metadat/0000755000176200001440000000000014750517112011674 5ustar liggesusersmetadat/tests/0000755000176200001440000000000014223077101013030 5ustar liggesusersmetadat/tests/testthat/0000755000176200001440000000000014750517112014676 5ustar liggesusersmetadat/tests/testthat/test_dat.bourassa1996.r0000644000176200001440000000031314167070054021035 0ustar liggesuserscontext("Checking: dat.bourassa1996") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.bourassa1996, algo="md5"), "ee1fd46dc621922f30596af07ab12e31") }) metadat/tests/testthat/test_dat.egger2001.r0000644000176200001440000000030514167070054020262 0ustar liggesuserscontext("Checking: dat.egger2001") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.egger2001, algo="md5"), "390720b458d2f33ffa043578d6b30654") }) metadat/tests/testthat/test_dat.raudenbush1985.r0000644000176200001440000000031714167070054021360 0ustar liggesuserscontext("Checking: dat.raudenbush1985") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.raudenbush1985, algo="md5"), "61c451c67c7fc82375305c017c6f524a") }) metadat/tests/testthat/test_dat.li2007.r0000644000176200001440000000027714167070054017613 0ustar liggesuserscontext("Checking: dat.li2007") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.li2007, algo="md5"), "48172cc79e9a18e841fa23cb35d5b756") }) metadat/tests/testthat/test_dat.berkey1998.r0000644000176200001440000000030714167070054020504 0ustar liggesuserscontext("Checking: dat.berkey1998") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.berkey1998, algo="md5"), "c94bd13f07a693a3c81b44903afad980") }) metadat/tests/testthat/test_dat.vanhowe1999.r0000644000176200001440000000031114167070054020666 0ustar liggesuserscontext("Checking: dat.vanhowe1999") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.vanhowe1999, algo="md5"), "3300d41b67fb79766dbb1e8fff7e50b0") }) metadat/tests/testthat/test_dat.bonett2010.r0000644000176200001440000000030714167070054020466 0ustar liggesuserscontext("Checking: dat.bonett2010") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.bonett2010, algo="md5"), "ddf3b996a39cc24f594d6c2419275c99") }) metadat/tests/testthat/test_dat.hasselblad1998.r0000644000176200001440000000031714167070054021326 0ustar liggesuserscontext("Checking: dat.hasselblad1998") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.hasselblad1998, algo="md5"), "40a55e4cef50d2bd0430de5163d19eb0") }) metadat/tests/testthat/test_dat.baker2009.r0000644000176200001440000000030514167070054020265 0ustar liggesuserscontext("Checking: dat.baker2009") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.baker2009, algo="md5"), "80fe19afb3dca58ca7be09b65cb2de4f") }) metadat/tests/testthat/test_dat.damico2009.r0000644000176200001440000000030714167070054020437 0ustar liggesuserscontext("Checking: dat.damico2009") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.damico2009, algo="md5"), "4b1d4adde9227dee3b31b0e109adb938") }) metadat/tests/testthat/test_dat.ursino2021.r0000644000176200001440000000030714344132547020517 0ustar liggesuserscontext("Checking: dat.ursino2021") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.ursino2021, algo="md5"), "b9c5821c858a7d8a5501822a3873c998") }) metadat/tests/testthat/test_dat.linde2016.r0000644000176200001440000000030514167107602020272 0ustar liggesuserscontext("Checking: dat.linde2016") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.linde2016, algo="md5"), "33020cfa2aed4478bac3364b0dd3a9dd") }) metadat/tests/testthat/test_dat.spooner2002.r0000644000176200001440000000031114657354430020663 0ustar liggesuserscontext("Checking: dat.spooner2002") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.spooner2002, algo="md5"), "d35bdc852b7c6204236240f217046470") }) metadat/tests/testthat/test_dat.pignon2000.r0000644000176200001440000000030714167070054020464 0ustar liggesuserscontext("Checking: dat.pignon2000") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.pignon2000, algo="md5"), "50b607c84d1ac4cdf03ce4cbcc7a7e20") }) metadat/tests/testthat/test_dat.senn2013.r0000644000176200001440000000030314167070054020135 0ustar liggesuserscontext("Checking: dat.senn2013") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.senn2013, algo="md5"), "b845a2bc3436efff179e8c34cb99602a") }) metadat/tests/testthat/test_dat.curtis1998.r0000644000176200001440000000030714167070054020534 0ustar liggesuserscontext("Checking: dat.curtis1998") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.curtis1998, algo="md5"), "a6007ef1e665877559ca0d0e0315aa4c") }) metadat/tests/testthat/test_dat.collins1985a.r0000644000176200001440000000031314167070054021020 0ustar liggesuserscontext("Checking: dat.collins1985a") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.collins1985a, algo="md5"), "273f562fb6389816a296afd7fa89ab9c") }) metadat/tests/testthat/test_dat.hartmannboyce2018.r0000644000176200001440000000032514223077651022040 0ustar liggesuserscontext("Checking: dat.hartmannboyce2018") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.hartmannboyce2018, algo="md5"), "5f8bbde96e75d8e8da450575a6b72f86") }) metadat/tests/testthat/test_dat.linde2015.r0000644000176200001440000000030514167107540020272 0ustar liggesuserscontext("Checking: dat.linde2015") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.linde2015, algo="md5"), "003effb9075e234e4c1b7e641c85ace9") }) metadat/tests/testthat/test_dat.cannon2006.r0000644000176200001440000000030714167070054020454 0ustar liggesuserscontext("Checking: dat.cannon2006") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.cannon2006, algo="md5"), "63a03f32e5f26afa8e0290b74d47655d") }) metadat/tests/testthat/test_dat.molloy2014.r0000644000176200001440000000030714167070054020512 0ustar liggesuserscontext("Checking: dat.molloy2014") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.molloy2014, algo="md5"), "289c001827c4d4104b2c02bd71334469") }) metadat/tests/testthat/test_dat.mcdaniel1994.r0000644000176200001440000000031314167070054020770 0ustar liggesuserscontext("Checking: dat.mcdaniel1994") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.mcdaniel1994, algo="md5"), "6d9c49bc2437cd8f5cc63c38d0bc917d") }) metadat/tests/testthat/test_dat.yusuf1985.r0000644000176200001440000000030514167070054020370 0ustar liggesuserscontext("Checking: dat.yusuf1985") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.yusuf1985, algo="md5"), "1204e1dd2a90ae553308cfcbe0dfb5fd") }) metadat/tests/testthat/test_dat.gibson2002.r0000644000176200001440000000030714167070054020455 0ustar liggesuserscontext("Checking: dat.gibson2002") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.gibson2002, algo="md5"), "5629cee5d47e75d3add44dc91ac5e4ac") }) metadat/tests/testthat/test_dat.dumouchel1994.r0000644000176200001440000000031514417201110021166 0ustar liggesuserscontext("Checking: dat.dumouchel1994") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.dumouchel1994, algo="md5"), "da9f347c3df75b8fe0c75f8e3030ad16") }) metadat/tests/testthat/test_dat.franchini2012.r0000644000176200001440000000031514167107436021142 0ustar liggesuserscontext("Checking: dat.franchini2012") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.franchini2012, algo="md5"), "032fe3c5d34b4479f354fffc0dafe72f") }) metadat/tests/testthat/test_dat.curtin2002.r0000644000176200001440000000030714657354353020513 0ustar liggesuserscontext("Checking: dat.curtin2002") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.curtin2002, algo="md5"), "3f6600770272aa68c2720dbfb78d0966") }) metadat/tests/testthat/test_dat.moura2021.r0000644000176200001440000000053714215673340020326 0ustar liggesuserscontext("Checking: dat.moura2021") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.moura2021$dat, algo="md5"), "313e588a5e1d08ee541260392beb9ae3") }) test_that("md5 hash matches for the tree", { expect_match(digest(metadat::dat.moura2021$tree, algo="md5"), "78b3738727e054b2212cd16ebf1d5c6a") }) metadat/tests/testthat/test_dat.pritz1997.r0000644000176200001440000000030514167070054020370 0ustar liggesuserscontext("Checking: dat.pritz1997") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.pritz1997, algo="md5"), "d404c9d72e033e67105c0f1bee3a20fc") }) metadat/tests/testthat/test_dat.knapp2017.r0000644000176200001440000000030514167070054020311 0ustar liggesuserscontext("Checking: dat.knapp2017") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.knapp2017, algo="md5"), "0d866a1328248f8c6458c5127c443e02") }) metadat/tests/testthat/test_dat.lee2004.r0000644000176200001440000000030114167070054017735 0ustar liggesuserscontext("Checking: dat.lee2004") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.lee2004, algo="md5"), "3d79eee16145524fe53554e9c43109e4") }) metadat/tests/testthat/test_dat.frank2008.r0000644000176200001440000000030514216157151020300 0ustar liggesuserscontext("Checking: dat.frank2008") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.frank2008, algo="md5"), "e0ac95d1768ec2fbd61dd7907434cb7e") }) metadat/tests/testthat/test_dat.begg1989.r0000644000176200001440000000030314167070054020123 0ustar liggesuserscontext("Checking: dat.begg1989") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.begg1989, algo="md5"), "56f50ca9aa6581fd843bd1083725ccea") }) metadat/tests/testthat/test_dat.craft2003.r0000644000176200001440000000030514167070054020272 0ustar liggesuserscontext("Checking: dat.craft2003") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.craft2003, algo="md5"), "0e314716e890ef8c3366d01c447e8992") }) metadat/tests/testthat/test_dat.roever2022.r0000644000176200001440000000030714344132513020474 0ustar liggesuserscontext("Checking: dat.roever2022") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.roever2022, algo="md5"), "1409e1999fa055ff3728478033bd5da2") }) metadat/tests/testthat/test_dat.pagliaro1992.r0000644000176200001440000000031314167070054021010 0ustar liggesuserscontext("Checking: dat.pagliaro1992") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.pagliaro1992, algo="md5"), "7560844add63d1c6c7b44847b05da7aa") }) metadat/tests/testthat/test_dat.axfors2021.r0000644000176200001440000000030714167070054020477 0ustar liggesuserscontext("Checking: dat.axfors2021") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.axfors2021, algo="md5"), "d7f19500e14f2b8a383cefac7791f43f") }) metadat/tests/testthat/test_dat.maire2019.r0000644000176200001440000000055214167070054020303 0ustar liggesuserscontext("Checking: dat.maire2019") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.maire2019$dat, algo="md5"), "a1bea482e3f89fad844e08b7b3d3d987") }) test_that("md5 hash matches for the distance matrix", { expect_match(digest(metadat::dat.maire2019$dmat, algo="md5"), "bc75d00397a71dc2c7a7e1c5f88f7e79") }) metadat/tests/testthat/test_dat.dogliotti2014.r0000644000176200001440000000031514167107353021177 0ustar liggesuserscontext("Checking: dat.dogliotti2014") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.dogliotti2014, algo="md5"), "8dde5871843a3ed7c62c54ae84474234") }) metadat/tests/testthat/test_dat.white2020.r0000644000176200001440000000030514167070054020312 0ustar liggesuserscontext("Checking: dat.white2020") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.white2020, algo="md5"), "290a7ba0476ec60c726604ec04c8d437") }) metadat/tests/testthat/test_dat.graves2010.r0000644000176200001440000000030714167070054020462 0ustar liggesuserscontext("Checking: dat.graves2010") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.graves2010, algo="md5"), "3bff074ad3ea13da4c5e67f33265709d") }) metadat/tests/testthat/test_dat.bornmann2007.r0000644000176200001440000000031314167070054021010 0ustar liggesuserscontext("Checking: dat.bornmann2007") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.bornmann2007, algo="md5"), "cd3be7c49eed994719c0f4b224e48f24") }) metadat/tests/testthat/test_dat.dorn2007.r0000644000176200001440000000030314167070054020137 0ustar liggesuserscontext("Checking: dat.dorn2007") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.dorn2007, algo="md5"), "1cd82454da033a25ba5d831b1626dff5") }) metadat/tests/testthat/test_dat.bangertdrowns2004.r0000644000176200001440000000032514167070054022055 0ustar liggesuserscontext("Checking: dat.bangertdrowns2004") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.bangertdrowns2004, algo="md5"), "716b3c863ecc3fd61d6a9c076732f28c") }) metadat/tests/testthat/test_dat.laopaiboon2015.r0000644000176200001440000000031714167070054021324 0ustar liggesuserscontext("Checking: dat.laopaiboon2015") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.laopaiboon2015, algo="md5"), "1260edb7d5c69d8bc0b507f16eaacd0c") }) metadat/tests/testthat/test_dat.riley2003.r0000644000176200001440000000030514167070054020317 0ustar liggesuserscontext("Checking: dat.riley2003") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.riley2003, algo="md5"), "606d5e3307678b0b8b57b0a833f4d184") }) metadat/tests/testthat/test_dat.woods2010.r0000644000176200001440000000030514167107655020334 0ustar liggesuserscontext("Checking: dat.woods2010") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.woods2010, algo="md5"), "7159dcbf42d9bc82d53959b6fd2d8b9a") }) metadat/tests/testthat/test_dat.besson2016.r0000644000176200001440000000030714167070054020472 0ustar liggesuserscontext("Checking: dat.besson2016") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.besson2016, algo="md5"), "37e9119b7f262598c930291ae0fac9af") }) metadat/tests/testthat/test_dat.lau1992.r0000644000176200001440000000030114167070054017770 0ustar liggesuserscontext("Checking: dat.lau1992") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.lau1992, algo="md5"), "724e40152d092b1ba8793b20862fbb6a") }) metadat/tests/testthat/test_dat.ishak2007.r0000644000176200001440000000030514167070054020276 0ustar liggesuserscontext("Checking: dat.ishak2007") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.ishak2007, algo="md5"), "59501e470f16259537abc9ed864cd6f1") }) metadat/tests/testthat/test_dat.cohen1981.r0000644000176200001440000000030514167070054020305 0ustar liggesuserscontext("Checking: dat.cohen1981") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.cohen1981, algo="md5"), "c74ba5b65fb0347e4842ec32276d887a") }) metadat/tests/testthat/test_dat.kearon1998.r0000644000176200001440000000030714167070054020502 0ustar liggesuserscontext("Checking: dat.kearon1998") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.kearon1998, algo="md5"), "46bb5ea53ba8d6bb22d3cceb2f8429ac") }) metadat/tests/testthat/test_dat.nielweise2007.r0000644000176200001440000000031514167070054021164 0ustar liggesuserscontext("Checking: dat.nielweise2007") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.nielweise2007, algo="md5"), "05e2f281b42f16fb6be456f62b625f82") }) metadat/tests/testthat/test_dat.aloe2013.r0000644000176200001440000000030314167070054020112 0ustar liggesuserscontext("Checking: dat.aloe2013") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.aloe2013, algo="md5"), "bbb5d1a536e791eba68780bb8822125a") }) metadat/tests/testthat/test_dat.collins1985b.r0000644000176200001440000000031314167070054021021 0ustar liggesuserscontext("Checking: dat.collins1985b") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.collins1985b, algo="md5"), "a1c5ab9525f7ad9354793073bb106164") }) metadat/tests/testthat/test_dat.obrien2003.r0000644000176200001440000000030714167070054020453 0ustar liggesuserscontext("Checking: dat.obrien2003") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.obrien2003, algo="md5"), "f46831024c5e7c0ca64607327fa1987e") }) metadat/tests/testthat/test_dat.viechtbauer2021.r0000644000176200001440000000032114167070054021472 0ustar liggesuserscontext("Checking: dat.viechtbauer2021") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.viechtbauer2021, algo="md5"), "2dd6203150534b3bd62dba7a329ffdf4") }) metadat/tests/testthat/test_dat.assink2016.r0000644000176200001440000000030714467432013020471 0ustar liggesuserscontext("Checking: dat.assink2016") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.assink2016, algo="md5"), "4b542f0f3e66323a547b58c57d488568") }) metadat/tests/testthat/test_dat.bassler2004.r0000644000176200001440000000031114657354317020637 0ustar liggesuserscontext("Checking: dat.bassler2004") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.bassler2004, algo="md5"), "b2602c6ffa358e30992b5de028bcc1ff") }) metadat/tests/testthat/test_dat.lim2014.r0000644000176200001440000000256614167070054017771 0ustar liggesuserscontext("Checking: dat.lim2014") library(digest) test_that("md5 hash matches for the data m_o_size", { expect_match(digest(metadat::dat.lim2014$m_o_size, algo="md5"), "47c9b90b4d399147238b3d001e8cc09b") }) test_that("md5 hash matches for the data m_o_fecundity", { expect_match(digest(metadat::dat.lim2014$m_o_fecundity, algo="md5"), "5cd73c511ca7a5993d74ea3a0b01e7a4") }) test_that("md5 hash matches for the data o_o_unadj", { expect_match(digest(metadat::dat.lim2014$o_o_unadj, algo="md5"), "281630552862a8351684c375ca2f237c") }) test_that("md5 hash matches for the data o_o_adj", { expect_match(digest(metadat::dat.lim2014$o_o_adj, algo="md5"), "86870c289d85e1d914ae009bf9635529") }) test_that("md5 hash matches for the tree m_o_size_tree", { expect_match(digest(metadat::dat.lim2014$m_o_size_tree, algo="md5"), "a0d9c3c1381669abb23710059752cd18") }) test_that("md5 hash matches for the tree m_o_fecundity_tree", { expect_match(digest(metadat::dat.lim2014$m_o_fecundity_tree, algo="md5"), "553fb55660b195c5f319c147585e816e") }) test_that("md5 hash matches for the tree o_o_unadj_tree", { expect_match(digest(metadat::dat.lim2014$o_o_unadj_tree, algo="md5"), "d4006f261ce75e7cb397b1fdefe7f7c6") }) test_that("md5 hash matches for the tree o_o_adj_tree", { expect_match(digest(metadat::dat.lim2014$o_o_adj_tree, algo="md5"), "ea8b3394bef1ea32001e903b987ded89") }) metadat/tests/testthat/test_dat.crede2010.r0000644000176200001440000000030514167070054020253 0ustar liggesuserscontext("Checking: dat.crede2010") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.crede2010, algo="md5"), "e41ba72533831f037300d67c501a09eb") }) metadat/tests/testthat/test_dat.dong2013.r0000644000176200001440000000030314167107403020120 0ustar liggesuserscontext("Checking: dat.dong2013") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.dong2013, algo="md5"), "e94d834a5af363dfb336bf642f790957") }) metadat/tests/testthat/test_dat.nielweise2008.r0000644000176200001440000000031514167070054021165 0ustar liggesuserscontext("Checking: dat.nielweise2008") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.nielweise2008, algo="md5"), "f7e4d793597dadf2d314545af7555d73") }) metadat/tests/testthat/test_dat.bartos2023.r0000644000176200001440000000030714521174302020464 0ustar liggesuserscontext("Checking: dat.bartos2023") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.bartos2023, algo="md5"), "fe61d69f402cb3871713264daa903621") }) metadat/tests/testthat/test_dat.stowe2010.r0000644000176200001440000000030514167107631020334 0ustar liggesuserscontext("Checking: dat.stowe2010") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.stowe2010, algo="md5"), "2191ce23321ec455c23daf088e09bea0") }) metadat/tests/testthat/test_dat.hahn2001.r0000644000176200001440000000030314167070054020105 0ustar liggesuserscontext("Checking: dat.hahn2001") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.hahn2001, algo="md5"), "53da7f29fb9d9d3c73af596862c5a9a9") }) metadat/tests/testthat/test_dat.fine1993.r0000644000176200001440000000030314167070054020133 0ustar liggesuserscontext("Checking: dat.fine1993") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.fine1993, algo="md5"), "34a037b6745cf6b6e9afd6bb2aed7007") }) metadat/tests/testthat/test_dat.normand1999.r0000644000176200001440000000031114167070054020655 0ustar liggesuserscontext("Checking: dat.normand1999") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.normand1999, algo="md5"), "35ddafb737cfa2d73816e9d4c5c8dd76") }) metadat/tests/testthat/test_dat.hannum2020.r0000644000176200001440000000030714167070054020462 0ustar liggesuserscontext("Checking: dat.hannum2020") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.hannum2020, algo="md5"), "e935f7ffa13d303a2b955700f07600ad") }) metadat/tests/testthat/test_dat.baskerville2012.r0000644000176200001440000000032114167070054021474 0ustar liggesuserscontext("Checking: dat.baskerville2012") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.baskerville2012, algo="md5"), "fe6765cbaa93d7096aced942cdb5b32e") }) metadat/tests/testthat/test_dat.lopez2019.r0000644000176200001440000000030514167070054020333 0ustar liggesuserscontext("Checking: dat.lopez2019") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.lopez2019, algo="md5"), "7c4e427c79baa8549fb3c46a1aff7265") }) metadat/tests/testthat/test_dat.nakagawa2007.r0000644000176200001440000000031314167070054020750 0ustar liggesuserscontext("Checking: dat.nakagawa2007") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.nakagawa2007, algo="md5"), "aef00ca12dac2cd7c27d7a8f7692ba62") }) metadat/tests/testthat/test_dat.kalaian1996.r0000644000176200001440000000031114411522670020612 0ustar liggesuserscontext("Checking: dat.kalaian1996") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.kalaian1996, algo="md5"), "0f15c3094fef881f444ceeeaf54771a4") }) metadat/tests/testthat/test_dat.colditz1994.r0000644000176200001440000000031114167070054020662 0ustar liggesuserscontext("Checking: dat.colditz1994") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.colditz1994, algo="md5"), "a8df61024006ae1ce670b7ede5b29a9d") }) metadat/tests/testthat/test_dat.crisafulli2020.r0000644000176200001440000000031714417200755021333 0ustar liggesuserscontext("Checking: dat.crisafulli2020") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.crisafulli2020, algo="md5"), "fee9264067c19c6e53294e4c72eec7ef") }) metadat/tests/testthat/test_dat.landenberger2005.r0000644000176200001440000000032314167070054021625 0ustar liggesuserscontext("Checking: dat.landenberger2005") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.landenberger2005, algo="md5"), "787f5762af4701c33cf1ca7548e54fea") }) metadat/tests/testthat/test_dat.gurusamy2011.r0000644000176200001440000000031314167107476021056 0ustar liggesuserscontext("Checking: dat.gurusamy2011") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.gurusamy2011, algo="md5"), "fafe3c72ffac20364548bca7a0cbe866") }) metadat/tests/testthat/test_dat.bakdash2021.r0000644000176200001440000000031114167070054020565 0ustar liggesuserscontext("Checking: dat.bakdash2021") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.bakdash2021, algo="md5"), "cb2b2109505430e49ded3586a3ba31a1") }) metadat/tests/testthat/test_dat.tannersmith2016.r0000644000176200001440000000032114205661725021535 0ustar liggesuserscontext("Checking: dat.tannersmith2016") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.tannersmith2016, algo="md5"), "bda45667a6c6b6e7c24c5abfc91590de") }) metadat/tests/testthat/test_dat.furukawa2003.r0000644000176200001440000000031314657354402021025 0ustar liggesuserscontext("Checking: dat.furukawa2003") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.furukawa2003, algo="md5"), "e9f22be16a3dfd4832663ede1fe9d462") }) metadat/tests/testthat/test_dat.dagostino1998.r0000644000176200001440000000031514167070054021211 0ustar liggesuserscontext("Checking: dat.dagostino1998") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.dagostino1998, algo="md5"), "fa0804ed25a8d0d93f91d840a315162a") }) metadat/tests/testthat/test_dat.anand1999.r0000644000176200001440000000030514167070054020303 0ustar liggesuserscontext("Checking: dat.anand1999") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.anand1999, algo="md5"), "83ef370cdbe1d5db37f1a3fd98676a80") }) metadat/tests/testthat/test_dat.hine1989.r0000644000176200001440000000030314167070054020142 0ustar liggesuserscontext("Checking: dat.hine1989") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.hine1989, algo="md5"), "237ad8966750f5a26cfb917b3365fcfc") }) metadat/tests/testthat/test_dat.konstantopoulos2011.r0000644000176200001440000000033114167070054022453 0ustar liggesuserscontext("Checking: dat.konstantopoulos2011") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.konstantopoulos2011, algo="md5"), "ccc4a7cee29012013552e2dca1c634a4") }) metadat/tests/testthat/test_dat.bcg.r0000644000176200001440000000027114167070054017423 0ustar liggesuserscontext("Checking: dat.bcg") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.bcg, algo="md5"), "a8df61024006ae1ce670b7ede5b29a9d") }) metadat/tests/testthat/test_dat.hackshaw1998.r0000644000176200001440000000031314167070054021011 0ustar liggesuserscontext("Checking: dat.hackshaw1998") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.hackshaw1998, algo="md5"), "40bf072f51b31ce8cfb0ca4272eddb84") }) metadat/tests/testthat/test_dat.debruin2009.r0000644000176200001440000000031114167070054020626 0ustar liggesuserscontext("Checking: dat.debruin2009") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.debruin2009, algo="md5"), "d290a731fc4232fbf2bfd54fabcf8732") }) metadat/tests/testthat/test_dat.michael2013.r0000644000176200001440000000031114167070054020573 0ustar liggesuserscontext("Checking: dat.michael2013") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.michael2013, algo="md5"), "ff2a9079b413579d2246e0543c7f0541") }) metadat/tests/testthat/test_dat.hart1999.r0000644000176200001440000000030314167070054020156 0ustar liggesuserscontext("Checking: dat.hart1999") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.hart1999, algo="md5"), "df7f6e390eede443380bb656e9262958") }) metadat/tests/testthat/test_dat.mccurdy2020.r0000644000176200001440000000031114167070054020635 0ustar liggesuserscontext("Checking: dat.mccurdy2020") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.mccurdy2020, algo="md5"), "f3590f669053d881ac7b32fbc378229a") }) metadat/tests/testthat/test_dat.linde2005.r0000644000176200001440000000030514167070054020270 0ustar liggesuserscontext("Checking: dat.linde2005") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.linde2005, algo="md5"), "819177a7eb640f4f89b23ba11f892a5d") }) metadat/tests/testthat/test_dat.lehmann2018.r0000644000176200001440000000031114167070054020620 0ustar liggesuserscontext("Checking: dat.lehmann2018") library(digest) test_that("md5 hash matches for the data", { expect_match(digest(metadat::dat.lehmann2018, algo="md5"), "bfa52ac1cf59ef847c6badf23394298f") }) metadat/tests/testthat.R0000644000176200001440000000023214223075431015014 0ustar liggesusers# to also run skip_on_cran() tests, uncomment: #Sys.setenv(NOT_CRAN="true") library(testthat) library(metadat) test_check("metadat", reporter="summary") metadat/MD50000644000176200001440000004267714750517112012224 0ustar liggesusers49ba2b163504c585b344f8c7bdf66915 *DESCRIPTION faf9a8357bbb8ba7eb8b12b21fbf1702 *NAMESPACE 1de278d86f245e8856f50cc5e8d2fa97 *NEWS.md 1e3f598f7ef36ece242de4d9589b052c *R/datsearch.r 8858bc066441139934e3250cf6a1d8bb *R/prep_dat.r cea7ace0cb3b94b3332627d9071cbd3a *R/rd_generator.r 8c6d806f1c453dcc0e34b5ee7e77e996 *README.md c990cac7da9e5c43e4f83e3f5f580cb7 *build/metadat.pdf b8ddc8a3689c4b8607f100a03b1207d9 *build/stage23.rdb b25cd840961fe0bb9b03bee6caa3e257 *data/dat.aloe2013.rda fc5f94daf3362d2b1e154354f841e9e7 *data/dat.anand1999.rda f94b887a6dc34265d4c66c4481b7eb68 *data/dat.assink2016.rda 5832ff057c37e39e5de3f841eb1c1b94 *data/dat.axfors2021.rda 1d53859fed5869efff8f704afabd0a85 *data/dat.bakdash2021.rda db179c8f4902b7b491eb33d7471069ff *data/dat.baker2009.rda 37889fdbde6df5f8d7ed448b3e2e8e68 *data/dat.bangertdrowns2004.rda 64be8fa9c18ea663f0e579d057a593fc *data/dat.bartos2023.rda d8154ab22478d2c8d902a8a4425ab902 *data/dat.baskerville2012.rda 34f3c60b3b9ba6c56deb0c64c6c64734 *data/dat.bassler2004.rda 3ec26e60ec2de37793d06a9bfa05b73f *data/dat.bcg.rda ce0131936cfb180e7fc71029c21c2b09 *data/dat.begg1989.rda b80c4e0007460a198bcc37132333ae7b *data/dat.berkey1998.rda 7aaf10fdbdd41aa5e2832fcdfa559985 *data/dat.besson2016.rda 3764e051cc3476292ccac59646c654fb *data/dat.bonett2010.rda 5c2e38c73ea1c36d1476fff4154e1be6 *data/dat.bornmann2007.rda ee5c3a590333ba1a58ac96509979fced *data/dat.bourassa1996.rda c3392284eef638200c031a5fbc686463 *data/dat.cannon2006.rda 9ae12121dac07f42f4a5857c925d03a8 *data/dat.cohen1981.rda 314a3003a5cd3ecfd016c2c7f04163ec *data/dat.colditz1994.rda ed7820425a8d716da2f4c6741a010e53 *data/dat.collins1985a.rda 9f9feab52b7227c6e119eb7032e7f337 *data/dat.collins1985b.rda 12c72409e80e51a515190a9b135b9e6e *data/dat.craft2003.rda 89541fe7c8956c973c328eeebe79a607 *data/dat.crede2010.rda 995e7a3d1605c172645ea5e0a170adde *data/dat.crisafulli2020.rda 6cbbfe3767b9250c90a22e3472bc303b *data/dat.curtin2002.rda ac13c3f8cd813d6fb4a0cd2e72ab1b41 *data/dat.curtis1998.rda 57418118aeb7d5cd30d391aec0df4d54 *data/dat.dagostino1998.rda 93eec04820c0831ca7fc1c9c66a236d9 *data/dat.damico2009.rda 6411e291d3e56ad45a19fd17873c8f81 *data/dat.debruin2009.rda 4139df5f20150514bdd078b50d9d0208 *data/dat.dogliotti2014.rda d625b9c740df7d7f503d9bf7ef1ae978 *data/dat.dong2013.rda 6603aae7df999ed48edebe99378ca6c8 *data/dat.dorn2007.rda a3ba8da0fc85a678d2a303e07c426eb9 *data/dat.dumouchel1994.rda 0b7457c75b6595af51a3864b7e9a5d84 *data/dat.egger2001.rda 4b32bc610b772234decb00cfc0743f35 *data/dat.fine1993.rda 7b177760320d8b8bddcf16a78be84436 *data/dat.franchini2012.rda 62eca59780eb36dd343bcef615a14acc *data/dat.frank2008.rda 29fe1958c40aeea4cb67693949894aae *data/dat.furukawa2003.rda e5f6398a505ffc847c8c87a214b55307 *data/dat.gibson2002.rda 7ea364a88c0c92f47b882ef5e1f18c50 *data/dat.graves2010.rda f376c31d195f93241ba1414259b203e4 *data/dat.gurusamy2011.rda a3956f2bcd860d9ff22b396023aa18e5 *data/dat.hackshaw1998.rda 18ed6f4f9b2ac9681e4203f90964f4ea *data/dat.hahn2001.rda 8f4eeb051ee2e903a04e04940252534c *data/dat.hannum2020.rda f0572410aa69a94c6a5654ab7fbd45b0 *data/dat.hart1999.rda 15d38ee3f74e9d99a674e5be5a573c86 *data/dat.hartmannboyce2018.rda 6c763bb035afeddfad51ee394960e0c4 *data/dat.hasselblad1998.rda 799dbb6bf6880cf494f113e6cda6601f *data/dat.hine1989.rda 3b53084d40d64b9dbf0e9492e3bf11ab *data/dat.ishak2007.rda 5491eab84713814f603d08dbab67ae7c *data/dat.kalaian1996.rda 081c715da3f46c11ee6f29e4bf79789b *data/dat.kearon1998.rda 020bce9e0557339a605be972f8abdc07 *data/dat.knapp2017.rda 2b4a3edf628b3ca0a0bde4f208d98df8 *data/dat.konstantopoulos2011.rda 22a6fe4e9acb840192446250d20f5a7c *data/dat.landenberger2005.rda 76f3f944cac9a78f9c31bdb420a0ab28 *data/dat.laopaiboon2015.rda 4a13c550bf520fda687c08c9ecdb03a4 *data/dat.lau1992.rda f4d6f921fb1a997ad752a1e7ee790710 *data/dat.lee2004.rda 173b7f273ca800e361653c35ea0448e2 *data/dat.lehmann2018.rda 64f926a97e91ae3455ea29575af4517c *data/dat.li2007.rda 6b9c51bb78d61f10127412f859107005 *data/dat.lim2014.rda f23b6daa1bdf516735d0a4bc1d724fa8 *data/dat.linde2005.rda 7d171d8241fa9faaa87f0e96cbc5853b *data/dat.linde2015.rda 17215921c8b86085d1702281c4024d03 *data/dat.linde2016.rda e72c85c8a68d5a8a3296ae4a4105eb9f *data/dat.lopez2019.rda 670cd887d0869c100fdeea416401c869 *data/dat.maire2019.rda 69652edc29db9dbd840a8da3a660cc10 *data/dat.mccurdy2020.rda 32834748ac81624938df3bed62e794f8 *data/dat.mcdaniel1994.rda 299442b58bd586be3b498b0e8c3e5ec9 *data/dat.michael2013.rda 85d2235e377ece9de592f7aeb0e389c5 *data/dat.molloy2014.rda 31777daa30c17271603a4f11bf8097fe *data/dat.moura2021.rda 8f6a1d16e1005443305a6dad26ee2afd *data/dat.nakagawa2007.rda 9a9775aa509890991d6362f5bc17f57a *data/dat.nielweise2007.rda cc711b309a289dab5401564a514f3eb8 *data/dat.nielweise2008.rda 0c2bfb4beaa4eb90fe8dfaebafc1f550 *data/dat.normand1999.rda a4fb8bf06e332863e671bf1af2480a8b *data/dat.obrien2003.rda c45cbde114b43382ec3430ebf7a4b9ca *data/dat.pagliaro1992.rda 1c6cf0ca3ddfde297b3c7a2b44fca35f *data/dat.pignon2000.rda e8895304ce4b84fe83d7b3906c28e213 *data/dat.pritz1997.rda 94daab31e35508163c2c982745bf3760 *data/dat.raudenbush1985.rda cb5fcd4e17fd6afc72970698b93280e1 *data/dat.riley2003.rda ce7f34d217b95a778959e1a7455e195d *data/dat.roever2022.rda 40ea52573d2514f52449c481188b3770 *data/dat.senn2013.rda e3a603ae7e281f4e82c2ea7e9df57284 *data/dat.spooner2002.rda 154f413d1721bd490ded93dc1f662b93 *data/dat.stowe2010.rda 7036ab51c2170c2bb65e4b640c39b8cb *data/dat.tannersmith2016.rda d67aaa956caa86978d760f8206f7ba7d *data/dat.ursino2021.rda f0e32ad2d83ea23abbf87dd41659d99a *data/dat.vanhowe1999.rda 77225c8fd8cae353efb9bae5fee658ce *data/dat.viechtbauer2021.rda a96c2a52c4cca9babff5691674f42649 *data/dat.white2020.rda 1438a6fe8bc4c99fb5a055cf57ac9307 *data/dat.woods2010.rda aa5fe6da8580bed7bf8112379614ee25 *data/dat.yusuf1985.rda 2cc22dfce9260c2791e35873859737bf *inst/help.rdata 3c2433f70d29b17bebb521144cad9f99 *man/dat.aloe2013.Rd fdd8cc64d489646391fc708ec4db3c10 *man/dat.anand1999.Rd 98908318f01f17d4f427215d962cec46 *man/dat.assink2016.Rd b8696b04aa9f116458fb3db118fd0b08 *man/dat.axfors2021.Rd f378b3cce88da4c4ffc6cb633905a1c9 *man/dat.bakdash2021.Rd 7c60dfbfc3bdf2943fd19eeeccbec2d8 *man/dat.baker2009.Rd 25154cec4c5fdf9fcaa2140e7449dcc8 *man/dat.bangertdrowns2004.Rd 8ce544c45e8e4fcf82475941805e3d58 *man/dat.bartos2023.Rd 431f580cd236dd4db07a328db1d4e897 *man/dat.baskerville2012.Rd e11062e935351b0f0855c007ae44d3d9 *man/dat.bassler2004.Rd 598e2ce86b2ea796925915564557da0d *man/dat.bcg.Rd 539744894659ab9e365c910ee32d04e9 *man/dat.begg1989.Rd 2b910f1bb71473062795fdfe8370eef7 *man/dat.berkey1998.Rd 60d2973cfc19bdf9e55f4e22f0cd615c *man/dat.besson2016.Rd 730aa3ce6b92554c19916e469fb21760 *man/dat.bonett2010.Rd b57a0a9fbf562b1c84afecfa213c184e *man/dat.bornmann2007.Rd f7f43cb8ec0775b58e8f888d13275161 *man/dat.bourassa1996.Rd 2476aab316407c2da79045198fe1e3eb *man/dat.cannon2006.Rd 1ef4b69f6964e4f7176505c0d336dcb2 *man/dat.cohen1981.Rd 5a58c02637fb5130754d2b1d75f6bcf5 *man/dat.colditz1994.Rd 6c3f1f0db0040576cbd3d06d64e64da3 *man/dat.collins1985a.Rd 87c49b2a7113397ef16140e3454dc83b *man/dat.collins1985b.Rd 74e1e150a3e4de241aa08cbb9e6a0836 *man/dat.craft2003.Rd 59396cbfd965b0e165a5434b33491a3f *man/dat.crede2010.Rd fe37da8eb3fc4be2a638d0989531c625 *man/dat.crisafulli2020.Rd 030cc6038f0ab0c96e4eb60abfc12046 *man/dat.curtin2002.Rd a164d9d9e5a8dc155f5bd55cb62d65b0 *man/dat.curtis1998.Rd 3ea2e4ed1aa6e8168b47bbba0993819b *man/dat.dagostino1998.Rd 7d264d7386716497f562adf615d83233 *man/dat.damico2009.Rd ea918851abb689f70f71621599b8d1e5 *man/dat.debruin2009.Rd e98ca682fb1c5fe1fde64efbb048c583 *man/dat.dogliotti2014.Rd 44a9616de23d9d11e0aad2772a227e21 *man/dat.dong2013.Rd 706b856b940329a81c6300492fb3d147 *man/dat.dorn2007.Rd 840ca56c3b7f72f4804be7d916b01c91 *man/dat.dumouchel1994.Rd c3a601e2f97652b106034e3b772b4680 *man/dat.egger2001.Rd d6f4fd21154250346224933e56051ee8 *man/dat.fine1993.Rd e30b0fbce9b9ec9518dfafd84a37c9e9 *man/dat.franchini2012.Rd 1c1e3ed8464e78d7aba896f484ac8e8a *man/dat.frank2008.Rd 14d9d36d9dce1a33a27d4f5e6bf7522e *man/dat.furukawa2003.Rd b3c64d6dbd80c6c70a9fd223f410a0b8 *man/dat.gibson2002.Rd b3e154634660b2b4b0a3c3dd2582f76a *man/dat.graves2010.Rd 490b79f5dbf06c198cbc42ee22f8d3c2 *man/dat.gurusamy2011.Rd 0dd9681d60822718d258cfd0536065a3 *man/dat.hackshaw1998.Rd 3d60d6621af15de9c7d754b219154736 *man/dat.hahn2001.Rd 2e9c421961ab8e11c0c732a9fd5701c0 *man/dat.hannum2020.Rd 2f6791945e186f92b250839eb8305641 *man/dat.hart1999.Rd 399d9e5980b898ed270a89477728f061 *man/dat.hartmannboyce2018.Rd 936918956ecd6a985f38a4fbdbe034da *man/dat.hasselblad1998.Rd 54389633b3651d620c32b72ee4eb5969 *man/dat.hine1989.Rd 63a5ef16893abc434b712ca143db69db *man/dat.ishak2007.Rd 3da73cbc87f71b6262fb78a772dc5357 *man/dat.kalaian1996.Rd 64e9675647a93d36f62baac4a474aaf4 *man/dat.kearon1998.Rd bc69f4e4b982f4accdb9dde2e8fec22c *man/dat.knapp2017.Rd bebc9b5efbc58a329ca08924076d4f80 *man/dat.konstantopoulos2011.Rd 62513681f19e3ca6c34f2dc01dc09dd2 *man/dat.landenberger2005.Rd 050b7ecd8436dd31edbb8d7092820283 *man/dat.laopaiboon2015.Rd 4294104f24f58a2277cd6a93dd73299e *man/dat.lau1992.Rd 84c2f8bb5ad2f8df13d0dbf2d3ed9e22 *man/dat.lee2004.Rd 3bf1903c8b59be7450357e21b066cd1c *man/dat.lehmann2018.Rd e58e887af9695b38ec298e96209099e1 *man/dat.li2007.Rd 4ca484249f9b91c4abbcc3a2ad05916f *man/dat.lim2014.Rd eb6bc2d46071ecadb0a88fdaf1d3ecd4 *man/dat.linde2005.Rd 79267fbc83eb48be8a9511e8e08dc911 *man/dat.linde2015.Rd 875e3aa7e764c8f3c1b5113e27cb1779 *man/dat.linde2016.Rd af1d78957cac678b649e16b986a2cf3e *man/dat.lopez2019.Rd c0f6381d01fa34b03328308008b1dfab *man/dat.maire2019.Rd 791ce7e0c41da8e0e56215009efcb8cf *man/dat.mccurdy2020.Rd 55c7f672353b5491be3b736c6cfc29cd *man/dat.mcdaniel1994.Rd 3cb8ea971c0bdaf3d0c1164bf0678c19 *man/dat.michael2013.Rd 2f7b2992281b90f27d85d3163a9fd681 *man/dat.molloy2014.Rd 9b99c6ce67325b7ba609a4971694e63e *man/dat.moura2021.Rd b83b43e5f7ff91ca69a654ae20ad8242 *man/dat.nakagawa2007.Rd dfdf26e925db3895ce66a747482b2efc *man/dat.nielweise2007.Rd fe78e32ada5f69900f4c29a41ef4f8fd *man/dat.nielweise2008.Rd 01eb3c264fe7cfcd642c55ed38ad8b22 *man/dat.normand1999.Rd 222d33a7660ece194f58d91d4e6dfb1e *man/dat.obrien2003.Rd ebd25dfe733aa9b9788c2caf493f5717 *man/dat.pagliaro1992.Rd d47dd9144669169cdff64c05f158cec3 *man/dat.pignon2000.Rd 69a3e6e45c998bedd0d471e899ab2fc4 *man/dat.pritz1997.Rd eda3d415b06b4ddf94a2eefa04166f23 *man/dat.raudenbush1985.Rd 9db960ee108f384e5f1ac7e3e82f03c0 *man/dat.riley2003.Rd 35068844d8399b5e8e4fad17beb7be86 *man/dat.roever2022.Rd 5a94efb50b7ceff5a3bd005a93495c0e *man/dat.senn2013.Rd bcb52faf48dcdbba1304cadd522f203d *man/dat.spooner2002.Rd b437e57603b1f8d67f042808426b0edf *man/dat.stowe2010.Rd 511cda24a263eae300cdc83e1c4bdb9e *man/dat.tannersmith2016.Rd 2e37c693e70d0aae52f7988ea0c3224c *man/dat.ursino2021.Rd 5632ed0ef5ddff5272ddbd5e956cc74d *man/dat.vanhowe1999.Rd 6bf48d901b1064df8d7ba4d648ded308 *man/dat.viechtbauer2021.Rd 6a6c260209431dfaff2c932ae75061b1 *man/dat.white2020.Rd 3ffbf60c3eb92cf43c69a57e6521ca7f *man/dat.woods2010.Rd ada8b03d68caf5c088d21d37bc365e1a *man/dat.yusuf1985.Rd cdb9976213f960d89ef0e32ff2d200e6 *man/datsearch.Rd 4a0e646392dfb08d49bd1ff64970f7e8 *man/metadat-package.Rd a82999515b5b86862cdc7f3a33a9a0b8 *man/prep_dat.Rd 57742c983762b254bf5cdeaf906f3fad *tests/testthat.R 96b528539cd2f595155f5e91b5d8df52 *tests/testthat/test_dat.aloe2013.r e95e67d6a24af18fd843e54b09ed7ae1 *tests/testthat/test_dat.anand1999.r bcfbf9aad76e2cc4b6ad8dbd58e82a30 *tests/testthat/test_dat.assink2016.r 2e680fcf594510456a93a1e39a61a36d *tests/testthat/test_dat.axfors2021.r 3e8ade4620bd5f01434b6975bd6a3998 *tests/testthat/test_dat.bakdash2021.r 0e92a54dcbea361e7f2099975ddc01aa *tests/testthat/test_dat.baker2009.r 1f934ab301be581e546850ce25e195bd *tests/testthat/test_dat.bangertdrowns2004.r 243ee86a329c62214dd8a4041a40b2c3 *tests/testthat/test_dat.bartos2023.r ab5bff8bd904b7af08ede806738981da *tests/testthat/test_dat.baskerville2012.r d98e8dd8b532c5ae53a6d58b5c9369c7 *tests/testthat/test_dat.bassler2004.r a0debfb5229099974cd615b56b2acf2a *tests/testthat/test_dat.bcg.r 1ae091600c363088ffd181e361c90767 *tests/testthat/test_dat.begg1989.r c65b374075755e2dca3d76a1d718691e *tests/testthat/test_dat.berkey1998.r e1f1a434856eaab41433d3bf0281e693 *tests/testthat/test_dat.besson2016.r 55617898c29409f201afcc3c2fa9e571 *tests/testthat/test_dat.bonett2010.r 6754d82332107b7a019a5a7efd028458 *tests/testthat/test_dat.bornmann2007.r 379a0eed680b320fd6dc1151f3efb4f9 *tests/testthat/test_dat.bourassa1996.r c223a8ba8403aec4706b970f91a44268 *tests/testthat/test_dat.cannon2006.r 538d6b597e43f977b4fd2bdad8037d7a *tests/testthat/test_dat.cohen1981.r b4c018f9bf2397546c9c72d23241e806 *tests/testthat/test_dat.colditz1994.r 6629f8dafbe5b211f9a2859cdcc08262 *tests/testthat/test_dat.collins1985a.r aa27334e9d3a02ad27d0157807e656e0 *tests/testthat/test_dat.collins1985b.r 3927ae252c69ecec40fca816db2deacd *tests/testthat/test_dat.craft2003.r 16d55946347ce6c32191c5cd5a1e189f *tests/testthat/test_dat.crede2010.r a32f9280d9faffc858787f982914f9cd *tests/testthat/test_dat.crisafulli2020.r 6ef71d9873d4d07a6d41ba8c7b411028 *tests/testthat/test_dat.curtin2002.r 32522f582b77cacd90a5006b3b554fb5 *tests/testthat/test_dat.curtis1998.r 5997e68617f3a8ef533d8a077d9c4e08 *tests/testthat/test_dat.dagostino1998.r 2e856252dbfec592b1fcd8951f31dd0b *tests/testthat/test_dat.damico2009.r d96be0480b47770fe55b46d1e49f8816 *tests/testthat/test_dat.debruin2009.r cb95a6efbd3ec47505e50fc3d84c3a77 *tests/testthat/test_dat.dogliotti2014.r c1113e21119b1c2e76a250a14913a255 *tests/testthat/test_dat.dong2013.r 65449872bc3764152d4cc7f6b7f52572 *tests/testthat/test_dat.dorn2007.r ce21f238dcf5e486a850894e71a7561f *tests/testthat/test_dat.dumouchel1994.r 720c4c09ab71425488cf2eed18b26f76 *tests/testthat/test_dat.egger2001.r 743001ddada7edcbbed79a09ac5024aa *tests/testthat/test_dat.fine1993.r cc2354b3c7a90d3b7390b0bdceb111bc *tests/testthat/test_dat.franchini2012.r 52a756755dfc0567f5b20c24f6cf3e17 *tests/testthat/test_dat.frank2008.r f83841e92acaca3ebf216adabf60e19f *tests/testthat/test_dat.furukawa2003.r bf9fd3c703c1b0b6e619b52dd367cbd6 *tests/testthat/test_dat.gibson2002.r c102616f2f92dc3c08668eb0f0613054 *tests/testthat/test_dat.graves2010.r 4b8f0167e4cd1c26c72bcbbb861814d5 *tests/testthat/test_dat.gurusamy2011.r 32c45a00036ba84e76c6f33d2b3f5f92 *tests/testthat/test_dat.hackshaw1998.r 6fc7eec7c43d37f7b4d891eda64d854e *tests/testthat/test_dat.hahn2001.r 400d83f4ce48093ec0d8fad26866084d *tests/testthat/test_dat.hannum2020.r d8230e329bca05faa46b6962b870afb8 *tests/testthat/test_dat.hart1999.r bcd8194f1bf216228b8c4e61f7c7e5da *tests/testthat/test_dat.hartmannboyce2018.r 3b02a8b299a836d6e97b9e01bd823362 *tests/testthat/test_dat.hasselblad1998.r 65c892240c87bb89494e28f421b8bf0e *tests/testthat/test_dat.hine1989.r 27ae055aa6fc73770e72c7801fa8f568 *tests/testthat/test_dat.ishak2007.r 7ad56e631aa9d3741223001cc39081e4 *tests/testthat/test_dat.kalaian1996.r e491bbe3e436bf457e8434186321cc2b *tests/testthat/test_dat.kearon1998.r 516e8fb23755800e82efd72069d2a628 *tests/testthat/test_dat.knapp2017.r c64c5566a237e3dc5639021984f418cc *tests/testthat/test_dat.konstantopoulos2011.r 57705446278d79bd44de850ef7b98af9 *tests/testthat/test_dat.landenberger2005.r 814fb2bd1ab6bcac74a4456883f7d37b *tests/testthat/test_dat.laopaiboon2015.r 1b90dc3624ea281ed83a65ae055333ed *tests/testthat/test_dat.lau1992.r 385602426d5b4f2166f392b301c715c4 *tests/testthat/test_dat.lee2004.r f4d1ccc2582c5ee6116ac751a4e8b8fb *tests/testthat/test_dat.lehmann2018.r 93064243b9086579223d3c6376cc5f3f *tests/testthat/test_dat.li2007.r 0ef57d38cc251f0f36da2a06acfc87a5 *tests/testthat/test_dat.lim2014.r 7f5766614d2993ae4d97862cb9b482e2 *tests/testthat/test_dat.linde2005.r 0b59fbb93f9647c9d0b0cb927ff6bcb8 *tests/testthat/test_dat.linde2015.r f79820bb0fa60288d2fdcc0bb40b844a *tests/testthat/test_dat.linde2016.r d2e9cc3748e42b782577169f717ada7c *tests/testthat/test_dat.lopez2019.r 1f2873f74841ac2a17932c5a9364cb31 *tests/testthat/test_dat.maire2019.r 4edd12339be0f3abcfe7e7e143205098 *tests/testthat/test_dat.mccurdy2020.r 794d9abe902dc29bd764f12327b61c8a *tests/testthat/test_dat.mcdaniel1994.r 89f5e7e0b77ba0bf665746b4bc7dc5b8 *tests/testthat/test_dat.michael2013.r 04d391ed0bcb60a1df0ab28fc82e4d3a *tests/testthat/test_dat.molloy2014.r 345048117bc64c45521c447da23fff7a *tests/testthat/test_dat.moura2021.r e73e4c3b919d3806492a5ee6b2565ddf *tests/testthat/test_dat.nakagawa2007.r afb627baa7fb8896bc6ded54db6a7b66 *tests/testthat/test_dat.nielweise2007.r af5907a5ab03bbfbf591b09beb1200e8 *tests/testthat/test_dat.nielweise2008.r b8f1fc998f3e07cab93b02ceeb2564fa *tests/testthat/test_dat.normand1999.r 6d408f197c8ae35b096a69018464a925 *tests/testthat/test_dat.obrien2003.r 99007709e5adc9868a2fdbbfe9705926 *tests/testthat/test_dat.pagliaro1992.r 1ebb6bbc67ebfd34e695755274f1d8a1 *tests/testthat/test_dat.pignon2000.r 0325cbe097129375bc46771f3cee16da *tests/testthat/test_dat.pritz1997.r 102c77c4d3c6127c59f018c31a0ad1b8 *tests/testthat/test_dat.raudenbush1985.r 4fdf130fd3b8565032d1560a28527185 *tests/testthat/test_dat.riley2003.r 732b49b55a2324b3e8cc221a162fd0de *tests/testthat/test_dat.roever2022.r edb805b072e92214ca0017b46b4b7b50 *tests/testthat/test_dat.senn2013.r f56062d0c8e0e5b7a5bc1e27cb7af01a *tests/testthat/test_dat.spooner2002.r 507560f3d110ec5dd6f29a4075c291f0 *tests/testthat/test_dat.stowe2010.r 174eb9db675d87b0ede3241c6868dce6 *tests/testthat/test_dat.tannersmith2016.r 3e2fc2a524201c8879ec3046fbb1f0eb *tests/testthat/test_dat.ursino2021.r f82f360d54006c5927df2c38145d8c48 *tests/testthat/test_dat.vanhowe1999.r 41dcdfa4ed076ee7f14adb1ee81f5e2b *tests/testthat/test_dat.viechtbauer2021.r 7d1ac25d0aca6c4b29b62d5d2ce4d12e *tests/testthat/test_dat.white2020.r 3b9a012d251f7bcb299e8bf790f67bb1 *tests/testthat/test_dat.woods2010.r c4d2b9f6ab1ff83775c19b93c71c8c30 *tests/testthat/test_dat.yusuf1985.r metadat/R/0000755000176200001440000000000014206422210012063 5ustar liggesusersmetadat/R/rd_generator.r0000644000176200001440000000613514167070054014741 0ustar liggesusers# Main function for generating docs .rd_generator <- function(study_name, dir, overwrite) { # Add any studies whose documentation is to be overwritten if (!missing(overwrite)) { study_name <- c(study_name, overwrite) study_name <- gsub(".Rd", "", study_name) # remove file ext if need be } # Loop through datasets and create template documentation # Will only be > 1 if overwrite is specified for (i in seq_along(study_name)) { # Open new file connection con <- try(file(file.path(paste0(dir, "/man/"), paste0(study_name[i], ".Rd")), "w")) # Write the single preamble write.table(.preamble_table(study_name[i]), con, row.names = FALSE, col.names = FALSE, quote = FALSE) # Write the meta-data table header write.table(.tabular(study_name[i]), con, row.names = FALSE, col.names = FALSE, quote = FALSE) # Load dataset data <- get(load(paste0(dir, "/data/", as.character(study_name[[i]]), ".rda"))) # Write main metadata write.table(.meta_dat_table(data), con, row.names = FALSE, col.names = FALSE, quote = FALSE, na = "") # Write the postamble write.table(.postamble_table(study_name[i]), con, row.names = FALSE, col.names = FALSE, quote = FALSE) # Close the file connection close(con) } } # Generate preamble .preamble_table <- function(study.name) { name <- paste0("\\name{", study.name, "}") docType <- "\\docType{data}" alias <- paste0("\\alias{", study.name, "}") title <- "\\title{ADD_TITLE}" descrp <- "\\description{ADD_DESCRIPTION}" use <- paste0("\\usage{\n", study.name, "\n}") format <- paste0("\\format{") out <- rbind(name, docType, alias, title, descrp, use, format) return(data.frame(out, stringsAsFactors = FALSE, row.names = 1:nrow(out))) } # Generate table start .tabular <- function(study.name) { info <- paste0("The data frame contains the following columns:") tabular <- "\\tabular{lll}{" out <- rbind(info, tabular) } # Generate metadata table .meta_dat_table <- function(data) { variables <- paste0("\\bold{", colnames(data), "}") type <- paste0("\\tab", " ", "\\code{", as.vector(sapply(data, class)), "}") descrp <- rep(paste0("\\tab", " ADD_DESCRIPTION ", "\\cr"), length = length(variables)) closer <- c("}", NA, NA) meta_dat_table <- cbind(variables, type, descrp, deparse.level = 0) meta_dat_table <- rbind(meta_dat_table, closer) return(data.frame(meta_dat_table, stringsAsFactors = FALSE, row.names = 1:nrow(meta_dat_table))) } # Generate postamble .postamble_table <- function(study.name) { closer <- "}" details <- "\\details{ADD_DETAILS}" source <- "\\source{ADD_REFERENCE}" author <- "\\author{ADD_CONTRIBUTOR_NAME, \\email{ADD_EMAIL}}" eg1 <- "\\examples{" eg2 <- "### copy data into 'dat' and examine data" eg3 <- paste0("dat <- ", study.name) eg4 <- "dat\n" eg5 <- "\\dontrun{\n" eg6 <- "ADD_DETAILED_EXAMPLE\n" keyword <- "\\keyword{datasets}" concept <- "\\concept{ADD_CONCEPT}" out <- rbind(closer, details, source, author, eg1, eg2, eg3, eg4, eg5, eg6, closer, closer, keyword, concept) return(data.frame(out, stringsAsFactors = FALSE, row.names = 1:nrow(out))) } metadat/R/datsearch.r0000644000176200001440000002366114750427322014231 0ustar liggesusersdatsearch <- function(pattern, concept=TRUE, matchall=TRUE, fixed=TRUE, pkgdown=FALSE) { # immediately show warnings when they arise opwarn <- options(warn=1) on.exit(options(warn=opwarn$warn)) # load rdtxt object (list with the plain-text help files) tmpenv <- new.env(parent=emptyenv()) load(paste0(find.package("metadat"), "/help.rdata"), envir=tmpenv) if (missing(pattern)) { interactive <- TRUE cat("\n") } else { interactive <- FALSE } while (TRUE) { if (interactive || is.null(pattern)) pattern <- readline(prompt = "Enter your search term(s) (? for help; to exit): ") if (!is.character(pattern)) { warning("Argument 'pattern' must be a string (vector).") pattern <- NULL next } if (interactive && identical(pattern, "q")) { cat("\n") break } if (interactive && identical(pattern, "?")) { cat("\n") cat("Enter one or multiple search terms at the prompt. Multiple search terms can be\n") cat("separated using a comma, semi-colon, or 'and'. The search either pertains to the\n") cat("concept terms or the full text of the help files. Datasets matching all or any of\n") cat("search terms are returned. For a full-text search, one can specify fixed strings\n") cat("or use regular expressions. Either the standard help file for a chosen dataset will\n") cat("be shown or the corresponding pkgdown docs at https://wviechtb.github.io/metadat/.\n") cat("\n") cat(" key description setting\n") cat(" --------------------------------------------------------------------------------\n") cat(" a list all datasets contained in the metadat package\n") cat(" l list the concept terms that have been used at least once\n") cat(" c toggle between a concept term search or a full-text search ", ifelse(concept, "concept", "full-text"), "\n") cat(" m toggle between matching of all search terms or any of them ", ifelse(matchall, "all", "any"), "\n") cat(" f toggle between fixed string matching or use of regular expressions ", ifelse(fixed, "fixed", "regexp"), "\n") cat(" p toggle between showing the standard help files or the pkgdown docs ", ifelse(pkgdown, "pkgdown", "standard"), "\n") cat("\n") pattern <- NULL next } if (interactive && identical(pattern, "")) { cat("\n") return(invisible()) } if (interactive && identical(pattern, "a")) pattern <- "" if (interactive && identical(pattern, "l")) { cat(" In terms of fields/topics, the following terms have been used at least once: alternative medicine, attraction, cardiology, climate change, covid-19, criminology, dentistry, ecology, education, engineering, epidemiology, evolution, genetics, human factors, medicine, memory, obstetrics, oncology, persuasion, primary care, psychiatry, psychology, smoking, social work, sociology. In terms of outcome measures, the following terms have been used at least once: correlation coefficients, Cronbach's alpha, hazard ratios, incidence rates, raw mean differences, odds ratios, proportions, ratios of means, raw means, risk differences, risk ratios, (semi-)partial correlations, standardized mean changes, standardized mean differences. In terms of models/methods/concepts, the following terms have been used at least once: cluster-robust inference, component network meta-analysis, cumulative meta-analysis, diagnostic accuracy studies, dose response models, generalized linear models, longitudinal models, Mantel-Haenszel method, meta-regression, model checks, multilevel models, multivariate models, network meta-analysis, outliers, Peto's method, phylogeny, publication bias, reliability generalization, single-arm studies, spatial correlation, subgroup analysis.") cat("\n\n") pattern <- NULL next } if (interactive && identical(pattern, "c")) { concept <- !concept message("Switching to a ", ifelse(concept, "concept term search.", "full-text search.")) pattern <- NULL next } if (interactive && identical(pattern, "m")) { matchall <- !matchall message("Switching to matching of ", ifelse(matchall, "all search terms.", "any search term.")) pattern <- NULL next } if (interactive && identical(pattern, "f")) { fixed <- !fixed message("Switching to ", ifelse(fixed, "fixed string matching.", "use of regular expressions.")) pattern <- NULL next } if (interactive && identical(pattern, "p")) { pkgdown <- !pkgdown message("Switching to showing the ", ifelse(pkgdown, "pkgdown docs.", "standard help files.")) pattern <- NULL next } ######################################################################## # for a concept term search or fixed-term full-text search, can specify a # single pattern separated by "," or ";" or "and" or "AND" which will # automatically be split into separate patterns if (pattern != "" && (concept || fixed)) { pattern <- strsplit(pattern, ",", fixed=TRUE) pattern <- unlist(pattern) pattern <- strsplit(pattern, ";", fixed=TRUE) pattern <- unlist(pattern) pattern <- strsplit(pattern, " and ", fixed=TRUE) pattern <- unlist(pattern) pattern <- strsplit(pattern, " AND ", fixed=TRUE) pattern <- unlist(pattern) pattern <- trimws(pattern) } # number of patterns specified n <- length(pattern) # search for relevant datasets matches <- list() if (concept) { for (i in 1:n) { matches[[i]] <- utils::help.search(pattern[i], package="metadat", fields="concept")$matches } if (pattern == "") matches[[1]] <- matches[[1]][!is.element(matches[[1]]$Name, c("datsearch", "metadat-package", "prep_dat")),] } else { for (i in 1:n) { hits <- try(grep(ifelse(fixed, tolower(pattern[i]), pattern[i]), tmpenv$rdtxt, fixed=fixed), silent=TRUE) # grep for pattern in rdtxt if (inherits(hits, "try-error")) { warning(paste0("Search pattern '", pattern[i], "' is not a valid regular expression that can be searched for."), call.=FALSE) hits <- "none" } else { hits <- names(tmpenv$rdtxt)[hits] # get names of datasets that match if (length(hits) == 0) hits <- "none" } matches[[i]] <- do.call(rbind, lapply(hits, function(x) utils::help.search(x, package="metadat", fields="name")$matches)) } } all.matches <- do.call(rbind, matches) if (matchall) { matches <- all.matches[all.matches$Name %in% Reduce(intersect, lapply(matches, function(x) x$Name)),] } else { matches <- all.matches } # if nothing is found if (is.null(matches) || nrow(matches) == 0) { cat('No results found.\n') if (!interactive) { cat("\n") return(invisible()) } pattern <- NULL next } # keep unique matches matches$Entry <- NULL matches <- unique(matches) # get names and titles of matching datasets names <- matches$Name titles <- matches$Title if (length(names) == 1L) { message("Single match found - showing the help file for this dataset.") # if there is only one match, automatically select this match if (pkgdown) { url <- paste0("https://wviechtb.github.io/metadat/reference/", names[1], ".html") browseURL(url) } else { print(help(names[1], package="metadat")) } } else { # otherwise prompt the user to select one of the matches # shorten titles to avoid line wrapping width <- options("width")$width width.names <- nchar(names) width.titles <- nchar(titles) max.width.titles <- width - max(width.names) - 10 titles <- ifelse(width.titles > max.width.titles, paste0(substr(titles, 1, max.width.titles), "..."), titles) # print names and titles of matches cat("\n") print(data.frame(Name = names, Title = titles), right=FALSE) cat("\n") while (TRUE) { if (interactive) { sel <- readline(prompt = "Choose the number of the dataset you would like to see (or to do a new search): ") } else { sel <- readline(prompt = "Choose the number of the dataset you would like to see (or to exit): ") } if (identical(sel, "p")) { pkgdown <- !pkgdown message("Switching to showing the ", ifelse(pkgdown, "pkgdown docs.", "standard help files.")) next } if (identical(sel, "") || identical(sel, "0")) { cat("\n") if (!interactive) return(invisible()) break } sel <- suppressWarnings(round(as.numeric(sel))) if (is.na(sel)) { message("Must enter a dataset number.") next } if (sel < 1 || sel > length(titles)) { message(paste0("Dataset number must be between 1 and ", length(titles), ".")) next } # show the help file if (pkgdown) { url <- paste0("https://wviechtb.github.io/metadat/reference/", names[sel], ".html") browseURL(url) } else { print(help(names[sel], package="metadat")) } } } pattern <- NULL } } metadat/R/prep_dat.r0000644000176200001440000001246314167070054014065 0ustar liggesusersprep_dat <- function(rebuild=FALSE, overwrite, pkgdir) { cat("\n") # if 'pkgdir' argument is unspecified, assume it is the current working directory if (missing(pkgdir)) { pkgdir <- normalizePath(".") cat("Package root directory:", pkgdir, "\n\n") } # check if package root directory actually exists and that it has # a DESCRIPTION file with "Package: metadat" in the first line if (dir.exists(pkgdir)) { if (!file.exists(paste0(pkgdir, "/DESCRIPTION"))) stop("No DESCRIPTION file in the package root directory.") if (readLines(paste0(pkgdir, "/DESCRIPTION"), n=1) != "Package: metadat") stop("DESCRIPTION file in the package root directory is not for the 'metadat' package.") } else { stop("Specified 'pkgdir' directory does not exist.") } data_raw.dir <- paste0(pkgdir, "/data-raw/") data.dir <- paste0(pkgdir, "/data/") man.dir <- paste0(pkgdir, "/man/") # check that directories actually exist if (!dir.exists(data_raw.dir)) stop("Cannot find 'data-raw' directory.") if (!dir.exists(data.dir)) stop("Cannot find 'data' directory.") if (!dir.exists(man.dir)) stop("Cannot find 'man' directory.") # load .rfiles.txt (if it exists) if (file.exists(paste0(data_raw.dir, ".rfiles.txt"))) { .rfiles <- read.table(paste0(data_raw.dir, ".rfiles.txt"), header=FALSE, as.is=TRUE)[[1]] } else { .rfiles <- NULL } # try running Rscript tmp <- try(suppressWarnings(system2("Rscript", args="-e 1", stdout=TRUE, stderr=TRUE)), silent=TRUE) if (inherits(tmp, "try-error")) stop("Cannot run 'Rscript'. Make sure that Rscript/Rscript.exe is on the system path.") # get names of all data preparation scripts (.r/.R files) in the 'data-raw' directory rfiles <- list.files(path=data_raw.dir, pattern=".[rR]$") # paste header for output cat("File", paste0(rep(" ", max(nchar(rfiles))-4), collapse=""), "new ", "rda ", "build ", "Rd ", "create", "\n") cat(paste0(rep("-", max(nchar(rfiles))+29), collapse=""), "\n") # process all data preparation scripts for (i in seq_along(rfiles)) { # paste name of the data preparation script (and enough space to align everything) cat(rfiles[i], paste0(rep(" ", max(nchar(rfiles))-nchar(rfiles[i])+1), collapse="")) # check if the data preparation file is already in .rfiles.txt rfile.exists <- rfiles[i] %in% .rfiles # [new]: paste T/F if it is a new script or not cat(ifelse(!rfile.exists, "T ", "F ")) # get 'root' name of the data preparation script (remove .r/.R extension) root <- substr(rfiles[i], 1, nchar(rfiles[i])-2) # get names of all .rda files in the 'data' directory rda.files <- list.files(path=data.dir, pattern=".rda$") # grep names of all ..rda files (could be one or multiple) rda.files <- grep(paste0("^", root, ".*.rda"), rda.files, value=TRUE) # check if ..rda files already exist rda.files.exist <- ifelse(length(rda.files) > 0, TRUE, FALSE) # [rda]: paste T/F if the rda files already exist or not cat(ifelse(rda.files.exist, "T ", "F ")) # if rebuild=TRUE or if the rda files do not exist, try running the data preparation script # [build]: paste T/F if the data processing script was run (without error) if (rebuild || !rda.files.exist) { #rfilerun <- try(source(paste0(data_raw.dir, rfiles[i])), silent=TRUE) #if (inherits(rfilerun, "try-error")) { # run each script in its own independent process cmd <- paste0(data_raw.dir, rfiles[i]) out <- suppressWarnings(system2("Rscript", cmd, stdout=TRUE, stderr=TRUE)) if (isTRUE(attributes(out)$status == 1)) { warning("Error while running ", rfiles[i], ".", call.=FALSE) cat("F ") } else { cat("T ") } } else { cat("F ") } # list all files in the 'data' directory (possibly includes non-.rda files) data.files <- list.files(path=data.dir) # check if there are now any non-.rda files in 'data'; if so, throw an error if (any(tools::file_ext(data.files) != "rda")) stop("\n\nThere are non-.rda files in the 'data' directory.\nData preparation scripts must create only .rda files.") # check if .Rd file exists in 'man' directory rd.exists <- file.exists(paste0(man.dir, root, ".Rd")) # [Rd]: paste T/F if .Rd file exists or not if (rd.exists) { cat("T ") } else { cat("F ") } # if it doesn't exist or if it is in 'overwrite' vector, create template .Rd file # [create]: paste T/F if template .Rd file is created if (!rd.exists || !missing(overwrite) && paste0(root, ".Rd") %in% overwrite) { cat("T ") .rd_generator(root, pkgdir, overwrite) } else { cat("F ") } cat("\n") } # make sure every .rda file in 'data' is lower case for (data.file in data.files) { file.rename(paste0(data.dir, data.file), paste0(data.dir, tolower(data.file))) } # write updated .rfiles.txt file to 'data-raw' directory write.table(rfiles, file=paste0(data_raw.dir, ".rfiles.txt"), row.names=FALSE, col.names=FALSE) cat("\n") } metadat/data/0000755000176200001440000000000014750430730012605 5ustar liggesusersmetadat/data/dat.mcdaniel1994.rda0000644000176200001440000000254014167070054016151 0ustar liggesusers՘kPUUE=IJV`H/J:V#{ATTxVһa!?49処[B5Єfكfd:NroљygxnIkc= fL&iKILc8S̚rmUEuVN΅83^6F{1 1深 Ď\v,8N)bNb7 L'SDp*8 &t0LS4p8fsy|2Lp@6@|"p1@. \,0\ WA(ׂy:p=nE [mvP w"w2P*@% bp5,u`) 0,z`9x+(Xcqx<πgs<^/j2x`x փ ԟa#5>GcO!ϧ/:Ʃ̟H-Lt?L\k^j\G$/-Ʃ;II I2N<%-_=ƩyU\j{:I@+s<89<>'>i>>) R;$L}D  })'5X=~gz'5 Fwd8"zWQ;vο`|m~v~/[k_tkW;cŪøT'q:|uc'ພc~CeX=>C^{{|0oO;{9Mh}suS]WVn/*ַ}yPo+.sj/^Ct}No=^hjԾ֏W^C~..pz??Tξh6GbŬ i0<S`QrWA(}Qywc wSm!y腨nATCt@v` Na+g➠Q;{eo89 &v= yvc5_S!Dpy=' U: (1T_W`(. E-ծ.z!feWFmX,S]%?"~7}Rmetadat/data/dat.cannon2006.rda0000644000176200001440000000062114167070054015630 0ustar liggesusersuMKQ㌨Vj!*PlFBhM :ժmhQPhѺ66^cFC-<;|]֣D$9 QPAHZu)H$KH$Sp0MTS,f`G]dwTxRŪDhYZ:b/gVIhf<0DCkQXDuG9x(npe(5 xi5`L8 |c~ L;p[g`oe^-k)c~`,+߾y}ﯘb?+hyk[Jӏ 7bUU55̧0a>|fD+̓Q"F;ᑶwq1>n w7Umetadat/data/dat.egger2001.rda0000644000176200001440000000073414167070054015445 0ustar liggesusersujAu؏RzUEoc r,RZwKg }>FH? jč39s3{*K,e,e^`,gȰ+b}q]áZm kp:xzȘuD) (Sc̋;qDVp0 | n49 /"O': LҮZ |*BţC#c\ѢUzr+o\+ ~M\GFFcFf>kpP7 ^g ^98D7cѹCu͓ȒBgi$_*oS:~4H{~3#/i;P$ /@27" L`G߉C[JEޘv;-14{(@Oic®3銭:t3bMʶ]U"T2ü& }mPu>{u[OKkW數1̎<`0 7 @ Gc~1AӛWf(Yi24,CÅ鄰B9έRϺen<ƿ$Mqq Xw#|/Q73< x O y8pA=sQwEd 9+_k^J5!럚-ht_3~9|7EA},c!^ zgnu |hŠ?G˧]td1tG }tnK!b}k>}C_E]mSW VlEXȇ1BU|KmZ){\Ouqh/7Wf,W*#Y@'m李]O|߁D{Umetadat/data/dat.bangertdrowns2004.rda0000644000176200001440000000361714167070054017241 0ustar liggesusersX{l_w<@Hy5 %RJ`nb`CBv;{\T(x@+*(Q.% i %hJ_/onٝ[WW7}fffvw朦iI-ՒВij髯kZ*Bڠ<Š^( Ǟ܋'Cg`fi#06@+ ڑg $]*8pt3,8p]wV pp!Q+nqv" s\Z{(w1'K %G} ziWEM6,V }dzu[/|OalHRien`|8THٮgQØSScj(-E.Zmth-SܾѶ2ꙗ V ]wlQh:(d.A6Ўdb"8mg O6 QDbgb1d(CQVR9uy2p:ei2\deacԑ3W>xq^'=k.h2\1۷ )D/v IC( DZ0Q> 86 Ux" K%t~Ê mh+هدlP)ܠXo2e7BbԢ/RʧnoJCl9lXoDz Yl[_l'cq /6S#/\oWPCr gi] ?Ϊ‡bs.EW]۱Lc?fДRk>\q8w+WhQ;ƹf\#l>9bޤ<1Fy4Սo4q͞fZ<{+|.|hwLiuן}w}Тnf*z8R:g.!A3f:AWnQzpa[{Rnأw=˖6gv2a,:jK٥L0"++Ҙ &'db]Fl4iAڸ]pdS RXYlp+zQ%|CHC̵}Gfzf٘'zn[sF43WMU9-z?ɏ7 NN0w݀i}R/h1/\ E^1pFjuZ-nׂc s}Zp7` K|BۺȋsRT۶tXIQ$9Rܥדo=rn]b^ eY_19hɓ_dY݇~~(\n<ǖa`JU?WT_"r,׾A\_;FFL~׊^r7+}Wo]>疓 R2!jRavLU׏jȎ *K[{`0rq^і6RFe=]p~n1U|/Y\[3F.5 U>WxʓIĢ9?z=Z%Xm=)Sb ~N81Sl5x{.Ԗ˲ lw֢EsFiݤTKpFԣ[t4metadat/data/dat.landenberger2005.rda0000644000176200001440000000521114167070054017003 0ustar liggesusersMoIgc8g:&xCb9&Ykgdaf2qOPm+Bi@ܐ@  ~@N\BⰇx>ǎWWU=t60.;6z`h\9w0@nchR^E;s+(;tͣss3oI JKĮ0g%sd$eV;"{yN2~Y2טw\jjQq*,ebhݳ,۽$nmN\׏*`Y.G^_ ED3Mj睢Y*V6]ע d\bdKLH8:eMLU&.7s[F抔WWJjE˥R9UUjۦ]Zf;y,\D5ٚ Ah-qĠX`!WɎ}w6Eo_WktCC'Z-S'W$xq9ytɳboZ5XBeMg;T3Y$fd@"#A*&5'zy&|shZej簕7sSj0W={.D,;9;8,gj7Ju 6UbY8S# 0årfnWtpFgStM˾ :X$4[6YmSnCaMd]H-|Hө\S>뙭[κEhB1Q ^_.6 +6BRם nVew۶@ -kЁlb b^?ștuDɮAv鐳<7dJMRa^h2٠FsDxsP•PwX t\3G暥3֍J7h-Ptx TjR9V*y>b4+߬]N48u;fo5ǦL,GdqaVsu U^4hAM[kƋa'_X.Q % cq `[0 6AnF,`6Q],SGE&u'Qg f|?vz? 1Q>>>o;(+ƛ'9 8}7̥}0ğI~o@P/Fзc}<&qYz~`+9kXX[<1,c`+ g| tc0NyvgPr2jc|c(?\.]!f/a} F|k '~EA79.b|ݿ+\A-~xߨms OQ* v2Üg}21 'b)`g{F;2A^%X^`LxWo@WӕЇ>{x9N<,xw1^35_ :k_UG^⺼2?+_A<yamOhr"(5Yēr'q+x_B6?KZ?K͟F޸ƟhĆ~#ʄ v$zrRv5fo<&w~G[RhqKoHߙ9K,v$&[g_>BzGh q4 O ɬ9݄E[˥^mf6xD[kw#t9m$Ad16L)kȽ+I"'yVob[xFmn.Ύb 7,A k5֞zc\-ﻪOYM;^^}qo EO%g}~h>/ÑĦ5jWU59}>u+ε>8)|Ic4'$q|Ae'eV_y-y[rV$Ii<˂LVriiNsǮAFUߴ]ʷի=μ̙ki%bJx%WP1- _Jdv\rl%FɩrOZaC2:pX.d$v; 6sY2Ke V,xYeilX>);i(Z,K+9 -RS"lZwGTlgZv`;Oϟ ՂImetadat/data/dat.raudenbush1985.rda0000644000176200001440000000177014167070054016541 0ustar liggesusers]lEww /})b(NiS|$1nlwgQl$FIAhB!`, _#?3{&?3e`{r0iZX!-ݾ-XEBZDK\VNa2/~c D"RuoM AHĀ8$"`[,QIjKz攰&N9(k1tk:k7$E2 j {ZZ6T00U%9Jڔ51[6zpR㗫PIsU%*Ȓe I5CM2GrmSR2-o|t/6|#lY$ÔbDY)]lcKp8%dJ2RNzCŃr~ayI]T/>Rz<ѢmGo,_K lWMMX-ww~YG(<i`&Lm1])eN}+}"4ޫ06^_VSd<q'gYy}ڌnuO,5~1oTu%lQkG-:s~Fp@HU'!$8ӆlXe':EQU"rU u$j\]1xotX9i(TKq5ь|u߇xV)ԷA@i metadat/data/dat.linde2005.rda0000644000176200001440000000226614167070054015455 0ustar liggesusersoE'i>ҏD| *hbDZ4I4&]3&T8GNH@⫔?G7›n!FiyfxvV.dEXt`4Ylc}ƢC,Fqo2횘d0(S 3|O0Ry@5(p Ǎ$:('Si 0LuS7>^mJaFZxin̈́Mj%n&(K\J!{M_u=!¬=kB۶n7V i*7ars.]qM!6,sCq`d^T4=OLp[2{wvJ#5Ll6M{OXuS[vXfʭmgjseJKseQmS_Ww܃p=ݿ M||| |||ׇ=' *n3Oh⒐J\j4hen ic4X٨,mW$ʾ ;t9d9`ۤ[`>.}Z|*Ct:@{wBr/Ź_yP&(> g?R@..`=@|?XyCr} @RrH l)MM=XJFºA ɓ{E$Kp+=܃jÁKд0G]7.f;+/2Z/ǁvZWϡzV Jgك^}t&E?ʝCOa?& ʰT֥$qC@aA&vx u}]`A66ߓ,ޔ);i.c{@_k. .]Y56_uP0TQKmqj *+Z/1.~}'3Z|b|Ux|D5] gOySRu|MJb׮=Di۞ξ;,oi4;>bMY<*,2=([3A:hwۂݶ-&n~enO`-;@Ar\o / +햿l5l,݈٧>Gݹ棻a˺Aw.Ǿ\Gvүe}nGםtoF{nP֮kWJ)㌈QюvRuQa+s^sݔ~Z_u>RwltUkAJ]+'|%ZuTD;)y+5W?!#թZ''㺨_ ~''S#Qюz&E|ƯRp,[(uK釗i{G >gwDq!>:j3]y7:ӖDNļsL]Esl!? M܏0<7j>o`# c֭9X.7ʦ!G|~:@^sO}Ѹ7!wkh&yXϟ~ݵZ@g2m{AE6<_XnI|4$[dAVo9zjK+_op} 蕧^h5gV ΒmଏsR|o~09Wy҆%1$aHRdT$crCĆ12QbbaAiaAiaA4i0`H# F4iaIf~ n+metadat/data/dat.bcg.rda0000644000176200001440000000110514167070054014575 0ustar liggesusersn@ǩbhHR"AJp *6^7Βh*'x8yހH.qRO3ݙ⅕KDcd[+bIf4]bMxzµ U,P΁J:1z ĔIݐ"NDlr:to[ "HxVYqИ\bRiuep)HtTmA!CAKzo <pɇՖ:ŔWw8G\ޟ?/D 7ddYo.e?c[F <sMct΂b$䴾N4q*c>Uz+##h-;arkG.5 +d 4}St..|*N\&:t8yasG.nbu`.gV1w132%q?k ʘ)s&"b*21OjpP'5*dSYbxI"D{ln$[Ǽm/vTQ$&5հMBG)6t z~j~wmetadat/data/dat.colditz1994.rda0000644000176200001440000000111414167070054016041 0ustar liggesusersnA c#BaK XH(CnKrm 7"$@x j$ qv?|_\:.D4BY'C#9,)wլ!fq(KEȱ65_vgfp@m>8  &ȃgmMQvd?EdnKMVֱˣyP2q1aՇ.3^Jm?n+ۺ:'jilA$J}+>`9V,.4+!.p:.FZm9Ny|9\a\vx7%ضxW9xjT64/Mr~@NomS9&/,^k }@cR6IpBVAܷM|¦ h ё{8i[y[DG#/X;Lj.m|M㠞Uz~+ۻ̼8?L!|/rMEO{΅s |,K}6Y<Uu-[ު~yTLl?p Qjn!9qPudF]y>)I E}ٔ4M)&)bԳM1M8k74rR 8h/g>sWdqLrqsp8|A]metadat/data/dat.roever2022.rda0000644000176200001440000000065414344131411015652 0ustar liggesusersTJ@f^oAH}E)EҼ(&!Mrԧ~ onݺ],qd-\6Gf1 uPajcT zE$ ܫh6nܸ?t֘zg 1¡ӈ=F')_ ]ܢ.661 hΣLi[,E7H'/ְ`w=-eϸp)/fRj|3O{ }feWu2 Vr b.M.yRR^2'<&ANIqr(r$.Ϟɗ(qr."P1F a9F a ؞3u0MCGG6Q(B"HMa( &9W:~f1E?m]1metadat/data/dat.bourassa1996.rda0000644000176200001440000000362114167070054016217 0ustar liggesusersoUl]Z< ҕ5J[ %Cݽά3՘+ F(1"!1#~71xNܙ۲N.mMM~=g=scϊ8c vк`Y M)n'-/[v5 F?BD@Qz`G;0 @Septf`Т00Up0_f` ( ,KVKd f*Kd ^"s/9,RX^z2 +V*RX_ ueYp_E. R̭0I n))9^_4c)kiq#]ۖ2>GڹedE6+}o}” lvZa>[ 5%L[k9wf|{-0x`,k5|դX{1}+"T1:syi-cKu}gf<94!)Gjy%9nSf)!'ʹ>1# ue^ߊ ћܴV; O̱=Ge l3 fSbRtz{~+:+tuw:5+!0q8 ^>N'ϯ)NL Q8s>8=qAb~ݐoƢVzM-;*LU۪e}Ug e88ٰT*7ѬћaxHמl%m@jD_]| F):B7ቂ30{ 3PU^5wy#y?뱐{cL=#{ ƕå3v}bY" ( <9TXrtj3C-gseUUnJ*yy൧Vk]*T!ەh*ҎB o6439q btׅ>6*Zʠ6<4+MlPDBmF1 Q,?lBm@ıX7E\^\`(p 1j(uB9ΜFze #9H4 gkf+6`Bҵ}@;׿[ k+Cy3]/si+&xF6~xo.sdSOgS3)փ#igho:΀4T3 lC?XV۹md y}z's1fU38&Ѿds>N'`_Ɯ?`=<Z@5sN>^g@wN-X7|=`~0sTNx !k 94g`γqyo41O4i3H9=B*XY31hV}nF́!EFB=x.Y;m EY,IS)&d>W/i%,iE1PQJl:U/k!Sc*w,q`6YpA۔xY`Cbaaf@m ܥԓ~G*WsF@iHI!- &JY*g(󄃹<:[,^)@VPa cߔj{'ME] {9IuZo:aI9{5+⍈5\MhSsZDR*.E>lB1&l>R\ƫTrvO͡M` |೘:\kCa^?>7O_:.a8qa7a+Ind,q ߰ n4?U 'w& Y.z}aX`kCPe3NS\;-Bw(MZwt2Գ=ޔw9|<ѐ!ښP&E0yAJxMO=V_1F]metadat/data/dat.assink2016.rda0000644000176200001440000000417014467431354015657 0ustar liggesusers 8?P*E]D2VNJDRdB.L:L1S)R:]|$M'O=\#1#h29﷿5\fLyf?[kzY9QH))*PR_(0LQJ<4(%JUS$7J$ޫL'>تh "i@(1a Z{0ZV hAne^[էe^ըweufo.\^1kBojk|{{=h##d02 Ctd$2 CF#c8D 1FLSd"u2CzP S4d:)1Gf 3YgX sKd.2B# kE쐅=,BňY8#.2"n;<&"x+ ϾZF bCF©Cw*q]JQ(:mRoS;gP>O 2WGk;hmcFhJaPGltK);ݡOؼ-{1x3^nP#CaL/ZYq:?m2K'1 ൽpL1Ok%𓲝ހTx=|.àu jSsO;R7}|%g Nya_7pc:F0+0hjom?SUTa&hr ^J<ȸ c]AW@_!Ҁ6Cmnq'}^X(x 5N~s Ԑ5#@.28,; ]C8-PA֑C`6hA&3 GS1Ր޾K4,*ddÖ 2O23dBWKKG; oCݟ\wANf5t%**#Bwsl66O_ݛ?$(me(<~xپkY@zbxUÕu Rz~B"bbܝ_wѥWVnxU4.Smұt%{>!O[!qZ >nV/pϓ{+%JoK۬hg5K'ۃ/-f4V-&gUj!n)?QN ~Jk$&;%iwue6M#!s7ҾBlkOYFے~vrʵ!\|sq@9ѓ%du|BeCdudm'2~i˭g!(~[7iw$jAd}+Hk^ ${W8ϠTC7Y.M$l߽ǩ"'HZRszpoFƿgbr]-^(7ybz8R:r0JY>qo p,I+Ts!E1U:ߪ'n $QZIEuۛ.őRGUv-jM [Lj?񵰟's v1Ѫ-Nj:a" 8VhHO 1 l<R[@(DyC[.<LugQ +OY&e$,:uF1Tq;C+-ڴCe`Oeu-k5/* "Jdrkщm`BiB!4s }ZJHzH\HC2dZi9lf^89!5'1 9,j f݅cdXS[ ɬnnnT~(z ]Q5M$=Bt4߿9g㝸?pen윦鷮|X;zR싳{^. =66LՁb?֌OU v{NdOvZ3v͔7K,!U]k$xp۷`[ M'M/pCB?οH#:Ȑy3*-cUh\6zTvJnx(H DMl4H#jb2Cr;;4nBq|}7~7.܈im`4e9͙ٱscBS2wgb"cXcLN)92:潰88Zd,TKPg Fq tp^!p 8B::6:O nlr%.cwUQ[mk8호58:T-딐#5'6:|a9:,\3y;Ȃ+JoG99^[i_Ѹ# |CN8RYN~L1k7[kijnj,L`zh>nj054$5/LC^Ocfg%iU)OZ \!yNtFsa7h/HqK*bc|A3@|mĀ`Xz~=/Y`jr m-=^Ô>X` 5;Yߢ6#,e0/u.rmh;Տw(,?C)0ؤ,k++0^든~6F+ YGY_8EyPǧ<<տۉ-=9懙enGVw@ y ``Č {?os]x Z(%kqIiJ%Øe%TC9LAFhrL9H790a\MK+0-umetadat/data/dat.senn2013.rda0000644000176200001440000000240514167070054015317 0ustar liggesusersW{lE^][\L !s VR- an]=w65H4"AEcg$mۣذ'׷áµ{D/B1dJI]d'ղa> |XbqeF'!"@j:8ޟ^ef%$s>2\' |XخY+Ŀv(WvMy?z&/V}ojɃ>Qvl؃e1ȣ?_cwVO|̏)@kwJ׿x=װs_g軯MoڏTzs5ß:LycQהƴE4TD?~j"/݇vz'VW/頑 0l^fi܎bv~ߩCĬ\/4Z]}dM׍+@>gڼkPDhp?܂&Rx~]h7G^هm?.GCϴK{Y ~'oAͮI4BQW88[lk_APYMGc.G[3񫷢 Z:otXt֨':4r~Wkt]C&#&ڈ}B@PHMP{3V24~_$iG.GgTM2:$;NC:>} gQ\|Y^(&)+a7Xμ` +(}Zfx,L qe@ %MԶ< ?_BsQPM|*dmetadat/data/dat.curtin2002.rda0000644000176200001440000000131214657335661015666 0ustar liggesusersTMLA-R- '҃4ڴ[~0!Oeܦ]2JΙ^{Ƴ^`bB0&*=H0&y}Y/B((c-M]#b&uɨ,"n& &TqRLMb}6 gf V%duA-VuJ#[W#LlZx`:6!Yv3D`uH(ܼ4BݾJx2!r30,dMdyᛶeyf4:hojbv%l v1o;}C7-oeQ3߂e:QKȟ(=%S鸹▄ؠON: :K? ?wP|" (R Ӱ~0΁yl`mEprǀW`roe< ;&@Q˱S߂vt.~\E}X9׫,8Wp5L5FL} I i!%)֟lޟZ>qp&.Q {U<=)qxExl Eϯ7dzAp}-0LX$ NO8LZ^b +؊O%=2Vޢܹ}dp|GO?,a metadat/data/dat.hart1999.rda0000644000176200001440000000066314167070054015344 0ustar liggesusersS=KP}MOZսM[lAF-ixn7G_888(XO{}! 88{ݛz>YOBD )$AH"53S"DU BD% pI]m27W.Q?4BwO猨aUc+Z1LFm ZY^Βa9p \p}[y=qcCk[8?c=gW ;#gMn3Y?Oo'(bN6/ѵ]mXP6YX%3t)hYȢ9ѵ9ײ--Il شcؔHEÉݦTX8ϵDhЕa_2t!^CfqY{|k,pM{baL?ý{> p Smetadat/data/dat.maire2019.rda0000644000176200001440000000424714167070054015465 0ustar liggesusers{pUܼMfġQ( G^5a, q,P0I@&!hL%"4cb%  EDP*"t,TQowɞ{('{{|v{n8Rc>vyx%#M+eU+jff qR r|mE,m&p2AL629\LL$#9W}uarpa*!:[QsYWùh\kORK- DXBKŒc䪖AC:!KlKu[XɱkkgIO|]ҿEjC)`26VSjA!cA,#LH07#4xZB02ׯ! 0\[ ȓ0Vq]Cߛ:DG{vHw%~9oh.ٗ\=l՚Gvi݇Gk_^MP㴶']op3I~msoQNm[i-]|͋OoZS/˰wM,uFRat^%ږㅣhTH?mӫ[E%[Zm5xv$&mMguci9yjmN7֖a˝:@[G%} ݍJ]@7lu 4p_ғH@:7q ):pA+>}[7bрֽv/}koڲ0f^ˆ4i5j;v湗\횆S ig ݇2ZgYeN_(#^.ОZvjpgz(2ݶ誝UdDOunuAOVp <UH?]ҟu X Z^}-t%C=:0dY|֑d + 6 ^_&sc# Flţ]}\Rgx(kh S{؞3= =~pZ&v)]^'"UT͗ l[pTs0U)_[l^VWSp, gͮ5Uҿ{I/vI$0Ah_0<+AGϚ@@MYS g<+@ZACҗ*I}6bc98s ,U(z謚"I`C08x4)U O+?Bg$H "хA͗Bqt0TI'U ]ׅ<mQɸ`{gZt 4168BR U;O[A  2%Jq2ݣ[Po󝆙XCgk^pba|l N906|tа}@23#`dnSʼF0IR\E슩% A ͗{|23F[<-?6eu?7|IgkSڪw:hI_#fr$ח$.4}l-VX1+$x&hEB96DsW ca]fs;1&NdE>(D̗z9>#) }Q˰?u54F+8Ucaل@Z⤞dNC& Jqq/j]x6Ls6pRF%\ha Q|T->H=Z/'%O>*ąc6e1cw3}jRssL -FvMYz3{Zmóh_֟~\s%cڢYَ[Xu_HZiU9uT2]~Gٕ521N_LC)IoZ)yn̅Zo۔21_hw]>߇(ZjٶF5s$]huf}|Y3yTUo%.|1ŏՌgY$ΔZד<2q1죄_Xb-=vT% UWo:yɁu K[FmtαjgN EϾgQScvPR%ؽ[Atm&܊`nn]aYW !;.-/:jNP.q+Zȏ8zOaXԖMUrcT絮؞z6e_hvf1DΉ jkP;P(+jփ];{~Awtx[6@* ]a ]Povu$jugdcu:t]kVknyy=Le#tkEn/=}AwNWC T,*e\T&*XŒJvʓ!auH):x O^0M FbTf#T2Q%``4"J6p%xQ_"\#?y6jfs#d[-`ޞh W.a vqҿ~tmvSӻlhk{V{Eg`NC`Ȣel}i4PIZ7L0YxЍ ZIhtV( }'2SrC & eS)cgTGezRku,bw713jk4LCAjv07njg*eo\3≢' U}~Iuڅnv`˷:|S ^juX|Odx3-nXuY֝r{zA/Y|cE8Jծa!(z C7띾5s մ MW-wpn`ʮ9ٜzN N!ߖ{53XvlRn{ r\aX.-񃗴ܖdXv}g#Jh=pVMwh֝v% cF!jq]I{P  dThH'TWk Zn O}o.o*vj}(e93hv}Q-Mohk|#A;@a?rʈ#O8^7ym[yv)xIa8봷Mvo]o[3M8TM͏Iy" uдDX?:V]Q-*l~l{T >[J3"'u(V&LoS۟gX4<.;]{6bvʞ]"&|QjkFNKm4;zNne{KEX:VHNR:mo-q4e~磞v#)K9 tbT!17 +^VHeղݾUwR޾(H4YLe lwX)4g^rhYǓ8g&S88^Q\gW]jkR#ՎRbiT_6mG)x۵o!w0:T6wYCtV&| Ϡbn}˺GawXUeA8:eݭӖq䲡xdnz0ȹ2 }]e/DR- [kwپAKvA yP[Xgwm4NPYHmM0.F}ۥ",-s ndcOYuCahADQe?cT^4OuD/z432ӪM@9|8e>Z ]7o]}O{QF=m7U:be}?-q2:_]Һ)OD@ 93^nnM^ _ כ3,CTr}ӮiMTkq{j03tr 0?3gI^^ʀ2yFmJʰ}P vY,;k Yѿd@غ4P43uz]e3VåئiN { ڋ[uuTlcY'qT~uNv;}ב})RpEuk>ݯ6uh 29Dx]GDƢj@lPMl<}Y8W!L}'NW]A,}5;FFh"BWiR(=Mo7'x)]1,]ݛނ9cN[[¼WT"mPqs\uYGg[\)5LH;pս޴jS{봛LؠgVƟ6H1hb`d<:MiV * jr2sA5+m(Ȃtryd_U`dI)q:k2oSi:, .X-˰lBvăhk?o# SoAhp:agO,]>atm,+ufʧÓ-,tdAݷ`m`l%ybX|[UgZ ;:}B~w6rNg{y<$iQկ{; b@ U\L*sY^-ַ+lQEՂAwUw&Zӷ`"?DZp'm9{ik@Jx`Qk|=[+<,T-=`$yO5?;52GaIJ vm]A䇒y-;ָː0MX4"Sq8N:>=`}޻2y:R{)hulṿ,Z{s& ËSW?-S#b>ʺ6=!Ң;5< δC"͵n4:MeEY[uxꝾ)3<C5eDQF1#p)[bX3b5AE@Nͯ`-ix&a &ʧ;]ˮdr~B(m7]t)LrCnghVt+t)5yo*_Skӹ&uo-oPfpU^35U>vMu:פֿ;j0v%Rkl;^Bb`kE3@3hJU9%uYY+(Om3/ދlǢPL`iȰAGwnM5Q%M'_0iq`̱kJs v4ט_sz/A2YEs,qUβjNx޶-mvO_] L+풴C/8I=/:1-;Ay |*|Qk.͠;`Bc/8z')dDفlB_T $r~BX[EjtEb84,ȋ4iu k {ًÿh4 cfi_4̚\^iG}ff(yG^몣v0vC.8ml]߾MoW ߡ[FG=2^Q;@h:y'=`^ܦS"lʋ`ɀ^ OHח*WJѬ{^WIOCjӷ3;:kVKZ @Y,U@qP@i2 dNKK-A!JI%ACttC̀=zDy9QcAzA:z%APAԮ"***} OAó.AA@O]=z *Ysз-^z"ՠП-H@Aˠ 2@/LP dlPZꀺ  n0#>8O>43ς~;ρ>苠/ ]W@_A_AG?'7/ A_? ~ ̀WWWWWWW%_______o WWWWWWWWWWWWWWWW ________K ________A =㸈q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ8q?ǁ=?'~$O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'O ?'_$ I? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? '$OI? 'R O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?Oi? 4FFOi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4Oi? 4{{=4o{={={=|~ϖ>ZvfڮS2ԙeq܆aꦲѷcfuծ;,v˞mCJۿzs:iJ{3-a5|ۤN̵ꮩZdh82}Nq?6{d:d m˶cwe[kՙVrmЙ2jkN1U Rבzj5<;v YraL-!x?mLWC<ѮVn, 2gɦs]g^p5h48״;j[{i4d✁Q}_2`kDHm7!,q|vjMLYyU}wJڑKV"MfL!-4M[SJIk;;iuuc۶S/V#vPWyr4ӶHo ;"IqfL[A*U6mkqk[W,kQmԧO8`Ps?:+:h6~ޖKmM+r,uU(cr ƟQOiC$35T5-C{Ө;=uÁ̖51vLok4Z&b,t۩M~EpB\Wnvh %؞v9(ۦnpVet4(uv)žuWKkخY7hP9˦;6XH>v_^w-TIqd^h,u |Um!^IXKN4#}pVǴUK c[Ƹ?.&;=94l]ә6Lþ.]cO^2vӱM%uf嶔;0O3bvn93sД9MM34 MMV =i$o4 -yGmSm۴G'DVjc됂 +t?7"$)ɺQevneYGZ:,aɆՐ% ֯ff܃OYCy׆!c2gt7TY[3s3if8I+M̚NDg ܨDT*q†,1؞l1oUVBЊQkgz"˕p0[ǣ\1ZmW cA՚= N1꾥>,Ȏzr׼ϛnיPr|5nW?0onF.㊜[ڶĽsziЂ}OX[;nMSTt ?С喙u~H p lruՁ8óγh̨ͨ.`1w|qo}g3lYaDּUL[x64S5'cJvjMkj'7|uJ#g6fl"vxm}ft)SΆ$ haZlZ8ߐDvQq SZ0'Uܜ9 dF]]0uɇ=pЛ0S|+znۆ0r{lBc5~71nGƩ5~KgiGowF Y϶w-uTɥϹ @tkshvIhlӳvALC-- <$B!q gBpub,NTh k-67_C8Czŀy^ؤD;FͱsY>`F׮/o뤆Uǃy6ܾ ָ6(Uk]} EBL]yڴ "[Q~G@ca˓I0v-eWO,i_pPv ѱ[=L;W7{v(}[vI{6Mc':4mBҷhm@:MʰzE`o6!lc?rS;*Iymm55|/LH*}8#N@~ڿmzxngdajF'87uMWs\ޘ4FmEDbסc,NU=^䜽T[u1.5л~RalZvIu]}Jē <8.\gĻ| x*XTZf~T9b# }(sd}EiQZEiQZ8mhv֐I?mכo> 4 wǸ5Z$f͙n굝ҢHuFШij˴ݜMz?G_!wYyZB>}VKﭝ^t<nh1~S[le97( 5pܢomQ!ui܄80x4ﴜ7FWI6OHЁDNNڒC݆N6f;gº'eg9tN۽}&{x诛헆Mk>߼}Xǯ9}m}\ݾrO5qRNW?8HY"8(^ҶڬzKUh4QQ7k 0$ytc7R5M4ئ,ح~KnfhYq胋a?.jlMx>%d벩ؖA9(Iږau}w6}K<֍p&z^wl(zC ^٧JwوM]Ǯ2bsnmmWa b= ,1+llEl&WdKiGm.௳T\) 9׌/5T$/V٨ȚE,qa[űrO-¸To.i=`KR8^R\@w*Rʙ,zC}iE4TTȔ2yQ"# Lu};d\"+ @-FRۨwa5Q[ךB/:}wIj/BɈ\VK]L.[-d*Oi-9zhxO{JŲP=5*`Mʔ 3_(.1(/MѴߎ\H}˘zʾ]UgEg?Kfłl],%, VlZeN-@K=ݼn*ْoDE"G:oz-JsOHGhδ֡WOkZP\ly马X 'R*t6Pe;w /[.qJ.)pc8MVTZlXUj:f}9Z]3i)EifOPUry9y\3ق͓:Z*6yZ)MfْrbL ~b CN7G"rPN\pu 5_P)T22ܺJsMjX+bh/UJS,_k;S/Lq"U}v+..dRy;*Xmat0b9o*Cs6VrŜ\vcڪK>ؖ)au)Gt S{ \)oKީŌ_2>BwigQ)sy1Nŭ+d^QRI_S@8NO要D5ar1_Ni9| *Ene}kRN~|Ls҆W֒c—d\~ةa[Cן]9N&c&<4hLp7:?{]7͖m$kMm;F[0:~$W\4CCV S-RqOqIh診4Z*D1:pɛVmX&Ȗf.BjxH SO/iphS/ C=W~QTtEa[jX:/ 좲Qٍ=*JJ5WpIl?φl׷Rf˓qxt GZj=ͣb*C\;Ǔ1I)eg@8t*ɰI;(H j:?]R(ʩR[j%K?KuzTo\iV2rNt\l7u g}1G# nŴ l )}GX֝n(3YV㑋\{k9W*mCvݟNGn*QP䌿5ai@y9S!o_Su" ^J vž Fs/JN6L~I;ʕ9y.56m ͭ+lXKpF͗e T:;'xo_:<.Y̴.fk.Vls6[Y-DrycO'G}etI~e]l:(L}Nhjc뺣TNɅQb>LN_c]ŝW mXT4ɛW)H# ]6{XSB5pE}QttPg(s1Β:nSoLFs\Gop4?KK8xNќjİuQ19pbWSuLaG)CF><^G2J#BWz-6Pwj,_)*2ua7r.lN*f*pWkٖ7A"8֜?7d;KUD P)an ud3j^O.v]j⚴pӫԂ?; Ͱw$K-ԕRAJ1?1-{Cwpo䪘V{^Boxߠ+YQuݔ@tf >TJEȓo.dsUVvF+Q.w;k6-PrEݴ-Ea4}Kv1I#Wmk,4UC7:|ZJo=eO>[sj5#]bĦu3<>ڕ?-W WE5uOkoDF93gaAwx5gCzOVhjK+ŊVQ^ G3 ,o/Cy yƱk>k/-R|1T<Ӥ~WCA^rNƿ^,Y:|Wo![sԆ+5w.fs .Hx+QxT|U%|-3QѨhT4*MEO$%ML%y88jc~L`^bv}kT`+Yg3O^g4ٹo򤆲**t:wmϔ>~z!U#+nGWVeKyXxN^U5: :6lCZȔ'սe}\L弌%,,!xMP)*t*P g"b6/'Q%SiYU4rg٣ j;Kuw=5UU{\*X4=g.9ze2(+gyӋjzk@]F]BG (s**۠ψ؎#NY٪\2Sb۾&rW`q c_bml︧fJ6' 쳆 r^@7*e/޼R|NZMCՌ\3FWS7&VaySbP%ѣe8tH7RTOڴWaSO(kC$[`N ]PR6?wUo]-)B%.a:j}؂ot166EMzBE.=34l5Ц i5DRwQ৒?%1g3U Nș䫹nܧLms#ˎ # b5#ϛXɷ7U#|j4{ִÿlotڢK!]uT [k͖ajj&ͽRA;tnrXNȎWP6{7f›J{2` 9s›h Cعl><~EOPL.W̼kw*a%-yPL&S;@wtʖ(7ʍr(7ʍr(7ʍrܭ=e4<7┥%v,|$7ݰzvyb50* ilM-/套:s]k:+tSjxFQV Ng;sCNh>ws6uNhK|hJoAiK&n򃘅JQli:]ۼR-ӞR.ԍ]pN̫m-c|u"k,㡚*ߡ|gx)W=+)}Y7uV=y ~PT֮ŌܟaX0jB䪕\Q.hSʝT.mN+e Q;ԂklAhKօB}0FiQn'&dK]ZO =]#/pz]^fGUX.%oiЪnncwҖ2+{6M1lF τ cbIn>w}F{؂e{M^䙨;RJ_qd ϻUoQHXvl LPkcQ[S6V)ra2maܸg뵦aw *EU}Įj6ZQ~iʞl۶KO7FW]7SI,vIVbV$Z6MQSv NIqyöqZ5;Ņϙ9]//f\7m)s}n4,{*+#)"wzJ_-r#Vw-H򪒓ыjޑ)kl?rQfO~ΰc&n>CurO5LouuPtU|B/3,+xd%̜m. 9(3LC_`d,WWJ$dl>% ֥C9QO)ٷz]{r5F(w+rl srcNdYhLnuc7:z MgزŶo^6}*̧Ykv6yb7l6ͬkɩE >.<ʅ>g{hi;0јN_6hC\Ζ\3UWj"O)檵 ɗՒ]VV:߸EzQ)lߪպqCZYx񲏳ukٜJլf/^2?]Pq~i oh)_;Q:pZ\X qPuױyEH]^$n&V|ѬP(O.Xl,^yTK_^vF4f )kݱ\9n{)逗ДQMέ~QqRVȂ;ٶ_տ>^*&d͎S箔fG6JOTGZFԃz3Ooq4pFFsRbU:)9Ʊ9 .Ib;햑چu0;-; FF{uՖF7a;Rdc)ӊ14w{7^/>ʠ҄mO mcsZ4ֆ'moqxǔݕ0ߦ%vK杞$1姎'l继Dm$V%L:NӿXsuV m 5`Nfd@n> iiޚ`ufOӖ2( 6-F6mjo2z+3zNgЬ7OdiHcq2{05M4(H۷jߔԬf#D['<6Л?[77JMK”tj3wrf}W2eXfZ,꒩X=hD훶ݑ-1G ##ۍ lw42`sp7{hݽ>#;-78W\V~LXy'nWiY1M #aսm|1jkRBv2A{R5QqBkF4}ω[u[7#nfݯ[ wZGs|'=S֝ȓD&`2xw4찡sGYo;tUCS^6ߤw7{O\Wv{hMv[D)Ӆa3ؙ~oV?a;f$Uݙ6ӟ#~GwɭnÓItg%&N$V;Mm'3?8CGwi"w-xyxy{gE"ξ{RvZE[; i=mr(ݝ-[vGqTˆH*> wj@"FFۉ{;;#2sh,(%JRAN;aCGXɣ3GiUy{v%E)рT=]w3;;]$W?e;ct;>e{{|M^Q;~G;6'wszN%X;mdp4mgwCiU:u:Njiˤ}WS&OڧV5?yLam_8}C7tcnnuתM]yǯuUWut:08"J9Ǟcw=Sߖ;eƗIn3 vU'T/_ կYՅFelEC^ewUO->9j]j@YM66(!8zǨ莎qK_+q@fFwzaOi+o/3&O0a5B:Jk-!y3u=ZN᲻꽁CzP`)^+V‛7T5lj]>uN9`;z1鎐eqk5Uaq &; =l^)Z5]TƊ[ۥ'Y{MjLW5`u]may;f[5ZO Gשjj]7Sӻ7tݚްי:oYݲ~tha~1nδtTtM&rcC5l'j{W][e`X?CG ;lEe<ǔ߰bl$1ί$ga9rc[0$l7![[*DH7xzc#m\~$V6eu4j;U.)7.VLjvZ-ꆕ↭I暴j@([q~Sy6cXuo,7~&L5D~ ԏQ *(#ʈ2Id˲{hd^f?2I]ՁfM }Sݿ)wN&ۈF1c<@#4M^Qbk*/@7ٓe>w416mG~j|HdcyErtzƘY#22JFm p aMb=zunL`\9֬ЌR]`\ajՍH(sCAiw$77~AeX߲mYeSLÍԁz| ھ8-d Q|}=gZ5)|mAc3k2A9uCsNwUTgI#Wf8Zt} %YcCMXb:D{L[jͱԏPmk3@Dl4i` ;}o`]|h8jװE~/2hG["8@\˂j*׷bHy!-Af1 AAyxeHZ]{[צ jp[Ȥa{ g!R7q) ͩ#ʎ {U C2qkTwUFDn6Gm@ԍx9^ ŇBGiN:7iCN4 eM8g*-gAXLR؎\:u#KUYb ֠һ#Ԋo5 7Rc{Wh{BV#'tI I A+6 hmr3U7\j[6ȩq 4Zz ȓ] M&244;-v:XsavQƤGۤ3zQFݦ]Ng/c?\'z|dl\íFxBr6Kxi@0q2ZnG )"y!ӠXhUvҀ!Bބ\-kj{_ ok;56vGr#P1Z[mQjF/u{z0(5/N;86:E_.cfL#un@FN^l)YOrth)of,j#8 n$x0W|H' pE;}?2l3qnH-9N}cu?ci&©o8i#ؼ VO= *ֱ$N^dAJYޒ!5\L$cFԆlVg |3Wo'e}߂pet z4|&)qpaAUלUptkuDaKkvn  P^}ZX֚@ڎ!mc GtH=ǻkPٖ];(LJb3&-ˑU9 ~FB磎>XsḟbA+6K`WcDj]{F5~l8jVxu_ m@WЃ ~Xcy(ʢcO7  k191ҐNXf>u-q`AƆgجӫvy2>/wv`%1ߺ>h@;uɰAC7#s9k rfx5Һ@4hЈ'!r> o4cΐLu +59F{p~c!tqCkoӏ?EI#{@7v6PiZvk64{>ȣ'rPq s Qρ@ .uFb1C'@~ud1DX?ߌ 1#H<qmQ! ׇ FDoP0B VIf ` OA˺H O|D_7~;xu'Bwl_&2b}||4D?l:ǯq 1˨ ¶ ۡ S{<13d {:igc@V>0&7ݱ~.dN">" KQ?az=cm>)ވ\V A^=n/Eq X?h[y:Ha2=$7wnzp>&"^|S_C>ѽAd_DY2m'H` i/cE1AD0MO̠~G '~fW\ V~&I>AOABxb:w%> 1}Bm_wHjl{4[IϾ36<2Sa|HXg7BcE#c[!KȧLl.  9h!hLdPLt0mA*s0Jc'(~!t|pn3gb}pVcTSq,uut5ηt+mm;j"jB칩Lِ3 k&Tq:!N55FZKukzz8<*1Y9A=W*WO[OS0|Gw6~j=]!7i+o?1+.;o%1vFQ3JvjSHloZ|mwUtGy-aخ:Rɗ;i N Rwjdn.>dqJ3};tI:?ԟ˭U{Cm}7.ΐʑ˝7.-%T4]~X`;5 r"*vڜqv&\Lĩijԍp|xUt]Ww8avt+ZNMyM0l׻w6I/]EWwfB v vG&w~\&g@v2]C?;{;S%+v[˭`wn%-^6F]E"/ZUt]m,یsuw4wΏ4]EsW_ڕvxXLc|vդz;62ۆ۝$ۯ669q]U':|EWwF,utE]E]]Ej.ww@nDfvѴ_M|#&ۭW$nOPY|tNt5WbM=fR(r}q w'Xiz0nHl Qt]톫tzz}5캻.%F -$nDlKN.Em;w7U6;vAcUNcgc-i"s#j+i;?[ٻFnJ=p'_< 1Wf&SMjɻR vv[+׉S$ٻR-n&'7dOn'ك-i&܁j+.w!^0b&hsLFcwޜ`˶׈6ė[;߾i:f'P1Ӡ˩b 7}_DDz!o<_^r/%P_kN˲~M8z?c }?Hϲ9.ͼ~/.}|K($p&8ohKۨM9~]oyB,%0?x/DropY>n܏߂<xx h/|]|.-x~3/e?̆;;UfC,6fO8~rP rEU𷐧q>-C}rU_!x;? yv?O'8> ~G^#!'C8x >Đ+p9?ע_qKb~Ew]ov \&__ 됞rT_#?"7߾ʟ`57$? <~ 8kND}B[B儼%M'!?зBD? H(nvD hS_]]?ۯg߷W_KB"g19ORG_/ueG!>,}"[؉_D~!~rü>]T0"o/~n򢞢CvM&ϗo~O/=!1qsC}Wx;?n2ho ;?Gg8ߋTobVn/!/>+bEx;~| _Ec1¿࿥!G'޼#.헯p"},ۿ? dD?~-o9'DygG!ׄ";.^><^枽\Aga%/䛐b>{a?;"[Q/}`/xn'a._I.i*uguWv۹?/^ BN >_D7~B(Q.D?φpKLmfXf?\^|˅ M[|_ cayI&./J =OxR.{rϼ'8~UٯpIȻ/Uܞ/a{<$S }<3c {Oa2 Bse4L7?:̾gU޾ ÷_b}7޷ 7?p| B#O >z]|8G9Nx=~H;_?ag_HدF1žxOB.}τ'flX}O8Xϳg_H9,|9޾K⫼RBva|>^ך Vgq}+ǿ72lxkPg?>EOB -COK{L \^KT!>|GH  [_wx9!юЗB_}h__|>Ap/x Kq.D={Rh!Bׇp'S)pvkܾ1&!L1B {ts\2BNqv叟dWꃏp= P:{}=G9DC<#?#?'rw!ĸ?\+w-5^=[ϼCh>_9./>q/cn~L?~0Կ࿰ p.pyo9~? ;cǟ|+}a?\ص۪D9>Q^xO1B >?B$}gI\ /~=No!W?NN׈q^}\}뿷]ħ=^_,?$/v!Dž+/q$p)r~ _^qQQo?#ÿ. we'8\}5?vg=s9~h;3wrm_m!F{ r+s?'y=~Iwo~xAv1ώFcܿ  {d_+%/Ir^)|}!yg!'HNE|RzA'o!'~_~<%YN1o/?ݟzO3Ɵ~|ǁWo1яb?/Ǥ3?p;{}s͞pM\s68P >E??~-CV >zLQB|)d؏ 9g<[ۄ~vq8vEXKW ﰽ'/' @ )_+BrBq11BX L9x=qs{ܿO)'zG-︜G8_?*⤢_>ԛx|![c1%EȽ_'uBM^_y|8|d|0l "# q_0R>v~~>$ODDZd|FxjOaUėd~~/ 9fG? GM1ax@8>Nwy8[r ҏxEx< ~E1 wf~Gx?~ǽ12.$_οv}1$DH&kxK-/'\x7p/_"! !y)n!D?{VaCo8n! \bD=|;J/T0@3# g!;m}x/>r}~X?#OGG̗#OD{~ožHhG7V4g84_-T>I>'2^Z/$ 㻰w\|*zGykv˄.p )Ta -qOτ=&'ܮ/p>};]? ;B"~! H·?"#G9Q/o 1΢Bc' _D/.D W%aW= "^.'qX${xWox?מ}[G k\/ḗGbGP 3ǵv}^/*Gmo+4?b]xTț}B>\p۟G71ok<~AW󟨯~x+󸑰WE%;/tOcttt3ñX3~끞 }'@o=bAA:N:3k-Jς΁~Q7@;&jY^@M/Ag<͟w߷Bm!z==yN/= Zeqކ6>qޟG=3ԇKz#r8Q~M:Ymy0e@T {/oPN}| :_[COu8A8 1x9WA:uɘ󼿩 /_}^_?< h|,ᴏ7rz>v4^'x࿟(Y'p!A^}_^΃5;f̓A$? W^y('X,^;11/QmAo_ˣ+1_-xqN [@xP_=ǐKv\̓՟^;1/d=uL+g࿏c/</%T G6H|'y8!^[yz_yX&kj̓G^g Gb>ߡ+O^Gm s%1O&?5ɻs@Oe7~ ytpļ&L6+Q?h3 SN /ٖ/ys:+$=x;q" >oD! 1֦w9Nmr1~`$#UIv/٧Am1DKؚY^ǣxj̷a|fI~\}m=T'lO#=/pNh!-Ay{X>4gA~FbF1cns?Cc{?Wа Ӽ^ȶ$+R $Ļjyz1_F8$Dӳ{D>/%I}uk>);:c_Mׂ/D$'qq$I?qf1Vw,<2Q"D"c{ƀd5}3KH/ OI&+|C|K$b\t&]sfD@XoM)] 鋧9ɞFm~_?+O<-XMADrU̖K$$L}e=Z ă#~ ߇0Nq a z [c^Gא+qqv~wA!OyqC#ɀoH yz婍 ^FQܔt>xm0/wӼ/2t?(ۉx<_/xo?a?yUG1dW9l-L̏"[5>{"/{cuy_'o#7K 1NsMCac_Hמ}HDu\q2`/qys^,ɓ>$ٺ\_xH &]S;11a%uWu{kWv[5C{/͞xB~ӱnK:+r:m_6tJ6MT"LCS)=]ux}m6+jWE;mSMJ/ꭶΈ;<wfDW.;P{+EoiIbq%߉`*(jR;(8QڟDe &[ʟQEU!3@Ph%&V(/OUڠׂNte= "vqj: 'JnN:o j/D9%N9Q@(P `UNZ]uN"{9QD)PQ utAN%k8}>ƯÜhAL.P'JR~]O%T)E(_ȍD ^XOr9L l̛9Nt~~/pgNTsEN? 2Bo*@ 9O5^ ۜoD|3-79(ﯷHVf(wqwsz/6~{@D0)Ɂ>à>cjI8Op$S>͉>É?ˉۜ~'@ρ>/r:} eNˉȥ*8s @_C #N OJoOo_П wC8)8'ceg +qiN{8x8Q{<:a*t'{9ω”]?7%Ȉr:?ft2@xScнDYILЃ0q0 yzy?QNg?mqh0}0y܃8\8L8\88xSSSrKg9pr:܎ 'Sz~+z.th|taLDs\ , V Г/sĉ)NO{DõÕ_Drz.@ze qqqqqq7q55y <;8Qy9q=< 'z6t`0~/wCơoP]뜨GlɈ8';1(tG6sTa ׏¶ A~(,KH ¶t +Ssd17-ܚ319Gvsɥ^bn#15&r[Bd17Bx4XȖ{,2d17X%;L.a/"C94(@v¶s)|I.da ;M/cS6(JNSB<%l1 \;ŘkG&Ǵؔec}Ø kb1]hFL_Yv MҔM#w0 p. Ox8F$#X G.bć{d7i'\c11nާPXya1!`1#!Ť-#>a,T@m1ZJDv[B +a1-+ne*!"blڋBuKؔǘ_Qx6cRaF75 hZ2¶X FvX <QȖ0nO?OX DvX h1l16%;-R be4HS3n[,^bb#ҳdCӲ1ZޠxC++1 $ֆW0 ٴSh /1ii0[Maҝ^Ƹ*+1 I!MiC3SIwD+#M3Rl1 Ap%Iҏw4HB3 !҉X-n>%]C ]o'M+OXB}>cӚWa ~[LA)/k޳j%SVJv}CtY.>=ʋUy|^__b nCF<_?\~ {:CyC3}C/?vD oeCz9CCCCUP}S(?}+,6:CϪq"'VAlHWo/w:7gc>yp >=y5TeGl(w[,WSaaҎ}(g =o GCG'ϛ 3;i Ypq>RaC'߯=S!lBCa|=J>O ccT?Ć IXk(}D}rtb wegBC2׍w p {a0!7:!Yrp1J_ۈo|Og=CG1Þ?LkWayZOo̟|̋)^H ߣܮnvk%f bwmURN,kY32b5޵2X/؎nnWfB\ Hݿ`>W<ݰnS; J4{ZQݶa*x'щmײJZ ;2:uW7 ˫q%W)U#t CgU\nԽgUKxؘ?8xMmB4vXKJVȥN1̺hI>S*7)[M/s"LE<ЂlXqK[FGִP-eeF絮R=!\o;~fY .؇2jyؐBhMhV[=y]]rXVszx=Ue΃OYarFAvI@)F/+8k}xR.%0/j:OL ï;왦݂|xT(G~l[Mvm{Q)Vd/hʙ|nξŶ[ ?gml%rԀݲvSr\ .8@r5]UQsj;i Lr=1ohMS%@R =pe([c8qsF^cNjjϵMue eꪶ:Z,+jFsmʛQFD3NUb\Wɒy]6W*dG46aKIZC\RG=Yhhq9SŎl!rK\Qeݶ5 ȥ[/fo5_抁 KJ>/pt:e7W9LnӱeerjiP]bUJtU-,q]F LvKJ&,܎_H gV尿G!ol[6j.cRkfÔ*,5m{¹CtiBRnlae3Epo-ئJ{P.+z -../椼;]U9`= [(U'BR<+c2_* 7v<$긚RfLE0ܡk4Z岴GΣZONtnXG[zDF_Dʪ"J+ oc<뼓ЁahzZYvh9I"_Zs2.Y]%*Оɕb. J jXH_ nZ b cOT% Y,4MY7|KRBj6_c].<@(5퓺,Aʒ-$x9rŋOUYBWՆa$֭2ü3J|V"|P1A(^yRMUJ,}؃uMzY̸rgydutыy2ԥN>bs{_%*72/`FUHs ^[61$0^U_(25G٪p=x[*PS[>byt8:X+gdyȒ=ZtWSl.+g3}&nR@<.LVʼn9EP[XL=Gޓʒ<Ց6$ !+ V͔   ~h|PU_47IA]Rg}Qx m' )2%T)PoI$t_"@y 9 WHw6[W"a0f]n)xjd;U|9/[eժ.谑D0FMÍԁ,Oj9%c/@Z>p]>#ڃ"ů4Zy[P&a?ho %bؚМλM1uR>fg`?JNHesᢲpsR6rEEx-R;Uq[A͑+n v4;JREײ9V RGm>}RP\,{EURV>[A܎\b!汅ځW ;$ W v)](8yU`㱦`6y EV$S![2gdpţS,#F 2&"ʥL^NP M:x9wCbpTf>Wƫcx>wuٜ-a\NUJG:-hnY0 ")blI;L7VtKU5Sz $TuIJCaJY5ݵ aV :6Y0=r6MPWyj2N%'fL2ϐ|W{!  Ȫ͖Sy^|Ƿ#~45UjV^-Iԥ68ԩLȗ XՖL `S&R9_3]oB{+:ß A9+|֏d&UtjNd zР":-%wH|2Lx?,#%gWT56egg2](RFJcC46:lwk4mCud9.ttHjXKM,jrQZ\s' nC4syBz]ԁZMRzKm bXl@|UQrIO\Կ{Y3}K ZN`嫲@9nu>gӚ$Pc424L<4# !_wļE6'gN|I)$&?+#)p;@:HFoC2/I8& :7u_M"q'*eib|C\Rf;vrQ`e,/А uz/\+pe_Ǟd8jv[LiVmvT``ՇhPpv1e_!5(Ӯt~!Ewh/#MX)]8Ck}o9!m+f.9zeE `EɭmS!1`<#{Q]^m>-I9vi<#[ĜTVrNkI39_;V: ӓ C!{^V;dLhxkn.nt^Z$d*{!$fN^ z9g ],’*Ud`) 6\ hHC+AYL3*T33i /)o L2e>DT(~!2b.V+E&P-ّ{pAtﲨJ,1h^weİhщ-]BWU"2f idW<ijm҈ &Ԇh>ݗZh[SXK%mނ:~eKN\tzvw %|&+S 1Q#geղ_^Sh{A#GO5+*O$_6lTK\13ʓjPFV2 =Qb- K,Od隲f]m-]riRSԚ.0'}'X-atP(Ru0:6yPOUpY]sWMr% /jIYilݸT6T=.uqL"U~)6FNYoIm`4 W 2.P҂+d #lSM.h?MlgӉz- JJU2IoۊkZrG>_,2W6 }V@ښ'er*,D\~@ R~ 8'ϰ8;Xm/*i.uc7H {5ϭ=dDvtmVsCr6[.DՖʃ\"|oz0=(*-ŅivǛwZrvfɯ8k]m:/ɖrDNPxE+P1o3TV ހ6Z@`MHWv ٱ2Px"_4챦 N{ & xIRQJF&\ۺR8r5ahUG1ӒŻn/-*C4sw}.Wy WI*r^Xh'(rOE=|R!.DePBs*c>KX I$7\\雈0Mx,!s3%?%y2ru#(*Ռ8/E *!k]> 0DP$qt*ݎeBe]Ȅ.y*t`Ūv:b7 b߳45ZnzI3mg e/T[k@.+Ob 6KSe4oe!VW | K2¶wl>}"-`(úg-& o=-^nw;0(Z .W*XSs,-t*+]&\ZO w 3DFVWu p Ǐ ,Jef RA Oy ǯ-Ф`Tri;.=iL$u@ 6).PHCD39O5 -N&VWkENNy,(/y=휠ڐ&@!MZC"!NIϟKrM@Lh&M;Qa[}K$3engZǿߑ7%zC+!$&OJ= ;PKׯ4՚n{F''|v,};@ juU|/ut^45dmetadat/data/dat.dagostino1998.rda0000644000176200001440000000336614167070054016377 0ustar liggesusersZ lTE~{Xڲ@)B N[س4Df @²[hvnD !h !(*%brW2--BZrHs;f/54Kfy}3`<,IA2EĜi9%ɨNJN2JDr}%p8 1kLH@R4 shr) yZy }q{B0!Ǟ81!߄[XƏ⸹bbM`Y Jo>^{uXE`0P ԛ}DM&Qssk_Vii,Qt ׀짗4րj@Oc5'}H}S(P-$K5V0.̷ Ƕ ǶK%|$eu|jQhǰ.K5bv`㖚WZg^Z3t,^UOGu c{m~.O % Fեj~R i嵓+)Z%:^/Y CYkBgU앋f`@-[Zm>q;_IثOJ҈SlB]3D M)Ļ3_1=vfO%2qz^B>u(,BT{)="$U瑉~O#L&US4Bd ,l] ZEϣ:?\dyƏTըhw8:El݋$:Tw.p?;Ƨ;$Dоm=}N|I.A_?ch>Am=Z ׏y1_rNNV t `Ng8atrf JDǓS9|{SoOsd*}8=prxɜ>c$)c?Qg(48 ]/J+Y98 1s:B)-}9]$wa128%nk3-q@}\I0+ɞCZ6$?#[1q%oFާ(V5 iQ:s14Oc0Frب\szOm>É-SSR#eQ *)a_ aY7BeK!'Y$?#eoDޠԗ=a_*ݕ/s9(+>Oē8Yq{j(l. ycK'cNL,ɂǛ._*ZAd$Hy M 8lap؀6 8la;p؁v8a;p؁p8p8p8'p8 Np8\p.p 8\<<A*)metadat/data/dat.hartmannboyce2018.rda0000644000176200001440000000441414223077551017217 0ustar liggesusersY[o$G;3&$$!!v{֛CBx}ve{ӕ{%q.H !!/(@ qyߐ$sNT;< vS~Nx7._=WZaـWd,Y٭ c ۛ< N:5QG.j!@EY"_ U!v%] m*_Y!az1Ĺi"VC'RV!xW!s]he[-DJO!!\eZjkx=qlP2:q* ؕU^aνpaΦ`bkؗa. Bk+lyvMƬؖ?k"N֫6gYeەV]e$XD\^a(rfIPɈl[ᡯ4S!+~C ȊRȭ2ǵۼ3*bG%bZf^O2E$rEHCu(74&.z/n VȆt)oD1ыc%4MsxwS"m@:7ٛqFT ,} ]a["nq&0Zic$m@.E'_ֹbyeC2.}x^86]hNGFqN|/d x%\/E2Gd3O:\%-H*'6`Bpteuр9\= vcɵtL#$.k`ƂK^o%nfֿ+JG29LݟBS- 2΅1Q]߂s33SYj%BqC$I*0ZNhx2Y75§,eȵ}67 f]tv&& kl箭V7zɸΈuZ EPi2Q ^2~XͰct%#f[FɅmqhin{X_2} ] =x '(l-\GϐIO_`?N@ YAp5sX#931*b4׌~K3u ϒ<|by(Mm P i{- X/RY~mxb ?g;O0vQ=a-)ƃ5Z'l_qfjrO}%"U Jt~h9ɶQҳJy6dKi΢·I퍓2h=L:MS_IyylC$C~""z?EvykIS6'IF_ {Q]"pΛ%Wn֟wXb00 $o`UӏVBus,1iMPf Yh#o0 Q')o`ߞL̼3_?cfadd:. `c)]ф(鋚ڭujMq*h'[5m7CX) R_N oD^Ft}2I ^ڷ}+'Z#B?Uh&O[ڟ6M"s Q! k3metadat/data/dat.crisafulli2020.rda0000644000176200001440000000157314373115707016520 0ustar liggesusersu=lTG| 6R"YaYM";>B~6/ڷϖ $*R@ N$$ A"*R"μg%O7ݙw'˧[N@8$RhBj2QPA ЌL: Lyn!_=I#9C^BԂ=}I̔rmTsVYWF=[ܜZ4rH++{ĥPJhG<&|D=JȻft]Jwgh:'}q }7}]v-F"h'koE֢oӚLuj{\)cj4ѻ:&BJ.A\dI H):NH| @)־_CAZV;gs\wڈ K4HχKI3tD+i)L3)aJ(&vtV %U쨬Y^S]tDڷ61metadat/data/dat.dong2013.rda0000644000176200001440000000130414167070232015276 0ustar liggesusersKhAg鮍Fc}?[kT/*D\h" (j "xě |MēG/EhO?fY)]1oήfBtaXٱ;QSGGp^9 G׮ij}c&$Id' S4$IAfYd6Cyd>Y@B,&K",,+"*BbLsud2)֖ eUiiRS3j:ih8>Q_hFKؿÖj!R:U˫Z-0΀["|ʩOV)YUTO^VVm`/2yB}*76\QƂ~C~J\C[֩bBk _ş_<~D| Lb/mBKxDϱ]8F . C#50;]ۂi  p@7 |?8K΁1)؝J.=Dg^ClG d9ApqiA"|\ 2^2DNlNy?c6= Nd~*5{.GU>[(+{c%󹁬 jkK0c)j%l*mno metadat/data/dat.axfors2021.rda0000644000176200001440000000210414167070054015651 0ustar liggesusersX[oG^/`$mcbVU/dLm (~f%.}cAUR xwW<3ߜ99^Z;ϵ $($RR %AH0XB!񆪬*yڨkifR-KբV2ucy> J^ z%-D6{ͱ|!2"y/Y9s{~ʋf`/oy~ r"e;lcoxP.~[{Cד43/ kZYZf<-S.>'q!c D{v̆wٻvghSGuɩ )o`nd:+ܝ~Gni8;S9wܡOڧuK=2$ȠzS}A8G~LOh:%metadat/data/dat.hasselblad1998.rda0000644000176200001440000000164314167070054016506 0ustar liggesusers͗KOQSʥ@*`EI%nȡ=c3d:FҘrʅ;5Ļ??0q=|Pb 䡝޶o#'ƘhS|R %U>p7y3|0Rj@lƴr]ejNrUZ:ur% 6` 6;.!4}`?8C08c8hapVGn?z>Wz&9yA~' yCGyE~gFz%"ˆfxuI]?M5{H%DxҰk;E4)bJMlE~? 2VCq/ ZGpұ{Lfi[X6L㪧1U{4NxOcV^\9p|URfuDa {[zcha˴W)V+Q3ٟv3uQ3nv(ەN_>ס6m35GFb?xxF<+{*Lv?>p metadat/data/dat.molloy2014.rda0000644000176200001440000000134214167070054015667 0ustar liggesusersVMhA&S/HA^AvۤjMOAA4ى AϞbJRgvw6#ִ۝ݷO G (NG((63D(eݻ@Fv&jceL--X4<ے,pb lZXQ7-im(Q %YARlhZnʑ<}T`nBa@rv$)& Jc9TȔ,96 ,CdvUwsy{+$`0S2~ 5S"B`:cp`INޕ]G{x?k3Oo}BYHmߑ3ܲmҨv?yPڬ[̛hwr<ƶqm+Oad&^cXh=si7+˙e-]n,]ɋxʵN^5vWFxۇBL0s_寢XkF8[&~u3 ] IrsnCr=uХR/zRK7q׉O¿z~@8 F[pTa, [^o`I<{^C3E""62ޒHV!F~1P6(N԰;(E0#]JxwoCZ 槍_-:metadat/data/dat.gurusamy2011.rda0000644000176200001440000000100714167070232016221 0ustar liggesuserso06Ejh< !PyB 6tennU  iza׷PWNAs0I8wL5Tp1gvR#|\.>7E^+-\&,2 metadat/data/dat.crede2010.rda0000644000176200001440000000261314167070054015434 0ustar liggesusersՙ{lUn[ڮwy/bD Iw%n*b4h5  !ĠmJK)-vʂ +F3gaSR{s!#=s#`6;G)0iG"Y,ڻ/5G)S`` ƈ@RUKIs b.Gu@0 &`Fx021Ƃq`< a"<&I `2@Tb"fLYQb6xDCp8 '@n MTzh4VM4U4~m%iJɆN))G1At/4zL&|C_[hW D5$`+)ї'ze'\7E(n)7|(ͺ^nh^ǷFV`n{Ǟ^v߫ǧO7Bz>7|ߋw"Nl3MG g@v77j"9:}Ǻa0껵ق0XMj͹)x;]n}ߜ\q`+,8ҽֵ2VMDww5́;aoA8]Kŗ֏m'ַfG﹬uF ^*і]cU EPTV@UT賉2j'*ς`-CCTm*{gjP/ɴ&UmN^3*;^m:6=1Z ~;iob堊xUK>WP)61B v W3`6Z 68aU|%޾bxti*sߚ[~ xَvB"[ n,,ٙy!^Nj୾ⵯGxW̫:+H<2`ť~wxyg_ݚnjE{I jyӸSKnSZMp~*$u{ko"}pؖ${<6 r?On_6۹_S+ Sy7?G﷨˥:=3Փ{N6UeOԊW5E#^sWi1[=.B3|6Nr?OCO96}^7Q<(Xn fq^GZ3_KXB8FܺN{KAd{y3sf#MM6>~69wL=W|*</('{c0.L%x(BO % C;8L kwKr8~$`g|U2lMC(N?hu<r(=ӯ9[4iF~5ԭR4~cgƦ`Qz)% *M3n9!VsIstY,lM z=Nνe;/gl~fmetadat/data/dat.berkey1998.rda0000644000176200001440000000110714167070054015660 0ustar liggesusers r0b```f`adb`f2XCCt-XFN ͗XZZihi edx Y! df*($KH%B;/<'QܴyRS C}?P|@0<80,\`,G10eO:WTə 0kcc0 Un׹l _ |C1{njbqiQ*k0a&_4Lyd?:.:81\/x$}kg]DW^=azw:n~pR9#&ɪe_cG1̀[ߣ$nhaBpsa Ss/<{a0BC%4YsS ,)ĹrKK2<"F^~iIr~n*L&Tc1"Fh,/׃9L @Ʉ-%3=: g*L=d1"9 Mee*Ysaʘ`I-NNIed^Zjn9OB;ިqzq TEyt)H=;lb8G&+H-<\E TIiv %Y)oDE!f&{bILvAV3(2gcĊBDr=C|xoijݺ` _'D⼈nBd~!Gwޅȯ>1s{pM G_17C]MO Yn#y"9ɍw `OΥw ]?P':pYOBDn>j/^Xg=Ȫ:n_??GiLyBA{u9rI."c9`E/P}؜l9i!fl3- ^f#=-@o0no$B/sͽ+M98?"u yG~(+SSO4Q~`|= $5/AGuz~c> | Ya`3[Gc$EԜ38O 1 >9Sob/= C^$S!z w{ؿ% A>w~tg76&sG?(iGs_Rlݢa`.IwT˺tV1ش39iFѦy5雼F_'=wo!B9nmetadat/data/dat.bakdash2021.rda0000644000176200001440000003444614167070054015762 0ustar liggesusers] |E,gQīmiACB/ŗmm&ٸi)(-"rKRF<k[X%*jrX6Vmʙ2F@)Xx)z2?떼k/h}.q0%jfqK>|"[ Ry{*+ /N-7~IKĸݬ F8ʲ4ln˱%G\8N[/G)]rDQC5E#.^Q ɩ|<)wu|ԟEGQL9j ZJޠ-9n` h-Ե3 aK +ql: Bݎ m(l> :3jbkս.<@$?8!e8 )ow(2@`Pp\ R;jnhm#ч7кBC3?EסH!*}RʖNù+0/)qR9m%HH J9- hWݼt*#Uy+'yݴX7+Y:W`M rYԻ97mqyWbi3'STT{Nh,4Sy&vZi'gIݜĕt>+J"&zTO,kDMA4; r0bR鿊9n"(SJ)F |!/XcSJbb(.;_ t96 &dVu̹Jz•iNYHIi>ks{J$W@iik tA1) p.{upVrz783Ӵ(y@r,jHeout{-XƉ9PpqMIiDm$BQ22^k#81@ @]+JC$rSuI\DX_E劫:Y`e?V)Via0];.W3G`jpB38Wj)Q<=hWm⟬"_#PD+qJXх+:Еt"I]#LtwbpUߥܩRx _83p7S[3rW QATԓة J2pE Ye#<ўeOII˰Xih >YFvZXW lҲ-k%MvD9S*P>%8(+VvWtFԨXP>uO]]6Ml6Mlۍ6k΋mfYւ\ E+;71Õ(Gy|!/nS lEEg@ ;.P6IC4۫en β.V'~oj>ʔ*e_{:D5QMTD5QMTDڮ-Algb,llX"OW.1ELSuo*?SASԤ+06?m:[C2;[䗩eTsyN aU&@L h76ejȉ{z֗oMiAEbzaCyҥ\G+;7:Yb89E,k/dl%gN9N9C>,aRVokuθiQU8sh_ +Si8AsŎL^^w>)؃bNS@W=toEVJWo>|e^f䅥,&'wZ[.P>K.MBhMJgCJ򙜟Z\VߍV?]ࢅ$؟Ee@{ExvV?ED]y,ɛjs."e QJD)QJD)QJD)QJAi9†:rOHOxq:~h^Yr0X1._?Jab^'.fU ݁U#')`?".8U#2ܥҊ~|Fkj:Ǒk so-v\e[> g$ڬJ2wt:tby+"TrNdyxu-Q͈Vףa\vXl-ȳdY޴5#mΤylJS\K^,svtAvF9OgdZҹyԌ|kk5@mVA9ߒJS|/O7RdZ9b+D;u*PY5vvchy٦f +AաTbmsA#.^XVjDBnTǜY*yʺO\s5 n9kU8m[ *ΕwG4yƸ,T`6Rh6/8-6FZR[&ƺE0Aܠ1$bzCɨכL$>WtQF1 qs{;]xѐgONHH64WɦX!FbbgKJL2Ƙ`EIU/?STG( I㒍F '&!>..\8.\7Ŋc7ц;4Fb3F 7\@. ZO0yré،>i2 cƾYx_Z}7 FSbb\p^jcE.GB=RQB1LOI d eTܼ8)ɔq r\W\1qX6JdpL4l=Bu) P'el`<@aG>>6Ozo\M rA# !Icx86#l9/%=E9;bs͹ncTLћbƄH ĸ9r 8 rZIEZ1"Nmڡq}H2%'.op>,R81ٔK3="fno#5R +5P(5byGIqQ 5R_9{ZDEmN2_%8c}WMQt8)$ )k*y KpJH' ;7hՏ)|G<}"t/䩶[ٷ[cըMN4*Ey˘*H BI%c7^*֨"1THHHHHLU$IU$ɡC4P%Z#\~6UZn4+ EESIR{bkh!Au| @(.(U3zD$@0UCPqCuj"/ eee1vŸ8g#VbNbXکIzS^t&Qkt%1fL4A$o$ ִ'%$kU l+6%kR QITDmgX%TG10Mq0kN5_&ǑXg-/$ڿ8IwΒ ֕'1ey\4Jo\.7!!:iٮ׻gXFm@F  9BpI # s>T ccti+.=vmP WANdPmuS=y6A zq$G@ Y5D *.AzyGyjAU%ĵp)"@ t[/'5$&> A`]d4+u? P3OJS| .#Op %idyQȴxI 7o7]A繙xq`ϗx؃=gtw>{kځKCmvw3W]fM;8_ >Ns>ω1ZNWO{/`{tjj=yC[?rX?<޶~.80WNwl;&=bK&z]];m-넷&z;]>xUS|wU cm^k&koǝ}:`oƬMǷ>S>w^}v؃<8^ݒGt{h_xuΝx%Νiaxܩ7Kٻ{15VA ={w;jbxs[KZZU⸖?Vg{Rx}Nmq+8Vًh֮WOcNtuGiW|# Ykb}nו)xoëgnmxsN6Y;/J2#=S.{+- zs5\כo>x<:㤽KRmxݵ\2-_BvCxdnAWh|S|K^ꈮOϷ8>M}ϼ[>շ%W+;雵"~J9__kU?>a3h4B3m"_o:^*͹e^:.׿UWo1˴=&yM~c:޾D~S~.JzZ?rԚ]as܌#:w-x>:գ7#f/_fum|yϕ;6Jw bp~AMu o>y`AbS~K}:~e}tAWj>S ;YyH iK-޿=؂R^gK3wusj9[zk{6\m_XMNҫ]-/?x O_X_@9<}^6zE/v*Uf_գjzhcߨ!_2Zc_yG+Wʲ/WLz lLLx×;=G=F}1xS|aŗoZQv/8ŷZr'myOwN]w?x#sdia;5=~|l[OL7&]2|;Om?rVFwG_jy1z|%Gt|+ݞ^`v>^yޏ7[x]fk><}>}eqw=>ɸ?[[>#34^gݶAq=U|x׻7$~}ѯnu.xuW}3Xw:Zx?$^]2wA<o72 xo٣5#PnN]y駦ܺ <7r/G{~W_䛟3էF'ރxxf| m}Ioo~ϡS7,j7t_γG.Ik:YZŠn6x~y:\8fL^2˾ ;7p[⹧/z"5wn-Ѽی7mSqxGa`:|h5N#.7qJ{/F}t収;w\>9xKv~?b<`C^v3?/G´=[ǷN;ύulߤw&meSh-m;5s~ZwZy7j9O|S߷ g5__][Qvy6{yQx镟ri,+VS6j~RJI|V/{>0^1m|\+x{M?uvb]p~U˧k[$hi@˿˧;:$hw>'PԆUm?5Jkw~2?sb;h >_ ǦfOК#߿ø)Krܬw{M\7,O_K~}>hG;SC1ڭܾFxnW2׺O{wuշ nrsks~u~AO|FGO/K.ƛ:F^<[o@[5qw>OG]Ӵ'mO\lq:g,ڱͶ$\O%Owu[kv-Yzݏ:}ro#_;w݉O/2}^9mȨoY˃]Ƀq坣s7{&#-.ۧ7ëx5T>M n^{!g0SܻߔD>Vo]J_,2n>|:UZ^{+ηڹx2)>w/EVΊ1tZ۷WRfLJyzxӆ^[-=>}{?}]ޝ5t^䇃MwoJhݰNċf6_x!q˛ ,B^Qi{oX|3㍏M_n]]Ӿ%7;0O>/>p-^/m{?>}ߤ7⭯>>ָqΗe Vv<޷.lbOwl1g^ۿ6w__Y=UO4W|ޯ>Gת_jV?M{߯wjyУyjzVNT\mk׷y,ֽk&MoMML\3oz+7N-,{;oiMkq߂ӒN}3oؿ^[la{L#yg_to&>#AO]e/]z⽶OzfNK-L^;s|s7_ :ƓܮAط`Wb'^^oμ*{7ڮE풮w:xk>xgl+?*[]m[>y]Q7;?uZ{>po̼}ԫ1K RG7mxT%w: ExKk}{=}(ayxѪk-cnK_OVۤ}QiǓ}첤qCܷAo]ݨ6{+~\cد{q'_Vrgqނû&F3T>4iKwZjg:QNj=ǧ#P ioNWοgy^OMa_ÐݯL_vW}7J89&W;|ב rp ?fux#]2J.3;8B~pzn?1b[N+WOw}"?HǞF>2'ՀO~fXn1ٱEm]uSpҴ?.鳧~f(-jUOyIX%WӆO"~sܫo 4W%Tۅ<}fë'㑯qs|. # G٭K˫i89`Om?-θf|jBjT7 >>ϡ4XX]\ C۱oT0ۭ$HhZ%q\J"SDr^ ~\D,ŗ>:H\'[T:/$-VgQ>^wqP:͠Mdx]0d2q2!nij@YL.Zè,ΩK A:/.<^0Vٜu{FU%9LH$-s܌3M\mjo_wUxADB$DB$ "iNjlP5RcmX?KCXm(UZ3N>](Vj-Nv7)gom[}aP럫\CY^ P&f:-ure-0ԭ:[K_//o!o$//o_pοU{W['\//o /%/o%#oq"opοMMyX^_^nG#^_>Q$IڣοUm `R@o@οR/ S%[%[ > O0p'.`:C P`Eb 9.<{@H/Po0p/>< x0(`1'O< xFzYs1q/^Lx Ukɀ)o͐;wۗL|00ckYOf> K_VVVV6666ll| 8[w?~p $WoN'/߀G#?#?#?#?#?#?#?#?#?#?#?#?#?#?#GGGGGGGGz#?#?#?#?#?#?#?\ GGGGGGGG9?jSS O)?SJS O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)?S O)63' ܌p^k;2ږdMRs2^'. [1.#{(dcDn*$%FU3\]i[#dwW.6΢,F;ٵ߉lNFT*leg$&H`dJǜ߷^metadat/data/dat.collins1985a.rda0000644000176200001440000000151114167070054016176 0ustar liggesusersVYOA]U>P4jA7@GB|kgiw=O<'-gbNNKWSgwMlU7BWx%G>L6;:!) OT`5dVu$}lb\[B8-g`=P #;DS;8 88Dj1͟DD zx(fޒT_-)Mj4[E:-MEImgu9̜Ua92ȯ#5T)OT^ ٖ2( $Ay/ɦb`^C6MzfNڮ_;d Vô;mLEU]А R&Qib&@mNgA' >4Vt.8Y@wA vXӭt_i?җNc?ͤpTD] c+1`9.5Rލ,LzUj% l0xCnFQ9f>j 5/ >dz?1nh$w˔$C{ѡX(WlSwI|O~..wC4w-"?$6\{4~~Z~.|?=* #dX3k]Հez_#(9&V4)VOkk{o<4oS.Xkk ;c/ͳK(%'r.޼~fۍ$ߛ6y5̰d࿪(I"nm@:cr,/o(Cw~ pp% ) metadat/data/dat.baskerville2012.rda0000644000176200001440000000210214167070054016650 0ustar liggesusersWMlEűV* "q)㶡T$Aj4z=wp =Ñs*8P Q?P 0~o}x0<]2,DJmYj^b,WB%YF}eϗ oUoY-aJSaE9EU1! 84ou2ATgNd-HW-Q#'dB#^}@‰B{Isp <8/¶ *z;#,ߵjvk&:7k92. t94'j¶hW] V 7܊-ټ]YHYMPt +_U%`Z35]zP~E C0MnmlͶ^!mki2;owϺuX#G!AHk9:Ӯv5ˁEcBmΘ Qf?Qqt©A3b֟ sv /,L^%Q~,/^8f8]\G^vkͼ5L;3 8=c4pm} \Oŋ-9dTAiu|'<<) z7|2jƝ :eܡ<1/? L8 ?I6xcId o:E\ԏEoVbmdu6pF|[W/_#? ZzFMu#ݸ6|[ۑ? 'o2激Gͺ7Aoρ!|boa߰찭W➠bچǂ`V2+:1bqy $$0 (MIZ%i\A'v{9W>eUau`!%==1X0 2Ni9Wg4(f>0N#<|q"Ss 2<ϹPxs%'+L92զ+9Ӻ3mjJ.mKεJۙDs}L/OTltdl:?Zx^o)vu\tSbFyl/ls&. aZ6Uk՗R_NiZ6WWx>] aV}Y#@t:BDg]D7! &z%z:b"EywL,{wHd׬Uvm L/u'q!e(b,YL<]XG]T߂fnmchO|}f6l뮱f4ͷvYp+e#q2upo:c\'hL"0u8? .F+!Z poO*0YC떲 W}k|x#DD8>Gឃg!y߃(W¸)j?7l}G KƎ=]|ǫ$T66m|ȓ{M?f]jŲK=}Ek_/ߓ ^k6J.֝IoIb𵳳#dv metadat/data/dat.tannersmith2016.rda0000644000176200001440000000233014205657033016711 0ustar liggesusers}lE]9.4` +^!`6jkqb55h QBji,^  10~ D3o6שwnyf&/-t$IJlRJ'={$mD'٥ |ވ; peE si6+8?rDW{OsN^70a`]Ddu7OmLVkl`ԛVEEp?f܄3v<~ӬT^Y(YF:&)(~[%SE{m;ķX#?Of<1~FGY髮`UWU.-g3'Q)@ &v!"%rou]>o. qB+VYkmzKTt= metadat/data/dat.pignon2000.rda0000644000176200001440000000226514167070054015646 0ustar liggesusersV]oTv?4ntC1ueMՉY's&emݐ-u&'n??0?E*W\ K~'֓z\ arl\O!%U&&nwy,݁@޴k}7__j?3@xo{jEJy3/u`þ źX[+B9 | OgT-m ^rh6xm=?j6Q~|x;׹=3McLUݦ')1#89=xJ+r .=2v,LіBVVRS4mIUQGÖRkvʆRʕmGBX6glIQ 4-inR9EJzM 5AU2<@5[ /(D.uQOҶQO(p5ԅ9Yv[ks8&y>FwnOuQO;T7D7k9? QvߟG_ЏԱ !zqn__/r?de0D}?ͣ. kAB]oy!?i?D}}PVF܍﹝x~m}K~O!-Ĺ|~ hk'iɑ=ėa'B.n y>BC~~wZ}S!"5Gs]"_g ـ"g&o0y;?;r9 VmLr!Y#x~1~PHM]> X 池2U1K_oy)SQ metadat/data/dat.lopez2019.rda0000644000176200001440000001237114167070054015516 0ustar liggesusers] tSOW(m*TZE,miI S}CE* \6QPEɦ"XVˢ?޹sM9g|3m^!7DհOZi%ene04M[bT0:ZԒ*:`$mIÅQSKށ(R`Eb6x&CSx )cBu]9}S—Q1t:o!?*KLO#)}{QPOn?XS,1ܞpǏ= =gѫ]+ĻIq*Of(1;sLNA5;Atx}>>M Bє {o;VVEQ])c]PaaV)ôj쮈m7ho2GV_1J+Z(_yaY&^馞 ǹiY?ʫ%wISbP}㢕0F މGTdp,AU?|&*O7\Գ8WoT1J*][ؔ[smr?W_AqA%rȎ.8TC6v Kdn ?)/nIaWIp׷FC*T[kKTzkZebTOnoPm[cݍ*?vǘyz#擅sZeheɕ1;9NŨAu?k4q ~:uEZ,3׿Ψn@u i$ʠzWb^=0/-XxPo 0QM{ ?Zyؖ=jvR xx뱹s3.<>6Tl{l‹\4-'#ϟ>vw:<2{_fϽnܧ7lӌm=izoXf< 1 El|z6n$MFÆEmf↑eSHf67ΒU{sG_vk74gώqvjdxU~$#t6{{ܻNֳs.xjij = ᙮WI OsfwI׵qS?\9Yp)gl}c]:Ilܿ@[]Y5pͮS8p7؁wGp(&`zC ?\>6 /0<>3:mf</y81<+b>lrKm:V7s;?:3-ˇz7 _#[/C>½ m-ls/`O.}M|'|0o6_V? _E M>3bc~bۜEX @jؤC/}լ|~$<{`؄CWle<)?qco~Mݓ>xӕ64g6+_{:e+xGc\y~k`tᏻ:}㽽q]yppfևo1iy_|6LB\px pC~?(1x;Xʥ&l[`38.xhw($ < o{hqX/([,|dX8u7|@r0u'` |@EB7 {s29r7X7cZPϛ=FN@'w9$x$#]i L|@H 0+ ^xY3c}&!%9kqv<-r|0uF^'z.fτ<7P}pO\< q,Qsi=`-/N0OxyO;=] ŝ~|'KX97Gf]=h0f%O[y֯8c8 .o{v޿OK|?~}e1[dfPs_+n. k9>ᯟL ! G|Lo%|wn/bѥZ&0Qi!_=V"!u`p<|w뿐c3x5 ~Tz q{u^q4nޱ`ƚu_%<sW,| c˧\"B l=gJWSl½Vpم,O[ CG5;ؿ1j;ztO`vb %[`ouB`<_y W'95s%[F^Eiq3 FWX~5N\G دW6m+ B蛂k@lhYFC!{ bKwk7jd5O)Ar |oT^/e ц7__6pj j>A<~S~ j_a, K5' Z?_x#G>օ;ѳ|1x S庐 m__-?S^O'ZF^.ZOO[B =~T\PΔ>WRS@ZM`RN:)>7CEۙ/=8' qɺ#c0t{kznWi Uq.uDAj_p])2 #ybNw.zNf8ʼn k.iS XdEbr{t3;zc;)řĎY?$g;oHOGzz3Lg&= YI` ` `_ = = 0 0 0 0 0 #0 #0 #0 #0 #0 0 0 0 0 0 30 30 30 30 30      + + + + +     I]K]5J]5K]ԵJ] M'$4tNBIhҏtNBKhz M/%4^BKhz $4f AB3Hh $4fЌQB3JhF (%4fLIB3Ih& $$4fLIB3Khf ,%4fYB3Khf "Y$404?pjmetadat/data/dat.kalaian1996.rda0000644000176200001440000000333214411522236015773 0ustar liggesusersݘ PG@'ˍ((*"(<@Q@_ :!@0 @<$b-|$)?.X3yspxK\MØekô-p-c23 b%Yb#MgO ˆR,iF1N͉$m0mA<\ۜmmmmmm|iSt{VaEZo12]o1hvsKs:+o%w=G6#lurfv欤IlFMR$:m `Q7Q&nz=S+\vn"-ti_I1OvAQ;'!4@9RB ٌ[C`#)@!{BuA|ڇwxsm4{~og=9q|ndw\VioRv}IО1).sqx\E1:qY=RI)Ë@7[<#MK+q~4CR%InH1;W t|p<*{Z$ Oɩ :2^-O07+rŽ_kяuџs.*q !ɚģr Z8,%Kr}Q|m?'7_U5o XڼCq-plM3l[\ďluU@nî ɲt0E7˙v䣟|Ӎ!̩w+q;l^sW%vH|s0hql*Cˤl6fhFvJH?]M2JWF۷~58"HeKgא%'ܮ<ێTI=H} bfF6K^I}+CIws,"߹G+CJGvu\W,t=OXҬ{}}>)An"j߭Rͤ"v=O_ykKt5\5yc:̝m_?A&oz<|"Y~|ic*G6߹׋;a1y "3vzCLf}2L@2a,qM!uBArJP>*CU2eJ~־cmetadat/data/dat.viechtbauer2021.rda0000644000176200001440000000062114167070054016652 0ustar liggesusers].CA  ",P)ABhTE7JbgX{ HTŧ3g.t^\qRʦ9*G,QnINEE:8)| T[]~%hZ&:Љ.tG<3w seV( w ĐkՖEi#dn@ xW)Iq|#V#f\LݏOjr0aY;]rr26^'QD.W+p <7e]Y'i=2>G8K7|ȃ-M׺Z?ZړBB"c 栋/)ްܙ]zCST>i~_R?metadat/data/dat.mccurdy2020.rda0000644000176200001440000005602214167070054016024 0ustar liggesusers\TK;[T,D (%b|b?]]`b ߂Yŷ͝{N9s̲bծW 5b*jK w7TTUyb**ya V1A m^Ȼ]Gix^XJƔ2LjP_Di%" Ā@!crIB5!/!pPK#8*c 8Nᤌ9%"8W;yT.좝Rj;!-_ȮOBv0FŤ*@{)](ZHKҺ`Tm/UPWRkt_ZhWTZ#F񭎢](|M>B\??+|(U|u}9ϧ,iR7E¬0oVE_.$j}%=JcYm*PZmTl_ȫᮄ0R49C,xuQ\3.H^<{hWE}l! OZ/,'C;Z6Wu3¬0~$EgjmE RMҟe J_ȫGB^HJAEaZخ? /QsaGѼaOa. A e8ަ":| n/uׁ"\mFFmeq)b_w* Eߐ.TE"Oo0¬Oa?R̊ ն.B]jf# i IJMZsI(~$H”];iĵ/_(?