shazam/0000755000176200001440000000000015127666600011546 5ustar liggesusersshazam/MD50000644000176200001440000001575115127666600012067 0ustar liggesusers1754e3981674ae62c724ee84c03df240 *DESCRIPTION cda61d29626b4daf237418f7e8ab935b *NAMESPACE 1f909e538f099d2f4732f4736e7480b7 *NEWS.md c11c08f46a1a029388048b7842f6aa0e *R/Baseline.R e7dfd25258f92ae4d6e7f6bb48006cbb *R/ConvertNumbering.R 5bac325bfa4d2aa36d00542e04c2c288 *R/Core.R 99677c8cca53f60b6e5fa70a877b58f5 *R/Deprecated.R 4b8f6d8fc0fbaa4d0d43f12e2efd61f6 *R/DistToNearest.R fc1ca93e44b98d017ecfdde4f1b57ecc *R/MutationDefinitions.R 85be4ad9bdf2939ec9e0b6005735f6dc *R/MutationProfiling.R 07c138b28449a678284e6d74f1bcb9ba *R/RegionDefinitions.R bea0cc49d501aafdf43b73f90ed1e7b8 *R/RegionsExtend.R e6243b906759feb2df2e1ba505a69ad0 *R/Shazam.R 27eeab82bdaa3f141dfd8077b7e218ec *R/Shmulate.R 324ae5075e22d7de3191baf2943d89e0 *R/TargetingModels.R dc2c1550661649ba66322319bb965e07 *R/kedd.R c175a455cf91007926d8b78113af8f73 *R/sysdata.rda 7dece7f6232e42175422f48a79044d57 *README.md d099472a921b18b90eac98e769d07a90 *build/partial.rdb 98d6353443c8db02df35886583069a52 *build/vignette.rds 4f3f035add5dd931a91adcfba1b27baf *data/CHARGE_MUTATIONS.rda 13597652e61fec4478f242e85d1f3ba5 *data/HH_S1F.rda a627e8ddc6ef887649482e4f51e39589 *data/HH_S5F.rda 90e5eaa6a08ef93e8b15b32df55c48f8 *data/HKL_S1F.rda 2b74df694e73995d484cec0792f36366 *data/HKL_S5F.rda 31b8bf981c581f80d98fa3cb961b40e4 *data/HYDROPATHY_MUTATIONS.rda 1d29e293a915c4d1f4706535f292329a *data/IMGT_V.rda 4713b40fb5a5c8dbbb3a553576bf8b83 *data/IMGT_VDJ.rda ee7ff985764d385373f5db509bfcaf1f *data/IMGT_VDJ_BY_REGIONS.rda 16e854af6aabf5ad793aeff99a2608ec *data/IMGT_V_BY_CODONS.rda deb4ddac9b420d3197189f31c1da30f0 *data/IMGT_V_BY_REGIONS.rda 0c8d4a1f433678c4083485d780fcfe4b *data/IMGT_V_BY_SEGMENTS.rda 914fe6b6ac51d564ef2ba1f85bb85800 *data/MK_RS1NF.rda c4a1bb3550fd6b5f81a14054add21cb0 *data/MK_RS5NF.rda 6133c0df8fe0735d20445d3c933a2df8 *data/POLARITY_MUTATIONS.rda ffaafe98d3c5d5c9b31228c6fe6cca47 *data/U5N.rda e19d67a1cd256df12aea9985917c0683 *data/VOLUME_MUTATIONS.rda b528665c7d3474902f566c07ce7a326b *inst/CITATION 417b2a866e60207c96602207b2cb5692 *inst/doc/Baseline-Vignette.R 3569b797ef162bc4f60c51517043d118 *inst/doc/Baseline-Vignette.Rmd e1eb9df788d6c0a9f27cd0f3704451b1 *inst/doc/Baseline-Vignette.pdf 9197a3d234f9dee793aa3c24c1464c9e *inst/doc/DistToNearest-Vignette.R 0aa159da384714dbc58924a49e35af25 *inst/doc/DistToNearest-Vignette.Rmd 7c048eb87cd31504608544ed0d5d90eb *inst/doc/DistToNearest-Vignette.pdf ffc7c035da1ad0461503eb22ed8bdc88 *inst/doc/Mutation-Vignette.R db9bdffe23d9af2c98db95ba5c7a8650 *inst/doc/Mutation-Vignette.Rmd e640a3fbdab758ed0b3b38a5418df8df *inst/doc/Mutation-Vignette.pdf 1dbc6b81b597b3046d502911aa2b675c *inst/doc/Shmulate-Vignette.R 75cfd7e55a2a0bc5546aa959c1d91c73 *inst/doc/Shmulate-Vignette.Rmd 1a1ff04c2900334ab515f5ae1a8404de *inst/doc/Shmulate-Vignette.pdf 56532cf08f4e0c8bb92140f2279ebdb2 *inst/doc/Targeting-Vignette.R 48ea864141d6cb8abad8cb5f9f2d34f6 *inst/doc/Targeting-Vignette.Rmd 717a6336036360bede29124efc506894 *inst/doc/Targeting-Vignette.pdf d46f2bc80073e2fa14f8c6247cf5eba4 *man/Baseline-class.Rd 4c9241edade6d91e3a06f28de4694078 *man/DensityThreshold-class.Rd b32b0ad8b0c85610fc217a14f1db81b2 *man/GmmThreshold-class.Rd d5a615ab4582a0e79e721a1ae62fcc66 *man/HH_S1F.Rd 223e7522518b67c36b628464b95a52dc *man/HH_S5F.Rd fd6b00b1452d45467fcf48c64526a794 *man/HKL_S1F.Rd 27710dfa973ae1aa2714463afd1c706a *man/HKL_S5F.Rd 86c91afaea2637c06ca480fbaa52c99b *man/IMGT_SCHEMES.Rd 52ba6171ad460704b1d9157e9b23b923 *man/MK_RS1NF.Rd fb4f48c2b4dce0daee89ba3ce5b303cd *man/MK_RS5NF.Rd be91c489ac41ef19a5bf5c85d15de841 *man/MUTATION_SCHEMES.Rd 0784db802d5b7527b49cca1214e5343f *man/MutabilityModel-class.Rd 13787752e7a8c6d36e4580366cb8be82 *man/MutationDefinition-class.Rd b6395c818a08c84df5783fed5ab8c409 *man/RegionDefinition-class.Rd 61f1e2cccdb81bb8a0c0cce1a2480f18 *man/TargetingMatrix-class.Rd 039afebba93764e2d56dfe2e145c20b6 *man/TargetingModel-class.Rd 7fb9fdf190107b6241b7b226958c1861 *man/U5N.Rd 77942a00353a374d788ff8cfd45a052f *man/calcBaseline.Rd c382d48eb26974ccde0459b43aac1f7c *man/calcExpectedMutations.Rd 8df2cc315dee03f503b8491d76e5d0d7 *man/calcObservedMutations.Rd e360c5f55ef91279e0c90ace525c57d0 *man/calcTargetingDistance.Rd dcfe2ba5015dd474fbae85b473e81152 *man/calculateMutability.Rd 28359b6e64f9fe62b57df3d4e8acb841 *man/collapseClones.Rd f27c2ed04762ffd506758c786c315569 *man/consensusSequence.Rd 3b59f03a0d4394b1d07b2a74b513753f *man/convertNumbering.Rd e9c44dc8c970a73a4df5ff33a9d92f74 *man/createBaseline.Rd 141ca65cb0eea272337efd7c70965613 *man/createMutabilityMatrix.Rd 2f17381316788a99b4c087c1d5eb4355 *man/createMutationDefinition.Rd 492ef3e940bf53f731ef9e5cba3a8653 *man/createRegionDefinition.Rd d09cf369e11bd1a31afcc0ddaef49380 *man/createSubstitutionMatrix.Rd 078e1bb0aecb3764fe2861149f210dd5 *man/createTargetingMatrix.Rd 434cdd28d17f80cef12035e1010d138d *man/createTargetingModel.Rd 0ec0b13b6dd2964ee2b0317a1d385f9d *man/distToNearest.Rd 6552e2b6c3c0f9d01b53fc83634e79f1 *man/editBaseline.Rd a46d913429cc4352099cf3dd3d675720 *man/expectedMutations.Rd 67cbb2869a1763dbc426d0e955c6881c *man/extendMutabilityMatrix.Rd ad87d67c4a882136c7afa28101a5b37c *man/extendSubstitutionMatrix.Rd 76d20cc31b9b808d505cf8e4466d05dc *man/findThreshold.Rd ab315ca57e4255b74ae75cacab6a9387 *man/groupBaseline.Rd a64599327530e7dd2e26c79dc2bf27ae *man/makeAverage1merMut.Rd d3ad96cd8466448271e018d0774ebb44 *man/makeAverage1merSub.Rd a421abd5d1b8546f15e2926a3d3d601d *man/makeDegenerate5merMut.Rd f1e35fb60180aa5226b1ca07fab136c2 *man/makeDegenerate5merSub.Rd 5fcae87eb1a59f104efe578af61271d4 *man/makeGraphDf.Rd 78ae223253f6b1a272a846a881873e7d *man/minNumMutationsTune.Rd bdc39e88e23f42333ad25601b30a6f00 *man/minNumSeqMutationsTune.Rd 36a63a979c83f7e3e73a0323337a12f6 *man/observedMutations.Rd 7b6d437610ec16f58db3de7dca9f413f *man/plotBaselineDensity.Rd 4986e7670cd1fe0dd0115b10df2b1ec7 *man/plotBaselineSummary.Rd cf65429261fc48ae7b596ea422238d63 *man/plotDensityThreshold.Rd 767b693dd2766bce94522103c3bb3459 *man/plotGmmThreshold.Rd dd51d0355510732690a33bea5186ace5 *man/plotMutability.Rd ddbe84750a199843ac9db662d50596a9 *man/plotSlideWindowTune.Rd 19b78b8ada15f437337cc80339f96048 *man/plotTune.Rd 4d11abe48d8f5e735225cea8bc6de2f4 *man/setRegionBoundaries.Rd 28dcfbb38c9cd3aecc38597d0d5c1e4c *man/shazam-package.Rd 451af1556a4d4c9819c5cd4dbcf6117d *man/shazam.Rd 06d099d927f68ef77171260c4cdce6ad *man/shmulateSeq.Rd 1b69477030e9204221b91d6e138f2259 *man/shmulateTree.Rd 4123b9d195ee930c6c2f924bf70a3295 *man/slideWindowDb.Rd 78e31167100053a36c81ad52b2362bea *man/slideWindowSeq.Rd 3e75858a9ea35d3b92bcd7a232da672e *man/slideWindowTune.Rd e6f1118cc8b0119d2ff8add9d98ef45a *man/slideWindowTunePlot.Rd bfd73c6a8503f8b083a83e4dbdbe6047 *man/summarizeBaseline.Rd b5c420e1306da4c455d2ff1953e528bb *man/testBaseline.Rd eb562fee7fda5169a426ea340a6a0dc3 *man/writeTargetingDistance.Rd 3569b797ef162bc4f60c51517043d118 *vignettes/Baseline-Vignette.Rmd 0aa159da384714dbc58924a49e35af25 *vignettes/DistToNearest-Vignette.Rmd db9bdffe23d9af2c98db95ba5c7a8650 *vignettes/Mutation-Vignette.Rmd 75cfd7e55a2a0bc5546aa959c1d91c73 *vignettes/Shmulate-Vignette.Rmd 48ea864141d6cb8abad8cb5f9f2d34f6 *vignettes/Targeting-Vignette.Rmd shazam/R/0000755000176200001440000000000015120506070011732 5ustar liggesusersshazam/R/RegionsExtend.R0000644000176200001440000007371715037731601014661 0ustar liggesusers# Region definition extension for including FWR2-4 and CDR2-3 #' @include Shazam.R NULL #### Extend region definition to CDR3 and FWR4 #### #' Build a data.frame from a ChangeoClone and an igraph object containing a clonal lineage #' #' \code{makeGraphDf} creates a data.frame from a \link[alakazam]{ChangeoClone} and an #' igraph \code{graph} object containing a B cell lineage tree and associated sequence data. #' The data.frame contains the original fields and additions such as each sequence's parent in the #' lineage tree, the lineage germline, and additional rows for inferred sequences. #' #' @param curCloneGraph an igraph \code{graph} object for the lineage tree generated by #' \link[alakazam]{buildPhylipLineage}. Note that the field containing the #' nucleotide sequence in the object must be named \code{sequence}. #' @param curCloneObj \link[alakazam]{ChangeoClone} object used to generate the lineage. #' @param objSeqId name of the sequence identifier field in \code{curCloneObj}. #' @param objSeq name of the nucleotide sequence field in \code{curCloneObj}. #' #' @return A \code{data.frame} with sequence and lineage information, including the #' the parent nucleotide sequence in the lineage tree(\code{parent_sequence}), #' an internal parent identifier (\code{parent}), and additional rows for germline #' sequence and inferred intermediate sequences. #' #' Values in the \code{sequence_id} field are renamed to numeric values, #' prefixed with the clonal grouping identifier and labeled as either \code{"Inferred"} #' or \code{"Germline"} if they are not an observed sequence. For example, for a lineage #' with \code{clone_id = 34} the new identifiers would be of the form: #' \code{"34_Germline"}, \code{"34_Inferred1"}, \code{"34_1"}, \code{"34_2"}, etc. #' #' Note that the original sequence identifier is preserved in the \code{orig_sequence_id} field #' and the original parent sequence identifier is retained in \code{orig_parent}. #' #' @seealso See \link{observedMutations} to calculate mutation frequencies using #' \code{parent_sequence} as the reference germline. See \link[alakazam]{ChangeoClone}, #' \link[alakazam]{buildPhylipLineage}, and \link[igraph]{graph} for details on the #' input objects. #' #' @examples #' # Load and subset example data #' data(ExampleDb, package = "alakazam") #' data(ExampleTrees, package = "alakazam") #' graph <- ExampleTrees[[17]] #' db <- subset(ExampleDb, clone_id == graph$clone) #' clone <- alakazam::makeChangeoClone(db) #' #' # Extend data with lineage information #' df <- makeGraphDf(graph, clone) #' #' @export makeGraphDf <- function(curCloneGraph, curCloneObj, objSeqId="sequence_id", objSeq="sequence") { # extracting the cur_clone_num from the inputs to function: cur_clone_num <- curCloneObj@clone # generating a data frame from the clone igraph object # (- for getting the inferred sequences from the graph, # and the parent information): curCloneGraph_df <- summarizeSubtrees(curCloneGraph, fields="sequence") # merging the db from clone object and from graph: cur_clone_merged_df <- merge(x=curCloneObj@data, y=curCloneGraph_df, by.x=objSeqId, by.y="name", all=T) # Renaming sequence_id column to orig_sequence_id, and renaming parent # to orig_parent: cur_clone_merged_df$orig_sequence_id <- cur_clone_merged_df[,objSeqId] cur_clone_merged_df$orig_parent <- cur_clone_merged_df$parent # uniquifying some values in merged data frame, and filling some # missing values: #1. Replacing inferred sequences names with a unique name # (using the clone number). # Doing so for both sequence_id and parent and graph vertices cur_clone_merged_df$parent <- gsub(pattern="Inferred", x=cur_clone_merged_df$parent, replacement=paste("Inferred_", cur_clone_num, "_", sep="")) cur_clone_merged_df[,objSeqId] <- gsub(pattern="Inferred", x=cur_clone_merged_df[,objSeqId], replacement=paste("Inferred_", cur_clone_num, "_", sep="")) V(curCloneGraph)$label <- gsub(pattern="Inferred", x=V(curCloneGraph)$label, replacement=paste("Inferred_", cur_clone_num, "_", sep="")) #2. Replacing Germline sequence name with a unique name # (using the clone number). # Doing so for both sequence_id and parent and graph vertices: cur_clone_merged_df$parent <- gsub(pattern="Germline", x=cur_clone_merged_df$parent, replacement=paste("Germline_", cur_clone_num, sep="")) cur_clone_merged_df$sequence_id <- gsub(pattern="Germline", x=cur_clone_merged_df[,objSeqId], replacement=paste("Germline_", cur_clone_num, sep="")) V(curCloneGraph)$label <- gsub(pattern="Germline", x=V(curCloneGraph)$label, replacement= paste("Germline_", cur_clone_num, sep="")) #3. Now need to fill in missing values for germline sequence and # inferred sequences: cur_clone_merged_df$clone <- cur_clone_num cur_clone_merged_df$v_call <- curCloneObj@v_gene cur_clone_merged_df$j_call <- curCloneObj@j_gene cur_clone_merged_df$junction_length <- curCloneObj@junc_len cur_clone_merged_df$germline_imgt <- curCloneObj@germline #4. setting a new sequence_id column with following format: #_ #Except for Germline and Inferred names which will remain as is. cur_clone_merged_df[,objSeqId] <- paste(cur_clone_num, "_", c(1:length(cur_clone_merged_df$orig_sequence_id)), sep="") cur_clone_merged_df[,objSeqId] <- ifelse(grepl("Germline|Inferred", cur_clone_merged_df$orig_sequence_id), paste(cur_clone_num, "_", cur_clone_merged_df$orig_sequence_id, sep=""), cur_clone_merged_df[,objSeqId]) #5. Doing the same for parent column: # setting a new parent column with following format: # _ #Except for Germline and Inferred names which will remain as is. cur_clone_merged_df$parent <- cur_clone_merged_df[match(cur_clone_merged_df$orig_parent, cur_clone_merged_df$orig_sequence_id), objSeqId] #6. There are 2 sequence columns: one from curCloneGraph_df (names "sequence") # and one from curCloneObj@data (called per argument objSeq). # so first checking if objSeq=="sequence", and taking care accordingly: # Removing the sequence column that came from curCloneObj@data as it does not # include sequences of germline and inferred. # Setting the "sequence" column to be named "sequence" if (objSeq=="sequence") { cur_clone_merged_df <- cur_clone_merged_df %>% select(-!!rlang::sym("sequence.x")) cur_clone_merged_df <- rename(cur_clone_merged_df, sequence=!!rlang::sym("sequence.y")) } else { cur_clone_merged_df1<-cur_clone_merged_df1[!(names(cur_clone_merged_df1) %in% c(objSeq))] } #7. Adding the parent sequence as a new column: cur_clone_merged_df$parent_sequence <- cur_clone_merged_df[match(cur_clone_merged_df$parent, cur_clone_merged_df[,objSeqId]), objSeq] # filling the parent sequence of the Germline sequence to be its own sequence # (=GERMLINE_IMGT): #cur_clone_merged_df <- mutate(cur_clone_merged_df, # parent_sequence=ifelse(is.na(parent_sequence), # GERMLINE_IMGT, # parent_sequence)) # now checking if the germline sequence is equal to its (only) child sequence. # For example if "250_7" sequence parent is the "250_Germline" sequence, # then merge them to one line called "250_7_Germline". germ_seq_line <- filter(cur_clone_merged_df, !!rlang::sym("orig_sequence_id") == "Germline") germ_seq <- germ_seq_line[,objSeq] germ_son_seq_line <- filter(cur_clone_merged_df, !!rlang::sym("orig_parent") == "Germline") germ_son_seq <- germ_son_seq_line[,objSeq] if (seqDist(germ_seq, germ_son_seq) == 0) { # removing from db the line of the germline: cur_clone_merged_df <- filter(cur_clone_merged_df, !!rlang::sym("orig_sequence_id") != "Germline") # renaming the sequence id of the germline son - to include "Germline" # in its name: cur_clone_merged_df[,objSeqId]<-ifelse(cur_clone_merged_df[,"orig_parent"] == "Germline", paste(cur_clone_merged_df[,objSeqId], "_", "Germline", sep=""), cur_clone_merged_df[, objSeqId]) # Change the parent SEQUENCE to be NA (as it is the Germline) cur_clone_merged_df <- mutate(cur_clone_merged_df, parent=ifelse(!!rlang::sym("orig_parent") == "Germline", "NA", !!rlang::sym("parent"))) } return(cur_clone_merged_df) } #' Build a RegionDefinition object that includes CDR3 and FWR4. #' #' \code{setRegionBoundaries} takes as input a junction length and an IMGT-numbered sequence #' and outputs a custom \code{RegionDefinition} object that includes the boundary definitions of #' CDR1-3 and FWR1-4 for that sequence. In contrast to the universal \code{RegionDefinition} object #' that end with FWR3, the returned definition is per-sequence due to variable junction lengths. #' #' @param juncLength junction length of the sequence. #' @param sequenceImgt IMGT-numbered sequence. #' @param regionDefinition \code{RegionDefinition} type to calculate the region definition for. #' Can be one of \code{IMGT_VDJ_BY_REGIONS} or \code{IMGT_VDJ}, #' which are template definitions that include CDR1-3 and FWR1-4. #' Only these two regions include all CDR1-3 and FWR1-4 regions. #' If this argument is set to \code{NULL}, then an empty #' \code{RegionDefinition} will be returned. #' #' @return A \code{RegionDefinition} object that includes CDR1-3 and FWR1-4 for the #' \code{sequenceImgt}, \code{juncLength}, and \code{regionDefinition} specified. #' #' For \code{regionDefinition=IMGT_VDJ_BY_REGIONS}, the returned \code{RegionDefinition} #' includes: #' #' \itemize{ #' \item \code{fwr1}: Positions 1 to 78. #' \item \code{cdr1}: Positions 79 to 114. #' \item \code{fwr2}: Positions 115 to 165. #' \item \code{cdr2}: Positions 166 to 195. #' \item \code{fwr3}: Positions 196 to 312. #' \item \code{cdr3}: Positions 313 to (313 + juncLength - 6) since the junction #' sequence includes (on the left) the last codon from FWR3 and #' (on the right) the first codon from FWR4. #' \item \code{fwr4}: Positions (313 + juncLength - 6 + 1) to the end of the sequence. #' } #' #' For \code{regionDefinition=IMGT_VDJ}, the returned \code{RegionDefinition} includes: #' #' \itemize{ #' \item \code{fwr}: Positions belonging to a FWR. #' \item \code{cdr}: Positions belonging to a CDR. #' } #' #' In the case that the \code{regionDefinition} argument is not one of the extended #' regions (\code{IMGT_VDJ_BY_REGIONS} or \code{IMGT_VDJ}), the input #' \code{regionDefinition} is returned as is. #' #' @seealso See \link{RegionDefinition} for the return object. #' See \link{IMGT_SCHEMES} for a set of predefined \code{RegionDefinition} objects. #' #' @examples #' # Load and subset example data #' data(ExampleDb, package = "alakazam") #' len <- ExampleDb$junction_length[1] #' sequence <- ExampleDb$sequence_alignment[1] #' region <- setRegionBoundaries(len, sequence, regionDefinition = IMGT_VDJ) #' #' @export setRegionBoundaries <- function(juncLength, sequenceImgt, regionDefinition=NULL) { # Check RegionDefinition input if (is.null(regionDefinition)) { rd <- makeNullRegionDefinition(nchar(sequenceImgt)) return(rd) } else if (!is(regionDefinition, "RegionDefinition")) { stop(deparse(substitute(regionDefinition)), " is not a valid RegionDefinition object") } else if (!(regionDefinition@name %in% c("IMGT_VDJ_BY_REGIONS", "IMGT_VDJ"))) { return(regionDefinition) } # all slots except for boundaries and seqLength are already defined in regionDefinition # First need to extract sequence length from sequence: seqLength <- nchar(sequenceImgt) # juncLength doesn't include alignment gaps, which are in sequenceImgt # and need to be added to correctly identify the boundaries # Also, sequence_alignment can have `.` that represent indels junction_length_helper <- !strsplit(sequenceImgt[[1]], "")[[1]] %in% c("-", ".") junction_length_helper[1:310 - 1] <- 0 if (juncLength > 0) { junction_end <- which(cumsum(junction_length_helper[1:length(junction_length_helper)])==juncLength[[1]])[1] if (is.na(junction_end)) { warning("junction ends past 'sequenceImgt'") junction_end <- nchar(sequenceImgt) num_gaps <- sum(!junction_length_helper[310:junction_end]) cdr3_end <- junction_end } else { num_gaps <- sum(!junction_length_helper[310:junction_end]) juncLength <- juncLength + num_gaps cdr3_end <- 313 + as.integer(juncLength) - 6 - 1 } } else { cdr3_end <- 0 } # now for the boundaries slot: boundaries <- factor(shazam::IMGT_V_BY_REGIONS@boundaries, levels=c(levels(shazam::IMGT_V_BY_REGIONS@boundaries), "cdr3", "fwr4")) if (cdr3_end > 312) { boundaries[313:cdr3_end] <- factor("cdr3") if (cdr3_end < nchar(sequenceImgt)) { boundaries[(cdr3_end+1):seqLength] <- factor("fwr4") } } else { # If you are here, the junction is too short, <= 6nt warning("CDR3 end < CDR3 start. Couldn't identify CDR3 and FWR4. Aligned junction length is: ", juncLength) } # build RegionDefinition object if (regionDefinition@name == "IMGT_VDJ") { boundaries <- gsub(pattern="fwr.", replacement = "fwr", x=boundaries, perl=TRUE) boundaries <- gsub(pattern="cdr.", replacement = "cdr", x=boundaries, perl=TRUE) boundaries <- factor(boundaries, levels=c("fwr", "cdr")) } rd <- new("RegionDefinition", name=regionDefinition@name, description=regionDefinition@description, boundaries=boundaries, seqLength=unname(seqLength), regions=regionDefinition@regions, labels=regionDefinition@labels, citation=regionDefinition@citation) return(rd) } # Calculating an extended (=that includes cdr1/2/3 and fwr1/2/3/4) region definition # for a specific clone in database. # Inputs: # - clone_num: the clone number for which to calculate the region definition. # - db: a ChangeoClone database that includes clone numbers. # - seq_col: the name of the db column containing the sequence that is imgt aligned. # - juncLengthColumn: the name of the db column containing the junction length. # - clone_col: the name of the db column containing the clone number. # - regionDefinition: the region definition type to be output for this clone. # Output: # A regionDefinition object for the specific clone # Note: regionDefinition needs to be calculated specifically for the clone if it # is of type IMGT_VDJ or IMGT_VDJ_BY_REGIONS, as it includes also cdr3 and fwr4 # which are specific to clone. # Note: The region definition is same for all sequences in clone - so doing it # based on first sequence in clone. getCloneRegion <- function(clone_num, db, seq_col="sequence", juncLengthColumn="junction_length", clone_col="clone", regionDefinition=NULL) { # Check region definition if (!is.null(regionDefinition) & !is(regionDefinition, "RegionDefinition")) { stop(deparse(substitute(regionDefinition)), " is not a valid RegionDefinition object") } # subsetting the db to lines for specific clone clone_db <- db[db[[clone_col]] == clone_num,] if ( length(unique(clone_db[[juncLengthColumn]])) >1 ) { stop("Expecting clones where all sequences have the same junction length. Different lengths found for clone ", clone_num) } # getting one of the sequences of the specific clone: seq <- clone_db[[seq_col]][1] junc_len <- clone_db[[juncLengthColumn]][1] reg <- setRegionBoundaries(juncLength=junc_len, sequenceImgt=seq, regionDefinition=regionDefinition) return(reg) } # Status: experimental, not exported function # data(SingleDb, package="alakazam") # germline_db <- list( # "IGHV3-11*05"="CAGGTGCAGCTGGTGGAGTCTGGGGGA...GGCTTGGTCAAGCCTGGAGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTC............AGTGACTACTACATGAGCTGGATCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTTTCATACATTAGTAGTAGT......AGTAGTTACACAAACTACGCAGACTCTGTGAAG...GGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTGTATTACTGTGCGAGAGA", # "IGHD3-10*01"="GTATTACTATGGTTCGGGGAGTTATTATAAC", # "IGHJ5*02"="ACAACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAG" # ) # pja <- shazam:::plotJunctionAlignment(SingleDb, germline_db,regionDefinition=IMGT_VDJ_BY_REGIONS) # pja$p plotJunctionAlignment <- function(db_row, germline_db, sequence_alignment="sequence_alignment", v_call="v_call", d_call="d_call", j_call="j_call", v_germline_start="v_germline_start", v_germline_end="v_germline_end", d_germline_start="d_germline_start", d_germline_end="d_germline_end", j_germline_start="j_germline_start", j_germline_end="j_germline_end", np1_length="np1_length", # np2_length="np2_length", junction="junction", junction_length="junction_length", germline_alignment="germline_alignment", regionDefinition=NULL) { # Check for valid columns check <- checkColumns(db_row, c(sequence_alignment, v_call, j_call, # d_call, v_germline_start, v_germline_end, # d_germline_start, # d_germline_end, j_germline_start, j_germline_end, np1_length, # np2_length, junction, junction_length) ) if (check != TRUE) { stop(check) } if (!is.null(d_call)) { d_columns <- c(d_call, d_germline_start, d_germline_end) found <- d_columns %in% colnames(db_row) if (any(!found)) { stop( "Column(s) ", paste(d_columns[!found], sep="", collapse=",") ," not found.") } } if (!germline_alignment %in% colnames(db_row)) { warning("The column germline_alignment doesn't exist. Assigned NA value.") db_row[[germline_alignment]] <- NA } # Check region definition if (!is.null(regionDefinition)) { if (!is(regionDefinition, "RegionDefinition")) { stop(deparse(substitute(regionDefinition)), " is not a valid RegionDefinition object") } } junction_seq <- db_row[[junction]] v_allele <- getAllele(db_row[[v_call]], first=T) d_allele <- getAllele(db_row[[d_call]], first=T) j_allele <- getAllele(db_row[[j_call]], first=T) #if (!is.na(d_allele)) { v_germline <- germline_db[[v_allele]] if (!is.na(d_allele)) { d_germline <- germline_db[[d_allele]] } j_germline <- germline_db[[j_allele]] seq_aln <- db_row[[sequence_alignment]] germ_aln <- db_row[[germline_alignment]] getPositionDf <- function(seq, label) { sequence_chars <- strsplit(seq,"")[[1]] sequence_chars position_df <- data.frame("nucleotide"=sequence_chars, "pos"=1:nchar(seq), "label"=label, stringsAsFactors = F) position_df } sequence_aln_df <- getPositionDf(seq_aln,sequence_alignment) sequence_aln_df[['aligned']] <- T if (!is.na(germ_aln)) { germ_aln_df <- getPositionDf(germ_aln,germline_alignment) germ_aln_df[['aligned']] <- T } else { germ_aln_df <- data.frame() } v_germline_df <- getPositionDf(v_germline,"v_germline") v_germ_start <- as.numeric(db_row[[v_germline_start]]) v_germ_end <- as.numeric(db_row[[v_germline_end]]) v_germline_df[['aligned']] <- v_germline_df$pos >= v_germ_start & v_germline_df$pos <= v_germ_end v_germ_start_off <- 1 - v_germ_start v_germline_df$pos <- v_germline_df$pos + v_germ_start_off v_length <- v_germ_end - v_germ_start + 1 np1_len <- db_row[[np1_length]] if (!is.na(d_allele)) { d_germline_df <- getPositionDf(d_germline,"d_germline") d_germ_start <- as.numeric(db_row[[d_germline_start]]) d_germ_end <- as.numeric(db_row[[d_germline_end]]) d_germline_df[['aligned']] <- d_germline_df$pos >= d_germ_start & d_germline_df$pos <= d_germ_end d_germ_start_off <- 1-d_germ_start d_germline_df$pos <- v_length + np1_len + d_germline_df$pos + d_germ_start_off # d_length <- d_germ_end - d_germ_start + 1 } else { d_germline_df <- data.frame() } # np2_len <- db_row[[np2_length]] j_germline_df <- getPositionDf(j_germline,"j_germline") j_germ_start <- as.numeric(db_row[[j_germline_start]]) j_germ_end <- as.numeric(db_row[[j_germline_end]]) j_germline_df[['aligned']] <- j_germline_df$pos >= j_germ_start & j_germline_df$pos <= j_germ_end j_length <- j_germ_end - j_germ_start + 1 # Use end as reference j_germline_df$pos <- nchar(seq_aln) - j_length + 1 + j_germline_df$pos - j_germ_start df <- bind_rows(sequence_aln_df, v_germline_df, d_germline_df, j_germline_df, germ_aln_df) if (is.na(junction_seq) | db_row[[junction_length]]<1 ) { message("No junction available for this sequence.") junction_df <- NULL } else { # junction_position <- #stri_locate(seq_aln,fixed=junction_seq) junction_start <- 310 j_len <- db_row[[junction_length]] # junction_end <- junction_start + j_len - 1 # Get aligned junction, with gaps junction_alignment_helper <- !stringi::stri_split_boundaries(seq_aln, type="char")[[1]] %in% c("-",".") junction_alignment_helper[1:junction_start-1] <- 0 junction_end <- which(cumsum(junction_alignment_helper[1:length(junction_alignment_helper)])>j_len)[1] - 1 if (is.na(junction_end)) { warning("The junction ends past sequence_alignment. Using the last position as junction_end.") junction_end <- length(junction_alignment_helper) } junction_alignment <- stringi::stri_sub(seq_aln,310,junction_end) # junction_end <- junction_start + nchar(db_row[[junction]]) -1 junction_df <- data.frame("nucleotide"=strsplit(junction_alignment,"")[[1]], stringsAsFactors = F) junction_df[['pos']] <- c(junction_start:junction_end) junction_df[['label']] <- "junction" junction_df[['aligned']] <- T } missing_junction_nt <- db_row[[junction_length]] - sum(junction_df$aligned) if ( missing_junction_nt > 0 ) { junction_nt <- gsub("[\\.\\-]","",db_row[['junction']]) missing_nt <- stringi::stri_sub(junction_nt, nchar(junction_nt)-missing_junction_nt+1, nchar(junction_nt)) junction_df_missing <- getPositionDf(missing_nt,"junction") junction_df_missing[['aligned']] <- F junction_df_missing[['pos']] <- junction_df_missing[['pos']] + max(junction_df[['pos']]) junction_df <- bind_rows(junction_df, junction_df_missing) } # addRegionDefinition boundaries region_definition <- setRegionBoundaries(db_row[[junction_length]], db_row[[sequence_alignment]], regionDefinition ) if (!is.null(regionDefinition)) { rdf <- data.frame( "nucleotide"=as.character(region_definition@boundaries), "pos"=1:length(region_definition@boundaries), "label"="region_definition", "aligned"=T, stringsAsFactors = F) } else { rdf <- data.frame() } df <- bind_rows(df, junction_df, rdf) ordered_labels <- c("region_definition",sequence_alignment, "junction", "v_germline", "d_germline","j_germline", germline_alignment) df[['label']] <- factor(df[['label']], levels=rev(ordered_labels), ordered = T) color_palette <- c( "A" = "lightskyblue2", "T" = "khaki2", "G" = "palegreen3", "C" = "coral2", "." = "white", "N" = "grey80", "-" = "black", "cdr1" = "#FFDCD2", "cdr2" = "#FFDCD2", "cdr3" = "#FFB189", "fwr1" = "#8CCEDB", "fwr2" = "#8CCEDB", "fwr3" = "#8CCEDB", "fwr4" = "#8CCEDB" ) fig_theme <- function(font_size=7) { theme_bw() + theme(text=element_text(size=font_size), axis.title=element_text(size=font_size), axis.text=element_text(size=font_size), axis.text.x=element_text(size=font_size), axis.text.y=element_text(size=font_size), #axis.ticks=element_blank(), #axis.ticks=theme_segment(colour = "black"), #panel.background=element_rect(fill = NA, colour = "black", linewidth = 0.25), panel.border=element_blank(), #panel.grid.major=element_line(colour = "grey", size = 0.05), #panel.grid.minor=element_line(colour = "grey", size = 0.05), panel.grid.major.y=element_blank(), panel.grid.minor.y=element_blank(), panel.grid.major.x=element_blank(), panel.grid.minor.x=element_blank(), panel.spacing=unit(0.25, "lines"), plot.title=element_text(size=font_size, face="bold", lineheight=0.8), legend.position="top", legend.text=element_text(size=font_size), # legend.title = element_text(size=font_size), legend.title=element_blank(), legend.spacing=unit(0.25, "lines"), legend.box="horizontal", legend.box.spacing=unit(0.25, "lines"), legend.key.height=unit(1,"line"), legend.key.width=unit(1,"line"), strip.text = element_text(size = font_size, face="plain"), strip.background = element_blank(), plot.margin= unit(c(0, 0, 0, 0), "lines")) } p <- ggplot(data=df %>% dplyr::filter(.data$label == "region_definition") %>% dplyr::mutate(label=factor(.data$label, levels = ordered_labels, ordered = T)), aes(x=.data$pos, y=.data$label, fill=.data$nucleotide, alpha=.data$aligned)) + geom_tile( height=0.3) + geom_tile(data=df %>% dplyr::filter(.data$label != "region_definition") %>% dplyr::mutate(label=factor(.data$label, levels = ordered_labels, ordered = T)), color="grey50") + fig_theme() + scale_fill_manual(values=color_palette) + scale_alpha_manual(values=c("TRUE"=1, "FALSE"=0.2), guide="none") + scale_y_discrete(breaks=ordered_labels, labels=ordered_labels, limits=rev(ordered_labels), expand=c(0, 0)) + ylab("") + xlab("IMGT position") + guides(fill=guide_legend(nrow=1)) + scale_x_continuous(expand=c(0, 0)) list(p=p, data=df) } shazam/R/Core.R0000644000176200001440000000245514652721545012772 0ustar liggesusers#### Transformation functions #### # Converts a matrix to a vector # # \code{clearConsole} clears the console. # # @examples # # Generate a sample mutations_array # sample_matrix <- matrix(sample(20,4),nrow=2, dimnames=list( c("cdr","fwr"), c("r","s") )) # collapseMatrixToVector(sample_matrix) # collapseMatrixToVector <- function(mat, byrow = FALSE){ # Get the row and column names rnames <- rownames(mat) cnames <- colnames(mat) if (is.null(rnames)) { rnames <- paste0("Row", 1:nrow(mat)) } if (is.null(cnames)) { cnames <- paste0("Column", 1:ncol(mat)) } # Combine the row and columns names combinedNames <- outer(rnames, cnames, paste, sep = "_") # Collapse the matrix to a vector if (byrow) { collapsed_mat <- c(t(mat)) names(collapsed_mat) <- c(t(combinedNames)) } else{ collapsed_mat <- c(mat) names(collapsed_mat) <- c(combinedNames) } return(collapsed_mat) } # Convert columns to uppercase # # @param data data.frame to modify. # @param columns vector of column names to transform to uppercase. # @return The input data.frame with all entries in \code{columns} transformed # to uppercase. toupperColumns <- function(data, columns) { data <- mutate_at(data, columns, toupper) return(data) } shazam/R/Baseline.R0000644000176200001440000030014315121011010013562 0ustar liggesusers# Selection analysis using BASELINe #' @include RegionDefinitions.R #' @include Shazam.R NULL #### Classes #### #' S4 class defining a BASELINe (selection) object #' #' \code{Baseline} defines a common data structure the results of selection #' analysis using the BASELINe method. #' #' @slot description \code{character} providing general information regarding the #' sequences, selection analysis and/or object. #' @slot db \code{data.frame} containing annotation information about #' the sequences and selection results. #' @slot regionDefinition \link{RegionDefinition} object defining the regions #' and boundaries of the Ig sequences. #' @slot testStatistic \code{character} indicating the statistical framework #' used to test for selection. For example, \code{"local"} or #' \code{"focused"}. #' @slot regions \code{character} vector defining the regions the BASELINe #' analysis was carried out on. For \code{"cdr"} and \code{"fwr"} #' or \code{"cdr1"}, \code{"cdr2"}, \code{"cdr3"}, etc. #' @slot numbOfSeqs \code{matrix} of dimensions \code{r x c} containing the number of #' sequences or PDFs in each region, where:\cr #' \code{r} = number of rows = number of groups or sequences.\cr #' \code{c} = number of columns = number of regions. #' @slot binomK \code{matrix} of dimensions \code{r x c} containing the number of #' successes in the binomial trials in each region, where:\cr #' \code{r} = number of rows = number of groups or sequences.\cr #' \code{c} = number of columns = number of regions. #' @slot binomN \code{matrix} of dimensions \code{r x c} containing the total #' number of trials in the binomial in each region, where:\cr #' \code{r} = number of rows = number of groups or sequences.\cr #' \code{c} = number of columns = number of regions. #' @slot binomP \code{matrix} of dimensions \code{r x c} containing the probability #' of success in one binomial trial in each region, where:\cr #' \code{r} = number of rows = number of groups or sequences.\cr #' \code{c} = number of columns = number of regions. #' @slot pdfs \code{list} of matrices containing PDFs with one item for each #' defined region (e.g. \code{cdr} and \code{fwr}). Matrices have dimensions #' \code{r x c} dimensions, where:\cr #' \code{r} = number of rows = number of sequences or groups. \cr #' \code{c} = number of columns = length of the PDF (default 4001). #' @slot stats \code{data.frame} of BASELINe statistics, #' including: mean selection strength (mean Sigma), 95\% confidence #' intervals, and p-values with positive signs for the presence of #' positive selection and/or p-values with negative signs for the #' presence of negative selection. #' #' @name Baseline-class #' @rdname Baseline-class #' @aliases Baseline #' @exportClass Baseline #' @seealso See \link{summarizeBaseline} for more information on \code{@stats}. setClass("Baseline", slots=c(description="character", db="data.frame", regionDefinition="RegionDefinition", testStatistic="character", regions="character", numbOfSeqs="matrix", binomK="matrix", binomN="matrix", binomP="matrix", pdfs="list", stats="data.frame")) #### Methods ##### #' @param x \code{Baseline} object. #' @param y name of the column in the \code{db} slot of \code{baseline} #' containing primary identifiers. #' @param ... arguments to pass to \link{plotBaselineDensity}. #' #' @rdname Baseline-class #' @aliases Baseline-method #' @export setMethod("plot", c(x="Baseline", y="character"), function(x, y, ...) { plotBaselineDensity(x, y, ...) }) #' @param object \code{Baseline} object. #' @param nproc number of cores to distribute the operation over. #' #' @rdname Baseline-class #' @aliases Baseline-method #' @export setMethod("summary", c(object="Baseline", nproc=integer()), function(object, nproc=1) { summarizeBaseline(object, returnType="df", nproc=nproc) }) #### Accessory functions ##### #' Creates a Baseline object #' #' \code{createBaseline} creates and initialize a \code{Baseline} object. #' #' @param description \code{character} providing general information regarding the #' sequences, selection analysis and/or object. #' @param db \code{data.frame} containing annotation information about #' the sequences and selection results. #' @param regionDefinition \link{RegionDefinition} object defining the regions #' and boundaries of the Ig sequences. #' @param testStatistic \code{character} indicating the statistical framework #' used to test for selection. For example, \code{"local"} or #' \code{"focused"} or \code{"imbalanced"}. #' @param regions \code{character} vector defining the regions the BASELINe #' analysis was carried out on. For \code{"cdr"} and \code{"fwr"} #' or \code{"cdr1"}, \code{"cdr2"}, \code{"cdr3"}, etc. If \code{NULL} #' then regions will be determined automatically from \code{regionDefinition}. #' @param numbOfSeqs \code{matrix} of dimensions \code{r x c} containing the number of #' sequences or PDFs in each region, where:\cr #' \code{r} = number of rows = number of groups or sequences.\cr #' \code{c} = number of columns = number of regions. #' @param binomK \code{matrix} of dimensions \code{r x c} containing the number of #' successes in the binomial trials in each region, where:\cr #' \code{r} = number of rows = number of groups or sequences.\cr #' \code{c} = number of columns = number of regions. #' @param binomN \code{matrix} of dimensions \code{r x c} containing the total #' number of trials in the binomial in each region, where:\cr #' \code{r} = number of rows = number of groups or sequences.\cr #' \code{c} = number of columns = number of regions. #' @param binomP \code{matrix} of dimensions \code{r x c} containing the probability #' of success in one binomial trial in each region, where:\cr #' \code{r} = number of rows = number of groups or sequences.\cr #' \code{c} = number of columns = number of regions. #' @param pdfs \code{list} of matrices containing PDFs with one item for each #' defined region (e.g. \code{cdr} and \code{fwr}). Matrices have dimensions #' \code{r x c} dimensions, where:\cr #' \code{r} = number of rows = number of sequences or groups. \cr #' \code{c} = number of columns = length of the PDF (default 4001). #' @param stats \code{data.frame} of BASELINe statistics, #' including: mean selection strength (mean Sigma), 95\% confidence #' intervals, and p-values with positive signs for the presence of #' positive selection and/or p-values with negative signs for the #' presence of negative selection. #' #' @return A \code{Baseline} object. #' #' @details #' Create and initialize a \code{Baseline} object. #' #' The \code{testStatistic} indicates the statistical framework used to test for selection. #' For example, #' \itemize{ #' \item \code{local} = CDR_R / (CDR_R + CDR_S). #' \item \code{focused} = CDR_R / (CDR_R + CDR_S + FWR_S). #' \item \code{immbalance} = CDR_R + CDR_s / (CDR_R + CDR_S + FWR_S + FWR_R) #' } #' For \code{focused} the \code{regionDefinition} must only contain two regions. If more #' than two regions are defined, then the \code{local} test statistic will be used. #' For further information on the frame of these tests see Uduman et al. (2011). #' #' @seealso See \link{Baseline} for the return object. #' #' @references #' \enumerate{ #' \item Hershberg U, et al. Improved methods for detecting selection by mutation #' analysis of Ig V region sequences. #' Int Immunol. 2008 20(5):683-94. #' \item Uduman M, et al. Detecting selection in immunoglobulin sequences. #' Nucleic Acids Res. 2011 39(Web Server issue):W499-504. #' \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based #' on synonymous mutations from high-throughput immunoglobulin sequencing data. #' Front Immunol. 2013 4(November):358. #' } #' #' @examples #' # Creates an empty Baseline object #' createBaseline() #' #' @export createBaseline <- function(description="", db=data.frame(), regionDefinition=createRegionDefinition(), testStatistic="", regions=NULL, numbOfSeqs=matrix(), binomK=matrix(), binomN=matrix(), binomP=matrix(), pdfs=list(), stats=data.frame()) { if (is.null(regionDefinition)) { regionDefinition <- makeNullRegionDefinition() } # Get regions if not passing in if (is.null(regions)) { regions <- regionDefinition@regions } # Define empty stats data.frame if not passed in if (nrow(stats) == 0) { stats <- data.frame(group=character(), region=character(), baseline_sigma=character(), baseline_ci_lower=character(), baseline_ci_upper=character(), baseline_ci_pvalue=character(), stringsAsFactors=FALSE) } # Define RegionDefinition object baseline <- new("Baseline", description=description, db=as.data.frame(db), regionDefinition=regionDefinition, testStatistic=testStatistic, regions=regionDefinition@regions, numbOfSeqs=numbOfSeqs, binomK=binomK, binomN=binomN, binomP=binomP, pdfs=pdfs, stats=as.data.frame(stats)) return(baseline) } #' Edit the Baseline object #' #' \code{editBaseline} edits a field in a \code{Baseline} object. #' #' @param baseline \code{Baseline} object to be edited. #' @param field name of the field in the \code{Baseline} object to be edited. #' @param value value to set the \code{field}. #' #' @return A \code{Baseline} object with the field of choice updated. #' #' @seealso See \link{Baseline} for the input and return object. #' #' @examples #' \donttest{ #' # Subset example data as a demo #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call == "IGHG" & sample_id == "+7d") #' set.seed(112) #' db <- dplyr::slice_sample(db, n=100) #' #' # Make Baseline object #' baseline <- calcBaseline(db, #' sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' testStatistic="focused", #' regionDefinition=IMGT_V, #' targetingModel=HH_S5F, #' nproc=1) #' #' # Edit the field "description" #' baseline <- editBaseline(baseline, field="description", #' value="+7d IGHG") #' } #' #' @export editBaseline <- function(baseline, field, value) { if (!match(field, slotNames(baseline))) { stop(field, " is not part of the Baseline object.") } slot(baseline, field) <- value return(baseline) } #### Calculation functions #### # Helper function for calcBaseline # # @param observed # @param expected # @param region # @param testStatistic # @param regionDefinition # # @return A modified \link{Baseline} object with the BASELINe probability # density function calculated for the regions defined in the \code{regionDefinition}. calcBaselineHelper <- function(observed, expected, region, testStatistic="local", regionDefinition=NULL) { # Check region definition if (!is.null(regionDefinition) & !is(regionDefinition, "RegionDefinition")) { stop(deparse(substitute(regionDefinition)), " is not a valid RegionDefinition object") } if (is.null(regionDefinition)) { regions <- makeNullRegionDefinition()@regions } else { regions <- regionDefinition@regions } # Evaluate argument choices testStatistic <- match.arg(testStatistic, c("local", "focused", "imbalanced")) # If there are more than two regions (e.g. CDR and FWR then you cannot perform the focused test) if (testStatistic=="focused" & length(regions)!=2) { testStatistic="local" } # local test statistic if (testStatistic == "local") { obsX_Index <- grep( paste0("mu_count_", region,"_r"), names(observed) ) # important to have "_" after region # otherwise this might happen (leading to bugs in results): # region = codon_1 # expect grep to find only codon_1_S and codon_1_R # in fact, however, codon_10_S, codon_10_R, codon_101_S, codon_101_R are matched obsN_Index <- grep( paste0("mu_count_", region, "_"), names(observed) ) expX_Index <- grep( paste0("mu_expected_", region,"_r"), names(expected) ) # important to have "_" after region expN_Index <- grep( paste0("mu_expected_", region, "_"), names(expected) ) } # focused test statistic if (testStatistic == "focused") { obsX_Index <- grep( paste0("mu_count_", region,"_r"), names(observed) ) obsN_Index <- grep( paste0( "mu_count_", region, "|", "mu_count_", regions[regions!=region], "_s" ), names(observed) ) expX_Index <- grep( paste0("mu_expected_", region,"_r"), names(expected) ) expN_Index <- grep( paste0( "mu_expected_", region, "|", "mu_expected_", regions[regions!=region], "_s" ), names(expected) ) } # imbalanced test statistic if (testStatistic == "imbalanced") { obsX_Index <- grep( paste0("mu_count_", region), names(observed) ) obsN_Index <- grep( "mu_count_",names(observed)) expX_Index <- grep( paste0("mu_expected_", region), names(expected) ) expN_Index <- grep( "mu_expected_",names(expected)) } obsX <- sum(as.numeric( observed[obsX_Index] )) obsN <- sum(as.numeric(observed[obsN_Index]), na.rm=T ) expP <- as.numeric( sum(expected[expX_Index]) / sum( expected[expN_Index], na.rm=T ) ) return( c( calcBaselineBinomialPdf( x=obsX, n=obsN, p=expP ), obsX, obsN, expP ) ) } # Calculate the BASELINe probability function in a binomial framework. calcBaselineBinomialPdf <- function (x=3, n=10, p=0.33, CONST_i=CONST_I, max_sigma=20, length_sigma=4001) { if(n!=0){ sigma_s<-seq(-max_sigma,max_sigma,length.out=length_sigma) sigma_1<-log({CONST_i/{1-CONST_i}}/{p/{1-p}}) index<-min(n,60) y <- dbeta(CONST_i, x+BAYESIAN_FITTED[index], n+BAYESIAN_FITTED[index]-x)*(1-p)*p*exp(sigma_1)/({1-p}^2+2*p*{1-p}*exp(sigma_1)+{p^2}*exp(2*sigma_1)) if (!sum(is.na(y))) { tmp <- approx(sigma_1, y, sigma_s)$y return(tmp / sum(tmp) / (2 * max_sigma / (length_sigma - 1))) } else { return(NA) } } else { return(NA) } } #' Group BASELINe PDFs #' #' \code{groupBaseline} convolves groups of BASELINe posterior probability density #' functions (PDFs) to get combined PDFs for each group. #' #' @param baseline \code{Baseline} object containing the \code{db} and the #' BASELINe posterior probability density functions #' (PDF) for each of the sequences, as returned by #' \link{calcBaseline}. #' @param groupBy The columns in the \code{db} slot of the \code{Baseline} #' object by which to group the sequence PDFs. #' @param nproc number of cores to distribute the operation over. If #' \code{nproc} = 0 then the \code{cluster} has already been #' set and will not be reset. #' #' @return A \link{Baseline} object, containing the modified \code{db} and the BASELINe #' posterior probability density functions (PDF) for each of the groups. #' #' @details #' While the selection strengths predicted by BASELINe perform well on average, #' the estimates for individual sequences can be highly variable, especially when the #' number of mutations is small. #' #' To overcome this, PDFs from sequences grouped by biological or experimental relevance, #' are convolved to from a single PDF for the selection strength. For example, sequences #' from each sample may be combined together, allowing you to compare selection across #' samples. This is accomplished through a fast numerical convolution technique. #' #' @seealso To generate the \link{Baseline} object see \link{calcBaseline}. #' To calculate BASELINe statistics, such as the mean selection strength #' and the 95\% confidence interval, see \link{summarizeBaseline}. #' #' @references #' \enumerate{ #' \item Yaari G, et al. Quantifying selection in high-throughput immunoglobulin #' sequencing data sets. #' Nucleic Acids Res. 2012 40(17):e134. #' (Corrections at http://selection.med.yale.edu/baseline/correction/) #' } #' #' @examples #' \dontrun{ #' # Subset example data from alakazam as a demo #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call %in% c("IGHM", "IGHG")) #' set.seed(112) #' db <- dplyr::slice_sample(db, n=200) #' #' # Collapse clones #' db <- collapseClones(db, cloneColumn="clone_id", #' sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' method="thresholdedFreq", minimumFrequency=0.6, #' includeAmbiguous=FALSE, breakTiesStochastic=FALSE) #' #' # Calculate BASELINe #' baseline <- calcBaseline(db, #' sequenceColumn="clonal_sequence", #' germlineColumn="clonal_germline", #' testStatistic="focused", #' regionDefinition=IMGT_V, #' targetingModel=HH_S5F, #' nproc=1) #' #' # Group PDFs by sample #' grouped1 <- groupBaseline(baseline, groupBy="sample_id") #' sample_colors <- c("-1h"="steelblue", "+7d"="firebrick") #' plotBaselineDensity(grouped1, idColumn="sample_id", colorValues=sample_colors, #' sigmaLimits=c(-1, 1)) #' #' # Group PDFs by both sample (between variable) and isotype (within variable) #' grouped2 <- groupBaseline(baseline, groupBy=c("sample_id", "c_call")) #' isotype_colors <- c("IGHM"="darkorchid", "IGHD"="firebrick", #' "IGHG"="seagreen", "IGHA"="steelblue") #' plotBaselineDensity(grouped2, idColumn="sample_id", groupColumn="c_call", #' colorElement="group", colorValues=isotype_colors, #' sigmaLimits=c(-1, 1)) #' # Collapse previous isotype (within variable) grouped PDFs into sample PDFs #' grouped3 <- groupBaseline(grouped2, groupBy="sample_id") #' sample_colors <- c("-1h"="steelblue", "+7d"="firebrick") #' plotBaselineDensity(grouped3, idColumn="sample_id", colorValues=sample_colors, #' sigmaLimits=c(-1, 1)) #' } #' @export groupBaseline <- function(baseline, groupBy, nproc=1) { # Hack for visibility of foreach index variables i <- NULL # Ensure that the nproc does not exceed the number of cores/CPUs available nproc <- min(nproc, cpuCount()) # Get indices of unique combinations of field(s) specified by groupBy # unique groups # crucial to use data.frame and assign colnames (esp. when groupBy has length 1) uniqueGroups <- data.frame(unique(baseline@db[, groupBy])) colnames(uniqueGroups) <- groupBy rownames(uniqueGroups) <- NULL # indices # crucial to have simplify=FALSE # (otherwise won't return a list if uniqueClones has length 1) uniqueGroupsIdx <- sapply(1:nrow(uniqueGroups), function(i){ curGroup <- data.frame(uniqueGroups[i, ]) colnames(curGroup) <- groupBy # match for each field curIdx <- sapply(groupBy, function(coln){ baseline@db[, coln]==curGroup[, coln] }, simplify=FALSE) curIdx <- do.call(rbind, curIdx) # intersect to get match across fields curIdx <- which(colSums(curIdx)==length(groupBy)) }, simplify=FALSE) # If user wants to parallelize this function and specifies nproc > 1, then # initialize and register slave R processes/clusters & # export all necessary environment variables, functions and packages. baseline@db <- data.frame() gc() if (nproc > 1){ cluster <- parallel::makeCluster(nproc, type = "PSOCK") parallel::clusterExport( cluster, list('baseline', 'uniqueGroupsIdx', 'break2chunks', 'PowersOfTwo', 'convolutionPowersOfTwo', 'convolutionPowersOfTwoByTwos', 'weighted_conv', 'calculate_bayesGHelper', 'groupPosteriors', 'fastConv'), envir=environment() ) registerDoParallel(cluster, cores=nproc) } else if (nproc == 1) { # If needed to run on a single core/cpu then, register DoSEQ # (needed for 'foreach' in non-parallel mode) registerDoSEQ() } # Print status to console cat("Grouping BASELINe probability density functions...\n") # Number of total groups numbOfTotalGroups <- length(uniqueGroupsIdx) list_pdfs <- list() regions <- baseline@regions # Initialize numbOfSeqs # This holds the number of non NA sequences numbOfSeqs <- matrix(NA, ncol=length(baseline@regions), nrow=numbOfTotalGroups, dimnames=list(1:numbOfTotalGroups, regions)) templateBinom <- numbOfSeqs # For every region (e.g. CDR, FWR etc.) for (region in regions) { # Group (convolute) all the PDFS and get one single PDF list_region_pdfs <- foreach(i=1:numbOfTotalGroups) %dopar% { idx <- uniqueGroupsIdx[[i]] # Get a matrix (r=numb of sequences/groups * c=4001(i,e. the length of the PDFS)) # Care was taken to make sure that @pdfs[[region]] should be maintained # as a matrix regardless of the number of input sequences (even for a # single-sequence input) # Thus matrix_GroupPdfs should be expected to be maintained as a matrix as # opposed a numeric vector matrix_GroupPdfs <- (baseline@pdfs[[region]])[idx, , drop=FALSE] stopifnot(is(matrix_GroupPdfs, "matrix")) # A list version of list_GroupPdfs <- lapply( 1:nrow(matrix_GroupPdfs), function(rowIndex) { rowVals <- matrix_GroupPdfs[rowIndex, ] if( !all(is.na(rowVals)) ) { matrix_GroupPdfs[rowIndex, ] } }) rm(matrix_GroupPdfs) gc() # Determine the number of sequences that went into creating each of the PDFs # If running groupBaseline for the first time after calcBaseline, then # each PDF should have a numbOfSeqs=1. numbOfSeqs_region <- baseline@numbOfSeqs[idx, region] numbOfSeqs_region <- numbOfSeqs_region[numbOfSeqs_region > 0] if(any(numbOfSeqs_region>0)) { names(numbOfSeqs_region) <- 1:length(numbOfSeqs_region) } list_GroupPdfs <- list_GroupPdfs[!unlist(lapply(list_GroupPdfs, function(x) { any(is.na(x)) }))] list_GroupPdfs <- Filter(Negate(is.null), list_GroupPdfs) numbOfNonNASeqs <- length(list_GroupPdfs) # If all the PDFs in the group are NAs, return a PDF of NAs if (length(list_GroupPdfs) == 0) { return(c(rep(NA, 4001), 0)) } # If all the PDFs in the group have a numbOfSeqs=1 then # call groupPosteriors, which groups PDFs with equal weight if (sum(numbOfSeqs_region) == length(numbOfSeqs_region)) { return(c(groupPosteriors(list_GroupPdfs), numbOfNonNASeqs ) ) } # If all the PDFs in the group different numbOfSeqs then call # combineWeightedPosteriors, which groups PDFs weighted by the number of seqs/PDFs # that went into creating those PDFs if (sum(numbOfSeqs_region) > length(numbOfSeqs_region)) { # sort by number of items len_numbOfSeqs_region <- length(numbOfSeqs_region) sorted_numbOfSeqs_region <- sort(numbOfSeqs_region) rm(numbOfSeqs_region) gc() sorted_list_GroupPdfs <- list() for(newIndex in 1:len_numbOfSeqs_region){ sorted_list_GroupPdfs[[newIndex]] <- list_GroupPdfs[[ as.numeric(names(sorted_numbOfSeqs_region)[newIndex]) ]] } # Group all the PDFs that are created with the equal numbers of seqs/PDFs (i.e. of equal weight) repeat { # Count the numb of PDFs with the same weights table_sorted_numbOfSeqs_region <- table(sorted_numbOfSeqs_region) # Weight of interest (the first in the list) pdfWeight <- names(table_sorted_numbOfSeqs_region[table_sorted_numbOfSeqs_region>1])[1] if(is.na(pdfWeight)) { break } # The corresponding indexes of these PDFs with the same weight indexesOfWeight <- which(sorted_numbOfSeqs_region==pdfWeight) # Convolute these PDFs together list_sameWeightPdfs <- sorted_list_GroupPdfs[indexesOfWeight] updatedPdf <- groupPosteriors(list_sameWeightPdfs) rm(list_sameWeightPdfs) # The new updated weights for this convoluted PDF updatedWeight <- as.numeric(pdfWeight) * length(indexesOfWeight) # remove these from sorted_numbOfSeqs_region & sorted_list_GroupPdfs sorted_numbOfSeqs_region <- sorted_numbOfSeqs_region[-indexesOfWeight] sorted_list_GroupPdfs <- sorted_list_GroupPdfs[-indexesOfWeight] rm(indexesOfWeight) # add the convoluted PDF and its new weight newLength <- length(sorted_numbOfSeqs_region)+1 sorted_numbOfSeqs_region[newLength] <- updatedWeight sorted_list_GroupPdfs[[newLength]] <- updatedPdf rm(updatedWeight) rm(updatedPdf) gc() # sort by number of items len_sorted_numbOfSeqs_region <- length(sorted_numbOfSeqs_region) sorted_numbOfSeqs_region <- sort(sorted_numbOfSeqs_region) names(sorted_numbOfSeqs_region) <- as.character(1:len_sorted_numbOfSeqs_region) list_GroupPdfs <- sorted_list_GroupPdfs sorted_list_GroupPdfs <- list() for(newIndex in 1:len_numbOfSeqs_region){ sorted_list_GroupPdfs[[newIndex]] <- list_GroupPdfs[[ as.numeric(names(sorted_numbOfSeqs_region)[newIndex]) ]] } table_sorted_numbOfSeqs_region <- table(sorted_numbOfSeqs_region) if(sum(table_sorted_numbOfSeqs_region>1)>0){ break } } #return( c( groupPosteriors(sorted_list_GroupPdfs), 10 ) ) # Do pairwise grouping of PDFs based on weight # 1. sort by weights # 2. group the lowest two weighted PDFs # 3. resort, and repeat till you get one PDFs if(length(list_GroupPdfs)>1){ repeat{ updatedPdf <- combineWeightedPosteriors(list_GroupPdfs[[1]], sorted_numbOfSeqs_region[1], list_GroupPdfs[[2]], sorted_numbOfSeqs_region[2]) updatedWeight <- sorted_numbOfSeqs_region[1] + sorted_numbOfSeqs_region[2] # remove these from sorted_numbOfSeqs_region & sorted_list_GroupPdfs sorted_numbOfSeqs_region <- sorted_numbOfSeqs_region[-c(1,2)] sorted_list_GroupPdfs <- sorted_list_GroupPdfs[-c(1,2)] # add the convoluted PDF and its new weight newLength <- length(sorted_numbOfSeqs_region)+1 sorted_numbOfSeqs_region[newLength] <- updatedWeight rm(updatedWeight) sorted_list_GroupPdfs[[newLength]] <- updatedPdf rm(updatedPdf) gc() # sort by number of items len_sorted_numbOfSeqs_region <- length(sorted_numbOfSeqs_region) sorted_numbOfSeqs_region <- sort(sorted_numbOfSeqs_region) names(sorted_numbOfSeqs_region) <- as.character(1:len_sorted_numbOfSeqs_region) list_GroupPdfs <- sorted_list_GroupPdfs sorted_list_GroupPdfs <- list() for(newIndex in 1:len_numbOfSeqs_region){ sorted_list_GroupPdfs[[newIndex]] <- list_GroupPdfs[[ as.numeric(names(sorted_numbOfSeqs_region)[newIndex]) ]] } if(length(list_GroupPdfs)==1){ break } } } return( c( list_GroupPdfs[[1]], as.numeric(sorted_numbOfSeqs_region) ) ) } } # Convert the list of the region's PDFs into a matrix matrix_region_pdfs <- do.call(rbind, lapply(list_region_pdfs, function(x) { length(x) <- 4002 return(x) })) # Normalize and save PDF matrix # Hardcode normalization to max_sigma=20 and sigma_length=4001 pdf_norm <- 2*20 / 4000 pdf_mat <- matrix_region_pdfs[, 1:4001, drop=FALSE] list_pdfs[[region]] <- pdf_mat / rowSums(pdf_mat, na.rm=TRUE) / pdf_norm # Save regions numbOfSeqs[, region] <- matrix_region_pdfs[, 4002] } #colnames(numbOfSeqs) <- paste0("NUMB_SEQUENCES_", colnames(numbOfSeqs)) # Create the db, which will now contain the group information stopifnot(is.data.frame(uniqueGroups)) db <- uniqueGroups # Create a Baseline object with the above results to return baseline <- createBaseline(description="", db=as.data.frame(db), regionDefinition=baseline@regionDefinition, testStatistic=baseline@testStatistic, regions=regions, numbOfSeqs=numbOfSeqs, binomK=templateBinom, binomN=templateBinom, binomP=templateBinom, pdfs=list_pdfs) # Calculate BASELINe stats and update slot baseline <- summarizeBaseline(baseline) # Stop cluster if(nproc > 1) { parallel::stopCluster(cluster) } return(baseline) } #' Calculate BASELINe summary statistics #' #' \code{summarizeBaseline} calculates BASELINe statistics such as the mean selection #' strength (mean Sigma), the 95\% confidence intervals and p-values for the presence of #' selection. #' #' @param baseline \code{Baseline} object returned by \link{calcBaseline} containing #' annotations and BASELINe posterior probability density functions #' (PDFs) for each sequence. #' @param returnType One of \code{c("baseline", "df")} defining whether #' to return a \code{Baseline} object ("baseline") with an updated #' \code{stats} slot or a data.frame ("df") of summary statistics. #' @param nproc number of cores to distribute the operation over. If #' \code{nproc} = 0 then the \code{cluster} has already been #' set and will not be reset. #' #' @return Either a modified \code{Baseline} object or data.frame containing the #' mean BASELINe selection strength, its 95\% confidence intervals, and #' a p-value for the presence of selection. #' #' @details The returned p-value can be either positive or negative. Its magnitude #' (without the sign) should be interpreted as per normal. Its sign indicates #' the direction of the selection detected. A positive p-value indicates positive #' selection, whereas a negative p-value indicates negative selection. #' #' @seealso See \link{calcBaseline} for generating \code{Baseline} objects and #' \link{groupBaseline} for convolving groups of BASELINe PDFs. #' #' @references #' \enumerate{ #' \item Uduman M, et al. Detecting selection in immunoglobulin sequences. #' Nucleic Acids Res. 2011 39(Web Server issue):W499-504. #' } #' #' @examples #' \donttest{ #' # Subset example data #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call == "IGHG") #' set.seed(112) #' db <- dplyr::slice_sample(db, n=100) #' #' # Collapse clones #' db <- collapseClones(db, cloneColumn="clone_id", #' sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' method="thresholdedFreq", minimumFrequency=0.6, #' includeAmbiguous=FALSE, breakTiesStochastic=FALSE) #' #' # Calculate BASELINe #' baseline <- calcBaseline(db, #' sequenceColumn="clonal_sequence", #' germlineColumn="clonal_germline", #' testStatistic="focused", #' regionDefinition=IMGT_V, #' targetingModel=HH_S5F, #' nproc = 1) #' #' # Grouping the PDFs by the sample annotation #' grouped <- groupBaseline(baseline, groupBy="sample_id") #' #' # Get a data.frame of the summary statistics #' stats <- summarizeBaseline(grouped, returnType="df") #' } #' @export summarizeBaseline <- function(baseline, returnType=c("baseline", "df"), nproc=1) { # Hack for visibility of foreach index variable idx <- NULL # Check arguments returnType <- match.arg(returnType) # Ensure that the nproc does not exceed the number of cores/CPUs available nproc <- min(nproc, cpuCount()) # If user wants to parallelize this function and specifies nproc > 1, then # initialize and register slave R processes/clusters & # export all necessary environment variables, functions and packages. if (nproc > 1){ cluster <- parallel::makeCluster(nproc, type="PSOCK") parallel::clusterExport(cluster, list('baseline', 'baselineSigma', 'baselineCI', 'baselinePValue'), envir=environment()) registerDoParallel(cluster, cores=nproc) } else if (nproc == 1) { # If needed to run on a single core/cpu then, register DoSEQ # (needed for 'foreach' in non-parallel mode) registerDoSEQ() } # Printing status to console cat("Calculating BASELINe statistics...\n") # Calculate stats for each sequence/group numbOfTotalSeqs <- nrow(baseline@db) regions <- baseline@regions db <- baseline@db if ("sequence_id" %in% colnames(db)) { db <- subset(db, select="sequence_id") } else if ("SEQUENCE_ID" %in% colnames(db)) { db <- subset(db, select="SEQUENCE_ID") } list_stats <- foreach(idx=iterators::icount(numbOfTotalSeqs)) %dopar% { df_baseline_seq <- data.frame() db_seq <- data.frame(db[idx, ]) names(db_seq) <- names(db) for (region in regions) { # care was taken to make sure that @pdfs[[region]] should be maintained # as a matrix regardless of the number of input sequences (even for a # single-sequence input) stopifnot(is(baseline@pdfs[[region]], "matrix")) baseline_pdf <- baseline@pdfs[[region]][idx, ] baseline_ci <- baselineCI(baseline_pdf) df_baseline_seq_region <- data.frame(db_seq, region=factor(region, levels=regions), baseline_sigma=baselineSigma(baseline_pdf), baseline_ci_lower=baseline_ci[1], baseline_ci_upper=baseline_ci[2], baseline_ci_pvalue=baselinePValue(baseline_pdf)) df_baseline_seq <- dplyr::bind_rows(df_baseline_seq, df_baseline_seq_region) } df_baseline_seq[,1] <- as.vector(unlist(df_baseline_seq[,1])) df_baseline_seq[,2] <- as.vector(unlist(df_baseline_seq[,2])) return(df_baseline_seq) } # Stop cluster if (nproc > 1) { parallel::stopCluster(cluster) } # Convert list of BASELINe stats into a data.frame stats <- as.data.frame(dplyr::bind_rows(list_stats)) if (returnType == "df") { return(stats) } else if (returnType == "baseline") { # Append stats to baseline object return(editBaseline(baseline, field="stats", stats)) } else { return(NULL) } } #' Two-sided test of BASELINe PDFs #' #' \code{testBaseline} performs a two-sample significance test of BASELINe #' posterior probability density functions (PDFs). #' #' @param baseline \code{Baseline} object containing the \code{db} and grouped #' BASELINe PDFs returned by \link{groupBaseline}. #' @param groupBy string defining the column in the \code{db} slot of the #' \code{Baseline} containing sequence or group identifiers. #' #' @return A data.frame with test results containing the following columns: #' \itemize{ #' \item \code{region}: sequence region, such as \code{cdr} and \code{fwr}. #' \item \code{test}: string defining the groups be compared. The #' string is formatted as the conclusion associated with the #' p-value in the form \code{GROUP1 != GROUP2}. Meaning, #' the p-value for rejection of the null hypothesis that #' GROUP1 and GROUP2 have equivalent distributions. #' \item \code{pvalue}: two-sided p-value for the comparison. #' \item \code{fdr}: FDR corrected \code{pvalue}. #' } #' #' @seealso To generate the \link{Baseline} input object see \link{groupBaseline}. #' #' @references #' \enumerate{ #' \item Yaari G, et al. Quantifying selection in high-throughput immunoglobulin #' sequencing data sets. #' Nucleic Acids Res. 2012 40(17):e134. #' (Corrections at http://selection.med.yale.edu/baseline/correction/) #' } #' #' @examples #' \donttest{ #' # Subset example data as a demo #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call %in% c("IGHM", "IGHG")) #' set.seed(112) #' db <- dplyr::slice_sample(db, n=200) #' #' # Collapse clones #' db <- collapseClones(db, cloneColumn="clone_id", #' sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' method="thresholdedFreq", minimumFrequency=0.6, #' includeAmbiguous=FALSE, breakTiesStochastic=FALSE) #' #' # Calculate BASELINe #' baseline <- calcBaseline(db, #' sequenceColumn="clonal_sequence", #' germlineColumn="clonal_germline", #' testStatistic="focused", #' regionDefinition=IMGT_V, #' targetingModel=HH_S5F, #' nproc=1) #' #' # Group PDFs by the isotype #' grouped <- groupBaseline(baseline, groupBy="c_call") #' #' # Visualize isotype PDFs #' plot(grouped, "c_call") #' #' # Perform test on isotype PDFs #' testBaseline(grouped, groupBy="c_call") #' } #' @export testBaseline <- function(baseline, groupBy) { ## DEBUG # baseline=grouped; groupBy="sample_id" # Get test groups groups <- as.character(baseline@db[[groupBy]]) if (length(groups) < 2) { stop('The ', groupBy, ' column does not contain at least two groups.') } pair_indices <- combn(1:length(groups), 2, simplify=F) pair_names <- combn(groups, 2, simplify=F) test_names <- sapply(pair_names, paste, collapse=" != ") # Run tests test_list <- list() for (n in baseline@regions) { d <- baseline@pdfs[[n]] p <- sapply(pair_indices, function(x) { baseline2DistPValue(d[x[1], ], d[x[2], ])}) test_list[[n]] <- data.frame(test=test_names, pvalue=p) } test_df <- bind_rows(test_list, .id="region") test_df$fdr <- p.adjust(test_df$pvalue, method="fdr") return(test_df) } # Calculate mean sigma of a BASELINe PDF # # @param base BASLINe PDF vector. # @param max_sigma maximum sigma score. # @param length_sigma length of the PDF vector. # @return Mean sigma. baselineSigma <- function(base, max_sigma=20, length_sigma=4001) { # Return NA on bad input if (any(is.na(base))) { return(NA) } sigma_s <- seq(-max_sigma, max_sigma, length.out=length_sigma) norm <- sum(base, na.rm=TRUE) sigma_mean <- base %*% sigma_s / norm return(sigma_mean) } # Calculate confidence interval for BASELINe PDF # # @param base BASLINe PDF vector. # @param low lower CI percentile. # @param up upper CI percentile. # @param max_sigma maximum sigma score. # @param length_sigma length of the PDF vector. # @return A vector of \code{c(lower, upper)} confidence bounds. baselineCI <- function (base, low=0.025, up=0.975, max_sigma=20, length_sigma=4001){ # Return NA on bad input if (any(is.na(base))) { return(c(NA, NA)) } sigma_s <- seq(-max_sigma, max_sigma, length.out=length_sigma) cdf <- cumsum(base) cdf <- cdf / cdf[length(cdf)] intervalLow <- findInterval(low, cdf) fractionLow <- (low - cdf[intervalLow])/(cdf[intervalLow + 1] - cdf[intervalLow]) intervalUp <- findInterval(up,cdf) fractionUp <- (up - cdf[intervalUp]) / (cdf[intervalUp] - cdf[intervalUp - 1]) sigmaLow <- sigma_s[intervalLow] + fractionLow*(sigma_s[intervalLow + 1] - sigma_s[intervalLow]) sigmaUp <- sigma_s[intervalUp] + fractionUp*(sigma_s[intervalUp + 1] - sigma_s[intervalUp]) return(c(sigmaLow, sigmaUp)) } # Calculate a p-value that the given BASELINe PDF differs from zero # # @param base BASLINe PDF vector. # @param max_sigma maximum sigma score. # @param length_sigma length of the PDF vector. # @return A p-value. The returned p-value can be either positive or negative. # Its magnitude (without the sign) should be interpreted as per normal. # Its sign indicate the direction of the selection detected. A positive # p-value indicates positive selection, whereas a negative p-value # indicates negative selection. baselinePValue <- function (base, length_sigma=4001, max_sigma=20){ # note: since there isn't a null distribution, this "p-value" isn't a p-value in the # conventional sense if (!any(is.na(base))) { # normalization factor #norm <- (length_sigma - 1) / 2 / max_sigma # sums up to 100 for default setting (sigma_s from -20 to 20 with length 4001) norm <- sum(base, na.rm=TRUE) # compute Pr(selection strength < 0): # sum up density for sigma from min_sigma up to and right before 0 (area under curve), plus # + binomial correction (density at sigma=0 divided by 2); # normalized pvalue <- ( sum(base[1:((length_sigma - 1) / 2)]) + base[((length_sigma + 1) / 2)] / 2 ) / norm # from Fig 4 caption of Detecting selection in immunoglobulin sequences by Uduman et al. 2011 # "Note that P values less than zero are indicative of negative selection." # 1) if Pr(selection strength < 0) <= 0.5, return Pr(selection strength < 0) # this will be positive, and serves as the "p-value" for positive selection # 2) if Pr(selection strength < 0) > 0.5, return -Pr(selection strength>0) # this will be negative, and serves as the "p-value" for negative selection # (negative sign highlights the fact that selection is negative) if (pvalue > 0.5) { pvalue <- -(1 - pvalue) } } else { pvalue <- NA } return(pvalue) } # Compute p-value of two BASELINe PDFs # # @param base1 first selection PDF; must be a numeric vector # @param base2 second selection PDF; must be a numeric vector # @return Two-sided p-value that base1 and base2 differ. baseline2DistPValue <-function(base1, base2) { # NOTE: make sure to supply 2 vectors (not 1-row data.frames) when # calling this function directly ## Debug # base1=grouped@pdfs[["CDR"]][1, ]; base2=grouped@pdfs[["FWR"]][1, ] # Get lengths len1 <- length(base1) len2 <- length(base2) # Check input if (len1 != len2) { stop("base1 and base2 must be the same length.") } # NA if all values in pdfs are NA if (sum(is.na(base1))==len1 | sum(is.na(base2))==len2) { return(NA) } # Determine p-value if (len1 > 1) { # Normalize base1 <- base1 / sum(base1, na.rm=TRUE) base2 <- base2 / sum(base2, na.rm=TRUE) # Calculate p-value cum2 <- cumsum(base2) - base2/2 pvalue <- sum(base1*cum2) if (pvalue > 0.5) { pvalue <- 1 - pvalue } } else { pvalue <- NA } return(pvalue) } #### Plotting functions #### #' Plots BASELINe probability density functions #' #' \code{plotBaselineDensity} plots the probability density functions resulting from selection #' analysis using the BASELINe method. #' #' @param baseline \code{Baseline} object containing selection probability #' density functions. #' @param idColumn name of the column in the \code{db} slot of \code{baseline} #' containing primary identifiers. #' @param groupColumn name of the column in the \code{db} slot of \code{baseline} #' containing secondary grouping identifiers. If \code{NULL}, #' organize the plot only on values in \code{idColumn}. #' @param colorElement one of \code{c("id", "group")} specifying whether the #' \code{idColumn} or \code{groupColumn} will be used for color coding. #' The other entry, if present, will be coded by line style. #' @param colorValues named vector of colors for entries in \code{colorElement}, with #' names defining unique values in the \code{colorElement} column and values #' being colors. Also controls the order in which values appear on the #' plot. If \code{NULL} alphabetical ordering and a default color palette #' will be used. #' @param facetBy one of \code{c("region", "group")} specifying which category to facet the #' plot by, either values in \code{groupColumn} ("group") or regions #' defined in the \code{regions} slot of the \code{baseline} object ("region"). #' If this is set to "group", then the region will behave as the \code{groupColumn} #' for purposes of the \code{colorElement} argument. #' @param title string defining the plot title. #' @param subsetRegions character vector defining a subset of regions to plot, corresponding #' to the regions for which the \code{baseline} data was calculated. If #' \code{NULL} all regions in \code{baseline} are plotted. #' @param sigmaLimits numeric vector containing two values defining the \code{c(lower, upper)} #' bounds of the selection scores to plot. #' @param style type of plot to draw. One of: #' \itemize{ #' \item \code{"density"}: plots a set of curves for each probability #' density function in \code{baseline}, #' with colors determined by values in the #' \code{colorElement} column. #' Faceting is determined by the #' \code{facetBy} argument. #' } #' @param sizeElement one of \code{c("none", "id", "group")} specifying whether the lines in the #' plot should be all of the same size (\code{none}) or have their sizes depend on #' the values in \code{id} or \code{code}. #' @param size numeric scaling factor for lines, points and text in the plot. #' @param silent if \code{TRUE} do not draw the plot and just return the ggplot2 #' object; if \code{FALSE} draw the plot. #' @param ... additional arguments to pass to ggplot2::theme. #' #' @return A ggplot object defining the plot. #' #' @seealso Takes as input a \link{Baseline} object returned from \link{groupBaseline}. #' #' @examples #' \dontrun{ #' # Subset example data as a demo #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call %in% c("IGHM", "IGHG")) #' set.seed(112) #' db <- dplyr::slice_sample(db, n=100) #' #' # Collapse clones #' db <- collapseClones(db, cloneColumn="clone_id", #' sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' method="thresholdedFreq", minimumFrequency=0.6, #' includeAmbiguous=FALSE, breakTiesStochastic=FALSE) #' #' # Calculate BASELINe #' baseline <- calcBaseline(db, #' sequenceColumn="clonal_sequence", #' germlineColumn="clonal_germline", #' testStatistic="focused", #' regionDefinition=IMGT_V, #' targetingModel=HH_S5F, #' nproc=1) #' #' # Grouping the PDFs by the sample and isotype annotations #' grouped <- groupBaseline(baseline, groupBy=c("sample_id", "c_call")) #' #' # Plot density faceted by region with custom isotype colors #' isotype_colors <- c("IGHM"="darkorchid", "IGHD"="firebrick", #' "IGHG"="seagreen", "IGHA"="steelblue") #' plotBaselineDensity(grouped, "sample_id", "c_call", colorValues=isotype_colors, #' colorElement="group", sigmaLimits=c(-1, 1)) #' #' # Facet by isotype instead of region #' sample_colors <- c("-1h"="steelblue", "+7d"="firebrick") #' plotBaselineDensity(grouped, "sample_id", "c_call", facetBy="group", #' colorValues=sample_colors, sigmaLimits=c(-1, 1)) #' } #' #' @export plotBaselineDensity <- function(baseline, idColumn, groupColumn=NULL, colorElement=c("id", "group"), colorValues=NULL, title=NULL, subsetRegions=NULL, sigmaLimits=c(-5, 5), facetBy=c("region", "group"), style=c("density"), sizeElement=c("none", "id", "group"), size=1, silent=FALSE, ...) { ## DEBUG # baseline=grouped # idColumn="sample_id"; groupColumn="c_call"; subsetRegions=NULL; sigmaLimits=c(-5, 5) # facetBy="region"; style="density"; size=1; silent=FALSE # Check input colorElement <- match.arg(colorElement) style <- match.arg(style) facetBy <- match.arg(facetBy) sizeElement <- match.arg(sizeElement) # Set base plot settings base_theme <- theme_bw() + theme(panel.background=element_blank(), panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.border=element_rect(color="black", linewidth = 0.5)) + theme(strip.background=element_rect(fill="white", color="black", linewidth=0.5)) if (style == "density") { # Check for proper grouping if (any(duplicated(baseline@db[, c(idColumn, groupColumn)]))) { stop("More than one unique annotation set per summary statistic. Rerun groupBaseline to combine data.") } # Subset to regions of interest dens_names <- baseline@regions if (!is.null(subsetRegions)) { dens_names <- dens_names[dens_names %in% subsetRegions] } dens_list <- baseline@pdfs[dens_names] # Get row and column names for PDF matrices group_df <- subset(baseline@db, select=c(idColumn, groupColumn)) group_df$GROUP_COLLAPSE <- apply(subset(group_df, select=c(idColumn, groupColumn)), 1, paste, collapse=",") col_names <- seq(-20, 20, length.out=ncol(dens_list[[1]])) # Update column and rownames for PDF matrices and subset to Sigma in -5:5 for (i in 1:length(dens_list)) { rownames(dens_list[[i]]) <- group_df$GROUP_COLLAPSE colnames(dens_list[[i]]) <- col_names dens_list[[i]] <- dens_list[[i]][, col_names >= sigmaLimits[1] & col_names <= sigmaLimits[2], drop=FALSE] } # Melt density matrices melt_list <- list() for (n in dens_names) { tmp_df <- as.data.frame(dens_list[[n]]) tmp_df$GROUP_COLLAPSE <- rownames(dens_list[[n]]) gather_cols <- names(tmp_df)[names(tmp_df) != "GROUP_COLLAPSE"] melt_list[[n]] <- tidyr::gather(tmp_df, "SIGMA", "DENSITY", tidyselect::all_of(gather_cols), convert=TRUE) } dens_df <- dplyr::bind_rows(melt_list, .id="region") # Assign id and group columns to density data.frame dens_df[, idColumn] <- group_df[match(dens_df$GROUP_COLLAPSE, group_df$GROUP_COLLAPSE), idColumn] if (!is.null(groupColumn)) { dens_df[, groupColumn] <- group_df[match(dens_df$GROUP_COLLAPSE, group_df$GROUP_COLLAPSE), groupColumn] } # Set secondary grouping and faceting columns if (facetBy == "group") { secondaryColumn <- "region" facetColumn <- groupColumn } else if (facetBy == "region") { secondaryColumn <- groupColumn facetColumn <- "region" } # Apply color order if (!is.null(colorValues)) { if (colorElement == "id") { dens_df[, idColumn] <- factor(dens_df[, idColumn], levels=names(colorValues)) } else { dens_df[, groupColumn] <- factor(dens_df[, groupColumn], levels=names(colorValues)) } } # Apply line width dens_df[, "size"] <- factor(1) if (sizeElement=="id") { dens_df[, "size"] <- factor(dens_df[, idColumn]) } else if (sizeElement == "group" ) { dens_df[, "size"] <- factor(dens_df[, groupColumn]) } size_values <- 1:length(levels(dens_df[,"size"])) size_names <- levels(dens_df[, "size"]) size_values <- size*size_values/max(size_values) names(size_values) <- size_names # Plot probability density curve p1 <- ggplot(dens_df, aes(x=!!rlang::sym("SIGMA"), y=!!rlang::sym("DENSITY"))) + base_theme + xlab(expression(Sigma)) + ylab("Density") + geom_line(aes(linewidth=!!rlang::sym("size"))) + scale_discrete_manual("linewidth", values = size_values) # Add line if (colorElement == "id" & is.null(secondaryColumn)) { p1 <- p1 + aes(color=!!rlang::sym(idColumn)) } else if (colorElement == "id" & !is.null(secondaryColumn)) { p1 <- p1 + aes(color=!!rlang::sym(idColumn), linetype=!!rlang::sym(secondaryColumn)) } else if (colorElement == "group") { p1 <- p1 + aes(color=!!rlang::sym(secondaryColumn), linetype=!!rlang::sym(idColumn)) } else { stop("Incompatible arguments for groupColumn, colorElement and facetBy") } # Add colors if (!is.null(colorValues)) { p1 <- p1 + scale_color_manual(values=colorValues) } # Add title if (!is.null(title)) { p1 <- p1 + ggtitle(title) } # Add facet if (is.null(facetColumn)) { stop("Cannot facet by group if groupColumn=NULL") } else { p1 <- p1 + facet_grid(paste(facetColumn, "~ .")) } } # Add additional theme elements p1 <- p1 + scale_size_manual(breaks=names(size_values), values=as.vector(size_values)) if (sizeElement == "none") { p1 <- p1 + guides(linewidth="none", colour = guide_legend(override.aes=list(linewidth=size_values))) if (length(unique(c(groupColumn, idColumn))) > 1) { p1 <- p1 + guides (linetype=guide_legend(override.aes=list(linewidth=size_values))) } } else if (sizeElement == colorElement) { p1 <- p1 + guides(linewidth="none", colour = guide_legend(override.aes = list(linewidth = size_values))) } else { p1 <- p1 + guides(linewidth="none", linetype = guide_legend(override.aes = list(linewidth = size_values))) } p1 <- p1 + do.call(theme, list(...)) # Plot if (!silent) { plot(p1) } invisible(p1) } #' Plots BASELINe summary statistics #' #' \code{plotBaselineSummary} plots a summary of the results of selection analysis #' using the BASELINe method. #' #' @param baseline either a data.frame returned from \link{summarizeBaseline} #' or a \code{Baseline} object returned from \link{groupBaseline} #' containing selection probability density functions and summary #' statistics. #' @param idColumn name of the column in \code{baseline} containing primary identifiers. #' If the input is a \code{Baseline} object, then this will be a column #' in the \code{stats} slot of \code{baseline}. #' @param groupColumn name of the column in \code{baseline} containing secondary grouping #' identifiers. If the input is a \code{Baseline} object, then this will #' be a column in the \code{stats} slot of \code{baseline}. #' @param groupColors named vector of colors for entries in \code{groupColumn}, with #' names defining unique values in the \code{groupColumn} and values #' being colors. Also controls the order in which groups appear on the #' plot. If \code{NULL} alphabetical ordering and a default color palette #' will be used. Has no effect if \code{facetBy="group"}. #' @param subsetRegions character vector defining a subset of regions to plot, corresponding #' to the regions for which the \code{baseline} data was calculated. If #' \code{NULL} all regions in \code{baseline} are plotted. #' @param facetBy one of c("group", "region") specifying which category to facet the #' plot by, either values in \code{groupColumn} ("group") or regions #' defined in \code{baseline} ("region"). The data that is not used #' for faceting will be color coded. #' @param title string defining the plot title. #' @param style type of plot to draw. One of: #' \itemize{ #' \item \code{"summary"}: plots the mean and confidence interval for #' the selection scores of each value in #' \code{idColumn}. Faceting and coloring #' are determine by values in \code{groupColumn} #' and regions defined in \code{baseline}, #' depending upon the \code{facetBy} argument. #' } #' @param size numeric scaling factor for lines, points and text in the plot. #' @param silent if \code{TRUE} do not draw the plot and just return the ggplot2 #' object; if \code{FALSE} draw the plot. #' @param ... additional arguments to pass to ggplot2::theme. #' #' @return A ggplot object defining the plot. #' #' @seealso Takes as input either a \link{Baseline} object returned by \link{groupBaseline} #' or a data.frame returned from \link{summarizeBaseline}. #' #' @examples #' \donttest{ #' # Subset example data as a demo #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call %in% c("IGHM", "IGHG")) #' set.seed(112) #' db <- dplyr::slice_sample(db, n=25) #' #' # Collapse clones #' db <- collapseClones(db, cloneColumn="clone_id", #' sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' method="thresholdedFreq", minimumFrequency=0.6, #' includeAmbiguous=FALSE, breakTiesStochastic=FALSE) #' #' # Calculate BASELINe #' baseline <- calcBaseline(db, #' sequenceColumn="clonal_sequence", #' germlineColumn="clonal_germline", #' testStatistic="focused", #' regionDefinition=IMGT_V, #' targetingModel=HH_S5F, #' nproc=1) #' #' # Grouping the PDFs by sample and isotype annotations #' grouped <- groupBaseline(baseline, groupBy=c("sample_id", "c_call")) #' #' # Plot mean and confidence interval by region with custom group colors #' isotype_colors <- c("IGHM"="darkorchid", "IGHD"="firebrick", #' "IGHG"="seagreen", "IGHA"="steelblue") #' plotBaselineSummary(grouped, "sample_id", "c_call", #' groupColors=isotype_colors, facetBy="region") #' } #' #' @export plotBaselineSummary <- function(baseline, idColumn, groupColumn=NULL, groupColors=NULL, subsetRegions=NULL, facetBy=c("region", "group"), title=NULL, style=c("summary"), size=1, silent=FALSE, ...) { # Check arguments style <- match.arg(style) facetBy <- match.arg(facetBy) # Check input object if (is(baseline, "Baseline")) { stats_df <- baseline@stats } else if (is(baseline, "data.frame")) { stats_df <- baseline } else { stop("Input must be either a data.frame or Baseline object.") } # Check for required columns baseline_cols <- c("region", "baseline_sigma", "baseline_ci_lower", "baseline_ci_pvalue") if (!