. On average, \code{glmmTMB} is about \Sexpr{round(meandiff,1)} times faster than \code{glmer} for this problem. <>= ggplot(tmatContraception,aes(n,time,colour=pkg))+geom_point()+ scale_y_log10(breaks=c(1,2,5,10,20,50,100))+ scale_x_log10(breaks=c(1,2,4,10,20,40))+ labs(x="Replication (x 1934 obs.)",y="Elapsed time (s)")+ geom_smooth(method="lm")+ scale_colour_brewer(palette="Set1") @ <>= load("InstEvalTimings.rda") n_InstEval <- 73421L ## seems silly to require lme4 just to get this number meandiff_inst2 <- with(tmatInstEval, time[pkg=="lmer"]/time[pkg=="glmmTMB"]) ggplot(tmatInstEval,aes(n,time,colour=pkg))+geom_point()+ scale_y_log10(breaks=c(1,2,5,10,20,50,100,200))+ scale_x_log10(breaks=c(0.1,0.2,0.5,1.0))+ labs(x=sprintf("Replication (x %d obs.)",n_InstEval), y="Elapsed time (s)")+ geom_smooth(method="lm")+ scale_colour_brewer(palette="Set1") @ Figure~\ref{fig:insteval} shows equivalent timings for the \code{InstEval} data set, although in this case since the original data set is large (\Sexpr{n_InstEval} observations) we subsample the data set rather than cloning it: in this case, the advantage is reversed and \code{lmer} is about \Sexpr{round(1/mean(meandiff_inst2,1))} times faster. In general, we expect \code{glmmTMB}'s advantages over \code{lme4} to be (1) greater flexibility (zero-inflation etc.); (2) greater speed for GLMMs, especially those with large number of ``top-level'' parameters (fixed effects plus random-effects variance-covariance parameters). In contrast, \code{lme4} should be faster for LMMs (for maximum speed, you may want to check the \href{https://github.com/dmbates/MixedModels.jl}{MixedModels.jl} package for Julia); \code{lme4} is more mature and at present has a wider variety of diagnostic checks and methods for using model results, including downstream packages. \bibliography{glmmTMB} \end{document} glmmTMB/inst/doc/sim.rmd0000644000176200001440000000325013614324717014577 0ustar liggesusers--- title: "Simulate from a fitted glmmTMB model" author: "Mollie Brooks" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{simulate} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- `glmmTMB` has the capability to simulate from a fitted model. These simulations resample random effects from their estimated distribution. In future versions of `glmmTMB`, it may be possible to condition on estimated random effects. ```{r setup, include=FALSE, message=FALSE} library(knitr) knitr::opts_chunk$set(echo = TRUE) ``` ```{r libs,message=FALSE} library(glmmTMB) library(ggplot2); theme_set(theme_bw()) ``` Fit a typical model: ```{r fit1} data(Owls) owls_nb1 <- glmmTMB(SiblingNegotiation ~ FoodTreatment*SexParent + (1|Nest)+offset(log(BroodSize)), family = nbinom1, ziformula = ~1, data=Owls) ``` Then we can simulate from the fitted model with the `simulate.glmmTMB` function. It produces a list of simulated observation vectors, each of which is the same size as the original vector of observations. The default is to only simulate one vector (`nsim=1`) but we still return a list for consistency. ```{r sim} simo=simulate(owls_nb1, seed=1) Simdat=Owls Simdat$SiblingNegotiation=simo[[1]] Simdat=transform(Simdat, NegPerChick = SiblingNegotiation/BroodSize, type="simulated") Owls$type = "observed" Dat=rbind(Owls, Simdat) ``` Then we can plot the simulated data against the observed data to check if they are similar. ```{r plots,fig.width=7} ggplot(Dat, aes(NegPerChick, colour=type))+geom_density()+facet_grid(FoodTreatment~SexParent) ``` glmmTMB/inst/doc/sim.R0000644000176200001440000000203213616061734014212 0ustar liggesusers## ----setup, include=FALSE, message=FALSE--------------------------------- library(knitr) knitr::opts_chunk$set(echo = TRUE) ## ----libs,message=FALSE-------------------------------------------------- library(glmmTMB) library(ggplot2); theme_set(theme_bw()) ## ----fit1---------------------------------------------------------------- data(Owls) owls_nb1 <- glmmTMB(SiblingNegotiation ~ FoodTreatment*SexParent + (1|Nest)+offset(log(BroodSize)), family = nbinom1, ziformula = ~1, data=Owls) ## ----sim----------------------------------------------------------------- simo=simulate(owls_nb1, seed=1) Simdat=Owls Simdat$SiblingNegotiation=simo[[1]] Simdat=transform(Simdat, NegPerChick = SiblingNegotiation/BroodSize, type="simulated") Owls$type = "observed" Dat=rbind(Owls, Simdat) ## ----plots,fig.width=7--------------------------------------------------- ggplot(Dat, aes(NegPerChick, colour=type))+geom_density()+facet_grid(FoodTreatment~SexParent) glmmTMB/inst/doc/covstruct.R0000644000176200001440000002147013616061640015461 0ustar liggesusersparams <- list(EVAL = FALSE) ## ----setup, include=FALSE, message=FALSE--------------------------------- library(knitr) library(glmmTMB) library(MASS) ## for mvrnorm() library(TMB) ## for tmbprofile() ## devtools::install_github("kaskr/adcomp/TMB") ## get development version knitr::opts_chunk$set(echo = TRUE, eval=if (isTRUE(exists("params"))) params$EVAL else FALSE) ## turned off caching for now: got error in chunk 'fit.us.2' ## Error in retape() : ## Error when reading the variable: 'thetaf'. Please check data and parameters. ## In addition: Warning message: ## In retape() : Expected object. Got NULL. set.seed(1) ## run this in interactive session if you actually want to evaluate chunks ... ## Sys.setenv(NOT_CRAN="true") ## ----sim1, eval=TRUE----------------------------------------------------- n <- 6 ## Number of time points x <- mvrnorm(mu = rep(0,n), Sigma = .7 ^ as.matrix(dist(1:n)) ) ## Simulate the process using the MASS package y <- x + rnorm(n) ## Add measurement noise ## ----simtimes------------------------------------------------------------ # times <- factor(1:n) # levels(times) ## ----simgroup------------------------------------------------------------ # group <- factor(rep(1,n)) ## ----simcomb------------------------------------------------------------- # dat0 <- data.frame(y,times,group) ## ----fitar1, eval=FALSE-------------------------------------------------- # glmmTMB(y ~ ar1(times + 0 | group), data=dat0) ## ----ar0fit,echo=FALSE--------------------------------------------------- # glmmTMB(y ~ ar1(times + 0 | group), data=dat0) ## ----simGroup------------------------------------------------------------ # simGroup <- function(g, n=6, rho=0.7) { # x <- mvrnorm(mu = rep(0,n), # Sigma = rho ^ as.matrix(dist(1:n)) ) ## Simulate the process # y <- x + rnorm(n) ## Add measurement noise # times <- factor(1:n) # group <- factor(rep(g,n)) # data.frame(y, times, group) # } # simGroup(1) ## ----simGroup2----------------------------------------------------------- # dat1 <- do.call("rbind", lapply(1:1000, simGroup) ) ## ----fit.ar1------------------------------------------------------------- # (fit.ar1 <- glmmTMB(y ~ ar1(times + 0 | group), data=dat1)) ## ----fit.us-------------------------------------------------------------- # fit.us <- glmmTMB(y ~ us(times + 0 | group), data=dat1, dispformula=~0) # fit.us$sdr$pdHess ## Converged ? ## ----fit.us.vc----------------------------------------------------------- # VarCorr(fit.us) ## ----fit.toep------------------------------------------------------------ # fit.toep <- glmmTMB(y ~ toep(times + 0 | group), data=dat1, dispformula=~0) # fit.toep$sdr$pdHess ## Converged ? ## ----fit.toep.vc--------------------------------------------------------- # (vc.toep <- VarCorr(fit.toep)) ## ----fit.toep.vc.diag---------------------------------------------------- # vc1 <- vc.toep$cond[[1]] ## first term of var-cov for RE of conditional model # summary(diag(vc1)) # summary(vc1[row(vc1)!=col(vc1)]) ## ----fit.toep.reml------------------------------------------------------- # fit.toep.reml <- update(fit.toep, REML=TRUE) # vc1R <- VarCorr(fit.toep.reml)$cond[[1]] # summary(diag(vc1R)) # summary(vc1R[row(vc1R)!=col(vc1R)]) ## ----fit.cs-------------------------------------------------------------- # fit.cs <- glmmTMB(y ~ cs(times + 0 | group), data=dat1, dispformula=~0) # fit.cs$sdr$pdHess ## Converged ? ## ----fit.cs.vc----------------------------------------------------------- # VarCorr(fit.cs) ## ----anova1-------------------------------------------------------------- # anova(fit.ar1, fit.toep, fit.us) ## ----anova2-------------------------------------------------------------- # anova(fit.cs, fit.toep) ## ----sample2------------------------------------------------------------- # x <- sample(1:2, 10, replace=TRUE) # y <- sample(1:2, 10, replace=TRUE) ## ----numFactor----------------------------------------------------------- # (pos <- numFactor(x,y)) ## ----parseNumLevels------------------------------------------------------ # parseNumLevels(levels(pos)) ## ----numFactor2---------------------------------------------------------- # dat1$times <- numFactor(dat1$times) # levels(dat1$times) ## ----fit.ou-------------------------------------------------------------- # fit.ou <- glmmTMB(y ~ ou(times + 0 | group), data=dat1) # fit.ou$sdr$pdHess ## Converged ? ## ----fit.ou.vc----------------------------------------------------------- # VarCorr(fit.ou) ## ----fit.mat------------------------------------------------------------- # fit.mat <- glmmTMB(y ~ mat(times + 0 | group), data=dat1, dispformula=~0) # fit.mat$sdr$pdHess ## Converged ? ## ----fit.mat.vc---------------------------------------------------------- # VarCorr(fit.mat) ## ----fit.gau------------------------------------------------------------- # fit.gau <- glmmTMB(y ~ gau(times + 0 | group), data=dat1, dispformula=~0) # fit.gau$sdr$pdHess ## Converged ? ## ----fit.gau.vc---------------------------------------------------------- # VarCorr(fit.gau) ## ----fit.exp------------------------------------------------------------- # fit.exp <- glmmTMB(y ~ exp(times + 0 | group), data=dat1) # fit.exp$sdr$pdHess ## Converged ? ## ----fit.exp.vc---------------------------------------------------------- # VarCorr(fit.exp) ## ----spatial_data-------------------------------------------------------- # d <- data.frame(z = as.vector(volcano), # x = as.vector(row(volcano)), # y = as.vector(col(volcano))) ## ----spatial_sub_sample-------------------------------------------------- # set.seed(1) # d$z <- d$z + rnorm(length(volcano), sd=15) # d <- d[sample(nrow(d), 100), ] ## ----volcano_data_image-------------------------------------------------- # volcano.data <- array(NA, dim(volcano)) # volcano.data[cbind(d$x, d$y)] <- d$z # image(volcano.data, main="Spatial data") ## ----spatial_add_pos_and_group------------------------------------------- # d$pos <- numFactor(d$x, d$y) # d$group <- factor(rep(1, nrow(d))) ## ----fit_spatial_model, cache=TRUE--------------------------------------- # f <- glmmTMB(z ~ 1 + exp(pos + 0 | group), data=d) ## ----confint_sigma------------------------------------------------------- # confint(f, "sigma") ## ----newdata_corner------------------------------------------------------ # newdata <- data.frame( pos=numFactor(expand.grid(x=1:3,y=1:3)) ) # newdata$group <- factor(rep(1, nrow(newdata))) # newdata ## ----predict_corner------------------------------------------------------ # predict(f, newdata, type="response", allow.new.levels=TRUE) ## ----predict_column------------------------------------------------------ # predict_col <- function(i) { # newdata <- data.frame( pos = numFactor(expand.grid(1:87,i))) # newdata$group <- factor(rep(1,nrow(newdata))) # predict(f, newdata=newdata, type="response", allow.new.levels=TRUE) # } ## ----predict_all--------------------------------------------------------- # pred <- sapply(1:61, predict_col) ## ----image_results------------------------------------------------------- # image(pred, main="Reconstruction") ## ----fit.us.2------------------------------------------------------------ # vv0 <- VarCorr(fit.us) # vv1 <- vv0$cond$group ## extract 'naked' V-C matrix # n <- nrow(vv1) # rpars <- getME(fit.us,"theta") ## extract V-C parameters # ## first n parameters are log-std devs: # all.equal(unname(diag(vv1)),exp(rpars[1:n])^2) # ## now try correlation parameters: # cpars <- rpars[-(1:n)] # length(cpars)==n*(n-1)/2 ## the expected number # cc <- diag(n) # cc[upper.tri(cc)] <- cpars # L <- crossprod(cc) # D <- diag(1/sqrt(diag(L))) # D %*% L %*% D # unname(attr(vv1,"correlation")) ## ----other_check--------------------------------------------------------- # all.equal(c(cov2cor(vv1)),c(fit.us$obj$env$report(fit.us$fit$parfull)$corr[[1]])) ## ----fit.us.profile,cache=TRUE------------------------------------------- # ## want $par, not $parfull: do NOT include conditional modes/'b' parameters # ppar <- fit.us$fit$par # length(ppar) # range(which(names(ppar)=="theta")) ## the last n*(n+1)/2 parameters # ## only 1 fixed effect parameter # tt <- tmbprofile(fit.us$obj,2,trace=FALSE) ## ----fit.us.profile.plot------------------------------------------------- # plot(tt) # confint(tt) ## ----fit.cs.profile,cache=TRUE------------------------------------------- # ppar <- fit.cs$fit$par # length(ppar) # range(which(names(ppar)=="theta")) ## the last n*(n+1)/2 parameters # ## only 1 fixed effect parameter, 1 dispersion parameter # tt2 <- tmbprofile(fit.cs$obj,3,trace=FALSE) ## ----fit.cs.profile.plot------------------------------------------------- # plot(tt2) glmmTMB/inst/doc/add_link.md0000644000176200001440000000103113614324717015365 0ustar liggesusers--- title: "adding link functions to glmmTMB" --- - in `glmmTMB.cpp` - add your link to `valid_link` - add your link to the `switch` statement in `inverse_linkfun` (don't forget to `break;`) - run `make enum-update` (this will rebuild `R/enum.R`) - add link to the roxygen documentation in `R/family.R`; rebuild documentation (`make doc-update`) - if your link will be used with binomial responses, add it to `logit_inverse_linkfun` - if your link will be used with neg binomial responses, add it to `log_inverse_linkfun()` glmmTMB/inst/doc/mcmc.R0000644000176200001440000001017713616061642014350 0ustar liggesusers## ----knitr_setup, include=FALSE, message=FALSE--------------------------- library(knitr) opts_chunk$set(echo = TRUE) rc <- knitr::read_chunk rc(system.file("vignette_data","mcmc.R",package="glmmTMB")) ## ----libs,message=FALSE-------------------------------------------------- library(glmmTMB) library(coda) ## MCMC utilities library(reshape2) ## for melt() ## graphics library(lattice) library(ggplot2); theme_set(theme_bw()) ## ----fit1---------------------------------------------------------------- data("sleepstudy",package="lme4") fm1 <- glmmTMB(Reaction ~ Days + (Days|Subject), sleepstudy) ## ----setup--------------------------------------------------------------- ## FIXME: is there a better way for user to extract full coefs? rawcoef <- with(fm1$obj$env,last.par[-random]) names(rawcoef) <- make.names(names(rawcoef),unique=TRUE) ## log-likelihood function ## (MCMCmetrop1R wants *positive* log-lik) logpost_fun <- function(x) -fm1$obj$fn(x) ## check definitions stopifnot(all.equal(c(logpost_fun(rawcoef)), c(logLik(fm1)), tolerance=1e-7)) V <- vcov(fm1,full=TRUE) ## ----run_MCMC------------------------------------------------------------ ##' @param start starting value ##' @param V variance-covariance matrix of MVN candidate distribution ##' @param iterations total iterations ##' @param nsamp number of samples to store ##' @param burnin number of initial samples to discard ##' @param thin thinning interval ##' @param tune tuning parameters; expand/contract V ##' @param seed random-number seed run_MCMC <- function(start, V, logpost_fun, iterations = 10000, nsamp = 1000, burnin = iterations/2, thin = floor((iterations-burnin)/nsamp), tune = NULL, seed=NULL ) { ## initialize if (!is.null(seed)) set.seed(seed) if (!is.null(tune)) { tunesq <- if (length(tune)==1) tune^2 else outer(tune,tune) V <- V*tunesq } chain <- matrix(NA, nsamp+1, length(start)) chain[1,] <- cur_par <- start postval <- logpost_fun(cur_par) j <- 1 for (i in 1:iterations) { proposal = MASS::mvrnorm(1,mu=cur_par, Sigma=V) newpostval <- logpost_fun(proposal) accept_prob <- exp(newpostval - postval) if (runif(1) < accept_prob) { cur_par <- proposal postval <- newpostval } if ((i>burnin) && (i %% thin == 1)) { chain[j+1,] <- cur_par j <- j + 1 } } chain <- na.omit(chain) colnames(chain) <- names(start) chain <- coda::mcmc(chain) return(chain) } ## ----do_run_MCMC,eval=FALSE---------------------------------------------- # t1 <- system.time(m1 <- run_MCMC(start=rawcoef, # V=V, logpost_fun=logpost_fun, # seed=1001)) ## ----load_MCMC, echo=FALSE----------------------------------------------- L <- load(system.file("vignette_data", "mcmc.rda", package="glmmTMB")) ## ----add_names----------------------------------------------------------- colnames(m1) <- c(names(fixef(fm1)[[1]]), "log(sigma)", c("log(sd_Intercept)","log(sd_Days)","cor")) m1[,"cor"] <- sapply(m1[,"cor"],get_cor) ## ----traceplot,fig.width=7----------------------------------------------- xyplot(m1,layout=c(2,3),asp="fill") ## ----effsize------------------------------------------------------------- print(effectiveSize(m1),digits=3) ## ----violins,echo=FALSE-------------------------------------------------- ggplot(reshape2::melt(as.matrix(m1[,-1])),aes(x=Var2,y=value))+ geom_violin(fill="gray")+coord_flip()+labs(x="") ## ----do_tmbstan,eval=FALSE----------------------------------------------- # ## install.packages("tmbstan") # library(tmbstan) # t2 <- system.time(m2 <- tmbstan(fm1$obj)) ## ----show_traceplot,echo=FALSE,fig.width=8,fig.height=5------------------ library(png) library(grid) img <- readPNG(system.file("vignette_data","tmbstan_traceplot.png",package="glmmTMB")) grid.raster(img) glmmTMB/inst/doc/troubleshooting.R0000644000176200001440000001256713616061734016667 0ustar liggesusersparams <- list(EVAL = FALSE) ## ----load_lib,echo=FALSE------------------------------------------------- library(glmmTMB) knitr::opts_chunk$set(eval = if (isTRUE(exists("params"))) params$EVAL else FALSE) ## ----non-pos-def,cache=TRUE, warning=FALSE------------------------------- # zinbm0 = glmmTMB(count~spp + (1|site), zi=~spp, Salamanders, family=nbinom2) ## ----fixef_zinbm0-------------------------------------------------------- # fixef(zinbm0) ## ----f_zi2--------------------------------------------------------------- # ff <- fixef(zinbm0)$zi # round(plogis(c(sppGP=unname(ff[1]),ff[-1]+ff[1])),3) ## ----salfit2,cache=TRUE-------------------------------------------------- # Salamanders <- transform(Salamanders, GP=as.numeric(spp=="GP")) # zinbm0_A = update(zinbm0, ziformula=~GP) ## ----salfit2_coef,cache=TRUE--------------------------------------------- # fixef(zinbm0_A)[["zi"]] ## ----salfit3,cache=TRUE-------------------------------------------------- # zinbm0_B = update(zinbm0, ziformula=~(1|spp)) # fixef(zinbm0_B)[["zi"]] # VarCorr(zinbm0_B) ## ----zinbm1,cache=TRUE--------------------------------------------------- # zinbm1 = glmmTMB(count~spp + (1|site), zi=~mined, Salamanders, family=nbinom2) # fixef(zinbm1)[["zi"]] ## ----zinbm1_confint,cache=TRUE------------------------------------------- # ## at present we need to specify the parameter by number; for # ## extreme cases need to specify the parameter range # ## (not sure why the upper bound needs to be so high ... ?) # cc = confint(zinbm1,method="uniroot",parm=9, parm.range=c(-20,20)) # print(cc) ## ----fatfiberglmm-------------------------------------------------------- # ## data taken from gamlss.data:plasma, originally # ## http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/plasma.html # load(system.file("vignette_data","plasma.rda", package="glmmTMB")) # m4.1 <- glm(calories ~ fat*fiber, family = Gamma(link = "log"), data = plasma) # m4.2 <- glmmTMB(calories ~ fat*fiber, family = Gamma(link = "log"), data = plasma) # ps <- transform(plasma,fat=scale(fat,center=FALSE),fiber=scale(fiber,center=FALSE)) # m4.3 <- update(m4.2, data=ps) # ## scaling factor for back-transforming standard deviations # ss <- c(1, # fatsc <- 1/attr(ps$fat,"scaled:scale"), # fibsc <- 1/attr(ps$fiber,"scaled:scale"), # fatsc*fibsc) # ## combine SEs, suppressing the warning from the unscaled model # s_vals <- cbind(glm=sqrt(diag(vcov(m4.1))), # glmmTMB_unsc=suppressWarnings(sqrt(diag(vcov(m4.2)$cond))), # glmmTMB_sc=sqrt(diag(vcov(m4.3)$cond))*ss) # print(s_vals,digits=3) ## ----load_ss_ex---------------------------------------------------------- # load(system.file("vignette_data","troubleshooting.rda",package="glmmTMB")) ## ----ss_ex_mod1---------------------------------------------------------- # summary(mod1) ## ----diagnose_vcov------------------------------------------------------- # diagnose_vcov <- function(model, tol=1e-5, digits=2, analyze_hessian=FALSE) { # vv <- vcov(model, full=TRUE) # nn <- rownames(vv) # if (!all(is.finite(vv))) { # if (missing(analyze_hessian)) warning("analyzing Hessian, not vcov") # if (!analyze_hessian) stop("can't analyze vcov") # analyze_hessian <- TRUE # } # if (analyze_hessian) { # par.fixed <- model$obj$env$last.par.best # r <- model$obj$env$random # if (!is.null(r)) par.fixed <- par.fixed[-r] # vv <- optimHess(par.fixed, fn=model$obj$fn, gr=model$obj$gr) # ## note vv is now HESSIAN, not vcov # } # ee <- eigen(vv) # if (all(ee$values>tol)) {message("var-cov matrix OK"); return(invisible(NULL))} # ## find negative or small-positive eigenvalues (flat/wrong curvature) # bad_evals <- which(ee$values> stream xYKo6WًRE7}vSv($';|x{ 4n`4 972~ZY./2$yBe rLQ >$^F1 ⏘dZa)NrjLN&c+8!O$Uʤ vu7rNIB*\ 0o8 @H8DFA_;$bhC 2ew;wrқI{x ؠ4/*s,sQ|&IR ^e(u n7ȥIme̬& %PkozZI;Vb딡7)v|Ԡ ~NCjbaI(,x"L 9 poQ+z۰:|ͽaILq#nUѱUխTp}rIvL$WAnh) X^sQ1hwh6Gwuw$#XFaD-'Q318fuVvky""-7vtѤ>4yCO?7L[wwL@ĕ)3.և1n\:)ŔVVaԧjVtW}ZZƙ5z494b]s68uT&!2*Oj|V ^(˷ş a .PSh%) ~aUh]1+5Ńv(4g8efHSsrgyĐݎJi L\NubLEf |n-/J2k^znJ<{'^E1M(xzIOm;[ ~;>*՗~5N~ݚ;ɚsWF{Ԋu4H0Ln_>}:nfgsx=^/`uzTIS=yn3 dgy4¬tl[5Ͼmǧ߽tgIga29/Ќ endstream endobj 104 0 obj << /Length 1382 /Filter /FlateDecode >> stream xn6_!/:1"ER԰<$زa@-[6EBu$yma߾CQn#جL y˹#yYkjׂ q>\Pbaƈ5[ZDgqF5klxۋ|Iz|0mS"LgI(uZCv{A~?1Sv}$8Z1-!VCIk9jsBjR' L:7&_yp i8a:= ^%i:{}{}!U̽IU^aYkTGmp5.<2RUXId_M1_01܂qe|Q6l)/Wë˔("6jCP/T|# p2B-KY&w+?/@\wdSQURO-z!;jRwE[yVaY&7{jPq9ʁ7&\ WrEJjܳ07 ny=9q$;]#y瑼/;ِ5^?&eG~ѧB!XQMnx4v6GXkTS?0ExpS#~CbnC[%) 3IJWU릂XcTí>GH9GǿȣpXİhlHN ]\c؜56o"X:YU endstream endobj 109 0 obj << /Length 1582 /Filter /FlateDecode >> stream xڭWnF}W} D7iHFV^\.Yʒ8m62̙YΔ6 ?\M_NxϣH,*10ɢ=Uf:H ^\xɛOCL"I|GWoJ`129_aYate"9_&7 !MZ;noOzĞieLdE~%- qm\2<746]!C/$>kJ`[ֱZuB3d NlgBB-ӚvT`]T ǟ3W G_4 Yc4%p5t5M8'KMF^-FU>=)Yu$b dU9 憗';k[G-᳃.cc<aBDe2"K=TVq`aTYdeӶ_\/mC(*}\ }' L:+LUS՝[C莩Vq}B"7fRB%K&8a.AJu!j}uwLH&u|>!@ yoݛ_>4[q.8ԼF|T9,Ue(r0>{0* L2P~T,[f~@q Um5WiEPgHCq9-*ܸ_kH ,) S<ۏk<ђh"%,tLukʣXPXX@ ɸ 9 ےL}{U 뻸C\6J4gXcCJ=B 0r hd8dx m C_ o3ë]7;cCE'z΅oMJJL,a| ~=ïC;‹bxȭ]l´No4ߧ;cG> w$pGҹٲr=BC)&xMl',،tu7xbq" [㩔w vG{U(r6tgq/ P6o/\{jVBp O}K[*J(wf` P>DY, ͜E۴gzN6TXK ¹!.'/L,pymZ; `5DA= B5\nmX](nrJw0OD&/ъL\퉠_vZ endstream endobj 101 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./figure/dharma_plotfig-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 115 0 R /BBox [0 0 576 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 116 0 R/F2 117 0 R/F3 118 0 R>> /ExtGState << >>/ColorSpace << /sRGB 119 0 R >>>> /Length 17968 /Filter /FlateDecode >> stream xK&Ǒ_-EWg#ljJje- " )d` ?=ӓ(uV \q~23Nf<=<㗏_^/Q^֪N,r9//>yq/?HbxcW/f~Ycs<|1c[~yQgTY3L,/C<%<Ǿ֡xl<ꉼz$8lKlk2yKKpISl[gK'깦 ۳Lˣs'WW^2U 9K%3)bY5Jf{62ѳ 9Kxuy+= lvz*zJYKx*j,/,Sʺ\zfV*'r)e]_.U9gEYo<蹿H],ʉzJYW๟bV,BR=g\ގezv!g φNgu}kVTzn[m;LvY~=**DR=F MUB]˚_ل*I U 9KnR~UQYzJYolA;U 9Kxu~\BR=8T/,SzFOQ%ݔ;Kr)eM\Fc]YsR)ABR=į O=KTO). LP%} 9Kx4Oz*EZHx*zJY)'LrTϭ,.x*EkBR=3CKBR<j6YQ29ƉzJY9Pc@YzJY/= TZju%<zޞ5[ UyKUP2DR=RݒCuhljzJYOy7g*UvAE ߶ STi2U 9K^-o/,sf g*h 녜%<5x*DR=z͂2BR=wY/x:*zvYo1/,Yer 9Ke-d2ڞDR=7?o9zz!g φNl[~ 9KNeʾ$[u2oT_w9dn{y!g ώR³Ƙ1.,sBouU.,SʺȻ=T_A^/,9PEZ:x*=򅜥zJYineӅzJY_[Y<-SoW{?*U_1/L:QؕCqݺY*G3UW)m]tx8tkir*ŭ]t$Qfiooz!g ݎo&5]w+Uɢr*9 W&Ƒ//]șxKcșxg qִr*e+0W9n,9vpe;v9KwVh@/JB^NtsBwsCbE#E7[sfϦ΢RpIffkR- ѹlYRJS1NtsFŹB"N[J%wi:c=y z/M1@nK2y/ jV#h{{0 Ss-;7{c:S{LjVNwC)a,}0x eodHTg'- ᛽1`LKg-9ifo Pgj&[E5 aC55ǡ &͞ L=mU]rboo Ψʠj} %{Aՙư&Гޞ ,NާܨfZ0&ա%20LIʾ1@uubo Pޞ ` =걷7=ҡ Z %{AI7b|coO&dRA55K扽1:)j34bEB5Oaw Pᛡv1:IRTsh FۓCMI5UGri2tb(C{{c:6: Pƣ{{2 ɠ{coo P/dH\{{c:ި%7v1@,kTsw1@$cRMG <'à:E55Ɋ0ⱷ7YxPuޱFk?< 44zۓ2@ͮpQ{{cv 4<#SIk1;<'r'҈0$iQS{{cuZɽuTdma Psp_ᱷ7tmygѢe'`I~13^1_7{c:6O;wKifo P'kaf9|ٓ!Q?w.k&4|7Sřj 1\u,zarlh᛽1@#YґXT͞ Ɉe =s: ,\fo PjM;w%Yaoo ,J|",|cU= iڗ;ےOkt pa _Yr)y4Om:/inNe,2H=*i\{/ PNSM^coo P[9plܙjۓQ +coo PkvrlY扽1@+ s1JOVsl,Tޞ hTa2U4KV5'մTR{{c:I zɀܐXc]EOtYڧ;ۚag'ulVm.D1@Ťiqlk'%f?vۓaR렚]#'G:,}ζnoq'uΉjv coOl?ިŽMaf1:] 92<7Y野39扽1:\m6 P )'D4滽1:Sad:᛽1@Ol1Hyyah=IZ,mjI5 X "rJM^fo PrL-mUj.ifo PGӻ "MS ĝfOLulzql鹨᛽1@354cjC{{c:WwY:扽= ɺhqly +=PYrJ.{{c:Yg6ݙ eyAzY "M3 <'C:ž mKSD5OAz}(DI걷7S/wwc.Q=)*AD<2H1@3{g3 -uF-f_ԩV?pl?>@K=:թWҥez=7S$w'+9tiY;ۓ8V' +=ib4VqUyboOAu,ٞlTdm7Y "`Q2=u{ ٮ=&ilyjf$ZH鰷7ӹ% W`^'jfNg SfۓaQ$alw,1@91a|n΁aj*utL5' %'+=]#Kj]% ,4|7Y055+Ab  &{g{٣żd@2@M`-' ϭscO`k qdTg^vỽ1:>0Hݷeu&#(aMV-{ A04䱷'C:z0T>LZrPbd0 be)C{{c vm) {P?a(lAyAVzr`k扽1@M, Ͻe1@_Dz;ۓQ]ZZr2@M` {{c:z04Ihⱷ7Y$ PsXȬugsٮs= T5uE\JN/d" PSehtɜ͉Df<`H̚94>Jq5 d/MYK.ou2Gj0ܽ)4|7MԚu7{20kȜUs--9Ufo F͙IPv(CAF>Lb¬'ٓY3GHM ۤioЪAF`q]3k慽1@b5 쏯=yTf5ɉD_ۓY3( ذ;Ndqp]Jzr١Co{{20ka(lê{{c:) ؑrԩw |coo 34.'fi* cyL9jjl1= kj: 1@5if Pޞ 4L x4_YTMNwlif^iVsHVWSS'f2T HZriڷO;;{ j*Ơ갶χ{35{{20k:R;k-0ⱷ7?) mҲcoo P=2@~3coo PdY0֝'f"aQJ{{c:0&aJ扽1@͡33 ͙ao̬cp߁0d>w7ifo PG3  dRr99|70YiȬ'ԙ:j΅j0a=5s1KP&%w ou4Sۤu(CAVzF`̽qLzufOfS۬̽qnXVqfo 3l#3Aړ$ {Y3/AHfCaL=5s,Wcoo P23 o̚yaoo Pg[ͽ &<'fD;` {{cunl'3f^3a:Ԝ#1:й̽sQۓY3lUs-9US7Ya*{zboo δ-*7J 8\Ad53k慽=\Am j[k +;|7Y1Zp&3kou {_LQ7{c:+f'07{20kӎ򹻕ӎjFP7{c:Mg Τ3ܙY3O|'fN%jjrT$)7{c:+ 605_ᱷ7U+{gM< +=SO;ʅDnaoOf͜ݾn$%wt1N22k慽1@LGa {{20kڹ0Ԝ°Nב{f7UMNgVaP5WTy Nlj*dhW 30(%'quiSw&C{{c:z0@M=aI扽=5sxp,\;מ<u4Y2k?< +=Scjj,0鱷7cc½4Y3/s|Tat u;;̚yaoo PgY] "Y̬d`̩s٬nf {{c:K+3L/%x sO{3\CFۓY3ס0{gggUJh{{cu, PSO R= +=Ks Zl)C{{0Tf\3ʽ \fo ҳF 2ko CgQ*r; tfo 6f 2Ff<͞ YSj ̚y1x{c:I "sX[ͬ'I% PsٓY3Wґ{enou4C04>7W#+f^IE\?2!؄_>>:s_4pY m~NxwjWη]܏O#a8E<0Ɠ>ǧx>;uOfGw}o#|wQwJRI"X!g It*K^rN~uN~ힿ_wƕ߹bjHQ 8.;]uW$FW4d iuϏ_s*?V&Wz?~?g_~DBZ/~?DS O6o>/wx|x|VJ]̚3_鬏S>6v8#5vEoJ[MDKO}wOC9pl }?~x|rv9<5I/ĵ]?'ܤMdx ;C#vŭ'ǧ< m)/ϟ~s>_w/BnW?wjg c;6'>4>H:l~`M]7v!VA?z➟Τ{aಬ?)'VO@A}jD'0\Zk~a3aDJw=}rPF8ڑ]e0>|YBώpDձ3E.@ggʑŃt8c1ZLV=aB,~=n^KnXGcX"Rc٘;$"wkOtybfFrƨ:bޘ1cM7|r;#ԝR1bc-w$uz1C~iRw.Ǿ6WPMa[Ƈzc^"np[>ULlq:SMqRz n'G^h5:緎Ovo'sc=KhgzͶP| }c}ӽ JȽ`}gY  k=YnS xϗM6tL(ދ-=vR Zl!c C#/{ln Fz u̝5%k8U6|\Ѣ[س$KeR=jlw u8D nWOſ:t {|Հ] jwwB2 U]9uz(H*:6u 豾'_>C=WWBwJ+:[jҫs/I}Pz6EI\so-hr\2%`+r^<\DoʌTEKCޱڙbPCVG>6s-ϸyvo[GO8(잏׮bs,ޫͰ88Argq,z,TK}kLB-8z5o<x#{>a6cޘ:RktWGQc+} F4|yBXk,FR]rX'eqzêI%_UhqWqG_R=JH&5ԳCgzbZ쭆"$SQe޼ḯs޼W s7n޼!9oѫ#͛>s Xi+#8<|5cy %;GxӉ'H>="[Xcƶ3c_P6Ne7rpb]Vt5ԧϾb1 #͉^|^z0}—y :W+ԽN=|xD/G*rAyՏP,{suĢ`U` yW+o= o]Į.gf[*҂yw}#5~6@Z#O7/iC,.9>:bˋ)6OU Rwf WS#^&Ԃ/=6H]'u`fW34ͧyu\zC\BʟΠjgEXK{t7?A z o'Osr{4ѓjlNi0WbWޚ6FlDKN|=Cfϑ}gU{鬢)+`>@sS=2xK}2rӮ[%}uWk(rWHKadͪ4Y9E¤0D+$LŽ}я]{pKjPزC[无p{_c^c@=o5>,ˡ#+\K]k.[2.ҝ1+Yɮ^c7ϫKW6ҏ{?Jl{]VO ( c֊(Ѷ6b4|E:zysZ9LgVS-f[Bߛ[c`:tC[7LnG z벷.ٓ}Zk1b9W3鳷 Nk%峏Ԧ\{o56QzhdbY*e,2cI{l›ܴ֡|士G-4׈e(=cF/_.Ԙ MʶmHS0hR`kqhī`:uzNu5#ˢD~&Y{gGlr"֮>r8B9읕7?G^cy\MWCI&H``Yġ%E%E;Of\+F,2Xq1bH ُ\ḨOh発`h{-p(zhCؑcgWpr.+Y7]Ʀ`b~V{[`>z(BsRg>Xvxx(4/̫K3wh겒W0;^Yv5֩KBg6ҩyk{Vi6u?;y2:TWms"\]z_oM$j݃9y^ͽ}=d^T-MR,Nˇ%AXb+f3K7cG[5Sn~Plء+xykZx؄\ b.tqjrn`\vhj%/G?Nyz_u kDNݳHldPk_ *~GjdJ~dӖ7_<5.A=/bQY2ϰ?_}7_|}rk30ϕo|_?Ͼ[G>>I6-paJby|ٗW}CϾ?}حG;ǯwտs7S%#;Ͼo>)|woU_׈&^$\^ȌvjU;BIŪ6qNx.ˡXB{Q;}vNx~_7 W60ܿ^?_S]-iͻ?{?{wK8VNW:45&| ,CsiՃFOޢtY_,E﷋(3gf뫊%U2Z@R-S$VJ_ ]j3 /+U_#+_,.^}2Zl_p囅h6e"p读qj [{6B(vjZVO+.w lXO qw  ֐ׁ{$)r$t=VD6# æګ *'r1t8/η iza0I †8o- ɓ2{Ul=B8}Y)eL—U'?H\d{NɯUGqt|+xO&8x*y~i)c=Xo/å)^<ЯW̾g >B\Iޢ/|_}Q#N.utWuRE{HF"u~ &H0zY&e6XnYiaٸ%a.e| A),n/!)G}/q5dC߇O&H!ct7{bqn8Bꇈ17G qsHUFpaLz#x= c}rd&E"d;/>fvԴ|2IH3f0"Ap{ n0ۧ"9%X@ƥ{ۑCO< (JH~ x2b4r6p¢`b<W\pp>ʡVCx`},\E8kcXfΉȅ!#ў}bQO:<ÞܛLjv,!g)k#pH}-<+k1 r}2,'cA=|q3 yokM0}%!o7$-ho7%-j\ y2FZ.0c~3x=cjEp[o7C.`\Tֻ!`F\IÎܸaFXet^!o3BJ(o3*1'{Ō*u|RV2^*IW kSIcF\3qbD#JgcFTmkaFDIŻ*EJaF@.`F\m\||T:?G}%fSm~p3<3b T?{%Gz|MrK9`p\xq53©fq%СS QhD[0K><̈&3QUF (f}8?aFLIF0#6}T{̈1#61̈Y>3"k?gí3jc=̈:8cnaFTiZ?WUu?njx᷀aUE%fT]FPmOnj@;an|z}̈AlUc:XΈ^~xT_E0#*M cFX5ݓ*,WXژ)?1#~jS|̈/bd5;lc@ڰyX#ڙDZD8meAզy2fT[>f" fP=̈f94jV)%gw5bj|6fZΆ~11ZcFDjLmc`z1#ΐ>3jdAbFXz0#`y) fTo1-31#zȷ!me9,j[Ϋk\1#Ehĕ`Fd1bJNژ+0?-cFHuMsƱF(xf5$W3bV#*fƫ|X# Ìx;~z rH|0#6 sF,ɰ}J#iaF4{wN";\ z1#}0#FO#z.ֈ(cF4X#{1%'?{1%8'5iX{54njɘScG1#qyb3"<g՘VÌxj]חQ1s|([DV] f,᷀a'׳P3 cz1#6nǿK뇃1#zETz>_5BI$fUou渒P}g>0{϶g_SX}{d] endstream endobj 121 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 125 0 obj << /Length 1360 /Filter /FlateDecode >> stream xYmo6_A@5wR`]_>Eڲg̶I#)98?>*.[*]tz&4/ P2MYrԿFRogV#v)~!gԀK%֔83d+ IytB_ugQhIMuG0m.8R1&HD"N1sc(};qgDXn5U;SZ-5A䘂G//617)yABլ!%<=/7LWe0 ڔ'i0%p]pbZbFV8Xg~X~X\fg8i6c#\=}j Xr* \\,SY_z*.5X"#^ԅOKmU iw9Ќ*,CUdE:$MajT.>@B)uf C/ҐG;پl/>p̹^_ȉ13 ;I1.uS:p9ΌVM;Xt|B ‹|'2\OfY$Xr/aSH|miR(p&GI2~WC.KW_ !EMW V ʠoI:,V 4i6p(n[u endstream endobj 122 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./figure/effects1-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 129 0 R /BBox [0 0 576 288] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 130 0 R/F2 131 0 R/F3 132 0 R>> /ExtGState << >>/ColorSpace << /sRGB 133 0 R >>>> /Length 995 /Filter /FlateDecode >> stream xWKo8W^`Y_"-Ew%7Q :ƶ?C!:SQ8R3p ߪh39WkI bQ>F jdNC{gvl-wjG5~$bC2j _v 賉x6l2k"G (Nxvf6Y~߰_뾬v^[<9s5h,Hr8fIWh 8\WV8me C p :TJo2#LqDiFY o(51#,1Q >Q.0m]h糓YR(O}$"m[2dDtU>\$\)ji$+*wS6fk j endstream endobj 135 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 139 0 obj << /Length 679 /Filter /FlateDecode >> stream xV[o0~ϯ4x>HVm}hJWT$MIqvm'ǟslF7k@r@R 'xF%\2#Sl%:vu]վk|d>FI.`fyU1nɧỈQ!n)y,> /ExtGState << /GS1 144 0 R /GS257 145 0 R /GS258 146 0 R >>/ColorSpace << /sRGB 147 0 R >>>> /Length 171300 /Filter /FlateDecode >> stream xɮ%u9?OhBB@@TW)"*)/ |6;#ώAӏm7fM|zۿ~?_?O!G,փ8)(Ӭ~g??7oߛ{%O/pgo_W_ңi?ߣO9~fݯ_{}~{Ym}*GZ^wi~.8􉮧1'?^=ǻ Ǿv=B)^ϟzBTcS㧃W[_߹^?~ÉS~l1U[k#|2^lo8ǧ圿xPo1۶?)0?Ik<8)دNgH4?a~4dڟð:p9yο?]1S>bE{m)!4[=&=_ϟb_'Ԓ)A9XC͞<6Z蒙ft ځ0l6ۓkoЭi uvWnuDKCx7k,ݫ=&DγӹRm 7#fNpe8 ^{_28dj7cATe $/.ڂ!?oRl8b% Bto2(߂_yx:R?!e|A B[漥bAλO|t9=`eTϽ6XбF|2PC#X|{A|+k-8өp}_OSOD|mRG tWaC]_wA{6*ty%$%TS't'gWwALm2R@d0;/HC7)6U:I+, x³ν B'Y-;#|%3d/.DiٟV[ y*-]y BϜ2ІSFdVX*M^ ]lYfkNBOڂG=",aR=RҮ*ir$̡֛WȭB^yB ݂87[T킐'%yJ&|yz\>cˊM$=BOk߄{5iL,z('B[ze=&ւtS癹]n_Ye/~~-sSz=8~~w_.辯Qm"kpIYcq޳N. BNq3> -r~-(w\ u5*9v|v_ЍmGqeȂ b~ S&u_gfHYi =Lwd 4 ^]Im8 .f_3bLhJ4UqeNB\2<ʱ;;~1q< [q%BxPCL}}sU`CM/-/xIep<]Qn愉hLh8DZ!,xn%8 h=ڍBg> jAm0m8tS1B3dRy G;~~M.z#^C^~?SCnzŭ\a-"O,yzAܼIt=([V5=}Jm?xlF?q# ݚ[byK{.Y؟p+W1?Jm ϑ΂NA|k4S}TUH !jw#cetx҂z8t{w=)eLfJF_jS_ҟ@~=QX:"82W+ m1:HSdfjָW%[[b!4r#136xjzbtoVf1t倫UJ6ރx)xA/kiP~댼YQnVGpר@JPJ')'PsA72jĄ 뎛ϛ))ɫ 'Ȋ B* $U%;ꂸywj{˴ypDy!_ d曷#z@;ip<>f4^!s{c ᦏT"<v$70ho"LB7-vMV˜r9 ;-C\ЍOIw C`u]:2bzXqzcl$1&e]DSq[$e\SQsEn歲M k_w9fQ(O]\ vv tJ]gROFHj}KHaj#92޿!-ic,;#僔]<>q 9,4C>سDʘ2| I7 z^Wɘ1Rf"x; Tt ϙb < y:Ξ͞pVNUbV3| pvƓ\YT k nmz%TU#%5wNO/uq A4ۢٷSQ"1e7/;AoeֈW ^FTʁ[nˌ2e5 $WWij `` Knvc&KWh*j:(v%՞ş݅;vAn28;).)iJc AhyiA,k $,,2=^Y=^xӊF \I#^G af[Otf9urzAa$qڶڶ )YH]Q61~Arނ e/Q b{hKj{ada#Fce,svĬ,YZ:\7 tkA}U(x.軬U?(Q'U tD^X͎Y_)P595NTNt,;肸2~xApZDjwॊ_OPpwZc4Dzu";ɂ߲"N*,PTɵ.xnLu!B\2'( }DNOϑ5VCmzoCA¡#22 48 I0a\ꥈ tN]R +тּ}xH\z+QQ?= 5$ X. g&՗:# X`^j]>!md?/B43Jw9<[Yc;4 -O&@I+LOVyx$4V DD3+dd3ݮMV~Ӟ5=Ӯծ;ZJQ=S!o ~:=]k"В3b\8J:ti@. c%>?X jq.qxVZ9',` wAL Jn+crvĉƘ Ân||Ap,K YJFDEOƦN n ش6`d5,iʯnW#ڣF[.s%R'2'GOXJBfZ(X(reLrH8"q2@ҼZv%!JeAWn߫:"8)?MVP,P zoo`M=Wd3#՛1Rԑ"QNU3N,=r]Ԛ1D Z$%P e{bSD0,*o_rNee iL,n`uHB#+D2!).H Y4ԱY81@aZZ{ &-P Vڬڬ5t0#΃j[Wnݙx-+/+GJ#/_Ȱ0dwI K;Q EL/M@M# -[E-[V}TtȼM#kA/|feݛ Bx"ߣj?Ɋ7OVd(;g:_]JbY4jRj*iY ƽ6|a~h8fX!vêyvvW¨Ta r4d0h3qs1 vvLn %RoT@̱@.&Z8Z8&WF&50yXJX+I2C@#ER:^U@N)rL?Qr"Xyc>y5aaJxZBtiMIs+j6YkM¼wf7kެ>Ei-S/N Ӡ,]NRޭjEs&`%JjeR=>VnXylI؎mԄ5"#K-E9InP+"EZZ,9ʟ7 U3rL+[V+[8_ӵ* DfKEuxo[`Et)Ҏ#gֺucվʂ!djA2XڡU1BRUbnx!jeƊ*E]*3kS j_r<1ɌVyo3'_}v98N |Y?|>C6<08!n/7Xtc[z??Yy:79G/2o9/"~ .F'ƿL_`Fҏ&( EtU/W\2r^5[i S?{cKlSS4~ȥMoNzWO}0C0\5#I|v=xb8Eϼ ;44a}gxk}J6ޗˇ/ em.esyGچs}OZ=%$lCbC~l/zknm?X$b**n IܟH#pC~noޟ~{?"6t C >\b~=le"!ޟ"ޏdjYUsCw~_ \ۍ_Э/jlG?QbC7gO~ _S!o;m;bxm#܏T~8?sҞY J5Ʃ o C A_qԆnnG6 $g +gVjȸЍG3s@Ȇ/g Ogs/> O ~xfd T&I ds;/J?!w7`jo~nqn}PjC~wyk|xC/'/>#cC7TYGg >tCW^~HJQasCOOeĆʈa!<Z1d?T ?7r0R_vlCULoO1!R~S6??I#xПO!wtrnQ?vC'^ ߏ_QοmXQ B ?%wM*x gZ9aϟ /H00S>Yѥ2 |٥')D/?wA<8w޾ \Н/vF콲 oÙ1pSuF?ž!,{]ok'_?qM(^oj$?_yRLXO#hB?U{4!)_?cG6>ҥ&)8 dR>yyAH2*}Je!&'á})OO/ 9?JA7 諿S{C%!#RfuOY {C7>K/3( 7q5?EU W7PeCq~>^vBio6$T 08} f_}:R?G%Ǥ9Y#SO& Ô?ZG!8 q~̚l۩W oȷ?Cy TFwoMr~Z[oGk0~AwO$) >yڂEgk|  뷠[_8ЍI֍1 _D I:{J'}?>w=ߤ?U}0C b|BnIm'?dXY'ke`jLD^ 6k7d|X&6LԏRxh? šp>迴RP?,K BHSrn%5|}git=DkOh`1nCԯݐI#g߿mAM3bs~r}1ªIۆzuo(|CW̯~OP5`}c^~ ?Aݸ z}r?h`~~I:| ?5a/{5>!Ҿ|Woͯ x}ng>DzHi谶/6}}n@̡#3sA?MمQWf F__c~4XSGJ#v]m ͆n}㋃?Eؗ7t(F?(?VָI{Cpn/s.xT~j,ǦxKULߒn ]?:hnHg},U:AB-]j[ I~ҩX yTܤ}w}گƧ_i`|.͆ʻB~ O+tyTYˁUA⫌`yP߀aA@!SG`3_7￈R[.A*AA* @(_?4*5W B}_8_ R8?I?C.HP}{C'?%|~C׹~/V2{%If//ǺƏ ZdIkR)S?@0gk~S+vKGAoI|T\|c+wla E~ ~}}3tA}:nƣˆ8>>j|eόXq?wJYoƯVT/cP?iz~&㳥 D5_ߌ5 4K'&o+AfA? !<O?t+>4߻!w5tja>?$a~3ׂ/>~vAoXOX@N'U]9~Ii/Jڷ,ᒿ/1 B?ᖟ=H>lqh/ r}+_ _705]+'zo}.o r'_g} io?50c:BmAQG KB=!lCw޾ʙ ^Y/#Q?R܋3עt  g >6h?za}۷'KZT'?Ծ?I{$cNZ do_f;E?1h~Ϡ7n_Dׂ޿ ojS[  ? 'k|@1w 1>d-o:TX}|Ծ4~žY$k}=~{~J~`PH~J7t ?yO'B 3~+hVa~g*?/~dOƗ:(g؏ t$~zuh5n>6SCӏ,_}I>ObhRڦc~Yh2~/CaG|eQ~C U*_Ŀ=39k0tdؐo؏&*coq|!Gw ط~RU>?Ÿ :[zC!ȿgG!7mՔ~єECIY3 ?_ok~^+}{Po xMdžRqaP_0`X R*=MaCO͟2LoB-xX_/gSX WZP{ Ai׌Z#?nA7>S}N"oݏoǏ/@$d~-cd]T4Ѝϰ/GOftԟkMS 3gl+MW7n4BDz+A.'2~8jN|~AI]~ڳ!+$>vW%s_0>V]"?!rNIL?t3*h5B }}_E~n~o=3, )Ѿu+?Mf>K|{DY@CׂcW˟?TjC蟸7m6wj6~?Wq|'ς&SIQ\S[JLhq/ϙHmӏ7 bQV%֗,ed;Yh_,AZdA_>Mo-QWOϢ+㛫73zJ|y!gQR䯳?^ $I ~\/ڷ&3@ |2gPOC Hg}{~[ÏY0Is囖5?iYC'$0 P:&~'.]lҿ˿D(gU5hZ#>!w2?+([++Zqo'hjMyoS3߂<j_{U?|w/ɚ_CS4ַkZ"ڟw`ؐ?Q?lIoA?= mR ?wľg^> a|SJ>$nWπj|;%iO==xф>vGG'-!п7V~ &"?hAG~U~eG0?/"hC?5>~j,gC?)S>Z5?o}}AooV]h _/8>>jfxZI_-n_Oԟ~F?Z 7/x'`Է`0wh~o%HEIm~ ?Y:k83{^WC/co ae}z%SX@ ⳦ ._xɟc >~ k>_4Tğ? ~"EyIYj}h_-G+RI76MW!-agI_2_]ЭߠD__gn!*U~n?0%(]S  i?)-&DQ+k|&˦UR76tGކe^_,=v_%lv/OK٤c㫒ƯVG[|$Mg!7*~?6g]go[Q0>SoKkGL u>΀8/I} ߆&Ls@ +A;h}YC^~?:߿~rQ{/ևoZ?@0h ~~n?kƑȿӽ~$C/M!_^$ D'8?.?&͏Onx=莾-ixZC ?k -SE|Tؿ[}kCn4o3|JߟKDžxo+_h+yo_N8>g8>v`ko ko o?M>8>Wxǧ`|5Ogq?ǧ8>w?kڳ3&>C4S݇S"صPL\ ľ/ܸau0~trsǷy8 :\|G~{ [d>n?^?mX|?<k:p~OWo&t_spl2?O|nLB/`n~qFVH{2~wC-_Ͻ|ݟ}<Ⳇk9o~2_yIru7jaG5Uj|nZ[N  LmtϭX̂s{k`9<=^'ks.o|0Ã^[.[Bn7|s g#78]Wx-~sSgp0Mް݋M)5|J}%Nlκ#i}k6O?‰ϴbR[޷a}پLP@5# lܽ{X^a^6G+n;unk~:umA<tG:Ɔn~l]NнXٻs7t}ۆsC)Zܐ?0'XIttv_KЭ_/vIoЍ]{t C}56tC9 1X0ә6Ct~(![НO/:D6tG9J;C߅Kl]{>9oC?({?9ot6["½7㵝pv!dCN}#7Mo6tInjr)w_m/r/`C/ZN6goF8 xCBW?Jwi)HWי;7tQ.`C/UΧ >vk<Ӆ lgQE |A*߂8_%|!T qp?T~_M|9wSD:[ Η ĆN8_ rSo;vCGP݃m  НO S c~'t=ߟ8n6t>\bC' /Y /- +Ͽ_kS3c&0t!C7.z [WUQB /~]>7v )?y/itG炸~4 /n<ԿߙoV{Ԟ-"bmA=}[ jߒt AC 1ޟ$JF:"6sot~ 7>/h h!w~BP> ,?Ri[;~S-Ei m/.Z4W6WW2ςn}!_!GRU(ʩl߂h!w/?SfA~Rn~J"OʩuO4/}bB; r?թ7鿛ۆ~???eG 8){A{ B|+8O%O|Um|w{!/_[y~ߌv4{Yl _m7Xڊ?QlC'_Foֿc2/FbۑyTV4ϔoJ}RM{CP#}9?Q G 1>qohZq7U~cL!*O_sMj}H]b9l%|H`PqC@Dž+ t?ݐke~ #(OcB v]$f$ a|BLaVaG Ѿ>~fѝ4O mAiWce//[NqCȿů mb_ Oi߂_kA|T)Ge?Y7aUtvEaX(o O %wlOhj?(8 {nOwjꆐ@a\/-Ү4כ׳/(i 33Y3y?!ίEC=Nj}~K7gA?-֟4> uC߰K0OVmބnCGb*lwQ݅1e{_14>421j|#7o@pw킐t|\T~f햍!xωQk/㏇g6}/"R _юuCпVĿ-CCnOGɤ~2E?a;}`X>bAG:XF \7lCsc)*}(vh.~^_U% bx4>: ./.?l||L{4_4)7l)gd ~Js\A3C2}9 | NW NJt=}]CćA}|؂?5ط$}JX0<}*ԏjoڗήh;;3r ORN 5b9L`ɔߩ[}Ο1_++RN4yOc}tAo_r\c_G̔_](;҇]u.#>K|l?toǂ @p\LOlHˏdMB; } > ?OnI_M?s? gI(!'GExeQw9WOT)oY7+b/?_džo<}j*-b,̷.\r| ͏\oÂS71>"i|D]Y~ځDbRb0оľu&\h?!#/?Vδg/bMgtaOvyܿ㉏?XCWG]>>yA?;;oZЍO/$91Cc2㿲ʿ,ϋ6tKL?"&~;7Wп !__5݆|54?3>>gI?a'vct?PiߏrBh|jE=}[,ZnTE3AemUXh9n+(wrv<EO[~GEG7}}#%ڷ?uV:1?:i~W)3 B> Ճˁ`x!gIg~_> ڟڇ wm ƏI|XdJ@MMMl7#_ 'Z N;wVڏڏ`~õ?Ģ?5ͯ _O CjXܰȷScv1?n|!?A?l!@nȟX날/ױ>,H_2哬kg.c@W3Ohg! QA'}m*}DrЎcCooI93?U`ȸ/f~oAL¾-pۭN֟ӷ.y3( ۍ[<>APP_ej㛆查A:4 6*WUW;/|}>o H#bAGjB?MwsC?|"L#Ja~{5 }aO, 1AG OO){z?wP BY|A wA7Qvl7xyWM+SUSjW GϿg"Qf0~hH\K).&$}KP>* ߯^J__AФY4> Hrho^v @m;?A~?ַeBGX~%O&OVGhoO~\Xc3w_ٷ~BqzOU͟:r&}}c&g C?=gD ̯__Y?_tOfQtF A+3קHݙ=/Xˏ R[~8{ Zv}|_Un۠mM3+׫^w6ך EgA'*P|?M/ퟚ~l %֗6J_Iw?'S틙>`CxևZ0h_,UWM|)͂n._Y?5Rj*5 PFg+[U[쫕O?g/{k|@\S4ҙ?0T@}[$Y*2Sݥ%9MT0h| h%_hObцX?q\Hns~J~EWͿd";w~GeNm!Q+2dz7VǪ^g:?8u:gE___,`'Yσ!x*~8[}v/A~~.U&V :DBWBf"èao b_51>i}Ŀlca/ֿ{/Y8k뱳q̿(ao TI @FUFoYuoB@~䂔?Xcc|Q"QW0>h|~.hԃ".w A  /,fM?? QI?/vJ}5GR"o[FP#}m?006'bѦGA^  槤|JOS.9( Bv6 E||Zy`QwĽ~6%>ePsA<~Q~d?< >w@ _$ʸ 'ɃKM1hE$,!9???Z`_aЍg}y^ҧzA+YW'_lH'ě?5~#(%43?_,a!%ʿ/wև7:vW~ww͡<}-eR^5=Vh*jnѵE,UUWk^i?9:%lv/M{kj`|dG_~fc~4x$Jڿ+3?.k~\g/"Q3㯳_GUsKra7 X;X_%d}0k~<뻤!;c]#)(/Z4MQ%aӛsezٹ*gW:ؿ΄k__Z;WQCLa~ - ->Tr~M3i}eAwŇO? E˱.d /M2>_./|o+_h+yoq3!j;8,S]gp8FqX~7ǟ8>C 5p9W_o~.$ٿN8i^5X=>p-G8z3>rs.n;B~./dzy?oq&u"~ݯ̤9-z&`8o5l\S_t5q1g_=ϯ~M8<؜?>ٰ3O>wϏ=?_ 'w 8?=p9g8O~8S-`7//#i@ƍ^pֈ: Z5~ZeA \rʂ@QGsA \|~AN'z9c8?t] ?p910n_c<sI9󇽼zj[ ܃:Z'{loE3J4lm5D O&m4wWv\mL{^2M׌4 f n 7A7Mة^Mors>Uffjq/31Mi@A~٧alޏ4 h6t|Ԇn~(QFm(!'r4 C|0y~+^ͯ4 6>CԆAM>b~Ό6}Uۤۅtn x6t?1PnCܟmm6t2 biژ41 im3Sl;3Æn<̤! oCw x?~0 v oLch`ڙ6te7t3ֆMh3{?cS8PfcCO?p6%o<ӗnu~m7})>It H#/oбpم{J{(S!_M8 |S_4i&GemYͩ|?K , w#hlc*_I*_e~g-4:wl7*o}Q,m3x&i#ӷH3 .kCw>QfvC쏣C ?p>}džSFF61IK:hR&oH~~I-l!4 q~"O$ybC~nHWiƐ__)c~nXU_6/;ʈl/ڐl~apoH=og k* ʹ!G){/b~Z꧝߃P,?Cn^,B&ʌnn<ˆ7|ۂ?/j?I Bsï:dl@膔oT,>_ق_W82a~UNe.h7-m ^ֿd~_V_~xD~`/WɯKҔ3 ?;gWjiRaNх~0|!!7Cߟ7.)<.dCOyH6$/囀2G ?^~^D~5/M4͠gVM 4τ c5S▼}<톸 7F&SUTf`CϞ?Q}7.o_ o|bu;&IhC!$J_-/oɧb?/ zCԿF4 1AYЭD6t4 _ eҌyOjE q~?WO6_fvط)ѾoEs'}4 Opnk0 A؇ІsCg䯔`mB~TA n~}: 6 O|þ!~4͸c6Iʷ]ޟ~ߡ;,np~7t7x~߉2EmL m7t ~=n˟M?ַ 'glH KS2/忯 |4 ?K3S`6F0/Ȥ3#~`AOOҟC^?I(![oh!ֿ6Mڄs2U@?hZ.+/hb߳ Q2&p'/&S?7)n|ņ_40&s ]8o?ҦJ߳ƿdw A?h[?(!/?&+l<ʧ/6}2;>4͉C{X !_yFۆg6 / 21tO:mӘ4MB6 0 /ߨ}aI??MD A?_|Go͏6B?Q;A^RC؂D ӿԿnu_OjAg6tOhQ+}8>_t+.ѯφ2nB'2k nIiCeiBMa~z(bOD޿ؿ$4m` {I b _鋔>>Kf|WoݘLO;)x _!mzۈ7m#~xIO+nUƆ/C[g?e9m<7? MU %~!GUi_ya/6-#hgAsB|}g9`AAÄcC?i`uo?[ V*JFpCϥL9T||U*#Xϫ?iar~r7iRce!:eC_ox?A6A>(C!ׂ+ΏuA?ZQϿI}xxҾ}`rN?ɗou Z6hfP2D&P k2Y2f&D?~ou!N1GQ_7_zktIڠAY7QFzCod~T{C mBY 7ľ6(~5ߛhs; 7RF <]} B{!Xp o|{N ~`CO^~:П |Ƨ iA D0hLb:// B~ϲg>hA7@X} 7Q>y!PV >|؟ !@WrԿ/mޫy h /8_Q׌ߛ!?,a~ճIrIh?un/څ ?꿙~}} y1h~(OyW%^X#_g5-ש?%l߭lsXI0iߊ% N~|0hۡР|P"rR>*wɏU׫IQcmL΄J_!;' ^C/cP?R$y3N< _~?0?iLӨO e;f;?m: :0 ^ߘ$[~GS_ w`+aC# ̏C?}ş#]P^ljoSE?{d~7zU.vCw&C y7O$>0~h[~[_B_7qA' aߓ60Do S;MAڏʨnO,q~ , .WfcAתW/y w/Nf _ W{D~M'!R>|@ I[sH)&2~^g1i~CSsÆߴ$XI 8ۅua~*%+G¾}τyCoχE#APA~?˷Hg'7V;]c23gZp}>}}w q~2?+s!У~C 4/6Oq=&65zɐ'g@cnm6xw_WB7F_U ,ߜ3!S|AGt'S{ڦZ%?}[-ӗ$L7J} b$m̠&0|:5>$ -7߿ ?-Ɇ|?sG:W6P?]ςaMGIf3nYD<|!-?1'IϫI?+O/dMo3 WKj?|(w\X/?-*A_/Ai[!:sK@}6͟:r$}y |)A v951J'S1i|^gA]h~%0c`~x3I~)^,a cNPU~T>]I C6Xw~"32,{k+z*?*P| K9FvCڿ"?['ԗWiCi +1m!j_Vpz>ևZE}FK}s?PPՌ_}^IWz?;Ct5~yWb>g9>|l_5?9# ؆i3 A'_V41gjϋFshzPiSs0wJ|oAwc^?]QVjՔ?DžDkg~[oMWϨ|ΦkϚ?o;`ڐMW cj>ע׬ SK}A b|S`0&Y? k}X?|w?65~תLozڽI Pa뚿:ٟfxZ߁/E_C#?pCEbː`?qEd!B~įd#Db _/΀d?ZO&}'4t ^s@~~~UG BIj~_韫;>uISEMX_JX$/? BMo>OF/SKMG?Z: Qq~Wm8? ~}g5!>NB,/~ 槄|JO`~F؄> -l4 GUʼY_A A|}>OE>댏_O퇍;xhP*TjiwmYkC+ׁ B>$(0>8WHW6?iMmV}* W-&g?&#R?h4gg e~5wєmb||$Eug}TX_>à~~4zzwA7/Ū_+Vo?o \5ߚ7Nڟ׾vn;;_"k~{H -~㧌?y~xY Bڗ S~?A#_"[&_:$?B5_޿ =6tU_?q_|߆5O'2Og՟>?P[[/?u4/)O!觗ߧ#6Y1b/O~" >ՏD[)7~7b;yG_eNHHkHY jDwAOoп>!G:%A S74~љOeRW[B[{_zoNj,s5O٨}7O'qSy{o?8L8Ǜm)=>ǧ8>v\w|*>64d4^l~/ |B[  6 `# zYWrN˵!>!ßLa<9??ljyww=OolOKܣs?pcm|\_t51wsW݄sz|.+gϲ.zs/3I o=oq~bz[??yy>ghn[d߲2_yIZs56nŽkLjy|XD =EyAy{Aj\,|0,x=ljqo:%dj>OOiuloϮGR7ު <*>lϭXy&́_`O''/%d~E=Ep$"AlfyL&p:cⱌfgbmsCGmYzDܟCHWgE ~rw?}nӆ-ЍGo ،~;>|b~^hkMov;? [Нp}zWK%U+0@nbBAVʌw]sGe]u wX_*wNN A6t܂ mm~ !Ri˧^4-mqrf_}wOL+)1Skc7_{`ӂeN-NXT>Vn2~kfDpZ3< {̈́ ! !_ K??$76T|>v!?NLk8~~vX~7gڥ@dgmc WJ7U? 6W?/c:UT7{߂-mg1m]荴O ~7)xV%6<'T|C7rC?ѻxCOXLތB!r6-# 6Y1Iއ~7K s؊oٷA3q~)/M?^_cB> 1Ҿq|,荿!ׯs/v;5B߆&mH^~-.7( `;lCϽ97ߥ7 ~݄|X'荶!&=f{ O'Q6}sߟ_n ix% a?M緁Yo<=st\ Fomˁ/?'I/ϫ{?X~B 8oL<x26(=?Td} dCϯ.뿠?ޤ~L.mHԿHނ/훎 owA^w6'7s}hYSj;n31M~_3 b{Wڎ q S'ؐ2ks|ߠ&S~Gr=0dPb`<3$wtn &#ozܴ _{|j0k8]#+R[m_(>ˠgA7=OE|cAW >NΟ;Ko_N6CG>ݍӔnm}+?ާF8{mP{+n !CuCg>R[pچn;+}W6㣹h|E|j054ë́[ɻA z^>%Y6}ˬ/sC˟P||uA77sߍu>-wC wn_^,w`|Of2p/_/Io_.Hͭξ˴w _~.iߴ}i/YK! IG~AлoC|~ݲS2n~O߬SwfYhjo#;-wJIs8,z>Q/I{;^' IEj #J_O_۲ #O9w g;]ϗowl\(uoF~Ԃ/773G_< wo_W=ʔ?L3~0poIoKrs ҿW~2)?djo#|}yA/?AbwV_}a Ϭ w|]wI#*Lb|4i|S>tGЯ M]TyCw?{:毨wOjrmFg7DS] Cܽ1 3x}܂߮_ +E+Zoߤ}7վay`Ao7BTP0>»M2?B&OW wOl2|wƟƟ  ?G/aMÆ*fm[K|}T;x~ɟ\snW~:p^>/!Ͽܽa [ޘ/ [}"?7 a{~w.K~ eA/ؿo7ٻqjF;T*{rjIY/Ð_Ȳ'zm_Q?o/)}\ر$|B.q=?? S~0D<C?&1^zFx>Io.8ȏVwaMIN'+NJ/Sy~>xS{3 ŕkr*> #wgvي??C'KaAzC1_p[AϦg{U>j}HP~ w'o辏Cbx~ [|#.\=B>.*V1|= !=i:͉ i?1&tO.1RP5?z!Ϗ,xiߢ7ᆐ5^.`~h#C&OS?n >>e⫓T>j}PV3SlOF[|~>B?-d`&r/j~Xbי5?0~T4~t>^ԏY/Dɂi}v%?\N/J_4X>>&1#kpMfZ}3k}ɻ3ޝy ̄?&o8`WWyS} {~W7 цNgg̯_w06S^\S~U~x}Y5Z~?53?N~~6t7(o_Xܹٛ! t|//7&PCWq7}F_7kf~7YA_~~ׄ}.˥PfMgU~"iA +~u!9-)Gfc^"YQwn?t/{0DyOy7:>׻PniW:_ֿW?w~/'`G wo.=lՠ%#O,؟Od~Hڢ w l/O~z~_G*G͏{ҿYYW_&ikZA/CǯZ?~0|b CǬϬ>sR. 5g/EG٦PXb}^}3S>Ӛ{~2 ^oKHg9ap&ˠsA/N9F! cuFwmrw9D.1I~8q>6BYP Nv BxbA!ESw,Z_߷#JuAO??_ii+wsW`^?eO'?SI~*@%2h Oi_)ԯ?Uo#{ Y%{~j}]kU: a[[gO+ze!O4*G/Ydx5,oѬsIO>:,OB~{} >h}~B*_e9Yqj>UHY# CJ335q~=s064*6>Ij4?hUp{bAOn7‡9㛓CS:`}&ׂ?6__{yv? 3/Կ:{XB:')z(_cO09MQE#TweۯX~Z?qNic¦ RHZM~(,kEw SCA>TW_A7{8W?5ޯ~N+X?ߴ~=|ir/ϲW7wm!_]Vn 9b3B MO(GYab!?;Y8>UW'οf;׻\{?2~w?oqпxGG{ot7.~6w ocWI+382d~44GvK&+U7wf'ҕ_XwS[[O_C_@i?߭7o .!'M◓Td fP9?sci1\迧YyZ 쟨1|пުF{\#7xƉB> ?K~%$1Y1K~|#Aקd?Ÿy~%+~6Z?q0zcYlC3ߖ5|<ׯ꣭a??]/ozLP??r?&3S[_Ѥ*+hf} [G}mus¾[UP|} Y-#?GFOMWY:_qhA?T_ ~>|wa|qN~)z~5?z'ӟ_XW>P?2OE}%17~_܏r</p$)T~]ׂy~bA7UGgѮEI}N_IZRyRM?z}c"?vK]u|M_Sſ4>}Qy>J~ ?`;!'?Mx1i~t@Âh/䗻˅<{ꗡJ?BO W_??/?n8~q|__L_rD_o z˭/w.~8/sLwq`fwqwq~-O|Lig[}~/ox5pcMu]j.z˙}λ7뗩e],_皽|Gyl~zr_?=k8ǥ?co~tsoe{oH_SdoWo>_|_~ft_ CXko^g),/~ط߬\!X._{Vx}WϺO#%{rcDaa[}ng]ǷdbAӉ?:s*Sᵧ2o RMĮ2s;M qs kNwvQPh|(lmjl o6.[(O [V.;~0|<ƄiKvbj*?eIօl^x1f=J/3Ȗfee_2`O,>ڸg<}B?'-tOwvX}Z"zM嘍xƗ,1Y _:\؏[3n=~nۭك|v |H[O<د]~z t_y#ΰ_& }]l,q`N;'fYgzƃ99uq=qDY Ju7v~/1[Vg.x~nnyv8S7qm'8yȃҚҦ4G!өh=O<};=Wuxa^{ƃO)דKfWoro`!']]LY]Ze/OVx0Q QDB%j8 wq0ΧV^n@ D|Md]kX|`hK|Mv>rRnaX. 'OXg1ȸԆsk M2eaڣƃiAA., ݓw Ϙ]W%˪V}wă;`}/|<T KHㅹ.Ti[θO< Ύ;)׃|RlW{V~?}w07s6Gź.FxN rp]}E\_C#`Q,,] wKݻ>Xl9]{݅'´n/Ln']λǻؽG)3 roFXٮt m (7HHSr g h) %^X. u`&sťp3Waή58c,,N"Yw5weOYحk[:aaZ\kb8"e惞wytvKἠX8)1ya:`s@/-LE.2autvr)]p~]n"1J r}ם°Nw>keK\[ЃPF[sf`F{5YP48sSF!T?|.̽ԃFsMOk !b==;v=EJ*{w.d1Q-^ʐez )'O,;xfM=R>sRv 1Nvaa!{CZw׬$g g?o;j ,\ۘ9}3e´~|[{npXZaBw=+ߵP.>qN>ca,8Jkua)9J үύ~XX|P? ;KT LI:MO0].ήlq%6|:E^dH$Xd}301?W6 XG&-YnrQֶx4B<<հvb\'~azL8Yϴ{&+ r1ia-0.[zqS5[_(tߡ/7 gTU}G8GΧ08BW%$"j ̠XX|G=F^zf bj/%9U>VW15OX+5Wkkt rMḱ=9 e?o3DYͅkviϫ5ƹxfCwԆ! IX rNC\i*WJbac _ʹZ"Q-L)ϔ tAzx"r}PU.\umCb#-\:b+dM1'e\FxS#0Ukȳ~İraY6dP)dVɶ=;ἬO!ʎQ,G1i9-L;ɈݾX5XVXc`/efV-!zOEg`?^rM[̏NI*F/F,&!/^s,FYX<&¥dMfɌ}9)9(ށ"㠩C,HWZVsIFyyd\V($ A!FYN3¥L=+DA3,!CurFnj~TP9:H%KhRB_bgg,LO<´anuvuZʒUC^tɡCMCUɖ![Vrkȁn7(k%k{ΰY'Y'fP3c]XW!_({P*V,d;c56C2a,L*" meit#(AzUcRjKj5Ɂ?`5]hpr SW\*S)!\6 ]-FG`dzyfI$P+λ V1xۅTwEF?/)Z؟ɕ[ņ۷Kv_쾓gn¥]gaA T'tUyq"=90N%7%0UAfaƐnys`891T~6rG ˺IXEj̕'6b1ԏ, P r7%IٲX^|/g{YeIg>5aSiYurʗbj$:I+tN5ΐZ0=)L≂?4#<7 s`Ô2Aoaz$ .Y2$?X^YXkeAj ڣU)9oSsLqP0a-O ڹ)|)`YS_Q۩-.1^냔' ڗ_O/K^넸nw\ r8w8wYUgxZ zJXTWS3Ϻ~{fJiF:%`^)/*U#$KͣHD3>׮C'R^OM}zzW4,g`1.{*z'9Å'%""Xk_3S}$1lƜȴ,쟑Xڑ+Դg }F߯!!,3VWI}jn.#tIҭ%n-V9kj85+K\֨*;֙C\p}Z{L=&vB.v:Yrj%A2UOၧ9I45T`X&e>xu,rtҚ]Xh_Jd0S=%iR_B}E=cOAaaSb9+'ĞkԮ Sö͡Es:MY D2V_mf-Ayyn[%fC3ͮzbhA4od(ifsKf 9v$GQeK 4aZ`.Y T|;i!YĂ*N9Ʊ0O 8^x[k@!|ˈ_$^Moru k˶ީ!\3ŕrtaL9>>T')H"q YO2-y%.րGҹh羃 Яߢ F,7-qV|2%k%փey/ɯQ?6eH!<9ڇ~v} ̪b.L5A&漄*4I762tlO9 ;2[R1LSʏlu]eeq9Ќ"J&&$=TX BMЧ59$;0@H6D^dAvd1?ɚGk{Ej<4H&7}GU=!}]Fr4(-/!'H)rr[I Z>i~׉ty 8Ї"rloب?$}J0ҙN^-}^{aTn}9yJ':X=m3[<)3dH_x\o;d{.MD&!Ձ(rc 79-r!h,99@agRfHe_}YN9ϓp ک ;Y;ٺȗpڵsOIO=&/"z%x{ u"o0)ܒz"J?U#9MYoڸc2¬3e5.lHn:&L[D = .Ɍzv/v#u)R8C]`(bHG,走t롓2NG0A , qEnz7^0IH;V50ؖ,W`vf&/_?~ϟ^>e\s?eיu?~Mwn;yZ1^zwk\n .>mvy~*926k|3Xp!~~,k=]ts㱯g5S5yky&V}/T/k/vK8PhcYni? }#/??z>󿼥O}2[DG]ޞVcޗ]?=k4u,l0o/ 7~O{sf<^qi?//~ç~_Few|ޙ˿ ? eiiǾyj/yZ-k?}W/˿*εxyKUAPp߷<]~bMͥYfRbiYn}lX㮢x?/֝=g~u _Ǩi鑱=_ڸKLn߫2/#W!|_=`jnnTxZrcÍ'ֈ(Nfg 7`r|on>X=ؿ [6vϰDIgo!5H~)qic?~N6TJhb' 6Kr]+r5$`c+,.دKG62|} s٘##d{}cd) &`1҅HǍ;0g\~6cc>%3N!ؿ N n?Q@mpƔB~cC$y|ߵ/ )|+tPaڟ{]S nGTL~hc+OJ˅ʽ)$6kwi.z}'>CzDUЙuih9ZR&78+<`#-@+ D~'i" ]D\6 {Pc' N2)2j)^-ɯhX9p1m)/6.T dA"O.?1@oqx2rc?,b-5Ԗ:d\&Fl%g,L m:5PW %~7ESY6¦sveMtT -3*CspU$?n6քvuqhjm]r^:Rp76^!ds=p+%Mfa}vI(SUmr?D%5R{--ŋ,ؘ.&MEvl,6 `U _ޱ-dac S~ƴ;\'jajZVY[>OӅi=lu,U٘BmuozȬ[pXC 5`;,,-䇦$ZłU4ѓٴ^^z[$PK`'\ˢ"?d]xT9/6Hb iy˛Bھ<C$ݔқM9sN-0 lm)Z]Msf4/#ɢoyo,Vp ACe^m!Gq½9*Vh֐1OC;n,֖ :=B)r5aj,^tkiFsc„[ID"HmL . U78 6Cs=L//ݘ_ f) ;ڣm[휒OBym{Rd]8a r%f0Z@u{b0hdxJrn ɹ7KaB-@ĻE샷vpsYeG^?4ݘ{ʣ5~0wX:PkVN?'Iy0?ch{;3"{^8ؐVU.\٧^Q{3uhƑj1Ҽ0%ᆔZ}WZ ogla"JJ.gWoqHTTˠL'1.֖1z媽?;{V >% AXW9fO>|&hy r ߑ2o`[JZE G>YFޜx8p6vkλX zomc"_zn[)Q@Rͷ7߼pI,CpaAE"0.̺ /ޘNS9⩔r+KxS23d:4Uwf[HE4actZwRM'g,>1WFtJ|`n4 ´.8C5ˬ㫒_X]_ v{wq{DUSYIp!&nmW|,LZQ4go,Y.kt.SG8j1T:DG|La6g`6Ta%?-6BN;gn6Y_' ˯-Z}a 3J_a6gnaZE,zMj2dcD&.__yn̷EF]$ij&3Q~HZw6SܘRc1w(:"wFcT襕fDEO,!9;ڇdh#orڦu,L9nkar9 x7ȠHx'A;Y1ՓC[[!*^zר raJ)|/Lے\b|Cp]hsÜrp!9!hHxhY]" :h͒?YQ0=>tH!ArG2]f=Iњ)y(g~SuY݌Di5:#S"ea?$,KJ*5(/<4-)u|gb:?wJ oI|uv(V*烻Pm&6ӸGa^mh6>'E,\Ѳ7Guѵ56uR5+ҁUn(ZmlC# v@gaZ9`^6gsWOY~N;~ M$}Zg&63((ok|ܾ92 :2klOnI5tK:E:A:X|֊CrM f N^(XԄJ 7")6nZ}m\rlFR*N%T7Tr T"vaa&1[954Ck짼K>VE_ұfX ].JXʞWz s*ig"9%H !+uDh7ajkti t6mz^&/ؘƻKO>]K}R]MԤ#v|jm1g?V`v݅$*[B>n^ؿK3IL&]$n4Z?;ݑU3:jl,1sBu!#D$l^i~j,3uZnX6 ,Lm"qlWvZg^sgDEF޼6פWyIr.k]>a^eKg QS*ΐURjb}dEmebC.G&;,h ؘy s ).3tmk!W% rn6eiM~vkkV_R*>:Q0u{Tp[GK~R5pj}|څw 1շ&QŊZJ9I ^~ջԤS"ާFuaw/5>Wb?So޸+/^ v;㐣0wqjl[ˑ@s ]C.#W$b5BjV`\J =U&A1`۸,ܧI0y[.dwĺhpϚ13ϱ~Cz'XCPuY7bGAṁVy>}YB\jDi%+ qΡswo1BPnzK-snMK g!Gbt n]^Eg_z|ˍ9SoN^,<܆UnT@ :;4u ˎwƲdh\%ۥK_ҩ,g_I/伈&<2}89$5.SrnKjÁTiVI )ag(޻?i/z ݙr4/Uǃ ΜV|CܴcB҅Q#QoPDt~*!C;NT: ^tt]vٻ4vMz7Nۍ$K_<+{nii6Z fQ?JYlm-_]W4T`j/g٘}{6э?H9vt JW}o_Y+ZS):jvy#k\.=fJw3t75 ' ֕ !P4KR:J2G̤\sXW1)CM>rw#}Ώz}30%Noy{p۵s\;R#?{Tޠ|æ{hu IOF6Cﰓ]7CnHŚzPe9FZ>`?Bo[ÄQ=vi3dw\dWnQċ.Ebӛ^U,)DIwc³X>VA;z нn<lYMԦ "%smc7eM]دK#dPm̝d'}Zs~įCN?~ϟ, .o?k s=ڜUC'L?hFuRq񴃞iy!|ۗ_1a%'_~v|p.OCK?fLY,pk?n.ym~~{O/x]>}>z-'7>~wz ?5}=/z=/,ϟצ[?|O/o>巿ӓw_^{kz׮ofͦ?٨6j^9 xwm0o/7~P{sI_rrǷx|/~k߹w|wݗU{ Ǐ}?}Rj]_g?<b .l[^u4`ܭKǛpU 4ߣ=Y6m֦< տ<m:j|n水*_m,^ƃ*@{|×ixK߭ {_n?Q`Sm>!ZpE=c}0zDfn|o oFju'pk]X iBF~NYoBE7v,*e؏TOTD7RtpiKKa\fܼ;>bX؏wmm쟑 o?괍|Пؿ-s6#egЍ98NA68R8-5pG)%n3wʙYFcO`[6+q~%h-3_zc <#,_܏caHؘrG7Bhcwn~'D q+{leʻ=tAݰޯ1ЅV{VcԷMm ڣa]bl6`c}Om,u'͂ х3o8QrJ 4XDDqc– :5<܅AYw OS .j]&V1usrSdVo?qҖZL^ca?Rv{paO~a$oc_X=}#>~cZ>lczc\o\T:!R7"Ri,5cV7R²m-LaE0~<-zF#C좽v͆kXCrIlOUcihy&xCjFoۿ´ 0҅emmוՋO!Rcp/{vqņ'4WfpdžD6M~^'j4!S.T'0rO<݊%UK,,k[emy//taJ:XM{,CZ.̑اYԦEie~.#M/ y63v2j"܅U"1?*ܜ'-˽H> c!E{u7Ul!W) ZX }orܧCXՊM9sǚVgaCvg8 0tv:$Vo,Vp WD :oߘ: ea 9sY>2vNf.qTTϱ[bmAZj{&%.sOu Cf01<ԃ¢м&/L"y U:Ѹ J|uM6MrnJ jzΒiл05"+ܘ!%~-L~> Ys? S:db7M  36/|a |o1b]_هDپCC{پę[q6SyځL^jHduOvo\x;ha+췹1er/ =MέF3X|L/iaZls I⿤ hBq ޘVaQ>cngL2UrTNXJaS`^xv-tb,iaJm0 Zӻw0w28fӍi7̺a=D+딄{`0҅鋁/\o ~kg. vmfLZjrCK 7#N[-*a,Z|0'fl˩Tf 㼰_yJ ӟiX>bKb%RL´a.6$bhVEno`zI~ z sU'#sC40էhuFxo3Ġ&\y7~gAݘڣШy/5&O+t0{jFwMu[}^|K3/|db IRK፛mf2mcwO+ƔUv )Sy00ߖ{=VvclXe,,yHdhodž # BM”cC$M;z,7t_$L Z_uz1mR23;`oL)]xCE;ߙImR_Y"3%d$nzmSWjK p60)xA˯Hhi-L6n050IRRU㐚&c-uq?SskdI>L o ~SuYs;Aȴ_XdKDȖ[?RQu*5nYYdީ$&uV%Ƕߧo!)O7ǸԸǔ,'nLV*R_UMl/55RdyI3duJtznaGAIݙȐtGΒ}.o6Kt%ktʍh5܈֤S{ ڭ렁Vd42VI씑G=SٞRԛrNk|NXX"Jx&JfaZĨuM8DHkH!Qrq!IS sOwthA:w#9%)z$8%wTWPBj]N$tH#tJkMQXrT_P}݅ccT,kc3jxuO7BU|XR x2Mm:6 +B_i15apmڣF.&؏T*R*R+ew+7&wvhv)Z0^An0  %d*a @K kKPT7ŐSKS&RCOGҸ-?Ԛ!ěb6 V #AB1!uCrK[,LOo0~T*VN[^4I>`wOAZN++}iﴸ16CPYG'd/C>!XXcXc=:VczI<2$n 0h3ɺǘ^zv!vy#^&o%YX~_9t'F3d̴&z_.ujy֐_*?Ia!Ko1r]<Ǻjk jX 0{}aڸЕ90WY"9Dx-F?޴ɯPc5y'wpǏYEKb)iԃdd!V_֋=F;v uOzZG$`a/oR^<)7tNu`X_yy^N]#",X(dn`֬.=T{ -ǎRQB5u֡&B׶EB&T;u4hDj{I$}ɯCz][;ǪtG;r_F ]5ڳ;$2*ܘN6hac02Y6g#;@Hu\qt=K[CjR[?C:AIj 5vs2֪uW$Vfw"U-T dIcOj G %QxPهl:?zn-t˒}CqjɡOڷkߤ=duSGD ]"=D4_v?|9jƝW}Mb-ŬFVU;8UXgϳqBg={H Oa>p9p]mska6N<3DyܩSÝ:Y<<9x0fz!n#ta=tn.+A?؏UAJE2޲ OOgJΦ,~93˙'c8 w^{=k vplZ)`j'O֫s s>`K͐k$c7Ō]nBwScD±ᖈ*~TU-VRZCEf/)KFD{T+ P9> cft5OAGU-k--7!!Iצ>ݑ=h;n<ԋY8l>iqˢhJOLMT jҥ.ַoBzZ ta%O:ra(SXl];zN5uR_9/((T/{` }]|H*EOn8]uhu J }zݒѹڇUXXܩ2$_he=KsOm׿\?߼'spӛ|ӵvmڜUC??צZϷ)hm}??-ʍ}ަĒ!->GT߸_1aҍ//s)b5$獧'fw^K:ysmK{^OO텧3}&Oޟ> Of_ɦ]և%Y7SgOF=QqMߵQǾy0|͏n@qvqu|~[N_[As?|ǿzm/E_s_\Y/K ~xo6)8?}8Mظ/ϻO#e@ϾqN?-zWw_z_M`KӖf·'~laǝtM^x<Ne{(~<yoe3Q~X/QF}+L[~|{c>ᠬm/&藲 {`n?nѶ{Fe-'b.}| XϿۆ~UrwGfgfׅVԹlZ'rx62){åv1XV.qR} * |cNV: isX؏g.>mcOQms+?7n̓cg#]؏7晛r8ִG\}ˡSnH߂j{c{g؏u(?8ۘ'Fl]{}2czc >#ԆPb:=._!wוy~c?H$./S&]}g>ci8{ic/ݻ1 F:H'ߘRAi~Hژ`Né#fyn1c}x.Vo'R3BU~W?”>1w!-1i-%alrEvNXSWqx~rcjӄYz~ߘ<ҟʅʱ'vc>eʍy9sMƑn1)= -f\NfW荹r^jo]6Jy"dc?f^n5oM6rاM hvЎ`Nbm_geh&!vGʨޘ{,"y~NF7kV_  f]6ײv]9x#xѓ=m6z"mg00CMQA&D6j'yЦ{)uؘx}Np8em-O M%ɮsa.iC.,~6΋/va.k뗍˿gc>](zߍB#]Xl\cSν~ LM~vሶ67F2`ΦW*+(vy$DB % H[ˏ}k:t蛮]X?w~w}l/w} ]9/y1 M OT񹎡|}bQ=N'zrsaDg<=d"|JЂJ'PX|mך?]546Xe:g;^N~5#RKOθYsHV,|9>fI̘V.랪nY>-厹y3RvKq%67֞?00 }d|J'MV!3u?`Uī"Vƪig3At)f̘wX3oT|z*TGr?:+,*MciqҜvvj|<  ~+뙱 M%*K//]X>/ܼ;p$k~, ֯cMUƴm{vRJ-hUY°DrQ K$:''捕iMwR[ᅅ5~XIs^ /{Can|dU$UaNJ)U}+-x/Xe- ݡ;ݡDٱ':Xy]i&kg64gb[""͜g7F3!qrltA%cMi2I5L XbR&ݘ(l.zf۲dvWhk@ j~aO;6>w ÎNZoI.6>WӱHC# UvO<3-OD=\6V.t8eوwyFF>]&1@Tt0*ZB\T4o|cՔTcخsh_zr6דT,du!t /|a=\Š~3) E؉u A"x&`ês6>QQbZUbhƍ;W!q>yT<]nXe/|~@E{4wrUFieJԚ.WX>һWRo|C;m|jg>֝ϱhD[_Vί6!ϊT B&L&~ɧ[ȵ\j D%`aZXXu 3;S>QTYX#iKuk. 'XIM˥9 +yEg=URe~fԿdWri2 =7V.0|83uEJ)R;;`Eӑ2:b|nu!Z=OΟ *uZ':npJ?z-PmenP5#j}*=inΊ-zjtXu:H5Xo/0:kvY,%Uz + rZgƪ=xim$p.9|gyf_OP6'Z'Ǻ3 ̨ʨήrf5D <$aV^Hle,pgT8dFKO6l_,D Nl6[T뮮B?ff 2|>nEG ;똅 ey-΄y9TȆJ`V־]_j'MZ?w#6>i1;:fޚD\U J׍ژ'v^XTs8ż*K5V?Y \4٨ƬNva/\UױBi1^Jsu~TtV̞ؓ)/{nL$_M3>);HβȪ}.|KBXb3d 2RʨY(s/ \"׶`EGd2EM-|vX{t $dKe] ᙰFykEPCEѝurR;6Φq1S Wל  ~)?y##89# r9)dž{̶_삶ըm8QIn=˄t;^g<"[vU#:.j.WStS֫Gs\PKyp:p3 }\hC?9vz6w@GCn.G/qΪ,w>Gt }gՈ՘]1_X w8\֣/uG!9y Q<f\3;=l>y6>cJQhp_/U/ep~: ldڕX/6c%Ch(H{˱Vcw4#&EN2ff=yđ_XU ntU3;1;R>6/|#VɃM'²H+E_I*S*"EV׬,qtpEW~vwG`IXXyVmX󇡺wsp4Ut;.!}!~5՛_taդ+,OVdSE'VTy z.%{ޜ"`Ϝ*( ;6BsLiƌ;ii "gosX6 7[xtKKKk.e;m")JQ ^ZG}a}F1ZX~5Tm]TVWYm[6m;*qz͉Ic8 ߡ}^{>* TW)\+ ڡlWw̚]1R:3vt1O^l=[ǎn7Ĕ>|h\UF\'x~S﫳i}zo3{~oޯ5s>ӴoZ|z^uvգ[}x'$'^؞Dwݱ+?6:s%ҷ_@ey?36>Z [.^rXSS`ZO̼e--fї^[v_p|i[6{J-z~ks>ʍ˫xō/K7ﳂ.4u~+9 5t|5w2>p8\}j_~mRu3bҾto|%൱~4x"ha:u[ӝ[bam|< lz)bBm|IY:. m|>1ͷCL-{kӣn89]G89utWPb-{Y{ ;ym|C7>ߡ68}M78̍ugƺ^u0w7>ߡN;t wLcn4WAsKm|6XO_ޑ9޴5:4=` ul|#JPucr+f [X!|}Q~w=⮃iw\ܘRJ]g JG)Pw@pSVϯ-D|79ʓ[2bө[F zdUJ[ic+JR c@F1En]~D nC Z'w}a[1W4y|EmY,|<"&EP4.XJ`[z naUWzeO@MdSBs^vQ$>#.|>ᛍn's87>V[.-xb`Q1a0Ql||c=X"䜶Xj܏3yhcD[Zcg]i<7VCzdEpˈ]uIgBj5 _Oae$Z_fs^7Vsn|u.:cchq9nQl+ζĊΊ6*$l.t Ngmc0]w]ل.DX) w,^ C1nCn[ Cv~| ʱ ,i>rEY[m4x Uƪ} O,(?]Xq !ёCC]*c:~q^sIW0GOp.ޠKowUgߞt6|`.=>,{뷎/zEwXXCnaeڨI`< |=7V{nî?@:zŃxrR+rߢ6ºr?>TuVg?DI6sU}[JηuS°EfsPÀAc,“Y2Zs)Nfa~-Gc'+-|>q.Rlec[֕$ !5CeDIsx{`Mx. R9)fķ՘u*o;$2hT? .MaXO  >Ƣ:Q/$ -|`m|Xhb5$Rv n؅~E ;iwJdTs2*^+9֢uC O#1>66po]VpK XGM^o S46ד{طoSE섩ɦxz_:wc_$6+WZt:]OEvM:F#w7yO.ҍU.٢nzGIoOKor1u QߑoH_(lxӕ".> ⬂G{?UXlv`4&Z°M}Fhl$nEvazƦqΟC*^XRt.n ,԰y 9WciɍARow7~{F]NFb]RJ D6Yݵ2J>n|IӅnEw6X5I(;9cQ@0Z"rOEwV)6KѲqxro:.TOn{W!;ڗXoc)YXZ|.S%kzhn8OhBEAuy&ª}4(MX9ww  [Ksc}G C- 2 "cM qǴMߵccm1Y Zw5Lwa̟.yht%8j(*_V^3T)5,Dߚ57Sщi"Un|ޏ[bhpk@Lp3Q)NwHaVKKAm^Ձ; 1\r6.)vy p'[ ;s" bC/;<-J}( HFIBB.3О3c+sL*1`f<_%21 ލMeabg7Ξ~bH6T#"og@9^[ҭjγY={. P MX.Cl ;ӇuYujna`JGTe֞>نhEєF ~?E[laU.-"I/]$n|##""/=~aוӱ …a#WcʵƎU4U6 +H,2"tI:$O+l|ޠ^\qe$%-mfN2r. v\$Ï7,4AsP3򼻖S& M笢ZQ5/DD>G$4טӛ@lcVQj\;5 #;#* ͼ$90A%nl`e7F8ntUo|Jl셕өo-КUQM>%+]Xm eۜ=wNk5Հ64dct27 I6! ̊|-b*e_'? qmrm`]`g,zcZH*8xX5W'爄4Kd[vCwvCF]vvimj0ənƪmurzk߁Cz2OdfIt[Xx oXeaP;>=nO+2dJ%KM5.9:|n:=ZZ|cs2_qd2 >EXYV"1B$>mm|ʗ;Gi*g5:~ՙ]V,e1^rcE"ٟ\,γfyIr!/8`˾I(_X%^TD$ll:}1FC,#԰yrϻjク}[}k+XRA/%iR] hBjj-|KAhq],$G-M%'e_z?_Pxvjͪ nś| ޏ-7֛xwxg^{/|~K%^?rrY*իWG#_؏}KƷxߧP;.9`jf$qq <)t5= p7+jd3AjV,R}ajpō5e%d't<ƪ_;[ +jFo&䄌;K5ݨa?\t4.Os[+.`7- ,j|oj=".].(=׺$UՖx";WN߆+]X/ E3]\lyO*c3d( VAD& ,ԥ<$yHeU^wV%[na-%\V3*0|' .1qoEm4G=2-.Zk݃Ôk尦gP^ކRz NɆsa>+(O,rN|9 #*Hb" Tϐ{[C7{VյOs]\S0ps$yUDVFWM.{D5VYu7>XMX]=aG;/ llM9M~`ȄDWK{0_*Bz5D߷_" 2tt=,*5hMsY7Uz_X9ȗ KYŃDWh>w \;;m%wUS=]XO*uw u)@v D(;#]ghJiJP\j9 >N7bYG:j@huGZw9hik_I…ՎGgd%'\Ebc?$"Q!jD/\J,:>ww?'=U$ZpXYUU $xv;yAQQ )(Mꀛ~]| ^~JSQ׫kw 婨:*/ SBvXrTysM)Ǫ{̶ \.+AJNz2r퇲+X%=]]tg:nQS]MM#4^rM \o(%?~t+~_y"9F1Or+=y{nKBdz/Kdzo|j3'BR.K-tdu=vY .zhGWUМu%KU痺e, %mZ]XPqx Iلڄ '&\9D6>oХ0 C+l1RWOI8T| )֜gaQ?oHOo~noukqOW]#>pMY!>藎߫[zR0~<{ߏhy<ΉWYg]~y>e}z^7<ῼ?W7?|omF_=[|?E{޼<ކɕ?}=E.UEƵgz~ݙۛ|{M___qoq}9-ͧ:ʯsuӟmRed~ş{NK9ҟ?Fes_盛]%&_> x|b ?O6<{_ $w]4oQͲSէo.ʢ_ku.3ދ}E7Y^N[ٹYȱz"/SX fDy ǹEDSַ~q2+}cA)/ hC%c5V|߫ю2YitM~y3\^8~cPʗ[o}fv ̱/|?Xf%ӵe<~2\\e5X >l,Ǚ4c?_\Gו.|>1{Oy&sq&/|tױ>%Y&+/Sd7 ๣bǎAwtsG;.xNf4>1-/g߃} ㎾;/,UY*Y:nRtù;^_sNq^\iX-޲tG>|; +󢎕yKg㖾Y[~u6:^X)JJ~K)4‹:ʥ(R8c/|2y]"6Vޠw=<:eky}CBva ߚNV'68^k]oiV))xa}GJT*,|p.Xgt|ή¡ܥXkvjZw4_q_\ +}a|łf7,x+n [/>$,%rURȞdO1CyGO>[8>wH>oq[z{F3 ݺхUʹ. څs XPYWhkr緌bahXZY| B9=_z%tsDo"_EUs N.L d+Nh/W9HFTpɅE_h.oq:N>L,)@Ce'z>F3sA8n`}K:i)_J) \3hSβj>.&\ra]Z<asޅ_6uSZ(F"W>k6+']XQqq^'^Z]dVKV:| A=-Z-"A,0,L袴AR'-ΎYe*9dNaî]XX!CZY,ʬgp:TF/|~mݨ '猄cO_ޣUOT泥ؔ-O[XVz]Ĥ T"^Xf m!wD fV֕Jyas|Nn#zcQwsQ߱0ls7>4Mut) _:a,MoTD:+ UrUɽh mi__ ^U5⿦un^/\&/M޿J`}@l7xg1Rh b&Rbnh WAcU574 -rKz-!%z!CEmk5NsUzJIt9' j°E {.MЌ9Wj/|r)?_~W0>"^Wr_ H֨J ;w^hX=]b<2ᤷ"UA ~5niUhy"\h41V[ErNVH,zV]nqTx񬦾BYVw瓇:T(ZXI* 8pR %>ޠ|1`C^YjoaX.u3A]u@N7R [ƈ޾yYR<8).zA5Sp^_v0ņm2g} ïЕs3⛙MkwZލ>څϴbmڌ!`MYǀVU꼖~L<# Io;.w8Qzq*Tn) 8?悛vvryJAw|sG/h%( }Ĝ9['̤.Z/.k='1T/{-ȏ.>?: rȿZV[z YBI4/8V, K oU YS)+1WUױr@~q"]Hs,|hQecD7`!$Z#r&~a#*"m;ln{bA?)Ԣ轍ft2EœJ&ٍ3h=g$_U';;|1]X- `5j~$$LvJlc@zcQ p59qAn0&wiz.z5y 6ƄNrޭuG+s/Mz̒ªbaZu-|io]^,, CCE_Կ_:F/Uj卷ʴĦ. |!dgVa'T?.V wbWj8YA|qyy!v U " A󃤬Y -|Cseaw#@>RvHBe 'gx}NyPE uyRD=_\E۱0b}u+֩IҕT-OsIyh-q31Ox$ \)#F]2 vR:iBN$SB`ru nDd v*|μH;%4K(+/E:~R?ª㋞w*er\U]^&:D!EȖ.[9@G-|~mEFmel;ۈIdҢX.O> *+ _[6;[ua.V) |*"$"/G~FXc(|j3D?j:`:VY.0rTz9K'kj .r ːYK!C)fh4jU#E T_СVdUf ->V/;(6JO%~a9 <NR8trTYXwa7֭}tN?W:zyuha:w)J+ X`'Bgx>ξ(_Poq-CyZ%{C _{xoC7ISUʬ AᲞhzVbQՓ0,Q_EuDk>CGPwCRjk%5!{89#nWJe/?eA\펜Μ7EzkZXh^}iY媚SܿDݩ&'Jgy"dBK TX]Pz>n W-wkJ箌sgt5RO"ײk},cW.;|)gu?|ݣrUюGAwR=ܙܗ((FE0kɟ=d3zZ>4fJG_ep}ZW\_Cd?bꊁL.uI]F=ׂj8 󊨕~Z^oMƆY**gedPH*펇I f}~ӜFz>$J*-Ϻ-lѼu_Us^n߳dȾ=}ȼe.TQ5X]kBFuF7k.*|} ǀnuU9kh)`%쀀t?p8DS]etn ѿ)MCمaI c\ ۅȭ_x 8"cQv3 <e]/ @4݄Ӆw똜yBFU[WꦂʨWr:yFDũ,x5$̬InfMۃz*:%~R^ vѹ4rOLߧUTWGAu zܘ[LLch7W74L:%5ɬ5L.gӨ 9엍nu(ͻ[:XϨ--bcN;ۘ;ۂ*ɵ ޠx󻆤[.Tt}( X-2ᱡ=> hG\?^:)eQ\}`jnqSs;'wt2鮓I!\_M-u?$C [9} \wǹK$ROZrѓ Ձ΋01I U޻`A2E@Gy"ߗ$f/ʾgtN9>6O@Sw2;d/n}sd mz:Et:s%xpu"Etav;|K?ݑ1i#rƌɠ?Z^C 2m\@7A/߱= qsN͘wm՜򅏛s|ib:k; L$AlO)Nru3Y&q'.m1q =g 'JxsÀ;f<]]GlUe̪ ۔/-삇3+[DG}-oq?;ݏ^j,no],oXߚ)߿[?繶rr?o~o?33 gvHIxz?wo^?9{vTK4#խ 9O}TO{pg|+~>W%ce ['[J\zsWti HX|7>(Z?NMoxJ;P"]D.%)Т= iXC;$R%Um 1N.t6*UN.2+ H]K7>t~l|K:yD_BPjW4򿱮tl+EWenu):4!%J7>%{8cc=}=w mD-P I|PHXz':*i؍ugJQgu[ʃPurC3:+0wIƷSQ=Dr(\ZrmyGsFkR-fp<)n|:VZ¥e.︴`gcMV;HutID6`cB| ˭;>ށ r*tf8lI'[_aX4fcեNҭBJ Z~9ۅ'87uȍ]'tF]*“7s96>N_l|ӨXXyHP]Na6>OIƪџ,m7֓;;m6VHζq}*[N`YJsҕfp~-mN]\LXTIV0um|tMN"Q8J"#e-FX%P(ڷkȨƱ,+VQaEWgEw-X WئUR6_W<8r2?&,&1 lȢ}r MyzcՔĚpK`U7ڑbgq>ӅU b^^t-Xec=l;]4hfk0[LJ05C͙t*V4N$-?( re1)^&N~?p.:o^2腍KD|[N_XkIv/KN,4As L ga]R)&~$j/!;e|o -8xP#2`]c͇|1}ۣ~\:roc]i\lCA9 7ur˅U"=X\X9 􈰢0 +MSAJŻX0"+Uoc]@GB/}78[]Go|>6VM[le" 6Pv:XVxr`)ᓮNxt~m|>1`Y jJE,5#8Jʵ ?6>0m^ٵh>Ƣ7Y톍wlg^76U{}k8-U7uTۣ6;ֳ1zzu4jw&hHt\6n5:U2Kur-l?T ^hC$N?%]9&~PMK)솖 9z/#=7>Gc0ZXC"ޕP'kaޏyׯw5wtcή|ܴ<Ƈ V-x6>30ew~wOta}B|z]8Hf#Wbr^dp\ca./ )Vt4/NvcCp Z}ʯtj;mz;|(PPw\dŨmMȡTƒ+upl QX%WA,(xGT1ɍASNDEd6>X8zEp6>@z'kYq~J/5m6:*`yZb7< B,hab\X%AF[tjkC+=H7\^2U3UL<Vî:9уient|o|#4]XEl17>rVeu&.e(,8r`c5S# ;P_4K<՞܍!ϾN$a`[46H+_?h`ʍO.orK|/|J чh @ĻPkC:i;*;DVIZr.6z3mBi&6;nCr  cɢ1>P>OAߧQhlŒ1)ٍIq%~b&煢VU9jlcq4<}mٴcYtQ#@w8Mvܸs8F-]w;Ⳍ!tyyf_:Hؠ"tjjuwc7ߡ+W.2p+NZ fu갴:,-9ҭx6lxχ_xAs$e#thSu dCQFuT?uFXuK<7~3*Q@6&Y{Y{ 6ڳ8aV Hȁ. q&ONh\LKlm.taap>D : M˪j.r袢Uo°ޱ 2ВaPAۺ@ ;3۪FFD6ͺl2| ܯ,y7JUr]:„}53ݩ~ܧ U+)q|~,AkEi^3;}cHd]?ft\:[AZ*ʰQdóٝg^J/W :vڴhcAS]Ȉy-DwmY%"oьB{+*-}FO4V#},YsH6N34iscZ\d2uf2Kvw@uv+VA8nTo|~Kk TplihZxǁ蠵fl"w6d7c1g,|L|[ '4gba=bѷ&e ͨ7^F!b~7E[u|3t Ƨ=7Pj..rD!20/ t¸G,ƍz/mb;@EˬH`9cK^LG*n_YXxہ\غ}~ o =-kj9}r.<[i#t\ͣ 6Ky6N66) ۨ QUo`9Ӝ<*l6ϱs$4yWߧU2IWZIoc?m.lCkā.ƁLI'[Rvݒp R6+/:]caubChsXYCGJo|>qi,iaKS<XP}]X}mO}9YZ"8MTKs_XRrig~KHA빜ZNvhFm^xߧܠj''UnPwU;V+ 0{c]$.Ӥ#4izϳZ T_XT ` 9qd7Ѽ |Z%aaUCqhdK~\nxHAw}1;g͖X:z RQrу;D?LFtv֡Mna~Xn <ˆYy!^6]Xւzv}k(+3I|9 WP^1S13BBV煞q~J33`M9NΡ_z.Xit=_)zm^t?`WfPTv mp̻mXZ.pDd FkE;27ŲxwݏgQFbsMɨ6Oޠw}aqsU@wdj,|#BfB&5.|ޱC|l7>Z9\\p u֫Zm7;jb aŀ ,BKRIc9q,:-\>o;AW%0kA:0vcRoTгЮ #9:9ֵR'|R#N 8~%&Tf/|~K]U jI9}gF\iժϕ;rݑ3 ]56ow=-Br+[a;8?9"v,rJPٰ0%`aC]-B::ά"ѓA+Xl(z Z6@r'~cyȪ.@S*Nc{YpO6hluHmp87#a G`c姒Bvׅ W\/#%1 ų ^Z1`ff + RԹ޺~Ks2{T=+VPvqs$*G`voLp >FykEP* (R,QS5xwq%D#Fc: zY' 8Ӄa:Nr${ζ qN.AjԶP6>"V} <兏'z$Seo'[s"|2{aSͻpou=2c՜cuz4''ocp RY7O/#9~4]ط9sDd˹ՈMf ); ݳ/=; +*,L2$n1MO%jNJ1|Buh[Fۅ\|ROդc DO^XEs,_`+tafy`CV 7Vi>k5f}G_ ` G/Y/*")U.'5;K:LC#;_+qu FEjj<> .^١KuKݺX =H@p3Ff77Ҹp m,:Iw >g]犈wuoGsQ@Lh1yO;b8p.T_:B3 W[<<ߘә>} X_yn]IM@Dg3k; όed0胵 4 ɲ4oA} + $͛C?zVrH] E 4;YC% j}bΏ`u ^Izf&(yOfo9V|C4k؍a s V(P{1kϺ vB0t>BfxtK>TDyw S˩k z؆T_<{n >&֕F`ڕ`EQlm-_+a% L"0{¾egc۳-;ޏ)J>֐Ng\<$e9`K^rg좻pMc&ލ(Vn z7LS=95@CazERu2 gR#.\8+XΊwӡ:|Y(>㳮^h L±+[}n}s *lFxX0uʘ9Ay手NQ7mw}qV#zu;lh M +*sYi5<Ǯj 71\v?5bnOʍw$XщVih']=U,J9îލ'l-V;M&O𮛟AtY@+!ȦdT=[ߍ+y qlbMɜuiO?_O~zDnC8?O3I-o}9稡o<}0<˫E]q4ꗹEqv!2 ˫Deݗ n<".lϱ#c>yO2ފv37ߛunavx>ʏ¬R:z̑{޲sG1~~׬@8>~M5aUs?y|})Ǖ_o함otw/˽{zEƵk\뢺Ǿy?_cA~w:& mZҏ|~7??o]?f_9lo}Ǿ}ݟ&W#ws3|_|r=)ð[pHUm|<M]k6>GD67o9ፏMqj 2b[bsAr6>T+.(YOܖg\Rm|>%y.Y26>@zv(6m6[S0(m|iX\N \GoQOh}~E-R 4]it}zB6uP{i2TV7V9ɞ.|dѱ S}O6>E׷o8|be䴇:k箛ux;r)6>Vs6V>vƭ7>E}Gt_7>Ǎf-It7Ww\aWt*_xqq}{9͙Xm-NzY P6Vz6>ߡ] 6/7V5zc=Zj!w.4M-y)4*,QUS*Д]Xyr Р;P(jy._~VutENB6ݩ;HH+g@$$NP5:kV@V0ζl+ONH+zR~4 {pFb6#O0[qzp56RT+JQ RU.|rލ~Hf`wHaggR\eam*VӅӉ[vYºR4 ^i4Zyj + *_>V'lGt,6}Fux\5y/ ݺ V~ʓ-}з{. |,kY3i/ºӵnYrarğr)o ZS1/\JU=(/ !csOuƺ}Fu6KږpK0`eRN-gc=9;wB"M#)]&~w4n, 9' fƘ6!*< 1ΎP7>:nV$ ҩ%Cj!O xr)lohA_ v!~Dx"I +w G!xå9MarBt/#1ʹ86DXlٽ[1Xi?Ź,_~E5;%vs:t:cchf/dOd%"}*+<5McI =A9T;fPe}۽};{e<@Agn ^ˑDeEZ4Az%hpѦ5֧8gNZ0h.BNoJ R"eҋ?Xn_'w^q+$3s^bBdvL׷|}b6mJiڻmcՔeG~X>!²NcJUF5жJ_\,ckWPv>_ֱy.څpc}G;[<1H4U\)K[كrL`/YmpjzP zS=hWʓ,>.m!;4&1l7Vª[X%8I &Z^h_Gbcsǐ]J6;lî:8уismK5I%-|#4]XEC}+EFa&Ҝ̜g)vye0Gd۲fb6Kssͤludj ^xGr(1iI&qD.9+BG' "EoZIȣtʥ*qx7n6K T1]( *ZV!.,`7n .x.gi XZx7Tl޲QnVMERz. +.j8Ţҍya=v1"N8fh8gXkTEE^e֞y 8a֓Sso3$*ӾE:nObICROsE\Ǎ ( vv`^ːI~a;uj]o°1ZIQ1dw"_X9d .|J¦ф钞 tI ,W6VmKu)|CJ$/څ܏ľZh_c~!zt  @onRK<^'i^G۹r$Uxba:%$ &:n >lʷǂfFAxR. ep1HNª!{$t$ټ]c._Uo|>2m| XG`ּW_XOTzԿ]XE+;+cGS^ gna,zzQ=?_bj ưu!*I:ssc}یE]_J{Hha; ʹJ }37fַ=6ǒn:[{"= =r3a_a5 ֒ąU5xIMg) \o;Z["atםyꨍ&-Q{cR XXrߕ¢mRD/V?b&o7-8م'vJWc%N.K\.. }䁮>:慌|v*Ԯա=):xvsksPJQvU)uYX_ J?P}%aZn Q2PQ5\EUF}av}EqEԩzOz붲6>) ӍӼGgޣ*Ʈ/VpfvMlTgDwW yH*tu(kG&,&շ GI?tY#uqk]̮dDn&ZW{q\*"ҡvhncqEz^4I MΪ39  EcH]J\v}y^&$--/Z}aRzYX(*,LAEзu#"GJv=Eq% ʙyp $٦3’/|ޣq3j6Qɫ.g.`t~u@ 7ڸ+\EdxZ"`icd/|(Sܔ{vrM. łӂTd[FQr0s&7΢8a;0iuzZL§t(:KyWz Һoz֏yS$(>,YUZWp!!қ\zGts$qu kA$np ϶eB~S2U= RP#P\W zI$}gFghU)gGn+VX5*8*9ށvU"dJ ɏ+=膍Ն*U0lhztE7,8Kuig/ ކ77_: 8KهaeE * *nfPCy CwA5Cs vx㻸 G+S2N $Aw\qqy e8sF2îI .]UvEX[Y[UgȏjGŘcBF"1#Zlm \Ou/%:{dbT N8">;':޷{7QDMtU7uWd4h>2=vYqy+(ȋ2KHyVx= ggϞЅ>'="b>+m5_a6>%GЎaa l܆*BTo~WЙR\g=cJ .?M3:G2_ 8>;.$, LVsOLhHpӐRY8dt%e͍4&v՜e> l? fIyqn9 \*u$0?`TQ7%d:Nr9\),,Kϫ})-3ӳNTBv_qn#έqe\qꝁs+zf>R z .dz$#DžNznp^ysYԐ4]r"4PtƞD Ce+hd=L= 3WH^ª*:SLy̛桌{IfGQQqT_э膱vKZXT<0`Afm{qn;)e==o[v:.ss܃uU]Tw.nY+.NgJQIrtǗӧq η)ꈱS٧++^ꮧI{-]u@n`7-"fD ؆Gejٓ͞Hͮ#c^Rw"*"xf+Ȯ b:TtӡYX)a&(<8.ni";66#E"1b=*=IlYt>iqPupwFjdPr28f- ~`ZqXo0uImk0D=nVQQ}uxu< gӋ6~OetuZA<1ۄ3ʆ*z^8fc*I- +lJFյ%+EcU) >kNY3*<-o#tw߽9Z{x-q6u?]5tִOק/ ߔtZ Ǜpqͼ /w{ bC2__oBiu}F/^ wb=pZ~|^+V}smeK[~x{_=[|?;@ol{/ֻ~%Lۿv.bڨC6j\3.3ߵQ˾y{׹o=:|dOo[?U9Sϱ ~C~6e_?ϟj[#sm PRƓ:lj 5_/s}Kt{wV ej&kc;sw8!5uMK>{l:yWjHqsG|0^C<>Ӟ; uS{?7AE4 Uԍ\0ۢ5k7=F)6>5qM->XX崈7>0z|Cߜ_2OQs\EQ_>iNn+Tl|K'UX\jSӍr+QWjsjAs=vv:45/ߴ ?shE=t7}>hgd:tc=gVqStI1qc=sgNz:7m+Kƺ.k`.hV78{h sIr srlc=Qguߴ{ҽ [t4bl|11m|J=:y9 qCy^6V.7-=NO)~'INXTI kcշܩCl&/4L4cӉHQUTr>y kciDULXnJ -*nP-`KA:4hF dK\ yZaM.6V]`8#6 ^F7s;[}Ck/7>5PƼ=iuAnG5d5rNԡU:Wa=O1WkAɷBuE6>iэa՗ѷa@ZVmʉݜݕfSd_ {hNyc0&TN' 6UEn|J!эu'^>]{5pdCYkz//\(an_]l܅{hUjы6]~v0_źXXSlMm==&v!챡B9taظreTqaȏb}yy!_wEbuwRvJ~s,eȱe}:\ƽ~E"5؅ZIjd=]oTX9'wtT*V0wȠNscQ_ \[ y \Եl ;(s$JĨs2WX[At7>Ep7֕axy6Ejբ*";э皮 Tfaq +h 9s -^c|r;O;,VeO&:MXtnưE#to>z}e]6VB=JKc$ǒNXFNjK28Q4߰z%GZ֨+MJ+F쏅Uș[ړrm1@4)N"f*p)Tm+9bM|RDt4z $pqAf_OoK& )uh ϡ7 >=ۍoPoժf7DzE]]s&e%,;tn"1w0-i]<2Nk8#=pۍ w7>v`S86>NzinҋYh]܍*&-5⼱tb'7^At^oê ^iֳ}B %JxێxZlYl+(ɋuNw4OS#j2Gޥ2d ֐,2YXsrއ؅9<7U۲|`[sLٹ.ٖdW{ɨii`Nj9삺-DG3vN%ɹi~]9&c~B; wd&?W>'=xIŦY@ bKbƢZEU;휥m{ET/G.T=>V=`)+Igs`"_=34)yAdQ"~8jKnM. Cglo+ca]Wm7kB\eN+szjܔY']ޚX[.aӂ!uf*ꦻ%77!jmc}['5ؾ?}a0BgO?PU\U1eaS&% ]\{_Q ' CwC6>vz ]uԚw4s5p3~WKot *eh"-cbcaKs3XLkuk6}C٧YGob\,j6>bEX~TpzKZw 6Yn8>5㽱O%QOy^NSqDVt2+ZG\Tܴn|cbFDԉ7}c`lΩxE6/ݨ]%5k@f6}3X,!1DžWjV,grK0 ʉ Ic'yd]l*Խqn>}kd0B2{|c=Q ' g"scjf2m!paUR{a|1Tw kEWf(3R$"0M%[uQN:ӅO+ܯX "iQ&m-d2F ' +c3)ʉr A2x1ª6>Qсrz-q:1qcUHi.WdW[nw(#K3S:,:J;S #%|t1A@QIOy4mwvNd8ڲ-bYUh]TJ xd]P=Cpcb}.|^ocaӉݻtͿ,_}B21LA@%`%- zZ׎LY-lrvaB<91vIz"XXVV7:{rֵ]ӌ}hŎ5Wu3nc^|2fba0+Z[ꝸ*w֯Xی_s z) *tFѝORXzܵhO^40鮒#]gt/0Klg,Nϰ+QU6VOlFA#Vq(J~F}<}WO{Ԡva$ȚfoקmOI)z^1? F4ў:=*m܂~M/Ltx苞,,q+zx+wsDm20]Jw3ht =V1nޫfh6X}_OlZeɁ"K\U'ꂻ!n.NTf$+W\&@JQuY#8G4;SѪvw J6N666Co:{20sx^ŽÂ&ՙ51g *t0t2ԑ*ra]=]_fzo^;a;Lo;L_XWbkNVS.Zj *Ĉ>Mȿ$̐K=#COs>yOtL,b6n@l.~Mdu':GSɽfWٚk_Rez>aE6io|zA2#=cúL|OW}gD<9~B"XhE3 ꬨήsڦi."$jue,3*?2|y# v:c9W&~er'J/3+SS+SPQqm3$7{(똇 < fFׂr*tCn0I{'{߆n\)qv.|c"?Mxg0-f=znM SغEJ%&mLɪl 7Z8NiROW+ex+:+:M7j&ǧ]X-2cc9VTm}Zj)mgQ^I8 :B:;BnCd [$S:>CʮϓY$Yd>>%~,~d䩍A|*Qw:\HR{Pj]ma)^g]l5 aٖ3!Єd>zLGd:by$^>BϾF8CV ElIAƊSª=+~U]wDzlhLM?՗/x/6GkBOl g^6Y=:cQUaTgT0U2Y0%nyI}Yѯ *SLJ٢Z Ζ ąN:{Wmcyxa?]t»Qk1@W՚ X$gC S# o tk[_zWp{E٧Qk&pa.L o cԷ&Q%:YYJsϐbOQkl#_um}L,OKŔp*3Ҡ皋~lj[NK%.X[֝C":ɍLGwbbkg Ȱزج qS4\Ou_=ҟr˵9n(%F<8_9 T7+cO?r c&rݝאOI,OrY:3un8٧-&rLOԤĽ?? |:]A;t7 ~%\TA/<6W_GV)뫌vOo "i>%abL$)-39OC#`%3-$d-x5Nf=# jcI򦜪1':̍,nn%4WU~ &U#_:V}"̂:S"nN.O-r]9e]w~m~ d2Ve& N̹cł8ԍU3Ŕ rUyI?`_G/qN *j2+zZ|?]X- ϓ]z@7A= =41GlKr}I7=Yx^3m#g)_7͘Q=c,<<?y? sV9+V8v7 I`;fb9kAߒ#q*YD[m")zcQZwn{ªMb1ZXVGq q܂nn0Y9 qm'tu?N/9b9: a}:1uu)\OlWp{=c8sKjOt1H^DF6Dtƪo61Y3sk٨Szdo% N|yUV/->]Z82s n9Jy](cN@v>ӄ[wOb_Ŧ-6-.k Fe*xm_o:omahz}:i`-Oϱ'O;6VG-d =^tmZƯԱli$۔,,"=&Fpqꗅ'T6^X/0_ d}Ѩ-.t&zn5&\i1zN$+~So~}o:t݊{x-q3\z5dŸ^bܔk/oӋD9]xXL}/gxy C} h8߄n|~w/S{Znm%_p 덓9pŲ=4=ާ{s㮷8-iy:9#Uz]g>煓z?ϵ)-?o/o^_ÛJ~ Mw$8z׮ťߓŶu?QlԸga6{xW?/>qcU6>?;{5wIk6>Xm|\| c..ѭjB6>@Hw#6>Is *m|^1%էChQ;>7E>GX9v}iM-a[ifF]2 ôZ۽yk=AdǙmOz4mOګ>z&=4Bǒ>SǍU9|6>2n/Ȝ7]`o{Bcϡ܍U^ 5,na}cv{2J$dX7ϥ>Y_]Kԕ:cmd6>MNfeXeK$F>M`A+7V"Oܓ&J) ?&tmEH\~(ÍU~i`C7^s/Vȹeˠu,"?>@RwJ 8Qtm|J*wI+ . ؅V^ojYX%Cbjًu5=~Ӆ+47[ 뺜W(Ƨ 7>ӜӴ3&43/;$Lw&*W);Y7֕UW.B)ƪo|=ʘ]mHKVov{I;eX}&зus{V+n^LvdHsc0g}^ICVl k\$nM:acmVxyv  y֊lÙU6Lׯ9Vl" V̐m'~vjbhӅOS7!$<=#]!\A{29/ cm!aϮfacvaV(1 ^q^SZ"ƿ-*O{tBFHtưPĖM+g^4rՓ>2y`q|<=V{2ly7! ]9?3/_zh|aI벰ZHl Uvhd Q7oZCݱ1Ƣ:Y/r$eʙ[]ŲfVJcCw,+VpLESQqU>M9弐#8#˭Ej/|Kǻpt0SFōm-}gί>mi,Y]*zBPq@I>e7>znEw$';c .V+`g]r>.KZX؄-E" s_%wScTp3 ٝ}?U*Uvl{}Md?=M32XXOզڴ$U'H~DG+~g?jªl:֒Tn\PA kBf{9Yt1XG\|1?ge.as!p^{ӥΠqͮwꗅբ UozVOKoeߚRXȠLDgGNU%§D׀*f2"WE2e+$L1V_NQE3Ed3kBir|Cun3mc]y7>(g;$0 A.`6o4ɘ}.5 Kz%Z9QU8bXYw/ UEo5VRCIGr0 Nt2Vu],CƹwAXAbabnwʌDԍGW7n 2s7}/VO٬W=ΩH{XMdPz'yN"cNSey)?"QU~h΂V,qʪ=}jcXe㦝H^r=.R{a|/ˠi*?$3R?ʌm0$]u c:Ic$5jS7ҢLҊ]r5@,N{Lh蹀Ip8nqܬ3G 屲 |y:I 9(.ZK2Izahd.sBrkzSB|4uxI8 ֑+c{d{dtPeA.Iz8iJ73َ]lI{at"W.hWJ܅KDs.g5:yQՙ]U@pUC7V_:R"ϕnV$;9ꂳ kфJDX93Im|mG=.Y;CGy(jiXAY^Gqwqw-ο'xRRq^yL) ErDmY6կЄq:H'z'/Mإŕo{1Ւ֜שt %iЦ] Zծb jGc)J>~)+( R|@e|P[oa zkIA5rS3( / oSOƺ Ov>υPgP^9,|2Qc,Z=CsXjZ^2Ycz ]L^)!Û\r jLd&cc>au,ł,,%݂@%$zG^<\!u4p5qgSIE#gFϯ/2u.>,*-KhMsU7Ur3J~/ ɮd>t>vvRW9.|ӅUjmSGvapٖL4a@Tdg䣲G]Z=Xk]Fghr(G"9{vxԎǻ9ή`^^م9Z uqꆍW$kBOV.4ަz00`l!\6!ώKz>nȊ6}  PCyYUg+Ooevbyx"VwԠuWV/.^Щ%/_]ف\;8뼀bL aɝKJHmOQ?V]cHHeʮk+9kedCdXeGeGXcj&ڸ=E]'r%]Zk7TrPVK,6(t+~_E"sLI!\$A{4=n}Z}ڐl.iLq4 /:`*SqS*b> 83̰w5~P%y28=8l A췏gtφsxn-VqZ}O,OwY:IGR9. %T dtRPmCyfsDr%S>;^z5C240_}I%Eʠo!xglϊhOuўU7,k¯>tƧEX_p>{~SظUjUjn[n@f5j+`vv*ΜޱWĥK]:IjYV,kw]_8r T*c=ySqq$YﰱdE;gz`ØU#_l8ZqufAuS"Nvs';cjhSC'8e]w~čN~ k3ӳNXۆsۦNX%vTvXe}dN~k+^:h^#q#]V#L~r5y6o+_NEPS\]NJN]R' S4Wb29F1ETFTSFWM,Z ^3qș̚?M-Jkk<<?*z?#s]62,_LJ=c'@'9ЯZ㚱j2ճcW/Zܬ\XW_dFX:SL1VĥxªMu.翘7DjOAՒ^XTc^A@7Xp` |YE2j[銋=O/5nNҒ=4˵,zHyu'IS9=\rgnzZ눊*v j7Wy:ԥ4Ɩ]$X_Y#:RH訅I#lN}d[D&v m~>F? ݤNG-[^޻J2E  'nY?~1k<2-.k[R"5 _2(;T\K6M&m^z2fenHٯU"g"7l7[3^x(H^Yhc@pI gsa 's'^98!ل4faX}݄/F[ Q 3g9kNY38fȓ4+~So~}o2?K|9X%ݼ?~*vܧWdOvm4×EQg>ĦG{3 _br _˄yy߿/KɅ.ӭ8/c]^t,{I~#m% u_w.2}<O:xxG-U{F;^>g}z\' xW>}^P^_6E%~-?Y}}o^<^ak_y_~w틋k:do'_~(xnڡڴf|XNL,/U_V&@|nynѰ?⍳ihTƷno8LE+7b5wQmݲ]~t)]=p>Z;>7wVޠW,|\*:V_Xf |] W{8+>2O\&LwCcޱ,x(k,5~~ͅϧfO=nk kvǚ=st}҅+nr>F8'}/O$ǯ0V {xȓ^g\/x_E>hӯyaB N{T;=^X׾]._c?_ qsE݆uxs݃vyٍe;' 0w|ֵ{,|>=x>wMRv>n>[xa=#.`x,Q>G4dAɜ]_Xd5wݥYlֈs)=$TP!wsF/MYyMK+*@ `][8xV!|s|IocxV9(Rna\[,xa4Ki|z<: :d oWV{txaD.,'VtOpI1G\UV}Yم+!xajAeXPF벰K.YiÑ/K:7 $."^*Z6>W>[`X>ˏ_cYtLh{taղ hLͽ‡"8IBWXk4痎baXXZ|׻x(zzR"rp=@dK=>/b-zkanafZ+[@9DkDp 믈\Xv,산Zl_c&Ȅf/K +x-qx,!6=*{©van$fzp̛1Aؽ)gvEvIi$uw,|lTc 3Z?VгUc^|tqJV͑3gD>1C%ÿοKM) ZD-Dtj$(Abơ˳ad1/g xL049Vz"ڂWm#Y5RZw{AկjygZPbX7 Zϡ;_X!fϽJ ѿBuB[Xme>swɂ⵽>ES 2UF>ֽ%:t' 2~{&سi )=)kŻTKhL,ª-l/FȢz Ä-Jt\< cccgV虽Fmr尫F!ys* \N o`y7ڀfŻ/|ZQej'jӝT-W[XVz^/-TEwkBV/t %Dj.O*Ue9ͻͬvѯz"aX>5>,M t) o:a,MwTd:+ UrUz~AD|@'!`jgsUͪ-hqbW p Ft!k[\!\>KTa/ }zLr#0tQR+]$9TyI͖P\QՊ}y^ )Hjrȭy QʂMij ˌ@ۍM5ͨήYoE䰢aY5ȦF)3m3mͨ<|pYvyϧj9-vHw>}vyGJ[ /ϕYZ<8-.{q#cNE22~eh=*j-C^2tF~33is7Iم/z+kK.f: ޔğ~a=_]2#.]o$9=}k?‡ J]JeS-E}g'WwYV >=Go#]٨tAzqU 8QϩvtяkA}t@ec ,e/҆M45.8o[y}; |wϊJ}/s,C3;$G0dhj'ҧ Vo_X2'x,IU戎@fAVt2˃J|6SeeW#G%UJ$yaL5VɠHľ'Oww2bVc=zDN̢#7'eBSrNC29>J[XwHWz9U Fku 6Q־Jat+iey{QD늋֥ Pf}]ww93I҂ji-Is=Mm-  6 ~:|H;%4K(+/E6Q'1]j8j㋝7\svB2sZ. !1XݴqղUˢ:hhr F-|mEEmecm[ۈIddhp=3"~p9as##xj#}leeUJ4eaoEbVdd؀d/ 96G M.V{AD~&vyFϹrᕣ;8Yrz|J8r"*&:2ҧ7m֯5`s]YGW ߋƎƺwEhYvjO\YX?6xŐ?$UT | jL- jsOm|%GDDz3ܙyJDndLhaj;C'CgjRcg)ckT- OTbᱨmX`Wt<7tT uW1V_;< %O OQV/ףF},ʂ1u5o5o&tf5^!΅+&-zh[p]Ɣ&/vI5ߤBDuh_~i /:k$𱻴]nnR1"rUsB*{:n?G 9 и{D4`oL NyڢjNY+...$HȜOHNjn|ǦSԀWX%kr=(qc`'$"]ʪ^E6Tw8ĺQ\lA>|nFt"EAuM@O˹OzE-` 4`቎jncȆ ِګkg`fg>ȍM"p>NȘỵfqs2,㲰d&t.|Q䢎ϳ2㫶M76>31ϘFDe9\'afMr3k8/W,s^ В*2bOŪy*ɳoVh7:upk]TiaA&fͤxA i "~"ۨ+Ob=s_"sP- Uajӂ~/؊\׿Y)z{~Rm|6ƜuŞ뺰Z~͓BC&=LE#]ر%Б-e||*It]2Ϊ8qXћ&I&ܧD ㇒:18ՁUZ60yշ(FeØ$+YGk{=oBu 2f7ץ9^kuFGm%|8ŝ!ẳ:rN嶠jr77() )Чt<abc˷ sDl' 9>;t)( R`jnqSs;Lc2ngp@O[g-8uTHwW!}9 =.]H#ieO]#acr:GroQ} #eIf/ξgtN9>u'q88.:Y*䋛vBu>NHN;[QO'RMVo#D'9;rĤIwN yMm̚/ˬqDc [XvFp]Fl: VwvI ZLr1ə. 웩f:"޸EWvc"2f"`ĮjɃY2y/WwߧOǟ߮G|t Oo)8}M׻&rkAc|yv7yޖ__gO_޷q߫C`?c_wn-qki/cA>l~y#|o߷of<֟J&Z=%?umفа~ksٜq=͸eV^=k绷~81:1?݊_?/|k{o?_x?e^ *3l_s-kZKKk/q4kͷn.}ǟ-kMpKGԣm[[}Qmo̳DfU~zK+E~MXᥝRyųPwawȩ>-/_N6ƫݦυ/ci#sxv> &^S/Q|?neZ=]҅gxK}) Ψ]7>ЈFN"G?l|ܣi| X4{7>(#Z+E={MoOzA6'E4}7HQC+y\r{ Ǎ=6o|7ʚK=l| d&f7>H|fnr=Ԕ;vc}Foc=Qgߴ/x7Vt橓ё]Gi00EC4G m|ʩrmu*Iܡ,kR.fSpSO Us7>:=.U~̬ڭj&O?KcV|.U;Y96,Ļ@\6cɮN$F$7$[E)>WX7l)6sVGutBn0_v&9XW׮+lF[j뺜UrW(kƧө4=V,ڴ3OJoRZg%('ƺrgz)6β/QŽil|#kyc}ҜI3$l|2nXѷu-Vq^Tn QlNo('l&+WQ%bYQv"l(Vt{ַkƙZVޣ‹΋ڙZ22wiw M Vl Epded/M~OXO36Vݐ4|ɾ3?zcě.pi`9Q Vo"#ϋe*OV;H,A]ʽWNu]T[|uc ˠ0_Clߊ`EYlμN'ixќz[$Qw!AD^!+s<%J[^t-Xxkir ݧmys3{l+pۡz[C>4aVMx2tvwюa']\ jAbksŐT 7c輽I3>hRnec}:9pcX[\X)ڃũ)1*_XGYXYeNXT} iG 3"'>Xc]4^%npB6spnӲ'MX&ɇի꬟mE&Z17,|JŤd/ecDp'mzV-c:Q4߰M~ic]_eg~d6>`ϢnrVT% O.UT7xh m{gc\ЍM0K5ظdmsd0.dſ&I0KsF٣M0쟺=MاZFܽjs(?,+ha񮜃z>w,+({}A^?uvvf5>]5l1X쎳m<]XG#z^O 9¯:c5=VBbEY⢙U҉n7 H߷̡J\ca[GB %Jou=2y1Z[v'U{rV)!Tww *嘽ƃ cޣZ]g '7Δ6Lv%c2Ndc&pl|\iMNWqznOomc _j< 1ّDoIwrƂvjUIpaM #wa7Y@NQI|S뉔|àPXb֡Po Q"FMs],K{A+AdQ!?;}icplśoe\Z\em "ȿ5!vp9-e][XNO7>|17;jVIޙcjea}#*O*lT4T8o|>i:՟ڍ!aN4a Yh ZA#4u*ƧjXD>bJz·X @ƻT i+4xr/yEVMzY̚})O혀r̲:Y1jth;= +dNXlŒ)Hב%~bD5Z:UT g״łR }d\XqF'74io|ce]ďbHtvp6NeuuI\LNmlsq|@LU~hLu1.+j=W?r`m^TCurZRNyZVe5g"s+"5 G,Gld6NJZ@yIwtPQOv'5xQqs$+a 3٧WeYXuTF t5CeK!oIi%ErCYydB |1X[|ʶ򃙑,ل!Dg$N:qEï4+aJE11ɍda.F+k_F}a[_rl}f;U] q>U8sG%%6rZ(>#C*WUe:7FFc6EG֥.b^QQ"׳ٟt% A'n|C6$;Ǔ MnW_XOD.Z](qCi6Aj'XMz5G~!ʒdctɾK/\JE绠_@jr)nR[-GcqR%. {=6yfipYIo2Dhm" Wc1W,rLb[ +fba=rї&2hI AڝtO62[štPeE{TaeFSJ)^XmK]Ja6Wt-v؅v:}Ӊ=n5ƨ!Kܘ%3QZD >h v-0 ϼ0 Lhw#ba|{g(綸s;Q2]~Nª =zn'HKsDY;A3MQ//hq<Mm|s='nk 6c|sLlQH |[ͥf[Kh0dքN"=lIٱ%MH餃lv: 1:skv7>KZX5ǒgJj Mi,16_KRdْꉏKz*vaD&dDidm;F'>eUV>qTAUtWXX%` H]$gIGXҌgJ` 5IT7WHVnXXhPUlu]z+} y3@0C7Hlk06#cUXXOio;9"_Nr 4zڗzQuDʤeP4ο*l~CfG @`wZ-J)݅iupMrYr%9|_?+Ll%$[b`0:=|3stE׮23cE@Vt3 JdtNg9m m +F gh`Y7 @º$RX#PЃW؃grƯ rbbfBUΌqf\Sȧ4+S zkl'#%ǘEʌ;M-C܁uYMS >v.|#Y}_,w2b3׸:|BNg׺*ׂ*Vl(xz5Քvc-P\*/ _,>:Ϣӳe W:dDJmP#hUnZC# \H]~e(氳:NمpNP\=nR.gt]%I 'qdzeWQdm7FCʮvّ3 bC4;7-Br+ ZI&;$?9"X+AujKªMCӯf_YWg^נm~(om{ X6pg'ZO0O .+:PU1\UETf`CoUVCjC,ɾN .l?UJºʅ oA ^FJv b@gDi &?+rrͪV) \k. ey+]j5050Orvoe]8DQߚD:JæKb@~.5$^tp`X 0/k|үa@L1;/ 8Q\Xwcj$9ʮkzfEP6>2V=99S%9NQ-o59ˊ}w 7պ w/Z9#+f_E*sli'h$ocH n`^#9~6]roAs爨sy1O+Mfݧ ) ٗgʮ .7ɨͳ9$_T-|>ƃ6F@έ7zVQ&va]',j7)y{@hV+l`7L}V :5|cզWcwjV ΋UKc j2>wdy1٧Ք>o OU;VOb}r茍Z+z Δ:S 8㤾VuvcOyPHkWg0*Na#Y7U<> ._aKugKݶx >L@ps#iRIvԶn}B<8Wdx[?bJD㔈)sзF6`p\ο\w~ePiL}ٷy8E11:}a¹uj6V==2 ϊeT0`\H\HVI/@ڼ9#?gRCw)rr% 5d8@g‡jq:NC^/(q V3XLJ2b4+AqXx0m̱3򦹨0Wtnq՜em@y;l(K&X<$ z2\4}m-U E;[^_q/:ы6 -b㤫e;GNkw pqJ˅'$@ u3M=lB*lJFյl|QۚwsvQ-䀝yZ8/qů~CO~OoVh8Oӽa}r7ޜQCUw/F9/,//z^ 2)}N,j1nm7/k--۟Y9@?wqu?*r={)-p\?r}]ZF|iAӒ˙n?k$T/͖+fb4q5[|5E(&ύ󫽶Mv6Ͷ4S~F$7&~5yvfEhKӖi/<5[ }y>4gYF"IqZ7"wmGIWD-X47>]X O ajEq%khzIF+$7>%K p)0+r٘׳4oj{Aqvτ7=>Hysq6>%$y6m|~u6>VK6>TA7'E4}A6ICb.T737poJNVuu]8%=|%-(Moq7>ύ+[6>WN l7>Cɼ7>m={D-Xe /nϱZʱ3i+88;:p H$nVwxih>EklLGBgݳ~i3-зi"OZb+E[6V6>C_fх{o8QRpb %uj!@ 7si:$y КZ `_ѻ>GW >iWB O^A]OA@9O/E6VLl F`kHl?{a=Qj8/U§XXOCrq ?;=/ cm3V<]X%XEZ.O>Sf6MԦY7>wPbIꗅϿ<=d%HMfHBăXȕk1OX;$q>A1Xzy!UwAbq3NyʠSO}ۗ} ޖ ;u9wcf㋇>U7V,rar$J)w P1(\ JNU<(/ !cI#> sd@sJ1-$0`[rJ_M#)L]q{4n, =' Ř5!ª\PA*Tfh+ac=V& Ԅґ%QCv #(7Vi!ЂFVB,U,U4.!B:/cfB$ 4m|> A_1ʺ8jz?HgRvUSK HhScdE Hc{Jsҍ5v!6]hi)":oJZX8vx[O/ ꩬ4%-`M o Z[dq*;ہ+ U>Q :uc_$Z,+ж9(wŰq"'{cAWD,^~Wʽny0 萗↼]8йm|ޣ\_4G%nX-%!^ 7z17D] %f,شMjcQ 6?RW{,RBjWx"Xtr~yuQ  mØ<3eg[f8)%J[I@9c&pjȬ6z8ƈd'e8_Q͍U&x|h\cXs МՓ 梣zI &zna_4a&twD;?ۣ-~,M _ *Ud`v~%EVIe9i-|6n]_ mRŵI h)n@K[ޚHD cUޢ'!|bTf;K# riiXX=-UJZl[]Xm.Y**I.Uf*xo{]$LZC7RC^~+j…՛THgքI팚j&@PEI6cI܆zsyuFOzUPbFcR‚+ō_155Z,^8Q`%Vb6ZIl3-ϑi7Dݣ/ǘƬʮV/xNID<Ϡ7V)U!h#]t7Fܡ.ȊfE~9uՍ[H, QyZ֠! sE6o(U7 Ŧ첀]Oº. +.z8~ŲBż['XWng5@΢jj"zI,O*qu4.5@8oAYݦE$H+mg]#$$o2{OP/24icb/zN.\>r=F/)^_ V/ i6aaHtHFR[E1պHeV5د8b?2|.~_ݴhEX+N0s9q#0>>lJǂfFAxR. e$p1HNª!{$t$ټ]c._UGo|>m| XG`ּW_XOTzCwa}yNmzբz^g~ኡ5$æZ(t@%͍m3u}I+6!!?PO+(*3vvFܸ4󾰾=vccYXYGU {oho$.rKo:\X%/ ];ǵSGm6!nʌ]x BY),Z=І.ETb*f }ӂ]xmt5F Y9rhƯ Ԓi-ظ1/dDೋTWfUQ=cՏUqyn;m繵!Y m(ʺ,/GI>N]>eIu=S~"*ɞ.]tP mYhF_ɁQ?9".]6kfamVO99mu2&y8FǑXT,LAEǽoa caGDv >zJ@;p'*@7nIM )gv% 1_G^nڴC{<>GE$Hu˺ &mE-Tj㊮.r.f5VN'{D鈟Fسkkbui/|,,%݂p55bzY ;B<piݻ_2 ҡ _ Y,2HZ?+e2 6EQ|X(V'Z=*C:oBB7HocH>ָHm)˄tdz>ߥF$VדxK ڍƵx訋 vّF2U#8V ήJ.owluqYinB#&ms h,acadaզb. ?[2qu]`Kuig/ ކ77_/t@p٬KهaeE * *&Q}J |(%/үa@tg衹 T^ ?E]qv)g]*슰 ӋN72Վ19.ƄDbF"_jm_LNTr=EI  ']GhpQ}]q@wp=?qTU8"nȮ۸"Y]F9npksd7 /V\^zDʴo# YyVO3 ={vCV K}F8|ӆttɘL8:7=Q hMw nͱhz^QMЈbafJFXvb6|zώW^ VgQDWZtK*/)}:.wrn}.S;)Bcv=v,/ ;_`6T5Wz Δ:S2qRr\:#cOv쌡Α3Ϡ8?I-*<>34drr}>Y#8]8m*qs#M*! G5G99pRxqxN fAuS"L栓l$;?22I;VįNϮ:bR ]eĹ8Ɲ%r 3!`7UV/|^>5쌇.dz$#DžNznp^ysYԐ4]r"4PtƞD Cm+h`=L= 37H^ª*:SLy̛櫋1Wtnq@UN݈n;:!l QAUj?Le5_PAd.޶;~~mJj,|~D疝N" m)\##e%v`|]D-[銋ٴRl|99w^u\{η)ꈱS٧++^ꮧI{-]u@n`7-"fD]]nJDfO&7{2#5ԎyIK"# PMzga}Y|:jcHTstt.ڌfLjDx:q } e$ȠdPKsq,[$o\z|ta먓1Xa(zݎ:e_/< gӋ6~Oet:/qhQl.*c{ N$/0_ )Uז<ŏUu§L/\Z9-fUϨ`Կoۯ~w?ޭ8ݟ%r|-Mg i ˋ~{> {;ʦ"·%e„ok( k x' '$*q}xVëlܦV^rn;~<^)xk5+mF?W] ͚߳ҏ}Ԏh/jsRė٦?57E[?o/-߽eXgJ4%ﭷ}]?b[ڨlԸ͌k}?|sGz {?//_8o#|~[Sϱ ~C6;yV}s<7`NmH 2wƎ?+q¶qg|-~>kVo]X˝n%k~MOR^pcC5Y_+m&͍۫#}гh+jmsԍǘg~Y O]ьJnLZ~hƷcnNB<]7q{Ǹq{l6_?盠޺Loaf̍+8\0آ5k+=(6>5}q}]Nsx s){,WL<489fІ.JMl|>Rm|^Ѥgs]pm|>RTGRnX9}RT k0-ߴѡ٠y.h=>Cˡ7>6>m|Su6>E6'=C%ACOvshPgs }҅'Uču9-дϯ˺\Oj\]mAsڧ㿱>o|COm票XXc:K#6޵`zcAz.h i5ĤcJb+:ԕ:x~9ts@6'q/%yXeKߴh8 C6>nE':~cRE$[ЖUf[|Ktd3y!a9El[be>y kchiDUWnJ-L)nP-`KA:4hF dK\ yZa .6V]`8Ó6 ^/ ozn< +[ܧJA gG8bR_m|d%XWTI6V($}CI6>C /7>5PƤ=iuQ`]!;p^ZR1sֳk<ľX}d-DiXX:lhiָX}M3 -_ ZVmʉݜݕfSX_{hByc0Ŋ&T' $6UEn|JKOzk.GXیՓ}{MB 3wcb.|CK7V^弰}YĸCO_6.뀞إB9taظrePqaȏb}vly =/$(VXq)Ejg4P7GoP.]9lٙg뷍_$RS]ؼeFScxrNg?KՖaa$| A-\b}n:JK~1{kt˙? )jvPH{QXoRn|n+'6="YjQsMׅ_l j䌸v܉#vXՋ1p8u٧m wQOӲ'MX&,:dc/ηx[=G܁z|yɲ.uEd1cFdp~Uhᤶ-E zZrΊDdU_yѯ4 +Yg?V"gnjC)@:,%14fP]RUh61hH<,ͦ ޖ4 !EhyBoh:ocOOvc ^h PWBIRRzI M57mnTG晃5i 9;:vcBϵ/#86>yin̋Yh]܍*.-5⼱tb'7^At^dؼ 4D8o|>)) %57{;4ؾ¾a7: ss" ?ª=$TM:HK%"̱{c|!ϼFH`T?D[>M'xabI7l>jl$]BA-f;a{Txkj}Vo}^9f3Y,>mM}_Ŋ^0(bIl:R0̸n8>4㽱O%QOy^Rq@Vt0+ZA\Tܴn|cbخs7}clΩxE6oݨ]%5k@f6}X,!1DžWjV…#WcJP݁8]2#H@6aJ6L]mz )D.*q%ѕ<  gna,myb71l:q{UOHt_dXd/t C~ֵ#@E/]ONݒ^ַ<w-)I8LGudu  3,%JAy>78慫ӏx8}[Yf[>{œ5]X>}Ro&pcxW nx2Q#Ybq9G[oZ\흉nXXc}pEסz6nEo.| F+57Ziv9~6@p`#ijf՗ّ "V&vr`DWՉyH.t\.NTfP>(S ?*.#1sd8/VH JK"uuԩ*Co8k'}Rq^qX:&.DYCr_E::;5e`תXEj*ش*=o2G&ߖ" T< LY7OAˌM)fg5@,u*4#]n-jE4%wxj],ª e,Q붜6b{}mϹ[R4Hz ˭%FJ3=ZD"NvRk|a}wOA R?YGʅ5v!p}轱zFHaxahwº_wzfuR\QGUxwUUEliB%Ucǐe4x^@g̞n>uT={<>2-Fj0m6vb$?cM6֝vN%]U;6rXh(ܭ#>}Šl8Ƨ$3cQZ::6@p5}yFē'*V pIY:+2:뜶rFpɣn8^R-xFEGooD]dNg,gc dpV ep`_w}.)TTz}~$7{(똇 < FFGׂr*tCn0I{{./X-ibS&H]@0f`Z.znM SغEJ%&mLɪl 7Z8hRO*ex+:+:h4VuZԷ EVflr0WAGHgG<@NE2|S:4Z< ErEVss]ǞKf c}d~lZO*y^`O+Z?:t v ̓pa.L '_1[(Z]J,,%XKMgH~~I6͋Oi Z3&rݝאOI,OrY 3u.ԙLqO[L^'O䘞A{8q:\A;t7 ~%.\PA/<y){5x[+"'V}I|r_U#d;3ޓ 3l~T-|mүq`S!WvOo "i>%abLȬVY_: xp192 VJ>a:I Lj'Xd3J9y oʩ*pcnFRIsёx!w*}B2rJĔ9"8*וSu7HF;w!ܐj.cuabʼn93&/Z,ʌsynN@X%0-_L;-ǎYſIC }"i`;}!nWta+My5~V'.6]gmiqY4P@eFpL6*6V,p,[$o]zyk kD@㧮sI3ml0}z]xaBvߵŮY*e|+o%_6ן/o4?9>aLfo+zfo=vw9񕥵`=_?7/6vn\^fkMQG÷ .йҮozm˞ 1y8hQiqBlaUQ+:q!&1Ǥ9&OjfqEj+6w9sfWB'n|yt=+_]M/EC<=1=c"VN#:I'-4.9{ |~NXW`߲uo|27'=6'UT& =4ǒ>Sv̍U9|Kgm|~uXW_9ޔf9:` l|>7V.{kdH9D :cGu MȤuV@oO]C6>߶Hq H$nVNU&dbAis.{c/=icJR c@GBv]SX凞tcN:zn勹)].Z["c pu5OPĉإjSVl|K_YXwa. зIX|4Pƺ.'.V+lC.|^ٛ܊L.lpֶo|^L[..bqtqΘhm0Is6>\rzNG7V}{Y;mcyꭱg}u"#EM"-_V׳?:YϹz"'X /[b/欀:[j{damI'YlXʕ/::/N!4auS6>jv8nÆ5 mMdꝜ9čDx_m)?tƺ?fig; W)ǞLX[H볫YXX]oc?9 ̂m0lĔ2l֧HooӅH1,"=f/\-|~O0GL.K7=VǪoO.OA'&t71!]. rm١ gy6x8 Naa +FMYS`X_]FbxZ{J˽l:J MU;V99$avօzN17.kj \l>A-:s:ml_|qc̮׺Kqօ0 FkGX9;Xϋ+2%s]vlVj1-IiE ^Aq^*#OD]XKyŦ}q͟`*^\Rt.n ,aaAz6}==.܃Nn̔_}8xĺ>KUэ4]= Xcɲ|n|IӅ܊W5INvr'; \Vd9κX7}].j[E@挳MKv];ZƹgD;?-~,]< 6UUd7X.{ PQgP]eZM/jӪ6Vɟ 8՟w  [K㹱#GWpC- 2"cfM ӱǔsbs}1Y [{M y3Lw0O:&s4i(_V^+T7= %ٷoMMoT91K@tvt:ӍQU/|JK { b&#r]* \ƻBTJ+f Cr(>@e|L͚o\D"P][nE16?XWfˍ+ "5I%ii}}6X[:oy;fKߥ^eGNTwU-NgwED>/;"߰Jc( HFIBB.+;z©LTbpu +723R'.OH>,C3 qB_TCe?"ƣnH~Xlsv>b/VO٬W=ϩH{XMX-! 2~CV;` ?񹃺FuyꦁZI@F8[ZKY ǀ ȝ;Ɉf+ 8sP+xIr^9hW@-$ꅡ@/ə{sm@d1Ki\;- #;#*pgͺ$9+\U]lY{at"Z.iWJ܅U:j9PQ|e"$EH[va.4u?V?w-I|iE%SuL 9r|*z.M#4rt݄`ki1/dDೋTW}eXح}imszn;u(d3F:>QQSSScVpw ?S96>`_qt: >Exy։"9$>mm|ꗈ;'i.g5:yQՙ]U*U1^b בO.l|tI*ɮ.تEF+*q^`Td$n蔁T0lVU:,|utwm|w[{'u,YΔ8 P\T!GTjYoЄq:H'z'/]حŕo{o.bg C>KҪ߅Mg-N1X]ԎRy&%4wi >OcaNgpa'_Zj0ܢ_]xwӸgQ{/|K'^?rjY*իWxw<%]|SN=.ĵ9_zf$qq \)0ܚX 7o7/k$ l =E Ld 8Z*“ :dcO/w;jFoy w2{3B?\D#dzr>GBUrĨCV}9n 5 jk/ ,_̱X~a&^D)!Û\r j dcŏ*| ;r'EY5XJYJρJHzzrqt$qǝm=wd> ³oU7UT[{d?~ec_$2(:)e]ɮ_bI4渰ZJMVyNمg[2!ЄGQ.u`JDyt 1 c[XX#;rBlnȊ6}  PCyYUg+O/gMX9,5hՠU 6t4OU.~=3pyxqxE@u] 䢁vawvaNfN͐-M~.m OuRu|J_um},OEw\uqyŘÒ;ub)Ǫ{ ɿ\+Jzdl| 2Ve2أ2٣Xcj&ڸ=E'r%]Zk7TrPVK,6(t+~_E"sLI!\$A{4=n}Z}jybLq4 /:`*SqS*b> 83̰_-"kJ>dqD{vqٖ ocb Z6>Y<3u'_I$&׃PF/i yj+}HEca4WjT׫a\_MK/*zaAyv ]۲)b;4>+=E{nOBtº/Ng .gvOo J*Q- 8v ȬYuVV牃0;V@;cg {Xoml'q['I-*{nGN!_\Jr y oJ60N72Nd;6֝\t՝~@Olj]9 V\EAdYPyGݔΘNYם!q潣{=6ڌ-&/A$ܶ6V Vنz~`Sy'EpK:Wx`6r*yScZ|7,IÉ:2ge#ux|3vtS:\Vk\3V^RzvZڻZ kBgJr)*qjS/]" jI/O1H ,n"n|-t鞧7'xil ޞ4˽.XROfͭ-r {$܅ZZGTFW[0Wӡn1p& ё]GEG-OgsB#"2/:09vB_!k;(?Qjz"hF -o]%Ls|BXYfOb_LVﵔHW NU4WlEelA!+^~38 3x+pE* '4bu 'dEVa?v,_8\aF$3Bl\X}BeɦG;lfaXhK!_]?a&yLr;^bi1z yfW!?[Enx͡{ݟuy_sҗW994l}yQ.&㾼ޏg̗iLomxٞ//o51K1Ei?@~.f bWq>(3㊅?r wh Wf Wku۪W,|I3?P%1f  =Zgϯ*|t?MX>g5?/|>G']b2W&gX>tI_d2ƪa_>Wm;>}7~х/k,|q>={T{}]Ƙ.}7&/Y>g|Z9;ݰsVq>ל*q>n-e݁=]sZ_X^SO.w.}9f'/|>d:D^IOR vi.)[dq|rs=O|NqAxe@{ջU6^/Sd,Vz \|d]_Xd1tݥYlu)=$TP!wsF.*Ixs_z7fqy< ms|Ig$xV9(Rna\[,xjz<:ʲ͍wqΏ]º{F3ݺхUʺ.ߣA35. z>gM¢(BWy (uwǻ0yCoA;^ v j+{_㋍OO$FT HɅ^h.oձ:V>LᔳpЅO4t/|*njq]!u=K &05c]a6, #zDJ.O$S7=+e(V{Sf =* ϋaW,EyYCvA;]Uݛi>&gdB|u ]%@mq8{y| էYXCl{Tx܅CjHxa:<8|w~C ^3; b <$4bYtͺ;>WHrc} i1ō\Pp LP`l*X>8:]~UsdQrpîk,)qqfRxǺ` 9Z&kbnءRjayY[ —3\]y\Bt1A^X\Ӽjg'zV=xC{,  J70|M*2*9*_^&6V4 vq/NC'JըU[XpD_6*.X&J`)ŋOԙXOX b!X $g:L E+Mrja-|ܡIlA[l /UI+.>߱0Z3zOj~Ok=-$jrVbab\̆=zf XFF>%Oԟ+uiti+9dDk$kT= =4v^Cmt^zb"2~_$,O*qxe[X- j;[-|^T-RTs?Oz٠ w0@2 }RE鶆ys9r!G^BzSZ㢚2c,vxSEx3ꬳ~[9rXV#Qƌjیj[3*5\]b)ZN *1]eeor}s+xpZ<#{]:AH^XZ8\3i70n]P5b_ UXX%f ?wH`a8ԮO9>ިeb?UO= YP%X80wՁTnEW/UZv5"}Q"n[DV$_ca )) C˺:'#]l5Fݣ GT$X,=zs[&t;%d1t YcQu p5=qAo0'wizF.Fu 6QƄNrѭZj|+k/-v-BUb JkWM{cZ5 Z0X04<\5L #i}a}S_]޸oLOl=VݥraP.lU ϤK}U1_caW]P+E\wȊE1-x>+@$8HZrYh7>wF؁ف_4x6#eWd0"*OlD7oF8Hq@/07QAޯF)Z+.Z*4BFESt W|s݊{$J $<4y5HD$ \)#G]2 vR:ʅi *-k; oDt ~:|H;%4K(+/E6~zS8j㋝w.erZQU]]&Bciс2eE tv5Х#.cQ~ o[QQ[X6"{=ir=3"~rIeDGpcGFfs]xNW +єUrY.bӶo6{5`B6XM >ªWWN,g$yͨ] rr F7,PXU8Z YJ+7˨̎;~@`H/KT-|+J ۷ohpbiga݃s/:W/,' ,:2ҧ7m֯5`ޭ"upyuhha;|_eʕO,agX 3A k_E/ Pٲ0V^a=Ɨ^rOt,K8͝PMqDFƔ_ԑ"X5؃Сء341\ӳMQ1wx5F'*1ᱨmX`Wt<7tT uW1.-޿v9y^;*K:.E?XX_( P{jwԼuּ,]_Czd;> Kۚ/lLimP[1A/-SVVǂz>v -w[Jsggeg|ZEv<y*#8w*VGtI;Jy dTsgVs_z.wl*b /zFj+BSOo3ak\ľ|:V3\$_r%v}P\5c iYGМªU~xlz~u5dFC+mo`Im%5%:Fo]=p CVĢC gGxLDk 56C~hXa=*D["ٟߴi{:gNK 9Km~ƶw浾s &p@UC,StYmDjQX|֢-+ 1{ `99kh+`'d@@e:upG3*p{é<#):1 BȢF>DM-xy2 tt@wEp: :gz iBBba4] }݋VS/hXԬV,Q\(ch"k X\$zv8&Ek.kAIw$sӈ^.Q;Y;: dR&b'I=OTD1cU QD@-p]4[,,?i [/썡"U[t7֕}` -{CTHVHOF+;+,2gaE-:빺Mw}ǦSԀWX%kr=(qc`Or9~B^48+Iw '֝@b s3/ k'zZ}~`w ׳|i]+ GNXx6lȐ Ovhvs$bXdG<*l7 ";. @6lA=uL.ͦ>$Ͼ-+4"wC/IAEq{4zNVª8+!kva? pYDeQПS\NAT0cv6=I%,x&3k# $%  ?y3ۍf|puݪxN"nph޴wkPiXiv -x .M^̒f|nl&Wi 5@plѼyw+U kB<Յ]~}Ɲi.`A%gAݧ\ca=)w:q)9aHn4P݀|m&WǛ.m6wtPktxqV90lg܌QÊIM'1utF]yrus5o 3@V{V|kƨZeq/Џ]<- <$ s p;,0=uaX#:6'ׅLzrtFʻ4~/'cIeKp5#[$]z.㬊 lbɱn}J>~(p<󁣛P\uecP͍ cYP};bTF19@"uW: &TǛ|Q64rH/|';$\w@uaܩTM% XuIz )E0ֱ[9"6O@qs|\:qpYWyX05ϙ;Lc2ngp@O[g-8uTHwW!}9 =]5FҒ˞ t(F$&9&t&9z):z&ɚξ:""E8PvPg}SFt2d/nڽst }38"9"ClާG}>oz%z?ɟ vؑ#&mDNژ9uicG4zegetM/X8 nɩqV)_0wC ;|S]_`B$1rӉX`It.\1bb8 5.g=EWvx- 2Dd͐E]#*c9~So~}/>ms|ۋe҆BM6ͯf^~y&= ϷIn8 M[2<)M閷ݨfs#L\/+?]|r'q=~6KdxL[Ƽ}X S>qȍϵLg}[;|[ ծ2eWS|ϽFo?L=/_6xx3߄J&Z=-?qm^Ρa9zq8ˬ<6{tg绗~8{xum/~z׿~7??{?Y~_ _{e>|[_Z{٧Ӭ}6ߺ2d־wg]?Φ''lI-{Rn(o$ ψ)”瀫+6~Nʵ+6~b̆+6~"Y v~{+ _]^Ҿ5]x+a4 rKiFϿN_:#׷"U dj> w;3һԭfpS Rٝ(_oxImVANf>Y O[j!uj܏N9f_F6>Ѵ&d 4Xt7>(J%y|U =-]P|nz<ϡ4JhHJ.Pʥ1V.`Imj\edvZo|~KD&m|>GxshhOXT)X nO>iv'8mϑ>$?ID7>ؐq[t+ƺ.g][#;n4b$؍*ף\_LM78+V7uVl޺d6VtVm$7>isfuۘ"OɨK7>urmu*IܡR.uh3aR U7>:Ա#_nU~\Y1wmcM4!%Z}9l|der,r{7-4;Ar*/'0'>扜Y_)VQg-uJ.UQ< OU7/kyEgd~+ T-5u]Κэ+CeS } LmڙI%7)X-kW|c]3sŔqcdm' 6>bc}ҜI3$vm|tnX}Ӻ8/U7(6 i7m6\2RfJYr6V m+z-g@% :q\ˊ{Txy]6VBEVf)4aڬaWU챌\O uƪX͔-tӅ|$|wq[ˉZXzy^l-3taĂ䢶܋~uJKXE)_X օb;, VsbͰ`s=duM[ŋ,iD݅bUzD\،yJuS^tN[Xxkjr ݧmه6XǙsW=v3Ƭ+pۡz[CZ4aVMx2tv̻(?ư VA5 F9bH_C|1tV4r)Rŵ>G9scX[\XKGEjjJӼJ:VEG'aDV\3e7'FckH`)ҢnrVT% O.Uم7xhrnm{gc܍M0K5ظ0sdv0.2 6P\ma74aoh S(3*ճTQs42YdW4=$]9x>3uȽ>Ӡэu:{c]5lY,Nvv<]XG#GZӍmsַ_y霚{ԠXX C}RffVI'R2"oCN+M/qJ1t Ȋ'thmSʩ%T@*; cr_AŃ,(GV׉MӆζoZvifi<3fYmld-.6Vspnc:auZt!mZXdV;(IЄ0r6澱z2l|PuTiT1 ^P| VY7_ur'Xs],K{A+A8̢C$wr_wALld[mYJo:l~x'-.,pY@+/fM\NK9H7I/& YͪT*-%=S*v>ĺX2e/0ΆXoC6>Ȫ Vo^v YO3 ~:H"TYV'=ƼFGCѓrAAAϡd{;b#KT\jyD^QEqr{n|m|~*zQ`X3:t' $P`7>ie]ďbHtvp6NeuuI\ԕ`"61|Zky ЊFb +:\VWTeXFd\8F:<OjDj/V"l^_.z^b}2KqrFilSPϹAV (Q87cFwP Eԙn,tx@)n.gUU{U{& rNZC0 Q<٨\ qLN`ME֤"< d)3mY蛕`!7*z6m*ˊV݅ Gǒǂv ֳ`f$K6acH:;cYWpJE149da.F+k_F}awerܕf;U] q>P3v]>*)q7wDq=V頽(Y142.R.u D"2tԀlvA^¯ *tN=kcARS]Ε#- ۡsUV_XE+ %Ԧ:ș[X-iBF/DY֐l 2WvuvW*Ffm[dd갅!?PZ̢VXA$ncTɼo|Kkn]<Wдq YыHI Ud=z|MЈ*$rIk&VI.D-|>iw"hvo"ݓVq(TSg*b9z*V)ur5ߺ.uwYt0Z ;BuMNNmjMpqdv4Jr"袁_ae 'L3/ FSzlf+s`\Z?zz{s[ܹPr. TvW{BYUzNH˅?..u( e 7^Gp}іDx&Ά.u[1[7Df]H/{$bXW&2c/V_fG'#sͧn.Izq1.