_Z(=I嗿q5Dla.d&qʗvH$ˆirX/+ꛠ~kغfCQ J/('wQm^T>k Y߅DY셸[UqmAVsIǫ {+2E)K~ 7IƎ0cKX}+>O\}}~>Kj sNT WQˣHwB!$ D`~@-4,,} G"($ X<`@$ F臿"]ÐDd82B"!wMF Sitd2A"BdY,E!ˑJdYE! FdB?يlC#;@ndۇG Car9GN",rIF#H \B.#W5:@n".rIG2H&e# gOs2yE!G|E!ߑ?))"j:h"jHqR)A! HERTE!ՑHMR2C# H#0~14A"͐Dd82BF#c_8od<2LB&#S4d:2Bf#sY,B#K2d9YBV#k:9iBZ#zH-G#H'3bG6 Mfd نlGv ;]nd'jH) i d r9A"ǐ $r 9A"dHwD^?"AHOT#-hF6H|ˇ~>#H'3btA H7BCqBqCB;@z"~H/ @ $ ABH鋄#H$b!GX>#<GT>/1h"qG#H2 A"C!pd2F cqxd2LF Sitd2F sy|dY,F KerdYF kuzdلlF [m*QNdكE}~B?*z9A"ǐ $r 9A"d"Q/W:P+"j:h"Z6R)DJ!eH9cp>c?U+H &R ƭE!HC4IoO2 S2~{|9x/ãjOs}lKOan-1;k,>8^69Xn4( b>=ÐgSɽ.A>6b!GBƸ'W m$=^1[ 'BFj ,r[e,\8W \Ot-.QOmWxC:yzõFy (Fw Ukȩ躜nv^~DW 3ss̓so/򒕀Ǔ};:^49oU̽,~<$u~ @e{gyRic{xV=|Svc䊳A*\O,F9>љ' &ug؏a?\udp8Ox O ^΅Yx䟃B07w^?U&r|G=!9er=yV)W#Cc6׃cԛO1SH?Dx8OzA7:F6 _ZxҌs;j \S^pM= pc{.aюd~ 'q% OP2W W9BV_+h2>q|_Mrq ޿KEKvM?#4I_h|>XOTtS*7jCzϩ<יhn7O<͝\?s/C^䙋u' ۹MF5h]>FMvGmԃ{k o>4/ >-w+gΎ<@r$^{WBnczz@zDvT:֓0>/4Bq(V4~4^\P)$y\C~!#dHihϨ>}{} = !{Fz]Q> I?ޒi4r!{jǐ;~$?7+O In$V4^?|2&dsrP.{$' /ɝKr D9./l!';דWei_lU `SM!?9do.Sy3\z}JiK^pq/d)_ZѼE-w`~4pާiSƮ7H.jI3|ASUK ~*cG>Iދ~ѸqFh`?>~4ŐqGɎ}yId71MJzLqJ;OQn3VʇⷙqNdKvgPݙ(IzBE琉[)Lj(ܥs%o~|c7[Q!'6,YP{(6Rp10]2McL:XZ\Ϳ8gQ?8`i/Rzndw/E- \><3RsNv[D{APd/N?N0]h]O6ʛ񲱼J 55Ɵ;wf~#<ݧ7_&u˙ ?5Kf ?I/$=t!G`$ oʗ Tɗ34}7diиf9a_Bv݌_֛3䟑Q=NR;HO1zJ~$/?g?8d9îh~Eq~KzNKvֿ8}tn甞'8&į~zDSn'ySH&>g~` c=Io}nN3և9qSa=֟%9SɗP|'LSx(08i {+ RDZ/wGBA̾:;՟/ݧkp>ɓ#>ܺ cO972/>v]N{ƞ0dgIQֽER'y]b~0bnߧt}#}t>{v̝737ɓAH~bST>k9H˜Q9g$οAY,υ>\7t>˭oo_nFq^scKI1vۿg[|K4 돒~ 1$H%{͟=Af~g[ZOR?Sޱ`F|IreEvA_g}$߱2r3y﴿e#;[ovCd9Ρ;fZ0캈D_o74~ gwi+q}iC>ovJD'=iF8'g/isڷv>)|mq^ZC,J~֧ԟԏEq'M~ɛ#{Eҹq^*OM.R}~T.oϙ;ΨOAϩ90:43[񔅟?U9GcܷD<l/@ɉ\Γi߄ߤ$Osd?Nb9On=&yޏr9{p~^!}%{BKԏ?WIh7GJO8NR~4ߓH$WT.ygdi@2A;u9 <_}]kWi a:_@9R< 'e=eU˄[dϕss #Q|ҦZ@aڻn+8OnB{}OU&Nn M'w2}!{AMBkyh?YѸqL>/i=ry>3Hqg|o`} i H^_vx<Gr>σOQOqlg|ڙXN6~~' ?g9o`1ڱl_/4rȏjTTVDl|LKw[<4"mҿTUǏ#kޫ;ހo](r`ބuOW> :y4.]V> tPepjf1t˅`?Eg>Lpj^M&CKtuMui@@vſ'uOP5lSst'+<2xv&)X ~ 3zӃO?\j#Xw u pr}|KGKuv~`<ǒKزbz므? Ny 1ر t;~A ̊C9N`~riP}x\nwC*$"khe{7ρ`5*hn<@ih:*MF{ӏ'cŲkM  ]n:5I<<l7|hmw,duIPCmtƴ呞ͨ75l9fnOe{q&2>Qi~c 4T[}#UjYϷ"W0dl-yTsrUcM݃KO+Yި}?|:R˴%>uDR5j=vnX~^0,6ۧD⹸MͫGͫ1B~nJ-+>:1m\}yb6XF?,}<.eXۨ_`ݪ3`0{|0!pfӽTm~wuuZp2߽x_/V,fWHqlgsn{C\`۞ cwv+;ˉpqNl *gy 8Tl6cSI37|y<~.5+aywM{k.wxxvxf!p޾gґ tZm"KNb}U>هϤ >|cY ^}&n:\4Kū{N <=zਯ3؝oFC1}A9e.s=3ШDk{чg @S;gzΨ ǡ/T6+ 3> Jvr]&]o\?~m,jm3YgmE`XcV^>Oۍk*< )':+e:؂߀wOZ][Fk]VZ4{<퓻 nuLW+\.H 7~(Ң>t.ɻ[Yp(ާrW]0[w`{pb7$2gMHAu*CïVz -6*}]/OuƓQ.AoX@y*_-]|ז8uT'8ُ;6(?gMT6$z8nzbظ~8<LVmt`:姀K) ǛϮvՇQ.x'$~8H0iXCpkpl1:fZ$grvrʀǝe~= z>.z7n۴h p_{^ުN| >qRR0=ޣzlZluB>ʡ8 ͵6sA[ǵj:CՈ; jƭW/r(tz_wㄇU&U^K9^mk\z,z~얫M\_|}5ܻ6#y=L?M+h^}5,\R}?XXwK:ϏyCNwpOSlI7p˚b7pS%Oi>wK͉{NCWWS?W_lyaX*g.ۯ{_FqO\-vyoߺ,NOB=O;+je*X+ٚ[7ǴZ1ceTyevjޱ_J,Z_G}nͳnz,zI ]";?WMœ.u6ŝ.4rgk`^AOWΚ绶׵~Եy;Umz[pwI3c+8m^q0Bַ Lշ78VoRQu\v`Kxp-٧Ve~6u?Fu.W~Nv낇_돖q̤n\3=aū=ReSg.~yuuSs2H9 #-,y.Y:wgPyW"|tw9|/I= znT2Nvmf.>cl/)6muGhX̤n/n|g8}{+ګ$s'ۘغ<\UgSSnq8nlpghV,Lj'm]}6 Lno;%t8>b2qV?Ѧм[/f@VlV3ZMlFT7,t0d:h΂5-uuʝO;_]?28emm2֛r`spɣ~I8H7q70m\|F6L[5kByp;|`~xޠ3YYusYށ31(u_/ 0GCzq#Mif+uM6ۚz +C~Zr{F}qfˎYCժQ{~-蟘^9?S_645]~pzSZ7g w!8ucl]m=VȏzTzGt?[.l-? 5gʓǃ7449YpqJOqc9 mzA\S es3a/5[-{ ~ &c͍gj#U%nku{Dw|j&XkOpWzM>[b `s1& 6ZVōFo(}18ux#.8_&lԼv_\l4 h~]0cnp]q5^xT\pp5~;x6af\:s;][֞Xdv8X9F_S,\5L4XcjlM^v<7| \6O]>f׷ڹ*~0vKVR4 }ԫ Ԭd =`9F3yG~; ~1 ;q}cXYs(P;x#okUCۮ붖Y _\ZGm<^ur{8վLAQoOT=_פ^x. ^v 7 V?s W  !cLB#+jC5ϛv\Pw42n)Hp~`[9L#GCfzmqNuR||cuGKg~χFWԼus=}vI!ށkZ+۟V۪ʿ{w'sl6+b{m-ť3^goˬ]uNCsĘCv${LǺ^nY6,B&8;puaԻx&"^o?Aaqʮ_}:aL&gƥ;جrT(Kuh(jb`?v: oмWݷFB&+/m˂vM<9--nN ޔۑkOT;nOX>1apo;=2:Xdw45]}AFEpNJ%'UxlIh487Z9q=8rNlX#72^K\b06tOvM:ռ7o:Ry޽gc-\dUk5CzGO_%@ˡo<3믭:z*6Ff/xf^׊7_~ p)idpirƔtb#-o=kJsNvr 0ye{`p_V#V6:y7pjwNw~׹Ow뉎fGSoY-N7iݮ4;8h< 8hhx[-80L/rjRŐD0[q`>-3Nj`%#mTk|ByVx-޸-GCǎsXD}p0=InvݼuFzMJ <߁csO`tv/с5ʀ 6_q3(FĤk!==%\+h=fޫjej&C{bp8MSzWhan0=i Y9Q9+ 1) :yǃz *9j-v{Idhf_hWnvz8P544RuZǺOi=}Q?.xnO:jRZ|VCveQmUq˴t̅n1wY! I\ÖG_Sꙁǎ~K?5/ї;V%nE;qk@˪_ Ig4r^ny hnuW݆ ?3}l|ց{Nqݛ~X..V|d׾s2{7dO\Hrm9 މm7{=scgKeѨY{eLBߎ=>K=ݜ{E_w`^Ѣ%iutgpr#{]KksϽuT|mf j`If׀ Юռ[d~ ,odAw }yР 1k.g/a>WrZ\.>şwbK{nd=UؗR#Y~ uV:-1dvy=UcCBC56q+ڙN5P[ŅhwPܺ 湚};ρfڙRGR5Gف&C/D߄m[윺z'BOq}olFݞ(|=`^5}`scmŶƯi[וmji1D-k}[Zeż&$=yv3텺Uǩu]쪨zjˆF`l^bE-}cZwA.{J֍N&|c\\~Y fwnpN{}z}=E^pdΊmv(Wؙ/o|N\po \~f}Jk5osUuW*^]jGvUMvu10\Z~`C%`zk]|u.8d C_%(f: ̏ޛ\;v8\w2T/vzuaԋer/۞|XίBȹ:_Ԃ.THl RF\Fvr |ro]Xm<8ʲo&]<&<T;5b}מ\dЪ`1]Na[<|ǿ[[^pN l=07s S<0}p<06"<?7WE0pXpV`pݥѣm3ɼyc!u5`W욷Tu?\h#tsdpr*`ekoϕ`[qd՘?`|X#:X~`;_g|EWIxq]ya%ø vTJlKi3Ǝ7 lM_ʳX3_tlΏ]8RZV/mj/!¦̾52E^[9iji>1=l R}Yq=ZpHm#n;YZF#(O)%ʷNjq=O5xq'0|ǣN ?Db;(e!'sِ7Q>TK( gpbl1ڡc/yeo/扣Rc-c}?L+sD\ZDzq4e}L?$<hupqm!(%"@{O4:wzɅ.5{Z'D_41.hD8?*t8w6o7ީ+){2/J 3t)/>7.ǝLm³[_^ w<k4S92x^-U̮Yǀxg[1^еIHNn`vO-VflD԰YS|w- .;,kdԨ+\[tdu$p1#(90J9f<wX#=;x>M:w32ySCYs N =lUӧ^ku оx}uÁ%Gm>]MYO X_洺u캻;~ &5k  6!^8yF?q8 3ʱ̆>xNOno-uU7 Jk-> vLQJV~{v~n v6___I /o L}[7&؟hp1o~vSwconUb7ȞQ7GtɚGOY:O]!-iJ:tK9Aξq@jIzATC85xj+ᭃR:.`<,&rw|I{<},9sϷz0eǀst Tg׬3ʤ`nmm|]+/kx;{{j^We_wmlA#h0[j><~+^sRs>]v._/ ʷXz8vpQ30ovU樭ǰ1vflIv />fo %;MPoC_!hgc *%=DMqzN Sv<=oGkE"J;mך OmIJ- ^zi nk9³ϥzZ޶2ϩ{i I֧;oió&WMDFgZj0`ɆFs ef\{ٵvc34:S3*򱋺_^rScVO[Uϩ~IKcd|AӟYeo؄9Sf/_7sj腚W4g 4j4X_c~U}RAW3: }%痷Ŏí ,3nrӋ+o?8|z0luچ{ ?m&IXB,#s0ZTɍ`gtZV$`pmgєN&>BKϿPs:f-࿷ڳk [yĺo[g{ͅfF 1UG^~sܧNW>X7bGZ+F^=!X^f%dJVNn,^,l>W- 32ix`4T~ߧxUI4Sv]`S;F=Om wWvs 5;C*N]/%m-ZѝN_I+\ܣʭQz8ClRʂ硃*N?JPWn`7p,r?U`Ãq`?N\~{yӔz'GWݜ './Noݻ>E}O0}NґNJ^ӉaKIqJ CsfT +i_ }>: ӶUS]@ߧ|0ly GVP#J]">ׁ}`PK ^b30cu6d_iXȴe8׎]tSN˻ep+ڶiS 0S=2-pb\-,~OGvw=T7_Sw-b=е>]CbKSFH__.:$eD0HD1RV X 7GJo~?[oAʺJXɃF]!ַ1su0]#הG}$_=(ǒST@}꧊(k'P4o|zHVN-T~"~Ϳ~@~#@5BTӯ*?v|mKB{#D꧆ =Ah`Wdg`'~QP1(,ȇկ>C9ARP}Yʛ_T: 4'otub`)֯e/9?sV=Կ]9)!o6+ 7A?NzSukXET.( ;~Q5Η"s͖¶ C)w[=v?ґ= lOukߨ/ɩaԏ^ee*A6fQm,356]\g oɇl:BP+A6"鞛V/CHT r ]KWe`ڬDU "h/^?E醨Et#mv}o 炐t%h%Il=VT[ZoQǑT~o!h!mH^|v~jA dv .ram7Ǎ])W4vs~=)ʇ}n$"^u=vGTs|v6 /hfi?1QǢ` j\"[ Dݛf'{a蹨*oA 1zDC# 9Z`֞?&T 8^W @uFQwi'q";]O`W'O R)طf/s~ly{O+삤Xڰ:҈윴zIɟVCLX*!m :( Τt.W3V,4 GXfocScToیAc}4q%?+_!lQdE"-[,* [Fg;*?ã \W4Q*C茰+Ce PQƻWP*Ce 2TPܴ ϊp-MTP*Z(k^!?C3;*?OTzL^kG3ojҋ\v!qQ1tȋ(wH"{ҎRJ(Q" * n)z} *yM(Ȼ>J _#\đʚoTd;_&He)[N)**uBYDž,=a!țj$@n ._42(Hʿ£ R?iR`*_%JeiQ[&EEraEWyqQ'B}q]zRr/l=ջ?u+/EǧCQR8\T[mE{D9B,+(jJK–W䍴&v(R!怰a ) QDV֢ʾv +^YKZrWXI{._޶[V* YWz;"ߡrS"ɻ>J I緢fw-/iZ[nguR[.!vJ.O(z"C <*҈LC,14AH[ (Z=(QDɟۧ򮏒?~~+BK% J}SH*Q"/XUX]oYE aG\=׸u8uo,=1 HȨȖohEG*ё rDE_ACTu"/LP;eE9?SLƒcOXy%m㗿DU$2i雨K_`Oʏ}^@zav-_q$+/~U`:~P:?cAqQ# kD*|*i=/qGRK_$jWP&W?4~g_qlɻ(,=JSPZqǪ.DkE_Թ^ZEmIDKSXHj IǗH+6W' JFFŅE7ҕ ǻNBb<4JW} 򮇤2w}D.HQ 5/?aW44y׃< AV?J;HjDž’%6AqQ7?~v=^*ZX9h @Pz9eb s-􄞋D'/9+?/q_O\O\!oOT얒_S=gMPzAq~z"uRu'%W/ jȯGaO}I/7 'Ie:+@(HKII;./(Ⱦ!|tFھBU!㢆g6 [oi2E ψZ!<'lBEbBBa )-m OFZP"yڼCAHK{Pͯ|UՇBqǫ|qCynXgaCc?kR @AAat8;,hGF’[QQ)NEFE4!FQgiWƾO/E)I_򶓲SE{s"CTō+o!o;'W/y ¤$gWGyC*%7a!*GQUQE6IKn*sdJ}]Xd//޷QtBFi~stHx"al՟}. j3[qQU-ZRH&e1k!#o@~^(~Y!Hjr?TD=A$~6?6o&ioT~ioPX[ v~q__XYQra#Q5|#I#~ҋڎߤ|!v)0]8+'?H/+ D Uϓ} >v="kBEFOH*1t-!-wil /QB&H^gX`roIIOE>AV&hnW4y(J{ ݯ-Y铨HMz%G ⻲c[F ہQqzE]f@LX/:.!:('JDDҢ Ef4 -3Q*qժJ.W^z!yɻ]"yOٸO+_Yu~ՏIۋv?KWJaS!SNZXEaǭe y˱a턴""d y(8?hoҚM?miz&(W~E?RSkQ }GIu\TujJRX_}ϤEX_@\=~fɺ~+ tV&/o~Rsu1_-U  It. ÛcsF/0^8'}qy@p|iEE't8%%J(QD>s]*DIGD?Q_E9*Q?@?ڤ?,(8!"TS"/" T\ڧ J$sY鎢WR]w(QDѐ]rU_D9#EG>iECQFSںTzRI^z((DlpxHh@H#.,BQR1HK G^)o+*_󕷞 #q"n-+=v?Zo~qEEV㫨QXOA|uFuVߦ" O"!~nIQ~TnSQT %jdHGDJ%j.4X9 ;MI%J6=Rq%J#rNҮ_&~S(%5:/l%/' ⹄c ^( hj|+J~ON֍j?+Qw{"`QϞ.Y8U]EMo!)QGm"׭0wmvyD=yC\ݫ:j*=K{<*}O񰈈0`:+GX*̹j'IąS1%FDŽEGRYs0&"¢"FHLdX_\B4_::&8W7ظN%D`I co[^q .kY~1*EDTPpxl_j\JC?4/4&ec1 ^ LЊtUrK=R386?<$*$fPXhX/W2VE`XE*N;O?ƒ,ztpJHzߟ;K 'F/+`,h'?~3)IS|U(metadat/data/dat.spooner2002.rda0000644000176200001440000000127414657335661016056 0ustar liggesusersU=l1v.IiA@krIڤ4D4?HX.99]R&fXYtT!T;~\ T’~wmv0Bȏ~2fPlM٣Al=Y(sW\0tK6{@VHVi9 \Z# z8ՖiJl R"5,nRت2mXMMæ2&-ryD d$ ͦ*^5atiO쀼\ǯ{Mp@b.!=Evp# ѧWX; ޜ+^ Yx_l\x&y /"/M,yfNxL@|)*=STN_zc yp-$uxŘp\&jvjN` =_ NQxy^pja/^|cHħ #g؏rpܧbҞ~9jV!oO^α}Rs`2|UfGjl#, G +FImFHxHVJ8$ԕ|huWrb=u- dצ> !ho?v[j_bh_ޫ/metadat/data/dat.pagliaro1992.rda0000644000176200001440000000065514167070054016176 0ustar liggesusersKO@>DZE@э Q!q+%uڍ%3ʘޞ69luF`LK)LiiEi,Cw#gfsr8h(1T́4`, d"A,<("X%P"޽C {ǃt/F<$h~|fWs)p+0ұkLw@ R#~*FGt=Lqk%%]oU@ ηG;D Α/-"X#@&@nDzJ8ql=#N0Y6Qx#Bm[Er /P0zFtJ.cn)Zh>&ND&Iq,yFP&""pЮ(H~4 9yr,J_{&qe$ғHrH b(c:D Iuc"ILp[:m0BT=t_'b DV=vnߏz?f ؘj mK쯂 ٟC/ҢThÄ?hgj_vb+?9foT{YqBy{췱HL.ٓNs[dl0h‘9ڵxܞD:׿WN\ob7o}΀2+I&7,n'NwUW6^qceCg&LhϚZ z6`qIiJ%,Ŗ@,EŰ̄)(N12,/׃JL @odgCA PTqTf!5h*pp"krNb1L9ɉ9PLK+M$#׀w͖rUo5>ߘMmBnȼ{>llc ,-":t "MwF;sb۰.f7 |#h"gAS{5bTW/ [ag)CkqjdAZs?)g $3.[94&8{0!AA@c<0 }taZ s߂O`1anBKUПJKNS/=:U q' | vo OG?=!s? 8I;oe3}>8Evq>Aklx~x)Ws@P?D{dHÀ6~Zyx55pblM9#k Cq\|LO:rj_{/S(7o=I8ď,A$0{;2UљG`F?q|p1Ϧ7?IW6,<iӗ+~Ӗ[7.mͱMޘޚ&``_~T1metadat/data/dat.ishak2007.rda0000644000176200001440000000317114167070054015457 0ustar liggesusersXrGd1^0 K1͋Bț\8jԱ4ľ @?s-/*.R3R=n4]LOKfe i3!}05iᐻ8~UV$b9W ĎL^aV퍤S'm0!9Ǭ)iDtZODosȶaF6T#nT}1*ewp;@tFMWn5DzezPSj5.5nʎ.w)_ibqދk&kDk6 Ǣ}Hu|-4d'.ź!{1Xe'FKشlwdvUjťgMv &Jj b7[Hk ؾni6Ik3WЦѤM7rnpڨKMO\V[tR&tEg<2m::S5ZMLmkiX6h~^7^Ԓe;y}[Ѩä '0E][m:n[տe4vD^Y.O|5_n' M}~_޷p|x> IG,ٕ!+ .8"q_vawd>{+c'܎r֟ol9&.P)*hHhE<FA >Ç~HҏR7{&=\/=o;zۯ?r=4r\fÂ,Le{,-ׅr;64颼7ˍIr>~M=߻.b>oQ'POBw^i{'LJ#t.pG>,w ^a8Ӝ{bob3ϔ2vlA) ЛSK)qg?>4QLڽ*l |h,?"l4!o@_ZUGp᣻@otb/w½i~TJ@{N×RaϺq{NmWN/]f_6}Zn8-EрG7;!vypOQ>Qd*ޥ"(wCCAǁNN'FN(M p} yR|PO iS_?CgJ\G[EK~"O_/^NO+ uF2N)2GUr_%;"/ ~_܀U?t {b-6rrB_)/CEy/{ G+|;&4~$ j,T _>|{ 7) 6_a(poZPi`K*QՅ*qtt)窴Fm .{^&";D>qes 2ahxw7GOReѷM`_ZjF;KRuTUvE^TwEo?lkGmetadat/data/dat.bonett2010.rda0000644000176200001440000000063614167070054015650 0ustar liggesusersS;OPDc`SJĨ τJ؇- 0κ 7񴴵&_9#WBq1(΂؃ 1@)*v#$#KY 2pLR!+n)* kFmLf {9;!-ddI|eY .zp3%L .bێ2aɒ둒-8y("f4mݾWkπ<*ۃқWy+]\(Gy NzGcA 0s'T~Y'JSS~?bL-pU0%UN=ܧX<0{AS RǶ ,Ƥ8gf/GyW}YQRZ)U= zҿ-w6]1w^whx>Zq.H[cE <XlGsP ~{|+:U3h9#zk\J|wޱtwj4a>!0Ĝ2 l Ȁl"L`vK^p%A7&%˄8Na%a'.-6mw A%N>!a} cN -`.&^"na"x`( J2Cp`eGs-<|??~^M?I&Y_^KFI[M A!1N x+__͂!x;; dx=û >|"%$g @|+tlpɅ W[p Ɇ;;;v2vfxxDhga _ǨăSOKKG/K@<*╎Prc:H*c1Ww_o\Wz;'zzwtqyG8Uw_=&"~ mȎ\!Spm_|{:#KbfGXoz ZK/=4; 'ѽ4L #!ˀfqw^ }Yb_+ q3b0~% Ým~׏g@VeBCR`*R4QU`~ߍ<9ۍ>{`?M[}Oz‹"(aXQ }5&{L{ͻfOҝwS"&1I8AI8!0wp`ީ:^8$DNxDo߹V=do?SInpy ~hQɷrk]+)‹P[b E ;'KݸR͏Ր?'"%9|G Es + +#CS(^I1f!Btoִ.TrEI 3y_*K-Y!#t~^9F]b/JNq)!kE"s k4A{Fe:e 3*jj rOH`6j-|"b2Jۿp_BVV}zr0ꦁ!9Z@[!dGQ{{q1$(X. 2By  |rC!=K^:=Qd9ȲUivf|(| H8$P*5\U˞3cgKeD>!{\ET JL&7+,.KE zR(Wq'*$,i{H\!~ވ~$f^> RoO|DYu$}-NY3%?VK(0W1Qtj=0`[5- <ÆsW =Q#3K9؛+lc_gDq=G]AWViHz*PX !/8r@Gy$-an9<.$t|_#FZcLXZ;DO%¾a,Š hj$QDȣ;~ 4.4⎮zjSqg }Gh:­#N_j ZBP|wmz0MP{Xq9Zc~ J':EZ OkJu4F$aaA78 %6;Yaϐu\YP2s8ۮHeH*ELs?ԾdS^@h1t~Yh+٭QeyZPIP*GY#NqIC;C(PN{aÜNnh0mAJ/"$(,$̱^H‰z-n|jn%Σ\fQsH{S_GV";.<7:%԰P.Vb%8GGs!:FŮ6r:hN!wB[9 @ uWjYLDJ N(Uu_ oؘ H"3pz pz%қBM^3 }LjHL4;ԓ26#9՚a *ª`&L^L/Vv-NADJB9Qu T"YS#ZܑBrjN-ȢPLRڃPџQ>,^eSejm{vdɠ1;n#GiT 㢑{c >%|beݶ燢g\(S[N;D*ݔе{x RsN1E8)g,n:[H~5CuQVQM"{Gӽ}Q((i@“.@P;pe _cGHr$s74;EYtCH(Ggj73ޠ+E,iH%%8aYNiCĜTu~Y'XT tE{ɶ*>Uk96 _^WO:x`ͣ[9Zz늦Q~Z'&p/m5*~,6R@ Ϲ"P49 ^5 )=֫ntC}e%-٬V7> SOb{SWl#[MTR{ϒv.;!E#Ya=>^2sNq1QڔKnWD2 Ɗ9_b8Z'J~’* xۂˆb%R :I)έɚ3v LZf%UWgWS9V嘐p0нTƶI,{R"$ CF?^Xz{ =0-M-;βOt6DrYwčLO;Q%ܑ.us$qiVe2RSt9n@%=36[=kldTS`^B^Mb'v9oѾ}˲F (σl\ULp|+竱NXDBF(C#.alU2^R/5%'z?`n皜h#!Z8rZ{ٔ8;(C^ XѼDzWMXTOIs&9hcRqU"(9d%k׌>=Rψ5560Ƅ\Ejx NU GԶPM7:|93Z{ػikZrBNq Ŭ{X:EaN"Ȍжq,6}Eۆ\z 6VFF4v Z֌4⌴|e+qmN;Vd=sD997"-ƼJ(y˰ ?'l3;FJ y\>C2?)_^Q9̀y6!mW&N=c𐸊NmzKW/qXqS]6 lZK'vNІQ*ns4ʴ=uX*umu#9ӞQ-~]j/3/ޏêAʌjEݺYDZ֝cymd~S:GT{m/w$z-'oND C*'tcE%0s(rݞsizbL Qu`Qq4T}' GQ1O1@xd~_L* MbpX.&|?$zEUD [F#NX;CE{F>mYM|uy r:$yYer#Q[7YOrN3~mBeUUv*?gh6i~&1$U_׳:7"KQmdx_׷e͓Ď3&$eDzE򚖕zS!m/tJ(4|97c~^Ӧd\4[D? #Gn-7/OXa bW@*ݝWQ:a\[~U;{H$~.j~^]8gR6 ٬ Μzmf+''dВRV%R\셅ʬK{6))L:nwo>p\ݨ8˳!i`+\Nw zm@{ǖPi6'*[faZsb C ed]##WICJ)T5k`vЄWuxR%eȯ 0{"bP1 .l֊Lt 3@CD"-V隈 FQ05(ָ+n\:x3UG ~H<,f =msL&z.B={C /a3ޫhŚAvyfG(~U|k'x}%HʱgZ־ p Byb՗ǡ; @*A(v%^5F2uUn~Y4bV`wX(yXo]A:sv$JE?޺|$kdG6ZgoA;H8Z.eAϠc7׻uuu<ؒ_ֱַwqm練ӵ=%҄mwZrxĞ#6iwRh_[[ڴi9Ǧa;R4ɮFyE[/mhq޴6Z 1j+o?vֳ\[\[Ϻ2M? mP4iv\~k+l-QwKIXrnXZᧉ wO{+1n~I ę{;)rۍVxkHv-[^[v<^4xY|2ؒY6t0Zoa]vo;jWv;e^lٸҎ_Zv׋h-]-/֮Y!p=eoli[[WK=8[W G<<=]tԬEKWuSaTwif[oC Vصs)W%7Wa \JV[BD /Z B2Q`eJuǣA\.'Y*.ݙ9WS"9lSRa$сgks^'q ~9B gksg*#̢w:ЄB1 ۔O5 SZD!c{8[|LiG,4#xs o D1hp>SJu`liո/ixE 8~UG (GQR?#_,\$k|C)WMjN)%1r2f8cEVDċLlL"HĢY?rjMJB|YϻtRK_Q)!͔AH.pH?(;"a}^9uDIo"^: jU`6k=?JY(1tØS j/-UF(SWkŊ+MVfyQR8K%+*1*Ah˖aAs%$헥HfWPI@H33_9s <In5QUUF͵QT8{x=&vHzn2l9)*dW" cFeTskRW$,P%8=Y"3>ɖD]CS"JƻqDvBlJh)6t :eχfid$Y;B/&XXUQR'A*f|I8pZ|̈ų>W ꡬI9TK.^O-u`VutWPY=1fANү!|YY' ,ܗp;r&Z7*8ֶd5[s2O,G\˫^}Pô$jqeN6"i^G:^aEjB^]I:P-zT t'hL,)vfMBYv 8i{E{4X"颧 L6CRBB˝\6KCN7> KKn2',8*ߕ5W {Wk]NzsJ.FC] 6A& 343DH4aJ(ʉؘc'N&kN6Xc&r'7"쪴Q:USCi|Qh/-E89u,6jqgIr)/! |WZ%XD6*NYn6qm_hONf7Eb"o XbT["rq'dmT۫% @B-rw 6+Lp(DbON*QVk{K߯!SdH7>5Aڢxرdn ed1ٕ,F6Hlv4֮ y\[G- ׌GuAi + Fy$Fo Fu׀l8C)nOM  3: \A, v?oaZ7I;YpwDu\G}5K j:!d8$&{ sNOmVh][Lrr><q)NF#dҺ8CRq$|6PAM$*~XZseq2K0HVUR t8<ɦa~IYUkWF 7qd}+q"!! ~r{yFi3 ?7R)?Ɯ㖖~AQ"gv[$>Ln~1O'SLOϿt|Ns:qS;9CV"q3J3GDL`.<5OĞO`jԝI0t{׹_~u׹_'81ug<_1v~u׹_~u׹_~ufd_{ >Co4pxEzUO涑G-We䕵?%/6zg߆S{d AU}77o_}C!ww_G//q./xYnw~#U?/mZ}эޯg/ԿG9 [7]+Og?~yu K@+hfG/e?r $<'ݟʏd?C_~RM ok6+B~՗^ .<a:zC+}ހ'eq|-ݛ"?>? rd?GTq/[ԂevEٯmT }u qG.Ofy<"K󠦽LK] ϽWfV8~YVhޚ}~V# (}j/2=s:f|zPB=M?|w Z5Z ۹1Q7>ͨ 3>t`Ƨ߯^-Pͼ`|18?1ǧAU>266=#O~7 eE _y ,W _r'L'|I^7Ӟwy g_1䋓u5nY_,O?qaGkCf?,? }mz/y/|kHOg}槅oޤU~J\]aaoxޟdyL< ӷQ7en_?^6'^I8sMNGY/,dwxF~}$?vs#>g,g^zЁbW>cye>[x33 g{qǚ#f>{T>r9#W?n,~.?tqkZggyizf {<1F|Z>8ϗ>y|>^D0uq1e~io_0}}^Q>,/1e9*GWl2gޖ2߇XN4Dޥ[Vg2<8A n{E6":`5o溭?a+#xw% mMt}zWsK e@5bϯd~u}9C }A_qc匋m<5t|'?wvny?D$dV}ŷ^Уoߠ}2 T_elo\~!a u;"*Cs&x wihM70a|g\_Ͽ'{@۷.|`/xX^UM{W=Zc|}qpXt rý:oE@tGj :=Y[ۡ"|ύ7_֏0^c\q!oe%$A^L*~qF?0Ȱ& ţ  `6*(3Z}oF Yd@ ѥ,3.A;EçFpAFSfbu(gB?d0ܠ' (h3,hk3`kMȀ&xn2 (?!x}F 7LohV$+&x[ o EwϰQ2( }$ P36|26q DF+O1|3 %sg!#Kr2WpaG%q'"xk_' $'CJoN ?3z|U_*;^@@:tB;46; ]mrdtױ{emE n, bm%@z $;n|6V73u $; 9Jmwd&dyG?m<:HwAxuL ArcԂ$; dz$;hA򺃌{ Hnw1AeW Q\\ƴc Ύ | ~vtm_t}8=T}mB=l(ܶGe.Qdšh(-fw2%{tJ %Iz=sCNE&"(>iZrżE <+l]x'S/ \~T{G˸cR+Qy7YFF~_7AFS⃗ćE Jޞ߯ZBi=!(X˘^/;wӹt]c`CmOWj5دte(ž>'8+hGBaDFKNfjwjQ׾h~|O݁a !I8 @$j7po8EQc| j ;Veь "Щ`q1'NA]5? G鈶 RGH[i-w-O-Ep=TM"%#")[3:TZ* #S &oR2(RPݔE S1?{d`ePOy9tDϸ P6ǐɡeݾGn=qPxn RXd^{~wn:6~b+/.z5tzra/"ͨsε;=A݃V{0FfCgDo̐dyjLڝ6cff;ьhVۘ6 (h2cI-ooԧ1z`}iaϽS*1\+:M%W z. K@s]aT~ͤ֗'lH?aLŎލteӸ2je [O|\ΌnreSHK{49> 8EG{+OT.<Τ96O9fyn~, ~I@(#dttqOuk%]KCmDI+5i@ۡ mG{զN36=:ۡd w1p'pKC9# Џ" |1⼱aԫiiLVl%:ޮڱz%g[1!iᨗU)#O #3>|vu̍]G7m _[U>k+p6|znƹaZ2l- ꍦi<ew}ڕ;ˊNbN3:NT Ws*ҭ0d~t02tm^u[FcuةzFz[qv\oZm(?P1(c0v~6[lȚ}Ő۩,WjɿϤRђצ5-#bμ?J7"q%EJ\Հ0"m!j<$ÈgRפ:wđ:@FI+أ1Wd2xb؅CϲbarE7 cn\EmD^T~j}nmX}4g*%7b[FqJFg{o=P̺ <3b`>zڈp<~YV "E8qG>(FB[Fcfi3{MKgkFcZ⌴drVt%8ԫ5@I"xV m6x>qG`*!`uJ)畈-u[;<#.xQ?WB( o^zVh~,͉v]_LOy!Wdw<=Hqwh3T W8-d9bMJڑI Τ1=sD9e3r*=QȀ$oiREZo~׃#Bz/ZVj1vEfeOl޷a :FjnLB wC澴[垍n̆.D,Ƒ'jAe(G(פ#۹̀9P0_:-;zu6Azɘp]u&;E_>LY12= c; ׼TS =g>vCU$GT9!,Xp1q$y!\VchT'25;c9>=x55 z{}ȽG~` c tNa#*G%fN@MNlNQ 0 _%_j-f܍;~3fmYp2:2G Ї@Ldm ϑ93 !e*ݯ?BvW%P}Ƣ+NA*ŎԤt ZtX %nb8 81]?H.q15#N/Oǣk9[?('T4 D(r+8Sli}g^ ?Ebr.+k!Q[cogpZ0Yn< a,,kS%Az;+XPt"[/8R{D](=w[&ԡ7/1nXL,߄_$jGsHvkFBL\?^ET-.K@J4!Aҥ k}_6SdWR" 7AE9+KT?muqNȄd͋aT r݇9ik5_WGw)DۭOL3uhnKO6]>B$:ՋPeN':F@`Yc:)C]Fے}ͨkE ?LTkg;lFY/avASd1X'IBΘLˬDZ"1#oe(::oq81xomܴX&碇 ]mn/*R"­M~fA#qԾjDeQ{6=Zͱjr=~Xqq)!.6xqXtRFL1mjX}3D9ro⁀uRJn7jj!E+آ]R!~sQZ@ mTVIuUcyۆ0sk SՖ/VHQ*Htu42>6Dv?beX8ʦK&v +w,%AeɂaئBI<̽/25:E>8GJ@U[VQe'3Ak gcmDl.F+kxaY]" r~>Ưm v:aKbZ߳_ ק#<1gۡ{[; 9P:&=ǖԯnG꤄vޒ}rŔVh9.]SXZdc Reh%/ps" {6DZ# wbFU|sL뽽M.\;,zw;]ކËX{%e/j GW"F[KdSn\,JU+SHc~n-)?m{sgǤ5{*tv< 52l#g:~m_[St9"%W$ r{! p(<{M>'V}yagX2>\%i#e>#f]ѳ%2M _jTnVwi}L˚߶ڴ0^Cmq;^؞~ξ09hԼ,];pU{eɼ7ukoh|Xׄc|v{iPeJtVq@w3:I8٨@낺NEavV-G%i5=1c_9_X.mטckHI(c}p d{&F|Ierl8,p3NJ4W 0 ~pzT͠d˄ElW4V.LfK\>:;<'[[E0Ѧ`g]qMuQSA Oט ѨZ[賙G\d}>X싵Fc+Z!hcd|}OMB"j려u))>%wa])?]2J'v[mycwqwijuMmڔz߱vZNsGMzgܛ[67γ6׷ZhoW+6zn ?iݦvn筭mܶ<ےךWtmM;y9$}k{M۵uZxlzպ[&~۹cp\-flz3麉Oe\a˃v&og'K/gQhMa'GZ5i薖"Vr(u;+mkim,]-)&n Q)^Ƶ5Ε]7C; ]5i߬ Vn-{UYÈA{GlNc_Dr4-mo#OO^6qO;aiشv-iojE$]N Mҷbopg< W=ش;[ Y4vsܽ*M-Ƕ=Ԧ/vS4;5u=WSy;mI9v׻[8,vl6w2yv_kkiݭo-K]7y;^%?Ӧe`my0$|;^K"tR76lS.Z\8?isW+-bszMw ]tԬEKWuSaTwiaz:TAXs8޺ %ʵ@eAu*?.< R'B"3W9SŔlSRCJ-:aoՋ4,=n/Q$"3ie!Եm{Zԭ#X͝NʢAJ:S>MG̃Li9E~i{ǔ~TqL4Flxsf o d]1M8{]fyIf7yaZ5K-(#)6r/ZsJ6 z4G %+李f*cf"bs-E-,~]_T?qsyBL-U5YD DMpxI?mP+p:e'mIy Med OњpKq8]|~t8N)uCZX\bƜ"9IOE~藖Xn՟p^*hEX*ITF~r]<®E¹Ig[З6KKB?.i)'~$fX3[%縌&J<}|bsQHIrDӗSq2#ujD˨Lh1J"-_;$-?I <90ɸ B)+SMqx(_se=O0S"JLBPesCr+HuD0⢅$B 1,tTybz/t:BmsdIa~`ICYypR7N34#Q hCYdU"YDdNxføjB aֹ 'Nl53^dO+VbW0tͦ'ZUf[CMu@J$n+Ԇ e2k+0}|3ICEUA&c9**-ƤQLB#iDlȲ2PX''U9JD 1PM}(AȐ[;]-ϾOe&ڊ|C.,!x591 MHbw)edtR2\; jTTE9)LlBXC v!AP:?Ub%0L8 |Xv ͦ~?${AL|.;%J JMfE˴/qe-vk:'jDf HQ*vRdMk4%/".k].iJɪh[_.NhsDwPS{i͋M SIx',ǁh'VEb ADPwn ^iLE/\~+ آSe|q -vo9Q *&i$ Jɬ'idOOՠa-DvC f.b+m9~vX))1t'D8H$Z"@'f "jP]#X1DvSάS%K&yDtQs&M·Y:X 99*bc`J!IRq"l~Qgt Ex6˩"h5H kB y؟u,vMR^FSfxH/ݲX fbZ1 Uo^+|G%N5 5Pܳ0Li2&: >4872CKb 0" 27 emz../'&Ƥn2ڒA$^r(dž$|d XlK` d+O~=ЩC8κŰ⬪,rW9&cyǹV,p͕-ՖH Y]7>oj>fq]ѩ9rĹW2's[(԰w_\ ~ѷ7'Lex%e% ՘(u*%UֽĠ֛@q9N7>؄ R^E6}ߓSӴB T,oӕkGX/VpadMHtl5N*Ġj7ڹV~ʝt6+Wg8T['HW^pa:%1L 2=>g C;ྸe`A͈dnڕ)d|ZdT]'Jh XSa-- ׌GpC, ˶ H@$ 0^ $hA/߻Ȑ gRR)l[ qEQ$*~0+hv."N[TԭEsp?5Yc6D5H}+H.׵75Y i?*+s1J=Pm *Ԇd7hODDK,f/VnT$k1kAl 5KDM=fKT!jx(ޒ{q C!a:&5b㢬UH\^wHZmЇ RUN6FȲd^7hKfCO_c58hv66E#S%K 4/i?iWqj?Psf.Ƴ$1b*2JD\%J[㥫:nwV)LAyIzZYCʋy1HW.AUv@F$'p#zDfp>d*"l5 X$`q3 š6""I;qڼT-k78O%E椢D_R4:-Ŗ ޔdc5}~&"|mzf֋m6$[F;^fX@!&L;[8({SriIZ<YW>>OjXbd+٩4) dQɤԳO$O g΄96^L=Sg|rg}RΉ93g9y{RZ>O?Sp:3dg4;::L>q;fqJU4N3U z< s꬈3Nr&l_f~<)팲Osigi g>=)h|saxȹ_gۯ34s:빒 VΜ3 ~v:=8Y.~ܯs:ܯs_g?znYg:ܯs:ܯW&oOf7oxo;ٯ5|(W_^7egz}_at3}ow~nuoYw٧tѮk/<_o*uvѮOV\5~'TE__}y;}"*{w\O~G.&(3/|;ye2.y} Ÿe?_y<~~w$Y/ߘ= \Y54m_y0K/'?9]>f;l3jX~O)>egS"5d=?>jAOg 2>_DC>sZh?S~KWв=C.1<'jfo4q~ 5RY=-awx٧D9~BO?q>~~hfy<3}_>{=qE>7de|[$գShD/0:#Lφ ?rޕ}-?~4#ta Yy] ޿F Ǚn0|4‡c<|TF>0|6_{nq>RlxOs?15&)774ӷ6Wx\a'x= }P}ع'$|gӪd=zS 3,gw83ُ?,|5|eCO)OL3 >zqQ:=*A}+,zcf9oA>{X}BO=~?/ OstӬr]gy_d2g=z~ o_#.7|mGx y/\cy$>xU^^v}|7O ;c<}^O]ӥj'7)^}2v/]}'ӟ[>qcj:Zx뚏\ӟ,t,_vf^\|= ?2G_oɴTfa;aGߓ2e}Cv,ͺ޿xz,` kU$q&Y2.#f_"ϸm/bXOp9\g Se2kvA/-/BpAzj.)y-_/~~i{'mrz;//pMp%vu~-g߇{KW/vs_w ZsK}1d2q{}z-Me2~.xT;X8ǰq "g>~U{c+Emۏ1iSNs%2벏ǻM\;y?c:yFR7 .z 3ή9{;s34U#$Tߍ+ݹ4DTG>bkyf-5 S}ŀ_1=yԏ9ŊdV:= LU4g 2s.5X#ԅg:s\#P;dld(PwQA {4Ah?}Qb{.KVcHz~\B Ur9eOAoY ~sҴX;a oa(\ۘ?Re6>+r%U^yT͌~C-lF0TK8vrSS{o_PÞ!|RG1X잜W\1$B DFy^Dj3jUd&W ;2=| US`)"kjBm.3%ýqt0Ij#bnŎ}n!Jd1Kb&dbd=Z w¾{g ^*CIϐ%—τ69դmʃɨNՋ2ZYʺ&bcn+q%WbƟK•ݡ+gB\3V[\;,zw *OAW\G̫AF8=$UyΊaYzG\ȕ6 l{*ͅH*RXj{ lM`Yy3x"r{]gDs?/@L'/@|*s=dT-+LG.;FZTXw [!$ouAIhE".G6|x\FR z*_ܥzwmDw? qHP+ ג;Vx}޽szm-ֽ=&[վswnӾզ[[7^ڽ jumhroZz xZzEA }7YwtS? Zz fM}Té@13b0X =ʉhQL!ab)BQ'+ʈ!kvN)1@[e\Sѳ Ay2ybuKgMNңQ4rS9툢L'rc˒=@F4Z7hIbIY$bvuNӦܸ4nQW'֩XE,H.ڨj^ 8{ɑUS&۲_O.^ЛL 9~^( -Rfاŝ`4ԛG:0`˜VC$6MhqhӔX^Υ%?P9]t>TM-mK(H)}CܚSLƿ~?M+󗠏{1vӸ)֋X =/aQ+gCuIk¥p罾EAo֩ߐsewTdJ~ !4(HWjCR:4X8aHz |se|׀#JZb0բ iZ/AxvWN0>/~nU|Y0AO^RVn qVzBU'xU:U3:=$6SWZDIxճi<ժ_ *D[v LJHN۰r*U7Iʾ( U7EͣHVNk:JQ$i*E% W슰$o=K}y*csR)IZ[bTVTY$TwGdmE"*Е'Dp P&Ŀ@UUgTyw싮H ZLN 8+ Wkեkڒv]d"),WZMݙnx7 dIQLX,3`ahKߞY4+PZX BOzU ܎WK-"v?j SџQ.'ԻIe0!$s׸7uU9x8)w)Uki SlgU!@ & Tu*A6KA:a29S)ۀ7Pťr͗PLMV1XvۊyZH)ikVz8+J ,8,ݝ椢$k I\Z2RԩsL15Ү6%eV2}~ǰ <^T$oKӶMis, D9i{qxaI J|`q^=pjYۗ||'3dS?3yȧ'&W~ȣ"O.{ޓStY!#Χΐ@] q&_1rVˢ΃F{:{U t\ 98:^8sI.ͨ&9r)ΙssKA[rs _oܺsus.pnuK3:'e[ 5'9Gsnڿ朕\:xs.cir9sLp\or|,XxT;d̷\&wgoo7ߺo|]˝sQgk&׬<;ky06^p1 1 gf7*{$\rf*^D&ûy~Wfɼ&!5?Ș .IIw-eswdMwx># kLpiۖ [J&f!!LP D0LcRXMLL&Bs FzѤ_,~Bt`2B$uE GoDbfeH݈4}c=iMF$&0)xi-OL 7Z-xSF']ND@g vS%( Wsʒ߾midLqoEGe[bdW;U g>+emjy:yymMNcl)3{hpQ%8R& i: Wˁ!H4$>DoZuH\D'H)CÑ9Rt}$9yǝi ]Ζ1Q 5V\{՘q9c k&[ d[]b2:?,j#ZD5Ho:ʼݫE]F(Ȥ9sy=+j+ȉ8GּsLNDJO>(#YB$/cWsP'ALƝJ4vswsEweYVOSSBuKOJ^n›Vfgɩ8'ߔCݴƾ\ٹT)JY%dkU Mm-r$o"[VEh,&m C%Z7g?`)TW9嘐p͖v;2':U3A}A=~B#G-3%̝"-F\&Kݾ4uZտT@TƆ/DB>+qra2C1j; )DZ^!Wє0匝amkJy)A7JT+SDd^6(P'͉H'weSF!V $,/J mNu䕮0k5-+Y(#ed\ ?"!5V Oӵx+giMiW& =7־ p B؏ޜXu_ka&JS褀9)i {jS ꄗt-Πs6i|rM)>kdi~nso+n)Xۗ\KD;Wrto;Z=uyWVxh &sguӺKxi_LT~S6R"chְ-'ml&rRLؔRMeklw.Us{noU{i(ۥ[Xοsx;3vLxح+r&(FI޻VeN: e-Bz#,@+CGv&6+`u`g7xbΛHU)FU3U5MrCE3ܭqVu +kR N.2WAն^QգX1r~q!AW՘ZL I3Q]n6v"[$&+n)4[)'&4D;kce~#BM٩J6-K2O4Z_y5yV}L$J(9 s,.p](p|c~pORo|[G8G݇w!,|sڽHڶ}A\umcH+?Ε987_cs-|Aw(=/f)ɕ{s/~s=J)q#r፜C39)<9“㳜  ϛs*&IGS6IN 9GigrM>οWyig>ش&ǥrEܠ 0?"҂.|syͨ _\}!˹!=s`rWzSn[㜙s_" 5 xɺ?|S\YJy ܊ _9E|_"O>H'ttӿҹY|is9ܒsUʋ<29B?L[ Mk:GHEo[xZirf||D7>{7lYΩ*^g9&ygΤsRy(! ŌNSt&%{2i|)1!!rE4z}C'nntr$O1\?0 ~~fǏ2WgTg? { ~gP?ǀ'_d%2W~doo07~p~w~^c?$#?f3)ڼM (3739[ /p6o@c; ] (;g@w3 cx?>F܇|#e>u*KW]z֓|FW^ܤ+/a= 6Г@t&KWnÅA= #QI+mt% MIeBc3 ݃1C`=+ 1si+aCO*#ㆾa] xQ1+a8CO*#z JͺR孆a]irXCO(DbsI $iDjI䪆Dj Y1+TJepr^kIV )0ҡo0^0~g,]654  ̺2C:9T ocƝwɁa]r\Cﰮ4'zR%te:ƍГ|:?t =CcWy[,]a]!݃Гȣm t6]L+Mm 6;9T֕ =Sz9I ѕ*9> g̐nf zRαt%CO Г =o[ۺ2Cz? d;WmHkXWfH Gѕ=iCOb=M+3=ps27+3'M^FI֕s.']a]ir]Mr@G`/+Mr+39`B簮̐AsI!ǘsh*o9t t }C@`ܤkz怏,غ2qC` }!teIdohsㅞ1gshHdt >F=F]!]qg>Qb̧2JOf>iЕdT?ds'3(' d'3_$2@FI|Pz2PF̗3|6$R9u(=y,d֓O<.j[yۦ:NuekXq/"á:$@+stmu$_};N9#agR{oNE|LOe]GJX14V$\vDvu0 {S)/CSF2L!lSg* u)Я_V\,RWvisүAt)@8 p0u2ߑp 5䔃)'"q4(7sԒ 1!@]d̴Co&ꒈxF)_FSv$~~c%#+;8 oxDRjVѤ:ɎD6V rC GJ˻<$c)ȯ}|ː1/Abopl̗$<bGɄ*Z\\}#mHQFZ.~phū-)K7@MD &TOH6Xu8Eeqܕ8H⾈\qIp )?pO/rsB(xDӇQ呬ֈSyԩz~aA̢^ml*؇֍:$iR Hs)=9N) |['1bSDW@K4N ?+d--/,rB1QAU7rU-,]Z^"Ԕ 9B\gO T4 GUj MG2YOb̒_$2,$;s X~ TdP^ousӀ A8UIJY짴d Z/="GF=W9 4̚c덆ŎvΙV,Mdڐ[E294X0 =E#EAhSF2n{͡E2=%PFuޕ M!ƀO16EWEjƎQS$߬L=Uq}{w V7+1Т>/ɖQLZͱw$) &=c~TA.A');6նX&9Gh_{ n`QHH2:mvǩ`ӒGP&M(P^"SqC`A,(|a.W!#=qy!ag0Y'IN%4\ 2`+IxjjZN^iwMU֡q2v{Rՙi`X oqr{R_BI ivR:jeZ[Fs\RlriHW n\75.1pg;Hƒ}$s*eˌؐS;zi>Q`H9k҆*]y28INSđ)dod66U޶{1?~VӮ|BKVh["b" &qCgxtөfiB[%\iӟ>|IkxȚe&VLYAb)7!-V<?j:}dTiONb't9d<&\׀#Ju-&EdͻuEz@ޙynY̢zIb Z3< 6 b!h5IqkJ8$OMixn6-Rl.Ox3?.&;mvARw&?4l#9&"G2:ǎ#}pmG:id@#}fK;ev6>ߎeƨ<ώ1Q?(k]yU1m\ۑ?xZ4Fa@7͑?&&D}3Y.COs|1m\#9eM^̀k2?a)"}p*|L;ϴ~pv\m#^* m7vOȟ0Dh\1`~p3:mk;|'>ŀVob?Kp?& /2Kx b[د0 Gf@2<ƀ2}Ip43 h5gpuo0|eȀ9!gaWc@g ?3[hVu0zŪ'B0"!Ŵ k2#XπN w#A&m&°e3\ʀ.' (*1eW3\Cp-u (Ϻ% /ep㨗F\$Ec 71f[nee32rի^ (2- 9A= C {} # c 030Hﯺd :p7= 2|ڒ=eëF0 Pb d08 (;̀>fXUeP3c4$QhgM1)"~ ^(In*RͶ!i7DI34[)I"8Jo$9ёDC!M4D1Dh8hCT$yH|i7%H4DIZ(ID(ICD# Q%f"%iHID!hD$џdMEJ" Ql%ё0eH4>e7I[#U$֘l7!H4DF7h&B7%I"$i$Bi~SG`# k57DIvSGM:;Daa# k4d!RREI" k9D# 6:NF'-d Q7DKI%IQh~K$hhX[ **7DEh4"`HDF$Daa# kź" k5eMEF"uED8"ҰHMh4Hf"~Cd$"UD֕l$"ҲTd$oIt$B`IDF"*TFa=d!2Q~K#~Ct$Bl7DH *BQt͏ft$nI$o*Bl7DHHi7DIHTt$"Md$oTl!:"$Ud?fTd7DGvC$l7%t+qDGT:v8o*:7ht?)p>I7DF"*톨Hc!*oDd$l7udѶ! i7DH":#ac~C$l7DG"2oHDE ё!H~C$l7DI"B"$a!ofNv cl7s9g72p}ogiZOn8e`72fNvNvR━ml7sN͜ȃSpNv)n8e `l7sNvn8a `dl7,p9 ' fN `l72톓i<~S'U&9 pNv cl7u"o)51ܒrW И697./i6:S:xonJkqPřm> >&,%S(duجK襩,:* }yX̓²ta g$?'3 μZ+â{5hv_9h- x˃D5dXLWc])1եVY~Y7r|^$JmL^cxfHţWM|]1|(Tb {Y:SqzYHhĠ`_'s@ c@h,/6.+'7H Ɍu_OS m߷Jوhmp{c=LT]:^〈 Gll[Ts,Vo+vuS^˾І`N*4GǷiJ,[Au ((5/B|hyaSdľ.ԇyͣ..յAJKNXm:_#NCu2ƌ(LCDW6l ߖ9״ӥ=2D!6^R6 ݛ&cL2l̵}U]iN5V'f//TgƋ'ei7ҊUno<@lCFxv# M+"2pjN,16zSސZKGƁL(ICܾĮ{s36(6ڧ(D;VM%e6c ԴfSO?4 8yG4}8}[8Z,H\uD6foFmJ6I=[WO9U|%ɍv bs83Ol+P(%٧{$Cy-[NT^"z'c[ϑ,rjY񗭃Kxa>Aqnҩ1ޟIL@ K_?Ȁ KR~ˎf`8hh& C0\?I6$9|5PsK,?uat h1qp:NcC҄l^xuT0 AdI. r>\YRW_'4_iib (3_h_/s~LC~׿΀Mm3_?bng_&y?'OϹ L}IƯoˤ>;27 Ư ˴{w&gls?@fx@ioh_6NZ|o3)pEs_; _6?m_3J#Y#seLG:rW{qP1 aId[q>'ZøW+V.ۣ';sGJ ܩ _v:B_<ػ\2%x.= &^4@oI );c+twǷK,Tó/FU|B| >EB1MO>ƞ( tB[&톞uIwvSi+?hmetadat/data/dat.konstantopoulos2011.rda0000644000176200001440000000161314167070054017634 0ustar liggesuserskHQهԞfWͬ{!iw̩uw7$zY~()pŠ "Qufiu9s=w0 r\.,5,6xlKp%rN>AqdE(P'degCho]0$1aaj'ҿ<{_MaO Q^6.->;- ݁@O͔;8Z܍Uާ\^+ѽ|ikBEB+}f ̣}yb Obq|K22\'i[1=Jͻ q.rf) Q`Jz-5 8^O{NzJ$ <{/WneA[k_,`mjsT7z"7>%=ԉs]ɩ~ { =ǞHςsӡZ qtQQNxP s󆫃LKyUt *u 4h11f*2G G5T58jr}]"Mmetadat/data/dat.lehmann2018.rda0000644000176200001440000003041614167070054016006 0ustar liggesusers= |U}_Aۤ--Զ8M$f&=PkeuYoY<QaUA]窫*~^ȵr!7d&i\tGfJ]arENN֦]{k?|>[Kk mtiH2>hlzrRmh)_ Hx kTA2'P >XJ[DDU(?iB#JE\ '#kL`䮏SX3r&UE6 żR$0NaW6G)!RI`n+hb b+DzW{< %)S%vx8~S |#2b>/JǢ]ŌB<%E*ssO {q,khbVr^AL,<ځ9|+U*C2GQB`o, XjEi#. Ɩ-t~O<&T19ݵ0vT&3[u<2KRP]9+"Xh|z}(N Kڹ>@ #o jjveL&e@%?6+s^2 &Ñe:5dvhC\?N"3 .yNX>:He'qΙ`0@eh@oHl%;Dƀ3X &#'0*^!bL"ĬdUd\5$x//Q!A'@ | < 'jD,VYfjD^cH{Wfw`HA|DQ4u= Pa<R*_J@`28~wwc}n^VTxΔ!6 8?Шt@$fRfdXfNu5l@lB #` ZC";H]e?z2b<\&q<փ 35Ib8Sw${D;T@E B+ojL!1~, aEdXǠ)Yo6"=k%7Aj5FcU먚Cy2gz-F9Ioeܸ26uh`6b*قg"A!NU"7Wb <qR-ϻd'X|'uދ(8Na z>h}Ȧ Yzh1 Zt %3PL~ڔ|f7['nebxƅA0ӛlIM' ,Ⱦ Y!l*D9 KA/ B,xX$HpFF\C˚ ol|8$ a:f #x/2$rI2Ɔ̤GÖ ]j@nKWb0nsA8H P`9 Nɘ!Kغz``Wa5zY.hy#q`D"vic-"A;(P#M)ё;r1,VT0k r@a6k,5 3i绬ZM`5$\SkC INJ8l=e22fIoGq%,8o2[mVFnYYJw}rdiWՅLJ`|ՙ2e~ʩOʺUJ"fˮ+ %ՙ.ze#.SV\/C15b3䀡 qќrlP㲄9͂Uk,UY@dN99zY,,h4سsFyȕFc2Ϡ3[h lP FXGKjl9 2ZRyl֛ih0VSҪg~ޫ=Xө**uӽJ*'+2H&&V)c_`JV`}(0>u}7Vsp@TN8 kH[=E0U %Qb AR>j#[omq[69h[=L䔲Ulh kҦ8[T$꣝gZq_)#+q@ ˤt9(@"'F!›]:ClsH4!㭯r1FH s*Ö́/1pw\5VY#U/Bd!̡ VRxHTl*JTlWsY3`W2PF\&J|N&N,8I6BM2h 5% Fùw2+C/gsJ"teG /Wd&9P_Wi&x4P=8!YD$f8"mfD9r4nwXV4Īoʿ *Μ֩sԹes'CɳY0\U/OR{j`$]Nk8-Y"5n-w/к6Q x]$lЍe?@nk<i;zel'9Qu%OA@;J2͉^'PfQYtrKC{!bt=OJ{t^בzV~/%J.~wz^/JZ /~MHaw%AX;Wq]a[YV|o=B_n^c)|$~JIi6RQ3iR* tK_ 3T:"r2d}E\mSY%˂zf$Tʩ,),"r428:#JFf<}KqиFDF-U/qi &$3b|E;0J<)!0ĦDXƅ>TŸ;h1>Py>ZbEil #72-OD{ =ޞI͸\k*3k%1:/tEkib>[|L\jB ;#<,^@ Ӥ^8D݁~hgyKRuj651fVSɏLJ TNCXCoB(d|pEdsꇊ@ k ZT;0llњ(_0`OI>#(fS1 ywHwW~a1cZ< 'rl-o^Eѭ [';hu` 4ϱ:aw+ Fۑvziauڅ]mh^MMi/m_t&dΤw4~V;^cN&+4YTnlyl$8I)s hlZƆ7Keru$WKL.6^sow6\.rO'WSkhK9^-F=esݴLji1 ]b.Pp/QWqn@QF&BDy~&)Y'Wɩl|LJdNeN^JDH͔P'Ǩ<-sq N30!G/$j%:ƑB$Hn* Iy533YXF3*i"4ɂR:z33;NUZ_T=JTSưDȖr $$R 7~;_&\CgIC+ή xN嚇ir˩wv&q5^Z.vr:9& J?+`x~`BMY \*syz FRSIyzwr铆rbb"p ȉ* TAdiF?&GZ[[[[[[4?'7&?/C8tkZpE9߲@'hX8U$9+)Q"Ey:3 _Sxtr^GP= 8M+FD3ô1P:9D༌y)W@r)}I 'aFc *0R}5LbܴS >YT+)& yAӬ# `2٤N1Z{ 3qşVGJDQ֬qɉ4J+Y 8N͈c5R rK‰Y ˪U +F9QEY3%JD@lDrT<I7EhdFǬY– MJhqg`ZdԦ`|}BӶ:| m!pxyAr}ֽWey{˥'st=v-+ۢ>%c) Gs~<|Zn~,h -8L Li>Y:"-~\> 4mW  .J2hP\?wjl[6I[z^**p η)A>#1m=!FM%X輾xNZmQ{yrH4M_կGǽ͔G<,gM#fAmA4EvMՎ^TdX% ffYEo=!cQ@C;ș X!g1B0+,4y$Z454EA-qa$,`LDn0cbYB ee2e 1a-2m[͐e#XYGCBn5 "m[&FݙõEjAk1S,2Rn20x6!R>яz 2e[2L1.&^ʢ9Vh]F =-N1F52 ጉ "YAl =ٮ:żQɩGln/.)h CAYâo7L*g)>v=; mʆ.8'@)6 jvJLC6sHD$m0C֚R`Aŧ=QG fVE`\bαCHdID(; ,M 6+mO${h4!e;m63dQ-OPvN;D4 l]^z_.x?=mP2pB!4N]E遇?P5r/=}_{q}= i0Ig8 E 98=X&w?zc7L#z/#|ʡ}<2[{4m椟lRl3]0k f7~}!Wp ~Joq}_yvtɵ< bxAA0'-,8 [1 ,GkMFp,sσ#d<^Z{+Ib9+OcB`''B7IZ#W|{_'  |MEN0t+XIBW߷.3I ;vロr-@ `P ~~L&(8 ~!S7B57-n1صdހ%7;:OuteUW} ]*?;$/LX$#D@(yot{Q=!~ʎCO?K?!Oh[ ۻD` ݲfd#l1MlĮ1t"y W߀lx(I/7zҷpە/ 0"Gid$_.#+5ܙ:#z߻?g~_yH~yMwн͠?}@F3E"X> gNtgB|Eǿitwbڃ 2:M+j~KGGl{?Z'w-[  %xmxOOlD:7}J?fӉHۭ,'㤓YOi:@<7Ga"=pVm?[C$7zk꯽/DNx챓#=;Ho߳s9cl&劏!GÔ G!U> =蹶ݠcW}L*?^Y3FxK6*RL +0U+weHeb*x(#1*tǭc&Ny Iw/P}Kxm2et$XBPib IXn%X{8<좠O Nr^^dGDV"J#`UԨJ?+X|pՋ)`%. t@2ATC'r8UbnXe*"r'/QQ҂u24~Dg82Uճ_*$Jee(0 1NX;Dʸ,[eZՃz|0ϋũeIݡJųoD?.Dyv$5fsyS| =.9ɠJCKP!Nl b\I=J~@dk|E}^7|9,*i99K-BDȯ RmHNnZҠ;#EIL5{)0t zEd*Xh=fSNϥ +AEwN FMMe( B-S s6N &Mdy "<˥,tF@{⌛p  cP}DhVTGƔ FǙK{ h1uxO=Exe (:<ǣH?iShl*uxsE_ރA{h?d!}Kxh/RMnT։<ux3Oi9G/:uyGOo?pkOްupk|[Qn6? $k=7~2N絊Grsׁl'f,p_=k4=Wow";v^X9?{jg uܴқ3ӧ걻caeWniX ~u+&x{)}鷹3]{bFOMU[^b`ࣲs<.cczzs;_Wаvc+oV.x:XYZWW]1E I}7|0zo: _=h'qc%75WۍF#صd"o:!S^nr+`7vt}GAgJf/n4[wѦ^^vW,zo7 w>>vѐ>/ w?u׀m3zaɫªEY :z_^uӝ{ᮉ+cOlxsvw?w~8]]̬Go/ֻu||Tp1 .N*7|:[p,Zʵa9wNԁi9=0w{^5|}Ů늆W? 0䰆ۨ_8gFڽ gL>ܽ?# 랹paϜgVÛ:T? ?w9r'mc6t֕?si7U ]naz,g]L^nx߳I*o|O~{:0oe.?x9 掸j ({npoKs4mW=kG+<;r\[j?;oKDoEJ&oF 7|vެ]~Ƣo_]6tCoU_g>0,}.U`G;V=zǯڞ`CFN3k!XwD_ߝ'pNX}|}Y]}7D}<_לpNԧ+?}rg%= V.8ΖqYow~S ,W!Ͳk|poM?v:<5gNd_+6\MOO;kyl|g7/YOT O(9v$xƭR<o 鯖E`{^l >~qn5`ANZ_W{ ы6/z<؟u4\rx&ٵ rN(oX>>$yMd̈́bBIiI9.~۬D`fAawbŒ |dwD"[̊:!3IGr<ɈJ.8w<41т q^v7][LN K.s2*Iz(<^3e%WTćP3>n%xFU :cEJ[]5xJ |˧**8θXk6lH)\2G~* ujgv~PDHşD'QIşD'Q2şL'S2şL'S2_/EKQ(R)_/EKS)i ex^){SO+WT]o.=Qexq!".F㩈x:xx}m ';1#R xj#\bx^'ۄ qdɈ8p >#4q!".e>xw)g!pWݒ <CB_>>x:"i .dx\q)".77^wMnBtֵl`DMd\DQ"/!RsDsDڗȴHm%b B%~#p脘 G zu::Ru<]#pم$"rD<_: '#..L4\'c1.r xy|鈴 <η -bk^.Ȯ>ʮveW=kdWk\R:SBp1fx1'C.ҟό݌LxxKQF t1>&pR8BGp[sr[-yyx@xɗ}TDڗpGpGpG} } ɗ}/E.nE7IJu-{E0VG$|8B%D_B!wHupSyU={d9B!)_=r{Rn܂OI#pD*GdBdSjS̪sjSCq~8+'XeaY:f^+ wE//h)ŢjpǓL&95ܔ>cV VV|i^ҋJ%H:0t85Iu!ucf^WČ;xnXAnW tGrnWnnXR{oi8[WL<0?Z\Yt/,)j)`hs5&dd̒WAy(+j]H+¤jf(' ixZƔC)<m_PO^.jTCqfVcO+kaZa,3,+蔲83WkEeA+*ƂsI1|`i4]R*yRYj9s.JKN+ΨVK|J/=M^\Pm%WwJf,qu&R5 cܸ>3G=vZ,Z3|XTGVJyNX=YV`XV`Vk5"H]7(D Js?X zY)'/M0{QddwΤbM`i([Ӓ%Euow]y #(m4U+,.xCJM]1d[Gg)1jbw{ , ²,Ruc+{ϛ5umi8JI˝IyY.v!eZ5M*ŒkcÂ_g>yMUι ٗ}ЯyV&l/b"%}ᖻ'N+2ؼ~<2ZcxߴV!|S)Z1nRVU &gJu#>sp2c j2 g8kU\<:p3 gxp2 =G<}Xw'ό7>U`ԊvNW eWv[>/bVj96E̝ͪjX"i{fфR1ojųIxZ)ΜG OW/^X?6~2~RqT֦+cTfl(FQTl#3&_cR)&(qyj/\iIt]3=%yn6׋7KJdvvсAM]8I]㦊WUHFD2uCS] #iչ)FDȘ1lIȘ}1˺nL֣FƐdJLDI`cHXݚ aH[ۄĭg#1畊cC.a&! -IUtYbv cNi>tQw8upX1"ބ7M/iݐrd/8X$F:Rq_ h˓pሶ> _Bh3Z!֊Ƕveozus :2ɔrЅݘZ8z>:% N`I];.jʢY4mn=k*W>MبʂJGYYrp v32NztE& LgIf,:1dufTS,zG3%e,EN]NǜF2Exxl.hRC~W^iM)EdhWеea c `WK06;w`žL`f⥈qt+]hJ_|+1_1[P2 e(CЎg(CPګ;'dhcHvF=YwCW5eգrlN0ju {lVdZ9>!O=js jzOJir@Z* -idP"(%ARP JL%I$!>HB| A$I$!!HBB A$$IH%tPT 9J1Kcj厧ZY, e&w9?4<Roz1&kVVrEyz;N; ZY|Kk-KC^S*F~>g̍'yQ>bS7V Ŭ>ŢȱDxy(+jb" yڝI0TP𚰌8:͕tEkVesӪqM˫9~}efYfe2p)#R]I&u7JzT=}a 57ZJV^0YnfqN1~wZMkZ=UbQ1L_P 3gVbܝEkՄ!DZ ,Ё NZs4[]k.LtcJi su,32,32MdՀR_3uQ@>tQ&ӊQvy)MC!N9OM=(&eCSUzVUjywUM;8zRJf(;GU2%g!67zPCՎFՒR<3 J;m[R]Ӈtc~SjQ1_7iae֎Y%' 'WH|95yONkk:|Z1~kyZpS3ĸs w9Ɗ{L(Ne i߄VryZZ;uB)%I)-?_6ix6Mh߿s*z38` 7k꼟u.u谘TkS9ΫEv`l^1aҮBsA5}[ӹISayXOdtv,q<'gT:.jŢăVbFter2ќmOg'aڛv(ry#g5s>kfx?}z|%=?f-PC7YKbIO:zQ_n|L^fxqp83GY^eyWq=O5Փy8f*+Š"H%x|/}Ke,6zvAQް,/,/:ۀ\Gj61/S$7|LNEI GM=kt1MWɩ-t4yT<)54ѩ{#c֏'Y:KCOS/w'G^oW|ܰt{|^ޮeX6iJzz~\-UI\C>>0x\z<9./w'~Z&O)X<, KWۙډEyάU*܄6L!WR-ڌYժWR1V#_H8YALۣav0l6Fx\gn3⯑1m+"\Q%+Qps0 kq#ke98 _u'a8{$l׈gߟF~fنnba|QmѼhR8W_T~8s-hHa~*Voqn$a3[k[ۭ ߰[vYF%`D? #pS-75g}o O7 kHqO$|X_X_T2f+AͲ,[C.*A[i7xu||UtN5JU;J\enwY\wZd}8q+qk5[t[vTIkŎZz1!7cqî7>fٺ)v^7aw-ڴ6K|W[ o7`v6oXWQ}>Cq)mv: _H01OBDBxG][~ $FV$o}2°{P> `qQPa0d`M]'NgSP{~p* qy`"@w"XB:q ad ;b!n}WؐYmvSm/=dmqB_HD-etlZvlYk;(@v^k7M登^ٶN*d0aڻe0k2!Zniv%wfhgѵeamz=Bq&=$hVNnee(q0+߶|ax\hnړ%0:hj幢ʨ> s^%Zm[[_Q4x7 ]v߯,loXz;o۶Dh[,3qd!lhN'-.>7{'rx^DH!CTA8$U7ǺQhBQC~ 24B|[a_%^ゾNՆ:|eI˥Q%2 e(Cۂv[lQ64 e(CG*- %Aԝw[:1W\~Jڷl 1a cX?cq0ayŰut sb-wgb+#2$"REx@UmGMoVԥFb$vdܮRХ,8[IxQԧZY1-n3"1z2$xRG2qoSh?ĈQשov{~LގRN+r9dW|d:. _!YDgt*6WHK%Ljg]A)E]L[ޜe&3ĬW^O~ O~;΍)A/L%Ur_@Ǭw7 o~7~_]e?~ Yxa Ow FxR ȧw 0l"1/H#o0;r~ ~넳~0~2ȏ^};Wnqp<T>tCs `h@v6B8!n77'@~ /p=mlo9ȏfבB2upM?v0,z2W>欇#_?k3osŽW¸?>/6"omF6H_Gvv@5tno!ybs$4Q> /s+ o _~?ʇcH~&g{fh04@?3,7@zjC,W6mH۝{G4_Emdwi/><E1| OCqdwZAqW۾h?( ߮sEy~8aX\6;/bxu`yan@C^{Maذ|;0ma84z|4Z~Z_B0|9 o '0zއ˷ƒH¹H?X^iQ9Hƒ T'y/|·F}t%ax*t SMus<v~_4| ??aV[|*6M^_:?W+|ؗ`x:w!{O ` ^?.0 a8| ѩ ֆ0Ym{` 󜆃`h_S/+aOa-$q9G  ~1>lw̢qp<;yMqmCOE `c{ګ߁SEe|Jhpo'!~fNA9 ~гQh7*=Ѝ}l? c{:|֟ς^ 7/s׈??&=*|/p?-_PC>uli6G ۣfxnwHPg#!l=LfЁ+D8|v6+F ;xȔ_t@9b{s5kޏBd;і0eV3=6Bkn}B#{ +]_=ri*A׈W!\6i/riߢ{l ^GbZ媡Y Ka)-lb$#HF2d$#E7:=/#HFƇdd$#W;V'U m=>6bc(CPX+[IP8P2tY}ϩڜjZ榞R@ HKe mGZr8(1% AbP(%AA$I$!>HB| A$IH$!!HBB A$$` Ryznܬ}pK䌐J箨 Efgw\ҋJ9G>aɚ\Q-3zഡ zP*U_]lY^'| qM\ͧC1zOig(8vrPb*(1^u;5 b`RYjLS:e\PMuъWU܃6f4Wk+vfPsedIbYnn{9Řψ%r=_P 3gV͎bv7W:{iCU Zy鷥f ]+t)=Y֮Y&N^~-,/,/q}$b8nzi(&>祣ÍusjldnF10.?}aQ)ﮪb;}#8}JM׷HߺƢgcfDŽ^.og3R1'R]ktc~|L1b17iSܘn%7}-il-@Y \g-eE|rZ+^<22n7U륒eqŒ_p1V׬^G 195H5v$+J1/:#Q&]+ ;RJrSZ~dm%qlN[Egn}=Utg,q%8oy?֝}bnR)efjQ/+-WeSQg)WĿ+Q_!w#пv_$pC[e|+_rW?Z~ѕ+]%^ջF~૕ys 45"6`}d ^cc(CP e(CRxb(CRQfq,Ν][ oëY a/J^',|t© &BD8̭WHx) 74Q(oJ{+>x}q^§$^i ~$> L%HӉ`觟 {z@{`#i?]4Ö~! ɍ^wh$ZG,@z?!I ʦK\8s~"yfr /GD+rؕ O]AaF2Kdu |/é ]I;7Gnь^tӏьft!V.TfQ 1qٶ]GUDKګnwSLS5M{Kш⧓}jmݜP,#MT΃9IM tl4RoFhg[=.lqQljd0clY)2N[^&wd6MȊL<\D{tyv_ VYE/?0G.`nBkNɨ)rWr%jT`|J^k݈|ۂb,&1zUϫb~וŷ7>nbVgLg,~R ^UjI%5̩=wa:*مF,m81qY {BAXI3 hTR3qӆ|5Z;6!`Nq[ΝDbCp:*lm6R!j:0a0rV^@M7ӡ.n#B'a{Pd+C9y,K,qlWy][|B]a @9GaYVƂ[mp?~%Wj_S ]1J9\5XFQj%Hȑ{,nTUdɤӺQPkGj %:9D ےTm)m[STj9J%}F+jս,~級F.oYUTs@nb >7k72Wg˝j:u\V&lrwXEpzg[: jl^)J- .gZ9'dgvOm [GK3 y9CKKiB/,[RϻC%|cE4Du-)ƜU_]sA+ tA=8>tM=.仗V Rx,74jj)y(A˼ru/ἆU%1I" !qnP>H=k/՜Lum.' x'aGfյ=^1WGY?PglqX;PeNѓJTE<̦AvAiW<ەvf-;ߏ˻l̑2)(vmi -߀P۽d(pS|ivm[ ޥm֪.˶iV.ȧ"ɫ*ɣٟ&5[SafHͣ*gYʽ7;lߍ2ݢ)צSSOa)BD;\E7g,nʼ[wʫ,W^Ë aJ}w߉D|xe9LeY*C_}t67kk8@)ſ%A>xQnBۦvNI$h6iopvTۈ*1Mm"<^DPZ(C;Խעq)MhE"-֏㋮-X̋7InF55fՠ9[cDWt5ڪt&++7EKq+mq]3ahg erDӿrA/e02VTkAD :{6oq&E5ʆuy02 e A{'>i 58튏*b}L1kTv. n^މeFE w(v/%?7W'sJTop]/no6"8EmUJ:ZըvԬft؆mu-2qv<7m+ #"+Xϵ!b Gl2x9Rl*>\6 $6]]4rǥ܄JJظpڭvZYK7HYN+řSmo71|$xF,+#=m<]+T k]9K6aM6m.{qj&2K陸}%sRgYdp7uc'Q\T>&:!ϹOsyc{s٬lMܸ+r+Wd8ҥܥPԥpTCb#/G7T ;FɎ.M&ՁְH6]M\:aj,76bxnj<'\_0Hl<|#6 v;j,awrz{`=Q丹H!KmύO@lqWOw7*WO; z7ەZ{Yܶ;mhtht,w1=6_?iMlh+}W"߫ãʹ>oǿ?ޝyuهoP7>ROnt6;v#_faWwOv/P՗/N<`3ENv=es~'Q緡g9W?Ww]<ՑoA}7{=^seo-|?+7ݍ1Neb&|ozȷA~_x Hn?@r#(Qc;+[n3P~ Hc|WQ6 yyHv(JO|u|vq"ADkQnB's?|~c̎gӗQܟ8p}_GpOP} >4^]?A9,w /BA:z=.yG~G ? P*?먾 ʭEr2ؑ"wAAv);B<39#mHA{4>"sP0n`wv.<"?׈>+jHs~$({9%GѲQGrB<}I@0w@~u=oʥ@BQ/'!W{{]|A8gxO#~ɣH 7}('\_<ƥ14~)Dz~hћކyt"}*W?\wɭ KO-??+(8_7r Axu?8 _B(k`*S^~?[0?8_F8j Z{A?"'wy2/ȶ7:Ou}dca~C=x^`s|@v W`~HBzڹ>?埁y/P: }Qp7#kޅ!s 4W`} ?_N7F9H{Q)Qru 4> "˽`h3g.;ð~`r?H?,_Iz}~0>|+;R=;,ӐX?8'``O<`Y?|o y8 84syDr~gg t"'~< /3Q߅Q&#磸0_~ } 1%1 %#z?_u4fH_F~8G '9&`?;e c? y B!3L|9 zu̿2"H`?a_>qОɡFr:G>'Ay~'|S~pOAM}_s0/!~I?<߷ا|~lAmӰ󷡾+>'sȇ~hox߽;p`vo9 !;L>wz5-?`ovp_@c}z~rq9T_]OǑAv: ?%A~2Uhg(wz27̛__wa#H._zpGϽ?ߧCzk?;gUٷ{;d_O|QTO@;O剗() q8Eʽ4Oq  M}qoNLg30~ aۅ4/`sW~Wc`a}nzؑ{Aם0OX~/#2ϿF~LJW>o_P}u-S#߀v?2ԋ>;?}.n-|nu7*7 CcBCXЏ9x?ka'ͷ |˯j@? q| x]>'_`~Wa]?${+aak+G~=دq9L>O <ct AϾ l>nl;K6B+(_DhQ0@>rz4<p:ƣVB_@Xߏ0xy!|޴d= ?_z^C/i.{"9ac;a65['"Dac !DG=WٌG F>b ۬6ssx Cኣ=zjW6b resX@? \_J=VG/楷\a+mzͧee§O( f_9447s W h8~{*C=>0|| F 3%g.T! l-θ<8g8.;nx6 b@=[`9y gWe?=7JgtF4 0=޼ ;1x.;+™Ա[ =< {gxOx+ ΜAdaހowx8 #_=[|pѼw^gC=ރ7E0`]w7Q$%g^e|翡G\7p0;>p43h|/#Q=w3qm4<~`#~/^w,Gz,wx 3?E: V^zc{z9Q h޾Sи>}7?4߈Yϫ7Go|7ԇ @Pώ? ]K?]Gl/$CLLE`0h; ?p ɕ0.4|C  /3=cH^j%K+."_4}oav^ߋϨ9rz}?7~1OA~|nVB~<|fi8?khΰE|Qn agoCן? B';3Ȏ3#08X|VaA||KwJKpѳ9N Ls7/튿+G`/|i${wE'HwhyoXfDA|~߅! E o;V4O4{zx Ez]1+{ @N؞~!;jF 4z-;, 7F>B=$эOH~@A&MC04Bﺬqk1-Ϝ {\C|.T՛]03Exw߅;M ݅|:?a M?nw}"wyjwVPGz `=wy ֟}^߄Ga=W33߅:~15~ 7 οqD_w\wݢg;J?4S;F]V) a8kW0ȉ;;sS|gN/z-,pw ox-{-*C5$B;C~5ޏB]e~m__5>>fL;4 hP ~p|]@];8pW/-Gore @](|KV;}/7yכAׁ>}_OCCl$U?sH.x%pW(8}?9 / ~0>G~yWG'՚U?+PwP7ؑ;N}ϮPf'E}BCS|{#](|q 8<&.T;󴝡u߳u.܅:@K~s-.T#yc]0nۭ[ohm6 M)!4%ДJҡLX*9JqHNL2KrI}OK} >y'x ^x'x ^xE x^E x^E x ^DE$x ^DE$xm)GA" }>HD$1t$N# }>ý,'2 Ʉ\dB.2wL"/)Tqg)K%E"xI^R/i4K%M&xI ^/i4K&d^2/ K%C!xd0/7w$$I$IR"I$S$&I$U*Ir$J\%I$WI$U'Ix+'Ix+'I+J H+J RLWȴ-U$e%IYDRV"#HH$I$+J"Ɔ/9FɕDr%\I$Wɕ<2'LL,23W2W̤z1JIII\HR$W)U*Mr&J\I$Wi4U*Mr&ʐ\eH2$W U*Cr!ʐ\O:r<#:FQH) )G!SQt2$Fd2 I(K̓.1O<K̤+Γ8O<+Γ8O+!rOn.xrs \'<-O<ϓnԯ$c= 6;e҄T DMHJJș6ӕi$d$U$,,Ad$<H&7S@G$9rmy: 9Gvk$|qC<)X IsQN:3N>FOٛ^DZ*~+x\|0ر0놣6'AeotyoIY"F}NEwa(&ECDb˷?@$zS zQ-pZ:7=tf6>i gy0R.UnFb+ZKij9YR;XUʙJbiTZ3ʥN&057|]gA稹S$lZ]ugxʼ+NᒒBɪjV9^9碦*WW92TE;sjX3RRUEsjI59\kWOp3T^QU{-ZMKq+`J`=OXٽO% k%s%ܑnB}ֱ{%-rU 7*-bkFµ=h~B&W ETC)Uը3Ȋ"̌k.Tt+J3/C=ިuCjzٹ5h`η!>Zl`+CWeve0?,_c`[ʰOr'^dC!41]2 δhE>,hj~o?ke.sJiPzj?<,ұ<+ʳ<+ SFY5TFVRJڊg7*rU)D=z!ZChRvڷoepEU1qY5_ܨpCzS&V֪RZy{yYO7U!Z8B5럂5JIELǜ*Q7g >XVj r틥pV᥺2NZ )zE0}gV JUqJ\;o6XqD*5@m{ T lYf 5jf z_vU\Y)O Yk{Ӧ |[~RVA/9-eX!VbX8z̍|Vpo&&.:qaTƴsʡQVkMe*1PgkEuNk=SYU+rdPX۱bj(̀YJ5ˣTREk0pCW5Fnd;Ty:`גfy嚆aub) 5.Y'=h^32p~̬^V/׿=Rg5ôV>w,/˻^ym_rv֬Χ yYu9fEt][rGMPߓYTQ~yVtR㜷?dn/(3zI2goW Uڵڇuit*'#RO[7;'yE5krE7"1{=qϸg3{=qϸg3H?akm:sQ#eZ8{D)(+%Ӽ^ҫ/\x}!Ba:Ok%MX%̢x5كUR!}z|plBwg3?g3?g3?g3?g'.sޯ_>qI0o_1X'ZUU%V tW&g78*ԁ C-#X3h<4K Cܤ}C g3%`+¨-;yjI)~՞x,\su놁^vVjlgLո|!tޅVo+,ڿ`[#kϦ[Sfe-AI kͭǪw/V>á+oϪj: -Zypג-<*.ZEl9.VmVkɕM8kO?sJ:Cggggg=;3LsLys-:[]v լXj6叚;i%!FڸU>rU 8?r**()x|%;>IY* !_l+᠗A3\HFW+WykJ-.ij~hD)xR= ˛ PƳt'W.[e/7[iQV`oo.kg)}_Z[G= x9hoڭ(ގ? ^/gjI5qRM\_tF*j:%or857yHIUʜ~Miwj݃O?yD)heݰ*1+j^سJu}=}6jrb;MVti`)pCgzZUsYheK,J9ڿ@_ƯW#.JvE>w~Uv'*Vg] {c0>=<` 0c1` k t_'%divM+'Kq.!6pjbҾk65e&ѐا;_=u,c# Xb<0C2c`' IbVT(?bx r8puyeF֐o+Cb`ZpjϑJQַs .U[*-C$mG`r!Ҙ%j=Dh"'*6nK}4WJWO85aKZgs5/wYYl^j8؏xoc{TeE.T߄1YJVe %e]sowxgb;uIBT .9#(uѡxQ.V9`:,?|qߊ/N;_ld> VN8GB˽* *zo[^WUYhRnragg{\"~eCY) Xa "7R%wafVX\7}1:3.nZje:bg߅b .B^ʡkJ"YYbY qWǁZO˩/L._o"jlKܕK{ly8qfU1$@=E-\[2b.ZK5(M"6];'jbnݤ1jVUK(UkO*zUJ/(9Uh$VSpj0xY.w3%NR]jg}99]HGk<@M',JpW8);| Ꮴ }.;A6ʾs /صVpmj4 e]pP \&eo&Mճڂvg饬6E$mVK%k%gZҨ۟5%G+Ujպn9(+$ʾЯaú koYo=`oЎ,_metadat/data/dat.linde2015.rda0000644000176200001440000000473514167107142015460 0ustar liggesusersZo\Gq8&i\'i]{7iHDۭ:$x}=z:hhG$^@DJA( \ _͞zMK?|s//+"* HL*vq~|)aTTI۵hNaN ]2cB$`t v z}=}@p@pH!a#GCa %H uR ƪS3QtNp^0.L <#dz䤛ϯT]K֪]cjj9s Lls z0ĄU*-%k10ӭR})Z f\6B6Y^UJtk#9'v[NXexU/;Ǯ޲/ۋZHR+ID4BGa]qI׭BĪ]rF r킣-MN[ֲF53KU7oek׫srP ̛9wU'PDfjpvt.ujI-SX̜8XWNZdg-,uN4'fm8sl&oQ焙/ۓsBHs:*U.%U? UG{-?෿ "xפ>r,yoS@yo >4i!o9>{ҾKov3(5522n>F3 +B:Fom]6V%WWMlJGC}kj ƮihmlxhO5̅*ibVʲ6OK{3nDkZ| ]6!67lz֏M֢}`kߊ *Sُ\ذ=kMofoC[<)Aܰ paww_: igM?VUXT?\'7/+_q=kM;9wi/E۷h36M{_&xʸ\/+q*?88,1cqZI׾=Fbk+G8W>jc|Vw#3Nj^#=)˨8_$9 j8Og8_PX*\m$@u=E'-g[+E?chD3?֟/A'}B.:"[nH_NtF ?~Kk!7=c#ASeoS?bi/i8nģCH {D68JC^}65d$kz+.ygal#1~k#GSWrCcX{ u]Y>_pH~BVAv1X_Xg_΢ տ[!w.:?kdoзWWOS-: ԌuIqfudu{=W'eԯ&e%ZoRΏ]5ۭr56kQV[+ dk:њG@WcnQV&e6:_n.{/tfߺMY{~'ÎsZ-տ=*؅ȆԆ\1.SRI YGn2eLY)SVFV*JҦ)+]#+J׆6J:z}*[CW=z yҫQcܹ4Fs$metadat/data/dat.curtis1998.rda0000644000176200001440000000752514167070054015722 0ustar liggesusers\ xT~dHa+Öd!22 Ā !1 .Vm?\,J",.hVR z޻͖7a& }?;s=da,O(O8NiUjN,vg 8&MϞP[?.jRa4 0 p%`0&n-i -_| 8'T'? P T{~&`-jkl x.=F{qlR'$_ 5ا_55YoGOv'/_3qs^GƠKu pqqA V@+E ۃpq"J8!q\\۩$hy@>v[p|Jy8tVGYg0ޙO#cfy VV̛#NmnS4m2HLfQ6k c_AW$ B(iSZ' caE$6YۻfC Jݥ /XV?B-(H Ga;r?s/$Gn<[̓ !B)5R[]%}[0頢p9x%A' cowYo N On ^}ɻe=;V4;/:xwy-.v; <̂lCQ`(1[}HObz~X;ty nu_|2_wYlVse+rbr/1$ۡNʉI"Jx?ZEu{/vw4K3`ɇy 8Z`*80xTp @92& nGVXV:w߼pk g,0cli/t y<^8(4yrEhQRkOZ3-Dwы6ickcBh\.] X5ig^|͛š^{ 3 4 |Ⱦ#Eftg{>o\N6DP̯ BBzH[E8ŏ_.:7Er]*Jx. >S]hu$O~'_Ql#}dRemĊZE>2;*^ь$~:JE??~.?t*@X(wqAК\!HV@ވ> 0bqjB` BleQH?p[Je ՚V#BP i5TCB2J* ؘۄϟ)kt_5q0yXE"CxK"fW`~1aC"B4l65Pz,7;oϐW S`+dPJ"CR`/^K"p?K]8 rvN^}cx7g#J6Z[~߶"#AXpx*D#]"쉱 !\wYQsVJ | 6x+1DtA4^SgkΆHؐ9*Bߖi-jWbwjT٭a0%Z[({u2znÏClH}%\BFeMx+2ot3Ω}BooI}~1_?JU P#27~conkZN?"~{^z&lE4c)7n^~F宧vQB[>+ΞT04i9TBs1CPhfW/q'ɞ7~b%w qkhj{=)>?I2oU10P ~M|c҆h%k P4_&&.L~c꙾hGMۏ!c5b6Щ%lz|߱l{LʴiN{Xdtܯ%3n%{DK Ai ԉUtΣ$24ñŤ %ǹzf]9THБhg#{}DE'g%abluYn/'BNKch$u+eńr }?%}XR>r??3e_|݁iv|93Wz?3fm1xǦ6=v\gdQh fGt3} <q߭Hey=ŲYHx}US$R|d/#-9¬Ff_GkѶA;q=_eHUcpx]qzX~O}O~Uu'03nd}t8dܐ]||qL^iFrCs'9.ʯ(iճo _ev F3q=^yt^?RiܗŇvb9@N_>~ťdcIr)}yQYWW#|#NbgH^s;]AC{+.o /y˫{n;p](6GiϹi&#bPzPLD~}GьRFss$]GG g|g{f/`?@N咹tMރN`'Bžl-bϑոoZQ]eFZ.d{r?&cXo>wAbT$HXHcVyYxB@ĀęK1eɇ7 Z'wKܹ.As!Jmetadat/data/dat.damico2009.rda0000644000176200001440000000076214167070054015621 0ustar liggesusers}KkAk&3 _'(Q܋$Fz$Czg$^^xů'pnl5k76[D4CQL 'DQ'X'$Jp _DNg{JCc3ԖMxEԺE׼g䮲.w5}$9ZWٗ m¹;µ. ^+S=^ARNrC۴*xPyvY1)ص xǡ~C'~LtFkreype=tn=vhk`̃7XA9 .+`sOYH9psy:9>ʞn3!0^C<&oT4W/Ո3W9 7\0/;сgUU־bΪKI%)TeE*` 7Ut,JoZq͖_5a]`=metadat/data/dat.hackshaw1998.rda0000644000176200001440000000350314167070054016172 0ustar liggesusersWP_~!RVkI@VR55FX*r*qٻVna@ɘ8SCgӨȘ9bk$4JRQ%i u̴dg>v9K%.IdXXb#Sƶha"22jw)>lʌDnJMż[}Z P#xE@=a1-Ti0D3 }9y+?2rD/<ٚd*eJRLIj7x,}R4?[zo;.^E$('@&E7MNs%Z 2iq`散\~8l%̖"Qk,Y;}b@0S4͑GT\tP6@E>E{LJelNYRPEu4~)/ pfVWMB#xfu@=  hDBF|D1@&,rf :r`\\=[_ (w kLwIM[O wɏ ED!,R4=_SHD-$Yn!&,})M'XO`A:$Q@0)q $s@?"L'X>oAH2Kd$& Xta1/ׯ]6 z :1k..qVDA6…yǐ_2ޝi߷k}[V8?`+] n=݉WhpވϱXK_7K׃rfc]?GVjx' ?p'Y%)w ೰,3ޙ4 bJ8Q:i?speЭG+1{0SߨW18Gt=.yqq%[:sCwӈ%f Άy0Ơ_뿁c$ʓqoyqqc 7F<.%`ЏzX7iX_>xhm  55;IV}B^;8'/6~ۃ _+zij3.T4o\)nÎ 3 ݰre ؒ]3= U?z\pɔ+:mhw/L\{J1 ^K`U-majz$,LҵP]}.gKbk ALEu"%BTED!W_55wqCa^ }h4X3;w$+ULonySYLd}Fy犌(g9I6tАfg%y-v5efK՚uQ7 ~'Fʖm\+)yN.]d4^+"Fv̆+a73ckz Scj%SnjFzxFWY^9=.I3k۶Ј햳Tcej[PCiN+C淹P+5Ep\=RԳR^RT~!F/(f ~*Cҋ$}4hFK D}4G0Z4<xi3g?Z:2uI^̖> eN:aY{po݁ߺ/wwֺ{?cWD뽻lV`ڍ{]գ޽0z׻ mzws[_8~\OG{?w҇od.xu7FXK?Id'";'I8^$}Ǩ ɬ,WOҾ$+`.p)>g c$_mq$cuw ߣ  \N (>RZ[k'GO,= wL_o,\ai[y˖Ye{?e:$<(Σ -+O7V o{^IJJasYD~,c4F?'X\:/d2BD, :G?,0葅Y,A, 7M %"U[k(/ϗQB,#s1޻C}%Nݭ%?!/c'n]8njNG% M~+| Ef@ȝ '7  Fn>0ohk)x&NpyҶNO+lll܀?l7metadat/data/dat.woods2010.rda0000644000176200001440000000044114167070232015500 0ustar liggesusersN@X1z6hLI#l#&˶Mo{ca4Bh%DxP@Z3:a lB5O9 ?619! w7nrz9{m4<{|߾Ull$$(,Ԕ,o8s$1Hf)avwt3Q3 PV*B F X`    xƒ!L$L"iLq1㷅z q'6INJ:s eOCgg7kD3EEú~gj _T't{ڕ󾐴xޟ/oO 9 ޵QoL 3Ϟxoz1/q;-u~1/21T)󆩄|jshQdqR=mzFu=X+K>ndެo>͡ }'c Xu֫AQ3FuK]zl| =b=i\ԯL.79ylGߐܜwٷظ>K e]L +ۣ͞3r\;]VAuN QCdI{[bFVr3-{dԼ!ߞ+ ȷ2lht%obeS YA1#4ms'ZBWvaVľ;P e(&ncBUiƻ~1{dmIѐNRULiӗ$`D4⎤4ez pҶ^WKO1&$`_ٕ4Me Ete~+f\gb1k}d 4Se)jXkgXǨ+Q1[*vծz/lS 7#o^e $0LZ2^OtQc >Yӛ9fNN9çw#ʤ"tϏ_o\n9t1N5rzз]ƵGKׯ<12=:ಱn7'o=4MViHN\ \8Y|XZx}*]%#Z`|4{Ugq(mDEUEcbQ9r_e=Ut&,Ѣd@DY,cTpyAᕇZX T_ayצ.VPiϙl$ .K$+5 JgtT$Q$$jRĚ.)yHLU}*Sj1e_WO"+̪{TTZtJUZ%2QkEߠ5ORSXOJV^Q>E Dx8/ܗag/VrY9n(v\lmty۸S404!I{`OgۉNpx t| OK$}_C~?GS0=O< Yqu9BA'ű@r95hN~:x||! 6*d#]8e5ZEn{-8wvo{{^d? <; BG{/=q5Xл 9x &KIj{k?rkv.}B^&t>.fc`OkW8^9_{aogH?b΢7Faˡ:97<!#DBfT|o!Wݏf!c4u"7P8l no `gWPQ8MLٗJNVZv~ʽd]2STsu3T4k)w5+2o}ks5kqN 9;tKTQ3r|Ttw#d݈;i`>Cu$~ÿi'metadat/data/dat.nielweise2007.rda0000644000176200001440000000075614167070054016352 0ustar liggesusersmnPO|Pz}lhTUB[Fv98Tb`+[nR w!VD/3s.={7{M >XT!@5`绔ɑ6^Y^K؈e0:7RR (l4ߛ`L:s#7qЦ~}SeC#QpK&m$Q!guhv׶zc M(-Qtv],KE?p:y>.8<^v@W}*|_*|e.o3?*-R6)nQ?ݠk5%x^| 6{< VM\"ۈk y6 ^W WAp 82]{ķZ:i$Y^te6c HzxqLf$,69RC!.=jI[N7. 'metadat/data/dat.li2007.rda0000644000176200001440000000110114167070054014753 0ustar liggesusersu]kPOޚ z#+SlT`9bLAYT(` LSAp̀Yp}cwfd *I%1yn˨/Pˋ, ^Ny#rD* ݐbvt>;]=_f$$G諺 tU%uz5irTtՄ\RU+xx%iB_].0geH|">_J| ~%-m i oFiߔUdwA p (c>}= x =\Di\;EZw%;vc_ty3:Sς2;`lc8 `Sz[GB d+:Y( WԹ_Tz{lIjXÚZ.E'`kpmetadat/data/dat.linde2016.rda0000644000176200001440000000532114167070232015450 0ustar liggesusersř aH#DQ(C#c-8 2βi crkNΆͨ *d֕;@߀x%d<߶ʹWQ$Tq~v!,.Ԙ1z~ ] o;`׿oM)ap;]~#P!z;TPV cIkl@N½^Kz`HYVrw#`y%j CUkP4ΖuW0-uнb(> Z#h'rj,q9 {@-P~ t,j5H"^ZCRbj{m])UM`nܨ;>GkI܇t?o gz'{a ߬r6 ad(88h 4zT)HhG9f߅@[>"OXX#]!H?*=-CJ[=?FJ7l#vT~O_ag#je#l0 Zb!|Wyz0{\Dmnl495>kAՋ @uq@}xt:߽u@Hʖ:;М2JZ Ԯ8hY̝nK/\b^,0i:xq@q l| <"eڇcP{ҍt _Flm (MF$ή$[Z6/4sN-BgAWu Ҧz/]/ꬰ'}{@Kٰ/pQBm]t) Kw-DCWr8Gf BW@MY42>AB?\x,u>/Z 9J|ka,,_o@V3- INf-OkNja;g&=gffD2Z+ՌV۔i4Jdo%+m]Yƙ:aւFaZ0iH l’cI{j-G7vߘ݈$/2'zz]xs^DFhT|2YeY3yjSN8sOgsx5UvA?k?XDIkjɝ֎gF}"~L:9iտ|O/ Wv;=OeE:_|}Xb,]FAţ/ty?z`I 84s.q w񔝓=  O4sL| 9kZF>2|^O 1web>l#$"2r'߄F!gBBv?$y*O3;}Lx73#metadat/data/dat.dumouchel1994.rda0000644000176200001440000000072214417173572016371 0ustar liggesusersS/AZM\WC3!!ˤ;mv[ ..=#8;;?pEA6"ng6v`|zB]WB2d$+"euef4  PNJ1g56E0jld5L8kĤ )@ӹ K%8RwrV$ꙧAMPBrۏOqdAaI<+}jJA,QdIL>{PKvݑD}$~;͞ j|龊[jxr#K\wøuäŏCn!Eb^\Ƀ~vP~Vqkƽd<M/v]HGIT=g9*δI :5ű3)xi\,kFLV ]羥#ضTI,kB /\3 metadat/data/dat.graves2010.rda0000644000176200001440000000073114167070054015640 0ustar liggesusersmOaǟ{& 5`($4WF` bڻ-)a N08vp/Ѕ w-wO_ۻ&k "PTb+o F(ű>ܔWV-oBOHPQ]K%==f8u9nI;NsԔ>^h%+Ҷef|9SQya![:]WX[=G{d;e[fIhwɂ k^/K0x `u0fA/Hk N/߉6wzI 1 c +?x+0wA*I6\~26Lы0u>D;F&6f˒hWl|;͏lˉݚfQz\e_Lmhw'<:)CSh\cmmetadat/data/dat.craft2003.rda0000644000176200001440000000105214167070054015447 0ustar liggesusers r0b```f`adb`f2XCCt-XFN ͛X\Vbd`` dI X!v̌\8 ,K28 ݇808p`C'!d1Bz I6Y|*!oO:7A,e[hoAσ@K` 1H=T 쟢aP󏂨O@?rMcVCwB ~u>tsc {9g_i?Կ0;l`k_?2.PG D~  4郙{ @ V$&0vr~^V58ԏ3j΀ Rqك5gԜ5AϚZ Ml0ҔJ()/.\_T. %"ЭHI,Yv$Ҋ),/׃ Լfj?0@H) metadat/data/dat.cohen1981.rda0000644000176200001440000000162114167070054015464 0ustar liggesusersV=lG^ L? %"D Vsl#ΎfO]2s>3NJR:gR~u_7 0ujcgʓpl~j Ÿ ɏMr jŏ/]aw|;aӾrQ6i"]^hp<^~tO2H;$wR3lO@j}GZ/{{{?^+*bnmetadat/data/dat.hannum2020.rda0000644000176200001440000000570414167070054015645 0ustar liggesusersklGI8iϿ{I|I`GJs64}ءݻϼ33_< mc_:~EfKk_JssO;r񥛿}P9c^+/{E+>}׈v|u맴SGOۉ1 9Mp; ^[:cN8Z-a{ZH'6DX\i1nBk$z;i8:mo.A w &[&:*9MZ64b8@؞J&u $C-QA⡂ 2ABmߦ:E#qF*||g !.?hWDb4:-g 7&; lC/6 44̆nG:#H~LEL-%>@E@Pv55eE/Qc zK5μBO1^(;nMCs֢Ŗ4:x:Ѝ]UA x=uc@.tG+SNOT5 -R >1`0{⺆PSmp~wk3Aэ63QK;\ Z]*tɴ['>Kd :J~2:6mqmy X;{<blNMfZT*qmdp"E]-ܸ粹0q0=o%*̫yn:EO J{檹i Qբ V.Z3g[cfmcN` 0[%rl*!up6QW ]a#:Lm[IYh/|6V'mf^M!HǺU97H\AmߪPkXOKC"Pno]pCpl["y)E0v-f1/C=I2[*y>JEކtKr:dM^j @ts t .v al1עn.Ьof跰Ixkw' YS0@6L:i?Dt94L;YpvԸ! E7Ҋ HcG;#v-gCo6}իWԻn`w@ [J'?`"metadat/data/dat.franchini2012.rda0000644000176200001440000000107314167070232016312 0ustar liggesusersT1l@؎L\De. JlP:$H*KR\A@%ԁ3anXXs`B ;:5ʗݻ{ߝn-k!) EgR$J+=V)&58zhʀ3o<TssDzW8{An! z_ZիKMtڲ` gus<3>o:v.SnR`;<<ܞk?~03vf/r띕n-wBo>O8,mX>4}mϯL\,-nƦ>Zo?/5\| s(ُHNē#77qZ$G(Y%9 Y {n^,M@ zPDsM9.7VL0)8gs^4<>nx #D`pʂ {-QMg 1$1 %>&0R1$1wx _fkgw&eFI~3Zmetadat/data/dat.normand1999.rda0000644000176200001440000000061714167070054016043 0ustar liggesusers]N@(Wb\o\&JoAHlNɴHܹ=|4w?x_߿g9qc%D!Kv;3Ƭ861f,55+Kl6 ȃX| < ӞlOxu`>ȯ9>":?+[1b7ڤf YwLC+l,}l#pMymP֒=I͔1Njometadat/data/dat.knapp2017.rda0000644000176200001440000000343014167070054015470 0ustar liggesusersY PTUT"ؘ(RMaD"esI/܋wKM44Ә9=9hIaV|~1H`MseeELɜjf8.3s!=y|3c&3p1 jrė2o臅Q("ZdKI&dIW;*HwUQih)VDYUixf-%OmA)GMPAeòD*2ddeE>Yt/e0tHsxR)TK,ȊȆMhT/͂4KnBfv4]2IVA 1&`L8r{lxHPlJΖ%]&-QJvyMSm;,b(&P.Xe;t (s=a`a~@l88рqѷvcԿzEq ݌! aAOrP!ه| CD$<1zx?`@00@<`λif$$f7҇eY97=tDj2YTɺUŝsB;0HCMyI;ˌ5biR"l>% Nu7w$&$%*KC=JOj0-+)+(M\OZ/Q@csQ]_ÏnʳP._2r~3Y-λ70?=O>Nםu^̦佉9YGG\HVF{87y;݃Rzbٻo|%gמL7'-,#g64= nZ@_3i`Mt|65e7 ofV7úw%v@tYsg8j}j?b _zD65c.Ok@/KO#Ѷ<{uiWoF\PvB.ڃNEse={my!Wa |}M.^?`-ꥵۿ| 4?\ymWʰFС'G BZV}$z=;` swiDTv駭fi֫T}Dxџޏޅ|Mi-⾋3p>WHI&<'y80G9׻ ڍu3  `@l6ʀ6DĘ r1#=㑏!Gā]q! sga@1dvA[x1A<τ5@?ɇn@uǹYj\JZAǠnӺjVe1 Oɴ^ZK lWTI;#W84E3^H.yskrlqd>U;l`< ; p\{/aêwIpS 8s72U 08vjJ jgy{?[r`w$q`%,br}8hǂV}@%6܃}97uμgX?BU|j}(bvgv]s;}o|#O˦EiSbJ :̓L+ṲLx F/ !k Cz("fé(df`ڬJM[(g3T>#1^`_1/:?:4:EB"Sx,:tkt`t1eyDd Nxv<$1σ=ђYh럿-y幡ZvRj- X4hmy ZF4U؃<yR9^pS8Jg.(փźOz?xu>rAYl<<R!!΄Wkɓ]8+{o*R".A/_ހYZ;tU6+W‹"2;z=VQowԞ[zcej5Jbi0VklpEŵhKYP۴̸4&F7fL+Lgު3ꖫW"pK;g V&םƲzsa٤lQN8Ec&Sa|fs<~f2hkOsf1 9nEsT,CB{;-Ux9zn$Ba]&-Tp&eZ1DMj G5]2&p(^ph*3;fe]iZE>)|p~ɡ|v+\K`}]B=ovzLJ'?~g5|>rcf{ҿ7}C cGaw'S 3--`BZmT]ny*:Q" :rVFMpf*3Ոɋ'*6ɂ:kY7SgH/@G|mhxW5xV y metadat/data/dat.baker2009.rda0000644000176200001440000000231714167070054015447 0ustar liggesusers͘[LU@+zm"H PĖRUhawrfOhFDMըb|h^-d>baeΰ˒H\er8c,¢0İbw`,AEY wzP}} Ԩs 4v׮}8ג9-W \I-d0/Bi5X]ͧKtdռPX90ypΤWΌm4Mr[2x\q>e.H<% (#[])M#m R Ыq_pߎP_.ٶ;Uݔ#gq{56b+Ź?'Gs= CxK;HMeW3+9.j[kbk͚?%>#>' %|S|[k%LD(#f "YFhHqatl`+qq1q q)q^Dq%q5ĵeJ1K6QR&ϊi}YP<t?jHG9T;FP(=On-k8@t#'FٲҦ;h0:b!;t WGYgmy=bEpwæ~&eY^syݫRD?]4n=@yQgcNuѡ v8<apL8Pi56x ~qw[^:zz;s Vjw 4O]8= ^kItFNW)b#lk*˿W ~<< :]}s61msQ|3,i E7 [/t!7G՗{s->u{܇Q̲Ċ<~Q!П٭η15.ǐ?@_7Ga :/xQؔ&ON)HE퇍Q;Ea9^30z;fem/'9AT4oQrcYZ:;/;ME{~metadat/data/dat.white2020.rda0000644000176200001440000000670314167070054015477 0ustar liggesusers] vb^KP*pix!j{wYCZZBA"Z*$D)}AHiEp<B[P *T g֟뵽>,oܚs?ah!VWQշKyr _7HӢb8`uPU hd4Hx;Z0TXNViĸK=JGPzthCzCz[-=ud =⬇q,z5E|=ѡuiZM5µD0Ti/Ռ!zVD'A=zqep %K.\A np 7A npC7! npC07 a npÀ0F7np#F7Qnp(F7 Qn pc71n pc87qnp8&7 Mnp&a2)oN@= z(1."W_+|E"W_+|;.L"W_+8Rp"W_+|E"W_ |EmW_+|E"W_+|E"W_+|E"WPܿWTMv}wY]jR}腥آcc wG|-U}a ZZ>^ZG}]o˒!23 nLePآ c^5MC1E]29%-.:ǂ,efgy{z! C5Z^.i1g(1Jag]y/sby2էkS3=]gݘV|-w'|^֕x(864X)by5TZ[lV5YoK|Mkh쌦>rꌤd;[vζYY펵ج;D9o[ŔD(, WҲuFA;kѹRBۦ3wıM+4w/6aLНSLN s^fECɵͳvA5)9Zo yg-dB^wn7iUˈ\[KKl?ʒ3' )uRNhORfflegX;*Mj4lSjN)#lƓ]I+uoOIIBV.4Qp٧^$.xT2ZA'>cdiEXi ^T%mꗌcLr,)̔O{|lL"eDuHxuO=zPnr  IJ^m׳gIBde&)%O=^!)ҭ;h^?*Kd1]^"^,ͥNkZU; Pck Vۚv[tuVwm4/ iur)Vm*RECgѱpt:`F Y/oI;::/Z87ut%F]˒^.v; #Rpum@ ZKp2(b(juǀ&b^1dl)wv)Ӆ\wU뗴18n:tԺ Kff[IA27wF# tBh3DedTS۴b*N˼JnKzAQ dRzY$]d>ꎧ>|]o_ys}~L`Vx{0kg__[(.n,C7]=b_n>?be;KV7)<[޶e,̾=l>N#yd7[ɯg%1WxO0,JO|=W4hxjs{|0a?xukiGycαa0yǽgVJD_O^+x{~ ޟz4[^y}X>T5/,?M3~uW#鋎cL|"7~1Oܰznw_];ro|}?zK͇V}nz e{?غ?&Cq_|6/J[ڕ>&v4ɉQI*` O~ySRs*)+jJΕ8ɒb&?/~AKr(7MnÖIc+ fc&9M7A.O̭zإ͝Ci7M4"UnY X[,?5ֳmetadat/data/dat.laopaiboon2015.rda0000644000176200001440000000102414167070054016475 0ustar liggesusers͔jA'&EAB/CRFPkZzwvw̆ɦm._PQ}_x9'; e̙fg#zMxb=!E| *sU0E֐ 49=99큒tm0JjH{,m 䇏2]r,sy]TJ4:H2 2>A&wG_|=/VB\F &]gxE_mScy8ΐ 5 Wk--rөBq`mXQja`W+͏{|oo>GOΒ=metadat/NAMESPACE0000644000176200001440000000010714167070054013112 0ustar liggesusersexportPattern("^[^\\.]") import(utils) import(tools) import(mathjaxr) metadat/NEWS.md0000644000176200001440000000254514750464656013016 0ustar liggesusers# metadat 1.4-0 (2025-02-04) - added `dat.bartos2023`, `dat.bassler2004`, `dat.crisafulli2020`, `dat.curtin2002`, `dat.dumouchel1994`, `dat.furukawa2003`, `dat.roever2022`, `dat.spooner2002`, and `dat.ursino2021` - fixed the mislabeling of sensitivity and specificity in the example code for `dat.kearon1998` - minor correction to one of the sampling variances in `dat.kalaian1996` and the coding of the `ets` variable # metadat 1.2-0 (2022-04-05) - added some more info to `dat.knapp2017` - added `dat.bakdash2021`, `dat.baker2009`, `dat.dogliotti2014`, `dat.dong2013`, `dat.franchini2012`, `dat.frank2008`, `dat.gurusamy2011`, `dat.hartmannboyce2018`, `dat.lehmann2018`, `dat.linde2015`, `dat.linde2016`, `dat.mccurdy2020`, `dat.michael2013`, `dat.stowe2010`, `dat.tannersmith2016`, `dat.woods2010` - changed concept term 'mean differences' to 'raw mean differences' (to better distinguish it from the concept 'standardized mean differences') - help files now include a 'Concepts' section listing the concept terms - improved `datsearch()` function (added an interactive mode, single match opens directly, enter exits, can include commas to split up multiple patterns, continue prompting until exit) # metadat 1.0-0 (2021-08-20) - first CRAN release # metadat 0.2-0 (2021-08-07) - overhaul and preparations for first release # metadat 0.1-0 (2019-04-08) - initial setup metadat/inst/0000755000176200001440000000000014205375047012655 5ustar liggesusersmetadat/inst/help.rdata0000644000176200001440000033324314746673475014652 0ustar liggesusersi,Y&eV,]ݵfmW{^][wzenfn/<#_u4{ ]$gDQ6DH 1pD`@HA A% gt⽮əW﹛νs=;ҏǿ_}ss{=+0r =GGd'_~nC:G;aक%,Bi?ViN]~dۍ\)>{g Uf;ˉ7 )h蟝n+ [|=,e^`zVOayB_`e[+GЇB#+`ńXC\TYAj-[^ld[bz[F9~pUm?Xx2H 5U.l}_KU-qkګڷG1.DXFg̡sl2ǜ 4}ޤ8Ż=r+ZD$B;0V#F* _\pk9.y$$0]snAa'`Yw f9=$O)L`@Jރg#M0 P'Aq  ;g.ؿAsH-QCtTu' #(A|KkxYQ'V3@k:xwykfK$)!1#\4UnCdx:.J}GJjA/ /8X#$tP>0x ErV>nDZ^U۱gk9s?%%`쾛î7_/|**[D{'t;0l`̸gEV:WPD}SOM,jSYup{V\%Er jڿn lӆiQobBjͭ?hZk!gq1(ųor FK5 ., ZXq;օbρ4X"AZ$= .~~O&>6eGX5^ t>*jh. Fw: ƺJr;<ށArv_&Dݸ$}a@nW㧁_6.H BڨXI|YYɷ9&/H.s%ps`T=|)smErЍ(t7t'2 HI|A!>]7{fj4+Aj+EQ!%DlErsͶ1H\\XϷ*{ \ԍ;›@tP(;\|(.ٲ^ -ȱu &Ny 2]0WW@hٙE5H<UEL2ZkYYd͎h ;N &SJrP5inrHl!o~%2n ꇟZGr0f)ݸxLQ2"U %]4gL4ء!N%J2X,S'p-:ˈ">#ܤ 0f +}-m\ɗ!2w{/CVv6\*+w^ M DP"׊Gp!6΂LLI"GP >>ke,F4.(-s.7]) 躃WtǓh8;f7{46Pq[76#z*$ 35|UfIhfP| MM4e3SZf Unj-@ഃ/UR )dKu܏i_&ET)mz-̆z@7WC3HH}*sgi*ZrXaɽ#RxSF\|`x8({}׷g"$p 0tqTB8vX[uٹ?l̪/,h-ĊBՒY4恌X+b}q8ڭU^"G_T,)8*{mKmTnt*<9wb$[u,cC S8یƕea!2ڿll nUie)רB}Nnj4FGtéR'i7~[wC`_~9f=ʹw{ =,7"FncF3^7_/(J~"noj66K@F9= kyst"xA;jd {DpV'Vq|`$ ]8<{?1Wo FְP.-D-Gha?^8WAc  v1%~U%: 7/b)& `)Q_A?XXXT[Rm$=Qh<5('Ğath29?+湲!|~׎U\"$BԦmr\a ҟIz|4 ӋhZ|aBZ 3<共W>x{1x:oŒ6מ[G۸Dfݷ[O,MD9ɃrR"~Q$6 Rg]o;x ^EC DÉe9t9JJ&{o}عr>>}LKwㆥLV\%j͹Vhx9j1C(5zKi E ۲\A" E99ިbV J /kǰFOţKV\ 2Mթ(O@ofV"M%pߩ"]wZS+)0*.9ۺRDEsACmO~@E&Ǣ,pxNqLN np"pbi 1@Dt s o@K߰R?-xJ@, RGŔcȠணX%_+9@k@34Pe [C*LRCiP(K3\z%6-tЯ˽S'+U\ ߳->p0"q@g4BiQD'N{Y[|2]!F}X.+ 1k[tV P1t¥H+ݘ@Z{s9oYc}oHOI*{!1‡;X̼}rDD!ڨ#5&=B){ oqNZFҪ+}KW,Rt@ԲDs`V!+O", KZ >$dQ2$`DWAlj;  # {mL+}4jޛ`|b>x~]:Wo=Rw6n|ճߦ|#NoఇD; C1,\V+E6019`}~;~2x`@%e3!{g(Ibl)IVz&4rFF0MFiH,D#K42>05EYÓ=9Fvv`F_0PyW'x@PU(W?#dx MRF`á<|g}ės3%Qcԏr`?t, z(f omf_`27qq>tqQ2TU,UR&qF]0AMtl""n0KX%/ $U3۳q7i}&+N5cXUco5mXX)OaBM_ߣML;6AY̆uKK|`8:|wCoQ|MRf e6EGYI't-)nY `@~G|ІފOw+Q%tSP}25LU r F{֨k ݄lJFɔt:_`" uП~Z+LL! Bq> 8zajXvѫ [dXbc1#eUQ{Q=x?*E _S(|)~YNQ6LPgCws-3Dž0Wa"ۃەEiq ,od^&zL{s`BՋvb0&$bg1j#y;5Wp9,ngQ(V#Bܲ)[dž/ 616z"L(d͆Q/Lz' Bݨ_+PTp h}'L›SFH=]A :5{טҖnqr?zyC3 *{ˈlS?Lf:L6Z_8 ;GW{yg~kً!!ڧuxڳxLLc 3fl } ,D7SA#w8_v+9݉t+{t |H)ⴼJB=2%ԇg%0T 娯8ў||FKk.-"d'Ӿ,oE!mTUrd~n@Jd*aT;QFJufdQs'&J({f㦖! MVRu``r"IyêJ zrDP6~yPp*p {\z\N(.ÃoK! 6Uji#@Ə2^lixl WN2/kK. Y^3g;ݗPnR gS /TCm{hN]j e>D gV7GZHF _[wkqxw2<zA>0+/Flu-a&{j_R[0áY@ᗑa^j+Nz禹M0ݮ;DtHqj O) L FutދүfhVv0@nous[k Ѵ;а;Ii{Һ((s"rK /yU!X)vjPS #>NEm]6(6sDXbެ([dQeư ;4)JsEmPж:|fu 5WA m*&ӹJl4/,T^DJ*>6^^T>NbvQrm\jOQP#~~Jg]|LڮA+W-?Z᣻\DKM|&r6{P`Aar9]W1c~WM*A{r@LuqCYsWId벇6\sB.]ˬ 6R$(nMrpq( ό/dZEUƥ[3&g1uP"qE hTeL1!G "C7y bs >FPᙟ~ -)v<`.~h& X_b#P$ cD({@C+:En %ۥ9YE48x=:! lqHHX|F`7 ìd]?+Z>c@HX"{j@H e%xetQ|sV2!#"^'6CO~|r:^E;WQ[ J?٪Hu}A=`o9+,OIg~֘۞FFJmq$ `z>PF9"ޜ?XlKcyR~z].#(,H@l8bSiG:N}7 &1j@?( **% eH`osD/t#EARtOշHUetb ,> G,Ҍ|A; rKtrRm+*2G۟mv0M^V| ,# 7!X23 %Q:Kқd Ý_ڐj%Վڟ=b=Kfp|g!$Q0oP/,(ID(H=`Ҏ}AńhZ>C~RlIuY\ݸ'd[P$lDJB@$\ ab8z4GUIn6U|Nvynq[Y~KX9-ahw-%F޾ST,|TdR`sf39WZľL~C` c ViON9Jmǡ8:5%]ENg=rj*)'kw[C\|f&_9VQ]-WTK:A/ kׁ Y$xÚ ?Ct(,-usZ׭U5Kt1ѕqeA X8d fJVP x!(l]YіQvطu8 yKu+xqIJ\x/}pć8U^ "8h#9wCrI1] 㞪YY#KVVu:*g]P*m72yz ۷DH.pȻ}QJC-&iqH&e@x2}AI\cn 5r=飀ݩO.G;/kdra]OGˏ$>[6 E'Dp9l4,/r9kMFTֆ{Sy*Kg9p<9Npf{m1t.jZ[{=Vtf~l%d4`V[oYeM,fiĵ4TncMհ8X(PZ)ʛ&>} neZOV[VOS M26$y>L[ª`Xaxz a!JƊ+Ypq_nC#Ə1;D0Vc>=gis`M=,SQ }mVaE3kEH'"R:X 7o .ΧƫEq;$ O@Sˍs=X !?L8 hqJXCsk'9}@f ߽jn o|NF5v/(Ԣ\* vH$#n&$djAD 3L#$ہ0n5x_XtX]aRSr(0EToWqH#5KM'c aCU[2hkt+FC6ef4_*)/71%`u εp\Q)H c&5yD1ǤQV(N{4G]׏WhWTG,W4ƉNfrN< x{IY;SswG37B/p*XsP~@_&B?rIN$dư$3_HF\XNr\\czH8**"=ﶁ{iYs 4Ifd14fPP IC.e]w07Fqo=>>LA>'p2MGFN]$yRmyMW& [rM i[b2y~1f8ݙJlU EqǎNOzgOECƛfgJ4DEIoɖk)>FA 1XпAycm`I#/@'"hwa yX /CYa7Kr\%ЏB b)dCРw]Pj' |˯)mKS.Mj Vcи"wRUᰒL s@8 J<> #Θzc3%Kh1jGܚj`2a6q8œ`8*U 2xaP^f s N.U*ۚ8.x3͖3[z Q.Fe^;hE>eɘ=KX1?4 '1zgE e[{2o7nSs/$tǡ㔕E;dvԤS#tSD. 9lkuk/*Auhe ͂, !pgBQ d^ =n勀Yp|=rD̟_lngs[_6.":IŬgx~Zߦ9tZC$5F-|'l*jQD>)6щa72N;"Apth+um??%aw+rQ+/cl%⳱:AtPN+R* _QSZdJK AW/ !Ly0#wvzXC/q8?X&dĵZrv@djjp βy6 Y?tPC#bݝm~s[3쯉/" !$.B$=q-qwte7Ss%z3\}+G[g2ۄuoqዩ,"-Z;Vt]Ns{^{ȞG~1xx蜭MY~DgqKeN n R85Q R6qOFV8aᎍ,̑>߭a< ױh&djI ߼|KmbmOҌԦK4u\iRU} $SK$5H`Y} u?@8?"cwπ&EÖ9-?+3uI10[؝T1-WiH ({>Z ms?AEt %PB#6wYbQQ1(JYV?&]!Ȏzۖ=xd|?8QU$<#:.ԣ]_^(YZs~7~)%ɥTߒ {u1YTF۴T'F(r1f[cM[~!gjFzτ 7Q~mYK8<9+,h]mLBFsAhd'*vJ(,GCG1A3 "!cH*ULͱBAEUDAi!dhF!iYzNq| -d@A'd?~j!n$ CGxrKyEw扨{JQL\o8'ͩx#̊;O'Uܲw2&_R j4=<7~$U+?r5pĸ a=@~ |zsЫ)A5^X\aBNG,(m~ @yIu7N6ZJ&)YY]+{jE馗 mVF&^)#Bxg'/#4 qA)hv_0@l|<滦FTfsj3fg t מ\꿴@和k*{c$hqLQqa0>j\ee]ll;RL@ GFljTZ蓯|e~-h]60BZz0C(b'LQlo6yڅADotؗVqFYr < FL@Gj(РFTy=^syx$ưցBN,?wF_ޤExݹe1ʃQMw2֭ p9gbύE N-LJQy/ց^ڷ7[KLX T4LL}Bc %lZd)'/T*A1FWkRsD2 *2Op]?%62&zjN5L<"XXPQ?w EOrö|ֈd|Svvv#!LPZ\ާbAg^`N#4 [@ʒ9%Z;[/^z\?&})1t,^+52yuY.D`-aXldΎ4RԘ.@+ cd8i\(6?r"aqsn? ؾVwvKy}Y;`8x8<>OZ'4䩼%n{u#ȉ`L"^B,!x-){ugϦĶQ@wLOd8Q%1.`3K~J tQS`<.Pg NnE9hʴf LOfh% )`c#y/0,C!k2FG@" WK]HG'a&쓣4\ G`X-鷠g &'05Ah 9mĎa]gqK<(fSqs\ؼB(ܶρ1/Qzove4UОUզ2l#x,pJ-e(jBNZv7ؑdmN[}MC» kR.4@W>Q\":A/Pz;6%8?;< 6ױG)T{A[ԥ$p nu͵ u($**I#Weg9P&C-(7SѤ K兔 r A+41Aa9ǞhB'UP9<(yq;a,P F6y*lbOGѵL?+T/dOB_8k',7!l ttWZf9S_z wP%nc;u֕W979J$%=F_&s\54 _fʁܰV A,#DT{Ѻ%䬈tZ%fQ؛1zM. &Hfj]DyQuW ^PSz;nRaے;>K%MO@~@7 q% D.>̮]G~o9ҙ=`He^L4Z.1ܙ*n&4az=Dp*+ʟe=SL b?mzFp i,A5sʾJ1SK:稒һ.Ӿx25ajk^<S?1g)PDx!V0<KȘH+>"lHtw+" UF m'8a}(HL*Wbt evlyTxx|8GGPq׊Ӄ# A"'r-h'7u!JWm<@vTIAoSÆ"KqI-Udzݱ1ž@={:7F?:0VX#3?}7>b˳.E8պeyB9=h.j(b@*6V] F%&8̔Rr.ڷg@ur;ox޴w}`Qo;tH֎ YECUN;K,RIQOG9r8K9&L9ϐK'Y~f8}TǶ~U9<ˡzC#q$>bN.|i``ߧѸ:z\,fNR(ьpva*'w A(s#px>i;0W L$z4Q,S"t٭)q7:U'1"InݼpFh-ol9UnO;_R'ülN <2 |qt$%3Y߭LGvEnbzPh]@*z`8ɖ3tV5rm<- 0i^K %4=} GiK}_A^txWoϜ,sܕHyY}Eex෪#je \"wd1*vEv;k>5 5jy/T=Z&)ŝFźs(y)_in:o3Qs@/_\l.`+͞Ug$͞4ĹV2{]٢1k+]\`bշ8Q8py2"ϣ|L(LWZ@FxPPt-TTaЯM=}G@6H(|TuZ#}r N|d*š킴X@6`yb ZǠA {=?1$5X01Q,qK]L1!R wX <u~h2,^,~,>F.J+Pו`!%]˞I "|e 'sgg}9=P B>EEua잫w+H]Mqvܨ˽JNhN"޺1N״M r|M9/CF;g¼ egtQKI->=kLq||8Fd:Rjp4 [ʄ*pm|NLEHiؙ}(z;#R2tϫ]{8;Gm]t4z+:=u|n6n<Q}7xshE Yy<xGQ{z8קAM e.ݓs@q̟e1OPSkN; ie숬PρΡI^e#v P)ƔC)DZ|+Ir99pz4GKr|"4eeQG_lMN4P}˞w?gk3wc ө\)qfHLe-̓>gS[nEU,MNXŊe"bR\%%]3 q͎4v"%);-7Mܓ"sTK6K$܀ʰ&q>K7%xz0hIF; VfyŴN}5ՖTg.x;*S P}KhL&oRri/fk3 HBc[JͥR1%ؕ-*Ԣ$'tbsHH&~I_2L]E`zoм]pa^Ivx>0i m~}@tSoȓ]Wࠖt,v+heeWz.2Msz J éu΁VyW}I;l&~9B=҅3cˠssn< tj)zCu~9w79 4;͔ -x՗o> ^q8Mtuo bsC@#yيԢ7G-8ʱi [v]loz̷W^BmHc$p s{ab]}#)՚L3}Sv۸)YlY|v.e`!Ž0ɳ(Gޞ0SmZ{nV8;/stJ?^tsBGVȉ\CR?~]^^:5sB"pM1 BHcr ά(+)JSr< f%*bDzjXp7:J_ ֈzm!A&ve2@sN^C}$KTqBߏ ވ96BWX9 !zmVq*o㭺E2cx H7ۼm&~ܴE%F68i1&cy@TP@- 34&{˒u\ɘfז8~%-@"6s@?C&?gQX~:]a^2J螇s x>aeN>DCڼ ہX2$)$@?C SH6/ͥٙf6]I@;%5&O *9dˤiM5aGZ?Z,SJ"7&Q6M}ʍnr囋ؗ+]xeuBW5גž=wCɆaI#~Hw$l*ai TÄB7ْ5K6$iër`9(g;=\⼪9q!r!U;`P LYZ^K|:P5[ HP3H`FPwftKn9liI !3jc6]va﫪R=P8!3sxףּCm:lwR m3,N {E[-;kd-^nFA3seIAķ- ټR[YΌ".ȍXX4%Z8lI_](N0g|ިj>65(N:YVzWr5) 4/y>W`J갥 wv&?~oNy>rlUI:B>t(k.4WXKM$Y?խF (olamjTu@7wdkSrWWӸyg,g"ۙa *Css>aRUWL礁.s+b3 $$"\*2Ri"?a֣ ,l?DXirGh%_T- bAi%z7l!q+P:U< QWkd@Cgz'՗dn(4_hcF$Z k&@mۧ_eǁKiB"DWR/Q}9W?gpᶥ?ܧ}/j"z2H(GGz9cclv:X9wΥo28vnYZk4P˜#,OL]t$˔dPEBbLz~ FYW"г E-BZGLﱹ '9ok%W#85 v ͹ix/C?^nV氿/OX$hHj%P~#Od%Oelj($"[7k4#wh苣 PIS,bMwM3QDQUCyo)±&Mɠ1;@hl]02ھQAۓ$Z#qD#. ӌb @F e詘yJ%\(RxTo/ecbC0{;)P5#1 MsWJ~EtT icbd_:~F&Iwnu4[H*A tVDax#ZoOSFbcǓ&}lc:lvr4(UDS?W9ⰪØ+X ShȝY4)/BCa\}r& ܹQ@/X:A .Ά>WKy+"2W$_e l*t(5 Hkh0buT?E'S&_gnKZ0>xYrXیJAUV=F/1!/;򢤉48!/0 5~ĵ<>J k2vh`NAB֟#s K3A])ܲ١mGjotA-5RjxL!n~T)|Vz^T/?CAl}S}LoJSϪo/WăJn(sܬ~7LPڛM)& n ^1$:bJe- b@],~/ڕ2)Pu `mZ M ةʮqiX4l.[=&ݝO _o5Z,iC' ٺSE}4:B1Sz?<'طp<jF/"͊v9kh)$kP!I2$2&pC"%&N&q%ʏv_fn c12Ü+8 62LLdch󫇩>u:ujZaWU1"ScdBi7&ZYm}QO A?#}x `ݒ2ZnM[}ՊLsڭNeڻmgQ]YϩISǞ@rV߻^y=ʃEha U7 4ū؛6 ő>K (Aá&m?vYqL5cJ=j|ZA G:E6P)`+..}x諪}rBѹz'AЗ|*:9NiFT:i $-ߨiE\l\M}YjxKպ 'm zѷSB,33:AbD YZIZ4|0\u\5s;FvD7DoyzX=KS{1^ggt`U:w^2wĄk'!GwПIOF_Kpxy۶g=j`fpXHi{ քKV愎qܕw%=(ťNi`T1XL!&@F=\Oj a§WO6!#") AHppVyaDn|#W}<#`ɉc九_sƚoZraEAtnI\F 4 sMJ^ =68<~rI7PN:T\hJJb,KcY132.s F̕.$SIU*7ͣqO\k9WtC'ZmAbrs 1S{d@] j\'SYF :8Lk.*H < zB3ƊE>L֗*\@mށ㈽DݠȘnZǒ5bc!щ_۟V1\lAW;@h'ttb$Zj UmiC Pf;ӬwhS<d4ul\xm}8АRs=kAl] ?>9ϡJ[7G&};IMzx2~6p>?gA 榭LR{X! (̼4G>рk" > g2!G"J"HVȘNet^T MObYhEuR>u!;F:W]Knӏ$vfu$5ϯruOዝQဗ R ޼`b}Uψ =גޟ|' ; T@wKKFn ɸ{ޓ-՞%Y!W7^@FlzW~FO۷C73~AuPb]'0lxlrXmU ض{Ir^TRsҌ2#8@8uPx i 6k+3I{A E-w2Mgi>ek|؞ Mc ޓhBq\mH"& 㝪-Bsj'Bhŭ;鑐jqBJ޾*5oCή[6@K.))B>X8ʥk޹]ﴇoT;NNʪ$ j@1@?TC&Ȕ'Uĺt42@k7S{j'=ĝ8S :1y*TҞӉ?:(qÎL 5b&C6% #O";s.;sTrt*6veOmW0,U,P,T@Z5YU$%/ CvEC#ٰ2{ c_9 B>ep u<TL)S%(Tj3~D/HuZ]_+t/@% t,)%&ՎB諿HB,g]:S B^)n(T89Ҍ sL- }&=MSd|O&A.:? ]WR7EPWdxkSq~땹À=PTMaU6O;xå.{En(\T2]5bob"8?8 Nr4S8ngt,t8qWs{0ºRju_e t~{>f3؄rsнg?S tOus= 96r7ߴ` m7ɷi9tEkNeEj@ڤȞLNȃZ<u .c'tQh'c r8 _âlorisDx\G|mSO{{+rUȾXQ@%.gCRSIFZKU )xe%-):1}MRSu*r$2PY] (` "&>*r`$IxTMbDd/VjǕ/L7k.0:&A&ElM`7P4yp q2PWFW(iX+(ijKG0y?sL/U˦S€ %N=M|ؓ`\Tf>w@&{  @%`ׂ YmЭ*Sfx*SN@p 0BE"/Q~u' |iHkU< P=jB+P\c0δ HbЍ9;AL7Z$+  2^uYY;Q I<5#9ڇ3 cНh8>iOQ?OU,CL$M2"]FIA.+P l:&\'s6'la㓡=N/ %1s^J"V=N=2u wt8 )+ҤQZR`$LOfѨ9pAPjlO9?±򥆟X1FA=͊ƂFYv TU# FL4\ G`y1g( N\$ [kD\gMxh[*AqK<^n\Ykэkҳt DL ZiT|92h05ԒY҈8D!*,שtDb4\4w2+[nwi@7Cc=;_Fc頊?s,vKhO,|{SaGArvҐg/;Gɱ Ay0kђLfCL:s[j--f8D(/37O?F߀fgmܞb'qTǡ251,?oaWwƚ nܨ|/˴kMi6}굸 ;j,)^K sKyɽMx<5Kw9;hKPkS7-̘6 Q#n;clv"KVyMo,~ ΢8@MjcyQ5] !ʖǗ"-dw->>H3a5@5%@d{¹`8yM K S^h/ρ@FA&X <ǟmY"؊&롚n!hՊ"AZA4Gagl;6R &U{8=:Gkpfm',}i\3A3}AߢlVVug4!q?2kao4 F,,BP!آ/qece'T#xTWYxjU`wnF91dRe/JZ^/ZAO}~p'g7x4p s`>2avEd qOpKer /7 R҆[ h=/Ӵ;o='ِOvM<.$ '>)6+{>ߵ5"c%JCw>3{CrV6R'M~b'3+BKS7ATUM<q0xӜa6y1$t@ -vN_B5YD ¦-bھ #gh[+̪u- ->7RͮʬI5_rfjGD|$fGo71@if,X}l#FOO~{hJtzB yr@'\%X)Hb"04Q> 3VraX(pcMUTMsJWd:i'MB?}, 1E =Gh1焱OiށiWyP%O.{#kbr#t@ goadGaP1 4 e4J,wǛ)ެ@3?@'`Ԥ6~nkE|IN&~=f0J.sLqԳ],yB|+櫊Tޗg ]R>`Yz$% ٕ_PRLgecħ)AT%&f~x>l%/XEj?U)e(4CYNÍ)џ:Wpv*(~{9A(eV&zI+v^ewO :Þݽs{pDkǿD"6m4wavF鍷%ۀߺ8KO84jGeQ ^ԡw(n/1 vS!@b9%ZE- 0M\Am0 G{\ٹ̈́ z :nennV;㭽.Eˢ˙FGJa( JȬ;PgpyX6Ü*: S4>ܕap. Uv n^IՏdZ- LfZq0b %|FU];(JdbsQ%_GR˰zVd3BFnSa^ϡh&57,kq,lZZ- m[ 5j8AB*D9W)19t|8Y68$猌rѰ-1!sv FbL'#.v" ^ Y28yve\dRW˞E7: !L[am32XB:Z"d8GeDl;]*.2T&ȷBkޥ=$DUK( 6%Gٺ/@;ବAP/Bb2}Zn/6{&DP ~?K`M(KЫbt?)g]riHGK^a̫=!;P1$nPo)`كRC,u<A J(A4i@HyEs %bD4PVKsHØJ`a^/e<u 2gkͭ1$|-?"uy^ $a~&\gEtN%a %`ic24[UTnIۖ!OmQ-8&ek#8~ OE^LچDK0W{v.GK8v]*o~Q,E w;_r2QsrB=M&K 9lYR/K,hlȮ<+)Jx4p@hBX+d$4%W^ciu f19j61vb:ZW@^;WdЏp(Apv.;M uIxH}1@1uwy./{=GvZv䧄o[N9J 7D#NţUKn&{_ňb!QlDER #*A!}gX*8ԩ*X4YXS-7;4u~A/jq?TTF_b#/BH'xKuhr -(x8j6ވԎ& e UogU5Ű@}t5AO[?0)*ƈ(bzr{ٓL)"XꠟpZnz[[BX핤BShd2tpo-dùI|̀kkZᖏ0 W-/ah$!ʶ]AtVkſ~|gT,COD?gFV!`  'Š)2Φ=w˶ qD(7~]ń jo$IWSN5jr캃%xuۋ3X -z2a$6 &I|3A򴺎X?YD/}F*-k.Am{:Ɣ'ph wkx2O'Ƀ`8p7FC1)f'8)mTFw'Ԇ5hx29\g2-hv<:>)CTeOm_i~D˞u>%b疕ZeOQMF;s` Q(F(0'p8Owc$ f$Q(+ҒÈU;fhu宣l+f5DO_Bs \x *t9DU%RtPc 0U"[g|%3)AG**W0y" q* .f i/iW-Rl;HxSi$f ƒ fn>y@CBU(h{Pw0\]|H˸9O]3[\g| vW+K4M hICe.iKM5>@;vx랢.cNFzJ0Uruv"*~I5PBO,wĝE{6h q>8RnC?|i^mU>+zEO?):ZE/iaCZ_GO$}CSkC ++a}7߿&2<'2:[q< tb1t^r5X`T:r^lˇP)9SG yFI!{%Լyrzqx1G0b O0lM6=%Z\u7 1ΊE\e;\w=kz<<l4>fdz7zUt{lf70ư=i؃}UL\Rf},'lSR9br K5##L@qQC|~O'gYFDO!'YI _AOw Y}& Z^ UV" pRDT ELM0%?o#^V8PfI`kip_ʡTM[ Z00uRHcR;>OG\k sȎ$ф~"!=huaПz00GO,1 ͔8'M\gʛgLDӉb "l;Ɛc_$ l㫝Hn.qv09V )bq/;+A7mzH+[ >31,_%YTV9Q|𒾚׷8@5K9*Γ2FSH yF`Xׁ@Dj,P.s¦oXCW9nYb =H0"f|EEIo49j !0;ncāӳ,7.[2!Q~T0j7yۭ]W/B7 `MS,,(WbM7$ELzf hh6G(1KBO? {߳{7(\o+ވ3LbLLL]\7_`2N!/JjM|=~(fM|RA5Csa@c0~]Pč'4$҉[K3?J16E! /t'EO>ړ}2=Ft)*"7~:l\c'5 1יB骠 MWR-j_{=F&]7Ǐ&HR!?zQQ6n{?{EJ"HG)Ö YbUD 44+_$YV,:Ա03@[4kKt,x0<>;Jr3PJq[JĔ _͐nkE1t@e_•p&x.Xl?E/}J&G{XG(\hL&Zd lI\QI4v$k$%r>B(cK2Q}lnG(q%%At6&5ud8.ҁ9~aX:l pD8uf$~[Uw:h1N(JXR]7Jk*na@4hu%HTD2셔Ŝ2ۭƈ?적c{gQagTqiɬIKm@|kšr.|Bɨ @凔-2{|h7{;%Tp8uJoVI_@ӥyH~O'Y) Ǝ,#˸ENg8Eǰv;ChMHՑrgӳWGHC7!lmk rr =Bi Z؎ j U* UfAX/)utb`0k5y|.QH]>q&|y<(dHfk2NqW *: ^h 4F]BwwBq*z7GG'q3dnԬ_45뒌,T5"iKmu\nP[>qN iL *TRYG :m+WA"ڎŖ0>'I59zݐ_u!Ї(m5qq(?P7"UqlG7pW B* V?/`]~I T9@̿gfVj^qb"eYS*VG=ⱯdU'P v֡ܚݤ]<FG ' kZ΀'!;4y7 hJAkN'E.EX*r 83(gT UEx"+NوK ,R[ NKnk _rn7Of!Y;H>SU·:ju@ĝ ,5x< O:ls²NAU8@H@KhG M(78_Er7782H}XCLA=e`a320gē-_<*^0vO3F`a?L[fsz}:}Ph&n5DkkV[da",t;wpdX4`HqH61(LFvMqmT[^H}Qt@%hHY&f%<uCAP;o @oګP`2 y/iߒx KI\dJR_lQghx#;{K6j1 'M1F"MGTuS%/ăQࡍϋxGq=u0~=F5tpoy[ʭ,_t핞-ݯ]HIC)?UMnD1YhN͗iōs泩9VNX "W`u4%o:Pz9d ^osJB~ԩ7,YI5mJQtӛ*~Y?}JE1mV9ЧPY8.cNQM(QXTb]E&A&[SK#+`P-'6Tjj$321@5Q7e嘇Xe(*ܗEĥ%X ~Z1cf@uS罪4UhRR`jA +NW;0;zw[ZA?垏Q{.svk7U$nQvtuONf=ݹPGlt*y?iQN] ՉZz.` Wr45CX*ˌHE27( nH#c A7't_RQKLJ Ұ/ wf82lANמql9sOwmH ;gVo.٧c_̊:q"]oϐK3oh]b#+ c,spLt-vJ^tWE@uqL5b,k4~(p92< OFUS_@j FG19SŮ&ӰDw|C[']FS'. ٘ (%WxQB*.P9X!b7! GnJ^$V8LLraa?Gef%4]%܄izxꦇVt9!_e9Er\x.NHdZ92X%I`]%,'jWfeC˖;6ouE}PMBvȁ3c`"-EJ,O_ťFAوUP0e[*YdZ2:@wI`')*xe@2řlLtdE0-yp"_&3WYBm;]mANfn9!Z0(1*=S0b` ^;*ꚓbZKA׋b1폫SK\Z bfQINox6%8i똓hu=~h|hG{|4f's J]=?bz|煡g] 7rj]ԛSڊOLP""\__[iQ"Y޽]!ަ- ZQ3L-jB/XfA 7c{LBStNM;zS"TnCˤ:ak(0Ƀ=v'!u+m]""Dp =-nyk6UxCe`ip2\+,xD"WFC*3/ MB-4Uçz0̞y %$SDpNbőL)gCN#'w{ +IKULj | @,h̡D|K}"(X%WktKBx!I 9="] i}نm,9 EX,Ij,{:Τ4>C7 S"ȿ} K]=[}V+1ӿ+27ZT.^lxSZNS.vJ̶n7GG# NPNx<: p4hrt<`?wEs3ԃ0Z Q_|dž0N_\";'՚,tO XRB^ljM]gzx V. ޖVOslCIv;Ͼ0fS؅*@ Kpàd*P@6Y$>,@ _5롍P`;A:& L٫겵arU>U|~鱬/E/7zIfNďtHݲ+1pĭz] b nfڹꊐrSAuQb8b zJzACA#UX'LՓ~TMz547d+ȏ W`R׭,#fۖDB[6v%{k؁-ۭ^8IVWžr v-Q*R]u%Eb.fV_`&eYz NBAn#Vv9Xؗ3*֙=~=Ggix#p+τ&mDTIY7s. O'dT3^bmo @{ mCUhnҖUOf @`.2?6- 6{ªGaQFԍu,#a:tnm.}OKf>d&aȔɴv* WdtdG#`D t^D =xsی p䐟3İ٢N9[0}51AED3k1h,*P` Vŀ?YyaEM6X ю*#r=7Hҭږ#c/|/te2ZN?YCӂk1Bgj c)E!*^-;Lw8Y! Xh jyx9vpLRdt+ ZB1%s4;Ai#FUPnP:Ҟ|CڎÀ^ O9'IVl}q ] ?H4{]w[OLdzF2هC{ N)Rs@zޣ r)=I5a7:Ic4d1(nacP } Z=17+4'tX'Ke"2Dw2L;'MYtɰthڿ*RsFCRD gd@R,jômmW NBatȸ|89nc6uJ Y,i]^P[%054dD cUtXY?B`ftҜnktc+Yt0:Ic-$BS{bbEd)I޺CuIr}qB4|]ԓ whCH[A0muvP pD٣p)Fxmɚ;}Cª (uA'(b`P̺; +]\>ٻUM%b@^* T=D"F'2?ۣnz=0Ld:UU~ pFoL4((14D{ˣ٥(ZL|91 t3& [jRdW*1!jb"ݱ́ɴMgdv8;Ɉ0}z&pz^ߍdt2Óspo/뎣' 0D}=AH**J"TcjۉIշ1[Zܜ;;8\JШШMC#jhtņmSC44)64iЄ'agmJO. ,+aۓgbĺY%/QAvӡ~ACZ.:R+~s7+9nS縡qI:' uNJu9j稹~9j縮qC:mZXxa0[(ċo}3sd:cFI|}Yed;stbU&dX"y>u\깰%,׃2!^BBþbbυ: 䁻ckq.L={۱`UKMſ3 Vg$ݴQ?c]Z3CXV &CwVc^cUJu0DB+%g̕9xF* 򡰿1Z䆺w>~@#,QS (sxn8e(^TOȷwt)%)c([QxfZ?5.˨zt-)|U9(55Y _k9IW^ O>{Y\^%Ycu^[FZW'b/_=Kɋ)_P0:UZypK(=3ںDr˭r_!-veZH6ug X|˸;Z_0k 1EE[M>Vlr]a8u}(cw-&J.QY,,zkw]( }qK^o1.53?4jëGIFĊދ_*_.@aZ5ȷoN<9 1mTa~2##z/Ct+qe!c,JmOliPֈ΃fȇ3rgn\~C&A@)e%=tsry@K=}dceKE]XdmŽoo|ʲROr/0oWsYT k6sX&1 eXATyDE/Rzir;cJޛ(VD UɥX:q>J!/J)TkIVLsK8`|IeHˡ6pݥڪIQ4\&pxlx`p&[n]b2]:MG:IȨ1kmp ȍkr yaF͆ğ؄ߗv[yK]#"ܳ4p|^,yL;MjĹ#t[+V@ǻ%YOh rՍ^ٸudn/6{5M퇪}{~M Ii-ڽXvQ%U7u+mo3Ş#04\{%zY)3^"m p=c_\5}7C2 E Yʷ4(`:PܤB]"XJKgA"r4sZht(hIUW0u8e 1{=<~ \(#vv 0}~#$XM0(&MQ0,Xkp\_-BXRTݴ@i]^-. (p8*k }$10]lzִS_`w@ 4`cJELУ;P`IG`AΊ\7ۊTK{n8w'ō3\ћBAtENiv)pC>5@ui R6'ϵO=iS{8?Cǭ= ^ ظx WL~KfE(Q{JDa{v͐aͦz8 !EYx )pc%#: [l[t/܊Qۮ_'O߾ 50癐D}=]´JGw.< NAs;`zhjذxoC̽l{I=FcGZ# [GનI1hX" k.?LejSɻ= *,phIyʕYpW1m'f2F ז}k{\j PG 3yy̍s܌Um(ʩ4QJ6>4PT"~O`!f`:G\b*!y[w'NhUs; |Rڲ*zEUu͗8 cLM95Ÿ[;`Ԅ͐9p0 ;.-sȟ1JɣOx OҞ,?=$HɰG<6#"WƳ,Yxbwo oZl,Ӿm_43r68Ըcu׈2en9_0(RgTP[w@+a;Rs%'bػ5mtΐ(MmRmNCM:o II''׎v-iPn.tZ-1r>CGHHAb׾DW[P?i3΀J$1ݹʁyIgm?F{4kmXNʢmdmT.(5h/ qkk~%Hmk3z@Ӎxӑ!W!E]86WGWG#iHcL)j'AvKtr[Uߐ$M0EA0(9~X¼_/ubVZ73M}2̎L߻aLGC{x RϷx9AAA!*1 Re(#k^RzKWm]bP$4†ɵA.RL C,\P{˨V GkQ%{۞"W{1jX<Θ7@/vWF0 e}5ZAFEz*xB҇8uQk: 2E2s  YR\a#αD*=Z|J*GqےIFm\EazeCO<B'cèLe3*WK~~ag=jМ oQp\`xЖlɩ cC9ð^Oa2|x8'Lm ҫN6GḦ́ ,$`Oc.;BH<[XddۚENYd8;X0P`wmx= M+s7۠CQkM`4OGXl-]rd-aNI~R"_$ mzCJ},sV9̟B +h E?k'NIƑDFO^ybE*2S篬oYÌ!-OW1d$ڳ*˘/!_H- -Gu?~xj7If Rn4 ZiG53ZVG.=\.{O>+V%TGeGrW8]\}iSbOGc0 LJpEd-^O/,'Y!#yQJCpI> ~Z$g]vȒxKf(b8 ^qxAb%h.ɏ#t5Fe8)w+H(.IlE[Ĉ\<|Qơ\qX$xJת躃^ɉz:ݶJc tGZZ] ^+P(t`$BeMp,. g\9KLrŠ${0, N㸞[Hij)bY&2qU?ԳbbK!F˥y4Osb(fZ~d`} 7$^DB*JSqgQ?{)=-g`%xqNRU؆)X(9 Z+5%][l6+B~"K%[ L48*5'T5qיaew\KJH|ђҘNh>QnLa7]:%RFր_]9ze]boh]5}oH| K\āÅ%1sX՘f:z|![ƥe_ɅV.IfRcD y+0/ΰIF)I\?^6\m[|MX[SM[]Cd_ %6TUD݀ɮ̍C]V,e-Ưй>OYBg)s?"햭! ";4'0 QK4.Ią7rzOHz"8+ +e=ίU2_%S`ŀĞZy -Kܤӭr;>d\A9gdG Mӽ i}źDǤ,ȘNkDG$J\ 7 u֕+GQB![ݜf9"+/%5欘([J LW`d%~ѭUZZ߁ 9h.Wem-_+[FWӕs 8l2ZU6nђ؃\/c8AeP+.$D6,^ Z񹚝Qo#n] $o`}f`DFkf״ #a)}3 B1S +1 J1p !ULm`3WoJa,a'9Nwγh󭹐ƴ1+N*M¥J e'pѢc|B-0+Nȩ=Ml4G͚x[%HihYoev}a$,3 gDžcבap/vn#C≓UXgi`ف0-KY~ U ;yS _zy"Oxnܳ߆A_vl(s5F>eU iw:nM8n"-(ηX@QH a9GdӻW;7$݄L(%V &yR82CMNk8B_~Z0yJeZ\:nQGx8ص' q=A@0YT##rkO;Ƕ(a?;9iLF6>:\ P!sM!l@ ޢ%˱*4!S(Iaa6"mSF't~x<4:c#Jތn`wS ).A[_xѐ Ta=A̝lB 0g @9\87m P-/U~͞ğko``Rb  |zQ|^W΀j^&r1@׉<\s˖l *coS#O%U{=r~H;3/{RՙU j6ޓOu3TqPhN ϗ;-}ҥSFC-0]IQ5.&X5'IV:F-_In]5K~sFVNotVʋY|KsA!!,sA9<7m9M t+ZhZ+*blSN{t4UIσ5 Bg$h1s#rPPQ a*P]4{Zvi&Ơ&&ɴ4~7YMEnH=g9 ׄg^ FЕW.l'eg=9vT#&y'D΀@l }}j7E= 6"po4kqFara7z#8G b@e~X;@x$bh;و{B"+=SŲ?p5U je$S6KCG55}^ gS;tCm83*L[! 0hN4mO9g\~ m^=6I(:Lۧ^÷ ۛrAr]9VS~H[jFju&5c%",g+VuJՔ!'hVR1Z-z. a,Ψ nV[Xtd:ͭnobJ~iuodk?[4e!"A:Ʃp8VyN$,n#^">e0!* }52Dd# /ӫ^"JBn-퉨C8!]LZaķ::=jAKm`*@ ʝz!+$e,Crs6N A!"[q&? [ZP鉔)cqҔ|7.\B+ 0؛yB߱5c±> O8 _;-Ah P=s't,߁jJoVZ^2g ߘ30V``l ΂]Lvf&CzNZĠ^Wfx_ 'Vq\Lk}Aw[]"R R7tcP7aՄFĥlZ'L9o1 D[&5i͙y=2lzRpqGZPJB#;Tx僷7u^Œ=\Z-n]C/>y*,<B*_ j֒Eޖ9j x cl d/žuLS޽E:l4B$L!>Nqo_Y5-IMkQul7u?ohډGXa֕ѯȦ~KwH/3->!D Z{QKQN}ZaM%>IP/bYk~BT(ܼ}Od滠3 ƨy2z"F\mոjgؽt;q`}ݼ\&?rsIJяn)%VYiS=_}l4O :S#mH y],IJB!K)O׊LЦ64}iXo溕>^iəc>a忍ίo: />c~O(ٷu3'|Ȭ\D7Mt(_C\<,-f~,xKĞ<* ؾ` Ovw<qrbPtNomgNByG΃A `+a +Sq~p3|5F*,o78ޟrY3tW ^B 2*K3gw CWjw]"Gf^CJ;nQ(H23VްoAep!]+ލƌ|b"W.FsT wNBjQb$L'-2u*uKH]r@|P,3WODB3\t7 z'=!w"'׉27l}_^&!H(% Uc\=]P3˛Jh{RW %6ݨi~iV{6xPm;K.?%_D} ua6 K9T̰4kCg w­n:WaAeӹ޳K>K?.sJ$`_h0T).޸{oݸ_ӃnGtv*E)~o?'sjBU.Ө5doZyҚâFpyRξhلp,6RZLSC.#h $G_Ϸt/ WowRr$캂j.5&b^ٗX'Fk%*nOZwǬN0@7e\gŨ'&|BI00wBA>B v1et`7…=Z@/\Brp#d* %C QE%{^W$zAƅ@S.*R!D@3o.+xb )xY#DGQ #ad8X1Dp/-L-zi97H^Oޙ!d$=I_%fCFyp.@u ͍x/0x4;]N@>p<},AǕgV>p#^(HÚ#k>_/f:+[kꥃnO fqH)N -&кSUCP\wTOdZxdcJݔ :YOM@h0{N+d01$-Ǵ33)b eDklnV>4~OS{trPTU#8A_2NR -~ б9"6_[,#^]f8ILP‹zvU$(n=Ԣ >Y&L|e H$bQJ.az%>7_7_B%Fo+wX C{(Na`nS,Wp5 eG3ꡓeIT\V}&(&Ɓ G3PE(:v'2[1= l5;<8VC$90.@-ɇdړY'XUw -\5(X)J$Z%W~UZa|AcPȴUÊWhQ+sɊwO/+/a\ ]t`ZR~r`C1$3 <*er8Pϕ^H`24їe HD?*;EbhgBtOqkĹYax "*Gir:i}Asl"\H26~1в}GA^[ Y6?ޒfM!]VJ<''4WYٟEp!sFxw@ECm~8ŸS'pt9'F[frtZOݳ{CÞM=|޽+̊QSQ36۽tt%?_R_?ոKt;#|>'K5|fUj3Eƅ=axt+l ((]a7 Bo.ҁevRt"Z.S0Ҩpx{PvOnyMnDJ}E{b薨 BW\f+yu`NtT ]58^-jfd7k2!nQ"Of $dVk`˞Y)d+u 2` b7'׈`Z#/+ń[e/)K2Z*PD%aGO˒E_61UJz'esQ=s&/*EucFl`}2Kk ѵ"芕o)=!HW9fECQ(vYS|Ӈ܅Aͥ f JOGKWUQc8*{J1޵Aq{{TAzRzOkﳀ[BʑTpM+Ż%ҵ{-k/qMѦ59ѓ~,-kX*ZQnEs/`ZVT5'Y&O>G>,ue Vec7ƅ~\Em,(#K jvT3xIjpOS upӎH=k\Y rR8]w1HX?A28쎒ܘH([9(8vf = ?x"݇J&4po/YEkbuCcHޞ*#u86fd"Aa}CS+ Vë`+~*V;.Tkjʳ7 -jJ3Dp\%fVbUЅ1G_: 6oC((Rhbc?;= x#05;c3gz!j )v|"=*9,sa, ޶J> )AGgɅG I<+*Vh& a4&j[bnY-w(QBz˻ VJ5=?C\U6N}贌W'f_Z Q(ԟqWqWd֥s+*W  gQ;z,DEo֞~R#*zE޼ܵ&i]{OrǪ:NEE[XfDRqYNWWIn[D1W~׌*&/"N]_h$: ~/\tO8-L9xۂԫ"XoѴ[څ[塮g)Qi:!5֠QbJLdAHp xa*G( %ԁ=[ᚲ4PH ^J?YS M7s,@P_U#T4oS$ӶӍ:ҿ[?g۪b"lWlU,Um5rpku j.BkVn^GC>BUeIѲs<0["nOȆ(L`^1\V܄M@)+[OEԑ~ձ5["VKXՏ+O@5QhY7\k=͗"fR qa[Sڄ1.tQmXgpLl_ 6dh ]Kx -kX-!X:i׹,Vsv^Wxl~[T f ̕TRɩ)^q+SURxtƢ&]plg.\bc}%_u)dS9!%Mmil聵1C;nw3D5#İMc{fE%#l%Jᔎ*0y/ld7 +`p%SlF {ֻ1TmR<37;1b饔0 :gndWI{fy{c~- B9Whё6IM0eɮ. q̡vB)U$N>&3+J=Lv=$Z}eyIF|wޑ4A͘Fi#P"td}vNxKr"t&hOd "іn-4 ltJ_Fj+NR]RKH>>Dt{?6"#a!X+EL.c0TҨr3d {J=0;KL{v8ru0JX/6-2#`?3v6#ep6dqd$KͶE$ ,yXǽ]uK6w%7,Vl,sW,jN*%p@.7grQzdP$!WeECܰDZZg?˸fd:j]@wKB^1=k{LIr?iE@wLXz5ieuy'>iIV־#6 ;ͪi8|Ev9ٷIۥwj6 ně2<ʑQ'^G1m -MZ/jXV&XoWD]mC3J\*~ZQ2f:{«PeQǪ֟ iL/T"D1UШ W_yc"1i٨5>=FVs]ɻњQۚYu~I3qCwI.(!;+U$(#^ƋS{}Fy%#V^ ;я;T^㪼T ;̻Ȳ:]Y.뙡VD4j}K΅PDDh&[W>ǘ*>CHd|mj}2UҞ0_/C?ڜ_;v1Q,[)񑩵5M.x|/i_(/&j V7bI^IJ6D'{a|O2S{ekfr~y~=JsX'>o'έӲEI5`"?k"Xt[GYRnHres"=QRfj[\MYu]o} q8u9T$hFϚ/,#wvd!E}wl_O,ˈeʢe$t\v:f.IZГMUT%izi憜1t+<`G /[oâ\|/K Uq^zGB(˃ro/[yY;oH;|M;lE1v˨^aܵBu>~>RSrZ}vUǶBy_og+4QN do;5\dDV?|.׊|6Kް 3fs{P!)E|TQ]AR#fP IBi3@Q: Vt{lo⑼/޶#21v<'XQys1~V :dOPƵ7Ya}O*R3+댎hq;udzxR-M!4E:i0)!}ޝ:FARjg$AU]jF8mߔLHZ%J<,QVd&ti{DQ>tj'Dҙ ٓڈ>2dkV^ 00HrjH~MBd8܇m{J8YT0$R~UcP; +qYDk:U_)4z;7]gtzK}xH;蚕"X ߥF{icg@?w.sV)dTvA = 4L 6N ɮ1e2'It]4o;ES Rjh_%&pz:e7>r7 *ZZ.joAC}l)ݰK @#dZzR޶vȠt(G==Lp0rO~t▨ 4=YKYo'c ?ݞzmz!y7 ތ&;]TE:AVSm) { cCr[4bq"-ֈcIo$ª XmQ79aI~op{' 5ѨU٥3Up`8{~+< }¿wǹMu[?-|*|>m/nH>aٿ+pW#aIacN~c 9j7l0*z`CKӑ5a1aM*h[:T`&w~9KHՖ #a0-@T>g9TI:6lCzh+y(:RNIU{sT8JP5GT<ZGZ#8ڑH1 ^QeTO\E0ߴ##S-j2_׫) TȩÛU)"mhf*-,~rj5o*(8"j^%Y~JM i~O [d* -=C_8KqĻYȘI%VE;G(ddxkpۂ{vO]#$]{%~&,|c촃r@=ND(OFz$7ϰ$02|[M$%?SѢя ih(v:Ŏ D1Ѱ:QXL ۙT+>2֔vP(v)48Az~czPaj ŗ2=$$q38j~|$ 7zĴG'^OЍ*H 8{$_ĚUȈ<ٳwm~IޒD*nojE_X%E`(~SOC/MsX$ 6e\{ Nd g\<8>{59w{(Z[22֖Ѓ~fS˯Y7/D$dOTIrVmXɡо'0iѣEݷxC- G՛QHjc?REinݥ1(@$}ت.8 ZCP 23ȏt5v2$a D\{sà+ h++aW#g'?Ŗ̠¹=#ArHVkHc'ʄc) 078+C.%rKz~Z c\^%{h=+snIB/A\xW@(#˓̆_TyoNq;dQ JDUGG;tl'uYM֥N<kBO7Tu\6+>w7{lTE|)cf!wM-\ 3n\(a[KbGL:7:UxՐ$@z ȫ$;_ґɖxـ.oT\Zv*~Sֿgv<7{[Re>K5%kf3K-zWJ7dV HrFkl|n"ޯ$zTu̺Z%4 Zm;qL]of^D3:>z㎝{2XWpG'#/Vv"fBpO\ t*ԴY7GjunJlu5yĿ۾S fК,-%S@u{58ޥ0!beu$UmGb6uc+|>-_G٣@jCL"[Uoo4>6ENcKI8kѩQw+@$OD&djx=Z]2xNlw' yLe/Qb G6B O*N49W-lCP\&Ԟ]30SRGchSIqS*K?.a꺃ѠKܮ1:gM+Q|'lxڄ{ xG3 3h<i޻}Ӗ0%T"3rj!kfȌv 3Loԭ46qf,Vjeˇ)U^;dw 6\pf)*Cu!ÊZ^8'O &AUePcۧU<=gLeFD9HRΎ`,DIG%Kٞ I) A'#}źN%Εc(X;=(<o!%>ٯл"qS0sZ%}6)О ]so|L8-4Up;"R|t]$\͊Ij=PʼAkȁ;w.45\k iN3 [.Κ O!NA8#byϛ4$5STѳ9|w9!ޚ$ĸ$5{F3xL$LQ:OU65UƲ2N@V  6DHnnsG"OdwIMqgֆϖbNƥ\w5 \zKuNX]ߩ}5Uc W$"i@RaE+h!@/;5-CĢZ^YBFnLN6i$}wt|+b=:9vώzFލZ'sZp8<91^8uvO|]"W =[d lX/PnJ4Pă@u]חʪxMN-iuy ױj4w բ'z} 6h4hV>Sr/|qQݰZǗAn6"N=/1ztXS*c;lP2u@d3g,bkUdau/[zJ։u"a&OQNK蟑%,8HKhwr=_>tWM!~q'[`6F&mwHG:3*pJ4Wa%n x%rh'172/ p TW$39DZC7uZ,#pwBަŪN]~Oi^yf$]v [$ 6tBZkM5{TTN7bTS cJ>$DB;kdQs)&sUm.g|PA)ZҺ ILA~MIئ-:kfگu{q!.hgMqT|P!oc\H@U\Jˊ: _Cs9j 渣(3,PfDHd[GLQöC8x+~r iL᪫rTnBR̄#XoօՑ<E_2l$0lYY|{9ɭF;%ҋ9k>J/+-aC͙@4JưK7[LCBB #z<> %0_Qx+X b B"ڤFR)N/u$og#1Ň7ۣm,u<,G Zp\'4L۝k x6w@d%(GNdb&b7Hc)_iR x5ES& W9Uj婩%F|a:2(Ψ%<* 4cgd5 ] '4/]A6&qm{f]N Ul]lЈQflfcudW9:Hu=_]ED>/ 'Tz'Dg);=R3 |@mmRG1qT2bB쨥%2}jX{Thn.~k0_y0: (@p9LvxΌ AT0ҠRuHS?O.CS3K~OA'6YSǬ*eVGA?7f+XD Y6lV[K`BO(Cef]T9sN.鞺}J8H$j{hK.fq6R$K{Tœ3>ܥp [lf? A@5{^I+!f8Ƿj4 뽮uMjyНT1+w,"*6{\Z8޹@Rwlt>8!98ʒ؏AWK:={2['eZt|&&Z)D B. 7D,uxt⠗٫Hq'KGEpYp5VMaܻ3Z1-ފMQ ´1ҠNb^FFH􁠂QXWFO:ʖ~KlF:ї"Dqc\GɞſD*Cp7.Zeî6kFiPF~ c3A쉴8ýw&F4N*e]T5ށEװ~/$^e%k+CXYDu7fJF(pUA wāC9Jw':y>iK"% Ģ`\[~ijzd+j\Amjd<΁FDŜ/N*ؒ5=!&^J2f> I`xnjoh ny64:f/W5yv$-DBg^UcDx:Y#F8!יsӿ)MϨmQʴσ*j9iy ^M7| h/}S3 ޡ#yM+coXH|%$8zZ[h9H<; hgR*سPu^mž!ށfWr*A>@,Xܾo$^Os\Ep65[z RLf 7SeL -6b@Tg!S.yCof?09|=g0̙-kmR#>-e[ⷋi},lhpOgc3jS`c@ ʆNz ݲ^R{~զQ9q2l*;Vhg)2BE`w׋| 6 lU#ܦˡ`iB{%JDLyvQQrosN}$kQeixM&"ΚXq[ݓxYhݾ(3Ԗ]<{A6H>T|UCyBW&1T~"J#y_Xј$J%SRڠj!|# q)&mleܣB87:z#tqS$":U4#->Lޙd>WݽVɤ"J~~4'j |E1_rt +\Nj꿧]Uʆ%8ln,eD IhCAA+X]vBkbRyqXRflM 2mб(21kr5x$F<4bb06*mz󮷦X׋-B䐲kiH;Дx+R`Jjs_Jնoؑv?)ۻ&x7?_Yv'~㈚%r"Q]F|ʹخbx@?n1d?Zp*͓7/;6.p .5` m!q;"t\;oCkV[ D:D78q{G}Dǽ~j3:Aql`*0v ` =C(cPw:)(;a` [BIflʪfu1 <ӄtanpcD@8pzGMFT0y,~P>Įى/6t-/7)ڈXB[ӪDNzc՛C%?C+̈kg+x0vAySگJW[e=1]N̫:|.V04>">خz_Gh(\]vݳ@ಾv)~A}A+4fs,Xo f/9}l'r\m:_ۿB:Kܮ2ywT?yFWr1;S)ȖNOQP5'_`ZKN1{<+ Pe@fY?]V600/63PUnm>Jwd 8OH]w,M8G4WSj=w*qgpz||~2q8?;@?h JzTsBc]*> zu2;@r,-==ۉ3Ɇ}IB&P PGN__PtPO[#ytLZ6}x?A7}>xGWAGK(kˈظBz+6zk? |l,18`sxzYK&0,;-3vZ{5 M5 ەRQ)=73xlL:JQUuN9oq5`68M%}+Ǥ-Lr}d+r>`zx^)}2=M]9J"u7˿A?93}Α2芷PIeJNݺSX]Bu &/ 7Hy=.D? <5: ffp" b96CbAt,Gobۓnw0t&{HmQe fO%оb=W=%.An+5q ܦj+KT~3qyC-Ʒ4aß,ʫ. Gnwoz_(Ks"x/̪O3ǤYhմj8 ~"rǟ88K$XRm`Qg &+{~85t2m ik΍ ݑwQj#wS,%(%BAM{'l4:q+OdD1oT#men@4G ٠K#쎎?w6g` "n{q|.:ڞ#}o=WĎ$!u:/<>y]'ʄA*?;?1& /8j'Y4\o>|Ӻ5⻳৤AuV]§iݦz7I>-#FIM_MA B۟ex:X]6﫯J" A ~UQ_WՇ*u/?Ó7 `6v/vJ8c6 q?jkǑ_1@qW$噌9nD9ƞY1/̵%3Uk>Og8K໰܏}nN*ft2h`ZhЬ>3^ޞtsNj$T˘8ͮ<';˕-@n5pҮLi9J0]1eK׊6-}h[ai9M_ScF^/"vZD ;o Z+Jbp.g#쮲F"#I:snm0KjI=Sdk ITMeu u)s}-v/;QYrTi*am9fN ]0/(uy8ʘ3nL~Ъ?,GCm?(޻ub/ӻZ^*KԸu.4ҢN FXaZ5q!'_ n=Ӯ'e贐 gBc#I7RlDɅHam "Qrs|r\\Co|w*׊A;l}/{E_62 M-U@a8fa" .ӟ]Hnvj9,Ѫ`uVnf4atG=zHߕ+?UP1KbZ$XR\8TxLLclK\-3Oe'S.n\79'k+QTƗR{QTb܆6{1hhcgCoiC^Saiyqe#n4lohnխr?-/{L2rrojd4SӆxJfUIu|t2 _^X5?zrٍNN4x4Nj95NMN4xӠr; vTmSmav>vl{NÚtwmav)Cz; `#Gadѐ&bJkvMMԘfSI4A[FKxd֙X*aQ_-szvlQkʤ{7kLk#X:% m6zb-مa궦&O1s; ijlФA`UcgR74K$OӲƹDM9:<Љ2tF> sjMIߊtG?,{ R e/^_"Gi;a0_\{'OF,"-CFFW,s\(I!3D]D4˂E*>?o0\9( 옎ԠP8i PܧUg)H9- \Jt&I 5f 6˚Luz T 6'H,- ^TRvG. v[wo[.mÓQ{:j&OŲ瞜cv}?Ql0|oshbA3!Y^B-FǙT?tÓ]9׏(284ΈM0m"({*3Kx{.L6ɼ79ͤG9i$lYeCdkeV sԟ&I@LiC_wkq,3`qu߬0Xo-m=Pg9WV?]:^^(0X \i9~)[@*s J3`u #-c [-$v*#XjR0mXҔ:멇v4 HU[=xXZL~QFi_hMlzma*$R;'[5 8v \+L,=2,= -KU8"pEfWg~Z{m5_9RKy,Fk .Vt`<4/9*OEٲ ô?ٳw原\Xou;vˋ4v 9ED/KMjy%Vh99^Va]_U~*MPFu9\_A{x'Qz_q1hrtG!Tsaz#mԡeh ~h9|yZ-=eɡ/ÛB/Se;g w|H?(_=lNXr@O*_m5X ξ3lb'|KLin{`!a[4C^cuL 4:.ugh»CiRvG78D1_V2=|Ir]L_b:ɼ򅲋>~pѰW ,#Q9IR# pmRv0rL'tw2j~Q^R9B h75۶Kq Oo~Ri)퟿jv?&kdo{ZIZy3ah;kAo;FGNQqB?d<{pd_($% vm(nk% arH-[Vzcsj{%R+*o8HQ6b_ /$k`u=sEO +Ƃ+$I\EDNk3mW.odɏ N`Z-Ҷ_M?%:fF`-IqyT7#!U~'wxR爎g:.H9}8fr:ճ̙ΐA}3c9mrH"u8M5ŸV`\ \eY Q ~x]J>e]gܜK/E}M3Jbϲ [ҳ<9)dz*7ے%3d1pd){K=w۳)y. #zhg|jn v61T9[Dٰ*2h${3,^BHR9 *FJ‘އ,:K )#]-AKK}醮le)y=|a,|mFA+!^X3:F*y^koʛ)$20zZr; hrLؑqS0.6&;i[.g2gg~F-@Fn5ô#' ` x|wwylNA?<-J׈P >;7e{=lfqǭdBlc-lJ\+ܶUjy)HxUs[HҏA"*_R( uK7I.GU:NdݒavvwiB 5pÎ:M“0>{'nXߛ^GEst[OCk7{͠ Q:p9$ߛnHU2t֋ߚ_zEdYNϣ z4 )MuWBD:w2O5&8{9.z .vݶ4Q4{0;wj?>* &&~P.< }Vzh&,X8!i&};>j|`.RRA9@At@j߹٠]$RS12276!Wl1BY<+(֞Aҹ;4H8X/?cQ>scmd-3*k7 +I}\v^*A+G! =vqڼ'G-dQ YǍi#(yq=fU vP6>Rn8p)99} ݙ-B v4M:N1i?tݓQktچ|ycznfؕsYTRR$or }]H_/>9qR%PNkRH۱J\z8v 2<],N٣[ö9KDBd{ϝ@UHBHG1!Z@<0bQέۦb`g/Rz3Gtw,7K}4d^GhA[_c-,}#d봲=3䕗d 8©.: Tc-n:$-MqqZՙRwVz;;8ѕwS .ފʝ>P. ۳̻ eYVPryA&kwv B=o';bNK{GU*RʀiP5CuY5}|\ag$U7› \6EHK(fd[T~64ؠN1vֿvl:-\ݥ]6fytmil`CjOXv>Vn؃olNUIrL*]Rd3mE}`J|l{ܙůw !_{`7pewiОu=9X[T{Yc5pS:6$n;izXodDGQ6 .E{ b&-Î<W3|?_cE d0X.dǓ=ƃmdƃik b>@|P3OWhBz)B9XHZKgAe="jNfc/z̏ttH%gn~HhR>.9V##u6L穿yj/1y,GHmsb>Iۥx-im"e/e ذ i +en;OTX#FUh~H lx\\uxx'ykZT 9.LD9=SߪP|+s#'OZsǩp{[e7L3_N?-MZyxѥ }qmE靡+Й<\Xʭ溊*qTGdU-=8Un 0F}zvdT\݉iO[\k1;kȧ8YYx48w?ujSgkkBf0,f bGB66φeWc{xU-缌 Tg@Z)%VHcɾ-N !1@>?aHF*O)l.*9o^^/. K7A _F[)wpZ4S h HT6n;+DFeN-[FɆoK~D-Sv|M pyH{;XlW1{Sc x^G+`R|,P}[T>xSH)*?hf)% gv2å rZx C8 VUX?6Cwn$u&PK<*B6,$CƠ_q,jr [jh#Ag$/Pq2Ou Z0e¥æ݋qN2)r(lR&TOKm^)-;*MolOMμ"]_q~^@׆y.T8o1|llU d:(B/ڷqU@ZyJ66׆vIp{Wx{Ni(v2#O"!w@>)x~XIZxN,c̸E g"uTp,2TI|KyP~(ӟh!lpOSwx4vi6ݾ{z2 KZQ#8.ŜJsj[TGvSXR&̒MǣA{?j Zgh;?o:9&|n01_Ur?c+Ug VjU+Xn1R.ceipJ9d}@lPʐJ9ZLZGz#zxIkT= Ypb%/է#_j{88}QSݨGqJ?_Gt}HCw4:jv"/uVѿfX$Pa]f$b^7xONY;6EW5qb"c>'`[ ^kœJ"glŗ-`W5ixSCEl 5v߮37@~$K)VB-dawV5[ro|pQ׾hm J!+  ;RM'F3|n3(A Q sJZ,*#T5 J3%jR)θRjΠ*8[Pň$IXl^7|f6eR4#C{ibjk7v6q=t ]sv#29fּ,p Fj-f/l%[f~< H6n 'qR0=2w$DRGʭ'0hۧY߂y;jc6΅jcP6fIgiݓ]k3 *3 fT&;cT$4fu}R.9mw }CFV6_Bs f2D mO@>g%p_\Jp5ČƷYUlF"69Yvwԣލ >%Y|J$2t|R`'S_cqdj ]]:WqHhjƬ ;Y٪8 KlPQ6 [rfo:Sz9m`# v,L%ԧcr )KQMz4ˎJ0ƞ@o{/z}cSN60&Z汽[ e=3q:{$[jiqX!iv5ӭjnBaw\/e6RS5àI?a=DP~KyBVXvU{T_KcQ \uJDQ|U7qx'g{`W "i6YڟDZ#TaЋeB7,ni1Z6« ͩ[\T2"hpĪ̯$(صR@i?bz> m2yEqjT%<.ܧhcsYΤU{8/53O>#U)Nex7B9" K]}TM]}t})#&7"e ppp%3r/vptrLefʥh{ fc,=ϨV,RW,Ck$:l"~O2L1ZV m;ȶT*zf`i1v6U]~ccrt:e'ӂ΁qCe.d?/SѱouWa+a0'c}y[WEzK1I7QOt AQ}+rFy?I(4hUQ5o&)41ˤp+08ѯ|mճ) &,bG17u.$R3Ѹ&x^A?X Oׅg7%1G*'&!p+RNԼ8[W ?O+]~Mdo=RG3" Tvz0.kjSaX~Kft|qK9V1 ^vćDDƖe #Lr>9qC_GovTp*Uz~Q 䕠mok_ؙR%wf1YAfˎZFpd54Τ'F/eg6t\RR_eg1 RM=}W{\IwXt_XvpVĦV,-`'g3M.+#7}C4"T -r'Pf6WƂňDiKxn!ǃ]{;6?bOGO1r$ubT=)kr"N8jr%=2lwCխykVyNZby9A6fj)÷ rS#ڋ-xعփ?L\ P}AǴ=uDn@**߶\@Q+j+YKOdYDWW˾Y\*@H][]ˑGP"pJW*9 kW$,6geSwIfmRЮM=qllEi)ꃏZXXĀvD~̶ĖZco_+# HK.X"]+)l!MeUW~FY*џ-h5S_W6 Kv2V zt_)>E @!Jb\ȕ_r,-gӄ:RΓ.SĴ1!dY@)H]Q%ȑbkqmh;S>Lȏ+Yÿm^ee.ΣV&, U5dϥzioc/SqGRe|`=6B@5*u$R9ܲǁ3Pn׻P oQˮ$^؝ h\n,Tôw 1H@ ybIQm܄ 9O:RuVݧpxU(M+@+W9 /t}Zt#Věd faO4>$!/ pl8XxWX~ '6kѦКMmma6߬~UqAjOȢ(ZP$ë6fX~iWa0Dc!`CCзlH;1*AR tg3{8CMd̿5 U`rfmx(X}/m NH uŧ d<8,&J?W@66?/ Xy1kHjSd`LfPj" V` صͷb ^6jXDtЍ\a8sm~V$_A}+3 J_fhW 'ճ( X%|abQ`%٢ W:I2n/BXe˅nmOSwn4:uujdT~ue .|븁 A?fFDxB +x8*PN]ϥT&Aug O9?C"# !bbmb**-ciCs?O0t#TuI]Q$97]4sKBJY“ܞ7}EEȊJ#([ou[~0~oұggOf[ڤF)kBYLv)lP&d6kr,qmgl(xfS@hj&a67f[QaϖME^"Rkɢ@Vst|4+FUHwwk}8f2Z';JnEr;H rີ[k jT*5q]Q꾥fL2SbPx\رZб-?P]o&X#;ɂkFiV nzv0*qf25悕Ols謁x4֛A䐶vs"og=k'qf{XlO77Xe)[]5FNOF)s+Z#TCLahwQ=iS]g}f=n։y~AAOK˂O }3KC^@$?Gڬ$ O+<޾Vz^qWkQʻyM#Tv#N4_h86֧>x*j[>Z hRJsȌy T e_F7RO1/Dž &] <=1־‘Y Orge*POESvè Ea1 Q]G2"},ͣZ'&$Z;Ӗw\ g3)ӘDfrܝmY-G>B~P2H"U̡1LN'*`酈+/W+NXTxmdZR,>(=䙸8_}csYg7vh,%"yZ șO&zb]k$鉱r>_EQU__ѭls۪rADsR!5=ߤB|Genyǩ[ޑaTߤ;7jGs?{z>}q+ՊE5Mi(R\d|݀]cu^H!G iNHyWH^ T67Hthkt׃pgvv(8HBe凵zg'@͢ ųUHOs i;(PX5"9C>~JjLxP]͉ٗ2I|R7ߩ*GEPu)Zl?oJÄ8> <%RcK/?V<վviv%ޯ?E&=gT1C{=Ui>E//$$ l;߸Dd)HNOCi`zⰨU/H2,x!Rl&+{Ur|DOހ\I5Zj[%ذwmj3RX1.)= 拵=Ue (o[3 ?~W8Ƨ{Mv6 "ED馦mZՂ0c WH ;R*;>F}u11֥~wmĐr3$]H8`An`K3 zmK5rA2OV˟qk恁;?l\C `f|b0=w;m ·%D/9:㕎sw5AJڛ䙺l] A jgrZAhՔɦlƨ#~*Vn/fkNM<_ZG3n;^ZYf3¯G]vݴ{r8נCKη-ںl;OPGZʺoM8kݴ굶?쵞m"%̡#&T?AJC} OhtT>`9A`Ǟ:5lt1vGǿcZ3Lzt4nA` J=okzL`q$m`0ʏ: uu{l Zt.< f(.60c  GzTcY[]η[j+Gp $(ټO ϥZ2Y3** 9o9ȷ 46[ܗwW[m ϚyoW0TKCQ)E3ےm{+ Myʇte@m">r55^'n(^6H:_;;3p cu,nr1^*t϶i^ 4Ysǀwܳd;FWymU׹M3HPAx$Pu~x(zf{[-%e9[VBDСn{l J^z?Uq̈́tuklSKiLBj CqOhh'-t-ycvo@X%[yb\7a&jj"gngq_ViCu7_L+sanɋߴŖ-EJl&ؙS_f""В ޥ;͚{za6CcR}(u\XWG ~8`Hշ΀¨Z|8\kÄ 9%.{8@[P,8Eu"RRejbl**nXc0WJMMr&`ay.]XYπViүV3@?:vs8\$&s냺F0R{yaXSRu8_7̬ I3yCלU3`%NG0ȟ^:02EH K3P1b)W4;Б㿦yP:sUy/ڬ_/4U|Qq^ïhEPU o2ILS_⥿W[LMr( `(]fX2,LKZ_몺ci\y/vSZ=:Xyt?oxs1"?>M­='è1eTYm`_QD"OdNurNP^+3?a/SI}%8LyYxOU"u\֞~M+@SD~E? de^yc~[{嶭]ȈjZu֠J.ozo ΁a1, ˛Z$jZLcQ~BЉ:}(Q8îш IAG{_gkjIuO~=mk4蟑7:uQlIwݓI&8]{n4!U-;)y6M]ϧ`, YHM}_;V9ʰ;h7 S%N|cX'j򨊣c)F͗2 W3ܧ,FL7x3ltLήqM8W#]!NQ+*,Jw4Q~.,_z=uBm#?o#$LKtKGڐvTLz{&=774x3@/|>`y9#$XBd~)ULS\k1ŭdoLN 1tѳYp0빜9ܡUz2!3 ǣvGvZT簙1zNնgUL(dPnoL++⠝FDkSbQ]İו=䨰1*-Uoye _x=^j+MrZ6fr ٙuRX$ P|.,,vk2 އaAǧɽ?qyj`3쏋} _B%e<^.sBĩee^_ G>.M"F ԌI{VdDmL%4>}=tMXzdA{C'MbV+7O {?٢n,8Wl?Gl p?W`_tp#%2+zPwy;ߑyQe嬰  mD#=(p>r%Ρ~^ƛo'V[U~8EƵ6z"b4u脚^TJkOښ goJ]/Qn&>_\oz!Գny ÿs^xQ}<޼u2H'U]/18\~b kW̬]Gg4٤ wtvle~frCLׇx9ڬRm6عFZ>ȷNd#Hv#v M #x}Liz>N%dZ pӵ_ϱ~bNuH^hkS!VBUTzEairJuсMJ ] ){P4x؄eɻ xIBACyǶQɒ7bwwjZԴݱeW{ÓyԢ2qn[$|Iܓv:$9bA~yMI ;:+/#98*zA8Km]:~6LKtf`QO6TMJms/C=~ڣWp,s+G* $Ϸwh/Nbydȿ!zE-7SE"pLnSapt|Z BDld^X4ۘaя`3d9*򰙕XƊJY\mE: C],=&yB̰>OA0"C婙+KdAÊ8%^muKfdgD5pXW\u"xKM!DE 1ϴ|NSه ZB)ȑٶZh{s =rjޕΓcz"=bDfe{Y;+LeÆl L7gjTm\Q0Ɋvϣ`[zARUneQe#mD" \1'7V'-o֗x|e"`׃rޕ8NƔuخTB!^bCgZrҕ4u"R'EMDX uB L!AT.οR1tRM}ʜ\|]}m@ϯ{+)G+Mq !kQfPJ±3B⬂aG\/W:24MPqm$;%Y)<Ece=g>lfAmU`Ѭő e@{9: Jq|F̈zn=8y7{JK0B]r`>  /a*sn_lXBa6 ^Xw,oXMOrYƷ-hl/eGV= DXέ45Z9N[bآ8uOLTΊd4Lse a qNPժ-)Z0p)3@j-\pBK閄Z䎞w`C`%ɰwzs{n^r.nSshA ;f3wb_JÝb*Mʇn@Fg'}OKUIUWixO,QcQtNsn3S&6 =xk2ȗ-Hmp)'ʧkΰOs.DQhAD"<⵾91Hc,d{B}0{ J6#`{Jj474 ̀P%_u?%:/L.TujSsNcSbɏKC1v!U۬i[cqָRzR1*hz`ݭ{baM!rb̀m& uC!|t%%YZgZ >bC>$F5=U1_\Z\4]d JkS5a\Bj08|[W-E^[;C1o*[=I75OA=H@bP?Bw5OCKhL.U)[ٜJ+pyiFf0U3RpAe nOqTbcB+AOo[f.);f{)->]YA{{oZ d%]\*1/Br]qSuO} eA`if!>ӳz*}=8ݿ[ b=#oAć}P=7!Ee~73#K d+WLt b_=+H`am 5"8__#>0EQz(̹7*9{h.gω,sLJ %,BU/KG 2UؑÈ& CX{we ;l<s[_;ZK͂Oqq>J<;t,;di4oo3Ļ,m!FZgN[#$DC'$ ik_܁т 3xeYy!2PDnEY̡TUv |*s?!IIok5wv7"dU[[;HKJ2ez4@ +ՄQQ4q:쫖Gt)P\I[:B`&BRm0Ak\y 9v$9 d>LQaG'-7Ze$!ӷeTuf$n+ mWG]dMn<-kBIUGnhLg;*"cOe?tЌ\ֆ y-ލұLp @Bk, ?dw6V 1X8BhXy {#AyV[c"O]pI#m0%tm.YW7q"։_1c@)/S,Cְt9m 슉 tc bvK$yHBWD ~]*vY{`g;&3;4k{-uR8q~n\8Qx?{h=%awS!{Uۥo]붵n_JtS6淋h wAV_mX3;֥̚)̱`_C*IЍ~Y\,tb2q ܋JYLYs:{]z3SYѩ;z\pGېVͫGNg*mԠ]D&b1ܩ*) yH-X<9q2dz^d v7fu,t 4;K&1Ήxn81`kTZ1~Л.4>O'YҝdhMNidT/T^6ֺEKt.Zhfg&W{zn5OYNe(ckX((c-5'ė'^#DZu~2|rQ?Z1u;ʭrrp]&2)i;7Y+=.ШILwk*X6A7>7>K߈n8y8pr ITƓJ41\ɶ3rvLuX:G@5Q$:mV M͐_R0 s;̚q("qw׌M=OoDf5?w/4]]HMD7~aVnEE֟e 9!&z B/XOì 19opZ)mTOg`@re!me ^*1-VXFN[n|9>?i8A ZZVMch8>h-P:?XoyZ(aؘziUWB&%i{օs89ȅD?電?71@inbP*(1SBΡLKRVIhC[e4sM-Gƾ TK[AkJ2X䮶B4|-IzP't {3x'|u%ڴ]crB&WF2ȼi@* X[=aEˌK;GjLg/6KmcBkj,oˏNoDz_ԕ|v0hsDo k{H$iO]PX-f@tz.rx=^UW!lJ*gh>PƤxMrOYsf~>~;pMt㘉$/,v2+qFӪ1!~x5KJmŮ$BЭjݰnb5}]Mr]tXiH>ܠJ\b"l;ůˬ+X9dwDDM#/YP+ߝZU ٸ)r1RV{ɒr}!O(G/26yNT#GGaxFcoYlL=(Df%P&#QYiJhA+[6tRkE=aZ9W~ʳ8D6Y$?$m)tq_oH{|¸tA{Β ]!?ciT*%ݕF Mz:nS<ͥH^fb/EFP(V׋IȐkeխPqmu F4eSfPA{QfPE(3LiT(3p +(Sz}/ (3eF2QL)V}b5 eyu8bfi*~qj:і姖ʏr7Q[wԷ xJTjr4AKKM0Ó=ɽI7RZk:2XKꁔ $m < :7U(A-IĿZwH3mm4Z:'&q28[yΖpl~f,B!yZO>b\˙#QRbmŨ׋T\j*84: =yAVG"HXBDs|sigA7TA(b%5.'S9 枺Oݓ;j38ϩ"Us8]Kr߱`ǜ=;;Λ,_V :`_Y^VydFMU-ܹm nSu+R߮ϖcMu"Dbێm/y3=zk ]>D(daSCMTc@a˕VZFo=̚5 =p%$LǸ%CEqȑA'Ėt?&dݡcKcmB v+#|JkZHuz4R?#!#||`IĝY滈n"bt$nZ2g:C]iv4{cK[#` T1?+Ӡ$WRwhI3Υo!ޢ:?5v$9z؜DqVdi-{/iJg!zi~<_ Xp^,eJIҫ.#db K ahhEw-fC#DfR6طx?X""ˠ%JIq/ ĐF-FE),uX*S%B7HloqMX m&~>W'uSJ7S Ur7:rI^[) tlfg]YoDP4G>(nSO%E6[-?mY-k^A5B(@$. a&2Cf$-4_xnk )t<="kb wڐVzan͞`VC:_cV]녯?҄QaCaogLh!„q4zBh oxON4"srJ63I*Z'{-oٍMr.MOTQ ƈTϽSڷYvV6ki+fd +M;G]'뭼D8/ھ%~9~>j`B=|mz3T ‚RVAklDkv/pQ ]bs4 }6O4zΚd\`)7WY"[mW/cHRb 4EU&j ·w>W;>^ӝVMm3&!!חIm (}3 .n,qf@QY:R7F>zfñ˖!3$0¼I&%76gݮ?꟝ ap!>eeW uvF<-8_qb=Bv|C ,pΕ}`%|=(>?|>WZY`A| Egz꽏MF;+R\8FR*M$h6Kt&3H/jx02|BvUB繫>IWx cNJ>Tcb-G=#}EpF4J4a ̭IGVn/^ea{$Z&9^;Kd&)nq._a<:K2'2n]f0Vf SSɶj ѹm; 8n >/PL?PZUqw( ,3x9C p<${;> H'7JqxD%4;W9g¾^q evyl?,nܑ= 7~n& e9uI~|!+c]L1UEU|;[{#F,62{|e$2ZZi FȄͲcZX;QwjQ)h!1_Ze-,w2N ? &V+,mk+0bNCUob-$źTgs,_8Ρ|Z]CL vY#_F@qeRh goEgrXmӈj,K =Ƨ\GrV͂Xx&faʃoZ^/IL¥y@pD8s%W9;F$KD9j ab&]aQDQიm%Z4zЛL>{Hn'%$vCD"yd )1_ }YR($4\.YoWU Y)f{t{cP^;i'S0su|If[a7a3gYתX'Ɵc}לZ6aQr1mnYlzSt ng4G[<0b,*S~yzYt$GzRnpLxpҴ$tߣB:IQiM&qB:F#\%`8 ILU. D.[qFWޜ䅇YԌ 'DC<u=lAoxD ˘%Y&хd6Ӂw't@mb" 0J,rC+qY#Ztʼn{t\%yCș 9?ʫJܣ&vdF b3`M`Vq؝+GEibcwLb( xflcrjί~Qxq<@/!I87t4{Bd\c>9Z=AmYe۝X#_M#3QTB:Mt6vG3|H*`j HfA&y˪P^ "!G #&'w[%7(h@ |}<,m d/`' .,mR8Lmzz$KE=n` ׭R{gpZG2= f7hcg<6gEABZxG׃ZYzR$k6\gM[VĞƤkMJNЧ9kQC+td:V#.Ͼ1X}EWJ._7q+~l|PmE6IGx^ > f9 Rg3gWfwUo%d93r{t5z5UTȂ\`'|%hh /YOB0WmG=ͭzʫ8mNx׬/eʂM=x*ta*^e{YwA۽{*:V*UG:ޱf1K۟ nse"qll;?<2½qiw]3&r9 ӫ^ 9zVtcj%Y81P >Z"Ey|Y4U % byqGżT$`L`!O,f[f@`S8hlaѨYr<#) cc9Q0X灲9i?v'4: 칭"dc+U,v!aZPCIa\@qb ݦY)Jl(ʕd xgm׺^Ƒ H IBk0f*rAݛ7M0;Y3j'=52{;ns /r6eSS]JcS$gB^0}g-?:>9:FrwcǬ@cm J&+srdwtݾخƱf',-:59gHA<$V!\tSZ)s?O6[O. `oc1ؠi5::@ f=+i 1bX]Y4Ly@@yspNŧ[DM gJITt%f@`1(af&b'q|"ueY¬`kYXwaAT@EtDȚ~\#R^vNn^gi1ь WtiV=gcx'%:;^;t]wt/ףxhvy5SZu?!fUTqfLt<> -`/Y2nWCrɠ5翢sn@C'"AB?@9HN%g4`TKZZ*$^G>BKeRlɤlW5|^& ∗ʂ`j“&Ex:uΠŪGC _03gtGπѝAsԅfwNk:CˆΙ sjBX:bDNzy8:,73XUn[S#u=4(wknT>/{#~zo+^`.؃^ToR8f;ݘP&hFk97^+*Dn ͇ZGC&p$9q,ȞsEr;ީY UkLZjGJt@TZ\t-Zn/~lM|Ƅ(IH8#&v p*wlUX%/@&H`͌E+]7(v΃BHDDo%`$$~IymX;$=3P+RзlZf5-e³=yU4\IsUUn -5V9z|Ue7ҧ΀z7Aڢ|pJo=v|ְp ]+!p;ѳVR5F(`MbCqJ W_ wQtSSLG#qK̔u1{i4Ec|[Oa9&gMm 7m{\d7? " ,EJ+vw^^&٦Ϸvn?f7iePl%tVzVQPA_s [6qRH*i 56u )?mOcu[r}{$ś$J80˔>/]9@,k@؂D~i'57q怹!HIyVu~4{x!͋Uyak(UsYF;^i#w],3Wل]s♞(qd$yxf%Uٶ;*o`NyNKrq-jFSEhᅇ~@ i75IԷ$XTz0>Ysõ4]+L5*x/v եz}M5C`(cU0ќ܊`)e%ݢ2 2vqneQ }. v|K~Ey+pVzJXVzo x2S47+F%9(-'PJ']yKSK4&ϢZX0)k{8ϟgÜB`O(mWkHo;dТ6-aM,-p')JR:$)cF=s// OYѓUZAG}UgE녾t/ #ےPq:^iR/0CO;Y譥vtNELj·>MqLkL~a`6'Y!EF|k>*v}W*H0Co f4[fGQYRjj^3 %kJ LN-rl[VqߢN4")p-oV _g̐G] f=㺵x>?w;o'ލϙm p8$P;i[Y:^hj-ם*]024*(6nִh;B8WU ̞"9OKmSVB-3َ]}2_sJ Ǿ-6чHm;*~h:ֿZصwaҷIPeڛ1d/wڬRifeP6fl_I`c۷TY>,o>䷆*!=&I2̾;+i,Ϣ~= }8R*J-m~R pÛ*޺3] .T/Vj-w 75sPtO*2)S }ݬ%.~3n -<7//ѣ:-0QYpʾqZy)pzbAGF`!}IP/`Q!Y3|WkkZ&c5XIJ0H|6/-۠|LYc~D/?{~pֆ7) s.D o':qvRhw ڀOцqB~m07Ĭ6FZ)u _uf;Or;:V|$ke1h#Z?jE^yxJl y xv@>h_y=rk+W1>mWpYcY ++ Quϑ1,`.ҵaUag ɟ]]lߒH0jKt^ f(U6A\QD d*+[O++FZnGjۺhj@We꾯BJ g3C.%s/ eZn3nYE0K=6uZvci7H:~ryWϦ- (^t%;cukSEix0k)$ʬ<3>LT5V*X#Q'D j&GȐ#Kh_{+?_D%Ң/L6HD91ͤGd;G\x C-{7q=Zi,rAP˖cZdY-rāz*[ӓHĥ:&uceiO-) ^ ll-y.΃]VSĝڱFD_sƐiu*3酌dMZ]-tN$YwmFGoq Q L}‰Sz"b,*EPȽ/Fmohg0:o9\{;yhl:qZn'9.j-)d-M k߿TUԭ͌5+g]DkF"70ڲDȖN70 utQK­ΨٍY:Hm`](rޚlG sZfFlU+m)J&ͪ5+`myt?]Ҷ j%V4ZKVB_t#mOGئ}d`OerU23X0[#?>?IfBKW ,): YMD MeY1|Hc-*!ZԥR1'zBCT '/}RO+,aI󩅥ĕ(&%"߯>R_Q0ɚ4Oh;h^iz fKg9%XWܞ4I"sb!Hۂf}4M8 ڲ~|DK/P04ԣsL&=}bi/#(]\`Z8[VW$vBu8|k.ԃ/<2 AjdP4A|:z"YgNck+,g$pۣ\+1ꈭNHL}n]Yb/4J:C~}|cmg,-~(2?t+?10^OI&K|CrJGpW/juzxAl@mb2ezIm '/xn!v3]c? LWpS{?$^&taxxjZuO}C{"H`LKKVln\ 2noS0۽;p metadat/README.md0000644000176200001440000001263514746672514013177 0ustar liggesusersmetadat: Meta-Analysis Datasets for R ===================================== [![License: GPL (>=2)](https://img.shields.io/badge/license-GPL-blue)](https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html) [![R build status](https://github.com/wviechtb/metadat/workflows/R-CMD-check/badge.svg)](https://github.com/wviechtb/metadat/actions) [![CRAN Version](https://www.r-pkg.org/badges/version/metadat)](https://cran.r-project.org/package=metadat) [![devel Version](https://img.shields.io/badge/devel-1.5--x-brightgreen.svg)](https://github.com/wviechtb/metadat) [![Downloads](https://cranlogs.r-pkg.org/badges/grand-total/metadat)](https://cran.r-project.org/package=metadat) ## Description The `metadat` package contains a large collection of meta-analysis datasets. These datasets are useful for teaching purposes, illustrating/testing meta-analytic methods, and validating published analyses. ## Installation The current official (i.e., [CRAN](https://cran.r-project.org/package=metadat)) release can be installed within R with: ```r install.packages("metadat") ``` The development version of the package can be installed with: ```r install.packages("remotes") remotes::install_github("wviechtb/metadat") ``` This builds the package from source based on the current version on [GitHub](https://github.com/wviechtb/metadat). ## Browsing and Searching for Datasets A listing of all datasets in the package can be obtained with `help(package=metadat)`. Each dataset is also tagged with one or multiple concept terms. These concept terms refer to various aspects of a dataset, such as the field/topic of research, the outcome measure used for the analysis, the model(s) used for analyzing the data, and the methods/concepts that can be illustrated with the dataset. The [`datsearch()`](https://wviechtb.github.io/metadat/reference/datsearch.html) function can be used to search among the existing datasets in the package based on their concept terms or based on a full-text search of their corresponding help files. You can also read the documentation online at [https://wviechtb.github.io/metadat/](https://wviechtb.github.io/metadat/) (where the output from the example analyses corresponding to each dataset is provided). ## Contributing New Datasets We welcome contributions of new datasets to the package. For each dataset, there must be a citable reference, ideally in a peer-reviewed journal or publication. The general workflow for contributing a new dataset is as follows: - Install the `metadat` package in R in the usual manner (i.e., `install.packages("metadat")`). - If you are familiar with Git/GitHub and making pull requests, fork the [package repository](https://github.com/wviechtb/metadat). Otherwise, [download](https://github.com/wviechtb/metadat/archive/master.zip) the source version of the package from GitHub and unzip the file to some directory on your computer. - Place the raw data (in a non-binary format) in the `data-raw` directory. The file should be named `dat..`, where `` is the last name of the first author of the publication from which the data come, `` is the publication year, and `` is the file extension (e.g., `.txt`, `.csv`). - Place a corresponding R script in the `data-raw` directory named `dat..r` that reads in the data, possibly does some data cleaning/processing, and then saves the dataset to the `data` directory (using `save()`), with name `dat..rda`. - Start R, load the `metadat` package (i.e., `library(metadat)`), and then run the `prep_dat()` function (either set the working directory to the location of the source package beforehand or use the `pkgdir` argument of the `prep_dat()` function to specify the source package location). - For a new dataset, this should create a boilerplate template for a corresponding help file in the `man` directory, named `dat..Rd`. Edit the help file, adding the title and a short description of the dataset in general, a description of each variable in the dataset, further details on the dataset (e.g., the field of research, how the data was collected, the purpose of the dataset or what it was used for, the effect size or outcome measure used in the analysis, the types of analyses/models that can be illustrated with the dataset), a reference for the source of the dataset, one or multiple concept terms, the name and email address of the contributor of the dataset, and (optionally) example code to illustrate the analysis of the dataset. - Either make a pull request (if you are familiar with this workflow) or zip up the `dat..`, `dat..r`, `dat..rda`, and `dat..Rd` files and open up a new [issue at GitHub](https://github.com/wviechtb/metadat/issues), attaching the zip file. - If the above makes no sense to you, you can also open an issue or email one of the package authors and attach a zip file including a cleaned, raw data file in `.txt` or `.csv` format, along with a meta-data file (format doesn't matter) that includes the information described above. ## Citing the Package If you use these data, please cite both the `metadat` package (see `citation("metadat")` for the reference) and the original source of the data as given under the help file of a dataset. ## Bug/Error Reports If you think you have found an error in an existing dataset or a bug in the package in general, please go to https://github.com/wviechtb/metadat/issues and open up a new issue. metadat/build/0000755000176200001440000000000014750503602012772 5ustar liggesusersmetadat/build/metadat.pdf0000644000176200001440000204165314750503602015117 0ustar liggesusers%PDF-1.5 % 2 0 obj << /Type /ObjStm /N 100 /First 809 /Length 1038 /Filter /FlateDecode >> stream xڍ͒6<]N/- IHUSJ'y٦1e )y4`ib% lHI iG%OR\$ŗ&YY\pIGL)PɢҰB%R &4TVd .-8]hEVXFhї/ŧ>u`:tCe2T:#l34675CxI %#rSp 蝜e'O1M=Χqx1L|y`Us(]ǭT1Me=nI53챉cnZ/;U͑4. 9<#z*fw=GFT= 8;1}?g&"vW3p{!:9S;tLnr~&$/>d1":nSnMq^o 9g2qn caD!}jmI,Fw9MhWF9oUQ/g~2:܎KOP4sy@Gvsm_ =jj mOM "fx{1ݴy]͐c^Oq Ȧp}]Qk/s9^>vMN#9}E\<OdgЅӯպ8,>~+Y1б endstream endobj 402 0 obj << /Length 1120 /Filter /FlateDecode >> stream xY[o6~ϯlIJдI! KW`\dI\w(Qb/5Dsssᱍ'dvΘG12oyQ8"GG[)\[iD*/?@A1cԪ  Sj8}+kSf55([M>!8E0u *|G:#x"((;Ш$à`_<0?>>Gh9%D59Ѿ@ -`ୖy! 3ۯ.# /Qtf,*3ĈA^iD(V?sj`z@ry$+5lr^:U>*Jn֕(7n#J9F0VM]$Y&Է6pl#ak߭J:NivvUgҺRٝwmGJK#'LZe1~e:0^,;?8,I#싫|1fAFvWUYhٹແ3`LcxsmTi".nlbLʔȴ;k]Jd+G}+bz5F~,oYe},O.FќGmnQ񃠜,OFi ާEE$mxˉ`oDUy-XbՊ0A F^[\XMݽ8¤cJ~6[+W()%Y1(Txמnj~YA#g*:#fCG_*Z. |ze"c(>ҺLᨙFF"72o{K"7<| /!1~>Ag}q> stream xڵXnF+h_ޗ@0 ;Hb 9 :P3m {@r,_Wr^MKƙij3IYh~j&Ckp1) ,)!XԗKuax<%e"h:HJ)J8+R#c<0 G+dcdPZa3 D`L(t l(@1iM GQ0| V\)Ws/.U\eeoIC.{οy"XrHN4Y=5CV!sG*AsDE*xx{_M0icY5q;3b,%|Z=g؈S~~?`!.A}tTktB~]aoA i<3̦ Gpה[ڙ ׅ~P8TGp: N't~ xfX3 v6AZ4'|UO>M[i|O4KY qn =4iUuq^Jv#8{޶2>ꌳ^I5; ]P9boUwKYyYwyCXw-rʊb/^D+.}n8 6\Fo\anû[oî |ߊ}+ڷzw ԏSM-nѱ!M޿pjjKoP;VrϪ~(./.EW.HoV]i){]HӾ ؕH[H9x6Ej/r.ϋ<(jtXHaL.q*N[+&:U#YTm@E pl+*`>*Θ~ͽEyԀnpbZy} "PaVi eQ "+;!,Zg$Y?-Ak endstream endobj 470 0 obj << /Length 1002 /Filter /FlateDecode >> stream xM6,`mfYe7 VqUr6!DW1Kڄ%wv_*1QB%se\I^~|ӅR nsWMcrpLJN2Q2S~7`H}f%c~(3Q,N߾l/ԇk>2.r^=>i&tAq*Fӈbה;7F}-*}+]*½ w߸oi,L*Z~p7@Bb$bG<.Z!e:D@p. e$]C_i O3YP :>@|_w&e$MEUAW?pΉK)asgȸL3mO6AxM2To.лўgW$l,Eǣu'b! eus滍BP\ǻ@mi C&P+tR{f"Hbp ]ϧKǦ+GͅNn?"3A'{w(0]/hSࣛӥs![2_qZ_h0WpM \밣۴-hodJbO-ѝ0K1\qM7/q[\4w=L$4j 0|!? /w;Mm"$2z҅nU;EV=$L2k\~P&9aGWκWXL.FA;x'HSkE3ξA:RF9[tɺɿclCD޺qfHDž2,l*rv7}qIk(Wx3BA>͠xzH endstream endobj 560 0 obj << /Length 1181 /Filter /FlateDecode >> stream xMs6a٦ӝ[2{P@1"4+Nm#LO? 䐀/-,$C,?$p eU!?:-e`gU:>,$9f$93FkrQZd9 >%uIIO]1H!e^$9D}}TmY:Q Ʃg9Q)v.vstBw{}[y3OA"b߄0:voǎZCoǾv'a6Lgˆ}˂pe9ňWXV5Rh[`MPMY+8{-kEǮi i hinRWv,G"ouh2HGv5 mJBa̽zNW:=ۮ?rKC7w)_:gvѭ5NzIC̓:4F7rcpV dm\)nhz3|svK!i 37a+gԅBD:_>yZ\&TnMzwq,\Y=΂QN=͞:(nn u>t<7b$(mO:ۣQ/ [v9QW [/Ϳzz,˖JKFpiіr_?f*[`yOm]Wy"8̯cnşF;>*Q[/ȭV}Ysn;xa-Wr AE#T I?K7\%jJ;QgT]XqzL'}nvF (܍ _G=m: 7 endstream endobj 416 0 obj << /Type /ObjStm /N 100 /First 912 /Length 2333 /Filter /FlateDecode >> stream xڵ[Q}_Eь$0$m,%4!=WwWkw4ߑftfE@6Fkߤl!' m%1Z %-)T)l-4W@z@V(d@mj"'x:d%pVXk/-pa\QB[Egp"Q΂)HD;cbs R ,M޹RA|~ :g'd$sʒ3\};cR\x[P1t47AA'(,c&Z}%j0O,2\a-Ukn, V G{ϗ,<SPJnp` TX.1[ 1T}|Xxc W+TA+<8ƒ6,cE[Uxm)FjZu R"MсkO P¿)y)Hmw+>w&pЙ-E_xux+췜i+dVU_0-_|oO??~x9'>W燏'd駿7?S%VŞCϮzt,4ynAO6V{k-vm'ݞt{I'ݞt{n/w{^rn/w{iݞv{iݞv{igݞu{Ygݞu{d-g.;v=v-VR 41"\/R@kC!hla=H&˞fzL\2PCH9C(P HY&pԪQ 4R`XZ$RVTdZu 0'HTaD 觗  !&Qȉ W8L0z đڀ #L<`H8DqAu9\ nW fSu.8k0fˆ [Hߘ\00ITݑʀX&s5 ט '\`Xՙr~qD3 b216` BN0\- E}ba|a} L00I1pVJ륲>&E%!1:ðڍl 1:Pp~~ z*y늁 1:ð>wKB ,j{0Via=OrEm?׆`hcFKA0IVC<)bta=OrFm/s7 y -vYL,].iŴbe1vYL,].iŴbe1vYL,].iŴbe1vYL,Tzߪco'W|n&3RY<5t18o@BՉ 4pujꌞxIՆ{dGpV Pb@l [2;l Xi82l+g)8,.,) L|#q<ۨygV4㬕j\6 wZѹt6.(  醂?W$Tj jRF u -G2.i92j[k*mH.y4WFmsUF!fiV\؎$E1+ϯvDg8ša2{ols W0)>T6уiоjL6#!8"ݭdFZeCXzBAXW%eC%~^h7nȨ" X3=tب57agQ8n nUa4hJQ&RlQyUmC\zF-fLo.چE]ĨfEͪ꯸Yd= endstream endobj 612 0 obj << /Length 3123 /Filter /FlateDecode >> stream xڭZ~/3W M{ImqY(%z,z_P[KAo67ݿ>7 6 M"U/6?{_>* E&9^ߝuA?U`h6s|ne5[{O]Y?lwA{.v@~ ~I3}XxSX+a -o5 돆Gkj sMAԧ?@U0U"UT_gοgI "S7YlwIxtnWJaفZ3І5IWWW]C^?<঱m7m[Mm4T}y,5͹g=u( xj`i{xD%lZ8 !#lroNdt7cPd:Xۄ8K׺z( ީ)Lגּ-B&>1DސtRDZ PwaO= `c`|!]_ аKǩX@Tq>yR8몁Ts!1sVQu{9aôMAHH=!v![aC<_̧f-tJW"|Eޥ8}v^i{~`یV$q'j2nݾ5`'~7|ݻfNZ0**Q41}(:.Yưlwl sv n{OXac8۠FP"~ ӷve&h1zϕ˨@$8-&8FeQ0˔WiȀ"MA(֍Ƒ$ {j,1-XbU2@ j8M"r<ZW`,B ^Ql[Y\c-m`S8_@LSE!p*zSSl:xXM0 O*k) , V&{%z)I%E/ &GWU,.oK{aiaBFp5Qş\G ->Q .ޮ)("L!E Rua]էf操qClc~AEcxL?!-AwPCP2rR3 e8[J/n(&q;eu @ X;h^--8V*i"JЫ?&mMg{]j-`iK_[ֺFR),|E fdR"F} '>&&/JW,ijjC8" % <{֋t#A]`JPC& ʹ:+(y#8R%^`ÂR ^mּʖʣy,մm1ժ aY;{GJ]7Ud˕C ՑW>%s*D/x#q]DEwYN4/5RʢseR: tD;iL5[Mds UPB$ۨQuz.D]s̓ux\ >sj(&;^@qpsA4 ǹ5?-3ؤ$s|'yW) ![[%maG;#h1GI{XtM2þY M_iO@5]W)fټd^G E?r>dsm,fȀ}c=*|}ÿ6gp^ PM;[d-}%ρUF޴HH3p3[ m>>ܙř0>ycwxaDG {N!.nWCqGS,kZdPw $U endstream endobj 622 0 obj << /Length 1737 /Filter /FlateDecode >> stream xڭXKs6WrT5H=ښ$Me E(hۍMʜ;6@?^mfQP2Yp0$qy,.:eU3MX+9 xolr& 3g$YBx 3ohRh+pa+Vg>8<"*MT"_o$Y.qL1Y:yr%[n ͲO݉dI]?r@EN-#0 wc:9$pi!;i >ueA^3p8xa)!=yWq#ӄuEPd/cRr+`ub=5MWw(]Β'5 i{!=HW\l0(z<{3_:*V)'k7&%-i<[{9˄MY{c#[xO\Ync~Pp 1ِw=k!iIq.8^ n-fiK)g_InB7ÎT= ^5zuYJ \]i(:&= zȵ=*}K8,mBkd% YϜ;?xhz!Ѿ4 SqM;x=}Yxe#Z4=qq#ыa*DDi>xa!%a檯zq2vjj O#]\6 ˦-cbFiF',fDg3|fz8rqav޷xg?)ِh舕Km Pv8v܅F 0{ֳJC=>)JʳQ_2$.P[2&|jD)#ZLZ4EICFr\<&a{y-*-|'3Zc N[:56j8|=M<@r [yI\뺦\l SF6wPи}6Ϯ47 mg]&G}E t&䨇.h%IIɄB/]T[#n;1 xHK{@Ag0И148([j~O8Nҵ% Fhtd5$%AjRb;:sUFK-̭f~L i]l;e+Ow2SVo<7Fƍ*Ƭ ~/87 |P/ kEC -MU0,'e x)VNkZCVieA ;gU^*+N)G< endstream endobj 635 0 obj << /Length 1886 /Filter /FlateDecode >> stream xڭXo6_a@'1CRE3X tVoye[ b/y<On&|UO22V9 x ̖{U,AYEpeY ˋJI.>t vT&@ VSq4R+&\R-kӼ̋Ѵcs߷U:䆪q߼`4#.9+ NE$'gxS%*܏E^@xsZm r_]i!$EƵj徵E]0(n;&7m.n{VEF6j&neQյ*l jpЪlfW=4n R8X[dG35 p^8ڪGh 4-+Cf&yi9NSoS^4U")vFN]6 mlP82}- : 9bVcّ[¢Wra K>r;: DˆPҭv B*JXS$&%gPh#cH"#,Kxi{eڍA/$ H䁥@&< rщך$(%rlG6>@oRֺ HY]M?m^wxX^vx897HwD`SJX#x` 8CM'`w!F>EYt Z=Ð<').d!1Zt֛,PW6BHXVv~y$ 1d9:nX.MU.mRxY@u^.sYʇQwqNi+./_BRvW!˼཭3a-26N8SqHY^l W>mƬOn:^SpeMs>G~Ht23jmoZSX kP8?B-nyB 9`4~ۻϨ @mjѰi,C>Ν p'f>6W\twJ  72z}Ee\K$g .ѣGlmvnoB7EEIghzzKa ;lAK51 G8.kٞN{"K/LVyu[>۲r @P}oV uݼ ̰/y!:^ĭt[$Tjˠ9uZiۖG-"i-:Es<"/N'݋߯~8'y%!iV˒k}i_>{\_X2R U)h Tv/C%A4IsRzoQZI#i/ E1C6 p_pG" E9 endstream endobj 645 0 obj << /Length 1079 /Filter /FlateDecode >> stream xVMs6Wp8cISLMb+9(aJ*U}w PlU=n {gϓ擋8'aKʼn'QΗiI&$s+AI.{M&* lm(zc/La2z4?zm5gmo}~snk1w#)fvk1[+h|AX#]htHdf̬WuS{,y[E՞3Jv? U3 a#,;q",t -+4k6Ѣƶ+n:k`R#P/,3FZ4;hsQ.A,L &[}*n^T*(oaf\_Kir99!2pȶ`40wzk,'8[񗰎?y3B\1qӷJ^!Tg ?.QF{87J9yGmOlF]00 jjӋbl /GnbB.TKtCjtZ} fBmRf+ Ρ(خ^~l ciGGjٵ ]}J,W-rRl]xӵAZ(amvkřzn 0ݙͨN7}6> stream xWݏ6buH_M[uPHܪU<4W;\…wxa~?y;9fYvC'j1bVo{q,8QEf`B#]'҉\h *9(y\ ]M #Tʦ4+x}^Pqb޲O2a+IWSfH%sR5R1M|Ԝr&\-|BEq1t(iXw$qP%#j:bB|$Idn"E dzO.̾)"ΫȂ!uPn'CIm %g?M=bp&t9!f/E5^li?mTٛwL R5ʘ:Fr q[5m /KuI"P]iI䆪2;ʞ\56!,5TwYCtO\ԓԤSS:Duv5#@Wȉ YTbZ撺kb;n{MK*fC 9CvPtEZM%l߀_=QpY%F J؉ϑ8n7XRG 9~ Jie6iy>νNo Dw Q/g^#XFR>C5͞{3LeMLAʋfCgvAs-yl(FH3ٹK๮HMl[ X_1xR򒑡`lϲu6B AKZNIxt#oi.(h[(s8;!,>@Z aO?ܱorP%#4u8w ݈׆2TSfiSo17 Jx2'&k:1 ZDKv⩆):BZ!/nl}`gvQȿV軇Kc0NőZ PlVX#١w\'G{5ߏ|؉൵1Hd/3#G؆0KwmϮJ)ǓN"V1F1``fRh3LnfsZENּ<"ل6Kش8d&c8_!]J^ z V`H#{u~}jb{vkw=%?@ C闠{k:<ݝ,e endstream endobj 665 0 obj << /Length 1690 /Filter /FlateDecode >> stream xXYo6~_!8H xeG}HѸM\!Ƀ,ѻLupHYVRuE əsўu<ŷWwr7OĹq|s(qRw0w*Ͳ*[H?OV~ɪK4 `O-3\\l:2-R D4zװBm^:;_c[|Sp3n}_3+9p; 9G]w,t־汱Jג [ZՁ>S?rv|;;?kB3 (({Wm6%Q*ŷ\M7@Vws?#Ş녯=tO0Zjy0*fWE}^p8Ƥ2 *F !h :6Z} 4/5С͚au4-J(3KDzA@2wX>Z T endstream endobj 675 0 obj << /Length 1529 /Filter /FlateDecode >> stream xW[o6~ϯ0ڡ&bI:=mխ0eGI^L<\xLG=?~~6QHBr(%돦 Gxɵz w EMDU=G3j hw6¡Y$:I822, hޢEv;)JcC_$;  J%CյQ!>ުz2}SM"F}KT =g 3uncF\Ce"QXm`z wf7HX1P7:/RV>%qR\ή7cZJFz!B aCv.X];$/Wĕqxӱk ʢ 7%a:u]dݒNzO1ySY`Em[<6@ hf}eV +62,uZ'ô-O*A$ldWHNmE:{/'4^;ލmB6uy@z*n RPsJBƕkhQ3h;{8'A̢b|@H|C0;1ry[}6u@{>q4\aM%҂0NRrvKg ^?>Ήo˭TMm1ױ:^ZJS*D-g/z"툞5/ Q%??eg5@n2LԚ=0Zb"r o {7^XX bnHs,=ܾk42xXFwR|H]j,Ulq9$!F{>x]p:z9ך)VφO(mmDEI0tR>MC{q\."@ ``c|1(N ;ӯC5<}G@7pzs{HF`d&I]egi;h0h6]Zxے}cO6z,k)b,(<> stream xWKo6WHHVQlE\`AKTL@Rro!Jd{Ţ7͌Fucyֻyb?楅< Jr ueud\_OΣ@+pGJd#'o R @ ;~{V5v^mԉ<^Bf~j+b8n V!K?D"ha9<0pfyne/% ёBt5v~eHYl '1NvIm`ns9pKif"hP]jW.yՉ책x~<(gk i tSj7ycst;F6$ԄVdM]Ng^87Laͨ=S}GW x* {) 'MnDj.eq+k` '’aSf鹉'+J V)4{(RE x Cێ4,XF7B{WR=C0r:96益=EHfzڥ7f U&gg<ĩ\]{VpduDk+) XW֧S ]0 ]s"+`dž CuRԏ_oqE[xYhڜ2i,0/l˶0fOQd/+v!ZZu)|4wAH?8 ߿uP6u|/KY ب+uʪ /5ؙۡ"'D6#{+dCNn18 PͧQds+(v$`3%"t!{ZC5䬃 L^EzR 'J ;vK ״QG:+~d.Ob-EICQU4!AdrH{ڕ{u1:tI.5!t~FQ,  @kѯq˦eU#S/9kZLl ;͠?],- Y^7|9Ρ G"(4%ʨ*Zh^XECq% l1PA%4:H]S/h86IE5C+47kL F$9r}!_9Qoc4C )?n endstream endobj 694 0 obj << /Length 1735 /Filter /FlateDecode >> stream xXo6X?TjZ*aGӦ钠#ѱYt)*DI.%"yw=~w7y~R~<: G (y>`h ɉ@|,<TD P2MFc?@/ŧT GlA8嚳g~NwGø#(m<%͋U8LF)wEY ?+yBYU "-Zd?eќ (kzeыw\㽲&%Y3{93ݩtBl( 4JAZ\,aDq}kl^S#e._%rra%t:)Euf $YQRSPuɁWDY)6 ]Z^-VHGis7 794K]ZTԆplhus%|g gt iH3V@Z1E]r ;=f$)_!$l">Q<.Ic 5.vzh m@6h3y մ[.Vqbic.ˏPEL'u8CH! uW$*0M8la,3w=}K@^\ )ٸ!@}Gi񟩁Kp0j<6Q=o*2"Cfb' sC'Ko7!yW2b앝PbY\!e;?$2kJ"xzrU6U[e 0^*/*#QdjwJ!> stream xڽXIs6Wp 5$*=4m:I&LV_߇"m:[|xs֎8y\ƾ3Gb0vGq0w͉@Kr?\Fqo[(ILe[N.wd1["sK*ȌTkOyS6EԷ-<GbCMv0cS^ݳNxTE9==}W@-KAzv9<e۰J.zLS߆}4C8;,?ܩ~Qr/0"2XLn'>s( Y9srXQ0Ob-8 #*I{qšD^`?FԷqOg8ܺ5-~F#4H\ZQ5T,s~~KU 2jΘ:Cq8B)hS Dcm8|<{-/^`*8|SYddE[f%82 B9zPU[҆eUu&RqPXV7 -zA"I rMJc$\oj.c3uVVqTʈMc6aq+m1] 2A51Gw 3` @Yk廄<+ޱ~06lR1f@Z u ! .u>iO+lwz={vL9!J},HX*:V춥OPd~J>R|Kл=TR4O|g8md,_s)VvݱG_K!S,TH6`=I2ןn3E_i@QF^/͟N^iǹm ͟oLd1n~ z*ź=Ip#('j\Krx 2HXtxZBEɳe[JGasi LSi3 SvRʐ#%pr'IEY) %yM)˘/֚*]L!  ZۺX0M$XH"M tV`NC ԭJp.7.va/ *+1[I2EyBjLd@V52Ғ5-Ё-֑TtX;> stream xYn7}W1y(  hIFg%Cs8v$,6 /{8Μ$]p1;J]Lɉsq"ώE<+Uҁu.RT*d% 6 iQ0X%a5TGeQ*0P,'v` 6Tu3đ +$ I dCH(fI0ɦzb;%lYaF)T `P0(D R 6Nx vf<NJ[8Cp!8@p1+ .*W+,3s.acNp'¯pj@\mR,*f ɶ;\ܙ\aUj: iN"V(N/Q@3EvLNRh+hF3wf v3^,/0\*HT61BeGFۅ(0Sf̗5>ixMVsb lV0a$c{ u!VPd[/NO =6fmz8&d+a?\L"],~ߍO&_ܑM2WzmS5ytDckL _뉃wNO5שnoVNA=!IBޢOjU <4ッh2^uσ|s}4OoM~>ÝD2HOTH k*+xrv7-wW2"oe(CI#{U>wgټGߚ)Xb",}%HS[k9zhjY*Isج?E3jU(|>'I@[j@+}xPT}_jf~vN(]SAas 5YM`qs,C*ϮņV Zl\489-mBZ!k@AXmچk h}`WwF'+SD A{IxCF)Kw)wnw ,e'údo6>dt6b-q{]~~ND؃T}c>:ߠ b^"nvUbr1UwyqBH?zb#Ln6َؕג'91zsxىAwd o CriJξf>. 5 mJMD$֝nAඐ.|HmXYnĢك&p*xqI Y˫t;缼W*\r^ނy-76pF7fz^Yq9-QV;ԉz`SFp BF Fg *j]*쭷 }03\vHd'ó|2u~`5:;e.)jժi`j8AQ5:gWռ9^ endstream endobj 717 0 obj << /Length 2373 /Filter /FlateDecode >> stream xXYsܸ~S©2!އJb;#NJqʁHh!yӍnp8#恘n;۞ygre"O<FY" _m}e/VQ$b/9fM)Gq-oK9/ۜAbX bHF9~ hI|bG57td%6n""1u:K6ߌ}jbɁ#G6% w(yU]?'$}vz4hX?y^JA `D#aPQι4 2vo SNcE(Yx7JK-}uUMQzF]ѹ +`D5Fsoy$r|Ȫ"b׶mīTR7*L6RbƇEE$L zm̸05 D^,m2Q6Y/`)Xg$Ya< ZXfq=Eg|4\Z/6=ƒ0(QpDa\sb=\u?HZ:\w'EkNBNĵ6% FhY?c-Ah Y4I} t=`B+PEwyT#>eV4A)nF ti4Twj^lۖ-J}e Q C)Tre b5d@o)k]r Hnn2j8A+I.k=9Ok{^k8I_8~Upjܫ9VV)>͖ aԃK B?qJwO-tOB,aRU<Þ{ \Ȗe2Fs2Hky67?Iv>.J&s)@pBX'|Pd'HM-P/[8vó{펻qcf_~{^v9exօ2l?ӱcOg~~N"C/A\! dRa06 "(ڵu0Mm٩aWwX9 . "q}f)ª"vb\^y^$/;l"NUE[ 3<+E //Ao~I=U0?ߣ& w_(W4|'μS96l%PR8I ,pe +*hwF5Ccb {N=v%GgϺa:e`J[~Wayꕚaɏo[N.n%'k5?Ur]X\3eG=IG7q,gL+uAM 0/+^nbVLN[զ=m@_>4bqh=AO!Vh8> stream xV[o6~ϯ0`1&eI!휠]1 `d:&*I90PlQ&swd|A8`&a<I:/~YP p@oƗQ 1At6x vVu&V-ceԞxGM$10"Ko4'өQY+o{]ģDWWVU޷NK椯Z7;!%WCX+CSpq4 18+68 h\oI≥Q\TsQڿtH"aHG%+RH}A!g`&z`Fql!WOHfȁcg4:^+U\|^FVf(E3en2n*RɶFN>A$(LҺRgBp$@I v(L6S⽩*g+q+f\0J4CFHreK2Qcei1K֜[ws(,DkEB↋QJRJGZ?]+4aە$buzz:#LTiB펗ZҚvt$" i6;D)ףLPZRb;Dô)_BkP|n*Z~8&Ȭ]l(ţ?VB8]ٔuygTi*5Ҽ`n695FX$+3-zLNR1 yNoQtv;e`l#ho899%L*!r֦odc+B{bm``bmį#{-RvwnBFhfD+c\J6{7Og>vs^fJ_};9m**onlZYFzSL0m˝WPc[Iaɿp}TBfEeF.x8o`D 83;f-;ۛYl~R endstream endobj 733 0 obj << /Length 1325 /Filter /FlateDecode >> stream xڭX[S6~Wd N,$[v,:xcyP<^_WW[ 2vHst 8{]GdqO 8q\&7(> rs|9[cX, #?0-5i+9H2+Qvm)2k$lDM+7Q9hi?Ce˖G̢H%N<2_|'A4$=X2#?J*Si:+lÙ)hBn aU9]␦)MZ9)ARiEBhi@r{v>+CgByb,!_C @$yE-JQ s}09X9Yɍ.tQq\J/NG6`-u?![l`٦([ZChrZ\[SuzA y䲱˕r$ptДu˿"Q>b}pu VӈMoڛJC"z'%f u=36'iWu2h]v0yYPIdEB6 dQBHmg1;izŞÜw2O*Aד^GϽEyPn`DG mZ6UFy@zSJ^\q ys1jnU!z׋-恤';5YSRezc)vcQV:˯'TvCt6߫hjdF΁ k^"Z^:d'ˋErbH*u.@;8j'jtASXj7yx._{0j5)Z*S[vKv?ZZtC d#\>0 y#ЦFwV5-J۳$E YKL%3i`EQT^`VJvذ,`}/71# _>Ç.c#$bbqf8ͺQm|)TecgTx.R1i?׶N)؝ϫJធÙɟ)Xwi*kIy\T`2{j25= ;x%"0 юEgg}J^*M~W١Ww;d)^JtA AxH*J2y# HR(>]~ UCODSɰ׿XW &f2 ӛꇏ}h-JxֻUm78ۣ?^ )d endstream endobj 737 0 obj << /Length 1135 /Filter /FlateDecode >> stream xWo6޿"ފZ?lt*]Ub^8s-iFi8y~-=䇇]E(}#o!