(all(baseline_cols %in% names(stats_df)))) { stop("Input must contain columns defined by summarizeBaseline.") } # Check for proper grouping if (any(duplicated(stats_df[, c(idColumn, groupColumn, "region")]))) { stop("More than one unique annotation set per summary statistic. Rerun groupBaseline to combine data.") } # Subset to regions of interest if (!is.null(subsetRegions)) { stats_df <- stats_df[stats_df$region %in% subsetRegions, ] } # Set base plot settings base_theme <- theme_bw() + theme(panel.background=element_blank(), panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.border=element_rect(color="black", linewidth=0.5)) + theme(strip.background=element_rect(fill="white", color="black", linewidth=0.5)) + theme(axis.title.x=element_blank(), axis.text.x=element_blank(), axis.ticks.x=element_blank()) + theme(legend.position="top") + theme(axis.text.x=element_text(angle=90, vjust=0.5, hjust=1)) if (style == "summary") { # Plot mean and confidence intervals stats_df <- stats_df[!is.na(stats_df$baseline_sigma), ] if (!is.null(groupColumn) & !is.null(groupColors)) { stats_df[,groupColumn] <- factor(stats_df[,groupColumn], levels=names(groupColors)) } p1 <- ggplot(stats_df, aes(x=!!rlang::sym(idColumn), y=!!rlang::sym("baseline_sigma"), ymax=max(!!rlang::sym("baseline_sigma")))) + base_theme + xlab("") + ylab(expression(Sigma)) + geom_hline(yintercept=0, linewidth=1*size, linetype=2, color="grey") + geom_point(size=3*size, position=position_dodge(0.6)) + geom_errorbar(aes(ymin=!!rlang::sym("baseline_ci_lower"), ymax=!!rlang::sym("baseline_ci_upper")), width=0.2, linewidth=0.5*size, alpha=0.8, position=position_dodge(0.6)) if (!is.null(title)) { p1 <- p1 + ggtitle(title) } if (is.null(groupColumn) & facetBy == "region") { p1 <- p1 + facet_grid(region ~ .) } else if (!is.null(groupColumn) & !is.null(groupColors) & facetBy == "region") { #groupColors <- factor(groupColors, levels=groupColors) p1 <- p1 + scale_color_manual(name=groupColumn, values=groupColors) + aes(color=!!rlang::sym(groupColumn)) + facet_grid(region ~ .) } else if (!is.null(groupColumn) & is.null(groupColors) & facetBy == "region") { p1 <- p1 + aes(color=!!rlang::sym(groupColumn)) + facet_grid(region ~ .) } else if (!is.null(groupColumn) & facetBy == "group") { p1 <- p1 + scale_color_manual(name="Region", values=REGION_PALETTE) + aes(color=!!rlang::sym("region")) + facet_grid(paste(groupColumn, "~ .")) } else { stop("Cannot facet by group if groupColumn=NULL") } } # Add additional theme elements p1 <- p1 + do.call(theme, list(...)) # Plot if (!silent) { plot(p1) } else { invisible(p1) } } #### Original BASELINe functions #### ##Convolution break2chunks<-function(G=1000){ base<-2^round(log(sqrt(G),2),0) return(c(rep(base,floor(G/base)-1),base+G-(floor(G/base)*base))) } PowersOfTwo <- function(G=100){ exponents <- array() i = 0 while(G > 0){ i=i+1 exponents[i] <- floor( log2(G) ) G <- G-2^exponents[i] } return(exponents) } convolutionPowersOfTwo <- function( cons, length_sigma=4001 ){ G = ncol(cons) if(G>1){ for(gen in log(G,2):1){ ll<-seq(from=2,to=2^gen,by=2) sapply(ll,function(l){cons[,l/2]<<-weighted_conv(cons[,l],cons[,l-1],length_sigma=length_sigma)}) } } return( cons[,1] ) } convolutionPowersOfTwoByTwos <- function( cons, length_sigma=4001,G=1 ){ if(length(ncol(cons))) G<-ncol(cons) groups <- PowersOfTwo(G) matG <- matrix(NA, ncol=length(groups), nrow=length(cons)/G ) startIndex = 1 for( i in 1:length(groups) ){ stopIndex <- 2^groups[i] + startIndex - 1 if(stopIndex!=startIndex){ matG[,i] <- convolutionPowersOfTwo( cons[,startIndex:stopIndex], length_sigma=length_sigma ) startIndex = stopIndex + 1 } else { if(G>1) matG[,i] <- cons[,startIndex:stopIndex] else matG[,i] <- cons #startIndex = stopIndex + 1 } } return( list( matG, groups ) ) } weighted_conv <- function(x, y, w=1, m=100, length_sigma=4001){ lx<-length(x) ly<-length(y) if({lx1){ while( i1 & Length_Posterior<=Threshold){ cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors)) listMatG <- convolutionPowersOfTwoByTwos(cons,length_sigma=length_sigma) y<-calculate_bayesGHelper(listMatG,length_sigma=length_sigma) return( y/sum(y)/(2*max_sigma/(length_sigma-1)) ) }else if(Length_Posterior==1) return(listPosteriors[[1]]) else if(Length_Posterior==0) return(NA) else { cons = matrix(unlist(listPosteriors),length(listPosteriors[[1]]),length(listPosteriors)) y = fastConv(cons,max_sigma=max_sigma, length_sigma=length_sigma ) return( y/sum(y)/(2*max_sigma/(length_sigma-1)) ) } } fastConv<-function(cons, max_sigma=20, length_sigma=4001){ chunks<-break2chunks(G=ncol(cons)) if(ncol(cons)==3) chunks<-2:1 index_chunks_end <- cumsum(chunks) index_chunks_start <- c(1,index_chunks_end[-length(index_chunks_end)]+1) index_chunks <- cbind(index_chunks_start,index_chunks_end) case <- sum(chunks!=chunks[1]) if(case==1) End <- max(1,((length(index_chunks)/2)-1)) else End <- max(1,((length(index_chunks)/2))) firsts <- sapply(1:End,function(i){ indexes<-index_chunks[i,1]:index_chunks[i,2] convolutionPowersOfTwoByTwos(cons[ ,indexes])[[1]] }) if(case==0){ result<-calculate_bayesGHelper( convolutionPowersOfTwoByTwos(firsts) ) }else if(case==1){ last<-list(calculate_bayesGHelper( convolutionPowersOfTwoByTwos( cons[ ,index_chunks[length(index_chunks)/2,1]:index_chunks[length(index_chunks)/2,2]] ) ),0) result_first<-calculate_bayesGHelper(convolutionPowersOfTwoByTwos(firsts)) result<-calculate_bayesGHelper( list( cbind( result_first,last[[1]]), c(log(index_chunks_end[length(index_chunks)/2-1],2),log(index_chunks[length(index_chunks)/2,2]-index_chunks[length(index_chunks)/2,1]+1,2)) ) ) } return(as.vector(result)) } #' Calculate the BASELINe PDFs (including for regions that include CDR3 and FWR4) #' #' \code{calcBaseline} calculates the BASELINe posterior probability density #' functions (PDFs) for sequences in the given Change-O \code{data.frame}. #' #' @param db \code{data.frame} containing sequence data and annotations. #' @param sequenceColumn \code{character} name of the column in \code{db} #' containing input sequences. #' @param germlineColumn \code{character} name of the column in \code{db} #' containing germline sequences. #' @param testStatistic \code{character} indicating the statistical framework #' used to test for selection. One of #' \code{c("local", "focused", "imbalanced")}. #' @param regionDefinition \link{RegionDefinition} object defining the regions #' and boundaries of the Ig sequences. #' @param targetingModel \link{TargetingModel} object. Default is \link{HH_S5F}. #' @param mutationDefinition \link{MutationDefinition} object defining replacement #' and silent mutation criteria. If \code{NULL} then #' replacement and silent are determined by exact #' amino acid identity. Note, if the input data.frame #' already contains observed and expected mutation frequency #' columns then mutations will not be recalculated and this #' argument will be ignored. #' @param calcStats \code{logical} indicating whether or not to calculate the #' summary statistics \code{data.frame} stored in the #' \code{stats} slot of a \link{Baseline} object. #' @param nproc number of cores to distribute the operation over. If #' \code{nproc=0} then the \code{cluster} has already been #' set and will not be reset. #' @param cloneColumn \code{character} name of the column in \code{db} #' containing clonal identifiers. Relevant only for #' when regionDefinition includes CDR and FWR4 (else #' this value can be \code{NULL}) #' @param juncLengthColumn \code{character} name of the column in \code{db} #' containing the junction length. Relevant only for #' when regionDefinition includes CDR and FWR4 (else #' this value can be \code{NULL}) #' @return A \link{Baseline} object containing the modified \code{db} and BASELINe #' posterior probability density functions (PDF) for each of the sequences. #' #' @details #' Calculates the BASELINe posterior probability density function (PDF) for #' sequences in the provided \code{db}. #' #' \strong{Note}: Individual sequences within clonal groups are not, strictly speaking, #' independent events and it is generally appropriate to only analyze selection #' pressures on an effective sequence for each clonal group. For this reason, #' it is strongly recommended that the input \code{db} contains one effective #' sequence per clone. Effective clonal sequences can be obtained by calling #' the \link{collapseClones} function. #' #' If the \code{db} does not contain the #' required columns to calculate the PDFs (namely mu_count & mu_expected) #' then the function will: #' \enumerate{ #' \item Calculate the numbers of observed mutations. #' \item Calculate the expected frequencies of mutations and modify the provided #' \code{db}. The modified \code{db} will be included as part of the #' returned \code{Baseline} object. #' } #' #' The \code{testStatistic} indicates the statistical framework used to test for selection. #' E.g. #' \itemize{ #' \item \code{local} = CDR_R / (CDR_R + CDR_S). #' \item \code{focused} = CDR_R / (CDR_R + CDR_S + FWR_S). #' \item \code{imbalanced} = CDR_R + CDR_S / (CDR_R + CDR_S + FWR_S + FRW_R). #' } #' For \code{focused} the \code{regionDefinition} must only contain two regions. If more #' than two regions are defined the \code{local} test statistic will be used. #' For further information on the frame of these tests see Uduman et al. (2011). #' #' @references #' \enumerate{ #' \item Hershberg U, et al. Improved methods for detecting selection by mutation #' analysis of Ig V region sequences. #' Int Immunol. 2008 20(5):683-94. #' \item Uduman M, et al. Detecting selection in immunoglobulin sequences. #' Nucleic Acids Res. 2011 39(Web Server issue):W499-504. #' \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based #' on synonymous mutations from high-throughput immunoglobulin sequencing data. #' Front Immunol. 2013 4(November):358. #' } #' #' @seealso See \link{Baseline} for the return object. #' See \link{groupBaseline} and \link{summarizeBaseline} for further processing. #' See \link{plotBaselineSummary} and \link{plotBaselineDensity} for plotting results. #' #' @examples #' # Load and subset example data #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call == "IGHG" & sample_id == "+7d") #' #' # Collapse clones #' db <- collapseClones(db, cloneColumn="clone_id", #' sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' method="thresholdedFreq", minimumFrequency=0.6, #' includeAmbiguous=FALSE, breakTiesStochastic=FALSE) #' #' # Calculate BASELINe #' baseline <- calcBaseline(db, #' sequenceColumn="clonal_sequence", #' germlineColumn="clonal_germline", #' testStatistic="focused", #' regionDefinition=IMGT_V, #' targetingModel=HH_S5F, #' nproc=1) #' #' @export calcBaseline <- function(db, sequenceColumn = "clonal_sequence", germlineColumn = "clonal_germline", testStatistic = c("local","focused", "imbalanced"), regionDefinition = NULL, targetingModel = HH_S5F, mutationDefinition = NULL, calcStats = FALSE, nproc = 1, # following are relevant only when regionDefinition includes CDR3 and FWR4: cloneColumn = NULL, juncLengthColumn = NULL) { # Hack for visibility of foreach index variable idx <- NULL # Evaluate argument choices testStatistic <- match.arg(testStatistic) check <- checkColumns(db, c(sequenceColumn, germlineColumn)) if (check != TRUE) { stop(check) } regionDefinitionName <- "" if (!is.null(regionDefinition)) { regionDefinitionName <- regionDefinition@name } # Check region definition if (!is.null(regionDefinition) & !is(regionDefinition, "RegionDefinition")) { stop(deparse(substitute(regionDefinition)), " is not a valid RegionDefinition object") } # Check mutation definition if (!is.null(mutationDefinition) & !is(mutationDefinition, "MutationDefinition")) { stop(deparse(substitute(mutationDefinition)), " is not a valid MutationDefinition object") } # Check targeting model if (!is(targetingModel, "TargetingModel")) { stop(deparse(substitute(targetingModel)), " is not a valid TargetingModel object") } # Convert sequence columns to uppercase db <- toupperColumns(db, c(sequenceColumn, germlineColumn)) db$tmp_baseline_row_id <- 1:nrow(db) # Ensure that the nproc does not exceed the number of cores/CPUs available nproc <- min(nproc, cpuCount()) # nproc_arg will be passed to any function that has the nproc argument # If the cluster is already being set by the parent function then # this will be set to 'cluster', that way the child function does not close # the connections and reset the cluster. #nproc_arg <- nproc # If user wants to parallelize this function and specifies nproc > 1, then # initialize and register slave R processes/clusters & # export all necessary environment variables, functions and packages. if (nproc > 1) { cluster <- parallel::makeCluster(nproc, type="PSOCK") parallel::clusterExport(cluster, list('db', 'sequenceColumn', 'germlineColumn', 'cloneColumn', 'juncLengthColumn', 'setRegionBoundaries', 'testStatistic', 'regionDefinition', 'targetingModel', 'mutationDefinition','calcStats', 'break2chunks', 'PowersOfTwo', 'convolutionPowersOfTwo', 'convolutionPowersOfTwoByTwos', 'weighted_conv', 'calculate_bayesGHelper', 'groupPosteriors', 'fastConv', 'calcBaselineHelper', 'c2s', 's2c', 'words', 'translate', 'calcBaselineBinomialPdf','CONST_I', 'BAYESIAN_FITTED', 'calcObservedMutations','NUCLEOTIDES', 'NUCLEOTIDES_AMBIGUOUS', 'IUPAC2nucs', 'makeNullRegionDefinition', 'getCodonPos','getContextInCodon', 'mutationType', 'AMINO_ACIDS','binMutationsByRegion', 'collapseMatrixToVector','calcExpectedMutations', 'calculateTargeting','HH_S5F','calculateMutationalPaths', 'CODON_TABLE','IMGT_V_BY_REGIONS'), envir=environment() ) registerDoParallel(cluster, cores=nproc) #nproc_arg <- cluster } else if (nproc == 1) { # If needed to run on a single core/cpu then, register DoSEQ # (needed for 'foreach' in non-parallel mode) registerDoSEQ() } # If db does not contain the required columns to calculate the PDFs (namely mu_count # & mu_expected mutations), then the function will: # 1. Calculate the numbers of observed mutations # 2. Calculate the expected frequencies of mutations # After that BASELINe prob. densities can be calculated per sequence. if (is.null(regionDefinition)) { rd_labels <- makeNullRegionDefinition()@labels observedColumns <- paste0("mu_count_", rd_labels) expectedColumns <- paste0("mu_expected_", rd_labels) } else { observedColumns <- paste0("mu_count_", regionDefinition@labels) expectedColumns <- paste0("mu_expected_", regionDefinition@labels) } if (!all(c(observedColumns, expectedColumns) %in% colnames(db))) { # If the germlineColumn & sequenceColumn are not found in the db error and quit if (!all(c(sequenceColumn, germlineColumn) %in% colnames(db))) { stop(paste0("Both ", sequenceColumn, " & ", germlineColumn, " columns need to be present in the db")) } message(paste0("calcBaseline will calculate observed and expected mutations for ", sequenceColumn," using ", germlineColumn, " as a reference.")) # Calculate the numbers of observed mutations db <- observedMutations(db, sequenceColumn=sequenceColumn, germlineColumn=germlineColumn, regionDefinition=regionDefinition, mutationDefinition=mutationDefinition, frequency=FALSE, combine=FALSE, nproc=0, cloneColumn=cloneColumn, juncLengthColumn=juncLengthColumn) # Calculate the expected frequencies of mutations db <- expectedMutations(db, sequenceColumn=sequenceColumn, germlineColumn=germlineColumn, regionDefinition=regionDefinition, targetingModel=targetingModel, mutationDefinition=mutationDefinition, nproc=0, cloneColumn=cloneColumn, juncLengthColumn=juncLengthColumn) } else { message(paste0("calcBaseline will use existing observed and expected mutations, in the fields: ", paste0(observedColumns, sep="", collapse=", ")," and ", paste0(expectedColumns, sep="", collapse=", "))) } # Calculate PDFs for each sequence # Print status to console if not using extended regions definitions cat("Calculating BASELINe probability density functions...\n") # Number of sequences (used in foreach) totalNumbOfSequences <- nrow(db) # The column indexes of the mu_count_ and mu_expected_ cols_observed <- grep( paste0("mu_count_"), colnames(db) ) cols_expected <- grep( paste0("mu_expected_"), colnames(db) ) # Exporting additional environment variables and functions needed to run foreach if ( nproc>1 ) { parallel::clusterExport( cluster, list('cols_observed', 'cols_expected','calcBaselineHelper'), envir=environment() ) registerDoParallel(cluster,cores=nproc) } list_pdfs <- list() list_numbOfSeqs <- list() list_k <- list() list_n <- list() list_p <- list() if (is.null(regionDefinition)) { regions <- makeNullRegionDefinition()@regions } else { regions <- regionDefinition@regions } # For every region (e.g. CDR, FWR etc.) for (region in regions) { # Foreach returns a list of PDFs list_region_pdfs <- foreach(idx=iterators::icount(totalNumbOfSequences)) %dopar% { rd <- regionDefinition if (regionDefinitionName %in% c("IMGT_VDJ_BY_REGIONS","IMGT_VDJ")) { ## Prepare extended region definition rd <- setRegionBoundaries(juncLength = db[[juncLengthColumn]][idx], sequenceImgt = db[[sequenceColumn]][idx], regionDefinition=regionDefinition) } calcBaselineHelper( observed = db[cols_observed][idx,], expected = db[cols_expected][idx,], region = region, testStatistic = testStatistic, regionDefinition = rd ) } # Count the number of non NA PDFs list_numbOfSeqs[[region]] <- rep(1,totalNumbOfSequences) #is.na(list_region_pdfs)] <- 0 # Convert the list of the region's PDFs into a matrix mat_pdfs_binom <- do.call( rbind, lapply( list_region_pdfs, function(x) { length(x) <- 4004 return(x) } ) ) #cat(class(mat_pdfs_binom), "\n") # for debugging #cat(dim(mat_pdfs_binom), "\n") # for debugging # IMPORTANT: if input has a single sequence, mat_pdfs_binom (1-row) gets coerced # into a numeric vector without matrix(..., nrow=nrow(mat_pdfs_binom)) list_pdfs[[region]] <- matrix(mat_pdfs_binom[, 1:4001], nrow=nrow(mat_pdfs_binom)) #cat(class(list_pdfs[[region]]), "\n") # for debugging stopifnot(is(list_pdfs[[region]], "matrix")) list_k[[region]] <- mat_pdfs_binom[, 4002] list_n[[region]] <- mat_pdfs_binom[, 4003] list_p[[region]] <- mat_pdfs_binom[, 4004] list_numbOfSeqs[[region]][is.na(list_k[[region]])] <- 0 } # WIP - check Milca's function, how it handles the new data struct for rextender regions # Template for values for the regions mat_template <- matrix( NA, ncol=length(regions), nrow=totalNumbOfSequences, dimnames=list(1:totalNumbOfSequences, regions) ) # numbOfSeqs # This holds the number of non NA sequences numbOfSeqs <- mat_template for(region in regions){ numbOfSeqs[,region] <- list_numbOfSeqs[[region]] } # binomK # This holds the number of exact success in in the binomial trials binomK <- mat_template for(region in regions){ binomK[,region] <- list_k[[region]] } # binomN # This holds the total numbers trials in the binomial binomN <- mat_template for(region in regions){ binomN[,region] <- list_n[[region]] } # binomP # This holds the prob of success in in the binomial trials binomP <- mat_template for(region in regions){ binomP[,region] <- list_p[[region]] } # If regionDefinition include CDR3 and FWR4 - then the regionDefinition is different for each clone, # In this case - regionDefinition will be NULL. # Create a Baseline object with the above results to return baseline <- createBaseline(description="", db=as.data.frame(db) %>% arrange(!!rlang::sym("tmp_baseline_row_id")) %>% select(-!!rlang::sym("tmp_baseline_row_id")), regionDefinition=regionDefinition, testStatistic=testStatistic, regions=regions, numbOfSeqs=numbOfSeqs, binomK=binomK, binomN=binomN, binomP=binomP, pdfs=list_pdfs ) # Calculate BASELINe stats and update slot if (calcStats==TRUE) { baseline <- summarizeBaseline(baseline) } # Stop cluster if (nproc > 1) { parallel::stopCluster(cluster) } return(baseline) } shazam/R/MutationDefinitions.R0000644000176200001440000001706314477634424016103 0ustar liggesusers# Class definitions for mutation classes #' @include Shazam.R #' @include Core.R NULL #### Classes #### #' S4 class defining replacement and silent mutation definitions #' #' \code{MutationDefinition} defines a common data structure for defining the whether #' a mutation is annotated as a replacement or silent mutation. #' #' @slot name name of the MutationDefinition. #' @slot description description of the model and its source. #' @slot classes named character vectors with single-letter amino acid codes as names #' and amino acid classes as values, with \code{NA} assigned to set of #' characters \code{c("X", "*", "-", ".")}. Replacement (R) is be #' defined as a change in amino acid class and silent (S) as no #' change in class. #' @slot codonTable matrix of codons (columns) and substitutions (rows). #' @slot citation publication source. #' #' @seealso #' See \link{MUTATION_SCHEMES} for a set of predefined \code{MutationDefinition} objects. #' #' @name MutationDefinition-class #' @rdname MutationDefinition-class #' @aliases MutationDefinition #' @exportClass MutationDefinition setClass("MutationDefinition", slots=c(name="character", description="character", classes="character", codonTable="matrix", citation="character")) #### Builder functions #### # Create all codons one mutation away from input codon. # # All codons one mutation away from the input codon are generated. # # @param codon starting codon to which mutations are added # @return a vector of codons. allCodonMuts <- function(codon) { codon_char <- seqinr::s2c(codon) matCodons <- t(array(codon_char, dim=c(3,12))) matCodons[1:4, 1] <- NUCLEOTIDES[1:4] matCodons[5:8, 2] <- NUCLEOTIDES[1:4] matCodons[9:12,3] <- NUCLEOTIDES[1:4] return(apply(matCodons, 1, seqinr::c2s)) } # Generate codon table # # First generates all informative codons and determines types of mutations. # Next generates uninformative codons (having either an N or a gap "-" # character) and sets the mutation type as NA. # # @param aminoAcidClasses vector of amino acid trait classes # if NULL then R or S is determined by amino acid identity # @return matrix with all codons as row and column names and the type of mutation as # the corresponding value in the matrix. # @examples # library(alakazam) # hydropathy <- list(hydrophobic=c("A", "I", "L", "M", "F", "W", "V"), # hydrophilic=c("R", "N", "D", "C", "Q", "E", "K"), # neutral=c("G", "H", "P", "S", "T", "Y")) # chars <- unlist(hydropathy, use.names=FALSE) # classes <- setNames(translateStrings(chars, hydropathy), chars) # computeCodonTable(aminoAcidClasses=classes) computeCodonTable <- function(aminoAcidClasses=NULL) { # Initialize empty data.frame codon_table <- as.data.frame(matrix(NA, ncol=64, nrow=12)) # Pre-compute every codon counter <- 1 for(pOne in NUCLEOTIDES[1:4]) { for(pTwo in NUCLEOTIDES[1:4]) { for(pThree in NUCLEOTIDES[1:4]) { codon <- paste0(pOne, pTwo, pThree) colnames(codon_table)[counter] <- codon counter <- counter + 1 all_muts <- allCodonMuts(codon) codon_table[, codon] <- sapply(all_muts, function(x) { mutType = mutationType(x, codon, aminoAcidClasses=aminoAcidClasses) mutType = names(mutType)[which(mutType>0)] # does not support ambiguous characters # assumes that only 1 entry (r/s/stop/na) from mutationType is non-zero/1 stopifnot(length(mutType)==1) if (mutType=="na") {mutType=NA} return(mutType) }) } } } # Set codons with N or . to be NA chars <- c("N","A","C","G","T", ".") for(n1 in chars) { for(n2 in chars) { for(n3 in chars) { if(n1=="N" | n2=="N" | n3=="N" | n1=="." | n2=="." | n3==".") { codon_table[, paste0(n1, n2, n3)] <- rep(NA, 12) } } } } return(as.matrix(codon_table)) } #' Creates a MutationDefinition #' #' \code{createMutationDefinition} creates a \code{MutationDefinition}. #' #' @param name name of the mutation definition. #' @param classes named character vectors with single-letter amino acid codes as names #' and amino acid classes as values, with \code{NA} assigned to set of #' characters \code{c("X", "*", "-", ".")}. Replacement (R) is be #' defined as a change in amino acid class and silent (S) as no #' change in class. #' @param description description of the mutation definition and its source data. #' @param citation publication source. #' #' @return A \code{MutationDefinition} object. #' #' @seealso See \link{MutationDefinition} for the return object. #' #' @examples #' # Define hydropathy classes #' suppressPackageStartupMessages(library(alakazam)) #' hydropathy <- list(hydrophobic=c("A", "I", "L", "M", "F", "W", "V"), #' hydrophilic=c("R", "N", "D", "C", "Q", "E", "K"), #' neutral=c("G", "H", "P", "S", "T", "Y")) #' chars <- unlist(hydropathy, use.names=FALSE) #' classes <- setNames(translateStrings(chars, hydropathy), chars) #' #' # Create hydropathy mutation definition #' md <- createMutationDefinition("Hydropathy", classes) #' #' @export createMutationDefinition <- function(name, classes, description="", citation="") { # Build the codon table codonTable <- computeCodonTable(aminoAcidClasses=classes) # Define MutationDefinition object md <- new("MutationDefinition", name=name, description=description, classes=classes, codonTable=codonTable, citation=citation) return(md) } #### Data #### #' Amino acid mutation definitions #' #' Definitions of replacement (R) and silent (S) mutations for different amino acid #' physicochemical classes. #' #' @format A \link{MutationDefinition} object defining: #' \itemize{ #' \item \code{CHARGE_MUTATIONS}: Amino acid mutations are defined by changes #' in side chain charge class. #' \item \code{HYDROPATHY_MUTATIONS}: Amino acid mutations are defined by changes #' in side chain hydrophobicity class. #' \item \code{POLARITY_MUTATIONS}: Amino acid mutations are defined by changes #' in side chain polarity class. #' \item \code{VOLUME_MUTATIONS}: Amino acid mutations are defined by changes #' in side chain volume class. #' } #' #' @references #' \enumerate{ #' \item \url{https://www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/IMGTclasses.html} #' } #' #' @name MUTATION_SCHEMES NULL #' @name CHARGE_MUTATIONS #' @rdname MUTATION_SCHEMES NULL #' @name HYDROPATHY_MUTATIONS #' @rdname MUTATION_SCHEMES NULL #' @name POLARITY_MUTATIONS #' @rdname MUTATION_SCHEMES NULL #' @name VOLUME_MUTATIONS #' @rdname MUTATION_SCHEMES NULL shazam/R/RegionDefinitions.R0000644000176200001440000002176414652721545015525 0ustar liggesusers# Class definitions for sequence regions #' @include Shazam.R #' @include Core.R NULL #### Constants #### # Region color palette REGION_PALETTE <- c("cdr"="#377eb8", "fwr"="#e41a1c", "cdr1"="#ff7f00", "cdr2"="#a65628", "cdr3"="#a62828", "fwr1"="#4daf4a", "fwr2"="#984ea3", "fwr3"="#e41a1c", "fwr4"="#908cff") #### Classes #### #' S4 class defining a region definition #' #' \code{RegionDefinition} defines a common data structure for defining the region #' boundaries of an Ig sequence. #' #' @slot name name of the RegionDefinition. #' @slot description description of the model and its source. #' @slot boundaries \code{factor} defining the region boundaries of the #' sequence. The levels and values of \code{boundaries} #' determine the number of regions. #' @slot seqLength length of the sequence. #' @slot regions levels of the boundaries; e.g, \code{c("cdr", "fwr")}. #' @slot labels labels for the boundary and mutations combinations; #' e.g., \code{c("cdr_r", "cdr_s", "fwr_r", "fwr_s")}. #' @slot citation publication source. #' #' @seealso #' See \link{IMGT_SCHEMES} for a set of predefined \code{RegionDefinition} objects. #' #' @name RegionDefinition-class #' @rdname RegionDefinition-class #' @aliases RegionDefinition #' @exportClass RegionDefinition setClass("RegionDefinition", slots=c(name="character", description="character", boundaries="factor", seqLength="numeric", regions="character", labels="character", citation="character"), prototype=list(name="IMGT_V", description="IMGT_Numbering scheme defining the V gene up to, but not including, CDR3.", boundaries=factor(c(rep("fwr", 78), rep("cdr", 36), rep("fwr", 51), rep("cdr", 30), rep("fwr", 117)), levels=c("cdr","fwr")), seqLength=312, regions=c("cdr", "fwr"), labels=c("cdr_r", "cdr_s", "fwr_r", "fwr_s"), citation="Lefranc MP et al. (2003)")) #### RegionDefinition building functions ##### #' Creates a RegionDefinition #' #' \code{createRegionDefinition} creates a \code{RegionDefinition}. #' #' @param name name of the region definition. #' @param boundaries \code{factor} defining the region boundaries of the sequence. #' The levels and values of \code{boundaries} determine the #' number of regions (e.g. CDR and FWR). #' @param description description of the region definition and its source data. #' @param citation publication source. #' #' @return A \code{RegionDefinition} object. #' #' @seealso See \link{RegionDefinition} for the return object. #' #' @examples #' # Creates an empty RegionDefinition object #' createRegionDefinition() #' #' @export createRegionDefinition <- function(name="", boundaries=factor(), description="", citation="") { #Extract information from 'boundaries' # Determine the number of levels (e.g. cdr, fwr) regions <- levels(boundaries) # Determine the length of the boundaries seqLength <- length(boundaries) # Determine the combinations of levels_regionDefinition and R/S # e.g. cdr_r, cdr_s, fwr_r, fwr_s labels <- paste(rep(regions, each=2), rep(c("r", "s"), length(regions)), sep="_") # Define RegionDefinition object regionDefinition <- new("RegionDefinition", name=name, description=description, boundaries=boundaries, seqLength=seqLength, regions=regions, labels=labels, citation=citation) return(regionDefinition) } # Create an empty RegionDefinition object # # \code{makeNullRegionDefinition} takes an array of observed mutations # and makes an empty RegionDefinition object. # # @param regionLength Length of the empty # # @return A \code{RegionDefinition} object makeNullRegionDefinition <- function(regionLength) { rd <- createRegionDefinition(name="", boundaries=factor(c(rep("seq", regionLength)), levels = c("seq")), description="", citation="") return(rd) } #### Data #### #' IMGT unique numbering schemes #' #' Sequence region definitions according to the IMGT unique numbering scheme. #' #' @format A \link{RegionDefinition} object defining: #' \itemize{ #' \item \code{IMGT_V}: The IMGT numbered V segment up to position nucleotide 312. #' This definition combines the CDR1 and CDR2 into a single CDR region, #' and FWR1, FWR2 and FWR3 into a single FWR region. CDR3 and FWR4 are #' excluded as they are downstream of nucleotide 312. #' \item \code{IMGT_V_BY_CODONS}: The IMGT numbered V segment up to position nucleotide 312. #' This definition treats each codon, from codon 1 to codon 104, as a #' distinct region. #' \item \code{IMGT_V_BY_REGIONS}: The IMGT numbered V segment up to position nucleotide 312. #' This defines separate regions for each of CDR1, CDR2, #' FWR1, FWR2 and FWR3. CDR3 and FWR4 are #' excluded as they are downstream of nucleotide 312. #' \item \code{IMGT_V_BY_SEGMENTS}: The IMGT numbered V segment up to position nucleotide 312. #' This definition has no subdivisions and treats the entire V segment #' as a single region. #' \item \code{IMGT_VDJ}: IMGT numbered regions for CDR1-3 and FWR1-4 with combined CDR and FWR #' definitions spanning CDR1-3 and FWR1-4, respectively. #' Note, unless the definition object has been updated using \link{setRegionBoundaries} #' this schema will have a value of \code{0} for the \code{seqLength} slot and #' the \code{boundaries} slot will be empty. This is because #' these slots depend on the junction length which is unknown in the template #' scheme. After \link{setRegionBoundaries} has been run, these slots will be populated #' with the appropriate values for the specified sequence and junction length. #' \item \code{IMGT_VDJ_BY_REGIONS}: The IMGT numbered regions for FWR1-4 and CDR1-3 with separate region boundaries #' for each of CDR1, CDR2, CDR3, FWR1, FWR2, FWR3 and FWR4. #' Note, unless the definition object has been updated using \link{setRegionBoundaries} #' this schema will have a value of \code{0} for the \code{seqLength} slot and #' the \code{boundaries} slot will be empty. This is because #' these slots depend on the junction length which is unknown in the template #' scheme. After \link{setRegionBoundaries} has been run, these slots will be populated #' with the appropriate values for the specified sequence and junction length. #' } #' #' @references #' \enumerate{ #' \item Lefranc MP, et al. IMGT unique numbering for immunoglobulin and T cell #' receptor variable domains and Ig superfamily V-like domains. #' Developmental and comparative immunology. 2003 27:55-77. #' } #' #' @name IMGT_SCHEMES NULL #' @name IMGT_V #' @rdname IMGT_SCHEMES NULL #' @name IMGT_V_BY_CODONS #' @rdname IMGT_SCHEMES NULL #' @name IMGT_V_BY_REGIONS #' @rdname IMGT_SCHEMES NULL #' @name IMGT_V_BY_SEGMENTS #' @rdname IMGT_SCHEMES NULL #' @name IMGT_VDJ_BY_REGIONS #' @rdname IMGT_SCHEMES NULL #' @name IMGT_VDJ #' @rdname IMGT_SCHEMES NULL shazam/R/MutationProfiling.R0000644000176200001440000056110215120506070015534 0ustar liggesusers# Mutation profiling #' @include Shazam.R #' @include Core.R NULL #### Clonal consensus building functions #### #' Constructs effective clonal sequences for all clones #' #' \code{collapseClones} creates effective input and germline sequences for each clonal #' group and appends columns containing the consensus sequences to the input #' \code{data.frame}. #' #' @param db \code{data.frame} containing sequence data. Required. #' @param cloneColumn \code{character} name of the column containing clonal #' identifiers. Required. #' @param sequenceColumn \code{character} name of the column containing input #' sequences. Required. The length of each input sequence should #' match that of its corresponding germline sequence. #' @param germlineColumn \code{character} name of the column containing germline #' sequences. Required. The length of each germline sequence #' should match that of its corresponding input sequence. #' @param muFreqColumn \code{character} name of the column containing mutation #' frequency. Optional. Applicable to the \code{"mostMutated"} #' and \code{"leastMutated"} methods. If not supplied, mutation #' frequency is computed by calling \code{observedMutations}. #' Default is \code{NULL}. See Cautions for note on usage. #' @param regionDefinition \link{RegionDefinition} object defining the regions #' and boundaries of the Ig sequences. Optional. Default is #' \code{NULL}. #' @param method method for calculating input consensus sequence. Required. #' One of \code{"thresholdedFreq"}, \code{"mostCommon"}, #' \code{"catchAll"}, \code{"mostMutated"}, or #' \code{"leastMutated"}. See "Methods" for details. #' @param minimumFrequency frequency threshold for calculating input consensus sequence. #' Applicable to and required for the \code{"thresholdedFreq"} #' method. A canonical choice is 0.6. Default is \code{NULL}. #' @param includeAmbiguous whether to use ambiguous characters to represent positions #' at which there are multiple characters with frequencies that #' are at least \code{minimumFrequency} or that are maximal #' (i.e. ties). Applicable to and required for the #' \code{"thresholdedFreq"} and \code{"mostCommon"} methods. #' Default is \code{FALSE}. See "Choosing ambiguous characters" #' for rules on choosing ambiguous characters. #' @param breakTiesStochastic In case of ties, whether to randomly pick a sequence from #' sequences that fulfill the criteria as consensus. Applicable #' to and required for all methods except for \code{"catchAll"}. #' Default is \code{FALSE}. See "Methods" for details. #' @param breakTiesByColumns A list of the form #' \code{list(c(col_1, col_2, ...), c(fun_1, fun_2, ...))}, #' where \code{col_i} is a \code{character} name of a column #' in \code{db}, and \code{fun_i} is a function to be applied #' on that column. Currently, only \code{max} and \code{min} #' are supported. Note that the two \code{c()}'s in \code{list()} #' are essential (i.e. if there is only 1 column, the list should #' be of the form \code{list(c(col_1), c(func_1))}. Applicable #' to and optional for the \code{"mostMutated"} and #' \code{"leastMutated"} methods. If supplied, \code{fun_i}'s #' are applied on \code{col_i}'s to help break ties. Default #' is \code{NULL}. See "Methods" for details. #' @param expandedDb \code{logical} indicating whether or not to return the #' expanded \code{db}, containing all the sequences (as opposed #' to returning just one sequence per clone). #' @param nproc Number of cores to distribute the operation over. If the #' \code{cluster} has already been set earlier, then pass the #' \code{cluster}. This will ensure that it is not reset. #' @param juncLengthColumn \code{character} name of the column containing the junction length. #' Needed when \code{regionDefinition} includes CDR3 and FWR4. #' @param fields additional fields used for grouping. Use sample_id, to #' avoid combining sequences with the same clone_id #' that belong to different sample_id. #' #' @return A modified \code{db} with the following additional columns: #' \itemize{ #' \item \code{clonal_sequence}: effective sequence for the clone. #' \item \code{clonal_germline}: germline sequence for the clone. #' \item \code{clonal_sequence_mufreq}: mutation frequency of #' \code{clonal_sequence}; only added for the \code{"mostMutated"} #' and \code{"leastMutated"} methods. #' } #' #' \code{clonal_sequence} is generated with the method of choice indicated #' by \code{method}, and \code{clonal_germline} is generated with the #' \code{"mostCommon"} method, along with, where applicable, user-defined #' parameters such as \code{minimumFrequency}, \code{includeAmbiguous}, #' \code{breakTiesStochastic}, and \code{breakTiesByColumns}. #' #' #' @section Consensus lengths: For each clone, \code{clonal_sequence} and #' \code{clonal_germline} have the same length. #' #' \itemize{ #' \item For the \code{"thresholdedFreq"}, \code{"mostCommon"}, and #' \code{"catchAll"} methods: #' #' The length of the consensus sequences is determined by the longest possible #' consensus sequence (based on \code{inputSeq} and \code{germlineSeq}) and #' \code{regionDefinition@seqLength} (if supplied), whichever is shorter. #' #' Given a set of sequences of potentially varying lengths, the longest possible #' length of their consensus sequence is taken to be the longest length along #' which there is information contained at every nucleotide position across #' majority of the sequences. Majority is defined to be greater than #' \code{floor(n/2)}, where \code{n} is the number of sequences. If the longest #' possible consensus length is 0, there will be a warning and an empty string #' (\code{""}) will be returned. #' #' If a length limit is defined by supplying a \code{regionDefinition} via #' \code{regionDefinition@seqLength}, the consensus length will be further #' restricted to the shorter of the longest possible length and #' \code{regionDefinition@seqLength}. #' #' \item For the \code{"mostMutated"} and \code{"leastMutated"} methods: #' #' The length of the consensus sequences depends on that of the most/least #' mutated input sequence, and, if supplied, the length limit defined by #' \code{regionDefinition@seqLength}, whichever is shorter. If the germline #' consensus computed using the \code{"mostCommon"} method is longer than #' the most/least mutated input sequence, the germline consensus is trimmed #' to be of the same length as the input consensus. #' #' } #' #' @section Methods: The descriptions below use "sequences" as a generalization of input #' sequences and germline sequences. #' #' \itemize{ #' #' \item \code{method="thresholdedFreq"} #' #' A threshold must be supplied to the argument \code{minimumFrequency}. At #' each position along the length of the consensus sequence, the frequency #' of each nucleotide/character across sequences is tabulated. The #' nucleotide/character whose frequency is at least (i.e. \code{>=}) #' \code{minimumFrequency} becomes the consensus; if there is none, the #' consensus nucleotide will be \code{"N"}. #' #' When there are ties (frequencies of multiple nucleotides/characters #' are at least \code{minimumFrequency}), this method can be deterministic #' or stochastic, depending on additional parameters. #' #' \itemize{ #' \item With \code{includeAmbiguous=TRUE}, ties are resolved #' deterministically by representing ties using ambiguous #' characters. See "Choosing ambiguous characters" for how #' ambiguous characters are chosen. #' \item With \code{breakTiesStochastic=TRUE}, ties are resolved #' stochastically by randomly picking a character among the #' ties. #' \item When both \code{TRUE}, \code{includeAmbiguous} takes #' precedence over \code{breakTiesStochastic}. #' \item When both \code{FALSE}, the first character from the ties is #' taken to be the consensus following the order of \code{"A"}, #' \code{"T"}, \code{"G"}, \code{"C"}, \code{"N"}, \code{"."}, #' and \code{"-"}. #' } #' #' Below are some examples looking at a single position based on 5 #' sequences with \code{minimumFrequency=0.6}, #' \code{includeAmbiguous=FALSE}, and \code{breakTiesStochastic=FALSE}: #' #' \itemize{ #' \item If the sequences have \code{"A"}, \code{"A"}, \code{"A"}, #' \code{"T"}, \code{"C"}, the consensus will be \code{"A"}, #' because \code{"A"} has frequency 0.6, which is at least #' \code{minimumFrequency}. #' \item If the sequences have \code{"A"}, \code{"A"}, \code{"T"}, #' \code{"T"}, \code{"C"}, the consensus will be \code{"N"}, #' because none of \code{"A"}, \code{"T"}, or \code{"C"} has #' frequency that is at least \code{minimumFrequency}. #' } #' #' \item \code{method="mostCommon"} #' #' The most frequent nucleotide/character across sequences at each #' position along the length of the consensus sequence makes up the consensus. #' #' When there are ties (multiple nucleotides/characters with equally #' maximal frequencies), this method can be deterministic or stochastic, #' depending on additional parameters. The same rules for breaking ties #' for \code{method="thresholdedFreq"} apply. #' #' Below are some examples looking at a single position based on 5 #' sequences with \code{includeAmbiguous=FALSE}, and #' \code{breakTiesStochastic=FALSE}: #' #' \itemize{ #' \item If the sequences have \code{"A"}, \code{"A"}, \code{"T"}, #' \code{"A"}, \code{"C"}, the consensus will be \code{"A"}. #' \item If the sequences have \code{"T"}, \code{"T"}, \code{"C"}, #' \code{"C"}, \code{"G"}, the consensus will be \code{"T"}, #' because \code{"T"} is before \code{"C"} in the order of #' \code{"A"}, \code{"T"}, \code{"G"}, \code{"C"}, \code{"N"}, #' \code{"."}, and \code{"-"}. #' } #' #' #' \item \code{method="catchAll"} #' #' This method returns a consensus sequence capturing most of the #' information contained in the sequences. Ambiguous characters are #' used where applicable. See "Choosing ambiguous characters" for how #' ambiguous characters are chosen. This method is deterministic and #' does not involve breaking ties. #' #' Below are some examples for \code{method="catchAll"} looking at a #' single position based on 5 sequences: #' #' \itemize{ #' \item If the sequences have \code{"N"}, \code{"N"}, \code{"N"}, #' \code{"N"}, \code{"N"}, the consensus will be \code{"N"}. #' \item If the sequences have \code{"N"}, \code{"A"}, \code{"A"}, #' \code{"A"}, \code{"A"}, the consensus will be \code{"A"}. #' \item If the sequences have \code{"N"}, \code{"A"}, \code{"G"}, #' \code{"A"}, \code{"A"}, the consensus will be \code{"R"}. #' \item If the sequences have \code{"-"}, \code{"-"}, \code{"."}, #' \code{"."}, \code{"."}, the consensus will be \code{"-"}. #' \item If the sequences have \code{"-"}, \code{"-"}, \code{"-"}, #' \code{"-"}, \code{"-"}, the consensus will be \code{"-"}. #' \item If the sequences have \code{"."}, \code{"."}, \code{"."}, #' \code{"."}, \code{"."}, the consensus will be \code{"."}. #' } #' #' \item \code{method="mostMutated"} and \code{method="leastMutated"} #' #' These methods return the most/least mutated sequence as the consensus #' sequence. #' #' When there are ties (multiple sequences have the maximal/minimal mutation #' frequency), this method can be deterministic or stochastic, depending on #' additional parameters. #' #' \itemize{ #' \item With \code{breakTiesStochastic=TRUE}, ties are resolved #' stochastically by randomly picking a sequence out of #' sequences with the maximal/minimal mutation frequency. #' \item When \code{breakTiesByColumns} is supplied, ties are resolved #' deterministically. Column by column, a function is applied on #' the column and sequences with column value matching the #' functional value are retained, until ties are resolved or #' columns run out. In the latter case, the first remaining #' sequence is taken as the consensus. #' \item When \code{breakTiesStochastic=TRUE} and #' \code{breakTiesByColumns} is also supplied, #' \code{breakTiesStochastic} takes precedence over #' \code{breakTiesByColumns}. #' \item When \code{breakTiesStochastic=FALSE} and #' \code{breakTiesByColumns} is not supplied (i.e. \code{NULL}), #' the sequence that appears first among the ties is taken #' as the consensus. #' } #' #' } #' #' #' @section Choosing ambiguous characters: #' #' Ambiguous characters may be present in the returned consensuses when using the #' \code{"catchAll"} method and when using the \code{"thresholdedFreq"} or #' \code{"mostCommon"} methods with \code{includeAmbiguous=TRUE}. #' #' The rules on choosing ambiguous characters are as follows: #' #' \itemize{ #' \item If a position contains only \code{"N"} across sequences, the consensus #' at that position is \code{"N"}. #' \item If a position contains one or more of \code{"A"}, \code{"T"}, #' \code{"G"}, or \code{"C"}, the consensus will be an IUPAC character #' representing all of the characters present, regardless of whether #' \code{"N"}, \code{"-"}, or \code{"."} is present. #' \item If a position contains only \code{"-"} and \code{"."} across sequences, #' the consensus at that position is taken to be \code{"-"}. #' \item If a position contains only one of \code{"-"} or \code{"."} across #' sequences, the consensus at that position is taken to be the character #' present. #' } #' #' @section Cautions: #' #' \itemize{ #' \item Note that this function does not perform multiple sequence alignment. #' As a prerequisite, it is assumed that the sequences in #' \code{sequenceColumn} and \code{germlineColumn} have been aligned #' somehow. In the case of immunoglobulin repertoire analysis, this #' usually means that the sequences are IMGT-gapped. #' \item When using the \code{"mostMutated"} and \code{"leastMutated"} methods, #' if you supply both \code{muFreqColumn} and \code{regionDefinition}, #' it is your responsibility to ensure that the mutation frequency in #' \code{muFreqColumn} was calculated with sequence lengths restricted #' to the \strong{same} \code{regionDefinition} you are supplying. #' Otherwise, the "most/least mutated" sequence you obtain might not #' be the most/least mutated given the \code{regionDefinition} supplied, #' because your mutation frequency was based on a #' \code{regionDefinition} different from the one supplied. #' \item If you intend to run \code{collapseClones} before #' building a 5-mer targeting model, you \strong{must} choose #' parameters such that your collapsed clonal consensuses do #' \strong{not} include ambiguous characters. This is because the #' targeting model functions do NOT support ambiguous characters #' in their inputs. #' } #' #' @seealso #' See \link{IMGT_SCHEMES} for a set of predefined \link{RegionDefinition} objects. #' #' @examples #' # Subset example data #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call %in% c("IGHA", "IGHG") & sample_id == "+7d" & #' clone_id %in% c("3100", "3141", "3184")) #' #' # thresholdedFreq method, resolving ties deterministically without using ambiguous characters #' clones <- collapseClones(db, cloneColumn="clone_id", sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' method="thresholdedFreq", minimumFrequency=0.6, #' includeAmbiguous=FALSE, breakTiesStochastic=FALSE) #' #' # mostCommon method, resolving ties deterministically using ambiguous characters #' clones <- collapseClones(db, cloneColumn="clone_id", sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' method="mostCommon", #' includeAmbiguous=TRUE, breakTiesStochastic=FALSE) #' #' # Make a copy of db that has a mutation frequency column #' db2 <- observedMutations(db, frequency=TRUE, combine=TRUE) #' #' # mostMutated method, resolving ties stochastically #' clones <- collapseClones(db2, cloneColumn="clone_id", sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' method="mostMutated", muFreqColumn="mu_freq", #' breakTiesStochastic=TRUE, breakTiesByColumns=NULL) #' #' # mostMutated method, resolving ties deterministically using additional columns #' clones <- collapseClones(db2, cloneColumn="clone_id", sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' method="mostMutated", muFreqColumn="mu_freq", #' breakTiesStochastic=FALSE, #' breakTiesByColumns=list(c("duplicate_count"), c(max))) #' #' # Build consensus for V segment only #' # Capture all nucleotide variations using ambiguous characters #' clones <- collapseClones(db, cloneColumn="clone_id", sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' method="catchAll", regionDefinition=IMGT_V) #' #' # Return the same number of rows as the input #' clones <- collapseClones(db, cloneColumn="clone_id", sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' method="mostCommon", expandedDb=TRUE) #' #' @export collapseClones <- function(db, cloneColumn = "clone_id", sequenceColumn = "sequence_alignment", germlineColumn = "germline_alignment_d_mask", muFreqColumn = NULL, regionDefinition=NULL, method = c("mostCommon","thresholdedFreq","catchAll","mostMutated","leastMutated"), minimumFrequency = NULL, includeAmbiguous = FALSE, breakTiesStochastic = FALSE, breakTiesByColumns = NULL, expandedDb = FALSE, nproc = 1, juncLengthColumn="junction_length", fields=NULL) { # Hack for visibility of foreach index variables idx <- NULL ## DEBUG # cloneColumn="CLONE"; sequenceColumn="sequence_alignment"; germlineColumn="germline_alignment_d_mask" # expandedDb=FALSE; regionDefinition=NULL; method="mostCommon"; nproc=1 #### parameter checks method <- match.arg(method) # check minimumFrequency for thresholdedFreq method if (method=="thresholdedFreq") { if (!is.numeric(minimumFrequency)) { stop("minimumFrequency must be a numeric value.") } else { if ( minimumFrequency<0 | minimumFrequency>1 ) { stop("minimumFrequency must be between 0 and 1.") } } } # check includeAmbiguous & breakTiesStochastic for methods other than catchAll if (method %in% c("thresholdedFreq", "mostCommon", "mostMutated", "leastMutated")) { if (!is(includeAmbiguous, "logical")) { stop ("includeAmbiguous must be TRUE or FALSE.") } if (!is(breakTiesStochastic, "logical")) { stop ("breakTiesStochastic must be TRUE or FALSE.") } } # check breakTiesByColumns and muFreqColumn for methods most/leastMutated if (method %in% c("mostMutated", "leastMutated")) { if (!is.null(breakTiesByColumns)) { if (!is(breakTiesByColumns, "list")) { stop ("breakTiesByColumns must be a list.") } if (length(breakTiesByColumns) != 2) { stop ("breakTiesByColumns must be a nested list of length 2.") } if (length(breakTiesByColumns[[1]]) != length(breakTiesByColumns[[2]])) { stop ("Nested vectors in breakTiesByColumns must have the same lengths.") } if (!all(is.character(breakTiesByColumns[[1]]))) { stop ("The first vector in breakTiesByColumns must contain column names.") } if (!all( unlist( lapply(breakTiesByColumns[[2]], is.function)))) { stop ("The second vector in breakTiesByColumns must contain functions.") } if (!all(breakTiesByColumns[[1]] %in% colnames(db))) { stop ("All column named included in breakTiesByColumns must be present in db.") } } if ( (!is.null(muFreqColumn)) && (!muFreqColumn %in% colnames(db)) ) { stop ("If specified, muFreqColumn must be a column present in db.") } } # check mutual exclusivity if (method %in% c("thresholdedFreq", "mostCommon")){ if (includeAmbiguous & breakTiesStochastic) { message("includeAmbiguous and breakTiesStochastic are mutually exclusive. When both TRUE, includeAmbiguous will take precedence.") } #if ( (!includeAmbiguous) & (!breakTiesStochastic) ) { # message("When both includeAmbiguous and breakTiesStochastic are FALSE, ties are broken in the order of 'A', 'T', 'G', 'C', 'N', '.', and '-'.") #} if (!is.null(breakTiesByColumns)) { message("breakTiesByColumns is ignored when method is thresholdedFreq or mostCommon.") } } if (method %in% c("mostMutated", "leastMutated")){ if (breakTiesStochastic & !is.null(breakTiesByColumns)) { message("breakTiesStochastic and breakTiesByColumns are mutually exclusive. When both set, breakTiesStochastic will take precedence.") } #if ( (!breakTiesStochastic) & is.null(breakTiesByColumns) ) { # message("When breakTiesStochastic is FALSE and breakTiesByColumns is NULL, ties are broken by taking the sequence that appears earlier in the data.frame.") #} if (includeAmbiguous) { message("includeAmbiguous is ignored when method is mostMutated or leastMutated.") } } # Check for valid columns check <- checkColumns(db, c(cloneColumn, sequenceColumn, germlineColumn, fields)) if (check != TRUE) { stop(check) } # Check for NAs na_rows <- which(is.na(db[,c(cloneColumn, sequenceColumn, germlineColumn)] ), arr.ind=T) if (nrow(na_rows)>0) { na_cols <- c(cloneColumn, sequenceColumn, germlineColumn)[unique(na_rows[,2])] stop("NA values found in column(s): ", paste(na_cols, collapse=", "),". ",length(unique(na_rows[,1])), " sequence(s) affected.") } # Check region definition if (!is.null(regionDefinition) & !is(regionDefinition, "RegionDefinition")) { stop(deparse(substitute(regionDefinition)), " is not a valid RegionDefinition object") } ### Convert sequence columns to uppercase db <- toupperColumns(db, c(sequenceColumn, germlineColumn)) # If the user has previously set the cluster and does not wish to reset it if(!is.numeric(nproc)){ cluster <- nproc nproc <- 0 } if (!is(expandedDb, "logical")) { stop ("expandedDb must be TRUE or FALSE.") } # Convert clone identifiers to strings db[[cloneColumn]] <- as.character(db[[cloneColumn]]) db$tmp_colclones_row_id <- 1:nrow(db) # use `fields` information to id clones db$fields_clone_id <- db %>% group_by(!!!rlang::syms(c(fields, cloneColumn))) %>% dplyr::group_indices() db$fields_clone_id <- as.character(db$fields_clone_id) # get row indices in db for each unique clone uniqueClones <- unique(db[["fields_clone_id"]]) # crucial to have simplify=FALSE (otherwise won't return a list if uniqueClones has length 1) uniqueClonesIdx <- sapply(uniqueClones, function(i){which(db[["fields_clone_id"]]==i)}, simplify=FALSE) regionDefinitionName <- "" if (!is.null(regionDefinition)) { regionDefinitionName <- regionDefinition@name } # if method is most/leastMutated and muFreqColumn not specified, # first calculate mutation frequency ($mu_freq) # IMPORTANT: do this OUTSIDE foreach loop for calcClonalConsensus # otherwise will get an error saying muFreqColumn not found in db # (something to do with parallelization/foreach) if ( (method %in% c("mostMutated", "leastMutated")) & is.null(muFreqColumn) ) { message("Calculating observed mutation frequency...") db <- observedMutations(db=db, sequenceColumn=sequenceColumn, germlineColumn=germlineColumn, regionDefinition=regionDefinition, frequency=TRUE, combine=TRUE, cloneColumn = "fields_clone_id", mutationDefinition=NULL, nproc=nproc) muFreqColumn <- "mu_freq" } # Ensure that the nproc does not exceed the number of cores/CPUs available nproc <- min(nproc, cpuCount()) # If user wants to parallelize this function and specifies nproc > 1, then # initialize and register slave R processes/clusters & # export all necessary environment variables, functions and packages. if (nproc == 1) { # If needed to run on a single core/cpu then, register DoSEQ # (needed for 'foreach' in non-parallel mode) registerDoSEQ() } else { if (nproc != 0) { #cluster <- makeCluster(nproc, type="SOCK") cluster <- parallel::makeCluster(nproc, type= "PSOCK") } parallel::clusterExport(cluster, list('db', 'sequenceColumn', 'germlineColumn', 'muFreqColumn','juncLengthColumn', 'regionDefinition', 'regionDefinitionName', 'method', 'minimumFrequency','includeAmbiguous', 'breakTiesStochastic', 'breakTiesByColumns', 'calcClonalConsensus', 'consensusSequence', 'breakTiesHelper', 'chars2Ambiguous', 'nucs2IUPAC', 'IUPAC_DNA_2', 'NUCLEOTIDES_AMBIGUOUS', 'uniqueClonesIdx', 'c2s', 's2c','getCloneRegion'), envir=environment() ) registerDoParallel(cluster,cores=nproc) } # Printing status to console #cat("Collapsing clonal sequences...\n") # avoid .combine="cbind"! # if there is only 1 unique clone, .combine="cbind" will result in a vector (as opposed to # a matrix) being returned, which will subsequently result a failure in # cons_db$clonal_sequence <- cons_mat[, 1] cons_mat <- foreach(idx=1:length(uniqueClonesIdx), .verbose=FALSE, .errorhandling='stop') %dopar% { cloneIdx <- uniqueClonesIdx[[idx]] cloneDb <- db[cloneIdx, ] clone_num <- unique(cloneDb[['fields_clone_id']]) # Verify the assumption that all sequences in the clone have the same # junction length. if (length(unique(cloneDb[[juncLengthColumn]])) > 1 ) { stop("Expecting all sequences in the same clone with the same junction length.") } cloneRegionDefinition <- regionDefinition if (regionDefinitionName %in% c("IMGT_VDJ_BY_REGIONS","IMGT_VDJ")) { cloneRegionDefinition <- getCloneRegion(clone_num=clone_num, db=cloneDb, seq_col=sequenceColumn, juncLengthColumn=juncLengthColumn, clone_col='fields_clone_id', regionDefinition=regionDefinition) } # collapse clone calcClonalConsensus(db=cloneDb, sequenceColumn=sequenceColumn, germlineColumn=germlineColumn, muFreqColumn=muFreqColumn, regionDefinition=cloneRegionDefinition, method=method, minimumFrequency=minimumFrequency, includeAmbiguous=includeAmbiguous, breakTiesStochastic=breakTiesStochastic, breakTiesByColumns=breakTiesByColumns) } # using cbind below will give a matrix with columns being clones # use rbind to have rows be clones # cols: inputCons, germlineCons, inputMuFreq cons_mat <- do.call(rbind, cons_mat) # Stop cluster if(nproc > 1) { parallel::stopCluster(cluster) } # Build return data.frame if (expandedDb) { # Fill all rows with the consensus sequence clone_index <- match(db[["fields_clone_id"]], uniqueClones) cons_db <- db cons_db$clonal_sequence <- unname(unlist(cons_mat[, 1])[clone_index]) cons_db$clonal_germline <- unname(unlist(cons_mat[, 2])[clone_index]) # assign mutation frequency corresponding to consensus into clonal_sequence_mufreq if (method %in% c("mostMutated", "leastMutated")) { cons_db$clonal_sequence_mufreq <- unname(unlist(cons_mat[, 3])[clone_index]) } } else { # Return only the first row of each clone clone_index <- match(uniqueClones, db[["fields_clone_id"]]) cons_db <- db[clone_index, ] cons_db$clonal_sequence <- unname(unlist(cons_mat[, 1])) cons_db$clonal_germline <- unname(unlist(cons_mat[, 2])) # assign mutation frequency corresponding to consensus into clonal_sequence_mufreq if (method %in% c("mostMutated", "leastMutated")) { cons_db$clonal_sequence_mufreq <- unname(unlist(cons_mat[, 3])) } } cons_db %>% arrange(!!rlang::sym("tmp_colclones_row_id")) %>% select(-!!rlang::sym("tmp_colclones_row_id"), -!!rlang::sym("fields_clone_id")) } # Break ties given additional columns in db and functions to compute on them # # @param idx vector of indices. # @param cols character vector of colnames. Currently, only columns containing # numeric values are supported/expected. # @param funs list of functions. Currently, only \code{max} and \code{min} are # supported/expected. # @param db \code{data.frame} containing columns named after \code{cols} with # corresponding rows for \code{idx}. # # @return a single value from \code{idx}. # # @details Column by column, \code{breakTiesHelper} calls the corresponding function # from \code{funs} on a column in \code{db} and finds the index/indices in # \code{idx} that match(es) the returned value from the function. This stops # when only a single matching index is obtained, or columns run out. In the # latter case, the first remaining index is returned. # # testing # expect index 18 # test.idx = c(2,4,18,37,102,76) # test.db = data.frame(cbind(DUPCOUNT= c(3,5,5,4,5,1), # CONSCOUNT=c(6,6,6,2,3,4), # ERR=c(0.9, 0.14, 0.12, 0.07, 0.3, 0.5))) # test.cols = c("DUPCOUNT", "CONSCOUNT", "ERR") # test.funs = c(max, max, min) # stopifnot( breakTiesHelper(test.idx, test.cols, test.funs, test.db)==18 ) # # make index 4 and 18 tie for ERR # # index 4 is expected because it appears before 18 # test.db[3,"ERR"] = 0.14 # stopifnot( breakTiesHelper(test.idx, test.cols, test.funs, test.db)==4 ) # breakTiesHelper <- function(idx, cols, funs, db) { # debug # idx=test.idx; cols=test.cols; funs=test.funs; db=test.db counter <- 1 while (length(idx)>1 & counter<=length(cols)) { cur.col <- cols[counter] cur.fun <- funs[[counter]] cur.db <- db[[cur.col]] target <- cur.fun(cur.db) tol <- 1e-5 # tolerance target.idx <- which( abs(cur.db-target)<=tol ) # wrt idx & db idx <- idx[target.idx] db <- db[target.idx, ] counter <- counter+1 } if (length(idx)==1) { return(idx) } else if (length(idx)>1) { #print("Failed to resolve ties.") # for testing/debugging return(idx[1]) } else { stop("breakTieHelper failed unexpectedly.") } } #' Construct a consensus sequence #' #' @param sequences character vector of sequences. #' @param db \code{data.frame} containing sequence data for a single clone. #' Applicable to and required for the \code{"mostMutated"} and #' \code{"leastMutated"} methods. Default is \code{NULL}. #' @param method method to calculate consensus sequence. One of #' \code{"thresholdedFreq"}, \code{"mostCommon"}, \code{"catchAll"}, #' \code{"mostMutated"}, or \code{"leastMutated"}. See "Methods" under #' \link{collapseClones} for details. #' @param minFreq frequency threshold for calculating input consensus sequence. #' Applicable to and required for the \code{"thresholdedFreq"} method. #' A canonical choice is 0.6. Default is \code{NULL}. #' @param muFreqColumn \code{character} name of the column in db containing mutation #' frequency. Applicable to and required for the \code{"mostMutated"} #' and \code{"leastMutated"} methods. Default is \code{NULL}. #' @param lenLimit limit on consensus length. if \code{NULL} then no length limit is set. #' @param includeAmbiguous whether to use ambiguous characters to represent positions at #' which there are multiple characters with frequencies that are at least #' \code{minimumFrequency} or that are maximal (i.e. ties). Applicable to #' and required for the \code{"thresholdedFreq"} and \code{"mostCommon"} #' methods. Default is \code{FALSE}. See "Choosing ambiguous characters" #' under \link{collapseClones} for rules on choosing ambiguous characters. #' Note: this argument refers to the use of ambiguous nucleotides in the #' output consensus sequence. Ambiguous nucleotides in the input sequences #' are allowed for methods catchAll, mostMutated and leastMutated. #' @param breakTiesStochastic In case of ties, whether to randomly pick a sequence from sequences that #' fulfill the criteria as consensus. Applicable to and required for all methods #' except for \code{"catchAll"}. Default is \code{FALSE}. See "Methods" #' under \link{collapseClones} for details. #' @param breakTiesByColumns A list of the form \code{list(c(col_1, col_2, ...), c(fun_1, fun_2, ...))}, #' where \code{col_i} is a \code{character} name of a column in \code{db}, #' and \code{fun_i} is a function to be applied on that column. Currently, #' only \code{max} and \code{min} are supported. Note that the two \code{c()}'s #' in \code{list()} are essential (i.e. if there is only 1 column, the list #' should be of the form \code{list(c(col_1), c(func_1))}. Applicable to and #' optional for the \code{"mostMutated"} and \code{"leastMutated"} methods. #' If supplied, \code{fun_i}'s are applied on \code{col_i}'s to help break #' ties. Default is \code{NULL}. See "Methods" under \link{collapseClones} #' for details. #' #' @return A list containing \code{cons}, which is a character string that is the consensus sequence #' for \code{sequences}; and \code{muFreq}, which is the maximal/minimal mutation frequency of #' the consensus sequence for the \code{"mostMutated"} and \code{"leastMutated"} methods, or #' \code{NULL} for all other methods. #' #' @details See \link{collapseClones} for detailed documentation on methods and additional parameters. #' #' @examples #' # Subset example data #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call %in% c("IGHA", "IGHG") & sample_id == "+7d") #' clone <- subset(db, clone_id == "3192") #' #' # First compute mutation frequency for most/leastMutated methods #' clone <- observedMutations(clone, frequency=TRUE, combine=TRUE) #' #' # Manually create a tie #' clone <- rbind(clone, clone[which.max(clone$mu_freq), ]) #' #' # ThresholdedFreq method. #' # Resolve ties deterministically without using ambiguous characters #' cons1 <- consensusSequence(clone$sequence_alignment, #' method="thresholdedFreq", minFreq=0.3, #' includeAmbiguous=FALSE, #' breakTiesStochastic=FALSE) #' cons1$cons #' #' @export ## DEBUG # thresholdedFreq method, resolve ties deterministically using ambiguous characters # consInput2 <- consensusSequence(clone$sequence_alignment, # muFreqColumn=NULL, lenLimit=NULL, # method="thresholdedFreq", minFreq=0.3, # includeAmbiguous=TRUE, # breakTiesStochastic=FALSE, # breakTiesByColumns=NULL, db=NULL)$cons # thresholdedFreq method, resolve ties stochastically # consInput3 <- consensusSequence(clone$sequence_alignment, # muFreqColumn=NULL, lenLimit=NULL, # method="thresholdedFreq", minFreq=0.3, # includeAmbiguous=FALSE, # breakTiesStochastic=TRUE, # breakTiesByColumns=NULL, db=NULL)$cons # mostCommon method, resolve ties deterministically without using ambiguous characters # consInput4 <- consensusSequence(clone$sequence_alignment, # muFreqColumn=NULL, lenLimit=NULL, # method="mostCommon", minFreq=NULL, # includeAmbiguous=FALSE, # breakTiesStochastic=FALSE, # breakTiesByColumns=NULL, db=NULL)$cons # mostCommon method, resolve ties deterministically using ambiguous characters # consInput5 <- consensusSequence(clone$sequence_alignment, # muFreqColumn=NULL, lenLimit=NULL, # method="mostCommon", minFreq=NULL, # includeAmbiguous=TRUE, # breakTiesStochastic=FALSE, # breakTiesByColumns=NULL, db=NULL)$cons # mostCommon method, resolve ties stochastically # consInput6 <- consensusSequence(clone$sequence_alignment, # muFreqColumn=NULL, lenLimit=NULL, # method="mostCommon", minFreq=NULL, # includeAmbiguous=FALSE, # breakTiesStochastic=TRUE, # breakTiesByColumns=NULL, db=NULL)$cons # catchAll method # consInput7 <- consensusSequence(clone$sequence_alignment, # muFreqColumn=NULL, lenLimit=NULL, # method="catchAll", minFreq=NULL, # includeAmbiguous=FALSE, # breakTiesStochastic=FALSE, # breakTiesByColumns=NULL, db=NULL)$cons # mostMutated method, resolve ties stochastically # consInput8 <- consensusSequence(clone$sequence_alignment, # muFreqColumn="mu_freq", lenLimit=NULL, # method="mostMutated", minFreq=NULL, # includeAmbiguous=FALSE, # breakTiesStochastic=TRUE, # breakTiesByColumns=NULL, db=clone)$cons # mostMutated method, resolve ties deterministically using additional columns # consInput9 <- consensusSequence(clone$sequence_alignment, # muFreqColumn="mu_freq", lenLimit=NULL, # method="mostMutated", minFreq=NULL, # includeAmbiguous=FALSE, # breakTiesStochastic=FALSE, # breakTiesByColumns=list(c("junction_length","duplicate_count"), c(max, max)), # db=clone)$cons # consInput10 <- consensusSequence(clone$sequence_alignment, # muFreqColumn="mu_freq", lenLimit=NULL, # method="mostMutated", minFreq=NULL, # includeAmbiguous=FALSE, # breakTiesStochastic=FALSE, # breakTiesByColumns=list(c("duplicate_count"), c(max)), # db=clone)$cons # mostMutated method, resolve ties deterministically t using additional columns # consInput11 <- consensusSequence(clone$sequence_alignment, # muFreqColumn="mu_freq", lenLimit=NULL, # method="mostMutated", minFreq=NULL, # includeAmbiguous=FALSE, # breakTiesStochastic=FALSE, # breakTiesByColumns=NULL, db=clone)$cons consensusSequence <- function(sequences, db=NULL, method=c("mostCommon", "thresholdedFreq", "catchAll", "mostMutated", "leastMutated"), minFreq=NULL, muFreqColumn=NULL, lenLimit=NULL,includeAmbiguous=FALSE, breakTiesStochastic=FALSE, breakTiesByColumns=NULL) { # Check arguments method <- match.arg(method) # check muFreqColumn and get muFreq for most/leastMutated if (method %in% c("mostMutated", "leastMutated")) { if ( is.null(muFreqColumn) ) { stop ("muFreqColumn must be specified when method is most/leastMutated.") } if ( is.null(db) ) { stop ("db containing muFreqColumn must be supplied when method is most/leastMutated.") } if (!muFreqColumn %in% colnames(db)) { print(c("Helper", muFreqColumn)) print(c("Helper", colnames(db))) stop ("muFreqColumn must be a column present in db.") } # get muFreq muFreq <- db[[muFreqColumn]] } numSeqs <- length(sequences) ##### if only one sequence in clone, return it if (numSeqs==1) { # restrict length if there is a lenLimit if (!is.null(lenLimit)) { consensus <- substr(sequences, 1, min(lenLimit, stri_length(sequences))) } else { # otherwise, return as is consensus <- sequences } # return with mutation frequency (if applicable) if (method %in% c("mostMutated", "leastMutated")) { return(list(cons=consensus, muFreq=db[[muFreqColumn]])) } else { return(list(cons=consensus, muFreq=NULL)) } } ##### if all sequences are the same, return now if (length(unique(sequences))==1) { # restrict length if there is a lenLimit if (!is.null(lenLimit)) { consensus <- substr(sequences[1], 1, min(lenLimit, stri_length(sequences))) } else { # otherwise, return as is consensus <- sequences[1] } # return with mutation frequency (if applicable) if (method %in% c("mostMutated", "leastMutated")) { return(list(cons=consensus, muFreq=db[[muFreqColumn]][1])) } else { return(list(cons=consensus, muFreq=NULL)) } } ##### length of longest sequence in sequences lenSeqs <- stri_length(sequences) lenMax <- max(lenSeqs, na.rm=T) ##### methods = thresholdedFreq, mostCommon, catchAll if (method %in% c("thresholdedFreq", "mostCommon", "catchAll")) { ##### convert sequences to a matrix # if there's no more nucleotide when a seq ends, fill position with NA seqsMtx <- matrix(NA, nrow=numSeqs, ncol=lenMax) for (i in 1:numSeqs) { seqsMtx[i, 1:lenSeqs[i]] <- s2c(sequences[i]) } ##### tabulation matrix # col: nucleotide position # row: A,T,G,C,N,.,-,na (to distinguish from NA) if (method != "catchAll") { tabMtxRownames <- c("A","T","G","C","N",".","-","na") } else { # Allow for input ambiguous characters tabMtxRownames <- c(NUCLEOTIDES_AMBIGUOUS,"na") } tabMtx <- matrix(0, ncol=lenMax, nrow=length(tabMtxRownames), dimnames=list(tabMtxRownames, NULL)) ## across sequences, at each nuc position, how many A, T, G, C, N, ., -? # this does not capture NA # for (j in 1:ncol(seqsMtx)) { # tab <- table(seqsMtx[, j]) # r <- match(names(tab), tabMtxRownames) # if (any(is.na(r))) { # stop("Ambiguous nucleotides or unexpected characters found in `sequences`.") # } # tabMtx[r, j] <- tab # } # This is faster: if (!all(na.omit(as.vector(seqsMtx)) %in% tabMtxRownames)) { stop("Ambiguous nucleotides or unexpected characters found in `sequences`.") } tabMtx <- apply(seqsMtx, 2, function(j) { sapply(tabMtxRownames, function(nt){ sum(j == nt, na.rm=T) }) }) ## across sequences, at each nuc position, how many NAs? numNAs <- colSums(is.na(seqsMtx)) tabMtx["na", ] <- numNAs # sanity check: counts at each nuc pos (colSum) should sum up to number of sequences stopifnot( sum( colSums(tabMtx)==numSeqs ) == ncol(tabMtx) ) ##### only keep positions at which majority of sequences contain information ### if there are odd number of n sequences, keep position if it has > floor(n/2) non-NAs # e.g. 5 input sequences, >2 non-NA; 2=floor(5/2) ### if there are even number of n sequences, keep position if it has > n/2 non-NAs # e.g. 6 input sequences, >3 non-NA; 3=6/2=floor(6/2) numNonNAs <- numSeqs - numNAs nonNA.keep <- numNonNAs > floor(numSeqs/2) # length of longest possible consensus seq lenConsensus <- sum(nonNA.keep) if (lenConsensus==0) { warning("Consensus cannot be produced. Empty string returned.") return("") } ##### if there is a lenLimit, restrict consensus length to # the shorter of longest possible length and lenLimit if (!is.null(lenLimit)) { lenConsensus <- min(lenConsensus, lenLimit) } # drop=FALSE so that it works even with lenConsensus of 1 tabMtx <- tabMtx[, 1:lenConsensus, drop=FALSE] ### convert absolute count to fraction tabMtx <- tabMtx/numSeqs # remove "na" row # drop=FALSE so that it works even with lenConsensus of 1 tabMtx <- tabMtx[-which(rownames(tabMtx)=="na"), , drop=FALSE] if (method=="thresholdedFreq") { #print(method) # for testing # use as.matrix so that apply won't break with ncol(tabMtx)=1 consensus <- apply(as.matrix(tabMtx), 2, function(x){ idx <- which(x >= minFreq) # if no character >= the threshold, assign an N if (length(idx)==0) { return("N") # if there is no tie } else if (length(idx)==1){ return(names(x)[idx]) # if there are ties (multiple characters >= the threshold) } else if (length(idx)>1) { # ambiguous character allowed if (includeAmbiguous) { return(chars2Ambiguous(tabMtxRownames[idx])) # ambiguous characters not allowed } else { # stochastic if (breakTiesStochastic) { return(names(x)[sample(x=idx, size=1)]) # first one is returned # the order is built-in from tabMtxRownames } else { return(names(x)[idx[1]]) } } } }) } else if (method=="mostCommon") { #print(method) # for testing # use as.matrix so that apply won't break with ncol(tabMtx)=1 consensus <- apply(as.matrix(tabMtx), 2, function(x){ max.freq <- max(x) tol <- 1e-5 # tolerance max.idx <- which( abs(x-max.freq)<=tol ) # if there is no tie if (length(max.idx)==1){ return(names(x)[max.idx]) # if there are ties (multiple characters with maximal frequency) } else if (length(max.idx)>1) { # ambiguous character allowed if (includeAmbiguous) { return(chars2Ambiguous(tabMtxRownames[max.idx])) # ambiguous characters not allowed } else { # stochastic if (breakTiesStochastic) { return(names(x)[sample(x=max.idx, size=1)]) # first one is returned # the order is built-in from tabMtxRownames } else { return(names(x)[max.idx[1]]) } } } }) } else if (method=="catchAll") { #print(method) # for testing # use as.matrix so that apply won't break with ncol(tabMtx)=1 consensus <- apply(as.matrix(tabMtx), 2, function(x){ # all characters that appear at a position across sequences nonZeroNucs <- rownames(tabMtx)[x>0] # Disambiguate, except N nonZeroNucs <- unique(unlist(c(IUPAC_DNA[names(IUPAC_DNA)!="N"],"."=".","-"="-","N"="N")[nonZeroNucs])) # convert characters to (ambiguous) characters return(chars2Ambiguous(nonZeroNucs)) }) } # check there is no ambiguous characters if includeAmbiguous if F if ( (method=="thresholdedFreq" | method=="mostCommon") & !includeAmbiguous ) { ambiguous <- NUCLEOTIDES_AMBIGUOUS[!NUCLEOTIDES_AMBIGUOUS %in% c("A","C","G","T","N","-",".")] stopifnot( !any(consensus %in% ambiguous) ) } # convert from character vector to string consensus <- c2s(consensus) # sanity check stopifnot( stri_length(consensus)==lenConsensus ) } ##### methods = mostMutated, leastMutated if (method %in% c("mostMutated", "leastMutated")) { # if there's a lenLimit # if a seq is longer than lenLimit, trim it; otherwise, leave it as is if (!is.null(lenLimit)) { idxLong <- which(lenSeqs > lenLimit) sequences[idxLong] <- substr(sequences[idxLong], 1, lenLimit) } ##### get index of sequences that fulfill the criterion # muFreq should have been calculated being on sequences with restricted lengths as defined by # regionDefinition (which gives rise to lenLimit) if (method=="mostMutated") { #print(method) # for testing targetMuFreq <- max(muFreq) } else if (method=="leastMutated") { #print(method) # for testing targetMuFreq <- min(muFreq) } tol <- 1e-5 # tolerance idx <- which( abs(muFreq-targetMuFreq)<=tol ) ##### if there are no ties if (length(idx)==1) { consensus <- sequences[idx] ##### if there are ties } else if (length(idx)>1) { ### stochastic: randomly pick one from idx if (breakTiesStochastic) { consensus <- sequences[sample(x=idx, size=1)] ### deterministic: pick one from idx based on breakTiesByColumns } else if (!is.null(breakTiesByColumns)) { idx <- breakTiesHelper(idx=idx, cols=breakTiesByColumns[[1]], funs=breakTiesByColumns[[2]], db=db[idx, ]) consensus <- sequences[idx] ### deterministic: pick first one from idx } else { consensus <- sequences[idx[1]] } } } # check length if (!is.null(lenLimit)) { stopifnot(stri_length(consensus) <= lenLimit) } if (method %in% c("mostMutated", "leastMutated")) { return(list(cons=consensus, muFreq=targetMuFreq)) } else { return(list(cons=consensus, muFreq=NULL)) } } # Calculate clonal consensus for a single clone # # Given an aligned set of input/observed sequences and an aligned set of germline sequences, # generate an input/observed consensus and a germline consensus. # # @param db \code{data.frame} containing sequence data for a single clone. # Required. # @param sequenceColumn \code{character} name of the column containing input # sequences. Required. The length of each input sequence should # match that of its corresponding germline sequence. # @param germlineColumn \code{character} name of the column containing germline # sequences. Required. The length of each germline sequence should # match that of its corresponding input sequence. # @param muFreqColumn \code{character} name of the column containing mutation # frequency. Applicable to and required for the \code{"mostMutated"} # and \code{"leastMutated"} methods. Default is \code{NULL}. See # "Details" for a note of caution. # @param regionDefinition \link{RegionDefinition} object defining the regions and boundaries # of the Ig sequences. Optional. Default is \code{NULL}. # @param method method for calculating input consensus sequence. Required. One of # \code{"thresholdedFreq"}, \code{"mostCommon"}, \code{"catchAll"}, # \code{"mostMutated"}, or \code{"leastMutated"}. See "Methods" under # \link{collapseClones} for details. # @param minimumFrequency frequency threshold for calculating input consensus sequence. # Applicable to and required for the \code{"thresholdedFreq"} method. # A canonical choice is 0.6. Default is \code{NULL}. # @param includeAmbiguous whether to use ambiguous characters to represent positions at # which there are multiple characters with frequencies that are at least # \code{minimumFrequency} or that are maximal (i.e. ties). Applicable to # and required for the \code{"thresholdedFreq"} and \code{"mostCommon"} # methods. Default is \code{FALSE}. See "Choosing ambiguous characters" # under \link{collapseClones} for rules on choosing ambiguous characters. # @param breakTiesStochastic In case of ties, whether to randomly pick a sequence from sequences that # fulfill the criteria as consensus. Applicable to and required for all methods # except for \code{"catchAll"}. Default is \code{FALSE}. See "Methods" # under \link{collapseClones} for details. # @param breakTiesByColumns A list of the form \code{list(c(col_1, col_2, ...), c(fun_1, fun_2, ...))