>º?$rȌ?kyckLD?,=w1Yٴ6.чf%#AyM~&,;n޿Z_YX6N^49!ӠQ92<~ M5igdbcGb'F']X$7 f22m-y0fkS4[R=A7u_XO."6u9m(C5~?wOA&/ĢOc'UvPwU;V+p}I.bY4YƅuE/R*"3XBsrUU?hXpAXD7,^Z(N]U뤘u]=>uTKUK}B .8u" ]:1bcUXXOio;9"_Nr 4zڗzQu:A8Ƨ/R O6IuljksjUJ.lNK"̒"0uN*cW4BWt T^/.{Lrk+o5=x=xf;I,ga z *f +f&(-Tupf Ǚ14ȧ4+S zkEluaLēF\OӘEʌ;C܁uRejbt|];R>pվ/}ƻX+aEz$>\_2ƾ_9#AjJ䪺UٔȚXGfLk\c>!Yٳk*ׂ*Vl(xz5Քvc-P\*/ _,>:Ϣӳe΀LirW:y:ocj$FЪNXzVG\H]~e(氳:NمpNP\=nR.gt]%I 'EvIv/|>)ؑgG+3+jl @_ ߴlp-X_,򋕠aaa%`aզ!BWKFЯ莫3HkЊ6V?[OaWzuI8jqg .+zrURq˂}Oz#:_,Rb9 ;JpwalT`W.$OXx 2xe2Ph\> J[5YfkVJ)Eg̵_z>`zEr#QQ_]>.v ̓p][ـiN cԷ&QY-ЃqT/:hŌ a_ x_=B?@:/ 8Q\Xwbj[*Fk9H.ʇ+̂ӌ N8Um 9`NXVDg^X]G/Z9#+f_E*sli'h$ocH n`<>T.^o/a\󊨖sy1O+Mfݧ )óggtaeׅIFM2j`l7v?5y O3sf4xU]XE MJ/;ya=/ZUء)]*֞A7\_X՘A%Z.˝Ax(q;2e/t\' h> )~cUxaz|+.gvOԕCgl*_/| :S.יRI]'-ǵ;O:3:G2_:>7XX}Sek,=g@+;llV/zaݧ XtHJ"+u:{/3 "xqxWJ4Ĕ)Solt;2 W[<"ߘY>c _9pno`$&ZBw{2 ϊeT04[R=@xrAc y)8/Є6o|YԐd]u9Oh2Ujq:NC^/(q V3XLJ2b4+AqX`rșcg'Yc7*6nOPDa~Jc~j ;t/|~Ӂfx>iTdy8NrzXNuo[Y^cn|K@7XpuD#߰cﰰ>iD 63(UT6Wmk`3:0E`lKfc|XGt)` `3kHU 멄ζ]&47r6!/VU\mk0D=ǮZ. wrzڞHh",6NzֱlPuvn|\a.NiC dzM^8tٳY+>QAdS2g{ q>WqjbNɜ5y+~}Oǟ_ Nq?^`.iޜsP"]Ɠ4/,ot`DiN6[zk YfsUcHyߦ |dg6fn!lpm;Z~~e{Pݎyǘq7=w{l{Ǚ~_GLz="O3̟_ܛ"o~%=}} _/BIfsx?ǽ/.Rk:d<ހ__g>_=xoaNQ׿x׿|/ü?m+o_1w?ϱ~3~A>?ϟf{?>TcN2\fp2eU,W&ʴYq4oAcx* S4Ӣ11ab޻i 7sfʱmE.}tG{EoYn|vBlnߍ+XW`Hq@r޳{4l|\`㊨Ռ뻜Ǔvz 2c]wdIpl|~SP)Cdo|\q ~sh8v뒥m pySn X9sm2Y͸M# ;gmF OS6>y(Q+o{Cr[O\ƢO>#Gsϡe1UNvsO뙻po]NVNuu]8ϻ|y(ͯoqV5l|CW\\9|?ʫWzZa ^|ϷUy_XǹI>V'*n|^ʊ.}7#=NCSݰ+:dc/g~8>[u;No|91Xm-N{yҊd)M3yeq\ʝl6.|]PuA}DaMqh[W,|Jƺ K]&XϭB_d'O;)tCkj],r ѻ>GW\jK-|~Ӯ2ya݅"?>T9<6>psrg?isShEqZlբ?k6>who+W\-ct֖3JtT»hƧ,fjX-K օ'+ zKӳ_(g@7Nl6\=PCzXX5P貝 e O0ֶbm+WNH/zSt/|;nÙ6\=֐ 6)~zZp^jӅO)U5|R;d06cm[LdP<-ʒ~u 듪lYMi~ύtuA_ouzA[ff=-ÖҹkrG3)+/.֧;SKo8/d7/,s)O0b9seOX۲i3{l|p!:[jƪT.VēV)%:;y]o +8 A(/ !cčI#>]]k&_rcX["-ɋbvO1Yo+~WѦ'&QkrwhaM CIFDfM7j*W$Td0afDŽi :} Xm 5aǷ0l~9 doL:sc  _=H^RKi{DD";< t G|G0x!cП1FYWֆo KK9s _L;6VyZ O.1"O%;YW4P#o)ѷ ϡS]7؅tDhH)tM\![rnʊHM\ª=#h:7zcx긇u*#ӌSv^Ƚ"4PCz&bYQvRtн#:\tij5.3aGg7=訿"gNz{bWu˃Ir)n.i م3kX=l:w'E9*j) _l|K{, 4Lv1X𶾚!³bβUG5JAr%\.BjWx"XtrF}uQƍ m󫋛_=3e^ζ3Wq\yKsL .ՐYmpM^N rA L}imc-|CsWO%-蹅 _ӄ6n7UH(,|~1TDW.ە|cZ1zy`RYAsI ȪM_Z*ڋwdTW.h1Q| [ϨS@sIV_L J|r6Z|K_ eu̴)nMA. oM$nmbPfe>VpµŠSЈ SZX99 %b}U7V-b RQ# #UЅCKCUEcUE6~{$w8鋛LoG,.WvEhzAƻ y#uyAgPnRBJGt#y r=F/)^_ V/ i6aaHtHFR[E1Oy^պCfV5 8.D2|._ݴh"Q'εQHq]]~u}6cA C# Ǿ ^|2rޘW$aaQZ=}l愘cK/WpEiϡ P;H{g7VQ=5/պ(Fv.ݝݱ#ԩMu3Z=|[k=/\qi ưu!*I:tc}یE]_J{Hha; QJ }gy_XV=xccYXYG<#.TiXМ`IaO"||ӫTƅUz.7_X-0E yꨍ&-Q3|cR XXM0 W}q*f }ӂ]xmt5F Y9rhƯ Ԓi-ظ1/dDೋTWft_QGա=):zvsksPJQvU)uYX_ J?P}-aZn Q2PQ5\EUF}av <=$>cܧ74o*O7VOy*)n6X}u>'gD6lZeĥ:3EV$ZN$CREY7V?J4aqUP6,8f#uqk]̮d̐n\}q*"ҡvhncq'Q=ўl?"!]T! 9ƃ5aF78nYX-X& B):3;.Z&K_vi]"-;3#ϕVuZ\dZX6j<ӀVP6+=Vk5QzayrW4Btu^H޵/iacZxX<`'7r_ Y2+;Y{4]L)FkE]}Sk= 2Uw@¦Az ;|(=3߼`섗;Q!8pNmZXOONE*n*=V&VbiRR-xWS#V_K4a;Yiv`/OPtbaAZ7Mu_yz^&8yjWŇb~#*8TP"Ez+g|D7GrYDǰܖLHoJ'{] j*AObu=ϐh m\[we#gώW6jTpvUrvY}CG dD:tc1i/V8yʢ6VFLVm*6% ]wp̂k/ե&x|p|YIgm<>nȊ6-(F])-6LJ72 r> U3ZW)Uǧd#,H~ 4?=4Apd0e?E]qv){]*슰 ӋN72Վ19.ƄDbF"6/AV'*" dp 7/nqETGW}\wOt?oo9n28"6hV|7?{9¦+WPܼXqy1O+N5*,gYs<ٳ]XGD3gŹkNY3*<-o#tw߽9Zk8խս9稡nmG_~105)׺֕OJtYm~jxX~G~-"0aWud@<ߦ2{6 xӘSg;q q3S#Dzfx8k'ɕ'oCWS*߿g\w8#9MׯSK{߿M߷ooe˿kxw?x3@/l_ǽŔ}?QlԸg/pڨe~_x^x us?5ιx*v??o~q ǟ8Mz_9v/|]ౚoK_y4`NⰯo?~Ꮝ%WTPɛm?G >ˉ=L72r_Վ+6~b+6~v~زqW3zb+d:Ukޯ` L!=^3,}u_ש.Ͽ_1>i_-O͊+;3һ\؟^j%2yS4n\f:p1K֙6<-f9uwYF4o|]|v}v0.d76bkbOsPie6˪k4pZZa2K߿}ŎTdw o|^Q%d c^R6n|#in]I6> 뻜`XX/Vk5Vv'(doh?j^QI>i+qr>ץI9*QuF)X(6Oݦv;M;~uj{,|>6l|Cm|~Smܧ^-X n|Cn'Lo|CC']|R%X\Ǚӯ޲JXOH<#>`s!{h8Ix srlc=Qg_]6VpFL!΍=ԍO]YUZ.|>@|H$PʣU&MKzp ƧRUȓvj*",т68n6C{XBД 9 [eZ1/빕/ZwjT~,|-n͵=?QÆ6ԬZVmʉݜݕiS됰_b{hyưa+KwM,, bXOT)z Km)D76!x!{ָ; I eamɾ&vr{cb.|C 6V^弰uĸCO_6u\z aO0l\9yQ#W Rqaȏb}؄҅BJwgRvP@J:R 2ޖ luŽ~E"5؅ZTjd=qh;IpX9'wtwJ1`Du ˲t ZNRR_80̍U^a}Wu XzWzc]9-'mm(Q6˲-"29C40\uԆYX5rF\;AќZBE׸}٧M=wQOӲ'MX&,:gce#@_hadYպPϢR2"%meC6V}{A#_NjK28Q4߰z%G,,&A$doXXoi+4CD:M$orڞҘAu#{-V"k 񀋳 :6[Z,x[^ا^^Rbj':07Vo7VA5n}@u33tRtн^p4:CGOyd9X8#=pH w7>v`Kl|~uz#$:qE|K_bQ#M'vrsD<{I*!EĔ`?)7CI.bokt؊شmpcQtjFz9dKe.?R;c'g!YXeȱ 3sZI)97oe=憓Lٹ.ٖrܐc{ɨii kDNI%!:s*YHY J'$I=#3Qx9q?6>QKX-6s7-ŊkeɇJ syQξNjSXb53tï'm{ .Vg撮mJ4D."}?\tTjuDi;Onxvn:ic}[ ,o! ͚3WJbWXC`sm Xd5 [ke5(2;9x;YǗo2Hn; Q"O8sq~YXxf6ַ/)phK940 )ta7>*0S,CbJzߤcēdx_'an{T牂НP|+n޼>ie&CjgWviDd9vVBRx3>ѥ7R:Xeh"-cbcaQsLkuk6j1O;^Giobr8Th^X }(cbaQRu3PВ]l|>iMGBw /xoo+S 3HIhJ)=ZD7nde7FAGuq!+z1+Z.ATܴn|cbFDԉyξ16GPkT<"nԮE˵J eW@f6},!1DžWXVʌ\&Lɖt]Ԇ+QJnm1,aeº.ZK9jB}aeuDf;E9Q.wbt<@ϴ<>FXuh=*:0]N%\'nA R-juƪ.x].tШS:,:J;S #%|t1A@Q(uPzzg P4Xd/t C~ֵ#@R/]ONݒ^ַ<Z4V٧ ^40鮒#]gt/0Klg,Nϰ+QU6VOlFA#Vq(J~F}E-36DH(֩~ӌZv ^E/jxk/P+zj*k-;fi%%XOi-'o:Zb TO<^b9_t eDi֛YX T}Z6:REW. /W85B^.o;\ڝ~Ɲ^Y]87WAQ]Ux)}InmU7c2C uT={]s̺5&Na)h F1'/Tk8Ȣ*bK5v?Y\᭨ꬬ4ݨƪNvaʌ^XXS9i1"F]{6'Y p!lr2D-) ҡieN,,Z P?X?dMA|*.= f:)ҀvWA[X-%dYn+_f& vCu^`LXG2O[GH~gjMwѦEk6VyFEO,%y!ئt%p0d!F'aadsyK# o t2Z?FQ|^`O+Z?:t \'9d>]hN cԷ&Q%:YYJU+ :wI /,jmMbSQk̈́򄈸\L 9# z).W?ֲӒI V5`ZD'qv\\vVp -;ͺQ_H=E'YUD@^g7lv Ag@^>;HƐhof>Ogs90Gpk[sM0 ΌqfXxZQɍU>q=x/ׅ4l}NM;!5y Y<3ugL8٧-&Ю䘞h_P/UX/eCCwc0W_l_lJ.?o'Hث1;$~"'V}I<Ɨ,|r!xwf'8fl~T-|mүq`S!WvOo "i>%abLȬVY: 8 8+q%m0$YU&K~naq2eYXTCLGez^XuÉs#yK%EG@UU< m?3rʁ`'+~,39%btr 8*וSu7HF;w!ܐj.c501gpbΌɋ 2fۢP7V #` S&N˱T%}k$>bsp4UTWP>ؐyys̫?]X- ϓ]z@ÊSlKr}I7=칤+ F;S>7͘Q=c,<<?y? sV9+V8vo.J1v-9"NetV纀A&AV[l(خ(;j|}aզb}F1i-Z}@Qo8nA7Xa7~,ܜՆesնt:trsbmrwXk/DLp6E16v D7e([=f.uVr1H^DF6D")gOy b#&&K}fnm{:VϢꅿ L‘qWZm2Es My>qkf$6ŬN\lbⲶiʌlTm2Y|˱4omvM-^/Q'ncs*ꎍzK:.HbxaEa?X4mnEFpqꗅ'T6^X/0_ S2Pξho:|c=N.^u㴘U=c'yZZTw߽K]xb%n`,6KMsPwKN$oH7Zϓۃi΂6?n3q6UR|'0aߏ~y4mo~feI7ss|Nqm=Owlgׇ+~0',޽牓y}L:}=o/f{Tz=f${[yz?}K--k_5K|?Xdxa:&1{_y]ʾثuFy5Fu/|3o?|yx׿x׿|/ü?so_?[}{Oc)V_y4?kV_ǯ~?F,,l I+o>ȿlҩ~9߮FޯxW~WYD~WUV:g7vtpl{ylfք+F˨8S_}f {::fxۦzi}Rz*nE~~t\5C4n7Enf?i~l4=^Cof_0}b~ s]yf1粘0 ~oCfo/#pfcegx8+#6~1 Θ2{ D(:t7դYO-|ìW>HZ;yE.gm㊠]W׍wѨOwQ[rf ttmKj98m|>ǐ,6>%~P{lC퍱r+V]r%uo{=.|ΡXWkEeǙlnOzրmOګ>F9L{hDos%}҅=\뙫8sC'm|~ueXW_9ϲ>ޔ'f9V` l|>f7V.{dH9Dr :ccGu e͌ /Ȥu֣tuԻ 7>uN|"ō+ qY~6V.ƑInGoyr6s+2p.Yynm|J p G팉6 ӝ:`ߍϝŪ+tcշ>hg%.U%Ɗ{I;eX}l#&Ӻzs{Vwn^yVvdZHxc0g=^ISC|l k\$nM:bcmVxyv  ylÙ6Lׯ9il" V(n'wchӅOS7!7y-_&xvqJuE؅Yy6VC,xѦ yAL)*oj}O[T.؅TRiՋF>z']C~@&4}cc{:dt~BwluIc o~O{O,;Yl{.!5 ,g!k׳zc.s8n$%rR/zwnUGIza?>ru1gCB#$MºP)W_vo| b[Ŷ$_}axѢ9s&\`;hQ=8bEd2{X^.Yb,9"ahdc=/r>Xuò['M/ʥk6/qˈvoW/4#daץA5Ō7Hb[]gmC#WȏG@!|zuD0 i3XT~T'q5w{־^9s T6>Xl5TUvLn~ Ai{JtTs:*PkG:'LKQKyI MJwx`^HK' cU{hFt)2s+(+x ϓv ^?>듬&Qmp^hij'ʅH/K.)\RDEtuӰʠ z6}= =ARgqw7{fί~9Xź>KUэ4]= 8̲|n|IӅ܊d[5INvr'; \Vֳ/Ep9GѝEwV-vg9$eӯjkΩֱqyQξxKOªMs*Y6ֽ~].ӋS@6Π:`a>UjӪ6Vɟ 8՟w  [K깱#GWpC- ַc5NS΍: 5bV*2&pY +C yOLw<1O:i&s4i(_V^+T}iXX=-ɾ5}k:{zcݧ'YU'n|SZb׀*f2"WE2e+$L1V__l _/)";YMTt+ h;syEA8!YX=-r y Vt7}s\KZ,!\jyDuWja}vg}^Ad2# j'1paa˝$(d.hO+Wz©LTb)V$ndf"OX]0!|tyYXٍsgAXAbab3vʌDԍGW7n 2s7}/VO٬W=ϩH{XMwP.~"cNVG/[X,bi3٧:9Mn5^\ 1Ie)Vc[5)-jk#<+[=2.Z]*o*j#'…#Wc*b v,C2#̈ؖ C%]0> ?F_A] 뺈%h5*4E>4F΅_*qVH@6g=s 7МtN{5Հvi ư7e=n@%0*|B1x[2*UTQ#F C~XʷJm`]i:\5P5:8 d%|ޣ#OMg$Y2Wf B]A!e]r=ZY}ӊJ*r|L|F \\<9B#GMxFϻi-BF>|@ZpUj 1@WEz~Nmv綣|yfH=*jjcx=)茎+lAB}aq << Dpal|'qu[Ecl%"ιZYrNfTufW9P8\Pnȍr"+ݬ.Ivrr1gWlע  y8/r*2g]|ێz\pyQʑӰ𹃲JϽn[kOvI/KyaigJTTU(.#L\ul~Bfq =$|[+V0\2  .\/[ߥ&\4,|c i33#yr`5o*6n^bH#AzV,Z}ap卵U%T'WtVj_[[ ?U%'TqvF9p;syiN >it 拂W֍-dž|1Pc4\Qt]VO\F ΢Gtӈc.ؓ(ME+Q]\@} yr\A§WQI:m~D mIs:/g~{R-ږ[kxFE#ooDdjKiNӇ]"yK*ȉZn 2>-зNX5ed%b9)z3( / ouj $} YGΠ\zª$?:$F&j OPMЪcHf:XTEtetO 2M]VB&B|lX8{'#w]XpXԜd[DWK9à#$8lh%y^.O+,M}4U{8QW|֡DGW0z$`GΞ9!6(#znj+% ֫"p0Z|7GP+xa.NݰT$}mS)b`֘ªFwrMkvlm0E֐Mh.gggGZG%=>nȊ6}^`)g)LJ72frV.m NSDԺO:>%/_]ف\;8뼀bL aɝ[JHmOQ?V]j[p] VrSeWJ.cF[{chfeSt šw 7? 8݊Wrѯ>i5kin`g6d4hS/1+TTguΌ83GDbv]{TGx?Q]{e Cۧgtφsxn-VqZ}O,OwY:IGR9. %T dvС\)#+T~p xはըW#e>UїT]_U֋TGnu ]۲)b;4>+=E{nOBtº/Cgo|Z3'7Q]Z訖qdVˬ:Z<\vv*ΜޱWĥK:IjYV,kw]_8rA\R@06MɆFilgƺ5]SƬb1֊(,0 *福p;SCzSuGH$y^讍6:=tɋe?)m8(Kޣ:Ҋ΃lC=?cOSy'EpdzEi-Q$DQQQea:<>T;:)~׌Uzfº:E$3šЙ\g .{ PVmSv9Icˮ$i8.FtfבzeQ Fٜo 3 c'1JM^wQO}9騂eqq{W \"9AuӉ[3'q/fub@em+sZJfCe'*Xci6"y lC@Wp^32g}8 3x+pE* 'NӋ6 bWڱ> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 152 0 obj << /Length 1135 /Filter /FlateDecode >> stream xnF (\!ԍ-ںEH+ Iwv%rsܝk)Rt[4?1_9:a  XhL I#,XP`5m,|J$x0_D@KC 7|};&I,mrdqȈH1R¤nBe4*pΦ,T.??pUvc5*-[|/ing/^Ur^۴-RMNryuokr3lpwvSgwQ8bgj 2~'QOLUor&@=w@yGxj׶@mpkPDU" *ZV-Bck6UX8ex,/rK[.:2y.gW'9 ݢJ-RgA Ǥ ͊18Uf`5R+ߐ4ڣAgM`{1`"qMA>)e/2-[?T\ZZډskﮔ@K! L 8 ˉKhÊ"Ҳ6ގ>N5AdR1E;Kw}pG^&H"uDMl(.h_Ò0ߗmQVm 5ɶD7帿[\MXʪ-(z ($FxZvIBKw¬U[qu`yHfV:+Px> mF,p[_WU?<6NP U[m"񎺳Uaޚ} s;swy3応8i4)q<|F!ɥ?imA;<ظs}^Ѭ Z`O5+b<#DڋkQr3a4qfi$|;!7Y͙Xp.#cq"I.qSzݍdȗ_)%dgF}cPn4 8 /WZŃYVs|S Ӻǖ^~mq8\3< Lo$;EHB o endstream endobj 157 0 obj << /Length 1880 /Filter /FlateDecode >> stream xYߏ~߿Bh"_c?Eih^rE/H%6N\I޽+v-gY뤇p8gҜ)m.FWg<@3X'3-x"-32h@)0#TҺ}qqs E+F'.X!bI?h25¤/'"=|7h:i1. L7nUW: DN7uer>< #ݻo@.@u=b`U'SGsfA-]ۑ/L ?2"mK?rY=$8nVbymTXo&L,uce{IE0dfƍ)gB EK{p ɑ YfLLeaO/Jf馭Ҭ@vz( phz,RjV@ƫ:KƬI_Amвȳ싫m7k6.-ܗ@<}Uyi:ZraZGY%0ꩵsVoGZtES+`\OfJ%R(&k9=BK ii 1jJäc5}Z6<>ę"Pef&H6ۀm}m{)iƠ_Q;tO"okljZWoX:V>@뱉Tt6 AjYY:r~e@UYV/Sծ$ͮjHa5`-C%{;EeB3"FsN!r?gKDi3Afў֌<Ƴ(={7swm7Q$¤g壎U)K)T _V3xMtdrİ4+aKvKdi~ݐx?"fP|O&"S>WET WM" ۺ8Qp =4} v7+P{v^,ˎ[&ZdQw Re]nja<QD_3hL_pԛdPM|z}&mzbtZUy#aCT~ܨ]J1Ji_ Umq~1 ISdҾX>&(2h4 *T,0S)(޹aU0}]7lvbLZ.W@RMNs[4Էii)"6צl˕yNo#Vƀr^VQTȢ+#LH fLk6'#z8H/af}ra#b0]u,^it(J<",Bz@+/c/nP m6u!rNv,of}`11T^ 5(j7*>35 ag T2ƙ]Oyv_n_R{OZ;9Xh AP 7]W]C G#鶗{~ Tx sdV}u׻r~ߣYݔӻܘiuE4kV "kmwm|j|Ѥgh d}ߗT9uB?]#_|ߕ7T.?} ؗ6721{4%o»`TBl}Ⰲ%‡Wgy{ uZ?;38 aO )䔚Vs?XՉ}}D>E=Bl?u)j῎p#x* ?4" endstream endobj 162 0 obj << /Length 1986 /Filter /FlateDecode >> stream xŜMs6<ʓ⳷m:699db%4'3w) P h{,&|v(JtC_dG:=]ݷ~ӑgjTuJIBJݜ]|[ mz9/z{uϺB)uD?: v-`mǶmQX3O#$98XAj'w Uf`VY5ͺ!9ֵi^b?Ze^ Dh&ʼR^8rNNic@2Nͩf֟]=}NP0& 6f;/ջOWϋOV_\O]ra믮:+σ^ݞDVW6ol7Ϳ}{W7]5SCz2/׳伯DNWt߮4OMj[o6בr,9K aŚcdRlT<^S<0mW iUC|MP_Q<^U<0mc@dHs@EдؔBߣٝnӽK +#% &B4D NC~UAa,`w׽n2]egi1 Od 6# gɜV >2FM r8KH Hh yy 4З#EVD-(0q- ^PٟԜ|ɭzum{Zv@bNxBT X̲.xC!`XG{=&k11_~ {LpWc 5D#{L7 nۋE? mCu<}qoI½dmߛXNP!t_zvg(`C. endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 794 /Length 1615 /Filter /FlateDecode >> stream xXSF_0t_.d@Hy3M QcK>R ؆/ ̝{{%RD&G.!/&I Hb`6H$u)`08Ҙ4X62 LȆKg%:xCS>Eΐ)VKJ "EYJb % S8$g00YXbBT&CLRAxtR-yߑT8)1F? 赋ἁm2VRHF X L"&e t :UȊw% ouX%$TSB;AboXbI9e71'$$ ]-;'لQ1&qH0lx'|KrlVV W@Vgpn!4ĉ< MJp06 >؈Dl!lDXv[`\ܖ A$  ˒1>k}z6}?g_bHiѧ~n_>'U3b+_dY5=,޼9,o9{?`@OMfFܯʉ܄7HmggS~4ۘz,t+on=;-6;ҎOhPVdW*ˢ*4AmQuwosok+8+<}?-~dT63uf@}MUA6-zz}9n~G*?<}Nm7Qךpz<蛒JWH$Nqē} ʢ e[emrޕwtaW0S9 /ǡ;v4^G+)mE=١=֝r-"+QmҋQ#VEZpZ3Q@uexT#8m<AhD{ywNtrzMf6Sm+ȯj.u _ .ڛfɋ2c]Z)K:#ޤM?]x_de8n lRdr_J>VzAׇⷼ8,q8̻cE|?۲AY4~ u.ʳH"˫FN48ͪ7 Y "l~ *"k4JobVx(e 4AWOwR}q F1{+knmq#W]痎I3w1`䫲5OggmOVx付Ѳ2;eb~bc^k}$5I"xLy@"z;~wI^ 9$nf)=isiz0GKzA(mܬw/t[UuUKwՆ/} YC>+^ژ1$Nn릳/`%C|9TO fGrDᮘd;o endstream endobj 154 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./figure/plot_dredge1-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 166 0 R /BBox [0 0 576 576] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 167 0 R/F6 168 0 R>> /ExtGState << >>/ColorSpace << /sRGB 169 0 R >>>> /Length 1000 /Filter /FlateDecode >> stream xr6| ,EP/՞SϴӔ"c˩j,{p#D9~P$E[{>"0!l.$V=nOgj,EK\$_%|@oDw뎢 ҅\ ,R^QC.! ֥4a!˩r-9qR b&J [ϪS3hjMpJF$K:NA{vlHNh&G~9]V3?Y/{*kbhQņLvAx7SjѼ&'rjշ9Kj5sڪ9RmU:-VGfƐST5S \kDUuڪ:kꨖjqTM\bNgf*5b9^6j4QI-ՙ嬫z1|EuJ'U%cڊ%Ic-[Ԓ%c™E_i)`nEv5W;Q3*dɤ-):|[|Mw^|:/< -oHW#|C,f XޡzX-~?UߣmҧXZb"X7OĄ+\n>@cbyuB6&5~6h%N9_<RƄ};z Y F*t3H5G=t'q^؝t`jbcwҭv$^ݏv >[0JbWic mv xȨi$pO/9UO">ܑi,s-u;#v 2} d endstream endobj 172 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 175 0 obj << /Length 1399 /Filter /FlateDecode >> stream xYYoF~  6{F. RЛmDlI%)AZdlEJF`rw8;;ͱ2Fo=Uoꟿp#{Hm?x_GVHKI:G3 %2LFU-~=HS1e٧sHγћsvdl CY4[D]RMf?-w$"RKD|s.zfr(jg߫W"Һ)OVUrwk?"mҪ>X&8n[5eI':ޕ)U"'SdBu|?QZ%l:Ѣ}9=LH:HJ j_fpslQOQr=7\/tJ?+QGPGTr+KdCsBb 3togp$)Yfkzr ,eB{3uhA;xDEM[{ݧO(Jv".T6@XO9!*UnoH^NX,*Md;?^{KRe/ED3ld*KwxJV3<0ҍ!%lNA&](T)=\n]#aaՀZ s8(ˤ2J0*Ϙ* *r e"U 7ihլ_L@ A qj6'Eb8Ul-֑OOXg9Kē=ytss:MhB@; H2҆2HkuġGJhieRd:CC@i]̡:3K[j8$]|@̺h;3@A8 [i<sOm=?4~T.e~Ymxgvv 1#<ZtUʡ0)d ob"Jaxk7-ϒ{)"kp\Χ.C# B6 <2ڤ䍋'JHi,.&e,SO*˵Dh'ER @t+n"L\x3U.146Þ^*_^K/玖($ oU^wg߅׋!fz|"*.מq@k W\yn A{0c9 xz=?wUt8=<ˆ#S =|low Vhy^1ld0񶴍CKa?bh2@B[9\WW+×HQ)x=˱=`-Ո2]~^͔3KH/ 2JESH{0* 7@g endstream endobj 180 0 obj << /Length 1518 /Filter /FlateDecode >> stream xZYoF~ R^<@[ihk \lx$FYR"˕RQo=feQ-wY/F @ZNrJK Vg[qq 4d` +=m/[vR [껒AFsbS {"X PRĺtb~&(i]8s՗N@ Nhzfdzg]t96䌎RpXf1Oha~\! /@(Ͽې)I'M&qLV UYU-x&+cyݧdD\NOWқpŘ79N7"57ғ*U) /oķ/LYHlqa:+ |IT|L? cv. =LLgqL*oe-kFKn\>==50Dmz.s8[9;,u()g)L(rixh$=K޲`#ރ|2aKO(%D;Ϗ(y=*g0{<r9gsȯo=r%6N3;4n^3WJ]Kh RYUtͪ(|_`ćhGQӨ1< DTjը\4m+iU+SQ:YVH3~^VhDe 3e.hc:kRRZRDes͓%˗mIkbYj3,BU{'q2'Mv#b镠#}HR V_*ƕY/XDX=YJO4*z42+"cE}-UI}j̛6޹zt5ˁZûuh ٵzQi"juO꺯ADJѯG۷7o3 #Jް %i.$Ty= Nqz+%GGw 'Q\2epI@we;ˈ6^p/gLA߰(ָa@`w? p7~>k<p:ѭxco0:(1Jx~Aǹ}-JzU"V߯Kɇ2K7b 9#0А10ӿc˩] oZuu8́^k굌 &+p`Ra&m=9 e&A 6Yz/2Džjhg(A|jRnVUD/g$E'0?G/!<0 }9 ֍~6| S)i'Ut~#Qg~-}ĵ"WYvWvz[ɳyNtAO[euJv+(2;*5[._9Ӕ_R E8MdJڲ^8V.*Q-  쎄,0k endstream endobj 185 0 obj << /Length 1759 /Filter /FlateDecode >> stream xZo6BkN*F|鑽a ۗvdR*IXةX>wG93s|=>_PJb)3'N a"tƙ}K?'C7H;e ?iy$pID,ȧ<0!5bޞΊbǫLďxg*m^8׶\ yci,G=2S&Fٍa7w!%`aZ%oy.T;4t:NՁ+c %>) HH=NC$\JU r )!76u$/1IG=ǐݳn2ӌS;N4iu:ə5#N]ާAry{E6f6)p, dRf-?ڧj{LY)E{9$'uU-nc)ajqbZb3+1pVfY7ļV"Xb 7DNkD:>(dR'NI EEctV31):6`b5lyve;|Ȉ."[`͙fUkO&˼P8E5DyxWՉ>TfJj Xq$ B nlo#5b'0NChVTmnN'0}>:K̲Z' @FUMe t. Ϯ糁Yo/. kDĨ];'uP0@K[5uϠ[ՍA> stream xXmo6_!*1#JJ-v+a@;Zeɕٯrl'[拎ǻsG&L*%[lgH^$|=x$S\F*YM'OXfVW T^dsnX?2Zht݄eZEJeL X2`ȹqѶ+rRI4qҢNk`(m;i05skl@jӾmi'b*(:~PeYqLԸlN ^Wŷ2e*0s{^ue.}ŕdY@{|ȵ`yh)h<[tV+4"v2~ac 7˺S^8?s{ҠKYjڢaE mO]y %96$u >B8/NS[oEY xeȌAiue`$ic@ R޵4 ڶs44sv5"(&}F#9n]0HRiz߅~=2MXg%Cymn%L@߲-i,Kve&L}Y23L?hj6ORSԻP}SsSB&,%74b+&)MC Nu'}ݜc SIv!\@4.Fo*Q %WCҎ=+A)KOEQ,A av^)@)`D+ӛ}U\-hOkbZEcaiQ"gowlaH.rlD#O /Q2v;F0sM` C`KݏrXH)^\ R{!As&ps~F鄒b~۝vT0gp4 K֯zKAg(#rD_pPnM@ pZ3) `Qt! @6{k'_sS6)wj\ NMA~KHpjBir1 % }=%R ˪[:R= #xk 8K MVLg)l!0 CF4b3\7ӿ O0y^5>) l&Wy^1\f{pTϡf0xx0[ݏ*9^Hfl3AY{#GIzy,UkMb*ppM)[ ~eP˦>>e}AVG?jb7m@uq'jvhyRI[Zη}}5zIVq[/On=t$YudkRpROj㕸lB]bhNlheH|@) es) H)n У ʗmM.pGoX{4Q[uo,=Qhtf @r#X24pKʛp,> /ExtGState << >>/ColorSpace << /sRGB 194 0 R >>>> /Length 684 /Filter /FlateDecode >> stream xUMo0 W\XQڱ2m1C[E&ݒϟ([tD##>/@b%,vJ[l3u𫺹u\D*=Q6=$Y~lp7 0PE'd6%`XObv_/7{z7_6_a˟wP_-o1j%4?vfA3Dm$!c'DqN)Gg:zlR)6g;G$ endstream endobj 196 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 199 0 obj << /Length 1359 /Filter /FlateDecode >> stream xYmo6_A 5C3l^b0t/m?yeOVS#~GQ-q&` *[xϽP ۺ7p#N;}-%w[I}#pfՊ(gSfgp*Ds I~katDg9U@) (Whi)1ync%Q[XkǮ/$+ғ[wI  Ͻ⋁hq6(͂^_kl ;M% -tHVt*k]}xL-rT0Y3$Sr5MHQ6T|aX8c,5%K]?%*MGZlaBӉd,vƔD9끍$% Tl㭡l.` (Cmf=eh؄h!l}Ȍ`C~rie1?t]i/k0zHA+*%Gj~Oݾc Gm_AF'wt( Lc[Y;-ke!LLFϔ{9e!q,xeI6sg!{jЏI\̒0f"7j"M۝4u5'NV8OŸN? : KV~ߟ^eV7V̿Wũo596NVq{h_%D仪R))؃ c 1iN@/d:%'#M\):FIbCIp5uLɨ'> stream xZ[o6~>@.*Z4@[LBm˳ݯߡH_(i,;F M;OkPaz' ȃH2cQ'RgsX.8~ SA,lq}xp!nX,—n_-ܧ}y@R{DPv1yoBENX! ~f׿q3Ft;nr[!+;2h7iYafd8ߥk·OP%ZMo"`q0!X̑$`1Epm]/YUy0Mi_'A:=e(8?M6ȯSP!j6qP?R8V!"e߭O7rWs]NQY{-TAU f,e9ޤ}uߒl>^vvԹmLk~ٔzғ0\\#$Me/@, B=;qG^'ǷgerunH~8hZ80RM0_la؈l?g\Rs#r53UCBS &2͠?6K#㛬K'1$!tzjyHN-(g=BD&ނ8ηV8Xs]CiS4 (Mؾ m3lXS| |lٛ9O36 O3|LBNLtھjBU%yeêH`^!lv's;,3@bE Sz!sIZy#c#5Y(C( d?1PYo r@MBx39$0^㩳T#J8:u+d=1yLG톕^pvړc%gK,XadڕVgM}=ۖbK)X+Q 8 KަOڎf.=2 LDh70s:bkh"ZVl-(PFF?.դ8<4ˊu@-cS8[ё4Ӻ=T*_].dMe-HJYVo5Os߅ǓuzpOg.^% ol /c)6Z}`6m&D{{ޤBȔY^%}m#Q*ϓRwEQفVQW=;{J!NL3Btjz;L endstream endobj 214 0 obj << /Length 2286 /Filter /FlateDecode >> stream x]6}>Tbߢ=d-Kp$Bkk]dG6olKQ7F,j8 mD^I$T0 шE&hiHy4[]H%QER#xThqö߲Pe$j=+~x~FRxt!%FH˔<&SUEymm\*k~.˵s䯫RE!|~){QLUtI Vk=>'P%PS@/Uige]eEZ[&,6zVn"/Q.N.Y<.N)d7mU庸.ptw8ҹR(f^]WXnd"T*Vطhe؝C]ELqbџXoÎ<7kth NB[&$ CmeeR"M:U[h'kGkٵVZ+!&T͘a$nl5f2\̰z/4 ڈ\O>}x} S~F_IYTd l߹穩l֬,jƃpɪ}%˨ Dq6&^MVYo¬櫡*l@#)p'\PI#s>ޛk(Ap(kSa:6 K9R |F s%hM$5\.oCϰ4VizX3$QP?݄F)3W/H Niҡ@HRSq*%FGxK+d! D{ޣ= SN9PçSD(KG]a*e M!Nʒ"a=/~/|{a)OJ[OZK|IJKlBL]QQv$1;EPY?2X;$q6`E?ucRnCTHO1[Kkvh& $X!3fؽ@ ,C|LRh(N,ᄚ$\B7Mډ1)h:ߓm|C/(  ;;kjWnaꦶJ8LVeq̀f $-#rg`-/(,\ױ5pUlrLH65u0 7[GiBfPQ"A}}Ygʱ]Р&EbfX&uQV)пAd25[xp%L 0mܝH(ޕW9tXڇC [k0y L_C~.~^,0p)Kri;GGKkHVܿDaX\;/qkEC/hI( ^;~'PK .c`"`D,Gc|@8߲iq9;_OKOTa"2Z=jΦʴuDQlba!Wm2$fGL _@Fg|A|XjB eeՋzQ8 +[.ȴ[h׳N8=>$fnc@NVDB}gKB1W&a4 ČD\񀖉f].18d> ;Y [ k}|mhĺީCˢyet!HK49D[otR9buGtVs 1@3-$1qc$CD{xD!~%^%cݽ TQ&4UX.=NbsA^:?0K&_olՔY $ʪg!?jw5ϋ]mprca2m4qN_e>?dخB9L4tqz3.903v> YbXVg%"R2]0򴟸%9{O)ɳ-׫739JRpx8 ?A'gog<[Yl˔L)#T\ endstream endobj 219 0 obj << /Length 920 /Filter /FlateDecode >> stream xX[o0~ϯDimҮ[VU LJ~6IInS$?ޫk?'2AE '!(hAEXI$e` "sLBF$U?|`!",`%8\1*h.FOʺI_nxn^FL0&dCPP< 'qtW]7A[/o~aF8 )ǜ_owMmKv5`çbF)^!7[;mysG'ON^y¡U/r?ggP{#\~$ ~ޑœ2S& ghqF k!8w3q0?OA\h%< MhȑE(s'=7׹n@`m;J폖(Mp,!- (/iS0Y E?iMnߙV+ousQ-=Y߭BSI{-dj=5`FSC=;jm.j7G$M4g_=N>Ӄ |8۸_ÊI25ʉ CEV! endstream endobj 216 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./figure/plot_infl-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 221 0 R /BBox [0 0 360 360] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 222 0 R/F2 223 0 R>> /ExtGState << >>/ColorSpace << /sRGB 224 0 R >>>> /Length 4001 /Filter /FlateDecode >> stream xKss yy GVʪXAJLHF?Y-`Yucg@?~ş/~WËnt ퟯ_|Lÿ/4 ?_xtxх!21vx}hO~̫ƾLN~IeKc/8T$[{9jÑyx˗:o埆YtaZ5 /p4~bi:Kk[<|ɍ9]keޯq.A8.p.*f7wӘ]/xs柏?^ɅlNO:qSii&t {crN4֍GpMAnžI8?nC7ԡbЍ1u -  ̿O ^uG0bcžDvat 7F=lE&t+2AAؤb k!xtyiC<&3 WBO0 ך7eMg8cYǥ.ƃ=֌uD$C4T8 ޏ1Чb1?M^OaSHR,M=XC]MQ֋~OW kӧZfuLApf&ir=Q_7PJs,Nſtӂ?9%ZGI  J[M^opwtt[C_ ɴ42@)`24A9yKdhas>=1fI7ѯ%9k),͗Eȳa]0M s'ieJp`hs3@{n#n9-:!dhƽg!d0˔[U)o6,㞧r[J؟m.+J P}eJڔ#bwJ2wʨƣSF˨ƣSF5;ޭEtipGJx n qOC4p`].y~ͯGJhpB+a|Y)ʂtl$FleT,S*j'^'nf?VJѭ5/iyyB6JnC%\<#BLk?|| 'M=hw1ꪚ.iL풶AӘzHMcՃӖzHSI[zƪA8ʔś8tNn5ncd34HӜJ2xiiiثv~%̊64HT/xiiz` 9nhz %ԃ5I}BC4 n q `]:wP 伡A!:liz- R!O4H=XC"yF=$1 RQF_zKäG=D'̜49^74H=D'?!zZx fiϦiEC4<KA!Z H*ʅdˆA!ѽ1 Y,GgD˜A H tP k)4 `[ EKsA)Р5 6Kh!aLp]h{24-͙-iZhP,OΦA^4rAea(WFU^xtʨ+Υ1zYÓ켹 QnNgA̖8O'Zx܉NJtT;})@$ZIܪ=˪y\j't Be¡p&AP!]-YmsT&"p5A}9Nzb5Q/iBS$4sSMh L=4UJ`Czp) zD̆^C7ġlЋ6q[3E9vKH;9ʅj#+Aj.v9HR;K|ް.cAp!u UB[.T=XY-]7Egsz 8Pdg s! 6\z7.&\zI-!T=Xgݽz ۼUB@Ճ5̅ N.zθۦBգ4o&'^~9P`M;,.T=X0ӹ_JaBX#.sK#* [J-BxP _94.T.rą0 Xs!L童9q!Iv ᄷUa.YN\ #.F ѳN*nRąp[v1ic\\c_ 0 +ډ -kg.TݾKҜ.5ci.}'.tX~BYAaǏeTcQGj=QGj[M~ h|$ad= opfd7[^bd7> ad3?5!#\/Y #- 2aFF0p kd_^(WdtPFAs^z/WFU^xtʨ+O"||AUTn E,i%=ϸIѼwChZI?1!UK+ƺTcb]lKk5]b͇[1`dk/Yz%(e8ܙliMђ۲%Z*2[)MZ+A˻_wןAٟ;"/Iq!9]\u&g:p:38lGl;1^l^^mp9cZڢɳkXIW\bJ ƑKq"Hbe:p,y1#1;0FGjg䒾 FHH.˫#$>XV;ˬbFj'8BH,KjIB͆#\sE""Ejguq"\ADj'8}Ibo>vIAN@HXfdgIn7r%)PRU'#,vA $Pށw"M҇~Pz Z!>m8mCg> `8y!\R_3֦7 a[.МM0a0kV̅V/9`!8SKD"B8ۈfpDܲ]$Ak;Cx3@DA ZApf4϶x[v:2 xbO~' tP_V!ж@uZG~:jGj?^Uo:|.ٌ '@tjC|]ҟ|LqNmӓR_mN>jtMS=}Z5OϾqw= i|)!U~ǻwoo .63κp\9o?";q~? endstream endobj 226 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 230 0 obj << /Length 1044 /Filter /FlateDecode >> stream xZKoFW,h\s6AzK[[̇\;ˇ%JA ^ |qk:x~^ k6|"@ J ĥ2hL 9^KPfry,K~:A(M7Jp$š14]fy!2ThطZOCi̾— fZք/~Yncۃh%D"Sk’Ich&.9{/jSY"{<[gƵd&Z&s'k1Ѥ1x^8ݬ.==$&.ΐnRVӸCjQTW6wmiOSxõzM5+#\ Lɋ+Ǹ}tj.)ld[qzW 7.ULZ(.ͩrG(f?ݟ]u+&3lƹ_-)ٷ,ڎmD:dץ0XGwqb3K1t3|Pm 4̣r3^/6,.vv]?sg͐nWkÍ @ɢhw5s by)֛2-t.% qLaKvETD#.7C8$zˈu:J Vg\q_qtgbfwPO5c廌,-c[b+ c.{Gsgΰl;Ų{*I~("Ow+TaNT`A-^y`U]p) o䳭lirZ1 PH)|(RI\PB-!L@OS%Z'&a#N+_bufҳ[٧K`.g{*o$σ֤ҹ;UuqҨ*סRa&Az ,3u.,~OB -A@pZ۲.{XgGf-y5mb+xKbu>_&0|.p]P?up endstream endobj 227 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./figure/plot_infl2-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 232 0 R /BBox [0 0 576 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F1 233 0 R/F2 234 0 R>> /ExtGState << >>/ColorSpace << /sRGB 235 0 R >>>> /Length 3151 /Filter /FlateDecode >> stream x\K ϯ47r٩*/k*>(6Yyٍi,_@aq_bNO?vߟތ^~w߻WLvzGAk#MerLM`B gә]<^ϹI~~B~t9$9)*594Ũ^3bP.gŠ ӭGX.cbZ'%ӂZSd4BJ5 ֵ]0.li1ѓK25+`" f*VljK&(L::1f+) L&? :L F퐨YF5NB<9qS' *MN3q)ɹnwf#+D\)-,.*]Msۖbim#}M<#K0}1gޣW7~E6ݼ+2x^!0@ +/RzvM,"^a=Jlp\= Z t1`.͓ LXrg$1 sfta`9;,_ NR KwݵD;-pɗ Ҫ\eZy<3:&]tHbƜҥ9(xON@ 1E'iP 0t"^-(fIsUHO23nOm?ii?"?# ONg?QZ 5hO\,f ? !^'DP;OwPS$3$ܬf x( zdIOZQm$E`IC8K=|6gj3$+bp^+=QÅsԎ(`J4`Zpxhi2 Ӓpih9-N_Hq{r@i9;iLˑ!dNK%G-S-cgZ*9*|iɁ v¯csX 69"pX=d|*У(7nsnq t%M*+CHce@ʡ^k= <^YWuC&OG1TYT"A]jhĥBֳX(~IQ%PN9/(m{\%q!л=AFLƎCQg)pK6k d|*-@9:p@++v Z}<޶7"NAqPғ,;oV*(tph!M/{S*{v)+]_ b}4x-&uq C% u;- `D;p:]:n .//=2)2e%.tZa쫜N :#V1lF3Cb Haw* >SlXU8-8kvZlie;2m:2ŭVVI7`%5IwX@j*eRhZ"&1itDh4BGh.T)LxlQe;|β".(4OSA2Y5-.h/9=們fGH7k"QJ0ke;A^ ʰғv@m;?tKD3mt T}ˉ!N9%Ӓ#xZU9Ș"^r0-G2=ȘncMcgZ;RV;-N'iɁsM#EKisEC<.3H.i֤p#%|C$ŲrgyU )䞦(Z@)#@bJo/ӁWjSb[5X'0 jbo62E=5K~D7Tc%@dߣímפ)BfK^yT^N (k^85ex c +^i=L"EKi&ά:jl<Qt>B; :Gr;:K8*5v۾qV=4ݻ!6_ iQ{uA_1; #K8ynԵr{jJar{u-> ۻ[:3<޿g0/?Ź@zϪ<9^iֵiǽ͛"0Z;#J>ˁƵ:AR 5?>Cp\\y]m+:QCךNOr=m]@J Ww76M~Hi܅tB;E q9kjn/$t pb;o>E@)G]v8, *}R-]œ%ْ"O\X^aQ.3(`/_%^AQ.WTO e#G:evVm['1H[}!3*)cΙc9ؒ7mhs= B<fQȞo>7X~xoox(N7 pgl.z8(풅Xg%8# J9 J9 Jȇ'~gԻxk8vx<38M=nh=ͭ9دbNvovX#R1 ww$Ǹ+;p]Bڨ:\v@8\8:'7[Γ0pqo}8lϋC 앧 #,u~ַ 7@ًVFl.Wվ/_ӴzkS\>ҴziR>i&Q>Ѵzeӳ ݶ m?tٲG/)joEHX6aQ>މzE0J m3 5<ޤv7!*FG{ͿnL7v/c;>Y~qi endstream endobj 237 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xwTSϽ7PkhRH H.*1 J"6DTpDQ2(C"QDqpId߼y͛~kg}ֺLX Xňg` lpBF|،l *?Y"1P\8=W%Oɘ4M0J"Y2Vs,[|e92<se'9`2&ctI@o|N6(.sSdl-c(2-yH_/XZ.$&\SM07#1ؙYrfYym";8980m-m(]v^DW~ emi]P`/u}q|^R,g+\Kk)/C_|Rax8t1C^7nfzDp 柇u$/ED˦L L[B@ٹЖX!@~(* {d+} G͋љς}WL$cGD2QZ4 E@@A(q`1D `'u46ptc48.`R0) @Rt CXCP%CBH@Rf[(t CQhz#0 Zl`O828.p|O×X ?:0FBx$ !i@ڐH[EE1PL ⢖V6QP>U(j MFkt,:.FW8c1L&ӎ9ƌaX: rbl1 {{{;}#tp8_\8"Ey.,X%%Gщ1-9ҀKl.oo/O$&'=JvMޞxǥ{=Vs\x ‰N柜>ucKz=s/ol|ϝ?y ^d]ps~:;/;]7|WpQoH!ɻVsnYs}ҽ~4] =>=:`;cܱ'?e~!ańD#G&}'/?^xI֓?+\wx20;5\ӯ_etWf^Qs-mw3+?~O~ endstream endobj 240 0 obj << /Length 207 /Filter /FlateDecode >> stream xujA 96N2̱J  SӺZA킯h0ҒC,,}l&sG@{/ȢW|X3's0ܶZmvC3=8ߜ BB۟9"`J$a"\MmyTP$iyԒJQհ[iWz5:]*ŊU.LQ endstream endobj 255 0 obj << /Length1 2160 /Length2 14857 /Length3 0 /Length 16149 /Filter /FlateDecode >> stream xڍP nŵwww(Z-@pww)P݊;mn>w2YwP(0$lXyb,ff6FffV U gk G' ;[Y9o2q󛡼-@`eef23Α t03dlANbvfoy@mL` br0 @kBP;;211minedMCjnB  -ANo..& G[v=oc 4pxda3haak0>J1:;& Nvo@W5ҁI%?-읝,sd&bv66 [g'[8ZڹzZؚabϤfkMGfrp033sq@9,o|o4@>/'+ `2EM 2;@mX̿_6a&v:b&%q1M(W)*jb`0rXXx\?Ҷv}JvgYR{\Ϡ2s0\M(+tKOhca8m._S ߫+jgmu]5o-$-A&rߋfma Rs}XmޮKz[M)aklg{X98@GG(rpXm\o|vO$[70A\&?$$LIz)Ŕ/~ST vϛzzMglgHKll4ɿ / `2ߔ쿡|۳7h\_-d/7ٿ3_[slBf'ٛ_b| S?RoonvjV8 1WXh9ӛ~ 'MlSۆ09/.o}q|C|W276c7݇or#[U1lLRlk$0x;<&T:ވ$ |G[ڔ^ ~:l kSj}~2QnE?!'dP~vVlvpFQŸs)^S8:S)T2E7EQ4.)3-;$z+L Q$[kr*S96.58^ άWQWЈBS"FvT{5I< AX xWc с}k\Zo,yNJ؞SABVNJa)?b_S t%rNPž ̱8t{ݑ; }FGl2uTUȀXI` 35{+_ #!d-We:=Q^(d - #A:nϙƣR-yeme?Vd ɃpUTMafWnxGƋ'>!TzK|w$ZQ: "?e(eӈ ga札"OVœ8" vĥ+SLD"KlԶ1KV{q|=Dx#1(V@>{C ЅSw|bm bGGLڻ<.DQ7U .34r.QӁ#9-݊S|pFIN=Q,3l%q.8(rqt3vksr}:Ohm4"oc老@i]PP_۔cl.P]2 h__tԐr[p6+>FŞ ei^nD]xj۪ƺkW.z]xՇ<{M'|8˄wk&YQupñB%oVm~Zyǰڋq6!|Z8)Ad~M N2FBC26{\'B N  ~p5Jw+4P<8RY tSa0Iwm6;#,` GW=ڥ'C+BQ6{0d6 qūԢO-1<]Խѡ wɰ~"Ԅnt|wğ;;ʘ{"#95ťK#W D/Ć޵ΕxIF $,iq a'()nUv AVXh}sQfX('?CT p1xWaSYR[$U'ؤ$rb!*A 1 @-4miE$EUx"bmwƒ$i(ӯU4]H}ݤu%_hci+${{S*k&N7Ǻ ý7!2ٴJ][Ra48aIɵ!6 {7l թ[seGAr:q?}iWpDF=R? C'?n$TIf4LI2E[^VL٥ʬbv .!Կ1dnGr>?;ed<,LJ_).$ V"(s}ٲĭ #u]LWn-E :N±$ SҦ"m s\giXSSbɎ9ǽ^NJw7*t%]Վ4;O(ܡuЎC,9} HccjN=P[(_i(l4%?2aʣx `N^j;/[Hf Ѻ=&\[d;k%MlO,|| n1xiF`Q1Rbb1ÎSDku->z@û9TnbzxE, g~ѺipZ8(gGihI\P(긲0顒عOɯ.߹M}JH/yvtT('L^sLC*>/2aN>Xzy9)ODz*-{Zg%%|O3:;& ) 5FFۗZЗgGk+)\tM{&.9D Pm"zceUhן+M !eseGvvHp sSK7%:2Mtˆ6H6ERDjPuZ(SBp^3d>%)Q|K5+xců=Ih(wX. tݶ6h"53jA*K1 -4(_A򛋴}0 sq=)"/"x Yyw 5돤~Dcg_g됆3c|FL qBt=Gՠ _=l03Am6ܓ՘*=T ɍ{C/ XBX 6<햯ovA1YfbBz2d#v(@k`ah:~ "]\̙PUS[ȯiL.I+\.H XkHn[f+jxXV)>n 8f@8ˌ ӯ';ig!@4?\KʮtU8U77H#!>>ĊN.Iz *z C wԑ0oB/z^mT&W:j(|j3WӤ4=camJcZ.S `=1RanJ:/hfx/)(D$:YS:8$djemT caW+_6 @6+R o5|L@VW8az mCxE5Sb4ڿCg>A(˿4螼T ;W2'O1( ^-o{|ԑbZ;VƻL6B'—Fs/}QʤZ'I {M[nrtNL48+jyfOIjS!NG 9lT%c-'= WGuϯ-mٲ>"]} N9L| wBNHG3Hױj "ô;voD*^Hߠ꼓pѣ.bSܦ8իlf`Sǜ9mF7g#M\Vw V0`ťF!n&{{or0>yFB =N|ͅf0v9B OE=ɢA Nlتͮt6ً?ICP3݉&Q*Uw(3!XË1ڕk)޳&SQ\Lgn~Q~rpa_]*& ܣ.ܒh(ٷsРj$-CoQ|`. V`S£X]1swLpՄ%CljZZc9h}]| \w9d?O_+. m *3}:E^S~~.gq{q^!E49qT[}:Ҫ6N,Mˑ?A2XΆ}'Ke2-Q?hRq.D D%pTٗӨ$0Ѱ=RTQiȱFL`o;̺Heav1M6$kdh9ϐ C3'OD%*D, z [rw&% sĺfUbpmJ05lJ|5MgEd 2N}3r*<43Mc-O-)܀D"gc /:/`3},>_e=iH\ L_A_"`Veu -MdoXǑDn2ڲj;:NKJh,- 'A37[I1Ɯ\DXLr^b j! YW$c^2},pQٗ mWӟHی: GyhzN/&t[xG^-¼rٺ5/ lABŠ<<zI8c N/z9f訧7FZqyTS Σ0JP~XKɡEe*x8{@C90 .S!(QhjdhkWbm2oQuz/@V]ÜeBgiZ &Ƽjn8c#W`  b}kl._15@;YݏʎxHE{J ^|V<~g$oWTfz#cƚC8pt%1 uze8c.r}{ _6ܾ%'C962``slZ#Gۗ oYwuՓ9$E93R2xӱ_rzBQOETd^m/iׯU'!J]z"qx >AmmesHKE-N`(k Ā3_MC^xl+:]UdI|8) gO&RzEUPBEi0_ m7{ ?kA}@;yX䷧{?j/IjJE%..pVByKg ԋ4"Q^*!y[rfIz(21!~]„=ZKiY*y La1ޘ.' @V"XjSxұoϯb%U?֙V!Ջ@R jЊ'"e}5o9S;oNEcy\a:yFFȓP*5 wH?EW#㕥 0QyG|n_jBڎG& IC^*edW8U+ߨÜ8'1rh 8,*Sk*݊p ]Ż.N˘J|.F1(hpgW^A֩Iyp\s֢`$/|#A,p񥫣i(y3O} L!l̞-Q,ʰ{?#(}8wfUUB~3^p1y[2QO|Ό rm@1 'm[+qcR^є%!T咎<"wTPO  yIng~6R?ӕ&B{9GIfPfU7I 6l'i$Z٩.•i_n5 ]Zc^GT݀g.sw*Z/&RJ_?aʅHZ&%m-c$ꍻtģm>_^u S}_o`nY{N|U_2It÷ )?iXJ}el.% Lg Q~vs:B]iSw1"4+ԍQ^{IWޟȩfAkf~H);Ef%%եE rp0Q4R&ݚsU*#DJ3fOi9=~01dlc2q׹wֳzv6;_M4;-Ğu ]5p%VK,niїЊo}Qzo}݊8qg;B[uND;EYK!r2zǑQ2sCR̳@%Ojz8w G_sK'i׽U&Jd`P[=@ͥSz㊡t>UG:]' lr&F! p #2ɠN+Gw*b,`c2[oReFHvdw=?H! w{8Lq}<{qnޜ#>z.$k@6kfm"gf<Ч%~'&]tVYaE4 aӱ@0*|R{3>B*sz`P5`5ƍSrKӾu75y^ GTygָօ ײ;JZoj+75?ljŨu$G+Tְ R`S`B(߆4ضy·ڡAONjY1$vYcnWwOdGfZ6do–U[yъ4<+V˱Y^UkKW}k~BF)_izx, =:4dׯtqZp`QgPM>7t}L+.ʌ$4D: 4;^4VV>Slyt'{IoQn6fKq|͎7 G$X>{&jʪE탻z(3.Ќ J烔aWCIe^'KwMz/:i:̢-릠`tMu,pB5yND(JR0|e7tËǏ+6Xsu@͋n TXSǍ[6:@sҺa0}/Yw(yhߌjm&(+4căP?JkNd;Onx6"5'i ZʑޏM`TL].(U)oK0Oh~.^0lضPj1 ritJȹV J ]6 Py9J)os3",pfӼs~ig7WВEzu P,X|֥*ZMH4r9q4)֛c ?e!%ppǬ+֑Wi.]e$8eִugtU~D 56"$M i48Ѯ3x͇Awv*+Cr"glAveUy[(}H}1!\Dhpw'Q*æuV4v*~g/xw5Mo{M@17bVjḳ9;r>b[ݻ{Ó$1VیieJg ėcWKpՅ4cպ_WDK,W4\bC&Gqa*aT45U&ݥ}0X0@_Tɓ|2i+;v̩$Si^OD69{'Qqf ?kXQc(ۆ&MB֞jC'a"NWʤȦCv̨~}YA!'x&cc=5BX4$AlY*RKnyw0$)G Z;~u.eQ,Ġ GAV>^HVL 8mT|C',4P@ ^$Ί\ uU|"B\dxϡl>b Q*[7e K7;jf1yL@wȭa~]΃mڐtleq$9I;TRVDrb {WJ\dEtcZ.|5Ρq̤]a _f"nԖ'A$”AP!M b۾r՗YlApq{]?'}yFhiMV|4&Ԛ}Cn XROB/T\"Dq% ` re a-1Dқ-1Y`/돚[Zme`"kA2^!"ZE{MZ %xkXGCψ__!v C `e6s? {LSlRE !wԩ}YNəa`"9}rXxۇUWcKKsВ-Y2Yv!TMث떓y}Y?)1ʮe*ZOiC@%yI_BApS] ZE1lh{"+>Ρj d98XL \]Tȉ)LSی3+DMZ@Y)P| }AD&Z&_{^vw#?OÔ vy/ eWj[C t,1Zr)G?NPH ɪ*T V8ݻE8CWa4Agxj$VR$H(l.#zaa \3;1nu CHGנ{~4n6f4 ù66\iOB6-Zq 3/!q#B<䁑2*GIsA5\%U7)(J,o}Oje?k%~4Q6DXagn ly_)z׻\9ؙFB4xîd" ^|(76j_L  FdsU]0ֆ[en`4wG~(zȼ##V*[tG!UD6]Z]#Q7a[Je"~5S2SaHWN[49 ůP.-9ݟkHwHQU|'jG|>`f|9>`ggStN;&K=4U kB[YHY@GvV7f$T q"dV(qY-lpb:Ǒ͜\]L1!S<<*Y&F0]-)ue~Qڊ}]a v8嬭M[BeoK纝k5ޗo )r_ugڞH줔3NHtR~$4Dq3=/ )dxv_kwM Ӧĵ{"8O٣Rd?KAɯ1|l}{/d8rB=n)ZTzF zX?U/_Ң Ly“d6>4ތH cߘK&?[G#,p2 LԹlbg8~"X}BI~Vkv,T8Ŀ[f?ZXb%3mD Ooн3Ob2 b!;jcBc.I`1?'-(yy6 oxծwfS{VS?5"63d`Wv5FEGINۜI-n-F|# qm*o+AK eFH%"}߲U\;6VPG+͜RNx^2'Pti&#'v3/9]%_* kd,U3]ezlW/kˇ{0~M3OC?ڝftNa^8fi=2hL endstream endobj 257 0 obj << /Length1 1465 /Length2 6840 /Length3 0 /Length 7819 /Filter /FlateDecode >> stream xڍWw4ݷօ]蝈 `0DDM jE{oI!w}wwk?P7Vq9~Ctn_w :K@bh874= h-{]e D`$M>m% D~>8N'!VRoDwf-?(W6H$ZɄn?;NO l+{PC#/wN+ka`oCfP$erT3Zד|yc9S)-c1BL9lZcp{шLo%]|SDWEۧfaϾl<{iҟ!AU~)nPn-Nf $nP4fu7(0,ש)q/p7r"ó Ѕu*av֏~ `گw? ^ųݲ~^$v1VQe,)`{ON<"}bŮB:Ot''0"hEntMo7(MMGp,:hVX9y7K*2Y23@c줴MɭqQ6M3k:ݒw8 mj/ "BTq/jM.q]9ip %|9Wse@v]gyfۜ\\ h%v~7/ӼXŻji>D(C\vӭ7R=8x3 !Aa>u lAmᮑfѝ!vW{/_Fk(S5#βHG0 q6Ao@ EQaC5>n]罥< 觮a :uv7咣ZFr豿g9S,BFTqS^Y`4kyvȤ ' vS1SD֖U|zХR'uNK8u3MÇm>%{c^E*,` CXT.KcK~zz-DFOl- ,9nCDAisːcw+J0\¬P3\Ę<0{AZ0bşWk>Vf3(vY̖NV k2*ry7f\L-0AШSV%s`|JZcdnaӼB$6shD!HELZHfp~ƤYhYǺأ'N*;ai!C7b!JB]>܅)sj k֑tH^ ?ldҭ2ӖֳG H/Y`'a6.}癫?k\V"n%n 7wf_Ӈ`ܬlqEx~P )ا.`lU*w~aYW1ÃPfzjRyƾei;% ܎$ztlAVͱhnbO  8; _}ߕ\a󳮵=JSfٴ% cpҝ=;ـԴBF $L_<3KɅ\_o)+M p.~ 㬌|u5QDB.ՈӅM]~-cQf5:.r5ä&̥~-uSx(Љq^تi )Vqb>{\/%Uԉ-8Km'=Գ`?'%;U-*}&k])5"|ۚ^h2 ]*nwNb0 wL,~EM mdbqsFVFʾd׽d[ {7St*owSO;ǥacv`Ͻc X 5Bv !|2|bK @ma}#k/xpc<׮:ZXb"zlF[എZIR_(.}+RfIg LgfN.5cThnjT͗ϑeJ>Ĺ-= Uz[{T[Dk5QvAX} "rp1Ҩ^᭟Öx%+8̲reE:37T5sYut !iˎMl!r'Tg)0?$0fXl]{^aVxЫWZngߢ@Yp߮pP/ōa~76_Zd#]PVю]9($Enc[}a ~80/?JQ(;->%z4N@9iИQN6/ҶX6FׯvgmZP[g+E_ijuU9tZI=I9Ѽ]&YL"zuWR^NhM=`TC~-K#My$?j]ja )ݱdN~'i~? fo.׹NQ:q0wga/DyH?!Lrv)aㅙ7@#L Nyğ) bi=dI`aoXr$jUhqI NDb2 `iOCWia+O=s?y$Rs4d_zT"ZD:n\Nn^);F1Pʏj)#Nrqn"iA*|=Zy!1zwG8ng\? 7kc}4IxWY=%ӓŨV8sȘPbbQk48{فtXpGL!?ɨХ"Ek̏vcuwOZ(A[2-~mLAJ諾UxC$=l_&|EVpY,i|$ZZ^Q }|SFQ[pHve7ٛWݎ~) ,('z eQb󇹬XS"+(ǻ inOM´z[ssAdcV)~KoƊ36 |li>gy|5Nѹ{dIuYYMgi=IgL|QGF}aUЫ8xa1e2&se;b9  y/ôB5 ?P? 0|qg$cjw.t\މt*d6w}T%){[JgY$%AoVV(<%?3a y!a}" Ҍ#>?9PZT&5v8ƥ5h*K@Etf4-0j޳!ݺP Vl6#"ULn`Xyɘ|,⍯QW@?c 2$"/12Uᝏp͋L.#{\Adfk~֍ACNȖFvEg!m1ջr^[mbm]x:&\,'  BR{Ӹa%򄩷 ]\_r||lo[2}ԘEJj79{=:ϻa⺈R1n::>=ÎߢzMd:xLn;~ewdpn)n|Jʦpzq@2_T5]N@ܯƲD 2/]7 ׿phjq|ѩ%g*6-gKe؉әJ?qm-'BA]_w2'7—^蟏c~|Y$Xwܻ`[`'` kPX@Gخ$pE)S+WT)$d?82u;:72!VV'yrv`D *2aܭ(~*緹/]cW}XyLMߋfҎt".S<)Y di 5lhpzf[hZ7X^=!:i=lq}> Q% &Y{ǶD~> stream xڍT7N* *0k%n0`F.A@AAD@B;T@)A$7y߳s}|}&z-].iK$D`7`&&=8G"D: (LB3Ց=- -(x`Hg n PT ,nmB/Ղ -,, s[@u怎h"-0\٠P" ;D:[Kq(,qS gwKBCanCm\0g:<@WY CEV ;n e @:8Bp5 nh*Q(NawA!n=&P@%]3t, KY r!fn'C B+8g! },7 -"-`0XPPs<,l@?Cy:~)Uz;"VB`p+]a*p  #~{GaVa8=&`r??{2K$7) e58_   |F ;?,VH_٢On+/ $zvaߣn [ߜMIoq{MA+ H: jk}apW* 腐FXKwQ{,( _3X0- %6G^3 ;E_*zVan<3ē(~~ѣk B%?OV) @2 $/#4S74EB<οHHuH{t+88# cBkqXl~CwrFoWhOW-#zCA9]?.7f-[+F#zِt |~焮YB(o 8E\~:q/{fP@4H}z\,F7DϲX:[u7롂<`SH ڠjiwNkW:>({o@ JcL9AJlul̐X(Aw;aVMXJa[Wb"D{xcNH벞=Je'L!;9iޠ-˯\d{d-rc6 BYToޮh%21%C?H݃n9iUz0Uuz<ʪ*\ /0~fɜin 7Gѷ  y_|y1QnQ'Cbڱ4m'Tt$$u?a>Cpвr9%XO`,G]ˬ(8#E WɒLsegGaDupĘĻ⇪e9";G CYFkAŏK,^MW|gٽ)z}SPJ_ۛi]q||԰/#M[zvpagrE᥏-}{Qh[ykyqLaVYŃ?cfҞ]:S&F8;z M1VC7dTG} MGU-RMփdeg7HT^9ԛ/ Uֺ|T< :̜n^}cb9|@Qʐ V0ݬ'ߔ[I,aҙk C-5%mAa*㔌Y:@vƷG;f^HP1a~9F-_JLs«<"vڼs/UTOgiw_bvMɇmϞ\_d3uVJhҢ0?Q b\jm(ߦZ$is$)2˃vF? s!GX}R.{=^'юWFCBg)>Z4$x7X0t~nj {M?l%qgPqhGJ)+2Zkqsyg}q90p -Cӥ|u֮֙Ѱ<ň,-^Y(1|{:2qJiGݭ+-Nfo)tl.{OO}CKO&>7g# 4Qq4wS4"M5& (ʕ<:~bP_kt P]Z:Ъo=s&]BCV|a@Ʀdxn}aOhϪ]E!zME~uu2aF? EۘjV͂ JFbK[_)0.[I{ޯh*hnȭV͉6$Ȧswdz{1M.-0fϊ~,kц:|zv7~V.(r CyDB' %$?ʑfz>Oٖ$W{@.C1%US}+U) $/|+{Ҹ~5 +,# IrD 'x!z "QD{/@0_e:I$&`̃vnJRtUI6@{]~ffŒ4E2ѱЄQm*o1biWZK i2ʕ4}fT sY߮-%ؙ3ZIΞ,,iv`OKx<`:3*E@8l034Ҏa"d%@i'dEFe̫ Ro>RhؾIHR!yZ]|?k=6 [I<3ZοarPy~z0[P'=|$|l3AH^d{N>X>fH,n]Dq6 +>{P6*}5@Gq z`}h\a*2}ҤAլ큝xy|g_YJ2 XuQ R/]*:YrI„ۼz⣾2xfXRS_F4ضE%^reN7}z렍Ic=%/ڇoV|}C u I?~俾.ʤGpH_O͉y?ԗw$]ᦎyȶ7bqȹ=ǤY.$W5o_Uv{-10\ 頔qqK3+L^9u wshV㹼 K NJq!)Ta\zY_XFZZe5?I#n}>أ,_-QS}׆a/8qRpIK!J@`XL&dxuvYӭZ9=UuuB;yWV2LS5Z8ۓ^k7$j!og~t{YR[T֠2nSPSK5ZJ9M6k;ƟW@|7om9 $aP)3B>@3$O&8ˑ,jFFGp;*xH$G]n(hҿpvN@xnu_!0V6K-0f5NdJɦsɢ"6rvՇjOf*Cg,mnj4>m]-ΒFi]e\茔,UEpI;l#5 ܼ/pri6ay“O'pndžg7n$ Eܒ8³0.K0jUQ%Q\Tڽ>o[ުCHÏ+5ltLr摬j#v{T7\V]jrNy컂[euIR1+ٙe9%ӌ6PeZ( lgod3Q>U·3-PKºqJK<| [v+~i_=r$Vx;pt[]2FJ:cou+]*~O˴WGm0#<(dD~#j7)9`F"0r b#͍!d)P](EiXL3G{Ez΄J2F_pzi2_u`t^|>WnzG$ܻSpg67@Z# 5\ko@1L((7}gkG8S4ٽzF6P|Ar$SbN%3KH.5ء2 y|OF+r k1 nr:xX Iu;ϸ㡞tZljǂ{tK%_hbX!)[wtp|o6yBC3F1_%CIr'(O߼pfD{@Mvgv)M^{(bp5ªpp u ne3k b ey.>'8AL(KpNNР|@=OK_3?zyGϔe ߇.[`5XF1<{\Nהּ l:~[[* X=X`v_Nb~7b* 1\% k@fG6Qp|gVr>1>6{89mWp Du9xHG[ i.&Ⱥ-lq^B{4k!0ʆuPuW@]K1v8.M,5*YQ*){S=yDҹq}K;bb+]9 qo =)f$=+2 X*?\@d1/6}OR.Bh] ,64z 2E' :rHovBûx6}dW!ɔ#Jkh}jvT)=1ڹ'tu$I@*\KONө>n_0T+8RjbbI7{HcuR#>dfo^tYzqt g^E>.USWxEԭgDiV8Q'^"DI]f&$<M)t˳/MLz ~lZVo&\Xwl22SHG9s,qnX>A?;^ 5[.ˊiHPA:4|+Rv]fd-zMБ[/"M+ޕn0|ғ|v-ؠ[2 HYKY$6,Gg3a#=o$ יͻ6k`Enԃzâ`3ʹKiTiٻbF1ƽO֡R5V`9dYlm0Aw%DqSO(jfYe593s(rJ- SW|FZ-gqA4+^IOiZN4U#F萺cD#[UW\v#^|)jcbKH9֌Й[PBuŪkwcaJbt-7uqrbŠ)s8*! CAf.ou !!*gf=eTSlV Ն@Z#;lRTV)dga]fT.2rpS)J˳.ɷ#`j&Uzh[9mzBXH?k]2) ӂ<D#5?_.zuȜ\}_C4lIb^4/SHX>)9(rGG(3XGTp^!sEKʐ_1֛.0)w>jnPה&&jr |{ag_!YYބ H /-:hUh4閩ũ -LEu[elq> stream xڍtTk.RJ4 4 ]"%0 %J4H ҂ !"%݈s?߽kݻXkg?{{/ RE--u@PP_PPvq< Q0\1)x bR@q)AADR rpC䁄AИsp@IIqyGZ s"0@aǿRpءNRnnn G? v} t~ 9Bj`hCq ln $`` q@uM r@~? N   M~;"PL<sYcKT L#aNh? G_i0׬ QD8:Bhѯ`Hs ۲mla$`9@ԕ` `P *(!.,!8 `;_z8A~;`L>^N'- GBh ;m @apd?6fH;\#? @?_ ._-TP@>!QAPPH w]:E`"ԋkvKmɴBQ e*+RqqpC? G_ t]И5B`TcȟՂ\۫aAH(/(T`]lG6p_ Ct(د'%(_>̖aF\ fпˆ`u(_'$*! "1( YSou4&`@ @@ˆGl@tKD8*o@T 07.H$ߺ@!`qX:Ⱦ*g<ʠݤ&B|V.'b Ӧ5T:*V ?3'ycVY2[%넁u+8AIمAFeA}c2U&햶4ͻ ֽ+G4,:F.ONaՐi9%q+'[%d5`e=M,ˠ$_x6Mf *],}^] 6|pXMyvSa@7_XC/ldTZ'BFOn.-;jjLc+)<}/oaT67΄SfuRpoԫe3rZ`#Sm+:זw&A;_,@zF+r/Qqqqԋ;Vc3n h~n;n+x|ݸfydvaέ*!t󖡎(͟ a"#}4of4"(j68&sOL3'Ff7"^ui!|JBנz;C&^,VPRףyW@p yyg%'\\XT֍7jO#m ֌xr pLj9D0Y~`+1_CY+.ztdLձXي){*G]N ƥ,/6o H2&%ŠwPnovo>fzelcwL[؇\\:(کVG~bR.w6[̄2tv/ p&'xW.Qܰ">%VZSA|D"Qլ.a01ij!OV6uH+:y5|mO}|`:c^ܔď[ 6u JJ<.Ip*46,Nd>QkG"?#o~a\>;yblA/!mܢ JX$]U_chaM(ຢ*K-74{{D"4¦VuXT6۞ 0Yd͟oH$4Th 40)ѕ̪f .͹@NŋʽV&Av?vS)Q\f{밆rx/J}Y:~qjddt޳F=RjY$*vnv[Pig!&?S$ Uj:BB1s Y1.qcƟ|s A%* #c*n"2(e ⦠ih/ ;%JVݮyĬv*}>f }䨵|`7TY"զ0=`|Hՠph,%6A?`BɞV!s!.s+H_ q泱5{W^Uu5wUPSTd|7Je2) qԥnFr+R=G3i[rRYBߕi|YׂnXv ^i*\r(+AgM5q7t'f_gvkC(| VsJݡZ=ynIT{<"QQ+Mv|~EmA]O 4VaIp$dk֕\mxk g^le60r=ӆ?#|y:v8#V6q(;|C*LziEM^x_wQͣ-`}PRE|ǝ/\*ԗ2MdKB+_M%z#J7KWR.5̔#B#ZxGZ6G臞c3!o6k%Y:eɬ?.:#7NJ;a`д[wh~1 +[ Q]>_COYFMIrw)8|8rLMI,:CP1{Gha^5ZSCh'S_ʹ2ac^oh@40ӏdv-aÿB=(|53$9{IS*'4W~aDONR0؃TB^9gS~[zr݋rֆ o/=PlR];emM,9O]Ynm/\YK=?ӲiG}EZ0rpcv%W҃Z| A7cox_s 3pE_^fC \{>fcgmדl 㫴xꀝ#n7=if%bcyڞJ r)meI/8rԘQ.edߗlB55ѼkϚJۭ7(/4rE̳$e She2od[Y/Y._uN0ltoֲ>_x_ON5!q FnY St b)Hp&&%<=&g"sٺtGzR Mw۳LkTuHJѩʲ6R 1m3eыU쟝Mz)"*Ӹs^Y7-?N7y4g}D¦QICv 'sv4 C&ꂍթ'cz(ꕮRzu;߭0{~vRrm'h%Y<.9H>с 'Fx*4QYW閘wwl6 n殬V!/7@~}E╰9k>Ώv 94t o;r=!AI~][rW6:#A{]h@AHڈ7[wع\ pUWJ'KƐBy6{bWAd=Y1u]]6,251tCZ7,mUWpSuoSzsT{6#H{;Ua+pRvWxwmh(lP)cM6Rb|}]C^/XN&䂟uf8A'i+s{-80) ]`ӌ5!` 8R?(>vMi4xZ,',BRE/3e|2dݨAGkhsڕ!G L"h-G_7Ňc*Pve[DCEIZR&_}NqV۪TJ8ƚE6n6-QZ\}B}?$m RR9uwb|Gcp gfHgP9ʑ򗴜sy[tpe7۶Ō~ޏ'ǺH,_J R"q0?;X%S͓066PPۻ1kR|ُ|؇4'-mK5W# r3^*1QI#ZHrh%Kd@gcZg! N\[I=XGW&Q-9yEZnEWYj$s`G{cvD-ZUFLX(τuM|y7VpC' pϪeF}vV[fZx[ q{=,W ![I^mfP,\oś+n7ǧiҫ=wUzzkwQ׫$$Gw֘n&=\=(J¸~I6?X<#Vb+ e=|w\ݲ!8 k\KUg۟'t9Ms_bWl'"[˒nJ4]ߛV _tAC+uw.j3n?h1)> y0,]Yxu|#>.6ޝCDF֢e|a[Ij)M]Ϥf268r$])hk~1ir&s+.qu;'wYZZ?iLi3q.ds3usפt2w_sARKO߲d$7=7%bOCz/i1EGl =yl*mQͽ:/BI\O]z1'"[[Fh/Rgor l.aZC`Ti? ϗІ'{gf|޿qsDT!bH蝡T͂JUYhv,^.c{ϟr|,zPȷiMXSMϥfߖt[r!f-L%m{/\}$orҪ)fm8+w:.4 ՚ιžtS([&UDQe<??ה^mK]J.烩#۩> ?Fk_tX_z@:c*^~R?@?[$D ,ҿF*K엢$kǼt8.nFᱵV1Qoa2&tEǍu U7 *ep㚏&y¤O g$vM)o0dgp)s[_ SB!gV`ꇌnccJsJ6*6#DcֺҳN ԻdՎ Qclxp:qSav%&pS'+$ {5O)2Iov4?X'_m4w?8HAHƵH9HP+v 4)@8W^r}bfF AJ<>|n@g>|>4Ffo 7ʘ !*k֯F-A1E)QXXPRÄsrUj/m)ݩA\o *,enC*l *h&:bD)WHgbn|V(aG 3/5՜5~0' $׺ywc$mU1cK:=?v/ u cE6QVڔmyp(H;dx;)nPd&Us0|3gRh-3ڼ)cй][+L2KDI캓^؅eiˍI!oAqq§Gܖpc~#[2;sftqXW DTG= rw۰Aot5zr&[B\y %A'k4La:^. S4K뜄%Ͷ*F~J*> YQPOk^e72q=hŎhM,>n+`uF2[{RӌEÂ\ޮ"NL~[eLX"Jgrc;ym_فj%IeOMmP] tMX¿su[Ĺŭm-~+Zi.iO.b endstream endobj 263 0 obj << /Length1 1422 /Length2 6256 /Length3 0 /Length 7232 /Filter /FlateDecode >> stream xڍt4-0zF5`0{ [H Ѣ%Q"I9޵]7~1ۣla*($(ji@ !~HAl04_EŔ,O {"`!XD,*A Q%PG!ahb6E =_N;.X\\w8@"ZP{0@ar`$h~ /q0/=Wm+OglC'8nrxC=`,hl'0PȚwoDp` #p ɏH_D(CpK]9"bA_- Jee"ĠէaWd](o_wՄ SSKBa$&*$&`>vN~;`ln(7 X#GC`',;i{` s# {}@X_YbeB"|C=_-E}<:OA B@0 b_F [?jH].U_p.?i8r d};&_Y_*T<n u#|`7@ SM`V ftoy#V|`a~Vu;?5 E>.(|s~@XaqAm/ݧ֡CZFN1i ͌_ForD>:O5 2yaxdn9 c8{Q+cWi$ؕg89ˢcoM`+΄#}?מvEi,8g[JQx퇜{yփ ,ўxŽo*v̀CFGܚc7Mmm6/ɒD#X綒l+a r̈́vbJNb;Gn~Y{*O,2[Z\Й8.<|z8<>p2Q](r=eA߬ږay# 4* 㭚-TpM+S Jqj7~X}$-9>RqNeYg#s*(Ӄ_ΆJ-Tsx\aӻt܅=>\6eٳ<ZiuUX %[N_j4ƽf_"8yCo~YCդqQ!븝٘WV$J gRN&!sQglHBL+ 9{4Q:85rW3>lJżL8{gEM7@LQ nBT$=|Ch6wyw"'WF(nK@?]|{btp.&=fk5x][4ts; bۂ-̺̭#0_a]YKY oFl|ys4='OOż&Qfbvpm(Zrݷ(=^q}Ӿ6/alb }KgZJ>quHs0B߅'=)b3Cr.j֎ 5z5vA"wHTL!Ïk^wD(,ãFtz: > n.>xps K_{!wڭVq.9-To_H{x־n܌kIP[Ԙ:NVtSw3^mxw/gͥ{w`T+rk塽%s 2NB'WCeHp"GG{i.-EvO36/'I<o+!u1ori ZMLWu$j>dic>Ӄˊ0 CAY7~':\=F( ~Zt5"k1SwK 1u> H AYv,~_j6|v<ן{9B]?Nl6)N6kM9iv~s,g/k ToUkDm .#x%k+@7+HO6ސ-SĠRX3m+=/v7 ]?ak`5l&>x!c&eOό'DI%X)W;{Q~``i,վsDZPBWqɋ8qEO@w} z,~+%AJj4O%id& S|&hFW[S$Sx\nVt'y%hpf>ŧ2jQӯ e5$P}μ~qNRّ'ǛqK?_jcuc|Ae*:Oc~r^ pJ}uh,bWqa0 lt&7b'2+[*f.Ͼ4)=0A8tbiXwh5o_,(&X6_u[L>,b mfHMCK̦a4P׋XT-QX Gm{(ŃS>,4]J-Kdհ|~dnXH*+)?M+.-:GLz?k_5\MRxng ZnV-,ؐ(}5uFqhnI*S7m>L*WG'R4w8~eԸ\)ZF^-K;6ϗwcb ֒}zܲGzDv 0h{d%Pҁn?-!0q;%E͵ ɗ:ݙ")#3PE3aׄ;Ygԭ r}D}tQݛ TʄC&Q2rj )ωWWׄZ]8Ɉkr# Q7{]5֝낃i6?LU,W۴~T%\ktQ!!5ba;i"z^@ꬃ/1>M;NBwcqa8tc١cڃwzq9`heΞSLٛr}gJ25+~ȉXy(޷\QyQ,uI6sQL9G{1lr8M N.OS OMȹĆ>$׎E(sUjcݰ_D=)NCƠf# cs9sF,%NuH3-Z'L.>դmrTꃓ=ֱ, M@asS8%$"d:Ǿc1aC.,u{mR_l}DGe /Z3 \Q?Dme\w〧CSYHĈܝ8jV5ccyGe?'n9{vq=#Zgh\ M)zxwƓ,L n#)c=[gee?mݤ|oTꓛf7a:' ܂GϻYo}ֿ/K(p(vhvRe/dt3@} ~m{iۆ Ml9Wr*~%Q 3K X~ТnH'&^ &_Q+'JWZ)Т:6`a6-&Z0PIO/%oGk$㉒׬V|syxizkÕB> stream xڌPi.{Z=8].mq)RX)P8~?sd&uu 59P &TVgqq QSkں;#Qk]l@H2)3w` 8U eik Pf(8nHԒN>6` 2wZf6@G0@tB6^^^,fn,N"L/[w: *b2$jr '+w/3W ,p K+LАW:A+m7v+-/g3 'Gg3-`e({3@ ܜfff`27Ȉ <7 W[gw77[_% 4RrwC+vֿ'krlAVpfٺx1~ˬn666^~.a^\A3 \0 @s3]=~*s-wth7`=vۯ׿ߌerm|Yt_7 rE,~ʃ' $9Rq/-@{ ٸ,oϛ߂_j?p￲3 pZyw39Y;F[7[o\!s՜l*fv6, {ȿT@/4  >@vrr\~M*K7JFV߈*XElV߈*qX~#NF`v̮ٕ#0ofW~#0o]7kF`v̮/E\,+ xl;CF`'7XgށCp8:A^V? ɿ)g{3/@ve \o7=36w}8AXeKnt4p~G=vɀ[  ~FV?mg QqG|~!_ K4w/W_jN4saw.`'7׏ pH_6?vGw/?1Gj9^+0|Ikz=L;p|tc eLڵ{^KgCR ȀUfWl6~AABp^iÁСiHaD6qӧW B H]\&e/p 2V,nalx럟g?jIUAF.4wSm&R]Rdm{pTڣa`|n.%5#jZ57^" Ւ z |-O in+ FQ9|l]mٸ"J_&q:~4x\P %1iyvVyirf)tي/;N[nI̡X5i2Kf9}^ֻE^>`̱/ym(֝,]پb( @#ZPB^\x>}TFu "\w NV̀OXxk\;n;.iFz*BiӘ+ͺ˿{3LS&S& ր Tӆ8&JPZ3az΂9țJ5D/ ]*UmkkWy Xc-j,DzU씅hɺ# T9,XDխ֙$R2mOY=j#h߻sIiz̐k~($ eO4d$ 䍧K'‡Gfpl6Éy*FyB{EB" y$3͛uc~9$fSvSD =Ը-p>?yu;iMZhlm/va2O&`l 7/5|Dk~./hRuMRå'd _/wD5+]}M}|0ҾV+2 $簸phX3}40 rZX$! [Gj(icW=1ePlǔ)(!k>^$ς=ȖpƝ' ;9~j\]{|͐\zCM8yM#nn"iD =U@uV,p>>aw#Z -\(Ub.xr5뷯6=NydWǻFƉ%:R7Б|7~P-^V ISfڇÄ6 gS{M6Jtnf>:o n@񢯟'P`FZTf[,f.XXEP/sD^$J?e}hra^}3% !ÙAƝ(qJS}bՇH&Kƅ[Ey͏rG0K `R'92Ũ>W=CS@-1I+3t40]wQG4՘Q| CN'(k1Jɍ{I-[5Ν:sqש|%̼V\żFJ%)1J>$AmS@|*1n+Xi6r2DNj2rCMQnZ=XʚcϞLĊҵݵW_cs2$4X&RE #<0q ۜObaY xCZ$1KX49ChV;m{A%XPr'}iR_z;OLv:!o7Fq. ц% !4[c` &>gˆ蛙u)(V**UdV/v| KETۥǖW#Fo2NTu J#p-[ʏi% h6no{9ZnȊ[zd,ħK85ɬ97%6<1`<  oeoW&b쉼-\6}s&[JrFd*4蹂+^]2 ?rMX{>%Xrn:D\֯Fv5S0åLULGV1*Ctȏ$tY+,B23Uẁً-ܙ<&z?lG]R)s??`x|2htsY}[&tFѷrY'QJ׃ (OԜC X\^۲U_?Ji`3T-+IA#~g'8WK-wo[a?8黭q(ܐ }" Ͼ~G.3.ޑ/ط^5yoA#Cĺʅj\zhVd#Җeo_@hGV1:&*N)dV*37KJXk^RqH*~ C5 Y:Mݪ׭;`>ἛÀ!OgHLԁV+r5]v-V;vWXirz -yY#OE)hg>+%ڥrIidJAOα٧!3n8z;+lsFgm'Je.f)TWj<4O>P蹸︂@ TȪ5%<Kbι fyB !Ã(}bp΂^85*EDHfCWO]P{ 7#|d#WϢX&lnŒ♁YGkf'̸w1o/&K˙+յ]y-0oꀄ]t,,7SL .FnZA6t:P=w;tgSy5KՃAe"67ExF߅cdhr9h1GQKF( zol\sB"RU\3 P^k {^96n\nB OpG,s8ղLPf4dΈd >7%T%+8-1_ r3QsHB#6S}@\C>}^YB `OQ8Qs~Nz::)3FaeXy%D}2l86*:Bxx-wsiݬƠT_ L?e"F#{py?tDxQi] ,2llv:+@rI,3N- 0օD1.f:w|r W _-ɽT#cc cosxɭuX0mX-ΒYiȸCA&}*.r."u|t-Xx(aB!`j@OX B]D^=K'qM*k$2lv߸g.f 6<̒ψΫLwTa#Õ;S'z<{<@.p֍*-X>q4$P/Ƴ52F肳Xpf赼lW(2Jգ%;TSyÝ4=dviNJCj)WSJ){>"`.݉r<,Y.tʹ( j\{aj~s6I%12u* !_DgpVVjV]`U< ]j v s3!JеMFo*A=YGMFpǗRbW;H1)ӄ$DWa4turao6bLz001 H EtNBȵߡqJ nI_=AƎRn1VuF.daպkbU`HibshbV{xt:B]9ühL :-P] 1U5B_G ĮGGoT阣HweG: J蘤S_"vZ zwqh0:.472_ NdWF10 /S:,My -'/轏ш¬1 VK7a&B5逩!H/ G WRn9uxjgFG(z5Ni:Ԃ*e+Ez7tܪ %,e冎tgMe q2Yű*'cΌ̷N?U3ZG@Yc3x)|ǣK*'"+BX-pLzBqZNd .[*nXOKS:'i/m0!s>/]88sbjPϽIl$)#m؆`s=N،"bYpz](>ic_ya ɴ} (O2Sn?uQ/>jdYUw\oSs%NŬu '!SA½}}_vM(R\)S/D& ֈƥt>k/F>8_Q; ~zQ5%kOx^δhw`X[9I3zfK#9ӏE^ eT=6)O| gb8!w/3vz~Ё BHY}g )ZĒEOqLheRͥ>m/+62g&E2+A6ooe9AXqI0Tgj &*>댷NG$lDE}`֎O)RZuq]6^ pePRlM7/$љl2Ћ >0gJ+7unb˙EvcSa0ƾvؤ nF=5&¢"}ܗICkq|T^,Onԟy%[}kY.E_17Wc}3EX`wsFÚl޼ DQ3#|9O,)7 b{)hEGx^:U*4֌|]SP8pVo Æ`H Yb[>> k' hA5 .PnSf-9ʅ;q: t޳#`K-ܥ~K ;i`V |XmDPڒ]<[Qb30AnیOy&yK WjbV_$WGfG%cYaW^PDg< \Kp#pŢ+rW% ][EQ}[-`TiKHN^EOg`$Z8j=+ۢAz҇n)wS;SIysŢyAΨ%VXMIKI?}\oX|3*,}KNq :VhYRcNæYs ㎁"gF 羗S[pLJyEK6*DJW]~ m Zc42|c֫A!^;;tB!e*6HE1li=WMttrI#vsFpPGQOR,9һ㍪ф&DOIWC令j_w}~zg֜\>D9Jt6Jt=T1Mɯ5? QqR(E/ưx? ~q}0]2;]+ƊZy`гi|faƃ\1YH(\rUV -7ţ>MqN𻳛fYîTgNG&$rWt o'6\> . k{Mﰶ5qvT |' *ݿ×%!QqېӺ ORշC$osȥ+_)kc7BKȜx:l=YdmݫZUQ%T??ONhX ٚ+rS= C+K|";䰂[xA2iv@@P4hѾ8:;(UV IjjC`rNH^ ;%F"e-'@>w&OǛq)$z`d/[=#_U_u8vBǜ +bv1oܩOc(3k{;=%laiiimQ J kb7"շuC| {$RX5 z^[2DT\ol3"qQOǺ,keښ*A+Aj77m%Ǝ%V;G˸C]Td\ RDOQcm+?XkZO+dv ٹƽ;qmk?,=E?HM~`(n+?x~xŠ ɥ@Yv.|b/O9 Vgv[ɩ.!z2y?4[V>A{e&k+@%&'Z8.C>:w;8"KH!\a#i>9ŒXj&ڜU&YvdwscS3Қ_dD}l'2ag); 6Qڣ,լ?׏k Fd+œ;c`/b>&CT 'tz? U^喔c" Q,b +LH:G]nch4yp`ْx'e5&ڏ]g#z-D*3b[Fhs7Ү\ͪ18c[48յ~7o"}.FQSՖ7՟:|QKdpf1H;!_AΔ(]>Ի=qH}‘:4L6֞.ܛpQn.C5]r;ݼ@u3j|uU2>ͪv+!́ 8©>kkhAc" DoƸk~ 1n+$L]fͷ,c|גt|熐XOùƔ[s&c_Gpk ZS#9KL(g#ypO:c^tRw ayFԭmsԮQ ,ռ2ڹRc]d2wiT0`yϥ.zZFeVT*>d. DB(65*<#5Ș>q'TnwJJn#ߧaׂg%ẫDQ|!ݖl9xLͻ@W;b\gxmbwhVSR.]R+/!6}\\LP-s)Y 9)%𭩛5Sٰ3>^-?kԵUzU?{HtބHX ^qg07vǤ 1܊-K:(>hE_6=~sW7N=^kStruǻxXX PxVD%U]bG;Y t  l|1 w%cTϥ\Ne zR(Hwĩgӿ=a`i9|[ r^% } ֬kGߔ'bF4lvEC}H֮:ectTj{ }KH]kQ WdL'f:ճ~l;D'.M1yRh;;6f96z * g❿L2|uHXI 53[p\+UwJO'HE eM)R?_k 8a\C i$_e:;^ #iًAc1|](ILrj( s*F&"^ {$ѣ=< ]?i6]!1G1<\q$;"pOwV&艩QZ, &̐Ԣ{a2 Cf a82^9t xț25v_+5ZM&MZsFZq}O-鹹{M.Bo߸Vy3ۖ&fü\yn*>+ %[D@{f}x5RVYqr;O;2cM2D෇  q=1C1t^*&I::􈔢ׂ26=QBo`Euu~((>feЋ!K$3#QN#/J$a!5ӲV'KVzJPQu]a$ƄӋۗ"l5)N?Dj>~5#SOʕZŻҵuI7*#$5O9bRv;QoZHQF,^h1zE B!hl >vQcu\nj?y׸L~FaE :/]s1yrȇڟ F c%_?”"8_./0,#VLM'@? 4S[kq5 "-n:K1,.)! 7}8BfFDꗆQ.y_ %j!m_rL @vcD%?V+$O&ge 5#P9 ʒ<%`ق{|ub=h™Ǝ܎flK*`%|`ɡ<}{;{$vbzFOFQ3Db܂oQKo$S7.&h.? ĠiMA(e_Umh;ZrN@~l(ܬ"oT%X|v}G[xx;Lψ*i@Iqˋ3}Q r#繕7܏\rA/Mʵ7Tw\ ZT\%YW/o j1!Rr-$ W&GiUli^"_,qle*8}|jX H`"܊MRP bc0FoS3F,9(9Ni\UXzؾ<|_0:T8 w9Wl)|Cx`עblKzh];{?wݐ[4S%LQpђ:eQ!o':31׾\j0ʮ }>z jv,Ă|2Ifޠ(ds\r ~dbe* "~Nܭ~"c=,[4;ca߈ s$296݉^0~YwAsB("KLOU:)>>h]Uؾ=-2B1H5:J8COZݛv[wT'?0t)<0!fUN3g-<ڕHѧM$G.2w!63WQqٶRP=.I?Q:=rW>eμvŬvda;]ldXLQ|-ks6>k!I﷾eo= \(C %kț-䧻j `O%9Y,*N,MZibT1$ޥC.>vɻV'5IpKTVMrO wKvl=F/ w*o2*$Odj)Z̚;`WƧԟ}.(hCm1<)`@a>4oP;No.Θs &J}ޒo{~PJ88Ytd2i;t#մw85~~j3<Kq /3ovz+ ,ix fLw1#p n׆ܝo m ;U`;[Afb #Y. EMEj}M7)D31ZC$ iehS񦆍"l9tN}k|v9`ŷSgv{_!Mwf* gO]Gs0ҽdx}l Ds`<ڌң9,dsePs7txJW x3)sMzݳljO_+H-T X0zGLYz>N1⏈JFl+NX櫪n*VC罪c bs8vg!J6i\PZ(cMQ{pmgh9c,Ȼ=ݿW)9``EBk̕wc%;[Sl>u|!`E̚@v$8&!C"N5eOzkSa=Cct=!ݟ5O3>XZ0ײboW~# D5wJshy,`Y9R 􄦈M>=B .sbjj1CgO-E!gnM߈9<ٯ_ۑ >; h6.ДϠCapOƗޜ'1ndi`qc{)f&NP"պ0 n~%a]1ck۫Ep+ GiL窴zϜ/܀7%-I8@7q QH;"l& Oz${E8BW+H@1t 3ɦT VόhGLÓbt/̄ [NNYNIISUpE0g{qXvf# d%GG =Sj'v; :mR'IxHP014J6ܬH}NRw_'c6n]# bjVc\m eܮ̓ߍǖPc ٢gʘ~tu5jm3Bx\ (z]k! VĄ=RP1yjjE[%#,±iwـ%ݤTɘ̜*Y6(K 㛏==pƒ HPy/ wI7"dcKQ1Ay_uAE1j|j &(q?{[\UAp.bxk,ځ[=x^%Bl[[vÆoS0FB:-+NrwZ19wpn1W1}쒱6yбjew `F?7v+| COo-KV{1^@&D[Fe¨WwLj$]lA{G;k5/y{f$T-F<*C`=>`Üac ե[Q 1mZVVc':O. *80KKkQێ_ ]3gvV?ED%RYUlZPE52.,C-?T.Bp+EU1e%8ݷǨ-k!+lx= ޞ.g-oV9cv,F^DɁ b;e)El Ϗsr)ta|%l1Op(xӱ@{Xlu}m?d ^uG!f&yWj{FQ9Ѫ(Pn+18h7wn(w5{.\zHN혈3n*iT |&W)_2|݉A_Hzqf;eYm{bB"!גm9#r,PKǩgnw(W`BqHG3 O(fǁks,*r{\irY/~8^LQop;-_dNVU)`ǒ~4ze>t̳5<g 2yvŰe=0 ~nGJ:hށW;}<eR+)6HB%}i|Bm]Զk=" QL&;zݖХm)~)khs'"iqTD9WROֱ< 6NF2%.N/fEsܻxq!^-u95kI}F͊z+e{|0^ϵrKVsP =[ lf{6E6$'nuArV6`ide@XP?T)ŗӎ!jc)pQZh\=1Ybf8Eڊ42RE {f wYFуOv]kYU#p^>SrI${޳$h 0cº$}*jx[|A$n˓;m_ eZةCEfR4236XVIet@SƏ>!QtGG4j[A`Y CG11sVw0}5-:0To/P^h+؁=>x Q>sC#2Φ/kx˙B& Y-G CtK9UTUX04^g4O,T85~HX5GzSm Q-W5mԗpʪ!:av^:vzYECA2 )hv': YmS|`z 9_Lh ?`(vؙ+ 1єb&hΪ {gSx[e_I'ocV`% D_s؞RQ,/XZ D֒D"lX]W(;RZw7.b=iXzZ~`sYV:[~'#+ykCRP*ɥڇp:"3)ʾ˂MQEiF~=t;FV_Hш/(^0F[;( w^~s3Pa+뤩̀:;\jB_ 5G53碂P9:-AԠRq.iyvu.(3ؚRJAzhiRSLWW3+4x:>)z". Z#`߷]^ao 5{vX´(J!bm 2O9P%껄ЂHe\A|mqTJئګu}61~ 8g Vg"0~FLfRfG_Πlqk+ dZktoRҩ[о^d)d4|X8nQ%蛠E VB%f7TXVڢ\-M竔ijhnn@({ a8o=/TȺ7id)+> stream xڍP\۶.{@!4H7.;w `{{sWW]z}ߘU5-!@ؕM `cdac@Pk]@@3닝2 Ppsyyll18 Ae tA8z9m\_@gA`e tYf6@f _!l\]XY=<;[)p "C{=2I-?]) eI!(eAxǿvLQz=6{LdRԮNgp1$iS۱dq[SqQs|<5:ZHF8wKaN&.aWMmXM12A:om!DwT|X,A=?/ۖdqMYzkmğ- /ʻU;V6T=7fKg+`sfu+D#PPO=Nm}/O,!p#eǵf3&Y2~$U!M+"{,:{byu~(1!_Lщ7ufcK'B?d7j1˻Lġqz=+A$,GSu'{C.{ՕY}'KITqbV_߂37>|eT@QwQoVi}a-iݵ#mS=G58~WjDV2ko؇11;Rvf(C}Yd?.v#{&( tQ#µ7ꄑP<@?I^_ep 3: ,py=+9e֌@A'.&жC(aJ杉GЂ_#PjNLQ|e/dԘxl~) |w /"V)`#_ZBЯ6p.g`R` !~o[RͨML9ő czE >h_CLbW޽;%G\h#@k 93%&$(șy&*O8E.MflQVͬ?p().F$"zIkTx2Ŗ2Tϯ>i2?++v}_q%ģXGOk/hĕgffiiCƋ'G,cU^[&ƫ4Mvn5d_ ]yPK^'%w>M5CZljܓe}G:aaNxu3Kn^~ÉCL!%U$']2vh7$sKr>q;ě~ ,6aPϨK˚Av3~uWʔ՚c}%潺/;$$iG&r4DGҦe ۦZ7E-ϳQ ?;T=sI^oDimS`uEy3U h2u~fi n˷+~Qc?z[ 4oѾoz_8< LIK`XX8vP ,o\\E$]釥|9uQ)E}Z?O|^-uyW^M2…'dv#,ק;RJެp OrZ< QtZXxkcnzN6-d_~m!J\6VA,KNj&MGu?R#˕./h\8WeWQ¿ ^}V\̘#fѾ%hJ*w1vO) zjgY(ө(}y+Zp(b)!MX^5uѠZؾaNcߣ5K//^MgƋ HȄ=g*7=SRx0lU9^yޜ58$3zi/nJ<_ x{krj 1+BE1 $IkiAlbNUͳaCY2#I$LWiC4m%U42Ѐm7TFvg_bkެ>2nbMVBpgQ"W)yǎk-ZqةBLʹRGlA{Žb~b RIAET*N.Kq9>/[}xxT Ps-_w4+MIq!s+o1m!vp dSq;u6_|b ïu Iͼ Yi=2+Ŋe[A {¬tޏ<&:4~T>-e'"PYW>, r[Gxo,pB9j( l]e_8KnܣY tS#C˻%c3tз& Zf'5yc#70[HEqXzi?NژKE۩4Np mI`A eo2F)Zv ژPoQkʹtԇKqGLC!Ke>wLg Mp! @~.%x]+LU;x?N' v,!B:{1 l@`"iNc87#,X^X ηjDvBus훯DKەq ܙ+aSEEb?PdJ Ru իM}FIn]|a5~ta1"/'4]pc*c"JE sfc_U'5GNQ`1zIK K_gC)o3&zv}#Yd)6OmvU H [UKM-AJv=erIE+p:w z EI1erP"JeފZ6̺}g;f#; zݸjF5LЪo %a6s4'tlilt_.O1͌']8ThH#+Lf|D1>2VxQfAO;D ՔK+Mj$ݹ̕tP~˫ 1)ns.݅w}2)9bUiv${5KװÒ,T4 \"׉̦.x?*ѢQ| ;0)D(ekYZk7(Ecl̹)ڐ:67sYoz wS a3YUi7djte0䅴 /MDs:-uGFV> } a'6:I<֐X OeuB[ ;>4߈]SeY_t7DVn#*}ާ 7UP{d8*;·/ˁGwDiXA h7?0\Nrl~auo[9YzT3Y~j7Dxv6dARht$Q2BB}W>nCV:%[Ͻ#^6$ TJ&}egS{DP&¤Ju9!_aFRS -7T_N_ }H8C>`TR_gTbϲR|?؝빶Y#cdƏiӦ#Xg UbZl(E WB^{T AWJ|(6|~xꨝ2Ak6GotLY$,TmAzMo_ fTyؑF5r%!;R)!mW8"[")D[eܴ%xc?3]udi3$kK['c6DJ*jqHziupEn\Iʔ7)F!<,('laaj"XnFj%R9 HM!<0Л M^k;DF572 >:DqX% Z7LfqȒNU8]C)z OgxiZIWR#qz~k:fE{K"i1ˮЊ``!}NSW'@Ֆ3+уʄST K#ȬlZ<2Bpcvl>O *|6Ū7Q UŅte2 <`Qd"'cSU.Gs #bZl%Y# fZ?Y$XrG#G1[XtTih 7] Wr:U /b#i3%8b][H3b*NFVN`'IRF#ez41j-@a L_vF{my@ P&lK9L;u7E>ބp#Wb(q5Y'U>/-P\Q.6ۺץM|U%_))Ytt9b"G^ӁLO%E9]BCA5Y5vij=|#r ??5-H &FVݎXRwGÓnjP_s\T.^} C=ddL^"چAAfY.Ya#R _ڜ$WY 9ۨA5WȌFsQVr9s.J}[qtr}"5u- BqP~ !pbLfA - e o "J_EU {C3w"ezO3KO^i֮_[ViIjD"Ğe+~\/ *SIG"UId/nnݒp 2ЃLVMZ`|2a2TI4cr4Z?=R.3$G"laY4'Po{\U0(@20z @S5NV2(ى<'bj.pX.>*WΟwT7}Kw:_ͮY ֺ+;szb~z.VY `(Qк:ux)4gyuا >nd~zZOY~Zx[fY||uIٿc@.Te P:e-6%+MAO͗QEFiC0Y9U xʠ&Vȣݸ630Q?0?܆6|}06ST&Yv[?Q}fMo'Oh:b@ŮXg'G8] {^qvRu ~JaY6ˌQ`m`=ڄK3PWk;~c:cޖrQ\"oiVMv'lY}O nG_CJz.ߪt'|_2Սx3Rt#Mŵ-SJ.st~HrxBҬV6VICCKS)gJn32.$$$noJ2<0DHPjMwn3@B@|̰m1JbMU=ܧLpfZ+H.+ X놾Cj'.qqH0JIpIF }WqYѥ6%*(Qq\ٷ< 3Swq4ugf䨪<\OHcbןH?VZJ*MET8 >pHTY6$6HӠU<wn cLj&Y|@5LY:I83:Zd\~4n0@3MUѧ'|@f,@(e2IqUJfB༃3컬ாW{ާkC"; QOLҎ9 Jiz\?>?,AV&u](+ 92f!CWkf/v5QXXmgZI) FmWSNk߫E8o2&sSHˑ Qg]:8q'ZĘߴosz:%1e+p41 7hX&p3 IDk.эfҷA*q;um;uF^ѧ=){?*tw-@4?/;Hq;\>y ~^V7=% Y=5\J Ta#=,z_r ܖf~& 2rP{f@);rG*LWǶm?w 1 fUG b .!q>dp=*pg Q5rlX+Z>Vyt%NK/h2aʽXcQ,Z6,ϣbt6Gˑ>\Ւh"QmyԎHIFH u&<,sOмbtJҍQXB}6-U;>!qIswf-Z1ƣK!}/)"uKo( z*;Tc}jl¯*Zny_w[[8(n+kbTX{gEahiVQMꏢgQUpkr[KǢew䏭IJOV]`k!bOA2'q*H,ߪ*L67{z0l1RߦEI:1~ ӗC\P3ER( Q$RD>Lmf.n4qxgJBt0*ݦbэAY': -YA&˖?]ҥ-k>|C\=]dW0{B}V2BPkG rsSf|a &hssqB\j]ȩѷј/kz=Ud-T;Kq ~ZrwbѵEOE]C'f14Gny_ Z~!o^ +^jriF +iާ*Ez\M=%c "'.ΝQh'3% Bkw9.<&[ƠQyOLite !8}w=#5[C.kf.0-ٴ'ufݩD/"15"qg>yCtVXm-H#jNFK^  6윅 #U}]m_̯$|5Ҿw盪 %{7Ƞ|1i2[h-t3hP ӑM]N%'%VnQzOK%oVI,Hŵp)EftGGAڻ"sW7U8#a1f!ٜW{GeW)?bFn:* e] gcWaI l'YD!M6RjYx7{*҉]5bvk.r]2 EgzߺY,gh`4A'Rٗ]!_ JFd/%8 Cto.kJҒNCvR,'*?8YG!LN }8jAahT+Bž'`Iqi ߾i:Oj\N_v['&LJQ endstream endobj 269 0 obj << /Length1 1439 /Length2 6781 /Length3 0 /Length 7763 /Filter /FlateDecode >> stream xڍvTZ6!t 1H#)50CH7H -) JJ~Yk{~YƤk'g)à> $@AK_ (_PPl _d@a6 P@QI @HPP?0$@ là |6@%ӎ sv6P :0فA|@I x{{۸zx`@{h۸~Ə0t{ `o8 `; j7^_W@`og;;  u8! &?@@<`(/0e;qU_yn~0W .Y jsuASAv[V(g;*M v)eArvN~aT~n07PpOP&`;Q3A_W(mà7W@DU_wS0$(OHDk+ |ՠ0ğdQ>_w,mJ ?7C}e_Q|=!,/`m\x^=(kPoǠ?{7À%=H.aG*p_CA0/5Uv.G54>R j5]B"8bND=[~( r 8)* Pj7" FIo @ Ë|A?RQ[J:*@HNsJ9:o!q/f-8\YOr}ה8Odg6D45]_Y%n4.*WŀGg(oـަΖ)NGvݩ*۬ո{U2gkR46{ǀMz$89'}5|˨ăPI߅2C!44 '~/ԩ,&)[W\!ۜlÒ4j1KɮELهKHb :[X5UhQOiiRd-G5/Or>Z`,N HIp"tt.j38W]kʟ JmtKԶӡW.7XtrR%_iܽeT8l@BxAͩуGu)Fj7#լ6&)qۣY\l8ӎԏ)==D0 1Gn]J2D2mŃu$,-sb6.*ޱ@둨3=Lu,Dⳉ`l@,SBӃI›nGxH rʥRq'g3~6"K=wu5uWv$3}/(؈<_G VD~5+ XMl hzȥU1,6|!.ҝbID:@ S!•\ /2u F!@ǸU員 oynihu?b>=4#<)y48)IjMjJ̺wI&@mAv6ux(L}UPg{?i"[VɌygTr|U~nvw΀۟ZHi;)w9 УW2\wee嵗TZMND0L=w3͟ L\&8 ;Ȫ,id?:E;;b Fmw6ƷX;se/! +m57M"~py$sE: G?;Z7+ĝ[}iv`MW:Pq,/_ %qόdmOg}%_v %?ђ\ J>nxx.=; $;@_fp-ϵGe}|wT!-1-J& Lx:u|Y Κ-؜  ,p7;߇c1Aֽ~Z!Hb}NQ59Ө{nNd;P&ۈ)M:ozFQj&BaCz7s=Eq4%')(bWWiMF)8đ4Q6 sH&yp+>@hX`ʉV|jR5&j,гEh:_x 9zw+Y^h7]j2fq}ͽj|MmWo 2V05%T8R=YٵI_ kɑ= 1;/ͣބ)Nԝ/뮄%f`O7QzA~ڝάsR[f}gYJ9Zh~1̿"e5+D#\iwtcE5C6UL|oVM2y؅O)i>X6y)Y%wv0f#Y_q#h^oWH D)."|Ki&a dxB4AXݍV"e2kKx wm"{͜dT-?Sf<ؐ9]qrݟx[ 28tQKViQأ7ON>IMυӟbYA@oM^6جP2U@1M urx)nWMqsU`3|iE^9=ˉDttѬ} U ḓP`u,o,zҴA6/LW'_QbY!ԳK){qԏs^?wf)| TӴjY3|#*={FǶ\zq$P~7 DyԐy|쩸._du5:Rw~]bM t9g#,as(K%wk7b,qyᩲڭr*}u2iWVk׷l6> Q>Z?L-.>^"UsSEt´}gKCh ا{?5S=paoQͽ':DpdYJC޸'S儓kӴ[{CWv갠EoTST_Z($*E\G@f:;# k#23 (8K'(kW|=beew6Wi1=Y;9v/ 2M9ۚw+<$C&^%4,T:˫QH؍JZlG۱2Ըv68Rz\(gjqf߁g$1.xxЊr*2L~K62پ'\BU\;)) i%Dgފ7'-%fGY6Jf )8Qbݕث0/YE } >8NRqNZo`_*Ow)~j{~!8oxp(](j 0NySZ{hF쐸>?Bc-LEPVN09k/Ɓu ]7XYܘXW3w8[ dS^>v g2E'Wf EԇbLhCCeqT~&XCZ_upJ{kR71?!40U'Ԅl_GvjűZdJOj_| Ljnɹwފr}rSKΩ͙3qYn}IT2Bt[/xI4;q pưK{z1S3>t_}pJQ[;O-Y(t6kd\y4zp^+yµR+68` ~cl4C5F3tϕ%jh|}5ݸA@'j>CE〸bVÕ:#-EIrpsHr&"Va4Hn6CM=#OR$͕\ )qј `|&ч\1 !ͻG~lj>0XH~]TOMwFa}N3kBk‹զOP}'Ԕ{^: % X~0L{>+܀yn`U}pÊ>m0ݦuE} rTB1K-w4,Cs3z+dk ? E] FA d tL*ϚoBo)ht ej:d# \_\@.rbob~SЧ@uNuCʏc O-4#&~I-HxAR) ٳ|1N*χ~ŏ]2q'_M_gF"VnVS޲--h^t[%!>o,Y嚷J;o-U:zЄdṿ)"sӦvdQ3s\ݻ2u9wx^ҖX=dΙ^ڻyl &1)S`~y/ Pa T¥D?EC 53E&a՞%]n%a6;!z>Qd` zŐ!s %ٲlT]z8GlƊGob3)6|")2֥r_c*z.(B 3;l>"[Gli_> 煎!`\jk Jc[±g +߿ m$z^v]o%|ʾa_-`$}0qޗ|2GM)9l׽ ȻW] "sPp쵮9Q͈gr8 ?.R͟&y:ij杕!`D(xHs磡̓,OQncqo22-hHd-1fL6*!|pL:%O*vS36Kn9d~iy[#r2 67PrZ`rAJ&PHu옱#ٌ+: yN}sXkIA=฾O"+J]ؔVXM$̚I&ކ?_д&>:4~F~!Y wK|8۱Პ^v^7yjNg2G_SȋC5Y%Ֆ5TVQ-1afKY,Ҽ*#%T?eV0?OrI5@lc1y3Cg(pOB]͗jUFXad΁-7aDf ּz\>\elbK}o9'ϮzsJȰW~8AÀħ] .5708!߬%iYO|ȠDLv*vәwCNyCشds|?\I;(bwdvD,Pп?mLX'!ү@ⒻΒ{zx'&]J-w۵}z^Xv<29lw1}&;xUrU4.\}M$h혮ZCϚհȔqc^Idgm̵!& t՘bxi7g}O9JcOuKfiW>ӈ~eugFh @g,\߼ViJZ#$}W1iL; sq endstream endobj 271 0 obj << /Length1 1505 /Length2 6802 /Length3 0 /Length 7813 /Filter /FlateDecode >> stream xڍT6tI3FZZKJ Ɔl4HwwJIҭt}ys}}sogL ;7>#HM 7fBEDg'ЁWC/ooh `a ]@~>iDlA޿`uO9?J~_=YfARQ^ DΣkĪpvQO5w@8KR.o[ Qor_YBߎݠv?3\7$j Y j nkUCڠAfR4#^GpB Ӆ T75oP G@~0(~ 脺E(i6P3u`@ݯaظx[>^ 8pW_+R A8E~W  # 9(C:_* qAQ/+j Eg@7!W5r<_FVV;#"l>Y*ڽNם+:xDS[?)v`M\'9Jԣ'zjiΞl2s*-zG'bPrA̔FC6cbYEYǑg@]ʷPZ7ZZzߗ.tZS-*[)w8i"1G &/|PL]ƶTtTa[‐[B=3R˧tن"֤ȳVۡ] eU Az0)XuZSҲK3MBVTWOc-Sb_ʋB\& 7Sd4djLn~}4eLo7o?SL&vd&6 _|$1RAj»9sr1u:U$Ȋύ3 jnehIL9ӿ^/,*|q~J4%l˛M,4&+{nu(T. 42k'qto{:SЬɪS LxY=N{~zfR-=dQwRud"$acH/ub0^IxpgH=A$+a(n ~uK3Oç>kû3~os`v3Se- bɵ0gԛw4"n9H?Y);cH*} W^1Pu-j-٩%45~ /am͊3Ko jx*e`sdvꍛA$ib;l1pUf|X;se9%ODlTw4]Ώrͨ lpq~Ovyڑ+[q.evU2hK@pMyC|S[d49ÁX$V'½ۺKCx CI]ee;'i]s N^$q I^.4dGqc˪l[of _RvmڈHp6fSmG8svU=_hyZ XOhc>w~rC[I(6|>8|0'GT-ت13+\EWjH[q^<2k1?ace?(G ,՚R`q^:i4=P{-WT؃0=f%8J̏.wc9 -fh z_ZK+ūd GzSqc$i򽺠C΅bܨuwܵUDK r- 'Iݪh1>YR)iiMȽ]0W<3ptQֆQ{}kyxѷU~('grU8uW6RZu ? =Z\ Py| i!JUS,;sO?3XEJ}%U,mwe`mḜ rI=5\ƍO>/p/Md&,jX)B~K ,tBl~훍뛰qx(jnͤmLLn6"K!oK2=\Ú|+IDN'U7) !sV[y<@4]gCpxlMZZܤPNڔQjJo+֦ܰ:x܈,E I ׆븫H^3Be)2ԛm |jfK,%><=ͷ&+ yJƜXn.AA5X! rԲO U\"M3!o˸WǸ3ڏldmxE6GVҏ8BpCb_+sN$F}8fyvQwlLaU `悙_na9ɑ~gl?zy̔mҸeK"ؠ-0s\5- nd\(QPټstɵSqayi5{C"Fof4vYB!pi4'iHvT; qn%c ,L1>|Osf(hܩð.~2z]w22zu_*zuN_1gOz37{w.)oS,KP] iEp6Z G< +Ox)zhՁre N4a w*=Ӷ[i+xj$xI]Qc>SA^\GU+Q-hyY06mAg>seL1/|;ED\W m<B7V޶8V2o& SLiF9ǙRqE(V~&?`VM@{X9{Fx>V Y;rPz8U( 'TM5CReؕ >0y^xL>Ty9.s d0FɧD}Y 3XGA (ft#ؕJc約^"/k7v/mYA=?xQ R`~気gw?ߋP`E$'^;>YM(xa0탋;^cI, Eit;}}> RwL#6d7n[Vq~У*9I;~%o+Zebo=+[(Ǯsmc{}9pȗIzQ;}VӯS83y|t[jtf˺9e!m)y6B q4ϱ@MNFLB *dfRi:XpDJ>'P8`Hbh^pYzP b}23QIk~Ώt)fl7+wDIS̨2/> (G|\%Akݒ%B|וuU9,bK33|R3m;[Ш'y ?јH{*79҈O/hKwRM})+!K9n>j / j15gmSJ- ƦyC#rdqӫ$OncSߊZYckŒ@P$5-Pj_hIhB},GfC~;N;dq}D9x}UKvv H/꼱B-K&+Habq_)ێ%vD_4x+NPyhAe{j }}ORĸ雄v *{1}'E_GX}\Ĭ!8cu_{彷 1Y5ETq-F|{H,$T\UK S pI/fIcdK6k<і wx"z3-9H \h=Һ8z1g*0=#|t|iȚu|fȌǟ[I%E͈+tOZR F_ Ut"S0[ӺނѡŐǒvB?C|'g9tOguU #7xRR}uxZO dB 8ϛģfHg~BwfgSwJ7/Xhk؜_B0X_Eސk7#$-v|n&N K/ >3N^~u;prkۡbg鷖%js90J]Z}s]0}ܪU;1KkrlnS9C)љ~Z os,cK8y>z VڀtrS^ͳSwT;\crsM Uw}fr3A;'r4U R/y(x4Ei: N &| U`&ƭۼN-T^,qQrt)R+0Q4~wsZ&r5?+g endstream endobj 273 0 obj << /Length1 1377 /Length2 6085 /Length3 0 /Length 7036 /Filter /FlateDecode >> stream xڍvT6)%2@FJw`&lmAENETix{=;g~s_TTriXQ0$P7@@H u5SZ8 )hAx> r%`iy<Djo8蠐0 *bepdD~04 C0`rðPtb=|||BA@?)xfp)Ax; #P/0zz"wN7W"8w0 qp jX cPx7q~wh( qB= kD_i𷬎՟ s_;Nfݐ(߃3 u5C iM) :Jov{<!`pgh/XvDp',GR'; ss/ ؀@>~t{b憖f&OE I*.3 B(ܟf_6e“mAR 'ConH[pCpw_^X ]0zYW鄂4FCp <ĥ`0D(,>1BSZ@ ǸIN^h4^gyoQ`0'iB轺жZe6DH),߻W=, Ohա Oǧ؄vrQY]C}ej-q+8F c t^MfH9_"v,>T?0dHaQMBj4~hq2I̗D|kzJv΋DŽ<L* VǚK]B>uZLcK@<xnxrٞZ֡yؔ i-k)i6u' kwi#ڟHh/)huVg0lhlWR [ ]/~-%iū ,ۂ"RϾ|DXL7D!j"$Y&Rֹ㾱F l:K2)&*R\t4 z1zRïS!g tk+>+ 0};EH09%&/(ӡ5;&Hh^f.7ZdNj˦%p*]awUy\e';, 5SG6 l]. 49gڡ2aV["[B= t`S%vN 骧+v[2{=ߖCms&[j~ơyO:#G~)q3p/R!%3iVcET-7?|6;ZP.Рvf#K*'#VEKH+|8'qBKEpQp+d*WQx&";>a֗ot3yz5t[s\-bVhxBri=tfEtmDxoGDJ'+1YuҊLE1Bַ 8ˇ(*p[ mjE|kYVxa6%:OK]'#DCb GQ36OU#C鯡m썾7חWe?\f_߯-_ʧ[hQ ?5QO ,JBY{1C~lNB@tA3SW[Ꝉ ezn%LXQ(!}dBTN͠ށTMƏzKjnjh &5M%}Yjl۴liW-kcfx7?̧K {Px"G'E =Vӥn,~`LvWy@kT}Zp7Wo<@(AwVe@p̤*8Xyc~RH{βdLNpi`IA7YʴiW o8|iGZ |QD>5&áܽ 嫇P\}my3} sglbhpNH-V3]*Ejkۥ, 0k3Q}L$5pu|x1 :fYA@1>$&=RhgO7FM. *\]қl:8뵸fq&WQ)Nശn?={̲}铿5 =4(&uîє[!M%#O9u+ 䎵|\)_ dJ`/K~+ܝ8<%^oBV3o }(뼾H|8ГeUPtDHk" `.QbE,7_G ,GjF2ϣPQn;Ie@ϊ@-"{DsՎE@̏ku48v=x{(^s w|pަjv`L3~WTsztzNe s.L֋ :"8ԤV]Wy7[N8kJϼfi&4@.(#'d0ȝa[TX-IjA5Uk?`%;ߑC n }x_Ͳ&$ZR24q{2=^Ƭ[jzZpJOn^Uqx{ JHҍ9HYk/ zӭ*u)ޢ&%<3jMjA+DW9ڌ)x׵. R[Oqf|9A7Nq1UDEP'-L['=5Ԩ~\ۈ OHB6O NMkS+΁Aҳ@愱c4AJzs* R&GXo]-,֚/p'r%XAs& ;H,펥-\R^fqԘr?&l*Ȃ!dLgε8/C{B_2ҝW MDJ⼯mk/ujyoTOt{k/.tE aؒR.JNz?[DbS\YH/ ]7aKI(?˞8ⷛI.}dc!z|s[~w'2mv:7v/ͽt!ӾTx1VHt{*ԓi:Yjwb[L}溦IS+K0}Gf3+!?@P󯛸lںo!{;Oi:uۖ) ?Oz .}(-ܓ?ERqVݟqU'Jh_qѝ63뭜zjH۫T` d^=5[ű(sW{}Z},Io`b+xд&evhVFj% #MnhС#\f@SA"/ ڣj  s?LGU(/?„K1 Q mt;ʇKZ[W}i)I )-G &!{eviZYZ\~Lyk;'UQD]{Jo 8:!%voy=Ѯݠ37y(?g37,S[9!I |l1'@m4j4 aţoH Y߈YU20OdNT(Ny62>s^'oe)Bȴkg=<%VȐ7 [ԂMx)Vv2O`$B/HB+yo] -_ w+$Y]T|J<~*lrx\y t/m`ϡ\1ʿkQ#P(귥?bxL& TX~-:!֘:&4y&AvMGtJ82+@itUXzSm;)#L 'USPg&I36Pm >|=;ӝ}0:2eD[7,L1X> WR7Ēg#Ji_hM?i OBijs_%P}vij~bk=vOF>p3{GF61u$idqG;?vպ8)0; 3<&4D1z_dyK$JkvX4ī?X+2zVcH'0{s/-^ #:L1);e_ .wSC7UZCo^c F6`u"?{[̖p4G$J?tt$,OnZ6LD@-ۣpk1͸Pщ%m23?3ζE|Rpyvǫ$c-zKEc#>ĵ9u'/$ ztQ@W%6)"Зr5 : j.&b[ cV(>z<9sJN,[MTKقJsL}@:Ƙ>0L`)Xfj+1۾lt`i曔/䛘@&4ΰhrDaiL+W i=2b[m/:z;|9K{9U,Tb-O%qwAN[:[]V^认#(yj}fFS:.' LL{zU.?.;v8wS!5{1.Ȗ`f+mKˬn<|?V8ʲF4MIU&G˦gtmQ=%t%Ο4ù,_ܐrc[aUM|Ttm}ka!,I/7Ƴm3rsyi-Jԟ9,2];o8we%ϩolĹQܭ 1 6©!zo M{t%l`{cMIIˏ*&Ql4uH}mk3_Ȃަ^h30hgR;uiQs 7nC]NR> TqڧttHjYx>(Ճ Lm >|h QPZ),dp9q-%$ 9q-6ZV d>QfK 1\2VL()ЪK?$ |Rj_mN44G&K ޯ$"UJbD?<n5 endstream endobj 275 0 obj << /Length1 1378 /Length2 6060 /Length3 0 /Length 7008 /Filter /FlateDecode >> stream xڍuT6-N etNam ) J(!) "%-HHt<9{vu羮 Ma(; UM,e"" 1)kp )h8A8> pEDDDb""r@5'uPH8rA#2zB҂Áʮp4 A!XG+"4AAp?R;bnr^^^ +B;( XG1G{a_B\& AÁ8  GbpH h ?`?A߻DoD`ru }H=4a@ qpObP6BpE#ܰkD_ip\]H,?5]:#Q^H{fkV 9@IY)) Y : JoeMrㆀ  b * !X'; s-EpG/  kR3}**(oPHVR(**# 3! j#Q@?_{%_q. Z8?$D;_Y_$4<\\~y7#'}NZVCxW A#HD@xa,e~I0_\p:/8:ҙFC|"8:'$ @aŅq3Qh!3n z8οU {áqvӫ*ef/oI澶D'YvEIb'9]qWy+їn8Y1<̿y4mݖ<޵-{C19 JG/Rm=2ILyl1~..R\xނY]_P1cs[ b-8b?XZS&PfC8cEpB懙9];R4:l}=trt1x*%I]#g !]S`نwkXcΕG{lDJ!Xv׫ԢMQy䓙-5:oJ^ „y {sG =yL?7x797+;8K^IȎfU8'U47̧fnH/jug$s{ twϻ%Uy+>+nnDþq+>͊@d 0 nO.qQsc =(*kK^m~cw ?a}}t eOH0|Pwߡkawо[ G(>\(Y\3{DQЮL]ɫBsOQAa0w!,_#$+$.yMaroUg9\cV `+@4, R%L/%S=;C:9nɚ?\cs!lwR֡1;>r\ѺuvV>LMdln Und7lԆ yh!y"? mn7:x_$V]$} ( %侦0PHFHHCTƢΦOݿQ$|u |"#Y={бK/?WĈ@(G˒@A@:U&R7-ENК}#àNqV3:7G-9,ˬ+T;YUD@Nڒ4(i!;]Dzʢ޻C|`![C}C&ZaZ.1pf7t\s:$_3UJOl~,ƍN0N@c҇yeSO؊W^闒H}SFt͔% y#c<"c)5/1g=}'{l>6*yODj"tjxĚ #.*-LZyU+(K?- Yl@IW^2}ˢW`B-Mڇ@N@r=Ƭk{ܻuq+VCdKnuwNKUԀTgjMh^mΈs5c5 F]蟡w+m+)U({;_>!:#\\O\Fp+SG:CSͻ16 V&g͌3r- R? EG(:I6; x ^zVOY0+nZ5F!T:%gҐf0)ro()ؾ n9q](5~v#ƙ6 |k`rŖ|#_7?fҥt3wA4},G#͕5Rg;wIBuyY;y:I)] ()me2PˎE޽Jjr?J)T|{9J4b_OWM77\\Ӹ^4^aиcCavM<ڗ.7E<9Y ;EKsZ#CL־ D}h2o}iȓ1HS4m s◧yԦ땶>r(3)_\hCGO3%iX3p N=-Un޻=Sg3\t_!K9#QB+:Q=uYa_+5׺7(tyiz xuA̭I(ܵ@ƵՅ)do,pkpR+j>69d6-/ICQ/ Ela0IkQ2xI~JIekVwtRZ :iͩ䥄eA! k[E5C'RG).^~%4:ߜP'p}nrh2JA mƘS\tQ1{Y\AȭޝV"$lzC "5-|,/9y2_VFmǎ$w pbg}ӷ"JG"CQL/ZĄXc,$lC>M\OTDtTUfzHK|>`}WX -˺A(jo}R2B[Dq.F$ RQ} -׷)^P>7cP\Myo>ԇ~GUAH!ӵLJF{$(-]rəoZwd:sܣڕtUчL$ʖIAyn ] !mW( zB ހ{M֙Υ;gx-r?I6T]dpg-K, z)>ׅt $W#"Z7t@60T9~LأG3ɱ[$߰m{>sJ|h,k7p=>ev؇8wFw 5Vb<t9!][0;Xh3Y\^^s.㉖$K"ZjH>(|9H0NClG゚8N=Bv}*G ܻZ;&v0,bp1~B E]|l֏d,8Ha9&aT\M^zd\#.l;MI0=¯uOй;\CvK\B_gI9 Nj~Ě[S/[Y{ڔu EeAkQd/H~!מʗP_t} Nl۾sABd8vNi/Rfv_uw&N3y=@;˓^ܐ%ԑ~r[<ּ90(wuW0>Emv3TC*|,ɺ9a<0#U/_?0kX͏=k =ь"҄w)qJ[ {qꛜ:U-O7z;{ #}QyH7'i=yso${9' [\‹GXaGPrٌ|Hz{G LiΙL= 5J:#ͼ;Au<_ i k[+3QxN"m-}+"-פ( !H<Vn>]rk"ggW2}3cyz(el玔~7t}<*r܊bUpqK#l+srwE.(o&1a%TXTh4+'ؽ洈/iD9,*RvL\iH,5dyH:hг%)>)q+i1Rw0mٞkd^jӪmnň[Dz* k&S}iBF|]}ȖjNc<1enADGr6Wk eIpSjy'(LM:JgO~hRYߙ  Q*<&XNJn>6'}A5~~ұjwʲR5ˡM> stream xڍT-\(PKpE;  ŝR(Z8ŵZ#{FH\vh(T5X-@2PvV@RYSrH44[v$ 'g=T_ I'˳M器l(9<@ h$2uXY P3 \G9p bn (AvMm89;Y00!.`:bjk4V$&C x6BAPW \!xIV Y߉ ?MLb QbupaB-~MmML!fτ?Z7ȈL'k>gs'33l~0.<y /l8|o@V(?ٟ ?;A<g?y2|V=G&))'qJH{Y8y,vv '<+{e4@ׂ0;rAn???v$jkOoj\W-PRA2j^ymZ=+,YB\O}@Aΐ7s?%3yE C]Wjno{8yNNHgEqpsٟlP{K{'ߦ?/'M?g_>籴[ r6ȿsYA>ۿS=adn/܆ 3H8X; M~n_?<#؛ Xׄ\WlrpF#joHmI ݜqD͉wLmEݬbs>5m~G ׵[3c ;+rl)pB-&O63weh?_U^D"D il,Q->9&O|*6zD*{3ֻP Nx'Ch2&:o 7sjTWcUJ! $Z?xTrm4\}3f"_Ob,'ř*0Bzf.s sBc OYFkJӊmT@Q.{|_p.5x^=k [O|ȗA_ ~-f^Ӗ9w]"ƱPfu#&MU|Ƅ(8.SjMxtwAu~\Wo"'( B"R[0[;/'c}DĪ{eNVL(@Zt Wf{t*t<|F1D?r5C (]84JK7+9?F{f"jG8)U26pɵUԑSɫ]g[]PJ85)E ]gK}D-eSEYW>T[hJoO0.X;^Pkc #jeR2r-oS9a@c-_06; n5JY/ɿ?"`:NÕHK6D Ζ9MՃ?/^GeXnDvw`\bp<%m\ِ 17sv@]0=eQ`aQRF\l()21Xe &A,LrG> aX!TA N#GKBCzvp4?j,~Ijs2&U~01WcQzh\ϋJJ\s'Ԍr>LOAF+_%H7G a !6#ŀ ׿K(}: bD b0Å7ͫChFQٮڤ1+=U&GY QJt.f]8-\Þbx`^Q\p)Lt$ (ýz+fs.LUѸ__۬;oDseKtUqJ柚w$N7k󷋿␗q}S q B g7U?-F3X'nP(Qoei7@|xR\mCZC!@ڌ2P`.fO8S@x*uu'@;g'Hj NU:_=SZt2?q\MC0 O=eFq?.R %X4W8m 2o]=/)/YTK_TJGlN5vFF,0skRP ׌( %1.57ŭ{`#Jٞ(΂*)޷ef}dxp/wf4u~XלdAZU4qcB*~?`Cc06Do!aQt*FB1lɾ }̟eM֒gEH&uGKiv*|>2Sq\ZR\RMŞH ʯLxm,7WlR$ kc"!=nx}_Pu 0Lspث%iѡR]y "Kvt{Qhݙę+"0<'7CF7B(>RE%$Iz; 侷ȧgC6v[ bc#3c Dl\ȺFo1ڏQLm"PTi[XR +]h-Ɓw4eɷƧCK*f.IomSH7J1;\b;YwP^֨RX;+sH8$W5}Uope?Ēʳ.?XzNn@+ٗxtKn*я^\ ZĞ`H*r.og"Ja =gEcH_wɬ9s`v;>7\.w.pN,qr؃ٱ9I;Dt} Ä`UZsg C_#d99!VV ŮKJ(iQ{e_ 2nв~T$g~YsiP;B(Y]LI$_ϡ/z[^36]`DW:q8xE-"] ?sVt·0;`^tK_/`Υ妸P7MNRZH2cP52AKW{jVeZc-g9V1Ct賹$2P9^s grEOH 5z[XTZfΘpAږ؊Sg+3F>8fTO#9Fu Hq:|GnDȘ$J*2ub`fE͑(ePj[(PNE'=M*P~'c%rmD6=zbisʨ]?a]9_(@姾8玆!s8$R*KtP&"S,-VLDHˈw=7S)8r;"paY`wݥiHP'P퍺>8M_m@{Nλ%\Sς.G^/9Lq߬U3 H(Q4x#,ZKhƒrkfW4p&ɪ5𲦊m5_Q"6J11+E|;%XoBпU5^K=6CC7<0wbZ>S!3>Mg|9 w#I< 'ݵ/O#0fѼwX]yB9Rҗj`TױjR9 aIZGݝFF T?L]KGyN]͞m-Z9ik 59gDaURD 5D U׺XwD%TX}2]d.:Kނ]3귋tVK\Kmmws9ƄJHYA9ryTC; QۗEoJY.U8v^ɯwH1j.npz,:;q|D4u+{ʠbJnbnXVAtj~;Z4ExpBp$Stn(τŝ{hᾩX2;ΛTE OeUxJU=hyќE\ .lm'_[/%eRŊNylr:Q(໷5вCP]}hףUGIގO1:ID]FVx1lz I6k3#wtėkʺ9> !nux&+q]&!cfٻdχ^V=33b(.: Re勅s71X0G֏}츶٪ȋ3jvt̯* Ҹ:9c5SUQMk!E}%=pl6y[^ji\koAh}uu{SDe r[9BsW Յd>rgy4Ycu0P {uư 'daY(&ZްmI#mJ٨MK\y?%9% Vh.O>;\85Cae7^SBebJC;1>A-xa̗pf: 䨝'idѤo0|j02\ҏw#WOn8+Qw5-`]i~xZm>T@۵aoY5.*&F}޲G-QB.s佼 Fh}4' *?| xp1 M`/%3>js0PvZt|#YeuER^"eb5ZXIۘhblGp0&fF~KP57l+6aGRJk8lE-K4my3ԭԘCQr֘kJZO! ]fO!W~v`Bv?lU}V5+m& /1'a?I.tb&0Qhx+={O IJݪ#Î>3+I5 IrFѡϹaEKE*ַ zEsЧg?GFQ}KX72N<3 .اBEi%ǃCIȭ5F,WƭGsDzhI_-~w%|ygNT檲Aիeygq'f餱DUl'cRUs'iF""ܴa.̔)4Sji dkq K/J`K+or @٫pdk߲؍0HZ_EruEI+%:)D>jMë s؈Ǚ/wMݍH'$UدBH;HhdOę#W}w ^>4ܲ1Ea@Un'*G: TUGDgv>fƧxCM }xD}uUDGpqfctn 3"ܧ^hq˧#I{%!1g^]v_ǽne(>ڪmp$_5I snw0'#9c(d+;Wz0֛sI?}l-q'YŽ6- k/L;kw4(k[)$[3!Lž#ܹeo:<&pi<-&PMLc|h"-?d!V/Tv1ݿMNT巓Hauhi EdDȪ,V4&Ɛ."8JrO YSr4+"P8XEh8bJC<u' ,<kbS[ N6Q\.DbxآK ۅ8.IJdXb(`.^K̐#ZJΉ#&MxL1T1gPzT R0_wCI#<3J] 5ó ԕTaA@9M;]w)TaѺ -D^2`HMi|U ĖK):gZsOS\!7W%;ڤ9QE|22Pۏ8h3I*9v)?4]&j:i>˕`YjK*5/5 #V7,2gH6 u *vo qYz`9计- d/ULȈGy1 M$tF씃qwkR3O[ |CrI  kgd_ ߽Ĝ|mHS2:-޾svE*/ Nes7!ExxU9Ns0k+<Ի)Q,URhqPGA*_Hm !GJ=X9.[u9z /[nZn1ଉ* (⠘k_8)6+?U,r xQafj7x\\tiJcߒiugDTr9̡1UC"or*cC_^ŔGRSޚ ٹ.~av%/,&Y8=E_#˪'bl^FOn.64+ʽp("|:z&-]80SF{jeuGoekV{xP(TCnէ9\ }b,ٹ_#G4 N@j oBpND WLHi^U0?2 MG7]<68tbۆ^ vh2I% zx:[K])ls={"teJ] ƔQ&ku43chH,^魅ay#7S/'ۍ_g7Kϔ0f ;&Gf /uo-jdl;c/sBr3qi 2׫N@)8̳2衷.oc9}Jt&]6Jl|C3|@M9Qh.Nj]X=zMIFokbDp>fbG)IXbo7mYoF]08 E{\9|7Μ?qoޫrL;qrHzMcx(FRp,^~=ѝ]"s&UJI\pɺӔ' 4hRBcP` B2-5YrIF*U[mkRn79|Q3:~ϲ#zgk"'6;-dsJձ'aPlE.q(1d7 Ia’7bx||pU(Sv\ ܻ2ܾI3tiwWň;44ԯ2*~3Q> stream xڍT/L%%ҍC 04HIwtw%xǽxuf߿yޡ&WVe1%,l155v'  5: !!4rč `[5`c ؁ n 2(d@ dnG =/u dbd P0r@=YT& ptgeuqqa13\@  4Nhd'5j7Clb@ -dk t@TeJv@ۿ`S; md dk0YJ,L#[߂F0Tdmd +t#;48!,YYT lcuO4ݍZق]l=@f0ucU;ePh@G7kNNt5`@7;  A9N2LA&c9: 4CrAǏ>tLnOU]Mᝄ6?)<\n.7[Q6ۓw*'`&-E0tn1cf3~?_*3u7"I'kt F6 k$s0tlWT*MAN6˕q4A$A@Se_7YYl``fgctL:o&`K0rp0rCaN77@׿b v}P~*7>!^z `B|V/U XU qXeԟSxBPOO_O A=@3{Rkro6OP'P4ZqA[ifgCJZ-B1 ֿ-d <ڲ.Sݠml=YOACmbӬvOl;l_b߭愆H(_4\Y; N`Gu=Bh ;4' @o}@oCf?M)-hcrtP@L5zuB[3Ԓ;D6qrKz\MP&57U"D.[\hgH;o9sfE:&nW8~5ZiYxյ"o0yb @8usښ7|wx;Ad5'%HTq]nqHn8" לpm"im"_d goH$nSz8{K`Ak)Dhvriowxޏ&7$^h3 *Gs5;)Q:4lJql _g0׍bEрL*,<%j^1t/L y%~JK:<=>JGPeʄ,{zqSvv7ym6]VaZpvyFѿsnuX;,J:'g1UGVm f+a4 ~ J.Bᆂ*8/O\VEQ5/1OI`tp,N}(p0\j 4(n*Gkv_LuEz$ѣA~΂:OX,K1<fElPrq iP>OQ2MC|EZ^#F_[_5U#z֌{:IǠ=IScL䜅JWޤ;\LEՏxFfMA܊`$^,_=o["= I_[hV{D%žweS'@p:> 1ܘm..a Ӷn VK TΨd|qm),XC;t֯/KQY\4j |ӵD J̒R/}K&nq}~ajgNS[D0/~\[(eEjdO-/*D ܟ>B.xQ/QQ(@{Vnқ۲RPpcv3Vԥ*%./ըׄn@^ .HBWJ@SO5*õ8Z*.lenGcL}opH2 KޏNɏ4oi ΍TEsV.G)D>_ \l&c1(, KH.üKd@AixV[xj 2o!6}z (Qnm>-N`Ml3?ۮ.2[dv^뤸E` !wSDhyQb?M_4f1W#(s1gZ Qc[s|:рİЈwU}[NBW氲hկ(¶/a-0?yE*I_9n=ᴪUNJfbFmsk;;U&&O1] cp8EDn~q 9!nY^v\PcұO{L.3%`᫬v+ ֻ.S~Zޭ|3 Qeܚ"4ïIQ=g(PUԺ4jvl.;Y T&AƠV༜jJ?s:GC@0Gabgufϖ6aТ_P'(= 3nJ7!"c%:a#Aa9z7ӣN _b D!E'H 2vxt{V`p gP ?Ga˂^B>lMZpUŅ:1uu*gOĭױutĴ$Hۤ?"J*Le2:b[T\rqOx*P(j쪖4e+guϷSx|u !zOR5z 6d{ЋG.VBޫ5IRV2Q ۨw'Hő896Pg5 F%bir~꽛rIvW>2#gs`k1tݸuiaVV,4`lE+a:D+T5Z:/G;.3EQ/fX\9ukņX>_ߔ±);(&ffRHǺ3:W$8!?##֨ђ>v9"?QmQ<bޚpovbb__L8Q"j,'Ԣ8Ղd#Q|r^5?9x|HNUOZyU(V2D3|Nńxg;3dygQ%~h]q6GV.<Ot`l˳o ՜.@ Q46fhƋ%MHH ,Rni5MifjQѶH 5o1>-Qxq7q 882df,x^h/At{/\*|\PzśI}p_\:L|34ܜ7.1,0mU5"ٽU0m=rk8G%K7w6n(W,B~;(}|>};يMuцLWsm e@/˔`0"Q>h /j n[ `o\_;}Lf8J1VRrMSz/9F*ç&6$K~(ݒ%Bet$ djW 2*MO,$pQ<`gHts\PvOoë7 Q9֔[Z#CQ)dl/f) N~dƆlKsf8ۭG^P)+耽r ]ae A遘Xڠq^>œsSb 8:7,'W!t'!uv-=6Y=yۑ7^ זe`"x_ ƸO# ވb_4OlF5|&r`r̾a>klc,G@UTQ gJ5G߮8u~K}>B~\b3dó )oZ!]l]] Q!DoQF;n25> ?x@QvpIB)SQ$u:8MkNe ~eIȚvk[4jB:Z}vDDtorIU]+S,aSfIDG]yvkuy@ ;t{K:}@έhp-,l֑Ydd6H=QeR#1@r_i^HbeP~16#'aqb;!ywevJd29 OLvo̸aЪٯ*I!<.J"/!ta!XOT.Ve%Uq63q.̵j x>oݐLaK9*tDŧ)6B%T6(JyR'% rԟ )06K^Tv8A l҅~ImV"HSwY Qh݆ޜN\+WY`\mjgC:c*Tens.wqvqL E8d}_/'lXD?m;hYƣcu,ǑmW NeyVS9b6] $sցUdAS ɝT84qI5Ǻ,QXSۆݥB}e<zL0,G, =>p n7eC2")sdpQD^]c-Q@pyѠLc%E/*Y_Rqג-\g?0L.c֏ز2ih40;-TᰍU)-^!!9%)R1úTd,5Dht Y_Ťyv[bAz֊%P8HAe@G)uؕwm=a$\WYΪ&...WKulA D<8yZ;o$38דdLݡa! (%f[Pv\5ǜg??c$O$/lf8vu@S!h|o|'R`9-$KKUp+ z_)ۃ R}[4ߛ1TO'TO66c\18<'|O%5W5djU(/0iX *z6ʳ"㫱nRA.pc'u H8ɹk;29F+pʋ yzc/;‱n%M9BIdȉɁdkożf5Tm]T&#]/T}Ez.C9P@@rWvy0[3_b]ޥX<|*,_5yZ \'3@% .ŭ#eo: 52]v7M@Yѳf" KX J.|*3I{OwM6cS e8F]y$׭cݏ&ݘ G,8Z|0tCP`|FrC>KoHC|/j3DB@զj7.Hk\{ vru»j-nKZۄ>b+?H@M}J޽G4=|LGvGv>k jϾ+W @]^|oR+r@;~D][%2z8q6qs_NPя٠)>оiefg/d#n&(d.G{"M2~G1`iG)leX;&.<ަu@ CIX]G_{w48"EK[qx,' ƲM$ϣj>Ϧ鎞cþʝ!jgC q~*ҙU{z1k3XJ?WɋJ!*zSk2LDrސm=>j᠖V,&MnܰWJvs-":Dz~Нz85ql~5ȫ1Wo|`g4,KN{ۜE\{F5"Ps'kFmq:~w3W ~Uq!Wȹo~4[*W~Xw ,I% !*"8!sܧ&vRq`DU:A@qEB<}@~#:l8LjД Yc]zǝF?D+jI\15kW5Ï?Kx)%> Xf}-3yS/:f_n:YȚSf5۷U܊ifvϗ<_Ǔ8z0٢vf-hGO?srkM='δ[h$C!eu4L)4a h/2ckD;CEF};1CdeyVRdzz\аBFXTRoԈǺ|^o|fB_>yu_.rꅠLh Y1Ao87b3 vr2& 7[5|?4j>#>>ePcx'#jDRNB,ڇ @}-zq \]\r5+t cc@,07\m$ ﭻc^\낯n¹ZNjM ism7v|5] ĘRI%P q7gGw*nWЀ>M/˯5Xi^lm n-J6++ S||y@?K-t¤\,V7!;`Lwyqa/K[d^aQ2n2HG9{;++y#v }n?Fsc2#.GG%:=vJIGc+g5 n/Q̓VV>f1| %#A箯m Pܘ)ӽ/N.Gdw~pV0jS{(t"f2\IUˣ<}{%Kb>G{1|~Ejy:#V 9Y5ǩ"}_ayO,-XjKgWr zk~5%aY3T5|v>׼q 2 Vwۻ0ÞYR?SYk00hjU(/a ? S"w݂R'$Es.7|`]ȇJII ETRNчGcl4r닣qW6&T+ux%"!5<#z^&6W{ FBNݹ_˸paL&FAncldq>_G,=>jY2A;@vo $A¯r}UǾB檛,TƎ5d49X/0bL_Hբ.%>TQ$ [J ³ 23>&Н /9brLsM˫ '.bQŠ(gل`dm%bI._lo~$O|rQ-qQ}@ T܌/,P;)~)jdNr+쐭y8? y+lQ Yʕ!Q7:56>M{GD>!,6!-Qƒt5 z<%XLPG\S^׫?sH?޽-5ۖךF?e%M|3n!mCasJD>/tMmlnԑ $X=ƙ ?ҵ DHTG.g`8i=e9@?z9w3g=TT 9Dzn{1A @xn0!Mf!ouu t/,!r V;As#Fo4wbDR)QWiaB 2Wd&r4 V([׎qo/\&5|O>F! {4Eݢr3޷:L%D. " |lK{7T\uM=xqk )h9z. @8p ^$>0- Rfŷ~5j(єk'.(3q  1wIx U5 RZng5bž鳫ڜWX;{B}^uLI`ĕS\rH~?` JiERr~jV+Ph6P}r@gG=65ͥ~mJ1DH Ò+5񅍦yiNWyt2H~eJzLlj0# WxVHc5Da0Ы'f?/]u݇ㅮn+o5.N !&LY3reqnM+a`\{UgwgV2-w}{[_ؙNP:6auRs\T~v4ҌR&aCX:gɺE$V: 4{Zľ-v`؜RֆW/Qw:< 7ޯU)Χ%Xv(}hYo䟧ci'LPb' Sg3VS|V-*ɒ8^EijK-Wk Ąc{tAd~iJ)sI$kNr (@"_hdt4ɑl qDHߒ0 ֙? ia7w-#@b?^)Q"Hכ*>%MCN'w3.h8a?) ߾fn7ű$($.;6Eܔ*!w IP$eb R|:j$&pJ9'/N紡\H'PʹgAm@g+e 'ďX$6n*rѝ!u3꾍RHmC2==?*88􎘵nVr͆$ 1{ "As5I)1Z_uƛ؇n >y?g~"1DZ)A'֗~s#hܭFWh-WTc-W2#a9یCI:,E!K+q;XaE]Gzg<4??9edI\GFb ;HQAYworڊ'h+̤zn/<^{DZ%ᱯfzu9 gLUW֌JG)D‘Lmq6YՐF wB+]Qwf}(zH/Dj=&r\Nϛ xWQzip,)>~tcMxv`'e%Vz]#ʶ6BTk)oEC D6Qiy8?m`=II^7J-<(qU6z;뚋"+ԀO%Kf@9CT%%%޻:f.VdR^I-rъrSscGÙWD'`ʫ=)G񙤛bڂ[HjBVz )};Z孃ڲ%Ø W}:?PSf_r֧0N%?R]|A_["+v]M" c#h_4ojqL L}}A1fF0z˰NmKErv;*<+I!{L{hC*\-&өb.1$/)XԩbᴩU9n!}/h}C35{?ޭWGc YG3_ tє@t׾I|T{&Zo%W}QZiȹ88&6Iޝ#Q˘]l`u|dUTiz:z0UؐPMX&cv 8`cwH1m):H,;kׂԡ+_v)X[?g>Gͫ&,*\I*cm./RKam .1y !AϯDmjMyn>;uPbkVQ/m J^ ^_^ߚ U2{Jz }&Vn`"K64{L0~%N;2]}M=M>vÖ҅ dKz-':Jo~9-7jqywtB{"IOh;6& bjǁrhB h/;<==?/Q? GAԅJ6˝UKJ:fFҋDC04 o \3sEF2X#sVXٍ26 A%HKBH-AJgkS2u#Пı"ЮPtń7_v/#qh?`:A\x%RF?.SVqہ}TbsK&RsF;8\NIR'M-W#&cү8l; qфvMͪڐ, +Z5hg^.SU Lp;V,l .`K*zJ`NA.I\sP !nJ˻LEv"}Q's!?Nx0Ť9C}O ߽WE'8q7Ed\GّuV P1XXs;gvH[Kɴ6Pٱ)swPd2 QV{["FzQw:g! *ٸ] endstream endobj 170 0 obj << /Type /ObjStm /N 100 /First 890 /Length 3972 /Filter /FlateDecode >> stream x[koܸ޿B'X(ɋľL20r[u#̯S~Htb MSdŪ:*Rt.+2|&~.dJs̔W2Sά k2t6s=x&&twY0:ÿBf|5,zP"LI  ԫIMˤqck,Z%b_X,bPFd ઊH"SZPc>SFҚyd\A (H ހ$ ?U[XqS',:d0z1bjq5,VNƕs&u7ew8苋a )ݪ?5XeY [t˺+דU9X 4V3dgұ3-Ez_Oz :7'f<} G/\^&l 6'j^շqvFƻ zҖ#`2$QPgl-;+}T`S¼0""Bx$7 QȢnTbx0`+bn/aWhMAQz<6 VmĆBuڊ،{)eox - 1ݒX\lઅڌ杁V ͨ\E9=j0vf8Cݬ##v*H#"VA qrpxRYA[0nT\vh1M"H^ -{X{n&݃PWtQFvP *vԚKU1/ڛAƷytgN򻺉7wv5An*d[ukc|,8#dz}@3GJZ-,TXU$4::rvБyGe_E\ĨT7E5[%~L*Қ:[F7+8Z{>djjǩP6QsOejaT֬i h@Za.BQD^֔~&Dr6MgmͺM5(!6 :2dmɢ@/aMǒU~A8C8SңޔY jZK=f6O7~4mi@6M5M2LA^Լ/YLCMzRpc*lziT'b<3S͒mCV+'̬G]-gHT:kgM 7Pö3~I%\KR:x*CJ g6,.CM"7#ƾbJIQFC| yi˥K8FY ":M0!NK5+)eEPP!1\-aה vΫ|RsգFjд2EMkNfxj8"ͦ2Oݏ7d5iqeM@lrLԩ2l浻WM929#ߩtrT"}^`?$a@{+cq\`E2%2a:tjZM [6QyRFe5K-GiK Ӧ~cip}A}IC>-uv~8퐜񏓚H5F9]+'BHj0ⶨ-(4T6*qj) BR<:mtTy[h+cDgӹi8&*/%pxi9uaZL?yĜ*͌@ME_ZnG?^{AgT*pHJr p|-r!Bgo\&zζrZNinS6זʩ,:%oT$S^S+X (SjE4A'oByi=P*Nw(qaʓw.sliblI3'5M˧"%Sݰcs2n$k7{Yjַ0]ǥ'{kORW^2(]Vg?GRj>$[B7/ou%u^_舓qu+]vħ E0u9۾Ğx&Łx.^#Jĉ8]}77,>ӿZhσP\kqZ|=q#b J܊[Ϥ;T:m5w1#1_J*ğOf^ԐGYK>}˯XӧGXkIU0}n}u4 mBMhd$m.}|~| $;:= Kn~!-q.RjX!-W1Dy#7 7Z'7pT_m ~qyKQMMHn{+G@DL;VSX}o+?ׯA6m`-* BtNU;S5tr'?>=d!Æc2JY<>l1IV.\G#:h;o !b[z_!~#  ~'l={}RYnwۛxV#e|FS.m+ؓӟmU])wA"cֶmuE`õnd:oYgh`PçW Xţ޻;g<ޫ6|;xvWnۅ~(_/ʡ]~ji3\L[mN凷Oa*SOt{ XQ3uSR_9:|RmnW0X;9×o(n@WP?rQFQQ3_r䐾!}8}9dԕ^}oz>" %`ЭL#/xQO\^+vֳn%jsN4;d1r4tΘb >n_ P-[Ҽ1Y6#X*gzo{wfz\^@X^@HX/`尷+ -Ȇ;2{Կ/{H>,37mha|fVW endstream endobj 297 0 obj << /Author()/Title()/Subject()/Creator(LaTeX with hyperref)/Producer(pdfTeX-1.40.20)/Keywords() /CreationDate (D:20200203191838+01'00') /ModDate (D:20200203191838+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019) kpathsea version 6.3.1) >> endobj 281 0 obj << /Type /ObjStm /N 48 /First 395 /Length 1362 /Filter /FlateDecode >> stream xڝXN#9}Wh.ߥHvfEyb"1%hv;v.W9ui51A@pPK$ Q QD C&FRC}iqPrA10,1GmA[))A4D(ӊzHњHԳ$=F8)HkA89<0.$AՐ/icHQT3Բ=HtEQl7ҩ.[2&%` $"!Y Ps|DHt+K"4BK:q4Rs=\~l4ٟ+B&Go~\2yj}Z˕ Kzj]OWXxNmni _/躀nz萢3Ϯ<;*5ϒnx=wY axPI>֣t`{>_UOaMg0fь<̥&UC,|kی&̍y?mxԏ1ȡn Õ584i) gJBZ,~i^1clKԀag8X11=Lv|MfI932&^j"KLtbd^Q-d4"H.hr"AE"Xn!I*"ҊXWZnjr61H;W 1A, DU 1nҗ $\Ʋ`6i2Tܚbf`>6Kޏ)4K 6xL3+cY`&P˾O?+㨹m.u*9 }|Nz]m.`g/󞏍/F& endstream endobj 298 0 obj << /Type /XRef /Index [0 299] /Size 299 /W [1 3 1] /Root 296 0 R /Info 297 0 R /ID [<6A36729A9F042EBE31C534CD73D1C09A> <6A36729A9F042EBE31C534CD73D1C09A>] /Length 746 /Filter /FlateDecode >> stream x%oOA9zUJEUZRJ[עZV.+DHH$6V+_ +koTbc#$Š>o7O9s΄¿L`:Zu& hۈ *Q)X*PY t㕣r@.ۀ` SxQ[Z yR*P[K+hB`7:-.'~ E*c88C08z-\89}6-U9 I0)0 Fi*4XRŮR3K*ϲ@JMIkȸ8҅tUr u5X\)Y|Ubq: endstream endobj startxref 391567 %%EOF glmmTMB/inst/doc/mcmc.rmd0000644000176200001440000001151313614324717014727 0ustar liggesusers--- title: "post-hoc MCMC with glmmTMB" author: "Ben Bolker" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{post-hoc MCMC} %\VignetteEngine{knitr::rmarkdown} \usepackage[utf8]{inputenc} --- One commonly requested feature is to be able to run a *post hoc* Markov chain Monte Carlo analysis based on the results of a frequentist fit. This is often a reasonable shortcut for computing confidence intervals and p-values that allow for finite-sized samples rather than relying on asymptotic sampling distributions. This vignette shows an example of such an analysis. Some caveats: - when using such a "pseudo-Bayesian" approach, be aware that using a scaled likelihood (implicit, improper priors) can often cause problems, especially when the model is poorly constrained by the data - in particular, models with poorly constrained random effects (singular or nearly singular) are likely to give bad results - as shown below, even models that are well-behaved for frequentist fitting may need stronger priors to give well-behaved MCMC results - as with all MCMC analysis, it is the *user's responsibility to check for proper mixing and convergence of the chains* before drawing conclusions - the first MCMC sampler illustrated below is simple (Metropolis with a multivariate normal candidate distribution). Users who want to do MCMC sampling on a regular basis should consider the [tmbstan package](https://CRAN.R-project.org/package=tmbstan), which does much more efficient hybrid/Hamiltonian Monte Carlo sampling. ```{r knitr_setup, include=FALSE, message=FALSE} library(knitr) opts_chunk$set(echo = TRUE) rc <- knitr::read_chunk rc(system.file("vignette_data","mcmc.R",package="glmmTMB")) ``` Load packages: ```{r libs,message=FALSE} library(glmmTMB) library(coda) ## MCMC utilities library(reshape2) ## for melt() ## graphics library(lattice) library(ggplot2); theme_set(theme_bw()) ``` Fit basic model: ```{r fit1} ``` Set up for MCMC: define scaled log-posterior function (in this case the log-likelihood function); extract coefficients and variance-covariance matrices as starting points. ```{r setup} ``` This is a basic block Metropolis sampler, based on Florian Hartig's code [here](https://theoreticalecology.wordpress.com/2010/09/17/metropolis-hastings-mcmc-in-r/). ```{r run_MCMC} ``` Run the chain: ```{r do_run_MCMC,eval=FALSE} ``` ```{r load_MCMC, echo=FALSE} L <- load(system.file("vignette_data", "mcmc.rda", package="glmmTMB")) ``` (running this chain takes `r round(t1["elapsed"],1)` seconds) Add more informative names and transform correlation parameter (see vignette on covariance structures and parameters): ```{r add_names} colnames(m1) <- c(names(fixef(fm1)[[1]]), "log(sigma)", c("log(sd_Intercept)","log(sd_Days)","cor")) m1[,"cor"] <- sapply(m1[,"cor"],get_cor) ``` ```{r traceplot,fig.width=7} xyplot(m1,layout=c(2,3),asp="fill") ``` The trace plots are poor, especially for the correlation; the effective sample size backs this up, as would any other diagnostics we did. ```{r effsize} print(effectiveSize(m1),digits=3) ``` **In a real analysis we would stop and fix the mixing/convergence problems before proceeding**; for this simple sampler, some of our choices would be (1) simply run the chain for longer; (2) tune the candidate distribution (e.g. by using `tune` to scale some parameters, or perhaps by switching to a multivariate Student t distribution [see the `mvtnorm` package]); (3) add regularizing priors. Ignoring the problems and proceeding, we can compute column-wise quantiles or highest posterior density intervals (`coda::HPDinterval`) to get confidence intervals. Plotting posterior distributions, omitting the intercept because it's on a very different scale. ```{r violins,echo=FALSE} ggplot(reshape2::melt(as.matrix(m1[,-1])),aes(x=Var2,y=value))+ geom_violin(fill="gray")+coord_flip()+labs(x="") ``` ## tmbstan The `tmbstan` package allows direct, simple access to a hybrid/Hamiltonian Monte Carlo algorithm for sampling from a TMB object; the `$obj` component of a `glmmTMB` fit is such an object. (To run this example you'll need to install the `tmbstan` package and its dependencies.) ```{r do_tmbstan,eval=FALSE} ``` (running this command, which creates 4 chains, takes `r round(t2["elapsed"],1)` seconds) However, there are many indications (warning messages; trace plots) that the correlation parameter needs to a more informative prior. (In the plot below, the correlation parameter is shown on its unconstrained scale; the actual correlation would be $\theta_3/\sqrt{1+\theta_3^2}$.) ```{r show_traceplot,echo=FALSE,fig.width=8,fig.height=5} library(png) library(grid) img <- readPNG(system.file("vignette_data","tmbstan_traceplot.png",package="glmmTMB")) grid.raster(img) ``` ## To do - solve mixing for cor parameter - more complex example - e.g. `Owls` glmmTMB/inst/doc/model_evaluation.R0000644000176200001440000001746313616061774016773 0ustar liggesusers## ----setopts,echo=FALSE,message=FALSE------------------------------------ library("knitr") opts_chunk$set(fig.width=5,fig.height=5, out.width="0.8\\textwidth",echo=TRUE) ## https://tex.stackexchange.com/questions/148188/knitr-xcolor-incompatible-color-definition/254482 knit_hooks$set(document = function(x) {sub('\\usepackage[]{color}', '\\usepackage{xcolor}', x, fixed = TRUE)}) Rver <- paste(R.version$major,R.version$minor,sep=".") used.pkgs <- c("glmmTMB","bbmle") ## packages to report below ## ----packages,message=FALSE---------------------------------------------- library(glmmTMB) library(car) library(emmeans) library(effects) library(multcomp) library(MuMIn) library(DHARMa) library(broom) library(broom.mixed) library(dotwhisker) library(ggplot2); theme_set(theme_bw()) library(texreg) library(xtable) library(huxtable) ## retrieve slow stuff L <- load(system.file("vignette_data","model_evaluation.rda", package="glmmTMB")) ## ----examples,eval=FALSE------------------------------------------------- # owls_nb1 <- glmmTMB(SiblingNegotiation ~ FoodTreatment*SexParent + # (1|Nest)+offset(log(BroodSize)), # contrasts=list(FoodTreatment="contr.sum", # SexParent="contr.sum"), # family = nbinom1, # zi = ~1, data=Owls) ## ----fit_model3,cache=TRUE----------------------------------------------- data("cbpp",package="lme4") cbpp_b1 <- glmmTMB(incidence/size~period+(1|herd), weights=size,family=binomial, data=cbpp) ## simulated three-term Beta example set.seed(1001) dd <- data.frame(z=rbeta(1000,shape1=2,shape2=3), a=rnorm(1000),b=rnorm(1000),c=rnorm(1000)) simex_b1 <- glmmTMB(z~a*b*c,family=beta_family,data=dd) ## ----dharma_sim,eval=FALSE,message=FALSE--------------------------------- # owls_nb1_simres <- simulateResiduals(owls_nb1) ## ----dharma_plotfig,fig.width=8,fig.height=4----------------------------- plot(owls_nb1_simres) ## ----caranova1----------------------------------------------------------- if (requireNamespace("car") && getRversion() >= "3.6.0") { Anova(owls_nb1) ## default type II Anova(owls_nb1,type="III") } ## ----effects1,fig.width=8,fig.height=4----------------------------------- effects_ok <- (requireNamespace("effects") && getRversion() >= "3.6.0") if (effects_ok) { (ae <- allEffects(owls_nb1)) plot(ae) } ## ----effects2, fig.width=12,fig.height=12-------------------------------- if (effects_ok) { plot(allEffects(simex_b1)) } ## ----emmeans1------------------------------------------------------------ emmeans(owls_nb1, poly ~ FoodTreatment | SexParent) ## ----drop1_eval,cache=TRUE----------------------------------------------- system.time(owls_nb1_d1 <- drop1(owls_nb1,test="Chisq")) ## ----print_drop1--------------------------------------------------------- print(owls_nb1_d1) ## ----dredge1------------------------------------------------------------- owls_nb1_dredge ## ----plot_dredge1,fig.width=8,fig.height=8------------------------------- op <- par(mar=c(2,5,14,3)) plot(owls_nb1_dredge) par(op) ## restore graphics parameters ## ----mumin_MA------------------------------------------------------------ model.avg(owls_nb1_dredge) ## ----glht_def------------------------------------------------------------ glht_glmmTMB <- function (model, ..., component="cond") { glht(model, ..., coef. = function(x) fixef(x)[[component]], vcov. = function(x) vcov(x)[[component]], df = NULL) } modelparm.glmmTMB <- function (model, coef. = function(x) fixef(x)[[component]], vcov. = function(x) vcov(x)[[component]], df = NULL, component="cond", ...) { multcomp:::modelparm.default(model, coef. = coef., vcov. = vcov., df = df, ...) } ## ----glht_use------------------------------------------------------------ g1 <- glht(cbpp_b1, linfct = mcp(period = "Tukey")) summary(g1) ## ----broom_mixed,fig.height=3,fig.width=5-------------------------------- if (requireNamespace("broom.mixed") && requireNamespace("dotwhisker")) { (t1 <- broom.mixed::tidy(owls_nb1, conf.int = TRUE)) if (packageVersion("dotwhisker")>"0.4.1") { ## to get this version (which fixes various dotwhisker problems) ## use devtools::install_github("bbolker/broom.mixed") or ## wait for pull request acceptance/submission to CRAN/etc. dwplot(owls_nb1)+geom_vline(xintercept=0,lty=2) } else { owls_nb1$coefficients <- TRUE ## hack! dwplot(owls_nb1,by_2sd=FALSE)+geom_vline(xintercept=0,lty=2) } } ## ----xtable_prep--------------------------------------------------------- ss <- summary(owls_nb1) ## print table; add space, pxt <- function(x,title) { cat(sprintf("{\n\n\\textbf{%s}\n\\ \\\\\\vspace{2pt}\\ \\\\\n",title)) print(xtable(x), floating=FALSE); cat("\n\n") cat("\\ \\\\\\vspace{5pt}\\ \\\\\n") } ## ----xtable_sum,eval=FALSE----------------------------------------------- # pxt(lme4::formatVC(ss$varcor$cond),"random effects variances") # pxt(coef(ss)$cond,"conditional fixed effects") # pxt(coef(ss)$zi,"conditional zero-inflation effects") ## ----xtable_sum_real,results="asis",echo=FALSE--------------------------- if (requireNamespace("xtable")) { pxt(lme4::formatVC(ss$varcor$cond),"random effects variances") pxt(coef(ss)$cond,"conditional fixed effects") pxt(coef(ss)$zi,"conditional zero-inflation effects") } ## ----texreg1,results="asis"---------------------------------------------- source(system.file("other_methods","extract.R",package="glmmTMB")) texreg(owls_nb1,caption="Owls model", label="tab:owls") ## ----huxtable,results="asis"--------------------------------------------- cc <- c("intercept (mean)"="(Intercept)", "food treatment (starvation)"="FoodTreatment1", "parental sex (M)"="SexParent1", "food $\\times$ sex"="FoodTreatment1:SexParent1") h0 <- huxreg(" "=owls_nb1, # give model blank name so we don't get '(1)' tidy_args=list(effects="fixed"), coefs=cc, error_pos="right", statistics="nobs" # don't include logLik and AIC ) names(h0)[2:3] <- c("estimate","std. err.") ## allow use of math notation in name h1 <- set_cell_properties(h0,row=5,col=1,escape_contents=FALSE) cat(to_latex(h1,tabular_only=TRUE)) ## ----load_infl----------------------------------------------------------- source(system.file("other_methods","influence_mixed.R", package="glmmTMB")) ## ----infl, eval=FALSE---------------------------------------------------- # owls_nb1_influence_time <- system.time( # owls_nb1_influence <- influence_mixed(owls_nb1, groups="Nest") # ) ## ----plot_infl----------------------------------------------------------- car::infIndexPlot(owls_nb1_influence) ## ----plot_infl2,fig.width=8,fig.height=6--------------------------------- inf <- as.data.frame(owls_nb1_influence[["fixed.effects[-Nest]"]]) inf <- transform(inf, nest=rownames(inf), cooks=cooks.distance(owls_nb1_influence)) inf$ord <- rank(inf$cooks) if (require(reshape2)) { inf_long <- melt(inf, id.vars=c("ord","nest")) gg_infl <- (ggplot(inf_long,aes(ord,value)) + geom_point() + facet_wrap(~variable, scale="free_y") + scale_x_reverse(expand=expand_scale(mult=0.15)) + scale_y_continuous(expand=expand_scale(mult=0.15)) + geom_text(data=subset(inf_long,ord>24), aes(label=nest),vjust=-1.05) ) print(gg_infl) } ## ----save_out,echo=FALSE------------------------------------------------- ## store time-consuming stuff save("owls_nb1", "owls_nb1_simres", "owls_nb1_dredge", "owls_nb1_influence", "owls_nb1_influence_time", file="../inst/vignette_data/model_evaluation.rda", version=2 ## for compatibility with R < 3.6.0 ) glmmTMB/inst/doc/mcmc.html0000644000176200001440000107157713616061642015127 0ustar liggesusers post-hoc MCMC with glmmTMB