{ 0O1.VGrS.j}PpDN|w o(e@ w@FEg/ˮ ƿ}_BPQ ds\8sC wp4Hhcƈ8ATywX hC2Xlsl7ʔ#y2o0 Gm@mtn$LFYݎccH#J .ᗒF.э1gLt]۸ȯ{fdaw772e/fO%WyOмnՄIږ~aK=&{g1U$)>9`] 6:=,Y)~|iZ+ -2pYPn%q'[2F.*~ioXg̗6"smmidžַ/4Ξͷ\+TU-r߼UkWe:Zq3ޡt qc$e.%/qͭQuLT7#qU+4mb?KFwG_E-:5ʿ|6{' .^O~b*Ow|p'#/A endstream endobj 741 0 obj << /Length 1038 /Filter /FlateDecode >> stream xڽVn6}W !E]eMEMo恖h[..EqË+wŢ/sfx8;+;?O'7a(ș/1AĄr1vc\H"Y ~ɢxvUN h/dB1w|0H]ݻ|O@bkd@d;9rDjʁ((Kn۾lu!yPaYQ@!FA h*zQ8./xMiBݦ6횉AjT^{a .g⵴e#Lj- iJex䖹+ЄQ55PEYˏKS [5Y8rшF&kf8Yፘ"l]4]2=nVڿ#Ī.ꕙ5zijΚS:Zՠ5}T2v^VE;*Z rmdfS`?Bo[JVnC^%QvnZK~>v7=0ݬ%+֌dolJ8 ukvL[]U? }X-( I3HpFC8{Kç(قBv;X(JCU\@}-"Ӂ4KnEYd?F_h]IXNߨ!>9IJ&-)"LI-YmsvFUӳ,b7=]h_7V"bO endstream endobj 750 0 obj << /Length 1844 /Filter /FlateDecode >> stream xڝ۲=_qfZ<܌!I^&m3;2ȶf]K`\IuJ>fd: 9(]0Hm4r?* <& W~XޤWIm\ EhPNnp}G[ŖӔWjBwE-+0#if)w'V~E(UL! Q3?HQ[ uQTž%[EwnE66ZӒ iOTִ80 9%fhx!8IѠZx{eWhn[mWբb%W &xW#>~N•V0HBu7$yaFl D ROE'%k jkZHZDi4*ɏ`rd {8]Bcㅩ9_W~؍,^#gT( rOJ&%oAty-ew!3jqW phC!eTfJHŕZ8\pyv3Rn+L@נǔ9,]&NJZdd{juo4~k+^@<6A'ƣ> JM6@9\sb *fi7vC$4G[/FˎVE݂AqrE)NKU9׬7fZFY"ʁ\&,N}x4hOh]/V@e LmKudTdIY5|,#?]* wHJH D۰gtgU'9XHmߡ pAӝnpڨc{jIe9IpqUyPq{o!#R}f/EqX/6/fyo'`Mj3HHDsU:3'CGWs2̷|%揆 ,60x2z:S&}{SH@ۋ{-? f=F\v;ctXyevl$oRp/780SCy!3IIfR N<ÀD췩pjxW!cߨ'ʳhj@j&ۛ9维˳a4=PK>ݻ_ǔ /7=/MSK#FN/=3L$ +{$3~/e&r{'L&b endstream endobj 760 0 obj << /Length 1220 /Filter /FlateDecode >> stream xW[s4~ϯ/ vevl`e,;@ò-'$99qI˓e\>}" ?<(2O`1B4̓YG uyɗWy| 9(.ScdjfK"T-$[&R:B4 Fq$3`rjMDM AJ?PkkA-h8**]^^Z_eN-wSMiFԖ[CpT(cX#RH=Vw՛ʡxx܏1Sǻ?=trbo"Xw8n9A%oP5U)i'9]^PV;_9C;2ȐJ^(E݃po`\h XI:kA(8N e˓9"^톷|,m}:oWŠ4EIQU75,hZֈvA >K0nѯ}f{,`GyigFp @ZI}#Q0 $. t,^մ?,qE9p56KÕmى"r]k& pRD^7_hI[ӣrvF! -a0A݋ azp7'N7V^V+p%vOe먄YjF,Fe\Ow_&he%{(؉21$$y%'${lt *^k\tX}{lG0=L+LK=J!^tL~} pI:r>NėtD@ldy4+f^Ngb')CyT& oԊS@P=jToIPmcrɴh YJzhiMd,ٰXkE{Pidv~Hk7v",w[▦]B:z:Xl|IZ%V^YR B%yiQQD gଡlKI*wvP p [}-Q_gb>k 5w3yb\si=n{ǀnG ;w?^]P)3g9Ⱥ3hƜupy(d|MjGhDpD>V|,}y \T|6;hᄒ_lr,Mbqb|'W@$}ލd꯭~v Ϯ endstream endobj 769 0 obj << /Length 1750 /Filter /FlateDecode >> stream xڵX[4~Lgbww( }(l\yr2ev;]]o%IPzq8C7aĘC#nIY_w Xa4nN76>n$7O΍!XX\ :`v2_IQi4 _=[ %@fUQ)"#}L8{e0Paa L4[0dy]`(F ^pu#;oǸ;7f8/lں$YI>U BWP˴Ԯ摬y9IHNJ~&fJjFIΊ %YRPfjR%[S<(bxT,4iZ2i WRA55 ಝ7-ٌ!{k_/vP錋åfbvYź,m}0N @,uFX~j7?9+>j7bIF4n9qJ0|lζxo<#u L̿dp )/'55"lߗ'x:d6.sVi}O6_t~]Q!H0J}/&J>֜ ]B[QV0Mk\&\EuO߃.{VŝKƼSgO˴KoGxgK8pMd{n[|>"6μz. 8N˨q: B(мY K_7&%I" G j nt|6e4y2&ń\LCk_3ݛ*P%z<|Н5Wa8<ĉ YNtT9ag>>pHv L KIKr.{1AÄ(wq(i|C1wŸʗpjQz-i:)<)_ywb4]X2V7#[9!ې2]Պn fΓ>pg^nv8ȥw޸>;|- XWO5o yc a8ԉ~gQ~pI]lBn66{#}=~S= endstream endobj 783 0 obj << /Length 1701 /Filter /FlateDecode >> stream xXmo6_!( "Rov1 kӴ|e"DKQK><><8s'pƽ8qF(39$0J? Gxs)>/ ch)UR4YH!&2a-4ah=q}/4)aNqCH8ɖwg ,Z.Iƅs lWv DIOB>]sꏆbt릐7q 㠟Ʃ4"_OKn&lG9Fj#8qW2@5tdP 2r&Y [T&7o#=]׼Y Ժu[H T4c5Uiٜ.BQi= N%1g4 AlaF;+3ѼCMszP=6`pU >U2_U@ƒ<P\dLs-JDJ+$ U#C:ၥWo9$Qxxyyࣚs|~XGe&;Ϥ/{5q>} ՝ϨBU`^vg~翎mL)|%ע<7/ڇo B5|ļ SgYM?GԽ.*VZMym3t.G> stream xڭWmo6_a&BRA!Yu]3Iuk7i$z;,J bB=QF ~zuq*ƃb ؏lp?|TVBD_O"')٘WȾd0@$r4s.̮o}x"];R\8a< IRcBȇK&!~o|.+*%>rX/N}3{t@̢$|. UIQ.ix|aVӜ*n{O{ 1<Ņ Bk9^ڕIr4пmc˒ZMO&ژx糯,oց ~5KVBT7yg!M:xbƫ.LReņ`o(*a9-f%JkbfhV|vJx+`>yr"-(*(P7}t|q7=EY̱$G!+t|⧤]UZR7S:UˣcY"k[SO=0 fOxL9!?ݽyI5q0ע5lq B J,gHyo%-"*cK4 [ 1һϯmC o_z>]{2쓈,z˚YjjR:r`@Q'rb.x*m0BaaśF>B>7.iΟ`1K Ö%)^=_#|5+Y:(1~hY~y=hVmCb;/Y'R=6G:5Uݪ͸5?fysb`Y {˳=\Pp*lt9J*hEӭ?dź,k)BVp+#h!kZKZ6"6TrM6{p2>3SUK69=#ow%,rѣ]&c*'Qvs~Qap1[`jp@nZ^,uT9cVuQآҝ%Ԥr?5Q|p0¡j\nJ\'pB7f¦&eXtyՊjGu4~mޚz%Uj]E<zj,Ĝn#z%M<*uSp שI%klCZו(|C2Q&+ _&ڮ7g EZH ^EStn;jtwsa HXWB_ϻFI_cC9 7N !MTu.W7H5.#A΋I3-oo:B~B-\'cnlcFFa cS|E! CP Uv4h5{嵹@1«F?PZ׭ZS}R(C]Tjotn=2R}^޿lr endstream endobj 801 0 obj << /Length 1303 /Filter /FlateDecode >> stream xXo6_a(./0=lCSbH恖(% 躿}<Ia{ OǞ'/gWdi-brL۶<1y8[Nn yjt8k\Q<1)*Q\^y$ MIjܶ_$D73Qkb*byr?z2֚G{nۂƻߍ>߳$)ů gyQ$3v[hr^ИE eKU$+0bʮBױN0@!YH"&? _oEQ1!H$FV {vx̊0^r>Դ@y$|Cu v+dz² <U!& +{JZ4؎T;p3tfb$Y7[v=a4+h(9?fxQmBW/2#ٿS"Ҿ;CQp'׷]mO/PA<:e4Ds;mPIƠ $IAAOD>@l"jFb!#U4^XaҢ쩼 16kkR!?g9mIVCL\:};T8N|ek% V=3Ѝ@q9gU3V#I۾]*jsiĽh2 Ɠ:us=\UcBk >* sbKN*>1x_X(s*4y<OԂ6 jSID&=)aǿW) ]f z *=s,/pO)R!'џd]|[&mg9rh٪ x4m ^ n~F9KCgp1ptUB&EPE pr]IV\NqJOh[s*Ţh s%4GͨzlJʜ)I*x4;D}̫ʥk֩jfi3r<ǀ?2uuAoya=6Y!/wVi` \ R<`P_nÌ$ƺy/R"k^߸7~ +9}D*<}H:oEg׃.C1d'dv=h7& Z%CyH;/;~(w|LXz"(Y-^_ߞ = endstream endobj 805 0 obj << /Length 1599 /Filter /FlateDecode >> stream xڽXK6W9@m@/AEsjh$*[wCʒz&!o7,v.2o $6ageZ/0Xr ʒGA>߽K$x}Q$J{_|]0 mR? 6^^->~yze0.?{~_cM ?KB/K~ze̕!=$6t&oBpZGi5}*.pk0FiSB/xG'pmz"qںgW>i3^zHUN 4"iU]1o^ 8Dl[L JMb4Io $-N95YBD0ܣK2|0MwSDhX*Kd /#q8WN;LQm졁NJ "w1C,lhndnd&9 a֞#)!i> stream xڽW[o6~R`!uzXzۭ-%X>esD;H7 2 /};!V~EၮCZܰ?w5²W,;xmixgDe׍(1AC3etD5W$5w+C:oWrf.'g-Y1^_S51HR7 Gй&:Ѻ8cYB7qY !xJ0"QOiAc<Cljv0 LpixY]O<ѽథDفyu}?~ G]: 3jĮK}&2DX]l6[57vhLY-S+cCJkAZ\;&Z~s" ~gDBjD3cUG[̉#N nqJdCEєS1: QE8yЭ[5Js%|U3j۶Q-1glKMߚWS/y'y(<(վ'ӗ(p9oźCoeUt g(%dopov)S.o|yE%[F(*NkI쎺v'@)]Tp=&kQtfakKs|^ rsogX/Q2P{?9gh"4c0Qv'xĄap%'`- J|3[V =x.iWʒkQ؁h jvGw&c35k(PQ3(п&m endstream endobj 712 0 obj << /Type /ObjStm /N 100 /First 878 /Length 1599 /Filter /FlateDecode >> stream xYMo7W%0n@a@[[q$ZCPdKI)F|3Gr7+]Ύӊ2buuDV\V'Ȩ_JxVW.Ƅ?(""B S40 /Q!tg!TΕ;f`;]% Q8 n&(JLexHL2wNK3zgj-0,=ˋ%PDF 8( U `+QF![Pђեd CvS8#FE@<%c$&"ra b-0d^Z4$ՂS# 2rQ" 68zap#? r`: Ȑs![-y ; fKdlsR+d|wd|q2kDAg)ęa#A B6%%08%;1b :R-H( S,AvQP'F'$cpjF¸0&W\늕!hggԽt\_Z} eψh2pZl a3A}lu!{n'eLt'3], v)WVUsi*sVi?ru_fn1t<^`dv!Fu{~>=_ 646>9;zq bPMx{60uLZg7\nv6=|ux: _W݋8T̹cD m(%' 1*^D{6ru?{xn챥hrx3{j0=O tvvgdz~w콲ߣO]gi<;zOO0裏Iaߟw3.ǘOwgoI tzPPO)9TGFb&J,c뱪_'!k){b7D/X*m`S~mm_[iuf })l`hM!¹i욙nܔVMԖ)u(m͢$ںI>WCrY.%*wM˰#55$/m`L090 k<IݧbQ}(ͷӳ[Ng'V(:0.Anm``sdOZo|w KJJތK9 KZLNV0T^l4Mr|`$uR%R>p<_-x4GwvM].qWjʎglg>p#L45Sޥ4KEPzikoUYQ{3]=5kܖɠ-fedBڙ=quu`Fpjc.R LjP L#UjLpBmǢC;V^Yl5m{r_pHm`5-2ۺenCkX!6i@It nG&0CX[$>F7B|X D9 zz_. 4W_nK$wil`w8 endstream endobj 826 0 obj << /Length 1458 /Filter /FlateDecode >> stream xWKs6 W)x$t:u3$=5=p%j%ί/]+dz@>tɛۓef9n3F) d2F0ݖ?Rtd%F?o-/dQF dz" um<]8Oa-,RwUdc2dZ|2UFJ*Q]%fcI<uUT?ٵr#w,-fyv~umz#;ݿ͜]UkD[f p|2vmYtR=,!yه҅3t;m,A[ռn.hp:)'Y4d'8 ׯ}S!-JV^mH)UG :Lg TwGfDbzmrگҨ.!³$9^՜eA!_7E˂ rj{U];#OӀ/zBSyFGޓ\bJw4xw^ +'&l,? mp/”[HYVb  c;L&ۍP86Av>| rT㈤Q55i+Q Ot`UYO5>e x `Sig̀,"2qό8%ʶ",%K%1 OA )I#P{01$`q::sN78jaSqL8DcFW~"-·kxbTi^Hz⎲سCϷbԼv0P~Žf$LfRqI=<* endstream endobj 839 0 obj << /Length 1144 /Filter /FlateDecode >> stream xڭVKo6W"EK&iѮ^{%&*^>ͿPɑtу5/~q8u|qt.ɼ, gqîKYΗqN~]$AG3JC/BSHz|Gu㎅ۘ #c8}EvN ɴ6u`%u}}=qc/wh*K#AHK !mrXHR!ɸޏ; #ȝuS R6+ FuN׻BqƂ q\DQ"M 0tǑH<2/)cЄ~r[HBӡ4ޱ“HutuӍ)dUE cN*L%E(gTrfW7Xp0C OXm,66>%ԏy^wBˬTZ0o}@Tmh:W\[jiM@K ly8r=듻n6bFͣ=ŧɨs_PU[( k,G[SbMm܋sz oaX}~~U݁0%-wVir8̗?PUCYsjiάE=i4Naetԣ)bY)h endstream endobj 848 0 obj << /Length 1882 /Filter /FlateDecode >> stream xXKs6WR3N'/'94)LAUw%R'㴹X$XoN^^l,z1aƓ1lr=̥!7r($]Vg(rDvz3E$|2 , w4,f|jת)  H:9m#GnTO p23رekVu3f%W}?vM %Ȧ)\\\vڿn, F {}~;)< n, [ͥV=z{QҨ{0iE6voWj8\)s9Wc7y].Wu5{d?}ɜ7.[ͅijSdg&t ܅QS Y|`Ueܫy'_\ڣDip2rZ ?12lܻRYzy{KAGJԝ2>3EMSc n.0fwE)a`f78 D²J}-:^%$Ln`?XNY@ YL9 S E1N^VmJ iaޫN3z]@lű)53`k}xܗrT+ҌP'HȢD‚es>a鶠LVӅvK[r1qGJhp@anܼPy? 3N^}> ~A7)6Eqh󶬝;"Vƺn\ZѵsKW?PTPUUsvt/Y/>5>FdAE?{`*Vh M (UVO!sRE Oc{bcʲQıvvtV/`6'HIFyxOP¡Y x΄$:¼@x2o ?/[皮Cwxa'S8{6’Mz7U27X4x> !a¯ۛtY6$;~,'K%?$VlvK/Og!u5puMf Wϳ3Fk! (]Pa1 IX08|qOปQ՜yWZ{] /j4~wOF_z㏾23xQ$R=P[,BWn0߹̝_ XŇ nXnÇC֭>`{j 8lĻ0m<}C'#" ;xEM2˨>E;3ʽ] _t'ZyőJRB~Jؘ 3e3΃8K?p'Wa%Q(eZD:BXS1`bt\ഴ=9^CIlk',,l%QouȷkjMl@ 8@5'|ELqvE`ڝ1G 'a0IA{ @MC{|$}dሎĎ {i2 /b n4ذʣY:wKAh TBܯ<4]\̽_cuD;.NpGpܛ@|[0/ hnE}Ma+L@ʿ်C|8J㈳oQf$2#C;v̇f!͠UC3 8mIϬal rY*?hNKm2ڰ𨻪^n@;TwFf+H<'pD<. XC_Jr䖊T6WGC^ endstream endobj 860 0 obj << /Length 1288 /Filter /FlateDecode >> stream xڭWKsFWP"U,^6󖻈 ʂq+3]=S.+mzx2( g="byuiP xQ{5!qݥk W[yf)ᠮ|SD $_}DRB{Z5l_BI}#uWnt7 Zer|^`\ 8Jp63ۛ:32rVjBs IԬ bQk?1cܯ5 _7{ 5hڈD:+hq> stream xڵX4޿"3dwy h;0-e>GI JG/oJ/ū'o\L٢݂a"c,Hbq] l%yI:Cd9 C';hyk\dt#̄u$b|niN̷Z$DMvZ4nTUxڝkUS}v'J3<ݱ'6J4hFꪜ1Z2OGҬzNhÂv,fN(H /B BVh)L#[C&74Q7o:)>clCkȪxF/ӷ @3y%h'>U?_pvV\ DMZ=VNwʖJkUb3 l)VѪ5ͱfd@]|v9+ 1O3Swʢ4')-o ѤKм[i)qaU{!c0w{Lqgq,h-Tc:ŹF쉔-[֧xP%VgZZ@/KI:%hQlQ5(3PݱP>L FI`Uxmj`;(GQYK}ۺsmIƁ d1w(C!syS3Y``R64Ƭh#\E%DD'L4Um VlY'Zu6ܡpeSv-j0IZKG2҉@ۣV~T}7$"!z xy5}a #UBf}g #V,;3 VPƁ]8qF5Kl)nkWf]ցnF{# +։(\ &AmA՝lzJIX[E_)v!65c(?\!'u"A9((AG1U۪{ ΂NWO+Wcw!&͍mTphVczHtwV5gW)B=LPٮ~nUe4/g:ch-"zEC zᏨ8(rgwww?yF0ﻉ(˦vIze)?œ-o0}pg[ñ[{<]ډB>;iS.AQA#@ KFAf$Oy8(ZN*Xl-s.J 枫Ql cO<g32 x 1ü(~0 fdAت !p€Gav͓f%PQł꿀8k Q)_b}YV   &  uX360Y[(˱\1fc><5as[T$i s-4(;Hmۈrm7д&Wg ([ ~`(L>FAf%< T/,duȳlD%$@,: ,Ⱦ=/!q?D@$"HL>}9 8hDml"g#y῱OC ·TfF8y ;A$\aoVVr#}lD]0ed7<ݷ[J8}]]Qcp,v/n _e_ endstream endobj 881 0 obj << /Length 1076 /Filter /FlateDecode >> stream xW[o6~bQI!{1?MS`hnq<(ĔǛdKlIG|C`m,`^/J4BZ["+ЋZ֍p!P9ȸw lis3`_J(\GJbk9ggg 7- Ÿ&0MSMS֌8l2 9ֿ%ⲑ \4L{G^( `vՉ@"IVABײq.NI[t:RθT B,#{ܡ,T6xdm3)i-KaۂS,OY$}7_M.;Ko{̄D19ʀ$`VllOjyyt;I{d ̮IEkգ}f {j!!㬫2ɮmG, ΡyA67Kt*ބI_qDJeGB%\@ \vS@YƏhdrN#" hgߚᏽE;(͘dE]DY y[+Mmɛ];̠8 ,(MOB秉X++t./8E,"yWfdI.JF t_݃i9y]4v cy{XH[3q7;1bUD4xـm~:,tNkΝ" B\:A!i@Aφ9\S6FPi:G# IUNg@3:1@,=`mJPܩ-jKF VCgry+JG3gdj /@|"@X +:PFG:X~.;*f3SA{#Q47Ϡi=) NlV>=eNڭz/.Zo{[WQ•8>}h;?H>* ,(\,aHD Ң/)9fA< %i 剋[tj+=DF>VHW0r\ *a@dFPްR`|0p]&hnh 4M|__ǗJ~FIɴy9dX/{0 q>Nsk]:(L}WL`58 1S2_U^Hr?*Ҥ=4oC_abφJHBrDAt~ިg.6}]_.G̾[&fW;4.Ko! ~jG+f/A"MCYg#PhI1gH\P%U[)$R,`Nw]i-\~p Sn||RyJj!f }i]pſHhJٌE1Hyk DL8>a%WA<8bFu UQ,, > stream xڵWo6_!MXѷb~ْlKb@L;\%%);(YN4Y<~s-u4ͼ/(^~d$ ,.q?N.?:g~̉gT) (piOpJ c?JUEՎmiy9g5:rٳg4K#c\ Τ#O0[o#-[ww鰻9DwiRk_^Ӹcg "MGBHpe_whV8kBHvy옧|%C^!+"2YO.9o޽s7if?O޼0ؐ?"iύ`UhEF'/#F^M qyze=xxsȽ+Z{ ļnǭϺG#U^e~'5`G~}ՏNE( l7o 7oH}_阵jx/0Q0wzc gNğpLKƴ8%{TlMQG=3Z05Uh8oҤ%JCShUJ1AQkcGK(_}:jNp8KΑƁ((E+7o~uJ#?7]3*Oj5a[ޅ*an+E\4&(#bZhEO!gdhES^ O$I>i9A+3K Xƙ|fZ/k~b@lӦR4+WQ6J 3rHuI%%yI| zMm3 Ay A?t'uZopEKUSid6֬v{PC=>IC^Tn>h @HWRhھ-THx`bE endstream endobj 907 0 obj << /Length 2022 /Filter /FlateDecode >> stream x[o6_af+۱< VmP@KMTUj;~I,;r$^D"w z^ٻOqjt5{uożw9ӫ"-1f`<.xi6ͺƣ@R 䐳,cgt4{%9)HƄ 8fz ֹ E[P$0kai6.H l'O"D9ȾPL &.~0a"|߼ux.`8&@2 ޏfyo_'sFP>0,0c1±bk`dCJ:yJHȘ˟r" i(Ęv}q(,bq%W9-|w5XCÝs .N $%7yg" 4㷶sKQȐ).]"ykDR%,߼fO`k%P(mڏ `8a;]93=<8!0*\p.E6O`"(8xH#%d[xdhU24v=k!v5ԑ->,AVXW$$6Xb'6 hg '\ A+e~8zX8 _I$)NVw'4>fe4-zt 9V /E CY$ 泾`N.۽u+7 쩴2nNF5_3:wY= \A6Q'YI?ԊiHw! r8 aU(kXؼ^d~r5D--x'.Vۺ槒V35qlEaF@#PH`Hi+V~M2o&{s:V>zd}Vt2!,*T/Pz#" ͔Om(+ViHw"8_K߆Zk,``S`jO:\+*>ڃ Uy^w=[> stream xXo6hMbEYҽhOm0csEO-Wi$6;Dwtw:Ic2Ntp~5`(Nc$ƃr>_^l3J(Qr Or)VUHߣN H66$M0bdŅVOnZ0cZE- 1=IIg(Lh쵙&^ԲXҥaHk%Zvu-)bȒvENj\8:N4'INC`ugY5b"{}|9$2'OM ZtI4:I|܁M χ8~/)y,DJCQoAO6k{#n!˃ku"90p1_ 'ǫRw7BFS:淀P͗>>ur"+3|¢Vs,[tuPiΑǰBI)MZyX;1p;xvr!eqfΕu'vOw8㿜T>cYF(M{,.g3ni3?s p]]AjKے= zȂ埢hQ3gY`U#qlrݴ tp:`+ HVN>U1[D̍.(x-0M}mD#QPLj@mm*y-adgeZ>Ԃ7&YZt9k$t1(#VZ:M> $Ec7uXRv]j_ys"?q^ * )9n+#RϟG `wv,;xS.eن_]l[B(tKr<.MU{TBB0a,TUfhakmQs6f:|vvz9=gC<)ә#0:4´A,MvTNQ9~r>/K;ɝ?AXѨ endstream endobj 921 0 obj << /Length 1389 /Filter /FlateDecode >> stream xڭWM6WȡꋒE(Cf! Zmn7(;IY:'؋ICr*6^vq~^<ɽ۵GJ+i;& xGJ8 z~ɪ,Q-&r~&lLۆ2Т2I̒/^!"͔鴼:qfe u}聙Oό[{1;,HWv60F=?HriC&6دxk gcIʸpPZ{ s[-n1xL#.(Ww#IһL[/LY ƻY>p\ϳ-!ʄy:[r; LpδjKM mYk> /M" }DyQ~ (C(8PT`%`;i{f&[/Qn{Ceߨ_ M~i⓸c_I,>E_NQa\ix72C<NP);OO=H]' nY ZیqV[ԂLb fAK5MMEcN!+K$GX.!ɆLͩ>QA<~:HA7qhi`;EX'Ú7 קMvqs2ñ`[]Ry\p:_8;,Ys^Iދ ^= FrA*57iER2{S3'Cڝ-}> 6!34;Tc?W;NL4IBnEwƾ4ќB>#7!Kc cRF(%eC#OHcH2[=`zܾzzR0*b&Q)h>T&9>Ze`f@>;[ozl2T[3EDgћT3EgZb,q)g X?Vv>&ҁTGdn tY6J=HͿ/5.v=y0]\AԺ+2f]cCѴ¾rĜ?|!`m)!Xlkec}A]^~`|0A6^7\_ \2j`3;Jv*hwQQ.xWѝ&ɇj!ȱ5h>CU #Oc-X۫-Zof 76[ZmՊ,2C1G p9bÑ"'XOΌK8no=QV|y~~џ;>N' endstream endobj 822 0 obj << /Type /ObjStm /N 100 /First 874 /Length 1430 /Filter /FlateDecode >> stream xYn7}W}g8  A.@[:n)e$G6%@ KΞ΍kRhY3.-4B.R Y18p $~C~B*ۤMy Z3$_9q)r"T %2ruI VHJ 8JufB\KiIso5 @ɗ)PN>PVx60Q\R1h.@\hfHSb x ,H_AX+4q}-eh(@1eerPJ@iP K %HV%.P$E! <*6v! +&-aN@$?sN.̐ % `2͜a)5ˁsDx͓~P< I5S&ϟ%X("vE Cmq`xPP%. Ġ Wcepl7dl7&)D0톍$^ϖ q Y=v3jjQ40 g6ʇ20~\u_~'g6Lg 0jlz1\N]WߧO?x˜,,ȓpf9TmXru206GőfhE6~ $\()vכg}[u}7xsi]Z)c[c`2*|Z]l-`hNwĦ`ٗ@ތ@9Go?AwV,w'>wŽ?X%g$_/[P(O1^E;S3A3:F=vLĩvn%mmR`BZ~xAw 6>pfeoj_6I'iۤ8%5ft^SHwEpP`tJphWg eԩA!vG߭B=vk1hֱ_z5?nƎd}lx[ &ֵ龬VXJ ?zWvx%imn ܇-QLΑ9wsmlh6ٗ{lcv9l|A[[rtDN3ȿ@R:KY;xڱ&vnu4mG=cz& {Ms'Q0dLfaRqT?c26SRl%mP endstream endobj 934 0 obj << /Length 1267 /Filter /FlateDecode >> stream xWKo6W`+̇.hQ$F큖i(qVm<>i4Zlrţ,bfF(aOnbC҈$L,X늷-A)QOw>I@H]m8r~۳qf (Hh_/>CF}#)`J%/c E21H.xݒg+ Dz!bY7Ȋ͚Y ~G^`GɣI6y?}>Ƒz9+$"}(H9 AbhP ? 8lC*s*h~%$id㢤%XundQnVh2aH#$@C$C|5;xs j!"ABēn }+^=5d)f%s ^g'1 ,s tT;wk8Cb޵BkvKM=p8>޵w!Z( my!$yWtWJ#ͫ *h+1,I >!}p`l'vJ9'ޥbAL ޛ5+Ii`][Β24{_:JNU%4 0 ֐ DZ ~q])*9tܒ]l cQw-3o)=٪WLn!l*) B6G]vr^,ơk/8[c?Bٛ\DֶItPПawX =sKby 9=a > stream xXK6WT@&VPml-mI\HKQ:×W]g Ԑ|[{{9{-(O[<1 K AI{{T.چmq:|ѺfT/s5e6/f#4F1N_{0gޠ6^BQ{;cjX Q/3ߣŞP[ٗWA}ޚ%kK&Ly_-Ms时\gu͇nSm yլN9`\KHSs ttցI] %Yu}--+ i)0#0K3@)+Z2*9(;d]v;HPF?;fm&\N̚k%> _xj]{a:*Ý6XVҪ@J7wjUv3i$A`m%wfq$tSl랦8Ӓf? I%(M7%It/I7LTŃr/&n4Th9H%+y!w[tAwź ˉ2[:=i/7\tbS˨Iy[HqnY4w]9\_UߖhT3`΍ ٰ9Wڂ J8N[krယ:@8=pۺ*; +*X^41|q\0P1ʋE̻9吪^JmtGs-0H.iM[9ЦFj.o((DGPt#g]ͅ$sN"~=U +BB KQe_Ǥ!3%AIYE T׊Q;K̭iPOtls3+(!^գ8pК(>;̌ Erg5t[vUț͖㭝j GN6A4!T6tS`iZ:ng#]іֻNX5kcSZp K+䦥>ͰOnؔ1U vx1.rߍ+L,p?sp|Ltx׻yOluHw9E^WN ȱ+X#vy2+Syb#ohAa4">}?lxnqa" BqOO(/7'hr=],a@nG/* +9tׅa3{3E򓥽A48CjKېmG > stream xڽWK6W @$zkQQ4M٢$DD%Ru\>nz17Y;y={y5['$H(qR$̝Fhū$(<;Z$--}:brC1 td#}޽gCn%"?Q0C?ﳡ^@WDw*H(G5eߞžqZ+MZ)m()UA‰|/@㬏I؃-?2:nJfӐwSnIW4q&IUl+̵!DYJS])K-DR^fXRٰ6An}NT8 n"-]>yƔH[=DG*(ز>1P_hWEoT30ꅚ%J:л&~}3'A6,R2˟6ݶ/ĵǥcyJejH'*R߱ncvy!)𲔬Pr_f\jm@z+t`״Qʭ0*}559ʐS `"8)Ktvu^evq52Sr0D80vz3rJ0Ϝ4RC|rғ$ŽzSȡI`Tfp9Y`R1 $Jn&$ .;<.y:P0L (3; 0 An5V"SVղԬސ{C92=A>l?~Nz> stream xڽYݏO ⇾A\riS ]4-zFQ %[lLo>9#ǫU㫷N`E*~I2Y*}GTmmj4/tN9sP578S$󺵻/m OS=7w50Gy"Uɽ򉖥HX"vp5m+X\s1qdf͜%r,;o=(<J_Y6( 2ޓ6K#a#ޖE]^_}țPPk@#J0YW"w݅ hc<!pv(a8h{iNp7c{c#j!õ %* Öv9%W=%>șqz ͆E3h3iSXО6Pr߷X?"0T;Ec>6C۱yhmrl"g)I%8DވoڰjGty &L6|tδG pmո %s.Qwު`icY ;ؾ.iL8fF7T?P.t1ū[$"$!nEfD>9\8W`3k~( qEQou]z/==ԂT_UiQ4뼦[]<!OsZwi^~z4T(ҡN41i ђ2>&E1 -8Vǩso9f,S.M X1 y#aE&Wѣk9g Ex$:N5膞ڜ{:mi@Xnܫche_90{_lu mvn{#^OF|q,!m#1`m~$VkBΐWjx~gw*Fo9tɽ{||d͐u}>,L3ކe4 /Y ߽M\Fo'x<-3"~GaF~BŬA@½WɊ\hh >}/TҰ5PBXrY0Ɯy/&W38L<:R!)#b%--x1ҥJ[.2Exw܊Y endstream endobj 973 0 obj << /Length 1338 /Filter /FlateDecode >> stream xˎ66j墺 6I%́hDmǷwdko^98/xGߏfY$H{F3}7 }|G٫`Qꆩ|4NAg>Ʈx7HJF 3LЍx]@xaTv@S'dU.%K1gI +>4df͂TUtKjQt[(1(y.6fR%UT5)[V Vmeuwrn=ofx|!j9Pgfzh~!&W'EAco}y EM*:[Q\N]%Y)hdmiC$߽Μ٭=-§zTi*][긨 =\m.p(hq<VFfx>Lw%K91|~eYI|śKe/*xq;NjZGlֱ|%_*x<=*x6B]psR4a]ao}јc\Ki  ~]s[dt}?}}}wx'G>zN Ө0߭[q=B@;!IjC];0;CQ2>$b3xpfثmiE^k(o:}L| 1 'XvO{'›`1;Al?v$'|Ltlj?š5'/)۽ȉfP0R|enCd޿r3nY%t5ǣJ - 4uW wYᕽFs^k7j͸"jnwP1F֥ RS2xDXѤK*(D`+ a&֟$ i@p9Q<Z!4_!"uhg* endstream endobj 981 0 obj << /Length 1571 /Filter /FlateDecode >> stream xYn6}W,/MRܠm(}h@K])P];H{IFKR̙!5³ Ͼ?xv~ptY򔦳`8-AiA4*RPGgI5+-2PiȈ`&[s/< ܔ_;;tmd(nA@S8 iH0=F;_pNleTUs==.e]KU%Vd7;L@SgĭUj'c(B?kXXgF!sCPx۵AP }y@f0AӮŊ^VWR05uעTf<=y~|stw:Sܷ˪々@B>oZ.\О`#ںZ=t}{gŗ^%S'mH I|'|FJ(fWSI#O̒3U!͗!HB.\,8w%*ll}Ȇhv:8r>p.һڐ ?fd]]M@$W?^W/ckֲk+pLn|Ab;3;܅$^};=ȌWػ03%~LI1f#`˿k1gLbm:k0S?k2\_/&8BOꭳ9G?OQbbF bϹfUݹ2#2Lu,JSкʏ S-l\ZwCM+'Ag\VpF)ۡ!Z**Wop;n^Ȣ,h80 \T٠ þކQX`#O`m$+Nv Os&P6SƗˍ&QGf_Yݦ@DQ.{aN Ybk,a'JQVߏmmxYWZ4 {YS4}-'yO02zp=a\,[B:Z_RGa/7Q#~zzuyg9P-/4jD"$ 9ZXRnMn522[kvGGWWWhX9$Y֒< J[^^l`|LBBG_k^ ag^dzիvO$37)yE~Drgo?zersPٜ V_wU7 _05"Vq6.y)ݴ׮yIŖ,Adc߯Gl$bg}K'm:lkWxBjE-5 |ltbO7={S@ra endstream endobj 995 0 obj << /Length 1529 /Filter /FlateDecode >> stream xڭWKs6WpC &Lu#nڙ6S=%9@$$aʇ _]$EN."]~ | >-o4I44 IRFypWq|뛔hFIDSrC g&bAviv(J*IƜW$ T׼F7bEC'y5nT wr‘3Vq1LBoCk2Jr>VգM~(KwZ6^vzh}C)l|t.%oW~ÚSbs-rGjPizKE`|?^n:41! {ov/$/XAg;7έHv w67zafBmk®#ЛD6TC(hG!6!P[,ŐjCmăMƒ.W1Mem1žJ,bLK-KWn>~Z$*cGQڵDUt6)EGXqfbE1V_??ƊX7))}&7w,Àg9aaç0(a(ς{Z1p:`\v, w¢g ^3²eL5#3{ӕo~4SpVTx}G7v=?7ڨ0:vP<I2 X.+.i0d {'ɀ;>1XOVL<O[R&#HǙg|V$O_+(}bgv39̣TGkʎcOx#(\M!ضk˭{{jZs0>2> stream xڝVmo6_a4&#R/fXk#ѶVYH:wQ*O<;Np)$OY:/&4 I$ɼJnH!WyF.^$Ѧ8d:NYΘQ`GFo~3+nTi\ a &'xaD %h0sxM"TH QRK0cy P\MCB6WäͦA\'  @apN!Z&=QJŒ5zd?o2@Q+MQSET&X u&zMRRmGFm 1V AARc/ְ<@5ZK;Ԧr-6%uUVfױH!Q(d}-oFiIݜQ7H^N:.EB1HTbdQ&]vRVA]Pxi.^z(i "?2"FX_eA < C(HsBP*b1ҥov#K=t ,bg{z߈8N ^5-O(N%=ÏTWNib7s?E6_vBn--hzP\,Dg~|FnkQJ4j wKUi[o#WC҅07J\=gSReګ|pz9imVe[LGJo6zO#@,ZCƷ~U.mJ:= ]*_4 endstream endobj 1015 0 obj << /Length 1369 /Filter /FlateDecode >> stream xXKs6WVrƄt;vfr$3HHbK*YU~}R,vv|",|vy'N$H!0J3/nx_.o2 cpMSR ^F$(Rc;& ,cul9 %}Ķ ˎ7j$4;b6GbOTmծ̹AM- 6Ž"Q:2YĽEU[ ﷬ZCbg ҦЕId2cςI b: )'"\Upއ.fhc7 JQ/y]s%ug)mӊ7'P:@+ֆvF l ;n`o)2){JYس'x*ĚG lXk-Ȋ%o.z|es%b/$5tBTV1>g11s~(w Z_i3Cr}U> 8e]shX$PhD"_0rQĪEi04gi K?AyM\\35%LTiMO2__?Nwibo/Lr`R4&0Tra3"(LR+%+#H!Ӗ{5譝jr!vġlGjL-XxtlX6 @vq15^wj҆ֆK%U nY[0CjLQ}[ D'L8`c 0*LiD"w Z /͏n<>\uD]Ss<.[au̬ޱ%TI;#񝪚)c5|^$PV*tl-*])uuLՏ)փg_ q5>y DVtEؽ8U"D- ?*[ E|x~SĻ'  "C0T-сvy`܈7=> stream xY]oT7}_Gx3c{)"RP-! G h{撄lv#![!%xr)Ѣ#'+143kAë1? dw% 0FM.J9(C *J5X:S0@60V3[X%X 2xl:![@o(U0`)pr EȝCgoo2<4 |9/g K2=~ P,O2ϖao/ XvԽu+-0P +7.S0 ti.ÓWNg3hxw'tz6śOa|"Ó7N괱t*"D4bev9EIM_j&ZWqM I[ePaTߢݗkCn/d !B2iDXsUrXG ;-r>0ggȝ uTb.;=]=Fp.Q􁑥\sET+N,؈gUǴmUoVu(R(%+U/ҿ> stream xڽWKs6Wh4oOu];i&tlO:$$mŋdIN/"] 4xupv{0 ă#akV{1pj^OK.s ioh#7@ܨ4#{rN tj$J)rNcqG]tl9$OIgaxT2+sY8AzlA9EӬx\z>ȇtI}FAP w r0F5|*g+JXWI" t^r]BI1Yȶ^]#Z`fk"5#QӪ2cy#D-LJ qq) fA3Y,PCaB\o@lx.kXWS*}5|jU /*:E]/*;DPf @1 @d~LNb=͔n ixuѧ6ٌpr.b73ŒtS OKk &+އ iKK4r|;jsI=T̚{ZKt5 /It c'Ҿ,Gr bqC ljmt*x?S`W }xytt4EyXm ]jVjMbёF`}[!$QvbӡWAw epZ1r \SaqԲkX2EhEX:oY j-nKCmli|Zz0fEq9%L;:.?ڕY1E vu^BTS >}! +c70N|Ҭ)*67#<&Vu-|^NٞqUɊ¬zkxj+x0cwcpBk';4\둨ǼݠKpk}MϙEœ,MV,, #,AplV왲 Оt*EnQ 6V;6,VY:?ʛ 6+>Fk\T0Z`vr>BG碒 lX\x,bDU^E|OyU#>Ϭ Fwbt31#G ;^=VMaz ̇Kׯf3Farl/ݰد-ljQMūjPlm_"gU,"$祐vڋVUTeJa+L3UpcK-xٳIC˲,mA([ژh>eYFp mܶ_7w=Z: endstream endobj 1038 0 obj << /Length 1447 /Filter /FlateDecode >> stream xXK6Wȡ)%R4 (44ɁhD$ͯ!8آ 8"7O8 A^X-]2DeY&yQ,KʼVm!,2;$+4WY]ab6,Rͳ, 3Qeh s;ɓ(i ;Z-^dpdd >A oXڲA,.\1:::4),(2)YDQMzhUQP FUq(|R{ʵ۸jґ2*p(TiIV^to֝LbĠLoai3n@4|kei) 8~D ++_j$k:T[PURVn{N+'FdQ#;cMpfǰRNj;Pα`1\S0r'4B-Dnb4,Kot?p\pZ_ۢL(zOJCN;pyi순RZ:ډ176Oieo+u [f<B&azR;yfZ(_鉙qdgv}MgAI^pE, Η0^ d^Wk7D۪c~V6"x#$}:5}N'Z-u+ endstream endobj 1050 0 obj << /Length 1419 /Filter /FlateDecode >> stream xX[o6~ϯ0R&{Q gECbl=0-EAPdQVy(ܾO rdvIjB0FN"BP%e6ɘB, Q6$|=;=Š'Z[3  dVxJ#̕nZ-pȁ]jH"L?;Xn2w<][cсG$ክd=j :q$zB}x^wx.X(CFnkNʿ$/ g8vQA v'v4(DN͙RPkZF(y}ErV*RiTcDidXUV|[UilQo:Nm NUKQ*(Q592@\q\y̼vi@{re<j008 (3#ޘ`w2m։ιS' [JCA#l ceRhFjR#BB?w|[2͗p,ӈGJnwsC7yKCs'ʌ!V"IܸQ]YX]g%tVhoK`-`UP,]CJ]]4 LH XQAricؤV~2ё-y@)(EiiNQ"  Y#6i >Eib?TTO-p,S+jY&?\8|<ɿ9Υ endstream endobj 1060 0 obj << /Length 1137 /Filter /FlateDecode >> stream xX[6}f"@\2N/Lm< B',xknbd I"}8rg?fw$bn`6vb/VaNCoz>A:;)U(YƋ Y3s5t,o'|c0Ƃ8ͫYg?; HH|D`(pS*{g.vmol7,Q9S<1CL~ؾ3H iTL6 U@i(ƣ(c爬%P߱:)j(19/x=RmlLzʕYQM7c|ҫQE-WDBTYjJnKZNVt&xLɽv΃F.dN5w:=akل3H @z}o@]Ej.!8}yھ9R{]u$O̊CuFvcMfr(&lV;!$쨤Jq*c:3K)uDkЯ~R$P+viCUQ.}mC~ɒe(/FO?y:ʌ&l-^X_ڙh+9"\43,e9u&Eu~dj° o~ ]R .~7_Q|4=$8Renߣng{ٸR>߲܉Y endstream endobj 1071 0 obj << /Length 1324 /Filter /FlateDecode >> stream xڽWo6~_!4f1#b~hvh]= mhI'RINdQbwɓŧ H=$ ~Еޘ~~u+AT>4L66'hňs Dq58pgzVx$*jY[yLvgّF4-z6Ҙ}w$"a+Ff @Y8.$y X68Cβaމ!,M?TrpHӖ&klV|>Y(\.a[UɁe= XuRs*Xm޴IcEV8>PPFTk/3Baǥ2rgg Nc 2 ~K(X'҈ }'9OB'] Z%F75pkJ|B9j8uGޠcEU~IV{r)]f*>YҢ'> T%#p)osp)dVyGW9/Etܺlk=b;49.x2x%;`? A`=~pf`V+"}أAkYRa0G&Se+; | n%^QQ.hc'm}8 ٿt@Ё ȧ209Z_|}vnDrILF"hYhctԃReK{ɠ'וk! R-s;>hR"n8?{JX y/86y&vrȡ6|Y?Rx +۷sx=A;c\XW'~Q\s]c[GtJ}tw3N0 ؐ@5H"]r]kv%d4lSR|j__c2L>%pJmav5׏;19+7g xj!7H7kwm+V:0S0h|̴[hU׼VK7 endstream endobj 1081 0 obj << /Length 1889 /Filter /FlateDecode >> stream xڽXm6_a @+kH5n&m(M%V#$!G^vm?">ό/ ݳ7.߄"ei$f} ZĜH|7.D|D)Ä>&WK$J3z"XJDB^7E&zsV"Z7tcG$N+4'!`~*ץvJ*i/jTna=cMZ ic%G?oi] MQRmT9vv634T]a*Lf"+t=V%=?j OtjouQ&fLɃ$, (tiG#X\U7),uE\n+PsǪ!V8t&wU1DVR-~ "4=UɖҺ1:ٸɁEvWng;^}sGםhyU}.twt/oeeՙzu}v%xպ٘fLN8F19nS[tF9F(Sn_W1CՙYHz[U'KA_& X{"ׇt0{p}xyqD0TfYZrL5kpJBDM$|QvCVIB%TOFGXwhJT<)LCdv;\ar'y+GȹQ%Vnת=8M ugk0Ⱁf*pT(SiSpn̒С{v,'D r1e emG##W{SmϨPPDi?3OCt30#> ݰ^"4^wE;͗D#>CU\+66vzD2Fwl%vz&|7`N=(1ۙl(.ۣ[ieM]W3=?e{ Pmv L?/#Xus J] + :f? L,'ʅӜ!"3`i{www {#Jcczm͒'>{ R5^ cGUi4\{z ajAnz(]ĞPtKV{6;SOT*J!/H=x|[K wDtsPҎ-{!F/ځmkc>9.8n3t]d;G+@< t$u6$C吝 <u^_w]Rd$)ƒs@5^f8V[7h9Tr=lBi5 6qy;c!elK_>OzlY F7vZc pWx2`99QhHJs^L&g."+ۻZe,g)u#DWfcv!N.G2xV5wKʨ)>5V&>P؍t{}|G endstream endobj 1092 0 obj << /Length 1061 /Filter /FlateDecode >> stream xڵVMs6Wpf:i2D"!TAʮ:. M<^xX}]:[:gfgsRF^6AČOU\9oHE.ko~zcg*eϤ\>U^ufVg vR00d:9,s⧉sBKI0./?m.AQCL4x)n ZMlzV ms- p?7RZ4BXv/M#TU&҇.>9 ]wgH'C* 13(5&TS?`N~2~|~u>Nsf{YP_&0u7c/L(>ZcaNsȬ5%| Cl5d UR58sLC֮K6kkBmSF?zaT"zq8%}0{6s/t* `FK).U_M݀P9VmݾTOCF$L.li*8q[%_l8Tk( |7ml^f endstream endobj 1101 0 obj << /Length 1516 /Filter /FlateDecode >> stream xڭ]o6=HMbYTú-[fuD[leɠx~x,9jvy$}'wg_-GYK9e_:a5q>%S]| // Ҝ9j_b?:%j$t ~0v^B Y֬]D 4t(TS(s(hxZn5ʌC' w; Pћ&^GW(o/^uv?f{cþ[i{|ݧN+ɃcmW0,P_tw_'wm_ +'4.#ְ=JS@XVl0HJ5UmCأW th6Pʹ ?1I ܴ +N\/GQy:RYWHȹ gb+CD%G(Nk,;#ՃEך[_iLd;.k'n4uaB`&9&I>ܩ Za1DH=zeqK-``G$r p0 S/p!tHt{Iux︨ hO=x95(8ӀxA$^5!,3a@lSL{ 53JL=6EZdE2$Oʬ7sUVU <\޷Nz3f_W·Gzw7L SY7(V\+KXU]߇}~tUFSVk1*xsh֦NQflG@#v96U&Z+CKPXq(Ep/Bi/_N=|z.ŹS[@@Up,ZO!? >{ 0ƛ6:)ΰ_uנhYϮW endstream endobj 1111 0 obj << /Length 936 /Filter /FlateDecode >> stream xWK6WY&)Q:$l 6{JsJM@"R]IQRLLfSAF|kJ^ >*֢Tya92--i-(kc?#ҿi_8orƗ5kJz̥%󠬨Wm= S5;1㾴MXP;qĎ= T|jӹHIS_?R~68!zsK|_"tJZ?lzŞ֛O#齱M׃ΰz崌WogodgvF W7Qzt}my6ЫZɍ_ChK!;4,z'*$홀vzĵsAn r˙b$3OynI[[*(JϘ˝ c<`:?~&_uSڈMdz>:B$ ~iE=4As I >>'cٍf8BNB|9 Ya-&W 8~ߪtrXvd8.$L̓YC@fN T!'fjF JB_Su#:D"ӵ|R{q첷wۦ Bj,ݲ bdכVl[\ 6د!8C҂on1 Lm8QßN꾉:&w>)̻C?y}A8m!i퍅h4:z!JاnjF~2s endstream endobj 1119 0 obj << /Length 1836 /Filter /FlateDecode >> stream xڭێܶ_1HBpIFrES;64V#qfJ@R|}yHh$k O"FiC7_Ԥ.rs0JI=c}OR}W+,gd@ܒFKÏSɔyE'`S\]ޥEA {eHة ,BkgQs7Vh\H_d_#&V4AtD T>ٳۜ&7  -kX0RÑg4N˖'iF`N6J5`=Jگ<2רb678+a(3NWCcq䡈=14D-x+107Vd>dUJh:|Bphnt(hh.ۋV6rAEapM`zajE>T y:˸<}oΐvVOOĴ& Z w'%i?tjGbHՙ31$GyqSj:ī{pQfԊ&dG.E7ɒ{Wǵo4<.c*yߩ8j :u#0űvn nރYkU%686tn|p0 Sw`b!k=QPaB}se-NfmruO*{+DjIx,gd%Z<➭VIQXUAفwUy]T")U@用CB} &9sVB.㍂c“,}orn,pQY\ixF:5a< D7ШzpU1/QA\Ziƶx\R.J_kT} TMûr3iq+`2MjI⳼=οtp[瓻?0.r\?MhЬ"a%sʖUpzyhA/2jyݿ?) endstream endobj 1025 0 obj << /Type /ObjStm /N 100 /First 969 /Length 1520 /Filter /FlateDecode >> stream xYQo7 ~c0(4 l@tYv;p\(i\_[9DRGJw BLծ*JQ6]jBuI c2L"b#٩G&@M(vF`Gb& &A[SR5Ul.qvT 9ٌ׸x Yl*m} xaC@h6 jZZ$"ai\j\nARMF̼ h h*3sf@,cmԖZ%Vb،\i\%N Ebh$dv) ٤j2frj iS-ZB..xj2 ,l4"3 . d9s f)lR5-`BSPF`J6UƐ6p./ Gs5FY‡12ZH!$v1$Y OH0|[ŠU3ҥ4a%R , XPZQ`8.jS&K25Yl @i@"T"p|_^.6ј}/d/`>aklp HڦV8d'~x"]7e}%~ tM/ݕ9ɫdxufr2N/oӋUjc?O_>y85>fpCǐ"#{}$~U/vzĂR\f֒ef=gxll1fs(;^m6NlL|CN,OgOŋ χ'ãcj7)VDm%5aC ~ ~?;˙_r~s'$!ѤIGFj WˎzsvvݑF {%n 4ewS9z ݢhlǸR'XA&QqaJ,L.]ɺY#>EGJ`k}E4$.kҰ, p4r\_|? ޽g/Xū6z{E]{u r/: zFvyv#[NAuD(361eA3ݠcc'ZJhͽT|JqR:Z HqD%~kMvSx Ճ(Z 6~4C'\D˽h! N%zooD>3FY=ҋcN4zoXT7K-lqE'fD1c;ᘮ!w#m Wqh endstream endobj 1131 0 obj << /Length 1069 /Filter /FlateDecode >> stream xVMs6WpjFG&qLzȤrJr)H”$T.Pl)3 aIo-u7W*'QbQQA*Z,[TʎbLίXaY\&8l2JiTo9$-S #(!Lq,7Vs+sGXooe6EB0X}>au1y/lۄY"7@ H0SaGwcr1gB GdY+T48Z$,Ҫ6ʀ"Kn_;Cb!DLSc=O)J2K)4*΍i~ZXYn[?uohEgU~Z,ZxƪFUr 1{=MX{4?ˁ3q1 r;g{J@奏o,fUҪ%~2&QSݟvbJ4^o7"8J?}aG퓳<}(퐪!1s8"h `Ze1|ݝ; m G;,˽Ҽ /kd';T(ݐ,mg^R0Smyo7J{64 seV#M6w,횡!wC8M5uJp,14Г)h(VZo(sp{XǂPDlM {O׷B3,Nmk=%'\4nu">jOq'Fv* ިAEsH^(a,sn I~vnOs144h-׬p~;[wMB+Tbl.vk~4wvZ9SǓTfw-}&7\Bɐ!gG["_]829DwF_Bz#&Uh@J}=6^N\O endstream endobj 1142 0 obj << /Length 1336 /Filter /FlateDecode >> stream xڝWK6W DYZvA67!Ɂ+6JJqC-lr731~]ܲKQ{XycF a='%/.ncr@20ANOej&iϰ*c0pt_֝Ĉ@ H2_{APHiF_^\DZ_ i酖%" $b%U&Od2l\" !ImzW%>a zE}5FoMFT)'6tFVSafh)ҙvpt 8}:T( }bp//8c񈬬W^[ZIaMؕn\Z}at#xn=gy-_Ek -ӥr$>=])jxF [(cv=N z23#z^gG j)˺ T8oEZ٭lc[81Xp ep܉In!$Z o^AqqkIuk$-dZ#ʀMwW9;;?0 yM5嚎4kQY> 8w:߇>Fm@4J(AXҋ;a|&K8v6+雪+{`<ֈ=B0f^V>}^ im{ҋ\D!rFGqD<(^iP&d? w0 ~4i+]bx+r{r';{##Sudvyϵ> &郂?iLKYFu-tdJ0Z"V.J"cM\S6pg̏ fr ԮI.ƯZAIa>G6&t\V((ju OV]YI)”EPB^O jjJd61q&@W?j\Q`~Yċf[QD +Ȍgq endstream endobj 1154 0 obj << /Length 2172 /Filter /FlateDecode >> stream xY[s6~ϯʳ K;y&NNg\m;fg&a!8߃ aKnI^$qV34{o^'xGyBfhRe9}^rFU-y͒[1Qf;glwAsQg "Doɔ v3Ť;XJ4XN{܂04V#60J#RQ{N8!#݁Ogf_3qZY^BU{j~w4s$^WX[TAYc%qFfs*d9Vxp4Gѱ ?\8AT#z JbJXqȡd83(5 4 )b/3GUmպrϡPvof ܁J*#K~-]vnokB ^;ו&7k:.V ߶: 37[{\r0U u{} f~A^pyA}ev~XTS V%~hLbm xކ/U!B b.Q]83w(xi[2DƑrKz_\ÖP۴n+6eMdBĒ2;[:bAwš5|XsSL3 vO`Q6ŝZ }7W{o-l"/U^g1Z+[ ,T|@뻇%8Jo}C2b,ߵSMFhĿ"I1Bz3/} `];Io)\d3>U"Jd__%hne݈FM:Yy5o!$$WoP8ZQTÛ)l.7!I^:-bF0 H-?yS*RB6ZFw#hCAz>J!1Xp̞fI{-<;HGHRzJr<(v@ǁ #nQTڤN%,% _x@c^a@P&{X_]-z)jNOGH)݉+?K 8adpDhr nSerTN?M&(h2uB(G7gDr#=mx9qfP~=,Pp>.*~uZ!H4w!@}ݫ >#t64R.v@v!>Ay&]o.Å1fImFd]vS ƮGtFX??Σ,zNQʼgyγ$·S 4Z5B:z9$L$YaU#DO߅ge8Fh@Dl53X;Q/;'"sE<|kk $gXsq(9īt"w/oX)XUL&#F)BA!Tȟ>{/쁞4=b4ϩ WVti7\ pS޵]Oݍo:qޢ| -曺y+ei7uJr#Wwv14.G_i90;nqBsmx]'k(AFp:x/e]3`QXd5&ٷ>|9n endstream endobj 1160 0 obj << /Length 1386 /Filter /FlateDecode >> stream xWmo6_a$X'MR zX%}A hh[,l'~GFVC,yw{GN74 @IEpklo+Zz4MؿpE>WC7;e>#Qp dQߋT.ιȧ=_!DmBϷRy+U&j܏2~kzn"G).t{w2c-zU]7$л(A"!FDr\;*@~%ӹ5sK(wP˜k%]8NVM{L?sPB2@+[>t!͙2fEE2L|=Ƈip4:!8f&8W3F .@QA,W=%ǐuZ[3NR ʊz>FPWow }` 8XpGj$3&P FmԞ{_: ;{& )R;*Сg?ֻZC:dRV"]i+u$p4mDsh^#jS&#Jn<6~Lz@,;R7u_I2λ.@ d#5 ?&woOm$DcBK"c[R;{;$MIޠ˿D]}{#Vo(_ғ3;P2}Rh,6^C >H AlzaV<,._ݹR2V鎟j#Y]M?|_md7 E*FU& Ъ-%'Vdrz}u7=5켐SM,˼E6_耡){To^|?jfzC endstream endobj 1168 0 obj << /Length 1383 /Filter /FlateDecode >> stream xXK6WR Ԍ([M ֬sJ+^T6ίP$Z^g=I"Ùor{[X^zc/CYzaG$c[eA*趖W5βݫQO8+m9 K)U+̒{_'fwEA FUs+fgrk#9_-,uaK_*8wi%2(;sks/8@ Lpw_`ޗs}OJwϤCw"`oNm*ɕR/׫GR/9NZ ^&'")s=$4a $kP*$RLTJV™WUy2}.M3'Rbhӆx5BζwhR<}}CmC"_GMmj?L d ݨ{g+VM:ă$W]`HVVnѻ% m"cqk fDDs<ù AI섴Oًl(8(tUS7RF`ڦV[f*^Ei"EmM*%|ڤ\yg[%8mk=$D8Y&!8P6s  G?ե-xP#xp@,9GFG:$c;Cf$2mp?URoGs;jœ\Oy[~Oьzr )[@r 'l՘f(q0O;M߬ق1 endstream endobj 1182 0 obj << /Length 1732 /Filter /FlateDecode >> stream xڭXYs6~8ӆhLԩɤILB[ PAж뻋"e&q;y1 {d5 &^\^$$4L' ?ɜ?u9KoO/R;E9gJD*.Hg(rXC{`mx2 Ȟ^DaЏș|%hMQϳ;Gyi u~ ceU6@gYO2Z+Hyjpzְp`K0Pٌ< fQe8I%+BUY|>Ib8^}w;%dvA-,n57yj^f!BpB:D a y5 PYVXi6r*%zdYt6V9i%uހʙA0DڀC$142Ujø2| RԆXInm;=1o87N-Ve٘$vQojy@>ك$SOz3s?l`pT %Ԍn@Yqvb{I8VikUT?TVToDMxB :47jgix+ꆶLN;)py쓤+\no~0EBζR a0'su yFZmw3@AЈd1WSu'@~)؉w 2*5*n˶iX][SI-P0}o{^$KGj)2Re=@lj=nCi] NKa+Fj׹aJDOq@‰1qV$޵$ lF.װ-q4ւ1Jk]Ao E!WW,dv=ʖsiyC[oc<(\?6\xYW*`mÚ -D-p6X @xInYZP6Y{Q'Gz ;)>k#<iHI`J/Ey~  HzzA>!:P <| {li<,%T4gl#ɓ'Xmwf,5+{avӑ%>ٗgQo<QB"eC3vy#h`N]};pNש֓Z3Z)#FR׾pdڝb *s]qĚ>g-k-Ltu}oEoOk7 S k8ДqC;C+".<>hsݿ 2 ,̿ p%)v^GuL 2YG go%ShS_e:f`j:>E endstream endobj 1192 0 obj << /Length 1440 /Filter /FlateDecode >> stream xWK6WIȨPom-C&NP Ɂ+kw}o Iɲc'v\LqfH|4n<>u=yz2XfQ7^HH'aKo]zꠤ5/DDraӫ4JH ҈g1L{Uy NjQytDZ_FiniJqk% $s2Ju5onܮGJVQEc bcWc#PnhxǗ Zx펻E)j|V+TmVt?0X+6\AZU'񦐬fSlisz]e4{嘊ѩ{:zS^fQUv*vQxٰ`| 7jl6N%+" p-LbQv/\Eyp Rove{qfD+(X.`/k;4gvfE ,#v݉NfLn*]+WNƊ<5H6=B?8'piCe3"*\Du qdƉcY#)O9}i#v t{egcD)<_O>NB8Ip()0@py/ޭD${=k(ܧPG˒KIR(Q\}xJ<۰-/Lɗ~ ϲ^;vK5mr )qi;TKQ-!4꬧i[lGQJ u$'I ' E3 [ƨ=j:pd.8Hg"Rf;acj#!qL78E(w}D33ѱP}p>rO6>xz8GO'ǔy5͈~0]7Ì!#^QESg_Bb}?R[yFaҔ^v#⫶Zɪ$ȳtެY E(KT;# X endstream endobj 1202 0 obj << /Length 1371 /Filter /FlateDecode >> stream xڭWr6}Wp왆1awfNi^bC$$e ZJ".gwulyt9|N4LA8u2Qβr޸i]rqZy?;=GqTuk؇`6RCH[4o }ym4NX(iQOUu=I&yLenWճW}SjbYzYjK|kZIhCvP>T-af輡d] WB!f/FWK6q MgvJTG,j}>QcN=󴗼:"]vY~]D&~#.~595Z ҘEaIoie׼:u?R%Oܡ0 endstream endobj 1213 0 obj << /Length 1986 /Filter /FlateDecode >> stream xXܶbxuԋ 7hćC]wWV);C^{sM'Qpmٗwn a2 daܕz0A)w7ߦ|v,aa Y1x6. 6ʀ37'8aŠDOBzE-c ,ClŮ=;ӗ$ng bXA[V2O5M"`iӟgj/L(twOIgDS ]:5BKz׋2wQS=JWjW1{k$p[qԪomÇOiå2'OoJiވ]M꿯ݲV\?̝) KsjSsՈ8}xYY5FZ^5jiKVi3R)Gwh)$>e Y! V=K$lC>wKw4Zm2(2]-GuΓW ct m 󿎴j+ݜk5K$Am̬VU-Ɗx1)AFt[O5~paIAjiBYt(B-Ztm}'3(Us,iQx߱m]T "P9|= ?bc~# + T߭YIhP)(=Qu'u \mJH(!/z^VS9]pR`׌:^0*Pͦ HuY;뺖~^V; p@ Ab9;?ܵ%˯K6,=xx!$Lk 'jr~'Ʋ4).:'KfʗI " 1E2n_4 66Xv!- &'x V퀲{"}`-~GLIL4!|QiVv17Gր[0(]$ۑДnqUΑk:ylݹ*b3W4]! Х)d w\SQ.U^LJ`Xmbnk2q~e`bl CR #fcJO mw?Z}b%cqbMQ:D-B?PBq#ak'fz7]E9L}83Bى~@ia:.w_1_!ށW0J4/b '9ENƴ˛ 7[0Yk?Ԕơ%d9 Df.uZ_"zU] ' P"~Y ܁G? Q_o~z7"~GsR.{3!+0XXـ44"V> aV3P /l4g#\ vuKl[0pF{ Tٹ% 12N5Am8 Yad|ߖpG0|_, /0h(_Vؿ߫ӂЉmq%O,` .RUXy7! Bg70-bM< ;Ư#r8Or̠[)N6:|6=q$e oEHI1v504CfbZCi 9wl#|[WgA^KN?}rq>rY+^Ҋo(׮n.œ endstream endobj 1223 0 obj << /Length 1273 /Filter /FlateDecode >> stream xWKs6Wp4`Sqi4VOI0 hIB پw)QVifz>BaOM%)8 CB,ȣd u~e7W7Yt IJhfH Qb5&?AYbU4N<΁GlbMmQr#`]R\odWn,M3|΀#($eZs\'ӰLo_z%n>ţt']OP>wg)(XvW+^`+kޜ2ю]V->ukDg7C0٫0z8#[#as`MCp0xMӗע2RJBu:?h8Ћ.p_BNT<f$ Ĥ,zoͶҌpx7ULpfcɼ{IBK]Em~>@拾D+mfAG=|^a7J[፨NxG9%@s$O"ۙM-|dK1OzI/-ZlN9hǽ5ʹ 7O![#m=iXdLx`m+/UQso2veHՋ'ωĎ)XЇŇ3tL8K'DK 5) qEsKBi\<+'sM^Ͱuc?pYἼ,+ڗ!Mr:GuH.sڑaB'Ж)rk ]{]{jW7g endstream endobj 1127 0 obj << /Type /ObjStm /N 100 /First 971 /Length 1469 /Filter /FlateDecode >> stream xY[o[7 ~P(q b6H[`[4l8}{qcTvby>^Dyc,. UG$TV1i[ErONb2Bd(@]Q1*NYfÐIi0L:S3ŸRMhrnB@`B2 %Q\r[TdXQMc̀ 9:  p;!s"QjAl[ٌ0 + QGeeY8 `6 tU5]@Ƒ] qb*ťH:3QetYRpI&r}{~x8(CFYfsH;Z# 0o&-χ'x@0=>̔Sυ{yf oGMty> /ׇOˋ_|?ή\?ôO=uG6_N'TB3mvFp %(L{AL@S'5D3E':d_}hRf`fE_3fզ乑c;gL]&oahI*2kݢSL> K资fCbQ{)z)*;\ם̴{TpG:K{*Y>7ݚ;;Rˆ#ew(9NZrEx>E˓?P狳oʬnSFV$us.޺>4 cnR06߱9z;D:c[+e[9"~C-hL?^3N4/'$$w1NꕍvccՑƨxrʙqaߟ+gU#un~.tj/:tHԋ4fМ n_io6>*Ĩ+ns:btf̔z-A{e'̔!^4?WQ]:RijjXD_k5B~|/оv' wq4’I:ћQyqtP9>/t;Wb9W#}JՊszTE8mRE'E~,ڌq4~^)b| 4wn3oA#Ne?hkk/:@H埡 endstream endobj 1234 0 obj << /Length 1467 /Filter /FlateDecode >> stream xڭW]o6}ϯ0\`֗%kembX 񰇶D\(Q#lQ؋E^{ʑ?zl. F Hd\GQ @I-I*x(W~O.'4#Iə猽0ȺuN%{7 7Pַ"iMΧ^8'( (n&j; `Yى(I;+\+¼;a; /\ֽL40A,H.`ނ} ?$zŸDLcrnqD,N*;i~kkz(xkA%*ȯ] 1 Ӡ tn# 7:(ȗYIզ]W3ɛzP9;I0[$ \]SbdH9vM dz'3,%wkOMqݭ ;A0q/`~T7Vvׅi8l,u J%xN>k^{:kԃcru([!8H~1}ꗺsm; ֆRN5 R2N!0'Xt@P #a^GO J 4F8ltП( '"IA(C4Wk)⢜> (mt̃FpR[/adXsf,wMۋ/t@6|kGk*>J;GdR%nIwT?Ն:DCE2W ]GM;P Z!-pQ^r\RѾ48%rm"5UХxӚ3X~5n:Aݣ=<ƨ]u/=1cp@Bi`*TH%HGwŇnj_ 3BIJ;b)ӷH@^^1_&TV=y)Y^}! X7".8>tDui{{ ^ο/\k>G:|tX>^]5a8' Ț#kcuwD/og辅8uW# E/6qW[nQm'+~%??ٮ%gtןEדU] lY`~KxhYlV+"z&˛.zL||\]<UA.tzëN>=Y@'ߝS9= \-G endstream endobj 1243 0 obj << /Length 1347 /Filter /FlateDecode >> stream xڭr68jBnݩӴVNi򡂐뻋eaӃ}aPQȂYm%i䜳,)u b~ˋq&"gq\SI˪# "6^^$qPX*IJ's &$,W"V픽]g$"OD1sS4GlՄ}O.;er'Fx#'WY,U7<D8Ռmo`7^ɇF!Fv5eYsrŋ+kzO CWI#DO\-v43N{֠0g`x޴4kq* څ0;n=%q6qgsRoUW7 C&6ӱ[a4[eE> >Yg%`GOo-Ϝ/1+/ZƚgxR@U7V6}ЋA?s۷7PN\C ܛ8f܋a1R\C Sq򄏥pa _rpE\+@< I#\#00YÉT '$ppBNH8Dn~Cxll)A8Fp :*)`b@Q;8u,bVAޝ>֍i͔gm,ifH"DfƖ<*>:h''y'  je߸]01yeӐ^9OCEkӆɁ;13SCU@;hn F:`F/k`~J.M뵹W/eUifLH-mn o2siFH.[eN u odBG)hpY(}AĢf ("OfHWp梓W6; ׿ endstream endobj 1253 0 obj << /Length 1653 /Filter /FlateDecode >> stream xڝWmo6_a&-Q/vX֥---6IHNw|l9JId3 &O~]^$CYr= Eq:!Jl,&(Tz0~YJ8|rimɁ}<YdM^:`f(bk[т嬦gS'NjBڙ q5Ui *OjRK)]ZCh-ѲWzpОbb -hAH ρ^SM5F43#s6G,/mnK?ZPj[ y9:ؑL@wk}%AmjlajۮPΫO}=IPCWފirn7୾489;Vϼ7қ-iiB}G>_"<^^xs+ +|ѹ)( %h Oq}gN'!3ĝN5U`F_ۑ[R~ЙPnՎ itegVJ*ֺ-+^.DGws/>YP㌙a#;Oݙ] +WUL0k}VF.yJ{fԡ=;:/!5"r72x52Q"aňCK3"tp)^|8MR4R9  q (DKO1 J5]S *ӗke&o{ן:[]g^w #EP!ް͆ҩė́>|s :ӅwCJf..Yq/Fg^ŋn1JG.jgtvcd1O˿QuϹ4{$GhkNppt ѿcnꨫ3 g54) #ǘxYx&Ya#s2_ޑ)CZ8L z~wvfB*;M Nj Fݒ}=-hoc[J þk7.؆=B=wD[9΀!-ЁCM# P |F(( h}F8j`n[;sٹy:*@ʍrJy3q^a</ wwWEbF"܄ޚv= <4nwǀSު19+=o9Vw,aw 1Xp'+\1ϩQ3bx\ "{bُ io ݠ% }k(޿}gO09> stream xWMs6Wp4LvjĖOI IhH@ʯiIm5c7'b:KuFQd(ؙ-uQNy(2gV8_Ɖ;6p|{[A4OkS` .ﺉwRz4<3 ՜2%'uǿǛ7o͋Z;#rDw38Nz."5՜HdwyΩƘ,fё^ "ù .1S ?Hi&?]`NQCP `УreC,3x^ᚪ5 8V]glٹ0 <⻩DTنrh'R5@YΙRojzuIe%v5j]N]DY>?x}fN ^}#mnjAn)oIl)PE֑OQl\BV|ú-蟑yz~7)` KukZ9!I0.^ ^l D =YE,5Ӏ0Ɯ{^%SXlT[zpR*"V3sRМ2b׃ !. kSOˠNdd 1 1|zA-Fȣ!QhNd.h(M=}A (rI_yc/33KJ&^4eP, z 홴0V;, Tcߐp=Asm?HJ&][Zxmf$΅܇˞7Cx"=8W꺾FO[LQ+~&[':4m{6aJ$IzE-t5XuX483K^4mMn9|է5L7K?.ݵzP=Ң Jsy-T.ZV=q_ pfH~0;_&=Eٞkف/o#bQ q{t_9G17 | @ endstream endobj 1271 0 obj << /Length 1602 /Filter /FlateDecode >> stream xڝn6=_aC'6#jiނ1ևLldѐ$L8$@CQMr MhH<3E+&ʦw+4l8Bpe/*݂7M͛]ƞhhV-F| {/JQF=U Vj>M{j&ޒJíoChr LIr-W{ P*^WPElB`} ;P XD] %ΥtK{mbr B0,RAց*VB j e#F^IIީ,0UOV#̖YL k 3.ِŋ^/,Tn'8?t[nBٲZT+KQ]U$۶(IK9SiRܝPk@1J#OZC_𜗶d,RTLANH[jnBV( :qA(RhILOU&0Ɓ"1p5h;dLX麓7?$gֲN7ơd\ h_Y3S0k5g;^qEQx ) M27쌷zGψaL(r#k7ѲA f񽶾3&:Rq18pGón\+~uyDCް*ֻ,5A?zf|d\v{4En+ /XūՎuZmFNE2 VS0aiiIl2 QY僟R;oAgfb̍Bviuqe0XTs{+QЈ=Ɍr|21;O&o;A=|,c XXbP_Q(hCq3_Fqn;{jTj߷Rwu:};cYȐBgqSm0M $#,G]B7) /Fi2IHtx@}u%Z-qۃ064nvw'Oɣwޞ{ORSȘ$>61'm A^8 srIܮz4$v-ryX-qKM1 8Pa,DyzƲ n/[Vܰc-ż,Y|lK+] ӹBJhNv%46> stream xڵWK6ϯ`F4"Kn'[=9@$$r X>&%j$F׏woޥWEe ۆŅXy?yWq>֯Z(نR] 3T"}˺QU/[16Ji.1(m&Йd1h^-\c,8b[+(ir $pj'pқ(q'J#6E/JK7֍ioH%(`"-X/R9_]~-a !',_"ƞdkGS iLS:R$fD(a33e[~ b4ʌIM"D]U6r78]u^(Ih]n's~롭R֯-'B %n_jAQ$Pr?*{2Q]) :\+d1(Z$w1? S7ZhMN\Õ鸴7rtӫ<)<%3wŰpXq#O.Mjz+(wqǼ]|?t[23!%qEx(PH0Cўd58);QMYgi u6 1\`t&)2:` 3qC ^0ޫB0V qiÍvvn6`$_}OPŕuyqP\z+>&ҽԙf^hDM >Atܳ ڥ2ZDwd{,%AqR ۜݩQU ނBqzY6Sba6-JU'c Y),g%Ӻg8ER㌄ =ƂkD$tX Ԛ\9Yג D5KU +4Ojx J> stream xڝVr6}WhԙيޓS7&Xj뙦0 I vԇ~{(4yp]= fhO$~d0JfiI6O$/ۚŞVAG_q2PPX4P!{Y {8Ш"[Ӓ 1rxYJ3D1.vMu *%udNǙR Vxb$/OIHc\rعhp#, M*~aގSX_rmhך 2_γn:9v|gSGKE ":/D{VDT RHٮyI+ iHuLZ7E-Mo2u. O<`rPTEعhB#UaUfɷf\+[KYi.^ڽfJ3Ǝ|*kWn"(.os"a(=Jo>W.U_.`{:Ξ g *{ĝ0 ;#\-c zIuEJBDnsǷeyt閱 f?֬1VH-b"g}lԞFB'=006J^jev.*ġK?0,ܡ֌W|w4R%Z LI1sZ qUv8(`7L iJs" rvjع`]!L4t#?JO8xOX˻Fomd:1' ~q@(8Hj䬣e( 19e؊d+B?P=y 20D'^gb)[3QA>j! <.26֬\IfN[ZX5эKOu5VkG-Ķ{pl>Ma4l]^Vp>4;^Iw=4PqyR9'p9x=WO<ЂmK%؇|\ܽ׀Y kx6l<ǦRS]A oEnޡ8innIb ׵sjuE,LC盳-v= endstream endobj 1300 0 obj << /Length 1580 /Filter /FlateDecode >> stream xWmo6_! *][-ú6@K-L=Jj(Yv$+V#y<ûgm-nj:b?Vy0Af 뭝ϯc6 eIr4O;W8,[|cxdᙋ_8ij Hᥟb@"mmd΋u2Fío^u(䢑p/HZ? C.Z"DQhF6' =M!*1o{\S 7'S< M}flP P$;,V Nző׋=MYji I]Y_Gွ 8dVf.t ,eo(El}qXjoDޕD#ځoCM)|16eo6_sy˾!q/C"RG\9Ab%4` -.C7 rJLC_6W~y]6e%6 8~D@LDx`5D3+1mτQ|6$J0#Y0hKY$KNZwbds~]9GFkM.Ơ_n;<3MNJݰϫ sAc"P_OSű B7fl(=1PpUS_gVt4) bp ;)<.YMLD*' ú:1oͽs8fl JKj{hsڎbuʓRg,pՀ:nQ%>7+XWewpu$0iNгAeC?R9:.LQGI3[x|-?YÔvI472ѩ.HҨMj>zjuRf"3/-<ۻX eOB< l{ٶ$rھ8ȏ)Hc‡,(s+XŽ)f?䀧= n~EëI=5(?q?iŜ!r Q: 0kemEQ遦4L_+|mD,d0ڏ̝xg7GW{>Ňn endstream endobj 1311 0 obj << /Length 2191 /Filter /FlateDecode >> stream xڭXmo6_a @#^7>:sv[ƽzh-V+.Dm!)Yhw%p!=;*Ivu(%ȎrHGˣGK4W-t>F2`i)aMG 9%^i*Dqd`<]V2g^wҍ:AxhJ-cf zul3iU;Sm,(R}|rWX\vmi23IW=EZp<4?9) 뭻nkOONH?s>M,A(&16fET? "IxtM\E?ɘ AYlt"HPymd~"~%.h?G:`UDeG۩ @8ɽk_y~&xum@?y ~vo 1v\CJ:2M0_9x>íYzM$~}L4ͩ]e%R' Ve\5\>\L$\k{lcZQ2IZZɥvD6i])kMc5`D6~y`_hlxoVۅIlkfD`%&SWma3Ih:adC91YVCqkTIgH<'ƒn;Q ~@DE ~4m+ b2 X+L (啬zY_;ccv l}mz9?,lT7y4|'ݬ\*^n˶j3m[o𬃵'p,}ccNֺ{\$$L,BqU;썜9|&"Kӎ]-zɢ\f(hE6tW0ssMsBz;-)ȉ(77 㝩kygZ9OAZznF{`6ڪW:zP7!rm迀;A,mueh( >y?]RTh1m!VAAɊ2vgncy1=3%U|nɗ3H_ĬEfY͊ &2AYd8UI,]sĜ$ŷqE9hBg_1c@0v 7$4򺱡We{=, xn ۃ ۣsO7$\__[6[侱!lb9 /άY^\=|2!y!~F"v΅6dp̧iHV^Ϫ /!j_ݝU;{ކם=/n_}4 endstream endobj 1322 0 obj << /Length 1118 /Filter /FlateDecode >> stream xWKs6Wp4}wNNBBZ`AҶxPmy;>]P8X8x;a999M GyJ` (`NJ|A /9,u$|n*|ڻ]1 (GQ:+qpʧȘ<#pAJ?U=߳RN I:6BÓ`+Q}ߗLݏ^nPs(M@C-b+ PR XTVÎn5|i7ny]5]FbK=1㮰t ]1X| _òxr@LiX$o ZA5h/ԃy%Sr޴{fY|YgM'f=/ GtbH|i& g endstream endobj 1331 0 obj << /Length 1960 /Filter /FlateDecode >> stream xڵXms6_qnR΄ 8mҗkI4})HbC*Iu}wDJ,ų/T0YNgggob>Xx2[Lx0Ɠsl2O~e@Tgoٛ(qgI "$#w zg}w $|[Ù߿+OY*#biƶ.9j1uiZltb*"z#5*j8t:7E"ZŲRiYfZ:$Dk4 Y䌩ռ;Lr6SxDpWLْV+6G$TM}gއc'xZǛFܭ1cSؕE7IDU(CO8FTyQѨʒ&WSxۖ8@K6v~KӏAܬ|cc1F.ܺ7u8Y3}1Fٍ--Ai)S{9LZ!l^nO4D#m`dS4W\*DRM'T0*RNěr%>UGan*i <$Q R(N`HE9_UE+%`5NtYnu7 m:1kH$Ty HL5lG yK]74b m X6mC9z\{tBju\$P̀"fYT~m\oGeϵ9.I4iyi>82e!XT6:(jhWFl4?!MXN1j_;R[HaXBƣX/o@,Loj <;3ZE");SҜ`Rn,ߪm7 nQBNгr `^%]Va~(f4.֍=xr+:s"Z5-M_ƐNB(#qd6.{#,Mvz %\C+7cdбQ@xH,1D1Np$g< $ #i9m/3y& yLyCEGr}8 8 t'/Kr?N9;=s~*]]Ha,ڐƃ?t0H#㳝'B;oϩxᒅ}2;`*i~b4ŀ… t쥿;G ,O*"b8y:,rHjǮ.ZշJj=*mik ݹDw뵴B5(^rV3*Vg,w9˗RZԈ,PO鋓wONiSnQ*/.[^?YɺלɃKQqq xjE݊)* V4|U4I&I>$WOJQt|5{@+ endstream endobj 1230 0 obj << /Type /ObjStm /N 100 /First 972 /Length 1507 /Filter /FlateDecode >> stream xYo7~G!PZVBI*#[t/noSٙϟ%'ʆEW F&ĠH&zR#(y(2I4.bJzC8N-d`\Bhj\!냜O:BY#i8B$85EԕAViX +CRDo{ԣ!ruPGFiS{Ec8Ac+k IpjfzP(uDBR MK_R4S+qS[L@/#;^ `\Cd2At(zDK9* )ɵkRp˒j,DV!b#$%N) +?4ɫ?iR (mğtie7}Pʠp,N-DH$,DHxOXƇ*ݔHF"IǢaXɞO}jV;`/*f,`H7a0ZKˍGİPrXS"PHs'+8y4^ĴLs0Mǟaf9 T,ݻӧ6Vh\3Jt fgt{/Ȱ^P'(Jy3Z?{5O sdW/Lw80_Ba'Iať*I?˥{M.N̑ ծTN٬i>_IM՛;~^v]<Nzٖ,"J7U,|v^vwvjntqϺO]w~x{ڞ󫋳ev [f%b v|XFx#Zۉu GZ،}dxuq+T Б~8Zc*Z0'*mh~hO'ooDkJnW?At-}o)JZ$`NX|iDP-aFlC4hh3ίm:F4EL֩s#uJZNC2FT{ AB t9{iDsrMm_r1-CUz6v8܈fN\hF;9P#:D҈&I6l4`uVIʇ/p/EW"mbt+k了N7 VcbcMQ> stream xWn6) 'b))/T)1p}HFݞ\YAl߿/&7|1 pu:=υb}w:<_>l׿?.M.B$_=C(x#xCz逥؄gypWoә)ry5 Oo|2x9^<Oa <S$[$໡"ޚ #\H*zhӳVϴ$2cd1\ʅ`ўhx Nr"{ob ܳZMO>Φ'TBobfc>AaiU1'e$ƕ^Ԉ7&Z#tM_*4]f=Sz2@+0CusB غOPɬvebR+u 0x쑅@`p#/8 =POU0 ]PqELfrG_9q9_8FN؈Qg%% 6ri8p5t)c*i4|J꼰1Q~mUCt.ѫYS? 76Pl n=@6i:Cj@dzqbcVƲd Z7lH:C7,;>QI[& `(HmNh]$ Pew&Ol@;>g/Wvxl &3jR=z;b{As5l |m>YmYyhښ(Hjzɬsly.3NRrĉT8UN> WA>zJ&"6IT} Qu=MôP4ѻ,L^E@ʑ;  [[J;j1njV1NPI78HF*eFZ Bw̢i#o`%)cQQMEkq۔ zy*[(SO4C0G5 #ӿЛ٤Cnvg endstream endobj 1346 0 obj << /Length 1274 /Filter /FlateDecode >> stream xXKo6XHY G=%90f#Q[ΐ>kiz0 ?Q:V^qΈWFeF3ox$#d^NH[;:j$ >,N$&Q^@V貈:׌zf `l̆x L|=|newYC؏DQeaIʴ|,3{A8"ˤD%mҳ3粻7n'W0k+kz4B8f,rNNp_.f鵪1^I!_ G6JKdŻW$$XYxwƵc0Y}k Jۑ3l*K&>r*(r7ʂ~Z1iF|>ͨկy'W^Q;[7*Rkoe;+-(m6ǝ7ijAoa74vq'FLWr|_!fQNO:2qc5ȵQn{BRD1N} GϭAnR$?# R91f h7*]hXk||w\vny%>nKb rG:[mFŰ=a$זȽw @qJ-|%rH'/]q/q I, ]^i5Ozmq;N88/" 0()޺#cQU7|Ñc k9tG?h`$ϝoouR!@ZdqTQNŰ= ݩC7j8|pgu"wx}2>8U= 4t0}vfO=Om[˴8iA*ձs6MevTMe67/vsgMBPFv] "D˹_~P! G jQ;fo7lUl jִC^`Ͽ2{>RS/v}(F U&PVX7w <!xn ~95f4 Sx^m&> i43wΗ.sL 8aH]ɨ{ ¬dFt)/9~y?d͆ endstream endobj 1357 0 obj << /Length 1626 /Filter /FlateDecode >> stream xڝWmo6_a@'1-RY7,[R hh^ RlKӡ_,wxܑ'?ysb:'bO }$A6Y^O?-_D31i 8Z-Z Z^scL.|`Y@m<# ,b[Ҝ=6|K͛fHڮfV|J"G[>vsFѩXNsmeglqԘV9ٕOPL*Fk(_)WL0IZ嚵)F<9hM˽8~34~M |ooKT|ebޕq# ' Ai8Z+s$R[8A#(au GXϱ0NO?Qpć q Pzkw%3!5e :[E ]jp˖&wN֒n~1Kc+@l!$VQ*ڍrDVac]g "Ypz`RUOxC,lA/0AQ=ϺBtđ.=E:Y%(H~q("s|}2W Fa6v5/ږleK)e'вC uYivf$DJ3Y#.dkF0f NEq͐[,zbiC$?~Dch2#- $ (k1DW_?ß BP7-͟Ln!~QYTV`^)~{5^[g ^[JyVfTq:>cmB2jfZ/$R8s-|w]Bb$tiw全fT2keF-FekK1Gfr#] n %'O0||t(ߣFPPg!)T+Qц`+fU ;pӎ0Qu<|TR`չ̖-UQW6y%a[&*(h,!]Xc@j`UW7v ӐF&?|`kW Jޡ~:"Q Y8Y<̱`~9ThSm=݅jN^D@V>\ޟ>:wGgw/q|ב=DpNjO6"[ty{;qP[mʙNJ f-vsO4YkOmMyםF4Qt%t] .2Њa(9 9L.>#+ endstream endobj 1366 0 obj << /Length 1363 /Filter /FlateDecode >> stream xWK6WEb.-!f@K\IlɫMs43̐Cm#^\\Q o"1J3 A4-:zLɺ oW9M0AV1* J]UZFL7UqVqG%HqEUfaXtE0*so\kojEzBPIa+6/{r”ŧ8"GD(.:O]8J"mh,,~?Bp*##(/./>” * F]BӸ?;SJ0-;;'jYWh8&}85o\fyܷ@;ϝ)rY9YW;R.u̙nu,dB}r4rZ@~E yZ"f_[|Ƙ>T&`Kfjh4`RȾ5:bӲo@X1_N%<2ɿG҂%i1t5O$4$p4^\p~`LNG(}ba^tc$\bx,L+Ln'*E wV}tno7oϏG3Mf0EbU2JHny-*HP` aIسHTШk_m$FOP endstream endobj 1376 0 obj << /Length 1542 /Filter /FlateDecode >> stream xWYo6~ϯX$hJ!-VNܤM6}%.c[J/*=^ s!͖3oÝݣ(e8x6_̈ g !8ټR}l(&[Ac`G A R)~3NCZEOh}'P߭Ƌ~ȖQ%&ͼvR5bDK+'g;=NDDZ4oYF,Ӛ(GA`UwtXf7䩌3YJުݫ+l=;.$ChZBte#5pHr%=-݁:>: 蔫d[A&*16GZv+m3>4.=fU >蔱ˆ<7_;Y߹ Πt*npx:ĊA׬nUŋ`KВ9E桗!YEiD-DbdVf0/rK7 TLG2 V:4ۧvYv^5Хa j'P?C}<o$y4hK|e9~~;b ~r"-=kT7\BӔL&x2#oжkjkѸ8nw# m ҈r(|Š1Tn_oJM` `XhݔU#+:UIB˞ Ii:u"$x{qc׾T}՝iP&'HvE W>e-j?XiPs'pzWQیL3Gcf7b@ȔahedWl#do|?&a' 8pf yxd%^f.nD~"PK Nd5zPlW=r[4 ۇ.CL}pJ(fPyŚtFƇh5q iZjM)⒉o7w[yFeA o9tzwGoRwc0 uK?\!~ձr=xUTP*Z,؂eW`򮚡ؖ(t+S|u֤,VzEhv;sUTT&K~[&k K-$-xb[]o.+Q%GP>ucQu> }Wϼ_Dk?O';X endstream endobj 1384 0 obj << /Length 1168 /Filter /FlateDecode >> stream xV]o6} 1i C6݆5#2QIH*w!r&ي%#ޣsyxx&?&)raũa(VqZ֝>N$ hiE7etQ-7-""EP9 ۧhȟAo"KX>PwF[AKV]xXJVvgSr1qf|HmqAk؍ۂJGۆ**Kړo(?T.4_ %tyg(–Bl[Ikg+ ֦!d]z)UWokz(h״PCn-ꄜ-5uNuܺfb;;x˗F~}YJ/%-Pm[p|[&oW&v>\qch&?^ Eƃekj>}QNC iQ7;x[L0Χ77\݆*,Ifu{*VҭE\cJZ_P0nq$Je^JVgۃGylkW>SNYwM+( ce%@%8@YA pLRF;2[B[m;SzK?.;zY(Ӵ/^@ $P8xĜް endstream endobj 1393 0 obj << /Length 1563 /Filter /FlateDecode >> stream xڝWmo6_a@'5-QE7,+bӺDBd d_U_#y{x|xw'?><_$'yBr= |Q2I$a>Y,4Jf$BuJ֒u'{6 bqgq٘&Cc邷`cm69WG0<ޚ/tՏ},Lʊf :|ԓjUԓ|JcҟGk@LV k[+bnVTxiڪ3;\ⱏZ^8݅ p+5P); kp|36?5ƚ$%Q2dѭ؈H,̨O hdqH??&\)*"fz=:$8#YJkOGI7p!59{hZW)\wN ӨG{k?3t&yu ]5~RтĻ,V@'|v1kH5UA!#ac 'my-^"2~_P$cIt .$5޼yFZW;#>p#f8 [J G?|( XFደd׼8Ȏ0~4ҎcFiϊ{L"#Thl- 2J2)/.un$ !_ NY1}c5}G(úמe_oء].O]1 endstream endobj 1403 0 obj << /Length 1777 /Filter /FlateDecode >> stream xYYF ~[e`շ ͺCcilOٺ$e[/GjHgۻD8&A,׎}/g.̝Wn.[oWoodp*7_K"_H2%O'#zۭXky셬TTLTՖu*/4C398B U/T3Y Nk.nyմR=F^&QUy pD;|莣[N0&`,ʰ: %+b6ZƮ5tmAlwHȏ4g}9h`nGS|ԋG:.tu$yCkTAgr槁tj<0ĞC}ꦔGxINUὒmȒj.mG&+Zge/+xV-Ou@* N] DꬰIc(Dſ0xSUt#0"O`DƢ8i@۩U, PSAjIO̸+2"s,@8?.7~Յ4.,zQ8XY)U-xJ*SWYarVNVD-RgAe9KLn^DSD,$.Tm{#ђ1Vkg1T9VAAyk+1TM]q Դul[(n,pBkJtϻbA1Ԉdn}Ƕ]Aܮ]T2m[2oOϒ%R {ij`'Cuq~ZH.ը1I9)Dv5A9$vs/ 4–MD͛iv*^`$pP;aC'+{~q=$ծGuboߦc( FYp Fj@"Vkn'l4Gʼn5> stream xnF_!@K֚K$5!Ê\Iې\uIYQ3{PL7vЇ>X3r0ZѻWw'ot4%4LGw hB)I}mJ($ IMS,żu!ҟVʑq822oeq8M4k8׬n M ֧K$r/ FX2VѴB8NjeE!?׮; N:R C#CiT1w1$1/8$]ܜ~4[V`sYe +rc!sr LtBȌj)> Sb\-yeB߃$*0^Zs뒡e-ZbɊMɔAT_C> $SpІ#V˺x~xAt d]0d,!-my=>{b&9 t)&FkY| |(B3P2#MTm͠U;[$L9g{ÎҸ4l!LoW0wFb[@ev͐)ˁ/}xiWRa4`G?ĥo~ U;g80;[Әd:ҋNJl!É;R/Kx|DGrrXv߳WR}z6{=RWJtK!bX>2Փ#YS$-LhDo@0vii8J!hZ.jhKyĢC͜ _6ΛdVal fg(աƥvXSBV7Eb81bMKܙKxkqqvc9;pExoN׊Y) T@iC0 fs'E̼_kK׆cNukC}dKs0[zܱfQhe;]Jbs-4"r\U %7:~tޥJӫxVO☈hY,M&^d|ZČ9lĬ8vSslrcZ]?tLLsL'ѣVY#\L)p endstream endobj 1427 0 obj << /Length 1633 /Filter /FlateDecode >> stream xXKF W @-9MhtIicilO#i]^rhv#9[s^L&Y$H= I}M…*wӂ4VYMf~<2|o~8iGZe)L 54mJJWxx^wZI M5;W7D(i7+j#E I8)I "nó+Jd+̓GF- 3-ז2tEG,_h]Y(y]ۆ"LeCxAD>,*fC9ZV?Rui8xq`JzM7p UpPy`*v,iF*sXA6 Hc^UT8sv#8ckܒ9)APo_=Q|?Xgx,GCpx\~pP9<(\kU|$X1\G{ =6_Wm*dK^W^x$R\Kf^ SnHW[, MkL0^#LG\rd/LJs8=s  UlyE&o568I,!.˭ 骣= ӈGyqo^o*3QSi f-:4>N%Ŕ &n=Ik'aqȠDnV@'4!RwTe+ٝ55I*w5V̦Pt/ץ'%]oUh3%NhҿwrWZE˭j5k⃦hŁWw=r7\dAVNKaKv[7j?g0@:`;=Fz.2&٭ Wl Ҋ7r#]=%8}vбq] #_B%G0R="^ev4>37IMPٖy#JS~W,5tHS;|@&m"0IF-uS )f.%œcq~}q7ǭ,X,2P M]5zPmHKm09zS1Ǯ$D h;"K|Z |,V0X$d)qD-؋&(O1s7;#x[QsƂ|d4@W6cϠ?%-y+v_G`,0^;Ȋ&FC K<0o ߏ>0+PJypցS(⧚*as'JGGV%ӔPDvUT`meF~spTmhւl".KG@ :b[̖P8qU/%k > stream xXn7}W}  Am ?8M@{Bڠl~=\ppv1䂋9gGlhm&%.jBqIXd` qq!{NT +njJ9Z YN̆g`S,7]l%o=!ۃ"6-x *7%l^|Iu)XlhTLCK9/!H /Z&G 2|2LRr-[7Q!q AyE5Z-`|xM /ҭ8=Nga:[^Z?lr~8gaۋӧ۴8:]@}M_pmr'#eTzk7kz~СM} ^x ҇5qP}66anfsX;^M 0of- ?/gXrb!tE}Eu/9V\]YA?<9[^g˫ݻp~|wƟ? Wo.fXv &x܋퀙͊t܉&M?2ҫJvU2r.nfډ&xIPmNt½Dboskl:B456>`4sj&wol>}?G?7r:wbG$҉fDzM[o~`6JڿC6e^t'EE'~ (C>5oSO w2V*u=V1ƪ^v`&{HC^4" hRys{ ǘ;љ/7‡03WhLbQmYmTm8ylGSESamS BF󶜶n{ﶜv ^,e/:/sę:ѩ8-d `aݶ+e˾-I] endstream endobj 1437 0 obj << /Length 1521 /Filter /FlateDecode >> stream xڝWYs6~ׯ$3-9cAozN8I6VӇ4 Ihx::M X,"6^;_/+P\{cũҨf2%'(Pl1Uh3A>Ą3yp<";3 FV ڲ`&/X&aiW!wI|&-)ˣ5 Q"F 7mx* V[Xk}̚cIiqx@vJ4%Htu',lm-$to7Bv5 %Fi[IŨKe4 KT>e9-l[EX,E#Vmi@|5n;PwpfKvhV\8q6JO>@%mF}}MKeTpٵKzKS3KnVmYtFSW`,k?Ik%Ns$Gin6?.:؇;w3x'5m?PXm Sۮ~q/W ~W7/i| bUO0~v˕}DF rV8"bI1!D(N>%F@Z%fM3`0bxx=h#IiyőCp F~D1S֬;v.zZ6+AŽ&e,k-%v5H4zQruI E֪@ Փ'4~E_ϭJ~U8!pq %p%ofq/ZI5raFL!v8-e3{{0A8hYf=/> i&JcDoYYӾyR =k@#L޵eT'j(\Gg*Z%tl>qB킇Ĥs%\ $^3Y };vN]'(i--Aa"ðudh^s۾O3tn^dU4ۄWU:ɉ;*ê;:mMXau-QI%_g.}TcW| sߥBW>}0fAF׷XXl-h%|cP:3ߩ;]=4T_ e endstream endobj 1450 0 obj << /Length 1855 /Filter /FlateDecode >> stream xڭXݏ8_$K=== vXcg%_({N})HGJ:Ջ/=O`E*~ÐEq8giT.RvЛ9_qyN␳,EB^ȃoDvEyڊ خ/ohHLEF:el,%iH@7eƫ貗]*,/bQxZOU'5ɏ؜`tj k"IX1qUdv$*iUGjבkQk9bX5)<&T;́Wuۖ'6;|eSAtǽ-cgBz7 3Ya|& _?ůkAڸt9u yŋ0UtHrmfy)̂oZvó? /b&2>,! s`f\Ja4U]w:;;+Ι3i }_Kw,jP=4qn ʦ0 .0y;:Ώ^2/ۚc*׃ޘfO?k(=ЪvX7- }nhYӢpYFCϧ8$C9icyctnT|D8_7 B)Wda)t pc;ϳ].8XQ|e3rHޞ[>yE~Inf9+i$gRJ,U &Q:Os]AR9vGj޺;;=8B! DK}8z0a2@yp!9z\. !_n۪О@:"1o Ygj,^U,/0,@/.|e -b2D )oCDx'D֤,<-/b[$.ɷmI8r+q endstream endobj 1461 0 obj << /Length 1131 /Filter /FlateDecode >> stream xWMs6WhC&%YmsP=VxbŗHA@+(di@pwo.^jԛQ[{q7p4iﷷˏQ'9 DLTU8g9r>&:j`Ok`~c͛wUỲ [fŰ*BCgaR`)G;؁'{tQHlX=XY8308OSi EY#fM8[7ϔD QyR,R43_Pe2ԞkF~3逹ˌ{,1u0>/z]ME[^:F<8?Nk. d3Q2([!#[ϕ@Rcka&{x8C#~'C+ zū##Z _q.mM7/}}pf:#I+BോBWv 4dxA:>kT;œ?~ߙL29M/ڂmoYt}"&W&}[Rhz$q$Ǜ-9;? ʰc'X7ڨˤQ!^=Ok1Ёz*T s32aSܭam6ebK 6085f8%'h9`^P`d&e[19Id{%% ہfk;C݄CF~(eIDD+,c, endstream endobj 1465 0 obj << /Length 1582 /Filter /FlateDecode >> stream xXY6~ZuMwAf! PDpIi]٤pf8Ю\OHXF^dmwp]"+‰{:wEhD&^^D7p'`R"+de7~0:ʋ/֛uwZ2qTl{+-l эp44>{N-mU(1{IE<&o;^TVW?+%F`"7uзzk ?MVŁteݬ!xK*ዢ@Xa9?AD~k xN!7]_ۆD³ߖlMz5T,Wſ֩g4˫OVmYY}_u‰ !;eȇ%Y̸ۻpm15 iBgsUb|zW$N[0w m?fB R(PJQ(hkǿ܄JxB8XC8PAC8(:kF&2u4OPM )pTLRI#tLAȼ =tX?~^(sJKg_=PUg7{{0LVfeGD[U-z۪Ѝ9T4egpc7}-U/t0rl[ȱ%ؠA2/߬Zr$tD4:2h|p]O鎝1։΄Iug@}Buo2Ϩ5?g}ө 5X$_N&"3reM(.]fl FP#jboaHLNjfr5Jq0+i)W!YT7h#Wf.zp.d0K\m- A bPRV Lj{3%aY6P=Y͜Xȭ% Ei֐x]Y,pŵٿNQ6`HQNRy@<6 Y8rVȮ-.A8C%,^iWտf# endstream endobj 1476 0 obj << /Length 1476 /Filter /FlateDecode >> stream xڥW[s6~ϯ@gXE KhIh]Vwɿ%9Y:Œ|:Gޯ'ϮON_Ɖh\I[߈7.kgѮ\YvfX/dgB>]9J2؇#q=d`^gxg`_l*0==]yH*|CRvvpEПIeKx-e)r焌n28'0ϼx4NwXzÔ@8Ib=toa*~(n^4YXGJ_u[B|ɫR3]F9ԃ~*>lܑ7*lդ1 3W^x?⫶7fAD#;y1ui6_LWԻb1S):) endstream endobj 1485 0 obj << /Length 1442 /Filter /FlateDecode >> stream xX4~J n>U }ڃ Q>nJogqr^*bg<~Iڭó{g ]$OXܮh0JV)$ e+&{oYPǛq2J 6yhXw޵c^h! BU]v&;czq$C駢kkFsod#x!EnU4MV^bo+ ]k*Z9QE~S%ʾ%NWu}[)TAJn[۷]jV+&NDZ¶F}}UJu8*+^ Ng4n` ׎Ģn3doB- c?!x.éG[G,dyv'ʺk #YM],*H(Ht_wf0&,Ss -B Q:p GMQ{BWKe9h}ZR}#TUW)jPSU_ш6Gdr/i/s5 ~~ ?ug[7H d€uP)?DNP4r8ڢחCPKfޘP0];r2X5 M=xb_/U`W~IB[az|@]#k*}tBe;q pO/8RB.8WXHuyTwNUnM2#n>lC8@T{+4jo8x9LX꾐J鰸`og0 f0s{%_If,[l0ap17nQo$Ee[c(ۈ* HΑVz{#z/w**[Y[@<3а ƺ+FwyD(lPoA>(Hfo)H9jN +[O҈Z 'k.g"hҹa^4 )c<;Ƒ~)˽|{U;!+=ƻm W `3ʒ`` j%-ePyk&{Z:\8ߐSٱvBe?~{.7112>W=nd7vW-n\#$b%p)n!Ǹ& ȸ("IN ƒ,&K/Z4KYЀP&%9dl4Qj}xHם;wLjpvff-pe:L_a@'%'{АDvVF#a&?Դ|isGYkSDfP'S}{1NlYKu/r-uu:s"oEg˼ endstream endobj 1498 0 obj << /Length 1541 /Filter /FlateDecode >> stream xXKs6Wp41ERd4tҸM^`! -xТ-rәl,}|]m?N~XO^YPEgz( I, EHf_?:ȁ"I(]#SQhMO"g"rؘ%qf"[/^(6L9mi},(jr"j.Z7o;f_hY=VNT,8:'QX.d@b~?lhЃQK:x.R-+sa%0~ʷ\U즪+D ;8nHhKwзZ ;S;wLyШ3ceWrʥh!EgNhiHK΀RgQ&_:KZVmVs7愼,P (JzjP{R4z95p*o Q@rL.QP"(Eh$P>M~hj !,!A(Og(qX7O>4MG,M2UV.\Hrx;YMxfN<YgY7P%iGSP3=1< *JMpus(3&km/5)ViACVmC 3/t+cO\` \:fq:t[;ߗƓqSJA9G,LqJ~WtˎxqJ;@Cst\@;-6yKm$m/+i/u-ޠo%iwG(8LYu&?!a I<\;*!KtIp/$v/QKӇ̚4^8ꨫteQ/ӽRvPnC_Kږ?d:Lz-x54N(~HngXL9h)(C8v,NgI>-p<"`! 6O7bqs8޵}?W: ؝xH~3R4w;` olLo:Ni7F?5`)Vg=yɣeZ2V19>N[u K6ߌ$  ˽V^Zh<) GGP7MEw)b v)e8~ϸ > zհW>NSiɰN-dbP GPl@UBKrU#-6.%OGUR,/.@j5kn˝=x:gBY|n8, dd;ޘR~yh*^i.$`ȏED$YNߵcy*-{lDyf ˹u>tsfC*",;03_بϩA0UC\0^J01dC>бV ;@"t .AU8K#!yz֌y6񦯹c=|u; endstream endobj 1508 0 obj << /Length 1408 /Filter /FlateDecode >> stream xڝWmS8ίЛ;{(͔〾L0VXvʒzZbGL^d8pl>"# F!!(p,Z)ђE;aZtLb*+Q梐&G({Nk ڠKQ}>C~!ر:c yVB:=/K#WJXXA!Qr`tۺXu)'p@ȿۗm?ōh*DV~S\o؅|Cmų4M)Msay)8-}syް95鹑|ՌwF=7gFRHV.5} 8eD>E*MHm =te& )5u]1lk̆T4y Xee ڡgyF30D~<'p)]W >(@kQ$aqR kr"6ִdIdeA~L]yG~t )dofO=Iw~r:ם=hU?ofuz뷈gQl{Mt5FQ?2qy!H.jhy=l_6`Jx>ߚ`ME 䧪 ^݋_7A`ێ z|۬J_:N*[$v},F9j/ %0FRTN^BtTps`_TNWzBⷋE)쓡(̺:އ0'sxE^5 Xi.#.mu$/ggo40){ %tQ~D)#냊8" 9, -ЕydHY2xM;@#RW9hj3tJff5c'StH ``6TA; &T\#bz t65iA,\葅{q"_Ƿ?}Mھ=~{Z6>%+ '_Q2^Kbd}0ntpH2RZ{1PF//hKr|pz{#m?-T΁vbG!o;v?n6R6~G\S?8AQ}w*A^@M`9'&^V{x" z;y &Sn(J9]r G.%,Hj`bZhq.Aթ7Suj:%VUn}unGm]=gZWRUS6^O-)GHPǝ cu:*$o.f\m endstream endobj 1530 0 obj << /Length 1273 /Filter /FlateDecode >> stream xڵWo6~_!8fcMRemZtŖDB$Qw$EYN$ЇGwGꌝ;;fg!q4t`E1ILf^)K##?( i=z|?ۮkwU. $݊`y4\a=׏IK$Jp . QLڳ)y{Q`kX$Ӆb/2D2#u'LPa4ˆDbb@G~Y!0d X8(R G"au4XWw0h 2%(z/Ǔ `}FH3iXv벸LA-[@$؄2ەMZVu9XTZU]ɂZ{y2`Ntz~i{Rggf:u]7TS7M8fe5+m 6];¬E͆g]oUSqӧtɊ)o=ly4diڎcv?7ZZinMPmQjv K-o H H'9#;FF}NB\ҌSbt~X;7a1NR4'>6Rz:(١<# 17L}G fe?փ3h]Ʃji,^.^x>ky#'Ïĝ}+s-E]gT2}$vi]GjJfS'0C%PQ4՟zQ g ^L-7fIfkj;O׊R)2QͮyS6 -K,ՂlnM ץD>u:2()/,k6O~ `>>iɢ?oO~?׼ݕ=/YlD<%[MFjIu% JxP=JWc=fr'Y]/ֺMIiIɆOb mkd7, 5hMHLܲG endstream endobj 1446 0 obj << /Type /ObjStm /N 100 /First 971 /Length 1515 /Filter /FlateDecode >> stream xY]o[7 }P])i  l@v iYSp;ԉLcEy=xH .8J19$^YL.fKM 4XP᳈aSth!9M +Na UxS]&dWs NC*fL4^+dV\a|6Lp,>]2t~ټN.ppn2jD^4W‡n)$_>t%k'ىqt_..?Bw}9t }>BmM v` ~͝hLFNWڋڒ]fQHy.,Ѓu;9mƝs!Gm܌\5=+_?0#FE'ű;RHEܫ2B`NY K|8 ? #߱e^&|^r/Z0Gע*h4/o }XvckSwm8uUj]U}Q ]_ۣ-йI֢wA$3#V#AܓzmLɣgQbz :uݼ%v>p|>;XL^!REcZ*hًj':a䭅f 5i j<ʸ@*nbʊVv5/s?Gi2ZݠQ9q'Z2G\7I*k':`N4'L%zCHˏv,;I+AWnV- ѴuwkLԝ-a1oyWp. n;G endstream endobj 1538 0 obj << /Length 1575 /Filter /FlateDecode >> stream xXKs6WhƝZ&3i7irHf:Mh(@+E28kƳ ~xX,Gy$vc(06? E/5⁎SR ё}˛0:~lʥ;^( Aqy{ 9yVW%/+P[NvhjIX-J:mSUz`qVݾ&p:@QBva%%NPswLuVi2Kmd0(t("P~@5Sބ(}7ڝfk~[8YVfgY}z`oe;t!ec -+Y j.-B?OM5ỌDUj>GM#ǖ0b:枠$w^}*EQES ѤtK *"Pa>Ié*) ϖ7{퇡!TdN?=u+W""UB2E*VZSaEU͊FYo+RЅ B\(zw84Q }ތ-"YS#cߌ0f8L}:r5,Oc~]ֆ}`k{{}u[ިI wpPi ,@z'˸` CxRVyB8k:{1(QE.C#Yͯ{:&xQS;ȺՖkLPCWhTKdQZ%lJo{I6I yJH%.*Jq01!+`Bmۭf]>خ:o){كuf[y]$p' `v+{KrajZKm;SY6;Vǃ./oT"!FRI?ܢvO (~C|z3\ϑ'xqKsP]+WJيGp@|a3gG&'M)Y/AsX> stream xWݏ6 _aUg<^az[IR&ɽ?:؞LQ$ED4N N~Zpx}SFu.!,/Tfur&-5@fݶ-ϯorc u*umE8&K Ȗ]g xW؝~ǎKWuu;5=vnRX˷&ApB&EB+3Ů_{" eOR~-<ګsD^cU`BVeC\=7:.nIZL I|2uhd債N$.SbĘ[ZWƯ pB4,Yi8ia @YIh䐩U%_ǔ\,:^$)aLI"CNMސfh9ӫuZkow+Y$'&r;}#rTǑ'@J׀)BP :L7/1( pqkAe~ЙNSiInzɚ ڝ4ׯ}8R2h/FSpp-+fqTɵڲ0^>>`4)~9h_cTR%ph(z%D=<馉 8֡d)ƛ)*N` F$ )v4K > stream xڝXms6_q2=jƂ =Sݜyivlߵ7MĚ"4|"e݇Xbw},w~~ur$! '׋ u]$^2&; ~trҞ$p2ސkQcD;sY7F\71Ĺjd `VFXŔ O2Xj;)7#E=`ȖEr< F;`N */iβt?@(R&cحxJywPi5ਵjNiJ+`-׃M>8 r`*!7^i =& m|X&B~ZzEb(_ =:cɶדtIL>sNK腉sAOjYYhS?pڪKzZdPfF_):M4l=|'tϬuJ @e`ZO9Y`s`4tԵv_!sh7+=r]e*Kic*wZe4w懋wڬU\SaŚхJ,$bgyϑ/?ֱo 8cVsg5OjȟA_ς=gܪhx07tޫF·|zJ#@Z_4krnN]N?J^y[{cC3@="Z Y{#p|4U΋Q|nJ[67'yi^c {*IhwR%ȑX 7  ^8|=xm?nZ Ck1'k|;N*7;=NzQGK^Ç{8|UPCpvxHPʈGs~_SQ8>03bMvEU[2ZHn6t=@>8bZv6cb?phò;٤j8YV|C7V$=_c]>vB'K>ltjVX <E֝}FB%=,ٱ$E-n~~꬟ƾ ϫH8YT|-s& GqXe@{CW5l M)FMS5g34E[Ƚq(To1å?c^͖>i#,Q)o i 8:2T] e _3[)ި]&SվY05򐚕15+5?gׯ! endstream endobj 1570 0 obj << /Length 1469 /Filter /FlateDecode >> stream xX[o6~ϯ0lhQIŖbz؆0@% Zmǫ$J ^>&XWgIH4n/: $NWqBŠtU2ZNS\: Qqpd)x^?FZѣ'*PupG݇ ?Īk Q5*젗-"=.1ܣ-|;y~ / tA'Rq5L ʕye0"#mkE (d xU{}JMm\aPELCCG3OY[ihw;3:wsPǏw1y4F EzRMc(I[1'; "FX ڜ5h%լҍc~ !mt8NZ:Sߪ TTrFmvu*I䯓DP;/S?GFъ w=29|{7{2mq_"j04!bEXǍ MV+ڜT6gE$\C׸EoQUE/0" b3 ΢`^&ĔI╿I[y,]cP]u1Ef٨}ډMϠ*rFZ}%P~_~;C{ȁeJqpni5pƌ)! YcxDŽ:G+p|3uzoFQ"5Ějc iPTdEЏ7.`9~T3y *P`81ЋhH[ Xn"[`Y[VaWzn7i2rIyz92Q_u^i h(;ӇVBt77)x@CM0C(S_jGgT8Ź1ÁT( 4c} #MBUr(]2ZIlR0*f0992`,e #7UP*i 91eM5$sjy _`H뷺Ny鈯-P#O3^"p;Qvm yqqy=kΎrs)ፚ~*7%_e5OwX-e:I#vOy`'rBgH 7DYki9fߋ& q5KҊܭ]y^ eCgOs27y/7-z޾{WgjWNyE4̚M_ eWg endstream endobj 1575 0 obj << /Length 1588 /Filter /FlateDecode >> stream xXK6WEFZzCfA6^ JM^u\P^$IÙow֎x|8b'U00vƼ8Ȝy2/\r~ y TۨF,͐{K/p,*9 :ѣ*}ӲP ZELAvޖ4fV6ح[ΛƼmhbE4{k?9ۢ(XN? Z4}y!wP < ,de&K' @^ldY|&)jKIgbkPQyV!PcUl$VVZx-){Ֆ44|CC/FV݌mގ f=Z`hA2̄R$@n8uGbwF#xRZ7֡Hכs{ۨ*suRS'MJ?o'$ojn}Eqd)`{A:[Z;!g0v<}4CDa>lB^)_ #G emUs*'^Zghsw2RnK7-_UD,ekaasѼӿ~0yƈ1wc"{a!~w7&Kį6|661iVjQ[yFTc}x˶ZuK3X7'/ZqVSuA0%[3RIQ%&iF 8r Yu,8NQ/Y.A!7BCeBsJYw6L}V"cAA`}l i۱{( ?4mWBa›> [ۑBfǣdz;bTK,i8O[?0 CF-Pkn_!Q$1Fc*Z]c!aDZ*Z[qtfQqJ, `5/ JLAV vCKAV}@iNZhP}`޼@aq à@Ȧm^m5D1.9<)zR4XڭҘ%\p\%?xfbJt%{(1Z`({5&c#)^v#xMDə%5@n0q($D!* 4Y; ~sDkqܛZFY>0}Rݪ..1\wB[6^60ljeB>L@4ll'oph I,n0peC)LcQTnG4#жVR ,Fـidt32P>BX^J}d Qd5g&kLfd]-SHʲ<ҚegŘ0n?Ǹ᫊~F zSڪ]fةp coq endstream endobj 1585 0 obj << /Length 1491 /Filter /FlateDecode >> stream xڝWs6 ~_kV.bH֮ͺuI=}`$:"%'?@d9S(AzW~:xyqp|2 ESb1JI^I»~%:ڕf_Ot2)*R耺U:Xy3Fvҋ [i&?dl4˽$ͭ?^^/ 媻[iG6O\1aI6Rpc_6Wgg<&I S }no͘9歺n.oooɰrBǐ 9H,K xf-#3 }7l(0a 꿃]? X⃳m-:\92_jvmА<}&+}]QMw8^tWբtb."_/V.2#P,mD;00Uf0 ^u3a QxVRNfp>`<FcOHGs^[${HP3=Č=~*1`R/JJAH4I)cstZ^ć]0Gg@|wbaP6wvw#بv&>]tbg8fJ؜~4U$!N1 ($l+XghN|Џg'xgbneۮOo%px[֘gێ;@LC eֺܦgnK3;coַvl#g^>z(9ܻMxTkHߞ;I39a{=<ﶕB#1uO濒r4xiXyl㦝@9n\6sʎ\mtvR5d.M`|V&$/⯁oΠQf. Q>ad1xf5R?N FDPJSJ: |4(*A=Nr)ֺÒZ=?!MSSMy$4T@0?d98~o]kAl>;]1/2yѧ"nb-X;a? K]6fi[j h endstream endobj 1598 0 obj << /Length 2118 /Filter /FlateDecode >> stream xkx\UA? `]u>i{|\wfg"eڵ '.ggZ_/OO~{r*NonQHp+^ ?Z~U"Fax"E*di杻g."[afRtt}q".a0Ž'ce+N9Iac`)V M뺠IIGn"&dCl`= =#b4tR֨q%bA*%kZz N3d#~rYJ]ߓ(llv)H>7OR+aw_"߼?>KS2Y6*wE,4.V(w !y,FuΚy8(Zcm*ZEBmqtf\H9H Pc ;v{Yv>/UׄU5uz_ x(g l%ԣ<~mؤ5s勡$g7n!9cƣm\BF;,8wVFUkYd4Ks\a("U)نs"JOș@6.zvk5-crQj45&1ִlɂ%)2 [&0TcIS@xc(ڦ B@:VfN39V> ~.̓.K&"Xm轪U%7< #4:&˄T'yJ#nJXrGv 6SYe jKᐭMx4V2J? ,xNɜ9gQ/se.4ҘHk<ٚ) DQ^j˚{4:31%Ҕd 齹1<4s6E9d?J/Y1{!8tt(9֜w$jV eeNUF3F kʖ_, źq.w݁}U& nS9?60%󦯹u;Ե(G~,dmҋ ;d+7<{c:s*%1)j;s'rÚy0gT(e@6p@ fFmw g)#\%2F$,:beٺS,i3wܹ<[pigL|)X,1"a!~n/|5m WgM{ﰇbfmg7Ltmw<{7{Ʃؕ-c8 I#(4:ԷHͫiVkSOWM˶jw1pmvw3ΛeSpye}]-p Fq+Qo|ehQl8ýSmA;(wZAiﻭ]};\z| ?wiz p_-udwx> stream xڕWKs6WEH47=m>ʹKLB ltۻxQB ~X\km/YF^d-Wr]"+FȉZi[3Lq4=. FN`T* 7BW=+( ?N‹aN\Q|=׍=@: n\%J;%N]u9 jIVBJUݨ-Ο񚌅SHF;Vk5ҀgÜc!֖ !)hCUf ^7]q0k{%Y.,j=!;^ +Z3Fy+Ԥ7X>K2.3BENiv,`]GJFhҐRIzzӊxU3V /ʊ_$& endstream endobj 1616 0 obj << /Length 1988 /Filter /FlateDecode >> stream xYm~^A.ɥiAh k%_)Y^ߝs ̗! ga-Ջo|Q*bu%i(IXm?q]<>MҒ%e Y0Wh㪲 ^D8$;YLR(Y,y ml萄f+hTMMr3YΊr y%ϢMEemӸ?o-Sq VOas`s(dk7Qus (B}ҵi`ݯͳ!5X‚4uӋhg5l%5N[΃zOG??3^>gxk#cgTks9l텺:pڈv#Ԧ7^ gMm-F|N)4b# UnAy DF??ǜXT캼Y|<6uzlj9Eݔq _nφR_޹^07wg3кyhP&è̹iv0j\t&G+򏲉s$v@,p4d)&g6ioCf 92}}RPM 4q:!P3V%eWȽJv;שWi@wl$ƿ{q V#Ry+MKN\Gu}g UUY6Rpf%xEH< u[78 tee­q~2 4zR{&L_AiI^mh*t0͊/L>eLf m#" ܡ9tHJ2\!@,+o{Yc`S;xrU69~EB|6vjK t(RL"ܓA6mg_tr-lLU4GAy8M;IbA\?VILw@~9lIyz*hД>GБRY'#,fRVAxWa+AQx`Nh4I 2Ҋ$ZdEhi iEZ F`eĽR#]x8v.T{cWԛΦ8q,OFv3W' <ի^iLbevcb;䝌c_gPDA憇&l&ڝõk t k&q1}JV()Dj.r(o<7݊3',oRnT6=G ߿;#?@gEtk8yp=Va B=4%VcQdž%652AoirϪ]:M ;KTFO@)w{I]Zxm JEFpN#3˳q4Gb[ah3WP6t˨/qȦG-Dյt$S*į%Uٝ;'CXϯTT;4oMPwW^(78i".Dó NkEf5\gn4IqO ˋ7fQ̦k06nQRoɗUYbL/`Q(Xy;t`EqJ{|XhGjQVB&$'{mzRföo0% P☳3qr-GHlWV :DohQߙ^^{ endstream endobj 1627 0 obj << /Length 1158 /Filter /FlateDecode >> stream xX[o6~ϯ0K1I!ua Ð-t}%"AR=Uɺn(ux߹`[ŏ߯/nbH4zxA/8Hb@ܻC"i|&ׂ44Bt_wJn7HVqK/^t#.o[ 5!…K2ΪEjѶe;sW+0W -&%y;cjvU_TN|YT-)qE#MV?By҂41^(?̮ZfEԬ<۬qpWѳ0M^j:jęƲcpM)>`T) ,xgPP}K: c>ȁN=#iU%slKʞ Pr>M B^&"UFwipԟA}/d_?(/UZ͟ڎ2ɺ4Nz9׷#bM^ז8/HضcEjx?sY$Ki^$0A4ʁX}4]S,Zq|T!35+ !N'}*H5\&3QD~D'qy")Uf®<߆A0N;Ńha7o-ih2c]熖+g}5L<ybSmˆ8{}n-ˠnj?VcNˀbq;OZ O22eT7v}ňǁ~پuMsT),Ӫcӌ89gQsn( ϖ(]ʼnTbfl=0{Bkɺ酰J?7'žуuG7'h"˖o[$β_f9WlqsLK,jN֚a]DP6ܞUTWcvbSGڽn͵Faw|]8]rf"LUO12ZRN/Ѣ@sO.hz޴ݳI7ȣuXtaLYsdTE\W:B;gi.'uxDNlӰdKҫX;ۈ4!"yYGY_ϿrJ+>^v endstream endobj 1632 0 obj << /Length 1599 /Filter /FlateDecode >> stream xڽXY6~S!1AIAQt "u҇$$jt-[] }x  MC7VwRr;(%Aȝ1ƒY'xّhQ)\Hc-D6,M՚5[Z-Y0hR8"^|B&JFN@0v\/~Q(2G #tdO҄]!/[A |C].l<"SF|cnѴYZo~gVnNKj0JiGj Q",nMծmUrEEE3NiH賮;8cBxW/xy)YfzF!Dj~4L8˦lz^bIhv-s-7!"LOS{盡.:,'q[9t[j=ÙfDDb6vRc`hݟiD{adWShMV y۞J+I/7rgYϥsW|wu1봞ƚgJcR=&^;60 ?%2@S$A*TZt K 8!TD0/mR(䑋8?EalcFHo{ϠvZgϦ3ݯ ]idGwäTN枸@cD$U%Vn ޑaFFaCOݶ<8d@B}c o IR2;wЖ^_^HTdBԧ42/ BRj]gcYdrܴT)"]עGQA3l@='-qgn䵁>yh˧Dκ q6uH55\L#`6/*+vV)<W<_^'6zYqp"ɵ«LjMC@I?|[o[opv_f-C]L'zw4ߟ=vR777-'JL9CFx> stream xY]o[7 }0]Hi -؀"imAuvhw(';_ayHCa?\~~>}./ +~x-ܻ𹻌fw$PJ>?>R ؉'pCX=eJ/x֍S荒<30՝ InۙXifePr{|x\LA937~^ՒiZrحZvdu4;IW;dDՍkN41xKsp;7dixїE/'>^_] D.}yh QR/WG4ߤoz?ͽӴ=_@ocʮkDzd{C}o2BKپ>D.vI_k+ie(i=sN4>pE{=av<2+~nj|IՑ+kkJ1-"ģVZGڪ2҉p76݅:j$"=i]6-aGF!1$CPQM%ye~d9ߘX  -бr;cu,OuW;(ҋf,褞oR6w"}MS޿Vy`yÍpؿ0ndצk>hFqn蜫Fe(v@ {O_ endstream endobj 1645 0 obj << /Length 1324 /Filter /FlateDecode >> stream xWYs6~iK)_8xzM$0 Q)! )rt<# bo$<˓ۘLR~<\O(Ɋ䲘| *`ѮI&O˷Q<1Z){Nۣ _+ ̦lͺI[a#x+xډ_hN5*;}Fj}бGa .7hoYn- YdB`wWϩMm8Z_qO!XڟFn " ? ^췭ll5R>$)!=ۀ;a>ew%̜,=>q_k\npql֩%dDe-3Jo1ڎH(+ iejDʧȯsh }o3ݮ|e|̠yHOa@ExkEs| boKɈ9x  mmx\VQcޅ"M,xBFjp)~߂7̦5nA;qg53g[|֧ Tfծ7>gePƆJҌւͥ uJ$K; VEc=T8ek̩M8 "\/x}8L Y*K[c 1r>}ۣ~wΣo˓?# endstream endobj 1652 0 obj << /Length 1274 /Filter /FlateDecode >> stream xWKs6WpF Dd4vN0 ʘRC@w)[N/ , ~X:'?^NN"XE")&@qY,t\UP<@#4O2`!TI%1ZjIv9=O"v4͌"Y`j{F`HPB>99-8+Tv׌P圶ߵBy{Gܹnu~XmliHTOl0#Ix߲ V<_BM܊7hb3XT%TJE;/EQZ޴S\  PgCk鎶8vҾ%7xN{!֥N?`^ZuՊq w Q4 ޮ_5L;е]'Jr^`|t3wWV#[D Y" 9`uo(۞SaXu Lp?T('{l %h*HpG\ID7='gvzŶ;!qP.ӓqaf*)LS{Tvb ?!>&uTVۖ(I\3XO^򫈥R|뇷 nkN@RNI,COmM(7c@G9P=Ϊ#=jYЦrF%F>θ ?x ^ H n.6; w mnal׶G֬fByjl/Hs﷕Onēh:R\T>dM=K~ ]1GG|zZJJ4lz7nm4zе+l1 ~luk'/a_fd(T>%\pi+> stream xX[4~ȣ3sc0\a3P(cInH=+Nڦp`%+i/߮v/vxՓ?+Ȣ")(͊ŊHf"Pji%1Y-}Y^6U $vw>={g$#NK^*HN]m` ENkX7857GS0}֡ki6|K'u3o gW N.I#h+aF`v& >b'bs;{ԇ;:$#E8:š{4\SCG%Wȿcx \m'2ښжzּ,V-^?NA"E]3^E$`Ry4]d2Up8NQ!6z̃$ _h3 , J"*' J-_HuN8vۺ7Ơn >4.ؒ[ajwg1wI @;hyaR&6ؘZ155(H''Kuݳa)R-a> LLňƏۻ$e4kݩ؆*z ۗ(K+Ϭ>ˢ,/ SK)xC$pZZkkdS(Bȩ^Z !yá* ZY[YD^hܐdMW]Ӑ9)O:b"O͸ vwB,`x0V969ĸ)}dChI1&}[sv|y^Wx=ͣt_lp[1sEh0}"Zrh;MRWIp=߀WjV6?̵єEqVI ;WIڑ[bb3fN"fe: |;˰&L5kk35Ogذ(LWju5gp3c^U>EʊrX )t@2͸vkdQqߔgGu-e#y,(< dvR$O*7I<3I 09?+f5l],ke펳m޴CV!Q hg SʴiNĭ3I</j0aBN$~9&sǩǏ4.%|B$keG}9ΠgW`&}+fHID @Hs{]ey:0a3ΰfM3⩆ٻ4LITÔHT?Cq$_ oج4#x;utԝo=@ZB)$/cZa={3x7z{xf&!&p+cgӦ79Á+kAq0_-ڿt= $56jR!Chތ0w3jý6M\GLJp|x%bmH,h޳JVOZc '̽P%U|,@H<c6;+BC+sE&.zҶ315*Jv3:{ш7d ['{(xtP]AlXɖ Y\fa9S*bmkˢn@? }Bv!. %3󲄄lm؟<5A,3_Uq{ן] Y~,F+ 3I(OS*2U17/C|8Wm/ R endstream endobj 1674 0 obj << /Length 1635 /Filter /FlateDecode >> stream xڭWY6~_a$A+L경")m`>l-6(wK-; s8|sF ~j.Nsn=a I8ܭɻD8g(CZhEJ)'E d$Y1k.  ɘ:q ϼ 3bX)Ky 6Qh;Z1IvL_F?!V> P+ UV +CYJ)+A-K!1s]"YfTvq⣰.qmyUj6\ewb)˩1ҩy$p6FV] D>t)*OA@Fq-B^O&+|.6| 29)B(=Ci 4Cd ao/6IT zkfl~!/PP,/MӴecϰF"Yؚ=FpG%rKbWyoB <]+IH5Q!QxVe (m5 NZǺms h O wy `D4~# fKɲ/@ӆ Mʳ\>׳jx#v6 ('f4Ӿ˶Qu|YS͟sȿ<H]ܴ}aY)I5΂1o=l`=B2iʫ6$6 ^ܵV;_c'L* 5sn{bHm{P>VG_%۱u ={=;?|r endstream endobj 1680 0 obj << /Length 1111 /Filter /FlateDecode >> stream xWKo6WI6VDam7)P` t%%QItEN×"v3$q{&?'W7r7p y@ȍY4'8Cޔע%u˷+BW7a40'Hp3>n| Rz/b%>actyy97xВz"mÞ4_F3g@=k4fX-w[!sdןлxX.w9{~ȚMK{h(oL^I09N0%X0JՕ-+鎖fsahwԸL;Wf:Am(cj+D~N Pc廹MEj'yf&[CR2k&H?ujYq' Y&<؆b_żG*+;f PAZg> Asz y X.>h,etwg-Ɇ~Q\.?] 0}"m&H"EˠMX Р !u^rEAk+a=ߗXRd7J-48'uqZ^%?sy$ӧˋ*1~_ۅxV+<ﲑJV$b o^LEyqtu.ץj2^O~ 9Y5'W|Kg5T /0K 1 x/Lv@sIC34 c.bTOTϞ l>T^jG)E{mQIv2b1DZƋ-+l` {*m2׃gb72E `H\i*,r!1T.ZphWpe&`K>3` ZL w[k!s P.e6-؃ ,*SgC0Uq#h6Y;!xV-,gJ]UoO\D3vh/.0C"?* 'pU4Th9b V@Lր8 G<3h=BM\ endstream endobj 1689 0 obj << /Length 2001 /Filter /FlateDecode >> stream xڭX[۸~ϯ0`+:"U,i.%{cmtJTw.,i'p. VhË=_M25$A3P1Cd$ui-F1cU9Ϟ |GAdlpV4~^|,+ËTV9q2n="t5)?`'_[^ԵZ[S]<0Mqf\~rDmpArhSj8 @6sPER[XΘ7*"-:d*Q %g_hHXwyݶ'JNBTG"ǃPJw۲c=f5#CLVͽ(_-`Xg`qT0IUSi$g#dϜ0[#"Gʖ@}1Ү~ߒQؼ~z4!❷+&0kSQ;YHSp^')Ati Ofe\l9Q-29We*/%gѷsvw82h}:((a({ eU'`^"l] /SqSqrթ|RC2AQ09/Xi&|Ci@_Bf=ʃ'BCϴ7}/S6HGhh;c6Kb_)UGs~*-<(4XJZKh2́&R˥=,N{), @gaoU%^[n߻UR&a!@#(Fq̃+! A?] .ch'[$z}]eBO#cʸ8x6Df .M~Ax#zbr|br n]tiG[[eG*xǒ;rzٰ;I> stream xڽVo6 _aWpwkl/:@D;$9EaI{(I(X(~a>NqPE0BaCC7OWzdJ^OlϷݐdrggnSs͉<*] _v'"m(Ѝm(TL*Ju!sxO΅d-x H8`+ݮw@> :3"F2I=]Պ0m^#L6Gc "oўeoO3 #EqYwx7-[ig+%H)Bf%Re%H꺁~9t97+jj>cAxם8 e;GA?0. x6nϻ|`bOFAtvhKȱnUg]D^MT4qUBlC;*=_m׏0]i՗S]*a b( 491L, MƵ,[ހKTBJ,s$M7Mz%7Ml&8; mג/;6d.L"qAݭ'@$@o2њׄSat逘1{g22 M͘0L5Q&y+ݔw2ϓ8'VZ̡dWn.ud;EX'*Mõև]N;jp(pԚ9A!Fr{dO`3iE i;jVfwR"9C Ej ' 76t Ā7a芬34~b u]sƻ LT*(}EƢ(rM{+X^=Bt"OԤBnoaqk. endstream endobj 1709 0 obj << /Length 1546 /Filter /FlateDecode >> stream xYM6b>,YM(r(Z=4EAKD"ڍ;P-;FbI5p8rL~y}LtL y:Yɪ9 k4<GG 5^MK* H̗7Sڒ8L,YNfc'*VrGӳOäSo$ev$٢t[Yl{.H|K (hc˼(ޙRQ Ӓ Tp _+ f$V6BQvWEfćqnW+i$͵\iI4E7 C%2ߺIG]dxVђ]+zdC4urw\ɔaGsk˭k{a-՞#n6^L Y5p\p-Eu5~PVEf~e[3A3򶦒pud@IsVgJ;&?hG\ <+?{>.uYhY_ϊ<&rf Yu݁elG z{Y/1Hv|G} ѐ=LRUg.olɔrV=r;t45%΄Fq&! iCe!Q9~:rƅ4GEl| Az;ꤟl{J?\n)izXG^)<шR`|nE+0BQ])z59rQԈijΐR7PSq҃<`˄]wWdy# *mGZAhQEnV3{ރCy+*)_A8ꀄ 15ӬiL=;}\g>w֑]R[E[Zisǡ[bM-kA}f}wA6#4b`z8'Qm> BJQZdu>^ƚ|`!1*q_^?*tgp2|?}~@ Q[svx᳁izl^j@4#S8dRsM2Z `&;5NycKL@H* k^b7tcvz0$=4IP$pX `Ɠ#zܭ!mn޷s $1",'X:RԽ'8|~ 8N*\-)YhLk|(&j &FCh-=th77Pl-#Zpm6A. > stream xڥWKs6WpiJH73qN2i@S %G=weʡ$=XoޯeJiz˵GDqe4*{ʎԥlK~-L?._/^&fT$+ kP!$pOu20^dk4>?3|ޜH2M)VL\[.MQo Q 8~[ͦ44ÿE軋$ VٳVji;dmƝ5:mTr#즜RcX(Qe _Ke'=+s5+(@mOiU'd0ZVt9V:ʮa#.XxWn0:ZIPù#;sGH&K.d-Q~4HIz1)rz $8~4Rco$$пV?_,V6 l) pmc:FޞӔÄ/!Jc р:͇O#?iZ _>sȿ86@'M'q9y$ElkVW{ݱxeחƨ;n[='`xJ'%XAXACTŏ*hQiE;$ HL¼+J@2Pa4>$\L:99d`Jkv墴3.:| x w!A;~)aB#'0Š@w.@R~ 4Iƻg~ȡbp +WgGO$! ,˷ҽ}kY:0E[V תT{]yX8_u!e-7v"W+mg G9rBb_׍Ž/v=$Edm%6™qN4 'ĮTg!: GQ|{ R]wDج[(*թz@:!Nue3gkB[c)q]ɘ 9 tYBlŻKGR%kXVh'Ul+0N̡קs7ӧ=f6X\'\biͥpvm{[>9^%Vvpc]_6K^o$gޫ.ݣBC7΃>5Ig,oBvI/ɹÄ_\,'O=|q4fc[C@$kGn HcqDԠdazmW5 ;v2hLwcv<xhn/Ii%&qeц [' m+ܬ:J8; cngFYjE -=J|[w}Sdcg:3+9v4^z5f,wzTz(F~Ӻ xpjhClQBy>Pw%[}Ƞ#qZ]ĥTm(?YWP@P`0~?lUԮ>a?>{a_ endstream endobj 1726 0 obj << /Length 1600 /Filter /FlateDecode >> stream xXY6~_a$@+kZKAhEf>}%f+%/*'îpΏ#,}U2%$ݬg8P%%( M18q*GaHP@f*hJ*WB$QpN|$⩒CX͙\{瓣_j4ă,+iˈC5IQA53SR 6 X~„A]6')tIk<}}i赶HPZA*Rg*%:p{£UkBm?{'reS S%GK mĬ㨷 'E jV9i7;0jj4sj+V5 Y>*31:bdNhcJ/PjǞIQyk{سC=d1K L]P]C{ ) EY3|sZrz oy^f/6'r݆uq.` >ݥMa:qZ֡ɞ% Șb"dYۿ-{3~QmO!OzCٺ/_m=ZxxE^?ݮU p4o f1P 4#LᖼVvrۮk'nCdp$(YVǩ{,Z7 &ݵJ=v?͞ݟzvXƧ7ן x3xX#=G'"I\ŭ42 ʬ"}۱L5rصS%,a8h( r ᄊQ{"pGhcG U]-p`! %1N ~Mp L d\n/Ѫ)4->0F$[4"FǏUɧf(^wpy#RC4<1lBQߧCSq01p: UHP~Agqv8X=?R> T8N]*ɔRPkhh<-JRW=kEF,O9L@jշVVt@Vn߳rh+)dEQ5&жK{5WgW9ʇ;ĭT[ ګgiA2 c.1si|6c f!jau {x}^\mѧ endstream endobj 1738 0 obj << /Length 1324 /Filter /FlateDecode >> stream xW_6OU6媦iJVݵ}H# `jlclD0{~D֋,/SaԻx(B 0%wSz갦=s2I< WyFh9{H^U6/ d,(.퓩şQ5^GWW";E~Ŵao^ >(Qf<~ JږY͆ZY^#JVP扳dlվKpR`ѷL-sZz3\Xrue<_΁$+yaDpo`[JhK\&vܲxqg`g)$+aIyAbULůS>x:XY#/!Yx6`bp/ {$Ek/[-w#+uZ-U̲7BZYky/ :H*yIU>pd&cHS!%TY^!JnkC^95A֊H5t5-Zlݻ =E..t Srrp]%C*ZZb͘{%T5<.}f{vc0P9x6tKcK[ 7ez rN]զV2 XpS#i㘅h5]MQhp$iՓ <8!! uY\TTB39ӪTj @Z~j*|5{aFE鄤&yq/_׼C2h5s1.6J}ӤVA+)?3|g 'KaQ x 8$xjZPVjz/Ib  pho aL1͸cs`\"Y4D|hȧM!vIWs Z}!v{'4|m)c+QM_AMٴ.7`\K-8@ȡ{be(wP·ngnѢrr $(oxƌ`4XDؿfnhL}mmc1{R2&` aRNFӠ[ײUecO\'r@)wxW >س r+E[@Pl[v0AbwLQ0߫Qv&)D^WBVЫ?QoǣERH{VTzM{ȱ8[.8y M{*$Owoߚk?÷W(p&[,p5L;N֝zr~Q9-( endstream endobj 1642 0 obj << /Type /ObjStm /N 100 /First 970 /Length 1508 /Filter /FlateDecode >> stream xY]o[7 }0]Ei  t@v (vvHw(SߴyH,yH1suŜK>EV[HAv긴G%fKZ1։r5Sl",h)\a'J1\%S-<4=3 ٴ.e1br3n{!I[lvTG!(`ʳFX:`*;$6GL/;RTYmG&XX yOM ox?.݁>wË釥P)NP;-Ϭ$ Ϧg٪L_N? iC(:Z`k9qqZH/HM?? ́hȶ«yk« %6],awK2r >Ht/F}huǒ""6ܟvfOkӫN!mdx0_.p82<b~h&08O}Kdl5*ppoi/O۳0'v8?_l6O/_>^g/ӳ台x7qU)&_ސ$6Vj-V4mow> stream xڕWIs6WplOK͈ꐤJ:nr$9 $da-\>,HEvm[lfw~`(h`m^`Mj} /廀DG!%eS=)GfhsVoal_s?8W"SfSusN|xVa/ʦY빇mC{7k{cYƈlg+$ }LHu 1L˻B49o 7.x*޵"ь,k4s[֚ߗ Sh(smV'( d펂Nc8}%[.3V ,zۀL&^T$zI.ĸ<GK#Fx^/#hˤئ^Ҁq٥#]xǻWeZ TK~\_$␺{88!.k!w,2Ob luzz:w| $3QIj8##F<)j :8.Gt C}o 2ɰ@ސ) iҘ1!Y Zy鑋%5?5eYn4&Ya_BV Ai]# #^O.Ě7h9CNCfMWNĊ 3/XϬJW2+3&c_Wb @%עmV$}-3.*4Elnr[ٮ]5PV )0½,\f6x`iT\\8LqC@9lVN8L_-S^9Qu}399ܖEH&ksÏ摰6fZIʂ 7)QRid?_x/>A'R?+3S0pA[z u5$E endstream endobj 1759 0 obj << /Length 1412 /Filter /FlateDecode >> stream xWY6~_adV\hM i.ڇLltHɲW{$ >ؤșߐl3f?t{v.f<,D~:]tV\\y/hvĔQ$:@=Űw. J\dOlN%v+9 =ԓZ.fU,{u妧ۢl^ZZӈ4 re|6EL4]QP2Y>HN+sHF`] 5<$MCp htO d[x+jQz[=JdX.Փ<9ƶN ip4Tf6KCs D T6!eyZ a>7jVogt{O9X/i:&_`e #Il1JNͳ8%4C !ޡQ48:^BjR>*y V~)lU*&FYy\4Frf)G1{ @#sxX3B@̸RƐTkĺ΅ AY[e[c s433)V^3ԕf`Ա+"** 0k* qABMkZ#~iC;J4mZUae A-Wwjcp5j4rp)ˍNFOYt],J!ɯe]}VOF>+;\`ۛDz k!VI\v;qB^dghn󨖁MxȻv W(@BX7FE"%o> tvw ҼVߐR& ߳^ f kT̀ ZnGy_Y7cT2|/0פDwP PWUoJ{;bB1q#MWQ_]ĔV7=*&a1N&jg>;t]]Fn tš{2UK+ m fdŸzo4n; f*␤QvD>"I<ðysy>K(x'誒#(c4B D=$׹Ʀ :& , FO-_ϱZT̼p T8#IH18P*{e'BOGdt1TItH43i85dۥ ]f?2ܿUVj˗S+[m- gFLr#Xks~= QodclFU.l.Z=a~7*qŋfvW&ٰ`_M;=~l->\PXYZY/.7R7 r|k=yy endstream endobj 1771 0 obj << /Length 2534 /Filter /FlateDecode >> stream xZs6_J3LRɃǹt׹i;LA"` 0.,Pt,eŢIb޺^\-NnbzU/ x2띇h6-a Xxv3 WǓh4D@~iI(IF< ¹Zp}^-N< 2vt4 {qvAo yoS&d iߖ^crh6 {|4xCm-Fe[$t0Aj+K?_tinv01e I,fNg20CvsFs-5q ɀ[ &a8z{*TpU3}%ddf$,Ne/H)Y ڒH `uA  ?+4H3-.Dj+JdU"A{KCXI  %,yu^N#X;jݍ(JѪ}7x4I,gg\F}N΋3u \,W\Ež`.fidE5N}F}vF{z(28hC֡`cV%(j"B'OSvݰ|muVehD0&fۻ~|ɔv)0pyWiSQC8z$ppõ]V2Qn 4'<~) L_ Z:*{5_h4M ,o!4Lf?+O%(ʢS@QI$'V0i|wϛ*M_"]ʂ MW"ܥ'dvp/]5`6d+#+ZZc*~ ӭAf \xBćXRӓ>K0 j' HB>LĴuG$rMBL[}U j-;o zLL @5|AK)UcҞ77ux+cJZa)ɗ..Q[" b4O,0<jQẅ́4{O\I3 -_R]xyW1%{c$8æ:D\t .HavJH82 F<9>X1,]7e>/=v|oGFHI ѳ)d&BnԵ?4_d(zաBlUtY+LOd&c Jp\Etd^ՉDh4>Ng c=2,ǵA* k< b ڭrۮ&-;t(m6@-86YBƿ(Y"Z$)U%v:ET c1WC!8Z\Y^ AUTdįUg.ٯ >BuupK˘:i3kA8L!.W-fqaC(`҆,Ŕk20$ƭTͮj]A<;~3wI;I 5uX(mh5/UJ鈜#)$ GڐrÖӴSowΨI&~"T#{fST<#уAF\Atت:J H!)Gk[=0_CF- ۺHsV,-V^)Hsб`,njU:*pJּo7QMF1=HO\V_ |g,DZ5bNcn"fu޿q?fٸjNi|ci6f5l?,qdi&8Joka( `t^--#[&9ܐVDUrZyIMhCiwk $VkhYpcf]>л;S A9Y)Zap; /)Xll䱲3 COQ]"67KbNjl8k7LVhrɪ~΁v\}ǵ$M"Rz߼PT=EkuӪY3ls6u|;Zo* endstream endobj 1780 0 obj << /Length 2265 /Filter /FlateDecode >> stream xn=_! @+}):i4v}hwD)(K8_sfHGg9sHl3g?w3K$tzض,r+u6ea4ߒtm'^~}]yIhEIH虭ҍ`Sg槚mXI u sl+t}sC@KTt{#5i)/lx#^5{DndBÛ\ nn0'EK5\ߑGU--0|ǁc%%q\!5/^AOiy>԰S[ 7b9}0%I?ѻ`# &RL\Viت#S9 wz?X 'ӆ˛sxwXN=3a۶h5{SaQ@KYE)q`S+l]ʍ ' v34T=-6,CɶjQd=?1Bl m0VNE/Y8sCPs0447֕nvLqؐI(kTԗjʠ`0jw&R^WJkJn!岑GNF"%5]Eq?D`ÛttPOvpհ!ߣ2pJqS(-Y!\}6ХM#Cٙ!%ϟIxOW/GlDjML"Nd9T?jFb_cRObH;HxqrN-H?ĤeӮ~1,,5I9T  >!*\=6WTuYgSv>j B`Qv%\Iivfp9tl!>0y 2EEtj( dcK?\F-oQk^M$dQ< ifcmim&#6,_J^S$S2)onm(pH9ȶ*Hg׋ؖػ>K?s썎[ |Ph;<ݳQЮەÜqoH9FghL=Ռ%Q`Q2[b%A09=10֖7ȟoFH[Fg , }ce<ֺ|X5 @b,|lTNcJda)Nj57·VzkҼ#퟈߅Yܢ rg(JuߌMpl|DiRkdp`C귂q> stream xn6_!${!{2D!Qݜ!YS{M]Dzp-zǛ[f={QkkO=P0u _Y3ᝰaRN]}i6l}#f%:̩jf㸸Y @=2g+J(3i@7B+ϱס@N:XDċRhRPSR򌸎IUo @_$(x ʬ%$\k}mDcR[]0FF`r~)X hAqG"WtxF$CqHNb;? aw %>h-">DIrX-Ѭ ܭ46F#mDxZI!ب>7?O:3a*9SU[U&}ḠYNG9Y`r&2k/MPZ_Gco ~yj-&w7fcɺImh:SwƑE[uӽQ&t EMTQ=/)Jl7}ͥ(,é q,uxCZڐf13!3x?C:+9ub芣:ņIVq>cLelj:ѸѮ>QϝNG䫪mP FkwÆheQm* &BoײݐW-'wTݶ\wVpC~$I'ɩԮJ1 ⽶ѡv\h/FÑnꍙsw~[yiES:HFƩl82+y>;Q<U.zkn5k8wxTGv<&YK8AL"jӉZTLO%[ `s7I2O=~|1aNZz% orK$Bi<|S%N]%eNKac'9|@taxYVcp3|7O@xh&~;^٬K Q endstream endobj 1800 0 obj << /Length 1368 /Filter /FlateDecode >> stream xWmo6_!$&CRE=/bm8؀u@KU\REJ%Xx;]r۳W1q24vna$8ȜAPLB훫WQ|d1J v„FZ 3@::{q& ҋQ## IԨnx!rQKϧvs& QjőkuQ(CIֈZY]"ל0){ÑHH/<nu-VC߽\++/rY2.<_7 r.ѹ#SYH?-~-koeTO"4DQqmaGߖ Q^o4[jۡdנ4h1Iݜ אoPG`5j%L?'HժǼcEL1Nt}]5yw\^խN s7lUq%ڍQ` Vd_wyJ%*_CeTwGdPBU^hyQړԿHݗa ^|k;}vj*m1IH!Wt(4˜/^bL(BI(iuE0׊^0Hh0uMʘ!JOkyιg'NWFiW_'L XWB\eeiFzt4N9"! :WnVKČ KWDϮr1ˇ ;_x.뺘__FUP$<%p҆UDfJ֫/s3uyQe[ݽ: ~w_2w;}X5z:j+9el[e_9.{Iɗ%<,3l%,BYˢȴv֬F| tl?, &?w z mF۳/gk4d)pՖ:RCXt\P f2BbnF!a3>( ݮk^eEȐB@@ endstream endobj 1811 0 obj << /Length 1721 /Filter /FlateDecode >> stream xXY6~_Bb.h&-&)ۦ@SZpuEJlvS4YogpK"qg1Bg6?n_]dD8C!g#Je2x ;tj6>K/ر/$D< /];eǍ}L] w(vʻO"i`M"Gz/֟IY4,d YTq.j-TC D5?k0%c 'V> `h!Hep bv%k8day(9c'e#|r ('pN"Z4Gj(TtЄYP2MO$eUz];۬\B421*! $2aӍAL=Q},"pjc1#Ĺwx P\L}|Z橋o0S[:S @)¾ʸdr;E |h Ԓ{ͪlBf&FTgŨ6v?`PK#2]ju{$ndYhkHk{}ϻ'/d<QiStED-zrAl>J5{Qve)\,Ff^DK|G\N ;.E L.熠˴M&jY =#;@6 GuYd&աYI#N*&X5J>ZZs6*=I)ʖ0}n d|{|䎩 aAo ^\A4B]iji倿(= ݡHY$YMIQ׎=3Ń{Wz;l0EU&bQM2<GzJلgtw}E/8W:+ 5S[7}?YMoP$L(pN]*!;@| t$ya!(tt7d;ꐀ #\{yPB׭FrŘ&'SMӡ'iPZLk-:Dfy^X7E5A\n]ӛ%i#kU<9J}6y52y'TlO*happ\߻Rn ǿ|#Usm1Aa7w!TZ~cKB=36I+/<@p|w5WM^_o6ΕAwן|x@!tSOC ̕WB1:oٸ0ksuyWMg9DE 9|Ћr;l;? ]ZFݬM5i/X ч]W4'Nżozo#UdRd.@h (Ž0ۣۯGB44xhѭFptUC(唁P6 cQR5kq_> stream xڥWێ6}WI&~4NME&Ah,9]EËN gfΐ#,< F/"(hAĄOYss֠B9ףatO#)Jh)ljh |#1ȯM|56N`og.н2+0;SL0$u_KV/V6a*=ܬ,@xZ bw^I3U5={o=VƮm w0Kk@m}UV+1]V榳Dc'VJqxrSmNg ޢ"S%`.kd"GkebMRVsNUiDU233ةb0(p귌"HB PG*ľ =n)BX|z5u\6ͺJJ.F#'D`)$%!6ui EA`a&g9 $&XvqmolkiL[ǁ uӘ,ߪ2kDi[qXΎk}W^1 Ρ0.!Pφ C6l 4wA"O.xT%ԃx((\j@BCj]sƖ(й(v!HVC/}3= O|# I:vK(H:%GAxIy E*n(4 ?$FGeT:n|GIpeyΕk}#|h7P 3[/7=Rn>͝YTV ,$}[ q+!E9B=9ĭwLy!y:湐٦PqTWӇ- ][R\ 3U+w-AA<?.?Vo$?_>J1K1.۾"X͠Frkzor$<I&PVc]L ʦ 10̖u\4ޘ<YxOwYsٔW;+ P׭d\SKS$saeg8=]2`?J>hueJZ ]x;5ʈ-{EX+M󷽚$@*Zj(G]ZavSuv=*pBlRgU7_ Ԓ!Il5x;9,r䧉sEWNU`p.s"Crs9**U˖iu"RHR%IS51aFlu+77Q38|,˧fԭdcF:ar.~ԉյ;ñ$h endstream endobj 1830 0 obj << /Length 1649 /Filter /FlateDecode >> stream xXK6 ĊDY6ݤA -6[I(j7_!%[x7r29?Sb~zq',n0h,0(_ܔ^H7o^\'H5S 62J%U~ś U`O#Ѻ[")#\u⢙,m2 O2\u}D#%K:F l$ezp c5ۉ-oE_&[!YL/$-ASrk7ϖqYw0TZBmW@~)ɨ+Y+Lմď]WGwlS~#0' .L YS׼1/oKV (ʛgnEU }@V!ng~L=6!(u&q٠! Eq)uvbO j/!ٗ׆ʨ"siM j< v?B߈JX\ihQB atn+k =k+ m/(w{+.(9w^ (} D#v~%F !gx<\0-F]9Lq$!ܼ/a=ps;c3qZ[ 3 Fڸd- p"dNw"Zt>iMńApwN>dī٣˅[ghH6X Q;)ljoyK߅嶢ۈn+#+.muҎ8nu=L!n\;7G4ݓUwral:]Gg=La)E՗h6v02ݟE@V>JfPbeę͘N:ma:iӓ$1MMcz4+*D*GfF(fuTϡ?k:,wPhԷtURo1LJ3 ٚnipB'$c(K, F HO|`=Yf`ƶnRXkqċPwPV@{ ҍ."Q l*K+Fu]N u\=8d)FKhѿZ;x.~aA>DhZ(o[0 \}XTy6 3w\g' 80 ~SE(4% TpKF8XHڸm}Ud؅x Ht^L\בC D5+nO ):{s৔>w!$'&>;ޯ %"Y/'Rhgqôoݏn`ϧDԏكtiywGoH]6, d5; $V#j}gu3Cs2ql[~bC^b||bs0@煹^z`(a9:U_*z :$̸ugIu\]"EN,tJy8+Q>Rg3kl)#SʁiZd10$Mqk?hC{]Fֱ~#^ endstream endobj 1845 0 obj << /Length 1458 /Filter /FlateDecode >> stream xڵWێ6}߯vFB-A\4iRE 4We&hP;)rI6hvIᙙ334vJ;]<,st(c'!A[`-D]pq使y9',FINL ]`{K?:~g(Bǧ 8I;ocYiV V5fxy '͸f/!X5v|,f:ysŔGRQ[]C,gh qcLm&s9-)3bήy!rQ|`:xqE%vZ!)XZ HoەTpG2o/Ů. m!vgR@Ote!"Q'ף5oR*H򗉼$4DQG-օZ,%Un~G͞|~BB1Iqldxq+] AFߑ<-6;}^S 8p_o+%={KMʧKqoZs\(rYR^>Cp\KI)XͪC#@riFBEMnBaM4z{>OhE2^j! p?!y<6&EtD6,J>uFb܍.RLJci6]Y-6nVE =TS-ה43BQJn7SM孟ksY> stream xYQo7 ~ϯcPD5 l@t YfZp\_Z9ͻDRG:ǒKJ.eWɾq !h;QN8֊]b{"䒚a'wcI.G"rnZԕذꔛ]M/ &# )$jJdJrs(.&nM*f"U;6\݂eZ̧ $yL*K U*A{ʐj3 l@R)SӧJͥkXvqFL@;M0IM!qi>D44Xb`P|`,$A.+ҔpO)i{LDh"LQ./D M6}tHmDdD G[ xJTa i4N+b.(B7AJJhAp"h Ic<edBcbX MB,̠%_lXf@N`!a  !xN6_GS ^X:V#ePIv C's7QЮ^kyN딱c/ CD_n(w1b ܤƗbM mHJ )WڛNgvtߙ?6d657mxex><9p 9!QXOSWL/s|ﰷ, {t8~?xnY,_4 ?~&׳XC>5 6GjnGCݍ]CcsYkW4~cZyJXHkj%I}Iԉh7 ~ҸݍRG6ʢlV 9zB5&&Iԓh37N`Ygg/#{^a#h3u);ZQ4 1tt?X# ȩ_#\c8WcU ɳU(貣}p nyrO&s !>tQէ A4w gW7γ>R'`^Dhjaw݀ҟv)NhfuG`wH7K ID^^$;guҰuE;N28S'X  w)[AG8돼?i\m-}3X<4q 9JR([;J df[N4y+uSƷ^tߩW7>1)cg$bo}%DzkrDi5I>k~^.%utOy oxcMuSEKe7ҋƮ*m}hB+Mګ;oOѨA_7vڹIU7q.qDjf/ endstream endobj 1859 0 obj << /Length 871 /Filter /FlateDecode >> stream xXMs W0Ӌ|0`I:͡6́XfFB.E+vilIܞ@x.cf9 '#鐃Ɛ s-'R6>Q  sIfMx]N)_LJͺYp@ !aWC(9wʅoSkۄgޏ9R>$)oW~,7md hH}mF1>NY]M`@Εa(thnp7ک\.Li.L+:n.CQ01KץtN2jB R 3Si'F-4Wj|-4"m]SLMUuF">f/Q*0 Cj6w;Q\4mYb"}xkx3) |гx2O`0\5 [!#,~b&7P\A]>y2p{xY~[ӈ2N*^N]oqE]jz` 134VCC-NΤV0GhguF0,`fvlR8:0bⶀ!b @Vo涏Q"pIfEP[rS˕R;|@I68"y:Dd?![#`eZ/$_C{Ț'^2 g.Et7A/3B/EesVH_|=Ǡ^χB1"ȑ ,cOϫrK1QQgdG?#Kӗ3c3ѣ3Ggtg~FC?;G௤q7 endstream endobj 1868 0 obj << /Length 1891 /Filter /FlateDecode >> stream xڝ]sF=BLo򛙶s4Ii&ۥkr%jeݯ?`Hq{y1Xo@Wz_w6ʽ< n| d2%a+WvJZ|}:N&LaxiHCBD| Pjw$w!1"4u?c>Dz2/RbdvGEyfxήS !9!cEõ,݉u;<]F] U,xMw\7NT-y[q` %FC qnl{dû#QNIB^D~FGTpT,b`ƌ8٨AQȢ4R+4;x>cc PxOT#G C@7$ tPm/E~.A+J"=QqMp-x-0Br(q;ތ_N,0p&jA"6s併jKc!#{08A 2th( ▦`)5؈ mAW0B9fZ&D \U|_ bNJF^j, c/k1- +nYD8ΜN.E1+X  GNVw8=**1g~ jnecy7G"漐Q꛺XS-V );&7T[bK["Gd|# 4 ǘх?iT< -X!ۢ";E0@FSP Е*Arn`}, D@05Ħ+; 'ynd~Κx ",gd78H00YE0ɞERt=$#TR2qb⾢uj9NL)ItJKc='Rt6_$;\˹w#)Lɏ\! =މ%}K/Y?ҏT?6Bcw=ĀO ҘoV=~8@.E׋GhkƯM+ aEpغLRF\THw#¨uv3~Lԣ[귽1Wb*zox\ utݳ> stream xWKs6WpC!Ħ>ݙNzJsHK")n/=p ~^YI  g Pq+,΃M|:C1>Mzq 1^#T֌G(&D-87[eEgAZOpK=rK$- e窵cr%TzpH8EacQ۩mVB_TPkB+]CrZF<Ϊ r: pbfгWB0 [;iRT,p$3D1{]P";A߻ jw W&gd`k=:ZCzt_;EK8Yv&9TzTFl^ǂXdF4[ť]޻޼stz>{G{.ʚlXy1.˽`_S@KFa~hysiUB9fp[x}I陳N1]Y3އq-Sv9H]l>r1TX  0So 67W_UQAyA֤ăK֕Pkgz<($$Y4LJ&k׾OAݠa7t.㷸8LQ ]׽``#6DU:4G-Tl5;k 'sZt]+)/*:<8u&SOGX UʤrZ+KV5/֣qo,.XF?p \fs8_F /[?/h'pO ,?뷟Y<`-:(v ;qΨDY0=1X= Xuo=%/d_kk %qs,);J1YZ;*ᾮcV展(-i7}L/clUICI?$Ƌn-2v~VN7-+00`Q1(hOypbѦʎYj=L`7 PR endstream endobj 1884 0 obj << /Length 2051 /Filter /FlateDecode >> stream xڭْ}B/IQ!pRލ؛)$zywHXĄzN'W_Yl YN=,VU#챫_}YM\a8NX2^J[!Y V+zi6)=÷_ "CX,wk,,t;4BV'YB]rQۤ0)nDiދ ҪUr]up翘{%PmeI);w~1Zned8s ˿@*})yRB| Kiʢ(\8hՋ8g^q\e 2M a{~]C+Nw[*?yϻ$})zUu-U-j|MI ?`P? Lb$!kYZɦ='I].9%g)30|An1sf[7}JHꢔ48h4.KZ1SZYZQ]ۍ:0Gk(D347ˡd-85bT4"LlY0f@CӾ\eHvW#: 谸St{4Xܣ衇J-1brniJ>TjyMe@l0WЏL~)@DELjF=t QV ?mȝ`ѫ܁; Oq YՍNUZuׄ/ꡤ:%N_B: }ܙ85Z?ߙdnfdFjGS /.!֊ސȃ_YqJ> [&#!'zu Y>B4m{Ip"I'v.eXcۊXE?)H ѐ;_3 -Y0sHT0Ha k-;t>'٬S+I 8SM_["&ʻa_Z~+Y*u=(H]RŮub{3[הqkP0[#ϤlHʒ4ٵ5J> фTOaebϗ`$KbHrgG}}q&os2#ˢi+ގ)4X-,Yyb R$tC3m$n|9`HGֽr;D0hygXԣvE/rիwU B|:mԚ>],(֜@63v=~)3k +7MMh~V< 2DL;4vp~ a2xhg jF'I8Rg,&g}*;t=lP.wZMzn*hPǝQ+ωXM+4rx"aB> stream xڭV[s6~ϯ83< Ilw'1S+D 6N2sw.9YOד&z7Y4 gM|2<',fϯ='긾ajč M'.ܞ*:R}SfV"@gg,XڮefXZLOj挖hm~jQ }3!ϟL״_ rB_üQEZ9Q]E*FS댓%-pELי Т2N/pA((/(}f@𺜝)~zk:g) A#Tm{m)݇|PbP[gϟIePJFݶ]oIkWo(/#sXK =oRH[35M-Э\1\A*ߔ%0uBN.7:P #ÄP!W1 F93 C+˻n(J\Լܔ(~AkUn1XW@@7ʏ}<*pJ Ѡ QvIКGR ]-3: g^Kd!ߦ͔hjMQuN|^^FNVVwDrh~ƙ\U MvEo==>N3E_ЭJb(Pc咰z}$w%{Ώ/qNHD8K ã;ڵ%G1 yx42`NvU%-Ϡ7h.8Mq>̜msAS췿Y$+gPmHr` L\3֌@~Z*FY-|h~7 oer3V@gs&uG픶:nIW+HGu fFia'  Ҿ?ԽL^] ݝ&lwÿ)C&:7xGtNKxZW|e.zuuU4/#U9x^NRÃU endstream endobj 1902 0 obj << /Length 1330 /Filter /FlateDecode >> stream xڽXK8Wp[*f$0l6;m7)Ij@UD$1ק"OŒPCM`M,( #ƫ4Xcqlü *,yCEgO۷7oR:Hlj4CNvea HIuWPPo+fkzü F8kQp&0@A 8 Q(\9Gv<uY$?ArEDI;Tx:#ua'GJ0@{XFu ASNh4 pb gPXApR0L)3>yIIψٞgT܎%޻F%Ux%O~vVTY{ơ` ۝ TDrt\ UXuŵjWT.NF7>@ul0x߇ ?|./C<ށŖ l>3JtBQc&>U4㐤$?BrSj>Iӑʗl|{:N!'X^Ά!BW}Pvv\VJm_Kg7M'/>u'xbg:˶$Ċ2Nr'U՜(MP/-K}Wo^,5yBp^T=gU37|a[_ׄCr9]]u1=%ϯ"c>&gV}_T][qUZ5Ξt%Rh#:YO i u-pז?S 1i9ը9*뤜+d!Z25ɜ܅ublpyv4vzazz4F-QӂMx<&ÆlF u4 B77d =i /eܶ0-)M|NAҶ;;}W9p2Ah_l}>> stream xڭW[8~WTڌ` H, &nō;=eNf>Tusw>G,=,|v(BI Qz1I>|YIHB\[Rߋ*LQ9 &k&F#00΢@u-mX*8G1vFI#9”5řJjVZy65DgRl9R|?lʄZPЏ'/E|?|vҚr6,8,;V_[2OQ1Dщh{6.w 'q+:7s{$,6yPPZ6WI5EqCk{r6jvVWު|n(oR/$ +VSae;ZfK(ih6ӎQe6vqYĶ)vbݑtm[8긿:o!qdM%}Pn1HȒS[I<*xT.p_lBcd3^@}rEHE@D-%]6YS;;Xu'vlq $jpTVJO.P &[whit#XgamڔB2!a('h]Q*= aDuyԸ1h2/HHɻ>ڈN)s8WL,9dV$;@zYZ:B`"\W.V ,B[6K(K8i[Ѭ3~T+NO=硭J~)ܫ'B9^\,@\4w[=lʟ8їLfM4稼qǏt\R;h8ug`ǷubkP%gx:LFKX'otT[z-G7l7 ?7Ȗ3etz0xIhG(znk*h&R3ml@۰ '?.U_.wn?pNY)}> stream xXKs6WpE$E3!It:M&%4$,ŋ"eL=}aÊv|rtxIβp{a;38Le|Xx>J.>.ZLޡ0YHŎ™dF" 9pǑ䞄b3 b2w=9nn ^W8ge NS_եfYw[kv]ow׆SNIHZ VN%SﶬԲ6'H&^R;MzZUpDKd(ćn)(JbUa8yNxI+BSKpoj=`QvY>_5勥k,#/LNLs88͵WGu,.fV+Zd(y%d5OFSc!fuY-ep+RZ|HR'6dx䉶F6-7I2Q6CK87L]Q˜P {&ThCoͷ;=mXDJ8ü1Ӣp/݆?kPu# 7ltj bLp܈F/WDŒ°aYNW۲[?4|Gfb#%xȥW6} BUfe֖؆OlIV۩1m],ޓ$zKE2Ak&+/ M2N!w<>~ LhRm7R@d rٙھo?JmyP*՞W:ޜêaĐӐoC% T@= BMS=|уgzxS{'5dW3b@Ãc@ӽ=[f'P :h>=|Z'd˜܏cH,.vSdPa pB T ACԴfnLhR@VB]Lv{ \iӮTouK+uTKO4(=?6!y8l%t'3^N{q# j5jCe:t[~#㍀<^l^n0[2|͝1xb& losU)< XEԁ\hUSiH%jxgRj6)^I k-P^.4EF[@!4tzY~|Uo^%@gf;u_,^ݜ4PRfeVz9c#&^b'F>N ~:Ν;Z9B, a^:7_o /`y(`G8d'tCqycRmAFS!I :E8ԜX\D1m6zn7:ha.zr3p]24ֆP鑰#3A% endstream endobj 1933 0 obj << /Length 1747 /Filter /FlateDecode >> stream x]4bPVN$BUB!_ֻċt{W.}<b;Ϸg^|- T0 [d /i! 5RbRg؟G#U@\ ~JUu% ȄO@'9*ZwMqQqNJbIojW6WN ZR횷%7n|1v(c"JPՒGsPrĈCJi[1SvփC0Jp+dQ.bG/Qj7:7r3dQ]u~@nxpX%kvL@yЋ91\S#'p›}=rBW?C_`9嵔Ux^ھ* oO'@]cF; \fʧ4QMZ7a]ղ Gy> >TJt{ٮoʈLV$ ^}h+򺎎@;|b,%pj7e&n췻r|# >9ncWQ q\ aݿ9far?}e&6,[upnz ~yZC#@{B?w`QM eY[{6U]V\{|oy}ݙ 3i(#1~ԁGkh=9\޵`~mLUZn,|,umǭ{L_,; c}OfgےAN_<7 i^)DO_>^}kl&Z4oMH7s&4Ai392^(`Oߞ<%IiN^@w>z҄ yEjIOg̛ d'"J >[֬-ȻeA#`yZ ߸yL 4~ vF kn݊qVm4s{B45} ׻#8Z Y"̸QU_Go~6b,_UiX2T22"\" h  S dG[%34 Ro530 cP"'{Jb0 Χ*$=h4EMC|-+7+`a?&a= endstream endobj 1945 0 obj << /Length 1349 /Filter /FlateDecode >> stream xڽWio6_!fMV04E [b$".EÎ6|C$vvF?_f"(ȹ\8c"?u.sjS,|0{F6?P a ~Fp@æoق IƬX?3J% #=-Y>^?"`5;>Rv!&iH`+ @bNJk=/܏/KsZfWIX)-4Q"RVJ0A)@ָAkYQcc2~Ig<^> LDm\bžx8# hi@㤡H]{^D pRd6GB.g#I4=DXǘx!1 2(>8;Os L@btC.Fׯ'n8323^)ad$!" i=âP-#(hf-9Mb;Rԉ!]ÐP}9ݎKAf5i 6>g(IkEͪJIW:#~ .kQh)Y&MY(DI m +rNwa#WaMuORBPZm^ivClkT>,{90ts*b Ql`1"gMe%$uMEGUrQEj ,)*oJznn,1`|Fp'i_Ksb1DE \\" z-82QjچVn25uO/ viit(cW\ T>=py\q^,vCO\q'$z Isl-Z,͒Yz?C8`iBh1o c?Ƃ߰ >gխ DؠV6沾D g{Z/~oօx>1L1V9Y_'F;F:෬+62@7aw+v>زLdF8<pE6cmQxYuJ(vbچ{Go5^MRT.nia;0hKM$u`LhTֈ%YչhT^Lomh{9/x94zZ@غzLJV^cZH_C( bᩘ#?Mtx-Ł7浻4!2^!;x4l:ojs /UflB'gplC.Wj endstream endobj 1856 0 obj << /Type /ObjStm /N 100 /First 972 /Length 1484 /Filter /FlateDecode >> stream xX]o[7 }P](q  l@viZp;Ʃoىm{sDR!ūX\p(dBq QN&#U9لFq20\ e r10''x\MO Tq NO;AIbda1Y Auf3CGI[[(QlYm "+6d(D8(;B`ش! ,WZ3V#iQyiaJcJVydR]ɥۻREKvK)ʐ!Z>;lP I (W&a$X(LHPP%ԴV-ml)`Z4)2j=G1[4 $b+ q˨FTM lRlÅIc\c[Ṉw@uA &+#Z-Z)Jl4(5qU/ɴ%P^jÉ|BZs) @rBP?7*5 + mQZ,Rb$fS +,+`2 Ofr2YoɃ|?Ófaxr<φWo/_/.~ϟ?_ţO߰狳?y'0|zө͠}f>ChhqDe/ZG{\:Y`5!-Hy@Yx;:ѩr'Q\Xfnv.Qfg.Hv\X n>[*H(lpKogopvynbJقbc':xԋo;М Ƅc?:/${k;ӷзlC2' ^H/ݿ\ {'7R3!6 >D 6~ǴRZPF9x&E.ډIAP~cWs[Qv\_߹-8=>o'7zxרjQ_ē4a*dD=>{$^ON4"I#Iи}u ŸYe6:1MM8Ʃ@w1+NPzђ|SI=K'Ѧ^ODc'.N@aŌݤsļx ͙nw> hz.G3Gߧ4=_zgݔ\?K-Ʈqm8Hԫ;Cw.#8^$薽>ԉ龈s}YCY76w:~Fѩ1_ endstream endobj 1953 0 obj << /Length 1791 /Filter /FlateDecode >> stream xڵYKo6W@av{+,K6=u,-Q2HjC[Y]%9o_|1N{o)_Ed /l2~{xLAhz~t(JVd;ăk7tn12~2Q##Owumj2ueJA%ԑ(S ^~!4sߨ)zt ʩ ?34_2L|(006.%IA']B·NDͩ3=Eo֮L\IeӚ+¸<^^eӾ2^e[qäǡ!xz]`kf" >tmEK!8񶻭igXFb}?bҡ(F"]B*9vE~&KDTuvP3+SGGܗj&9vxZsA_-}Y6p&sy4rں3e#:-=1T"ގ׉:#(J-wPZEjw?nZ Ae.8j3D0Sz|>PXCxwUXՖ빛۝NF|W퓠$@8#Z߮1zX;>4 ́ؓϑ۰TY: m-8:p J'>\/6dT<(^)uͲ= !5bT6?Ku*g \#A~+EGM+m+)M_WQ 3i=8YoQ/Z;FtU-NϊJ5ߵIk*HrҺu99Z/pQ&csn!n+kLѪC&V˅Pv45S1Mw_$})DlxIJN5ovP܇{`KAw0+u j9+-0$gxj"m6^o&[2+Oa8 rԙ4 F(`025OP+0[3ӌFΔuJ h5hg6sĠ֑os~O7{>VIGA ݏP 7?KRߙkx&/妇GȰJ6g Ϟ(AG0Qfc}{iÇ>FsmnRq\a:M -C.1k<2h vjo'VHDE,2wQ1QpDeP1 |?~x=5RCI"C^`dpLGFODBz! !(-a!߹DWR,iغ ao%'[1YՓ(ubj]de$6x솴.Hv]8$ ˂ 1"w_m828m]z%3_F* endstream endobj 1963 0 obj << /Length 2381 /Filter /FlateDecode >> stream xڝX_8PMcMw=ޢ>\XQ8vNgpH㌻K,QE?Rd~,~|m"'2Y"0J~拻˭jcQtf{ V{~'<<n2= cd BbC+O z%JKmTESjKZɀYѺ4-k諑˩Re=^pL[6wxN r4[-+V6G^j/ hy6E(_BWoeQs&..s~MݚraTkPnj"Xѩ(UUu<1ej薾yU֨Vp-АʔMgatb90xΑ(9-Lі͗%-j"I>h k-I4r̅LK,*mZySrCADHFGj](L#xҴh Ly ~rD?X&!6? q6FV\gs09䒠6fRg.wSrhVә :G O15dīWmK|#\FrHqk:? @k 9^|l YOiU¥Dѽ~ʋ "<8z&GNtCYh@ט&iEU齈au1ڞ@;l q1خj08,7%a+Ǝ/? ~04銶3֑"ylH1}` ?sAi鄝i, RinF&6.`|HcrzppGrSk^ȇUx3r='3W˚BSWIAN2ę)oJ #Peē _q0Hzx ̥3` WǫOG]Ĥk5jK1I=YE ggu :zl yiO4k.m|83^ v9 GNˌ`Ϳ!rh;H6BR M+d=5O+GHJA, 3wؖ6!prn0;䚍nR./x/0 7uO*p$HTpӗ 6 L1 8`uQsUT3UuAxղп{sVvVfU7¯ s/{_V (EwQ {>#x?>|1>L*20Ty՟s&}=Wߟ 1?ɵMe]*tf%`ϾO A|c}-^ h|Κ&r9}teܲ=[4WQO7nƟ%d%}_.Up>HS⮥@b:I?pPE,5Y %dF^% Q^w(,}>gŻ<0ďd<́.IE "?C+gB3jHU%%~+^:=g hԎ)@DG<&A\y4m`uhȩhzS܄PS;)g0*ZP@vDӈ0ޟQKV:h{zb$?? hL+8$P_GցL3/ Џ3JvUl':{ ,τ T(.#J,(BW?O=*&l/ʊ ?Zئꆮ ~qGchOЇ[QkEM ={ꡤI~&VO$ri-IoĕH֟ p%s-BDb|Jv.=MtehHt)$d=lOgQ#?99ž뜗-Fȏ[JȊO BS΄~W 7_+~:XY$Co`o:YiF\{s[rc9&6!B |7/譧w> stream xڵWK6WM- E8$9m3Dp([6yq̐{~̮oYy(NU4ʽM}qy}}(AX.JHQyw\Fe2Lr +`Fg| ?Wessڈ݇)^f}{4d+t,O\Z+{ #/QҭT }jyE$U״cABhl],;Y:50O !6eNc4.c?T|41 ;?_Ny;<+#<׃e.e 7ǫTxI(8\)W͜zX=h1g\]ҔyL7K{G:WM"Rڻ~+F%S=Ap͵>PՐro;|ߣeg acVS?2>Û2`s\\PYR(O$ 2Ӂ; {1#S'w V]O0omXK5sZ iAA@LI2Od+:>Fz8TL '.J2lo0aa͓Aj@w&>@sB$hrL#ȍŒ7p`;= [׵$q(a D< LEMaIyë~tS - endstream endobj 1982 0 obj << /Length 1941 /Filter /FlateDecode >> stream xڝY۶ݿBcOSjF>xbcoyHHDB,*~J2Nw߀~'7pU2nl!ru_~jȡiYe4ˌe \5EĈ$V~r ڏ«DWbܞJq)^FbϥQz,32%uyXW;JTJ&-j):Zr%9V' 0ϔij=z`NR<]}kI5]8[GwD)QxO0xNn[704'G6XY?Add& sIuZ?4]vfPʒP ډ ӮE _#!'?{hI%Ap(~ҁ ەxk$C@SPKV Ӱ,KkU#}`d#dη> 1.B9gz(GڶPwB &}g0.P`i? qiNf̑xy0!@9mƔ4[6͜3t47u!4 Y o6nr1ԣ=#kȾǝNTX>p"<:Pj?_zq<aq@Š?V62SV h) xsf džyJ81βŒC`ؕĩN,dn8{aP$Sv'؉`gmv5c{(Ht8>@G;ݙ 㨔pD N s} tޖE~ړwB976TݤkͦrF W#8Hf ]`"pLyD|&)l"`?f%˘Iᘼ[SꫀӆXÏʒA yf}Bt8+a(I623z.+vh6CI iQ"ł(R5Ў0LYG),ڝkAQ[:BI'YGB4w+]އ3/ a ќ `5vLHYQon#q>NSB<{5^!qySIx=8w7 ,qyy佅&bq1ޯjI\/̑7E%9 y?n~csmBa\w!2:#rD0NU;ϣTKAɦNaۋW `ѫnBxko/n <@7Ol؎3h_ ( Kk~j'1D|ł3G|E~%i98|cHR zi 0Ee#'g1b,E;`nz?͡ip%H]`sWAP W}k$bg LL gA՝Y1؜hK(i8kEY9y[ca6-Qe03)VW]Zpb7a70=B 3/ 4Ѳ\RHI\e+| `6 38ٙk>&l SxnX=i9AK $=^~s&Q/cn?>> stream xWKs6WpiHCb:4iIg궶zJ3%$hPLfz@wV0y_ĉzigY8{a8 0u~DهI0Fur,fkLJE9H&tC4D NOO%Kd6G<'޶T2IĖV?݆6R$ |/#[KJo?WK7Y d%L<3pmyqZP||\#Ar>diENJ  .zUkhhig2d#{%gk'cϾ:d2R;W>`_Ϫ=EpW7<"fNfpnp=5qY>X5Mgo}+^˽nwٚ|E3-5-fi `lwD ]C.R^7ik{L`5yjv>d1IRw8B=_hIs .[OCT@E5veNaqLej?/TW'&Av FWe9fAF}j]oY_r0iv9< @w~N Qa˪KPi(9Bؗ~(<^a0 'QK1sf#/vB]*؟^rr6.`bk5s*vGEbx)ӏ*$O%ffԙr8ρ s/1YѴһZ69%昨o7%Etug(fC{ oŸݍЈ>mYw_MFk%j(;[a PaQ~&)(F>JL+O}9U`ċQ[\C.4=DuNȅ CgdjzW\Ì3 Iڻ/KFfT~50|r!/2f%;}4TM >bD0ěg&=)}U|Bv`Po\ 2p|ܬo6Et?vTudaոڔ6Gߴ΢kBg,V44K/ endstream endobj 2000 0 obj << /Length 2215 /Filter /FlateDecode >> stream xYݓ۶_Ԍɤ־8{{ӗ8D I(w(IeD` Iv+z/hUUU$D0Om& fE}{eؒ*CCf{`w6۽I2L&.W cG'aMcf Gb)ٯ7q&Toi:H;86M'wh[׍mtwilUҹ0VjV8 >5҉G?;,i~RB?V<F?tٛ~ێ?^è~S An~S#{``c+[NÑ&0<WCc u䍪{J[GY ji#joFYկsj^z#O!$z*sMܠV {k #1~|vj=@iqZvc96OD;?$'4!IA~8o նc+xK0"ğ1lskE9|z:z9 ywuk}BH|%YQڤytʦ5gЬ'K4%=A\a%4ԅ{C3;CAwgF=fwGvC}M5 כD$ lђ ?4, qt=i V#G *8h@㴤+,もLhi`\?Ü8CkzWjX#m^;%K Gl }=Dg5viZ|_@-%^P/V,NaqΥ%= y@6'qyIcPd&Q;=ZC9l!; 贉. sѴm jeBSe:*ܡ,(y1ID3B}"ht st5nJvRw Y*˝2CXU P(եSD0V9maAu6uh-Hz$miԁ13XS۴ Q4%-HJ<h\G*@4us%R U9 %H#"_tk|iq+˂b1.gp&efp:q ``|0@29;Ֆi導`W@~@igLMY}L8@b@3Jq2099t\8csᐣp345KqBXE:s2հufA1頍hI 0R mg KR~t't &^輽ÚEXSu[ }Uoy<v Pm_nsҋLkr1IN(&bvO&3N ! +9h6CjewN?_+Fh,AXT|H}dQo|[Wzj7۱&ǫRQ+2p^`fi U^fI Է OFq%.?k|JeYAU1R=Qx.743(N!fq'웃 UUܔy ~&AWKr} {5Mkh"RI+ܳO-XU-~ᘡY!8qOũ5.i̫ -_`rlT[bh)ݬ8q;ѽN~8 X`<(Y8:v[}].OdY_w3SNy-y Iv{HN$:zEQfE!>j9y=1 r[{0]]k"aw*Qzt=W+=MTeȄ\,x[?" F 7~z:s0LA؈>v&"%~O[c])LlG /휟'ɠ~yiufFIY^ѯv2f!> stream xڥWo6_!4&CR&){jh$H;,9rv@ǻ>x֯G?b4k`\/BBP2> _~ ȀbI Z(Y&;df\avhDWk^Id"H~gdod9$BA\'lsb߾Dsľǜb#CI=U5ZZ`Gxi;cq+}˹(6XTz]L9G8:okuILElÍ.Yknr^ԭ=U"EaLM)9df )wRL .Pm6\r uc0 c!oTpe 7]Ͻ4p}ju@iP4rsJ0"_Q"B"G sJ}F&a6;cs @a9ByZ1;Q҄$|D"9sÞC^kB q翤u HI|XR "\ÐpޖgGHϠ>Id BCIk$ʲ)Φ{83Ɍ9Zǖ%CLfܩ|3"*FD\ږ|;i> 0>v@2ti"B\5^PF愨6d<&361W J GKlWU?" I H%{rr b [5lDm |d`p^@2 8-+ ;S1"˟#% oTj=/֔Iճ}Z`p9㰘7'bA ׭2 endstream endobj 2018 0 obj << /Length 2081 /Filter /FlateDecode >> stream xڽۮ6=_V"Qwi-MKKō,zI)^ eGM`Dgsn㳇[Q]$qbqY*^=߃^Z88%1):l`1๖| sI *}0r7W''`9xF~/?8TxzB =W;(.')gQBL˨`NE8ۄEiHus!6uX]Zsך  sZ6(+!i.GϢA[ Gيq Xpy߷IHA hrzc]:}Xq-e dVI >cnޅCK}J GD_'Pa$z&E`# vrxggm\0 ;GB9!\~; B)vI2`2$a'[`8)[vk4gnSK8;B+IF[7hŒ~ѮhcG2#nP X]XuØCAg !0<li{&1 czUf(M[h.Ն7z}:?z"#S#θ B|j<WK;ٮdY!^~K@=!d$D?YB"<3* lŶGEKA3#gDy~[Ksvr!n H݆K\,V,0YO9ANb'Yb^e 6V 61TĎ;KZHwR1PΝ @ GJLlO $fA N) D-鄅乹Ѕt_4D;wr-~ T=-o.瑮)=L6֭V{"9+-6ɡfJ!DC{({Y~F5b4]3l)4/ )6`GQ0dUcU/#5nfc=1nvnhu͠Dyr ^u{ endstream endobj 2028 0 obj << /Length 1271 /Filter /FlateDecode >> stream xڝVKs6WpiKΘ HOuHR5i!MsE„$r,L&r a ,~X,===Y=r<νڣDI{sJ<)e}iZ=H5@,QX5rXLb3N#ѾpsL *ד#;X QͭWrӞa2/,R?rK%8o1qNde #nמk3F3--$U٭le; ŒBR< gzx`m!K{buiw\鎯Zב-W7¬NK,dZ-dp tL]WR~fz4ײe#s>v8ְ 9ǙV™dEG=0Έ+i@!M ayÑ/V=PB|>[Qr*oaYj@rv˚~ M$ 0C2[ǐM+׏YItqlYD :՘dtIf߳aAj q]|ę8"0ý:ԕt/[>+ uvc(?Z1p8Hwڶɭ%s3擭Z\)vmA8 dj[ޑ^wVk5hx5D[)B6Km%k;1_7L 6 ʃcMqY?LuZ(%J8v1 sMjAhmTک";Qn1X>BƤL28;-_X oDw`O%P|V#+^ a&jCLda`!}e7\ab~퇝"+<}yNJlZzi[! сdj:LOfUˋwgnA df-qR$Y?^ޡE?$JAGXj~c)3N|2^Y[/Oyjq\ sh{G{Fa^m }^HͧPs\'- }eD[5W"K%=Ӑƒ2<^${Is/Ly]J}/rğ Í_x)4ڴHp~uW\ڟ/ֽsodc4[Ar X\h, FNJȭ g: a?0BΡB endstream endobj 2036 0 obj << /Length 295 /Filter /FlateDecode >> stream xuQMo +8A&Iܚq4}n4ݞ̛A-"5zVѩI,H5YR,DFq=mҌ0|SKs)aBg9";۱Ӎ.y b7 {GZXA:}^Lu}u?c{ @Ѹ9%`$äȷu'&Z9k@on=[m؈zc3 ϒKǺ֌U ,&c̱u<(JzzU/*l2 endstream endobj 2042 0 obj << /Length 1803 /Filter /FlateDecode >> stream xXn8}WEbEoHv>+K.MݯDi">Q&̡lFg/=>wYzYKMO$$"eֵn F< е:f3E=!}}:lFT}ksN" jk_J׺V}jMwEwa;nYzNҹU>i]%mL3B^kt%, u<4^$ Dܘ88Uiˡ~"'YU@@#8X"BAqdUu~]M,Lpd;g4Ъ3sۢk`n7 1nYζ&UQx2?PכcVq/.nÿ>~m YU׺V9傷Hl )>UhFtOoS{SQN@)_mMݺM]a5br%pEg5?1њ!I;oM+}o1 xYdyl*`i_pB12x[xakS+g*){5OLp ߙ͛1*9ÛQUxϝ.u^LQ -0 CM'<b LD InǞE`';0~)U+iۘcF/=  $\)ʫUe-S? ($rf^9W |_hN$TMn!R⌏r8 ق30tbIoB88ODA)i4؈Q o@ ϝ*[s`d@ X`e51չK' ,N1qOUH{^Y?2\ #h^ʮ.OP^R@+1IB[Tl:y$Uo]cCT M< 8OS(#ӷ|a{ǡ)whf]yr',;ҵK3n p =)NE$^> ]^"y TuE40 .ƒ<=> stream xWKo6W.,VQEEx/hXtIَb{"eKkIq 9އ&!^$H#0J !( So{9_r! 0>0M$MAALbbE7~0e~`yj o IT0|2E;/..F~0Cθ!dLcDqᝥhP4 #(ɨg 5\ .aFi|H%ߓR& oYh1l@bbf&_.7ı/^RwD~gJZ$nK`[ =u?Y"x _zIK<&]%Ј 詒m|ɡc ^Y5ֵa\L_=됄|6A8 өIK/$2I 8T &("P=vj=gҚi]6Hܭk&7kYL98$ܭRĭ~gn>DS'ny Û6Ws^TsmbAg`Do] endstream endobj 1950 0 obj << /Type /ObjStm /N 100 /First 972 /Length 1460 /Filter /FlateDecode >> stream xYn7+lGaF@@[ QS( }ϥX G/ ^8V).8$X]%*91#9 ьDIe3S3i1p"r5#\@X9hP-l az,m*V%ϰi|Qe 5#LWp*1DV&[?y65#3V(vIbcQh ;i,Z%9bnc[UAŖ bĆmlx1:y;@!>tNWm:WpJu!xYmEѰ=ՋDD57hՇ_.~O>wՃ◫#&)LL#*^,`Esz%DD i\і%.TgU氻8/{~~Т{x ]'ZwoU;gWQ)#)awqn-jX)M19XRDf4uBKo>K[#K[ Z ,6c{|Px/-dC-]ltCj6ڑ=h#B>Wgo w +US[Gԇ/Z;фdTOF!ȝ7ɧ;uvz`۰nAsvCu?XpZ/ԋoΝǽ})r1*>K]+)yK wzW)5TrDS>+#(JhC&o4aJMaMb(<{$`C:"nM2 ^`ٝ _f|ڹ4B7K#aw9$3'lC2K@Ž) 8QFGk'ZjN4%vQ[tdW͝h<(X{Izckrh endstream endobj 2059 0 obj << /Length 1275 /Filter /FlateDecode >> stream xڝWIo6W&+:A^遖h,ԌHb%qsǷ||{h5£/'WbN0/Gcz($n61q; 7;Bia U=.‘߈~ W/\uPcW ?]@u^\CMh;関22էeI7yEyn\^5"t0xj8z!A1.muQy"dsi "cl+jU EEz62IY"}sg[ փﯴJ, ߕ(I_ե6fs;,+##gPĺ.> CybzPni.]mNWjRMst ] .R4AWlME)U*}2KV]%B! Pθ1A}CeZ;{ME.yt 0aX캪|:M r5fKpNl <]X#aRu*Yrj]DzKlwyS}Ã}lJ c-0.!1x;Ys+*bh>OZR !Cv ;HԸI/βχ[f5e/!ǖ&Of!~)E +L3#4Ahșn|I=??P y|iz?C 1ewyu6Oӣ endstream endobj 2073 0 obj << /Length 1570 /Filter /FlateDecode >> stream xXYs7 ~ׯؙ2I9Nim7}H2Sj6CRV J'=_D. >;W|3{~9;=K`E |EqdAҨp.+[qźZ4wD巧gI:eEXD4ngQEYٽ0bDB={ZѤ{Nե!XAHR ģQ'Dɻoi?hh v^)p ?3CV=UhޜNn:iYH~$rvTYTVN `eqƹ}?:pp4YepA=AjYsU DiS[WTnb>æQ(r>B7ȉ2Gٷk.xGD3ЁTN(ca:$+f@1f> stream xWYs6~83)98xzud>$y@(HFC(;ίD9t3},vo rt6?:yfAʌf|K 'e ]H$0q4##VJYQ+E Ÿ0bG[#xP̩6*"EX=ّ=s & ' D ϐ YB^V~yIchMT'>yo"BH58pH 2RT4Jo""X8Jah63gXZB(NX;݋ eHJ *.F~1yՁ]]^I^kcFFdm/Z-o;*byg/BVN^Zx18Rg`lJŌ0'*l @(Nfg?M1Jt^Z,:::!ptƘ$a2ل1l`T4E%KKۢa.,|ƛ/|oTnB4RE ɰLGp҂-AvF<-$2ZP~iW]#-Meyv.\(dș>[V@80B ZF~[ oeF|%Z[+ۍO%Ks@j9`E0_5%H#p$, < t t b7g8L.0Sé@OlP<$B%KϼYu2Eh̒m2 RG՝A1Po{ W~##)l"P*_=4c[J}穆;ø(1;~}yĭp9ҏ["gJΪ :Lf7LUx6|{1>9kh4e\^as7&˙B)A_HsE}eC-|lmD.څ4NAb~בwp@=6[< ,`#Vem!P~;xUF~&> stream xXmo6_a@+1C]E1麵 I}X^ ɓ,yJDNw^dYO'W'g?l,QJ0^$8WRKF)M^91GA$@cQdN( *(I}X ';݁?hЫJ( i9m+?Fd-JL`^YIM9KB3Cz|/[&aܼ^ݺ9ײEA=7bh֭%cED.ҏ;+Y_\;%<_ =Ս{tQ kkh5 ?]HP]3ԙ\,?Y4tW Z\8|gZ`r kptW-/I7ɏ}ꭔ(ȸ.hr:鮒;Q *XS)x7n#r".|O/):h6{2ΪQkYHwd[`q*BlV#7#{op>Ztz8,+ fy\ G>U]V3!Lm ySmr 1 퇃;j l9ߌݣOm ,W$BJi%oDՀ2ŷ(xhRRMș#A] WF{0Si+Ĭ}JC:h2pDŽ&lTLn3vscQ8M7x^+-R8/-$@P1@e5N^% VA郉-!{#jsSoR)k}D%?+qm 1]X±N:pİTzB6`k E[;``56 dB\c>1Efi1IStE[QBp}?Bx4!`뽇ϗni{#YZ2Dk;h>7XАF|73A0?$Q0|Ӝ:ˉE 共:,eFmlۑr^0?oMoԒAi{01O20Kb ix|LBcu[M!pqudy >Ǎ"PkL2`P @z({؏}) ݷZT+}\cȂч8P1Ϻ7Ŗ#xjڭ4WԤ ~DBL{ PlFGf?m6 >ɼ(!4ӠhAndM Gg s*$-_4^{/ QI,?y8C!Ȼ^b8. 7' Y4d͐vD4G1K9&I?1&0 a 8ncG|tݑnzV|hToK 9k<2$Ԡj1 xv$ Äƻra` (`ZM64N!fZY|CBMˏږw1lH ѣG1lneV9΅+H&JȓGHt oF H}N] v3& D`cPFkrԱ=[ ?6CpON~:?вh3Nn{~#^]ʵjoP"wO/NB0 endstream endobj 2107 0 obj << /Length 1281 /Filter /FlateDecode >> stream xWKs6 Wh<3"i.&mwm{`%T\c}dU63u?̾_YP"#Yp p8ɂ%( >8oߞ_ex5N0Z*heCE0 ȟs~ ,1VuA"PiAeߣ4IwTr*J<͂Vb9^C2ۅn10v]t}}rD_4PH/J@/uq‡#pSkE xy!r`۱2B0*)VT\V1޷\VhP@Ѻn)T|ZYCՓ֡7?w'_yw)*cV{wS]aЌ]$A>| `EmM@M.up3ïj(AUCY-ʓc rOPoI&IWo[cb7^r[$n4}o'i9QQH5gipENt$O=S[S#hgk_3Mu8 Wmܪ0: k4h0 7=,ÍJECo;-އ-+9'V9YI%@~ f bDmi.Xt(6܋2d(%]IyD?ytT@_Fri\na=zr gukbwPLxS J2&P+v &QZyYnp"'jwrdJ*i{xFK6#֛cp|AzyE=Ъn~TQu RbXi:Lqj(¾Ξ?JQ~ J#R_$Q 2q(D(Tv"`"VasR+Áv0Τ{'mI:`'w)Rbhb0L+ ]`3ԌF0'K5֭Vs]d9 b-Z?*ބL- u̸@>Fq-, R:k'NFKN^׎'븶GCmZD.A-mS}`9'gIeG7(VI4W!{潠{E*2-a$Y_k'5&== endstream endobj 2117 0 obj << /Length 1246 /Filter /FlateDecode >> stream xWn6}WC%y5mMٶI>#x)9N,'J^%^fgvv]qRF4rW rbBPR:w޻9oQ}(xaYoVpxxi8>IQ7/n]^j`"Jݶ7|+`wn`tB8|SjoTȀ~3A ]6r y?X3@iBz۶4'nCʞ Y@b 3hQHfV%900 ;k/ܮE4%!byŋF6'0GBoeGCN?xOnV7B v9%6҆4Rb Jj!ȮA)l,Z5$ B2(sDQU~Td@ H1͛NSQ҈)g!ŒRbA0Kf@41 FL$'V;92Y CeL$(.MB4z3H&(tj1~`[ppےU[wՎGI~|5PP lah_) uHr*GjDFEXAcӚ9E1IbJ% ն:9OYԼ;QlgóO|-\ yzВ\i4}x}-xe*W+DH_V+%M]Rzjzw\In'b42 -7[%GdI~]ɡ]n5J toKЯ[ =]%<> stream xڽXmo6_a*1#J^bXۥ tl-7I~w$eKYOxwtۅxw-  IB/\\ouR:[P/~6#VK ͔u#E幮g`aʋ`7mȺ, (/V4&alV_/v "#gӨPi>N˅!QpܷemF֢ Q%DSNloV2|~v/C^e[4L[pCm`N[ɉqԇhم|+fwۑw#o;fۥՀqn!`0 ixiSUu\Vލ* d83 xI:{$b8 A@B"KԊBgi5d6$& M.W͜0`e9ox E-0>״ 0 rZC$dl.V4 YH(d )PB Z9Z68 8tq}VG4Cx<82+F=Z4$d9|8eI5ly de*X9Q ӄHdmv]mJ+1 @VLVBnyG?KI tĠH|67>Kc<LvRsi뫙̤n.]λ{N2 hUXقFns z!?vېxO5gPD m+CWL F!;75^̇gϴx--:oٺ{L*E&SYs[]m':ɭ0),1pݨZ5朏쐢oT&)SXAװN||v}A'J?-c0lKJ2siޭyqPnUAuJ/w7Jլ!٬ isn'(]4%ntXw]ݾvd>a{c| e8I\=9W|(N#v&]ixY}ӤXE,r>z2ljTX L 6-fRhm'7+mzY]ep͍9Cm}#=Zf dv?i>{h0##яoKJs0yd&ifJb]PP7.\a@sKB$4/ݪ}0 !AgϞaVSQ7ysB 괲dČc=?82v"$`CU׉q429^wgќz endstream endobj 2139 0 obj << /Length 1406 /Filter /FlateDecode >> stream xڭXYoF~Hj!JQh;h ȥ0pd흽xVs,mO6{jL+*8myd8 &xr6F*k޻W#skS;~Nles'K8[,]kp!8KI~Է &U_hFǶ?Ќ3-P,Wf()*RmpOTHɺB۷,qo SV+, ^-HH RG+&0]Ti.,.ȽMS)}hh NBۢWc3bF(dCl [(I^K(1deAYBvҎc\kf~±u/<.v{4 J:E o }P+HAù* }e$WeeڼA#L_ L#zkDBg!&D b^P!-Dpq PP*un"A@ǼQNfLD{*ʵWJn_þGgwÆ6ޘg:u&X|:TבWZSȎ)Zf,SAIG圯w|j"j] 9j.Ks;q~'}=.Rjv_Tm鹧#=F~$^G֙p(V/x,BEإ$2]Ke.QAZF0 `ͫSz<\8^;i۩SM`&ڊrwi|@xj6eUE;Я8JaPҗf(#GMyE-؋a6p0ڂtcChE& /M=C~nG$B}$D1SFRi{[Vx]X0H>, H1{8o]<.q;n[_#Ѣx0BleQPܡ|<7-֠͝~:NÍH]=ѸBJsIq'6)7vʇa9^P ѿ)K?7i7> stream xڽVK6W^K=-%n A$ZK,E{oP$"w9b7p/Wm9 J"/rA\E~ ̍n6rOT @!QTZRrFD&,&t}{N QLK6=O{/Cg!Di%)r .FIh,D>:,\ 7`|\]YM\5c炽ii%ک8lvV/F;WcqV(* # RM5foRAR9c)LHm1ɚx)E_c$i_O n$iKo93ov{a+hqR[[tv*~RGADŽy8KyBKwdwDk0jȒj= ,jP9ߧoԩϒdCyh#1Jc^. e<O֢wă&]zDdI}kV@>^~P}Rb~ FM__Cy]Y cI9'U1}DܠL-?HZngNt"SC2pEvHh8|Lu/zD0+i)!@7f0Zd*]zKR,X1mj_ @oBitښLn֓/,'`B'&SGp$v{ `ȭd|~Võ0N$||CIXM兺ڷn6s7mh.َq;bf% כyMJd|7F8̈́ #p=.g3rZ5K0zM8\i*'Pw̋Ln8ۓլ.gjm3B vJՀ)pZF%YfK SY ]Ωh 8hM#ǑCa1{(nc(~<ێץyEUzڛj1YK98r,ܣO!l) < g[# i{l/2mK1V/?cnZv\ endstream endobj 2152 0 obj << /Length 1747 /Filter /FlateDecode >> stream xXY4~_RTv|leva A5Xrnxjxjv~,}ͳW ]$OdqsA@8Y$7diؾLIϛ^mѽ(OH Uߠ EgUܛ0bd.U;80VGO3zs+? C43QU_:ǣxW)yU䅉=fu)o^}!NɪrN V|E7{vgj*xw.׼W: uhGjYZۋUFκ#YIe.X4ttBֆJ U4faiI K!:VdAE5xC3p(7^h *Y[]=FCJWű9WƳҪpR3&LA@ m laIɜ'7,PDST6Jsªʐq4 h+I{^z)dž)'&kP= F7s.@^#Sms`kiô-B 6;kC[n-rbJޚӰ}{/:xSRfA٘ Cl=3?5L,ջ6YͪGHsC'Μlǁ6ʚخ8sاE5kY>h Q,K,` dkoXWclyKWp +Ś~ǒ՝N*V Ėnzhq୍MQ8DŽnR|p݀A%RyhMkc9AYBv ?<ޡqW>80R'IR:EWi?Pӗ;;c&zy/?>‘%vm$ rזrJc7񮝔|xa9_:!_J~h^1D'k26n Wd}̵y=l)Z,ƺb;{;`~0vz0a3z0E, ¯ ŸsΌ4kSavFٕC\QI{c\ЀsPRPRޗ)P>qxtH0 6m&i@fj=NH$WJ5vƥQ\AqFs5ZYmH%Ӫ&]8($!6͌ϟcy4+|Jz`#نSgl8y3BhD͇dcгGbv! еr`>x)0?I+S J2kmfӰ󹫕)1R]ZcA`^=Ge.0wL4H%Ǔgb_'Ƀ(9kCl|..;ՍLE$@t\R'{^=Y DAϿ8ؾ]MŶ>m }P!(|a[ ýA&t]N^nBEn|N˙I3%OWz6e7 3QR[|oQvG>Tɢ%٫ڮN>nA`ȍ}1/c-X >@MP\#Fm9.m-ñ4n!r> stream xY[k[G~ׯ{vfvRLI0 ?M +8fc9:nV[9河^AAqe?<GRLh2\ d bS괨I.O٥ԋl.Ru952K ) ׄȂY ITwl(f@:WG*a洘F!GI48ʅ&j_h\Tn_Efؐ+,H{ TEj P,Mb$"tX>12N-.rK *f4G(KiL M x(RHN 쭢aCDIda#aC6 j&2dlA!2#@fQW**斃m1ӐV\̓BRS`55 F]̖mT\9.!YX A-&gk1+zY S#$֢A ol -&E2JeHm.";UPY1[!3Cr96<{lDSj1ExlŤR#۔ͨ$+h2p/f sG hPA}jmiGV1s/ZxFDUهF &߇@@N4/7V~G!a9 3Glr4vg9P 0f-\ ? /gxwa\!t,>bjf_1hmp1w%l?^jy= gϧ/?w7gcbͷo}RUZ菇@+x78^REgNhl}<ڋdkkv.',Tx_d ^?Gќ=v1*F"mxf޸ba X|~]&+屢ckW[U<@5nQ-jTKDîhYNb/Z4{Qs?'׋a7oG].݅C-QAVM,QsY;J T܇fa뎢q1];Ѩhi}4ڔZjhS8]-%訾DcKN4fiw(^8ڑ, (]nKFяޖ-EKeA:rme01SD"p}ڒ+=ݪ Wz[lw_ܼ;Wy'sytt_:\OM/^4Uk(oA I{YH]‚[H~,~B endstream endobj 2162 0 obj << /Length 1742 /Filter /FlateDecode >> stream xڵXo6_!/2V+$aX^%֬/]mkDUq3 w#Qд^<(3o1gWqAĻz oyw{|ϯ~$FiVe4Ůֵ`ǜ_[b2 \={XFIz,ﺢCw*k;r#;ӴunUwv#68!#%gAGFab#S}oLI\^G1dۺwz>MH1y?.e |}4yZ׹`+BO肹۔:QkX3qlecwCvVk ŭ*BӴ*/2QPB8`.2b78"[7#^ccy+B<_z8sF|cppBAɣ$8r@zxos<}ک]^}8<>"s Eeٻa6thE BK/#D܋(ldO‰5w- Trzi4ȇvʢV? 0/\j1Whh$qc"){O1Yj* VEPAɜ(SHVB0fo> BE+iϊZWPE+X|N#39XE6wS] F=}\]} .Yͽ_U7؉x h\p[eUԦU鶗iI8fsCTQ@B8f>koRݯs3!3~&["fXzZ?1.1̭\.QE!C,8H-:B. kݚ2V"/i4b?3킺$K"k쒶#qGӎ#L ![aL<폳E,鎭bϡpl9N_B$že7F"W#QvUJ`̃!WC.Gqq:\Vsa0G+s``z%/"Dd8) rP?؅LZap^DzG^%[{X6iz ЭQ2{? +6Xɪ)p1?0rfYSy(9\ABs@"d&Zim+6Ǩ .lS  -#me>2>[# |}Mۓ0yh} endstream endobj 2172 0 obj << /Length 1129 /Filter /FlateDecode >> stream xVM6E+M[hq A4Fzhz%ZV"*EyEʖfækDg߼ [_^"b(Zm,1Ȋ AZΩDMYԼ0_Wa4b$6i,׏bkg\0vQV뇑-rj9ķ?{C54/i6*5:D)QJ'I\ % C>۲\6qC&lZ/UƋ d pWʭ˳Qh#C}8%IjkX5=+(JRX^fef%xѧ6K[P} EqSpTm GUމ]l+״c =Ӑ|o+ 8FvLReqQ8!m(aL#G*7 Y mlڛ 0JF%^ 3bN8$35|;Z#kO[b#lC,߫y ҫ}PWKib @@zy'ְ%Mb`lUH7ZYI[u3VUz)Z j+T\ -k7gd&~Yz y7 ify"Qo($H@5ǒ˙06ʓz8Q1ϋ4^;`D00 ~s#L7HܨtMϳ P|c]__S#9hKUB[e r%G1?8y(HM!> [C/Ta*-<0(tEkE8ڢ:C<\<(,g~&ꛩXGf+N x3KCO`S[r-8($f=4ehu4ܐp;HGB[Uo{*Jb,`CyΩ c3n9?{bn3Js5m98 j)# S$Ŏ*0Rt @rlp(R s4B}c insE2]1Z>n2(DX!yQ_$1*FTOBŽ;rw endstream endobj 2182 0 obj << /Length 1600 /Filter /FlateDecode >> stream xڭWYo6~_!$@!WDn4q#ަE<׫Bǖq~}gHJ^ p8~sucyϋEVJȏڢG0bJI֪4 YDD$A*2Ih()˳ BOmt2ϳOǼ_Zo`NEGK#V^/}/,XJkDk+ate]-~ ;`#QH(H_)\gO҄]ɾ(yAmo ׌ӵC{sYwZ\8AlwMV޽2;iu+4rɲA;Hʠ_k̳:R;nu1| :LrQne {4fVBD~û_Z5RMC/ kg H"0(@lt dmwZZ9C5˹3ڕfQ;qӗ1^ :&йxo?"7t !( ?{3u&]+4YmyȬl:=캭O)TdMw⪘p9;F"b KӡAWc˘F ɤJ5ӲߛG\jNVǍ b=ºO ;&eU œ+χ57]SI,Dx]bUBe<1b>n3W(ZF^K+]mY}F]M=B^ B >ϱ5mն=l%"[l|p{L3#WeSdJx#5YhA\fpv{VrxP^ʎ<ђgL`gFScq<$wx4'%&B.2=j!ݬɪ4_q9lUf+*jp=> stream xڽWYs6~(j-/1ii4d:m(Lym+2)QX|N~>{:{2& J"MVIy(*dD3Kx01I$܋BEtZ-@pwtC[8Jz "V8S_ZC9:w֭bO4CϴXEDzGq;v ٮ"%K RN:;sRNלjC̕✀[Q)g9]IE`zYl3F2@D{A|qͥR^RE-p""m OLP"!/^t-I% o#2Fch݁lq"aB`Ղ[|sV3?t8%4To{بSe-5YT( vD&۪fҲ|KrtrhyJ6 0#Uf6VABgw갟wQ%v}$c-`c'W̔[%n,(\>>Vzc_A!=aar-[7l-㸅xQе/Y=CuҺٙ>bv0{2V֣o @K!%C:$$ CYK0rk.dm7d?æcH_S[YګznOCFX 5w*=,J5beJ"Y]U4j^So%&+(N;LͪR)~4UG+.l_?AHI]N߾Zq7lyb˪+@c,[85Bm^TZA㊙?a8MPSwT|R|G#>?eX[ {  L#ʔ:$@y'rp`)l(zD=m׽\*kqPYr]-ݚRj&-&%Ŝn643jZot{.W15DEnU<]c[gu43UG8#z<MH miE a9}~zN{ W?)iIrkź2f(E2!Nz2"K{qJ4XaH@nzA`U]2(zE]R[a(@ A4 aT5v84_A7Rz{Æmk?tNպ}IYk\ʼ'߫,<";/@Qtl^t4_i._(>o)ᢻ5aGd6ZHO;QoQ琦FϏ4O /2Lƪk]@@yQ/'ġꑪo::@ѵN*Y1|#Kh*Qs&OƛugbRAn`u+4 |o9'Ǿ.VgAլ endstream endobj 2200 0 obj << /Length 1428 /Filter /FlateDecode >> stream xXێ6}W ZuTtR4&(Wm"z_R8[eypxpn8qU^UTI(͊`IHTUbې㫂)$EVQ)3]ϓ8TefU%((2THIj5,%l"iST_>xx+.ow栅^8Fܿ qT$RnPpsL9R *tR>Ўvk^7nffτCz-U˙)cNW/tC$,_[ޣMŃڈcBuܟh]i4xwiPҿjiFd1srA޾AyVem2KaofP?L}I"#AVeQ/HdCITd0oLJ!O6niM k7UrZInҷ;.&_;ѸW_2+(%H$Y ;63g^wQ}5}dk%[TnG#%r}70'썗rt,zvnS{iϻqn X6=LxnfU $ )OM7(s_29u)]{#/dnx1Zoֲ3T ::Z6{1(jm<83 fEsB4J]rY<"/e99m;B[ʲ{ߛTp2[UF'!q1[Hws~O Trvu#j?ݨhgMRڸN 鳥n<ͧ]ѱ)hn zzf qQy{Ո["dfQí~} tFM{5{Qͥ*ng{ةq6GӴ5 >D:l_Q`;#D>Ft!ԧ&k]_eOws>pT$DP,Q%W𑬌R(4e5DP}jIM(gLUzb $㨱w6.!Gn[tLڦ=wuFo3q+[4s%X\U#a6j&>"Ë1?a=ټ endstream endobj 2210 0 obj << /Length 2472 /Filter /FlateDecode >> stream xڝYm۸_aFZQ:护Z\/CShYȒl_g8CY*_Vp8⶘?$8 4ʳ|(D s@Sۦ+M7sow;]Aw-O8:tEͳ>si3 !#m犃|ʑmWטlM&$qʚG|AUYԗy~ LKCJCr(}?xWBMY=ύioj6띘d}+,Rb995ON]3BOfaLqTLFDuGv봀L1ӂɹ܅a¹:1sU).σ凢"2FؕӝTmySPξ I>|{\M8 "=OJ9. Y6m5-nS_MIqͼC &!O ?// ن[Ʈ'|%,?ME 5tgFWDc;z82'IGCH!248zjJf%CU8"8²`ݚ8w}!;縌?VffRxx<3j&X1&1FcGhI:VmE "QVAͨE!#rĹu^0 \ DSr" Vc"$<&urD=?K%֜CH:*beN]{~g&(P3xޏYF#(o4ve i 1NLQĈX:6ݍgEOdbOEW3*^'ˊ :<)뼂5;q0X B=v(Zv1jQ)8hغ;Y6I+ M=̂`;pFL/ЊUw?vr[4#A8Rd)at]hn)М٤<N8P*2U(*HBQS-{/bC?8f=hO#{82 LYg%GpͱM)z k.cV֔{Sϭ"Jstte5TZl|E%n7Ml>3UAwRzpv?7JԶ y_ˤ%M9Pd&(r衧f6܇E)Ȑ-ܠ ҍb/Ɍ-%)qȜK󈫿q5tm ?~]5qix= `|7u|͵%Mdisa=Y7f"> 7 VmG/F;ldImEDphٖEv T2b[%J3ؠ |?]de ,w@L^-Rk8WL@;E&ɯddkOpY&6}ёhvNyxMb *f;CΊc*eMXȳ%E:gTEo䯵KbՑ _/} d5ѼMؿmќE~zmK7g=(4?"ܦ;n(%Yަe3qff>>>??v(FCƉZZ}3v[y+1}=%u/3ߑ0 ?k5| Mڈj97UC%t]) @߁;uI+znO@8Kܕ@ Gš))*/HaY1*;zwG❊R7/JcL M2y2|%"x{iG%eEE[wWM2L=~eE^~/ך  wvrE'_q2>Iei)hsL{ozob L+~7g#n"Ѱ?&3i䪛^Oqnx3QF_aF\\L7@]r }?`f|1n}MP,/HFɕEF˥'{[匪wdm^Fe슣s\s(Up}zB+ endstream endobj 2218 0 obj << /Length 1655 /Filter /FlateDecode >> stream xڭˎ6d Romzh-PI$Zm"nCC)K6bgHG_?.[,ʼۭIadڻ~O]]g4NIBd*l1"$, bo#,Ѽ8 *r¯lG#.xz52w}t}jQ/^@R21<3pG%!L2{hMI \؞=R8OBY"ӓ?gs2fږ}ţbϧ~lPI:mr{*i d _Y#.7[~}==3n=0OU$Knk`x!00U0gѢ5Z]qֈk貋.<A3+foJ_ -:0CiDH!Я/Vz8jYmZ٫`x!XP5t4WL-%3f fݓG(jrVA:ۙ׺qaAi^ƙe-+=8fC2۟lQgɆ=59Ps=  ː> Ε]@|__,fnͪ_HDZFz6MZ/Wph?sDBFGuT!X_K&; ] aug0(}Mݛi> stream xX[o6~ϯ0R&%Q麴[$0{ef+H~/eG&yn<$ -Gx똌2A<_(QBlt?s^2Po`L^Ӹf1J g ǭ8H@Z+Qlg/B>D؜f8؃H˝SωV_y3&W\Ht lK7j%b ?ߤBRbS/6_{+57#  +I/gWL ь׍ DnPH!Xx@{?3BYJZRk|2nzӟ< 4%,QĦIlmGw! [-+wDN{j/gM^I7x봷)Qyj儿ϙ^VXil(wj}jgCu^$+/K[65suS[kus jx +y>+X@r#NoJ֕xb Q1g]Yq)A+ Cn}9/4"dB@ Dav@k=¶W%yJ|*\ֳ@Dz# pd @3}rql'Qg\ i1!LG5G+d!Ҙ&'(HG{@޶aCr Hv=at8Ma)+QegvMdՎIK(|5a'/7!0麬Rޫel Bʏi"z訕s(xlWjwZA!L=wF/C0?ZН%I ik>mRi{i7fy)HY <>w`[.ݏm] L6UŽKUnZ}d0Anh t6uCOIH*o>iF39Kl:䪱%Sz g>]Z{7@SfF\* 7$)|?u{Rl{?#f>U};σ]Jx/ʊs0ɾz<5a=$&Nq= T@^mTW(&CCF)Dzb=yDٞyrN/ŀYE!@azNu=gj`AH; -Tyًqgn>лsCdY lCf"wA;Xŧ|Ɇ\Kip9a6nvNYiZܥj^ %0ysMvŽ%S?)L25M=Y|zy 3 wgj̵)/6=JN| }_v庞H}> stream xڵWK6ϯ)PD=dbǁ5t.sHnjSER4#;{"Y,HSD?^]yT*yt$`i跘˜XS rLhԁ݁XrhW 4bMy!1uw4j`u[Uw]2E¼n~Z=9)_(3$(nGA0ݜ*lQfR 4mxxl>ZOBNҪݱo|c&vbe}l=aҦߘm(a%q~HRv4ZY!!vҧߝOL]_G3ޏNz-7ha%ĿM ω_<]? P<'o3vr1h'+~] ֦a]H=g{zeF`3'YqY7()Ēbe=1]!KI22H~('U.$r;svETyhE۰ڂH0jpX/] HgY@ UU5~{#dφw%``O)ߚQՈ?vJ)l' dp񬱲Uf ݏj}{ X|رeIiZ:/rr=3\ZB'϶ 义ڮz9O Z5xLUó2 ! *dy0w8J\t@Y\&d|591wVޒUNA%볧3{]IǮ`3]6c c8{{l:ƫ sJajzjgFe3j헨vstvɋڹ]-G [ӟ7.y"V,,#4߁dԄ/QQ޳e{~xZk eP ueUIkxNWzq;^/GCaN9zi t _k(vP@rF6.TRyYn! _ |èh7?T?T9y7=hNbO{3?6(\NpaYc"-tqLྥ_ȝĂ㛐Hw?Qρ }]|.NgxQ~*Lga#UVf ՟- endstream endobj 2251 0 obj << /Length 3028 /Filter /FlateDecode >> stream xڭZr}Wi ,sMxZlT6IXL @tυ MEU6fz.fN!zWo_tjfW8+F)R_ƈ~ubUIT3gLU)Yh41~3 ;v[ zS97`aЧKΘ-ݲywej,1ֆ*w9VTzK^Z4_yT7/Lw{P< 5 ǽ_k~'jCxU[.Ҵb82/ OѸVqr[eF w5ڻCI-o}m`w`AŽ~Yq-]QnSqEo*(f N0Q?CC{Vp7gl]wX lޯa=HL 'Y]}PVC2=":pX'Zn ,Lx3zφ"4h7Mal6 >"5Ϫtg=JbL8ˆq~ )b #\ K.)ҍbԤiYt2i98UF3 Zk&Xr]/r e1pc 2c n|q!n|F[ߧ!Mlw ~]C#T`n;FLj ȡmv`_+,:^_t.j>΀3 y^D>JVgon}h*NI`ZeP#/iC门 >P =nC gg͍pն(Mؤ `P5 aQR@!e{i(1ž)RCRC%fQvilМ#}1ܓS Ee**ʑq=b`Vʘ2Y !#>at?sL;fqЙ_yMARJGPO ^_hT2]J>=bk) ak04~r2 Dl!W?œR?@]T?ZXee o@H\z}(-:N s.j)nc g1b2ǁ Y{ v;2 z\DS$.Pc=5/r};`>;*N~O|Rps#:j z+xf1^NZP-!9HZæ"vYqZֻ󡫢5'eΜ'7&'I+q0[p,SS`NEuL$Ri(a9Ze|O7wNs=Gc-p%a!6Ge{hAHZ57/f(m׎O&4#\p5MTO;$#ʌ],(o2}"V嶎MU*3*y:U#ZqH* N.bab({F(HNQkT8U'): >j'V_$[G5ODX{R%uRTNJW΋eirqi x$LHK 8 5dT6%0৲(]r W'` \`"B&\B'ɠ?1>$\1yFd+< 4CԆ-͡Ķ}[S{3f[lfHC̐@C̐\!&#F*`8u ^, X2,偠 8ݖOq'E-aƇ'AsнL 7>DϘF7)gO ޖuHqPq4V.KTzH?TЎjsT>Smb:V0 NPJDV1?u.W>"^;瀠w0r R):Ӈr1yñ./2#@}Μ21ft1aq%ј,ˬ*&7]3[) SX ATh *סMKW endstream endobj 2258 0 obj << /Length 1314 /Filter /FlateDecode >> stream xڭVIo6Wn60VHڂ0EAmS&Fm顨8iE%v9q{[?!o!>O#y˕yQz{Lo# ORPN_3 !g,g݌pwږ<Kq47oc?JI;BT a䧡th3R& "}!~ MgPv#~{ʂ+ʲh[ }@E1sQ'웖EpԚ 8-b#U.K}ڋx(M%AZ~NP;XV|l͒П`E n* .(@~l,wiB\~ٵŷTx2QlIbU3)sUrl*oe$6*uB!">N\A~O *hj?"To[?*#$:N:֌1VahT[mqo]lfȝU%rm%p7AG˪rZtgD+o</gGah#{sⰇL4x0g$D6nVSLV,Sdխʮ& &v ~mo?Mt!@` ;}ՙ,zdCvLr MݑȮJt_Ȃ;ϓ6nm5%޼h.~_2YBKcL n-UvW }5o"Al:>3ey! ?k0|= a1^{lVal[IZLpþ>(]ԻT= 0,WA9cٽpJ6TL1FC8{ ?3ZYРh6r̞vƨvbp=+P*Å`~?TPEеIt Vn] Y] TI=UEׇZVw2Q}gX RX7C..ϴfpK%wҲiuQh8L5lmNBkJR\BO||_:KtșIZA[::Ɠ(W'1-*Ga'qڟYX3e&7هjedGvpp)!;@y.*I*al aH}3!|Y'/VSЖ,DS !iiwg4{)%Jհ9A VVB9݇tdެ>pr,2?+ endstream endobj 2159 0 obj << /Type /ObjStm /N 100 /First 968 /Length 1505 /Filter /FlateDecode >> stream xY]o[7 }0]"1 l@t"Yv:p;nnW9<$>(HrT]pL$]e[bFpTF"8-$$E']$h/i`0K.lFq8*LdOW,X`YaIAp`eŲ R6+WG-8b .M*05lѐ00 Ԣ+$84KZͣbh6~կػVA+III* *1Q[PJEGlD{Ւёf bIEC8O`%XJ] yT#'S| }Mxʤ6,!r,D"f!r^MJL:6 `fj˪DLN8X̰lX Dywj:) \ԢeRJmFD-cWClHvU)DQK+,TjdL6OKy *V2FCT[K)m2Ѭ-c+V0,,ҢB9ɚ+jůC\a `q$DcRdx^I|_~QWcv/%zwZjDDs&h>[7Ab$ ~0IaBo.-'ӥ{gO|~>S|pz:#lyi2'r~8^Īi{a/L|WuHku!x~hi!D>r kK3z':Jo&\Q{T||H`繳F;s'p'r'p6#ڋՖh|2lLGE 1ZH= ͅ\/i[Iwr1/f m|y1 'O?˷ ûw٫۷ m(Gڛ4yB3:ѡzډF})HeS׊UFXWv`]:'T7 c6+>hd s':fC/8{(Z[S':܇$),k&`׭Wyŷ>u\Yˊep':hG}ۨfw7b.q١umXqQk/:doCDLp{vCc ݳ {#_a׽Ƅ{PFSvS~h JD>PEV(:ѸXD|} ŢruX=K/mm5:>DG;6^OcB;f|zVGÝᨷVY-hoWHޯ8Erx ͽXjo"nrahܒe۴:5/+nKi?h.p'Z3y-h{1f"|ډnYͥ ܋&$7$ iO:;^DxAeزWaoR]X񵐺LF g2 Bf;QE1P'n~|Сo_˳Z\^ a>^ [uw M^$xwo/Ó endstream endobj 2271 0 obj << /Length 2106 /Filter /FlateDecode >> stream xڭXmo8_aXwewm$w]`[h%IMp([vPpf8>p`7/~{q~Yi3~1?]5ݩh0`$DEgE6ˌҋn2,7 ^QDj j9|!PEiܭ,ummW--It_BtVD JƤNZeqJ6 e#Z嚖]tN)H:akޮ4A6 ]A݆F DSZwv} f-ȜKZҝK$+мhRjK0}B 'NP) D3@LȊO׮p%N9: Ѿ$SVmSZw]m^E7 Xv>֏Sm#tT,xh[lx[n2Gs-}aݖM_ kRXC'r`}8p٨9 3E Nwvv,42 h8`2 uLt0am)l{ Ct(zHBML}FIdF!$+)PKƒDZa.?=B0n9 5A'{!u"~ZєJʮՒ+mU&*`%CD¦WPhFi4q|KɈ=Rl',YېDUsodGKnIpD*PV(d`jc^;3CsŻZQ0rS(QpPns) GgI6j?c;ăOh0S> fh/r6حުvv=8h&8O3vۮ.˝R|KBo KYf:ommW1[]ٷt[hOBql5,`_J"C`^9}vn7I14gVs]+]"p fh:hkȥeNIiq +{0pRj Od,0 7?c`Daoۯs^~RyӜ`ezGPFx3B 'Y(sIb3L۹C(괂XL6Rp  5rB*ԾX,9A4KNԈv>HBς*7kAG6TROb?,2?4۟loLߚ zqB=S#bds`ߡ<}I}yzt:w <==ؠmW,GY\~³QCP_ ~/'zn , o?]b?z>{?j7 oؔ0pn=# F^~t@S!<p L +LAxWFqyt̕C7ɒYb#Z[!|z CQUe#8hP ',k>hP0?0$A?'G*-` ?'VY6Yo_Ost܆k;1l+1e 5}4aID`՚J횆o*@AɁ\>v~~/[ܷC(5\nJ>,lN;.[ްeScuq}8c[^K_J|rQsǁ.ȓmcQtr}g\ BٲoK]w-|6Qv-M6Xs%0T׼ԝ<=79oKc 6BuԷ5N8\>iT~ h~|(K3?Bʱo8%av굺{_gf= endstream endobj 2280 0 obj << /Length 1513 /Filter /FlateDecode >> stream xXK60ش+$۲ THh{K($*$e{3|Ȓ,{^ڢ]'$"uœ|?Ǔel=y&o凇_atXu4QF/iUEA8C =&+7MhG}{OG_/4/^zm"lS[Alh6I?RI[Qu-BϞ={-VMA͔ffecJPJZ)GRfZL,+زJJ 89 z3pGϞ}a2v֢~nhVَyfY&9',~kf*_70 )xLJJ*k$e]jkK#Uv3PH\G;fLIQ6&ӟNu%KJf2c UŒ|Dh@mn3E9IC?Q{K>2˂iqzA-4r9Ћ]+/PtßN6Ī]ܥ-%.ɍzSrl|KɥAbިQ=fe˼[f;s(GM&R f%Wa>_VTYTxh67RNIe( vfsvG^*yNDbIZ:3յmݽ*>Q/h#sM@4 !0÷f;;,WIv)HNw}ws3$6kX>Z;x[Dmrj b4IQ<[OwQ,u]puC +r+lhvT[̵Vy:)460Tglqܧ|߿tN+ ?iEgqǂn^#m/y%v" [GRkdڳ#j4}e:;J2 <,V#2s`(sL>Fql |;Ҷh\A޴\utRmݡ Q5D/yѡ֭7qՎXËmLs/CEJλSjcvaIq <-?[{Ӳv5bhjE1{F8E$"mod/ ub/J@WýSX/%v0hԝvRaޮ~EgU+~߅] 'h7&GKwAb@bvvjNyFQ #T;0%/;8Y ,MX`L$ƾ]VG#O}=yaT;DH|qMT[ZQ ]u(`,S^%.1NpY~.ξ?z A1S|W?_WLJ`c1dƠnOߥrGiSfpwvR3뿄 #b>!齽홋ǨMeSv+IЍn7 endstream endobj 2284 0 obj << /Length 1414 /Filter /FlateDecode >> stream xڭn60RDɒEuvS@EEt eD-I9o/hpf83G gY8C f`FlS@"-x=B}|3: 뵔2QLWUrGNۏ+EmG{( pE( 6J0X'hVI_0JtG@ˑ= iJP׭h S dYdy4i:8︅|Qd^i=\|*]n3}n!Cւm+0=KԜ%;s%eM\WdRڏpjX!~fG䙃ENvPc.{ c-/NgȪː y*X9rYIl(A.dQRVJpI elҟtn]4Oޥ Wgeb([⊳ČM%i\)Y܎5'Ba*3!0G[ladtPMf-&`m%b-օ=ATC;jHɠ|onN`%~W6^ ɒyo'P$)Ra ɉc[7^&|$!dE D.Ud u7` `RUPIA}\@P8 ._5S<:OPh-i_SHjB[\(ptTӪ*T*Ó>U2gfj,Ym)G%i)CZfp=❬KJS_h݉6 .VVbRb-HIiǷ &;a- p5zbLDƊ._4 i2d rң5gJŰCX67Wwdqx˝\R{76()9E3pڣ8Q|$ǧg̣[DithďP\6 +g;$%4A4ͳ=ڞM7@,.6 1{܍Bj?#TО65:xaP2doj'7>rKY0i{Gŏ@9tL_:ͣ;}9%?as/I> endstream endobj 2289 0 obj << /Length 1732 /Filter /FlateDecode >> stream xXmo6_a$fo"aŒaCVtMZ Hh$$$߾KQ-60x/OrǛ;urtrFㅳh|#u 9_f 'gcЉA)c%zjȵzN|o(P;so|:]w܌X8޾sCW_S5G=еS@" J8h*^NKrSL,DWG]ݔ 9!gbC>>>6TZXa IΐzMR)Nr3UB9V({`Ec6}}:5;N3CzkG53[\3hbbt+Rqr!D/h٥MN%;Ċ2E!՚uN$Sq&wH`OaJ>׬kNB2ŪXC[ʤo{DFuZڬ}5)dH8H ߙ"`vҁV.rW钦U'o→CpT8%+vd$zͪBm!dx}7pXPN U9$ 9~;Aj̘d$n &Xhcq:j^3Aײ%"e<1hZDeu^zZe|w(7|(YànkS5QȂ{A1gVyFFIޥle$ey]塅_./ ]aTU~O_du]2 JMӟluvbWV`ۭﶃ.q/;zfMq~l@U lm ֖!a ,o138̊iI6G.*SA\+jUZ3nޚ& ˦/ߜ{C3B Zn+~?O:ͣ$y;dIܤ[f+sIftKȶkt藬 ݑ=o}=xYC34~׸1Ena?U=Ɛ' Fxv,*^ uB-m\|n@> $N}vy-gҸy}/ĒJ_=ސYt۸Mf3r>wiu\/9WZWfHنJ[-jC٘pjp%kAHcԾ{Ikw"wE2Ѭ88P!??@>ӣ(qʗx9p/BT:M=ߝ$S4EŒOp Ѻ0;t|p{RWRA濕YPb^E+}ZWL=[| >xnƊ_Hz\'mT^7ᣅ{߃[*68-|B(xn;RAQIdVnQLRmsRcZT; |K JmP8T/Af6mE*;x@fYݮj%N-3FOS{4+5fyΦ^8Lђ(p؉ن;',8P) 䘫!opo/GUn3B i! endstream endobj 2295 0 obj << /Length 187 /Filter /FlateDecode >> stream xm=0w~ō2\[RG1qfZ `vwy{_ FIjW`K`Thƨl]?CEy|$j 6f|3rC'\G1KY.t~͏m"Kt 8uuTv]W~ކ-Cӄ)]j%W '}K endstream endobj 2301 0 obj << /Length 1715 /Filter /FlateDecode >> stream xX[o6~ϯ0ZuW1 [&CEeZ-(PRR$Gm^9߹]<)I#/Z\ouDR:_8Yyv}U?ID)җr֒s]0 G/W^0a7XRF7ҸL}8n մ˕S0MH@P‘~{,Ќ8wHNc[3ݦk? IT-~VdfUۘQ̔܋Ҭno;%h?.@Jdg_ľGEn n&o~ =Z'HӲ*g*7XrBV!#>>u2G/b_8G9S0ߩ%M$AT'w 96/+D+nK<,ʶ&0!~.V%a`LͤȌͤ%@#!qX\.dxi ^@ L5J,_* fp*BʚCw{QrOxLΗ|aϫ(31U8kآKh Zٲj,Eim"Kf0¾wU&(oB٦E4p>h ˮEpf0\Pg;$$aLhR,Z(.ygoU{7iPE:{QG"Eux,uLvAI}0neYJmUW=x j ` }!q ao ÅmJ3WfBc36m XNv _;Cm$2CO@/'&~DsYβ2 D[3KHUv\_N'5l_|NF|EW);Qij۠ԑ3m0yPe3:ӁBum-!&2[ڠ4yP8# ,'5C5N]@@# D}WtCh/:hz =C^WtT YmNHiSh=;](n(A@B7m[7D_! oBKEzMXMO ?!:G몜#;gnu\lf"bqCWm: Ә/I@7>̟X3MC&_ݮ!3HpwMP_2 j)IM6~H(@Ĝ؉?xGt lg̓]3G u\jj= [>C7+כ듿Xz endstream endobj 2312 0 obj << /Length 1109 /Filter /FlateDecode >> stream xVKs6Wp 5xiikwxX9%9$$% Q~}RK9a `UB M* #%AJJX,CXrsb矖_\Ɏ!9LH[. 2N"`i6/h 1{-1UnRq;𖷱 <`e]Sq1uaG3 6dB I/-S-GbȬoyѕ?z̽znd n)YX;|; p]F %(ed(%wZ?em'e+Řze&FX07Ry͍&աZ?<NU-@単_~s{y;5j]R"˪o|0gRLMnj^;yv0H!FYJ-jKNJ )˶$G h2\v>(!]Z4pPGpXjD0҈\?Mt x?J"DC4&Ѳ35`4ZSgd1@J@XFv}]?ָrǡ44I ` 1'q Kqot/=r<VCH8Ri_n 9%C!AUBUb<@Pzz8c1J4wQ4Z Xً# 6ow.W^ Rި/Cwm3W!X7nU"q?dlU֎ <$촔EAyD7BUũ)h9u]~=p@s{t:dx>u-z0p| vGS8ƦK(Ee|K_RGg̰oG)v4؋SO)(u49- endstream endobj 2321 0 obj << /Length 2035 /Filter /FlateDecode >> stream xڝXm6_alЋ ZXKv7i&w@GK@Qq_)KkH3Ùgf3o͓WQ7UXhQ 4SΔ۪zD΁<=oÔ1栃P{mbU[W4wVh*ejIdVM!29JxA"F M("`^X솑pWԾ-Bihl  ZN %DڒU85jΤ_@ו<ԕhU M#ӧ0@ ]7)#Wc`*+` _JҲ[ :d=tG?yx Ѳ`Q(Uϧ6R((ZXhа{S[ۮѭ{bWLy 30Jb+EH@Fjgʼ~(N%6˖WN=ԖjYxB>I3R},!|9FK]\/y\)EV?'X %-_y(9h; #zt r#m@b<ۘYN= |4ĭ?5zD8qUԣ"4eʮ5fU6??Xk;^}xGӾrcfȼ3*L#CcУQ+ %+GwB88 ^z7l<ƴ&7UTM]H?$t擻@shTWHFyOPX.^_i46Oש\ fh%2e1/ĆD ĿyYzaLеMmxXjŷ*TmpWsX;Q}gtEIMk3/A׊fOXh endstream endobj 2330 0 obj << /Length 993 /Filter /FlateDecode >> stream xڭVKo8W*{HxEStm큖$wR,[N^!7Γ?&*"NȋmDΒ͜o6Ud]faͿo\O"LpHLԢ +sbXj/ca 1݉*k $2Q9K *a%kK+ZSs-t.K0J,veCASf@r&Y1'Y'RQf.Xfouys?MUӬ=s6Qc|W++I ;,VN9ث1\ "@^=Y*U4m33r#>WX)-v5+xŮLDy_J?zxۺur:u]ZGT3$ɵ{4%2ȴ⤲n}ѧ:l EE\z9H:ʐ59 %9”_2f+3mmhuϗ(5&ԗޑm~;9!`AIɷ@ ΑQ/-ڏe\8_}q ' ( aL^m`NzPt3Q?{LYA.zffta2M:'l/Daܭ5p'yɡ{+P#S()1j eGbթ)f/ @` b˒}\?˥jD?[5U\k&zhmj`Ur νp>`0'mAkmA;S.