}, # where \code{col_i} is a \code{character} name of a column in \code{db}, # and \code{fun_i} is a function to be applied on that column. Currently, # only \code{max} and \code{min} are supported. Applicable to and optional for # the \code{"mostMutated"} and \code{"leastMutated"} methods. If supplied, # \code{fun_i}'s are applied on \code{col_i}'s to help break ties. Default is # \code{NULL}. See "Methods" under \link{collapseClones} for details. # # @return A named list of length 3. "inputCons" and "germlineCons" are the consensus sequences. # The input and germline consensus sequences have the same length. "inputMuFreq" is the # maximal/minimal mutation frequency for the input consensus for the \code{"mostMutated"} # and \code{"leastMutated"} methods, and \code{NULL} for all other methods. # # @details See \link{collapseClones} for detailed documentation on methods and additional parameters. # # Caution: when using the \code{"mostMutated"} and \code{"leastMutated"} methods, if you # supply a \code{regionDefinition}, it is your responsibility to ensure that the mutation # frequency in\code{muFreqColumn} was calculated with sequence lengths restricted to the # \strong{same} \code{regionDefinition} you are supplying. Otherwise, the # "most/least mutated" sequence you obtain might not be the most/least mutated given the # \code{regionDefinition} supplied, because your mutation frequency was based on a # \code{regionDefinition} different from the one supplied. # # @seealso # See \link{collapseClones} for constructing consensus for all clones. # # @examples # # Subset example data # data(ExampleDb, package="alakazam") # db <- subset(ExampleDb, c_call %in% c("IGHA", "IGHG") & sample_id == "+7d") # # # Data corresponding to a single clone # clone <- db[db[["clone_id"]] == "3192", ] # # Number of sequences in this clone # nrow(clone) # # compute mutation frequency for most/leastMutated methods # clone <- observedMutations(db=clone, frequency=TRUE, combine=TRUE) # # manually create a tie # clone <- rbind(clone, clone[which.max(clone$mu_freq), ]) # # # Get consensus input and germline sequences # # thresholdedFreq method, resolve ties deterministically without using ambiguous characters # cons1 <- calcClonalConsensus(db=clone, # muFreqColumn=NULL, regionDefinition=NULL, # method="thresholdedFreq", # minimumFrequency=0.3, includeAmbiguous=FALSE, # breakTiesStochastic=FALSE, breakTiesByColumns=NULL) # # thresholdedFreq method, resolve ties deterministically using ambiguous characters # cons2 <- calcClonalConsensus(db=clone, # muFreqColumn=NULL, regionDefinition=NULL, # method="thresholdedFreq", # minimumFrequency=0.3, includeAmbiguous=TRUE, # breakTiesStochastic=FALSE, breakTiesByColumns=NULL) # # thresholdedFreq method, resolve ties stochastically # cons3 <- calcClonalConsensus(db=clone, # muFreqColumn=NULL, regionDefinition=NULL, # method="thresholdedFreq", # minimumFrequency=0.3, includeAmbiguous=FALSE, # breakTiesStochastic=TRUE, breakTiesByColumns=NULL) # # mostCommon method, resolve ties deterministically without using ambiguous characters # cons4 <- calcClonalConsensus(db=clone, # muFreqColumn=NULL, regionDefinition=NULL, # method="mostCommon", # minimumFrequency=NULL, includeAmbiguous=FALSE, # breakTiesStochastic=FALSE, breakTiesByColumns=NULL) # # mostCommon method, resolve ties deterministically using ambiguous characters # cons5 <- calcClonalConsensus(db=clone, # muFreqColumn=NULL, regionDefinition=NULL, # method="mostCommon", # minimumFrequency=NULL, includeAmbiguous=TRUE, # breakTiesStochastic=FALSE, breakTiesByColumns=NULL) # # mostCommon method, resolve ties stochastically # cons6 <- calcClonalConsensus(db=clone, # muFreqColumn=NULL, regionDefinition=NULL, # method="mostCommon", # minimumFrequency=NULL, includeAmbiguous=FALSE, # breakTiesStochastic=TRUE, breakTiesByColumns=NULL) # # catchAll method # cons7 <- calcClonalConsensus(db=clone, # muFreqColumn=NULL, regionDefinition=NULL, # method="catchAll", # minimumFrequency=NULL, includeAmbiguous=FALSE, # breakTiesStochastic=FALSE, breakTiesByColumns=NULL) # # mostMutated method, resolve ties stochastically # cons8 <- calcClonalConsensus(db=clone, # muFreqColumn="mu_freq", regionDefinition=NULL, # method="mostMutated", # minimumFrequency=NULL, includeAmbiguous=FALSE, # breakTiesStochastic=TRUE, breakTiesByColumns=NULL) # # mostMutated method, resolve ties deterministically using additional columns # cons9 <- calcClonalConsensus(db=clone, # muFreqColumn="mu_freq", regionDefinition=NULL, # method="mostMutated", # minimumFrequency=NULL, includeAmbiguous=FALSE, # breakTiesStochastic=FALSE, # breakTiesByColumns=list(c("junction_length", "duplicate_count"), c(max, max))) # cons10 <- calcClonalConsensus(db=clone, # muFreqColumn="mu_freq", regionDefinition=NULL, # method="mostMutated", # minimumFrequency=NULL, includeAmbiguous=FALSE, # breakTiesStochastic=FALSE, # breakTiesByColumns=list(c("duplicate_count"), c(max))) # # mostMutated method, resolve ties deterministically without using additional columns # cons11 <- calcClonalConsensus(db=clone, # muFreqColumn="mu_freq", regionDefinition=NULL, # method="mostMutated", # minimumFrequency=NULL, includeAmbiguous=FALSE, # breakTiesStochastic=FALSE, breakTiesByColumns=NULL) # @export calcClonalConsensus <- function(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", muFreqColumn=NULL, regionDefinition=NULL, method=c("mostCommon", "thresholdedFreq", "catchAll", "mostMutated", "leastMutated"), minimumFrequency=NULL, includeAmbiguous=FALSE, breakTiesStochastic=FALSE, breakTiesByColumns=NULL) { method <- match.arg(method) inputSeq <- db[[sequenceColumn]] germlineSeq <- db[[germlineColumn]] # length of seqs in inputSeq and those in germlineSeq should match if ( sum(stri_length(inputSeq)==stri_length(germlineSeq)) != length(inputSeq) ) { stop("Sequences in inputSeq and germlineSeq have different lengths.") } # Check region definition if (!is.null(regionDefinition) & !is(regionDefinition, "RegionDefinition")) { stop(deparse(substitute(regionDefinition)), " is not a valid RegionDefinition object") } # length limit from regionDefinition if (!is.null(regionDefinition)) { lenRegion <- regionDefinition@seqLength } else { lenRegion <- NULL } ##### get consensus germline sequence (most common) # NULL for minFreq and muFreqColumn b/c mostCommon definitely doesn't need them germCons <- consensusSequence(germlineSeq, minFreq=NULL, lenLimit=lenRegion, method="mostCommon", includeAmbiguous=includeAmbiguous, breakTiesStochastic=breakTiesStochastic, breakTiesByColumns=NULL, muFreqColumn=NULL, db=NULL)$cons ##### get consensus observed sequence inputConsMuFreq <- consensusSequence(inputSeq, minFreq=minimumFrequency, lenLimit=lenRegion, method=method, includeAmbiguous=includeAmbiguous, breakTiesStochastic=breakTiesStochastic, breakTiesByColumns=breakTiesByColumns, muFreqColumn=muFreqColumn, db=db) inputCons <- inputConsMuFreq$cons inputMuFreq <- inputConsMuFreq$muFreq if (method %in% c("mostMutated", "leastMutated")) { # possible to have inputCons and germCons of varying lengths # germCons (mostCommon) length is "longest possible length" for mostCommon # inputCons length is min of length of most/least mutated and lenLimit # if different, trim the two to same length lenInput <- stri_length(inputCons) lenGerm <- stri_length(germCons) if (lenInput != lenGerm) { minLen <- min(lenInput, lenGerm) inputCons <- substr(inputCons, 1, minLen) germCons <- substr(germCons, 1, minLen) } } # sanity check: length of germCons and inputCons should be the same # all methods other than most/leastMutated should expect same lengths of inputCons & germCons stopifnot( stri_length(germCons)==stri_length(inputCons) ) return(list("inputCons"=inputCons, "germlineCons"=germCons, "inputMuFreq"=inputMuFreq)) } #### Mutation counting functions #### #' Calculate observed numbers of mutations #' #' \code{observedMutations} calculates the observed number of mutations for each #' sequence in the input \code{data.frame}. #' #' @param db \code{data.frame} containing sequence data. #' @param sequenceColumn \code{character} name of the column containing input #' sequences. IUPAC ambiguous characters for DNA are #' supported. #' @param germlineColumn \code{character} name of the column containing #' the germline or reference sequence. IUPAC ambiguous #' characters for DNA are supported. #' @param regionDefinition \link{RegionDefinition} object defining the regions #' and boundaries of the Ig sequences. If NULL, mutations #' are counted for entire sequence. To use regions definitions, #' sequences in \code{sequenceColumn} and \code{germlineColumn} #' must be aligned, following the IMGT schema. #' @param mutationDefinition \link{MutationDefinition} object defining replacement #' and silent mutation criteria. If \code{NULL} then #' replacement and silent are determined by exact #' amino acid identity. #' @param ambiguousMode whether to consider ambiguous characters as #' \code{"either or"} or \code{"and"} when determining and #' counting the type(s) of mutations. Applicable only if #' \code{sequenceColumn} and/or \code{germlineColumn} #' contain(s) ambiguous characters. One of #' \code{c("eitherOr", "and")}. Default is \code{"eitherOr"}. #' @param frequency \code{logical} indicating whether or not to calculate #' mutation frequencies. Default is \code{FALSE}. #' @param combine \code{logical} indicating whether for each sequence should #' the mutation counts for the different regions (CDR, FWR) and #' mutation types be combined and return one value of #' count/frequency per sequence instead of #' multiple values. Default is \code{FALSE}. #' @param nproc number of cores to distribute the operation over. If the #' cluster has already been set the call function with #' \code{nproc} = 0 to not reset or reinitialize. Default is #' \code{nproc} = 1. #' @param cloneColumn clone id column name in \code{db} #' @param juncLengthColumn junction length column name in \code{db} #' #' @return A modified \code{db} \code{data.frame} with observed mutation counts for each #' sequence listed. The columns names are dynamically created based on the #' regions in the \code{regionDefinition}. For example, when using the #' \link{IMGT_V} definition, which defines positions for CDR and #' FWR, the following columns are added: #' \itemize{ #' \item \code{mu_count_cdr_r}: number of replacement mutations in CDR1 and #' CDR2 of the V-segment. #' \item \code{mu_count_cdr_s}: number of silent mutations in CDR1 and CDR2 #' of the V-segment. #' \item \code{mu_count_fwr_r}: number of replacement mutations in FWR1, #' FWR2 and FWR3 of the V-segment. #' \item \code{mu_count_fwr_s}: number of silent mutations in FWR1, FWR2 and #' FWR3 of the V-segment. #' } #' If \code{frequency=TRUE}, R and S mutation frequencies are #' calculated over the number of non-N positions in the specified regions. #' \itemize{ #' \item \code{mu_freq_cdr_r}: frequency of replacement mutations in CDR1 and #' CDR2 of the V-segment. #' \item \code{mu_freq_cdr_s}: frequency of silent mutations in CDR1 and CDR2 #' of the V-segment. #' \item \code{mu_freq_fwr_r}: frequency of replacement mutations in FWR1, #' FWR2 and FWR3 of the V-segment. #' \item \code{mu_freq_fwr_s}: frequency of silent mutations in FWR1, FWR2 and #' FWR3 of the V-segment. #' } #' If \code{frequency=TRUE} and \code{combine=TRUE}, the mutations and non-N positions #' are aggregated and a single \code{mu_freq} value is returned #' \itemize{ #' \item \code{mu_freq}: frequency of replacement and silent mutations in the #' specified region #' } #' #' @details #' Mutation counts are determined by comparing a reference sequence to the input sequences in the #' column specified by \code{sequenceColumn}. See \link{calcObservedMutations} for more technical details, #' \strong{including criteria for which sequence differences are included in the mutation #' counts and which are not}. #' #' The mutations are binned as either replacement (R) or silent (S) across the different #' regions of the sequences as defined by \code{regionDefinition}. Typically, this would #' be the framework (FWR) and complementarity determining (CDR) regions of IMGT-gapped #' nucleotide sequences. Mutation counts are appended to the input \code{db} as #' additional columns. #' #' If \code{db} includes lineage information, such as the \code{parent_sequence} column created by #' \link{makeGraphDf}, the reference sequence can be set to use that field as reference sequence #' using the \code{germlineColumn} argument. #' #' @seealso #' \link{calcObservedMutations} is called by this function to get the number of mutations #' in each sequence grouped by the \link{RegionDefinition}. #' See \link{IMGT_SCHEMES} for a set of predefined \link{RegionDefinition} objects. #' See \link{expectedMutations} for calculating expected mutation frequencies. #' See \link{makeGraphDf} for creating the field \code{parent_sequence}. #' #' @examples #' # Subset example data #' data(ExampleDb, package="alakazam") #' db <- ExampleDb[1:10, ] #' #' # Calculate mutation frequency over the entire sequence #' db_obs <- observedMutations(db, sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' frequency=TRUE, #' nproc=1) #' #' # Count of V-region mutations split by FWR and CDR #' # With mutations only considered replacement if charge changes #' db_obs <- observedMutations(db, sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' regionDefinition=IMGT_V, #' mutationDefinition=CHARGE_MUTATIONS, #' nproc=1) #' #' # Count of VDJ-region mutations, split by FWR and CDR #' db_obs <- observedMutations(db, sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' regionDefinition=IMGT_VDJ, #' nproc=1) #' #' # Extend data with lineage information #' data(ExampleTrees, package="alakazam") #' graph <- ExampleTrees[[17]] #' clone <- alakazam::makeChangeoClone(subset(ExampleDb, clone_id == graph$clone)) #' gdf <- makeGraphDf(graph, clone) #' #' # Count of mutations between observed sequence and immediate ancestor #' db_obs <- observedMutations(gdf, sequenceColumn="sequence", #' germlineColumn="parent_sequence", #' regionDefinition=IMGT_VDJ, #' nproc=1) #' #' @export observedMutations <- function(db,sequenceColumn = "sequence_alignment", germlineColumn = "germline_alignment_d_mask", regionDefinition=NULL, mutationDefinition = NULL, ambiguousMode = c("eitherOr", "and"), frequency = FALSE, combine = FALSE, nproc = 1, cloneColumn = "clone_id", juncLengthColumn = "junction_length") { ambiguousMode <- match.arg(ambiguousMode) check <- checkColumns(db, c(sequenceColumn, germlineColumn)) if (check != TRUE) { stop(check) } regionDefinitionName <- "" if (!is.null(regionDefinition)) { regionDefinitionName <- regionDefinition@name # Message if sequences don't have gaps or Ns (because makeChangeo clone # masks IMGT gaps) as a proxy to detect not IMGT aligned sequences if (all(!grepl("[\\.Nn]",db[[sequenceColumn]]))) { warning("No IMGT gaps detected in ",sequenceColumn,".\nSequences in ", sequenceColumn," and ", germlineColumn, " should be aligned, with gaps (.,N or n) following the IMGT numbering scheme.") } if (all(!grepl("[\\.Nn]",db[[germlineColumn]]))) { warning("No IMGT gaps detected in ",germlineColumn, ".\nSequences in ", sequenceColumn," and ", germlineColumn, " should be aligned, with gaps (., N or n) following the IMGT numbering scheme.") } not_na <- !is.na(db[[germlineColumn]]) if (!isTRUE(all.equal(nchar(db[[sequenceColumn]][not_na]), nchar(db[[germlineColumn]][not_na]), check.attributes = FALSE))) { warning("Pairs of ", sequenceColumn, " and ", germlineColumn, " sequences with different lengths found.") stop("Expecting IMGT aligned, same length sequences in ", sequenceColumn, " and ", germlineColumn,".") } } # Check region definition if (!is.null(regionDefinition) & !is(regionDefinition, "RegionDefinition")) { stop(deparse(substitute(regionDefinition)), " is not a valid RegionDefinition object") } # Check if mutation count/freq columns already exist # and throw overwriting warning if (!is.null(regionDefinition)) { labels <- regionDefinition@labels } else { labels <- makeNullRegionDefinition()@labels } if (frequency == TRUE) { if (combine) { labels <- "mu_freq" } else { labels <- paste("mu_freq_", labels, sep="") } } else { if (combine) { labels <- "mu_count" } else { labels <- paste("mu_count_", labels, sep="") } } label_exists <- labels[labels %in% colnames(db)] if (length(label_exists)>0) { warning(paste0("Columns ", paste(label_exists, collapse=", "), " exist and will be overwritten") ) db[,label_exists] <- NULL } # Check mutation definition if (!is.null(mutationDefinition) & !is(mutationDefinition, "MutationDefinition")) { stop(deparse(substitute(mutationDefinition)), " is not a valid MutationDefinition object") } # Convert sequence columns to uppercase db <- toupperColumns(db, c(sequenceColumn, germlineColumn)) db$tmp_obsmu_row_id <- 1:nrow(db) # If the user has previously set the cluster and does not wish to reset it if(!is.numeric(nproc)){ cluster <- nproc nproc <- 0 } # Ensure that the nproc does not exceed the number of cores/CPUs available nproc <- min(nproc, cpuCount()) # If user wants to parallelize this function and specifies nproc > 1, then # initialize and register slave R processes/clusters & # export all necessary environment variables, functions and packages. if (nproc > 1) { cluster <- parallel::makeCluster(nproc, type = "PSOCK") parallel::clusterExport(cluster, list('db', 'sequenceColumn', 'germlineColumn', 'regionDefinition', 'regionDefinitionName', 'frequency', 'combine', 'ambiguousMode', 'calcObservedMutations','s2c','c2s','NUCLEOTIDES', 'NUCLEOTIDES_AMBIGUOUS', 'IUPAC2nucs', 'EXPANDED_AMBIGUOUS_CODONS', 'makeNullRegionDefinition', 'mutationDefinition', 'getCodonPos','getContextInCodon','mutationType', 'AMINO_ACIDS', 'binMutationsByRegion', 'countNonNByRegion','setRegionBoundaries','IMGT_V_BY_REGIONS'), envir=environment()) registerDoParallel(cluster,cores=nproc) } else if (nproc == 1) { # If needed to run on a single core/cpu then, register DoSEQ # (needed for 'foreach' in non-parallel mode) registerDoSEQ() } # Printing status to console #cat("Calculating observed number of mutations...\n") # Identify all the mutations in the sequences numbOfSeqs <- nrow(db) observedMutations_list <- foreach(idx=iterators::icount(numbOfSeqs)) %dopar% { rd <- regionDefinition if (regionDefinitionName %in% c("IMGT_VDJ_BY_REGIONS","IMGT_VDJ")) { rd <- setRegionBoundaries(juncLength = db[[juncLengthColumn]][idx], sequenceImgt = db[[sequenceColumn]][idx], regionDefinition=regionDefinition) } oM <- calcObservedMutations(db[[sequenceColumn]][idx], db[[germlineColumn]][idx], frequency=frequency & !combine, regionDefinition=rd, mutationDefinition=mutationDefinition, returnRaw=combine, ambiguousMode=ambiguousMode) this_row_id <- db[['tmp_obsmu_row_id']][idx] if (combine) { num_mutations <- 0 if (!all(is.na(oM$pos))) { num_mutations <- sum(oM$pos$r, oM$pos$s) } if (!frequency) { c("mu_count"=num_mutations, "tmp_obsmu_row_id"=this_row_id) } else { num_nonN <- sum(oM$nonN) mu_freq <- num_mutations/num_nonN c("mu_freq"=mu_freq, "tmp_obsmu_row_id"=this_row_id) } } else { oM['tmp_obsmu_row_id'] <- this_row_id oM } } # Convert list of mutations to data.frame if (combine) { labels_length <- 2 # mutation count and tmp_obsmu_row_id } else if (!is.null(regionDefinition)) { labels_length <- length(regionDefinition@labels) + 1 # +1 for tmp_obsmu_row_id } else{ #labels_length=1 labels_length <- length(makeNullRegionDefinition()@labels) +1 # +1 for tmp_obsmu_row_id } # Convert mutation vector list to a matrix observed_mutations <- as.data.frame(do.call(rbind, lapply(observedMutations_list, function(x) { length(x) <- labels_length return(x) })), stringsAsFactors=F) #observed_mutations <- t(sapply(observedMutations_list, c)) sep <- "_" if (ncol(observed_mutations) > 2) sep <- "_" observed_mutations[is.na(observed_mutations)] <- 0 col_names <- colnames(observed_mutations) mu_col_names <- col_names != "tmp_obsmu_row_id" if (frequency == TRUE) { idx <- which(colnames(observed_mutations)[mu_col_names] != "mu_freq") if (length(idx)>0){ colnames(observed_mutations)[mu_col_names][idx] <- gsub("_$","",paste("mu_freq", col_names[mu_col_names][idx], sep=sep)) } } else { idx <- which(colnames(observed_mutations)[mu_col_names] != "mu_count") if (length(idx)>0) { colnames(observed_mutations)[mu_col_names] <- gsub("_$","",paste("mu_count", col_names[mu_col_names][idx], sep=sep)) } } # Properly shutting down the cluster if (nproc > 1) { parallel::stopCluster(cluster) } # Bind the observed mutations to db db_new <- db %>% ungroup() %>% left_join(observed_mutations, by="tmp_obsmu_row_id") %>% arrange(!!rlang::sym("tmp_obsmu_row_id")) %>% select(-!!rlang::sym("tmp_obsmu_row_id")) return(db_new) } #' Count the number of observed mutations in a sequence. #' #' \code{calcObservedMutations} determines all the mutations in a given input sequence #' compared to its germline sequence. #' #' @param inputSeq input sequence. IUPAC ambiguous characters for DNA are #' supported. #' @param germlineSeq germline sequence. IUPAC ambiguous characters for DNA #' are supported. #' @param regionDefinition \link{RegionDefinition} object defining the regions #' and boundaries of the Ig sequences. Note, only the part of #' sequences defined in \code{regionDefinition} are analyzed. #' If NULL, mutations are counted for entire sequence. #' @param mutationDefinition \link{MutationDefinition} object defining replacement #' and silent mutation criteria. If \code{NULL} then #' replacement and silent are determined by exact #' amino acid identity. #' @param ambiguousMode whether to consider ambiguous characters as #' \code{"either or"} or \code{"and"} when determining and #' counting the type(s) of mutations. Applicable only if #' \code{inputSeq} and/or \code{germlineSeq} #' contain(s) ambiguous characters. One of #' \code{c("eitherOr", "and")}. Default is \code{"eitherOr"}. #' @param returnRaw return the positions of point mutations and their #' corresponding mutation types, as opposed to counts of #' mutations across positions. Also returns the number of #' bases used as the denominator when calculating frequency. #' Default is \code{FALSE}. #' @param frequency \code{logical} indicating whether or not to calculate #' mutation frequencies. The denominator used is the number #' of bases that are not one of "N", "-", or "." in either #' the input or the germline sequences. If set, this #' overwrites \code{returnRaw}. Default is \code{FALSE}. #' #' @return For \code{returnRaw=FALSE}, an \code{array} with the numbers of replacement (R) #' and silent (S) mutations. #' #' For \code{returnRaw=TRUE}, a list containing #' \itemize{ #' \item \code{$pos}: A data frame whose columns (\code{position}, \code{r}, #' \code{s}, and \code{region}) indicate, respectively, the nucleotide #' position, the number of R mutations at that position, the number of S #' mutations at that position, and the region in which that nucleotide #' is in. #' \item \code{$nonN}: A vector indicating the number of bases in regions #' defined by \code{regionDefinition} (excluding non-triplet overhang, #' if any) that are not one of "N", "-", or "." in either the #' \code{inputSeq} or \code{germlineSeq}. #' } #' #' For \code{frequency=TRUE}, regardless of \code{returnRaw}, an \code{array} #' with the frequencies of replacement (R) and silent (S) mutations. #' #' @details #' \strong{Each mutation is considered independently in the germline context}. For illustration, #' consider the case where the germline is \code{TGG} and the observed is \code{TAC}. #' When determining the mutation type at position 2, which sees a change from \code{G} to #' \code{A}, we compare the codon \code{TGG} (germline) to \code{TAG} (mutation at position #' 2 independent of other mutations in the germline context). Similarly, when determining #' the mutation type at position 3, which sees a change from \code{G} to \code{C}, we #' compare the codon \code{TGG} (germline) to \code{TGC} (mutation at position 3 independent #' of other mutations in the germline context). #' #' If specified, only the part of \code{inputSeq} defined in \code{regionDefinition} is #' analyzed. For example, when using the default \link{IMGT_V} definition, then mutations #' in positions beyond 312 will be ignored. Additionally, non-triplet overhang at the #' sequence end is ignored. #' #' Only replacement (R) and silent (S) mutations are included in the results. \strong{Excluded} #' are: #' \itemize{ #' \item Stop mutations #' #' E.g.: the case where \code{TAGTGG} is observed for the germline \code{TGGTGG}. #' #' \item Mutations occurring in codons where one or both of the observed and the #' germline involve(s) one or more of "N", "-", or ".". #' #' E.g.: the case where \code{TTG} is observed for the germline being any one of #' \code{TNG}, \code{.TG}, or \code{-TG}. Similarly, the case where any one of #' \code{TTN}, \code{TT.}, or \code{TT-} is observed for the germline \code{TTG}. #' #' } #' In other words, a result that is \code{NA} or zero indicates absence of R and S mutations, #' not necessarily all types of mutations, such as the excluded ones mentioned above. #' #' \code{NA} is also returned if \code{inputSeq} or \code{germlineSeq} is shorter than 3 #' nucleotides. #' #' @section Ambiguous characters: #' When there are ambiguous characters present, the user could choose how mutations involving #' ambiguous characters are counted through \code{ambiguousMode}. The two available modes #' are \code{"eitherOr"} and \code{"and"}. #' \itemize{ #' \item With \code{"eitherOr"}, ambiguous characters are each expanded but only #' 1 mutation is recorded. When determining the type of mutation, the #' priority for different types of mutations, in decreasing order, is as follows: #' no mutation, replacement mutation, silent mutation, and stop mutation. #' #' When counting the number of non-N, non-dash, and non-dot positions, each #' position is counted only once, regardless of the presence of ambiguous #' characters. #' #' As an example, consider the case where \code{germlineSeq} is \code{"TST"} and #' \code{inputSeq} is \code{"THT"}. Expanding \code{"H"} at position 2 in #' \code{inputSeq} into \code{"A"}, \code{"C"}, and \code{"T"}, as well as #' expanding \code{"S"} at position 2 in \code{germlineSeq} into \code{"C"} and #' \code{"G"}, one gets: #' #' \itemize{ #' \item \code{"TCT"} (germline) to \code{"TAT"} (observed): replacement #' \item \code{"TCT"} (germline) to \code{"TCT"} (observed): no mutation #' \item \code{"TCT"} (germline) to \code{"TTT"} (observed): replacement #' \item \code{"TGT"} (germline) to \code{"TAT"} (observed): replacement #' \item \code{"TGT"} (germline) to \code{"TCT"} (observed): replacement #' \item \code{"TGT"} (germline) to \code{"TTT"} (observed): replacement #' } #' #' Because "no mutation" takes priority over replacement mutation, the final #' mutation count returned for this example is \code{NA} (recall that only R and #' S mutations are returned). The number of non-N, non-dash, and non-dot #' positions is 3. #' #' \item With \code{"and"}, ambiguous characters are each expanded and mutation(s) #' from all expansions are recorded. #' #' When counting the number of non-N, non-dash, and non-dot positions, if a #' position contains ambiguous character(s) in \code{inputSeq} and/or #' \code{germlineSeq}, the count at that position is taken to be the total #' number of combinations of germline and observed codons after expansion. #' #' Using the same example from above, the final result returned for this example #' is that there are 5 R mutations at position 2. The number of non-N, non-dash, #' and non-dot positions is 8, since there are 6 combinations stemming from #' position 2 after expanding the germline codon (\code{"TST"}) and the observed #' codon (\code{"THT"}). #' } #' #' @seealso See \link{observedMutations} for counting the number of observed mutations #' in a \code{data.frame}. #' #' @examples #' # Use an entry in the example data for input and germline sequence #' data(ExampleDb, package="alakazam") #' in_seq <- ExampleDb[["sequence_alignment"]][100] #' germ_seq <- ExampleDb[["germline_alignment_d_mask"]][100] #' #' # Identify all mutations in the sequence #' ex1_raw <- calcObservedMutations(in_seq, germ_seq, returnRaw=TRUE) #' # Count all mutations in the sequence #' ex1_count <- calcObservedMutations(in_seq, germ_seq, returnRaw=FALSE) #' ex1_freq <- calcObservedMutations(in_seq, germ_seq, returnRaw=FALSE, frequency=TRUE) #' # Compare this with ex1_count #' table(ex1_raw$pos$region, ex1_raw$pos$r)[, "1"] #' table(ex1_raw$pos$region, ex1_raw$pos$s)[, "1"] #' # Compare this with ex1_freq #' table(ex1_raw$pos$region, ex1_raw$pos$r)[, "1"]/ex1_raw$nonN #' table(ex1_raw$pos$region, ex1_raw$pos$s)[, "1"]/ex1_raw$nonN #' #' # Identify only mutations the V segment minus CDR3 #' ex2_raw <- calcObservedMutations(in_seq, germ_seq, #' regionDefinition=IMGT_V, returnRaw=TRUE) #' # Count only mutations the V segment minus CDR3 #' ex2_count <- calcObservedMutations(in_seq, germ_seq, #' regionDefinition=IMGT_V, returnRaw=FALSE) #' ex2_freq <- calcObservedMutations(in_seq, germ_seq, #' regionDefinition=IMGT_V, returnRaw=FALSE, #' frequency=TRUE) #' # Compare this with ex2_count #' table(ex2_raw$pos$region, ex2_raw$pos$r)[, "1"] #' table(ex2_raw$pos$region, ex2_raw$pos$s)[, "1"] #' # Compare this with ex2_freq #' table(ex2_raw$pos$region, ex2_raw$pos$r)[, "1"]/ex2_raw$nonN #' table(ex2_raw$pos$region, ex2_raw$pos$s)[, "1"]/ex2_raw$nonN #' #' # Identify mutations by change in hydropathy class #' ex3_raw <- calcObservedMutations(in_seq, germ_seq, regionDefinition=IMGT_V, #' mutationDefinition=HYDROPATHY_MUTATIONS, #' returnRaw=TRUE) #' # Count mutations by change in hydropathy class #' ex3_count <- calcObservedMutations(in_seq, germ_seq, regionDefinition=IMGT_V, #' mutationDefinition=HYDROPATHY_MUTATIONS, #' returnRaw=FALSE) #' ex3_freq <- calcObservedMutations(in_seq, germ_seq, regionDefinition=IMGT_V, #' mutationDefinition=HYDROPATHY_MUTATIONS, #' returnRaw=FALSE, frequency=TRUE) #' # Compare this with ex3_count #' table(ex3_raw$pos$region, ex3_raw$pos$r)[, "1"] #' table(ex3_raw$pos$region, ex3_raw$pos$s)[, "1"] #' # Compare this with ex3_freq #' table(ex3_raw$pos$region, ex3_raw$pos$r)[, "1"]/ex3_raw$nonN #' table(ex3_raw$pos$region, ex3_raw$pos$s)[, "1"]/ex3_raw$nonN #' #' @export calcObservedMutations <- function(inputSeq, germlineSeq, regionDefinition=NULL, mutationDefinition=NULL, ambiguousMode=c("eitherOr", "and"), returnRaw=FALSE, frequency=FALSE) { ambiguousMode <- match.arg(ambiguousMode) if (is.na(inputSeq)) { inputSeq <- "" } if (is.na(germlineSeq)) { inputSeq <- "" } # Check region definition if (!is.null(regionDefinition) & !is(regionDefinition, "RegionDefinition")) { stop(deparse(substitute(regionDefinition)), " is not a valid RegionDefinition object") } # Check mutation definition if (!is.null(mutationDefinition) & !is(mutationDefinition, "MutationDefinition")) { stop(deparse(substitute(mutationDefinition)), " is not a valid MutationDefinition object") } # IMPORTANT: convert to uppercase # NUCLEOTIDES, NUCLEOTIDES_AMBIGUOUS are in uppercase only inputSeq <- toupper(inputSeq) germlineSeq <- toupper(germlineSeq) # Assign mutation definition aminoAcidClasses <- if (is.null(mutationDefinition)) { NULL } else { mutationDefinition@classes } # Removing IMGT gaps (they should come in threes) # After converting ... to ZZZ any other . is not an IMGT gap & will be treated like N germlineSeq <- gsub("\\.\\.\\.", "ZZZ", germlineSeq) #If there is a single gap left convert it to an N germlineSeq <- gsub("\\.", "N", germlineSeq) # Re-assigning s_germlineSeq (now has all "." that are not IMGT gaps converted to Ns) germlineSeq <- gsub("ZZZ", "...", germlineSeq) # Removing IMGT gaps (they should come in threes) # After converting ... to ZZZ any other . is not an IMGT gap & will be treated like N inputSeq <- gsub("\\.\\.\\.", "ZZZ", inputSeq) #If there is a single gap left convert it to an N inputSeq <- gsub("\\.", "N", inputSeq) # Re-assigning s_germlineSeq (now has all "." that are not IMGT gaps converted to Ns) inputSeq <- gsub("ZZZ", "...", inputSeq) # Trim the input and germline sequence to the shortest len_inputSeq <- stri_length(inputSeq) len_germlineSeq <- stri_length(germlineSeq) # If a regionDefinition is passed, # then only analyze till the end of the defined length if(!is.null(regionDefinition)) { rdLength <- regionDefinition@seqLength } else { rdLength <- max(len_inputSeq, len_germlineSeq, na.rm=TRUE) # Create full sequence RegionDefinition object regionDefinition <- makeNullRegionDefinition(rdLength) } len_shortest <- min(c(len_inputSeq, len_germlineSeq, rdLength), na.rm=TRUE) c_inputSeq <- s2c(inputSeq)[1:len_shortest] c_germlineSeq <- s2c(germlineSeq)[1:len_shortest] # If the sequence and germline (which now should be the same length) is shorter # than the rdLength, pad it with Ns if(len_shortest 0) { # The nucleotide positions of the mutations mutations_pos <- which(mutations==TRUE) # For every mutations_pos, extract the entire codon from germline mutations_pos_codons <- array(sapply(mutations_pos, getCodonPos)) c_germlineSeq_codons <- c_germlineSeq[mutations_pos_codons] # For every mutations_pos, extract the codon from input (without other mutations # at the same codon, if any). c_inputSeq_codons <- array(sapply(mutations_pos, function(x) { seqP <- c_germlineSeq[getCodonPos(x)] seqP[getContextInCodon(x)] <- c_inputSeq[x] return(seqP) })) # split the string of codons into vector of codons # [[:alnum:]]{3} will fail to capture non-ATGC (such as "-CC") # to include a literal -, place it first or last c_germlineSeq_codons <- strsplit(gsub("([A-Z\\.-]{3})", "\\1 ", c2s(c_germlineSeq_codons)), " ")[[1]] c_inputSeq_codons <- strsplit(gsub("([A-Z\\.-]{3})", "\\1 ", c2s(c_inputSeq_codons)), " ")[[1]] # Determine whether the mutations are R or S # a table where rows are r/s/stop/na, cols are codon positions # Count ambiguous characters as "either-or" or "and" based on user setting # Makes use of the fact that c_germlineSeq_codons and c_inputSeqCodons have # the same length mutations_array_raw <- sapply(1:length(c_germlineSeq_codons), function(i){ mutationType(codonFrom=c_germlineSeq_codons[i], codonTo=c_inputSeq_codons[i], ambiguousMode=ambiguousMode, aminoAcidClasses) }) # check dimension before assigning nucleotide positions to colnames stopifnot(ncol(mutations_array_raw)==length(mutations_pos)) colnames(mutations_array_raw) <- mutations_pos # keep only columns in which there are R or S mutations; and keep only R and S rows # use drop=FALSE so that matrix won't be collapsed into a vector if there is only 1 TRUE in keep.idx keep.idx <- apply(mutations_array_raw, 2, function(x) { any(x[c("r", "s")]>0) } ) keep.pos <- colnames(mutations_array_raw)[keep.idx] mutations_array_raw <- mutations_array_raw[c("r", "s"), keep.idx, drop=FALSE] colnames(mutations_array_raw) <- keep.pos # if none of columns have R or S > 1, dim will be 2x0 if ( ncol(mutations_array_raw)==0 ) { # NA if mutations_array_raw contains all NAs and they have all been removed mutations_array_raw <- NA mutations_array <- setNames(object=rep(NA, length(regionDefinition@labels)), nm=regionDefinition@labels) } else { # count each mutation type by region mutations_array <- binMutationsByRegion(mutations_array_raw, regionDefinition) } } } # frequency=TRUE overrides returnRaw=FALSE/TRUE if (frequency) { # avoid is.na(mutations_array_raw) to avoid warning in case mutations_array_raw is a vector if (length(mutations_array_raw) == sum(is.na(mutations_array_raw))) { return(mutations_array) } else { # Freq = numb of mutations / numb of non N bases (in both seq and gl) denoms <- countNonNByRegion(regDef=regionDefinition, ambiMode=ambiguousMode, inputChars=c_inputSeq, germChars=c_germlineSeq, inputCodons=c_inputSeq_codons, germCodons=c_germlineSeq_codons, mutPos=mutations_pos) mutations_array <- mutations_array/rep(denoms, each=2) return(mutations_array) } } # return positions of point mutations and their mutation types ("raw") if (returnRaw){ if (length(mutations_array_raw) == sum(is.na(mutations_array_raw))) { # if mutations_array_raw is NA, or # if mutations_array_raw is empty due to all mutations being "stop" and hence removed # avoid is.na(mutations_array_raw) to avoid warning in case mutations_array_raw is a vector if (!tooShort) { # when input and germline are >=3 nucleotides but there's no mutation # c_inputSeq_codons, c_germlineSeq_codons, and mutations_pos won't exist # this won't be a problem if ambiguousMode="eitherOr", but would for "and" # set inputCodons, germCodons, and mutPos to NULL to work around that nonN.denoms <- countNonNByRegion(regDef=regionDefinition, ambiMode=ambiguousMode, inputChars=c_inputSeq, germChars=c_germlineSeq, inputCodons=NULL, germCodons=NULL, mutPos=NULL) } else { nonN.denoms <- setNames(object=rep(NA, length(regionDefinition@regions)), nm=regionDefinition@regions) } return(list(pos=mutations_array_raw, nonN=nonN.denoms)) } else { nonN.denoms <- countNonNByRegion(regDef=regionDefinition, ambiMode=ambiguousMode, inputChars=c_inputSeq, germChars=c_germlineSeq, inputCodons=c_inputSeq_codons, germCodons=c_germlineSeq_codons, mutPos=mutations_pos) # df indicating position, mutation type (R or S), and region of each mutation rawDf <- data.frame(as.numeric(colnames(mutations_array_raw))) rawDf <- cbind(rawDf, mutations_array_raw["r", ], mutations_array_raw["s", ], as.character(regionDefinition@boundaries[as.numeric(colnames(mutations_array_raw))]), stringsAsFactors=F) colnames(rawDf) <- c("position", "r", "s", "region") return(list(pos=rawDf, nonN=nonN.denoms)) } } else { # return counts of each mutation type return(mutations_array) } } # Aggregate mutations by region # # \code{binMutationsByRegion} takes an array of observed mutations (e.g. from # \code{calcObservedMutations}) and bins them by the different regions defined in the # \code{regionDefinition}. # # @param mutationsArray \code{array} containing the number of R and S mutations # at the nucleotide positions where there are mutations. # @param regionDefinition \link{RegionDefinition} object defining the regions # and boundaries of the Ig sequences. # # @return An \code{array} of R/S mutations binned across all the unique regions defined # by \code{regionDefinition}. # # @details # Note, only the part of sequences defined in \code{regionDefinition} are analyzed. # For example, if the default \link{IMGT_V} definition is used, then mutations # in positions beyond 312 will be ignored. # # @seealso # See \link{observedMutations} for identifying and counting the # number of observed mutations. # This function is also used in \link{calcObservedMutations}. # # @examples # # Generate a random mutation array # numbOfMutPos <- sample(3:10, 1) # posOfMutations <- sort(sample(330, numbOfMutPos)) # mutations_array <- matrix(0, nrow=2, ncol=numbOfMutPos, dimnames=list(c("R", "S"), posOfMutations)) # mutations_array["r", ] = sample(x=0:10, size=numbOfMutPos, replace=TRUE) # mutations_array["s", ] = sample(x=0:10, size=numbOfMutPos, replace=TRUE) # # Random mutations # binMutationsByRegion(mutations_array, regionDefinition=NULL) # binMutationsByRegion(mutations_array, regionDefinition=IMGT_V) binMutationsByRegion <- function(mutationsArray, regionDefinition=NULL) { # Check region definition if (!is.null(regionDefinition) & !is(regionDefinition, "RegionDefinition")) { stop(deparse(substitute(regionDefinition)), " is not a valid RegionDefinition object") } # Create full sequence RegionDefinition object # The seqLength will be the largest index of a mutation if (is.null(regionDefinition)) { regionDefinition <- makeNullRegionDefinition(max(as.numeric(colnames(mutationsArray)))) } # get 2 vectors, 1 for R, 1 for S, along length of 1:regionDefinition@seqLength # each vector records the number of R/S at each position mutatedPositions <- as.numeric(colnames(mutationsArray)) mutations_R <- array(NA, dim=regionDefinition@seqLength) mutations_S <- array(NA, dim=regionDefinition@seqLength) mutations_R[mutatedPositions] <- mutationsArray["r", ] mutations_S[mutatedPositions] <- mutationsArray["s", ] mutations_R <- mutations_R[1:regionDefinition@seqLength] mutations_S <- mutations_S[1:regionDefinition@seqLength] # count number of R/S in each region mutations_region_counts <- rep(0, length(regionDefinition@labels)) names(mutations_region_counts) <- regionDefinition@labels for (reg in regionDefinition@regions) { mutations_region_counts[paste0(reg, "_r")] <- sum(mutations_R[regionDefinition@boundaries==reg], na.rm=T) mutations_region_counts[paste0(reg, "_s")] <- sum(mutations_S[regionDefinition@boundaries==reg], na.rm=T) } return(mutations_region_counts) } # Count the number of non-N, non-dash, and non-dot positions # # @param regDef regionDefinition # @param ambiMode ambiguousMode # @param inputChars c_inputSeq # @param germChars c_germlineSeq # @param inputCodons c_inputSeq_codons # @param germCodons c_germlineSeq_codons # @param mutPos mutations_pos # # @return The number of non-N, non-dash, and non-dot characters. Calculation method # differs depending on ambiMode being "eitherOr" or "and". By design, when # there is no ambiguous character in the input or germline, the result should be # the same regardless of ambiMode. # # @details This is a helper function for calcObservedMutations() and is not intended to # be called directly. All input arguments are, by design, expected to be # generated as intermediate products during a call to calcObservedMutations(). # countNonNByRegion <- function(regDef, ambiMode, inputChars, germChars, inputCodons, germCodons, mutPos) { regionNames <- unique(sapply(regDef@labels, function(x) { substr(x, 1, stri_length(x)-2) })) if (ambiMode=="eitherOr") { # Subset boundaries to only non-N & non-dash & non-dot bases (in both seq and gl) # "which" in next line is ESSENTIAL; otherwise @boundaries won't be truncated # e.g. (1:6)[c(T,T,T)] returns 1:6, not 1:3 boundaries <- regDef@boundaries[ which(inputChars %in% NUCLEOTIDES_AMBIGUOUS[1:14] & germChars %in% NUCLEOTIDES_AMBIGUOUS[1:14])] # number of non-N & non-dash & non-dot bases (in both seq and gl) nonN <- sapply(regionNames, function(x) { sum(boundaries==x) }) } else if (ambiMode=="and") { ### positions where there's no mutation: # simply count the positions where both input and germline are # non-N, non-dash, and non-dot boundaries.1 <- regDef@boundaries[ which(inputChars %in% NUCLEOTIDES_AMBIGUOUS[1:14] & germChars %in% NUCLEOTIDES_AMBIGUOUS[1:14] & (germChars == inputChars))] nonN.1 <- sapply(regionNames, function(x) { sum(boundaries.1==x) }) ### positions where there's mutation: if ( (!is.null(inputCodons)) & (!is.null(germCodons)) & (!is.null(mutPos)) ) { # expand codon with ambiguous character(s) into codons with unambiguous characters # calculate the number of possible combinations between input and germline codons # this makes use of the important fact that each mutation is considered # independently in the germline context inputNumExpanded <- sapply(inputCodons, function(codon){ length(EXPANDED_AMBIGUOUS_CODONS[[codon]]) }) germlineNumExpanded <- sapply(germCodons, function(codon){ length(EXPANDED_AMBIGUOUS_CODONS[[codon]]) }) totalNumExpanded <- inputNumExpanded * germlineNumExpanded # use mutations_pos to capture positions at which r/s is absent (stop or na instead) # such positions would have been omitted from mutations_array_raw or mutations_array boundaries.2 <- regDef@boundaries[mutPos] # makes use of the fact that inputCodons, germCodons, and # mutPos align exactly nonN.2 <- sapply(regionNames, function(x){ sum(totalNumExpanded[boundaries.2==x]) }) } else { nonN.2 <- setNames(object=rep(0, length(regionNames)), nm=regionNames) } nonN <- nonN.1 + nonN.2 } return(nonN) } #### Sliding window approach #### #' Sliding window approach towards filtering a single sequence #' #' \code{slideWindowSeq} determines whether an input sequence contains equal to or more than #' a given number of mutations in a given length of consecutive nucleotides (a "window") #' when compared to a germline sequence. #' #' @param inputSeq input sequence. #' @param germlineSeq germline sequence. #' @param mutThresh threshold on the number of mutations in \code{windowSize} #' consecutive nucleotides. Must be between 1 and \code{windowSize} #' inclusive. #' @param windowSize length of consecutive nucleotides. Must be at least 2. #' #' @return \code{TRUE} if there are equal to or more than \code{mutThresh} number of mutations #' in any window of \code{windowSize} consecutive nucleotides (i.e. the sequence should #' be filtered); \code{FALSE} if otherwise. #' #' @seealso \link{calcObservedMutations} is called by \code{slideWindowSeq} to identify observed #' mutations. See \link{slideWindowDb} for applying the sliding window approach on a #' \code{data.frame}. See \link{slideWindowTune} for parameter tuning for \code{mutThresh} #' and \code{windowSize}. #' #' @examples #' # Use an entry in the example data for input and germline sequence #' data(ExampleDb, package="alakazam") #' in_seq <- ExampleDb[["sequence_alignment"]][100] #' germ_seq <- ExampleDb[["germline_alignment_d_mask"]][100] #' #' # Determine if in_seq has 6 or more mutations in 10 consecutive nucleotides #' slideWindowSeq(inputSeq=in_seq, germlineSeq=germ_seq, mutThresh=6, windowSize=10) #' slideWindowSeq(inputSeq="TCGTCGAAAA", germlineSeq="AAAAAAAAAA", mutThresh=6, windowSize=10) #' @export slideWindowSeq <- function(inputSeq, germlineSeq, mutThresh, windowSize){ # identify all R and S mutations in input sequence inputMut <- calcObservedMutations(inputSeq=inputSeq, germlineSeq=germlineSeq, returnRaw=T) # call helper return(slideWindowSeqHelper(mutPos=inputMut$pos, mutThresh=mutThresh, windowSize=windowSize)) } # NOTE: DO NOT MERGE slideWindowSeqHelper with slideWindowSeq (very different input formats) # slideWindowTune needs to call slideWindowSeqHelper directly for efficiency # Helper for sliding window approach towards filtering sequences # # @param mutPos a \code{data.frame} containing positions and types of point # mutations as returned in \code{$pos} by # \code{calcObservedMutations()} with \code{returnRaw=TRUE}. # Can be \code{NA}, in which case the returned value will be # \code{FALSE}. # @param mutThresh threshold on the number of mutations in \code{windowSize} # consecutive nucleotides. Must be between 1 and \code{windowSize} # inclusive. # @param windowSize length of consecutive nucleotides. Must be at least 2. # # @return \code{TRUE} if there are equal to or more than \code{mutThresh} number of mutations # in any window of \code{windowSize} consecutive nucleotides; \code{FALSE} if otherwise. slideWindowSeqHelper <- function(mutPos, mutThresh, windowSize){ # check preconditions stopifnot(mutThresh >= 1 & mutThresh <= windowSize & windowSize>=2) if (length(mutPos) == 1 && is.na(mutPos)) { # use && instead of & to short-circuit in case length(mutPos)!=1 (otherwise warning) return(FALSE) } else { # general idea: # only need to check windows containing mutations (as opposed to every possible window) for (i in 1:nrow(mutPos)){ # get window limits lower <- mutPos$position[i] upper <- lower + windowSize - 1 # how many mutations fall within current window windowCount <- sum(mutPos[mutPos$position>=lower & mutPos$position<=upper, c("r","s")]) # return as soon as a window has >= mutThresh mutations if (windowCount >= mutThresh) { return(TRUE) } } return(FALSE) } } #' Sliding window approach towards filtering sequences in a \code{data.frame} #' #' \code{slideWindowDb} determines whether each input sequence in a \code{data.frame} #' contains equal to or more than a given number of mutations in a given length of #' consecutive nucleotides (a "window") when compared to their respective germline #' sequence. #' #' @param db \code{data.frame} containing sequence data. #' @param sequenceColumn name of the column containing IMGT-gapped sample sequences. #' @param germlineColumn name of the column containing IMGT-gapped germline sequences. #' @param mutThresh threshold on the number of mutations in \code{windowSize} #' consecutive nucleotides. Must be between 1 and \code{windowSize} #' inclusive. #' @param windowSize length of consecutive nucleotides. Must be at least 2. #' @param nproc Number of cores to distribute the operation over. If the #' \code{cluster} has already been set earlier, then pass the #' \code{cluster}. This will ensure that it is not reset. #' #' @return a logical vector. The length of the vector matches the number of input sequences in #' \code{db}. Each entry in the vector indicates whether the corresponding input sequence #' should be filtered based on the given parameters. #' #' @seealso See \link{slideWindowSeq} for applying the sliding window approach on a single sequence. #' See \link{slideWindowTune} for parameter tuning for \code{mutThresh} and \code{windowSize}. #' #' @examples #' # Use an entry in the example data for input and germline sequence #' data(ExampleDb, package="alakazam") #' #' # Apply the sliding window approach on a subset of ExampleDb #' slideWindowDb(db=ExampleDb[1:10, ], sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' mutThresh=6, windowSize=10, nproc=1) #' #' @export slideWindowDb <- function(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", mutThresh=6, windowSize=10, nproc=1){ # Hack for visibility of foreach index variables i <- NULL # Check input check <- checkColumns(db, c(sequenceColumn, germlineColumn)) if (check != TRUE) { stop(check) } db <- db[,c(sequenceColumn, germlineColumn)] # If the user has previously set the cluster and does not wish to reset it if(!is.numeric(nproc)){ stop_cluster <- FALSE cluster <- nproc nproc <- 0 } else { stop_cluster <- TRUE } # Ensure that the nproc does not exceed the number of cores/CPUs available nproc <- min(nproc, cpuCount()) # If user wants to parallelize this function and specifies nproc > 1, then # initialize and register slave R processes/clusters & # export all necessary environment variables, functions and packages. if (nproc == 1) { # If needed to run on a single core/cpu then, register DoSEQ # (needed for 'foreach' in non-parallel mode) registerDoSEQ() } else { cluster_type <- "FORK" if (.Platform$OS.type == "windows") { cluster_type <- "PSOCK" } if (nproc != 0) { #cluster <- makeCluster(nproc, type="SOCK") cluster <- parallel::makeCluster(nproc, type= cluster_type) } parallel::clusterExport(cluster, list('db', 'sequenceColumn', 'germlineColumn', 'mutThresh', 'windowSize','slideWindowSeq'), envir=environment() ) registerDoParallel(cluster,cores=nproc) } filter <- unlist(foreach(i=1:nrow(db), .verbose=FALSE, .errorhandling='stop') %dopar% { slideWindowSeq(inputSeq = db[i, sequenceColumn], germlineSeq = db[i, germlineColumn], mutThresh = mutThresh, windowSize = windowSize) }) if (stop_cluster & !is.numeric(nproc)) { parallel::stopCluster(cluster) } filter } #' Parameter tuning for sliding window approach #' #' Apply \link{slideWindowDb} over a search grid made of combinations of \code{mutThresh} and #' \code{windowSize} to help with picking a pair of values for these parameters. Parameter #' tuning can be performed by choosing a combination that gives a reasonable number of #' filtered/remaining sequences. #' #' @param db \code{data.frame} containing sequence data. #' @param sequenceColumn name of the column containing IMGT-gapped sample sequences. #' @param germlineColumn name of the column containing IMGT-gapped germline sequences. #' @param dbMutList if supplied, this should be a list consisting of \code{data.frame}s #' returned as \code{$pos} in the nested list produced by #' \link{calcObservedMutations} with \code{returnRaw=TRUE}; otherwise, #' \link{calcObservedMutations} is called on columns \code{sequenceColumn} #' and \code{germlineColumn} of \code{db}. Default is \code{NULL}. #' @param mutThreshRange range of threshold on the number of mutations in \code{windowSize} #' consecutive nucleotides to try. Must be between 1 and #' maximum \code{windowSizeRange} inclusive. #' @param windowSizeRange range of length of consecutive nucleotides to try. The lower end #' must be at least 2. #' @param verbose whether to print out messages indicating current progress. Default #' is \code{TRUE}. #' @param nproc Number of cores to distribute the operation over. If the #' \code{cluster} has already been set earlier, then pass the #' \code{cluster}. This will ensure that it is not reset. #' @return a list of logical matrices. Each matrix corresponds to a \code{windowSize} in #' \code{windowSizeRange}. Each column in a matrix corresponds to a \code{mutThresh} in #' \code{mutThreshRange}. Each row corresponds to a sequence. \code{TRUE} values #' mean the sequences has at least the number of mutations specified in the column name, #' for that \code{windowSize}. #' #' @details If, in a given combination of \code{mutThresh} and \code{windowSize}, \code{mutThresh} #' is greater than \code{windowSize}, \code{NA}s will be returned for that particular #' combination. A message indicating that the combination has been "skipped" will be #' printed if \code{verbose=TRUE}. #' #' If \link{calcObservedMutations} was previously run on \code{db} and saved, supplying #' \code{$pos} from the saved result as \code{dbMutList} could save time by skipping a #' second call of \link{calcObservedMutations}. This could be helpful especially when #' \code{db} is large. #' #' @seealso \link{slideWindowDb} is called on \code{db} for tuning. See \link{slideWindowTunePlot} #' for visualization. See \link{calcObservedMutations} for generating \code{dbMutList}. #' #' @examples #' # Load and subset example data #' data(ExampleDb, package="alakazam") #' db <- ExampleDb[1:5, ] #' #' # Try out thresholds of 2-4 mutations in window sizes of 7-9 nucleotides. #' # In this case, all combinations are legal. #' slideWindowTune(db, mutThreshRange=2:4, windowSizeRange=7:9) #' #' # Illegal combinations are skipped, returning NAs. #' slideWindowTune(db, mutThreshRange=2:4, windowSizeRange=2:4, #' verbose=FALSE) #' #' # Run calcObservedMutations separately #' exDbMutList <- sapply(1:5, function(i) { #' calcObservedMutations(inputSeq=db[["sequence_alignment"]][i], #' germlineSeq=db[["germline_alignment_d_mask"]][i], #' returnRaw=TRUE)$pos }) #' slideWindowTune(db, dbMutList=exDbMutList, #' mutThreshRange=2:4, windowSizeRange=2:4) #' @export slideWindowTune <- function(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", dbMutList=NULL, mutThreshRange, windowSizeRange, verbose=TRUE, nproc=1){ # Hack for visibility of foreach index variables i <- NULL # check preconditions stopifnot(!is.null(db)) stopifnot(min(mutThreshRange) >= 1 & max(mutThreshRange) <= max(windowSizeRange) & min(windowSizeRange) >= 2) db <- db[,c(sequenceColumn, germlineColumn)] # If the user has previously set the cluster and does not wish to reset it if(!is.numeric(nproc)){ stop_cluster <- FALSE cluster <- nproc nproc <- 0 } else { stop_cluster <- TRUE } # Ensure that the nproc does not exceed the number of cores/CPUs available nproc <- min(nproc, cpuCount()) # If user wants to parallelize this function and specifies nproc > 1, then # initialize and register slave R processes/clusters & # export all necessary environment variables, functions and packages. if (nproc == 1) { # If needed to run on a single core/cpu then, register DoSEQ # (needed for 'foreach' in non-parallel mode) registerDoSEQ() } else { cluster_type <- "FORK" if (.Platform$OS.type == "windows") { cluster_type <- "PSOCK" } if (nproc != 0) { #cluster <- makeCluster(nproc, type="SOCK") cluster <- parallel::makeCluster(nproc, type= cluster_type) } parallel::clusterExport(cluster, list('db', 'sequenceColumn', 'germlineColumn', 'calcObservedMutations','slideWindowSeqHelper'), envir=environment() ) registerDoParallel(cluster,cores=nproc) } # get positions of R/S mutations for sequences in db # do this here and then call slideWindowSeqHelper (so it's done only once) # instead of calling slideWindowDb which does this every time it is called if (is.null(dbMutList)) { if (verbose) {cat(paste0("Identifying mutated positions\n"))} pb <- txtProgressBar(0, nrow(db), style = 3 ) inputMutList <- foreach(i=1:nrow(db), .verbose=FALSE, .errorhandling='stop') %dopar% { setTxtProgressBar(pb, i) calcObservedMutations(inputSeq=db[i, sequenceColumn], germlineSeq=db[i, germlineColumn], returnRaw=T)$pos } } else { if (verbose) {cat("dbMutList supplied; skipped calling calcObservedMutations()\n")} inputMutList <- dbMutList } # if (nproc != 1) { # parallel::clusterExport(cluster, # list('dbMutList'), # envir=environment() ) # } # Get window-threshold combinations combs <- expand.grid(windowSizeRange, mutThreshRange) pb2 <- txtProgressBar(0, nrow(combs), style = 3 ) if (verbose) {cat(paste0("\nAnalyzing combinations of windowSizeRange and mutThreshRange\n"))} tmp <- foreach(i=1:nrow(combs), .verbose=FALSE, .combine=rbind, .errorhandling='stop') %dopar% { setTxtProgressBar(pb2, i) size <- combs[i,1] thresh <- combs[i,2] if (thresh <= size){ # apply slideWindow using current pair of parameters cur.logical <- unlist(lapply(inputMutList, slideWindowSeqHelper, mutThresh = thresh, windowSize = size)) } else { if (verbose) {cat(paste0(">>> mutThresh = ", thresh, " > windowSize = ", size, " (skipped)\n"))} # NA if skipped cur.logical <- rep(NA, nrow(db)) } data.frame(list( "windowSize"=size, "mutThreshold"=thresh, "cur_logical"=cur.logical, "row_idx"=1:length(cur.logical) )) } cur.list <- lapply(split(tmp, f=tmp[['windowSize']]), function(x) { x <- x[,colnames(x) != "windowSize"] pivot_wider(x, names_from=!!rlang::sym("mutThreshold"), values_from=!!rlang::sym("cur_logical"), id_cols=!!rlang::sym("row_idx")) %>% arrange(!!rlang::sym("row_idx")) %>% select(-!!rlang::sym("row_idx")) %>% as.matrix() }) if (stop_cluster & !is.numeric(nproc)) { parallel::stopCluster(cluster) } return(cur.list) } #' Visualize parameter tuning for sliding window approach #' #' Visualize results from \link{slideWindowTune} #' #' @param tuneList a list of logical matrices returned by \link{slideWindowTune}. #' @param plotFiltered whether to plot the number of filtered ('filtered'), #' or remaining ('remaining') sequences for each mutation threshold. #' Use 'per_mutation' to plot the number of sequences at each mutation #' value. Default is \code{'filtered'}. #' @param percentage whether to plot on the y-axis the percentage of filtered sequences #' (as opposed to the absolute number). Default is \code{FALSE}. #' @param jitter.x whether to jitter x-axis values. Default is \code{FALSE}. #' @param jitter.x.amt amount of jittering to be applied on x-axis values if #' \code{jitter.x=TRUE}. Default is 0.1. #' @param jitter.y whether to jitter y-axis values. Default is \code{FALSE}. #' @param jitter.y.amt amount of jittering to be applied on y-axis values if #' \code{jitter.y=TRUE}. Default is 0.1. #' @param pchs point types to pass on to \link{plot}. Default is #' \code{1:length(tuneList)}. #' @param ltys line types to pass on to \link{plot}. Default is #' \code{1:length(tuneList)}. #' @param cols colors to pass on to \link{plot}. #' @param plotLegend whether to plot legend. Default is \code{TRUE}. #' @param legendPos position of legend to pass on to \link{legend}. Can be either a #' numeric vector specifying x-y coordinates, or one of #' \code{"topright"}, \code{"center"}, etc. Default is \code{"topright"}. #' @param legendHoriz whether to make legend horizontal. Default is \code{FALSE}. #' @param legendCex numeric values by which legend should be magnified relative to 1. #' @param title plot main title. Default is NULL (no title) #' @param returnRaw Return a data.frame with sequence counts (TRUE) or a #' plot. Default is \code{FALSE}. #' #' @details For each \code{windowSize}, if \code{plotFiltered='filtered'}, the x-axis #' represents a mutation threshold range, and the y-axis the number of #' sequences that have at least that number of mutations. If #' \code{plotFiltered='remaining'}, the y-axis represents the number of sequences #' that have less mutations than the mutation threshold range. For the same #' window size, a sequence can be included in the counts for different #' mutation thresholds. For example, sequence "CCACCAAAA" with germline #' "AAAAAAAAA" has 4 mutations. This sequence has at least 2 mutations #' and at least 3 mutations, in a window of size 4. the sequence will #' be included in the sequence count for mutation thresholds 2 and 3. #' If \code{plotFiltered='per_mutation'}, the sequences are counted only once #' for each window size, at their largest mutation threshold. The above #' example sequence would be included in the sequence count for #' mutation threshold 3. #' #' When plotting, a user-defined \code{amount} of jittering can be applied on values plotted #' on either axis or both axes via adjusting \code{jitter.x}, \code{jitter.y}, #' \code{jitter.x.amt} and \code{jitter.y.amt}. This may be help with visually distinguishing #' lines for different window sizes in case they are very close or identical to each other. #' If plotting percentages (\code{percentage=TRUE}) and using jittering on the y-axis values #' (\code{jitter.y=TRUE}), it is strongly recommended that \code{jitter.y.amt} be set very #' small (e.g. 0.01). #' #' \code{NA} for a combination of \code{mutThresh} and \code{windowSize} where #' \code{mutThresh} is greater than \code{windowSize} will not be plotted. #' #' @seealso See \link{slideWindowTune} for how to get \code{tuneList}. See \link{jitter} for #' use of \code{amount} of jittering. #' #' @examples #' # Use an entry in the example data for input and germline sequence #' data(ExampleDb, package="alakazam") #' #' # Try out thresholds of 2-4 mutations in window sizes of 3-5 nucleotides #' # on a subset of ExampleDb #' tuneList <- slideWindowTune(db = ExampleDb[1:10, ], #' mutThreshRange = 2:4, windowSizeRange = 3:5, #' verbose = FALSE) #' #' # Visualize #' # Plot numbers of sequences filtered without jittering y-axis values #' plotSlideWindowTune(tuneList, pchs=1:3, ltys=1:3, cols=1:3, #' plotFiltered='filtered', jitter.y=FALSE) #' #' # Notice that some of the lines overlap #' # Jittering could help #' plotSlideWindowTune(tuneList, pchs=1:3, ltys=1:3, cols=1:3, #' plotFiltered='filtered', jitter.y=TRUE) #' #' # Plot numbers of sequences remaining instead of filtered #' plotSlideWindowTune(tuneList, pchs=1:3, ltys=1:3, cols=1:3, #' plotFiltered='remaining', jitter.y=TRUE, #' legendPos="bottomright") #' #' # Plot percentages of sequences filtered with a tiny amount of jittering #' plotSlideWindowTune(tuneList, pchs=1:3, ltys=1:3, cols=1:3, #' plotFiltered='filtered', percentage=TRUE, #' jitter.y=TRUE, jitter.y.amt=0.01) #' @export plotSlideWindowTune <- function(tuneList, plotFiltered = c('filtered','remaining','per_mutation'), percentage = FALSE, jitter.x = FALSE, jitter.x.amt = 0.1, jitter.y = FALSE, jitter.y.amt = 0.1, pchs = 1:length(tuneList), ltys = 1:length(tuneList), cols = 1, plotLegend = TRUE, legendPos = "topright", legendHoriz = FALSE, legendCex = 1, title=NULL, returnRaw=FALSE){ # collapse parameter if no user input then first item is selected plotFiltered <- match.arg(plotFiltered) if (plotFiltered == 'filtered') { xlab <- "Threshold on number of mutations" ylab.part.2 <- "filtered" } else if (plotFiltered == 'remaining') { # invert (!) tuneList if plotting retained sequences tuneList <- lapply(tuneList, function(x){!x}) xlab <- "Threshold on number of mutations" ylab.part.2 <- "remaining" } else if (plotFiltered == 'per_mutation') { xlab <- "Maximum number of mutations" ylab.part.2 <- 'per_mutation' } else { warning("plotFiltered must be in [filtered, remaining, per_mutation].\n ", plotFiltered, " received instead. \n") } # if number of pchs/ltys/cols provided does not match number of lines expected # expand into vector with repeating values (otherwise legend would break) if (length(pchs)!=length(tuneList)) {pchs <- rep(pchs, length.out=length(tuneList))} if (length(ltys)!=length(tuneList)) {ltys <- rep(ltys, length.out=length(tuneList))} if (length(cols)!=length(tuneList)) {cols <- rep(cols, length.out=length(tuneList))} # tabulate tuneList (and if applicable convert to percentage) if (plotFiltered == 'per_mutation') { # preprocess tuneList to count each sequence once, # considering the largest number of mutations in the window plotList.tmp <- lapply(tuneList, function(window_df) { # For each sequence bind_rows(lapply(1:nrow(window_df), function(i) { x <- window_df[i,] # Find the mutation thresholds that are T idx <- which(x) # If there are none (all F or NA values) or there is only one, do nothing # If there are more than one, keep the largest index and set the previous values to F if (length(idx) > 1) { idx <- max(idx) x[1:(idx-1)] <- F } x })) }) tuneList <- plotList.tmp } plotList <- lapply(tuneList, colSums) if (percentage) {plotList <- lapply(plotList, function(x){x/nrow(tuneList[[1]])})} if (returnRaw) { return (bind_rows(plotList, .id = "windowSize")) } # get x-axis values (i.e. mutThreshRange; colnames of matrix in tuneList with most columns) #threshes = as.numeric(colnames(tuneList[[which.max(lapply(lapply(tuneList, colnames), length))]])) threshes <- as.numeric(colnames(tuneList[[1]])) # plot for first window size x1 <- threshes if (jitter.x) {x1 <- jitter(x1, amount=jitter.x.amt)} y1 <- plotList[[1]] if (jitter.y) {y1 <- jitter(y1, amount=jitter.y.amt)} if (percentage) { ylab.part.1 <- "Percentage of sequences" # ylim ylim.padding <- abs(diff(range(plotList, na.rm=T)))*0.01 ylims <- c(max(0, min(range(plotList, na.rm=T)) - ylim.padding), min(1, max(range(plotList, na.rm=T)) + ylim.padding) ) } else { ylab.part.1 <- "Number of sequences" # ylim: non-negative lower limit; upper limit slight above max tabulated sum ylims <- c( max(0, min(range(plotList, na.rm=T)) - max(1, jitter.y.amt) ), max(range(plotList, na.rm=T)) + max(1, jitter.y.amt) ) } plot(x1, # mutThreshRange on x-axis y1, # tabulated sums in plotList on y-axis ylim = ylims, # xlim: +/- jitter.x.amt*2 to accommodate for amount of jittering on x-axis xlim = c(min(threshes)-jitter.x.amt*2, max(threshes+jitter.x.amt*2)), xaxt="n", xlab=xlab, ylab=paste(ylab.part.1, ylab.part.2), cex.lab=1.5, cex.axis=1.5, type="b", lwd=1.5, pch=pchs[1], lty=ltys[1], col=cols[1]) axis(side=1, at=threshes, cex.axis=1.5) # add title if (!is.null(title)) { title(main=title) } # plot for the rest of the window sizes for (i in 1:length(plotList)){ if (i>=2) { xi <- threshes if (jitter.x) {xi <- jitter(xi, amount=jitter.x.amt)} yi <- plotList[[i]] if (jitter.y) {yi <- jitter(yi, amount=jitter.y.amt)} points(xi, yi, type='b', lwd=1.5, pch=pchs[i], lty=ltys[i], col=cols[i]) } } # add legend if (plotLegend) { # if legendPos specified as xy coordinates if (is.numeric(legendPos) & length(legendPos)==2) { legend(x=legendPos[1], y=legendPos[2], legend = c("Window Size", names(tuneList)), horiz = legendHoriz, cex = legendCex, pch=c(NA, pchs), lty=c(NA, ltys), col=c(NA, cols)) } else { # if legendPos specified as "center", "topright", etc. legend(legendPos, legend = c("Window Size", names(tuneList)), horiz = legendHoriz, cex = legendCex, pch=c(NA, pchs), lty=c(NA, ltys), col=c(NA, cols)) } } } #### Expected frequencies calculating functions #### #' Calculate expected mutation frequencies #' #' \code{expectedMutations} calculates the expected mutation frequencies for each #' sequence in the input \code{data.frame}. #' #' @param db \code{data.frame} containing sequence data. #' @param sequenceColumn \code{character} name of the column containing input #' sequences. #' @param germlineColumn \code{character} name of the column containing #' the germline or reference sequence. #' @param targetingModel \link{TargetingModel} object. Default is \link{HH_S5F}. #' @param regionDefinition \link{RegionDefinition} object defining the regions #' and boundaries of the Ig sequences. To use regions definitions, #' sequences in \code{sequenceColumn} and \code{germlineColumn} #' must be aligned, following the IMGT schema. #' @param mutationDefinition \link{MutationDefinition} object defining replacement #' and silent mutation criteria. If \code{NULL} then #' replacement and silent are determined by exact #' amino acid identity. #' @param nproc \code{numeric} number of cores to distribute the operation #' over. If the cluster has already been set the call function with #' \code{nproc} = 0 to not reset or reinitialize. Default is #' \code{nproc} = 1. #' @param cloneColumn clone id column name in \code{db} #' @param juncLengthColumn junction length column name in \code{db} #' #' @return A modified \code{db} \code{data.frame} with expected mutation frequencies #' for each region defined in \code{regionDefinition}. #' #' The columns names are dynamically created based on the regions in #' \code{regionDefinition}. For example, when using the \link{IMGT_V} #' definition, which defines positions for CDR and FWR, the following columns are #' added: #' \itemize{ #' \item \code{mu_expected_cdr_r}: number of replacement mutations in CDR1 and #' CDR2 of the V-segment. #' \item \code{mu_expected_cdr_s}: number of silent mutations in CDR1 and CDR2 #' of the V-segment. #' \item \code{mu_expected_fwr_r}: number of replacement mutations in FWR1, #' FWR2 and FWR3 of the V-segment. #' \item \code{mu_expected_fwr_s}: number of silent mutations in FWR1, FWR2 and #' FWR3 of the V-segment. #' } #' #' @details #' Only the part of the sequences defined in \code{regionDefinition} are analyzed. #' For example, when using the \link{IMGT_V} definition, mutations in #' positions beyond 312 will be ignored. #' #' @seealso #' \link{calcExpectedMutations} is called by this function to calculate the expected #' mutation frequencies. See \link{observedMutations} for getting observed #' mutation counts. See \link{IMGT_SCHEMES} for a set of predefined #' \link{RegionDefinition} objects. #' #' @examples #' # Subset example data #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call %in% c("IGHA", "IGHG") & sample_id == "+7d") #' set.seed(112) #' db <- dplyr::slice_sample(db, n=100) #' # Calculate expected mutations over V region #' db_exp <- expectedMutations(db, #' sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' regionDefinition=IMGT_V, #' nproc=1) #' #' # Calculate hydropathy expected mutations over V region #' db_exp <- expectedMutations(db, #' sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' regionDefinition=IMGT_V, #' mutationDefinition=HYDROPATHY_MUTATIONS, #' nproc=1) #' #' @export expectedMutations <- function(db,sequenceColumn = "sequence_alignment", germlineColumn = "germline_alignment", targetingModel = HH_S5F, regionDefinition=NULL, mutationDefinition = NULL, nproc = 1, cloneColumn = "clone_id", juncLengthColumn = "junction_length") { # Hack for visibility of foreach index variable idx <- NULL check <- checkColumns(db, c(sequenceColumn, germlineColumn)) if (check != TRUE) { stop(check) } regionDefinitionName <- "" if (!is.null(regionDefinition)) { regionDefinitionName <- regionDefinition@name # Message if sequences don't have gaps or Ns (because makeChangeo clone # masks IMGT gaps) as a proxy to detect not IMGT aligned sequences if (all(!grepl("[\\.Nn]",db[[sequenceColumn]]))) { warning("No IMGT gaps detected in ",sequenceColumn,".\nSequences in ", sequenceColumn," and ", germlineColumn, " should be aligned, with gaps (.,N or n) following the IMGT numbering scheme.") } if (all(!grepl("[\\.Nn]",db[[germlineColumn]]))) { warning("No IMGT gaps detected in ",germlineColumn, ".\nSequences in ", sequenceColumn," and ", germlineColumn, " should be aligned, with gaps (., N or n) following the IMGT numbering scheme.") } not_na <- !is.na(db[[germlineColumn]]) if (!isTRUE(all.equal(nchar(db[[sequenceColumn]][not_na]), nchar(db[[germlineColumn]][not_na]), check.attributes = FALSE))) { warning("Pairs of ", sequenceColumn, " and ", germlineColumn, " sequences with different lengths found.") stop("Expecting IMGT aligned, same length sequences in ", sequenceColumn, " and ", germlineColumn,".") } } # Check region definition if (!is.null(regionDefinition) & !is(regionDefinition, "RegionDefinition")) { stop(deparse(substitute(regionDefinition)), " is not a valid RegionDefinition object") } # Check mutation definition if (!is.null(mutationDefinition) & !is(mutationDefinition, "MutationDefinition")) { stop(deparse(substitute(mutationDefinition)), " is not a valid MutationDefinition object") } # Check if mutation count/freq columns already exist # and throw overwriting warning if (!is.null(regionDefinition)) { labels <- regionDefinition@labels } else { labels <- makeNullRegionDefinition()@labels } labels <- paste("mu_expected_", labels, sep="") label_exists <- labels[labels %in% colnames(db)] if (length(label_exists)>0) { warning(paste0("Columns ", paste(label_exists, collapse=", "), " exist and will be overwritten") ) db[,label_exists] <- NULL } # Check targeting model if (!is(targetingModel, "TargetingModel")) { stop(deparse(substitute(targetingModel)), " is not a valid TargetingModel object") } db$tmp_expmu_row_id <- 1:nrow(db) # Convert sequence columns to uppercase db <- toupperColumns(db, c(sequenceColumn, germlineColumn)) # If the user has previously set the cluster and does not wish to reset it if(!is.numeric(nproc)){ cluster = nproc nproc = 0 } # Ensure that the nproc does not exceed the number of cores/CPUs available nproc <- min(nproc, cpuCount(), na.rm=T) # If user wants to parallelize this function and specifies nproc > 1, then # initialize and register slave R processes/clusters & # export all necessary environment variables, functions and packages. if (nproc > 1) { cluster <- parallel::makeCluster(nproc, type = "PSOCK") parallel::clusterExport(cluster, list('db', 'sequenceColumn', 'germlineColumn', 'regionDefinitionName', 'juncLengthColumn', 'setRegionBoundaries', 'regionDefinition','targetingModel', 'calcExpectedMutations','calculateTargeting', 's2c','c2s','NUCLEOTIDES','HH_S5F', 'calculateMutationalPaths','CODON_TABLE','IMGT_V_BY_REGIONS'), envir=environment() ) registerDoParallel(cluster,cores=nproc) } else if (nproc == 1) { # If needed to run on a single core/cpu then, register DoSEQ # (needed for 'foreach' in non-parallel mode) registerDoSEQ() } # Printing status to console # cat("Calculating the expected frequencies of mutations...\n") # Calculate targeting for each sequence (based on the germline) # Should be a 5 x N matrix where N in the number of nucleotides defined by # the regionDefinition numbOfSeqs <- nrow(db) targeting_list <- foreach (idx=iterators::icount(numbOfSeqs)) %dopar% { rd <- regionDefinition if (regionDefinitionName %in% c("IMGT_VDJ_BY_REGIONS","IMGT_VDJ")) { rd <- setRegionBoundaries(juncLength = db[[juncLengthColumn]][idx], sequenceImgt = db[[sequenceColumn]][idx], regionDefinition=regionDefinition) } eM <- calcExpectedMutations(germlineSeq=db[[germlineColumn]][idx], inputSeq=db[[sequenceColumn]][idx], targetingModel=targetingModel, regionDefinition=rd, mutationDefinition=mutationDefinition) eM['tmp_expmu_row_id'] <- db[['tmp_expmu_row_id']][idx] eM } # Convert list of expected mutation freq to data.frame if (is.null(regionDefinition)) { labels_length <- length(makeNullRegionDefinition()@labels) + 1 # +1 for tmp row_id } else { labels_length <- length(regionDefinition@labels) + 1 } expectedMutationFrequencies <- as.data.frame(do.call(rbind, lapply(targeting_list, function(x) { length(x) <- labels_length return(x) })), stringsAsFactors=F) expectedMutationFrequencies[is.na(expectedMutationFrequencies)] <- 0 col_names <- colnames(expectedMutationFrequencies) mu_col_names <- col_names != "tmp_expmu_row_id" colnames(expectedMutationFrequencies)[mu_col_names] <- paste0("mu_expected_", colnames(expectedMutationFrequencies)[mu_col_names]) # Properly shutting down the cluster if(nproc>1){ parallel::stopCluster(cluster) } # Bind the observed mutations to db db_new <- db %>% ungroup() %>% left_join(expectedMutationFrequencies, by="tmp_expmu_row_id") %>% arrange(!!rlang::sym("tmp_expmu_row_id")) %>% select(-!!rlang::sym("tmp_expmu_row_id")) return(db_new) } #' Calculate expected mutation frequencies of a sequence #' #' \code{calcExpectedMutations} calculates the expected mutation #' frequencies of a given sequence. This is primarily a helper function for #' \link{expectedMutations}. #' #' @param germlineSeq germline (reference) sequence. #' @param inputSeq input (observed) sequence. If this is not \code{NULL}, #' then \code{germlineSeq} will be processed to be the same #' same length as \code{inputSeq} and positions in #' \code{germlineSeq} corresponding to positions with Ns in #' \code{inputSeq} will also be assigned an N. #' @param targetingModel \link{TargetingModel} object. Default is \link{HH_S5F}. #' @param regionDefinition \link{RegionDefinition} object defining the regions #' and boundaries of the Ig sequences. #' @param mutationDefinition \link{MutationDefinition} object defining replacement #' and silent mutation criteria. If \code{NULL} then #' replacement and silent are determined by exact #' amino acid identity. #' #' @return A \code{numeric} vector of the expected frequencies of mutations in the #' regions in the \code{regionDefinition}. For example, when using the default #' \link{IMGT_V} definition, which defines positions for CDR and #' FWR, the following columns are calculated: #' \itemize{ #' \item \code{mu_expected_cdr_r}: number of replacement mutations in CDR1 and #' CDR2 of the V-segment. #' \item \code{mu_expected_cdr_s}: number of silent mutations in CDR1 and CDR2 #' of the V-segment. #' \item \code{mu_expected_fwr_r}: number of replacement mutations in FWR1, #' FWR2 and FWR3 of the V-segment. #' \item \code{mu_expected_fwr_s}: number of silent mutations in FWR1, FWR2 and #' FWR3 of the V-segment. #' } #' #' @details #' \code{calcExpectedMutations} calculates the expected mutation frequencies of a #' given sequence and its germline. #' #' Note, only the part of the sequences defined in \code{regionDefinition} are analyzed. #' For example, when using the default \link{IMGT_V} definition, mutations in #' positions beyond 312 will be ignored. #' #' @seealso \link{expectedMutations} calls this function. #' To create a custom \code{targetingModel} see \link{createTargetingModel}. #' See \link{calcObservedMutations} for getting observed mutation counts. #' #' @examples #' # Load example data #' data(ExampleDb, package="alakazam") #' #' # Use first entry in the exampled data for input and germline sequence #' in_seq <- ExampleDb[["sequence_alignment"]][1] #' germ_seq <- ExampleDb[["germline_alignment_d_mask"]][1] #' #' # Identify all mutations in the sequence #' calcExpectedMutations(germ_seq,in_seq) #' #' # Identify only mutations the V segment minus CDR3 #' calcExpectedMutations(germ_seq, in_seq, regionDefinition=IMGT_V) #' #' # Define mutations based on hydropathy #' calcExpectedMutations(germ_seq, in_seq, regionDefinition=IMGT_V, #' mutationDefinition=HYDROPATHY_MUTATIONS) #' #' @export calcExpectedMutations <- function(germlineSeq, inputSeq=NULL, targetingModel=HH_S5F, regionDefinition=NULL, mutationDefinition=NULL) { # Check region definition if (!is.null(regionDefinition) & !is(regionDefinition, "RegionDefinition")) { stop(deparse(substitute(regionDefinition)), " is not a valid RegionDefinition object") } # Check mutation definition if (!is.null(mutationDefinition) & !is(mutationDefinition, "MutationDefinition")) { stop(deparse(substitute(mutationDefinition)), " is not a valid MutationDefinition object") } # Check targeting model if (!is(targetingModel, "TargetingModel")) { stop(deparse(substitute(targetingModel)), " is not a valid TargetingModel object") } # Mask ambiguous nucleotide characters germlineSeq <- gsub("[MRWSYKVHDB]", "N", germlineSeq) # Assign codon table codonTable <- if (is.null(mutationDefinition)) { CODON_TABLE } else { mutationDefinition@codonTable } # Get targeting targeting <- calculateTargeting(germlineSeq=germlineSeq, inputSeq=inputSeq, targetingModel=targetingModel, regionDefinition=regionDefinition) # Determine the mutations paths (i.e. determine R and S mutation frequencies) mutationalPaths <- calculateMutationalPaths(germlineSeq=c2s(colnames(targeting)), regionDefinition=regionDefinition, codonTable=codonTable) typesOfMutations <- c("r", "s") mutationalPaths[!