post-hoc MCMC with glmmTMB

Ben Bolker

2020-02-03

One commonly requested feature is to be able to run a post hoc Markov chain Monte Carlo analysis based on the results of a frequentist fit. This is often a reasonable shortcut for computing confidence intervals and p-values that allow for finite-sized samples rather than relying on asymptotic sampling distributions. This vignette shows an example of such an analysis. Some caveats:

  • when using such a “pseudo-Bayesian” approach, be aware that using a scaled likelihood (implicit, improper priors) can often cause problems, especially when the model is poorly constrained by the data
  • in particular, models with poorly constrained random effects (singular or nearly singular) are likely to give bad results
  • as shown below, even models that are well-behaved for frequentist fitting may need stronger priors to give well-behaved MCMC results
  • as with all MCMC analysis, it is the user’s responsibility to check for proper mixing and convergence of the chains before drawing conclusions
  • the first MCMC sampler illustrated below is simple (Metropolis with a multivariate normal candidate distribution). Users who want to do MCMC sampling on a regular basis should consider the tmbstan package, which does much more efficient hybrid/Hamiltonian Monte Carlo sampling.

Load packages:

library(glmmTMB)
library(coda)     ## MCMC utilities
library(reshape2) ## for melt()
## graphics
library(lattice)
library(ggplot2); theme_set(theme_bw())

Fit basic model:

data("sleepstudy",package="lme4")
fm1 <- glmmTMB(Reaction ~ Days + (Days|Subject),
               sleepstudy)

Set up for MCMC: define scaled log-posterior function (in this case the log-likelihood function); extract coefficients and variance-covariance matrices as starting points.

## FIXME: is there a better way for user to extract full coefs?
rawcoef <- with(fm1$obj$env,last.par[-random])
names(rawcoef) <- make.names(names(rawcoef),unique=TRUE)
## log-likelihood function 
## (MCMCmetrop1R wants *positive* log-lik)
logpost_fun <- function(x) -fm1$obj$fn(x)
## check definitions
stopifnot(all.equal(c(logpost_fun(rawcoef)),
                    c(logLik(fm1)),
          tolerance=1e-7))
V <- vcov(fm1,full=TRUE)

This is a basic block Metropolis sampler, based on Florian Hartig’s code here.

##' @param start starting value
##' @param V variance-covariance matrix of MVN candidate distribution
##' @param iterations total iterations
##' @param nsamp number of samples to store
##' @param burnin number of initial samples to discard
##' @param thin thinning interval
##' @param tune tuning parameters; expand/contract V
##' @param seed random-number seed
run_MCMC <- function(start,
                     V,   
                     logpost_fun,
                     iterations = 10000,
                     nsamp = 1000,
                     burnin = iterations/2,
                     thin = floor((iterations-burnin)/nsamp),
                     tune = NULL,
                     seed=NULL
                     ) {
    ## initialize
    if (!is.null(seed)) set.seed(seed)
    if (!is.null(tune)) {
        tunesq <- if (length(tune)==1) tune^2 else outer(tune,tune)
        V <-  V*tunesq
    }
    chain <- matrix(NA, nsamp+1, length(start))
    chain[1,] <- cur_par <- start
    postval <- logpost_fun(cur_par)
    j <- 1
    for (i in 1:iterations) {
        proposal = MASS::mvrnorm(1,mu=cur_par, Sigma=V)
        newpostval <- logpost_fun(proposal)
        accept_prob <- exp(newpostval - postval)
        if (runif(1) < accept_prob) {
            cur_par <- proposal
            postval <- newpostval
        }
        if ((i>burnin) && (i %% thin == 1)) {
            chain[j+1,] <- cur_par
            j <- j + 1
        }
    }
    chain <- na.omit(chain)
    colnames(chain) <- names(start)
    chain <- coda::mcmc(chain)
    return(chain)
}

Run the chain:

t1 <- system.time(m1 <- run_MCMC(start=rawcoef,
                                 V=V, logpost_fun=logpost_fun,
                                 seed=1001))

(running this chain takes 13.2 seconds)

Add more informative names and transform correlation parameter (see vignette on covariance structures and parameters):

colnames(m1) <- c(names(fixef(fm1)[[1]]),
                  "log(sigma)",
                  c("log(sd_Intercept)","log(sd_Days)","cor"))
m1[,"cor"] <- sapply(m1[,"cor"],get_cor)
xyplot(m1,layout=c(2,3),asp="fill")

The trace plots are poor, especially for the correlation; the effective sample size backs this up, as would any other diagnostics we did.

print(effectiveSize(m1),digits=3)
##       (Intercept)              Days        log(sigma) log(sd_Intercept) 
##               142               227               208               152 
##      log(sd_Days)               cor 
##               170               107

In a real analysis we would stop and fix the mixing/convergence problems before proceeding; for this simple sampler, some of our choices would be (1) simply run the chain for longer; (2) tune the candidate distribution (e.g. by using tune to scale some parameters, or perhaps by switching to a multivariate Student t distribution [see the mvtnorm package]); (3) add regularizing priors.

Ignoring the problems and proceeding, we can compute column-wise quantiles or highest posterior density intervals (coda::HPDinterval) to get confidence intervals. Plotting posterior distributions, omitting the intercept because it’s on a very different scale.

tmbstan

The tmbstan package allows direct, simple access to a hybrid/Hamiltonian Monte Carlo algorithm for sampling from a TMB object; the $obj component of a glmmTMB fit is such an object. (To run this example you’ll need to install the tmbstan package and its dependencies.)

## install.packages("tmbstan")
library(tmbstan)
t2 <- system.time(m2 <- tmbstan(fm1$obj))

(running this command, which creates 4 chains, takes 125.7 seconds)

However, there are many indications (warning messages; trace plots) that the correlation parameter needs to a more informative prior. (In the plot below, the correlation parameter is shown on its unconstrained scale; the actual correlation would be \(\theta_3/\sqrt{1+\theta_3^2}\).)

To do

  • solve mixing for cor parameter
  • more complex example - e.g. Owls
glmmTMB/inst/doc/covstruct.html0000644000176200001440000012506113616061640016225 0ustar liggesusers Covariance structures with glmmTMB

Covariance structures with glmmTMB

Kasper Kristensen

2020-02-03

This vignette demonstrates some of the covariance structures available in the glmmTMB package. Currently the available covariance structures are:

Covariance Notation Parameter count Requirement
Heterogeneous unstructured us \(n(n+1)/2\)
Heterogeneous Toeplitz toep \(2n-1\)
Heterogeneous compound symmetry cs \(n+1\)
Heterogeneous diagonal diag \(n\)
AR(1) ar1 \(2\)
Ornstein–Uhlenbeck ou \(2\) Coordinates
Spatial exponential exp \(2\) Coordinates
Spatial Gaussian gau \(2\) Coordinates
Spatial Matern mat \(3\) Coordinates

The word ‘heterogeneous’ refers to the marginal variances of the model. Beyond correlation parameters, a heterogeneous structure uses \(n\) additional variance parameters where \(n\) is the dimension.

Some of the structures require temporal or spatial coordinates. We will show examples of this in a later section.

The AR(1) covariance structure

Demonstration on simulated data

First, let’s consider a simple time series model. Assume that our measurements \(Y(t)\) are given at discrete times \(t \in \{1,...,n\}\) by

\[Y(t) = \mu + X(t) + \varepsilon(t)\]

where

  • \(\mu\) is the mean value parameter.
  • \(X(t)\) is a stationary AR(1) process, i.e. has covariance \(cov(X(s), X(t)) = \sigma^2\exp(-\theta |t-s|)\).
  • \(\varepsilon(t)\) is iid. \(N(0,\sigma_0^2)\) measurement error.

A simulation experiment is set up using the parameters

Description Parameter Value
Mean \(\mu\) 0
Process variance \(\sigma^2\) 1
Measurement variance \(\sigma_0^2\) 1
One-step correlation \(e^{-\theta}\) 0.7

The following R-code draws a simulation based on these parameter values. For illustration purposes we consider a very short time series.

n <- 6                                              ## Number of time points
x <- mvrnorm(mu = rep(0,n),
             Sigma = .7 ^ as.matrix(dist(1:n)) )    ## Simulate the process using the MASS package
y <- x + rnorm(n)                                   ## Add measurement noise

In order to fit the model with glmmTMB we must first specify a time variable as a factor. The factor levels correspond to unit spaced time points.

times <- factor(1:n)
levels(times)

We also need a grouping variable. In the current case there is only one time-series so the grouping is:

group <- factor(rep(1,n))

We combine the data into a single data frame (not absolutely required, but good practice):

dat0 <- data.frame(y,times,group)

Now fit the model using

glmmTMB(y ~ ar1(times + 0 | group), data=dat0)

This formula notation follows that of the lme4 package.

  • The left hand side of the bar times + 0 corresponds to a design matrix \(Z\) linking observation vector \(y\) (rows) with a random effects vector \(u\) (columns).
  • The distribution of \(u\) is ar1 (this is the only glmmTMB specific part of the formula).
  • The right hand side of the bar splits the above specification independently among groups. Each group has its own separate \(u\) vector but shares the same parameters for the covariance structure.

After running the model, we find the parameter estimates \(\mu\) (intercept), \(\sigma_0^2\) (dispersion), \(\sigma\) (Std. Dev.) and \(e^{-\theta}\) (First off-diagonal of “Corr”) in the output:

FIXME: Try a longer time series when the print.VarCorr is fixed.

Increasing the sample size

A single time series of 6 time points is not sufficient to identify the parameters. We could either increase the length of the time series or increase the number of groups. We’ll try the latter:

simGroup <- function(g, n=6, rho=0.7) {
    x <- mvrnorm(mu = rep(0,n),
             Sigma = rho ^ as.matrix(dist(1:n)) )   ## Simulate the process
    y <- x + rnorm(n)                               ## Add measurement noise
    times <- factor(1:n)
    group <- factor(rep(g,n))
    data.frame(y, times, group)
}
simGroup(1)

Generate a dataset with 1000 groups:

dat1 <- do.call("rbind", lapply(1:1000, simGroup) )

And fitting the model on this larger dataset gives estimates close to the true values (AR standard deviation=1, residual (measurement) standard deviation=1, autocorrelation=0.7):

(fit.ar1 <- glmmTMB(y ~ ar1(times + 0 | group), data=dat1))

The unstructured covariance

We can try to fit an unstructured covariance to the previous dataset dat. For this case an unstructured covariance has 15 correlation parameters and 6 variance parameters. Adding \(\sigma_0^2 I\) on top would cause a strict overparameterization, as these would be redundant with the diagonal elements in the covariance matrix. Hence, when fitting the model with glmmTMB, we have to disable the \(\varepsilon\) term (the dispersion) by setting dispformula=~0:

fit.us <- glmmTMB(y ~ us(times + 0 | group), data=dat1, dispformula=~0)
fit.us$sdr$pdHess ## Converged ?

The estimated variance and correlation parameters are:

VarCorr(fit.us)

{#1_{{#2}}} The estimated correlation is approximately constant along diagonals (apparent Toeplitz structure) and we note that the first off-diagonal is now ca. half the true value (0.7) because the dispersion is effectively included in the estimated covariance matrix (i.e. \(\rho' = \rho {2}{\sigma^2}{AR}/({2}{\sigma^2}{AR} + {2}{sigma^2}{meas})\)).

The Toeplitz structure

The next natural step would be to reduce the number of parameters by collecting correlation parameters within the same off-diagonal. This amounts to 5 correlation parameters and 6 variance parameters.

FIXME: Explain why dispformula=~1 causes over-parameterization

fit.toep <- glmmTMB(y ~ toep(times + 0 | group), data=dat1, dispformula=~0)
fit.toep$sdr$pdHess ## Converged ?

The estimated variance and correlation parameters are:

(vc.toep <- VarCorr(fit.toep))

The diagonal elements are all approximately equal to the true total variance (\({2}{\sigma^2}{AR} + {2}{sigma^2}{meas}\)=2), and the off-diagonal elements are approximately equal to the expected value of 0.7/2=0.35.

vc1 <- vc.toep$cond[[1]] ## first term of var-cov for RE of conditional model
summary(diag(vc1))
summary(vc1[row(vc1)!=col(vc1)])

We can get a slightly better estimate of the variance by using REML estimation (however, the estimate of the correlations seems to have gotten slightly worse):

fit.toep.reml <- update(fit.toep, REML=TRUE)
vc1R <- VarCorr(fit.toep.reml)$cond[[1]]
summary(diag(vc1R))
summary(vc1R[row(vc1R)!=col(vc1R)])

Compound symmetry

The compound symmetry structure collects all off-diagonal elements of the correlation matrix to one common value.

FIXME: Explain why dispformula=~1 causes over-parameterization

fit.cs <- glmmTMB(y ~ cs(times + 0 | group), data=dat1, dispformula=~0)
fit.cs$sdr$pdHess ## Converged ?

The estimated variance and correlation parameters are:

VarCorr(fit.cs)

Anova tables

The models ar1, toep, and us are nested so we can use:

anova(fit.ar1, fit.toep, fit.us)

ar1 has the lowest AIC (it’s the simplest model, and fits the data adequately); we can’t reject the (true in this case!) null model that an AR1 structure is adequate to describe the data.