Ү(e{xK34 _B endstream endobj 2337 0 obj << /Length 1800 /Filter /FlateDecode >> stream xڽXK6𩰁EӤ"h"qC-6 TIjwZmv fxēn[ob$")&̈́1Ibr'NiZ5McB)q<52)6$UpO~v8 dͰ-8s~&Z(?˵ x*)H,ɧJ̎p;W;><˙_m4kR2!F5[BnΦoy>pI4_kl_D/|$I!<1U'gI<>i&UZY@&\ j}9VS>԰kow"ӂɊ?YA[ \jc!)*tNT1NƯ[ezԻaά<۞A1~'ے׶CC+-Z!Y0tw KN@pE>նNh9U]L>ڄ(%n1خDǤ y^Ox ՎiV#=l~A=ՀF; ᾽C~n mh˕ %tc$e}š4*g*M_nPT/ܢ4s( (sP8h 2tӠX8B׾,"sK8+޳VT:56AYvϹ:*pW:?|J$f tܽ 8MYց;º[>HG/;gW T= ›l&p5$!%&[P?7{$)ߨTTtHN Lvh#{^gxTuki SP@r9,K,9spgM(Z=O M^ Z En`qNAښCm\ ̂,:a.;Ȝso\3| \tҿ D$qr&39!r~mVT` mKNnNc8<.naGpzFL2{OSa$8 1-\j7(\ցCSvo8-\V–0k8wDE0" y~֜љ@Awz>DPJ ~2@WC1A*svs 7»1gaBijJ3j63vvz0-FeF(h L)7 [D7#s0M2 y NDa_0Y?vv|p,<]bBV51?Ѝ;##~U Bt@*J:j XOsxkq@/80MLs"P8VnC05ɵ@x Pg^MdrkYp Er>/nmͰIlhyaKk r $hܒ,Lܫ =~ &#".RH1a~)s} J2uJ`)a,.<ԈЊ(W7= endstream endobj 2348 0 obj << /Length 1039 /Filter /FlateDecode >> stream xWK6Woˋ`@94^(Duw$>.ZDڱvc|q{s#/:Z.ͬfX 𦢢7z0k0) 8Hi[ >RW4#kϻG߳bP.l9( V;;t)۟ Dkdj`#:K`oƈ \ѝ3iMeHu: ">F|BcW"րBMZĔ ~G %*3._8};2FID\԰~p-OpĜeNzi!R@7`Bc4( oZcg 3- ^n?*DkH-hN s-dl{_svG,{^hE_%;eGUE,8}QMsԛ9)Lc|:(^d`u(yZ4 9gR6:(kiK2YrIi# զ _ϐ퉦fon r?) x 7BþP0uFIHN% ] jũb=գ]G%vSuP fP-[x9ps9Ȃ+io 6 _N?n.1K6m?DWH݃Y/[]|*hI)T!2lMp ]*r*Y}Qizu]& ъm+ ?Ū63#qpQw_UN^h죋j:  O8Ni#,K}PǦ2 V~o OVOBu8" endstream endobj 2353 0 obj << /Length 1673 /Filter /FlateDecode >> stream xڵXY6~_@ LsHJAd:I&V;$TTږOQ,Al_Wn^*kI[*=dRRUV3Fv}[Κr[^(ғuz2rW4]+C U-u֍WN6`mtJ. Տg~~_(JU!Yqqafwn僚fwOiWK/eʱotXqO*R7urGtՓv.n-kH$@ΟzN\OoPmo@}}$LaywVMݼizʠG8njT?9w,>q.7';EA-XlhB"~/lECvrV-E/vix*i(8p{e=X9L^ři0mLN^)  dL"\#-JJjqN AZyeӥ"B.Ay5PQ\:qh]h=y AAw2DS#$GJ4*OJBD ͂VL=W$!Xp"Ұ M̼=BbL>*`?~|mKW2>;[Bkv7s)h-8CjŶgr1kCXK)2.~eWOAViw:{ƅ?`}:V'T;4鬷J1fD녋(~51 yy$m)sR'? ҮȩV@xo,[qC^Oa\µN;/u!eXsUϗnȻz0K4Yn!0 $ Nw8>YjPOZ$NχBILzp~M)_v[3hHҟ2w޺p>3a("0EiR)jàdDt&|SxrER$`^h"` >u~u#0wFz0hEr[{5].!2Je 0naw& e۟+7\Ճ9, jTnujR2>34l92'hqSz!`hWn7@~f]),6?Q+M7 ֨7T'IoFyHUNݙ<$y_ϡ _0hV Hj[lG¤/V1ZWtCY?AqROa"n+!?:B,x.1 *DXDj>u$8jc]kkNrjl4Ō 8蘭Y!:Y4^@RLQhh06Q[._s^m lYĥX[ s ڞ?onzx3NcEKW&&[xf3?Zguɫy5,M"isP\#~F Om!8o} }\\&!]#XC9A8|?JD; X*%Kczr>eEy^L ^l며`鑴e=^Bnw쩷 endstream endobj 2365 0 obj << /Length 3124 /Filter /FlateDecode >> stream xڝZMsHiEXf{v۞۱;{RɢPݿ~3l^DU@^B}pzaQbƈ?"kɶn┳/g&qœ֟% >PV=ip 5KSOXrn<f$|[W)Kitm fóVuVοJ3wuLSF ӄ([dp S.5S^x$ރ}DYAF+"nѩ.}]eq3|vֹ}ve7^g;,Kgt"<0*H1Ż%ќ0H R'fyӚ,eYծЇ:<7R8szKDҝ rS3<*\ 8vͲm@.MUZWBwZmE.0 gE^w Or" /c`iI҄LZ;֏ݵ!d1ȘDdQ太gE2kos5*c`ZgEV:D YBQE XI=ƘwsVz?*kWyOtW.4LGAet灏x |;Dtvepyuغ ؚ-Xok\t^|[`C Ĉ ,0c]ӓ/8,mtAƟ) */ccPO}?Nh"é":V@Hۇa&ҷ1:"lnYG!wg]Q<ߜk%:F"ߒE1*11NT Nn1i;C*]WUm]\a~J}~Jܼh(+1볬ľAζyJ63/P8\}C(b94tyy;Ց{$@>Iٓ_!iw:)!e0(=> &a5fje'V'i͂BĒhG= t*(R1ʲ*"coHA;D%tr'Z $r%^ϕ{R`2JB1O0"۩@:< X!A$?nmc$ &}ss߾p4ɾgU0 w_zYW: gS}Y73{%ŮR=ЗU48{up (\MW>"Z(<歠f;$ 縃06S|Cu$M`}a)@bK27Qe:1 %Aj x%È֯zFUKL]DOS3 e[ء)8 f6mUDp(T{&sE~8p{bƻpZ!>ebNCFW_ qTEnq.d &_Fs}N0 Z fu8;\?~e_a!f?u~AVrP \2ė .muБ--rݞ4r[ڽ1&էS)dѨ,AJ>* vO5Xm:nOLaV\+4g(>VOLŝ@X wgqA)&_xUurXrv rԎYSİvCOk/;zmb!s! V9c3_Ŷ~s>}zX `ppMQ7EXF`w\.jmkw8; 4*;ޥYpGL49| m\Л RSIl.NZwi,nI4"] jq;̣U=9^n]lp54z^oV 44d޵{Ɉ+TG ˚KiJJOha:v}v)Dªc_oWLK,'wߓE' =y%fP 8[J uā(iBiS2udgB; Vog)Ml`%YA?&7Jͣ+O7m7vE+~>۪1 ~} $=@ۆ&jkAzT`P 8U!6uXɑnu",XjOSS7:FޛXd]'2b4B LX-n,Uͤ "W{V#Hxׄ4"SC4\2a~k-PY&v`D,2~^L8-c| e?D{hq p-(a,/(/[6Q>*k0գ) 7|SNۣi͉;ւB-}Cۨi0몱+maNL0~[!EGdb) "S;71Qi#o9U7:\VFWeJH@Iuz%IGN s H//1~(P?<[LjHSLpUtr8qR4g(RxꚷmSW懩1ue" endstream endobj 2267 0 obj << /Type /ObjStm /N 100 /First 970 /Length 1552 /Filter /FlateDecode >> stream xY[oT7~ϯcy؞*B H*.l ƛ MV͜s>bD]p)8;4crbe#G| D. Jp\>UC{\ɶXv5DАL18&T] Рb]P Kn{%VTqq\‡crXZJPq*AB-.* AQ~)| N=f\˚w@9;p.Jl+Mo5@g[aYr?" R.wɬv)PҸPf%P9QI~hIM~HK (!Tn+hPTPsװ^2gBD6KhND ɹcTmj"*#jކ{Icj$A,(dj&$pՉXUdQ䫔[`W[n!Zn7"1ba҅P,pqC2P7KBA5S(l%,x.s"3_mdf4mbx4cS}@KB p*琁;|=n0'pla0LN?=z+&~-|%R]":R^4%_1R>؋Nҫ7{GŌFޤ%а9Zr^V,>^Nj^[5;bþF.o~1v)xNtDI!+nWPOe9|JOy-3Ygm +zXzρY zR}x!c˳ٻta8<3y|1|5+[⧝h{ys$5wq9S/:%{8z+Nt~нwRoҷCh,$A3ԉ&L;w9x҉N rasmagXƇל:/5+B0%N4k@^4WW)՞@|J+$^t`몝`ľnEPY%Ao [&ĊM6!*cӶn?u'V%xNh'5:U[{YX=lXѶj\yFp~Z$i ?-/!o/+RڍNSՄQ9i'W^D'l^4zq^MCkc Օ"|-bgݕg՜rmP}=\1xAU} C74y5qoO'FSm#7k= endstream endobj 2372 0 obj << /Length 1167 /Filter /FlateDecode >> stream xWMo6Wi6)ԇmwhAiDjIIPw(RIiizͼ ZZ?~\.J4"k:~Y1BNjcQ-nW\\Eh  D m2^8莩4M5X8@;ۋ@.iZ/|J@9 ZF1`vscwz ]* +'wL\' 6JZj yε]0rRm) Fe#$$~ڡdR9q$Ւg~~a%id{ ?9e^)CBAJf\FΧܬ2Bgl)Y&`S lu׆V|!V=H|^;UbZ][&ƨ:32~FL>^X_-x#܏f_g4] 4' B+f7?ĺkE++>KzɆ׶ly ԣY{TU'j&"BwΨ^;!XN2u;͏_*8ks3.)`¹M9(n GhS(뚉gYӦœru>lEÏX'"2teobAq?m<_K,> stream xXK6WIVAhG@KF= -G 69="_?~U<\ܮucN%lDEȲǴ24xʁ:XWp RkgKFt@%+P:4J(t`q6SR4 Ma3+h"TMuW![qK1v"LBP Rh|Ms` 9Dd!B[±/dG<85E|Km 3 8z*w@NxSlVUgvIZ4"S_蔩 ˏ̅\Avr ݀,q\F[)Ts,"B*a`218ۨc\/;ZW]{A{;tӭD?d׷g;,n&Z5K8׿ώj_gnP}'A4܇'b٘ިYlgy\٤ 2ߺv|cF<2)r=Ȟ3 kNZ6qZ+#?tUt5#$s˻ɇK\  7/hgW/nGNx?=8t1Ҙt.⏜РPe*Pu ?I,Zsb/ZB>Mns^?c8?O1LL-0!fI9rt@Ag4Q.T)h|!VgϳDq 1EoU2?ZK5Z6Y3rÏ>&;Iw4GPu_geJs')oŹFTR~ !+k/q~_5_>/o,x endstream endobj 2394 0 obj << /Length 1107 /Filter /FlateDecode >> stream xVK6 Whv{g"DYwKl6&)́+Q'w_!iibB x?L_Mnn[EoUzahxi$Zx{; lnmFQ4Gƨ m+uGz*pC}hnn#ep:~bs)lF։웆ADEf~S%H+%}FL%;s \-̺-ajŎkArtr][A`T-b;߮Tu %ty+aK@7-oQǥ[z}wcG.(ə8rY<;;#gӭ9k5wtpd o w Aeb In %d T;~:B ~8c4o|Z4W>  ضEaGaφ˫?_ T1-X`UqX߭;xGRC\l˫+_0(v9ARl5NĆ~ Dӡ˶О^qgDG&/W?'! p7Yo&8rDiE6v5 );Ht@&SvP`UD=Gd l~Q?OC!x}A_)FO,+ 0)]$\_]B.F[% 3*GvtlUp70s`^Y0Vl ι =X)LB endstream endobj 2403 0 obj << /Length 1217 /Filter /FlateDecode >> stream xڵVnF}W2ВN#*(r"n Yh>ȵ1%ȥ;{!u .BmfΜ9;ZˋMG)J#/-GuDchr"#FHKkMi4'$Q{# P\ }՝(me˷Ĥ1$"/:'2dU@l=FC\y3.2/`ֺtgRtaz3) 'i`&( S5ͿmU[m:>ÉIߊo Q>C꺖(R-P\ ;coПR晝Y@_q[}OiAmn=H@(ت&^Әth"k "hs;ptό\'y;!- Une~+ Ц|˾F9==X3@}?U.NS̟jv;v>//b endstream endobj 2412 0 obj << /Length 1163 /Filter /FlateDecode >> stream xX[o6~ϯ H0I$[i@8ņxeҖVIT%:^R$%J:0A˹:xuruq03 Xm u+dvgۇծ>pɔ /!Hc.=๜H]gLw0ܶz5Mئ/\^^c74̑ ]XEJ(d۞ܩP0,5'r-.L/3%4ųZU5ub&f<_p |aex* rh2)Bl5B&D1l|֕",CdorFAoNS@ LQn.ECh+X-©g ^Gx|R:PMhJM> @ܓ nqLAAY$n~}\D $=잀TE5B125fvWbd0\ 8.;٩v٫A.릦3J'dHCGq`Ă\cڸv׈)yHToAVAjƛb*o!N#ihF)\S6G[%k);Vqdѷ  k&Kv Q}-W2' |*0,+\OP/]UFDB}W[ endstream endobj 2416 0 obj << /Length 1244 /Filter /FlateDecode >> stream xڥWKs6WhhD!Qb$b]Ydd>]\,={䛾xfd[NܶMGxts#f>mY*\:c]XqaqĦWe|Q|҂Q5p,&Bb1`[""L"S*ĻrP^ N0l/߬/kzꟖ\ȗzݥu"IA\ xw9FU!Ōm[`[?Pf;e:rTT,cJ & 0rXbtGcYcH;_As^S{Y`0T9F[%( bRod9n/2,ϊ;Cܪ=G>!i4 Z~o) ࡴa-bxʼJIl>/۬r6(bE)C1CK#쒒*U$M ϸC>ωYoC?umEj?D"A]N#iu`Wנg(\Р)F䃨H#)޳ 9T_!T vXJJN-:UN+3@r^c\'aCdr,|MXcn~( )r GYsWўćjU"=.oF^d%I꺮\ 7VT+d%e$Зe>flBmcom c$-R*0>{܎<=+'fk円,yn/D[ݑ\^>K wDyϵI@jVCA{ujI -5F C;L:ӧ,4@6& !4_Rdo68bZ P75u߮BLp)L0 vr<ǜ{v>΁>pt1.> h|, HK_CcŇY?W\ endstream endobj 2420 0 obj << /Length 1357 /Filter /FlateDecode >> stream xڭXmS8ίfllj ݔ efX!;Oovdbv>zۣA؋@zavC?{C@Gۤww"YK}p8Ԣsd:"=$7AsFbwݮb8֍2x*P߃Ħ}y'q*$GǂFJY>uu/yg32R/vȃnu.ۈ$/RwY :^B])3 ^,)w/0LdT?) ".쌔yn|=n1?(EVOʇ-Ũ=h~p\_u} DٚpfBlJ4ț_ueH&ii.U&w}Z⮨GȒʋ,0jEܽ1f\wKVcpG{!fUN},{k mq#Ud#/k/mmI2زIy! ePvP-I` Jf&MdM F谕i3. }&AONXUbt( ɳA }/Ԏi?2P4eCbR嗚2>xLR^ESմQ@;Ww)3n+-ח xa9z/Y Ń-&%7YpR'wB佾w * /<,1-Q_Ȳ$ö,kt@`?M8y (e"FQؘ枪yCQP07xjY3VcSw Fs lDX?}ӑ$'d ;wC((_5qL¸5y{{21X6VdӃ_KyV'bP81a)^mjp4/Y9:) FL*L&R]: hHfL(] [()U6<9/k]jYH_0ΡE ]=x7zl?z?.z endstream endobj 2424 0 obj << /Length 1336 /Filter /FlateDecode >> stream xW[o6~X ek2t؆5ɞ"% .)wxm9jΆUY8q&˒ q玏F3}/ 3p޻$@}&NYM ~*\݄t)q8I8 0...F!wU܌Iv-pM49Gҿ\) 3|/Sz:@Fv+xd w[j+9tx&+2]rm)AE~^[$Ϧû)m[ÑƷJ w.³2/wz;X.I?mt3ִ.eCwfSknH1&9kyh1=]z+* JPh̊Iߋ Z b/3\+Ӟ ZI63I8QRxbIkvsJ6E#'Pf^b'?"?r/RgE+'T5B.:A&:HvUN4 \;cI9xYYu ]d6nI%]ׄ0#EKs.f%F%RRn- |DZU>#hQI,k6ṧ#S/} +z=JA;㉍["Re s+3|5|6ȏ!VQ0[}.gE)+(=eR/;=F0VbgU*M^7;Jҳ"-HX-ջK l?e]~VES[cE?9ffP9WV ˖CVc졺q˒+lkbuZP-5~\m@ #a-=%8ibI+oD26~TyJgP%~v:"GG7b#yP@k\c[icۣ6.)r/1S_U5<R)AfZvxD{A)H'8h]@{NK: zHe%faWH 7 f9'^/ Z@cNY+rKOedvHV$bF_XM? $9V=DZU@[h%Pc]~6U.L^.F6m v2?3aσpoƵvwk9UyVlI Wm&F}7cuj.v̕{\'? endstream endobj 2433 0 obj << /Length 1498 /Filter /FlateDecode >> stream xڝko6{~~Ċfڦa,16QJRI= Q*ǻy 8Ϟ.^%SEaAGqdiT8y">xi0?AKy,pVa8 ApJ2c]YU." /.ENf'ZΊ~ĺqd.Sd{p# E[*iQ忑}K,1# X~-tj*i_ܞ.K-eD0k>./mL(PFJi wwRHp+ѨO 'A[~∹O'ewDz;UPR i F*tUb#/@ƥM Vd_jr(˦B1["e%{h#-+𮆼Va9!QSForx0o M K5o,3:Ov}>Y@fN4,Y_ K-~o})wQ&3+jI(1g_Qi!j_w|z% pɸlc[Q* J3wek !t~@E,rg % ╦8۵`@BW:֡68fQa>sN{ 0S熧_d|ݨ+ O+ sYYc_AM; |TG1>YR58e;4| P+yi|Ȋ"'Y?VI5 ۔ AGd3yⳜM=98fĂ"@|P% bO84}R5dVr?t8v1@xN,,z҆-8ȱ{$/xCY}| U,_hcT#4L!o,;2Z^O!?4WE͖nIQ -@-B3\>śew~%{8akFg3ZTf ,ooQ罰NxK]_8&_40|JV^u&ygΰ|aBaN՞85lp?*rΐN 2;yB1~g7k8i7 ^ԭ T/vҋD@ě sⷱigK UcY`7x^h őfvRz: >궱4bbC5u +Ǿ9p)HQNr>ɜy֦ 04e7=wAB9 [髝<Ec"hm6n(a? endstream endobj 2444 0 obj << /Length 1431 /Filter /FlateDecode >> stream xڵWmo6_af-]Y7o0,Ax؇uhHARu_Q,şmg*IV}F,%a>[%QhR>~_^ɑc'(sk\pk3כ{A :)ɖܾ cJ#'XGk Aq[EϹh'*+mi"vz kwݳv[] Y<2l%ƣd "R(*& ,,-?~ `\t#/T]yb7Wď%W攨j o2Hƫ(ZEOػ5uwOs 5p<@Ri-7k5khpH.RB5k m&ii׺FDV@FnvjJvRPL~u籷X op.@?"=Ϫh_5/N\i[;=>t`-ux#w.6oqg \GZR$Oj^!H}g}߱/<ۢ2 čD1/I4^v-6u'L #ta#ٟ @ďR~R;y\n5*x4.rx[ޙXgds&rFhj6ENc46MR[du\}њݖ^ci1;o'iEͷ^EQNU,Hm؛$5\y B 2JCq+ڌ/ʶ V#Kf.hǭS\]dr4#Sx}Ɯ~kԶ>R,bB_JeJ0@V)]8QZʳdff8B0= |bG ,Y(0d}/؞j*>e1@z.;$[iյ&íߘ A׆>qÕD^NEIi%h$bG;7͞nTV5h`_gI.깮ľ0kp#ʦoYÔ3CsSe:= Klcҳ'FOǟOüHunDz,:gROB-XMS&υ:IOЬ`w '#NWsr \xkbcb)r%T1YwdĶzJ/C[DNd3HTDOv}.QN%уiCۀ;NП܆wtC;4!{'`:Ӽ]MD Ocw$w>)~\-;fOaṳi_ЮnҎ7m_AS endstream endobj 2456 0 obj << /Length 1366 /Filter /FlateDecode >> stream xWK6WEb-4"JE-QIt)*h(n ڋE3|98q|bgmc?vv0vν8:ym2 o_P;ax> -(nۦ|7PTsԏ*}~\sJVEI&~ʄ^"٫ QfJM_p/TЧ{!B.O\t)dO6^˶ &nUMvd&r#oQ "svX[HPU6[{'4Vڈ4W4f3$6DeV=n7mA.rvy9w:H/*kaqbhpThQ[a=Hg3z=aॐBޭJ+o "z!8Kd${=qi??2_Bp= |@xʶ? !p^Ysͥ0ksZ6 ƦZ66V4Fpd"@9/oc? /oMz!EjR}1'@{Ğ6I/%۰p:>2X(\X8ZS꯭%qk@3tUlzU A[һpN/.O0uU#Ip#Jϥ9ڭ }7Ԛ`$U+ª acuhuB!oMY0&|2 c5BY%Qx|xZQJ՜rs7kt$xa<w-4`"M'sR ŕlnY=!G u8'O 2v$îi 0 c8煀Yi< .FҊf4&˶I@F7poO-w\f!`-&\_^ c&Wp$9p<)Y zt\!Al endstream endobj 2467 0 obj << /Length 1507 /Filter /FlateDecode >> stream xڝWo6BhU"[A=@1 ]m|%&K*)u-G"y${xˋW qr'A,Q⤄$̝ewKIFEo^Ɂ0OP Nc%KcjAEɛ$vbSEf.O0sR=p8~rzŐM6+݊Lx3N0"q:~4oE7+:ԈO3#Ap |m׵jߣfN?Хd ۦ܂}C!n/58L{,bmw/ bwϥ6^4Uky# QVo X_̖BɳXΪM]gi̬.PM%UtAćyRvF#VI!vfHޫ&1b|f?늡6\!m“qtum0cuv7 SI9fTC6*{*I6p'p' Ⳃ3r9:260 W F9ˆ+\_&ɕ8 }XI70,PZ1ΧDUݞ/~Jf 0FgzJA(M{0z= kS! UYdtől"țBB_"'c{ct{ڢ_Ec"LO,fL.|c}bm]=:jhi([̤6w+AAaK zbihujհH.'jdc0u!쥌q=ˌ 27YS6=[-T2kxvDg\M۶Ҏ a2NeTM-~;ChK] 9cj/bX/FxhϔG(_P>XKb `'f<,gtJnusf[ڲN+FS;\71|7u$fr,/>^ݰPY+vS&Ga9{ͺs"x endstream endobj 2369 0 obj << /Type /ObjStm /N 100 /First 968 /Length 1526 /Filter /FlateDecode >> stream xY]O7}_!^T(ID"R[ ;hY\/aP< +;c{ q&PLE)^x1&\߰a $NYH h$֔LMuv1%ٙ$#J2Nt~*EH<'xtfΐN-_\RVSD%U'|*ꢾ`BQBj V;.@ ;HghÓJ K} $P Ai:Q=f)tTU6f=J4S!J )UFHs>C*K@!$)1 *٫-D=X-EFl:L]%14 e  VT څ1X`IX\%Qai-&JT w\gHZ.◥q_]36 #Rfa%"jL`23a+fH+,H"\31#V5XM_V^ XDE^a5qi3ޘ5tft)[)lf7>O^{*:nCcYTr fgt{Q&ҷ(w}ݻyz0]#ӽ{g闅3u/NΧ5Ngk:OzI3uɫ9ҁrI%rWj!4ր[Acڜ[=FS#8H lԆۀiDhu=Жkޣ-me ~|_sh٬|c&ݫ~~6Wm{۽cuc.(&$<]-:_/ft;;B{gA[{q>l/ռVl??VKi2[WwdF4c)Ph`L҈hЈH04֢kͻ֯ #?G@=2e(i4MOfB#Ft@cjƬVо@uaZiMk=nJXz~~ 6#,Bi[^\0n=U%%뇶at(w60'g[:= _+Ԧ|WZ\G'ckږ6/#+[4kݺ)X&w/0bs]߭\49˃\3D8ꦀ#jh Չyz͕6W7٥h.5N.h|κfBmqenOA@<@@> stream xڝYK8WhERY!M`a@2m -K(뷊,J,w2A,>Tmh7xs1I7EX<<6,B0a#`Eÿ?*8d<̦쵒]y­o"\xgvЎg@Zح4_)J{5w]EA6??"e_d]Cq>7?|>*b.S[>u[ᬚ^*KҰȹlw<9X-ѾlYw`^M//tI@ugm-F7ヽUU0H< P3Ԫ!*, d[;zď,ա1}"vͺahʾj}UҀ-OH-vùݫpvK(IþXu{JYowB$&Ѹi|R Fg@8pF]LZ1i0|`cb0fM`r{Ch|~GQq"a](4Iv/ILc3mRs|_,% ۙx) GuݠRM[-/JH97{a NCg|7]$ao[;p㵵s?8- .9n^Ɗ asM/:}# ?3HyvkoA)FYhF_ۛfqI-0gQW.ZsIRa;M=]rјd.DĦ9UiIǡ%$r֦upbK/7π^x4:Sל£c =WIfJfP4 ªUSRkjVl16+NM-ŧYQ2qBy_z!C׏bSԽT )BA/v)=&a!8,0 @RsI$ɏ8 igIpNKpR?G@VcXgKHiq'YTAql9pj)OVFNnaߊxDI|9km!?@9U:2Gc=E%EKk𪭿\C:!5ye w_ݍ0%a\ $-QA74 єU rz^:ϪY,C 3 i,2cKwm|ՋB=LY9P}9f#vBڎwِ$taFY!s^|ވfԅ7]>P (" Hr!2 EPj'"0tMv)sF_*ںn/3(Fw- IOӼS;h QJ8;zK=5}kY0;KZ]d7Lt֧zo􄰦G7_ Hw[Ho |9 vn8Mh%%|,5}0٦cdŘw<6xr -<`"P\+Nʁ$ɕvnC濾O'/+Ûee3w@^k@\C蛯")OpɒM71 Y:NoQp-E谣˾ 0p6+8#/v3JۋnPTO֮8rRNsͦp(ݯEUpŹ= 'N#x4cHTK 3i䡛tr'$;uPth Hv#HaPv`$$j.΁`·*횹@&"(3MJĄ"ٖiC6,y~e_GW=p{A[=BeI.bj@<As@lIFpy2yAd5>s >qƪgp㡭 U,9-FpG{0Pz4Dݥ*q=0NM QI( Jh~:`! 1 %ů}PUbzΧ۵?j?`nyˋ@5G\aG 4Rmos@"/]uTX4= gSܢ23=·eaG+@)vƗ֐.ӃԖ+rBӡ RvXՃiۨ_ ~IC\~C'ඬ vO4^s+m浸X~3(C"w-gqV0 YkG(HoNͲL1ȿG%#8n)+RkJәNTvԃ<as~6aտ(v>Vd:f ~G+~h΁}&8W;"'+lI#e<LI߳sm > endstream endobj 2487 0 obj << /Length 1234 /Filter /FlateDecode >> stream xڵWIo6W!`"m- hIr$ 9!)O"Y,O|h/#.oIU^|}wq}[I2@idyT%ew]6єvqmQ0dMTMR4"oge 0g}6.4^DqV5jR.ύ(jֲ׭-*sCp)9.G$ix" J: {M;wFrJ_Zu_X::(?-5(c%L, f [JA"R8IL遧 ~sbukF(|D^#x5=SHmXŸICҶ"'ujwB ԝ+a|.hEUO9K˙9 \HbV:]y,CyB סKO1ubfj&xc;vML0NHb'cG"G?D1b蜩{:$.GD7Q5nFV}y\nĆKE,_pBFHt-e*Y0~ n,f8 j(Nc6~?eİ=شR#~RߺwGq< jI=o"}.-R ?h4"+ T "&,nПNnI%MDЮOHjŞ( ~yH\A9VoQk =< Lid~ڦRx_5TWs "^Grg{ %R2Jߥ_DCS@C :v -[^$WK'9~àܡ%vog/FC]:B!o~fȒeI^x/!ʜxEJi?ޛlOEBJkט{;Lt*؉ƃijE=ɎQ~Sl.5 5IYcVnO'96#sm|Fǖ~~M(Ke4Y9^3]>ӀGV/s.clKH kW[H9v55 j.ʲg܏{O5sA=qvR|J餏Xdž~/Sw%I$( Ѻ@!!)J<;yu_[ < !Z2xjHV < /^}zwk$0J}q{cSxiz.G1XS}0~OgIN67w } endstream endobj 2558 0 obj << /Length 1317 /Filter /FlateDecode >> stream xZMo6WV$E}][t-P(r큖hEYח}d b#Fo83oތއLJwC؏z;8"1E_=^.mBC] d1җׄ/pOT_oPVTj aRԝ]X!6Qg0'Oã[ԏ{gxLJ F&"OI%Y:Wu4\4|t+m+5 ^t6I(FDCgBE[ѦIP9LtSalkG6! rq-B˂34LGOH%G-#pUdQ7P(֮?o%:Ԥ:jpƉ! Ң$eE8RdRwKd+Y˿t:RMr68B'N2,cme0&LrD $$.vIxcFnqq()VzPvAh3 J$\ >9 s1A H.UKB  qL5PzMN-W| Zh?4d5(pN˖ZgXCbZ2O82r&, ;c!qնP2r4o:0#I:clHq'00*\ ACYEce%lp"LJ k umZnLh)󤮙x;!jݒ%hk\Ó >Ifx:6a8~Pe'ڜL"UuŚr&MNB!4A"j/}M> stream xZMo6WDJ,CE{%Z",)%Rڢem@=q޼H$~}D`BSJI  r$s|>O\QZSEwhSN~ E<3;|fCzwr&EV~/;؟Ltï}K>?" 3t#D),N1}CAI> àeϤ= P̠(AA8ڻD1jf 1Pv Feb"BK|\DF 7:2(7;FqGP۲jcZH(( CJPyE!2o7#h,tg$h8Ciq&di3߄h]1$ABe 21|߅DDMvЫ"D̠^m2Av\^ Vsta'r4xdFH*/Y}_lSb2/Wb>Pa$J^[1p$ޛ4hTmE !ьkGp /TXe |4Mr0.~g3o^з?kʊc f+3a652X nuV?XsᇧU;s{Z0ϏNrWoT/!_~/- qa2~G0'?oPt_l9 endstream endobj 2473 0 obj << /Type /ObjStm /N 100 /First 1001 /Length 2775 /Filter /FlateDecode >> stream xڽ[MѾpXb dJ $!@bA}E]a5JW쩞H۳z5{X]/V?R`DN!W ́Z@K`KmBdTp[Ft_zo)PbaF9@*T ai +mu Fq)5QCjw$c7J6:$D 9@!M))HЄh8b cLJ}AmT0Ĩ} !_m[ 8]F9PtƨmH(5LjnS(1Bm6IP]Bm& נvp 5ɘCjr 5SPg12Zs5TYBmӦ^(% B) *Vm ZO)"0n ='8m]2̴QBJfWfihk3nJJ'4L U,9U xw([$CZ0-4TbcǰXmCtz`iU6^PdF_Ԝz;;??Ñ$l_M#,Dќ￿8٢=B+L=GIfKPُ.w^~o7/#<ଈ ,OcbNGW@{>cgi& OWq׋m~˥l~ƅISC!;Dt 1$\1PӰճmoIe6 OG"8B \wŲ&E6 GwW_d}n{O}}n*ؽ*^\mݽ|r.1g-XdIBSI9<փg>DKFKT%E -trznxW[[+tNc͗mZo ^TdHڿ<ݥUbOj z3uއ.TrGQ4n? G&G&G&G&G&G&G&G&G&G&GfGfGfGfGfGfGfGfGfGfGΎ9;rvّ#gGΎYYYYYYYYYY8rqőBu,O[ Wz?!b3} (zJqI%ڥԨ!eh=&'Z !;tF_@ ɲh@)Ax=8a8qc=l Mw;C5bI 9""- ь((8#N!wꚻmoEY`/r0X-D_*ŦV|ט.VA N$q3p ȼi})rOp&Bv!jCACi7JZ?`g- tԊAc r 8*cDV`2sl7ꚻQ -*A8, 5@ αvj%)x}`m1v]0{yR 25'D)%f=HV ܵ !}%g2"eH"hE)s?@gze@yV#Z#BEež% xO`MkZ֗8Y_+d,PַJQa ñ@Ys/PRGG/1E˚V"ߎ4p#@kVbuK%q'@W:y;`jcڎp赪o%ux_S%d1ny?ph2 -@Y=LL=Y /--~ !<_Z7@Gb$?aÈ8ׄs[5nޑp8ڒXyꡒGpP MUX B-fy-+h NPC0G"֏d͡hc$2Kqġ[g.zz'&gx}-G'-jqd'@I $u:Dquz:D^\:ruN,N,Ց#WG9rs͑#7Gn9rwN*N*N*N*N*N*N*NRKӥRt)u:]J.NRKӥRt)u:]J.NRKӥRt)u:]J.NRKӥRt)u:]J.NRKӥRt)u:]J.NRKӥ#;]J.NRKӥtOzn\lwB=foA}qe%" YM|!<U}f{!s^%Udt`dv؋"b~Ep_!BUޥQ- [Xl7HH:1-}OApp*˸A 6"2RAbmr&jY endstream endobj 2742 0 obj << /Length 1501 /Filter /FlateDecode >> stream xZMo6Wj$JCCDKRAIv_JiVdhAC C>MA?]ܦtSD%tswEqB7]tI[>sei/?@ۘ|Sq&2b}Ԉ!h: !ٗC~Q19ӏ||&)E|'($9$$/,J2d^ %VӇ/n4y!r֖2Iu08~J"Lp:NE W 8x=ÎI&('PdWPbwV]T 5x>eJfh *C׀w'ED!ZPQ!j87B.AX@v! [ =H/nD[_4c’;-.,G]װ'(CEjw⑩F?qQ0tN[W8|R ũEA'qpLJRT!KAEalc5z0\!} ُW"j83es>I)rl>{IWWs$f[]qٝ,>dC5U7V<"e#KR'.:%ߣtpap$gHRe>kvk9j"R٩b8X Q0%?W|H725)6]Ho!\aY qK%J"J7sgnԅDev1a3 C%.5 3Be!y)[@Ӱ>ބF%hb2~f#Eș܀qh{-ãr:@]Yfy'tr$D t}8mY8=~ON_,uZd-7;lQ/ǩ"48C[>bo U a7!;@ "E^(\bz%hS| OT|k, &>ARZ 2s7T=AHs\^i,ѝzUjhP6\ZҦ)2PV"84Z}FbPB܍QΚV٢2O}Rem#l{^g עбٲ\ux5ʒ"*'@CkۘD.ͷZPV?cKyRd^BhJJV+, | 1"p*s83ZjO1}bD2VaނlS. A͸Y4K-U7B ,>Q@S,55>Bi ^ zj)sOg4?XáMk;?:JsB5+11X-T0Kvf:>L0|zuo_Aq:At̤b+4NVKB=|g1N(l)' w endstream endobj 2655 0 obj << /Type /ObjStm /N 100 /First 1014 /Length 2521 /Filter /FlateDecode >> stream xڽ[M ݿ_eEJ#@m0/^C4 \g͢AfDR)R &UL nB 5hhYMhR@=u~ȥ%4p)rmƁ4$P+ͤw1lsn>ʄ1:Ũcj NvK+b^/3^E}بAjl7ч\SD4(Q"d&qޮJBbR RT(^JڞBaDCu2<`l4qי8v0,\"h`a(۾ϞWO<~1|9s.c2bdʄ^R>l)Bm':9a[ds\oߛo~"8o5­L8J8Q X#Mb `5*f;ξ9r gomEA"5\g$$X#4Ih`9YʌD^9=&l0ŬF13rr$A&$`a#b ~9c;DŽD3>b9`[NHzɢks&O8\7Ys( ;,Fk[>#. A5"z;!i`#c!%;#׫8~9T7p]f! fBb>6ƫF0KSU(4=Gs#GJEg$!ɒcZ$72ctK,7D {q >I:#qΩF+xṴHxA}5ٶA22Bۖ2D-g9?"^$xdT^Z8^ \SLY%6L%he6_(6F-,:g,,(x: 8/39w)UvGApOYtHœzbSA1%(yJbV.ɢ[ X h:#BBZ)8P) HmFz "QΡs}q^ρ$#ߞr@",:%RrIK k 4eW@ڍMs0N5fq~&J^")P|fXQl}OH]X‹<%.P wB)EAxQʌCY Dr49J$/MY,6AE.0qYJ]o Vt9kuPi]7O[T3aVc&N{TWq렕/QKBp U>ovP]5L{Tq정-C+nǡgZsl;BXYy-FcZjW)Bۜl\FÃtbeÕ;f%vFf-;jqV/XIQ4|Eκz SyI]Y׃'ࡔ$1- k90Y&;VzZ_Z=KZ1{Z`IY]/6.b{ ;ƛaCXgnC+|y=^9fSwoi7O1kvYG8< 'iqG <qvԅB߅7Wr!. G\:::::::::::rs͑#7Gn9rsݑ#wG;rwݑ)@.dqP]P LLLLLLLLLL9;rvّ#gGΎ9;2;2;2;2;2;2;2;2;2oo?onu^N:Kނ>m--mx> stream xZMo6WpL` _nV*J xk;!__3C6dMC}_aGAD竟pQU( 2BqP_O}FC c-Yh~w׷0Ca6?U _S$3~NKزNPdnj eȶ؋r׏ {acVUkk.XZqak~aD +"@;*w&ֵ5#rz.r3a$4{ԫ 0ժ @";ZamWOK䒖൯/]+Ixf֭-b"۽yn\)hS42˷`d>m  x_5?LS DS\:$b/k>4l*~YBBbmg7]zP-m%+-R4:T?-|Ye{l<1oO7ɢԱ'ef 's_JHej- W݀#R_AN/p +e0m\ BA ,%Kdud}Tiqܨ5Xn(}>Ns"6|Ґ0]>N, ^@˸[@7)`YҎ2E ._̍~-d 2ްwz~տa'5 endstream endobj 2744 0 obj << /Type /ObjStm /N 100 /First 1019 /Length 2539 /Filter /FlateDecode >> stream xڽ[W_8bEۂ X:8tE`5}^z䃺u` H5 YU,pU)p(5f$5j(XCC]ЖG=(j- )ݡŀ\\A4 TZR֪Z5z0 .\b_^GctbZj%TK!S3d 3B{YS YE!78䎯VB[K70MYmT<@K\Ղho =2PMBa YMREl%$RZ%#֢偢tqjZPf\Ae $X1.PV,.]Xq Ǿ/@V܂-iNAu<eVZA>Ihhr5~&f5 J}sm+)܀SI6۪Rj6xVR6vP +f MXkj(+Wb!jhTĸ5hԖۅC|G8/0aD_ MmpVd `L F4>ׇ]7 !oh|x)bj L a.+X(wٳpy.}|._~H%ȭ"첐y,'xlYYJc]D̢D=nAOR$gp\Rw S-SM%ܢ]mT*9aJ, T`XڿL_z/s੫!1]XX4`۫jC>ʥDmxQQnTd؂|6B|ށ*%[M0םHy>PQ0!D$|A#[NuFY ASL@AZp,b͒ڰ}'HђD~rPrvba'TC@6_ Q_0P`}EVcTbn{䄵ZXFQooKAmKlڧ/ BMPM)4ĤA$;$ $Q iFI u߽"*-U{$NH!`JSN滧-" S'^m"Pi^g|z,\Tǯmio=<,>5"ou )&ho^@v7 wdF2\vE;*$a/5Y YWԱim&,HQ^j 0=<1vaZNk,]雋Ӊu> #5#1B$֢F⨨Og cqQ_NȷY2OK6r7!70iV\Z$P[(H5V0V} 9 dy8@0r#)v T5Lu~6}bvoLXm5ZYMS8 CNԘuA[X$atidV1;C -H>[i*~Pj'b_㫄/Og%]~O6 ?}x?/0n2_tZ:9](3B Fw. FxÑ#G.\:ruՑ#WG\:rududududududududududu͑#7Gn9rs͑#wG;rwݑ# {#{CQQhpdrdrdrdrdrdrdrdrdrdrdvdvdvdvdvdvdvdvdvdvyA~;W_%P&C Z?`@T_Rk/J,"*GjO`g"ڕ=^?dYĪ@n&qA" G?A&7ng K)]cI}7(aݯ3ԫ3VV #q(fzP)Tn#mGѢ i"HpCMe[G!0U@q0U\cա H43`ZjnFq(p7u@_#dGL@=nTOH\P:C,CN?\~pn/(VeEzPYPahB53HFHtOIVk#p[޴/<{ݎ}_)*)T3į5?؈# endstream endobj 2916 0 obj << /Length 1461 /Filter /FlateDecode >> stream xZMo6WBR(^n"( } ί/e9XHR{po7Aϯ/qА&( ^W p$2~= $15/_{/=Qq|0 1AeJE!q0O/Yf( M!q1 I>Ct@li:|}-P #p !9h84$NkJ@:!f%NB8;fyb1@AQ(wQ41C0_R 0AӵBnWe=o\!BRҢ"œ0IN &ٶJ_.{<_+<ac aLuv/YoӚ8>6݆lu2}jm}L"_3^!#iAgIlǝYc%j@&1m2C^Wn֔BjF"VjY6JL?3Gn.zUM!lv.Oo/C+)vW^5t?t@Εl*ap I}Q" JXLmEt!iǻMG a ߾ G-_V-w#(+#R )1j-bҜs~ ~d3e]U'J4Kì ".ǁÕs x "9Bn@`gk2Kis*NJkMf.7c t2&d GĉԳN k %> n7C=[l95-G)kC)٘3ߠ#3MUy3(rE/k#LER/|qEtq) bCӜǰ2-}PȅC&vN;U%w#<ʼnxkMrkѮGƬ1Y%rP{S L/zb+2JΔlF&}ԥ:)Xr\@;Nuͦf14 q:b |%B]ѽ9nn1B6S;Oȳ>9 ׬f D.ds㶑N-{Q0NnGq?4ߋ{uIKz#yRJe=t+ֺؑ3/v-XvsbLhܔޞ+2QpRpҺ]_QtBNܽ/f o/vYF՞EnG8L_xAVޱRčKmd̈/-oPbo\bIƭj;?':6Nc 8s Vf􃐸~#$npy7`2h/RLkƞEpLqnru-Kr|X?Y93D w-s~[?A(U9y}k endstream endobj 2836 0 obj << /Type /ObjStm /N 100 /First 1018 /Length 2468 /Filter /FlateDecode >> stream x[M1pXd%@uH"ȋkH+yjC@Xh_*냓[BnMbB 6ZD& ׯ4z M 9PK RĀ~ pk с<@z.$  0&,$)PxAU1+R׵P  s7BJbR sġhI`"2&AM %4peCG6C:AR1<BI̟ _-FC଩ - 5u50> Z8,ei^N4qTKՈA?D}\Pln1t"aLԁWܻlxehx\ڮmy9{4Nm f+Q:ݽxqwy뇇ǧ4>LJ]yǷ !˷oi||w)Rj_[f4DLE|.x|./~~HEV(Q́E"l)*Q!r;b!mLPy@h~ĒXtZ `3"ANG"G)伞v!BX)?KY$d;m{9H%,/s'$V[Tf[@ď`0A:bOp FtL8BQ/̃"$R[ J˅ V&rZ-V"c@V1ZRH-**Ap$ԏH?2M WV[䈑xmc ԀrT a0bdA¬ZRv@Bu@6p6g'lﴜjhN9#y=^"c1zA4- AG;8*!BDCؖX bd7tC FRq#-#'=V vGyڬ 8 A@L%fn p߼s9D;A5ܐe&^b^жB&sgJf6]:#=\jq΂4W$|ڠB\"c'G$ H׸e4LH >l Fbg U[vYR\Zzz-SGZ A? qFd]=`z9((SW(,Mf\T-_!Wd7UW7 ,7BM" 3]NwͲȈZH(w kdN76V`}lO-}앍2FA6DmL3Lh$ZY%Է^^:-4GQ[35&tʼ6g9vz_nvBm÷BvTcm)|.èjhN~zz|x*Y},} Q=x?|7 /_˛_»*5]c>Y27|z?_7 ˴_~wc'Q^8T 8 \  vA\.82;2;8888888888ruՑ#WG\:ru͑#7Gn9rs͑#wG;rwݑ#wG](. Bu]pdrdrd"[5 䘰}F M`eF`>Y=*A,b,t~Jn3qJiOg`TO8:QPχ`+ NZ:E/т:?3(?4A "Gn1(l_҅,5 =d2\l/U68ea3_>eөG>|M=tOtܰi(x:y0` Yc6qP>Atpa9 N=^AÆRHX^b#1kS>Aӹ?NAzȈZ?Mӓ儰mZgl[청/Ѿbh?vn}?35ڳs>ϭoĴӾr[Eہi}$Һog#?=~BNZLkX; kg}f?/؞p endstream endobj 3015 0 obj << /Length 1615 /Filter /FlateDecode >> stream xZn6+LZm8h]^HH0r@II/pQۇ sB5@6QFủUJIl`]3iv06Vc#E=h3E匈RE>y}Y Mi:}E3zHulESųo.E`oc?U]o@Ð̞5uB~.iFyGX`c.EzԌCٌI/,ųF˷|[P{<Č 19=Ӽ8Yɮi%y endstream endobj 2918 0 obj << /Type /ObjStm /N 100 /First 1020 /Length 2686 /Filter /FlateDecode >> stream xڽ[[}?BF @ЂI!u%4ǁwmo贠0͙OKk}H=qm>IKQTS#MTj%107kD6s#Q%Q#J}i4L#2xkXá\wܑ܁/"4?(D|IEؘiGWy&,;?mI'JOʵ$NwPIjxDI5q0w|N1KJSAj4Rc溌u%kls\S+}h1MLo#5l55?<}5iK'iK̿yH+- gk(%PNVsQMCۜaiT4ZPP)e>!.npCQl񅨘8<ػ4sie> q-SA^B2g]tY`lhY[D`]; J~A=HAR$o@%W"[hItΨO0 &Ў]Cu\'P:TW!I\| qB8F W],+yVfLa3E0ONLcɢNiK;SCgeEb`+Xo]ގ@6a]_6!S=dSRxe-n %kš\oMa0d9 R!6cE`'B> Л "ٓ%H&RUAC ~@Μ zʣvy$:iEb dPhL7[UְeE fkHf ȝw%^T\*.]#!JvD՚fa*DQ4`ʱ4`1AȸA,r`(q54<m7T gKEPV}-!R:g--XMh21@Nie55GH_~m< øγ^U[q Z升å7;G|tzU:}N_bv8ˇwor/~Ms*yuߵw0lgzy%A<AAAA K K K K K K K K K K k k k k k k k k k k [ [ [ [ [ [ [ [ [ [ @\r 5k @r -[ @nr={ @r#G @<y#YJ)1p $AAAA S F]sBNFN+϶jp m!25Zyi3! /b. aXLnS/$=S@x4pXպeH6E4<BpH$weUX*9‹ky|_;{ %$c#`MJM1ds0b'46>N۲طJN> ۡc#,oS:;KAeN Zn~YonTGB, IV3߀AJ37;/$zq_(X["Lp_ ,E$\1]jF&w[L2)A %h$w |QxJA4a8yY9բ軑CS4Z{"Eg~ !޹aI*0od "P_.j[eH|G!?LֻKD#̈>e\y3XHUӅ`xoSL9" PRؐ.w#/kz1!|wCsG֚/ a)2|GO"pMKyJ RR"yufnVv+(o/ey(QzWUL=y@>FuLŇ4RP[H~5_yZ5UJ2ȡ7^l%sڼ- +m+ EHg2L/v$d|%A "r\U"r[p}V^έ϶Z>8XJṞ=FjE-ƫg[wVmZWdS~i~WwW{ֲzf>?t~ lS{a|/iVng K ѝm[pi98F> stream xڽM0R1V]*U]wBJ6&*D?~睱GɃAFRL_1b\$ bAP1R@/>ȇp}he0aLȊi3(t˝ SG1VJ5(͑r $ZQ4ZIʀcؤ@de1x0GvED.)AZ!ʀ /CĠip'1$nXp G8\ <S# L$QN,6 y.W'I;; $ CˡK(tg?̂*Q H;2~hz=u8T%;e:\VLhW Lx:1RMF D HJ(\n &I(δYMU;{`}* "{}!ä^JnfP tR0W)xVxۤ'_"u6yYx8Gk`>MO 8.#=wwdܵQUẐ{P54SğXެdU 5^ۗ?v> stream xM @ st(dxgAB N⤎>Gb*"/ Ɔ2 SPaMF}pʢn uS]NmM ;pm;1.B#S~(! ?Ct)FQP܅ $37YQ endstream endobj 3074 0 obj << /Length1 3130 /Length2 22842 /Length3 0 /Length 24406 /Filter /FlateDecode >> stream xڜP-kpl4 Np݂wsϽ'9}zEY{W*1P֙ mkbgdgml `TX9sHTTj gkDtt/4r[9\y#+<`ca#@dbaZ9=A|Zp #8bdo19:9Llh%`j`es4dgV46N82M]h&2:M.@G |.`g$`uh`:_sph,řbr2c:3ӂ%5:;!LA&c9W*50GV)/,or0X~=Kajgk],.Y^I^U]EE^,FVnn' /ϤJFb(mkfySlhL` @tY8YLX2z~Y&Ot5w#S:|z~0/RW/?[.B??G BdŀCS)Ʂ*lf%bkn $r*M,fFN6c *9~]d95 - )7ٚ8FFH,ffx@L;xmf&[;gp#ү.02̢7Y70x#no `R;Y70F`.o"(F`.#0E7sQ\T#0E7s\4#0߈E7qF6|Y9@& Gl\pYs2;ANVW9+Fc#+'pc[XcG#535YY2[B8M]8~Yll~ VR`AL ~knf?5nk?f+d; G_v.. v1xG Ov~h[c{\`a#{)Np.[[Ҷ.6ƿR?(M(VVFOװ7r9Xm鳃)K|/svcc`4`U\EH ]8m@6_>@?΃ 70j>gvpQ(`Ep*$SML_/jއm ^&{+L@ǿ51qq󿾱O@;`˺Z"7ƽ .K)K_vYZ;>Gמz?PR26+KVw“ BܸjjCBhF(Ŭr]eH2 _N Ve);{wJ3f0,BGG WaOHd8ِ-3 HAZ<8"fSdvr6حtg%޳~%ґF"e*,=OilB`-& AQ!yq+(Bqhpuu䑞tiv. `RLty` XE{ǘf`MRJ탦cVMb3'oYs.kJ^-B^ nsGex7׳\(;O\QU.=M丼0e(퐈H،w"!V*Ɗm$_Z0b'ޤk5(Җ@R롻#&[s!V2MkX3=A5}5#,#J ]yeQ-hc8%jyodJE} qn!o^G{JuRvv ?qT<)kj/oy8oMEiKеm,XvL*K!kvS\oHYȏEvgb+7l<9U9ånVpӡ~GK(miF-.J {F1YO*z L.9h_H!:*EJOc|p Ԁi}!<\ HF!ct2 { rUCZaz Ha9>Ѿe%GjhGe5NJ4[ޣ&ZC/<8^E]Kd_VyJ0Gr1>fdP{ychqnz>!FXG(۴P{j_ lK";|%o}cmv/:i㞎oĤ>7Bl^!0N1Ÿ(5'wBar"$:0zMPhiɭ /Q!Saqt M<%2:dz3EW7$n.E}^ݘg"(zLm<ն, y+0~nrWW ˃l4J b>b&ۓS;Pܵ6{-P,*rBnȶPQ斟ڥG`bdZZӂ-:.>tiK/-.܋KotOiGVbwX DUyiȊZ$ 3=x];doC7Yإ4ꠄFQ *sb'y|Gn$rJ$VQggǧyq? *P\0 7;=77S, [vW+HЎoUd 䣹#i {-Þ8cFѧZ!Oo]z[k5[0[:t7 m ERg*?AC#Ԧ+``Z Wm=b;UyZS} }#2 yL~xZ?&kA흇kr6v ڀ <!!?>jm|6%EcIq{4P=k׮ hA4vdyf{?"Tֹ]RoK~[! xи5X;$7BQ$!EOaM4϶?RӴ7ϿwPc(YT g<|$F`6LDWSL'DyKJz I]WGy0nmpoFc9HAN<ٍjKs3I5  =F96wGBJ"5lA㽬3k!y!c}y:~<^'<gT|~{_ZLT˔a#$KGUo7=6ʾ]wU^֊Hj{(nfg)Խ!aOi>׿J)NJ"'i˵JTØ+ e;P7!ƃQ=&}I,~r[zκtj W΃H*hz&xtNshT@uj"EڶuB)H#J~d!?VY SQ8)j{hַ%PHkV*G`mqPc*^&h=/z],Vlͣn&=>Czd RWL%,X9@LcQw\QOja-Kȟ"sORz®d_<^E>)pVf 1 \"SuX䱩?ۅxv4\C/\-Z3'D?yѧ(i 26|(ܿ:uaq{D}peÜ睚K*||:)Jk-6s zs~?m}4[*S*]]Q(B{G90=B/$D|f#? d9q%_4&}$eJN M@\Oկ[c读FRRfʫ _p]P5R5<խ1- @1~2lYR B} M3%hS~qc4#XH")a5re4#XxC:iӾ}Ho^q $( l}U8hr&kV_fcd;]|aJ[(!8jn,iaƙ֍ "QzDŽ `HyT ?^5{yEaH ,LDE:g\b W^7X*f\Of}ya0#UlO=˞ٹ Z@KiZ[Yl4b5Tv1(}Cgv{J:dqq&·ER:)s\ H Pd[V0pc%Mh9X3K}(J?QE ek-iG3/^wֲϭ < =Ƕ<=<*l-[\@yBܪN@+n]fkZ&5%ۮ,c0ۂk³)ҖEdzٽԫ>ۢ] 4 ce3䑱76Az"|sJ|)7sji`A0`A!CJ6KA XHug'޲;|)MXNp| I! F3*˚rln콗Nc6ރ:$tم;g[5OMC8t w琊gd $.?]3\ڰP)a#ΚpZH(INy#G:Er@oeYFˤCC`?d :~ |ܨbiә1@\%1 )J,HGXu sGrX#1ׯmQ\r炘<-Ќii+>9.J eH)Jj@Q-r w##έIx"HH}鹲(]u^(P=`Cպ?mg&r#(3MuYvJ)lflDm6TC`tP?$r-Tp^:rh.O8R|t.x@tU_9a=n9XfM*BX fiY"U,RyФv4W?#ShYUy3H<:Y%vTY_6p*Aq4aJ,j|@M2U Fb~I|ЌP[>^Z.n^cmwf+22[1`WzWXSBҁvTAT&;_rib X&gu`.lK;å"9g"2AnmwqUBQ_dyrͯJ dYuOKۦ3Rtη}"cRl!渄{nq:YTq AqҮnR*T¡fGNܣ F0"q>mr( Vf>O{=a8$袔N渨ΰ }iY] Mѯoa$ MD bEc@U^\\SL뮓;[ym@~ ة,ݓ uwgc7/pgtIWa%K":nNqѬ_VBq6L'vYvksER݌f,\%^P^b}mCd!:[W}CS,)O,j[z68p҇E")cgQ ͊{*oZL0 [@9WDP<8isawE)c1s{@@.y^;.2X$u *Ltkmsגo?z 8 V>u*dX Gauuy?LqϾ؁ju뾗tᄉ4'|8987 :zv{P5dtה/+B|^AZHw"%i+;Xع,,$m+CdœvD$,FzFaBySn\}~[O3빸o Zm|;ViPN9z#Eoe^=Lu'&ЬL1WJ|n8 Ѡ1xbzϚD7e*Ls*d˵9K.[{+3.F5fݒJ,l͐4׈&F uֻ :dsI(bͻRK` PWk{+BZxrЂz92i,(բcxCځ$g8\HbV:& fx4 O.}egq@1F,0}EЉW!9<tT Ы\MHCM֩ݎ@x-dJ1DOT]ze`c9]3o[(ТSCE%1F\^u" &{[7كS `GLsEQ Hm՘u)3bC٨fl5S0ZfV}~sہ푕T0EHܓZ}CE=֘L,Qyy"MҪ") Ϭ c2XQjɻӬ/CڟWiI{?շJ#ܢƟYMc/G^PWȿ?s_xx8v~RV2sI[BO)uOFQe=2Tb:gH<4Gu.T CA!rU{56\L!#=I7ڈ4#nL.I3bI_/!(~f&c(NNE"C6s]k#N}wlQˤl<~6 F3ͥAJ|T9"sO/dFLJΟ֯L]\3IRsc'/ο|9MEQO1a[|̞V;lhh8At\^)Hꈉ_J^Rպ6Wgǃ QX (C aÆJ9F=YO_ jNVu]r$*Bqx~{Xw63 aXi_G~[xNM@'%]n=mF3f'ǮBc,?\x*W\*x>@*(D+3 O/gz3toz Rs>r0~m> bixfb3rUTM?JW'qv4ZI\e=zqcB%JvI~(;;Cs3V?&tfᇽ2F3{Nŝ%q2 0#Ȭ q udu̿$W|ރE\WpfUH$*l8<%{.-{10>H5 b UU`؎nUGO4:BZ'g7ڸr֧WAI8a7T|C<֡ { I$'R _>fw6e(RtBYz2SYdʗs:xc1#8 )ס,+4]1x=8W?B0ܣ 0vcsӏآW!sWzc䠖: ΀2c냟^gk@JN0̮mb02 W#@̂,ko1+{$ޢC_hwX& F/EqU:#K9*q.p>OŞF}x܉FAev)DY~YGwG/Y*^ 82B0(֙wL: IX4V"xLUBp'`vznS-6ưrh9݅0jwo1=b쪓d\$̗&;ZC3HPf9{\ kwܷND} %"Cɓf§egIEpV&I.DڵY3̟h@LNTvA3*LUY;5LU`[G#r\L$%7-VwT4p(nVRT&}N8I ' -ʗ,~Q(P5Itv N@L aR}a !QhϹ'P.}R@?LXAVn4L9n@5 ͪ|h=ˌH!-/8m:I+߯$κP;~ۗ=s*:>Ȳ|n͎LDOA){!fk0w6>j3ZT)m2XdٟtH*%.S;_H5 hku ]lڪSݯVy]q9$X4JmfT*ԭJ}ڼ[}^f@z.G.=ᖴ셤96ηJ20Ku]NWw<~*?avlzm~' s }= Kڨ%Yť[spW.Dv&md0ӻCX{0I sвhPo]Z,Yˠ9k5K_A)I7d@+-9O{ԝ嫓-ı).f?,`O`k]BOrs' љ?",t{EEЂGd-UekGYmS'$VB:߷s2 qv tV Xȣ2kȺ(ёFm tg~yPK3V6aps ks)z>M*Xܧ. Rmpw7m]yMi <v:t]_/eM5$ַ.ZK,$xwb#єnFwRy1B g>[z=DPVWtwnv%*2s5KIx+7xp!G9 ƞUwU}ͦ`ĸ7}W:U Z<oKKE뾤ߢFfV{߸"neg'ؔ&;("X(ymLB$RדR-9KHPjUN֫a9>U1ћpENB*vtJ RdYeOPkX7#jU)kr=PW,#L ;5CsoF{qiث6'˴oB{FSjv<3TvT0ºbk/? g8W/R6䓱L-՗D吃~dd|E4}Fsq oG({INtj12k35e!DsJ8`(ptWkɓFkxhbJFe8}ۆ0Z*&M1T&#bȱYh ̽b3 muo"pSgWfv:ɺJ>Mw%t ۣáG0Z8)҂}Y&)ZڍFߥ,Re DBݢҨ3au$dT_Tk-GO=B#s!T!16}Ǣ٥WTeIk'?qV keb:BvX:Q@)0@+5779Od#[޹a]A0F]\ OYU^H[9Q6 z Z<Xe?!Qjdg ]6 7$?%ϣw{jM]0o8  uM kr5n|s5jJ9#b<ںކ<-xs|9'L׼9\UiOEKzՄEO٫S|ƑjӇa/dZ }wҖCFEMsi{C*¹U+nse_;bftvv|hv(CȁZэU YP-v,EL{S#Wwy jSvUFdg]2DWP{E_m5V=0+&SOPb"a )yֻmM-G`:'w^ xq^z%:l? G{:vZ,";.X)!dD@Wg來9.tj40s&ՕRIG?ŵðTIgֳ1c3L,WCW&qHp/PϳH1ȍjYg!_ޓ m술&ܚo,~і#s 5ݑ* nC;J F1޲9QF~k}ݙD> ,+5BYHmgv:|VWbSF'ZE4(y+|W йNn=jӧ5;1鬀;D:l>_`nȘ[LC4Ӓ >*i&PKN.q+y&UtrP>lj~wKɻs/.>Ծ8_70})oy}a{d)z= ABaEǨԡMw\'mC&Z9&koEY k\GULQ\vOkd82lq%nv`xֹSyzKDXJ#-^Sʀ6!sVrB%")yg1R3;$w-e<7WȒwFap.~K\ېӷߘr<(2=4h@Yw$&gnoa?ԊFtyHM Ѫ&V(\|  >{vN1g-0o.JӔbܝLmXyOnTvv+6Ik͹wZz"l{Ռ'/˷5r[Sc׶9#;G`sB d$,-8(/" *ؓo%gbAͲ2z՘٦wV7թ$2/5Lە^bCY!lOm@&?B{?؟?Ԩ&5'NOfGnhŤ0L֊%ؓ60(VDt/ |ƃHÖ/Ol| xVIc'Nz"[ 3ےjJ| U>HDC)yQYS!#rgxwNҶ9*mvM A]$~їJd+~}_s5tؘ},(X6e54oRoPXs q.936QkNV~'Q[ 1ţ9dʆN)Q=_>@Y 5 :ėdhIGZXjИb5 +ƄWFORۄKi/`OϨ²[Ą'}iGw- R_)so ]ҵiQB,'7j%u4kI+ {U6RV7m}{m4 )bl2qFܦ-;NAAP夊$ ^e9X[+-F^EfK|f5Ayyb™rd7`x1E^ 7Fgh:z[ˀ8uqr]1Lj3Xr(/ 5ˈj[Cle<5c}K^LlőuLa4W&K$cs_p37a "KMU呿-=2)-?Jd@2`Ql99p~5i} NԆtN$;$x6aH c:>ϯ=*2?>Zri$l\j,Sri nHŲ#A{Z!'T)APfca>;JD~6J ElѾb=Uҿ`XޓJT*IR(5?9bEh7Bk^'yrR&,w<.?)<;d+M-/zzybA`{99ȱѕIewvqgGI<y B^ BuHOG51Ykv27,8rJ2FQ-Nk۽9O!+v,LkCO8܏"lo̒}htQ{3UydT]FS]tksSþlMH5+<F^3JQ*/l_ф\j GEןmQvh> e1JkjsbǻGO7^B8G Χ?FPv;hWz5Xw$`y4G1#$ƒZ٫ʚ2r'dR~ګ="xpʍfػA*Pm:ΤgMOͅѢӇhʹ5`U ~R=;k8YBBs& 'hGFdW)㊩#>e ?274YC.mQC|M!CaM'`?: 8xv3 _ˮ2[SulHc0A4\S78%Eg𸠌wQI|"ـQ7kf:.zڈ{Qk/յ?%T.U)qo;NX:.Aa向B?5m Cvre>!7nصO!e֯P$ DŽyaQy5E!T'8i9gNrio|.0uM垐bROq-Af#+KHNHP۳znKf\0ˌjSKEܳfT00rLEy(Ƶcoi ؤc<8e)b $5'C~_p  ,Gk*>pijC9(; W<=r k]kW(:7YL{ Po<=\)9Oh2\V{zfZIib*1ޡD0N&}۰UyžJx"@‹L }RyO/NbgM_%n2͇ѾOdڅ33%C }80Adb:aُ:8m9$W&.BܼF9\DAcVZAq`;9j> *h[B%pmd N* ݸW龓 =XNٙ?a"UnlO[ B.%FK[ʝscBY@Uo0B2LK]' &8+}o}ǃ*됃 L ^g9(^IN5.AbPvw-K,Ei$^#:dvwF8e2pښ-..c <<v 4uh0͋wBfWܩo*I-X$|pk*ƵU#.4o,$,83ዦwt?7_C,Z(Վ Aznنh@Z $]@ `m;(4' -|Z_BYT)TI͇ `@-,g2>}B-Dl|Wz/lv0-Z,C95~v c?K˚EoMJAXf%b%ZWOp+CvW~ࣽŤF03]P }>ژ=y2Vƣ29I:ՑUozsc]w,yפTl.cKGw˶Bjo(2D "T2[Jg_n+\y)[VW,a,f|ߪ]Cϰ2mqr*e `4.{oOmvӮ"єzjPN``E> NȽjN6ƉYEc^G6uf䨂l;[#F<{ɼvvES#uL. X}l˟`MvKb _ۋ~ć-^+MmU@y6va/Sӵ?̓_U* Ev!cqvik;줏]G&ZpN7`lG&~&tI4CJbi[P0+8F%QԪQK)>So䓗w\ϸRow zRvR׿IxJ"cfLS讚(*U`1C.|Pi6a,/\hl7,xO֧ʼnmTNh{@3Kirp%1^^(:< ͛yO$ʰ˲d~3j2 #l~~ d|X`\q똩,"s9 ;„=A\X.xzEGF5xx}`M jX4#jڒ'#׉ ξ:ϡy<sZIYy;~Q0D_\oGXh)o"~= 㮏2]3lciLZe;gg5G2nԥo(s̽-sT €uyq^s&N; ilt#pNF” 5 USƶ4͏IJd%4OtPZ }v&B2kTkOowOB>'};բ&vt5۶l&VW}fݬz>: Smh 4`2?Y~ dc ntO*S>lrP q.i㣉OAbYMKEE`)oqo)FIUg !( jm rK)ߡY !\Tsβ67n :E^N4VΜCG%DDw'ӋvhlJ+g:"֯/Ҭ}83X3ط]O&OT%t7ùDȬJP-K!ZEKSr0FVx9O:A?Io-p yVQbiZ< fqa4WzdIV{5|!7 I)'MCI,gh1ҝ-cp:b(sE0& w+QQ:;R 1)Ʊ Sx?gjnì.#4L CFg"B60PYT pWpێD&Fp.-c(&Ff3WMv`sg785 6!0jD?v奃!ps<581iKsMI濶9l99ŚbC\n!3)'~fq}}-& \/ւ$J?߇yvo>`}"QBvmOcȂ ,t}B(|3,\D8U,7&p"Nn ty058 WEń,w"vϗ}P*`fh鶺տf2 7{Ϣ h8pgT_W‹?Y" m%6k>K2::!NPeMʆo'NEE$@C[)y{5{0> *mvvC訓R$wnARpN1>Bc![)_p=Mw%)e)-i\cÛQL U=$29l3ouK .AYj h#KQHhAPqG) sZZ){iݐc?֬9}T9k2wD[n qm90TD+n!s$ňw 2O]Rn&VEPm}>DZoz ՚Ћuy$Tx9kRi56TbZjllj03Y) !c8dЈH|1\C9FĉuGDWd,c/Xւ^|;/[Ŋ4_1ޒ`y!?@t 뉭ƅ;{lKO)/94Iq]6qf*W2H/>- ReB!~%a8~l#Y{} Qxv#B+_Oi[}R6bɎig?TƬ1d~ԁʉW΄p;LP#xA^Yl}e~vLGrLju=Qh^)g.iQH N.(A)`@P ezQ%=R1 y.íoo;iPтn0Րֵݘ6`5WϪd&@fC=c{ZI=G) n7 ݸ kkq4leͦu;M8|u~,vxhͿ|y#SA "%l' V ei \=ؔr["geN'D$C ݊A˨O(ybRgm֒='gYϳ`LwcOѦ_K-.@bECg6u3w'pTML*L̎Uv< J9˻bvIX 7[QBˢ3řzW%$W3A@f^_7]!~@:(A߅7a/ V4@WM}?"1xp_0 q/|K9IZ1; luMfԃR=<:Lk P>E,(玪Ϳ.{bkVO~~@:Za]}ɣze"rUy'S7#,7Қp_ y_Fч?&z"OS8gzNB{p0LL䠚P9JHM7]in0?]nq%7,~'XӢÆG!K#Z1S"_@&Mh]0a1Zbއ(L1Mx)8s Tr.u5MWMv)=(p8_xzD($0:2vӵW:NǓ|o)]; ׶}TS_퉠އVf A No ֽQ,YӤDmRB8}C(9RrTᾍw3a|~'ݟ=;z_83H6+{8SDZdV{G-_4/=f*`$b>^'<3R,W^6礢e}G،87@զЃ2/xG8SZj£oRhl_ڕlWkk_kAZ}X2~zRfp$J@Iq>N] m+V֠zݨ)#O &v&\H憶 sQ$(XQI1YI7b͐βF˛uL1GarJU8^NZX%τrߓ NC%x> stream xڍwT6ҋHQzT@zޫ@ @(IH"w*]zoRn@"J)RT^n,uZ73;d% `*H,(jkAHH$NF04DHB bq>%(F"O`!XT|_@h nh 0 9"偆cqJ;pk( Üq'ZCHk8 \RX,Jtss:ch;n>kЇa`hW 3h=;`źA0!0';`EZ|? UOBpįd5Exv[ %u@ˇBNP+WP|k4`N?g,fe"bGìq\G e G h<+\}!1s<⁂ q3x(-n  @]a, ?`  sl۸~`_Of8 NZ11DWP *( ^B~A =(OE~/ (b:Hua3$ƽ|*+#'NN\O wQ 'm$N ~kWfQu,'y`ao?wxq2b7(@bq)>[$?}LQ0qbyq4/%zfM>= r j;gr_"I=~(?Z`NSX7ʜ,U;t(g/Zc>gSٰc<2u|gqD1K$u]ڞ nt%*5t:K2ō>ǶX BDoe~GS<ޭzi`hp;_5`{FYrYIh.ڏbtZ/+r6}eǵ:f[&F?{РRѹ6١lM2 G4ګ,3=cK?hӎ(_jz:fU>{60)k+xXD,վ "S4'FHZix iѡE^GKU$"6sn;WuZMwր3Ч³Y{gQH [Έ[w*fWzXcmJtrN_#]KN=Ϸ:zO7$;D(e.˴i;˃FZx:x[WiiOh'Q_zF@7&ߒ=Q4j[?OBvL{L:,..7)0, 4a€ژj |эJ,رmqyY1&sst6+Qҵ/5`Ǖv%׈;V-PobnwM8Aj8#j`Iԇu?e;eMY19 {mm :Y,arUu~ɭ  "z%2TtzaQFj=$ [IJy(keK޺}K5Pü;v]AK>]c!bQ7m>y DF)}\%؂m/u6Ȓ…$kZY`ggW ThZo[9&]|S黨i"Z,=By/ D,wñ6~~:!fpޥktKW*{sn5oݮ70jo 4Fݬι# m{K BG3¨~eXw8U-~GG}VU3dXjtTӷJ \t(hrXa8 >I_tɰ+%*$9_Gix-'yܣ'T1$|{R$;z+%b2fVx-JINɓQ\#0J_%' >/j=2z\jYaɈc_}]Z S3VڡN5AGF/̰&Xp.3,6m2K[]glשLbLT}gkK_z^gOVe)̃ͧ&@M Xq:kPQmCZTSnMlFb^A&Ghp ܈mjm{[uy[i|mZz n/*\J+u:Mߎb`!WfF6?ܲʌ8~u$疧{q^G]&|yZdn(VhCIF(lw!w{6"w'wo7D,D4_0nh%HZ<%KPgolMy4| [S|euoZO'|/_0ɂcdI)'=Ve#1yYn,B';܂_hk?<EUZu FzԳ5p|5H+  $ixkz{ﭤ|iĒ8(lIWzN tA4|Mj;. Y^@ëFƥ?nnVW zfTJ.e 78[J_iSߦcz7iVf,4ZqY.2'B=஥S>5yN[}RVL~uA%DnT,|.؋( et[tSi5랲 ~6K=ۓbЕDT[K ZO ~L' 3?y~wzkW pb17s~Ƕ-Ɏg/5Y+#, ﭿz:EKǮ#sT2!FNAp.A\YsS&M4[c%ŶÔ EtT?]h|_<\pR{\wyaXs*daQa}9a&NjhkA;¯ӭ /YWhNf7 lqVR!I sg5EͱDdh+ T9hQmm7iH:Eb6f] J8#|;wUl⮘էw/0,9[veO6{HF[%}q={/=kI=IDAZ- &ѸA{4@26X5q># r(^x0^aTr5n,z ɮ@犛iFlBCIHpuHWΫbI%^%nu{eBx34CU=KwO=Z bqH™^wy=|0kǵ0G˓3=ݚO)f1B8%Q\HRrpxK-y_5\sgQY;D p}O6SH${NN1t,ygv! u "'G ̯\Q!w9rNz;fKR%h6ߙcHձ|-GSG^AcMZsRVd])#w/<m.Hn> >yK Qe.H"P˃\e>T.KݷȚFq*6VJ ~3աʽvZ% K/^[G9CbO27j\W|-DgsSes*>iw2C1]EuICfVde>)Ƌc6y8Il\dq7*zMnDUBv~,Р纇\@b`d$0;HNw;BsqGű-+Fׯ%rnHCiڳ@Gc5qew }L0o||Nܯz l4UblzTXC V(}ozXl̩H d(Lf>Q;".,_Yt*E,|q=dh KZr&A6`9i7E75a~=&竧 ~%)c U]9 Q5[ͤ<#ebOCc年/w:%cVlqTԝ˜}iC/퍍bOv_cZGxbTwSKzfNhz"E l & q| /.8~" 2c`x/ ^@_,eUHBakƫc]oh?;~̐[>l'JgTw Ydmd.1@lƻKYc B%Ra J0~ۖX+-hв $ɠ;zg@GBy>=;͢ERCI}+dT_L(J/w*nCLeS^EwDܣم^GCؐm%S-;|gnQЯ WԒQK#kl[NUz%Z^Ql $QIOBp>8pB+T -ϩDhG;VaE6fBWl̰:3-q旤Mr20dDƅ"C%a~?!1S_}=d´E  ([OJ:agnq?gQghȡc7{G ܅ YW9< <'ꥐ A7nߝEPdVdp7 u%7ZOi@1ϖ+”#?pݠ\sE@e#(ˍJ 71'qR)`}MceAhEry(fR>|^.W˹}R^N;ت7WًwȽ3IP&!'\-с:WwLHRm7\%):ǒ@3u_,f:ur ]RuV1`,3|Bz_-<("M$˚'멷ER#ЮA1wr =\ rFxur.u~Gv-RMK>N;h9Y|J5ivXa9,`e;jdyS0sڮtIշəl: \+tZۀ=6XBöXmޘ!)!^;ZVމWMr$޴zs+Ț endstream endobj 3078 0 obj << /Length1 1385 /Length2 6140 /Length3 0 /Length 7097 /Filter /FlateDecode >> stream xڍxuT6)HC ] ݩ CC4 H7ݍ4ҠR";9[֬5콯}]d㑵BZ”$P@ ?G9 0W8!.0 S8 $ `q t(@V ^*s%#\6(1zC9`11YG  A4 ([#D(a(`E<< k8VnN|LE/"DED0gjwˍ F[?>w߁Z`0 E,a6p0?6z.pO{`OOB"_>ǚzF\&wLN x@0X A?6 RUH[5c`+?i"ѬCrSSwῪH )98a#/MZ7ZH  5 Q-Y <`A^?U ҆(oKjpL nAg@C j~y'qE {lZNCEZ0"@m |hZ<3Nj@)̾k 5AB>/?B\\ٿ y sHD]MPi,ڨ$^1?h>Wq|9V/#}^Didfס)|ygKA e dO:i&lD.ݖ?c鞍`%/RQ nlWUNI'fj_:fZq~ixf*dAG/}$=k,!(E~:AJˬBTRGdrO&8bzqB+_Jtm\~ &vJ~(`Qf;VktL惝CV]CO)`9,~z{ۀ?lf`m3Dxquט*InOUgI6ۏ|9.?几 ( w]ӻT&/+T#ɟ.r:Ȳ ?ӔK> MМwhZic_rXy3^>>a@AÊu>NwzgǏsA'0_;1<"):BbƔC`4YEU˂sv+ks3#0 XTjC7'zՏrs䉇7eF٘nF0Qc.1~?$b`z qXh.\H>p]}X˗FGJDvq-554 6WZ_¼xy[_riKgK|6;{Htq#ẁEb WœٌHZY%mra W߈cY9_o?)O4zʔcHj^F\yg-a\H64?V/<Ů3xAN 3ϑw03 99v2]vSn_VrѤ#mI.Bo߇nWM収K f ]_ Sa=펩k{F m]w)o>+/L]UZ3NTXY$d),r@GEEB-OLIac װӜg1g)ɴw>Uy}k)&⏊կ緱 [;Lj3Dq_]8tTnlM=l}AM(e g3^.U$H0`e8N~w9g!BF9/FfS} ¤z&ˀϿJ{Z "G*;tg5odPV߭|E ) Iz{b1BYmi(FO/P+cm\S/=DV >kb'TDh,_VKJ:7c!f`طn;&$4]{%shHaj'5Pɨ¨GD_ rS%21'#~;˳pV\2 54R S4j\:$鷴j5Bxo*VV" ',/9W)Y%-^,ˆp9F+ 65l:3Ӝ{<'b۔iŘ}:́a@Jek G wݾ\GÓ$*S ȰNw-ZQcϳt 93{E!v c]Nڵ:yU.^J50n mx kւ BԾq R,!mJ〈Ma ȆV[82h7JvOG#cD#5\~ fG~xi)mg +2g% mk{nR}w7<qkFO<Z0NO̯k_U V}NߙrwvCLqٻOs]\֌dD9ћԍy5~wݗ3c7m B/GJ>4JafヘQ{<1+O8Nk6?}Q`JAnr޺$/ʱ9XYy*f49.ruxgeJS} I%;$3Wzh_d_cHyޗGŏ1W ?Ek|?p(0눩pgÃ34G=4Wk@s}̤絁Ā׻|JVqcڈR l5"W1ntb (XE9/ U_]&Dk?D:1/U[(E_6;>ٯy2'iv) Q%y3Qޣ*7)ʨ / #9ʯU+5*$J##oXyj`,oT5{)wO؄D֊E*/Ί>τL=W[?'ؒ:t6[= 8 YVmq$pӹy8ɾ .^`x޵=k'qVeFiV9gV--oiWH}Jx/8"̔}UyO? z/̓*`Ptի@EqKGUѽqR//K韵,5yXUfi/[{y,h{'wt9yߐxubAAI+ʟt`vf4J~a i!?`"\V8tF s~X IAGr .N> d43+y n3"]p#ap7ǚ݂ykmdr&8 Zjp';S!wusg󦍳j 먘K-wQҮ=֠ݍ(Nĺ}rI VTZ?SX%Kxr~R1BJUtrvi$f%Ki0=zb6K»-'Exy+h"&O}X Z_צxGBFX8ӯrHWQi*|YΊ&3zش;ǒSoϏmoӒ:k'qGq*LY!2!uV|^iprLB.;ITBgi3ᢘ:%gT6i$Y,TOD[8BWXWg)PM)j$RG~~v#?+FЍ8! ҁI]w򎱬,{.FmWʩQCG:w7*|q=d? 2yZ,)\ɡ2ѕ&fk r }FT>NaLXQ@N^R:,:׭+;z՘Z* ~HGD}(N`yPkvssbfl1L~DFsPjXsr|)"PCe~+V&|GEO?p\i+ܖgrk nh˓yY]ϊH gf׌2d.9Bܼk~ECH`(D^Mw g|N ?77 9ݘ5mτW/ hɅ{?HY[8OTG6JЋUh޹^\Gm 8w!kF'ǶBun!()8ϛN" :ī vyaNo1ƕ\]W> P$rƹ||S{ߩܒG9eP]5h`>7sᣊYACfnG=M‹ܟ# 4aFוЄkj g%Avu?>/U2$'QNtqP)z"S "ֆD(3'g 풕~Y}S'剤q> MžZz:gesz&E(Ӏ G~ȦD>-Ad.ūi<z0LQsh&3SnL>CPq<>bfs_:sxWBjLB Gd7%n}J?cjkO wҁ:5] n7u@%:zvY4, ) hm9e!aD)xwoE(ߝ}Ypx:R!w{~z&Kdb#>Mqh,M1r<189 6w~[U'-~ۮEOF>hV.M%Vx  :%[1՝!  :54z.1gm42n'UD`?^J07ߊu'4 [wt;^B-E14U}˧ovٝˈM~!?YHR ;ߓJ yLx1QIޛIs0{V2c2I}'`C$]#yO3KBrQTܕ@-7@画1F)> gi,d33ƭ>k1^?ٵonɐ&L0.| &a[VU]g W87`bC_zů|٪'G7ȡ&3Sqqk\/ߌݿ9&q>z0lZP0"7sjy a1jvע.Ν}rx}ڴe"쾫UroݭZD -3 l[©n[VI=v/"PPX+/aGw xB!(V@!IE8 Ռb/g^V~&NW^xY@X#CnoUWq~ҹ 'a;;S[I*euf,w6G&x"[1=Qa_tfME8A=GMyl`H!e"9(N endstream endobj 3080 0 obj << /Length1 1413 /Length2 8768 /Length3 0 /Length 9738 /Filter /FlateDecode >> stream xڍPm6LKw炤ݍ ,.]% "] - >>>~lC [b vsa!t ăP8PD'/G8@ h0;6 x_G-(&&' v؂`-p- 0B`tD \yyx@Ea>m9 [7akzvyPaGFD`W֑wzC#? psy7p)a;-`vA K~X`= ӳxaP/_&/q  y83.waLoM?siP |B|?g C,7oAP3 r@}vxZiv!@D9@=F2l A:FYpw a5c{O$J0[o @nn %?HB?@ !p7xsP%x->Q@{mN-r4^߇&Xsq("=t\.pq]LvoQdS^/7cߛgG{F>uarnߺLX˻<*G%iJ$ażGe oׄf2 t~)q90.3jc؏ڮ ;^;/)$ہ_yP$ v5$bRPoXgփSOVcji&{+}h}#W/ksO'd:f^35H[T/IFHY"3(ʼ4ݼN0-IڀTL'f2Όak#QTgq0G< Ŵ&DZb#KO+-^EFz7*NP>U>(Fb~b<9ڶ75:Ep[4<Ť,%}\OrxkΘu`d=3^yj6}h9+|l'2MZD$yj0 ="oͰ-ʨi7^N KV^`{n bq5zUe7g@խWlye Z >lfQEh2N0R&dpZĽ7QY{Y(K)v}EQfoCi;L-hccu7zQFWh7ɵuޣ섕^ g]%lqzc9yMMb!bLܕ D6MOao0#wRoXiõpH'ޙѾ糡}/\Uedef )dHnK53mvd\z;E -*aP.Ǚlsģ--@C?7nVE-Ym,|K"ޓS @FLj1YN0;.dh(sy>t}"-q_3Ƃ oXF{J4GElT9~ps~[msV;O4o 廏.xt/ޤvɋb&5*)v/ EFkGNFkT"gMHN&@C1pfcO %VݕvfIKdOAvz7I8I1{[dJuN.2a|箵1 Lc-b3bfblexn&Wډ}g at&K^EP_MI~Cj}1L:HL:(?[-)ѫzٟhAxbH3vRpnge€vH\&~[~MY7SWp@K,-n~Ŭi)2R]фFXj [u40*%w>9ͼC&q[Ec63-hr%fKBU&dOŮ:]VM秡\pdBڼ|Mt(AŽ!DAY0)kgrH-UgSǹIaf%<eU֌ix ̓èG$ji :Eve3,[')oL=mdP]E0P+k 3); #+qK&:݇-t`ܬ#ѹ5`dЭ-"HfIZW(Ԑ\>wյ/2TiN܆~sy$'hE]Um1o#*6\3 z.wɧ0%v>&=WE 2 %2%]i`!0i@h뛙.Q_gm.3܏b?#P5?e9QˌI-!lr \]E&5NTz|<- 51~M6MEbDVÜ4^8Je6_aWܠ3` D# MbSnw> !JԨZ,31 S$YK+cؗoq2:U"sB7y:G+*G+vI&W<ܚO<s؏m(Y䬫"&Kޣ=@{DIB2Ci-֍O@er>>-?'8I3msГCmF_}XINZлΤRLTf>hᩉmym}iWm%N P/ja=fkh7k !c3=*&X`Sp J 7klBeV*&4E.6n\~T(iZIWnĦͺ Zb^s}61TPjm2븧: mLg8y$>ֵS'vT5e>Wr+"c"zժѵ^n ١S6ns .^VgoXfDK6$zQuKկ>,چk uROVeZI^sO_AgTeCGn7쥝z: w(6A}n(EspMϦ>u;ZUxY="@Lܭa ^ZRpܴ/vsd.F~&{ue=k9ިq.!Tջ׌z(W(`/bJ( X<7wr p=;ț`ФQwX|'~P"ߓh- .ܚc}P55,9K_݋e<6XZܼzlVo[}BKrx& +vV؉îhuGrXd'kQ'-(}2Ou Zj~^};*"ѓw Di*,aS|/ˏ=r^빘ӷEck#8I *L&6D}@mޔviu|Nn[dfLybdžԆD/Pkx%4vyLag9ŹENVrjPZӉMPzueF_X}֚v4qjy)}? XQ}]SS nQ}=}r}8(s&HG1MhO<~cU|qmE}{a9JG#濫P S}ϖ'g#5 x яG:tn!T*1Z9?> f\ [ ͷG%Y H EQUzjǪC m2?dg)qp˅LAlT'V\1y~$2n]7qwgM:B9*ͻ=6 (?pYiBa5 s~c_(SbO'j-f0}{~{l(ۣEp(ſ%1O(?r J:)j8b#^w8w[l Tu2Hc_wЀ.ͩ|`)疏rqG8]RTo?&ܨ[,~"/=&ݟ "humEQ {vpi0#cD$/ǧcI 1_\4j*N: cyβZCyQ@HeX'LOۆ;-K6E&ݘ O1^dQ1 ڌne/X)I٩)X v Z| FkR? চY27=T.WE޵xMit|PvTUWI?wr?֛g}>0#="׸h~}gp2(|]X8sK2~ 6xv"kX>F\Ml&~ŀMa $| Ĝy|˵Q1w_2&Ju[=-)ޯd/:]}0OTݔ%}wMi\C#͙xV9]4.qǏS9d%Z$& ]_[R6PrP[$hL)(UO[۳ҍ`QiL*ۍ~%]cSa˱!v =y^p̐0xcQڃiG[L8ޭeZ+yƤHϙ 'w&30|8if8cFy1XI?tX [lx/ҽ_3 BԾvgmȩIRç_>͇2LHo-aA#0WfC.'gfX7ra;Р9ndhzY }~ARK=*nr'Ӂ[2毄9ۯVҺIf;S=\q4.$.ZUb@dh+_{":6A@2UfB`anτk1mb?3I9*ҋ䭠y%rL︞>]a"HFbNx tapcOqs|ы4EVqBn=$= E B.lbg|QivڅqS敜ID55(];k>yO=sF#ۢU^3X*3ebm Da .ӎt02v8@IDI+WĊnKz9׋'\bump̘3_"mqp'|;OZT;QsV9lc30;fftw[-_/8|S?=,ML}9GrBSTg#^lK/\}KJ^TkCϯBl'g{0yoehYZrj6|!i!:o[fJ }GPS4_ V Q[ǛׁwBv;Ie:޾~M8O(G6,$Q/DrcwبXTi>){D ,z,JOcn7AJcwCț{nhuva&ٲJN@t1X1۴IF K `m`vI+PT9pyJNz7]wI2AOUo+{x tvy ٚ!jpR5\ }T' 鼹Kxut)^ٟD6(Ciml^- ќU%*2b 松P5/ 4qO\[4Iq%xc'[لAIKhM\ '5Rѥ!CU fT-!nNU1}so%O;$jX[@IK޵yEѧx9A/m=p<&e5V 'L[{4 Qks1-9lʑ!>VU9~11')R} 57P̅#lB cc]_̯7>p|1C^ߕ4%ᘨJLH%MC&> 3zƈ,(Sc֥XuθБT )H٥;֋k^Q܈u$g.kdꠣeKKsrۜo=QZG黦f;[eGNLcJI={&F#[ӈZ"{o:c-gdL3q^&"r?,MlG?j7B`8H>eaFN.u&3bW &O9REL~+/9 1y tiրa8l5#gbʁvL AW6FaB+[cW6çyǂf } d>&?A,u)wzIbC`!͘)7#{>*%ӷ-9er.o5b{S1n |׼ PK& h"CF+&/{xڱS4"h?c"'*@MA$z?k8G.ga1}{%5nN]Eq(\9Mq4Q(-h16${s"}aVQA#'D0T%C#^1rٵ#u+#5&A=}H}[ endstream endobj 3082 0 obj << /Length1 1373 /Length2 6090 /Length3 0 /Length 7029 /Filter /FlateDecode >> stream xڍvTl7%1:I(nI 1 ch$$QA@$$.%E@RywW_}~uc3QUg\ ŠB@uCS ,!XO_Z8F/:uP,z!@.X(+<08rc@3]m/8/gD_ "w'BCa04 D\.O8𶖁6+;B=}x u;i R5B= <Oɚ(gu4 Ga}@`0G: P.GpY޾p]=*tp,P ȁpo << B{]#C.p_x) 3:](pd1]0x ';<(Y.HZ[B68Qqef1"X] (W[W~o_obG,(ۂ0BoGUBxb7DoWK_t5;#|mBPEz>Z1 s *-~}( /U0ODο%.% b0@~xI i ` H CB.h >% [Gab0x8 aI4=Wr)Zf 1-4d/s"1Gt5Uf/pobRMςRLGWS#mpQp_x߉ n$l1.d<驘=jRZhEmD8 VR(^C%^0 d+Qg t2幹O; +!Ç8 =O⹢q[ߒ8vڡK2 W}\nQ6 Dcf2]TUyIvp\ uyΟɨy|uI:.\:4=̃?nn jnj-7=. 5\<~UO9s}e}6aHB@: G!ZX1"-(q;E}Z5eРrz-i,l%mղݚr1SB sZmB8$)UrI1՝2v/GJފc{vmf |[˃(~)ҦPݯt/}5$Lȏ2l\}%6r:JGN~%@8>.X-z˰f7*sonή?,ʧ?tXFԐ!uxNMg@ϖFy=iK3n3CHxN~MsL`xm6agA8!ZЅ@q.ȧv!@+LkFm2~ϊe- ; , O}]F64]a4M:՛ @G+&IsFROr!_q*;0Z]ǹmUJM3 ΊMQc_SNF%ED"ߎ5+L㖷24jO+9kD 4w| $o"Dž8a#Ӌ؛zg]1<>^|HNTQ|ƽjHp8~D/g;oI*oސ^|bHC)پˡ3+~_: )Ip^ߓ{(Ux4ei zV[b[hwe9&Ӳ_>9.X4VwO&S ؜*> g}YsrN%XA{]c*cYJŏ4_^? AxBCy޷g{(rGBtY!NvV컘WCJ+ܒ7ȵ{1Ŷe4 %)Ԅ1jɰ|~̅o˃qlk]#fCpj7~`d.&sC'-M7-*2tS]mepWץ>D,OWniLT@FFD{kqOm.pf&P4J_M|EtjqAyM⊒UMTj~#.'1HcH,.[(vKl4i$1&DϘ)6< n˛][$g.7̓?>n~`Go*q/͎;*w5We`GuX5Zv("]zN|Hsu8nmrF^ɯs:Μ]~G[qU+ҟy ޥl]5jkܟ5ѻL&ܤҪ2#ygWxyAԶ._W}`2[hV%!Ҥׅx0;m lew|CwVs k1md!2U*f[GyYa;݌:# gD^`V gOl}wX`[^jo L6Zaumu}x_p$t\1x`Wcؓ`ܫ[l<{ySPen~ƀ(=4{ޕnһ6gצ,e9Ijl,_n Onkw^ޥ>Ǔt%G^w~_8?_֢[לT>͒@)5;J?v~ jcSۏ$SLʁJ5@+联Z=]Hxt50ꨢ\_|J>kdsۇEW*e'M}eRt8ݖ)"%W#_G|يVWlW;Q)zcK_ pu ;- D? gKB([;}r mEJ4>sYo0 ݼjl3r m#^lS4)JlٞPxy@c:xFf̽$K *!j eȀIe^+qzo3i);\bG?ӓ o*(>s?@2*1u>M NI6tB:S PBq3EKx_K^抠-/WCI\Ow8׼NK\AV EwMSG'gP;bەQ{m=X~y кDP˲B'XꝮVKZ&=߽'[vody_=0֛i27KUΝٵx/~MUCgiKyD%,, Wk;{ME^${3t\{͌TfKI{4'-Ʒ1Ē!ܳTŎFm`JHfj Ki Sh1z/>ɉ BJ{2 j~: 3WD m{1 ӷ1$桳! cR%0:߯:|^4ĵX: ;hFJMh(f7ɬE_6 鐤=!B(ټ nER 9N6 2_q|=9k^LuЉ#nf&/W6$~ ̣#̢{u=Gb# >=\/. ~esmZ ә[{wZ ~ p[<7?as:YgAh' {!Y/̻|,6nFdjxߨjK)q.יn9o gLvt옇麵j#ҫ3^4"rli ԣ3ˀkbgӃRk-ρu_2)K3&C)!1J66΁~ۅefR%|*\-ռJ՗ #^8UVWsJ`u T>&gb^pj娑dK{ugke"Kmi{ҷP_) EbVY-F] :qto/guxB3hFP%G`t0kˠ -䍝hFWeYOMTq:&[ovt% gu۬!'?gBCՊ.`)(p.iG:I4.#dŽdٖحbԝXpaAybFP,r%[L-x\^-eV吔UfޟIyM>ЪWgC?)$K|FTop\NSܳE}8 > ȅ9J*~|"UMcu%F%\A ]Uo*$Hh$ve{E6UY$erXIX!|?Fyj5`eBEd}Xܭr3Rl[5xZ=J?g^ 1JұI4B.c?3{ʽgìKmϝw#zQ.l[]\Rt|ҍKɭuB!,e>ʒ_%g>2>p |mS |^K-/kUj_[vd~Q36[Id<@ )=)5Vxv׫S(ȪpEHs\`~wdpu-.F>CY~MUq*kw ӚӖdZ,#9 wҎkz o~F_vzP܏X lzh׋LsNsig#:0{~D^ΌUP] Y,gu7]DhUrzb;@}M墄. _sO=yQ$% ewj:ԑ6#ٴ1+˥W|p{7UV^0k'لZNTC.#AlDu,"Gn,p|ωM0fy&)+n㽝pa+`Bե,S}w۷'[э/z!slUj944! JnX*ӝ}IP-GU):=@?[|;bL#Ykv/3|kWDtY h՗NZ!3k&5c:$j &.k@ǽVPfH)~ S#^ݭ*y}G$D B*^t7J5kǪ/q9:F1=P.O`$D,X-\:~⥙_mK BCL1+4:JJ9l7"P~g)8{n2ɞ N⑝4'B6RMT.XJVs09L,ųhnW'qG.Y,Dݟo;B=! &meE4E1RTmw$u[3xtGB<vMS㐟߹R.ѱ$CDE%~zKg?1P endstream endobj 3018 0 obj << /Type /ObjStm /N 100 /First 1005 /Length 3713 /Filter /FlateDecode >> stream x[[s6~c;~tI6ݸu㤗dȌ,ܦlnǡxH߹Dt ISHL"{"3)3üwDXR$±d)sJnTKͭI2O`h褙eJq¥*PV|F=z &σa%@ la#G"aw =MG 9eL/;k-׀dCƌ c"7xOY t8+ŝ7+\ZN)lb0 DJs[8T?C(̘i(-TiC(v[B+AqaҳC("AJuFzTȘmD1_sjS"Q;+PN`(U;Q16qujE[),!Z-0.[(̜F9QSw܆,*,9ݺ3:C(v #Q4taz+vBEBh 鹧 P!;,PaMʜטفO(x[M(ܷnD?_)8-|4vD&\0 M}D2V@!n' +AvBO@b =  MIHD:jXd͸ XӢ =g⧟_<i,[\ǵr\~Fb{h]놹#^A|isqZN}&^47O<fYzYMY//Wf]d6y|ϲ=r{8YiB y%BhY UMl*gS9TΦr6Ml+g[9Vζrml+g[9㸲BF. /<*f#yK^Gׁ@ ?1b~St6^v4Q/;5 ?&# @/<2|09* %jCʠ2Ǽ_HΫ**^>d<>hyV~LL37s =x Et.%A]ѽ"h  fHA -jQ>" NaNzlN.o:W؅oDDƩ*Ҙnj0 E+B2@3jQpE YDAMH {Q-+) ' S1=BǏ"5>l<6W Qv(zs^aޚ"=bL@Tb5W|NSy>U r󳢢+_ ܎Y#iixň4 UڰD2O9nfte!$ϝ1 PmhKϬo_}MS_LlETb~@rP>0;P]XCELV:4fD%1ny۳|f* r!/:QI;/9~W^Yॽ& /z'azjfO|;96jF+6Xǥף02H (q)4v]0#v?[7&+s&g'u))\L'i1oQoa]ҽ`}0f, }t ;^!RJˆӴgLNp .ՙ:޹R*>OD_ r/?r\6:SS?wTv;Z&ֺx^f^+pC*DO_\!*6lǢϠ-ƈA*"%= qhLAE \ShDeeiJ|!>BxVh3sz a)5!p0hE F*l63,F[Q6-RKST*2#̴idxO3H13m9@ fbwthܮVo9xޜ^'q>9]3_5:'5=xru3;=4^{f2MX<4?n](kBB<_o?3q ߉Cx. R ~?+1f,Nd=ͦЛiV;1و7dn=@ěd̛BV&560|D\4ɹx+~mJU3 q&~8kb&)މ78 -<af Kܸ/CTIt-Or-~\.7ɛy!3R<Wb-_7z^=ll4bR\˓Ykq8rՈ_o]!hVO_`W#kox^|=>8x䭎h@/W{fo5]:Q}[-\L߼ُYpHd#QTwJ4&KY=98dy~yeZþCQ8U×$ҡHQ wKE}S]r endstream endobj 3084 0 obj << /Length1 1406 /Length2 6209 /Length3 0 /Length 7173 /Filter /FlateDecode >> stream xڍxTT6 ̀ttww00 ")H4()]R %%Z߷f=繮=6+ "x$J:Fa>!\VVc0ێj aP@(yH ԁA^0@PTRPLR@ $ 7) P;t0(˪s;9#up9b< n O0 бC8ܐv !Cps`3yzFڹƇ 0vr>v AP82  4z _`8쎀_3Jf Eq p]0h+G0^&PHCi H@/ЙWc?woo3rw;9(B~A((?\ @;; rk<O/RI?AϿ sA!~>b~e-GZJFSQ J Ebb"ѷ?b50_"p@8̥ C27 3X+JH  ?$sHZ7 tu@`/j jP:!+O_v0\ r#//AP> AF )2+)GR ?@0_byz""UMf?@3aVoG "]Aݑu~QTov ;{[ /JE4Ft]+nO`&Y ƈ 8kcz(:Re/UF,r]O>~^@QT<-v qˌ$>N6'DdO5[yH($bʠE酢>}t:T_MekjsTnۮѾ=lhyw~+ wĦ\*EX gbA\aa~g#yiDSa"cEc,] H9"RףJkDǟ˄ɤl%aA7 ${~!lkžGζ욈Iփ]EB&6O:>u\)$6w6x8}_w|[n.OHG$#J!խ"JcM,촻.ڰ=[/ Z^I= um=v^塨 !d_ެ a@Nj1 V*No7&Cqvl݂i(>dyGt~rO_sxV*[_'~s=ѷ~ ކ';Vfa:1ϣڈ-NjUN6m׶Wp)}gF{;aח7f9*iges6 ?)k: dP-?- ⎆+][JW8#a܎STy:MAW9: j Quag*-w*&swA̙Ief {s@x>TR~vE}E f ͫɥݹǰ0EWlgVĭWv7I֜9L!v5GMFER^(F "g٢2+ЕlMĆ.șJR+~ ࠀ¹ t9`{w@Iwfܧ*|0cgVJn Ev^]y<3{D$5˙H4^wM9xDM MUUҦGC[K x~ -)~R4#TCijJr̬a>L J wY>js;An{Mv/-o{+[!~AiBPr/mJ<ȺG4S/[`d˨5q:>\pf}(^\ZNt%o 1żețjDU:}l0'G'r5kx}$Ԕڴҏfx~~ZhHU[D'J$$-6KCjڈ"|ތ$OJ TZ Rtk/)Khꠜe}=oݣf5 /GXV-E IӸw9MO*j baZfd62՘ثE8z?4.j?lU0ۺʡ{k#s옦Km [ioI"KP_N1}~,Ws2̱}4õ vE"tqҏ~S9p/ I``oO?g-nß3ש=ǝFϓ^wܓ6QZ @2ۤJt4[/F)"~|ht/9O?]:jVWǹ| .Ʀ SV_g}x`Wif1Gؾd^BS'y> v2A }wa)u\_V=&b%ijh\u_%wHrMj;N<#HaKq ~_ŵjՇb|\='r~ӼqWqvҊٞ2βD.Ml$&0%7ӈ}Р@93}"zrT.\zn'wz72.B"J#ab_R3Z2舂U+hiG3yq|t> u6"WGNsMwr(TTw{4N2^y؂]4}$RߑN9ς`fsϒrom?u4|Fy{6t/}xګ S=i07Lƺ0w|0b ;8䗗ۺu42 >5gz:Pd5UR߽J9!wo_Z=W6tm.5*hXEsR\i m {8Ve@?~ G!ܠe{5(69Xy0CsXOs; HP*]ď \:d/Tɦܠ-2\u,Y.V$sasY"e{P|g\O{F&\+aq(!}>V%!xݴITRGK.Sg󱐛8 .]Y\]Yԑۊn:2ο _f3B ꞧ|ΎE_ w?r8գGuFǼqJ/b76)PMKEAދSv.;{34|?\5gؔE{aF:[UDL] yl5 jyϧ*kǖNzZt ^ܰ4ʐ| [̓wrY WdͣrdH)9Xt瑩$s+T%!FjWJ3:9k9/10s6s䖶mifkRZEi~o1 HwuL_<ͯ,2y٠ZSk2*k֢$F*'P͑~ vnrrŒxCa}Hv|4d-m>Æ391_uH g"u60 } ]!Wbsp~0~~E֊Y@ܪbJ3ofRdތIDYR)8椉|RrL%1_.M^̘":.3D!'Sŵj1HPao,K=jpN; H?M DRrz|+/N&F}c'_4jw2 `^p2f9=4}nE>=-AnU6q}}K/dyP9䷳=:e\$ra9@$2ΒX$Z֒xA>~Q %<|s :U ==̵4@7[Jq#P{chC9ӕvy{@`-k F“:%Pbed& Z1N蕃%};y5iyvKf!@[Oo7ϼRc B%;wi*rx#"e1l v}iꎤ\"m) Do8D"fYZOL6Ƶu̼=񈾌"OڤqQwE\_$&~@Ks1`7Ow Vk8v:wk珦?tJTй@^@M5 "̝b/)[e@?_LUF55O(qV˜)U1.?~rpY(BJ Q2U[/}p/h'˫5!6zpX^نJn4B ַc ⼅fWfҋs׹_m/$=s=1čNAWUo9CYROU'Y#luQֲ5~sLT|T@$ƶcFP+@0"gGKUTY sy狣K98B &%+ڏX)Qxj|'/upRiU-ͭ%CD"QxVgx$MjRࣻdeYߊ鷙UcZcޞCBQeCʝYǨ#p/U ~84vd=%+mBCR)CN ߧ>ߍ è;f/ϓ(||p>Gb?aRI lE'ziuBcV4qyVwr0HzgChZž{^٦yQh\'y+2>' kp7rgZylތ ,$p{2o*e$X:/`Ŗc0R> IL$fK&nOv߯ե'~b&6Ď wؼE+^[Q&P?3g_{3ɮh~Fze|6o+z!"ÊfB߷،1>N]wFw̋U\K, *oc=+\u^c^?Nς">҇r_.bjR\s,`5ccHsqRo!)t$QcySl`۹ 0ڂvi}14 '< "Q5ոtG]"x@Hd]`P?.RI8n[ޖ{Mmj8W2ӫ-EuvF*xٸgPθU5|HXSHEL`G}SK!|&CG~x8"i5y?D"lJx#`VunL|s0i;e;Y 'XQZoex8_w(x4sޣ$eC4{yq"̮rLoji8)D$Z`6K,F:liy˽☂LB%g qC&RI_s0*{Vһ#??cݻw6w`8f*~WĶt[ht=n\9YR1M,_4s<'䞳eK_Z-d]jFl2d6 A KTt"ֶoɥRX4 i^1y+)߸ s<> stream xڭc]%\ͮl[]mltVm۶m۶59qE\;2WؤJƶ&6Nt \Y kCgGE[kY[NiZc _9+ ) @ lb`b0rrrl,̝*j4)`f6?.&Vv&6NC_;*MV&!9y Y1 @ lhea02q4:}[S#X_77#T4;k Gǿ G8,lWnj/@v-utr4rs*/,oNNvؚ45ru2q89`lhge7`vhach&fV&OwNVme0X89X02i7 ?"acj `d?t.&j?3C;^oJt}$7PB oWKzkhQg++Yd l @ϢqX[X9Wk52: '-1K ÿn&NFS\/j)-~CU&6_^VD\HH\e(wb?amlZfƿw/ N6Cbϳ@o ~y/aDll%'㿓8kMLL`Vl-SSj0&zA |l}RBw8?Z>$Gz0ȻLr){7٩uS"=4Tw'u> ڙ)}]|Hb;PjNFo{pbI 08;<}:iJ 7ɘVnRSW.VW=[$D Z? +8WՊك5 ,Ǧ]BzO@JP;6eAZ̟ZouK }Xݺ^qS<: NSŇ?{ W|o"NQCJ Wj۫ĦZ#e̚iz[cWY{L}<2rvFtFX7X>ȿ_4Vو?3"Jj#kdƠ~h]Gu`a?j[pff)R6Ϋ[<&ܩOu˔:ikTJ`A|լtC'J!薐$AJG8~%@Ӷc9w.xUXN4GvXAL5BZB>o-e>xKP\".p9jBcFVV'n% yÑ0狜TAʦpK懺^_MM6fFIdVۆs,(4bjn?sK~-H-9=bUAaJĸf.XX{Jc#Hл`]Smhw}I}W@I t2Ba 5L̶ϔjv"E_ R&/pm&N.+Jhy%m͆xZ O|¼-YG~C@9(0|W=OF h0#}V'udPJ1C`<5n+s:&0EhWF /fBiX5$:89#j;HCֶO/:[.x2Q5ᩅA{kζR۱$)k:B)`P }s\t;RYAʫOڧKozמ%t.wI3Ϟ j:7> F 0J@eC!v}!pTGZUhj6р2L )Fkw.FY$’5' 'xN5h:=K}ru:f̬ #-A钟F\Պ]=e^'yHv,A-~k8 2z?u(zw)0Y7XY\_akPIz9Y'^"J (ADٽ'dxkؾ-u#'<:EYܩ.f$?|,L^֗Js7eYh]A`B@;V397`zJK=OGÀ!,up9 _|U%[oTca@+ig@v b=Ximk}#RwpnwhXfG?{uDW5:NNeus 9Z$V+Ng꤭S xiҼ^Ћxfyl$\hLYQ" h`>ʄ3ngh|4zm|d{:߰@ Co&W$5rΌ.W?H]Vzv_,r8蹎#!>0 O?M'm~|q^]nD)p.>[t_Vbt9cIɯ>/d$boÊۘC}vS(7&CDՂॐ3yhQflNpfΉFvb +NuHXv;%mL-o8.;<i6U/(Db=aK,;G]$ez?i$ř)CKW{`*-.ND>ȇܓ޵?wc*-w'GXП ) xܚZqؔAFʤzz1@F$8 ^6τ֥jш$!)b{;"W G>T Lmo;|%h@g6=Nc5 Ҽ, 0.\cNԥr'w7XM[͜(MIp^X=0iBAľn̋F'y8M/̊qq %a뜮UěEyVtu辰hIzn02; &}UI'7A!e7KB|w9gDFB&6tšRjoXKK±&d@ZJsnݮWbtbүN Лh2n]?F4(No}-ΎjKDWnputV 豹.ci )}ZϚ| 0]<7fq*21޴#_ TLހ9 f*4֣ȷW[$9RLYN"36koo3(ZVHAX\ߒ8Vƥǻ=Fm*$MT>W.]˴*wH a7O7MQ_)$Қv'OZ) UW?{i;#(]a3vkG% L rm̜2TjɌKA.\$Nihfܗ3рtKYѤ8i52/K,*ϺAW׳B7AK|ԜuB.>ayp坡TUy*dd]7QbGA WUwc{=?HH?"y~`#,VgW9:)og^M[Y[h"Nzܙ!sY cmiTQ= Μ RlypQyI3c6dv(vg't tHN苯%[/0 "n% Dnj@Ǘ3eE"uyHf܌ ?sQaf b" _队辽!g8X!pbJkn.̗{[S¤ltIh酏]Jӓ9DMOY~ .3azs^.y(f~TBpү^yT+gxu\uH$oo[/~EUijubڡrPqp~vf"p. -L03 lMNV`IŠ-xh! )NɈr"!۷ڦ|Z{ݮ IAoTV< L;T' *F3Jw?xw!#dkvq}`yh"F59xc S wm{#x]Uhtz }ڳ;(ʦp7 _w2yKp}mK1g^h<%^6Y>[6~iMi캞WDƦ.5t']Q?CnG,iՇlT AT fҿ҉ZDzktVh)6xv"ǪH Ng.:$_c)Qr;2u;;!YfWwG,e)֜KR XlZ;WZ1VECZEۢMi+P^k_4وU@ '@s00:5i;ϼI3pΎrN8sÇ^by=Iّ?zY#JϚ}`)eXD32!V%!;{R73!S us&ɶ3_bO+r3zVd*.fȤ4ˉ[}+j|Y[޿ǔoXĚ)inon1XZ'kB񞔢pd_*  16րYFU@?Txc?R*qp~fE-nv 2xǜO# >\ hQT;5C`լ<}#Tk8 R{;+j&cjnXsٹqvct$Z 9Y(R U ɌE $KaBHNnD^q;wa>vTBuGg:Jɫ+ Oؠ/m-R1$]\Hêkw.UzFovI ۞iu5ӕm6 VpЧ=װ1k'ќc{"҄viT?FZBj)ge"LwA!1 ƮC݅V^^4+1tW 7gˎ${Cuu+}r2zT0t 8d ;%Ҷj*Z!OWY!bp˧kG+W| 2Dtcwvu'_BgmCa8S$b%D:b: {^9ݬ^bY7{ l_rOrR.j򭣶*߆Y(v&@_Mp{M=ܿLͼ ¿/r j4UXq#4K"}Ӷs=kdCAcS p&v+VQ{7;)ndIN+:iO o%-RLTP]{Nz>6ΉI z بlFqU<)U1(]9^/F^uڍnHG{>ƭWHP0kh%9$<1zDuAKA#ywlzfHf=x}|Y+ kE7~/m=I;憋pK~^p-L]\) E57(ӹ{M_0󰦺t SN05F_Gig"DHo!'Abiک=5q`-,4,F]cacu zކ6[`CQܫ66V=PtFIezJhlt q~j> 'zx q=:=|~&17yK8#脩d¬x,Qz ?fS}ob{1KiG-➞A=1[ѯYg]d0$=C{L̝ƌ·paDjDQW!>qQZ6>dNh/SEvxU{1Qzgƅ/vtL$a8TRH@ 4%t[ A_sڂW2mn/6>o/瞽t[(satNP4 O%YS&6vt%PyʈCd*mUP f}~ J+`ME[?5-f$$VJ( "!缹<{&4 F1?~F߲yr/__k6[̖@= X5YN X8U&h吻R2vh3i7;tB_ϼ}c*ČxdazVtGFTZV@Kc@G&YH4G/'Kd2xLC,#ٶ_6-TrP\?Q`S "v Ru^xdg^O0c/gKxF!TzF:em{Z2D;b'PZ j/7oP?&J7( _ڱc52%yʽ&D7IaWg&W~dS}L6,BeMcSs)(rh6cl{To7b;U?nAF\}+q.oӬ_;CeN+-ދWL! JG\PyM,A.COPFL*Q'"h.n@gtx)A ;X j0\ sRcG}hNy;nTBT|~+thd I xy`ofEj=csøb$f)ݍJ mtY~'g4D (xt\ۋ9C5^8#M)L<[񲇂)lveZR4",\'$[qڦeF*5Ꟍ$ةpq1St ^;8. -=ͤ0eӂĀ?ORv$ SrKT4#+(@}b%@WBљ$cf`@fw@ _A$Tg{DHRS$qhA0½!pn,b׶ܿ腜n9 &2lKo#).,K4#3 Ռ"# mN {6Ff 7 ,Ԥ֟jˬ<Th -a}=|KHi`otjХ[K h5xZ9R)).]5۵wC_Q[š!SyuC1[MUy@p^VsDs jT9,{S|բkV]T,mϊX{ E^42R0[5Cf-Cq1w `}qR;rUSw+<ﻧHQťO͏"H4:}@WG%LR5Z'fîp[|^d7itr dΏRBqaj+B&ܟi׆=e'uNc6j*zoP_ +TTw 60P0g.AEqŞx ?H=U+"_>cA-& PIhfjd+&WhVFi1uGyr}P@.ŠP3:aa3lsw]Y콰@^:)~HjuI1Z| TζŰ?Wկ^>5 oP&oD  ּDEm_3J]>Q[&l2XR \0 u@o/pd JJszl .yN+ޙHRhSs>p)sAy.٤n){sʌ6ؐoid}a6 f.zu@pG9FVM49z=cs}G0zD N " n #qah\[bjj.n]Rп.ˣDA*V,!ٹihj YK O+N=hU(Yև:qx[^*Vf֦9PնԙQ4R ) .@ͺ%ͽXcfgXH9pf܌ݞHϣ4K1Tvßu;=K[LgV0W,;g!u,uR,e,nOı3a9*.j B`5D/m/?Aoj@>/ElR֡ 3FX &Z^qjʮ&qxu,b;I1AR.;rb;\F6؞{솋y0Ն/*^Ub %bT: XBu"9$uUj\mq^tNЅт4li9$Ghn\0<)S#ƍL!C.j&xtV:ZK[B~EndMyQ{<}[,,ITtC y7J% s'5+lOݚa2moZ;[*Ȅ+k+:6!#6:Ph=te&qrh(+,1uIlT 5~ONa3)Kb'7I:j[,Fo\z+4* Iۇ['A>qr:80=,]`̵Q(@ӽ\9ZD*Pt|ULZP^#Ӈ]B %vNkI~L1er2$ܒN2y1|%͆قD[̦_/˸{.:Z`]C)νRwOurr"g^Fgu1ѡjtcX+^'2RpP;id/j뛿Z t͂ec7`ūElA"oт8Y[/OF:A?E_>[h+لFu)4(>ȟSE؃涻{ojm={qbσ>9bU6,VeǚÔޱ [nh*Ivޣ=QG=3=LX.Ǿ> 3b1cƧYBeGv` 1˕SgP}P@TŅ""RyY]Za,S]SPf9LD`f"*LHeݞ|ܿҞRe:9?]|vTx-wD<4ȼ=+q.zϘxD͡~թ20L  p&*Z5H)#oSYm0XċX$Y}ҟGBU°ս&r;xj"ېn/> |D擬9ێ k_[iv6I~17gV"8`sq$a6ZΠ,nWQtxұj)90A'hUݜOn."R eלqjVsCW. =+N* LJ{=7*lߒ0FO_d[+yԔc5ee6^3%GijPɫ{!CIh@')кB4AX!9G2 ឫUo蜞Jo$-ʦ*Zdmzܼ}ԫ񻷭'5MU]Ԛ m-_vɝKrtwƌCjX d!/utJֆ5MoFcqDŽN $YX`U:*g?7@޿&xғƪu /T{aP`v_F"/Cbx@)O[rFb.,g$_ 獝;~LuV(_s%ʴ&ٲ@Uvo|zm8>VZ'h8#=hɸa(%9-xx|H1Y>ǘ--C[[ m,7^:`V?=գYtF_)fWwN qlzf?#`m|J,dDһz2J8%y8o7 |y+U}bbMq)[x'̞*3>BgG'DVK)_\J ˤ1hk|^Ou(*=4#n}7Th5(̷u+†e.Uwh› ;֕[ƪZr+NFd;+Yfi7 ܂a@NB9(2L 풹A0-! .Iv׻1 l2 23MUNAb}i:08:%I<74=(gesJOB!up$\xZx`,NRy3+|oBǔV q0LoV؜ŕ = TguZm*Dv5D {5$x;ΓW$XKHس @,%0<-WAĆNt4:>9A+o]ߕ֔#2fי'̮{}uV_ԃN_~V#wqۓƱ&Ǻ*[oƭaE"ܫg*2 ;m /|H?=޸TthJ G1#qL)y`TO KYf;hݨ󈳱o&&ssp\qVJponؓܥE&X5שv>|%"?2A+E'j929;Ǣ,%i`ZsedD F@s%3`oi}}tʫ=xgf* SS~Mb ZTܟ5[bUC1aAAW~*Kg|Mg}Bt&-U=fmTށbofbFls$}:V[Wf8m#<r;[~$ o!puL= խB-|W{pqM{k`-3/Iϸz8lֳY,~eiv|^#2No$^3P ۠ 76oLj> stream xڬctf]&vضm۶Y+N%N*N*mo9=c5qM\sͱǦ QVc1w4J::102M]UyTr8 148 ZCU?%L毧Q Yv@ZJQ tMf@W `\bLN@3n@/3?*z;`bnk3;w+pWBN.-);X;FUwnV&nv8Z4w4sպX;܀^n2̭]L b4],3z /?:K&NNvv` `caolKk8fEoy] fo&vsߐ;Hoz/>WhIw;;EdL @Ϣ3q[ydLE/5̌ZJZ{͕̬&v{/9_tVfoV$"BY2T;nNs(8QQG// '7+&俀X`b[73˿ ?f`wC/Z=4[]r4 rcwѨ^RT6i{@pˎ7xYHOFu0b֙VՂ6.'a;T' MGQRYFC"fJZ]e#P ||&i$n.f\UZ5)>oK ;,YlD_"Kr %ɂb겆]K2g+k 9+< b2J8>Q5rt#̥5QTt4c($b*SwK ;`z@3ΔYx;3 DО=BV'づo6aVNT BB e6'tz]SFJo7SݥudJp O7ɕx7H\ &(} -55MK#<^cQzi#Fx"' աɎ>1Y2۝h6:ucq, c$MWv'74Rzn;RR8yx,~+ȯ$&ZskM֙-wjrژ]OfUbj;jVC>)ح,_n((O'G[-eNS{(PT>O>8(ܫU+ HMDs"|'rQ\Mf jc}OE ̼@q-1YE݁}7N6qR J ¯B jH|1E'wm"o*W"tiĐ2 e*xOY7`W,OdC7?JN'/4uѪ{H*qr>MHM~>p3j`nB*C\P^D3ESe]13UzC5S,pϕ e}ԿA>l,چ~o%m.%3`Մ 0M_o>\R ObZer mN -7tKN)+Yx1RL<q䈠tK|g1ӒG@{u[л8J4 i` r2%*:^Nyv#սN8 5+k6~$FR-0ZZ^ XJ j b%.,Zk7{L7_rUu}MuRXEJ߭!>O@i+r;8_/`#'jP N 1∤vO/KVA7ݟ}_9Y{qȦ+O|7!J?f+hj+&5ޜ < ƁGӖp$(tozl~},5_~o.te}EgF/F ʴߤ¥5wꁷP@"Ϩܕ$|>ܝe_J+J /`BݨQ7Egt(Z:pаJ:N|ż <2tC>?8lcc .q˨QIVaSOJAlpr!㭔9 ^. ;Ť^fR -zՂ"+SePQ3j\Kut @̛&{1\? \0]jv|R~͑0FtC0h; m#+IHMw}]ZdKpmvrߨeAPV5822י<O7 arڬ`p`(b=3͏$o"Y Jf|q ~:Q!flW~>:1RAv:Ҿ~]i؅ #وCY k A\A@I5 o^_hw%g ̌t9ǁ♤=fGҳ_$vsy &何mQ<~p$6yP#+ rZ$;`MZ=P9Bv~*g1,",i孈[FC yYOD(n됈-8qtY1L41UgJ?O?Wbȿneֽd,dJVt7+{Lqs5)T? %*e¢z3b~vؕ[DwQ91@P,$m6TPhQxUteDR^RyznW){#d~"B's)BKsi1! O? J4(y*ɈpLW,0IO`85?ߟ~R'-q׫*SfTbGBMU`{?MX6IWd`~3;+&RgY .NggYb&,z_>(ˎkݷY]:h "wN$gh?h-AT]MZ8;Pb10UtOsŔG'4.{`v|E' [p[ D e3 *߿=Tc_x+{!Nf)E9cͷoPL=aKZqWp2IxpVR] J0WKbTQGqJ};;Q&84lKfqLg߃M?jCqO ?I0of=%˔ n g;&. _Myu$^F5Dƍ Q(P0Ȗ|X:mB;}aOe/ G-M{opq?P_Ea f+þynbu|Dޒ+`+ǧx TeEvmM6-#`w@0&L*&PK,t\6|ˬ-l!MAdd*yYǒ!$*+`xA5h@|ѳI37N>S*&Kc6qꚽ5W?hL{_<|;.1{@A*N)7 #m1 Cs$,Fx+ye vEm~@ms|E3& 6M;i3'nvEEG!.ZLTֿ̉ױWxk)4KIS`ˁcDK;H 7 [z%Vp(sS{y;kۏIsg)~ re 75>rf?M.G<ڳS!y^3d]! cnV 3`;m3O]OՐ&aKՄolm+ K{yFʿ4~_1Ay+Hj@@U$qXݷ D3|z2I6{eiɴ}$?dnxvE!3Մeѕ'Q)[U/a!g`Iّf촩ܫhwaϢHlR 6d[XkR{L"*`NBYc]n.q]qm;fP*qck>EQ),8OeJiCgjJ]"֘[9 z rMyN- ^cVsa%Y?.js٬N5 Pq65)GqzsAN,5ТPp\2?]o{Oo9L5#FI#(ڸdd&ML4Sb 1lhaH3&h ǸvupXѳa,NL0;X;jD*܈ʾeŖ\b}?2w% 2D|nG$q[M{C/ZJt>ںA'äM^Pv6v%r8Bm1/>BrV`OWPܘ?]nCHFOv#\O o xq,l(mu1Ws7`NJ${-<\_\Iς_HΦ2 4f!~)B fIi76 RsJ{)j m[d,G͂ T^Nrrt/œ嘡Ґ*8ҢˠCM9Bn n$orGF-ޝpI*?#@l>^O/Qp")wS`=/U\3T;=qSGOSIV8p~'8lNl"lp;ɑ*7rXBDPIXR e#zd2]v?!wp jY"a,8?A*"'Tqjj( BK1r m{lA)^g)<,=B\C: ÆƚNFOu~ `)*?iٟ|_Gem+€}\OYf/8ʫoj8HQ [OLGd+zC޻8)'6᩠W^TqMJJ > za|' y ϔĨVW;ك0XtQFGcTԒ1fͲE} 0-ΝKsoûKƔ\.bEƻץN;ꋽxs#k,S>+LDйlb%#7* M=0L˧ 7l;kK|~}{c^~ ngӫy9"kNfqEξ0Xዂx_ pľ?F&~Zf ˕̓O"7!rk6 L !؉ 36lyUhzY3Ny-Bs% ̼57u83-Z(c<4Ѓk a?QOt:l}FMȱL\ϴ`d,\J`4)+ *u@ď.a%Lg{9ֶ7cyƑ/E}k%&*_;ةT|08CJS)OWՌnj2N:/:xJL߂"P'}sW="C}$7 w&l kYMhђڦX[缗_"iĬr3!R9 dl$Eo4dYx-ѼEkjz0qfuA6yD_t߲*s.(zus}ժIBomSx v."-uwtۯn][~51l4.b"g|D]a^cF!j/徲הuq,K< ⎷ aƕ?Wǘf#s0H^a!pfF } kg$eJ͟'4D 5龖>Oɓ~ȕWo>T~@>^&׻vK>9/e܌tD)37s۹PjM:MGLRyun璁(_A 1,I/wLL2B[nY|PkަB lˋZdH!Z>r r:%Vr M6r{_;SQ\Hz|odIGגL)}!ajoyq$m>feT8fv}G C])P+i;mHc%ʝYdFʌJf9S"U8Bp3nmU ̊N`re_ˆlKbL~}GE?⬟q~++ObӡX'+-Ua$ dχ$TluqNG4fXyu$0Łw<^V-}$#-ۚN :2 B_=%`vaƃriIu9̳6yeA=Ob~䋚r_uCL>ĸL)uc",:,v?ͭs?*Gj}K*QQD,Nib`+9NO]ޤ0[$uU^d2Ԯ!bdl00̚fȖ= "$YX'Oŧ=Yaڻ.0QRËb]rdNc=%*O*3T.)t7-4 ԭmys; M)I?ac(zKcڽe[gg5iİ(nĮ`NgǷ$ٝ'fxr{i߻7u\1ds_ߙ'KhߕՋ2Ӷ zo|˛wcD"Xh-)QXݘnw1 RjZ,kLͨ}jҍ}r)=B#V/S>R XpВ}QXly AraTQx5%+"xUxqu`N PEkwi҉~]'6r?p(T&"ՈZ}6By>MݷA,k502mao=Ib ~RQ 8SP uBbNBEwM6q,MHYtBWI?{-(}D&(rz鯰k4w]Jq%">tTc+H4 }1u( Ȫ QKX,1*{-ĉ|}={Dٯt. уGʀ}y :jd׺ _''#kn+5ɫĴJź jx|lFZp@' q2\&UsI+yO[#pFQ>jrz/g̨k y*^c[ 0]qܚg-r^~8䌘Ty;F}V):33νARuTR|Dށ ):[:"_6ЖIMNWE^I>gK Վ/Jv:g^jޖgdHNCc8ԩſL-|zS#[fx;XfΈ$*~Y=4+S*3ZEQz`8ʅ?qdh0߭ K!LA=MwRhzQ]̠łL7#>ka }Ϙ!JBZm/]?G4&12'1LUlpߛƊD^b Jtw9zl-#A,Qgb'{B$tuO͘JMZzklƆuIϲޟXGXlHcsR;mɏLe7T"}fHAX{<ySX#`-1P=2Pd(& !-ꗙL3oe[Gc5e@slrAGa0>]kS3A'L|ڕLWW- .RW2j$B“:;eYAڙ'M2 ;(I+ǛBOU!s_dygiLP~"_\d Njl|Q>>CeE۴*zHG9S5\QB[{R'EULfwOâusof rU:^tT{S?ް D7m5cEJa=S9\1MNo . g$3JSFY jx“i~@+b|?hI AErP~K2Sshwg)N? f)@'PaȮJ-!8HV((d KE0I('.4mR~F;t2)29/Z)Z.S}b󖝟#ֺJvywr,[K9Bw(J-ß٫ t Kz_ECu|>Lhs.' =|wf˹ Ev.@U 'lЛtm7MWs<)r:kO P\U,$y*)UD;T:+2O+͎7\:,O$M(^66K}Ff NSѦ$@\ z]8" rɘ9sp Xj,} f.&#iSÛ%^9ޏs>e=H9aUv)Fp߲U⚪[b| B<3hEՖ.g<)'߳d&#Ϧz4bpsæ2Q}C+͈K @qub7/.Ot`E〰#ČMh{k“} )?S5~1{B/E)i)]y}5HnC|4J cC tKQ@uÇ0#8D?邈QYd;^b1OuoGy薇r[2O;ޅR a^55:C&hݝ9^9V#n2hRPmLzvu)m,)Z<!VH&nL;\/K GoUh㉰"S$w3Ybcr"ӗ9p^) TOl!7:~хnkY4dwq"bͮ]e^\h$Zb?Qғ56ESBfu"%s,mK| >\UxŠ\R- |qTFݕaӝX#~XBGIhH%zΩ9FQ00K#AMN~5!W96q^leKI3@9#Uyv3$mb|-M.^ _Ե!Ƌq?m܃z:Ư*ݷ|4& !~?w^3/iNlHAdÂPͧQWJJ\ڡ/ӧWU uG;$j.SfM̎UOeV#Xh75 b#x{HXc*6QUu{k1 S uw~0)5Q*#啂Q>ٔd{dGtRuL)n晪 ~2z>mhkڔ#Y;Kʸ͸3ȶ܋o}|Jk+~jw)܉VA&r5׾9R'g hRӖRDuQG:+L@t1a'Q㥪%j{ImC" ?3A1\nJ )c78aq>B#;Bן4A^BC`In G 􊫩{hޚӋa$*v 2l|{ )orA+<=\aKNAW\c+m[j[!}0ߔP }_]!saxX291G^R(EӊWF 7YXGj'_,"wLf Lh4 }g1kނ1 %k@"ɡUuA+QS>/NS𘦦ڸIV\F/m>6Nyff VHN`P7BطzZNSY6\˚D\}VڗZ"̈́U۽?69GzO>+58$G~נLl2LSB3t> ehIHq(\+<ՑHZ% *5;Nn}CLxf~bSܼe!i;`‹g }/׷jܧ'[āWI0drA)Ms_#cU&;$6\lCpK{8<߬74*< `/TOktJ)`$|ah?OqY5W^$9zE K،>} Wh.P]bm+1>(!,}9;q-)Nˍ"W˵A5(ɝO rܗjТMȾXMR{Ӑb ί+#?-lC/$_j 6;xۊ}-]f }Y==R v 1+lZY`{h&hv1ݧVpi?k"sȻ44RL({( f#9`5߰TSɟ0[0$$5Z}"2ͰF)+aBfm/L3ìT~mC(Y"_hy9ъ~޷\ l0r R5|QVΌVupG[)2<1: \fL_-2G$bK2 ouXm\9xf﫩TVgS@{K 2^W d1zV.1]Z@ 0H 킓0ixr.#*[rx!r@wdYwp6ξXXU05r0Ԃ?$Fp7P8bb XLj گףsՔdw^Z:l?Z+":kKhȊQQ]L<%Xm(o~"~g a]^_ .*sBa^y^Wǵ& 5̮]B"B1Pj7̻n`@yg{$E U dOԫ,˂-~wkbF4mN7gc=Ͻ :DYqA;9$y#\$vi}M8;֪ۦ1 q3̈́ѱ4Ym R'3q2c|\6u?shBCbR+؀VyobŪo= 8}n R/8EOCC 6n$0r.y t-?Ц@bt '7̻rӈP[8¿nGSXh8i7E %09ɇorKc%K41!x:0zjxuTpw[ m`dž)Jy P B)pL`.7^@["_fTlm!]62WBm}oCqI2:gӖh*%\l}j*=*5ֺpI5rH rbԦB?x4&܁Eo6AN0lC1#mR=`g3L/>:BMUVfvzPa&n2|/qv:\Ee>zf5*e\PӤ:v΍`A.sL au'͌{:6IZ:]ZK ,'>vI/u@<*F[3Nn ֟_Q]_|PKI*ۏlqfqC`,IƤxH6u\;íaƋOCIAY?~= y99oM1y M2(lbB$딌"N¥A`7/77'\vt"CAQuFl̡̩n4Ce{=]w HFπV 2F'qBTwHp}~=%H]FK|y"OH6c߄ izBj%(j#O// JT7` U#vWڠ)e*1߁] Sm#2$ },Hѫ<#0^,k]_z$وGbn`\{Q%@8{; Ķqpwϼ]c^AV:M@܌pgnGRbYԃϊh* 8㋢dbgzА(v<*H2_κF<0+wge!~sO"b ??/`DaE=y! =th K})X♀>eL9^*AɹdwQAѮZ^B/95`6*;9cԳm>[%ݖ&O u )ԠM*2D画aw`)i-8|?Aq~~);.'2!f|T էU)MI38e-\l*eΉ g_@hn~2vU yQY2'/HMWȖU, --rF.P/8 7rr'MW>؏WlD#&W<{hSׂ &#1QuHG%ӆ.1ꘙPQ i&@SNS=2|;Ahmgh>l̉vdM83P'U;:% +0/zاq@(HΓK <3b 63coBN?V740U')Aw٪;i}ܾjHZ^9bX( *"C[I Ohg-Ŀ9&|8'RS԰BNګ^ tCdd6OSzx|Ye~ű> stream xڭveT]%ܥqwqo]Cp$Cp tͽw73f~NSdשՔj"f&@I{FV&>+HNсWQh s"PR9]ō]|-@h `c"P=,,]4Z e{`ȇ'@upڻ|P?;K SR֑QH)j@gc[)@h:Lͬb GՇb8@o`ll>$q SvL]Q% `qoI`4=p09{~ st' WepZ;A:KƎx;s?srm͙X>b|ĶG`;+2V\s: 3C' h@2 "SK*} v c> @w;o>vV7W2㏶[|H/ $i4Sr1~?0niejcWA@{Cj`֔Քߗ,ǰrqEc,\=OK? EE<ތ\<F6֏/!?DuV0vq0~e? 7u0;Hj.f+=+K!Y.u8yÓzáeŅ5=ۼU_^jC=O_eF{m{R}hTĂeZޗ [P\,;*/0Dӝpn(~i qXQNNFz s)qRNH]<86A?q-fjՠ%i{~S]z]47l_Ωj6 Vn.«W᧸'wӬf)pZ^;o|&$X5!,rl'=mRߊ17`~l 0=] M2&rN-s'=%s4mHLd i}O4f{#nG%}=FO)TVw6 {ТBMk]:}){\rŢ}V9XR;3# <.ZFAEB&ۃY8]V8~~iS*;_:<'py)4YYRm 27 y8n,Q$)=)|ת$4FWHoU$c#58[mϲ0_p,2 DBGHo>O :u=Ĭ$خ,,\=kS9O6'hi뻘f&"\^i+D,QFڷs~ 9nJhz"+X֟Odeen8DD'AMr{#. qvoIHC;ACQ603"D;\T([h|R7y>Ϥ{x Ge_@߂еBgDޒgm 7!,kM6Xyi] jYShZ کԗh˿sN⊘ վTey>@uLEV+4JSBU_G3_'XX?:I98ْ~GQ9M43L F,A"r?ۻ -:#-EaS0zؕ,|,:(ڶoVCF-l`qƻ ?vůpQ0H+M%=@ޗ\JX%We[Id1-nv-nL}5?iu{~ٞN՝-3&^eg,/ jӜi٦ì?$d> _ݺ/j~6ᜳP 1-vѣGloe+1{OaD5Kwn*ξlFvSMOsSN.\KN}^4Q 8x;Hfmȼ\ ]ƃCL".>kbh:$4Či1U!3sNsw\sep[3A .7M c̍Hh Tl6ê!q]?V<* PWC C{BZie:\ 9K'zcMU[Bp@)s"֕1BZ陀#s9+Gt)_W} ΀I4ԼR(B-W!xMZ:ELK >\w`pzm!r <#jUO~!q524q\BDwp~u-Zl *s9% W,yaC=f&t^HDSQ鋀ʫί(JY~Rz= 3Y!Y`ќ4Lwf"Ns#eӔnzC҂Z4z%Sھ-eɏk m4 '.G%nn&LsٜL`9Fla.*CTvWR78.(Z396 cKCwRD&c;K˴~\r-p(ܓEdjCK c^99uZ;xP[J%'}8KUx\0vfdy|2ujKPx͋!+ ՗iw(w*dc†B?-VrNj9&cg IV30e@xg1#F%[,oֲY\ܪ<"Ds˚ gE]G?5Y2)(N BsxoA/`ŨMF!EmkOk̀y& V{pouB)4b}Cb,p?ŸRKjr[_/Pc؀?7iOzшjVUڛXk9:! K$ Yk SbCia|!M)Tۜ']pѺя9*`kEq#Pomk='Lq%?'x&~e!2+zDYS.8쐪-i Do"ĉQHplL@brz3[ xkIax8F!o2Q~Yx >au|H#z+ tQ{z^vIaz[tC&:іOyqM+>36ǃi~痡ۘ?t7X?bDR~¯a$+,8L^u[9Ya< 3lp!&*29(j"aq8B:IfT8To-pe]*%Gsd$$;5$(lm>q?pRTwN5y=Q?'yЙ؃x0 S!)Kh&߲ p:;FzUCGuuT{ ΒMa5!D$c+VFmɓɔT:!\;q%:I&/PMm%@zDye*N!# MBo*K:b8A?&;Q~-%c4k˘w782}saA\i"ꃺfj7ES4>Lv8Y? ^~q"ifW+4)j-;_;&wHj<գ 81;w_ef~ ;uFif KRnvqď')CA EOy$  2A;Z7jDZWC\*= !Ix۾rWRPBs6#b%Wy@D܉Qm&U}W*Xd],Њz@o&ܟ*ʖ 8֤6 b﨧5;38G~@/tݷ;Ku'_RlRU,.}܈$y.ٕ /Ȯ (RۅoPE %Ի P=7vrNA(iJ;nVI~O oCwϏJ,o|>a?ېG4uֻ#T6P#6 pB+,#h &LPJᙳѩ1bxkdա9 (-$8c.sGhtQUfjSn>moЬ7ٱ8[w]6IF$. hm@A)Sw\d׷"b6nWN:Բ)9Om&;EH-$"ûm9H8V?Фlғ8^p=2y:@WO檎\>(C 1jo2]iGWhM1;I:˖\9`($ˠv$q|vy\MB|Q|Cf ݗG)Ww2Lс*aY(_bX-]{wuƀ칛T{H"bSt M+ uolqIW J~DᎻMv^E/GaUH;' =2Z, $U_3ߕe ?g]6io^BBAA2 kV5=uf~3魮w<0i=3=oEzř[1gRShv_SquTq nkAD zx=GQra.TE'-ʰ[S=H$X!l^aZM6F)wyl{APZ 𽡋t9a5*oud}.e)'n- 2 s4 =x;Akn2(oDˍ9: %t[͆mCWASCtڻ )75Qɽ_/AG<)  >V8a֟]^)Swei~5lxaG?!C7x0l~z|Edf$V3 ~sS~~b ?'>5)Il2[qVNҲD&{тcfdzO@1BgYwD5B^ʧjk8 ? BdmZ93YI (B/w}KH;:k*|g}` 0eD!$]il#= A}D-_!Uw9:/³jۢ0\mgh5,9X#T'wLO ,CLIb),?f^P>! 1;= ɡ3zd:A N$bUq_Qg?3%1+y >Sn ݚe<Ђc F6J!HÞP x)Pt_9@ V1$O72}Edj{ikŖv4uM9Dwh\ @d> b(hxl*%&ƲvsEQ#hq0SiȒD}&"jb~&LNQ5/: gAx纡#Z&Tv)a4 czGXTh7*?y1D~*!Ҝj`BԓRwP2e Ԭ8;fޘJ.De R u?EXh;3Ej je5ji֣,E>wb=i[!aV.XJl 2Dr߷˵F lJaD[.C{73Db*:.gK=M}WyxCy(m (e \1U~閝1 USkԞ6~׹rWI>`8g.I9~ag|hyMqzy/I# ֌}$-A34 ^?5\GےX z(p% ֑U(zwbˊޘڌ[kX.H:rXޙ ɒܰbߒLmV6>cPF_-lmIyV$pbO <~Tak?{m֘Gl++ ~OSQls^ ˄LH&R @BI= 3}zb]bJhV]|HLV#0ƐM쾶^e-dx^H}V/.6+Εq&Qհ YڣA@(w.13lXQ#2=V(fo֖~BF΂-E![`o*:\O{Kcvjf6W>˜ǀ[1POFo3/"4X P_E 7Dnmq}4,3Mz QMo-ʻSS, lrIF/P2~<)^#7x̴R%]7ߥI8n#:e##|y(}'vBU763 i5$WmR (ȵgzIސ>.H!`$H{j4 < GTC+!R ^*"@"kqA̐W۩z%qNo#EC?ӳg za-rӅYGcH2bv<[}&\td|:/x?xEn*_-N=P?j[ҠUX7fBrZœF/*VjdH< E[J| XdGM8O9^r66\S߷efZ cjxaR*ؿW:@dޑŤKhmT/7wn e`nzT$KMni߁^i1,Hnc0_PVO`MYQ5+!.<3+YMW f,gH %3 @%*K t o:dg?汴X=Ԉ FmHFwʶqdI`dA} ]=% 76/1 imGsD-K#qW ֐jb`bĚE, Kkd#;}XOKx FfxNm/IYPfvaZw c,A/b*) GDDi#WsMDm1O^2hYrv[aiw }1)pHbOB.p vaG&26:rPD)#":a)Ej anfwk )YRPD0ߪvJ%{6}Yw4ؔ*5hQ#Fc\ & ҉&=T7bg6Xю+~1'*m1u&e tfy|=$$ۜU+$8ݻ_\!eְ~LM'6<Ӱ{ M+ً׌Qxmu+<@ 1#>`0q h2we(Ch,,Z󒚭"wFE+y`71:œ^KY< y8+R#; r "&#ƥ(%;mZDDPǼ%ِ ;.H .3mN[\?q!FEP3hYrml!:.C>-&RY_L5w5r.,4Pd| lNJM]Hw2ǎ4~ɏp5~2( 2rZڝa&#^U`W<Ԉ< QFX8-DϽ+\>jv&_Y%ܧnfeӧ]C䳔uNhVA$Y:o]~6R ؆ֺ^sQ{7-[T,3T$$)_H5}E96"29uBns(4t {+]M++%Dz{YilW(%bzH`sk'7+m457N9TZWj7 M!#/enع*1ܼU߮ Q_5Y5|O!UUck1ɂH7[I͕W20>E$^Z\us@!D+OC(-$`E')Dԉ@,yl ,*i8&xpX9gUfWXEf%&8עj6di+<̪pڈA(3B(;PC8ata'UmY>Ysr%-ziċO,QaAK6$٥Z&I/v} ak{J/bu-M«lf-ЇuX4_#)J82rfOp!4?ᤰZNk̍n}UK -jk}F8?ΟX* ?:4L DYs[3]7^s5?bMung%.ܒqp8814Up;p*aYoĊo9#FT6h,t4JQލwUEP ZJS5W zL)TI(ISl$ Su%b޸ȑW+TraI_ij04o* dۣ: UfF UaXnf = Z_4^q&14[J|9^ZWg meN=O#Yd8QߵeX|f#tENy8SՉ=Mq_WL39$DkՅWNLm碆`O+x n8D;dsUҧ{^N. `5.Px8{ S3b6d][SiBZXg*.$yWAbti|Q*E10֟g ^CrLZ]JT1F!y-3:}r;ׇu肂Hwvu,)LiY> %[T=(hbmM\yFO|3f[+zmML':o^3N8Hd Rip36].UʗLgjLUuB8C/Y+,{ȚSG IԠtZqG*oCP#s14ܪ_ZD`PzF`NDBM5#{#cܲ@*]^*j+6酕)lؤѠ6 [D;"Hse' ,V+uS#:yJ ? w:*v>iʔ)V0m^k_XēhӲ}ÿP39]%хҍ\ sST|TG]O2g]z`wR%ѪFd߸fj?ґam#w*WlRB畊"A!kXt1`ϣT((/잸)Na (z}CP,x [^OKsab|K4^yss0kRA#|GsYqQT4L̃<4 uˮ=z~~Vi~Y*!IGKAX endstream endobj 3093 0 obj << /Length1 1647 /Length2 17233 /Length3 0 /Length 18096 /Filter /FlateDecode >> stream xڬcx%\&vvl۶m۶m;v:6;v:ѱ}̙|9?ꮪuתMFB'd`l&`JD 3vsQvwS6pr5`D͌\E\͸fQ333 lea TS֠O?.c@FXYp7up3wKbfp4[ٚD%j 3{3M(ZdL]̨&VBK`pq43fibD p4srq`p6w{+{[7 k7wWA=b\\]L]*NWK#rX=MLi__ \fS+G[#9:[ 7+{lfaljk/?}m/U9= ߜ&s[X03/R&Ms7sQ33T02u0;M SO[oM_w7;3wd,[#g? jdge frW)-*DFo%ˮfojlkeoW FZZۿ!3{_2aYTz9g& 9uJXCc`>G.fV"bϳ'@ ?>y/4b&̑_`7g翊k?zfff&0WLxB3s\0GDu@G˛UK2#w ?[f:?1l)ͮ HȻ8h.4b}ndwՏ> gXnI܋HM2лZP/SN('FGnqix0ΉR] M9`=}P>H3D^)Cft3\[0zߌ>X">9|HM <"2mHek>63Pd_JyhiZ_TρUyvSj; AK.]u-#oh.H:}O(8,SbA %CN;#~tVS1g?o(b,{d!?֋Z?,U;vHDd2o}.:%Z=M L#>O]42@7GaA*\߸yv5dA5J ϔZ.;2J pVc xd-4C':4kŠ'?7tnV1E(Φ1^.<(lt^]E$uZw2E:V/~P䙶1rxpjy̌ݘ@]?߃*8^i)<ǯ*YV-͘d2ܙR2UΘi[[BB#ږ>OVt9Ҥ%.(P.J|z[+NSjUo W-ۑr,z>៖BggvL,[FU`ްSe9 gU;cʃY4Xt_OD+fy\4; "1qFe -|H 8[1+%Z]QDhd?tE\1% bۯmИ JqVf2k>A6"RLJ/S-/%S3ەs֡7:3\IF To&@?۠ӏ̻Oݍga\h@W4q=s&{m{}ʙuu{Y,;(zkg fMx۔,dM`g1wCiB1gY|IGL_eײ I[6^%}R9:&~ C bV*gN(:~W`&`_F쒧} ъUn$$@s][L@=42jSqxqye.[ `iFy-b<3v;"YKvpz)ærHHwA}˞vszgH pv %Iu 4e57xO0=~ݓZ荂7JDE <%nJ@:Z&%F"`W8,MٷK.jyn6vR.<}.y0̣TՕ QD]K ZL CPV@5'p˵VpGgd5(nBpFLx}?3}_xMs"^3[xT{-IcAOG=(cݿTJ*oWBitJ&iYsyXe;oѥSZɵ3]]4EFEn)I[Hs]rZVv8Wm&iU$*-D|& ˫qGx٘Bv`䓸ְolΞm8 {ya"! b-NHA^+=!.@w0ԁPX[TҼ7Z =ǃx_{{+B|ᕃ6}QktW`횡 vda*8tGcWD[odEОyr(^}4o:}=0:ӨBT8po+k?Ib ^FW :wHq*49K5jWP8_Bl%p_HzJc=o#/2 jM|BV s*4.3 yßZGpe `KVКO="ŨK8 IXt<gfapܽ Vp5ԥ+Ym,jզUkD/ؼ.?#]Oe=/Tݙ5q15 }BYg*zE)0LC|Kg@mSv^Ly;Äko-'"LjxِMfَȕBR̗ݲ0>]hr.koȢi@-Z~=5/q<ް:Fv )s2$iKUv؇&<F_Z6ސSj%C,0vI>nBhEq-T+b6}EʉdYBF,|h#i5Nͅѭ?hPF2cj oMo>LǢAHJ_Uq$3m0Q5N~[zcw&)u[CP?H90 [{mx: !U<<+Mtv*SCj|h[_ԋW9U*wDh#_݉pezlFVCn6d?;쨠-fbx{e؇wr Q?4Fޢ0zm5xاKP7͑8O6SU_m!S:E5D}%|Liixx ϊ]wrmZXC!wrS8(`)?9wujutKſ55Gӳ8UyBsgb}8jHZ/X]~jN7> 2hLgzFv3h8HKW}\,IxOC"81zpsOu|A1D'.IV1՟ (v)u<{E= ԿG+)C,ld&E\\c61s :u1ٯMo5E ?s3C 2BfH +t J,,BZo:Sn6\'kztmZ7UDl9}_={B]qtcN4ϜxەmEXZYpjhvS T\_|gTypyjȌ[yq `FCeͽ.I>2L2lʟ}9|Ti'WATIݭxuLI֓@=f[Vź gifפݝ;5|G9L㐝_։ Q}Ɇ74[$"! A&2eC}{#$n5:v@s L0皔f;Jፑ__>}6[8]r#unڢF*^lj׉s3Jff`b?OZ/9{sl%ɘ5,_F"mphvA%۷ilW6Kf a8,tD6NR_[7?hCe#A3\iqv(+tc"do!5-/W ;q|AVyzvb)DjEX0|H8/vWe2Bz]|H3S7R+/n}tɑF0#J܂?i“U?4[;k78 }-Ҏ@ Obhf+(npԀݠR-NDۈ:kV+JRDdjK7:fY 7""Ԕ*[ 3Ms]w3)2^wqo T_PN*^ B\2U R6k߄)Elch78;A͙(wMa;}Az2;uD̅VPK*Ir4=`+)miϽ = 􍗟(id9?NCpǨd`q 6DH%~]EuqREEOO0T"!tiEhSs:ٟl+>6C5}Dý;F ҕcڱ5\xYKR#f[AK\GcK(dVowCmoSKk)U6]o団vSTWMiN_:.mORgw~%4Hl{O hڼ@":% V4ي d?4Q8'H>}7LyFP3^C)jq'-EVID9VJ~/U38. HO_v_$IVsd;Y/Kݶ4 SKUwl2e? L[θJ*J Z( EulҨ&jF f_ƻMKt"IH vBDQEcWaJ mE6͛&VRhaN*z&ၾJpGUa+պLe0MD}Tn/a`ݺļ)րğ 7ڼihm{_#_ #HHIgּs^Όji9MNÆXbqłfQQՃN 7#t |Wt?t\D_ݏ-"(5)``~ƣA|IRs;fw20RAk8f*5!{Ev R R"v(59n@MB#]c.1V^L+/ۇTrudtfU~)TۍÕX/CWQ`E u=H.[,qcS*~uzo@QKehWoGD+2JJYHy*(twLᗗutTCc*sPSZXD2jb-˓6w7٧&zGW"]@ ~?`$*p:n̪0`\&ׄrmatZL5p,15` T;Tk(3(! Fw K~e”S4D趡-бjgZݽ~akx_7Y%tx .B׍7kOwq+J0OYCV R/k_nˡR\I3ul9cWAJ@1/!ͼ7ںXP;'~,#a`eźL /Sټvۿ&曝U]OdۊPbJDcDL\HXjLa^GRzޯnNzuǢ$,9YyÐ/eAdj_IS=)ddp+,9Z\#Ȃ?Y4n.:G6l=w ڑHYz M+G\'=840utvCb<Pd]#u:BHz7]ټ`,֖ rNʵU+_ 6.{rH- <ӷ KP14tL+QH{TPd]Mi8O&/+dNk14~G32gdKLL{UH\>:EZNZւs3'## U]RHKUhut~Mϛ1-x-~jqB.阷x*eZ2\MP"oh,.J(9!Cל D p X ʵ{6> ÖзQ ׈:PMAP~`jNvp%$8~Ǣˑ wY~8ԟ(` c= /HlbjfRbE6ve鮳誫b/ MHh}Ni8ym6|@y $uzr>+P t!? JX'UhQ΀V)*)'i _ BilJѵ̇:_q ),܁oepr[Y# G`uX19^j$Dʥ'xXp;T4eAZR j'LuU:E(a sKAaή$8\6 0C$o0ue.w4R -1EgT7üp@twUjO{ҧClWNԭԋ!]Wc.恓>d U` k߉F0hIyeSS}mϨNu Bm;z7(І/^0LlZ JNW\S~ѯ b!Ƃ=hm_,CV9׺Ȳ* j#e<-KAHlMSb $6` n~v?$-D aRF}P1Џ*B QI% Z1\ܛ)Ȋ{HD6{l*uSs3kGT2u٩M"J|h -"vaP;ijUMΡ9\ +;4 1/U셋Q(7CzXՅ@-2j[Z)mw?:׎J k\7o!@V^ naQceDŽֳ)>>ci[$%5{pPT#kK2?D2"rb}oC)t_9CHLu9ibU= $/JyU'Z@PVʒڎ50$8:ʈ[K|lo0H5t0kϜ"_NQV'hZ}6),;3EEO{&3F)LT(c2˻ 3^<^}N0$MS>7SaH #4!ztM D9id¯uJQP|W( 4ޯfa[Mot=|͓\mXp J- XDdHeqٲ@MxF33uвV~@aQ/G.VCW<sB`'xqG:(j Vh;0Oz N<'o^-'9ďv<$C48/IEPaHL~79 3|9T)%X6,hRW=hp nl9a LX ^ CJY g>1:b/KN 4էU{u+'24wB5;]^Mѫ@dVK?쑚c5޶+v3-2D|TL:(췼f&~/F7]CtWQ "[U+,WQY(M:?Cm7oi yHa0nl76?φǩ9ɜwZӞ.8S.}|$"GU;E:fR6xJ/K*]d7C㗕^zp RR_;mOYЁ?!T9Y wk_9[=O*7v)[oew: / شkyp+oH{RCWcg $~/<b:+\:e|oJvF1]9u]uCoOBUV ⛷l0 E'ޠ~X-%G@$}̦'t%yV6ޱ2<*0Hn<"=BO(TRt&Ҩ }d4wE3DRm~,RE\Wt4(pEZ+#_Q%ﯨ芦(]\90,)xȔMDPlպEdB{A$?ce;b++Vx}H̫^Nsx Z6^Id0sBJ{YF b(A GIS|dmʥʝX]q^GvЉ^_8gw7KgK =]ao x1Ab %A @e`px:"˵QVz5fih \@J>gm)˃6jƜ >X`*?ϵXsrbI_7x j|v֊E*DT]RS$}{mi@ɡ>|;!,N[_N7E #1A(fBkP- ƶ1G<6nu(1uuC9VVbןfvt#DbӗÏ 췍<*eF}FGƵ.9 w^Á }M EP޵\:MdU{|I:\ܰPQ{B@Э:l"RhSfPq8Z28= ౅m$}eWRRE_/W<ԆbH@`Z]Q5u^d}U响1|.o*aڟ\&ݿI|R95R;I-gy TδUl D(}/s]fcod[!گރGj2wBA8!6nfc[ D$cs*7zeycP0ЧIv ӉӶ/Da^q< Jy>bi! 2Ƥ3s``ru`(DvDQst#|wA>NLZe7;^( R9i5Y"݉ꜗO߿@oPSor#rvCMUjicU_ 89wBP>AƌB@AX-JMd1Km w{/6ˎ޹T51T?EfY T6E?Xt֤B`b*Qs%YccrWhi Γhzr/L6u*:Nwmr[ފYp& 0wsa͘ Ⱦ4 sS46>R@ǨTLbOdV`v bn8e#,׍'~#^ya4/j ǖ#&C֘L~r4Ǯl;p1 #EFRﻻ; Dᝫ^"DdĽ@l=(&߅(s=|T[㦡뎋RA:|S\;7p1`O2^D~R$Lz(c9PX4֬r lлFOoN یM^b?֡yX, qHǵi:X8v`v̵V26%_ w"߂,䁊݃7@.X Ĝ;Э8J¼ȿ9nP4{|GB2`>R#NF qbkߥjVC9lO 惯h?o/@_ńx5,kQӻ}fۂ?0?Fe2}kGpV6=unA&(kâ삷 |xbm߆f0B2J}RʹS$|3br=V86})NQ,f| z LrJxyT^5j9*܊)a RYMCg>~n|Vhb -9AhYmA6}΂fy D-A}a}+/1r@|+?pCB3. ^˖}W:+{?c":,n^Td/ DF>Q1GjXPv'LЇ%U)Q&fQ8;vCm*E۩:JrzG{!א[ZVxG'm_ dڈ Ȟ4hO݋7Pn~,cbW}SOS釭'-6fOQHY:]mfZM) I`/'H['`JjOXk]=XyhB6NMYC GFW'~ #Z_T䉗u^8B岲@>) _qS$q}{S+ 3ז-'M32"ojYs!3 ay5aׇA G~>⁣j6}ց$k\/`͢ C&޾D'׬D=@ՆSS0-VLBddXEzczBnIR=B̸#0k=k6씰}LU\F90)Xw ;d Ʉ 0#UnTR3@!\ܢ7o |WúfE@ WWL|Lve!)c&$vW0YJo]ػyQmD+fԆ^sBp4aBn:u9}S$8֯U<-3ZNE(>UY<zwFw-g$ޓ$n^1r?4iȰ >o/yIKH3`z,1lx5v7#qd8r婣UvWIX \.Lr@7Ku20tsfNI4?Abu)SG0QRO$] ol谻^2;+h B=g[$;R >,t$ gS'Ma iȔ:ݢ6@m뭬K b]* 4S3`|;DEXcZne9A+l Mu7䏾 a~L+&Q .A W޼{ݟ:IR)E_$p֬5Hhʋwb߼gSS[OՁ+E<U="k*KފMpW;U8NIqļm"Ph *Bl:4DT7CJ1G]T+VraqU]q%j+^byLM"J!=n"+}!wCaIZ_ˁ#»W^ W Pf1qGl6oF fJz'(5¾!`2̳Jm8%F t]Śb?BjNY'Ƒ9~* d{.+Ϙ ֑Ӱyew Kj3J\_}".+ bTRwJ+HAk+OCdz7<]`{/ek7ґ'3^FZ̢ӴP g@b2nxSU*^@xuAb#C줇ԭZec*F'b * yxʱڵ︢!邻SwL : TM\XV@iY`#߬wuG^鷌8>Tu?@vYJ`M!oCߙM ]ѽJpi ;z-\׎n!Ş[UcJE11Ԭv'+A"w<$p%'>6Xo͖"my9DHn3d㒦 Su|H"^@#bbk vn6Jݱtfj.Y"bf/ YTFF;ɴ]+ć$񡇌lָ/s6D,S8u rJ\*;?k:ZeB#tDRsoʙδ$ R@٥X| ZigZԙlY- { >)^D~aPWrESg&>!a&G2˟U5+?%@9~̎؛DtlMj;H"^@ʻӀQA|?{q{P3빥~aWz;h7(1Czgna$C8揰oXxQɅ=D9)yvoc Q(9z2-)? m]NJx{}Torev|n-G]nBuv[WjbW2͡&+TӓrJh(8>%j endstream endobj 3086 0 obj << /Type /ObjStm /N 100 /First 966 /Length 3157 /Filter /FlateDecode >> stream xZms6_wXt:8I&vܸNt27Lۼő4鯿If,)Np It3ɝ g @&AR0f D ,@әNe( Yw8 w߱Ci3mpTx)ԣ85(1>y&8>7L7?~?B#EÈ=ZYySEys[a2 0툽I9~48U1}kx~M6_U//bQ.-&Uy7hг`QRXތ~A>}~|rzZOOIqU{+p-l6qv.pux=f {ʞsb'씽fg ;g rvl@/y\XTuԓ~Ljx>Uq"UEPLb/W7CpnngʤX.thky3 We(+J)u7Y-*UNiuu9Y MMTqX2+YwϷ~zIO~OY_sjLB[BGv+B7C}~ݛZlWPl7ІVJSl%*m~3WR^TDmXAf72jO'kCS}p.)MZyXxbTSR(S:n_:u"uPeTS+5:`?DϼnR6+Nv19>VU"(uoppI(:S7 _h{YhÃR#h<Ӿ`W$_lg/m.oBWSVgjJt'/jE[ĻLUNe*۝겪o VO2?ɋk8C^gbY"<݈0]yU. =Cջۇ7m@k h8i@ }_]>܄W;7V&>e>%eDl)jj }-my71k{-M4p&_}̖I^a_]ZRϷزv퐝eèMM!( )hP.Q> B*SMB*cH hC#<RST<5/(O>x*}ސ` *wSZ A$X;PS{: )>k2qo'H=).Dj+ aJXRH[t+ ;.! IМ4b!PD=1#yBivYCɴr'dڼL@W(f QģR@hB0aSaڂrI$07Hgѽ!(JnYr01Y͢gSmrz~?%7a&:l_<h'R픶,C{(t~\QcտJ%(PT;jɆ,)׋b"ULOIԩ#c[u[׫jR΂%KnܥV}^O-|.|=$|7ΧggSLn]3]OO'ƪ eQ&\To_+Ks*eGVerXh+3OYr=rm;t2 L!@:>tC&@u}5LP r!@ 0C#@6aC#@60!@ 0Lt>!@  :@!@  :@!@ ;>DC&w}>LkC!kaeSeP&V;zH;L+k)kn`mGYM& & }M& M:M04M0t05ah0 7a4ak4aniׄi0܄ӄ Cӄa C C_ pN& M& & }M& M:M04M0t05ah0 7a4ah_ endstream endobj 3103 0 obj << /Type /ObjStm /N 100 /First 919 /Length 3416 /Filter /FlateDecode >> stream xڅ[MoW),?z)P,=(b %Cΐ(R$g<2f0&6TQx>yÉi 7>e#OHnjUO(˟14Ԉ L4TCB fMCG03 8 D%t*a]@g(,šC 00f  *s)8D8`:sf1uԘT630(,2cV'HIũ \r %.m #.W\Bkb  p!LPp%RDFP4R! >(xV9> t# dI'0-&@i# K& x␔Ĵ(,JbjXce1'M$b0-d- b3 g$^fCT bKȤT T<]!atW+)#8 ku;5Q,oB7Io|IvG #)k<Y-!%sM_qn7@XJFtUz޹8 v|VQ#ocvRoal]VnuLfBcm:kY2:*w/OSF6yVߦ[2C"Tm|ݹ-۝q$P${Ej# ڧfA'Z3v:?)`t}ֻJ )Iqާ[38+YΘgR o]H>BoquXdF/ڔ\wNwU Y*vsg%0I\x %9p-ʄۜc]x˯])yϹS_ԝu@A]:sM:U`0I ^L}jézۢ<ݐDn{Õ.kߧG.K(7P\ DJ!8nֲ俷:,=Ng7/˹`dIpn/v@m%bNc>_J(CqȴiX^ahmje"aVlK`@޿tT;{#^.NZO"sw~=o RZDH_[rs_~/nE7Yz9/#_yql^h;ǿvTwa!0zg`uu_Wq wdkR -߯7+!K||1NEMvEC:wēۍMbL5G6w8.m]eԄW{v,AFE\~*IǮbQ&,C eЕ,*;ciJ6ݢb2@$> stream x}\ˎ%mW dA_`x᭡`\Z6 ?̈]8A OV&`Df|]/o_mx>-̧qq5û^fOyE[il_O5Z1rHk5G7fv5&ޘr8hW|z?+i1z\>.%YꝞ.x#;FF4x%,|c&mkll_c_h׼6y׌_5;^s_Zl7^&ߝ{֠{8A ^ Z#' ]r̛]9ו39amؕ~ǜkpdkZxlhnq=S9u,lh 9-Cva96tf9coj>5|54X+9ZCh0Q9Z!ҽ9ӹe0k /Bh}/ ,|596P?Drc[h=G&$-Ww.~cr sr~sn>~O?ox_?$hfy>m~zr7-4˸ [sGY,WvΧ/?oYGnaz-Yb~l:j uII`umbhVL̅{\xVa'ǭ჋A >*nGYH)p@lL4kᓏ V46z2R3ZE7tVM747|p'f}]W@ <cdeSDᓋ,ѽ{ֵ83W55؋?˦nh߸?n \3F2 f1>b>N@V: ȬYl' z̀sݨ[:=yCl].ƉeWu.}=x?=x/3>/wYd + y.kv㽏ᓓWdVYEqaUJ =c܍]ZX SMxh70K \lasNU*zobVvk%ۅuBe{_x48mL6iKTlث$#J6`მf;xXYVfx:Uhߞ=:/+t(lp-KFx0 ߩ__Oƹz` rFa+/B]0hUb3 ,#пү/ T< 0Dav!|Q- O*2*O* | KIK.n K"}+7ی~t(#m~MzʡnENmK{=ж~jyO)?BHخ2_kQe{2~P jCEVXZ B ID >AֽG,)?h_?5͚յ1Rz3gԦWd+f SC0s-Ȫ>@~6XGzMqfds?k5i̬饞饞2MEէ!gʒX[;^[1_[ |_wl/O F 4 l.b~C|T}pm>h6q\ l=jSZw*vJ@].g*4+ 8?>~i";(?CK@:h/1ޞO) 5 w icw5S\C!K*euHu HOA2dkb٧ 1 G=֣%Q蔽dUl X:^)8RA,B쭞.-I51@ִ:lQ98rjp ~ 2asDP._zzV_8yXa-sBya]1DZ#xSюsш/ED>>`vퟷ׳dgS 8R kU6 TĐaRR!B!#撎̈-bn9Ie$v鎞NasW(D7Qs:/~k{~;p_ 5kƯ5sb1 ArSq 2r\b, ؉$< b. |@p"Twlb'S S%/Xpj| 0 (:1,҉fVfN>kSDaPhofFX2M#p1Wf"lȣ90SJ4X0Jlִς3gSݩ[dP`ff (E!Fhvۣҏy5+3 LsukR4TقJpBJ?qIQ`Z\(ިMQ))WJ?֑~P` LSVDi)M =/ *k0MO(L=3jES?+2Ԋ6bUӦ`NirfRZ4Q+fjEۇvW,oH2wEښ!)v~,&:5ק7;֒؜/uw>}~XoϜkIя%EtQ0 CScd6XY8Xt;QXrjL7 KExbBb]'xVx 2dg;5KfsjLwmOC\RS,z.Qx9dXbtJLk<rQNŠZE@1Dn %%~"1P*T_$"TVXmt*L.!_.!_9KQ R<QxKNv ~~L$RѷOaE£ Nh0ɑfHE!J┊>QxN$uNrmԊ!VNZ1pBkNas KX =~)CS,F(<ЏH )95fA)Cb1C!sj>>?1:5fH)k{b.)cΨZc5ҩ1C5fh eb1P,)j8Ԙ<5fQ,ƛ~>?^0(}u[N~&z3TDP+jŮ8:LDFq0| T]fWeA؛kr=K> stream x}[\+rqD `2u#v`1!O=Քtjc|W"y$:KriyHzF:k4Q{r֢QGVeG C#ou;=,G+Y,E+?S9Ek-ֈIaJtZ]{O՛ɛ77h7!ff 匉?cjO1OE}*ٱH܂p:峄r1Xrm$||b-$`ɵ1)Yusmqmsڒk5Y÷sSJaovmhRbVz 7s,1kksCR-=LV5&΍Hɱ*vX ,tmS(צ7ĵi5]/+_~6z|V·ڴA/&umv&H]+bUÙLIqmVo=[k?}ۿ}{/+B_G@I^B` y&B[boeshꐓY.tBy!9+;'aD慜YW**V9ڍls\7VjSuy5Q 1GD΃tRP6 l&Byar,;Ds̍HH ൲qb q"fF&`iI%` ` aaFIII93<@N3 ' |m[b rANS;ke|qk~. y>I9B ϴ,S©dò @N Vye79j=9ORWwNaD 0(_+;9givnscY, K9 lîƉ Myf+0o *0o*0<>י.! `QNEsVy''40f5C:  Gk;(U 5ii|u>~6ysh̅<٤  [tV^ vv͒akyr"oQ W2 dW Ͽ v}ļ- ٕ(fWsDW|ym>~l !ٍ|lU|*UA-\?Ǐ=~aƍa wv ])逭A0]κ399L1tà]~`ab86 gs[3!'8)9L˲qb3yfEPLN++ooH 3 bt2Lk5bܣiH̔, 3 6 AI@0ͯ}4pL7fy13ݣb+[Y̅xE7Ns}4pL13#̕tf Ym{H۾FFjS̔ 3+!@8oÏl }4Pll f+fz20pL7ҿm.l~.P50Lk%('Z o$__iHÔnFȅnde TQ6aH۾FuaF*0U"ۅ5Ҷ)800jPE(fA΁}40L )s:Y/bT^1F5@1n S*WȢ@/ȢbHqS(u@8]liH"19c E, ' E;'>_c 8fX8/,A JޜH۾Fc1 TpB5X X@m}4P"l- C++1p'4F maJa"2PBXT XƋ5ҶY8ae79A Tq]MXK.<mwh f8j`*bi<]_j5m_#fYy Ql(2^oi< u~\E{kc7 _ۦMq;ѥAlN}b v5ƞnr}Y߅Ј\QPё6q?~a÷dOx jZi] HG< Q[8|h;܅.t,.gzw x^T>:zR4/(92jq Fk z(tNy/^,/j(VN+(UNvmL_PלGK ju܀(72;y@~9rw:>n?T1K]fȲnC"FKQ|?qߥjen~Kղ.r1  k?6;PyLq70R]ֲ*ZYAqm(54L_dM ֨LVYM TUWUmCqO~hǗf_C*m fCܥA-qQJe~ Z66;- |(;nZL֭v\EeƋ[q]T_isg)WVc&M&[i(Y#7-&oϽry6>&3 yWq5k\2t6d=*:WXZ@uQ@.~L}oU5ւK_bU Z;\"1~$QoѰhA?~z۷OϤg.rIVQ$EJѠxW?-6ߢ$Z;Q$g߿}g3?30ە_>(~ S<\ᢌ)a5E_'۟ d8'~/E/?|y p @ ׷U / `^Q]E}[밵P_z{X:Z}cXjVLZXkʓaucu`d&0t60}'H۰؆m׆tJahi6n6kÒkL_>Y\m߇}}ӯvEև}xч}$7Ci͙g*(ʒ*hѨq *ôNG~{/zj.̝kl(Ғq+ aO^y.ؒ\^,8dX8ɮJ J/ endstream endobj 3380 0 obj << /Producer (pdfTeX-1.40.20) /Author(Wolfgang Viechtbauer; Thomas White; Daniel Noble; Alistair Senior; W. Kyle Hamilton)/Title(metadat: Meta-Analysis Datasets)/Subject()/Creator(LaTeX with hyperref)/Keywords() /CreationDate (D:20250204223249+01'00') /ModDate (D:20250204223249+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019/Debian) kpathsea version 6.3.1) >> endobj 3350 0 obj << /Type /ObjStm /N 30 /First 288 /Length 855 /Filter /FlateDecode >> stream xڝVnA+H#EHn\wC\Pbzs _9F)X *8[l~n]\o.KN|rx|DU}W&0@6UR.``HJ1$M\$Hp=\"#.)@@"m.Khf^f УQ Efƥ000BZ.„„=m.KI\Xnr)و+͌Uom̸&&&M͐ۛ>O2Ld0 =Fiĕfƕ"߹ ^ KqM]BPpjAij^_2    !&Noi;⑙Eȏ!qƈ3#L34:Q9 ?F1w٧v_h>~./]=de#imSn֗$%'G12y&};X@w݈;Fܱx(H!݈;F1%?6H^d #y*.{2 ȈGF<2⑧x)l]o8.'q>^Cr_p).[wOw=_}/>$peW endstream endobj 3381 0 obj << /Type /XRef /Index [0 3382] /Size 3382 /W [1 3 1] /Root 3379 0 R /Info 3380 0 R /ID [<1690F37113DCA12C63E30F8CBAB10CEC> <1690F37113DCA12C63E30F8CBAB10CEC>] /Length 7920 /Filter /FlateDecode >> stream x%y]qΝ;w;rgrgϾg]9E(RP"іB0QL ) Ц\rtai |_yc?9O&M6fR&p';j jԎi GmZsFΪ՜cjԎh΅yZ;vXs>mT;&\Ԯ\ KԞ\ LnzTm2Xc XWm*XvNmXv_m:X?rj;5`raV횛a1m[a h;^mь4|P-^*j4S;o#vKj4cR{! mK#j5CڤZ|q]jk5OIf՚[ga-ߋ϶R<\Pۤ.%j5/j*\S{6yxdfB-r jԖhނj[yT>Z}LmB>%x"W/CUs;Zx9N QCs&⣆jhF@"9Z0 p4pN8Rfا3" 2-vk;"p _ `#_ro,ߒ72z0\_3%x" ka;{a}lp^8ǁ{+'? <\p . :܀P[p]2O$HS^*|-* /m)iFB|"\miKI[JRҖcwJI["Ôԇ=V<+44e~aCħ-*mQiJ[Ts:~2_4a$gBE̿OQa,2\ K`)a/;α@YOsa,ةo)r38w Θ2q3=!8Sw>_Gaq8'!_y ܂)/pnB?߅{#x 0?w<^+x oୟ6)9M9@mFa0DlUJ׿=t4P0Ԅ&5jkKRZy#[rP;k@jPT )}BI\/aWIv5kSm/AMjR;Al'5_yZ;ߍNy5k@j"P,ac'5VkWS:Yy݆xKg0Ԅ& 5aIN)<Hͦti"z@/*6@lJ\VM4G`̇qX a^JO.E Xa ,IXfohzXw5ى7톩ޯ` lmtN;!=)~'ŕet \J)}:W:npM+YSvFO.NT FJXl\[p]!$?L{=Sxqn)}WKx!x `x_ۮgx %(@IJJ@JP"4ҧF7(@IJ"PZRZSb$)X=]ϱX- YL%K%KS%y)8ZrU"D|A8d?R\<8^%.zJD).u@).p@)R΃s\,AIJė忈Pb~%Kė̐F7KO@J"P))9Ź䫔:_ė8/9zlʮF4Q7D={ۀozc#ݖ_?xrc~#G|O@ztH1z~Oz"D'={R߫@={8q;={q;g#B{k#.Q5i93{N9'9 ==q˘=KEg޻8Bߥo@ frM;6c)yo4$OQ[ a,%~rpQbfYn+`%հv3Rhl<al-~ؑ'~&zݰ>8R\.;G(L18 D^xN*3g,S Sq51#qΉOVvbsxff'`Va&$Ϧ/ A1e0[xZuꙔЏQE> sԇŃx/HVD.u@})K}Aʔ;n׹Iuy]|vSz\ގG oMُ~>_g~WߟWccE.uJC/ _'N|]TŸ:ujWRF@]7A^귀zIO]sJc&Ih1D2e|,_'^~ P>bWY0/eb=̬rvF͌θ)`f|)_aE \}_kalʏv`M)՟'6;`'ޔ pĤO \)G4p o|3z\k " w.܃#xOR-=ֆOn/5$[6IYٔ)F3g7$~qE) /)bA*\<˜./dl'e( MyHYrP,e-Oܼ*rP&[E,e(@Yrܲ.~, ea( CYG[!He(@Yg엯¹w0ŧ| \j/ Cc;( MrP2P{/?, ea(Pe< ;GWrP=ї@?rQc?rM %3)wqL C?o%"Џژ5jWܭG_ߗ>M)ccô/}z"N7=8sy7?re$'O| H>}Sÿ@Ow>}>}BwS:-ODYq}ׯij#>}7{/e Oh4d!yQc0ܿ&a<>$X !ӗܧ X &@LůcGAL5>*fev q8=Rs}!8 gh5~0=zΝ8 0_X.E \kpnM0t<;)/Q5𷢇90TcDTcV]T堺8R[}TE* գ ' CUPTZ=|l,U9AUrPT9Ly=*R; @wa/N,rPe3OS~xVP0T# T}c҈Khb5˞\h9ͱ90sȧqX¢x X CVR~6`#l-NU/;RF]`u,X@cu,`vpʟ`oc`9 fl,}6eL_x=LY2viW?_VnBnm&}x `<$3x/%Ig߁hsYcYȥ/~,j4VFRX&+W8p^ἲX,Loj IXfP!BceEGTLWد_a~e3p^ٚY}"9pGyϊ@%/+WBwʑamTE*"J*2JObS,rTDbAS*Z?C"*"PTDbD?+wR3=zAE*DT@,8`2 WIT0m`WG5 ac0',X|#j1D g02%)o%6`Yw~"jVN03 ~2X b Lo`<+HlNoh<1l dc 9@6t}^m@Vw d +l dc C@628# ־A2> ȟjlKd d Lj4 #029P dQG @)@,wi$g=HM#>ͅO#_Ds\a,(9}ReTGaUc 0`3Midx lmvN Ȟ˱8MQ`xWHMq8'!擣U8F$6> <\p ux՟n7&[+@cz% 7 oXjyc| $B00`.̃0 `"X K`)L2X+`%հ:XS6& [`+lv. {`/p!8 G(L18'$)8 g,p.% W*\pnBnm t?I#ߑ =w'i,E`X `rX+aXT3:XS6& [`+lv. {`/p!8 G(L18' _N#W'ȿ?4p2\p f6X;y}x<',<^kxoof`~"E/_d~"E/_d~"E/_d~"E/_d~"E.Sig9\<(E9(AQrP(E9(AQrPIS~"E/_d~"E/_d~"E/_d~"E/_d~"E/߉SA;V;wa~~X_~X)~;;wacw4 Bңi~,q(FG:"tD#@G:"tD#@G:"tD#@G:"tD#;[H'=_M#?GLw0atӝ)|<(qqD"C|g?|3^ux&^x6~hWX X `5.?9|k):7 endstream endobj startxref 533430 %%EOF metadat/build/stage23.rdb0000644000176200001440000011014014750503576014742 0ustar liggesusers{Iz& 0nGQ@Vf (n4{ t6QQUDFdGDVppִ͈ڥ>4'Qf+Lȡ-lh'jFLsE"3+]۶vʌsopW.zzIb[SoǏܻa P3@Auv4y15Q{|2:90>16:2<5Y4TG^4|KajKU)*/ ~4v]{iEۺ^QW&éuzs}?z^yfۮ;~/ ÌSZh9yp/q, :Pk AޗKH~$dseTWOAy*!z\H+"Hе{N63 ,ZsPm"^9[bLÎ>[]hT>ېoJR1]eNk^[cElKtZlЂbug&ޡԔj\X+I=Uw?'zjU[|4gO'McK^%uRj}7ޜp{n|]bJ!ux?q<-iڲb /;NӾ\F]Wum*S1 8q)OUT{OjŖWػ}{vF<!?,R{L)ǃoM-نxxI£2XV͖]ôL.ٛʓ!umDW38$L}f.=o* Q4좩*oVð/G5zGX\IR WףnE8ͤ%3 ٣#CI^ A[0zm~# -wy'&,h?<HJ0N"AR7Z jQ9CK̞5DL 3}/k|>լ9Bd玤1%T+N\^|IzVkViWo"H*;lZm" DwvT}VR 3$£%4~5,o)YgFA>W b# *8rxr<^^|-}!|M@IŵoMU՚]wm=3nl =NgLؓk)Iփ y茐5)vFH1`2,0iCZеBC܌j8rxrxX )9^ .~HHu$K◌6icݐcUјdg WB `/@1Iփ  0E"!uǀ p>A<"yUg6T]ԣXkW(zqyY[ZV ]aC [i)-ȭԯ UcYh=ӟ[oç4=^g6F}AN3=sT~S:̔~虳釞ʣcC|ü4ccE/ KNG 9nC3Zu7Uc~Ll5b'r;~;?&BBj bp Ys "cL9 8 LSH PgXSbڒLFZtBJ瀷 #NHm$fСG;!z*9Yf0;vZE6| 2{0C:!G|1脬9LNH1`tBO'u(NMqQ6X UG3[qw0ayښBf_ RZ.B^LoHVS[M:!O=|DHPo3RTo]) ;̔oȀ~37̯h= XV眓jE5@>Ր$>X4#ZD[?0UdG<]xo(9K{@/YR >*A5d)`TC32,0}!@yTsM/VgM+StcHߐː"RC~>z]@YTs3TS$.fL:IGɐtI8LtH1`CO:uiCt!/SO#u`i~I@i}ZCYh%g >KoH?!ի/ߐ5)1!d7,0}!@y|s5-PDC_.BWǠR kS$ ,ʡÔ#ZRΣ)%|32a@.m!R?*A9d)`C32,0}!@ysjM:״X5s\ҽ Y}y!-!5 YMnHJZxѨ9eS\|܋ Zp3k"H*=ў95SAƎx2s^y#BTJmYQ[uoCb(%[m&ݳud&+he̿ğt(YVf5U[qj;V˛\՜egjpv7wuFs?,OWF y,3 gɔ/T,&Y8^nYH%&4*+ʭyťˌ2[N4oi廬M7MWz̓TqoT-yaQѼb_-fWQ_Ʉio3|Rl/͖]L4rFي+c}k- 8RŔ^h5]-Y6K(/%}q@O}`,*v"-=m^!piJDOދo"]_L5g]™j}ȳgF=Nj#h5F=Ac6?GOG/镱'F8=g#7zs%{ov߈c{ĺicr뺭4#rŰ YV!ei[n 7)8%VoVtnZQaniI~혃!:oji'$6\(>& $52v 0UR7 n7|o,]]+eghcz7Qf:ijO]^Őcb [ f;e1"~w+ꊦRlo[5j8֢M6~WZ9 %tR]AL)~}ȿ/U=S1W?2N9!abw-KltzhhRB?Ci).;NӾ\MlZKhexxl|rb|lxj|x0@"$L gΜa5ꊣPd\tGiA3T_.t ~®IWwzԃlEEO}ܸG. F>lT o @Ccg@7飔 *5ce)|?ļ R0YC-XVuŨf ƒnambT(R9ⵕnf]գ8 /[MP kZ@ '3`֘TQ-v>}g QNLʝ'l;О,FczΦK7ENILxrD@l}-*5Ǵ ҂b8s:ݐA^헤f2 a'ar9ԛ,tPv=Á T g!'iWj :PӺV4fr2k G#`SڝUVP]Dak:TJlՉzJk9Lxr`H|VЌkp!ȇw ?, $T f]/:!~FMm-_\u\_H$ME4u!<|*XMNW $_jWG4zbo=tCYMq0z}=]Um+hs@IUE[xbGx6iG`_Cԏ_kψh?_]ԖZ葮Gb c5K[qUtz, 4zwn-OPWkfk '/mҰ'e/|ghF iKv tM߻TzwCR_~+vw8}c7\u[;m:U:2ׁ Ђ#vmPPݝ7 nbt_8 ZΨ'33޲X_kwJ[U6xrb )D]~'CSzGe+KeC2^7!AUC޸Vw'pWD@OM/7DhgXK-ZP+QwOCwuVZ3 &l~AW4;ߵm}PV0D&R]bj\nGy}J cwp.@Eou }=tT7۫-8u76h[PK&N/hP VՑ_"۫B@-t.^TcvgBo_MΞ1oR  xΪfM[j3w)&΀WV;A6 vs]4()iJW=!ΦsgfuFfIM/?}3V{KBK@ m۝ ν;?:)[J˶*by7Zl^y~_*NYSǷ+nb c#Se(3l/2 alXnޝ!td3#BN"3}[}C!G,x쩻ٳgO=! Èarq.h ^CK;{ΌDAD }(t@2t2l?qEڗΝ $`06zlwĹuyJa(a$[LsotO#DOv chpg=(ޅ|WJmR[ʩNÂb%ފ0kWs񫶀 }$ëעp^[xFw8jHSH􇧑hp|wym9i=,άp pȓEOo1<c*䪔Z759z-W!Č:}|]Eݓ~nMO9ar]zšxd]uIWp>RP ؉&w/_, TXPq)Oʲ72>|q]H''hm+B[yeUJyPV4R4Ӡݾ}&&-u&A$ǐ?N0]} uip]Lz@27I$@GTi+ nFU!!ct"'Owͷi5:Rw}/^a6{jp*^Q~dU][ʆTfïӮUT{}5T -t?`Bn{oM-نxxI£2X7N˴L.ٛʓ!8P6OI/AOn1w,-w8ڶTJF0ժt]()F}p"!YCkf{uж\Ai9!C{y2uռGxw O Rte9EdCTK3X"[A#p,t(̈́߀?zG5i5ڱ} Mߌ w '1O%Ϧ5 as(ƳĂjI"p N!O\!DTVwGl?Md'[!~'aov h#BJp?0C !<,\ I_JQrf(!緞D@>W b<G!VO8QAK?ǁWGS"H*}ks[De?p]q,48vw?9BJ3RX B֜\j]Rwi s@yq5[ 杵Ǩ*EeaB# pLFH5dш4j"oeF#d?>B4Bj bYsr;̔FȀ<0}!h5 \do0^_i[r,Uq:+xKwH.%l5$ay)-!G98P^HS!3zf0}9@!3|18: d8:̔s<0}Ρgsx}l%3E`C,3z汀9Cws9L9 LsH~`C bpYsrq;̔sȀ<0}!8gy92uV0Lc(1Pǐ׹a;Tyԛ"H}sM;<]̔wV#pMC bYsr;̔wȀ<0}![;}C(SR3Ro (w+ D4^Lqpj+UUriP'S2!cޡw\jC3bC9;LYM娌WUӪlɽtK t }%\> -<*/ jt&QIH5G<Ū(]&uFT׬>(+ɞ|.GJfR{VtW2s@yT6g ؄ܔVWZ<(~ g+bB@X@#2d>dBi-.ԓ f@R5xX j\펰d =&kOj !a8otQkoGN'Rl1>Y}yb~,ڂaԉ^_G2r}rف!={5y$?om=m΀I"_梞2;tL&𻐿+9MO *>Mȿ)7xbkԥɈ$LO ֓0GBa$DiqswPO> 8USΒj}GbY.le{ȠxǴ0ʳQN} ;w[(F#WJiJmct\ȅi@Ӑ"׶H_:_πH~qhԮ!?z."uM}[&.M M*>}ߗpBdz"us~OiQF9,tZ[vr>p fd̜i[5wJo<[՜Ę;,{I+ cmV3UŊ)dWO ?zN!uk29)8e,}=?:o=$L=1)#ws)V!g 4ǜ "KcSG]^,kcYL o=o ~uNK@I]7 Q5{!'K"!fݑZóS@r3pڈ(OH+/,\#Z=‹z #O Ǻ+PΏ= RI!˻U^]]-GpVH LF^>@-+UW!?L! )U ݡ\/0Y.,#8|DH,Μ9jfs?W1 Q0} |GiŰ-T^-Ej?U}ܜȦ@=a+3Q1~sZSD|s 躩ԻQG &kfԵK .\&` A 1c}SyϹZ:41hI(fZj7MN1hҜs5"S0p\∔Q{6ņ;[[:ϗ[.| v!|)h_M6׹@6\1l4,IBg6֕b;pkX.,F.a6 -%0K@;a fUQNu]IE$Q|$.WDTȭRXJlE[/5E(l"I5kZY:T('K,%UozYG(%ߘwilS,1{qF}ҌnR~dw *ѝΆDwV?7L- +(jn".krA?Q8n ݨu;Q{&&jjy ھ"B>I{D;42'՗\\Z { <9iO=A4}ϐc"H{!<9iX>B1Q+rS=A"ڹ8Q'{s>^zGB~Y)kowlTF21&joWZ^Q'''FG&߼!Zi(F B~~^^_C`wt#(Gr;| Kz3ݿ=;~eet˨4d?o5oLuewYѮne7m~s)ʛ;sІâ<+ tP15JJ=&`W)RG/ETM7Ek AޗKH~$$Y%EBk* 5mאD䚡{T5 v߿ΛyW4lUv-q=hT7qYڞ#"\o9<#h·M0f5T,wIYZrw?]\t4[!DYcMu<{7XthC}Mt>CZOǘ%QځZ<;{7g?޽[s7ߦ{kvyIuTc:_m8Y9ݾY+7&Ս#ڊU6Tb4,?R\DQ (~C-]O篰w=5ej:i#A7pͦlC<$QVݛ5Kk:L򗽩<>3^3j{m&_.Wxj{͵gnqbXڥ*K _wYH:ʾ!Q1==UZPC+Bc)A-l}ؔ`!Isf7(qmN{X;4.Bʨz 1ZȊݹ ~w.MjʒZHKBz"l,8LZ7elb7Ηm|c$[)O"AO6. 4J6©:i|ْ Y>A~ ̐lHKdCּLlHq`dCO60SZђe৹dukw7lbh.ARWM&K6gcǿ˳C.*?벭:L3jzt,++ ,=(t}8զi}Ֆc5iܢkM-+̾UpΏhYM WMbk6kU`)yunՖ%bӴ5G[Qyei}K Zk "FȁGr+v揎䡔(>1l1T͚- tiZtnҪSb*,6^FY* 2>ێˠ &O?yq_@qoc/(Y੢㨸ƨ]B6ˮΪmޠ*OK}.8Z8`O&L<3|SQJhI@(p-Od[$u@m^V1|rx,מh>y*WK@%UP~Q\fw8}*Cw-T5佑Wj(_ͼ8 B:O,ׁ߂̋/6保O eȿ,a4-~b[Ӌo",6Og V gFgg3#Ϟ} 5ʪK'!QAooG=#nXYg~jv3[iFºŰ$ 9fPm!cI u̶a! >+8f.,ۖmn^ !ZړUɻݖkʒLUdΥoÊvۭkp.2\,qm]je*]"~q ;5 \ƹ `˄H"v[Uf7T\q5?߀w?`{Jۭ=g!k|ɄFuۯvItTK|D*s*0U~1 +{5fl9?}Txi+e`5mGun?ϳwe.m؍2{ #2K#@M]jt R<dk鉱kcrͼ2:>+(^m}[C(@6>g |9oRVNP~  1yBN=k b`]1Ya pΖU!fG9uxݫ0:ghڋqZjꭕͭVF1B8>q+@͌XMoَjxYbޞߎh%D4eMx 3M}iPYԜ= Xߺ̙aD;Jyj(Ja{m56.+ÓjǼE%敡{oċX-8mZ!Rhy][{f,i00CjdIϜxT҂ꬪaa}Ta/$-80Wϻl44R^^Tng1CH]gl8&RW-M [5P%Ǧ-O 87[.)b#ӗƊ1 oB8&o"W%}+;ӈې~1j00Q uJEw mW]*#`1@;?-Ug$A(U)87vDfr^`}ħX][5C黅A[暯׶-XSAk^OnW(-;A f_Kxad_8@+m#"HKYݰR8—!-@~%}WD4G,Bx T<4 :ȦYd_Q6ۗ20CT܀KqO{[S"3'>7O4R*|N-j\oәfPw2jD^1Q`S=AL[v.N}\G{h?}NN,O OM+4{bT:~~޼_ӖkX8lYm+u;ϔA [r}߻{+VQ퉊>Qh6:GlGmaPsÒh&-p5[dϳ GeZuO)j,0T yyNZ3j{m&_.Wxj{͵gN6HW4WE`#K= B!GQ1==UZJrXCSǂX/Eoe [="6;Xkș(R.\>\۬w֗K/P2*mȞj]<²-19 $0 B{d &nlv! 08Vosnbf  S`JN1E3yM]7WiiQ[ þ]par%IQ >Iף2nE8IKfPn/~{"eD(U!cRHWf=%{:<d^Gb%@ ,a#N"P(F)<r%; <'fxTE`r9q2eN9G \@\9="!< ̐HOb !H$' a>^#ajL&!g Ϥ$׀!_OIgD$綉j~`L"Lf$> ԟP.a3K,@.l="b6^ BY"P`"j8iR^|--*!g!ǫ;ET*!7DTZh_D< yW~P߶\1"3ڣ\)Wz!S씐L;%d@~^ʣCwhH :i )AKLHMd5lUw 3M$=B,a--_saMPJ7]!t֣ ԟE!S$Rw! Kd؄L|Hg@>zG@I{VsI"ȸO< R* ɇԟE!bCN3$RAtɇ~s(|FilUFېߖso(G2'?mWZq> y>2O!O` r-}'u$̾F{s[DLq|_Uʌ Viƣ ԟP.]A0\j4HI`4Ȁ0U"P:䵕;-#.!\oaB'tx ARݮ/#oDVx`KȯԱ#)2{T =!A'd H'$0S:! 鄴^ʣ! ']]tKO$ӌ[yYZ~ xV 'ERP@Hݹݹ4#2͉ )s_Gv0`kHI`1?RAt֋@Lk*9Bl,hZ/NE7I 0jj8K'N{DUwx'l%wKI.u!a|&/]5Uwihi6-UChw:]PO%,G`(׳Ox ̿PITבpGLy{WEEǿ!Im4>s/ҩΌTόgF==3߰eUGkZOFCu96ߎ/zbu9;Gt!]C~_qva,nF]lM}ºŰ$ SGm!|\lm~X2J )‹cVrbZQmiWo t;5 Ftce/XS 2-p\>zA 9R[F6[86Ftov۟-j3"~eޯ)Rl~ĸxe6fRޒf0t=Z.,,1gԺJOUΡYV.Gm9]O&LW(ɸm8clL{έ=n>a:1lUsM%Pl1UQ}͖^w_ztj~[d e\zJk5cE5T?ȴ7e8~a)!f>HjΙ7#BT+|b2+]h%vODVnfrVGdo%/>"$L gΜa5Ms\z0 <_.t >maWȤ:jlEoLٖ}߲ ܸ] jT o~Cc2HsŐV(gE ]D+KjT*H!d-ۃ`)Zօ+1k|p +3FG9nť4z܍KwnU3-ZbuZLu"V3He{]C5N!Vk );鄄qӣZ"$ғ[riu,w Ie|IsI6 3P"*2X]]Qu0_:V3[-\V2TC՜5毠tZ5aO B_IR.NX9þF؏yQxoAYL ϼemY{ }S橬rV͡'T(FE6ik%ou׻\]]Vli9j=j#.VےW'l\-d5SљE@8:hGJluW[Kle“"{Ph%3ƴEV0,s̚acoŰnܟ6?xhuY-}F-}֛:=gvDO[P:OZs@HlvJ!oOlJ,BMlȗ5;zyV */%6 TԷ{뭨 {A>UMjɗP^&rc-QNca^b~mcX6]Ċ 9ޱqⷳNȥJj߁w-h T[F2}- '="HJU$ݤv =$ʛG}zڽ7AxrX][5eY CRX@Inվx|-]iW\BS3 :>Axrs9Acv Zdރ7˭_+}"{FI3$r vfi4+cjve~urba|bltdxj^"AZi(F{TOݯѻѻ_vr|;L9GQ_;wA/϶o߼ww{4OCeLZ dgjޘB=mܻas]byIHֶvw՝iCEcQ EBy=4 o?}#Ԋ 0#l:Ej]Ʊ(tDv>w / $$h4}x rluGU5%hDkھ!D䛛p8ː,ѡAMv(+ BLv?Eu2ldl(wgzfsIQ^ofE, 8B&Is-gS4-/9fzɦ3f,:o9ݚ6[K+|h,M6># w-2Q~d>b թo8ˏ'*=Qq'C5bK+]>zf;jLmBSӐ3yBs(/Y?z[z,[I!-ZCNڕ5#j4 ofnwh\zyQynCTakͶ\1,JFd $~0 BvЁV~d\,lٜB+jxm#B\җԜ!aTcy*o* Zi8ԘtB٨0Qn/igzT @0נ:/vҔ)D 0a=EXL2f6| 9@PKz |(y' ص a{S!Ys 3935Rwx>qS!|6լyX\H [G H"p N!O\!DTVwgQW b<G!WGb( Iȫ#KD)$Ծ5տ^- 8Ecaڷ}cOvw?9BJ3RX B֜\j]Rwi s@yq5[ WqR 9~<,UBh^@IFH5dшӌ"*~`43=xR4_=,A#dI ˥F#0S!iʣׄ2`hY)6{-Uq:+xKxH.2on$, /9t9?Aj34E0SΡg r=sXs術@Ks#L9zp8WVr=S920CΡg (sj9]?m1%9bC9u?0C!|189 d8f9d@>s@y3<ZNf:+1w(Ecܰd R FCMNvygJwɒwHa_ !kNY.5!uG;px'#w(E`CJu`CMveAW&ы)P텱YPWU˥BYLɐwyur;̔wpFPL2e6ݤiUwKnb@P]]T5J4|AZTC?yT +S _ASMLjxdE5UQTOUMꌨƯY}|QV2='\j+!Õ̤d&mmo٬B6 p[oaK3akSb'#5K[2wAoE iiR7>p/ARWMwv6l(gcǿ]dQODH*y> 4-sE5{ODT+Tc܋o"⟦6OT gFgg3#Ϟ} 5ʪ[OFC*QEOl8ZeG.ޜCU98vW6gҌþjabX"Ͷ >Ec6?%@,N1+we1e߶e%-G>B4$6-Ɛ /g 7vVzZԮ3?ޗ𼜴5Af!Î"Zv^rԓ!G!;RvoҀ rxT<('AsV1p $S\f?@4aYBN /i= W~#ǐ"Hjn+t|La3c T4CǾLJxr9' BkfMSrd=ܶד 5BfI<0a)۶L(oS#1 z x“귆#d*6m'=y_.8jۗEOaMk22\&QzFc@1B:t<6=144>2 7!4ߜъ5SGƇLJ'#0[?'[O¤7"mymC?.08VUN9KufVR*yu9#(VD9uP al鎶X\)ͦe*ew}p"AOCȶ__z."u =."=ߓEQd?Cp빈7!ǫo=.4=449:#!_of\4i(" ?;nY!y?"mFst=BkjmYPZ%aN0sQo9*W%lUscwtPDdA',*=Yy\tV+*_>d9A^ˀSH㔱&됿B~ 2;8ͥX3s.P.MMUvyexl Ed21B 'I9-$~w0F셜L.G@vGRsh N ΰyj#WO@>!pT>;h/1< @;8?*$K$^,WzxuuY!50yi꫶0W]>0ʇ* W+K7T3TvrVGdo!a\8s 5\d\tGev]d+OÊ߾maWȤr͛k "BUKfE6e '_=B WԾ&⣜ENPM/j8R0YsC-XVu5SB>gPJ|έi^7ُEK5ӲTiuF;OsGZL)6يݲԙ|mvR uK KAjL͵OdatgLZ?,4Q ^td1r! g l)Yr S03Br.ZW.&j#u˼"Bn5šVb+z,Ba3I,eE_ײRסG9Y e)v9,xܝ8B`)Mf}`9؋3fu&ݐ#SV'w6'j`jAlgX}FQuq!<8^UK8̰1vv5>As  jNa:T('ަ,¬]92<49\1FMQ2iߞB,K5ӰKupTVB7;*SC]4S[ЌzV?+,Zfcfd׳$5Eվo"ovig/Cr Q/A3)(;S-˚ԚҲv>&ݱ͹¢-X׼]0-oM5""w;%{5 itV-nE9 [ߖZ^?jSxk]x`K0Q>c>QbGDH 1/,Q0L~H< mH)lC}c,NYO=Wڢ=I43Vd;ʒ:CU듧wg߻wk4'}o./j]_WXdz"+6>7 wQ~dU][ʆTf9Gʓc՞8ꓡoh.ǻLBӊӐ3y{7o٘pwݞ*E:l! vd`ZE laGfxk N枫50f}uh\zyQynCTxoٶ\>d%u2sb3DH9Ւl?Z-]HrlC2ԥ|F/9;CTtVpm8FGq%꺹J њ]par%II PJa{t%sɌoZD(U!cRȸWy{Kt y_qH^b$6 |$q:DARIVTn"{NWH˝!wcse"5 _H5m" _"!iWo"H*5QL+*A5jG~'Q%H)Tƒ I/ ʭwfH"LDHd$5UVX֖+4j9jy7햵$E`r#-!4M3$~4(%HB[M<̰YҽxԊ7i=̐yHQ2Or׉;d)`r~y|&Ob`HA<)38WCY՛F7BH!ɐҏC8}!UdLaFQLdM$_ri i;̐dHQ_ !kNS$Rw )ɐg iG2R z:ɐҏ (dbd6E0K9['AN$3 =sTdSI:̔d虳I# 3!O`@ }g>A&DP֟[+H`z1heE0~¯%BȐ`HQ_ !kNS$Rw )g iC0=+y`P*t%]v{y}DFkI}hZ %h)NpW &[\v%5G8]#rW#lS2Դ'3G6 r/O^|;\inz/R-чOό<{zf3n(:ZoԯAGDi]!QEOlxMrMoN~wN{.nWoFwI3#mZXwtD![GŒ[G:f[nbA(u^ǬŔ~Ғ#~{]-Է拦}9y8F\qǬ]P^ }lfXk0fy9ik8$ BB a~pl"vRH&ˁXir8y04)/Bߎkug-FӹmS$d^^omm"LgDP#v<[0i="9E8 CȊW Z.#u'!yJCWJ23fs 8 9V=c/COҫkOg5$ЙHe1Z'lbtFZ33Q2m% k^Hg'!Aӥ3ZfHg$d:||ӌ9LHP"EIәmѠK]L4u9<W0 ~ʝY2ݿ=BY1}lt3?lh^1:us/Q-}\woٲ;ف`;?+ ࣔiŞ L /ȽPH:Ŀ1HsXMCX;IXta,9juw(ڊiW-1hG2J2m=Go urCz  %c<fQu%}@JLMOq{1[æjuIzz\wo+tγ[KKUb2cE^f/t&wfg7kuekDۘyF.eL?qӥЩTTV} P*dMSu J(#ۤim6mUbt e8O&Vy"kzYGe&z%="d漒V)0UxU^^ܢV>/yuESW}Vy6eyׁuȇy .A^:sjK--4[۽7y0{3_!ۤnML)zJqs32Þ [%! BI ۉݱ0R,KCC# _昂lʦT.N\ OOLONOL LY2N]BCLԽ$u אuC"H}]-+eJGtΛ9!a'v.w9qIɛ~n]Q EγlyS~Ef=r%G^ 1?"1u/CgcR ɀIwY^32Þ {ֳ1U߇ca;|<>, FÜ'/ G$d/'dR bʟazç=782$eR#`2RޑGS@9?0%XbkjmYPZD;G|BZ)iue:i 5-'}*1< <%-[,hzޓKu)~&I42x3ANzկWWWRׁ ?款j sCӯ|H"HygT3Tv2|I}*5'tf}w 0Y.9s暿 1 ?DE6\-tQNҋ P_t9]dSqyU>aV‚G9sڗfw (g# t)?7(E5o)onԵK լ2L!oYbF}S&uNՅNjβf0@-ΓF0' vj[MӨ{iZݝ9vgW=|sHTF`>-ȷGe'Uʔ^~Y|ס'Zq-w>T5^e3w%h3<[Xb }mD1rC?I(r?n朎Fp=.s$ئ>i:{&ad'L!ZSRss,Űg'MxIsȖ^u~GTKG%Y: 릷1I^uZs}9Ƀ_Kz fI[gd6P5CԸ~By;\PYԸ\פ_R^q y"P"7y&Uygq Zh%sE4FdAK1VV Qr32K 'r^-i DH4Z̸ >ɵ/u1.Қ5̺G5OJظ Eִ[ֳTbL[K(%3YKuiuE7`aQNAV!!CDM9-%VMFV"g/#oC~E̳oٷ$~IE,vKz!_HLw%ȱz1!|/b %K@պi8V\dVgHR`g9zRAD{>$G}tbW[Ki9ƒcM6ڪi3W|(}"rKP#ZuEn :>\q?[܇+|=jS ͥwȮy <X!/ 5o gaPDezD OPhDGOu~{ e!Ȯݱ8fecLM߮/4>NN,O OM+؉7A+ Ũt-+5z>zkN\ჽZuG$w?k8V>۾;CXdG]_o(RIS );@џ?Vs+s·5Nvu+vť(/GJE?/n{1FFLzj 甪*T`FPyY%ETY7Ek AޗKH~$$QE @i*,5Y ?&`W5g^vEvRnAJ7[èEG5XuMcQsG# D_:2aJJۗ b˜8Ti2퓓 [oH[Q v@N_Nk-ު rxpL`Zw1YO ?I=Wڢw=IJX(Kꌥuo9ݚ6[K+|h kˊU+7&oߪՍ# >p*F[#jOTP7ut {cَ(S{4% LZk6Οg% `MsծYZaZ}&MɐQ)Qck3rUkW+k=dtoGrڥ*K _wYHʾkQ1=ẜ=UگxCKso#"Y#bBZ܄#Ek`s՚ixĵaи u+܆Uc.߲mʱ(ǓI?% BR֓x^€ >:ZzBځ-S]HblC"ե'1##z(Pވ,q)P <'ي!ϐ* ( kD%zr?xy(̾%tG_ gv[z2> i̐[Ha_ n!kNY.5n!uGr -P/v،MZ6K@)s^vZ?U7yB`%ذ.-|)-;C(@rArlU|}işjls4čs̳3Lոe^AiZ@ g!`%a)}/_jx\7[ܻCey@jf})6Ԧia^sQmoh)ͦV`S((1C)[݊\Ƈ`,_jxB\Ҳi6xCT+0Kz;ĺXEQ4m\Wv Kc 9C #"@~'q->}[Վ8B&smKl0v&P2D{<$#>&mԎy[DkmB0q v <Pn! mp%Ib2[L>u.w^5]Spl׮Ȏ3uGw ?*ܻU{ ޸ v =#4糼AgE5#6 Lì]qMiPXKoHqblp a"s0qD@>Gx:n.l+a~ss\b>T2]eȽcf6Txʼn:=KeXv0}׾J;cIe8 ,'OT F/qlYm+W5Sko.F91vOmetadat/man/0000755000176200001440000000000014750466700012455 5ustar liggesusersmetadat/man/dat.hannum2020.Rd0000644000176200001440000000674414750466700015320 0ustar liggesusers\name{dat.hannum2020} \docType{data} \alias{dat.hannum2020} \title{Studies Comparing Objective and Subjective Olfactory Loss in COVID-19 Patients} \description{Results from 35 studies measuring olfactory loss in COVID-19 patients using either objective or subjective measures.} \usage{ dat.hannum2020 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{authorName} \tab \code{character} \tab (first) author of study \cr \bold{DOI} \tab \code{character} \tab article DOI number \cr \bold{ni} \tab \code{numeric} \tab number of Covid-19 positive patients in the study \cr \bold{xi} \tab \code{numeric} \tab number of Covid-19 positive patients in the study with olfactory loss \cr \bold{percentOlfactoryLoss} \tab \code{numeric} \tab percent of the sample with olfactory loss \cr \bold{objectivity} \tab \code{character} \tab objective or subjective measure used \cr \bold{measured} \tab \code{character} \tab outcome measure \cr \bold{testType} \tab \code{character} \tab type of test used \cr \bold{country} \tab \code{character} \tab country where patients were treated \cr \bold{patientType} \tab \code{character} \tab type of patient information and location where being treated } } \details{ One of the symptoms of COVID-19 infection is olfactory loss (loss of smell) either recently acquired anosmia (complete loss of smell) or hyposmia (partial loss of smell). One challenge to reaching this symptom is the wide range of reported prevalence for this symptom ranging from 5 percent to 98 percent. In this dataset studies were grouped into one of two groups based on the type of method used to measure smell loss (either subjective measures, such as self-reported smell loss, or objective measures using rated stimuli). } \source{ Ramirez VA , Hannum ME, Lipson SJ, Herriman RD, Toskala AK, Lin C, Joseph PV, Reed DR. 2020. COVID-19 Smell Loss Prevalence Tracker. Available from: \verb{https://vicente-ramirez.shinyapps.io/COVID19_Olfactory_Dashboard/} and \verb{https://github.com/vramirez4/OlfactoryLoss} (accessed August 11, 2021) } \references{ Hannum, M. E., Ramirez, V. A., Lipson, S. J., Herriman, R. D., Toskala, A. K., Lin, C., Joseph, P. V., & Reed, D. R. (2020). Objective sensory testing methods reveal a higher prevalence of olfactory loss in COVID-19 positive patients compared to subjective methods: A systematic review and meta-analysis. \emph{Chemical Senses}, \bold{45}(9), 865--874. \verb{https://doi.org/10.1093/chemse/bjaa064} } \author{ W. Kyle Hamilton \email{whamilton@ucmerced.edu} \url{https://kylehamilton.com} } \examples{ # copy data into 'dat' and examine data dat <- dat.hannum2020 dat \dontrun{ # load metafor package library(metafor) # compute effect size dat <- escalc(measure="PR", xi=xi, ni=ni, data=dat) # split data into objective and subjective datasets dat_split <- split(dat, dat$objectivity) dat_objective <- dat_split[["Objective"]] dat_subjective <- dat_split[["Subjective"]] # random-effects model all studies res_all <- rma(yi, vi, data=dat) print(res_all, digits=2) # random-effects model objective res_objective <- rma(yi, vi, data=dat_objective) print(res_objective, digits=2) # random-effects model subjective res_subjective <- rma(yi, vi, data=dat_subjective) print(res_subjective, digits=2) } } \keyword{datasets} \concept{medicine} \concept{covid-19} \concept{proportions} \section{Concepts}{ medicine, covid-19, proportions } metadat/man/dat.fine1993.Rd0000644000176200001440000001422614750466700014767 0ustar liggesusers\name{dat.fine1993} \docType{data} \alias{dat.fine1993} \title{Studies on Radiation Therapy with or without Adjuvant Chemotherapy in Patients with Malignant Gliomas} \description{Results from 17 trials comparing post-operative radiation therapy with and without adjuvant chemotherapy in patients with malignant gliomas.} \usage{ dat.fine1993 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{nei} \tab \code{numeric} \tab sample size in the experimental group receiving radiotherapy plus adjuvant chemotherapy \cr \bold{nci} \tab \code{numeric} \tab sample size in the control group receiving radiotherapy alone \cr \bold{e1i} \tab \code{numeric} \tab number of survivors at 6 months in the experimental group \cr \bold{c1i} \tab \code{numeric} \tab number of survivors at 6 months in the control group \cr \bold{e2i} \tab \code{numeric} \tab number of survivors at 12 months in the experimental group \cr \bold{c2i} \tab \code{numeric} \tab number of survivors at 12 months in the control group \cr \bold{e3i} \tab \code{numeric} \tab number of survivors at 18 months in the experimental group \cr \bold{c3i} \tab \code{numeric} \tab number of survivors at 18 months in the control group \cr \bold{e4i} \tab \code{numeric} \tab number of survivors at 24 months in the experimental group \cr \bold{c4i} \tab \code{numeric} \tab number of survivors at 24 months in the control group } } \details{ The 17 trials report the post-operative survival of patients with malignant gliomas receiving either radiation therapy with adjuvant chemotherapy or radiation therapy alone. Survival was assessed at 6, 12, 18, and 24 months in all but one study (which assessed survival only at 12 and at 24 months). The data were reconstructed by Trikalinos and Olkin (2012) based on Table 2 in Fine et al. (1993) and Table 3 in Dear (1994). The data can be used to illustrate how a meta-analysis can be conducted of effect sizes reported at multiple time points using a multivariate model. } \source{ Dear, K. B. G. (1994). Iterative generalized least squares for meta-analysis of survival data at multiple times. \emph{Biometrics}, \bold{50}(4), 989--1002. \verb{https://doi.org/10.2307/2533438} Trikalinos, T. A., & Olkin, I. (2012). Meta-analysis of effect sizes reported at multiple time points: A multivariate approach. \emph{Clinical Trials}, \bold{9}(5), 610--620. \verb{https://doi.org/10.1177/1740774512453218} } \references{ Fine, H. A., Dear, K. B., Loeffler, J. S., Black, P. M., & Canellos, G. P. (1993). Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. \emph{Cancer}, \bold{71}(8), 2585--2597. \verb{https://doi.org/10.1002/1097-0142(19930415)71:8<2585::aid-cncr2820710825>3.0.co;2-s} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.fine1993 dat \dontrun{ ### load metafor package library(metafor) ### calculate log(ORs) and sampling variances for each time point dat <- escalc(measure="OR", ai=e1i, n1i=nei, ci=c1i, n2i=nci, data=dat, var.names=c("y1i","v1i")) dat <- escalc(measure="OR", ai=e2i, n1i=nei, ci=c2i, n2i=nci, data=dat, var.names=c("y2i","v2i")) dat <- escalc(measure="OR", ai=e3i, n1i=nei, ci=c3i, n2i=nci, data=dat, var.names=c("y3i","v3i")) dat <- escalc(measure="OR", ai=e4i, n1i=nei, ci=c4i, n2i=nci, data=dat, var.names=c("y4i","v4i")) ### calculate the covariances (equations in Appendix of Trikalinos & Olkin, 2012) dat$v12i <- with(dat, nei / (e1i * (nei - e2i)) + nci / (c1i * (nci - c2i))) dat$v13i <- with(dat, nei / (e1i * (nei - e3i)) + nci / (c1i * (nci - c3i))) dat$v14i <- with(dat, nei / (e1i * (nei - e4i)) + nci / (c1i * (nci - c4i))) dat$v23i <- with(dat, nei / (e2i * (nei - e3i)) + nci / (c2i * (nci - c3i))) dat$v24i <- with(dat, nei / (e2i * (nei - e4i)) + nci / (c2i * (nci - c4i))) dat$v34i <- with(dat, nei / (e3i * (nei - e4i)) + nci / (c3i * (nci - c4i))) ### create dataset in long format dat.long <- data.frame(study=rep(1:nrow(dat), each=4), time=1:4, yi=c(t(dat[c("y1i","y2i","y3i","y4i")])), vi=c(t(dat[c("v1i","v2i","v3i","v4i")]))) ### var-cov matrices of the studies V <- lapply(split(dat, dat$study), function(x) matrix(c( x$v1i, x$v12i, x$v13i, x$v14i, x$v12i, x$v2i, x$v23i, x$v24i, x$v13i, x$v23i, x$v3i, x$v34i, x$v14i, x$v24i, x$v34i, x$v4i), nrow=4, ncol=4, byrow=TRUE)) ### remove rows for the missing time points in study 17 dat.long <- na.omit(dat.long) ### remove corresponding rows/columns from var-cov matrix V[[17]] <- V[[17]][c(2,4),c(2,4)] ### make a copy of V Vc <- V ### replace any (near) singular var-cov matrices with ridge corrected versions repl.Vi <- function(Vi) { res <- eigen(Vi) if (any(res$values <= 0.08)) { round(res$vectors \%*\% diag(res$values + 0.08) \%*\% t(res$vectors), 12) } else { Vi } } Vc <- lapply(Vc, repl.Vi) ### do not correct var-cov matrix of study 17 Vc[[17]] <- V[[17]] ### construct block diagonal matrix Vc <- bldiag(Vc) ### multivariate fixed-effects model res <- rma.mv(yi, Vc, mods = ~ 0 + factor(time), method="FE", data=dat.long) print(res, digits=3) ### multivariate random-effects model with heteroscedastic AR(1) structure for the true effects res <- rma.mv(yi, Vc, mods = ~ 0 + factor(time), random = ~ time | study, struct="HAR", data=dat.long, control=list(optimizer="hjk")) print(res, digits=3) ### profile the variance components par(mfrow=c(2,2)) profile(res, tau2=1, xlim=c( 0, 0.2)) profile(res, tau2=2, xlim=c( 0, 0.2)) profile(res, tau2=3, xlim=c( 0, 0.2)) profile(res, tau2=4, xlim=c(0.1, 0.3)) ### profile the autocorrelation coefficient par(mfrow=c(1,1)) profile(res, rho=1) } } \keyword{datasets} \concept{medicine} \concept{oncology} \concept{odds ratios} \concept{longitudinal models} \section{Concepts}{ medicine, oncology, odds ratios, longitudinal models } metadat/man/dat.collins1985a.Rd0000644000176200001440000001026514750466700015652 0ustar liggesusers\name{dat.collins1985a} \docType{data} \alias{dat.collins1985a} \title{Studies on the Treatment of Upper Gastrointestinal Bleeding by a Histamine H2 Antagonist} \description{Results from studies examining the effectiveness of histamine H2 antagonists (cimetidine or ranitidine) in treating patients with acute upper gastrointestinal hemorrhage.} \usage{ dat.collins1985a } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab study number \cr \bold{trial} \tab \code{character} \tab first author of trial \cr \bold{year} \tab \code{numeric} \tab year of publication \cr \bold{ref} \tab \code{numeric} \tab reference number \cr \bold{trt} \tab \code{character} \tab C = cimetidine, R = ranitidine \cr \bold{ctrl} \tab \code{character} \tab P = placebo, AA = antacids, UT = usual treatment \cr \bold{nti} \tab \code{numeric} \tab number of patients in treatment group \cr \bold{b.xti} \tab \code{numeric} \tab number of patients in treatment group with persistent or recurrent bleedings \cr \bold{o.xti} \tab \code{numeric} \tab number of patients in treatment group in need of operation \cr \bold{d.xti} \tab \code{numeric} \tab number of patients in treatment group that died \cr \bold{nci} \tab \code{numeric} \tab number of patients in control group \cr \bold{b.xci} \tab \code{numeric} \tab number of patients in control group with persistent or recurrent bleedings \cr \bold{o.xci} \tab \code{numeric} \tab number of patients in control group in need of operation \cr \bold{d.xci} \tab \code{numeric} \tab number of patients in control group that died } } \details{ The data were obtained from Tables 1 and 2 in Collins and Langman (1985). The authors used Peto's (one-step) method for meta-analyzing the 27 trials. This approach is implemented in the \code{\link[metafor]{rma.peto}} function. Using the same dataset, van Houwelingen, Zwinderman, and Stijnen (1993) describe some alternative approaches for analyzing these data, including fixed- and random-effects conditional logistic models. Those are implemented in the \code{\link[metafor]{rma.glmm}} function. } \source{ Collins, R., & Langman, M. (1985). Treatment with histamine H2 antagonists in acute upper gastrointestinal hemorrhage. \emph{New England Journal of Medicine}, \bold{313}(11), 660--666. \verb{https://doi.org/10.1056/NEJM198509123131104} } \references{ van Houwelingen, H. C., Zwinderman, K. H., & Stijnen, T. (1993). A bivariate approach to meta-analysis. \emph{Statistics in Medicine}, \bold{12}(24), 2273--2284. \verb{https://doi.org/10.1002/sim.4780122405} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.collins1985a dat \dontrun{ ### load metafor package library(metafor) ### meta-analysis of log ORs using Peto's method (outcome: persistent or recurrent bleedings) res <- rma.peto(ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat) print(res, digits=2) ### meta-analysis of log ORs using a conditional logistic regression model (FE model) res <- rma.glmm(measure="OR", ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat, model="CM.EL", method="FE") summary(res) predict(res, transf=exp, digits=2) ### plot the likelihoods of the odds ratios llplot(measure="OR", ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat, lwd=1, refline=NA, xlim=c(-4,4), drop00=FALSE) ### meta-analysis of log odds ratios using a conditional logistic regression model (RE model) res <- rma.glmm(measure="OR", ai=b.xti, n1i=nti, ci=b.xci, n2i=nci, data=dat, model="CM.EL", method="ML") summary(res) predict(res, transf=exp, digits=2) ### meta-analysis of log ORs using Peto's method (outcome: need for surgery) res <- rma.peto(ai=o.xti, n1i=nti, ci=o.xci, n2i=nci, data=dat) print(res, digits=2) ### meta-analysis of log ORs using Peto's method (outcome: death) res <- rma.peto(ai=d.xti, n1i=nti, ci=d.xci, n2i=nci, data=dat) print(res, digits=2) } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{Peto's method} \concept{generalized linear models} \section{Concepts}{ medicine, odds ratios, Peto's method, generalized linear models } metadat/man/dat.laopaiboon2015.Rd0000644000176200001440000000576214750466700016160 0ustar liggesusers\name{dat.laopaiboon2015} \docType{data} \alias{dat.laopaiboon2015} \title{Studies on the Effectiveness of Azithromycin for Treating Lower Respiratory Tract Infections} \description{Results from 15 studies on the effectiveness of azithromycin versus amoxycillin or amoxycillin/clavulanic acid (amoxyclav) in the treatment of acute lower respiratory tract infections.} \usage{ dat.laopaiboon2015 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{author} \tab \code{character} \tab author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{ai} \tab \code{numeric} \tab number of clinical failures in the group treated with azithromycin \cr \bold{n1i} \tab \code{numeric} \tab number of patients in the group treated with azithromycin \cr \bold{ci} \tab \code{numeric} \tab number of clinical failures in the group treated with amoxycillin or amoxyclav \cr \bold{n2i} \tab \code{numeric} \tab number of patients in the group treated with amoxycillin or amoxyclav \cr \bold{age} \tab \code{character} \tab whether the trial included adults or children \cr \bold{diag.ab} \tab \code{numeric} \tab trial included patients with a diagnosis of acute bacterial bronchitis \cr \bold{diag.cb} \tab \code{numeric} \tab trial included patients with a diagnosis of chronic bronchitis with acute exacerbation \cr \bold{diag.pn} \tab \code{numeric} \tab trial included patients with a diagnosis of pneumonia \cr \bold{ctrl} \tab \code{character} \tab antibiotic in control group (amoxycillin or amoxyclav) } } \details{ Azithromycin is an antibiotic useful for the treatment of a number of bacterial infections. Laopaiboon et al. (2015) conducted a meta-analysis of trials comparing the effectiveness of azithromycin versus amoxycillin or amoxycillin/clavulanic acid (amoxyclav) in the treatment of acute lower respiratory tract infections, including acute bacterial bronchitis, acute exacerbations of chronic bronchitis, and pneumonia. The results from 15 trials are included in this dataset. } \source{ Laopaiboon, M., Panpanich, R., & Swa Mya, K. (2015). Azithromycin for acute lower respiratory tract infections. \emph{Cochrane Database of Systematic Reviews}, \bold{3}, CD001954. \verb{https://doi.org/10.1002/14651858.CD001954.pub4} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.laopaiboon2015 dat \dontrun{ ### load metafor package library(metafor) ### analysis using the Mantel-Haenszel method rma.mh(measure="RR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, digits=3) ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat) ### random-effects model res <- rma(yi, vi, data=dat) res ### average risk ratio with 95\% CI predict(res, transf=exp) } } \keyword{datasets} \concept{medicine} \concept{risk ratios} \section{Concepts}{ medicine, risk ratios } metadat/man/dat.linde2016.Rd0000644000176200001440000001064614750466700015126 0ustar liggesusers\name{dat.linde2016} \docType{data} \alias{dat.linde2016} \title{Studies on Antidepressants for the Primary Care Setting} \description{Results from 93 trials examining 22 interventions (including placebo and usual care) for the primary care of depression.