(mutationalPaths %in% typesOfMutations)] <- NA if (is.null(regionDefinition)) { rdLength <- max(stri_length(inputSeq), stri_length(germlineSeq), na.rm=TRUE) regionDefinition <- makeNullRegionDefinition(rdLength) } listExpectedMutationFrequencies <- list() for(region in regionDefinition@regions){ for(typeOfMutation in typesOfMutations){ region_mutation <- paste(region, typeOfMutation, sep="_") targeting_region <- targeting[1:4, regionDefinition@boundaries %in% region] mutationalPaths_region <- mutationalPaths[, regionDefinition@boundaries[1:ncol(mutationalPaths)] %in% region] targeting_typeOfMutation_region <- sum(targeting_region[mutationalPaths_region == typeOfMutation], na.rm=TRUE) listExpectedMutationFrequencies[[region_mutation]] <- targeting_typeOfMutation_region } } expectedMutationFrequencies <- unlist(listExpectedMutationFrequencies) expectedMutationFrequencies[!is.finite(expectedMutationFrequencies)] <- NA expectedMutationFrequencies <- expectedMutationFrequencies / sum(expectedMutationFrequencies, na.rm=TRUE) return(expectedMutationFrequencies) } calculateTargeting <- function(germlineSeq, inputSeq=NULL, targetingModel=HH_S5F, regionDefinition=NULL) { # Check region definition if (!is.null(regionDefinition) & !is(regionDefinition, "RegionDefinition")) { stop(deparse(substitute(regionDefinition)), " is not a valid RegionDefinition object") } # Check targeting model if (!is(targetingModel, "TargetingModel")) { stop(deparse(substitute(targetingModel)), " is not a valid TargetingModel object") } # If an inputSequence is passed then process the germlineSequence # to be the same length, mask germlineSequence with Ns where inputSequence is also N # If not needed then you may skip this step by passing in inputSequence=NULL # (which is default). if(!is.null(inputSeq)){ # Trim the input and germline sequence to the shortest len_inputSeq <- stri_length(inputSeq) len_germlineSeq <- stri_length(germlineSeq) # If a regionDefinition is passed, # then only analyze till the end of the defined length if(!is.null(regionDefinition)){ length_regionDefinition <- regionDefinition@seqLength } else{ length_regionDefinition <- max(len_inputSeq, len_germlineSeq, na.rm=TRUE) } len_shortest <- min( c(len_inputSeq,len_germlineSeq,length_regionDefinition), na.rm=TRUE) c_inputSeq <- s2c(inputSeq)[1:len_shortest] c_germlineSeq <- s2c(germlineSeq)[1:len_shortest] # If the sequence and germline (which now should be the same length) is shorter # than the length_regionDefinition, pad it with Ns if(len_shortest < length_regionDefinition){ fillWithNs <- array("N", length_regionDefinition - len_shortest) c_inputSeq <- c(c_inputSeq, fillWithNs) c_germlineSeq <- c( c_germlineSeq, fillWithNs) } # Mask germline with Ns where input sequence has Ns c_germlineSeq[c_inputSeq == "N" | !c_inputSeq %in% c(NUCLEOTIDES[1:5], ".") ] <- "N" s_germlineSeq <- c2s(c_germlineSeq) } else { s_germlineSeq <- germlineSeq } # Removing IMGT gaps (they should come in threes) # After converting ... to ZZZ any other . is not an IMGT gap & will be treated like N gaplessSeq <- gsub("\\.\\.\\.", "ZZZ", s_germlineSeq) #If there is a single gap left convert it to an N gaplessSeq <- gsub("\\.", "N", gaplessSeq) # Re-assigning s_germlineSeq (now has all "." that are not IMGT gaps converted to Ns) gaplessSeq <- gsub("ZZZ", "...", gaplessSeq) # Vector of seq c_germlineSeq <- s2c(gaplessSeq) # Matrix to hold targeting values for each position in c_germlineSeq germlineSeqTargeting <- matrix(NA, ncol=stri_length(gaplessSeq), nrow=length(NUCLEOTIDES[1:5]), dimnames=list(NUCLEOTIDES[1:5], c_germlineSeq)) # Now remove the IMGT gaps so that the correct 5mers can be made to calculate # targeting. e.g. # GAGAAA......TAG yields: "GAGAA" "AGAAA" "GAAAT" "AAATA" "AATAG" # (because the IMGT gaps are NOT real gaps in sequence!!!) gaplessSeq <- gsub("\\.\\.\\.", "", gaplessSeq) gaplessSeqLen <- stri_length(gaplessSeq) #Slide through 5-mers and look up targeting gaplessSeq <- paste("NN", gaplessSeq, "NN", sep="") gaplessSeqLen <- stri_length(gaplessSeq) pos <- 3:(gaplessSeqLen - 2) subSeq <- substr(rep(gaplessSeq, gaplessSeqLen - 4), (pos - 2), (pos + 2)) germlineSeqTargeting_gapless <- targetingModel@targeting[, subSeq] # germlineSeqTargeting_gapless <- sapply(subSeq, function(x) { # targetingModel@targeting[, x] }) germlineSeqTargeting[, c_germlineSeq != "."] <- germlineSeqTargeting_gapless # Set self-mutating targeting values to be NA mutatingToSelf <- colnames(germlineSeqTargeting) mutatingToSelf[!(mutatingToSelf %in% NUCLEOTIDES[1:5])] <- "N" # # TODO: What's with this <<- business? # # TODO: I think this is assigning NA to all self-mutations, which are already NA # sapply(1:ncol(germlineSeqTargeting), function(pos) { germlineSeqTargeting[mutatingToSelf[pos], pos] <<- NA }) germlineSeqTargeting[!is.finite(germlineSeqTargeting)] <- NA return(germlineSeqTargeting) } calculateMutationalPaths <- function(germlineSeq, inputSeq=NULL, regionDefinition=NULL, codonTable=NULL) { # Check region definition if (!is.null(regionDefinition) & !is(regionDefinition, "RegionDefinition")) { stop(deparse(substitute(regionDefinition)), " is not a valid RegionDefinition object") } # Set codon table if required if (is.null(codonTable)) { codonTable <- CODON_TABLE } # If an inputSequence is passed then process the germlineSequence # to be the same length, mask germlineSequence with Ns where inputSequence is also N # If this function is being called after running calculateTargeting you may skip # this step by passing in inputSequence=NULL (which is default). This way you save # some processing time. if(!is.null(inputSeq)){ # Trim the input and germline sequence to the shortest len_inputSeq <- stri_length(inputSeq) len_germlineSeq <- stri_length(germlineSeq) # If a regionDefinition is passed, # then only analyze till the end of the defined length if(!is.null(regionDefinition)){ length_regionDefinition <- regionDefinition@seqLength } else{ length_regionDefinition <- max(len_inputSeq, len_germlineSeq, na.rm=TRUE) } len_shortest <- min( c(len_inputSeq,len_germlineSeq,length_regionDefinition), na.rm=TRUE) c_inputSeq <- s2c(inputSeq)[1:len_shortest] c_germlineSeq <- s2c(germlineSeq)[1:len_shortest] # If the sequence and germline (which now should be the same length) is shorter # than the length_regionDefinition, pad it with Ns if(len_shortest0) { stop("Input nucleotides must be one of A, C, G, or T.") } # sort by alphabetical order (important) nucs <- sort(unique(nucs)) # concatenate nucs <- c2s(nucs) # convert return(IUPAC_DNA_2[nucs]) } # Convert one or more characters including dash and dots to ambiguous characters # # @param chars a character vector of nucleotides. One or more of # \code{c("A", "C", "G", "T", "N", "-", ".")}. # # @return a single IUPAC character or "-" or "." # chars2Ambiguous <- function(chars) { # chars must all be unique stopifnot(length(unique(chars)) == length(chars)) # input characters must be one of the characters allowed legal <- c("A", "C", "G", "T", "N", "-", ".") if (sum(! chars %in% legal) > 0) { stop("Input characters must be one of A, C, G, T, N, - (dash), or . (dot)") } # if any of A, T, G, C, N appears if (any(chars %in% c("A", "C", "G", "T", "N"))) { # ignore - and . idx.dash.dot <- which(chars == "-" | chars == ".") if (length(idx.dash.dot)>0) { chars <- chars[-idx.dash.dot] } # if only N appears if (sum(chars=="N") == length(chars)) { return("N") } else { # otherwise, if there are any of A, T, G, C # remove N # e.g. AGN would be treated as AG (R) # e.g. ATGN would be treated as AGT (D) # e.g. ATGCN would be treated as ACGT (N) idx.N <- which(chars == "N") if (length(idx.N) > 0) { chars <- chars[-idx.N] } return(nucs2IUPAC(chars)) } } else { # otherwise, if only one or both of - and . appear(s) # if both - and . appear, return - if (sum(chars %in% c("-", ".")) == 2) { return("-") } else { # if only - or . appears, return that return(chars) } } } # Convert IUPAC incomplete nucleic acid to one or more characters # # @param code a single IUPAC character. # @param excludeN if \code{TRUE}, do not translate when \code{code} # is \code{N}. Default is \code{TRUE}. # @return a character vector of nucleotides. One or more of # \code{c("A", "C", "G", "T")}. # IUPAC2nucs <- function(code, excludeN=TRUE) { # input character must be one of IUPAC codes if (! code %in% names(IUPAC_DNA) ) { stop("Input character must be one of IUPAC DNA codes.") } # convert if (code == "N" & excludeN) { return(code) } else { return(IUPAC_DNA[[code]]) } } # Given a nucleotide position, returns the codon number # e.g. nuc 86 = codon 29 getCodonNumb <- function(nucPos){ return( ceiling(nucPos/3) ) } # Given a codon, returns all the nuc positions that make the codon getCodonNucs <- function(codonNumb){ getCodonPos(codonNumb*3) } # Given a nucleotide positions return the position in the codon getContextInCodon <- function(nucPos){ return((nucPos - 1)%%3 + 1 ) } # Given a nucleotide position, returns the pos of the 3 nucs that made the codon # e.g. nuc 86 is part of nucs 85,86,87 getCodonPos <- function(nucPos) { codonNum <- (ceiling(nucPos / 3)) * 3 return ((codonNum - 2):codonNum) } # Given two codons, tells you if the mutation is R or S (based on your definition) # # @param codonFrom starting codon. IUPAC ambiguous characters are allowed. # @param codonTo ending codon. IUPAC ambiguous characters are allowed. # @param ambiguousMode whether to consider ambiguous characters as "either or" # or "and" when determining (and counting) the type(s) of # mutations. Applicable only if \code{codonFrom} and/or # \code{codonTo} contains ambiguous characters. One of # \code{c("eitherOr", "and")}. Default is \code{"eitherOr"}. # @param aminoAcidClasses vector of amino acid trait classes. # if NULL then R or S is determined by amino acid identity # @return A vector with entries named by mutation type, including "r" (replacement), # "s" (silent), "stop" (stop) or "na" (input codons are identical or include NA). # Each entry indicates the count of its corresponding type of mutation. # # @details When there are ambiguous characters in \code{codonFrom} and/or \code{codonTo}: # \itemize{ # \item If \code{ambiguousMode="eitherOr"}, ambiguous characters will each # be expanded but only 1 mutation will be recorded. The priority for # different types of mutations, in decreasing order, is as follows: # no mutation ("na"), replacement mutation ("r"), silent mutation ("s"), # and stop mutation ("Stop"). The returned vector will have exactly one # entry with a count of 1 and 0 in all other entries. # \item If \code{ambiguousMode="and"}, ambiguous characters will each be # expanded and mutation(s) from each expansion will be recorded. # Each entry in the returned vector could potentially be greater than 1. # } # # @examples # # Without classes # mutationType("TTT", "TTC") # mutationType("TTT", "TTA") # mutationType("TTT", "TGA") # mutationType("TGG", "TWG") # # # With classes # classes <- HYDROPATHY_MUTATIONS@classes # mutationType("TTT", "TTC", aminoAcidClasses=classes) # mutationType("TTT", "TTA", aminoAcidClasses=classes) # mutationType("TTT", "TCT", aminoAcidClasses=classes) # mutationType("TTT", "TGA", aminoAcidClasses=classes) # mutationType <- function(codonFrom, codonTo, ambiguousMode=c("eitherOr", "and"), aminoAcidClasses=NULL) { # codonFrom="TTT"; codonTo="TTA" # codonFrom="TTT"; codonTo="TGA" ambiguousMode <- match.arg(ambiguousMode) # placeholder for tabulation tab <- setNames(object=rep(0, 4), nm=c("r", "s", "stop", "na")) if (grepl(pattern="[-.]", x=codonFrom) | grepl(pattern="[-.]", x=codonTo)) { # "na" tab[4] <- 1 } else { codonFrom.all <- EXPANDED_AMBIGUOUS_CODONS[[codonFrom]] codonTo.all <- EXPANDED_AMBIGUOUS_CODONS[[codonTo]] for (cur.codonFrom in codonFrom.all) { for (cur.codonTo in codonTo.all) { # if codons are the same, there is no mutation; count as NA if (cur.codonFrom == cur.codonTo) { # "na" tab[4] <- tab[4] + 1 } else { # Translate codons cur.aaFrom <- AMINO_ACIDS[cur.codonFrom] cur.aaTo <- AMINO_ACIDS[cur.codonTo] # If any codon is NA then return NA if (any(is.na(c(codonFrom, codonTo, cur.aaFrom, cur.aaTo)))) { # "na" tab[4] <- tab[4] + 1 } else if (any(c(cur.aaFrom, cur.aaTo) == "*")) { # If any amino acid is Stop then return "stop" tab[3] <- tab[3] + 1 } else if (is.null(aminoAcidClasses)) { # Check for exact identity if no amino acid classes are specified mutation <- if (cur.aaFrom == cur.aaTo) { "s" } else { "r" } tab[mutation] <- tab[mutation]+1 } else { # Check for amino acid class identity if classes are specified mutation <- if (aminoAcidClasses[cur.aaFrom] == aminoAcidClasses[cur.aaTo]) { "s" } else { "r" } tab[mutation] <- tab[mutation]+1 } } } } # if there's ambiguous char in observed or germline if ((length(codonFrom.all) > 1) | (length(codonTo.all) > 1)) { if (ambiguousMode=="eitherOr") { if (tab[4] > 0) { # "na" tab <- setNames(object=c(0, 0, 0, 1), nm=c("r", "s", "stop", "na")) } else if (tab[2] > 0) { # "S" tab <- setNames(object=c(0, 1, 0, 0), nm=c("r", "s", "stop", "na")) } else if (tab[1] > 0) { # "R" tab <- setNames(object=c(1, 0, 0, 0), nm=c("r", "s", "stop", "na")) } else { tab <- setNames(object=c(0, 0, 1, 0), nm=c("r", "s", "stop", "na")) } stopifnot(sum(tab) == 1) } else { stopifnot(sum(tab) >= 1) } } else { # no need to do anything if there isn't ambiguous char in observed or germline # there should be only 1 mutation stopifnot(sum(tab) == 1) } } return(tab) } # returns a boolean vector indicating whether ambiguous characters # exist in each entry of input character vector # input: # - seqs: a character vector # output: # - a boolean vector, where a TRUE indicates presence of ambiguous # character(s) checkAmbiguousExist <- function(seqs) { # ^ within brackets negates the character class bool <- stri_detect_regex(str=seqs, pattern="[^atgcnATGCN\\-\\.]") return(bool) } shazam/R/Shazam.R0000644000176200001440000002521115037655344013321 0ustar liggesusers#' @keywords internal #' @aliases shazam-package "_PACKAGE" # Shazam package documentation and import directives #' The shazam package #' #' Dramatic improvements in high-throughput sequencing technologies now enable #' large-scale characterization of Ig repertoires, defined as the collection of transmembrane #' antigen-receptor proteins located on the surface of T and B lymphocytes. The \code{shazam} #' package provides tools for advanced analysis of somatic hypermutation (SHM) in #' immunoglobulin (Ig) sequences. The key functions in \code{shazam}, broken down topic, are #' described below. #' #' @section Mutational profiling: #' \code{shazam} provides tools to quantify the extent and nature of SHM within #' full length V(D)J sequences as well as sub-regions (eg, FWR and CDR). #' Quantification of expected mutational loaded, under specific SHM targeting #' models, can also be performed along with model driven simulations of SHM. #' #' \itemize{ #' \item \link{collapseClones}: Build clonal consensus sequences. #' \item \link{consensusSequence}: Build a single consensus sequence. #' \item \link{observedMutations}: Compute observed mutation counts and frequencies. #' \item \link{expectedMutations}: Compute expected mutation frequencies. #' \item \link{shmulateSeq}: Simulate mutations in a single sequence. #' \item \link{shmulateTree}: Simulate mutations over a lineage tree. #' \item \link{setRegionBoundaries}: Extends a region definition to include CDR3 and FWR4. #' } #' #' @section SHM targeting models: #' Computational models and analyses of SHM have separated the process #' into two independent components: #' \enumerate{ #' \item A mutability model that defines where mutations occur. #' \item A nucleotide substitution model that defines the resulting mutation. #' } #' Collectively these are what form the targeting model of SHM. \code{shazam} #' provides empirically derived targeting models for both humans and mice, #' along with tools to build these mutability and substitution models from data. #' #' \itemize{ #' \item \link{createTargetingModel}: Build a 5-mer targeting model. #' \item \link{plotMutability}: Plot 5-mer mutability rates. #' \item \link{HH_S5F}: Human 5-mer SHM targeting model. #' \item \link{MK_RS5NF}: Mouse 5-mer SHM targeting model. #' } #' #' @section Quantification of selection pressure: #' Bayesian Estimation of Antigen-driven Selection in Ig Sequences is a #' novel method for quantifying antigen-driven selection in high-throughput #' Ig sequence data. Targeting models created using \code{shazam} can be used #' to estimate the null distribution of expected mutation frequencies used #' by BASELINe, providing measures of selection pressure informed by known #' AID targeting biases. #' #' \itemize{ #' \item \link{calcBaseline}: Calculate the BASELINe probability #' density functions (PDFs). #' \item \link{groupBaseline}: Combine PDFs from sequences grouped #' by biological or experimental relevance. #' \item \link{summarizeBaseline}: Compute summary statistics from BASELINe PDFs. #' \item \link{testBaseline}: Perform significance testing for the difference #' between BASELINe PDFs. #' \item \link{plotBaselineDensity}: Plot the probability density functions #' resulting from selection analysis. #' \item \link{plotBaselineSummary}: Plot summary statistics resulting from #' selection analysis. #' } #' #' @section Mutational distance calculation: #' \code{shazam} provides tools to compute evolutionary distances between #' sequences or groups of sequences, which can leverage SHM targeting #' models. This information is particularly useful in understanding and #' defining clonal relationships. #' #' \itemize{ #' \item \link{findThreshold}: Identify clonal assignment threshold based on #' distances to nearest neighbors. #' \item \link{distToNearest}: Tune clonal assignment thresholds by calculating #' distances to nearest neighbors. #' \item \link{calcTargetingDistance}: Construct a nucleotide distance matrix from a #' 5-mer targeting model. #' } #' #' @name shazam #' @references #' \enumerate{ #' \item Hershberg U, et al. Improved methods for detecting selection by mutation #' analysis of Ig V region sequences. #' Int Immunol. 2008 20(5):683-94. #' \item Uduman M, et al. Detecting selection in immunoglobulin sequences. #' Nucleic Acids Res. 2011 39(Web Server issue):W499-504. (Corrections at #' http://selection.med.yale.edu/baseline/correction/) #' \item Yaari G, et al. Quantifying selection in high-throughput immunoglobulin #' sequencing data sets. #' Nucleic Acids Res. 2012 40(17):e134. #' \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based #' on synonymous mutations from high-throughput immunoglobulin sequencing data. #' Front Immunol. 2013 4:358. #' \item Cui A, Di Niro R, Vander Heiden J, Briggs A, Adams K, Gilbert T, O'Connor K, #' Vigneault F, Shlomchik M and Kleinstein S (2016). A Model of Somatic Hypermutation #' Targeting in Mice Based on High-Throughput Ig Sequencing Data. The Journal of #' Immunology, 197(9), 3566-3574. #' } #' #' @import ggplot2 #' @import graphics #' @import methods #' @import utils #' @importFrom alakazam getAllele getGene getFamily getSegment getLocus groupGenes #' getAAMatrix getDNAMatrix IUPAC_DNA #' pairwiseDist nonsquareDist pairwiseEqual #' seqDist seqEqual #' isValidAASeq translateStrings gridPlot #' getMRCA getPathLengths tableEdges #' progressBar baseTheme checkColumns cpuCount #' makeChangeoClone summarizeSubtrees buildPhylipLineage #' @importFrom ape mst #' @importFrom diptest dip.test #' @importFrom doParallel registerDoParallel #' @importFrom dplyr do n desc %>% #' bind_cols bind_rows combine #' filter select arrange #' group_by ungroup group_indices #' mutate summarize #' mutate_at summarize_at #' rename transmute #' left_join recode pull #' @importFrom foreach foreach %dopar% registerDoSEQ #' @importFrom igraph V E as_adjacency_matrix graph_from_data_frame #' vertex_attr set_vertex_attr #' layout_as_tree V<- #' @importFrom iterators icount #' @importFrom KernSmooth bkde #' @importFrom lazyeval interp #' @importFrom MASS fitdistr #' @importFrom progress progress_bar #' @importFrom rlang sym syms .data #' @importFrom scales log2_trans log10_trans trans_breaks trans_format #' math_format percent scientific pretty_breaks #' @importFrom seqinr c2s s2c words translate #' @importFrom stats na.omit setNames ecdf sd cor cov median mad #' approx convolve weighted.mean p.adjust #' dbeta pbeta qbeta rbeta optim optimize #' dnorm pnorm rbinom runif dgamma pgamma uniroot na.exclude #' as.dist cutree integrate #' @importFrom stringi stri_dup stri_flatten stri_join stri_length #' stri_sub stri_sub_replace stri_detect_regex #' stri_count_boundaries stri_count_regex #' stri_extract_all_regex stri_extract_first_regex #' stri_replace_all_regex stri_replace_first_regex #' @importFrom tidyr gather spread pivot_wider #' @importFrom tidyselect all_of any_of NULL # Package loading actions .onAttach <- function(libname, pkgname) { msg <- citation(pkgname) msg <-paste(c(format(msg,"citation")),collapse="\n\n") packageStartupMessage(msg) } #### Sysdata #### # Deprecated (v0.1.4) mouse single nucleotide distance matrix # # Single nucleotide distance matrix of somatic hypermutation targeting based on # Mus musculus Ig sequence data. # # @format A symmetric matrix of nucleotide substitution distance scores with # row names and column names definition the specific substitution. # # @references # \enumerate{ # \item Smith DS, et al. Di- and trinucleotide target preferences of somatic # mutagenesis in normal and autoreactive B cells. # J Immunol. 1996 156:2642-52. # } # # M1N_Compat # Deprecated (v0.1.4) Human single nucleotide distance matrix. # # Single nucleotide distance matrix of somatic hypermutation targeting based on # human Ig sequence data. # # @format A symmetric matrix of nucleotide substitution distance scores with # row names and column names definition the specific substitution. # # @references # \enumerate{ # \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based # on synonymous mutations from high-throughput immunoglobulin sequencing data. # Front Immunol. 2013 4(November):358. # } # # HS1F_Compat # Ordered nucleotide character set # NUCLEOTIDES <- c("A", "C", "G", "T", "N", "-", ".") # IMGT V segment length # VLENGTH <- 312 # 5x312 logical matrix of CDR positions # CDR_Nuc_Mat # 5x312 logical matrix of FWR positions # FWR_Nuc_Mat # 12x216 matrix of replacement and silent mutation permutations # CODON_TABLE # 1x24 vector of amino acid charge classes # AMINO_ACIDS_CHARGE # 1x24 vector of amino acid hydropathy classes # AMINO_ACIDS_HYDROPATHY # 1x24 vector of amino acid polarity classes # AMINO_ACIDS_POLARITY # TODO: What is this? # CONST_I # TODO: And what is this? # BAYESIAN_FITTED # IMGT-KABAT numbering mapping # As described hare http://www.imgt.org/IMGTScientificChart/Numbering/IMGT-Kabat_part1.html # CONVERT_NUM_REF # Add built-in variables to global variables environment utils::globalVariables(c("HH_S1F", "HKL_S1F", "MK_RS1NF", "HH_S5F", "HKL_S5F", "MK_RS5NF", "U5N", "IMGT_V_BY_REGIONS"), package="shazam")shazam/R/Deprecated.R0000644000176200001440000001753714652721545014151 0ustar liggesusers# Deprecated and defunct functions #' @include MutationProfiling.R NULL #### Deprecated #### #' slideWindowTunePlot - plotSlideWindowTune backward compatibility #' #' Wrapper function for \link{plotSlideWindowTune} #' #' @param tuneList a list of logical matrices returned by \link{slideWindowTune}. #' @param plotFiltered whether to plot the number of filtered (\code{TRUE} or \code{filtered}), #' or remaining (FALSE or remaining) sequences for each mutation threshold. #' Use \code{NULL} or \code{per_mutation} to plot the number of sequences #' at each mutation value. Default is \code{TRUE}. #' @param percentage whether to plot on the y-axis the percentage of filtered sequences #' (as opposed to the absolute number). Default is \code{FALSE}. #' @param jitter.x whether to jitter x-axis values. Default is \code{FALSE}. #' @param jitter.x.amt amount of jittering to be applied on x-axis values if #' \code{jitter.x=TRUE}. Default is 0.1. #' @param jitter.y whether to jitter y-axis values. Default is \code{FALSE}. #' @param jitter.y.amt amount of jittering to be applied on y-axis values if #' \code{jitter.y=TRUE}. Default is 0.1. #' @param pchs point types to pass on to \link{plot}. #' @param ltys line types to pass on to \link{plot}. #' @param cols colors to pass on to \link{plot}. #' @param plotLegend whether to plot legend. Default is \code{TRUE}. #' @param legendPos position of legend to pass on to \link{legend}. Can be either a #' numeric vector specifying x-y coordinates, or one of #' \code{"topright"}, \code{"center"}, etc. Default is \code{"topright"}. #' @param legendHoriz whether to make legend horizontal. Default is \code{FALSE}. #' @param legendCex numeric values by which legend should be magnified relative to 1. #' @param title plot main title. Default is NULL (no title) #' @param returnRaw Return a data.frame with sequence counts (TRUE) or a #' plot. Default is \code{FALSE}. #' #' @details For each \code{windowSize}, if \code{plotFiltered=TRUE}, the x-axis #' represents a mutation threshold range, and the y-axis the number of #' sequences that have at least that number of mutations. If #' \code{plotFiltered=TRUE}, the y-axis represents the number of sequences #' that have less mutations than the mutation threshold range. For the same #' window size, a sequence can be included in the counts for different #' mutation thresholds. For example, sequence "CCACCAAAA" with germline #' "AAAAAAAAA" has 4 mutations. This sequence has at least 2 mutations #' and at least 3 mutations, in a window of size 4. the sequence will #' be included in the sequence count for mutation thresholds 2 and 3. #' If \code{plotFiltered=TRUE}, the sequences are counted only once for #' each window size, at their largest mutation threshold. The above #' example sequence would be included in the sequence count for #' mutation threshold 3. #' #' When plotting, a user-defined \code{amount} of jittering can be applied on values plotted #' on either axis or both axes via adjusting \code{jitter.x}, \code{jitter.y}, #' \code{jitter.x.amt} and \code{jitter.y.amt}. This may be help with visually distinguishing #' lines for different window sizes in case they are very close or identical to each other. #' If plotting percentages (\code{percentage=TRUE}) and using jittering on the y-axis values #' (\code{jitter.y=TRUE}), it is strongly recommended that \code{jitter.y.amt} be set very #' small (e.g. 0.01). #' #' \code{NA} for a combination of \code{mutThresh} and \code{windowSize} where #' \code{mutThresh} is greater than \code{windowSize} will not be plotted. #' #' @seealso See \link{slideWindowTune} for how to get \code{tuneList}. See \link{jitter} for #' use of \code{amount} of jittering. #' #' @examples #' # Use an entry in the example data for input and germline sequence #' data(ExampleDb, package="alakazam") #' #' # Try out thresholds of 2-4 mutations in window sizes of 3-5 nucleotides #' # on a subset of ExampleDb #' tuneList <- slideWindowTune(db = ExampleDb[1:10, ], #' mutThreshRange = 2:4, windowSizeRange = 3:5, #' verbose = FALSE) #' #' # Visualize #' # Plot numbers of sequences filtered without jittering y-axis values #' slideWindowTunePlot(tuneList, pchs=1:3, ltys=1:3, cols=1:3, #' plotFiltered=TRUE, jitter.y=FALSE) #' #' # Notice that some of the lines overlap #' # Jittering could help #' slideWindowTunePlot(tuneList, pchs=1:3, ltys=1:3, cols=1:3, #' plotFiltered=TRUE, jitter.y=TRUE) #' #' # Plot numbers of sequences remaining instead of filtered #' slideWindowTunePlot(tuneList, pchs=1:3, ltys=1:3, cols=1:3, #' plotFiltered=FALSE, jitter.y=TRUE, #' legendPos="bottomright") #' #' # Plot percentages of sequences filtered with a tiny amount of jittering #' slideWindowTunePlot(tuneList, pchs=1:3, ltys=1:3, cols=1:3, #' plotFiltered=TRUE, percentage=TRUE, #' jitter.y=TRUE, jitter.y.amt=0.01) #' @export slideWindowTunePlot <- function(tuneList, plotFiltered = c(TRUE,FALSE,NULL,'filtered','remaining','per_mutation'), percentage = FALSE, jitter.x = FALSE, jitter.x.amt = 0.1, jitter.y = FALSE, jitter.y.amt = 0.1, pchs = 1, ltys = 2, cols = 1, plotLegend = TRUE, legendPos = "topright", legendHoriz = FALSE, legendCex = 1, title=NULL, returnRaw=FALSE){ .Deprecated("plotSlideWindowTune", msg="slideWindowTunePlot() is deprecated, please see plotSlideWindowTune() for future use") # input validation plotFiltered_choices <- c(TRUE,FALSE,NULL,'filtered','remaining','per_mutation') plotFiltered <- plotFiltered[1] if (!is.null(plotFiltered)) { if (!plotFiltered %in% plotFiltered_choices) { stop("`plotFiltered` must be one of: ", paste(plotFiltered_choices,collapse=", ")) } } # logic for converting T/F/NULL to new values if (is.null(plotFiltered)) { plotFilteredMapped <- 'per_mutation' } else if (plotFiltered %in% c(TRUE,'filtered')) { plotFilteredMapped <- 'filtered' } else if (plotFiltered %in% c(FALSE,'remaining')) { plotFilteredMapped <- 'remaining' } else { plotFilteredMapped <- 'per_mutation' } plotSlideWindowTune(tuneList, plotFiltered = plotFilteredMapped, percentage = percentage, jitter.x = jitter.x, jitter.x.amt = jitter.x.amt, jitter.y = jitter.y, jitter.y.amt = jitter.y.amt, pchs = pchs, ltys = ltys, cols = cols, plotLegend = plotLegend, legendPos = legendPos, legendHoriz = legendHoriz, legendCex = legendCex, title=title, returnRaw=returnRaw) }shazam/R/DistToNearest.R0000644000176200001440000027663615071774135014647 0ustar liggesusers# Generates distance to nearest neighbor #' @include Shazam.R #' @include Core.R NULL #### Classes #### #' Output of the \code{gmm} method of findThreshold #' #' \code{GmmThreshold} contains output from the \code{gmm} method \link{findThreshold}. #' It includes parameters of two Gaussian fits and threshold cut. #' #' @slot x input distance vector with NA or infinite values removed. #' @slot model first-second fit functions. #' @slot cutoff type of threshold cut. #' @slot a1 mixing weight of the first curve. #' @slot b1 second parameter of the first curve. Either the mean of a Normal #' distribution or shape of a Gamma distribution. #' @slot c1 third parameter of the first curve. Either the standard deviation of a #' Normal distribution or scale of a Gamma distribution. #' @slot a2 mixing weight of the second curve. #' @slot b2 second parameter of the second curve. Either the mean of a Normal #' distribution or shape of a Gamma distribution. #' @slot c2 third parameter of the second curve. Either the standard deviation #' of a Normal distribution or scale of a Gamma distribution. #' @slot loglk log-likelihood of the fit. #' @slot threshold threshold. #' @slot sensitivity sensitivity. #' @slot specificity specificity. #' @slot pvalue p-value from Hartigans' dip statistic (HDS) test. #' Values less than 0.05 indicate significant bimodality. #' #' @seealso \link{findThreshold} #' #' @name GmmThreshold-class #' @rdname GmmThreshold-class #' @aliases GmmThreshold #' @exportClass GmmThreshold setClass("GmmThreshold", slots=c(x="numeric", model = "character", cutoff = "character", a1="numeric", b1="numeric", c1="numeric", a2="numeric", b2="numeric", c2="numeric", loglk="numeric", threshold="numeric", sensitivity="numeric", specificity="numeric", pvalue="numeric")) #' Output of the \code{dens} method of findThreshold #' #' \code{DensityThreshold} contains output from the \code{dens} method \link{findThreshold}. #' #' @slot x input distance vector with NA or infinite values removed. #' @slot bandwidth bandwidth value fit during density estimation. #' @slot xdens x-axis (distance value) vector for smoothed density estimate. #' @slot ydens y-axis (density) vector for smoothed density estimate. #' @slot threshold distance threshold that separates two modes of the input distribution. #' #' @seealso \link{findThreshold} #' #' @name DensityThreshold-class #' @rdname DensityThreshold-class #' @aliases DensityThreshold #' @exportClass DensityThreshold setClass("DensityThreshold", slots=c(x="numeric", bandwidth="numeric", xdens="numeric", ydens="numeric", threshold="numeric")) #### Methods #### #' @param x GmmThreshold object #' #' @rdname GmmThreshold-class #' @aliases GmmThreshold-method #' @export setMethod("print", c(x="GmmThreshold"), function(x) { print(x@threshold) }) #' @param y ignored. #' @param ... arguments to pass to \link{plotGmmThreshold}. #' #' @rdname GmmThreshold-class #' @aliases GmmThreshold-method #' @export setMethod("plot", c(x="GmmThreshold", y="missing"), function(x, y, ...) { plotGmmThreshold(x, ...) }) #' @param x DensityThreshold object #' #' @rdname DensityThreshold-class #' @aliases DensityThreshold-method #' @export setMethod("print", c(x="DensityThreshold"), function(x) { print(x@threshold) }) #' @param y ignored. #' @param ... arguments to pass to \link{plotDensityThreshold}. #' #' @rdname DensityThreshold-class #' @aliases DensityThreshold-method #' @export setMethod("plot", c(x="DensityThreshold", y="missing"), function(x, y, ...) { plotDensityThreshold(x, ...) }) #### Distance to Nearest #### # Returns a 5-mer sliding window of given sequence # # @param sequence sequence string # @return An array of 5-mer sliding windows # # @examples # window5Mers("ACGTNACGTNACGTN") window5Mers <- function(sequence) { n <- stri_length(sequence) w <- substr(rep(sequence, n - 4), 1:(n - 4), 5:n) return(w) } # Get distance between two sequences of same length, broken by a sliding window of 5mers # # @param seq1 first nucleotide sequence, broken into 5mers. # @param seq2 second nucleotide sequence, broken into 5mers. # @param targetingDistance targeting distance obtained from a targeting model # with the function \code{calcTargetingDistance}. # @param symmetry if model is hs5f, distance between seq1 and seq2 is either # the average (avg) of seq1->seq2 and seq2->seq1 or the # minimum (min). # @return distance between two sequences. # # @examples # seq1 <- c("NNACG", "NACGT", "ACGTA", "CGTAC", "GTACG", "TACGT", "ACGTA", # "CGTAC", "GTACG", "TACGT", "ACGTN", "CGTNN") # seq2 <- c("NNACG", "NACGA", "ACGAA", "CGAAC", "GAACG", "AACGT", "ACGTA", # "CGTAC", "GTACG", "TACGT", "ACGTN", "CGTNN") # targeting_distance <- calcTargetingDistance(HH_S5F) # shazam:::dist5Mers(seq1, seq2, targeting_distance) dist5Mers <- function(seq1, seq2, targetingDistance, symmetry=c("avg", "min", "raw")) { # Evaluate choices symmetry <- match.arg(symmetry) # Get distance from targeting model #targeting_dist <- calcTargetingDistance(targetingModel) # Check all characters in seq1 and seq2 are valid, # found in the targetingModel distance matrix validChars <- rownames(targetingDistance) allChars <- unique(strsplit(paste(c(seq1, seq2), collapse=""), "")[[1]]) invalidChars <- allChars[allChars %in% validChars == F] if (length(invalidChars) > 0 ) { stop(paste0("Character not found in targeting_dist: ", paste(invalidChars, collapse=", "))) } # Compute distance only on fivemers that have mutations fivemersWithMu <- substr(seq1, 3, 3) != substr(seq2, 3, 3) #fivemersWithNonNuc <- (!is.na(match(substr(seq1,3,3),c("A","C","G","T"))) & # !is.na(match(substr(seq2,3,3),c("A","C","G","T")))) #fivemersWithMu <- fivemersWithMu & fivemersWithNonNuc seq1 <- seq1[fivemersWithMu] seq2 <- seq2[fivemersWithMu] # Number of mutations (for normalization, if specified) #numbOfMutation <- sum(fivemersWithMu) dist <- NA tryCatch({ if (length(seq1)==1){ seq1_to_seq2 <- targetingDistance[substr(seq2, 3, 3), seq1] seq2_to_seq1 <- targetingDistance[substr(seq1, 3, 3), seq2] } else { seq1_to_seq2 <- diag(targetingDistance[substr(seq2, 3, 3), seq1]) seq2_to_seq1 <- diag(targetingDistance[substr(seq1, 3, 3), seq2]) } if (symmetry == "avg") { dist <- sum(apply(cbind(seq1_to_seq2, seq2_to_seq1), 1, mean)) } else if (symmetry == "min") { dist <- sum(apply(cbind(seq1_to_seq2, seq2_to_seq1), 1, min)) } else if (symmetry == "raw") { dist <- c(seq1_to_seq2, seq2_to_seq1) } }, error = function(e) { warning(e) return(NA) }) return(dist) } # Given an array of nucleotide sequences, find the pairwise distances # # @param sequences character vector of nucleotide sequences. # @param targetingDistance targeting distance obtained from a targeting model # with the function `calcTargetingDistance` # @param symmetry if model is hs5f, distance between seq1 and seq2 is either the # average (avg) of seq1->seq2 and seq2->seq1 or the minimum (min). # # @return A matrix of pairwise distances between junction sequences. pairwise5MerDist <- function(sequences, targetingDistance, symmetry=c("avg", "min")) { # get names seq_names <- names(sequences) # Initial checks symmetry <- match.arg(symmetry) # Convert junctions to uppercase sequences <- toupper(sequences) # Convert gaps to Ns sequences <- gsub('[-.]', 'N', sequences, fixed=T) # Add 'NN' to front and end of each sequence for fivemers sequences <- as.vector(sapply(sequences, function(x){ paste("NN", x, "NN", sep="") })) n_seq <- length(sequences) #Junctions are broken in to 5-mers based on a sliding window (of one) and placed in matrix #Each column is a junction #E.g. junctions 1234567, ABCDEFG, JKLMNOP becomes: # 12345 ABCDE JKLMN # 23456 BCDEF KLMNO # 34567 CDEFG LMNOP .matSeqSlidingFiveMer <- sapply(sequences, function(x) { window5Mers(x) }, simplify="matrix") # Compute pairwise distance between all sequences' fivemers (by column) .dist <- function(i) { c(rep.int(0, i - 1), sapply(i:n_seq, function(j) { dist5Mers(.matSeqSlidingFiveMer[,i], .matSeqSlidingFiveMer[,j], targetingDistance, symmetry=symmetry) })) } dist_mat <- sapply(1:n_seq, .dist) # Make distance matrix symmetric dist_mat <- dist_mat + t(dist_mat) # assign names if (!is.null(seq_names)) { rownames(dist_mat) <- seq_names colnames(dist_mat) <- seq_names } return(dist_mat) } # Given an array of nucleotide sequences and a vector indices (a subset of array of nucleotide sequences), # find the pairwise distances # # @param sequences character vector of nucleotide sequences. # @paramindx numeric vector of subsamples indices # @param targetingDistance targeting distance obtained from a targeting model # with the function `calcTargetingDistance` # @param symmetry if model is hs5f, distance between seq1 and seq2 is either the # average (avg) of seq1->seq2 and seq2->seq1 or the minimum (min). # # @return A non-square matrix of pairwise distances between junction sequences. nonsquare5MerDist <- function(sequences, indx, targetingDistance, symmetry=c("avg", "min")) { # get names seq_names <- names(sequences) # Initial checks symmetry <- match.arg(symmetry) # Convert junctions to uppercase sequences <- toupper(sequences) # Convert gaps to Ns sequences <- gsub('[-.]', 'N', sequences, fixed=T) # Add 'NN' to front and end of each sequence for fivemers sequences <- as.vector(sapply(sequences, function(x){ paste("NN", x, "NN", sep="") })) n_seq <- length(sequences) #Junctions are broken in to 5-mers based on a sliding window (of one) and placed in matrix #Each column is a junction #E.g. junctions 1234567, ABCDEFG, JKLMNOP becomes: # 12345 ABCDE JKLMN # 23456 BCDEF KLMNO # 34567 CDEFG LMNOP .matSeqSlidingFiveMer <- sapply(sequences, function(x) { window5Mers(x) }, simplify="matrix") # # Compute pairwise distance between all sequences' fivemers (by column) # .dist <- function(i) { # d <- c(rep.int(0, i - 1), # sapply(i:n_seq, function(j) { dist5Mers(.matSeqSlidingFiveMer[,i], # .matSeqSlidingFiveMer[,j], # targetingDistance, # symmetry=symmetry) })) # } dist_mat <- matrix(NA, nrow=n_seq, ncol=n_seq) diag(dist_mat) <- 0 indx <- sort(indx) for (i in 1:n_seq) { if (!(i %in% indx)) next for (j in 1:n_seq) { if (!is.na(dist_mat[i,j])) next dist_mat[i,j] = dist5Mers(.matSeqSlidingFiveMer[,i], .matSeqSlidingFiveMer[,j], targetingDistance, symmetry=symmetry) dist_mat[j,i] = dist_mat[i,j] } } sub_dist_mat <- dist_mat[indx,] # assign names if (!is.null(seq_names)) { rownames(sub_dist_mat) <- seq_names[indx] colnames(sub_dist_mat) <- seq_names } return(sub_dist_mat) } # Subset to unique sequences # # @param sequences character vector of sequences # # @return Named vector of unique sequences, with names as the sequence itself. findUniqSeq <- function(sequences) { seq_uniq <- unique(sequences) names(seq_uniq) <- seq_uniq return(seq_uniq) } # Get chars in the distance model # # @param model # # @return vector of unique chars in the distance model # @examples # getCharsInModel("hh_s1f") getCharsInModel <- function(model) { if (model == "ham") { chars <- colnames(getDNAMatrix(gap=0)) } else if (model == "aa") { chars <- colnames(getAAMatrix()) } else if (model == "hh_s1f") { chars <- colnames(HH_S1F_Distance) } else if (model == "hh_s5f") { chars <-rownames(HH_S5F@targeting) } else if (model == "mk_rs1nf") { chars <- colnames(MK_RS1NF_Distance) } else if (model == "mk_rs5nf") { chars <- rownames(MK_RS5NF@targeting) } else if (model == "hs1f_compat") { chars <- colnames(HS1F_Compat) } else if (model == "m1n_compat") { chars <- colnames(M1N_Compat) } return(chars) } # Validate the sequence # # @param seq # @param validChars # # @return TRUE is all the character in the sequence are found in validChars; # FALSE otherwise # @examples # allValidChars("ATCG", getCharsInModel("hh_s1f")) # allValidChars("ATCG.", getCharsInModel("hh_s1f")) # allValidChars("ATCGJ", getCharsInModel("hh_s1f")) allValidChars <- function(seq, validChars) { all(unique(strsplit(seq, "")[[1]]) %in% validChars) } # Given an array of sequences, find the distance to the closest sequence # # @param sequences character vector of sequences. # @param model 5-mer or 1-mer distance model # @param normalize method of normalization. Default is "none". # "len" = normalize distance by length of junction. # "mut" = normalize distance by number of mutations in # junction. # @param symmetr if model is hs5f or mrs5nf, distance between seq1 and seq2 is either the # average (avg) of seq1->seq2 and seq2->seq1 or the minimum (min). # @param crossGroups column for grouping to calculate distances across groups # (self vs others). # @param mst if true, return comma-separated branch lengths from minimum # spanning tree. # # @return A vector of distances to the closest sequence. # # @examples # sequences <- c("ACGTACGTACGT", "ACGAACGTACGT", "ACGAACGTATGT", "ACGAACGTATGC", # "ACGAACGTATCC", "AAAAAAAAAAAA", "A-GAACGTATCC", "AAAAAA---AAA") # shazam:::nearestDist(sequences, model="ham", normalize="none") # shazam:::nearestDist(sequences, model="aa", normalize="none") # shazam:::nearestDist(sequences, model="ham", normalize="len") # shazam:::nearestDist(sequences, model="aa", normalize="len") nearestDist <- function(sequences, model=c("ham", "aa", "hh_s1f", "hh_s5f", "mk_rs1nf", "mk_rs5nf", "hs1f_compat", "m1n_compat"), normalize=c("none", "len", "mut"), symmetry=c("avg", "min"), crossGroups=NULL, mst=FALSE, subsample=NULL) { ## DEBUG # sequences <- c("ACGTACGTACGT", "ACGAACGTACGT", "AAAAAAAAAAAA", "A-AAAA---AAA") # model="aa"; normalize="len"; crossGroups=NULL; mst=FALSE # Initial checks model <- match.arg(model) normalize <- match.arg(normalize) ## If crossGroup requested, but only one group found, return NA if (!is.null(crossGroups) & length(unique(crossGroups)) < 2) { seq_dist <- rep(NA, length(sequences)) return (seq_dist) } # Find unique sequences seq_uniq <- findUniqSeq(sequences) n_uniq <- length(seq_uniq) # corresponding crossGroups values for seq_uniq if (!is.null(crossGroups)) { stopifnot( isTRUE(all.equal(sequences[match(seq_uniq, sequences)], seq_uniq, check.attributes=FALSE)) ) crossGroups_uniq <- crossGroups[match(seq_uniq, sequences)] } # Initialize return vector and computation vector seq_dist <- setNames(rep(NA, length(sequences)), sequences) seq_uniq_dist <- rep(NA, n_uniq) # Compute distances between sequences if (n_uniq > 1) { # Check for length mismatches seq_length <- unique(stri_length(seq_uniq)) if (length(seq_length) > 1) { stop("Unexpected. Different sequence lengths found.") } # check subSampling subSampling <- all(!is.null(subsample), subsample < n_uniq) if (subSampling) indx <- sample(x=1:n_uniq, size=subsample, replace=FALSE, prob=NULL) # corresponding subsampling of crossGroups_uniq if (subSampling & !is.null(crossGroups)) { crossGroups_uniq_sub <- crossGroups_uniq[indx] } # Get distance matrix if (model == "ham") { if (subSampling) { dist_mat <- nonsquareDist(seq_uniq, indx, dist_mat=getDNAMatrix(gap=0)) } else { dist_mat <- pairwiseDist(seq_uniq, dist_mat=getDNAMatrix(gap=0)) } } else if (model == "aa") { seq_uniq <- setNames(alakazam::translateDNA(seq_uniq), seq_uniq) if (subSampling) { dist_mat <- nonsquareDist(seq_uniq, indx, dist_mat=getAAMatrix()) } else { dist_mat <- pairwiseDist(seq_uniq, dist_mat=getAAMatrix()) } } else if (model == "hh_s1f") { if (subSampling) { dist_mat <- nonsquareDist(seq_uniq, indx, dist_mat=HH_S1F_Distance) } else { dist_mat <- pairwiseDist(seq_uniq, dist_mat=HH_S1F_Distance) } } else if (model == "mk_rs1nf") { if (subSampling) { dist_mat <- nonsquareDist(seq_uniq, indx, dist_mat=MK_RS1NF_Distance) } else { dist_mat <- pairwiseDist(seq_uniq, dist_mat=MK_RS1NF_Distance) } } else if (model == "hh_s5f") { if (subSampling) { dist_mat <- nonsquare5MerDist(seq_uniq, indx, HH_S5F_Distance, symmetry=symmetry) } else { dist_mat <- pairwise5MerDist(seq_uniq, HH_S5F_Distance, symmetry=symmetry) } } else if (model == "mk_rs5nf") { if (subSampling) { dist_mat <- nonsquare5MerDist(seq_uniq, indx, MK_RS5NF_Distance, symmetry=symmetry) } else { dist_mat <- pairwise5MerDist(seq_uniq, MK_RS5NF_Distance, symmetry=symmetry) } } else if (model == "hs1f_compat") { if (subSampling) { dist_mat <- nonsquareDist(seq_uniq, indx, dist_mat=HS1F_Compat) } else { dist_mat <- pairwiseDist(seq_uniq, dist_mat=HS1F_Compat) } } else if (model == "m1n_compat") { if (subSampling) { dist_mat <- nonsquareDist(seq_uniq, indx, dist_mat=M1N_Compat) } else { dist_mat <- pairwiseDist(seq_uniq, dist_mat=M1N_Compat) } } ## DEBUG # cat("\n-> seq_uniq:\n") # print(seq_uniq) # cat("\n-> dist_mat (raw):\n") # print(dist_mat) # Normalize distances if (normalize == "len") { dist_mat <- dist_mat / seq_length } else if (normalize == "mut") { #dist <- dist/sum(strsplit(seq1,"")[[1]] != strsplit(seq2,"")[[1]]) stop('Sorry! normalize="mut" is not available.') } ## DEBUG # cat("\n-> seq_length:\n") # print(seq_length) # cat("\n-> dist_mat (normalized):\n") # print(dist_mat) } else { return(seq_dist) } # Find minimum distance for each sequence if (is.null(crossGroups)) { if(!mst) { # Return smaller value greater than 0 # If all 0, return NA .dmin <- function(i) { x <- dist_mat[, i] gt0 <- which(x > 0) if (length(gt0) != 0) { min(x[gt0]) } else { NA } } ## TODO: Could be an apply over columns seq_uniq_dist <- setNames(sapply(1:n_uniq, .dmin), names(seq_uniq)) } else { # Get adjacency matrix of minimum spanning tree adj <- ape::mst(dist_mat) # TODO: This could be cleaner # Get value(s) from mst branches # If none (broken mst!), return NA # If multiple values, comma-join .dmst <- function(i) { gt0 <- which(adj[, i] == 1) if (length(gt0) != 0) { stri_join(round(dist_mat[, i][gt0], 4), collapse=",") } else { NA } } ## TODO: Could be an apply over columns seq_uniq_dist <- setNames(sapply(1:n_uniq, .dmst), names(seq_uniq)) } # Define return distance vector seq_dist <- seq_uniq_dist[match(names(seq_dist), names(seq_uniq_dist))] ## DEBUG # cat("\n-> seq_uniq_dist:\n") # print(seq_uniq_dist) # cat("\n-> seq_dist:\n") # print(seq_dist) } else { # Identify sequences to be considered when finding minimum # cross distance .dcross <- function(i) { #cat(i,"\n") this_group <- crossGroups[i] other_groups <- which(crossGroups != this_group) other_seq <- unique(sequences[other_groups]) if (model=="aa") { seq_uniq <- names(seq_uniq) } other_idx <- match(other_seq, seq_uniq) this_idx <- match(sequences[i], seq_uniq) stopifnot( isTRUE(all.equal( other_seq, seq_uniq[other_idx] , check.attributes=FALSE ) )) stopifnot( isTRUE(all.equal( sequences[i], seq_uniq[this_idx] , check.attributes=FALSE ) )) # the next two checks may not always be true # this happens when all the out-group sequences are identical to the in-group sequences #stopifnot( all( crossGroups_uniq[other_idx] != this_group ) ) #stopifnot( crossGroups_uniq[this_idx] == this_group ) if (subSampling) { # When there is subsampling, nonsquareDist returns a non-n-by-n matrix # This matrix has fewer than n rows, and exactly n cols # For each unique sequence, look for its cross-group distances in its column, # NOT in its row (because there will be fewer than n rows) # dist_mat rows correspond to seq_uniq[indx] # (indx itself is wrt seq_uniq) # (other_idx is also wrt seq_uni) # which other_seq are included in the subsampled seqs represented by # the available rows in dist_mat? # wrt dist_mat other_avail_wrt_dist_mat <- which(indx %in% other_idx) if (length(other_avail_wrt_dist_mat)>0) { # the next two checks may not always be true # this happens when all the out-group sequences are identical to the in-group sequences #stopifnot(all( crossGroups_uniq_sub[other_avail_wrt_dist_mat] != this_group )) #stopifnot(all( crossGroups_uniq_sub[-other_avail_wrt_dist_mat] == this_group )) r <- dist_mat[other_avail_wrt_dist_mat, this_idx] } else { stopifnot(all( crossGroups_uniq_sub == this_group )) return(NA) } } else { # without subsampling # dist_mat is a n-by-n matrix stopifnot( all(other_idx <= nrow(dist_mat) ) ) r <- dist_mat[other_idx, this_idx] } gt0 <- which(r > 0) if (length(gt0) != 0) { return(min(r[gt0])) } else { return(NA) } } # Define return distance vector seq_dist <- setNames(sapply(1:length(sequences), .dcross), sequences) } return(round(seq_dist, 4)) } #' Distance to nearest neighbor #' #' Calculate the non-zero distance from each sequence to its nearest neighbor #' within partitions based on shared V gene, J gene, and junction length. #' #' The distance to nearest neighbor can be used to estimate a threshold for assigning #' Ig sequences to clonal groups. A histogram of the resulting vector is often bimodal, with the #' ideal threshold being a value that separates the two modes. #' #' Refer to the details section for a more thorough description of the implementation. #' #' @param db data.frame containing sequence data. #' @param sequenceColumn name of the column containing the junction for grouping and for calculating #' nearest neighbor distances. Note that while both heavy/long and light/short chain junctions #' may be used for V-J-length grouping, only the heavy/long chain (IGH, TRB, TRD) junction is #' used to calculate distances. #' @param vCallColumn name of the column containing the V-segment allele calls. #' @param jCallColumn name of the column containing the J-segment allele calls. #' @param model underlying SHM model, which must be one of #' \code{c("ham", "aa", "hh_s1f", "hh_s5f", "mk_rs1nf", "hs1f_compat", "m1n_compat")}. #' See Details for further information. #' @param normalize method of normalization. The default is \code{"len"}, which #' divides the distance by the length of the sequence group. If #' \code{"none"} then no normalization if performed. #' @param symmetry if model is hs5f, distance between seq1 and seq2 is either the #' average (avg) of seq1->seq2 and seq2->seq1 or the minimum (min). #' @param first if \code{TRUE} only the first call of the gene assignments #' is used. if \code{FALSE} the union of ambiguous gene #' assignments is used to group all sequences with any #' overlapping gene calls. #' @param VJthenLen logical value specifying whether to perform partitioning as a 2-stage #' process. If \code{TRUE}, partitions are made first based on V and J #' gene, and then further split based on junction lengths corresponding #' to \code{sequenceColumn}. If \code{FALSE}, perform partition as a 1-stage #' process during which V gene, J gene, and junction length are used #' to create partitions simultaneously. Defaults to \code{TRUE}. #' @param nproc number of cores to distribute the function over. #' @param fields additional fields to use for grouping. #' @param cross character vector of column names to use for grouping to calculate #' distances across groups. Meaning the columns that define self versus others. #' @param mst if \code{TRUE}, return comma-separated branch lengths from minimum #' spanning tree. #' @param subsample number of sequences to subsample for speeding up pairwise-distance-matrix calculation. #' Subsampling is performed without replacement in each V-J-length group of heavy chain sequences. #' If \code{subsample} is larger than the unique number of heavy chain sequences in each #' VJL group, then the subsampling process is ignored for that group. For each heavy chain #' sequence in \code{db}, the reported \code{dist_nearest} is the distance to the closest #' heavy chain sequence in the subsampled set for the V-J-length group. If \code{NULL} no #' subsampling is performed. #' @param progress if \code{TRUE} print a progress bar. #' @param cellIdColumn name of the character column containing cell identifiers or barcodes. #' If specified, grouping will be performed in single-cell mode #' with the behavior governed by the \code{locusColumn} and #' \code{onlyHeavy} arguments. If set to \code{NULL} then the #' bulk sequencing data is assumed. #' @param locusColumn name of the column containing locus information. #' Valid loci values #' are "IGH", "IGI", "IGK", "IGL", "TRA", "TRB", #' "TRD", and "TRG". #' @param locusValues Loci values to focus the analysis on. #' @param onlyHeavy This is deprecated. Only IGH (BCR) or TRB/TRD (TCR) sequences will be used #' for grouping. Only applicable to single-cell data. #' Ignored if \code{cellIdColumn=NULL}. #' See \link[alakazam]{groupGenes} for further details. #' @param keepVJLgroup logical value specifying whether to keep in the output the the column #' column indicating grouping based on V-J-length combinations. Only applicable for #' 1-stage partitioning (i.e. \code{VJthenLen=FALSE}). Also see #' \link[alakazam]{groupGenes}. #' #' @return Returns a modified \code{db} data.frame with nearest neighbor distances between heavy chain #' sequences in the \code{dist_nearest} column if \code{cross=NULL}. If \code{cross} was #' specified, distances will be added as the \code{cross_dist_nearest} column. #' #' Note that distances between light/short (IGK, IGL, TRA, TRG) chain sequences are not calculated, #' even if light/short chains were used for V-J-length grouping via \code{onlyHeavy=FALSE}. #' Light/short chain sequences, if any, will have \code{NA} in the \code{dist_nearest} output column. #' #' Note that the output \code{vCallColumn} and \code{jCallColumn} columns will be converted to #' type \code{character} if they were type \code{factor} in the input \code{db}. #' #' @details #' #' There are two modes of operation for \code{distToNearest}: single-cell (all sequences are #' single-cell data), non-single-cell (all sequences are bulk sequencing data). Mixed data, #' where both single-cell and non-single-cell sequences are present in the data, is considered #' a case under the single-single cell mode . #' #' To invoke single-cell mode the \code{cellIdColumn} argument must be specified and \code{locusColumn} #' must be correct. Otherwise, \code{distToNearest} will be run with bulk sequencing assumptions, #' using all input sequences regardless of the values in the \code{locusColumn} column. #' #' Under single-cell mode, only heavy/long chain (IGH, TRB, TRD) sequences will be #' used for calculating nearest neighbor distances regardless of \code{locusValue} values in #' the \code{locusColumn} field (if present). Under non-single-cell mode, #' all input sequences with \code{locusValue} value(s) in the \code{locusColumn} field will be #' used for calculating nearest neighbor distances. #' #' #' Values in the \code{locusColumn} must be one of \code{c("IGH", "IGI", "IGK", "IGL")} for BCR #' or \code{c("TRA", "TRB", "TRD", "TRG")} for TCR sequences. Otherwise, the function returns an #' error message and stops. #' #' For single-cell mode, the input format is the same as that for \link[alakazam]{groupGenes}. #' Namely, each row represents a sequence/chain. Sequences/chains from the same cell are linked #' by a cell ID in the \code{cellIdColumn} field. Grouping will be done by using IGH (BCR) or #' TRB/TRD (TCR) sequences only. The argument that allowed to include light chains, #' \code{onlyHeavy}, is deprecated. #' #' Note, \code{distToNearest} required that each cell (each unique value in \code{cellIdColumn}) #' correspond to only a single \code{IGH} (BCR) or \code{TRB/TRD} (TCR) sequence. #' #' #' The following distance measures are accepted by the \code{model} parameter. #' #' \itemize{ #' \item \code{"ham"}: Single nucleotide Hamming distance matrix from \link[alakazam]{getDNAMatrix} #' with gaps assigned zero distance. #' \item \code{"aa"}: Single amino acid Hamming distance matrix from \link[alakazam]{getAAMatrix}. #' \item \code{"hh_s1f"}: Human single nucleotide distance matrix derived from \link{HH_S1F} with #' \link{calcTargetingDistance}. #' \item \code{"hh_s5f"}: Human 5-mer nucleotide context distance matrix derived from \link{HH_S5F} with #' \link{calcTargetingDistance}. #' \item \code{"mk_rs1nf"}: Mouse single nucleotide distance matrix derived from \link{MK_RS1NF} with #' \link{calcTargetingDistance}. #' \item \code{"mk_rs5nf"}: Mouse 5-mer nucleotide context distance matrix derived from \link{MK_RS5NF} with #' \link{calcTargetingDistance}. #' \item \code{"hs1f_compat"}: Backwards compatible human single nucleotide distance matrix used in #' SHazaM v0.1.4 and Change-O v0.3.3. #' \item \code{"m1n_compat"}: Backwards compatibility mouse single nucleotide distance matrix used in #' SHazaM v0.1.4 and Change-O v0.3.3. #' } #' #' Note on \code{NA}s: if, for a given combination of V gene, J gene, and junction length, #' there is only 1 heavy chain sequence (as defined by \code{sequenceColumn}), \code{NA} is #' returned instead of a distance (since it has no heavy/long chain neighbor). If for a given combination #' there are multiple heavy/long chain sequences but only 1 unique one, (in which case every heavy/long chain #' sequence in this group is the de facto nearest neighbor to each other, thus giving rise to distances #' of 0), \code{NA}s are returned instead of zero-distances. #' #' Note on \code{subsample}: Subsampling is performed independently in each V-J-length group for #' heavy/long chain sequences. If \code{subsample} is larger than number of heavy/long chain sequences #' in the group, it is ignored. In other words, subsampling is performed only on groups in which the #' number of heavy/long chain sequences is equal to or greater than \code{subsample}. \code{dist_nearest} #' has values calculated using all heavy chain sequences in the group for groups with fewer than #' \code{subsample} heavy/long chain sequences, and values calculated using a subset of heavy/long chain #' sequences for the larger groups. To select a value of \code{subsample}, it can be useful to explore #' the group sizes in \code{db} (and the number of heavy/long chain sequences in those groups). #' #' @references #' \enumerate{ #' \item Smith DS, et al. Di- and trinucleotide target preferences of somatic #' mutagenesis in normal and autoreactive B cells. #' J Immunol. 1996 156:2642-52. #' \item Glanville J, Kuo TC, von Budingen H-C, et al. #' Naive antibody gene-segment frequencies are heritable and unaltered by #' chronic lymphocyte ablation. #' Proc Natl Acad Sci USA. 2011 108(50):20066-71. #' \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based #' on synonymous mutations from high-throughput immunoglobulin sequencing data. #' Front Immunol. 2013 4:358. #' } #' #' @seealso See \link{calcTargetingDistance} for generating nucleotide distance matrices #' from a \link{TargetingModel} object. See \link{HH_S5F}, \link{HH_S1F}, #' \link{MK_RS1NF}, \link[alakazam]{getDNAMatrix}, and \link[alakazam]{getAAMatrix} #' for individual model details. \link[alakazam]{getLocus} to get locus #' values based on allele calls. #' #' @examples #' # Subset example data to one sample as a demo #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, sample_id == "-1h") #' #' # Use genotyped V assignments, Hamming distance, and normalize by junction length #' # First partition based on V and J assignments, then by junction length #' # Take into consideration ambiguous V and J annotations #' dist <- distToNearest(db, sequenceColumn="junction", #' vCallColumn="v_call_genotyped", jCallColumn="j_call", #' model="ham", first=FALSE, VJthenLen=TRUE, normalize="len") #' #' # Plot histogram of non-NA distances #' p1 <- ggplot(data=subset(dist, !is.na(dist_nearest))) + #' theme_bw() + #' ggtitle("Distance to nearest: Hamming") + #' xlab("distance") + #' geom_histogram(aes(x=dist_nearest), binwidth=0.025, #' fill="steelblue", color="white") #' plot(p1) #' #' @export distToNearest <- function(db, sequenceColumn="junction", vCallColumn="v_call", jCallColumn="j_call", model=c("ham", "aa", "hh_s1f", "hh_s5f", "mk_rs1nf", "mk_rs5nf", "m1n_compat", "hs1f_compat"), normalize=c("len", "none"), symmetry=c("avg", "min"), first=TRUE, VJthenLen=TRUE, nproc=1, fields=NULL, cross=NULL, mst=FALSE, subsample=NULL, progress=FALSE, cellIdColumn=NULL, locusColumn="locus", locusValues=c("IGH"), onlyHeavy=TRUE, keepVJLgroup=TRUE) { # Hack for visibility of foreach index variables i <- NULL # Deprecation warning for onlyHeavy. # Same warning as in alakazam::groupGenes. if (!onlyHeavy) { warning("onlyHeavy = FALSE is deprecated. Running as if onlyHeavy = TRUE") onlyHeavy <- TRUE } # Initial checks model <- match.arg(model) normalize <- match.arg(normalize) symmetry <- match.arg(symmetry) if (!is.data.frame(db)) { stop('Must submit a data frame') } # Check base input check <- checkColumns(db, c(sequenceColumn, vCallColumn, jCallColumn, fields, cross)) if (check != TRUE) { stop(check) } # Check locusColumn # message locusColumn is required check <- checkColumns(db, locusColumn) if (check != TRUE) { stop(check, ". `locusColumn`, with default value 'locus', is now a required parameter.") } if (is.null(locusColumn)) { stop("`locusColumn`, is now a required parameter.") } # Check single-cell input if (!is.null(cellIdColumn)) { check <- checkColumns(db, c(cellIdColumn)) if (check != TRUE) { stop(check) } } # Cast all columns to character columns <- c(sequenceColumn, vCallColumn, jCallColumn, fields, cross, cellIdColumn, locusColumn) columns <- columns[!is.null(columns) & columns %in% names(db)] for (cl in columns) { db[[cl]] <- as.character(db[[cl]]) } # Convert sequence columns to uppercase db <- toupperColumns(db, c(sequenceColumn)) # Create new column for distance to nearest neighbor db$TMP_DIST_NEAREST <- rep(NA, nrow(db)) db$DTN_ROW_ID <- 1:nrow(db) # Check valid loci if (any(is.na(db[[locusColumn]]))) { stop("The locus column contains NA loci annotations.") } # check locus column contains valid values # We could use the airr schema: valid_loci <- airr::RearrangementSchema['locus'][['enum']] valid_loci <- c("IGH", "IGI", "IGK", "IGL", "TRA", "TRB", "TRD", "TRG") seen_loci <- unique(db[[locusColumn]]) check <- !all(seen_loci %in% valid_loci) if (check) { not_valid <- paste("'",setdiff(seen_loci,valid_loci),"'", sep="",collapse=",") stop("The locus column contains invalid loci annotations: ",not_valid,".") } invalid_locus_values <- locusValues[locusValues %in% valid_loci == F] if (length(invalid_locus_values)>0) { stop("`locusValues` contains invalid loci annotations: ",paste(invalid_locus_values,collapse=", "),".") } # Single-cell mode? if (!is.null(cellIdColumn)) { singleCell <- TRUE } else { singleCell <- FALSE } # Disallow multiple heavy chains per cell # sequences with cell_id==NA are not considered, table's default # is useNA="no". In practice that means that distances # will be calculated between sequences of different cells. if (singleCell) { # check multiple heavy chains x <- sum(table(db[[cellIdColumn]][db[[locusColumn]] == "IGH"]) > 1) if (x > 0) { stop(paste(x, "cell(s) with multiple heavy chains found. One heavy chain per cell is expected.")) } # check multiple beta chains x <- sum(table(db[[cellIdColumn]][db[[locusColumn]] == "TRB"]) > 1) if (x > 0) { stop(paste(x, "cell(s) with multiple beta chains found. One beta chain per cell is expected.")) } # check multiple delta chains x <- sum(table(db[[cellIdColumn]][db[[locusColumn]] == "TRD"]) > 1) if (x > 0) { stop(paste(x, "cell(s) with multiple delta chains found. One delta chain per cell is expected.")) } } # Check for invalid characters valid_seq <- sapply(db[[sequenceColumn]], allValidChars, getCharsInModel(model)) not_valid_seq <- which(!valid_seq) if (length(not_valid_seq) > 0) { warning("Invalid sequence characters in the ", sequenceColumn, " column. ", length(not_valid_seq), " sequence(s) removed") db <- db[valid_seq, ] } # Info for users if (singleCell) { light_chains <- sum(db[[locusColumn]] %in% c("IGH", "TRB", "TRD") == FALSE) msg <- paste0("Running in single-cell mode.") if (light_chains > 0) { msg <- paste(msg, paste0("Note: ", light_chains, " light/short chain sequences will receive NA distances."), sep="\n") } not_used_loci <- setdiff(locusValues, c("IGH", "TRB", "TRD")) if (length(not_used_loci)>0) { this_msg <- paste0("Note: locusValues contains loci that will not be used for distance calculations: ", paste(not_used_loci, collapse=", "), ". Only IGH (BCR) or TRB/TRD (TCR) sequences are used for distance calculations in single-cell mode.") msg <- paste(msg,this_msg, sep="\n") } message(msg) } else { message("Running in non-single-cell mode.") } # junction length columns (prep for groupGenes) junc_len <- "JUNC_LEN" db[[junc_len]] <- stri_length(db[[sequenceColumn]]) # fields groups db$DTN_TMP_FIELD <- db %>% group_by(!!!rlang::syms(fields)) %>% group_indices() # create V+J grouping, or V+J+L grouping if (VJthenLen) { # 2-stage partitioning using first V+J and then L # V+J only first # creates $vj_group db <- db %>% ungroup() %>% group_by(!!rlang::sym("DTN_TMP_FIELD")) %>% do(groupGenes(.data, v_call=vCallColumn, j_call=jCallColumn, junc_len=NULL, cell_id=cellIdColumn, locus=locusColumn, only_heavy=onlyHeavy, first=first)) %>% ungroup() # L (later) # add locusColumn to account for single cells having light chains assigned # the same group as the paired heavy chain group_cols <- c("vj_group", junc_len, locusColumn) } else { # 1-stage partitioning using V+J+L simultaneously # creates $vj_group # note that despite the name (VJ), this is based on V+J+L db <- db %>% ungroup() %>% group_by(!!rlang::sym("DTN_TMP_FIELD")) %>% do(groupGenes(.data, v_call=vCallColumn, j_call=jCallColumn, junc_len=junc_len, cell_id=cellIdColumn, locus=locusColumn, only_heavy=onlyHeavy, first=first)) %>% ungroup() # add locusColumn to account for single cells having light chains assigned # the same group as the paired heavy chain group_cols <- c("vj_group", locusColumn) } # groups to use if (!is.null(fields)) { group_cols <- append(group_cols,fields) # make vj_group unique across fields by pasting field group db <- db %>% dplyr::rowwise() %>% mutate(vj_group=paste("F",!!rlang::sym("DTN_TMP_FIELD"),"_",!!rlang::sym("vj_group"), sep="", collapse = "")) %>% ungroup() } db[['DTN_TMP_FIELD']] <- NULL if (any(is.na(db[["vj_group"]]))) { warning("The vj_group column contains NA values corresponding to ", sum(is.na(db$vj_group)), " sequences to which alakazam::groupGenes could not assign a group.", " These sequences will not be analyzed.") } # unique groups # not necessary but good practice to force as df and assign colnames # (in case group_cols has length 1; which can happen in groupBaseline) uniqueGroups <- data.frame( unique(db[, group_cols]) %>% filter(!is.na(!!rlang::sym("vj_group"))), stringsAsFactors=FALSE) colnames(uniqueGroups) <- group_cols rownames(uniqueGroups) <- NULL # indices # crucial to have simplify=FALSE # (otherwise won't return a list if uniqueClones has length 1) uniqueGroupsIdx <- sapply(1:nrow(uniqueGroups), function(i){ curGroup <- data.frame(uniqueGroups[i, ], stringsAsFactors=FALSE) colnames(curGroup) <- group_cols # match for each field curIdx <- sapply(group_cols, function(coln){ db[[coln]]==curGroup[, coln] }, simplify=FALSE) curIdx <- do.call(rbind, curIdx) # intersect to get match across fields curIdx <- which(colSums(curIdx)==length(group_cols)) # sanity check # no NA stopifnot( all(!is.na(curIdx)) ) # index within range of db stopifnot( max(curIdx) <= nrow(db) ) return(curIdx) }, simplify=FALSE) # Create cluster of nproc size and export namespaces # If user wants to paralellize this function and specifies nproc > 1, then # initialize and register slave R processes/clusters & # export all nesseary environment variables, functions and packages. if( nproc==1 ) { # If needed to run on a single core/cpu then, register DoSEQ # (needed for 'foreach' in non-parallel mode) registerDoSEQ() } else if( nproc > 1 ) { cluster <- parallel::makeCluster(nproc, type="PSOCK") registerDoParallel(cluster,cores=nproc) } else { stop('Nproc must be positive.') } # Export groups to the clusters if (nproc > 1) { # This subsetting improves performance required_cols <- unique(c(group_cols,cross,locusColumn,sequenceColumn,"TMP_DIST_NEAREST")) db_notused_cols <- db %>% select(c(!!rlang::sym("DTN_ROW_ID"), !any_of(required_cols))) db <- db %>% select(c(!!rlang::sym("DTN_ROW_ID"), any_of(required_cols))) export_functions <- list("db", "uniqueGroupsIdx", "cross", "mst", "subsample", "sequenceColumn", "model", "normalize", "symmetry", "nearestDist", "HH_S1F_Distance", "MK_RS1NF_Distance", "HH_S5F_Distance", "MK_RS5NF_Distance", "HS1F_Compat", "M1N_Compat", "calcTargetingDistance", "findUniqSeq", "pairwise5MerDist", "nonsquare5MerDist", "singleCell", "locusColumn", "locusValues") parallel::clusterExport(cluster, export_functions, envir=environment()) } n_groups <- length(uniqueGroupsIdx) if (progress) { pb <- progressBar(n_groups) } tryCatch(list_db <- foreach(i=1:n_groups, .errorhandling='stop') %dopar% { # wrt db idx <- uniqueGroupsIdx[[i]] # if (singleCell) { # # only use IGH, TRB, TRD # # wrt idx # idxBool <- db[[locusColumn]][idx] %in% c("IGH", "TRB", "TRD") # } else { # idxBool <- rep(TRUE, length(idx)) # } # for the distance calculation use only # sequences with locus values specified in `locusValues` idxBool <- toupper(db[[locusColumn]][idx]) %in% locusValues db_group <- db[idx, ] crossGroups <- NULL if (!is.null(cross)) { x <- dplyr::group_by(db_group, !!!rlang::syms(cross)) crossGroups <- dplyr::group_indices(x) } arrSeqs <- db[[sequenceColumn]][idx] db_group$TMP_DIST_NEAREST[idxBool] <- nearestDist(arrSeqs[idxBool], model=model, normalize=normalize, symmetry=symmetry, crossGroups=crossGroups[idxBool], mst=mst, subsample=subsample) # Update progress if (progress) { pb$tick() } return(db_group) }, error = function(e) { if (nproc > 1 & grepl("Error in unserialize(socklist[[n]]) : error reading from connection", e, fixed=TRUE)) { warning("There is an error running the code in parallel. Try with nproc=1.") } stop(e) } ) # Convert list from foreach into a db data.frame if (!any(is.na(db[["vj_group"]]))) { db <-do.call(rbind, list_db) } else { db <- bind_rows( db %>% filter(is.na(!!rlang::sym("vj_group"))), do.call(rbind, list_db)) } # Stop the cluster and add back not used colums if (nproc > 1) { parallel::stopCluster(cluster) db <- db %>% left_join(db_notused_cols, by= "DTN_ROW_ID") } db <- db[order(db$DTN_ROW_ID), ] if (!is.null(cross)) { db$cross_dist_nearest <- db$TMP_DIST_NEAREST } else { db$dist_nearest <- db$TMP_DIST_NEAREST } # prepare db for return if ((!VJthenLen) && keepVJLgroup) { db$vjl_group <- db[["vj_group"]] } db <- db[, !(names(db) %in% c(junc_len, "vj_group", "DTN_ROW_ID", "V1", "J1","TMP_DIST_NEAREST"))] return(db) } #### Distance Threshold Detection #### #' Find distance threshold #' #' \code{findThreshold} automatically determines an optimal threshold for clonal assignment of #' Ig sequences using a vector of nearest neighbor distances. It provides two alternative methods #' using either a Gamma/Gaussian Mixture Model fit (\code{method="gmm"}) or kernel density #' fit (\code{method="density"}). #' #' @param distances numeric vector containing nearest neighbor distances. #' @param method string defining the method to use for determining the optimal threshold. #' One of \code{"gmm"} or \code{"density"}. See Details for methodological #' descriptions. #' @param edge upper range as a fraction of the data density to rule initialization of #' Gaussian fit parameters. Default value is 90% of the entries (0.9). #' Applies only when \code{method="density"}. . #' @param cross supplementary nearest neighbor distance vector output from \link{distToNearest} #' for initialization of the Gaussian fit parameters. #' Applies only when \code{method="gmm"}. #' @param subsample maximum number of distances to subsample to before threshold detection. #' @param model allows the user to choose among four possible combinations of fitting curves: #' \code{"norm-norm"}, \code{"norm-gamma"}, \code{"gamma-norm"}, #' and \code{"gamma-gamma"}. Applies only when \code{method="gmm"}. #' @param cutoff method to use for threshold selection: the optimal threshold \code{"opt"}, #' the intersection point of the two fitted curves \code{"intersect"}, or #' a value defined by user for one of the sensitivity or specificity \code{"user"}. #' Applies only when \code{method="gmm"}. #' @param sen sensitivity required. Applies only when \code{method="gmm"} and \code{cutoff="user"}. #' @param spc specificity required. Applies only when \code{method="gmm"} and \code{cutoff="user"}. #' #' @param progress if \code{TRUE} print a progress bar. #' @return #' \itemize{ #' \item \code{"gmm"} method: Returns a \link{GmmThreshold} object including the #' \code{threshold} and the function fit parameters, i.e. #' mixing weight, mean, and standard deviation of a Normal distribution, or #' mixing weight, shape and scale of a Gamma distribution. #' \item \code{"density"} method: Returns a \link{DensityThreshold} object including the optimum #' \code{threshold} and the density fit parameters. #' } #' #' @details #' \itemize{ #' \item \code{"gmm"}: Performs a maximum-likelihood fitting procedure, for learning #' the parameters of two mixture univariate, either Gamma or Gaussian, distributions #' which fit the bimodal distribution entries. Retrieving the fit parameters, #' it then calculates the optimum threshold \code{method="optimal"}, where the #' average of the sensitivity plus specificity reaches its maximum. In addition, #' the \code{findThreshold} function is also able #' to calculate the intersection point (\code{method="intersect"}) of the two fitted curves #' and allows the user to invoke its value as the cut-off point, instead of optimal point. #' \item \code{"density"}: Fits a binned approximation to the ordinary kernel density estimate #' to the nearest neighbor distances after determining the optimal #' bandwidth for the density estimate via least-squares cross-validation of #' the 4th derivative of the kernel density estimator. The optimal threshold #' is set as the minimum value in the valley in the density estimate #' between the two modes of the distribution. #' } #' #' @seealso See \link{distToNearest} for generating the nearest neighbor distance vectors. #' See \link{plotGmmThreshold} and \link{plotDensityThreshold} for plotting output. #' #' @note #' Visually inspecting the resulting distribution fits is strongly recommended when using #' either fitting method. Empirical observations imply that the bimodality #' of the distance-to-nearest distribution is detectable for a minimum of 1,000 distances. #' Larger numbers of distances will improve the fitting procedure, although this can come #' at the expense of higher computational demands. #' #' @examples #' \donttest{ #' # Subset example data to 50 sequences, one sample and isotype as a demo #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, sample_id == "-1h" & c_call=="IGHG")[1:50,] #' #' # Use nucleotide Hamming distance and normalize by junction length #' db <- distToNearest(db, sequenceColumn="junction", vCallColumn="v_call", #' jCallColumn="j_call", model="ham", normalize="len", nproc=1) #' #' # Find threshold using the "gmm" method with user defined specificity #' output <- findThreshold(db$dist_nearest, method="gmm", model="gamma-gamma", #' cutoff="user", spc=0.99) #' plot(output, binwidth=0.02, title=paste0(output@model, " loglk=", output@loglk)) #' print(output) #' } #' @export findThreshold <- function (distances, method=c("density", "gmm"), edge=0.9, cross=NULL, subsample=NULL, model=c("gamma-gamma", "gamma-norm", "norm-gamma", "norm-norm"), cutoff=c("optimal", "intersect", "user"), sen=NULL, spc=NULL, progress=FALSE){ # Check arguments method <- match.arg(method) model <- match.arg(model) cutoff <- match.arg(cutoff) # Subsample input distances if(!is.null(subsample)) { subsample <- min(length(distances), subsample) distances <- sample(distances, subsample, replace=FALSE) } if (method == "gmm") { if (cutoff == "user"){ if (is.null(sen) & is.null(spc)) { cat("Error: one of 'sen' or 'spc' values should be specified.") output <- NA } else if (!is.null(sen) & !is.null(spc)) { cat("Error: only one of 'sen' or 'spc' values can be specified.") output <- NA } else { output <- gmmFit(ent=distances, edge=edge, cross=cross, model=model, cutoff=cutoff, sen=sen, spc=spc, progress=progress) } } else { output <- gmmFit(ent=distances, edge=edge, cross=cross, model=model, cutoff=cutoff, sen=sen, spc=spc, progress=progress) } } else if (method == "density") { output <- smoothValley(distances) } else { cat("Error: assigned method has not been found.\n") output <- NA } return(output) } # Find distance threshold with \code{"density"} Method # # Infer value of the minimum between the two modes in a bimodal distribution. # # @param distances numeric vector of distances. # # @return Returns distance threshold that separates two modes of the input distribution. # # @details # The distance to nearest neighbor can be used to estimate a threshold for assigning Ig # sequences to clonal groups. A histogram of the resulting vector is often bimodal, # with the ideal threshold being a value that separates the two modes. This function takes # as input a vector of such distances and infers the ideal threshold. # # @seealso # \itemize{ # \item See \link{distToNearest} for details on generating the input distance vector. # \item See \link{gmmFit} for a different threshold inference methodology. # \item See \link{findThreshold} to switch between available methods. #} # # # @examples # # Subset example data to one sample as a demo # data(ExampleDb, package="alakazam") # db <- subset(ExampleDb, sample_id == "-1h") # # # Use genotyped V assignments, HS1F model, and normalize by junction length # dist_hs1f <- distToNearest(db, sequenceColumn="junction", vCallColumn="v_call_genotyped", # jCallColumn="j_call", # model="hs1f", first=FALSE, normalize="len") # # # using findThreshold switch # threshold <- findThreshold(dist_hs1f$dist_nearest, method="density") # # or # threshold <- smoothValley(dist_hs1f$dist_nearest) # # # Plot histogram of non-NA distances # p1 <- ggplot(data=subset(dist_hs1f, !is.na(dist_nearest))) + theme_bw() + # ggtitle("Distance to nearest: hs1f") + xlab("distance") + # geom_histogram(aes(x=dist_nearest), binwidth=0.025, # fill="steelblue", color="white") + # geom_vline(xintercept=threshold, linetype="dashed") # plot(p1) # # @export smoothValley <- function(distances) { # Remove NA, NaN, and infinite distances distances <- distances[!is.na(distances) & !is.nan(distances) & !is.infinite(distances)] unique_distances <- unique(distances) # Gaussian distribution bandwidth scale parameter # gaussian_scaling <- (1/(4 * pi))^(1/10) # Ideal bandwidth if (length(unique_distances) < 3 ) { stop("The `smoothValley` funcion used by the density method requires ", "at least 3 unique distance values.\n", "Found distance values: ", paste(unique_distances, collapse=", ")) } bandwidth <- h.ucv(unique_distances, 4)$h #bandwidth <- kedd::h.ucv(distances, 4)$h #bandwidth <- ks::hucv(unique(distances), deriv.order=4) # Density estimate dens <- KernSmooth::bkde(distances, bandwidth=bandwidth, canonical=TRUE) #dens <- KernSmooth::bkde(distances, bandwidth=bandwidth) xdens <- dens$x ydens <- dens$y #dens <- ks::kde(distances, h=bandwidth*gaussian_scaling, binned=TRUE) #xdens <- dens$eval.points #ydens <- dens$estimate # Find threshold tryCatch(threshold <- xdens[which(diff(sign(diff(ydens))) == 2)[1] + 1], error = function(e) { warning('No minimum was found between two modes.') return(NULL) }) results <- new("DensityThreshold", x=distances, bandwidth=bandwidth, xdens=xdens, ydens=ydens, threshold=threshold) return(results) } # Find distance threshold with Gaussian Mixture Method # # Fits a bimodal distribution with two Gaussian functions and calculates maximum of the average of the # Sensitivity plus Specificity corresponding to the Gaussian distributions. # # @param ent numeric vector of distances returned from \link{distToNearest} function. # @param edge upper range (a fraction of the data density) to rule initialization of # Gaussian fit parameters. Default value is equal to \eqn{90}\% of the entries. # @param cross a supplementary info (numeric vector) invoked from \link{distToNearest} # function, to support initialization of the Gaussian fit parameters. # @param progress if \code{TRUE} print progress. # # @return returns an object including optimum "\code{threshold}" cut and the Gaussian fit parameters, # such as mixing proportion ("\code{omega1}" and "\code{omega2}"), mean ("\code{mu1}" and "\code{mu2}"), # and standard deviation ("\code{sigma1}" and "\code{sigma2}"). Returns "\code{NULL}" if no fit has found. # # @seealso # \itemize{ # \item See \link{distToNearest} for details on generating the input distance vector. # \item See \link{smoothValley} for a different threshold inference methodology. # \item See \link{findThreshold} to switch between available methods. #} # # # @details This function follows a Gaussian Mixture Model (GMM) procedure, # including the Expectation Maximization (EM) algorithm, for learning the parameters # of two univariate Gaussians which fit the bimodal distribution entries. # Retrieving the fit parameters, it then calculates, analytically, the optimum threshold, # where the average of the Sensitivity plus Specificity reaches its maximum. This threshold # can be then invoked for assigning Ig sequences to clonal groups. # # @examples # # Subset example data to one sample as a demo # data(ExampleDb, package="alakazam") # db <- subset(ExampleDb, sample_id == "-1h") # # # Use nucleotide Hamming distance and normalize by junction length # db <- distToNearest(db, sequenceColumn="junction", vCallColumn="v_call_genotyped", # jCallColumn="j_call", model="ham", first=FALSE, normalize="len", nproc=1) # # # To find the Threshold cut use either findThreshold-switch # output <- findThreshold(db$dist_nearest, method="gmm", edge=0.9) # # or # output <- gmmFit(db$dist_nearest, edge=0.9) gmmFit <- function(ent, edge=0.9, cross=NULL, model, cutoff, sen, spc, progress=FALSE) { #************* Filter Unknown Data *************# ent <- ent[!is.na(ent) & !is.nan(ent) & !is.infinite(ent)] if (is.null(cross)) { m <- FALSE } else { m <- mean(cross, na.rm = TRUE) } #************* Defult edge *************# cut <- edge*length(ent) #************* Define Scan Step For Initializing *************# if (ent[which.max(ent)] <= 5) { scan_step <- 0.1 } else { scan_step <- 1 } #************* Print some info *************# if (progress) { valley_loc <- 0 while (1) { valley_loc <- valley_loc + scan_step if ( length(ent[ent<=valley_loc]) > cut ) break } n_iter <- ceiling(valley_loc/scan_step)-1 cat(" STEP> ", "Parameter initialization\n", sep="") cat(" VALUES> ", length(ent), "\n", sep="") cat("ITERATIONS> ", n_iter, "\n", sep="") pb <- progressBar(n_iter) } #************* set rand seed *************# set.seed(NULL) #************* define Number of Gaussians *************# num_G <- 2 vec.omega1 <- 0; vec.omega2 <- 0 vec.mu1 <- 0; vec.mu2 <- 0 vec.sigma1 <- 0; vec.sigma2 <- 0 vec.lkhood <- 0 valley.itr <- 0 valley_loc <- 0 nEve <- length(ent) while (1) { #************* guess the valley loc *************# valley_loc <- valley_loc + scan_step if ( length(ent[ent<=valley_loc]) > cut ) break #************* Choosing Random Omega *************# omega <- runif(1) omega <- c(omega, 1.