The model cs is a sub-model of toep:

anova(fit.cs, fit.toep)

Here we can reject the null hypothesis of compound symmetry (i.e., that all the pairwise correlations are the same).

Adding coordinate information

Coordinate information can be added to a variable using the glmmTMB function numFactor. This is necessary in order to use those covariance structures that require coordinates. For example, if we have the numeric coordinates

x <- sample(1:2, 10, replace=TRUE)
y <- sample(1:2, 10, replace=TRUE)

we can generate a factor representing \((x,y)\) coordinates by

(pos <- numFactor(x,y))

Numeric coordinates can be recovered from the factor levels:

parseNumLevels(levels(pos))

In order to try the remaining structures on our test data we re-interpret the time factor using numFactor:

dat1$times <- numFactor(dat1$times)
levels(dat1$times)

Ornstein–Uhlenbeck

Having the numeric times encoded in the factor levels we can now try the Ornstein–Uhlenbeck covariance structure.

fit.ou <- glmmTMB(y ~ ou(times + 0 | group), data=dat1)
fit.ou$sdr$pdHess ## Converged ?

It should give the exact same results as ar1 in this case since the times are equidistant:

VarCorr(fit.ou)

However, note the differences between ou and ar1:

  • ou can handle irregular time points.
  • ou only allows positive correlation between neighboring time points.

Spatial correlations

The structures exp, gau and mat are meant to used for spatial data. They all require a Euclidean distance matrix which is calculated internally based on the coordinates. Here, we will try these models on the simulated time series data.

An example with spatial data is presented in a later section.

Matern

fit.mat <- glmmTMB(y ~ mat(times + 0 | group), data=dat1, dispformula=~0)
fit.mat$sdr$pdHess ## Converged ?
VarCorr(fit.mat)

Gaussian

“Gaussian” refers here to a Gaussian decay in correlation with distance, i.e. \(\rho = \exp(-d x^2)\), not to the conditional distribution (“family”).

fit.gau <- glmmTMB(y ~ gau(times + 0 | group), data=dat1, dispformula=~0)
fit.gau$sdr$pdHess ## Converged ?
VarCorr(fit.gau)

Exponential

fit.exp <- glmmTMB(y ~ exp(times + 0 | group), data=dat1)
fit.exp$sdr$pdHess ## Converged ?
VarCorr(fit.exp)

A spatial covariance example

Starting out with the built in volcano dataset we reshape it to a data.frame with pixel intensity z and pixel position x and y:

d <- data.frame(z = as.vector(volcano),
                x = as.vector(row(volcano)),
                y = as.vector(col(volcano)))

Next, add random normal noise to the pixel intensities and extract a small subset of 100 pixels. This is our spatial dataset:

set.seed(1)
d$z <- d$z + rnorm(length(volcano), sd=15)
d <- d[sample(nrow(d), 100), ]

Display sampled noisy volcano data:

volcano.data <- array(NA, dim(volcano))
volcano.data[cbind(d$x, d$y)] <- d$z
image(volcano.data, main="Spatial data")

Based on this data, we’ll attempt to re-construct the original image.

As model, it is assumed that the original image image(volcano) is a realization of a random field with correlation decaying exponentially with distance between pixels.

Denoting by \(u(x,y)\) this random field the model for the observations is

\[ z_{i} = \mu + u(x_i,y_i) + \varepsilon_i \]

To fit the model, a numFactor and a dummy grouping variable must be added to the dataset:

d$pos <- numFactor(d$x, d$y)
d$group <- factor(rep(1, nrow(d)))

The model is fit by

f <- glmmTMB(z ~ 1 + exp(pos + 0 | group), data=d)

Recall that a standard deviation sd=15 was used to distort the image. A confidence interval for this parameter is

confint(f, "sigma")

The glmmTMB predict method can predict unseen levels of the random effects. For instance to predict a 3-by-3 corner of the image one could construct the new data:

newdata <- data.frame( pos=numFactor(expand.grid(x=1:3,y=1:3)) )
newdata$group <- factor(rep(1, nrow(newdata)))
newdata

and predict using

predict(f, newdata, type="response", allow.new.levels=TRUE)

A specific image column can thus be predicted using the function

predict_col <- function(i) {
    newdata <- data.frame( pos = numFactor(expand.grid(1:87,i)))
    newdata$group <- factor(rep(1,nrow(newdata)))
    predict(f, newdata=newdata, type="response", allow.new.levels=TRUE)
}

Prediction of the entire image is carried out by (this takes a while…):

pred <- sapply(1:61, predict_col)

Finally plot the re-constructed image by

image(pred, main="Reconstruction")

Mappings

For various advanced purposes, such as computing likelihood profiles, it is useful to know the details of the parameterization of the models - the scale on which the parameters are defined (e.g. standard deviation, variance, or log-standard deviation for variance parameters) and their order.

Unstructured

For an unstructured matrix of size n, parameters 1:n represent the log-standard deviations while the remaining n(n-1)/2 (i.e. (n+1):(n:(n*(n+1)/2))) are the elements of the scaled Cholesky factor of the correlation matrix, filled in row-wise order (see TMB documentation). In particular, if \(L\) is the lower-triangular matrix with 1 on the diagonal and the correlation parameters in the lower triangle, then the correlation matrix is defined as \(\Sigma = D^{-1/2} L L^\top D^{-1/2}\), where \(D = \textrm{diag}(L L^\top)\). For a single correlation parameter \(\theta_0\), this works out to \(\rho = \theta_0/(1+\theta_0^2)\).

vv0 <- VarCorr(fit.us)
vv1 <- vv0$cond$group          ## extract 'naked' V-C matrix
n <- nrow(vv1)
rpars <- getME(fit.us,"theta") ## extract V-C parameters
## first n parameters are log-std devs:
all.equal(unname(diag(vv1)),exp(rpars[1:n])^2)
## now try correlation parameters:
cpars <- rpars[-(1:n)]
length(cpars)==n*(n-1)/2      ## the expected number
cc <- diag(n)
cc[upper.tri(cc)] <- cpars
L <- crossprod(cc)
D <- diag(1/sqrt(diag(L)))
D %*% L %*% D
unname(attr(vv1,"correlation"))

FIXME: why are these not quite the same? Not what I expected

all.equal(c(cov2cor(vv1)),c(fit.us$obj$env$report(fit.us$fit$parfull)$corr[[1]]))

Profiling (experimental/exploratory):