} \usage{ dat.linde2016 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{integer} \tab study ID \cr \bold{lnOR} \tab \code{numeric} \tab response after treatment (log odds ratio) \cr \bold{selnOR} \tab \code{numeric} \tab standard error of log odds ratio \cr \bold{treat1} \tab \code{character} \tab first treatment \cr \bold{treat2} \tab \code{character} \tab second treatment } } \details{ This dataset comes from a network meta-analysis of 22 treatments of depression in primary care (Linde et al., 2016), based on 93 trials (79 two-arm trials, 13 three-arm trials, and one four-arm trial). The primary outcome was response after treatment (yes/no), defined as a reduction from baseline by at least 50\% on a depression scale. The dataset contains log odds ratios with standard errors for all pairwise comparisons. The interventions comprised both medical and psychological treatments, also in combination, including placebo and usual care (UC) (Linde et al., 2016). Pharmacological interventions were tricyclic antidepressants (TCA), selective serotonin reuptake inhibitors (SSRI), serotonin-noradrenaline reuptake inhibitors (SNRI), noradrenaline reuptake inhibitors (NRI), low- dose serotonin (5-HT2) antagonists and reuptake inhibitors (low-dose SARI), noradrenergic and specific serotonergic agents (NaSSa), reversible inhibitors of monoaminoxidase A (rMAO-A), hypericum extracts, and an individualized drug. Psychological interventions were cognitive behavioral therapy (CBT; four forms: face-to-face CBT, remote therapist-led CBT, guided self-help CBT, and no or minimal contact CBT), face-to-face problem-solving therapy (PST), face-to-face interpersonal psychotherapy, face-to-face psychodynamic therapy, and \dQuote{other face-to-face therapy}. Combination therapies were face-to-face CBT + SSRI, face-to-face PST + SSRI, and face-to-face interpersonal psychotherapy + SSRI. The dataset was used as an example in Rücker et al. (2020) to illustrate component network meta-analysis using frequentist methods. } \source{ Linde, K., Rücker, G., Schneider, A., & Kriston, L. (2016). Questionable assumptions hampered interpretation of a network meta-analysis of primary care depression treatments. \emph{Journal of Clinical Epidemiology}, \bold{71}, 86--96. \verb{https://doi.org/10.1016/j.jclinepi.2015.10.010} } \references{ Rücker, G., Petropoulou, M., & Schwarzer, G. (2020). Network meta-analysis of multicomponent interventions. \emph{Biometrical Journal}, \bold{62}(3), 808--821. \verb{https://doi.org/10.1002/bimj.201800167} } \author{ Guido Schwarzer, \email{guido.schwarzer@uniklinik-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show results of first three studies (first study has three treatment ### arms) head(dat.linde2016, 5) \dontrun{ ### Load netmeta package suppressPackageStartupMessages(library("netmeta")) ### Print odds ratios and confidence limits with two digits oldset <- settings.meta(digits = 2) ### Define order of treatments in printouts and forest plots trts <- c("SSRI", "Face-to-face CBT", "Face-to-face interpsy", "Face-to-face PST", "Face-to-face CBT + SSRI", "Face-to-face interpsy + SSRI", "Face-to-face PST + SSRI", "Face-to-face psychodyn", "Other face-to-face", "TCA", "SNRI", "NRI", "Low-dose SARI", "NaSSa", "rMAO-A", "Ind drug", "Hypericum", "Remote CBT", "Self-help CBT", "No contact CBT", "UC", "Placebo") ### Conduct random effects network meta-analysis net <- netmeta(lnOR, selnOR, treat1, treat2, id, data = dat.linde2016, reference.group = "placebo", seq = trts, sm = "OR", fixed = FALSE) ### Network graph netgraph(net, seq = "o", number = TRUE) ### Show results net forest(net, xlim = c(0.2, 50)) ### Additive component network meta-analysis with placebo as inactive ### treatment nc <- netcomb(net, inactive = "placebo") nc forest(nc, xlim = c(0.2, 50)) ### Use previous settings settings.meta(oldset) } } \keyword{datasets} \concept{medicine} \concept{psychiatry} \concept{odds ratios} \concept{network meta-analysis} \concept{component network meta-analysis} \section{Concepts}{ medicine, psychiatry, odds ratios, network meta-analysis, component network meta-analysis } metadat/man/dat.begg1989.Rd0000644000176200001440000000761314750466700014761 0ustar liggesusers\name{dat.begg1989} \docType{data} \alias{dat.begg1989} \title{Studies on Bone-Marrow Transplantation versus Chemotherapy for the Treatment of Leukemia} \description{Results from controlled and uncontrolled studies on the effectiveness of allogeneic bone-marrow transplantation (BMT) and conventional chemotherapy (CMO) in the treatment of acute nonlymphocytic leukemia.} \usage{ dat.begg1989 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{trt} \tab \code{character} \tab treatment (BMT or CMO) \cr \bold{arms} \tab \code{numeric} \tab number of arms in the study (1 = uncontrolled studies; 2 = controlled studies) \cr \bold{yi} \tab \code{numeric} \tab 2-year disease-free survival rates \cr \bold{sei} \tab \code{numeric} \tab corresponding standard errors \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variances } } \details{ The dataset includes the results from controlled and uncontrolled studies on the 2-year disease-free survival rate in patients with acute nonlymphocytic leukemia receiving either allogeneic bone-marrow transplantation (BMT) or conventional chemotherapy (CMO). In the controlled (two-arm) studies (studies 1-4), a cohort of patients in complete remission and potentially eligible for BMT was assembled, and those who consented and for whom a donor could be found received BMT, with the remaining patients used as controls (receiving CMO). In the uncontrolled (one-arm) studies (studies 5-16), only a single group was studied, receiving either BMT or CMO. The data in this dataset were obtained from Table 1 in Begg and Pilote (1991, p. 902). } \source{ Begg, C. B., & Pilote, L. (1991). A model for incorporating historical controls into a meta-analysis. \emph{Biometrics}, \bold{47}(3), 899--906. \verb{https://doi.org/10.2307/2532647} } \references{ Begg, C. B., Pilote, L., & McGlave, P. B. (1989). Bone marrow transplantation versus chemotherapy in acute non-lymphocytic leukemia: A meta-analytic review. \emph{European Journal of Cancer and Clinical Oncology}, \bold{25}(11), 1519--1523. \verb{https://doi.org/10.1016/0277-5379(89)90291-5} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.begg1989 dat \dontrun{ ### load metafor package library(metafor) ### turn trt and arms into factors and set reference levels dat$trt <- relevel(factor(dat$trt), ref="CMO") dat$arms <- relevel(factor(dat$arms), ref="2") ### create data frame with the treatment differences for the controlled studies dat2 <- data.frame(yi = dat$yi[c(1,3,5,7)] - dat$yi[c(2,4,6,8)], vi = dat$vi[c(1,3,5,7)] + dat$vi[c(2,4,6,8)]) dat2 ### DerSimonian and Laird method using the treatment differences res <- rma(yi, vi, data=dat2, method="DL", digits=2) res ### Begg & Pilote (1991) model incorporating the uncontrolled studies res <- rma.mv(yi, vi, mods = ~ trt, random = ~ 1 | study, data=dat, method="ML", digits=2) res ### model involving bias terms for the uncontrolled studies res <- rma.mv(yi, vi, mods = ~ trt + trt:arms, random = ~ 1 | study, data=dat, method="ML", digits=2) res ### model with a random treatment effect res <- rma.mv(yi, vi, mods = ~ trt, random = list(~ 1 | study, ~ trt | study), struct="UN", tau2=c(0,NA), rho=0, data=dat, method="ML", digits=2) res ### model with a random treatment effect, but with equal variances in both arms res <- rma.mv(yi, vi, mods = ~ trt, random = list(~ 1 | study, ~ trt | study), struct="CS", rho=0, data=dat, method="ML", digits=2) res } } \keyword{datasets} \concept{medicine} \concept{oncology} \concept{single-arm studies} \concept{multilevel models} \section{Concepts}{ medicine, oncology, single-arm studies, multilevel models } metadat/man/dat.linde2015.Rd0000644000176200001440000001342314750466700015121 0ustar liggesusers\name{dat.linde2015} \docType{data} \alias{dat.linde2015} \title{Studies on Classes of Antidepressants for the Primary Care Setting} \description{Results from 66 trials examining eight classes of antidepressants and placebo for the primary care setting.} \usage{ dat.linde2015 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{integer} \tab study ID \cr \bold{author} \tab \code{character} \tab first author \cr \bold{year} \tab \code{integer} \tab year of publication \cr \bold{treatment1} \tab \code{character} \tab treatment 1 \cr \bold{treatment2} \tab \code{character} \tab treatment 2 \cr \bold{treatment3} \tab \code{character} \tab treatment 3 \cr \bold{n1} \tab \code{integer} \tab number of patients (arm 1) \cr \bold{resp1} \tab \code{integer} \tab number of early responder (arm 1) \cr \bold{remi1} \tab \code{integer} \tab number of early remissions (arm 1) \cr \bold{loss1} \tab \code{integer} \tab number of patients loss to follow-up (arm 1) \cr \bold{loss.ae1} \tab \code{integer} \tab number of patients loss to follow-up due to adverse events (arm 1) \cr \bold{ae1} \tab \code{integer} \tab number of patients with adverse events (arm 1) \cr \bold{n2} \tab \code{integer} \tab number of patients (arm 2) \cr \bold{resp2} \tab \code{integer} \tab number of early responder (arm 2) \cr \bold{remi2} \tab \code{integer} \tab number of early remissions (arm 2) \cr \bold{loss2} \tab \code{integer} \tab number of patients loss to follow-up (arm 2) \cr \bold{loss.ae2} \tab \code{integer} \tab number of patients loss to follow-up due to adverse events (arm 2) \cr \bold{ae2} \tab \code{integer} \tab number of patients with adverse events (arm 2) \cr \bold{n3} \tab \code{integer} \tab number of patients (arm 3) \cr \bold{resp3} \tab \code{integer} \tab number of early responder (arm 3) \cr \bold{remi3} \tab \code{integer} \tab number of early remissions (arm 3) \cr \bold{loss3} \tab \code{integer} \tab number of patients loss to follow-up (arm 3) \cr \bold{loss.ae3} \tab \code{integer} \tab number of patients loss to follow-up due to adverse events (arm 3) \cr \bold{ae3} \tab \code{integer} \tab number of patients with adverse events (arm 3) } } \details{ This dataset comes from a systematic review of 8 pharmacological treatments of depression and placebo in primary care with 66 studies (8 of which were 3-arm studies) including 14,785 patients. The primary outcome is early response, defined as at least a 50\% score reduction on a depression scale after completion of treatment. Secondary outcomes (also measured as dichotomous) were early remission (defined as having a symptom score below a fixed threshold after completion of treatment), lost to follow-up, lost to follow-up due to adverse events, and any adverse event. The odds ratio was used as effect measure. This dataset was used as an example in Rücker and Schwarzer (2017) who introduced methods to resolve conflicting rankings of outcomes in network meta-analysis. } \source{ Linde, K., Kriston, L., Rücker, G., Jamil, S., Schumann, I., Meissner, K., Sigterman, K., & Schneider, A. (2015). Efficacy and acceptability of pharmacological treatments for depressive disorders in primary care: Systematic review and network meta-analysis. \emph{Annals of Family Medicine}, \bold{13}(1), 69--79. \verb{https://doi.org/10.1370/afm.1687} } \references{ Rücker, G., & Schwarzer, G. (2017). Resolve conflicting rankings of outcomes in network meta-analysis: Partial ordering of treatments. \emph{Research Synthesis Methods}, \bold{8}(4), 526--536. \verb{https://doi.org/10.1002/jrsm.1270} } \author{ Guido Schwarzer, \email{guido.schwarzer@uniklinik-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show results from first three studies (including three-arm study ### Lecrubier 1997) head(dat.linde2015, 3) \dontrun{ ### Load netmeta package suppressPackageStartupMessages(library("netmeta")) ### Print odds ratios and confidence limits with two digits oldset <- settings.meta(digits = 2) ### Change appearance of confidence intervals cilayout("(", "-") ### Define order of treatments in printouts trts <- c("TCA", "SSRI", "SNRI", "NRI", "Low-dose SARI", "NaSSa", "rMAO-A", "Hypericum", "Placebo") ### Transform data from wide arm-based format to contrast-based format ### (outcome: early response). Argument 'sm' has to be used for odds ### ratio as summary measure; by default the risk ratio is used in the ### metabin function called internally. pw1 <- pairwise(list(treatment1, treatment2, treatment3), event = list(resp1, resp2, resp3), n = list(n1, n2, n3), studlab = id, data = dat.linde2015, sm = "OR") ### Conduct random effects network meta-analysis for primary outcome ### (early response); small number of early responses is bad (argument ### small.values) net1 <- netmeta(pw1, fixed = FALSE, reference = "Placebo", seq = trts, small.values = "bad") net1 ### Random effects NMA for early remission pw2 <- pairwise(treat = list(treatment1, treatment2, treatment3), event = list(remi1, remi2, remi3), n = list(n1, n2, n3), studlab = id, data = dat.linde2015, sm = "OR") net2 <- netmeta(pw2, fixed = FALSE, seq = trts, ref = "Placebo", small.values = "bad") net2 ### Ranking of treatments nr1 <- netrank(net1) nr2 <- netrank(net2) nr1 nr2 ### Partial order of treatment rankings (two outcomes) outcomes <- c("Early response", "Early remission") po12 <- netposet(nr1, nr2, outcomes = outcomes) plot(po12) ### Use previous settings settings.meta(oldset) } } \keyword{datasets} \concept{medicine} \concept{psychiatry} \concept{odds ratios} \concept{network meta-analysis} \section{Concepts}{ medicine, psychiatry, odds ratios, network meta-analysis } metadat/man/dat.bcg.Rd0000644000176200001440000001017714750466700014254 0ustar liggesusers\name{dat.bcg} \docType{data} \alias{dat.bcg} \title{Studies on the Effectiveness of the BCG Vaccine Against Tuberculosis} \description{Results from 13 studies examining the effectiveness of the Bacillus Calmette-Guerin (BCG) vaccine against tuberculosis. \loadmathjax} \usage{ dat.bcg } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{trial} \tab \code{numeric} \tab trial number \cr \bold{author} \tab \code{character} \tab author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{tpos} \tab \code{numeric} \tab number of TB positive cases in the treated (vaccinated) group \cr \bold{tneg} \tab \code{numeric} \tab number of TB negative cases in the treated (vaccinated) group \cr \bold{cpos} \tab \code{numeric} \tab number of TB positive cases in the control (non-vaccinated) group \cr \bold{cneg} \tab \code{numeric} \tab number of TB negative cases in the control (non-vaccinated) group \cr \bold{ablat} \tab \code{numeric} \tab absolute latitude of the study location (in degrees) \cr \bold{alloc} \tab \code{character} \tab method of treatment allocation (random, alternate, or systematic assignment) } } \details{ The 13 studies provide data in terms of \mjeqn{2 \times 2}{2x2} tables in the form: \tabular{lcc}{ \tab TB positive \tab TB negative \cr vaccinated group \tab \code{tpos} \tab \code{tneg} \cr control group \tab \code{cpos} \tab \code{cneg} } The goal of the meta-analysis was to examine the overall effectiveness of the BCG vaccine for preventing tuberculosis and to examine moderators that may potentially influence the size of the effect. The dataset has been used in several publications to illustrate meta-analytic methods (see \sQuote{References}). } \source{ Colditz, G. A., Brewer, T. F., Berkey, C. S., Wilson, M. E., Burdick, E., Fineberg, H. V., & Mosteller, F. (1994). Efficacy of BCG vaccine in the prevention of tuberculosis: Meta-analysis of the published literature. \emph{Journal of the American Medical Association}, \bold{271}(9), 698--702. \verb{https://doi.org/10.1001/jama.1994.03510330076038} } \references{ Berkey, C. S., Hoaglin, D. C., Mosteller, F., & Colditz, G. A. (1995). A random-effects regression model for meta-analysis. \emph{Statistics in Medicine}, \bold{14}(4), 395--411. \verb{https://doi.org/10.1002/sim.4780140406} van Houwelingen, H. C., Arends, L. R., & Stijnen, T. (2002). Advanced methods in meta-analysis: Multivariate approach and meta-regression. \emph{Statistics in Medicine}, \bold{21}(4), 589--624. \verb{https://doi.org/10.1002/sim.1040} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.bcg dat \dontrun{ ### load metafor package library(metafor) ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat, slab=paste0(author, ", ", year)) dat ### random-effects model res <- rma(yi, vi, data=dat) res ### average risk ratio with 95\% CI predict(res, transf=exp) ### mixed-effects model with absolute latitude and publication year as moderators res <- rma(yi, vi, mods = ~ ablat + year, data=dat) res ### predicted average risk ratios for 10-60 degrees absolute latitude ### holding the publication year constant at 1970 predict(res, newmods=cbind(seq(from=10, to=60, by=10), 1970), transf=exp) ### note: the interpretation of the results is difficult because absolute ### latitude and publication year are strongly correlated (the more recent ### studies were conducted closer to the equator) plot(ablat ~ year, data=dat, pch=19, xlab="Publication Year", ylab="Absolute Lattitude") cor(dat$ablat, dat$year) } } \keyword{datasets} \concept{medicine} \concept{risk ratios} \concept{meta-regression} \section{Concepts}{ medicine, risk ratios, meta-regression } metadat/man/dat.baskerville2012.Rd0000644000176200001440000001020214750466700016316 0ustar liggesusers\name{dat.baskerville2012} \docType{data} \alias{dat.baskerville2012} \title{Studies on the Effectiveness of Practice Facilitation Interventions} \description{Results from 23 studies on the effectiveness of practice facilitation interventions within the primary care practice setting.} \usage{ dat.baskerville2012 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{author} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{score} \tab \code{numeric} \tab quality score (0 to 12 scale) \cr \bold{design} \tab \code{character} \tab study design (cct = controlled clinical trial, rct = randomized clinical trial, crct = cluster randomized clinical trial) \cr \bold{alloconc} \tab \code{numeric} \tab allocation concealed (0 = no, 1 = yes) \cr \bold{blind} \tab \code{numeric} \tab single- or double-blind study (0 = no, 1 = yes) \cr \bold{itt} \tab \code{numeric} \tab intention to treat analysis (0 = no, 1 = yes) \cr \bold{fumonths} \tab \code{numeric} \tab follow-up months \cr \bold{retention} \tab \code{numeric} \tab retention (in percent) \cr \bold{country} \tab \code{character} \tab country where study was conducted \cr \bold{outcomes} \tab \code{numeric} \tab number of outcomes assessed \cr \bold{duration} \tab \code{numeric} \tab duration of intervention \cr \bold{pperf} \tab \code{numeric} \tab practices per facilitator \cr \bold{meetings} \tab \code{numeric} \tab (average) number of meetings \cr \bold{hours} \tab \code{numeric} \tab (average) hours per meeting \cr \bold{tailor} \tab \code{numeric} \tab intervention tailored to the context and needs of the practice (0 = no, 1 = yes) \cr \bold{smd} \tab \code{numeric} \tab standardized mean difference \cr \bold{se} \tab \code{numeric} \tab corresponding standard error } } \details{ Baskerville et al. (2012) describe outreach or practice facilitation as a "multifaceted approach that involves skilled individuals who enable others, through a range of intervention components and approaches, to address the challenges in implementing evidence-based care guidelines within the primary care setting". The studies included in this dataset examined the effectiveness of practice facilitation interventions for improving some relevant evidence-based practice behavior. The effect was quantified in terms of a standardized mean difference, comparing the change (from pre- to post-intervention) in the intervention versus the comparison group (or the difference from baseline in prospective cohort studies). } \source{ Baskerville, N. B., Liddy, C., & Hogg, W. (2012). Systematic review and meta-analysis of practice facilitation within primary care settings. \emph{Annals of Family Medicine}, \bold{10}(1), 63--74. \verb{https://doi.org/10.1370/afm.1312} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.baskerville2012 dat \dontrun{ ### load metafor package library(metafor) ### random-effects model res <- rma(smd, sei=se, data=dat, method="DL") print(res, digits=2) ### funnel plot funnel(res, xlab="Standardized Mean Difference", ylim=c(0,0.6)) ### rank and regression tests for funnel plot asymmetry ranktest(res) regtest(res) ### meta-regression analyses examining various potential moderators rma(smd, sei=se, mods = ~ score, data=dat, method="DL") rma(smd, sei=se, mods = ~ alloconc, data=dat, method="DL") rma(smd, sei=se, mods = ~ blind, data=dat, method="DL") rma(smd, sei=se, mods = ~ itt, data=dat, method="DL") rma(smd, sei=se, mods = ~ duration, data=dat, method="DL") rma(smd, sei=se, mods = ~ tailor, data=dat, method="DL") rma(smd, sei=se, mods = ~ pperf, data=dat, method="DL") rma(smd, sei=se, mods = ~ I(meetings * hours), data=dat, method="DL") } } \keyword{datasets} \concept{medicine} \concept{primary care} \concept{standardized mean differences} \concept{publication bias} \concept{meta-regression} \section{Concepts}{ medicine, primary care, standardized mean differences, publication bias, meta-regression } metadat/man/dat.assink2016.Rd0000644000176200001440000001140614750466700015316 0ustar liggesusers\name{dat.assink2016} \docType{data} \alias{dat.assink2016} \title{Studies on the Association between Recidivism and Mental Health} \description{Results from 17 studies on the association between recidivism and mental health in delinquent juveniles.} \usage{ dat.assink2016 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study id number \cr \bold{esid} \tab \code{numeric} \tab effect size within study id number \cr \bold{id} \tab \code{numeric} \tab row id number \cr \bold{yi} \tab \code{numeric} \tab standardized mean difference \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance \cr \bold{pubstatus} \tab \code{numeric} \tab published study (0 = no; 1 = yes) \cr \bold{year} \tab \code{numeric} \tab publication year of the study (approximately mean centered) \cr \bold{deltype} \tab \code{character} \tab type of delinquent behavior in which juveniles could have recidivated (either general, overt, or covert) } } \details{ The studies included in this dataset (which is a subset of the data used in Assink et al., 2015) compared the difference in recidivism between delinquent juveniles with a mental health disorder and a comparison group of juveniles without a mental health disorder. Since studies differed in the way recidivism was defined and assessed, results are given in terms of standardized mean differences, with positive values indicating a higher prevalence of recidivism in the group of juveniles with a mental health disorder. Multiple effect size estimates could be extracted from most studies (e.g., for different delinquent behaviors in which juveniles could have recidivated), necessitating the use of appropriate models/methods for the analysis. Assink and Wibbelink (2016) illustrate the use of multilevel meta-analysis models for this purpose. } \note{ The \code{year} variable is not constant within study 3, as this study refers to two different publications using the same data. } \source{ Assink, M., & Wibbelink, C. J. M. (2016). Fitting three-level meta-analytic models in R: A step-by-step tutorial. \emph{The Quantitative Methods for Psychology}, \bold{12}(3), 154--174. \verb{https://doi.org/10.20982/tqmp.12.3.p154} } \references{ Assink, M., van der Put, C. E., Hoeve, M., de Vries, S. L. A., Stams, G. J. J. M., & Oort, F. J. (2015). Risk factors for persistent delinquent behavior among juveniles: A meta-analytic review. \emph{Clinical Psychology Review}, \bold{42}, 47--61. \verb{https://doi.org/10.1016/j.cpr.2015.08.002} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.assink2016 head(dat, 9) \dontrun{ ### load metafor package library(metafor) ### fit multilevel model res <- rma.mv(yi, vi, random = ~ 1 | study/esid, data=dat) res ### use cluster-robust inference methods robust(res, cluster=study, clubSandwich=TRUE) ### LRTs for the variance components res0 <- rma.mv(yi, vi, random = ~ 1 | study/esid, data=dat, sigma2=c(0,NA)) anova(res0, res) res0 <- rma.mv(yi, vi, random = ~ 1 | study/esid, data=dat, sigma2=c(NA,0)) anova(res0, res) ### examine some potential moderators via meta-regression rma.mv(yi, vi, mods = ~ pubstatus, random = ~ 1 | study/esid, data=dat) rma.mv(yi, vi, mods = ~ year, random = ~ 1 | study/esid, data=dat) dat$deltype <- relevel(factor(dat$deltype), ref="general") rma.mv(yi, vi, mods = ~ deltype, random = ~ 1 | study/esid, data=dat) rma.mv(yi, vi, mods = ~ year + deltype, random = ~ 1 | study/esid, data=dat) ### assume that the effect sizes within studies are correlated with rho=0.6 V <- vcalc(vi, cluster=study, obs=esid, data=dat, rho=0.6) round(V[dat$study \%in\% c(1,2), dat$study \%in\% c(1,2)], 4) ### fit multilevel model using this approximate V matrix res <- rma.mv(yi, V, random = ~ 1 | study/esid, data=dat) res ### use cluster-robust inference methods robust(res, cluster=study, clubSandwich=TRUE) ### use a correlation of 0.7 for effect sizes corresponding to the same type of ### delinquent behavior and a correlation of 0.5 for effect sizes corresponding ### to different types of delinquent behavior V <- vcalc(vi, cluster=study, type=deltype, obs=esid, data=dat, rho=c(0.7, 0.5)) ### fit multilevel model using this approximate V matrix res <- rma.mv(yi, V, random = ~ 1 | study/esid, data=dat) res ### use cluster-robust inference methods robust(res, cluster=study, clubSandwich=TRUE) } } \keyword{datasets} \concept{psychology} \concept{criminology} \concept{standardized mean differences} \concept{multilevel models} \concept{cluster-robust inference} \section{Concepts}{ psychology, criminology, standardized mean differences, multilevel models, cluster-robust inference } metadat/man/dat.curtin2002.Rd0000644000176200001440000000415714750466700015332 0ustar liggesusers\name{dat.curtin2002} \docType{data} \alias{dat.curtin2002} \title{Studies on Potassium Supplementation to Reduce Diastolic Blood Pressure} \description{Results from 21 cross-over studies evaluating the effect of potassium supplementation to reduce diastolic blood pressure.} \usage{ dat.curtin2002 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{author} \tab \code{character} \tab first author \cr \bold{year} \tab \code{character} \tab year of publication \cr \bold{N} \tab \code{integer} \tab total sample size \cr \bold{mean} \tab \code{numeric} \tab mean difference in diastolic blood pressure \cr \bold{SE} \tab \code{numeric} \tab standard error \cr \bold{corr} \tab \code{numeric} \tab within-patient correlation \cr } } \details{ Results from 21 cross-over studies evaluating the effect of potassium supplementation to reduce diastolic blood pressure (Curtin et al., 2002, Table II). This data set is used as an example in Schwarzer et al. (2015), Chapter 2. } \source{ Curtin, F., Altman, D. G., & Elbourne, D. (2002). Meta-analysis combining parallel and cross-over clinical trials. I: Continuous outcomes. \emph{Statistics in Medicine}, \bold{21}(15), 2131--2144. \verb{https://doi.org/10.1002/sim.1205} } \references{ Schwarzer, G., Carpenter, J. R., & Rücker, G. (2015). \emph{Meta-analysis with R}. Cham, Switzerland: Springer. } \author{ Guido Schwarzer, \email{guido.schwarzer@uniklinik-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show first five studies head(dat.curtin2002, 5) \dontrun{ ### Load meta package suppressPackageStartupMessages(library("meta")) ### Use DerSimonian-Laird estimator (which was the default in meta in the year 2015). ### Furthermore, print meta-analysis results with two digits. oldset <- settings.meta(method.tau = "DL", digits = 2) ### Conduct meta-analysis mg2 <- metagen(mean, SE, studlab = paste(author, year), data = dat.curtin2002, sm = "MD") mg2 ### Use previous settings settings.meta(oldset) } } \keyword{datasets} \concept{raw mean differences} \section{Concepts}{ raw mean differences } metadat/man/dat.gurusamy2011.Rd0000644000176200001440000001102014750466700015665 0ustar liggesusers\name{dat.gurusamy2011} \docType{data} \alias{dat.gurusamy2011} \title{Studies on Interventions to Reduce Mortality after Liver Transplantation} \description{Results from 14 trials examining the mortality risk of interventions for decreasing blood loss and blood transfusion requirements during liver transplantation.} \usage{ dat.gurusamy2011 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study information \cr \bold{treatment} \tab \code{character} \tab treatment \cr \bold{death} \tab \code{integer} \tab mortality at 60 days post-transplantation \cr \bold{n} \tab \code{integer} \tab number of individuals } } \details{ This network meta-analysis compared the effectiveness of seven interventions for decreasing blood loss and blood transfusion requirements during liver transplantation (Gurusamy et al., 2011). Fourteen studies reported mortality at 60 days, in 1,002 patients. Forty-five deaths were reported across all studies (4.5\%). Six studies observed deaths in all treatment arms while three studies did not observe any deaths. This dataset was used in Efthimiou et al. (2019) to introduce the Mantel-Haenszel method for network meta-analysis. One of the treatments (solvent detergent plasma) was only included in one study with zero events in both treatment arms; this study was excluded from all network meta-analyses. In addition, no death was observed in the antithrombin III arm of the only study evaluating this treatment which was excluded from the Mantel-Haenszel network meta-analysis. } \source{ Gurusamy, K. S., Pissanou, T., Pikhart, H., Vaughan, J., Burroughs, A. K., & Davidson, B. R. (2011). Methods to decrease blood loss and transfusion requirements for liver transplantation. \emph{Cochrane Database of Systematic Reviews}, \bold{12}, CD009052. \verb{https://doi.org/10.1002/14651858.CD009052.pub2} } \references{ Efthimiou, O., Rücker, G., Schwarzer, G., Higgins, J., Egger, M., & Salanti, G. (2019). A Mantel-Haenszel model for network meta-analysis of rare events. \emph{Statistics in Medicine}, \bold{38}(16), 2992--3012. \verb{https://doi.org/10.1002/sim.8158} } \author{ Guido Schwarzer, \email{guido.schwarzer@uniklinik-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show first 6 rows of the dataset head(dat.gurusamy2011) ### Only study evaluating solvent detergent plasma subset(dat.gurusamy2011, study == "Williamson 1999") ### Only study evaluating antithrombin III subset(dat.gurusamy2011, study == "Baudo 1992") \dontrun{ ### Load netmeta package suppressPackageStartupMessages(library("netmeta")) ### Print odds ratios and confidence limits with two digits oldset <- settings.meta(digits = 2) ### Change appearance of confidence intervals cilayout("(", "-") ### Transform data from long arm-based format to contrast-based ### format. Argument 'sm' has to be used for odds ratio as summary ### measure; by default the risk ratio is used in the metabin function ### called internally. pw <- pairwise(treatment, death, n, studlab = study, data = dat.gurusamy2011, sm = "OR") ### Conduct Mantel-Haenszel network meta-analysis (NMA) net.MH <- netmetabin(pw, ref = "cont") ### Conduct inverse variance (IV) network meta-analysis net.IV <- netmeta(pw, ref = "cont") ### Network graph (Mantel-Haenszel NMA) netgraph(net.MH, seq = "optimal", col = "black", plastic = FALSE, points = TRUE, pch = 21, cex.points = 3, col.points = "black", bg.points = "gray", thickness = "se.fixed", number.of.studies = TRUE) ### Full network graph (based on inverse variance method, including ### study comparing Antithrombin III with Control/Placebo) netgraph(net.IV, seq = "optimal", col = "black", plastic = FALSE, points = TRUE, pch = 21, cex.points = 3, col.points = "black", bg.points = "gray", thickness = "se.fixed", number.of.studies = TRUE) ### Compare results for Mantel-Haenszel and IV NMA forest(netbind(net.MH, net.IV, random = FALSE, name = c("MH NMA", "IV NMA"))) ### Show results for Mantel-Haenszel NMA net.MH forest(net.MH) ### League table with network estimates in lower triangle and direct ### estimates in upper triangle netleague(net.MH) ### Assess inconsistency print(netsplit(net.MH), show = "both", ci = TRUE, overall = FALSE, nchar.trts = 6) ### Use previous settings settings.meta(oldset) } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{network meta-analysis} \concept{Mantel-Haenszel method} \section{Concepts}{ medicine, odds ratios, network meta-analysis, Mantel-Haenszel method } metadat/man/dat.stowe2010.Rd0000644000176200001440000001070214750466700015157 0ustar liggesusers\name{dat.stowe2010} \docType{data} \alias{dat.stowe2010} \title{Studies on Adjuvant Treatments to Levodopa Therapy for Parkinson disease} \description{Results from 29 trials assessing efficacy of three drug classes as adjuvant treatment to levodopa therapy in patients with Parkinson disease and motor complications.} \usage{ dat.stowe2010 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study label \cr \bold{id} \tab \code{integer} \tab study id \cr \bold{t1} \tab \code{character} \tab treatment 1 \cr \bold{y1} \tab \code{numeric} \tab treatment effect arm 1 \cr \bold{sd1} \tab \code{numeric} \tab standard deviation arm 1 \cr \bold{n1} \tab \code{integer} \tab sample size arm 1 \cr \bold{t2} \tab \code{character} \tab treatment 2 \cr \bold{y2} \tab \code{numeric} \tab treatment effect arm 2 \cr \bold{sd2} \tab \code{numeric} \tab standard deviation arm 2 \cr \bold{n2} \tab \code{integer} \tab sample size arm 2 \cr \bold{t3} \tab \code{character} \tab treatment 3 \cr \bold{y3} \tab \code{numeric} \tab treatment effect arm 3 \cr \bold{sd3} \tab \code{numeric} \tab standard deviation arm 3 \cr \bold{n3} \tab \code{integer} \tab sample size arm 3 } } \details{ This dataset contains data from a Cochrane review assessing efficacy and safety of three drug classes as adjuvant treatment to levodopa therapy in patients with Parkinson disease and motor complications (Stowe et al., 2010). The authors conducted three pairwise meta-analyses comparing dopamine agonists, catechol-O-methyl transferase inhibitors (COMTI), and monoamine oxidase type B inhibitors (MAOBI) with placebo. The primary outcome was the mean reduction of the time spent in a relatively immobile \sQuote{off} phase (mean off-time), calculated in hours per day. Relative treatment effects were expressed as mean difference. Data on this outcome were available for 5,331 patients from 28 studies comparing an active treatment with placebo and one three-arm study comparing two active treatments with placebo. } \source{ Stowe, R., Ives, N., Clarke, C. E., Deane, K., Hilten, V., Wheatley, K., Gray, R., Handley, K., & Furmston, A. (2010). Evaluation of the efficacy and safety of adjuvant treatment to levodopa therapy in Parkinson's disease patients with motor complications. \emph{Cochrane Database of Systematic Reviews}, \bold{7}, CD007166. \verb{https://doi.org/10.1002/14651858.CD007166.pub2} } \author{ Guido Schwarzer, \email{guido.schwarzer@uniklinik-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show results from three studies (including three-arm study LARGO) dat.stowe2010[18:20, ] \dontrun{ ### Load netmeta package suppressPackageStartupMessages(library("netmeta")) ### Print mean differences with two digits and standard errors with 3 ### digits oldset <- settings.meta(digits = 2, digits.se = 3) ### Transform data from wide arm-based format to contrast-based ### format. Argument 'sm' must not be provided as the mean difference ### is the default in R function metacont() called internally. pw <- pairwise(treat = list(t1, t2, t3), n = list(n1, n2, n3), mean = list(y1, y2, y3), sd = list(sd1, sd2, sd3), studlab = study, data = dat.stowe2010, sm = "MD") ### Show calculated mean differences (TE) for three studies selstudy <- c("COMTI(E) INT-OZ", "LARGO", "COMTI(E) Nomecomt") subset(pw, studlab \%in\% selstudy)[, c(3:7, 10, 1)] ### Conduct random effects network meta-analysis (NMA) ### with placebo as reference net <- netmeta(pw, fixed = FALSE, ref = "plac") ### Show network graph netgraph(net, number = TRUE, multiarm = TRUE, cex = 1.25, offset = 0.025, cex.number = 1, pos.number.of.studies = 0.3) ### Print NMA results net ### Forest plot with NMA results forest(net) ### Forest plot showing all network estimates of active treatments ### compared with other treatments forest(net, ref = c("C", "D", "M"), baseline = FALSE, drop = TRUE) ### Treatment ranking using P-scores netrank(net) ### Rankogram with all ranking probabilities set.seed(1909) ran <- rankogram(net) ran plot(ran) ### Treatment ranking using SUCRAs netrank(ran) ### League table showing network and direct estimates netleague(net, seq = netrank(net), ci = FALSE) ### Use previous settings settings.meta(oldset) } } \keyword{datasets} \concept{medicine} \concept{raw mean differences} \concept{network meta-analysis} \section{Concepts}{ medicine, raw mean differences, network meta-analysis } metadat/man/dat.hackshaw1998.Rd0000644000176200001440000000661314750466700015645 0ustar liggesusers\name{dat.hackshaw1998} \docType{data} \alias{dat.hackshaw1998} \title{Studies on the Risk of Lung Cancer in Women Exposed to Environmental Tobacco Smoke} \description{Results from 37 studies on the risk of lung cancer in women exposed to environmental tobacco smoke (ETS) from their smoking spouse.} \usage{ dat.hackshaw1998 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{author} \tab \code{character} \tab first author of study \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{country} \tab \code{character} \tab country where study was conducted \cr \bold{design} \tab \code{character} \tab study design (either cohort or case-control) \cr \bold{cases} \tab \code{numeric} \tab number of lung cancer cases \cr \bold{or} \tab \code{numeric} \tab odds ratio \cr \bold{or.lb} \tab \code{numeric} \tab lower bound of 95\% CI for the odds ratio \cr \bold{or.ub} \tab \code{numeric} \tab upper bound of 95\% CI for the odds ratio \cr \bold{yi} \tab \code{numeric} \tab log odds ratio \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance } } \details{ The dataset includes the results from 37 studies (4 cohort, 33 case-control) examining if women (who are lifelong nonsmokers) have an elevated risk for lung cancer due to exposure to environmental tobacco smoke (ETS) from their smoking spouse. Values of the log odds ratio greater than 0 indicate an increased risk of cancer in exposed women compared to women not exposed to ETS from their spouse. Note that the log odds ratios and corresponding sampling variances were back-calculated from the reported odds ratios and confidence interval (CI) bounds (see \sQuote{Examples}). Since the reported values were rounded to some extent, this introduces some minor inaccuracies into the back-calculations. The overall estimate reported in Hackshaw et al. (1997) and Hackshaw (1998) can be fully reproduced though. } \source{ Hackshaw, A. K., Law, M. R., & Wald, N. J. (1997). The accumulated evidence on lung cancer and environmental tobacco smoke. \emph{British Medical Journal}, \bold{315}(7114), 980--988. \verb{https://doi.org/10.1136/bmj.315.7114.980} Hackshaw, A. K. (1998). Lung cancer and passive smoking. \emph{Statistical Methods in Medical Research}, \bold{7}(2), 119--136. \verb{https://doi.org/10.1177/096228029800700203} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.hackshaw1998 head(dat, 10) \dontrun{ ### load metafor package library(metafor) ### random-effects model using the log odds ratios res <- rma(yi, vi, data=dat, method="DL") res ### estimated average odds ratio with CI (and prediction interval) predict(res, transf=exp, digits=2) ### illustrate how the log odds ratios and corresponding sampling variances ### can be back-calculated based on the reported odds ratios and CI bounds dat$yi <- NULL dat$vi <- NULL dat <- data.frame(dat) head(dat, 10) dat <- conv.wald(out=or, ci.lb=or.lb, ci.ub=or.ub, data=dat, transf=log) head(dat, 10) } } \keyword{datasets} \concept{medicine} \concept{oncology} \concept{epidemiology} \concept{smoking} \concept{odds ratios} \section{Concepts}{ medicine, oncology, epidemiology, smoking, odds ratios } metadat/man/dat.bourassa1996.Rd0000644000176200001440000001142414750466700015665 0ustar liggesusers\name{dat.bourassa1996} \docType{data} \alias{dat.bourassa1996} \title{Studies on the Association between Handedness and Eye-Dominance} \description{Results from 47 studies on the association between handedness and eye-dominance. \loadmathjax} \usage{ dat.bourassa1996 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{sample} \tab \code{numeric} \tab sample number \cr \bold{author} \tab \code{character} \tab (first) author \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{selection} \tab \code{character} \tab selection of subjects on the basis of eyedness or handedness \cr \bold{investigator} \tab \code{character} \tab investigator (psychologist, educationalist, or other) \cr \bold{hand_assess} \tab \code{character} \tab method to assess handedness (questionnaire or performance based) \cr \bold{eye_assess} \tab \code{character} \tab method to assess eyedness (see \sQuote{Details}) \cr \bold{mage} \tab \code{numeric} \tab mean age of sample \cr \bold{lh.le} \tab \code{numeric} \tab number of left-handed left-eyed individuals \cr \bold{lh.re} \tab \code{numeric} \tab number of left-handed right-eyed individuals \cr \bold{rh.le} \tab \code{numeric} \tab number of right-handed left-eyed individuals \cr \bold{rh.re} \tab \code{numeric} \tab number of right-handed right-eyed individuals \cr \bold{sex} \tab \code{character} \tab sex of the sample (combined, male, or female) } } \details{ The 47 studies included in this meta-analysis examined the association between handedness and eye-dominance (ocular dominance or eyedness). Results are given in terms of \mjeqn{2 \times 2}{2x2} tables, indicating the number of left-handed left-eyed, left-handed right-eyed, right-handed left-eyed, and right-handed right-eyed individuals in each sample. Note that some studies included multiple (independent) samples, so that the meta-analysis included 54 samples in total. Also, for some studies, the combined data of the males and females are further broken down into the two subgroups. In some studies, there was indication that the selection of subjects was not random with respect to handedness and/or eyedness. While this should not influence the size of the association as measured with the odds ratio, this invalidates those studies for assessing the overall percentage of left-eyed and left-handed individuals. Handedness was assessed in the individual studies either based on a questionnaire or based on task performance. Eyedness was assessed based on various methods: \code{E.1} methods are based on task performance, while \code{E.2.a} denotes assessment based on a questionnaire. The performance based methods could be further broken down into: \code{E.1.a.i} (monocular procedure with object/instrument held in one hand), \code{E.1.a.ii} (monocular procedure with object/instrument held in both hands), \code{E.1.b} (binocular procedure), \code{E.1.c} (a combination of the previous methods), and \code{E.1.d} (some other method). } \source{ Bourassa, D. C., McManus, I. C., & Bryden, M. P. (1996). Handedness and eye-dominance: A meta-analysis of their relationship. \emph{Laterality}, \bold{1}(1), 5--34. \verb{https://doi.org/10.1080/713754206} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.bourassa1996 head(dat, 10) \dontrun{ ### load metafor package library(metafor) ### calculate log(OR) and corresponding sampling variance with 1/2 correction dat <- escalc(measure="OR", ai=lh.le, bi=lh.re, ci=rh.le, di=rh.re, data=dat, add=1/2, to="all") head(dat, 10) ### overall association between handedness and eyedness res <- rma(yi, vi, data=dat, subset=sex=="combined") res predict(res, transf=exp, digits=2) ### multilevel model to account for heterogeneity at the study and sample levels res <- rma.mv(yi, vi, random = ~ 1 | study/sample, data=dat, subset=sex=="combined") res predict(res, transf=exp, digits=2) ### restructure the dataset to keep only the male/female data when it is reported ### separately and the combined data when this is the only data reported dat <- lapply(split(dat, dat$sample), function(x) { if (nrow(x) == 3L) { x[-which(x$sex == "combined"),] } else { x } }) dat <- do.call(rbind, dat) rownames(dat) <- NULL dat ### multilevel model to account for heterogeneity at the study, sample, and subgroup levels res <- rma.mv(yi, vi, random = ~ 1 | study/sample/sex, data=dat) res predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{psychology} \concept{odds ratios} \concept{multilevel models} \section{Concepts}{ psychology, odds ratios, multilevel models } metadat/man/dat.yusuf1985.Rd0000644000176200001440000000545314750466700015224 0ustar liggesusers\name{dat.yusuf1985} \docType{data} \alias{dat.yusuf1985} \title{Studies of Beta Blockers During and After Myocardial Infarction} \description{Results from studies examining the effectiveness of beta blockers for reducing mortality and reinfarction. \loadmathjax} \usage{ dat.yusuf1985 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{table} \tab \code{character} \tab table number \cr \bold{id} \tab \code{character} \tab trial id number \cr \bold{trial} \tab \code{character} \tab trial name or first author \cr \bold{ai} \tab \code{numeric} \tab number of deaths/reinfarctions in treatment group \cr \bold{n1i} \tab \code{numeric} \tab number of patients in treatment group \cr \bold{ci} \tab \code{numeric} \tab number of deaths/reinfarctions in control group \cr \bold{n2i} \tab \code{numeric} \tab number of patients in control group } } \details{ The dataset contains table 6 (total mortality from short-term trials of oral beta blockers), 9 (total mortality at one week from trials with an initial IV dose of a beta blocker), 10 (total mortality from long-term trials with treatment starting late and mortality from day 8 onwards in long-term trials that began early and continued after discharge), 11 (nonfatal reinfarction from long-term trials of beta blockers), 12a (sudden death in long-term beta blocker trials), and 12b (nonsudden death in long-term beta blocker trials) from the meta-analysis by Yusuf et al. (1985) on the effectiveness of of beta blockers for reducing mortality and reinfarction. The article also describes what is sometimes called Peto's one-step method for meta-analyzing \mjeqn{2 \times 2}{2x2} table data. This method is implemented in the \code{\link[metafor]{rma.peto}} function. } \source{ Yusuf, S., Peto, R., Lewis, J., Collins, R., & Sleight, P. (1985). Beta blockade during and after myocardial infarction: An overview of the randomized trials. \emph{Progress in Cardiovascular Disease}, \bold{27}(5), 335--371. \verb{https://doi.org/10.1016/s0033-0620(85)80003-7} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' dat <- dat.yusuf1985 dat[dat$table == 6,] \dontrun{ ### load metafor package library(metafor) ### to select a table for the analysis tab <- "6" # either: 6, 9, 10, 11, 12a, 12b ### to double-check total counts as reported in article apply(dat[dat$table==tab,4:7], 2, sum, na.rm=TRUE) ### meta-analysis using Peto's one-step method res <- rma.peto(ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=(table==tab)) res predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{cardiology} \concept{odds ratios} \concept{Peto's method} \section{Concepts}{ medicine, cardiology, odds ratios, Peto's method } metadat/man/dat.debruin2009.Rd0000644000176200001440000000725614750466700015470 0ustar liggesusers\name{dat.debruin2009} \docType{data} \alias{dat.debruin2009} \title{Studies on Standard Care Quality and HAART-Adherence} \description{Results from 13 trials providing information about standard care quality and HAART-adherence in control groups.} \usage{ dat.debruin2009 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{author} \tab \code{character} \tab (first) author of study \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{scq} \tab \code{numeric} \tab standard care quality \cr \bold{ni} \tab \code{numeric} \tab number of patients in the standard care group \cr \bold{xi} \tab \code{numeric} \tab number of patients with an undetectable viral load in standard care group \cr \bold{mi} \tab \code{numeric} \tab number of patients with a detectable viral load in standard care group \cr \bold{ethnicity} \tab \code{character} \tab dominant ethnicity of the patients in the standard care group \cr \bold{patients} \tab \code{character} \tab inclusion of patients continuing or starting (a new) treatment \cr \bold{select} \tab \code{character} \tab baseline selection of patients with adherence problems or no selection \cr \bold{sens} \tab \code{character} \tab sensitivity of viral load assessments (<400 vs. >=400 copies/ml) } } \details{ Highly active antiretroviral therapy (HAART) refers to a combination of multiple antiretroviral drugs that can effectively suppress the HIV virus. However, achieving viral suppression (to the point that the virus becomes essentially undetectable in a blood sample) requires high levels of adherence to an often complicated medication regimen. A number of trials have examined various interventions that aim to increase adherence levels. In each trial, patients receiving the intervention are compared to patients in a control group receiving standard care (often referred to as \sQuote{care as usual}). However, the quality of standard care can vary substantially between these studies. de Bruin et al. (2009) assessed the quality of standard care provided (based on a quantification of the number of behavior change techniques applied) and examined to what extent the quality of standard care was related to the proportion of patients achieving effective viral suppression in the control groups. } \source{ de Bruin, M., Viechtbauer, W., Hospers, H. J., Schaalma, H. P., & Kok, G. (2009). Standard care quality determines treatment outcomes in control groups of HAART-adherence intervention studies: Implications for the interpretation and comparison of intervention effects. \emph{Health Psychology}, \bold{28}(6), 668--674. \verb{https://doi.org/10.1037/a0015989} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.debruin2009 dat \dontrun{ ### load metafor package library(metafor) ### calculate proportions and corresponding sampling variances dat <- escalc(measure="PR", xi=xi, ni=ni, data=dat) dat ### random-effects model res <- rma(yi, vi, data=dat) print(res, digits=2) ### mixed-effects meta-regression model with all predictors/covariates res <- rma(yi, vi, mods = ~ scq + ethnicity + patients + select + sens, data=dat) print(res, digits=3) ### mixed-effects meta-regression model with scq and ethnicity as predictors/covariates res <- rma(yi, vi, mods = ~ scq + ethnicity, data=dat) print(res, digits=3) } } \keyword{datasets} \concept{psychology} \concept{medicine} \concept{proportions} \concept{single-arm studies} \concept{meta-regression} \section{Concepts}{ psychology, medicine, proportions, single-arm studies, meta-regression } metadat/man/dat.kalaian1996.Rd0000644000176200001440000001203614750466700015446 0ustar liggesusers\name{dat.kalaian1996} \docType{data} \alias{dat.kalaian1996} \title{Studies on the Effectiveness of Coaching for the SAT} \description{Results from studies examining the effectiveness of coaching on the performance on the Scholastic Aptitude Test (SAT).} \usage{ dat.kalaian1996 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab row (effect) id \cr \bold{study} \tab \code{character} \tab study identifier \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{n1i} \tab \code{numeric} \tab number of participants in the coached group \cr \bold{n2i} \tab \code{numeric} \tab number of participants in the uncoached group \cr \bold{outcome} \tab \code{character} \tab subtest (verbal or math) \cr \bold{yi} \tab \code{numeric} \tab standardized mean difference \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance \cr \bold{hrs} \tab \code{numeric} \tab hours of coaching \cr \bold{ets} \tab \code{numeric} \tab study conducted by the Educational Testing Service (ETS) (0 = no, 1 = yes) \cr \bold{homework} \tab \code{numeric} \tab assignment of homework outside of the coaching course (0 = no, 1 = yes) \cr \bold{type} \tab \code{numeric} \tab study type (1 = randomized study, 2 = matched study, 3 = nonequivalent comparison study) } } \details{ The effectiveness of coaching for the Scholastic Aptitude Test (SAT) has been examined in numerous studies. This dataset contains standardized mean differences comparing the performance of a coached versus uncoached group on the verbal and/or math subtest of the SAT. Studies may report a standardized mean difference for the verbal subtest, the math subtest, or both. In the latter case, the two standardized mean differences are not independent (since they were measured in the same group of subjects). The number of hours of coaching (variable \code{hrs}), whether the study was conducted by the Educational Testing Service (variable \code{ets}), whether homework was assigned outside of the coaching course (variable \code{homework}), and the study type (variable \code{type}) may be potential moderators of the treatment effect. } \note{ The dataset was obtained from Table 1 in Kalaian and Raudenbush (1996). However, there appear to be some inconsistencies between the data in the table and those that were actually used for the analyses (see \sQuote{Examples}). } \source{ Kalaian, H. A., & Raudenbush, S. W. (1996). A multivariate mixed linear model for meta-analysis. \emph{Psychological Methods}, \bold{1}(3), 227--235. \verb{https://doi.org/10.1037/1082-989X.1.3.227} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.kalaian1996 head(dat, 12) \dontrun{ ### load metafor package library(metafor) ### check ranges range(dat$yi[dat$outcome == "verbal"]) # -0.35 to 0.74 according to page 230 range(dat$yi[dat$outcome == "math"]) # -0.53 to 0.60 according to page 231 ### comparing this with Figure 1 in the paper reveals some discrepancies par(mfrow=c(1,2), mar=c(5,5,1,3.4)) plot(log(dat$hrs[dat$outcome == "verbal"]), dat$yi[dat$outcome == "verbal"], pch=19, col=rgb(0,0,0,0.4), xlab="Log(Coaching Hours)", ylab="Effect Size (verbal)", xlim=c(1,6), ylim=c(-0.5,1), xaxs="i", yaxs="i") abline(h=c(-0.5,0,0.5), lty="dotted") abline(v=log(c(5,18)), lty="dotted") plot(log(dat$hrs[dat$outcome == "math"]), dat$yi[dat$outcome == "math"], pch=19, col=rgb(0,0,0,0.4), xlab="Log(Coaching Hours)", ylab="Effect Size (math)", xlim=c(1,6), ylim=c(-1.0,1), xaxs="i", yaxs="i") abline(h=c(-0.5,0,0.5), lty="dotted") abline(v=log(c(5,18)), lty="dotted") ### construct variance-covariance matrix assuming rho = 0.66 for effect sizes ### corresponding to the 'verbal' and 'math' outcome types V <- vcalc(vi, cluster=study, type=outcome, data=dat, rho=0.66) ### fit multivariate random-effects model res <- rma.mv(yi, V, mods = ~ 0 + outcome, random = ~ outcome | study, struct="UN", data=dat, digits=3) res ### test whether the effect differs for the math and verbal subtest anova(res, X=c(1,-1)) ### log-transform and mean center the hours of coaching variable dat$loghrs <- log(dat$hrs) - mean(log(dat$hrs), na.rm=TRUE) ### fit multivariate model with log(hrs) as moderator res <- rma.mv(yi, V, mods = ~ 0 + outcome + outcome:loghrs, random = ~ outcome | study, struct="UN", data=dat, digits=3) res ### fit model with tau2 = 0 for outcome verbal (which also constrains rho = 0) res <- rma.mv(yi, V, mods = ~ 0 + outcome + outcome:loghrs, random = ~ outcome | study, struct="UN", tau2=c(NA,0), data=dat, digits=3) res } } \keyword{datasets} \concept{education} \concept{standardized mean differences} \concept{multivariate models} \concept{meta-regression} \section{Concepts}{ education, standardized mean differences, multivariate models, meta-regression } metadat/man/dat.lau1992.Rd0000644000176200001440000000521014750466700014617 0ustar liggesusers\name{dat.lau1992} \docType{data} \alias{dat.lau1992} \title{Studies on Intravenous Streptokinase for Acute Myocardial Infarction} \description{Results from 33 trials comparing intravenous streptokinase versus placebo or no therapy in patients who had been hospitalized for acute myocardial infarction.} \usage{ dat.lau1992 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{trial} \tab \code{character} \tab trial name \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{ai} \tab \code{numeric} \tab number of deaths in the streptokinase group \cr \bold{n1i} \tab \code{numeric} \tab number of patients in the streptokinase group \cr \bold{ci} \tab \code{numeric} \tab number of deaths in the control group \cr \bold{n2i} \tab \code{numeric} \tab number of patients in the control group } } \details{ In the paper by Lau et al. (1992), the data are used to illustrate the idea of a cumulative meta-analysis, where the results are updated as each trial is added to the dataset. See \sQuote{Examples} for code that replicates the results and shows corresponding forest plots. } \source{ Lau, J., Antman, E. M., Jimenez-Silva, J., Kupelnick, B., Mosteller, F., & Chalmers, T. C. (1992). Cumulative meta-analysis of therapeutic trials for myocardial infarction. \emph{New England Journal of Medicine}, \bold{327}(4), 248--254. \verb{https://doi.org/10.1056/NEJM199207233270406} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.lau1992 dat \dontrun{ ### load metafor package library(metafor) ### meta-analysis of log odds ratios using the MH method res <- rma.mh(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, slab=trial) print(res, digits=2) ### forest plot forest(res, xlim=c(-11,9), atransf=exp, at=log(c(0.01, 0.1, 1, 10, 100)), ilab=dat$year, ilab.xpos=-7) text(-7, 35, "Year", font=2) ### cumulative meta-analysis sav <- cumul(res) ### forest plot of the cumulative results forest(sav, xlim=c(-5,4), atransf=exp, at=log(c(0.1, 0.5, 1, 2, 10)), ilab=dat$year, ilab.xpos=-3) text(-3, 35, "Year", font=2) id <- c(4, 8, 15, 33) # rows for which the z/p-values should be shown (as in Lau et al., 1992) text(1.1, (res$k:1)[id], paste0("z = ", fmtx(sav$zval[id], digits=2), fmtp(sav$pval[id], pname=", p", equal=TRUE, sep=TRUE, add0=TRUE))) } } \keyword{datasets} \concept{medicine} \concept{cardiology} \concept{odds ratios} \concept{cumulative meta-analysis} \section{Concepts}{ medicine, cardiology, odds ratios, cumulative meta-analysis } metadat/man/dat.dong2013.Rd0000644000176200001440000000677514750466700014767 0ustar liggesusers\name{dat.dong2013} \docType{data} \alias{dat.dong2013} \title{Studies on Safety of Inhaled Medications for Chronic Obstructive Pulmonary Disease} \description{Results from 41 trials examining the safety of inhaled medications in patients with chronic obstructive pulmonary disease.} \usage{ dat.dong2013 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{integer} \tab study ID \cr \bold{treatment} \tab \code{character} \tab treatment \cr \bold{death} \tab \code{integer} \tab mortality \cr \bold{randomized} \tab \code{integer} \tab number of individuals } } \details{ This network meta-analysis compared the safety of inhaled medications in patients with chronic obstructive pulmonary disease (Dong et al., 2013). Mortality was reported in 41 randomized trials, with a total of 52 462 patients. Mortality was low, with 2 408 deaths (4.6\%) reported across all studies. There were nine studies that reported zero events in at least one of the treatment arms and three additional studies had zero events in all treatment arms. This dataset was used in Efthimiou et al. (2019) to illustrate the Mantel-Haenszel method for network meta-analysis. } \source{ Dong, Y.-H., Lin, H.-H., Shau, W.-Y., Wu, Y.-C., Chang, C.-H., & Lai, M.-S. (2013). Comparative safety of inhaled medications in patients with chronic obstructive pulmonary disease: Systematic review and mixed treatment comparison meta-analysis of randomised controlled trials. \emph{Thorax}, \bold{68}(1), 48--56. \verb{https://doi.org/10.1136/thoraxjnl-2012-201926} } \references{ Efthimiou, O., Rücker, G., Schwarzer, G., Higgins, J., Egger, M., & Salanti, G. (2019). A Mantel-Haenszel model for network meta-analysis of rare events. \emph{Statistics in Medicine}, \bold{38}(16), 2992--3012. \verb{https://doi.org/10.1002/sim.8158} } \author{ Guido Schwarzer, \email{guido.schwarzer@uniklinik-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show first 6 rows / 3 studies of the dataset head(dat.dong2013) \dontrun{ ### Load netmeta package suppressPackageStartupMessages(library("netmeta")) ### Print odds ratios and confidence limits with two digits oldset <- settings.meta(digits = 2) ### Change appearance of confidence intervals cilayout("(", "-") ### Transform data from long arm-based format to contrast-based ### format. Argument 'sm' has to be used for odds ratio as summary ### measure; by default the risk ratio is used in the metabin function ### called internally. pw <- pairwise(treatment, death, randomized, studlab = id, data = dat.dong2013, sm = "OR") ### Calculated log odds ratios (TE) and standard errors (seTE) pw[1:3, 1:9] ### Conduct Mantel-Haenszel network meta-analysis (NMA) net <- netmetabin(pw, ref = "plac") ### Network graph netgraph(net, seq = "optimal", col = "black", plastic = FALSE, points = TRUE, pch = 21, cex.points = 3, col.points = "black", bg.points = "gray", thickness = "se.fixed", number.of.studies = TRUE) ### Show results for Mantel-Haenszel NMA net forest(net) ### League table with network estimates in lower triangle and direct ### estimates in upper triangle netleague(net) ### Assess inconsistency print(netsplit(net), show = "both", ci = TRUE, overall = FALSE, nchar.trts = 6) ### Use previous settings settings.meta(oldset) } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{network meta-analysis} \concept{Mantel-Haenszel method} \section{Concepts}{ medicine, odds ratios, network meta-analysis, Mantel-Haenszel method } metadat/man/metadat-package.Rd0000644000176200001440000001164714750466700015765 0ustar liggesusers\name{metadat-package} \alias{metadat-package} \alias{metadat} \docType{package} \title{Meta-Analysis Datasets for R} \description{ The \pkg{metadat} package contains a large collection of meta-analysis datasets. These datasets are useful for teaching purposes, illustrating/testing meta-analytic methods, and validating published analyses. } \section{Browsing and Searching for Datasets}{ A listing of all datasets in the package can be obtained with \code{help(package=metadat)}. Each datasets is also tagged with one or multiple concept terms. These concept terms refer to various aspects of a dataset, such as the field/topic of research, the outcome measure used for the analysis, the model(s) used for analyzing the data, and the methods/concepts that can be illustrated with the dataset. The \code{\link{datsearch}} function can be used to search among the existing datasets in the package based on their concept terms or based on a full-text search of their corresponding help files. You can also read the documentation online at \url{https://wviechtb.github.io/metadat/} (where the output from the example analyses corresponding to each dataset is provided). } \section{Contributing New Datasets}{ We welcome contributions of new datasets to the package. For each dataset, there must be a citable reference, ideally in a peer-reviewed journal or publication. The general workflow for contributing a new dataset is as follows: \itemize{ \item Install the \code{metadat} package in R in the usual manner (i.e., \code{install.packages("metadat")}). \item If you are familiar with Git/GitHub and making pull requests, fork the \href{https://github.com/wviechtb/metadat}{package repository}. Otherwise, \href{https://github.com/wviechtb/metadat/archive/master.zip}{download} the source version of the package from GitHub and unzip the file to some directory on your computer. \item Place the raw data (in a non-binary format) in the \code{data-raw} directory. The file should be named \code{dat..}, where \code{} is the last name of the first author of the publication from which the data come, \code{} is the publication year, and \code{} is the file extension (e.g., \code{.txt}, \code{.csv}). \item Place a corresponding R script in the \code{data-raw} directory named \code{dat..r} that reads in the data, possibly does some data cleaning/processing, and then saves the dataset to the \code{data} directory (using \code{\link{save}}), with name \code{dat..rda}. \item Start R, load the \code{metadat} package (i.e., \code{library(metadat)}), and then run the \code{\link{prep_dat}} function (either set the working directory to the location of the source package beforehand or use the \code{pkgdir} argument of the \code{\link{prep_dat}} function to specify the source package location). \item For a new dataset, this should create a boilerplate template for a corresponding help file in the \code{man} directory, named \code{dat..Rd}. Edit the help file, adding the title and a short description of the dataset in general, a description of each variable in the dataset, further details on the dataset (e.g., the field of research, how the data was collected, the purpose of the dataset / what it was used for, the effect size or outcome measure used in the analysis, the types of analyses/models that can be illustrated with the dataset), a reference for the source of the dataset, one or multiple concept terms, the name and email address of the contributor of the dataset, and (optionally) example code to illustrate the analysis of the dataset. \item Either make a pull request (if you are familiar with this workflow) or zip up the \code{dat..}, \code{dat..r}, \code{dat..rda}, and \code{dat..Rd} files and open up a new \href{https://github.com/wviechtb/metadat/issues}{issue at GitHub}, attaching the zip file. \item If the above makes no sense to you, you can also email one of the package authors with a cleaned, raw data file in \code{.txt} or \code{.csv} format, along with a meta-data file (format doesn't matter) that includes the information described above. } } \section{Citing the Package}{ If you use these data, please cite both the \pkg{metadat} package (see \code{citation("metadat")} for the reference) and the original source of the data as given under the help file of a dataset. } \section{Bug/Error Reports}{ If you think you have found an error in an existing dataset or a bug in the package in general, please go to \url{https://github.com/wviechtb/metadat/issues} and open up a new issue. } \author{ Thomas White, \email{thomas.white@sydney.edu.au} \cr Daniel Noble, \email{daniel.noble@anu.edu.au} \cr Alistair Senior, \email{alistair.senior@sydney.edu.au} \cr W. Kyle Hamilton, \email{whamilton@ucmerced.edu} \cr Wolfgang Viechtbauer, \email{wvb@metafor-project.org} } \keyword{package} metadat/man/dat.senn2013.Rd0000644000176200001440000002333414750466700014771 0ustar liggesusers\name{dat.senn2013} \docType{data} \alias{dat.senn2013} \title{Studies on the Effectiveness of Glucose-Lowering Agents} \description{Results from 26 trials examining the effectiveness of glucose-lowering agents in patients with type 2 diabetes} \usage{ dat.senn2013 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab (first) author and year of study \cr \bold{ni} \tab \code{numeric} \tab sample size of the study arm \cr \bold{treatment} \tab \code{character} \tab treatment given \cr \bold{comment} \tab \code{character} \tab whether figures given are based on raw values at outcome or on change from baseline \cr \bold{mi} \tab \code{numeric} \tab raw mean or mean change \cr \bold{sdi} \tab \code{numeric} \tab standard deviation } } \details{ The dataset includes the results from 26 randomized controlled trials examining the effectiveness of adding various oral glucose-lowering agents to a baseline sulfonylurea therapy in patients with type 2 diabetes. The outcome measured in the studies was either the mean HbA1c level at follow-up or the mean change in HbA1c level from baseline to follow-up. A total of 10 different treatment types were examined in these studies: acarbose, benfluorex, metformin, miglitol, pioglitazone, placebo, rosiglitazone, sitagliptin, sulfonylurea alone, and vildagliptin. One study included three treatment arms (Willms, 1999), while the rest of the studies included two treatment arms (hence, the dataset includes the results from 53 treatment arms). The data can be used for a network meta-analysis, either using an arm-based or a contrast-based model. See \sQuote{Examples} below. } \source{ Senn, S., Gavini, F., Magrez, D., & Scheen, A. (2013). Issues in performing a network meta-analysis. \emph{Statistical Methods in Medical Research}, \bold{22}(2), 169--189. \verb{https://doi.org/10.1177/0962280211432220} } \references{ Law, M., Jackson, D., Turner, R., Rhodes, K., & Viechtbauer, W. (2016). Two new methods to fit models for network meta-analysis with random inconsistency effects. \emph{BMC Medical Research Methodology}, \bold{16}, 87. \verb{https://doi.org/10.1186/s12874-016-0184-5} Rücker, G., & Schwarzer, G. (2015). Ranking treatments in frequentist network meta-analysis works without resampling methods. \emph{BMC Medical Research Methodology}, \bold{15}, 58. \verb{https://doi.org/10.1186/s12874-015-0060-8} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.senn2013 dat \dontrun{ ### load metafor package library(metafor) ### create network graph ('igraph' package must be installed) library(igraph, warn.conflicts=FALSE) pairs <- data.frame(do.call(rbind, sapply(split(dat$treatment, dat$study), function(x) t(combn(x,2)))), stringsAsFactors=FALSE) pairs$X1 <- factor(pairs$X1, levels=sort(unique(dat$treatment))) pairs$X2 <- factor(pairs$X2, levels=sort(unique(dat$treatment))) tab <- table(pairs[,1], pairs[,2]) tab # adjacency matrix g <- graph_from_adjacency_matrix(tab, mode = "plus", weighted=TRUE, diag=FALSE) plot(g, edge.curved=FALSE, edge.width=E(g)$weight, layout=layout_as_star(g, center="placebo"), vertex.size=45, vertex.color="lightgray", vertex.label.color="black", vertex.label.font=2) ### table of studies versus treatments examined print(addmargins(table(dat$study, dat$treatment)), zero.print="") ### table of frequencies with which treatment pairs were studied print(as.table(crossprod(table(dat$study, dat$treatment))), zero.print="") ### add means and sampling variances of the means to the dataset dat <- escalc(measure="MN", mi=mi, sdi=sdi, ni=ni, data=dat) ### turn treatment variable into factor and set reference level dat$treatment <- relevel(factor(dat$treatment), ref="placebo") ### add a space before each level (this makes the output a bit more legible) levels(dat$treatment) <- paste0(" ", levels(dat$treatment)) ### network meta-analysis using an arm-based fixed-effects model with fixed study effects res.fe <- rma.mv(yi, vi, mods = ~ 0 + study + treatment, data=dat, slab=paste0(study, treatment)) res.fe ### test if treatment factor as a whole is significant anova(res.fe, btt="treatment") ### forest plot of the contrast estimates (treatments versus placebos) forest(tail(coef(res.fe), 9), tail(diag(vcov(res.fe)), 9), slab=levels(dat$treatment)[-1], xlim=c(-2.5, 1.5), alim=c(-1.5, 0.5), psize=1, xlab="Estimate", header="Treatment") ### weight matrix for the estimation of the fixed effects (leaving out the study effects) w <- t(tail(vcov(res.fe) \%*\% t(model.matrix(res.fe)) \%*\% weights(res.fe, type="matrix"), 9)) rownames(w) <- res.fe$slab ### create shade plot for the diabetes network with placebo as the reference treatment ### negative values in blue shades, positive values in red shades cols <- colorRampPalette(c("blue", "gray95", "red"))(9) heatmap(w, Rowv=NA, Colv=NA, scale="none", margins=c(6,11), col=cols, cexRow=.7, cexCol=1, labCol=levels(dat$treatment)[-1]) ### network meta-analysis using an arm-based random-effects model with fixed study effects ### by setting rho=1/2, tau^2 reflects the amount of heterogeneity for all treatment comparisons res.re <- rma.mv(yi, vi, mods = ~ 0 + study + treatment, random = ~ treatment | study, rho=1/2, data=dat, slab=paste0(study, treatment)) res.re ### test if treatment factor as a whole is significant anova(res.re, btt="treatment") ### forest plot of the contrast estimates (treatments versus placebos) forest(tail(coef(res.re), 9), tail(diag(vcov(res.re)), 9), slab=levels(dat$treatment)[-1], xlim=c(-2.5, 1.5), alim=c(-1.5, 0.5), psize=1, xlab="Estimate", header="Treatment") ### compute the contribution of each study to the overall Q-test value qi <- sort(by((resid(res.fe) / sqrt(dat$vi))^2, dat$study, sum)) ### check that the values add up sum(qi) res.fe$QE ### plot the values s <- length(qi) par(mar=c(5,10,2,1)) plot(qi, 1:s, pch=19, xaxt="n", yaxt="n", xlim=c(0,40), xlab="Chi-Square Contribution", ylab="") axis(side=1) axis(side=2, at=1:s, labels=names(qi), las=1, tcl=0) segments(rep(0,s), 1:s, qi, 1:s) ############################################################################ ### restructure dataset to a contrast-based format dat <- dat.senn2013[c(1,4:2,5:6)] # reorder variables first dat <- to.wide(dat, study="study", grp="treatment", ref="placebo", grpvars=4:6) dat ### calculate mean difference and corresponding sampling variance for each treatment comparison dat <- escalc(measure="MD", m1i=mi.1, sd1i=sdi.1, n1i=ni.1, m2i=mi.2, sd2i=sdi.2, n2i=ni.2, data=dat) dat ### calculate the variance-covariance matrix of the mean differences for the multitreatment studies calc.v <- function(x) { v <- matrix(x$sdi.2[1]^2 / x$ni.2[1], nrow=nrow(x), ncol=nrow(x)) diag(v) <- x$vi v } V <- bldiag(lapply(split(dat, dat$study), calc.v)) ### add contrast matrix to dataset dat <- contrmat(dat, grp1="treatment.1", grp2="treatment.2") dat ### network meta-analysis using a contrast-based random-effects model ### by setting rho=1/2, tau^2 reflects the amount of heterogeneity for all treatment comparisons ### the treatment left out (placebo) becomes the reference level for the treatment comparisons res <- rma.mv(yi, V, mods = ~ 0 + acarbose + benfluorex + metformin + miglitol + pioglitazone + rosiglitazone + sitagliptin + sulfonylurea + vildagliptin, random = ~ comp | study, rho=1/2, data=dat) res ### forest plot of the contrast estimates (treatments versus placebos) forest(coef(res), diag(vcov(res)), slab=names(coef(res)), order="obs", xlim=c(-3.0, 2.5), alim=c(-1.5, 0.5), psize=1, xlab="Estimate", header="Treatment") ### estimate all pairwise differences between treatments contr <- data.frame(t(combn(names(coef(res)), 2))) contr <- contrmat(contr, "X1", "X2", last="vildagliptin") rownames(contr) <- paste(contr$X1, "-", contr$X2) contr <- as.matrix(contr[-c(1:2)]) sav <- predict(res, newmods=contr) sav[["slab"]] <- rownames(contr) sav ### fit random inconsistency effects model (see Law et al., 2016) inc <- rma.mv(yi, V, mods = ~ 0 + acarbose + benfluorex + metformin + miglitol + pioglitazone + rosiglitazone + sitagliptin + sulfonylurea + vildagliptin, random = list(~ comp | study, ~ comp | design), rho=1/2, phi=1/2, data=dat) inc ############################################################################ ### compute P-scores (see Rücker & Schwarzer, 2015) contr <- data.frame(t(combn(c(names(coef(res)),"placebo"), 2))) # add 'placebo' to contrast matrix contr <- contrmat(contr, "X1", "X2", last="placebo", append=FALSE) b <- c(coef(res),0) # add 0 for 'placebo' (the reference treatment) vb <- bldiag(vcov(res),0) # add 0 row/column for 'placebo' (the reference treatment) pvals <- apply(contr, 1, function(x) pnorm((x\%*\%b) / sqrt(t(x)\%*\%vb\%*\%x))) tab <- vec2mat(pvals, corr=FALSE) tab[upper.tri(tab)] <- t((1 - tab)[upper.tri(tab)]) rownames(tab) <- colnames(tab) <- colnames(contr) round(tab, 2) # like Table 2 in the article cbind(pscore=round(sort(apply(tab, 1, mean, na.rm=TRUE), decreasing=TRUE), 3)) # note: the values are slightly different from the ones given in Table 3 of Rücker and # Schwarzer (2015) since model 'res' above is fitted using REML estimation while the # results shown in the article are based on the 'netmeta' package, which uses a DL-type # estimator for the amount of heterogeneity by default ############################################################################ } } \keyword{datasets} \concept{medicine} \concept{raw mean differences} \concept{network meta-analysis} \section{Concepts}{ medicine, raw mean differences, network meta-analysis } metadat/man/dat.bornmann2007.Rd0000644000176200001440000000623514750466700015644 0ustar liggesusers\name{dat.bornmann2007} \docType{data} \alias{dat.bornmann2007} \title{Studies on Gender Differences in Grant and Fellowship Awards} \description{Results from 21 studies on gender differences in grant and fellowship awards.} \usage{ dat.bornmann2007 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study reference \cr \bold{obs} \tab \code{numeric} \tab observation within study \cr \bold{doctype} \tab \code{character} \tab document type \cr \bold{gender} \tab \code{character} \tab gender of the study authors \cr \bold{year} \tab \code{numeric} \tab (average) cohort year \cr \bold{org} \tab \code{character} \tab funding organization / program \cr \bold{country} \tab \code{character} \tab country of the funding organization / program \cr \bold{type} \tab \code{character} \tab fellowship or grant application \cr \bold{discipline} \tab \code{character} \tab discipline / field \cr \bold{waward} \tab \code{numeric} \tab number of women who received a grant/fellowship award \cr \bold{wtotal} \tab \code{numeric} \tab number of women who applied for an award \cr \bold{maward} \tab \code{numeric} \tab number of men who received a grant/fellowship award \cr \bold{mtotal} \tab \code{numeric} \tab number of men who applied for an award } } \details{ The studies in this dataset examine whether the chances of receiving a grant or fellowship award differs for men and women. Note that many studies provide multiple comparisons (e.g., for different years / cohorts / disciplines). A multilevel meta-analysis model can be used to account for the multilevel structure in these data. } \source{ Bornmann, L., Mutz, R., & Daniel, H. (2007). Gender differences in grant peer review: A meta-analysis. \emph{Journal of Informetrics}, \bold{1}(3), 226--238. \verb{https://doi.org/10.1016/j.joi.2007.03.001} } \references{ Marsh, H. W., Bornmann, L., Mutz, R., Daniel, H.-D., & O'Mara, A. (2009). Gender effects in the peer reviews of grant proposals: A comprehensive meta-analysis comparing traditional and multilevel approaches. \emph{Review of Educational Research}, \bold{79}(3), 1290--1326. \verb{https://doi.org/10.3102/0034654309334143} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.bornmann2007 head(dat, 16) \dontrun{ ### load metafor package library(metafor) ### calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=waward, n1i=wtotal, ci=maward, n2i=mtotal, data=dat) ### fit multilevel meta-analysis model res <- rma.mv(yi, vi, random = ~ 1 | study/obs, data=dat) res ### estimated average odds ratio (with 95\% CI/PI) predict(res, transf=exp, digits=2) ### test for a difference between fellowship and grant applications res <- rma.mv(yi, vi, mods = ~ type, random = ~ 1 | study/obs, data=dat) res predict(res, newmods=0:1, transf=exp, digits=2) } } \keyword{datasets} \concept{sociology} \concept{odds ratios} \concept{multilevel models} \section{Concepts}{ sociology, odds ratios, multilevel models } metadat/man/dat.white2020.Rd0000644000176200001440000000604714750466700015146 0ustar liggesusers\name{dat.white2020} \docType{data} \alias{dat.white2020} \title{Studies on the Relationship between Sexual Signal Expression and Individual Quality} \description{Results from 41 studies examining the relationship between measures of individual quality and the expression of structurally coloured sexual signals.} \usage{ dat.white2020 } \format{ The object is a data frame which contains the following columns: \tabular{lll}{ \bold{study_id} \tab \code{character} \tab study-level ID \cr \bold{obs} \tab \code{character} \tab observation-level ID \cr \bold{exp_obs} \tab \code{character} \tab whether the study is observational or experimental \cr \bold{control} \tab \code{numeric} \tab whether the study did (1) or did not (0) include a non-sexual control trait \cr \bold{class} \tab \code{character} \tab class of the study organisms \cr \bold{genus} \tab \code{character} \tab class of the study organisms \cr \bold{species} \tab \code{character} \tab species of the study organisms \cr \bold{sex} \tab \code{character} \tab sex of the study organisms \cr \bold{iridescent} \tab \code{numeric} \tab whether the colour signals were iridescent (1) or not (0) \cr \bold{col_var} \tab \code{character} \tab the colour variable quantified \cr \bold{col_component} \tab \code{character} \tab whether the colour variable is chromatic or achromatic \cr \bold{quality_measure} \tab \code{character} \tab the measure of individual quality used \cr \bold{region} \tab \code{character} \tab the body region from which colour was sampled \cr \bold{n} \tab \code{numeric} \tab study sample size \cr \bold{r} \tab \code{numeric} \tab Pearson's correlation coefficient \cr } } \details{ The 186 rows in this dataset come from 41 experimental and observational studies reporting on the correlation between measures of individual quality (age, body condition, immune function, parasite resistance) and the expression of structurally coloured sexual signals across 28 species. The purpose of this meta-analysis was to test whether structural colour signals show heightened condition-dependent expression, as predicted by evolutionary models of 'honest' signalling. } \source{ White, T. E. (2020). Structural colours reflect individual quality: A meta-analysis. \emph{Biology Letters}, \bold{16}(4), 20200001. \verb{https://doi.org/10.1098/rsbl.2020.0001} } \author{ Thomas E. White, \email{thomas.white@sydney.edu.au} } \examples{ ### copy data into 'dat' and examine data dat <- dat.white2020 head(dat, 10) \dontrun{ ### load metafor package library(metafor) ### calculate r-to-z transformed correlations and corresponding sampling variances dat <- escalc(measure="ZCOR", ri=r, ni=n, data=dat) ### fit multilevel meta-analytic model res <- rma.mv(yi, vi, random = list(~ 1 | study_id, ~ 1 | obs), data=dat) res } } \keyword{datasets} \concept{ecology} \concept{evolution} \concept{correlation coefficients} \section{Concepts}{ ecology, evolution, correlation coefficients } metadat/man/dat.pagliaro1992.Rd0000644000176200001440000000705214750466700015642 0ustar liggesusers\name{dat.pagliaro1992} \docType{data} \alias{dat.pagliaro1992} \title{Studies on the Effectiveness of Nonsurgical Treatments in Cirrhosis} \description{Results from 26 trials examining the effectiveness of beta-blockers and sclerotherapy for the prevention of first bleeding in patients with cirrhosis} \usage{ dat.pagliaro1992 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study id \cr \bold{trt} \tab \code{character} \tab either beta-blockers, sclerotherapy, or control \cr \bold{xi} \tab \code{numeric} \tab number of patients with first bleeding \cr \bold{ni} \tab \code{numeric} \tab number of patients treated } } \details{ The dataset includes the results from 26 randomized controlled trials examining the effectiveness of nonsurgical treatments for the prevention of first bleeding in patients with cirrhosis. Patients were either treated with beta-blockers, endoscopic sclerotherapy, or with a nonactive treatment (control). Two trials included all three treatment conditions, 7 trials compared beta-blockers against control, and 17 trials compared sclerotherapy against control. The dataset has been used in various papers to illustrate methods for conducting a network meta-analysis / mixed treatment comparison. } \source{ Pagliaro, L., D'Amico, G., \enc{Sörensen}{Soerensen}, T. I. A., Lebrec, D., Burroughs, A. K., Morabito, A., \enc{Tiné}{Tine}, F., Politi, F., & Traina, M. (1992). Prevention of first bleeding in cirrhosis: A meta-analysis of randomized trials of nonsurgical treatment. \emph{Annals of Internal Medicine}, \bold{117}(1), 59--70. \verb{https://doi.org/10.7326/0003-4819-117-1-59} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.pagliaro1992 dat \dontrun{ ### load metafor package library(metafor) ### restructure dataset to a contrast-based format dat.c <- to.wide(dat, study="study", grp="trt", grpvars=3:4) dat.c ### Mantel-Haenszel results for beta-blockers and sclerotherapy versus control, respectively rma.mh(measure="OR", ai=xi.1, n1i=ni.1, ci=xi.2, n2i=ni.2, data=dat.c, subset=(trt.1=="beta-blockers"), digits=2) rma.mh(measure="OR", ai=xi.1, n1i=ni.1, ci=xi.2, n2i=ni.2, data=dat.c, subset=(trt.1=="sclerotherapy"), digits=2) ### calculate log odds for each study arm dat <- escalc(measure="PLO", xi=xi, ni=ni, data=dat) dat ### turn treatment variable into factor and set reference level dat$trt <- relevel(factor(dat$trt), ref="control") ### add a space before each level (this makes the output a bit more legible) levels(dat$trt) <- paste0(" ", levels(dat$trt)) ### network meta-analysis using an arm-based random-effects model with fixed study effects ### (by setting rho=1/2, tau^2 reflects the amount of heterogeneity for all treatment comparisons) res <- rma.mv(yi, vi, mods = ~ 0 + factor(study) + trt, random = ~ trt | study, rho=1/2, data=dat) res ### average odds ratio comparing beta-blockers and sclerotherapy versus control, respectively predict(res, newmods=c(rep(0,26), 1, 0), transf=exp, digits=2) predict(res, newmods=c(rep(0,26), 0, 1), transf=exp, digits=2) ### average odds ratio comparing beta-blockers versus sclerotherapy predict(res, newmods=c(rep(0,26), 1, -1), transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{Mantel-Haenszel method} \concept{network meta-analysis} \section{Concepts}{ medicine, odds ratios, Mantel-Haenszel method, network meta-analysis } metadat/man/dat.lee2004.Rd0000644000176200001440000000407514750466700014574 0ustar liggesusers\name{dat.lee2004} \docType{data} \alias{dat.lee2004} \title{Studies on Acupoint P6 Stimulation for Preventing Nausea} \description{Results from studies examining the effectiveness of wrist acupuncture point P6 stimulation for preventing postoperative nausea.} \usage{ dat.lee2004 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab trial id number \cr \bold{study} \tab \code{character} \tab first author \cr \bold{year} \tab \code{numeric} \tab study year \cr \bold{ai} \tab \code{numeric} \tab number of patients experiencing nausea in the treatment group \cr \bold{n1i} \tab \code{numeric} \tab total number of patients in treatment group \cr \bold{ci} \tab \code{numeric} \tab number of patients experiencing nausea in the sham group \cr \bold{n2i} \tab \code{numeric} \tab total number of patients in the sham group } } \details{ Postoperative nausea and vomiting are common complications following surgery and anaesthesia. As an alternative to drug therapy, acupuncture has been studied as a potential treatment in several trials. The dataset contains the results from 16 clinical trials examining the effectiveness of wrist acupuncture point P6 stimulation for preventing postoperative nausea. } \source{ Lee, A., & Done, M. L. (2004). Stimulation of the wrist acupuncture point P6 for preventing postoperative nausea and vomiting. \emph{Cochrane Database of Systematic Reviews}, \bold{3}, CD003281. \verb{https://doi.org/10.1002/14651858.CD003281.pub2} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.lee2004 dat \dontrun{ ### load metafor package library(metafor) ### meta-analysis based on log risk ratios res <- rma(measure="RR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat) res predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{alternative medicine} \concept{risk ratios} \section{Concepts}{ medicine, alternative medicine, risk ratios } metadat/man/dat.mcdaniel1994.Rd0000644000176200001440000001145214750466700015621 0ustar liggesusers\name{dat.mcdaniel1994} \docType{data} \alias{dat.mcdaniel1994} \title{Studies on the Validity of Employment Interviews} \description{Results from 160 studies on the correlation between employment interview assessments and job performance.} \usage{ dat.mcdaniel1994 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{ni} \tab \code{numeric} \tab sample size of the study \cr \bold{ri} \tab \code{numeric} \tab observed correlation \cr \bold{type} \tab \code{character} \tab interview type (j = job-related, s = situational, p = psychological) \cr \bold{struct} \tab \code{character} \tab interview structure (u = unstructured, s = structured) } } \details{ The 160 studies provide data in terms of the correlation between employment interview performance and actual job performance. In addition, the interview type and the interview structure are indicated. McDaniel et al. (1994) describe the interview type and structure variables as follows. "Questions in situational interviews [...] focus on the individual's ability to project what his or her behavior would be in a given situation. [...] Job-related interviews are those in which the interviewer is a personnel officer or hiring authority and the questions attempt to assess past behaviors and job-related information, but most questions are not considered situational. Psychological interviews are conducted by a psychologist, and the questions are intended to assess personal traits, such as dependability." In structured interviews, "the questions and acceptable responses were specified in advance and the responses were rated for appropriateness of content. [...] Unstructured interviews gather applicant information in a less systematic manner than do structured interviews. Although the questions may be specified in advance, they usually are not, and there is seldom a formalized scoring guide. Also, all persons being interviewed are not typically asked the same questions." The goal of the meta-analysis was to examine the overall criterion-related validity of employment interviews and to examine whether the validity depends on the type and structure of the interview. The data in this dataset were obtained from Table A.2 in Rothstein, Sutton, and Borenstein (2005, p. 325-329). Note that the \code{type} and \code{struct} variables contain some \code{NA}s. } \source{ Rothstein, H. R., Sutton, A. J., & Borenstein, M. (Eds.). (2005). \emph{Publication bias in meta-analysis: Prevention, assessment, and adjustments}. Chichester, England: Wiley. } \references{ McDaniel, M. A., Whetzel, D. L., Schmidt, F. L., & Maurer, S. D. (1994). The validity of employment interviews: A comprehensive review and meta-analysis. \emph{Journal of Applied Psychology}, \bold{79}(4), 599--616. \verb{https://doi.org/10.1037/0021-9010.79.4.599} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.mcdaniel1994 head(dat) \dontrun{ ### load metafor package library(metafor) ### calculate r-to-z transformed correlations and corresponding sampling variances dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat) head(dat) ### meta-analysis of the transformed correlations using a random-effects model res <- rma(yi, vi, data=dat) res ### average correlation with 95\% CI predict(res, transf=transf.ztor, digits=2) ### mixed-effects model with interview type as factor ### note: job-related interviews is the reference level res <- rma(yi, vi, mods = ~ factor(type), data=dat) res ### estimated average correlation for each level of interview type res <- rma(yi, vi, mods = ~ 0 + factor(type), data=dat) predict(res, newmods=diag(3), transf=transf.ztor, digits=2) ### mixed-effects model with interview structure as factor ### note: structured interviews is the reference level res <- rma(yi, vi, mods = ~ factor(struct), data=dat) res ### estimated average correlation for each level of interview structure res <- rma(yi, vi, mods = ~ 0 + factor(struct), data=dat) predict(res, newmods=diag(2), transf=transf.ztor, digits=2) ### note: the interpretation of the results is difficult since all ### situational interviews were structured, almost all psychological ### interviews were unstructured, and actually for the majority of ### the psychological interviews it was unknown whether the interview ### was structured or unstructured table(dat$type, dat$struct, useNA="always") ### meta-analysis of raw correlations using a random-effects model res <- rma(measure="COR", ri=ri, ni=ni, data=dat.mcdaniel1994) res } } \keyword{datasets} \concept{psychology} \concept{correlation coefficients} \concept{meta-regression} \section{Concepts}{ psychology, correlation coefficients, meta-regression } metadat/man/dat.konstantopoulos2011.Rd0000644000176200001440000000751314750466700017307 0ustar liggesusers\name{dat.konstantopoulos2011} \docType{data} \alias{dat.konstantopoulos2011} \title{Studies on the Effects of Modified School Calendars on Student Achievement} \description{Results from 56 studies on the effects of modified school calendars on student achievement.