-omega) #************* Choosing Random Mean *************# mu_int <- mean(ent[ent<=valley_loc]) mu_int <- c(mu_int, mean(ent[ent>valley_loc])) #************* Choosing Random Sigma *************# sigma_int <- sd(ent[entvalley_loc])) #************* EM Algorithm *************# temp_lk <- 0 itr <- 0 while (1){ mu <- 0 sigma <- 0 for (j in 1:num_G){ mu[j] <- mu_int[j] sigma[j] <- sigma_int[j] } #************* E-step Expectation *************# resp <- array(0, dim=c(nEve,num_G)) for(i in 1:nEve){ for (j in 1:num_G) resp[i,j] <- omega[j]*dnorm(ent[i], mu[j], sigma[j]) resp[i,] <- resp[i,]/sum(resp[i,]) } #************* M-step Maximization *************# for (j in 1:num_G){ m_c <- sum(resp[,j]) omega[j] <- m_c / nEve mu[j] <- sum(resp[,j]*ent) mu[j] <- mu[j] / m_c sigma[j] <- sum(resp[,j]*(ent-mu[j])*(ent-mu[j])) sigma[j] <- sigma[j] / m_c sigma[j] <- sqrt(sigma[j]) } #************* Log-likelihood calculation *************# log_lk <- 0. for (i in 1:nEve){ s <- 0 for (j in 1:num_G) s <- s + omega[j]*dnorm(ent[i], mu[j], sigma[j]) log_lk <- log_lk + log(s, base = exp(1)) } log_lk_err <- abs(log_lk - temp_lk) itr = itr + 1 #print(paste0("scaned: ", valley_loc, " itr # ", itr, " -> ", log_lk_err)) if (is.na(log_lk_err) | is.nan(log_lk_err) | is.infinite(log_lk_err)) break if (log_lk_err < 1.e-7) break temp_lk <- log_lk; } #************************************************************# #************* JUST FOR VISUALIZATION PURPOSES *************# # print(paste0("scaned: ", valley_loc, " --------> Log-Likelihood: ", log_lk)) # if (ent[which.min(ent)] >= 0 & ent[which.max(ent)] <= 5) { # h_min <- 0.0 # h_max <- 1 # dh = 0.02 # } else { # h_min <- 0.0 # h_max <- ent[which.max(ent)] # dh = 1 # } # h <- hist(ent, plot = FALSE, breaks=seq(h_min, h_max, by=dh)) # plot(h, freq=FALSE, col="steelblue", border="white", xlim=c(h_min, h_max)) # curve(omega[1]*dnorm(x, mu[1], sigma[1]), add=TRUE, col="darkblue", lwd=2, xlim = c(h_min, h_max)) # curve(omega[2]*dnorm(x, mu[2], sigma[2]), add=TRUE, col="darkred", lwd=2, xlim = c(h_min, h_max)) #************************************************************# #************************************************************# if (!is.na(log_lk_err) & !is.nan(log_lk_err) & !is.infinite(log_lk_err)){ if (!as.logical(m)){ valley.itr <- valley.itr + 1 vec.omega1[valley.itr] <- omega[1] vec.omega2[valley.itr] <- omega[2] vec.mu1[valley.itr] <- mu[1] vec.mu2[valley.itr] <- mu[2] vec.sigma1[valley.itr] <- sigma[1] vec.sigma2[valley.itr] <- sigma[2] vec.lkhood[valley.itr] <- log_lk } else if ((mu[1]< m & m < mu[2]) | (mu[2]< m & m < mu[1]) | (mu[1]< m & mu[2]< m) ){ valley.itr <- valley.itr + 1 vec.omega1[valley.itr] <- omega[1] vec.omega2[valley.itr] <- omega[2] vec.mu1[valley.itr] <- mu[1] vec.mu2[valley.itr] <- mu[2] vec.sigma1[valley.itr] <- sigma[1] vec.sigma2[valley.itr] <- sigma[2] vec.lkhood[valley.itr] <- log_lk } } # Update progress if (progress) { pb$tick() } } if (valley.itr != 0) { # MaxLoc <- which.max(vec.lkhood) MaxLoc <- which.max(abs(vec.lkhood)) omega[1] <- vec.omega1[MaxLoc]; omega[2] <- vec.omega2[MaxLoc] mu[1] <- vec.mu1[MaxLoc]; mu[2] <- vec.mu2[MaxLoc] sigma[1] <- vec.sigma1[MaxLoc]; sigma[2] <- vec.sigma2[MaxLoc] # Invoke Gaussians parameters omega.gmm <- c(omega[1], omega[2]) mu.gmm <- c(mu[1], mu[2]) sigma.gmm <- c(sigma[1], sigma[2]) fit_results <- rocSpace(ent=ent, omega.gmm=omega.gmm , mu.gmm=mu.gmm, sigma.gmm=sigma.gmm, model=model, cutoff=cutoff, sen=sen, spc=spc, progress=progress) results <- new("GmmThreshold", x=ent, model=model, cutoff=cutoff, a1=fit_results@a1, b1=fit_results@b1, c1=fit_results@c1, a2=fit_results@a2, b2=fit_results@b2, c2=fit_results@c2, loglk=fit_results@loglk, threshold=fit_results@threshold, sensitivity=fit_results@sensitivity, specificity=fit_results@specificity, pvalue=fit_results@pvalue) } else { print("Error: No fit found") results <- NULL } return(results) } rocSpace <- function(ent, omega.gmm, mu.gmm, sigma.gmm, model, cutoff, sen, spc, progress=FALSE) { func <- model bits <- strsplit(func,'-')[[1]] # Define mixture Function properties if (bits[1] == "norm"){ func1.0 <- round(omega.gmm[1], digits = 3) # -> prob: omega func1.1 <- mu.gmm[1] # -> mean: mu func1.2 <- sigma.gmm[1] # -> sd: sigma } else if (bits[1] == "gamma"){ func1.0 <- round(omega.gmm[1], digits = 3) # -> prob: omega func1.1 <- (mu.gmm[1]/sigma.gmm[1])*(mu.gmm[1]/sigma.gmm[1]) # -> shape: k func1.2 <- sigma.gmm[1]*sigma.gmm[1]/mu.gmm[1] # -> scale: theta } if (bits[2] == "norm"){ func2.1 = mu.gmm[2] # -> mean: mu func2.2 = sigma.gmm[2] # -> sd: sigma } else if (bits[2] == "gamma"){ func2.1 <- (mu.gmm[2]/sigma.gmm[2])*(mu.gmm[2]/sigma.gmm[2]) # -> shape: k func2.2 <- sigma.gmm[2]*sigma.gmm[2]/mu.gmm[2] # -> scale: theta } # Save mixture Function properties gmmfunc1.1 <- func1.1 gmmfunc1.2 <- func1.2 gmmfunc2.1 <- func2.1 gmmfunc2.2 <- func2.2 set.seed(NULL) # options(warn=-1) LOG_LIK<-0 if (progress) { cat(" STEP> ", "Fitting ", func, "\n", sep="") pb <- progressBar(15) } for (i in 1:15) { itr <- 1 max_itr <- 100 key <- FALSE while (!key && itr <= max_itr){ # Fit mixture Functions MixModel <- try(suppressWarnings(MASS::fitdistr(na.exclude(ent), mixFunction, first_curve = bits[1], second_curve = bits[2], start=list(omega = func1.0, func1.1 = func1.1, func1.2 = func1.2, func2.1 = func2.1, func2.2 = func2.2), lower = c(0.001, 0.001, 0.001, 0.001, 0.001), upper = c(0.999, +Inf, +Inf, +Inf, +Inf))), silent = TRUE) if (inherits(MixModel, "try-error")) { func1.0 <- runif(1) func1.1 <- abs(gmmfunc1.1 + sample(c(-1,1), 1)*runif(1)) func1.2 <- abs(gmmfunc1.2 + sample(c(-1,1), 1)*runif(1)) func2.1 <- abs(gmmfunc2.1 + sample(c(-1,1), 1)*runif(1)) func2.2 <- abs(gmmfunc2.2 + sample(c(-1,1), 1)*runif(1)) itr <- itr + 1 next } else if ( (bits[1] == "norm" & bits[2] == "gamma" & MixModel$estimate[[2]] > MixModel$estimate[[4]] * MixModel$estimate[[5]]) | (bits[1] == "gamma" & bits[2] == "norm" & MixModel$estimate[[2]] * MixModel$estimate[[3]] > MixModel$estimate[[4]]) | MixModel$estimate[[1]] == 0.001 | MixModel$estimate[[1]] == 0.999) { func1.0 <- runif(1) func1.1 <- abs(gmmfunc1.1 + sample(c(-1,1), 1)*runif(1)) func1.2 <- abs(gmmfunc1.2 + sample(c(-1,1), 1)*runif(1)) func2.1 <- abs(gmmfunc2.1 + sample(c(-1,1), 1)*runif(1)) func2.2 <- abs(gmmfunc2.2 + sample(c(-1,1), 1)*runif(1)) # print("here") itr <- itr + 1 next } else { key <- TRUE } } # Check if we failed to find a valid fit after max iterations if (!key) { stop(paste0("Failed to fit after ", max_itr, " attempts in outer iteration ", i)) } # print(paste0(func, " fit done. Loglik= ", round(MixModel$loglik, digits = 2))) # Invoke fit parameters # log_lik <- round(MixModel$loglik, digits = 2) log_lik <- round(abs(MixModel$loglik), digits = 2) if (log_lik > LOG_LIK){ LOG_LIK <- log_lik FUNC1.0 <- MixModel$estimate[[1]] FUNC1.1 <- MixModel$estimate[[2]] FUNC1.2 <- MixModel$estimate[[3]] FUNC2.0 <- 1. - MixModel$estimate[[1]] FUNC2.1 <- MixModel$estimate[[4]] FUNC2.2 <- MixModel$estimate[[5]] } # New fit parameters for next loop func1.0 <- runif(1) func1.1 <- abs(gmmfunc1.1 + sample(c(-1,1), 1)*runif(1)) func1.2 <- abs(gmmfunc1.2 + sample(c(-1,1), 1)*runif(1)) func2.1 <- abs(gmmfunc2.1 + sample(c(-1,1), 1)*runif(1)) func2.2 <- abs(gmmfunc2.2 + sample(c(-1,1), 1)*runif(1)) # if (i==1 & itr == 1) break if (progress) { pb$tick() } } # options(warn=0) # Invoke best fit parameters log_lik <- LOG_LIK func1.0 <- FUNC1.0 func1.1 <- FUNC1.1 func1.2 <- FUNC1.2 func2.0 <- FUNC2.0 func2.1 <- FUNC2.1 func2.2 <- FUNC2.2 # order fit parameters if (bits[1]=="norm" & bits[2]=="norm" & func1.1>func2.1) { FUNC0 <- func1.0 FUNC1 <- func1.1 FUNC2 <- func1.2 func1.0 <- func2.0 func1.1 <- func2.1 func1.2 <- func2.2 func2.0 <- FUNC0 func2.1 <- FUNC1 func2.2 <- FUNC2 } else if (bits[1]=="gamma" & bits[2]=="gamma" & func1.1*func1.2>func2.1*func2.2) { FUNC0 <- func1.0 FUNC1 <- func1.1 FUNC2 <- func1.2 func1.0 <- func2.0 func1.1 <- func2.1 func1.2 <- func2.2 func2.0 <- FUNC0 func2.1 <- FUNC1 func2.2 <- FUNC2 } # domain [t1,t2] under distribution t1<-min(ent) t2<-max(ent) # domain [minInt,maxInt] to search for opt and root if (bits[1] == "norm") { minInt<-func1.1 } else if (bits[1] == "gamma") { minInt<-func1.1*func1.2 } if (bits[2] == "norm") { maxInt<-func2.1 } else if (bits[2] == "gamma") { maxInt<-func2.1*func2.2 } if (cutoff == "optimal"){ # Calculate optimum opt <- optimize(avgSenSpc, interval = c(minInt, maxInt), tol=1e-8, maximum = TRUE, t1=t1, t2=t2, first_curve = bits[1], second_curve = bits[2], func1.0=func1.0, func1.1=func1.1, func1.2=func1.2, func2.0=func2.0, func2.1=func2.1, func2.2=func2.2) threshold <- opt$maximum } else if (cutoff == "intersect") { # Calculate intersection intxn <- uniroot(intersectPoint, interval = c(minInt, maxInt), tol=1e-8, extendInt="yes", first_curve = bits[1], second_curve = bits[2], func1.0=func1.0, func1.1=func1.1, func1.2=func1.2, func2.0=func2.0, func2.1=func2.1, func2.2=func2.2) threshold <- intxn$root } else if (cutoff == "user") { user <- uniroot(userDefineSenSpc, interval = c(t1, t2), tol=1e-8, extendInt="no", t1=t1, t2=t2, first_curve = bits[1], second_curve = bits[2], sen = sen, spc = spc, func1.0=func1.0, func1.1=func1.1, func1.2=func1.2, func2.0=func2.0, func2.1=func2.1, func2.2=func2.2) threshold <- user$root } # Calculate Sensitivity and Specificity if (bits[1]=="norm") { TP = normArea(t1=t1, t2=threshold, omega=func1.0, mu=func1.1, sigma=func1.2) } else if (bits[1]=="gamma") { TP = gammaArea(t1=t1, t2=threshold, omega=func1.0, k=func1.1, theta=func1.2) } if (bits[1]=="norm") { FN = normArea(t1=threshold, t2=t2, omega=func1.0, mu=func1.1, sigma=func1.2) } else if (bits[1]=="gamma") { FN = gammaArea(t1=threshold, t2=t2, omega=func1.0, k=func1.1, theta=func1.2) } if (bits[2]=="norm") { TN = normArea(t1=threshold, t2=t2, omega=func2.0, mu=func2.1, sigma=func2.2) } else if (bits[2]=="gamma") { TN = gammaArea(t1=threshold, t2=t2, omega=func2.0, k=func2.1, theta=func2.2) } if (bits[2]=="norm") { FP = normArea(t1=t1, t2=threshold, omega=func2.0, mu=func2.1, sigma=func2.2) } else if (bits[2]=="gamma") { FP = gammaArea(t1=t1, t2=threshold, omega=func2.0, k=func2.1, theta=func2.2) } sensitivity <- TP/(TP+FN) specificity <- TN/(TN+FP) # Hartigans dip statistic (HDS) test invisible(capture.output(pvalue <- dip.test(ent)$p.value[[1]], type="message")) fit_results <- new("GmmThreshold", x=numeric(), model=character(), cutoff=character(), a1=func1.0, b1=func1.1, c1=func1.2, a2=func2.0, b2=func2.1, c2=func2.2, loglk=log_lik, threshold=threshold, sensitivity=sensitivity, specificity=specificity, pvalue=pvalue) return(fit_results) } # Calculates the area (integral) bounded # in domain[t1,t2] under Gamma distribution gammaArea <- function (t1, t2, omega, k, theta){ trm1 <- pgamma(t1/theta, shape=k, lower.tail=FALSE) * gamma(k) trm2 <- pgamma(t2/theta, shape=k, lower.tail=FALSE) * gamma(k) area <- omega*(trm1 - trm2)/gamma(k) return(area) } # Calculates the area (integral) bounded # in domain[t1,t2] under Normal distribution normArea <- function (t1, t2, omega, mu, sigma){ erf1 <- (t1-mu)/(sqrt(2)*sigma) erf1 <- 2*pnorm(erf1*sqrt(2)) - 1 erf2 <- (t2-mu)/(sqrt(2)*sigma) erf2 <- 2*pnorm(erf2*sqrt(2)) - 1 area <- sigma * omega * (-erf1 + erf2) / (2*sigma) return(area) } # find the optimum threshold using # optimize function fit avgSenSpc <- function(t, t1=0, t2=0, first_curve=NULL, second_curve=NULL, func1.0 = 0, func1.1 = 0, func1.2 = 0, func2.0 = 0, func2.1 = 0, func2.2 = 0) { if (first_curve == "norm") { TP <- normArea(t1=t1, t2=t, omega=func1.0, mu=func1.1, sigma=func1.2) FN <- normArea(t1=t, t2=t2, omega=func1.0, mu=func1.1, sigma=func1.2) } else if (first_curve == "gamma") { TP <- gammaArea(t1=t1, t2=t, omega=func1.0, k=func1.1, theta=func1.2) FN <- gammaArea(t1=t, t2=t2, omega=func1.0, k=func1.1, theta=func1.2) } if (second_curve == "norm") { FP <- normArea(t1=t1, t2=t, omega=func2.0, mu=func2.1, sigma=func2.2) TN <- normArea(t1=t, t2=t2, omega=func2.0, mu=func2.1, sigma=func2.2) } else if (second_curve == "gamma") { FP <- gammaArea(t1=t1, t2=t, omega=func2.0, k=func2.1, theta=func2.2) TN <- gammaArea(t1=t, t2=t2, omega=func2.0, k=func2.1, theta=func2.2) } SEN <- TP/(TP + FN) SPC <- TN/(TN + FP) return((SEN + SPC)/2) } # Intersection Function intersectPoint <- function(t, first_curve=NULL, second_curve=NULL, func1.0 = 0, func1.1 = 0, func1.2 = 0, func2.0 = 0, func2.1 = 0, func2.2 = 0) { if (first_curve == "norm") { fit1 <- func1.0*dnorm(t, mean = func1.1, sd = func1.2) } else if (first_curve == "gamma") { fit1 <- func1.0*dgamma(t, shape = func1.1, scale = func1.2) } if (second_curve == "norm") { fit2 <- func2.0*dnorm(t, mean = func2.1, sd = func2.2) } else if (second_curve == "gamma") { fit2 <- func2.0*dgamma(t, shape = func2.1, scale = func2.2) } return(fit1 - fit2) } # useDefineSenSpc userDefineSenSpc <- function(t, t1=0, t2=0, first_curve=NULL, second_curve=NULL, sen=NULL, spc=NULL, func1.0=0, func1.1=0, func1.2=0, func2.0=0, func2.1=0, func2.2=0) { if (!is.null(sen)) { if (first_curve == "norm") { TP <- normArea(t1=t1, t2=t, omega=func1.0, mu=func1.1, sigma=func1.2) FN <- normArea(t1=t, t2=t2, omega=func1.0, mu=func1.1, sigma=func1.2) } else if (first_curve == "gamma") { TP <- gammaArea(t1=t1, t2=t, omega=func1.0, k=func1.1, theta=func1.2) FN <- gammaArea(t1=t, t2=t2, omega=func1.0, k=func1.1, theta=func1.2) } threshold <- (TP/(TP+FN)) - sen } else if (!is.null(spc)) { if (second_curve == "norm") { FP <- normArea(t1=t1, t2=t, omega=func2.0, mu=func2.1, sigma=func2.2) TN <- normArea(t1=t, t2=t2, omega=func2.0, mu=func2.1, sigma=func2.2) } else if (second_curve == "gamma") { FP <- gammaArea(t1=t1, t2=t, omega=func2.0, k=func2.1, theta=func2.2) TN <- gammaArea(t1=t, t2=t2, omega=func2.0, k=func2.1, theta=func2.2) } threshold <- (TN/(TN+FP)) - spc } return(threshold) } # Mixture Functions mixFunction <- function(t, first_curve=NULL, second_curve=NULL, omega = 0, func1.1 = 0, func1.2 = 0, func2.1 = 0, func2.2 = 0) { if (first_curve == "norm"){ r <- omega*dnorm(t, mean=func1.1, sd=func1.2) } else if (first_curve == "gamma") { r <- omega*dgamma(t, shape=func1.1, scale=func1.2) } if (second_curve == "norm"){ r <- r + (1-omega)*dnorm(t, mean=func2.1, sd=func2.2) } else if (second_curve == "gamma") { r <- r + (1-omega)*dgamma(t, shape=func2.1, scale=func2.2) } } #' Plot findThreshold results for the gmm method #' #' \code{plotGmmThreshold} plots the results from \code{"gmm"} method of #' \link{findThreshold}, including the Gaussian distributions, input nearest neighbor #' distance histogram, and threshold selected. #' #' @param data \link{GmmThreshold} object output by the \code{"gmm"} method #' of \link{findThreshold}. #' @param cross numeric vector of distances from \link{distToNearest} to draw as a #' histogram below the \code{data} histogram for comparison purposes. #' @param xmin minimum limit for plotting the x-axis. If \code{NULL} the limit will #' be set automatically. #' @param xmax maximum limit for plotting the x-axis. If \code{NULL} the limit will #' be set automatically. #' @param breaks number of breaks to show on the x-axis. If \code{NULL} the breaks will #' be set automatically. #' @param binwidth binwidth for the histogram. If \code{NULL} the binwidth #' will be set automatically. #' @param title string defining the plot title. #' @param size numeric value for lines in the plot. #' @param silent if \code{TRUE} do not draw the plot and just return the ggplot2 #' object; if \code{FALSE} draw the plot. #' @param ... additional arguments to pass to ggplot2::theme. #' #' @return A ggplot object defining the plot. #' #' @seealso See \link{GmmThreshold} for the the input object definition and #' \link{findThreshold} for generating the input object. See #' \link{distToNearest} calculating nearest neighbor distances. #' #' @examples #' \donttest{ #' # Subset example data to one sample as a demo #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, sample_id == "-1h") #' #' # Use nucleotide Hamming distance and normalize by junction length #' db <- distToNearest(db, sequenceColumn="junction", vCallColumn="v_call_genotyped", #' jCallColumn="j_call", model="ham", normalize="len", nproc=1) #' #' # To find the threshold cut, call findThreshold function for "gmm" method. #' output <- findThreshold(db$dist_nearest, method="gmm", model="norm-norm", cutoff="opt") #' print(output) #' #' # Plot results #' plotGmmThreshold(output, binwidth=0.02) #' } #' @export plotGmmThreshold <- function(data, cross=NULL, xmin=NULL, xmax=NULL, breaks=NULL, binwidth=NULL, title=NULL, size=1, silent=FALSE, ...) { # Define histogram data.frame and threshold xdf <- data.frame(x=data@x) # Generate curves gx <- seq(min(xdf$x), max(xdf$x), by=0.002) bits <- strsplit(data@model,'-')[[1]] if (bits[1] == "norm") { fit1 <- data.frame(x=gx, y=data@a1*dnorm(gx, mean=data@b1, sd=data@c1)) } else if (bits[1] == "gamma") { fit1 <- data.frame(x=gx, y=data@a1*dgamma(gx, shape=data@b1, scale=data@c1)) } if (bits[2] == "norm") { fit2 <- data.frame(x=gx, y=data@a2*dnorm(gx, mean = data@b2, sd=data@c2)) } else if (bits[2] == "gamma") { fit2 <- data.frame(x=gx, y=data@a2*dgamma(gx, shape = data@b2, scale=data@c2)) } # ggplot workaround if (is.null(xmin)) { xmin <- NA } if (is.null(xmax)) { xmax <- NA } # Plot distToNearest distribution plus Gaussian fits p <- ggplot(xdf, aes(x=!!rlang::sym("x"))) + baseTheme() + xlab("Distance") + ylab("Density") + geom_histogram(aes(y=after_stat(!!str2lang("density"))), binwidth=binwidth, fill="gray40", color="white") + geom_line(data=fit1, aes(x=!!rlang::sym("x"), y=!!rlang::sym("y")), color="darkslateblue", linewidth=size) + geom_line(data=fit2, aes(x=!!rlang::sym("x"), y=!!rlang::sym("y")), color="darkslateblue", linewidth=size) + geom_vline(xintercept=data@threshold, color="firebrick", linetype="longdash", linewidth=size) # Add cross histogram if (!is.null(cross)) { cdf <- data.frame(x=cross[is.finite(cross)]) p <- p + geom_histogram(data=cdf, aes(x=!!rlang::sym("x"), y=-after_stat(!!str2lang("density"))), binwidth=binwidth, fill="gray40", color="white", position="identity") + scale_y_continuous(labels=abs) } # Add x limits if (is.null(breaks) & (!is.na(xmin) | !is.na(xmax))) { p <- p + xlim(xmin, xmax) } # Set breaks if (!is.null(breaks)) { p <- p + scale_x_continuous(breaks=scales::pretty_breaks(n=breaks), limits=c(xmin, xmax)) } # Add Title if (!is.null(title)) { p <- p + ggtitle(title) } # Add additional theme elements p <- p + do.call(theme, list(...)) # Plot if (!silent) { plot(p) } else { return(p) } } #' Plot findThreshold results for the density method #' #' \code{plotDensityThreshold} plots the results from \code{"density"} method of #' \link{findThreshold}, including the smoothed density estimate, input nearest neighbor #' distance histogram, and threshold selected. #' #' @param data \link{DensityThreshold} object output by the \code{"density"} method #' of \link{findThreshold}. #' @param cross numeric vector of distances from \link{distToNearest} to draw as a #' histogram below the \code{data} histogram for comparison purposes. #' @param xmin minimum limit for plotting the x-axis. If \code{NULL} the limit will #' be set automatically. #' @param xmax maximum limit for plotting the x-axis. If \code{NULL} the limit will #' be set automatically. #' @param breaks number of breaks to show on the x-axis. If \code{NULL} the breaks will #' be set automatically. #' @param binwidth binwidth for the histogram. If \code{NULL} the binwidth #' will be set automatically to the bandwidth parameter determined by #' \link{findThreshold}. #' @param title string defining the plot title. #' @param size numeric value for the plot line sizes. #' @param silent if \code{TRUE} do not draw the plot and just return the ggplot2 #' object; if \code{FALSE} draw the plot. #' @param ... additional arguments to pass to ggplot2::theme. #' #' @return A ggplot object defining the plot. #' #' @seealso See \link{DensityThreshold} for the the input object definition and #' \link{findThreshold} for generating the input object. See #' \link{distToNearest} calculating nearest neighbor distances. #' #' @examples #' \donttest{ #' # Subset example data to one sample as a demo #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, sample_id == "-1h") #' #' # Use nucleotide Hamming distance and normalize by junction length #' db <- distToNearest(db, sequenceColumn="junction", vCallColumn="v_call_genotyped", #' jCallColumn="j_call", model="ham", normalize="len", nproc=1) #' #' # To find the threshold cut, call findThreshold function for "gmm" method. #' output <- findThreshold(db$dist_nearest, method="density") #' print(output) #' #' # Plot #' plotDensityThreshold(output) #' } #' @export plotDensityThreshold <- function(data, cross=NULL, xmin=NULL, xmax=NULL, breaks=NULL, binwidth=NULL, title=NULL, size=1, silent=FALSE, ...) { # Define plot data.frames xdf <- data.frame(x=data@x) ddf <- data.frame(x=data@xdens, y=data@ydens) ddf <- ddf[ddf$x > 0, ] # Set binwidth if (is.null(binwidth)) { binwidth <- data@bandwidth } # ggplot workaround if (is.null(xmin)) { xmin <- NA } if (is.null(xmax)) { xmax <- NA } # Plot distToNearest distribution plus Gaussian fits p <- ggplot(xdf, aes(x=!!rlang::sym("x"))) + baseTheme() + xlab("Distance") + ylab("Density") + geom_histogram(aes(y=after_stat(!!str2lang("density"))), binwidth=binwidth, fill="gray40", color="white") + geom_line(data=ddf, aes(x=!!rlang::sym("x"), y=!!rlang::sym("y")), color="darkslateblue", linewidth=size) # Only add threshold line if threshold is not NA or infinite if (!is.na(data@threshold) && is.finite(data@threshold)) { p <- p + geom_vline(xintercept=data@threshold, color="firebrick", linetype="longdash", linewidth=size) } # Add cross histogram if (!is.null(cross)) { cdf <- data.frame(x=cross[is.finite(cross)]) p <- p + geom_histogram(data=cdf, aes(x=!!rlang::sym("x"), y=-after_stat(!!str2lang("density"))), binwidth=binwidth, fill="gray40", color="white", position="identity") + scale_y_continuous(labels=abs) } # Add x limits if (is.null(breaks) & (!is.na(xmin) | !is.na(xmax))) { p <- p + coord_cartesian(xlim = c(xmin, xmax)) } # Set breaks if (!is.null(breaks)) { p <- p + scale_x_continuous(breaks=scales::pretty_breaks(n=breaks), limits=c(xmin, xmax)) } # Add title if (!is.null(title)) { p <- p + ggtitle(title) } # Add additional theme elements p <- p + do.call(theme, list(...)) # Plot if (!silent) { plot(p) } else { return(p) } } shazam/R/sysdata.rda0000644000176200001440000014330314142206203014074 0ustar liggesusersBZh91AY&SY¶ÜÊtEÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáEžÄ |;ãrXÀ3ÊÀŒ" AC^ÍÃMµ‘} WeÁb骙RÙš›mÑqÝp&áJ¢Ñ¶»¹±Ü®ª]tH§U°àœ¨ø€6 @D} @  ¬d `¡l4-c Ýc¶G YÐÐnÇ@Ä€NÔ ´@M‚Ö! ³ ±¶2)¶U(5 ÇfÛKfp8, {8«€.œ}÷zð÷d«€Ðoá̶–Æà¼yK€>îE.÷q)À{¼ð¸è¥Àønð$}°è¶7€=ÞBŽvr¸îŠ\@w¼÷€=Àè¥Àܰ   ޾UyO€;Ìí×}Æ}ö÷¸Ž| p@>€=¨¼î„(` Ä@0ØŠ.ùÆ}€=(¸½<a@"$€ˆ€"@DAT=€e$Ú@6TÁ2h4Ñ4È ‰¦0˜Òi€0& lM2`&L™0š22dÉ“Fš4&Ñ0Œ “ 24Ò©› ÿ¥I&©&PÑ“A§éAˆ4 @@Р@Ð@ž‚ÑI¨"6Õ26 Èõ4=@“&&€4È@hhÐWúª¨ÿ~”©SR™úŸ¢S)£@2@h4  hÐ44 ”TL¡7êBTô˜HÉå6£F À† h4Aê2bh6šF›P4Q¡Ñ =FšF†‡¨4?Q¤õ4ÐÈÐÄ h ô "MD“Ò&d𙤂jjzžÕ¦šh¨  4Ä ÈÈêA šÐÐÑ¡¡¡ ?l¨ÔCÿìÿëý¡ÿ¨Á$Ô@D}Í¡¥¥?k!ÂäкR@âÐh¤Ó™¯ÛÏ-·6Sc-ƒ"Ð$@*iH‚‚P€]½¹ÖÝdüÞWc Çk=ñ¡—¯]â¼×ÅÛ·èvùßñVÅi+NXþê†5ÜõjõŽÀk¿ð«Iå3a“šð©=õÂÙcè\UyçTA¦l”åZ¬ùãžù”álÏuhã·yÇù´aÄèÑYeù‰êéùÙ»|F¡VæºJ§-;¤Œ#» OŤª¸ÂFOŠüfÜÛ©b9MÏÌõŠ~ocŽÖüæÚÏžäÞ·9¼˜o¯5\7>3ÐÓ½™<gM,ñÔe¿iÑ>b­ž#Ä|V­¤—¥L«½Ùk‰S™Þ¯iÎ,U³*nˆC/uõ“½WØÏlôÏgy—N˜¼vy–ÀíÞ\Óuòí(÷ªó\z(ÕŽÐÝÔî“âtYÔz¦ï^‚Ýï$o=p±ŸL xNõÚ_ˆÆbÜ"qÊ×sܤ^®¾x·ëMÎ¥UÊ­U®¶n¤šT>[÷½rœß5浬ö»¦‚Õ2±-¢žyÇ›µd›‡YM¥_Øã¶ËW¾Œ´•}u^½…²iµÁmÕ(mÀ%ÝGq¯w`gNNZد6ó j{$;½Nó\okÅEdu(ùϽWÈjo–‹wnp7áÀçš6‡Ï.ý‘Îýö¾D{,]“yÅR7÷›ñ\.O’î”âãÍÆ‚ô]#fs ê£[ >|‹Ë­lq8ólÅ•Äp…øÞ§Ç¥áµK÷?§<÷Åbír/|Nƽóú¯›žf)‡7á‡QVB15#¯m*­'l ßw¤8žuW¾|æù[Ò’wš¿t{/2ò|Æžó^שּׂ:KÞä#|,çÖÚ‘}cªÑ(µ]¾¸ªk5®:[U8¬BWIB¼O×I•n¹Í«b+ÄÕesãëÌ3ã¶ËºùÖ$¶½øFki—©%ê8E\ö‡K"´Nºê¼mÙä¨d™$sÞžò¾,µzÍ"¢–5Š^ü÷Šuä]âXXKQÎK4Sží”cÞ9<Ï:ËótðpÑ|OWŽèCzc–¤ÌyU<ÛÍ{)0_Pm–x÷º Ïomr½>×Sº´s]2ÆØ±Ôï;¸ÏG‰­43=Pi/,ûJN-êHq>×Î^‰UÀ¾r¾«d2 ®–ƒ)…˜·nPÓÏiž; ö§¦¿[(Pa±çHGùŽ›|%¼ú±K÷ôœsT½ñ®Æ¢’FTá©-?œP_Üü)äñìS¾$ܰõ:—#~Má¡ÒO5¼x­•ñëž{CĶóðyÎNå8Iüæ»nPä³û+<§ïhôìiýÊžsïÄÖòzhÕ™ƒtÐWÙG,ž¥í›ëvÒ×yóÔJå_¨è&¹ïn©mܸ¤WH½SȺ·L å9ç«°ííŽ;›wÂø3×/d–Çf\sdnšôCV$ziÌP6"þ‰VVá™ySU¼ê2~ûÇ5Ý»î-qÃr'Õ­-¢o‡ªš¿*Ã=Yãdzëµö´âGQØÏ™Q¶éã(¸FU|Ê^IëʧxžŠq§âôj_ÄŸ>¢#ë… Í…Pc¼O“Ä«Ba_JyZ¯zèÚç–U}w× {oÉ£Îy·ß0b1Åg|/‘yLÉ–È×Àà‹ÛmgT‡O7JžSŠCÛ]¸« Ý­Wr!xOd±ë‹W^ÒmáL}߸a¹¬ã–îCØß½Ær¦¶“çÛ(Üãä«!Ù6¤¼Áµ ¨ÙÇ+Å× ž»ùÖóÖ§W×÷ Vo…·^§ïB=HT7w„ÐG£ãӸ鬾K& ¹y0¢ÔG  QêÒÉì¬üí¼Õym-jqªä$òšàR*+²Î:ëy^=õ¹šy9sÆ1zùÕ¸îëF¿:Ëf§o=ÆÒSU‹›ì9íi&Ï Ý¬ m[µi82Ä?—Ço¨âùÔøIˆ˜ªÝ•mGòRYÖØ¾yòר4âþæË!2áW]0ß½à°æ6œS µÖCòWÒ9{ö˸ÇU(<íÏy¯_Sß9}é1›ØÜûC…| a·4¤n©B-ˆ÷b’7ÈkN6“v¬‹1ž«>Õ½q³†^i‹Î1¸â”¤e[ñG¶Záêyâ‹í${jœëÅ8š=®F‚O®Üùd=Ç•¥ï^ù¥êý÷zùºõßz¿5ž±vâÜñݧýyÜ?bÏÝë'FÎißræL4‡GÚFýÛºsHñõÀŒøwkwÝy’óÜûÄãí“45Æ‘C^´²\¶"_ž›qIÐz3;‡Í8T•©¼kxâBNZâ!“ž8ˆä¦¯GŠÆÃh÷õ*ûí^ZÊ?qÓäé¯ÓÇ®6û‰ ÅÐßË·qêúïߢï+»ÊË®C+=ªu)g y•óm×ÅîžyMB=™ŽÜ]¬R'¾©ß>#î¥TÍ96~’–›wYrׯ{W AÑâ¯Ïµ²yX½^ƒÔ¯o·¾W²‰äÛ„±î‹æ{Ç$à´/Ë·\GÝyçkí¹›…úÕ¥ngÏ íØ´¬óé‰' ª‹Êæ5–;¬ñ‘±S®þŸ­ñyòª)Š žÅãeú”³ÉV eîì}ÏK<õ‘n¸¢ÉwõNöî¬ËZÒqoÚ3ˆK=«ìMð1¾½o{‘ˆ@œ?2Gòm9sæú8ãϫۅŸ‰ûñÿøB~ >§êu³0;dѶ¦:4“ciÎÑ£BìdÌ”è1°”ºŠÒ&šˆB$§DÀ$ÀL„?sºû¿Óï¾¥)0æÕ¨ŒSß±ú0œÓ³ù÷ö'&мCV4ûy „A!Œ.r?cÙܱqúæz«…ý8^c-áÿgŽ''Œò¿¬‘Ýsnyg(øíï]¶ƒÒÑë½ê•ãs¬ïÛÍ“ó—|:ñåmËú>b»âžSŒ.#¦Ö’¨()+Y"¯&KÇÄol\KÑ–R5›Záä 1¨Ï‰¹®ÞDUÂ%¬³ ½å½I_ªEZÑu@¨º9¼cÞÒMÅ&´ H) Äì8‰Ú^R‘™i›i½éåZÅ‹¥#Ãv<šrµÃÚW°Ü1Ï"e£¾X¼¨i‹u& Œ‚§…k§2H›…c$ø'nü\b²-­“¤ë]TÑÅyIu×ZÔ¹Ô®/bû¡lµT‰ŠDÉdª—!)IĘó#0Á)dlÁ:kDŽX÷¨×RŠõsº¨ŽæÚ¥50{ô5‹¼õÒfYYÍ´­5ãSZRÔ£êâ;1”$Q¨Ò›£n*ù¢,:2”sÖ¢æ5ë*ìY÷ç7Õxb}qž¤€“]ÜñÔ¼ éj8nÍyKô û¶-l,ñ2hl– ^™»¯OLIøõ®,·W²kß5Õ-št;¡Nð57ë¾­4O[ªk‘Tâ»ß—àÙå8ËÆƒA±ÒJ¥¯ž¼ë½uÕèdñZqÕ—„₸A*.Ï^w>z³pQ"³©è4D|t«x¹—ç¨ë5òC³Åfíž(Q}Ç WÚí¥D1iÉïãœ,ºÂ{4Ú · ³‹´¤%« ã¾ø¯BÚ¦¸šnKµ½±®¯;Œ/æ|¯¶•#­¯%­ìõÐ’ÄÆîüûYøÞf6š¥ÆNQì›—¿L”\lÆ&á"³ÂÙâ¶ç^´ôÉ®ûÕ£–µêc‚ùÕ[±KfïÍýµM“h}»w^ÕÍ.#žÚIßiˆ¿\ÇžF Mk*Qó{ðYiŒ¥büc™Zü°<Ä^W™æs§mHê#’/´H×ÛMi))åÛ&8åzjkn6+CŒhÒ…HÃÚiÒòN´©†Ÿ¾£ÍÝ3úÜàSÏ£Ía³1jg5ç 5@’ëqž–›’´t”ñãÔàÏXßk1ÃzÑ"9Þìiµ–*´‰Œ«*%%<ã3ÐnÛ½5¼÷)QÓœŸ3½Ìô©^òÜÒ¼iÚZ719SŽ¥TªÞ²ˆriKÐØÆ·—Æî¥êüf=#N&Ç\o)á)âîµ£Ë 7 Uœ3«?Yx†Ã»j¡‹;Û–î“×ouš Rû«ÖV[³ÖµòܺkwÕ-ÓjR–Z¼v3$°¯mXó$ð3ãQ^g}V£ž­¢Órî1)HÍʼ̗¼]ø› WÞû°zå+WÉ®¥zÛŒç•îYo3\' ÏTœ½òRï kRÌ$šâ'£+¿&·šç6¶-„r»¢8ä¶ å|æ¢ø´é´¼¯Æ8¤ƒZ##RþWzˆ1¶iiËséâ™d–qÔ%Ãó§“ )?;f¾Ù“¹Ws—}s»OªÚ=nÜIveÍåRPNêÈj­½âé.w«%*O<ó Û°ãq}O67!ÑoŽøG°Óûe¶û®cÕjîd›¢÷¯-I¿žNâ9½‘Æs‹ZñÑ«Ús+Û­%±b-F—Z¼s‘iVWÐjd4¯„Ƹ­£Åê;H“£--knã~¥{庵g^^•tyÓ5º“NÜt¢õŽxïU¤µY' Õ%vžÅ¹Ô›‘Î+É¿ØÆ½Lq‹Û'QéHÑiVAç4¶ˆÝ;¿‘Í;îXŒÑÛ¿A±Y™jýUdÒæiAYShäF­¦$Ö¨;5Õ­>iÌý”¹œ£uSÎ|<5¯ZÑUW¡'çÙéÅ{ŸSm¡d^çÏ[§´Õ;Zs/%UShœ®DS ´)Tß‹ p•Ó-¦#ÔÞ“nøOûܸär+çMÃvˆ¿ƒŒxƒrÄd¹ï»¥+ï…hòî‰í•9²ç\çÂUõŠ‘í¯> ºëp¿Bñ×aªÅ2‹}µ#XǤ¼wºñ-N\yk‡lê·m Ü©‰t’'=Yõ­§–µÇ ­%œÒs2ÏTê[Î9å8¹|ÚÝé4ëïçÚíëØ~™]“À–æåêtœ5vÕ±ÂÃXë3·wñ£çWꛎ{é9ñi~4îÅÒrZó»ã¸AÚYF}ó&i©u§Œ­‹kb¤SHœù¶×:ä+Kc ÄY忆”é¶ÑŸÞsn¸Kbµ3ë³¶²¿Ó‡/—çÊàÄuÚÁŠ{Ô÷ÔÖÆqÝžÆÙ…l˜ã9®‡FÙ¿`Ø··­îf«ãêzͼίÓyÝ3i,©ÁN“¯)¨è=Ó}møÀ„¾¹~L-t•êT]]‡ºÆ¹O†«W\²s4„SÓ¨yÛÒ]ŠÑÅ(Pg]Ï>VÝùΰÇ|ãº~Ÿô0€ý !@~¾ºæ4)h¯yq4 !ëçÎݤ‚H ‚ VÖ˜qÓ´ÄSK*7ëöÒ¤SöpÑÏì_Ôþeåi]m[:Šuñ¾~þgìwÁÄŒD$DTȨ~?þ–Š¿` >ø?JŠ¦Ý©úr_A_³Âˆ±TüˆkJ¢(£øv‚ šûí®(€‚Åôw¢tjˆ!ø‡Æ "œOÒĦ”èg£ƒ÷‡+ƒí=€¨ ø¹0}öùñŽ@R‘ Æ(åÆ c ð2¼îC•QRâÌ1NŠNTTpæ/6@‰—ïïÎ÷€eq‡uҴঢœ\¾ éÀãâe–Yªªªªªªªªªªªªªªªªªªªªªªªªªªªª¯§Ï½Üwç¸ùÜ|¸ï/ŸÎs¿9Ïœ$â[t9º¡Û¯7]ÖxÛuæëºÏn§7Su$â[t9º¡Û¯7]ÖxÛtæéºG nœÝ7HámÐæèn„ n¼ÝwYãmÓ›¦é-»ÍÝÛ–ÝæîíËn¼ÝwYãmÓ›¦é-»ÍÝÛ–ÚµuæëºÏnœÝ7HámÞnîܶÔm¨®ÑèáèÕк  ºÝzç­]n½sÖ®·^¹ëWBèt0t*ét鎕vïwjíÞîÕ۽ݫ­×®zÕ۽ݩ¦šëuëžµvïwji¦ºÝzç­]»ÝÚšiÛm¶Ûuç9Çœçjªë¶vδÓ!Ä-¶Ûnœç8sœáÍUÓlmŒô¢ˆx6Ûnóœç9ÎsWvÛlvªxÛm¶Úªƒm¶ÛUPm¶ÛmºóœãÍU]vδÃÁ¶ÛmºsœáÍUÓlg¥p-¶Ýç9ÎjîÛ¨ám¶ÕNÛmTí¶ÛmºóUW\g¶ÛmÓš«¦zG m·y«¸íËmFÚ¶ÛmUA¶ÛU;j6ÛmµUÛmTí«âmÛmFÚŠòns9Î<Öns5˜Õy6ÎÙÓléž´ÐШÛQ]¹Îç8sZç8sZ4vØÛ¶5vŠiâmÞsœæŽnsAwm±Ú©ãQ¶ÛQ¶¦¨¤£m¶£mMQIFÛmFÚŠësœy¬Æ¨£­³¦zÐÈq µÛœáÍhÑÛcWiƒQFÝæ‚î;r£mM4m©¦¶ÚµÖ5Eg¬ñ¨ÛQ]»r¢‚šhÛm¨ÛSTRQ¶¦šhÛm¨ÛSTRQ¶¦š>7ùòxþDòö{6Ûm¶Ûm¶ÛmµUUUU ¶Ûm¶ÛmµUURí¶Ûjª ¶Ûm¶Ûmªªª—m¶Ûmªª“m¶ªvÛmµUÛmTí¨¢Š+Õµ›YƒÕ¦ž¡êÛZÖŽÕuÏZŠ)(¢’Š)(¢Šë^¹ëQ]Ž÷v¦šh¢’š(¤¦Š))£m¶£mFÛm¶Ûm¶Ôm¶Ôm¨Ûm¶Ôm¶Ôm©ª(ªªª*Š*¨ª(µm¶ÛmFÚ¶Úµ4UUU¥mµjjŠJ6Ûj6Ôm¶Ûj6Ûj6ÔÕUQTR”m¨Ûm¨ÛSEQCFÚšhÛm¨ÛSTRQ¶¦š= úó±Eym¶£mEmµj(¢Š6Ûj6ÔQE QMQCTP´Q¶¢µQ¶¢‚š (¤¢Š(Ûm¨ÛQE5EEj(()¢ŠJh¢Š(¢Š)J(¤¢ŠJ=×ÿïca@ YËÈ«A,€h‹«IµY£,Û “ßà´Û‹6óp6D{óq7#s7Cu7càa§-ÝÏ‚jf¨hƒN|#y7£b7³|7Ó~7ó€/°&âpF$ƒ3ãl' lÈpÇÃ6#g6c‡8ƒ‰8£i8³Œ>!½›a¶iÇyÈùÿŠpg$rg(r§,|c—>9Ì æNhù'6s‡:p‡Ìõâ Š?Ðl(*¯Øb‚ª:‚ª ÇsãûQû5î ø€Xp€­t%+_Þ±63ÅñññÑç3ÏÏáöþûÓð;ï{Þ÷½ï{Þ÷½ï{Þ÷½ï{Þ÷vµ#9²Îmýø¯ä‡ý%Íò?áA%“ûø$¡@If@k»¥]î*Ö*?£ü)W7åŠµŠ»ÜUÝÒ®÷{<½…G|ʹ¿&U¬UÞâ®î•w¸«ËžEG:UÍäU¬UÞâ®î•w¸«ÓÓ¥G§J¹¼ŠµŠ»ÜUÝÒ®÷zyzó*æô*Ö*ïqWwJ»ÜUééÒ£Ó¥\ÞEZÅ]î*îèIf@Iþ8æ‰r“3TF*nˆ¥ ¢9r¨ŽTº#—*ˆ¥ ¢CTF*lˆ¥ ¢9r¨ŽTº#—*‰34B\ÉŠ›¢)B¨Ž\ª#•›ÌÜܹœMN3$ÔÞf¥œfY’ænn\ÍË7™¹¹s9œÍæIÌÞf¥œfY’ænn\ÍË6ˆåÊ¢PÄÑ—2Db¦ˆŠPª#—*ˆåK¢9r¨”4.ˆM ¢1SE(UË•Dr¥Ñ77.gáü³Íç0ÌǦyJõË+sr»ÍÊï7+¼²·$ÇÃ7+ÎY[›•ÞnWy¹]çI^2LxÏ)_²·7+¼Ü®ór»Î%u’c¬âWŒ²·7+¼Ü®ór»ÎeyÉ1ç8•ã,­ÍÊï7+¼Ü®ó™^2LxÎeyË+sr»ÍÊï7+¼9•ç$ÇœâWŒ²·7+¼Ü®óe`éüOñÇžß@’-€ITÐ$¡@If@Id`If@Iþï|®v¤ÀMUIURBª©!•TʪHeU$*ª’&ª¤Š*©!UTʪHe[!«l‡Ù Ûd:Ûd-¶CVÙ [d5mݶCVÙ Ûd-¶CVÙ [d5mémémݶBÛd5mÕ¶CVÙ–Ù Ûd:[d-¶CVÙ [dUIURD•TêªHUU$2ª’UI ª¤þ÷ï~÷é÷/“óÏ;ï¼ç9Ïy„9í®‹¤@ð‡=K'd“{]ÒIjå$†/ËæI5žä“{]ÒIáWHbï¡$Ö} &ö»¤“Šºà’ºÙ$ÖpI7µÝ$œÕçdÅçd“YÁ$Þ×t’sWŽI!‹¾„“YÉ$Þ×t’sW’C’Mg“{]ÒIïçå¸?·á %ˆQ,ˆåN#"FDfB ¨È…PˆU,ˆåMÑ#"FD£!’Qª¤Ñ©Â$xÈ_-]_?—Íòõwåòå««çf½;Þ×F½;Þ=Öo>÷”w˽ãÝf½;Þ×F¼ûÞ=ÖoN÷”w˽ãÝf½;Þ×F¦Ì°d)e$3³, Cïïï_sùO<¯}÷œç9ï(ž¾ÚòË9ÃbúüI%¨™I!‚ü¾d“¥DßÈ’.ýÉ&ê&¶I [$žÃdÁ|6I<*&ü !‚ïÀ’xTO ’CðÙ$ùü>F⇆xÃ$¦@|3œÍhÈ¡ÍÝ®Ózíìé¥=îípÐ>{ÝÛϦŠÎ3%2¼ã39Î3%2Îq™ÎŒŠg9’™ã9ÌøuÙb‡\é™)¤‘>¯±BD4T¡U$f¡˜#!"w— ÌìçÎ黨B÷9pÜÁ@]nôf²A »)—@&ÖH!<,¦æ ôç§MÝB§.˜( Óž7P‘ Ô¨E@ ¯×Ö/Ä>|K’@¹ÑEX€Åˆ X€ÇçÍØ[;VB‚£2‡ºÃG{ÞwXB^÷ƒÝa£ÝïyÝa =Þ÷ƒÝa£Ë½çu„(òïx=ÖZ=ï;¬!G³½à÷Xhöw¼î°…Î÷„ $̬…$I™D |ùó?'í;î½uæxùóçθéÇíç® Tø (PYYY{—ndB\ÅŠ™")B¨Ž\ª#•.ˆåÊ¢w$îD‰I•„‘JÁQÊÁÑÊÁÑÊÁÓ¾ñO<¥'Ï<•°¤U$IUI ª¤†URC*©!•TŸ<÷}ßwÇ¿—nݹçå¬Ök|ø{:uºt׸"|}‰&¨‰~¢Ih‰”’nˆ›¤“tD»$›¢&é$öëàî*ô¼Ã$Ó‘PöoM¼ºéPîõÛ½t¨swo>ºT8Ífq§"¡¬ã393YžÜú7ŒdQÉ ìæ7s4^|õ뻚/Nw®îd&¯sXÈN/sXÈN/sY@€+ßwÍŒ~%ˆ†"Dˆ!€óÌÑõ÷½þ=Ö ŸN÷u }{Þ=Ö)ï{ǺÀ…>]ïëùw¼{¬ÁÙ– …€yåüŸtçšóÇÎsœç9Îsœç9<^ßgo/Ï8妊fƒ®Á%“ÀIB€’Ì€’ÈÀ“Þâ­è€îGã*æù µŠ»ÜUÝÒ®÷zyzó*æùJµŠ»ÜUÝÒ®÷zú >¾EG¯‘W7™V±W{ˆ–F–dŸ¼Þd!Š®BM ‘©Â"œ—3srænY¼ÍÍË™zdnk2N³Ç3R›¢)B¨Ž\ª#•.ˆåÊ¢PÄÑ—2Db§ŠPª#—*ˆåK¢9r¨•ª…R(„ÔÇ3RΙ–d¹››—3rÍænn\ϧõäÀu¸fc០_²·7+¼Ü®ðÜ®òñšÂARjÉ9į\²·7+¼Ü®ór»Ï ^2LxÏ„¯–Y[›•ÞnWy¹]ç^¹¬$'[&=s¤¯L²·7+¼Ü®ór»Ï§Ó·Ÿªü~ž}ÈHhBù–N%ÞuŸ¿¾o}pİ@Ve$]UI ª¤†URC*©!•Tḭ̀d(ŠNu«!ÖÛ!m²¶ÈjÛ!«l‡JªHuU$]UI ª¤†URC*©!•T‘)¶«¬˜ŠO jÈqm¶Ù [d5mÕU'ïïï_rù?<Ç}÷œç9ï CžÚèºDsÐ$¶{MíwI% .RHbü¾d“YîI7µÝ$žxð$†.úMgÐ’okºI9 /;$†/;$šÎ &ö»¤“ßÏÈÜ~o»¡õÞîÞW/·Ÿž‡ÏwnôУÍÝ®hB©dG*n‰¡Š2%„’ˆ…PˆE&ˆåN#"FD«"ªEª ¤Q©’$cxÍf{ü>%àÅ#nmÂ@žá+ãœqšÂ@œ]hÍc"ƒ5eË„9¼JõÎ8F@H+6F d¥QP’à¬.‘Š2A8½tf±‘Al¹p'[ÒW¦qÆk Å~|Þy}ýåxD$ƒ¤F*xDrr¨Ÿ|\_\1,!«2Á¤ Ù”Ḭ̂d)C6¨k&2uÖ«¬˜ÏjÈkzÕu“:kZ®y÷¼{¬Þ÷{Ê;åÞñî³G§{Àî± LÙ– … b̤†veƒ!H}ýýëî)ç•ï¾óœç=äB{k¢é8„9èUD E‚ËæI8¨›ùCß¹$ð¢á²H`¾$Ÿ?‡‹¸ \ß(dš2ÎuÌÖœŠwv¸h]îmìé¥=ïmpÐ>{ÞÛ×®”œã2S <çŸ?/Vñ’  æáœ9ÌéÎõÝÉB­Þ\70P³ž÷MÝB¹Ë†æ ÷9é×w% ·§.Tšý}jüŸä˜@\è¢Æ ~|ß‹ãçÚë&s­QÖLkTu“Z={Þu†w½çu„(÷{Þu†Ÿc2ˆ2€„ H“2ˆ2„>|ùŸ“ö÷^ºë9Îsœ€?ng>|뎜q®¹¼õÇ2|—xAÔ{ŸND"“! T"I"9S4HÅ„Q‘;ž–! •*ª@1Z„Ò1F@H+ßy®|òË„O<Í)|±, `f̰d)Fe>Ä“tD¿Q$ÝQMÒIí×À7ž—˜dš Š‰Ó<37§"¡¬ç3EDã5™íÏ ^1'K†Pç0ªŸ=zîæ Ó‡ŸCwKb½÷|‹@wâ !ƒ!„žf€RùX2H ôïx‡u…BŸ^÷u sÃîk^8é¬ÌÖ½ßwÝö{¾]ý=»z»sÈñ{}¼¼;{˜‚ÃßMËÓÏ*îúZÅ]î*îéW{Š· €îGã*æù µŠ»ÜUÔ`If@Iù‹ ˜ ê·! 46Db¦èŠr\ÍÍË™¹fó77.eèdšÌ“¬ñÌÔ³Ë2Ì—3srænY¼ÍÍË™ïåè^r@'[†f>å+ã–Væåw›•Þ•Þ^ Ö€©5dÇœâW®Y[›•ÞnWy¹]ç¿¿¥ø€€çæt !„!|‚OÏœX[;VB€mYl…¶ÈjÛ!«l†­²5­QÖLIεd:Ûd-¶CVÙ [d5m“çÏ™ù/gßx뮳œç=d@BsÓ]Ház–O„“{]ÒIjå$†/ËæI5žä“{]¨$ýbÐs@@ ÕnBÈD(–Dr¦è‘Š3YšÓPnk2\ƒ×|ùŸ“ö÷^ºë9ÎsÖ@ô×E:@âç IU„ !PI!=Ÿ-0 +E©K B‰TF`(-ÍfJdœë™õuìŒ$spÊs˜( Ó‡z¹ ¼¸n` )/žbšCßRä‘.}÷4—ʆB‚={Þu†ƒ½ïî°ÑëÞð{¬?Gß{ïg¾òóôöíêçž@}¨þ]É’__‘$øôõ78ÎÉ)2HK!b„ˆd¨BªHÅzëÄ;í,{ï¶ €M™D wßvî|ÓŽ+½ï9ÎrlÖff·ßÃÙÓ­Ó¦½Ík3Zן}qÇ~ž‰¸§‡Ká “I‘P™á™ñðóKÆŠ"dC:\2¥¸Œ‚+8¿Áæü}±ñˆÞßðñøPÖLRO j«¬˜kY™ß¿_.Þžyõs½€ÅíösåîsÏ-qÓŽ5çß\qs|…ZÅ]î*îéW{о‡³Þò½‘ªò¢ˆÅL‘¡TG.UÊ—DråQ<’bD‰I•„‘JÁQÊÁÑÊÁÑÊÁÓÏ1MyKOžs+aI*ªH’ª’UI ª¤†URC*©>yçžK¹óÏyæ|—sçœqÇÎsž3¾èºDuØ$²x .ðƒ¨’{uð Äz^a’k ôÏ ÍË9Ì㌃Æk3ÛŸ@¼c ªä:\2Û„8¼•„Ò1F@H+ßw®aç–\"yæh/•ƒ!AlËB4fRC;2Á¤<óËù>éÏ5ãŽ3œçO›äè|Ý:té±Û÷n‘4éáÓ¡ :tíÐ/‘Iý_ïX}Àž¤TD‚c!ÿ4΄Aâø¾/“¤ÙüCöŸÈ࢟‹‚ ùJ§ü‚ ¡ùÒù/?Pü4ETÌ4ÑIQ0MIQMQ4AE‘3$ÔÄ EUÔQMPДIU-SMÒ4PÑLDÌÌE MUÔAAE3UMLÅQQBAQLIJI@$QPJÐSE%‘-+0TT3(UPý$*@0 /õ”ÿŠ@w–ÛLkh ØÕ`ÐÓgÆ€Ô6dmY)Ú‚¬mcc:ŠŠ•Ò`Ã1kZÚˆMT5¡¦–41PDEDVhÔfBˆˆƒTÖ,ŽÅIL2Äjγ–ÅÒ0F¤³`MY‚‰‚ VH(&¬`Ö­ckFubÂ;A#TcgFBŠ,Õ°FŠÖCqM4mZÉF«A²Î§;FÆ#9ªD•niŒE‹V˜¶‹‹M&†­¢X"6Áb¬Mh©ÁœÆ³m’’%ÄkA‚tÒi£Nˆ*’ÚÃmk19µDT´1m‹gF—S[[V³EQ²ìb³³ª†ŠHŠΛi1AA’ŒæŠ)«”ň4$˜£!Š-¶Û63°ÄLDlãjtQkcøÿ¨ßqãúϵü·áö?½È"Ÿ£—ëåPý¬"¨ öÑ|?’ý¿’ˆ( Ò@~PýÅ|‰”?Yý†DðР@Ô‰½“€fì¹×Ðù–à€Óµý=Éä’AŠ Ë¹œ«Zd{ïA•!Ýß2H$Wyh}ø¤~–¯êÕ³… I H nö,{Û­ÆÍÀ‚I> ¿×çÝ>Ëèóì¼ÄþÀýµÿĆ£F†ŒA¬A«÷áËj1‚‡2Äj‡2ÒE#‘ÉŠ„¥†©(&&¥ˆ¦RŠZ&J ¤96E4ªPUSÉ4E%ûûùñt¯- ˆ4Âÿ÷!®Hh±– hÒ1#¥ÒšÒjšqSA Ì1¢13œb&&F €Ì¬B[И„‚#Ù„ÕHÌÕ*DôCõßÝä÷‚ihª)f¢¢bb)¤ " i $‚d¨H¿iŒÉ,ÍHLQT„ÁT35CÒÁQDD³PA!IRPDAM RC$@AD)Ä“T)P•BAÓ+ ФĤRÅ, “ÁC%Q MACMR~ÊüGúûé§ûÏ×}¯ÅT·:/©Ø&zà·m¸÷¸úW`>^€ ¯Áɸ†üæój©àø‰Œ„ÅÙ#¡!Õ–kxð‡O‡@É$I!ê €„‹.:OšÈ¤Ñí2ߺ@‹ªØÔ~ɶ¿w­Ï–û’ o¸¸÷rPHœ€ îáI‰Ú4@Å Í÷š­fþP’@‡öÿ¼|·¹$Š ²)"?ŠûÏöþ_!@û¯Û”GåãTM4L“L[f¨Ä: V £÷­¸Té Øs`æuQ‹1 0d¤™h 2A)Pr 2†VbB‰™„›•´-FÀà(de€˜j†¥©©-¬š¨vÖØ)vÂBÒÄURÀÙÀ[-[ 4ioU?…ñg]dq‚~U{5pøè>ºÍø‚c<âŸ@ Z,ÕäpÑ¿´^&_-eì>ð,†êrÊÁfËc¾Çq³Ø—Êh´Ûi¾oG]<éázy¬)þœ¥y-¥)JR”¥)JR”¥)K»33;—wwþ Cù¯å¿ïRR”éAÆ1Œb!Æ1ŒD#ši¦i¦ši¦ÊÙžø=þ’ZÛ£³™´bôºn.bŸ#ÔÕúßÂŽÿŽ~Só›±³Ÿ0äTº«Þæ6žµŸì\'5”²¼ÀB¸b˜¦)f)Šb˜¦)¥ö&ñþtÔª.OûÐÏÔ¹ÑN¦1Œc"1Œ#Æ0ŒZa6›\°âÀBâ!¦‚æÌ‚SÀ0 bH€`Æhóò§öžÔ>à ˆÁ혊(© i‚J!™"ˆIé£K3DAÚÔM Òå šj’bPý·ì8ý?<yCB4´*”Gá¶– ¨*˜H&&)H¢)‚¢¡‚(!@x  Ô¼ãªÞ=WÇ»Of$^Ac @Hd¤ÆˆH? öW¹§{õA„\B0ŠÄ#(!Fp駆µ¸£ö¢:‚€€„ !þ˜W?³×¡™ |¿ñRŒc‚1Œ_ÆT&1Œ\I²D›Ï?ßáU,øïOÒ¼±Ä1 H†!‚b†!h_á‚NÁÙqŸ‘ea¤–VVVVVZP!eíº±g¤|6Š|½înn Ã*,Ã0Ì2è7!Š“8ó‡Þî`§ÇEéÍý¹oºç6ðàl\ ý߯a£…EΫ¶üzv»Sò_€ 7ÄÕ~sÍ>ŠÚùÝ_ÉÞ}d~Ž2TTDIm¦ ‰ª"*( J( A”)¨¨iEúw¯î:ö?P´ÔT4•IT¥ LËHÔAÐE}žÓ¤±$Ñ-ìÚZ¤¢µ¢b!ˆJ &¯-gHs™ÞŠŠ}÷ð?Qþ·ÔþÇôÂ~+ò¿n³Swýh#n/]<-î&_£’ô¸7œÆÓ/¶ça*×?Ñ-AÚr3X¦pyÍWë];\ýúΟ¬×©ÞúEú¥r½ì°›­Ö¹æĺþ™<­ÊgߢÑPƽúwÓö©7ݽ·>pi°ž6SʽXéÿ NŸ·ÚÔFæiñ:ÿGæÇÐÈ·ÉþdÃûú×I8/¯Þ[{•áe45l¼{×W•äv~Ÿ¾×‘ˆ',Gß¼ó¿\O“¢Ðr;‚ùø„pj6®ñ9?‡«XÐÆy¶³\~ †cãd™¾u¾/×GÄ×|œÞÞw3rÓ<©ñðülç–¾v7SãØ;˜žÑZ•uRw‚Šö…ä†û,”·—7Ÿ˜j?«1<š –!5 Ì‘æCaåC·¸aÃ&#öâÄ7ÝbÊ%’gbÃpe=õœÊ²JPCoœínH*œLX‘Ú¦Rr?»Ö#ú[Šˆ@r²¿ ûïÊ`_˜ID„¿fT{Ú~…œ„±Þ§ŠRÝ ÆÛñô>­%eÞ¤©–-áȹÀÂÿÂ3ûµºp„_–€Kk?n±Ö=Aø}Úñdœ!退—ñŸ|ê›ý ¯yüÎ’Zí˜^7ðÂ$ ‘Ò 9(tC‘é€!ˆ‚`•;Þ>øÃ³qÔz3·X?ç~¾Äù×+ÝΊQ’›Ý%ÂÄ^sÕŠWpp~Ì2Aô°©¿?¿_lyIsl.ùéÐN<5^ÚkP?e¾å œ&T1ý‹ÂÈ­ÐB¦0‹ ?™8ØÝ=D›eRý¯Ç·²¼áù$†:;tVB Xp‘ïÇvƒðÁLÒ<[Î3ïÏ%Ä~³šó7û"ïöþÜIª¬Ï+}ˆö §Ê}úZŸ^ cοe°ä2ùõõ†€ì°Á@À x‚f#÷¿DïèõïÚïð)0-‹2 cSÒKê®:ÌÓ¯eijFݾ1°çñ?"ñ· û‡æV8soΘPe–!NȈ¬1?°€k èÃöÉ ×Ü”|ûo¦ãïûˆæžj? slwó\w_Y÷2åuœá¬žêb¨—°í[¸Fcè0ˆ´žõ%rš‹˜ òˆÐC:t`O )»]¡ó´€ê[Ãô@±ô ºå@‰tƒŸþšÔ˜lììPêîm4ýùõ«Gòó•þ7kv®Þ´¯£dņd¥6­1–Pþmæ÷„>ñõЂ`иAö$|tƒ ¼û[Ì$ Ø¢zFc¥„¦óßQ„aõyEÞMð(ƒÌØOÖ쨵&'8ú²d ’²,a RqzÀ"Æ’¤óQ4ç µEõôñkǰBbˆ hÕj— …Í'f3§ð¿`?É?ˆ=ðxRüZ&>zlº_GØe†d›úãª;F/µæò>„@€@]?R >û`Â~¤ꈡY-ÇÂÒ’y2fGo@'Ô3 ÷7½j0ê—“‰ ¹HdA €‰P”F!=ËZ#îÒKÖ0++„pâ)©©Ö@{á±­fö>ÐfêÍhývÀZ*º=U"y [Ô7Ô­Ópn²\sÝF0°ð&g‰^¨×U“ »¼÷&&8ùÇ›ë‰ñ ¯2W±æ—í3Ö~õ?®x€óà÷Ô€ h@ Aб“0TÀŒù— Oœœ¥ DúŒ4CÓžxo¯$J°„˜|óä~]bÔ8êUk XTò1Á¾5gJ–¬JA É0ÃN’‘6!aBÍò'5¬öôÕ!H´‘¡3K·) Ifʹú½§å©kw(1µ$ŸAüÚÃÛ$ø¹æí‰n³ý°°0›XÛqüNÿ1õjkMˆvEKx/€æÂV‘?‡^þø»uå±ÞS¿¼sqÄpÌÅ ©Ã«.ZãØŽÃ²FUÚï^G× xéŠs­|H=7“¾?\OŸ¯Ê…Þ>Ößuô‚úÇáÍ‘ËaÑ×9V@É+&/yLQ‹2¯¸â³$‹j°¬ì°Xa" dÀ2÷“ˆ¼å8”3Éž·=ng{[¯< –ªùYÊ[[ìVŸ¯œ%©€Sõ¤vGÂHX“õÂw´âHʃy„ûM<|Ï“g§Cå|]‘Å:#½N"Ÿ-Ç3 {ûÖç¯+Ý 9äñžgóªŒ4þ5ÚóF×;Xown^×µ“zštÍ^0û_ÛX(ª¬   PH´<0ñÀ@È l Ž\(€ v~N”û#íŠNo‚ÈcZZжÍk_»ßìÌš•Z3.b/ZÄE.djD1I,í\Âño½>ò‹…§Þ³^·2‰¦çµ¥Á[N !zï}¸Áb!Ó}Æ#$bB>ÞÛØ¥%츜çf ¹7ÝmWœÃ(·¿ŒØ3—3p2x7ÆW4´A¾„~—VaÓ®îºÇ³{-qhÍSŠÏ˜Ã’´x³Û­^ÇòKdTÛÓ´Ê2Ëž£D‰œ¬>Ä^\rïÈO„HK×hF"@G•ò³ZËëí–²æqZ0‡­–ù+?ÁK%BƤ‘\«€ªÖ7“†»Š„D;ÂDÍdVICXJqœfγxÐÆsq7%ÈäÆƒ¼.[YžYÓãjV|,Kƒaw´õ¹NÍkÙXyT†õñG&Ká•5¬(àÔˆ}˜LˆOG“Ú HqE<ÏX_ÄÙÃeë«Í´jd6ÒâŸA,19þ F’ÄgÄËlXwªÃ§›×êb,%>+Íß=&ŠœûWkI§Fnëó2çWëÌöËÏŽ–VDAë»,ó9©½)¿éõÃëaH°$žçËÛÓ{Œ~ŸVXÂh€ƒYE˜ Ó¿ÔTý5_îÔyÀLQÛ(Š7ƒÛ¤uEe!j·lKï3|XUšršÕ»NWœ÷>â„Õö+;fdâv‹Z"yɳ ,l|6Õ´œ<ÝE¨2ÛÒœÒÚ¤ãKî7sñÕÒœ ­ cM½QD²6,Ò.ŒÑnÒP€M’éПòhÙ aðåÐ ! uϵœ~Ý(g°þu3ÆnþDþ}N讫߻h‡¸÷LÎ[/ÆVM{PˆÚSúAóVÞû­:“Ùûéê:—?*Ü"J)¡NyNÊýeC²G’Á˜¤×:ÜØq8Ÿ~0SìÀ©éˆ`‘ @=b`Æ!=ft¼èÞÍ÷š4k宾Û¼=*{u¬¨¬ƒãy…jÒQPÈ,RoD£a^qBÿMò÷G¸yÎH÷µÄ~å‰Hüħ£*‹ÀRLJZÈM¡¾YEZ8€ªj§ Iå焽%Χ¨ e–ÙkD¬竲aõ™F*•L¸°“¬€|¸€¯úϵ€Ó @ÂÉQ›áá òPQßí|~¼òì#J¥[¿7ùÂèžmåŸwA’¼ïÌíÁºV±»DvÐßäšpß=_‹§)TÊ· Ÿ…}¼eÇga¼Øê–çBÅšT ª1N ƒ"ŒÊ`+êO'€å²TFi:k]uí­5ð³Çë\ˆ“¦ýˆ¡˜†“פk!¨v<4•Ì0yíKëŰ!ħÃ| ô'åMe'!/”iFa§ƒ¸¡¸Åº$±pÍÁÅa)n™V­'F¶(ˆâ_§Öžr´´v¿/µšþ’¾ž7abæßtÒ«=‘u!S†û€N±iµ*vFl‘@d-®‘K› ä$üÝ‚˜LÑÐ=/ùÿÃh<"뵄 ׋ž/í{/>%`G%>\SʨÁ½?0kvèüÎ@®Ã鸈¯é™õ|•‘ŸÅµpµçÍŠÓó|Æ7ÇœeN£UåGs¢â|&Ù/˳PT¿–¶">ÈàÅYfUA/϶ön3!!‰7Ó]&¶“Y«ã1>Ôžiöû0>ܰ·˜)„>L ˆ|§µÄlÔÞîLQÏ«4@„ å†$޽÷[˜qçÞ>œKÇp5À¤xLRH"ëù/Ï”ĘÚtµ ¦%ÚlË-j¿{­g{TŠT WÕÙMJ×¢Ãvý8ŒzLePÑå#„ê ÕªoÎÜ0<í€Ï)ô z?™™¯qB•K)þ‡ûbˆHÂ>ˆ‡z@,@±$„8DR8H}MçÞ·³:‘jÎ?±Ä½ÇÕ0- ƒåD—,cn5ú¿ÜÔqÏ"CœRyç«ýîuŸK­ý°<ÕZn<ˆôTÓQù©=¦oçµÖ=ýq.•/=f§¦ÑË«›ŒÁ :fCyŽo-™'K©"©š»£±t^(¯P% 'eÏ£€!øI+ô¾–ù`1é CÉAÈ0RÁ“'yÀ®|sc/·×'ɳïB{ó±HˆWñýõ,ßb }ÜH~<5»¶ôTS[ ¿Š9s¦œ-3e}Êi_Ì6sb¿Œçúüµ€Ñ ².@b`ˆyÖW¯ÕÇÒ©<ÍFzJÄÑj iGÔÅJ¬çmE¾ðµiþËNxú¤£ J/ÔFƣ漄õ!O­Üö%ÖѼŠÄ/ßÖ‚uâèV‹çVx+«vðÔÑíe€GBÊ”éÒDFfŠÒ±›N&@´QbLU؈‰ ǰ˜˜>í/Ò¹ #IBÐ*l8)ä¸%–>lúó ‘Í{þÎtø¾Â('ÄBpêì„'ÍXm?R°¨Š¨U¿é©z,kaóqa\-êׄƒ_îógúú”¦âÔ¥^±•ÕÚñ~ul×ìÞ5„kN8M¸2MM?Y Lð§â¹ŠVi-° C(,”-)>ÕDPóW’2‹¨ˆ³ÍãaìéQï,ŽÅ*Á­ëîLJîÐDM+H}(1 õ¤IŠXäòöÁr4Èbn IóÄâzäú(a ç«Vø©×è <õÜ®¤aaßßo,HAº³ã B\®R?#u´çuúæÏ õjVœ· ù)»A$;²) rÚ½æ­5=7£9™â‰(é×Þ$1­íãbù1ÉûíPNزY‡“§¿–ÅäãV/:”z‰º¨Î0ßÐóHWÖ¹–OlKÆ)óøbñÓ&ýõ“ÇxSÇ‚W‹2t±ýg }M™ÚMâ1}Þb#œ¸ý[ä¤õs}¨xND§,òx¦ùËvkšj“ßë–ŽŸŠ+42}åq£ŒbÎ`î‘·hЍ‹Uä>–Nd‘,Ð"/WW™R®ÌÜí„ÿBò¥–Öš—µç~\ùxôÖtðô°ýœpd=`9ûXⱃ¤ï')Q¤ÇmI7ÍŠGˆ›d‚?Tøð„Ô%Gê‘‘‰€I–—YXùg¤q ëÄIàí%'Åf£SŽc*®{øG-¾—©é›=zÔ€:â(¡ %6Ÿ&–jC%]4~ü•†£@˜œ¼~f)Üžü…äppÚs§#0Y³)¶ÓÀ`Oùç?þ—ãxAøD=sÎ#ÖH31/§ËzM˜N$ UR\2޾¼”ûöó´%gÍ&Q©ü4úI@KÓíÇéù‹ù˜Âþp‹4âluę늵§²(ç€hºã¾è“Ì¥ç1‘ -Â2¸êspïÌ—ôuXEQ"ûy¢$ÔÊQTƒMg•Å&Vª(ÓE½‹4ä’3Œé¼8œdõàÎÓPŸk3 ’ HŸlŸyL<€Äº"ÒӲě¶;Ü}X&$a×0! Ç :O¥I§×Û·M¦ã¢ÊzŸ¢Ÿ/Xp8з«_ÌsªÊÌOæÒCTú*ß|òÒÅ9uòy¬Be85ACh%'j"K À%á;NEŒ|›ÊÑwžÜéÉsFÄViÌÃô˶’À%Ú¹D†åäE¤ Õšj˜®+„‚D8 €YAQìˆ6ØC²!@!‰]aû=§­ õŸÆŠã÷XBÀÁv­gøÔM÷ÔâôP4°”XÓ÷8µkßU|^àá™EW›4ÚcŠOVêt û(uÞ0‚ÕýE êî=›¤*ÛKeÄë4ˆ*®‹"WmÑ»áQ¢®Ž¨Â Ú”‹TÒ²¼èÂ3œY¥'×s´ë HφN¾'‡ÏË\ø'9ÙO¶}È?r¸!탧0—œÀrCyàÕä[µ’Óº1€F&ðÂ&ü&ퟋГ‰žw+ü  ׉ôýZ›"9ûŽ­øž%·~MëÐI¶eš þuùfo‚~I„Ná[5Ï2&ôБ)Që r؈¤Ûñd¸QfÖ­PÜ¢Òî b¥ë!/!Úá6—*Ùt@iõôÎ"yN´Üž3Àx‡ÛȈ2'Olµp>¸Hž± òû4wOØ~Þ‹ñmû(°ûœj©{µ!úÊ·—hÊ¥97—y8›ÀQ¯VØ¢ÊK%Ã/d?[{Ó"ÉþÛ¸Ö÷Ÿ\îÉy–ïöÅÒöˆå£gò(Ô/8!™ŠµâkXûJ( ‰ÊJ16P´y–­ìDß’zµ'죻­V‰Zš ý¹¥É)¨¨dn?p˜B§êçà#@ðæPÇ2ã—¯Y>lé†|à0BC1TU&Á¯;æùÉ §ÍÁ!ÚtQ`&€3sG'âø¢ŸQ‚¢øç^un§üဥ8¬¸àT}}×ÜPFP䤖is @ÐÜKJ‰JPÁºu¨ØYéÛ£8WçêMSמm ‡¥†ÜAS¤ƒ =tÌ4¨Àš?'ùû4Õ½Ì߇ÍÉü™nMQ9Ý~KϳJUøÙ†»ÔÚy¬|ço!zœÉx8ª-/õ‡ØnxôØoo;ùÕ%lÒ•§9l}²»¾ðnÛ«ìÆuÿ®ÿ?Šùheãðr×ï£W^Üö¨4øýΗ=½'áÀÿ¾+½rÀq|Þ—gÔûŸÒIÆj5PkÕÝ/+Åû›ÙÎlú/\ÌÿQ…Óôaé1ö–žÌÿ]‘Û>âdh{ÿǯ¶¯ìqÛ—å?7þêÿö_±þtÌÇÚ#C@}êbtéJS'‚NKˆÐ8™; †™ÂÍØÃDLù¨ü×1åâþ=ãù“œýÎe$3 Î Ò|›sü‡`)ÒÍ¥!¬û¢éœðIeŸI|ð=¨á?™hÄ£’a•ŠÌ^O i¬ÿ™¥ð”­«7¤0îWÃçƒðxg®~8ã3¿8¼ÃÖ+6Ànçtë§6’ù/ŒÝÍFӥЉÕÖlðX×Êb¼^{vë¿¤š½¯¸‡Š! -,åñ-3JM¦¤ \,¦ŠÉ(1«}V“¶T”°º9IHiuiW´]â•‹Ësn`ÿI·ãúÿþœÞc'†–µú)ª+“DÈ@GA!€ – CÒýÀ`ú¯ß­’µ~}Æ >×ñ‡ë¹ÙjÈÜhÍPþ㣋M€Íìr‰&ó8~íÛ«êû_ßaëG—qåe™[£YÚðãÖ×ÅE ¥\?rFeP•P­ýÅvºŠ„Ê«NÑt‰ÒÖ`³«ˆþù»£™´H]ÔLŽ#h´î´7µríR)›ÍÁJæ*¶•R»ŠõÃ]!áë½÷ßk‡†ý~ú‰Ž0¿ÍWïà#$.à;RÄrÊn8I$í  R€$x§µ÷âB9I_8ûoœþf:?$$—‘ï¹$$ãTmùóÐ×ÁŒk˜ç™Ìmö(0ÂÉŵp†ùjÓ™4Qi3gìŒ<@KnRíã—®œJ<@rBQÐÓùÖŽ·Ï¨rIPØè": ƒGÑ `$é  üú Ÿ_»x~ô…ë[O1‡îþÒ• »Õc-ñÚ¬a!/ÔX²_kDÿT†Ã$êR” >×ÝG3¢Â‰g6z­hè¡Mª4/­ù‘å°ŸJÝ6%Ì+%6jT$ÖÜÆwGWp÷Z™F3ŒDÞšMJ9\¼dbŽ€¹e Ò¦Vf‹[´ø¼¬“y¿í6òlaCÙ]ƒÆPx€ýLGÕGÕðÁ} òç¿‘4$Û§O‘Ì¥ 4$Â]±§h2œ@D“3æ÷gÞŸ_,¾Œ˜úù~¯tù0…HIv¡éÔZŸ`,¬‹*þ$:Â5s‘Y0Œ/Qéú9XoøspŒv.2a ˜À„Bò-ÃÀ~GêÍ2FN£Óå\g¥ê[Œ8û‹è¼…QÜ:H%ÆM¦Àæ"Uå¾–9–1…ûÁ¹gYp%ޤ÷šòó ¤¬©'p¡¤ñ¤‘º G”ÓI^¨3fÃÕD£qz\R“™f+Üs'²”™™šñEj«A‹ Ýhc©aT¦›L[ô“Ý=ùçÎøSÜŸŠ€¢ š>iN\-“k¼HÒÃ0HA)P—t/‘Á`NÉ0$XÛÔß¶ù(üânÇ0Æ«*ÞR‡6¬RÛÇÜÄDRWz¬Èml? Å@Á€$ > © €ù„¯¯b±h0ä(ö 9§rP© Çä£ÒÞ¬ÅÀ–‡çšˆÅwÕb/ù?¦Ôº½Wæp4¥jŽ%žµwy ;5ÛÉëº| œOy¢ÚÆ#')‹,’fzIóÊE'ën|ÜNä4ötÄœœHÒ‡ Èw ¤= Ì00!êÓ ,Ãg—S+ïò«ørŸuoË~':ú­qóð5px3ÎpN8ço–È«ãQ;Ä31é§ž/©ëe§tÞ’éÛxp*>cí£²›ÈP"ˆæ–]¸NïÍ›šÞp§â;œ»œú@²ó€{…‡”ž•Ù+çœI©å«¬öxU˜Laâ§Žk*óÔ¿"‹;º©ì‰<ë5‰àÊœ,dë%’©ìÑ^8xµ¦tv î0Y–i ç5¤k:Žn{•¥¬Bs+¤‘T¢ÍÜîÔšBjñ«ºµY—™fDÑ9RL>’j'æÏ$>f:ZCO AÂB´Ðâ h䘙I$>_—ÝãÒn L>·•dõøŸqü|t~û&s¤˜!²÷F³8më¿N=úøDòhs;bg×hÒ!¨b±„3Ý™XŸqP#H™4‹WŽ'ùÄ€f)ŽB ®óÊùëŽR~˜¤bTx¸2(å ï¦ï!5LZ/²›Ú¿Ð#ò+ ´Ô”„c¦@UѪN,“n¢Øg¨F«0FRîñK¢ –Ž ²¨*p§VI´h€\¬’L$®ÉbFEB  >̘‚"šGJ…¤Ð”Ø“Br0‘¬Á°ü0ÌÓGÅ ô ‘ øƒ°aŸ²ÂŽÂsóîg.D „< (U’)D¢0Ê|`„ [è¬ ˆ£BÎ7uªÆd‚=ëÐ%Òr4XqD€­xˆ»À=)µãˆÁøûAV§E1@ÑúóówÇܶj¥r¡ßUçÞ_ª{×µ~ø*ÌÁÊQÝbW*ex¤Cö¯8…d¨ L*À`§†Y-‰Í•ÉwZ£óIÈ5ÊL.‘„iȇѲ$ ý”0„ „@Ï- *Rè^l„È̤„BH€ÂC¢g#çJö!æÕô$(@’@0ˆÓ|íœYèŸ_.°_‰o{_ËÒ¼¸FAʤ9 TÀmÙ˜˜wÆÔ„1¤ê‰Q‰<¤ùë4ˆÎÞ+ÜC‘ÇÝìÓdTL‡û#G²ßKšã+ÂJ³ À•¥áº ŒIfdéå5ŒjRD©KóÝfï™à8zÉÅgÕ1x«=,çEÒ-íc©F8u ,¤1*"ÉÔ ‡ÀI1$ÄLŸ)!óJrèJbV`&W°˜$’BX ÝØ(åø9ï_jq´|bŒˆ!õÁùÇQÔO®|!Û å!÷DŸH!*#ÁÙ`>³…{Ua2ëùš¼=KX4ߪ08oœV"?_j´Q›¸ö­x¤k!ŸÏ'5Ï«5cºZTÚëQæéêKŸ:nw°ì*Yyˆ›F IºŒMIÙF,Æ(ª”D,ÇrĆg ¸P×FŠ båT"­úVò"³âT"tŒ™hì_‘Ã3fç[gÄœ#ïibI"@‘E.dùdä ÀÄ3凄$ ¼~‘ŒŸbòó·¿Ë>=0D…n °–ñla[ NëßÇÃ^L%„†©Ýw8ÁãO±÷쥄®nð·åãû£òÌßœ5û(0EÖÞ|v#òÏÍpw5B·cÈIzÀµKÁ´j–wªR‹2³­rëzZîhƒ”7QY~¾¦ðDC­Y ÍZˆ¯óˆó|ÜäDLÁAs)A@½€ì= Ðf$‚æÃ’`{Ñ'ºÄC£B" ~ D¨9NÊ|H²â2‚È=\¨‚V²hH„nâ¿‹ ÏWõà~РϾMÕkŽŒáÒ$-!øj!¾¬¹Å|ûQ©NE¦„hüòRòé­ ÄaGè˘Š7©/*µ)×sÖMB-sF‰›Ee*%„ÝÞ“Ž1jÎa³/h: ÊÁóìòòø_’ì*¨&jT ù  CóXF„#)#Ú'ÒwÚ{oË®ƒÒ#Èâ÷‰ëÜw˜äS¤!Ô·ÎiÈõ Ó úH‹<”Fq?’ŒNÞÌ>õ¯¦ç¥„¨v°¸# ø°ûfl™¿~ßVó‚Ú”uW«(búNÈé¼T&Éš_/–ŽJI\•¦^OøT«6e¨Ûª-ç9’ªÅb\œ€Iü@€ƒ"T"¤‰c¸ÄD0?F)ù!;\>"2(zEÜOyëÇ[õ½g´—ÓÖ‚:M“…$uë—D‹.'f dö™ñ‡LG«Ÿ‚OßQí†cî—Ìï9^ÜY㌃,£P·Q _mg@Ì"ÌÁ|U ¥;†Uh±"G—¦÷9åí>:ˆ‚‚˜(:f¢, FùνqñçuïXï¦~ì£ì„ •vA?8° D„|IñÒÂ$ Vj8@ ‡ˆ¼Jés™W®çorá ¤ÇÔ¡øs:ÊSŒ‘gUn3T‰ŸA~ªžÔ3H ¡¾Q•U#Ðåéïü>ô¿òìÉ¥R‘ómLÐM¶@ú2:Zà„ ‹)D&;<*JJÍ m5¯ ؽÔw$†wâZaªBt€n„Nì(ï¼Ñ.ÍÞþjÓMIJ@œ2~%r†m/«³ˆ–T€¶5.6G† ™Pøã|x11{ÒBöÁH¤@Lóƒ|L31ˆèC¤dÉ@”€ð}ž–$HyŒòháEÚ”y„íUT“ÃW}á®›ÝóºøxÀï2#$€²+# ˆ’Sç^ÿз¿!ô ~|Ðû™$C®‚”åyvE†®–D [+OçâÂ?“q'ÜÂ*G#z÷6:¿QÇ™‰IX¶À‰„Â1+Rл*|â)¤ec(¥—h>¾}ù1^Nî]¼Ž{ßÇóŠI‚&$h(‚š>8„À6&èdòp¤ U¤ri$ßí`=ñÀc(-ñ—®Êfµ×œÉñy„›¬¦p;"‚‚˜–ƒEIñ@4‡Ë|&ŸxXHŒâœ0t‡>J,ÕHa¦Ž¯ÏÊ1Æ{w‹Ù’` ‚@„€€@cɉ—Ê(HŒ¢úDÖQ_WèKêMÓ”"žaþb²å{ZzËy˜ÞèŽÈ@IÇ£XÚAÇ NP?ÎcñCfέçq²,Óé‰ã®>^#õIB„‘dIõb—ïŒwñÈ.{¾ŠˆäyÔù´…~fç¥ó¸ƒŽí;QObˆåô>=ùˆƒX&CKKðP„¼®b€Í„šd…°s9‡”Ac ‘!‰0R:$ûÊµŠøá ‘ºEaŒ ìˆ ‘W(ˆîøé²rÓ×t<È FJa ¶éŽÓÆê7Ú ý û1ªXˆhÀBÄx`>¤Ÿp&V²Â€ˆ {ß¾]ëb…€4A ˜øMx`$a LW§0Œ=ø’¿Z,¤`ˆLõ´‰¹0$B“ñaB>ÈC¹e `&aô`LччÖp@‰ðý¥‡ð?HâòÎDP”?ôoÆÿÙü/øŸüÇø¯õÿ#ùþ¯ã¿—þ§ùß÷¿’þ3ñ5UUUU]ïÎ|þ}|³×<æé· 1ÎníËwsšµu¸ñëÇGnó¼ÓM<Ûm¶ª Ûmªµm¶Ôm©ª)(ÛSLŒ„„‰#õ¹°{¢~ãœk§OÜ?¢éÑ:=Á­kXÁ­kXÁ­kXÁ­kXÁ­kXÁ­kXÁ¥)H@¥)H@¥)H@¥)H@¥)H@¥)H@­)H@¶Ù m¶Ù m·œ£œç(ç9Ê?+Õ:z9Îçs‡9ÜáÎpç1ŒÆ c1ƒÁŒ`Ûclm±¶6ÇùêLECPÃI1 C $ÄT5 4“PÔ0ÒLECPÃI1 C $ÄT5 =N³333331UUUû¯÷ÿOÞ>ýö~¾¾´LçÆÚsPí¨™Î1´æ"¡ÛQ3œciÌEC¶¢g8Æ6Ó˜Š‡mDÎqŒm§1Ú‰œãÛNb*µ9Æ1¶œÄT>¨§õ_¡ÿ#Ïßö{þ@kZÌÖ™íÏã8Öuι×:çƳ®uιXÁ­kXÁ¥)HBÂ¥!”¥!”¥!Ûd-¶BÛd-¶GŽv`J€¨$ëÑÎpç8sœ9Æ c1ƒÁ¶6ÆØÛ7z`sPÔ0í±B¤æ"¡¨a¤˜Š†¡‡mŠ'1 CN³333U^_'@øDÓ§L`Ò”¤!a-²¢TJ‰ ‰E¢Ñh°X W‹ÅâË òuA§^ŽqƒldL‰„L.åË…ù;Ô˜Š‘$HXYe€€êu˜©D……–_“äù=Áäù=}}h™Î1¶DÈ™ …ÂåË–s’"DH,,Xò ûûûíÛËÃá$’I$’I$뮺’I$’I$’Nºë©$’I$’I$뮺’I$’I$’Nºë©$’I$’I$‡ÛÏ—8ù9ÃŽffu×]u×]u×]u×]a$ŸÔ $„’BI!$ñÃŽffy$’I$’I$’Iá™™˜fff™™†ffaã‡ÌÌòI$’I$’I$“Ã330ÌÌÌ333 ÌÌÃÜ8ÌÌòI$’I$’I$“Ã330ÌÌÛµvíÛ·nÕÛ·nÝ»W€TM»víä’I$’I$’I'†ffa™™˜fff ðx<„aËsÞ÷mïÞõH gvfTL“S#s$$FõàvíÛ4¥)¢TJ‰ ‰E¢Ñh°X Åâñx²Âüê‚uèã2&DÂ& råÂü½)&"D‘!ae–U*¥RU2u„"$D‚ÁbÅïãßÅïßžyÌÉ9Æ1‘2&DÂáp¹råŽ0„DˆX,X±TäAï߾ݾ§Ÿ $’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’}‡9™™’I$’I$’I$“í™™†ffa™™˜fff8qÏ<óÏ$’I$’I$’I'†ffa™™˜fff™™‡¹ÁÇ<óÏ<’I$’I$’I$ž™™†ffa™™˜~içžyç‡ÇâþN8ø|>„’I$’I$’I$ø™™†ffa™™˜fffpqÏ<óÏ$’I$’I$’I'†ffa›víÛµvíÛ·nÕÛ·nÝ»W‡òÝ>>~?¯×Yë®·CYÅfÁ™P"XÊŠ2*¢"#™’Õõp›v팉Q*%DˆD¢Ñh´X,«V¯X_ƒªu:ôr&DÂ& pp¿zDÐ̉"BÂË,ŠTEH¤Šu:È’$,,¼ø>ƒÝU>ƒÏ×ÖŒc¶(¢g9"dL. —.Ỷ"A`±bÄS¿~ûvòðôtéÓ¦I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’Iö8æffI$’I$’I$’Oº333 ÌÌÃ330ÌÌÌœãŒÌÌ’I$’I$’I$Ÿtfff™™†ffa™™˜{œqçžyä’I$’I$’I$ðÌÌÌ333 ÌÌÃ330÷ß|Žqðø|> $’I$’I$’Ið333 ÌÌÃ330ÌÌÌ=Î<óÏ<’I$’I$’I$ž™™†ffa™™˜fffqÇžyç’I$’I$’I$“Ã330ÌÌÌ6íÛ·nÕÛ·nÝ»W‡öž¾¼úúúùzúùúúúöWZÖµ­kZÖµ­j†³ŠÍ Ì©CÐ0h*HuÏ9¶Ûjª m¶¢ˆš‚Dôù{tá„N"$(´Z- jÕ«V,ŠiA)¤Nˆ˜\.Ë— ðc½&¨D……–XD©™˜D„LÒ$ /~ýüANýø9ç™ qÆXÛlEAA"H™ …ÂâââÄLD‚ÁbÅ‚%Q;÷ï¶}O>I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$úùö8çžyç’I$’I$’I$“îŒÌÌÃ330ÌÌÌ3338çžyç’I$’I$’I$“Ã330ÌÌÌ333 ÌÌÃÇ9çžyä’I$’I$’I$ðÌÌÌ333 ÌÌÃ330÷<óÏ<’I$’I$’I$ž™™†ffa™™˜fffçóÏ<òI$’I$’I$’xfff™™†ffa™™˜yï§Üú}7ëÞý»Þì̪ªªªÌʪªª­iÆf¼¾µð¹ðúøo†×ü»÷ïß¿o~ýû÷î|?Ö>åý”øÎýû÷ï (P¡B… ±!H@Aî0µ­kZÖµ­kZÉ*R”¥)JUUfeUUUVfUUUUfeUUUVfyjª¯ª¬Ìï½o{Þ÷½ï{Þ÷¼ÌªªªªÌʪªª¬ÌªªªªÌʪªª¬ÌªªªªÌʪªª¬ÌªªªªÌÏÜ|Ÿù~½çÛ—²ªªªªª®õÞ÷æùüþKœùó•w¼ï{£®{Þóœç6×Lw½æÚ»w½æÚ»hëuã׎ŽÝçy¦šy·^s›mµgj¢g¬ó›§9͵cj":G9»Îr¶Åvç5j(ë±Í¶Ôm©Íª(™ë:;±Ý©ÖŠí¢‚šy¶ÛmUA¶ÛU;j(¢’š6Ûj6ÔÕ”m©¦š(¤§îíí¨}¾ŸkðÙ¿yûÎ8±ƒZÖ±ƒZÖ±ƒZÖ±ƒZÖ±ƒZÖ±ƒZÖ±ƒJRJRJRJRJRJRJRƒåçT“¯G9ÜáÎpç8sœ9Îc1ƒÁŒ`Æ0c1Œ/zRLD•RIE$ÄIU$”RLD•RIE$ÄIU$”RLD•RIE$ÄIU$”RLD•RIÔë333333òü¿/ºˆ|¿/Ÿ¯¯­j&sŒbs&Úµ9Æ19ˆ“mFÚ‰œãœÄI¶£mDÎqŒNb$ÛQ¶¢g8Æ'1m¨ÛQ3œc˜‰6Ôm¨™Î1‹:gã\fºæ³Zøàz/ ³ZÌÖ™íÏáƒZÖ±ƒZÖ±ƒZÖ±ƒJRJRJRJRéMB…IB¢…H¨¡RP“¯G9ÜáÎpã1ŒÆ cŒw¦vÔ Nb$ª’M¶mf„IÌD•RIE$ÄIU$›lÚÍ“˜‰*¤“'Y™™˜ˆˆˆÇÌÌÉ$’I$’I$’Iøa™™˜fff™™†ffaã‡óÏ<òI$’I$’I$’xfff™™†ffa™™˜xáÇ<óÏ<’I$’I$’I$ž™™†ffa™™˜fffáÇžyç’I$’I$’I$“Ã330ÌÌÌ333 ÌÌÃÜàãžyçžI$’I$’I$’O ÌÌÃ330ÌÌII%%%%%%$–‹Kr·KZÞ­oÖµ¨’¦ß¼tÈežchºFž÷œÛmªŽÚ(9µà{íÇN˜Á¥)H@£ZÖ0iJR*%D¨•"A‹E¢Ña`_o<cê‚qàã2&DÂ& }¹ÌEÞ‘$ÄLÄH’$,,ŠTEH¤E1+DH‰‚öíÛª©Û·ëëëF1ЧmDÎqŒg9Æ1‘2&DÂáp³˜‰˜‰D‚Áb)DNÝ»pððòôtÖµ®:d’I$’I']uÔ’I$’I$’u×]I$’I$’I']uÔ’I$’I$’u×]I$’I$C‡Ï›3']uÔ’I$’I$“ì™™†ffa™™˜fffs›œ|¸çsÏ<ó®ºë®ºë®ºë®ºë $ð’HI$$’I8æyçžNºë©$’I$’I'†ffa™™˜fff™™‡¸qçžyä뮺’I$’I$’xfff™™†ffa™™˜{œsÏ<óÉ×]u$’I$’I$ðÌÌÌ333 ÌÌÃ330óßO¤÷½Û{Æ÷½âLõ›Q Ì©CÐ0e@Åïy¶Ûcj¨ž‘Þc»QF´×ns32IÌ$~ÿãÀmÛ¶0hÖµŒ‰Q*%Dˆ‘D¢Ñh´X,õ¡Z:PB¥hâ&"`‰…Âà_‡{Òd¢ ¡™™D……J™¨ŠI©X‰ °____×ׇžyÇd­³F1Š+lQDÎsœäL‰‘0¸\,æfD‘!adwœãŸoÛöùçŸSá$’I$’I$’I']uÔ’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$ûs33$’I$’I$’I'Ý™™†ffa™™˜fff8qÏ<óÏ$’I$’I$’I'†ffa™™˜fff™™‡ŽsÏ<óÉ$’I$’I$’Iá™™˜fff™™†ffaîyçžy$’I$’I$’I<333 ÌÌÃ330ÌÌÌ=Ç|ŽsŽsäóÏ<’I$’I$’I$ž™™†ffa™™˜ff))$´Z[•ºZÖõk~µ­D•)JR”¥)JR”IÍ ï{Þ÷½ï{Þ÷¸BÎ+6fTD%Š*! ˜rð:õë0ðáÄAíçQ ëÑÆ0{wtH‘„"I$H˜aÝ»u^ݸçžd32B1Ç 0Ž0„J=»váááåèéÓ¦I$’I$’I$u×RI$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$“éÎ8ÌÌÉ$’I$’I$’IöŒÌÌÃ330ÌÌÌ333sŽ<óÏ<’I$’I$’I$ž™™†ffa™™˜fffçyçžy$’I$’I$’I<333 ÌÌÃ330ÌÌÌ=Î<óÏ<’I$’I$’I$ž™™†ffa™™˜fffqÇžyç’I$’I$’I$“Ã330ÌÌÌ333 Ä”””’Z40ëSÏ!=„ú(J… R(PI*R”¥)JR”¥+¾=ÿîzt;Þ`Ú ¡^c­ž¹ëÞóm¶Ûgjª˜:Ï^c¦Ñ;j(͉¦g¬ó›m¶ª ˆ)1´NfHHB2 HŸ?—;DÚ&Ñ.DÂ&‚ð^ ü: „)ÔNˆ˜\.ø1ÞCËȰ²PA333(@ÁM"A`½û÷ñD;÷àçžd00`ªÆÛf* ç1¶ÄT$‰‘0¸\,‰‘ °X PC¿~ü<<<½:téÓ§N™$’I$’I:뮤’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I'Øpã™™™$’I$’I$’I>üfff™™†ffa™™˜xáÇ<óÏ<’I$’I$’I$ž™™†ffa™™˜fff8qÏ<óÏ$’I$’I$’I'†ffa™™˜fff™™‡¸qçžyä’I$’I$’I$ðÌÌÌ333 ÌÌÃ330÷88çžyç’I$’I$’I$“Ã330ÌÌÌ333”””””’Z--ÊÝ-kzµ¿ZÖ¢J”¥)JR”¥)JQ%JR”¥)JR”¥(’¨ƒæ±þV™©²ÄðâÅ‹,X±bÅ‹ïýÿ¿>qñß~ù^Ý»víÛ·nÝ»ví۷˳2ªªª«3*ªªª³2ªªª«3<~3[Þ÷½ï~ï{Þ÷™•UUUY™UUUU™•UUUY™UUUUð¼k3ôçžyçžyçžyçžw™žÞÛß]ï{Þ÷½ï{ÞfUUUUfeUUUVfUUUUfg¢ª¥)Ú”¥)D™h ï85?ýXü$|¿íõ÷Õ¸Rò®ÌGÑõc?m¾ß¿¯JÂ~ï¹øÿö?lù~UßÀ~‡ý“ðßóåù'Þ~køÃïÂUUUUU\®Ö–ã†GI‰£Z´¥¸aÐ`hÖ­§9±®¹éÞóEÒ:w¼ÆÑtŽóîžCÞcw\:pï1Ûww˜í»»ÌvÝÜæëÎs9Ͷڳ¶vª&™èÃÎnœç8sœÛV6ÆÔEЃœÝç9Îs•¶Û]#œÛj§m¶ªvÔtv3±Í¶Ôm¨£ 6¨¦Bz„‡9¨ë±¶9µf­0]9ÍGv(£“»¹ÍEj( Ûm¶Ûm¶Úªª©vÛm¶Úª©6Ûj¦Ž»SÆs×:;³Ûwi¦žmFÛm¶£m¶¢¶ÚµUQTÕ¦Ú¶ÚŠ6ÔQTÐí¨¢‚µj(ÛQESE4…j(¦’š(‘$xp7ø9šéÓ{wíÓ5­k5­k5­k5­k5¯31ÞêÀZ0”(³™¨Š™ÆØ ´`('3Q3f|xñáDñãÌôõõæÆ‡GnlQÀ Œ‚9ÏÌðç9Á68cÛ›pCc9Ï3Œéœg\ëÆj¯‹È³LöçŽqœk/ ÖkÃ5ážËÃÃ\kŒã™¨Š™êuñãÇ„ñã××ÖŒc¶.5Çã8ΙÆtÎ3Óš«Ðñyçççéãè¢!æãÑŒJê Š ypøï¹ qŒ!h¬æj"¦ruñãÇ…SÇ7××׎ÆW‡QÛ›pWc£œñœÏ\Õ^‡‹È×ö?üê|>õ$’I$’I$’I$’I$’I$’I$’I×]u$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I2I2I$’I$’I$’u×]I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’u×]I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’u×]I$’I$’I$’I’I’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$u×RI$’I$’I$’I$’I$’I$’I$“>cöOÈ~'îýÉÆtþ0Cþoú?÷Ÿû©JRŒ•! ¨£"ª"!&vÔQAAîyG£Ñ†Ààp @)JR+ZÖ0iJR-¶B¥kXÁ­)H@¶Ù ‰Q*'$HDù8<ƒÁœáÆ0mލ!ÄãÁÎ0mŒ‰‘0‰òaÃ1Þ‘4„0A3S1"H’)Q ")J•Œ$ˆ‘ßßߪ©ïïÀ‡¯¯­Æ+lQD0áÁƒ1Œç8Æ6ÙÎqŒm²&DÈႉ˜Š™ˆ©D‘NÇóÏ<òI$’I$’I$’}£330ÌÌÌ333 ÌÌÃÇ9çžyä’I$’I$’I$ðÌÌÌ333 ÌÌÃ330ñÃŽyçžy$’I$’I$’I<333 ÌÌÃ330ÌÌÌ>~áÇžy<’I$’I$’I$ž™™†ffa™™˜fffçóÏ<òI$’I$’I$’xfff™»WnÝ»ví]»víÛµx~'NþùïßËË¿w<ó¼ÌªªªªÌʪªª¬ÌúÒÿáñè }ˆ}Ì AADÓC“_€°Á#5ÃF´£AElŠUi])MM 2Õ}Ï?ÕÅUQM PPTIQIÁ5^Rh§¹Á1´… @±hFƒKH1IMÁZ@jÈ H3ºHn `I3àLÌÌÌÌÌ̽™™™332Ûm¶Û` ¶Ûv®_·’~ä Aƒ 0`Áƒ 0g *R”¥)Jª«3*ªªª³2ªªª«3*ªªª³2ªªª«3>«­ï{Þ÷½ï{Þ÷¼ÏØkk[Þ÷½ï{Þ÷½îÌʪªª¬ÌªªªªÌʪªª¾+y™½ï{Þ÷½ï{Þì̪ªªªÌʪªª¬ÌªR”¥)JR”¢KÐôGþ±úäÉ™8Kò_Ñüø°áˆûîÒ„L…|ìßnùýÃ;êvš÷äÇ…phgghaPÐÇCCBÛm¶Ûm¶Ûm¶Ûm¶}—ð‰ù>Ý @ @TM”Vµ­kZÖµ­kZ‰*R”¥)JUUfeUUUVfUUUUfeUUUVfUUUUfg«UW¹UUY™UUUU™ŸßÞ÷½ï{Þ÷½ï{Ìʪªª¬ÌªªªªÌʪªª¬ÌªªªªÌʪªª¬ÌõëÓ¯GÎþo÷ŸÃÿßülº¶9³6 ·é ˆqÄwg·”´¹~G“îààL¢äÊI7&L¬ìY2@í÷üÇúþKú]û÷ïß¿~ýû÷ïß¿ƒ™•UUUZË\fµÅUUUY™UUUU™•UUUZÖ}o8ÏŽçžyçžyçžyçžw™–ªªªªÌÏÐë{Þ÷½ï{Þ÷½ï3*ªªª³2ªªª«3*ªªª³2ªªª«3*ªªª³2ªªª«3*¥)JR”¥*¾²NJ²0|ÝÕƒ·+¸pe–Ye–Ye–Ye–Ye”0Ç^n»¬ñ¶éÍÓtŽÝæîíËmFÚŠëuëžµvïwji§m¶ÛUPm¶ÕNÚŠ6Ûj6ÔÕ”lÉ Cï]ýë’ ûwN7Ó{úq‚Ÿ/³œ˜˜˜˜˜˜›è|ÿO_›åøûêzzêˆHDBB"ˆ„„D'óóò¹–gœÛ9Îsœë0ÊD$ˆH¢•@‚Ø ±6¶(-ãÇOãÇ}KÓוÁ®q ¨RU ªT) kTÌóLæ¹ÎsœçXÑ„<{ú)B"¼ŽmBŰPšÖ§£­5¢*ª‚ …5­S3ϤõöÓ®µzzõã8«Ê¯N¼½=8â¯SÅäzÀ ç9Ö4D²†ÂQL kZž¸ÖW‡§\g—§¦uéÇMk5ª½/'¤õœõç§=c<3Ã<3Ã<3Ã<3Ã<I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I:뮤’I$’I$’I$™$™$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’Nºë©$’I$’I$’I$’I$’I$’I$’I&I&I$’I$’I$’I$’I$’I$’I$“®ºêI$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$“®ºêI$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$ɦÕïɸÿkñ¿øýϹ÷>çÜï~/—>_'Õœ’f8pˆ9ÎroQ:z8Æ ±í­$a É“L!'·o^ wïÏ<ÈF8ᆙa ò·ÇÛ‡‡‡—£§L’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I×]u$’I$’I$’I$û¼ãŒÌÌ’I$’I$’I$Ÿ³ŒÌÌÃ330ÌÌÌ333sŽ<óÏ<’I$’I$’I$ž™™†ffa™™˜fffçyçžy$’I$’I$’I<333 ÌÌÃ330ÌÌÌ=Î<óÏ<’I$’I$’I$ž™™†ffa™™˜fffqÇžyç’I$’I$’I$“Ã330ÌÌÌ333 x<„!j[šÏ{Ý·¼o{Ô! g›3*"Ç#s$${í4éÓ4¥)´‰¤ÓÑÆ0{{Ò’b$ª’N§Xo·ÛÕ{vçžd32B1Ç 0Ž0„NW·nÜ<>}O„’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I']uÔ’I$’I$’I$“éÎ8ÌÌÉ$’I$’I$’Iö ÌÌÃ330ÌÌÌ333sŽ<óÏ<’I$’I$’I$ž™™†ffa™™˜fffçyçžy$’I$’I$’I<333 ÌÌÃ330ÌÌÌ=Î<óÏ<’I$’I$’I$ž™™†ffa™™˜fffqÇžyç’I$’I$’I$“Ã330ÌÌÌ31%%$””””””’Z--ÊÝ-kzµ¿ZÖ ‚EsãÛãÞ÷:w¼ÆÑtŽó·w9¶ÕNÚŠ()ø¼“¯^³ÃÔN§^ÃÞ‘435S=N¿Ãðû‰ðü>¾¾´c­±E'Éó|Ÿ7Éõ9öý¿ožyõ>I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$u×RI$’I$’I$’O·œq™™’I$’I$’I$“îŒÌÌÃ330ÌÌÌ333sŽ<óÏ<’I$’I$’I$ž™™†ffa™™˜fffçyçžy$’I$’I$’I<333 ÌÌÃ330ÌÌÌ=Î<óÏ<’I$’I$’I$ž™™†ffa™™˜fffqÇžyç’I$’I$’I$“Ã330ÌÌÌ?sóÏ<óÃ330ø{ìøçËžyõóÏ·žy³2ªªª«3*ªªªÔ! f8(ˆH$TB¾ŒL4’Tµiºës:!ù}>ŸLÏ<ú’I$’I$’Nºë©$’I$’I$뮺’I$’I$’Nºë©$’I$’I$뮺’I$’I$’H}8æd™$’I$“®ºêI$Ÿ`ÌÌÌ333 ÌÌÃ330÷óÏ<òI$’I']uÔ’I<333 ÌÌÃ330ÌÌÌ=Ç<óÏ<’I$’I×]u$’O ÌÌÃ330ÌÌÌ333sç.yæy×]u×]u×]u×]u„O $„’BN¤$êCÇ33Ï$’I$’u×]I$“Ã330ÌÌÌ333 ÌÌÃÆyË÷RŽå©óm·(¹E’rKZÖµ­kZÖµ­` ­M½vËÞó;MÖzólõÏ9¶Ûjª m¶¢ˆš‚“âò>#"|fá0EKS3?Áð{‡Áð{ǧ§­ÎkmˆI;÷ï·nÞ^Ž:téÓ§N:d’I$’I$’I$’I$’I$’I$’I$’I$’I$’u×]I$’I$’I$’I>œãŒÌÌ’I$’I$’I$Ÿtfff™™†ffa™™˜{œqçžyä’I$’I$’I$ðÌÌÌ333 ÌÌÃ330÷8ãÏ<óÉ$’I$’I$’Iá™™˜fff™™†ffaîqçžyä’I$’I$’I$ðÌÌÌ333 ÌÌÃ330óŽ<óÏ<’I$’I$’I$ž™™†ffa™™˜fff~#ñÿ…ú ¼‚ö -Á‚¸0`À ZÖµ­kZÖµ­D•)JR”¥)JR”¢LeÊ@ÉèryŽöò¢U"¦!ߪ¶ óf€\ýõ55óçCÈOKÑ…ØŸÉWÉÀÖA$ß2‚nA†‚P‚„ Ó±‚ Ó§b¡‚51‚ §F„Ä4b&“HRЀ(1(QThMC,Ñ?mžK@ò§J¤¤Z€"NþOþžyUDPTÅPâ0ü)@ä+` ÀÖ‘¡4¥UBÄ4˜Á‚Ù1 iК.”¡Ð’”(¡Ë äH(e“³´”’)*T”””””¶Ûm¶Û`Çþ3Ï5™šÖsÏ<óÏ<óÏ<óÏ?™•UUUY™UUUU™•UUUZÌý·<çžyçžyçžyçžw™•UUUY™UUUU™•UUUY™UUUU™•UUUY™UUUVõ¼ÌÞ÷½ï{Þ÷½ïvf|^÷½ï{Þ÷½ï{ÞfUUUUfeUUUJ$¾q;º££…V—.•.•••L¬¬¬«¹YYYXr­¶Ûm¶Ûm¶Ûm¶ØôûýxüGÉu×_ü}Ãâ{÷ïß¿³¿~þÎýû÷ïð¹™UUUU™•UUUY™UUUU™•UUUY™UUUU™Ÿ{Þ÷½ï{Þ÷½ï3?Žï{Þ÷½ï{Þ÷™•UUUY™UUUU™•UUUY™UUUU™ž5U^UUfeUUUVfUUUUfgá;|·ä?ø_Æ~ëù/ßý÷Ûôªªªªª•Þºï~o›çò\|ǯ{ÎyÌgGS'^÷œãÎl롃¯{Ìí7YëÞó;MÖzó맃Ñàõæ7]p:¼Ç[=sטëg®zólõÏ9ºóœãÎs9Ͷڳ¶vÎÕDÓLõ stç9Üçs›jÆØÛQQyÍÞsœç9Îs•¶ÛmŠªë<æÛmª¨6ÛmµU6‰êç(àìgc›m¨ÛQØÃMª($) è„!Ú'©ÎrŽ;c›Q“c5h$ º„‡hžœç(æÅ<64®¹áͶ¢ˆšm¶¢ˆš¶Ûm¶Ûm¶ÛmµUUUU ¶Ûm¶ÛmµUURí¶Ûjªƒ£±Š(84ÎC¨d1M°t«=sˆ)" H‚“†Ñ;m¶6‰Ûchµm¶Ú¶ÚŠ6Ûj6ÔDÕDÔMTU5Ech¶6‰ÛQ¶ÛQFÚˆš‰¢©¥1´NÚŠ"hb m¢b mQ¶£mEj(¢Š˜’!¢šV ÆÑ1j( ˆib H‚ ˆ(¢”ˆ)>©ØýÄI¿Ö³7ÓìúçLPCëÊ\#E©™š&©jff‰‚*Z™™¢`Š–¦f &©jff‰‚*Z™™¢`Š–¦f~o›æ÷›æô÷_^Qœæ±¶ØŠ‚"ƒmFsšÆÛb*Š µÎkmˆ¨"(6Ôg9¬m¶" ˆ ÛQœæ±¶ØŠ‚"ƒmFsšÆÛb*Š µ (I‚ óóñóË9Îsœç9ÓxDCÅá ™™…¨&… @¨&…_ÃÌdÎpX¨0Ì€m33¶Éfp–* „À;LÌÑ0EKS3;l–g b ÈL´ÌÎñãÇ…O<ý×××”pxñãÁÛ†Ûb*!ŒP`^sœŽ9ÏÛ†Ûb*cs”g9¬m¶" ˆ ç9ÎÇçŠíÃm±1Š ‡=xY™¬Ì¸µ®8ÍkŒãY®3ffd,P0(BøÞ›P™ÎFÅA€&A¦fq¶ÌàK˜ÚfgÇ==Ðõõç60Çà_7Ôø}êI$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$뮺’I$’I$’I$’d’d’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I:뮤’I$’I$’I$’I$’I$’I$’I$É$É$’I$’I$’I$’I$’I$’I$’Nºë©$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I’I’I$’I$’I$“®ºêI$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$“¼ù´¯æûëñÇØÂþëýËö/õü||||tëWÈÍ1ÓpÓ1ëžsm¶ÕTÚ'mE41‰å´4†Ò!F0`5­k4hÑ£B…  ¥)­k4¥)Û!Rµ¬`Ö”¤ [l‡½B¡D0pp9Î8p80`1ŒÎcØê‚N<c-“!†˜a‚‰˜ŠïI‚*†˜a‚‰˜Š™ˆ¨D’1Œ`‰J•Œ$÷÷÷ê {ûðzúúќ汶؊‚"‚BC!‡ç8páÁƒ1Œç8Æ6ÙÎqŒm¤2Ã3 0A3S1œCäù>O7Íó}_c$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’O¿8qÉ$É$’I$’I$’Iø™™˜fff™™†ffaïÌ>\p㟇Ãáð’I$’I$’I$Ÿ330ÌÌÌ333 ÌÌÃÇ9çžyä’I$’I$’I$ðÌÌÌ333 ÌÌÃ330÷<óÏ<’I$’I$’I$ž™™†ffa™™˜fffçóÏ<òI$’I$’I$’xfff™™µvíÛ·nÕÛ·nÝ»W‡Žý;øwïßÇ¿‡~ýýôóøuðÐkW2Ð@ÓpÓ1ÓŽµ«mç9Îm¶ÛmµUQÖztï"yÎrŠ(Æ3¶Šë<æÛmª¨" Lm¶¢ˆš‚“áòC¨u¡‚hÑ£F0`4(P¡ZÖ±ƒJRFµ¬`Ò”¤ v¨T(†ƒƒÁƒœáÆ0n¨!'1ƒÛÈC 0ÁÌEÞI$ËHC 0ÁÌDÌD TLÌÌÊ dãíöû}ÄCÛíóUõõõ£ ¶ÔEIœæ"‚±¶ØŠ‚"‚BC!‡8pàÁƒ9Î1Œç8Æ$2à 0A33/9ΟO§ÓÏ<úŸ $’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’}rI2I$’I$’I$’}ƒ330ÌÌÌ333 ÌÌÃÇ9çžyä’I$’I$’I$ðÌÌÌ333 ÌÌÃ330ñÃŽyçžy$’I$’I$’I<333 ÌÌÃ330ÌÌÌ=Ã<óÏ$’I$’I$’I'†ffa™™˜fff™™‡¹ÁÇ<óÏ<’I$’I$’I$ž™™†ffa™™˜fff„w-Ï{Ý·¼o{Ô!ÖqVheHCZÀ0ÇBÁÐÁÓ½çsœ9Îm¶ØÛcj¨¢‰èÃÔéÞDñç9G69µdÆs±­2DÕÔ$9ͶÛm¶Ûjªª¥éŒbŽFzç4Á¢q´NÚµL14P8ÎbHƒcÑDK@D'}¡¤4†ˆA ´hу­kXÁ©ZÖ0{T*CÎpõA:8áöä2Ã3Þ’CÊMUHÄ! 332%I$C „„Æ"DJ•íÛ·UNݸCÂ!Îs!‰‰‰XÛm[b*)0áÃT•±¶6Ûm‰¢Š¨Iœcj‚’"‚BC!‡ç9dž! cÄJ»váááåèéÒI$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I'ÐáÇ$“$’I$’I$’I'Ø333 ÌÌÃ330ÌÌÌßo·Ü=¾ßxôôõ£9Ícm±òç>\ùsåòç>ŸO¦f}O„’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I>œã‰$É$’I$’I$’I÷Fffa™™˜fff™™‡¹ÇyçžI$’I$’I$’O ÌÌÃ330ÌÌÌ333sŽ<óÏ<’I$’I$’I$ž™™†ffa™™˜fffçyçžI$’I$’I$’O ÌÌÃ330ÌÌÌ3338ãÏ<óÉ$’I$’I$’Iá™™˜fff™™†ffa羟O¹ôú}={ß·{Ý™•UUUY™=¾¯/ g‡‡^šÎ8Öqч£Ìtl=={Þqç9ÇœæÛm¶ÎÙÛ;UTÓLBC¨tï"x<ç(ã±Ãhµd1œ;±4ÈD4ÏD!sm¶Ûm¶Ûm¶ÛUUUUP`ÎÄAG& ‡PÈp9 “;LÚ';LÚ'mF6‰ÛQDL3M4‰ƒ 1œÄ‘3˜“cÑQKH"§}¦È ‡làæ!–*"¥€ ¦Šhª*T‚bHЍa† !"Ý»sÔíÛód0ppdÃ3mXÛlEDT¹ †B"¢)kÙÛglm¶ÆÛb h¦Š¢¥ Áœã™Æ1¶ˆ¢@Œ"B#!H'nݶíÛõ>I$’I$’Nºë©$’I$’I$뮺’I$’I$’Nºë©$’I$’I$뮺’I$’I$’H}s33$’I$’I$u×Sì™™†ffa™™˜fff8qÏ<óÏ$’I$’I$u×SÃ330ÌÌÌ333 ÌÌÃߪ|¸áÇ>‡Ãá$’I$’I$뮺Ÿ330ÌÌÌ333 ÌÌÃÜ8óÏ<òI$’I$’I×]u<333 ÌÌÃ330ÌÌÌ<ç9óç'žyç]u×]u×]u×]uÖIá$’HI$ÌðÏ ðÏ ðÌÏF{œú9ñçž}\óíçžl̪ªª©D•)JR”¥)JR”¢JZÚÑ|~ Û5îÏvƒ!£†c ©Á{¥Õýå«ôï×Ûã{çÏuž÷½ï{ݽï{Þ÷ß2ùŸ½ï{Þðú¿š|G<óÏ<óÏ<óÏ<óðs2ªªª«3*ªªª³2ªªª«3÷½ï{Þ÷½ï{ÞfUUUUfeUUUVfUUUUfeUUUVf|—üfãNçàš£ØDý&ï}>LßïX¬Ö;ÎìB™2e$É“&L™2dÉ’Ûm¶Ûm¶7Ÿ÷z¾éÛ·nÝ»vòíÛ·nÝ»|Û3*ªªª³2ªªª«3*ªªª³2ÕUUUY™UUUU™•UUUY™UUUU™•UUUY™UUUU™•UUUY™UUUU™•UUUY™UUUU™•UUUY™Û>'áþ‘ôÒ~ôÞÇý¸ü—Öÿ–«äþçÿ/U¿¿€«ëHiÕJM-i4…JQ¥¶4Àæ4S§@fH“mHêœH” Léq4WÞða¦Ñ©‚j¡Š ¥mrä @#BRÄUADÉSLKöÿ§þ¿½SÈv R9‡0ÿm&æSA  @Å¡ hLM:N!£N’ŒN$4¶tmˆ¨–LçQDŒ, R+0 D%%% P¾ˆ €ý¯À­ýƒ €ºÌx%í¢s@7éõÐp?sŒ÷ÙáýÖ†$MòîoŒÛšjõï|»D°"ÝKLÀ,RØl>Àa83L,L„´„9û?(Qf»1V¬Wº÷)»ãÃþv{Žõ<s½Þæû… î¦hvâXó0 ·)?É\éµd&°|K½Ï™¯GÌšúf+šª®®óôœçu°wT V÷W’ùr>ÆKÜ“QÙó¸šï¢fFþj-_©XÈk¾¬ë}do7yu—=i¼[ñ·*(Õ8µÈÍùXÎ0 ’Hòˆš'õrh†Ÿ£:hf¢’ jª€¥‰J™(¢‰h¥ ¡)* iiüoÉÞ×óˆ“ÊTК§H€i$ ¥/賘¡ †&š)˜b(ˆ¦ ?ß÷~ÿùoÒÿùæ ¡÷Ÿî}Ÿœûçšÿ›¥êZjµ¯sõþ'&ÞÈÕæ1ÕÞt{MUš å_=ËOóÕ«lŽæËˆS—‹c—ÀÑ`«œŒoÕdÌtùšÝ^¬ŒMw·©ûXj™ŠÅköª¶«×=e«­ÅÎ{v }èiÜ(Í*þ¡÷¦$(¢*"©¢‚ba’"Š˜‚Z& *fe¦„) A>,fˆŠ‰¥GŸßã‡Ù~K p”¤Hš%J@ˆ ˆ‚”™'ïÙ3ìÙ„ ©"JHˆª(‚„ !¡¹€Hñ¯ÛßG}»‰ÃìÜ?^Ö²¥/š²ÍÈ›Öýþ\ŒŒ/ã"­tÑûß]sObäì³\­7‰K/"LÄý,ÕŽ’¿/)F„úèÛýxf½£ÀÚ^r~Ž7«6Þ-—î·¥¢â@ñ.ï§²Ýk4)ÙVúŽ¿¸-¾kþ5Çãþ{DSü%>(Šbˆ ’ ’"bå±¶1ÐDL0‘%TCB)HУ@Ó¶t”`**CúïÓÿkqèDEDLTÄÌ“$ågï ä$M)% JÒP´1QLM.„кûÇÝ¿ÕüÇÁßåþ«Éà€Í“uøpøníו]ï{zÿÛyþwTy­66~ÏcÛbýüô}\íKþµ]ø3Þó¿KQ#…Á¤÷ª²z™aè`2ï<Œ¥ØìbxÝŠ½¢ fµçUÿê•bm®Ý©öû 0ó/øì·ŽÎÂïÞ_tÚî·²ÿK+Iá@jXÐ a0P 6±m—F‚´Î&6²j'M RBA¥Ðކ†*f £èî1Í  Ò"P% Gÿ¿›òü]JQQ$ x WĆæA¢Š¶@̤@éOdY˜ŽkBéht44­!öV"€õPHmš`I¢êÀ ‚Fâýýî¹Ïç½Ïv8¸ýïCoÜNæç~XÝ×—¢©}¿> ¯Ô­èe<ûl{òË÷×xQt1u¿FÎÓ ¯Ë'Ó}ïo©¶]†ý…ówö Ý^È­ßÓ3=OìË\û쮈'þA$H2' „TŸzš$m¤¬@iq#KCAFØLZª S¦‘ª¤@Òâ ±PÄÌID4,TÐ5iD)t!AECE1ø?Ó}óÈéAC-5@R^Yv°?]hæÂ¢(t MbJ3­:¶ÛÐhÄ%+THP$EEL€’I$^ €A'ÆV¬Ö3)ƒÑlwx½ïùM›ü¼nn.Ž|O~yÞ¶mvšññîþ†ö£½•Îèµ0˜ï˜™¥•‡Ñ¹yß¾”÷iש֫ú £6NV‡ý¡¨¥~ð®%üù¿ÓbëVû—ö¿?¢×\¸¹þ­¦H$ƒ«A'ðТòR ¿Ùý¹'ñ%PSXƒ[a¦’ÆÓ@}Œn8Á3¥‰ lëb‰b3aˆZ!¢€)¢YŠBe ’’)¨bJ¤š ‚*& EZˆF&’*i*¨*‚bš**¢ZŠªÁÇÙÿ±çäQ2÷`ÒP~Ÿd(䦀Î2´;:`hi m&)›ƒ66´m¨ÆL®0&t$ÀÄ­ÈBÐ$#4{0š  ˜ ¦S–„(8AÉ?´Þ“µ3Ö¦ Ÿ ÇHß[§S­ù4;˜¶¿w¿½îóZ-Ü¥‡µòn,zÊ·Ý{Üsí·•ª¹ôàÎ\ÿ'+­§ÙÏÞs=G6;n#itçì­¸ŠðÆùœÄÚ-\Æê÷Çi=.ò­õÿ8]$ì*K‹êcìÓø gÔóÜbêïñÞŸEsñ‰ö…0ËDQA2Eo‡kS ƒIACF%›1&ÆP†ijm)¦™b"Š¢€ªˆ)b˜)˜¤ Òš@¥)¥ (:`Ä()LCKP±4­4´Û ¢š?×üO⺧fŸÅì{6X€-„Û…"P¢¢ Ò˜„ÙÁÉS)bÔ²û#2â !‘„!& @…d«šÀ&¡…–$‚ˆbh(‚F•ˆŠ)‰ƒe19TEo÷?Oî?ÿg-Nˆ ßøâq’$ V)‚WÛÒFôà<ö·ÖÂj ‚  š&!¢RÁZI±$ÅI'0`ÅŽIƒgI,%s`*Mjˆ¢ ™$ ¦ª†ˆ‘ ¢&(M:¤hBa­$¤ÄFuJTHUA$A@P£M5KTèÒ¡M)@P¥úïæ¹Â"<µoÃsbkN@ÙÈÄAVÁˆ h&¤ ó,œÆ6FÆ’F×8è$*X¢€ µ„$djhYHBˆ•$©X”ˆf¤¢73¸d†"vÕÃ%i±ˆ¢¨ªiŠ" KN6vÑ­ëõ¿eúôCõ^ŸÀý‡QøúOÏft×~ùZ |®ªz©E§ÍimTžÏ±²_ׇ´VíùžõÈ€ÅUŠ Lô§yÝÞÕ=7é”öïÔ ”óø®îþ¤ã}|å²õx—ŽúwÓÌ j&+9í²¼bë_ÐÎý™Z»œÒ%¥¾=íV…¬‘Yÿº,:Î;²ã“ïñ]ºL‚@žÌ(%Z ˆb€#ñø $AT•LLÉC},š’šP…¦Ð~{“}ßO)‘£Hi Q bB„I{f`9&–†kÙ“EEÁDžŠ¢~3óƒ€ zÐýcóLÈþãTú[vºI÷W4|?åds©EK ǻǫ¸ú¦zÛ¶zS ¿Äß Ñ@ãÄ~ÃÚ*fœLUjSö-OÒ½Oã‡kOöôµù ŽŠ›¯ãÞ°/òµç/G§œÃ:Ï]‰Ó¦]“Ò¾å.ö÷¾+5j7G_ÝÆ‚‹ézÛ«Ž|mQ$óáü?éz"¢¿zÿf˜‚*ûŒ™†*¢*‚ˆˆ„‰¶AÌ35L44 ïºà'€)qùñºÕ×Üd]*yÉ q!4P,†Ê¡ˆH€‰nÌsOfD¼ÆH‰%¨ŠI"¡ô½@DPùÀ}DŸí}Nú´ßQ|ùA‰?Žü¥ª”GÑ5.àlpÀ#wÉb{JÀ1@ÃiÜFi©DªÛÃW-šßv]Ι4Ù fPõÙ@àSg\H«"Ùyë¸$‘风‚3»ö:^-±À Ì ‰Sl’ @@p€ 8$HÐ?äcAM~ Z Œj=¤@'Š ó°pÚùÛH>çE/~›ÿ‡lp$XŸ €üÏÔsó?o~Æ~ÁQT!ã“ñÒPTSÓ1TÄÄTÅT‘UP¡% ¥ˆÒ£2(i_Ùý×±ŽÍÄPÕ Õ!B‘4±ÑLyeýÓ†.Y‰)ýVÔ ”¥$Qs8¢€ªRfšY LGª ІúßwâýÐàˆ§Þcت)ú Š£ûN" õŸÂuPþÁ?v€’¦ €CÔkr¬L ’H#µ›cÑ̤Müü¨ õù *‚}­ù»ñ—ÞûíçíeTSóÄïÏGý ‰úˆ>Ÿ· ¨Ÿ³÷qùUTü´‡Þ`SãšKÆOÆÇ¬"(þŠdª ~¿û܈ŸiýöA?»”QCïЀ!÷ÏÔåCþØTý4  |éö™@¡† y€HMRp@ ¯ mð±hÎ@"ŸÒþ«í$/Àü_æÿêƒü¤¢ ìÎ}È4  Ën…‚AÊ ‚`+šÇIŸ÷9CúŸÖd>‡E/ê@~îAIÑGÕã%$ÁZ(4š ˆ6Ô#P¤€iª**ŠÎ]"iPÐ}_ú]ýOuTÁ1JQ$M AA  CT‡·>| BP l©F!)j`(C¤ˆP±ŠEP?Ôõî¿'Ñ@öúŸ­üî£ù DùÎшú }é¤0n(øÈ@tÈš‹ÄÛlRG%¬Æ•ïuö°a0]—UŸçß(Žõ¶GÆËëýe&i¦ÄÏÇõ$ö“îŽÎ'öëá@t–]9xÝó%ŸéÝË1²h´‚Ž) m,¯¾„Õu¢Ò<$-l9ûþ9ù„é6_†Ã<¿ úÿµ³{†û¶7ùXÓEQ~ý_„ÆŠ(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š)UjªªŠªªªªªªªªªªªªªªªªªUX~)@ùÀ‚«þ.äŠp¡ m¹”shazam/R/ConvertNumbering.R0000644000176200001440000000350514142206203015345 0ustar liggesusers#### Convert Numbering #### #' convertNumbering: IMGT-Kabat number conversion #' #' Converts numbering systems like Kabat or IMGT using these conventions: #' http://www.imgt.org/IMGTScientificChart/Numbering/IMGT-Kabat_part1.html #' with Gaps (unoccupied positions) shown by "G" and Asterisks (*) shown by "S": #' arbitrary mappings (multiple possible "to" values) represented with "NA" #' #' @param locus string indicating heavy ("IGH") or light chains ("IGK" or "IGL) #' @param from string indicating numbering system to convert to ("IMGT" or "KABAT") #' @param to string indicating original numbering system ("IMGT" or "KABAT") #' @param calls vector of strings representing original numbering #' @return A vector of string indicating the corresponding numbering #' #' @examples #' convertNumbering("IGH", "IMGT", "KABAT", c("51", "23", "110")) #' convertNumbering("IGH", "KABAT", "IMGT", c("51", "23", "G")) #' @export convertNumbering <- function(locus, from, to, calls) { # Generate mapping from references from_map <- pull(CONVERT_NUM_REF, paste(locus, from, sep='_')) to_map <- pull(CONVERT_NUM_REF, paste(locus, to, sep='_')) # Check for compatibility of reference with input calls if (!all(calls %in% from_map)) { stop(paste("Formatting of following characters does not match reference: ", toString(calls[!calls %in% from_map]))) } out_calls <- dplyr::recode(as.character(calls), !!! setNames(to_map, from_map)) # Separate check for ambiguous values to convert to NA, not arbitrary call from_counts <- table(from_map) # Generate output for(i in calls){ if (from_counts[i] > 1) { out_calls[which(calls==i)] <- "NA" } } return(as.character(out_calls)) } shazam/R/kedd.R0000644000176200001440000006075714241221623013004 0ustar liggesusers# This file contains functions adapted from the CRAN package kedd, # scheduled for archival on 2022-05-25 # Original code: https://github.com/cran/kedd # Modification: Simplify to use only kernel="gaussian" # # kedd: Kernel Estimator and Bandwidth Selection for Density and Its Derivatives # Smoothing techniques and computing bandwidth selectors of the nth derivative of a probability density for one-dimensional data. # # Version: 1.0.3 # Depends: R (≥ 2.15.0) # Published: 2015-10-31 # Author: Arsalane Chouaib Guidoum # Maintainer: Arsalane Chouaib Guidoum # License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] # NeedsCompilation: no # Classification/MSC: 62G05, 62G07, 65D10, 68N15 h.ucv <- function(x,deriv.order=0,lower=0.1*hos,upper=2*hos,tol=0.1 * lower, kernel="gaussian",...) { if (!is.numeric(x) || length(dim(x)) >=1 || length(x) < 3L) stop("argument 'x' must be numeric and need at least 3 data points") if (any(deriv.order < 0 || deriv.order != round(deriv.order))) stop("argument 'deriv.order' is non-negative integers") r <- deriv.order if (missing(kernel)) kernel <- "gaussian" if (kernel != "gaussian") {stop("Expecting gaussian kernel.")} name <- deparse(substitute(x)) x <- x[!is.na(x)] x <- sort(x) n <- length(x) hos <- ((243 *(2*r+1)*A3_kMr(kernel,r))/(35* A2_kM(kernel)^2))^(1/(2*r+5)) * sd(x,na.rm = TRUE) * n^(-1/(2*r+5)) if (!is.numeric(upper)){ stop("argument 'upper' must be numeric. Default 2*hos (Oversmoothing) boundary was used") upper= 2*hos } if (!is.numeric(lower)){ stop("argument 'lower' must be numeric. Default 0.1*hos boundary was used") lower=0.1*hos } if (lower < 0 | lower >= upper){ stop("the boundaries must be positive and 'lower' must be smaller than 'upper'. Default boundaries were used") upper=2*hos lower=0.1*hos } R_Kr1 <- A3_kMr(kernel,r) fucv <- function(h) { D <- kernel_fun_der(kernel, outer(x,x,"-")/h,deriv.order=2*r) diag(D) <- 0 D <- ((-1)^r / ((n-1)*h^(2*r+1)))* colSums(D) D1 <- mean(D) D2 <- kernel_fun_conv(kernel,outer(x,x,"-")/h,deriv.order=r) diag(D2) <- 0 D3 <- ((-1)^r / ((n-1)*h^(2*r+1)))* colSums(D2) D4 <- mean(D3) (1/(n*h^(2*r+1)))* R_Kr1 + D4 - 2*D1 } obj <- optimize(fucv , c(lower, upper),tol=tol) structure(list(x=x, data.name=name,n=n, kernel=kernel, deriv.order=r, h = obj$minimum , min.ucv=obj$objective),class="h.ucv") } A3_kMr <- function(kernel,r) { xKr <- integrate(function(x) kernel_fun_der(kernel,x,deriv.order=r)^2, -Inf, Inf)$value return(xKr) } A2_kM <-function(kernel) { xKr <- 1 return(xKr) } #### #### r(th) derivative of Kernel functions K^r(x) kernel_fun_der <- function(kernel,u,deriv.order=0) { if (any(deriv.order < 0 || deriv.order != round(deriv.order))) stop("argument 'deriv.order' is non-negative integers") r <- deriv.order Kr <- expression( dnorm(X) ) if (r == 0) { DKr <- Kr K <- function(X) eval(DKr);fx <- K(u) } else { if (r == 1){fx <- -(1/2)*u*exp(-(1/2)*u^2)*sqrt(2)/sqrt(pi)} else if (r == 2){fx <- (1/2)*exp(-(1/2)*u^2)*sqrt(2)*(u^2-1)/sqrt(pi) } else if (r == 3){fx <- -(1/2)*u*exp(-(1/2)*u^2)*sqrt(2)*(u^2-3)/sqrt(pi)} else if (r == 4){fx <- (1/2)*exp(-(1/2)*u^2)*sqrt(2)*(u^4-6*u^2+3)/sqrt(pi)} else if (r == 5){fx <- -(1/2)*u*exp(-(1/2)*u^2)*sqrt(2)*(u^4-10*u^2+15)/sqrt(pi)} else if (r == 6){fx <- (1/2)*exp(-(1/2)*u^2)*sqrt(2)*(u^6-15*u^4+45*u^2-15)/sqrt(pi)} else if (r == 7){fx <- -(1/2)*u*exp(-(1/2)*u^2)*sqrt(2)*(u^6-21*u^4+105*u^2-105)/sqrt(pi)} else if (r == 8){fx <- (1/2)*exp(-(1/2)*u^2)*sqrt(2)*(u^8-28*u^6+210*u^4-420*u^2+105)/sqrt(pi)} else if (r == 9){fx <- -(1/2)*u*exp(-(1/2)*u^2)*sqrt(2)*(u^8-36*u^6+378*u^4-1260*u^2+945)/sqrt(pi)} else if (r == 10){fx <- (1/2)*exp(-(1/2)*u^2)*sqrt(2)*(u^10-45*u^8+630*u^6-3150*u^4+4725*u^2-945)/sqrt(pi)} else if (r == 11){fx <- -(1/2)*u*exp(-(1/2)*u^2)*sqrt(2)*(u^10-55*u^8+990*u^6-6930*u^4+17325*u^2-10395)/sqrt(pi)} else if (r == 12){fx <- (1/2)*exp(-(1/2)*u^2)*sqrt(2)*(u^12-66*u^10+1485*u^8-13860*u^6+51975*u^4-62370*u^2+10395)/sqrt(pi)} else if (r == 13){fx <- -(1/2)*u*exp(-(1/2)*u^2)*sqrt(2)*(u^12-78*u^10+2145*u^8-25740*u^6+135135*u^4-270270*u^2+135135)/sqrt(pi)} else if (r == 14){fx <- (1/2)*exp(-(1/2)*u^2)*sqrt(2)*(u^14-91*u^12+3003*u^10-45045*u^8+315315*u^6-945945*u^4+945945*u^2-135135)/sqrt(pi)} else if (r == 15){fx <- -(1/2)*u*exp(-(1/2)*u^2)*sqrt(2)*(u^14-105*u^12+4095*u^10-75075*u^8+675675*u^6-2837835*u^4+4729725*u^2-2027025)/sqrt(pi)} else if (r == 16){fx <- (1/2)*exp(-(1/2)*u^2)*sqrt(2)*(u^16-120*u^14+5460*u^12-120120*u^10+1351350*u^8-7567560*u^6+18918900*u^4-16216200*u^2+2027025)/sqrt(pi)} else if (r == 17){fx <- -(1/2)*u*exp(-(1/2)*u^2)*sqrt(2)*(u^16-136*u^14+7140*u^12-185640*u^10+2552550*u^8-18378360*u^6+64324260*u^4-91891800*u^2+34459425)/sqrt(pi)} else if (r == 18){fx <- (1/2)*exp(-(1/2)*u^2)*sqrt(2)*(u^18-153*u^16+9180*u^14-278460*u^12+4594590*u^10-41351310*u^8+192972780*u^6-413513100*u^4+310134825*u^2-34459425)/sqrt(pi)} else if (r == 19){fx <- -(1/2)*u*exp(-(1/2)*u^2)*sqrt(2)*(u^18-171*u^16+11628*u^14-406980*u^12+7936110*u^10-87297210*u^8+523783260*u^6-1571349780*u^4+1964187225*u^2-654729075)/sqrt(pi)} else if (r == 20){fx <- (1/2)*exp(-(1/2)*u^2)*sqrt(2)*(u^20-190*u^18+14535*u^16-581400*u^14+13226850*u^12-174594420*u^10+1309458150*u^8-5237832600*u^6+9820936125*u^4-6547290750*u^2+654729075)/sqrt(pi)} else if (r == 21){fx <- -(1/2)*exp(-(1/2)*u^2)*sqrt(2)*u*(u^20-210*u^18+17955*u^16-813960*u^14+21366450*u^12-333316620*u^10+3055402350*u^8-15713497800*u^6+41247931725*u^4-45831035250*u^2+13749310575)/sqrt(pi)} else if (r == 22){fx <- (1/2)*exp(-(1/2)*u^2)*sqrt(2)*(u^22-231*u^20+21945*u^18-1119195*u^16+33575850*u^14-611080470*u^12+6721885170*u^10-43212118950*u^8+151242416325*u^6-252070693875*u^4+151242416325*u^2-13749310575)/sqrt(pi)} else if (r == 23){fx <- -(1/2)*exp(-(1/2)*u^2)*sqrt(2)*u*(u^22-253*u^20+26565*u^18-1514205*u^16+51482970*u^14-1081142370*u^12+14054850810*u^10-110430970650*u^8+496939367925*u^6-1159525191825*u^4+1159525191825*u^2-316234143225)/sqrt(pi)} else if (r == 24){fx <- (1/2)*exp(-(1/2)*u^2)*sqrt(2)*(u^24-276*u^22+31878*u^20-2018940*u^18+77224455*u^16-1853386920*u^14+28109701620*u^12-265034329560*u^10+1490818103775*u^8-4638100767300*u^6+6957151150950*u^4-3794809718700*u^2+316234143225)/sqrt(pi)} else if (r == 25){fx <- -(1/2)*exp(-(1/2)*u^2)*sqrt(2)*u*(u^24-300*u^22+37950*u^20-2656500*u^18+113565375*u^16-3088978200*u^14+54057118500*u^12-602350749000*u^10+4141161399375*u^8-16564645597500*u^6+34785755754750*u^4-31623414322500*u^2+7905853580625)/sqrt(pi)} else if (r == 26){fx <- (1/2)*exp(-(1/2)*u^2)*sqrt(2)*(u^26-325*u^24+44850*u^22-3453450*u^20+164038875*u^18-5019589575*u^16+100391791500*u^14-1305093289500*u^12+10767019638375*u^10-53835098191875*u^8+150738274937250*u^6-205552193096250*u^4+102776096548125*u^2-7905853580625)/sqrt(pi)} else if (r == 27){fx <- -(1/2)*exp(-(1/2)*u^2)*sqrt(2)*u*(u^26-351*u^24+52650*u^22-4440150*u^20+233107875*u^18-7972289325*u^16+180705224700*u^14-2710578370500*u^12+26428139112375*u^10-161505294575625*u^8+581419060472250*u^6-1109981842719750*u^4+924984868933125*u^2-213458046676875)/sqrt(pi)} else if (r == 28){fx <- (1/2)*exp(-(1/2)*u^2)*sqrt(2)*(u^28-378*u^26+61425*u^24-5651100*u^22+326351025*u^20-12401338950*u^18+316234143225*u^16-5421156741000*u^14+61665657928875*u^12-452214824811750*u^10+2034966711652875*u^8-5179915266025500*u^6+6474894082531875*u^4-2988412653476250*u^2+213458046676875)/sqrt(pi)} else if (r == 29){fx <- -(1/2)*exp(-(1/2)*u^2)*sqrt(2)*u*(u^28-406*u^26+71253*u^24-7125300*u^22+450675225*u^20-18928359450*u^18+539458244325*u^16-10480903032600*u^14+137561852302875*u^12-1192202719958250*u^10+6557114959770375*u^8-21459648959248500*u^6+37554385678684875*u^4-28887988983603750*u^2+6190283353629375)/sqrt(pi)} else if (r == 30){fx <- (1/2)*exp(-(1/2)*u^2)*sqrt(2)*(u^30-435*u^28+82215*u^26-8906625*u^24+614557125*u^22-28392539175*u^20+899097073875*u^18-19651693186125*u^16+294775397791875*u^14-2980506799895625*u^12+19671344879311125*u^10-80473683597181875*u^8+187771928393424375*u^6-216659917377028125*u^4+92854250304440625*u^2-6190283353629375)/sqrt(pi)} else {K <- function(X) (-1)^r * Hermite(X,r) * eval(Kr);fx <- K(u)} } return(fx) } #### Hermite Polynomial Hermite <-function (x, n, prob = TRUE) { if (any(n < 0 || n != round(n))) stop("Argument 'n' must be a vector of non-negative integers") if ((length(n) != 1) && (length(x) != length(n)) && (length(x) != 1)) stop(paste("Argument 'n' must be either a vector of same length", "as argument 'x',\n a single integer or 'x' must be a ", "single value!", sep = "")) H <- function(x, n) { if (n <= 1) { return(switch(n + 1, 1, x)) } else { return(x * Recall(x, n - 1) - (n - 1) * Recall(x, n - 2)) } } scale <- 1 if (!prob) { x <- sqrt(2) * x scale <- 2^(n/2) } scale * mapply(H, x, n) } #### Kernels density convolution kernel_fun_conv <- function(kernel,u,deriv.order=0) { if (any(deriv.order < 0 || deriv.order != round(deriv.order))) stop("argument 'deriv.order' is non-negative integers") r <- deriv.order if (r==0) {fx <- dnorm(u,mean=0,sd=sqrt(2))} else if (r==1) {fx <- (1/8)*exp(-(1/4)*u^2)*(u^2-2)/sqrt(pi)} else if (r==2) {fx <- (1/32)*exp(-(1/4)*u^2)*(12-12*u^2+u^4)/sqrt(pi)} else if (r==3) {fx <- (1/128)*exp(-(1/4)*u^2)*(u^6-30*u^4+180*u^2-120)/sqrt(pi)} else if (r==4) {fx <- (1/512)*exp(-(1/4)*u^2)*(u^8-56*u^6+840*u^4-3360*u^2+1680)/sqrt(pi)} else if (r==5) {fx <- (1/2048)*exp(-(1/4)*u^2)*(u^10-90*u^8+2520*u^6-25200*u^4+75600*u^2-30240)/sqrt(pi)} else if (r==6) {fx <- (1/8192)*exp(-(1/4)*u^2)*(u^12-132*u^10+5940*u^8-110880*u^6+831600*u^4-1995840*u^2+665280)/sqrt(pi)} else if (r==7) {fx <- (1/32768)*exp(-(1/4)*u^2)*(u^14-182*u^12+12012*u^10-360360*u^8+5045040*u^6-30270240*u^4+60540480*u^2-17297280)/sqrt(pi)} else if (r==8) {fx <- (1/131072)*exp(-(1/4)*u^2)*(u^16-240*u^14+21840*u^12-960960*u^10+21621600*u^8-242161920*u^6+1210809600*u^4-2075673600*u^2+518918400)/sqrt(pi)} else if (r==9) {fx <- (1/524288)*exp(-(1/4)*u^2)*(u^18-306*u^16+36720*u^14-2227680*u^12+73513440*u^10-1323241920*u^8+12350257920*u^6-52929676800*u^4+79394515200*u^2-17643225600)/sqrt(pi)} else if (r==10) {fx <- (1/2097152)*exp(-(1/4)*u^2)*(u^20-380*u^18+58140*u^16-4651200*u^14+211629600*u^12-5587021440*u^10+83805321600*u^8-670442572800*u^6+2514159648000*u^4-3352212864000*u^2+670442572800)/sqrt(pi)} else if (r==11) {fx <- (1/8388608)*exp(-(1/4)*u^2)*(u^22-462*u^20+87780*u^18-8953560*u^16+537213600*u^14-19554575040*u^12+430200650880*u^10-5531151225600*u^8+38718058579200*u^6-129060195264000*u^4+154872234316800*u^2-28158588057600)/sqrt(pi)} else if (r==12) {fx <- (1/33554432)*exp(-(1/4)*u^2)*(u^24-552*u^22+127512*u^20-16151520*u^18+1235591280*u^16-59308381440*u^14+1799020903680*u^12-33924394183680*u^10+381649434566400*u^8-2374707592857600*u^6+7124122778572800*u^4-7771770303897600*u^2+1295295050649600)/sqrt(pi)} else if (r==13) {fx <- (1/134217728)*exp(-(1/4)*u^2)*(u^26-650*u^24+179400*u^22-27627600*u^20+2624622000*u^18-160626866400*u^16+6425074656000*u^14-167051941056000*u^12+2756357027424000*u^10-27563570274240000*u^8+154355993535744000*u^6-420970891461120000*u^4+420970891461120000*u^2-64764752532480000)/sqrt(pi)} else if (r==14) {fx <- (1/536870912)*exp(-(1/4)*u^2)*(u^28-756*u^26+245700*u^24-45208800*u^22+5221616400*u^20-396842846400*u^18+20238985166400*u^16-693908062848000*u^14+15786408429792000*u^12-231533990303616000*u^10+2083805912732544000*u^8-10608466464820224000*u^6+26521166162050560000*u^4-24481076457277440000*u^2+3497296636753920000)/sqrt(pi)} else if (r==15) {fx <- (1/2147483648)*exp(-(1/4)*u^2)*(u^30-870*u^28+328860*u^26-71253000*u^24+9832914000*u^22-908561253600*u^20+57542212728000*u^18-2515416727824000*u^16+75462501834720000*u^14-1526019481546560000*u^12+20143457156414592000*u^10-164810104007028480000*u^8+769113818699466240000*u^6-1774878043152614400000*u^4+1521324036987955200000*u^2-202843204931727360000)/sqrt(pi)} else if (r==16) {fx <- (1/8589934592)*exp(-(1/4)*u^2)*(u^32-992*u^30+431520*u^28-108743040*u^26+17670744000*u^24-1950850137600*u^22+150215460595200*u^20-8154553575168000*u^18+311911674250176000*u^16-8317644646671360000*u^14+151381132569418752000*u^12-1816573590833025024000*u^10+13624301931247687680000*u^8-58689300626913116160000*u^6+125762787057670963200000*u^4-100610229646136770560000*u^2+12576278705767096320000)/sqrt(pi)} else if (r==17) {fx <- (1/34359738368)*exp(-(1/4)*u^2)*(u^34-1122*u^32+556512*u^30-161388480*u^28+30502422720*u^26-3965314953600*u^24+364808975731200*u^22-24077392398259200*u^20+1143676138917312000*u^18-38884988723188608000*u^16+933239729356526592000*u^14-15440875522080712704000*u^12+169849630742887839744000*u^10-1175882058989223505920000*u^8+4703528235956894023680000*u^6-9407056471913788047360000*u^4+7055292353935341035520000*u^2-830034394580628357120000)/sqrt(pi)} else if (r==18) {fx <- (1/137438953472)*exp(-(1/4)*u^2)*(u^36-1260*u^34+706860*u^32-233735040*u^30+50837371200*u^28-7686610525440*u^26+832716140256000*u^24-65665615631616000*u^22+3792189302725824000*u^20-160114659448423680000*u^18+4899508579121764608000*u^16-106898368999020318720000*u^14+1621291929818474833920000*u^12-16462348825849129082880000*u^10+105829385309030115532800000*u^8-395096371820379097989120000*u^6+740805697163210808729600000*u^4-522921668585795864985600000*u^2+58102407620643984998400000)/sqrt(pi)} else if (r==19) {fx <- (1/549755813888)*exp(-(1/4)*u^2)*(u^38-1406*u^36+885780*u^34-331281720*u^32+82157866560*u^30-14295468781440*u^28+1801229066461440*u^26-167256984742848000*u^24+11540731947256512000*u^22-592424239959167616000*u^20+22512121118448369408000*u^18-626246278385927367168000*u^16+12524925567718547343360000*u^14-175348957948059662807040000*u^12+1653290174938848249323520000*u^10-9919741049633089495941120000*u^8+34719093673715813235793920000*u^6-61268988835969082180812800000*u^4+40845992557312721453875200000*u^2-4299578163927654889881600000)/sqrt(pi)} else if (r==20) {fx <- (1/2199023255552)*exp(-(1/4)*u^2)*(u^40-1560*u^38+1096680*u^36-460605600*u^34+129199870800*u^32-25633254366720*u^30+3716821883174400*u^28-401416763382835200*u^26+32615112024855360000*u^24-2000393537524462080000*u^22+92418181433630148096000*u^20-3192628085889041479680000*u^18+81412016190170557731840000*u^16-1502991068126225681203200000*u^14+19538883885640933855641600000*u^12-171942178193640217929646080000*u^10+967174752339226225854259200000*u^8-3185987419470392273402265600000*u^6+5309979032450653789003776000000*u^4-3353670967863570814107648000000*u^2+335367096786357081410764800000)/sqrt(pi)} else if (r==21) {fx <- (1/8796093022208)*exp(-(1/4)*u^2)*(u^42-1722*u^40+1343160*u^38-629494320*u^36+198290710800*u^34-44496435503520*u^32+7356744003248640*u^30-914338183260902400*u^28+86404958318155276800*u^26-6240358100755658880000*u^24+344467767161712370176000*u^22-14467646220791919547392000*u^20+458142130325077452334080000*u^18-10783960913805669262632960000*u^16+184867901379525758787993600000*u^14-2243063870071579206627655680000*u^12+18505276928090528454678159360000*u^10-97969113148714562407119667200000*u^8+304792796462667527488816742400000*u^6-481251783888422411824447488000000*u^4+288751070333053447094668492800000*u^2-27500101936481280675682713600000)/sqrt(pi)} else if (r==22) {fx <- (1/35184372088832)*exp(-(1/4)*u^2)*(u^44-1892*u^42+1629012*u^40-847086240*u^38+297750813360*u^36-75033204966720*u^34+14031209328776640*u^32-1988422807735203840*u^30+216240980341203417600*u^28-18164242348661087078400*u^26+1180675752662970660096000*u^24-59248455951814527670272000*u^22+2281065554144859315305472000*u^20-66677300813465118447390720000*u^18+1457375289208594731778682880000*u^16-23318004627337515708458926080000*u^14+265242302635964241183720284160000*u^12-2059528467526310578603004559360000*u^10+10297642337631552893015022796800000*u^8-30350945837229840105728488243200000*u^6+45526418755844760158592732364800000*u^4-26015096431911291519195847065600000*u^2+2365008766537390138108713369600000)/sqrt(pi)} else if (r==23) {fx <- (1/140737488355328)*exp(-(1/4)*u^2)*(u^46-2070*u^44+1958220*u^42-1124018280*u^40+438367129200*u^38-123268836731040*u^36+25886455713518400*u^34-4149229044366806400*u^32+514504401501483993600*u^30-49735425478476786048000*u^28+3759998166172845025228800*u^26-222181709819304478763520000*u^24+10220358651688006023121920000*u^22-363215822852296829437102080000*u^20+9858715191705199656149913600000*u^18-201117789910786072985458237440000*u^16+3016766848661791094781873561600000*u^14-32297150968026234073547116953600000*u^12+236845773765525716539345524326400000*u^10-1121901033626174446765320904704000000*u^8+3141322894153288450942898533171200000*u^6-4487604134504697787061283618816000000*u^4+2447784073366198792942518337536000000*u^2-212850788988365112429784203264000000)/sqrt(pi)} else if (r==24) {fx <- (1/562949953421312)*exp(-(1/4)*u^2)*(u^48-2256*u^46+2334960*u^44-1472581440*u^42+633946309920*u^40-197791248695040*u^38+46349082610871040*u^36-8342834869956787200*u^34+1170082590511439404800*u^32-128969103309705321062400*u^30+11220311987944362932428800*u^28-771141442080539852446924800*u^26+41770161446029242007541760000*u^24-1773625316785241660627927040000*u^22+58529635453912974800721592320000*u^20-1482750764832462028284947005440000*u^18+28357608377420836290949611479040000*u^16-400342706504764747636935691468800000*u^14+4047909587992621337217905324851200000*u^12-28122319242896106132250710677913600000*u^10+126550436593032477595128198050611200000*u^8-337467830914753273587008528134963200000*u^6+460183405792845373073193447456768000000*u^4-240095689978875846820796581281792000000*u^2+20007974164906320568399715106816000000)/sqrt(pi)} else if (r==25) {fx <- (1/2251799813685248)*exp(-(1/4)*u^2)*(u^50-2450*u^48+2763600*u^46-1906884000*u^44+901956132000*u^42-310633691860800*u^40+80764759883808000*u^38-16222178913804864000*u^36+2554993178924266080000*u^34-318522482972558504640000*u^32+31597430310877803660288000*u^30-2499069488223971744040960000*u^28+157441377758110219874580480000*u^26-7872068887905510993729024000000*u^24+310384430437417290609887232000000*u^22-9559840457472452550784526745600000*u^20+227046210864970748081132510208000000*u^18-4086831795569473465460385183744000000*u^16+54491090607592979539471802449920000000*u^14-521967288977995909272835160309760000000*u^12+3444984107254773001200712058044416000000*u^10-14764217602520455719431623105904640000000*u^8+37581644806415705467644131542302720000000*u^6-49019536704020485392579302011699200000000*u^4+24509768352010242696289651005849600000000*u^2-1960781468160819415703172080467968000000)/sqrt(pi)} else if (r==26) {fx <- (1/9007199254740992)*exp(-(1/4)*u^2)*(u^52-2652*u^50+3248700*u^48-2443022400*u^46+1264264092000*u^44-478397532412800*u^42+137300091802473600*u^40-30598306173122688000*u^38+5377652309926312416000*u^36-752871323389683738240000*u^34+84472162484322515430528000*u^32-7617853198586175937007616000*u^30+552294356897497755433052160000*u^28-32118041062654484854414417920000*u^26+1491194763623243939669240832000000*u^24-54875967301335376979828062617600000*u^22+1584543555826059010292535308083200000*u^20-35419208894935436700656671592448000000*u^18+602126551213902423911163417071616000000*u^16-7605809067965083249404169478799360000000*u^14+69212862518482257569577942257074176000000*u^12-435052278687602761865918494187323392000000*u^10+1779759321903829480360575658039050240000000*u^8-4333327044635410908704010297834209280000000*u^6+5416658805794263635880012872292761600000000*u^4-2599996226781246545222406178700525568000000*u^2+199999709752403580401723552207732736000000)/sqrt(pi)} else if (r==27) {fx <- (1/36028797018963968)*exp(-(1/4)*u^2)*(u^54-2862*u^52+3795012*u^50-3099259800*u^48+1747982527200*u^46-723664766260800*u^44+228195622960905600*u^42-56136123248382777600*u^40+10946544033434641632000*u^38-1710093434556567348288000*u^36+215471772754127485884288000*u^34-21978120820921003560197376000*u^32+1816857987862802960976316416000*u^30-121589726880049121234568867840000*u^28+6565845251522652546666718863360000*u^26-284519960899314943688891150745600000*u^24+9815938651026365557266744700723200000*u^22-266762568045540052203366826572595200000*u^20+5631654214294734435404410783199232000000*u^18-90699273135483617749144721034682368000000*u^16+1088391277625803412989736652416188416000000*u^14-9432724406090296245911050987606966272000000*u^12+56596346436541777475466305925641797632000000*u^10-221463964316902607512694240578598338560000000*u^8+516749250072772750862953228016729456640000000*u^6-620099100087327301035543873620075347968000000*u^4+286199584655689523554866403209265545216000000*u^2-21199969233754779522582696534019670016000000)/sqrt(pi)} else if (r==28) {fx <- (1/144115188075855872)*exp(-(1/4)*u^2)*(u^56-3080*u^54+4407480*u^52-3896212320*u^50+2386430046000*u^48-1076757236755200*u^46+371481246680544000*u^44-100406074102798464000*u^42+21612407450627369376000*u^40-3746150624775410691840000*u^38+526708777843422743272704000*u^36-60332096371155696047600640000*u^34+5641051010703057580450659840000*u^32-430455584816725624600542658560000*u^30+26749739913610806671605150924800000*u^28-1348186891645984656248899606609920000*u^26+54770092473118126660111546518528000000*u^24-1778417120303600348022445510483968000000*u^22+45646039421125742265909434769088512000000*u^20-912920788422514845318188695381770240000000*u^18+13967688062864477133368287039341084672000000*u^16-159630720718451167238494709021040967680000000*u^14+1320581416852641474427547138264975278080000000*u^12-7578989001067333679323314010912032030720000000*u^10+28421208754002501297462427540920120115200000000*u^8-63663507608965602906315837691661069058048000000*u^6+73457893394960311045749043490378156605440000000*u^4-32647952619982360464777352662390291824640000000*u^2+2331996615713025747484096618742163701760000000)/sqrt(pi)} else if (r==29) {fx <- (1/576460752303423488)*exp(-(1/4)*u^2)*(u^58-3306*u^56+5091240*u^54-4857042960*u^52+3220219482480*u^50-1577907546415200*u^48+593293237452115200*u^46-175445285932268352000*u^44+41492810122981465248000*u^42-7938957670197120350784000*u^40+1238477396550750774722304000*u^38-158299929050032326296323584000*u^36+16621492550253394261113976320000*u^34-1434562664721869873920760110080000*u^32+101649011671721065352099573514240000*u^30-5895642676959821790421775263825920000*u^28+278569116486351579597428881215774720000*u^26-10651172100948736866960516046485504000000*u^24+326635944429094597253455825425555456000000*u^22-7942410859275879154268241649821401088000000*u^20+150905806326241703931096591346606620672000000*u^18-2198913177896664828710264616764839329792000000*u^16+23988143758872707222293795819252792688640000000*u^14-189819224526731857150324819091478620405760000000*u^12+1044005734897025214326786505003132412231680000000*u^10-3758420645629290771576431418011276684034048000000*u^8+8095059852124626277241544592639672857919488000000*u^6-8994510946805140308046160658488525397688320000000*u^4+3854790405773631560591211710780796599009280000000*u^2-265847614191284935213187014536606662000640000000)/sqrt(pi)} else if (r==30) {fx <- (1/2305843009213693952)*exp(-(1/4)*u^2)*(u^60-3540*u^58+5851620*u^56-6007663200*u^54+4298483019600*u^52-2279915393595840*u^50+930965452384968000*u^48-300036865797212544000*u^46+77634539025028745760000*u^44-16320505315039376330880000*u^42+2810391015249780604177536000*u^40-398564543980877976592450560000*u^38+46698479069759536257415457280000*u^36-4526160279069001206487959705600000*u^34+362739416651101382405677913548800000*u^32-23989166754526171423095499349360640000*u^30+1304410942277360571130817777121484800000*u^28-58007921903628505398523425853167206400000*u^26+2094730513186584917168901489142149120000000*u^24-60857433856789203909328085368761384960000000*u^22+1405806722091830610305478772018387992576000000*u^20-25438407352137887234099139684142258913280000000*u^18+353825120443372431528833488333978692157440000000*u^16-3692088213322147111605219008702386352947200000000*u^14+27998335617692948929672910815993096509849600000000*u^12-147831212061418770348672969108443549572005888000000*u^10+511723426366449589668483354606150748518481920000000*u^8-1061352291723006556349446957701645996927221760000000*u^6+1137163169703221310374407454680334996707737600000000*u^4-470550277118574335327341015729793791741132800000000*u^2+31370018474571622355156067715319586116075520000000)/sqrt(pi)} else if (r>=31) {fx <- NA} return(fx) } shazam/R/Shmulate.R0000644000176200001440000004154215037524720013656 0ustar liggesusers# SHMulate #' @include Shazam.R #' @include Core.R #' @include MutationProfiling.R NULL #### SHMulation #### #' Simulate mutations in a single sequence #' #' Generates random mutations in a sequence iteratively using a targeting model. #' Targeting probabilities at each position are updated after each iteration. #' #' @param sequence sequence string in which mutations are to be introduced. #' Accepted alphabet: \code{\{A, T, G, C, N, .