## want $par, not $parfull: do NOT include conditional modes/'b' parameters
ppar <- fit.us$fit$par
length(ppar)
range(which(names(ppar)=="theta")) ## the last n*(n+1)/2 parameters
## only 1 fixed effect parameter
tt <- tmbprofile(fit.us$obj,2,trace=FALSE)
plot(tt)
confint(tt)
ppar <- fit.cs$fit$par
length(ppar)
range(which(names(ppar)=="theta")) ## the last n*(n+1)/2 parameters
## only 1 fixed effect parameter, 1 dispersion parameter
tt2 <- tmbprofile(fit.cs$obj,3,trace=FALSE)
plot(tt2)
glmmTMB/inst/doc/glmmTMB.R0000644000176200001440000001127513616061760014731 0ustar liggesusers## ----setopts,echo=FALSE,message=FALSE------------------------------------ library("knitr") opts_chunk$set(fig.width=5,fig.height=5, out.width="0.8\\textwidth",echo=TRUE) Rver <- paste(R.version$major,R.version$minor,sep=".") used.pkgs <- c("glmmTMB","bbmle") ## packages to report below ## ----pkgversions,echo=FALSE---------------------------------------------- pkgver <- vapply(sort(used.pkgs),function(x) as.character(packageVersion(x)),"") print(pkgver,quote=FALSE) ## ----citation,echo=FALSE,results="asis"---------------------------------- print(citation("glmmTMB"),style="latex") ## ----pkgs,message=FALSE-------------------------------------------------- library("glmmTMB") library("bbmle") ## for AICtab library("ggplot2") ## cosmetic theme_set(theme_bw()+ theme(panel.spacing=grid::unit(0,"lines"))) ## ----owltransform,warning=FALSE------------------------------------------ Owls <- transform(Owls, Nest=reorder(Nest,NegPerChick), NCalls=SiblingNegotiation, FT=FoodTreatment) ## ----owlplot1,echo=FALSE,message=FALSE,warning=FALSE,eval=FALSE---------- # G0 <- ggplot(Owls,aes(x=reorder(Nest,NegPerChick), # y=NegPerChick))+ # labs(x="Nest",y="Negotiations per chick")+coord_flip()+ # facet_grid(FoodTreatment~SexParent) # G0+stat_sum(aes(size=..n..),alpha=0.5)+ # scale_size_continuous(name="# obs", # breaks=seq(1,9,by=2))+ # theme(axis.title.x=element_text(hjust=0.5,size=12), # axis.text.y=element_text(size=7)) ## ----time1,echo=FALSE,cache=TRUE----------------------------------------- gt1 <- system.time(glmmTMB(NCalls~(FT+ArrivalTime)*SexParent+ offset(log(BroodSize))+(1|Nest), ziformula=~1, data=Owls, family=poisson)) ## ----glmmTMBfit---------------------------------------------------------- fit_zipoisson <- glmmTMB(NCalls~(FT+ArrivalTime)*SexParent+ offset(log(BroodSize))+(1|Nest), data=Owls, ziformula=~1, family=poisson) ## ----zipoisssum---------------------------------------------------------- summary(fit_zipoisson) ## ----glmmTMBnbinomfit---------------------------------------------------- fit_zinbinom <- update(fit_zipoisson,family=nbinom2) ## ----glmmTMBnbinom1fit--------------------------------------------------- fit_zinbinom1 <- update(fit_zipoisson,family=nbinom1) ## ----glmmTMBnbinom1vfit-------------------------------------------------- fit_zinbinom1_bs <- update(fit_zinbinom1, . ~ (FT+ArrivalTime)*SexParent+ BroodSize+(1|Nest)) ## ----aictab-------------------------------------------------------------- AICtab(fit_zipoisson,fit_zinbinom,fit_zinbinom1,fit_zinbinom1_bs) ## ----glmmTMBnbinomhfit,cache=TRUE---------------------------------------- fit_hnbinom1 <- update(fit_zinbinom1_bs, ziformula=~., data=Owls, family=list(family="truncated_nbinom1",link="log")) ## ----hurdle_AIC---------------------------------------------------------- AICtab(fit_zipoisson,fit_zinbinom,fit_zinbinom1,fit_zinbinom1_bs,fit_hnbinom1) ## ----contraception_sum,echo=FALSE---------------------------------------- data("Contraception",package="mlmRev") nc <- nrow(Contraception) nl <- length(levels(Contraception$district)) load("contraceptionTimings.rda") meandiff <- mean(with(tmatContraception, time[pkg=="glmer"]/time[pkg=="glmmTMB"])) ## ----contraception,echo=FALSE,warning=FALSE,fig.cap="Timing for fitting the replicated Contraception data set."---- ggplot(tmatContraception,aes(n,time,colour=pkg))+geom_point()+ scale_y_log10(breaks=c(1,2,5,10,20,50,100))+ scale_x_log10(breaks=c(1,2,4,10,20,40))+ labs(x="Replication (x 1934 obs.)",y="Elapsed time (s)")+ geom_smooth(method="lm")+ scale_colour_brewer(palette="Set1") ## ----insteval,echo=FALSE,warning=FALSE,fig.cap="Timing for fitting subsets of the InstEval data set."---- load("InstEvalTimings.rda") n_InstEval <- 73421L ## seems silly to require lme4 just to get this number meandiff_inst2 <- with(tmatInstEval, time[pkg=="lmer"]/time[pkg=="glmmTMB"]) ggplot(tmatInstEval,aes(n,time,colour=pkg))+geom_point()+ scale_y_log10(breaks=c(1,2,5,10,20,50,100,200))+ scale_x_log10(breaks=c(0.1,0.2,0.5,1.0))+ labs(x=sprintf("Replication (x %d obs.)",n_InstEval), y="Elapsed time (s)")+ geom_smooth(method="lm")+ scale_colour_brewer(palette="Set1") glmmTMB/inst/other_methods/0000755000176200001440000000000013614324717015402 5ustar liggesusersglmmTMB/inst/other_methods/effectsglmmTMB.R0000644000176200001440000001342313614324717020367 0ustar liggesusers## modified from car::effectsmer.R ## effect.mer and effect.lme built from effect.lm by S. Weisberg 29 June 2011 ## 2012-03-08 to require() lme4 or nlme. J. Fox ## 2012-10-05 effect.lme didn't work with 'weights', now corrected. S. Weisberg ## 2013-03-05: introduced merMod methods for development version of lme4. J. Fox ## 2013-04-06: added support for lme4.0, J. Fox ## 2013-07-30: added 'data' argument to lme.to.glm and mer.to.glm to allow ## calling effect from within a subroutine. ## 2013-09-25: removed the 'data' argument as it makes the functions fail with ## logs, splines and polynomials ## 2014-09-24: added option for KR cov matrix to mer.to.glm(). J. Fox ## 2014-12-07: don't assume that pbkrtest is installed. J. Fox ## 2014-12-20: mer.to.glm failed for negative.binomial() because the link has an argument ## that was handled incorrectly by the family.glmResp function. This function is no longer ## used by mer.to.glm. The same error will recur in any link with an argument. ## 2015-06-10: requireNamespace("pbkrtest") rather than require("pbkrtest) ## 2015-07-02: fixed bug when the name of the data frame was the name of a function (e.g., sort, or lm) ## 2015-12-13: make it work with pbkrtest 0.4-3. J. Fox ## 2016-01-07: modified 'fixmod' to allow "||" in variance formulae ## 2016-01-19: Fixed bug in glm.to.mer when 'poly' is used in a model. ## 2016-06-08: Fixed bug handling the 'start' argument in glm.to.mer. Fix by Ben Bolker, bug from Mariano Devoto ## 2016-11-18: Change to mer.to.glm and lme.to.glm for stability in unusual glms. By Nate TeGrotenhuis. ## 2017-03-28: in mer.to.glm, changed a name from m to .m. The fake glm is created from the mer model's ## call slot, which included the name of the data.frame, if any. A data.frame named 'm' ## therefore did not work. Same bug fixed in lme.to.glm ## the function lm.wfit gets the hessian wrong for mer's. Get the variance ## from the vcov method applied to the mer object. ## mer.to.glm evaluates a 'glm' model that is as similar to a given 'mer' ## model as possible. It is of class c("fakeglm", "glm", "lm") ## several items are added to the created objects. Do not export #' @importFrom lme4 nobars glmmTMB.to.glm <- function(mod, KR=FALSE) { if (KR) { ## && !requireNamespace("pbkrtest", quietly=TRUE)){ KR <- FALSE warning("pbkrtest is not compatible with glmmTMB, KR set to FALSE") } ## object$family$family doesn't work correctly with the negative binomial family because of the # argument in the family function, so the old line # family <- family(mod) # returns an error message for these models. The following kluge fixes this. # If this bug is fixed in lme4, this code may break because it expects resp$family$family # to return "Link Name(arg)" with ONE argument, and so spaces between Name and "(arg)" family1 <- function(object, ...){ famname <- family(object)$family open.paren <- regexpr("\\(", famname) if(open.paren==-1) { name <- famname arg <- list() } else { name <- sub(" ", ".", tolower(substr(famname, 1, -1 + open.paren))) arg <- list(as.numeric(gsub("\\)", "", substr(famname, 1 + open.paren, 100)))) } if(is.null(family(object)$initialize)) do.call(name, arg) else family(object) } family <- family1(mod) # end link <- family$link family <- family$family cl <- getCall(mod) cl$control <- glm.control(epsilon=1) # suggested by Nate TeGrotenhuis ## if(cl[[1]] =="nlmer") stop("effects package does not support 'nlmer' objects") .m <- match(c("formula", "family", "data", "weights", "subset", "na.action", "offset", "model", "contrasts"), names(cl), 0L) cl <- cl[c(1L, .m)] cl[[1L]] <- as.name("glm") cl$formula <- lme4::nobars(as.formula(cl$formula)) # cl$data <- mod@frame # caused bug with a 'poly' in the formula cl$family <- gaussian mod2 <- eval(cl) cl$family <- family mod2$coefficients <- glmmTMB::fixef(mod)[["cond"]] ## mod2$vcov <- if (family == "gaussian" && link == "identity" && KR) as.matrix(pbkrtest::vcovAdj(mod)) else as.matrix(vcov(mod)) mod2$vcov <- vcov(mod)[["cond"]] mod2$linear.predictors <- model.matrix(mod2) %*% mod2$coefficients mod2$fitted.values <- mod2$family$linkinv(mod2$linear.predictors) mod2$weights <- as.vector(with(mod2, prior.weights * (family$mu.eta(linear.predictors)^2 / family$variance(fitted.values)))) mod2$residuals <- with(mod2, prior.weights * (y - fitted.values)/weights ) class(mod2) <- c("fakeglm", class(mod2)) mod2 } ##method for 'fakeglm' objects. Do not export vcov.fakeglm <- function(object, ...) object$vcov ##The next six functions should be exported as S3 methods #' @export effect.glmmTMB <- function(term, mod, vcov.=vcov, KR=FALSE, ...) { result <- effect(term, glmmTMB.to.glm(mod, KR=KR), vcov., ...) result$formula <- as.formula(formula(mod)) result } #' @export allEffects.glmmTMB <- function(mod, KR=FALSE,...){ allEffects(glmmTMB.to.glm(mod,KR=KR), ...) } ## testing if (FALSE) { ## working directory: inst/other_methods/ source("effectsglmmTMB.R") library(effects) gg1 <- glmmTMB(round(Reaction)~Days+(1|Subject),family=poisson,data=lme4::sleepstudy) glmmTMB.to.glm(gg1) allEffects(gg1) set.seed(101) dd <- data.frame(y=rnbinom(1000,mu=4,size=1), x = rnorm(1000), f=factor(rep(LETTERS[1:20],each=50))) gg2 <- glmmTMB(y~x+(1|f),family=nbinom2,data=dd) ls(environment(gg2$modelInfo$family$dev.resids),all.names=TRUE) allEffects(gg2) } glmmTMB/inst/other_methods/extract.R0000644000176200001440000000400713614324717017200 0ustar liggesusers ## methods for texreg ##' @param model a glmmTMB model ##' @export ##' @importFrom stats coef ##' @rawNamespace if(requireNamespace("texreg")) importFrom(texreg,extract) ##' extract.glmmTMB <- function(model) { cc <- coef(summary(model)) cc <- cc[!vapply(cc,is.null,logical(1))] nn <- names(cc) pref <- ifelse(nn=="cond","",paste0(nn,"_")) names <- unlist(Map(function(x,y) paste0(x,rownames(y)), pref,cc)) co <- unlist(lapply(cc,function(x) x[,"Estimate"])) se <- unlist(lapply(cc,function(x) x[,"Std. Error"])) pval <- unlist(lapply(cc,function(x) x[,"Pr(>|z|)"])) ## alternately could do something like ## rownames(unlist(cc)) -> gsub("\\.","_",.) ## -> gsub("cond_","") if (!requireNamespace("texreg")) { stop("must have texreg package installed") } tr <- texreg::createTexreg( coef.names = names, coef = co, se = se, pvalues = pval ## use AIC/BIC/logLik? ## gof.names = gof.names, ## gof = gof ) return(tr) } verbatim <- function(x) { txt <- trimws(capture.output(x)) txt <- c("\\begin{verbatim}", txt, "\\end{verbatim}") cat(txt, sep="\n") } ## setMethod("extract", signature = className("glmmTMB", "glmmTMB"), ## definition = extract.glmmTMB) #' @param x an expression to evaluate #' @param stop_ex regular expression for truncating output #' @param stop_which which occurrence of \code{stop_ex} to find #' @importFrom utils capture.output verbatim <- function(x, stop_ex=NULL, stop_which=1) { txt <- trimws(capture.output(x)) if (!is.null(stop_ex)) { txt <- txt[seq(grep(stop_ex,txt)[stop_which]-1)] } txt <- c("\\begin{verbatim}", txt, "\\end{verbatim}") cat(txt, sep="\n") } setOldClass("glmmTMB") setMethod("extract","glmmTMB",extract.glmmTMB) ## m1 <- glmmTMB(formula = count ~ mined + (1 | site), data = Salamanders, ## family = poisson, ziformula = ~mined, dispformula = ~1) ## verbatim(summary(m1), "Random effects:") glmmTMB/inst/other_methods/car_methods.R0000644000176200001440000000164213614324717020020 0ustar liggesusers## EXPERIMENTAL (not working, not yet exported) ## modified from car::Anova.default Anova.glmmTMB <- function (mod, type = c("II", "III", 2, 3), test.statistic = c("Chisq", "F"), vcov. = vcov(mod)[["cond"]], singular.ok, ...) { stop("not finished yet") if (is.function(vcov.)) vcov. <- vcov.(mod) type <- as.character(type) type <- match.arg(type) test.statistic <- match.arg(test.statistic) if (missing(singular.ok)) singular.ok <- type == "2" || type == "II" switch(type, II = Anova.II.default(mod, vcov., test.statistic, singular.ok = singular.ok), III = Anova.III.default(mod, vcov., test.statistic, singular.ok = singular.ok), `2` = Anova.II.default(mod, vcov., test.statistic, singular.ok = singular.ok), `3` = Anova.III.default(mod, vcov., test.statistic, singular.ok = singular.ok)) } glmmTMB/inst/other_methods/influence_mixed.R0000644000176200001440000002100013614324717020654 0ustar liggesusers# added 2017-12-13 by J. Fox # 2017-12-14: improved recovery of model data # removed faulty one-step approximations # 2018-01-28: fix computation of Cook's D for lme models # 2018-05-23: fixed bug when more than one grouping variable (reported by Maarten Jung) # 2018-06-07: skip plot of "sigma^2" in GLMM if dispersion fixed to 1; improved labelling for covariance components # 2018-11-04: tweak to dfbetas.influence.merMod() suggested by Ben Bolker. # 2018-11-09: parallel version of influence.merMod() ## influence diagnostics for mixed models ## copied from car (unexported, don't want to rely on car:::combineLists) combineLists <- function(..., fmatrix="list", flist="c", fvector="rbind", fdf="rbind", recurse=FALSE){ # combine lists of the same structure elementwise # ...: a list of lists, or several lists, each of the same structure # fmatrix: name of function to apply to matrix elements # flist: name of function to apply to list elements # fvector: name of function to apply to data frame elements # recurse: process list element recursively frecurse <- function(...){ combineLists(..., fmatrix=fmatrix, fvector=fvector, fdf=fdf, recurse=TRUE) } if (recurse) flist="frecurse" list.of.lists <- list(...) if (length(list.of.lists) == 1){ list.of.lists <- list.of.lists[[1]] list.of.lists[c("fmatrix", "flist", "fvector", "fdf")] <- c(fmatrix, flist, fvector, fdf) return(do.call("combineLists", list.of.lists)) } if (any(!sapply(list.of.lists, is.list))) stop("arguments are not all lists") len <- sapply(list.of.lists, length) if (any(len[1] != len)) stop("lists are not all of the same length") nms <- lapply(list.of.lists, names) if (any(unlist(lapply(nms, "!=", nms[[1]])))) stop("lists do not all have elements of the same names") nms <- nms[[1]] result <- vector(len[1], mode="list") names(result) <- nms for(element in nms){ element.list <- lapply(list.of.lists, "[[", element) # clss <- sapply(element.list, class) clss <- lapply(element.list, class) # if (any(clss[1] != clss)) stop("list elements named '", element, if (!all(vapply(clss, function(e) all(e == clss[[1L]]), NA))) stop("list elements named '", element, "' are not all of the same class") is.df <- is.data.frame(element.list[[1]]) fn <- if (is.matrix(element.list[[1]])) fmatrix else if (is.list(element.list[[1]]) && !is.df) flist else if (is.vector(element.list[[1]])) fvector else if (is.df) fdf else stop("list elements named '", element, "' are not matrices, lists, vectors, or data frames") result[[element]] <- do.call(fn, element.list) } result } ## copied from lme4 namedList <- function (...) { L <- list(...) snm <- sapply(substitute(list(...)), deparse)[-1] if (is.null(nm <- names(L))) nm <- snm if (any(nonames <- nm == "")) nm[nonames] <- snm[nonames] setNames(L, nm) } ##' compute influence measures for [g]lmerMod (from lme4) or glmmTMB (from glmmTMB) fitted models ##' @param model fitted model ##' @param groups (character) names of group(s) to leave out/compute sensitivity for: ".case" means observation-level sensitivity ##' @param data data frame to use in refitting (will be taken from the model call if possible, but it may be necessary to specify this if the influence measures are being computed in a new environment) ##' @param maxfun maximum number of function evaluations ##' @param ncores number of parallel cores to use for computation ##' @param component for glmmTMB models, which component to use (conditional, zero-inflated, or dispersion) influence_mixed <- function(model, groups=".case", data, maxfun=1000, ncores=getOption("mc.cores", 2L), component=c("cond","zi","disp"), progress=FALSE, ...) { component <- match.arg(component) if (inherits(model,"glmmTMB")) { fe <- function(x) fixef(x)[[component]] VC <- function(x) VarCorr(x)[[component]] .vcov <- function(x) Matrix::as.matrix(vcov(x)[[component]]) } else { fe <- fixef VC <- VarCorr .vcov <- function(x) Matrix::as.matrix(vcov(x)) } if (is.infinite(ncores)) { ncores <- parallel::detectCores(logical=FALSE) } if (missing(data)){ data <- getCall(model)$data data <- if (!is.null(data)) eval(data, parent.frame()) else stop("model did not use the data argument") } if (".case" %in% groups) { data$.case <- rownames(data) } else if (length(groups) > 1){ del.var <- paste0(groups, collapse=".") ## Reduce(interaction,groups) ? data[, del.var] <- apply(data, 1, paste0, collapse=".") groups <- del.var } unique.del <- unique(data[, groups]) data[[".groups"]] <- data[, groups] par <- list(theta=getME(model, "theta")) if (inherits(model, "glmerMod") || inherits(model,"glmmTMB")) { par$beta <- fe(model) } fixed <- fe(model) Vs <- VC(model) nms <- names(Vs) sep <- ":" if (length(nms) == 1) { nms <- "" sep <- "" } vc <- sigma(model)^2 names(vc) <- "sigma^2" for (i in 1:length(Vs)){ V <- Vs[[i]] c.names <- colnames(V) e.names <- outer(c.names, c.names, function(a, b) paste0("C[", a, ",", b, "]")) diag(e.names) <- paste0("v[", c.names, "]") v <- V[lower.tri(V, diag=TRUE)] names(v) <- paste0(nms[i], sep, e.names[lower.tri(e.names, diag=TRUE)]) vc <- c(vc, v) } if (inherits(model,"lmerMod")) { control <- lme4::lmerControl(optCtrl=list(maxfun=maxfun)) } else if (inherits(model, "glmerMod")) { control <- lme4:: glmerControl(optCtrl=list(maxfun=maxfun)) } else if (inherits(model, "glmmTMB")) { ## ??? control <- glmmTMBControl(optCtrl=list(iter.max=maxfun,eval.max=maxfun)) } deleteGroup <- function(del){ if (progress) cat(".") data_sub <- data[data$.groups!=del,] mod.1 <- suppressWarnings(update(model, data=data_sub, start=par, control=control)) ## platform-independent? if (inherits(mod.1,"glmmTMB")) { feval <- mod.1$fit$evaluations[["function"]] converged <- mod.1$fit$convergence==0 } else { ## [g]lmerMod opt <- mod.1@optinfo feval <- opt$feval converged <- opt$conv$opt == 0 && length(opt$warnings) == 0 } fixed.1 <- fe(mod.1) Vs.1 <- VC(mod.1) vc.0 <- sigma(mod.1)^2 for (V in Vs.1){ vc.0 <- c(vc.0, V[lower.tri(V, diag=TRUE)]) } vc.1 <- vc.0 vcov.1 <<- .vcov(mod.1) namedList(fixed.1, vc.1, vcov.1, converged, feval) } result <- if(ncores >= 2){ message("using a cluster of ", ncores, " cores") cl <- parallel::makeCluster(ncores) on.exit(parallel::stopCluster(cl)) parallel::clusterExport(cl, c("namedList", "combineLists")) parallel::clusterEvalQ(cl, require("lme4")) parallel::clusterEvalQ(cl, require("glmmTMB")) parallel::clusterApply(cl, unique.del, deleteGroup) } else { lapply(unique.del, deleteGroup) } result <- combineLists(result) fixed.1 <- result$fixed.1 rownames(fixed.1) <- unique.del colnames(fixed.1) <- names(fixed) vc.1 <- result$vc.1 rownames(vc.1) <- unique.del colnames(vc.1) <- names(vc) feval <- as.vector(result$feval) converged <- as.vector(result$converged) vcov.1 <- result$vcov.1 names(vcov.1) <- names(feval) <- names(converged) <- unique.del left <- "[-" right <- "]" if (groups == ".case") { groups <- "case" } nms <- c("fixed.effects", paste0("fixed.effects", left, groups, right), "var.cov.comps", paste0("var.cov.comps", left, groups, right), "vcov", paste0("vcov", left, groups, right), "groups", "deleted", "converged", "function.evals") result <- list(fixed, fixed.1, vc, vc.1, .vcov(model), vcov.1, groups, unique.del, converged, feval) names(result) <- nms ## call this influence.merMod since all methods are currently written for it class(result) <- "influence.merMod" result } glmmTMB/inst/other_methods/lsmeans_methods.R0000644000176200001440000000301313614324717020707 0ustar liggesusers## EXPERIMENTAL (not yet exported) #' @importFrom stats delete.response model.frame na.pass recover.data.glmmTMB <- function(object, ...) { fcall <- getCall(object) lsmeans::recover.data(fcall,delete.response(terms(object)), attr(model.frame(object),"na.action"), ...) } lsm.basis.glmmTMB <- function (object, trms, xlev, grid, vcov., mode = "asymptotic", component="cond", ...) { if (mode != "asymptotic") stop("only asymptotic mode is available") if (component != "cond") stop("only tested for conditional component") if (missing(vcov.)) V <- as.matrix(vcov(object)[[component]]) else V <- as.matrix(.my.vcov(object, vcov.)) dfargs = misc = list() if (mode == "asymptotic") { dffun = function(k, dfargs) NA } ## use this? misc = .std.link.labels(family(object), misc) contrasts = attr(model.matrix(object), "contrasts") m = model.frame(trms, grid, na.action = na.pass, xlev = xlev) X = model.matrix(trms, m, contrasts.arg = contrasts) bhat = fixef(object)[[component]] if (length(bhat) < ncol(X)) { kept = match(names(bhat), dimnames(X)[[2]]) bhat = NA * X[1, ] bhat[kept] = fixef(object)[[component]] modmat = model.matrix(trms, model.frame(object), contrasts.arg = contrasts) nbasis = estimability::nonest.basis(modmat) } else nbasis = estimability::all.estble list(X = X, bhat = bhat, nbasis = nbasis, V = V, dffun = dffun, dfargs = dfargs, misc = misc) } glmmTMB/inst/CITATION0000644000176200001440000000626013614324717013677 0ustar liggesusersbibentry(bibtype = "Article", author = c(person(given = c("Mollie", "E."), family = "Brooks"), person(given = "Kasper", family = "Kristensen"), person(given = c("Koen", "J."), family = c("van", "Benthem")), person(given = "Arni", family = "Magnusson"), person(given = c("Casper", "W."), family = "Berg"), person(given = "Anders", family = "Nielsen"), person(given = c("Hans", "J."), family = "Skaug"), person(given = "Martin", family = "Maechler"), person(given = c("Benjamin", "M."), family = "Bolker") ), title = "{glmmTMB} Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling", year = "2017", journal = "The R Journal", url = "https://journal.r-project.org/archive/2017/RJ-2017-066/index.html", pages = "378--400", volume = "9", number = "2", header = "To cite glmmTMB in publications use:", textVersion = "Mollie E. Brooks, Kasper Kristensen, Koen J. van Benthem, Arni Magnusson, Casper W. Berg, Anders Nielsen, Hans J. Skaug, Martin Maechler and Benjamin M. Bolker (2017). glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. The R Journal, 9(2), 378-400." ) ## bibentry(bibtype = "Article", ## author = "Brooks, Mollie E. and Kristensen, Kasper and van Benthem, Koen J. and Magnusson, Arni and Berg, Casper W. and Nielsen, Anders and Skaug, Hans J. and Maechler, Martin and Bolker, Benjamin M.", ## title = "Modeling Zero-Inflated Count Data With glmmTMB", ## year = "2017", ## url = "http://biorxiv.org/content/early/2017/05/01/132753", ## eprint = "http://biorxiv.org/content/early/2017/05/01/132753.full.pdf", ## journal = "bioRxiv preprint bioRxiv:132753", ## archivePrefix = "bioRxiv", ## header = "To cite glmmTMB in publications use one or both of the following:", ## textVersion = "Mollie E. Brooks, Kasper Kristensen, Koen J. van Benthem, Arni Magnusson, Casper W. Berg, Anders Nielsen, Hans J. Skaug, Martin Maechler, Benjamin M. Bolker (2017). Modeling Zero-Inflated Count Data With glmmTMB. bioRxiv preprint bioRxiv:132753; doi: https://doi.org/10.1101/132753" ## ) ## bibentry(bibtype = "Manual", ## title = "{glmmTMB}: Generalized Linear Mixed Models using Template Model Builder", ## author = "Arni Magnusson and Hans J. Skaug and Anders Nielsen and Casper W. Berg and Kasper Kristensen and Martin Maechler and Koen J. van Bentham and Benjamin M. Bolker and Mollie E. Brooks", ## year = "2017", ## textVersion = "Arni Magnusson, Hans J. Skaug, Anders Nielsen, Casper W. Berg, Kasper Kristensen, Martin Maechler, Koen J. van Bentham, Benjamin M. Bolker and Mollie E. Brooks (2017). glmmTMB: Generalized Linear Mixed Models using Template Model Builder. R package version 0.1.3. https://github.com/glmmTMB" ## ) glmmTMB/inst/example_files/0000755000176200001440000000000013614324717015353 5ustar liggesusersglmmTMB/inst/example_files/salamander_prof1.rds0000644000176200001440000000517013614324717021306 0ustar liggesusersViTPvD (Av0VF n`dU`Xª:jB9`ҢAϰLEXsd2m7||w6]&iy!`m#4`WHre[4!v:{ʸ-]KT=VOwaCa%U^y.\> J^L(,/j] -"lW|BXw5Uc?Ixh-8_Pkxe_v>|>&|r®=z#"8Pҽ!Nk518meAb)"7G$KzJwҢX '8v;s~z5cyݥkyft'Wtkrlθ*\(ӪT xT BSXylP&J *yW HvYViaxWKm=zI1嬕?ṢGn`|$j1SOr{#/g(3t{xܜ1YR5J"GHg\viIHw5I^->t4A= U]Tr Au|jnJ_g|j黲*|JQ'P2?3 0d`gC_?>t=C';J|^8ֵVV۠\Rg(0Q9m/Jm?o;ȕuԼ)|JŻo[g}Ct>kdߍ|hSLQ~֫(ģ|: _G~=@׃6Q`d$:q%7W7 `g]NDUCFצ#_NW/R q3{ot-6k(MCӋ9JPpʋkE6K?E>?W[ z/fW?~Ps.A֤x"O~uѾT#u앻գvhRr3d]9[|TGYv8)8\8MU7}J57DRA;/P*M[ stJB}X5*C}|QJձ]]l>3ǝ3FF9:?yR\;7Jk Q}z2 +Q=!{tΚ)}&=}/d^W]Ԇ=ιWZ]nn^͈JwOcH>wRWmA5ϝP $;Bc͓,EC.",D:Nʛ k kY1ȒA 2gA$$eA2$AJ8XLRBƒ0$,fyM% Β, 0IIt6ךdZ`h!CC3`HF2b٤%N,ㅡ%-^!HHɐ%Rz5 CK -04ǐ! C 1H"fx F ,$@`( )Rf!#\c\kǬ0Cs JR3C 1H\dIe6K0bf!"CIHRn,OkϚ}+_ٿ\xW;yz衫Z1a"q%vmk֬innN$g__~9snLYJ~~Co̟?ѣ[n}衇nx 6_s5g_wyƍt7&!2 ]}{w}uuulƑ#G-[&\|ſ/^xUUu]1;֯_ϯ\r:au??K>>nii9xO>dɒk~سgmO|\qw/Y{ D[7l<888Mopvaz7ٳ'ߎ g)Xoʕԧ9+c(/?O|_Zlّ#GoZL;~>97n|[neǎ׬Yo OT){SO=X{?3ߪaw8p8Ƈ7~,y饗8qbZs#ozt!BT(B:D!*!"D EHCB1=zwxWnEQk׮V8si:D180ݭ1 ?ݭqF8BB!BP:D!*!"D EHCB!BPzu:q}xtg+CVD;{3!f>9|mh[Q[nE :ttbF"$ "€#" 8xh?O3]+7ěr!Bhw WL]"KFC8tGBØΏNHE<[ۙD!s,@HDž ֯_fΝ{7>۶m`O}S6l[zg?r $#nܚ@#<}o',~SmCΛ#C7ě6hK/]pwuҥK7oO~rÆ 6lKwرyHZlyAPcOw~o3E)SguwD'Y ˗_yꜛ===\kiiYb+WUXfc;#3W~igBx#„5k6o޼e˖uɛ<__d2MMM2| _x *r,[!DAug΢ٍ_&-A:ě0URLHMD"$ܹs \_Rj_|qSS+rԩ2+)MGr4"GIτHM;yӟ4X57!ĘuVUUoGı{ /P^Z@kkU5k|XfV= fID{rAV!oq@g#oCs3* lj q߻w]\s5W^y嫯я~T>vy/]teHȑ؈^=z5^TݳFliiYf l͢Eu &D;p c/FIUF1e-|eYMS9-˦ꨢǞGu譳¡;"7y)ܐ?~fFssrxQi*}/bߞ4i )3珶L^0^ﯭ7|_b<g~{%|<8]HI ̢NC%!QeU%IY F"PsаhѢ9s06mqt_穣}A>.T.KBs^/oLR+pd-D-o޹ꫯ^|СCwye]s/\\M@zTcB2詁/81S \Lv4o#z,цѡ/x3fڵk׮0.ME95}Lgtw$G{!*tIK1IGeh<= eRFGN&e6yhHlo`'r2Yrs~Fk9ʇ g\Mnb((`B=Y%^twz, 58glqViC*S:&!~bG~g̳@G8qYn̸ZZԀJ#E$2@I,5m< }&0$rg +#)e):D)xvlZeXeI `;Paztٟ`r4T=?g]Vm)i` A|IL]S}j lP_Xqo;r4FӞ,e" E@)^k%3T@NVL's.djO[eރZ44&v$cc2;HϛM|7:١ΗKMdޟCiDyF&lTlh}Cv@2O^ӡKq5؃{dd #?K1p%rY3i.8eQw*@qZL ϓeG*r#v^|?-_T{ %"a YfIsE!%8$s9zLH/oяl%X 48C RuɿNE* t3u~UY3us'-!DLZ3k6;MϕZԬc?{lgn0 kfLu}#&2Kn K($R[1/Fb:39"Y naQK='+;| 8aAG [U#=u7nLۥ F{0KXq${@Dzv<乑K\ 85,/$d .~25{ߗ0 PgD5OcdB8x޽cxܦ[(앀K4Ǻ{o~ԩu`n;;*'LmJ'5KC'FzJpKcFAOyģg߽HW (.cJ2 nsw6@\'k9)T7hbR1u%<]#9F}9 8QHl;Im%d;}*@.u"1$gw{^TZ pan.#"Xat"pYq"ę O-py4y,?Ng+ȹM2Km G4#-X~NYY0mG2]#..r6t#` B9O'ɼgJ6"_POǘ7M3;;Lm<P)& ~eZ2d";%2D _-=C/ʊtvӏJ?//.kAOl}Gd"|ɸhܑJ<&zoؾ鄻MX {L88uJˎ͐"b*0?wF@$zDr˳Y' :ڇKv%AȾާڏqʛF 8 Gˤ-@A ag" fQE+7>_xѐ@O ֕*oEj*]rv|hX(..AԤ%RaX >ŧ{J*J '2lɨ(k(2pr;X,'W 4#+,ټƋTHvNTqN^Ȓg*GȄ|ֈN73O_W]™)niCabs.1 DГхEI)^&z0>gdr$haBoiGqǓfD̢e(ј>')`Ս\Й,tg[zK>[do,(螀^!-ATq'=j"5G,8|ΝU%#ӭrskr/qP^}fTT5~ [av\:+<5H?}04 -RuU>ON_.2,h"mXΝV{L~VA̞=9|$)3OP:0}bL%mV"2 1؟`hP,4&j{UYF=^1-!8aF 9/9?Zḫ}OgL kG"ddJ̓PI8g*X_A$B܁Hn|O]=n^ `m͖:t9L iNUђ@BY97ǷPZ>Lϻz"7uӕ*DtͲpiJݐ=:(O X(%'WLl)+IB=AS'_)H@e8PEs;/ otHu5Qv,4́vr 7J3U]%@g+BAu۪SmCA< 1岱%}gsc^ND=`R  xk#gM7>x^ @#yd|$hZS8ԓ{k%:jNL  }'n{vl ,+ xz6)!;b;x'QhMj$:.VӒvrl@,Ůwe@Z]RR@~v6%#}xq#no$m ;[j*iZiMU|#0"={Q)ELqDO,u|At_)0 "KzD1zMa#a6 x'qf_~d+e=4Ƣj7nu&b#Sa&i`N2hTh+ND`¶J!^ bgm.t GjftCAfٽ;Cf!nt&ߓgOБOG^J+3^8Csv8ǫ#1\jMzP~#3㏑OЕsA\xǖsS{_}oe%4ʇEaz6` \&4bp"D0|M#EΕ®L%Q1dI $3$b`&Hp8UezEƎ؁1y0Umy:FvhY_0 7GDĭ!&?!*Gmor<xx6`vbmA|ܓ7dGoOڮA6eP ?fo(D@j +DѮK@&-%3fo }EMs0 yݭ5{䶜 <[)9& F@wPpu.r`)\x:ޑNz0Wp;;9\.nZ~D+_=s~w??zY6fX_C\;&)$M nx,v ϨPLG (=y뚙a "L0[ap3)=GSEܝ[[ jW"Ef沆䁸Il-=nn/uOQ$W;@B(55N qe/4ZZ^ 뮥Kn޼yd6ӧOرy 4TU,sEEKdA& mFKoaBB͸m9ԤA;;v_$@e 6iY|_cC`I􍨢y&)gN켈S>5t'Z옫H8VIڷi" 1@ HϯHerV %m:rE>·m"l9TGA4s[;! [RB$'qzVQH*ұ%]=_t캉м7y߉q~iń˯Juuuw͛Ҳb +WliiY:]y"^ihy.tA`#x8KN "PZo`Hy;)vln?S߈Sz0 .3A22FN<""W|a#wQEsOr.ap2 2Cg'"T<&^'h^ioA2CC N[ٙ%2|;4Ss"a&l%("d1^V>$')+"k֬ijjڼy-[֭[H$}?L&)¿7WOz&$~"隠}'pA}G8,!kޮpnOzeiHvo+$EgHq4{1S%e'&E{nPzV'f;:Ll%f~Ru0}t8+A;d v%u~ 'ӀC_6ڏ3/򍉪UM&l=sbB!ÄrJv7gM 6*>̋& ^F h"w}mŋZ IDATqjkk,]wO<x[ 9=<,* rBej;;"# WpD|`ޱn[) fȻNzĀ{@عKҰĈ!ǰ<= 0+q"ݝ}pQQd,Y'cbX=TP4旿e8'2P{QP -[Мw# +Ϧ.HЃcXU܆$ߓ1Q v׻zHD0b2o+43"[nUUn"-Ռ:"ZjUkk+UVPis)? @'d'Ocf6 kU3#A65Ø @s*/!-D'VP1%+Q8H"ц;>/}K_җFW cj5ʜ"I]7_~+W}ݙLر2\l4A/(4s6Xf=bn$q}{. Ǝ޲)25a  T2B$R8S.{]JiM@߿޽vp5׼M6544tMHdΝ~ҥK/^fwP[?|:tN5o-H}'xe<.چwQ#ս~\85̊}t1~`{gpbłeo^\X9i y^sYoW r-ޟ7Pq-yHzⓘ#,f7e@D"uV V<\qUX9R,SMghVԐ Rx0S;rxxDU \!| 6k[P] .u*?뭷\ooJXz4Yft}TQNS*H ,ph^ӟt/^d>裹\C1b@msmޗ $XW%2&SDNNRHDe=CuSkIBv f3j$@,k"?\uym-Fw:"WWӖ0N\FORݟD8|F݈y8N4c? 7YvT^?~c`t"IAnkW)Fw6.OA XWOΫ xUJ6^hҥ[l7?<7tS A͐ǎBs(q\c"Mx#8%0 BdR{iWc/MeZR蚰Vh%-[7rV `rC)C h1f!Uor˟nkq5ϕ_g~:= wSk-^}잩 Ti#ߤ=rzajXRaɐ4Xˀq Dwme`vY7sǩ=@ ѡ^BϚ"Ա* \QsUϭ fXo}_F׭[n)$?|[X,@eTR{2)3lT*kllLJڗ *d}I=żB "Fd5trI23@۲YX⫲%G/sǷ4 KMl]D&6^X_ $Ȓ(N$W, ]kZd @>5Wbx#*@]~ZcpRao6w.s:VM0cT]eFT9Cf>Q[e* <*40]pZ-f%uJU%+qP#W`q젪X |Bj'qرc8{y]v…[n.ɮƎ6=DT@P==yoC]y啇;??7|2IZZ-:Wd}l?>Fh_A "L=Ai@D# 4%[1SM7x$1ӳ>(s  uPY$b=v|å例> [PxL2]z|hTEXaiDֶ ~e=_=dőxCH1[˵pwMr1:#tkswXFΫ='",(f31IJ s72k5ꫯַ裏{]vYYyC  c/zLhR箎.lB>BcŁ]mA9B,l֮]vZׯC).ݑK(/H^AlE~|^;aR9hHqkν䐁SjO01+ʍI@P- kQp[I̢C\7z, H{g*dOrH>zc#FUJRhmم/?<;JHD0IsO<ƙ#(D k)<6(X J:CbV2%}+҃LvmUUUfϞ}wu]P.j! ҒH# FAs-r7[~0Op2`}ޡI5%Cʂ%JǗz$j2A釭O1j˱X<2ZdH0R)u>"Z4)dY#Yƭ6N~K!RxϬwn%SK0|Κ")AehJ0+z'U 1T@X9g?5=y@")Y3siAZ] Qch)`V|c^"{׻eb砆 3 _\ bkըYW HJ"&GLaMF`RhcTDuĉAi(0UHӌ,%8'p i.直5Y; 6[ DSwPf6CP<v`O"p(}NUv#lC1U̟3ɊEӕ^e5 3 &ڂ3#v8bH\f6M96;_o[SdL&2 Fdn =q9sh{R W%Ci jp,Pb1+c\'lH'DfOgp|\Fdk (1!Ha#sf5Z S D|F$~+m XO=*Jr .ܻkN)˝,1NӞsf& rj.adG%Twۢ2s%aDֳ "%>˕ّUʂ8_&?G{{eu<*CrkxlnDҙj$3nJK*JsǶ}HC*G Mb-կ-86HY`:MS֥jVnMVE9ݪJY8ok'&2Ğo_&k+iM.niEIhCm!G5V^sÓrY|VO!.~To(rE.0b䋓0 GoBE+M||4+?ƀb˥̕yE"hYF3E\poĮY;'$ _i6g1! e, m۞lW F8E rV~n-(b:ЕBNh{wqn:JBGX Q{#)6#$|9b'Lq4^^V ";p<2^痬)%蔝l?gDvs&>xo%Wh$( y΂S/kJtΥ5duEΣif 0"狋KJ~$ U]Y?ׅ>,:p2416%B|}MdmlU'Xt gΞ mgbDfQ]-rY!@.*#Rhb[ATM* {?X_iz$cfEzb\.dtTR^[4+<*g_4~2q~ ]3on_-S%,os_YQz? f^^# qߔ^ ZL q"hUD( :׌;eZ<:dPNZR"[i~[&9yn!%my۰oF"tR,UW]le%eؘ+'OcED,)04 '6TA$b'I|~C_ɀHw0;^1N+g5&)m7 b)'v_e)m#µ-Y8 ͎ژŜ0pzi,=t 3{AB^E""?Xcy;0apV,3d`楶x 63/GY:yu@TrхsU;M⬪cbX'ks]lq(w@4HrT(9)#tE4>%a!e7O7ܩRRx羒M\NlvWp)(`juCn^t =)Eqy`8ls;"u Dno)tVeApTظgЇ`Ώc 0{&}ir)lOo6,(W'FݭAG#CFdlt7݈8#";d("JBL>g{SuRUy \HNiOI @4³zuJuK+r: `ٯUE5"3c@W\FuÙ ݹ?Kjυ痫LԮp lT 0z۔ q7ԤǤ"+#:9W/NGa#xY')T:* q'phHm)K3A0ƈrY+Y4эQw~zt|rȖ|:mK9d)/?N OLuy7gp*!DiNg[zIs"E'  lNW8I.vlM k+B]Gwbf޳ |$ @.:߭~F2t Xh\1;\K*K+h̞'I4VYKXA)I Zp3l FiU## 8[NLA|4M~H4sk0NnmKI-w^&nm#_zL:w8yK*/m18:Z8pDx  ~^MpAc_ Lw=3`Ȫ:h0y^$|rw2t3hLeN eRIEXPw|X!;<'N-:<R3O) s͵J~* :*H\ڼ dطUੁ9S}G;-C)c,vWc#P^3?䔀)#Nv2@Pc{0ܛ8 nrDT8ǎD0.H%2af҆ "#BXl߻/\ÛHo/m鷛~j^{BI?yҟ{38_FI AnTE I *@1&Q6+I(-WݨP<T)C7=9h↴I<+42ڥem֑CYnp]3S[:HZA7(N9J2ؑPC^[cڢ׮VKa{RLG) @nhTCdRDiVIh$"d&NanէC9( 0Pr2~jswg8*dEDÃ;OӕY{3ɼ$MEaS-%wV*K5Z~ ;3^A` bBȨaMLDT[@s촪0C!̑T(^}A[Y^0; W,VAP9 915X=|-1s? -0Hjա~Tj*) #Hh^Tr6v & ^pIh-:1UzocqH{aQ7n}L)lV$]BGlA <w8\=׾I,}=xɍ7ALf, nJ` @<k>}KHe!4CΧ5؎=(p>H܌I1b(/>Ea Ǥc]Z]%6Y0#u.r[ Xa`HT/T2P!2j N'9Rω;clTW*w,VA #o'x+ A\8"E)(DTGt<=}~婃}Y6;&U%1jn{6p@d 2: LSPWQ ;qη Q(f KUE5"G3$ۊEӎ#Ӊs1}Q 8>MB3bNefg (\-8wP: `\V7LC3<sl>cQ~nL@nb6DVjq,=K.ITD;Y֦ksyԼ5ؑEf24J:(V#o~m{N'-ypcj" B*Y2:ҕCm*v9aDtbסNzNqMZ@4zNRCVȲV P!& Ι%-iW'$ ٽDLo<%!]& J<Gb$G8}JBiBbfŶfs9`+loT[X1'˔XdY,;7x l[^wHa`D ^~mN['.6`c |,g%iYs" bBEir3j8c 43aM3u),+5Zϱh{G@ @3S' K>ok"krGt|7D'$^+Jx9&2F tJ]~ߑG-0c!LA@vdo}qdV ̩];.) 1F^6VDjDa1;L;|'ΟeJ1rhGcSϊUG%Qż.m$PpZU7Y6?*e=vxŘ- %0XL4pNe ` bQTQV] &/\<3rQNbd4c`ꆿn- "UV x \$ =jzGp%v=":n@e48U G&r)U%{Z5֦XqfFFmGP( wliu촂 &-ԉ@F$Dv<蜁S%k6n~9eL[0`NeRƘnLZ% ,]%Qv&Eb#EECt'֜;F O XR68fs]<1H/ oRUsF`2A b"Q8XEBa0K9i趘e^f@F0OnjqXU#BDdG{ΉHMq8yώT qOwLç$XWG&9yt"xWH (bncnVg @cF\z~ײ\@LaY'S02iW7D@QĜYytbfTEd &\ӰoSrZx j4،>ogfTW1 V5& R%zAZ6.Z.:_F!AMjufҮh{A` U%{II"溚@;eO3ok&lZ@z';-&B$ &`ÃtRc @]wYS3f-&cٜ10UkJ`vG0^Dn;0C:dV%bmǼ̻aؤc^>rZ`I7F BCg"[VzۃCz ^(`,8ۥ2oJ*Jylj t\ x}* "NdKѦ\R 0 8>VFp  NavgLY~kٞSnD:/Ͽ>;6Sy *Ma2"\Re˷-cIGDV>8G DT{'!HSSe\h+^ 9fȮzRjZ,2ӭvvK1s%*{>e2IJ#˭_>Ν;or7xcmm-oy6l[zg?q j թZʀIN4E?BOQ@! _eX'K)'Yhk~r%@׻>o=Fgw~%"N.˔׌ԈM>77"7zO5F2RAOهDҍDLZk=:H^b$ ViL!ryAFNr,DUqnS_$E)sb+^wٰ9H?8s0솼cSPyfcty#U|h@D*G.4:f݄K/tu]K.ݼysWWUW]aÆ 6,Zhǎׯ3sޝrdE艂JNICnYZ<6~h^ 8ON03ƈ ,SeGb5*5r],`X1SWT25q0MG0ٮ*XwaiV |+may'{'@@ 5iL.2} 1pw޾ڲx.8I=N@op#k%@F OoYXЀ wzeP[1]kXtp664m1<؎*fRc$I&'AφyE+ OڔPTEZnbȪpNohb5\[EQd۝-M!ϊKvVe&{HL@Yi[lYnܹsگ띝;wd2MMM2K4 _x ó?[+ᔅOՏ`\i%L-S8#%#/P&<̎V7ZZfl0{/ ؉?$a;L=@3k VF,!I[u?N-umcUuNy MTT9\3ݒʄfMBAh3[uME~mZL4՜Axq6@Ex78Y+Bic~ \ohS޲G%2W]n H9 \"84LĦ͊f㉬1g/lH$ LC}h&ފtuk{)CY q~ðw\56  э+7u(-KכRc}V#<4mVj݊|BٳG(7`_<44|*;˥j WuV3 ^Ѫve nkN;^ +{O&tY *v0S$ZGt?kR%kmBd:`+.F)N#os2>~ @V9%x7/Pș՟ GleoZGj&ӱwSN}mVS GVhT'ܴ(fŠo}kiU曫9_9g\ʊՑΫJ5is[!2 =[&"T.01spG-Bo_rcʽR6'45/xΈ%lqabͻi$ND`2=:Bp Tk̘zmjo'A8t8qj'whOR*1:::22SOuuu8>hxc.L%j֕JL2ν* Ō|F=/#uwA:kCA 4RFnGSL6&>޽ExOEăz-˭W$Zr;`5C׏KHТlxi`{4&98#ۀLbq5{da'"> Ev4y<0}BvPFT8鴸c`ךQrw[Z@)Fhb(58yhVE2 /5 (9Gv9*嶤@Ŕ8/ˈ8[zAANpduow ,Ϋxy. E_.RuI>,(_:a%Vt_0jz=gIH ަkTSM շ&"9W@FH'SZ^$XNcrwi>11n61app8YC`1Er#+|^,W:-M?آƣY$"ܮ!riց RqejARW [F~;е5FSc|1sqۙ3A;8_^H~iYX:$|NG|,yL,wľYFkN <3/5U#8~ϑΩ(( 8c\4+&w58ۦf[!n8(B#;o>;88Ĝo]o WprJecCuT,bfS YfɎ. 9|y7~f)#e'G> ymoLVD}لϦ08MN0hZ9Xe=As0N 0.GOْ]*g nAP (Xi?.:霖b3Z@6>纘tq錋 m\\\Jǧ: 8RPTF~_FvsUّkY?]ARBHЁ0ݧTЕ{r5:N9A.NXZ~d lj#}(Ǧ}+{S1"8z3QesڀUVfئ Gsz-R1iptƏ&x6f}/ P4̷dk6M*p(Jg,5hW7N rpN[6c/4LK+Ƴg}8}:®5m%r$D/0583ǧĘօB&rtj)?8P$;m66 ~ IDAT̾stãNd]N{P@t1V)n5[bl A dĉpo+OFJ9D(Тkl.,ޒ]|{JQk4Z[,Q_ Z5@+q-XtG/()]cLU%}lgV"bV}4d ,ټo\Y)IJ䁃Ta8ϭ:tT])d8DlhH ѩ d24 Eb/MmvP*y8:;8 ŲGH 8*Dm/7g""w|,cz`UzprЅas(Qeh0Ai^ɚg}?m2gd)>i Ud#m윒2ML$9yE_ wZ?OFDr쓮\Lz(H QsUt`Y3ZeD*XjhXYDŸgsYs}0HR9>^􂋴)' ] ^Lթ"K.ϑ O'"9+>i5q[d>Ⲃ+V[Sĩ!.@1qP$7UbUX)U'5:Tk7;`a6:D0`vd&wr×|ܹ#["TROc-y|`NKLMfg"[9<7yè psfG7mOSsCa:}cnWsPBY‹!-uOTCcjA{Pґq*`2oj܍@iaVE{ʵy}%{`j}XUBzג-ڎ!w2jZ[U(0p|nZ mo 4ir~eDse{lg:85;;fI\sPY)Y@Pn}GAKe@ ՠxƦyS>ٺ8NKF\M$u!ܨ:9P sIvoD;wdeov4`С#ysn!'sdGOT2L?[3sRQe%rp7kF2φ@]CY!Ta@@+3FhC@]櫶҃HUɖDx3344`|*᪁UT,b98=4,g,+s.iʒ6P"zlGL&=Be@;jJP:7'V^Ĕ:t4ҟiĘK9n?,,r=mwH'Xkl7[6 rn;e;!-A]6d;i޻,Y0wy4}W )H%69ya""+8EB{)"-rAJ^- (S%AA"*emwHEg^ye)exV/1XaSVv#ƒ&sCby,AQk;`CcGLrEic9KGevm{a{ioo뮻:tСR=E0gae™c}/C`&Q9yY#ecI01+>e{,u ֐gw%m7;cX[u}0JVC 8|/! dQ:2v\:ҙI^ۢP:\ C6}RND10 W<%{nBwOśY]v5vo0>'!M(敩֞٭(?)!eh<40 O\uJ4CU՛o VЏˆiE b#H  'K2f31Z"B:Ї4;y,S!iJoW"Gik\eYuBzQ?0w,Rֈ! L"T>Qo$Ѓ 1mlr*;JIA"',]PPovb #"l̒˯9H:I׃NR{Dgtb?uK8z245DCeö_q #彺]Tm"o8cNE6=I3DvJN !+'~VA@-;˫0yk'zdwBa0LpR],ZݬP?hՈ~5ks=< /V(v,8bcR`q9vV%X $x}pbHj=ٕO;^ w(~P{:0!Α栞UѐXá8'yT_GdY,э2jL6[9wn-/+ cU6Tfe*'ҹS2g,AѶ%`Emz/_~HlMݻ]Ȉ>`߾}|ADMD+4$eDIhv*1r{҄׷nrt-J BMAaFL)e)kUUDi<▻0NLD'ι]3$ K9"+hJ6' ).<9B{_$'r`z3HǓd!Te]\ti אGʝ'Rb(vWFH[va䉲]+dРHܺƬP[[3<`۶m\{ޥ^*FFFm9;S}ڡ-x Sdi};%#ߐb._ m@rY,ׄXbR4hkOJ'oa),ylk-knl`gt{}폸]&B~{z1suɪݛ/+pՄNQ^ŖmZ1ٙ,y8t3WaMl($/})t;D?1}Lu@ʓ^" W綾^;Rc=vWk7x?L_w7PX[PL\lׁTZQʡp#Շα%B:e 붬m| sy&f3&BSs; +涔۟)Xz;7֝$ܦ`DsEi J@P$o˖!19q(,D2:[|Wߖ+LR,i0F&M;̧ `dB0jSNLoo~S!$~#JdJrّ2+pwwRȽ $YrA~@d)LGR09R7ٌdA0g{nEQnf8xw{???V::Js/d:Җ4H;tݓ8jI)iP6GβKC{2JLW$)٥/S;y/ټ-qCQݷ"d@J%\k=F4<㐓Q0=BϹ#ޜnlױ&Tkd'ˉN[ͧ-Ac9b883-M94=AݻԩS/E;i](RK;ߴ671c Qw_)`?;)Tz^B#M[1*xawEŌpP `V \U-R&39Jѷ0)gp|> /4?*8AӚ׷20Ήҙ*+,k̽txW֮] o CΑ#eWĶ(O-*ϕ:d{5/yefTyXù mN[MfƬM7>qma&:Y*S+Yjzcj˹È:Cz2314 h2]-jQ8lC{:Hi Eq)J/C\|,cGʷ>iP|)SL2`4sm3-+#R}E?fM! -4!"#zz< `k;s%xn)Qq0p$1Ic*LSO=ha_|m>#鴤E-&vfvo-ln2֩w||&Y SYodqR䦊ӵE_/c?_ݡAnմ*{(lLA=71\-PK/5֤v%o6YOև>18([81%fz6Lq$r|j95մ5m'}3iflG K3/;ǽ1[mYouG'S'HRDRg  ;O>) 9]vWO~&!}Z/;վֲ]Gak kڵxnLI$cffv`|S8,N HN=^dl]'ZI{$/B\G :m p_rvx1\ DdȪҙ?UBKj c>VjՐ8%C[G@<'T*z 9`{{pOO9W"`E  n@"oEnEc):\5$ؤN%ybh"b- $vpq<0~)L|-t>uDRMM-4uy@RzjRc}(DF@#UlU;,=۷HrLpkMk_OfϏ]h{QML.+ݜ(ij,p}j鴙'bOq'Բ|L$` I)pC' 5&]ԂWs9{dn}};߹!rf@p;"pYۜ.w֘*jꊿzÙNk0%2ƃ"ZW`s{Lg\t``lEWl`b0aeLh&vQFٽ͠sܚOJ0!]n |rGV IIWee(2LWDF}ν ϹrxqLXuUG0;3xǢwFsP Ӵ,ēq$ِH nC7-a"!swat0щ5?٣yrwmQ 3\CN)8F|w,̧Nɻ0iv3~ ҺZ_}M;N0ұ7)R%ZR :ʝY` :z1/,c~[i)z81%9|_BAlP$v|"DpEQq~REҲR^AǡR|[&fLo$LƘѸ#>ԚrܶRwcdzW^bve9G GN8{2b8kqʓw5*xBskM]̂bqq;2 Q#5Ki+dM`Pԥ=ב<&4,ٙ跠48@ubWu/Y%.[[vqh!S + 8u?HS]p 5 β-qLʄdY%8/* t(G[D۹f0 ӒIchkd%{IKsz{xȣ 6 bo 'EajCʎƴ~^EIa|j{'p>)G% Ιim&&qǮ|GKI;_N?)CO !oeX\7S$$ RGAl S '.XvQZ+#wLvj};Yn HpnEԸƋRQ7 :Ա>IEIe@ 86䔞x9Z 9+Loa.orO!y; W S:9H(%Î9ҢD)3DI*pӒR2) Ee]iJJC"O%9TAl$oЄ*x %]\;ie `]xɐO&"0MiY@XϒNe"?pu/;M8uZ9Q֖;fm?p),1k̀H@K[R7gR=3g+`9+t$ h᳄bAѤ""}@ wؤS(xUOL#ZJ ./Z&&Ԙp)p`J[ [o2F IDAT 8x>%`YPF LeV<Ԅ(9`gvG+< AI!B"sr{W9m\۾H5"aߥUMX;-"ҒV-tET6uoy^(&7`Ëc|YP`_Twe5)Zʤp]f+(B{!o)P(﹇q廼pX5 7h +",_ 1v5'>tǙg z  H~:G0BWLn_&T#ZypkdNj[ G %is"@_IY +?\>ޚL0`F`ܾY#/ v)$3K7ж)g͜a+ݴ,ۥ4c*m9_mQ/ @xUWӐ^*zcK"V{sf" QKf/f;/5x O};cVlS=ۓ)=S PR`q1l{J*Y,rD"/2t|3\sӲ cˎIĭeڎ>51ԎQFNXl sNx`Xr$ߨ=,>8"-H^( uhB&TツzUMA0hִ\JD !(UXw,wA%UἪ&p!ƩtmJGu;Q2}\ωmXv)HO>+cP2J-1m'9IUW) p=[ٶ n>|>Œps+"s%dl(+]\:^PcΕ@`b_"Ԙ_x {J7)CK`\enih,ɔ- v^i󴫛 8e%p^C"2Ux͙v"T9Ehr"$$v^7=908q+ElBVo 2i"}vAc$ʢg}TAMq"e!M_q|krbg6 M[u [d!c%$=Ym'))*"ϋzGXv)kZdRugP0!97N `,T}Q^tu> "mk $8ȑU0(rmJ67w@:6<<T6-_% *Nj\lÏq)R]M,eH5dp,kb L}1tֶ7 "EjK/iyo"*2mAsmrҊ??cvJ+.Ew?XB'@;89d`&tdVZΰ]pQAOnQ J}a9kҽ㹳\*US+"*BR?fm\YrplG(g[~tڞ~r>cdR5qS~ƨ q.&Zқ=kGw@KKzN2DZY(2}jצ" HW\ w80\:)a}]ɒ랪x 7=%E br|W%gßL2ui0fܕ㈴I=t# Z=,!>[ANOђ,0643!;8_b ÉP;3r(K-1GⰫu˩%rYNPt ؃_,a+ĩnUa Zf]@+bxo}jUT-r)Z,[s-j0m 4)% K9zgv̵]K27(M^õ>7 =Wڳ-iI!t,Ev6GyũII+g\չ>ql ԎR?x8|hD+n>vHX ⭲C#Wr.YIU`1 DEN(9# ,ל@MaN' mfu(53J *-hʭhe%h5: {IKk1voFO5Q9@~ * P?XOg̕vE^#6,ՓFPV,*茄 Dڋl~Jrs7`nvADdM(qd*7"$hL3" JUq2>! "r#}3#Z ZLk =Mzf|C 0hݒ-Tr}2#ЅEA%茶nVkN@ ]M]#(-},c%r2Ჺd&Ɗ.^iɽұ%B9ܢ`+lLDНLp7 Rs3 ^3bTuYeY8,:-g'?2uM17'zӷ[A2UZCz zqH?%'$D.Ěu;]g!dg?왎t%6/i2ϟ9PCP쵬|bN^8Ï>茻/jݐI ,}2)5 ujV==2ITH-6ͱNZT^hYt`?K=0_zu____N뇆>񏏍Y}3M4|ͻw>ψN*}-ɻkbb[nW:===00pM7Yo|ѣWg?; GCWڲhp3\COTk5pBCdm_FRnbM%ѥ;/'ǚY,sc|ELLc=ݻk׮'>駟~7/_~?䓃ohڵo޷oߊ+.?^Eg%>k֬{y'xs?cǎ8p`Ϟ=wuסC:4 E#\CJ)x.YU fvO]K"EK8;,_W}'G?=J6Jߛ%ܶEtl+SOMz{{~d2 `mڴijj3xڵޛro޼yժUlܸqrr‹Ί-_ /J_~ǎiZkrJVzfs#~{r29[Rܚ㰃u,4y.0h#;..@)$PeÐk Y"o0MSQl tPKs]tE>eTejkk{g~l۶mʕatM󮮮6mmmvC=}éUEΫ9fdL̎4SY)/R@pg,>Gvu3?9\.wu֝xs`VKs~}KwqG*3 //{{{}d2y1###b;`ƍ^{ƍoQ6:ڃ_V}]Cs].U7uay@Z"vEEܩKDs\֭ڲe]w)/O?|ogyYwV4~j{wf'|R Oӏ?j4u3",dG 5]=dRv= ڲR) /X l3"fPE NĹ6/89{~&[|'Ȇwˏ5P51nE ]ovOuŬnFA7@ ) hN` 4@u3NMM u'9K"Ӎ j2ŐT]Hky`bX?_)O ')elڴG MN?38jB9Mz-yj_800~&?tK "]vX%@e˖g>&4Maǝ;wJ\~%s[i@SSkB1vjcǎZm֮]WRUaɒ%/V 29SR.bMMm۶&}̊N`qP^IZ3O 4@/G+P5h-Ay睷rK,3MѣGW^~IMNNr-Bg/~rR%V2*?@PرcǕW^Y7(,Wc::B]Mj:S?4'ּB:u[oꪫ&''9xsk׮4z衇8>ۿ۷۸*R&[֛oY75ttC}NSlf`HRwy ğʕ+Z^+giR˗/YN>ػw_}K S8|+XfQQ 9Maji;&"]]6mmm,MjhhMT ڶm[kku]/{"UoiRaj?//% H4sPZTC,ܿ?4)J<{H[)^zITnv`Dc:j:>lj-i!,Pe֭/®]{{{JY޽{*AW]uWGydٲe[n5MrRV5*kxЇ>TttC}Nj=S}jFJ 4@@ 4Ph0h:EA7@ ) h`066v饗nݺk*۾h >瞻gϞ5kmuh`Q՟~Pߛa+7l \*s` 4@;'+iJ zǎۿ},t 4qƍ7e7T 4@u@ 4Ph0h:/ջ IDAT( 7l?3M>O?G}mc/RQ`ر#J]{;r~mڴ)L~ӟ6M1SeŠxX,6f]tѷm>sϭXAi?я{|15Gf{ٳgC=O7f,~OOOvmN:se˖=ؾ}{&f{]fM6ꪫN|ʲj:6mtw . ܢV3u3 cLl4~] ø9r{93;;;xݻw?n\s+~gq|ӟ\[y@뮻+o8p4@<~9L&h_lmlll` `'7$7k6q"C,kcv/nI^$ڷ6#i>=~9fi[,[V zb9+W袋֬Y3{EAZjW\qE6=p /pW۶}A_ /\Y5}4m/GM0008818B(c/\r^}[o_;\l]wUIbNS8~6l7o _)yR|æi"0*EЗ\rҥK?k_kkk[x>b ڇ?{K_YgjLx衇׬Ys]wE'u-]}՗]v'?ə&|]zWٯVZ裏xpk'壿ꫯ?OK)'fIЧ'|cXQ_~Yx~\wu[nڽ{k8j*EAֲW_]|9soذaBvk*_Kʉ9sʖ~~N/5k<ÚNkfCCC͌}soy[>򑏌_j!|O?4c0JB+f}+_k(œO>yM7(j6mg?;ۣp7~_+;::#2t]C)ll j鵎k׾˕ׯ8j5jRjJQ#j*Ek5jR̎X?i/큼nl6r7F"doL$n%KLI_dXL΁aqr{伏@C/>vßrr$hw:4ۣxg o/_?pkٰaÆ sC|JB1q*Ǧ͡gyx`۳Gf{g]>x> S+V O˿<#}<:~^]ZeJ/lٲE},lٲe޼y~{WWWWWW;RNlٲ믯͛9`Ɂ|͊AZv}۶m[}! / X~cTaSSӒ%KTzS V!o7+wߴ^5kڊ>NO BȚ} /~F,g?`;~رC1}]̽U4yfMnᆠ?-[mٲe/?EOU%791&QC3"hdZ[[f2'?7_r֏FЧ_֭4x}E뮻{ꩧY>m푔={vꫯ>hѢzS7Ͼ+'""ԴVm$II$k֬hmm-~tu۷o׮]S>IAIXl LB~Gƥ57o{^~˗/_t… g{(o::/||6mrmmmwwtw:UWc#ItE2{1S+AϐI1!̙h"8]/G^q/u܌jVQ[_zc&A&~'dgT[ _ye2Crl&Ùfv9E͎)sh ;#}/*}ٿկ*YeMhR8'_ncgV(Hepeӫ$)74V #Cه zСk@D{^5rj0u޳{fRq̢T&bo<#?S#hrbp*|KǕ`ONPAsU23X5CSv&С7Ow/@-l1")"+"h )/ѩI *O"Ǣ``bK>(gs/}[GK)vL )bHLCJ*UzJ3UE:$4O<#x(MQ5('B&mvpU5יc?f[Ӽtն3"hņcDX_cͽ0w, :މGZN"F:Cy]a/1iI#Z.R=[:gwbX7α؞zDGS="Te[ώWjQÔZ+(+;3+iEB$LouaZJ %(BK"_ihP.?n _&6O ^x%t4|@ePF?IJ:xi Q}!3}3Č*=S?ZuigFj' t/v!Z )/so'6^A‹۾.J&r뛻/n'ǿ[B9DA3c82HVtopS""b\e>=5z:ߏj'Ǒ]U\xrEZ ZÎ+ F HM9Q~Wa1| 7v}`$ z΅ߛz?rTqɻjhl%P!ђѼ[9DYJ&;}O;Qp5N3=N0۵$冬O攌iQ ؖffߑ#gj<{ p%4 \[˪Ll[ɭɭm'n# +Wp:_>X4Nrr#{3<Rㅰw\TEe'x ^`$isώ: BS)>)F3!܀m(RdWF2|2Ä$dz$>NDdgT';?¶~GN h1gw^*P ߓ|!@SPW厍|B';<\8޹3Vr<Q?q}i yT$Y)2t&{8c:DVeYv ?6<\uj!hwz B*]{UsxYgge:Pcn*7G"ۏz!֑GIdRBdP~s؇a"$W|1#jan!H<~w[[>+7 6/J۷1A¡k?^iU|KTAHD(">\[/5s=!]ł#L/{U"_2v3eF8-W<7@}BZ|WL_5j^whf~2ztH J vJ TL+}4wLUEc2D,F_&B)R{_8f[o{Vt6efNQo^=zFj:IJrLLo+ΕT\ f 'g7*r>w'uC!Y~%B@p~IMNFޠ dv4 yc,9~-8*N' 2OߴK+( Gs:_p늱֭Qه~.)q ݁''5*!P9)=]P֓.9.Z@NϫNF$9,q&4k Iq%耕}F1*S|Xs6QOg&+ΉBA1WȱO>J{$%JƣX ag0 8x0o?3 /BS]v'N :P‰}B1h`g~0!(xW8 eo_ge| \H HG>:!HΨ4rrC%N plk I^IH2[ {<$K%zmV$ (Q)@1HdJ̅rD)T. 1[TZ+kKAkv޾ﻛ`gd^Ig|GxG]u4WNyUxɯoTA e +R`s⣡=,G | c; 葓S$$Yl$,[gl0Ȃ-!H9ܙS 2}"w_}w ? \q&sEӼДg{BzmʯcvV(yFܵ&EK>ڠR_vQ;jP,?x|FP'l|ppx8@A)Û =.dTN"-Q7c ^fBh|By}@ YF U_#Qן剕A巒N ~ kLc]a g93QhesKމ٨̀qg|ײC@V૜^W{Li8DP2SɊ /v3WRT˛At825 Oo"}t}r&z~1l&mTӵ췥L%(jA<醅^uZ?PH(8Zp#aIu9 h92N FFĚ Dnധ(Ey&SqgFvMW1Hl[ _")_?r Ή23W#3o|thD0esV=.9זr7UEu>&h2ާɁOC'DU4NOT}G2 XURӰ, #D;sI`>g8 Pڡv eL:xpaf%;z Iɫa儕'=rw+EW *IŸ"hD NfS^*='?B~1ң{C=u4@yY9*XOf&L" b%ar ʽ- @&Otf+ߏ"ַ7yʏH9D2#BoOx*!pȢKN 2 8ɮ]Bt8D@~˷H*Ui³GͼS_7SSGO*!)LL5Z473~eBoF猌ߡcYڤazWY (o)7ȬEuѿ(D j G\.m#eg%e(A#HmFO7BBGr }J}> f$t.a&dgݻDХŲ[<#bCFNLۇ~qgq"TAksTy[/[nwmU,̑c^&w2k29-GK7N 81m,?4SɒH:`n4n\EKx %| eA[_}r遱@&"?TTV0Qb~Z!2KXMy')a:`0= l}6::cc}ߝV fz޸b [2mˑc| ?n} k_V ' ߍtbJҢ9 w\VFҗt7~{ߛf}A?5'􅦍 2AOň߽HDpzB*r`hzx< A{T((3yR/*%16@2tod W:ݮӳ: OE`E+G@ĔH.5jCmOJ ?vtCXf=,@rUEA"Pݷ?u`ۄAUYJ[mKӅJ:Gܾ0O^uU:88xؘݡ bmᎹDE=OY `|P IDATX1m`pBAgl yP%*x,CD .TwsÆ |bQ(ǐGQ& ڢ:(8`[a G}"O,,틇'Z=uϵ`3F񆰮.p`yLYG \jX :᜻G~z %;/ces1+ XH}p(9 ޽r|-T>:K?]!ST4~t_|Q~{?Gaax}."hi&ԟmk+V؎tyLH8ŻX֊峡Dl[[gKDgR[x]׹Au)%#発w,A0$@x0Os݁\">lj['{h@U#23H*}`ܧJ l$Ho*3 t2oʓ>PT* ,JWS'[2vrR5i$vb8ܼdɒfH Q1o)O:qM0-@$!vt7?\('M@N4 gX6fIB*頳8m3x|եAg*h@Ӵ۽gȋCb<,Hq89D4o^lPS2~ȧݰ4()r9|R=o0e8*Ma2(Am_W"7!\GcmN(kvA+υMbc4q0~{馛z{{ j{v:d$Ll@p{fqt twdƁ[$񔘫#] ' <bh"3¥'% ;NW%AXg KFz0w̠%S-r{dQt0wh4 z^MZo/H]saжsǦPwz/ǵmHymZCٱt 5(L#A/Y;72&g25b[AlTуҷ,x²IR*`ۇO4'Bس吗 5d! ]MoIܡm^S":<_lJ @uaJ!bWK߰Zlp$L @D/̙eJ`y 8'M1M;=Os':[r[ zE%ܙL+ + p-v3Ilr"2^S " @&Ja7R@Q׆Ry1<!%ޙdT绾ѬףT`gAp HExwNe +4+ )dA‘Jtjh3!+;2tt2+z:P7=#랹wܛ0=J`K,\Ws0&#xjlwq6 f+Gr0#[D6Jr~YsH)20x3wg?߸q^ `˖->wmuuu-Y2 ^ yՂ꫚~8;`sdeԽuٺ TJ'!du{:Tr2%h\V/vu%Iҧ;6'3/=f[$5ԥy)d]C,&.\tHMh}c,6 P69ߛNuC;qh`d ܚE>9g Иt[ζguZ c`<%ǴF`IQIbbfMILRb^=` .3Kh 8IHcɴ QH21%5> RuX4:&f8?h-#FQ䨜OTցдAm|#։KA0x4}ƍ7mt뭷L& 5q-f<ȦM(0:d{-`ͬYd-?8,b=4{K$hr)uc)D9 <7;"v=ctI M,=g  MO"bHq@Dw}mnV_N$ WXlٺuVX`7}xjes Kt9:A:̏tp+́M]F5ꝇRB-T2p!m9ܑ$s;B~!+'>>(~2P3GU6q0xr%OQ Fb"-HFD5Av~*@ߞ QM#epS+gkyA襝@hnp6~VN'G10~o||g_;vs%1"ضfE7%83bْ;,F#Q9jrnh3D &% EF~tʔə3jq 4?E1 ⑧A ̋ $͛7kv 7UsN{{;s9G^tEЇ.A#<0YK7V2[jL s'5Qr/+s#-.{I.3B񮰅{ÊG82X8xqWB*)I eyD;41̨KOi(A)85 h)PWqY extD'F$cL=GZ{cMDlfC0 ҡEW\R@۟}+11w+<"1CJZ>cN ҈~xуۯZnLjD 35zl|)dD#MOo]tH4o:#z-۵ƅdv5÷ ԡԻ́2@g?O߿;+z{{/Zhҥ=*C )xIYxTN*dDTK LEZ$ʨ‹Z& 0}Gq@J6HTFi(cc+;HA|*~͡*t‘&А'7)! K.hBqeEHyj9cw潀@\~Y㊋#XӂEkbDxof֖^MϦmoH&^,5+)_'L d>3JL{{.]peڑe훜A}Q'l,RǸƴ`ܳ)w+eO A3)*9p =20'TY6A B.c %TG%rnHaNt݅<GEKA,cTA;Ax4]Y('a^klWėmH m+-\Dsܥєܵ 8/r&b.e$k?1gyCy@B8rg43k 6gQG-%x`<>1iC -iHy\z#={Fgg;ַ,l]y WcK%o"2ӚD,Ojhll qt2;ϩ`Mru@HT6 ,Uclgw122jժۿRnذڵ'7m:=$ID{b˭A0s6{%MJ*ah Fsc̀PR} zH<e @K_`7.q\ŚJӘ̒kλ 7{R1) &u& E1vɪ-lHꇒMV|bǾlp ڿEf77iA՗??}Hczы-ϴFuֲ+_Ks-Kb'FVtcpf@Za>Hap}eLCIG4L rN!Gx^> {׬Yswf2Çoc+(!bŪ ۺTe=:3HRZ&@z.T|k_̑I\UߨCu=͸ε<1)@ӸiyJbqc5q2bNV8;0Z͡h#%s}@ ,%r$c`=ΟfLCfQ6D*&b]h纏Za\n< }{n~Jɿ:[D>9Z7&*/cE;䘖={ф c HЫV"(G>/)+mO(Alb2*h4H)|4- :v$Jx.RRwqUmbf_ _U K$i{?w+A3T]7-Y27<Lӓ@:Rq4SY:g Ќq|"c|UR3ţk>=cW6E"uL<3鮏`d?*Hw(r4w s3Ѓ4#u{D;ݗ"q7ޡػqd쾓QjPj~:@2 o"sXJIdֱѢ_LgXĎF&BgX#͸˷nO}JJlٲD?7_ϬR"JꔉSQp0ҟ#r@ uRzк>n3WmdGd5r/̖of$GŠ '%2ʧX/a91c94MeN;kq7JōCQ"qpMeS#5o9Kټp>oh#@FO!X b޾$"u/M#!O # dhh,mu9lGJʫIƈ\}}}я~|M6'ZtuVZ5YġRuwrKfey'2x@sK%LGU4Hy`GmHgX9ޒ١*0WGmEߨk>t(y9h)Mg bI{y+FT#kbnw %8޲ *5i7o~k: ]D@D:Oc mrZr}9pܜuµ,x/AP)s&ձL!}K-%]B7B 7OTk).&VJcMMMT(l<}hݺu>N2疘9p$`QC;{|j ?iЋ-8qT: hsߓҚ9MkCR3q[hRY$1kL4'3jơil;W1Hئu<ń ?X<&Xz7D5Ȥ:pCw!>hyP-hc9,ӯ "Ơ9^eemz%Jt=V]1Nj=?%dR}CM7ݴo߾k(hDB/U+#),E#/24pwUqT mVXGikkѵ}`TA3\1oC9:G]*d9x2jٖѸ۾ldkRߩ_Zs#4"暦~nJL1ݜcD=v銆-\5h19qe 4o2׫/:7-fF836d'yj#{TRRRB*ҧ9&%Yc|R3(3V)&el::F{0o\6/l\3U_>hK 94F#d>d֟7\hy?e%uyGdK{bD"?Xw2걸gcs(W,ZCzo^Ъ΢Z7LBK M_M%^ | 5f䨄R <[9R~eUD 5+r7;: 9=)<`&X>Q]?^dA]-ˆO% 1Mt p̋ 0nq :Qj˼qhp'RJa#%ΤU /5kAi`0qܝ)^)3')b}2Vg"cx1#h!Ǜ^pѓLwE}!fqḮrDh[o>剃=}oF izzՊ hl["=9qY$/Z{`g`s&ހCkr\ ˎ-)9ۚ;@EqN:N3i<3k.[u ;1t]9mp0)?\+)) %cm~Q̍,ڼN1>O&w`cݙ;QO6ܟ.;)gS?|.] c(%sMCY$G?xᥥT A fm[5̥ZV_iКnz48ckۿg9g+ִ,5X`*WDcrMu ]x$v383 ߲i0"XD~ٿx۹oZjD.~?e ݓܒTk('8L)CJ"*,qicѡb|O&QB\^@2Vi/ Wa Ɨkf-W43UC guu$o%kV22iƻO$wڅ@^%R(1Կ&cB32dozUM{I_A7.w 5ҳ|x"<UU?EAŸ5ٿP6ƽMܽ?h4Lyz, ;eQm~P"C--KyH- [8N&,7iH8`E"~#3QE .T4gZb!:8{u %}Zq_g9')3xܖ\&LuY?[_]"Q 6]`&/&TLsSE=M?xE!=[PzH3uuFD]iB;N$j؋6@doP=MѺƠ#xHZhcwH7-h{NusP)41cX,~@6+eh͋M]$ H>57M#MT)zL я G gJ T*?\ rV# .jp G$eX&%Ap?{4`_)@O'Ar[n>Nq,Z_67#(̆SUൂnA{17}u s嬡1j8Rn.X#//y88!3E+#1Η)r )ZZ¦hV4Ugea^ـ]CDojJffh;&qڗji(d+%h)mA+!Q0{p|+L^piyU=v $AH,˲dŦcN_-JQȟ(_l%#[S(J!" EĽޝGU_3cw~k`GWݸ9"!}߂@QZȠq"SF&%%L¢7d1uTqJNJ!Q@ǑHBy&(.Pdg+! {Zο ߐQm{Rwk hS#ƛ%Aߢ|$E*HnD()odVt h,e֭d9G-зM23tE7 61VHa[ynbs%"EVeA:1Ȝ䒩i9]fF¬"y{W B[fE蕧c K3(^: ̣Q?uĸjĬpŒE #`27?:v:G̒'BYP3k̲8P@_q<={7>tD1 I%qmYRdrgJҚн*cHʮ ξ {H0%Wƃ?ЉOӯϹ#OEq Ύ_:ZmϬ)ƧqFMI:'3-(!m1wa϶ynZgOd ! Tv#ɴ.suJ٫]q5**hQ{  3C=SO=L&:M#HX  j(6Lg]ovv~dpM[| z&oDSG|N ǐ i??)E(܋@Wf6c>|9'ݾQe$qb95RM `A] km~ iۑŹa>pK?Qށhx0Q-7,~Gw_ػw޻wj ٓI2l-3U>D{ y0a>':lOwϳZ- (Ԛ]3NXW2.,0\YUev Z#F t۳'LJ%Kr\55 4hn ڱohkXޱ (>osa $֞_[} 鴝lŶg?Z !uk-^?){o=_]@@0SqrYέcݕ↞RY?cb)){!+~yp4&%l 4c8!pE"i (Fzf9^+# 4'(NWwhޥ Xk/7**>VnY@ dfef܌G#i;Q=y8χE?kP.w!Fd@)ϧZ!8XZߓ8&6QʳLIBTBRS_ BM!1<|hR)+(5R\QTL *,t~FBDij^;*\ho̼0>CkN'2qLgʏk]h`b%|#a0o3CJda h!)H qm[#Uڻ|׉2愓?9٘KF9ٜ#)DD6.-dpXp|=P( :14īxu@VUŢD<Eːr9akv@;؅9j?E D:؇rR޳?xE' 9 Q*"k\.Ao[XD ^,t%sԠu-2Dr-R"D)AT +(AV-|Z.VEȂk +WGכ(lkS򉖑yݷS0(/+Ӥ\\ +Ncikn&10vhkV)ebW2vY _WYbeLG{3 efS+`m~Ӫu3s90|gimW^T`J;Oq\ P Q /kM/Oל%!)VdUk4:y{<>% G[ @V 3"\]4 @}ڙM7%ŕud7\%AHaIuJI伎pfjs`q iws g4nX1۬ π:[HhH+ftc ZQ*^{q0e+TDyUV,nGW\3ti  N\ @VLWÓgq^ ]NfK=/D~F>)Rn`c]"N#ug-4hVlRZ"]ו_ʊdѠ]չBH@)RL3PU@"i7惿@Nubqҩ-l`@ ܒܻQD9hS#s=2 H&V4p9^ZQŠn$B"ד6Va&+Jz>5a5LB6\螚J-ڋa|vDLK< LQlMRi{fB%y[ aPnٙ#InDD1t.y og %I88Jf':BRmq $Rv&o3Zr2>`X }O WoȶY]E IVT(YEg@zA+OU٢D&єK KfGBL;|dxlxd$Ҭ dz$+ْn XSOFĤ*2_^\k>g/)t f[T^DŠLeA)dVՠoEA@767|O|}}U |w~#3 l՞fL&ߛ/%59)fa(A)>=&MJD-[-l}jMi_߸q 9XžGB&aHPd8pܱLxET]GcŭH؋#! 5h a-#NtT"cNZo?ʷR'iXAGR >;vnܷo~3C% 2;vyLRA\щ侗ۙ@7̥^ٳ&r**+D3'ɃSRi$ ]SRݿTgiNfzjGodIDx>12 khUd1U\yrpO~uȖ 8})D49mcS. IDAT89qN4Y0Ċ@4鵟hpƜ'BH`U/UAiv q>6Ld9HX! 5hn\#ASEH@*GGºjz0\ԫ8.=[77jΝmٳȑ#z7|qU>͵LW]06OjAdqRfP\3L33y c ?xq[I -k@F8'/L ŵ_͇!a9 ;kuV~^m^Uq+ IZTH%*Y"Ϲu4@36qcE^|3?83hN;WB6Ty$⮮CNjxv_|5JDFH4HjI\a$a/Nսx)OFEA.h +Fs]AЉ }YSJJS]T[.z_Tl־ZfB/#Mi^$QL5a'LIƊ4/@E'Ec亚8!+zIYuI+v$գ_NG GR#|b4 x:lm!.3+Zӥ}tfz0>Kklnm8p2I;!hpwr*09!i @B@gm}Dtv;63PLzlGt{!S~@[%tx5+{QF $DCCeZ7'ŶA "#9BNug5Ӕ5hkA-c*,}W0;{ڃ$Lc5N`Bb3~G` m 㣕x!G:G&Rئ@%1DBut8SwZjuB+aq &@$oCۉoQ{̕i$$I@o5PlLu EyaY)[cYvn6Q--]#'Rz2-,6tŸixŊ +SB1H&FsҮm|A?dWXLmQ&UBd--lkp8# vɣ1ȶXwȤKUI|g?~lӢ}Xз h-.AξtSlܶc q\A$a{$3ז z+#:O-D4=Yٻ K^@7,O 9uK=$Y2vC%9 . Kۜ*2L9vxJ0䑡UO z7v-;7t6'B2 _x2U4V>\pV׿j'i\?v6Z4CdX9$KJ :Afug*9bfp90s؅ȁ&Bq p ~V B%< bYs^[6OYRJ۱ڳyIA\2iS'ڟxÖL}gN?մ;;zԚBS({_KULOOgz~É` r h 2mJH5!eb#ࠉHX{61jV[2O Ǟ Y aD SR5 "[񘑌E{YLtcy.=ՔLcՔXt;): FSTCM$V@"v5Є2~s| i;揔T:wiYԽ_BB+Й>0Xa:ĭWĥ8D@A~VOiIԳuC5، @U O=튞m"8_Q)Tg*o#evdc\XzE.xzHO_y"Ws O ]K~2 2>s Hj3 bN`\=HJG"4%]-MC~yjU*r}>;.wNDNj/} y?>C_gr$vIJ<: ї/Lf:ҩX/Q"[B_QԷ@GPo(Bľm# ֛ZRSZZcY޼ *HZAf7Leݙ|/$ڜRh8 h/:6 ,aDJpټ!| &AkMȲRق;GԝeN;WDgWJ1;Qȉy?|OZ~;;;?򑏜8qĉU_'8§ #ZS=vOJl~>/c(B<6-. . G};Y߄jGYDuJ/+\.A,8OIi5鵟-=KS;=iM)8QP6};`ۍ03<&P (F:ZD{%ޏ / xKEݓ@ 5(U"/ZFIf/%_f=;}͛7ܸq#M6E pH%)>6%cш(R&Р9{\@W^XHf nE d׆=!pzBx @"" !n5S>u,ϞSV^D'1ș򉄣 hkC:- LQ6Vk_[ @;>уU(r|;_|GG|>_Uw _BEh?,g'Q8voO]y:D4vKCD-ic/>%|LE4+֣ J/ٻnBcfz f<H(>$,an%D)*SBB{*K]w2~ `5}vX1)RkdR暓޸&dlGT#YNc)`K v'VdD.d~c(ut>+d e2MSSS___[[[RJ7)E4݉y7&CU:f.M{C1&oD<%%i;/AR_68DėKzaL8088x A6:AVDp+^ɳhK}SZII8}dFzi<-Qgҏfj]ܱ@v+oBKF! Du귿oYy 鸾l `s&&g:HF$KT:O .57?/}菞{~7o>|0Ço޼e׮]}{o喪 IPN ΡLOG#cCCyj'{r?Š,#A1(?sSU>:_ni0(+/|_z>rƟQ.|et<pB2oх}t:#1$'W.LM9 YJfPyoFQAu)m3!a0'GnI },`2`uѶ-c$>ʑݜ gΜ?7u'|C@OOO]B% vk~ ]ѱw?*[Ka$ln~<>RzMf@2{ Gsrk!)j$$AO>Ӯ"\s>0"kƽ#_ ;=s=|}/` 4@sBdeΩ3, _8S e[ZLz 06Z;:NGIk=է.׬m}Ԍ  $aoc4\] B5UouO`4OK?rrpcov. c50eYw_@&l ìY1 "I:[qxY-*o|/UϬjCv: )(ڎ%MJIM\$W$1=0꽞T_uzoo+O.3V `Esm Cu:C1C}Գ*d| )Hwzj(Ol鈎ƐH)0i9H PM6 gMfJ05&E 2)O7}Ǿ) r]"ezMiGA}L{OVc! -\@ҋ/c3*Pw{[AD*hc\0T% x3r{h¬|oAkt?k7y"w<#FBAJ tf/rbP~xՖvnAgh%O)jѰmb2lf3 y5x٘?";}ozKLJ0!BȦNSl@'W7%iNZ/$+2mmP |T~ 8ŀVf)UeT}%AH *TFv]_@K)>㤫F@f"beHPkgvƎ\kz͖.b>hx8xx"oہ*ͅ $hh,iءT@"͚HZN@vr{ہgd|&[U9YȠٮ8Wþ=~Ym;zkX亭H!V iX/N7=H_Nr-YX 4"8`Q"tX\˅W xXCmW[&nv }qY|:hh`')~@dY oݔdI ]ֵE}9(TDhaM-ls2 mku`+; yfd''vZ4̗ 6;ОzbMxqbAW/.56䈵zGj8)NlE=AZ ,""!ǀ|X]큝gLUP(Lj3&8<?o6Jͮ\rdžz[goQzc'٭XtsD"݊<8RB jd[vl Vg1ܼ~[v BY d6\hR[0+I,DUA 5nDj-[ObMvB6`lz6㯞!uP"oH+y/TP[ҊdvCnhӓ@ؐ;8*hh$d{BR! ԠW(f˥SK$H[(R#@Ct]qKnuIlj{|نS h'aݴw}O86WMDH_ jM2m䈚#"bB`$,JPX6Ώ{ -X>%0':;=n=Ɂ[NܵxAApЊYZuxM-[X 3|G9nqOw-5\6z hʂ_f[.Œ! (ͷ'!HE/bpW<&)CF%x5&_z58[n޳+]AN-GܗPfvٖ=ӒtD[msMkM},I Oz얊OQ_V5N$%DR&,v* fυ'foãV?9԰4])DHY~k;1l:C?!t}X*ӡ~kWo֠v/]7 E=HG SZA&zg:]ߋ#̊t.8`6^SfI6P kٱ+V>m ~1P`/Ϟ4?^4g }w<չEJHaĮb/\eWiݣ?&$u l\Llr8#.,4^ y )ҒdPJpe35XWTFiBHSzr7w=l~ {642wU7å^xtjkyi9Mq UBW>:ƌV dm3둔&ޠuwvs*٦1h㨍WMhto3jj7e",+:t#`?_E\>WqpdJRsűH{r W%.-'0N)ne 'Z;&^6)\gR,Rj]\G IDAT1&D/5 gj7YuIOҖ}hDg_D8.JwzTΏNDJg($V(\m(҈FAH:ʛ1*TW<={,],y=/,鵈-^Ϣpe{% WX=~9' muB j l=obGߪ),GIylL) ީ} ~Wߵ *˵4\Ȕ1t߆h_ -]jpRD)pjz4q!uǭs.3\6za~b`cv#!Yε/ؑh)%HDglYb,rk"GŁ&P;>V㜱8s÷vz7I λn`H@c$̺5|zV@+S/#M_ $,639uw|Cy?;n[R[r¢| Q+ҹ1DDVիJ#VD{PZk8f҉j^[FRQR )H9[oKUUu Y(DUJU\1VVߕX/X`ln{3CБQZ@C %)J5 r"VKQ .}oF}nќG`[c1ׄ:'a fj~HU`֬?JJ)!-<:*5hpxh%<Ll$xyu@,Eksm+w(6iZEiTz̽^Ѡ.~Z-p4as+wE$+VՐwE6_zs>/?;Wܖ_?!պ\[]}{rldս D`niSQSC0I u*W),%H$wh"umd9c^thszƈhj5V*ٲ hЋ1\hLEG> %LЛI˯ވHZ2hڝFFSfe@7G3Irׯb`޵m.J愔1I`o|;0q:ѸIF|YDqO5̙jU?I7?\~"*)V'U:`Vu._,y8ҩ+Hiԙ$tTB`Qj;ek-'5/;LW3<":ޔf$C5G^tIHYuTpO;{(MeÇRca]14eǺkrf/H5[1&!v\P]+EqGES$lKM h1oiH\ƸLJ1 |A$EhDH'w#ؠo^ _K5SASf ,v> dd'D'!JMJOLtIw-+{zFۑڐ\=S\Wg0ݳ˓kHU-d@W*lKh="fsoH5|=U~2Ѝ`NEcɎ-4$+ 3/N3d =Q8hxke{M{WݶmM7 -2ZEqTN3I*2*jlT@eA(--%^8yZ@Ej&UR6QWPsDrZ*pϼ}"X]Xm}u;`-:?ruC,i,}=/eLW Ian8Րyѫ娩/9:h:;-)Mo}vtw{YJ?,ɫ(a1.hU߾|)]ni@͝u;WSC1{PũX$|b14xC=4羑 BsK`zdk?{ύMiLq cǎƃnܸM<8U=}Ro߱[nZ]gF;Wl-%$NA.3y\ ,dž\IT> LV.Os wğP 5YX¼=ktQ1bG-K CF@6/Z-ёϛȅ˿8==4UEDMĶ;2s_:ud8ؗ,ސ.?T]@"RS*?jlOǞDv \$*`K -AR}C% Tf3 Y܏`r8iQ!X3V[>HџS^Yd;,(zʫ'נ`x&044ɘ 8wu~'tG[ipINXTCw"זU|u8."b|t6<-m\tO7I*:Nnn%<:I cs z.3%*Ǟs-uj58I{ {@w?[؎=[@9 seb Ƨr6o|a޼yյuިԻ7Iy=~ Aȁ֩nZHVkR {d*mܒlhX܏N[p r]┽f 8CTY4Il#d~sg`F WJ|Z-Y42.%\)Q[W~JsF,Q,}FgТi |N>}nI:qUMulίg9ZTlsr>S];#Vw{7ljתrUX-żWDUM UND:$_ueX5F)O Neُ|=CGKֲu%C^eZEshZZ@Qɗ/*\dQ$;^؉[?@KK^SfQnݺuVw|;Y`~Jg^KmMݻLO 4Ϩ "R#^ !)yOfʴ3_q6($tݔ !P,U~=c+o^H&Rд,dA3Ζ[kve ,q9hA{s-Lk\X@ z^3ٻVpc _?p=!SkMi(!+Vd9ĉJ|뿨oGR*]f ? XXcmW|S_P[|vhI#m=T.ШF" P@7x{>h|YߖJTtP r=Qʅe.%1ShkL+nՉZ*hz{VXN@kb9ɄxTpL r]N/G6ws᱿J[0ӈۉi?rث˅V^ ^E㎷FԷW߱1ZDh~O\&^ܯ6"ۑ{ǩAh )WK ?ǰ+;tO<=2PJP{ܹY"7HXN|jK.xu-Θ候 {К=_u}衇wӟ..LSĘӅbw/TD $4䎻P*guoB׈+?6)a2mV^~\u*yT&l.+A!&8? ;R'_R/}PɅdb+*?rI zxw{w޽}!٥1o.;e'X`SZcJYλPr9H-ĊY f{F/#ҙrPJq:hրn~ן8omu&U{#ǪRry@G$Ef8nYMEATXG]۵k޽{͚5IŊ:^Q4ԍu -Ī 6 N'W.O{CQ!ęccb "dkVs<[zAK55eCfHBDd%*G=ȶ9+W>G8RoKf_V8:ik{I,L)>uNճ?= pBpd&b[&'e?ttGOnGk x*LWtviNȫ*NF惮 -a;Y~ [44WJkj|HYC#3F8ڲw~w,QVp)qŸ~כ" Tv4G_s&ϟ.ժLl@[zk/uQ+na=||kɄ 1rUT@CfL^^Z5`luIJXwW.r5WoMdBjFOkS3_l\㐭&$¥^cs1b lάAr4xLS94>:x6ڀR-(-\AG߻R|L޵ ݻSmM_ɡi \X)%$1clP*?W?ccxCg3&+lcڥX&KsIډoJYt-[ِ\/.cWGa'PKi(%~$!Vpa B$Xo4lgwB~i?uۛ[SSG}h͆L6 v??y[˶5yl5͟:t^wH;njn$s~xb+}nrx 2'?U ,qpiwG9fW_HL,[_:p We&aMw[ oklp6\$Ʀ ^u|3˱jK KrQ,!Cetefk]DeM{+<ʨX)H:KHOzr2ӏhjtŞǼ>}jՖiΎ;K)_sBe:_֗m&Ɗ _}u3´1Mkn:%0tf gˇ~HMy7Y0kȶ:~"*+{bFD[ %%/{oeeUL=qkoz1t4mѫ=10?M;'uZH8yI9UIlK+M7%GGX6 h]E:Xte>[q+#NxdHdSpKfrɝw3H\Xz+(v=m/JAsg=]XZ̔vrBZ|HZ#>7i'}O {q]6%:үw_wH7BD#ģLO(Sa$*yvl4>4#;AN"e^[EBml1ԚD^y=R~៧}@/Tr_qI` | }3^~V޹)KfAT-~b9jnMm{ӶOϜ:z7eM{+_}O?~'OWwm=l5tXnJdUۮܷ=KMl)OujjaE*?9\a;s@S2G]~љNyc | ADox˕NM+y ۔Y:2-m)_/pk/?U֗4(JhTz[tFQq=vt}kr Ѐ#yg>q̲f)۷ͱеaV ,V~p{BγdTEʶyw_ZqE9cY[S[bړ<%p4: q+ɪ"\S GGr(fX|$7+zR}+2!#md`|b߲/vw_pC*4!e- ,O=TggȈ}’l&r,+::<ϝfڲ&:zNNɝm͚P{?bEsֲ5ν3&2ݓk-jV,_O$2h]5UMcow޳m~*L[B!'85p;պujkk?ɟkkk2[@ k7$gϞ=DݺukժUDQJnzC:::;fHԴ}YCwiH,ˍHĐs3tuuwyg޽D?͐(M~!iw>}!Q/#G ZHfWYYvg䴶9aǎD͛].!QEEEDMTvoڴɐ(eƘ7mdիW|gX,~r=D@{{ $=Ѵ6lؐkHTCCCNN a_!BȤGgggGG$Iq'L%Cef}<ܣ~}8dZWWשS@Q5klݺuwR,˦x/Ǭ`2Ze v;ݻMeJ'|raJo&z|MJ믿?7ޘ|sRQM55mҡC.]ԁŝT*kZXSc&,ԴT*4n\r988'&O8DbP:3:::00sW?&~,˥IXIr/LYiTj i,\&8kx\TIr/LYiTj i,ڗ066fo&}}}/nyyhh(&e#:2rM arĜe+e2Т5踉o&:y$˲O>wÇ{zz|>_RQ-_|.O5-,1siݓMK2hTijj=p@aaaAAI8j``ٳm۶^zѣMMM=*I۷oKx⓺\r31gJ{  I*!dRؠBȤA#IaF!B& !L 4B6h2)l!dRؠBȤA#IaF!B& !L 4B6h2)l!dRؠBȤA#IaF!B& !LSh1 IENDB`glmmTMB/inst/vignette_data/troubleshooting.rda0000644000176200001440000140710113614324717021277 0ustar liggesusers|7?scJh:BB`cHuz!{{OB HOiVwgLg,JFYqy-ci,=;7=oFZ쏇ebeevEҧ,;xeiM쟂f pQimYC0*e*\0=8  a)c(T hԔ\]^\[j2JߡŧWW5E lW*/lD~l4b4&F1i 1e! YpkωQ;nF uH׆yF½2QHizƨ?ȟGA42@ٻ@C]a]z&"b+D&\B4;ZjȕOi 3jUr?rR-unIm~i<EH1Zb4&iLkjj8.-XCS2I2svkc5>s(lqECTFIqHS8Ӆm9*o5co.5(ޭ]2zӎuz $ I̞ciשt@V_H|YPfbEIZP*; ?c,E3la\ aK4h-*^o;֗8"2֮H"Ks)._ 0e7DXGFvaӉ0TԴ&Ԋvք j.i0@~Ľ6RL1eBF3{SFF:^h#C7,r oKk;1k|Kw4ff8ZS K8hRa.ĤcaPŸ'R雪ȧ#ٙQ™=ҦAP̺J[_TXĞ l9@l ZZԔزLn3YiͽYڪeY XSl<+]c{+hS> ؁Sh rubOk--)^£3; ^/GAH;]B]Ɩl9aH~Q+Hv4"}A'ݲQ1 :: k4 qw< []s]m3tqߦ0sa)ҍ"0]{(}A~FGxNt ,mfdž£=":'PP{h_H/}A.4%ZцbU a 'm2ݖõ({~[5Ol m[e/TVU 45/jZ3҈b3MOI컇CcNpd$mx4?N~~B9Bfms_-$:g_yNʡ? NdN$fŝBYω؀8^ߤffϭ1~w;3nNfbU;t~xx< Grߊ_ZST]ZmAvշ+J*WB^-_;esUvCDEKkKK+(=AV 寮*1f:!F:V$K]rMEe}\Βk vG5Q'\ѫ3v^Y\[]6Aj;$ȨX\YnzFx,?"y"Ȭ,_S\;\5jjKqpɵMhȮl6Ҧ&zR\SףP#/[N) W.UeVVP|q3_Hb$Xە.TNeWo[L[(kmH65t]ϨO16+*+jhBj|ʒk\6HG)^.5ZvCvޚP_7D=}f? 2/*(I#sF)LTv䮼c[TRZQSVTcjT2Nzݚ~\]6̢T ~>s6  ك+\T^y0cT3WWU5D .UyUӡ*, ůTQ)eR+T(.-tYw4ƒn4}lG\z53 ojy3z)vNN4}?"?{uB7I+Mf<z G@nN@&ſho2=@F?(S^yjy[my:@@M"FWix# k|8 'aJ4q&8i9B"!Ms‹q{/Vy=qӬ1&ϳɟ8o,f7tH_3X }4` 5E:רy"v$Jg6ap)Ow:.?q~ h E; =q+ q04R[e&6MEOuԎٿ֯QJu5׬QOOK7?_=L; ] hOf?am+εbPh`']@V{3qS=_j |Q|I ?R h#=6RGֱX.qzf_<^+O8I;X{%]Yٷ"^{D.Ѥ.C) Оfg3j*YMĻLfr%V>6X|Rbgg Ժi^;AE@XF&=&-R5jίS!;PS%cd!t"6(P;jCHe<7 Q>s۝s~:M;Cki9S~S. F횶'"߶u!^s"M},Yn&_H@Y|KI-;X&!NaW3^>d ^HQM IEn曌Qwl:^'SX|K8'LNO DǼm^xݗ)LU? h李@8ļ/2g`*1٘vO9^#5!a_Q|?_5zd0" f˃LZיm0%_SϱrXӎ?!Rl}|Y cA7Fn!pGza:( R1_z |G%x=q5K1~Brz/雲$'2?Z;}!f/|-p rrRn3w3I=6g弴qʹ06z)^ςp> м.bz%^σ8H x _ȆӊȌ\zGIz.$ې,.R5fR='/pJ7P-wqUY]REJ!R+ruJO+& : '= BYݦZ.P+B uA'PoB}4`ړP /!_ y5 90BE@° 4P[ Nh!#I&M"4Ņ0DB"@M%4ͅf 4 لt GBE@J a%Jz)epJB^:X?[@yꪠC $:څa J:ށN:VD$B ĉ]dB:-I:@gj(: < ,@Hz]L2f* ]EIkyz] t]k] tf[nK@.Bwݓ&~L@..PP;W-AK֖t䳌,bbt}oq ѕ}aK^X 3XbJϺE Ŕ0kT^k д)}rŒb/3g"]!S>X)_ }o^L}7y1%C0VS`cS֋ C }LX/z<Mg”0-L({. OfAU=‡F3Ac H~¬L&@?߇)-|b"Ƀ^d/+Kf/ ۓ !S<~|: Wy_yr Y z>] E>ΐ◒z[^ox, }T̃Ec(X}/H5p=kzn:A;̩ϐx(:DzOL%q\g`DQsIRLYM+$^cXHs3?Ї-<)jw ?$ͬcM6: L4\lSߴN4ֳC(fzy>ay5 7I!| շ>%mYO"=1 ݾf6G~; !~C,bYԏ31Agv-P!V2^:ʰզ @(_g lʀvolVy=&?I7ud0uKlț0o ҅]AO n[_,'x_̬'xfM><.\)2XTp)/ct`S{A?Yl),Y|8>{I~I[cUלּT1QKӫ-g8,Iڒn*le٧ONد&FIS͟ Lsoe _WsZN}pV7/%FDk\7/xю+VqjX-p!yeE+KkUhi H,o M~(V˪ӥVӒ9$.,Z\P,ʰ X3j /ҶvJ[j=G(XTS[pVr5Bc:%Z``Z A~, VbK+֘Qu 2;ʊ/'I̪)+/3Ύv20q֖7oai)YS;p'~'R|:8kTњzug;g :3W\:XO}AVVf ,ǦĻ[1?L͇u8>#w͒GFٖyT=sn-,hh}Bk&Qߞz1g?TfEY^%KJs}]Xfǚro첸Z1צ<)nU]z=dS'}̽ki|Y96KUuK݇܅u+ jW.ZPSU\]S%.bS-j-:uI'>cq*Q"r{:TANYŲZML"'EؽԬ³Tn̵-ǯ5ViZ&A7pS(HceW %ƪ7(X&kI$Y2Bg2`WCKkC#Ι' lťnMw@ٌGZ-G6e=¡Sdfeʰg:_~0:1<#l-.mz'y]q|uTC*w0{LϮ)-)[!gDږ+-^D/K˴e֬)ZZ\WkEc2,Z9UZz+dpŕH+aW$OWw̬aʚ[8,zSE%ϒnqʪ s1a4%=}bIĢRm+V;D7JN^T[!j-8oimy5sd_l[MDu.0EmnHՠ8$lEvzK~j7&…\"K479- [g`D8}uȝ7Q碯YΊ8p/扆=wt gkw5 [޴ԩcM28MpC v:qxRzǸYLGaڡ3n#&zOSy C]s@$%=58+^b'+~ Y2[d=6U;3`ۼXϜAKA3UPKvޚ N`H>΍ d'DǣNWޡ ;SKNn1˷v^ +3 O#A7wG>A,;n[3Ef(t @:ufGxZeRL}L'0 q"v̿}!JF5}ߟͰoҗ-Z]~5_2:>C9QK"/oNY DߜAxq4+虈䷱D_OXm|=?qZguɂ0Sls:[GN 0{w:K\>1I鷹Z@m 05yfw ѣQgzu"kԷ2_E#i&eaIg<,Mf[S>.QNeJgM Q\oVfeZe^A>:Dl˱9Ïhp7~%>y:w P f= H3zQS+r0{yZ{LL< KJ 8!X{xݚ%ЎU6ȠͥGsi~ [{@h/me35=:9u,ѯ*ZM7g:kfzy $s.'$)]$Dj0C>:O#{[Y׹"]/{2:OsÚOF:{4_3)!?ㇰU o駂7sX-zJ&BX\^54}SA8y&PB;^/py_ !xy}9^{݂+EE/3) W5SD1E$f0-[ːo)e#GWYs%]YѴ\|C2E}V6>K ̌W#r:LQ]X/vۻU,n{n{=Kn{W\g2 %eõj- fw׼w=Y94ؿ9wڭr!'ѵۓ)w7?uyt]KE\#zc=uV2M7U} 3y7j޿ b^!) bYtttA[ń+f.S~BVE u.F av8IxSPh̪G;MLK{5IOXJqǾx;u8=>=A|5>]zVVN.=AoIcO{%^[\%u}L*ej<IAG<1#1.q$Ogn` ̆2ۭnLd ~7Q#uw:QYci 6!vD[ӘBe mt'l|gH&Y L - } mrI<9P^vtIL}7uK^"%n>$OiQac FbcWSl쑤Nk7;/Uóq[[רcW|+ǯ Gwu֝.9(t&'R%mN466L>Ӊf@k`⦕OD;Pne}ѵY~vWvXfNRs=kiLu3I]}leCUʧzLy}H1=<3jFk‡8Jk|*m!Zk׺Y+ѽ20|gk}ݖuNx?3u5٭tk%uAk0Q.L>HwJZmk'Ѧ'CxF"/*9)Ҕsȭ .u$SE ѽHޝ-RV Gn޿d/I̫#tC.7)ٽEMG%RБ@IRwB=]PB}%ԇP ̷@X@!Baa:Ly8HBz? 8xB"BI@"d)tPfl@ [HhQB>KvV >@+** j"ZCȮ&H|С@#'PBGBݎ:8B'|'FFӁN:&3ٵљ/Fqu&s/YN:x=1^Ё#tPK.#r+ Nx}9T]Dt5!]޿@>nuہNb@wۅ%t =@zУ BO&Iz6IzЋC]G B%I_HF@?8) DhsFFo@;o3MVIZbا&y2K<-MrS0M*B{ (W_( V[{0¸vY8 "Qnx/!gEG *}̺uQ % cW &09mQʂg/tZ~ePrQ=|;Cݙ??^+.{ke:-Bf.BpOCdtʌ{aO"RI9چJ!)Ǣ>I_:~;E!PG wEpo 5x^ ^,ZpCON:xDzp9{b _?³6'a(B& ҜKҜDHsA\i.]L]Kw;ܻd_Ax MJhǫkXJ.9qX3c|7]Ҭ񎟬.\ZRZ] تf(h^U˴ƏxTN_YYB!fZh9}C4E'b2h=M 󓸻iU֜zy4gYzmc[ʻ1]3iWN!ե5s]ťVV)Mf0z5nz|[ֈ_b6#=k\yw=@w\}vڲbZNA.QdC^L9&7 ^.߽z̾2jj+4 H}+k WVW.-\RY]h?GΘ6s|ƒ<=ZV)Xi#I]rk*הN_VcQheQNv|i爣*lGi;lrH6jgGjktL/֯\,NKfHJrm 6$CJ heqe kkK+ Zh';TS#3nQNj j(se@ 5^?((&Wgq/~ j vaWf鋋Mݨbi!XąУj %3˪JWjC gS㓇3hsMb0:Ho=Ԯí|wc-YF4dL,"Fꐹ ֕`IEm4sq-mtSx4s:ƚB]|i0R5RhFcJ&(Xp1ah\jSw/rG?mgƢ;mO7zCN}]-/]Nr>?9UM6ҫj`4|E(2Ū!D~R%]Ҹ@8xɝ UЫ@čmu5MuMY:e7;k_icSLeM"%Z^i+jjhJjQRF0 ّMl#j7͡kcy sWVVٷp]imaʪR,TuCB=$7{eÚ&LoًzTg=;w3嘝F"9=RO<,uڒYN G-/cm| hv'˼[36JmzQe$C>Qa;ۛ"AއNɕqMTeLByBnueo P6Ad=雪bn,,Ma^̄L ӃEvW[ƞѾ 5jF}޶!l1Q-Ye0fOT`kRIeoބSi\kE~s>5w鸧?s$_9aܠ+)ښ>n?9 怬cM(\m@/ 9nܵO="iz;>KKOʅ^Cw0i&4%_nW+ ~24X.VγԠB9#"%FfVh"ȇuF`b}Nٚ.o}̷)C<>ɋz]S/uBٝ "X!^e/DqY>=4'3v a떬݋SDlCHIB;L=n,~E҃P$H#eƣFFLDoHh!QWB?zy8!'4 ;pF|h9Bx6 D#-h_Ah?f=-?@4: BÀhZRZNhETk$T$ZGh !܇uiht8.(:BvmqGKG&tςF:,s,B:ЮH>ЮסѕΔꙶg .1y:k__Ci2M}eo9}!o+r)QapG/z`wz; S>-Bυ-z܀ia,ajV#1uܥA#l^L4S;[=!O;A\<:3iEKו۝릥Au' tH$]/-]7I{}I~$]-nnnI7:{q5+t{6m$ /Ң#vWEZ>(=ڗGxD5Á3̹b ,VN iƐ4$x$c13ʱw h3c?i2M;q4 5Lo<Ŋ?DDZqe5./Z)^2Y3>kdÞ #x30xCg8,gQr :'=DLYեU:ctIȑ'y*j%kõ4GݓFOy<[sS>Ү-܏{Us{Us_e伆]{r ̗ -{|Ő-S-ۘ{|0_[|};+l.&g9'١.\ڢjKahqrMPLq2;Z(D IAvkB(ܝ%k c]'ti 1[dlYɎUVRؿv]Ui :/ޏ @o~ [%}ixa^י[bdFla^6%:>_>ey55Y> xݚY_"^\aQ1z=ڣctrt-L| ]3Ӂ1%O'\:cy>n4+sBGwh'ט/?F;4D㰯(X V q6r@X4ҟmf"ۘHmtncs34ۘ M6fuD4ف(nyzbʕekj7fh݄.%&tv~;.~4]-cyz~@۳Uk/:&}`k⎭RS+ծN>Q&[06BhF @V;8[Cyq~F|܊Q$t`]g-L=4]n^7~Iy 0gOa'0~0S=f*ԉH_ˬ$ŧkiz-xww ;$E|:' ŵ^?A Կ'||w@CaL==%d!3ǜ?݋`i>Ӛ'mARX 0nP&ҝoELH Wr>>9ÊX;ѦUZVjmZ_mڴZkSU.mu%ʿs__#=И}:Nd<忎,t>  Gk,t=Vcx>X'B֓Z8 <9&s-;̊>(itq*9#m8Ήg[}Kf@w6Kn;xM\9̬H'pboQKEΐzwͽ+l]esupz-"]F8MP7Ce%g!uvЩA@A[A;bytk'utt:Yǃ/@Gc昻s1zc~RG@Ǡ>r=L)xSĺqXx_X+vSW:?8uTU+KkKk)@k%H7?vDfR 51җڵc,nq~uEyYVj\'yryT^I{[Y[ZX0+WWm3XfE qS%uʿ?Y{0^P봤=,Y]U^8ׯ^)Tq(Bu!.*55%N5$>3V.ɭWS}ܝڕUZ~NWUcoͭTz$5#3Gŵ*k"$&3g |u6 bMRNߘl6iHo!a8xYeZ"Q]E㦀@ zAfV愩 o׮!2:hO Kcf\1'O0넁RB EPPmͪMݿt|T˓g.Vt۴t:?1s=:3U;CQr4dc~G1iaW~Ji* e "~4se$~)r8&AZ7$7Dwu3rIYy &\%KtE qY_{蹳E Y%9}scГ1]$".h_?S?o7oR&}+#=~҈g>Ұ=ыOwSV o{@^5IU*K)44}s:Ko33}zy CT,bef9`,Y>|,tKw>jGnb*f.KnWL6;IxKP{S=bc WF])ThB6::(:\i'9"+c76&[+YJJˋו)[kWSl ̯m!7zZ⪇l6 J+֐zAc7>yOHlֲG?7?a=815B|W{d'2J==NJt c'eVnwʳsmKxV& ڼT3&)T~g\k 雪Pn f}B}QFSo7ƮhGGZԱd~)d)?@Йŷ>߄0CA=c尮놇㩴_ng佫:elN: xkx]h^=Yj'k~ `_Rz~b4qz!~-Mԃ  Alk ;f( (J)Hk7MchD~)F`Mr\BDOUHxc?FsdpXHԗҘ# v})d1'0[!ݿ$ƭn!yVyu\3_ˢu^OpM}ɇI4<lJ7dQ桥H:MNuP/ LQPMDO7ȓfkyl^T#<`I\;URoM(A8F=$ 7 \hS9gl!\da|1D_;I;A= ~]:N-LY*h'U(kIB.Wj)u困r]K#ĔǜϷC5!qb. 9QB=>@ic?I B Y!J'ѯ s.u1_h#D|BNg FS B3l9Mz64BT&fa*%4-'~+՝)Ո BSm UV9$h-u.{C5: p:БH:б@@#4D Nb_s v4NM@g:t69.t %BX7| ]dCZt9!w%!w5!w-nzэ BE[lbgzaBz4ujХ)X0JgdlH–L}SI_LCL=:m 0<1HHFlofN!~ʣ"Ǘ3+jy=ּiypUU]Y0UdIMY:XVjqR+΋WYRK۾GyN뱝^kP[-jJW-(.XRhH;Hn6K,.^ QzLKfuXR]Қ\{)*mVw7)2eK; :\9҉VYr Hiy~H f2{%?^ I[쇞ҹ=1|i78M#=@Kb?4}'Lؿ/fx"25P<kWja>gi;󴇇dx@ Njx[3{pxm$hq.wWz@~rӥ|Pj>gq*O;.QhFwڝxݙPk@ u%T6)Uhwfx6_yC{[_ݯxmt;oxcf2`v﬛5oq}rj,[߻-Gvv:#g/ȿHXjK:J'#zۇ|<՛eO/=lNqN򌼫{3}9'6/?U>|âM>Y37>rOFՠ+AW?<0Mk _mw8`d執O3/z=%ky6?վGzJuۿ}Hww7So}i?=MMgl,~!^ߏ/ _127F7V/|2V=G<Êgy=Z}-#;$=sne*~yKƽE;OクGԆM{>̉R7?O̰Oz='ldsS+~Pߎ(~VY|ғJPw{qw?Ze7+\*^^jpŚO<8}~Տ1xxK>0Z_GxOx`ϯ}w3G3s/#wM*Z=}Hc.F 3V>SISG|w#q+uhod~G,{Ζ|2:玎Em#;E^;ȎwLxnF+}ou;NM^תzݕ)^o۴m&쁍Kyzȿ~OYݎ}ђWdUn:ڼ'q|srS?G:bJA=^BΜckdϓ>0{FK=c+mRɽo?_$q>z~\>]yN7-M;v>v}?kU=6t Fѻl擴eW_~uνg2^޿ϙJ\T3?zo{1fKt=kd̻÷/уp=vy?|}%e1\D%G2ڝ}C%]>>!Tty{̷!f}ޗr/lY̮]Y瀍e_r>^PȜNR^W=#zώn8?6³a}Θ- ea L@[vغDzᾹ'3]ŋb/F~.^J.B)|m3AmUf_ {]##vjbcZL}^lO @,pe-FpVp N3c}3H1ج=Fɬ|O6< AS,pSl]@I7&N4Q[fuͅ-l]bDu&(NzAsa7AMor1/^LFFo]0FK[H{e%TEo>#}2iȢ+ It'x+At+sA'.&,dM0N']-|q/Ca,O'_O3yRkWwnC'ơb̈&E[#ttUOgI]1V ه fYїŘYݩL}\m1}\11D_Gw1DV{1Nb1(Ƴb |BP'b0'Ɗb̈)FOq$J%ĘY+mblu:cL1&Bwk~ cPމ(Fӎ1Bp"B+LCaBX9!aoD G^3FB+i# aJ cz \p +c\p\`zoR4&>p\hn1'װ1z? S f?C? A4!~:OM 3 v$?gB, ~@φ?gC B/@B_X![BH 13`Cb_ !1/ "ȿ/ "ȿ/!bȿ/!bȿ/Sj@_K  /%|$R_ K!)//K&N?+q:]v!┮ >ໜ~P8^z󇎯 ޏPS1~8_< /Bz&M/u< /9 >N /VI}~:-8K SGn0eGt_z/k}yB9B8C9A>C獥R(7?WΫp]z /`'}q~@/ ;Cs~A i_@vr^8ot!mH /||Ѿyz^ o\Du p!p-kŖ:G% @>pE\zŵR'q+5fwE `Ƶ_/(}\s?PN\ z ״kJ/!}P# }>APn\SԳGc  .U3oW0'3^*'zQ0%ТЭ_DS1u% ?ـ7j2YgC}B( {W=9+q814cct<3Oa''cbt:S'" qx'{ .dXlG fp3O S8!G n|3.րIvv6+$+[p?3Bđ##;z:1~\j#e9<4kW9j_89^na3͛jzKO:;t;Jv>.ѧ~atx}.^owv(b K-1v_uGEҌN;F7_<܌~T{ʓO={wm?9わ3Z>sQg>EC5=F3//w 6t[!>*mx/f {.NzѥݳP~FsI3Fy؅?OE_]f6;E#}Nkj{6 .n}|9FO5}㏝uH3O9VO 򃳍4m+FMk|8zٓrg=~Wy3j;,/cy>/ExtȻ=s?i^{wO myѻU7. ?FӬNU_«zzG_'oSy|n?~zN~÷Z1:yk'{n9>c ݎ>pnGK_.⇢~Qn1:{w[ʁ۶m;W+F6ߝ}RtsO'_KGc-`ƴaiuot|G}۞}+O66UO>^Fݗ *z,\s?طe?. c5!Zw33>w6 g+z뫏&_3+#F3ק1:OuчVmݦa7۶oV-F1/4QFu*. .3Z+1znq>7rOOo>4M-䵝w1zg#x U)-?FQ ?gt>51:Qƥ}Vtﯳ=kw:}z;F[-hup}ZSvFs3_59oXWτCOy*Q -2%[ӯa)~}ҡ>|~GQtm}Oy`nF9s>ztK~'F^p9Ήn;}?}_tU'Ybtw6ע{_iQ/9]7}莳߿֩E??ǻwx0xobs\:j-6 ^4DoƩE<=鶻{.nf?_fmx'|W_uy_uh|lt3aSo#kyvFO'}3BXAe_[4zc|!˟Q/ 5P3=Xe^Í!n{cFOs6nojA~ =hA 5<̖ƣro`PϯWoïVo}r?| ?3B8d⟑+o|WKnZVY{B ;uKCrCFrUvoQ?7@_FgYsq<[{Ѳ߼hA.nb u}{XZ3_9jKƥm-nvɌ.8FHiF[~u}z'gLh{CAᖍߏ6|Uoѧo綘 ʖqр Լ(놥/kkk㫏ݷǚ_a/36N,쏯=yǼgy:wClyz6+g{Qw(l'̩>ywpecEصP7>VC?l ||C;\kxGsÍ7꧁z_N 2:6#b5=,cJ4lxځFQ'qKY-,#t 'WeKH#,Ua `ui FKҴ%i'g$t{9^G i1{=XKn->=k{7_֮>yXs1>|fg,kC{a_-%*jK dY9uްM(cQ2asa,[;!򺜡B9ҕl)лlE˭Qu( p xW;Y rsr#W_CgP^ᮇoA6dOeޗ;4-wl1kAH{-@IFV[|K]_܉iZ]q*//-.s 6VufΗ 3ć̂N%љvN6m@8pN64 Ct@' ,?:}: :S:g3 :Ѡ :$NõktB tB@trBt@!`<^C<:w!:e`ztBty f V=љ1I#: aS::+:u:}:;l; ?tE(E0lt/E'%tV@glX>G2t?:aF[58>5 5א9BלsWclKZI ja>ZO Z8X pzkO Z 0-õpQZBC묡|+:k-:k(J/W 묡|:k(2JN 묡| :k(JJT 묡|k:k(bJ/^ ! 묡|:k8iuZ5oI`hha>n eAf6ÄxnWV'qxLcozǩ③PmX`g /e2Kp +[o,a_#kUbϘڐmX1VLK<7ӡME?ɀ~m -t~F39Ж"Ok#Vc짣wɳiӡ/txѧ{}Z\LTeeK*fn$ q6tmk;ڶ`37ylRv>v}ÞLH=a}Yv{|;ڶe[I叫7m{uS>vmMye%,.#}Ɣ1.UTT~W5ycZ4E6z=aww =0pX%zn3X[ݳ@;tzA7^.FooK!7ЯȑIr&'Vw(&3yhY O NOt(xy4>A;mNT;Q0z'DH6T&6!av#хtw.sWB4"q4nپַCTW HW7 >&LZKfݾ&nbz{Lk4)Pz=m@CGD_aͿ_gV7(%? gE4C/j_#-U^T^*=Gh5 ig1NِwgCwv<*`x s<3 蚯-Z+zW˟տ̑Oh^5~g_q/\wbE+z K/{WjY闹G}wb;v_ˏWM^M;p5{E/*#<'|ѫwO5ˁ=L?Fa޺o^-Zr{y5=;ѮG@%[=1o>q˖83;V_尽<胏$X{ ҏ_Y.>mAwKn*^5yS3껺 &7..9kkX_{CyklBpnίZg՟ptXꤑћ;>+?\W5ڗ֟uY޶Z?=e[_=ywzw^v1GGpQ{@ۢ׿ Lug]{WV}x^_ܦŃwknE <Ce8t}/z裫xk[wm|.һ[4aE㚭Z >z_=ƞPPpWO#]adm7g_wǻDwOZiC ]nE+7[y};=_>|庁֗ > G ]]dtko}#}G|xg~~F'.C]y[+麭~Oi{ӽ؞jx_~nGD1؏iprCpk[+LOc%7=XW~9 %0#ȑYգez_fWnf[g#dg?r._s*]EdC~g-n9wͶCe<a}D )3zkO?j0nݛgٽyvoOY<7ͳ{?4gϛ7ӿٽI}v羚o7?~^Sγ,?w[ѳΟI_/;Kw۟g{wz{_;#oRՄv]ڤ+o~E?}KS/+OjX%5=uK/bl~w}aioV`nk{S}teu7QCckG*ㄷOܜS^gU?Wt'~v]ݶQ_5wCrzD;76 d{IWӦسfѪP*Z}ٻĻgy+]{n?}W_9Eñj64}ﻥO'}_y՗M1mE`m;>'6U[kEmy׿皋]ÇMɿ~˪ [߈ݏiWocO:vϭ3_]ߞxo?Ou_;#v}奇Eǰ_;]N,~[/{Ӄ3ߟWYgᳱחW/vWv*&mڶ;n;lʸbkUCޚRR݃us~SkQ3h ͳ{?4Әٽ 54O{ǀ(t%evUq䲚Z*ԩDqo8?xH=dC:/-D(D%Ƀ4IҴ4-!)8? R+*+JWViӬsȼ!8vQCOO2i_2q\B;W+ Dǿi'9SB˯'ӷ*).-!zR-S5~\d aWVq?o|cK幔/KgM?M/]?ToqOz.zWy5~YfsZ{AzeW,+һy$td[/w8ZO)}eqK ݐ%cmz5 Ф[u?M~JU7gHxW#K2ʗuߔ+?̔Љ71]¦]I'omv#]W6چbm6%tmIٌǷr=}:@x/`qFZhd\eZe$&4E)KOM>h1ZnrNKA~~d65\BDBډ.ZMd}_wus]Z !>"4>nS.d"ځBjO ^w8:a^FgB773R^mN"z َfcMi1ּRKDg띘2/Qֿm횸P׻]`="_'>(|?AD>Cʧ]*|D|ږTt}Z aW}V?]9]I$۾`ʞ̷Zu|BD\y'.@[F8W2´:@6q"}ԏ@ v=5:(ABE@xMӇmhdaZI/4RQd!z5y{PŔWU\oKJ~K :v"y3B&j\)&HLee&BZirɕ%W5Yn+uV)9ity5KKVVP?沑O[/)- s <~ s2ސÚp'6u1|${fS^1=Q9~;]]E(ze?z/l]_{~ [sӞ,VmˬX_Sfbkyz\tI?)HWѝ|ď"uJo݉'uҬ|}mo>\m?2aok j+A=WДO ;-i0ٻP_ ~9w~9c9=~n*mN`>f@L/~^x5\E&]BqZh5(%@LV8oua; :NHw@]4* ہ0ꟾ3J(Ms% VW OqCW J׍_LY)=L4kVuYՋcz N:u$(}zɘg~[:)" }";d]H,t<8 ى _ pfnet- ًw@[9^ '1IVL%y>5b(%| ssxOK\G.c֙E~3uiNt]I]zi udRD|p0[Jq>M ˕gOS+!} :)Cf:,a[SFkfu`&c[fuIwhKH86+yanI,ٚMl|Sy ԧ3mA٤?gjNdwfA{d+q$N`4f 91uIm)m4-riJa c s,t)`aq:kǦbo@vF!gY57<o?fΜ9jxט'zX^o4Ȇbɞ}w?-V3 32GիWLbY.# ~nxL}'M߬牵C>׹3!7|6F~SgJ;;lR_hywI/n |j/\iO ˏ2Ysz 3\yk1R__(mc5\PZ'x+I}?{y 7^ˉ+lx;qtiS9߸tp%ixmdE~3gqov|f-b|Oe}*7(oks~6m'_yƏ "f8 r^qyb|3/m!m~ױD#Fu4/O>}Q4~$cmag<5z5ǹ,oOreê.h1Ln~J[,ATb0H)i\kU9b}y++9~aʕ|Oz7yFs;:#W~YSE9@9?&c;Yo]Qr ߑ[Yt跭j_YOƍ;h 5>Sp.=+Yߌ(ǏxuOڗAe{ߧPy/?XȟL+wX}1QtGd {ģFCx77G_Z[tym1k 9{xˍlh|d/\Xv?alt{liϥѯ>ϖE6Ʒ2?5"@Z[1^C_fw`1zTaѯbZƃT_ qqQ]ƇQK3no[42`%Nhv%(,⽔ͷ8z:[n;~3hQVVV<^5ڈY~m~A;Wo99`w\Wl7č;[Ơ]eQ>6,'̻hbZa.w+;nhkhu{Wh D=ZvvBs+ޘ,>i΅_!±= ǃ̗zȈx -qw)q L-?[_]ُ]B+lߨ=+}̗1b|yL`݈8x"V{Ȁt' M^Ɇ?B?Ըny[a+ctv^ߪ bu9 J{_t.XQ/ S>4<9NzE1~_^c:y3nY+6/Wu8cֿ_ڋNˉvR5qp gŋ]μC˃8>5dh yGh:WaX9yY`o8jwm?_>un¼>C Y,~kS6` <>+)Ù"bxa]LW?#rzȅ8Lӭmȃ5 |{T^0_]|އk @N C伆x ;~q/hI-1{K6#Wkqc9_- F ƹP1o^p~k/Ѿ{JKGPQ:#@~-a}zTog_#Q_ \b9f VOG_ nX:x۲hUtC)G~拓o_;8i2_U%ݤӸ[> OY~q?p|.!)Yf'/o Q.ewq}ջOB;:p83G0zAX7:H3#֟ӭ\͂u \G\b_OGC}AOڣYrXO`OHsXHMu?X__XzEǬw\}ՏrFb\ww`~i?ٯ҉qS;-S[qu] ?-8`U}=?8W[]_3 zja^~hd鱟d/p R>?_6CbݭIM؟>n+3Oo#|,oŬhchО p|$gC&~s~9xi?7#Ka^mAoe>\罠[B:|ny>zj-,/oc9vhx+wѯc'u߷V|~7w[<'H~~\o1rE}߷x\:'9/>GXߥ>;4~ky4N>/'wxo5ΟZLv>z\c?@_hkvn(O} 3`=`>hݺ9'y'qu[JX8nޕ<\8_|::EcInr|hK^s|Ίh*|nd}6X| ۺ) Tqܢ_ছn;پ0"w~(8 _C|e95z藱vs&,;V(O?jϝpePt+ 鹎? ؑro͇e<+"U_i|*6yܗ ʗ o!n>4Zl`z})Y_跆pooDlz`-W\=zTcr{wd9ϭq/+pV~q8!ZV>䯗[K_\/~ qZ$QO3zaȖzh?J9_sFO98ԟ\'o_'2[mo\O^Sͷqr 2'9:!A9Co55roGue.c~ou)]q>pNwߦ?܄zXJ>g% +?y_¾/X1^V/E (GS  e2>g>3s欼s|r=uC#)az }%~/^th{l+{_kMB U+L'nدpv`Ib['Gr*`Γrkzr`_[}1ģ $C/G%M8;V>ӊf?"3bú=ڵkOZY0NS{ӮR!y˯{/绲oOIy<@~rpOʁr_[>ZR{}Wcgx#y;x?Cr{GUuG ׿Z8$7wxr঻^G N|۶e۳,ݏ!x3Z{4ībF<72F3*1w(qqW3/$-y&/>lb甸?g m,ޫuT~3KT{'ʹ7FS/_bޠ_ܾ_Wg,h:\1}ire3yÃ8yFwaqƎFPۧˡw~/kHz3/9qo<;O4qzW.;~1;,+'~VҀXmvoìvӫNl@I\ob_}}}ױCw07k^׀ϋ7|u{k|7m{EOv^LOׁȄr}bX_ ow1w7=z\If}?\gk!*OOH̯Z64|4w/`߿zIiG-N8^3دn1,9|sV`ܸqm`~nB=`j>&.ji߃lrݍ﹠'>GzٻrN?~?^' Lo kC'xRY:G}A1{ ^S~z/Z= |=}oyJ1~@pE|T~N_ߘO?wyٷ)mtFS`<땘gzbra@G@E#okW 6myVka{ 8?~~]GE{Nq~r?%n`籈?{q[zbV-^ɂ{$*}Zi}oB8 ~37}mu./OK_?Ap@K^zE2vq|`F>'_֧EAk qgO\y43y!3;;7?E#}&Yjx!M}/.M>ϒ/>w?Ϲ":~3S+a|gvvA|2jj7٥ɧ͟]}~H~iٳyT򾶿qt}\_g-cr?&ō9J`?rq=']_l]E.yޏ}}:>6_GLڛ K'vqb1lW.k9j8.ʅ|ű_& Z:_?Os8OazyQNCZyzw|CiF~%<7NuH}?{2߯؏~̙G=QώohG3̛Sqjv'i? }ê? ]|:ZXH?*%OAH{6?G]~Yyz2?#*맅=Kq{|)WoR9qz1}}%qB/a$5}-Ƴ|ΈQ8r3>o @|oJoS[7k8"}# |AvU%&kWONs}8T79Ҟ~5 W/h5 ПeGx`G:Mz~xoDO?hyH"y|oHηP-߈Y{x>|ƽ>A^9%p{z=uX{('+_b,ϳE9th/3ƗSr]aֹ"M!]`?D#=via;`=C~R~fpmu> C!Lkm`1?+G8y~5pپRr6}8B8~2SiG&Ӫ:>k}ס_7^ ?&v0(}TGy,0xN'#8iu<'}z p t:S{Qk9exxn6~)},/UaގX/|~2=maE5h#jvB%Cp1SqhZ(`^@.>E@}Pk_$_S~*O < Sρw>.NO_D0 ؟M]g(?? ~{ޖ8zd<Yn? ʧ/p^| ˧IMu&K4;BG{ ؇v{lW\lO Ǥ]|sMX_a:\I!A 3'5!g!S_9\V;^?eW^pU;C}#p\2+^\bj?3e0|NIʊ╥5ۙ!??~'"Ow+?/ /,2 .ep)K\R2 2|ROI>)'e 2R_K~)/e 2R_H)# e2RF@H)#(e2RFPJA)#(e2BRFHI!)#$e2RFXKa)#,e2RFXʈH)#"eD2"RFDʈH:TUrOWԿAoHV*i^%ͫy4UҼJWI*i^%ͫq%+i\IJWҸƕ4q%+i>%ͧ4S|JOI)i>%ͧ4WJ_I+i~%ͯ4PJZ@I (i%-PJZPI *iA%-T҂JZPI *i!%-RBJZHI )i!%-VJZXI +ia%-Q"JZDI(i%-EQp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXp%\a WXjjjjjjjjjjjjjjjjjjj>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>(((((((RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRHRHRHRHRDHBH!AH!AH!AH!AH!AH!AH!AH!AODR($)$)$)$)$)$)$)!쇐‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡B *B *B *B *B *B               h+|+|+|+|+|+|+|+|+|+P+P+P+P+P+P+K!!!!!!!‡‡‡‡‡‡‡‡‡ " " "~(((((((((((((((((((((((S"P#P#P#P#P#P#P#P#P#P#P#P#P#P#P#P#P#P#P#P#P#P#"""""""""""""""""""BBBBBBBBB*" @" @" @" @" @" @" @" @" @" @" @" @" @" @" @" @" @" @" @" @"@2C%N?H"Kz\/%rD^"Kz\Nr"YD'8ʼn,Nd,)>"G\#r}D~"O\?'rD"7@ rDn "7@ $rDn A"7H "rCDn !"7D䆈"rCDn a"7L䆉0&rDn "7BF!r#Dnȍ"``````````````````````e8+N8+N8+N8+N8+N8+N8+N8+N8+N8+N8+N8+N8+N8+N8+N8+N8+N8+N8+N8+N8+N8+N8+N8+N8+N||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBĦ                                                *B*B*B*BsΉ:'sΉ:'sΉ:'sΉ:'sΉ:'sD.'r9ˉ\Nr">"G\#r}D>"O\?'rD~"O rDn "7@ rDn A"7H $rDn !"7D䆈"rCDn !"7L䆉0&rDn a"7L䆉!r#Dnȍ"7BFKsΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sΉ;'~sCO;'>sΉO;'>sΉO;'>sΉO;'>sΉO;'>sΉO;'>sΉO;'>sΉO;'>sΉO;'>sΉO;'>s{xٲ>vUE@[({@2F/pnA"&Y$q1dEMM1Ί~|ݷnw/-V:u{}޷s N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N Nഫ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=)}2vuEi'{}nxi}w N>?3+wAnp۽>CqPspnvH;orfoqVmn>w}w}}}K~?ۏۏ?'_^ w WOuonUn?jn?nn_P{*]屫np{[&pkܜ~Uֹ6u;c>>Anv{Cnw{zc=X|G>#둏zc=X|G>#둏zc=X|G>#둏zc=X|G>#ono>W}|_9W}o+r+ϥs\z>ϥs\z>ϥs\z>ϥs\z>ϥs\z>ϥs\z>W>kZV>kZV>kZV>kZV>kZV>kZV>kZV>kZV>kZV>kaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa+nu_ۯۯoorm;nw~O^gns{nop{ەnW]v۵nors7_2s={s={s={s={s={s={lٛ-{eo͖ٲ7[flٛ-{eo͖ٲ7[flٛ-{eo͖ٲ7[f[ ݾ_} ܾ_+/un_n_n_n_n/t:w{ۋݾ^osy\9gsy\9goxk[;֎voxk[;֎voxk[;֎voxS\;kڵv];kڵv];kڵv];kڵv];kڵv];kڵv];kڵv];kڵv];kڵv];kڵv];kڵv];{w{w{wS녽^zaۯ=‘|p#_/yM9r5kʑה#)G^SCG^SyM9r5kʑה#)G^SyM9r5kѩcxbOɩ[xbOY<1'f,xbO\u9q]N\u9q]N\u9q]N\u9q]N\u9q]N\u9q]N\u9q]......N]>Džqs\>Džqs\>Džqs\>Džqs\>Džqs\>Džqs\>Džqs\>Džqs\>Džqs\>Džqs\>Džqs\>Džqs\>Džq86Ωsj86Ωsj86Ωۯ:Ωsj:Ωsj:~9uNmS[9uNmS[9uNmS[9uNmS[9uNm}u)[_l}ul=?[l=?[r\+r\+r\+r\+r\+r\+r\+ج=6kcج=6kcج=6kcج=6kcvkڹvkڹvkڹvkڹvkڹvkڹvkڹvkڹvk|n;|ܙ;qg>ǝ3wsy\9wsy\9wsy\޽;sy\;sy\;syFU^*QרkT5UyFU^*QרkT5U8*G|zl1^s/}s1q}s1q]Ss55wM]Ss55wM]Ss55wMOkj;oΛf;oΛf;oΛf;oΛf;oΛf;oΛN+f;oΛf;oΛf;oΛf;oΛf;oΛf;oΛf;of̛ys3onͼ77f̛ys3on}5[s_o}5[s_o}u}o][u}o][u}o][u}o][u}o][u}o][u}o][u}o][5u l][5u l][5u l][5u l][5u l][A3_|4uA3_|4uA3_|4uA3_|4uAƹq.l ƹq.l ƹq.l ƹq.l ƹq.l ƹq.l ƹq.l ƹq.l ƹq.l ƹq.l ƹq.l ƹq.l ƹq.l s\=ks\=ks\=ks\=ks\=ks\=ks\Os\=ks\=ks\=ks\=ks\ͳ96GY#_Osdcl̑91G6٘#icl̑91G6٘#sdcl̑91G6٘#sdcl̑91G6٘#sdcl̑91GvΓd<9OvΓd<9OvΓd<9OvΓd<9OvΓd<9OvΓd<9OvΓd<9OvΓd<9OvΓd<ٝZk';ys';ys';yš33*gTϨ|Q>}F\_r}UU*W\_r}UU*W|R:uJ)S*_TN|R:uJ)S*_TN|R:uJ)S*s2*s2*s26|Nܘspcn917s΍;7s΍;7s΍;7sR.w\}t{ӍM77t{ӍM77t{ō7W^q{ō7W^quxuxuxuxux;?ߝz5y5y5y5y5y5y5y5y5y5yy>wϝsy>wϝsy>wϝsy>wϝsy>wϝsy>wϝsy>wϝsy>wϝsy>wϝsy>'f⹙xn&f⹙xn&f⹙xn&f⹙xn&fr꿧xn&f⹙xn&f⹙xn&ɩot/K9q,}KDZq,}KDZq,}KDZq,}KDZq,}KDZq,}KDZq,}KDZq,OsdY:GΑsdY:GΑsdY:GΑsdY:GΑsdY:G΋bX:/΋bX:/΋b>{>{>{>{>{>{>{>{>{>{>{>{>{>{>{:o0u=L]01L| 01L| 01L| 01L| 01L| 01L| 01L| Կz^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z^z:'Ήsb؞ntNl[9uNl[9uNl[9uNl[9uNl[9uNl=[|l=[|l=[|l=[|l=[|l=[|l=Suququququququququqm>]'SOd:YN֮d1Y{Ld1Y{Ld1Y{Ld1Y{Ld1Y{Ld1Y{Ld1Y{Ld1Y{Ld1Y{Lޜޛ{szoN97ޜޛ{szoN97ޜޛ{szoN97}>{}>{}>{}>{?u>x9{x9{x9{x9{knۻ~߻^^^^^^^^^^^|}XaׇrTuP*A:\ףG=葯G|=z#_zףG=ѩxGwxGwxGwxS88N=S88N=S88N=S88N=S88N=S88N=S88N=S88N=S88N=S88N=S88N=S88N۩y;5oԼSvjN۩y;5oԼSvjN۩y;5oܜssbnN͉917'ܜssb殫j殫j殫j殫j殫j殫j殫j殫j殫j殫j殫j殫j殫jܚ[ssknnͭ5793w̝3s93w̝3s93w̝3s93w̝3s93w̝3s93w̝3s93w̝3s93w̝3s93w̝3s93w̝3s93w̝3s93w̝3s93w̝3s93w̝3s93w̝3s93w̝3s93?3^^^^^^^^W^y{WzMh{W^^yW^^y{W^^y{W^^y{W^^y{W>ic>ic>ic>&dc41|L341|L341|L3ǴO=}|{Ƿ}|{{}/{}/{}/{}/G}}>{}{}{}{}{to{s~;s~;s~;s~;s~;s~;s~;s~;;rk{޺k{޺k{޺k{޺k{޺k{޺k{޺k{޺k{޺k{޺k{޺nzny_x}y_x}y_x}9fΡsh9fΡ?kϚ pcnYxm<^xm<^xm<^xm<^xm<^xm<^xm<^ԿMz6kx6kx6kx6kx6kڜSӭt:ݺNӭԥ7ٹNwӝt:ݹNwӝt:ݹNwӝ߼s\;ε<;<;<;sNS8u>NS8u>NS8u>NS8u>NS\ڛK{sio.ͥ7\ڛK{sio.ͥ7\ڛK{sio.ͥ7\{{{{{{{{{{ݜfn柛fn柛fn柛f~kkkkkkgp\3353s\33׌dRf*L/*L嚩\3krT5SfS5Sιs;ιs;ιs;ιs;ιs;ιs;ιs;ιs;ιs;ιs;ιs;׌;_3\+r\+9|N+9|N+9|N+9|N+9|N+9|N+9|N+9|N+9|N+9|N+9|N+TV+_|2Wf_+eٿ2Wf_VkmZ[VkmZ[VkmZ[VkmZ[VkmZ[&ιsn✛8&ιsnsMsnꜛ:ιsnꜛ:ιsnꜛ:ιsnjNO9=5ԜSxԜSszjNO55fԌQS3jjFMͨ55fԌQS3jjFMͨ55fԌbjkjkjkt{ҩI't{ҩI't{ҩI't{{RO}<=SO}<=SO;9߉wx~'߉wx~'߉wx~'߉wx~'߉wx~'kkkkkkkkkkkkkkkԿ{mxmxmxmxmZhȉ#'zb^Oy=1'ļzb^Oy=1'ļzb^Oy=1'ܝswbN݉;1w'ܝswbN݉;1w'ܝswbN݉;1w']sV?gYsV?gYsV?gYsV?gYsV>ǵr-\K+ʵr-\K.ڵv-]Kkڵv-]KkaZZ֮kiZZ֮kiZZ֮kiZZ֮kiZZ֧K= <,< <,< <,< <,< <,< <,< -<~ -<~ -<~ -<~ -<~ -<~ y&K-=~S^^^^```````````````\7              /qzzzzzzzzzzzzzzzx׃׃׃׃׃ũ{uqm\wu9#=|o<|o<|o<|o<|o<|o<|o<|o<|o<|oټ5flޚ[yk6oټ5flޚ[yk6oټ5flޚ[yk6oټ5flޚ[yk6oټ5flޚ[yk6oټ5flc뎭;γl<:ܪ1ГuG?gOտrǻz^o;E 37ワm>=&/߭9MeL&y&5:9~lڣ+6]1{WMnv6N߽-t6n{%m3V=ޗl{+.u~[{gߧ~G>y϶)s6]nvϿѳowo=n`LnF亿Nn7=_WGlg&Z? sxz/{}nYf6gQ[jlmmw;mvngQ@Y,nw9]o'nF}Y~z{c'i:%CvY>Vj>>|lhq;k>Gen#>giql3ml[=,jm,i.r,iYB XyqW'Vmcۃb{m=}=v>,kۭ1F#vvh4mOm=zl)c]nj~oSvhm=~lc{lOۭޞxO'vmOۍngퟴ}Xc;gv>,j'ncͶݎov,mۭ֞9[?Z`lYc{gv.mSP4;=zSCߛ_ƴ>D'''g9<+gYwxbC:!1tC bCqqqqq!Fsb4!Fsb4!FsQ1!F9(bCrQ1!F{b!F{b!F{bt!Fwbt!Fwbt!Fb!Fb!Fb !p1b !p1b U:*F>miɧm>iO3ZVg:huF3Zꌦ-2Zdh"EF-2Zњd&5hMFk2ZњV2Zh%V2Zh%V2ZhmFk3Zڌf6hmFk3ZѺe.uh]F2ZѺg>h}F3Zg> mhCF2ڐц6d! -Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%Y&@Hi mM 6&@Hi mM 6&@Hi mM 6&@Hi mM 6&@Hi mRMjI6&5ڤFhmRMjI6&5ڤFhmRMjI6&C|hmM>ɇ6&C|hmM>ɇ6&C|hmM>ɇ6&C|hmM>ɇ6&ڄBPh mBM( ./0C|]K>tɇ.%C|]K>tɇ.%BP ]BK(t .%BP ]BK(t .I% $A$RK(tI.I% $A$]Kt BY$ $A$]KtI.~]K>tɇ.%C|]K>tɇ.%C|]K>tɇ.%C|]K>tɇ.%C|]^?t.Q%*DE}O> >'BP }BO( >'B }O>ɇ>'C|}O( >'BPJO>ɇ>'C|OT>Q'*DE}OT>Q'*DE}OT>Q'*DE}OT>Q'*C|}O>ɇ>'CP }BO( >'BP }BO( >'BP }B>0$ÐCbHT !Q1$*DŐCbHT !Q1$*DŐCbHT !Q1$*DŐCRcHj I!1$5ƐCRcHj I!1$5ƐCRcHj I!1$5ƐCbHT !Q1$*DŐCbHT !Q1$*DŐCbȫ!1$5ƐCRcHj I!1UŐ CdH !2$@Ȑ CdH !2$@Ȑ CdH ry xy[#n5ֈ[#n5ֈ[#nB\!K%b XB@96 n 6 n 6 nA܂q -[ nA܂-ⶈ"n-ⶈ"n-ⶈ!nv!nv!n=#n=#n=; ; ; .UQ5UQ5UQ5UQ5UQ5UQ5UQ5UQ5UQ5UQ5UQ鲞zU ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uUFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TFpM5Wx5Wxw]pw]pw]pw]pw]pw]pw]pw]pw]pw]pw]pqB\!W+ qqqqqqqqqqqmAqmAqm nA܂q -[ nAq[mEq[mEq[Cq;Cq;Cq{Gq{Gq{w@qw@q.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x+8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8+....................................................=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8qiL^ks?K.;%<z?<‹/=q/Ή.9q>\\~CNx>^|%<'/K/y_pcϿO^gs=2'K{]~O\t鹺'>LJs?OyĻ?⒓'OԹ7'/njyK.ON\r9)}=7|ŗ>yy'x_t.xSOzl?瞼䂓_;wN։>a"i=q 鹏:8N.'o//xΉw sa_K?]i$Od=}⩗_xG|?E'ιn(OGzK>qE?O .>H .躡>=Ng\x.{ulzI;S.|CJ>iP ig'8N֍\g#.y%'Ipݫߥ's}˟qKNx%O;_fc.%4\91c/q>2C8{=cq~pN^rEg^g>w.<TvO<(z/x Ǿ u_7~Ƥ ^|y".SO\vNڽpEFܳO\#|a~Ks]~}9~];;qKw?N(SO>Οve(F?In]wxbx&{= jw;wntn;D1nl6\~YcV8wqtcwǛ(1z<^_37~}rc{]pݝw\Cn4 ^-3gNqG7Rn(;hF|#НH[@l2M&_Sۏ|rc~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~2&xb:O67O}K.Χ~oXo;L&GOo~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~oY6VO?KՑ^TSU]{OowOb]մ>D'''g9<+gYwxbC:!1tC bCqqqqq!Fsb4!Fsb4!FsQ1!F9(bCrQ1!F{b!F{b!F{bt!Fwbt!Fwbt!Fb!Fb!Fb !p1b !p1b U:*F>miɧm>iO3ZVg:huF3Zꌦ-2Zdh"EF-2Zњd&5hMFk2ZњV2Zh%V2Zh%V2ZhmFk3Zڌf6hmFk3ZѺe.uh]F2ZѺg>h}F3Zg> mhCF2ڐц6d! -Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(Yd%J(YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%,dI$K"YɒHD$%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%YR%%Y&@Hi mM 6&@Hi mM 6&@Hi mM 6&@Hi mM 6&@Hi mRMjI6&5ڤFhmRMjI6&5ڤFhmRMjI6&C|hmM>ɇ6&C|hmM>ɇ6&C|hmM>ɇ6&C|hmM>ɇ6&ڄBPh mBM( ./0C|]K>tɇ.%C|]K>tɇ.%BP ]BK(t .%BP ]BK(t .I% $A$RK(tI.I% $A$]Kt BY$ $A$]KtI.~]K>tɇ.%C|]K>tɇ.%C|]K>tɇ.%C|]K>tɇ.%C|]^?t.Q%*DE}O> >'BP }BO( >'B }O>ɇ>'C|}O( >'BPJO>ɇ>'C|OT>Q'*DE}OT>Q'*DE}OT>Q'*DE}OT>Q'*C|}O>ɇ>'CP }BO( >'BP }BO( >'BP }B>0$ÐCbHT !Q1$*DŐCbHT !Q1$*DŐCbHT !Q1$*DŐCRcHj I!1$5ƐCRcHj I!1$5ƐCRcHj I!1$5ƐCbHT !Q1$*DŐCbHT !Q1$*DŐCbȫ!1$5ƐCRcHj I!1UŐ CdH !2$@Ȑ CdH !2$@Ȑ CdH ry xy[#n5ֈ[#n5ֈ[#nB\!K%b XB@96 n 6 n 6 nA܂q -[ nA܂-ⶈ"n-ⶈ"n-ⶈ!nv!nv!n=#n=#n=; ; ; .UQ5UQ5UQ5UQ5UQ5UQ5UQ5UQ5UQ5UQ5UQ鲞zU ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^xUW^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^5U^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U ^U^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uU^uUFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TFu`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TF`TFpM5Wx5Wxw]pw]pw]pw]pw]pw]pw]pw]pw]pw]pw]pqB\!W+ qqqqqqqqqqqmAqmAqm nA܂q -[ nAq[mEq[mEq[Cq;Cq;Cq{Gq{Gq{w@qw@q.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x.x+8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8+....................................................=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8qiL6Gwe'/y^vc6>~躷\ɴuߛ|M;=zL~Sk>O~|~_Og<ӟG >|{:ϯбmocwkzUXw{b5=^zMO5=aӛMO6=mYUQMIEA=951-)%!ea]YUQMIEA=951-)%!}1-)%! 창찹찵찱찭착찥찡찝찙찕찑찍찉찅찁}yuqmiea]YUaWY}{WU};WQ}WM}WI}{WE};WA}W=}W9}{W5};W1}W-}W)}{W%};W!}W}W}{W};W}W }W }{W};W}W|W|{W|;W|W|W|{W|;W|W|W|{W|;W|W|W|{W|;W|W|W|{W|;W|W|W|{W|;W|W|W|{W|;W|W|W|{W|;W|W}|Wy|{Wu|;Wq|Wm|Wi|{We|;Wa|W]|WY|{WU|;WQ|WM|WI|{WE|;WA|W=|W9|{W5|;W1|W-|W)|{W%|;W!|W|W|{W|;W|W |W |{W|;W|W{W{{W{;W{W{W{{W{;W{W{W{{W{;W{W{W{{W{;W{W{W{{W{;W{W{W{{W{;W{W{W{{W{;W{W{W{{W{;W{W}{Wy{{iFK&U^U^U^U^U^U^U^U^U^U^U^vU^fU^VU^FU^6U^&U^U^U^U^U^U^U^U^U^U^U^vU^fU^VU^FU^6U^&U^U^U^U^U^U^U^U^5ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KdI,i%MI4ɒ&Y$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KJ$KHi mM 6&@Hi mM 6&@Hi mM 6&@Hi mM 6&@Hi mMjI6&5ڤFhmRMjI6&5ڤFhmRMjI6&C|hmM>ɇ6&C|hmM>ɇ6&C|hmM>ɇ6&C|hmM>ɇ6&ڄBPh mBM( 6F|]K>tɇ.%C|]K>tɇ.%BP ]BK(t .%BP ]BK(t .% $A$]^Jt .I% $A$]KtIA<$A$]KtI.IC]K>tɇ.%C|]K>tɇ.%C|]K>tɇ.%C|]K>tɇ.%C|].Q%*DE]O>ɇ>'BP }BO( >'BPO>ɇ>'C|}O> >'BP }^)ɇ>'C|}^4>Q'*DE}OT>Q'*DE}OT>Q'*DE}OT>Q'*DE|}O>ɇ>'C| }BO( >'BP }BO( >'BP }BO(y'Ð|aHT !Q1$*DŐCbHT !Q1$*DŐCbHT !Q1$*DŐRbHj I!1$5ƐCRcHj I!1$5ƐCRcHj I!1$5ƐCbHT !Q1$*DŐCbHT !Q1$*DŐCbHT yU1$5ƐCRcHj I!1$5 CdH !2$@Ȑ CdH !2$@Ȑ CdH yAN=\xxy;<qkĭFqkĭFqkĭW+b XB,!K8@@@@@@@@qmAqmAq-[ nA܂q -[Eq[mEq[mEq;Cq;Cq;Gq{Gq{Gqw@qw@qj0j0j0j0j0j0j0j0j0j0j0*]Sx%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J+W^ x%J * * * * * * * * * * * * * * * * * * * * * * * * *jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^W*U xU^WjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjT=xՃW=xՃW=xՃW=xՃW=xՃW=xՃW=xՃW=xՃW=xՃW=xՃW=xՃW=xՃW=xՃW=xՃW=xՃW=xՃW=xՃW=xՃW=xՃW=xՃW=xՃW=xՃQ=ՃQ=ՃQ5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Q5Qjj #W+ qB\!n n n n n n n n n n n 6 n 6 n -[ nA܂q -"n-ⶈ"n-ⶈ"nv!nv!nv#n=#n=#n; ; W]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]x]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]p]=x]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=~{o=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=pN{i8=N9ݦ7.%O;w&G/]v?q|G|='~?s{q_՛C+'{xE5_O?w7w/93'^a;>mq|_In}׼˽n__'~}}?yw?>=sU~Onc^3^3aOw8Ku_O]|-k/{_^uO_Qy]xt|C?>MO3Oݎr"o??}zM~Λ'_rU>zٿٜ5' >|޿ӏ?W?o_w߹ڻ?VoW}q7}Oc<>q>kO5ǯ͇ۏ8} }/~Eڻɗ_??N|twq|UuOܭ>8>|{g;M~;e}կ_o=͓N%W+o[|<?؟O?Wx߿C>o]so7+wk^rg>?|囟rywO}/\m&O˾ݍ>v}x}c|1>8[y_we_}.y>OO8~[8nq}r7~ews{w[>Tǯy=7w~gaϼϮw8W|=j3?qM>Oě+?ǞƇWs|_|w}]o-79}Os'~YmGɿ|+^Q7uӧڋ/?~G^W/<2}o>O{?>O[&ʻK~ ^Y_{_ _p'䗟y^/3׼|kpo[įz%/_5}O}U_cߎ^~~ߟ߽_ӫ3YE~W?go߃??v|3{U?/v|ew_77'l.W~tǟy//9wox_yo}>/}+'or|_W=_Egx#]W7o|77|w}x/?/}۾Sx́'W~ͽy_uE_!?Ut W]u[xzc|{~k9|}~YEϼ5i|w~_ۻ_oc?;o]} pIܛ39|}y?o;_/=v_?~tx<[E_n_+gϹ8/>C3/}[~f? wz;θ:|_~G+~[^.5/mW_/տ쯽Oxt}z}ߕz凭__u3wk~;o~wsq?_?{}nns>;^3/8핏{'Ͻ;~cgoO>Sox_?^uKQϽϽS~;] ?>_7{՗k>ʟ~mS=yS+; xc|1> _%q;|}[8<ؿmc|\8抧·ܬ'4>q׽!-+G|Ao?ď_vk?~|凯/{_}}>>}WzwK>?;|_;o_w_?xUOy֫÷Io65۸ggxW?K?%߽ۿSWG5zws_|ꦿW=__o^}5/X~mW܃}//zMKoQ_>{7?u~ˌ1>_]zk{q|^GԿ8|O?ã=_G} }q_wpWW?z?sg\śNp}~|ow<w{/_|^3U/g_.|?W;yo?ocqko?~>~) y{hn8o}Sn47W>NO3{u<7g}[.Лmq|y;>mq|gN"3=qA]D%HPD;&7E=s33k¬g8s fTygbW){]Uս?zvz;i}֦GT.嬍G{w5'˜*xcv:~6\sv6_FП;8_\g=X-gy{?;)rZ3ɽ||/B9SN9Stm-R;U-qFtI?ynsotҽ@YRD2j1UR'G8_~̸ C9fUHd2T*ϓjt Sדj낔0|՜'o =;w +|7(|w={|>||_~/:!;~]?~7Q-"1Ï?~{O ~Ot3g  ?0bxiqG//r*Lۤ X'DKi[ dBu*_\:QQ:ސtj\=9'9-yw w-Y_TLVȱңmUN(W[wiM[\Q^SUQJbr# R>1O|qy[R1y=ǹ5ӥtHʺn۲!]z;1|?6,W;2sk 7?ls3ʡuxi* 1:ZUj8qsK}6O(~B7D)jh^ŝ5(.qN{:AM|Mll~ +yA:/LMdC%ݩ'O Iq(vv'EL.r\;=* 8M툡|\_Po̴᩿opxJ Rk 4j=h4jtxҽ<^"L62e,sI=`;SzbyI|qr&÷ӱ̥0-5N568 y'GHye޲=]AQ7]{!G6t"G\aJOc+mEL$T\nTqeَeh'4j4j PF|J#_ɮ+tu5#-DSq75}3wL_FCqJloG߄SO=Nn_;WH'ْd z7|ޟ#{n;yvoIϲv|3ɷMehlf7B x3AiF_̸)\'=kɜ)I [q+~sM'Y]D1Y˺^'a}"9> Įc'SDBzIɺWDqWO5=hdQ If,8&44w6e1-͎Is&;&ʄ+jkUѲy#hZdFOsc؜j\uiOΈLzjSsJ'fS'sA{gN;0F|5KWz2O=2~"7=ۯL[C鐶m:!I//uh}:Gwŷی.ӑߑ eEwO7|'=[ӨCp2ZJՌQw&e};<}:{iݦS_9SBj{)a*@KH4à<-"OP>8Qx"ϓ7tc#q}|v9凃;x4]|=Eʣ5%h4^/DVԊxiutQf~*V^RQϝ/.蜣]3k}n٣c]foG WͦS(1m\7K"w--<۵*#ki#k푵"MЂ:6.~?kd863Ǎ )#y'yyUmG߶Iy#oϧ=ym-V˼TW{2$oc:ԓۘx;K FC3u݌ `G"1щJEw IIp:8DtLK=Gu'Jww\\;jQkeCx:䒍z76,ZC+QɉhIe>[hi&[Iר69)~eC7OKxf~&ZW[(GȣDu KItΒhI|n WtͼMw7O8iwϴUWz4!? V&c5Rt](-Ή#*Kre^OO^oiMߎ9G(_;;o1d?X.BP}ݚ'䉤o[_^yrt$"O<:<%R&s\g{Ҁu 393aMeqqp}>$iZOkD;y ݳ[Cw x܄tw<fv*"]빏\e{Y}y4n䷰1B(Q%'Q{4U]m:_pO7M|g6o#GԓM\\?Svq^NwqCߤ>)ͼyr>So;ZkB;;97pc3YqvuE?>3|[{M(BUNuqFYn:ϟyNLcG,µ@@v[mn-Ƴ|x?.u8v&ڼ䩿y9hrR6#R;; g 1Ϯ?#p&dhT+,Rf,3$j\y6'3gLř9nyژ(Ɍgk^])6;bgS;;uۤ)hgQmZxFA QkTUx~ew֧!XMxv|v|[p)Ǜz65|Xy\qs}tY] c4z.}8]1 FE0h;M$F~Pzp#[lv/}J|~#|R\_yRvHrE4{2~WM<٥[k':JOʟ=OG;ORΝ.g;Ը'~S>>Iפغ7q4uw4tlz FK>4 FOEdxSMLݸްu 5yCzY~yYx׆Dkmku9KI%ykhEL$ <29/ED}>c#_E}sÎo͛%3S<OdбV)LO$_yӒ)3+ul$]~؈l"ڞ7ɩ. ty(NFr%v#9SHN'9,KS1aZɾOx| LOzѓ!q΁$vKJ \(<%yMI9<%nE4z, &YLrNʾ1O4)ξcI{=>'/q+1ϰr-vG\*<jRq:z;.뜩5m\.vϟԯvħK޻}?yܓYV9|'n^N#=δ$߽ywdEq4/d$?IyG#V=~wOI~OOO!Okϔ<)/sC%X=B̓3EYB^rx[qk.oKr0q9,\ #WKGH|m_,%xߥ䏔G:QGI/q/?I$?J>Wt:yFlɟ+yϯǟŒ缹D򗒿e_._)y]-y]+y]/D^NsV^[k;{ϓ $)57e ࡑXHNy\-b|&ƀιr6'8D_g-H9>ЇlB_]h(Y܏EyMkOzFGWijKERtkv\Mj3xAB14.Zo6)x)>O3/w@?2 )v:zo'omi: q1A̿܆Œ"]t⩎4qB%ho>ytv Uԫ`;|㩹3 |" חqFNxy*498?Ҽ|i^_>8>xP>^%=?r9qwR>;5juy'M$'Q[\=(OģQ?;od71za ڭ| Cx,t-ӾI}N"yғO}n9g~0e%|TUF|a Q:QV[N.2|U%λZQ~~K[]?c;]f>akŠjoR腷@5t/භ;ĎVXC8ZQxӛ=e >^m=;5kEkŀǏ*\e=|K+Vu 4KGnzb@[ng=yܶwoou=}m@7Z+Ow#=/}' -Az.]5fgϨ~V{>:~vA-?.p^4崶OWZ1xOw,~_}ղ]V_tb]+֊Əԇ'|Sc.p\/ns/.VLs9ì@No|q/xK w9}nOjk=A}`S3}㬧^%XO,])ݬƏswE>N8g7[+ oh%^}ϵV{+ZOq[_~ԓb_}Egٳ_zOlŞ3VTOVtZ|٧[-~ ~|zy>kct~wO_o6sS+Z?=tECZ^Xr{k}em}5ֆީ풋sWyjѦZwΖ Nz}xˮj6g> "π57ًywb߿p|s8>^Or[rO].fY<}E!}=_I{Źk8,Fs>pKrr)0h ޘӈY?y`h&F{wi E4t\I5JAOsF>?7$緢ųX/G<];xRqggDՓs aOOj/~A'^7GzC mɓzAxQ~'ߞ΋r*WfoϺ}bA?jFq?Vƪ &-CaV$߀K5gD,IӼ$W(P'?TУ 畖͜{*hZ=J<^GfXӧd/_(/K=1=&Ž&;mxXh&ݘ Kf,lй:c V'jfNCU<> 9*m/)q97V(]"bDyE`lj&f6}ڌ\7:Duu%{ߛMJg菦Sp!#Fxt+~:r~_ X&LF;nd_g|Ek.W9JZvx~bm{l|Xk_){uֺYno7_%b<Ҳp.+'d>[vY gᰫƚ1[M|Z?Ь󾸵_Uϗ>um[RSYwhA;/f7:r[_\e] <_֨ .6J {V8kc]utsy2WxWͬ/zg~ߗ5Mtʹg}Z~gw8 ol7x2teOt|Zgnn]투[s࿮=9]y䝯4gpփz?v3(7n#Q¥]8vs/n 80S_~{;kհm\u֪Zmԇ!/ֿ<61O[k74qS[EϬ"pIN< g4Yk_ [ ܟFe꟝SN9_vo+rqևgpju~OsOQ9s>1NGCZ=na?Ngϻ-lr|kNh9}yٛ.+3Ϗ|k.Y~͝g|qJ֟75Vܶ"vOow.g/7ڽoGX_d}~bXl}6[?֧u6c7gև]cݍӦ9k*yb#-{]G9kra["{o;?;\c {HĬ&eS~bxWkyo|us7qkZ5RkU?qvZeŷyqiYuu>K;㼽?8#֏m{voO!Zk5ڑښ!gڊ}XUwvkusgm-zĝS3XkzsZ{38Tk9׏xuoNuXӿ[xzu}Y ?@3fui:`n~ci}_Y]mY[r`~~<֗V-.