} \usage{ dat.konstantopoulos2011 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{district} \tab \code{numeric} \tab district id number \cr \bold{school} \tab \code{numeric} \tab school id number (within district) \cr \bold{study} \tab \code{numeric} \tab study id number \cr \bold{yi} \tab \code{numeric} \tab standardized mean difference \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance \cr \bold{year} \tab \code{numeric} \tab year of the study } } \details{ Instead of following the more traditional school calendar with a long summer break (in addition to a short winter and spring break), some schools have switched to a modified school calendar comprising more frequent but shorter intermittent breaks (e.g., 9 weeks of school followed by 3 weeks off), while keeping the total number of days at school approximately the same. The effects of using such a modified calendar on student achievement have been examined in a number of studies and were meta-analyzed by Cooper et al. (2003). The dataset (taken from Konstantopoulos, 2011) contains the results from 56 studies, each comparing the level of academic achievement in a group of students following a modified school calendar with that of a group of students following a more traditional school calendar. The difference between the two groups was quantified in terms of a standardized mean difference (with positive values indicating a higher mean level of achievement in the group following the modified school calendar). The studies were conducted at various schools that were clustered within districts. The data therefore have a multilevel structure, with schools nested within districts. A multilevel meta-analysis of these data can be used to estimate and account for the amount of heterogeneity between districts and between schools within districts. } \source{ Konstantopoulos, S. (2011). Fixed effects and variance components estimation in three-level meta-analysis. \emph{Research Synthesis Methods}, \bold{2}(1), 61--76. \verb{https://doi.org/10.1002/jrsm.35} } \references{ Cooper, H., Valentine, J. C., Charlton, K., & Melson, A. (2003). The effects of modified school calendars on student achievement and on school and community attitudes. \emph{Review of Educational Research}, \bold{73}(1), 1--52. \verb{https://doi.org/10.3102/00346543073001001} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.konstantopoulos2011 dat \dontrun{ ### load metafor package library(metafor) ### fit random-effects model res <- rma(yi, vi, data=dat) print(res, digits=3) ### fit random-effects model using rma.mv() res <- rma.mv(yi, vi, random = ~ 1 | study, data=dat) print(res, digits=3) ### fit multilevel random-effects model res.ml <- rma.mv(yi, vi, random = ~ 1 | district/school, data=dat) print(res.ml, digits=3) ### profile variance components profile(res.ml, progbar=FALSE) ### fit multivariate parameterization of the model res.mv <- rma.mv(yi, vi, random = ~ school | district, data=dat) print(res.mv, digits=3) ### tau^2 = sum of the two variance components from the multilevel model round(sum(res.ml$sigma2), digits=3) ### rho = intraclass correlation coefficient based on the multilevel model round(res.ml$sigma2[1] / sum(res.ml$sigma2), digits=3) } } \keyword{datasets} \concept{education} \concept{standardized mean differences} \concept{multilevel models} \section{Concepts}{ education, standardized mean differences, multilevel models } metadat/man/dat.moura2021.Rd0000644000176200001440000001106714750466700015150 0ustar liggesusers\name{dat.moura2021} \docType{data} \alias{dat.moura2021} \title{Studies on Assortative Mating} \description{Results from 457 studies on assortative mating in various species.} \usage{ dat.moura2021 } \format{ The object is a list containing a data frame called \code{dat} that contains the following columns and a phylogenetic tree called \code{tree}: \tabular{lll}{ \bold{study.id} \tab \code{character} \tab study id \cr \bold{effect.size.id} \tab \code{numeric} \tab effect size id \cr \bold{species} \tab \code{character} \tab species \cr \bold{species.id} \tab \code{character} \tab species id (as in the Open Tree of Life reference taxonomy) \cr \bold{subphylum} \tab \code{character} \tab the subphyla of the species \cr \bold{phylum} \tab \code{character} \tab the phyla of the species \cr \bold{assortment.trait} \tab \code{character} \tab the measure of body size \cr \bold{trait.dimensions} \tab \code{character} \tab dimensionality of the measure \cr \bold{field.collection} \tab \code{character} \tab whether data were collected in the field \cr \bold{publication.year} \tab \code{numeric} \tab publication year of the study \cr \bold{pooled.data} \tab \code{character} \tab whether data were pooled either spatially and/or temporally \cr \bold{spatially.pooled} \tab \code{character} \tab whether data were pooled spatially \cr \bold{temporally.pooled} \tab \code{character} \tab whether data were pooled temporally \cr \bold{ri} \tab \code{numeric} \tab correlation coefficient \cr \bold{ni} \tab \code{numeric} \tab sample size } } \details{ The 457 studies included in this dataset provide 1828 correlation coefficients describing the similarity in some measure of body size in mating couples in 341 different species. } \source{ Rios Moura, R., Oliveira Gonzaga, M., Silva Pinto, N., Vasconcellos-Neto, J., & Requena, G. S. (2021). Assortative mating in space and time: Patterns and biases. \emph{Ecology Letters}, \bold{24}(5), 1089--1102. \verb{https://doi.org/10.1111/ele.13690} } \references{ Cinar, O., Nakagawa, S., & Viechtbauer, W. (in press). Phylogenetic multilevel meta-analysis: A simulation study on the importance of modelling the phylogeny. \emph{Methods in Ecology and Evolution}. \verb{https://doi.org/10.1111/2041-210X.13760} Hadfield, J. D., & Nakagawa, S. (2010). General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. \emph{Journal of Evolutionary Biology}, \bold{23}(3), 494--508. \verb{https://doi.org/10.1111/j.1420-9101.2009.01915.x} Nakagawa, S., & Santos, E. S. A. (2012). Methodological issues and advances in biological meta-analysis. \emph{Evolutionary Ecology}, \bold{26}(5), 1253--1274. \verb{https://doi.org/10.1007/s10682-012-9555-5} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.moura2021$dat head(dat) \dontrun{ ### load metafor package library(metafor) ### load ape package library(ape, warn.conflicts=FALSE) ### calculate r-to-z transformed correlations and corresponding sampling variances dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat) ### copy tree to 'tree' tree <- dat.moura2021$tree ### turn tree into an ultrametric one tree <- compute.brlen(tree) ### compute phylogenetic correlation matrix A <- vcv(tree, corr=TRUE) ### make copy of the species.id variable dat$species.id.phy <- dat$species.id ### fit multilevel phylogenetic meta-analytic model res <- rma.mv(yi, vi, random = list(~ 1 | study.id, ~ 1 | effect.size.id, ~ 1 | species.id, ~ 1 | species.id.phy), R=list(species.id.phy=A), data=dat) res ### examine if spatial and/or temporal pooling of data tends to yield larger correlations res <- rma.mv(yi, vi, mods = ~ spatially.pooled * temporally.pooled, random = list(~ 1 | study.id, ~ 1 | effect.size.id, ~ 1 | species.id, ~ 1 | species.id.phy), R=list(species.id.phy=A), data=dat) res ### estimated average correlation without pooling, when pooling spatially, ### when pooling temporally, and when pooling spatially and temporally predict(res, newmods = rbind(c(0,0,0),c(1,0,0),c(0,1,0),c(1,1,1)), transf=transf.ztor, digits=2) } } \keyword{datasets} \concept{ecology} \concept{evolution} \concept{correlation coefficients} \concept{multivariate models} \concept{phylogeny} \concept{meta-regression} \section{Concepts}{ ecology, evolution, correlation coefficients, multivariate models, phylogeny, meta-regression } metadat/man/dat.crisafulli2020.Rd0000644000176200001440000000510414750466700016154 0ustar liggesusers\name{dat.crisafulli2020} \docType{data} \alias{dat.crisafulli2020} \title{Duchenne Muscular Dystrophy (DMD) Prevalence Data} \description{26 studies reporting estimates of the birth prevalence of Duchenne muscular dystrophy.} \usage{ dat.crisafulli2020 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study label (first author, year) \cr \bold{pubyear} \tab \code{integer} \tab publication year \cr \bold{country} \tab \code{factor} \tab origin of investigated population \cr \bold{from}, \bold{to} \tab \code{integer} \tab time span of investigation (years) \cr \bold{cases} \tab \code{integer} \tab number of DMD cases \cr \bold{total} \tab \code{integer} \tab corresponding total population \cr } } \details{ \emph{Duchenne muscular dystrophy} (DMD) is a rare disease that is caused by a genetic mutation and is characterized by impairment through muscle weakness and a reduced life expectancy. Crisafulli et al. (2020) reported on a systematic review of data on the epidemiology of DMD, including estimates of the \emph{birth prevalence} (which is of the order of a few per ten thousand). One of the originally reported studies (Koenig, 2019) is omitted here, as it constitutes an obvious outlier, and the reliability of the reported data is doubtful; Crisafulli et al. (2020) pointed out that \dQuote{\emph{Concerning birth prevalence, Koenig et al. were found to be outliers. This study had problems with data collection in the last study year, as due to privacy issues, DMD cases were under-reported.}} } \source{ Crisafulli, S., Sultana, J., Fontana, A., Salvo, F., Messina, S., & Trifiro, G. (2020). Global epidemiology of Duchenne muscular dystrophy: an updated systematic review and meta-analysis. \emph{Orphanet Journal of Rare Diseases}, \bold{15}, 141. \verb{https://doi.org/10.1186/s13023-020-01430-8} } \author{ Christian Roever, \email{christian.roever@med.uni-goettingen.de} } \examples{ # show (some) data head(dat.crisafulli2020) \dontrun{ # compute logarithmic proportions and associated standard errors library(metafor) logp <- escalc(measure="PLN", xi=cases, ni=total, slab=study, data=dat.crisafulli2020) # perform meta-analysis rma01 <- rma.uni(logp) # show results rma01 # illustrate in a forest plot forest(rma01, xlim=c(-12,-5)) } } \keyword{datasets} \concept{medicine} \concept{epidemiology} \concept{proportions} \concept{dose-response models} \section{Concepts}{ medicine, epidemiology, proportions, dose-response models } metadat/man/datsearch.Rd0000644000176200001440000001135614750466700014710 0ustar liggesusers\name{datsearch} \alias{datsearch} \title{Search Function for the Datasets} \description{Function to search among the existing datasets.} \usage{ datsearch(pattern, concept=TRUE, matchall=TRUE, fixed=TRUE, pkgdown=FALSE) } \arguments{ \item{pattern}{character string or vector of strings specifying the terms to search for within the datasets. Can also be left unspecified to start the function in an interactive mode.} \item{concept}{logical indicating whether the search should be confined to the concept terms (\code{TRUE} by default) or whether a full-text search should be conducted.} \item{matchall}{logical indicating whether only the datasets matching all terms (if multiple are specified) are returned (\code{TRUE} by default) or whether datasets matching any one of the terms are returned.} \item{fixed}{logical indicating whether a term is a string to be matched as is (\code{TRUE} by default). If \code{FALSE}, a search term is a regular expression that \code{\link{grep}} will search for. Only relevant when \code{concept=FALSE} (i.e., when doing a full-text search).} \item{pkgdown}{logical indicating whether the standard help file or the pkgdown docs (at \url{https://wviechtb.github.io/metadat/}) should be shown for a chosen dataset (\code{FALSE} by default).} } \details{ The function can be used to search all existing datasets in the \pkg{metadat} package based on their concept terms (see below) or based on a full-text search of their corresponding help files. When running \code{datsearch()} without the \code{pattern} argument specified, the function starts in an interactive mode and prompts for one or multiple search terms. Alternatively, one can specify a single search term via the \code{pattern} argument or multiple search terms by using a string vector as the \code{pattern} or by separating multiple search terms in a single string with \sQuote{,}, \sQuote{;}, or \sQuote{and}. If \code{matchall=TRUE} (the default), only datasets matching all search terms (if multiple are specified) are returned. If \code{matchall=FALSE}, datasets matching any one of the search terms are returned. If a single match is found, the corresponding help file is directly shown. If multiple matches are found, the user is prompted to choose one of the matching datasets of interest. \bold{Concept Terms} Each dataset is tagged with one or multiple concept terms that refer to various aspects of a dataset, such as the field/topic of research, the outcome measure used for the analysis, the model(s) used for analyzing the data, and the methods/concepts that can be illustrated with the dataset. \itemize{ \item In terms of \sQuote{fields/topics}, the following terms have been used at least once: alternative medicine, attraction, cardiology, climate change, covid-19, criminology, dentistry, ecology, education, engineering, epidemiology, evolution, genetics, human factors, medicine, memory, obstetrics, oncology, persuasion, physics, primary care, psychiatry, psychology, smoking, social work, sociology. \item In terms of \sQuote{outcome measures}, the following terms have been used at least once: correlation coefficients, Cronbach's alpha, hazard ratios, incidence rates, raw mean differences, odds ratios, proportions, ratios of means, raw means, risk differences, risk ratios, (semi-)partial correlations, standardized mean changes, standardized mean differences. \item In terms of \sQuote{models/methods/concepts}, the following terms have been used at least once: cluster-robust inference, component network meta-analysis, cumulative meta-analysis, diagnostic accuracy studies, dose response models, generalized linear models, longitudinal models, Mantel-Haenszel method, meta-regression, model checks, multilevel models, multivariate models, network meta-analysis, outliers, Peto's method, phylogeny, publication bias, reliability generalization, single-arm studies, spatial correlation, subgroup analysis. } } \author{ Daniel Noble, \email{daniel.noble@anu.edu.au} \cr Wolfgang Viechtbauer, \email{wvb@metafor-project.org} } \examples{ # note: the examples below are not run since they require interactivity if (FALSE) { # start the function in the interactive mode datsearch() # find all datasets tagged with the concept term 'standardized mean differences' datsearch("standardized mean differences") # find all datasets tagged with the concept terms 'odds ratio' and 'multilevel' datsearch("odds ratio, multilevel") # do a full-text search for the term 'infarct' datsearch("infarct", concept=FALSE) # do a full-text search for 'rma.mv(' (essentially finds all datasets where # the rma.mv() function was used in the examples section of a help file) datsearch("rma.mv(", concept=FALSE) } } \keyword{file} metadat/man/dat.mccurdy2020.Rd0000644000176200001440000001645014750466700015473 0ustar liggesusers\name{dat.mccurdy2020} \docType{data} \alias{dat.mccurdy2020} \title{Studies on the Generation Effect} \description{Results from 126 articles that examined the so-called \sQuote{generation effect}.} \usage{ dat.mccurdy2020 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{article} \tab \code{numeric} \tab article identifier \cr \bold{experiment} \tab \code{character} \tab experiment (within article) identifier \cr \bold{sample} \tab \code{numeric} \tab sample (within experiment) identifier \cr \bold{id} \tab \code{numeric} \tab row identifier \cr \bold{pairing} \tab \code{numeric} \tab identifier to indicate paired conditions within experiments \cr \bold{yi} \tab \code{numeric} \tab mean recall rate for the condition \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance \cr \bold{ni} \tab \code{numeric} \tab number of participants for the condition \cr \bold{stimuli} \tab \code{numeric} \tab number of stimuli for the condition \cr \bold{condition} \tab \code{factor} \tab condition (\sQuote{read} or \sQuote{generate}) \cr \bold{gen_difficulty} \tab \code{factor} \tab generation difficulty (\sQuote{low} or \sQuote{high}) \cr \bold{manip_type} \tab \code{factor} \tab manipulation type of the generate versus read condition (using a \sQuote{within} or \sQuote{between} subjects design) \cr \bold{present_style} \tab \code{factor} \tab presentation style (\sQuote{mixed} or \sQuote{pure} list presentation) \cr \bold{word_status} \tab \code{factor} \tab word status (\sQuote{words}, \sQuote{non-words}, or \sQuote{numbers}) \cr \bold{memory_test} \tab \code{factor} \tab memory test (\sQuote{recognition}, \sQuote{cued recall}, or \sQuote{free recall}) \cr \bold{memory_type} \tab \code{factor} \tab memory type (\sQuote{item}, \sQuote{source}, \sQuote{font color}, \sQuote{font type}, \sQuote{order}, \sQuote{cue word}, \sQuote{background color}, or \sQuote{location}) \cr \bold{gen_constraint} \tab \code{factor} \tab generation constraint (\sQuote{low}, \sQuote{medium}, or \sQuote{high}) \cr \bold{learning_type} \tab \code{factor} \tab learning type (\sQuote{incidental} or \sQuote{intentional}) \cr \bold{stimuli_relation} \tab \code{factor} \tab stimuli relation (\sQuote{semantic}, \sQuote{category}, \sQuote{antonym}, \sQuote{synonym}, \sQuote{rhyme}, \sQuote{compound words}, \sQuote{definitions}, or \sQuote{unrelated}) \cr \bold{gen_mode} \tab \code{factor} \tab generation mode (\sQuote{verbal/speaking}, \sQuote{covert/thinking}, or \sQuote{writing/typing}) \cr \bold{gen_task} \tab \code{factor} \tab generation task (\sQuote{anagram}, \sQuote{letter transposition}, \sQuote{word fragment}, \sQuote{sentence completion}, \sQuote{word stem}, \sQuote{calculation}, or \sQuote{cue only}) \cr \bold{attention} \tab \code{factor} \tab attention (\sQuote{divided} or \sQuote{full}) \cr \bold{pacing} \tab \code{factor} \tab pacing (\sQuote{self-paced} or \sQuote{timed}) \cr \bold{filler_task} \tab \code{factor} \tab filler task (\sQuote{yes} or \sQuote{no}) \cr \bold{age_grp} \tab \code{factor} \tab age group (\sQuote{younger} or \sQuote{older} adults) \cr \bold{retention_delay} \tab \code{factor} \tab retention delay (\sQuote{immediate}, \sQuote{short}, or \sQuote{long}) \cr } } \details{ The generation effect is the memory benefit for self-generated compared with read or experimenter-provided information (Jacoby, 1978; Slamecka & Graf, 1978). In a typical study, participants are presented with a list of stimuli (usually words or word pairs). For half of the stimuli, participants self-generate a target word (e.g., open–cl____), while for the other half, participants simply read an intact target word (e.g., above–below). On a later memory test for the target words, the common finding is that self-generated words are better remembered than read words (i.e., the generation effect). Although several theories have been proposed to explain the generation effect, there is still some debate on the underlying memory mechanism(s) contributing to this phenomenon. The meta-analysis by McCurdy et al. (2020) translated various theories on the generation effect into hypotheses that could then be tested in moderator analyses based on a dataset containing 126 articles, 310 experiments, and 1653 mean recall estimates collected under various conditions. Detailed explanations of the various variables coded (and how these can be used to test various hypotheses regarding the generation effect) can be found in the article. The most important variable is \code{condition}, which denotes whether a particular row of the dataset corresponds to the results of a \sQuote{read} or a \sQuote{generate} condition. The data structure is quite complex. Articles may have reported the findings from multiple experiments involving one or multiple samples that were examined under various conditions. The \code{pairing} variable indicates which rows of the dataset represent a pairing of a read condition with one or multiple corresponding generate conditions within an experiment. A pairing may involve the same sample of subjects (when using a within-subjects design for comparing the conditions) or different samples (when using a between-subjects design). } \source{ McCurdy, M. P., Viechtbauer, W., Sklenar, A. M., Frankenstein, A. N., & Leshikar, E. D. (2020). Theories of the generation effect and the impact of generation constraint: A meta-analytic review. \emph{Psychonomic Bulletin & Review}, \bold{27}(6), 1139--1165. \verb{https://doi.org/10.3758/s13423-020-01762-3} } \references{ Slamecka, N. J., & Graf, P. (1978). The generation effect: Delineation of a phenomenon. \emph{Journal of Experimental Psychology: Human Learning and Memory}, \bold{4}(6), 592--604. \verb{https://doi.org/10.1037/0278-7393.4.6.592} Jacoby, L. L. (1978). On interpreting the effects of repetition: Solving a problem versus remembering a solution. \emph{Journal of Verbal Learning and Verbal Behavior}, \bold{17}(6), 649--668. \verb{https://doi.org/10.1016/S0022-5371(78)90393-6} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.mccurdy2020 head(dat) \dontrun{ ### load metafor package library(metafor) ### fit multilevel mixed-effects meta-regression model res <- rma.mv(yi, vi, mods = ~ condition, random = list(~ 1 | article/experiment/sample/id, ~ 1 | pairing), data=dat, sparse=TRUE, digits=3) res ### proportion of total amount of heterogeneity due to each component data.frame(source=res$s.names, sigma2=round(res$sigma2, 3), prop=round(res$sigma2 / sum(res$sigma2), 2)) ### apply cluster-robust inference methods sav <- robust(res, cluster=article, clubSandwich=TRUE) sav ### estimated average recall rate in read and generate conditions predict(sav, newmods = c(0,1), digits=3) } } \keyword{datasets} \concept{psychology} \concept{memory} \concept{proportions} \concept{raw means} \concept{multilevel models} \concept{cluster-robust inference} \section{Concepts}{ psychology, memory, proportions, raw means, multilevel models, cluster-robust inference } metadat/man/dat.hasselblad1998.Rd0000644000176200001440000001543414750466700016157 0ustar liggesusers\name{dat.hasselblad1998} \docType{data} \alias{dat.hasselblad1998} \title{Studies on the Effectiveness of Counseling for Smoking Cessation} \description{Results from 24 studies on the effectiveness of various counseling types for smoking cessation.} \usage{ dat.hasselblad1998 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab id number for each treatment arm \cr \bold{study} \tab \code{numeric} \tab study id number \cr \bold{authors} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{trt} \tab \code{character} \tab intervention group \cr \bold{xi} \tab \code{numeric} \tab number of individuals abstinent \cr \bold{ni} \tab \code{numeric} \tab number of individuals in group } } \details{ The dataset includes the results from 24 studies on the effectiveness of various counseling types for smoking cessation (i.e., self-help, individual counseling, group counseling, and no contact). The dataset indicates the total number of individuals within each study arm and the number that were abstinent from 6 to 12 months. The majority of the studies compared two interventions types against each other, while 2 studies compared three types against each other simultaneously. The data can be used for a \sQuote{network meta-analysis} (also called a \sQuote{mixed treatment comparison}). The code below shows how such an analysis can be conducted using an arm-based and a contrast-based model (see Salanti et al., 2008, for more details). } \source{ Hasselblad, V. (1998). Meta-analysis of multitreatment studies. \emph{Medical Decision Making}, \bold{18}(1), 37--43. \verb{https://doi.org/10.1177/0272989X9801800110} } \references{ Gleser, L. J., & Olkin, I. (2009). Stochastically dependent effect sizes. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), \emph{The handbook of research synthesis and meta-analysis} (2nd ed., pp. 357--376). New York: Russell Sage Foundation. Law, M., Jackson, D., Turner, R., Rhodes, K., & Viechtbauer, W. (2016). Two new methods to fit models for network meta-analysis with random inconsistency effects. \emph{BMC Medical Research Methodology}, \bold{16}, 87. \verb{https://doi.org/10.1186/s12874-016-0184-5} Salanti, G., Higgins, J. P. T., Ades, A. E., & Ioannidis, J. P. A. (2008). Evaluation of networks of randomized trials. \emph{Statistical Methods in Medical Research}, \bold{17}(3), 279--301. \verb{https://doi.org/10.1177/0962280207080643} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.hasselblad1998 dat \dontrun{ ### load metafor package library(metafor) ### create network graph ('igraph' package must be installed) library(igraph, warn.conflicts=FALSE) pairs <- data.frame(do.call(rbind, sapply(split(dat$trt, dat$study), function(x) t(combn(x,2)))), stringsAsFactors=FALSE) lvls <- c("no_contact", "self_help", "ind_counseling", "grp_counseling") pairs$X1 <- factor(pairs$X1, levels=lvls) pairs$X2 <- factor(pairs$X2, levels=lvls) tab <- table(pairs[,1], pairs[,2]) tab # adjacency matrix g <- graph_from_adjacency_matrix(tab, mode = "plus", weighted=TRUE, diag=FALSE) vertex_attr(g, "name") <- c("No Contact", "Self-Help", "Individual\nCounseling", "Group\nCounseling") plot(g, edge.curved=FALSE, edge.width=E(g)$weight, layout=layout_on_grid, vertex.size=45, vertex.color="lightgray", vertex.label.color="black", vertex.label.font=2) ### calculate log odds for each study arm dat <- escalc(measure="PLO", xi=xi, ni=ni, add=1/2, to="all", data=dat) dat ### convert trt variable to factor with desired ordering of levels dat$trt <- factor(dat$trt, levels=c("no_contact", "self_help", "ind_counseling", "grp_counseling")) ### add a space before each level (this makes the output a bit more legible) levels(dat$trt) <- paste0(" ", levels(dat$trt)) ### network meta-analysis using an arm-based model with fixed study effects ### by setting rho=1/2, tau^2 reflects the amount of heterogeneity for all treatment comparisons res <- rma.mv(yi, vi, mods = ~ 0 + factor(study) + trt, random = ~ trt | study, rho=1/2, data=dat, btt="trt") res ### all pairwise odds ratios of interventions versus no contact predict(res, newmods=cbind(matrix(0, nrow=3, ncol=24), diag(3)), intercept=FALSE, transf=exp, digits=2) ### all pairwise odds ratios comparing interventions (ic vs sh, gc vs sh, and gc vs ic) predict(res, newmods=cbind(matrix(0, nrow=3, ncol=24), rbind(c(-1,1,0), c(-1,0,1), c(0,-1,1))), intercept=FALSE, transf=exp, digits=2) ### forest plot of ORs of interventions versus no contact forest(c(0,res$beta[25:27]), sei=c(0,res$se[25:27]), psize=1, xlim=c(-3,4), digits=c(2,1), efac=2, slab=c("No Contact", "Self-Help", "Individual Counseling", "Group Counseling"), atransf=exp, at=log(c(0.5, 1, 2, 4, 8)), xlab="Odds Ratio for Intervention vs. No Contact", header=c("Intervention", "Odds Ratio [95\% CI]")) ############################################################################ ### restructure dataset to a contrast-based format dat <- to.wide(dat.hasselblad1998, study="study", grp="trt", ref="no_contact", grpvars=6:7) ### calculate log odds ratios for each treatment comparison dat <- escalc(measure="OR", ai=xi.1, n1i=ni.1, ci=xi.2, n2i=ni.2, add=1/2, to="all", data=dat) dat ### calculate the variance-covariance matrix of the log odds ratios for multitreatment studies ### see Gleser & Olkin (2009), equation (19.11), for the covariance equation calc.v <- function(x) { v <- matrix(1/(x$xi.2[1] + 1/2) + 1/(x$ni.2[1] - x$xi.2[1] + 1/2), nrow=nrow(x), ncol=nrow(x)) diag(v) <- x$vi v } V <- bldiag(lapply(split(dat, dat$study), calc.v)) ### add contrast matrix to dataset dat <- contrmat(dat, grp1="trt.1", grp2="trt.2") dat ### network meta-analysis using a contrast-based random-effects model ### by setting rho=1/2, tau^2 reflects the amount of heterogeneity for all treatment comparisons res <- rma.mv(yi, V, mods = ~ 0 + self_help + ind_counseling + grp_counseling, random = ~ comp | study, rho=1/2, data=dat) res ### predicted odds ratios of interventions versus no contact predict(res, newmods=diag(3), transf=exp, digits=2) ### fit random inconsistency effects model (see Law et al., 2016) res <- rma.mv(yi, V, mods = ~ 0 + self_help + ind_counseling + grp_counseling, random = list(~ comp | study, ~ comp | design), rho=1/2, phi=1/2, data=dat) res } } \keyword{datasets} \concept{medicine} \concept{psychology} \concept{smoking} \concept{odds ratios} \concept{network meta-analysis} \section{Concepts}{ medicine, psychology, smoking, odds ratios, network meta-analysis } metadat/man/dat.dumouchel1994.Rd0000644000176200001440000000711214750466700016030 0ustar liggesusers\name{dat.dumouchel1994} \docType{data} \alias{dat.dumouchel1994} \title{Nitrogen dioxide data set} \description{Nine studies investigating the effect of NO2 exposure on respiratory illness in children.} \usage{ dat.dumouchel1994 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study label \cr \bold{smoke} \tab \code{factor} \tab adjustment for smoking (y/n) \cr \bold{no2} \tab \code{factor} \tab direct measurement of NO2 concentration (y/n) \cr \bold{gender} \tab \code{factor} \tab adjustment for gender (y/n) \cr \bold{or} \tab \code{numeric} \tab odds ratio for childhood respiratory illness \cr \bold{lower} \tab \code{numeric} \tab lower bound of 95 percent CI \cr \bold{upper} \tab \code{numeric} \tab upper bound of 95 percent CI } } \details{ Hasselblad et al. (1992) investigated the effects of nitrogen dioxide (NO2) exposure on the occurrence of respiratory illness in children. Their data were picked up by DuMouchel (1994) as an illustrative example in his article on Bayesian meta-analysis, and were also part of his \dQuote{\code{hblm}} S-Plus software package. DuMouchel's dataset differs slightly from the figures quoted by Hasselblad et al. (1992), apparently because he had additional, more detailed data available. The data set features three study-level covariables reflecting characteristics of the study designs, namely, whether the quoted estimate had been adjusted for parents' smoking status, whether NO2 exposure had been measured directly (or presence of a gas stove in the household had been used as a proxy instead), and whether the quoted effect had been adjusted for gender. Inclusion of the covariables allows to account for the studies' design features, quantify their effects, and adjust for these. } \source{ DuMouchel, W. H. (1994). Hierarchical Bayes linear models for meta-analysis. Technical Report 27, National Institute of Statistical Sciences (NISS); Research Triangle Park, NC, USA. \verb{https://www.niss.org/research/technical-reports/hierarchical-bayes-linear-models-meta-analysis-1994} } \references{ Hasselblad, V., Eddy, D. M., & Kotchmar, D. J. (1992). Synthesis of environmental evidence: Nitrogen dioxide epidemiology studies. \emph{Journal of the Air and Waste Management Association}, \bold{42}(5), 662--671. \verb{https://doi.org/10.1080/10473289.1992.10467018} } \author{ Christian Roever, \email{christian.roever@med.uni-goettingen.de} } \examples{ # show data: dat.dumouchel1994 \dontrun{ # derive effect sizes (log-ORs): library(metafor) no2 <- escalc(measure="OR", yi=log(or), sei=(log(upper)-log(lower))/(2*qnorm(0.975)), slab=study, data=dat.dumouchel1994) summary(no2) # compute overall meta-analysis: library(bayesmeta) bm01 <- bayesmeta(no2, tau.prior="DuMouchel") # show results: bm01 forestplot(bm01) traceplot(bm01) # perform meta-regression; # specify regressor matrix: X <- model.matrix( ~ smoke + no2 + gender, data=no2) colnames(X) <- c("intercept", "smoke", "no2", "gender") # perform regression: bm02 <- bmr(no2, X=X, tau.prior="DuMouchel") # show results: bm02 forestplot(bm02) #forestplot(bm02, xlab="log-OR", # X.mean=rbind("none" = c(1,0,0,0), # "smoke" = c(1,1,0,0), # "no2" = c(1,0,1,0), # "gender" = c(1,0,0,1), # "all three" = c(1,1,1,1))) traceplot(bm02) } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{meta-regression} \section{Concepts}{ medicine, odds ratios, meta-regression } metadat/man/dat.lim2014.Rd0000644000176200001440000001033414750466700014604 0ustar liggesusers\name{dat.lim2014} \docType{data} \alias{dat.lim2014} \title{Studies on the Association Between Maternal Size, Offspring Size, and Number of Offsprings} \description{Results from studies examining the association between maternal size, offspring size, and number of offsprings.} \usage{ dat.lim2014 } \format{ The object is a list containing data frames \code{m_o_size}, \code{m_o_fecundity}, \code{o_o_unadj}, and \code{o_o_adj} that contain the following columns and the corresponding phylogenetic trees called \code{m_o_size_tree}, \code{m_o_fecundity_tree}, \code{o_o_unadj_tree}, and \code{o_o_adj_tree}: \tabular{lll}{ \bold{article} \tab \code{numeric} \tab article id \cr \bold{author} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{species} \tab \code{character} \tab species \cr \bold{amniotes} \tab \code{character} \tab whether the species was amniotic \cr \bold{environment} \tab \code{character} \tab whether the species were wild or captive \cr \bold{reprounit} \tab \code{character} \tab whether the data were based on lifetime reproductive output or a single reproductive event (only in \code{m_o_size} and \code{m_o_fecundity}) \cr \bold{ri} \tab \code{numeric} \tab correlation coefficient \cr \bold{ni} \tab \code{numeric} \tab sample size } } \details{ The object \code{dat.lim2014} includes 4 datasets: \tabular{ll}{ \code{m_o_size} \tab on the correlation between maternal size and offspring size \cr \code{m_o_fecundity} \tab on the correlation between maternal size and number of offsprings \cr \code{o_o_unadj} \tab on the correlation between offspring size and number of offsprings \cr \code{o_o_adj} \tab on the correlation between offspring size and number of offsprings adjusted for maternal size } Objects \code{m_o_size_tree}, \code{m_o_fecundity_tree}, \code{o_o_unadj_tree}, and \code{o_o_adj_tree} are the corresponding phylogenetic trees for the species included in each of these datasets. } \source{ Lim, J. N., Senior, A. M., & Nakagawa, S. (2014). Heterogeneity in individual quality and reproductive trade-offs within species. \emph{Evolution}, \bold{68}(8), 2306--2318. \verb{https://doi.org/10.1111/evo.12446} } \references{ Cinar, O., Nakagawa, S., & Viechtbauer, W. (in press). Phylogenetic multilevel meta-analysis: A simulation study on the importance of modelling the phylogeny. \emph{Methods in Ecology and Evolution}. \verb{https://doi.org/10.1111/2041-210X.13760} Hadfield, J. D., & Nakagawa, S. (2010). General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. \emph{Journal of Evolutionary Biology}, \bold{23}(3), 494--508. \verb{https://doi.org/10.1111/j.1420-9101.2009.01915.x} Nakagawa, S., & Santos, E. S. A. (2012). Methodological issues and advances in biological meta-analysis. \emph{Evolutionary Ecology}, \bold{26}(5), 1253--1274. \verb{https://doi.org/10.1007/s10682-012-9555-5} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.lim2014$o_o_unadj dat[1:14, -c(2:3)] \dontrun{ ### load metafor package library(metafor) ### load ape package library(ape, warn.conflicts=FALSE) ### calculate r-to-z transformed correlations and corresponding sampling variances dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat) ### copy tree to 'tree' tree <- dat.lim2014$o_o_unadj_tree ### compute branch lengths tree <- compute.brlen(tree) ### compute phylogenetic correlation matrix A <- vcv(tree, corr=TRUE) ### make copy of the species variable dat$species.phy <- dat$species ### create effect size id variable dat$esid <- 1:nrow(dat) ### fit multilevel phylogenetic meta-analytic model res <- rma.mv(yi, vi, random = list(~ 1 | article, ~ 1 | esid, ~ 1 | species, ~ 1 | species.phy), R=list(species.phy=A), data=dat) res } } \keyword{datasets} \concept{ecology} \concept{evolution} \concept{correlation coefficients} \concept{multilevel models} \concept{phylogeny} \section{Concepts}{ ecology, evolution, correlation coefficients, multilevel models, phylogeny } metadat/man/dat.franchini2012.Rd0000644000176200001440000000726614750466700015774 0ustar liggesusers\name{dat.franchini2012} \docType{data} \alias{dat.franchini2012} \title{Studies on Dopamine Agonists to Reduce \dQuote{Off-Time} in Patients with Advanced Parkinson Disease} \description{Results from 7 trials examining the effectiveness of four dopamine agonists and placebo to reduce \dQuote{off-time} in patients with advanced Parkinson disease.} \usage{ dat.franchini2012 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{Study} \tab \code{character} \tab study label \cr \bold{Treatment1} \tab \code{character} \tab treatment 1 \cr \bold{y1} \tab \code{numeric} \tab treatment effect arm 1 \cr \bold{sd1} \tab \code{numeric} \tab standard deviation arm 2 \cr \bold{n1} \tab \code{integer} \tab sample size arm 1 \cr \bold{Treatment2} \tab \code{character} \tab treatment 2 \cr \bold{y2} \tab \code{numeric} \tab treatment effect arm 2 \cr \bold{sd2} \tab \code{numeric} \tab standard deviation arm 2 \cr \bold{n2} \tab \code{integer} \tab sample size arm 1 \cr \bold{Treatment3} \tab \code{character} \tab treatment 3 \cr \bold{y3} \tab \code{numeric} \tab treatment effect arm 3 \cr \bold{sd3} \tab \code{numeric} \tab standard deviation arm 2 \cr \bold{n3} \tab \code{integer} \tab sample size arm 1 } } \details{ This network meta-analysis compared the effectiveness of four active treatments and placebo in patients with advanced Parkinson disease (Franchini et al., 2012). The outcome is mean lost work-time reduction in patients given dopamine agonists as adjunct therapy. The data are given as sample size, mean, and standard deviation in each trial arm. This dataset was used as an example in the supplemental material of Dias et al. (2013) where placebo is coded as 1 and the four active drugs as 2 to 5. } \source{ Dias, S., Sutton, A. J., Ades, A. E., & Welton, N. J. (2013). Evidence synthesis for decision making 2: A generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. \emph{Medical Decision Making}, \bold{33}(5), 607--617. \verb{https://doi.org/10.1177/0272989X12458724} Franchini, A. J., Dias, S., Ades, A. E., Jansen, J. P., & Welton, N. J. (2012). Accounting for correlation in network meta-analysis with multi-arm trials. \emph{Research Synthesis Methods}, \bold{3}(2), 142--160. \verb{https://doi.org/10.1002/jrsm.1049} } \author{ Guido Schwarzer, \email{guido.schwarzer@uniklinik-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show results from first three studies; third study is a three-arm ### study head(dat.franchini2012, 3) \dontrun{ ### Load netmeta package suppressPackageStartupMessages(library("netmeta")) ### Print mean differences with two digits oldset <- settings.meta(digits = 2) ### Transform data from wide arm-based format to contrast-based ### format. Argument 'sm' must not be provided as the mean difference ### is the default in R function metacont() called internally. pw <- pairwise(list(Treatment1, Treatment2, Treatment3), n = list(n1, n2, n3), mean = list(y1, y2, y3), sd = list(sd1, sd2, sd3), data = dat.franchini2012, studlab = Study, sm = "MD") ### Show calculated mean differences (TE) for first three studies pw[1:5, c(3:7, 10, 1)] ### Conduct network meta-analysis net <- netmeta(pw) net ### Draw network graph netgraph(net, points = TRUE, cex.points = 3, cex = 1.5, plastic = TRUE, thickness = "se.fixed", iterate = TRUE, start = "eigen") ### Use previous settings settings.meta(oldset) } } \keyword{datasets} \concept{medicine} \concept{raw mean differences} \concept{network meta-analysis} \section{Concepts}{ medicine, raw mean differences, network meta-analysis } metadat/man/dat.hart1999.Rd0000644000176200001440000000670514750466700015015 0ustar liggesusers\name{dat.hart1999} \docType{data} \alias{dat.hart1999} \title{Studies on the Effectiveness of Warfarin for Preventing Strokes} \description{Results from 6 clinical trials examining the effectiveness of adjusted-dose warfarin for preventing strokes in patients with atrial fibrillation.} \usage{ dat.hart1999 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{trial} \tab \code{numeric} \tab trial number \cr \bold{study} \tab \code{character} \tab study name (abbreviated) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{x1i} \tab \code{numeric} \tab number of strokes in the warfarin group \cr \bold{n1i} \tab \code{numeric} \tab number of patients in the warfarin group \cr \bold{t1i} \tab \code{numeric} \tab total person-time (in years) in the warfarin group \cr \bold{x2i} \tab \code{numeric} \tab number of strokes in the placebo/control group \cr \bold{n2i} \tab \code{numeric} \tab number of patients in the placebo/control group \cr \bold{t2i} \tab \code{numeric} \tab total person-time (in years) in the placebo/control group \cr \bold{compgrp} \tab \code{character} \tab type of comparison group (placebo or control) \cr \bold{prevtype} \tab \code{character} \tab type of prevention (primary or secondary) \cr \bold{trinr} \tab \code{character} \tab target range for the international normalized ratio (INR) } } \details{ The 6 studies provide data with respect to the number of strokes in the warfarin and the comparison (placebo or control) group. In addition, the number of patients and the total person-time (in years) is provided for the two groups. The goal of the meta-analysis was to examine the effectiveness of adjusted-dose warfarin for preventing strokes in patients with atrial fibrillation. } \source{ Hart, R. G., Benavente, O., McBride, R., & Pearce, L. A. (1999). Antithrombotic therapy to prevent stroke in patients with atrial fibrillation: A meta-analysis. \emph{Annals of Internal Medicine}, \bold{131}(7), 492--501. \verb{https://doi.org/10.7326/0003-4819-131-7-199910050-00003} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.hart1999 dat \dontrun{ ### load metafor package library(metafor) ### calculate log incidence rate ratios and corresponding sampling variances dat <- escalc(measure="IRR", x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, data=dat) dat ### meta-analysis of log incidence rate ratios using a random-effects model res <- rma(yi, vi, data=dat) res ### average incidence rate ratio with 95\% CI predict(res, transf=exp) ### forest plot with extra annotations par(mar=c(5,4,1,2)) forest(res, xlim=c(-11, 5), at=log(c(0.05, 0.25, 1, 4)), atransf=exp, slab=paste0(study, " (", year, ")"), ilab=cbind(paste(x1i, "/", t1i, sep=" "), paste(x2i, "/", t2i, sep=" ")), ilab.xpos=c(-6.5,-4), cex=0.85, header="Study (Year)") op <- par(cex=0.85, font=2) text(c(-6.5,-4), 8.5, c("Warfarin", "Control")) text(c(-6.5,-4), 7.5, c("Strokes / PT", "Strokes / PT")) segments(x0=-8, y0=8, x1=-2.75, y1=8) par(op) ### meta-analysis of incidence rate differences using a random-effects model res <- rma(measure="IRD", x1i=x1i, x2i=x2i, t1i=t1i, t2i=t2i, data=dat) res } } \keyword{datasets} \concept{medicine} \concept{cardiology} \concept{incidence rates} \section{Concepts}{ medicine, cardiology, incidence rates } metadat/man/dat.berkey1998.Rd0000644000176200001440000001046214750466700015332 0ustar liggesusers\name{dat.berkey1998} \docType{data} \alias{dat.berkey1998} \title{Studies on Treatments for Periodontal Disease} \description{Results from 5 trials comparing surgical and non-surgical treatments for medium-severity periodontal disease one year after treatment. \loadmathjax} \usage{ dat.berkey1998 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{trial} \tab \code{numeric} \tab trial number \cr \bold{author} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{ni} \tab \code{numeric} \tab number of patients \cr \bold{outcome} \tab \code{character} \tab outcome (PD = probing depth; AL = attachment level) \cr \bold{yi} \tab \code{numeric} \tab observed mean difference in outcome (surgical versus non-surgical) \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance \cr \bold{v1i} \tab \code{numeric} \tab variances and covariances of the observed effects \cr \bold{v2i} \tab \code{numeric} \tab variances and covariances of the observed effects } } \details{ The dataset includes the results from 5 trials that compared surgical and non-surgical methods for the treatment of medium-severity periodontal disease. Reported outcomes include the change in probing depth (PD) and attachment level (AL) one year after the treatment. The outcome measure used for this meta-analysis was the (raw) mean difference, calculated in such a way that positive values indicate that surgery was more effective than non-surgical treatment in decreasing the probing depth and increasing the attachment level (so, the results from the various trials indicate that surgery is preferable for reducing the probing depth, while non-surgical treatment is preferable for increasing the attachment level). Since each trial provides effect size estimates for both outcomes, the estimates are correlated. A multivariate model can be used to meta-analyze the two outcomes simultaneously. The \code{v1i} and \code{v2i} values are the variances and covariances of the observed effects. In particular, for each study, variables \code{v1i} and \code{v2i} form a \mjeqn{2 \times 2}{2x2} variance-covariance matrix of the observed effects, with the diagonal elements corresponding to the sampling variances of the mean differences (the first for probing depth, the second for attachment level) and the off-diagonal value corresponding to the covariance of the two mean differences. Below, the full (block diagonal) variance-covariance for all studies is constructed from these two variables. } \source{ Berkey, C. S., Antczak-Bouckoms, A., Hoaglin, D. C., Mosteller, F., & Pihlstrom, B. L. (1995). Multiple-outcomes meta-analysis of treatments for periodontal disease. \emph{Journal of Dental Research}, \bold{74}(4), 1030--1039. \verb{https://doi.org/10.1177/00220345950740040201} Berkey, C. S., Hoaglin, D. C., Antczak-Bouckoms, A., Mosteller, F., & Colditz, G. A. (1998). Meta-analysis of multiple outcomes by regression with random effects. \emph{Statistics in Medicine}, \bold{17}(22), 2537--2550. \verb{https://doi.org/10.1002/(sici)1097-0258(19981130)17:22<2537::aid-sim953>3.0.co;2-c} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.berkey1998 dat \dontrun{ ### load metafor package library(metafor) ### construct block diagonal var-cov matrix of the observed outcomes based on variables v1i and v2i V <- vcalc(vi=1, cluster=author, rvars=c(v1i, v2i), data=dat) ### fit multiple outcomes (meta-regression) model (with REML estimation) res <- rma.mv(yi, V, mods = ~ 0 + outcome, random = ~ outcome | trial, struct="UN", data=dat) print(res, digits=3) ### test/estimate difference between the two outcomes anova(res, X=c(1,-1)) ### fit model including publication year as moderator for both outcomes (with ML estimation) res <- rma.mv(yi, V, mods = ~ 0 + outcome + outcome:I(year - 1983), random = ~ outcome | trial, struct="UN", data=dat, method="ML") print(res, digits=3) } } \keyword{datasets} \concept{medicine} \concept{dentistry} \concept{raw mean differences} \concept{multivariate models} \section{Concepts}{ medicine, dentistry, raw mean differences, multivariate models } metadat/man/dat.knapp2017.Rd0000644000176200001440000001461514750466700015145 0ustar liggesusers\name{dat.knapp2017} \docType{data} \alias{dat.knapp2017} \title{Studies on Differences in Planning Performance in Schizophrenia Patients versus Healthy Controls} \description{Results from 31 studies examining differences in planning performance in schizophrenia patients versus healthy controls.} \usage{ dat.knapp2017 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{author} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{study} \tab \code{numeric} \tab study id number \cr \bold{task} \tab \code{character} \tab type of task \cr \bold{difficulty} \tab \code{numeric} \tab task difficulty \cr \bold{group1} \tab \code{character} \tab identifier for patient group within studies \cr \bold{group2} \tab \code{character} \tab identifier for control group within studies \cr \bold{comp} \tab \code{numeric} \tab identifier for comparisons within studies \cr \bold{yi} \tab \code{numeric} \tab standardized mean difference for planning performance \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance \cr \bold{n_sz} \tab \code{numeric} \tab number of schizophrenic patients \cr \bold{n_hc} \tab \code{numeric} \tab number of healthy controls \cr \bold{yi} \tab \code{numeric} \tab standardized mean difference for IQ \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance } } \details{ The studies included in this dataset examined differences between schizophrenia patients and healthy controls with respect to their performance on the tower of London test (\url{https://en.wikipedia.org/wiki/Tower_of_London_test}) or a similar cognitive tasks measuring planning ability. The outcome measure for this meta-analysis was the standardized mean difference (with positive values indicating better performance in the healthy controls compared to the schizophrenia patients). The dataset has a more complex structure for several reasons: \enumerate{ \item Studies 2, 3, 9, and 20 included more than one schizophrenia patient group and the standardized mean differences were computed by comparing these groups against a single healthy control group. \item Studies 6, 12, 14, 15, 18, 19, 22, and 26 had the patients and controls complete different tasks of varying complexity (essentially the average number of moves required to complete a task). Study 6 also included two different task types. \item Study 24 provides two standardized mean differences, one for men and the other for women. \item Study 29 provides three standardized mean differences, corresponding to the three different COMT Val158Met genotypes (val/val, val/met, and met/met). } All 4 issues described above lead to a multilevel structure in the dataset, with multiple standardized mean differences nested within some of the studies. Issues 1. and 2. also lead to correlated sampling errors. } \source{ Knapp, F., Viechtbauer, W., Leonhart, R., Nitschke, K., & Kaller, C. P. (2017). Planning performance in schizophrenia patients: A meta-analysis of the influence of task difficulty and clinical and sociodemographic variables. \emph{Psychological Medicine}, \bold{47}(11), 2002--2016. \verb{https://doi.org/10.1017/S0033291717000459} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.knapp2017 dat[-c(1:2)] \dontrun{ ### load metafor package library(metafor) ### fit a standard random-effects model ignoring the issues described above res <- rma(yi, vi, data=dat) res ### fit a multilevel model with random effects for studies and comparisons within studies ### (but this ignored the correlation in the sampling errors) res <- rma.mv(yi, vi, random = ~ 1 | study/comp, data=dat) res ### create variable that indicates the task and difficulty combination as increasing integers dat$task.diff <- unlist(lapply(split(dat, dat$study), function(x) { task.int <- as.integer(factor(x$task)) diff.int <- as.integer(factor(x$difficulty)) diff.int[is.na(diff.int)] <- 1 paste0(task.int, ".", diff.int)})) ### construct correlation matrix for two tasks with four different difficulties where the ### correlation is 0.4 for different difficulties of the same task, 0.7 for the same ### difficulty of different tasks, and 0.28 for different difficulties of different tasks R <- matrix(0.4, nrow=8, ncol=8) R[5:8,1:4] <- R[1:4,5:8] <- 0.28 diag(R[1:4,5:8]) <- 0.7 diag(R[5:8,1:4]) <- 0.7 diag(R) <- 1 rownames(R) <- colnames(R) <- paste0(rep(1:2, each=4), ".", 1:4) R ### construct an approximate V matrix accounting for the use of shared groups and ### for correlations among tasks/difficulties as specified in the R matrix above V <- vcalc(vi, cluster=study, grp1=group1, grp2=group2, w1=n_sz, w2=n_hc, obs=task.diff, rho=R, data=dat) ### correlation matrix for study 3 with four patient groups and a single control group round(cov2cor(V[dat$study == 3, dat$study == 3]), 2) ### correlation matrix for study 6 with two tasks with four difficulties cov2cor(V[dat$study == 6, dat$study == 6]) ### correlation matrix for study 24 with two independent groups cov2cor(V[dat$study == 24, dat$study == 24]) ### correlation matrix for study 29 with three independent groups cov2cor(V[dat$study == 29, dat$study == 29]) ### fit multilevel model as above, but now use this V matrix in the model res <- rma.mv(yi, V, random = ~ 1 | study/comp, data=dat) res predict(res, digits=2) ### use cluster-robust inference methods based on this model robust(res, cluster=study) ### use methods from the clubSandwich package robust(res, cluster=study, clubSandwich=TRUE) ### examine if task difficulty is a potential moderator of the effect res <- rma.mv(yi, V, mods = ~ difficulty, random = ~ 1 | study/comp, data=dat) res sav <- robust(res, cluster=study) sav sav <- robust(res, cluster=study, clubSandwich=TRUE) sav ### draw bubble plot regplot(sav, xlab="Task Difficulty", ylab="Standardized Mean Difference", las=1, digits=1, bty="l") } } \keyword{datasets} \concept{psychology} \concept{standardized mean differences} \concept{multilevel models} \concept{multivariate models} \concept{cluster-robust inference} \concept{meta-regression} \section{Concepts}{ psychology, standardized mean differences, multilevel models, multivariate models, cluster-robust inference, meta-regression } metadat/man/dat.nielweise2008.Rd0000644000176200001440000000634214750466700016016 0ustar liggesusers\name{dat.nielweise2008} \docType{data} \alias{dat.nielweise2008} \title{Studies on Anti-Infective-Treated Central Venous Catheters for Prevention of Catheter-Related Bloodstream Infections} \description{Results from 18 studies comparing the risk of catheter-related bloodstream infection when using anti-infective-treated versus standard catheters for total parenteral nutrition or chemotherapy.} \usage{ dat.nielweise2008 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{authors} \tab \code{character} \tab study authors \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{x1i} \tab \code{numeric} \tab number of CRBSIs in patients receiving an anti-infective catheter \cr \bold{t1i} \tab \code{numeric} \tab total number of catheter days for patients receiving an anti-infective catheter \cr \bold{x2i} \tab \code{numeric} \tab number of CRBSIs in patients receiving a standard catheter \cr \bold{t2i} \tab \code{numeric} \tab total number of catheter days for patients receiving a standard catheter } } \details{ The use of a central venous catheter may lead to a catheter-related bloodstream infection (CRBSI), which in turn increases the risk of morbidity and mortality. Anti-infective-treated catheters have been developed that are meant to reduce the risk of CRBSIs. Niel-Weise et al. (2008) conducted a meta-analysis of studies comparing infection risk when using anti-infective-treated versus standard catheters for total parenteral nutrition or chemotherapy. The results from 9 such studies are included in this dataset. The dataset was used in the article by Stijnen et al. (2010) to illustrate various generalized linear mixed-effects models for the meta-analysis of incidence rates and incidence rate ratios (see \sQuote{References}). } \source{ Niel-Weise, B. S., Stijnen, T., & van den Broek, P. J. (2008). Anti-infective-treated central venous catheters for total parenteral nutrition or chemotherapy: A systematic review. \emph{Journal of Hospital Infection}, \bold{69}(2), 114--123. \verb{https://doi.org/10.1016/j.jhin.2008.02.020} } \references{ Stijnen, T., Hamza, T. H., & Ozdemir, P. (2010). Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. \emph{Statistics in Medicine}, \bold{29}(29), 3046--3067. \verb{https://doi.org/10.1002/sim.4040} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.nielweise2008 dat \dontrun{ ### load metafor package library(metafor) ### standard (inverse-variance) random-effects model res <- rma(measure="IRR", x1i=x1i, t1i=t1i, x2i=x2i, t2i=t2i, data=dat) print(res, digits=3) predict(res, transf=exp, digits=2) ### random-effects conditional Poisson model res <- rma.glmm(measure="IRR", x1i=x1i, t1i=t1i, x2i=x2i, t2i=t2i, data=dat, model="CM.EL") print(res, digits=3) predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{incidence rates} \concept{generalized linear models} \section{Concepts}{ medicine, incidence rates, generalized linear models } metadat/man/dat.bartos2023.Rd0000644000176200001440000001453414750466700015323 0ustar liggesusers\name{dat.bartos2023} \docType{data} \alias{dat.bartos2023} \title{Results of 350,757 Coin Flips to Examine Same-Side Bias} \description{Results from 350,757 coin flips by 48 people to examine the presence of same-side bias.} \usage{ dat.bartos2023 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{person} \tab \code{character} \tab person identifier \cr \bold{hsame} \tab \code{numeric} \tab number of flips where the coin landed on heads and on the same side as where it started \cr \bold{hdiff} \tab \code{numeric} \tab number of flips where the coin landed on heads and on the different side as where it started \cr \bold{tsame} \tab \code{numeric} \tab number of flips where the coin landed on tails and on the same side as where it started \cr \bold{tdiff} \tab \code{numeric} \tab number of flips where the coin landed on tails and on the different side as where it started \cr \bold{same} \tab \code{numeric} \tab number of flips where the coin landed on the same side as where it started \cr \bold{flips} \tab \code{numeric} \tab total number of flips } } \details{ In a landmark study by \enc{Bartoš}{Bartos} et al. (2023), 48 people flipped a coin (of various currencies and/or denominations) a total of 350,757 times, recording on each flip whether it landed on heads or tails and whether the coin landed on the same side as where it started or on the different side. The goal of this experiment was to examine the model by Diaconis, Holmes, and Montgomery (2007), according to which flipped coins have a slightly higher than 50\% chance (of around 51\% according to the D-H-M model) of landing on the same side as where they started. } \source{ \enc{Bartoš}{Bartos}, F., Sarafoglou, A., Godmann, H. R., Sahrani, A., Leunk, D. K., Gui, P. Y., Voss, D., Ullah, K., Zoubek, M. J., Nippold, F., Aust, F., Vieira, F. F., Islam, C.-G., Zoubek, A. J., Shabani, S., Petter, J., Roos, I. B., Finnemann, A., Lob, A. B., Hoffstadt, M. F., Nak, J., de Ron, J., Derks, K., Huth, K., Terpstra, S., Bastelica, T., Matetovici, M., Ott, V. L., Zetea, A. S., Karnbach, K., Donzallaz, M. C., John, A., Moore, R. M., Assion, F., van Bork, R., Leidinger, T. E., Zhao, X., Motaghi, A. K., Pan, T., Armstrong, H., Peng, T., Bialas, M., Pang, J. Y.-C., Fu, B., Yang, S., Lin, X., Sleiffer, D., Bognar, M., Aczel, B., & Wagenmakers, E.-J. (2023). Fair coins tend to land on the same side they started: Evidence from 350,757 flips. \emph{arXiv}, 2310.04153, v2. \verb{https://arxiv.org/abs/2310.04153} } \references{ Diaconis, P., Holmes, S., & Montgomery, R. (2007). Dynamical bias in the coin toss. \emph{SIAM Review}, \bold{49}(2), 211--235. \verb{https://doi.org/10.1137/s0036144504446436} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.bartos2023 dat \dontrun{ ### load metafor package library(metafor) ### compute proportions and the corresponding sampling variances dat <- escalc(measure="PR", xi=same, ni=flips, data=dat, slab=person) dat ### compute confidence intervals for the individual proportions (as in Table 1) summary(dat, digits=3)[c(1,6:8,13,14)] ### compute a confidence interval based on the column totals summary(escalc(measure="PR", xi=sum(dat$same), ni=sum(dat$flips)), digits=3) ### this is the same as meta-analyzing the proportions directly using an equal-effects ### model and also computing the sampling variances under the assumption that the true ### proportions are homogeneous rma(measure="PR", xi=same, ni=flips, vtype="AV", method="EE", data=dat, digits=3) ### fit a random-effects model res <- rma(yi, vi, data=dat) res ### profile likelihood confidence interval for tau^2 confint(res, type="PL") ### forest plot forest(res, refline=0.5, xlim=c(0.38,0.72), digits=c(3,2), efac=c(0,1)) ### funnel plot funnel(res, xlim=c(0.45,0.6), ylim=c(0,0.02)) ### fit a random-effects model excluding those with same-side proportions larger than 0.53 res <- rma(yi, vi, data=dat, subset=yi<=0.53) res confint(res, type="PL") ### fit a binomial-normal model res <- rma.glmm(measure="PLO", xi=same, ni=flips, data=dat) res predict(res, transf=plogis) ### conduct a meta-analysis for the proportions of heads (to examine heads-tails bias) dat <- escalc(measure="PR", xi=hdiff+hsame, ni=flips, data=dat) res <- rma(yi, vi, data=dat) res confint(res, type="PL") ### restructure the dataset for a bivariate meta-analysis of same-side and heads proportions dat <- dat.bartos2023 dat <- dat[rep(1:nrow(dat), each=2),] rownames(dat) <- NULL dat$outcome <- c("heads", "same") dat <- escalc(measure="PR", xi=hsame+hdiff, ni=flips, data=dat, include=outcome=="heads") dat <- escalc(measure="PR", xi=hsame+tsame, ni=flips, data=dat, include=outcome=="same") dat ### construct the 2x2 variance-covariance matrix of the proportions within persons dat$cov <- with(dat, (hsame/flips * (1-hsame/flips) - hsame/flips * tsame/flips - hsame/flips * hdiff/flips - hdiff/flips * tsame/flips) / flips) V <- lapply(split(dat, dat$person), \(x) matrix(c(x$vi[1], x$cov, x$vi[2]), nrow=2)) ### fit bivariate meta-analysis model res <- rma.mv(yi, V, mods = ~ 0 + outcome, random = ~ outcome | person, struct="UN", data=dat) res ### create plot with confidence ellipses ('ellipse' package must be installed) library(ellipse) plot(NA, xlim=c(0.45,0.62), ylim=c(0.45,0.62), bty="l", xlab="Pr(heads)", ylab="Pr(same)") abline(h=0.5, lty="dotted") abline(v=0.5, lty="dotted") # add confidence ellipses for persons invisible(tapply(dat, dat$person, \(x) { xy <- ellipse(matrix(c(x$vi[1],x$cov,x$vi[2]), nrow=2), centre=x$yi, level=0.95) lines(xy[,1],xy[,2], col="gray80") })) # add the points invisible(tapply(dat, dat$person, \(x) points(x$yi[1], x$yi[2], pch=21, bg="gray80", cex=1.5))) # add the 95\% PI ellipsis based on the model xy <- ellipse(res$G, centre=coef(res), level=0.95) lines(xy[,1],xy[,2], col="gray30", lwd=3, lty="dotted") # add the 95\% CI ellipsis based on the model xy <- ellipse(vcov(res), centre=coef(res), level=0.95) lines(xy[,1],xy[,2], col="gray30", lwd=3) # add the point for the pooled effects points(coef(res)[1], coef(res)[2], pch=21, bg="gray40", cex=2) } } \keyword{datasets} \concept{physics} \concept{human factors} \concept{proportions} \concept{multivariate models} \section{Concepts}{ physics, human factors, proportions, multivariate models } metadat/man/dat.dorn2007.Rd0000644000176200001440000000666614750466700015004 0ustar liggesusers\name{dat.dorn2007} \docType{data} \alias{dat.dorn2007} \title{Studies on Complementary and Alternative Medicine for Irritable Bowel Syndrome} \description{Results from 19 trials examining complementary and alternative medicine (CAM) for irritable bowel syndrome (IBS).} \usage{ dat.dorn2007 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab trial id number \cr \bold{study} \tab \code{character} \tab (first) author \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{country} \tab \code{character} \tab country where trial was conducted \cr \bold{ibs.crit} \tab \code{character} \tab IBS diagnostic criteria (Manning, Rome I, Rome II, or Other) \cr \bold{days} \tab \code{numeric} \tab number of treatment days \cr \bold{visits} \tab \code{numeric} \tab number of practitioner visits \cr \bold{jada} \tab \code{numeric} \tab Jadad score \cr \bold{x.a} \tab \code{numeric} \tab number of responders in the active treatment group \cr \bold{n.a} \tab \code{numeric} \tab number of participants in the active treatment group \cr \bold{x.p} \tab \code{numeric} \tab number of responders in the placebo group \cr \bold{n.p} \tab \code{numeric} \tab number of participants in the placebo group } } \details{ The dataset includes the results from 19 randomized clinical trials that examined the effectiveness of complementary and alternative medicine (CAM) for irritable bowel syndrome (IBS). } \note{ The data were extracted from Table I in Dorn et al. (2009). Comparing the funnel plot in Figure 1 with the one obtained below indicates that the data for study 5 (Davis et al., 2006) in the table were not the ones that were used in the actual analyses. } \source{ Dorn, S. D., Kaptchuk, T. J., Park, J. B., Nguyen, L. T., Canenguez, K., Nam, B. H., Woods, K. B., Conboy, L. A., Stason, W. B., & Lembo, A. J. (2007). A meta-analysis of the placebo response in complementary and alternative medicine trials of irritable bowel syndrome. \emph{Neurogastroenterology & Motility}, \bold{19}(8), 630--637. \verb{https://doi.org/10.1111/j.1365-2982.2007.00937.x} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.dorn2007 dat \dontrun{ ### load metafor package library(metafor) ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=x.a, n1i=n.a, ci=x.p, n2i=n.p, data=dat) ### random-effects model res <- rma(yi, vi, data=dat, digits=2, method="DL") res ### estimated average risk ratio predict(res, transf=exp) ### funnel plot with study 5 highlighted in red funnel(res, atransf=exp, at=log(c(0.1, 0.2, 0.5, 1, 2, 5, 10)), ylim=c(0,1), steps=6, las=1, col=ifelse(id == 5, "red", "black")) ### change log risk ratio for study 5 dat$yi[5] <- -0.44 ### results are now more in line with what is reported in the paper ### (although the CI in the paper is not wide enough) res <- rma(yi, vi, data=dat, digits=2, method="DL") predict(res, transf=exp) ### funnel plot with study 5 highlighted in red funnel(res, atransf=exp, at=log(c(0.1, 0.2, 0.5, 1, 2, 5, 10)), ylim=c(0,1), steps=6, las=1, col=ifelse(id == 5, "red", "black")) } } \keyword{datasets} \concept{medicine} \concept{alternative medicine} \concept{risk ratios} \section{Concepts}{ medicine, alternative medicine, risk ratios } metadat/man/dat.ursino2021.Rd0000644000176200001440000001414214750466700015341 0ustar liggesusers\name{dat.ursino2021} \docType{data} \alias{dat.ursino2021} \title{Sorafenib Toxicity Dataset} \description{13 studies investigating the occurrence of dose limiting toxicities (DLTs) at different doses of Sorafenib.} \usage{ dat.ursino2021 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study label \cr \bold{year} \tab \code{integer} \tab publication year \cr \bold{dose} \tab \code{numeric} \tab dose (\eqn{\mathrm{mg}}) \cr \bold{events} \tab \code{integer} \tab number of DLTs \cr \bold{total} \tab \code{integer} \tab number of patients exposed \cr } } \details{ Sorafenib (BAY 43-9006, Nexavar) is a kinase inhibitor that is used in the treatment of advanced renal cell carcinoma, hepatocellular carcinoma, and radioactive iodine resistant advanced thyroid carcinoma. Thirteen trials with published results, described in eleven manuscripts, were identified in a literature search. This dataset contains the doses investigated, the numbers of patients treated, and the number of dose-limiting toxicities (DLTs) observed. In general, each study investigated several doses according to some dose-escalation scheme. } \source{ Ursino, M., Roever, C., Zohar, S., & Friede T. (2021). Random-effects meta-analysis of phase I dose-finding studies using stochastic process priors. \emph{The Annals of Applied Statistics}, \bold{15}(1), 174--193. \verb{https://doi.org/10.1214/20-AOAS1390} Roever, C., Ursino, M., Friede, T., & Zohar, S. (2022). A straighforward meta-analysis approach for oncology phase I dose-finding studies. \emph{Statistics in Medicine}, \bold{41}(20), 3915--3940. \verb{https://doi.org/10.1002/sim.9484} } \references{ European Medicines Agency (EMA) (2022). Nexavar (sorafenib) EPAR summary. \verb{https://www.ema.europa.eu/en/medicines/human/EPAR/nexavar} Awada, A., Hendlisz, A., Gil, T., \emph{et al.} (2005). Phase I safety and pharmacokinetics of BAY 43-9006 administered for 21 days on / 7 days off in patients with advanced, refractory solid tumours. \emph{British Journal of Cancer}, \bold{92}(10), 1855. \verb{https://doi.org/10.1038/sj.bjc.6602584} Clark, J. W., Eder, J. P., Ryan, D., Lathia, C., & Lenz, H.-J. (2005). Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43-9006, in patients with advanced, refractory solid tumors. \emph{Clinical Cancer Research}, \bold{11}(15), 5472--5480. \verb{https://doi.org/10.1158/1078-0432.CCR-04-2658} Moore, M., Hirte, H. W., Siu, L., \emph{et al.} (2005). Phase I study to determine the safety and pharmacokinetics of the novel Raf kinase and VEGFR inhibitor BAY 43-9006, administered for 28 days on / 7 days off in patients with advanced, refractory solid tumors. \emph{Annals of Oncology}, \bold{16}(10), 1688--1694. \verb{https://doi.org/10.1093/annonc/mdi310} Strumberg, D., Richly, H., Hilger, R. A., \emph{et al.} (2005). Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. \emph{Journal of Clinical Oncology}, \bold{23}(5), 965--972. \verb{https://doi.org/10.1200/JCO.2005.06.124} Furuse, J., Ishii, H., Nakachi, K., Suzuki, E., Shimizu, S., & Nakajima, K. (2008). Phase I study of sorafenib in Japanese patients with hepatocellular carcinoma. \emph{Cancer Science}, \bold{99}(1), 159--165. \verb{https://doi.org/10.1111/j.1349-7006.2007.00648.x} Minami, H., Kawada, K., Ebi, H., \emph{et al.} (2008). Phase I and pharmacokinetic study of sorafenib, an oral multikinase inhibitor, in Japanese patients with advanced refractory solid tumors. \emph{Cancer Science}, \bold{99}(7), 1492--1498. \verb{https://doi.org/10.1111/j.1349-7006.2008.00837.x} Miller, A. A., Murry, D. J., Owzar, K., \emph{et al.} (2009). Phase I and pharmacokinetic study of sorafenib in patients with hepatic or renal dysfunction: CALGB 60301. \emph{Journal of Clinical Oncology}, \bold{27}(11), 1800. \verb{https://doi.org/10.1200/JCO.2008.20.0931} Crump, M., Hedley, D., Kamel-Reid, S., \emph{et al.} (2010). A randomized phase I clinical and biologic study of two schedules of sorafenib in patients with myelodysplastic syndrome or acute myeloid leukemia: A NCIC (National Cancer Institute of Canada) Clinical Trials Group Study. \emph{Leukemia and Lymphoma}, \bold{51}(2), 252--260. \verb{https://doi.org/10.3109/10428190903585286} Borthakur, G., Kantarjian, H., Ravandi, F., \emph{et al.} (2011). Phase I study of sorafenib in patients with refractory or relapsed acute Leukemias. \emph{Haematologica}, \bold{96}(1), 62--68. \verb{https://doi.org/10.3324/haematol.2010.030452} Nabors, L. B., Supko, J. G., Rosenfeld, M., \emph{et al.} (2011). Phase I trial of sorafenib in patients with recurrent or progressive malignant glioma. \emph{Neuro-Oncology}, \bold{13}(12), 1324--1330. \verb{https://doi.org/10.1093/neuonc/nor145} Chen, Y.-B., Li, S., Lane, A. A., \emph{et al.} (2014). Phase I trial of maintenance sorafenib after allogeneic hematopoietic stem cell transplantation for FMS-like tyrosine kinase 3 internal tandem duplication acute myeloid leukemia. \emph{Biology of Blood and Marrow Transplantation}, \bold{20}(12), 2042--2048. \verb{https://doi.org/10.1016/j.bbmt.2014.09.007} } \seealso{ \code{\link{dat.roever2022}} } \author{ Christian Roever, \email{christian.roever@med.uni-goettingen.de} } \examples{ # show (some) data head(dat.ursino2021, n=15) \dontrun{ # illustrate data plot(NA, xlim=range(dat.ursino2021$dose), ylim=0:1, xlab="dose (mg)", ylab="proportion", main="dat.ursino2021 (Sorafenib data)") studylab <- unique(dat.ursino2021$study) colvec <- rainbow(length(studylab)) for (i in 1:length(studylab)) { idx <- (dat.ursino2021$study == studylab[i]) lines(dat.ursino2021[idx,"dose"], dat.ursino2021[idx,"events"] / dat.ursino2021[idx,"total"], col=colvec[i], type="b") } legend("topleft", studylab, col=colvec, pch=15) } } \keyword{datasets} \concept{medicine} \concept{oncology} \concept{dose-response models} \section{Concepts}{ medicine, oncology, dose-response models } metadat/man/dat.crede2010.Rd0000644000176200001440000001003714750466700015101 0ustar liggesusers\name{dat.crede2010} \docType{data} \alias{dat.crede2010} \title{Studies on the Relationship between Class Attendance and Grades in College Students} \description{Results from 68 studies on the relationship between class attendence and class performance and/or grade point average in college students.} \usage{ dat.crede2010 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{studyid} \tab \code{numeric} \tab study number \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{source} \tab \code{character} \tab study source (journal, dissertation, other) \cr \bold{sampleid} \tab \code{numeric} \tab sample within study number \cr \bold{criterion} \tab \code{character} \tab criterion variable (grade, gpa) \cr \bold{class} \tab \code{character} \tab class type (science, nonscience) \cr \bold{ni} \tab \code{numeric} \tab sample size \cr \bold{ri} \tab \code{numeric} \tab observed correlation } } \details{ The 68 studies included in this dataset provide information about the relationship between class attendance of college students and their performance (i.e., grade) in the class and/or their overall grade point average. Some studies included multiple samples and hence the dataset actually contains 97 correlation coefficients. The dataset was obtained via personal communication. Note that this dataset differs just slightly from the one used by Credé et al. (2010). } \source{ Personal communication. } \references{ Credé, M., Roch, S. G., & Kieszczynka, U. M. (2010). Class attendance in college: A meta-analytic review of the relationship of class attendance with grades and student characteristics. \emph{Review of Educational Research}, \bold{80}(2), 272--295. \verb{https://doi.org/10.3102/0034654310362998} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.crede2010 head(dat, 18) \dontrun{ ### load metafor package library(metafor) ### calculate r-to-z transformed correlations and corresponding sampling variances dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat) ############################################################################ ### meta-analysis for the relationship between attendance and grades res <- rma(yi, vi, data=dat, subset=criterion=="grade") res ### estimated average correlation with 95\% CI/PI predict(res, transf=transf.ztor, digits=2) ### examine if relationship between attendance and grades differs for nonscience/science classes res <- rma(yi, vi, mods = ~ class, data=dat, subset=criterion=="grade") res ### estimated average correlations for nonscience and science classes predict(res, newmods=c(0,1), transf=transf.ztor, digits=2) ### examine if relationship between attendance and grades has changed over time res <- rma(yi, vi, mods = ~ year, data=dat, subset=criterion=="grade") res ############################################################################ ### meta-analysis for the relationship between attendance and GPA res <- rma(yi, vi, data=dat, subset=criterion=="gpa") res ### estimated average correlation with 95\% CI/PI predict(res, transf=transf.ztor, digits=2) ### examine if relationship between attendance and GPA has changed over time res <- rma(yi, vi, mods = ~ year, data=dat, subset=criterion=="gpa") res ############################################################################ ### use a multilevel model to examine the relationship between attendance and grades res <- rma.mv(yi, vi, random = ~ 1 | studyid/sampleid, data=dat, subset=criterion=="grade") res predict(res, transf=transf.ztor, digits=2) ### use a multilevel model to examine the relationship between attendance and gpa res <- rma.mv(yi, vi, random = ~ 1 | studyid/sampleid, data=dat, subset=criterion=="gpa") res predict(res, transf=transf.ztor, digits=2) } } \keyword{datasets} \concept{education} \concept{correlation coefficients} \concept{multilevel models} \section{Concepts}{ education, correlation coefficients, multilevel models } metadat/man/dat.tannersmith2016.Rd0000644000176200001440000001103614750466700016361 0ustar liggesusers\name{dat.tannersmith2016} \docType{data} \alias{dat.tannersmith2016} \title{Studies on the Relationship between School Motivation and Criminal Behavior} \description{Results from 17 studies on the correlation between school motivation/attitudes and subsequent delinquent/criminal behavior.} \usage{ dat.tannersmith2016 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{studyid} \tab \code{numeric} \tab study identifier \cr \bold{yi} \tab \code{numeric} \tab r-to-z transformed correlation coefficient \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance \cr \bold{sei} \tab \code{numeric} \tab corresponding standard error \cr \bold{aget1} \tab \code{numeric} \tab age at which the school motivation/attitudes were assessed \cr \bold{aget2} \tab \code{numeric} \tab age at which the delinquent/criminal behavior was assessed \cr \bold{propmale} \tab \code{numeric} \tab proportion of male participants in the sample \cr \bold{sexmix} \tab \code{character} \tab whether the sample consisted only of males, only of females, or a mix } } \details{ The dataset includes 113 r-to-z transformed correlation coefficients from 17 prospective longitudinal studies that examined the relationship between school motivation/attitudes and subsequent delinquent/criminal behavior. Multiple coefficients could be extracted from the studies \dQuote{given the numerous ways in which school motivation/attitudes variables could be operationalized (e.g., academic aspirations, academic self-efficacy) as well as the numerous ways in which crime/delinquency could be operationalized (e.g., property crime, violent crime)} (Tanner-Smith et al., 2016). Since information to compute the covariance between multiple coefficients within studies is not available, Tanner-Smith et al. (2016) illustrate the use of cluster-robust inference methods for the analysis of this dataset. Note that this dataset is only meant to be used for pedagogical and demonstration purposes and does not constitute a proper review or synthesis of the complete and current research evidence on the given topic. } \source{ Tanner-Smith, E. E., Tipton, E. & Polanin, J. R. (2016). Handling complex meta-analytic data structures using robust variance estimates: A tutorial in R. \emph{Journal of Developmental and Life-Course Criminology}, \bold{2}(1), 85--112. \verb{https://doi.org/10.1007/s40865-016-0026-5} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.tannersmith2016 head(dat) \dontrun{ ### load metafor package library(metafor) ### compute mean age variables within studies dat$aget1 <- ave(dat$aget1, dat$studyid) dat$aget2 <- ave(dat$aget2, dat$studyid) ### construct an effect size identifier variable dat$esid <- 1:nrow(dat) ### construct an approximate var-cov matrix assuming a correlation of 0.8 ### for multiple coefficients arising from the same study V <- vcalc(vi, cluster=studyid, obs=esid, rho=0.8, data=dat) ### fit a multivariate random-effects model using the approximate var-cov matrix V res <- rma.mv(yi, V, random = ~ esid | studyid, data=dat) res ### use cluster-robust inference methods robust(res, cluster=studyid, clubSandwich=TRUE) ### note: the results obtained above and below are slightly different compared ### to those given by Tanner-Smith et al. (2016) since the approach illustrated ### here makes use a multivariate random-effects model for the 'working model' ### before applying the cluster-robust inference methods, while the results given ### in the paper are based on a somewhat simpler working model ### examine the main effects of the age variables res <- rma.mv(yi, V, mods = ~ aget1 + aget2, random = ~ 1 | studyid/esid, data=dat) robust(res, cluster=studyid, clubSandwich=TRUE) ### also examine their interaction res <- rma.mv(yi, V, mods = ~ aget1 * aget2, random = ~ 1 | studyid/esid, data=dat) robust(res, cluster=studyid, clubSandwich=TRUE) ### add the sexmix factor to the model res <- rma.mv(yi, V, mods = ~ aget1 * aget2 + sexmix, random = ~ 1 | studyid/esid, data=dat) robust(res, cluster=studyid, clubSandwich=TRUE) } } \keyword{datasets} \concept{psychology} \concept{criminology} \concept{correlation coefficients} \concept{multilevel models} \concept{cluster-robust inference} \concept{meta-regression} \section{Concepts}{ psychology, criminology, correlation coefficients, multilevel models, cluster-robust inference, meta-regression } metadat/man/dat.hine1989.Rd0000644000176200001440000000521214750466700014771 0ustar liggesusers\name{dat.hine1989} \docType{data} \alias{dat.hine1989} \title{Studies on Prophylactic Use of Lidocaine After a Heart Attack} \description{Results from 6 studies evaluating mortality from prophylactic use of lidocaine in acute myocardial infarction.} \usage{ dat.hine1989 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{source} \tab \code{character} \tab source of data \cr \bold{n1i} \tab \code{numeric} \tab number of patients in lidocaine group \cr \bold{n2i} \tab \code{numeric} \tab number of patients in control group \cr \bold{ai} \tab \code{numeric} \tab number of deaths in lidocaine group \cr \bold{ci} \tab \code{numeric} \tab number of deaths in control group } } \details{ Hine et al. (1989) conducted a meta-analysis of death rates in randomized controlled trials in which prophylactic lidocaine was administered to patients with confirmed or suspected acute myocardial infarction. The dataset describes the mortality at the end of the assigned treatment period for control and intravenous lidocaine treatment groups for six studies. The question of interest is whether there is a detrimental effect of lidocaine. Because the studies were conducted to compare rates of arrhythmias following a heart attack, the studies, taken individually, are too small to detect important differences in mortality rates. The data in this dataset were obtained from Table I in Normand (1999, p. 322). } \source{ Normand, S. T. (1999). Meta-analysis: Formulating, evaluating, combining, and reporting. \emph{Statistics in Medicine}, \bold{18}(3), 321--359. \verb{https://doi.org/10.1002/(sici)1097-0258(19990215)18:3<321::aid-sim28>3.0.co;2-p} } \references{ Hine, L. K., Laird, N., Hewitt, P., & Chalmers, T. C. (1989). Meta-analytic evidence against prophylactic use of lidocaine in acute myocardial infarction. \emph{Archives of Internal Medicine}, \bold{149}(12), 2694--2698. \verb{https://doi.org/10.1001/archinte.1989.00390120056011} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.hine1989 dat \dontrun{ ### load metafor package library(metafor) ### calculate risk differences and corresponding sampling variances dat <- escalc(measure="RD", n1i=n1i, n2i=n2i, ai=ai, ci=ci, data=dat) dat ### meta-analysis of risk differences using a random-effects model res <- rma(yi, vi, data=dat) res } } \keyword{datasets} \concept{medicine} \concept{cardiology} \concept{risk differences} \section{Concepts}{ medicine, cardiology, risk differences } metadat/man/dat.roever2022.Rd0000644000176200001440000001451114750466700015325 0ustar liggesusers\name{dat.roever2022} \docType{data} \alias{dat.roever2022} \title{Irinotecan / S-1 Toxicity Dataset} \description{12 studies investigating the occurrence of dose limiting toxicities (DLTs) at different doses of a combination therapy of Irinotecan and S-1.} \usage{ dat.roever2022 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study label \cr \bold{year} \tab \code{integer} \tab publication year \cr \bold{dose} \tab \code{numeric} \tab dose (\eqn{\mathrm{mg} / \mathrm{m}^2}) \cr \bold{events} \tab \code{integer} \tab number of DLTs \cr \bold{total} \tab \code{integer} \tab number of patients exposed \cr } } \details{ A combination therapy of Irinotecan (a topoisomerase 1 inhibitor) and S-1 (a combination of three pharmacological compounds, namely, tegafur, gimeracil, and oteracil potassium) was tested in advanced colorectal and gastric cancer. This dataset contains data from twelve studies investigating this therapy in a Japanese population; it contains the doses investigated, the numbers of patients treated, and the number of dose-limiting toxicities (DLTs) observed. In general, each study investigated several doses according to some dose-escalation scheme. } \source{ Ursino, M., Roever, C., Zohar, S., & Friede T. (2021). Random-effects meta-analysis of phase I dose-finding studies using stochastic process priors. \emph{The Annals of Applied Statistics}, \bold{15}(1), 174--193. \verb{https://doi.org/10.1214/20-AOAS1390} Roever, C., Ursino, M., Friede, T., & Zohar, S. (2022). A straighforward meta-analysis approach for oncology phase I dose-finding studies. \emph{Statistics in Medicine}, \bold{41}(20), 3915--3940. \verb{https://doi.org/10.1002/sim.9484} } \references{ European Medicines Agency (EMA) (2021). Onivyde pegylated liposomal (irinotecan hydrochloride trihydrate) EPAR summary. \verb{https://www.ema.europa.eu/en/medicines/human/EPAR/onivyde-pegylated-liposomal} European Medicines Agency (EMA) (2022). Teysuno (tegafur/gimeracil/oteracil) EPAR summary. \verb{https://www.ema.europa.eu/en/medicines/human/EPAR/teysuno} Yamada, Y., Yasui, H., Goto, A., \emph{et al.} (2003). Phase I study of irinotecan and S-1 combination therapy in patients with metastatic gastric cancer. \emph{International Journal of Clinical Oncology}, \bold{8}(6), 374--380. \verb{https://doi.org/10.1007/s10147-003-0359-z} Takiuchi, H., Narahara, H., Tsujinaka, T., \emph{et al.} (2005). Phase I study of S-1 combined with irinotecan (CPT-11) in patients with advanced gastric cancer (OGSG 0002). \emph{Japanese Journal of Clinical Oncology}, \bold{35}(9), 520--525. \verb{https://doi.org/10.1093/jjco/hyi148} Inokuchi, M., Yamashita, T., Yamada, H., \emph{et al.} (2006). Phase I/II study of S-1 combined with irinotecan for metastatic advanced gastric cancer. \emph{British Journal of Cancer}, \bold{94}(8), 11130. \verb{https://doi.org/10.1038/sj.bjc.6603072} Nakafusa, Y., Tanaka, M., Ohtsuka, T., \emph{et al.} (2008). Phase I/II study of combination therapy with S-1 and CPT-11 for metastatic colorectal cancer. \emph{Molecular Medicine Reports}, \bold{1}(6), 925--930. \verb{https://doi.org/10.3892/mmr_00000051} Ishimoto, O., Ishida, T., Honda, Y., Munakata, M., & Sugawara, S. (2009). Phase I study of daily S-1 combined with weekly irinotecan in patients with advanced non-small cell lung cancer. \emph{International Journal of Clinical Oncology}, \bold{14}(1), 43--47. \verb{https://doi.org/10.1007/s10147-008-0796-9} Ogata, Y., Sasatomi, T., Akagi, Y., Ishibashi, N., Mori, S., & Shirouzu, K. (2009). Dosage escalation study of S-1 and irinotecan in metronomic chemotherapy against advanced colorectal cancer. \emph{The Kurume Medical Journal}, \bold{56}(1+2), 1--7. \verb{https://doi.org/10.2739/kurumemedj.56.1} Shiozawa, M., Sugano, N., Tsuchida, K., Morinaga, S., Akaike, M., & Sugimasa, Y. (2009). A phase I study of combination therapy with S-1 and irinotecan (CPT-11) in patients with advanced colorectal cancer. \emph{Journal of Cancer Research and Clinical Oncology}, \bold{135}(3), 365--370. \verb{https://doi.org/10.1007/s00432-008-0480-5} Yoshioka, T., Kato, S., Gamoh, M., \emph{et al.} (2009). Phase I/II study of sequential therapy with irinotecan and S-1 for metastatic colorectal cancer. \emph{British Journal of Cancer}, \bold{101}, 1972--1977. \verb{https://doi.org/10.1038/sj.bjc.6605432} Komatsu, Y., Yuki, S., Fuse, N., \emph{et al.} (2010). Phase 1/2 clinical study of irinotecan and oral S-1 (IRIS) in patients with advanced gastric cancer. \emph{Advances in Therapy}, \bold{27}(7), 483--492. \verb{https://doi.org/10.1007/s12325-010-0037-2} Kusaba, H., Esaki, T., Futami, K., \emph{et al.} (2010). Phase I/II study of a 3-week cycle of irinotecan and S-1 in patients with advanced colorectal cancer. \emph{Cancer Science}, \bold{101}(12), 2591--2595. \verb{https://doi.org/10.1111/j.1349-7006.2010.01728.x} Yoda, S., Soejima, K., Yasuda, H., \emph{et al.} (2011). A phase I study of S-1 and irinotecan combination therapy in previously treated advanced non-small cell lung cancer patients. \emph{Cancer Chemotherapy and Pharmacology}, \bold{67}(3), 717--722. \verb{https://doi.org/10.1007/s00280-010-1539-y} Goya, H., Kuraishi, H., Koyama, S., \emph{et al.} (2012). Phase I/II study of S-1 combined with biweekly irinotecan chemotherapy in previously treated advanced non-small cell lung cancer. \emph{Cancer Chemotherapy and Pharmacology}, \bold{70}(5), 691--697. \verb{https://doi.org/10.1007/s00280-012-1957-0} } \seealso{ \code{\link{dat.ursino2021}} } \author{ Christian Roever, \email{christian.roever@med.uni-goettingen.de} } \examples{ # show (some) data head(dat.roever2022, n=10) \dontrun{ # illustrate data plot(NA, xlim=range(dat.roever2022$dose), ylim=0:1, xlab="dose (mg / m²)", ylab="proportion", main="dat.roever2022 (Irinotecan / S-1 data)") studylab <- unique(dat.roever2022$study) colvec <- rainbow(length(studylab)) for (i in 1:length(studylab)) { idx <- (dat.roever2022$study == studylab[i]) lines(dat.roever2022[idx,"dose"], dat.roever2022[idx,"events"] / dat.roever2022[idx,"total"], col=colvec[i], type="b") } legend("topleft", studylab, col=colvec, pch=15) } } \keyword{datasets} \concept{medicine} \concept{oncology} \concept{dose-response models} \section{Concepts}{ medicine, oncology, dose-response models } metadat/man/dat.riley2003.Rd0000644000176200001440000000731514750466700015152 0ustar liggesusers\name{dat.riley2003} \docType{data} \alias{dat.riley2003} \title{Studies on MYC-N as a Prognostic Marker for Neuroblastoma} \description{Results from 81 studies examining overall and disease-free survival in neuroblastoma patients with amplified versus normal MYC-N protein levels.} \usage{ dat.riley2003 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{yi} \tab \code{numeric} \tab log hazard ratio of the outcome in those with amplified versus normal MYC-N protein levels \cr \bold{vi} \tab \code{numeric} \tab sampling variance of the log hazard ratio \cr \bold{sei} \tab \code{numeric} \tab standard error of the log hazard ratio \cr \bold{outcome} \tab \code{character} \tab outcome (OS = overall survival; DFS = disease-free survival) } } \details{ The meta-analysis by Riley et al. (2003) examined a variety of prognostic markers for overall and disease-free survival in patients with neuroblastoma. One of the markers examined was amplified levels of the MYC-N protein, with is associated with poorer outcomes. The dataset given here was extracted from Riley (2011) and has been used in several other publications (e.g., Riley et al., 2004, 2007). The dataset provides the (log) hazard ratios (and corresponding standard errors) with respect to these two outcomes in 81 studies, with positive values indicating a greater risk of death (for OS) or disease recurrence/death (for DFS) for patients with high MYC-N levels compared to those with normal/low levels. Note that information on both outcomes could only be extracted from 17 studies (39 studies only provided sufficient information to extract the OS estimate, while 25 studies only allowed for extraction of the DFS estimate). } \source{ Riley, R. D., Sutton, A. J., Abrams, K. R., & Lambert, P. C. (2004). Sensitivity analyses allowed more appropriate and reliable meta-analysis conclusions for multiple outcomes when missing data was present. \emph{Journal of Clinical Epidemiology}, \bold{57}(9), 911--924. \verb{https://doi.org/10.1016/j.jclinepi.2004.01.018} Riley, R. D., Abrams, K. R., Lambert, P. C., Sutton, A. J., & Thompson, J. R. (2007). An evaluation of bivariate random-effects meta-analysis for the joint synthesis of two correlated outcomes. \emph{Statistics in Medicine}, \bold{26}(1), 78--97. \verb{https://doi.org/10.1002/sim.2524} Riley, R. D. (2011). Erratum: An evaluation of bivariate random-effects meta-analysis for the joint synthesis of two correlated outcomes. \emph{Statistics in Medicine}, \bold{30}(4), 400. \verb{https://doi.org/10.1002/sim.4100} } \references{ Riley, R. D., Burchill, S. A., Abrams, K. R., Heney, D., Lambert, P. C., Jones, D. R., Sutton, A. J., Young, B., Wailoo, A. J., & Lewis, I. J. (2003). A systematic review and evaluation of the use of tumour markers in paediatric oncology: Ewing's sarcoma and neuroblastoma. \emph{Health Technology Assessment}, \bold{7}(5), 1--162. \verb{https://doi.org/10.3310/hta7050} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.riley2003 dat \dontrun{ ### load metafor package library(metafor) ### random-effects model analysis for outcome DFS res <- rma(yi, sei=sei, data=dat, subset=(outcome == "DFS"), method="DL") res predict(res, transf=exp, digits=2) ### random-effects model analysis for outcome OS res <- rma(yi, sei=sei, data=dat, subset=(outcome == "OS"), method="DL") res predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{oncology} \concept{hazard ratios} \section{Concepts}{ medicine, oncology, hazard ratios } metadat/man/dat.ishak2007.Rd0000644000176200001440000001116014750466700015122 0ustar liggesusers\name{dat.ishak2007} \docType{data} \alias{dat.ishak2007} \title{Studies on Deep-Brain Stimulation in Patients with Parkinson's disease} \description{Results from 46 studies examining the effects of deep-brain stimulation on motor skills of patients with Parkinson's disease.} \usage{ dat.ishak2007 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab (first) author and year \cr \bold{y1i} \tab \code{numeric} \tab observed mean difference at 3 months \cr \bold{v1i} \tab \code{numeric} \tab sampling variance of the mean difference at 3 months \cr \bold{y2i} \tab \code{numeric} \tab observed mean difference at 6 months \cr \bold{v2i} \tab \code{numeric} \tab sampling variance of the mean difference at 6 months \cr \bold{y3i} \tab \code{numeric} \tab observed mean difference at 12 months \cr \bold{v3i} \tab \code{numeric} \tab sampling variance of the mean difference at 12 months \cr \bold{y4i} \tab \code{numeric} \tab observed mean difference at the long-term follow-up \cr \bold{v4i} \tab \code{numeric} \tab sampling variance of the mean difference at the long-term follow-up \cr \bold{mdur} \tab \code{numeric} \tab mean disease duration (in years) \cr \bold{mbase} \tab \code{numeric} \tab mean baseline UPDRS score } } \details{ Deep-brain stimulation (DBS), which is delivered through thin surgically implanted wires in specific areas of the brain and controlled by the patient, is meant to provide relief of the debilitating symptoms of Parkinson's disease. The dataset includes the results from 46 studies examining the effects of DBS of the subthalamic nucleus on motor functioning, measured with the Unified Parkinson's Disease Rating Scale (UPDRS). The effect size measure for this meta-analysis was the mean difference of the scores while the stimulator is active and the baseline scores (before implantation of the stimulator). Since lower scores on the UPDRS indicate better functioning, negative numbers indicate improvements in motor skills. Effects were generally measured at 3, 6, and 12 months after implantation of the stimulator, with some studies also including a further long-term follow-up. However, the number of measurements differed between studies - hence the missing data on some of the measurement occasions. Since the same patients were followed over time within a study, effect size estimates from multiple measurement occasions are likely to be correlated. A multivariate model accounting for the correlation in the effects can be used to meta-analyze these data. A difficulty with this approach is the lack of information about the correlation of the measurements over time in the individual studies. The approach taken by Ishak et al. (2007) was to assume an autoregressive (AR1) structure for the estimates within the individual studies. In addition, the correlation in the true effects was modeled, again using an autoregressive structure. } \source{ Ishak, K. J., Platt, R. W., Joseph, L., Hanley, J. A., & Caro, J. J. (2007). Meta-analysis of longitudinal studies. \emph{Clinical Trials}, \bold{4}(5), 525--539. \verb{https://doi.org/10.1177/1740774507083567} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.ishak2007 head(dat, 5) \dontrun{ ### load metafor package library(metafor) ### create long format dataset dat <- reshape(dat, direction="long", idvar="study", v.names=c("yi","vi"), varying=list(c(2,4,6,8), c(3,5,7,9))) dat <- dat[order(study, time),] ### remove missing measurement occasions from dat.long dat <- dat[!is.na(yi),] rownames(dat) <- NULL head(dat, 8) ### construct the full (block diagonal) V matrix with an AR(1) structure ### assuming an autocorrelation of 0.97 as estimated by Ishak et al. (2007) V <- vcalc(vi, cluster=study, time1=time, phi=0.97, data=dat) ### plot data with(dat, interaction.plot(time, study, yi, type="b", pch=19, lty="solid", xaxt="n", legend=FALSE, xlab="Time Point", ylab="Mean Difference", bty="l")) axis(side=1, at=1:4, lab=c("1 (3 months)", "2 (6 months)", "3 (12 months)", "4 (12+ months)")) ### multivariate model with heteroscedastic AR(1) structure for the true effects res <- rma.mv(yi, V, mods = ~ 0 + factor(time), random = ~ time | study, struct = "HAR", data = dat) print(res, digits=2) } } \keyword{datasets} \concept{medicine} \concept{raw mean differences} \concept{longitudinal models} \section{Concepts}{ medicine, raw mean differences, longitudinal models } metadat/man/dat.dogliotti2014.Rd0000644000176200001440000000620414750466700016022 0ustar liggesusers\name{dat.dogliotti2014} \docType{data} \alias{dat.dogliotti2014} \title{Studies on Antithrombotic Treatments to Prevent Strokes} \description{Results from 20 trials examining the effectiveness of antithrombotic treatments to prevent strokes in patients with non-valvular atrial fibrillation.