\}}. Note #' that \code{-} is not accepted. #' @param numMutations a whole number indicating the number of mutations to be #' introduced into \code{sequence}, if \code{frequency=FALSE}. #' A fraction between 0 and 1 indicating the mutation frequency #' if \code{frequency=TRUE}. #' @param targetingModel 5-mer \link{TargetingModel} object to be used for computing #' probabilities of mutations at each position. Defaults to #' \link{HH_S5F}. #' @param start Initial position in \code{sequence} where mutations can #' be introduced. Default: 1 #' @param end Last position in \code{sequence} where mutations can #' be introduced. Default: last position (sequence length). #' @param frequency If \code{TRUE}, treat \code{numMutations} as a frequency. #' #' @return A string defining the mutated sequence. #' #' @details #' If the input \code{sequence} has a non-triplet overhang at the end, it will be trimmed #' to the last codon. For example, \code{ATGCATGC} will be trimmed to \code{ATGCAT}. #' #' Mutations are not introduced to positions in the input \code{sequence} that contain #' \code{.} or \code{N}. #' #' With \code{frequency=TRUE}, the number of mutations is calculated according to the probability #' of mutation at each position. For example, if \code{numMutations=0.05} and the length of #' the input \code{sequence} is 100, then the number of mutations will be sampled from a #' binomial distribution with 100 trials and a probability of 0.05. #' #' @seealso See \link{shmulateTree} for imposing mutations on a lineage tree. #' See \link{HH_S5F} and \link{MK_RS5NF} for predefined #' \link{TargetingModel} objects. #' #' @examples #' # Define example input sequence #' sequence <- "NGATCTGACGACACGGCCGTGTATTACTGTGCGAGAGATA.TTTA" #' #' # Simulate using the default human 5-mer targeting model #' # Introduce 6 mutations #' shmulateSeq(sequence, numMutations=6, frequency=FALSE) #' #' # Introduction 5% mutations #' shmulateSeq(sequence, numMutations=0.05, frequency=TRUE) #' #' @export shmulateSeq <- function(sequence, numMutations, targetingModel=HH_S5F, start=1, end=nchar(sequence), frequency=FALSE) { #* counts on constant variables CODON_TABLE, NUCLEOTIDES (ACTGN-.) if (!frequency) { # check if numMutations is a whole number # is.wholenumber function borrowed from R's integer help is.wholenumber <- function(x, tol = .Machine$double.eps^0.5) abs(x - round(x)) < tol if (!is.wholenumber(numMutations)) { stop("`numMutations` must be a whole number for frequency=FALSE.") } } else { # check if numMutations if between 0 and 1 if (!(numMutations>=0 & numMutations<=1)) { stop("`numMutations` must be a fraction between 0 and 1 for frequency=TRUE.") } } # Check targeting model if (!is(targetingModel, "TargetingModel")) { stop(deparse(substitute(targetingModel)), " is not a valid TargetingModel object") } # Trim sequence to consider only the interval start:end head_sequence <- "" tail_sequence <- "" seq_len <- stri_length(sequence) if (start<1 | end>seq_len ) { stop("`start` must be >= 1 and `end` must be <= sequence length") } else { head_sequence <- stri_sub(str=sequence, from=0, to=start-1) tail_sequence <- stri_sub(str=sequence, from=end+1, to=seq_len) sequence <- stri_sub(str=sequence, from=start, to=end) } # Trim sequence to last codon (getCodonPos from MutationProfiling.R) if(getCodonPos(stri_length(sequence))[3] > stri_length(sequence)) { warning("Trimming sequence to last codon") sim_seq <- stri_sub(str=sequence, from=1, to=getCodonPos(stri_length(sequence))[1]-1) # Add removed chars to tail_sequence tail_sequence <- paste0( stri_sub(str=sequence, from=getCodonPos(stri_length(sequence))[1], to=stri_length(sequence)), tail_sequence) } else { sim_seq <- sequence } sim_leng <- stri_length(sim_seq) stopifnot((sim_leng %% 3)==0) # if specifying mutation frequency instead of count, # get corresponding mutation count based on sequence length if (frequency) { sampleMutations <- rbinom(n=1, size=sim_leng, prob=numMutations) numMutations <- sampleMutations } if (numMutations > sim_leng) { stop("Number of mutations specified is larger than the length of the sequence.") } # Calculate possible mutations (given codon table) mutation_types <- computeMutationTypes(sim_seq) # Calculate probabilities of mutations at each position given targeting # from MutationProfiling.R; includes a N row # Columns corresponding to "N" and "." positions will have NA across all rows # These get converted to a probability of 0, ensuring that sampleMut() will # never choose these positions targeting <- calculateTargeting(germlineSeq = sim_seq, targetingModel = targetingModel) # keep only ACGT rows targeting <- targeting[NUCLEOTIDES[1:4], ] # set NA to 0 targeting[is.na(targeting)] <- 0 # Make probability of stop codon 0 targeting[mutation_types=="stop"] <- 0 # Initialize counters total_muts <- 0 positions <- numeric(numMutations) while (total_muts < numMutations) { # Get position to mutate and update counters mutpos <- sampleMut(sim_leng, targeting, positions) total_muts <- total_muts + 1 positions[total_muts] <- mutpos$pos # Implement mutation in simulation sequence mut_nuc <- 4 - (4*mutpos$pos - mutpos$mut) # stri_sub(str=sim_seq, from=mutpos$pos, to=mutpos$pos) <- NUCLEOTIDES[mut_nuc] sim_seq <- stri_sub_replace(str=sim_seq, from=mutpos$pos, to=mutpos$pos, value=NUCLEOTIDES[mut_nuc]) # Update targeting lower <- max(mutpos$pos-4, 1) upper <- min(mutpos$pos+4, sim_leng) targeting[, lower:upper] <- calculateTargeting(germlineSeq = stri_sub(str = sim_seq, from = lower, to = upper), targetingModel = targetingModel)[NUCLEOTIDES[1:4], ] targeting[is.na(targeting)] <- 0 # Update possible mutations lower <- getCodonPos(lower)[1] upper <- getCodonPos(upper)[3] mutation_types[, lower:upper] <- computeMutationTypes(stri_sub(str = sim_seq, from = lower, to = upper)) # Make probability of stop codon 0 if (any(mutation_types[, lower:upper]=="stop", na.rm=T)) { targeting[, lower:upper][mutation_types[, lower:upper]=="stop"] <- 0 } } # sanity check: length of sim_seq should remain unchanged after simulation stopifnot(sim_leng==stri_length(sim_seq)) # Add back head and tail sequences sim_seq <- paste0(head_sequence, sim_seq, tail_sequence) return(sim_seq) } #' Simulate mutations in a lineage tree #' #' \code{shmulateTree} returns a set of simulated sequences generated from an input #' sequence and a lineage tree. The input sequence is used to replace the most recent #' common ancestor (MRCA) node of the \code{igraph} object defining the lineage tree. #' Sequences are then simulated with mutations corresponding to edge weights in the tree. #' Sequences will not be generated for groups of nodes that are specified to be excluded. #' #' @param sequence string defining the MRCA sequence to seed mutations from. #' @param graph \code{igraph} object defining the seed lineage tree, with #' vertex annotations, whose edges are to be recreated. #' @param targetingModel 5-mer \link{TargetingModel} object to be used for computing #' probabilities of mutations at each position. Defaults to #' \link{HH_S5F}. #' @param field annotation to use for both unweighted path length exclusion #' and consideration as the MRCA node. If \code{NULL} do not #' exclude any nodes. #' @param exclude vector of annotation values in \code{field} to exclude from #' potential MRCA set. If \code{NULL} do not exclude any nodes. #' Has no effect if \code{field=NULL}. #' @param junctionWeight fraction of the nucleotide sequence that is within the #' junction region. When specified this adds a proportional #' number of mutations to the immediate offspring nodes of the #' MRCA. Requires a value between 0 and 1. If \code{NULL} then #' edge weights are unmodified from the input \code{graph}. #' @param start Initial position in \code{sequence} where mutations can #' be introduced. Default: 1 #' @param end Last position in \code{sequence} where mutations can #' be introduced. Default: last position (sequence length). #' @return A \code{data.frame} of simulated sequences with columns: #' \itemize{ #' \item \code{name}: name of the corresponding node in the input #' \code{graph}. #' \item \code{sequence}: mutated sequence. #' \item \code{distance}: Hamming distance of the mutated sequence from #' the seed \code{sequence}. #' } #' #' @seealso See \link{shmulateSeq} for imposing mutations on a single sequence. #' See \link{HH_S5F} and \link{MK_RS5NF} for predefined #' \link{TargetingModel} objects. #' #' @examples #' # Load example lineage and define example MRCA #' data(ExampleTrees, package="alakazam") #' graph <- ExampleTrees[[17]] #' sequence <- "NGATCTGACGACACGGCCGTGTATTACTGTGCGAGAGATAGTTTA" #' #' # Simulate using the default human 5-mer targeting model #' shmulateTree(sequence, graph) #' #' # Simulate using the mouse 5-mer targeting model #' # Exclude nodes without a sample identifier #' # Add 20% mutation rate to the immediate offsprings of the MRCA #' shmulateTree(sequence, graph, targetingModel=MK_RS5NF, #' field="sample_id", exclude=NA, junctionWeight=0.2) #' #' @export shmulateTree <- function(sequence, graph, targetingModel=HH_S5F, field=NULL, exclude=NULL, junctionWeight=NULL, start=1, end=nchar(sequence)) { ## DEBUG # targetingModel=HH_S5F; field=NULL; exclude=NULL; junctionWeight=NULL # Check targeting model if (!is(targetingModel, "TargetingModel")) { stop(deparse(substitute(targetingModel)), " is not a valid TargetingModel object") } # Determine MRCA of lineage tree mrca_df <- alakazam::getMRCA(graph, path="distance", root="Germline", field=field, exclude=exclude) # Get adjacency matrix adj <- as_adjacency_matrix(graph, attr="weight", sparse=FALSE) # Get names of nodes for which sequences are not to be returned skip_names <- c() if (!is.null(field)) { g <- vertex_attr(graph, name=field) g_names <- vertex_attr(graph, name="name") skip_names <- g_names[g %in% exclude] } # Create data.frame to hold simulated sequences # this will include a row for Germline sim_tree <- data.frame(matrix(NA, ncol=3, nrow=length(V(graph)), dimnames=list(NULL, c("name", "sequence", "distance")))) sim_tree$name <- vertex_attr(graph, name="name") # remove row for Germline sim_tree <- sim_tree[-which(sim_tree$name=="Germline"), ] parent_nodes <- mrca_df$name[1] nchild <- sum(adj[parent_nodes, ] > 0) sim_tree$sequence[which(sim_tree$name==parent_nodes)] <- sequence sim_tree$distance[which(sim_tree$name==parent_nodes)] <- 0 # Add mutations to the immediate offsprings of the MRCA # Number of mutations added is proportional to fraction of sequence in junction if (!is.null(junctionWeight)) { adj[parent_nodes, ] <- round(adj[parent_nodes, ] * (1 + junctionWeight)) } while (nchild > 0) { new_parents <- c() # Loop through parent-children combos for(p in parent_nodes) { children <- colnames(adj)[adj[p, ] > 0] for(ch in children) { # Add child to new parents new_parents <- union(new_parents, ch) # Simulate sequence for that edge seq <- shmulateSeq(sequence=sim_tree$sequence[sim_tree$name == p], numMutations=adj[p, ch], targetingModel=targetingModel, start=start, end=end) # Update output data.frame chRowIdx = which(sim_tree$name==ch) sim_tree$sequence[chRowIdx] <- seq sim_tree$distance[chRowIdx] <- adj[p, ch] } } # Re-calculate number of children parent_nodes <- new_parents nchild <- sum(adj[parent_nodes, ] > 0) } # Remove sequences that are to be excluded sim_tree <- sim_tree[!(sim_tree$name %in% skip_names), ] # Remove NAs # e.g. if node B is an offspring of node A, and node A has been excluded # then node B will have $sequence and $distance of NAs sim_tree <- sim_tree[!is.na(sim_tree$sequence), ] rownames(sim_tree) <- NULL return(sim_tree) } #### Helper functions #### # Compute the mutations types # # For each position in the input sequence, use \code{CODON_TABLE} to # determine what types of mutations are possible. Returns \code{matrix} # of all possible mutations and corresponding types. # # @param inputSeq sequence for which to compute mutation types # @return A \code{matrix} of mutation types for each position in the sequence. computeMutationTypes <- function(inputSeq){ #* counts on constant variable CODON_TABLE, NUCLEOTIDES (ACTGN-.) #* caution: this breaks down if length of seq is not a multiple of 3 leng_seq <- stri_length(inputSeq) try(if( (leng_seq %%3 !=0) ) stop("length of input sequence must be a multiple of 3")) codons <- sapply(seq(1, leng_seq, by=3), function(x) {substr(inputSeq,x,x+2)}) unrecognized_codons <- codons[!codons %in% colnames(CODON_TABLE)] if (length(unrecognized_codons)>0) { if (all(grepl("^[[:lower:]]+$", unrecognized_codons))) { warning("shazam is case sensitive") } stop("Unrecognized codons found :\n", paste(unrecognized_codons, collapse="\n")) } mut_types <- matrix(unlist(CODON_TABLE[, codons]), ncol=leng_seq, nrow=4, byrow=F) dimnames(mut_types) <- list(NUCLEOTIDES[1:4], 1:leng_seq) return(mut_types) } # Pick a position to mutate # # Sample positions in the sequence to mutate given targeting probability # until a new position is selected. This new position is then added to the # vector of mutated positions and returned. # # @param sim_leng length of sequence in which mutation is being simulated # @param targeting probabilities of each position in the sequence being mutated # @param positions vector of positions which have already been mutated # # @return A \code{list} of mutation and position being mutated. sampleMut <- function(sim_leng, targeting, positions) { if (length(positions) > sim_leng ) { stop("The vector of positions is longer than the length of the sequence.") } pos <- 0 # Sample mutations until new position is selected while (pos %in% positions) { # Randomly select a mutation mut <- sample(1:(4*sim_leng), 1, replace=F, prob=as.vector(targeting)) pos <- ceiling(mut/4) } return(list(mut=mut, pos=pos)) } shazam/R/TargetingModels.R0000644000176200001440000036766715122606141015200 0ustar liggesusers# Targeting models #' @include Shazam.R #' @include Core.R NULL #### Data #### #' Uniform 5-mer null targeting model. #' #' A null 5-mer model of somatic hypermutation targeting where all substitution, mutability #' and targeting rates are uniformly distributed. #' #' @format A \link{TargetingModel} object. #' #' @seealso See \link{HH_S5F} and \link{HKL_S5F} for the human 5-mer targeting models; and #' \link{MK_RS5NF} for the mouse 5-mer targeting model. "U5N" #' Human heavy chain, silent, 1-mer, functional substitution model. #' #' 1-mer substitution model of somatic hypermutation based on analysis of silent mutations #' in functional heavy chain Ig sequences from Homo sapiens. #' #' @format A 4x4 matrix of nucleotide substitution rates. The rates are normalized, #' therefore each row sums up to 1. #' #' @references #' \enumerate{ #' \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based #' on synonymous mutations from high-throughput immunoglobulin sequencing data. #' Front Immunol. 2013 4(November):358. #' } #' #' @seealso See \link{HKL_S1F} for the human light chain 1-mer substitution model and #' \link{MK_RS1NF} for the mouse light chain 1-mer substitution model. #' #' @note \code{HH_S1F} replaces \code{HS1FDistance} in versions of SHazaM prior to 0.1.5. "HH_S1F" #' Human kappa and lambda chain, silent, 1-mer, functional substitution model. #' #' 1-mer substitution model of somatic hypermutation based on analysis of silent mutations #' in functional kappa and lambda light chain Ig sequences from Homo sapiens. #' #' @format A 4x4 matrix of nucleotide substitution rates. The rates are normalized, #' therefore each row sums up to 1. #' #' @references #' \enumerate{ #' \item Cui A, Di Niro R, Vander Heiden J, Briggs A, Adams K, Gilbert T, O'Connor K, #' Vigneault F, Shlomchik M and Kleinstein S (2016). A Model of Somatic Hypermutation #' Targeting in Mice Based on High-Throughput Ig Sequencing Data. The Journal of #' Immunology, 197(9), 3566-3574. #' } #' #' @seealso See \link{HH_S1F} for the human heavy chain 1-mer substitution model and #' \link{MK_RS1NF} for the mouse light chain 1-mer substitution model. #' #' @note Reported in Table III in Cui et al, 2016. "HKL_S1F" #' Mouse kappa chain, replacement and silent, 1-mer, non-functional substitution model. #' #' 1-mer substitution model of somatic hypermutation based on analysis of replacement and #' silent mutations in non-functional kappa light chain Ig sequences from NP-immunized Mus #' musculus. #' #' @format A 4x4 matrix of nucleotide substitution rates. The rates are normalized, #' therefore each row sums up to 1. #' #' @references #' \enumerate{ #' \item Cui A, Di Niro R, Vander Heiden J, Briggs A, Adams K, Gilbert T, O'Connor K, #' Vigneault F, Shlomchik M and Kleinstein S (2016). A Model of Somatic Hypermutation #' Targeting in Mice Based on High-Throughput Ig Sequencing Data. The Journal of #' Immunology, 197(9), 3566-3574. #' } #' #' @seealso See \link{HH_S1F} for the human heavy chain 1-mer substitution model and #' \link{HKL_S1F} for the human light chain 1-mer substitution model. #' #' @note \code{MK_RS1NF} replaces \code{M1NDistance} from versions of SHazaM prior to 0.1.5. "MK_RS1NF" #' Human heavy chain, silent, 5-mer, functional targeting model. #' #' 5-mer model of somatic hypermutation targeting based on analysis of silent mutations #' in functional heavy chain Ig sequences from Homo sapiens. #' #' @format A \link{TargetingModel} object. #' #' @references #' \enumerate{ #' \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based #' on synonymous mutations from high-throughput immunoglobulin sequencing data. #' Front Immunol. 2013 4(November):358. #' } #' #' @seealso See \link{HH_S1F} for the 1-mer substitution matrix from the same #' publication; \link{HKL_S5F} for the human light chain 5-mer targeting model; #' \link{MK_RS5NF} for the mouse 5-mer targeting model; and \link{U5N} for the #' uniform 5-mer null targeting model. "HH_S5F" #' Human kappa and lambda light chain, silent, 5-mer, functional targeting model. #' #' 5-mer model of somatic hypermutation targeting based on analysis of silent mutations #' in functional kappa and lambda light chain Ig sequences from Homo sapiens. #' #' @format A \link{TargetingModel} object. #' #' @references #' \enumerate{ #' \item Cui A, Di Niro R, Vander Heiden J, Briggs A, Adams K, Gilbert T, O'Connor K, #' Vigneault F, Shlomchik M and Kleinstein S (2016). A Model of Somatic Hypermutation #' Targeting in Mice Based on High-Throughput Ig Sequencing Data. The Journal of #' Immunology, 197(9), 3566-3574. #' } #' #' @seealso See \link{HH_S5F} for the human heavy chain 5-mer targeting model; #' \link{MK_RS5NF} for the mouse kappa light chain 5-mer targeting model; #' and \link{U5N} for the uniform 5-mer null targeting model. "HKL_S5F" #' Mouse kappa light chain, replacement and silent, 5-mer, non-functional targeting model. #' #' 5-mer model of somatic hypermutation targeting based on analysis of replacement and #' silent mutations in non-functional kappa light chain Ig sequences from NP-immunized #' Mus musculus. #' #' @format \link{TargetingModel} object. #' #' @references #' \enumerate{ #' \item Cui A, Di Niro R, Vander Heiden J, Briggs A, Adams K, Gilbert T, O'Connor K, #' Vigneault F, Shlomchik M and Kleinstein S (2016). A Model of Somatic Hypermutation #' Targeting in Mice Based on High-Throughput Ig Sequencing Data. The Journal of #' Immunology, 197(9), 3566-3574. #' } #' #' @seealso See \link{MK_RS1NF} for the 1-mer substitution matrix from the same #' publication; \link{HH_S5F} for the human heavy chain silent 5-mer #' functional targeting model; \link{HKL_S5F} for the human light chain #' silent 5-mer functional targeting model; and \link{U5N} for the #' uniform 5-mer null targeting model. "MK_RS5NF" #### Classes #### #' S4 class defining a mutability model #' #' \code{MutabilityModel} defines a data structure for the 5-mer motif-based SHM targeting #' mutability model. #' #' @slot .Data numeric vector containing 5-mer mutability estimates #' @slot source character vector annotating whether the mutability was #' inferred or directly measured. #' @slot numMutS a number indicating the number of silent mutations used for #' estimating mutability #' @slot numMutR a number indicating the number of replacement mutations used #' for estimating mutability #' #' @name MutabilityModel-class #' @rdname MutabilityModel-class #' @aliases MutabilityModel #' @exportClass MutabilityModel MutabilityModel <- setClass("MutabilityModel", slots=c(source="character", numMutS="numeric", numMutR="numeric"), contains="numeric") #' S4 class defining a targeting matrix #' #' \code{TargetingMatrix} defines a data structure for just the targeting matrix #' (as opposed to the entire \code{TargetingModel}) #' #' @slot .Data matrix. #' @slot numMutS number indicating the number of silent mutations used for #' estimating mutability. #' @slot numMutR number indicating the number of replacement mutations used #' for estimating mutability. #' #' @name TargetingMatrix-class #' @rdname TargetingMatrix-class #' @aliases TargetingMatrix #' @exportClass TargetingMatrix TargetingMatrix <- setClass("TargetingMatrix", slots=c(numMutS="numeric", numMutR="numeric"), contains="matrix") #' S4 class defining a targeting model #' #' \code{TargetingModel} defines a common data structure for mutability, substitution and #' targeting of immunoglobulin (Ig) sequencing data in a 5-mer microsequence context. #' #' @slot name Name of the model. #' @slot description Description of the model and its source data. #' @slot species Genus and species of the source sequencing data. #' @slot date Date the model was built. #' @slot citation Publication source. #' @slot substitution Normalized rates of the center nucleotide of a given 5-mer #' mutating to a different nucleotide. The substitution model #' is stored as a 5x3125 matrix of rates. Rows define #' the mutated nucleotide at the center of each 5-mer, one of #' \code{c("A", "C", "G", "T", "N")}, and columns define the #' complete 5-mer of the unmutated nucleotide sequence. #' @slot mutability Normalized rates of a given 5-mer being mutated. The #' mutability model is stored as a numeric vector of length 3125 #' with mutability rates for each 5-mer. Note that "normalized" #' means that the mutability rates for the 1024 5-mers that #' contain no "N" at any position sums up to 1 (as opposed to #' the entire vector summing up to 1). #' @slot targeting Rate matrix of a given mutation occurring, defined as #' \eqn{mutability * substitution}. The targeting model #' is stored as a 5x3125 matrix. Rows define #' the mutated nucleotide at the center of each 5-mer, one of #' \code{c("A", "C", "G", "T", "N")}, and columns define the complete 5-mer #' of the unmutated nucleotide sequence. #' @slot numMutS number indicating the number of silent mutations used for #' estimating mutability. #' @slot numMutR number indicating the number of replacement mutations used #' for estimating mutability. #' #' @seealso See \link{createTargetingModel} building models from sequencing data. #' #' @name TargetingModel-class #' @rdname TargetingModel-class #' @aliases TargetingModel #' @exportClass TargetingModel setClass("TargetingModel", slots=c(name="character", description="character", species="character", date="character", citation="character", mutability="numeric", substitution="matrix", targeting="matrix", numMutS="numeric", numMutR="numeric"), prototype=list(name="name", description="description", species="species", date="2000-01-01", citation="citation", mutability=numeric(3125), substitution=matrix(0, 5, 3125), targeting=matrix(0, 5, 3125), numMutS=as.numeric(NA), numMutR=as.numeric(NA))) #### Methods #### #' @param x \code{MutabilityModel} object. #' #' @rdname MutabilityModel-class #' @aliases MutabilityModel-method #' @export setMethod("print", c(x="MutabilityModel"), function(x) { vec <- x@.Data; names(vec) <- names(x); print(vec) }) #' @param x \code{MutabilityModel} object. #' #' @rdname MutabilityModel-class #' @aliases MutabilityModel-method #' @export setMethod("as.data.frame", c(x="MutabilityModel"), function(x) { data.frame(motif=names(x), mutability=x, source=x@source[names(x)]) }) #' @param x \code{TargetingModel} object. #' @param y ignored. #' @param ... arguments to pass to \link{plotMutability}. #' #' @rdname TargetingModel-class #' @aliases TargetingModel-method #' @export setMethod("plot", c(x="TargetingModel", y="missing"), function(x, y, ...) { plotMutability(x, ...) }) #### Model building functions ##### #' Builds a substitution model #' #' \code{createSubstitutionMatrix} builds a 5-mer nucleotide substitution model by counting #' the number of substitution mutations occurring in the center position for all 5-mer #' motifs. #' #' @param db data.frame containing sequence data. #' @param model type of model to create. The default model, "s", #' builds a model by counting only silent mutations. \code{model="s"} #' should be used for data that includes functional sequences. #' Setting \code{model="rs"} creates a model by counting both #' replacement and silent mutations and may be used on fully #' non-functional sequence data sets. #' @param sequenceColumn name of the column containing IMGT-gapped sample sequences. #' @param germlineColumn name of the column containing IMGT-gapped germline sequences. #' @param vCallColumn name of the column containing the V-segment allele call. #' @param multipleMutation string specifying how to handle multiple mutations occurring #' within the same 5-mer. If \code{"independent"} then multiple #' mutations within the same 5-mer are counted independently. #' If \code{"ignore"} then 5-mers with multiple mutations are #' excluded from the total mutation tally. #' @param returnModel string specifying what type of model to return; one of #' \code{c("5mer", "1mer", "1mer_raw")}. If \code{"5mer"} #' (the default) then a 5-mer nucleotide context model is #' returned. If \code{"1mer"} or \code{"1mer_raw"} then a single #' nucleotide substitution matrix (no context) is returned; #' where \code{"1mer_raw"} is the unnormalized version of the #' \code{"1mer"} model. Note, neither 1-mer model may be used #' as input to \link{createMutabilityMatrix}. #' @param minNumMutations minimum number of mutations required to compute the 5-mer #' substitution rates. If the number of mutations for a 5-mer #' is below this threshold, its substitution rates will be #' estimated from neighboring 5-mers. Default is 50. #' Not required if \code{numMutationsOnly=TRUE}. #' @param numMutationsOnly when \code{TRUE}, return counting information on the number #' of mutations for each 5-mer, instead of building a substitution #' matrix. This option can be used for parameter tuning for #' \code{minNumMutations} during preliminary analysis. #' Default is \code{FALSE}. Only applies when \code{returnModel} #' is set to \code{"5mer"}. The \code{data.frame} returned when #' this argument is \code{TRUE} can serve as the input for #' \link{minNumMutationsTune}. #' #' @return For \code{returnModel = "5mer"}: #' #' When \code{numMutationsOnly} is \code{FALSE}, a 4x1024 matrix of column #' normalized substitution rates for each 5-mer motif with row names defining #' the center nucleotide, one of \code{c("A", "C", "G", "T")}, and column names #' defining the 5-mer nucleotide sequence. #' #' When \code{numMutationsOnly} is #' \code{TRUE}, a 1024x4 data frame with each row providing information on #' counting the number of mutations for a 5-mer. Columns are named #' \code{fivemer.total}, \code{fivemer.every}, \code{inner3.total}, and #' \code{inner3.every}, corresponding to, respectively, #' the total number of mutations when counted as a 5-mer, #' whether there is mutation to every other base when counted as a 5-mer, #' the total number of mutations when counted as an inner 3-mer, and #' whether there is mutation to every other base when counted as an inner 3-mer. #' #' For \code{returnModel = "1mer"} or \code{"1mer_raw"}: #' a 4x4 normalized or un-normalized 1-mer substitution matrix respectively. #' #' @details \strong{Caution: The targeting model functions do NOT support ambiguous #' characters in their inputs. You MUST make sure that your input and germline #' sequences do NOT contain ambiguous characters (especially if they are #' clonal consensuses returned from \code{collapseClones}).} #' #' @references #' \enumerate{ #' \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based #' on synonymous mutations from high-throughput immunoglobulin sequencing data. #' Front Immunol. 2013 4(November):358. #' } #' #' @seealso \link{extendSubstitutionMatrix}, \link{createMutabilityMatrix}, #' \link{createTargetingMatrix}, \link{createTargetingModel}, #' \link{minNumMutationsTune}. #' #' @examples #' \donttest{ #' # Subset example data to one isotype and sample as a demo #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call == "IGHA" & sample_id == "-1h")[1:25,] #' #' # Count the number of mutations per 5-mer #' subCount <- createSubstitutionMatrix(db, sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' vCallColumn="v_call", #' model="s", multipleMutation="independent", #' returnModel="5mer", numMutationsOnly=TRUE) #' #' # Create model using only silent mutations #' sub <- createSubstitutionMatrix(db, sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' vCallColumn="v_call", #' model="s", multipleMutation="independent", #' returnModel="5mer", numMutationsOnly=FALSE, #' minNumMutations=20) #' } #' #' @export createSubstitutionMatrix <- function(db, model=c("s", "rs"), sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call", multipleMutation=c("independent", "ignore"), returnModel=c("5mer", "1mer", "1mer_raw"), minNumMutations=50, numMutationsOnly=FALSE) { # Evaluate argument choices model <- match.arg(model) multipleMutation <- match.arg(multipleMutation) returnModel <- match.arg(returnModel) # Check for valid columns check <- checkColumns(db, c(sequenceColumn, germlineColumn, vCallColumn)) if (check != TRUE) { stop(check) } # Convert sequence columns to uppercase db <- toupperColumns(db, c(sequenceColumn, germlineColumn)) # Check validity of input sequences # (MUST NOT CONTAIN AMBIGUOUS CHARACTERS -- not supported) bool_obsv <- checkAmbiguousExist(db[[sequenceColumn]]) bool_germ <- checkAmbiguousExist(db[[germlineColumn]]) if (any(bool_obsv | bool_germ)) { stop("Ambiguous characters are not supported in input sequences.") } # Setup nuc_chars <- NUCLEOTIDES[1:4] nuc_words <- seqinr::words(4, nuc_chars) # Define v_families (heavy or light chain) to only those found in the data v_families <- getFamily(db[[vCallColumn]]) # Define empty return list of lists substitutionMatrix <- matrix(0, ncol=4, nrow=4, dimnames=list(nuc_chars, nuc_chars)) substitutionList <- list() for(v_fam in unique(v_families)) { substitutionList[[v_fam]] <- list() for(word in nuc_words){ substitutionList[[v_fam]][[word]] <- substitutionMatrix } } # Remove IMGT gaps in the germline & input sequences matInputCollapsed <- removeCodonGaps(db[, c(sequenceColumn, germlineColumn)]) # TODO: Unnecessary conversion db[[sequenceColumn]] <- matInputCollapsed[, 1] db[[germlineColumn]] <- matInputCollapsed[, 2] # Get mutations mutations <- listObservedMutations(db, sequenceColumn=sequenceColumn, germlineColumn=germlineColumn, multipleMutation=multipleMutation, model=model) if (model == "s") { # Silent model for(index in 1:length(mutations)) { cSeq <- s2c(db[[sequenceColumn]][index]) cGL <- s2c(db[[germlineColumn]][index]) indexMutation <- mutations[[index]] v_fam <- v_families[index] positions <- as.numeric(names(indexMutation)) positions <- positions[positions<=VLENGTH] positions <- positions[!is.na(positions)] for( position in positions){ wrd <- c2s(c(cGL[(position-2):(position-1)],cGL[(position+1):(position+2)])) codonNucs <- getCodonPos(position) codonGL <- cGL[codonNucs] codonSeq <- cSeq[codonNucs] muCodonPos <- {position-1}%%3+1 seqAtMutation <- codonSeq[muCodonPos] glAtMutation <- codonGL[muCodonPos] if (!any(codonGL=="N") & !any(codonSeq=="N")) { codonPermutate <- matrix(rep(codonGL,3),ncol=3,byrow=T) codonPermutate[,muCodonPos] <- canMutateTo(glAtMutation)[-4] codonPermutate <- apply(codonPermutate,1,paste,collapse="") codonPermutate <- matrix( c( codonPermutate, rep(c2s(codonGL),3) ), ncol=2, byrow=F) # not intended to be used where input sequences have # ambiguous characters; it assumes that only 1 entry (r/s/stop/na) from # mutationType is non-zero/1 muType <- mutationTypeOptimized(codonPermutate) if (!length(grep("N",wrd))) { if (sum(muType=="s") == length(muType) ){ substitutionList[[v_fam]][[wrd]][glAtMutation,seqAtMutation] <- (substitutionList[[v_fam]][[wrd]][glAtMutation,seqAtMutation] + 1) } } } } } } else if (model == "rs") { # RS model (All mutations) for (index in 1:length(mutations)) { cSeq <- s2c(db[[sequenceColumn]][index]) cGL <- s2c(db[[germlineColumn]][index]) indexMutation <- mutations[[index]] v_fam <- v_families[index] positions <- as.numeric(names(indexMutation)) positions <- positions[positions<=VLENGTH] positions <- positions[!is.na(positions)] for( position in positions){ wrd <- c2s(c(cGL[(position-2):(position-1)],cGL[(position+1):(position+2)])) codonNucs <- getCodonPos(position) codonGL <- cGL[codonNucs] codonSeq <- cSeq[codonNucs] muCodonPos <- {position-1}%%3+1 seqAtMutation <- codonSeq[muCodonPos] glAtMutation <- codonGL[muCodonPos] if( !any(codonGL=="N") & !any(codonSeq=="N") ){ if(!length(grep("N",wrd))){ substitutionList[[v_fam]][[wrd]][glAtMutation,seqAtMutation] <- substitutionList[[v_fam]][[wrd]][glAtMutation, seqAtMutation] + 1 } } } } } # Convert substitutionList to listSubstitution to facilitate the aggregation of mutations arrNames <- c(outer(unique(v_families), nuc_words, paste, sep = "_")) listSubstitution <- array(0, dim=c(length(arrNames), 4, 4), dimnames=list(arrNames, nuc_chars, nuc_chars)) for(v_fam in unique(v_families)){ listSubstitution[paste(v_fam, nuc_words, sep="_"), , ] <- t(sapply(nuc_words, function(word) { substitutionList[[v_fam]][[word]] })) } # Aggregate mutations from all V families M <- list() subMat1mer <- matrix(0, 4, 4) # a single substitution matrix for all fivemers listSubNames <- sapply(dimnames(listSubstitution)[[1]], function(x) { strsplit(x, "_", fixed=TRUE)[[1]] }) .sumSub <- function(i, n) { x <- listSubstitution[listSubNames[2, ] == n, i, ] if(is.null(dim(x))) { return (x) } else { return (colSums(x)) } } for (nuc_word in nuc_words) { # Sums mutations from all families M[[nuc_word]] <- t(sapply(1:4, .sumSub, n=nuc_word)) rownames(M[[nuc_word]]) <- nuc_chars subMat1mer <- subMat1mer + M[[nuc_word]] } # Return 1-mer substitution model; this output cannot be used for createMutabilityMatrix if (returnModel == "1mer") { subMat1merNorm <- t(apply(subMat1mer, 1, function(x){x/sum(x)})) return (subMat1merNorm) } else if (returnModel == "1mer_raw") { return (subMat1mer) } ##### for a given 5mer, count number of mutations # fivemer=M; FIVEMER="CCATT" .simplifivemer <- function(fivemer, FIVEMER, Thresh=50, count=F) { # center Nuc=substr(FIVEMER,3,3) # neighbors Nei=paste(substr(FIVEMER,1,2),substr(FIVEMER,4,5),collapse="",sep="") ### using 5mer # aggregate mutations FIVE.5 <- fivemer[[Nei]][Nuc,] # count total number of mutations for a given 5mer fivemer.total <- sum(FIVE.5) # are there mutations to every other base? fivemer.every <- ( sum(FIVE.5==0)==1 ) ### using inner 3mer # aggregate mutations from 5-mers with the same inner 3-mer FIVE.3 <- FIVE.5 for(i in 1:4){ for(j in 1:4){ MutatedNeighbor=paste(nuc_chars[i],substring(Nei,2,3),nuc_chars[j],collapse="",sep="") FIVE.3=FIVE.3+fivemer[[MutatedNeighbor]][Nuc,] } } # count total number of mutations for inner 3mer inner3.total <- sum(FIVE.3) # are there mutations to every other base? inner3.every <- ( sum(FIVE.3==0)==1 ) ### using 1mer FIVE.1 <- FIVE.5 MutatedNeighbors <- seqinr::words(4, nuc_chars) for (MutatedNeighbor in MutatedNeighbors) { FIVE.1=FIVE.1+fivemer[[MutatedNeighbor]][Nuc,] } if (!count) { # For a 5mer, if the total number of mutations is greater than Thresh, # and if there are mutations to every other base, compute for the 5mer if ( fivemer.total > Thresh & fivemer.every ){ return(FIVE.5) } else if ( inner3.total > Thresh & inner3.every ) { # Otherwise aggregate mutations from 5-mers with the same inner 3-mer return(FIVE.3) } else { # If the total number of mutations is still not enough, # aggregate mutations from all 5-mers (i.e., use 1-mer model) return(FIVE.1) } } return(data.frame(fivemer.total, fivemer.every, inner3.total, inner3.every, stringsAsFactors=F)) } # either construct 5mer substitution matrix, and normalize (numMutationsOnly = F) if (!numMutationsOnly) { substitutionModel <- sapply(seqinr::words(5, nuc_chars), function(x) { .simplifivemer(M, x, Thresh = minNumMutations, count = numMutationsOnly) }, simplify=T) # Assign A->A, C->C, G->G, T->T to NA center_nuc <- gsub("..([ACGT])..", "\\1", colnames(substitutionModel)) for (i in 1:length(center_nuc)) { substitutionModel[center_nuc[i], i] <- NA } # Normalize by column substitutionModel <- apply(substitutionModel, 2, function(x) { x / sum(x, na.rm=TRUE) }) substitutionModel[!is.finite(substitutionModel)] <- NA } else { # or count number of mutations (numMutationsOnly = T), return data frame # need to set simplify to F in sapply() and then use bind_rows; otherwise # every entry in df would be a list substitutionModel <- sapply(seqinr::words(5, nuc_chars), function(x) { .simplifivemer(M, x, Thresh = minNumMutations, count = numMutationsOnly) }, simplify=F) substitutionModel <- dplyr::bind_rows(substitutionModel) rownames(substitutionModel) <- seqinr::words(5, nuc_chars) } return(substitutionModel) } #' Parameter tuning for minNumMutations #' #' \code{minNumMutationsTune} helps with picking a threshold value for \code{minNumMutations} #' in \link{createSubstitutionMatrix} by tabulating the number of 5-mers for which #' substitution rates would be computed directly or inferred at various threshold values. #' #' @param subCount \code{data.frame} returned by \link{createSubstitutionMatrix} #' with \code{numMutationsOnly=TRUE}. #' @param minNumMutationsRange a number or a vector indicating the value or range of values #' of \code{minNumMutations} to try. #' #' @return A 3xn \code{matrix}, where n is the number of trial values of \code{minNumMutations} #' supplied in \code{minNumMutationsRange}. Each column corresponds to a value #' in \code{minNumMutationsRange}. The rows correspond to the number of 5-mers #' for which substitution rates would be computed directly using the 5-mer itself #' (\code{"5mer"}), using its inner 3-mer (\code{"3mer"}), and using the central #' 1-mer (\code{"1mer"}), respectively. #' #' @details At a given threshold value of \code{minNumMutations}, for a given 5-mer, #' if the total number of mutations is greater than the threshold and there #' are mutations to every other base, substitution rates are computed directly #' for the 5-mer using its mutations. Otherwise, mutations from 5-mers with #' the same inner 3-mer as the 5-mer of interest are aggregated. If the number #' of such mutations is greater than the threshold and there are mutations to #' every other base, these mutations are used for inferring the substitution #' rates for the 5-mer of interest; if not, mutations from all 5-mers with the #' same center nucleotide are aggregated and used for inferring the substitution #' rates for the 5-mer of interest (i.e. the 1-mer model). #' #' @references #' \enumerate{ #' \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based #' on synonymous mutations from high-throughput immunoglobulin sequencing data. #' Front Immunol. 2013 4(November):358. #' } #' #' @seealso See argument \code{numMutationsOnly} in \link{createSubstitutionMatrix} #' for generating the required input \code{data.frame} \code{subCount}. #' See argument \code{minNumMutations} in \link{createSubstitutionMatrix} #' for what it does. #' #' @examples #' # Subset example data to one isotype and sample as a demo #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call == "IGHA" & sample_id == "-1h") #' #' # Count the number of mutations per 5-mer #' subCount <- createSubstitutionMatrix(db, sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' vCallColumn="v_call", #' model="s", multipleMutation="independent", #' returnModel="5mer", numMutationsOnly=TRUE) #' #' # Tune minNumMutations #' minNumMutationsTune(subCount, seq(from=10, to=80, by=10)) #' #' @export minNumMutationsTune <- function(subCount, minNumMutationsRange) { stopifnot( nrow(subCount)==1024 & ncol(subCount)==4 ) tuneMtx <- sapply(minNumMutationsRange, function(thresh) { method.count <- c(# as 5mer sum( subCount$fivemer.total > thresh & subCount$fivemer.every ), # as inner 3mer sum( !(subCount$fivemer.total > thresh & subCount$fivemer.every) & (subCount$inner3.total > thresh & subCount$inner3.every) ), # as 1mer sum( !(subCount$fivemer.total > thresh & subCount$fivemer.every) & !(subCount$inner3.total > thresh & subCount$inner3.every) ) ) names(method.count) <- c("5mer", "3mer", "1mer") stopifnot( sum(method.count)==1024 ) return(method.count) }) colnames(tuneMtx) <- minNumMutationsRange return(tuneMtx) } #' Builds a mutability model #' #' \code{createMutabilityMatrix} builds a 5-mer nucleotide mutability model by counting #' the number of mutations occurring in the center position for all 5-mer motifs. #' #' @param db data.frame containing sequence data. #' @param substitutionModel matrix of 5-mer substitution rates built by #' \link{createSubstitutionMatrix}. Note, this model will #' only impact mutability scores when \code{model="s"} #' (using only silent mutations). #' @param model type of model to create. The default model, "s", #' builds a model by counting only silent mutations. \code{model="s"} #' should be used for data that includes functional sequences. #' Setting \code{model="rs"} creates a model by counting both #' replacement and silent mutations and may be used on fully #' non-functional sequence data sets. #' @param sequenceColumn name of the column containing IMGT-gapped sample sequences. #' @param germlineColumn name of the column containing IMGT-gapped germline sequences. #' @param vCallColumn name of the column containing the V-segment allele call. #' @param multipleMutation string specifying how to handle multiple mutations occurring #' within the same 5-mer. If \code{"independent"} then multiple #' mutations within the same 5-mer are counted independently. #' If \code{"ignore"} then 5-mers with multiple mutations are #' excluded from the total mutation tally. #' @param minNumSeqMutations minimum number of mutations in sequences containing each 5-mer #' to compute the mutability rates. If the number is smaller #' than this threshold, the mutability for the 5-mer will be #' inferred. Default is 500. Not required if #' \code{numSeqMutationsOnly=TRUE}. #' @param numSeqMutationsOnly when \code{TRUE}, return only a vector counting the number of #' observed mutations in sequences containing each 5-mer. This #' option can be used for parameter tuning for \code{minNumSeqMutations} #' during preliminary analysis using \link{minNumSeqMutationsTune}. #' Default is \code{FALSE}. #' #' @return When \code{numSeqMutationsOnly} is \code{FALSE}, a \code{MutabilityModel} containing a #' named numeric vector of 1024 normalized mutability rates for each 5-mer motif with names #' defining the 5-mer nucleotide sequence. #' #' When \code{numSeqMutationsOnly} is \code{TRUE}, a named numeric #' vector of length 1024 counting the number of observed mutations in sequences containing #' each 5-mer. #' #' @details \strong{Caution: The targeting model functions do NOT support ambiguous #' characters in their inputs. You MUST make sure that your input and germline #' sequences do NOT contain ambiguous characters (especially if they are #' clonal consensuses returned from \code{collapseClones}).} #' #' @references #' \enumerate{ #' \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based #' on synonymous mutations from high-throughput immunoglobulin sequencing data. #' Front Immunol. 2013 4(November):358. #' } #' #' @seealso \link{MutabilityModel}, \link{extendMutabilityMatrix}, \link{createSubstitutionMatrix}, #' \link{createTargetingMatrix}, \link{createTargetingModel}, #' \link{minNumSeqMutationsTune} #' #' @examples #' \donttest{ #' # Subset example data to 50 sequences of one isotype and sample as a demo #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call == "IGHA" & sample_id == "-1h")[1:50,] #' #' # Create model using only silent mutations #' sub_model <- createSubstitutionMatrix(db, sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' vCallColumn="v_call",model="s") #' mut_model <- createMutabilityMatrix(db, sub_model, model="s", #' sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' vCallColumn="v_call", #' minNumSeqMutations=200, #' numSeqMutationsOnly=FALSE) #' #' # View top 5 mutability estimates #' head(sort(mut_model, decreasing=TRUE), 5) #' #' # View the number of S mutations used for estimating mutabilities #' mut_model@numMutS #' #' # Count the number of mutations in sequences containing each 5-mer #' mut_count <- createMutabilityMatrix(db, sub_model, model="s", #' sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' vCallColumn="v_call", #' numSeqMutationsOnly=TRUE) #' } #' #' @export createMutabilityMatrix <- function(db, substitutionModel, model=c("s", "rs"), sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call", multipleMutation=c("independent", "ignore"), minNumSeqMutations=500, numSeqMutationsOnly=FALSE) { # substitutionModel=sub_model; model="s"; sequenceColumn="sequence_alignment"; germlineColumn="germline_alignment_d_mask" # vCallColumn="v_call"; multipleMutation="ignore"; minNumSeqMutations=10 # Evaluate argument choices model <- match.arg(model) multipleMutation <- match.arg(multipleMutation) # Check for valid columns check <- checkColumns(db, c(sequenceColumn, germlineColumn, vCallColumn)) if (check != TRUE) { stop(check) } # Convert sequence columns to uppercase db <- toupperColumns(db, c(sequenceColumn, germlineColumn)) # Check validity of input sequences # (MUST NOT CONTAIN AMBIGUOUS CHARACTERS -- not supported) bool_obsv <- checkAmbiguousExist(db[[sequenceColumn]]) bool_germ <- checkAmbiguousExist(db[[germlineColumn]]) if (any(bool_obsv | bool_germ)) { stop("Ambiguous characters are not supported in input sequences.") } # Check that the substitution model is valid if (any(dim(substitutionModel) != c(4, 1024))) { stop ("Please supply a valid 5-mer substitutionModel.") } # Set constants for function nuc_chars <- NUCLEOTIDES[1:4] # Remove IMGT gaps in the germline & input sequences matInputCollapsed <- removeCodonGaps(db[, c(sequenceColumn, germlineColumn)]) # TODO: Unnecessary conversion db[[sequenceColumn]] <- matInputCollapsed[, 1] db[[germlineColumn]] <- matInputCollapsed[, 2] # Count mutations # TODO: this could be listMutations() instead, and skip the conversion from matInputCollapsed back to a data.frame mutations <- listObservedMutations(db, sequenceColumn=sequenceColumn, germlineColumn=germlineColumn, multipleMutation=multipleMutation, model=model) # Foreground Count: Count the number of observed mutations for each 5-mer template <- rep(0, 1024) names(template) <- seqinr::words(5, nuc_chars) COUNT <- list() for(index in 1:length(mutations)){ COUNT[[index]] <- template indexMutation <- mutations[[index]] if(!sum(is.na(indexMutation))){ cSeq <- s2c(db[[sequenceColumn]][index]) cGL <- s2c(db[[germlineColumn]][index]) positions <- as.numeric(names(indexMutation)) positions <- positions[positions <= VLENGTH] positions <- positions[!is.na(positions)] for (position in positions){ wrd5 <- substr(db[[germlineColumn]][index], position - 2, position + 2) if(!grepl("[^ACGT]", wrd5) & nchar(wrd5) == 5){ codonNucs <- getCodonPos(position) codonGL <- cGL[codonNucs] codonSeq <- cSeq[codonNucs] muCodonPos <- {position - 1} %% 3 + 1 #seqAtMutation <- codonSeq[muCodonPos] glAtMutation <- codonGL[muCodonPos] if (!any(codonGL %in% c("N", "-", ".")) & !any(codonSeq %in% c("N", "-", "."))) { if (!length(grep("N", wrd5))) { COUNT[[index]][wrd5]<- COUNT[[index]][wrd5] + 1; } } } } } } # Define sum of rates for nucleotide sets from substitution model # Two character sets wrd2Index <- combn(1:4, 2) wrd2Sums <- t(apply(wrd2Index, 2, function(x) colSums(substitutionModel[x, ], na.rm=TRUE))) rownames(wrd2Sums) <- apply(wrd2Index, 2, function(x) paste(nuc_chars[x], collapse="")) # Three character sets wrd3Index <- combn(1:4, 3) wrd3Sums <- t(apply(wrd3Index, 2, function(x) colSums(substitutionModel[x, ], na.rm=TRUE))) rownames(wrd3Sums) <- apply(wrd3Index, 2, function(x) paste(nuc_chars[x], collapse="")) # Merge single character, two character and three character sets substitutionSums <- rbind(substitutionModel, wrd2Sums, wrd3Sums) # Replace dots with Ns sSeqVec <- gsub("\\.", "N", db[[sequenceColumn]]) sGermVec <- gsub("\\.", "N", db[[germlineColumn]]) # Define template for 5-mer sums by position countTemplate <- matrix(0, VLENGTH, 1024, dimnames=list(1:VLENGTH, names(template))) # Background Count: Count the number of occurrences of each 5-mer BG_COUNT <- list() for (index in 1:length(mutations)) { tmpCounts <- countTemplate sGL <- sGermVec[index] cSeq <- s2c(sSeqVec[index]) cGL <- s2c(sGL)[1:VLENGTH] positions <- 3:(length(cGL) - 2) for (pos in positions) { wrd5 <- substr(sGL, pos - 2, pos + 2) if (!grepl("[^ACGT]", wrd5) & nchar(wrd5) == 5) { codonNucs <- getCodonPos(pos) codonGL <- cGL[codonNucs] codonSeq <- cSeq[codonNucs] muCodonPos <- (pos - 1) %% 3 + 1 glAtMutation <- codonGL[muCodonPos] if (!any(codonGL %in% c("N", "-")) & !any(codonSeq %in% c("N", "-"))) { # Determine mutation types for NUCLEOTIDES[1:4] muType <- CODON_TABLE[1:4 + 4*(muCodonPos - 1), stri_flatten(codonGL)] # Set characters that meet mutation criteria if (model == "s") { muChars <- nuc_chars[1:4][nuc_chars[1:4] != glAtMutation & muType == "s"] } else { muChars <- nuc_chars[1:4][nuc_chars[1:4] != glAtMutation] } # Update counts if (length(muChars) > 0) { #cat(stri_flatten(muChars), substitutionSums[stri_flatten(muChars), wrd5], "\n") tmpCounts[pos, wrd5] <- substitutionSums[stri_flatten(muChars), wrd5] } } } } BG_COUNT[[index]] <- colSums(tmpCounts) BG_COUNT[[index]][BG_COUNT[[index]] == 0] <- NA } Mutability <- list() for(i in 1:length(mutations)) { mut_mat <- COUNT[[i]] / BG_COUNT[[i]] mut_mat <- mut_mat / sum(mut_mat, na.rm=TRUE) mut_mat[!is.finite(mut_mat)] <- NA wgt_mat <- length(mutations[[i]]) Mutability[[i]] <- list(mut_mat, wgt_mat) } # total counts of mutations # each list item is the total S and R mutation counts in a seq mutationsTotalLst <- lapply(mutations, function(m){ return( c(S=sum(m=="s", na.rm=T), R=sum(m=="r", na.rm=T)) ) }) # total S and R mutation counts across seqs mutationsTotalRS <- Reduce("+", mutationsTotalLst) # Aggregate mutability MutabilityMatrix <- sapply(Mutability, function(x) x[[1]]) MutabilityWeights <- sapply(Mutability, function(x) x[[2]]) Mutability_Mean <- apply(MutabilityMatrix, 1, weighted.mean, w=MutabilityWeights, na.rm=TRUE) Mutability_Mean[!is.finite(Mutability_Mean)] <- NA Mutability_Mean[Mutability_Mean == 0] <- NA # Filter out 5-mers with low number of observed mutations in the sequences NumSeqMutations <- sapply(1:1024,function(i)sum(MutabilityWeights[!is.na(MutabilityMatrix[i,])])) names(NumSeqMutations) <- names(Mutability_Mean) if (numSeqMutationsOnly) {return(NumSeqMutations)} Mutability_Mean[NumSeqMutations <= minNumSeqMutations] <- NA # Infer mutability for missing 5-mers .fillHot <-function(FIVEMER,mutability){ if(FIVEMER%in%names(mutability))if(!is.na(mutability[[FIVEMER]]))if(mutability[[FIVEMER]]>=0.0)return(mutability[[FIVEMER]]) Nuc=substr(FIVEMER,3,3) #Nei=paste(substr(FIVEMER,1,2),substr(FIVEMER,4,5),collapse="",sep="") FIVE=0 COUNT=0 # For A/T, infer mutability using the 3-mer model. if(Nuc%in%c("A","T")){ for(i in 1:3){ for(j in 1:3){ MutatedNeighbor=paste(canMutateTo(substr(FIVEMER,1,1))[i],substr(FIVEMER,2,4),canMutateTo(substr(FIVEMER,5,5))[j],collapse="",sep="") if(!is.na(mutability[[MutatedNeighbor]])){ FIVE=FIVE+mutability[[MutatedNeighbor]] COUNT=COUNT+1 } } } return(FIVE/COUNT) } # For G, infer using 5-mers with the same downstream nucleotides if(Nuc=="G"){ for(i in 1:3){ for(j in 1:3){ MutatedNeighbor=paste(canMutateTo(substr(FIVEMER,1,1))[i],canMutateTo(substr(FIVEMER,2,2))[j],substr(FIVEMER,3,5),collapse="",sep="") if(!is.na(mutability[[MutatedNeighbor]])){ FIVE=FIVE+mutability[[MutatedNeighbor]] COUNT=COUNT+1 } } } return(FIVE/COUNT) } # For C, infer using 5-mers with the same upstream nucleotides if(Nuc=="C"){ for(i in 1:3){ for(j in 1:3){ MutatedNeighbor=paste(substr(FIVEMER,1,3),canMutateTo(substr(FIVEMER,4,4))[i],canMutateTo(substr(FIVEMER,5,5))[j],collapse="",sep="") if(!is.na(mutability[[MutatedNeighbor]])){ FIVE=FIVE+mutability[[MutatedNeighbor]] COUNT=COUNT+1 } } } return(FIVE/COUNT) } } Mutability_Mean_Complete <-sapply(words(5, nuc_chars), .fillHot, mutability = Mutability_Mean) for(i in names(which(is.na(Mutability_Mean_Complete)))){ Mutability_Mean_Complete[i]<- .fillHot(i,mutability=Mutability_Mean_Complete) } for(i in names(which((Mutability_Mean_Complete)<1e-6))){ Mutability_Mean_Complete[i]<- .fillHot(i,mutability=Mutability_Mean_Complete) } # If the neighboring 5-mers still don't have enough mutations, use 0 instead. if (length(is.na(Mutability_Mean_Complete)) > 0) { warning("Insufficient number of mutations to infer some 5-mers. Filled with 0. ") Mutability_Mean_Complete[is.na(Mutability_Mean_Complete)] <- 0 } # Normalize Mutability_Mean_Complete <- Mutability_Mean_Complete / sum(Mutability_Mean_Complete, na.rm=TRUE) # Define whether the 5-mer mutability is measured or inferred mut_names <- names(Mutability_Mean_Complete) mut_source <- setNames(rep("Measured", length(mut_names)), mut_names) mut_source[mut_names %in% names(which(is.na(Mutability_Mean)))] <- "Inferred" # Return MutabilityModel mut_model <- MutabilityModel(Mutability_Mean_Complete, source=mut_source, numMutS=mutationsTotalRS[["S"]], numMutR=mutationsTotalRS[["R"]]) names(mut_model) <- mut_names return(mut_model) } #' Parameter tuning for minNumSeqMutations #' #' \code{minNumSeqMutationsTune} helps with picking a threshold value for \code{minNumSeqMutations} #' in \link{createMutabilityMatrix} by tabulating the number of 5-mers for which #' mutability would be computed directly or inferred at various threshold values. #' #' @param mutCount a \code{vector} of length 1024 returned by #' \link{createMutabilityMatrix} with \code{numSeqMutationsOnly=TRUE}. #' @param minNumSeqMutationsRange a number or a vector indicating the value or the range of values #' of \code{minNumSeqMutations} to try. #' #' @return A 2xn \code{matrix}, where n is the number of trial values of \code{minNumSeqMutations} #' supplied in \code{minNumSeqMutationsRange}. Each column corresponds to a value #' in \code{minNumSeqMutationsRange}. The rows correspond to the number of 5-mers #' for which mutability would be computed directly (\code{"measured"}) and inferred #' (\code{"inferred"}), respectively. #' #' @details At a given threshold value of \code{minNumSeqMutations}, for a given 5-mer, #' if the total number of mutations is greater than the threshold, mutability #' is computed directly. Otherwise, mutability is inferred. #' #' @references #' \enumerate{ #' \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based #' on synonymous mutations from high-throughput immunoglobulin sequencing data. #' Front Immunol. 2013 4(November):358. #' } #' #' @seealso See argument \code{numSeqMutationsOnly} in \link{createMutabilityMatrix} #' for generating the required input \code{vector} \code{mutCount}. #' See argument \code{minNumSeqMutations} in \link{createMutabilityMatrix} #' for what it does. #' #' @examples #' \donttest{ #' # Subset example data to one isotype and sample as a demo #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call == "IGHA" & sample_id == "-1h") #' set.seed(112) #' db <- dplyr::slice_sample(db, n=75) #' # Create model using only silent mutations #' sub <- createSubstitutionMatrix(db, sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' vCallColumn="v_call", #' model="s", multipleMutation="independent", #' returnModel="5mer", numMutationsOnly=FALSE, #' minNumMutations=20) #' #' # Count the number of mutations in sequences containing each 5-mer #' mutCount <- createMutabilityMatrix(db, substitutionModel = sub, #' sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' vCallColumn="v_call", #' model="s", multipleMutation="independent", #' numSeqMutationsOnly=TRUE) #' #' # Tune minNumSeqMutations #' minNumSeqMutationsTune(mutCount, seq(from=100, to=300, by=50)) #' } #' @export minNumSeqMutationsTune <- function(mutCount, minNumSeqMutationsRange) { stopifnot( length(mutCount) == 1024 ) tuneMtx <- sapply(minNumSeqMutationsRange, function(thresh) { method.count <- c( sum(mutCount > thresh), sum(mutCount <= thresh) ) names(method.count) <- c("measured", "inferred") stopifnot( sum(method.count)==1024 ) return(method.count) }) colnames(tuneMtx) <- minNumSeqMutationsRange return(tuneMtx) } #' Extends a substitution model to include Ns. #' #' \code{extendSubstitutionMatrix} extends a 5-mer nucleotide substitution model #' with 5-mers that include Ns by averaging over all corresponding 5-mers without Ns. #' #' @param substitutionModel matrix of 5-mers substitution counts built by #' \link{createSubstitutionMatrix}. #' #' @return A 5x3125 matrix of normalized substitution rate for each 5-mer motif with #' rows names defining the center nucleotide, one of \code{c("A", "C", "G", "T", "N")}, #' and column names defining the 5-mer nucleotide sequence. #' #' @seealso \link{createSubstitutionMatrix}, \link{extendMutabilityMatrix} #' #' @examples #' # Subset example data to one isotype and sample as a demo #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call == "IGHA" & sample_id == "-1h") #' #' # Create model using only silent mutations #' sub_model <- createSubstitutionMatrix(db, sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' vCallColumn="v_call",model="s") #' ext_model <- extendSubstitutionMatrix(sub_model) #' #' @export extendSubstitutionMatrix <- function(substitutionModel) { # TODO: fix order so Ns are at the end? (c(input_names, words not in input_names)) # Define old and new column/row names input_names <- colnames(substitutionModel) nuc_chars <- NUCLEOTIDES[1:5] nuc_5mers <- seqinr::words(5, alphabet=nuc_chars) # Define empty extended matrix with Ns extend_mat <- matrix(NA, nrow=length(nuc_chars), ncol=length(nuc_5mers), dimnames=list(nuc_chars, nuc_5mers)) # Extend matrix with Ns for (mer in nuc_5mers) { if (mer %in% input_names) { extend_mat[, mer] <- c(substitutionModel[, mer], "N"=NA) } else { mer_char <- s2c(mer) n_index <- grep("N", mer_char) if (any(n_index == 3)) { extend_mat[, mer] <- NA } else { mer_char[n_index] <- "." mer_str <- c2s(mer_char) mer_index <- grep(mer_str, input_names) extend_mat[, mer] <- c(apply(substitutionModel[, mer_index], 1, mean, na.rm=TRUE), "N"=NA) } } } # Normalize #extend_mat <- apply(extend_mat, 2, function(x) { x/sum(x, na.rm=TRUE) }) extend_mat[!is.finite(extend_mat)] <- NA return (extend_mat) } #' Extends a mutability model to include Ns. #' #' \code{extendMutabilityMatrix} extends a 5-mer nucleotide mutability model #' with 5-mers that include Ns by averaging over all corresponding 5-mers without Ns. #' #' @param mutabilityModel vector of 5-mer mutability rates built by #' \link{createMutabilityMatrix}. #' #' @return A \code{MutabilityModel} containing a 3125 vector of normalized #' mutability rates for each 5-mer motif with names defining the 5-mer #' nucleotide sequence. Note that "normalized" means that the mutability #' rates for the 1024 5-mers that contain no "N" at any position sums up #' to 1 (as opposed to the entire vector summing up to 1). #' #' If the input \code{mutabilityModel} is of class \code{MutabilityModel}, #' then the output \code{MutabilityModel} will carry over the input #' \code{numMutS} and \code{numMutR} slots. #' #' @seealso \link{createMutabilityMatrix}, \link{extendSubstitutionMatrix}, #' \link{MutabilityModel} #' #' @examples #' \donttest{ #' # Subset example data to one isotype and sample as a demo #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call == "IGHA" & sample_id == "-1h") #' set.seed(112) #' db <- dplyr::slice_sample(db, n=75) #' #' # Create model using only silent mutations and ignore multiple mutations #' sub_model <- createSubstitutionMatrix(db, model="s", sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' vCallColumn="v_call") #' mut_model <- createMutabilityMatrix(db, sub_model, model="s", #' sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' vCallColumn="v_call") #' ext_model <- extendMutabilityMatrix(mut_model) #' } #' #' @export extendMutabilityMatrix <- function(mutabilityModel) { # TODO: fix order so Ns are at the end? (c(input_names, words not in input_names)) # Define old and new column/row names input_names <- names(mutabilityModel) nuc_chars <- NUCLEOTIDES[1:5] nuc_5mers <- seqinr::words(5, alphabet=nuc_chars) # Define empty extended matrix with Ns extend_mat <- array(NA, dim=length(nuc_5mers), dimnames=list(nuc_5mers)) # Extend matrix with Ns for(mer in nuc_5mers) { #cat(mer,"\n") if (mer %in% input_names) { extend_mat[mer] <- mutabilityModel[mer] } else { mer_char <- s2c(mer) n_index <- grep("N", mer_char) if (any(n_index == 3)) { extend_mat[mer] <- NA } else { mer_char[n_index] <- "." mer_str <- c2s(mer_char) mer_index <- grep(mer_str, input_names) extend_mat[mer] <- mean(mutabilityModel[mer_index], na.rm=TRUE) } } } # Normalize #extend_mat <- extend_mat / sum(extend_mat, na.rm=TRUE) extend_mat[!is.finite(extend_mat)] <- NA # Carry over @numMutS and @numMutR, if any if (all(c("numMutS", "numMutR") %in% slotNames(mutabilityModel))) { mut_s <- mutabilityModel@numMutS mut_r <- mutabilityModel@numMutR } else { mut_s <- as.numeric(NA) mut_r <- as.numeric(NA) } # Carry over @source if ("source" %in% slotNames(mutabilityModel)) { mut_names <- names(extend_mat) mut_source <- setNames(rep("Extended", length(mut_names)), mut_names) mut_source[names(mutabilityModel@source)] <- mutabilityModel@source } else { mut_source <- as.character(NA) } # Return extended MutabilityModel extend_names <- names(extend_mat) extend_model <- MutabilityModel(extend_mat, source=mut_source, numMutS=mut_s, numMutR=mut_r) names(extend_model) <- extend_names return(extend_model) } #' Calculates a targeting rate matrix #' #' \code{createTargetingMatrix} calculates the targeting model matrix as the #' combined probability of mutability and substitution. #' #' @param substitutionModel matrix of 5-mers substitution rates built by #' \link{createSubstitutionMatrix} or #' \link{extendSubstitutionMatrix}. #' @param mutabilityModel vector of 5-mers mutability rates built by #' \link{createMutabilityMatrix} or #' \link{extendMutabilityMatrix}. #' #' @return A \code{TargetingMatrix} with the same dimensions as the input \code{substitutionModel} #' containing normalized targeting probabilities for each 5-mer motif with #' row names defining the center nucleotide and column names defining the #' 5-mer nucleotide sequence. #' #' If the input \code{mutabilityModel} is of class \code{MutabilityModel}, then the output #' \code{TargetingMatrix} will carry over the input \code{numMutS} and \code{numMutR} slots. #' #' @details #' Targeting rates are calculated by multiplying the normalized mutability rate by the #' normalized substitution rates for each individual 5-mer. #' #' @references #' \enumerate{ #' \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based #' on synonymous mutations from high-throughput immunoglobulin sequencing data. #' Front Immunol. 2013 4(November):358. #' } #' #' @seealso \link{createSubstitutionMatrix}, \link{extendSubstitutionMatrix}, #' \link{createMutabilityMatrix}, \link{extendMutabilityMatrix}, #' \link{TargetingMatrix}, \link{createTargetingModel} #' #' @examples #' \donttest{ #' # Subset example data to 50 sequences, of one isotype and sample as a demo #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call == "IGHA" & sample_id == "-1h")[1:50,] #' #' # Create 4x1024 models using only silent mutations #' sub_model <- createSubstitutionMatrix(db, model="s", sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' vCallColumn="v_call") #' mut_model <- createMutabilityMatrix(db, sub_model, model="s", #' sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' vCallColumn="v_call") #' #' # Extend substitution and mutability to including Ns (5x3125 model) #' sub_model <- extendSubstitutionMatrix(sub_model) #' mut_model <- extendMutabilityMatrix(mut_model) #' #' # Create targeting model from substitution and mutability #' tar_model <- createTargetingMatrix(sub_model, mut_model) #' } #' #' @export createTargetingMatrix <- function(substitutionModel, mutabilityModel) { # Calculate targeting tar_mat <- sweep(substitutionModel, 2, mutabilityModel, `*`) # Normalize #tar_mat <- tar_mat / sum(tar_mat, na.rm=TRUE) tar_mat[!is.finite(tar_mat)] <- NA # carry over @numMutS and @numMutR, if any if (all(c("numMutS", "numMutR") %in% slotNames(mutabilityModel))) { tar_mat <- TargetingMatrix(tar_mat, numMutS=mutabilityModel@numMutS, numMutR=mutabilityModel@numMutR) } else { tar_mat <- TargetingMatrix(tar_mat, # NA is of class logical by default numMutS=as.numeric(NA), numMutR=as.numeric(NA)) } return(tar_mat) } #' Creates a TargetingModel #' #' \code{createTargetingModel} creates a 5-mer \code{TargetingModel}. #' #' @param db data.frame containing sequence data. #' @param model type of model to create. The default model, "s", #' builds a model by counting only silent mutations. \code{model="s"} #' should be used for data that includes functional sequences. #' Setting \code{model="rs"} creates a model by counting both #' replacement and silent mutations and may be used on fully #' non-functional sequence data sets. #' @param sequenceColumn name of the column containing IMGT-gapped sample sequences. #' @param germlineColumn name of the column containing IMGT-gapped germline sequences. #' @param vCallColumn name of the column containing the V-segment allele calls. #' @param multipleMutation string specifying how to handle multiple mutations occurring #' within the same 5-mer. If \code{"independent"} then multiple #' mutations within the same 5-mer are counted independently. #' If \code{"ignore"} then 5-mers with multiple mutations are #' excluded from the total mutation tally. #' @param minNumMutations minimum number of mutations required to compute the 5-mer #' substitution rates. If the number of mutations for a 5-mer #' is below this threshold, its substitution rates will be #' estimated from neighboring 5-mers. Default is 50. #' @param minNumSeqMutations minimum number of mutations in sequences containing each 5-mer #' to compute the mutability rates. If the number is smaller #' than this threshold, the mutability for the 5-mer will be #' inferred. Default is 500. #' @param modelName name of the model. #' @param modelDescription description of the model and its source data. #' @param modelSpecies genus and species of the source sequencing data. #' @param modelDate date the model was built. If \code{NULL} the current date #' will be used. #' @param modelCitation publication source. #' #' @return A \link{TargetingModel} object. #' #' @details \strong{Caution: The targeting model functions do NOT support ambiguous #' characters in their inputs. You MUST make sure that your input and germline #' sequences do NOT contain ambiguous characters (especially if they are #' clonal consensuses returned from \code{collapseClones}).} #' #' @references #' \enumerate{ #' \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based #' on synonymous mutations from high-throughput immunoglobulin sequencing data. #' Front Immunol. 2013 4(November):358. #' } #' #' @seealso See \link{TargetingModel} for the return object. #' See \link{plotMutability} plotting a mutability model. #' See \link{createSubstitutionMatrix}, \link{extendSubstitutionMatrix}, #' \link{createMutabilityMatrix}, \link{extendMutabilityMatrix} and #' \link{createTargetingMatrix} for component steps in building a model. #' #' @examples #' \donttest{ #' # Subset example data to one isotype and sample as a demo #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call == "IGHA" & sample_id == "-1h")[1:80,] #' #' # Create model using only silent mutations and ignore multiple mutations #' model <- createTargetingModel(db, model="s", sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' vCallColumn="v_call", multipleMutation="ignore") #' #' # View top 5 mutability estimates #' head(sort(model@mutability, decreasing=TRUE), 5) #' #' # View number of silent mutations used for estimating mutability #' model@numMutS #' } #' #' @export createTargetingModel <- function(db, model=c("s", "rs"), sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call", multipleMutation=c("independent", "ignore"), minNumMutations=50, minNumSeqMutations=500, modelName="", modelDescription="", modelSpecies="", modelCitation="", modelDate=NULL) { # Evaluate argument choices model <- match.arg(model) multipleMutation <- match.arg(multipleMutation) # Check for valid columns check <- checkColumns(db, c(sequenceColumn, germlineColumn, vCallColumn)) if (check != TRUE) { stop(check) } # Check validity of input sequences # (MUST NOT CONTAIN AMBIGUOUS CHARACTERS -- not supported) bool_obsv <- checkAmbiguousExist(db[[sequenceColumn]]) bool_germ <- checkAmbiguousExist(db[[germlineColumn]]) if (any(bool_obsv | bool_germ)) { stop("Ambiguous characters are not supported in input sequences.") } # Set date if (is.null(modelDate)) { modelDate <- format(Sys.time(), "%Y-%m-%d") } # Create models sub_mat<- createSubstitutionMatrix(db, model=model, sequenceColumn=sequenceColumn, germlineColumn=germlineColumn, vCallColumn=vCallColumn, multipleMutation=multipleMutation, minNumMutations=minNumMutations, returnModel="5mer") mut_mat <- createMutabilityMatrix(db, sub_mat, model=model, sequenceColumn=sequenceColumn, germlineColumn=germlineColumn, vCallColumn=vCallColumn, multipleMutation=multipleMutation, minNumSeqMutations=minNumSeqMutations) # Extend 5-mers with Ns sub_mat <- extendSubstitutionMatrix(sub_mat) mut_mat <- extendMutabilityMatrix(mut_mat) # Make targeting matrix tar_mat <- createTargetingMatrix(sub_mat, mut_mat) # Define TargetingModel object model_obj <- new("TargetingModel", name=modelName, description=modelDescription, species=modelSpecies, date=modelDate, citation=modelCitation, substitution=sub_mat, mutability=mut_mat, targeting=tar_mat@.Data, numMutS=mut_mat@numMutS, numMutR=mut_mat@numMutR) return(model_obj) } #' Calculate total mutability #' #' \code{calculateMutability} calculates the total (summed) mutability for a set of sequences #' based on a 5-mer nucleotide mutability model. #' #' @param sequences character vector of sequences. #' @param model \link{TargetingModel} object with mutation likelihood information. #' @param progress if \code{TRUE} print a progress bar. #' #' @return Numeric vector with a total mutability score for each sequence. #' #' @examples #' \donttest{ #' # Subset example data to one isotype and sample as a demo #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call == "IGHA" & sample_id == "-1h") #' #' # Calculate mutability of germline sequences using \link{HH_S5F} model #' mutability <- calculateMutability(sequences=db[["germline_alignment_d_mask"]], model=HH_S5F) #' } #' #' @export calculateMutability <- function(sequences, model=HH_S5F, progress=FALSE) { # Initialize variables alphb <- seqinr::s2c("ACGTN") model_kmer <- names(model@mutability) model_rates <- as.vector(model@mutability) sequences <- toupper(sequences) sequences <- gsub("\\.", "N", sequences) # Mutability calculation mutability <- vector(mode="numeric", length=length(sequences)) if (progress) { pb <- progressBar(length(sequences)) } for (s in 1:length(sequences)) { kmer <- seqinr::count(seqinr::s2c(sequences[s]), wordsize=5, alphabet=alphb) seq_kmer <- names(kmer) seq_counts <- as.vector(kmer) index <- match(seq_kmer, model_kmer) mutability[s] <- sum(seq_counts*model_rates[index], na.rm=TRUE) if (progress) { pb$tick() } } return(mutability) } # Create model and rescale mutabilities # model <- createTargetingModel(db, model="s", multipleMutation="ignore") # mut <- rescaleMutability(model) rescaleMutability <- function(model, mean=1.0) { if (is(model, "TargetingModel")) { model <- model@mutability } else if (!is(model, "vector")) { stop("Input must be either a mutability vector or TargetingModel object.") } # TODO: perhaps this is not so useful. or perhaps it should be relative to max(model). # Renormalize rescaled <- model / sum(model, na.rm=T) * sum(!is.na(model)) * mean rescaled[!is.finite(rescaled)] <- NA return(rescaled) } # Remove in-frame IMGT gaps # # @param matInput Nx2 matrix with input and germline sequences in each column # @return A two column matrix with "..." codons removed. removeCodonGaps <- function(matInput) { # Function to return valid codon sets # i = position, x = codon list 1, y = codon list 2 .f1 <- function(i, x, y) { xcod <- x[i] ycod <- y[i] if (xcod != "..." & ycod != "...") { c(xcod, ycod) } else { c("", "") } } # Function to parse sequences # z = vector of 2 sequences .f2 <- function(z) { # Split strings into 3-mers cods <- stri_extract_all_regex(c(z[1], z[2]), ".