[Y_y[qܠؑE?w]ruzm77Q}ɪLJ_p'/MXKֽHd==0aywXjv~nZrSWnVaf_;q.?ZYis*k'lc;g9ΰW|̃;F'^5;i{Q&n)};uO'~7ヒV_u^/Wwn}?u>A=֞#NYuƳO}N'pkݺG=suֺS_yfSUWm]gM|فvuk>9ld|۔=vo2W`/9U xM6|_ax޷߯֯;h6:ֆϵ=#sz֟Ѓ:[ZOh93_|^75ꖓi}exȶoxaҼ cֆ'ݟlt.8rk+fx~\|}zm>^og{:Ug~IJ/y#ԙG4t;ϯUsB+gqKǏvx_~/d]I4z=b}!#W~qc9p;xƞTgm8l#,ڷG9kT[Nn+r)r<-ӫӡ64>Nrgqvӡ\YViWmu/>ku"L8(v~5 xƮpk;hz9uQ^\O ?Z/ִ5<ϾӲ>CZwOu!SS}֪/FGi[]=n_}kzt>~w{,^U&n:SUbf'hO|grV7L:k'/j~SN9v֚|nv:?U/W欕_L:iIߜUx_e@NgcZw7EvY|& l]kݻOl9lHx){'և/ogn<(}|̈7N;w{&g:6tكs49_]-sC7JOng:k5g{h# op_Ӂouku.e r7ﯿӡr)5s]"SN9SN9 \O9C,X!6d,W*2Kyܤ~yjk[8oǎ&:w7', 8/r˕x{ Ν}}i5߻EU~><>}L.ߛ6mNl=Gጇ~OYw.rM[[YPL٭f͚5l߷>l*"zbb}VE^r!WIc||7;%]|=zGd7{*u_E45t 7OH|^J1iҤv/i(߂aJ'^{ƣ~mzk׮򮑭:*;T|||?;mzV9G>*;gyEC}L_xck[>YkH-[;k뉟"ʕŎכjG麜̛x}߱p=cԏ۽Qwvt^r<:; ԏ?WlLSco_B~,)uS\lewT=' O;=͟|FG?\Q=b9܎7wuo,"Yf}NL,?o<(K{EϷye+ `/6~Hvq>C}Ys{֏fG{ ?_nZhS}ޤtQy䟳WOe>X|ǯgi_/2vƿEy |yso[q׽n}ע78w"n(}ͨ0tI}Q~c/><'}sd8>J/S3x\q{0}YnYrE9O5J3nW>PcEa j85wO(B!k[ˋf4x<ާc-:ys_V#4Pj}(Hև˗Yc _SqQI(D;,/?p~v}4^xqQ~4t0yFx >:˙j踞1z n/x^Aؾ/\279\޳MǼnoC]U7q?H܎8\vc=q{g:}.OQ:=ױ1I^p~.C84+$)v9ߜ,.f/Ӻ}};ݾ$G4Gā=~ )='.< f>t'K$y`Ϲ# Yr_oY??VԚsWr!Ds}xG{\?/njfe.e/s^_i{z=s^ϳ6[y֗:]S}HNwؑ/~K"/>wܐ$\he3/Ojܝ'3~4}z-=c}i${ُf=?qRKy<5#0|jW?uF{<~?}i<+2h]qv;S{]v8=o{}>_fޗ}Va~e灎l_*}+4^uiazz;gٿCpUw2󸟤նnG&G|;iݛѬsnN1}>39v.J:;Q3˕uqs:H?wּy~~|?}-c174޵/2Ǿ//?y_S-4?͇/c~Yyh^ϭ8=>#>ʥ^v~'r|qݹi Neqx]ǹƑ6[}ھ/*;_S:3\j>|QQ8=ߠ=9^!o2K兒3x]/޷o]y?uĭ}+h\pao}?y_/z ߯rzik~vmi?R#uW?giF~Ngϓ7P߱LKY[JVH{y>_~GUmֺ]zΎ5]1O֦җ|>d[t޷c_a^vu]j=/y# QVM@_|>N6ON?ntd+Iv~;OvO|r5rLu>v{\C=tY^ǞOp~:}=.oz]:%;XVy|1G}!9Np{\3OGy8g\#}X\ϳݴ>zW<_qC{|~~~ܧU$w{Oo;99}=~`#wRg_3+~^ׅ%Y[U͍5t6oEErv}ӎ~^^?rr?y>sy|vQ3yTO2Ѵ=#+ݼOéϛ5cjm?_燍9(._\{-̻`;9{s[)=mEGq?a=gN}3zϧɞ^/cn=/Kˡ޵\o;v.v^|7gkon76;ӻ*3Sϝ"ajB膽f>w^+;[Y]d<CL_ֺk}סs+z`P{|@a]`~|gZVT"m֣v"#U8v;˴;:mvQs9l_۷YY?N縛ϋw=5t~s'-^(8N0r}5z}߷,OMf#g?='_8 &ڮ:#=_~؜sv~N$N"<_3OKx ԮvnyW+͑NN7#p>WwG_/l}.Y_̧Ǎ˞.w7׉IkqYr`[۔/߼:eK;dmHBڷ]l9?xf7w;5hu폶yw/]^(O[ϭ#y2\9?=^"xETy1o=/9>Vyy1ϵ9sփ} {:wi߷q iy>rcOاfӣu O9^`9i~N-eKYz _q/a?L*67dۿBQǽ;cs=_<^9n8! (si]M6w8d"?/y|bIYEϑ'xَ/iu|ރn=A94:K)g喣~5O[NSv|=> *һkut_vG6_OY' w˃ˇ; #oמs7.ϻZlu̹m;;?V:} ㆬ?z{,'h?#Әk7jr{S{3P?cq7U/'69;Z~ 1=%:I9U9\u3ߛc|L-ɛs}w9|i/w~?8e|Y/mIn|Ѿ9/xbvm82ɺǾ3[r>wy'?őxWf3w_;;o~9~q}'Txxw\y$6IWfx69y\@8|{}Ksor;%c=7t˝Y>Ώ޸lQz:Ϲż۱~ձ/'׎8; y`Gܲdn mmgz9əxyy鮡 4z? g\{I^}9r8\yb>Z巎~%n罕Ӏ7<}<~u^yǩ5uZEs;]Ώ=;ܷ\H5VgrtggHLߑ2qN9o㼟{>Cf)C^}B=;vkX n9~^sk?ڑ9'q9w8c?4KGy ?A:Ϲ߳sc<.9e9g3W;nG~ݶ߫)W{ݐ祙 J}]?}=Zy%.s} ͟8qΣ|!<Tn-Tߍ$iC@~oʱ-}_67qv7v??^%LOdeO72^;>?^q 8s}Iy尉ɬ9)S?Y{_ ]ױ^f#򸅏?hx?$=7qև59&gxzoyO}^a HCs -۹{^?f_!do1_N1<^{\y` s(#|?_}rslϖ5fu>XQr}N{z(s7g/o!yCwxE8)qZ_81I;t?n9<+_ucG޻v:4gu86Ng92?t~?/ݟQ<8߯e;}`oϬu/f#]-|'T39]$%{{,#>^gbzN'G5k_*.s;sj\g99ӧC^s}_S7;.,Gϕro _y]y}]lr{!1ߧhi~{y&]r샎u$G;Րstvaqy:A>\{ߞ9w8?~Ӹ3ybMh}~ou}-}~.<ޣ;sr}|JzQ9I7iϛ7u8x ZǑ[ghqDWiޏw˓{npsy)w22ǫ<^]u;sJF/ksw-ߟx= fS*jǫʣ{>=:XiViViVigCViVi֡͛TQNJJkR)R)R)VlF<M ViViViViQQJJJ6GbiEtLU<JJc(?z~YEU\Cu_0ozŢjTJTKQ\QSUQQjZSQ[5/:-^(-)2(2(2('<6^^S+)R)R)R)R)R)U$CltJtJtJtJuIW+4J4J4J4J4J4J4RR[K()R)R)R)R٪3jb5UJJJJXY[N(*****noؼؒXytbuiDiVi@ۻviE:PM?ONTTUCuojuiuC~ՕUXyMR*R*R*R*7e^myLuAjPCuա:T8 Q[SPCu>l16VΌWUk^^iD\iFi~Ɯ(SGH#u?{blEDq WJJJJ>8)Q6'=D)B)B)/O-L?jա:Tp\E1uա:{٣*w|RN隦˛ZU2^V+Mw|AX? oL/{#6T4JI*ԡ:lapf9R(R(R/(ѽkbfWjVjU{I;2,V[!S:MW[rZN'7@?ZCu9 LJTUձ:Vǿ88z~,J"24V/S:S:s rR~a~_wɉxtؒޱyJJ#SkkUQ۪JJǨYQ Q^&)*nt*"**mӴIXi,VJ"2"ܿtJt=1VGȗ\R=rǷN键IU%JJ )}ce:P@ųU[q'ա:o>S9"GO-GgV0k=^ѷeZ6k<,W8=^0R:Q/,@sSd{xUYcCpa*SRݣ$9$d$Z{pvN]DH7RN֤~h|ֶb/ -,͉Vo 9w E-#ŗ(5t^@U:}N;szfE[QUV[Ktqθ+%CM>RjbcKcբ%^^[JǪb:@J^y;WoΉs6e9r0ûO,`UŢ=VHt}K?A/ _$2P'ŚSoI-|;;w 3|{#|o>}_?~`!;~]?~7Q-"1Ï?~{O ~t3g  ?0x`_ .#*\y////?xD~!"K 2Ꮑ_,q O?SO? 3ς?sσ? /K/;W_ _ 7VoN^?0#1ៀ)O?,sÿ"K/W_?o   3῀_~ Zu7o~f [$d㰍z k_5 k_k_5 k_5E5 k_5 k_ x k_5 k_hV k_5 k_i_5 k_50x k_5 k_V 5 k_5 k_זà k_5 k_5 k_5 k_5 k_5 k_5 k_5 k_5 k_5 k_5 k_5 k_5 k_5 k_5 k_5 k_ۖu1u_:#1u_:u_:u_:u_:u_:u_:u_:u_:u_:u}`_:u}`_:u}`_:u1:u}`_:up{^:up{^:uw]:xuw]:xuw]:xuw]:xuu`]:Xuu`]:Xuu`]:Xups\:8ups\:8u0q`\:uo|[:uo|[:uo|[:ŜH mo6||6 mo|6 mo|6 mml`6 pmk\6 pmk\6 pmkL`6 0miL`6 0miL`6 0miL`6 6 pmk\6 0miL`6 0mg<φXx6 lg<rL`6 0miL`6 0miL`r} mml`6 mml`6 mml`6 mml`6 mml`6 mml`6 mml`6Џ6 mo|6 mo| 0nq`7Џ87 pns87 pns87 pnsƶԔK<^{ q/q/q/q/q/q/q/q/q/q/q/s/8s/p/Xu/Xu/Xu/Xu/Xu/Xu/Xu/Xu/Xu/Xu/Xu/p/xw/xw/xw/xw/xw/xw/xw/xw/xw/xw/xw/xw/xw/xwO ޽ ޽ ޽ ޽+{2X^0^0^0^0E?^p^ {{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{XۖZA>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>b<MZÃmK-՛&7 MLo&7 Mo&7 Mo&7 Mo&7 Mo&7 Mo&7 Mo&7 Mo&7 Moߜ$^&7 Mo&7 Mo&7 Mo&7 Mo&7 Mo&7 Mo&7 Mo&7 Mo&7 Mo&7 Mo&7 Mo&7 Mo&7 Mo&7 Mo&7 Mo&7 Mo&7 Mo&7 Mo}`&7 Mo}`&7 Mo}`&7 Mo}`&7 Mo}`#:?}?}?}?~~~~~~~~~~~~~~~~~~~~~~~~~~~~"#~w L<ۆ~p~p[|~~~pB~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~B쨁?BځؖږAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWh??Ŷ=xAAAaW;xА]wd6|(i;doEY &&6'gyso~Rwa$Fۀ#^L+{bh$+#mQ\*}F:NHe#Di\ܾ'徢ttd,T_THexI"6zqŵe+̫8lYW(OGX餜سgt']TQ[Z-M,Gk*ѹsk˓0D5XIbn*^$X<PxUyښ>e*/1V--]/ƒ"XռME%JK).8&R+-.HTsk*jr+K.=VT-6Ni~I|nf6}AyoV GR ps3w!J5GaWKIqtψ8YlAPJ^O'p =RA紴#V$.r\Fys SյUhqEI<(VUFEP2Rާ&YG gΏD{oMxAt~ BښDiJ+JW{(:15Fy"9p."ƵKK3Xutͭ(¹)峡-rYvGGdV&FUƪP1S=Dhɸ`~q~88)Q=Kki3WQ! "^鎉YE]*㌄.Y,N aCM^AG\S;'U΍RmHGw'FՅ嵸Žbt"pLNe'eP2fvUf m"j qAi5KE ޹eУN#^Jv%GUזK+ģyMuH^n S*ji3dDb:nl-2LƥKj]下9gw1YuB amS{8|T./dTeNFhqDi܋B*QK @-|WbZR77 <4V\\!'b_c'7D+/1 3} >S|jNCHԪ־߅љEq(bz*TM~ ]r*U6NRFڜ@T.5C Îx 鶒k贱J:ia)4Iuc=IYYmy8o5]zW!*d̏+JPi6 4PT{Zj;*.$`z:-b9Y'9UuL5Rz0&ܫ0:0eNE ޙ4;$jnLˮl=5˫)1$ .ҸTL#by2TERU>՘#9ǯ\%ӰA+j1ҳs.#.;E b!C8#N gsc\m\= 6XԜR1Y^M2$VH9H@NH$sS*)? L}Lkn蔦0ڏ>RCP; ٕS~W:܏L{|INiD4GATzFMB *ܩp>fJW.2* 2.NVs׸G2 =D''eٕ,У;1O@yq]??|NY N@IE" ۲ ]ZQ }ݓDwTi4}]إ$r#əP+!G PC<6W8lQcÊ%˗[bEr+n;oRIuҹ4d] Ջc,*E >*l,UfZj/b*p^iE/+袸XG/by !r$3@9>J8QocKDw*WtTi(\rewWQ#V1z+ʳ|I{(k9?c/>U^"F!wq b4fc:RQѮ,vs.W˙4 Yp7Ipm223 h>5tvgQ;3PˈAb6+!Ѿ(9ZWWJ` f5ҏK6uF>H?H0,ېßn[%'%%b͑%5,~p}}`/upڗJ+K]>Qj | x*2HSDSɇ#pri4(vf,f\Tr 稢 ?2AqgWT .F¥=v-ҝ*O)e8oԨuLj4e%嬳++r gc:U<IjTL6mIc?=C;Y j[bKf7h ܋&+_YHS2r5G E9 =xMSҸ(^bܨ5m23蟝'Rkl4X~[>5qQPWҚEC;X_R,Xٜ;,M~)q;(q`ӈU^{x]3u:y.S4X dB4fNu#jsO̍627>_Ń^y*l^#t REOynOy/UYHYh G'adtϽiHmK.,ŁxJrz&_cR̪KGHx-֏8CbM_Q\qfWDTyG3Ҿ= T>xٮf)`myiz`m9N&jT!RkUżCR,TDזNO=S(XlʮY]ݪ8n/]eұc'Zu45U {0޽ݓxmmуAّqMQRQҘ.,*Ҡn"6#`:2 ~Tf)nO#s'kI^Tʵ[vbm0,>7 V,YMAv/ Q)s >&AHт\apW:}У}keYX! Tdwqh$dWIH>_v@8g857絛$^//ţdc^ TtA6#)q"6xsݮ_X]?У럼)˗7eM eݦdV҆>jԄ1{\S[Q⑙qbԆ>N.Ht%%V!#3sPH[TQ}Jݸ4L,D\e~resi~>=X1;p,$UN4-Yv.+y/3 0!2~}_^q|8zB fzBAIUzˣyk%%h3&_)3y(}Z!7[ҟfFY`􁩢+~4M,L/ԛUvAM}aOLII=ڶm&c KvBv~{.d3)ҷ ْ&2qKxloM#$)ʧޙd ˓klϗߟRV}$9|k>R}$5^;>B~'a =kȞ#ݷIyuKxΒ=DO#HJ]%{k&KRw6#"=NBK=r){KWXx>(I~ЇIFy0%<_@7#+Iʒ'W95(~$]CdHt&}T\,ٻ%odQ%{oRvx2)/Yrv7L#9DJHɾ$9}I$GJIvewt>˓]Ivas?.l~Βӷ'_arӓkDL\󄾹$~O3<ǿdo!INdO/ڋ-%?%GxdoE>$}'Irg);飒o~.׏J.I .4;=l="I< }$9O?2?g5m{>yv/l<>mb6y|_Jy!x+1m$V5דaB^+ٙmNk'l$|o;[7>*I.r,5)KqW]sOH$x'%{[I)ގdw)}+!}Ir%<S"~_?bI{Iy¿$ߎ/RW=+_ӆBr!MI$[?ߖAIrG$9wq '$y!ڟ?$yA-.R$}WIrH(j$ǿ*GxdC:  I}^Hr&OkB$nʓ];Kva!MͿ컑<;H_$INtdQ$&M%?4 ?4wigVO4Z3jI$y} 툆4nIZ A".1?$vu;KG9}\/_Ο.(ٹ{K7~(Ho'.C%{>~v%}I#<ǿC IK l/">;C:@Kd5Z-h'}@{H I^="} Ir3\s-%3 ~'snDS]s%{kOFKRRIoIKaOn9LA /@:Q,9H0IiV;~KxN߁$|ѷi$|_?D$PHR>?L"+W '};IrKk\sq},Ϣ+;Jy=ϒG$9} ދ$.H^@rG{˥%Wܟ,k"I֥~ /v߲})#$$y91>Ծv!rz"kH$$)'ßJwdo)I43HJܾKx ͡.YRdIKa$9=*In_/IR?/&{7s do&I.$}sIr_KxJB!}KIr{u5IFҷ$']s7JvP%ߛ${wIr{dA[o%}Ir_wd I_?LB~ v;I ]s?]%GHRK݇v7.9{$H(~ '-IngK\_S ?@KcIۇG\WZ6I?ROJ|$ʅ1Rg\OQOa"ٹc;Yj}.רNz! w!}@ϛ=HRނ-$߆%<R\߅${ߗv.ou$G.'oJU~dJ۟aMoޓ,#}ܿE.9${3IrH߀}]s%{ IrLmSfފܿ} -I v +ۓKoI{ރdJd'I^U$O}Iid(IM"98^$IRuɾ$^x\!]~:2=@Q.DX.Ku\>$x?zXw&/'֟[$9bKx~ SďޒH]/o#.>ߓ|SǘMI$aq aIr ~4##~Ò ~$$8g $;9GxG–?sXrEv~v|sNA[Y?l۶ 9Fl%}مJd>-) ^Nvӆ8G}' 5d9eRv}Id߅커MڗI9V/'0 d?4'MIDTȑ.)HɾwO Yd9kRF$d9UQȅb(]גNu*)K+Ⱦ;م/ٯ&;yR(ٯ#8 ydgR"o!A~٩LQ~'$I{>B.}/ ydTg4&ގ#;KJ9 ;IL<ɾS.䩒YO#4G^ >drd.䅒U wK}&مKEYdwɾsGdߟB%d?Bv쟓ꬽWkI$1u Ik#$yc+ }Ir^%l$)%{GB07$ݔ#kۑo@^w&ISQ ]J\_(!dgIg!Ir &|AHs<~~aBLT 0${s}Rvܷ\#)aoEnC?j׊Rd1I;K t}JdN0:J$w$Y "Jd/Ij sZ{Q!}ImIRE{$9<˯dBڷ$ HC|9s.!KSɾ$9VaaI#\?Ec*IycKxΟa;|O_獑/$߈9./죥+Ir9|d/I.?ZCᅤdxژ@n$)3FKxރ$1x(w O$y&ҏ7w$?r&{1مa4_ܾ#HRя3\|RBIrgW/IwdOr')}o9}IJw0㔾?"}I${!RAy%"I?/pɾR1$9s\/=_6$/psrN{%t&_"eUsZj?=I??5JΒe1 {HRHߍdԓn_D]s=Hxl_NO’x}ß m]'S',9.9R[rs8Wq>o/I[]sJHPE𗐾$Ehov _";Iw),In.͸]$)G;i\.ٻ񅸿+"}T"] KxU;%59k]/ۯz)~ޒF|HwKRdn+ZH }ܾ?^IͿ%"{م'!{9=/1%cdL1'H[Kx'${Ir$='*<1X$Z'퇰?;J? KxNs$_$}I KxEMÿ,JKT.owIr!{%Lo2߂$6G.H$i49z}(IN{9s\@t]+Av\?_M$U߻WKH~;Iw-.9u$b]$Fލ$ =%U|-.'SU]Hygw"#'oYw$KqdR$%^mOH?AG=%.G.IHNCO$R.חIK6FO$dGb}{=駓!g_~$9>_dߏARא`Ir'׸\_#R"I'R%>$~K%ۿwgR?[|<9lɾg=},ynv /l-7%ICgxc.g߱?ic~'2_Ò$~|bo%v$9s\Oz!lvu$%ITQT?}.u~A^xiH/$?m~']ȐdB._|>HC0ӷdaL{m$sdoK$lHޑ݇o4IT|%{wI$?,9wGz?ɀnq 'C$|S|{$91&C7'+ij=%{[I %{;rcۛ$Ǥ9}{dJɞ|${{Ir;&OI$ ޝ$9S$,ދd~?^ IK~vw'a$_T d?집4Oa>"IΟd#)=́/!}Irb]sH$?8KxJ瓤XU׸9|~$JB[o1R$ r|}gO0J9e.ח֯;aui}Z.IK.?YAds9KR\_<{>r9="I.s/#}$~w IRďvwdoNR_bҷ$ER|\H#Rl%dT>b 'I_^EvnᯡAMI]d8L%OOR uKx/=DRl]#}3IRKEXޜ4>뒽$I)›&Ij?9}&ou'c|I6%{[8HEy+Ii|o&٣k.ٻ]T?${oIR^"^o!y߁$) }Kx${kmwr_wJ˒W7}w``0G#Bt?w¤qJPOPdSw p0-Y OAeO?y0-d% ~CL4dY«0~" ~o1z{?x[҇bx7~0zw||{3L=F0՟%#cSJSO0/i'~虈;1J;3 wL$sF0ȇ/$|iA'/Wɾ_1dZmN2Dx 0s;T~?Hz,`?Y)}IKtaa1OHO ~Hhe> S~E$.O 0L>dXП >y c0U ):;'z,+A }e_g!GKl%!G1/ZDF0ֿD9$&[Љ?as9*e_l0|DcV3L9mbҗD* Sa􉈽Bo?L~aO]-)LF0/ǤN> VҧJ Ss~J?ɟdAdLFÔ~7}'%R0>a*+&^äo0XO~s-?AEbo :B V?G(JCHHGK6K#m8ׂg ĝ|ٖ=ޅa/t>$]0 û1kb ?ɟdJ SM'-0bϲ?,߇0υHyщ_S *}~or~ g1j?t4Jcx;lX$! ~ob1;T?2zlXviF濉$bx.Tm)>a$K }+%Taxb>x-)*FOF%bx:d ZZFo'n` eFF0$_@:`vt[~1z?$bxw~=sEF0/1zo||zY«0+6W}?.ПK=0o?xK'YSo3z2b#= OgO'1zk?gbn$| S ?e97`| ~3z{?B0d/;b|n)_3zO?2L;Faarb0W's a|I_mIog?1`d#?Ђ4Q~qJ!~'(W'a*_& I) c$IYIn ~詈$tR 0ɗ6OjO0zؿ%ɱ();1? ?dΈ$uM"˲',0fa-X!aI _6t*J7~RI~7xE[H#6VG#fI8t?I8ߤIR ~dF@$IK&Y Se;ѻ1ItFOA$maL~>ޏadd-`<.G:9> 0B 1<1oI^bFOF%t|J$_Fo7I=?$-g.~V`xW߆[QΤՌޑaY?FfW$IEދa~F0տ6cx?B)s~ٷ%$l'c SK C&J(|IK ' IFޙa*k bπ~0;-ITnp3d0wI$fF0Տ[$jA'[6I_I!. E nwJς- :y/+~Y( hzg3L )/X?_ 0%aI~E{/a?^D:م2sUP_G:+Oi#o3zg|6;_`_s$[ޙa* b?BGޝaӟ-)1zJ$}=k'ҮI_ZO7~a}s :2Ld)> GL?O>?wt3L{V>9?X(>?կA S K%=wYS28a?I3LmOHO@ Oփ`'Gr~UxS'~'2=_c8`.!û &?Y(9ӂg0zwIÒYЉ|ND f4/":wg0Y0LݕOeIo0'˾(9S,}$?Sd 0ɗ}VH ~?ѳLr>wb/y6$?;#fr.< û3L3Ԇ#z0LGY؟O@ wCDӺ)щW3,|}eAXq6yfC0tlѻ3 tٟ&W1z4grZ 0~_-0mF ?0w-'FOFa}p3L6|?C=@; .0 0~!k#äь'#j w3L;{"f1z/)3zo}ޏa'1z.TNp%vSA;M0v. ~}Δpw40gI8ۂN%- 2p0z'ĝYΕp>w1n~?hAw`~8, 6>^ѩ\u:_0mI~E /?bSz Cte+Kﭴ?'z?\_Ґf,#b`|')$ 0ނa,S2Tp d`'3b_0ûX/6$Ex4ٯu, lztNjA*}' Su{^CÏ`fo)KN} ь g#ƜxH: >Ӝp!$8F_tSgRӞI1^t)# Tg)E:lB:Ic-H'ѷ!} eH6¸r8iLLp ALuEI9Z#,~虈0+ztwCLxFi`/SN`ldNp23dO;sdy;DXI9]tJ ?zu&0?-5]`Ⱦ$\IFc`]},)L?w'}(L}uaQHѣc6-`'YM2.)} 9D~?}^b.2wE?jA'^en{M_Nob= D'w+:{JLte`CeQ?bLOOW(~% `~0ZO$Fh`],;~ElҺ`xgT`| L_sϒN| oH:1Ͽcx?I8 ~wFAL_~0>'1@A . e` [| [_Zի15IGh-LҤ Ғ0ɾi2-)$Fx4YGR1|ɾi)6$?= KpZ d`ݾ6$EX 4~ o_wgDb3k_i.@'֗H щ?_,}p~74z '=1_|e[LN?ІYXp:щ$_oAkM tڟCtdZ W*˃t0oO.a&' ND:V[w#01!c6w4pusg!v +a>4^S3z/>Ma}ӋUXR O@D߂_ɈJ[#@G2ForFOftJ_ 1۟;"fk Fb`_`o ?鿚ѓ? -~,/~VIH K ۯѓZ 4_.ւ`yZ) ;X6$"}޿ֲu6.w5޾6I(Ad,I=1[Lj/IK;3SFoJp(w6^%dO]fp1.'G0z_Ĺ>GJ8X/ߣlI3hzX}0,`=qӑN&_O@ϧw0Mk$\ Z 7XS1z &z /i31-b72z{lTMn͒? J:kc.L?nt7XOFOCܖ1u$[w3z&bwH{X'YIK{{"__? LiIx G1u<"E ~QFxI/7>~܆G8cSQǴ%Пd~h}XwCfBW?g#Z·~o-_?`fbD??Y_3ҩ?i`)>X~0 I[;cxuSz0<M5=ł:H.q~JH'q~ZYЉa`? sDh}2z6>ӥ30u:`~W :WXׯ ?og*F{~ҳ,/tOnl|I6ֿ^`xkH~^GX>1@ȲJNO4}?a7Q :g] LMF/a04^?S-דчYؗG`A:vL?ki}O2-IXF2._,?B>ODaM,z/@:?Nq~ 2!:Ogx LsALGPdl`R ~?S wEj`= mI"h-4~Mt4}};ق.iZ'ǹq#i.m֪bZ{ IB&ϛ3g=Z|Τy)eiW,Z4s\ o߉Ӗ̝x^Kli-}s/?لػZ~81hv݋fШ=s գ :~ۚjQ=W̼#6ƞ8'4WF] {\4~ewr|W5ws,D9;)n׸ej]?9I#byNBrgu{+6NZԉH=|d4;="9]͵\j\nj99z.c#Zi}97$WTVQY>3ڶ3M]5eMuWtqc=8Ջ#<KaQӞDo`w-{*F5f{?y0Ey힁i65"{PlGsU5\`-LZŔ=(W]s*_XꫮlPmbVTȓrm cp)t se˯WW +rT]&P^Q6t%{|{ٳe(\.WIJ~>AmM fXzmi_R_V %.{sU@WrQJ}ʥW^),(s--/0d*}?Vm+(Զ7:R*}Wvj@H?fgX>*mIم~9Eer9HȞ:gVk+*H.K3q}},&|?-@϶ԑGSs69hmrH" Zintd5k~kjq&GA`bU@u~yC; { ih8v0uJWEZGMZ$| ->PJz.XU+(=ib ͕^0 CEy e5*ͥgnZO ?Rߐ/( qGWyxF[0P(_en-! bjC6ؚ#VRm1X g~5%14aOfz)ছ^M*l 5~XEpxrqqbMpiķaUvҊr*kRLFquCw9MMΩܜJA0z}%nի{Z0D-CbeПqoLWDV"l_Y0'P(MS a`J@˙+wda#{P~TVU~7PRPvHzT#`ߢ!9 i1PS΁E&WPV)*d`^-Z6nZZ!?6\)J*tCIPu0PEf⨎l3ZQs!0g.g-+( өb8,2e.̙ `~,ʊ*,*Ye2(bhPD( Sdޜj9_k6W yKu`m/'?w+Ss6ZTu WE>[e#w 5ˋJݴZ1Re[H ǽ_]XX㧱ej0W+_-9AE^;"tX5h 2O6WVS$%Z~öZ_V۟p.l2׿Wj0@v`Zc,1 i93|Uuuzr.9CJ nWĔqd!#@'ՏT}Hxթ4JoP1 =]z}6mjY+z^ԿIv[WϨ&6tQn, ѧ( gUF%ɕlEr WT_e9Bڭpo>I@T_ZiR>sR̈́{4M5jTRIXd=lH/XqH&zmdc}mtx lEvliY"'mWQ$H_-Y0O& mo=l{5o=؉vowb&LPD^&Ԏ\##m2a&wR3HF7 \^!{hdeDl{rVbv\eob+`XۥtS{6N6iTQvRt-S8Qa.(v'7nZ7mkENm^HYMej hCy+,'JY[ t6 nmApI/I\qx V+L<e)23/L;prK\r"b#s,r꿼\4o[Yp,Z}d%.LwU&/*W$d9"Zc: Ov8Ж|Up,^۲(I{sP6!`UGU~v)Q* }5U{C.;$?r6)avf; ]%?=zu=O;-;:-sܵw#_K&xw%m\NjztT+*{M=4a=oU+[SdbQ]kT+U=RGBV:C]y2o,۪Sm+oYWW9Ӳ6-1uO)IۉN vf}UQFGhM߽oBvij@5 UUƎ 6Ѯ|GMSQ^ [Yq-bi~crSmMGM9ll ukMR8QYQ^o~*vO#ES*$Ų'!۰m^'c츫k;ȚWՖՖ(@Mj8ZV\]U8z ++9`e /kj5jl4usf%4^ 60R &SV[~VL߾vO{ Oe۵~ 'mL ُ-m"eo-e?==C]eXnjosѶ]-mXӪ8;"Z=8QTK{HGS2o`}_JSaTt?P?|pssr ,wΣB |^RC*sM7QQٟ!W%Hf*QUwB슈"Χ™ڠ/ Unt+H[n;gCu>J\NIT~ضu4c.Mz6̞ZiN* w'Q)N({J+;ŨA&jK,b5"}v|!bBвFp#}`qCTn"&ڝ4X[ltoWUk[Bs''w>?#NLnoQHV-U VIDžxs2hƊ9(EWuk&*U*c6}B<(n~0>)zÈN͙]s͔ls+WYi?04fO˗dHr"H@ :}+ Io*wrD>"X#nq㇖f 昒æcoVotG*J!kah*ǁ~QDÄuj,&P[.-+L7޾r:C1OxyWUU^uhS]%S/iͬf IȴCIOTzxKT}^:omN);C!ζp>peR( 2j*+ty.t S&yۤ[ccӿ~(V{6H/U/Jݑ~R`[9u)qۚUSe;&ouxM؞L3n7f7>l_[UJ(]}Sx]ݶOqЍr v~n@_ZblYH>v!S4c9U=m\aԯB"6r=Ne]]FtnI]۶uS_x[kf|:ФiHO'E\LIN|/s.1&A PNz+jˋܦ/Yx?)|;Z;a+_EC-o7J]S-;(;)gI6P؞]y w U^ ť->k-;'"%d͈肬~.-f+D];gyՁ茶.Ki[f/v ~C~}U"kRp/1$PW“_-WVfJi M\["Nݵ ! Nz粴8܅`wiLE_UXJR }-}nE϶:ra^\ uṼ~H. Chh|if<"њ)EB{hS qu,3uEM6rb iaүǰp{O+5$O1<8]Ct_>вy--ىigȐ6s#@|P@ `Ͻ]zK耸Ͻ"Q9ĮF wdmj0x5he-#Nk.Iia!%_Lkc|)7@%qs_>0vƼ^mIYZi[=ݵ=tr]eo[F=mas5w)93HQ&בd]_y[$&m |6{d&賛<-[w al3@~ anBB&b/0p'a^wz%/ :0Z`/QB00a-$1$K _{iHCab 4+dPBr2ha[ {/{!LCeo/a{ tދ`^"/{ ݃ÿE@rAƿv#5.UhEVcah! >vnE|)=}B7] ک_\ZQ/bՖjXZ@UN’+TVuʫkw3 ݋K*cԺV~9򢊪 ,.)kJB2WY]+7.mW7&×|cUV!ɾ;@iiX|@1dɾҀ51krIp\dd,Ig '2%NKUŠE%> i+ |n qrE{T1Qg >I,ӌMVTDe _( n]WAZ?v*|6ֽW^CevjTc[vriz|[ K?`3MvFsWU7A*j,axp3UĬet(;+P/mKg7,W1J?vHmWYJ_Ot,߆Yb]̪. dQ)kK(jQMˮ2%MߚRq`"l>wДYjRj+֎]{~ax9 k6XdmՍW`bcKdWRT-Դ0 l [+..C3Mouund->R遃*U~CgUT>|*e^UaIR1=Q0_;mjgUȾ;D%F ѫ|iZi"ZY܋UUľrqBVjc\XcW;.) 8{>u >V )׮Yʶ@Y뻸\vq}UR9OfZo_]HԵس*j|Y. XvY:GVԌ`کWwat[=%_ ;gߝ;4>wln跇v+R v^uh-hЩ*{ZR @8݋Ϳ 尻YAhVHjk=bZw  Z`}Bawg-` rw@ -` c7BӁϞ 9c?5_N0MmmYwTsBR6,/#,1tnHLq4*ZH_ŦhfOSg.{.OSdoԵ@l/ekIqh>RՕz' I&:5zO^寮\QJڪʥ*q* $[KkU1L'WZʲp;WiIRf, []DJPP2o,/3º֖-3E'IICezi?x)${[kXB5hI7]Gs+wbChv Bu8idc:=0LaxJ Qv7a| Xa <0,a#6'aK1|"Kiw<*1<@1z2 /y$ J f)EkJZ4AKk2khZ>?C߆&X3[??;Y1Yvs&׋ˉw;!uX.NvHXӎsa- àC2֙Pb5܊OquF<  J9T*ʫg7"5dVZ8ܴ*7., Dzt3QvXR?a\ KT 䴋F k=5 TnHc@55 - ;;:!>Jh l36p,tj8ț$*v&D1,1iY.M LE}v@]N/~)=47FTefZI?6mIa)S`~hAm1 mi:2:#0NNOw n fzcX_aY1<;3]-HX|Co8?m3v84ǰ` s %lö!-Uϓ1m/b Ne6iC̃p%l hTm&2Y/v8 sƙd.x%RݾX6d3c22–cygG[+Y mC{-lu͕iŲ-ż@=|eB+{H[T1Nע7ȴc\>'v s?,݃Ph[;lCFF=ڎaex(#PQ(H&O7\Z-e֫LQU%*sK$fc9 zt 5NZ=9SY(la b@ 0?P Hh,KGe]:| hWFx92kߝ\/(}ƛ2nZݺE>A}QO7uA=(^G2d$ sp|*]{+s3_'>+~e%H]<'f%-•HVXxj~tYCU>(ì Pw灔Պz)vd3(vr%ӜH/?&06#lGZM[|Yk3ʋ”?ZG]'i3?BmXISU:meGX-8E|_?<>2FiYv09;¾?HgC?-#WGXנ[f?ѡ c۲(z[7Z8}ǘTctu.U}RspOǛv?2W[Nw+ycTL_ƇX }D:CZlM>L/ʛSӢts|$Y;9]S?l7V7=3 >9:FG_v3dWoF7W8"<|tR1_ؗ;/4ǫEfzJ_,#З8/vvz,v]꽯@_f۬5V(ͼ%m[f?"r-J,|S NV 0¹2햁werVG9OպX\o9]uB\B UWVY꯶Κi匫RVj6IEZ$Dĥ։w i= =6pAp 7C0 P 77Q$y=JXo0NE PnX`#-ljЃt8/4bx3x*-x3i+/m~r|ojJ1ӇteSlVjMLn(l&jl1 NJԌ7,6EÅuN=AWv "/Q?=&Z g">Jƍ|M:.,KEy16'ר-u"_Ɖh5C4oB7=ӝ&OCmTO ͑n]{59 Np `>J59J-PK3 *YB:QB;a}Vl5E`ngU(z6iqR\~ ꡪ_0HX¾kahos.D]1L8X5ru}1t CDFhh_*]u㢅_¥ST_,-78Zx<(ޱp-Е ͺ҅u(u< Id\(~T>FnЪixa^t)9\Xh< UҐFOzpSq\ט(=un_:C?bm)E3׶]A_иH 2`jgm(B&R=Jc}̏żA| ơR (yiG =1_j|fMqbojMWl0ܐ1ZI_9֤CC݊߅f3ӭAyyW#z}ZhTo5l;kZ$mg7=c=wLϙ<~SױVW҇t;2=(VJ/*=~B]wf,]w0Ks(фz~(tlߍ#вEc)vL x{k(j鹏0T6 q?x\yZ=/<-!Li –QA"6SisOOa\Xu+~Haxd[)5ipģ \Y‡i+yhXaxɮp#13xOeS@Lzˁre t#W`D␪:6Unу5 w&Ɩ;6'5m ɨ茆O2Gl.F>nS~gH Fg0|،chsZ"cZFKAHc #d`umB=z1ЏA.m`C #(02GWbxmy i f D`P "A0BX` R}1a9~+C*8j5~A=ePHXπH)z`p 0P_A5F%|6 .F- ]:iG#@zu pqp,!$S;n"@y; "]y .]#\Rv].; XŹe P~E0pna@}[P=.ŻE Q]1_Q2-_CcȰ:i(om@ k:@^\ϫ^0(}&Htf0?aۄ}e0$[`eZvMPm|*hۇc#d-!GM(cIJ~oc gOl\aO[~u0a;/`9@q'ch"fD[@c` LO1 lһRa{@P (znku & e|0=ͭ(6a1/ŻҼ 񝘏1=,a>@\>VbG,<#ϣ 0ջpb0w+')lͪJ_UU _YlCȘII;Ӊ] 0sm)VmV -h8gpL#HHhj5(s| uj]ʗNW+v ͔oG!Ǚ\|{ n fz)!+LjL4e\7pnW^3rP:Ճ0M2Ow*wwFO6}綕|3YNvt gM͢±MƟ!}F3춫hQ]"4v&ЯY";뷩*hv wox\e6G8և3m3?]cv#o;ٮ7 3p~(igHq$ep/g/H,5]lzv$u/ei7uruȿh˄}[mzC:@W?J HL^Õ0azFp"R>1(wY^L _*g[tWjzk [ӕsjz ǺJ___lJ_k_n֡ Kpc?و.uTe}ctTեYT]D#zU]eVnW:& ~9Q2jv6?z8Y*-:[?UGtu|ǭwWz ^tJh6EoAa?WmnV;~רnqȿPZ@;C,\5vV3zO 黭q^a!;oQA_wZۅcUBYβe;u~ 臛x ؕIFu6j_+X6r>^h WµH`6PӹFyV 5oG`h]Ǻ&li5=aWGXshTy]@}eSNjf#"m[+pg#ϱ/pHHǖp8+lQ۬㻦]U>jz"݈|_0vFDDc^uπi?egub(2Vѝ+vY5ۓlwa)f~u7čʳKh'$~qh՞+Yh75Iѧ;t(},'vAi?! ?|k/zDqKPuƩRqF7pkᄄka>eaŘqX9"A|Dî"tpwǘ7n|qXO6IO|q~+3OBFH9L QI#K/ۘ갃p1ɡ.g![1˯lqHh>'vx2]IpxD+-' aГn݃ދcEtY~L|t 2Emdc<ە2Fmʤ3xY Z)hQfyݲ}zv{_[ȟqS-S-[Ưf~;+V4s9{hި2AS-ٯpYƽ3I o\ s~>fDX2}YICRP Θ'}q[w&jOaB.jMa/cXk `gP˶Kc<=o"0߄~g8x^Kci0dJҲQ'^ ,ƯF'#6އ7 |NO):_ںWڼ o퐸vE7Cl~.\<'h*PcD5Pk6a=r#OFV ?3mvCp=Hl(!_a]Ж$'Nkq _֍Ve2c1]^OceX=74S]=*7SGN#VnԉjGrعy*{8 ׹EFSy
 .< }DgN i|Ǔ#~Y -V}ʇ7B?P{> ÕTaFQ]BgU )LIj<,^įLXG9=!"…#]^rEǰtxOE|3T^YBk;*ZGZA)noH6j~t K][5 I="[/`_ PσhAk'XBouGQwkFq_;q0k|,`|x5<̛ϐ/C}I h8UcKo72k& hh E҃iˠ 317\G|()#:̮GGUG#<"U}LPt,AYc" >FN>xa J4j!+iV>FB G> ;21l%7~Cr?%B>|o \aQ!MrI#,ѨO,f؏QrSDg.I'6COs7ӝk) r mnԥ* f\(Tߎ&;";GAginF/d "Ok:>?H~GE:aZ!BفbTT*Q&q>FcfKSe0|mgKMX`4f7j]mԵ4 ҵK9^Zк֭lk_<񾳍9Ϻݖu!w1PN/#*LVs'\i} E6C\:Z͵ƹ鱈OʨxUI]cG7]a'!k'T$psl¤˺ k'#>I Oz-NU{ >ک=Ueui*iu@Wt3=FЇAo/A.B%1`$BG(2 G0ZO(|/I60i î>όf!@s'`MK) a9~ JV| $x'`=)E(C(G`p`V帑A-|9` 61Cبv8vG0>(w4W(@ecDp22:׮Ny;I1PY ?]™߳|Lt;dp:H.d`'"KN|hlq+.cG2q ܈p f: p܆p'2? <1GO2x< ^c!#4>E>ee#+m+ ||03_"f2x0@&1a@ +UxE+Y'?!G\i) րhV$ ..oi;]\ޏ忯0VT? P?MJ;"q8g$!XbCQ1o4h,}cDŰIL$5eM8Ә?|6wp.ʘ2`iXPP0@=Q*>ԟX kf/2i|e4 <?[!Gii2^Vhu 8aReˑPg%<9Sq-ʩRs"*r뚡`= g3@؊y¶Md6eXuކ6]:%=J t>p4|0)2aG aAd >M}ӅqKq`qΌ Y9;}8b~ ;;?. 1Tv}1 spg?B9^x .Q Lc;cߪWvky]<^Uv^Xm<\\>͇mNG(wng3aSԱ}_-K'(|FQv,U.G;+ͲsٍoSQ1ץovB^pgۘ|BhD}s8D؝[}m*S4o{3ᆰβCeeU[EUANyPvF6~8:ANU a̱̭qVTU kUپR_nE~ 8LXp0&&]VWD=ӻGMm~P0̙w7, MMRͺ z:^ٻjJ|E]c^O5Hos{nS5J;e85~9~L?L7}tή)ǁ" jusQel݁^]US6[l yl ٷlcm W(aw ^#=J[, fvtmjz^CmlU iwfbS: Do(m䅱 @E2M2r0V" j#ʪR U&lu,X^C~zS9*Sa|>G:qCT fyGbP,b ]J.|vaHk|1I'5ij YB4mO<_^+yta/OMFEZ33G0_}==h=WfzLѤeyG16ȿ']k"!/>wd:2LmAl 'Ii 1 d0 3p7z3c0ͱ~ #tW`NB> y,Q+k8]\>Z>`-P x_ !B+{e.`(s}YL2!hcDR5:%,{h{'HljzDD{nJH) <&GNcN&((զS?'O;uvT<-evك+.}` "x|( ÕrΎF] aU pUdg ><}Q&-sgշ; 7:_ԕ}:}Dhe;Qgk>Cf=?½k@=?GsŸ/ ~U_"y2WU@KWWQujՅzB52'7MQTRSU,\TOLTѓlʤYƏd2&B!= hC|/3]@Ѕa_ݟA.>@WT?z! Aʀ4h'B/0(@` Lg@`,`,t9@sGQ{BRp4UX0vM__`~FUzCyeWlx,K;i|0>D;?hv+cN0S0n0+P\J0Za' :d ÏqƤv5DY;: cTg%^W M׃⹕x,^O/[כFzGxxx,^g`XGF;XX>rƆ!,3%?Qށt+PnD2F1(GPc¾M'KyEu~Ҙq&8S0 BO`6vj313GKqn3Ц4rv4 5TkG0eo3]=l:GNz {=NuJ+Cy#Hv!qy.ET|~!L݄ꮥj5pg* *ZrSـrSـLQn:]@|i|o)|/_3ߋ Uڙ*<|>Lr2弬y8_[g4&xP׷vfr2slAYP'ݭ)BܭY,܋H~kS ۵uwmkpuoUjqcn²{KS|d'$39k&+ҳҟ+""s&z ŕ-GhGhGhGhGe]"U_{q7=P.Tݯfsd]z#>}$e;ٻ=GPT o%yq!Vs+S8lO=5QDΔvھ+E/\W"o Sˑy =Loa }ZޭGZJvBm43kua%waI$s;aʛob*t<^aGOEc3dp(8 ;W~B~ &@iT4W3,Dpj338ϩxNmsj33ÀSڌ\Ֆv@fFچ5>T{^|~gao0h&H#VT 첹BW 3Dc{̞qdJ˥.f㵚n1ZvE c-^=$߉w0҆2Zi)ӑhPW[c~i,Giq0^P֞usO{ zU]%̯| į.k(ZNB:ȭUgrdB{6i% 97 m0HpP3 vCx<eNDF#>/a|1j-Wm#BW0 I4&(eXKQD{oNiRJVIEXF}L2ơlO [A7“>fž HOI¹mC4FH+ўA_CxbgpŞGJ{3M :p y$ qxYu5aaOD'0%8aO`6?] aƸS0gYha  ce6#ya؅a[]jv0ĕvV1croS.נrxY-|6:݀:݈:]:$yPte'uuu:Ru;6V-;Y>C|#~~uGDFȿWX#"K[TؿPsįi;/E픍zmCؾ2)2LlZd_R$2vzdne7Z;VSٝΩ/Cś\寬) U[h夥#}EjSMw@5~ksNU}"Fqοc6Lz^ F^pNOٳriY3.\y*+bz;I=W+/(2B'aUdx4P]36B/H_ك񽪟pvS6UDe7.GDl5~wM]_[[rUhQ'""&.=s=v?fNXMߩeGa)B_Rr7JKkeEvS^ч<{I5?;yL9E?-c|h +8؄ p* .?W(Ilo&)`G\nOö_/ ])+.(uo:jk:ʇNM|"3#+mcXD1vYcrN46Nmxվ/6ڄG5FFz}W@/e(Fw\Ia8L0M1 B jwN{~UEqo rܨ kaқ&"g!tsR_c3>C3Em[D@>¾ ܼ1YV-$9GcHc _тRq ΆyG?>"""ӡ/7'MKLW["^z_(..r6y+5bsu*}؃keKkef,G=g+g흎3!D{~h {`@<5Fq0p̾$:zN0 ﳣu҄Hz o= H;*- (=wMUZn06J#Ns SR/Ӟq@N"w 9>b`d+.|M9wʹ..g\B o]fwzvk?sO]=)8!7.|c zGM^$od|7uctsXL[;ajpUO&%߰OE>+.k5L} ?(ھ\"68WeزL_tZdg)=&;եaߪ. }V-ޖ8ϟOeZgXa Qv?l r)puAuT=BQش0GHAV:$"wM՗)/;q(!rak|l\㟓Д邼G!-&; ADžo ~WX}hBJ h5<j ^؅W"^jǨcA<""_SP}{R!د=RnAإ1͑.UgjQ5u>x7a>fD !U_FkkDg[`3@hFt# B`(00]ƿs5&8&)~[k 4€_>fuݥXsf(0? ,f$ ,C؏)=/cV2XY>--=D+@u`mX 3(u;+a9aiE8K2E+`@=H~Gp#l QPpQ Ȟ|EG#+pDq8! Fi;imap.Y18.`pE (v Aza:]a&771܆p". aB] 72I_:7wVxa\dq' iq!n i-W}QわN'`skxUmw%(+"`bz:ws=w;+WmU/hgWn|_$ׅ'w$_nGw:]֟'L˝Ѧ蟡=ViN>[c.d6Q'LSe'MdGG?!Jd淡Y9 cjVuFuct*M6>v'.GLr*b0ר2B t`ƀhP61r!^ayj>OfaUx7ϫ7/ZK[IvC[Asx܁k hnW_Ll<` ; ɬxK1l"K#'}u%=g.nC=lC$[~a$v%dN$+~zPl՞}cX=_k45h +k|PK1VYTUR]Y TՅ N'O^2bd"?ɦv\] 7Sk6*FqEk^1lUra<6\/7As`U K!.?gD[Ѝ85l(yVsv#o3d Yu{# ˴"I(s65w{9݇v4`+߅l)͑.فͪ3o|{ ]X<ᾇ?ߕ瞙}*&mKשt=}rE ZagO~`=w KϛzYv9KKN{x!؋O]yιZ>zO95pklXtsc\[w'g=ruL+oU׮sQCON_OՊO1RH:^{}{GU<_sb_ϩ{n+>;Tw6޸?9W//y-gVsWug.3^Nj:L:Λۗ8S>3JO#ŧHwU=bK;ڼmS{9;0.Yc=_M巄G8gx{>z580L÷M:w^Ns*Ǜp)OvywuK7y]ućtWޒt7{z=S0=&l<;;zc?kεēn]~a{C=Lϟ犾Mno;2M۪=ב!uس޸|m _[Guו>Ϟ|m54S|=o{_;=ׯ}B|>7\j׫ ?6MU) mfNe>5y7Oз |~aĪ)?tN;Dn_xM=?m>pmmH?NjǮ&z֟~h=A=i z=ߵzl)u>E{>rS^sȆ_.ʎΝXH~?{iמ~7>oI}#z.'}}7y,N?ą;To}b=d!'&q;5'-vh/$گwO]= AϏY^qدr|>F~Rv]]С?6xzxܛ_ǍU~41oM߹xaO_yʣM؃sEU>Nz>vKY|ڰ~מQOOܜxfgtģ<ߩgycaGo]7i|sm/E=ԃ+ޥ矱x-{gE};MsvF?>ڈ|½?ܲc履v /i~i8Toi |K_ ~.˺#>1yvX(S~E Ne ;h#оA3ڡ rʄ (h?PWmVgBkPw A:_n m,ihS֠nC{ 8SƠ߀N;^C 7'MMd@{ @,v}_6eЖ:MA~h_7@ 诠߂6; ;Z;.$*gxLcdc'h9յ*j*^dSb_jA=KEV|2&"BSB1:^t"mƋI/^G<{qRɡwbLzG!Fg;1N8d;D^u.|ϓy2>O)<T|y:>O<gL|ɇw|ϸl|Iw><||ELjx } }!"}!"}!}!y#}1#ӼKKgޥH_H"}_t\.C2/Cr/Gr/G:.2xC~H89?W }W }q{@H_H_H *B*Fj7bz5bb}C~߇>! _k A5ȿq[___E_E_E_E_~#G~?ߏ-Fb/~q)\'!~JS>PCծ1oWYΪ]C_W3S_jOxAD /A%j?[7iTShS F=RUIu|?|VBv[tOi]KP:.:{>]7.EG:HW}C>CߠƍZ7*>?H/~_긧~YH'6?"_/!C/@>c4n8M/4^8_oq} um_֢~k1^ȿi|^aJISM4kJ4š)`2bѴ84m`O(4j4 ri 1uh{ =1M1_44ik?ԋO @;Dh:KSUS!P? x43C=ciHJ*{BOB<˃S\e'v>ӦHP?ir06&c?|(a\b/KJcFG;{ўSn3^ti|a^]՘"w W)AEЖha %$ xm.ࢀ$($a?Uϐ 8`/l׸HB;:ëk$\+7m&E$Wpf;alwǼD=ֲoBva}^̛^ZCͫ>oփk7繌/(Lo/ɫJ?ޛUoy}śuHynug|y7k=NiWy|wB-U[Nz&fǶC<|Uq$oՇ y[>&_N}οSMc=_+έRKT۹t|s_݇ϿW]qGztjsxy/:z~^S.˛?=efU$ r瑏|U|gǿ.~Bo܃CGvk7kh/on+_.ћ[|UC&q"o?q{XAz-v8=J~Va=2Q\Z.|>t bޭ^~;9]~Λ={՛ty7k/ӇN'OۜQ•[|7 _h{wo?'y߰6^7Yr7q#]^zO޿z :^^jZwDJ7|r7?YN|vȂ8;M>{7Mr7%so>{mOr7vdrߌϷbolu_ hXx`^4G __ {OZ4'?(wLN~ߛd‚gy>`۷9ӳN?5<[gK{7fC/.[j?f߯NY?<|k|>ᴳqχgޘۼ).F_ ~.,¸ O?C;~8Xhເ0c8~.?ј1炾Q Da+4\&υx*koNrݠ^[-- Wi/<{^'O̟gsjxJk;}wCy Ŕt@qw4I-T[pYGu^ϐ'}P}?{;{-'{?xb;O;q3+kF&wm 2 lY?kK?5<^\w ﮿^<@ٷx][^I>+ނ{5wJOWN $wr[ O|Az nհFw;{{#t#;)^ÓOzI{'m(n> /wOC|p*6Uۖݳ]❞a5"DēMHyJdG^I 1Q'J<[N {}᣼ޙɟcE<0XoGtJ,[4`?5և!&]tw01ɘhS~';zlְ]zSݵRӶ!yw-L[y';G׽nһ;;wnVOl][ir^o_ S.xfabzWs7C^'~E˻ۼ3_xwwkw߻K')uw,+8?ڻBiIX_Nc&COw,{{u]YuwQos zT[|a7G%!Dg`q?eh^O o'q,#1u/[uq2"HidF }r:`X" v~ӖCMd5| g3(voPw7ScPw:X<0wuB }WqȰOyy'%"^cN=!;+i- \X3DjΨ7[!ֿɋ;ooh.< <|Dק]q_F bf*:ڳtuMìq ?:ؚlk D'@s!Y|V=xkY+idt6+m& Jg3];ޞnAos6GL_7YsgmChw%ȧgYOhƤ] +vLzO&hWn!}i&<.-@s(?v5MTGh7WIv5?VYtJ'!ki[vn&A^vn*OMJ].Lw~vn UBgh7>afʣG?B"y nAU=N TxNKZQODiP%f&Vnٞ 2_O`@>L{Nw''] )h6K4s')/uo0n7  K&_`zgc5( Ewlֈ#۽$ʺJA*lqk5>߮5-?Z~ث~C/i0 d7DNk Z~I=3hwyI|eĿQw l[ӷ_y"${h\Q=ߓzS<qQ_gڳCVG=gN}hyUC>Kg{SO\tu߷=9y~{\:-OfOCOh9k?ɓ:ysW/:O=/oyu.<Ժ~mΐ<7{o=#t-^pMO}_4ox7?$,ѥ}W߽h|W wmjR_KxΩ_?Wt/gK1Ӫ=˽)}zڼe}}EG^ŗ 3WK>8s_ cn.'x[%ft|u3z;ֿ~RiW]2ǎ;*Zz#<x>߉K9~gG]jCyU_u„G=ƛp/m3\5$=qβWo>标 NW;ǝ?xWuǾE);5h\'Zqeo[~h|eo[qGˏ{؏[^-xˏD>wS:&ߨo*yˇ=#/޾e?۰WRG]?pzӓNy+h>Kp/?qU.{I_TGO~p%'}YG1sEǼ6OŽG!;9+Y[zOѱ>s/<ޘw_nϟrΡ%YSzvK̮'o?FcvBOI ;u g0#W_\Ԇʳ돸vE^iUMOm(z{k(ч/ǟٰ_8Ͻ-uſy&?R6ܿ胏c.SΜ֤=t?/GZ]uK7lS~U}`B放<1W?|is?:ȯ7^ 9ӿWϸ4;>NHo2K>_<`(wnk><\k._'˟ܟ>ұ̇Vvg{9m7e]|omXyj'_ŏ5綊{/?N}o_;^|1r>~^{u|g7tߝz;]9a~w;oYr3<Ly-88gVMG.uSqٍ/M[zpܬW[|]o%ÃoLG|/cw}ygIv+g -ym8-[[Z̿qGˏ?"ǃ_n^޺i4Hdu~Dݠc^A7~hF(a%><4 ] ϵq]a` Kz`:,(O/pY]qYdqR0N8-,? .!:Ǣ2\6IhecoLk)&b\L h0.$#ҿ'ʤK+[٘fzw?o i.< xC1tʅvI.B 7 4a|x .Y! OwR?Q.vMnxσ&V72=J1LMb~00\o_; K\r\tKtJ.Ua|,vn7c^ <)Pm6@r/V6vJO@NMo3WJOD?+=rC.$L6PҍB8䯕*'^~BsßͅDz@t=dz6w rh?`56I ڄ _gG-|`bW;um|4%Jɻnjl&|PnM\fj&)v1j-muP-oVuSmM::3og-E]gڛH 2upB)+ݛќJU,GÂvIDWSjTq*."ru.75\~Wᬛh|:ᰝ]\8%pa8ٕ \ێoK`tsXa\!G)ct8McPcOmK||F@mI% [nA!87F39FEsUS~Gco؍N/}92r5INlwk<5:=wޒ~>Txi"5}︻tJQڵu}׾˛)h;j%Cjv/}:(r_<ݻԺ/X>zww8o[_ھg]|K3>w{Į}?;ǎUxnޣŭo=LhﵹQ><:v6c]ߵotu;z|t<]}|wt䮽GkOk?pNW=_'';ϝŻu|ӻ|m wz9}owW=~y};iQ|Tw~q>7 2ѩSivbwqcku|ؒ-Q>%1ZWt۫5{g w4>Ĵ]Jے.ܽ%ͿoNlc~㤾];H%14,{?*WerW\~r/ԾPv]7ʕ]Jzm'>%6,ݾ{cwqw;㼅jt~Wޓ[: ]Rꦮ}b9b{bU\JqԿ xvͩKt^~LǽqRߕ\_\uwsmsy|ty@:oOn||GYq{sq?e{r(\>N ~ܿ+gqgqsЮ\}vHyGwcQ>{e]){%ʃ~kPsSpT>{a(]yJjG9=du3?Ez{.-/ANͿʥ#Ȧ-)GQ^=hr3݋+~PG 'NGϽ 'Slצ~߽6@7kg}ԇwq~^>߹+< 7}skwc8nݭ={˭=mĿ~S7z5wg<)ygփNθ;ջr='wgлI_vqypN_D/֢poI=ߦ SFܸ?{t{+Fw{tow^l &r =O·] qux8;\5>ޅ];^wAHXtp)-}]f{fs?_:.zYRb (ҾeqgsWF'?o:ug 壓}ut^B{kƮoϭ{N06ksy˵^6uoԵ/;ch]qWY[yw׸q_zk}yWϻ=;㮟zqŨҝwSkӣ*^Ὅ/vU}>I >/ w75zểVV=ڏfߑV꡾g}CO 3/G3w]?oxG~swW-ϓ_v>cg凾NϿ_gp>מ];v^|EW>{μ{^3|?>{Σޢ8.r~~gp_~{._S~7wypvyG|Gl9/Du:75qg> ᇩ}c|矷]Fpge<._SzU/ +;ۿp7t 9UϾ2t^o~G~?|Fz__O3>>_]Ӟ/{2Os~tԿww#μ^ۓsg^ל?Ιyߟ3~Rz+W/pSqO\E/3|Sϙw pͫ'W>λ^u _8w+iwpڍk/cyS7kocw|7/K<:=zRtIǍ4^~x?.ݵ7{r?!xs7w!ϻs~w"?m?o3+_s?֩p|GM(Oi}x>̫Ow'|8ݿ՚*?Ng8ϼFo5}opՍ;^ߧ~W5tOt/o~ړ+'H|6ɽOO]yڟ8%吏¿3oMo)_gIOۙ7|xqϦO|KÃup>;x9q>=_n;.Kʗ|nwi~Nz;}`7Cok/ەי4n.}ۏd{ygNzʴH>kO>ﭷi8?o®>yy}^O՟}>μ[ϻGX޿}don8n5=^_uŻ!sc#Hڿ?cW~~:Λyvn:SMunOOxIOpӵ#ǦގsyNo/;.xڻιPkOgug~Ay7 '~NFoI wᢻ_Zo>7_w:iK? ,X=WD_^g˴m$S/x*O~{{GmFjGGE׼ysO׾˺|rGp[,>q+>koZR?}i_xyW':W]//iMw,qˇnJ]nקuu{ӗ~ep׭o)hCO֫˺}E:2S}E@OZewg o鵿~tYx=>׫4];?tzzr]5i.떎::MǛm[S{ׇ|?S"_D?/Kiw_ǟp]w_?uqϼ-'k?nOͶ}xN<>|Ǽߟk-wo=ߣ_?{^z5{~FW?;OomO7>̟n/w>xCt:_7yo>owy]vyWGˇ|I%[ϼ3=8d(Su_^x ~Nz)S?8n5~cgؽyN?N+{Kɜ8i~8Wz3viݺ]L5?c)n~;vz9X}t^?g-R]t_'+o=ަnޝ?u`}9ɗ3||k'ߪv}'|שߧu'9~yiM=;w}ﴎ֗~w{wsZ?{O>Eꇎ)Ҿ1hgުq'8kz-/:nmNCy_qO~t+ߙ<|ݓ[fwcyw+i=yY?ko^xFW>0ϏI?>aYw]޷JwO={^qqfOM4oW^;?C?wƻ[Dn֝t䡤%{=g{ "˙?x~嫎|߮\~t>wy{Sn\rח~ݧ9nL㚽 u)~;}taWs L}_[K? W'o$+''T?uף}&ϗ[g^O[ uEm>~a_+Nq q#v/}^&t?&o{7=cjOǏWi?MM\MW|}2}nzoLw_MRg[2{i'>/+Ngjo=u_WǽӻN8' ?&9PV麦{'y;9nܦӸKucǴG>PZ3o;T6u8wvJN/>w?V{wڛu6q#ݯ=}3O?uzw/Ey컾{^oOy'#?oϿ[ӭ?z"G9s4>z+o{}7;5z!h}B缝㽼7x/KVy}ww$>U^ ^޷}qڷ>|#yɸi?z?[9>yHt;R/r??e"=?O{Iu _OL_gӽ.^ҧ~fou=?}߻u.{x_wuZa$O?{wLzy{r~@ (]wvqox?ۇ=/O䇤w3هt_pb'}o6_9;)_oq̍?~NI{9>e??ҿ{7OO|Oߜ֥?g=S{9?WN饯/️~}_ε3Pk߾V<~7Ͽv%w|7?]jGoy_μ'\3o|???El?|w^3||LJ~XA?u[~?߰OqW5ٱ}?G~™߻ͽy~j^6=ǻGdߵwr{tWs?a?\Ky4?!Oi;xocjw3N߄z˟<.Oo/<<+>7}[6ٛ}ٳ)J+?O{v/oү?pώgk}n?=:kc;:/7{ױ>k&_'"y9tKuZ.NaH7^I9>K{?ݽ/_׻uCm犺4i?yw?ؽOs8;'gOEwG-kg~}'"ss/규᤻:\oL+:_:b_v4mNL4>3tۿ3uwyt^:'}N0?WygGϟoIg=Qzci4wvtgǔ'yj][n{ғHuwK=]w}~|}O~krޤuMc& //>=tݓƹ>ȷw?w~euyjK.z yuYu}>yg/|܎gt_y?/w/ /y-'We]sW<}חk}}?N;^,}D׎瞻Z?&_ޏySս|*ix/ޒ%p;zzD>^{C'>OsOR;Ni.N)]ߧϓxKOKwMP=g~Mэ/~wп׍_iMW/yJ{?;y}4/{o<=}>-;{߿>^y+}1μYuʏ_ϏgO6':ۧy|?5|>~yu"H[;zmZ~LJs}c|O~n"O?>+:孶w|/G7i|;:7}?ǁ~J?/sݍ{~~:&O{%{нo};N4S?JLH~Jy$7KzzKuM/=;)O|M_I{\udrr+|x9 .^{qgu޾q_|7k ʿ_Jt]g?r쮯{oxVyn+4oz9{w^~C㧎}?t.}wGI3齯}GWi?<ŦqM/N? i^w^i]KNw_w^t\Z}޴.i/7zKk_?<0Nݯ??B$5? ׽%QSUʯKػ}j}du3OMOz_7xI>ے%O(}>yǽ?rދtt9s ܯ{4{zё?K$]?ubl<&Xڗ{Y˯O|Lt'?8;#osnէ7qӿ>c.yJ>7Nm|;=c&/>%v?q>O_}Sq2?/OH/8'q8Ys9y?.n~Yt1[)nZ_ZY^ՉG χ\ 迾Hyiһ?m+߿G.8n(]6߉a?Ϟs~?ݼs|u{J2|Oszx|߻O/_t_H識L٦}Mw?,]>^ӻ=ش/|9ͯ =uűw{uOK^@;}=viR?w<̺{M6D׾쿤%ΤCyiמWtunG'_sz}?yt?ܿ=?9}TߧL#)/*ˉ<}t>]`s,}GZ?v)O&*?<_u8/??y[)_ds}ziusγ?Nh:\:̿9]~oG{%8uW"}V>({}NGYHHz;=_dӸwǐ;E/WsTzԎM;RuIo#iC}Ͽ?{oq,+$-_W_\w;sϴ'qsNAR5}||~~5r q՝uwh#h'S~ϣ+m6:$xXzAAA݃!>?"?**?&?1,ǰr 1,ǰr 1,ǰs 1<s 1<s 111111111111111111111111111111M1<$CE<,axÈhhhhhf"E4h,YDf"G4hT*PC|U >T*PC|U >T*PC|U >T*PC|U@ (T*PBPcQC|u>:PC|u>:PBP u@(:PBP u@(A:HP A[:P A$uA:HPg$uA:HP ?Աu>:PC|u>:PC|u>:PC|u>:PC|u@EuT&BPh M@ (4&BPh M@MC|hM >4&C|h M@ (4&)4&C|hMl@EhM T4&P*@EhM T4&P*@EhM T4&P*@EhM >4&C|hM >4&BPh M@ (4&BPh M@ (4&?46?6P*@Ehm T6P*@Ehm T6P*@Ehml%ڠFhmP jA65ڠFhmP jA65ڠFhmP jA6P*@Ehm T6P*@Ehm T6P*@E65ڠFhmP jA6Ʈ 6@Hi m 6@Hi m 6@ ! Gxlxx\qx1w{#qG=wXXXXXXXXXstuuuuuuu-@q -@q -@qK-DqK-DqKĭB q+ĭB q+ĭBqkĭFqkĭFqkmAqmAqmAq[mEq[mEq=`ڃQ{0jF=`ڃQ{0jF=`ڃQ=F\j^=xڃW{j^=xڃW{j^=xڃW{j^=xڃW{j^=xڃW{j^=xڃW{j^=xڃW{j^=xڃW{j^=xڃW{j^=x 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+ JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ**************************************************jjjjjjjjjjjjjjjjjjjjjjjjjj0j0j0j0j0j0j0j0j0j0j0j0j0j0j0j0j0j0j0j0j0j0j0j0j00000000000000000000000000000Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0Z0ŞZZ ]7wunp ]7wunp ]7wu=F\C\C\C\C\C\C\C\C\G\G\G\G\G\G\G\G\G\Gq -@q -@q -DqK-DqK-D q+ĭB q+ĭB q+ĭFqkĭFqkĭFqmAqmAqmEq[mEq[mn c7xgwwGϝU,T*+sQc_ry׸+UrʽU>H>*U!*Pyʇ|**M#UʃT>J՜oS'*T埩s*:w|w|ʿT^SW*߯*?C*?#*?c*?*/R*F'U~JU_*?T~V߫ϫ_PE_ReT^U^+*E]껩n껩nl껩n껩n껩nǨ|ǩ|'I*03**Wy#UhOQTzjzjzjzjzjzjzjz?Wy_S]*>N}|_*ߗ}|_KRT/KRT/5fKRcԘ-5fKRcԘ-5fKRcԘ-5fKD'z<9z>O&꓉d>O&꓉d>O&꓉d>O&꓉d>O&꓉d>O&꓉d>O&꓉d>O&꓉oh&oh&oh&ɧKU>Gi*y**_E*gUUy3TS&R^/Vyʍ*QIf|-*ܦrʗeh|6gh|6gYj.5KߥRw]j.5KߥRw]j.5KߥRw]j.5KߥּּּּּּּּּּּּּּּּּּּּּּּּּּּfYoVꛕfYoVꛕfYoVꛕfYoVꛕrw])wWݕrw])wWݕrw])wWݕrw])wWݕrw])wWݕrw])wWݕrw])wWݕrw])wWݕrw])w:msܶZϷZϷZϷZϷZϷZϷV|܊[q+>nǭU.o[VU.o[VU.o[Ƿvry\)wry\)wry\SQSQSQSQSQSQSQSQSQSQSQSQSQSQSQScvLՎ1U;>m1ߘ3bvԎ1S;fjL혩3c95ӜiN4fS3ͩLsj95ӜiN4fGO4fS3Ly3S̔73Ly3S̔73Ly3S̔73Ly3S̔73Ly3S̔73Ly3>*ʛf)ofʛf)ofʛf)ofʛf)ofʛf)ofʛf)ofʛfy31o&ļ7fbL̛y31o&ļ7~kL[3foʹߚi5~kh~o47F{h~o47F{h~o47F{h~o47́Fs`9hl46́Fs`9hl46́Fs`9hLh4>h}DA&Mh4>h}DA&MZ+ʅra\X+ʅra\X+ʅra\X+ʅra\X+ʅra\X+ʅra\X+ʅra\X+ʅra\X+ʅra\X+ʅra\X+ʅra\X+ʅra\X+ʅra\X+V˕r\i,W˕r\i,W˕r\i,W˕r\i,W˕r\i,W˕r\i,W˕rujJcX4+JcX4+JcX4+JcX4+JcVJY#+qd%}|s-ő8GZY#kqd'ő8GZY#kqd-ő8GZY#kqd-ő8GZY#kqd-ő8GVyUl'[VyUl'[VyUl'[VyUl'[VyUl'[VyUl'[VyUl'[VyUl'[VyUl'ۣFyUl'[VyUl'[VyUl'[V؊[1c댩3Θ:c댩Tk5j~M5_SͯTk5j~M5_SͯT)SSڧLOj2>e}T)SSڧLOj2>e}T)SSڧLOj2ǦTcSql*~:i-8Z\k]wuݹuZםk]wuݹuZםk]wuݹuZם/QEVTnWR<_*6]tkӵM׺6]tkӵM׺6]Zqkŵ׺V\Zqkŵ׺V\k^k^k^k^kVG&o&o&o&o&o&o&o&o&o&o5[Vxn5[Vxn5[Vxn5[Vxn5[Vxn5[Vxn5[Vxn5[Vxn5[Vxn5[Hc3،46#Hc3،46#Hc3،46#Hc3،46#Hc3،46#Hc3،46#Hc3،46#Hc3:ߨ_(rdv,ԎڱP;jBX cv,ԎڱP;jBX cv,ԎڱP;jBX cv,ԎڱP;jʑrdY(GʑrdY(GʑrdY(GʑrdY(GʑrdY(/ʋbX(/ʋbX(/ʋ{:{:{:{:{:{:{:{:{:{:{:{:{:{:{:{|tޚc͇Xa6Ԇ0RFjHm #a6Ԇ0RFjHm #a6Ԇ0RFjHm #a6Ԇ0RFj>rb('6ʉѾQ9QNlF9QNlF9QNlF9QNlF9QNlF9xl4Fxl4Fxl4Fxl4Fxl4Fxl4Fxli]\i]\i]\i]\i]\i]\i]\i]\i]\+͓IdyYOVꓕd>YOVꓕd>YOVꓕd>YOVꓕd>YOVꓕd>YOVꓕd>YOVꓕd>YOVꓕd>ى;qz'N8wNމ;qz'N8wNމ;qz'N8wNމ;;;;;;;;;;Nt>;Nt>;Nt>;Nt>;|4;Nc4;Nc4;Nc4;Nc4;͹Nsn9Ӽi4wZwZwZwZwZwZwZwZwZwZwZwG 껉n&껉n&껉n&껉n&껉n&껉n&껉,Y&ڳL_h>'&Dqb"NLĉ81'&Dqb"NLĉ819z?AéSN?j8py0ZcT>VE;]t}N;]t}N;]t}N;]t}N;t's*?ϭs*?ϭs*?ϭs*?ϭs*?ϭs*?ϭs*?ϭs*?ϭsݗhno47Fs{hno47Fs{hno47Fs{hno47Fs{hno47Fs{hno47F}QmwF}7׸5s\>׸5s\>׸5s\>QMCD94QMCDǚXAbZ,\kpZ꯵kZ꯵kZ꯵kZ꯵kZ꯵kZ꯵kZѽIZV_kZV_kZV_kZV_kZV_:kn4O7ӍFTSo=TSקگO_j>:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:<:T,KR}T,KR}T,KR}T,ˣŧR|ZOcX8V>cX8V>cX8V>cX8V>cX8V>k qi'.ĥvN\ډK;qi'.ĥvN\ډK;qi'.ĥvN\ډK;qi'.nnnnnnnnnnN^7&zDunM^7&zDNDDDDDkDkDkDkDkDk}͙Dsf93ќhL4g4MFS͙T?L5g3S͙Tsf93՜jLkӜVUn[VUn[VUn[VUn[VUn[VUn[VUn[VUn[VUn[VUn[VUn[V{ƭKͿRo[j-uNKR9-uNKR9-uNKR9-uNKR9-uNKR9-uNKR9-uNKR9-uNKR9-uNKR9-uNKR9-uNKR9-iytN/^jbR_K)/ؿbR_j-5זkK͵Rsm\[j-5זkK͵Rsm\[j-5זkK͵H97R΍s#H97R΍sJX7V΍scX97V΍scX97V΍scX97V΍8=Xcqz|Xcqz,NŨ5bXQc1j,FŨ5bXQc1j,FŨ5bQCk5j=X{PcCk5j=X{IǺ&tkұIǺ&tkұIǺ&tkұIǺ&]xk౮Ǻxk౮Ǻxi|G}CH;4#H;4#H;4#H;4#H;4>>>>>>>>>>>>>>>:}}}}}Hȑ##GH#z$^x=GH#z$^x=GH#z$^둸;wGH#qw$ݑ;wGH#qw$ݑ;wGH#qw$ݑ;w:RY8Kg,uq:RY8Kg,uq:8KKͥRsi\Zj.iVK+ͥJsi\Zi.Jsi\Zi.4VK+ͥJsi\Zi.4VK+ͥJsiu/85s\085s\085s\085s\085s\085s\085s\7Ws\7Ws\7Ws\7Ws\7Ws\7Ws\n- BP-7̵̵̵̿HE\\\\\\\\\\\\\\*ZZZZZZZZZZZZZZZ/Tz0z0z0z0z0z0z0z0z0z0z0z0z0z0z0&sssskͻZnyּ[kޭޏx5kZx5kZx5kZx5kZx5kZx5kZx5kZx5kZx5kZx5kZ7bFlވy#6oؼ7bFlވy#6oؼ7bFlވy#6oؼ7bFlވy#6oؼ7bFlވy#6oؼ7bFlވy}FFyQmg:Fu ..JK3({q{g>>3}OٗKT.\Tdt3|R\JT\i^] ﷍]=Oߑ.+w>W/l{>?y)~_r?X/z_}F}4w\߫q)}{`w:=;G/Ϲߓ?~{{pO,y>w$}G{s13gD/︾>}GNĿC,2}Q_Beq,ˡG!ePвal(-P/W]ޗP{H_+_B!`yPJ/HK\} .m(_~+G]bO\c߃?6'C.?*vKu*{rY{xy=|PޫaCy3CyKu(Cy?)v e(o Cy,{<~('EyPʓ2򔡼S/Yx졼ߖyӆ2dܡc 寴|X\R r(_t ڡߖ߃3އKT*PC|U >T*PC|U >T*PC|U >T*PBP U@ (Աu>:PC|u>:PBP u@(:PBP u@(:P A$uDPuA:HP A$ A:HP A$u?:PC|u>:PC|u>:PC|u>:PC|u>:uTԁ:PQ*C|hM@ (4&BPh M@ (4&Ħ >4&C|hM >4&BPh MC|hM >4&6 M T4&P*@EhM T4&P*@EhM T4&P*@EhM T4&PC|hM >4&BPh M@ (4&BPh M@ (4&BPh MC|hm@Ehm T6P*@Ehm T6P*@Ehm T6mP jA65ڠFhmP jA65ڠFhmP jA65ڠFhm T6P*@Ehm T6P*@Ehm]EhmP jA65ڠFhcW@Hi m 6@Hi m 6@Hi mlL{<6on;>ys}o={nh{O眽~u7}zk}soۯ~ٛnKcuG?Gī[g~S:-]z=>vݍ79Ͻ;+sۮ :祓x]س={Y5=7(ҹ?y݅~ͷ^s\ֵQ7[Oo3 tx^{Wk|s4o:{L;{nY|_vsJ 7tS+}y O:?ʦ'^tc2]q.5녒sbju}ofB[?bq_Vx[eOxSo~-$8\ֳy7r'oxFrĀ'~uFs::OEySMNOT_ܮ>zcoW6\nE]|{{3ZߟL~ ^(xry =+p:ߟ{?֛oH=ӛ=k={^NAO&!goQ 'xgG{W쿮g?~34wtzMg?^XMkC3ob~u+}~.+-~?[ ܐj{'X<.Ob.{B/XW\ w'S|]Oy֘_tsjjoஸ4s˓y<'6O7w%ݞ΂5|s?8ͩYq[)7e@w&Dnl2}廏;1:PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPh6n=*<~\ƣhzg=qgo^G/鯣weqg=@E}h<v{ל~#>#>#>#>YDf"E4h,YD#G4hT*PC|U >T*PC|U >T*PC|U >T*PCP U@ (T*P`:PC|u>:PC|u@(:PBP u@(:PBP uA:HPV(A:HP A$uBY A$uA:uC|u>:PC|u>:PC|u>:PC|u>:PC:PQ*@Eu >4&BPh M@ (4&BPhbC|hM >4&BPh M@ (4&v M >4&C&P*@EhM T4&P*@EhM T4&P*@EhM T4&P*@EhM >4&C|hM@ (4&BPh M@ (4&BPh M@ (4&M >6m T6P*@Ehm T6P*@Ehm T6P*@E[65ڠFhmP jA65ڠFhmP jA65ڠFhmP T6P*@Ehm T6P*@Ehm T6PƮ jA65ڠFhmP jh m 6@Hi m 6@Hi m 6dH&=;x\q57x{#qG=w{#!!!!!!!!!#qqqqqqqq -@q -@q -DqK-DqK-Dq+ĭB q+ĭB q+ĭFqkĭFqkĭFqmAqmAqmEq[mEq[mE\0jF=`ڃQ{0jF=`ڃQ{0jF=`TGڃW{j^=xڃW{j^=xڃW{j^=xڃW{j^=xڃW{j^=xڃW{j^=xڃW{j^=xڃW{j^=xڃW{j^=xڃW{j^+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r+r**************************************************************************************************** jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjnp ]7wunp ]7wunp ]7w]@q -@q -@qK-DqK-DqK-B q+ĭB q+ĭB qkĭFqkĭFqkĭAqmAqmAq[mEq[mEq[[EiD" ^U. Hڻk+6[UQv_{CZ E@7ec=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=vc=v fbt5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ct5F]ctڵxk~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~k~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN$Ad=ep~qpzpvqP$y8~H-8'_Ź8{7i_|s[Ά].w}U!}[Ot: Z>pa_a9Q1kYǯ4\^hz0>ׇFm[ˡwY7}٧.o?)kuWyr/m?ߨGEu-;/>QO9Ž~pʈ F%OUD;.SZ[&wh>`JCNg9Zuz l^~NTOmվq2};6_}RaӬ6Mr rOZ~n~X蓯+Ak|끛xNcK{>ZƖE3Wn/3,grJ>=7tWS.ek6Ɔڼa{Ɔemjǔ.H:"ri(6eWZx߭u{\?5bP;]a1]0Ot>FaX6#aF#c_zUsO;צWzG1Ik[L#doh&}ݻ˿Վoӥ71:9'>~wgj;G?h}ˍ^~~3s*8wW716y`ۃuol?o_.{ߺɿ߱ˆ>3aS9nju?z3Unu%?//(i<꼡מOk.mG7o[\%1֮3یr^nSW:#LdzwH7P-WeufFy5?hvֳe|ζ&Ɔ̝K?PoUlsOu+{jōn:ʽ&(+֮4 _`Qnp^ =RM7n~o_Ïe9GLsl7ʮꛞk]t윋2n|쇚NT74Xff?斟9Q+~ݞ4*~uƏQVZ_]?!깫_ݲLعoܕ-/[(n]ՆFg.tg`mœ?c]͉z^o4`IOMޯ<:νیVuĉƦ0ƅXBlewnNt.TZ l59>*J|Xm_|uEs<.W]?nn^ O^,*ܦs6jege'jޜC^G`ʶa7x۪"c}~Q˺tOƻutT_Mm'FխseET7\-ge/OfXs?7'wҽKZl5{goŽ߷oA>烈WJ<8o>{of||ߐIo45~4 |y2L4i:WaKlI8[pQ k>_crrGvXͧ,v~rͅ}O77}(|#:\ZclpKRz(ߘW|;OoĨx{ ֩nkguMX55ϞWﯸl6*O/2*F Wl|NWzFg҇~v?dlܖnؼj#0Pclz5M{|Ԕ1*)4 ,>(=k|A(5ci~(WQ>yŮoZs?~u/ v%/<4[|:}Q1v.7*SGq;9ƨV#g1*;G틻yM|Tw̬4q/:Cokyu=\Y"0G167Ah5Fg-_[^?inKOغOk6$}OP16_~[=nj1LÑeSdIvc7_mG:jni)7ЊuK}}[NxO\Έ%g!.cT,;8Facӌϲ^0#0#or;6nߩJY9ܾFaFaFaFaFaFaFaFaFaFaFaFaFaFaFaFaFaFaFaFaFaFaFaFaFaFao7O #0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0S#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0#0,S!WOFgG6.gZ†mf\#tGn3PIڈ;3`EcraxI`q "T߂`(n}y%[!vN_^  v/)VaǪxzl2g$*3?3' 3Ī[}[0 ӋY${M+F\,O?&'.̡?'[?YmAA&mgahv߂\bu̘Q,&6œ3+:/33Fe+ 8XgQe2]@ɟEja`V&'U@o^vlfVӬ49W6 E*QM-_ayrv8EG0[ILnȲ,fqVYCVuFFd۫ hUJ~JiV? ,D^jgBÑ*&m3f5)4I. oVMmbH])4Շii9r1 )9$r"$ɐV֐S m BBAC:@:B:AR C@΀ttt  1 ސ>~A C C! !# #! !c c! ! ! !S S!gC΁  @2!!l.$sbφ@΃̂䒶ʇpoඈ!8 ~MɵWgHWӸiϔ"a.aҤg1{ƺǑW\,EKg>CW%=/0?00=hTBrTʕ89oJIeҖU0  [M!- -= EeMf3@kO ͵#G6ü$3_jBܼu6zX 9؜B.LDmdubf gQq5,9@RT!$77Es{AMyI8#hMuf&4Ջ9O2ez䞋4)qߩ_/ZyexwdNd2(m'eN J2tKYfj 6F&L$o)Ɇ2BDžڜ=iqRxu<#9.,թg*ɗ8 E:75$є9NA3R4y_c)/Eۓi)wu.I6w{I7ܮ.j#m֢ҫ&7Hp nv WI`J{mSq3if4 EMfR 619̈gnSʟDnT[PR,Lϛ9{:MZd4ቚ/ ٓ8pDd~hoԑ7 [)[  kkq$7Ɇ?R 'SG~þ߰ژ龸:-\S@uSökchJzf@7d2gCR!7G"ɜ@i*ZH^e~:M&sL0ŢUT5jL/~q~O=#T +~$v/r_@2T&龏̫9ӽJ׬Ӧ[8zkEң ^74%7֑OM;]#s,n8aj_JfUE"Ur\RauD]t@ԫ ձr'9RhY.䷓b~$֤}%iٸkL? 70WtubJIE G}rI C#.Lc&Lv4Ay$fLyIfRX% ߂DRJ'HR'fb)|oRx[цu*T&h/9c_'!iv&:8\?I_#A1nI.W=H_OƏޗA Ư7qC,S^3}I$$&H^MO4"3i!q #~C:LԱA">>3&F:G k*[$$Rl|SHe4)ĜɏRGH2˵:{dJ15+\sHfbf!\摸sI|{1y-0oBڴkBğEdҦ\cUqc+s8c{Iod)'OO<=Crs)1Oϒ<=OtɃn΁f]!{I ͕+!H!^b&I-RץкmPCo1r-ϵN +( (y^|u ^}gCבӊ/zMpz?T.Ý %.NI~pY0:qpTNBrs: 7a:;87ܜ;+tKI) .(,+D4L9^CJ\+#JO*OKR:߮寛$z.M8g7o%Y{rODCk*nP{ǘ`znkrn~(=yg ^,lSTU$ݩ|GߛޚB4N28^(N/ , H䠎rX3ggJrīf鿔jKqz6޿E8OZV>+3=P.pgQysY*DzIᷧRx`wrd| e~$Z1[G+c;KBQI(s) q?.Q]Iq&36R:4OtJ5R┿Fڤ*L[;z, 鿋/wTNRsϫ'INfܺz&+sOKPv,ROF>]"dpR1;#A9hDuUJ}1&[U*!9VY"* D=ZMu5t7MJ iꜙ\O#'j]1܌L)٣_{J ٻ^w)8WkθkH73[J8?8|P>I7?j/ҟ0ΚFz%/۪so|JC|1K-ȜYR&TCϑXAR MPX?}7"0bÏ @miGU&Iu?22iz3|>Z8&q;c#ß|c>b1Mn:cfXŊτj<kLJOT㙜8[b.oXSexx*>\>*Muƪ9ը=CI+ЌɴjThZh6sf 2$p_2#z4=?3VRx&l٦?C02┘/L8>2l/!Ȥ7зҤIGIIˤedB5} *G%[3 [dĪƛ5BoZKaLdw#>}wQ& wCO;2HwKK=rr7ٷP{ZpK/Y}j4l$LJ iKTLSFߕJzڇXfwSOI{2L+!{s㣠Lw7DdtyYȾCߩT~B~`ל\[ƨj=k3YjP'*lb4l46L\*Iτy}yY&׆K&'bfLmpЗi]fD)~_RLS)S$$QOʷ$\.RAȬl^i>hDh]xbjċG&OLwSQ]\4‹#N[I!dog:J);5ja8™jwPeȵ3vbzZ?}]RMl5%Zdf|U984-3nztsK)bn[̴'ƗkqLp5Ǘ K -2I6;oTo'& r5ȵ/OyS:',O}ȵQOiO";ԵZP|1^|f>~}V!:,F}YOShP&lС:"Fc!d'M|d->2y2dLSce2e #{95óuZz,"=tr /)o%?wdz sGb>I^uu+as)BW  JÑ.ߩUt9-_ǔSOaVb]֖"?W7O;'đXO3"9R_C&EiK5'MJ)MĈF$1r+T' H }8I?"H?F128 #É ddȸ$2dFhRDFƑs@THVIŜ=8}+$r#,Frw ',L"l$9DRFJkےd># ߅Dg9YD8Ō,#9%ȥD.g'_"WJ"W1o='& f"K1$ocAV"w2rG u #aF!67p,3׀^kI\٥KڦT2?lI|1}~p*![/*},Þ ;:JjXg2vIj2@OdR$JQ _Omx~u_˼(eMꮏtp D~ٌO+2RQkOi!{DVZ%ӋQ>0/&imu܌@nQ0}zA```)]ې:)xۆ_~gLC{RZzExKw⃭Knۿx_]T^t8Qgי~7:nӜ<*Ft,w;K;TzWT^wb,9a=ƌo2W/74[J/}bjGp^|ܬ*JGQ~d^2V OүeFONPZ^wkIƎJ:C޾oGEK~}Ki[zȗoyg ;}.zl;aз3?տ\RvKGcOaG?ڂ"bp҅Qx.əKM^f @<9€(s%N<3eQʅj̥W|ey<\XUe%%<[w]X ?Ly_hYSg#'}<{sy{l,:G>M<'Z#};2oCvWg^"+#ϓΞrV#IG?ܿw0s~Q]`#5T5gvU㍭=+I*uL}VIYqM83L5Yyb*bz@wT̙!~UƻxS3>ݻci7V^cuOWmWq<\z_7&\gθɭ#3Vw }Krcoz_?X}[=rScuOeƫ%pTVn7|n3Ux+?i;|x ̆hZޠ/0Vɟu٧s' xem&Ogn}qg4u[frIw(~h ͹}nj `puKJ6V>ab?{8o=|O POZ?pF93]}Ƶ2vDu5V~W^qޮo2ykq>bO{*&+{څ;gVm'|xn ewJϜer˾O|#w(5V-uuyLL^sX=_pvnǍw9c5ׯyCLgk{iV'oncz͍ N깸Dcuzp+S{{m/dن ;v\{o7>qy?^lńƁ[7;u;F5vH76}~0;mw7Kdzq1BQ2/ئ?k;-CnU_7]O}[6sKx)=3֭l|gIw/0~?c`WUj~zTVx: ypuLgF_4Ϲ{6Ʒ[2Od4W&Ɩclj)ng8smT ?sT{7Vδ%nH8bD_awc԰#L;sOƩč{p{a?ϫ[]btTYgz6xi9ѧN)4 ǀiY(i̧LS|i>l$Y̏1fRHc'] 9&vM6RH |뀾]A MY K's{ѦV}K1߻5?68z/<2C5?M ~=NohhjB#F()K5Me>SS~Ҟ7|3ΑBMT|@6V7߫ΑBTl|)`b9n;#FvDuz}(0#g~UXV>1c N\jgfv0pz鷫(猂Bt(h{_U<*18ςI߲AW̧9H~z@Jc4G<iȓ)T,<&eJLJRum GHi/ihsݽƛ4/^>չJgC.MX`ǻ\FًgOͭuojBM':-ׯ0Mƨ Nr/4=p|e}|\϶P;_x:I﫼{kDOoX$ٺߖuQy(ijl8eDqϒJ~gx?sJKcˤ[|`Lv;g[˳Nω ɶ67n<[xFq˶O*lWӦ[QW7I˾CO>cQ֯W\sW;=}ueQ9h362=poil}χ7^زsfT|[h˾vƵ+Vk?.';:~;k߆ Wdq\blꥷ [J7Zdp(W*/7l~VDgi^e\XFVο*|_fX͕|p{7,5*nZ1-\>~;e5m ]yò Լ)W]4\ujaEFv3Qm:\[qwexeͥj:5F^NwYclS`՟|#0#̱l\ #0Ǣ^\Nߕfu/>H#16ur_/}ntio{nl牏ߟrƺݙfn_r㷗\㷊+N|xe g>c'm-o~ۗ޷n/uw4Lg}1ce鏞|s5~|/J:o赧ӚK[VibcQvwW^ʥc\|Qv?e?t]egǒ5c6{7Feq _ӯwQ1{6~Ĩ]'rQ]-ee~`}mlyp~B(v64ʗ{Ŋ3ay7=zmoΛ>oҹł aݱjtV}g~s2Ve+lۗu׾ZnM?o{n3,)g1ts?n r~*𴩯J;(pg@ PglKY%gca7ֻ7j=dW~hJbҷP|Vv}eFk)Wk:)Ir~JϞ7]+˘p{Ke/o{F'*܆~zvo}u9ұɿk^nv`{r'ݻFYW^qVV}DnYzeȨÍi_#x_w^o _y 4?oWIU.~viE~i$΍]sIpVozgW$b|vʰҀ)~IVjs7[z{z~pl5ݖuilH0!cl{bXv #OG1ʦvד~h1oێt>PRxoss>U'KW_};Ƴ2?[6w!cqzۉt޺U˾>.䉉 x}C|'Ɉ1CA=~ui zɰo޲eKo&]i9~+Ic)m͐i=/ G2dȈ-2hdo?Yv/ɟc7>["υ |Nү77klk=ޢsK߲#_}Wg;N_zoV/>i2tY4\?uϟ?Rq THɓ'/|IjwK뗔?fcUe+s+?4~½e'kM1B.?z>&pԩ6#4^Q~ŸRDug~qcwo6_2뺮phٿy?Y>u撕?l_[|lSN-(;'C%JŊG$]Z7ﶾcel?j 2l=z0a/i< 7(o$~7MKiZ.z3\!έ$~R?X9V|h='W:\}ɓmfeU<gH7uCPNN1r>Jh~e?|{~a kCEcUY?Ҧڻ 3\}$>n0^e!}(CUڟ7o|z+ ݓ+#g׵e\w6S`U45^:Y{ ?erpƕۨD},Ac:/eZD柎cV^Ӫ[?lAeߌ!{FP]_dC^Yk7I+ `$^*73d2.'rMWg!lG0o޼N'ēQ6nfOiks4>Ŷzhg̹?YN? _1&WGJ:.qԣ5n>7-˚gh}֧*3lI>]gI$=㽕>7#[B7ogL81Ý󆱝dQǜ>m_:Ft\dݥk_?q'| /|oAI].W5N^z%y /,_S/h|ZNR+{ O_2YI?1^ٴ Sf}:z V1>8}y7osk`/ܔZ$߾?6 _2~[Zݑ]aY /IuO%Տh7Wn8[œvoTUψ;NVy'o F:ĺC\fH8B捭\R\d\0vc\ȨtH:{?هc񆶋%kփΥZO׏=֯5.|q#o|ykqSn/_"=MP; Gt Όoc\3\gZ_s>cF?"ݧ$g~z.YkN1nݿ|rAֿ~rP |:5yۋr<]3KO_}|d|U+hN'vzM#X{k^%9x5_{Bcni~q{gZ5?BU;t^A9p|![-9t>}"t}ch}xuߏH}ԦQ/@ӧGv|ql~+9r~l,{΄I97"u ?Scܾ͛o=~F͌?c>{s$:5ҏn;tΣ|}y񮻚Z/nG#ski/w3:eȕzʪg꿖['Q"ָ yBoZJ%b29wҧsޭt:Oh'p`Zh.O]s﷪h~CusO/z" k@sr.dt_Bָ}>Z_k.}f¯DJk1GG'}y[w]|Wȕ{wV|e_Rh'#'>0vg9_Y | _FΣQϏ:'~MڑP>h:d\=g$a'h;ɼlɕ(_ާ[Jε[_q_z˝;wID=Z}\=r[$}nA' ϯA#eor["9+@."iߒsi˭z~w!_/ʝ΃DQoY%]G>Y9!]T}}nEc'ܓ˯ϑvk>[sM:)T?8j_7"+~z7T;4^Bz yUNN%Ar@_О.vֹ[iyBϻ y՟+NܕK:%8skM#H*i^sc/iZzd\ķ}Eܭy> m{O㵞%3 'z.e[b\y˻X+H~?\QD> GW~}kb]>}nMdn Z yYWDtܰ7|sK:=şk۪G2~Xփ7!m4_iZGX0d_i9#YF7}6<8BRVuHK~ƿv{?Oi ?#WzͷQr$}\Uo=O0B t"YzN!$cK^zNKaڮ!}k_J]H#z~5_s :_gh6'J|ln+ V<,w=4n%tNs?|kEK#qWrԴɐH+Y/qng 'Vx;*cZo{Wm׊ܿY?d>aJo)K|XT{b`Cs4~{bV7\{pYb|T+Wn+&#ԝ+_! u+]uˎJ1%uu'>m7z)Go+tHi|tJ:g-z5kw%z{~쵫Zw:+n.ES/~&iNƟϿ釭z'\7^ɕy }[zjU㍕}S`#$㞕iϨyu.L[s4c~/~^T+|_ UjHy:Ǥ}ɜsy>Mr]Gv֓ZF[S=+Tߠn<=7f|z{ G 8g޷]SN3>4^<ϧO [.uN*XeqwgO{CbW϶-7k{h#'9%=rn-ȱoydh=K>3^=i~yo`oU:W+93⌗fH~ٵGg?zg?-*3;L}7͇5;`?'wN|d'&uXI Bϛ9ΣkU KGoƏW?9ܿsW~Xzm}vʄ^Ot~[vjqo-ſn$<| (@χ v<9P:\0>wG g7dF>kOsfwh|5ɓ.kR/|:̏N̨ IDž ;*zSQCZTgɛ7mAϱ/ȸf|_Ú*zq> OzK4wj/9gϬozzbzm{QFkz<ίy7P}"rNC׍|<4vRn뜘쯭͡Y|fg3n oԟ?ayR$,;^'32== ts}퓒'߿򱛜')D7_~SEs,sBZ=ϠCF3˟sw̠ }>f;ϐjc{Hς>GoiPO9?s߭4/i\]F,Dj#zo{.Tߓ>G$b'޵Iy/x|<%sKot|+\R~z>Lg?.v?3jS˝O14OYi8+"ߡ0>|(Κ6ޟ~@ҋh<:Ñpz%l\}H{T;wDt_L9=k=VN/'Iש(hcL[T(9uIy_~r~<*^e}'v}}|ldHYY3ko%Wz~IT׋YJ t]LQAɕk|_IILԺYhxzKEzJש{Qssa=J? X{Ǎ }(:9yw_nnqk=NI{|#m}N9?|TOoOxgkL{AC?=sD~ Z?8u|~m%z%־>!'rI8^gCg2]:^/u?wbGZ=[^=}A9:7FK}Nc}?J-}E{dd}׀'Vt?JS>o!n$Z~ }oo +߆w8F7]pa=Z^aqHa!k%A|Ko:Cl{˴~Q[N߯Sbww{ϽyIQ~?|~Io7d{t]CìБx4҃µq3M+^(wk_;d-]yyk+ջq[0mZ~3#vNƪtEOY/>:!}_k=I~Z4}s6w~9p};M׶!o(G|hZr g$wxk0?X#3JlF~Bڟ~zn"wsT:Xcqrs&z;;2^qB:kFsp~Ⱦ}Ǔ{נ)now-/ի|;r'S-_E,=V?t:r߳ډ=t"99G㮖>g|o9$K񃎳+^7N%3*mOndZz{ss,pQ&30/bE9tOXMu]H%GEtG{cZ_{r|~F~g矃E=Qq$7i훷t} zZGn>;\J'7Y No@ܬMD~ŊW'{+3i{qκ}g}W:>Tz⍫7\ǿ(85~ ̿?%$ Z N,\pU cUU Wʹ҇2%Q8 G(p& [$p3fzAqq`pp.Er[YPR83}d0?'$7 <Cx7_\5_iNI8 '$pNI8/84dɗ-pnM 7&3`6g "\p.E"\p9H@NGV@8 '$pNH;w>$/P\(pQ8 GX:rpU W*\pµ]f򳄫pjZ _X簜aVa=x}DQnAoXl;-~_40$}L @8 G(ph>$? ,",",հ8J!****z$#fUXUXUX[ӆrc.܅p?=#@p.\cs M؄M؄혵-ȟ3W$܅p] w.Vw`z p(wp ZJXUXUX~3**V`tpn­znӳsp1c$6#%&l&lv&IistwN6a;oAaf8}t08C 7?YupNt/)N©N ǖ*IU>:O(%[x o->*f >,P[x o-[x!o@&C(p53;ei kVۈA[#=888u;zepn{nM #,iNT{p`aNH8AglagzAXX{FK LQ8 ǣqČE֎Y ǃvtvaAܜ… ϙ.E)_鳂M ǭޠ`aA~ 9Eٜ?7#^zՏ-'~hNo[o}OV6[>3r?`vz܂"kNI8N uq.^؅='?+@JpnM 7VnLL=Q8 G(:f7&70/'7f(/)lvXm޳ " vaO`=&kqv d UXgu- A8 ڦbВYpu/)#?/P1o7VpnǾ%8 Zspn",r[!5"aVaVa=kpaNA^AqP؅]RRXPA8Ȓ@I`V pnMqnG÷v-o(~ӆ ,(] cĽ`a+psAEr"$*\p̘E,*\p{H`v 7A8آH=&܄Xh Sm)a[| |M jGNQ8 d9ya#a^PX-,",7Z˱eq-O|^Xl흟>6 GXk`L8ΒM$ 6ڦŁ`ߑܙFss?.)vY@3BfوRu~cF +cu' u螆aI!#KцwSBnf̸QC0+rUTjֳŸ{b4KB%U&o4VɁh7͑B%iK9c[ӳG,f6!"U_ߴUnbeV5G|~qnJDkTu{(} qa+k*+9r<HcHHSH3HsH:%DI! !@@NtttthrtHn3!= =! $2222rdd(dd8ĬQѐ1q Iɐ)!@΅L!)2Y2 LH6$rd$ɇ@fC@"H1222r>dȅŐ% C. r)2+ WB\ r-: 7Bn Y oȭ C r7Ƚ C<y0ȣ C< y 4rȳ C^Yy 2d%ȫ CހBބYyd5?w!Aއ| C>| 9 ȗ | -; ?B~ +d-7:zF&HRllll 'd7dd//j _2 e/_2 e/A e/_2 e/_r:_2 e/_2 e/w_2 e/_2{C#$e/_2 e/_2GB e/_2 e/_4 e/_2 e/_ 2 e/_2 e/K _2 e/_2 e/ e/_2 e/_2 e/_2 e/_2 e/_2 e/_2 e/_2 e/_2 e/_2 e/_2 e/_2 e/_2 e/_2 e/BӾs+_ W_hvhɦ+_ W+_ W+_ W+_ W+_ W+_ W+_ W+_ W+_ W}+`_ W}+`_ W}+`_ W}+`_ W}+`_ Wp{+^ Wp{+^ Ww+] xWw+] xWw+] xWw+] xWu+`] XWu+`] XWu+`] XWps+\ 8Wps+\ 8W0q+`\ Vo|+[ Vo|+[ Vo|+[ V2*V U{ho|[*V Uo|[*V Uo|[*V UmlZ*V Upk\Z*V Upk\Z*V UpiL`Z*V U0iL`Z*V U0iL`Z*V U0iL`Z*V9]*V Upk\Z*V U0iL`Z*V UgT;h;ۋSv;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;Q;;;bbGtNNNNx:;;;;;;;;;;;;;;;;;;;;;;;;;;;;3L]HS` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ޙg>ʆ{'w{'wO! މy ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `y h]`]`]`]...............................A}w}w}w}w}w}w}w}w}w}w}w}w}w}wawwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww }=w7w7w7w7w7w7w7w7w7w7ww~nnnnnn9|nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn!< {{{{{{{{{{{{{{{{{{{{{{{{{{{2L5Nz{{{{{ ;>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>׃ }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}w 7x'?}?}?}?}?}?}?}?}?dnYV8aF^d!LJ-)1+Xy SNKA/RQ*jUEU(*F aTy2_[|ɭ.IYҩS?y:FtvջY?YudYupis';Yv;8uj+Ha3uͫ60UmEz0Elg=5C lպ;"̜< j#zUoaR9\gqJ(*^.{Cw%kx`q K/Jo ג5C G~W# U.7mk[~EusczڍFWtאk}>_SX|d)dhI*l3O蛩uÿߡ3 ;]K{s~}ka;HsHpE0-ŷiyc$: 8frrr Cw^isǔߢm;Fw|>7VE=,aE/`E_UOq\3Y<"q{$kqjbs]-8bJQ }d)Azbyho1Ϲ"Er~ OMη&/f.Og3$>&tzRHC/|o+V1;Hx;/It~=wDjaIu;?\z4m{o=9\ɟE%5'.'C8'7'+l1džjX''?8AROOVpn?'(^ [6Cȋ;3 .fp1Kbm ^uFpSZGoS gIE1ܘe}h:ǐ6 /@Ilj:-ȟ v_40$}L UyFPn,ɧ16X ҚZH9UZ`aA~ 9Eٜ)(Dµ 7)6+ f_ ,(>$'/3ok67;X,)J*i QE#W`-lm\{ N Ae3#uedj+ȟYM]Ohu&C(lvB4 d䦇r}L0hҫ4 MS %߰@q~CKЎbXNn~UUӺG3uz ۙҪ><'?CIG}!H1  t1cFQ9v=hd:ݍVTklƁ9 {NP:`69OЍGNɢD08XȵvzcU*BEHE ( )AoH,,Di?o4f/)Ή9?!LG|Ӫ&Av`a6!Ǫ+o3>P>Ph ?&Gi#ƿ.F!G^shGBB#O#y,Dc!H1%GZKHK7I&1,uaR#fU<9YarԊ"DQ"(rtH1(J?JBJ9o #k!!9/R -#!!i*䨕Bb.͏ԠN׭%W?#_vFиf4]`So6@qi;`nN_,f"҇d\"B Lv 7ͬ8Xg>0*mBN7+0"K"=ayLҊș̊@xzUt;JJ6U?B3'1Iۤ1!f=(8,X]U&<4W/V3::v1Ul 1KY#Ehz5+Γ3FY̢R+6Zg.pK*%ycG;oAV)Q}y%z ;/J?MonWu|Ih|^7).,P$crt=~6)VXxr?N CLXKa?N䞚-vFMf9 ɋkzA^DGmHoVNl+{x_iMNg-ȥk +\u,$齎Xf-ebP[ SD4HAy:EY4kߚ Vƍ3 Bh֛7vXp^,/bґh|q&%51[ؖ(K(Gj85BI~DwIjPBȜ0)FKC;ݩON"S:B7$q7L:)5Ø;Z$m-Ä3Ir[)|5I!JzW/Ճz3džI/NL٥|}n%5tu,ȭYXdBJ"*dkP:l*LZc{~t֣6rzmCgIXV Wxdi8dd?#f$H]F8j7L 4 AchWwzBٚUR^3O3s!~nO:s$%R1JQ _S4$ Mk&6%16uȵ@8tvmL^6Z2D ա#v>i7.Ul_s1Y5y6Y1ZtR+EO!@m]%餑{1'tqO8\0m=͈w:qkɄ;bN!n2i6#i'aۑ0v"urO#Fu~ng1uې1w% 1."ͽH6"TRc$gr62HZI!$ RȽ:H6}YGH %y3h&Af^L\4\}RFF0fHLI1L\HƓ@f"0hQgM"57o k30n4:9?O&i$LlCw҆Y gpqõyn9V$n59Ym.)O&I7gҝM)$!aԿKHEڧ0fxrX/=Agw I<#\=\Å$HK~t{1ӆt'/%]N⻌d.4)~5R_]os-W=3i^Rs3)-K!ŐP?7W[II1R&3&1N)<~+C?Ih=L⺟Ï2nfc:zD >H?Ε )4FB|/'z1b[ϡRx ߋ$$Ǘ UƁW\Rd5~T5y]ޟ[=ĭ;9Q";9}NV/INZs)I&V~&irI_&9Aj˅oBhNcÕ89{x⎌cxN'q~: ߙ{썑^ O_N~ZwUo|%\0Ɨj}}]c#(C܌L17b>ޝ76w×;ς_JCQ,&N{ҟ831~=VzCm)`K Fpq{}L)zf҆{TnF95vac{L4KqNZӤ}nHy%.O]%/Ϋy.&(`EąO8׏ښΧw\5 2Y7;~8CEJܳX?> DJϛ$4qh&o'ӿyDJP;gJ ʐ΢"2XeʺxĚxqL0#8ONH>VGoZK#H\V51fZm} cyR¶nUgs'+WbO%sb^'?9Qyb3sFթ&%cJz8݈q8\}8ȗ~Hdx~Ny8QZäT7\J8vK#_Rv7G%߃?+K-}l>K u& R~lOsw`)~*w{NcsbĊgiӤI ' g䳏$&$HgMoZdH<~ڭyˌL?k.ӥŊys싶&VGVs 9q J{$j2Q`SLf)(6gU 2Q<`^*hJ[Sw~@& Ty?7a`ۑ|Jw{{ ;R;|gTSHÑ.}AeYcɗ.~A)sS̃>?~b}9%9I)[{ӤRyo]1Oi@/ p)?%|CJHxNtޟSV%K5)FeTrǩF G))qȤ/tرܚq"ntWBIŸ_œ'w`sHFvjjt^4>O#6)zŵDJfjNڙvNkw}$(O3O~;lqtӤXcL@Σ|tjj`֠hjS$xc#/gSj1RRO-'ժ^3ͧ\Z9s{Yo@iX`uHG)j>oNkb^k@ꛮsc}>KV}rO;RERg9JO}"e/r!ۓ(Eꮣ >E2CteŔz HtLe`Wt~7zYL4 3&9y֒pƑH#I/5>A?|AE`iDy^^8uz~TK;{ߚUR6߱'3_e۱iIRDZBni؎䪑kgr5i2W`Ͷ=-K>!E˻HahdK_%c)c-FNj d,l!9MQw)bo4\{#(J=Lr ג W\{kzno]<D9ӌwȞEɵ = _~"׳uӴ ٭d%::?a"-I{RN)7cq|S~:>3\G;*M4$r Eq'3}MfTiy* _~Pܒ U~WYTeggC)hXٓFE4|A4yf)UaE>N|F0|A0ycNsl8∍Xh^"~Fj1g$k M4g9HkFiH8ґND:3'.D:srFH"R'%Bg2ҋ "2F%f0#t#2HFF'#2"Ad ID&"Tpn9#ӈdN$ 3,">샔Y>KdV)`dN)f"s)"2s|" зM9E)F.N HUb8rq_]4"wN W1r #ץ(70r=z4eiȿвJvF b~k8r'#Ho1r{yx{H }S1O1"<ȃD'B'4 XlvRnlLN>s]tO?^ )| R72c7\;`K㈟y@Rǫϒ*Y5=4-~x8ɯ9^&H)_F-{[1:V +|v5$?_Na5Lgɮ8i+;H}L',RȍH [>a#q3cҤ7~O5|$lsr^Dϕ"k]f3,̺]HmztP \ I<ɇYSeǔ&Hް/dͫ2 s)œ/l1e.!nIou/f~_,E~OFWnRK)ܿ6k6Zu6JQ;nI5nH)RǍTslX'VE|ߌ~b-\yT6ן-Ho#yv)?uٿ9jѿs7绻L}Ċ' cRsWIL!6i#$UFIAN"3O&q>[?mRO`ݫ^B9)=mI/H13Vp/1i@/r$a^a)ZJ: &v6 vz7YEy'={=ھĸt?"q!q'$g9 ) +k$7LHHPiRxV{~ei1~o'zͼmkMĿW5E+/iYqn3Y?&oJcaJ);n' 4luaG2&#e؃2Q ^ATW%oj(oM 7:ɽ.ދqH5DvK)lY#O2zRzD"83.K-Ո:#Wg)퐢^GH&CJ:仜gKP^9|7y i{XoD6,xmBia,CMmO%h8馤(_Lq5[o%( _EmuO'%;CJ:{ MBW;>otFxwlGէq>I˳&vyK5%k$Ty/:,H-l f)Ԋ_H,N綳i(6tHGR۠WdwefHʈ4V;&'ivOwn78[Sul7@:q f@)!b\888A]`uӗwIur{TװGjor;,{C] cԼ O )GtG?LjG)YӨH[GW>[T)a?621pG*c_3q NoKum\moBK1؞(g`zRtLo${k=~iDwrr' q[.~TԃY_JHVRIu97q]4O?bw^ftl>}Y&J?8{gD_]w>av21'2|w#r^e(HsFD"`d`c26`lMFA_p{}띙üS=W_CzOۍgpLV ;3fMmYIFfe;6uk^udy4{n>&/oH~Tm?tB|z|kwx1#[7}CU= e/wH-xjN|qs_ܻ8ʽu؆QoTU Ue~/yj߲blۃ7e1>";@ ~Xʺr9xM-![5{I÷橺gl|mG}I{x?V{D5:73TNb!N% n >~ئƇ[Ӈmje[,BQЏ| r,@! ewaF)K-:?}ie,p2 +|+e_#nPD/Q\_(Wt/V=>Lܾ&fR1;.|ĥ?"3\ã2@MC2#[@4,jwƨro>/noc8rhȹs p2ϔCp7ovP}gxeF..rWMVw!/;r ;WӹDV=ߕi/ӫWʱp nߔxP~Ateш<&6(FݬeCBҝc[̾Ւ^ӷFݛz0?WCI^.wTu˻ wwqrP&^ hɌ@,~KU;rB\6rw[S6[sgb96+Ebsy!2+3dT=N^azrᏬ@u_*/|T=!LJA @>heZ!F D^=^#.HȷiZ#x#eihiwGW_/珪#rxL-U ᠼޯT,ÿZ3?,~_- r}6'Y/>Ǭ\O}nTշArô+ߖ~vc8c͸1qvRjtqL?V`SE.| 1iU^>('ÔÓgs~^Qd6_ ^V(4_p=Z{n3ﵓty5t{}+,uv>nl`x܈!JՎx`iC]x2ulgۼ;F¿^Lm7k9~ &'IJme32 i$H-N pFӋtcSgY | I{"8C@6 Zonz>S8s&eiT E9@n܇$-sBg=[P{9MNbR7aP4W|4=)u/zIIf6Bmb:&*&_z^MULCZl"(/ z#8+srܡ܇eF@ܸd:dcRY)ehP>_,1[5Zj$JտbL^sCPN* M |XnkӪԬvv{nߦR((xe/+󙨪5Cuzu0z|7簾6Pڨٵ[X9 }}ePVs;זَ@YJC Iw(J/*S/8Wj5O>"83;{zĕWG!ZCs'Ssxf7B'Vk6}O4UmԃoevgW$UK"Wή#v>4BF/Q4zq[R`K[pܸb6e4ȸ2e R,XY dܷ,DR#ɳ, /YV" ,A|?La)T@h"kŲ_E_ ِ߈ecUd>mX6d;Yvٮ@ Ba1˲,GrHz<PBf9ŬX#@f-ۉ,'D0Tі,rF9 \KS:W.y g㬜1Ʌ,Rޟɱ\7]D.1ȥ,Xi,WHJ'WM&='Xs3- ߂7,{@ئ<6aGRyyMy6yMy䵅Yh"6;MmYkC|Ѓ| Bȧ,5OAE=|yU&D9QJ%փp|! j"qHډGB,iNz"aw@2[W96K^^ݗ+MR !p5qUzu_feFfeʱw@W3IwlZT MY΃Ik 1ׇp2>E{jX{%U]tGB+r%8xr,2E9|c6 yqsaq~F.qaݥ6]ކ+ypJ}llLjU>opu'0/cT;j">C~|IY=u%;;V>}Le:_c법}OᑟovCfͮ|-Z [Eym_6~^)7^~f~Ϙ>k^Lla:ջ?ғSBN ;۰O|Zzw_{}ךmڴ[p}}W_kCt3ڰzg޿6qG3,ѷqL&ְ 7^}Lش4j'Ž׵uor_*ެ6'AԷ _HCϴd7y[^U=ဃwqK>vf=rƬ3;p o)*~ !^ݴq*qu5jC.~0Zo?Hfy+| 6^ˣ~/CƐѦ[j#?·}.fؕrL!/`ulA}Q\k7^U5~>!-))gP>6n`y :{-e vR u=LF,M4&l79mFfkڗ0yǞ~'s^?2uz )e3e+#4xl:ksk':&Z^\ԛtzep1̐+qe8MY6_=nviilP٪vu9@;SQ5lX=~t>+5s}x7?^rfKS>>#7Wze*q&]pU`gt[TsizGXKIn'5 ~u/2Bڭvh")4c`bCXd;}y9"btc1a T4d ȸ6e,L{!K,eM4LAdCI=nD, KthSk"'& :˚ k5uAdc]l!nld@h!V Z/-ˆlϲ#*,;l.fe7,@vo"<ٳ Orl۔X9 /Q~3m_0ήj76r6R9b1FzxCQ^1o4A^ ޒo)4[ڻwܻ ěśxxC |nQ8' $7a%sSGos#9s2;3ͻϬ(_%Ii8 xii<>Yj|VxFǚg [MOj3r9E9L63mN=ӠL;ڐ˵1c#.m1xmf` pu z5oI([3Sb+&ogy=cCۼ {Up%NXG@_L{z싛] 侁λR>=% jS^:O}[w_7}MX5߆֦?K?L:TkHzGGR7J#Օ[2TjP/}'hWCPmk-p57o+M^]Xx[g͇ο&n}_!vߕ~*zWecUFTz}akjm^ͷezۻ۫}~Z=-w0s򩙻0gLhb!~Tk"/# "GʦeEE9V%s2r>܃hݲU8V{Zec>|XzjBT צJynULZ19r 9j^*E:=Y!NYk<.xjIr/=񞊪grw2Iܶroop4f~MVϿ.q81%d=ˣOf*ttD0pƏjEG>[4Bd'CTẆ6#Ik!"]`-k!oԊ1S-Bzb޶AիAd 7^? 4oeIc5&6ٓ>guV[d&zu5Yx?^AYZAZת`Vmj3 kf۲M@i&Z(ֶqނ1"{![%B7jOi̡g釨P(3;g=ʒ,{VZՎ#l]{rk9!;\ݦnLʺ^>s@.EfgF9<ÕĵgqH%"pnTtrzF[L._6qggAt nK\UU{̼9Mkr_|n .-vc59ڜZW<@9rZm})ߜ->Sglw[MLܙJz_U5q~ގΜNW9F26MUۜi?ާ*]\>(shr^Z๐}qoo}Hd4O}ߢNNw:Z`N VjQ b+SÔp. 8rgߣGSj`óUvwXq ʵg9lN:H` M^Oy2{Ϟ'{ƿ&F=8y:]{R5LgpO)SϪZ<gqgsgsUUmxj@Uw0͹U{}ܹ\Ɵ4Ŕ碪L<*\]6sW48wUs48wr>s>w].%W/՚l^~eM}w MkM_qn{~o[8OqNV7}ߩj]U;HT6v;.=\neqVqjJ'T{?ڟK x>3?2n;m?3D{SyDzl7Ond&>/5uћm#d;i|w{~7HM<iVu=ǻ^.~ Z`m}ZNP۱?}W{7Lq66-^{uO~O+­СYN=Eˏ`;~~cSqMapԃOCfj/`q.nWvt<Ek,fYcN=x[b$M|mzBr4Z٨Vrƾ4t@k㡔!9vvX;:dR>}Oߔڪo5ilGܤjGz;,ɪeo)?oRO^ݲjj%7 ^(ΚƯ(%3[mZb;ѿjm6ۜIwWol:6VX~6/|]!ӛQIkӏim֯_Q?Kժr}2M-T▭MoUoֵm 3{06k6ڶu:xMٮu:pMپu:Mg\p8 z /;j^"Ji#܃v] hR޵!_s[/ :&7߫5Okfi=c^{0ctlYތCRQWMJ,%K|4x̾V ^jܼB!vWOVE!^XSӘKcoKrBml3&tt Kk}i0oMuJjBXY![rgo9N70c?߇W:U+uc^WޓCU+rë jK&U-7>/6U5;:KU;~{o8O=fŎb;`b+.v'Ƚy﹞%jZSQ|'!xst9[=Pǩ8w~`zBr#ce{Ԥ5z?YI0~_ayWJ#Mu}Pͣv氋Õqazgr_=8/r8,Foǂ08\U}e5Uӷ[nO#VeŽė 9?EkO|o59pXpMS6ړ]XKm{ZõU};j]QV3罧C'v^Xls{oP=n^)cjڸ+t#7mOM8ܼ Ʃ=6p pe5%6cӶcvQrl2!< !gwjWN}\);rK.}Ý9ܭA= Wr8iTUV{i~1}ǂ-kXEz_Վ}L!dD8FѰԊgTjsZp^Go}z%]֋.l>,P^zahKF5hMFA!MSYE@F6Ef2d\KؓYL2MY^=Ȇ_fV"$XV,DFhUZRn!kx[k-uZ XMDm zlփlu RrNMdZ[Z]?keOķfك қo =3Pfu{hrȑ-D{hOa9Mr"I,?d9D)?ْT=9MsY$ø+zrfrȹ !@M" RK g\ "s?s?9/X0xFjt'An7,7{roUuC#gAvo(nff nef,ρ"Iw*Lr9NÔrO܆LYgr<9cUoǓ9WT>u1>En3m:?S{RV'1pK?R?GkG4& uO|[*q՞j_?Cy[ԽVmM(ڨۂom;{kƫ!濇ފ"A^@kٿEu:f񌝽{hM;6L!5醸Tκ;[N_ |dU#+j.dW  GTr<X(~\K>kSfH}*Gyvy;*^|uT#"ʑ}}fx>Y#ߡ9s9ӡ 8`%:+3VPx~9NWoƌ77c/(U7&>)oI d@kTZpMd8`' u{b<'ڐդrϦn[/71U!|OJIwນ3{AYA\sx(2[l{&}Hf' :~o0ޢm<񜗱G}zZ^R %=o 5xAxOo|8f 5IvQ~O7G/|}kN|k]fbxY]= bIoٵz#V#~;@]4bȵ3C2 ^eqb Y` 6dɪv=i ES],j/+GwP[>zjf-Ǖ_-io9_o>,#]:HeؼI[6^7h//.^IM^ySI&^ Olӿf]x.?/yJU玛t示Q^_xЗ~R_MgM7O9bt]O8В)_~ߗ&qO6Wt.~G/Մų."J|'K6gE^?}_oȖn\GS?{IG.nE,3fJl/_ηzb;}qbWʯmgNϗ7wu%r䗟Sg{w}n+gNݢ/{﹟_YE*U^hq\eӉZ䁍VN/ԥw|ו)o8槯]{}?>z`%KM0U!<>ӝ]5bm6X6K=?w٫`MO5P~,*gtoS*Fz|scgTҕGf_?R?ۼl:xS7we>G]=?G{r+CgVUImM;:^ 8[73o@_?3_-j?_y%'^sѝϺ踉?/ъM[q1{g˜q}bDZJOo>ȕ{g֡u/+vy?W)>cӉvuӬYoZ$Q|콉u|ڗx_U"_l߼Av—_[$|]:ov59GVyS7w.W}.?|ЎO^ h=Op=3_+?௝w[󎍶$;?;om.̆]Į<ssœWAcW9toF΋W"8S9¦sC!W:qZdOڋyr;9lFOv;o`yx?Qy{ٿlqżIs_K̓ʏvȨJν&=O>7h7{ osKܫwl+Oz_y>/vӷͬ[ѫ[|;bsЫG{sueU5/je\YݒMUƂO;1aS4IrIU?fKKϓB'%*62ՂO{wHlf^P@~_3 +/R~,呧ҲRo}q} Q7S722u4aj3RoH,uק0I7~>nڦ`ޡ^}5)}bԍ5U-.5`y#&+[p1~;Bӧ2 wVU2O+vS/kcfg<50o~7u8P2z;q=Q9V[;jsM{3i#}3δ?ƟM9M㟦=5m㫦mUUj5kڐ_V7SƗM1miS6i_M;5~nژ x5~oڜiM6xbځikMLmo bi3+j1dڎK kڑ2ӖFM2i[eig[ ^2miw gNV߃Գ'x&~uf'ހ7 T+F|̃| oǛ|oVP[ 7|+[-|}K%_ߒoיRTيo׷[|}kΓ6|} _ߖo׷ulW|}{=_ߞw;|}G#_ߑw;|}g3_ߙw]|}W+_ߕw!m79nWq(ͩS|T*?Oi|4?O|t:?O3| ?gWك߃ߣzdq^z]C)?з|^[p^Yξ]X|Ի:g}J)ҟIeY<{J+I>MVҟJ?jK>ޛnMm|/{Kc|Cd!{r>r ~g3xǜj{P^p^,r>|]w2n񘌏d#ȸDv|:~[i_RAq9Ȝjhgqﷸx{rx2ߛۻz_u>  w˔ϴLTM'2m_C*G)e'ȴQXLd#@4p8+Stp$둩O1| LsdʵL['pd8)ӷَ+pd:+SU٩bCsr<湜.G]*c5.LeZ)S ٠58\Ckso/;ŷe)" B>6˵z_VML&)II_\a{v[%vljrc{rn\ݹ{qyHBp5KUh͜l`670ff' Gf3I"9[S H^"Eʽ`o^LU~0*U}9U}!Z^NU_7/_Orr/ZUoVoU 0rDh{srtoj%4wQ/wN,yI2`'}kVn󶿫A |翬V2s%w<ʈ\nLWߩ2^R~1cf8l QV&qC/(V ?κqxe_-~sc'xE+#~9k=~K/驩2b7S73Vy̕Wvke.OUF~}cV+M=iW5`;ˏ?vm^Y~ٚKeRWw QOf.'u:2=ϕO3 ѭ~.7 syT&t7[\9t/߾(Y~y䉣/X ߸ʈ9%gݰyey?m+#6{_}_}g/?XOx=Szuqz،m)>xg̸`TV=(9}꥕ܱGVW%G2WzEf- GG*#?,?);uEّ;l]~}+#?ʤW.SYbNO_Tq]Ve?hO.lJxwڸ2䑻n?=3S]~[>eX2bG?wiGUFyN]=_]V&Fh#*/s{sH=w]^=)z2E׺eo>Le_ް[+6 M2~>Tn͟>֕ ]xUFm[+՝yօ[O>'R~Oů(ϻxe3w-|qmt 9׌]~Z?5WUm>mzc|+yn^Z{S>o{_y!G}\E,5?9<=Tz/U&03_XX܁ZyZ] t+广>cqRY/foTBݡݥmGҟ_fd+z~+Ae ?=QWMN(v7忝gyޏnqRew~nsνuF ·)+;ٸ7}qGkxOo'8Lrlf\bƹOp(/ ~یs䜚q// ~ǹf,`ƹf05\3ɡnjs͸ ǹf5͸ƌ8׌rqc,qk,ˌۖr1v3\3\YUfk.fd6#83\3^,r9K\#!3^xьsXk _õ>x͌7z.޸׌n+R7>*meD'eDdQk*|,뢲.&ϛd}Oֳd=Nֳd]Ld=F{eK%d]V$]y$h|x/ Um(X~WP֓7)=Yi~ds&۰~|WY?ތC6k_YzcYg;H>+s(Weϟ]ϭ4ί_~ߟ}˺o_~_<^|c#yDgמ+^CGy߯_#ﲎá<ߐuUYzeoK\Ҏ幉<Aoe]_kyKpK;T8?Jԗq2WK1b!_**~Mcfl](x|{&^C8l\'qLkqgP{qr!gX,F:\-` j_"@qEo_f劉jӕ裏zV/U?&iDj-֋4>Q{o~=N 8O} Ouom{Nu/tn[ &R={#=~Yh{a{! 8O(Uuu)搿[5RnqgiU?y5 %6Ȁ&8DtDo}_o_5`;CK̇ժLSO##A|,aDJˈD{w<^PF22ޱ 3=alȌIF+K|Οc)IeF #0)HKF̤d,3UK~)#UcaS@9RatPf$R>Ȍ̮_fP[u SPFR_kua|YWFdd+3RK}ʌPF̖2ɌB/2F#3, kKNOFHz2cd/3H}ʌBCV I+3'0Ae-L8F0Y#3^g1I&=Pڇ0)*3$i/ՙըz0ᅃp%p¥p/\ p]^0¬0/,za WUp5/S?]ZkCiή -_ٵeJ86  g׆/2,%]+SvŊCkCR(оA _Wr-Vٵ g׆6]nⅳо a g{ήa?NsioyY`]CPE#/BwTw=^>P5/-8(JumW0o1[|JJU/Gûr;O#Q{Q'7FqzN} d4ףg cj0W|t 9Ô[]pNg_7_t!^5)ݼU˖Cf:}Uǐj]VYYuDx&iVVwU [զ*- _5:o*[-[Vp u~0~gmOʪtIVqo:U64tvvi7ȳ_։fB|s3񹁟#G-x cNtjvĉªv Qcl/2 Ap?"cE@m!V}e^d'p +xZf̝ƾn}KLCk|!ʁXJՌ[}̂MNIyy ſ# Maߛ=1HAf ni3fMm;4G1k/fUWW㏟֭,,o;X@zP_jީ_B.MvpC|+?x@lUGQh񣻟}Vcז?YixU'uhK["|ˣt_?\导rlZ{le+tL|m}F;FVaY[kš_t}Ǿpґ5fܴgOqr ;>7M^y*jy\we˻/ou_;nWw=*Č/vȞݗ<0l?^):o99᣻hw+;^ߞQ5[ xst_[?ro}w4aVygyiKӟ}`Ooyk{\E/~rUG{9cfoyc:L >\v/9} #^],<+~6_[|W}W>}aW =}|q<d}ay:W'u-{F~~6>|`z~[n}Wj_8|W1ũ7{OWmϙ8_ûo}g{z#71_t>ߘy|ӄ?D\/?wϯ:Jl9x9$]wFN]W|kvɾ.zB 7}=ĚG|{W~smt/GL\<{Ǘ=Uo`rg/Wvzs{o> ;']K/޿sݍl)_=s ]w~֏)ͲWx?*?uk}:?cYfm{K7כwA_~ˏg1E>'X?RZϤ7}U`J]49?aP "M=9 ZA[|uE;k3**W]49E/Pw%[&^[gRq\=k 1~귶hդ{ekVO05&!ݪM[R;p=L.}#Ӑixꦑ]Gh]|hnY>g1ջzZk՞Vj^[כ_~Lt꺳Qj6K!>{\u(U}!re4S@#LÜ/e;ujHӀ0[w-$>w֫F¦)|v96S} _ p[eOdWWZ.A3ӛ[AFB"eᷰ9VM9 5r>:{Slȱޤ#?RuS^m)OL̔7hT6hO+|zCpC$8 3N|V|nhNo+2,'ږp6|n irxo݆ip5XYtU.8*^N{^^ =r:`5*+}:nr`Eq-zgwp U6'"d.#16!V2?Ie~Pk瓿W3JBˉ^ܲz}p(%ؼ@=ݞ.ҜfKc_o؊7rj!"("?{4ڰ/ivw l"C@$CA2,@N"ʧ{?;T#N7 {Cv9Tn7Tϵ!]xQ|*?R{CPnx)G_[ gEr_)Qm}:r|E:C{>Rnj;?6-(K@[=#e+{;IAMEZb,H\?,c\3 ˀ,˲ Md%OHD<$9 H;I\ɓ_#6ɞLi"5@$r,q4d%n"q9f~5ӧ>Fs&(6blU=|H[fqMSv_C}B7 (j|8NwF5) jzLܚ}06o&FzSF.%% dC{<.𛞞טcKdcB4e?MY)Y2ۤo:T=j)b] )"+q0i.i#^._%XP3G{yiUQ_6uTau“i w?n?t.JYrԃY篩Sz+{=Vҷ}@m>Vk3L"}߉#?<j7_XO)~zlnd7vGTkXsUؑ7dZeZ)q*<"io c'>„YKR;FagfWHaaaaaaaaaaaaaaaaaaaaaaaaaa?_v^tWju?|I;{^XWw6/?\ޖhr +?x~K~|Cj] yэu?lRw]=ubru;w|_C+=Pehekq_k޸sG(Q^|뭷6OH}^J_ķ;{OObϺa?WJmӫ}!RoC)LJrU|&E\ gWp 7f\ExԿqv(.?gG]ѣGoG˯ܲcvqisثS~{/?s'޸n^ztkr"?s*jd#T/I~X~ܮWp9*~e%/U6t~jvoJ9y]w%뫿zW(c?ىc`{ ^s%~+~2o&m;[[mgV2-Zk [vOUĨ~1 .7WΪ<`?uNJePw_m;S\ٞۏ=gy.K%/U"Z;I YHzrEgO7L-_qepղb7_T:^%>,Օ8;p2Κ-&oy /|7ԏ ?V~TPK5~B?{dӑx_8P#ל]ێ>0YҦ/9%S~⟸:?٫G\\a;Zܼuݵg.ϗgޞ$ɯޭDk#8ƕ22Rxo{?^f6[z-}cJr̙S<^ 6G+)֓qWڿy7U q ɧ?i>e?m|Ic)'2.Pڵ^´N2on+^Hz))'ۣ\uVRG)e)HVg}rJeyb?G/JpjK5q_m=p3S|gDپ׆lOJINNq ^m=0\Yz=/E#g|^#917Qp'Ԏ+Q'鄹ߘ0ϸPp6/FϿ8Io^Wwήh<Įv<ȇ'߽Ⱦ#ž%_>6>U6?w<<9e֧_>lyv}A?r,X 8YVb3GE<\_ڿ//x[ϏuSW}d%ڧnKxC!ˡ͏*8S4n7ߒ.3^qTp!&x>?|=)`>~J,Y}2OPWB8<>~W8W߱r|_MW6O;UJC qj+$ݸXAƟbEۯ ^ʀm:^ydTu}dS!;~߼_?&U%Y]v\Ir>+)nO$Wߴ["?ϮaKxA)qGliyFx@KRA|ԯgi_q/ůR~!x!Z)-..7iҎ_nԎx/=oSθF?_u$Q?Ow֣}^6ʎ~Z֏u~Qx?}9zķ\C>Ϸ+COY;Wq6<[!u1.V=[=`q7^:7mZF^=|ׂbXz3O\xTڶz =yL|묽⧜O>Yԓϛz񑺓oxGn>̾|}j7<룍ojҿҼ8)v,[Oyʸl>Tۋg"_/-~Xq%OkG_Ϧ/ v=G7?<_OO|'X#W.Uۏ=?q`/'_s=zø"MGv?+J׵[I+޺;dg)]xBb{+\-̯ݕC¥y7kd~u>Yb ծ[x]uŠW՝~Z'$?6?;sxǼ-h~_$ms9ӻn8CSmd(6wOޏ[Mpq}n*asgNֿy8G--s,i7<޵rI!| z2JǍk_GXsVY'ǻ/^~9Ƕ?s9v]֛Se/Vxr_CllFE6}OFx(HCm9=ދ__R~ʣî1s<=;>N؟;ɺe&Ԧcwُ=ױ89H??rqX:Mk/^-qawAGy<v~%]ܐÏkKV:S :N.e%59;}77b+H-Wx>il{~+A!/ϭe!+d֖Sz+p@pom9\I~}H+g#>v0~X?JsƝSmqU5 <–Wax^i y:~<gydyqu#WiYez}R7J>J$Gu5IgUMΕ|J>Vtvݽ[N/]\xS%}n7dې[oi<}6݇LOxXR^m<;9/~%7Tw?U2n8uzvî̮+P'|_M9CCƉr]+a߮}%ţ9_fG8-~5 wŇ'uƗ|{׍%?og^qwA-_L_W;˟q?Ϭݹumq{ΡR~oDGwmy}oyw^xɼqK_0?u򗏌puKlol:|x/׳(iR8O_'n!st~~k\ΦhRj7-\OCCjQw.wnc8>O_k~Z%u^i2a3ּJfF^yV"y>cGOu^ǂj[\>[au[_vz{=:1oqW}{%\f/X_w}6Ïoθ̭|?yWnq)7|6Qd/[ykmVo>(f{)s=Ay>f^.TYst~Y+ZkY~;W'-CxUw7h^'q8l=\o=9"uR^;Y~9f~wd ө~Zv\_Z{#?1N}eufyz.ī #ҮiyN%`jgGfζ29 ]SN=Oö &_zh]vs{G,_q!Yf{^ֹj'f9~ ۾/&Ap>M g^ך3w~ʦ'Kş\R?2.z^ݤ>o{O~z6>o=za]w4n?6p{٦|Ho?*{[_o]?魷>aȏI=zuMƑs~*u"/}`'|b)CYo/c/]l˲ࡤ/ŸckPϏdd%ϛG;Q;/><0roHm?${S͕orQp7h\nD>[٩u>y|. ߗI=̕tj]&cdzWz2[(9?Yp(x$Mo&3׿[pA>%綠˼B{z>e`#}'QKGW[/Ů~'le\av:~'zu|˃q+MY{Yv^Q֋6 w!~(#=v;H=~q9{|kfG Ο}3>$}׽H~^gR>p旖]>h}Kڑ/IWڏءy?tM߯ͷ۟:G / /_8 ׿fz0Z(uTG~,3I(eNGZ W\:0~N..?{!>Ⱦ^ۧ\«~=J9_Mٟ/-_k[?q'}~;ysq?#??X<ë_nTO* KYys; b}`ٟÄ/bv'{2ZϏ%zxm{v,;{R-Os~oAy_'I>7isE7/Gu;z>= 9/7QM׫{z YS{=̃g>S_>\xTxUKV_3\yg~o$Z_?Nڵ?~hX >>䠢䠢䠢䠢䠢䠢䠢䠢䠢䠢䠢䠢䠢䠢䠢䠢䠢䠢䠢䠢䠢䠢%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%7(9(9(9(9(9(9(9(9(9(QEHHHHHHHHHHHHHHHHHHHHHke w;Yy]E z@o] v.z@oՠW. 4ҠK. 4Ҡ+]1 @oz7 z7 z7 z7 z7 z7zs7zs7zs7zs7zs7z7z7z7z7zz z z z z zzzzzzKzKzKzKzW]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]W]WJ^i+ x4ҀWJ^i+ x4ҀWJ^i+ x4ҀWJ^i+ x4ҀWJ^i+ x4ҀWJ^i+ x4ҀWJ^i+ x4ҀWJ^i+ x4ҀWJ^i+ x4ҀWJ^i+ x4ҀWJ^i+ x4ҀWJ^i+ x4ҀWJ^i+ x^WUx^WUx^WUx^WUx^WUx^WUx^WUx^WUx^WUx^WUx^WUx^WUx^WUx^WUx^WUx^WUx^WUx^WUx^WUx^WUx^WUx^WUx^WUx^WUx^WUx^eWY,U* x^eWY,U* x^eWY,U* x^eWY,U* x^eWY,U* x^eWY,U* x^eWY,U* x^eWY,U* x^eWY,U* x^eWY,U* x^eWY,U* x^eWY,U* x^eW9U*x^rW9U*x^rW9U*x^rW9U*x^rW9U*x^rW9U*x^rW9U*x^rW9U*x^rW9U*x^rW9U*x^rW9U*x^rW9U*x^rW9U*x^WycT1g3FQ}ƨ>cT1g3FQ}ƨ>cT1g3FQ}ƨ>cT1g3F3>NQ}ƨ>cT1g3FQ}ƨ>cT1g3FQ}ƨ>cT1g3FQ}ƨ>㔯8+NS┯8+NS┯8+NS┯8+NS┯8+NS┯8+NS┯8+NS┯8+NS┯8+NS┯8+FC1b?ĨQ!FC1b?ĨQ!FC1b?ĨQ!FC1b?ĨQ!FC1b?ĨQ!FC1b?ĨQ!FC1b?J((1I y)I!y$ yyHI"ɿHM2%I^!y5ICɛ$oMɻ$O2I>"G1'$|F9 3T yBQa",Vf@Xa",VŊX+bEXKERQT.KERQT.KERQT.KERQT.KERQT.KERQT.KERQT.;~;0cz*cAe2vP;T*cAe2vP;T*cAe2vP;T*cAe2vP;T*cAe2vP;T*cAe2vP;T*cʘ$JO%ɧSI$T|*I>$JO%ɧST|*E>"JOȧRS)T"ȧRS)T|*E>"JOȧRS)T|*E>"JOȧRS)hqJ))hIQ~RT?)O'ESSSSSSSSSSSSSSSSSSSSSSSSSSSSS>/N}^8yqũϋS>/N}^8yqũϋS>/N}^8yqũϋS>/N}^l $6 Ml $6 Ml $6 Ml $6 M|7A M&w n|7A M&w n|7A M&w n|7A M&w n|7A MST4-MeKSɗi4r|9M&_N/ɗir@|9C!_ΐ/gȗ3 r|9C!_ "GEP>*B}TQ"GEP>*B}T#BP>"#2l U7(R>(#JR>(#JRRRRRRRRRRRRjSQjSQ(M&J~%Do7Q(M&J~%Do7Q(M&J~%DY!!Do7Q(M&J~%Do7Q(M&J~%Do7Q(M&J~%DoyQ¼(a^0/J%̋E yQ¼(a^0/JV[QoEiV[QoEiVwwwwwwwwwwwwwwwwwwwwwwwwwwwww@@@@@@@@@@@@@@@@@@@@@@AaiqPAaiqPAaiqPAaiqPAI$B|!I$_H/$ I$B|!I$_H/$ I$B|!I$_H/$ I$B|!I$_H/$ I$B|!I$_H/$ I$B|!I$_H/$ I$B|!I$_HP]&.T e2AuLP]&.T e2AuLP]&.T e2AuLP]&..T e2AuLP]&.T e2AuLP]&.T ³Hp$A8 I$W:#I‘$Hp$I8$I$ G)I8$I$ G#I‘$Hp$I8$I$ G#I‘$Hp$I8$I$ G#I‘$Hp$I8$I$ G'i4I$M~&?IO'i4I$M~&?IO'i4I$M~&?IO'i4I$M~&?IO'i4I5'i4I$M~&?IO'i4I$M&HfDhyFgDhqJ)DhqJ)DhqJ)DhqJ)DhqJ)DhqJ)±Xp,B8!%؏ʔ2% I$`p0I8$LҼ3I$;4LҼ3I$;4LҼ3I$;4LDr0!$H%9p#H$iI&iniI&iniI+&ibI+&ib$Iꇓ'N4N'ONS>9M}r4i'ONS}>Ti4g3MLS}>Ti4g3MLS}>Ti4g3MLS}>Ti4g3MLS}>Ti4gSQ(EunՍQT7FQ(EunՍQT7FQ(EunՍQT7FQ(EunՍ21}|$FQ>b#FQ>b#FQ>b#FQ>b#FQ>b#FQ>b#FQ>b#F|Gb#1H|$F>#Gb#1H|$F>#Gb#1E"F~#_/b1Er!*wr!*wr!*wr!*wr!*wr!*wr!*wr!*wr!*wr!*wr!*wr!*wr!*wr!*wr!*w2(((((((((((((((ʬR?~8Fp1cǨQ?~8Fp1cǨQ?~8Fp1cǨQ?~8Fp1cǨQ?~8Fp1cǨQ?~8FpD|"E>"Hq#D|"E>"HO'R)D|"E>"HO'R)D|"E>"HO>RT)G#EHQ}>RT)G#EHQ}>RT)G#EHQ}>Rfm /&_LP~1AbCIŒ$$$$$& Il $& Il $& Il $& Il $& Il $& Il $& Il $& Il $& Il!Ng3 tp:C8!Ng3 tp:C8!Ng3 tp:C8!P~7Cn w3fPd<*Oʓd<*Oʓd<*Oʓd<*OʓdLy3T q8Cu:Pg3T q8Cu:Pg32222333fP?~0C` 3fP?1]l&ۅva]l&ۅva]l&ۅva]l&ۅva]l&ۅva]l&ۅva],aiza‰0Dp"L8&N '„a‰0Dp"L8&N '„a<ƇFh|aƇFh|vvvvvvvvvINvxƣ4h'G;i%Dg3Q(L|&J>%Dg3Q(L|&J>%Dg3Q(L|&J>%Dg3Q(L|&J>%Dg3Q(L|&J>%Dg3Q(L|&J>%Dg3Q(L|&J>%Dg3Q꣣GGR>:J}t(Q+GirQ+GWiB4Wr͕;hA';hAs+w\4Wr͕;hAs+w\4Wr͕;h<(O!S<(O!S<(O!S<(O'磎Q|q>8u:G磎Q|q>8u:G磎Q|3Х"RtT]*.AKEХ"RtT]*.AKEХ"RtT]*.AKEХ"R"E7o,BY~f"3 g`=Xz3 g`=#[@k5з m6}'dcl쓍}O6>'dcl쓍}O6>'dcl쓍}O6>'dcl쓍}O6>'dcl쓍}O6}3qqq 6߆~oCmh 6k6X lf5`k6X lf5`k6X lpi84s9 眆s?眎sN9q8ts:9眎sN9qi:Cu֡:tZό:tZNi:CuhҡQ:4JF(CthҡQ:4JF(CthҡQ:4JhP:P:P:P:P:P:P:P:P:P:P:P:P:P:Iu\&qMT5kRפ:Iu\&qMT5&5k`:u\q X5s[p|}C_ Wp|5_ Wp|5_ Wp|5_ Wp|5_ Wp|E߮oзk5v }]C߮oзk5v }]C߮oзk54#5#5#5֠Z^kk zA5֠Z^kk zA5֠Z^kk Aw5ՠtWj] Aw5ՠtWj] Aw5ՠtWj] Awmc(F96ʱQrlc(F96ʱQrlcgK6X ld%,-"`)"`)"`)"X "`)"`)"`)"`)"`)"`)"`)"`)"`)8X8`8X8`8X8`8X8`8X8`8X8`8X8~BYh? g,~BYh? g,~BYh? g,C3ia_F~& B`B`?X, B`?X,k2" B`?X, B`?X, B`?X, B`?FD`?X,VZ9wsHovpovpovpovpovpovpovpovpovpovp hs\m.6@ hs\m.6@ hs\m.6@ hs\m.6@ hs\m.6@ hs\qGw<+yVzC[u(/֡Zsğ^X))[ZW)=3Tw_7?c}Mwk{*gL֕w' g}zh}yb򊁋u+UOzަmi]{bmF%OJ^kL}L[%*=>~/ei _Ǻ>}jM#=|w1\߾)>~Wc}zlml_׿9.VwoЮo=XShk}$IQ}Pm>zGT[߸^MZSO.2j+ԗwDs Z(hJbd-: ~E,\Gczx^z7\c(nčW"nMz7_q0noZIf=Qv ~q{};czwZkIe=q¸`*=Pk=%kQdIt0דXbr5jֲ:Y*ָk4z*X1XQ׳8X5PQŵ$!*ăT0]*WK^z]RKuI.%FIQRo%FIQRo%FIQRo#H1Ro#H1Ro#IqRo'IqRo'IqRoԛ &H Roԛ &H Roԛ &IIRoԛ$&IIRoԛ$&IIRoԛ"H)Roԛ"H)RoK4hT ѨQ%DJF*!UB4hT ѨQ%DJF*!UB4hT ѨQ%DJFI/k7U ѫW%DJ^*!zUBU ѫW%DJ^*!zUBU ѫW%DJ^*!zUBU ѫW%DJ^*!zUBU ѫW%DJ^*!zUBU ѫW%DJ^*!zUBU ѫW%DJ^*!zUBU ѫW%DJ^*!zUBU ѫW%DJ^*!zUBU ѫW%DJ^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^1W#zň^D\W.+K%zr^D\W.+K%zr^D\W.+K%zr^D\W.+K%zr^D\W.+K%zr^D\W.+K%zr^D\W.+K%zr^D\W.+K%zr^D\W.+K%zr^D\W.+K%zr^D\W.+K%zr^D\W.+K%zr^D\W.+UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUhThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThThTDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRdL"z"z"z"zEx3]gĻΈw:#uFx3]gĻΈw:#uFx3]gĻΈwIHHHH.%^z]RKuI.%FIQRo%FIQRo%FIQRo#H1Ro#H1Ro#IqRo'IqRo'IqRoԛ &H Roԛ &H Roԛ &IIRoԛ$&IIRoԛ$&IIRoԛ"H)Roԛ"H)RoK3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|3cgΈ;#>vF|+igΈO;#vF||Y[kh]uUI@5P3Qnm I2vY6 hW[Rt}yM;53ĉ!-M-򱵁wg2ndRYC+'BJs(_v*NPaLhGP-a[Gtʹ}dQUܿ? ZrVMƿG˫t-UX>NԒ3%4`X]mYuhdmVc^tl-;oȼj8ڢm4ZxTYu58])xߪa=|L[g&#c*ZTw-iسe"Dyr23&]ĮUW ;9]-<f>YnOŗK\W83"=gZU. xǤ78U{ڍ3[Σl EGK8~[dhۓڹ2ֽnj wX=8wS[kM+jsgϭV4^;*q-ogF9}zͷ.}tdPa?uy;'5_q;:]μJ7{y:j ^%^4{w]67%o;w&uXN>:\{^Rz^#uo-;W_5]āg;,y}+~:x7o{y6~]Np[5_swװ!C_r[)["79aϟ~U+[OW~mw^u*-47:]ۡ * swUPA~_n\}U^7[7[VmGXQ :8|~Ʃ].o0ތl.כ9ndz3wy3ǧoz޷O ޷Moϩvu;{»+fh+`V> kLi6n5N}伽{,q.{߽yϽ bfbl;eꤛ_1.o9\rEZg4=x#^e7y'OXXӖo4_Snޜ+G9u; CNWޱ2w'T{ OOy}WMRKFӟ}O9hxȍO/+9Uί>k Os[]ߣ׎: [n`6[58βr MzGz+Sӻ鷯{Ɨk9߾;v[!}r {npYN)oyW_Kv??4=569W~Bksȟnv=kš&To5_HyW =UV¥/zW\ޜj3v_ݠ!n^^ӑW<{Uv]j;0R?NEOxcs>s骷>ge鰞L_]0x[NkTZ발9fC7y;=t'.ogsZ5|şNɗdF]]ex=[=O;\t&]WrECӅO[~)䴥:zwc E8ޏGvKz ['tM}noy~=3NV/+}Y{6ˇNywҽu\Mo'8͝D˜ox{.5ܹS|ۿUse?:\-F}1/o * *棋FT_Cu;x_C~M&.͎kz;Ty+tRoeMOtd'˛>ݠJC7>9^Ӿw޴rm]egs2{=pNywQwS:DN?xƓ_rska{9oƏ7r˅9{q[ě3j72;\~Y{m5|=|SOxǜr郝Oa=nի<7{qTY݇vv5Wqvyz_.E?WbVkfN?~sYcof {3YvN˝ߩ(9ޜ,g^}x^3w=1/̂cqw|͛?w{ݕ7]7(5kq-Ϲ'x|Co~Y۱j>{?=cy<^4e<-x3|ظ#2'/qci/j#mʩMϽ3(>K;^?jH4xzkvkţ^?6~6;Yk*-}_S5=9}n.;jGv4<=Ji,5됼n>Miy'j6*gr^kkO{~;f;\n]}{\ߗgw ;gOI׿8wCٛmZpl|{okKSpMoΫ7{ ĩ:>[}ÿnRϰ{o/v5* j kiE * *oT9K3ʮM >:sJTPATPATPATPATPATPATPATPATPATPATPATPATPATPATPATPATPATPATPATPATPATPATPATPATPATPA=bXdq(^]6|lm!3g&(2ih"!"G8q@<qACF<PaC8qh@<(ģA<8O@<18q,b? ph}"b9I'#VcTelh; ,9zxnüxri]}([Z2ezjr0e9u•eնZV!3h^UoWC9kRZ2O|ZJ7{dNmиC2z(3@6g^p؉5';َZ;IF2LS҉-׉-8/ 3y?iI,jrNx@w+'^Y˜A^F p&/+&|z;q IQy6_7#r_/ό3۱of1ϔs xهmn̷=IQɈG,9ߧ_횙^̏핣-͚Wg(-hAE9)-lg$V|}l]?[i9XVYvnYemH;Z+̝_8imՙ(w~UkmBQn6[2żcv=R6]+g@9cp_WERy|::{j;r7v.:"չx-y:E|{jmEg&{ɓ ѫ[DF +DzfSr8xg铫jjʫ*kT+;]֢\aX\ g>]lCl3r{!LM^dzMgzŒmmg_t>ݳ t̲shlYY[#*1]cX 4t.:E|:6]~UmϕL08׹m]0[vWGm/l( 1Db p.Οv6:Ζ(S^iހ߃7PN^ux!˻\ŋU~!{j.$v^H.~Dk!Ajr} \(v) .^vꂢY\@}+]6.Jwkgwe j˪'Mۯ8PLbkN?Cܭf/Sp]o:ذe7 $-FH˽czcM^3vz#ܹmkz&6^oDro_oǘ轸.yh+@t>k }{k@|(q@y%MZM@%v;fsCݛ7ŶZVM[nXh:tއK8[l'B5-}c^58@Dq(S'[:O5^nZ4mڗiӭx;n܆[^Ota+e{i`fZz},w6O7պtd{cƽteqeUmI+&U֖+_RƕUV^;:]9jRqeckkC%gp?pɹ/1p%cW_2VNھ.w;~-Rk驭SHYYgNp]td6t55H#pv#RYygk~d*ۨ(FtU¸QcچzPGG,_r}U 66rI]:^kwIݖw^W(Pvw^f^ 1ϔiIfT"TlS1 TwZ6lXf d-yF$ov/ok?|5ilݎ/-yQ_6,_;Qvݕ(Se5yN}J^U+x=Wc>Zsm:]OM椖e-3g^ͤDy񼿴w{+yww&ω{y_HbqyqXDm2۔ncߦ6]WQK[unOvv?s/ 6wwql..&WM*'ŧWT)C+O:l\[5!wE!SގG(]FLw]7V sNd:uMvnMHFFG)6uճJ~PJI2 ~q]K{.$8o{wŽ$w ,w~^y Lٮh[+?ξk|ua;3s+v;Lyvc:Y{m:3kT!#tb4Uӷ>oUC3:u V§}fguNtj3ﭵG =jwy}]~YmwzZgjmof~]nɄ.;:ǁ.^0zZw^]5Lŧߨn4*O+A}lfr{%&UWvse5nLCγuLimo7tf1 wR+:u#9?$w~W!pY+L0|zdvlcT]3eJ@{аmәs) \2x9EZɧ3uN d1_zZ\_rkjAM[crfMmi`ZJc8G<>e?O,O|cưf~\qufeƀk̼qȌ,MΘ2/ƿ.g91:MAOޯA]ZX|'XWtZ{voQ[u$L_UW'=Wy lĝ"^B']~U?لw%:m_isKw$>Ȩ`m7@u g h8cK+gAu`?Scɽ:ryC?Y&s%>z8O?[,G;*jZ^5C#uݠ뛹ߪZ1voMcSN;oRq iKGk:jVie{hnA7:7[گ_$mOx8k}/k'G9gA;lؕrt~֋2)^+XFC^<|m7zQVK}۵g'SٟJk7'f(bRYĪqb6=Y,jU*gd||*RS>"][ c52 zqzoZU7ҷʟ|~oz_v Aխj'MHҋ|=yMZ7j0ӣljvCʱhh1=:=E˦eSˊVUZV=rlY]x lO^9_åw3uaUSTxR[0珨?s{;N+gg}r%wpEžrȞ>qmG}+>珺ν'^Svoߋ{`Oa_]ީO^V{R{?>=;¬ v?ﲇ7u;;_skVU;5k,<n}q{P+|V{Ϲ+ޘC}OSOxqUa]AK{,}{x/x=_}km3{OE,l( /nm&/,kO[-'RW]ݎ[wᅃ{tG_[a\?sEe_<쓫x\Z8>+5OڛV]y ]ӷԽZ/Ls' / >x♥y?i?/_{ һ_\g GlQ}}cS3>R}?=ýx4grvwwԽzǖ^j_vР?Oy?E{o1Gx6[_O}SfGv4t4CP?֫mr#9rZL!yF!yVAymYu:3l ɲ'aPVSf8h25w2[9?wqM[Zj~Քo3oҏ]Wp}߻~?*y՛^ޛYti6/'kԟhKݼ/yw~8+VZG>8!{RsɁS5;z.2mӟ]S[vfIjjEVS~$9coPٻzӢ^zAoZwbGoZɌx7m}F:xk;oZXoڞvoizcxӊ_Pw޴3^[|ŨiiĨT}iS`^t?://_V⽲3Xgnu#?8ƛ˙;=;<{@ g9ñ=_{rS1&}:IK?ӣz^{ynCXw܁tыa޽{ȍ?itniqyĩx/_s>|꫃RJ޿~WSMp^[/{דn^LJ?ʛ6emk񾗏^rݾ9{g]-|cL='@gGLފ8y}ee{? o\|/7o[V|u7rr?j;Igj}{O߼_Nqlf<΍x?_{W_}^67Ka7s:󁯧y?vÊC.ꭘ={;~O񣰟}/5㼏3wtq''+z޲kx;Gt?yNk>c?okNS-;τ8VzIb- k|6bfٹb]=z9$|TPaՇ4 ev8`nUU2/nS/db+#"$qYm-+D&?#O3;yy̳O$0p3-|6'ٚXne=0ŚykYo g޲E3>~I~ڻZy8sddͼћd<-|}3ɼٙgިx3oF |m!Z>LzӲoe»d^xϏҲ~̻d_r捭W'jO.|ęG8-̛Z-ܙcUe=t(&q"cģSgr<r2“ǵ.=,S)%71<=o얇?OԌqs~}xϥ =:7-E#v}mIQ-o.Ezhr8z#.n򚚪cVj-&cWEew5xΗϭkY_tp*߯g?q]Y\9gϭV4^;*q-ogF9}zͷ.}tdPa?N5m=O[k0kىwty5y֛ҍFwf{kC켝7m?˟?egZzfpbi9}M}Ϲf=ff9Osn~ڜ߰4V7=saӿ{ю#TK4|U^l_yy|f?;_ś/o]]woY\ڏ{7G3_ar u\}3mC̻d~?n}9};ŋ7iׂ7#޷}:eΫTP?Q5ۼ)^.wq9kQor]'5d?tQw8!y~o>Zl4Zjkn罻7kK^þM?iKo%O|fo#xYl/7+'ykeyoy}7O i5;y?pӟ?ïBoN x˞;3Zv{k:UKFv9b4^t7k(t؉E^U^v~.~)]5\sOwVzgnXg Y:]7s)om4^)7k}zn|՟|k f왗%G_2›'{?MƩu/x?=♥?Z{߽yϽ bfbl;eꤛ_1.o9\rEZg4=x#^e7y'OXXӖo4_Snޜ+G9u; CNWޱ2w'T{ OOy}WMRKFӟ}O9,?!7~w?p󮸲T9CJF7>mv}//_;/?ovlP;k87T_7ыVzͮOO&߾_~-oxw6;]0{_pX^[g'^e};咦]}6/ t[\甇_ qC=#yON krTP!G|"]5VYs6 vd'k]qm{s z9v򧛇<zyMG^l Vu7y_[Jc8yk>ፍν̕ޞފL\z~:0}um?;ipQy?kr: o^Qlvs}>ky|zW:^ӻ'_w֓mϯuul>p,wKwe_y; }^NN,:rKZr6)ϟ4wFv-sN<;Z_] :|W|bsNmVkpϕ pkżq * *o.Q}5w~T5\|6;P!c6XҡOH_/7=,o_tNߧ* c{Myw˙uӗUO9?s{E-'}n{1O/Jj \~7kz,?{Z7L>a}/~s7r;8gܛ37̫9kz殧:Ypa7|õy.{AۻrK{?xM#?_u9W]oͱ̿6noҙe *Ϝ>5kz;VU^=g|v#[ۂ7cЋloƛwD7nw,;>`RmV9x_g\6xi ^'_ w^Uw5sxkz{';xMkGw#eGh܎f^i?M7cƶy­xҧյ=m;Tmۦ_Y#xSnWum ^ {/?6oV7t,wͻw/}ނrT!y>n{H;{ձMkS~mm ޼c_|X5yvở8T7?|Oxm]W6u_>%׮5ݿӷCTPa] d-mTPATPAu wHŴHKE6[O^ws{g{ߔ 7bjӡw QWp_hHKA)94?wknx?ciǕ_n(#b^hWr[Xyy.q~;BJC#F(!xcx<|{vu^C5/vroP7ϝ=OϚᙾ¯z1o@?%?ˇ8K5|u'{t 9-]zSVW~<ޢeC?#O4s//y!ğ l5>g矧~Fx{a&si<ӏ{į?9;~m["^|4h1+}|t{K1KK{%9 u_ymSꧼ\B|M#]q5=~N<܋:淋(}6y{Bw}l"m-Nʶhob|Q-;<}Qx}+Y Z7Ku_hF/s/s0Voi6Go/tĭy?`\Xn9nSֆCKvsjw_X׶CYL, >h:e+}'G'x nψO5rG췯RDb{@+rESy~Vc{9)//O|[s>^-xqd[q__烯?ypสv_^OqH|ow7ޏ|/KBW GK>ť|;D{u?b;8:{{'|}M+-%_ǖV<}D>Obyޏ Q =fx4ėXخΦz| 2 {[^\78~&W~q\^mj6དy'wUl.e]} E?~nz o i:rgp=%czZb91- >n̶[iiJ s.cm@Nj:=bd9u޽ox~=ig@'|[ڍ_~~8U}O؏kioc~^߾|/uHw/z%CBg>8 ދw8[|{E?%Y,}b\)z*aei_E*+B/J{w:BW~BW `?#KS+-q}lfUw>bϧEړ ׄ^;~'.+uy///hxd_lUdWK/-)ob{xdF-E?{y)7hOQ? G=ze3~})A/q=<΂qߎB}q^B/u~#Ƌ <&Ѝq][!"fۂf[{߃ǽG:Ǐ~'˫|]~^Q`NymiqH֟{߿(w? ~X޿.T\~ؾ`;r!O,D ZAD-C^~_̿@?Im!9׃ :Ȟq/50n_GzEyͿ|qy#/v  s~_uq]¯|5ur^3..a/~x7Bfz,1 h7 O6j:<<\oצo/>Ӓݼ:{׫q#sx}s—LuyC\A{]/WB~뤸?_7 V'/y޼+~O1T~>,/< "y-e0< bӏE~_Kˎe?{#7|eA+п<~4' ,'Ɠy͏_ p]_O`~?T1𹇏{V+JM~_+NF+;ӎz:@;s }:oJ>/m+z+8wl\$nD^onx No}iKqz  7)=nǹ:'s^՟aw{,; }E?W_v|^~g`g./1n矑9z⸟5in~q _#=zYϿ/S8q{Kpǻ~K?yiLMz/Rl1->4*Jl}};b{_?nb*[+ _SoE~zBnE;\C g"o[:v\ dw{/gss๓*b&-ǿ㶞:Ǒ>~__)O-8WE;Q< y}sn-L})oMLR+ #k'~=Ey\5^xn-3sx^(WqEo~(?A+_0ʔ2p 1z۫K9پHGy> 񜑏O98o?:yx* RޢCпz?Ojͻ/U@ݐN'1Co5|>GvzueOuXƬǿ.׍}_@;Y}OTxH}> ݳ%}]/b~7%[/>έ qǪ?|?e՛6zE7W_Ϗw//Ƴ\vWW?.?wß{=ͿzBxoes#4K|}!8q'{Zm< /|>G⺓_?y}aܒG~w_^o};;7ԋ(Ӂ~ȿ)-Oٶ?G?|n\Ols-Ƈzڡv!w6A`d~ rQ9?#oO#mwf҂9j|n_洵?sN Em//"w{i>_/Bs}(_wNe[_1}X8G,]n=}0 T\p{{f/}H<8xNiczW. #ys^S[]s~:q5 T9WSpR3{މu~wWǏopíߣ!oGѷx?9+>*~|o`_Oor_aF37[ʑ!>l{s?o6v5g&4??(__^{,l9O 799)z 3~k(G\߉E+|B'q^E|ON:RDz_' D¿-_WOLy{9'irg78;^snm9b i[eR?: ,>f{)5x&-O xdK}|0}w߱,BJ-oMc|E{B^'Gͥ]aqeyr\׼7+[~X>Od_\xOG\pNu]ò!{{[oyYϻ^ s-=8uA\7^O#ƍu NSjkysT{J] M_/I::˟WO|OOݦyxz뤎|ߎe~}|/5*=i9,sBў>N q|sм ?ϵ(c/q#v3~([Dy9kiA ҈X_p. vp~ E(·xuKq8=\n{爼] w~|>bkF,[~G~|q|#\߿}-Sb~/p6*\g/˷g=D兿6ږա>7O^ۿЮ_@qt^nq\<m\/=Z_-Xpㆈ>O籜sqIyş#ی~cbz_,-q?xAAq|O>>/os?q 8nm=)?_O6'Or}WߡETab9}2/@Gm_ ~V^flNq>LJb\+G]|W ν?_&w?A=Ǘ.q}qձܛ ^GD g4S۳{I?'X? B\O,R~V9~E"9a_NUy1 |Sqbl.8?+~! @pi~k=ր/G1uΆ<DKK) <'Ӏ)>/q!<rx^z{^>8{& x*_A ߮X\8Atw.Kk"|::y~>ω~J,/~QGT'WO?w>txßmaݯK ro '௷DG_ȯ~=h]8sFq=ʿSP>A-1-ޯ|;j,_\#}OߍϿ^x [hq Vk0;t9'pq6gQ+|׹ s//h# q Q=vV$hg>qIm~Y\G||XO茸?$M5+=_^?b}Ѯ~tD?޻߾|ח?-^ [`K+`gy?8m|n}(=u3']=<_|rw" '3Ttv"tYο}z=@{_C|L|C~S. *1?x~-//|[|} = @C;b?}˅yyOo|Nu^a>\߷~; = ?\~9l+0EOMq]"}~|~mwh/=YqO'}~9(^ؿ8IlM D=8o8rQz ?o"+~~uGsuz{`wgx;){::H,_OÕ;OWxɯ-] ΂iF} W9SZH˼!ЪډeՕ Q\rUU*W6\rU vZU.Z^S*SeL2Uz}d٤UՕ1U*W\rUnrGVթ\rUU*w5:QUܿ,2TP:tyuZ娜#_3qRUuTjRMɵkۈ*ʦXQ*SeՕY0rlUmm񈲲*GrTZk`՘ *+k*jfjfh*kWTRY*Ke,TRY,Sy*OiLY2TP*c-ϰO-/TjRMucrPU儚i5&դNP]VtSy*ky݆UX>NeL2; :5ԔRSkTGMqrTYrz , sTV*ّE#j'UW0`4g.q(aQ5~T1e#ƫ<~7y'TaTVIW֖ר,ŬMFU\W̸鉓ҕ'jfjfjV.>9]CejfjfjfI}hzr"]2UT*sg#'Nz5аe~k3llmٸ=IUekjUSy#TSyk p`EYe9V֑C&M../Qk0:vPoa5&~n˫'+P2UTkmk&f.ȠLeȈ1jZMMXVQ~9C+ǗrTNcO.Ty*O=yXV]U5?7fYjfYsgUVQQuyj6o[Vo[^?~-yGEV][^[6x`EU/*Ke3D29d`t{Eҕ'_IUy*O|]:$][Y5AM:?*`5ۙ12="#UmL)HWI5ٵIgTݘ1ĴP*Ce!GƪX|p݄t婸.S*[e6;tx]m~EOJWY<Tw脺42}Sy*gQqPjBMvU&դTjLFTWM-SjZM3fbP*cd H(TSy[N:{m~kWTHO)>8=R|דj˪*[eldw?ʚ\MR*WU;rU~K\r MONW'+UP!hTMUyqONeL2;ʴO*+WjbMLZU];QM 5&~ÉUujbVU"Wjr]_Yz>Y }GUɩ)-[pefdԏCf8L}F&(<="]g6aH]<#٥q-wp&Cv(ng?aŪ*1)Ldzv35(~!6E6 0yj*jl4D ,x=xB@q#č7Aq3@q+ĭA,Fq;w@N;#+n#qOĽKE!Ib?ĽAq?D?āGx⁈CBx0!"fn8a#G"Bx8G"x41"x< '"!m XD9#N@XxɈ+'#^AEC<4 x&Yg#x.T? x>!^x!E#^x)e#^x%UW#^x-u#ހG?!ވx͈ VĿ ކx;w"ޅx7=">@⃈!>⣈!D| 'B|gC|z_B|W! 5@&[Fۈ EC!~1'"~9_"~573E8 q6Ĺ M͈#.@\"ň#.A\2BYk-X_:u_:uD:u_:uň_:u_:u}/D_:u_~iD,E:u_:uu_:u__:u_:u}2"u_:u_u_:u_:ׯF:u_:u_:u_:u_:u_:u_:u_:u_:u_:u_:u_:u_:u_:u}E727 o(;B7#;d3 o7 o7 o7 o7 o7 o7 o7 o7 o7 o}`7 o}`7 o}`7 o}`7 o{7 po{7 po{x7 nwx7 nwx7 nwx7 nwX7 nu`X7 nu`X7 nu87 pns87 pns`7 0no|6 mo|6 mo|6 mo|;s қ&&LmZ٫t|&6 Mmo|&6 Mmo|&6 Mmml`&6 Mpmk\&6 Mpmk\&6 MpmkL`&6 M0miL`&6 M0miL`&6 M0miL`&6 M&6 Mpmk\&6 M0miL`&6 M0mg<&x6 Mlg<&x6&6 M0miL`&6 M0miL`&6D_nml`&6 Mmml`&6 Mmml`&6 Mmml`&6 Mmml`&6 Mmml`&6 Mmml`&6 M&6 Mmo|&6 Mmo|&q`&7 M&87 Mpns&87 Mpns&87 Mpns&87"{lB;^PN8XXXXXXXXXXXxxxxxxxxxxxxxx/.!xxxxP6xPk6en]!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!̭̽u-o!-o [-o [-o [-o [-o [-o [-o [-o [-o [dlFd# [-o [-o [-o []vDo [-o [-o [-o [-o [-o [-o [-o [-o [-o [-o [-o [-o [-o [-o [-o [-o [-okEV}1# ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<4"0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000> mo}`L`6ط mo}`6ط mo}`6ط mo}`6ط mo}`6ط mo}`6ط mo}`6ط mo}4EA1!}`6ط mo}`6ط mo}`6ط mo}`6ط mo}6 mpoO ;w;w;w;w;w;w;w;w;w;w;w;w;w;w;w;w;w;Ί%_ /`_ /_ /_ /_ /oޞcye]|:9ikٲXfD2}FH]-H$݋d;N$mN;L['uKVXzb\Hn$ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooof _/ Bb_/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _/ _ W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+V߃+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_W+ſ_wa8>}ǿ>}ﳐ>}cǾ}>}cǾ}>}cǾ}>}cǾ}>}cǾ}>}cǾ}>}cǾ}>}c7cǾ}>}cǾ}>}c~a\͍-[ :Vo\dHd9OxyțO:'h]IjxZd'Q&-&I3||2M܎5O~{g_M<ߛ|%7ʙ{gsϾڛ|{ ο[ ^MzMNy3W^~7}snsgT?1lɽI鄝v'yf$o- HoMl7ݎٓԤWݬN ;vv7-A6bOik?Ҧ˹ v_NA~QgjgK;Yy L5Y0Wm$;^;-gRc,I<=M7e0f\R^68𹤖NJ&Ѯ]w:tPMG:2hQl_jkW.ߙ?r:I.qw L˙C:ٕmy0[/=dɕmۡҶy6aQzS=U.|&r1YtA0!aJqhH^p6Q3DA#$m&w frƞPq~# tRkkA'onخ7N=h4;J}ĝܵ\j5>?LQ/f+]kmY.rOr*žF=ӟ&?ɥggZIM8f)y؅$tͬ}N5kYT)46?$ݎ ?U }WxӢ( tF?^n׷ܑxtI=xQGgV~::ug.l~=se1\̞&Q TCv/\g G֟/-t޳6A-Kn=/حزn`nHHC;}8LrT\qJRv7m"\osn;K:m=)I.~]N_۷K+{-ۦ+6g+Ի e*sҬPǷKmUlOnm/]OvO:SN_z}1z?m}+Wlu <ʧ6UG{uzUGdyzרS^;;Z%heWǽեz͟ W殲g׹pN Nn>"~`X>:Яx+[ԭj+G -epn=6\.WwWwsR\M1¥q1o\}rlt0ϲW#آ?a7]iWn:YtnY̼] &o.Sޖ';8_:ط+;Ckv]ˋ*?l2E?^? }̒?5=njݵv9}U8PNra}~HMmnw˪=?u{"sdpuxy+:,2jvotOu`H2z~gi%;,!69hvǮ ?ou(tʺ2Ict%W\MYRz_^^Wzw~0u؅k2ٷuo$޻Gu$dk?AϽOwYwYK"{jIwїK- R\MT_UhGu}]5S>OMRKNZ7;_B0|iG(K] 8v5<4AG/Røφz m/'B>ylu]>*GG(?@|aDbg*{=NXxa8wqso|bbG{(ė>QqGg1Gh|k4p\x|#Ʊm<=K<5Qƛ8xk#OP2"7q<;Bc$ΌP#0=c1cjk-;3g?ҹwVg=l5o~~p؈J~tZnt.FM_x)flw.fz-\[ֿۍ{70\]5WVl^߈[a͠Y/}AVPn~$b5xj/㠹5}aq܉Q'ף[a3ۖŰI 5basm ;[lFqz4ڽֿt넝y|1nߠٖېv:Yt>w M+nI:fonɬ;ݵy loN~#hvܾ:xݵnxVZȿp#6UZ;a+nA.p#6ɦ{0g#U O|'nߢ] ⸹p9X [7Ka+ -Uw…q{:|9 up9ܶ_nFm?|ۊFPZ͜-qs>ͭGz'dc׷ԕ`ۨg%nn*ݚk+A-$v +QV{j#ZК4|cOWn\+ڨf l˱zȪ}HoUzj-]ݤ5}/^#H^7k}^|'ף+\vVioә^̣Z}@r kE:Z!.~3luxuՕhiX>~#Xj={c7̀uW`Cvћ8r5SB8wt` nN6n-Jx>jn˓/+խ_\Z`Yq'_RNTٍ`#U; ;Ckak=t뇎 _-/} wԏ,vqވqdn߹W=qjG4Ǯnݽb7?i8\|y&1aHn%4Fc}GFoݬnv>wWq'\^^|R:&zko%ݧvp{o*x{QŪ(c +J $@~ab^08;\a;ak}5n%? -=I*p9BE4aŽջ}j,ڍg*nz5(\H0rt~NR Mijҫnӏ~MN~fk}NvoNiSz?wM6} yܞW~VlʩEM|y? 힓Nnƫ]nҗ^O^Wq[U)3,5[vaƍbw7ZW`qmA;~i}x'o~f;[5\otZ]'QI6ΦByJ捭*my߷˻lR^ِ|2wm^c5+ˁxc-+gk7{O7J^^q_3^N7;Ykm'6QÝD[vi[qnG .K@%%=RȷJK(=Qs^+,MYr--(^GJ){2g[Ws:OvwI9P\ۚ m{6jR25QN>8%yU%}4׫9]L7Pv/vj4ގ)}׃t-I[:|nBoӆ%9Awqѐ}YejsL(O*y4(_2w/X2ȧ!mԜ4ڤ劷I;OU4X}#wcњkNsmmQ7 ԩ%i˱WeϽh:QՂMHӌtݮ}׆2VlimߊvKCWov3ʩc%11͵oZ] 3|t;>BzƽP}jkȋɿZX %ո CW(̇*gxSsŒI|RאM.nwPsNv?=Dfy*yU%6`'U喫T;f05S9{\nʍMW*_>x#}\sitxJ2|ˠQ)M+SQ?U埨X|ƾiT|ΒS,V[3VOItJ}~7 BUC&_ӽJ:*fL[X:o{,{]_'#=RvGOQ2\J*N^#ZC*#}l{ 1(v&8Gf~V1c..Tq+ vj7T=*uXŹQ˳nUVr½ר7L7:?u텄#W]5>*_RI;~xñ*nT8JHu+_[~{toS) *^_F-E>wá?N|vHZ﬙qR-x*oҊaY?iƻ*aܛ?=|7\e`i,?O<IuڞrǦE+zۓJ7穦U?ݼ.*Ym*%+gI۶鲵N$W""t|=G`D*&3]oRI[cWUۨ稆 "v_M~yU\YfJ.BPTzDmͼ(~KO%;U{ԭ?4<*U8Giб8E/:~Sϫg=QoO#JX/Si߷JNRt9\J^uO_Q_*i[?<>sgQu#T?o{?uky{ٽg?W;d^rFKTLI8yQszRM[aQj.ۅ'Uyɣ:_FJ ےG䃏 y2*6Fj#wҍo~ꂁܙgOm};X'}1mIꘋViEN j,ե[8;F%^qJK~fGߧ:Ι߶jN*@obNcis_8_z7ym+U Y/ y5緫߫e:Ѩޟw N=bƽ=yFUcNǗ8vJKP a;T[mwjkاӺw!rTܽ]J5c}I9"\]D"ǾBS)Į*kgePGJ7e?riCTmT'W]J:xz#CU쏿=n/ 䥔_ 8'˱W޲c:+=R%|5VO >GYHx؅*q{ Tى Tg#饢O?Z]u9Rhǀ+߆?2{Œ*5sJ۹"ZwD'5 P \-~uT|M?Nگ\r\Eyc8{9U`O{ vqPǽ BJP<%<.;^pQKI0]v eP29LF/mPw/]˫_TKb0>׺(_Âkg`6 O0{zu bɫg`{q?P vkayUF5?cz۠v6yZ=DgouI&[~ ݶvR/9)tBioJK~/Я.:Bv--UJo+/믪&7~+{Kv|!Wwi/^Ʒ,ַ^ʺiue|l] !c2y[R~i9/O7^K?NW"[(2{Эz~z\)U?^dbYgOC0z[~Mߓ@%ݍfaWJC+ O>+H{1#U!epD}We2c !~6dyJi G$̤iA'ES)W y(q q0t[u4`7z-fa%q@{07fK}W{<1vnvK[C>;2K60+G nG"wPR/kμލxlk72.@pݭeXy0\2>M]y%{ xxɼVxG]f^v8L7s-=](g[S꿉,yp?[J?,{"~8_Cf1&X'y¿ )H;S&o|Le3^yN!roqʑyݕGoO\y Xf=C.7&Y7\$t)(l~k7?a>d{O&^'HgߏN|Y=7.7Ohz͢(o7G:5v/c=H7@|13h\oI?e)aN}\FЏ#n\LJcV= /pk򌤝z_JWL|3G{>]W۟JcPڿӓv7ghØGL!E<g.?L})`nI{_'ڷ|S8>qg}]i&+N{g|})o q6qޗ8ur^7ܕ|(GqƸ1A|]w qg9r:i Ss~K#_3wӋtN6qc.C=zP!/3' }FҎӍHM}1)w/cy\ 2^;_lc?}G?;rfq\71M5yȝAfQtEߑrC?snGȇlgsaq F>ԧOg/ݑH&ȧ M^Շ)_Wg3ߚ=q15I:hpX$>d7gT8廁~IS[7dL6>1ڱ=ZskD)O3|X7%}}G^9%pܬӜu֊n`1発5fmlAvߌu&ONO[b߂[59^M֗F/hfc!eJ HWO}yv4\ ];F?c期do&}#(w 9n,L؟/)U;ڻ<8kg;v0z%^ݒU<1xgnpe~5~5183~QϤ3;.7>| >LDp9s~+ӊuCW7y+~c_਩7 opj#w;9ƒ#cF/<687qipac4yy1o1Лo1m\=k_sO6o &63G%fnb׳N#c_x2v0烺1qOc?O^Vu(闲oh⫦ɟ\?&i&NLiƞMO>f3gO77\&n?-,?3/tԋy%?@gLy5r۟Oʫƛ?`䣟m~dXBOůK d|T{YseVR(|f+YIf>%H?J{BFזc˼sRO,)GMo,M#t3&#UQ+os'iac._'`{[ M_;߃g/>HO{jHK%I  )|mΦF.7 %5Cy 8Ha!GBm4Kio {dJ\ _39>v)缡R ]MLe>e!f d{^u)Ӆn(OҎc>^!J;h"o>Fk8Uxs~}OCw-dl]r=pS{6G_Y0,r–X/ c;Aa9'msY;.[P8N~a\o` Ɔ9c_刽}u&h!UiO¿n#e!kiث>~*#!c6t(|]FaEvm0MAnoq/ :F?q / ޢH?v "KO+U2W9B_|й EU?c!r7\vƃfց es13;؂1P[V5̅le17 18(5ToXrP]ueO.ro/6B<1냽FAs`:$Hv+vgyX?8&-Y\K{ Cb!BE Fak}vT99_tQA\m7c8dE)?;E9E>66K:-[\R-Q`mA~O Ymƹ}g6Awc|idvuþ (k%oٯ ]|¶v6 4% bF|;$i=a& oa ob;]|}:A_`ہ )B6--yŞF=rψc=~@ls7L󄜶g#1<;"j{XEReҶ17{G)~֒t"1e-| C :?6AG{?1jĞfrug#ۇWZ^' pVl@^6ld#.}J R6;lb}[clny5m}1SKg- &ě:PEm{=<Z8#}eRC~qt<?FZx{mccOp<ۈu`}E, |:;|ȅ%EBg^sB)$)v<鼊x{ xAqVP_bMc* 2\cKeÛQ#V\ľQ{FGt@;K|p`, oYk/"OY:?2YYaYmj~B[KE.K~G5Fu<͇oЎ6]]7\zt"[;u;~} 5RbB/(aMb[0[.>o݆REf#Fmr0e|s(ϮI; \??XR4f, v\Ƹsjw=}ZK8oXFLXqp4懈WAkKqֹr^?P_!^G}tfK#5]LXcmM8՘бPuo~h;Ϫ+Q 1~)$ص؞L,abYB.?P_G=Kh#?Ѝx ܙt\M&.ɽgM#\},m}?~o=iOw֑O[',:͏k^ߢLzo=S*{h[곪ߖ+ Τjp76M~?\e_ÝU>} :k>LcA[՜^}9pYpD9w9{ajW9_>>](F}&pj9H.GB<Kzqe#;eq^v{D'O}8l,䙯l[ |uݿf]A|8m^n@.s[zw`3w p^A,WXٞ*gACٟc6kԒӔ}r[^E gȤϥ?+ÞV;b90ꮦ0NΫWDIً>B,+Jgds4{06Ra[6V='g}{,w 6ws8|"^8o}UhrNsyOs5(#ha},U gewn]LhyAܷ{ؿsw;..YGPr<et۳|3ec}njuA\gbJmrAt<->;%gVT\`){Ϸ8WϏ 9gQsOI6;1(#&N_T[lFM,42xz;aB%aA`NXAilNțpLb2xjTcKH8->Sr09S=Is%9y$'+(UR,1p9}~&wQ)"'j|b9DūB>&)6ߎ!LZEW/KɞUKEpބO50RljV@!VW&a`/`V}u##!X,3p9 2&~0ΧeQ7%/yLӨv1CF*m1I$H=~[`Rx.*LmN2ܴt$gIoa<ҫ>J\Hzobg;DPI?T&ޣ&"ڽ℅0.J{Մ&x=Nw_行܉>8@9&:g؋V˭vHuӋ:`ESɛCu| FGKwT|bPu\Ŕ7Ul-뽬B9{ŀ8qjff q䈠Cz܇߻DZ!]S[=Fr e"gSHpOX>nlQ:*!z>[r]KBEJvC<_/)_&c vjFu)LQ0]vfGC?2#XhWVh# pG)5*`Zpч%A'=4v xkǔ0( E &a8_AMjUCjEzݓD9lLֳOSicYXGʹA(=:jZ1ՐJ{\N7RW(, -5O|@߉Vu32PsZ3Nr_PISLF҄*<˧Y!f%m(SăoqV)Ղ>+~*é,.] FT0<ܛEggSqڳط8&^[3Qb8Q%)`C&|Rc}5֧ Q ePЅt]ޭ&P-yZrHzi]$6l/0TaeJJQ B0c65d rQもU}(+}EJ=+5Y3:Diq) R:U%ꍄgq"/4J%gaۢt+Ԟg貕mqH._QBp:@5d^XEBU8C]&txV2_jg'\e'2Q%i-ɫb>>pq,hW yב7xFvBur(Nq8wd _RfJs}jDW3G w[NIo +T_T5)S))M.stM, ª:.],U2/bTAQb>6J\WƅN53 GUat:tXnCK_Ļo0V-\DwO1x eATPV~N Zý'T3%)y'TPH#꽦]z.uν CE k=oRI'vo~dp-.0S4Q/.h}-n77:fx8J.3%'[Oz/甴R )u1*^7*euP_@5 R+uRmHq(-#K@Qjr$į)%MFyQyS!ei06TRs. Z xC$Gk!5@(ט׈ׄהwkNkFkkA廒]oIdʶʶfe]EkG գڣ2WSi(_:k>h"L*!kFdDy)ʼn'%\G#CXSGgT眺uEe'ښnk gZ#j $u]ض2^ S QYb}&{_'ϣN 8Y^A^ ])]I\p(e@zp-Ѓ?VeaFrT K1?u3RWpp,'%r%L Sa55jL6<{)T pUI\XKȜˌJ_ ~EꝂ)_0|R>pc}˥/=S+\Zr_1媇/&Xb69䫱 tԎi%^as;!ᤊoLjyx>7#ASqz<,w9gH9D0u&It#呇 ӏp>C 3tp>C 3"P8zY]QDO? wt.xI6J-9݅bg ^ܳeprR?gүB,*Kxg3{ɡ*MQZOеYxbagyJIxJQ'wYkrJd =u!=++#z=${,k,NR"؇yٌL7m&[Ft9~aw~: ]) )i"2uxk=aZET\Xeal-n&nTe ~̘?CckɡZk)[s\pUBר V6<~_dK]v" w#ӍK[F*|U䞮_Zr٥$JK"@۞&]qq2:`S=SL d%qT{K*tQXCuɌ0%`0;'InzŜ6(l¸ENzsR6 /}ts5@8*+&*Sy .wA2_vjO %i| O'Dc'2!IF$oViUc5>w3+8wfy6ŋsȅTST\Ց+h{)44*:Bŏ*-8-;0zxP7ڈUxm=4#n_Õ `0rHI20(H)/Bsզe6'.).:N*P*B*ޅin.'lop}[Z$TQEL&F`a5Fb7л" .ZPSe%V rOxT%K>ݑ >TBSV4]oh_ R_߂%E !ț͕T3Qwt G|%^j{ d&59}4Ib[TivvD~Wla/?=! `|.a2Fy ^]6r`P ~BC}|\.;GQøq ɭaiw!4}?S'UgZ x,NJHTNd!d~=Q\:EV`]TIK\UA~>PT*7jtxV!ـ3JOlQFH?14c41٭.V:R7MAEÇ K#[jJVjqe`=uvIMz|䑭jn5|`Qy[͉dk5l5þIj'9t1[Ws:]VkQV}N3l ^g;[Jj?cΰ5{]muڶ6d:V]N5~pӂ_eӆSmu;l:`5fګDž]B; ōy RYX DNBf)p/=UG&"@ɑ/rKHbJxH2'.T2" C5ȄH<_, Hr!0*H=HC~^ҩv& 3jMaUpT/RÑ}Dž; _"dvdH wWŒ8MMm J T/!7R:S6]5.>2£f+ֳ֜Fsʟx}qU'[z<~I5 0rc`_bSX?W5z ,^{kj^h)hf% {68 6_}Oo2{6Xyc>'Vsp_|l"ɫo|y֘`wZ7?zwkWR,N?Rrn٢&槛3wo>T=tנWصN=_w{s-;/[_xܴW ,&{x1>f]_` Kᅗ֏?,}W[W5rwY >[\>}%^}l0_ <;|XydRۖ秂yO}~֍ m|>ۀ~٥୥G|3}8n[u?L]t?p\q![i̚ C5W9N}%S凫OW^ލxB.G9융zУ?Ȕ\\:wT NVS/#}EN]4E.Kz(ĻE!/M&<(O ʓF婎@yQ(OC$Km.'59]޻kI0I'l;k$OnH/2Xf+Q9m䮋Uը\{k8q˯GP( Dr /yܜɛQ; KK M47݄v jG9Ws]9b/~q{vtFշk+^MJJc?Gɉ6,?y 4vGZyp ɗ(lC`q;Yy%Pj:F 8 -Undr J6>B5虄GjKPo's?ʇXEǛAQQ·-UW Gx<(,̫Cd POCTGmT8相Oڏd_CZΖNC6!uDоh]Oh7T r5<k/.iG]ě\20yHxCz+*+_z`\*<{ix:X?kt1h777S˯lW-*/^/R}I>o1Yr4!*G5v6AiTZD۟#)BqaNr<*3#G GE 8nUv$JJ6G,2~a{ ^O Q=ZGP?)VK0K[a${h'p*}W D0Iic=| 9E#9QS<qXn$u%3^b^ ..bP}dzՃE_E8Ocyn z8TZk[ &rUgB} 8U|e- %륶h/@ozp?`CQ\J(EQBNѽ>"1yc "u\Ȩ@yjE̚ޤ ]P rE9?G6kW΋eb Pgb7WB6D)rsGivjRKAb`ƨ|e1RҺN>x"e0Ԑ6fw;x'^exe>k/tdde85E>uAS|tbw+HO>ē-S! /铕fd`P Ep C }@EIJe؅]+TjORE nE!v ,`o.uscjS6"Gޤ(%tA| t8}mOgRM"eo!P1NgI> !4ԵJHC(*0f%_"lMF׼1" W ,̉03,JeU4)՟dLީFتрFršXzzzzzzzzz0PmUUhѪh"|/k +jWU|E宪~^,;,+/Z;WUvuTTuz$j~X퇋%g-TU_e'ZD[.vTTΪ_kH^]|SUUhAkvRUTתWvRQ?.S{Ê+_*~vTԎ+Ze]~iUUWUVuZ?|Uh-HVDZH*;vPSY{?Wn_Y}hhZ\vxÊKe?Z;\l;Z^UYjKzlzZvS++V;*To^|HmU%_vm|E^~mT=>~.kh/gezЪϕhvV_+[oUYUU~QU^ToeNk{+kgVV?h뉶5Z{ދeחKh쫪*=VnU}+% Q 0* {f!M&1.%1 W ߜ1+|36)N_*G[I"|3&G>㊿'|Q"u>zM9k{WBj%'~MO5%8yw3 __3q,;ku !|N ]|}pWqWzpg{A q'寃4@H 4rgOȏ  i q*o4DH7BCʅI Hz''~Rh]D@*4 =ߥ@ ItH3 Idԭnt;; i& i{ i69t? =!Hs!̓0G = i> =i' = i! = ig = 9H!-< %H/Czҫ^2HCzқނ HoCzһ=HCJH }#HC @* Ր>!AW7!m&H?@ i AivAOvCi/}C: CC:(cC:$SNC:gNڧ ;? /NyHs"&o?Cy<?CtHy<?Cy<?7> ]ᓨMOҊy<?Cх7sό\x[.(ޑ 9?C dCy<?Cy<~$<?Cy<?C7BCy<?Cy<?_ ?Cy<?/|2Cw@Cy<?Cy<???Cy<?Cy<?Cy<?Cy<?Cy<?Cy<?Cy<?Cy<?Cy<?Cy<?Cy<?Cy<?Cy<?Cm ,jIX!Fk»<$Pp`٠RE$e*X,C(KDI)pZVT2P*KH5T"SվT %z տԠ ?:'  { 1}a0fKQ}afQ}afQ}afQ}afQ}afQ}afQ}afQ}afQ}afQ}afF()[>^:mHݓW˖SzًK^Ӎzٽ4GcS: W9\.}z\g::\go59K^Wv;R=>|-e7ewyp܀Rk:i붻qCz~KNt6.ՙ0>u;šŸaw:9bǢ& w+͕;L񸃲ߋޗ FE <Njw? wL%h{uxki|m Q%C=C=C=C=C=C=C=C=d)gt}7N A!!HQ}71 FĨwCQ}71 FĨB0nbT A!Q}7`T EĨwCnvCˋe f/kgۄCۉ9wuq.8/C=C=C=C=C=C=C=C=\Z_./֗Kg8/ri1/r`T_.ri1/ri1/F(/ri1/r`T_.ri1/ri1/FҜ8ؖ[Єt9{ϥ>s<;7ff|0Άz_:XI-Ph!0=<Vߒ~:}8i?C6 LqX ۨfLFV(;tL7WIOg}l<UO#nKvU =#Ynb83PP/*!//,W+g+&d*|pE(/3~[C*Y!#s 7J9mjl-Ðrؑr9V~qG[K笟ˎXUd0!!5gBv? S;bKgB#z$!sR},uHc8c\jrnaBo=l9_&_ȸ) *0C_q BYLxGf0TpN5SM%?RMm6^SװRO0Ӑ<!uS;чf;eqQ)$٘9x5f;0!DŽF&lg􍏐~fppL}N93Εf0ぐ|lyg:{ȉQ1n`>|zGu>C?;`bl?K`aM~t&d3a#/!c׋~QMɾCƵ9^Ӿ0g.(v/gYO)GkڅPセnɮƢI.Oޤ,as%/r\=<1L-A_$v[8ܹN8S,*Ԡ\$)"{Ru)]wp-T#c138:VFXtO.q+qxOAZᔝ'O:E~\UT-xO$A Nt\tO;9w݉A(!uj3k!(%)'vYt"Rb,PR~# G5*dۭ`Ƙ{38fz&+ 9%:!xBL&xZK`R/KnB@*>ЭgR7DㅂKl"^+ )tUq&'baHu!Ճ$RCTaHW@j (]δ R >Ne# 7@aP HndǴ>qODC4G<.介ΗNq޻04W\1T1Uҭ ͵q,؀m>lksV#{!pJbY0O(dcLl=$Pu8xJ?S QyBzC. [ƾݭDž|ojO[>O(t]5Y7yؽb ;=QҚ i8I0*(dB!-[B258_J㴦JNɨB08\.4(4r(x/hYA[ _Wi-Gx M"Y8])W(nRGv+=JҟVRz@q_)d^H  XT@u $Xv_!T +B*ޅi1n^ PopAˠ>*c"1r)KXzCN]N-YpMb䣟&в*b}%+1q\ʑ45!X[8V2ejWu&pcќdK,K7P2n?ڲ"%L=iX"-qBEBfh[8-soICRkĉgy!-ÍѦ]뀚sNq<)oÝ0EkUm]{sȿž :{<97'пҹ}M{uQ~ixOkHo->k A^xyP`/2xw~uZ#}پeUX23o3-{G&my~*Xס/Jݱ lh6)î{ ]w] Zz73]4Qx ~6iX'|T~IJqLJeI zA.(EL-NDj QhHCAˑs8r\wOPLpg齎{X`;0{}|޿tݮ7}JnD[ eFu{Mۀ:5\=sO`B¶3W5G#5~7ȼmo w̝~ص_|7O7o?2C$ϵ('_ۻ ]>n]}j7lA3 #y~D;q?KCF̣{_˃G~k"g[CY%ɏ#?jxG*A$aqYu ^;tm؞l%L~ԗ/mw՟*8аm41kn9}o8K|MF2NjNY M]: nY><5o3W5قOWp`ŝ $L~EuF{,Xs>Xc3k߯ ~D׾Wmݴ`Eg_D7g#WtKLLu`\>]_| x!iˆAO;7Xݿ`IV֎toGѤm50{}5U[w#Fܽ 'Z$XA َ\dEHI3N1Ip`Q&UMd %9~\IjؠN{aP,9Gv!ї\  p WdLz߈86NI=_(jI:~ė41mKEQ-#H|٬%"( 3'%]+]Rw//E NHLOu?P#˘4e}ʥniAXS| _ippZ|b/=_ ˙!7#C5ѵ9b0FCu1sH <3T+rT\CœG,S˝i;xT^ZQ|!GJL^#G8D (Eq66LJ$JFDQX8p }Ȝsl}TSs\_")ѿPOc}$"JC2иkpćhr ױc}a]'PT#>"ıB6"\."lӴϱ06GTMx8Z J$ #5\,u#OJDps|蜖]aRv6'L)!LBuģB"56mˌۜ@Q:G{H<8$ċO>:|Gp0S#Qyp֠H )dT?:v\/D7#}S#6s1@N[l)t-R~6GI.DCM,HeP8+Q8=+Z?MDcWէZ압)]K7ZPʩi$dTDwZ]N%Q3ҵh(iHeٷJj&V}k -2[8) gojNht%VC5]hŪpri7-יIBcC:/(:H3ʉ4#_er-.,u2C ."5Bj x OVON>˺{򊤍SzًK^?.GQ/+(rLzJu=< ^FXA D"W A(m=tbَNzf?*,p((ɂedVsdWJG^,i`l?[r\`r0b0;^I#JzevA>!=C-2mqFh;ICpR.1VgwٹH_cX)v|PxS]ްb9hp~"kgT}t(mFz61xw+~R7 'Ŷ}!YߩPu.ĺNo3g0ɕ#oPǚ{;U`I}iT]>W4!f 9&=Y8C5n5-X3wk\CUFHҗxD[(e5.zAm{',d_.V)ɔB@9y#?xR8;G.Ā[T)M#cFtIpo-B@:uI.. z\|j Qa{. n'ܓS2#3ߧmӅ\}ˬ*a3ԁAC70ץ^Wl6=S8Ҋt%? YIi?"U( ŷ|p& $e^һʋА`4F%(~5X7H_|DUWė*X63= G1!MJ~L?V!x[(wjz q湥>+pË-h ! ae1i4G ͑5' mjGjvˮ(":K""1\Q\C ;|̛4TxO' #T҂ JSߛs;(*1x O-)q' _bHK DkEjY]Q%w*J5SQsU=PKձUK/OqIrA ~GJ)ᑦ %#Ԩz+K^prT<7rQk)N+}ד{8(#Ɨ̓K`%! Cl׾FO{oQ }ٚouۺqIAm#.c%a @MxQs?%ihV Yt*"0^;Gix[sorQ>֠p-5G,&ѤIF>*C,,+e Ae=$ BܿFls*䆝D1>xZ ZhA Lr`d (^ P!1miވ2 o! 7BTX#ځ`z369 ʕ_*Ӓ!z nW- 1\\o WdrR **NMrh PS̴=akP6TX}7oKمJ7FN*>:SiZJB}]>ϦQxYwS,*ޙL5b=P30}3Bt4x FGT^3% EŸ+L[!-N`}rʅmSHúR r ~l 3Bݴ<4t_Hu uRqj ]A("Sal}06DAhzPiaN֌d(0i(rM# X0o?TlWYF z. ?0VGzR-mOW!m!>ůP3%۞gCޚ 4J#jU#6N SO-ۘTZUx:N*y< Roui˅]k|{W!t~ x}4UQ>kI>&ȏ6QW^\"wF6QWvyuھN dJira[8-sSqGs`KM3,y8z ,/Bʸ7k®uڽ@9b׈ޛ_on|xيV?¾㦽U`hu4 <'5wƋ5K`_ʠ/<(~ėaXZ?ߺlӾ[Rl2*o,`s7cq#ڶV3Zo#`[(!%}ǡkRd#Yx Y֬s|^ƸzEWJe #mսMn1㪙ZՒFz֮(_pj:R|vtbl^h-/8O*߾\HvrB\-߮]yL;S.)qO_dcr 6>ת^KhBQG)5M =լLϴf>˥rۉ0^*kECh/DBs; R3*H/GT%0PȯmIiHץRn!U)*DiQwzT <2I=Q6.\ 0e]Mˮ&,!~A6Jr\P[#m!w!Ȅlz{NvH(Bsij\_7g1?|P@'^o%GOE^j3Q)X||-j;HGas^O$y|2atJvc90=X/u@!-6.!kÄO|%yp~  nJ8mk1}-/g+OCډvi;$SnD! 7Vr\: 4f8AW7D~߭q*nYq?\~=qRy| ށǨ"7rgC##'c!G/c|>U%sV>W1 Z뭘s#ՋqZ{qQ9 'ҙ,0vb NOW7ʱf|Q{Ul"{Όۥt~)._j}6L: C):_ C Iq*5!3E_uC+{?dwt<_ȸ2]j{;41aw |=`D=>|'}o>3vf5..]y$ |:ks$+c?yz@},?tkWW}7$I{՞񉯿n|ֻ޹nfjb`mVU ̛ /;2?hyc >0zGߑ~_?%'Okr闿me 0sb:)~<3Gm%K;Y=\[ d%]n9?ދ@K8]:n%p]mv 9h=Vpﳗ]w}_WV[ JdMHVȄ+tŝ[l0|oQqvu#j䪥 gU0Tҵ<^GVk`/q<GXOt:WVPlF Mߡ/)1,ea' )GZ`mPJ,һ.itM, *Ҧ|*AzẔvZ ӎhmaePDM|@ݽVRUU!"J+g=0>Bq9'[' ګV]mW44\oHmwgiہBepdFs8Q&~-7(ulG!z~<:÷d+dX$hw|Fu~ZU8@1e"ԫTsL-Ȣ꘸#hZV x԰p(nzX%G(܉a=G"B^;h( J⮡Sm>n3Ug|_&rAyqĭ`;Ǜ𶾶;tP h֮@DPfcuDIC-;m1x N]*]FWZ}T/6{6׆{Fb4_ں ׈F9kD&qs٧0%1xmZg`9[*|{tL2ҕ\nIKP@PPPPPPPP*?!ꏔm=ZmTVSvWsaEo\QUՏ׋e5EEkSQʮ.jNd_UoUկ_p/ZlDhEێYk)_׫ڿ+~Vzʿm?h-_vUN*ھ껢Z~YN*څz~/uXQ}E~rUUbKEۯ΢qElկְ^Q;jӪ_kGm{[ުh8|ZWuUe'~*kOM+UTWUT/wXQlGkmZRVVՋV*WzVM^n:ejUeMUفUVOޢnmWUޫڏʶ]ovE~PQ]WTZrVߊAUKUaej?־/*ھ꭬WimoevUQ_YGZm=ѶPYFko{r顢V}UUNJڍVjGM*V=iCE멨]W*jUOo+jꥢ^꽢|m9zB}~2Vk+5F,=x m̕#&1G8#8#QĐAeJ13K1J,)-r$0I!=i.yG!͇!-'!-!- g!=i1%!eH@zkBZuHo@z[CZmH@z }H@Z i!}cHHe>ҧ>95B:H_B אCҷ= 6BH!m6H!퀴.H?B nH{ 텴~H taHG t qH' t i.(gH@oB'~<9 Cy<?Cy|:$<?Cy<?CFHy<?Cy<?C;ߓ ȅ‹q᝸:\x.s<?w>&~Cy<?Cy<???Cy<?C!Ay<?Cy<]<?Cy<?C; Ay<?Cy<? ?Cy<?Cy<?Cy<?Cy<?Cy<?Cy<?Cy<?Cy<?Cy<?Cy<?Cy<?Cy<?Cy<?CrooF i 5q$,W Hq׉k]ʃdLS⢤%0x(I#%WR*@UHiU@.UJT_@5/2QK@u^"PH 3Hk% RL_`/$/k1/k!/Q}XQ}XkXQ}XQ}u0/FQ}XQ}XkW-nSӆD)=yE:9G;()GQ/ݛN{9x=yorzۧx>kuyfÅy\Cl4}\uqE }n!QR8|C\v7lNPG (uڽn7$~?Ig]R C^_ZJ]pz)v,j0\Iý/q;(Kp =nkT^P\Ϲ1s2!p@&H[&4FΨO?2䔿/s8}1oobT@Q}1o FĨշ?bT@Q}1o FĨշ?bT@Q}1o//}_NY8¡96?CFm:fo8\ZPPPPPPPP_ri}\Z_.חK㨾\Z˥Ũ\Z˥Q}4˥Ũ\Z˥Ũ\:՗K\Z˥Ũ\Z˥Q}4˥Ũ\Z˥Ũ\:՗Ksc[:';lB aKT>uVPJޘ^c,:m~mӫ`'@Ic|X}Kᤍ%(43!˶WJa}&lr29Z_g4ҁk3!/\%=[8T?~VQ~.cUуCVWlg]x~jGoȗBcCU,n\~N^N{Ha;$?me\gX&(崩PCʵ?ncGNgT[Y!o%?0.~.;~`qWל q #kX.L}x/ Lm,\}H gC˳8c!C\tqʹ YYLs~|!&T(HG~2.ge2! OPS9"܇#lL=6?H6xMe\wH9>OC#1CcOMX^FE秐gcu;ט9vb7>Bcb3z:18WÌB属"'GBǸt`ץa˃특?,_7qQד̈́L\/ ;vE7% xdOÜ.pwNfe~??