} \usage{ dat.dogliotti2014 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study label \cr \bold{id} \tab \code{numeric} \tab study ID \cr \bold{treatment} \tab \code{character} \tab treatment \cr \bold{stroke} \tab \code{numeric} \tab number of strokes \cr \bold{total} \tab \code{numeric} \tab number of individuals } } \details{ This dataset comes from a systematic review aiming to estimate the effects of eight antithrombotic treatments including placebo in reducing the incidence of major thrombotic events in patients with non-valvular atrial fibrillation (Dogliotti et al., 2014). The review included 20 studies with 79,808 participants, four studies are three-arm studies. The primary outcome is stroke reduction (yes / no). } \source{ Dogliotti, A., Paolasso, E., & Giugliano, R. P. (2014). Current and new oral antithrombotics in non-valvular atrial fibrillation: A network meta-analysis of 79808 patients. \emph{Heart}, \bold{100}(5), 396--405. \verb{https://doi.org/10.1136/heartjnl-2013-304347} } \author{ Guido Schwarzer, \email{guido.schwarzer@uniklinik-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show first 7 rows / 3 studies of the dataset head(dat.dogliotti2014, 7) \dontrun{ ### Load netmeta package suppressPackageStartupMessages(library("netmeta")) ### Print odds ratios and confidence limits with two digits oldset <- settings.meta(digits = 2) ### Change appearance of confidence intervals cilayout("(", "-") ### Transform data from long arm-based format to contrast-based ### format. Argument 'sm' has to be used for odds ratio as summary ### measure; by default the risk ratio is used in the metabin function ### called internally. pw <- pairwise(treat = treatment, n = total, event = stroke, studlab = study, data = dat.dogliotti2014, sm = "OR") ### Print log odds ratios (TE) and standard errors (seTE) head(pw, 5)[, 1:5] ### Conduct network meta-analysis (NMA) with placebo as reference net <- netmeta(pw, ref = "plac") ### Details on excluded study selvars <- c("studlab", "event1", "n1", "event2", "n2") subset(pw, studlab == "WASPO, 2007")[, selvars] ### Show network graph netgraph(net, seq = "optimal", number = TRUE) ### Conduct Mantel-Haenszel NMA net.mh <- netmetabin(pw, ref = "plac") ### Compare results of inverse variance and Mantel-Haenszel NMA nb <- netbind(net, net.mh, random = FALSE, name = c("Inverse variance", "Mantel-Haenszel")) forest(nb, xlim = c(0.15, 2), at = c(0.2, 0.5, 1, 2)) ### Print and plot results for inverse variance NMA net forest(net) ### Use previous settings settings.meta(oldset) } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{network meta-analysis} \concept{Mantel-Haenszel method} \section{Concepts}{ medicine, odds ratios, network meta-analysis, Mantel-Haenszel method } metadat/man/dat.egger2001.Rd0000644000176200001440000001154014750466700015110 0ustar liggesusers\name{dat.egger2001} \docType{data} \alias{dat.egger2001} \title{Studies on the Effectiveness of Intravenous Magnesium in Acute Myocardial Infarction} \description{Results from 16 trials examining the effectiveness of intravenous magnesium in the prevention of death following acute myocardial infarction.} \usage{ dat.egger2001 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab trial id number \cr \bold{study} \tab \code{character} \tab first author or trial name \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{ai} \tab \code{numeric} \tab number of deaths in the magnesium group \cr \bold{n1i} \tab \code{numeric} \tab number of patients in the magnesium group \cr \bold{ci} \tab \code{numeric} \tab number of deaths in the control group \cr \bold{n2i} \tab \code{numeric} \tab number of patients in the control group } } \details{ The dataset includes the results from 16 randomized clinical trials that examined the effectiveness of intravenous magnesium in the prevention of death following acute myocardial infarction. Studies 1-7 were included in the meta-analyses by Teo et al. (1991) and Horner (1992) and were combined with the results from the LIMIT-2 trial (Woods et al., 1992) in Yusuf et al. (1993), suggesting that magnesium is an effective treatment for reducing mortality. However, the results from the ISIS-4 mega trial (ISIS-4 Collaborative Group, 1995) indicated no reduction in mortality with magnesium treatment. Publication bias has been suggested as one possible explanation for the conflicting findings (Egger & Davey Smith, 1995). The present dataset includes some additional trials and are based on Table 18.2 from Egger, Davey Smith, and Altman (2001). } \source{ Egger, M., Davey Smith, G., & Altman, D. G. (Eds.) (2001). \emph{Systematic reviews in health care: Meta-analysis in context} (2nd ed.). London: BMJ Books. } \references{ Egger, M., & Davey Smith, G. (1995). Misleading meta-analysis: Lessons from \dQuote{an effective, safe, simple} intervention that wasn't. \emph{British Medical Journal}, \bold{310}(6982), 752--754. \verb{https://doi.org/10.1136/bmj.310.6982.752} Horner, S. M. (1992). Efficacy of intravenous magnesium in acute myocardial infarction in reducing arrhythmias and mortality: Meta-analysis of magnesium in acute myocardial infarction. \emph{Circulation}, \bold{86}(3), 774--779. \verb{https://doi.org/10.1161/01.cir.86.3.774} ISIS-4 Collaborative Group (1995). ISIS-4: A randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. \emph{Lancet}, \bold{345}(8951), 669--685. \verb{https://doi.org/10.1016/S0140-6736(95)90865-X} Teo, K. K., Yusuf, S., Collins, R., Held, P. H., & Peto, R. (1991). Effects of intravenous magnesium in suspected acute myocardial infarction: Overview of randomised trials. \emph{British Medical Journal}, \bold{303}(6816), 1499--1503. \verb{https://doi.org/10.1136/bmj.303.6816.1499} Woods, K. L., Fletcher, S., Roffe, C., & Haider, Y. (1992). Intravenous magnesium sulphate in suspected acute myocardial infarction: Results of the second Leicester Intravenous Magnesium Intervention Trial (LIMIT-2). \emph{Lancet}, \bold{339}(8809), 1553--1558. \verb{https://doi.org/10.1016/0140-6736(92)91828-v} Yusuf, S., Teo, K., & Woods, K. (1993). Intravenous magnesium in acute myocardial infarction: An effective, safe, simple, and inexpensive treatment. \emph{Circulation}, \bold{87}(6), 2043--2046. \verb{https://doi.org/10.1161/01.cir.87.6.2043} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \seealso{ \code{\link{dat.li2007}} } \examples{ ### copy data into 'dat' and examine data dat <- dat.egger2001 dat \dontrun{ ### load metafor package library(metafor) ### meta-analysis of trials 1-7 using Peto's method (as in Teo et al., 1991) res <- rma.peto(ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=1:7) print(res, digits=2) ### meta-analysis of trials 1-7 and LIMIT-2 (as in Yusuf et al., 1993) res <- rma.peto(ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=c(1:7,14)) print(res, digits=2) ### meta-analysis of all trials except ISIS-4 res <- rma.peto(ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=-16) print(res, digits=2) predict(res, transf=exp, digits=2) ### meta-analysis of all trials including ISIS-4 res <- rma.peto(ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat) print(res, digits=2) predict(res, transf=exp, digits=2) ### contour-enhanced funnel plot centered at 0 funnel(res, refline=0, level=c(90, 95, 99), shade=c("white", "gray", "darkgray")) } } \keyword{datasets} \concept{medicine} \concept{cardiology} \concept{Peto's method} \concept{publication bias} \section{Concepts}{ medicine, cardiology, Peto's method, publication bias } metadat/man/dat.hartmannboyce2018.Rd0000644000176200001440000000521414750466700016662 0ustar liggesusers\name{dat.hartmannboyce2018} \docType{data} \alias{dat.hartmannboyce2018} \title{Studies on the Effectiveness of Nicotine Replacement Therapy for Smoking Cessation} \description{Results from 133 studies examining the effectiveness of nicotine replacement therapy (NRT) for smoking cessation at 6+ months of follow-up.} \usage{ dat.hartmannboyce2018 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study identifier \cr \bold{x.nrt} \tab \code{numeric} \tab number of participants in the NRT group who were abstinent at the follow-up \cr \bold{n.nrt} \tab \code{numeric} \tab number of participants in the NRT group \cr \bold{x.ctrl} \tab \code{numeric} \tab number of participants in the control group who were abstinent at the follow-up \cr \bold{n.ctrl} \tab \code{numeric} \tab number of participants in the control group \cr \bold{treatment} \tab \code{character} \tab type of NRT provided in the treatment group } } \details{ The dataset includes the results from 133 studies examining the effectiveness of nicotine replacement therapy (NRT) for smoking cessation. The results given in this dataset pertain to abstinence at 6+ months of follow-up. NRT was provided to participants in the treatment groups in various forms as indicated by the \code{treatment} variable (e.g., gum, patch, inhalator). Note that the dataset includes 136 rows, since a few studies included multiple treatments. } \source{ Hartmann‐Boyce, J., Chepkin, S. C., Ye, W., Bullen, C. & Lancaster, T. (2018). Nicotine replacement therapy versus control for smoking cessation. \emph{Cochrane Database of Systematic Reviews}, \bold{5}, CD000146. \verb{https://doi.org//10.1002/14651858.CD000146.pub5} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.hartmannboyce2018 head(dat, 10) \dontrun{ ### load metafor package library(metafor) ### turn treatment into a factor with the desired ordering dat$treatment <- factor(dat$treatment, levels=unique(dat$treatment)) ### meta-analysis per treatment using the M-H method lapply(split(dat, dat$treatment), function(x) rma.mh(measure="RR", ai=x.nrt, n1i=n.nrt, ci=x.ctrl, n2i=n.ctrl, data=x, digits=2)) ### all combined rma.mh(measure="RR", ai=x.nrt, n1i=n.nrt, ci=x.ctrl, n2i=n.ctrl, data=dat, digits=2) } } \keyword{datasets} \concept{medicine} \concept{smoking} \concept{risk ratios} \concept{Mantel-Haenszel method} \section{Concepts}{ medicine, smoking, risk ratios, Mantel-Haenszel method } metadat/man/dat.aloe2013.Rd0000644000176200001440000000765714750466700014760 0ustar liggesusers\name{dat.aloe2013} \docType{data} \alias{dat.aloe2013} \title{Studies on the Association Between Supervision Quality and Various Outcomes in Social, Mental Health, and Child Welfare Workers} \description{Results from 5 studies examining the association between various measures of supervision quality and various work-related outcomes in social, mental health, and child welfare workers.} \usage{ dat.aloe2013 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study author(s) and year \cr \bold{n} \tab \code{integer} \tab sample size \cr \bold{tval} \tab \code{numeric} \tab t-statistic for the test of the association/predictor \cr \bold{preds} \tab \code{integer} \tab number of predictors included in the regression model \cr \bold{R2} \tab \code{numeric} \tab the coefficient of determination (i.e., R-squared value) of the regression model \cr } } \details{ The dataset is based on studies that used regression models to examine the association between some measure of perceived supervision quality (e.g., the quality of the relationship with one's supervisor) and some work-related outcome (e.g., job satisfaction) in social, mental health, and child welfare workers. The dataset was extracted from Aloe and Thompson (2013), which in turn is a subset of the studies included in the meta-analysis by Mor Barak et al. (2009). The dataset can be used to illustrate the meta-analysis of regression models, using measures such as the (semi-)partial correlation coefficient. For this, the t-statistic from the regression model for the association (i.e., predictor) of interest was extracted from each regression model (\code{tval}), as well as the sample size (\code{n}), the number of predictors included in the regression model (\code{preds}), and the coefficient of determination (i.e., R-squared value) of the regression model (\code{R2}). Based on this information, the (semi-)partial correlation coefficient can be computed for each study, as well as its corresponding sampling variance. These values can then be meta-analyzed using standard methods. } \source{ Aloe, A. M., & Thompson, C. G. (2013). The synthesis of partial effect sizes. \emph{Journal of the Society for Social Work and Research}, \bold{4}(4), 390--405. \verb{https://doi.org/10.5243/jsswr.2013.24} } \references{ Mor Barak, M. E., Travis, D. J., Pyun, H., & Xie, B. (2009). The impact of supervision on worker outcomes: A meta-analysis. \emph{Social Service Review}, \bold{83}(1), 3--32. \verb{https://doi.org/10.1086/599028} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.aloe2013 dat \dontrun{ ### load metafor package suppressPackageStartupMessages(library(metafor)) ### compute the partial correlation coefficients and corresponding sampling variances dat <- escalc(measure="PCOR", ti=tval, ni=n, mi=preds, data=dat) dat ### random-effects model res <- rma(yi, vi, data=dat) res ### mixed-effects meta-regression model examining the relationship between the partial ### correlation coefficients and the number of predictors included in the models res <- rma(yi, vi, mods = ~ preds, data=dat) res ### compute the r-to-z transformed partial correlation coefficients and their variances dat <- escalc(measure="ZPCOR", ti=tval, ni=n, mi=preds, data=dat) dat ### random-effects model res <- rma(yi, vi, data=dat) res ### back-transformation to the partial correlation scale predict(res, transf=transf.ztor) ### compute the semi-partial correlation coefficients and their variances dat <- escalc(measure="SPCOR", ti=tval, ni=n, mi=preds, r2i=R2, data=dat) dat ### random-effects model res <- rma(yi, vi, data=dat) res } } \keyword{datasets} \concept{social work} \concept{(semi-)partial correlations} \concept{meta-regression} \section{Concepts}{ social work, (semi-)partial correlations, meta-regression } metadat/man/dat.besson2016.Rd0000644000176200001440000002273314750466700015324 0ustar liggesusers\name{dat.besson2016} \docType{data} \alias{dat.besson2016} \title{Dataset on How Maternal Diet Impacts Copying Styles in Rodents} \description{Results from 46 studies synthesising maternal nutritional effects on coping styles in rodents.} \usage{ dat.besson2016 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{comp_ID} \tab \code{character} \tab effect-size unique identifier \cr \bold{study_ID} \tab \code{character} \tab study unique identifier \cr \bold{dam_ID} \tab \code{character} \tab dam unique identifier (group of dams subjected to the same treatment) \cr \bold{animal_ID} \tab \code{character} \tab offspring unique identifier (group of offspring from the same dam group subjected to the same treatment) \cr \bold{Reference} \tab \code{character} \tab author’s names and date \cr \bold{species} \tab \code{character} \tab species [rats or mice] \cr \bold{strain} \tab \code{character} \tab strain \cr \bold{manip_type} \tab \code{character} \tab maternal nutritional manipulation type [protein or calorie] \cr \bold{manip_direction} \tab \code{character} \tab direction of maternal nutritional manipulation [- = restriction, + = overfeeding] \cr \bold{nom_manip_val} \tab \code{character} \tab degree of maternal nutritional manipulation as described in the original publications [\% = percentage of caloric or protein restriction, # = increase in caloric intake] \cr \bold{exp} \tab \code{character} \tab percentage of caloric or protein maternal restriction or increase in caloric intake of the experimental group \cr \bold{control} \tab \code{character} \tab percentage of caloric or protein maternal restriction or increase in caloric intake for the control group \cr \bold{manip_parameter} \tab \code{character} \tab protein content, percentage fat or intake \cr \bold{vitmin_eql} \tab \code{character} \tab were vitamins equalized across maternal diets? [yes or no] \cr \bold{adlib_con} \tab \code{character} \tab were maternal control groups fed ad libitum? [yes or no] \cr \bold{adlib_exp} \tab \code{character} \tab were maternal experimental groups fed ad libitum? [yes or no] \cr \bold{diet_con} \tab \code{character} \tab name of maternal control diet? \cr \bold{diet_exp} \tab \code{character} \tab name of maternal experimental diet? \cr \bold{dam_diet_start_dPC} \tab \code{numeric} \tab start of the dam diet [in days post-conception] \cr \bold{dam_diet_end_dPC} \tab \code{numeric} \tab end of the dam diet [in days post-conception] \cr \bold{diet_label} \tab \code{character} \tab period of maternal diet manipulation [pregestation = pre-gestation, pre = pregnancy, lact = lactation, or pre+lact = pregnancy and lactation] \cr \bold{age_mating} \tab \code{numeric} \tab dam age at mating if known \cr \bold{n_con_dam} \tab \code{integer} \tab sample size of the control dam groups \cr \bold{n_exp_dam} \tab \code{integer} \tab sample size of the experimental dam groups \cr \bold{multi_use_con} \tab \code{character} \tab were control groups used multiple time? [yes or no] \cr \bold{dam_housing} \tab \code{character} \tab how were dams housed? [pair, group, or single] \cr \bold{temperature} \tab \code{numeric} \tab temperature during the experiment [°C] \cr \bold{photoperiod} \tab \code{integer} \tab photoperiod during the experiment [number of hours of light] \cr \bold{litter_size} \tab \code{integer} \tab size of the litter [number of pups per dam] \cr \bold{litter_size_equalized} \tab \code{character} \tab has litter size been equalized? [yes or no] \cr \bold{crossfostered} \tab \code{character} \tab have pups been cross-fostered? [yes or no] \cr \bold{sex} \tab \code{character} \tab sex of the offspring that were tested [m = male, f = female, both = mixed sex] \cr \bold{housing} \tab \code{character} \tab offspring housing during the test period [dam, pair, single, or group] \cr \bold{bodymass_mean_contr} \tab \code{numeric} \tab mean body mass of control offspring close to or during the testing period [g] \cr \bold{bodymass_SE_contr} \tab \code{numeric} \tab S.E. for body mass of control offspring close to or during the testing period \cr \bold{bodymass_mean_exp} \tab \code{numeric} \tab mean body mass of experimental offspring close to or during the testing period [g] \cr \bold{bodymass_SE_exp} \tab \code{numeric} \tab S.E. for body mass of experimental offspring close to or during the testing period \cr \bold{bm_N_contr} \tab \code{integer} \tab sample size for body mass of control offspring close to or during the testing period \cr \bold{bm_N_exp} \tab \code{integer} \tab sample size for body mass of experimental offspring close to or during the testing period \cr \bold{bm_dPP} \tab \code{integer} \tab age of offspring when body mass was measured [in days post-parturition] \cr \bold{offspring_diet} \tab \code{character} \tab offspring diet after weaning [type of control diet] \cr \bold{offspring_con_adlib} \tab \code{character} \tab were control offspring fed ad libitum after weaning? [yes or no] \cr \bold{offspring_diet_level} \tab \code{character} \tab name of offspring diet after weaning \cr \bold{offspring_diet_end_dPP} \tab \code{integer} \tab end of the offspring diet [in days post-parturition] \cr \bold{post_diet_adlib} \tab \code{character} \tab were experimental offspring fed ad libitum after weaning? [yes or no] \cr \bold{response_age_dPP} \tab \code{numeric} \tab offspring age when behavioural testing started [in days post-parturition] \cr \bold{authors_behaviour_classification} \tab \code{character} \tab author's classification of offspring behaviour [anxiety, exploration, or activity] \cr \bold{our_behaviour_classification} \tab \code{character} \tab our classification of offspring behaviour [anxiety, exploration, or activity] \cr \bold{response_test} \tab \code{character} \tab type of test used [elevated T-maze (ETM), open field, etc.] to measure offspring behaviour \cr \bold{time_trial} \tab \code{integer} \tab duration of the testing [min] \cr \bold{measure} \tab \code{character} \tab measures taken during testing [total distance moved, time spent in open arm, etc.] \cr \bold{unit} \tab \code{character} \tab unit of the behavioural measure taken [min, s, m, number (#), etc.] \cr \bold{high_better} \tab \code{character} \tab for activity and exploration, a higher number is assumed to be better (i.e., animals were more active), but the opposite was assumed for anxiety (i.e., they were more anxious) [yes or no] \cr \bold{night.day} \tab \code{character} \tab time of day when behaviours were measured [night or day] \cr \bold{comparison} \tab \code{character} \tab for a given control-treatment group comparison, animal group codes as used in the original article [e.g., LP, HP]. This field allows identification of exactly which data (i.e., comparison of which pairs of groups) were extracted from the original paper, and is not used in our analyses. For our analyses the groups were re-coded as control/experimental. \cr \bold{exp_mean} \tab \code{numeric} \tab mean of the offspring behaviour measured for the experimental group \cr \bold{exp_se} \tab \code{numeric} \tab S.E. of the offspring behaviour measured for the experimental group \cr \bold{exp_n} \tab \code{integer} \tab sample size for the offspring experimental group \cr \bold{con_mean} \tab \code{numeric} \tab mean of offspring behaviour measured for the control group \cr \bold{con_se} \tab \code{numeric} \tab S.E. of the offspring behaviour measured for the control group \cr \bold{con_n} \tab \code{integer} \tab sample size for the offspring control group \cr \bold{con_ID} \tab \code{character} \tab identifier for shared control groups within experiment \cr \bold{percentage} \tab \code{character} \tab is the offspring behaviour measure a percentage? [yes or no] \cr \bold{Data_source} \tab \code{character} \tab figure or table number in the original paper from which the data were extracted \cr \bold{measure_comments} \tab \code{character} \tab any comments on the offspring behaviour measures \cr \bold{SE_imputed} \tab \code{character} \tab was S.E. imputed for the offspring behaviour measure? [yes or no] \cr \bold{Comments} \tab \code{character} \tab any comments on the data \cr } } \details{ Data from experiments where dams were subject to caloric or protein restriction or were overfed around gestation were included. Offspring activity, exploration, or anxiety were measured outcomes variables from maternal experimental treatments. Multilevel meta-analysis and meta-regression models were used to analyze the meta-analytic data. } \source{ Besson, A. A., Lagisz, M., Senior, A. M., Hector, K. L., & Nakagawa, S. (2016). Effect of maternal diet on offspring coping styles in rodents: A systematic review and meta-analysis. \emph{Biological Reviews}, \bold{91}(4), 1065--1080. \verb{https://doi.org/10.1111/brv.12210} } \author{ Daniel Noble, \email{daniel.noble@anu.edu.au} } \examples{ ### copy data into 'dat' and examine data dat <- dat.besson2016 head(dat) \dontrun{ ### load metafor library(metafor) ### compute SD from SE dat$sd_c <- with(dat, con_se * sqrt(con_n)) dat$sd_e <- with(dat, exp_se * sqrt(exp_n)) ### compute standardized mean differences and corresponding sampling variances dat <- escalc(measure="SMD", m1i=exp_mean, m2i=con_mean, sd1i=sd_e, sd2i=sd_c, n1i=exp_n, n2i=con_n, data=dat, add.measure=TRUE) ### fit model mod1 <- rma.mv(yi ~ 1, V = vi, random = list(~ 1 | study_ID, ~ 1 | comp_ID), data = dat) mod1 } } \keyword{datasets} \concept{ecology} \concept{evolution} \concept{standardized mean differences} \section{Concepts}{ ecology, evolution, standardized mean differences } metadat/man/dat.graves2010.Rd0000644000176200001440000000424214750466700015307 0ustar liggesusers\name{dat.graves2010} \docType{data} \alias{dat.graves2010} \title{Studies on the Effectiveness of Injected Cholera Vaccines} \description{Results from 17 studies on the effectiveness of injected vaccines against cholera.} \usage{ dat.graves2010 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab author/study name and publication year \cr \bold{ai} \tab \code{numeric} \tab number of cholera cases in the vaccinated group \cr \bold{n1i} \tab \code{numeric} \tab number of individuals in the vaccinated group \cr \bold{ci} \tab \code{numeric} \tab number of cholera cases in the placebo group \cr \bold{n2i} \tab \code{numeric} \tab number of individuals in the placebo group } } \details{ Cholera is an infection caused by certain strains of the bacterium \emph{Vibrio cholerae}. When untreated, mortality rates can be as high as 50-60\%. Proper sanitation practices are usually effective in preventing outbreaks, but a number of oral and injectable vaccines have also been developed. The Cochrane review by Graves et al. (2010) examined the effectiveness of injectable vaccines for preventing cholera cases and death. The present dataset includes results from 17 studies that reported the number of cholera cases in vaccinated and placebo/comparison groups up to 7 months after the treatment. } \source{ Graves, P. M., Deeks, J. J., Demicheli, V., & Jefferson, T. (2010). Vaccines for preventing cholera: Killed whole cell or other subunit vaccines (injected). \emph{Cochrane Database of Systematic Reviews}, \bold{8}, CD000974. \verb{https://doi.org/10.1002/14651858.CD000974.pub2} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.graves2010 dat \dontrun{ ### load metafor package library(metafor) ### analysis using the Mantel-Haenszel method rma.mh(measure="RR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, digits=2) } } \keyword{datasets} \concept{medicine} \concept{risk ratios} \concept{Mantel-Haenszel method} \section{Concepts}{ medicine, risk ratios, Mantel-Haenszel method } metadat/man/dat.craft2003.Rd0000644000176200001440000000622314750466700015122 0ustar liggesusers\name{dat.craft2003} \docType{data} \alias{dat.craft2003} \title{Studies on the Relationship between the Competitive State Anxiety Inventory-2 and Sport Performance} \description{Results from 10 studies on the relationship between the Competitive State Anxiety Inventory-2 (CSAI-2) and sport performance.} \usage{ dat.craft2003 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{ni} \tab \code{numeric} \tab sample size \cr \bold{sport} \tab \code{character} \tab type of sport (T = team sport, I = individual sport) \cr \bold{ri} \tab \code{numeric} \tab correlation coefficient \cr \bold{var1} \tab \code{character} \tab variable 1 of the correlation coefficient (see \sQuote{Details}) \cr \bold{var2} \tab \code{character} \tab variable 2 of the correlation coefficient (see \sQuote{Details}) } } \details{ The 10 studies included in this dataset are a subset of the studies included in the meta-analysis by Craft et al. (2003) on the relationship between the Competitive State Anxiety Inventory-2 (CSAI-2) and sport performance. The CSAI-2 has three subscales: cognitive anxiety (\code{acog}), somatic anxiety (\code{asom}), and self-confidence (\code{conf}). The studies included in this dataset administered the CSAI-2 prior to some sport competition and then measured sport performance based on the competition. Most studies provided all 6 correlations (3 for the correlations among the 3 subscales and 3 for the correlations between the subscales and sport performance), but 2 studies (with study numbers 6 and 17) only provided a subset. } \source{ Becker, B. J., & Aloe, A. M. (2019). Model-based meta-analysis and related approaches. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), \emph{The handbook of research synthesis and meta-analysis} (3nd ed., pp. 339--363). New York: Russell Sage Foundation. } \references{ Craft, L. L., Magyar, T. M., Becker, B. J., & Feltz, D. L. (2003). The relationship between the Competitive State Anxiety Inventory-2 and sport performance: A meta-analysis. \emph{Journal of Sport and Exercise Psychology}, \bold{25}(1), 44--65. \verb{https://doi.org/10.1123/jsep.25.1.44} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.craft2003 head(dat, 18) \dontrun{ ### load metafor package library(metafor) ### construct dataset and var-cov matrix of the correlations tmp <- rcalc(ri ~ var1 + var2 | study, ni=ni, data=dat) V <- tmp$V dat <- tmp$dat ### examine data for study 1 dat[dat$study == 1,] V[dat$study == 1, dat$study == 1] ### examine data for study 6 dat[dat$study == 6,] V[dat$study == 6, dat$study == 6] ### examine data for study 17 dat[dat$study == 17,] V[dat$study == 17, dat$study == 17] ### multivariate random-effects model res <- rma.mv(yi, V, mods = ~ 0 + var1.var2, random = ~ var1.var2 | study, struct="UN", data=dat) res } } \keyword{datasets} \concept{psychology} \concept{correlation coefficients} \concept{multivariate models} \section{Concepts}{ psychology, correlation coefficients, multivariate models } metadat/man/dat.kearon1998.Rd0000644000176200001440000001261014750466700015325 0ustar liggesusers\name{dat.kearon1998} \docType{data} \alias{dat.kearon1998} \title{Studies on the Accuracy of Venous Ultrasonography for the Diagnosis of Deep Venous Thrombosis} \description{Results from diagnostic accuracy studies examining the accuracy of venous ultrasonography for the diagnosis of deep venous thrombosis.} \usage{ dat.kearon1998 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab study id \cr \bold{author} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{patients} \tab \code{character} \tab patient group (either symptomatic or asymptomatic patients) \cr \bold{tp} \tab \code{numeric} \tab number of true positives \cr \bold{np} \tab \code{numeric} \tab number of positive patients (cases) \cr \bold{tn} \tab \code{numeric} \tab number of true negatives \cr \bold{nn} \tab \code{numeric} \tab number of negative patients (non-cases) } } \details{ The studies included in the dataset examined the accuracy of venous ultrasonography for the diagnossis of a first deep venous thrombosis in symptomatic and asymptomatic patients. Cases and non-cases were determined based on contrast venography. Venous ultrasonography was then used to make a diagnosis, leading to a given number of true positives and negatives. A subset of this dataset (using only the studies with asymptomatic patients) was used by Deeks et al. (2005) to illustrate methods for detecting publication bias (or small-study effects) in meta-analyses of diagnostic accuracy studies. } \source{ Kearon, C., Julian, J. A., Math, M., Newman, T. E., & Ginsberg, J. S. (1998). Noninvasive diagnosis of deep venous thrombosis. \emph{Annals of Internal Medicine}, \bold{128}(8), 663--677. \verb{https://doi.org/10.7326/0003-4819-128-8-199804150-00011} } \references{ Deeks, J. J., Macaskill, P., & Irwig, L. (2005). The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. \emph{Journal of Clinical Epidemiology}, \bold{58}(9), 882--893. \verb{https://doi.org/10.1016/j.jclinepi.2005.01.016} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.kearon1998 head(dat) \dontrun{ ### load metafor package library(metafor) ### calculate diagnostic log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=tp, n1i=np, ci=nn-tn, n2i=nn, data=dat, add=1/2, to="all") head(dat) ### fit random-effects model for the symptomatic patients res <- rma(yi, vi, data=dat, subset=patients=="symptomatic") res ### fit random-effects model for the asymptomatic patients res <- rma(yi, vi, data=dat, subset=patients=="asymptomatic") res ### estimated average diagnostic odds ratio (with 95\% CI) predict(res, transf=exp, digits=2) ### regression test for funnel plot asymmetry using SE as predictor reg <- regtest(res, model="lm") reg ### corresponding funnel plot funnel(res, atransf=exp, xlim=c(0,7), at=log(c(1,10,100,1000)), ylim=c(0,1.5), steps=4) ys <- seq(0, 2, length=100) lines(coef(reg$fit)[1] + coef(reg$fit)[2]*ys, ys, lwd=2, lty=3) ### regression test for funnel plot asymmetry using total sample size as predictor reg <- regtest(res, model="lm", predictor="ni") reg ### corresponding funnel plot funnel(res, yaxis="ni", atransf=exp, xlim=c(0,7), at=log(c(1,10,100,1000)), ylim=c(0,300), steps=4) ys <- seq(0, 300, length=100) lines(coef(reg$fit)[1] + coef(reg$fit)[2]*ys, ys, lwd=2, lty=3) ### regression test for funnel plot asymmetry using 1/sqrt(ESS) as predictor (Deeks et al., 2005) dat$invessi <- 1/(4*dat$np) + 1/(4*dat$nn) tmp <- rma(yi, invessi, data=dat, subset=patients=="asymptomatic") reg <- regtest(tmp, model="lm") reg ### corresponding funnel plot funnel(tmp, atransf=exp, xlim=c(0,7), at=log(c(1,10,100,1000)), ylim=c(0,0.15), steps=4, refline=coef(res), level=0, ylab="1/root(ess)") ys <- seq(0, 0.2, length=100) lines(coef(reg$fit)[1] + coef(reg$fit)[2]*ys, ys, lwd=2, lty=3) ### convert data to long format dat <- to.long(measure="OR", ai=tp, n1i=np, ci=tn, n2i=nn, data=dat.kearon1998, subset=patients=="asymptomatic", append=FALSE) dat$group <- factor(dat$group, levels=c(1,2), labels=c("sensitivity", "specificity")) dat ### calculate logit-transformed sensitivities dat <- escalc(measure="PLO", xi=out1, mi=out2, data=dat, add=1/2, to="all", include=group=="sensitivity") dat ### calculate logit-transformed specificities dat <- escalc(measure="PLO", xi=out1, mi=out2, data=dat, add=1/2, to="all", include=group=="specificity") dat ### bivariate random-effects model for logit sensitivity and specificity res <- rma.mv(yi, vi, mods = ~ 0 + group, random = ~ group | study, struct="UN", data=dat) res ### estimated average sensitivity and specificity based on the model predict(res, newmods = rbind(c(1,0),c(0,1)), transf=transf.ilogit, tau2.levels=c(1,2), digits=2) ### estimated average diagnostic odds ratio based on the model predict(res, newmods = c(1,1), transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{diagnostic accuracy studies} \concept{multivariate models} \concept{publication bias} \section{Concepts}{ medicine, odds ratios, diagnostic accuracy studies, multivariate models, publication bias } metadat/man/dat.obrien2003.Rd0000644000176200001440000001242414750466700015301 0ustar liggesusers\name{dat.obrien2003} \docType{data} \alias{dat.obrien2003} \title{Studies on the Relationship Between BMI and Risk of Preeclampsia} \description{Results from 13 studies on the relationship between maternal body mass index (BMI) and the risk of preeclampsia.} \usage{ dat.obrien2003 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study id \cr \bold{author} \tab \code{character} \tab (first) author of the study \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{ref} \tab \code{numeric} \tab reference number \cr \bold{ch} \tab \code{character} \tab exclusion due to chronic hypertension (yes/no) \cr \bold{dm} \tab \code{character} \tab exclusion due to diabetes mellitus (yes/no) \cr \bold{mg} \tab \code{character} \tab exclusion due to multiple gestation (yes/no) \cr \bold{bmi.lb} \tab \code{numeric} \tab lower bound of the BMI interval \cr \bold{bmi.ub} \tab \code{numeric} \tab upper bound of the BMI interval \cr \bold{bmi} \tab \code{numeric} \tab midpoint of the BMI interval \cr \bold{cases} \tab \code{numeric} \tab number of preeclampsia cases in the BMI group \cr \bold{total} \tab \code{numeric} \tab number of individuals in the BMI group } } \details{ The dataset includes the results from 13 studies examining the relationship between maternal body mass index (BMI) and the risk of preeclampsia. For each study, results are given in terms of the number of preeclampsia cases within two or more groups defined by the lower and upper BMI bounds as shown in the dataset (\code{NA} means that the interval is either open to the left or right). The \code{bmi} variable is the interval midpoint as defined by O'Brien et al. (2003). } \source{ O'Brien, T. E., Ray, J. G., & Chan, W.-S. (2003). Maternal body mass index and the risk of preeclampsia: A systematic overview. \emph{Epidemiology}, \bold{14}(3), 368--374. \verb{https://doi.org/10.1097/00001648-200305000-00020} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.obrien2003 dat \dontrun{ ### load metafor package library(metafor) ### restructure the data into a wide format dat2 <- to.wide(dat, study="study", grp="grp", ref=1, grpvars=c("bmi","cases","total"), addid=FALSE, adddesign=FALSE, postfix=c(1,2)) dat2[1:10, -c(2:3)] ### calculate log risk ratios and corresponding sampling variances dat2 <- escalc(measure="RR", ai=cases1, n1i=total1, ci=cases2, n2i=total2, data=dat2) dat2[1:10, -c(2:7)] ### forest plot of the risk ratios dd <- c(0,diff(dat2$study)) dd[dd > 0] <- 1 rows <- (1:nrow(dat2)) + cumsum(dd) rows <- 1 + max(rows) - rows slabs <- mapply(function(x,y,z) as.expression(bquote(.(x)^.(y)~.(z))), dat2$author, dat2$ref, dat2$year) with(dat2, forest(yi, vi, slab=slabs, xlim=c(-7,5.5), cex=0.8, psize=1, pch=19, efac=0, rows=rows, ylim=c(0,max(rows)+3), yaxs="i", atransf=exp, at=log(c(0.05,0.1,0.2,0.5,1,2,5,10,20)), ilab=comp, ilab.xpos=-4, ilab.pos=4)) text(-4.4, max(rows)+2, "Comparison", font=2, cex=0.8, pos=4) ### within-study mean center the BMI variable dat$bmicent <- with(dat, bmi - ave(bmi, study)) ### compute the proportion of preeclampsia cases and corresponding sampling variances dat <- escalc(measure="PR", xi=cases, ni=total, data=dat) ### convert the proportions to percentages (and convert the variances accordingly) dat$yi <- dat$yi*100 dat$vi <- dat$vi*100^2 dat[1:10, -c(2:3)] ### fit multilevel meta-regression model to examine the relationship between the ### (centered) BMI variable and the risk of preeclampsia res <- rma.mv(yi, vi, mods = ~ bmicent, random = ~ 1 | study/grp, data=dat) res ### draw scatterplot with regression line res$slab <- dat$ref regplot(res, xlab=expression("Within-Study Mean Centered BMI"~(kg/m^2)), ylab="Preeclampsia Prevalence (\%)", las=1, bty="l", at=seq(0,18,by=2), olim=c(0,100), psize=2, bg="gray90", label=TRUE, offset=0, labsize=0.6) ### fit model using a random slope for bmicent res <- rma.mv(yi, vi, mods = ~ bmicent, random = ~ bmicent | study, struct="GEN", data=dat) res ### load rms package library(rms) ### fit restricted cubic spline model res <- rma.mv(yi, vi, mods = ~ rcs(bmicent, 4), random = ~ 1 | study/grp, data=dat) res ### get knot positions knots <- attr(rcs(model.matrix(res)[,2], 4), "parms") ### computed predicted values based on the model xs <- seq(-10, 10, length=1000) sav <- predict(res, newmods=rcspline.eval(xs, knots, inclx=TRUE)) ### draw scatterplot with regression line based on the model tmp <- regplot(res, mod=2, pred=sav, xvals=xs, xlab=expression("Within-Study Mean Centered BMI"~(kg/m^2)), ylab="Preeclampsia Prevalence (\%)", las=1, bty="l", at=seq(0,18,by=2), olim=c(0,100), psize=2, bg="gray90", label=TRUE, offset=0, labsize=0.6) abline(v=knots, lty="dotted") points(tmp) } } \keyword{datasets} \concept{medicine} \concept{obstetrics} \concept{risk ratios} \concept{proportions} \concept{multilevel models} \concept{dose-response models} \section{Concepts}{ medicine, obstetrics, risk ratios, proportions, multilevel models, dose-response models } metadat/man/dat.michael2013.Rd0000644000176200001440000001146714750466700015434 0ustar liggesusers\name{dat.michael2013} \docType{data} \alias{dat.michael2013} \title{The Non-Persuasive Power of a Brain Image} \description{Results from studies exploring how a superfluous fMRI brain image influences the persuasiveness of a scientific claim.} \usage{ dat.michael2013 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{Study} \tab \code{character} \tab name of the study: Citation - Experiment - Subgroup \cr \bold{No_brain_n} \tab \code{numeric} \tab sample size for no-brain-image condition \cr \bold{No_brain_m} \tab \code{numeric} \tab mean agreement rating for no-brain-image condition \cr \bold{No_brain_s} \tab \code{numeric} \tab standard deviation for no-brain-image condition \cr \bold{Brain_n} \tab \code{numeric} \tab sample size for brain-image condition \cr \bold{Brain_m} \tab \code{numeric} \tab mean agreement rating for brain-image condition \cr \bold{Brain_s} \tab \code{numeric} \tab standard deviation for brain-image condition \cr \bold{Included_Critique} \tab \code{character} \tab \sQuote{Critique} if article included critical commentary on conclusions, otherwise \sQuote{No_critique} \cr \bold{Medium} \tab \code{character} \tab \sQuote{Paper} if conducted in person; \sQuote{Online} if conducted online \cr \bold{Compensation} \tab \code{character} \tab notes on compensation provided to participants \cr \bold{Participant_Pool} \tab \code{character} \tab notes on where participants were recruited \cr \bold{yi} \tab \code{numeric} \tab raw mean difference, calculated as \code{Brain_m - No_brain_m} \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance \cr } } \details{ The dataset contains the data from the meta-analysis by Michael et al. (2013) of experiments on the persuasive power of a brain image. The meta-analysis analyzed an original study by McCabe and Castel (2008) as well as 10 replication attempts conducted by the authors of the meta-analysis. In each study, participants read an article about using brain imaging as a lie detector. The article either included a superfluous fMRI image of a brain (brain) or not (no_brain). After reading the article, all participants responded to the statement \dQuote{Do you agree or disagree with the conclusion that brain imaging can be used as a lie detector?} on a scale from 1 (strongly disagree) to 4 (strongly agree). The original study by McCabe and Castel (2008) reported a relatively large increase in agreement due to the presence of brain images. Meta-analysis of the original study with the 10 replications suggests, however, a small, possibly null effect: an estimated average raw mean difference of 0.07 points, 95\% CI [-0.00, 0.14], under a random-effects model. In some studies, the article included a passage critiquing the primary claims made in the article; this is coded in the \code{Included_Critique} column for analysis as a possible moderator. Note that Experiment 3 by McCabe and Castel (2008) was a 2x2 between subjects design: brain image presence was manipulated as well as the inclusion of a critique. The two different critique conditions are recorded as separate rows in this dataset. Analysis of this dataset with metafor yields the same results (given rounding) reported in the manuscript. } \source{ Michael, R. B., Newman, E. J., Vuorre, M., Cumming, G., & Garry, M. (2013). On the (non)persuasive power of a brain image. \emph{Psychonomic Bulletin & Review}, \bold{20}(4), 720–-725. \verb{https://doi.org/10.3758/s13423-013-0391-6} } \references{ McCabe, D. P., & Castel, A. D. (2008). Seeing is believing: The effect of brain images on judgments of scientific reasoning. \emph{Cognition}, \bold{107}(1), 343--352. \verb{https://doi.org/10.1016/j.cognition.2007.07.017} } \author{ Robert Calin-Jageman, \email{rcalinjageman@dom.edu}, \url{https://calin-jageman.net} } \examples{ ### copy data into 'dat' and examine data dat <- dat.michael2013 dat \dontrun{ ### load metafor package library(metafor) ### Data prep # yi and vi are already provided, but here's how you would use escalc() to obtain # a raw-mean difference and its variance. # Note the measure parameter is "MD" for 'raw mean difference' dat <- metafor::escalc( measure = "MD", m1i = Brain_m, m2i = No_brain_m, sd1i = Brain_s, sd2i = No_brain_s, n1i = Brain_n, n2i = No_brain_n, data = dat ) ### meta-analysis using a random-effects model of the raw mean differences res <- rma(yi, vi, data=dat) print(res, digits=2) ### examine if Included_Critique is a potential moderator res <- rma(yi, vi, mods = ~ Included_Critique, data=dat) print(res, digits=2) } } \keyword{datasets} \concept{psychology} \concept{persuasion} \concept{raw mean differences} \section{Concepts}{ psychology, persuasion, raw mean differences } metadat/man/dat.baker2009.Rd0000644000176200001440000000643414750466700015121 0ustar liggesusers\name{dat.baker2009} \docType{data} \alias{dat.baker2009} \title{Studies on Pharmacologic Treatments for Chronic Obstructive Pulmonary Disease} \description{Results from 39 trials examining pharmacologic treatments for chronic obstructive pulmonary disease (COPD).} \usage{ dat.baker2009 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study label \cr \bold{year} \tab \code{numeric} \tab year of publication \cr \bold{id} \tab \code{numeric} \tab study ID \cr \bold{treatment} \tab \code{character} \tab treatment \cr \bold{exac} \tab \code{numeric} \tab number of individuals with one or more COPD exacerbations \cr \bold{total} \tab \code{numeric} \tab number of individuals } } \details{ This dataset comes from a systematic review of randomized controlled trials on pharmacologic treatments for chronic obstructive pulmonary disease (COPD) (Baker et al., 2009). The primary outcome, occurrence of one or more episodes of COPD exacerbation, is binary (yes / no). For this outcome, five drug treatments (fluticasone, budesonide, salmeterol, formoterol, tiotropium) and two combinations (fluticasone + salmeterol, budesonide + formoterol) were compared to placebo. The authors considered the two combinations as separate treatments instead of evaluating the individual components. } \source{ Baker, W. L., Baker, E. L., & Coleman, C. I. (2009). Pharmacologic treatments for chronic obstructive pulmonary disease: A mixed-treatment comparison meta-analysis. \emph{Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy}, \bold{29}(8), 891--905. \verb{https://doi.org/10.1592/phco.29.8.891} } \author{ Guido Schwarzer, \email{guido.schwarzer@uniklinik-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show first 6 rows of the dataset head(dat.baker2009) \dontrun{ ### Load netmeta package suppressPackageStartupMessages(library("netmeta")) ### Print odds ratios and confidence limits with two digits oldset <- settings.meta(digits = 2) ### Transform data from long arm-based format to contrast-based ### format. Argument 'sm' has to be used for odds ratio as summary ### measure; by default the risk ratio is used in the metabin function ### called internally. pw <- pairwise(treatment, exac, total, studlab = paste(study, year), data = dat.baker2009, sm = "OR") ### Conduct random effects network meta-analysis (NMA) ### with placebo as reference net <- netmeta(pw, fixed = FALSE, ref = "plac") ### Show network graph netgraph(net, seq = "optimal", start = "prcomp", labels = gsub("+", " +\n", trts, fixed = TRUE), plastic = TRUE, thickness = "se.fixed", number = TRUE, points = TRUE, cex.points = 5, col.points = "red", offset = 0.025) ### Print and plot results for network meta-analysis net forest(net) ### Conduct component network meta-analysis (CNMA) cnet <- netcomb(net) cnet ### Compare results of NMA and additive CNMA nb <- netbind(net, cnet, name = c("Standard NMA", "Additive CNMA")) forest(nb) ### Use previous settings settings.meta(oldset) } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{network meta-analysis} \concept{component network meta-analysis} \section{Concepts}{ medicine, odds ratios, network meta-analysis, component network meta-analysis } metadat/man/prep_dat.Rd0000644000176200001440000000165614750466700014552 0ustar liggesusers\name{prep_dat} \alias{prep_dat} \title{Data preparation function} \description{Function to run data processing scripts.} \usage{ prep_dat(rebuild=FALSE, overwrite, pkgdir) } \arguments{ \item{rebuild}{logical indicating whether the entire database should be rebuild (default is \code{FALSE}).} \item{overwrite}{character vector with one or more \code{.Rd} filenames to overwrite (if they already exist). The default is to never overwrite any existing \code{.Rd} files.} \item{pkgdir}{character string specifying the root directory of the source package (if unspecified, the current working directory is assumed to be the package root directory).} } \details{ The function is only for used for processing new datasets for inclusion in the package. It should be used as described on the \pkg{\link{metadat-package}} help page. } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org} } \keyword{file} \keyword{internal} metadat/man/dat.anand1999.Rd0000644000176200001440000000661714750466700015142 0ustar liggesusers\name{dat.anand1999} \docType{data} \alias{dat.anand1999} \title{Studies on the Effectiveness of Oral Anticoagulants in Patients with Coronary Artery Disease} \description{Results from 34 trials examining the effectiveness of oral anticoagulants in patients with coronary artery disease.} \usage{ dat.anand1999 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab author(s) or trial name \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{intensity} \tab \code{character} \tab intensity of anticoagulation (low, medium, or high) \cr \bold{asp.t} \tab \code{numeric} \tab concomitant use of aspirin in the treatment group (0 = no, 1 = yes) \cr \bold{asp.c} \tab \code{numeric} \tab concomitant use of aspirin in the control group (0 = no, 1 = yes) \cr \bold{ai} \tab \code{numeric} \tab number of deaths in the treatment group \cr \bold{n1i} \tab \code{numeric} \tab number of patients in the treatment group \cr \bold{ci} \tab \code{numeric} \tab number of deaths in the control group \cr \bold{n2i} \tab \code{numeric} \tab number of patients in the control group } } \details{ The dataset includes the results from 34 randomized clinical trials that examined the effectiveness of oral anticoagulants in patients with coronary artery disease. The results given here are focused on the total mortality in the treatment versus control groups. } \note{ Strictly speaking, there are only 31 trials, since Breddin et al. (1980) and ATACS (1990) are multiarm trials. According to a correction, \code{dat.anand1999$ci[29]} should be 1. But then \code{dat.anand1999$ci[21]} would also have to be 1 (if these data indeed refer to the same control group). This appears contradictory, so this correction was not made. } \source{ Anand, S. S., & Yusuf, S. (1999). Oral anticoagulant therapy in patients with coronary artery disease: A meta-analysis. \emph{Journal of the American Medical Association}, \bold{282}(21), 2058--2067. \verb{https://doi.org/10.1001/jama.282.21.2058} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.anand1999 dat \dontrun{ ### load metafor package library(metafor) ### High-Intensity OA vs Control rma.mh(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=(intensity=="high" & asp.t==0 & asp.c==0), digits=2) ### High- or Moderate-Intensity OA vs Aspirin rma.mh(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=(intensity \%in\% c("high","moderate") & asp.t==0 & asp.c==1), digits=2) ### Moderate-Intensity OA vs Control rma.mh(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=(intensity=="moderate" & asp.t==0 & asp.c==0), digits=2) ### High- or Moderate-Intensity OA and Aspirin vs Aspirin rma.mh(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=(intensity \%in\% c("high","moderate") & asp.t==1 & asp.c==1), digits=2) ### Low-Intensity OA and Aspirin vs Aspirin rma.mh(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=(intensity=="low" & asp.t==1 & asp.c==1), digits=2) } } \keyword{datasets} \concept{medicine} \concept{cardiology} \concept{odds ratios} \concept{Mantel-Haenszel method} \section{Concepts}{ medicine, cardiology, odds ratios, Mantel-Haenszel method } metadat/man/dat.nakagawa2007.Rd0000644000176200001440000000320314750466700015574 0ustar liggesusers\name{dat.nakagawa2007} \docType{data} \alias{dat.nakagawa2007} \title{Assessing the Function of House Sparrows' Bib Size Using a Flexible Meta-Analysis Method} \description{A meta-analysis on the association between the size of a male's bib and their social status in house sparrows (\emph{Passer domesticus}).} \usage{ dat.nakagawa2007 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{StudyID} \tab \code{character} \tab identity of primary study \cr \bold{Place} \tab \code{character} \tab location of study population \cr \bold{Correlation} \tab \code{numeric} \tab correlation coefficient \cr \bold{SampleSize} \tab \code{integer} \tab sample size of population \cr } } \details{ Each study measures the association between a sparrows bib size and its social status. Effects are quantified as correlation coefficients. } \source{ Nakagawa, S., Ockendon, N., Gillespie, D. O. S, Hatchwell, B. J., & Burke, T. (2007). Assessing the function of house sparrows' bib size using a flexible meta-analysis method. \emph{Behavioral Ecology}, \bold{18}(5), 831--840. \verb{https://doi.org/10.1093/beheco/arm050} } \author{ Daniel Noble, \email{daniel.noble@anu.edu.au} } \examples{ ### copy data into 'dat' and examine data dat <- dat.nakagawa2007 dat \dontrun{ ### load metafor package library(metafor) ### calculate Zr dat <- escalc(measure="ZCOR", ri=Correlation, ni=SampleSize, data=dat) ### fit meta-analytic model res <- rma.mv(yi, vi, random = ~ 1 | StudyID, data=dat) res } } \keyword{datasets} \concept{ecology} \concept{correlation coefficients} \section{Concepts}{ ecology, correlation coefficients } metadat/man/dat.spooner2002.Rd0000644000176200001440000000627114750466700015512 0ustar liggesusers\name{dat.spooner2002} \docType{data} \alias{dat.spooner2002} \title{Studies on Nedocromil Sodium for Preventing Exercise-Induced Bronchoconstriction} \description{Results from 17 trials, 11 studies in children and 6 studies in adults, reporting the maximum fall in the forced expiratory volume in 1 second (FEV_1) over the course of follow-up, expressed as a percentage.} \usage{ dat.spooner2002 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{author} \tab \code{character} \tab first author \cr \bold{year} \tab \code{character} \tab year of publication \cr \bold{Ne} \tab \code{integer} \tab number of participants in nedocromil sodium group \cr \bold{Me} \tab \code{numeric} \tab maximum fall in the FEV_1 (nedocromil sodium) \cr \bold{Se} \tab \code{numeric} \tab standard deviation (nedocromil sodium) \cr \bold{Nc} \tab \code{integer} \tab number of participants in placebo group \cr \bold{Mc} \tab \code{numeric} \tab maximum fall in the FEV_1 (placebo) \cr \bold{Sc} \tab \code{numeric} \tab standard deviation (placebo) \cr \bold{agegroup} \tab \code{factor} \tab age group (children or adults) \cr } } \details{ Spooner et al. (2002) conducted a Cochrane review comparing nedocromil sodium (experimental treatment) with placebo (control) for preventing exercise-induced bronchoconstriction. Primary outcome was the maximum fall in the forced expiratory volume in 1 second (FEV_1) over the course of follow-up, expressed as a percentage. This outcome is available for 17 studies, 11 studies in children and 6 studies in adults. For each study, the mean value, standard deviation, and sample size are reported for both the experimental and control group. The authors conducted a random-effects meta-analysis with the mean difference as effect measure, i.e.\ mean value in the nedocromil sodium group minus mean value in the placebo group. This data set is used as an example in Schwarzer et al. (2015). } \source{ Spooner, C., Saunders, L. D., & Rowe, B. H. (2002). Nedocromil sodium for preventing exercise‐induced bronchoconstriction. \emph{Cochrane Database of Systematic Reviews}, \bold{1}, CD001183. \verb{https://doi.org/10.1002/14651858.CD001183} } \references{ Schwarzer, G., Carpenter, J. R., & Rücker, G. (2015). \emph{Meta-analysis with R}. Cham, Switzerland: Springer. } \author{ Guido Schwarzer, \email{guido.schwarzer@uniklinik-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show first five studies head(dat.spooner2002, 5) \dontrun{ ### Load meta package suppressPackageStartupMessages(library("meta")) ### Use settings from RevMan5 oldset <- settings.meta("RevMan5") ### Conduct random effects meta-analysis with age subgroups mc1 <- metacont(Ne, Me, Se, Nc, Mc, Sc, data = dat.spooner2002, studlab = paste(author, year), subgroup = agegroup, print.subgroup.name = FALSE, label.e = "Nedocromil sodium", label.c = "Placebo", common = FALSE) mc1 ### Use previous settings settings.meta(oldset) } } \keyword{datasets} \concept{raw mean differences} \concept{subgroup analysis} \section{Concepts}{ raw mean differences, subgroup analysis } metadat/man/dat.gibson2002.Rd0000644000176200001440000001375714750466700015315 0ustar liggesusers\name{dat.gibson2002} \docType{data} \alias{dat.gibson2002} \title{Studies on the Effectiveness of Self-Management Education and Regular Medical Review for Adults with Asthma} \description{Results from 15 trials examining the effectiveness of self-management education and regular medical review for adults with asthma.} \usage{ dat.gibson2002 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{author} \tab \code{character} \tab first author of study \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{n1i} \tab \code{numeric} \tab number of participants in the intervention group \cr \bold{m1i} \tab \code{numeric} \tab mean number of days off work/school in the intervention group \cr \bold{sd1i} \tab \code{numeric} \tab standard deviation of the number of days off work/school in the intervention group \cr \bold{n2i} \tab \code{numeric} \tab number of participants in the control/comparison group \cr \bold{m2i} \tab \code{numeric} \tab mean number of days off work/school in the control/comparison group \cr \bold{sd2i} \tab \code{numeric} \tab standard deviation of the number of days off work/school in the control/comparison group \cr \bold{ai} \tab \code{numeric} \tab number of participants who had one or more days off work/school in the intervention group \cr \bold{bi} \tab \code{numeric} \tab number of participants who no days off work/school in the intervention group \cr \bold{ci} \tab \code{numeric} \tab number of participants who had one or more days off work/school in the control/comparison group \cr \bold{di} \tab \code{numeric} \tab number of participants who no days off work/school in the control/comparison group \cr \bold{type} \tab \code{numeric} \tab numeric code for the intervention type (see \sQuote{Details}) } } \details{ Asthma management guidelines typically recommend for patients to receive education and regular medical review. While self-management programs have been shown to increase patient knowledge, it is less clear to what extent they actually impact health outcomes. The systematic review by Gibson et al. (2002) examined the effectiveness of self-management education and regular medical review for adults with asthma. In each study, participants receiving a certain management intervention were compared against those in a control/comparison group with respect to a variety of health outcomes. One of the outcomes examined in a number of studies was the number of days off work/school. The majority of studies reporting this outcome provided means and standard deviations allowing a meta-analysis of standardized mean differences. Seven studies also reported the number of participants who had one or more days off work/school in each group. These studies could be meta-analyzed using, for example, (log) risk ratios. Finally, one could also consider a combined analysis based on standardized mean differences computed from the means and standard deviations where available and using probit transformed risk differences (which also provide estimates of the standardized mean difference) for the remaining studies. Some degree of patient education was provided in all studies. In addition, the \code{type} variable indicates what additional intervention components were included in each study: \enumerate{ \item optimal self-management (writing action plan, self-monitoring, regular medical review), \item self-monitoring and regular medical review, \item self-monitoring only, \item regular medical review only, \item written action plan only. } } \source{ Gibson, P. G., Powell, H., Wilson, A., Abramson, M. J., Haywood, P., Bauman, A., Hensley, M. J., Walters, E. H., & Roberts, J. J. L. (2002). Self-management education and regular practitioner review for adults with asthma. \emph{Cochrane Database of Systematic Reviews}, \bold{3}, CD001117. \verb{https://doi.org/10.1002/14651858.CD001117} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.gibson2002 dat \dontrun{ ### load metafor package library(metafor) ### compute standardized mean differences and corresponding sampling variances dat <- escalc(measure="SMD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat) dat ### fit an equal-effects model to the standardized mean differences (as in Gibson et al., 2002) res <- rma(yi, vi, data=dat, method="EE") print(res, digits=2) ### compute log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=ai, bi=bi, ci=ci, di=di, data=dat) dat ### fit an equal-effects model to the log risk ratios res <- rma(yi, vi, data=dat, method="EE") print(res, digits=2) predict(res, transf=exp, digits=2) ### note: Gibson et al. (2002) used the Mantel-Haenszel method for their analysis rma.mh(measure="RR", ai=ai, bi=bi, ci=ci, di=di, data=dat, digits=2) ### compute standardized mean differences where possible and otherwise probit transformed ### risk differences (which also provide estimates of the standardized mean differences) dat <- escalc(measure="SMD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat, add.measure=TRUE) dat <- escalc(measure="PBIT", ai=ai, bi=bi, ci=ci, di=di, data=dat, replace=FALSE, add.measure=TRUE) dat ### fit a random-effects model to these estimates res <- rma(yi, vi, data=dat) print(res, digits=2) ### meta-regression model examining if there are systematic differences based on the ### type of measure used (there are only 2 studies where measure="PBIT", so this isn't ### very conclusive here, but shown for illustration purposes) res <- rma(yi, vi, mods = ~ measure, data=dat) print(res, digits=2) predict(res, newmods=1, digits=2) } } \keyword{datasets} \concept{medicine} \concept{primary care} \concept{risk ratios} \concept{standardized mean differences} \section{Concepts}{ medicine, primary care, risk ratios, standardized mean differences } metadat/man/dat.frank2008.Rd0000644000176200001440000001123714750466700015132 0ustar liggesusers\name{dat.frank2008} \docType{data} \alias{dat.frank2008} \title{Studies on the Association Between the CASP8 -652 6N del Promoter Polymorphism and Breast Cancer Risk} \description{Results from 4 case-control studies examining the association between the CASP8 -652 6N del promoter polymorphism and breast cancer risk.} \usage{ dat.frank2008 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study identifier \cr \bold{bc.ins.ins} \tab \code{numeric} \tab number of cases who have a homozygous insertion polymorphism \cr \bold{bc.ins.del} \tab \code{numeric} \tab number of cases who have a heterozygous insertion/deletion polymorphism \cr \bold{bc.del.del} \tab \code{numeric} \tab number of cases who have a homozygous deletion polymorphism \cr \bold{ct.ins.ins} \tab \code{numeric} \tab number of controls who have a homozygous insertion polymorphism \cr \bold{ct.ins.del} \tab \code{numeric} \tab number of controls who are heterozygous insertion/deletion polymorphism \cr \bold{ct.del.del} \tab \code{numeric} \tab number of controls who have a homozygous deletion polymorphism } } \details{ The 4 studies included in this dataset are case-control studies that have examined the association between the CASP8 -652 6N del promoter polymorphism and breast cancer risk. Breast cancer cases and controls were genotyped and either had a homozygous insertion, a heterozygous insertion/deletion, or a homozygous deletion polymorphism. Ziegler et al. (2011) used the same dataset to illustrate the use of meta-analytic methods to examine deviations from Hardy-Weinberg equilibrium across multiple studies. The relative excess heterozygosity (REH) is the proposed measure for such a meta-analysis, which can be computed by setting \code{measure="REH"}. } \source{ Frank, B., Rigas, S. H., Bermejo, J. L., Wiestler, M., Wagner, K., Hemminki, K., Reed, M. W., Sutter, C., Wappenschmidt, B., Balasubramanian, S. P., Meindl, A., Kiechle, M., Bugert, P., Schmutzler, R. K., Bartram, C. R., Justenhoven, C., Ko, Y.-D., Brüning, T., Brauch, H., Hamann, U., Pharoah, P. P. D., Dunning, A. M., Pooley, K. A., Easton, D. F., Cox, A. & Burwinkel, B. (2008). The CASP8 -652 6N del promoter polymorphism and breast cancer risk: A multicenter study. \emph{Breast Cancer Research and Treatment}, \bold{111}(1), 139--144. \verb{https://doi.org/10.1007/s10549-007-9752-z} } \references{ Ziegler, A., Steen, K. V. & Wellek, S. (2011). Investigating Hardy-Weinberg equilibrium in case-control or cohort studies or meta-analysis. \emph{Breast Cancer Research and Treatment}, \bold{128}(1), 197--201. \verb{https://doi.org/10.1007/s10549-010-1295-z} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.frank2008 dat \dontrun{ ### load metafor package library(metafor) ### calculate log odds ratios comparing ins/del versus ins/ins dat <- escalc(measure="OR", ai=bc.ins.del, bi=bc.ins.ins, ci=ct.ins.del, di=ct.ins.ins, data=dat) ### fit random-effects model and get the pooled odds ratio (with 95\% CI) res <- rma(yi, vi, data=dat) res predict(res, transf=exp, digits=2) ### calculate log odds ratios comparing del/del versus ins/ins dat <- escalc(measure="OR", ai=bc.del.del, bi=bc.ins.ins, ci=ct.del.del, di=ct.ins.ins, data=dat) ### fit random-effects model and get the pooled odds ratio (with 95\% CI) res <- rma(yi, vi, data=dat) res predict(res, transf=exp, digits=2) ### calculate log odds ratios comparing ins/del+del/del versus ins/ins dat <- escalc(measure="OR", ai=bc.ins.del+bc.del.del, bi=bc.ins.ins, ci=ct.ins.del+ct.del.del, di=ct.ins.ins, data=dat) ### fit random-effects model and get the pooled odds ratio (with 95\% CI) res <- rma(yi, vi, data=dat) res predict(res, transf=exp, digits=2) ############################################################################ ### compute the relative excess heterozygosity in the controls dat <- escalc(measure="REH", ai=ct.ins.ins, bi=ct.ins.del, ci=ct.del.del, slab=study, data=dat) ### fit random-effects model and get the pooled REH value (with 90\% CI) res <- rma(yi, vi, data=dat, level=90) res predict(res, transf=exp, digits=2) ### draw forest plot forest(res, atransf=exp, xlim=c(-1.4,1.4), at=log(c(0.5,5/7,1,7/5,2))) segments(log(5/7), -2, log(5/7), res$k+1, lty="dotted") segments(log(7/5), -2, log(7/5), res$k+1, lty="dotted") } } \keyword{datasets} \concept{medicine} \concept{oncology} \concept{genetics} \concept{odds ratios} \section{Concepts}{ medicine, oncology, genetics, odds ratios } metadat/man/dat.maire2019.Rd0000644000176200001440000001043414750466700015126 0ustar liggesusers\name{dat.maire2019} \docType{data} \alias{dat.maire2019} \title{Studies on Temporal Trends in Fish Community Structures in French Rivers} \description{Results from studies examining changes in the abundance of fish species in French rivers.} \usage{ dat.maire2019 } \format{ The object is a list containing a data frame called \code{dat} that contains the following columns and distance matrix called \code{dmat}: \tabular{lll}{ \bold{site} \tab \code{character} \tab study site \cr \bold{station} \tab \code{character} \tab sampling station at site \cr \bold{site_station} \tab \code{character} \tab site and station combined \cr \bold{s1} \tab \code{numeric} \tab Mann-Kendal trend statistic for relative abundance of non-local species \cr \bold{vars1} \tab \code{numeric} \tab corresponding sampling variance (corrected for temporal autocorrelation) \cr \bold{s2} \tab \code{numeric} \tab Mann-Kendal trend statistic for relative abundance of northern species \cr \bold{vars2} \tab \code{numeric} \tab corresponding sampling variance (corrected for temporal autocorrelation) \cr \bold{s3} \tab \code{numeric} \tab Mann-Kendal trend statistic for relative abundance of non-native species \cr \bold{vars3} \tab \code{numeric} \tab corresponding sampling variance (corrected for temporal autocorrelation) \cr \bold{const} \tab \code{numeric} \tab constant value of 1 } } \details{ The dataset includes the results from 35 sampling stations (at 11 sites along various French rivers) examining the abundance of various fish species over time (i.e., over 19-37 years, all until 2015). The temporal trend in these abundance data was quantified in terms of Mann-Kendal trend statistics, with positive values indicating monotonically increasing trends. The corresponding sampling variances were corrected for the temporal autocorrelation in the data (Hamed & Rao, 1998). The distance matrix \code{dmat} indicates the distance of the sampling stations (1-423 river-km). For stations not connected through the river network, a high distance value of 10,000 river-km was set (effectively forcing the spatial correlation to be 0 for such stations). The dataset can be used to illustrate a meta-analysis allowing for spatial correlation in the outcomes. } \source{ Maire, A., Thierry, E., Viechtbauer, W., & Daufresne, M. (2019). Poleward shift in large-river fish communities detected with a novel meta-analysis framework. \emph{Freshwater Biology}, \bold{64}(6), 1143--1156. \verb{https://doi.org/10.1111/fwb.13291} } \references{ Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. \emph{Journal of Hydrology}, \bold{204}(1-4), 182--196. \verb{https://doi.org/10.1016/S0022-1694(97)00125-X} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.maire2019$dat dat[-10] ### copy distance matrix into 'dmat' and examine first 5 rows/columns dmat <- dat.maire2019$dmat dmat[1:5,1:5] \dontrun{ ### load metafor package library(metafor) ### fit a standard random-effects model ignoring spatial correlation res1 <- rma.mv(s1, vars1, random = ~ 1 | site_station, data=dat) res1 ### fit model allowing for spatial correlation res2 <- rma.mv(s1, vars1, random = ~ site_station | const, struct="SPGAU", data=dat, dist=list(dmat), control=list(rho.init=10)) res2 ### add random effects for sites and stations within sites res3 <- rma.mv(s1, vars1, random = list(~ 1 | site/station, ~ site_station | const), struct="SPGAU", data=dat, dist=list(dmat), control=list(rho.init=10)) res3 ### likelihood ratio tests comparing the models anova(res1, res2) anova(res2, res3) ### profile likelihood plots for model res2 profile(res2, cline=TRUE) ### effective range (river-km for which the spatial correlation is >= 0.05) sqrt(3) * res2$rho ### note: it was necessary to adjust the starting value for rho in models ### res2 and res3 so that the optimizer does not get stuck in a local maximum profile(res2, rho=1, xlim=c(0,200), steps=100) } } \keyword{datasets} \concept{ecology} \concept{climate change} \concept{spatial correlation} \section{Concepts}{ ecology, climate change, spatial correlation } metadat/man/dat.damico2009.Rd0000644000176200001440000000445414750466700015271 0ustar liggesusers\name{dat.damico2009} \docType{data} \alias{dat.damico2009} \title{Studies on Topical plus Systemic Antibiotics to Prevent Respiratory Tract Infections} \description{Results from 16 studies examining the effectiveness of topical plus systemic antibiotics to prevent respiratory tract infections (RTIs).} \usage{ dat.damico2009 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab first author \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{xt} \tab \code{numeric} \tab number of RTIs in the treatment group \cr \bold{nt} \tab \code{numeric} \tab number of patients in the treatment group \cr \bold{xc} \tab \code{numeric} \tab number of RTIs in the control group \cr \bold{nc} \tab \code{numeric} \tab number of patients in the control group \cr \bold{conceal} \tab \code{numeric} \tab allocation concealment (0 = not adequate, 1 = adequate) \cr \bold{blind} \tab \code{numeric} \tab blinding (0 = open, 1 = double-blind) } } \details{ The dataset includes the results from 16 studies that examined the effectiveness of topical plus systemic antibiotics versus no prophylaxis to prevent respiratory tract infections (RTIs). } \source{ D'Amico, R., Pifferi, S., Torri, V., Brazzi, L., Parmelli, E., & Liberati, A. (2009). Antibiotic prophylaxis to reduce respiratory tract infections and mortality in adults receiving intensive care. \emph{Cochrane Database of Systematic Reviews}, \bold{4}, CD000022. \verb{https://doi.org/10.1002/14651858.CD000022.pub3} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.damico2009 dat \dontrun{ ### load metafor package library(metafor) ### meta-analysis of the (log) odds ratios using the Mantel-Haenszel method rma.mh(measure="OR", ai=xt, n1i=nt, ci=xc, n2i=nc, data=dat, digits=2) ### calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=xt, n1i=nt, ci=xc, n2i=nc, data=dat) ### meta-analysis using a random-effects model res <- rma(yi, vi, data=dat, method="DL") res predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \section{Concepts}{ medicine, odds ratios } metadat/man/dat.normand1999.Rd0000644000176200001440000000577214750466700015520 0ustar liggesusers\name{dat.normand1999} \docType{data} \alias{dat.normand1999} \title{Studies on the Length of Hospital Stay of Stroke Patients} \description{Results from 9 studies on the length of the hospital stay of stroke patients under specialized care and under conventional/routine (non-specialist) care.} \usage{ dat.normand1999 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{source} \tab \code{character} \tab source of data \cr \bold{n1i} \tab \code{numeric} \tab number of patients under specialized care \cr \bold{m1i} \tab \code{numeric} \tab mean length of stay (in days) under specialized care \cr \bold{sd1i} \tab \code{numeric} \tab standard deviation of the length of stay under specialized care \cr \bold{n2i} \tab \code{numeric} \tab number of patients under routine care \cr \bold{m2i} \tab \code{numeric} \tab mean length of stay (in days) under routine care \cr \bold{sd2i} \tab \code{numeric} \tab standard deviation of the length of stay under routine care } } \details{ The 9 studies provide data in terms of the mean length of the hospital stay (in days) of stroke patients under specialized care and under conventional/routine (non-specialist) care. The goal of the meta-analysis was to examine the hypothesis whether specialist stroke unit care will result in a shorter length of hospitalization compared to routine management. } \source{ Normand, S. T. (1999). Meta-analysis: Formulating, evaluating, combining, and reporting. \emph{Statistics in Medicine}, \bold{18}(3), 321--359. \verb{https://doi.org/10.1002/(sici)1097-0258(19990215)18:3<321::aid-sim28>3.0.co;2-p} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.normand1999 dat \dontrun{ ### load metafor package library(metafor) ### calculate mean differences and corresponding sampling variances dat <- escalc(measure="MD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat) dat ### meta-analysis of mean differences using a random-effects model res <- rma(yi, vi, data=dat) res ### meta-analysis of standardized mean differences using a random-effects model res <- rma(measure="SMD", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat, slab=source) res ### draw forest plot forest(res, xlim=c(-7,5), alim=c(-3,1), header="Study/Source") ### calculate (log transformed) ratios of means and corresponding sampling variances dat <- escalc(measure="ROM", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat) dat ### meta-analysis of the (log transformed) ratios of means using a random-effects model res <- rma(yi, vi, data=dat) res predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{raw mean differences} \concept{standardized mean differences} \section{Concepts}{ medicine, raw mean differences, standardized mean differences } metadat/man/dat.vanhowe1999.Rd0000644000176200001440000001032114750466700015513 0ustar liggesusers\name{dat.vanhowe1999} \docType{data} \alias{dat.vanhowe1999} \title{Studies on the Association between Circumcision and HIV Infection} \description{Results from 33 studies examining the association between male circumcision and HIV infection. \loadmathjax} \usage{ dat.vanhowe1999 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study author \cr \bold{category} \tab \code{character} \tab study type (high-risk group, partner study, or population survey) \cr \bold{non.pos} \tab \code{numeric} \tab number of non-circumcised HIV positive cases \cr \bold{non.neg} \tab \code{numeric} \tab number of non-circumcised HIV negative cases \cr \bold{cir.pos} \tab \code{numeric} \tab number of circumcised HIV positive cases \cr \bold{cir.neg} \tab \code{numeric} \tab number of circumcised HIV negative cases } } \details{ The 33 studies provide data in terms of \mjeqn{2 \times 2}{2x2} tables in the form: \tabular{lcc}{ \tab HIV positive \tab HIV negative \cr non-circumcised \tab \code{non.pos} \tab \code{non.neg} \cr circumcised \tab \code{cir.pos} \tab \code{cir.neg} } The goal of the meta-analysis was to examine if the risk of an HIV infection differs between non-circumcised versus circumcised men. The dataset is interesting because it can be used to illustrate the difference between naively pooling results by summing up the counts across studies and then computing the odds ratio based on the aggregated table (as was done by Van Howe, 1999) and conducting a proper meta-analysis (as illustrated by O'Farrell & Egger, 2000). In fact, a proper meta-analysis shows that the HIV infection risk is on average higher in non-circumcised men, which is the opposite of what the naive pooling approach yields (which makes this an illustration of Simpson's paradox). } \source{ Van Howe, R. S. (1999). Circumcision and HIV infection: Review of the literature and meta-analysis. \emph{International Journal of STD & AIDS}, \bold{10}(1), 8--16. \verb{https://doi.org/10.1258/0956462991913015} } \references{ O'Farrell, N., & Egger, M. (2000). Circumcision in men and the prevention of HIV infection: A 'meta-analysis' revisited. \emph{International Journal of STD & AIDS}, \bold{11}(3), 137--142. \verb{https://doi.org/10.1258/0956462001915480} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.vanhowe1999 dat \dontrun{ ### load metafor package library(metafor) ### naive pooling by summing up the counts within categories and then ### computing the odds ratios and corresponding confidence intervals cat1 <- with(dat[dat$category=="high-risk group",], escalc(measure="OR", ai=sum(non.pos), bi=sum(non.neg), ci=sum(cir.pos), di=sum(cir.neg))) cat2 <- with(dat[dat$category=="partner study",], escalc(measure="OR", ai=sum(non.pos), bi=sum(non.neg), ci=sum(cir.pos), di=sum(cir.neg))) cat3 <- with(dat[dat$category=="population survey",], escalc(measure="OR", ai=sum(non.pos), bi=sum(non.neg), ci=sum(cir.pos), di=sum(cir.neg))) summary(cat1, transf=exp, digits=2) summary(cat2, transf=exp, digits=2) summary(cat3, transf=exp, digits=2) ### naive pooling across all studies all <- escalc(measure="OR", ai=sum(dat$non.pos), bi=sum(dat$non.neg), ci=sum(dat$cir.pos), di=sum(dat$cir.neg)) summary(all, transf=exp, digits=2) ### calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=non.pos, bi=non.neg, ci=cir.pos, di=cir.neg, data=dat) dat ### random-effects model res <- rma(yi, vi, data=dat, method="DL") res predict(res, transf=exp, digits=2) ### random-effects model within subgroups res <- rma(yi, vi, data=dat, method="DL", subset=category=="high-risk group") predict(res, transf=exp, digits=2) res <- rma(yi, vi, data=dat, method="DL", subset=category=="partner study") predict(res, transf=exp, digits=2) res <- rma(yi, vi, data=dat, method="DL", subset=category=="population survey") predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{epidemiology} \concept{odds ratios} \section{Concepts}{ medicine, epidemiology, odds ratios } metadat/man/dat.bakdash2021.Rd0000644000176200001440000003005214750466700015415 0ustar liggesusers\name{dat.bakdash2021} \docType{data} \alias{dat.bakdash2021} \title{Dataset on Situation Awareness and Task Performance Associations} \description{Results from 77 papers with 678 effects evaluating associations among measures of situation awareness and task performance.} \usage{ dat.bakdash2021 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{Author} \tab \code{character} \tab paper author(s) \cr \bold{Year} \tab \code{integer} \tab year of paper publication \cr \bold{Title} \tab \code{character} \tab title of paper \cr \bold{DOI} \tab \code{character} \tab digital object identifier (DOI) \cr \bold{DTIC.link} \tab \code{character} \tab permanent link for Defense Technical Information Collection (DITC) reports; see: \verb{https://www.dtic.mil} \cr \bold{SA.measure.type} \tab \code{character} \tab type of SA measure \cr \bold{Sample.size} \tab \code{integer} \tab reported sample size \cr \bold{Sample.size.stats} \tab \code{integer} \tab reported sample size based on reported statistics (this reflects excluded participants) \cr \bold{es.z} \tab \code{numeric} \tab z-transformed correlation coefficient; includes ghost results (disclosed and undisclosed non-significant effects not reported in detail) imputed using the draw method described in Bakdash et al. (2021a) \cr \bold{vi.z} \tab \code{numeric} \tab variance for z-transformed correlation (calculated using \code{Sample.size.stats}, \emph{not} \code{Sample.size}) \cr \bold{SampleID} \tab \code{character} \tab unique identifier for each experiment/study \cr \bold{Outcome} \tab \code{integer} \tab unique value for each effect size } } \details{ The dataset contains behavioral experiments from 77 papers/79 studies with a total of 678 effects, evaluating associations among measures of situation awareness (\dQuote{knowing what is going on}) and task performance. Examples of situation awareness include knowledge of current vehicle speed in a simulated driving task and location and heading of aircraft in a simulated air traffic control task. Corresponding examples of task performance include \dQuote{the number of collisions in a simulated driving task} and \dQuote{subject matter expert rating of conflict management in a simulated air control task} (Bakdash et al. 2021a, p. 2). This dataset and the \sQuote{Examples} are a highly simplified version of the data and code in Bakdash et al. (2021b; 2021c). The journal article by Bakdash et al. (2021a) describes the systematic review and meta-analysis in detail. This dataset is used to illustrate multilevel multivariate meta-analytic models for the overall pooled effect and pooled effects by situation awareness measure. We also adjust meta-analytic models using cluster-robust variance estimation / cluster-robust inference with the \code{\link[metafor]{robust}} function in \emph{metafor}. Results are shown graphically in a customized forest plot with a prediction interval (estimated plausible range of individual effects). Last, we create a table summarizing the estimated meta-analytic heterogeneity parameters. The meta-analytic results show most pooled effect sizes in the positive medium range or less. There was also substantial meta-analytic heterogeneity (estimated systematic variance in true effects), nearing the magnitude of the overall pooled effect. We interpret the meta-analytic results as situation awareness typically having limited validity for task performance (i.e., good situation awareness does not tend to have strong probabilistic links with good performance and vice-versa). More formally, measures of situation awareness do not generally and meaningfully capture cognitive processes and other relevant factors underlying task performance. \subsection{Run-Time}{ The code run-time can be greatly sped-up using a linear algebra library with \emph{R} that makes use of multiple CPU cores. See: \url{https://www.metafor-project.org/doku.php/tips:speeding_up_model_fitting}. To measure the run-time, uncomment these three lines: \code{start.time <- Sys.time()}, \code{end.time <- Sys.time()}, and \code{end.time - start.time}. Run-times on Windows 10 x64 with the Intel Math Kernel Library are: \tabular{rll}{ \tab \emph{CPU} \tab \emph{Run-Time (Minutes)} \cr \tab i7-11850H \tab 2.49 \cr \tab i7-4770 \tab 5.38 \cr } } } \source{ Bakdash, J. Z., Marusich, L. R., Cox, K. R., Geuss, M. N., Zaroukian, E. G., & Morris, K. M. (2021b). The validity of situation awareness for performance: A meta-analysis (Code Ocean Capsule). \verb{https://doi.org/10.24433/CO.1682542.v4} Bakdash, J. Z., Marusich, L. R., Cox, K. R., Geuss, M. N., Zaroukian, E. G., & Morris, K. M. (2021c). The validity of situation awareness for performance: A meta-analysis (Systematic Review, Data, and Code). \verb{https://doi.org/10.17605/OSF.IO/4K7ZV} } \references{ Bakdash, J. Z., Marusich, L. R., Cox, K. R., Geuss, M. N., Zaroukian, E. G., & Morris, K. M. (2021a). The validity of situation awareness for performance: A meta-analysis. \emph{Theoretical Issues in Ergonomics Science}, 1--24. \verb{https://doi.org/10.1080/1463922X.2021.1921310} Supplemental materials: \verb{https://www.tandfonline.com/doi/suppl/10.1080/1463922X.2021.1921310/suppl_file/ttie_a_1921310_sm5524.docx} } \author{ Jonathan Bakdash, \email{jonathan.z.bakdash.civ@army.mil}, \email{jbakdash@gmail.com} \cr Laura Marusich, \email{laura.m.cooper20.civ@army.mil}, \email{lmarusich@gmail.com} } \examples{ ### copy data into 'dat' and examine data dat <- dat.bakdash2021 head(dat[c(1,2,6,8:12)]) \dontrun{ #start.time <- Sys.time() ### load metafor library(metafor) ### multilevel meta-analytic model to get the overall pooled effect res.overall <- rma.mv(es.z, vi.z, mods = ~ 1, random = ~ 1 | SampleID / Outcome, data = dat, test = "t") res.overall ### get prediction interval predict(res.overall) ### cluster-robust variance estimation (CRVE) / cluster-robust inference res.overall.crve <- robust(res.overall, cluster = SampleID) res.overall.crve ### get prediction interval res.overall.crve.pred <- predict(res.overall.crve) res.overall.crve.pred ### multilevel meta-analytic model for SA measures res.sa <- rma.mv(es.z, vi.z, mods = ~ 0 + SA.measure.type, random = ~ 1 | SampleID / Outcome, data = dat, test = "t") res.sa ### cluster-robust variance estimation (CRVE) / cluster-robust inference res.sa.crve <- robust(res.sa, cluster = SampleID) res.sa.crve ### profile likelihood plots par(mfrow=c(2,1)) profile(res.sa.crve, progbar = FALSE) ### format and combine output of meta-analytic models for the forest plot all.z <- c(res.sa.crve$beta, # SA measures res.overall.crve$beta, # pooled effect for confidence interval (CI) res.overall.crve$beta) # pooled effect for prediction interval (PI) all.ci.lower <- c(res.sa.crve$ci.lb, # SA measures res.overall.crve.pred$ci.lb, # pooled effect, lower CI res.overall.crve.pred$pi.lb) # pooled effect, lower PI all.ci.upper <- c(res.sa.crve$ci.ub, # SA measures res.overall.crve.pred$ci.ub, # pooled effect, upper CI res.overall.crve.pred$pi.ub) # pooled effect, upper PI ### note: there is no p-value for the PI all.pvals <- c(res.sa.crve$pval, res.overall.crve$pval) all.labels <- c(sort(unique(dat$SA.measure.type)), "Overall", "95\% Prediction Interval") ### function to round p-values for the forest plot pvals.round <- function(input) { input <- ifelse(input < 0.001, "< 0.001", ifelse(input < 0.01, "< 0.01", ifelse(input < 0.05 & input >= 0.045, "< 0.05", ifelse(round(input, 2) == 1.00, "0.99", sprintf("\%.2f", round(input, 2))))))} all.pvals.rounded <- pvals.round(all.pvals) ### forest plot plot.vals <- data.frame(all.labels, all.z, all.ci.lower, all.ci.upper) par(mfrow=c(1,1), cex = 1.05) forest(plot.vals$all.z, ci.lb = plot.vals$all.ci.lower, ci.ub = plot.vals$all.ci.upper, slab = plot.vals$all.labels, psize = 1, efac = 0, xlim = c(-1.8, 2.5), clim = c(-1, 1), transf = transf.ztor, # transform z to r at = seq(-0.5, 1, by = 0.25), xlab = expression("Correlation Coefficient"~"("*italic('r')*")"), main = "\n\n\nSA Measures", ilab = c(all.pvals.rounded, ""), ilab.xpos = 2.45, ilab.pos = 2.5, digits = 2, refline = 0, annotate = FALSE, header = FALSE) ### keep trailing zero using sprintf output <- cbind(sprintf("\%.2f", round(transf.ztor(plot.vals$all.z), 2)), sprintf("\%.2f", round(transf.ztor(plot.vals$all.ci.lower), 2)), sprintf("\%.2f", round(transf.ztor(plot.vals$all.ci.upper), 2))) ### alignment kludge annotext <- apply(output, 1, function(x) {paste0(" ", x[1], " [", x[2],", ", x[3], "]")}) text( 1.05, 12:1, annotext, pos = 4, cex = 1.05) text(-1.475, 14.00, "SA Measure", cex = 1.05) text( 2.30, 14.00, substitute(paste(italic('p-value'))), cex = 1.05) text( 1.55, 14.00, "Correlation [95\% CI]", cex = 1.05) abline(h = 2.5) ### black polygon for overall mean CIs addpoly(all.z[11], ci.lb = all.ci.lower[11], ci.ub = all.ci.upper[11], rows = 2, annotate = FALSE, efac = 1.5, transf = transf.ztor) ### white polygon for PI addpoly(all.z[12], ci.lb = all.ci.lower[12], ci.ub = all.ci.upper[12], rows = 1, col = "white", border = "black", annotate = FALSE, efac = 1.5, transf = transf.ztor) par(mfrow=c(1,1), cex = 1) # reset graph parameters to default ### confidence intervals for the variance components re.CI.variances <- confint(res.overall) re.CI.variances sigma1.z <- data.frame(re.CI.variances[[1]]["random"]) sigma2.z <- data.frame(re.CI.variances[[2]]["random"]) ### fit model using alternative multivariate parameterization res.overall.alt <- rma.mv(es.z, vi.z, mods = ~ 1, random = ~ factor(Outcome) | factor(SampleID), data = dat, test = "t") ### confidence intervals for the total amount of heterogeneity variance component res.overall.alt.tau <- confint(res.overall.alt, tau2=1)$random ### I^2: http://www.metafor-project.org/doku.php/tips:i2_multilevel_multivariate W <- diag(1/dat$vi.z) X <- model.matrix(res.overall) P <- W - W \%*\% X \%*\% solve(t(X) \%*\% W \%*\% X) \%*\% t(X) \%*\% W ### I^2 (variance due to heterogeneity): 61\% I2 <- 100 * res.overall.alt$tau2 / (res.overall.alt$tau2 + (res.overall$k-res.overall$p)/sum(diag(P))) I2 ### 95\% CI for I^2 using uncertainty around tau^2 I2.CI.lb <- 100 * res.overall.alt.tau[1,2] / (res.overall.alt.tau[1,2] + (res.overall$k-res.overall$p)/sum(diag(P))) I2.CI.lb I2.CI.ub <- 100 * res.overall.alt.tau[1,3] / (res.overall.alt.tau[1,3] + (res.overall$k-res.overall$p)/sum(diag(P))) I2.CI.ub ### total amount of heterogeneity (tau) sqrt(res.overall.alt$tau2) ### heterogeneity table table.heterogeneity <- data.frame(matrix(ncol = 3, nrow = 4)) colnames(table.heterogeneity) <- c("Parameter Value", "Lower 95\% CI", "Upper 95\% CI") rownames(table.heterogeneity) <- c("Tau (Total)", "Tau1 (Between paper)", "Tau2 (Within paper)", "I2 (\%)") table.heterogeneity[1,] <- res.overall.alt.tau[2,] table.heterogeneity[2,] <- sigma1.z[2,] table.heterogeneity[3,] <- sigma2.z[2,] table.heterogeneity[4,] <- c(I2, I2.CI.lb, I2.CI.ub) round(table.heterogeneity, 2) #end.time <- Sys.time() #end.time - start.time } } \keyword{datasets} \concept{psychology} \concept{human factors} \concept{engineering} \concept{correlation coefficients} \concept{multilevel models} \concept{multivariate models} \concept{cluster-robust inference} \section{Concepts}{ psychology, human factors, engineering, correlation coefficients, multilevel models, multivariate models, cluster-robust inference } metadat/man/dat.lehmann2018.Rd0000644000176200001440000002364214750466700015457 0ustar liggesusers\name{dat.lehmann2018} \docType{data} \alias{dat.lehmann2018} \title{The Effect of Red on Perceived Attractiveness} \description{Results from studies in which participants rated the attractiveness of photos that featured red or a control color. See OSF project at \verb{https://osf.io/xy47p/}.} \usage{ dat.lehmann2018 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{Short_Title} \tab \code{character} \tab Shortened citation formatted as: Author name(s), year of publication - Experiment number. All cells in the column are unique for use as labels in the meta-analysis. \cr \bold{Full_Citation} \tab \code{character} \tab Full citation in APA format. \cr \bold{Short_Citation} \tab \code{character} \tab Shortened citation of different format, exactly as it would appear in an in-text citation. \cr \bold{Year} \tab \code{numeric} \tab Year study published (whether in journal or published online). \cr \bold{Study} \tab \code{character} \tab Experiment number. If only one experiment presented in a paper, then \sQuote{Exp 1}, otherwise numbered according to numbering within paper. \cr \bold{Peer_Reviewed} \tab \code{character} \tab Whether the experiment was published in a peer-reviewed journal or not. \sQuote{Yes} = peer-reviewed journal, \sQuote{No} can mean in press, online publication, or other. \cr \bold{Source_Type} \tab \code{character} \tab Location where experiment is available, including journal articles, conference proceedings, online-only, and other options. More specific than whether peer-reviewed or not. \cr \bold{Preregistered} \tab \code{character} \tab Whether experiment was pre-registered or not. \cr \bold{Moderator_Group} \tab \code{character} \tab In some studies, a moderator was intentionally investigated that was meant to reduce the red-romance effect. Data for studies where the red-romance effect is expected to be moderated are marked \sQuote{Yes} in this column. All others are blank. \cr \bold{Gender} \tab \code{character} \tab Gender of rater (male or female). In all cases, gender of stimuli will be opposite. \cr \bold{Color_Contrast} \tab \code{character} \tab The color used as the contrast against red. In some cases, not every contrast color was listed. We chose to examine only contrasts that were present in the original studies, when possible. This column contains only the contrasts we examined in this meta-analysis. \cr \bold{Color_Form} \tab \code{character} \tab Location of color in photo. Background = background or border color manipulated; Face = facial redness manipulated; Shirt, Dress, Item = color of specified object manipulated; Dot = a dot of color on shirt manipulated. \cr \bold{Photo_Type} \tab \code{character} \tab Amount of body visible in photo. Head Shot = head only; Bust = head, shoulders, sometimes torso; Full Body = entire body visible. \cr \bold{DV_Type} \tab \code{character} \tab Scale used for DV. \sQuote{Perceived attractiveness} = the perceived attractiveness scale used in the original studies; alternate scales are differentiated. \cr \bold{DV_Items} \tab \code{numeric} \tab Number of items in DV scale. \cr \bold{DV_Scale} \tab \code{character} \tab Full length of DV scale, if clear. \cr \bold{DV_ScaleBottom} \tab \code{numeric} \tab Lower anchor of DV scale. \cr \bold{DV_ScaleTop} \tab \code{numeric} \tab Upper anchor of DV scale. \cr \bold{Location} \tab \code{character} \tab Country where study took place, if clear. \sQuote{Worldwide} in some cases of online participation without IP filtering of participants. \cr \bold{Continent} \tab \code{character} \tab Continent where study took place, for the sake of creating larger categories for analysis. \cr \bold{Participants} \tab \code{character} \tab Basic notes about participants. Students = high school, undergraduate, or graduate students; Online = participants were gathered online; Adult = no other common identifying factor given. \cr \bold{Participant_Notes} \tab \code{character} \tab A finer grained description of participant characteristics. \cr \bold{Design} \tab \code{character} \tab Whether study was a between- or within-subjects design. \cr \bold{Eth_Majority} \tab \code{character} \tab Basic notes about participant ethnicity for ease of analysis. This represents the ethnic majority within the sample. \cr \bold{Eth_Majority_Detail} \tab \code{character} \tab A finer grained description of participant characteristics, including in some cases participant counts when the ethnic majority was close to another category. \cr \bold{Eth_Stim} \tab \code{character} \tab Ethnicity of the people pictured in the stimulus materials. \cr \bold{Eth_Match} \tab \code{character} \tab Whether the ethnic majority of the participant pool matched the ethnicity of stimulus photos. \cr \bold{Red_Age} \tab \code{numeric} \tab Mean age of participants in red group. If not given for specific group, then mean age overall. \cr \bold{Control_Age} \tab \code{numeric} \tab Mean age of participants in control group. If not given for specific group, then mean age overall. \cr \bold{Color_Red} \tab \code{character} \tab Specific values of red color, if given. \cr \bold{Color_Control} \tab \code{character} \tab Specific values of control color, if given. \cr \bold{Red_Original} \tab \code{character} \tab Whether the red color used in the study is within 5 units of the LCh values for red used in the original study. \cr \bold{Color_Match} \tab \code{character} \tab Whether the control color used in the study is within 5 units of the red color on the L and C parameters. In cases where the control color used was white, it was not possible for the L and C parameters to match. \cr \bold{Presentation_Control} \tab \code{character} \tab Whether the color of the stimulus viewed by each participant was consistent, as in participants viewing everything on paper or the same computer, versus uncontrolled presentation of the stimulus, as in viewing stimulus on different computers. \cr \bold{Stimuli_Presentation} \tab \code{character} \tab Method for presenting stimuli. \sQuote{Paper} = stimuli printed on paper, shown in-person; \sQuote{Screen} = stimuli shown on-screen, not carefully controlled; \sQuote{Screen Control} = stimuli shown on-screen, but screen carefully color-matched. \cr \bold{Red_N} \tab \code{numeric} \tab Number of participants in red group. \cr \bold{Red_M} \tab \code{numeric} \tab Mean rating of DV in red group. \cr \bold{Red_SD} \tab \code{numeric} \tab Standard deviation of DV in red group. \cr \bold{Control_N} \tab \code{numeric} \tab Number of participants in control group. \cr \bold{Control_M} \tab \code{numeric} \tab Mean rating of DV in control group. \cr \bold{Control_SD} \tab \code{numeric} \tab Standard deviation of DV in control group. \cr \bold{SD_diff} \tab \code{numeric} \tab Calculated for within-subjects studies, standard deviation of difference scores. \cr \bold{RM_r} \tab \code{numeric} \tab Calculated for within-subjects studies, correlation between participant ratings of red and control attractiveness. \cr \bold{Control_Attractiveness} \tab \code{numeric} \tab Attractiveness of stimuli in control condition, calculated as \code{(Control_M - DV_ScaleBottom) / DV_ScaleTop}, in order to compare attractiveness ratings across different scales. \cr \bold{Notes} \tab \code{character} \tab Any additional notes on the study. \cr \bold{Total.SampleSize} \tab \code{numeric} \tab Total unique participants in the study. \cr \bold{pooled} \tab \code{numeric} \tab Pooled standard deviation for within-subjects studies. \cr \bold{yi} \tab \code{numeric} \tab Standardized mean difference. \cr \bold{vi} \tab \code{numeric} \tab Corresponding sampling variance. \cr } } \details{ This is data from a meta-analysis of studies that test the red-romance hypothesis, which is that the color red enhances heterosexual attraction in romantic contexts. Analyzing male participants only, the meta-analysis should show a small, statistically significant effect (d = 0.26 [0.12, 0.40], p = .0004, N = 2,961). Analyzing female participants only should show a very small effect (d = 0.13 [0.01, 0.25], p = .03, N = 2,739). The analyses in the published meta-analysis found clear evidence of upward bias in the estimate for female participants and equivocal evidence for male participants. Moderator analyses suggest effect sizes may have declined over time (both genders), may be largest when an original shade of red is used (men only), and may be smaller in pre-registered studies (women only). } \source{ Lehmann, G. K., Elliot, A. J., & Calin-Jageman, R. J. (2018). Meta-analysis of the effect of red on perceived attractiveness. \emph{Evolutionary Psychology}, \bold{16}(4). \verb{https://doi.org/10.1177/1474704918802412} \verb{https://osf.io/xy47p/} } \author{ Robert Calin-Jageman, \email{rcalinjageman@dom.edu}, \url{https://calin-jageman.net} } \examples{ ### copy data into 'dat' and examine data dat <- dat.lehmann2018 head(dat) \dontrun{ ### load metafor package library(metafor) ### meta-analyses for male and female participants red_romance_malep <- dat[dat$Gender == "Males", ] red_romance_femalep <- dat[dat$Gender == "Females", ] res_malep <- rma(yi, vi, data=red_romance_malep, test="knha") res_malep res_femalep <- rma(yi, vi, data=red_romance_femalep, test="knha") res_femalep } } \keyword{datasets} \concept{psychology} \concept{attraction} \concept{standardized mean differences} \section{Concepts}{ psychology, attraction, standardized mean differences } metadat/man/dat.molloy2014.Rd0000644000176200001440000001004614750466700015336 0ustar liggesusers\name{dat.molloy2014} \docType{data} \alias{dat.molloy2014} \title{Studies on the Relationship between Conscientiousness and Medication Adherence} \description{Results from 16 studies on the correlation between conscientiousness and medication adherence.