{3}") cmat <- sapply(1:length(cods[[1]]), .f1, x=cods[[1]], y=cods[[2]]) apply(cmat, 1, paste, collapse="") } matCollapsed <- t(apply(matInput, 1, .f2)) return(matCollapsed) } #' Make a degenerate 5-mer substitution model based on a 1-mer substitution model #' #' \code{makeDegenerate5merSub} populates substitution rates from a 1-mer substitution model #' into 5-mers with corresponding central 1-mers. #' #' @param sub1mer a 4x4 matrix containing (normalized) substitution rates. #' Row names should correspond to nucleotides to mutate from. #' Column names should correspond to nucleotides to mutate into. #' Nucleotides should include "A", "T", "G", and "C" #' (case-insensitive). #' @param extended whether to return the unextended (\code{extended=FALSE}) or #' extended (\code{extended=TRUE}) 5-mer substitution model. #' Default is \code{FALSE}. #' #' @return For \code{extended=FALSE}, a 4x1024 matrix. For \code{extended=TRUE}, a 5x3125 #' matrix. #' #' @details As a concrete example, consider a 1-mer substitution model in which substitution #' rates from "A" to "T", "G", and "C" are, respectively, 0.1, 0.6, and 0.3. In the #' resultant degenerate 5-mer substitution model, all the 5-mers (columns) that have #' an "A" as their central 1-mer would have substitution rates (rows) of 0.1, 0.6, and #' 0.3 to "T", "G", and "C" respectively. #' #' When \code{extended=TRUE}, \code{extendSubstitutionMatrix} is called to extend #' the 4x1024 substitution matrix. #' #' @seealso See \link{makeAverage1merSub} for making a 1-mer substitution model by taking #' the average of a 5-mer substitution model. See \link{extendSubstitutionMatrix} #' for extending the substitution matrix. #' #' @examples #' # Make a degenerate 5-mer model (4x1024) based on HKL_S1F (4x4) #' # Note: not to be confused with HKL_S5F@substitution, which is non-degenerate #' degenerate5merSub <- makeDegenerate5merSub(sub1mer = HKL_S1F) #' #' # Look at a few 5-mers #' degenerate5merSub[, c("AAAAT", "AACAT", "AAGAT", "AATAT")] #' #' @export makeDegenerate5merSub <- function(sub1mer, extended=FALSE) { # make sure that rownames and colnames of sub1mer are uppercase rownames(sub1mer) <- toupper(rownames(sub1mer)) colnames(sub1mer) <- toupper(colnames(sub1mer)) # create 5-mer labels using ATGC nuc_chars <- NUCLEOTIDES[1:4] nuc_words <- seqinr::words(5, nuc_chars) # get center positions of 5mers nuc_centers <- sapply(nuc_words, function(x){seqinr::s2c(x)[3]}) # initiate 5-mer substitution matrix (4x1024) sub5mer <- matrix(NA, nrow=4, ncol=length(nuc_words), dimnames=list(nuc_chars, nuc_words)) # assign values from 1-mer model to 5-mer model for (from in rownames(sub1mer)) { for (to in colnames(sub1mer)) { if (from != to) { # if statement keeps diagonals as NA colIndex <- which(nuc_centers == from) sub5mer[to, colIndex] <- sub1mer[from, to] } } } stopifnot(dim(sub5mer) == c(4, 1024)) # if extended=TRUE, extend if (extended) { sub5mer <- extendSubstitutionMatrix(sub5mer) stopifnot(dim(sub5mer) == c(5, 3125)) } return(sub5mer) } #' Make a degenerate 5-mer mutability model based on a 1-mer mutability model #' #' \code{makeDegenerate5merMut} populates mutability rates from a 1-mer mutability model #' into 5-mers with corresponding central 1-mers. #' #' @param mut1mer a named vector of length 4 containing (normalized) #' mutability rates. Names should correspond to nucleotides, #' which should include "A", "T", "G", and "C" #' (case-insensitive). #' @param extended whether to return the unextended (\code{extended=FALSE}) or #' extended (\code{extended=TRUE}) 5-mer mutability model. #' Default is \code{FALSE}. #' #' @return For \code{extended=FALSE}, a vector of length 1024. The vector returned is #' normalized. For \code{extended=TRUE}, a vector of length 3125. #' #' @details As a concrete example, consider a 1-mer mutability model in which mutability #' rates of "A", "T", "G", and "C" are, respectively, 0.14, 0.23, 0.31, and 0.32. #' In the resultant degenerate 5-mer mutability model, all the 5-mers that have #' an "A" as their central 1-mer would have mutability rate of 0.14/256, where 256 is #' the number of such 5-mers. #' #' When \code{extended=TRUE}, \code{extendMutabilityMatrix} is called to extend the #' mutability vector of length 1024 into a vector of length 3125. #' #' @seealso See \link{makeAverage1merMut} for making a 1-mer mutability model by #' taking the average of a 5-mer mutability model. See #' \link{extendMutabilityMatrix} for extending the mutability vector. #' #' @examples #' # Make a degenerate 5-mer model (length of 1024) based on a 1-mer model #' example1merMut <- c(A=0.2, T=0.1, C=0.4, G=0.3) #' degenerate5merMut <- makeDegenerate5merMut(mut1mer = example1merMut) #' #' # Look at a few 5-mers #' degenerate5merMut[c("AAAAT", "AACAT", "AAGAT", "AATAT")] #' #' # Normalized #' sum(degenerate5merMut) #' #' @export makeDegenerate5merMut <- function(mut1mer, extended=FALSE) { # make sure that names of mut1mer are uppercase names(mut1mer) <- toupper(names(mut1mer)) # create 5-mer labels using ATGCN nuc_chars <- NUCLEOTIDES[1:4] nuc_words <- seqinr::words(5, nuc_chars) # get center positions of 5mers nuc_centers <- sapply(nuc_words, function(x){seqinr::s2c(x)[3]}) # initiate 5-mer mutability vector (length of 3125) mut5mer <- rep(NA, length=length(nuc_words)) names(mut5mer) <- nuc_words # assign values from 1-mer model to 5-mer model for (center in names(mut1mer)) { index <- which(nuc_centers == center) mut5mer[index] <- mut1mer[center] } stopifnot(length(mut5mer) == 1024) # normalize mut5mer <- mut5mer / sum(mut5mer, na.rm=T) # if extended=TRUE, extend if (extended) { mut5mer <- extendMutabilityMatrix(mut5mer) stopifnot(length(mut5mer) == 3125) } return(mut5mer) } #' Make a 1-mer substitution model by averaging over a 5-mer substitution model #' #' \code{makeAverage1merSub} averages substitution rates in a 5-mer substitution model #' to derive a 1-mer substitution model. #' #' @param sub5mer a 4x1024 matrix such as that returned by #' \code{createSubstitutionMatrix} and that returned by #' \code{makeDegenerate5merSub} with \code{extended=FALSE}. #' Column names should correspond to 5-mers containing the #' central 1-mer to mutate from. Row names should correspond to #' nucleotides to mutate into. Nucleotides should include #' "A", "T", "G", and "C" (case-insensitive). #' #' @return A 4x4 matrix with row names representing nucleotides to mutate from and column #' names representing nucleotides to mutate into. Rates are normalized by row. #' #' @details For example, the substitution rate from "A" to "T" in the resultant 1-mer model #' is derived by averaging the substitution rates into a "T" of all the 5-mers that #' have an "A" as their central 1-mer. #' #' @seealso See \link{makeDegenerate5merSub} for making a degenerate 5-mer substitution #' model based on a 1-mer substitution model. #' #' @examples #' # Make a degenerate 5-mer model (4x1024) based on HKL_S1F (4x4) #' degenerate5merSub <- makeDegenerate5merSub(sub1mer = HKL_S1F) #' #' # Now make a 1-mer model by averaging over the degenerate 5-mer model #' # Expected to get back HKL_S1F #' makeAverage1merSub(sub5mer = degenerate5merSub) #' #' @export makeAverage1merSub <- function(sub5mer) { stopifnot(dim(sub5mer) == c(4, 1024)) # make sure that rownames and colnames of sub5mer are uppercase rownames(sub5mer) <- toupper(rownames(sub5mer)) colnames(sub5mer) <- toupper(colnames(sub5mer)) # get 5-mers and center positions of 5-mers nuc_words <- colnames(sub5mer) nuc_centers <- sapply(nuc_words, function(x){seqinr::s2c(x)[3]}) # create 1-mer labels using ATGC nuc_chars <- NUCLEOTIDES[1:4] # initiate 1-mer substitution matrix (4x4) sub1mer <- matrix(NA, nrow=length(nuc_chars), ncol=length(nuc_chars), dimnames=list(nuc_chars, nuc_chars)) # assign values from 5-mer model to 1-mer model for (from in rownames(sub1mer)) { for (to in colnames(sub1mer)) { if (from != to) { # if statement keeps diagonals as NA colIndex <- which(nuc_centers == from) sub1mer[from, to] <- mean(sub5mer[to, colIndex], na.rm=T) } } } stopifnot(dim(sub1mer) == c(4, 4)) # normalize # tricky: apply transposes result; use t() to transpose back sub1mer <- t(apply(sub1mer, 1, function(x){x/sum(x, na.rm=T)})) return(sub1mer) } #' Make a 1-mer mutability model by averaging over a 5-mer mutability model #' #' \code{makeAverage1merMut} averages mutability rates in a 5-mer mutability model #' to derive a 1-mer mutability model. #' #' @param mut5mer a named vector of length 1024 such as that returned by #' \code{createMutabilityMatrix} and that returned by #' \code{makeDegenerate5merMut} with \code{extended=FALSE}. #' Names should correspond to 5-mers made up of "A", "T", #' "G", and "C" (case-insensitive). \code{NA} values are #' allowed. #' #' @return A named vector of length 4 containing normalized mutability rates. #' #' @details For example, the mutability rate of "A" in the resultant 1-mer model #' is derived by averaging the mutability rates of all the 5-mers that #' have an "A" as their central 1-mer, followed by normalization. #' #' @seealso See \link{makeDegenerate5merMut} for making a degenerate 5-mer mutability #' model based on a 1-mer mutability model. #' #' @examples #' # Make a degenerate 5-mer model (length of 1024) based on a 1-mer model #' example1merMut <- c(A=0.2, T=0.1, C=0.4, G=0.3) #' degenerate5merMut <- makeDegenerate5merMut(mut1mer = example1merMut) #' #' # Now make a 1-mer model by averaging over the degenerate 5-mer model #' # Expected to get back example1merMut #' makeAverage1merMut(mut5mer = degenerate5merMut) #' #' @export makeAverage1merMut <- function(mut5mer) { stopifnot(length(mut5mer) == 1024) # make sure that names mut5mer are uppercase names(mut5mer) <- toupper(names(mut5mer)) # get 5-mers and center positions of 5-mers nuc_words <- names(mut5mer) nuc_centers <- sapply(nuc_words, function(x){seqinr::s2c(x)[3]}) # create 1-mer labels using ATGC nuc_chars <- NUCLEOTIDES[1:4] # initiate 1-mer mutability vector (length 4) mut1mer <- rep(NA, length=length(nuc_chars)) names(mut1mer) <- nuc_chars # assign values from 5-mer model to 1-mer model for (center in names(mut1mer)) { index <- which(nuc_centers == center) mut1mer[center] <- mean(mut5mer[index], na.rm=T) } stopifnot(length(mut1mer) == 4) # normalize mut1mer <- mut1mer / sum(mut1mer, na.rm=T) return(mut1mer) } #### Distance Functions #### #' Calculates a 5-mer distance matrix from a TargetingModel object #' #' \code{calcTargetingDistance} converts either the targeting rates in a \code{TargetingModel} #' model to a matrix of 5-mer to single-nucleotide mutation distances, or the substitution #' rates in a 1-mer substitution model to a symmetric distance matrix. #' #' @param model \link{TargetingModel} object with mutation likelihood information, or #' a 4x4 1-mer substitution matrix normalized by row with rownames and #' colnames consisting of "A", "T", "G", and "C". #' @param places decimal places to round distances to. #' #' @return For input of \link{TargetingModel}, a matrix of distances for each 5-mer motif with #' rows names defining the center nucleotide and column names defining the 5-mer #' nucleotide sequence. For input of 1-mer substitution matrix, a 4x4 symmetric distance #' matrix. #' #' @details #' The targeting model is transformed into a distance matrix by: #' \enumerate{ #' \item Converting the likelihood of being mutated \eqn{p=mutability*substitution} to #' distance \eqn{d=-log10(p)}. #' \item Dividing this distance by the mean of the distances. #' \item Converting all infinite, no change (e.g., A->A), and NA distances to #' zero. #' } #' #' The 1-mer substitution matrix is transformed into a distance matrix by: #' \enumerate{ #' \item Symmetrize the 1-mer substitution matrix. #' \item Converting the rates to distance \eqn{d=-log10(p)}. #' \item Dividing this distance by the mean of the distances. #' \item Converting all infinite, no change (e.g., A -> A), and NA distances to #' zero. #' } #' #' @seealso See \link{TargetingModel} for this class of objects and #' \link{createTargetingModel} for building one. #' #' @examples #' # Calculate targeting distance of HH_S5F #' dist <- calcTargetingDistance(HH_S5F) #' #' # Calculate targeting distance of HH_S1F #' dist <- calcTargetingDistance(HH_S1F) #' #' @export calcTargetingDistance <- function(model, places=2) { # if model is TargetingModel object, assume 5-mer targeting model # extract targeting matrix if (is(model, "TargetingModel")) { input <- "5mer" model <- model@targeting } else if (is(model, "matrix") & all(dim(model) == c(4, 4))) { # if model is a matrix, assume 1-mer substitution matrix and symmetrize input <- "1mer" model <- symmetrize(model) } else { # anything else: error stop("Input must be either a 4x4 targeting matrix or TargetingModel object.") } # Take negative log10 of all probabilities model_dist <- -log10(model) # Center distances on 1 (divide by mean) model_dist <- model_dist/mean(model_dist, na.rm=T) # Set infinite values to NA model_dist[!is.finite(model_dist)] <- NA # TODO: the indexing of A-->A etc positions can probably be done smarter/faster # Assign no-change entries to distance 0 if (input == "5mer") { center_nuc <- gsub("..([ACGTN])..", "\\1", colnames(model_dist)) for (i in 1:length(center_nuc)) { model_dist[center_nuc[i], i] <- 0 } # Assign 0 to N and 5mers with N in center position model_dist[,center_nuc=="N"] <- 0 model_dist["N",] <- 0 } else if (input == "1mer") { diag(model_dist) <- 0 model_dist <- rbind(model_dist, matrix(0, 3, 4)) model_dist <- cbind(model_dist, matrix(0, 7, 3)) colnames(model_dist)[5:7] <- rownames(model_dist)[5:7] <- c("N", "-", ".") } # Round model_dist <- round(model_dist, places) return(model_dist) } # (From G Yaari) # Symmetrize a non-symmetric, 1-mer substitution matrix # # \code{symmetrize} makes a 1-mer substitution matrix symmetric by minimizing the # rss between it and a symmetric matrix. # # @param sub1mer a 4x4 matrix normalized by row. Each row sums up to 1 and # reflects substitution probabilities for each nucleotide. # Rownames and colnames are "A","C","G", and "T". # # @return a 4x4 symmetric matrix with \code{NA}s on the diagonal. # # @details The input 1-mer substitution matrix is approximated by a symmetric matrix # both with respect to time (e.g. C->T = T->C), and with respect to strand # (e.g. C->T = G->A). The symmetric matrix has three free parameters that # are estimated by minimizing the sum of squares between this matrix and # the input matrix. The fitted matrix was normalized to ensure that each # row sums up to 1. symmetrize <- function(sub1mer) { rownames(sub1mer) <- toupper(rownames(sub1mer)) colnames(sub1mer) <- toupper(colnames(sub1mer)) # check that rows sum up to 1 stopifnot(isTRUE(all.equal(rowSums(sub1mer), rep(1, 4), check.names=FALSE, tolerance=0.055))) .minDist <- function(Pars, subMtx) { (Pars[1] - subMtx["A", "C"])^2 + (Pars[1] - subMtx["C", "A"])^2 + (Pars[1] - subMtx["G", "T"])^2 + (Pars[1] - subMtx["T", "G"])^2 + (Pars[2] - subMtx["A", "G"])^2 + (Pars[2] - subMtx["G", "A"])^2 + (Pars[2] - subMtx["C", "T"])^2 + (Pars[2] - subMtx["T", "C"])^2 + (Pars[3] - subMtx["A", "T"])^2 + (Pars[3] - subMtx["T", "A"])^2 + (Pars[3] - subMtx["C", "G"])^2 + (Pars[3] - subMtx["G", "C"])^2 } pars <- optim(par=rep(0, 3), fn=.minDist, subMtx=sub1mer)$par pars <- pars/sum(pars) symmetric_substitution <- sub1mer symmetric_substitution["A", 2:4] <- pars symmetric_substitution["C", c(1, 4, 3)] <- pars symmetric_substitution["G", c(4, 1, 2)] <- pars symmetric_substitution["T", c(3, 2, 1)] <- pars # NAs on diagonal instead of 0 so that calcTargetingDistance works with 1-mer model diag(symmetric_substitution) <- NA return(symmetric_substitution) } #' Write targeting model distances to a file #' #' \code{writeTargetingDistance} writes a 5-mer targeting distance matrix #' to a tab-delimited file. #' #' @param model \link{TargetingModel} object with #' mutation likelihood information. #' @param file name of file to write. #' #' @return NULL #' #' @details #' The targeting distance write as a tab-delimited 5x3125 matrix. Rows define the mutated #' nucleotide at the center of each 5-mer, one of \code{c("A", "C", "G", "T", "N")}, #' and columns define the complete 5-mer of the unmutated nucleotide sequence. #' \code{NA} values in the distance matrix are replaced with distance 0. #' #' @seealso Takes as input a \link{TargetingModel} object and calculates #' distances using \link{calcTargetingDistance}. #' #' @examples #' \dontrun{ #' # Write HS5F targeting model to working directory as hs5f.tab #' writeTargetingDistance(HH_S5F, "hh_s5f.tsv") #' } #' #' @export writeTargetingDistance <- function(model, file) { to_write <- as.data.frame(calcTargetingDistance(model)) to_write[is.na(to_write)] <- 0 write.table(to_write, file, quote=FALSE, sep="\t", col.names=NA, row.names=TRUE) } #### Plotting functions #### #' Plot mutability probabilities #' #' \code{plotMutability} plots the mutability rates of a \code{TargetingModel}. #' #' @param model \link{TargetingModel} object or vector containing normalized #' mutability rates. #' @param nucleotides vector of center nucleotide characters to plot. #' @param mark vector of 5-mer motifs to highlight in the plot. If \code{NULL} #' only highlight classical hot and cold spot motifs. #' @param style type of plot to draw. One of: #' \itemize{ #' \item \code{"hedgehog"}: circular plot showing higher mutability #' scores further from the circle. The 5-mer #' is denoted by the values of the inner #' circle. The 5-mer is read from the most interior #' position of the 5-mer (5') to most exterior position #' (3'), with the center nucleotide in the center ring. #' Note, the order in which the 5-mers are plotted is #' different for nucleotides \code{c("A", "C")} and #' \code{c("G", "T")}. #' \item \code{"bar"}: bar plot of mutability similar to the #' \code{hedgehog} style with the most 5' positions #' of each 5-mer at the base of the plot. #' } #' @param size numeric scaling factor for lines and text in the plot. #' @param silent if \code{TRUE} do not draw the plot and just return the ggplot2 #' objects; if \code{FALSE} draw the plot. #' @param ... additional arguments to pass to ggplot2::theme. #' #' @return A named list of ggplot objects defining the plots, with names defined by the #' center nucleotide for the plot object. #' #' @seealso Takes as input a \link{TargetingModel} object. #' See \link{createTargetingModel} for model building. #' #' #' @examples #' # Plot one nucleotide in circular style #' plotMutability(HH_S5F, "C") #' #' # Plot two nucleotides in barchart style #' plotMutability(HH_S5F, c("G", "T"), style="bar") #' #' @export plotMutability <- function(model, nucleotides=c("A", "C", "G", "T"), mark=NULL, style=c("hedgehog", "bar"), size=1, silent=FALSE, ...) { # model=HH_S5F # nucleotides=c("C") # nucleotides=c("A", "C", "G", "T") # style="hedgehog" # size=1 # silent=FALSE # Check input nucleotides <- toupper(nucleotides) style <- match.arg(style) if (is(model, "TargetingModel")) { model <- model@mutability } else if (!is(model, "vector")) { stop("Input must be either a mutability vector or TargetingModel object.") } # Set base plot settings base_theme <- theme_bw() + theme(panel.spacing=grid::unit(0, "lines"), panel.background=element_blank()) + theme(axis.text=element_text(margin=margin(0, 0, 0, 0, "lines"))) + theme(text=element_text(size=10*size), title=element_text(size=10*size), legend.spacing=grid::unit(0, "lines"), legend.background=element_blank()) # Scaling and layout parameters score_offset <- 0 score_scale <- 15 text_offset <- -5.6 # Set guide colors motif_colors <- setNames(c("#000000", "#4daf4a", "#e41a1c", "#094d85", "#999999"), c("Marked", "WA/TW", "WRC/GYW", "SYC/GRS", "Neutral")) dna_colors <- setNames(c("#7bce77", "#ff9b39", "#f04949", "#5796ca", "#c4c4c4"), c("A", "C", "G", "T", "N")) # Build data.frame of mutability scores mut_scores <- model[!grepl("N", names(model))] mut_scores[!is.finite(mut_scores)] <- 0 mut_words <- names(mut_scores) mut_positions <- as.data.frame(t(sapply(mut_words, seqinr::s2c))) colnames(mut_positions) <- paste0("pos", 1:ncol(mut_positions)) mut_df <- data.frame(word=mut_words, score=mut_scores, mut_positions) # Add hot and cold-spot motif information mut_df$motif <- "Neutral" mut_df$motif[grepl("(.[AT]A..)|(..T[AT].)", mut_df$word, perl=TRUE)] <- "WA/TW" mut_df$motif[grepl("([AT][GA]C..)|(..G[CT][AT])", mut_df$word, perl=TRUE)] <- "WRC/GYW" mut_df$motif[grepl("([CG][CT]C..)|(..G[GA][CG])", mut_df$word, perl=TRUE)] <- "SYC/GRS" if (is.null(mark)) { mut_df$motif <- factor(mut_df$motif, levels=c("WA/TW", "WRC/GYW", "SYC/GRS", "Neutral")) } else { mut_df$motif[mut_df$word %in% mark] <- "Marked" mut_df$motif <- factor(mut_df$motif, levels=c("Marked", "WA/TW", "WRC/GYW", "SYC/GRS", "Neutral")) } # Subset to nucleotides of interest mut_df <- mut_df[mut_df$pos3 %in% nucleotides, ] # Functions to transform and revert score for plotting score_max <- max(mut_df$score, na.rm=TRUE) .transform_score <- function(x) { x / score_max * score_scale + score_offset } .invert_score <- function(x) { (x - score_offset) / score_scale * score_max } # Rescale scores for plotting mut_df$score <- .transform_score(mut_df$score) # Build plots for each center nucleotide plot_list <- list() for (center_nuc in nucleotides) { # center_nuc <- "C" # Subset data to center nucleotide sub_df <- mut_df[mut_df$pos3 == center_nuc, ] # Order 5-mers by positions, with reversed order if center nucleotide is G or T if (center_nuc %in% c("A", "C")) { sub_df <- dplyr::arrange(sub_df, !!!rlang::syms(c("pos1", "pos2", "pos4", "pos5"))) sub_df$x <- 1:nrow(sub_df) } else if (center_nuc %in% c("G", "T")) { sub_df <- dplyr::arrange(sub_df, !!!rlang::syms(c("pos5", "pos4", "pos2", "pos1"))) sub_df$x <- 1:nrow(sub_df) } else { stop("Invalid nucleotide choice") } # Melt 5-mer position data sub_melt <- sub_df %>% tidyr::gather("pos", "char", !!!rlang::syms(colnames(mut_positions))) %>% select("x", "pos", "char") #sub_melt$pos <- factor(sub_melt$pos, levels=mut_names) #sub_melt$pos <- as.numeric(sub_melt$pos) sub_melt$pos <- as.numeric(gsub("pos", "", sub_melt$pos)) # Define nucleotide text and rectangle position data sub_text <- list() for (i in 1:5) { nuc_rle <- rle(sub_melt$char[sub_melt$pos == i]) # Set rectangle x limits rect_max <- cumsum(nuc_rle$lengths) rect_min <- rect_max - diff(c(0, rect_max)) # Set text position if (length(rect_max) > 1) { text_x <- rect_max - diff(c(0, rect_max)) / 2 } else { text_x <- rect_max / 2 } tmp_df <- data.frame(text_x=text_x, text_y=i, text_label=factor(nuc_rle$values, levels=names(dna_colors)), rect_min=rect_min, rect_max=rect_max) sub_text[[i]] <- tmp_df } # Define text and rectangle positions for inner circle sub_melt$pos <- sub_melt$pos + text_offset sub_text <- lapply(sub_text, function(x) { dplyr::mutate(x, text_y=!!rlang::sym("text_y") + !!rlang::sym("text_offset")) }) sub_rect <- dplyr::bind_rows(sub_text) %>% mutate(rect_width=rect_max - rect_min, ymin=!!rlang::sym("text_y") - 0.5, ymax=!!rlang::sym("text_y") + 0.5) # Use only colors for motifs present in sub_df sub_colors <- motif_colors[names(motif_colors) %in% sub_df$motif] # Define base plot object p1 <- ggplot(sub_df) + base_theme + #ggtitle(paste0("NN", center_nuc, "NN")) + xlab("") + ylab("") + scale_color_manual(name="Motif", values=c(sub_colors, dna_colors), breaks=names(sub_colors)) + scale_fill_manual(name="", values=c(sub_colors, dna_colors), guide="none") + geom_rect(data=sub_rect, mapping=aes(xmin=!!rlang::sym("rect_min"), xmax=!!rlang::sym("rect_max"), ymin=!!rlang::sym("ymin"), ymax=!!rlang::sym("ymax"), fill=!!rlang::sym("text_label"), color=!!rlang::sym("text_label")), linewidth=0.5*size, alpha=1, show.legend=FALSE) + #geom_tile(data=sub_rect, # mapping=aes_string(x="text_x", y="text_y", width="rect_width", fill="text_label"), # size=0, alpha=0.7, show.legend=FALSE) + #geom_tile(data=sub_melt, mapping=aes_string(x="x", y="pos", fill="char"), size=0, alpha=0.7, # show.legend=FALSE) + geom_text(data=sub_text[[3]], mapping=aes(x=!!rlang::sym("text_x"), y=!!rlang::sym("text_y"), label=!!rlang::sym("text_label")), color="black", hjust=0.5, vjust=0.5, size=3*size, fontface=2) # Add 5-mer nucleotide labels if (center_nuc %in% c("A", "C")) { p1 <- p1 + geom_text(data=sub_text[[1]], mapping=aes(x=!!rlang::sym("text_x"), y=!!rlang::sym("text_y"), label=!!rlang::sym("text_label")), color="black", hjust=0.5, vjust=0.5, size=2*size) + geom_text(data=sub_text[[2]], mapping=aes(x=!!rlang::sym("text_x"), y=!!rlang::sym("text_y"), label=!!rlang::sym("text_label")), color="black", hjust=0.5, vjust=0.5, size=2*size) } else if (center_nuc %in% c("G", "T")) { p1 <- p1 + geom_text(data=sub_text[[4]], mapping=aes(x=!!rlang::sym("text_x"), y=!!rlang::sym("text_y"), label=!!rlang::sym("text_label")), color="black", hjust=0.5, vjust=0.5, size=2*size) + geom_text(data=sub_text[[5]], mapping=aes(x=!!rlang::sym("text_x"), y=!!rlang::sym("text_y"), label=!!rlang::sym("text_label")), color="black", hjust=0.5, vjust=0.5, size=2*size) } # Add style options and mutability scores if (style == "hedgehog") { y_limits <- c(text_offset - 1, score_scale + score_offset) #orient_x <- sub_text[[3]]$text_x[1] #orient_y <- text_offset - 1 p1 <- p1 + theme(plot.margin=margin(0, 0, 0, 0, "lines"), panel.grid=element_blank(), panel.border=element_blank(), axis.title=element_blank(), axis.text=element_blank(), axis.ticks=element_blank(), legend.direction="horizontal", legend.justification=c(0.5, 1), legend.position=c(0.5, 1)) + scale_x_continuous(expand=c(0, 0)) + scale_y_continuous(limits=y_limits, expand=c(0, 0)) + coord_polar(theta="x") + geom_segment(data=sub_df, mapping=aes(x=!!rlang::sym("x"), xend=!!rlang::sym("x"), yend=!!rlang::sym("score"), color=!!rlang::sym("motif")), y=score_offset, linewidth=0.75*size, position=position_nudge(x = -0.5)) + guides(color=guide_legend(override.aes=list(linetype=1, linewidth=2*size))) } else if (style == "bar") { y_breaks <- seq(score_offset, score_scale + score_offset, 1) y_limits <- c(text_offset + 0.5, score_scale + score_offset) p1 <- p1 + theme(plot.margin=margin(0, 0, 0, 0, "lines"), panel.grid=element_blank(), panel.border=element_rect(color="black"), axis.text.x=element_blank(), axis.ticks.x=element_blank(), legend.position="top") + ylab("Mutability") + scale_x_continuous(expand=c(0, 1)) + scale_y_continuous(limits=y_limits, breaks=y_breaks, expand=c(0, 0.5), labels=function(x) scales::scientific(.invert_score(x))) + geom_bar(data=sub_df, mapping=aes(x=!!rlang::sym("x"), y=!!rlang::sym("score"), fill=!!rlang::sym("motif"), color=!!rlang::sym("motif")), stat="identity", position=position_nudge(x = -0.5), linewidth=0, width=0.7) + guides(color=guide_legend(override.aes=list(fill=sub_colors, linetype=0))) } # Add additional theme elements p1 <- p1 + do.call(theme, list(...)) # Add plot to list plot_list[[center_nuc]] <- p1 } # Plot if (!silent) { do.call(gridPlot, args=c(plot_list, ncol=length(plot_list))) } invisible(plot_list) } #' Visualize parameter tuning for minNumMutations and minNumSeqMutations #' #' Visualize results from \link{minNumMutationsTune} and \link{minNumSeqMutationsTune} #' #' @param tuneMtx a \code{matrix} or a \code{list} of matrices produced by either #' \link{minNumMutationsTune} or \link{minNumSeqMutationsTune}. #' In the case of a list, it is assumed that each matrix corresponds #' to a sample and that all matrices in the list were produced using #' the same set of trial values of \code{minNumMutations} or #' \code{minNumSeqMutations}. #' @param thresh a number or a vector of indicating the value or the range of values #' of \code{minNumMutations} or \code{minNumSeqMutations} to plot. #' Should correspond to the columns of \code{tuneMtx}. #' @param criterion one of \code{"5mer"}, \code{"3mer"}, \code{"1mer"}, or \code{"3mer+1mer"} #' (for \code{tuneMtx} produced by \link{minNumMutationsTune}), or either #' \code{"measured"} or \code{"inferred"} (for \code{tuneMtx} produced by #' \link{minNumSeqMutationsTune}). #' @param pchs point types to pass on to \link{plot}. #' @param ltys line types to pass on to \link{plot}. #' @param cols colors to pass on to \link{plot}. #' @param plotLegend whether to plot legend. Default is \code{TRUE}. Only applicable #' if \code{tuneMtx} is a named list with names of the matrices #' corresponding to the names of the samples. #' @param legendPos position of legend to pass on to \link{legend}. Can be either a #' numeric vector specifying x-y coordinates, or one of #' \code{"topright"}, \code{"center"}, etc. Default is \code{"topright"}. #' @param legendHoriz whether to make legend horizontal. Default is \code{FALSE}. #' @param legendCex numeric values by which legend should be magnified relative to 1. #' #' @details For \code{tuneMtx} produced by \link{minNumMutationsTune}, for each sample, depending on #' \code{criterion}, the numbers of 5-mers for which substitution rates are directly computed #' (\code{"5mer"}), inferred based on inner 3-mers (\code{"3mer"}), inferred based on #' central 1-mers (\code{"1mer"}), or inferred based on inner 3-mers and central 1-mers #' (\code{"3mer+1mer"}) are plotted on the y-axis against values of \code{minNumMutations} #' on the x-axis. #' #' For \code{tuneMtx} produced by \link{minNumSeqMutationsTune}, for each sample, depending on #' \code{criterion}, the numbers of 5-mers for which mutability rates are directly measured #' (\code{"measured"}) or inferred (\code{"inferred"}) are plotted on the y-axis against values #' of \code{minNumSeqMutations} on the x-axis. #' #' Note that legends will be plotted only if \code{tuneMtx} is a supplied as a named \code{list} #' of matrices, ideally with names of each \code{matrix} corresponding to those of the samples #' based on which the matrices were produced, even if \code{plotLegend=TRUE}. #' #' @seealso See \link{minNumMutationsTune} and \link{minNumSeqMutationsTune} for generating #' \code{tuneMtx}. #' #' @examples #' \donttest{ #' # Subset example data to one isotype and 200 sequences #' data(ExampleDb, package="alakazam") #' db <- subset(ExampleDb, c_call == "IGHA") #' set.seed(112) #' db <- dplyr::slice_sample(db, n=50) #' #' tuneMtx = list() #' for (i in 1:length(unique(db$sample_id))) { #' # Get data corresponding to current sample #' curDb = db[db[["sample_id"]] == unique(db[["sample_id"]])[i], ] #' #' # Count the number of mutations per 5-mer #' subCount = createSubstitutionMatrix(db=curDb, model="s", #' sequenceColumn="sequence_alignment", #' germlineColumn="germline_alignment_d_mask", #' vCallColumn="v_call", #' multipleMutation="independent", #' returnModel="5mer", numMutationsOnly=TRUE) #' #' # Tune over minNumMutations = 5..50 #' subTune = minNumMutationsTune(subCount, seq(from=5, to=50, by=5)) #' #' tuneMtx = c(tuneMtx, list(subTune)) #' } #' #' # Name tuneMtx after sample names #' names(tuneMtx) = unique(db[["sample_id"]]) #' #' # plot with legend for both samples for a subset of minNumMutations values #' plotTune(tuneMtx, thresh=c(5, 15, 25, 40), criterion="3mer", #' pchs=16:17, ltys=1:2, cols=2:3, #' plotLegend=TRUE, legendPos=c(25, 30)) #' #' # plot for only 1 sample for all the minNumMutations values (no legend) #' plotTune(tuneMtx[[1]], thresh=seq(from=5, to=50, by=5), criterion="3mer") #' } #' #' @export plotTune <- function(tuneMtx, thresh, criterion=c("5mer", "3mer", "1mer", "3mer+1mer", "measured", "inferred"), pchs = 1, ltys = 2, cols = 1, plotLegend = TRUE, legendPos = "topright", legendHoriz = FALSE, legendCex = 1) { stopifnot(length(criterion)==1) stopifnot(is.matrix(tuneMtx) | is.list(tuneMtx)) ### extract plot data into plotMtx # if tuneMtx is just a matrix if (!is.list(tuneMtx)) { if (criterion!="3mer+1mer") { plotMtx <- matrix(tuneMtx[criterion, as.character(thresh)], nrow=1) } else { plotMtx <- matrix(colSums(tuneMtx[c("3mer", "1mer"), as.character(thresh)]), nrow=1) } } else { # if tuneMtx is a named list of matrices (e.g. corresponding to multiple samples) if (criterion!="3mer+1mer") { plotMtx <- do.call(base::rbind, lapply(tuneMtx, function(mtx){mtx[criterion, as.character(thresh)]})) } else { plotMtx <- do.call(base::rbind, lapply(tuneMtx, function(mtx){colSums(mtx[c("3mer", "1mer"), as.character(thresh)])})) } rownames(plotMtx) <- names(tuneMtx) } # sanity check: there should not be any NA stopifnot(!any(is.na(plotMtx))) ### if number of pchs/ltys/cols provided does not match number of samples expected # expand into vector with repeating values (otherwise legend would break) if (length(pchs)!=nrow(plotMtx)) {pchs <- rep(pchs, length.out=nrow(plotMtx))} if (length(ltys)!=nrow(plotMtx)) {ltys <- rep(ltys, length.out=nrow(plotMtx))} if (length(cols)!=nrow(plotMtx)) {cols <- rep(cols, length.out=nrow(plotMtx))} ### axis labels if (criterion %in% c("5mer", "3mer", "1mer", "3mer+1mer")) { xlab.name <- "Minimum # mutations per 5-mer to\ndirectly compute 5-mer substitution rates" # cannot use switch because variable names cannot start with number ylab.name <- "# 5-mers for which substitution rates are\n" if (criterion=="5mer") { ylab.name <- paste(ylab.name, "directly computed") } else if (criterion=="3mer") { ylab.name <- paste(ylab.name, "inferred based on inner 3-mers") } else if (criterion=="1mer") { ylab.name <- paste(ylab.name, "inferred based on central 1-mers") } else if (criterion=="3mer+1mer") { ylab.name <- paste(ylab.name, "inferred based on 3- and 1-mers") } } else if (criterion %in% c("measured", "inferred")) { xlab.name <- "Minimum # mutations in sequences containing each 5-mer\nto directly compute mutability" ylab.name <- paste("# 5-mers for which mutability is", criterion) } ### plot # bottom, left, top, right par(mar=c(6, 6, 4, 2) + 0.1) for (i in 1:nrow(plotMtx)) { if (i==1) { plot(x=thresh, y=plotMtx[i, ], ylim=range(plotMtx), xaxt="n", xlab="", ylab="", cex.axis=1.5, type="b", lwd=1.5, pch=pchs[i], lty=ltys[i], col=cols[i]) axis(side=1, at=thresh, cex.axis=1.5) mtext(side=1, text=xlab.name, line=4, cex=1.2) mtext(side=2, text=ylab.name, line=3, cex=1.2) } else { points(x=thresh, y=plotMtx[i, ], type="b", lwd=1.5, pch=pchs[i], lty=ltys[i], col=cols[i]) } } ### legend (even if plotLegend=T, only plotted if tuneMtx is a named list) if ( !is.null(rownames(plotMtx)) & plotLegend ) { # if legendPos specified as xy coordinates if (is.numeric(legendPos) & length(legendPos)==2) { legend(x=legendPos[1], y=legendPos[2], legend = c("Sample", rownames(plotMtx)), horiz = legendHoriz, cex = legendCex, pch=c(NA, pchs), lty=c(NA, ltys), col=c(NA, cols)) } else { # if legendPos specified as "center", "topright", etc. legend(legendPos, legend = c("Sample", rownames(plotMtx)), horiz = legendHoriz, cex = legendCex, pch=c(NA, pchs), lty=c(NA, ltys), col=c(NA, cols)) } } } #### Original BASELINe functions #### # Given a nuc, returns the other 3 nucs it can mutate to canMutateTo <- function(nuc) { NUCLEOTIDES[1:4][NUCLEOTIDES[1:4] != nuc] } # Compute the mutations types # matOfCodons: nx2; n=pairs of codons; 1st col=codonTo, 2nd col=codonFrom # NOTE: this function is not intended to be used where input sequences have # ambiguous characters; it assumes that only 1 entry (r/s/stop/na) from # mutationType is non-zero/1 mutationTypeOptimized <- function(matOfCodons) { # mutType: 4xn; rows: r/s/stop/na mutType <- apply(matOfCodons, 1, function(x) { mutationType(x[2], x[1]) }) idx <- apply(mutType, 2, function(y){which(y>0)[1]}) mutType <- rownames(mutType)[idx] mutType[which(mutType=="na")] <- NA return(mutType) } # row 1 = GL # row 2 = Seq # in_matrix <- matrix(c(c("A","A","A","C","C","C"), c("A","G","G","C","C","A")), 2 ,6, byrow=T) # analyzeMutations2NucUri(in_matrix) analyzeMutations2NucUri <- function(in_matrix) { if(ncol(in_matrix) > VLENGTH) { paramGL <- in_matrix[2,1:VLENGTH] paramSeq <- in_matrix[1,1:VLENGTH] } else { paramGL <- in_matrix[2,] paramSeq <- in_matrix[1,] } #mutations = apply(rbind(paramGL,paramSeq), 2, function(x){!x[1]==x[2]}) mutations_val <- paramGL != paramSeq if (any(mutations_val)) { mutationPos <- {1:length(mutations_val)}[mutations_val] #mutationPos = mutationPos[sapply(mutationPos, function(x){!any(paramSeq[getCodonPos(x)]=="N")})] length_mutations =length(mutationPos) mutationInfo <- rep(NA,length_mutations) if (any(mutationPos)) { pos<- mutationPos pos <- pos[!is.na(pos)] pos_array <- array(sapply(pos,getCodonPos)) codonGL <- paramGL[pos_array] codonGL[is.na(codonGL)] <- "N" codonSeq <- sapply(pos,function(x){ seqP <- paramGL[getCodonPos(x)] muCodonPos <- {x-1}%%3+1 seqP[muCodonPos] <- paramSeq[x] return(seqP) }) codonSeq[is.na(codonSeq)] <- "N" GLcodons <- apply(matrix(codonGL,length_mutations,3,byrow=TRUE),1,c2s) Seqcodons <- apply(codonSeq,2,c2s) mutationInfo <- apply(rbind(GLcodons , Seqcodons),2,function(x){ # not intended to be used where input sequences have # ambiguous characters; it assumes that only 1 entry (r/s/stop/na) from # mutationType is non-zero/1 mutType <- mutationType(c2s(x[1]),c2s(x[2])) mutType <- names(mutType)[which(mutType>0)] if (mutType=="na") {mutType=NA} return(mutType) }) names(mutationInfo) <- mutationPos } if (any(!is.na(mutationInfo))) { return(mutationInfo[!is.na(mutationInfo)]) } else { return(NA) } } else { return (NA) } } # List mutations listMutations <- function(seqInput, seqGL, multipleMutation, model) { #if( is.na(c(seqInput, seqGL)) ) return(array(NA,4)) if (is.na(seqInput) | is.na(seqGL)) { return(NA) } seqI <- s2c(seqInput) seqG <- s2c(seqGL) matIGL <- matrix(c(seqI, seqG), ncol=length(seqI), nrow=2, byrow=T) mutations <- analyzeMutations2NucUri(matIGL) mutations <- mutations[!is.na(mutations)] #positions <- as.numeric(names(mutations)) # mutations <- mutations[positions <= VLENGTH] #remove the nucleotide mutations in the codons with multiple mutations if (multipleMutation == "ignore") { mutationCodons <- getCodonNumb(as.numeric(names(mutations))) tableMutationCodons <- table(mutationCodons) codonsWithMultipleMutations <- as.numeric(names(tableMutationCodons[tableMutationCodons>1])) mutations <- mutations[!(mutationCodons %in% codonsWithMultipleMutations)] } if (model == "s") { mutations <- mutations[mutations == "s"] } if (length(mutations) > 0) { return(mutations) } else { return(NA) } } # List the numbers of observed mutations # # This lists the observed number of mutation. # # @param db a data.frame of the DB file. # @param sequenceColumn The name of the sequence column. # @param germlineColumn The name of the germline column. # # @return list of mutations in each clone listObservedMutations <- function(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", multipleMutation=c("independent", "ignore"), model = c("rs", "s")) { # Make sure the columns specified exist if (!(sequenceColumn %in% names(db))) { stop("The sequence column", sequenceColumn, "was not found.") } if (!(germlineColumn %in% names(db))) { stop("The germline column", germlineColumn, "was not found.") } mutations <- mapply(listMutations, db[[sequenceColumn]], db[[germlineColumn]], multipleMutation, model, USE.NAMES=FALSE, SIMPLIFY = F) return(mutations) } #### Testing functions #### # Function to make dummy data for testing targeting functions # # @param nseq number of sequences # @param nmut number of mutations per sequence # @param nmer number of 5-mers per sequence (sequence length = 5 * nmer) # # @return a data.frame with columns sequence_id, sequence_alignment, germline_alignment_d_mask, v_call. # # @examples # db <- makeTargetingTestDb(500) makeTargetingTestDb <- function(nseq=10, nmut=40, nmers=50) { nuc_chars <- c("A", "C", "G", "T") .mut <- function(x, n) { i <- sample(1:nchar(x), n) y <- seqinr::s2c(x) y[i] <- sapply(y[i], function(z) sample(nuc_chars[nuc_chars != z], 1)) return(seqinr::c2s(y)) } seq <- apply(replicate(nseq, sample(seqinr::words(5, nuc_chars), nmers)), 2, paste, collapse="") germ <- sapply(seq, .mut, n=nmut) db <- data.frame(sequence_id=paste0("SEQ", 1:nseq), sequence_alignment=seq, germline_alignment_d_mask=germ, v_call="Homsap IGHV3-66*02 F", stringsAsFactors=FALSE) rownames(db) <- NULL return(db) } shazam/vignettes/0000755000176200001440000000000015123530430013541 5ustar liggesusersshazam/vignettes/Baseline-Vignette.Rmd0000644000176200001440000004140615120056314017520 0ustar liggesusers--- title: 'Shazam: Quantification of selection pressure' author: "Namita Gupta & Jason Anthony Vander Heiden & Julian Q. Zhou" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4 fig_width: 7.5 highlight: pygments toc: yes html_document: fig_height: 4 fig_width: 7.5 highlight: pygments theme: readable toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteIndexEntry{Selection quantification} %\VignetteEngine{knitr::rmarkdown} %\usepackage[utf8]{inputenc} --- BASELINe quantifies selection pressure by calculating the posterior probability density function (PDF) based on observed mutations compared to expected mutation rates derived from an underlying SHM targeting model. Selection is quantified via the following steps: 1. Calculate the selection scores for individual sequences. 2. Group by relevant fields for comparison and convolve individual selection PDFs. 4. Plot and compare selection scores of different groups of sequences. ## Example data A small example AIRR Rearrangement database is included in the `alakazam` package. The example dataset consists of a subset of Ig sequencing data from an influenza vaccination study (Laserson and Vigneault et al., PNAS, 2014). The data include sequences from multiple time-points before and after the subject received an influenza vaccination. Quantifying selection requires the following fields (columns) to be present in the table: * `sequence_id` * `sequence_alignment` * `germline_alignment_d_mask` ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Import required packages library(alakazam) library(shazam) # Load and subset example data (for faster demonstration) data(ExampleDb, package="alakazam") ExampleDb <- subset(ExampleDb, c_call %in% c("IGHA", "IGHG")) ``` ## Preprocessing Before starting the selection analysis, data need to be prepared in one of two ways: 1. Constructing clonal consensus sequences. 1. Incorporating lineage information. ### Constructing clonal consensus sequences Individual sequences within clonal groups are not, strictly speaking, independent events and it is generally appropriate to only analyze selection pressures on an effective sequence for each clonal group. The `collapseClones` function provides one strategy for generating an effective sequences for each clone. It reduces the input database to one row per clone and appends `clonal_sequence` and `clonal_germline` columns which contain the consensus sequences for each clone. ```{r, eval=TRUE, warning=FALSE, results="hide"} # Collapse clonal groups into single sequences clones <- collapseClones(ExampleDb, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=IMGT_V, method="thresholdedFreq", minimumFrequency=0.6, includeAmbiguous=FALSE, breakTiesStochastic=FALSE, nproc=1) ``` ### Incorporating lineage information For each clone, lineage information can be incorporated following these steps: ```{r eval=F, warning=F, results="hide"} # Subset to sequences with clone_id=3170 db_3170 <- subset(ExampleDb, clone_id == 3170) dim(db_3170) colnames(db_3170) # Generate a ChangeoClone object for lineage construction clone_3170 <- makeChangeoClone(db_3170, seq="sequence_alignment", germ="germline_alignment") # Run the lineage reconstruction dnapars_exec <- "/usr/local/bin/dnapars" graph_3170 <- buildPhylipLineage(clone_3170, dnapars_exec, rm_temp=TRUE) # Generating a data.frame from the lineage tree graph object, # and merge it with clone data.frame graph_3170_df <- makeGraphDf(graph_3170, clone_3170) dim(graph_3170_df) colnames(graph_3170_df) ``` `makeGraphDf` creates a `data.frame` with the column `parent_sequence`, which can be used to analyze mutations for each sequence relative to their `parent_sequence`. ## Calculate selection PDFs for individual sequences Selection scores are calculated with the `calcBaseline` function. This can be performed with a single call to `calcBaseline`, which performs all required steps. Alternatively, one can perform each step separately for greater control over the analysis parameters. ### Calculating selection in multiple steps Following construction of an effective sequence for each clone, the observed and expected mutation counts are calculated for each sequence in the `clonal_sequence` column relative to the `clonal_germline`. `observedMutations` is used to calculate the number of observed mutations and `expectedMutations` calculates the expected frequency of mutations. The underlying targeting model for calculating expectations can be specified using the `targetingModel` parameter. In the example below, the default `HH_S5F` is used. Column names for sequence and germline sequence may also be passed in as parameters if they differ from the Change-O defaults. Mutations are counted by these functions separately for complementarity determining (CDR) and framework (FWR) regions. The `regionDefinition` argument defines whether these regions are handled separately, and where the boundaries lie. There are several built-in region definitions in the `shazam` package, both dependent upon the V segment being IMGT-gapped: * `IMGT_V`: All regions in the V segment, excluding CDR3, grouped as either CDR or FWR. * `IMGT_V_BY_REGIONS`: The CDR1, CDR2, FWR1, FWR and FWR3 regions in the V segment (no CDR3) treated as individual regions. * `IMGT_VDJ`: All regions, including CDR3 and FWR4, grouped as either CDR or FWR. This `RegionDefinition` is initially empty, and one is created on the fly for each set of clonally related sequences. * `IMGT_VDJ_BY_REGIONS`: CDR1, CDR2, CDR3, FWR1, FWR, FWR3 and FWR4 regions treated as individual regions. This `RegionDefinition` is initially empty, and one is created on the fly for each set of clonally related sequences. Users may define other region sets and boundaries by creating a custom `RegionDefinition` object. ```{r, eval=TRUE, warning=FALSE, results="hide"} # Count observed mutations and append mu_count columns to the output observed <- observedMutations(clones, sequenceColumn="clonal_sequence", germlineColumn="clonal_germline", regionDefinition=IMGT_V, nproc=1) # Count expected mutations and append mu_expected columns to the output expected <- expectedMutations(observed, sequenceColumn="clonal_sequence", germlineColumn="clonal_germline", targetingModel=HH_S5F, regionDefinition=IMGT_V, nproc=1) ``` The counts of observed and expected mutations can be combined to test for selection using `calcBaseline`. The statistical framework used to test for selection based on mutation counts can be specified using the `testStatistic` parameter. ```{r, eval=TRUE, warning=FALSE, results="hide"} # Calculate selection scores using the output from expectedMutations baseline <- calcBaseline(expected, testStatistic="focused", regionDefinition=IMGT_V, nproc=1) ``` ### Calculating selection in one step It is not required for `observedMutation` and `expectedMutations` to be run prior to `calcBaseline`. If the output of these two steps does not appear in the input data.frame, then `calcBaseline` will call the appropriate functions prior to calculating selection scores. ```{r, eval=FALSE, warning=FALSE, results="hide"} # Calculate selection scores from scratch baseline <- calcBaseline(clones, testStatistic="focused", regionDefinition=IMGT_V, nproc=1) ``` ### Using alternative mutation definitions and models The default behavior of `observedMutations` and `expectedMutations`, and by extension `calcBaseline`, is to define a replacement mutation in the usual way - any change in the amino acid of a codon is considered a replacement mutation. However, these functions have a `mutationDefinition` argument which allows these definitions to be changed by providing a `MutationDefinition` object that contains alternative replacement and silent criteria. `shazam` provides the following built-in `MutationDefinition` objects: * `CHARGE_MUTATIONS`: Amino acid mutations are defined by changes in side chain charge class. * `HYDROPATHY_MUTATIONS`: Amino acid mutations are defined by changes in side chain hydrophobicity class. * `POLARITY_MUTATIONS`: Amino acid mutations are defined by changes in side chain polarity class. * `VOLUME_MUTATIONS`: Amino acid mutations are defined by changes in side chain volume class. The default behavior of `expectedMutations` is to use the human 5-mer mutation model, `HH_S5F`. Alternative SHM targeting models can be provided using the `targetingModel` argument. ```{r, eval=FALSE, warning=FALSE, results="hide"} # Calculate selection on charge class with the mouse 5-mer model baseline_mk_rs5nf <- calcBaseline(clones, testStatistic="focused", regionDefinition=IMGT_V, targetingModel=MK_RS5NF, mutationDefinition=CHARGE_MUTATIONS, nproc=1) ``` ## Group and convolve individual selection distributions To compare the selection scores of groups of sequences, the sequences must be convolved into a single PDF representing each group. In the example dataset, the `sample_id` field corresponds to samples taken at different time points before and after an influenza vaccination and the `c_call` field specifies the isotype of the sequence. The `groupBaseline` function convolves the BASELINe PDFs of individual sequences/clones to get a combined PDF. The field(s) by which to group the sequences are specified with the `groupBy` parameter. The `groupBaseline` function automatically calls `summarizeBaseline` to generate summary statistics based on the requested groupings, and populates the `stats` slot of the input `Baseline` object with the number of sequences with observed mutations for each region, mean selection scores, 95% confidence intervals, and p-values with positive signs indicating the presence of positive selection and/or p-values with negative signs indicating the presence of negative selection. The magnitudes of the p-values (without the signs) should be interpreted as analogous to a t-test. ### Grouping by a single annotation The following example generates a single selection PDF for each unique annotation in the `sample_id` column. ```{r, eval=TRUE, warning=FALSE, results="hide"} # Combine selection scores by time-point grouped_1 <- groupBaseline(baseline, groupBy="sample_id") ``` ### Subsetting and grouping by multiple annotations Grouping by multiple annotations follows the sample procedure as a single annotation by simply adding columns to the `groupBy` argument. Subsetting the data can be performed before or after generating selection PDFs via `calcBaseline`. However, note that subsetting may impact the clonal representative sequences generated by `collapseClones`. In the following example, subsetting precedes the collapsing of clonal groups. ```{r, eval=TRUE, warning=FALSE, results="hide"} # Subset the original data to switched isotypes db_sub <- subset(ExampleDb, c_call %in% c("IGHM", "IGHG")) # Collapse clonal groups into single sequence clones_sub <- collapseClones(db_sub, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=IMGT_V, method="thresholdedFreq", minimumFrequency=0.6, includeAmbiguous=FALSE, breakTiesStochastic=FALSE, nproc=1) # Calculate selection scores from scratch baseline_sub <- calcBaseline(clones_sub, testStatistic="focused", regionDefinition=IMGT_V, nproc=1) # Combine selection scores by time-point and isotype grouped_2 <- groupBaseline(baseline_sub, groupBy=c("sample_id", "c_call")) ``` ### Convolving variables at multiple levels To make selection comparisons using two levels of variables, you would need two iterations of groupings, where the first iteration of `groupBaseline` groups on both variables, and the second iteration groups on the "outer" variable. For example, if a data set has both case and control subjects annotated in `status` and `subject` columns, then generating convolved PDFs for each status would be performed as: ```{r, eval=FALSE, warning=FALSE, results="hide"} # First group by subject and status subject_grouped <- groupBaseline(baseline, groupBy=c("status", "subject")) # Then group the output by status status_grouped <- groupBaseline(subject_grouped, groupBy="status") ``` ### Testing the difference in selection PDFs between groups The `testBaseline` function will perform significance testing between two grouped BASELINe PDFs, by region, and return a data.frame with the following information: * `region`: The sequence region, such as `cdr` and `fwr`. * `test`: The name of the two groups compared. * `pvalue`: Two-sided p-value for the comparison. * `fdr`: FDR corrected p-value. ```{r, eval=TRUE} testBaseline(grouped_1, groupBy="sample_id") ``` ## Plot and compare selection scores for groups `plotBaselineSummary` plots the mean and confidence interval of selection scores for the given groups. The `idColumn` argument specifies the field that contains identifiers of the groups of sequences. If there is a secondary field by which the sequences are grouped, this can be specified using the `groupColumn`. This secondary grouping can have a user-defined color palette passed into `groupColors` or can be separated into facets by setting the `facetBy="group"`. The `subsetRegions` argument can be used to visualize selection of specific regions. Several examples utilizing these different parameters are provided below. ```{r, eval=TRUE, warning=FALSE} # Set sample and isotype colors sample_colors <- c("-1h"="seagreen", "+7d"="steelblue") isotype_colors <- c("IGHM"="darkorchid", "IGHD"="firebrick", "IGHG"="seagreen", "IGHA"="steelblue") # Plot mean and confidence interval by time-point plotBaselineSummary(grouped_1, "sample_id") # Plot selection scores by time-point and isotype for only CDR plotBaselineSummary(grouped_2, "sample_id", "c_call", groupColors=isotype_colors, subsetRegions="cdr") # Group by CDR/FWR and facet by isotype plotBaselineSummary(grouped_2, "sample_id", "c_call", facetBy="group") ``` `plotBaselineDensity` plots the full `Baseline` PDF of selection scores for the given groups. The parameters are the same as those for `plotBaselineSummary`. However, rather than plotting the mean and confidence interval, the full density function is shown. ```{r, eval=TRUE, warning=FALSE} # Plot selection PDFs for a subset of the data plotBaselineDensity(grouped_2, "c_call", groupColumn="sample_id", colorElement="group", colorValues=sample_colors, sigmaLimits=c(-1, 1)) ``` ## Editing a field in a Baseline object If for any reason you need to edit the existing values in a field in a `Baseline` object, you can do so via `editBaseline`. In the following example, we remove results related to IGHA in the relevant fields from `grouped_2`. When the input data is large and it takes a long time for `calcBaseline` to run, `editBaseline` could become useful when, for instance, you would like to exclude a certain sample or isotype, but would rather not re-run `calcBaseline` after removing that sample or isotype from the original input data. ```{r, eval=FALSE, warning=FALSE, results="hide"} # Get indices of rows corresponding to IGHA in the field "db" # These are the same indices also in the matrices in the fields "numbOfSeqs", # "binomK", "binomN", "binomP", and "pdfs" # In this example, there is one row of IGHA for each sample dbIgMIndex <- which(grouped_2@db[["c_call"]] == "IGHG") grouped_2 <- editBaseline(grouped_2, "db", grouped_2@db[-dbIgMIndex, ]) grouped_2 <- editBaseline(grouped_2, "numbOfSeqs", grouped_2@numbOfSeqs[-dbIgMIndex, ]) grouped_2 <- editBaseline(grouped_2, "binomK", grouped_2@binomK[-dbIgMIndex, ]) grouped_2 <- editBaseline(grouped_2, "binomN", grouped_2@binomN[-dbIgMIndex, ]) grouped_2 <- editBaseline(grouped_2, "binomP", grouped_2@binomP[-dbIgMIndex, ]) grouped_2 <- editBaseline(grouped_2, "pdfs", lapply(grouped_2@pdfs, function(pdfs) {pdfs[-dbIgMIndex, ]} )) # The indices corresponding to IGHA are slightly different in the field "stats" # In this example, there is one row of IGHA for each sample and for each region grouped_2 <- editBaseline(grouped_2, "stats", grouped_2@stats[grouped_2@stats[["c_call"]] != "IGHA", ]) ``` shazam/vignettes/Shmulate-Vignette.Rmd0000644000176200001440000001440715120056314017561 0ustar liggesusers--- title: 'Shazam: Simulating sequence mutations' author: "Julian Q. Zhou" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 5 fig_width: 7.5 highlight: pygments toc: yes html_document: fig_height: 5 fig_width: 7.5 highlight: pygments theme: readable toc: yes md_document: fig_height: 5 fig_width: 7.5 preserve_yaml: no toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Simulating sequence mutations} %\usepackage[utf8]{inputenc} --- `SHazaM` provides two functions for simulating mutated sequences, one at the sequence level (`shmulateSeq`), and the other at the lineage level (`shmulateTree`). Both functions rely on a 5-mer targeting model for computing the probabilities of mutations at each position along the input sequence. The 5-mer targeting models currently available in `SHazaM` are: - `HH_S5F`: Human Heavy chain, Silent, 5-mer, Functional targeting model - `HKL_S5F`: Human Kappa and Lambda light chain, Silent, 5-mer, Functional targeting model - `MK_RS5NF`: Mouse Kappa light chain, Replacement and Silent, 5-mer, Non-Functional targeting model - `U5N`: Uniform 5-mer Null targeting model ## Simulate mutations in a single sequence `shmulateSeq` generates random mutations in an input sequence. This sequence is provided by the user as a string, with the acceptable alphabet being `{A, T, G, C, N, .}`. Note that `-` is not accepted as part of the input sequence. If the input sequence has a non-triplet overhang at the end, it will be trimmed to the last codon. For example, `ATGCATGC` will be trimmed to `ATGCAT` before mutations are introduced. The total number or frequency of mutations to be introduced is user-specified via `numMutations` with `frequency` set to `FALSE` (default) or `TRUE` respectively. For `frequency=TRUE`, the number of mutations to be introduced is calculated as the length of the sequence multiplied by the specified mutation frequency and rounded down to the nearest whole number (`floor`). Mutations are not introduced to positions in the input sequence that contain `.` or `N`. Mutations are introduced iteratively using a targeting model. Targeting probabilities at each position are updated after each iteration. ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Import required packages library(shazam) # Input sequence sequence <- "NGATCTGACGACACGGCCGTGTATTACTGTGCGAGAGATA.TTTA" # Simulate introduction of 6 mutations using the default HH_S5F targeting model shmulateSeq(sequence, numMutations=6) # Simulate introduction of mutations at frequency 0.2 using the default HH_S5F targeting model shmulateSeq(sequence, numMutations=0.2, frequency=TRUE) # Simulate introduction of 4 mutations using the MK_RS5NF targeting model shmulateSeq(sequence, numMutations=4, targetingModel=MK_RS5NF) ``` ## Simulate mutations in a lineage tree `shmulateTree` generates a set of simulated sequences based on an input sequence and a lineage tree. The input sequence will act as the most recent common ancestor (MRCA) of the lineage tree, and sequences in the offspring nodes will be simulated with the numbers of mutations corresponding to the edge weights of the tree. The lineage tree is supplied by the user as an igraph `graph` object, such as that returned by `buildPhylipLineage` of the `alakazam` package. For details, see the `Reconstruction of Ig lineage trees` vignette of `alakazam`. It is assumed that the `name` vertex attribute of the root node is `Germline`, as is the case with the trees built by `buildPhylipLineage`. ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Import required packages library(alakazam) library(igraph) library(shazam) # Load example lineage data(ExampleTrees, package="alakazam") graph <- ExampleTrees[[17]] # Input sequence to be used as MRCA of the lineage tree sequence <- "NGATCTGACGACACGGCCGTGTATTACTGTGCGAGAGATAGTTTA" # Simulate using the default HH_S5F targeting model shmulateTree(sequence, graph) ``` It is possible to exclude certain specified nodes from being considered as the MRCA and from being included as part of the simulation. To specify such nodes, use the `field` argument to indicate which annotation field in `vertex_attr(graph)` contains information relevant to deciding which nodes to exclude, and the `exclude` argument to indicate the value in the annotation field that nodes to be excluded carry. Note that when excluding some nodes, additional nodes that have not been explicitly specified by the user to be excluded may also get excluded. For example, suppose that node B is an offspring of node A; and node A has been specified by the user to be excluded. As a corollary of node A being excluded, its offspring node B will also become excluded, despite not being specified explicitly. ```{r, eval=TRUE, warning=FALSE} # The annotation field called "sample_id" vertex_attr(graph)$sample_id # notice that node "GN5SHBT01AKANC" is an offspring of "Inferred1" par(mar=c(0, 0, 0, 0) + 0.1) plot(graph, layout=layout_as_tree, edge.arrow.mode=0, vertex.label.cex=0.75) # Exclude nodes without a sample identifier # The nodes "Germline" and "Inferred1" are thus excluded # As a corollary, "GN5SHBT01AKANC", the offspring of "Inferred1", is also excluded # In this case, "GN5SHBT07JDYW5" is then taken to be the MRCA shmulateTree(sequence, graph, field="sample_id", exclude=NA) ``` It is also possible to add a proportional number of mutations to the immediate offsprings of the MRCA based on the fraction of the nucleotide sequence that is within the junction region. This is achieved via the optional `junctionWeight` argument, to be supplied as a numeric value between `0` and `1`. As an example, suppose that the MRCA has two immediate offsprings, each containing 2 and 4 mutations respectively compared to the MRCA. With `junctionWeight=0.2`, the number of mutations to be introduced to these two offsprings will become `round(2*(1+0.2))` (2) and `round(4*(1+0.2))` (5) respectively. ```{r, eval=TRUE, warning=FALSE} # The "Inferred1" node is taken to be the MRCA and has 2 immediate offsprings par(mar=c(0, 0, 0, 0) + 0.1) plot(graph, layout=layout_as_tree, edge.arrow.mode=0, vertex.label.cex=0.75) # Add 20% mutation rate to the immediate offsprings of the MRCA shmulateTree(sequence, graph, junctionWeight=0.2) ``` shazam/vignettes/Mutation-Vignette.Rmd0000644000176200001440000002302715120056373017602 0ustar liggesusers--- title: 'Shazam: Mutation analysis' author: "Susanna Marquez & Julian Q. Zhou" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4.5 fig_width: 7.5 highlight: pygments toc: yes html_document: fig_height: 4.5 fig_width: 7.5 highlight: pygments theme: readable toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Mutation analysis} %\usepackage[utf8]{inputenc} --- Basic mutational load calculations are provided by the `observedMutations` function. `observedMutations` provides multiple options to control how mutations are calculated. Mutations can be calculated as either counts or frequencies, divided into replacement (R) and silent (S) mutations, and subset into FWR and CDR specific mutations. Additionally, alternative mutational definitions may be considered based on the physicochemical properties of translated codons. ## Example data A small example AIRR Rearrangement database is included in the `alakazam` package. Analyzing mutations requires the following fields (columns) to be present in the table: * `sequence_alignment` * `germline_alignment_d_mask` ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Import required packages library(alakazam) library(dplyr) library(ggplot2) library(shazam) # Load and subset example data data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call %in% c("IGHA", "IGHG") & sample_id == "+7d") ``` ## Calculate the counts and frequencies of mutations over the entire sequence When calling `observedMutations` with `regionDefinition=NULL`, the entire input sequence (`sequenceColumn`) is compared to the germline sequence (`germlineColumn`) to identify R and S mutations. If `frequency=TRUE`, the number of mutations is expressed as the frequency of mutations over the total number of positions that are non-N in both the input and the germline sequences. In the example below, the counts (`frequency=FALSE` ) and frequencies (`frequency=TRUE`) of R and S mutations are calculated separately. New columns containing mutation counts are appended to the input data.frame with names in the form `mu_count__`. Mutation frequencies appear in new columns named `mu_freq__`. ```{r, eval=TRUE} # Calculate R and S mutation counts db_obs <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=NULL, frequency=FALSE, nproc=1) # Show new mutation count columns db_obs %>% select(sequence_id, starts_with("mu_count_")) %>% head(n=4) # Calculate R and S mutation frequencies db_obs <- observedMutations(db_obs, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=NULL, frequency=TRUE, nproc=1) # Show new mutation frequency columns db_obs %>% select(sequence_id, starts_with("mu_freq_")) %>% head(n=4) ``` Specifying the `combine=TRUE` argument will aggregate all mutation columns into a single value. ```{r, eval=TRUE} # Calculate combined R and S mutation frequencies db_obs <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=NULL, frequency=TRUE, combine=TRUE, nproc=1) # Show new mutation frequency columns db_obs %>% select(sequence_id, starts_with("mu_freq")) %>% head(n=4) ``` We can plot the mutation frequencies and explore differences between samples or isotypes. ```{r, eval=TRUE, warning=FALSE} g1 <- ggplot(db_obs, aes(x=c_call, y=mu_freq, fill=c_call)) + geom_boxplot() + labs(title="Total mutations", x="Isotype", y="Mutation frequency") + scale_fill_manual(name="Isotype", values=IG_COLORS, limits=force) + theme_bw() plot(g1) ``` ## Calculate mutations within subregions To restrict the mutational analysis to a particular area in the sequence, the `regionDefinition` argument needs to be assigned a `RegionDefinition` object, which simply defines the subregion boundaries of the Ig sequence. For convenience, `shazam` provides a set of such objects, for which an overview is provided via `?IMGT_SCHEMES`. Each of these objects cover the IMGT numbered V segment up to nucleotide position 312. Different objects treat regions within the V segment with varying granularity: * `IMGT_V_BY_CODONS`: treats each codon, from codon 1 to codon 104, as a distinct region; * `IMGT_V_BY_REGIONS`: defines regions to be CDR1, CDR2, FWR1, FWR2 and FWR3; * `IMGT_V`: defines regions to be either CDR or FWR; * `IMGT_V_BY_SEGMENTS`: provides no subdivisions and treats the entire V segment as a single region. * `IMGT_VDJ`: All regions, including CDR3 and FWR4, grouped as either CDR or FWR. This `RegionDefinition` is initially empty, and one is created on the fly for each set of clonally related sequences. * `IMGT_VDJ_BY_REGIONS`: CDR1, CDR2, CDR3, FWR1, FWR, FWR3 and FWR4 regions treated as individual regions. This `RegionDefinition` is initially empty, and one is created on the fly for each set of clonally related sequences. When supplying one of these objects to `regionDefinition`, and with `combined=FALSE`, the resultant mutation counts/frequencies will be tabulated in a way consistent with the granularity of the object's region definition. For example, * With `IMGT_V_BY_REGIONS`, mutation frequencies will be reported in columns `mu_freq_cdr1_r`, `mu_freq_cdr1_s`, `mu_freq_cdr2_r`, `mu_freq_cdr2_s`, `mu_freq_fwr1_r`, `mu_freq_fwr1_s`, `mu_freq_fwr2_r`, `mu_freq_fwr2_s`, `mu_freq_fwr3_r`, and `mu_freq_fwr3_s`. * With `IMGT_V`, mutation frequencies will be reported in columns `mu_freq_cdr_r`, `mu_freq_cdr_s`, `mu_freq_fwr_r`, and `mu_freq_fwr_s`. * With `IMGT_V_BY_SEGMENTS`, mutation frequencies will be reported in columns `mu_freq_v_r`, and `mu_freq_v_s`. In the following example, we will explore the mutation frequency in the V-segment using two of the region definitions. ```{r, eval=TRUE} # Calculate R and S mutation counts for individual CDRs and FWRs db_obs_v <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=IMGT_V_BY_REGIONS, frequency=FALSE, nproc=1) # Show new FWR mutation columns db_obs_v %>% select(sequence_id, starts_with("mu_count_fwr")) %>% head(n=4) # Calculate aggregate CDR and FWR V-segment R and S mutation frequencies db_obs_v <- observedMutations(db_obs_v, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=IMGT_V, frequency=TRUE, nproc=1) # Show new CDR and FWR mutation frequency columns db_obs_v %>% select(sequence_id, starts_with("mu_freq_")) %>% head(n=4) ``` Plot a comparison between CDR silent and replacement mutations. ```{r, eval=TRUE, warning=FALSE} g2 <- ggplot(db_obs_v, aes(x=c_call, y=mu_freq_cdr_s, fill=c_call)) + geom_boxplot() + labs(title="CDR silent mutations", x="Isotype", y="Mutation frequency") + scale_fill_manual(name="Isotype", values=IG_COLORS, limits=force) + theme_bw() g3 <- ggplot(db_obs_v, aes(x=c_call, y=mu_freq_cdr_r, fill=c_call)) + geom_boxplot() + labs(title="CDR replacement mutations", x="Isotype", y="Mutation frequency") + scale_fill_manual(name="Isotype", values=IG_COLORS, limits=force) + theme_bw() alakazam::gridPlot(g2, g3, ncol=2) ``` ## Use amino acid physicochemical properties to define mutations By default, replacement and silent mutations are determined by exact amino acid identity; this can be changed by setting the `mutationDefinition` argument. For convenience, `shazam` provides a set of `MutationDefinition` objects defining changes in amino acid charge, hydrophobicity, polarity and volume. In the following example, replacement mutations are defined as amino acid changes that lead to a change in charge (`mutationDefinition=CHARGE_MUTATIONS`). Mutations that do not alter the charge classification of a translated codon will be considered silent mutations. ```{r, eval=TRUE} # Calculate charge mutation frequency for the full sequence db_obs_ch <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=NULL, mutationDefinition=CHARGE_MUTATIONS, frequency=TRUE, nproc=1) # Show new charge mutation frequency columns db_obs_ch %>% select(sequence_id, starts_with("mu_freq_")) %>% head(n=4) ``` We can make a plot to visualize if mutations that change the sequence charge are more frequent in one isotype. ```{r, eval=TRUE, warning=FALSE} g4 <- ggplot(db_obs_ch, aes(x=c_call, y=mu_freq_seq_r, fill=c_call)) + geom_boxplot() + labs(title="Charge replacement mutations", x="Isotype", y="Mutation frequency") + scale_fill_manual(name="Isotype", values=IG_COLORS, limits=force) + theme_bw() plot(g4) ``` shazam/vignettes/DistToNearest-Vignette.Rmd0000644000176200001440000004110615120056314020523 0ustar liggesusers--- title: 'Shazam: Tuning clonal assignment thresholds with nearest neighbor distances' author: "Namita Gupta, Susanna Marquez, Nima Nouri and Julian Q. Zhou" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4 fig_width: 7.5 highlight: pygments toc: yes html_document: fig_height: 4 fig_width: 7.5 highlight: pygments theme: readable toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteIndexEntry{Distance to nearest neighbor} %\usepackage[utf8]{inputenc} %\VignetteEngine{knitr::rmarkdown} editor_options: markdown: wrap: 72 --- Estimating the optimal distance threshold for partitioning clonally related sequences is accomplished by calculating the distance from each sequence in the data set to its nearest neighbor and finding the break point in the resulting bi-modal distribution that separates clonally related from unrelated sequences. This is done via the following steps: 1. Calculating of the nearest neighbor distances for each sequence. 2. Generating a histogram of the nearest neighbor distances followed by either manual inspect for the threshold separating the two modes or automated threshold detection. ## Example data A small example AIRR Rearrangement database is included in the `alakazam` package. Calculating the nearest neighbor distances requires the following fields (columns) to be present in the table: * `sequence_id` * `v_call` * `j_call` * `junction` * `junction_length` ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Import required packages library(alakazam) library(dplyr) library(ggplot2) library(shazam) # Load and subset example data (for speed) data(ExampleDb, package="alakazam") set.seed(112) db <- ExampleDb %>% sample_n(size=500) db %>% count(sample_id) ``` ## Calculating nearest neighbor distances (heavy chain sequences) By default, `distToNearest`, the function for calculating distance between every sequence and its nearest neighbor, assumes that it is running under non-single-cell mode and that every input sequence is a heavy chain sequence and will be used for calculation. It takes a few parameters to adjust how the distance is measured. * If a genotype has been inferred using the methods in the `tigger` package, and a `v_call_genotyped` field has been added to the database, then this column may be used instead of the default `v_call` column by specifying the `vCallColumn` argument. * This will allows the more accurate V call from `tigger` to be used for grouping of the sequences. * Furthermore, for more leniency toward ambiguous V(D)J segment calls, the parameter `first` can be set to `FALSE`. * Setting `first=FALSE` will use the union of all possible genes to group sequences, rather than the first gene in the field. * The `model` parameter determines which underlying SHM model is used to calculate the distance. * The default model is single nucleotide Hamming distance with gaps considered as a match to any nucleotide (`ham`). * Other options include a human Ig-specific single nucleotide model similar to a transition/transversion model (`hh_s1f`) and the corresponding 5-mer context model from Yaari et al, 2013 (`hh_s5f`), an analogous pair of mouse specific models from Cui et al, 2016 (`mk_rs1nf` and `mk_rs5nf`), and amino acid Hamming distance (`aa`). **Note:** Human and mouse distance measures that are backward compatible with SHazaM v0.1.4 and Change-O v0.3.3 are also provided as `hs1f_compat` and `m1n_compat`, respectively. For models that are not symmetric (e.g., distance from A to B is not equal to the distance from B to A), there is a `symmetry` parameter that allows the user to specify whether the average or minimum of the two distances is used to determine the overall distance. ```{r, eval=TRUE, warning=FALSE} # Use nucleotide Hamming distance and normalize by junction length dist_ham <- distToNearest(db %>% filter(sample_id == "+7d"), sequenceColumn="junction", vCallColumn="v_call_genotyped", jCallColumn="j_call", model="ham", normalize="len", nproc=1) # Use genotyped V assignments, a 5-mer model and no normalization dist_s5f <- distToNearest(db %>% filter(sample_id == "+7d"), sequenceColumn="junction", vCallColumn="v_call_genotyped", jCallColumn="j_call", model="hh_s5f", normalize="none", nproc=1) ``` ## Calculating nearest neighbor distances (single-cell paired heavy and light chain sequences) The `distToNearest` function also supports running under single-cell mode where an input `Example10x` containing single-cell paired IGH:IGK/IGL, TRB:TRA, or TRD:TRG chain sequences are supplied. In this case, by default, cells are first divided into partitions containing the same heavy/long chain (IGH, TRB, TRD) V gene and J gene (and if specified, junction length), and the same light/short chain (IGK, IGL, TRA, TRG) V gene and J gene (and if specified, junction length). Then, only the heavy chain sequences are used for calculating the nearest neighbor distances. Under the single-cell mode, each row of the input `Example10x` should represent a sequence/chain. Sequences/chains from the same cell are linked by a cell ID in a `cellIdColumn` column. Note that a cell should have exactly one `IGH` sequence (BCR) or `TRB`/`TRD` (TCR). The values in the `locusColumn` column must be one of `IGH`, `IGI`, `IGK`, or `IGL` (BCR) or `TRA`, `TRB`, `TRD`, or `TRG` (TCR). To invoke the single-cell mode, `cellIdColumn` must be specified and `locusColumn` must be correct. There is a choice of whether grouping should be done as a one-stage process or a two-stage process. This can be specified via `VJthenLen`. * In the one-stage process (`VJthenLen=FALSE`), cells are divided into partitions containing same heavy/long chain V gene, J gene, and junction length (V-J-length combination), and the same light chain V-J-length combination. * In the two-stage process (`VJthenLen=TRUE`), cells are first divided by heavy/long chain V gene and J gene (V-J combination), and light/short chain V-J combination; and then by the corresponding junction lengths. There is also a choice of whether grouping should be done using `IGH` (BCR) or `TRB/TRD` (TCR) sequences only, or using both `IGH` and `IGK`/`IGL` (BCR) or `TRB`/`TRD` and `TRA`/`TRG` (TCR) sequences. This is governed by `onlyHeavy`. ```{r, eval=FALSE, warning=FALSE} # Single-cell mode # Group cells in a one-stage process (VJthenLen=FALSE) and using # both heavy and light chain sequences (onlyHeavy=FALSE) data(Example10x, package="alakazam") dist_sc <- distToNearest(Example10x, cellIdColumn="cell_id", locusColumn="locus", VJthenLen=FALSE, onlyHeavy=FALSE) ``` Regardless of whether grouping was done using only the heavy chain sequences, or both heavy and light chain sequences, only heavy chain sequences will be used for calculating the nearest neighbor distances. Hence, under the single-cell mode, rows in the returned `data.frame` corresponding to light chain sequences will have `NA` in the `dist_nearest` field. ## Using nearest neighbor distances to determine clonal assignment thresholds The primary use of the distance to nearest calculation in SHazaM is to determine the optimal threshold for clonal assignment using the `DefineClones` tool in Change-O. Defining a threshold relies on distinguishing clonally related sequences (represented by sequences with close neighbors) from singletons (sequences without close neighbors), which show up as two modes in a nearest neighbor distance histogram. Thresholds may be manually determined by inspection of the nearest neighbor histograms or by using one of the automated threshold detection algorithms provided by the `findThreshold` function. The available methods are `density` (smoothed density) and `gmm` (gamma/Gaussian mixture model), and are chosen via the `method` parameter of `findThreshold`. ### Threshold determination by manual inspection Manual threshold detection simply involves generating a histogram for the values in the `dist_nearest` column of the `distToNearest` output and selecting a suitable value within the valley between the two modes. ```{r, eval=TRUE, warning=FALSE, fig.width=7} # Generate Hamming distance histogram p1 <- ggplot(subset(dist_ham, !is.na(dist_nearest)), aes(x=dist_nearest)) + geom_histogram(color="white", binwidth=0.02) + geom_vline(xintercept=0.12, color="firebrick", linetype=2) + labs(x = "Hamming distance", y = "Count") + scale_x_continuous(breaks=seq(0, 1, 0.1)) + theme_bw() plot(p1) ``` By manual inspection, the length normalized `ham` model distance threshold would be set to a value near 0.12 in the above example. ```{r, eval=TRUE, warning=FALSE, fig.width=7} # Generate HH_S5F distance histogram p2 <- ggplot(subset(dist_s5f, !is.na(dist_nearest)), aes(x=dist_nearest)) + geom_histogram(color="white", binwidth=1) + geom_vline(xintercept=7, color="firebrick", linetype=2) + labs(x = "HH_S5F distance", y = "Count") + scale_x_continuous(breaks=seq(0, 50, 5)) + theme_bw() plot(p2) ``` In this example, the unnormalized `hh_s5f` model distance threshold would be set to a value near 7. ### Automated threshold detection via smoothed density The `density` method will look for the minimum in the valley between two modes of a smoothed distribution based on the input vector (`distances`), which will generally be the `dist_nearest` column from the `distToNearest` output. Below is an example of using the `density` method for threshold detection. ```{r, eval=TRUE, warning=FALSE, fig.width=7} # Find threshold using density method output <- findThreshold(dist_ham$dist_nearest, method="density") threshold <- output@threshold # Plot distance histogram, density estimate and optimum threshold plot(output, title="Density Method") # Print threshold print(output) ``` ### Automated threshold detection via a mixture model The `findThreshold` function includes approaches for automatically determining a clonal assignment threshold. The `"gmm"` method (gamma/Gaussian mixture method) of `findThreshold` (`method="gmm"`) performs a maximum-likelihood fitting procedure over the distance-to-nearest distribution using one of four combinations of univariate density distribution functions: `"norm-norm"` (two Gaussian distributions), `"norm-gamma"` (lower Gaussian and upper gamma distribution), `"gamma-norm"` (lower gamm and upper Gaussian distribution), and `"gamma-gamma"` (two gamma distributions). By default, the threshold will be selected by calculating the distance at which the average of sensitivity and specificity reaches its maximum (`cutoff="optimal"`). Alternative threshold selection criteria are also providing, including the curve intersection (`cutoff="intersect"`), user defined sensitivity (`cutoff="user", sen=x`), or user defined specificity (`cutoff="user", spc=x`) In the example below the mixture model method (`method="gmm"`) is used to find the optimal threshold for separating clonally related sequences by fitting two gamma distributions (`model="gamma-gamma"`). The red dashed-line shown in figure below defines the distance where the average of the sensitivity and specificity reaches its maximum. ```{r, eval=TRUE, warning=FALSE, fig.width=7} # Find threshold using gmm method output <- findThreshold(dist_ham$dist_nearest, method="gmm", model="gamma-gamma") # Plot distance histogram, Gaussian fits, and optimum threshold plot(output, binwidth=0.02, title="GMM Method: gamma-gamma") # Print threshold print(output) ``` **Note:** The shape of histogram plotted by `plotGmmThreshold` is governed by the `binwidth` parameter. Meaning, any change in bin size will change the form of the distribution, while the `gmm` method is completely bin size independent and only engages the real input data. ## Calculating nearest neighbor distances independently for subsets of data The `fields` argument to `distToNearest` will split the input `data.frame` into groups based on values in the specified fields (columns) and will treat them independently. For example, if the input data has multiple samples, then `fields="sample_id"` would allow each sample to be analyzed separately. In the previous examples we used a subset of the original example data. In the following example, we will use the two available samples, `-1h` and `+7d`, and will set `fields="sample_id"`. This will reproduce previous results for sample `+7d` and add results for sample `-1d`. ```{r fields, eval=TRUE, warning=FALSE} dist_fields <- distToNearest(db, model="ham", normalize="len", fields="sample_id", nproc=1) ``` We can plot the nearest neighbor distances for the two samples: ```{r, eval=TRUE, warning=FALSE, fig.width=7} # Generate grouped histograms p4 <- ggplot(subset(dist_fields, !is.na(dist_nearest)), aes(x=dist_nearest)) + geom_histogram(color="white", binwidth=0.02) + geom_vline(xintercept=0.12, color="firebrick", linetype=2) + labs(x = "Grouped Hamming distance", y = "Count") + facet_grid(sample_id ~ ., scales="free_y") + theme_bw() plot(p4) ``` In this case, the threshold selected for `+7d` seems to work well for `-1d` as well. ## Calculating nearest neighbor distances across groups rather than within a groups Specifying the `cross` argument to `distToNearest` forces distance calculations to be performed across groups, such that the nearest neighbor of each sequence will always be a sequence in a different group. In the following example we set `cross="sample"`, which will group the data into `-1h` and `+7d` sample subsets. Thus, nearest neighbor distances for sequences in sample `-1h` will be restricted to the closest sequence in sample `+7d` and vice versa. ```{r cross, eval=TRUE, warning=FALSE} dist_cross <- distToNearest(ExampleDb, sequenceColumn="junction", vCallColumn="v_call_genotyped", jCallColumn="j_call", model="ham", first=FALSE, normalize="len", cross="sample_id", nproc=1) ``` ```{r, eval=TRUE, warning=FALSE, fig.width=7} # Generate cross sample histograms p5 <- ggplot(subset(dist_cross, !is.na(cross_dist_nearest)), aes(x=cross_dist_nearest)) + labs(x = "Cross-sample Hamming distance", y = "Count") + geom_histogram(color="white", binwidth=0.02) + geom_vline(xintercept=0.12, color="firebrick", linetype=2) + facet_grid(sample_id ~ ., scales="free_y") + theme_bw() plot(p5) ``` This can provide a sense of overlap between samples or a way to compare within-sample variation to cross-sample variation. ## Speeding up pairwise-distance-matrix calculations with subsampling The `subsample` option in `distToNearest` allows to speed up calculations and reduce memory usage. If there are very large groups of sequences that share V call, J call and junction length, `distToNearest` will need a lot of memory and it will take a long time to calculate all the distances. Without subsampling, in a large group of n=70,000 sequences `distToNearest` calculates a n\*n distance matrix. With subsampling, e.g. to s=15,000, the distance matrix for the same group has size s\*n, and for each sequence in `db`, the distance value is calculated by comparing the sequence to the subsampled sequences from the same V-J-junction length group. ```{r subsample, eval=TRUE, warning=FALSE} # Explore V-J-junction length groups sizes to use subsample # Show the size of the largest groups top_10_sizes <- ExampleDb %>% group_by(junction_length) %>% # Group by junction length do(alakazam::groupGenes(., first=TRUE)) %>% # Group by V and J call mutate(GROUP_ID=paste(junction_length, vj_group, sep="_")) %>% # Create group ids ungroup() %>% group_by(GROUP_ID) %>% # Group by GROUP_ID distinct(junction) %>% # Count unique junctions per group summarize(SIZE=n()) %>% # Get the size of the group arrange(desc(SIZE)) %>% # Sort by decreasing size select(SIZE) %>% top_n(10) # Filter to the top 10 top_10_sizes # Use 30 to subsample # NOTE: This is a toy example. Subsampling to 30 sequence with real data is unwise dist <- distToNearest(ExampleDb, sequenceColumn="junction", vCallColumn="v_call_genotyped", jCallColumn="j_call", model="ham", first=FALSE, normalize="len", subsample=30) ``` shazam/vignettes/Targeting-Vignette.Rmd0000644000176200001440000001773515122475334017743 0ustar liggesusers--- title: 'Shazam: Inferring SHM targeting models' author: "Namita Gupta & Julian Q. Zhou" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4.5 fig_width: 7.5 highlight: pygments toc: yes html_document: fig_height: 4.5 fig_width: 7.5 highlight: pygments theme: readable toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{SHM targeting models} %\usepackage[utf8]{inputenc} --- The targeting model is the background likelihood of a particular mutation, based on the surrounding sequence context as well as the mutation itself. The model is inferred from observed mutations in the data. The model can then be transformed into a distance function to compare Ig sequences of a given dataset based on the likelihood of the observed mutations. This is done via the following steps: 1. Infer a substitution model, which is the likelihood of a base mutating to each other base given the microsequence context. 2. Infer a mutability model, which is likelihood of a given base being mutated given the microsequence context and substitution model. 3. Visualize the mutability model to identify hot and cold spots. 