~ᯎuGx=&Mx)kmSv/?pqU>Sq~X</;]q)= #ߙv'RN%ԩEμ"Ad4rqGs`KM3,y8z ,/Bʸ7kל=S5l+[;;!8пz/Z><د[;|ϙ <3G>uSS/$xkQo1)f;cFn K{5F/kv>{mZmPkum0 |daa]$NPv8DMoU]}1RRث_IvsvQ^j4sR:3PW)RyNp\,7C/!Nɝ&O^HDz2!+|\'L,rH/R*#{uTe H59E:C=H—[@jB2M{֨Op;A )55!ӘY>eT'0sRK}Nwa7ؙG=Ţۡ>9+qojituSm<} Gupnf> ˦Di} 3 9(9#I=8bˁv9Sqo_۹W4@oxz)ɦf~v5HS*kp0Wi-Fn̴]n%$4]ABzB#FdkݥȒ~Y%_X>Z,cw^DLC_AnEBB+\S.dUA7?(xb d8;`)PiEL[٥4:e~!?vhO# ;EjP;|| +2KՆBh +_A/^Ga5:x@dN(gNo̝nwK]|U*Gnڶgi˙gC:DWÛeu{8! *s*wV8J$/C0==8+?#׬iniRkNQ}t{48*Cb)<H4cGJQUmXWoD@ "@>VvtqTfP˗הVϿ'Y$䓳)^g*on*oHS|ni1)pSQJɥ%c65ẙul+-^Qa吒®0H)>T@jy`u9L1ܰ"z,]S@ eO(\D n?2&j 4ɪ0B$thBMXa ;b䣟&в*b}%+1q\ʑ4b?gE$B<*]n_Is)J`m7Q؉=ijx_]`k'(F xyPJ+O(g&Mȃ_{~KN{ LD>W$pZ mz>s+Ӱ*Y@ hz2:N>JVP6֌RwJM,t i:S<{[p9m,mvo#64|`F<ޜ@zsK率~pVv?7EGI>Ǯ#7^Y|'XRuxA#ltu`kb~xd1WOcɼW_;̼yϴ;VԶ`}^2w?+u.uuBĻߦ6`wƧyv)xkfv Bݎ“$O M,O:ᣂ]pEcU*KJ(c/((uD)bjq"WCNBC RXΑ{o}50dv`v6u+:]oOqfՉ@Q#)ag>uˌ@j]?tj pz`؟mgjƏyM?DwEo5GjuoقjCgAG_ww6\7SG4闆퍘G? 8׏4ֲE Ϡ̙Jj/3GxdЇ*UHªZ]L۸'E>S@aK}|lAJ84,k샷ŮGM2Z[q4NR(zb0?/qſ,8CSxNgO[>}MoSm?X4zrq>G6}6= <`Q>;֜낷8ѵo՟|[7;X< <ҫ%S{m]1<}|xצy-_^HڲaS Vo2XcF?,lh,k4;({`F ^{u_x xdշĕg3jM8ƨeŢG`DG+ܿol6Rn"IUIOq¸ ><~XL4Ks$Y5$˓,"A) .Yr1UZ)Η\K{0&^\B+.iC5ѵ9b0FltudH <3T+rT\CœG,S˝i;xT^ZQ|!GJaP#[8D (Exu9np^];{#Q##W$y?p=ɜӘrQ"| ̴aqtTי‘[S*GtɡܞǑ[{e QX8p }Ȝsl}TSs\_")?\( @B*:m%\6u@Qu_ JڈpٺMr>bTQ5 ؆Q;k)('4ԎtTNns \fD׍T:?+kpS|zsZvi=فLߟ0:0  a:EjHɃm$9*WKtxT7.qI-33Ο|yt.@=` &GA ٺ)dT?:v\/D7#}S#6s1֓? \jy4SFZl\-\j$ZXޑjp:WpzWNKY6$Ʈ*O-++S8oÕSH6•RJVgk`Q4ӂ}ʄo5i{0GM^Zd p:S*(RZEk^K>: ׇjbUMoZ3ya!kTz:J)j0i~\Cq:-.2JJ QFJVҪD/WոT_@.2QK@u]"PH 3H6^ ēSӆ")=%v߉,Уz9x=orzۧxxdb/מ2{{{vۧ,MrwxO9}n!Q*-L qݰ8)~@i)7%}6a붻5=n^O:rLLb(7~h)u1nNNر Js%=:p1S<,M0 Yٌx_ycR߄[ߑƒU^l}^n~.uXj>ˍ|Gx^~@ s_W;rˮ.7a;JŐv9̙r 9 =:?9UZo'a #6% l]]OAo9g8ڶ@#rO?@?48bZ'O=le_px'ԒC^ƪ sI[zJt"YY,L}񟫘FK#Fy]\"Kʊc.cm"]Z:gRxOh=HApWIHp((7 v=@<##?bIc!_)TЭ/Ha%snOq&'lq߀Arq#>WA;1jh UH.L#[^FcoDqI}ly;OV,:Crmj-gD^vBQB)vJؽNUԕ¾x[qF-r[+pC-r;ޔUfcFsYsp!ݦ#|48nENJ1t÷:|[_]Q.EJwJ(8 `,ĜsEq J7LIi2oPGO0SI & *-N}IÓP[N#yMWq bHK Dk=jOhT ^b87ZyB `Ùm+u{r%:|%=<ҔQd5P/sםv_: W vjW^xLtL^;ܛpG1|,gl_c/y7T ]ZgP*.>;GHdž{V(R˭)JR_ >r!f\uKQr;ѿ%J:mֿRl/j¸ louS |s۳3_qf~co}оg#E>7'yaUK⍃۵*kot7;jewyжs}qi`u= tфE ;ߔ`LJ=@{<{8c7N{.3f9?gk?w޹ U?:-}!_ۿPR+ g7?v%/xիvӶ;|VyCgx`͹uV/SO?>8tꦩ)tkR66c|}S͉l~uXF{G<م'١WpOi׷ йV8ok_;|dyc/(jhƫ47G2ڏLz8 ?\cm >kf3 =v,l?[R.%m/o|f4yݗOOݼ O2&{̹MӞnp˵mW\<8򚃏9?yu˯߭ۙu>ƍ?wjys_U CޞwlhFE_~Aof~8wň;Dݫk|NLJsxok}pt_jhDi=:/8{N#;nmq}[  pmp(wr W=w&޼)ݷm' Wfy+}u}M vg]/?|X{걷|`M1;in_yvE߭g\ Ƹ?m3oZnB!8a=r>k[MV`s8p==Ư2hp g'nGI~|'qM)WH^hW.=f~ʗ[12*97m˞Oڸ?/[ vtfߊ`wN9L2|+ X վ ۀMOR~|K li;;=2:~_AfO4Li~%]m?ck7/>xܽǍ jj6xsj5ڑ {ث_{]=w?Vn+x |> coxE.~#p𭙓> (:6uMe-^j]~9g 坣y|7ﵼn`n4p|x?zl!8ڴ-8sM悽+,S׶ }okJw殚ֵW.FKs{ڎ:n_ezǃ=flXU:ጛ7;0이tu;;fWlݜ}⛆jƺȟ]{&~}38pk~1{=yG=Ƨ.{FخhW'LI7~y` w 7Z=@_ρd~xG5>jwne=PN.ƉSO9v x=#>~ćv?,|ܬwds8g5NO}]h=qC~l1]u97^+z7Y<|c< T'9;7zyaz:`_K>x7jމ\~dV'뜷Φm:=|sTA٧<3|+Ժ^;Nc֜/&O-}~kӮr~ 8pǝǎz&ˁc[w{'8+3}lٸMo']7Ĺ& t8>L4 V,k̚>ȝk_}V9n2e_XNvh7k8yka-hGL6O_ [lXykkkuS^>n,esVr9-8 n /~G_p[ozù/e b;3-֜g&#=ެW~f- ^Ͼ,dW3j9~~s-F>xx1w|_bA`\)oFf (OGm"lK`uX`l~]`[`_C2K5j68'ӟOL_=9hlaFp뻿3^bpEѦmq]p䦫m?}'|Lp[? /i/5`3:fqiڭ{yp+_9+8z-{szϪ6毛/l8R4^ഖ[/]3nm/V~*=cmWުvs`'_z߹}o~v~ש`6ioSpdg#_4`oYSG loS޷Oyq/?JZ&C77gMkOp/jl>fPY^o ;?,e{Y߼])؟z;c#֜J*.GnO*jrkZ5'|us/|8gjv| g}{ x{}f]T[cގSF' n 8~e(8jlphl^(~W~~:qc}5eM><:QO/Mr\9=տ{_ԾS`K{H} |.K9To8X_ڻ'/.q}58vlYXd΃_9>5ѷk`w]Թb}߭kOνỆ}tggҷ} >붺plZ9pp ?>K[>u}cz|gk[;8CKwXq7w͜d~f?>-/e;]zXnG=p28esH9={kgx!N $gigp,+~/7\f`oUp1qMl >`#c{ڷYtlXsv}\)SY\~(ߴٙ{jfm;w9G}Q!.#.L27 ;Ue0ؒY8P I`C^tfe$ k>?ؿ8uѵ_Z__9/GxQ o|p|[c nx/uV#g%d_\1qhplCOł'wqp9O {C;}`Wëz n(XsGJָpc2oˑ`WKߖy{[):xEu}̷ |%W+i̷5kn_=l8\[M^\!xgǶo5wp 8Vz)fpn{x<8RGnvS߹ԓuZm81G=g 8}N&\:V|[<Ѭ( j,?>֍ N8`6g:M)5 ,;.P,uQgMy<8͆,v&ﶯ n 6Ox8X/}ρY޸kLS߬Rpig:o2OoW=T6ns|.adݓ}4ƞ{Uim^lkoֹ:-wl#}m?zm~-#ƜqWphQߓϽ ءÿ} ԛ}`M5F7Z 6q͆5߿4 K~X8ۭ1= vMA+{#5͎=ƶTSomK„o]frFm|!t<|ׯV/[ҍ?M>VN{lN|W[3 ^__T q>6?VCp6=Sʱ"m=vgoQ ۶̌O/R:o:n|&SKFƭ K{_6V튗K~7' kd^4^;jl-o;ytːB\U8[5eL<>mOB:Sbu|ժz"|qy|`V [k©ZrD:a1K~|犱RxaWutj!?iν Bzmnuy b=Kj!ǖ5sqxot[z_Ls{q>Jיt[JQWl!8K<Cl=!{fۧYJ=>gB;[?/t|srucqXL3_ePMWVu›#7y~`{lƕ6|v#9krlgEG?Nge/Z>1ϓsϱ-?R;$}mKzqvΆԠU|{]tz,wJ[I|YJ:Nrlly,?s֟v{g,Y3$]4-#gTV9Y>l{6?>ol&~?1 }rȳKs\C>-O-_ڿ VV'uXt7b*l~Edžj֏q~j|p>6?+>69C[75p-N<,[yz_"qa^jt0їgM#muxG t'vk߶b`}&u2Mpzl^^? 175㇜W?W~hC[ܭ#ֵ-yǞ5ۗtJݤt:]g0HtxcL]=YfW?BlZ_G_=z𖐰zn۷z ԥ ~Hq:q:Χv]/ʳ<R,1nhtlii%WqO%^? dId9DҟqJyNTBy2EޚSjQjT38s//24%Ն.Uza~RVŧOoccY#q=v]'m)?:2R/=v|Ҩ;^8ۨΞYop~ŧ ն5{myVqb-#}e5>޷+Gm5ex j0|=$DfRI0kмSGY_4[]?h$8NkT< {wz#-fP V(l./^&_Hz* o5#5ZRh~mZ꼹im t=fǤ|ۯ[;{whYvը?QZ\&ͳ5&1Jtت+)Cd8 y56n+?-~_V/$mI{FMԲ}iK\OXvPeome3W/s·@yL1M~*dh,d|ʼn es5]ě7ϼ Gz`M͚h 8\8ɤe5y248SgQgcidp_"NgB4/^'[ϻrbyمU/͜{셲t4Hl_ys;?S:)Z6x#mNX98;M:3~NY}q,q䬺O-KG( ~=Lnd>/CiRN?EezhGk+/tL,&tHڼ_x펲tq~ ]u-|,قͷ/jo<49Y8?iجCG<24V+u}F['߼>+pzӟj@jRy7k=^CɛrvMgtKV4?24oƞ!V\~gs=M~24U -?GJ?<^$|hf IHKYOKͪ7oUWWuM7&8 ,(pt@Q  "uA"(ۈ#"ˈ.oc|xSyc9qn~ԟ?7]k4]e]<ϝ})_p^-7Ms?߮˛[^&_|ʗwEӓEM.y;z^o!_~^OË/}]<[ӟ[eE_]4}ËW-}MnyG>cv>uk/?W'm^v,\?\o _w^|x^M;~OO~_}߿a>?P.WZw~/ ~'s_?MvLÛ#_\ҿ^[ӫw~ʟ/?ѣמ_įۇ/ӟ^{Woط?鯞{7}xsG_߻}~}ա| owUOχOiOOR|OWw -'7 ~}t(/t~ ~훾֋7豢rO_x[:y=+ZqW_W(8JϝǏV?)`xz_;~/|=]]/~/oP~sg_;Շ}M/.gMv痟WD6i[ۓC_e[~fE\?>+"Mr /.>-7W]Q/73\¹xe:KNN/??U|Q^kKK~_=>oo{/;Og.>.˞UoXONjhi{r1b{zã~𯩽w~~yxwruj??{>OGrO}|/= /M1K_mo=o̟۾=/_#QM/]Ň? _{~7_W{݋O}/{ϩ]%~z^wOON^n/o軞Wm?绿|湟p~~Oz/\4}_.?O>'ōտoW~3_|&޺z^x7>揿vOlDx7|~y"o}?秿罾]\m7W__gk;%?=W;|><տv||g+~|}Ãa?Z@k}/?k^ po#_kmD73}~}e3o/?̿Mӿ㡈n~g%ѷ=ۏ~οwOŞG?U_y/Y?ʫ/_zwqK ?_72ܯ>7ط_+.^,xz/>w_/9n[}>)Hگ7V?v׏qS?N>ǯkkFNW>6&Dc}lM>66Fc}lm>6Fc}좏]>v.Ec}죏}>>Gc}죏}q#}܈>nD7ǍFq#}܌>nF7fq3}܌>nFiq}Fiq}Fiq+}܊>nE[ǭVq+>jyNľSǐ?橠&҂Is)D W\[yu!-1nfG+w& Η/(}:oH+|>A3||џMOx ރ L;vD~m1ѺvSSyU xMrh1ՏƱI(S"<_U}G9>Nк:$~H': y=;Q`Ύ =qf縜"}4)h*5{ ;>o\p|q}_C(G|zYsxܦ_98}'՟ 'aMk)_(ܺ6zSǷ3 䫾qiW#կ繣|LJ~5Ҳ!3߹ξ x bCҟm|;zCy.]||xRނTZphhҖxBkI)zkR <G@(DH_zK?*<r_\uʇ9k~XP?G9!6r!s]?9{n'~fc p%9 GP~eH>+ԕ;?|ܦuA V>ׯ7G,lўzbʏGUnIFŐr ~?ҢM< ʡr.bsD;gW,}s_sK`I'.' {N1ԞC?}1~|!~b?!}:z䐤_Qre_;C=Ŀ_}5gg=Iv ^ZǰE?׏v iwd:O9£o.p I>)-+RZ蜰r#/@}~7~1C]kCC(wxF3b荢T.<W_=8Lp՞bݷK=pz?IBzND>ǓK'LgwnF>Zgs~zFLW<hsh6| C9ynƓz)?O'8~|)m\.ug`HFTp~$#3_;?X(?0xTtQ‚__/}_Aܢ<q%<|b?czwvEc׫"7H1jhG׸}؅]׋vzwH_'z[Ŵ2pz0ѩ/>)=9Gz>(8V,x)/+;~Tx~wjH -~+88>}y>;rF||Gnv/gHELg: Ryd:eE |YN9YQ,#bLJOr2u9rW#':y\+ܜ;^nU~U=OYk`|ߌlu t[ 5D9##!끜~\\E>gZWe&ه&}szĊ%ן9ϓ|grb|.L!gx8I(:hBbC|?zO O=R~v tK`80+Gz]Q1 -~|w*C5'O6h7}XeN?xc#y]ykߏ5<>C"}SL}p x2ݛ0㋴yo|%O<9p|Fns0Ix/tr9?Z8k{ ߫c9//S\ʐKޫ>?uuVƏDEFpn>e`6$>V|nE{M?$Ţ{`w4o?cF};_ԇߓ~}'cH[0bޣvgq?(_2v$A Cڿr%B;ͨ'z{3h'tOBg?  ?λ#_@_T8>A GMp4ngLc}"}{IϠ\):~lxNk=O꟨x!;8gFr@:ɏ\(ju|#^~CQ4~j9^sɗ0{c4`?X׉/|xo~$ R9ɡ$~Ȁ脑C<~#~pp-xxz̏4|sfb=(V\FGk7$8TQ@sمt ;'μwA|W+~gvN6Y]|'%~rgߎ(G:'K8Fo3S|[F;w3 zFG'iǡG?#ЏhG\Hv /0v(gٗ  /}$[;Lȟ ޡ71_*KyD㼐q 3987y-Zt{LOtu J~%E=BA1OzuHsn1އJyކ}ih5|O2v{*I}&:E>7N?ѭ+=oEI_zOKYN'f)O5|\L}18OcW[МgQMO |wZI%Q[ &C>t/u<^x%>znҹjC{c֡{WG|uq1zt^w?9(l٦[#= sr>}l0羗IɷT#s;E?tA;SDsOo4_p2ui1K »7ɮHvX':1 ٽ4n.o{o)yw)9> JaқoVI=G4b,(QNKDr5kryQvrv]Ur곸o]*[[ C'W.‹_>68 ;˹ngx{7z'} 6t!ҧOC?OoҺ>KE?#ޫ_%{=Dox>oʼ.8w)|c'}:h7#:gHۗxo#;~SN>I{T:j)'e{E=wX9\7|Ҡ4ObaLXJ )ҊIF5%'=T{<}[+{؟bj_3dK.i\Nvv~-o~xGnsn<ˣ1S3պ9;yrݽOW_WuRR/ _+{ =yɮ ~ZNo ֯rBܾWlM >:/<#sԮN g3_H/?D{%N.:B:}ǽb{{#ԗ9Iz'_#y{Y?/OPʵ(:x{5nzܬt-:%?=>oՇj2GGIeO{v x7I_ <(G8~9:D>OS$}{z;݈ۤ|:2#?pP#'Ir1q'c{Y:;K1Wk_/'=\Ǔd0{MQ9~ނb~Guq#]LwF?y~biDƝ Ov,非+V켃}gUoW-[b/> Ύ0g@}zG{OË^cr;7 /s0=$G{E=O=Hįhor:]۞V+6,bc:!?z. 5dicG=:Ui}8%i{S{A99,)X>Cǭ_0%ݷ8{G#:i_ wK31 n|6pjf|+OD=C+H]#<5ϏηgZyw+g< KxO>b}9Ki1PFvbMv}o\8Z3 2$[W>Ur>~548V~WlcN֫p_>;-~y_}y9ECb>2~W{~גvY{E(-6to콉. w|N_UVO{vI >o}3فY+>Gi1lw8/ A>BSotNR>~}m'Ku5g'<)c?3[ONOwQ=j~z{k|Onir\5qW[sO~+_I1> /{wzt_?dL96,(xpFLf/' xyPO~οaFZIAΏv'%S}s?ȧ#\|ig8(~$qiB^I꩝;zJ:qD=+h~cӾOא>A=s"?i.7B<lҹ1>y+ֳGiH?q0%wx7}g'YHeǯ އW9w AF=^ߴ˃.G{wŭk(-ތ'o>L?}D?ߜ ][LN==ƛiM]krsJk^^p5'wԧ=ڧ>U+Y?7!ƅ#ϼO%`Ei_-j{ыwn@"߳eF19 /,9Qh̼3]=ꕨ 8*:w}Ǩ/|ߙE| r\71k\%_y'*J=jAk}Q^,{ |s#'AJOm~| MλG IyWt%?JdžcʱsLec`#Xw} 8>}Ց/B(b3"=1wk}̃΃h'O跮c2ǒRoG sbK!O F̓?\g1X}O~o/yE;{oPn=>{ް-;O)/}gQդc83e'G3ߩ]wq!λTpk%]u1V;ԿCAg>hg)wu.Zƿ8Uabݻ!󾒛O{\8?è_Pn}Jh}H=oYp)>~ө QzkNz`S^1_->ӧ?O0goߎ SC*7ŋzI>V`]7Wc?WyHH/BL ѣSTUԟLZjz8{*s~$oΕG~C9v!?G5<78N+ ]x\s|ʝ=Pߪsvkv/Oxa?X>׿ϡϴv3qov;G?1;^:b<~n}`}]/焟5+ک v-koeo(\o.8?: kT5#~j_>SqOjNWԳB튩(O쇑k~X"ɽ?'8I|"_Ovbyv~_% 1EwhWST{׊iRόrX ^΍z$ؔ'QVv|bȕQqOi'}ǻm1I}:᧸'1<^z8ʽޒx_gbd7vlFK| ;_n4駣{8VB c /c*DE獵EbG;UO{sE_yW!;L}Gzy}6E{1-S(wrݩ?곪+z.WPy?;񣾈U-rr9fþVn91-NkDw ѥFAˆgv?ť?M"^₸^wA9O_گZ_$_PvG$yB?-uO[ODO?|ޮ~QN>W=;!§?yfI|/\^m3;iү9;}_vo#?j=;=%iyTo g$9=v_/-S{L' =$}7Y{'^/GR8SSϼK_o=Wp]|smʯ@B1U;}G1$}^8D|:{ki;JN9ԻxߑSҷOۧoL?GkS?_ϫo47k\uq^xKz';Y%Q~ޘg>D9M4~#~|`M(;HH1ߥLօ'QvZWi֫Y~L+y~ȿ`#zE;S'Ii'?;7Z|4\ǝ?akR;PޛWOr|/GK 1 23Oz 棟M}b'7ބkԧsܹJ;}di/}?FOx3ن.D{1 6rm/1|~ݣ::-=)'r|ԺR/KM鷨nb~?hqrx_8sɅ_}Y"}Q9d;i=|{7=XK#=#BZ/|_OHwo>\>Ω3W/Mz>r?]:Hz Nu~? Y 1~xޔ}A;#f=NI\io[1zîȐAGo#MǺr'Tq`pOgSTzNHBygI| ?G;񻸂?'Oxrw~R'Һ%?tȳK:DEӿ㇣^sU;R9<ԟ[EwE1~IOhN'AYOxwj 99էzisA&_6troNϬa GvD|`i.Tޯ Iy.4/N:d?|kDCx/qy]y-wZ񝭨}y')?9og7>|1Ӏ?z]p>⾹}wFt=ݫrzi)+&߁~lG}DŽ[lkkoOѾ^sO8/g>鞹6P/+AmF~:N=)i=UxoS?xR,8{T۷M=Kzm#>/O)XĀ;s^?~d2rE2_a4Igm?#pa{ޣ-vE}IEp/JgRSG>Iȧv?kn~{}?ܿp漏D>?߹#];'_^HtWx_[Ox\:Ξ~~(ԏqI_p ׫ډpj^E)ЏES,Q>CE>cl'>BI|k^}eH8Gh!N~tB{WU"-< |ޠ=_힢KZ||s'A?—x.Hk1OÍ'|KH7ݻy=C}q/Իr\DG1i|#>+N p|Z[Ў -({>纤"١_b3vwo>>z'؃%Ao:w)W/_bnrWUޣy kr/O炑i|WԎt׋r??X>GM>`ύ+4!i[a=G==S1Hlڡȟ?_vQqY/gQxPObIa>/Kz b_]'q+Se}p?:WҼ\rճ(6H&_'}t=mKuN{֓ցNM?[+?rZO-cs(bZdkM1TOigH~MtKUFhݻG}!q_7POz|#?;pP9sݤ|QKa?H3v!P[l瑦qCw/duG !(&ws*i}-&݋R9ES8VpL4]~| iGo" ?S8Drx?K%.\L+h$:43bUOqvr#֎[yF9~l=Cegñn=sS<H~z(ىIh7"{:W}47~꫔vvO#[<nK_g?²ͣƃG}mI}=X~V}͘tp#Edr~J#'꩹.#}}@i8W_ڑoW?qxG3?2X;Iퟀv.qЗWǑ|\ܯS~JsC>S=a/k/ )Pg9A\G':({x}]יKi ݊nu?)ߪݓ~miEp:Y?c?F=UGWڝC^QC_A)6wt~yiѿk{8Vo8>(4vB%km̀g;؟~Z'pȯ#^Si3egpz(7vWvr؝j#%9._~}W𚁯܃Hzh7Mx|VHzwoDzyɏaW l+o0/CM_؞0 -;>7>-(|DoxҏvߘNs~08SiysɁ_yݚz}ǟhR)\q곝ܗ l>~gYb÷$8L!#czo$D{|[?c݋tx^;=M"M^8.Ӊn7&{ߍ'ݓC={tpP\Mb;}sOpvQ;Jplj~Tߝ⹮X\Piwn`N|IcځH\OrF0^Mȣ>? 3[3qOzNŤHNH?|:isN[xoW[a7\NmӾX'}?8g9'գQ9ф1i>xYZgϤ- |oG?d+K>[ MOHk={~=,Cg}h/<(7RoM?IїŐ_TTe;y<=s&O>n1OTCҸ x#]#.u{oO}>'ra&٦<#TZyAڝf!y=\~&7OG]Ciq86X!ҁ>P8ٖ֯SA~Tk^Fyr|1SQOp}y>*ix/bSJkᯕ[kx I?3ΥG?zn^uP K9%r._f:W_ugyN_AkL9կѿ9vvc#; zgrgΨ>@kn;k_JzNG Naѥ7ﻺNyTi]2rPފts|c?`7/}N4/*[!"KrO|)7ڇk,}y(ՐQ庇>Z{owV9.ό#;%s^vJK4ޏ+(7~CZ&j~=y^vbgN_Rsrωr6#~ɟ< býh_~B3q[ vvv7ɕO _b;|J8^5O\ާ>+%ڷK~GG} ϋWp)-zɗ>ߔt> FLkv'|ٯ=?hUvO;T ʫ\*zގi][L=xt`qXsr܄76ȥ!W;w1m_gH쐞[lSw[d:uZ;sr#A>*5sNÐ<ߊy_P%|WHy\{I}Hxq>?JO]O#PlQ^AL6}ysyr=n{ցї SE?}C?1_%;}(/Ȣ=H3|C?@} ]vۻ-ֺ;;5s5:?iw}HS%{GCgQ t#F~r_Gc=Sȏ >,}T?N~-h;՟iQH+~꾯\{>-6t0X}6O!6O#Yδw>en) ؇Xj W@{_\'SosvÂ}r?^9ZO0|6i"vv}ͫWR}οUr.[SbUP#b'=9T9}|-ЏRdt_NiDsη^T{Ryx8ͫ)MG*>tvޓwvȵ1gOp[z>#m=X~ēGYݾ6gE9dǡ59羝_x_ǺKG$|?#GHݺp{&7<hy}ﱘb &3eL7'sp_/ݗ--[&[/cF}MXYHJ>  :kg?guO{k'@堊;}~|({#8yKJ2)8B5s,="};M*v|a[ >ɜ2ɮG6CE>#<h/ c7=L!g7X?YgH1Fm> v^ tp~^ >;qNZ]_|[LODOK^KcSyy9%=+%}wRG;ID8>ޮO׏r^FSտOr(%iߺ}(]'1~~tF>/7 xw*zYG9FpCBI[U}"=^,#3ӷKy1^|zjn2 o3IpA_=ZZ_!g SxlwsvЃE>fO ќk{W99~gZ̽(׾=~Z?N>$ɧMH O-6&E?jeL=w1#9zG'ԯS{OpI>_Im.*-:5 ML:F6[?|"Qc0? c} >C'?%wqxDj7M!_9"V|/jp^]:y^{g>!s4NsW+}iܜS >FNא8S^:(_oxd3OѾ"KviLSss~%ҥrrG|A>SƓv px='hR >_ːW}^@yrbwGü~h9Rо_bf5+@J)||Chi'^C>홄SZLѵb=C9O$^zc?Wiߧ|D|_3??r?g/>:<_[|3U=^C~c([Lѫrjw9 9Tp߻EZtBPP_F|~YGz`XTQMzp?|aAԋR>溝 ^x_{Zeӛw8Cpo‹_5Nw^i]`i b~]i5Ruy{-WuN*b <xOVHCo mV:zKr>/C_!}[1/oX;Ce/2ȃ}:±O&~~}hi'= p]fꣿ_ROMP.>mG#?u7'wfh7>5ť_:o }Mt EOrw~(݄ૢ+'bi?D ۻuqP^{,s!gU+-6g־7'ḛ .T‡~kQNL|wZ}+R1#_]z@{"Os/1$39Sħx.8$cNZ9h֥K;bўN(ME?wE;wQ:xZwGÎbD, 0~ I^7Ї]9Lw8Xg;oͧK,-^"_ߘKC5)g7vz i7MfFZS4xo%_;S[|5sSyRP^E}(v\_.qI=:C 8ݘz? ? GqoI}@z︠wZȯ,ȟn#ȴ~udw|ż|* t#9л~7^x&q|=/u7:}E!j&gH;ߟr E١iq#?+G;Cm>+DZ(?7_KӰGb e;:՟־S(8;^oIf7 E<WMi=$:Qt5#^iÄ|gvh =N }v/?Ϝ{8#olI~]V>s|'EBM08{g}苇~ 3|gqOR=wO~#[Qp~ihRG9_WE>䔡>ٱQƋv. E~]3F>&~ vËrw@mF}c<[ZL; gNO1esd٣H?4i_}:~6|ۧkq_zd}ԟ[St6?w䋩curWNy' [{ykh\Ԟk6x㻭CA/9Siq]΄Fu}/cI~EzIp{1~?Gni'oP~2!idQ|$o6 }{zF9+i䫕_'}ln[,Cd/;3O_}g5iI~uB<:L I ^b TKgUnp o,?A=1kꜦ%xS_/C4H ?q#;?wXOx>?'@sD?v=06fB//yq|ci1CpI y|zPŤoЧS'y,oB>rgꓨ$EW3ȄGpG=͋pv0{Gt+3:9R1yW!-&K'Jk|$-OΆW m׳Cǧ ?|ݨ?#Pi͹kH?qy]t3 S>`RN_G՗"zhP?h{^@>FLn߇No]_$]84g+KNߵ]!M?>eX"T̏ᨢߠ=jn1j_60OTe c7@@(m\pr?yqS}{Yi?ǹ`#EOx M\|]Uz~]BCBc_7;?G=S/ʗ>wV2qsN'Gti_G9ׇ_|w_8 o~\cOLtb yӼҟz/=GAtR/k|gCOk_;?i?omcyo: p Aϐw5/?#fhq}$oIވ5ϘrI͋+W}1k܋8kKsvaߵ*ȧJ@HrvE~r_:ݍlȯܧ^axs8}7\;W~ tv ':d@k`|3UHc{~ϣGO=tQwO<@ߩ^й.oq;mu$_OcS*9z+b<0p\c'>06Z^-ɭ?m8Z 8O `zUv;wqKOKݽ6E|gwG?s/K{wA^t~,O5W>'?!|O<OoY3wPɵA9#H;/ړ?qȪ/8ڭ[Ǐ?aoqMx;_ROxs \\HsQK_A;KȕVVܸ~j|ħ>|廩&>i7QvT__{$=V#7۹|޳qݚO=Y1ru(o!?q+^ #~}o13ګJ鑍}41%O|^W ?Q;>76{L)i5?ŊՏ%wӜo>['_Gp>!Oj7ҺPuHH>egHzoGK~i i( {\G{zcgJ*b=+}wV;ځx+}/X1!eHV'<I}I~=zO"/ZAoo&>!gO葜˥;@ (p^xύk_2Nt3[5nUO|Pt~9yYGZ}CpI^O~Q uZ xh|XI4ﵖ>VC%8F~r#;i+'1 o"ʹN)o{q7~Ź&QbGkO:&k}X;sǤCz+ +/.' 8Gk |Fix}!vHrS5'{y= S/J9AWۢ^rɄi?r=QRPnFs rE>"7>z/|wN g|/-[uyhu~/o!Yمrx^>|.$=z{}וCKԩe6zh}xu}Susv/Ҵ=R_|_EyA֙Qn /O‹s3;# _#X=ڡ-}~S"7i;93%S1vcK7U=|i=O=/oG2 FvL}y7#M~| +L(G^]xR#z[֫ݜF{ TzzE{̯ ITnhH%<)WK*i;ƓyoQncJG};,~0tٞ[‹QF| ǑzK/~G~(/}-Ko,%z[#h\x|2yjN q= ]'M}$z xW sߟ9C? ;w҇>HUNTf?2{Sb}۟~s2;'HRD9μ|7E-Miæq94+$Q^G}S2zBqꜘ ?N|{\͗;rZw(}gƼ?#>wPW8=P8?Vs>ܑT9ޘDNP.UL;1П$}9z{`98/gHBסi?t%{ %'7i< I%{m1p!GX >},҂C~ |ŵŒ(G?`SiWÉc|G_1юƫ"_XwticHs?U":6Nv27_w~OS˸ M?JGqR]|Pq 朌r f^#qBi@o5?LJ%< >'N~T9|}G Qspwy@rƇj|c#oǐƏxO'GME9b$wSqzX6[w-& 1^C|K[v}i7ЯAڍ'x~p]qվTOi[ekw.}9CdO|RO[oZ\[EM\<k~|74n r~uߏ_%1#3u8}@'㽰_F!D|WF?ig'z~-ָzM7"U89z Xe[GiWG/)7+}^6Tl`D?3#wxNȐ3F=W&:a>+sߗ'~y'C=0WO쇥/?YG91ǡNOGy\-O?>~῔hzi[?i[ء?%~)hroxm1Ԏ;ʽ%9;/?}y#\T9oo9ǐv?oE~TW=D?K|ȧv|%o2BVjDInp҈~)ɗځ7OG@'#~GsW;Y7Qx}zǜR?iO=G8&F=`'cHhn7uGO&'b3;"|ϣ4F?gs_vz%m_zSWͣ pż6qԇi׏ӛ?MgO'ky=eҟNF!{IZNwR?gl&;@OP;[G1W^h%_{?^}cɎ9]!ѻõ/Gz*B>ڇ}'*-{w{'@?-zA}~o/Z|0]/#;[{xS0 Ώ&-.-+M|Sܽl([zVe No0G W; ^ҧV7mӻx‹}y<_?NQ"Ƀ)q - qE=sND9-׸q_Q>g<( Y|֑Ah^u=qW9R;ćXCʗky{tO|BO#k Ҋ^5yniܯ>#.P`7ͧɫO8'y9G79;9~_t-"+) e`'ÎvSG;?-G\ʹ׳ ~D75OEO q<#_qF}M^'&|;"u>4g軳SFvp7|<e Xyzck roWLz ] <\1l_;5碽?o֗CJ8V!1;\&~~y] j5a|xһG};AL} Wz7,wer8?17'rtr;pΰ}/K9/ 8eZ t;ǣoĹpK{=I@=<%FHzNQ=%ޠ\Iާ/Fz: Hjޭ Tϼ7(#Cq,~xgٝ ?"?O~P!w/&IsޤI(^z?rg_;t|#>fc'w+=<_zT2o[*NTvO-~n7>ͯ{a?/\—?O\KE˷rўm?q;oR}XwY(GN|16'<7s t/v<G_>_<'IzV=#%9NQn%7--|ϕ} Iטo[F%b֧3~F:)'4.3ڑ[| {W+\|=t^r{~&o2$=?5:IC*+c?ޛԟNZ׫}P_;yv瓎:IP2H(zyvQo6~\;w8_ LYOqzJկ} Nx 9NLUK>E޸𨗱N,Uя~7HH' 8<#Ҋ IzJF+qH\p?ϯ /;}QE==x/kB{{;9; ?) 3-%} |5O`Op:Q.Us`DXܢ!It|9/Yړ~?G{Դ[=ઝc&zj_qz|'Ր_ u~8Ͽ }Nߛ+}=Kw;)佬VCH0_% AaJ\OWp '_ qj)ЁiC9&9ZwSHC2 G~F}ܯ|}Ӿp>ʉ#Bon#}wP\^=x?3~Dz%Gvǫȯ2ó~G}3('ݢH-?C:/?e>Rt ]OЃ Dk?퉧Q"r|Kz֏I|7HЮ~!oc3 pO%[POѯNzے>HNF!ʗJέk]rK:ƍtzYeBLKOO X_;-<߸u>58iAbC7;ٯi=mי{7A螚i>V ] IJ9UgB>Wۻkg[K^$|9W/.k?v,||8Apik;Ƌx|) A~>ԣ?6EAi\9 ʁkn^[tꨞ=\:8?Vc{w>S?z:7=N?ͩߖk苭9ʴ>nnqmy?a?;QnFƑ~r39/f]0X?]Ԏ~F#uw('u S*S9̻.`8Ϝޫ?l_5vm}F9<g#s6seÉܔsˣ_3o~ *7\߈GARzGi7+S1MSV=%/'i^zG9=;˴/0ϵb]Lx\E< S.ۘ|g7`=k1G'"@DЭhԯ99z3$ؽL;YQxߏBhWGotMKO|# !9 c;}???UJ^-zźtaH/F|}^WQxo݅1b/&]p'4=:IoQ;IsBpx>~Dx?D7Gki>!&L>wɟSpGA_E?*7z+߁/vI[io}?Ի Ag7~)pQiu~Ip՞tќ׉o'"'Q_buzW?"\sSԟƧu`Ya<*W[=Gᗑ|nވn%|3 /54N9fKWry :}UOzW[9|ԗQ>](ߥ |mgu{0~  /<0鼧=r"FAƥz'Kg.M?zB#*GH H&ryȾ$1to@8Fnލr+7z$ޭG ^c݌4+ _}E}Cn ~tc\lσqQݞR=j*~a^4K߱R{s }s^(oq|]Vy6$h/"g#koW8̊vЯ4mOu? '=v8&p7NH;-}ćS R/ ȧ~t8Sy=d'!;5`.w 3wA<"NocfYrS@?֨_{'{֫ѹK +~R> +HSDex7\A!>cgK*7OE=w{5{j'__IV>dm0w䏄9 K/yE?N^μE4!S-[_뺶XWx/NKyeH O_Ol|ڍtYՓnQzeOcRS*_uh<_>N8&8[v4|kD9tלGsCXODϰn3=<=-WNΩbʵ[i?7R:~)m1C1ڽ9N?S{{1\>J}s5N>Mz>?x/*Oy2~3 ɏcG٣eHp蔱_ VgOh} ȗ!ޑF|Oe_;w i|A{8πzmWʇE~Cg7ŜGť/wW'4qz%kBZOHFk\z`?1|WrF9 +)6vyjci?5s? ]:p.ZbS?O9"z7G/z>r~GvbűnFsTwK֥=^{sOқ_5P/+ƹ˅?ROJc~ʧ=G:sl=crV_b_#FՊb+3ttnޯ`_hII$7?u:}a_Q9}b!%K92yy <4nwI=Z&ԯ[]g|!~Yvw4H~wzGŜ X8JQg={!L9R=Y$"?`_WEG27KHo?:v~.-}։78Tۚ|eSUr-}П-Л'?u<>CzpUN"6t&3X{<( +ImGpXIw'@9D{C/QN?jK}SҪ ~IpZ4wHg+bka??8\P7ήL?-P{7;lA>_gyCyΝ=/?OHcW\O|ý@yo͹GGJ'_3~)CHv2իߧz/AL>އO2q%|;,<0Ť*Wym1rćG=F~9ՓPߏWgݍNG\7M{ݺy{:SH}*}:3k:OF*|<{2h\FXk֯ z@=10Sѯi_s-fs+QWЏ1zIn~h2w; ;s|'UxqS_vz+GsHS_pv|TMsL "ONSָn[ЮӻVC}{3/\S}jRS_C/~SQI@ |=;];~L7v}~q~PL>zpz}x]xB;OE;{)ܗsJDt/ͻb|gR.'}siW痱\䯠߈4CA5qi1f֏j?9]FImUh'y =Do_S>1씯}yz-Fx=Kbgz yuMb`V'?_w1TNy"=OѾ!b|-bcLVςu(/'ӣ㭘$#r5Ϻ`bH{1{ӏiKc ο D?iq>wڵ~ў{L}rS2#S~t>uF| |(_ nV}?g CZϼ/xۭ mzD>|ȧH@9U(]t/򁇵9~t+gZ/?<ԛ)_~3^Mطb:'> ?tnҿ[(ȇONr _>af枾=Gܹ ?gHċ@#9~[q&a 7ii$I6=&ԯOEz+_˟@nS~P})Ҿ8A=?soՏ|2OWO}t/sGWHW_pO1SB=X_q{oLG= ;_Gh_S!}${c|eL$ N;Ldґf=~qۥrͧKv@WҹU[w W}sj0O.w[OxNiH)s~rgs6?!ٳ}S_E⻕I^{J #/ۣ=&&?TGZ ]\=#!_{Wp{F~rI~0k!@}r%쇄@n:i_ПՃL֯KI0[e'7q_dlHWxkiwF~ӹ4=IH/?0abOޟw~0gwoYϏrń3Ǚ|Im/)W_7- kD{ Я稧j|9؟x=/}:;~MF:%xSwո󻏺CH}.׌ :3p?E>吩O'8?[Wpw\{= (fx2ov\oG~P#8=Gzd:WH9}ӷ 8GCIW @(p鴏^}YOEŚ'MŸ~iݫjTErQO?^T.+ֺxWpwO~Qo9!#=' .E#a~%z>`貓RGx~W_E=Ks/W%ίȧ}fC=+=|+ڝ~W}ꣵ)HӞLmBڜǬ*`r/+1K`҉y1urQwqjSBޗzFHsIE<^3bkpuOobL1V3z=$xgʽ8ůD=sRa$oN}:3$xH ~I^;/5ԯIh#M= ?ކŎn06S_/ oϜik_?~ߞz'xԷ O=K'_͝ Ɂ/Oq&Ztp=M]ԟt\#~Eԯ}~WUK99qR8ނihi=t}5?rGy <~4{<zʝ}E7ի '#' o3Cro^ wS|"j _,8{F9ڝܼK1kH?HyqteH8M[ä L}KD+:;H OX_ ਾ'AFB{ߠu)w+ Dt.޵)%hgNQY3QY/)1OV~As~2!b\7ӂlOj/@Wt Qp~[#%?/Y->Cn*R;w>iJ|֗+svf 9sH;r= g C/߫|e߉#_Ap\*7O_=K~8?t_igp#upv=i=?r؋:<ԇ]2xQ@~]³ubWW%_~ ? px Owgv |fgnqA?#'s/)h+;Fh\ȷ^tίt-Q?wؾ#2v|_Kz_'G{?WF{ O`8mGit|B1J$-}/ɟ0fRWz/q$O8,w̻zxO_kkK(C~_Ox3X}r1_~8 ϩ9~|!P=_`5r`ԋ{痱y7/-Wy!>b; Ut?[_S} 'r+k}{|? ]߂tH ^|8OJr[H׾^?ΏZ-؉ҽJ _yOy/= S9劅i"w~S;^?Oѯ8A~׺=ʇ8WeH'ė>-wd 4C܊'WG~ ֎Ѓ|הwq~џOw=ҺS>Qs\Hoe\)wK!_+}g?ro1`~ҹA;?*_d%WjH~>YBa9+{KzCU7qF>/ =ykc;?PpR_w 螂4s-v&S ~P 1&2_[8įe9+z1j}v/U ^E ڗ^%LbNow)L _2v&6wyg_I>یwo!CE>~ѩl].A~ zEOEϤg{L&M<)s|]:C|H~z^aև*5zr!|z4.  粹(grIF~ apv{o~ C;9tBy]O|hnm;i=?K~ o |?,0\ɾ^=@݄v)k=V?sח\c/r~ʉ2sD=^.W{$ZW_A$Sg; osr?poԎjBL~cHEWS}6~Q2~^h܌^WwoaKgum--y$:z/8S#>HǸ^'SN?S)?IpvS=sOq^D/"o?/G|oCtv2Dž)?h~mlާKdO8QN|zdo2M}em;/yvV_"]\ބ7-zrPMxuZ ŤgyKO.vԇ$' \7zϙb=|gp)þiw ּj? (x{ON#{</+Cgc|T \|~vxa덂ߋɧoBksp^չCwVfÄ 8Nn;=| Y3C\pϑ_!Hy&CjdO\bq31< o&>yۦ~kO2OYr_snBQ|.8~0f?b=+{/UD9;ڕ վ 3s=(W?őQكV~oW:ʇt@zWPW稯r SY~{o.+.= >E;}*k^A=҃bC|+(| x])GQB-* 1hovz(]iu\%z zoN3/u'?s5d[}2^5x+}cCKG ~1(wG1G:w<%z_҃rS.qh o iNs>&wxNy+{tϭGꁾG{o bvքw?r/`?֭~$|9/>~}h_x}×utp?-zFʝo#I?aJ{п':;>K"M?^_? ycf\GD_^Ni^S7 ,CzT[L+<}XEjIŀdǓ2Eh/<)Hz2k;ܤ܇x}\:/zpX/O c^0)hO=$5?~Z_υʉ!K튃yt{y: VoڧzoGI/(;c!|{G5vi]EAbGdMQڷ`ė!Q|8;7$?Agw#KcVCh_1Q8z(; IB>2 ~M_6>]g_*E4ez ~4ӏƍ+{}r;w\ӸPr/4b'_kKl =ȿdt%V쟑_u䗾]?އR;g'e}mѩb[>~/PP^?kwisx&NQm1 Ճ3 ˏ}( ~w!x^OvlST9NjK_&]  ྗH:|}Zi7/W5d5O?DXCr J;?'>py~=@]xPnm5zO%8G~Au_'=(w Q~Zi]Zʏ3b'j/$'Gw|^~>q]s}è?;xi}OCOK$ û5K W1gիeߑǩNƾ|S/so7ɍ^A@CMvun+o i/ky4r1.$PBޯG3D=W֏+FΎrA"|Te@'nҷKr<د2Arٹ&I38#g'`Q>@qMX'Qo6xB."Cy˵~egMkB;ԃ0ǪgcgQN|ӧҾN{OEzF׃Mx~ n=R_2>ܗ'~ ݞw=E 7z[&/{/%[[sD1O 8+v^9 ן~SV^;SN!_ f]\1݂_|A)#zkK}Ʉ*>#ą~|'&Tkηsכ޴;%:B+?4QHǵsz|O!g$>tPOfQ|('_>.C ~~{?Tu$8ouZoO?u|Mߒ{~6gort*=hu \^jg_jqr5οN@oD~&%,+Ҏq7Џ@Ow༱Gkzz?gtwyNY{ɟr nMJECϩo#GPOwEZ/MBb>B{%nob"~sC>B֑t|67I=|GtBU4^'}y Itz!%8'>:s Rܺ3Lp ߚR}yK;xV y;㝣w7Atzy:*wK{mI֟?gҷg9dsU&Ĕk>)u =q\?O\ _]ec`IC>¡|U|]rA>X5cw=n@c;%I!>Gю|?QAz?>?)8Wx:?s>MGG,jzI#+7щ+~h=bS=wIi`G$ߑ}DW'P\t{o3ҸD~:՞⺎oy)Zk^º S9o Tc /~_?g9-ޅvXUS!فMdwuCO|CrM޽C~?Kڷ;bO3P=ߏpx_W=T9yZ i(_*S^GѮ=\N&%F߫z˜/s1|IyD}Փ<ɯ7?|?,C;up]>R.x=U৘r7 O]w_C9)&& ?OovNKu!ّ!Gw!g%A(n;=Lo_? qSzڻ+^uEp ɗ7oۅy;7A/|3sjG{[\/c}޵K~FR?Sy\7ѩ=o? o#0#ud@>-vwLc?>=v[vzuaȿv'㟓_kv[lP[<`8lD'~֗k>ۍ7g\ϒ& v~*>< gH-Q_^/u8q|yD=x^V+8H;|@G~;K >8p~#=hF!;k~v})^EZ xo켯モr{[G{pHxC0qCxpCFOUn+ҕT_0yW U䏤}&xt_t~8G>Ι>;S|fw"-ּ~U%?/`OnHG=>w^Niq#_"8!)X!3o <+ ;̄H+'POOz7hӍW#9ڑޝ>z=wu|=5U@wO9U;QF"]Z=?iܤ'&Od{~E7]K#\TO)}:DŽ3'eQ~ >;䟝yp3ʍ^`ʟxGt53﫡(X?d!%|oi.[ߩz4ZOG)4r~!ǤӉ֗G]?ZjYgMS,N%&z3zsbs>יB:/ ?t4/E~M?/đ?ПD=O'{iO7׏y\-9yb7v;CxN[[Zq*j/c w?O~< w\-QkVK=u(wto] urAoq]bޗpS0r=/*(I1~|Pv ׯ۟|z_Zwxi5,ts93ڙΤ?z&:3Qpeazjs.2Ǒd7DO\ BZW%/);gGk;RiU#S |@bHvA bi?c|^ǕɼȐaYo _鿡);K? wO3WrvէO>e<@ ƙUP=O/kˏF|(ׇ]B訽gLy}|pi':8{!ɯs U-_Qwk\GY"۹|#t@{H:bou||E9HO`eSz<(C>-wn]B/@~o]]Ϗr?zII:Q7(M3b=_qyWh^uiY>OP=~b}FJO|,b#%~voCŧhM|y?7y;r|P?oG}[סy݃r 8GO_Nb=#G;W?QԫjHB>|FsZ|mnR({¼>Xy8E=GOJ;_ <:48I.BbsY9Ql7|ApWѸf?WS|C=5S|+Ҵ(_pnBogk N{G=җyywE9* x_bO|7LHMH_[;[OIyؗ oQ{-3s-y3)"-MvtU?hx%O9SЧ-pF{q.>Q~^۴pN 1߫}~&я<k?|'@ː|G<\Կ ?Oԛ>fGS}Fz =߳{#kԟf}cvz(w|纐#Ѩ}~ԣDrq~IN=zxv*y3yS:~Z+s}&!_PFik?~ $OI+ԋ_|Kx~{cGzRȅ|k8!?&?8?k/ݹ4g(ϝ}?g /|^;]cW5p&e\9-? HnN3|dO"';|t +6rdǍzNFDpZ[/3˄3sŏi~.Gv\|?S?3?7ԯqt>~t*'kN>a(WjGvMEki1=k`sw3y`9͛Nph~vLߩʡ&k9ר<#?3[&7^^?sc9yv rSAjEkK~Q qWM:QSL7H1z<z*M2#v/үhnqm154zHtHp_g>K0jeIXW8{|C}?J9!k}~}1ZŔ8YzL/!M~yOv'׽R  ={gϞүK4iYR==Bw־{8\M ޢ?;R>_<- ξJ9If4c?n/=Zo?Q}jݟ0zQ޴Oyp藮|_Nv?N}z1k_\O0t-K(Iz<0n~o!6Gt^oӗRIFZt] (7R_'#=GW/8E"M;{ƝhCim$3Sut+ʧ~LUi输/6+H?~{ŢkGJRPO(_>͚71.i]̦=&vu]żW[|'| M~JdÏȾӭA,&sNhtgS?שP`:5~S_3F*b &)  goҩԟ𦝄t  TzhgW+7wǟ`|Crk41 Gk4KOW-Qu v|}[}1!ސ#8w}[縳BFdp߳qji?.GyIx][ž쾇c?yǤcʟ/8fSD9QpHkw덂ڹw"GI=C >E:X[q2\piWQ| |>OtRt|t/ ־r?%/g_ڽ"V?|;&_u3XrtG=`L#mUKԃOi/;x8:>| =kO ?t M=ʍ%y 8o~>t0|zq'z&|s#x- E9+n|R=#7|Gw"Qė=QzDǸyoNGq14&tw|ތM]ǃ!Q/t>?r_C7?s_ً^99 =xykLKcw;ZO`Htz}v›v09_Ɖ^#gWw~/\W7>*}k83ʵ^cq1_Kϊ|;_8+<@/7i|CĮ^OzgAooi]S/7J@)Aʟ[\vI??~1V?gd_귔_P|m#?~n=X`/Hxu_#:ؽT‹ךw߬TFuzG{ }'\%}K)Q|GɜVཕy?.yj;r ຐ(|/P9{R;*wKw-}3O)O^1l?^A>񑿀]3(~#}"]eDkk= j%:OÅ{SqA>bg ?vM7Jdeg'E?wM/C%g'x^nߙʑx(,N"z?зsޟO&_ n;FvbwpD%\7ʳZӺ?Oa^Ծۥ;GD+FĐS|7TťOG{ڍ {uU{ȝQ_iN[L—uϨ$ޙzJsWǤ`i~rU3v4øph?{:g?@=/RQN:Jz*yv_?,_CP{}V N'lOX?#/!ig&)NkӾ(hN1~U_x>k}jA?bIvvo滖Sx@Ox˘|yh1z&w.xNNcF':`ߛ uv+Kb|d?_} S=WgL~F>{{e˩\'E} <_OF;O&{\NH9I{,q%Pؽۢ\~|33Gztҝcr)q+/|GyTۢvg9εg GI| ɬx$ߗzȧ9' ZΩo]{3#bgZqQyGHߔv ?x/ `׊)]rYďgV_z1ÇE}Քоr$~]KGSW瑏~{ƪg Pes?Y ͆W' :;}H#:'F=_F{5g㸙S8TBϦyzNp<7ۧ]ƹt\vi+=V/8dždR~E?v ~JV'*Uga䭀OQ;Uޞ}ZXy2|oȯ-ֺߡ>_ϴ;yaW;BCO_-ּ`jHtӤv7LHv9;w^j_?PKz4>}rI5CHɇuHzn m+{ˌ#o7v祼X \A|,+!H8C`yi1bF~ ih_q7gmxoͼߖJk~{x'̈sf+? Ï!0#M{hߖZ3jFr}k߭yyߟߦF}5IIp>G <{4/c䓸Nz΃(_A=ʇԧ!` ;dw痍؅aNjs~8O[/^1/=7~ncHtcnH'8;igA;> 7v>yE[BQ?MO|~aQ`~]\ґn_E}]!~'1 Eg}H:9{_6-Ռ|g~O.NC+-f8h}m9NPN;$CG:9jKx?~7|\_ ‹2@}CߓoW0 ?m޽#z1v!UQy'{c_P* GXO oHIw)ŏў|ރYo슬?3zC M&8u_H1F yUg0pE;)L{kQ~/=/;vˎ>wk$gu x_v]{kʓ+=d~Q_ }?"gx3 {i]Ps5}_i?w(X;4#_z-}~]uc7JGbrT+& \mO}IOG%?t] χz?(WQJ .SW>WwF>|W+/x/z)\p3g;$'yϟڭgg.Rx(s\򍠷;zx7oo|5 o<_.94Q}9!ӿ;F9KX .(GAZ~y>s~%OG=KG>~;|(X\絯葑=Q&rwՎGÞoN;\A` ʝ>zN]j}ʁ}*H{ . (;|[8޷@>Z?rM\ ^zWO_ZGҧL #;| z7>~T>ֺ6/Fc/>cʿcĴPr؏ZTO):ߵ@_%GΦ~K[9zKy<׻DoZI~z|AQ[|Gv++Y C?'=8ƝOHm{(zR{`~Eznqi19'QaMh޳p}>W+7|`oByvX;oZs~'i\ 8W~F,":~G{i588C k ks_?ڥN!r|o7ʿݗ'z~Cx?ʅ7|u(8跚|b~I'T&ކ>o+d\ݣz\eߚzMIsIpo"GR{o}Άϐ?Q{ 9ľC֯Mv"+&7{O?bW/xIx9}QF!on/s"?ګw }dq~o%؟QĹC?Eͽ,{ sz7~i7ŝ_ˌ~ "i_fP/(/jy>: whb5oZ/ڽuD|X'}:S>Ӿ^i4'ʋHCH?k5O::*|-+Tw$'{dZFl`|ZaNsr6wGٗAl'z|vz'>kP}5cgh?M~:^Kt\*;ZܾWCϜCk o?j Nw|bǟFɗџrcOrAcKx'jvOHSGj R;㷓J΍()VZ/N{oF=g!}Yx=-\Mw]_k?O5H5^ܻ#9Y1 D'U^M3q>'s<i~u.Q _O78-^Mz 5avvq^ʵTPz'ة?B=^9)N&+ݪ=9 x(Wg9?׀3#]pt}K{+uJzT#"Q.<6Q=*[;z֏d-$#Eǖv?\G7wg_TwI\I?O+s&;8XԋgWC~44y ? ^8'GoRSΉލ ѷX{u%dnO܂KODZuA:DY7ƙ~Np2ZsQxLȥO_/hOg4/7(EPڜIΟ"?ޣr|?~CoB|{ɾ>?L7[1v|hXpg8ΒZh,* iE5EJzٔ(favK9]O8H$TqǕ},O>A{x7}𩵎g_ v4v5~zxyqowU3E{< vĸ?OGpe\nt8OnIo䴔}3|ז Yγ㞫?25ys+?J?>,t>(=}QkNJ=쫍ϯ~'=O6\>%y>X{v}EsߟxwoCӴWqvIX?1v!'#_.r/O[[u)G&?9(=5pOk|y|z}]qX]o+G/~M)+[tcįW9vͤ1p^ȼm</ԻrzZ3dړ/(~X S(4OwG&_zR/r^c_h~wm վ |k?i|oz,rAXzLΡ4;~|'#'%c{2īxYxk`qb+*G^=fg/U{vWSM{ϲ5G ?O|7=[q^%탏{N\7ʵd^QMYtyUg^ 9kWn~i⦖d\yy~C;{[y0Eϙ~&p_pMon}'}OENZ睋jUۧL>~%ޔeyXqea@vЙqS_׽gbU3>Y)}uf׬5ؗ'<.s_}vyuw^&vwM> O{GxܛW]>%}{o\zkc}u7xR:}N{zQ؇mt<ϔ ok\'}-\6txZSzB_vvR]4:ֵo>vc\G_wl4vA}[ ?hH{#?TN^%Oy y}rOC";q3%"s2Ň'}^O!0̋G^qߕ}|O _pk?|p7{N'O>_??R~KZAɒWε vzρ~颧OOCոSӱ;~S^\sky|Z{UK\6a'ʭq7凸w[ µ/_|9y˧>~or@MNӿvCY|w9ޯB͚yȕ m]}yΙ7˾3_Ku>\T^~Ey }J9T_kiϥ>j.TY-ﷸx~c˺Iu˼wf+4?e}MK2G~~rP=s~3t}Gw?T5n+> ڌWf_jK ȧŹ0gB^ukRϟ #=ġ-?N/ DjCIߓ>Yr|}"7{>:?_6 G߂/_ Yr돴g_G'S9LI}ʻߓ3'pڏ"~89?️$'-9 >ewO?.rߓsu_pO{}CSͿV/{W||O}s=P_RS>)SكY,&~XiwpãU8xw<]Z\WK{^_8Z䧺?_z[)M ]Ln|/~5 ~_0Bz8_@z/{kߛs-|usm*/9yySs_{?unS_/9x=x]sO"/y?\auE姼rOi~wnwݗ{T|_sx-N9޿-ytOy^7x _GWɏ+/a{>Ixx'e~ړ{;"-&/ϡr޷}?e_-~5>|+ܳ\x]KrȢd\Z|FrYi/ ˮzo3xowP_;j?jƹ|iտУ_nsH,9:+Z}}x?Wݿ#?UE[_6P |}^CwG+)GN|NF}?.;vߤO}1Or3DՋv)G>,O~΅slw83{gm~_J SF\=E>,x7vBwo<|~?6ךV \cws^YkEg[;}o3zA}OW?9L=ri=w^W3I9cӊ[N?yk?&S:>U97)%ycGirlʙ|>3^oG?y܏}~XQ~oZ3.[_畣M7?=҃n?4ަݗpy(?':BSr_wmwo]~տ\JOv*ᔓ7ҫ<~GO M{RTMí{c8hoM}ko_(T.)^*~ӎ]iM/?W\y{~|s=D]m\Z~M̺3gz???&y_Yy_9[ʃ97\ 5?uy*/Rf;{S}E n}ڣ{Ӳ+TcO9_?uƏzirt{^% |i}V zc<œ}8{ ߠ.8v׃~ ʏE;־}=%wa4{G=ox?o~=>/3s3bž:p=zv߷:uo?֏+hҊ8hwo]yȿ-xG/y%o.ljܒ.Fy_?_t{jg=+yQyۗ̓/O3+sjv~GArft^W>/<(/-Z={i3O[yf~L/!Kn|rS6qו'.r) hoӯ"8~QP~o3>JZq^|?4yqR{8f<,}'|׸\#%g/؋>⊊l_S{gǕ8>_.<"'5yϧ'ܣ_J;"^;6z{kuoʯ |)Чs{D='n_m*|ߴ?=*4;|9=˞ =ٱV[N{KY?q$xs5̏ m4wBWyvW1q|o_ۼ(Oq_dOt=ٍ|0O~ť}+M~W)?&?)ߞx=Gu][e+5G0|!/@};3~'{n/z;ɗ\ ͅ'd|48c!WT˯kps<ԙę }ḁ[yoI{~NMG?dӋ.}QOȫ-:a5B?Ty/u~F[_VD"y'n>zxn6zkMcd_]v[az|ſ]W=k^61| ]9𽗁=:_lP.:️w_L3~K<)Rjj7O,דroͫC#_oOY'ۖǕ]'d~'bq1+3i7h^nQzVmk9ggjb/cq܏ 7xB_{n~#ڧo_3ѿK|ߔWQXwl)zۜOzB#ve' _J?zɴ?j\D 'W}}y.{;<7ŦC/!w.7]goL)-W[y}?~gM㦜}3ƥ}}fH2^^}8带fǕ: I_Go$w>4>4퍿_|+]eyc?r)O:=K7jw|Ï9ϼ̏sOisuҎ|?~&X̾{}Q2/ݲ'f|UoL}m:oB;_Ͽn׽GWk\bxOLvߔڵW&i? Kg.^q[ܤr_g\ʻmU{Q^ݦߟoϹܶ/|ž-¡\GfCxӗ]vi=ſ)Cz+>I79'x\t*Gei3~}\{F\9=|f'5{i3Wxf:ioq'C{Qxw>>Xwz}p+W|Y'Kvۗ[."~|#Ӯ|<<.viunZ{ߟwx.;G|SIixmO*]:8O q㯽ok.= >>87y){ޅ5~E=e{;m8 _# vqG>?rscrMZyp?^="'>>%w.1x\S_9^;mqVS:nV5ϵGnR;Ǟgҍ<=py.}~/+5p?~La_W#ηqB?o$yⓜOOZ)Ik?Lk?_|8w:*?}#8xPW/aKG|ow-<+ԷrWɇ䆥/7}uk8Уʝe|㢚=1iG>^.~~ڸiwM*y7 ġMR}C]N;._ѿ>|=˞8;[7 pԃ=;'2_7ӞzŇϫG*ir/zԟ}Q3o]_9fs/=o'_Oֳ=o)GTZ~}^#qC~<b/ɸoю~i˃??JW;M/@}s֕_p[|7/uQq'+n@u@ϻZ_G3rpWs;ErY-^`K.z:ߗJ;/3/o~)-;~oݷwR_G+m_}̺^GL\}$9Ş0te}T}jD4yWW\Ey<;K.y}J?xxK{zV'e={Shp6m/QOKCtUVy \ۻ‡7=O}e#q[$_Gh?)*^~AG9OSP>W_LO}[uo\5y٨o'}cW[5{/I?_SwwҮKƑ/geڋwR~QnxSHuS]k~^;I{j\>[z(WǭK.:?C>pCXz3X'}\ysiϼ>4^Q޴xyoy.H_xJ\crvS|(^v틮{7-eփseme^x!oӓݦ;3HϔrX+=oSoQxS絥/u/]8?K-~/}ߍM|_%-}3{({L- =?~)~]q\U$~r+s~|o5w;v׊t~hsN?QVup ]͟W.q~oo0qC={^|\_ -q_*>ُ_x|Ge=|{.7KS/zo~/EF_>@jr'EGyڭxk<ʟ ^;Inxq/ |9~y{׼Ӯz2^a~6{CzS~|,|yS᯿ݏ{۾ ā]~/ W~p%*9(N.?ݧ=x󼗧]S)3O}?%W8sj_"MY}#!8ne6n?ȋ\=;x^S9Τ~sox='=rxr%B!-3zr7,ϕ-y]ã<,1{z ǽ}Ly}o=uYa\D]*yďz>oW.?<}:;sro}֫~aIo~[ݧ/l}_TGCGrދz]jP91y[vre}~1ïvɌW~s0nˮl\js98M}#Nԩ/)s̫_4h{}x/q>yO]ڛQ?8 Qyorօ'U<>W~Z^hv%/߇[=oNʳ8=kOc$ߚ/ۧ_)e|mz:7_SW<9ˏ_~j<} <1JҾhͿ>fW/}\Q<|[rq?PN畿|'v?qo _x|S?SNMj\/?oANoQMͯދsQNX^q쳏qpmjWi/~=qO<3n$vQBΙx<-Le~vYOD{o7z?>o >!7]\K}fd;ޔz4q}s|_};/#ރ$?\?,9\;k[;={EW3/?;?_89Dz3ᯨv&W]=4j|{]]z|SZwAZѕq^qVF~ Svͼ̺~?=?\7קi{؟!=_5NU.T}wrϗ8W<7r+?ݣd$%vY~9睎S=s{m"T?q|G[F~fGO9-zƭ/S/x#_rcP)r.rkf@ޛǝW"g ׎bTBx߫3^q7?zo/5?xӟ[jzb]F0y;ӴCWlrjׅ/Iԟ]t=uy%/y_dʿE r{ "x{>#߯}MrNIS~N=i[>)G.+|w3#8ʳޠkoFg{;>Wʳs>Cڷ?ᓿG[.B_铯ΟR;g9t-BW^秸şǽ~[OCW֭rtvJ+ׯ싙;L)#"W^,ݟx)g1{?1~" ˞?ޒzeݷ>r^?5q$|Ol!S |w7Oʏ8w>MWwr{ZZ~ 'ym?y+ʍ>y"b_qAy?oK}i;G?~)o~tϴCtr-L r~ESÙ|3? j\yĭ ~/wi&=ĕxOixL}3o8¯MLY=8s5:}3O=So?q{'W *[ڝguX['ee6.3n>:yW4} [}I=qЉ1x?tc3N4/O{_oޗrHӧf<7IS;WY'~^^OSZu3xu. s2N!7K|j/<Ǖ{sh!M󜿡{Bv3DZ㗸/u{O?Χ?y{fyDzk>e_Kk6Ez?r9/qoHo6Mzx4}S=GsCfW xyi9?:.f?W9 sU\K_L0۸2}O=kg|f7]U*_9jobߨxlI/ŋ{#?1>9]|ڗ|B} yf\ʻă w^yyKУ}޼wܞs۷zk(8I)79ǯ+Oq ˿/~7V<ꧮSى=k][m֍CG y^$Ç^ ޫ噼Gl~>_ySu>|yt?/kj?,8pKݙב8ʃ/v7=>~y}dC5? G9A/_t4+/%g.|ƻz_7 p'ӞWyR?Zלk<ړa.5{3xNVr{v;"T?n373˦]epQ¯CkiӣVoW~gy))o(]Ny'ez^y4|0|lWM<ؿMs=izQAA|{COvbmv3+?zڽ?!)v+$?pܑv_zWyf3=Yxkvesȴ{ "6r?_{Wvjfr2t5vy)3Է8쬜O]E >mE>嫇5~g=MI/J~:3޸AGO kjiIz&.]ߒ9'ʕƌU<I;C0o h_^{iSH{C߽>뫒'K2.q?gUN|x܉ ͸?_s>4U\ A+-_O ]io[I9x83QQo1~-9~9 ҁ?cއWS(-i6U=V'vЎ}ji\vwe7'ޏ庁L?eb/spoT.lqD~w?oogЩ~ͽУ{U?ss-^c]WNw/VN[N@Ƣ4c^Yp_hGR}rwO^2t|o64{|F!ӞoͷؿlQ[~w 9\u1: _t7khr I?1cW> 1uj Yw/}/r~~Q޸ɟϫ<8xS?)=ky'墏LY9츗ؑg^K݌z\pUAYr2Ͻ<)}Q}'5OrOΑ}5Vv a߯r3Ww>M˾~KNpWo}ɱeӹ3'~4z~\+],|%r~U'zںo?^xC?~ 79W5.>𿥟vIKjr]ۿ#i?_'Sʉ_|yRRe? O_.šVROd^a"ۄw?ϛޜ˖*-v7Q{_ ~A3r9i~cw;uj_Юs_x>ٵV}胟qY \/LV'YrqoxUb=I&g?͵x ӷ\GM-}gOE维 qYt1n~TCY䋡ay/O9 |_WgnoԸxs~MKUZnѤeOOvFfS)?kv6/܃>-rIW̯7x\-}=CoN 8+nTF(>_ڧ?}۱t빍_y~}_6SqFޫ򿻷^1?hq9h<x@C_?_|9ϊ%tLse?Y; N}x\Q=8tO&-z%i˽[9Ygu[yG'^?7CBO~[:4={Q{[<@? Kծ^k_yzHnW[[_35ܫgG;?߮<^㼯qy{s_ECvzPn ~/tXI[侵^}w{~y|M/%"g\ӳ),9O2iC_j9TQO9{9/a 5l^Er+49(xwJ/|W{yg:wS z4=M]NgwN}+5u ֟>~$|>/x~χvWµu]nyO+ ]sc8_<Ю^{?4S \|1n#*Wɵs鉟 8 E;g__-~ۛ@xGoS>;IJj; Isd'xp qVK=PQ Cok -e_>C'Ԟ_wNsЗjo+-u^C>ibG19|}|?I~ړ|Y~gH}MrnR~{4}|<_y4sPǩ`'oyg[rk_!˾7-9w> ~1I\|0?6toؼg|99?\082}~ E]rltzف~A,%~?\U35ZdlK0O_~|?OF?ٴʭ?Wn}>qk+o+=oi'{~dߚ9O̫0R^.<'ʸ5S>ݻ ^9u]ǫ/~S|/'8#S_{j>v>;5=~+{xiןFz~u8> O/}i/:=W/.tԸ.G迾h3]ʱ;e?tkϕuM}'7=SAӯ}<{(y_;u0y]wz_p|~rz=G|睳~ _dk\UoCw>ß~ZJ]xJO؅j~_y Y=|Br?] ~%O>(rϲgY>؏1rGkҷ7=Oqoɚ# <ݾ+Y{k^Gߴ]=%~S,xGS.?~Os {9=zaCM>xYU_[x~}x IRM'yTKKP;K}sߊs'reiM=|4p`_^dw9{]V;엦#`C\.]'_Ӟ=S:&^c=w{ϡ&ςw?h7N_ /о+{\<I񰑧~7]Ow~r7&N"97ģioHjvuI]@7.Sy>5}͟{~*ڹEs5}ϗgs.g=}WHCͮ:Fk~x;t&=*'wα{f?p~~yMN}C׏+G3s}gIg[/S+2x=+zyK-v7"IoA>㸏GūָC[rE3{P6K?~Y /rz._3Gvxoȥ/g? ?{r:3^ѬogC4]y@~Zw?}^]Ws4̟/{sO'zzvj~#NhCΗ2#YOv<+G>N2vˎ tK{I_ᓞ>5Im=y ~O_-W!o׸<'?Okw2e};y2nn4}|ߡv%q#/.nI3/N>:i_u+_r|v'cϽ컵|<.:k<++yNVnrESq?pCy+e{p_p]yEk ?^qyˎw}lO/p۸M?9l~ <,_|^{?垤4rPx ϲ$ן,ߒO%i^Ѵ㧼my'^]vq{L~PC /z'^Nup[e/Lz4LOq^={7U;||^:IG;I蕾|Q9xyę=>k\Ų#uV8I^kf<')\~1\z-XrxS|^ȃSᗞIc/~,BGJR|s9~?#υz85]LWs'[~7+xwპ~aZb\+!'/\x8 q忁>|`峗~J;&*'ܰh.Viy?0Z>/Rr'G_#_\9v4j#пq-?N?*{ĕc]#}}ŗ<3nG6|c>zy/uʾ\iܽ~7{mw}#WGB9ޗ|\*j\L/='v}qXgK=Q-~H{n~ܔC_m;eiGN_|yq{NxN?_z-.;"r|^zWˌ=x3/W>}!id?U??w/m?X]vxw;ÓW=_%,~'گ{ڙn=w=ӹi#fߖ޳8.FĥfO~{oR|vyO>T- =G*C<> O;?ǽ}mk3n-nS*x^mWZ| r/i6 G?wwǍCwBY_<{\ MhzWw,{ꤵ *?LAzyt޴"x~-Vgzўޅ.k=q2M{?Rڽ_! };~y{kS{t_~>pcUw2~ӏ'_F?hOҺ؃sOg?{_?"7h/վrָ?W};#zIt{ZXU{JG|s^wJys3q-|߅7!/_3=< >?|>pر*҉?m;̗v3ֹ(Y?ʍZ'u;x$T?Or]rS枦~9N/ICeǺZ|$\'{4嬟I?>:{IϕW{\}_o~+o+'rsz_`/}>\y]=?y3n"?={s|s\j_fy%W.P(vv!xs\"_v$e}x+t?SNq%WsЙyk\fyx+şwJǗs>M+/.צ'YYq-)ܫR+>[u_糳soY{O$Z'K՗)EG]'?y7hoS=E}F |_2eœ_ejqr_キ({Ի+w>\GGe}6=O^~2lkx<7㊳nŒ.=>)v厩nqӧ8H#\+cǓ??7%O~ˇvރgϫ7wg6yY{ߐ4#ٸ.=//zu߫qW3?g_etwӇvN:GʱoS`̓ii!U~{Oz.ݏ\їiĿqs_洫'+ y7!׳H^vӴK9|g#Gi4/?l}y}e_wK^c~,?\ϟɸO}\>h%na ߳_Ǧ=HOuޤ-;'7{(y+?Pf|k~6?E`_An㼙KV>}}sY̾"灼W~c/szx+7ͯW+W>#eXov<)ޟ+^)/Qi3z!zЊSJ?ƿu]r;\{aCc~~ 9pşڧ>|jM}Z1p;x^Vzc6>/5?_>>g vig^<PsK>Hy /y8_Ջ'}ynW"qn݃5/Ľ7<`z'_r|@>WCLv;}?oO?IܷԏC-s/?ګ<==ZNyl|~i9ŏr?Oi_kSnʤC>]yO8_*cv#wto7kn͓El|SOQ>raXrAxz|V,L3_k'Β{\.!3~rUOƼxs/~ґG98kWO`޷*Ƿ8#G5畯K.ix'-vĤw8Sp{^?nen≦W mztho tqoznoREʋEi'pO~-ΠXr`w~zۢrWWgBPOqOʟW^비_Eor/~?>)S: i?M}?tޣrk_O;y{yYA{{Ю}>ӿ8F_G\sn3y7U%P~TW}@s{㽪QӃƧ~__?_ m] R/)/:2nAzoKk||d[cZ8r>5OK|Ңzojq,'Wi={m7YxCNjoӎko=٭{sŏ~ޮ>2s'u?izЏ1 Tv2Zջ+*"78K=B!a7w|7?NI9+?fざ{+>K K<*q5ה{ \r9SՎESځBqǿqzHm\W}+e+B9v爞4۽ x!)z: \g=KN{KnhqQę ?=𛦗y~+\.!:V\$jG^NX5X_ύ|^vsogB|ͿJ_ >ZrxO#g\W[W3}xiٟůI~5 -{8SncAg̋Y=Ee?x~O)t:潋}~'<'Cqϧ?Է*-?/~_xߚs#2/˾5ɳ_z'Mi?1C+z{Wǒ>kz[B_֕%m%ǎ>ɵ{>5%$S3~r=COk{uqN+If/ZXpMwFNT?Eι]̯[{ϗ=MWyU ?83}^~ޓ5ZrЃ\Y|qB;o:N{S^~Y>3wqe< xV?ϳ=嬳*|ke|̛7tbvHc 3?NfoI,\bW}8c~O)ǜnG=[MN[~=xqgྐྵOtwQ?7/:ֹfwJ|S<qk"kgp\yʽG~O~ˍ_0S{nt/#湟C7cmM߫*^}g}o9>OC ?Hr7]-p7}]+?(g{L{<[؃U/{0>/~=[S_4=IN{P4.C|+STrs9_Y,O_{C~>B~?Oί7?z3WO?Gⷥ^"ߞ{Zv|FPSz|3ɯ@;g^{j 8or^䕖\z/vGjo&ݲ.*=Gݏ}P-v?y8mY}q9ʵo{oȹڪ6Euoz˃x}־/v0BEB?vٖ: =ޯ.xyBq^z9N;zܒ[ro{}ƷS.L?̇EI~R^}3w.1+|O_yΙ-|~6 OL_'pyN?ڛO{xfvA}rvٕ=ou0^=5~ܷ\INv/G].ӌ=~V;|ڛ'}]MȜ;J=/گ:MC?nxWO4_5zsԗ_|mJG}}C񨯵s=Y^6}Wݛ._9^9Y$^^O~AoZ}c9ͮx?Ӯj[=995L%<y }n5>ϻW۹+W~)=O9Eg}Zv }e_^s1elwq]9a =2D3q%>w?/Mk;ozq{+wh~gOA>_}tm衽*O=;Yߏ_~dhT.Pΐh_6kn̻'tTK$w3x^Nm^s^Hר78xSV>g29TS=D.pߑs񞤔@w^~}SsyƯ_1p짡xAGOJݯzqTq7?+qWM{gβrQEʽHSnԇŏ<oy]۷ i/@NC>w|7i=vO]_yO;ךG+_>O};'־7c'rO9Y__pɕwS/?+q˯EήiL}?{"+W;]SYqמKk-_f7y|)[N?^/ϥ߽ܸ]lD_;{C`_Z7s?}8ǭN zk_qLCG_95|[Lyf9\;|ZEO}J;d'|}h }{||E[G[SB>?텏LYSopI/ +nAE}#rG{4wb_5Cq{|}{N8txj.vW74~cO{?`=Kn~:?bꓷHrO}Qr 8e{CKxSUyfSO _z9ϴ9_GN>;RsV\?v7|+7IN#L.w a2"?8iL90q7qx8v~h͓Oꅳ{kԥgy>5όo }oJYy?3О.tov#<ά jߕB^~:?k=E}o;p;Վ_zU^?WfJK<ܷ⥞7:t-iGxE_3/´>;~;y"zLH^}\<1׾ʳ/(g|oo{_N_]sIM.5U睎R;i_m_p\yo}>Ӆ9eFI{Y93~ bWh)+nKPo\O[ 煦=+W~?BOs_}o{:2!tбU}뒪~<2}䄌C̚ϿQo:^ofޅn(MoDKr?'0!|[?Is:ZDZ-~f罼QNiy} rnoQayԏpk?֞+_x>Mj8ٟ5AԳ><3u=ٝc=+I_z{_IyOi' ^?_'g>u+ܓ?x]?$/e?Ozbg䴣{\s^'.O+?@:O;۟RL? |޾ws@ڍ·\r/?AJG'-=)ؑx>~Ǖ;^y_[-+C?>c-xЧ?kZqzC98x8B//,ߟv KƱ"-L}0NGCcOq(Uwƻz[__^=/wߌϣ<5?ii؅[z~Ϗ;%$Gof_U?/?y+8s>7t>}31cix:ϫ:2sY}O95{{JKx_]U=>{P|[ɸ%~ߪ?!7x}暈.˿׾s:dݯRO7EY9>|Ջ>QA_t|NƦKU~켗ͽO?>.͸{!)?{~d.]=Nʜ3M+wSO\;޺χ8w< JE R;WeI~\yKaό[h|WM8^6?;K|ē}l3>'9w>_ykώݥOTǢ/}Yg¾7m7}s]w.tY?W|gMN}esߗo_BG)?r_0n8-}n=KS>|مW~/9畃՛V' zvop#ǽ^S^Ϻ+>׆^??~)[}9S}R:a7X1~ٟWr5w^q,=G{Syϡ#ӹk\?S>, %O 5^[?>|}uz[/yz׼)_kX먜7v[v~#.dB{dyJ޳Ԃoω}O0e퓼Ss7k;O;M,{vOQ!y8yu mo6~}Pn}WvU]zù!ӣ} qz^^1xէk򗔱+N}ri5N$p힫s/W7x{?{#~73.WC})g/rۺgCKދvk7xd{:4{P,rcMSe;_5_Mk矐oROC=t='zR=%ǽE/Jhծ/4y߾ۨyzS\sƹ_>}!vSSP-Mz]E{O5~ek/2k]i?o)_H/M.\^'=S>_|P:O]]tk~:KIq&]_{>P'fR$5w=zN73dj ]/o%?9 {^^?ȣ/%vfJ?/d]L}_ۏx+qU,~\<~)\tlS,9g_xE/LT={/3繮~gǽ,{7|;?bμ}49OW<_m?2 ?q鷍~~AWr䱏x?z}IQT=&/>y?'e^+,txۧqjrkr'rrlS\D|[KϫҎ]uOz_\{oEgo?o#p\ѮQwOZrܺ4H=N[zr>̼Zw]}okÓ3Ss1I3C_{v^/{my~4QiܷRs;n+{Oqovj)ߓZ{/8u'{q|c>ԸQߤ,&=c|i5<.yY_o?S?mԲ>zu=dsyHqy㯒gVџT>?Ω?G]1_ =xy/8߲'U=?x8; QKҿ>wǔq{gv+y#W95-?G~EJdёǕrӯǁkzKʙEx˜AN>N 97yN }%n٧WrԿ(kWPIӵc>7Y-~o{g;۹C⭧>qO~MC/Ͼk>_aWμ]yq^+esOj?{! I3yOton}YשmO|A—~oyr:S:_}g>Mo]13}^r8=ŋ3SZOծ0^3 >[t?Ì_I)ʼ/&/ GS~[A=}kGs-=x~۹=u+_>t8,ôײ)r{x)|L~ 3ޯ)KG{_y˚~r]x< yg<}'EN_ϱe%`[ڋSω2=׾ou}wKg}o?ov8+ Grz㓾í䃵>#;>kyi'{x/Kkd}ԇOd]d_]ࠝC#7 _$z|ү)?kww\Oh>{P.<%-#;vc)'{O7%POp`r~>wGd+ʔuE~e?](|?ʙYO8g7y}gJ|Njc}LU/)ۯ9W-yr:ss5td=u49}}r_zČG}IܳSA8˩/~կзQ\)ں<<7zțΧ_7R] J4KW2?o9gt<צ]׫g-{q+A_OOӢ!cO}wɝǍ^P]."0!/7:g]F>w{kva;;~3o`<Ƨ9[32~/ϙZ9x cFo|G7R;rKSO{R=۾֗t&/\U.k~sӽOirU]Ώ= \So=·:y'^=2p~-UR_~㰱9<8t_ka~^y!=^_?;~YFrM9Y;^)E/z<{?i+?2~QU>~Z;>x-]՞ZN;YJh$tz^P~W<88uPo;i?χ޹ѡyPqLsho=?ei߅ޔWn>W"Ǭ<\OOբCMO`ߞvW"~9}d݇z.:z+VL'^so/zm7ͿWTw3C7k_>wO>y~|q^' v=9o=wG)Ny+<_}';8WPeyU.-wڃ/>ݟSݗ#h9,:S(4{\_<uy݋Gc||Yv #>|qIwKe{{[Wx r:~䬢_qS[yNOx}?qaگ'o1i?qWk֩o=^⦧f1|sz~vy3TWS~)s:GuwdcN=3nV$zXO)itުorYwٽ`\y*ieϢ=LnTw;5З7t(Ǘ{ sKo{^ }o/<\+?iniㆾ_v(ϻOrm~y~S22O\y:ЯLK0wsO?&]U;t?7k]CǷwxq{>z/?c*1a>x~y⅕׮-SUqyVV=0<^\ˋ}A/go=>$a;Ə ħ >~!C9!j]:{}kx~K?v`e7 ;OcVkoq^9v_=G3N2CQӛ()Oʷ)]}VuzZnzN}=gp~8އ8Ew^VAnvkuT#R~+<7;;޵/Q~&'M-tM?~';k(ߋޏSp}v[U3& M,~hA^?QN&Ecw<<yyz'zK_CL}_?(奷>OR߲iT'p%^;lܧWys>vOECڝ꿙߻mv>Y/{i/#7g˽f^)^|G}/O/Yŏ4Oz~ԗ},|jZ${kχo){<(?W??~OO#qyGe/t^ΟNO_io:1W-^)t}!\?~)VZ ~ooG޳b#x=M|ߍw8SoK?kurr}d'h7O7Eqǻb|֮<')g*7»E/qwo"/-39yjOL'uOhMnv޿WG@wу?-;_GסrU94b{y+{^ ßƁ5N_bksCn=Of:kso =^v:?3ኼ/|Y7.w?EcL{[5r>o_Q}7/W{q'|ZAqk 9{.kFBڿwڣw> ƫxCW?z/<8kN݇k],='@ܸVg?7y~o}ѳk}?Ƚy_v0sk=ߌF}uktf{iA'.僲xW[0~l☛ \ޛw@WGLzk==k=]rzh]WZjX=.y𨇰~Z|Y[> /̓GV=ob|GB\R呼דSZz޺o=iӮ;@_|I=~Oŭ?ĽY[{IKO|kwcx}L_v'1~$HZ"P78d\iZ|YLɸYg%N'PPE۟o}3'/ڱl6{}/ϋwp;˼Z Y_['k~TQ \:p> 7yʑ~:ZIt qyV+^>6ГM}NHOA,}stc?fO$Tq5~.3ea*׃״QӼ<{탩g 㼘=iڅ3N<ϺΗ9C.i>'eS߲ޛ9k;~DMӧV{g?M<ϗ?t^+qk5U})Uw79_4pyǕbC'|N"?WY{O{/N|ӚgO{}\' yOsοvI6㧾ĩ<⚫Wv:YցMYrؿ]"c~R>(z7<~sS}{OZhijT[zfOtf8%\rw2Ϲgk]ʗ\kwG9ֹ͞߻Yc}W۩Z}6Q#_Kcヒ;I{[ZϽŝ:~r~ڧs3_Kn|S߾>oܧl|fwܫ9x||T=>5rCз+r9GsyvyA6+I=} Jq ]o 㤾>c_ ݑ+xKSIq屃?pܿxɷɵ&yoK7>O$nfGo+^}kvČ/7 }?٫gO{9wFKӯmh?,zz뾺Oy?\@" o\?{C;qOxQO{?P־~[^nݯ7zӏyk'~ B n1ɏ+/Vx8r>qﷴ{GfL ӟwyuo񬜫|/a[NG1{C|~yZS>OY`z8bvsLOo~run=/}-˾6%JwY49y|+Ϧzբ_:ތKkWO#7WsjGEϹγ|2nُ='ɕwnҿ~)w>'&z9ȋ<;J\ۂӞSN㗟'HLq:>W.~۾=/J=HK}/9_"W[G8:/ߪ= )_>̿IY6A9^=?[~ӞzW^?)?W5.J-ӗ_OXCm}iڵ?>7w;V:J\P;!xr!;{K|?k񫂯MGo)kuX<_E?\}剟qV.qYqBW'eѫszn?ތ#?}ox?{7J}=7:f>,:io gu/t2sKk5w| *x̗t.?UGGC:+vs-^̓'є_gU zZY'z;/QלJAY<?zw/9_ڽץ<ڣ'&̸<>9ߕv)/|t3oeleg7|M#^oz_h;9sn)G/ ~,gd7B]v%W2#|<;Ҟ9垠e<\jt;x<ͳ{^\Yו|8 NHLdX~'<}&+)7\eZh˖x?eߛqKnh_ \k'm=.yRe_/|}=Э߷?yyN4K'racgot6<+z/f'OIL|kiUxq'_ʓ6 %ny߮q[}S^ 9y^OG<⵼?:g)㫇K:z,+;ExKM7_k裃L5ns<zطy^y_G=+8~Oq`qb4iۖS֮+5]~-/yG;@CE5|x˾oJ}9Ho;+gko)_8 y7y,tͽ}3N~;(O.^]Sjj?~:~7^Ϸ߮8N}{ڿH'Y굷~yȕn:(Ĵqg>θʏM]Eko5w iX]X}5uo,EW-^~+7{B_Mz]ocy'WwSm࿻zO7Xij^՟}>5xn.;a-=?{>t]/Mޔ^ξڳڛoS=<)}xskyx7﷥f/f7S^1nEysb/v'RjϰMG /xVx/ez-}7D~JP?td^2SV~K1 ҿoԏX9P '} tsqK_~\oӞS=V{h'%HmICtۧ۾u`\ߏ_~ʕ/vykfgxoGs\}=Lm]O;ro?ޟEKByі<| )?9q*7OA/Z+O:S>+~1CAǓ8Nrj.:5y'P~*OvůZWvvsr>̾-~ɟ)w ]yo<ʉ#b<ѯf]}Ş9IϦOGߥ7m ?+VWkcoYy)BϕO'>㎶1iDžށ^rO7>2rPvk_?x=z0Ծ=#/t)[ޯM֗rqOzܞ>;KοvSSQ;ߚ}+me_+zߚYK}x_.|%D}w>`irN_}U:Y3~>[ZO҇>W-<罼3+ xǕkhK?}~7^E>eKX^'\ɧ,Z93eSA\ʴ;?W9 yCWyN[>KG+E}Q7Kz>M*h?=Bgr_G|qy&|-'B;ُ_n}͞^yᝲϗ8_Y?|yu{:9zvCOM|Yw; ~2N6SkRf,viϺ˺y+G|Ƹi[8caqyS}v꿡]~gI^➫yO}lϾY%/Гʃ_(y~+G}y_Ԭzu:ON;V|׽}CNR'{ç_ovNJo},>^y5yrS+_T~=MN}\_q7`073~zç>?c ~+S`>w#W}loePS9y| _% _PV{>G^ysꞃ>~ΟWCG:FϤr;?ȿ2nlyN2w?N{EӧW^ǒw?)h:;vW2ٟO>t}vtĦ?ƥYKURy_y%hqQ ]fx %^?CW^ӟCSZ<%7U{r> |A~t_e9~XW5xS_ΩMYw:Or ߽G>;WH랪>]~G+vDԼFM+iwO<|Y;d\;>|{&u0Qf|aY|,x'mqP~~_wgu|>^]/M\΅78x+OO<';'ywq=A߂?poq'S縷}gs6+SNo=3?i"8*mɼKxA/'W?ǬU^iGX[Wk= ^ڋA __^97Gjgz#G'M}ʋ]R>2brGf<5ԛR xE{5'\%^sM ;F? yÁl &x+WOMʼnU=+Mu/}U§|ܨ?(x'jxPV_Ӯ{s-3LJ>VQ9?4xcxӺg8@$GN]qMsq?{Q_kg{Aq+O<׏gGr4GBޟ/'x?~|:{ov Tr;+qIj8n \{;={|kvjq=,#>cZ#*T| ?㦼 %(O ~7}wt5>>e /?ܯC/L?׻O'_ʹ9RjO|%_nOsh畗{ygKGE?_{ZA=eyG(x99?^SvS'RݫK־'SߧAOOz<p0 4~kQv/n5X}܌#d~]Hȇ"C޾䱯#lOܓdr3sϼ{_9|l#л֓+8 Z\PO/UڳNO=(S^ﵳW禧'8kEw|'~mjq(SN$ۓ=D?U/?K?zQzf<[/i\u{ =輷OI qWaǸ3''Uyo4}%܃lw'ޔO{ ]ɿ-eS›u;I=߿Rw'}{k>='^%.+qLMY[a^&i/6ɿxK =ynޓ}*zhwOB3_=u^{2.U~'yާPW{ߔKu\y3=E{`wLwBoss[c'ip,|sI't{j9rvzME8.$wsry}!'ߴەn_~ʵۯNZY~.k~ڏS]^'oo kv=G|Hw|Cq16~'}u̧yPnC S>J\GN}d\z${^<x}{pS|ǖICw^O+We_^veK$!^{З:B7p-ncaCv{> :'i8"y_|zo[O.^ _H=/'t"OD mG_\Ё_c/}y>BGۧ\OF W/|Go\5{@}+).~U覜rwwK;3Nijor)!U/ڹg{Ol_+$h?I~Usj|п:pP~cjrI]s%-~WC_s?N;v9 /+oz_E^|Y)"or ^?NG> +CK]qR꿡fyu{/xܧs-;q>'/= '~^U^Pn{ nU]ف{S>{f<#t.{z{M1<ʺJyM2G%=iL9rR=/fx2ޮ.x93ߗr`-SS‧]˹\ ω<_=u_/7,/Iӣ^7畃|y}=Ƨ/>^\m{_hR~:>wc'=V%7XIz6/rqdPȍG#'~pi9X/]t5񓜇>L+N(pɵǦ^yo_x_K>~T;zn\Eo{zω1kq8Ҟ:=pc=GټiO}}I=.;}I͞]:R__+~4+_1ɏ+׮{~_,Oi~X5yP/.9ߓ]ϻ ړ.sy_y3Џ=/yosr{󿕧^Ѕ?A}Mǂ'[bGsӏog5|?韜}i?]q`/N_2~c{{ܔ)SVNv>>t72 }'{K9:q)k?๶Գo,Zy ]^8&ϛ:9O//zl3^艏_ʍ>Ȼ^i^W B瓽,x3bV;^r濁ΌFgMrs lw9KOz>4z=pooߙ7gͮMS\xRqЯeG{Oy^ /vO:\_i;9 /=j|L`~3 t>gs8u/ijkywKg_p<@wiaN&2_Khv1>,O{!q?z sJrE|x7te7'ƮyЯ}"{FʵˤiϽF秾s82ڴ>^Ycvo+i̛gi_h3K8B`^;T [pCo/,5]f/0'z٫{ZȪ/cǿh{Ϭ7PORo9ߕz]r'Eons-W?iZ޾;vztѣ>m;\<2r=W8 ~u7OԟW6A}xԷ{^xc/}oOz8pB;'*=EmyAג{#> L?2=Ϫ+~\izs:niGߛ:/9'~coJ%Ļ)~9p'㺏k޴} 7+O^dWq3>Hڵ22ݧ)y$:.:i-ӿW)}ƽ*y |%ny\WO?/mbM\qYơ=i٥=T Q:N+O7eS|f4-y45oU|>K}~b_ɾ7xЮ[r䔑3D7 >S[ǏN+^y^ɔ_yΰ;Щ2p;~ SOcѯ.|2N׍)͞6s|`o6~=/t+ve?Wdqxg~>4xc8_0}Wz>MMlZǷ}!]r|s8{w_p\spxKO/=-n[WW~㞯7pSu3k<ǽ߫W\KPfr'e-!y5CwC\{⟲zq7Gyϙ'M^*ԔcGy_v_v_> y}wqw}r9گĻ,hyWgyn='=E{3>_NijP4>WCOWu_h~vJM?J{RH;#iiz8 =k'|N6cW}C{/i/iW>L=B^=,Ⱦ{7'}@OG߮7^/}ʱ's._yuxOyꓗ;p8ˮVk>TK>7u{SoK,i?K}.%/M?"Wι~;Կ#_{/"қ-tRV//?F\'psՒ sxS}mhǕz'h_o'shY'?8w#"7`W})/w:jO ~ }Y7zg< 8VW=sWhpΤ$w=whpǕw:[oy }i|ˋicͯ?s:w^Uϵ8%qo|>\M~2N/M~_[Z~;:oK8V) }X=< \M9G;R3/]?X7>/z[vO \舾jޗO:[ђ7v^|iO~V2O ]MYí〞oS〜G?5{̧?o=D;#z~+׮"_;8޳|>M>$zy[˭B'<z<-o ])>}y_~YO)O^b_2yv(˴qis{>phzG^^xW>8뱝oqO'^?yW>=5[>,<>>-?T+qLSdt|Zk<_qN=z7%3Ny.|~|^?<Ҕ'tHG'}٥O{ô9o~_|iZ?A)_ۊ#i[ΑJ^ǽ|rcڤF)|)~R>ڟ}Bھ|܏ zǛqB x]˴xهuZOO 0}S.YS98''~$t?>+c;׾~?~=@k-zǴy?]#4xSW}zM_맱Sj%W=`_x3[]>o㡏8_~ByKM,v?K|/эNJq4ѫ'v9OWmN}'_+?sJ7Kxro?եgun&I~/{I{=vw|Lz]O6=7]+>'gAoOy;2xxǚG䩵NyUb߰Os}PS~WO|pCݳ"|9}i^ook=6I-IOmOMy7/ȼmxS^yGg_kx(?Gw,zB?v?M·zf|'eKda[70"ո;}iqbyO/=5޷yyݻziáOz?_B*W^`}yn{y|mRmv~^u~wЯ|oyu5~ؾg{ug|o߉JGO3jк>u?we]G;Ky@ zZW>ݿq~GqYKC-{O~(k~ 9pK_JKb f>޾9^u&GɃǡom~p>!y^I- -=ߔzKG֎?')>Ϭg䆦G:oY/7i w44tOS[,skᾖo6; rywOy|s~{nۛwV_ ⅵfQ<GHuQӿ$&5{ mW~+)q|Qci|/7C|oݗ,y̿˗{~ɷzG=pΓįWw·krzZ}-_],h<^?x-ɼ}'x} 3_R_~y=oޣ?㺟\;g=?I5#E~.|.'ԫkoy\NCqʍя7%ﴵsƵ&S߅^3tyC֙?ܐt2p7$K{W;睵!\W~\%Ik{>c/T?N"7~;Nj:'7U}A{Y?#ϕoޯ/:󼼯JG/%î&/WݜjߑXt|}Gm9}]_|Wu;\.q_})(%?/qEuKGx~Ŵ_}cxo.3^oW8E>sҾ=؇f==)OqMOP!NaGW+orxqԣWry:CY A͞z/k`WᏦ%'T/q;s9~K <_Kս}˺:ރGJZxy8$ODoDN[ w ?A'~şRWyɷǝcבW.|x%'ak?ZKr?rw1ոfupz?+~~g< ^ \7)7Z=WZ/־t|NGcZE>gģl}_JxWs7/λn3o}eW/_~ʽ^{|Lv|хe6$w:kiWI߿~Αz~ghVzOp{nj_ z^qy~埁k;Bq_7-]bϸR SzR.?DlMp}/hkrsD3''z!UOGz ȶ?k &8qv?}9_)QK7py_+4S ]ʝ}uN~v|j);}OYSx+8Y;=+9{M+~=qagɁ3S'ȷ+^s?l}}(+xnCܿ i_zuL]FWxcuk罟~>χs_ga8G<7Yƥ`ogʛqcw{~wA3N9܃2 >N}u_u_o3_~w͓s#cg:}o~oZvsTWyq-PAp=q]i{}͟QU{~s4 Z}y/~3{җ3Ϋa{3QTIGWnqsMO rr%^z~N_;CS;t=j O/=EN'tDN: 'Ԏs'k<^c?~A >% FRnafdyo8\"}?OOZ7m\W{}2>SN㓼/vV^WӮb+>$.s~oT➖?(|1xǮ~;7_}~1Ӓ˺XIiWm/_.~ȼY~j gC9rMR|zX=S♒\~is|Y'J99*GEohwe~,} o?z{{Ϟ_5zT>,vi?~k_+oqsOCW- f}t--;=S_nײxp_Tr_IU/3'{'-z.£u^ <3N=ވʵSX2f󾴣x(=Bw\pڙbalZr2?T*_jSپ_q4%^+8I&=m=]/CsD廻'z#Wy3~rO?!ygU["v>̋]Y_9޶ _{w?2>ít.0tyl(y;<݈~#aڋ~'=x߶F'畫׸Ohy_A Uޗ+=uY3~S駞e'v{9`ʼqj|BA=ok\|,5= 9{C#qGS}rC5? ]w@o\y;~ z:x3~/]-yO& 5oi?#O.?bܥ:ONqKw[M/TƾIПr/|]韎k{'q+^sGEj _mUx}ه&p|}RӮqgXX;`4ڃ|r3'r[(x6|KV~l;uGZ7GO=ϣ=#v^}xgӟ^e砟?m.4pAU'9-}e?jvo{鷺./>|~/7:׹vǼ~4RW^??̣70t}ǿߒ’/?iG_~/.'GMo݋x}+ޚS~ȇ[Iw9u}W8\ag89!O% .IGJ=CoBq#ty>:-OA] 9!|JB"7wk+"G(g}uT.+bAv wg)ۇOTs1~R캃]D?@p`s~!u~Gzуj.á^^I"kbRpxz(\ePnuzC=Ўv.|'ZIw\M LCGNN~Zv!_iW!$^ԏV+E7AR{oO:DE|+!}r|"zb' i;}G=U}OJ۔>Ԟ{T䣹nI)_R>q#|*7~]EկҐB=J zQ+|?hD'+:? x#CZN]~L#~/xUY\q#P{{.#t+%ԞNQ~p_g7Nq|d\y:U/[tJI$YH/׹9O,>G!|[ },N%t a'F;[/봵Vg1|w? _"N_eg,e( m|s7G,y]78?Ǣ{ 8ԧӻ5ͽ =^8 ʕO?3WGԛ8.1? OG~‹/NQ+$9C'pz`-;_~,SwL)k_}IY ?~Ο?|JVcBfPs}о7yއqUu~%%)w2;Msɽ ;f#GǕ=)qw-?HSou2TdkUQ߽K=fhat~XOɹ{jN>g\ "}3D(wYN?+f+-;?Μb~7'7? xe '~ͽhпVtz./C^i}ț =zߓzPiezG×&xd?#>]\/'_+289=Nyk 9z_9Wev\8jߵoknc0~wUv0iMo{FQA﮸{ΎaƍvM(W͈1wrwzE/ٟ|C!}ƑKN#O=o^-!7yzC}L;xv)+&pKb"An j~鷫K|ʛWiq?GOr|H9;[= */%zLcg7;$xpTRp[!N?eTXJ&_hd<)VįzP/7G']9sY~qЏix> k(\tw8I:1k=G8?s#||)1`B9wf]2~Tm#9((z7t/c\uF IwXL{ݑ~?|Ҳ|sUOO jx(zlq p̺u|DHs7C8 @AeS!S0N8>{H5'y ?<ר(vrs~ t.Yo +qzL{O%|˿?,XiPD_dlQ#K'ˊx(/VV?Qꕥ5gq\޽S@;BǥGsC x? O'P;(7}!khp%}bJ7%x.H|tv<~G'|S!B=g̑&̇K|˾s@{Lh>SOWԧ;B=jJƾ: Go/'pPN=d>aM"?[O1g"-τzː9J~3~ _Ӽ1;.Y\^&ǹs._Yc4!]L=ՍqO;G~G81ϯPXs8ފ_ʫ/<~-)/SOsoGW;)/oce>՟GrCGS=r's~O|ܟ~4ۓ?%ռN}O>DIHQzUHsw `f i1;-{uq!obo'WSv>/\h('duǻW.X?%~o 8oB~޸] C}_GI8Z]Z#B?=CO^Ge?8:sXz}:k&9ߢzfUP҆uI^%C;9~ǁߣ_C+gt1UkJܿ-N:QE}V?Fv}$zE  iK=6K\Jk?{[~}3nNu^ޜҤ?#?ڄ|=xKC&xP!{%2/ikpzR{,G(_^bnqz b'/o{Bו+OyM>6SVĝΝÎ7S 5'fOze' 0Otsr_E-si;9+'i?/S<D}OMb~e@dpH;< t%^w px%随҂O2©Ww5?-EuD} 'E~w|'L/Ywu+>zn! ]j.(&_K~i'ͬKP;G94.s]j;=p ?tʝ3;`}YAS'8OԎ/ꄏ/~)y}|'%*I~,G; hiI`y~Wp1^V9bc`pt,#|[ָ< q%Rԃ~+;v&v!B~ϔ{Pg /1-2.C=GK=KbrELtgY4C~^Cy.ݽzG""y`}Ŝ'Ow{H8ăr?ى(ok/K\?kq{\aΟ|oOq >N1br|'^-biO J|wK|~د?14GV=WXnw/+gq=ߩ{*)$K~_ MyHWcxop;S9 3ĔK|+~sz~}Nq9U)1Iݗ~D>/KU-O@`G9UQG~iz^D=?﷭v|N 7D֮4 \"DտkW 9]!Yn!7GNoQ:C?n('N!=zP&ړ޻QA6C;)HQp~!_r Qjs]Մm,Ƌ!ӏF^ܾ*%# 8|#bQ9g>?2?AÉO~?.$|B}9[/oHӏ"Cӓ;#wJ/ ‡>}cH˯fn?۴^bV?2m١~ҾuGC 1=حC^bί嬝%CZq~Ӗ|'_e}W͊|/ו 1]臱6&~T>з>㧞̊2KOW87G <} x~nSk+{̀opA.3n]KlcM&_' }C>r% z—/^Yvy&q&z 3{<_"bS8/jOCy>s0x%/e1ܤ^NhR4gW7n% a_+TJ㠞@1PZ^J#~~Gb;+/2$|@rsOvpeHCOq6пʡGZ|ROY-b:NNR=O{Q.M(yZk='Ҥ˼wcX9; M>tvGn~ OE~3qd瀯~~JC;nOW&>Vn ;U(W ttĝr 'J}2Υ=ƥ@뷊~_L>=/(]8?jg}=ћJ \ 1E>grk7M>kރ[iLS} %%z|wE?ƿCGar Qvu]'E~:_4>z?MWOu:|{?K#?%~!nkA꧱]L^'BǦS-{Xȧ[텟UgZE,ʽoqݰeZS~/{alHN:|k~XHkt qq"WWi[yHqI wQKO+WRZk]'=iOH?RD#18}0ӥv Se~O[sQ?G\<?2:Yjr;uccv[ܷC;B_O;%J~79)1_l%JWv"g?|B*t %ѹ` ُda`N!.oϬq~(^h7[8/<'I}}O&C"wPK}XK ~5mԇ&^r3jcxQ/&4):ޫ>E/}(CyQqWe#Z?* Cb~IpW?'b])>_>[t oI?֑ƛ ݣXG)>go[b |+#=1Jڟ*vԺ7ߑkqNq:29b=Gw* .x( oJ)Pt;ԃ8Ҏ`|;ݾfzqΈUoދIZG|o=5vL҉%oCs1ý/-Oe ʳ<ݎ~x:䫾?{C}hRZb|^Zoב^=փ:[~<_p8y\ݻI=wH|gsGiY\մ{o=9ݻ]N_hM3 I^x~E~ZޓrHWi2/~vIQ>rο^NJs;Q?|' 9,}k}g{/H__?'Sjt1a6Wc +fEtr>}O[it(zОr>ν|UGvJ\?G8QH̬qޠ~ _U҂wC17^a*4g?B;g)O1\#&ﳪh[pɽC;盿Zrq\tr?%rW{Qɸѯ|ub%%"9y%_AWxP5ǏQ_IP_堳o Kj܄U!*}W^r;qʅMqL;g'yr/'oO/x'g98Grp#&rz ^Hk߻~N8i[ely|g G4*o׸[V?> ;鵑8N|Q,ƣ7?ӧZ}D^'y?X~^-Ǐ~tb7rdN=zw_igPޢ+ĎO3zAYwC>&pi|3jgzshl4co}|Pv#c'<%^=~-OƐY}[Ckdտ!V~'srO< Vz/~О-B/t2R~D~`ʹ^W8z.||z|;.߭cZ`IW+}/tpIG}oi:XO>| ቮj>"TVe5߽Ɛ'9B+Tϧ}Xx obNiz;Y?^/ "# >kxA@kHgq~78['gx$ }t~q~hws'CX?m?\S 8El'ѯB91mԎzOW{5>C=#r P=1UW x2ggOd*んyK|"ƹiO9|iwA|>>[K%?Y8tүh q!&>Y*|t߹ T_Nᷔ>k 'L4&IwxV~rOVңӏ>ӝDWE=e#ˢ^}>!x5X{1S Vc,N>z/w.wT_7xN/|4gUOt9Gs?~?5t7Agگ"xA'Wԇp^p7Ȭ߼|H?ܷܧKV?鯥5&^{.֩nC=K|Y\Ao,'}+ϛr2?A³~/mKd1>\X禓3Q-b"={<(7$IԽ+ce<J;2Տ?ǡ\:;zKjGECC}%"^5.+v6>קb-g/*zG=}$wd׀siWx,Xx9w;/®7? 5ܸۄ~q/C,\[9կƅݺ$}}Gǃon OJ1 {<_9þ c~Lc=%~8ׄyew<$ (8ćb'>BBD彖%o{݁7~__X; ]B +CxȋXMo޸fzS9ɐIp 28܇>(W;lHE}7I>[aH"ѻcAN a/v$ܭzҏ~[#88]Vv' #VyWr^9}R|<Қ7i\5/:W՞/CjC _wzν'\^ ᔯwTBɧ?Ɠ]yz!3M woxO2;{ڗ3C{\džp2iqXJ𥼩ry:9s=r{6+ᆱ)B4֥GV !?~֟|s?:9O/x;T_uP=zcHR+zɏK$~W<'r_ߝ x&P:5WQz_w&$Dou#_pH??;$j_A~Vi$UzW~1}p9yЭ'. -3+p4^FαwFg3#Fyz@O# ǭK$cx/TbH |CS(u<+q+z/ ǃ~|?Q_\?8oQH?;}:%7sW;k'ﱨm_[/$xT٢ZcyTΞ/z :d^H砧N'/zC@5_)uD}Uw~ WC=y\^!-(d1>Hv CWI(ɍU߭~5Fob+h9_ߌ3S>qSH@;-{!QCxr}K#nVb W;#9G?IP_SE=^q//!Oz?yf=·Mc =fN>̋L߼a5~<ߠ? O)7sp/Y䧪qsλx%~šj1gLz) kGzs&+bGnQ~_. z?[0?W n_;|->B<#?{uCeӔKC9w^gY@xqs)=:Wy/v 5shTZB)_-ĞZ7~/dzϋ+"_OzH"]}C= C>Ӆe9t|5EN f֣]sV균~0/ˉ7,fElMFLQuSϧuRr1CBwI3 ^1~ ]Nu9)=wzuOߡTZbv}&QzDָ=qo f#|sw|їw*MOBu*ڕ1~87C7}6꟩~<|g!sY9yb:'_H;|g'B}ڙ]%zِ|*.THjqH ܹs< ij:UoA9zf\WW"= {~WdO|[#i pi_rE4p5C>CkAmÇ,C>pO%ğϝ x>߸~ܽjȑ Ξbofgې#.W($ΝS&ᆴ]ޖ!z,[Nt|ǂ6Ex߭a?~_wOm50nVث}|"=og_ +}G=?KC1;E|CZ7$rw~π xWBZ'ϼyzhkg!_|%_cC;>|#Wg4?gΟ )ӓ&zT!c|=ƺ #D icZvW'G?JNKQwDL=D^$v| Ɖ~I}CC{[]yC_u<>{P?GJWH_G>s2w9֜ˡb# VDw :q_oӊy_~?5~9WfGisuSI{1IZk`O9iqg·d?.qO4 yoW%8{S3 SobH$^~.vB=W<y.S?E8z;~o{'GF87ņ!/b-ˆ|O~~h>31}~? JB}~~wy_ 7PPc D(r (xyi4e{W >/ۗNy|ӎ~U(ϋXQE9Vnڣ_w r~XI>'U!.k2%97*qS5P1&N&傧}DҼп #|q[2}l+fBϲW[`&^Iy P|~6|60\Z5qM&_c(USfڕѧ,Nvfr:=PJ>̤"}Q8RA%#v. VwEG;X/!ĸ!]K7.gHa?[|ܐElW'z?n߂g~Hw;~#,K:˜Gq̜!~F?>wnX=;Z^kk$v_ɹJn&_xQ"ԏs1X}DhQsZɼw{'!_t v/;Xy% gjS~ϊ~;;|wRΫ}V|5~T/Cwh/ޚWx6㾃*;*CpGCC7/{!O;csƽ@}sޤ:3P_I/$q,֟k+ҟnAzN_\?K;4|<纪]t3v(Ў_./UoiEq$[]Hʧv$zTGvn|~Ljae[McǕ|S|SsAyGNiUjk~z" M}9~&]}yO֝!#iC eE7'_s9?€?Յ!qzPN?9r%rk%noȕwph}^r}K+s//#131}O,2?Ő?.wv:Og|QSX%0?B>;u/I /->%^bPjb%g6r;gϭv&YVĸka QnR=w]I=/k 7aPzľ쟿Mo#G}]jA}(%ĮbޟOއ9/zM}//w{1>~3+b7}v®=JNm_f%i_żh}s@CL=#ِr_wD)yWc*oC:37poƽtٻ}vЎD%rAr3Jʍ#9g$<ſs^A縑Sm}枒g&gK\|g;|ɹ>w>5NC2wM|} wr䟕O^3SBh!r_p4Nw 9o#_bJn)uH}o6Ӻwc .?o\ 3d?E\vĮ@{8 NSS 9NzHƞbn=Aq~ve O~\ovo!M=G!?\~ȧj$)C{9X!_q*ʹorQ&sr'#_u1kC[~)C˭%CQwA1Cn})Y'rӿ%5B1z䣫Gd.e?fE }'/CD ]ޤ1,NY {/M8bBG0лP_|Tڛ!;{y?՟~޸@wI/sr?++bvI^!,wgq:+ZNOuL}z ۀi1?_O ?-*u윴Q/ߣvݴeq1!_1 < B>t!_q|~E;wN(UX!Os\ux^*[yu$-.N؋y(8|=ߐKz/~%~T G~#!ȝ1T^C;ÂcMq~OM{ dm ~Oc_cUkOwg&1d>GSixe1>.D~qtrG~7:{?~TU֞C]t1Ģ:O(ݿuZv?HW;"R7V!M;[Oܷy.u')7}(ϋp8\B=~w ">L3[YBb"&?s)G{ұ,ȟu6ߌNK%3wַnMM) RVw+p =wW| HY1.CQpOI6rIEuIzz~csf;&>1szaEL"C Cx}'LEsŝo,Y=YCy.~f.B=7pq΄|dN53n(>6C|P/I?k; }) .\߭q~@Zn}ߗm8?z3vkBW6t))6V/(z@~|G򥤋f~v_15һju^|Ϣ4#u)>=a(T#˚El߹rd>|7|uvЃ$'^KU'xV[.vt \xN{=G W|7CjP(w|DΡ^@s#?F +bwYߛ ߝ_ɼqI=ݩ];_hOyz|*f~orv`ޒ+E bG;^<(+~F|k3[ܮ&:I}Q(_!u[7k vFy "=GJW7;L2.-SBy/b{Ap{1?$Ry˟ bByi;B;ɴQ|)w\}OہH5ߑK՟])ѯsɋsoִ' {9>tφ~yNW&Aԣ.;(t^}Q_t=sD|boH;; 㼈?m\x,K'(7!c$FzU :3[7ڏy"UMM뤾*:y%ΰsii}k>;Oq:P52+bIE<8> #st|/~HK1Q2?!qL_5Bw(3s߫/?\cSHkuZq7@g׹_gpobf>v%/^\wO iS}oYaR%>_U:/n~rZ|_P]P8]2}n◼Wi3C}B}7>$3~RJ2y/C"gI;Bo;K~P«_sNkoϽsUPwjH;ԯqQK k"nF>]\_}HqzGGxS.\-~s9x\qr6/u. 1z{Y~Ki|&2/icKXws+}H8#֮o|G=gI3;HzLrD=X?dȋ%y3\ :Ҥk+@?dօE J&q =-Dw>lgɺ1:4>B=3W/G=+#_|Aj9FOkQ7yd3b*<}&rJ[cw~X?{s}87_L>3ʀoJƧMq}f0m/yt,O Nnkkp~Y!F8zf91]!?+bHl~~SП_Kxzkc}Vxݼ/T>|p[Ԓ{V^ӯoiwlho\{V>q#/?ADmFZ.KxNBv%$Cce3K9{9D_4zЎ9WB쇤=t$ɒV,%I[{X}D.͋Xt.}TCtWq&x|$; 3kzC{on~OvG;oݽ2*89iuC?ez|@i'G7;;<򝿂ː+JD}~'ʝsՒ!O~J߫ʊO 9lTAJS? ?09NiƔW%|8nNɹW=S)>@s{vs9-gG~ѮE"vO|9yvض%s_5ԧ %zakKL|i1ꮀD͓:-΀íJdl< ʝCMG߻x>L[r$g+ڟڿwZ_o+ԟ>.w$ iHOWi,GZxq~g+"^* zKI?KދrkI b+z9+Lu~?Jtzs 29݇I9be3>kQoD=8گC} =t~2'EisR~/G'I{~*i} _Y\/ B>Կג#O^}K}>w N?We{0^e7%Ip~,9&y4G;ΗA? Q|o_]z B~t"!%vUL=Q|H"]&s0ؑ*q~YHqe>WPߗB;ʧ?wB\|O=*ϑ~;,+ ?(2c8~D¿:~ %|}+8}obql@^_h'ni^ba`X^(`{M SΏ|_G>퐯cwF;U=NU]kCZ@\G0W*gO}ơkQH7SZZ7>C;lO9|_bFo7" 1r/χs6?VYԳtܫJ'1;C9#;X~Pv!M#G8Rr~ n3dߧ|GC;$v?^S{E]Jʯ1q 9:s|.3ĴuG\(('߂2ko_xYt"/jdw}Ҝ'a8924ѫ%JĜ_%O<4 8K5uEuo,;V6zcw{ވ>zw='ov} o'~4bR=1%WKڋ.G]gU_N+oKfȣ<GKZ\VrԎkspȜPv.$G]Q,J8c^ 3|ճ>֧tָ0Ih_#j@#i^OS~>Z#}a{ߚNy0G}\G8y!0Gxg_MPϋvZ_^~n߱ZkO2.Xϡ)^{-(sr~O?5}'xw*˘t3b9 f|3iO}u )ҭoS^z^4/b ϡPOxV|2C0A?-qwy(n'|/ܹO}8? i}f.u= P>|+ N_|ob?\ GE?C)?y(;/i+$~rNǐ{駄q "vIUA+/Brsq'$ܯ_>כov8d̐/@:r17P=x('bB{ ~GzwZ?]jߜK.w?-G9I޸>/By%;zP|E[Z ,Lq_9}k4;ʂ0F riC /Υ]H0s9I/C>WOrtiger{>ס9;7e/ƐCjcݹТOyr}[<"-:y^']kw])R?\o7ޏqhrI]|gv{?~ N~HÏک?r{|mAZx;CK+ m/ᯜݒU[? 3-K .$~5]9G~%w('qWz[4C($AJ蛱/T/{v-~ V9%k;bҏiƐ'7i| ίح!+K?D^4~(m ߸gӉsFkʱ^~GY7~IJyv 5Ov$+·ogszUCL=Yrd`gKvرB9/F_yD@By'z ϡ\lฐйqD _"%{Ɵ5;"V;gt/o p` !y^=E` Y)| /9cweEV2h{.T0 =6ƋT5+ _ƉTR1]Hk_/_DO _5$=~| iߋ0'?"MуfNoJxyoQEO#''W"Pi{8SOyVZ߫"?~wR.{</9C}= |o빂d㗜CRD~mềT/YL38wfB9GerAB~~(m[y ?+/ѿ}S=U?k~>մsk== y:R#gh?>Gڇ` ?}(w ɅGlB;؏2x +_(wtB\-b΃|$sʗ':s>3 >)X>{H\F;w8߄ƙ81;I{-n{/xk~'fQq Wӹv*i%p93Ƒ߱} ^7#K;x/_U_C74^W~7A\pj%cei]|ΏT!93OAw3o=toy5s7Ջ}.߰NϨB;;M"v@SӨ'GǑ \~@?{ t4gVF=q5q>~B>S"w̟4YB . yQzNm F!_.C')o8>C>Ek]G>%''+v5  i0?O\K ]ȧr=p@CUH}{\y|[e[!?a7i{!Zw i\NsVFC{a<g~O `;`@꿉WK iZ/]CLG~+諾a^%f8w=u=7߁ie R>Dž)?U:Xsۛzy]Pvrlw߄ Kg^@=즡~VĸAڪOė?/G^s8,̻%y!Ws!yxJ ׅDG;h3{z#5*m輂C̊M1wZPlB2ԇ?g ɼRO|ʁcSA9Нς#%Λ>H9'叼y߷b<,~}Nf봘8P75#_s񽆄o:<dܹ |/!{w+?L)kM=uf=ОUpo>|4u IbOmPk\ rCLSDiOC~{_;|^ī~ě~ 1f4Uߑ>w}HozbI+&_u^ѰE܌r{js"C7|Pf>Q9;ʑfK ?~Bh⤿9>wVig"P/2ҍ~_-cB?wX5z|0+bo%~>Bt] >b&|Oe!.oj\n 1Ǎnf]o7'ssGoaY~s|NWY\WPvoouPNq~PKu"*#5Zߓk"mNߣX2f}~QNF=@ޡDEyzn+WZĪQ)ou>_Aҽ _1`~ Ew~wT\ѿ=ɟ=zY܎!*댽"8y%^:rpޭظ<$go"4=C}?+W+q? z! e*vwBrE.}(~;A~I𧼙+/U,$v%##hO;ռ( 94B}5T=y،rB{G׾|;=k=VCb>]ǑVfEMkWpiR~0ztpKg+ql۹SV })K.`UWvU*9}N=fO ;O>4YY\Y2젉V? ાӧ*ud̀ ;ӻ{p o|) q(W_ncݽXڝ\(/dBƁ~/O i޷<U?ҷ:-~J65nvBj?ϡ=+Nc8Þv%qzPEʻ*wz<9+k{c?O!\I||~޸OhWtݑ&_D>wEWC[&;ɟy\sxHB޸d?ٿ_*1XyL'.O% iQ3. Wi\3y'2_2JU§ ?nqޝ^I1\vg/&WI,WfL_Sɾ}lkF<+*X oCj5ef袓oTN%cx ;3Ѫq~~* Cw{۸;oFRY/.<@B;gSO8rdz/+dE{e?\(8E+}:JYnino3wC>{4[#|Z+E_ˋXCp<(oPwqHHa\J7+J'Xv ^N(PcNu~<){g*yiž 7vt L~ӳ<3h7=i/6י򡿲`K~{tGB8!Mr5Sϣ}!3LFHU+/b<n4>CBn] G~7sWL>Ǒ,ɧ*e]ޒy|^g&*Ý? ?\1 \C9ߤeLNgbs Cytzev}~ze~\<Ƌ!A{~Em=վݰ{;yc8~o /uE7' b8X(7گg%w)wa/SYWwi14w?G ֝x"{Z |oQ'?E{jh'?q?+J\}$OޡӛX|rq0wI=>Y+yr;ZZo8Ğ?yw"_( ]?Xbg9L <g%i+d^?xrƩHyL bbRUs=Qkk1ߪ߿uZw/q]e1~אG{ }u'g7ޅzE_WY}/z9SD'E7V_tnoOts S&~~ZB.}WQNDW\_*ļGĐwD>%ۅ4V-S^e/J*ʩGuv\B rSJNy;:3r}įC~'Ouh5΃_au :i.d_V+oӸw] "Pi-Я*=ik| H pBsρ;u~lО-y.j#/v1I;cgK "Uw-)g2%p_A/[)hw؏W1J7wrN/c8 |?D~N䤤 ]{Z|&^P_|y Syj>{^7;ֺ]!<=5]߆=8WyZǔ'_utGZ?z>[!?jҰNC>7C2z^r"ٽS5iGy4 >5^ Y9vFZg+M-s}RJ~~{ݤw! O򅿱[x:/},nҫV/s:R{?vA䂵O9~^ א/ 휿y 倛'YzH<~k qq~{C=i! ==g8+be~f!u;F(u',G9[ꯥ}Jf94iO=Ea!9ʩ/?jw1ސwr!"~C"稽ԣ*MN>+ce(=ew9w}?0'98.[{9=!:>B_Q^\^%Cy[{*'L\=~rfB^ci iJ e剟(W8C;CP{%oゕ{ ;kwvs⫴[NrSe|ָGA{$K|(h~"ָTʼn~ױQlP2aIGȏBAY#{ Y6ǻ 1ϙ(>5[dq7ϾWm{4Kg\wB}f=*87g)Wj\!wtR9&?x;YO{GUߖ"q*s}dy}#'S?>7\ꯝݠ߄zΞYwnm&̺INT,n>G9 i/-s/,:DY o׬rI/>N~.cO}^[Ҟ~+e]K>Mɑ#] O|^Mq))盕wQ/w@?{G>*C9`Mu[bOHSOk\7(ܧIQq5$zB7<|Y9/x8ghEҫ?Cb寃)';VtNgh1|7CUvd~f Տj\ Z\Et.ʟ. ߵt~v^z ʃ쟁8ހ7W'8r/ Rw ?,h+GYz;O"b~rw'po]З|g {Or{%޻2&T+|738GEYɗ㝬ɴ9yF鿓uG9̾ 3eqձqy _v|'JYr!]{~zP_7GL?7uY߈RKNJ )sT꓾cMb}g;Ҕ_]~;!9pN%tWEGc}1f'>׾S4 frE.$zZN!A5&|/悽7LzpWOSG0ω~ ɽޙ~혔{8ʯd}rv,ΫXhgd/9.~?क़؊s|PZw.1>iTY|E=wG};k1!M7+_pF{q󽂸oV5E0NkZE,G?޻%1ЏPV DB9J*ޘ}2"{LAɾ}CWq$Ӑ?\1C9r}sίj1^U+zLS}a^h /ak5ޔ_||^\䏪('yʴA@g8PE9#c=TlS]P~;q4s~s}Q-H.+,>Di_ky(W}Kgz񬈝DXjpOzAGVnHomО2H<Oy(7uD=v z9'_(xS|4JCB䠤>Ii]P#mb!~%WR>waHQqs:)tEzu7K|y8gJM?jSqй1~҂E OͯmPxNЯ'|'_f1 NnL3/hG:Y}H?Wٳ _ۛ|O1/%r\pf^v^'#ӯp)V9\kgʫGG8D^z>Q/+StGЯ@y|)֣sTHI?#OS8ۅ{H'8!-^>$|3p[/qb~rofh_#|%v߼AjS |'+՛Q.`o/D֭ wpj巗q^O~q. h })i|BE}P;v_<{ԏbYaHw)ZWEw2QL;_>i^(N}PNzq1x&zc+򦽯ȕ>LƎyG+vIy > ޛ%z2>g&ƿ:/'2YZ= 3]3UE?{ӗ1Xw>Cq`>Tr\n)dz?!Wz*>Nrdt^~v^nq/b=7jPSWF?w O~z,?ןY#'u ~'~?hW4+$|?żo#;W=7r4wuι>G=r#<ұ*3O5w?nw?ӗr롼ԏDC;W@|C;On#veEyq$_4&'6G;ݿv~o޻vx8aw7jOx{J=4Qxw<~&i1.q9.9ip;e͋oKL$mr\/G,wz^onM_:ާ=2}uR+Wv+/ )/@̯#Hm畆!>#OGQp~Ϡָf:TH;&mA=Zi ؏_4nWFPF$ʫnq1!31_s$tm2p,]ѻJڳ'_Sڝm\_-Ls8y;QvJw{ ?19N,J w_C7jz'SH/+ :n>-GoPLNg(w('v}ߔ wџ:W}D hsxw$1X>Fi  79q'Mև'kc`q}1!M}D.g(;HOojB9cl5nrCS2.9{^<,~˾W|wld=0Uӟw (wkݗY~n?^͹ḑ:9Z{٤O}z(7r(:OƑ ;>i ߅9PW;w{oPߝ]8M&pu \翗襳8?ԣ4GLx:_vE}&z Ο^t^!U$`J]b>'kB[E/}PYap#_gǥ? iQ=cB{g׆d%rq"+Α.l? _7/@';r^ x-Yp>B=łC U|@.L*PNSE 9+|w*e}LR"͐6r^؟;_;u;us~n\qwz>c /JÐ5S?ߛHi|8`#v(9oG!>O<Oyk=h݊釴=>Y}귫~) V^L>̧ :7wE=DOL&{ڷuzoD?l#gP!X'ԏ*~<3Sv'O)">,~6}N3e(ӎO1O{w}IṙN\0%r,7Nq?')Ty5.OGtX}7{;+??D,1J|"{Կ~)[4΢k'N_5b;/x;:QE/ia!‡>u&K&ؿ:|W^f)IC;wă`w;co1x%|Q)o8>zq{rz;KVݲpAP|]P޻{ t+r=exsCt|+Ѿ49&AH0IH<{ow+^8r3}|3PD|sZ*͋؍y~Wz}(7+9Wa /\7#Ew(-<_ƹ"?+k\ނRzIyL>ݠ=veZrܜc ||C=hq3/lO۠󎮢ӧ$T }O'^ ޟw;9?b;&uSwPﬢƪWd$A< pW}ew`B=p{ |#7T=L~sX2#|&~p|+ =G*ּVM<5N],/>-owM~zD\?%p@guǢ7\%a5?9WC;2i?I9E];79/%z܇s+6q>XqaN#]=7?9> (j/h~!k*uq)GKHPu"#=`b*XN3r|v,7~%'ܿf_Z#1$zΈW6KF{1q8cdnxrꑜyhO|N_){Q7G{YsU9C_}%~ V{=GZLWE% -;ɕ&i9ˀOct>qAI?k=-YϽѿ)3|֣\F3S+6|O/n*w~2#|EzCUxSNtv+B;SJo“E-;ʀ/W{^[]g鐯s\iyq][VnF;θ/x'g'p^sz,%|ի8(r)䕆Us_q綅C2GLV"|BrI|/)VgϝKW'S~gzWE;s]9_7n6]Ζ\^ 9+Q8/B9uG~پNzЮ=EL~vPOq=,N[D M}gEi'uFy; =F>/Jm1T#],[޴oTؼ#tSx.d1D)O3SD6I;{/s cL)q1ܤ-AW-b{΋Q^~.~|v ]{\/dCss%Y*/G\wjG^vx@nH=u pt_ޤ:C6ک '|+䳨'm|_T~kVBvhy5߃~0Ov2v+gq}Ogyo/ys8w5?x׽_tuZL;bՎC9%OɁ쾯"_=L}qr|!]?pG=yBj^ N_}rF)o;)z^%˞j=SujO?!צr?Dž~SS>LS`'p*O"}Ӹ}^+^|t*),_+V;'UP.?' ?%?)7/8nR7ݤKNhFcԿ\x~Τ*+}DY8rSs+Ҫ׿5uJs^،4䤄SZWpUN?*sG~2q'CU#_ݣt_kWTD~3Xy/99nw9_w#ņ/)$ O{>e6JŅzMO~~EyocF/ 8s % ^[Q'=_RQfnucJO!-9?gbF^^>r&pyy7Tӳ3?/W_*Lqyߧ}1)ܤLͼq[~彊K7؞yc8C๘W'笓N~S(f!|3a-v>szŸz r'|΃<$17 听q:#P>N{2!_$Oq'us2YW#VPoy}3P{nCK%TzKY Swh\'wP5p<.%C=cg`Vo~՝k?,T*.si{Ho]<원zNyZ%3 ?e6ʩ{"Aik~o?s<"|L_?ٻ?}% {wr鬈%/r]*|Uw?O7맚OkL>%5ԧ>si=E)Gz ȷviW$TpA ["<{ ɽ1H2%?I%=J[W 6v/оa\G)'hiQ+Q_qa=9?cGr~У;Z*?63[%tM;ik>?E Dn C}<+#.8~gGzt1uB?w9}ubMJk~8/< zROlå=Gz`G"Ѿk)?w.n|?|z{wB=ơy3/W{ceHc 2CL=7WzWR&={~ް ?CzeJiC9q;y~B#|a{E!߼CC!a}$甕Gs+qPPN=m/b'v<޿NW/y0gQ/1ݞ++VD:\]͹Kw |7ɜ3V_e*O(ކ;%P 'tNdOC?h?G_I* !D)}cɧBSu^[p;\P5 |8:C!?F'ecΏ?wEdu>|WHx^*p|O1=_?A>&.̽HGߒr},oG#5ϼj>Ӹji8'(;P@ xc=V*3N_0?ߟOɟ׿盖_fgzg^9]wrĪ:>f T_]N|n;1쩙=oy{uSϹuW/;ϗUL6+.r '_sot{c'굱N|6~dӵ-E9F/B|bb/v{Ɵ;CLMi#~Wg9˷~xj?}o6Qde)ֿbv{im9|kW>]_^wTb&G>}?_Г۱>_luwy>;~pyfGniOYz㹇kk?].9p3;vS_]`%8W>~ꬳޝȷڛ{&=a>n&N{;?Zf9?gL٥5ulW|U듯בY}E}ꄉ OZoטnտWz;}õ_柇~`Ǟ봌^yk]{NWn/?}k?ܴO?mN=yݽ6qׯ[jcg6iejv9oVlBmr{%jwpl]׮6\s_-^{5[=?wR{v[>r1mv [mXzPG?q|莵3ϙO_|>u,o>.θfGx{9yh}=ݳ9Ո{^Ǟ=ÎznC_NPOѩs~v;uȗOoÍ7pRj.'ԞzdnwqZڧwq< wą~V&O7ע8u;[=#&^S'r}?m_[qo]l9z6inzSSmҡ<~|É0BK[Sjgv}+K׿{uGmр>ص 3Y?ωO4j\`n[UbluW/v;՞cbO|9S}]vmmg=C[>骅>v}79a׾Yk9ћ%j.ZCTg@EC~n_j>sopFe;~wjoɅW ]Zlڨ^vJKO?H:\Ogo~{6}꿬e[tQ}B~[?fFSތcjeygvq&{ݷvێqij? ӝ?[a_/W[9R_qN\G>'qݺ <-x^z%gzxX0v[\O]떟:mP?quN/;Yixs}⤙w?n.4OTvZ+j7_3aϗ>M!zzs>zygt^\~zSE׋n/O=pX矌챡1N||_ԿȎy+m|N/^_7zR}c?E}1_M2Wfk^uYw,\/[8^gK'}T}վ9botԗ']W?Mk?vٖ\3T_x'_{ʏ?޺/'^O_ۖKj1nxmw܃qwTS[3 Ƭuߴ٘[W^+;6~ިZft1/{k_oyuݦv voE=?2_Y5?7.OF~gk/Orn;6ӝW6f]~}j77ߪ&sjZmܑ:cjㆎ5~Ծ׎=n6ѽ7NtNNwmIGCjmtO<,\\~o ->1+s5wg\=fUw&,عǙY{zuޚrN=}yU{)q[tWn=jcOYdQ1o/ 6z7{굺[}k}'v=væ5o9{XуvXhxxWW_>q>[0q+w?}X;cW]kUg~ynk-76KW_>E?=tܥX핳_=YkoxeTfmu:צ/o>2|\|C^L?.>ۇ-pIͫ֟WP??ߨ<҇GouFδ]/O>؅WZSO}9]df羷Ɯ.յqܝ溷:sϿsI7mqTE?a{k?~s \׽ek{,~mƞ^XdpM׾y c,֩;]sw}_mk37ykg;j,>ѽkO]<{jflUyZm}վٷ}adNxcQG>]W>~>2tU6վ\yOuķyuwϯZ71O־SٗL^n M>۹6}No8a>[KZ؛a_k.>4}}Z|׿];6>>&ogySNj,Wz^y+[jS>W~|G>}JKv~tkw?ԈZp|7ߑ GsGV{N{[8o/zop{~ԿYk9}'}w4n۫Kv@'/.v.=SoNqc v@tι'4ڇW }qm^{[p٭Nɑ/䭵x/]󛴛ر۽g>j_gl;C].+Iw9^n}LfcWk=j;׾tOTl0w_@+?x r?|eJ6i~FpK6vgqm>v~yN:mU=Þ##C"ç>ri g_vD_{^s'o=ˑn\96qYx}1s]{f{pڸ}:xO?9gw٨6v^w9Z?h6VkSK~qI?y~Wjߏg۹~77,~m%ۣO3?g/\UqcGWF?ڤs/k߸K7-|><'F64M>uڄ&O>oB/Pi[ͳ+RaޛcX5=ԣj3c=uuXoڄ[>+[e[?x/>^vK[}WB%?n9wʱ+jgw^pWNuk}ȭzz^m),9b&myEev5Wsy}_^c[f1s63=s=U녏☓dWWpB2\3nq߿Am5Jm\ߞQIÿ=,>'E ج7liWT[qࡻ2ӳ >R$gOw2T9ݦ'njoZ)lJu'y3>wvkgv8ulC=?_jg ?s'>z9?>[e/zN_1/yw=7/4MԘ#z"7%owAG?o' F<wObG{W]ǯgn6wG}n_|\_}6y_vMy*x wvg|YW3ڇX7=؛,w=o+;eW;.vw!.׼ofgm?/^g)^[pcC8d)[uEM ;^晿eWFv}7WG7}ٗ=Wמn3Ňn9ȍdleķ[ns,?cno֞=_6{??則vY|H5}t7ꠑ .Luv讓Ut|]hMWIOx;O~a;ǟq͌6>gzm־i[/~œ1~ػ>'y1S}]j]nk:tUV0CKg{}9.U=>f҅w-pAǘ;V|sgፎ꧛Zh sR'w%O]ʏ=川zf[v~?ָ n.-G9]3y|hO⏃z.93:CZ#ƞ{"u,wϗ\x Է֟:4y,s2n^akw3n/NwgݰΧk>o=82͒-Ol#w|nvT9~aoYOֿ8-W:vSe9;w/ZsM}-95-{yû-WYᦉw[zßl7,ˆg<˗&V~눯?o;8OWSf}ˁOl6-v_Ϋl& gugGN=sNhny᦯M?yzN^jk󃗮okWx92?n/M=]N?g/s\[ZWG>yW-xjp{NXl##W~|;?qCe-=Ͽ;g.gXa;oOqtsBgm>K7l~s}hr=q[{{lo-99._{'6a+^_}ϾSߜ;){:K/;[xeyz͖|p!g1˅G~Iv>R#pίS[=j}篜N;}:ay9\e7<W_&}_n΢?\˾ܵӰ'oeCU+֫vz7V8s ϓ~}[z_zY:_]3]Vu ,< l'}~qS9wI|zuc7cs}^4uat=m>9G/k_zsM^ξl~͒]~^jt\4~Νi7Gom'eHk?w~ynzBn^՝Ϛ5?jǾf3~CfqC?OԎjm^+:b3zНW}=tշ;b߇OZBc_²? /_fj1e^3μrXuV|g|˿p#aWu^ Xb7o~#{g>kd9g&adߖL3n u~zx./|*{DC]E<Ô￘J[5cj7 [z{hwK |+? gNtػ)?4aww#{ił`u7|{^a ~b?K [ c;2 KO_Ty5mEjM+v/ f0+_7<|a p~ { 5ݑS34?N ,; BU7>NJ.ŎQi2f[qvq:yj9?˧;z4cV;N#gzb/ڠ,z;̵6ZsQ7{b'xuZ81K8jgk7LիF4o-ҳΒxy%:a~jyh ߹vo&=g#btr׭ xw5~/CҴ؇b2c~#^tnωo9%/W> ^}])\p]sQ_sKg-ɪqώ]:IlXcv_1+_m=;ۍ_n|Z>zowtAs~{{'>ag]5[g>r}~Q[_3pY_Yo:Y>k~λDOO1C?9n}K7^|+>ttw~+go}-{7jg= +,}lٰ69-j.g=wJgt2SMʜ9v3ל nrrw.>/tKuZpؠOV3woAݽZ=GNi/|੫KYxz 6x+9݅o_ aC.Y 7Z:l"osst<]?ݢp6C.}ڝ{e>4ɯ3gCuAwiW8wzş^rqw?tὶO_;0{5çmm8nhuW}{WoNjlCߚky:_|uַ7Ǭ;z^pߠu{wf yl#f&<[X`}Үyȧg;|N l|-٧z'T>^jS6ݦoOCM<"eVZG 0ˌ꣕8G2,{JϷ);lѝwF753r7MynCnùkoAzM}|߶{ފ]YnO:?\gS;Yg?'n;]DOY}WW;O\x|yS|Zd|1NJϿ}}LV\gn~yW٨W_˿/iW8٥{|C{-@ʅ+gtgWw8uG/As=MXv}SG <Lnc_7{Fi 5\d\vyW9 ߍ>O碅g_+ ~7}5|G#nqp>{̼Sz<71dx_rߣoߙatOZg:2fls/vL5f~nǑ'?aǮrðYMv^~w>>یώ_qʩ^6[\Ҍo}#?Ɵګn=s]/_W}ˉl[c}o9fГ/4swx;Nw??i"T76ңo[Ϛ||i;R:y ]q=k v?)'-u]x>;~'nz[:u8igrK,=ui/^[?y1:{{rȻvc~~Y>si]xBpg-eҰuGt?t-+g~W?zbL&[/Yhk^m;^?}kEqO֩c<|7;W|~[_N2pO\{~tnƆ7zgCȽu\>|׳.r'.gezn;9Q7vȎMZd5}ʍܹΏK8byn8ϕ3.R?/nzozy̴ ~sv^XkZwZ} L`G>m¢O]H7|XvMܷwg\곞v+g^GJX=x>wʨ=kG=1h;x:GNY'rs7ES\.B2:|w.0ÿ9 n{ wG-*MޯoQҿ3{6uN<6qI2{.-g8lA|sk״TYn?ܑ?_}t}όq};_}JSWT.? oN'ݿ/y}‹۹ێI :3~Z{ónwq?Z?jϮ*oE~_wUQWwRfg,Tg%kbE;'_>0zoo'Lyyѝk6o{ԥF^tǭms?ӳ nMCn̽74chr>1כ-7x_˳rӡmsjK?e3Qg䆵妧Wn;TjSqv,Э7]Wi˞,Me:~J_G ӧ*-l'|1>~_ ?]|ETB5 ] J mB %Dz$$ K RA)"D:*eņtPfAEP@Zۙ+Ihٙyo޼ww^[6Z@0}WexR7qZI1~j a3R[?qߕ?a#D=9>bɜ!f%7d3\/%1X-u7Î|sBh9'9XG55f2ڳ *8hhkhᒩ#5--doiMo $MT2fm|Rxw A+!CF>Fm /+<ǔhJj#lF% ^1`# d\20 ^eډ;}ѯL<t>8ӅJ{ę86aeeRu1 uGM=QW*.z[tqY n3tuڻÊWE5r+f1f:Y<fQ<4v{aP27{-T)ǡ Jw=ݮН>N_<]tn@CǦZS-"7edLP -Ho'DdP]_é]xB4$́zf<K3||NW(p3xP<}!zlLhC6B@579MќBJS\ˠxYa~D%Gai~\(/x{u^%?@K-]te7RUQП.'Uu5D!V*Sߖ Ņ׼Pzq5Ea`PXUt֧s=__b7nUP4.:HE)%3(.mGψҚQTxȿ#,ֹ>hpSW6!ґ+@Ÿ#kHLQ"-N`۝r-ʹmHú"֥L}rs%|iyh>]49r{ናI*!<[rݨr t]2vŻx:{Pi=%JF%NԓDAU}|| *ҒG_rM&rXЏo?dl I$I?Նݗ֓ni ]`*q%gR=G쐪Wr}}Pn'ؤ !bi^*NsJ!,'^( gF>_Da/bPJјN<|cE5'w~Ӄ&E|x+2twө^ >HvpPI}not /R7w$e*rNeZF9 ?Y[LrR7GS$IRSƞ<4'h1 5RM>qm3Nu%%IH(t˧NO6<7 : &T~N'3D˥J!tgnG9<GYO޸6vqmn,SZ>D=M߸%1HH<Zngrk:h|ߗ >|+sƐacOu-õh.q^|ŹѝdY؄-b$i9T0CvO3ARwreBht5Q"/-:*.~]N\%,Y5)][)V͔bO»3)VCM{vpwFo(40cXH>x<-y==THEifaLK5ӋM-iSsc>ET![[Ef>0Ƿ.vP.WnXKGc*K~DmdX"ns|Z]"ށ,ugj#)3VWt%%3ۆw wgi~L,WLu{c֣Fd8Xq{!za-.$e KN/fKzx)'l#DDD+|QGU:A ?BCzW^ԐSb lB^=Jw3fm1#UD)qQcq&nʣŃ?wZWU%2ߗ^[|sQhA7^y9,? cVkk5RM맆[h=-vJEۊ;vϙ;gdN<j۞~~12-0l'hKFlD~G\Jx!~FemD2=D?ZCj ,;3]/v`S}I;2gs k*΅΅Q]"Hw׈scz}۠rWqQ{Osn&=ܹS^;\O_:zO3ZSsjxClSCR<R\Jۄvk9%U*a &$& &IEamsXsQaz9 ivZ/ A3}HC~wnoҬt0P٨w/+ܸ7.бW9`drܗKJ#) $Ν*@ʐ@UU}?`shޒ?n~W|j$'ECzO `~#frLjEKןk_*m?`  H AaVA!2pC8 뢰  ) #P(ԠPB (Ba4 cP(lh'꒓]CAWc[dW\sJ317 gu6]-@C眛u[04詺2t ἑϾ0!emNQ#,7{P{eoR食S{4c vKjzSgSW bnyW?:SwL {bU6eY\vq{Vފ{clpvMbU ?9J_[^o^ŵ`AMدOOo_gp䙗ROkK a;zhcIz.8y{^`9r̯48)̘7Mb- za+uWGb٢9*様3c)2=WަbٍSoY 7p*ֳӷNeT;sG^[=ՠ+scOQbԻo5`&Sߚ%/~uq=ڽUٯ+׀%-uplLӶ~ï8iɲKgi>qLvS:޸MD|&ݙRɓC!&B$v8SƕMoV3^#DSr3-(w͏[WܐuPM~δ SrquTtSw>v1j>s?M<9Ҟ:Q?qR9Wc渽"'u‹癪T2uR/'X%z4-L c\#.X^>`m2H(S˹^W2jr1 ke_1UAt1ýeQ"'ØmHaJ,vzW;IH<˧Hm "U^"YxR̪DMK__(/jbқWp!6v/QY0 %_&u:x W4 š$m8}J#x)p<+B7uZc\(evWopjzxܥLÃ/2%7g*6d"|7T&%S2L)#99n^sBC7s/;ӜҘ7Hte&Nsԇ+vRAzO>un:'*\W\}^Fw<K P P P P P P P P Q "g=~_-=Z_Sa۹aa\X/ՏeEm|]/;O;ݓ}W/~SV΢? ?_^|-k; +gqm~O|=_]|S\< ۮIaWX}_/Z_qIaWV__\q_R{kgKa55,lNjgQ}W\-oq~k>owe'~jOEڍo+ [VX?,;|aa_xoQ_Xx+WQ^|{Q}⶛_TAa|n}mWq/ދۏ}ퟢ]ڕrAav]X=xE_v_ZoqU\~Q=ޢ}q-}ծ 럾WYX{_Y~(^}7__vPn˾Kca[z+z5Z\ [OaSX,~z~[X;_U/m W?/\us_u_c3bn?0ǎuӲe>8-pD#Q8#18"B,RiV鄘^E h!#FxhFxhFxhZVxhZVxh:Nx:Nx:Nxz^xz^xQ(G#J%xD <Q(G#Z-xD <hG#Z#xU RI>C7$e!S*@ʐpJT RuH5T/njA )RQا ՃTRH !5RHOCj HAj ^)R $[@j ֐@ Bj)R{H u R<ΐ@ H!R/H!%BJ,>8H! 4HC! }4R $N Cʀd2!q&bd i$H\Bʃ4Aѐ!Bz "HoCZ i AZiVAzһރHCZ H FH mVHBǐAiXH 톴'>>HA~H_@W AaHG t qH' t iH?@Hg!.@!WHA wH@HA !:nB-;xL(@_B? ?@g3 ?@g3e Ag3 ?@g3 ? @g3 ?@g3 99{:=瞉sù'Cp@g36w  Ag3 ?@g3 ? ?@g3 ?@g30HF7U ?@g3 ?@g!Ag3 ?@g3 ? ?@g3 ?@g3,H ?@g3 ?@g3 ?@g3 ?@g3 ?@g3 ?@g3 ?@g3 ?@g3 ?@g3 ?@g3 ?@g3 ?@g3 ?@g3 ?}55jnd_ _ _ _ _ _ _ _ _ _M _ _ _]ר5 nq[-s!AWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCWCW{-cy0>R#B" z@%B A%ŠJ=*] TRǀg* *Uz@TYDU#U-Fh7 /ΧTX 1eZ,&Qe5UXQe5UXsQe5* * UX* * Qe5* * UXc:J ik7sG%A))&:94.Øe!hKE2Ly6k(tՖb4t4L98[͘iGKtLgGb5wj K)dl& (0dMB=]L9\h7SNL6'tM!KtkJ0,F nH@bk3zdF u46,&|w.uDlMɂl&/ű;{ƭdJJJJJJJJJ"s˨Td˄f[&04:F_gTŔP P P P P P P P UߗcTT|L@GU?|T*Qe>lGU?|T*Qe>lGU?|q//vgOgpظdﲭ5Jwc_JJJJJJJJJDrie\ZY.혽WK㨲\*˥\*˥Qe4*˥\*˥\UK\*˥\*˥Qe4*˥\*˥\UKuǎ5dž2*)Ԡa/UDrp25D+|MDa85N/C?! 5ΡK>qX=4GaSw~ghjE!+n*Lu) yz:p} +^Ft>ǡL χ;ʉU؃ّrlb!>o?w^/1b핻DBWW)Xb'O+# E!s>!ȅ~(ᬋpy1Kd.C\N|?uܮz2uP7JAaS /֯(˸)Fp"E!'l?0BO~p8^31Px&7~ɌkRN|]O] Ot^|v+҇v*E'g Hh_ P% [&"}åvCw}2p=-DE\An1x%l{‡m?:,n?jöOaJx۟+Gq[MP<!>kTP׶V3!dʡʡʡʡʡʡʡʡʡP比C9C9C9C9C9C9C9C9Q>/*********#Wܡˠ3NQ9WpssT]ə֔M9N |Js$tJ0ٍN⬩&1ûr|w /IhI6[Y|Q"~tXm6Sݔ6% Nr*\f̽_GQuTmM:r㬙o5--dZ7;Lu;dNϰsHOlYA4c9s4.i oi3SDIDPrd9%9k)%)!vpYtR!^{\RT(nJcd\\u&dVˑ* ԁ?dv6r1m x!Kb!0;Z8$ж}'QTH*ތPH%QN%ʩx6/ʐMB69 ڐyS[z0}^VBCOV9ǹ|/ʨ)Q:+g+`1;dLt2a&%YqgG킡ٌ)&ՌOzې]*_'S q0L$<@*&T/pe̥W+pwU/T>98uk`zfVVRB;dN梗ҌVK_ TNH9KSeqFߍ:Jdm-BP((c~"F`g¤ʡ|p>p6:<. ZV-p.7Sj`*\(e7pɧߣ\H"Ou*,_ײRF8>u3#ҦJuqpS{knr {$?gn lP(,ʼnt@Ce}ޜpk15E m½"g9/},gt~v7H}IJhNq$; GU<4J͛8t*J$-'i6y8vlg>[C_$'VTTif< _G edso?∹r)@Cg9ȇC(뒛Uqz'H0t*$\%g[,v!,xr" v[_hex* oINmSȷu]:/$ $8?| sv _';~?22׏ӫН}Sg!lڋG\EOj ?\>[®yV8669x)xX%x^Rjjb_ koP1W~ɕ_0#8BI? VU:fb,`!]6J2c~#Zv>/?+ V}bl%'-J`ķJao/f[>ږ) -؆`qq;|v?뗂Gv_piYuO:Ҩc]e? W U}x;kիjފ`y/7.^v * *j/5U…{.O.AIK)Knk']GL<tn 2q®ɄgI^9;zu~x$nPb(ޫHj|-Pѓ 誡IX춈,>CWwp_Xփ[N ѱ3iʡsTB?юׁ DKrj*rKr%7Ac2X0$g)wsUQ)o)DJRU -yEa D(0GKzp۸y>):T:/^ Q9w}_B$3msʹ%P]eP\g\J.U(o=ᣄ\qa]#uQU*bj$#WNz 2CUDGMFuvK(}o>WH`wJ#} F1蟫ʇ|>!h\(Umŝ6uHQi.<BᲕa} R^6YBt.U9IjG֒*g Tp*rW 4es:pPT\uĠ\XFyFɃm$9*W tאT7.q-3Ol?8Igs>PYEp0SNEYE["N&smD!~u^A(M)жYZ%ca=1V9V.8M-*#uS~q\.\r$\ļ=\]9oʵٝ=ل/vUX}zS{ήݥ{oݕSO6ܕ)w:GNO|"_ y*ξt{_*]sV72ӛ;IsgorNojӾޛ|][,nr'7yQ^n+eJ{S͜'L%fc鴀4#VϐQz(_ϝWNܵW9/VwP[$VN_Q×{kءy_GNg[jgtﮟF'9;UE%wox{+';dWxx;wx yRё'[<؜-)˘'x/k꺨䋝J~JxI>R#B'B"PBPX17O@*PLcTPb}jH r!msx\Κ!a2fX`\FM0٬8-Ŕih̳ɠv19ӚWevLmF ߩ}7,MHLnK9&lbfv34Z`pR@RDLabk<\9G#4Z3qf܀޹&m4gĢ&& zOpyVC/uj{lx=ݽ[>v_/ =9|~~tX+n‡mr?W‡ݏ(>l;ա+_å}Eoi@3\əfKzwS[G6 h&LF;?~64F_O5ʴ7jg5nO&wrg~U%i j/1s-S8Zؠr6F Ig =jK[٩D UxͺO}d"_-K5Z5 r֞ \SfgMZrL6sh?Cp'/v\qo Utԫ$ϋWBHnH60Vr%";v Tߺn% }AR?^OF1pϔ12V"Ǽ LJFԖu0y ; ƒG{<q(U&8L^ɝ!?g{ɜ>*$'I-Edn1"鼩y%VOT.U]4S">}$U#|ǎt`Ÿ|4.f62*ϑ9CہKUNg1sνEvX!p8|Gi΁\-It{&NKsT9I%ҊʥvHAՌF%`S¥HoVN>rZ rWKΕJ0x mqJH$SXaYI\qTE?NfV’z_۔hb75ڣ' X9K\` l E0QmM۳<ݖH]_ys~f٘c6S6'G 4ffR!'OY43>byS` t{-iVAr]~˼̬vD2iM6fF889SJX\uZ`u\qDPpV:'wsSq(NZKLC"/eƏqM*灣ru*x?\ ^F«?\GOxti|WnWp  FFQ"ԝq2o`g;W';j i$仌X{;ߥJ+48Wx(픋 8_FOIoQi`%(RgPL 7?%H&d>eL}2kX -VGC.gJ/s+5M/ U)S}~6|89G;!11 M-U/=+p-%oo+Th8J,:-bVuApMQrX3JtWy*NJ/V?=(*kZLNPOW͔nR N,)$jJK2&gpq N>g.pdҙNNK.lb+%KeCl=PrYCS2@r%"Rr\OP9d']#.Ml;OMlkʎ9k`ϵ:i3U0AJ|{-CMnXm>գ {iaHMoʩIFMjy5=&TWձ1{ gN3y7qܥZ`9; Go\^Z-(Ek&V|O!ؠSܴV>{yߣݚ-I`5*KlԑDMPo1:߹X3s,}^n4^W&KzTS|C%*G9{m-:xk#M FXbk:hm 306$L쑫M2Q:23g%9rْkrnG=gj%pszBҁ_+uSƤ74b{ Ou./l\^vFΰQl5ծ`X͊`%*ޥvö\K(`w.[;[{X7bBh>k>hMp`uk0!wi7mۿ T}۝wBHOoUn8W,쯗]eƃǡzZ{P `ؼUgl]70>(-Vӷ,<ےb{g`8A-٠֯O. }4V_O蚯g˯.ɽnx66l_ !ޛ ^nxf1մUhAN6>y}/Oh@_p~^$G|ogOލV(B] Vr'ZWE젗j+V6h?hXjv{.J;2q]$<,zsC|`;f-6>Ɩ1ylT40Nö7yO󻫷m^4m/'/\a7$sgԸByn_PzX;ۦ_S /v dgLmS ;7_ mW=-]ٞ9?NB鯃).[ѳ=4%KȏӍ+39>_`?צ(lYvhdۿvХ\t iwN tU?|4J$4WP};mwF@vcPgf8?J>S'ZAy飮~~q|նѕ-(=dw(ԇ OZ:O58grr}$6~u됤ը7d뾊I*>5⣓/(VuH=VxjݫW@'=vF78?NFM^ ձֺgk$oGUA7[y>:Y0[kq~^$]74&m?s`؍lO3{O::0RhLC! #=7" W;#;VϿWo䊋?9n`gsh!g9/}⓭F7=5m"^?ngךQz6HT̙WUwX{ D]k=p~!=CMGKzvTO.ʟ[aWlD~ؔ_}<^-lٓO}aR ٚBzt*37ӊ(&20=;sEzAcQz ڒ87'ZcOt{W60 ml\Һ]k G\r[~ӪMn=h3oE3ҲK[VafَYwav۵ۮO'ط6*'.Nm*N>w~ujҧt?jⴑlv{7\q,M9SqgcXq᨞8?Næ[?C]<=85~;os<җ\n ;ojW*7^_ғ@rހJfC[HTO/ėnL%4:i^ڌ]U F۾Co )[7a9=9[ڕ=ѺԷیek]s5S\ظҍP}3Y\J&eZo(!H)~nlSl?S/9J?'>cO74<ܾZe7:ƸQ .a/nNn1ÁS䖻^vNR'忈σaw'[/;-QOҩ*2/cԛnBG|ߠf;@[%P 3 WIg-??ߎ3mD~B[ZlgPy `hXRܝtnU(o3rl/^@rcQ~;J ̞U \k@*g4_ a7ҳօa-;,С sOf>'(=d,|gOb|h4sl>\.5+7@oKb?D~ŒQZT۔QbG@mڼOЭH ݈ҧ K/޻F0z(I%HM{g_^`{uP=p~l8 {}pvXMo{"[_ۃ-wI2,`u{Uͯ08=M3'޾ GA򾎟di]o{O2`_B!zW|w4}{WU ;̣j2SPHx恱E(H(3p] )$-ʣDt"PZ$*EE(SW؇8Ò/v̶o讟mTv19&[D)3:h4f-qO0g }Q~8NglmmTMB/inst/vignette_data/mcmc.rda0000644000176200001440000011120113614324717016757 0ustar liggesusersy8k?m %c2D2ijL4PT){SJTH TV!e&$<qu}9s=Ϻcf`͊@ ?п2ң U@`XG {t8C^Po9R@(/UA2<nԋMŜ?9b7).=ӝB H/0jnJC׾cӌ@%m~nʬ |D/l껏%£Ju=ժBB#!Qt N=޷Pf*l ܮ9wF[ċ|[ .'{_{9%ncA6N,ʵ7ofluȘTi[`;2\MWu@I0jlC/q*N# Qj7 2-@ 2S5ʟsSq\w!e/>Q#oWkNWP/P:R7) 6_殜@OgYtI}5uc{[y,PS_jDE2@S:]zd;7Uom} 764Y:K@ \Sj%CP>n`?=l9ɋ@GU?ߞ{(PN%REZ=_Ikչ׎@:|UtPdCp7²M6Yx[ިF~kތP5}v_˶η4__1j2 w$Mzosv'Fo!8wxW̪6)|z/0z=7y:d "G ^&Wg>qƱ(S~\QܫK?3 @ (;(v'Jh\C@i屹/,r2^-Ӵ.uu;wYɪb$z~*z!oϻ@$d7XZ,lVK 8Q.΃?5oq8n,ߜ]q)B}嶎[඿ܦ+,T{H>" v' ^$#+]fX3mG]/r!s62̠qb=~7%\V;R 9:¹ (M7TB:Thqy+Pjۢ,p\~WP)Lx /ߌLιemY(\{7|Sj׼(I;å3nFvڊPkL#E>Q[(/8؁4ۧ/q)@:JeO1PCoISeQ@=wc四w's׭HeJWZ}a#4Wy+ίףs_!3839 4yOTpm*CnQi?`oR6}*O -XJڭM_=\tмSjzY:c$/4pg.Xm3@k Ir/Kj;I w fiR7+P_.y6?&^8E郕ktٟuHϴ]|IfU|q]'-r'(g#P?un^-qztC@-J?wIgsH庪&S9sq@CpZUtM7 'a 2YPj{mUh|߃lJi\jFTT#"@ɪڧ٭ ){g/=nW T^ ;@1bZ21] mmp 4J^rkJ@5Yz0P^2`Sl4c띧:~䰾rG<\|Fjy~R$լVyѴd\jkqV6Tۂm%@iťsQ \u=+}?5P͗s@kGTF ([ϻW^te@<Ҫ(_bIhN}s' C.oZ?47I9UEf 5(zy L~ Ep4! ~\oW/~WEM2]J* }qxDR> "P 5'Qhݩ^vuPS?TCVZíA4ǝXD+6]ZSioETO^y}]*Yn|wD Uz>v>)*j¥^'K0Yqfa{GˈK]XwgS|G&W(xvޒuBCYA}3nj@p o* z11p) h>b'|s$n]<D\U[e6ϋd|u7t/4hL[lf>djUaʻnt~ &^ 9\n$u#/:@yfztU3HɛbYo7[k l]G9i1s At;Y%q)vwQ_t!Fy@J꯼My4ozMOVDgd\sU [61#^pPDSD2)/{إrPZ (h$vKF9I ;l(_eA{g#h01u|rpt?T JW}l+AnD({Ł# (ǭoZVa;DNO Kƹ(GUݎKu}%旗%1QX~/Bp;PyS(?o\u7cfFs𦩛_}U36Awɡ#9POySRrm;c5߇,#t/)r>Gh~t%2{m{qOg$}V©o /=,rk+(ǥ\`U \n>~!-c*_OÈKz׍˺ot9.*|W7jǞάq҉wR ]{oIV:o?>hU5åF27Zn?:e4P F}9(Z.}ݰ焋zOz QRp{߅Q><;3@zT1P!+m:, T ZwEsrӍ?@QyuTjG6{uʉgPN"jຶ ==݃΃H U?E=~34 QNk̀ruoVMԢ%J:jp"u.eo\\_n^Z;ieږro&g-꯴Mh>E[EXxV*AM<\ڧi(Wɿxe>Rݷ\ׇKjd>nc]!h~?k=\j@ۢ4#hY5UsT;]!qՆwL!V?4SLe~YAyQ/%׳ךo7ОXt=~C,K.}h%齭FW?`cn: Q$PdIb/W2 n[ND?pjU)*M $d~HzV_793yٳ~CtQ>VtULtݼwbT>8btط-U$DӸ7nF6" nP݋PܿspE hN|Q &s@i'~ӉMgD_'PWrg̭J(_)Q.=mseOǀ@Nt= Av%>М-iꪦ^m܃.8FZig# n5lqޯ3,gZ_?#yR:vpSc86yW&kƿ: (GmO!gD[; :@x΋ίI|YU)E~$j7lk>+؄\V=Cӟڵ~X=i%B=3#27=g6v^N=:r1B=lޯn\OO?uP/mP?y2~~v3_b_)A,^#O]aŸ}/ų Pte#NܱHuY01:v{[Fj޷V|:ڟ7~Qaw2P? fk{zb'㦻_ա*ŵU4"ԯr(ӝ7ugnp{+ן{i\ݛr&mIDs1%?yH`1<7mMH-Yu7.eeor?-27yozJ (FϬF4Y}Y E8[RrǾ;vR@=yk)TwAf7XgחV=_t~ WѾ=b n 򚶔Xb( B{ځ-Ym+gErQݰb Z5z!q\7`hlܩ@C{|o١ej~k]g( 8\:>Q e(@-s[aq2C4+ nK_F℅Q+ʲ4}$Գs.5CQ`!hi ىُ~do"r=@ Qu'<1KxV3?~,eӮO&_^\%P^Y|~ V1@qYQ<9krU}|6@yp s[Cvu_!ۯjySN>pӣ{{ol)Fg&uqzyf~3x)h'P]REhTN k  傢s7VhZT\u_vP(PAv\_{% ~Tk֗F7^7p\ąWEou6v "q]GIWpZ7ˮn`!uwʓ姿,Uq${rعO9=3 ~&HD~1m |R͐{p$7*i}QAʺ^0lҷDV@|lš %(|$m9b\ 5H-gejY,HQaЗǽ@pk WhOmP KU2 MxA&v!O*0u:% ^rm_41. Ҏs*>K~ $ N{ p9;_qe>3|y1ĎdM?yRC ľ-ڌK@2R>`; סu{=7y"}@r+0ӎfczNk@݄+OE~m?"C#/%a-K *CSbfnqAզT{)pIn!:iuWⳅG' I4$sfߋۡ_AZ8baMrnegcr8_胦oW)iD,O(lHx5 A:WvbP WxlqUuG>f* 3hq.?&$KIhf2Ƴ ü>*#)߫9t$7}&fT>T }&A4-+"R~wDbd#lQr8&w :/pſMp52޿AJʯA dD]S[āy18;59/ߓ s; . Z΃w__R4f͚Qgf@zIV 9ۻ4=U# ^n蜱t[( Ń8)gweMdz! UZ0+4dl9AzG)ȥA Wn̫NBSٷn+qWAPopm/؀Ln25ws H{ gq% @ajcHHrTw;韛2$g(JG-s_W@`Q=wW0dXI>TBct&>P_fVg\ILQ >Ĕ&( qG\ /V A۫lC%tUQ\PƢUOXWJT"XM8EU]&,Μq JqsDnukQ}1. M\15# b* T9R@/tH\>g61ʙXo+.໪>K.1c+T"$,kp.[/ #yCgn+QwA Dtj,U6`5}C7>ԂYLL̆ s'y@rA HP"LC|@Bw<T_•T  )щ^ ĕm]co 9q"oNyfK,q$V耄 )NRŝN "t[K iJdW_q $~+ta U~uduJu/6T;geK l b\w$۔[r>z{BU@Ja@$?<3)}T{}A*Oc %?"lٮ͂+u!-:$~ٱr[F u ƫAlI r @4E[zoiWXJxHiI?H%4 |~ϡ X lO?mA|䮹w*'Ž>t Dڲ4DqUG/b`G>Ɇn_@"ϣ? +:]+}7e÷ S};Tw}oJTeH'4,rRutnYBc ct"k;rOq>u_)oԋR6rж$ h<+ۛa3NӲRqܗѮH+ PLSD=w׵e \Co5PNmV7+Sw sn Vus1HT\Vɸ ׳A WbdH}\ ͇?Õأч]WDG@[!H[GȖR}'>ص5 'z [99+ua1} ;$%@j_!Fbz^;&D O!^R {-+aEڳ"}MQvIf7 0{ojh; 682Zɯ'(i.=cӶ}W•_Ѿ+:V.?Bk ]x Wj䥈)\WނtnF[r Tu$'U7 >x8Kl~gs㊿0|4SeBh?ڨz@aUÿ'@ഊ"==BZT5Ҏќ=,AڡZr˧Q*o@9Vv*6J>Y[dEګRa3m`]؞u!oXP:ҿQo$ƛ !xD^NCj t+lg ?FKmg@ OwdtMg?PfGo\imhO:/3|1y\鈙ǿT [}o9oJ+ ٟA3Şy4\yZRî] k7 '4(octkq> Fm ^ g Z\L ܶ&ꗊh\pɭƕ ғ?1ة1n ˪{2q%9) qIHu| LQ`+ˣTv @ox{e͇>eOT>$<J% TH~zBuF=#^B?HHa`Õ6jmUτ6L[Gh w dVo7~[[O$un)\ ާ{uA,+l6{$~(ΧĪJ}kW- "O$XANvw #s>R_rhvޘjp#]8ǝhSP~ҥUw)i9zdDHfa-HS8G̛米! zwԤHeLk,+z53 sɈ}䝄o|e/ϩf%ÁlCp_S+(hn`fSM6T|'\ta+E9켵$d/[P~cN4_o,ѩks#=8ZF#;wvL!R~I:s gfo|@Pt*Z?Th~ŝ ,/.tJujMmuU ^T |U+W޳+=:Pw2iH"}!Q΃.=o0UYVf^}\6 bߣ\ݍ ZA RJEvZh'^iSAfv+'[W\hw}Pя "^'Aq B2Du[At^_=58eo= ݕ*@N>k|#Қ'A̅ɰ9͗h[:ckir\D9H?/eD㺃>F| O^-A{Ot6c#~YioF⍩gq%swBω!8fz@5Jj2tU2XAbmc+~jͣ o/ȸ\7n|抯Mv^_0HV K ̳@DĝY4Pǖ *ўD6_wXK2HJ9)ĘPUăx{r$;;as^g7 Rsc UA',F•=Φ],טup%ڎSֽA'ʄfwm)S J#kp1 22 Q!Q nTR ף<&hZ Z-ցdQ[SJ=i&s8ϕ^)2yW(RjqTwsvū!hѶ~ѴpNvHs-qVgχ;}̸U@٪@fg&]@rc[TvZ7ؗIֿs~-H4<{Y.RWMw>\ν;GОڮҚ )PU\فuAϵ|t4GPO͊8 +ayA*#Y` WhQKmNAնtz \,H*Z&};C`LOFEuޝ^-M^ qF.HR2$HF=('VK܍i(>5FTP.7.Gt`V/;„+eKͽrwqkK@;ud:v;%}C /tMO[Aj_ G3*O]p?`8G;hNj6DPH".3 KQ._EA"a>#M@罃 s+)~+6R=QHd g*>iNk\)Ⱦ@f^?hƈu3D-̲H []ɹH9.ۻMb) sr`7,:Hrhps@J`$I NG #!W,YKNk~a>ٟq?6aRb''V \+ٔcT 5 O;.yi"y >Oy{(bC eZ􂛼U==W,?Y<>w> QY7%3j>^ZȆg$}{=ab/9F"L9‰R@\:]H'/YK5wG?%@R͟WqU{?@'3:i}QGQ? kƸN~A =efGW}M,H_JФ! o]e\RYs=~}FGhsz}%TbH݃;^fSdlF\Ҵ32|}FWGHv' R:@m.Sn=sO??U4wا)Q=CZ@ͣ3$M:;㦮g񾖥UM-v{Og յTI;/}$)g` H ޡ羅DMz-ԟ U ԡ{;5/;LsT["y.t*t(}Q,* RXpڅ5vy[lkexw}THU9/APқ׻pI.DF /=իهAߋ)6i=ȸ",G#ǫvU֬JR wtu$lµn u :{dt| ϊƵ\b% ^SnGI+0|kkWK [7-]=#N IlEEq@_UB}}wP\d%0|CؔQ/~ ^kw0W< rHr8 WGKQ2H7ު=]ueޒ$ )&s6@~qao<^w-COԪ좖l@f 1@s~nD7bʢx 3s@~Pz7V:h&gUv8TenoAn9Ags@ne^9/0004+7_@9nԏ7~1,Jmh[rͪ@u$0VN548U߯*w1 9PEyve$Og9+w&hsy^eBE_;Q?Mد (PY i*@} 7l~49Lw~0s=%qI' LYأL~4֏{vr @J@uM?V,ozUZ.Yd+<7ydNw)rgPE~CN niwcQ_74[^n?ËQ2يR|*ѽ6n[[w3ټ#Q߻1Hrhm5ˎu{s*-}DH W=3v:\ o\WҚA'hpp 򺥳G<ﺈKӸ9Zډ8~;noTۡuQo|Îwl~htNy3@Hd.R0cK$Tb3( s&4t9R[(2$[y=]tmW,ׂ^w>ST'z&v-CsDF]ہXUN(ۨ(I4mFEGիk:TL E}SpIo)%_.]tAv0qȪѺPޑ{% g+mc*h䪲W7.G{1L9TDžK:l+;Qj>rwhѨ:w=vfCԙ5۪>t3TO0'# 5$ ֗ |ׁA @>|,\қdD)oWpIm/[qIQQJ1lG+Yq >WegK:7U6{]1~u:\w4_RZ8PRyGte t }~>[>m/%Hߜ3;[)Cmz/W3Cf$ʗ+CæR_w.ȋ\#q=?{A$Ȩd`q;qɓ(q͎pɳ17QߓϚh~XlOXμUkc~9}6Cv;[=-$o)K :b˨o>wkhQ"~4'n=ԧUHO:7O?%_zgᒾX0ųe()}<'ern)"KPTY)Z7g؀洗C3^g% 7WVѼ9[7;6a*EHn q90s>s@>fLSƌ57.줡4fˌ9oU~ŅHg,o8@{[ ʇB=w0{үz:US?Xu?qW޶RB'LQn6 oSxV ٵ(RM>@JU{_etNyN,zʟg[vmSt! QWﵳPuUK%/PK@;^=L4chŃs?zgҽU=4vW"?үd o5{m|瓁oݷ:oX x˦h]ԇ9ó jg 5Z?;J%?*Y;NJLZ5奥o(:;Ĝ3*exWP~kw׫Hlɹ1CW~9X[^?۰]4nAY_~h.Нҁ7C'O[ݺު 7Qn[P =p3C\,! i^jPl|ngwk?}rܵ*2Կ'Ctʤf.\pT-=Vo:F'[TeMQaKv+B9-un -~iǙƎwh[6Jwܳ"h]Y W{ϊnżUGo=E\Å[|<ʻɶ㒕ӟXYkJft?}6F9U;żXͥ t )j>F|rHC{^ʓ8ޯd$ =<)jk|rx9?{Q]=y(r+N9p#~xj/OΣ۩ϻ=Gw4yQ[܅Iz,Ή̨-;>Zw/'P7*+X#}9('t:HEDy[4}+/Cčךּͯ鴷̺~ܶAԟ|B^{rU=e[s/ >{n\E}6:$=PqH9Myk$o#껯])(pvzcoMj,QԼ82Sr(_l4 CypJwD&mM:q"хcQ./qG{&_3>@Cvۿ XsTP.1ʴG`8\rAë l>1[lEwp/\#/~:FJ6V-LW?/Atq4SR|IPpɂRߗٸ|krTWm7~͂B7 ͡%~4D㝤`H,4FK ѼKF`WʥUoPD]uMq\_Ǣs8^JTêD?@(Y[}߼s(Λw|a2ǪʮByAux toy*ZJWuf\% vg@+匕<\_pFW%{o[[)蝁gU,W|b9.FC_aQ= sUmU/<p5%3Zhlz00 }V|Tsc\ZsqI$ B}8}Ih[3s^a];uO6Jɴ՝X5@zh2> fy^d0(sʭ+h\>߀r,DAW< wz͝heo3:x9 >^^bQ]4AjfX(}mwȡsc9챪ҟzhHE)q@4./&%\cNtI+gIq2noE9E[5.yN指C@2f ȧ;ܙ^N;? ~ᒞmkyMyNUZmX J -iIw%d]W, :4 $jP+yc~0T@,}& y_PՋFˎ߸dϥ[pIV3@\RQӱISzts6ާcE?ϳ.b} (@y\D-λWv5 y+8HgOz{Kx[ɤ.{r &XLn|+ab4 ,ڟN<=ڛnփG[ m'q3Rx-$v] a+9`~ťNlo4yv(װ ڻj"'zq[`5{O\fO[}0oX< ,~ žVכpc'`_88V.%O(ȹqr{Y`=z׵J\ Z|6AIh-=˄[GtlF|_v&ve=] {۬ 唗I&^+Oz l+7^ⲳ| -] |Pgoݱ C`S.r,E9b"5ZWs*]8 '{`?|Xi\sL Z{DzW׍TN69؋;:ˤ܋;Mz%M7,gT/+v? &SXT(YE+]`==9=txkwO˙o2E`Ͻ} 8E!$ns|j) SvpO\4;ć[;(*/<yԈ_Lo"Scsqf:y/k$ 1\.Lw|W"WM6 ^9ebQT-GO83ݛ˟LTKjKnp/`ym ^CBw2>w;zp7 cNo-`fQ;`Kج:o?e3d8mfK%z=~UCӣ˽@la! Zv>= Q˪MfGZ81wL&~;<lJ Yw eD#M߉>ځO0p*F Sbr \"^,fX ~SOq1sY? vԀe.컂Y䪩5qCZp=`t 1O_B$0x.lg_{JX4%@/U?QN5?9$?*Ñio`}39"Yl{[X"TU>| .Ks =)Kx=yә.cx..\6&2O)Ŏ,]V>e:k!jZ gQfys`Ժ lt8jgf*xð~Nk,a6sbӼfw!DT87 8+]4ߏ1[C6Gf\#ۉVל$WԒ8cҼϷqT Xgge]Ue+ ]CCdQ LXHdIO`` ^l߼ jx"lpK89CTj/A]'j:`۹7A .{z` \qRQց3mV>.zgul~Hʐ\`ZwY10eYRUHMY%fu {m쁵Ome :\9ap 6|\޼ l9cSN+^% 5t,KiD ux X$9ǰ=gf?QӪ:`l+ XtE;RR`yg[{8}~NY.'ClzU.]~r *;VAs4ڶ: 2eO%#эk 9v-LOKt G" M{د$=is؈wGv[ug`UoXU/%9ʜ\# UUd3 0e?e:0o078 ߩ{%&;_X@dE``!Ὢ'}|lJn k+W6'\Zx/5Q.j7)JWzhsWo(reT`*}CcǸl :Y#)` [WX$ǛrkTdߢ^Fv_̦H ?E.eJw,eS[ v́-D۴2)=x_ƥ]5ʟ/z%øh`\^j7<:m m!=Uh,3+g/jX2M7{.'mPn9q R]F@< z-lG| `wa6K qYwfr)]6G߼[@#x VfTw Q`FX\+=Pf^^S zqv=ߛ@ ?Qq'{7Q, `}l X ܇qٚ *PnY Oߟ3<:-s+;g .BѼjӤ>WYKeS{o2rJJ{O Vh?YsxY'|G6v`YY.,O\vAKWn_?{n]䠦?lvڨ&,gEB%模}mϤRïP^| v ,F6}+'x_C)(n4)<"뵹jkG~@yD.g|z<|0o)̣v XǮ]VKET3] e&.F\V2ً; ߚQIk/7X#[{CUEeY5vZοY#SӴ0+rp< ̓]{lp US2NQ!;f lfT]xuv`W25Kʺ&˞^8k xP~yn`*0<^PzX~[`0toUW_¸hުGmNRT[%C`rk|&`j?::ؽUS}ĆW ?5߸6ve4FdǓEy7SoF1Nq*_T8=޸8p3ZLVO'7p0gvnFpL/0Nڶb0-]8a1%͚r{^d+0K:sX͓tǶhn9`JUeval`=z#^X]ԟϜYg;Pؽ.18T?[dCTGl1צQS} yP9} z:pz4d3φ5#L~Ჶ Lzhōދм!:9JTucP7v3V>ɩ,vG$ˏҁuf-<)'kbf7Ȓpʙ?XoǛo|:y1&` m_JFs[p^+* ĂnPV8YK?&‡7+-.`|UUq XDB/ 5w2fɪyǍgϛ5H^js쾔9_hNX].lw/(n֬/NdlJ+C6idZBص1u=w$;nֺ| ,2{s_tEU04֭EVy<ezƏ)Xw.VsZuso4&k_ɏ`)=+\6k'=|WΌP'[j8MvV}QqH/^;RY9/F1M'ZIW_\~I=a/0/"fd`|a`I,Xow1/-qrչ'Qns?>ݐj8q"չ~Ͷ`عe"`>N8N-_ bvFZ zi%T?蔀mOײr`#d5.ξsaPݻKgSl1آctRNYn<Wiٿ)?bfBEf~4]/a–۬>cJol9,pj*b \wbS±{;%lʋOb'Bw,+2}S̭`'.8qqj*M>4"?1`[ΘF [M+ë\a+_Jŝn|Լi <)!2\\OJ[!/ͭy |̙]ͽ rtMs>vrKRU |UhOl{gCOΞTs%c55lNOk'c3[4\-`4a3;GNfƮ M3w&~(;^,s }fid":a#J3=60;.ˌ5`Y7+'_`]VRZR6/;w)&Iy-hbˑfvV +@U,?Ŗ[ݱ*klywGܥ+WiʹGoEEu?& ؼESnᄤN$HU/Ubğ`Ɩ56BOj'NB.<{i t[ ofl1֍آRE_-f?WЊ˸"6D)h@{[)Bؿ9rQ763"-lX)Pƹ#V\v0d*3f |aV~{G;U\zq4Y[:VIWd8&-\![xmjt~ʾc]/_Cͽ@ѷx)1@8i_e}ea~YwМ?P6W_]l8ꝓ_lo{ACeNڴ| [h`S{4Pz7u[qF%@KikG}䓝-ZWzlqlYȺ'EөQ^Y0cZv؊װ2(wfA:VqVN>-϶ @}Hla&_6F:Eg ݌7?Xb-C} شڵ1{>F`L^P_7ݩO攔[}3 476?klPuh<;n-V0Ro-xx }7DrԽs \ 1Ŗ\^]mz\-ZJ2}-1gzeGC@Xi:G<[2oy>F3B'8Q||sw0';8GL8skɋ tw!Xlr?eoqi ȥ˖!٨~{ JB{mO1oϟH丄%0ҋ-4Ey<& sr;o6ŖfvlĖj%=ZK]2b ..zPO.Vu;2v( /J]VR䯥]k\TSU\ァ֑vKF3R~溤bK-?TqYrfƺLp'\wxGY^lYG?iwl9J+Zl w>[]l9+>r|Jl3usmܧ@gņQn!-6#_e7آFlZ 6~{^̖S oFݟ"W>4bO?z\/(;tLəE9؜ږRjݪ\ r&Feb" [v ? ro9>^7!&ʜ ¥l{ۧbEַ8_`Ml{ KlxPSlN 6S{rfcl# Ls>؂}m.6g 6 =l~Đp'7r">dn׼..)|s)g'xx@gX0(ƨdCbH.wAx)'rγEλ򬥿YCL"/Wmo˝ñI|8+lEi(Sw)J6=7?E[`s#)o'6`;ٰ-!5/n/a^&'|]El1[Tq0zf[&DY؁ؗi1j@oWK]bw;rb5+G1Fc3hٳQo%.- @opV4.u^ZX`/h|#q؜T5. l-hyƹ"-47hީxޯ?p=PAџ< 絅`siGQ:n--(e=ޡ@HtrrUcѡÚ@d|hP-V]HrE'eux [xh>o+;9)w\Sl6Y5zMIKtγqah /@z:nliOki*zE @P61ꎭ }⑕?ĻW}h&oNU7nĖ}1cg]b!i{ @NlĆcMJWM ZǦOΜOfy{+^c3v OpXOUw'\F )WQl g9:f|-X3v"G$.]H9w1jb劀O-Uv=[wl 1jޭZhu/4h$m [,9-g='5ҍ-._ڶI~ܥ'8Ws(x[w⎌8^PƖj~^|a+;"kމ]5KRa4m9e1 9Rܕmq@k3Ψy/z-\\߉~ %]Kn̏1bG҅ٻST.Ō}=iI|wit{+qSQe9-UX` zj*,R{[ /isZiqF@3_lƼi9b0lA[wY4|N~stOG Hb<_tPo+^ IOt#w=VJb]Kۊ#BHd= ̞f-:;հ][~bD߀?3j72b ;'#T="9[ ׸-ev|$ܾ oSdFnfVx-Kf9[*o[d ʹ]5ןgHҿwC[i1lU_2.Y+ۭ݁׳Bw갅0o2la2p,{Ac(E៽NEbW=Zͅ-P$䡽ݴ9 P [dH lݓ)5mfoWQN^![U2bK'wq6Sh~鬄-\a|8 [u5[HaoD9B")lG4׭@w٤71t3Ǐ^XA}cMԫ_エ:fl3_.nΈg]æYIsgOK~ڄ-r$}}8G.MϢw޾˸ CW9 n)as:LZO=p9 C:o@KޤGZ71=wH[H0 _<nlgہ]NI{tq9qώ*°"u~2'=hN\,߳ =5 xj4κk-Ė' [j3%{#}-妁vzH׺ 3u菓~h~x-ew6开Ww鏯}7\P[874rΫ|8lŽ}NEn5v[t{S ]~1K`Ad>$6jkŝgRqGV]\y]oٿ'#豅LRuͨn܃;} ;`w嬯{n;uևhOq YbWG#M:I '+ cݶ[lwD^SĖ/5|]d{ҙa]ŶXۧ*Kڕ:-r\ÖVXd !7:wqYCpE[_tq=[[С877(뿕s 7C~ ݗ0룁[*c<-dMP3Uă(TG:`+;MMī-a;Xض3]ц"F'U>-4|H'+J}lJzZ=_ܓVPp-ًUp~>`efX]aeYqf +Kmy6ZK_zi z)vӾzo={|Knx/F 5.}#wN#_{U3"4(B{;H-NP JR3cyG~vMŪwh1`H/&󦴆RnkQՅzVJ+gbAG{68-oW]e9/U4&rdþLXy}C^-ՍG[Zwk>d5_y%ͱ'1ڨTu`m:]UXÙi%թX'Sm.ڹxZs%cXw^L:ZgcܴwɗъWFW(Ӈ<km,;PbXt:$zfltϯjt km(B^]hH,~;>X 믱sfX[͙'RX7 kAC'`\ =9s6{g)M;uzuMvJ&.EkWQFi\beX"G DNcC:.SqI)Ѱ?Us{_/s)C +U=^wz6K!V8Hտt7i}O&kV]92"i 'OIXT`;cAcXP/6KJ?ַcf#(c@i!/G2}Ha^ utw=쾏3#ܦY6XRk<؏c_kuǸjġ+i 1<k,de5nQgIbžvM٭Z$J()ھ^{t.xҘo>/sk*%^$J"b*Vʝ>g2YǨ*;;:UrbZjiE?nlr3_8D{ݤ Gxs-IK }hV-t?WZɜZasO^K\GtX"˼t}C.Ǻ o. ` `x[ +䱯zs/IXCfDO>?ڟG&q?۰&.;%n_~0lJgl h'6*gх2cĈq9~dƷR[twXO&cudVB{#DZӧez>YC ΊVw=ZV-)=]|_c+W`eV]ť籾_uo̰:ٻo[jMaoV*V[--y8ˍ}\۰9B$In^o_-$KK*-{KyAZR,&܏9g2o`)<ۥlf XuNmcG؟X⿯n, wF_/i5r dR2DM+ B9`Cl;MŹC-ZᒹX^ hsnPkگ3%lgx-@xv3^/MS]<z}f-sRױ):` Xv l?zfv@t N7)DZXo.4q[b&. ^Fa&^"WiۃXAR=Xe6ƴb+gq˓]*'O5lލ5-{hZ l۲}O{3bEWxbJe^̬I4F z}(53f!FI 5RDZ'oĺ F=X׵X۫rb_½/7]}wi=eg5VhO{kƾx͖b-y]MEVyJ{7Dn :}H`}֌ _kRJۄ颽0ϵ,k ηgw-Ra?KSh57>v4=~?žr\YZc$,2n{eХpbEGԨ8i/˒,.Ј(WZhe^w&ݷ 4bʅ=ci|e.YOra6:+sԺLnЈmlTŔSej B>}p:<^e/DIb]# l#=)uouBCX3C*z|R?VP߂8 (Ǿأ9'DL3X+mF+)Fv/}M+iFI-x-7C<`<{mgҪS+vw~5&ĝ^j}oQPu5+ki#PhM]y҆/I4џ8~^[]FXC?j'V7Wñ[ﮆ$lLV~Mu3po8ұLˌ}u<7b~=1ApG ƶ8bCLwY폚`CTg^=Z>~f,Rah|3ɡm Su؋ܚ :jdHH}IPV)}$7CҠB3JTRɐ)cTap29Ƌ3pd~޳_~~ϳ^kQ\ }mX>Cbd% ;x?f_-op9o3t|SjtиzDT;WkZY:c1}2/#6=c+i'4D㯭\c/ +/l"#y2N&e$h`C\Q+afPAHxE͡|h`)ڪ[[[Q0W&N A'sNKÄb?}18Թ>L1 靟QNCT3Tkv\*UβeIО+ &7@];n[3eڈ[BV7-a?5 ;Uk@>2ŵ7G Zf +A=av<Wʗ--dzzPu6\QzB]`3^TBYD1ҭhh{?[oE뀩VWڴ -B>qbOF%:&%b`*pfC`tb5m05Iku$9?w/#1 ZBϵrviFMB/f[nCts (-$b=BV@6-ߋ'վ6KE}5:@X2xCg7P-ou{=eodPpff\)IzJm@~yd:x!0Y'I'S1[$V< ,?WbG:mv\@cssjTSH:W>MrF=tذSd+ti}wQ6r`!t So&w?B%0PHV_s\Z 8vj[722,[R!c"n, ]tz$_'jTU' .;OM9>c9C{D@meإ ⼩ Dz7J6'vڡaxf%PƔ,݂Kl|a~$qʓ~s-q:W/ˆY}iM.nFu<!LAH٫{95sBgz&W܀a'!jӲ A_4Oѓ,טpS۲ zDBEmGؼ[A |> ~$iIˌ<>S XStLTb |g1&SRJ7c:94 ]D ́{ڠfJs׮:_E+RITeY $tyM;lAd#ڨ{c\M2._]!"<}3P+ JRf<惎UAOUl,]j?NRf;|_Wßd!嫃캬xMq|9+Bz kߍ-hel]qD}Rm ! ɅdHա]!Vn#kNoUTdڐΪLE%l󚣛P1JV6DS~:W _@\^7hj7y\iʱRIBNz.( D6ޢ4s-G8(X*h{*E%ġO- +fG,;e|`J6|ڍZP& )^l1*^i&-b+УX2YeyzcP$Vs}e GTA3(8BF1 Es8J*A hz ;,pdd*^O1Wwڋ B6K@G̫c~d!rPjuY JBI}!n(C"Һr%iNAKSøB5S[T»mLQ|<-ti>`oM@?1K쀁d4u)r K8`Ӯ{gc2YϺD9j ?Gh^>;'y|.%"8qvoK㙝fX^OQq ~XRl=?f cdjnnq>j#aBL:T't~a.nc³1~7yzy؞qru>sӾ^܍﵀=wm\=B?[:,;uNh|?.K`}%<y9glmmTMB/inst/vignette_data/mcmc.R0000644000176200001440000000642013614324717016420 0ustar liggesusers## @knitr run_MCMC ##' @param start starting value ##' @param V variance-covariance matrix of MVN candidate distribution ##' @param iterations total iterations ##' @param nsamp number of samples to store ##' @param burnin number of initial samples to discard ##' @param thin thinning interval ##' @param tune tuning parameters; expand/contract V ##' @param seed random-number seed run_MCMC <- function(start, V, logpost_fun, iterations = 10000, nsamp = 1000, burnin = iterations/2, thin = floor((iterations-burnin)/nsamp), tune = NULL, seed=NULL ) { ## initialize if (!is.null(seed)) set.seed(seed) if (!is.null(tune)) { tunesq <- if (length(tune)==1) tune^2 else outer(tune,tune) V <- V*tunesq } chain <- matrix(NA, nsamp+1, length(start)) chain[1,] <- cur_par <- start postval <- logpost_fun(cur_par) j <- 1 for (i in 1:iterations) { proposal = MASS::mvrnorm(1,mu=cur_par, Sigma=V) newpostval <- logpost_fun(proposal) accept_prob <- exp(newpostval - postval) if (runif(1) < accept_prob) { cur_par <- proposal postval <- newpostval } if ((i>burnin) && (i %% thin == 1)) { chain[j+1,] <- cur_par j <- j + 1 } } chain <- na.omit(chain) colnames(chain) <- names(start) chain <- coda::mcmc(chain) return(chain) } ## @knitr pkgs library(glmmTMB) library(tmbstan) library(coda) ## @knitr fit1 data("sleepstudy",package="lme4") fm1 <- glmmTMB(Reaction ~ Days + (Days|Subject), sleepstudy) ## @knitr setup ## FIXME: is there a better way for user to extract full coefs? rawcoef <- with(fm1$obj$env,last.par[-random]) names(rawcoef) <- make.names(names(rawcoef),unique=TRUE) ## log-likelihood function ## (MCMCmetrop1R wants *positive* log-lik) logpost_fun <- function(x) -fm1$obj$fn(x) ## check definitions stopifnot(all.equal(c(logpost_fun(rawcoef)), c(logLik(fm1)), tolerance=1e-7)) V <- vcov(fm1,full=TRUE) ## @knitr do_run_MCMC t1 <- system.time(m1 <- run_MCMC(start=rawcoef, V=V, logpost_fun=logpost_fun, seed=1001)) ## @knitr do_tmbstan ## install.packages("tmbstan") library(tmbstan) t2 <- system.time(m2 <- tmbstan(fm1$obj)) ## @knitr stanhacks ## functions to reduce the size of stored Stan-type objects hack_size <- function(x, ...) { UseMethod("hack_size") } hack_size.stanfit <- function(x) { x@stanmodel <- structure(numeric(0), class="stanmodel") x@.MISC <- new.env() return(x) } hack_size.brmsfit <- function(x) { x$fit <- hack_size(x$fit) return(x) } hack_size.stanreg <- function(x) { x$stanfit <- hack_size(x$stanfit) return(x) } m2 <- hack_size(m2) ## @knitr tmbstan_traceplot png("tmbstan_traceplot.png") rstan::traceplot(m2, pars=c("beta","betad","theta")) dev.off() ## @knitr save_all ## use version=2 to allow compatibility pre-3.5.0 ## DON'T save m2; even with size-hacking, not small enough. ## since PNG file is saved, we don't really need it save("m1","t1","t2", file="mcmc.rda", version=2) glmmTMB/inst/NEWS.Rd0000644000176200001440000001424513616054060013600 0ustar liggesusers\newcommand{\PR}{\Sexpr[results=rd]{tools:::Rd_expr_PR(#1)}} \name{NEWS} \title{glmmTMB News} \encoding{UTF-8} \section{CHANGES IN VERSION 1.0.0}{ The 1.0.0 release does not introduce any major changes or incompatibilities, but signifies that glmmTMB is considered stable and reliable for general use. \subsection{NEW FEATURES}{ \itemize{ \item new \code{map} argument to \code{glmmTMB} allows for some parameter values to be fixed (see \code{?TMB::MakeADFun} for details) \item new \code{optimizer} and \code{optArgs} arguments to \code{glmmTMBControl} allow use of optimizers other than \code{nlminb} \item \code{predict} can make population-level predictions (i.e., setting all random effects to zero). See \code{?predict.glmmTMB} for details. \item \code{beta_family} now allows zero-inflation; new \code{ziGamma} family (minor modification of \code{stats::Gamma}) allows zero-inflation (i.e., Gamma-hurdle models) } } % new features \subsection{BUG FIXES}{ \itemize{ \item \code{vcov(., full=TRUE)} (and hence profiling) now work for models with \code{dispformula=~0} \item Documentation fix: when \code{family=genpois}, the index of dispersion is known as phi^2. \item \code{Anova} now respects the \code{component} argument (GH #494, from @eds-slim) \item \code{predict} now works when contrasts are set on factors in original data (GH #439, from @cvoeten) \item \code{bootMer} now works with models with Bernoulli responses (even though \code{simulate()} returns a two-column matrix in this case) (GH #529, @frousseu) \item better support for \code{emmeans} applied to zero-inflation or dispersion models (correct link functions) (Russ Lenth) } } % bug fixes \subsection{USER-VISIBLE CHANGES}{ \itemize{ \item \code{sigma(.)} now returns \code{NA} for models with non-trivial dispersion models (i.e. models with more than one dispersion parameter) (raised by GH #533, from @marek-tph) \item \code{VarCorr} no longer prints residual variances for models with \code{dispformula=~0} \item the \code{model.matrix()} and \code{terms()} methods for \code{glmmTMB} objects have been slightly modified } } % user-visible changes } % version 1.0.0 \section{CHANGES IN VERSION 0.2.3}{ \subsection{NEW FEATURES}{ \itemize{ \item \code{ranef} now returns information about conditional variances (as attributes of the individual random effects terms) by default; this information can easily be retrieved by \code{as.data.frame(ranef(.))}. \item \code{coef} method now available: as in \code{lme4}, returns sum of fixed + random effects for each random-effects level. (Conditional variances for \code{coef} \emph{not} yet available.) \item simulate works for models with genpois family \item parametric bootstrapping should work, using \code{\link[lme4]{bootMer}} from the \code{lme4} package as a front end. } % itemize } % new features \subsection{BUG FIXES}{ \itemize{ \item models with multiple types of RE (e.g. ar1 and us) may have failed previously (GH #329) \item \code{predict} was not handling data-dependent predictors (e.g. \code{poly}, \code{spline}, \code{scale}) correctly \item \code{profile} now works for models without random effects } } % bug fixes \subsection{USER-VISIBLE CHANGES}{ \itemize{ \item The value returned from \code{simulate} for binomial models is now a non-standard data frame where each element contains a two-column matrix (as in the base-R \code{\link{simulate}} method for binomial GLMS). } % itemize } % user-visible } % version 0.2.3 \section{CHANGES IN VERSION 0.2.2}{ \subsection{NEW FEATURES}{ \itemize{ \item REML is now an option (GH #352). It is typically only for Gaussian response variables, but can also be useful for some non-Gaussian response variables if used with caution (i.e. simulate a test case first). } } \subsection{USER-VISIBLE CHANGES}{ \itemize{ \item Because family functions are now available for all families that have been implemented in the underlying TMB code, specifying the \code{family} argument as a raw list (rather than as a family function, the name of a family function, or the output of such a function) is now deprecated. } } } \section{CHANGES IN VERSION 0.2.1}{ \subsection{NEW FEATURES}{ \itemize{ \item likelihood profiles (via \code{profile}) and likelihood profile confidence intervals (via \code{confint(profile(.))}) can now be computed; \code{confint(fitted,method="profile")} and \code{confint(fitted,method="uniroot")} (find CIs by using a root-finding algorithm on the likelihood profile) \item offsets are now allowed in the zero-inflation and dispersion formulas as well as in the main (conditional-mean) formula (if \code{offset} is specified as a separate argument, it applies only to the conditional mean) \item zero-truncated generalized Poisson \code{family=truncated_genpois} \item zero-truncated Conway-Maxwell-Poisson \code{family=truncated_compois} \item \code{predict} now allows \code{type} ("link", "response", "conditional", "zprob", "zlink") } } \subsection{BUG FIXES}{ \itemize{ \item built-in \code{betar()} family for Beta regression fixed (and name changed to \code{beta_family()}) (GH #278) \item fixed segfault in predict method when response is specified as two columns (GH #289) \item fixed summary-printing bug when some random effects have covariance terms and others don't (GH #291) \item fix bugs in binomial residuals and prediction (GH #307) } } \subsection{USER-VISIBLE CHANGES}{ \itemize{ \item in \code{predict.glmmTMB}, the \code{zitype} argument has been rolled into the new \code{type} argument: \strong{default prediction type is now "link" instead of "response", in order to match \code{glm()} default} } } } glmmTMB/cleanup0000755000176200001440000000004613616062000013120 0ustar liggesusers#!/bin/sh rm -f config.* src/Makevars