} \usage{ dat.molloy2014 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{authors} \tab \code{character} \tab study authors \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{ni} \tab \code{numeric} \tab sample size of the study \cr \bold{ri} \tab \code{numeric} \tab observed correlation \cr \bold{controls} \tab \code{character} \tab number of variables controlled for \cr \bold{design} \tab \code{character} \tab whether a cross-sectional or prospective design was used \cr \bold{a_measure} \tab \code{character} \tab type of adherence measure (self-report or other) \cr \bold{c_measure} \tab \code{character} \tab type of conscientiousness measure (NEO or other) \cr \bold{meanage} \tab \code{numeric} \tab mean age of the sample \cr \bold{quality} \tab \code{numeric} \tab methodological quality } } \details{ Conscientiousness, one of the big-5 personality traits, can be defined as \dQuote{socially prescribed impulse control that facilitates task- and goal-directed behaviour, such as thinking before acting, delaying gratification, following norms and rules and planning, organising and prioritising tasks} (John & Srivastava, 1999). Conscientiousness has been shown to be related to a number of health-related behaviors (e.g., tobacco/alcohol/drug use, diet and activity patterns, risky behaviors). A recent meta-analysis by Molloy et al. (2014) examined to what extent conscientiousness is related to medication adherence, that is, the extent to which (typically chronically ill) patients follow a prescribed medication regimen (e.g., taking a daily dose of a cholesterol lowering drug in patients with high LDL serum cholesterol levels). The results from the 16 studies included in this meta-analysis are provided in this dataset. Variable \code{a_measure} indicates whether adherence was measured based on self-reports or a more \sQuote{objective} measure (e.g., electronic monitoring of pill bottle openings, pill counts). Variable \code{c_measure} indicates whether conscientiousness was measured with some version of the NEO personality inventory or some other scale. Methodological quality was scored by the authors on a 1 to 4 scale with higher scores indicating higher quality (see article for details on how this score was derived). } \source{ Molloy, G. J., O'Carroll, R. E., & Ferguson, E. (2014). Conscientiousness and medication adherence: A meta-analysis. \emph{Annals of Behavioral Medicine}, \bold{47}(1), 92--101. \verb{https://doi.org/10.1007/s12160-013-9524-4} } \references{ John, O. P., & Srivastava, S. (1999). The Big Five Trait taxonomy: History, measurement, and theoretical perspectives. In L. A. Pervin & O. P. John (Eds.), \emph{Handbook of personality: Theory and research} (2nd ed., pp. 102-138). New York: Guilford Press. } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.molloy2014 dat[-c(5:6)] \dontrun{ ### load metafor package library(metafor) ### calculate r-to-z transformed correlations and corresponding sampling variances dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat, slab=paste(authors, year, sep=", ")) dat[-c(5:6)] ### meta-analysis of the transformed correlations using a random-effects model res <- rma(yi, vi, data=dat) res ### average correlation with 95\% CI predict(res, digits=3, transf=transf.ztor) ### forest plot forest(res, addpred=TRUE, xlim=c(-1.6,1.6), atransf=transf.ztor, at=transf.rtoz(seq(-0.4, 0.6, by=0.2)), digits=c(2,1), cex=0.9, header="Author(s), Year") ### funnel plot funnel(res) } } \keyword{datasets} \concept{psychology} \concept{medicine} \concept{correlation coefficients} \section{Concepts}{ psychology, medicine, correlation coefficients } metadat/man/dat.landenberger2005.Rd0000644000176200001440000001277314750466700016464 0ustar liggesusers\name{dat.landenberger2005} \docType{data} \alias{dat.landenberger2005} \title{Studies on the Effectiveness of CBT for Reducing Recidivism} \description{Results from 58 studies on the effectiveness of cognitive-behavioral therapy (CBT) for reducing recidivism in juvenile and adult offenders.} \usage{ dat.landenberger2005 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab (first) author and year \cr \bold{pubtype} \tab \code{character} \tab publication type (book chapter, journal article, report, or thesis) \cr \bold{country} \tab \code{character} \tab country where study was carried out (Canada, New Zealand, UK, or USA) \cr \bold{design} \tab \code{character} \tab study design (matched groups, nonequivalent groups, or randomized trial) \cr \bold{program} \tab \code{character} \tab purpose of setting up the CBT program (for demonstration, practice, or research purposes) \cr \bold{setting} \tab \code{character} \tab treatment setting (community or prison) \cr \bold{designprob} \tab \code{character} \tab indication of study design problems (no, favors the control group, or favors the treatment group) \cr \bold{n.ctrl.rec} \tab \code{numeric} \tab number of recidivists in the control group \cr \bold{n.ctrl.non} \tab \code{numeric} \tab number of non-recidivists in the control group \cr \bold{n.cbt.rec} \tab \code{numeric} \tab number of recidivists in the CBT group \cr \bold{n.cbt.non} \tab \code{numeric} \tab number of non-recidivists in the CBT group \cr \bold{interval} \tab \code{numeric} \tab recidivism interval (in months) \cr \bold{group} \tab \code{numeric} \tab study group (adults or juveniles) \cr \bold{age} \tab \code{numeric} \tab mean age of the study group \cr \bold{male} \tab \code{numeric} \tab percentage of males in the study group \cr \bold{minority} \tab \code{numeric} \tab percentage of minorities in the study group \cr \bold{length} \tab \code{numeric} \tab treatment length (in weeks) \cr \bold{sessions} \tab \code{numeric} \tab number of CBT sessions per week \cr \bold{hrs_week} \tab \code{numeric} \tab treatment hours per week \cr \bold{hrs_total} \tab \code{numeric} \tab total hours of treatment \cr \bold{cbt.cogskills} \tab \code{character} \tab CBT component: cognitive skills (yes, no) \cr \bold{cbt.cogrestruct} \tab \code{character} \tab CBT component: cognitive restructuring (yes, no) \cr \bold{cbt.intpprbsolv} \tab \code{character} \tab CBT component: interpersonal problem solving (yes, no) \cr \bold{cbt.socskills} \tab \code{character} \tab CBT component: social skills (yes, no) \cr \bold{cbt.angerctrl} \tab \code{character} \tab CBT component: anger control (yes, no) \cr \bold{cbt.victimimpact} \tab \code{character} \tab CBT component: victim impact (yes, no) \cr \bold{cbt.subabuse} \tab \code{character} \tab CBT component: substance abuse (yes, no) \cr \bold{cbt.behavmod} \tab \code{character} \tab CBT component: behavior modification (yes, no) \cr \bold{cbt.relapseprev} \tab \code{character} \tab CBT component: relapse prevention (yes, no) \cr \bold{cbt.moralrsng} \tab \code{character} \tab CBT component: moral reasoning (yes, no) \cr \bold{cbt.roletaking} \tab \code{character} \tab CBT component: role taking (yes, no) \cr \bold{cbt.other} \tab \code{character} \tab CBT component: other (yes, no) } } \details{ Landenberger and Lipsey (2005) conducted a meta-analysis of 58 experimental and quasi-experimental studies of the effects of cognitive-behavioral therapy (CBT) on the recidivism rates of adult and juvenile offenders (see also Lipsey et al., 2007). The present dataset includes the results of these studies and a range of potential moderator variables to identify factors associated with variation in treatment effects. } \source{ Personal communication. } \references{ Landenberger, N. A., & Lipsey, M. W. (2005). The positive effects of cognitive-behavioral programs for offenders: A meta-analysis of factors associated with effective treatment. \emph{Journal of Experimental Criminology}, \bold{1}, 451--476. \verb{https://doi.org/10.1007/s11292-005-3541-7} Lipsey, M. W., Landenberger, N. A., & Wilson, S. J. (2007). Effects of cognitive-behavioral programs for criminal offenders. \emph{Campbell Systematic Reviews}, \bold{3}(1), 1--27. \verb{https://doi.org/10.4073/csr.2007.6} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.landenberger2005 head(dat) \dontrun{ ### load metafor package library(metafor) ### calculate log odds ratios (for non-recidivism in CBT vs. control groups) and sampling variances dat <- escalc(measure="OR", ai=n.cbt.non, bi=n.cbt.rec, ci=n.ctrl.non, di=n.ctrl.rec, data=dat) ### fit random-effects model res <- rma(yi, vi, data=dat) res ### estimated average OR and corresponding 95\% CI/PI predict(res, transf=exp, digits=2) ### examine if number of treatment sessions per week is a potential moderator res <- rma(yi, vi, mods = ~ sessions, data=dat) res ### predicted ORs for 1, 2, 5, or 10 sessions per week predict(res, newmods=c(1,2,5,10), transf=exp, digits=2) } } \keyword{datasets} \concept{psychology} \concept{criminology} \concept{odds ratios} \concept{meta-regression} \section{Concepts}{ psychology, criminology, odds ratios, meta-regression } metadat/man/dat.lopez2019.Rd0000644000176200001440000001520414750466700015162 0ustar liggesusers\name{dat.lopez2019} \docType{data} \alias{dat.lopez2019} \title{Studies on the Effectiveness of CBT for Depression} \description{Results from 76 studies examining the effectiveness of cognitive behavioral therapy (CBT) for depression in adults.} \usage{ dat.lopez2019 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab (first) author and year of study \cr \bold{treatment} \tab \code{character} \tab treatment provided (see \sQuote{Details}) \cr \bold{scale} \tab \code{character} \tab scale used to measure depression symptoms \cr \bold{n} \tab \code{numeric} \tab group size \cr \bold{diff} \tab \code{numeric} \tab standardized mean change \cr \bold{se} \tab \code{numeric} \tab corresponding standard error \cr \bold{group} \tab \code{numeric} \tab type of therapy (0 = individual, 1 = group therapy) \cr \bold{tailored} \tab \code{numeric} \tab whether the intervention was tailored to each patient (0 = no, 1 = yes) \cr \bold{sessions} \tab \code{numeric} \tab number of sessions \cr \bold{length} \tab \code{numeric} \tab average session length (in minutes) \cr \bold{intensity} \tab \code{numeric} \tab product of sessions and length \cr \bold{multi} \tab \code{numeric} \tab intervention included multimedia elements (0 = no, 1 = yes) \cr \bold{cog} \tab \code{numeric} \tab intervention included cognitive techniques (0 = no, 1 = yes) \cr \bold{ba} \tab \code{numeric} \tab intervention included behavioral activation (0 = no, 1 = yes) \cr \bold{psed} \tab \code{numeric} \tab intervention included psychoeducation (0 = no, 1 = yes) \cr \bold{home} \tab \code{numeric} \tab intervention included homework (0 = no, 1 = yes) \cr \bold{prob} \tab \code{numeric} \tab intervention included problem solving (0 = no, 1 = yes) \cr \bold{soc} \tab \code{numeric} \tab intervention included social skills training (0 = no, 1 = yes) \cr \bold{relax} \tab \code{numeric} \tab intervention included relaxation (0 = no, 1 = yes) \cr \bold{goal} \tab \code{numeric} \tab intervention included goal setting (0 = no, 1 = yes) \cr \bold{final} \tab \code{numeric} \tab intervention included a final session (0 = no, 1 = yes) \cr \bold{mind} \tab \code{numeric} \tab intervention included mindfulness (0 = no, 1 = yes) \cr \bold{act} \tab \code{numeric} \tab intervention included acceptance and commitment therapy (0 = no, 1 = yes) } } \details{ The dataset includes the results from 76 studies examining the effectiveness of cognitive behavioral therapy (CBT) for treating depression in adults. Studies included two or more of the following treatments/conditions: \enumerate{ \item treatment as usual (TAU), \item no treatment, \item wait list, \item psychological or attention placebo, \item face-to-face CBT, \item multimedia CBT, \item hybrid CBT (i.e., multimedia CBT with one or more face-to-face sessions). } Multimedia CBT was defined as CBT delivered via self-help books, audio/video recordings, telephone, computer programs, apps, e-mail, or text messages. Variable \code{diff} is the standardized mean change within each group, with negative values indicating a decrease in depression symptoms. } \source{ Personal communication. } \references{ López-López, J. A., Davies, S. R., Caldwell, D. M., Churchill, R., Peters, T. J., Tallon, D., Dawson, S., Wu, Q., Li, J., Taylor, A., Lewis, G., Kessler, D. S., Wiles, N., & Welton, N. J. (2019). The process and delivery of CBT for depression in adults: A systematic review and network meta-analysis. \emph{Psychological Medicine}, \bold{49}(12), 1937--1947. \verb{https://doi.org/10.1017/S003329171900120X} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.lopez2019 dat[1:10,1:6] \dontrun{ ### load metafor package library(metafor) ### create network graph ('igraph' package must be installed) library(igraph, warn.conflicts=FALSE) pairs <- data.frame(do.call(rbind, sapply(split(dat$treatment, dat$study), function(x) t(combn(x,2)))), stringsAsFactors=FALSE) pairs$X1 <- factor(pairs$X1, levels=sort(unique(dat$treatment))) pairs$X2 <- factor(pairs$X2, levels=sort(unique(dat$treatment))) tab <- table(pairs[,1], pairs[,2]) tab # adjacency matrix g <- graph_from_adjacency_matrix(tab, mode = "plus", weighted=TRUE, diag=FALSE) plot(g, edge.curved=FALSE, edge.width=E(g)$weight/2, layout=layout_in_circle(g, order=c("Wait list", "No treatment", "TAU", "Multimedia CBT", "Hybrid CBT", "F2F CBT", "Placebo")), vertex.size=45, vertex.color="lightgray", vertex.label.color="black", vertex.label.font=2) ### restructure data into wide format dat <- to.wide(dat, study="study", grp="treatment", ref="TAU", grpvars=c("diff","se","n"), postfix=c("1","2")) ### compute contrasts between treatment pairs and corresponding sampling variances dat$yi <- with(dat, diff1 - diff2) dat$vi <- with(dat, se1^2 + se2^2) ### calculate the variance-covariance matrix for multitreatment studies calc.v <- function(x) { v <- matrix(x$se2[1]^2, nrow=nrow(x), ncol=nrow(x)) diag(v) <- x$vi v } V <- bldiag(lapply(split(dat, dat$study), calc.v)) ### add contrast matrix to the dataset dat <- contrmat(dat, grp1="treatment1", grp2="treatment2") ### network meta-analysis using a contrast-based random-effects model ### by setting rho=1/2, tau^2 reflects the amount of heterogeneity for all treatment comparisons ### the treatment left out (TAU) becomes the reference level for the treatment comparisons res <- rma.mv(yi, V, data=dat, mods = ~ 0 + No.treatment + Wait.list + Placebo + F2F.CBT + Hybrid.CBT + Multimedia.CBT, random = ~ comp | study, rho=1/2) res ### forest plot of the contrast estimates (treatments versus TAU) forest(coef(res), diag(vcov(res)), slab=sub(".", " ", names(coef(res)), fixed=TRUE), xlim=c(-5,5), alim=c(-3,3), psize=1, header="Treatment", xlab="Difference in Standardized Mean Change (compared to TAU)") ### fit random inconsistency effects model (might have to switch optimizer to get convergence) res <- rma.mv(yi, V, data=dat, mods = ~ 0 + No.treatment + Wait.list + Placebo + F2F.CBT + Hybrid.CBT + Multimedia.CBT, random = list(~ comp | study, ~ comp | design), rho=1/2, phi=1/2, control=list(optimizer="BFGS")) res } } \keyword{datasets} \concept{psychiatry} \concept{standardized mean changes} \concept{network meta-analysis} \section{Concepts}{ psychiatry, standardized mean changes, network meta-analysis } metadat/man/dat.nielweise2007.Rd0000644000176200001440000000613614750466700016016 0ustar liggesusers\name{dat.nielweise2007} \docType{data} \alias{dat.nielweise2007} \title{Studies on Anti-Infective-Treated Central Venous Catheters for Prevention of Catheter-Related Bloodstream Infections} \description{Results from 18 studies comparing the risk of catheter-related bloodstream infection when using anti-infective-treated versus standard catheters in the acute care setting.} \usage{ dat.nielweise2007 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{author} \tab \code{character} \tab (first) author \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{ai} \tab \code{numeric} \tab number of CRBSIs in patients receiving an anti-infective catheter \cr \bold{n1i} \tab \code{numeric} \tab number of patients receiving an anti-infective catheter \cr \bold{ci} \tab \code{numeric} \tab number of CRBSIs in patients receiving a standard catheter \cr \bold{n2i} \tab \code{numeric} \tab number of patients receiving a standard catheter } } \details{ The use of a central venous catheter may lead to a catheter-related bloodstream infection (CRBSI), which in turn increases the risk of morbidity and mortality. Anti-infective-treated catheters have been developed that are meant to reduce the risk of CRBSIs. Niel-Weise et al. (2007) conducted a meta-analysis of studies comparing infection risk when using anti-infective-treated versus standard catheters in the acute care setting. The results from 18 such studies are included in this dataset. The dataset was used in the article by Stijnen et al. (2010) to illustrate various generalized linear mixed-effects models for the meta-analysis of proportions and odds ratios (see \sQuote{References}). } \source{ Niel-Weise, B. S., Stijnen, T., & van den Broek, P. J. (2007). Anti-infective-treated central venous catheters: A systematic review of randomized controlled trials. \emph{Intensive Care Medicine}, \bold{33}(12), 2058--2068. \verb{https://doi.org/10.1007/s00134-007-0897-3} } \references{ Stijnen, T., Hamza, T. H., & Ozdemir, P. (2010). Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. \emph{Statistics in Medicine}, \bold{29}(29), 3046--3067. \verb{https://doi.org/10.1002/sim.4040} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.nielweise2007 dat \dontrun{ ### load metafor package library(metafor) ### standard (inverse-variance) random-effects model res <- rma(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, drop00=TRUE) print(res, digits=3) predict(res, transf=exp, digits=2) ### random-effects conditional logistic model res <- rma.glmm(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, model="CM.EL") print(res, digits=3) predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{generalized linear models} \section{Concepts}{ medicine, odds ratios, generalized linear models } metadat/man/dat.viechtbauer2021.Rd0000644000176200001440000002205414750466700016324 0ustar liggesusers\name{dat.viechtbauer2021} \docType{data} \alias{dat.viechtbauer2021} \title{Studies to Illustrate Model Checking Methods} \description{Results from 20 hypothetical randomized clinical trials examining the effectiveness of a medication for treating some disease.} \usage{ dat.viechtbauer2021 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{trial} \tab \code{numeric} \tab trial number \cr \bold{nTi} \tab \code{numeric} \tab number of patients in the treatment group \cr \bold{nCi} \tab \code{numeric} \tab number of patients in the control group \cr \bold{xTi} \tab \code{numeric} \tab number of patients in the treatment group with remission \cr \bold{xCi} \tab \code{numeric} \tab number of patients in the control group with remission \cr \bold{dose} \tab \code{numeric} \tab dosage of the medication provided to patients in the treatment group (in milligrams per day) } } \details{ The dataset was constructed for the purposes of illustrating the model checking and diagnostic methods described in Viechtbauer (2021). The code below provides the results for many of the analyses and plots discussed in the book chapter. } \source{ Viechtbauer, W. (2021). Model checking in meta-analysis. In C. H. Schmid, T. Stijnen, & I. R. White (Eds.), \emph{Handbook of meta-analysis} (pp. 219-254). Boca Raton, FL: CRC Press. \verb{https://doi.org/10.1201/9781315119403} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.viechtbauer2021 dat \dontrun{ ### load metafor package library(metafor) ### calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=xTi, n1i=nTi, ci=xCi, n2i=nCi, add=1/2, to="all", data=dat) dat ### number of studies k <- nrow(dat) ### fit models res.CE <- rma(yi, vi, data=dat, method="CE") # same as method="EE" res.CE res.RE <- rma(yi, vi, data=dat, method="DL") res.RE res.MR <- rma(yi, vi, mods = ~ dose, data=dat, method="FE") res.MR res.ME <- rma(yi, vi, mods = ~ dose, data=dat, method="DL") res.ME ### forest and bubble plot par(mar=c(5,4,1,2)) forest(dat$yi, dat$vi, psize=0.8, efac=0, xlim=c(-4,6), ylim=c(-3,23), cex=1, width=c(5,5,5), xlab="Log Odds Ratio (LnOR)", header=c("Trial", "LnOR [95\% CI]")) addpoly(res.CE, row=-1, mlab="CE Model") addpoly(res.RE, row=-2, mlab="RE Model") abline(h=0) tmp <- regplot(res.ME, xlim=c(0,250), ylim=c(-1,1.5), predlim=c(0,250), shade=FALSE, digits=1, xlab="Dosage (mg per day)", psize="seinv", plim=c(NA,5), bty="l", las=1, lty=c("solid", "dashed"), label=TRUE, labsize=0.8, offset=c(1,0.7)) res.sub <- rma(yi, vi, mods = ~ dose, data=dat, method="DL", subset=-6) abline(res.sub, lty="dotted") points(tmp$xi, tmp$yi, pch=21, cex=tmp$psize, col="black", bg="darkgray") par(mar=c(5,4,4,2)) ### number of standardized deleted residuals larger than +-1.96 in each model sum(abs(rstudent(res.CE)$z) >= qnorm(0.975)) sum(abs(rstudent(res.MR)$z) >= qnorm(0.975)) sum(abs(rstudent(res.RE)$z) >= qnorm(0.975)) sum(abs(rstudent(res.ME)$z) >= qnorm(0.975)) ### plot of the standardized deleted residuals for the RE and ME models plot(NA, NA, xlim=c(1,20), ylim=c(-4,4), xlab="Study", ylab="Standardized (Deleted) Residual", xaxt="n", main="Random-Effects Model", las=1) axis(side=1, at=1:20) abline(h=c(-1.96,1.96), lty="dotted") abline(h=0) points(1:20, rstandard(res.RE)$z, type="o", pch=19, col="gray70") points(1:20, rstudent(res.RE)$z, type="o", pch=19) legend("top", pch=19, col=c("gray70","black"), lty="solid", legend=c("Standardized Residuals","Standardized Deleted Residuals"), bty="n") plot(NA, NA, xlim=c(1,20), ylim=c(-4,4), xlab="Study", ylab="Standardized (Deleted) Residual", xaxt="n", main="Mixed-Effects Model", las=1) axis(side=1, at=1:20) abline(h=c(-1.96,1.96), lty="dotted") abline(h=0) points(1:20, rstandard(res.ME)$z, type="o", pch=19, col="gray70") points(1:20, rstudent(res.ME)$z, type="o", pch=19) legend("top", pch=19, col=c("gray70","black"), lty="solid", legend=c("Standardized Residuals","Standardized Deleted Residuals"), bty="n") ### Baujat plots baujat(res.CE, main="Common-Effects Model", xlab="Squared Pearson Residual", ylim=c(0,5), las=1) baujat(res.ME, main="Mixed-Effects Model", ylim=c(0,2), las=1) ### GOSH plots (skipped because this takes quite some time to run) if (FALSE) { res.GOSH.CE <- gosh(res.CE, subsets=10^7) plot(res.GOSH.CE, cex=0.2, out=6, xlim=c(-0.25,1.25), breaks=c(200,100)) res.GOSH.ME <- gosh(res.ME, subsets=10^7) plot(res.GOSH.ME, het="tau2", out=6, breaks=50, adjust=0.6, las=1) } ### plot of treatment dosage against the standardized residuals plot(dat$dose, rstandard(res.ME)$z, pch=19, xlab="Dosage (mg per day)", ylab="Standardized Residual", xlim=c(0,250), ylim=c(-2.5,2.5), las=1) abline(h=c(-1.96,1.96), lty="dotted", lwd=2) abline(h=0) title("Standardized Residual Plot") text(dat$dose[6], rstandard(res.ME)$z[6], "6", pos=4, offset=0.4) ### quadratic polynomial model rma(yi, vi, mods = ~ dose + I(dose^2), data=dat, method="DL") ### lack-of-fit model resLOF <- rma(yi, vi, mods = ~ dose + factor(dose), data=dat, method="DL", btt=3:9) resLOF ### scatter plot to illustrate the lack-of-fit model regplot(res.ME, xlim=c(0,250), ylim=c(-1.0,1.5), xlab="Dosage (mg per day)", ci=FALSE, predlim=c(0,250), psize=1, pch=19, col="gray60", digits=1, lwd=1, bty="l", las=1) dosages <- sort(unique(dat$dose)) lines(dosages, fitted(resLOF)[match(dosages, dat$dose)], type="o", pch=19, cex=2, lwd=2) points(dat$dose, dat$yi, pch=19, col="gray60") legend("bottomright", legend=c("Linear Model", "Lack-of-Fit Model"), pch=c(NA,19), col="black", lty="solid", lwd=c(1,2), pt.cex=c(1,2), seg.len=4, bty="n") ### checking normality of the standardized deleted residuals qqnorm(res.ME, type="rstudent", main="Standardized Deleted Residuals", pch=19, label="out", lwd=2, pos=24, ylim=c(-4,3), lty=c("solid", "dotted"), las=1) ### checking normality of the random effects sav <- qqnorm(ranef(res.ME)$pred, main="BLUPs of the Random Effects", cex=1, pch=19, xlim=c(-2.2,2.2), ylim=c(-0.6,0.6), las=1) abline(a=0, b=sd(ranef(res.ME)$pred), lwd=2) text(sav$x[6], sav$y[6], "6", pos=4, offset=0.4) ### hat values for the CE and RE models plot(NA, NA, xlim=c(1,20), ylim=c(0,0.21), xaxt="n", las=1, xlab="Study", ylab="Hat Value") axis(1, 1:20, cex.axis=1) points(hatvalues(res.CE), type="o", pch=19, col="gray70") points(hatvalues(res.RE), type="o", pch=19) abline(h=1/20, lty="dotted", lwd=2) title("Hat Values for the CE/RE Models") legend("topright", pch=19, col=c("gray70","black"), lty="solid", legend=c("Common-Effects Model", "Random-Effects Model"), bty="n") ### heatmap of the hat matrix for the ME model cols <- colorRampPalette(c("blue", "white", "red"))(101) h <- hatvalues(res.ME, type="matrix") image(1:nrow(h), 1:ncol(h), t(h[nrow(h):1,]), axes=FALSE, xlab="Influence of the Observed Effect of Study ...", ylab="On the Fitted Value of Study ...", col=cols, zlim=c(-max(abs(h)),max(abs(h)))) axis(1, 1:20, tick=FALSE) axis(2, 1:20, labels=20:1, las=1, tick=FALSE) abline(h=seq(0.5,20.5,by=1), col="white") abline(v=seq(0.5,20.5,by=1), col="white") points(1:20, 20:1, pch=19, cex=0.4) title("Heatmap for the Mixed-Effects Model") ### plot of leverages versus standardized residuals for the ME model plot(hatvalues(res.ME), rstudent(res.ME)$z, pch=19, cex=0.2+3*sqrt(cooks.distance(res.ME)), las=1, xlab="Leverage (Hat Value)", ylab="Standardized Deleted Residual", xlim=c(0,0.35), ylim=c(-3.5,2.5)) abline(h=c(-1.96,1.96), lty="dotted", lwd=2) abline(h=0, lwd=2) ids <- c(3,6,9) text(hatvalues(res.ME)[ids] + c(0,0.013,0.010), rstudent(res.ME)$z[ids] - c(0.18,0,0), ids) title("Leverage vs. Standardized Deleted Residuals") ### plot of the Cook's distances for the ME model plot(1:20, cooks.distance(res.ME), ylim=c(0,1.6), type="o", pch=19, las=1, xaxt="n", yaxt="n", xlab="Study", ylab="Cook's Distance") axis(1, 1:20, cex.axis=1) axis(2, seq(0,1.6,by=0.4), las=1) title("Cook's Distances") ### plot of the leave-one-out estimates of tau^2 for the ME model x <- influence(res.ME) plot(1:20, x$inf$tau2.del, ylim=c(0,0.15), type="o", pch=19, las=1, xaxt="n", xlab="Study", ylab=expression(paste("Estimate of ", tau^2, " without the ", italic(i), "th study"))) abline(h=res.ME$tau2, lty="dashed") axis(1, 1:20) title("Residual Heterogeneity Estimates") ### plot of the covariance ratios for the ME model plot(1:20, x$inf$cov.r, ylim=c(0,2.0), type="o", pch=19, las=1, xaxt="n", xlab="Study", ylab="Covariance Ratio") abline(h=1, lty="dashed") axis(1, 1:20) title("Covariance Ratios") ### fit mixed-effects model without studies 3 and/or 6 rma(yi, vi, mods = ~ dose, data=dat, method="DL", subset=-3) rma(yi, vi, mods = ~ dose, data=dat, method="DL", subset=-6) rma(yi, vi, mods = ~ dose, data=dat, method="DL", subset=-c(3,6)) } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{outliers} \concept{model checks} \section{Concepts}{ medicine, odds ratios, outliers, model checks } metadat/man/dat.axfors2021.Rd0000644000176200001440000000663414750466700015333 0ustar liggesusers\name{dat.axfors2021} \docType{data} \alias{dat.axfors2021} \title{Mortality Outcomes with Hydroxychloroquine and Chloroquine in COVID-19 from an International Collaborative Meta-Analysis of Randomized Trials} \description{Results from 33 trials examining the effectiveness of hydroxychloroquine or chloroquine in patients with COVID-19.} \usage{ dat.axfors2021 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{character} \tab registry number \cr \bold{acronym} \tab \code{character} \tab shortened registry number \cr \bold{patient_setting} \tab \code{character} \tab patient setting \cr \bold{blinding_exact} \tab \code{character} \tab study blinding \cr \bold{high_dose} \tab \code{character} \tab high or low dose of medication \cr \bold{Published} \tab \code{character} \tab publication status \cr \bold{hcq_cq} \tab \code{character} \tab medication type (hcq = hydroxychloroquine or cq = chloroquine) \cr \bold{hcq_arm_event} \tab \code{numeric} \tab number of deaths in the treatment group \cr \bold{hcq_arm_total} \tab \code{numeric} \tab number of patients in the treatment group \cr \bold{control_arm_event} \tab \code{numeric} \tab number of deaths in the control group \cr \bold{control_arm_total} \tab \code{numeric} \tab number of patients in the control group \cr \bold{Control} \tab \code{character} \tab control group type (Standard of Care or Placebo) } } \details{ The dataset includes the results from 33 published and unpublished randomized clinical trials that examined the effectiveness of hydroxychloroquine or chloroquine in patients with COVID-19. The results given here are focused on the total mortality in the treatment versus control groups. } \references{ Axfors, C., Schmitt, A. M., Janiaud, P., van’t Hooft, J., Abd-Elsalam, S., Abdo, E. F., Abella, B. S., Akram, J., Amaravadi, R. K., Angus, D. C., Arabi, Y. M., Azhar, S., Baden, L. R., Baker, A. W., Belkhir, L., Benfield, T., Berrevoets, M. A. H., Chen, C.-P., Chen, T.-C., … Hemkens, L. G. (2021). Mortality outcomes with hydroxychloroquine and chloroquine in COVID-19 from an international collaborative meta-analysis of randomized trials. Nature Communications, 12(1), 2349. \verb{https://doi.org/10.1038/s41467-021-22446-z} } \source{ Axfors, C., Schmitt, A., Janiaud, P., van ’t Hooft, J., Moher, D., Goodman, S., … Hemkens, L. G. (2021, March 9). Hydroxychloroquine and chloroquine for survival in COVID-19: An international collaborative meta-analysis of randomized trials. \verb{https://doi.org/10.17605/OSF.IO/QESV4} } \author{ W. Kyle Hamilton \email{whamilton@ucmerced.edu} \url{https://kylehamilton.com} } \examples{ # copy data into 'dat' and examine data dat <- dat.axfors2021 dat \dontrun{ # load metafor package library(metafor) # calculate log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=hcq_arm_event, n1i=hcq_arm_total, ci=control_arm_event, n2i=control_arm_total, data=dat) # meta-analysis Hydroxychloroquine res_hcq <- rma(yi, vi, subset=(hcq_cq=="hcq"), slab = id, data=dat) print(res_hcq, digits=2) # meta-analysis Chloroquine res_cq <- rma(yi, vi, subset=(hcq_cq=="cq"), slab = id, data=dat) print(res_cq, digits=2) } } \keyword{datasets} \concept{medicine} \concept{covid-19} \concept{odds ratios} \section{Concepts}{ medicine, covid-19, odds ratios } metadat/man/dat.bassler2004.Rd0000644000176200001440000000601314750466700015454 0ustar liggesusers\name{dat.bassler2004} \docType{data} \alias{dat.bassler2004} \title{Studies on Ketotifen Alone or as Additional Medication for Long-Term Control of Asthma and Wheeze in Children} \description{Results from 10 trials reporting the physicians' judgement on the overall efficacy of ketotifen for long-term control of asthma and wheeze in children.} \usage{ dat.bassler2004 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study label \cr \bold{Ee} \tab \code{integer} \tab number of children with treament success (ketotifen group) \cr \bold{Ne} \tab \code{integer} \tab number of children (ketotifen group) \cr \bold{Ec} \tab \code{integer} \tab number of children with treament success (control group) \cr \bold{Nc} \tab \code{integer} \tab number of children (control group) \cr \bold{blind} \tab \code{character} \tab blinding of clinicians \cr } } \details{ Results from 10 trials reporting the physicians' judgement on the overall efficacy of Ketotifen for long-term control of asthma and wheeze in children. A prespecified subgroup analysis was conducted to evaluate whether the treatment effect is different in trials with adequate blinding compared to trials with inadequate / unclear blinding. This data set is used as an example in Schwarzer et al. (2015). } \source{ Bassler D., Mitra A. A. D., Ducharme F. M., Forster J., & Schwarzer, G. (2004). Ketotifen alone or as additional medication for long-term control of asthma and wheeze in children. \emph{Cochrane Database of Systematic Reviews}, \bold{1}, CD001384. \verb{https://doi.org/10.1002/14651858.CD001384.pub2} } \references{ Schwarzer, G., Carpenter, J. R., & Rücker, G. (2015). \emph{Meta-analysis with R}. Cham, Switzerland: Springer. } \author{ Guido Schwarzer, \email{guido.schwarzer@uniklinik-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show full data set dat.bassler2004 \dontrun{ ### Load meta package suppressPackageStartupMessages(library("meta")) ### Use DerSimonian-Laird estimator (which was the default in meta in the year 2015). ### Furthermore, print meta-analysis results with two digits. oldset <- settings.meta(method.tau = "DL", digits = 2) ### Calculate experimental and control event rates with(dat.bassler2004, summary(Ee / Ne)) with(dat.bassler2004, summary(Ec / Nc)) ### Conduct meta-analysis using the inverse variance method mb3 <- metabin(Ee, Ne, Ec, Nc, method = "I", data = dat.bassler2004, studlab = study) mb3 ### Conduct subgroup analysis comparing trials with adequate blinding ### to trials with inadequate or unclear blinding mb3s <- update(mb3, subgroup = blind, print.subgroup.name = FALSE) mb3s ### Conduct subgroup analysis assuming common between-study variance in subgroups mb3s.c <- update(mb3s, tau.common = TRUE) mb3s.c ### Use previous settings settings.meta(oldset) } } \keyword{datasets} \concept{risk ratios} \concept{medicine} \concept{subgroup analysis} \section{Concepts}{ risk ratios, medicine, subgroup analysis } metadat/man/dat.bangertdrowns2004.Rd0000644000176200001440000000717114750466700016706 0ustar liggesusers\name{dat.bangertdrowns2004} \docType{data} \alias{dat.bangertdrowns2004} \title{Studies on the Effectiveness of Writing-to-Learn Interventions} \description{Results from 48 studies on the effectiveness of school-based writing-to-learn interventions on academic achievement. \loadmathjax} \usage{ dat.bangertdrowns2004 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab study number \cr \bold{author} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{grade} \tab \code{numeric} \tab grade level (1 = elementary; 2 = middle; 3 = high-school; 4 = college) \cr \bold{length} \tab \code{numeric} \tab treatment length (in weeks) \cr \bold{minutes} \tab \code{numeric} \tab minutes per assignment \cr \bold{wic} \tab \code{numeric} \tab writing tasks were completed in class (0 = no; 1 = yes) \cr \bold{feedback} \tab \code{numeric} \tab feedback on writing was provided (0 = no; 1 = yes) \cr \bold{info} \tab \code{numeric} \tab writing contained informational components (0 = no; 1 = yes) \cr \bold{pers} \tab \code{numeric} \tab writing contained personal components (0 = no; 1 = yes) \cr \bold{imag} \tab \code{numeric} \tab writing contained imaginative components (0 = no; 1 = yes) \cr \bold{meta} \tab \code{numeric} \tab prompts for metacognitive reflection (0 = no; 1 = yes) \cr \bold{subject} \tab \code{character} \tab subject matter \cr \bold{ni} \tab \code{numeric} \tab total sample size of the study \cr \bold{yi} \tab \code{numeric} \tab standardized mean difference \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance } } \details{ In each of the studies included in this meta-analysis, an experimental group (i.e., a group of students that received instruction with increased emphasis on writing tasks) was compared against a control group (i.e., a group of students that received conventional instruction) with respect to some content-related measure of academic achievement (e.g., final grade, an exam/quiz/test score). The outcome measure for this meta-analysis was the standardized mean difference (with positive values indicating a higher mean level of academic achievement in the intervention group). The standardized mean differences given here are bias-corrected and therefore differ slightly from the values reported in the article. Also, since only the total sample size is given in the article, the sampling variances were computed under the assumption that \mjeqn{n_{i1} = n_{i2} = n_i / 2}{n_i1 = n_i2 = n_i / 2}. } \source{ Bangert-Drowns, R. L., Hurley, M. M., & Wilkinson, B. (2004). The effects of school-based writing-to-learn interventions on academic achievement: A meta-analysis. \emph{Review of Educational Research}, \bold{74}(1), 29--58. \verb{https://doi.org/10.3102/00346543074001029} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.bangertdrowns2004 dat[1:10,-13] \dontrun{ ### load metafor package library(metafor) ### fit random-effects model res <- rma(yi, vi, data=dat) res ### some examples of mixed-effects meta-regression models res <- rma(yi, vi, mods = ~ factor(grade), data=dat) res res <- rma(yi, vi, mods = ~ length, data=dat) res res <- rma(yi, vi, mods = ~ info + pers + imag + meta, data=dat) res } } \keyword{datasets} \concept{education} \concept{standardized mean differences} \concept{meta-regression} \section{Concepts}{ education, standardized mean differences, meta-regression } metadat/man/dat.li2007.Rd0000644000176200001440000000464714750466700014443 0ustar liggesusers\name{dat.li2007} \docType{data} \alias{dat.li2007} \title{Studies on the Effectiveness of Intravenous Magnesium in Acute Myocardial Infarction} \description{Results from 22 trials examining the effectiveness of intravenous magnesium in the prevention of death following acute myocardial infarction.} \usage{ dat.li2007 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab trial id number \cr \bold{study} \tab \code{character} \tab first author or trial name \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{ai} \tab \code{numeric} \tab number of deaths in the magnesium group \cr \bold{n1i} \tab \code{numeric} \tab number of patients in the magnesium group \cr \bold{ci} \tab \code{numeric} \tab number of deaths in the control group \cr \bold{n2i} \tab \code{numeric} \tab number of patients in the control group } } \details{ The dataset includes the results from 22 randomized clinical trials that examined the effectiveness of intravenous magnesium in the prevention of death following acute myocardial infarction. It is similar to the dataset \code{\link{dat.egger2001}}, with some slight differences in the included trials and data used. } \source{ Li, J., Zhang, Q., Zhang, M., & Egger, M. (2007). Intravenous magnesium for acute myocardial infarction. \emph{Cochrane Database of Systematic Reviews}, \bold{2}, CD002755. \verb{https://doi.org/10.1002/14651858.CD002755.pub2} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \seealso{ \code{\link{dat.egger2001}} } \examples{ ### copy data into 'dat' and examine data dat <- dat.li2007 dat \dontrun{ ### load metafor package library(metafor) ### meta-analysis of all trials except ISIS-4 res <- rma(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, method="EE", subset=-14) print(res, digits=2) predict(res, transf=exp, digits=2) ### meta-analysis of all trials including ISIS-4 res <- rma(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, method="EE") print(res, digits=2) predict(res, transf=exp, digits=2) ### contour-enhanced funnel plot centered at 0 funnel(res, refline=0, level=c(90, 95, 99), shade=c("white", "gray", "darkgray")) } } \keyword{datasets} \concept{medicine} \concept{cardiology} \concept{odds ratios} \concept{publication bias} \section{Concepts}{ medicine, cardiology, odds ratios, publication bias } metadat/man/dat.collins1985b.Rd0000644000176200001440000000701014750466700015645 0ustar liggesusers\name{dat.collins1985b} \docType{data} \alias{dat.collins1985b} \title{Studies on the Effects of Diuretics in Pregnancy} \description{Results from 9 studies examining the effects of diuretics in pregnancy on various outcomes.} \usage{ dat.collins1985b } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab study number \cr \bold{author} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{pre.nti} \tab \code{numeric} \tab number of women in treatment group followed up for pre-eclampsia outcome \cr \bold{pre.nci} \tab \code{numeric} \tab number of women in control/placebo group followed up for pre-eclampsia outcome \cr \bold{pre.xti} \tab \code{numeric} \tab number of women in treatment group with any form of pre-eclampsia \cr \bold{pre.xci} \tab \code{numeric} \tab number of women in control/placebo group with any form of pre-eclampsia \cr \bold{oedema} \tab \code{numeric} \tab dummy variable indicating whether oedema was a diagnostic criterion \cr \bold{fup.nti} \tab \code{numeric} \tab number of women in treatment group followed up for mortality outcomes \cr \bold{fup.nci} \tab \code{numeric} \tab number of women in control/placebo group followed up for mortality outcomes \cr \bold{ped.xti} \tab \code{numeric} \tab number of perinatal deaths in treatment group \cr \bold{ped.xci} \tab \code{numeric} \tab number of perinatal deaths in control/placebo group \cr \bold{stb.xti} \tab \code{numeric} \tab number of stillbirths in treatment group \cr \bold{stb.xci} \tab \code{numeric} \tab number of stillbirths in control/placebo group \cr \bold{ned.xti} \tab \code{numeric} \tab number of neonatal deaths in treatment group \cr \bold{ned.xci} \tab \code{numeric} \tab number of neonatal deaths in control/placebo group } } \details{ The 9 studies in this dataset examined the effects of diuretics in pregnancy on various outcomes, including the presence of any form of pre-eclampsia, perinatal death, stillbirth, and neonatal death. } \source{ Collins, R., Yusuf, S., & Peto, R. (1985). Overview of randomised trials of diuretics in pregnancy. \emph{British Medical Journal}, \bold{290}(6461), 17--23. \verb{https://doi.org/10.1136/bmj.290.6461.17} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.collins1985b dat \dontrun{ ### load metafor package library(metafor) ### calculate (log) odds ratio and sampling variance dat <- escalc(measure="OR", n1i=pre.nti, n2i=pre.nci, ai=pre.xti, ci=pre.xci, data=dat) summary(dat, digits=2, transf=exp) ### meta-analysis using Peto's method for any form of pre-eclampsia rma.peto(n1i=pre.nti, n2i=pre.nci, ai=pre.xti, ci=pre.xci, data=dat, digits=2) ### meta-analysis including only studies where oedema was not a diagnostic criterion rma.peto(n1i=pre.nti, n2i=pre.nci, ai=pre.xti, ci=pre.xci, data=dat, digits=2, subset=(oedema==0)) ### meta-analyses of mortality outcomes (perinatal deaths, stillbirths, and neonatal deaths) rma.peto(n1i=fup.nti, n2i=fup.nci, ai=ped.xti, ci=ped.xci, data=dat, digits=2) rma.peto(n1i=fup.nti, n2i=fup.nci, ai=stb.xti, ci=stb.xci, data=dat, digits=2) rma.peto(n1i=fup.nti, n2i=fup.nci, ai=ned.xti, ci=ned.xci, data=dat, digits=2) } } \keyword{datasets} \concept{medicine} \concept{obstetrics} \concept{odds ratios} \concept{Peto's method} \section{Concepts}{ medicine, obstetrics, odds ratios, Peto's method } metadat/man/dat.bonett2010.Rd0000644000176200001440000000631114750466700015312 0ustar liggesusers\name{dat.bonett2010} \docType{data} \alias{dat.bonett2010} \title{Studies on the Reliability of the CES-D Scale} \description{Results from 9 studies on the reliability of the Center for Epidemiologic Studies Depression (CES-D) Scale administered to children providing care to an elderly parent.} \usage{ dat.bonett2010 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{source} \tab \code{character} \tab source of data \cr \bold{ni} \tab \code{numeric} \tab sample size \cr \bold{mi} \tab \code{numeric} \tab number of items in the scale \cr \bold{ai} \tab \code{numeric} \tab observed value of Cronbach's alpha \cr \bold{caregivers} \tab \code{character} \tab gender of the children in the sample } } \details{ The Center for Epidemiologic Studies Depression (CES-D) Scale is a 20-item questionnaire assessing various symptoms of depression, with each item scored on a 4-point scale. The scale has been used in several studies to examine depressive symptoms in children providing care to an elderly parent. The dataset includes information on the reliability of the scale as measured with Cronbach's alpha in 9 such studies. Also, the gender composition of the children in each sample is indicated. } \source{ Bonett, D. G. (2010). Varying coefficient meta-analytic methods for alpha reliability. \emph{Psychological Methods}, \bold{15}(4), 368--385. \verb{https://doi.org/10.1037/a0020142} } \references{ Bonett, D. G. (2002). Sample size requirements for testing and estimating coefficient alpha. \emph{Journal of Educational and Behavioral Statistics}, \bold{27}(4), 335--340. \verb{https://doi.org/10.3102/10769986027004335} Hakstian, A. R., & Whalen, T. E. (1976). A k-sample significance test for independent alpha coefficients. \emph{Psychometrika}, \bold{41}(2), 219--231. \verb{https://doi.org/10.1007/BF02291840} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.bonett2010 dat \dontrun{ ### load metafor package library(metafor) ### meta-analysis using the raw alpha values res <- rma(measure="ARAW", ai=ai, mi=mi, ni=ni, data=dat) res ### meta-analysis using transformed alpha values (using the ### transformation suggested by Hakstian & Whalen, 1976) res <- rma(measure="AHW", ai=ai, mi=mi, ni=ni, data=dat) res predict(res, transf=transf.iahw) ### meta-analysis using transformed alpha values (using the ### transformation suggested by Bonett, 2002) res <- rma(measure="ABT", ai=ai, mi=mi, ni=ni, data=dat) res predict(res, transf=transf.iabt) ### forest plot forest(res, slab=source, xlim=c(0,4.5), atransf=transf.iabt, refline=coef(res)) ### examine whether female/mixed samples yield different alphas (with raw alphas) res <- rma(measure="ARAW", ai=ai, mi=mi, ni=ni, mods = ~ caregivers, data=dat) res predict(res, newmods=c(0,1), digits=2) } } \keyword{datasets} \concept{psychology} \concept{Cronbach's alpha} \concept{reliability generalization} \concept{meta-regression} \section{Concepts}{ psychology, Cronbach's alpha, reliability generalization, meta-regression } metadat/man/dat.raudenbush1985.Rd0000644000176200001440000001136214750466700016205 0ustar liggesusers\name{dat.raudenbush1985} \docType{data} \alias{dat.raudenbush1985} \title{Studies on Assessing the Effects of Teacher Expectations on Pupil IQ} \description{Results from 19 studies examining how teachers' expectations about their pupils can influence actual IQ levels.} \usage{ dat.raudenbush1985 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{author} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{weeks} \tab \code{numeric} \tab weeks of contact prior to expectancy induction \cr \bold{setting} \tab \code{character} \tab whether tests were group or individually administered \cr \bold{tester} \tab \code{character} \tab whether test administrator was aware or blind \cr \bold{n1i} \tab \code{numeric} \tab sample size of experimental group \cr \bold{n2i} \tab \code{numeric} \tab sample size of control group \cr \bold{yi} \tab \code{numeric} \tab standardized mean difference \cr \bold{vi} \tab \code{numeric} \tab corresponding sampling variance } } \details{ In the so-called \sQuote{Pygmalion study} (Rosenthal & Jacobson, 1968), \dQuote{all of the predominantly poor children in the so-called Oak elementary school were administered a test pretentiously labeled the \sQuote{Harvard Test of Inflected Acquisition.} After explaining that this newly designed instrument had identified those children most likely to show dramatic intellectual growth during the coming year, the experimenters gave the names of these \sQuote{bloomers} to the teachers. In truth, the test was a traditional IQ test and the \sQuote{bloomers} were a randomly selected 20\% of the student population. After retesting the children 8 months later, the experimenters reported that those predicted to bloom had in fact gained significantly more in total IQ (nearly 4 points) and reasoning IQ (7 points) than the control group children. Further, at the end of the study, the teachers rated the experimental children as intellectually more curious, happier, better adjusted, and less in need of approval than their control group peers} (Raudenbush, 1984). In the following years, a series of studies were conducted attempting to replicate this rather controversial finding. However, the great majority of those studies were unable to demonstrate a statistically significant difference between the two experimental groups in terms of IQ scores. Raudenbush (1984) conducted a meta-analysis based on 19 such studies to further examine the evidence for the existence of the \sQuote{Pygmalion effect}. The dataset includes the results from these studies. The outcome measure used for the meta-analysis was the standardized mean difference (\code{yi}), with positive values indicating that the supposed \sQuote{bloomers} had, on average, higher IQ scores than those in the control group. The \code{weeks} variable indicates the number of weeks of prior contact between teachers and students before the expectancy induction. Testing was done either in a group setting or individually, which is indicated by the \code{setting} variable. Finally, the \code{tester} variable indicates whether the test administrators were either aware or blind to the researcher-provided designations of the children's intellectual potential. The data in this dataset were obtained from Raudenbush and Bryk (1985) with information on the \code{setting} and \code{tester} variables extracted from Raudenbush (1984). } \source{ Raudenbush, S. W. (1984). Magnitude of teacher expectancy effects on pupil IQ as a function of the credibility of expectancy induction: A synthesis of findings from 18 experiments. \emph{Journal of Educational Psychology}, \bold{76}(1), 85--97. \verb{https://doi.org/10.1037/0022-0663.76.1.85} Raudenbush, S. W., & Bryk, A. S. (1985). Empirical Bayes meta-analysis. \emph{Journal of Educational Statistics}, \bold{10}(2), 75--98. \verb{https://doi.org/10.3102/10769986010002075} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.raudenbush1985 dat \dontrun{ ### load metafor package library(metafor) ### random-effects model res <- rma(yi, vi, data = dat) res ### create weeks variable where values larger than 3 are set to 3 dat$weeks.c <- ifelse(dat$weeks > 3, 3, dat$weeks) ### mixed-effects model with weeks.c variable as moderator res <- rma(yi, vi, mods = ~ weeks.c, data = dat, digits = 3) res } } \keyword{datasets} \concept{education} \concept{standardized mean differences} \concept{meta-regression} \section{Concepts}{ education, standardized mean differences, meta-regression } metadat/man/dat.linde2005.Rd0000644000176200001440000001112414750466700015114 0ustar liggesusers\name{dat.linde2005} \docType{data} \alias{dat.linde2005} \title{Studies on the Effectiveness of St. John's Wort for Treating Depression} \description{Results from 26 studies on the effectiveness of Hypericum perforatum extracts (St. John's wort) for treating depression.} \usage{ dat.linde2005 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab study number \cr \bold{study} \tab \code{character} \tab study author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{country} \tab \code{character} \tab study location \cr \bold{ni} \tab \code{numeric} \tab total sample size \cr \bold{major} \tab \code{numeric} \tab sample restricted to patients who met criteria for major depression \cr \bold{baseline} \tab \code{numeric} \tab HRSD baseline score \cr \bold{version} \tab \code{numeric} \tab HRSD version (17 or 21 items) \cr \bold{duration} \tab \code{numeric} \tab study duration (in weeks) \cr \bold{prep} \tab \code{character} \tab Hypericum extract preparation \cr \bold{dosage} \tab \code{numeric} \tab dosage (in mg) \cr \bold{response} \tab \code{numeric} \tab definition of response (see \sQuote{Details}) \cr \bold{ai} \tab \code{numeric} \tab number of responses in treatment group \cr \bold{n1i} \tab \code{numeric} \tab number of patients in treatment group \cr \bold{ci} \tab \code{numeric} \tab number of responses in placebo group \cr \bold{n2i} \tab \code{numeric} \tab number of patients in placebo group \cr \bold{group} \tab \code{numeric} \tab stratification variable used by the authors (see \sQuote{Details}) } } \details{ The dataset includes the results from 26 double-blind placebo-controlled trials on the effectiveness of Hypericum perforatum extracts (St. John's wort) for treating depression (note that 2 studies did not provide sufficient response information). Data were extracted from Table 1 and Figure 3 from Linde et al. (2005). For study duration, the assessment week (instead of the total study duration) was coded for Philipp et al. (1999) and Montgomery et al. (2000). For dosage, the midpoint was coded when a range of values was given. The definition of what constitutes a \code{response} differed across studies and is coded as follows: \enumerate{ \item HRSD score reduction of at least 50\% or HRSD score after therapy <10, \item HRSD reduction of at least 50\%, \item based on HRSD scale but exact definition not reported, \item global patient assessment of efficacy, \item at least \sQuote{much improved} on the Clinical Global Impression sub-scale for global improvement. } The \code{group} variable corresponds to the variable used by Linde et al. (2005) to stratify their analyses and is coded as follows: \enumerate{ \item smaller trials restricted to major depression, \item larger trials restricted to major depression, \item smaller trials not restricted to major depression, \item larger trials not restricted to major depression. } } \source{ Linde, K., Berner, M., Egger, M., & Mulrow, C. (2005). St John's wort for depression: Meta-analysis of randomised controlled trials. \emph{British Journal of Psychiatry}, \bold{186}(2), 99--107. \verb{https://doi.org/10.1192/bjp.186.2.99} } \references{ Viechtbauer, W. (2007). Accounting for heterogeneity via random-effects models and moderator analyses in meta-analysis. \emph{Zeitschrift \enc{für}{fuer} Psychologie / Journal of Psychology}, \bold{215}(2), 104--121. \verb{https://doi.org/10.1027/0044-3409.215.2.104} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.linde2005 head(dat) \dontrun{ ### load metafor package library(metafor) ### remove studies with no response information and study with no responses in either group dat <- dat[-c(5,6,26),] ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=ai, ci=ci, n1i=n1i, n2i=n2i, data=dat) head(dat) ### meta-analysis of the log risk ratios using a random-effects model res <- rma(yi, vi, data=dat, method="DL") res ### mixed-effects meta-regression model with stratification variable res <- rma(yi, vi, mods = ~ 0 + factor(group), data=dat, method="DL") res ### predicted average risk ratio for each level of the stratification variable predict(res, newmods=diag(4), transf=exp, digits=2) } } \keyword{datasets} \concept{medicine} \concept{psychiatry} \concept{risk ratios} \section{Concepts}{ medicine, psychiatry, risk ratios } metadat/man/dat.cohen1981.Rd0000644000176200001440000000514714750466700015141 0ustar liggesusers\name{dat.cohen1981} \docType{data} \alias{dat.cohen1981} \title{Studies on the Relationship between Course Instructor Ratings and Student Achievement} \description{Results from 20 studies on the correlation between course instructor ratings and student achievement.} \usage{ dat.cohen1981 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab study author(s) and year \cr \bold{sample} \tab \code{character} \tab course type \cr \bold{control} \tab \code{character} \tab ability control \cr \bold{ni} \tab \code{numeric} \tab sample size of the study (number of sections) \cr \bold{ri} \tab \code{numeric} \tab observed correlation } } \details{ The studies included in this dataset examined to what extent students' ratings of a course instructor correlated with their achievement in the course. Instead of correlating individual ratings and achievement scores, the studies were carried out in multisection courses, in which the sections had different instructors but all sections used a common achievement measure (e.g., a final exam). The correlation coefficients reflect the correlation between the mean instructor rating and the mean achievement score of each section. Hence, the unit of analysis are the sections, not the individuals. Note that this dataset (extracted from Table A.3 in Cooper & Hedges, 1994) only contains studies with at least 10 sections. } \source{ Cooper, H., & Hedges, L. V. (1994). Appendix A: Data Sets. In H. Cooper & L. V. Hedges (Eds.), \emph{The handbook of research synthesis} (pp. 543--547). New York: Russell Sage Foundation. } \references{ Cohen, P. A. (1981). Student ratings of instruction and student achievement: A meta-analysis of multisection validity studies. \emph{Review of Educational Research}, \bold{51}(3), 281--309. \verb{https://doi.org/10.3102/00346543051003281} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.cohen1981 dat[c(1,4,5)] \dontrun{ ### load metafor package library(metafor) ### calculate r-to-z transformed correlations and corresponding sampling variances dat <- escalc(measure="ZCOR", ri=ri, ni=ni, data=dat[c(1,4,5)]) dat ### meta-analysis of the transformed correlations using a random-effects model res <- rma(yi, vi, data=dat, digits=2) res ### predicted average correlation with 95\% CI predict(res, transf=transf.ztor) } } \keyword{datasets} \concept{education} \concept{correlation coefficients} \section{Concepts}{ education, correlation coefficients } metadat/man/dat.colditz1994.Rd0000644000176200001440000001023714750466700015515 0ustar liggesusers\name{dat.colditz1994} \docType{data} \alias{dat.colditz1994} \title{Studies on the Effectiveness of the BCG Vaccine Against Tuberculosis} \description{Results from 13 studies examining the effectiveness of the Bacillus Calmette-Guerin (BCG) vaccine against tuberculosis. \loadmathjax} \usage{ dat.colditz1994 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{trial} \tab \code{numeric} \tab trial number \cr \bold{author} \tab \code{character} \tab author(s) \cr \bold{year} \tab \code{numeric} \tab publication year \cr \bold{tpos} \tab \code{numeric} \tab number of TB positive cases in the treated (vaccinated) group \cr \bold{tneg} \tab \code{numeric} \tab number of TB negative cases in the treated (vaccinated) group \cr \bold{cpos} \tab \code{numeric} \tab number of TB positive cases in the control (non-vaccinated) group \cr \bold{cneg} \tab \code{numeric} \tab number of TB negative cases in the control (non-vaccinated) group \cr \bold{ablat} \tab \code{numeric} \tab absolute latitude of the study location (in degrees) \cr \bold{alloc} \tab \code{character} \tab method of treatment allocation (random, alternate, or systematic assignment) } } \details{ The 13 studies provide data in terms of \mjeqn{2 \times 2}{2x2} tables in the form: \tabular{lcc}{ \tab TB positive \tab TB negative \cr vaccinated group \tab \code{tpos} \tab \code{tneg} \cr control group \tab \code{cpos} \tab \code{cneg} } The goal of the meta-analysis was to examine the overall effectiveness of the BCG vaccine for preventing tuberculosis and to examine moderators that may potentially influence the size of the effect. The dataset has been used in several publications to illustrate meta-analytic methods (see \sQuote{References}). } \source{ Colditz, G. A., Brewer, T. F., Berkey, C. S., Wilson, M. E., Burdick, E., Fineberg, H. V., & Mosteller, F. (1994). Efficacy of BCG vaccine in the prevention of tuberculosis: Meta-analysis of the published literature. \emph{Journal of the American Medical Association}, \bold{271}(9), 698--702. \verb{https://doi.org/10.1001/jama.1994.03510330076038} } \references{ Berkey, C. S., Hoaglin, D. C., Mosteller, F., & Colditz, G. A. (1995). A random-effects regression model for meta-analysis. \emph{Statistics in Medicine}, \bold{14}(4), 395--411. \verb{https://doi.org/10.1002/sim.4780140406} van Houwelingen, H. C., Arends, L. R., & Stijnen, T. (2002). Advanced methods in meta-analysis: Multivariate approach and meta-regression. \emph{Statistics in Medicine}, \bold{21}(4), 589--624. \verb{https://doi.org/10.1002/sim.1040} Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. \emph{Journal of Statistical Software}, \bold{36}(3), 1--48. \verb{https://doi.org/10.18637/jss.v036.i03} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.colditz1994 dat \dontrun{ ### load metafor package library(metafor) ### calculate log risk ratios and corresponding sampling variances dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat, slab=paste0(author, ", ", year)) dat ### random-effects model res <- rma(yi, vi, data=dat) res ### average risk ratio with 95\% CI predict(res, transf=exp) ### mixed-effects model with absolute latitude and publication year as moderators res <- rma(yi, vi, mods = ~ ablat + year, data=dat) res ### predicted average risk ratios for 10-60 degrees absolute latitude ### holding the publication year constant at 1970 predict(res, newmods=cbind(seq(from=10, to=60, by=10), 1970), transf=exp) ### note: the interpretation of the results is difficult because absolute ### latitude and publication year are strongly correlated (the more recent ### studies were conducted closer to the equator) plot(ablat ~ year, data=dat, pch=19, xlab="Publication Year", ylab="Absolute Lattitude") cor(dat$ablat, dat$year) } } \keyword{datasets} \concept{medicine} \concept{risk ratios} \concept{meta-regression} \section{Concepts}{ medicine, risk ratios, meta-regression } metadat/man/dat.woods2010.Rd0000644000176200001440000000424614750466700015157 0ustar liggesusers\name{dat.woods2010} \docType{data} \alias{dat.woods2010} \title{Studies on Treatments for Chronic Obstructive Pulmonary Disease} \description{Results from 3 trials examining the mortality risk of three treatments and placebo in patients with chronic obstructive pulmonary disease.} \usage{ dat.woods2010 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{author} \tab \code{character} \tab first author / study name \cr \bold{treatment} \tab \code{character} \tab treatment \cr \bold{r} \tab \code{integer} \tab number of deaths \cr \bold{N} \tab \code{integer} \tab number of patients } } \details{ Count mortality statistics in randomised controlled trials of treatments for chronic obstructive pulmonary disease (Woods et al., 2010, Table 1). } \source{ Woods, B. S., Hawkins, N., & Scott, D. A. (2010). Network meta-analysis on the log-hazard scale, combining count and hazard ratio statistics accounting for multi-arm trials: A tutorial. \emph{BMC Medical Research Methodology}, \bold{10}, 54. \verb{https://doi.org/10.1186/1471-2288-10-54} } \author{ Guido Schwarzer, \email{guido.schwarzer@uniklinik-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show full dataset dat.woods2010 \dontrun{ ### Load netmeta package suppressPackageStartupMessages(library("netmeta")) ### Print odds ratios and confidence limits with two digits oldset <- settings.meta(digits = 2) ### Change appearance of confidence intervals cilayout("(", "-") ### Transform data from long arm-based format to contrast-based ### format. Argument 'sm' has to be used for odds ratio as summary ### measure; by default the risk ratio is used in the metabin function ### called internally. pw <- pairwise(treatment, event = r, n = N, studlab = author, data = dat.woods2010, sm = "OR") pw ### Conduct network meta-analysis net <- netmeta(pw) net ### Show forest plot forest(net, ref = "Placebo", drop = TRUE, leftlabs = "Contrast to Placebo") ### Use previous settings settings.meta(oldset) } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{network meta-analysis} \section{Concepts}{ medicine, odds ratios, network meta-analysis } metadat/man/dat.curtis1998.Rd0000644000176200001440000001311614750466700015361 0ustar liggesusers\name{dat.curtis1998} \docType{data} \alias{dat.curtis1998} \title{Studies on the Effects of Elevated CO2 Levels on Woody Plant Mass} \description{Results from studies examining the effects of elevated CO2 levels on woody plant mass.} \usage{ dat.curtis1998 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab observation number \cr \bold{paper} \tab \code{numeric} \tab paper number \cr \bold{genus} \tab \code{character} \tab genus name \cr \bold{species} \tab \code{character} \tab species name \cr \bold{fungrp} \tab \code{character} \tab plant functional group \cr \bold{co2.ambi} \tab \code{numeric} \tab ambient CO2 level (control group) \cr \bold{co2.elev} \tab \code{numeric} \tab elevated CO2 level (treatment group) \cr \bold{units} \tab \code{character} \tab units for CO2 exposure levels \cr \bold{time} \tab \code{numeric} \tab maximum length of time (days) of CO2 exposure \cr \bold{pot} \tab \code{character} \tab growing method (see \sQuote{Details}) \cr \bold{method} \tab \code{character} \tab CO2 exposure facility (see \sQuote{Details}) \cr \bold{stock} \tab \code{character} \tab planting stock code \cr \bold{xtrt} \tab \code{character} \tab interacting treatment code (see \sQuote{Details}) \cr \bold{level} \tab \code{character} \tab interacting treatment level codes (see \sQuote{Details}) \cr \bold{m1i} \tab \code{numeric} \tab mean plant mass under elevated CO2 level (treatment group) \cr \bold{sd1i} \tab \code{numeric} \tab standard deviation of plant mass underelevated CO2 level (treatment group) \cr \bold{n1i} \tab \code{numeric} \tab number of observations under elevated CO2 level (treatment group) \cr \bold{m2i} \tab \code{numeric} \tab mean plant mass under ambient CO2 level (control group) \cr \bold{sd2i} \tab \code{numeric} \tab standard deviation of plant mass under ambient CO2 level (control group) \cr \bold{n2i} \tab \code{numeric} \tab number of observations under ambient CO2 level (control group) } } \details{ The studies included in this dataset compared the total above- plus below-ground biomass (in grams) for plants that were either exposed to ambient (around 35 Pa) and elevated CO2 levels (around twice the ambient level). The \code{co2.ambi} and \code{co2.elev} variables indicate the CO2 levels in the control and treatment groups, respectively (with the \code{units} variable specifying the units for the CO2 exposure levels). Many of the studies also varied one or more additional environmental variables (defined by the \code{xtrt} and \code{level} variables): \itemize{ \item NONE = no additional treatment factor \item FERT = soil fertility (either a \code{CONTROL}, \code{HIGH}, or \code{LOW} level) \item LIGHT = light treatment (always a \code{LOW} light level) \item FERT+L = soil fertility and light (a \code{LOW} light and soil fertility level) \item H2O = well watered vs drought (either a \code{WW} or \code{DRT} level) \item TEMP = temperature treatment (either a \code{HIGH} or \code{LOW} level) \item OZONE = ozone exposure (either a \code{HIGH} or \code{LOW} level) \item UVB = ultraviolet-B radiation exposure (either a \code{HIGH} or \code{LOW} level) } In addition, the studies differed with respect to various design variables, including CO2 exposure duration (\code{time}), growing method (\code{pot}: number = pot size in liters; \code{GRND} = plants rooted in ground; \code{HYDRO} = solution or aeroponic culture), CO2 exposure facility (\code{method}: \code{GC} = growth chamber; \code{GH} = greenhouse; \code{OTC} = field-based open-top chamber), and planting stock (\code{stock}: \code{SEED} = plants started from seeds; \code{SAP} = plants started from cuttings). The goal of the meta-analysis was to examine the effects of elevated CO2 levels on plant physiology and growth and the interacting effects of the environmental (and design) variables. } \source{ Hedges, L. V., Gurevitch, J., & Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. \emph{Ecology}, \bold{80}(4), 1150--1156. \verb{https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2} (data obtained from \emph{Ecological Archives}, E080-008-S1, at: \verb{https://doi.org/10.6084/m9.figshare.c.3297278}) } \references{ Curtis, P. S., & Wang, X. (1998). A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. \emph{Oecologia}, \bold{113}(3), 299--313. \verb{https://doi.org/10.1007/s004420050381} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.curtis1998 head(dat) \dontrun{ ### load metafor package library(metafor) ### calculate (log transformed) ratios of means and corresponding sampling variances dat <- escalc(measure="ROM", m1i=m1i, sd1i=sd1i, n1i=n1i, m2i=m2i, sd2i=sd2i, n2i=n2i, data=dat) head(dat) ### meta-analysis using a random-effects model res <- rma(yi, vi, method="DL", data=dat) res ### average ratio of means with 95\% CI predict(res, transf=exp, digits=2) ### meta-analysis for plants grown under nutrient stress res <- rma(yi, vi, method="DL", data=dat, subset=(xtrt=="FERT" & level=="LOW")) predict(res, transf=exp, digits=2) ### meta-analysis for plants grown under low light conditions res <- rma(yi, vi, method="DL", data=dat, subset=(xtrt=="LIGHT" & level=="LOW")) predict(res, transf=exp, digits=2) } } \keyword{datasets} \concept{ecology} \concept{ratios of means} \section{Concepts}{ ecology, ratios of means } metadat/man/dat.furukawa2003.Rd0000644000176200001440000000512214750466700015645 0ustar liggesusers\name{dat.furukawa2003} \docType{data} \alias{dat.furukawa2003} \title{Studies on Low Dosage Tricyclic Antidepressants for the Treatment of Depression} \description{Results on depression severity from 17 studies comparing low dosage tricyclic antidepressants (TCA) and placebo for the treatment of depression.} \usage{ dat.furukawa2003 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{author} \tab \code{character} \tab First author with information on dosage in parentheses \cr \bold{Ne} \tab \code{integer} \tab number of patients in low TCA group \cr \bold{Me} \tab \code{numeric} \tab depression severity (low TCA) \cr \bold{Se} \tab \code{numeric} \tab standard deviation (low TCA) \cr \bold{Nc} \tab \code{integer} \tab number of patients in placebo group \cr \bold{Mc} \tab \code{numeric} \tab depression severity (placebo) \cr \bold{Sc} \tab \code{numeric} \tab standard deviation (placebo) \cr } } \details{ Furukawa et al. (2003) carried out a systematic review comparing low dosage tricyclic antidepressants (TCA) with placebo for the treatment of depression. They reported the effect on presence/absence of depression and on depression severity at various time points. Here we focus on depression severity at four weeks. Most studies used some version of the Hamilton Depression Rating Scale, however, some studies used the Montgomery-Asberg Depression Rating Scale. Accordingly, it is not possible to pool the estimated effects directly. This data set is used as an example in Schwarzer et al. (2015). } \source{ Furukawa, T. A., McGuire, H., & Barbui, C. (2003). Low dosage tricyclic antidepressants for depression. \emph{Cochrane Database of Systematic Reviews}, \bold{3}, CD003197. \verb{https://doi.org/10.1002/14651858.CD003197} } \references{ Schwarzer, G., Carpenter, J. R., & Rücker, G. (2015). \emph{Meta-analysis with R}. Cham, Switzerland: Springer. } \author{ Guido Schwarzer, \email{guido.schwarzer@uniklinik-freiburg.de}, \url{https://github.com/guido-s/} } \examples{ ### Show first five studies head(dat.furukawa2003, 5) \dontrun{ ### Load meta package suppressPackageStartupMessages(library("meta")) ### Use RevMan5 settings oldset <- settings.meta("RevMan5", digits = 2) ### Conduct random effects meta-analysis with Hedges' g as effect measure mc2 <- metacont(Ne, Me, Se, Nc, Mc, Sc, common = FALSE, data = dat.furukawa2003, sm = "SMD") mc2 ### Use previous settings settings.meta(oldset) } } \keyword{datasets} \concept{standardized mean differences} \section{Concepts}{ standardized mean differences } metadat/man/dat.pignon2000.Rd0000644000176200001440000000603514750466700015313 0ustar liggesusers\name{dat.pignon2000} \docType{data} \alias{dat.pignon2000} \title{Studies on the Effectiveness of Locoregional Treatment plus Chemotherapy for Head and Neck Squamous-Cell Carcinoma} \description{Results from studies examining mortality risk in patients with nonmetastatic head and neck squamous-cell carcinoma receiving either locoregional treatment plus chemotherapy versus locoregional treatment alone.} \usage{ dat.pignon2000 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{id} \tab \code{numeric} \tab study id number \cr \bold{trial} \tab \code{character} \tab trial abbreviation \cr \bold{OmE} \tab \code{numeric} \tab observed minus expected number of deaths in the locoregional treatment plus chemotherapy group \cr \bold{V} \tab \code{numeric} \tab corresponding variance \cr \bold{grp} \tab \code{numeric} \tab timing of chemotherapy: 1 = adjuvant, 2 = neoadjuvant, 3 = concomitant } } \details{ The purpose of this meta-analysis was to examine the mortality risk in patients with nonmetastatic head and neck squamous-cell carcinoma receiving either locoregional treatment plus chemotherapy versus locoregional treatment alone. For 65 trials, the dataset provides the observed minus expected number of deaths and corresponding variances in the locoregional treatment plus chemotherapy group. Based on these values, we can estimate the log hazard ratios with \code{OmE/V} and the corresponding sampling variance with \code{1/V}. The trials were also divided according to the timing of the chomotherapy: (1) adjuvant, after the locoregional treatment, (2) neoadjuvant, before the locoregional treatment, and (3) concomitant, chemotherapy given concomitantly or alternating with radiotherapy. } \source{ Pignon, J. P., Bourhis, J., Domenge, C., & Designe, L. (2000). Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: Three meta-analyses of updated individual data. \emph{Lancet}, \bold{355}(9208), 949--955. \verb{https://doi.org/10.1016/S0140-6736(00)90011-4} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.pignon2000 head(dat) \dontrun{ ### load metafor package library(metafor) ### calculate log hazard ratios and sampling variances dat$yi <- with(dat, OmE/V) dat$vi <- with(dat, 1/V) head(dat) ### meta-analysis based on all 65 trials res <- rma(yi, vi, data=dat, method="EE", digits=2) res predict(res, transf=exp) ### only adjuvant trials res <- rma(yi, vi, data=dat, method="EE", subset=grp==1, digits=2) res predict(res, transf=exp) ### only neoadjuvant trials res <- rma(yi, vi, data=dat, method="EE", subset=grp==2, digits=2) res predict(res, transf=exp) ### only concomitant trials res <- rma(yi, vi, data=dat, method="EE", subset=grp==3, digits=2) res predict(res, transf=exp) } } \keyword{datasets} \concept{medicine} \concept{oncology} \concept{hazard ratios} \section{Concepts}{ medicine, oncology, hazard ratios } metadat/man/dat.dagostino1998.Rd0000644000176200001440000001226214750466700016040 0ustar liggesusers\name{dat.dagostino1998} \docType{data} \alias{dat.dagostino1998} \title{Studies on the Effectiveness of Antihistamines in Reducing Symptoms of the Common Cold} \description{Results from 9 studies on the effectiveness of antihistamines in reducing the severity of runny nose and sneezing in the common cold.} \usage{ dat.dagostino1998 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study id \cr \bold{cold} \tab \code{character} \tab natural or induced cold study \cr \bold{scale.rn} \tab \code{character} \tab scale for measuring runny nose severity \cr \bold{scale.sn} \tab \code{character} \tab scale for measuring sneezing severity \cr \bold{drug} \tab \code{character} \tab type of antihistamine studied \cr \bold{tnt} \tab \code{numeric} \tab total sample size of the treatment group \cr \bold{tnc} \tab \code{numeric} \tab total sample size of the control (placebo) group \cr \bold{outcome} \tab \code{character} \tab outcome variable (see \sQuote{Details})\cr \bold{mt} \tab \code{numeric} \tab mean in the treatment group \cr \bold{sdt} \tab \code{numeric} \tab SD in the treatment group \cr \bold{mc} \tab \code{numeric} \tab mean in the control group \cr \bold{sdc} \tab \code{numeric} \tab SD in the control group \cr \bold{xt} \tab \code{numeric} \tab number of patients reaching the therapy goal in the treatment group \cr \bold{xc} \tab \code{numeric} \tab number of patients reaching the therapy goal in the control (placebo) group \cr \bold{nt} \tab \code{numeric} \tab sample size of the treatment group for measuring the outcome \cr \bold{nc} \tab \code{numeric} \tab sample size of the control group for measuring the outcome } } \details{ The studies for this meta-analysis were assembled to examine the effectiveness of antihistamines in reducing the severity of runny nose and sneezing in the common cold. Effectiveness was measured after one and two days of treatment in terms of 4 different outcome variables: \enumerate{ \item \code{rnic1} and \code{rnic2} (continuous): incremental change (improvement) in runny nose severity at day 1 and day 2, \item \code{rngoal1} and \code{rngoal2} (dichotomous): reaching the goal of therapy (of at least a 50\% reduction in runny nose severity) at day 1 and day 2, \item \code{snic1} and \code{snic2} (continuous): incremental change (improvement) in sneezing severity at day 1 and day 2, and \item \code{rngoal1} and \code{rngoal2} (dichotomous): reaching the goal of therapy (of at least a 50\% reduction in sneezing severity) at day 1 and day 2. } For the continuous outcomes, standardized mean differences can be computed to quantify the difference between the treatment and control groups. For the dichotomous outcomes, one can compute (log) odds ratios to quantify the difference between the treatment and control groups. } \source{ D'Agostino, R. B., Sr., Weintraub, M., Russell, H. K., Stepanians, M., D'Agostino, R. B., Jr., Cantilena, L. R., Jr., Graumlich, J. F., Maldonado, S., Honig, P., & Anello, C. (1998). The effectiveness of antihistamines in reducing the severity of runny nose and sneezing: A meta-analysis. \emph{Clinical Pharmacology & Therapeutics}, \bold{64}(6), 579--596. \verb{https://doi.org/10.1016/S0009-9236(98)90049-2} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.dagostino1998 head(dat, 16) \dontrun{ ### load metafor package library(metafor) ### compute standardized mean differences and corresponding sampling variances dat <- escalc(measure="SMD", m1i=mt, m2i=mc, sd1i=sdt, sd2i=sdc, n1i=nt, n2i=nc, data=dat, add.measure=TRUE) ### compute log odds ratios and corresponding sampling variances dat <- escalc(measure="OR", ai=xt, ci=xc, n1i=nt, n2i=nc, data=dat, replace=FALSE, add.measure=TRUE, add=1/2, to="all") ### inspect data for the first study head(dat, 8) ### fit a random-effects model for incremental change in runny nose severity at day 1 res <- rma(yi, vi, data=dat, subset=outcome=="rnic1") res ### fit a random-effects model for reaching the goal of therapy for runny nose severity at day 1 res <- rma(yi, vi, data=dat, subset=outcome=="rngoal1") res predict(res, transf=exp) ### construct approximate V matrix assuming a correlation of 0.7 for sampling errors within studies dat$esid <- ave(dat$study, dat$study, FUN=seq) V <- vcalc(vi, cluster=study, obs=esid, rho=0.7, data=dat) ### fit a model for incremental change in runny nose severity at day 1 and at day 2, allowing for ### correlated sampling errors (no random effects added, since there does not appear to be any ### noteworthy heterogeneity in these data) res <- rma.mv(yi, V, mods = ~ 0 + outcome, data=dat, subset=outcome \%in\% c("rnic1","rnic2")) res ### test if there is a difference in effects at day 1 and day 2 anova(res, X=c(1,-1)) } } \keyword{datasets} \concept{medicine} \concept{standardized mean differences} \concept{odds ratios} \concept{multivariate models} \section{Concepts}{ medicine, standardized mean differences, odds ratios, multivariate models } metadat/man/dat.hahn2001.Rd0000644000176200001440000000476114750466700014744 0ustar liggesusers\name{dat.hahn2001} \docType{data} \alias{dat.hahn2001} \title{Studies on the Effectiveness of Different Rehydration Solutions for the Prevention of Unscheduled Intravenous Infusion in Children with Diarrhoea} \description{Results from 12 trials examining the effectiveness of a reduced versus standard rehydration solution for the prevention of unscheduled intravenous infusion in children with diarrhoea.} \usage{ dat.hahn2001 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{character} \tab trial name and year \cr \bold{ai} \tab \code{numeric} \tab number of children requiring unscheduled intravenous infusion in the reduced rehydration solution group \cr \bold{n1i} \tab \code{numeric} \tab number of children in the reduced rehydration solution group \cr \bold{ci} \tab \code{numeric} \tab number of children requiring unscheduled intravenous infusion in the standard rehydration solution group \cr \bold{n2i} \tab \code{numeric} \tab number of children in the standard rehydration solution group } } \details{ The dataset includes the results from 12 randomized clinical trials that examined the effectiveness of a reduced osmolarity oral rehydration solution (total osmolarity <250 mmol/l with reduced sodium) with a standard WHO oral rehydration solution (sodium 90 mmol/l, glucose 111mmol/l, total osmolarity 311 mmol/l) for the prevention of unscheduled intravenous infusion in children with diarrhoea. } \source{ Hahn, S., Kim, Y., & Garner, P. (2001). Reduced osmolarity oral rehydration solution for treating dehydration due to diarrhoea in children: Systematic review. \emph{British Medical Journal}, \bold{323}(7304), 81--85. \verb{https://doi.org/10.1136/bmj.323.7304.81} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.hahn2001 dat \dontrun{ ### load metafor package library(metafor) ### meta-analysis of (log) odds rations using the Mantel-Haenszel method res <- rma.mh(measure="OR", ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, digits=2, slab=study) res ### forest plot (also show studies that were excluded from the analysis) options(na.action="na.pass") forest(res, atransf=exp, xlim=c(-11,9), at=log(c(0.01, 0.1, 1, 10, 100))) options(na.action="na.omit") } } \keyword{datasets} \concept{medicine} \concept{odds ratios} \concept{Mantel-Haenszel method} \section{Concepts}{ medicine, odds ratios, Mantel-Haenszel method } metadat/man/dat.pritz1997.Rd0000644000176200001440000001010614750466700015213 0ustar liggesusers\name{dat.pritz1997} \docType{data} \alias{dat.pritz1997} \title{Studies on the Effectiveness of Hyperdynamic Therapy for Treating Cerebral Vasospasm} \description{Results from 14 studies on the effectiveness of hyperdynamic therapy for treating cerebral vasospasm.} \usage{ dat.pritz1997 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{study} \tab \code{numeric} \tab study number \cr \bold{authors} \tab \code{character} \tab study authors \cr \bold{xi} \tab \code{numeric} \tab number of patients that improved with hyperdynamic therapy \cr \bold{ni} \tab \code{numeric} \tab total number of patients treated } } \details{ As described in Zhou et al. (1999), "hyperdynamic therapy refers to induced hypertension and hypervolaemia (volume expansion) to treat ischaemic symptoms due to vasospasm, and the success of this therapy is defined as clinical improvement in terms of neurologic deficits." For each study that was included in the meta-analysis, the dataset includes information on the number of patients that improved under this form of therapy and the total number of patients that were treated. The goal of the meta-analysis is to estimate the true (average) success rate of hyperdynamic therapy. } \source{ Zhou, X.-H., Brizendine, E. J., & Pritz, M. B. (1999). Methods for combining rates from several studies. \emph{Statistics in Medicine}, \bold{18}(5), 557--566. \verb{https://doi.org/10.1002/(SICI)1097-0258(19990315)18:5<557::AID-SIM53>3.0.CO;2-F} } \references{ Pritz M. B., Zhou, X.-H., & Brizendine, E. J. (1996). Hyperdynamic therapy for cerebral vasospasm: A meta-analysis of 14 studies. \emph{Journal of Neurovascular Disease}, \bold{1}, 6--8. Pritz, M. B. (1997). Treatment of cerebral vasospasm due to aneurysmal subarachnoid hemorrhage: Past, present, and future of hyperdynamic therapy. \emph{Neurosurgery Quarterly}, \bold{7}(4), 273--285. } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.pritz1997 dat \dontrun{ ### load metafor package library(metafor) ### computation of "weighted average" in Zhou et al. (1999), Table IV dat <- escalc(measure="PR", xi=xi, ni=ni, data=dat, add=0) theta.hat <- sum(dat$ni * dat$yi) / sum(dat$ni) se.theta.hat <- sqrt(sum(dat$ni^2 * dat$vi) / sum(dat$ni)^2) ci.lb <- theta.hat - 1.96 * se.theta.hat ci.ub <- theta.hat + 1.96 * se.theta.hat round(c(estimate = theta.hat, se = se.theta.hat, ci.lb = ci.lb, ci.ub = ci.ub), 4) ### this is identical to an equal-effects model with sample size weights rma(yi, vi, weights=ni, method="EE", data=dat) ### compute sampling variances under the assumption of homogeneity dat <- escalc(measure="PR", xi=xi, ni=ni, data=dat, add=0, vtype="AV") dat ### fit equal-effects model (same estimate, but SE is slightly different) rma(yi, vi, data=dat, method="EE") ### under the assumption of homogeneity, the sum of independent binomial ### counts also follows a binomial distribution; this approach yields the same ### estimate and SE as above agg <- escalc(measure="PR", xi=sum(dat$xi), ni=sum(dat$ni)) summary(agg) ### could also compute an 'exact' CI based on the Clopper-Pearson method binom.test(sum(dat$xi), sum(dat$ni)) ### logistic regression model res <- rma.glmm(measure="PLO", xi=xi, ni=ni, data=dat, method="EE") res predict(res, transf=transf.ilogit) ### the results above suggest that the true proportions may be heterogeneous ### random-effects model with raw proportions dat <- escalc(measure="PR", xi=xi, ni=ni, data=dat) res <- rma(yi, vi, data=dat) predict(res) ### random-effects model with logit transformed proportions dat <- escalc(measure="PLO", xi=xi, ni=ni, data=dat) res <- rma(yi, vi, data=dat) predict(res, transf=transf.ilogit) ### mixed-effects logistic regression model res <- rma.glmm(measure="PLO", xi=xi, ni=ni, data=dat) predict(res, transf=transf.ilogit) } } \keyword{datasets} \concept{medicine} \concept{single-arm studies} \concept{proportions} \section{Concepts}{ medicine, single-arm studies, proportions } metadat/man/dat.cannon2006.Rd0000644000176200001440000000777614750466700015320 0ustar liggesusers\name{dat.cannon2006} \docType{data} \alias{dat.cannon2006} \title{Studies on the Effectiveness of Intensive Versus Moderate Statin Therapy for Preventing Coronary Death or Myocardial Infarction} \description{Results from 4 trials examining the effectiveness of intensive (high dose) versus moderate (standard dose) statin therapy for preventing coronary death or myocardial infarction.} \usage{ dat.cannon2006 } \format{ The data frame contains the following columns: \tabular{lll}{ \bold{trial} \tab \code{character} \tab trial name \cr \bold{pop} \tab \code{character} \tab study population (post-ACS: post acute coronary syndrome; stable CAD: stable coronary artery disease) \cr \bold{nt} \tab \code{numeric} \tab number of patients in the high dose group \cr \bold{nc} \tab \code{numeric} \tab number of patients in the standard dose group \cr \bold{ep1t} \tab \code{numeric} \tab number of events in the high dose group for end point 1: coronary death or non-fatal myocardial infarction \cr \bold{ep1c} \tab \code{numeric} \tab number of events in the standard dose group for end point 1: coronary death or non-fatal myocardial infarction \cr \bold{ep2t} \tab \code{numeric} \tab number of events in the high dose group for end point 2: coronary death or any cardiovascular event (MI, stroke, hospitalization for unstable angina, or revascularization) \cr \bold{ep2c} \tab \code{numeric} \tab number of events in the standard dose group for end point 2: coronary death or any cardiovascular event (MI, stroke, hospitalization for unstable angina, or revascularization) \cr \bold{ep3t} \tab \code{numeric} \tab number of events in the high dose group for end point 3: cardiovascular death \cr \bold{ep3c} \tab \code{numeric} \tab number of events in the standard dose group for end point 3: cardiovascular death \cr \bold{ep4t} \tab \code{numeric} \tab number of events in the high dose group for end point 4: non-cardiovascular death \cr \bold{ep4c} \tab \code{numeric} \tab number of events in the standard dose group for end point 4: non-cardiovascular death \cr \bold{ep5t} \tab \code{numeric} \tab number of events in the high dose group for end point 5: deaths (all-cause mortality) \cr \bold{ep5c} \tab \code{numeric} \tab number of events in the standard dose group for end point 5: deaths (all-cause mortality) \cr \bold{ep6t} \tab \code{numeric} \tab number of events in the high dose group for end point 6: stroke \cr \bold{ep6c} \tab \code{numeric} \tab number of events in the standard dose group for end point 6: stroke } } \details{ The data were obtained from Figures 2, 3, 4, and 5 in Cannon et al. (2006). The authors used the Mantel-Haenszel method for combining the results from the 4 trials. This approach is implemented in the \code{\link[metafor]{rma.mh}} function. } \source{ Cannon, C. P., Steinberg, B. A., Murphy, S. A., Mega, J. L., & Braunwald, E. (2006). Meta-analysis of cardiovascular outcomes trials comparing intensive versus moderate statin therapy. \emph{Journal of the American College of Cardiology}, \bold{48}(3), 438--445. \verb{https://doi.org/10.1016/j.jacc.2006.04.070} } \author{ Wolfgang Viechtbauer, \email{wvb@metafor-project.org}, \url{https://www.metafor-project.org} } \examples{ ### copy data into 'dat' and examine data dat <- dat.cannon2006 dat \dontrun{ ### load metafor package library(metafor) ### meta-analysis of log odds ratios using the MH method for endpoint 1 res <- rma.mh(measure="OR", ai=ep1t, n1i=nt, ci=ep1c, n2i=nc, data=dat, slab=trial) print(res, digits=2) ### forest plot forest(res, xlim=c(-.8,0.8), atransf=exp, at=log(c(2/3, 1, 3/2)), cex=1.2, xlab="Odds Ratio") mtext("(high dose better)", side=1, line=par("mgp")[1]-0.5, at=log(2/3), cex=1.2, font=3) mtext("(standard dose better)", side=1, line=par("mgp")[1]-0.5, at=log(3/2), cex=1.2, font=3) } } \keyword{datasets} \concept{medicine} \concept{cardiology} \concept{odds ratios} \concept{Mantel-Haenszel method} \section{Concepts}{ medicine, cardiology, odds ratios, Mantel-Haenszel method } metadat/DESCRIPTION0000644000176200001440000000424514750517112013407 0ustar liggesusersPackage: metadat Version: 1.4-0 Date: 2025-02-04 Title: Meta-Analysis Datasets Authors@R: c( person(given = "Wolfgang", family = "Viechtbauer", role = c("aut","cre"), email = "wvb@metafor-project.org", comment = c(ORCID = "0000-0003-3463-4063")), person(given = "Thomas", family="White", role="aut", email = "thomas.white@sydney.edu.au", comment = c(ORCID = "0000-0002-3976-1734")), person(given = "Daniel", family="Noble", role="aut", email = "daniel.noble@anu.edu.au", comment = c(ORCID = "0000-0001-9460-8743")), person(given = "Alistair", family="Senior", role="aut", email = "alistair.senior@sydney.edu.au", comment = c(ORCID = "0000-0001-9805-7280")), person(given = "W. Kyle", family="Hamilton", role="aut", email = "whamilton@ucmerced.edu", comment = c(ORCID = "0000-0002-8642-7990")), person(given = "Guido", family = "Schwarzer", role = "dtc", email = "guido.schwarzer@uniklinik-freiburg.de", comment = c(ORCID = "0000-0001-6214-9087"))) Depends: R (>= 4.0.0) Imports: utils, tools, mathjaxr Suggests: metafor, numDeriv, BiasedUrn, dfoptim, igraph, ape, testthat, digest, lme4, clubSandwich, meta, netmeta, mvtnorm, gridExtra, rms, bayesmeta, ellipse Description: A collection of meta-analysis datasets for teaching purposes, illustrating/testing meta-analytic methods, and validating published analyses. License: GPL (>= 2) ByteCompile: TRUE LazyData: TRUE Encoding: UTF-8 RdMacros: mathjaxr BuildManual: TRUE URL: https://github.com/wviechtb/metadat, https://wviechtb.github.io/metadat/ BugReports: https://github.com/wviechtb/metadat/issues NeedsCompilation: no Packaged: 2025-02-04 21:32:50 UTC; wviechtb Author: Wolfgang Viechtbauer [aut, cre] (), Thomas White [aut] (), Daniel Noble [aut] (), Alistair Senior [aut] (), W. Kyle Hamilton [aut] (), Guido Schwarzer [dtc] () Maintainer: Wolfgang Viechtbauer Repository: CRAN Date/Publication: 2025-02-04 23:10:02 UTC