Warnings

Model convergence problem; non-positive-definite Hessian matrix; NA values for likelihood/AIC/etc.

This warning (Model convergence problem; non-positive-definite Hessian matrix) states that at glmmTMB’s maximum-likelihood estimate, the curvature of the negative log-likelihood surface is inconsistent with glmmTMB really having found the best fit (minimum): instead, the surface is downward-curving, or flat, in some direction(s).

It will usually be accompanied by NA values for the standard errors, log-likelihood, AIC, and BIC, and deviance. When you run summary() on the resulting model, you’ll get the warning In sqrt(diag(vcov)) : NaNs produced.

These problems are most likely:

  • when a model is overparameterized (i.e. the data does not contain enough information to estimate the parameters reliably)
  • when a random-effect variance is estimated to be zero, or random-effect terms are estimated to be perfectly correlated (“singular fit”: often caused by having too few levels of the random-effect grouping variable)
  • when zero-inflation is estimated to be near zero (a strongly negative zero-inflation parameter)
  • when dispersion is estimated to be near zero
  • when complete separation occurs in a binomial model: some categories in the model contain proportions that are either all 0 or all 1

How do we diagnose the problem?

Example 1.

Consider this example:

zinbm0 = glmmTMB(count~spp + (1|site), zi=~spp, Salamanders, family=nbinom2)

First, see if any of the estimated coefficients are extreme. If you’re using a non-identity link function (e.g. log, logit), then parameter values with \(|\beta|>10\) are suspect (for a logit link, this implies probabilities very close to 0 or 1; for a log link, this implies mean counts that are close to 0 or extremely large).

Inspecting the fixed-effect estimates for this model:

fixef(zinbm0)

The zero-inflation intercept parameter is tiny (\(\approx -17\)): since the parameters are estimated on the logit scale, we back-transform with plogis(-17) to see the at the zero-inflation probability for the baseline level is about \(4 \times 10^{-8}\))). Many of the other ZI parameters are very large, compensating for the intercept: the estimated zero-inflation probabilities for all species are

ff <- fixef(zinbm0)$zi
round(plogis(c(sppGP=unname(ff[1]),ff[-1]+ff[1])),3)

Since the baseline probability is already effectively zero, making the intercept parameter larger or smaller will have very little effect - the likelihood is flat, which leads to the non-positive-definite warning.

Now that we suspect the problem is in the zero-inflation component, we can try to come up with ways of simplifying the model: for example, we could use a model that compared the first species (“GP”) to the rest:

Salamanders <- transform(Salamanders, GP=as.numeric(spp=="GP"))
zinbm0_A = update(zinbm0, ziformula=~GP)

This fits without a warning, although the GP zero-inflation parameter is still extreme:

fixef(zinbm0_A)[["zi"]]

Another possibility would be to fit the variation among species in the zero-inflation parameter as a random effect, rather than a fixed effect: this is slightly more parsimonious. This again fits without an error, although both the average level of zero-inflation and the among-species variation are estimated as very small:

zinbm0_B = update(zinbm0, ziformula=~(1|spp))
fixef(zinbm0_B)[["zi"]]
VarCorr(zinbm0_B)

The original analysis considered variation in zero-inflation by site status (mined or not mined) rather than by species - this simpler model only tries to estimate two parameters (mined + difference between mined and no-mining) rather than 7 (one per species) for the zero-inflation model.

zinbm1 = glmmTMB(count~spp + (1|site), zi=~mined, Salamanders, family=nbinom2)
fixef(zinbm1)[["zi"]]

This again fits without a warning, but we see that the zero-inflation is effectively zero in the unmined (“minedno”) condition (plogis(0.38-17.5) is approximately \(4 \times 10^{-8}\)). We can estimate the confidence interval, but it takes some extra work: the default Wald standard errors and confidence intervals are useless in this case.

## at present we need to specify the parameter by number; for
##  extreme cases need to specify the parameter range
## (not sure why the upper bound needs to be so high ... ?)
cc = confint(zinbm1,method="uniroot",parm=9, parm.range=c(-20,20))
print(cc)

The lower CI is not defined; the upper CI is -2.08, i.e. we can state that the zero-inflation probability is less than plogis(-2.08) = 0.11.

More broadly, general inspection of the data (e.g., plotting the response against potential covariates) should help to diagnose overly complex models.

Example 2.

In some cases, scaling predictor variables may help. For example, in this example from @phisanti, the results of glm and glmmTMB applied to a scaled version of the data set agree, while glmmTMB applied to the raw data set gives a non-positive-definite Hessian warning.

## data taken from gamlss.data:plasma, originally
## http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/plasma.html
load(system.file("vignette_data","plasma.rda", package="glmmTMB"))
m4.1 <- glm(calories ~ fat*fiber, family = Gamma(link = "log"), data = plasma)
m4.2 <- glmmTMB(calories ~ fat*fiber, family = Gamma(link = "log"), data = plasma)
ps  <- transform(plasma,fat=scale(fat,center=FALSE),fiber=scale(fiber,center=FALSE))
m4.3 <- update(m4.2, data=ps)
## scaling factor for back-transforming standard deviations
ss <- c(1,
        fatsc <- 1/attr(ps$fat,"scaled:scale"),
        fibsc <- 1/attr(ps$fiber,"scaled:scale"),
        fatsc*fibsc)
## combine SEs, suppressing the warning from the unscaled model
s_vals <- cbind(glm=sqrt(diag(vcov(m4.1))),
                glmmTMB_unsc=suppressWarnings(sqrt(diag(vcov(m4.2)$cond))),
                glmmTMB_sc=sqrt(diag(vcov(m4.3)$cond))*ss)
print(s_vals,digits=3)

Example 3.

Here is another example (from Samantha Sherman):

load(system.file("vignette_data","troubleshooting.rda",package="glmmTMB"))

The first model gives the specified warning when it runs, as well as the other symptoms such as NA values for the likelihood:

summary(mod1)

We can immediately see that the dispersion is very small and that the zero-inflation parameter is strongly negative. However, we’ll develop some fancier machinery that checks the variance-covariance matrix or Hessian of the model, finds eigenvalues that are negative or close to zero, and identifies which model components contribute to those eigenvalues:

diagnose_vcov <- function(model, tol=1e-5, digits=2, analyze_hessian=FALSE) {
    vv <- vcov(model, full=TRUE)
    nn <- rownames(vv)
    if (!all(is.finite(vv))) {
        if (missing(analyze_hessian)) warning("analyzing Hessian, not vcov")
        if (!analyze_hessian) stop("can't analyze vcov")
        analyze_hessian <- TRUE
    }
    if (analyze_hessian) {
        par.fixed <- model$obj$env$last.par.best
        r <- model$obj$env$random
        if (!is.null(r)) par.fixed <- par.fixed[-r]
        vv <- optimHess(par.fixed, fn=model$obj$fn, gr=model$obj$gr)
        ## note vv is now HESSIAN, not vcov
    }
    ee <- eigen(vv)
    if (all(ee$values>tol)) {message("var-cov matrix OK"); return(invisible(NULL))}
    ## find negative or small-positive eigenvalues (flat/wrong curvature)
    bad_evals <- which(ee$values<tol)
    ## order worst to best
    bad_evals <- bad_evals[order(-ee$values[bad_evals])]
    ret <- lapply(bad_evals,
                  function(i) {
                      ## extract loadings
                      v <- setNames(ee$vectors[,i], nn)
                      ## order in decreasing magnitude & round
                      list(val=ee$values[i],vec=round(v[order(-abs(v))],digits))
                  })
    return(ret)
}

Running the diagnostics on the model:

(d1 <- diagnose_vcov(mod1))

This model has a very bad eigenvalue that is mostly driven by the zero-inflation parameter, and a little bit by the dispersion parameter. Let’s try dropping the zero-inflation term:

mod2 <- update(mod1, ziformula=~0)
summary(mod2)

We still get the warning, and the NA-valued likelihoods (and the very small dispersion parameter). Diagnose:

diagnose_vcov(mod2)

We can see that the dispersion parameter is still problematic. Simplify the model by switching from NB1 to Poisson:

mod3 <- update(mod2, family=poisson)
summary(mod3)

There are no warnings, the model looks OK now, and the diagnostic function agrees:

diagnose_vcov(mod3)

You can also check directly whether the model is OK by examining the pdHess (“positive-definite Hessian”) component of the sdr (“standard deviation report”) component of the model:

mod3$sdr$pdHess                       

(FIXME: add an accessor method for this?)

In general models with non-positive definite Hessian matrices should be excluded from further consideration.

Model convergence problem: eigenvalue problems

m1 = glmmTMB(count~spp + mined + (1|site), zi=~spp + mined, Salamanders, family=genpois)

In this example, the fixed-effect covariance matrix is NaN. It may have to do with the generalized Poisson (genpois) distribution, which is known to have convergence problems; luckily, the negative binomial (nbinom1 and nbinom2) and/or Conway-Maxwell Poisson (compois) are good alternatives.

Models with convergence problems should be excluded from further consideration, in general.

In some cases, extreme eigenvalues may be caused by having predictor variables that are on very different scales: try rescaling, and centering, continuous predictors in the model.

NA/NaN function evaluation

Warning in nlminb(start = par, objective = fn, gradient = gr) : NA/NaN function evaluation

This warning occurs when the optimizer visits a region of parameter space that is invalid. It is not a problem as long as the optimizer has left that region of parameter space upon convergence, which is indicated by an absence of the model convergence warnings described above.

The following warnings indicate possibly-transient numerical problems with the fit, and can be treated in the same way (i.e. ignored if there are no errors or convergence warnings about the final fitted model).

Cholmod warning ‘matrix not positive definite’

In older versions of R (< 3.6.0):

Warning in f(par, order = order, …) : value out of range in ‘lgamma’

false convergence

This warning:

false convergence: the gradient ∇f(x) may be computed incorrectly, the other stopping tolerances may be too tight, or either f or ∇f may be discontinuous near the current iterate x

comes from the nlminb optimizer used by default in glmmTMB. It’s usually hard to diagnose the source of this warning (this Stack Overflow answer explains a bit more about what it means). Reasonable methods for making sure your model is OK are:

  • restart the model at the estimated fitted values
  • try using a different optimizer, e.g. control=glmmTMBControl(optimizer=optim, optArgs=list(method="BFGS"))

and see if the results are sufficiently similar to the original fit.