4. Calculate a nucleotide distance matrix based on the underlying SHM models. ## Example data A small example AIRR Rearrangement database is included in the `alakazam` package. Inferring a targeting model requires the following fields (columns) to be present in the table: * `sequence_id` * `sequence_alignment` * `germline_alignment_d_mask` * `v_call` ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Import required packages library(shazam) # Load example data data(ExampleDb, package="alakazam") # Subset to IGHG for faster usage demonstration db <- subset(ExampleDb, c_call == "IGHG") ``` ## Infer targeting model (substitution and mutability) The function for inferring substitution rates (`createSubstitutionMatrix`) counts the number of mutations from a given base to all others occurring in the center position for all 5-mer motifs in the dataset. The `model` argument of `createSubstitutionMatrix` allows the user to specify whether to count all mutations, or just silent mutations to infer the model. Column names for the sample sequence, germline sequence, and V call can also be passed in as parameters if they differ from Change-O defaults. Additionally, the `multipleMutation` parameter determines handling of multiple mutations in a single 5-mer: `independent` treats each mutation independently and `ignore` entirely disregards 5-mers with multiple mutations. ```{r, eval=FALSE} # Create substitution model using silent mutations sub_model <- createSubstitutionMatrix(db, model="s", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call") ``` The function for inferring a mutability model (`createMutabilityMatrix`) counts the number of mutations in all 5-mer motifs of the dataset, and depends upon the inferred substitution rates. Similar parameters as those available for inferring the substitution rates are available to adjust this function. ```{r, eval=FALSE} # Create mutability model using silent mutations mut_model <- createMutabilityMatrix(db, sub_model, model="s", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call") ``` `createMutabilityMatrix` creates an object of class `MutabilityModel` that contains a named numeric vector of 1024 normalized mutability. The numbers of silent and replacement mutations used for estimating the 5-mer mutabilities are recorded in the `numMutS` and `numMutR` slots, respectively. rates. The `source` slot contains a named vector indicating whether each 5-mer mutability was inferred or measured. A data.frame with both the mutability values and derivation source. ```{r, eval=FALSE} # Number of silent mutations used for estimating 5-mer mutabilities mut_model@numMutS # Number of replacement mutations used for estimating 5-mer mutabilities mut_model@numMutR # Mutability and source as a data.frame head(as.data.frame(mut_model)) ``` The inferred substitution and mutability models returned by the above functions only account for unambiguous 5-mers. However, there may be cases in which the user may need the likelihood of a mutation in a 5-mer with ambiguous characters. Each of the above functions has a corresponding function (`extendSubstitutionMatrix` and `extendMutabilityMatrix`) to extend the models to infer 5-mers with Ns by averaging over all corresponding unambiguous 5-mers. ```{r, eval=FALSE} # Extend models to include ambiguous 5-mers sub_model <- extendSubstitutionMatrix(sub_model) mut_model <- extendMutabilityMatrix(mut_model) ``` These extended substitution and mutability models can be used to create an overall SHM targeting matrix (`createTargetingMatrix`), which is the combined probability of mutability and substitution. ```{r, eval=FALSE} # Create targeting model matrix from substitution and mutability models tar_matrix <- createTargetingMatrix(sub_model, mut_model) ``` All of the above steps can be combined by using the single function `createTargetingModel` to infer a `TargetingModel` object directly from the dataset. Again, the numbers of silent and replacement mutations used for estimating the 5-mer mutabilities are also recorded in the `numMutS` and `numMutR` slots respectively. Additionally, it is generally appropriate to consider the mutations within a clone only once. Consensus sequences for each clone can be generated using the `collapseClones` function. ```{r, eval=TRUE, warning=FALSE} # Collapse sequences into clonal consensus clone_db <- collapseClones(db, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", nproc=1) # Create targeting model in one step using only silent mutations # Use consensus sequence input and germline columns model <- createTargetingModel(clone_db, model="s", sequenceColumn="clonal_sequence", germlineColumn="clonal_germline", vCallColumn="v_call") ``` ## Visualize targeting model The visualization of a dataset's underlying SHM mutability model can be used to investigate hot and cold spot motifs. The length of the bars on the plot of mutability rates corresponds to the likelihood of a given base in the given 5-mer being mutated. The plotting function `plotMutability` has an argument `style` to specify either a hedgehog plot (circular) or barplot display of 5-mer mutability rates. If the mutability for only specific bases is required, this can be specified via the `nucleotides` argument. ```{r, eval=TRUE, warning=FALSE, fig.width=7, fig.height=7.5} # Generate hedgehog plot of mutability model plotMutability(model, nucleotides="A", style="hedgehog") plotMutability(model, nucleotides="C", style="hedgehog") ``` ```{r, eval=TRUE, warning=FALSE, fig.width=7, fig.height=4.5} # Generate bar plot of mutability model plotMutability(model, nucleotides="G", style="bar") plotMutability(model, nucleotides="T", style="bar") ``` ## Calculate targeting distance matrix In the Change-O pipeline, the `hs5f` cloning method rely on an inferred targeting model. If users wish to use a targeting model inferred from their data to assign distance between sequences for clonal grouping, then the observed SHM targeting rates must be transformed into distances. The `calcTargetingDistance` function returns a matrix of distances between each 5-mer and each corresponding mutation of the center base. This matrix can also be generated and written directly to a file using the function `writeTargetingDistance`. ```{r, eval=TRUE, warning=FALSE} # Calculate distance matrix dist <- calcTargetingDistance(model) ``` shazam/data/0000755000176200001440000000000014027340034012443 5ustar liggesusersshazam/data/IMGT_V.rda0000644000176200001440000000102313762520614014165 0ustar liggesusersBZh91AY&SY:&‰;v€ÿú@ @ZÚ¦U@¿ïÿðÀÜ6Të UOõ2j OÑ1OSô§©êÔzÓÓQ馣!  M1&FŠziê›SM¤h4Èdõ¨5Sõ41dÀ™2A‘ˆdÓ”‰6“54Ð4@Rƒ ‹‚…²BAŒD Ž¥(¶ÖZÊvcõ™ 5™?}¦D¯eH*ÿYDÓ²“6þ,«úøå€Ýˆ#TWª /4)KÔ¢·kA€£€ŠÈ—4¨W°xðµ!1ÄÚ%©´pi#öSÁZ„Þ÷áŽÝºàöB5}‹r }W¦ÛvݚȱY®Yoè·«_® mÐ]“¸T5@2h$X8bV'Î{10ò¹Dà‡¸{**ý<>~°+²Õ€¥ýðŒñ|Abü¤iEVzw_;°™RàѬ ÍM\”;$Φó:䄯~·š>ÈiÆ=ÇKsIž*!ÎPNrßQœ±ÄVqUMrÊhu†Ðå Ð*2à«äX¦GѺ–´úæ¦M2žu ®Ë0#Ƃ،D&<ˆŽ00,DÀî¥ð-è.ÑXÎ{ITÖ™¿…DaÈ T%(Ì`…—gŽBZAˆatæŠ+,É™ÊT™Ña\ó@&Wr-yb'å›ñÚÿ‹¹"œ(HD€shazam/data/VOLUME_MUTATIONS.rda0000644000176200001440000000174213670240241015613 0ustar liggesusersBZh91AY&SY|æÆ"¡‚ÿþXp@/ïÿà¿ïß°@Ð~=¢x1zªª½À"bMz&š2#!ˆmG©¦QO{Õ?)=M?T4   Šo~¥Ršz@É£@§•R“A DJ"ž‰š zž„mCOI´A£@4ÐOS´TAp7‘cÂ( oåãÄvªz÷" /ힸ{ )†F‘"eKBÂBÂÂIi‡0„!M0É’ %`HU¤¢@–6Ö@¡–IS)6Å·Ôzͽ» ÈS½{ÍŸUáAP75@E'‡Ùxͽ³n‚¢qESíˆ"¹ñ?OÇâòú:lñòóYè³nÕ«Vó.uöÜÙß„ E±b ’4´¶É“ !’Ó ²HB$)(Û%¤0¸á#a!0É—B5",D‰L)cP‘‚ ¨ ®C"L­µ²Ë l ……”–ÖËHd•#`Ð…%mKÂZÂË )‘#l²4̤e¸å 0B…¥H0¨Ê "ÅE‚„@€ XFBZªÓUfsvmô¹`}p@Á`°XÁ`°XÁ`°¥æîÀ,`°nÖÖÕl­™Íi5gLÖ­3YάæË„‰-¡&ž#Ç2VYLÁÃ:¦š& ‰çDbŠ€‘H¾/ªé®)×?ÈÉ"i<þ_ùãÜN{îôôôëÓ®ºê]ÝÙmÖ%ݤ¬I$‘0 €Lkß¿}öÙïnÇ…ëô¥)JQÜäÖ$’IX’@˜À%UJQŒcÅÝÝÝÀ¬I$’±$’JÀ €Lhlݯz¥)JR“»»»»¸ìI$’±$’JÄ0 €M5exjÃU{«Ë –Ûm¶ÍÜâÖ$’IX’@˜×!B‚kûxÓl­Ns›ÍÝk ½-L–]ém•‰$’V8Úõë„!À&r 08&¥jïMÌþX‹[|ÍdǺ}@ýqQØ!€0Îi†aÊeŠäÒýÃOp)»×!žßƇughÃy¦ão<]|Ýžoí'i·Þ]ÜÛ|&л9€ðx“G· ǿӕæÓäç g%èáÜ«‹~Ç—~z ›„Aèàoï`ˆ„ÓxÇQ@‡<¢¨N ‡7ÏÈB=Ç”AêîôMp_ƒËxµùÑóxÇÒy:‡»öý‚ˆª{AWÿrE8P|æÆshazam/data/IMGT_V_BY_REGIONS.rda0000644000176200001440000000112013762520614015743 0ustar liggesusersBZh91AY&SYO x*ºÿ€ÿú` @zاÝá¿ïÿðÀ<å„©¢ƤÍ4›S'© Ðôž¦ò@Ħ˜¡=O ¦ÄÒzš44d=A©ê™FFM4Ä*ôL h4 hP.T]„ƒ èE¹Z(fT ئê•Ú[%*~½G‰CPxþûLQF¬\*U ¨YŠ ý#åêíàrYЈ^‚¡L1â¨SF‘¦Beû×e4Q$” aKè„U¤‘0rè*Š‚Û€/Dµ‚ˆ˜e³O¡¿FÞ‚CS¹Z„š~®ð««âëÌt&8‘è"{J>Ìɧ&k~’?E§sO’È+ °T®¬m1Ó0ÎÊÈÔõÒ;Ž R—u¦RQj˱z*@ÍU¥ÍÖ$`‚œ+¢ Ï§Þ aVc€"ä‚A@ €@‚ ‚A € €€` `Al`€  € €60@À‚ ØÁ €A°À‚AA €  Á@‚A@‚   AA A  ‚ ‚@ðà ( R¨§ú©ïÔQ©úõ4ž bF ª©ÿúªªÿ·ª›Ô§þªª¨1#LŒ˜L 04i  šA'ª~ÑïT©ú©*M¨h £ "7ꪧíª~ªª§ûÿõUR£L#ƒO*©Oý”õUSÿ~ªªP äj¡³lUT“Lj­’"ƒY×ÙÛïø|vÛ3m¶ÛË»»ZÖ·íA;ò"(:³òPо¯ÛÍ~yýö¯¿ŸÏçóÓúG–ý?€ç{Þï½èõ,,`` XXÀÀ|ø€,,`UUT` XXÀÀ°°€€,,`~I$’]€ä’I-òÀèÀÀ°°€ óß?Íçž{ç¾ùç¾{ç¾äP"Ú0ÌŒtç>*Q%vä¥Wõ›±J¤œ¸„Eso~u äÛ~þ8pá­kZÖµ­û€ï{Þ÷½Ï€’I$€ú°¼Ö€I$’@$’Ià$’IsÎsœç*«ZÕU $Ÿ›÷ß>o{•U­jª¤€oß|Þ÷µUkZª ý÷Íï{UVµªªoß|Þ÷µUkZª ý÷Íï{UVµªªoß|Þ÷µUkZª ý÷Íï{UVµªªoß|Þ÷µUkZª ý÷Íï{UVµªªoÏ|ÿʪ«»¹$’I`’I$€ùÎsœª­kUUwv ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïa$’I’I$€ªªªªµ­UP~ûæ÷½ª«ZÕU7ï¾o{Úªµ­UP~ûæ÷½ª«ZÕU7ï¾o{Úªµ­UP~ûæ÷½ª«ZÕU7ï¾o{Úªµ­UP~ûæ÷½ª«ZÕU7ï¾o{Úªµ­UP~ûæ÷½ª«ZÕU7ï¾o{ØI$’@$’Iપªª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›ÞöI$I$’@x*ªªª«ZÕU7ï¾o{Úªµ­UP~ûæ÷½ª«ZÕU7ï¾o{Úªµ­UP~ûæ÷½ª«ZÕU7ï¾o{Úªµ­UP~ûæ÷½ª«ZÕU7ï¾o{Úªµ­UP~ûæ÷½ª«ZÕU7ï¾o{Úªµ­UP~ûæ÷½„’I$I$ ªªªªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïa$’I’I$€ªªªªµ­UP~ûæ÷½ª«ZÕU7ï¾o{Úªµ­UP~ûæ÷½ª«ZÕU7ï¾o{Úªµ­UP~ûæ÷½ª«ZÕU7ï¾o{Úªµ­UP~ûæ÷½ª«ZÕU7ï¾o{Úªµ­UP~ûæ÷½ª«ZÕU7ï¾o{ØI$’@$’Iપªª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›ÞöI$I$’@x*ªªª«ZÕU7ï¾o{Úªµ­UP~ûæ÷½ª«ZÕU7ï¾o{Úªµ­UP~ûæ÷½ª«ZÕU7ï¾o{Úªµ­UP~ûæ÷½ª«ZÕU7ï¾o{Úªµ­UP~ûæ÷½ª«ZÕU7ï¾o{Úªµ­UP~ûæ÷½„’I$I$ ªªªªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾ù½ïjªÖµU@ ûï›Þöª­kUTß¾{_÷ÿïç{Þýû÷ì’I$ú?Çwwwwv’I$€sœç9À’I$€>’I$I$’<÷Íf~oïß¿~ýû$’I>€I$òîîîîÀI$’g{Þ÷µUŸŸŸœç33™ír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír‹v¹C32}÷߇½é$ÝÝÙ&v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír‹v¹E»\¡™™>ûïÃÞô’nîì“;\¢Ý®Qn×(·k”[µÊ-Úåír‹v¹E»\¢Ý®PÌÌŸ}÷áïzI7wvI®Qn×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(ffO¾ûð÷½$›»»$Î×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(·k”33'ß}ø{Þ’MÝÝ’gk”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(·k”[µÊ™“ï¾ü=ïI&îîÉ3µÊ-Úåír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úå ÌÉ÷ß~÷¤“wwd™Úåír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír†fdûï¿{ÒI»»²Lír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír‹v¹C32}÷߇½é$ÝÝÙ&v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír‹v¹E»\®ð¼ÌÉ3$’I&I$’@ Þ÷½ïPgË»»»»’I$€’I$ óß2^ff}÷Ð{Þ’Oß¿~’N×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(¿âT+ûû33¿Ïóå÷½ÝÝ÷ß}Ò§wUEj¢µQZ¨­TVª+UªŠÕEj¢ÿffO¾ûð÷½$Ÿ¿~ý$®Qn×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(ffO¾ûð÷½$Ÿ¿~ý$®Qn×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(ffO¾ûð÷½$Ÿ¿~ý$®Qn×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(ffO¾ûð÷½$Ÿ¿~ý$®Qn×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(ffO¾ûð÷½$Ÿ¿~ý$®Qn×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(ffO¾ûð÷½$Ÿ¿~ý$®Qn×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(ffO¾ûð÷½$Ÿ¿~ý$®Qn×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(ffO¾ûð÷½$Ÿ¿~ý$®Qn×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(ffLÌ’I$˜I$’@gË»»»» $’H333>ûè=ïI&îîÉ3µÊ-Úåír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úå ÌÉ÷ß~÷¤“wwd™Úåír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír†fdûï¿{ÒI»»²Lír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír‹v¹C32}÷߇½é$ÝÝÙ&v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír‹v¹E»\¡™™>ûïÃÞô’nîì“;\¢Ý®Qn×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qïæ^dûï×~÷½$›»»$Î×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(·k”33'ß~»÷½é$ÝÝÙ&v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír‹v¹E»\¡™™>ûõß½ïI&îîÉ3µÊ-Úåír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úå ÌÉ÷ß®ýïzI7wvI®Qn×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(ffO¾ýwï{ÒI»»²Lír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír‹v¹C32I?~ýû÷ïß¿MÝÝÝÝÝÝÐ’I$€Ï—wwwvI$3;Þ÷½ªÍkœç33™3µÊ-Úåír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úå ÌÉ÷ß®ýïzI7wvI®Qn×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(ffO¾ýwï{ÒI»»²Lír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír‹v¹C32}÷ë¿{Þ’MÝÝ’gk”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(·k”[µÊ™“ï¿]ûÞô’nîì“;\¢Ý®Qn×(·k”[µÊ-Úåír‹v¹E»\¢Ý®PÌÌŸ}úïÞ÷¤“wwd™Úåír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír†fdûï×~÷½$›»»$Î×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(·k”33'ß~»÷½é$ÝÝÙ&v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír‹v¹E»\¡™™>ûõß½ïI&îîÉ3µÊ-Úåír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úå ÌÉ÷ß®ýïzI7wvI®Qn×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(ffI'ïß¿~ýúL$’I 3åÝÝÝÝ€’I$ Î÷½ïj²ïÞ÷¤“wwd™Úåír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír†fdûï×~÷½$›»»$Î×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(·k”33'ß~»÷½é$ÝÝÙ&v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír‹v¹E»\¡™™>ûõß½ïI&îîÉ3µÊ-Úåír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úå ÌÉ÷ß®ýïzI7wvI®Qn×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(ffO¾ýwï{ÒI»»²Lír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír‹v¹C32}÷ë¿{Þ’MÝÝ’gk”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(·k”[µÊ™“ï¿]ûÞô’nîì“;\¢Ý®Qn×(·k”[µÊ-Úåír‹v¹E»\¢Ý®PÌÌŸ}úïÞ÷¤“wwd™Úåír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír†fdûï×~÷½$›»»$Î×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(·k”üüï{ÜÌÉ$’I€’I$|»»»»°’I$€nîîÉ™™™÷ÒïÞ÷¤“wwd™Úåír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír†fdûï×~÷½$›»»$Î×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(·k”33'ß~»÷½é$ÝÝÙ&v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír‹v¹E»\¡™™>ûõß½ïI&îîÉ3µÊ-Úåír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úå ÌÉ÷ß®ýïzI7wvI®Qn×(·k”[µÊ-Úåír‹v¹E»\¢Ý®Qn×(ffO¾ýwï{ÒI»»²Lír‹v¹E»\¢Ý®Qn×(·k”[µÊ-Úåír‹v¹C32}÷ë¿{Þ’MÝÝ’gk”[µÊ-Úá`ó3'ß~»÷½é$ÝÝÙ&y™“ï¿]ûÞô’nî쓼ÌÉ÷ß®ýïzI7wvI€^fd’~ýû÷ïß¿~›»»»»» I$’@gË»»»» $’Hï{ÞÕfµÎs™™€’`™™>ûõß½ïI&îîÉ0 ÌÌŸ}úïÞ÷¤“wwd˜æfO¾ýwï{ÒI»»²Ló3'ß~»÷½é$ÝÝÙ&y™“ï¿]ûÞô’nî쓼ÌÉ÷ß®ýïzI7wvI€^fdûï×~÷½$›»»$À/32}÷ë¿{Þ’MÝÝ’`™™>ûõß½ïI&îîÉ0 ÌÌ’Oß¿~ý$˜I$’@gË»»»» $’Hï{Þ×ÒïÞ÷¤“wwd˜æfO¾ýwï{ÒI»»²Ló3'ß~»÷½é$ÝÝÙ&y™“ï¿]ûÞô’nî쓼ÌÉ÷ß®ýïzI7wvI€^fdûï×~÷½$›»»$À/32}÷ë¿{Þ’MÝÝ’`™™>ûõß½ïI&îîÉ0 ÌÌŸ}úïÞ÷¤“wwd˜æfO¾ýwï{ÒI»»²LŸŸšï{ÜÌÉ$’I€’I$|»»»»°’I$€»»»»&ffgßK¿{Þ’MÝÝ’`™™>ûõß½ïI&îîÉ0 ÌÌŸ}úïÞ÷¤“wwd˜æfO¾ýwï{ÒI»»²Ló3'ß~»÷½é$ÝÝÙ&y™“ï¿]ûÞô’nî쓼ÌÉ÷ß®ýïzI7wvI€^fdûï×~÷½$›»»$À/32}÷ë¿{Þ’MÝÝ’`™™>ûõß½ïI&îîÉ0 ÌÌ’Oß¿~ýû÷ïÓwwwww@I$’@gË»»»» $’Hï{ÞÕfµÎs™™²Ló3'ß~»÷½é$ÝÝÙ&y™“ï¿]ûÞô’nî쓼ÌÉ÷ß®ýïzI7wvI€^fdûï×~÷½$›»»$À/32}÷ë¿{Þ’MÝÝ’`™™>ûõß½ïI&îîÉ0 ÌÌŸ}úïÞ÷¤“wwd˜æfO¾ýwï{ÒI»»²Ló3'ß~»÷½é$ÝÝÙ&õú«ï¿ß¿OÒI$’Lwwwwv$’Isœç9À$’I> $’Hø°’I$€úÿŸÍï333$’I&I$Ï—wwwv7wwvLÌÌϾ—~÷½$›»»$Ïó?ŸÏà¿~ýý¾ûõß½ïoíý¿¶îîÉ0 ÌÌŸ}úïÞ÷¤“wwd˜æfO¾ýwï{ÒI»»²Ló3'ß~»÷½é$ÝÝÙ&y™“ï¿]ûÞô’nî쓼ÌÉ÷ß®ýïzI7wvI€^fdûï×~÷½$›»»$À/32}÷ë¿{Þ’MÝÝ’`™™>ûõß½ïI&îîÉ0 ÌÌ’Oß¿~ýû÷ïÓwwwww@I$’@gË»»»»3;Þ÷½ªÍkœç33쓼ÌÉ÷ß®ýïzI7wvI€^fdûï×~÷½$›»»$À/32}÷ë¿{Þ’MÝÝ’`™™>ûõß½ïI&îîÉ0 ÌÌŸ}úïÞ÷¤“wwd˜æfO¾ýwï{ÒI»»²Ló3'ß~»÷½é$ÝÝÙ&y™“ï¿]ûÞô’nî쓼ÌÉ÷ß®ýïzI7wvI€•_Ïá™’I$’I0I$’@I$’A$’I3åÝÝÝÝ€ $’HI$’@g{Þ÷>ú]ûÞô’nî쓼ÌÉ÷ß®ýïzI7wvI€•_Ïã3'ó÷~û邏÷ïß¿¯ëúð32}÷ë¿{Þ’MÝÝ’`™™>ûõß½ïI&îîÉ0 ÌÌŸ}úïÞ÷¤“wwd˜æfO¾ýwï{ÒI»»²Ló3'ß~»÷½é$ÝÝÙ&y™“ï¿]ûÞô’nî쓼ÌÉ÷ß®ýïzI7wvI€çççæ»Þ÷32I$’`$’IŸ.îîîìwwwwvLÌÌϾ—~÷½$›»»$À/32}÷ë¿{Þ’MÝÝ’`™™>ûõß½ïI&îîÉ0 ÌÌŸ}úïÞ÷¤“wwd˜æfO¾ýwï{ÒI»»²Ló3'ß~»÷½é$ÝÝÙ&y™“ï¿]ûÞô’nî쓼ÌÉ÷ß®ýïzI7wvI€^fdûï×~÷½$›»»$À/32}÷ë¿{Þ’MÝÝ’`™™$Ÿ¿~ýû÷ïߦîîîî€$’I 3åÝÝÝÝ€ï{ÞÕfµÎs™™ÝÙ&y™“ï¿]ûÞô’nî쓼ÌÉ÷ß®ýïzI7wvI€^fdûï×~÷½$›»»$À/32}÷ë¿{Þ’MÝÝ’`™™>ûõß½ïI&îîÉ0 ÌÌŸ}úïÞ÷¤“wwd˜æfO¾ýwï{ÒI»»²Ló3'ß~»÷½é$ÝÝÙ&y™“ï¿]ûÞô’nîì“?ß¿~É$’I$™ð$’I.îîîîÀœç½ïëï¥ß½ïI&îîÉ0 ÌÌŸ}úïÞ÷¤“wwd˜æfO¾ýwï{ÒI»»²Ló3'ß~»÷½é$ÝÝÙ&y™“ï¿]ûÞô’nî쓼ÌÉ÷ß®ýïzI7wvI€^fdûï×~÷½$›»»$À/32}÷ë¿{Þ’MÝÝ’`™™>ûõß½ïI&îîÉ0 ÌÌŸ}úïÞ÷¤“wwd˜çççççççæ»Þ÷32I$’`$’I.îîîîÀ»»»»»»'½ï{úûéwï{ÒI»»²Ló3'ß~»÷½é$ÝÝÙ&y™“ï¿]ûÞô’nî쓼ÌÉ÷ß®ýïzI7wvI€^fdûï×~÷½$›»»$À/32}÷ë¿{Þ’MÝÝ’`™™>ûõß½ïI&îîÉ0 ÌÌŸ}úïÞ÷¤“wwd˜æfO¾ýwï{ÒI»»²Ló3'ß~»÷½é$ÝÝÙ&y™’Iû÷ïß¿~ýúnîîè’I$€—wwww` ÎsœçÚ¬Ö¹Îs31»»$À/32}÷ë¿{Þ’MÝÝ’`™™>ûõß½ïI&îîÉ0 ÌÌŸ}úïÞ÷¤“wwd˜æfO¾ýwï{ÒI»»²Ló3'ß~»÷½é$ÝÝÙ&y™“ï¿]ûÞô’nî쓼ÌÉ÷ß®ýïzI7wvI€^fdûï×~÷½$›»»$À/32}÷ë¿{Þ’MÝÝ’`™™$Ÿ¤’I0’I$€—wwww` Îsœ÷õ÷ÒïÞ÷¤“wwd˜æfO¾ýwï{ÒI»»²Ló3'ß~»÷½é$ÝÝÙ&y™“ï¿]ûÞô’nî쓼ÌÉ÷ß®ýïzI7wvI€^fdûï×~÷½$›»»$À/32}÷ë¿{Þ’MÝÝ’`™™>ûõß½ïI&îîÉ0 ÌÌŸ}úïÞ÷¤“wwd˜æfO¾ýwï{ÒI»»²Lüüüüüü×{ÞæfI$’L$’I eÝÝÝÝØ ÝÝÝÝÙ=ï{ß×ßK¿{Þ’MÝÝ’`™™>ûõß½ïI&îîÉ0 ÌÌŸ}úïÞ÷¤“wwd˜æfO¾ýwï{ÒI»»²Ló3'ß~»÷½é$ÝÝÙ&y™“ï¿]ûÞô’nî쓼ÌÉ÷ß®ýïzI7wvI€^fdûï×~÷½$›»»$À/32}÷ë¿{Þ’MÝÝ’`™™>ûõß½ïI&îîÉ0=ÏçñŸÌÉ$ýû÷ïß¿~ý7wwt2îîîîì’I$ç9Îs€|øI$’@êX’I$€ûûùù÷ïß¿~ý’I$Ÿ@ $’H·wwww` ÎsœçÚ¬ÕûÞô’nî쓼ÌÉ÷ß®ýïzI7wvI€^fdûï×~÷½$›»»$À/32}÷ë¿{Þ’MÝÝ’`™™>ûõß½ïI&îîÉ0 ÌÌŸ}úïÞ÷¤“wwd˜æfO¾ýwï{ÒI»»²Ló3'ß~»÷½é$ÝÝÙ&y™“ï¿]ûÞô’nî쓼ÌÉ÷ß®ýïzI7wvI€k½ïs3$’I&I$2îîîî컲{Þ÷¿¯¾—~÷½$›»»$À/32}÷ë¿{Þ’MÝÝ’`™™>ûõß½ïI&îîÉ0ÅÝÝÝÝÝÝœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™Ý’I$“ $’HwwwwvÌç.ï÷½ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªª®µ­kUïæ~w}îfd’I$À$’I $’I.îîîîÀ’I$€’I$$’I$Š~Ýsd’?ŒÌÌÌÌÅUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUõwöfwùþ|¾÷»»¾ûï¿§•UUUUUU7Ùï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfww}÷ß}÷ß}Û»»»º’I$€—wwww` ÎsœçÚ¬Ö¹Îs30n÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™ÝÝ÷ßI$˜I$’@Ë»»»»°g9Îsï½ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªª®µ¬×{ÞæfI$’L$’I eÝÝÝÝØI$‘@Û®`¬’Gñ™™™™™™Šªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌîîûï¾ûï¾û·wwwwt’I$ »»»»»fsœç>ÕfµÎs™™€ïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33»»ï¾ûé$ÀI$’]ÝÝÝÝ€39ÎsŸj¹nîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUU]f»Þ÷32I$’`$’I.îîîîÀ’H í×0VI#øÌÌÌÌÌÌÌÅUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªª®µ­kZÖµ­kZÖýüÏÎö»™™$’I0eÝÝÝÝØI$Îsœçùð$’I  $’I ??>ýû÷ïß²I$“è$’Iöîîîîì™ÎsœûUš×9ËîîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3¹™’I$“ $’Hwwwwvî»»¿Þ÷-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªºÖµ­kZÖ³]ï{™™$’I0’I$€—wwww` $’I$’E?n¹€ ²IÆff*ªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33»»ï¾ûï¾ûîÝÐI$2îîîîì™ÎsœûUš×9Îgwnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¿åwög»™™$’I0$’II$’@Ë»»»»°’I$$’I!™Ë»¿Þ÷-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªªÿ•ýßÙ™ßçùòûÞîîûï¾ýþžUUUUUUUüÝöw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUu­kZÖk½ïs3$’I&I$2îîîîìI$’H í×0VI#øÌÌÌÌÅUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfww}÷ß}÷ß}Û»»º$’I eÝÝÝÝØ3œç9ö«5®sœÌÌnî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™ÝÝô’I&I$2îîîîì™Îs—ûÞå»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUu­kY®÷½ÌÌ’I$˜I$’@Ë»»»»°I$’(ûuÌU’Hþ333331UUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™ÝÝ÷ß}÷ß}÷nîîîèI$’]ÝÝÝÝ€39ÎsŸj³Zç9ÌÌÁ»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª¯õ_ùßçöe÷wI$’L˿˻»»’I$9Îsœà<I$’@ô` $“÷÷Ww÷ïß¿d’I'ÐI$’íÝÝÝÝØ$‘@Û®`¬’Gñ™™™™™™™™Šªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUU]kZÖµ­kZÖµšï{ÜÌÉ$’I€’I$ »»»»»fsœç>ÕfµÎs™™€Ï¼Òªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;»¾ûï¾ûï¾ÀI$’]ÝÝÝÝ€39ÎsŸj³ZåÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9Þ÷32I$’`$’I.îîîîÀH í×0VI#øÌÌÌÌÌÌÌÌÌÅUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªª®µ­kZÖµ­k5Þ÷¹™’I$“ $’HwwwwvI$’I$’E?n¹€ ²IÆf*ªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;Þùnîû»·ww¿Zªªªªªª¯9™ï|·w}ÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU«û¿³2û»¾ûï¾ûï¾À’I$$’I.îîîîÀI$’•U_~ÕfµÎsÝÛ»»ß­UUUUUUWœÌÎ÷¾[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUþ¯îþÌÎÿ?Ï—Þ÷wwß}÷ïôòªªªªªª¯æîû½ï–îï»»ww{õªªªªªªªó™™Þ÷ËwwÝÝ»»½úÕUUUUUUyÌÌï{å»»îîÝÝÞýjªªªªªª¼æfw½òÝÝ÷wnîï~µUUUUUU^s3;3$’I&I$2îîîîì™ww½î[»¾îíÝÝïÖªªªªªª«Îfg{ß-Ýßwvîî÷ëUUUUUUUç33½ï–îï»»ww{õªªªÅ;û33½ï–îï»»ww{ð™™ï|·w}ÝÛ»»ß€ìÌÌï{å»»îîÝÝÞüffg{ß-Ýßwvîî÷à;33;Þùnîû»·ww¿Ù™™Þ÷ËwwÝÝ»»½øÌÌÎ÷¾[»¾îíÝÝïÀvffww}÷ß}$˜I$’@Ë»»»»°g9ÎsíW-Ýßwvîî÷à;33;Þùnîû»·ww¿Ù™™Þ÷ËwwÝÝ»»½øÌÌÎ÷¾[»¾îíÝÝïÀvffw½òÝÝ÷wnîï~³33½ï–îï»»ww{ð™™ï|·w}ÝÛ»»ß€ìÌÌï{å»»îîÝÝÞüffg{ß-Ýßwvîî÷à;33;Þùnîû»·ww¿Ìï{ÞæfI$’L$’I eÝÝÝÝØÝÝÝî»»¿Þ÷-Ýßwvîî÷à;33;Þùnîû»·ww¿Ù™™Þ÷ËwwÝÝ»»½øÌÌÎ÷¾[»¾îíÝÝïÀvffw½òÝÝ÷wnîï~³33½ï–îï»»ww{ð™™ï|·w}ÝÛ»»ß€ìÌÌï{å»»îîÝÝÞüffg{ß-Ýßwvîî÷à;33;Þùnîû»·ww¿Ù™™ÝÝ÷ß}÷ß}÷nîîîîîè$’I eÝÝÝÝØ3œç9ö«5®sœÌÌ}³33½ï–îï»»ww{ð™™ï|·w}ÝÛ»»ß€ìÌÌï{å»»îîÝÝÞüffg{ß-Ýßwvîî÷à;33;Þùnîû»·ww¿Ù™™Þ÷ËwwÝÝ»»½øÌÌÎ÷¾[»¾îíÝÝïÀvffw½òÝÝ÷wnîï~³33½ï–îï»»ww{ðãÓûýwww?×ý×ï¾úI'èý»»»»» $’H9Îsœà<’I$€ø°ßÝ}û÷ïß¿~É$’O ’I$Û»»»»°uÝÝþ÷¹nîû»·ww¿Ù™™Þ÷ËwwÝÝ»»½øÌÌÎ÷¾[»¾îíÝÝïÀvffw½òÝÝ÷wnîï~³33½ï–îï»»ww{ð™™ï|·w}ÝÛ»»ß€ìÌÌï{å»»îîÝÝÞüffg{ß-Ýßwvîî÷à;33;Þùnîû»·ww¿Ù™™Þ÷ËwwÝÝ»»½øçÏŸ>|ùóçÏ™Þ÷½ÌÌ’I$˜I$’@Ë»»»»°g9ÎsíVk\ç9™˜ ûóçÏŸ>™™ï|·w}ÝÛ»»ß€ìÌÌï{å»»îîÝÝÞüffg{ß-Ýßwvîî÷à;33;Þùnîû»·ww¿Ù™™Þ÷ËwwÝÝ»»½øÌÌÎ÷¾[»¾îíÝÝïÀvffw½òÝÝ÷wnîï~³33½ï–îï»»ww{ð™™ï|·w}ÝÛ»»ß€ìÌÌîîûï¾ûï¾û·t’I$ »»»»»fsœç>ÕfµÎs™ÝÛ»»ß€ìÌÌï{å»»îîÝÝÞüffg{ß-Ýßwvîî÷à;33;Þùnîû»·ww¿Ù™™Þ÷ËwwÝÝ»»½ø³3/½ï–îï»»ww¿×w}Þ÷ËwwÝÝ»»ß€ë»¾ï{å»»îîÝÝïÀuÝßw½òÝÝ÷wnî÷à:îï»Þùnîû»·w{ðwwÝÝßI$’`$’I.îîîîÀœç9½î[»¾îíÝÞü]Ý÷{ß-Ýßwvîï~®îû½ï–îï»»ww¿×w}Þ÷ËwwÝÝ»»ß€ë»¾ï{å»»îîÝÝïÀuÝßw½òÝÝ÷wnî÷à:îï»Þùnîû»·w{ðwwÝï|·w}ÝÛ»½ø»»î÷¾[»¾îíÝÞü]Ý÷{ß-Ýßwvîï~®îó32I$’`$’I.îîîîÀ×wwûÞå»»îîÝÝïÀuÝßw½òÝÝ÷wnî÷à:îï»Þùnîû»·w{ðwwÝï|·w}ÝÛ»½ø»»î÷¾[»¾îíÝÞü]Ý÷{ß-Ýßwvîï~®îû½ï–îï»»ww¿×w}Þ÷ËwwÝÝ»»ß€ë»¾ï{å»»îîÝÝïÀuÝßw½òÝÝ÷wnî÷àùœç9™™’I$“ $’Hwwwwv7ww{®îï÷½ËwwÝÝ»»ß€ë»¾ï{å»»îîÝÝïÀuÝßw½òÝÝ÷wnî÷à:îï»Þùnîû»·w{ðwwÝï|·w}ÝÛ»½ø»»î÷¾[»¾îíÝÞü]Ý÷{ß-Ýßwvîï~®îû½ï–îï»»ww¿×w}Þ÷ËwwÝÝ»»ß€ë»¾ï{å»»îîÝÝïÀ>|ùóåù¬ï{ÜîfI$’L'{Þ÷©.îîîîÀI$’@ÝÝÝÝÝÝî»»¿Þ÷-Ýßwvîï~®îû½ï–îï»»ww¿×w}Þ÷ËwwÝÝ»»ß€ë»¾ï{å»»îîÝÝïÀuÝßw½òÝÝ÷wnî÷à:îï»Þùnîû»·w{ð¤{33¿Ïóå÷½ÝÝ÷ß}ûýýwwû½ï–îï»»ww¿×w}Þ÷ËwwÝÝ»»ß€ë»¾ï{å»»îîÝÝïÀóçÏŸ>|ùóçÏŸ3œç332I$’`$’I.îîîîÀœç9ϵY­sœæf`gߟ>|øwwÝï|·w}ÝÛ»½ø»»î÷¾[»¾îíÝÞü]Ý÷{ß-Ýßwvîï~®îû½ï–îï»»ww¿×w}Þ÷ËwwÝÝ»»ß€ë»¾ï{å»»îîÝÝïÀuÝßw½òÝÝ÷wnî÷à:îï»Þùnîû»·w{ðwwÝï|·w}ÝÛ»½ø»»îîï¾ûï¾ûï»wwwww@I$’@Ë»»»»°g9ÎsíVk\ç9™˜ø»»î÷¾[»¾îíÝÞü]Ý÷{ß-Ýßwvîï~®îû½ï–îï»»ww¿×w}Þ÷ËwwÝÝ»»ß€ë»¾ï{å»»îîÝÝïÀuÝßw½òÝÝ÷wnî÷à:îï»Þû0VIÕü?…Uw{˜«$ž«¥]Þæ*É'ªé@^÷½ï{Þà$’I.îîîîÀœç9ϵY­pY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  »ÜÀY$õ](î÷0VI=W]_¾ûåê÷½ï{Þõ—wwww`sœç8I$’@ýXïî¾ýû÷ïß¿d’I'ÐI$’íÝÝÝÝØ3œç9ûuÌU’OUÒ€.ïsd“Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  ¯{Þ÷²Lw½ï{Þ€.îîîîÀœç9ϵY¬U’OUÒ€.ïsd“Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õuòý÷ß+÷½ï{Þ ÷½ï{ÐeÝÝÝÝØ3œç9ö«5®s‚¬’z®”w{˜«$ž«¥]Þæ*É'ªé@w¹€ ²IêºPÝî`¬’z®”w{˜«$ž«¥]Þæ*É'ªé@w¹€ ²IêºPÝî`¬’z®”w{˜«$ž«¥U{Þ÷½ïzÉ$÷½ï{ÐeÝÝÝÝØ3œç9ö«5®sœÌÌ’OUÒ€.ïsd“Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  ¯{Þ÷½ïY$’Iw½ï{Þ€.îîîîÀœç9ϵY­sœæf`]](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  »ÜÀY$õ](î÷09ÌÌÀ¿=ó3œç332I$’`½ï{Þôwwwwv’I$’I$‘@Û®`¬’z®”w{˜«$ž«¥]Þæ*É'ªé@w¹€ ²IêºPÝî`¬’z®”w{˜«$ž«¥]Þæ*É'ªé@w¹€ ²IêºPÝî`¬’z®”w{˜®ùç9™™’I$“ï{Þ÷ Ë»»»»°$’I$’(ûuÌU’OUÒ€.ïsd“Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd’ü÷É™Þ÷¹“2I$’`½ï{ÞôwwwwvI$’@’I$Š~Ýsd“Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  »ÜÀY$õ](î÷0VI=W]_¾ûåÝ™€ ÷½ì«¯ß€?~Ýî`¬’z®”w{˜«$ž«§9Îs33$’I&;Þ÷½ï@—wwww`’E?n¹€ ²IêºPÝî`¬’z®”w{˜«$ž«¥]Þæ*É'ªé@w¹€ ²IêºPÝî`¬’z®”w{˜«$ž«¥]Þæ*É'ªé@w¹€ ²IêºPÝî`¬’z®”33$’I&;Þ÷½ï@—wwww` @Û®`¬’z®”w{˜«$ž«¥]Þæ*É'ªé@w¹€ ²IêºPÝî`¬’z®”w{˜«$ž«¥]Þæ*É'ªé@w¹€ ²IêºPÝî`¬’z®”w{˜«$ž«¯—ï¾ùY’I$“]ÝÝÝÝ€9Îsœà<I$’ô`¿ºû÷ïß¿~ý’I$Ÿ@ï{Þ÷ ý»»»»» $Š~Ýsd“Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  »ÜÀY$õ](ÌÌÉ$’I€÷½ï{ÐeÝÝÝÝØ@Û®`¬’z®”w{˜«$ž«¥]Þæ*É'ªé@w¹€ ²IêºPÝî`¬’z®”w{˜«$ž«¥]Þæ*É'ªé@w¹€ ²IêºPÝî`¬’z®”w{˜«$ž«¥UÉ$’I€÷½ï{ÐeÝÝÝÝØ3œà~Ýsd“Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  »ÜÀY$õ](«Þ÷²I0Þ÷½ïz »»»»»fsœç>Õ9€ ²IêºPÝî`¬’z®”w{˜«$ž«¥]Þæ*É'ªé@w¹€ ²IêºPÝî`¬’z®”w{˜«$ž«¥]Þæ*É'ªé@w¹€ ²IêºPÝî`¬’z®”Uï{Þ÷½î;Þ÷½ï@—wwww` ÎsœçÚ¬Ö¹ÀU’OUÒ€.ïsd“Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  ¯{Þ÷½ïY${Þ÷½è2îîîîì™ÎsœûUš×9Îfc$ž«¥]Þæ*É'ªé@w¹€ ²IêºPÝî`¬’z®”w{˜«$ž«¥]Þæ*É'ªé@w¹€ ²IêºPÝî`¬’z®”w{˜«$ž«¥]Þæ*É'ªé@^÷½ï{Þ²I$½ï{ÞôwwwwvÌç9Î}ªÍkœç33Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  »ÜÀY$õ](î÷0VI=WJ»½ÌU’OUÒ€.ïsd“Õt  »ÜÜæf`_žù™Îs™™™$’I0Þ÷½ïz »»»»»’I$’I$’(ûuÌU’OUÒ€<çÙ›ºªÉ'ªê/ß}óÎw3wz«$ž«¥yϳ7uU’OUÒ€<çÙ›ºªÉ'ªé@sìÍÝUd“Õt 9öfIêºPœû3wUY$õ](Î}™»ª¬’z®”ç>ÌÝÕVI=^ùÜÎ÷½ÌÆI$’Lw½ï{Þ€.îîîîÀ$’I’IçÍÝUd“Õt 9öfIêºPœû3wUY$õ](Î}™»ª¬’z®”ç>ÌÝÕVI=WJóŸfnê«$ž«¥yϳ7uU’OUÒ€<çÙ›ºªÉ'ªëåûï¾yÎænê¯{Þʺýø÷9öfîþü¬’z®”Uïd’I€÷½ï{ÐeÝÝÝÝØ3œç9¾9›ºªÉ'ªé@sìÍÝUd“Õt 9öfIêºPœû3wUY$õ](Î}™»ª¬’z®”ç>ÌÝÕVI=WJóŸfnê«$ž«¥yϳ7uU’OUÒ€<çÙ›ºªÉ'ªé@sìÍÝUd“Õt ¿~ü÷½ï{Þù’I ÷½ï{ÐgË»»»» $’HèÀ?u÷ïß¿~ýû$’I>€;Þ÷½ï@ûwwwwvÌç9Îoy­nê«$ž«¥yϳ7uU’OUÒ€<çÙ›ºªÉ'ªé@sìÍÝUd“Õt 9öfIêºPœû3wUY$õ](Î}™»ª¬’z®”ç>ÌÝÕVI=WJóŸfnê«$ž«¥yϵªªÌÌÀ¿=ó3œç332I$’`½ï{ÞôwwwwvÌç9Îoy­UVffùí(Î}™»ª¬’z®”ç>ÌÝÕVI=WJóŸfnê«$ž«¥yϳ7uU’OUÒ€<çÙ›ºªÉ'ªé@sìÍÝUd“Õt 9öfIêºPœû3wUY$õ](Î}™»ª¬’{Ï|Ìç9ÌÌÌ’I$˜ï{Þ÷½]ÝÝÝÝ€$’IçÍÝUd“Õt 9öfIêºPœû3wUY$õ](Î}™»ª¬’z®”ç>ÌÝÕVI=WJóŸfnê«$ž«¥yϳ7uU’OUÒ€<çÙ›ºªÉ'ªé@sìÍÝUd“Õt 9öfIêºPW²I$˜ï{Þ÷½]ÝÝÝÝ€39Îsœã™»ª¬’z®”ç>ÌÝÕVI=WJóŸfnê«$ž«¥yϳ7uU’OUÒ€<çÙ›ºªÉ'ªé@sìÍÝUd“Õt 9öfIêºPœû3wUY$õ](Î}™»ª¬’z®”ç>ÌÝÕVI=WJª÷½ï{Þõ’I{Þ÷½è2îîîîì™ÎsœÞóZª¬ÌÌ$õ](Î}™»ª¬’z®”ç>ÌÝÕVI=WJóŸfnê«$ž«¥yϳ7uU’OUÒ€<çÙ›ºªÉ'ªé@sìÍÝUd“Õt 9öfIêºPœû3wUY$õ](Î}™»ª¨_žù™Îs™™™$’I0Þ÷½ïz »»»»» $’I$ŠsŽfIêºPœû3wUY$õ](Î}™»ª¬’z®”ç>ÌÝÕVI=WJóŸfnê«$ž«¥yϳ7uU’OUÒ€<çÙ›ºªÉ'ªé@sìÍÝUd“Õt 9öfIêºPœû3wUY$õ](™™$’I0Þ÷½ïz »»»»»fã™»ª¬’z®”ç>ÌÝÕVI=WJóŸfnê«$ž«¥yϳ7uU’OUÒ€<çÙ›ºªÉ'ªé@sìÍÝUd“Õt 9öfIêºPœû3wUY$õ](Î}™»ª¬’z®”ç>ÌÝÕVI=WJª÷½ï{Þõ€ï{Þ÷ Ë»»»»°g9Îs{Íjª³’OUÒ€<çÙ›ºªÉ'ªé@sìÍÝUd“Õt 9öfIêºPœû3wUY$õ](Î}™»ª¬’z®”ç>ÌÝÕVI=WJóŸfnê«$ž«¥yϳ7uU’OUÒ€<çÙ›»™™~{æg9Îffd’I$À{Þ÷½è2îîîîì’I$’I$ŠsŽfIêºPœû3wUY$õ](Î}™»ª¬’z®”ç>ÌÝÕVI=WJóŸfnê«$ž«¥yϳ7uU’OUÒ€<çÙ›ºªÉ'ªé@sìÍÝUd“Õt 9öfIêºPœû3wUY$õ]9Î}û÷îI$’^$’I 2îîîîìI$’‘@qÌÝÕVI=WJóŸfnê«$ž«¥yϳ7uU’OUÒ€<çÙ›ºªÉ'ªé@sìÍÝUd“Õt 9öfIêºPœû3wUY$õ](Î}™»ª¬’z®”ç>ÌÝÕVI=WBùÝî` ½ï{*ëû?ο}ÿãþßÿÝ]]Õ¬©)/ ²P^±«æú;ÝÿW7“ÑžOcº¤¤¹êJKÖ¤¤¼ÞrP[ˆª¤år¹" W¤”¤ ºooãÇÉ313%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•Tþþþþ•T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T SûûûúT P%@•T P%@•T QYP%@”U$¨ J*¨ J*,¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J)˜™‰˜ž²‚UÒñÑTžæ7T”—µÙ<Ý«?§Ÿªf& J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨§÷÷÷ô¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŸßßßÒ J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*J*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*©ýýýý*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨§÷÷÷ô¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¢©%@•TþYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T Süþþþ•T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T SûûûúT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%OïïïéP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@•?¿¿¿¥@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•Tþþþþ•T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T SûûûúT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%OïïïéP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@•?¿¿¿¥@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@•T P%@•TVT P%@•T P%@•T QYP%@•T P%@•T P%Ee@•T P%@•T P%@••T P%@• LÄÌLÄÌN2P]Ý]\ɘ™’ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨§÷÷÷ô¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŸßßßÒ J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*J*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*©ýýýý*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨§÷÷÷ô¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨¢² J*¨ J*¨ JŠÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J’§òÊ*¨ J*¨ J*+*¨ J*¨ J*¨¬¨ J*¨ J*¨§ûOÓž¤¤³‹5Jº" VʨˆÈ‚UÆJ µUóÿ1AY&SYÑ[ñ)’ÿÿH@@⨃F?ïÞ0@à¾Ô @ PPP   Àp È’II"I0@@€€Œ‰$‘$’$’D’DH’II"I$$‰$‘$’$’$’D’IE$I@ $’EI$’I$Š$=à PP ‚@@‚‚‚J¡H  €PH (!T €‚A@‚J‚P‘     …(VQ•=SÿõT„õMMFC!hg©¨Ð4zb„JšzŸ·µT©HM©§¨Ñ h3HRª™ÿêª~Ÿþª•%ÿªªOÿj•€Ðdsš`!€˜&ª¨÷µUM6 h¹DU;Þ ‡UTï>G°RS‰ÔôŠ¡Ô99:(‚TEP_ø]ùþ~öøŽN9ò}'ÁﻑoáåßiÈ *hþõ~ç—íz½^¯VffI$ž?'Ñòüþ?'ýìïþÝ}[z=œõºì½G]EÒ×î?Sör D"ª‡]x:ðuáëÃ× Ìó{µÇI$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$™™™™™™™ìÌÌ™™™’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I3333333333&fdÌÌÌÌÌÌÌÌÌÌÌÌ’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’ffLñÇ”êLÌÌÌÌÌÌ’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$îfq;I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I&fffffffffz33$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’fdÏyN¤ÌÌÌÌÌÌÉ$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$™™™™™™“32fffd’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I®$ï'I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I™žŒñÇ”êLÌÌÌÌÌÌÉ$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$™™™™™™33&fffd’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’LÌÌÌÌÌÌÌÌÉ™™2I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I’I’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’LÉž8òI™™™™™™™$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$“33333&fdÌÌÌÌ’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I™™™™™™™™™33&I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I'œóçœúç3ø?oíý¿¯ãýß»÷~ï÷€þ0 èÐýŸ¬ý~€ꪯ_^€èèzô=z€=6Ûm¶Ûm·—ʈ"(?X¨¨ @ˆ‚‘ï{ß‘ô>‡«Õêõxz½^¯W‡«Õêõxy`8xxyxÉ)Ø$€ö ‹(ˆ¡¨’  ¢ë–@QDñ P@z0¥OÑóÿï[éððéæðððíëõí¶Ûm¶UU@þ Ÿ_`ªªÐ3¯Ÿ>0k Á®ƒº è0k Á®ƒº W™Ìªò«Ìæw¿;Þôó9•^UyœÊ¯*¼ÎeV t5Ð`úë ßa®ƒº è0k¯<úyçž{ï¾ú3™UåW™Ð`×Aƒ] t5Ð`×Aƒ] t¯3™Þüï{Ðûîº è0k Á®ƒº è0k Á®Šò«ÌæUyUæs;ßïzyœÊ¯*¼ÎeW•^g Á®ƒº è0k Á®ƒº ëÏ>žy瞀~ÿ}÷ß}÷ß|ÎeW×Aƒ] t5Ð`×Aƒ] t5Ñ^UyœÆïÞîï¾ú¾ûï¾ûïºè0k Á®ƒº è0k Á®ƒ™Ìªò«ÌæUyUæs;ßïzyœÊ¯*¼ÎeW×Aƒ] t5Ð`×Aƒ] t5מ|ï{ÐÌæCº è0k Á®ƒº è0k Á³™UåW™Ìï~w½èæs*¼ªó9•^UyœÊ¯(×Aƒ] t5Ðj¯3™UåW™Ìªò«ÌænïÞîè ª¨úÎgßßϰ*ª m¶Ûqô‰BP”% BP”% Bm·;mÆ„¡(J„¡(J„ÛnvÛŒ% BP”% BP”% ¶Üí·J„¡(J„¡(Jm¹Ûn0”% BP”% BP”&Ûs¶Üa(J„¡(J„¡(M¶çm¸ÂP”% BP”% BP›mÎÛq„¡(J„¡(J„¡6Û¶ã BP”% BP”% Bm·;mÆ„¡(J„¡(J„íÛ¯nÝ»www`UP~g0÷9Ÿ_YÌúú„¡(J„¡(M¶Ûl&¶Ûm„¡(J„¡(J„¡6Ûm¶„¡(J„¡(J„Ûm¶ØJ„¡(J„¡(Jm¶Ûa(J„¡(J„¡(M¶Ûm„¡(J„¡(J„¡6Ûm¶„¡(J„¡(J„Ûm¶ØJ„¡(J„¡(Jm¶Ûa(J„¡(sëë9Ÿ_YÌúúÎg×Ös7~÷w}÷Ð ª¨6Ûm¶Ûm·ÂP”% BP”% BP›mÎÛq„¡(J„¡(J„¡6Û¶ã BP”% BP”% Bm·;mÆ„¡(J„¡(J„ÛnvÛŒ% BP”% BP”% ¶Üí·J„¡(J„¡(Jm¹Ûn0”% BP”% BP”&Ûs¶Üa(J„¡(J„¡(M¶çm¸ÂP”% BP”% BP›mÎÛq„¡(J„¡(J„¡;vûÝÝ÷ß@*ª yîs>¡(J„¡(J„¡6Û¶ã BP”% BP”% Bm·;mÆ„¡(J„¡(J„ÛnvÛŒ% BP”% BP”% ¶Üí·J„¡(J„¡(Jm¹Ûn0”% BP”% BP”&Ûs¶Üa(J„¡(J„¡(M¶çm¸ÂP”% BP”% BP›mÎÛq„¡(J„¡(J„¡6Û¶ã BP”% BP”% Bví×·nÝ»»»¶Ûm¶Ûlªª€6Ûm¶Ûm¶ÛqÜ% BP”% BP”% ¶Üí·J„¡(J„¡(Jm¹Ûn0”% BP”% BP”&Ûs¶Üa(J„¡(J„¡(M¶çm¸ÂP”% BP”% BP›mÎÛq„¡(J„¡(J„¡6Û¶ã BP”% BP”% Bm·;mÆ„¡(J„¡(J„ÛnvÛŒ% BP”% BP”% ¶Üí·J„¡(J„¡(J9›¿{»¾ûèUT`ó¸J„¡(J„¡(Jm¹Ûn0”% BP”% BP”&Ûs¶Üa(J„¡(J„¡(M¶çm¸ÂP”% BP”% BP›mÎÛq„¡(J„¡(J„¡6Û¶ã BP”% BP”% Bm·8xÎg×Ös>¾³Ÿ\àxg2«Ê¯3™UåW™Ìï~w½ï UTï¾ûîº è0k Á®ƒº è0k Á®ª¼ªó9•^UyœÎ÷ç{Þ€ ª¨g2«Ê¯3™UåW™Ð`×Aƒ] t5Ð`×Aƒ] uçŸO<óÀUUÌæUyFº è0k Á®ƒº è0k Á®…åW™Ìï~w½èªª€{ï¾ûîº è0k Á®ƒº è0k Á®Ê¯*¼ÎeW•^g3ʯÏÊ€~À UU¿¿¿°k Á®þŸÂ½÷ßw¾ûîº è0k Á®ƒº è¯*¼ÎeW•^g3½ùÞ÷¾€<ÎeW•^g2«Ê¯3`×Aƒ] t5Ð`×Aƒ] u¼óëõóϪª€3™UåëØ}n¾|ùóº è0k Á®ƒº è^UyœÎ÷ç{Þ€}÷ß}÷] t5Ð`×Aƒ] t5Ð`×2«Ê¯3™UåW™Ìï~w½èæs*¼ªó9•^T×Aƒ] t5Ð`×Aƒ] t5׿>}wwtUUæs*`×Aƒ] t5Ð`×Aƒ] t5ÙUåW™Ìï~w½è@è0k Á®ƒº è0k Á®ƒ ÌæUyUæs*¼ªó9ïÎ÷½ªª¼ÎeW•^g2«Èk Á®ƒº è0k Á®ƒº ëÏ>w½èUUæs(Á®ƒº è0k Á®ƒº è0k™UåW™Ìï~w½èú×Aƒ] t5Ð`×Aƒ] t5Ð`×Aƒ]}Cìð÷ß}÷ß}úz*ª ûûûûPk Á®ƒº è0k Á®ƒº éW•^g2«Ê¯3™Þüï{Ð ª«ÌæUyUæs*¼ªó9 t5Ð`×Aƒ] t5Ð`×^yôóÏ<ôUUæs*¼©®ƒº è0k Á®ƒº è0k ò«Ìæ}÷¿}ó½UU@ªº è0k¯¨}‡ÖëçÏŸ7Á®ƒº è0kª¯*¼ÎeW•^g3½ùÞ÷ UW™Ìªò«ÌæUyUæt5Ð`×Aƒ] t5Ð`×Aƒ]yçÓÏ<ðªªó9•^Q®ƒº è0k Á®ƒº è0k¡yUæs;ßïzPè0k Á®ƒº è0k Á®ƒ»*¼ªó9•^UyœÎ÷ç{Þ€UU^g2«Ê¯3™UåW—Aƒ] t5Ð`×Aƒ] t5מ}<ó΀UU^g2«Èk Á®ƒº è0k Á®ƒº è¯*¼Îg{ó½ï@(º è0k Á®ƒº è0k Á®eW•^g2«Ê¯3™ò«ò¶èЪªßßߨªªµÐ`×Aƒ] t5Ð`×Aƒ] t«ÌæUyUæs;ßïzï¾ûï¾ú×Aƒ] t5Ð`×Aƒ] t5Ð`×Aƒ]yçÓÏ<óß}÷ÐUUyœÊ¯*¼ÎAƒ] t5Ð`×Aƒ] t5ÐayœÎ÷ç{Þ€UU5Ð`×Aƒ] t5Ð`×Aƒ] tUyœÊ¯*¼ÎgÎ÷ï½üèP}k Á®ƒº ëèaõºùóçÍóᮃº è0k Á®¼óéçžyï¾úUW™Ìªò«Ìè0k Á®ƒº è0k Á®ƒº W™Ìï~w½èUFº è0k Á®ƒº è0k Á®…åW™Ìªò«Ìæw¿;Þô}÷ß}÷ß}k Á®ƒº è0k Á®ƒº è0k Á®¼óéçžyï¾€ªªó9•^Uyt5Ð`×Aƒ] t5Ð`×Aƒ]Uæs;ßïzUC] t5Ð`×Aƒ] t5Ð`×EyUæs*¼ªó9ŸÑŸ?>sz=ôôUYõûþþ}}÷ÐUA®ƒº è0k Á®ƒº è0k¥^UyœÊ¯*¼Îg{ó½ï@*ª¯3™UåW™Ìªò«Ìä5Ð`×Aƒ] t5Ð`×Aƒ]yçÓÏ<óÐUW™Ìªò¦º è0k Á®ƒº è0k Á®ƒÊ¯3™Þüï{Ð  k Á®ƒº è0k Á®ƒº ê«Ê¯3™UåW™Ìï~w½èUUæs*¼ªó9•^Uy t5Ð`×Aƒ] t5Ð`×_‡ž}|ó΀ÝÝÝÝyœÊ¯(×Aƒ] t5×àaõºùóçÍóçÆº è0k¡yUæs;ßïzPè0k Á® yç{Þôªªª ªªªªªªï{Þ÷ UUUUUUUUTW{Þ÷½ªª¨ä~÷Wuu×sñü¯ãúý~¿_°ázóçÀ{ï¾ûï žyÞ÷ UUU@UUUUUW{Þ÷½ªªªªªªªªªªª²ª«wwwwwwwwwwwwwwwwóóóóóòªªÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝüüüüüü€*ª·wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww????? ª­ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝßÏÏÏÏÏȪ«wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwóóóóóòªªÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝüüüüüü€*ª·wwwwwwwwwwwwwwwwwwwwwwwwwww±™•UVs*ª¬æw½ïz÷ß@@}î€@  Ðètº]Vs*ª¬æYUSÐ ª¨?@@>|øU_¬æUU.€@  Ðètº].»Þ÷½{ï ªª÷9Ðètº].€@  Ug3www^úT>÷@  Ðètº].€̪ª³™»»»¯}ûèÞètº].€@  Òª«9•UVs7wwuï UU{œÊª«9•UVs*ètº]«9•UVs*ª¬ænîîëß@ªª÷9•UVs*ª.€@  Ðètº]|ùóçÏŸ=ûýýUW¹Ìªª³ètº].€@  ЪžÕU@ªª÷9•tº].€@  Ðèg3www^úUO½Ðètº].€@  ÙUUg3www^ú@>÷@  Ðètº].…Ug2ªªÎfßUTôUTÐп¿¿°ªªýg2¨@  Ðètº].€,ænîîëß@ªªûÝ.€@  Ðètº]UUYÌÝÝÝ×¾€÷º].€@  ÐètVs*ª¬ænîîëß@÷ß}÷ß}ûÝ.€@  Ðètg2ªªÎeUUœÍÝÝÝ{èU^ç2ªªÎeUU.€@  ÕUUœÊª«9•UVs7wwuï UU{œÊª«9”ètº].€@  ×ÏŸ>|ù¯}ª«ÜæUPº].€@  Ðèt¹›»»º÷Ð*ª½ÎeUUœÏ@Ì3˜g0Î`œÀ9€s ænnîîûï UT=Î`œÀ9€s æÌ3˜g3@Ì  ænîîï¾úÜæÌ3˜g0Î`œÀ9€s æÌí|ª½ô ª¨Ðп¿¿°~³˜g0Î`œÀ9€s æÌ3˜g3www}÷Ðç0Î`œÀ9€s æÌ3˜g0Îfîîîûï =Î`œÀ9€s æÌ3˜g0Î`œÍÝÝÝ÷ß@{œÀ9€s æÌ3˜g0Î`œÀ9›»»»ï¾€÷9€s æÌ3˜g0Î`œÀ9€s7wwwß}îs æÌ3˜g0Î`œÀ9€s ænîîï¾úÜæÌ3˜g0Î`œÀ9€s æÌÝÝÝß}ô¹Ì3˜g0Î`œÀ9€s æÌ3™»»»¾ûès˜g0Î`œÀ9€s æÌ3˜g3»õ»»¾ûè*ª s˜g0Î`œÀ9€s æÌ3™Ñ¶Û å?h *(€¨B¡¡ùú(ˆ¡Ð@T!Îpsž9Ç9ÁÎ}¾qðçÆøßÁ3332I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$“32I$’ffffffffg»32fI$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$™™’I$’I$’I$’I$’LÌÌÌÌÌÌÌÌÌÌÉ™™33333333333$’I$’I$’I$’I$™™’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I&dÌÌ™™™™™™™™™$’I33$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I3332cŒÌ™™™™™’I$’ffI$’I$’I&fd’I$’I$’ffI$’I$’I&fd’I$’I$’GI$ÌÌÌÌÌÌÌÌ„’{ÂI!$“3 ÌÌ33&fffffffffffd$’BI$$’BI$33&fffffffffffd$’BI$$’BI$33&fffffffffffd$’BI$$’BI$33&fffffffffffd$’BI$$’BI$33&fffffffffffd’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’HI$„’HI$„’HI$ÌÌÌÌÌÌÌÌÌÌÌÌÈI$„’HI$„’HI$ÌÌÌÌÌÌÌÌÌÌÌÌÈI$„’HI$„’HI$ÌÌÌÌÌÌÌÌÌÌÌÌÈI$„’HI$„’HI$ÌÌÌÌÌÌÌÌÌÌÌÌÈI$„’HI$„’HffI$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$™™™™™™™™™™™™’I $’I $’I™™™™™™™™™™™™’I $’I $’I™™™™™™™™™™™™’I $’I $’I™™™™™™™™™™™™’I $’I $’I™™™™™™™™™™™™’I $’I $ÌÌ™$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$“33333333333!$’I!$’I!$“333333333333!$’I!$’I!$“333333333333!$’I!$’I!$“333333333333!$’I!$’I!$“333333333333!$’I!$’I!™™3$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’fffffffffffBI$$’BI$$’BI&ffffffffffffBI$$’BI$$’BI&ffffffffffffBI$$’BI$$’BI&ffffffffffffBI$$’BI$$’BI&ffffffffffffBI$$’BI$$’Cs^z¼½GrI$’I$’I$’ffI$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’ffI$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’ffI$’I$’I$™™“32fffffffd’I$’I$’I$’I$’I$’I$’I$’I$’I$ÌÌ’I$’I$’I$’I$’I$’I$ÌÌÌÌÉ™™33333$’I$’I$’I$’I$’I$’I™™$’I$’I$’I$’I$’I$’I$’I$’I$’I&ffffffdèÏ É™’I$’I$’I$ÌÌ’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$“3333333333=D’HI$„’HI$„’LÌÌÌÌÌÌÌÌÌÌÌÌ„’HI$„’HI$„’LÌÌÌÌÌÌÌÌÌÌÌÌ„’HI$„’HI$„’LÌÌÌÌÌÌÌÌÌÌÌÌ„’HI$„’HI$„’LÌÌÌÌÌÌÌÌÌÌÌÌ„’HI$„’HI$†çÂIfd’I$’I$’ffI$’I$’I&fd’I$’I$’ffI$’I$’I&fd’I$’I„ìI&fffffffffffBI$$’BI$$’CuÓŽ8ã33333332fC33 ÌÌ330ÌÉ Çq33$’I$“333!$’I!$’I!$“:뮳333333332I!$’I!$’IÄÌÌ’I$’I$’BI$$’BI$$’BI&fffffffI$’I33$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’LÌÌÌÌ„’HI$„’HI$„’LÌÌÌÌÌÌÌÌÌÌÌÌ„’HI$„’HI$„’LÌÌÌÌÌÌÌÌÌÌÌÌ„’HI$„’HI$„’LÌÌÌÌÌÌÌÌÌÌÌÌ„’HI$„’HI$„’LÌÌÌÌÌÌÌÌÌÌÌÌ„’HI$„’HI$„’LÌÌÌÌÌÌÌÉ$’I33$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I™™™™ $’I $’I $™™™™™™™™™™™™™ $’I $’I $™™™™™™™™™™™™™ $’I $’I $™™™™™™™™™™™™™ $’I $’I $™™™™™™™™™™™™™ $’I $’I $™™™™™™™™™$’I33$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I3332I!$’I!$’I3333333333332I!$’I!$’I3333333333332I!$’I!$’I3333333333332I!$’I!$’I3333333333332I!$’I!$“ƒuÓ»®çk;]®ä’I$’I$’I$’I$’I$’I$’I&fd’I$’I$’I$’I$’I$’I$’I$’I$’I$’I33333&fdÌÌÌÌÉ$’I$’LÌÉ$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’LÌÉ$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’LÌÉ$’fffffffffdÌÌ’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$™™’I$’I$’I$’I$“333333333332yžY333333333$’I$’I$’I$’I$’I™™$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I&ffg¨’I $’I $’I™™™™™™™™™™™™’I $’I $’I™™™™™™™™™™™™’I $’I $’I™™™™™™™™™™™™’I $’I $’I™™™™™™™™™™™™’I $’I $’I™™™™™™™™™’I$’I$’I$’I$’I&fd’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$“33!$’I!$’I!$“333333333333!$’I!$’I!$’I$’I$’I$’BI$$’BI$$’BI&ffffffffffffBI$$’BI$$’BI&ffffffffffffBI$$’BI$$’C¼âO)3333®ºë333$’I$’ffI$’I$’I&fd’I$’I$’ffI$’I$’I&fd’I'xIÞI$’LÌÉ$’I32I!$’I!$’I3333®ºë333333!$’I!$’I!Þq$u™™™™™™™ $à’f™˜ffa™™†dœI$“32I$’I$$’BI$$’BI$$’fffg]uÖffffffBI$$’BI$$’BI&ffd’I$’I$’I$’I$’I$’I$“32I$’I$’I$’I$’I$’I$’I$’I$’I$ÌÌÌÌÌÌÌÌÌ„’HI$„’HI$„’LÌÌÌÌÌÌÌÌÌÌÌÌ„’HI$„’HI$„’LÌÌÌÌÌÌÌÌÌÌÌÌ„’HI$„’HI$„’LÌÌÌÌÌÌÌÌÌÌÌÌ„’HI$„’HI$„’LÌÌÌÌÌÌÌÌÌÌÌÌ„’HI$„’HI$„’LÌÌÌ’I$’I$’I$’I$’I$’I$“32I$’I$’I$’I$’I$’I$’I$’I$’I$™™™™™™™™™ $’I $’I $™™™™™™™™™™™™™ $’I $’I $™™™™™™™™™™™™™ $’I $’I $™™™™™™™™™™™™™ $’I $’I $™™™™™™™™™™™™™ $’I $’I‹Û›œ|^ïg«Ù=Ù™$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$ÌÌ’I33333333332ffLÌÌÌÌÌÌÌÌÌÌÌ’I$’I$’I$’I$’I$’I$’I$’I$ÌÌ’I$’I$’I$’I$’I$’I$’I$™“32ffffffffd’I$’I$’I$’I$’I™™$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I™™$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’q!&gI$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$™™’I$’I$’I$’I$’I$™™™™™™™™™î$’BI$$’BI$$’ffffffffffffd$’BI$$’BI$$’ffffffffffffd$’BI$$’BI$$’ffffffffffffd$’BI$$’BI$$’ffffffffffffd$’BI$$’BI$$’ffffI$’I$’I$’I$’I$’I$’I$’I$’I$’I$’ffI$’I$’I$’I$’I$’LÌÌÌÌÌÌÌÈI$„’HI$„’HI$ÌÌÌÌÌÌÌÌÌÌÌÌÈI$„’HI$„’HI$ÌÌÌÌÌÌÌÌÌÌÌÌÈI$„’HI$„’HI$ÌÌÌÌÌÌÌÌÌÌÌÌÈI$„’HI$„’HI$ÌÌÌÌÌÌÌÌÌÌÌÌÈI$„’HI$„’HI$ÌÌÌÌÉ$’I$’I$’I$’I$’I$’I$’I$’I$’I$’ffI$’I$’I$’I$’I$’I™™™™™™™’I $’I $’I$’I$’I$’I!$’I!$’I!$“333333333333!$’I!$’I!$“333333333333!$’I!$’I!$“333333333333!$’I!$’I!çœI“3333$’I$™™’I$’I$’I™™$’I$’I$™™’I$’I$’I™™$’I$’I$“2I$’I3:뮳332I!$’I!$’I3$’I$™™’I$àâI!$’I!$’I3333333®ºë333!$’I!$’I!çœI“®ºë®ºë3332dà’HI$$É 2BIÇI3333:뮳332I!$’I!$’I33333333332I$’I$’I$’I$’I$’I$’I$’I$’I™™$’I$’I$’I$’I$’I$’I$’fd$’BI$$’BI$$’ffffffffffffd$’BI$$’BI$$’ffffffffffffd$’BI$$’BI$$’ffffffffffffd$’BI$$’BI$$’ffffffffffffd$’BI$$’BI$>§8ç89Ï<ãßžÏW«Õ=™™™™™™’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’ffI$’I$“333332ffLÌÌÌ’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$ÌÌ’I$’I$’I$’I$’I$™™™™™™™™™33&d’I$’I$’I$’I$’I$’I$’I™™$’I$’I$’I$’I$’I$’I$’I$’I$ÌÌÌÌÌÌÌÌÌÌÌ™™“33333333332I™™$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I $’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$ÌÌ’I$’I$“3333ØI$„’HI$„’HI$ÌÌÌÌÌÌÌÌÌÌÌÌÈI$„’HI$„’HI$ÌÌÌÌÌÌÌÌÌÌÌÌÈI$„’HI$„’HI$ÌÌÌÌÌÌÌÌÌÌÌÌÈI$„’HI$„’HI$ÌÌÌÌÌÌÌÌÌÌÌÌÈI$„’HI$„’HI$ÌÌÌÌÌÌÌÌÉ$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$“32I$’I$’I™™™’I $’I $’I™™™™™™™™™™™™’I $’I $’I™™™™™™™™™™™™’I $’I $’I™™™™™™™™™™™™’I $’I $’I™™™™™™™™™™™™’I $’I $’I™™™™™™™™™$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$“32I$’I$’I333!$’I!$’I!$“333333333333!$’I!$’I!$“333333333333!$’I!$’I!$“333333333333!$’I!$’I!$“333333333333!$’I!$’I!$“333333333$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$’I$“32I$’I$’I&ffBI$$’BI$$’BI&ffffffffffffBI$$’BI$$’BI$’I$’I$’I$„’HI$„’HI$„’LÌÌÌÌÌÌÌÌÌÌÌÌ„’HI$„’HI$„’LÌÌÌÌÌÌÌÌÌÌÌÌ„’HI$„’HI$‡Žq$™™™™™™™™™™33$’I$’I$“32I$’I$’I33$’I$’I$“32I$’I$’I!$’I$’I$’I™×Y $’I $’I $™™™™™™™™™™×]u’I $’I $’I™’I$’I$™™“ƒŽ$’I $’I $™™™™™™™™™™×]u’I $’I $ñÎ$“®ºë®ºë¬ÌÌÌ„’pI$$“ ÌÌ330ûß[œáÎ8áú¼sœâ‚"ù…Eø ‹"¢¡"¢¡(„€¢ ù~^ߨp   wý_÷¯·ñ÷û?ß_GÛï?ßwÑçõwœ{(} ŠÇâ  |~î=ßåTP<œôðéé:tîõ^^ײë÷û<—ÑÈ"€¼žî8}þïW_ÍæP;üÝNowo'«ü|Ö"ª‰íPÏÛ¸@@¾~ÞnKæ÷ú>câñPT<þ(=QéÑ  !¡0 !À(„¢ ˆJ ƒH0 Š¡?"ˆªx‚‚"üEPÄÒóõñw$S… £ÁŸ shazam/data/IMGT_V_BY_CODONS.rda0000644000176200001440000000247513762520614015640 0ustar liggesusersBZh91AY&SYÅoQ: Rÿ‚ÿÿÿÿÿÿÿÿÿÿÿÿÿïÿp@à/†áðîóÚªU*¾ì!Ð2¤dÑ i §¤ýHiêzSÔÐ  3PJžª*ÿ¨¦Š§¨Ðhh € !§¢2dÀCL#Ma10Ó!€*ÿª©L6¥H M44hhP4ÄÚ€ž©4ôü§¨„Ѐõ@od`´ÇE!X¾@[a[‚W‰CŠ2‚‚S%4$ òCRJ…ÀIÂzÜ×Ô>¡R…˜ f6M£lÜ7Læñ ß8ˆíŽ3¤v擦wáz_æ‚>˜Fˆb˜Æ9d™D,€A3FiœgÍDˆif¡Õ5s`Ù6³pÝ7óCnˆpã9S˜ç#rA$é:޳°í;Žò2pw÷Ù¥Uì‚D§‰/æŽÀBSò`ÌÏD{8ñ„‡XPAŒ|P" ±1K‹‹Š—KŽPˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆŸ÷MÐI$’I&aB…AD’H<„„!“3L †d #²-H3L@FÉŠ!j¬"D˜M‡aêcB±±Z´%Ãü_/¼_mE@‡]fD9çFmm^|Ž*Ï(ßÇ#¼æˆPˆE"H¤R n˜ÆåUUUU¬uå–Ye–Ye”2Œ£î""""k DDDDD„!C~sœç9ÎsUUUUU[cbË,²Ë(P¡CW„ñc:’$"'Ûm¶Ûm¶ÛUUUUUW8 ,²Ë,²Ë,òv0ˆˆˆˆˆˆˆˆˆ–a­kZÖµ¬êªªªª«lCbË,²Ë,²ÍMHB„!B„!C[»»»»ÉUUUUU®5&L™2dÉ“&[€À""""'VD„HB†ºi¦œîši¢ªªëJ(¢Š(¢‰•*"""""""""V”¥)K»UU\ã%QEQE²d„!B„!rwˆB®›´ÓM+MUW:Ã&L™2dÉ“*TDDDDDDHB†nîîîíUUsŒ”QEQE*TDDDDDDDDD­)JR—vªª¹ÆùŽÁƒÃ&:qÏoÇšu}SÂæñ&$ÄR2Œà ¡ 5}”"¤€ ‚,"Â`EðS²`‡\ § Fé䞸@ R:#x(¢ÕQ=c}UUUUUUUUUUUUUUUUUUUUUUU7ïß½UUUUUUUUUUUUUUUUUUUUUUUU\˜ßj¹{Á—g5.d‹ûY¢ÎMS­P#ÓXjÖÏ—eþ.‡Cù|ð,…(5ºµ^*RÛšóiò¢å冼Nª Ç*NðKgŠ:õ69ÂÐl‘-¡I…Â#L›¨›V½{Kb£ ‰.°+Œ4Ý dHß±æ²gÃl.ÊU•Ù…I’¤ ,rܶâfFÁ‰úØ/ZZÅá±K$¶Í—é‘'ã[xBò»,ÈïX¿¢Xcl« ‚´†‰eŠOz d  ‹êGNì [D\]Lj•imÎ1ٮЈfåZàŒYJ[‹“ ÿÅÜ‘N$1[ÔN€shazam/data/POLARITY_MUTATIONS.rda0000644000176200001440000000163413670240241016047 0ustar liggesusersBZh91AY&SYÞ(…y"¡‚ÿþXd@/ïÿà¿ïÞ°@Ð>y6๽UU^p%Ñ=&jz†#4&‰ˆ ѧª )SÍÿªQSõL    = "#ߪUOQå?*?Q¨€ÈÄ@”ò•R0˜&š0™†ƒ&D”Lš§„Å4=F˜ž‘¦€4 =@z›…DÀÞ„$2 Ús؂ƪpE@]°(*Iµ°¢È¶IÈÔÍ)H\qTUCDÜLœPPÔS%Uv1p…fÊuÓcZUB˜[DÄeûüOÁ~ëŠÐQ®±ã»Š² ¨)ŠNµœ¿tÿZ t µÈ|P€H4øaÁ“fØséÕÈcŠ(£­ÇýóyûœUpyî@«SWrÅÂ1qÕÅ!A ¬ÚÇ!…ÈÖ×]Øi±’ ²h]­œÆpDÅÌ‘CS\ E¢2B"†bFrAÔ#e˜ UpG`E’f2uÃUØHUfšlFi’jÝ´1\À´sCJšRÅ\+á{Zñx¾a{Eï¼Dc†¼a] {:» = P H$ H$ HÆo3 H(>!&)E]ÓGK=15%ò% RORKMŒLRïÙ¿¤zWõ„ÈĨèHõ„øØ¸Þq‘}R“zÿQ™ >(f@jLRï˜A}pƒúÇôŽÿãîÿãORvJNLVÙ?>&é¯?R3:2寺¾ž¾‘Ž¾Žžñ_ªëöŽÿÇŸüþD5#–¯nÛCÝ>^]ÄLV÷î¡î™]ѧ˜øè˜$u—êvãccýQe™8Hݵ‡:OˆŠ˜¢.{¨{tcÉIIÉÿ¸[Ý/>6)&25!Eݱ‡ºO\Brbï¸ø~êîêËTwMˆ‰O”Rñ?uuÍŠ?ÕXKWÝVÝýÏ6'÷Q÷IN¬ø{«; ë3ð¿Z¬.+ŸŠŸsï£n÷_ψSE“udÜÀäÔØ¸þ©)êαê>ÿhðåö‘)‘ºê2.FÝ%9uàݯøΉ‰©IÉ É±Ãz¨ë›™hšiõPïedl¬ÓËÈÄPW=.%¥¿yÏžÑÉñºÉc{êëéêšõìÿÓÕ7Ò300îõ—æÖÿãŠOˆO¦¤T]¥ây3¢€¡oÅ‚)(õÚ¨WöSHÄè׫jæSЀ ïCb)¨?KðóºE>5Òœ7;2 åÝl׿éM¾.ßÊcï`ÓxE½³$}ŠN{Ev¢ÏM&ÑlG—¥éYõ¢|oúÉò9Új⌖$Ç™o‹ñ?FáúŸ¾Mm¹žÂ3ML¿¹< ¼ì¶¹7/?±}h‹Yz;¾žQeä[só®ã7Qà:»¨ƒµQ¨ªzæ=;òõkt)5k8¨œ|}üMp™u3ŒÜ‹¶œ²+yOÊÓsŒ:C‘KF÷š¸ˆ‚œúínܬE”_È.+ ¥ ¤»š\yM]ãÞ[µ‚bÕª}™H‘¤1½U:é+®S0‰Q„Ó€ÇìÅq Ï5’çõöPhBÒÜêÓfPÀD-ѤÝŠQ}ÞÈm…¯]ª1^‡ä™0?ó'óÉ¿ÖÏ{"½(l¦³ÊÛÀ%ô­å¬eµvRPt¿¾µËkR¨uûs_ZØPÄP÷ÌÂ2 ­¾XÕùåKrœ~¯©<³ÚNÖž±¨ájb z¨µ‹"×Õ-¾tÜDv|Ò€Á¯ )îTšÝr­!¤çúàT©Öbz‘kž( Áß¾5\LQ¿jOñžC6ãꪽ°ZH^·¹kE—–}¸ãON~åO$¬ 3«6R†Í¤ÄÝñùEo\¨‹Vx+KO²Ì¨1úùQêW¾äðRÝEnzlðóšÑÐâ–ÝÆý¤1²P÷pÇIdU¿å†ã1ß(F¬¸—ìêK¾ÝSl]2€ŬêÞ!¹dÏ‚:‘w“Û'/ÏM ïq޾¶wš“WóÌä2aAíòÅ€‚"Ò?ñ¬kFÝþ¤?­GƒG}H_³Úó‘­[“n­·ý•zS'ó®·×6$·ÖAí®¾šF¶§37ú<†z9}Óóêq²®Ó¼u\Ürx_KµÏN'òœ»·×ËêÄVìØõÙ¼ÙLÓtoß„È1ºû›çfÉÜ#8}ü—…ägۻͱ×d?7cÈØµëÉöò³Ð—)ÄÎm}¨»gÿ˜×¬èë¬ý»OÉnÜïFšÉ~­Ã¹‘[Û“Ó}¶å“ƒ:Å-ÚÞ3ÎpI7ûäs£Ì‰í÷3›?u Íô›¸!y#¹ç6?j‘÷„Øñ}‡#]L)â`¨•Ñu2š´gSiãóÄ.·z Õ%2:îåx¤¥9}j²]NïGæ†ó·©~Q"Ïj©/Ç*Í¥ñjû×~]É£S×¼Í^Qøƒ”1Ã×S@-·žžmÉžl{vÉÉ ¨W¼£G_"'zg4Ü@jËžLì¢J¾Íü.:³dS÷ËôENõÉõÜÛmç]ÓÉrôÓcÎ-ÉPýþ¬àž©d[gp×aßH/µF|BÆ|²pÉ^Ø/\î|¸¼|u² ô|4™ý½½®§SHã–ú¬mw“æÊ𥛆P×w»ÙÏ„~ÔéF±ZÔËfÔµ±}±|+ îûíÎçä0£gÔ²6äPÿצn+ˆÜxÌ=Ë“‚ÄÛewè?!û-‹ü¶§“-o£ò8;Šl>/nådoNV{ûk>ÝZF¶ýO>XpÀ‹<·Å×§AÔe™MÌé»ÛÉöWû ›‘[£3ý7<ÝC¿}™ìõŒl‹Ô¼YÌsg”ê øJÎûóú_SÙK ¾¹ÚmiH¾#j*5lÚŠÜ }:?²ˆ§úÊMŸÜ‰«FM Ê«ox߆<©]MN$›NOæo­ñ‘Ÿwp˜xœ,¯w›™g5íŸã\P”Ö‚QÇnn¡àumç jCŸvؽ?šôÝ[Œ¹0|Y·Žî×¾-…½r¼¡Òoy¾îrÃa‡7¹Lk=ò´{0¹ø^±PvÝBâây>ų9ùôI¬ýcL‰ôŽ|¾¼'ýçžl¹LÝÛß.ˆœæGVÚï>/éÆÈ¼ÔmèÎÐ2Ú2W³_&Ù^{½©µ´¢^f‹÷ 3!‹QÛ÷¼[2†t’–­XÞ3˜Lëše-B¶gï6m¸Ò™Ø­‘cg2ù(–ûJvÍÍÉÛ­J6™Å“Ö†*‘í±&O3Böui­¼>KÂÈ6³§ùð+ˆõKŽ˜·u!Ù.N»»üúùÿôøü·s­¨9ÇEçËäÅ1Ͳդÿ|Wɹ.}ÉëVqú‹CÉ!òk«DK?R_¿Ý8ãf.¹_Y7cç¸<òzÓȨ}N[2²nT_²ŸÝwo}2==¬I‹ÂêdÙyÑ5×¢¥D=¦ÎyÕš Ý2n„8ø’¹ã„¼fGÏ—Á›˜I­+žoç®ÓÃcú’çu‡3§vÿ"j–q° ¹ ׯßçús²\oâäâ‘K®Ú¯Ç­éó–xzö´6Q£É.NI?÷ ²/ùp¨ÇãK$ËíÕ,œH˜O­¿½Œ¶tþò^}ùŒ‰/Y¸|*És<í› ¤ˆ¢žâ‡á ˜9ì±~Ëú¬TÜ0°®>yMîæÒ¥§À}&ûvnAv‰KwtíêH!›ÔšçÝF`û’¾ÿmã¼_÷ákU.Þ§ØÂÃ:-{OñëF÷y~·!õíã¥ãÚÍ–âÏ5ëw'pE>t¨Å/XSŒœ5ÜóTå4îì•“ÛïØU·F<‘›~-¢ƒ±×¿÷Eöû÷¬‘/ãÈÃ-å‚ïGKò}sr‡Õõ(ñÑѯ}]*§±ßœºn,Eµpo”vÑ—¢ËÛô]œ!(z‚²Z½íÛ©éÏÚîoQtRÛ>ŵ“ÆÁ¼c‹Þý$£-©¯5vÚT<_ÇKþÌ!ÛO“FUìAI£iO—„4&Ã:=ÜíÛVäáxëîÙ!DmÜN$’ÙþuÞ‡S?’eÝÀ9 ü¿“jƒŸ.¥7v’N·­^ Ó·‘žþڻۂԬ¯>Û€4f”ŸoÙÍ™‚·õPiŸµ›œÎYê®V%ýIË^ó€ RbÓ÷ÝjLN“>œÖ§-ÙE¬¼Õ§YÌùp(ó'›:Œ¾.TÉèˆÚà4ý_dq$.ÛàÜWòÓ³þ¤þu¨[yëòµ‹>’U²ÆÀcó÷+м³®1±˜ì–íh…N6ãÈZí¹·†íñÊ<ï¿ìõÛQËS(t÷ÄïSÏ×&·¤0åë-©ËÛíöÆ$se­õÍÉ{G+M.>ý·®¡SŒBhP/eeÄ-ä°·ùSÙU½rœ‡t~|Øb ;ñmØÐ¶S)2#ÜgÕÅ'dò¼÷ӰΩdóöÄÎ7˯QØ•Ókô #©iÝ£yÅãóYª”ûÆ*Œü©öº}|-y«Ûoè¾ù+ùd-n»Ñæ+Iql÷Æ/VdjXm«í£ûÄ"75¾ž]N½f8ºOªQ95›0´ÃÚŽ;É|øÀ¶çN$’ÕÈÛÞ±#SÉaE£µ¿Ü$ݧs]sΓå2•wµFU¬¼‚êy‘í2O+¿ð—äÚòõk•käxïHçßUÈ.òíÉÓ©£‰Õý¢¼ìjgrÊ^ßòÜíäèPàt삱÷'©¿rCr˜0ãYçö÷ÿÓãóß6Îýr.-¸õÚŠûoÐèSìCM> ÜHQN œ“F̤`«¾¯«MmNž¾Ç?<¬E±ÖÊGKòÝ( —K£Lö–|ìWœu¹‘‚6_oðª!9k÷7SV™Dž-5|þt‰Üº©…ÁÇÈñKÇõK^5%׋%j7.Í#¿è–Ùݶ¢°Ÿ·öÝô“Âl#o7êlLáç=÷Ôɉ ;q»Ÿºn#ïôï"¼m,…ž:3%¢ÖRòÛÃ6‹mpþÉUÙO)@ËÑmüt r Ü4ì`ý…ä´ý¼±s‚y¥¶^Òo_Ð$i—:,/ï+ù÷*5ŸÚ;šé|€¼Cj\\4²¹´; b‘¿ž<Žë÷zj‰ïåj]›WõëÃKg—“è=äú™ÍödhZóqF‡[dÖàéÎ…?mÈlÁû·2‘áèéÅsúÚ“ñõ»w’›í%“ôü£qMÆ“õ#—š¿fŒ'Û >ûrôk©Œp}ЛÌ÷+OºgOVoô^¬¹P±ÝàUsE}Ù?ðcGH²IÚ`6$ÝìÚí¯ùúdÑØtí´nã‰ÝhŸ]¦6–죶§8ºJ¶îSLº›U¬—½6³:­ü§Çç¿mœ¨„OØ×ð ùx¬›7”ºýÒøåÙ‰BÕ·ÌWÉXR1ŽoŒk@ÑÌ"÷çë1ôÔ-§ç¨uäón€~¯·È_ÿaWK•¼aòîò`G or°‹mÇäwò jÄ¥ äÒPå—sŸ=V#úèà/ 0¾‘žlšS±ÝÛjÞèÒ›"âí—dºPø¤ C›/¤`ñ}«n~? Úwj´_êT ¹¾å`ÛÁºàÝ´dæxòÓ**8ra8Ç[Ö9Ö`$îÜ_xzEÅ~F³ýÅO¶¶&vî‡a÷¯ÉáÙ¼:yí“kõ?­ß‘ói?'xõ¦®Îg~y™¬÷Su®xüAsªW?yª!yk÷|¿»µ¹.-K+õ"V©^ù™çÉ~äD¨¦íÈiWï¤"ÈùǦ¥gl$ç9§;œÚx„ì6tΞץr9žßÎÝìûÝ,çkLu¿áE¢ÚÜÆ£®8cè½Íê×ÈUOåHšæhò<Ð?ÆÑy9—¿É‹ i@®¦;g{]×ÿÚF-³Ö›ÜÏ­AÆÑÕl~mZ@Fïwõm¯mNìàÇ©ÔÿòåÂ!Úd±È¢Z@ÊõŠêòÚê5{Ñðï¿’Fž^Iq{«íìxu>ùˆj:óCÕI7èÑæ:yùd¿tDÀ£`5r}¸'^dõ%¾}ø€›)93°ëÀQ·º‘a‹kúG•WŽs»g^FÍ™Cž²_˜µYN½§ÊOé=“¾ÁׇìÇbb¢OÏ“]ô(RÍhÔŠ–É7çôÎÇÕÉ?eþìu‡÷’×áÙæözE^7/ÏrºæN^·ÛkN=ü†|LÎN?½ò3õ̬¶)ÞË—zRãU/6½&­Æõ:̹ý”zvýhàfõt®Öìã^Ó•ì6óº¢íÁ„ òܽMkSäº)ÌóE!y®YRÜ£É-òÌ\°±<"”<{x«•³#ÏÆ×®9ÝYJË”›ü*«G½¯Iì]”EšFßRŒ^~"þón½zÛº‘ñ¦¹ë§ô¡¨¹?r>ï¿T±êza˜&~{¸ÕÉt(õÒ²°ÆÎä|&íòŽ÷¨g:mž1—¸n C›Ü‡¤eð£Þ½Fã¨cÓÍFŸ¶˜aA¬‰N¿Ä÷¬^V;“Á`šU³<˜´ŠmMëÔ$ûHµ¾ÏÆ#«û~Ê%Eæäšßfw§Èl¤¯^ÂЊ\õ¬f7· "÷³»ÛÌ(YEÎÂßàÀ¹ñä>{x‘ÅE;rÝùyx»5¯È¨ñd}ùÆdž­áìm@Æ]nhL:°™ 3ÓîªEõ"ãÝ£Ì3— ; ´L|WDF›t\–¸§‘~õÏË«©¼#³G?Ô–«Q‡ž“Üï q[~Ú·7¹[†„×O&×/Êk¼¼³ÉîI`÷®=æ/:»ëǸ4²™Xïþ#åŠõ^N÷Ý¡#ÈÎ8ÿJÓ¢Édûî‘í¨¡dn1 Þ.í?=>ÿmãÜuXÂ$½Ð‰äÐÒ·"àú‘ó¯ô+wS–ÓðÓR’Ó™}ƒ¶­$%íϽ[@®š-rÆt®Gξ›²Ìƒd?·ŽÁÁqYä¢uy°ÚøCdkÛ'ÿNÓÃD‡ ¼7 r$›©‹Æù9l2•ÞvlTF6Ë[×?°\ÚŘ…/ÜeN“ŠõoLês·q-É-¬šÎä÷l}ëtriî®>Ëb$9üò;]äžENž›zy‚g|ÿ¢úwâÇ:®¸òÙ…¶:YçÕ¢ŠíÈ0Ï+zYÔdø®]¯””ˆæ¸-vzCf<ªË’þªd«Ó5=²M[jPþL©Ïyâ:ç#|“]{½ 'O ë3mKû~Í!«÷kO{LöÚGÚfß_Ov_ÇmÓ'³±Y¿þ"›C.¥ƒjÏ#ý¼Ž/¶÷%;µ‰gWeø’ÉâÍ+—f“WË‹f»ÔCÈqžîÖÚËü‰é,2© Yd:LhµB,›\]Ó`#ÙÍW“l rØÊë‹ÉyAû!kë‘zϵ_ï7 óqÞ êÔ©XÿÎâ³>>È#»àÓ}ÓôîPhÆúUÄéqãýJ«ˆÙwâGB J\6дFî/ ^šzY¹Ýs²=2ªá÷­ë©h÷Y»d uÿú­¥mç—ä1Ù½uáÖ3dum£ŸÿLSÒò³sîÜ‹d:*öÝØ¥?*Çyå[ÉÖçvSŒÅ¥Cj-Ê)òã]‡Ö㖓Ѳ.ÚmO›…òUÞù’)õÞufÏ%ßµJ/Ì %— ÀïG¶Ô"W_£Ií6Í%Û¾8}~B®Í]k×ûAN+W«»$¬"£ ­õŸYœOœ÷pCY®¹t¸.Y?Œ˜ðòó²p˜k”¤ô¬Žti~Þ¨™Ÿè\eD¦ï6ÚÅ™x’Mö —Aý<•¢éôBŸçu²ÞªO¶)¡Sƒ¾({Ù9ìÍUrH¹®_Çt9æëS{FÙEì?ÖôÙU¿q#qͲ»3®»^ÙëïJlmMv…‹¯¸ª=úOÏÛ8OúòJÏu¹¤¸¶ãµ³_˜T‹ ®Ý,ïã@êkô¶›Û“9ÿòq¸ØÇâ;½™B¾S^´Ó[˜D·uï‡%Í ?Öpý1Œ‚žØpr6õUó/UÒ˜LÃ:µ²×Û@1·ùóÜ£ž•Ó¤-Ó¿f ¡¸cÞ^¬Œ£~Ìk~àðÑÔ;jùÌàAÇ)Ú1nýfå\êóTë‹wÅúW+³u¼žÓhÒ‘êKº» !ùé#s[$ݹ} ¯hB=÷¸dwk8™^¸á[»é»^HèÒî uYça¼vy1éÿüôcÖë"Ò7t=p#`õTe .õ1§ž­z»oB]£ôôøÒ‡šŸp+p.ˆ nGMRï¸z¨‡Ü|à4‹‚g«Öm¡–²«÷ïÙŠôŒºkv¬3“t¬¯ŽM«§Kz Yzf~ŠI ÁšHêö³üMü§¤íghv>t#霿à±ñ….Ùöµ8>aM'êòÄ*(lx'²[}Òúä÷ñs¡{“>d¿oÕ„ûéDBÌmy2z>é]>²á^jYežï˜j{ܦ5¹Z,ßòéÖ`êyü€»4¢VÚ.½&™‘ºÓ„öåËÔÈôêMY2¿.u_\2­Æ‡“”´‚ÒWÌoNzÅ1š†jWŽóðC£ÍÂN¯  j=F~šÜ_«yiµ8{Ç÷ó29Wït‰r_òëbåªéþ‰\vu¸P¿é$²©mVCß$šD§ áš\'ùaÁ»'µß’¿ÛØgþëRÉóúûV½N“Íæ¥EVm/“áÔ'?Ì_÷&³•'·;ÖµrjîðèãHÍyd­½îæÃ¸Ùdõ|jÓYíÉ4o`äÅçíHc~SMoåzdò<ë–òWC²oº}[ë#ÆäUsÚq»ý{‰_kÌß´lOvGG¿ýry 9u/¸Õi¼?Ù|¸Ö~×6r \14 Qr<~íˆÎJg²/Ó2~×N“ìÞÝý°èêz|þÛÆypjÚÌä‡Õ) {›«â.SïFÛOS Á²C+õÊ)0ëk‹[Ë\)Pí9K­b\uÄ¥ÍÈïùމæ?wSÀc;ϹÚ(@5ýÙ€ÃJXk}ú•òÒmÔvL0¹T[ù°îâŠíÇøòñâG ykšÝ]³BL–Ôé^§%EÒèÔQ‰‚—}ësÁk:ß_¢ÝïÊg o·¤fPW —ßpiÞS Z9zn®ïlò2eÓ•Èí䧥ΑiŸ( pÄ=ˉȦeç!ñËÈlÉø ´ÉÐtYá6˜ì–G~*ì"ÉòÊô_lWWlŒ\5"º„ôKu×U#Ç]ªkÊŽdg»§ý²Ü×Ä|¿†•;ÙuqÁ©NÏ“m¹Z‹ÃÆÅE£Zß<$ã+6õçëî"+Ïâ“õŒÎ݃~ºoÛ®%Çò‰kF†Z’Åâw™Mº.#feøbõ¥Ûd·ŸovøhK,ú‡ópƒDGKRªeuô™g¬T…lJÌíüÚUlï¤ë·2ÙkÌÈét¼=%èSmæñîrýZÊšúóÉi’~·ßï’z-›ÌG]’¾¸­÷p19mŠtÁ5–¬ŸnÖ½Ñ)–’2Ö„˜ÿ [6l¶ªb»}NCýî)Ü3àõ÷!ç)üë0VðEƒtŸ8Í;¹ÍЬZ}¾ú&à(…]õ误÷¼G¸þ\šDn·k›Ô¿;Ķ­o>žF¢ÛkåV…_É+´dÜØôqäѦլÚ/”Ȥúûï{Zé’ñŽosZõT#c‹×Nû$“ieÍfŽ&ã¬ö˳óÈÊ¢•ÁšZdþ!o±~Èz2YÙn‡éöŠý†KÄ×Çyd¾qïîqkæíµº¾gÂ%¹.zQ»Æ¦)‡U]Ó]È‘-Èwv'9u|síD #²ëU˹Ý9;²?ßamù¥¡d?b։ˌÈ~,-?k0±ïßs&µþOÏÛ8-ã·cjp _4±í²a](Ü«éVUUwò»Ÿè4òF!…<óþÚeYLE×øU6ýù·îöñÆç˜Ú¯×ûg7(8vWæ×Fc)`–×÷¾ŽSX#§^Õ¾<§þÑM~ú5I#Ÿ%ã-9>‹z¿¨#íyX‘Çöª5•“(øC³ÏSŸ“Bµ€ë3{QÐ^•ç?øRÌËÞþLa#ÛË®OZSðô¾Õ G §È£·ï}¼ÏMÖ&ÑŽ"NéyM[ƒÂvλ—‘\›Œ¾[Y7g+Î3}ê’@ìG—ÏŽ¾KuVT;˜2ÍŒ´½ÛLöYâKzÃZî¾{Eƒ,Úª69ÍÉ@y²ÅÚ”$2< ¦ºy¤.|w~¸Ó RûÐø€é=2ØöQkRÞe2;•~©^§ŠŸ­\íºcCÒûò¥î÷ô"r°éÛjÛð¦d]Ô2]³öŠŠ|׫þ¬¶ 39¯øÇÑ¡d©÷pÛ÷YßÝN­;ç’©h©—ч“ÞÉ¢¢¯½TI/\eÆ §¨×!¯b=-ˆ>Ô?™?<º;zVÿmê©~iò4r}°fêùŒdÕÆxFÏŠçÇ»y÷uö²Ùëž}r§Åö¿o»S[÷¢øðšV3½¢ÈÏ¡¶½Ê _º#ÚŒ–ñ:[êKv-‚ž©Ö¢ÀÅZ%OØ;òz‘cÛ!tmežÛŒ ~°|€"ÏCµêê÷Ó$ øcö¶Šñºåna·µÉ¢v‹¥ yYÏOJéW·…vº–2lOÅ8oùüãªr²û8ï—ãjòÖ¢~ùV/ 8¼eWŠEs |áS´ta0ùÖðû1eÊDÒlÖåÁ¤;\sê”2>¥sfô“ê×2!òø$Ò»¶íù`³cdÙîhK»a;ÈæWçµ}»~%Ç×W\L¦…íö¬¸_B6Ó‡Åדu( ÂH½c÷ýäÔjîi7ây&}ã¢SÈÏj^æ¾NÇÈký&·;“ãX«ó[òfÿ<¤ì"—kéù~o‡’Û§¡cN-ˆ ç¹?ªwú¿ç<ß ³,,G«“gT¬½v‡82ïºÒ¢öÈžäÒmÝÚžgœÉ-ÿ`òêY…ì´îñæ)`Ú¡†ó[“ÿÙÄ=_Ö[“WäÔˆ£i?ÈßêÒ½.«ÞTúä2¼;9OkwîÙ¬²5·²¯Q4€<¢«7xpt6Ù/+¶oAÞ;ìÞ8åBÁ-êš vYE±±É”wf“wBq^®Gu >9þý•%äõ*òôýE$õ£?6}£J¾Iö»S××&O •31“’÷‹ÚÓß÷ßAퟧ;´ûJí jžtxNÔ´½Íƒg+¨aÑíá?«}¤–Ótñ°ÚGu[d­üÔBÚ|rZ©=»5¯©ýÒb~µ?¤vñP¯M¤šœîÜõÕéHÙÞKÖQëç^+¥Z¿\­ýùçfÔv“Ù¤‰Eèi@·Í[æ“zj¼ß8ësÔÝí°çª`êÔ3Eã|Û.¤Á³"7ÔYI]f4X›qˆZös´íRÿÔ8}÷£9Ô<±…u÷´]ÔÎda¯ÓSQ›àK—ìNž$¥VYëæ…†R_õy§ÍH—i[‡Þ¸HnGÏÖ]ýˆØ}í•iÓÉ8Û®9›üȸEùÎjC¿‘]ŠëÀSÿ±¦ Žl%_Ù»×6ëd¾mЕ>µSKµ)¯›<êBzLJÍZÚ˜vݵ¬s2élåê¿…ï,˜”%)èô¤=¯ÚÉÊãí½ÓßY=Þˆ"–gŸ¿ó¬=ùåªe.hAv=¢v¦B¦!=–¤,éA]ƽÒ¸E^s×Ë™®Jž3ZJ{G› šûj ¹~nÚñ§?'ëGí]9•\{þØÓÚ­&™¸;D9]:J†û/^OuiE†>[.YLFÃ'?²‹$£«tv7'Úö¹¿d靸hE›>d?¦öªÌ,ÒA3öû@3S2G7$“í=œ¹ãP‘ç‡WŒEÌßÀ»G5‡Ší…gz?ÿE¶“O¸E^J¶uwò®Ä¶Ü9¶|êM²y–ØÌ:ª÷²®ã–¿˜lt:´YõŸŸÿ¶qîyu³óó6äSc Ámò:8Ñ2ú•馡~Æ^ä–ÑSéP‰¹süy¹á"Ò‹|ÞwgÅþŽoùÎ>ÍOPPÄ/ÓùµÉå4·‡÷<,Cù09u¾TÒÒå!Ù¦-üXÒŽ¶·p4—¶>lîzì>y¶~9Êä¾Iã­ÇËvÍ'‡W÷ÉxIî÷ ¹Ò±ŒÄË›WŽ w“#§wwö#×=Ö=Fe÷ú¿z¹æøôYSp\«ÏKKv’¡S‡ËÛÂI‹f€Þ²cÔeFçNIÃô¨]]ÛÁ#Ó“ö±”¼'ùÏIoKÞ¸ûOŽÎ˜zAà›™ñ]UÈ8áÆDÝ™÷É Ú éÞðºõçêÖ_O]L #9­nêõµhK/?2zaäÁÏž¤7÷¦M7—‘æýóÕó›‘Ý®w{zÖ¼@üHJu$óÚOrcjuAÚü™g§“Ö€o›2™wV*Èõ'Ókšlk{‹z]Õ´Å„ÅÔ+/к݃$×u1ý¸;—ôßﺽeíòìÑë´ùŽhòp_6dbxCr¶ù€î·cäwý´´Ë«F:¯­½úȇœ;–Α(Úi킾¹­ÈçÅÎö/d·_P›Ÿê‘zýÄÕ]ê’ݸ5u²ïäÓlAÓ“ãœÉɯ¶AXð ®? ½fQ²1êm<“²çÃÝ}9&çÅòša8ÙºÏò3NÐOU­Nþ탭mJŽ íºy.Y±÷Ð*köqòxª¼?Q‰œ•?u]úêÙ mš2í^ŠXšÔuŽmÙv R2 ÷ ³ƦeVžÿf¦tv•ÝäãdúüFúèýÉR«ü|çM–óoéö¾|œ¬´ž=OtÔ"»ÚŸ“§¯¹ONÉqqÙuò¨­kÃÐ!·¬ÉÚ%Ī]çÇä j8øeÍ$j×Üöu\Yí|Ú鸦.9žÝøÄÔ~>9ê\çá7oÛ•š¿er$±Ó!þÏÿ8<õT@6…‘åe'OåŠýô[:k×|²üOÏÛ8¨ô&ï`|åñ¸ÈÕ[Y™~ò¿¼¢üÁM3Š3,øúÉJ̘ÒçŒ …M³™ùdmyå4¾µÿª%Eõ*É­Ëæ_Ž{NrVë¹å–K©o¬»CÇ òu6oíÿa=Î)þ8n%M¬ÿvf¦ )ïïùñYoŠ~ýºQ]5½ÊiRCƒçkßߣ¾ÊVFe炨o‹¦S‡¦èF‘Ÿr‚½)RÃíÒÕ›O©ïøËãCjP§êM3jºŸ$õkùqš´Η6|x…šï›—}sº=uê6nÛ,«Ô±¿íÌÌ#£©s _š’FR«¢3º+HãüáÄ£œ¨óÓwÓéTcÚþŒá»,¨Ër힆ÎÖ¿Þõ«Óâå%jòtp­•ô†š™®õ:¼õÒi5±Ôp"™{d=¾£äD­Ú~ÙgþÚŸ¸Ûù»ê8ÒY¦i>ý"ê¼íØöåu|IÛa½ýg¤n®»©·Åkjkî»÷k_oêìmÐvÁêäcïúî^uvµnØ¢ú‰J?w4cÓÌ“ý£Ÿ¯k©SßoÙ™ÁýTÉhð—+ß\zWæyï¹£œuƒ)¸M掚Éðô 5‡Wc¨Åíšê-Œ"ím¶Mn¬A= ›=3¿r“z4Ž:èûH…Ûû–ۚί‰©ÜbŸâ|¸Ï"ÕnO‰ÂŽl:@‘Ó’ÇûYV–h°¸ßJ25ÝzÙg’'ß­Ô½y…<ƒnÞš:<¤M‰Yò rìÝMWsV0ù¬ Ì~ñˆdôî¥Õ ´È«Èäc®wYmlÛhkEÅ­ýîE“I ž”صrjöiý>Ö{Èôg]w?·“d{iºç—ü¦d£ÿîYý™cÉòžS -»x²No¼¶YE^ÌØx)}ÿèŠío·>¿¼£ÈFùˆêÊ#ÉbæˆÝË*öÇ[yFžï\JŽþ³v¦û7¯Ø?Z?`jÙg&‰<ÏÖdßíû…ig<È¡úÍ6A#‡ü§Çç¿mœG®J·?²q E´¯3~îóòÛ÷à¤í2ò¸teÁÞÕ)hÒ$Gå,/ Ûc6µç~e’sÛ]ïõq1ùY0ŸêWý(Ì߬¼|ú üÚµÙ¸8‹õ‚³´*Æóq£Åý- ÉoàÂ!ó2jïÓëßÜ4.ïíYBùI…½iéÙcÓdŠÎÞ¹gœã _|ÅzÆ-O Ͱ¬~uÏ\Š8œq"Ïÿ{Åëlêý³wRØ”Wöl4 €k÷´êÓ„R/ooé¤NAo¾6|÷¥&éŒm¿æº!i·îë74:å—ÕÛ"úR³ös¯óoGÖw'Ì{I]“JÛ| §_Ûywï©NÝñ¥?.…“îí§kÞL\KÚÍÓœýV®¦f.)xzÄhž1¾y˜4Ï^î®Öš´®¬Úµ­úwÒò%´E.Zýy«¶™¿˜½íÕfê¥ùô}ìà5¤ß/½qùÓdT»Ç’-áÕI«Zœj[' Òwé·æÙMêþã¥óë‹ÓH‹MÐ~5¾nÅø{¹Ø³ÍRò×ÿ×ê]õIkUÿ½ÕÆ4¯<ïÕuÚµ½e?LÉþY½>ž§R ^Ê ‘ñŽdzh¦¦c̲_¬û<¦¸s“oè»ßæ!³?öéEâ²å^¹Ô%¹~Ó×í¦“¹ÓÛö:“ûɱÑ;—ØÛ}}ý£Fµ)þÆEûïguˆ'ö-_¤»¶rœ‡73èt'fÆåب¦M¡àþ¹ù[½5ÈdãfÕe¢ˆbžö™¹½â~í“÷÷>8J^-_øöUÍ$÷‘wR¹Þ ¡‘~©æ³×äWvÄ8rÞIò¾å÷Œ%/ÕBßÚM’y¸í8µozdT<ôPËád|É¡ù²-‚Œ²c-u{H&F­×®®nBæ=Žé|w"뼞ÏÚË&dñ=äÛ÷sd°v …í'ËV Ï6¯CÎ9-í´‹-Éu[‡¡ëVŸ"» ]ͺ$¶ Þúúr—‚~Äϧ­»º«ÙG[vžïïCõíc<[XŸÓÛÍôÙmÊi>Y*Ù?šb£“šùŸŸÿ¶qäÖ=pRä ÔàC§](p’§þÛî-(hƒþ ÃydžT§×¼ºÿòq¸PŸE œŒ!ÿ;Wkï 9L¡º“êyö3¦ ½Í&MXBÁìWœ­Öx »¼*ÛŠ …-šæ8j× ­‘èl1á$njŸ}ÏǺr>XûvƒÓ_¬)ðWoçç)ØU;©íiS Zz¾Ç›Ùt®ŽãâÓd÷ÉÉþJû Ÿ;ÄcΧfäÙ8hëÇǺqÓ#.Áüùí­e1à°*õ9Ußì¶*õ[y¡Èìp=òI‹Nü6ˆ"êÕ^)?Sïkâo5!§öã=Xæ‘kä„Î#¢ó(²ñW¿µÎRDþ—“q{ãÉ?òëáØS.Ô[skšJBù×Ý}N­bF­g?¼b}¤÷ÕŒ¿CaûÆ>ZPàBAþãÝÛ m +k¿dÈdýŠýàÄù7¶¥°?6ÌïC!‡jÔ™3¦ù Ñ<±èñÒ9;óe‘zk²kx´Ðmyœ ÷>º-9)û,«·x*ùÅÜos®bÿuA©WÍXçÊ÷±ôþþºùðy%äåÕÖýKR&ÙÖ¿W'xÁR=×tˬSsHûÅàz£´“c„‰û­äKdºj¸jÔüù4ðþió¨Ödë|,}÷Êãp½Ç™ê}µbÿÜu 3’ÂÍÆN8ü©&õÒÍš1kAm2¶°é³áî> š°éaÝK)äUëéaŸOËȹ<~Pãó1äU0t‚^êòkÛvµQÈ)òz÷érfäµ?7Æz¶ éôÒ8º·ázÒÍL‘¹¨;umëÕn-õ¼aÙ]ÓŠõìg9ñ£ç“É…â°f‹æ’Ý|µ×£âÉcøª'êCHoßbƒ¶—‘í¼Gj hG-Soù®›G®NÇBš7±"/[å¤ä÷ÕÈùõ«VŽÒÜ÷åLïýÝ–XƒGmü­ž’£»šJ£jä^«Ã­F™Ûó3êT¯ûД‡»(­:rñ?=>ÿmãÜÅÉ8!;ûyi\»½Â©É'ã>;ߌ¿ŒPËz><ZN7L¡àM¾$Ô¼C.ƒdæ‡;-)`Òµ‹A1ãAó凒§cÈ'l¼¦ò ²ݹ×`§tNl‘»Õˆïï°ôè–…ä–Üs·’MrÌï|u†_5Ö¨¾{6ôšWýÊ‹‹$ ŒZjM4¢ÀAºÝO&m§€6¶AIѳȻbåšÐoyM©Ñ¹èùLq¼P‘Eé?&×¥F^7¿ç´1OªØßõ¼šžLÎîVeÓzCä8Ó°Øû¤Ù'³¡AÙL.ØÔn%Ùî]ôÀÄu9ô-0Ýl:Ù>ž½ ÚdÒN4óè{äÑ›ÎSZµÙB6Ë»NkmkK&:‡;΋J†¦3µƒ:[‘f‡½û–E’±¶š˜8º ¹Ll¯}yÖ~r·8õ©ÇÅåäy¾ù˜“Œ\³¹Óêãfä"ÍKj§¼#;£ŽóÆ™Ï"‡²ŸªNªØþ´Ÿ{!§âõÛ{YíˆÏËÉ6Æ”¯ütœ¼úÍ\±(k"iöÊx5µ¼ˆlzGøéîV!íöš²Þ¨d²©q,®±IEßÛÝ9ó‰™/™ýµ¯ÒíÊóÛû݉J~«UJ!½;©µsýJu»4VªîY‡:ç\ª´t©G=há½j.ù(mÞµÁ2urŒ=Iì.9­W𕌺;ÞÔ¸Zež³ŒÄÀ5™mÉß¡7½tH¾oÛþÊ#ýæ'Z¤Ä‘yIý‚‡Ñ«È÷»õÓ›mG‘gr;—Þï—ww;òãP'âÛÎV¯;ã)Iëæz™ÉmÀ¼ê´ß„ܾìT~R:LÔͲ꽊$£Yš]ßÎò Ú£ Ô§‘žÊlÝ=Ú&d¨|là’t2˜o_ëÞši¤û«O’Cƒdz+¾¸éêçÔUô‹+p»Bú7ìë ¶ì³ç«êJÁ{V¬Ùß‘ÇÜS¢ªGŽÁµúÞø@7TFž|@6–±ï}JtAã˜)õžcU ›“î»"юȶï\ëmEþÓãóß6ÎÿÕóáÄȶSüÆÚ““iý½OZ¾"çukökCŽÆÙ··ôm]9oXçøëÈó†dsýF[Ý{ÃÉvåþÖnÍ#ÛGÁoÚ'œ%êٻѸêûÈ­½×šEÏ”È9bô¥«‡üóøÛòÖtKŸéü‚Ü]˜ÚlQCrªõ2~þÖ[äPšh{rÔ|rZÚ/pZÅv©³¹ò¤å‡*¶3_î+[YsYüR>Pcþ+²=ѹ‡ÁD œã·KÝ„Bö†¿ ómL^S×ð§úa$¬Ø½¨Ùk 6޵XÙ×=ð™¶jYvÏNjâE>ÞžÝÞóüÇö/‹ö'¿ÕúzlûNŽ ¯JsêB~^9 ùùïÈç›ÚÀÓ7ÈóÂh‹éýrÈ[Z[{ý.õËáWO=Fž©sçî7‚. ±X¦>ƒjÁ0íí.dÑ×E¹¸ž69>y_k‡Û7²3Ò}ÁM7²Ñ‰ti×"ŸlÖ©t°m~†:jÿó yªÍ´T¼‹›­v»Ÿ’ƒÎLõ“ çS·&Þ"íÙ.;ÀuìMr2h»'¡Ûi²™²°ÑËìcd/—e èFlKÙ å_:ü§Çç¿mœÿ×ñ¶Ä÷¾Ù³–’Lî|¦Ô‹úhÙ;3úö¹µ½÷ãRê}K¥ÓÛ·ƒ©_ôÀQ¿r•+§¾QÑ×_D”U‡s^šW·K6ù¸ß«[´Äƒƒôšj‡Û5 ç“ÖeF§’N¹×«Ú×ñÁú÷5N÷#s5U Û2~SßÙNùYN™¿úÜÃ5dÖiÉÇ”á3É$8 Z%e'™þX—×ih ù¨ÍÕY0¨ µ¯¦‘Ö‘4É)©µÚäySÈ5â~ò¶«‰˜óðÓÍ\ 몵þýI¤îÿëð†Ož•yž¼IwUНY ¨¶l¹ål\¹gÍjë7mo´_7Å…Ú—þlð®#y4¨ßÇÚÀ†l•>´h¶ºòx{—…}s ŸâýjS¿-z8§yÞ¿&tàtòÛ^œ[=3–Ôê^®[üy2Y_¿®¯Þ Š0Èêû¡U$y¶3­q=âÉіƛߠðƒõb3}Éã¨Áþ’¬Î÷öˆ &ïÒ³<'¿ .ƒ¶%eŸ@¦ÅúÖ- +•þ# žR95qÞâ쵊õxZGã!Obɼ_–¡ûC&?&ÇÎÙR±–öJ«àIg²8{lc¶¹ ™Íh¹ÐGõ"Ù)ô“ëê“ÃÏAÏzùy’ã˜ñ“ÞEÿ »kí»L3O&;-zvø\kr¹húÀ:÷(Ù7zÿ÷¼/ÕǺîÒwæ’2·èUÉ~ ý´ôç㾃)´ï;¯ùs¯RÐùHÿq) )È(Wýà‹xåU&GRh̨Ÿo/Ô ¯Ÿ#×hw­ØÎ¾ýr„ÙÍäÊÂVF²íäy6}Å‚ž-ÈsÈöw¾–¥ä{8öVˆÑarM-(pŒ'ï–wu²ü[’—ñö9mb)¨äÓÑv¡$ÚnÞ0lùx iñ²x+¹ÅŽX<Ë£yég4\ù.‹¼îmîß8s‰å \ÊË%Ï.]O-68@^ ¥&­¹Fï#¡»^WìgØk§ñVÄ›7Üú‹ì;ÍŒX;z?…ok™rbÆgê5 Zo³²7d³R9¶øòRê·¶ñ…´ù#(°öªG“ÝÀAZS?ì£Ö)ZnëÍ¥n¥SºìtË'wÿ—ç¾®N–C×Ywu4%jO[õKù!™žúØq×ç÷üsœ‡öÛ¹©GÎ 仚]›»B»7‰è:î0é®NžslwY´nxA¯º#­Þ]ïy'¿™ÙÔ‡Ü;•u­Ý¢b¿ëLîûú×ç¹óÊýß5'—^È‚Iä±{Ƥæ+§Þ"÷ ‡Ù‘q:õѲÊ&£Ñ[¶Ì3{O&û¶û•o%£Ö‡”7èN¦²÷–üúۈ̈œÖ)‡œŽtxsñúrv8<Ð}ÜòŠþù h]/‰øšI wª—‘í™ ¹*+’£Ë™°z—Z“Ãño#ôö!;—úÃ/%ûZ+?îú²í?=>ÿ}ÇátTsËw¦Àw¹Gš½«MÁþ‡,·lð£ Çsm~ŒØFAɯ&žþ²€‚jVÿzçª!.yý+bIò¯ïYÒÑ'‰ü¢Í2:¬(©oÅkÃ[<§€zÑÉ©}(üŠVwÙ¡ðÔ?uß^ mZ~+gÈ@ ÞÕÕ„§¡à¸7ÍÍŽn¥IÙÌ .Vw WKS²þ–ýÏùÔE#ÔÐpzÑ÷À·EÔìÝà—†9l—½ö-Ý^²åIµŸä:ë£Qï¯Iœ}>^g¼'‰½ŒêyŽäñ…‹&ÏÝLžžÖ‡ý ßY&=œ~¤€º{ÞEÕ>Iò¨ê ãu;Äàzª'ù½ }“x!lr>ô¬õÅ„ÄÂc¶×ÚC¾º«³ß_CRY×Äeî ò´°9ÐGÕ”‚ؼ¡>‘Ÿå¾ƒkæ8’ÏZ—çûge’´ÄðÉ‚=_õÝ3ÉklÏëûbg‘å¤ìïªgÈÇlT;þ •¤h/=»³äÓ¬÷w­(òŒ9Õ`Ñ‘ºÔefƒOÆú“¥ô¹ò´þ&róãö®ygˆu5ßu?¸õž<ûIð82OídvlÕ‡Ê<ðiÔ¸ö¯ý(üDÚ çé}ɳ0t³Yh,i}~x¢0E‰Ì–:+ؘK³Ì_6H"‡vK„RâJ,½¶ðUï#d𤣷âê¥Êãp;뿎5œ‚–žÉé4Í"Æ]=ùÚà8L›WףͲn}¨Y—‰±1ñÅÛq ä³r–ݧÑ5ÉmRBèý²&$kVÛÎ-IfÜí–q²7I•çµÚ*·#ïÓ þAcß6WÚ_çäê)¿E÷Ù¿ˆôº´·Oÿ™zö?`¿:p=é.´8|bTÅöΰým7¦¬%¶|A ¯syäÐù‘ÆÃÉ´ÿR+;åÊ÷¥º5œ]ÇbÙÞŠýÂa7ýßW¬ß·˜•/‘¿ÈÝ|èÞm¿{Y”zz Ù=Ž™ª£u‚øÃ:™?Éií£s¹ç/c°ÁÑ~í§’ã µ†iÕïü§Çç¿oÿ¼ñËæg.3ò0^™Ð/V…\× ;òzÛeòMoõÉǵKEÎlª°sy™¨aCQú="/\&Ÿrõ¯ëŸú’ë—Wé7/Ä’ŸÍØöEÉCÉ*ðY7íQäÓùÖ‡ÛdدG ïÈÑàœå•= É¡ËÈ‹Mš>$߇sz¶ÜAAý¾ýtì()ðE“òB6N²Q/j4¼ÉJŒìÔ”ÄÚ' •äß|R·ìO·È+e‹ã½Jä­òsíþe›É{¸ëñ8ƒ¾d°‰×+O6;<‡˜»¼"£/# rɨFꇠ–7Èä䪂ѳƑsâ]µŒ¯y1'Íí¤J9Y–|9ÓpmÅ~¢GOª^þ’¬cÛ”ºÞ¿I=ûΛ?/»-·XÓ"YãuSö6hÓáuZlôvìsÒþ¦g¾}&—\‹sY†ed³Á#ÝòãRO×KmÚ•ìèq›=ƒ˜­ÍLo8Ù·<3÷þ²lz7*óùM2ö>éeöã!Gt‹›¹ò'™}KXàM^ÛƒÞú%Ÿ¡®ùýf¸W›è¨õÀ˜Ùäx*âáºóCˆ=½fVèö˜üŸ|Ygs'Ÿ Ã.~9ö±Q¶Ù#¾§„EO<É×$ÿoõjLI!¶hêûW›ŒI59XåõªÔ1G7ÙëÝXr_j°af¦Yš.ukù«%>ÝÒ ¸w=rT}ÕgÏ¡Ê<ë¿ÿÁÇB n0Òdý\' ¾r$ëݰÆd?àZ±Y4ýÔsäÍ [yB8Wõ´„nNT<ÿu³žÏJ&×§ .où@òì»®Ø.jì7bAÓ{ä–> ¹A9î™;_§.N n²dD?íÞME¹&¹YÜé9/‹ŒÆµ}ÒÆë ™ö2¶º•ºŒ Æö±©xˆŒû¯K{r6›ô".|í¶ºœ #íªY4¬F¶ý wèdL&§Ðmý=û¥‘ý )#O4íI¶§·wè~ì•Ò_ªûU¯Øÿw²¯F>Ù¾«ëýuu²›óêÑ¡°&d£õµc5£b²í}uß²†þÓãóß6Îù‘½ƒzìPyÞ›SënMVlçLí§é½šœ®Û!Ðøè~~zS+^oþ;2ÕüH.nqiCÞ $—×k÷Þ÷®MN粚ŒÙ—C4üXŸµCk“íág_½—dóä©Õ¬K{ÉfÕ>×O7.’Í)ËÕúï÷“رà]Ó×›Éý§ºÕšÎçÉmúšØÉ;ŽT¼>F8~9ßçŸÇåî¯9â§r 9eÛžL.Ä?N¾¶{jñ1ªÛÇx¿¿xkì4rhîW·íšAÏçãÉmìÉåí¥1ïÈíÝ®©‹¾'¾órèÅ+ËHÜmãýiÔ:rŸ5$ì|ÿOäe85½õ½·ÄÒçTë¹­hx(àyk²w5OøÔüyf¼Ûö6æ:Ù›ÞýSæFò(mÛöÇåïäÒÔ †a¨ ‰{Kœ­ÒÝÉcä¯kµ;[S„ç!÷Á¦‰$ ZÏ0]¯N>‡ßgo¾LΙÏyú[¯²:EÓÈ[Û$wìŠÉyÓ~Úœ¶ýÉ=ÅÒÐüŽ*ù4xöþPƒ1¤ý¸Ý ¥p²5²ø´¤)¹³ùÛt–‘cÙÕ7éQ˜Úˆùð™U?Vêêݘì"ƒ9}ÜLq“}µ ß‘ÿƈ#m¿•’Kõ½îÔΠöÎ-hÜí@Fë[.xy,‰\¾¹ø¨‹ ²yäª>jùJH;5rëìdžïuN;S±þDóÈéøX îU_ɶ~…æÎ™ÐìÜ2ð»Ý>7½YG4Ýï´ÁBN®nU³évòÊþ Îteâ3LÕ}DöKœ[½øÑ›DíQ“ÞüN\ÉöXTÑsrrÉ8¸¹C™¿Pñ#ZÙ5É{+Y5Y|¤Ÿ Ù56>åÁ‰wûþÆée+rJü^vyµ9ÙÅ;óËï"È¡FÑzŸG“­Þ‰¼ˆaéd×÷ÖVÝÛsÈ!uç®æÏ´Éfµj6ùÙ ˆô|ñÆþ?=>ÿmã¼ïâàé#m¡~rŸå‡©÷yqt5·2Š-ÝèôÙ¥¿a@ªZýª¼õš…ú/ò«Aþ;åVäð…f/ Ï[P€Ê´E¥Ã^Q@¼kzÍÚC(úâÙWçJNQr~³¯—P?Mú¼enRå´ï‘ë¿–5¤è¡×µ¾Ì]D±5'dŒïq†büÌwL|Pñ÷´¸ßpá’]3ÿãª{É>̧-œF¬Cy5û®'‰oR»—§$‡Ácö/_ӇؔzìŸOöoǘ\}7á?=>ÿ}ûçz£ÕDÁón;)õ£À¬+…»,PÐùnwÚ]£ óßiY1>¼×¯áàW±ßÜÈÊpÞk Ø¥k6ê‘¿ú†XËç)°÷þ³ÇÆúçÚCfÙÝ"ŸúíΦçµó“U—ö'ïNÛkî˜H^gÞ­U£“4sß{Û´±gÕ]ë·µ)¬tþ£'»½(\ÓP\½õ‘ÂÆô4mo}ü'_{Çqû5y5¢+¤µˆ¸4›QÀeíæç+~¯Ê²Ò}µv’M¸‹WW¹˜ìØ]Û¦[ËI´×¸½œx÷…'W¾žD,¶¾Æ˜õɵ×ìÖÓVM#çö­›ŸkMÎîç’gŸ&‡}e‹[ät §ëÍ®X$Ù8“+nûöso¿™ÆO“]Ô÷iþ’ý²ònÍ®¯&»æª‰ƒÞv%OÇÙküWUìÿ\ë<Ñ~F*‰²©Þß3räæý 6$·¨«Úµj§‘£©†Fµ@-r|ó}`ùI3âK3Z×ð ‡×)öúG‹Èqû©²Ë×¼‚²޽©ëÙM™³í6íjïôö(¹Ô8Æ7ž%ûÓ×b’;DSø(×Q9d|¢÷Ë­Û+^·MUÇ×›G ŸÜã—S`Ù(§,¥èŠýúKtîûS‡"›åõb‡“þ”¾7š^O®³šÛm:W±éºÈSÅ”›Îóº0‚¬ ,éÜùWå8˜§täl³•4`Ñ…ýÆQhay÷ìTÒ/hÙÅèíK²ªQ³\†^¢PKªñn}òÚ»MSÚAn1+M>Ÿ}Hž=fŽW·øF^ÃG%«u¼A[Ô‡¿™L7ºYx‚ŒÒ:¹ŽíמLnZl®UN&µE¦Ú(“±»³_Âékdß  bWöðso#*uûu½üª77 pëŒë÷èÞ¬¢µg®§üVö{½WŒ©R—_ï»ÁÏžThZþíÂ%Ê;®Vñ•_¥î†ý½ÐãfTX§‹CÛ‚.Å~?Z§Ô²J]ÞÆºg>œMÅ7ö¸U°®ÔžpÅ`fZÕ×½áЛ{7ަ›Qo<þ–rãµY°|vÕñ6Ýoíeût·(!¯å¯£tUwX+“!QŠï÷Œ·=úDÑÇ®1múßɧ"«hýº†;+ï/ZþGƒŸVΟúçóöÏçQñº«Ÿkœ^Cñxþ1~¨¤âÎø\“Êû¯ïùåÓüõÊù3–ÙëÅî;]ª¨;ùÝêæ‘½ŠqÜðNÝ}QÛ©ÈLõxN³ÏŠçë®úæÙŽ‹¯¯Zöà ·gÒËîY*¯Wü}-òRB[VΟ°ÕzÐt¥-=x[ÏC}Á[Åã›áu;ãAgÅøìû5s*Ý[öÓN‡Ç*žÿõG~dvè^9uÀ”ìyÏ>ѽµãÚ¾î{Gñ{5çwVWñsËû> 6¦¢\WãG ¯“ìŵ&T'ͺxrzÇ®;¨Ð«žQÜ×ኺõã¢îVŽgÊö+ÞĵS¡žJÖ°&³u‡ÇÝyT'AQ÷¨N¿%ívÒÝŒEÝüñú~óuO¯QnÓ„ £§e:­ˆQÔí|öLÝ%UQ簬фNÕ¨P—7lßeFåý™wêEÿ¬œ¿¼dKëëGèæÈáê¥C.VÞ¿oVcG +ÇÝr9±Ôì…'•:•X\Ú¡¨»x0½ãŒaùŠ¿cü†qÝÃéÞ÷¶ªÌ:ïûç­r¾DéÏ]ÿËýg7¿ÛåõXñ:»[ŸÜ_~ ¢»o?n¨xýždÓtSŒcµ{1%¹t§þꥷ?T<ŸE:⾇¢/gj¬Ón]ñºWK>[¹~¡Ë/ýÕ=Ƨ(r$kâ}Ïš†tï¤GÚTsE]~LØRs¦Š¿cHÙ¸²MþTØéăW *î7zú¹ö³Šù½·›´™:œî©Z|,:u®òþÒ?oet;þÏ[åýýq[ü·©{d²ÿPøØ­t\7áœÇÂûŠ×Ç´·Ç‚ ãò¡é¢ò“>Óèü¬|½q/¯¿Ì?Ô-N[¹¡Î¯µytfŸ“¢î/ó¥SÏEé·J£ëO? ?–Qyÿ1•:5ƪÌiz0í{ç£ë7QVìLµÃ"+ï?×¼¯ÿEÅzñ™Ã˜Ù1Újt xuj™b}´ã‰zÚééí˳ÿóF‡—þq[ö×õªby1{n'¦ýùûvä”:\øRQç÷c‘¸Þt l g­X¿í(`j~?&VÎ?™›®lØy ÔK×*˜ÜQñx톧Ì]W9ÿئÍÝuèâ`ÕLÓ ŠõïVu*ãðZèŸ+àÊû/ü¹:vT,¯U‚f‡>£èâÝ+ñm–õ®¼[ý:·WénU¬ug¬}|¤'ÿåçüãþÊùûÁï¬î}ëOM?î\{såý‡®Í ÓzŠçíQùåie;>P–ÏÇ>Ë'*Ö Z_wJ×Êù²›lXX]®©úú³·âõÒ­Í]­™¿Ë[w¨m ­®t©É¢Ï5ö)Öw'›ô,}ËûhÞÇ3ù+]Wdßàˆ¢®mxñ-/®xÜžÿìI]Ýõ[«yŠÇëy½oòœýЬ»íÇu¥Tš¬¶ÞLõ-e˜ °®KÕí›êeï~­§Ò”?ŸÊÖ<$äHyÕºqÍlPib›¨¸¶“)Ûð\®™r‡*uÿ\¿Rá?·›/ÿcZuû&¸™ãê‡Ë¨dmè¶:_ÛSö©¨Ì•nÞUêýÖpÙ¢Rº©grêÅ *õŒzõܸo•ºcG⿤gÌ¡²tåŽÉ-¨`±;õÚÿ¶j]ÜžS—]T¨l÷°W}.¦RÁøâþ¿Bªn÷™X»ÿ>ŸÃTæ96GuúÊoûM{èi£*uÇguvÿN%W²:Û«ô¤¾%•6î\µ;Öµk<‘Š>5¢èóÍW­«Ö9¨Cÿоœh”=>Åœ®ÔÞñ ûýªu¶5W|QéŽ6y;ÚäÓŬ´%YiK«ÔÝ úóF7þ±þ¤œöÞªÔå_ÔÜK&eT´´{òŠè§tÅ*ðˆSf\•º‹óö LªãG÷§ì=°!3‹²ÄÈ=_ïM®Rwúö›ÏPùÄZ£;=«A§Z|ž±½~¯*uGíÂrïëJåmÿ|¡ÐùõFØ…åU©;ñÏýާ“Uìy$ÐÖ·þ£êï½2Ç©O ríÃå1Í”èô„©mìV©Ë?¿ZP¨•Tß«Džß©ÀÌsôµžýª>ÞF—ÏŒO÷›¯æ±oéÒŠ}‡§WÝŸ½ ¶dݵ6tß¼®ùƶ1té»ã€9ϵ«>o‡÷r¸¶JÝmê=4™²"WyvO)¬R—miaèàH¥_Û/èOW*V¢±ÿZ÷{ú{ú{úÿΔòƒ³?æ·™D‚ÎßóN§}1?>\©VëoWw¹K- 1ô=CŸïk}”ŽÛëzœ±ñþÛÕåt6™z¥¬=HïÐgåÓ‰Š4ÓxQïoWwC}BèYkK*Õí’bç_—N(ç<*ù»º¼ØoÝ—. û7ÏL¾ïFG×<8¤îöw©£üÏOOÙœQlïç/¾àW½vSºóÇQ“M›º¬ÃÜû1÷tþ¼ÑõÜ>þmêþ·ŸWõ¯ÖJT¯ßuïÌÊùÂn¾ŸNÍjO÷ŽGÕÚî×ߦ.ûç¬Îö…*çožÎø¤1/•ûÉäW›¿M]éà >u ëÍ;,ª»Eqüåä§ÛNª}‡ÿmêÊ>ÛõʚќòWÎÉh·flåýÇÏnÛ`Õ1ìoSw‡ïµ¤¥”Ó¿`ìÆ<…œ¹}]'ÝûÎߦ®pÉøÃúµÒÝ–¦ÃÒN_ª¼ÿÔêiË&˜ü·©+]Ök…Áнtmì‚U§Ó=u‹êzì)›ÿ·©+±=Ь{;Ê»ôu²V“Ët)Ò`SMµÊãÁ›ºÿåç#ýËu×ã×KŠ.¥{µ·Ä\3kC—:Ä~®Áß®.såÉñ/¨ôRÝ‚Â]3)¯ÍˆEM6þÛÕ¤½µÓÛߌîí8mõbä#º2}ɯ³+ªžWò¿¼î÷ô÷ô÷ôÿ)å'véz3†îþ±V‹lCy߇ªt¸0îoWw=rê‡m )Ó²¯v ­èæÇÜ—NüÛÕ]RM¸Y»ŒJzmo sœòvÜ}Ö±Åß®.ÏákFt«º]»WÄÌ#éúÞ¼×*=\þ~u›Uî¥ñít§ú¾FG'èÒ5_«¦‡Œºþ]êèºuÔ‡Š¯ÊùË…ÜîQ¡îŠŠ¯¿M]¦WŒjÅWåüͨÁÝ*¾è^ÊM÷Н¿MÝÿöãkÿjÝ™_­f¶Sì¯MÙã9žÑÍÏg£ã^æþmê.ñ×½XOñ¼]/<³XÿÛ5º»qn^ü¯5›º[c^˜fxѽ;Ƕ,¶ÙSyÿY—íöW¾ümꊗ¹-~Ú{8å6ÞZçmÍÊû³ï|©æ[óoSwoMÏ8×;Í(ozâw£V OȽµ|LCÇ¿MÝ»S~ÎiÞn´Ê^ÿô›"WrZ®W:øoSW¨qÌý~÷1t£Ýô=óãæÒ°ñwêœúÛÔžjø=ç•jšê|jô‘®=ެ7è–*ÛÿÛëöõÒÞßô(=lúÇ?*^‡ÌyõøÛÕe•¯V¾r8•M×\;]s]zuâÛ«ßÿvuGúù±d]*=踩ѪÛÓ)O}PdP—ªÇ‘þ·×šP׳,¿ Ý7ÛuÙG?‡ò\ÛX?îUõøéÿòºßÓßÓßÓÿw¦”?'azƒÙTÒ›g_QoDYÞuNí[¡_¥îrý=Ú嵤2·QǶH¡ì³…î·Õª.oF²ÊñÚ?©$æéÈþ:”å5ä圅ÞUêî¤ü:Ñiç:ºëTðjù¬ëtnbÀú “þ›÷‡ÆÌ]n=¡byº“Ç„ûÖ¦‹ÃÏ\®µîy•ºÜî-9>ÿIÅÛ—|ÙÔó÷‘zÍorÿ^•º»«›®Ÿ6“nÙ„DÇîE©ãËÆŽªÔåÝëÒc¼ëx*‘²µbÿíªÝÇ㣇T­kÑ[ÅoÝ›=ÃyœOWÊ n²¹ÛÇ/UG†öµmó-©ð×PÞH}å¬=xqú’îUꮬ¹ªYkÛl*uy±§…Å~ºb0¼Ñ†˜ô*u9Ú^gJÚRi•-•Ñ•.ƒìƒ^L¯RwUeðúùM©äAª¡Ë¢=t%|ßtÛ—Õª.϶ëÚÚ›Jîèë^¤B9~Í/Üþ[µŽ÷ë4›JÆíOkÇèÊ-S­¯RwÍuÛâÇ ènã«Kç¾”»nbΤâªïwÈó»zðýÂ2*:°lXa@ ºúP{EXãªu¼Ó2sb©ÄóÔͧÁ’.ðŸ|ñÃÿfy˳B&œ ¢ƒjÕC_ߢ«æÅÍP½VõuÚ¡MüØÚ›¨È©Úî8‹ºª!»çˆKU——zÞÅ#0‹Š'§Ü§T¢œ:3Ö—E¾©º¼‰£6œoGÅÃk|˜=y]®þýéùËþU—rÑqþ¯ŽTbü^¯´l!]î»2ÃsHÕóæ ”¢¥'‡R‘ç§nGÇ¥+¡NY¢cnÕßÛâî£Þ‹Ê¨8ùF«ùstéòûÕ›ì.U,§í®ò©–fŠq’ð)¡àÎ*ì¿mÝÅû{®¼”ºÏÔ\ñ<[Þí||Á º«•ù9áGœâïßÍò:˜†+æÝ’f×O÷ª»wT=×Añ{G-êwoõ=ÅòVMµxÒ`Ý3Ø0Xç¶Âû Æ^ß8ËGñ¾ÊÜzê¯pO…©öâzdåë”. >º¦¸rþ–öM·6ºÐí%_&×Z¹> KbÕˆ¼Šã/9K.åì»IEÓ[v:Uù>aº¨½vTñ§tÅò†D^¶¬x½Ég÷_ ֞쯢¥èÓ­ƒ]‹ »Ãö¶x?GqÏ%ï·_¿Š¨œ¿17â±F´Ý=¯±"ª‹âñæͰž‘T¨˜O{õu\]*<‘ùn’â¼¹¼=Z×Ë6+>(oåÞŸ—fPaF'íO3Ž*î?ÿî¾ÔVÌïZò1ã© .þÑ"áôÅý;rnî¦8Þ™·ðµUXür*º:V÷¦Ìjþ‡,{Y)êšÕM¬ó:‡î>w=pûÃÅïÕ<^wk;Åú|`Ø«Œéök#çŽUÞîøŽà9Š÷ëÝ1|yVkƒ2ÝM0ŸU'c¾÷ñçN]¨(ÏâÌáí‹+–WösŸjÕíÈü‡WŠF^±¡{&êk«ÑÕÌÎsÏ8ü7nYntu·õ»[oyoº˜=Ò½Ïâ*ugúè=}ŸöŠJ­]Z•Þ¦kž>'ݨZ÷ðçÅ”×µ¨ìפý‹ƒ^SîÌz‹ò«¾ÿòÌÝ ¥Ag}é~Í5Z]8QîÔÛÇëͬRwöÕ^$jTö<ª$7ò"åöŒØ¶¹ù˪uµžîL[—Oe3ö}T;s€òbV¯¹µJÝÕ牓zRÉvõ_—·§+½UrTU­Ûú2xc{s*ù¾ÃpÔbA—£Bò{OœSµ.»èÀòTjšüÑÉæ=]ò‰ì¯ÙܺêóÑï܋Ҭ™TLŸµÂ—u¡Ë›'å2]U¥.wŠéD5¥WT²ZÌÎ\H—ûËCSÊöT©;¿H+Y„¢²GeuGiSNŽ«ýìË«ö¥üóîõ/}èþÃOö噿tylw󣟫öùÌí‹=ÎçÇÒýËMý»v{JW>¼¼fæÓg‹ÅfK&Òƒf__@ÙZ×&,oRõxçÙ%ÑÇv§ûW„›zšÑ廳ÚG5 ¯R—}v¦´·–Tª²¼N”™厫Û.µyÕÏ×Éî“ß*m„ •tíMJ”ã¶P«lêûªuZç÷¨1šJ ûû~{Þ–r¢‡-~àÖ¸JÝåA+”n;8Qé  Êkt +ǯ^¾³êxË~óbß1‘JÓR7v,¦œB‹½*Oýµî÷ô÷ô÷ôÿéÿÖÏ—ÿ]÷»îwÝïë4ü®û]÷»î÷u~×ý®û]Wçÿû4×ý®û]÷û: ¿§¿§¿§ÿò”2ÿù9Ÿšÿy£¬ÖÞªÔ]Ûë=kþ°ÓT´óÉþz3oR–Å”¡ç_W=?'ï¿>ÏUéÏåoýã¶­êò²×wx0éí šœWJYµ«ï¹Õ)°êò¦l(ÈÔlA%ú:i#;ÒeíŸ]'¨÷©R·ûSÍQ§;ô§‡^^À‹®öç…M>Õ¬RwÕTÿÝ„¦Tbñ¦ÆÉÆ–tõV½cWU½Î@Á?¯GQøÇå)†—Rnó?/TQ¥î ›^ñEEÿøœT*°z<¿â«J]öƒº –©äq€Ì—g)÷øºV>‡&UíË¥ñ5o%^£›å ¤M¤ó}fŸŒ~ëPõ÷Z•òõ)gœ?¦ëOÊ[t_'3xfÕþu¬ø¯Ÿ¢ŠÿlèòYËŠÿ¬ªÔåþ° úÑèZÅó¡æú¬+åz†O;X«vÕåÍÞc°'gÄD­úz—®Œn>2¶]U'üW¯—p1ÿÞž£õêPÉ¡¢~KSVS~—kÉóþGŠïšç­r¢by:{BƒïSÁXë_Vœ¬Z×wräS+ꂚ«÷Q£‚1QO»íXµ®V³Eªý©øZ™úS–Nš jlÜ]Õá.><ävñá2*rsÝ„´ŽtÅü‰†æ“²ª¯«íj¹Æ“¶Q‰²sÍr“|Êm¡¢ê>¥jŸ çÕЯ9”î}Óqêsšò4mö­]x¡j]œ“ÁÕÀÁT´7m¿ÊàÆ”û@»U'½áUêr2Ë:ÙÔ»H%ÆÅñg”‡P®n®Zp™â¼âoÂ+¾*çoÜMÞw´âñœìq=dŒ6ÝÐl>öj_Åynù#_7[ÚVqþ@¾ïñ»6Ït讎wÏðysw5½Í¬Æ+^¯ÍÎ>)|¸„ ›üñGŠº[:ãoé(Îoø¯ëMªžN¨øRÔ=é»4¿—âü<•ð¦Ã-%Ö5öÙ;Gq¼3?3A}•î6E]”åðî|:ݽéc—>ûŸŸ·\hùçMQ·í…ZL³Êó(ë«oÍÃ]R¡ßã(ë€Ë•÷ß¼²ç”ÙÈ»Šå)Ï÷x³:‹îö¨±¸â[Šº7;6ŽòT\ßábú´[éÓnÓÝ“3{=UœvÓfXíéð¹w'÷v|¼õ%Ý-ÞW¬¬øœ¢¬› Z)Þ¿v}ß²öS_¥{žM¹ußYŠ>˜u ‰lV9îé6ÅïÒ˜ÿ‰®OI~7,@q¬Òcݵ¦)ÿõ3‰ZëÞ=¤{nûNs>êÿwÝåj#ï)®ïpc¥ÉÔQ#×ÓÝóW^ ŸëuÝÙàqñ®ÝŠõ~ÍcSƘÒÍ=÷å*>_¿àØ’Aãw¼W<.óØCk‡ß¤»uܹi¨ø=£'ÍŠñŠõÂæv¶ 6¦Û;úåæní¢XžÒà[{WWŒ÷»^Ĭ§Âü[fÅöŠóð®­Ñ]|Ž¿·Ñç_óyÐq½ÑÌ ãòùõþÕºõº ÿ¹ñ×ëvüuþ_^Þ¿Zg:òçe¯#t~víê±!Šë–üuþYè¼iûokÑ??NC±þØYcÊ›SÅuKžE¾Ì[@û‡}Ÿã=ÔAQ÷¢õù…Ã~(ꌾO šu…Ž_q¬ùCÅùÎ;þr]™ù÷Êsm6®¤ükÏìhÅõRvvÎúZryIåü¿z]…ÇM¢¶Œ{¿—.þ(Øzõ´â|¿¿|îú¿¾¼µNuËÅ¡õëÓÅâË”Šël«Ùm^xŽb½ûhÍ®º-ܦKª‰tK[q‹}ç7ÐúÖŠóm]Ûca¤'e>1ù¢s¢¢îð€™ç¢¹ûhqöä«ìè’ýŒÝ Šó÷ZPoÇÑÃÿÿïšAzŇ›Ð¥6Ó̶ä SÔ”µv.¨ÜN¤qyý¦ì *R=öÑàãwºbø<ÛedÕíë\•¤ó¡? ¨4i±îá|ÿù: u7œhl|ŽJÝx~Øà;eÿãzEUëþÕë>Üѯ£ú+ŸJnMï—²` e?Ia¿vÚT©;¶£fw—/ŽT¶>cA@’)Ì¿|,†ªÔíò諭ÓÍ–fMÕžßØŸrÿ1_uyÛƒ)ô¢•-iîø9¦7¬?µÖälÕÏÓ?6÷7Î^¥²ía#nïi÷?^Ïáðœ‰_îWß@÷¶®Îˆ™Hùg¦ÕLñ¨úx­:õö/M¦ÂÍíçêo{CmN6¨¬¹Ã…ŸÒ¥‰‹§dï¯zèÅËåc‹ób辆ù±Ö¶*”½RgÖÑî1­û=ý=ý=ýgú¯_/! aƒøïÇé?‘ù²± }‘×—•O¯zŸûu‚îŽøÜ¬YEݻ̎ãëѾèwÅÍÖU½®Ò¿z„ÿʹG}þ¼ýõ:eÿ¿—÷¯Ö]××.Ò¶=\⪾ý œÖÉTµêû9ÿåë%´®ð`ùz°¨ëÌà at²í‰£éUóð_^ÞÿÇÞ_@G•lýã7šàîÁÝ@° ) ‚V¸;www î î$Áq·î¸tî%‡æGç×kçáþv½„bg¯|eLÉ&Í&Žts¥»Ñ]¾õú?/x^ÇÑ{f¯£¤N‹›±¡;nïΕ®¬·¡}zgÓ3Jº—X»ÍJºû±Êþð/B½~·^Âå¾ÿôS·ý›füÓŒ¢Ö-Îøg‰ÚŸâ»¿á0utºÛÞºò+Ô|ΠFŸVóƒ®Ø»¦yÍ£¨Ño’[ïž®ödž‡×6 âÚ,Ö¶,EÍNóö˜¨®k}ÌfÙì/§úïbòÜ×m‰ÉK¡Q›†ŸÛ«ú¡¼y÷ÍõAý½˜æMn̈hKa…ÒNn»¨®C·®Â/u¡ÿºMñ6áùÚÍTë›ûæísææÝ€ÌÛ‘×wY¶6Ì¥ow—Éjݢߕÿô¦ËUÿKpÙO'’Ÿ"CÔÈÐiï+üÏq&{ãsN†·}=ÍÇýî7² ÷ÈqÇôÞˈÛXêB?ÕOðKÝeŠ]ôs! øc›¹ßæz›â×Ûdú%ü¸Yü:EÿÜ´ÉÜÿ»uœ^–ÌVí|æÐä3‡,)f^øðŒ_W´L)¶Q½¾WWDìõO¤ÈQï,¢ú¹t‡n4õÿ ®·#z¶ÚtÑÊÂËcëg«y½^ïrTiÛRß‘ãFŸ\1-†¢*í™8_õ»ù¼ñÍV%‡:ŸÃÝ=Ü0%„¢œ:œTLÕ—õ?º­”mu>Û~Ý~Ä%ŠYÞ¾ø¤½ªî°ßÕYµ,ujÞex·%Gšu£¨á¾ÛÇ©ûM˜ómÑÍBß(´PLïg¡…3÷;ë¾ GÙ'*nþÞ“r¢ÐR©…=¾«þoÇ7o6K;¬âf¯‰_çQh¥üö—ó]ûŸãf4+ÛfÁ. ­~*t}îP÷:8¾@ýÊðøŠð9éF¡å†·¾ó±“Šûú®kµ¾þo×AHÐM¨ûæCFÞ:šß8³Þ4¹ür^&~üÞ¬tBA :R"pOuõ<î;ÚÕ~3.ê—Ôlm‡¼E6“þÞÉ€¦CUã¼Ï f^?RòîVwºï%¿¼NG2~ÕyùKÔ˜?ëžGÝ{÷ö 5/õ~ÝÊm[«×7éBµØµ?SÀúá‹?©ûqÑ/°eŒšžt¢æÒ‡Û/PÀ­‘cK-Qžàâet¾WWå‰N¥J/?ГôáOg]h®ê¥:÷ xpÝTµgüÏr†‹(ä:ê™û]Gü,t¨Þ¯Û¼2~c(º†íÐŒ_uþÌ»ó`^UoÛpdüÁ;(:ߎNžêñüYŸ;óv”Éö˜ÇíGPlP/÷ÏgÔÙcq±YÚõ!~·®BØå!7,C/R\û¥_§êÈ­vï“æëòiâ‚—ŽyœmZ[2lª¼Ónð |ó1ßÙ½5q¿]/áOGrÞÓhcüJ O+½¤Šv¶{†k'lÛ{œ‚®”5¶ª]ˆÂ_Ùk.5q¾ù~®@š¹©ÛôÝ' ¶Z¦ûݺ ÞзDFܘ‚½,Ÿ‘þü³áGWi}í·WrWúÕÆ=(¡ï·2õ ›kÿµ‘‹&Nß÷“}ÉF)âeyÚ‘=ãúË!­ÀЀ]ÚóÅ¥ùûúÕzQÔÏ´:ú¯ÛÚãýÛë/t5_=º&EŽ0êdµµ…|¼¶0­˜v>ý•øM7Fm¢èÈ6!wWSЂ$ëìÉoµq_¿Tsc=)jöFïs Þ±¤Øî¸wÚ¸ó%-ZŒ¢rœ7îVŃB¤y±SþÚ:íA·? çí)êi@r·ê Z§Ú =Zʹ|ÌÇïù(* °êè )¸íâS›Ôõu¨©§÷ž8u]îŸmè9›NcÉÐ5ߘrË3ÇR¤ˆ(=l¡]æmï?nSTÞ{†·Ý^«ãµ¬“«}5þÂOßoöN–L†Q ÌY«~½`ÿeUºƒqe%Î?|°ó4EUˆxÿN÷B/qתc=Æ«Ç4ß)§Å.ŠnÞ¬â¨Â}3÷ÿ⮔ؤÌÖ.ÕŠQHÝ’?„6s¿ûnžy;dê‹s‘q})þ_<:|\y¦¿[æípëÎÇæd\×_^à›j/'ÝìÓs©Ç{îæ¸ÞÆó.a̰—3÷»=½>¿á«îª=×ïºzm1r–ÜR,,ó:„<;ëç/­Æ‘…ÿq›bJÿüCæþßí7ûõx!?‡+ §øl?Ôñ~¹Î ûq«Ê8ŠÌøOýuê:Ù/û§F9_¨ëúÐy¶*8’ >vïü9ósƒ\ ïÏj˜y;öçeyAŠèpiþ®µê~¼ü~üø«¸?ý#´ÙÏu¼g¼WçcìÔzVù¯£ˆò6åTý>¿[Ámü%Ó†«~½XKÉ&g)|̈ÈÔx¯˜×uß8¨ÛQ;~fV—"g»M«3I­§¥«³&àð uþ„œîWÃÜš¢›4ìKyT»øÜvŸµs‚j祳‹€d˜¾¾³kšZ÷Í¿‘kZXeµn^x•wæC쥨.µ¼î6Qýª~]FçyßBõ£…µÈçÒ–¢Âj7[d­ú}ã:.Ëý¦´Žô>«‚›gèï¶ hÆ.õzž‰X;¯¾Å&ÚGÙž9Nà¯q­™·ãÿ8_(xñûV*îóF=C§S۾ܠø˜´ÔO3î?Ö¢òeU· zs“ËU¾øQä²^QE«uÀÜ_~I?\LõG&6ò(}š7$}ãOÏcç«õ*ÝbÓ]/¿Sý ?»ÛºRäÛÌý¶¿ôÃýn]…øWwÂ, ×']Å­½³«þ%ß–Mz:ªõÝrªììq€‚‡y6ÿ®ú¥Ü[Üy¾=UG© ~þÐõ_úݼÿÕý2û¯S¾©ú_n^_&ãWµß/Ä_¯Kæþ3¿¼¼üÅH7òÇ ¡þ~ðàžã[X©ñµñײ^žd|^ ±Ø][ù‹ÛËÑÇŠ«q½Qo×ÞhQq4…Ul¶®H]u^EìØ2oÚu„Ö:y¿1Åj_¹jÛÌý÷"g.x?]õ'þvý…˜QÊb–ñŸ¹EÓU\í~qõÔx½¨Ê)uS½fSD›‹SÓÕ¸EïO=ú تú®]=\À ¸SâœTã‰}Ö[~¦ºßè®%ïÏyM1uGìø©êŽß/½hrU_µ>dÌ“‰a¢)|IªÅáÕyÐdÎùò^ªŸÔ`f=‹î °’³šm©úá}GGÜö)¬ÎƒÎåÏS”ÂÖ¥ïS]埌O­ñüŒz|ÎUrVè2Æ’š§_Ú”§,…æ>\¦Û­‡ÿ?«Ó0Çèjáf”Po¶ÃÛ¾SÈ‹«Û:v«¡‰»þljJÉaý2ÎLÓ_?·2ãþtzXëgá#Òÿá8š¸wý…kÝBT‰¥ ßòs Ì%ýÐë}^ÇþÍøµs½ÝË?é±ðçϯãçÕñzÿˆG‰Æ§zX~iH»~NTÐÄù: ø–»ÂŠ+0gzâTÒ͹w¨Ò¥¾š¸ß­ƒpÏñá—%«FPr‰¾Ñg’’.uÔ¦=ƒnÿŸwwhtÇ”S5(¹^•WSBbI_̽ەgm´qŽÓ¶;lBÉ•¯Ý“‡¢H_ȵÆ}›µš8§îº=Ö=M)©{Ãl&q¤_¾mHÓg5qŽU*~4n?–’–¬Û¸'.ã{y‡Ë÷ͪ®‰sYu°n˜7”p¦…­ãM{ ží•»p‚v}B§![«mµ™’L¦ÏX>~éÇn·V{ž:]©2ðÔÅO”uïfóuÏIÿzAªÛ±Z¿Æem³¶YÛÿž-é̦|û´‹¶MŸéWyœÞ^N;>,hÃă݆÷§ø cøUŸ”gmÙÚNûù«¿™6º¦;ŠÏû|´C¥ëäg9ç¦óCWM\ð)Ó†‡¼£øP^>rø)r³ ÑØÚyšAF_|r¤¬§x{çÄüsöwÅoI~´Ÿ«~› ½\h3%Ôº0·xà. ÌW5$§v´îXÐê­µb(Þèè=¯2Ç)àlr~Ïž>ÚçpÛ¥Ú”¢»·réü…l)°•èiS`©öx7jݱ™“ñ=*¹¿]Á«H7aõž^%bµqýöÔË7vŽ]µynÉÓ8-lo΂þÚ¸ )}ÒWHJì|Ùo~ÝXr\^·Síñü?KÞ[±)%´›WæÄ‡mä_¤Ìí‡ßµëª+¸µ‡í׌¸¯NKÆU$ßÉŸg¹;üM=‡†eöÆ]£„²®5{—ñºµì¹æ”vdà¼ó¾.&RÂüÛ¯sæ=A>WgO:Ú@»>¬~p´ÏFïy{}oëŠæ;(0­Â»ë©´q+—åßÚÇŠâw°6ýšü½Öžš{à•6n@ž²ÆýòPì­’ó4ÊE)nI9>?ÑžW£“ׯɵœbjVl¸ð¡-¼ø´/O“Úã%ï>ÑpŠb7¯Uôùv ¬±®Àdm?œ®èuÛ~ÎQB‰ä~û#ßMù{¼z8Y÷èeÍ)ƒRüˆÜW­ÙßÍýÉßáľî–Ï´q!ç*ºvhCqŸª–Ë_2ŠüÆLÙ>¶_¸ö~¿-Ûž§b2ʼnkj52˜üöo,{Ì\3 ™Zíu—æ:¿È‰G(|R߃ ÿ¦Ðþ¡©f—Ôqó•rª¤×è1QuM(ªn½“Öp=¼õ–ý!Ϫ™·#ozmZ‘bO«£4½©êøwšý:\õÓ„Î »0§ëDŠNKOÝí£žŸÿLï¤y}V©çÕÞ+bt- ŠÎÔ"¹‘º¾ œ«eòÛÙêyuŸúz›ÑŠÍSäåÊåª.€ÿ„ûu?™©y`¡ÏZЇm)zäÔº›·ªq:« µ¬WÀxÀóŸ·Dçã+j]Týz»Ç_n¸ªþIýžœmlî‘áNѼg¨zºÄâ–÷ST} ýáùc× ˜–»6[¡_PÃ÷=]Nª×;¨É±uîRôqËkÅO¨:úÞ›6…ñ”%ÛE´j¾š VSï:¨æáú\9Nب~ÑÈ s.ݲýB“ýªTþ\ s¿W‘ø EŒÕ<Õ螇M/ÔÝFçßìë©W¯‡߿랱Z)ÂP&=É4²™t¦.jœçµ{wžuQqæ¾vN0§è”f#ÎvVuA¼~s°Ü§ÆŸDÎuðy;bEµga¡˜j¿ý÷öå8ªÆù…U½X;ÏÉÙù`Ç7—ûª8“nË'ÞËœ§C!ûmjÞ›ú:ãùbWóËtƒÞ5Z› iÝöÓ.ÛÁ=mêdÃÓ|*®¼Ï÷÷KÔãÞûËÚO†arŽè\KÅuËûä‹¿šgr,¹ÏÊÜÅ)ºtQ—5 TDü·kÇßO¶§ÐooÚæx35Þ11Ì%v€ÅfÒÿÚ¸¢ZWž\Ç}ªi©ú³Ãߥ-­rŽô×­l††¾RÏ·íçâýUý‹Äö›ëµ‹¸Dú¢ jåvþ”¹ß-iY®¯eÕ¸ÅÄ / íÌCº!7º›æVÇs¯Ù´«ú\K<Úé•ýÒ½^tÚ$õ¾v½TÌ`>\}.>¬~¬§ß®ä6elvo¶ß¤ñ‹ÛÊ Ͼª_bow Ž4L/9Içº7èKjn{5.2iÎJ»÷ òêT)-sÿ/¶?©ç•´i|OÛ=CÈoGŸ‡9Œ¨çѽLR³ PGâÕðuGö| Àà.ŸNyÀøµ±æÏ¥©: Ñwö-¾Ø##otZkñ®ƒz¾ùv]3AÕ‘ˆ×;Z/ ¾Dá ËðÏ Ô¼Y‡;'ýê_TŸO ¦UNO´hE!êöp~oæ~—Í]olQusãvŒˆÞ÷ŽBÅÛèΩªÓÙ»ÀÃÜaª?,¡é‚û7QHj…ö·4Uqùöçês#ñíìˆÓmý ®Y_¥®î´öxÉmÓë¿.G‰ß¸cžˆµ¤ÛÕ7ïÀЩڸø$™y™’réѱžíÿXÏÁ¥©}»ƒ_zPR‡t ‹éãH7ε·ubš¸@¯gñæNQü˜%r6ºOW†^{ÿ~Ù•ýwý¥™~wsÒupÍñoê–…– yUd)ÅÙš\ŸT2ˆüÒ÷½în7N{¼3Û·¯q½3ëlïìÖä÷´³õË3iš8×g#6´ézŽ’’uæ— #¿£¦Yø7íÒö¡¤Ñö”l:ûò›äWúû¡q~SWá7ë9¸¦EFµYeNI©wÖyqü8¦”wÒ®ÿãºüÝ“”lÜÓúpùä76hsñs4q>>/6 ±žK kêùíò[FµGwQoŸ&Î;4ׇQâøÕ÷ó%?«^ø1íñV6å]l%lJÈÛôÄK d±xêdm=7ßñ!ƒG I¦„-GŠ<šCSîyÞF;^ÄçäŠB'&L§ÇÍÏ[ÅQÀ¨þ­Ó»hžoÖ6k›µýïÙþSחϊˊˊ˪Ó———U§!+.+.+ÎøŸ?O3+.+.+.«NCÖ6k›µýí-…\\rsUØPŠ è\²·ÉLò.°|Ò°òS4qÞëÛ™×?¦§¤]{‡OXäJ^ͦY˜-ÖŽãÕ].flZÒšbOG§ï ¹÷×míýÞ®ßl׊ëìøhš±CÆýÖòÊñJ[‡Zoÿ®úþçÇ(~J•yìþtòIÛ–àÜ €&.¸ó ‡ Z’aK«§ N¤k> 2]»Zp®Z'Ç¿Ž&ÃÓU‡]­NºÂ;´ž]×rÄœWÂÈp~xÍéHW©ÓøcÝ̵q}Ë®·Ð™ +ÖНø8ã~G\|3©¿6®y²iò2œ«™xìpCÒU}cYw¥v>âË·-¡äÿ5IÿÃ:­ºÓŠœ?Wbï…î}—ÆI×ýþà‘Ó­´q rüø¥¸ÓŸFžþ4ê¯Ûš8¿Z'Š\m4›â·é‹wÛn îÇ´ëM>Zl¼íL ŠÿXg]J7òk[*F÷»u|6¸—?!ÖRì–|'Óym iR,ðÁ.­_ýUO$þÏñúÁ®?~´~êùç| ¨?êƒPäÿ°þŸ—SJÜ…¥)vØâ }–S(+¶¡ëÌ1Úóof¶™×Þê)~Dñ£N‘ïÙëUJWÑ®ç˜Ýçå½¼ý)¾®~uÕÖcIWgÁšFÓ~WFvï}¥Å~ÜT®æÈv¤oÄ;4éªu8Ýüymí‹QŒsr'›6.¤÷<³üÜuíûR×ËÚ6êNŠ›Ó3bî˜N¤kWxîµd5Ÿ.„5z×Õ¼AæmߊµÌ­6O¥Ø“¦.Tãvgê:O]¤æ³:4/:´âÈyòs£Æç$ý²Þ×_ë-zž\\ú$Ì7 é•kF§—j]:ßòÇO_÷þD±U/ÞO¬«ÆiÅ´Øíþj‚ªŸà¹äP÷hÏ^àD‰J7ÔúÜAIszÎZO½.y¾Z‹m9ÉP|G*éíçqóà[s5ÿÏ}ÉúNÆuPè[u¼¸^•Êï½¥Ž÷Wý…b}&7Pãu‚ÇEšöܣƥÝúsiÒ/ûÃÚXíh>Ksñî×­lº>žbÊyŒ :=#sx‡y±‘}Õxo/ÇÍUj^¦èèºÃJ•õVÇûeýzï?×¹7üqþ«ãýQOFózj¿uÙ1¬Ž:ÞoÖ}Kêé4¢E)x*ÇÞÙfdhß~`Ñx<¿W/!äeÓ]£?^Qǯt(¦mSšý?—Qç‹þǪKöQì/û½ ÍŽºš©q=¡þ-‡Ïó§˜NWBº=SãÚ+¿ë_ËU­‹ú I³¥K(ú Ç©V'Õý…~õ<-s¼AÆûéÖÖ=†“!ªÛéÕmÕºq†ü^Å›\Ÿoçm––ÌEa÷Çš餯¹D4ºÞÆhZ÷) V¤ÑþÚ.á0¦ãåTõ¸ƒ‚U{×SÍgõ-YÜxgÙ/wòë Ž§Õû!lQÛ"FmÔ8?ÿb«šÚ®ªDQ_× 8±Ö¡ú7×KH úñü×ü¨ÌýÇþ¨Gô¿?ÞŸuŒ"ÿX‡1sÿ)û?72o§t¬“.“{£‹û~²Wïãç— É§ÆÿýÛë/ünœiÕá[ë!÷u‡—MpWãªÜOF˜´I½¾OZZt‹0  ›å;®SóZ¯Õz:³“z¿>iâß/[Ü%ºµ¿VŸŽÔùvÙÞÐ`ú;5ÎêIç;Æ×3¡›qsÚÏKTó×/§UÞê¼Y½¿]§å}æðéÝ<ß½ãâcTÜRŸ“m{«÷Ñ#“˜z›¬ŒÉK÷ÉcC˜ªGráGyˆ ªøñÆÇ7_.8OÎæµ;ç9©òƒõ$»¥aÙUþø·×i¸1©ÀÓºäñêê‚YSÔ<ãs±Î¤g®oAO´Ý\³P$ù|X²½óàÌñût£`õÝBÕ8¼Ô¦±#Ê/p'ïQviwÕ~»³§Û,õUëÍ= O]wõnò¹u¥UŽjÜ·~â˜ÂýÔø¿ß®Ó\ÿèº.ä³)èÞç$õ¹`ß÷íá¦ò”.Ïů¡Ù¶P “Sf¥^‘OS³9³lþæ{xn×Ã|OSÂ,‡ð¦iɧÁr‡Å®vÚ¸ß<žÇŸõ’þ˜?M¾ÿ:Z}>¹X¦´îèK /,¸Ù­$Ÿ+Ù¾ÔŽçr¸tµÍýÒ”x&¿p¢`k9½mÔNMœ]b}‡äó9(µgiCß&¯¨[O+kë8lܳèk…”xöÒ)ïOÛ(xûªð§®ÚuPÖf·(]ô8%ž|yìIƒÿ±>ÄÝ ††——<£$ÿWfùmIï3nu»6ÚzÁ…Žt:ô}8ž¿ÿbIìò}Ý} ‰‹üs^ê_óÐüë:ª*o}½sìPXgŠwjS#¹K;òÏ>Ø;¤ˆ¶Ž×Ÿõh(ö  [{ÿd£I³nqêËí/¥QÜÌKI‹Š‘¿p/¯[¯­[æü>ñä£i(ukñW4äxõD=Þ]{}âügŽ´?·×ÿØjâ\ÿXw‚]Ýüáêædÿ¯uÁÔñRr<ÿbáD©k',žVù<9å[«Wó#š8—*æ‡O÷¦G=Ë,¨[„îôÏ>¸o“Çš8ïãM¯×y0”݊ω[:€|{¯X1¨·¶]|u…­Š´ßFÉÃŒ6»M®A.ŽabËÇkâ¼FÛX=#(i´ÍÁ”ۗɧ´ÿ[ßùß´Ï·dúÙ€µ(©c!‹j {R`JhËÓUl´Ç3»‘”6»4%Í´ýP¯Yòɹ¼Ídg͸¾¬mÖ6kûß³¥Ð5­K®i]*óûôÝä<‡’óhç7zŸiݼk¶å”Ú0ú›Qj(Ùµ½xÖÔIÛov©ÀŒ–Δ(¿$çªÑ›lϦV®Rw¹&.høá„¢+›Sr—lºÑ—½É~ð¦—v&kã¿Ç×­Ó—’?O)~¶9ݰØ4àn•Òš8_¯UÖ¿¢”%36 ¼ùöœ^åÝZë~±³ª-r§”ñ߯4.Ý,Ëw-C)õ_u*=6€œ6=]·¾ÖUMœîÖ©¥ §äM÷îùE·ƒ·O1b4q!›|g”;fO‰Mvîx7Žzôt}·Y»~¢¾›é“r%Ã)éIQqtHqº·ü`ì¥5/&ø—u¸þêŸ ªúóGµGÃü’GªùHõ“‡•ýÑQ¤®£‚ÿµþ1yüy~Åÿ²ß§áëGwÕ|¸ Gw3ö¤iÖ- ²ð½ZðŒº> î›Ìš¼®KQãztš êìýº®RÜ”‚ï®ÅM¡`¯mW÷Sõþ¼¾îˆøº#2óvÌϯ(ŒÆ¾Ëøý3è|èæ£ƒµu"~ÍœÇM†§Âí©p§°?Ö«Qq«ÕX=H­wã0ÿ⡉)tõðŽ§¦ªëCÿ_Öûóö_uèÔçÊ/õþ¼Mñ®»Pó#u"ÏÌé æÃ›üü!CDþö³N©õ½u;xù©y‚™u~©ç>hÏ‘rjzÝ÷)å¿úQ܆G›×VçÝïÖU¸žò¾ïLº®7ü.YÅuøRÖâêX 9^ÅuÑCÕŸî|߯xÚ\7K˜Ë÷Õ)ĶÕ-nª.…SXçƒV‡Õú‡†xÏ€K(ܲÆ|ë–äùÇVó½ ¾në¡î/)hÑ„gë#Ÿq]Sß,§ýÞ÷ç÷¿ÖMþå˜ïeoö7õ!vçôI\™ Oªï °%ßÜ׆füjã:VŸÐýáŠ)\©gÛNÈwäÂ/.lÐÄy½¹ë6mÉ'Jús\·‹^$ŸÌ¡‰û³NÒ_yù¯óGç±>ßûƃ(!êTÀöК¤7¾–¼±ö~·þ‚û‡&ÏB.{RBz›_XIASv¼npÛDÛ~Ïî¬âcOqVŒ±7%ŸY×ãßçÐ^ßÏîóþªµ5E¿éÔi‹OCÒœìê¶G;ßD/“<6Ì¡XȦÅB(PwÁik»™Úvnœfÿe«EßÝ·ÕÒ×dœ¾÷©¶8ØlÏÊÐÙÕ(fÉø%al ì+dtÎJÓ_—µÍÚfmÿ{¶T²KóEÒ(2±eïªyŸSHžÕKÆ~ÕÖ-ð3_>`VÞ­'La7»ýÍúò?ªY×ÜCÑG,¬Cú_–S%­sõ©XzkÌVо¾Â«ÁÐŒÏé¯c*wöš8}[Ó\c+¯¢èZ¦~-æPðáOnº Úñp¡{ÇÐ/'lßkOJÆ÷¨““†”Z¯ûݺ ŸžWÉ@AGGööêðW¿’6ÎeǰÚo]3Ç¡ÄüÒn–6nñÑá¦w’~çË[_l¥ˆ7³žTðÑï·ë%Ÿ"rÌ|Oñ£ÏìØOÃIoûÕLgñ7ëüLoí)>çÓ1%­L(hÎýžKwi_ßß®çP¢oÇ ¡¾ßÝ„w?œ‡ôq'zß©í ro¶#Äj…?ø±’z ]òìÑ#mÿŸ… ==ëK¤ë¹æ7¬ÛÍ1‰Úó`FkVêõ)U÷á_ÇG¨¸ß­Ó£—e“Ü1YjEƒs»ËShj“I5'iã¾¹ ¼›"÷PÈÉýç(dÚ'ŸM…´ë\ú_5Ö¿ØOQ#‡Žzú¥/…Þñ7©›?I{<›YÃóT®O‘ñygUºhD!K×5‰h »Ûî­ñÝ(b·>WÞ+ (Ô6½Oû§›´q½ƒ>Wšwƒ"·¼ü¹;…– <Ôt‡ºž ý×~Wò»ÿjú•׫ÈÐýúœ~a]°/¶k˜¹®,¹=ïV¤¬‹žÒæmŒz¯ê4üºNû_ëýÇþ±¸:^èÁ>%öQãªü®´(¥E2¶–ñ«î7}ùñ©ƒ¡ÿév¶=c»o§XÛU¥³©zu½®ægÕx›ðÃUCÏSÌ¢@ߤjýpnÞƒëÕPãÔt›‹š×Ó¨¦âææm°#EÕà ⛑ã8ÅLi´aT¾eÿû¸Q{ ž:£ú×BÏnhßœ¡¸Ú [§ÆU¸ýkô_ã55ã×¼~Y§ý¯ë¤Ø_úç~wÞâ¯×õï×~.ŸÁ»^íÚ¡Ö' ¿2y±]C2|Þx´í:5ñ—:Óþç8Ô„_Ö¥¿õK‰„?û#²ýüÉÜÿ»õ4õ!6Ë£¦ãF‡Ç¯Ìter¬‘øüKZ§.æJöÏng«QÔÆuK«Ví¼snï¡=Ôõ{¨Ýñíƒ*Ql®šŸ²«~VÏéîß ŽWýV!';ëŽø/£¸³[ñJŽ^©kÓAõ»„>_9ËU2˜ö)=%D­¯å×nÈþ´‘°îâ¸qÍöùPôÒçgôwT»zÈ=ÍFªuîêöüܵonŠxµgJN54b¡cÉÍ‹M)FÿÅþZŸÞÕr#_½S‹ŠØÐ­p‰-)Æ#ªÌ²·j}D×±·®]ï²CÅ-~Ý©p@Ũì=Qý}×_ÆF­8È~]…æè¿ÿÞz5¾V÷tká¯U?mD’ѵ×Qôá95žy©u¶âP"%|* Ò}òPû×z !?ËLÔøk«^ç?Æ©ûýÓIõ¿Œ;Ôý2ž0&}dÉô‘¥HÿKý ÝãB'Rý“‘ŸòÞ¬x$éóé•j©Ö¹ ùøãG­75öµK€Q% NšeZˆÃz•·W³…õ0ÿèפÈ_Þÿú_nÿn†££Ó­~OAìWÇ»°¼hçOS)äù~]9µ^nÂã&iOT]ÞË€ª ®‚B§TŠöÛ­êžÕ-–½ÏyõùqºÖÝcÏrSø.]{Uw;p]µu6fŽ—!Có 3Lò§°âæ7»ÎPý¶¾3kÜhY H½‹Ê ºat‚‚¶WX`µXõO¦[œúMÕ1Šº:½ŽlÜ‘B'7±ºo«úÜÖÌÔãužúuAå×’×ÞöÒǃBÒ~üAû½ïwë*¸Tå]°)%ûÙaG!^{|[Nmñ>žóÅ ïOÜN Õݬš•ïG!ñ'WÝ+®§ñg=Jþóüÿ¥þvfÜíš§ÌÞ xE)Umom-Nãg”©yJÛ_÷ï®Ó`÷ñ×ãIí)ùÝØØI½"H_B¿ó‡¹&ÎG<õèûá %.˜Ðt¿çòý£žŠ&Î;ãS3㣓’Œ_.­”‡|þ‡þ+oGvùð›6”œß½f‡¾äñ¯ãZU\RÛ‰[ÓQâÜ]ƒSjý5¾@çýüðíß(ñûÇS>UÞ‘i]}¥nÚïÿ÷Ú<6]2>m;úÖ„‚÷ùQÙJw}[ÊÅZ+:SÊGëQ[gnžqïŒ_MÜïÖipúãïSªûÒîKýu[{¼¼¦•ó¬šñº-ñ6š®o´?5J{¼ãG&Í+ט]š¹Ò¼4ÕóÚ=9ß]Mœcà‚˜…]÷RÒ1Ãõñ¤;8\ºjÇw:ÛŸËxAJ²:×fùÜ1¤Û0ÎèûPíëæÜ§Ø¨›²+%WbÑ(oÆç™ÙÚåÛÖiûõœŽ:Mÿìr’¶LÙëÄwÒê—7Ñpó׸¬mÖ6kûß³¥àæ÷l¿ºe\/ÞËöèv)òm˜k½—•¶^¥_ëNGU©O‰ÕÎ]Þw¥6ù¶,3²sMm¾:±âEJ=Šó,Q1®¹ ù6­é2Úž6nã×.Ç›ZSüøû§ ¸AÞ  ¤­©?¹ý¾aÓfŠ_Ùo¡Ã·ûäsÏêdßô¿Yï?®fŠiýo›2£s¡›¶0?øâüVÚqßz}À‚€Ý£(vWÕ¥‡j¶¦ÀÖK7Üþ7ý þáµúênQìþðú)õÞP`s›;.hŸG녋燜"Ã’»SV˜½$}WÿryÓ§i÷¼ÙlH±U7†­émO±Ýƒw××®s¶0_zí’”8vÌñsQÈóð×ùS¦kç}úucËÎì ¥„î…kñ“m)`ÓŠ”ÖiÚãù¶l6Ùd7%öNiQ¡Ìvò]× ÕÕ͵ϡsÿ—_+S|žzOWzN~Ü­‹ÒöKÌ­’ã¶Ý JX·z~Gò];¬Ä­ ÚuUƒjÍÛtè`~ŠkÒ¸v ³¾ä/ìŒʵÇKrH=Þù2Å|99ßò!é«?¾óJ;ï@÷0÷»#‡nSœI¶¥†ñß(ðë벿ýÍ<Ü÷A ü²U¢˜íoì6¯¾IúEfÏ/Ó~ÏÒÅøæ™{ã Å>Þ¸|­MÒµ¼´Èè¬vœ¥þÒzßï%ßQ|×·W}­È×&q—ùií|Ø—;tžÃ(þìõˆ§¿RÀ±,Nhë%éî…Víôþ ųùCG¤ÿâÅÖyöj¿Wêc’ú4w®B±wNìtšø™tÚ–¼ì¥=^Úó„ˆû)¾j£–ƒ;V ›ñ#ÉtV n‘ÞuZ!¨Ó0Õ׬­ÃzŠΖ h¡Ö{c™·e5?ÑïâøÅF&QÔ$3÷SЯ·ýÔäá\]ÿ뺭>wôEÕŒxãZNgл¤}ïÉÔ8-ÝâšKm¾G1./ÖiªúBF|š|£©Šíí^1»ES¿B]Õ|.ÿÙ¹VUµ¿©ï½vm&ÚÚPÔ§µF¯s@»Ý{·$‡Z>(Íx¡{ÁmmÖv§ã U·ÓQ)+ïu=Ö²ØæøÈÆ]`LÝ»¦jpß#GfWQõaƒ{8—µá ÅøÏ<0aâ˜Ìýå·¤†6Rý,!>F¥L6ö£è³vo?ÆC;ä¿vOû!êñåÍei~ûKÆõó¾¢uó¨qºµ¥Ö›]Q¯‡¾Ö”Ÿ™6+—þ¯Æ¹è}ýÊš~Qu/õš_ðoß‚ —¾·ùì®®ëõ´a}¿íêz;¨Ê½w;¼&Ã1‡5LÔóÕ¥4{¼7FÍËÕßÔzÈ [Š7'º°­ê¿rsì±{Žuæ< ¯øäÛ‰K)vÕ´Û5¶gŽ» O›öŸ_žË¼•7aËÇþß(ªzß²¯«ù¡îWö†<®•9¾š"+ö1|z؇ ùƶڙ[¯ó`£:m©úë"nî¿*§E¿wߨª‡š‡æQÒ4ÂÌC#‹ðµœÑyau2ÔùTýè)užÔù~1ÅAÍë Ùó­åèWµÉ00û«‹Ô8K}·­Ê-RýÁå³§&~-CÑ?ÇçØ´Fµ_›]—£w«ùº!]=žU­AыώÏÑEÕO Xûþs õ<‚í|Î:bòÞÞœ{¥úûÏ7noPõŽƒŸŒ;i:l* œ9m”z_ÇO¾e»8õ…ÏÞö\y =xTÕmÆQÕ¯œg`¡ŽU:ïåÞѪŸÛaà­ç« ªõÿãç™=µ,E¼û¸¬èju^Þ^ÜíÚÍ‚j¼mü˜ü»-†”§ ç§…ÔñÜ‚zÆ>QõSãëžðØ5ŽÂC‚;”©ªÞ'ޝYt¤êó&|p-gòÐ…t˶Å=ŠWëÕ{V p ÖÉ'·Å…?;“¾ðáŽÇ:©º³n ·¬ÖlTýȉíµíÿ  é‹l¼a¤šWé–j>ô…êGO¸À§Ž}q“‚Zô~Ýëµúœq{Úa¢n°šGŸ˜§A Ù¸Ê¤oîb²ÿ¨š?ì>ÏmË“fjmRΓÓ”ZNÞez—›Ð_ßò‰¬Ûðdoå ç^ÄöªLõ.;©ÚÁ{Ö•©«ªº·I§>Œ¾v ×¹zð‚úû®ÃÞxoÿ¤êá&ù÷è1sL~ò/ÙôQ‘ªßØõÆá‡ §¨þº¤â6./Ï$¿¨R'×\Tíå>¤ï›ª?+¡vðt¾è<\œ×/EÓru:¬u/5Ÿ;œR±!§çb­Î¨Ï×Ê»MÍT>JhqºkßTI!#{œØð¨gæ~KýÁS»•;$x;ؤZß¡àÜÅL/7Uíç–Óêa' NºtÏb{ç´y9Y}ž¸YænšÏYÅÙÜ{\«ôm *v·_éíªŽ{÷Ã×›¯UŸ ûÞkÕp_eœ×]½¾®©osç¿ õ+’f¼¹ú`=ÔïÞDU7Çù^þu>¦j¾r£°ÏÎÅÏPPÖë˜ê·t+âæ›^W¹A¹’ãç墠À´eVÄA;Gtüöòãé€ÅÕì)¾bÜÙØK‚Z%[¦ÿÍz.ëëw’ý/Rì·G¥ÞÍõ €·á]-§hë<êu6ø¿KqçíìÍÏNºZF3ºî×Ö« ÊåyÇ»!Ål,Üg`*éf—÷&V;N_¦KÄcÿ¶ßÓ-Y2!ˆ´Øl¿Ö#]Bößñ’c7ôpÒˆtîW6÷ÑΗpYhªß3>™’Õÿ6~U,ùù–l¶[{ãçúaeÌJÊÑ lY»Òmqà^R[÷Í%Î8{“ͳ2âüçõÔ’t›¬6ÑÆ¹„Y´8ïLI.¦Ž½Òšt%Û¬ íÑvlò}DùŒï}3ÇÆø’_)§Î~ÚëŽ ÷2ù>Ÿõ£ø+ÆvVb yÞ¿nrkv+.+.+.«NCV\V\V\V†¬¸¬¸¬8ãüúòYqYqYqYu²¶YÛ¬íïo)ÄéRÕ6õÜ(öÖèy7Õ#ïÂÉGçïÓ®ãrÉë¶'òPìÍŠÏʺï%ï2>Ô¯¹vtPÒ¦65(v¬0šíùN¶X·¤Žv=Í»·ÜóöÿJ±÷/¬t¸ò,ã~ÛÌóN;n)¤J;7Ù¤-ÅÚër}<ùÌço¯´vÔij'å* Ò“áÏqîº:¾Îb„v¾dp›E› <{H†õó_+k ]ûÂkâ?´ÿ?/äy!5äçé^þøI×ïXöò+K&CöA)§:ž ݨÓ_£ÏkFŸsÈÇ‚;SìE‡äÍ/H×ûQÕ‰+´ãÍte.à@Qu V•›­§P‡Q‡v¦Fj_JìŽ= ¨ÃV«+U°§àÎ=}:ÖÖª±?{úý2\¾ö|eß·¤¯»ð¶5µoÐÜãŸW 'ƒñ­»}O·¡ ãÁ§¯Gjë´ûL®©ï[èÅuo`;|h¯lŸüñˆöuó±\ŸsÆå׋O½·ŽSð’y»¶Ú¼ý¿oùŽ.÷½(®Ýó;G+§PðjïÍ«Vj¼‰|¦GxγnFqÉcÜ—RðŠ«f+ÿfýŽ*×ò¼Û»FߓƯGå;£®·ÑÆõùR¬?Å4˜¾°ãÃ"¤_¹Ûî±±v½Y}«§Ñ=ß®£˜–¥Æ9—qü/~ú³ÁÚ×£E1ÿä®qÓ!­²% ÒmÎUTìÓ¾¾ú=ž«žiL1ËÆé’M^îyp‹íTßÃ?~2…=üñ“JÑÝþ¨û‹ê>¹Á)5Ê=d`ŸáçQÂ/ëù¦<šò@Í+õ õê?œôŠê+ËÜŸhuºN·¾{3o»ý¸iuštk«ä1/¢æñ„¤¹_ݯ?ï’nÓ‡ SºGÊ`Uo"èÆË³‘õÔx)=«wµE‰fd0J:—î4]ïܪc^i™ï+rÎÙnWµ%X¾ð«™¨êE×îkÖnµ:^q×4CÊ2ýñ5"ܪEJÁE™ã3Ékhóè;ëìÈоÑå’®jÜCÈœ¹•7Uëÿø®)1ñ©QÅøf¿´Ã[]Gý:OøöóO)ñ_çåPØõg…Ögú1yÇõ±{`3‘ #&‹bµ2?_H7ÙhgƯ:¯;ž*—ñK ?ÊiWóŒÌNoç›Wý½Œ[y‚c(zßω/êyo¿Ûåb_x¾Ë¹´›â[Ç5ÿ¦æ#û[_1Þe”¹ŽEnšÇî¥Røéföý^eîwx‘kb­jYd¶“¹Ï7}Mq®Gã·&¿QûöƒÜ¼ãgõøþ\ß(¡­Ý|×j]&ŸWëN^Uë†ü|yFd¼?¾RêqÏNl–ßzwÛ›ËóQl·Üg½³«×½î!»ëÍ-ÕíWŸç^_• ‰–¯»vVó¥õÃ*~›ã¨Ö_÷»’¯öζM)¾æ´wÖEU»v½¹éÈ0.zÈñ¦U)Þjèúôr/Õyµ6&_csÕž'Ͻu+Öœ"/ˆ¥}Œ„q‚ÿö: u+xeïBîGÇ›5®Æ¡¹ß­vÆk¤ªó¤Á>ßñ¶‘tóǧªñuWwx&¥ø¢â~·®BO—°ZÓÍ[Kšø÷Sçï¯õž]\îÓ¼)]ðuÍÝIjÙž?Ö»WÇK(woqÞ#dß;{øGv0sÿyÑûÀÔ85.íß^Wáwã >Èø¦Y޼l¯Òî|jœë¥Á{çVïÿG%|[T'/ýºØÛóÕyuqx´o?ùÐÚ»o¥¦{ÉçÛÊ/“ÜT û§vó›'©uyΖ"ߢ»v󵾦ý[KÇ«3ÔxχGLƆV ßzµ®¤Ø:ª¸{ž%ÓU{>öâsÿvÓÈ7LølÉ¥òÜ)‰;;äWóün?ð¤D™¥äÛiŒy©Ös¸‘cn5±G}Nº,i1öÅî%”’:ô¶®d*¹ÿ±Õ|/Ð þ±°£%^=#–ÈRä¶=§Ã]à Mœo¾Ÿ3)1,¥ÏRgö뺩êx¿YÏÁw÷µ1ƒ›æ¦¤–;ôÞJž;{œ8½Å[ç0¿ß×øó”xÂÛÙÆŠ‚OØ•Úâ¤ygá·;¯Ù*J®;·_‹Ç¤ï~±ô`í<‡»“?½º“ϲ<=»g|ï‹›ù}ØnMœýëBPÊŸëÉÜîód]ÅÛÚûõ®5ÌénAJò·¸:” ýëê>e;nÕÄ;ùtÞððVæz¦Ô!Ò~O³ê·r«õŠ?fúbmú-ò±¬CÐkíu‘Oí g.¶ ¥Äza§FV&ÿÚ<ž½¤mçÓH§fäÇß –qòïòsB©öu+}¼EÿRÏ(¡ó¨ÒÃB&ϽŽ-WjŸ‡sجkß‚)uÝÕv[ï;’S1ý oùšhÛ9Õ,`ΑTzÜ÷Ǽ~tí_¿ÏeÆ9Ú¼Y¾Cÿ‰Í)4ÚÏl9¸øñ'mÜèYïJWM[Õ²Y½¸]¾{2úB…{Ú¸‡£ÒVýDi•cgoø†n»ØÅkü8MœÇšƒžw£ä:¼VÇ7 ¯0ß y¦h×'òtÍ»ç|Õ”<ûζý±wÉcv‘ïÇhÛÏ-Â:›ÿ€e”lÌå~šñ~é}<§™¶Þ„ûâé¹tüJÉžãúg/Hž“²Ù›ÜÑÖÃó¨9õÞ7»ƒ”<äú÷o>×tßNÆ×6þ—µÍÚfmÿ{¶4Ôç]P¹u”Üyˆ{Lߣd?þë[ÿì¹ÿãâ~·®Â?=. ZËþ‰Í(ùh¥ZÜ;ˆüQé?.îß]WáÿUœ~â纬()Ü=x}Rºw2ùv‘S—êŸGA;upQýhAû=ä0*FQ?V1iyö?&Îû—uøcþ¨»H¡oü¼û‰û§«úݸ߭ÓðOóù¶½Z'ƒZW=Üùêû»çQ”cž÷-¿—û‰K˜ÿ6ÿ‡ØJZ¢Ò¾<çÕ:ˆŽï#-JY.þ‰Kü`ÞÌ{K :¶ój…“jüû®O·«2â?&.érÿéï(`fðÊ3zÕ¯êÚàhߨÿ˜¸ß®«ðK8ÔìHÓ…v²Òê¸óQ5ïÖi_ž^¶‰{þcââ;Þ,^w¦9é}?­¯SÔ|G7=›Ëd´æ{Á?=î>é·ã~·NÃ?=îwë%üÓã‚·¾2o|£8Å\vn÷léCòß|à»ëíºtÿð¸¬mÖ6kûß³¥ ió»Õ ÿ׸ÒYX¨’çªÿ¸¸ß®¿ðûí: ÿð¸ß®—ðO;W(f+¿DQ9ì ß[ÓBú·+v»ÅߌügÆQhû1oÛ+ç#?ß2ôkx$ã÷?&Î£ÏøR¿™·Ã–+­E1sÃ{füþÇÄýÓû×~7î·ë*üÃãü>lè•W½n¡—ýM>‡Pô™]úÉßOþÇÄE¬xÖÊcPЉr8¿¿ƒmæ~×n—Útòÿø÷»uþéq1'|-NúÍÓ¾´(£åQ·ù³(°g™c/®këKÿîñ‚Ìì©e½„b^s)¿~'žÙÔÁeíxsýëó—Ë-ÞM±Ã«{‘m Žý,Ÿ¶Ž|`ÃcynlE &³ÓÚ-N$¿±ûúö11×ÄÜÑ¿‰´™Iñ[LãWkCeûn¨è°bBŽr+(þà4ÃËl«È?Æ»f»$íü„@G‡‚õŠ£øèë–KkÕ!?ýr‹ä~ݵqƒë¥P¼Ç+önÖlòßR ø;‹©Úç; OYã~y(öVÉy å¢À·¤Ÿÿf]ß;w7J ØÛ&É…î §À¤Qf=VhÇ‘ÿöñÝh:)bíÜoñÊ(05_ ggÿæxúºÏ§Ø›kªì*ø8ãxË vÜA7°Ðþ]ûWR¼QÕò‹ÓJ“¿ÙéõÏhã¸û«Ó›ûQœë¾Õ#òº’/ù!µÔñ¶m³·üæÌÛ:ëäy•¦QLà¶ÚÝ,UÆð¡uêÝß®æÿšO9QíEæ1J˜=*s> ÷,ç²Óª:ÞõâgoyD†ìú½·Š¨:qþc=†Ž²RõïÂÚô);$ð;Eó½ý&E­k0¼PXÄX'?ß³8ϸfdðØlï›ÚPoþ˜Æ;ªù¡aÔÎå6ˆ¢Kt´}úU=î G?ÝS둇¼}êëÞyŠ®|ìÎׇjýö󥛔əy;tÈ£»[òûSôš`3ä&ªýFŒZQë´:¾]|躯s)ÖóšËýH5WcíësRÕí.d× woûWЫú™ºjÝ«t*®æ-éغ®œb;œëkªWóõÙZœXÔ¹˜z½ÔZòݤ76Z'm8®ê¯ê FV‰ZõFš]zðù Åì~ÖdÂz5Ö³­Iúý}j~rdˆCÇ3ýSÔ¶î‹ã`ùY½¿<°Uq¶š”iúŠ VºÞÏAÛUÇÓëÕPã"×>›c3ЖbÌÍ÷x–¼¨âv«”ÝiwæíˆÍ ´,H†VïÏ~¤æµ¹¿ðt¼ÐÄ\Å%äè2tÝm2Ô*8Zõ;ì™Ý?Ÿª×ráÃî©­ÈgÔÓˆ=ËUœmáZ {=Wç­ëçŽE·™’!ñk½Ý‚Õy6­ÛÐj^sð§Ð‰ý¦¼¡˜²¯_/TóÕtI-K5è¤ê'Î(wÛøE·XÎNõw¶.˜útˆª_R¼PÉ‹K‘¡×ãw¶ƒ2ëQ|s¹ve£ ×Çꎳz=¬-¹©ôb5Þ)¾VÛn‰ã·QDÁ¤}y>©çý`ûŽÞ^iÝþ×q±6ƒË6NŸN‡\ËKÍ£tò80mýõ>{Ü6xúpŠ07ZD«y³ŽÝvœvAÕ7Ml_î‰%kHú¢~VïW·¤/%Ö7VŸO‰fƒkú=¯IúÂ#,*·pUqŸcC¶D'þï÷»qm/6ö4#®ñyÓýT\Ú· ‡Õù—t1íkŸÍÈ¿îÒ§õï¨ú¨n5¢+nË­êJ$Ýzô4å 'ùï\ÿëUÕÎnKW𒦯E%Ù½ÍÖìkò¯õýH~Sõùá–§þØê¡êñ&wûéÅÌÍäg´²PÁ¦j|˜‹ïK£ùÕºcI>œN&¿è"3uö™óòÈÕÙõ|ˆ¬[ö»uþÝqM?> òúL!CjGSç›Ë }ÆÔ8Ä„æŸf7{@!#r^mc£êÚ¸Ì,qßl¶Š ù~Ùæî) ú^·éÎrj^¯ËåKɽTÝÒ„àiß6§àì[;wÿb¢â®¸ú¯lúâF¾IâœË1OÜ-5ÕåìÎéÓrBý ×MÓÛ ¡àrÕžÊ1jÞ¶ËýÝž»»LRq¯÷Ä¿©HÁƇv* òˆËµqß”VuLé2—â744}rŠªm¼¡íWÑŸI~ÜwvoŠ›½ê¶«ÅHò÷oz'd³öû¿.=èr‹äR·¾Jköí)Ó¤€Yšöx»m6¹]ˆbƒÚ޵®ãO¦j­nû7ãósì}¬ÅÝé5<QÀ6·W¦Úï-.1K>˜Ý¬MIÙ]¹W»évŠ3SC´ó]–éG­°^CIcâ\ʘ(ðÝÕý•æk븤|óšû27%å(>cøÃò¤Ûy?ï=m]{çØ‚¶¦_2ί‡kå—#ðmPÛyE^j·!lndŸþ”ÔÝ*²Ê®:¤«þ¤xï¹´íç>êÑåú§(þu©îƒÚ#Ÿs)Ù;ÙwÔÆµf-§=Jñon~}`z™|o=Twz1M\@óå:6K¤„AŸäœ¹ü¦ä¾w=_NmÜ©Ç=¶¬ªC ­Ë<¾¹‹üfÛæ9Xf¯&.ðfý®ÒÇRBÅUܾÑ`ò Øÿ¼v]×Ô2ÞOIGÛ»´~D~+FM/²PÛ~®…Æn]Õk%<\èüˆBä³¥q«ÈVZ¿vÿ)qmXUJ®rgYPÙ(ò+^©fS—9Ú¸ávÍs  äÝßè‚1ù ÐbË­ë»N·˜qœ’{6X7Д|‡g_y!ÇCMœON÷¶é#ã(± ÿ8§B!ò?\.ƼžvÞ¶O¿“=*Û, ÄºG.ÜfKþÙŸæùšæª‰ó>h™Û¯-U™w®ãsjÇ7¬ýoÏ*¸”";NšTvrk¹çÁã›Ã5qÁÑs¾(î´¬;wÚ8 –åÌË]ÖÖ÷,}¡j­¹¸nD£äñ¤_4yúŽjÚzîÞvV}ΠØJþáj´¢P£‰ß÷ÔÓ>>ßEÖOÝÖ¢XþäÒò¼òáÑ—î#´ÏcÄ·­éÅ™½~üy ¬µ«ÂдÙÚv¾7'y&ûD±“®¿ ¯ýŠoÙ÷™U³¶öxÉ—Ï?ëy‰bWž¸”ã[é]¿PØn¥&.(¨Xç.áuÈÐ¥¯OAWÒ¥zyq¶®º~nýŸ,›Pl¯–{–Õ¸Eº¶KB6ÎTã Bûï+Û¦´^׬¦]ÑŽ1‹5³;£Æ¡DY/vBdÖg!×7N¯W[{PôØšuŽRë‡Gn?°á–a‹jǸÃûF¯½@«^.=Zýýˆˆ^_õͼíÙµ}½ÅÑ)zM‰*玫qnûï7ÙÒ³¹:’>Å>C‘ï:ûæZ¥Æµ^Ø'5þ$x²OÚÑ¢‡§%ߣžï¼•†§ãÕ82÷ôÛ5SÍFSÜ.›ÂÇ¿ªõæu¦Åv\j§Ž'mZx0š óºö®áö4sHÿúá!êü[&ahÌ2Š«fÌ^3U"8ÇŒ‹»ž©þÏÀæSú:ô(H1c‡\,ü4sj [ö y±§”yÛcC­ŠvC®Qlû+m÷LP/ìLÛ{mÆVí’ëP‘I-&’aàü¶;W«ú ¡ËÕÊ_f¡Šk6ß$’òSÌÄ3¾y,r¨ã±A KŒVãH|gzæ®Pþruê5¼ˆjÿ0³¥}Lf·PÏwËw«\‹ŸSL¶5ɉ½Õ8<ïWwßlÛ:^ÇÜ¢ë÷’5ãhË­ÕãóîÔsÉð05>1¢îÁüE·¢èfZR²?ä[ðáó»gÕñƒ×9Û|/ýŠb_wK¶±RëÐ{gŸýnazJæíðô1ã¾ÔëDÑÛ’+yUíì­?°—?PçOx¡Æö9I†¼9Ë{¬ITç• sø2K÷ 9æØ‘Àª;øÔµn…D”žzÔifæmÿ"E{·+¿‚ Çãž°ëjÜRpÓÌRãt ?Ok ò“AΫ׺ƒšgübsêù4˜G÷ýÃÍÏùó’açB‡ˆ]jœfðÕ #ZVË­Ž×ªŒkäÖ¶d(ãó¢÷ƒÌý Ï?™¬¸Ô”"û„O*×8sÜYecÜìŽOô»õ+þü¡È?Ö9ÌÜêºDêxúVÛÿ¶EÉø5Skª×ïҞȋ•–ªñ] ‚ »?êM‘;úØÐf`æþ³š|ŸxBÕ‹IY8ðÑÒ1näêaè_­ïç1ÔsUÀdu¤˜Ö)ò¾vEr_'Îv¹«ÞïÖK®©óêwë/$wä’Ó|#ù6ªg9óævõ9xoÖ¶Õ¤>ÇRò\é›{˜ž<Ö{Ûp“zÝÝ$¸8äTõ>žtüÒ=¬Ñº9HdÜgûÌýW^¯Ûã|Ó¶s8z„n5*Û³Ú¥W™ûÆ;ù_>£ÚýIw‡YFoÓMçÊuÜG¨û¹ìüáHî45þêÉ‹I:ß%ûü½«ZÔQã4ϽŠ8f¦³ŠËqrÎË×GèfùEåÝz˜eî¿°„Ù—RŸŸª5¯8¥ªy9^,}¬Wy! èÝAÔxà‡—®Œ©>÷&ù¼]ö±Æ¢‰™ûí¯îü²kâju¼ß¬ÓÒA‹7ë|I_ñþñÞ Tû]‹ìlRN/L-¼cP/ò90¨€Å•Ïn˜vÏ÷f€ªs“²aí¤Ð’ä{§»ÑÜæê|»“Ö P÷Ü žo×¼ŒÈ·PûFû ©ç»ªe™K{ÔçFÊië#s«w¡@ãœ/Ù0õ¹cï–Ô&¢º/þÐt|ñÁ]¦’_Ù;=®ŸQÏ÷fÙq¾A+Ôë âÎW÷YE oÚŽ,õ"ˆ¼ãF­˜Ÿùú«Ï‰òM·N©ïF Î%£ž,lO^®lÉwí÷Œ}ÑK̤o‡]-¼Ÿg|ßüRo‡«¶”®Ù¯[kÊPBÕµÞ]GÙg<ïã]§,Ȧ‰ œñèƒSàJ87.¥ò¸Käý|ÍìûGµó4îÙd[i]âcîv[T±(…õí1p¨ÔÄÝ<Ü0ÙâSIJ~¿Žõ(B:Ë:NæE‡hâöå0¤·ô£Ä3•ÆÌÊGÁÛ; ̨_ãp¦Òœ¶û)iH¯ÓWŒGSP•ˆðûn4qwc­¦<©r–ßN¹Xê° _³="[oMœ>¹î²¦9(6Ýéj¶8S uÎV Ý©‰ N*½dˆåJÈ¿c_”ŽÜòï¾X[À¿ÈBLj)o)Á}¯É…2+É7²©~ESm}¸ ¿[=Ý'ÃaØÙˆtçúZnÑÖ›Ó{¼7™}ÅW{Rês³Ãä›8¾Iÿ†s5q®VÕÇë}éáú–Ï’"È¥ïçØ3§ã4qªí/ègñÒÚ¼š”~® ÝúzáÌ\m1§Å÷Úè²SêK·ZϽú’£Ù­½æ´uМ.léa|;=J/}òû¾Æt«jý¯cgiã¾T³;Dêdß8sñ9rp¼Ô¿Û MœWœiÝܽ”ØœÝûr`ôºû ]]m;¯ýË\jÌ5¢äÆ|ÍIJä1i|%¿û4qvµB’–§¤MÛúM1zM¾5­cfN®ª‰ó¦ÉS›Å8RâÓäˆ[çšf|ŸÉÙøÙ*íx8¯!}ú³ÞC)©õÕî.ž&Ÿ»éKÊe/úk\Ö6k›µýïÙRp3–™LI—–n?næ^y¼˜‹v^¥îõ\~—VSJ6Y¢^ê@²/w¼ûôâÚy|Á3¢û—nEIÞ¬çDãnd÷na‡1ùÇj₆Q“ѯÓ3¾ÿ®µX>yÙ‰·6ù«6nñ‘¾³Ž £ä† Þ{}Œì°œn£‰ó+XéÔä/Ó)eðÍ=óç£ûe ”gß´um|7ŸØ;`• ”]…zÅ5­Bcz ©­oäk¾1_7—s”ì=}kïjûÈyÿ}·¹Wµß‹|M>“ñK)¾õm}ëÛ‘Ã,Ïò¿š8ýë\‹JÝ9OIfà ߥ“›é®­«êÿò}Êãv9)ù¸SȧA ɱrÞ­ƒÜ¶kâÂvmOIi~†¬ÊZw=ýî”y? Âßôï†$/uÝB”p$~LÛòä¸!ûþSæÚvùݺ õ›%nIñãm:mÖ ‡ª¥¸ÃmgØÌët0`%4i<£wåä`wkCi·Úv¹ºíK«q”úíмt÷b™r]h¿ïèz¿ô9`:ƒ’Û=•'Ûø’ƒ_Tã½\;ßAß&e}s¾ž’s±AÝê4¦»Ï{U90Ydçä}ümJj³ ~OóÚt¯?[Pªœ¶ŸP¿4oçóƒîQRH¥oÂóÓ½é fvÉ÷ÕûÑx©áëˆÕª½¬¬W¿Q+Š–ã}ØlµPðœWª«ë»àm¦4-eB‘#xTrW×-Á•w¿Üg­æçèn˜öî~ êš:VpSëné——·œ;ZõÇ]wœxlxÔ᜶"ó¹©ó¯DîUƒV¨ã]²~ü“3åe}ûYˆzÝîØ3©öZ YdÓgTNU¯Õ©æÀÂǪ×#þ¶Ù‚Ú×úPxÕ—f«q6÷mç¬?a»Oo£m-6žÂÚ7KªóEÍS¾ë>aþû¥Uܲ˶×í†PHq³lãÃŒ3÷;'†7Ÿ¶^Õ¹Mþœš=M¡KV–m·[Í t¬ºíäÔŪŸ;éÆÜÜgr’¾|äVý5Ïõ~üÇãK‹ª÷[R³×5!ý½œý§¬PÏ×qîà9Bâ3o'~Xî¶ñðE :b—•­¯:žwëýª WqÛ–Çxë3®ßÏŒoµ×Ú?s¿Ã§¹†6ú¦ÞGÓ}Ÿ:D!ßúnêªÖUpºþ¹9ÌNØäüÑη.…ëÖbÂU‡ÛéÈØ+c£Õñã¹1÷í«^~°»²&.äBÜË3® )¦Éæ^o.F‘¯·Ü»Šö{_èÂ{õËžJ1ÙÝûÒŠ| ÔtB§ýþ:ʵIšÑIŠÉ[Ù#ÇÎéä[¿U‘ÚúDMœgó!!–z'J¬ïsmÌ¡Œï ¦Q“õÚu_Ü'½&g³XЏbõœû=)xù†¡-Í×Äy¸’¸tyDÆçÛ‹ Mfv¤/é•vµ§v}½ß®Ó0¯Õ1·cÍ)ábŸUÖ«7“~ºÓåAµßÿƒÇwìéÓŠmµ£P7Ÿ»äç6²U‘yÚùºÁë»5Ú9sÅÐèï{‹´¢€¹gOÚÓ^}{nÓeIÆ÷Ÿ×9N=°Cå+Ìxë6A{¼÷ë<|:‚bÊž,wM'ÿ˜•‘›rMÔÆ-´´:d•bNvðøâzüýÎ[è kæ1gm³¶YÛÿž- ›1¾T­#]³h´Ã¹)hÙŠyÙÚÔÄéå€Ô²}ZSôþo>ß?OÁůU{œ®]§-hêøØÆSSôlïϾïNúÏëÖ:ºN<ð >ƒV’aCž\ã³w#]Žc6]Ï´Ðo\¨K½ªRô­NîV}HŸ¹¿ü6M\èô·…^¥ w¯¶tI¥ðCë ÖÏø†®‰±v¶½Ç3¾w”5¶ª]ˆÂ_Ùk®u¸Ðþ–múXt¤ Û=lª|£ðW]‹Ûë¢[ôÈ|Ù]Ò7NžR­ Eöï|.b¤v=ýЉŖNñëKAcwº’úåŒÚvàž°¼Qí»£6®ä¥©yGO¤ø±9ïn™]ƒôW«Êä)9þ&®Ø‰KºP|÷^ 8Aú؃Jjûá|Ë,4X¼’q¼Ù?.ËKúK±ÃÃï”þ›ã]=?×{Š?h>UËŒã™Û vÙÞY{¾œÏóèÒ²Iq%bL©[fz®â¶¾3Þì=Å•kšB‘¾M#&”œL¡í¶Y¬¸u]{¼Þݬz®¥Èl—ˆÇ)ôªqðèj±Ú¸ß­¿ÐÓfuìÃÚY¹M°ù(tw•™ÝÞhãg¦M NQþ*3  '—ª¾<|õ߯í ë³PT‹àbkZFSÈÒ—V¾ýµßgõgkß:³&E~2:ý¡¹…ŒÐ Y2TûýSÿò@øñ"̳¿º9˜BÖ¨¹êÓÕ¿ig«Œ(Êd|½*Ç,(¤ÍŠB»âÕuw¨y+—ÁË•ãûÅfcþe„[—³•Š5vqîÃ0ÞéëÍÝ¿ö¦˜ÎyC&¨qA7¤‡®ºº®Ô)~Ï/OA2<Ú¿llðìÌý!Rò j04óvÀ©Þç>vÊCÑö¯lê5VëP‡XµX¥ÖóßU€YŸO›NC›¨Çã6Ú¡&jÝœ¨“ãì^mLÑÕÆä.u]ëÑÀãé ‚õ´ž³ÜêRܧ*mƘ¨~8þ¯MovTãÙÂgnú²£ÉŠ·tRÉ˯TÜÛG¯Móªë¾°W&§ÛLkG1»_$ÔÙ®Ö}sÿ’«~…j¼HøRç>vwšP̺¶Ú-ηI>_Ìú§´º¦ÚݽäÜÞ/çÁÁ?ÞaއPwîÊ©Fj¼Tðù#v·¹B1Œn鬯Óù'mhùXµ{ð” Q×ÙLб©¸è Wס«6í[ €j—9æå§ŒN£hß&IeÔõ ¿õ‹«Ü_Ç éWÛvÅ›dˆ9ÏPý}æ~çÉ_Ç•*¨Î+Ã'o÷0§¨½%õ:s¿ËáErϬ§Lq“KØÉۅ»6\‘½“z¾.Ÿtk’§©ñ;±++”-AÙ½N¼|ë%½ÛÙèJ¸ŠÛ8xbH´Â¿Œ˜]»¸7â²ìÆëì+w«¸nùºÇËc± ÜÝcOʪ×#¢óüVFõú&F^9Sµ-E_Ϲ¯]”êŸð›Vñ[‹Vjü_h£–›V½"Ã&Ë®CT?’o­ûµÒ^VÇ›a})Ÿ\LÑ_–;e{¡ÆKú…¿nœ¬úqÂz½[^¼#Ew*´vÿ§ êxúÎ-òUëT…µ:vdzŽOûÀ»Ày52ªá:sÝŠŠx1Æ©²ªOáž^òõ§òêýc7½ Å–v)zµ£äf¶lHþhõ>ºõ`»o1ÝÁºñÂɪÔ­pûU ­eÞŽ¸×k¨Ÿ/Ž<ºÒéƒzÜ{íxZh¾êÚÉεá}24ÛQ·±z¿»%šžÔA­{;çÞíT‚‚W7ëת‘zúnÙÝpNÕÏ™·ã« Ÿ3*G} Yý±BÑ2MÕûuêþÃ=ÔxÖß®¿²ù²OF~¦«Ò¹¶Úï»ýæ¹rð9w´eê#‚‚l H9 Ü§ÌüÝÎûÔ¸ªxÓe½æÌªD>Í'ôÝû4ó{- jPKó‹Þc“üèck q7ýVn«ºŸ@ÑÍìÃU'7¦Ýs¯Yqé×ßGEo¦îwwÚ˲ªß7f„¯sñ1V¤¯YïÅéªôKòôâ3ÔçvÌÙ¬?_AA•¶žjõRõoêÌ*”™å©úãܪV°nL¡[Vµ+WR=¾]ÞÔX Îƒ¨u#¦v¥È£^g|RÔyî[xì›Uÿÿo×UÈÃt)¿ŽB8¦T6VçyÀ¬wšÝ6RÇ;q$ ßbO [¹qêZ'ÕoæÿÆæ^›Ôøß˜ÜiË:4éN!6•©\Fõ+ûÏ)JÓÔ8îèÊe¢ó\^N4Ý>mvæúXäÝáe¼‰£:¾áPü’i>SØìßú”Sû½S*XõQG7¬Ø9Ý};…¶<_§x¨ê·ôÛµçÓ'ÕN†Þ&OºŽ•–ok;“c*?øv»zµÅgõþu¶¼âx ­Œ9}ð‹…¼H’ße:€Šûݺ ö971ªz-m~ù8…ÄO»óežÖ}¿NCTz“íí3âjÆÍhº##®“ׯ`íº[¶sî³g'(9i­WAʤ?ÞbsË1š¸ë1‹Œº,¥”¡šúï«O:}ÏA×͵ãÃþíu¦{ÞoS/…RÊÖ™ØãúÒ7ùl^Z¯ý~è“}vÁóJQ⺅FÛvö&ßG—#<»^ÒÄyßë֡˳:”x~û;£3mÉ÷Gù„EÚu³} eNwr£„%Î'÷GžV·ÏÒÎsñvº||FÂQJ׿fˆßYò»2v]Û'ÞÚÇ7`”ÍØªµ)±õÞð~ý-Éϑﵱ‰&î®ÍÍüºv”ä÷ùE¥QÓI¿Ü1ÿjÚq–··¼¬}£h%/ލÕÇË‘t©ýÎ6ª›W{¼ß¬«à÷ý‚•í§RJÏå†u,Fþž¥£ Úq›w-O?žx –’‡ÝiÒûé.˜Œo´ Iç´täÄæ©”T&,"´~2éwV=t(—›6®Òþœ‡ $Ëb#7tæ¤/_ر·—vkç¼;›×;¾‡ŸìH¸SíéO•©ºà‘vœ Ó¥)Þ«ÂÌ)iJ>«o®“.ØþuÉz˵qVK•]kKI¦£žl¶Îø\¶øóAÓžµÍÚfmÿ{¶TóÝ>>º=Å/Z²çñƒQäíW}G§¿YTÜÍßmÙJèX$MWŽ|êõ:íê¦gÔÂÖv@—õ_wº[ýÄ äó8nóñ´aš¸¿£=Ê÷yDq'6µøTæküåáãŠ'I×¹a‹Óózl/ØÕ§tÆëq$ééØw>x¡Â›$í÷}U×2>¢xîÜ"âå@ò;<÷Ãê.ÓO˜ûâ×U7¯R|*Mª˜½&ÿÞÕ:,¸ ß¡¯ÒÔs¹ƒ+Å—jÓæøŽ3ä?îòêµ\;o6¨@ìF.m)®YwGç·“ÈÅÅRåwjPßÿDõ=,)>Oãøc—ë³/Í'تq(Á–a¥cʨù>A¥=ŪáO)jÙ˜ƒ'7©ëÈøm{ {¤^çóG|/(:°e[óñ³Õñ ÕÌVvR·uÇŠ6w])ú𢅲©ñGÁaa·w·Qã;t ÄÝßHÑ,[o7Rãä‚¿ïŸH=_Ãñºšîi¾€¢VÓ`™Wàw³UÓ©j|LøÍî›÷óãùüÀ@ÿÕUÕã¾Ò%9r‡z^6³»ëH†#ojGF¨ë%¿ª»^|•#óv˜û“{œStíýÇSºœQdzºÜ¿n+uRÖ~Eó­§ÈpøM˜é@Õ_忾Iž¶ÃÔx Ðs í›§h+£vרë>ÝÓw3z—Tã@ôëø4ªY˜b¶îòX馿×é'>-ö=IgÓ/6[×·æ%Š©5ñò[¨çPµFM^L=/ý•mbÁû]Ó¨ç–oÕ¸@ý†ÊÁÙ'ªëè 2å§®;3… £\œ¾R׫zÚ\ñaù½êöõ0—ãw¯PL¡ã×Vã,=gîù–¨æFZDttp.NQßbÃý7fîwóÀ1Àapæí¨jnÖÓs›StÝ诎ìÎÜïQ±k§œUÔñ#¬ÔKÜœ ‚5-_RGô˜Rèêž#{ÔývIjf›DÑköÎ]ÓKõ[x ¬{©pi¨#Ñ}‘—ÙRôòäƒyæ¨þœÀû| ý¢µÝéX­E·‹:šžªúOuŃVýJÁÞØäù°— ZÍ>Ú\½î…ç÷š9^/c*¿³ý@†"“æ¶Rõ*Ÿ?öøØEßÁ‡ùo~ˆ ègÖ.§âö¥^«±»‚:ž¨T2[(E?´ìaªöÇÏüf1ÏÌÂ+?µ m­Æ-:¾’ž½‹êsþÞsYÐxŠ8Yjû4u^>˜{lF`vÕ¿¿jß®}ñ)Ü:èó§Í™ëRÓý‰ß׌Qó¥ãÞ¦ì¾ud …ß)v»ÇÕŸéd]xò‡ìj¼^|³“A›ìR¸§eœåiÕ¿éØ¹óscOÕ_”8vé€m÷J“nÿË}Šªþ:wógk¾PõÇMìW56ãú®åç â¤êuý6ua¸¹ϕؾnáCÆ’ôEå‹ý Õ8#·äˉ“^Âø¦t³Ñ‡]'}ìÚ[f¨y¼nË‹Z´\ÕõHl§÷¸c=™ôÒG¼<£Î7·saµZÕVçsr•5‹|'Ÿ$Ÿ>Ûs PãAÝkëS'Lܼ~p™©×H×0æ‘ûRõº»/¬ëS¼ÁÌÛI'÷_šðüGÿW¯™ý÷A}“>±…®ªù«Ia¥zW´H ¿ëÂ+·WýÁ®o/?špTWNÚøìu›GþW“g·Pý¶nõÇÞÜ{^ÍÿO13Ø´kU Ö½9hU®³ºßä~+¾QïËø£»+Ÿ\t‡BçZZ£^ Š;òn]#gÕÿ—ÐÂmÔÀïÛ(dÄê‚mWqS«­ƒ~Ì}%{mJ£Ð™±…gÍV¾áâþÂ5öu —þ¾T\p q¿Üã •:¯\.yçï¹EÍçN,ir/{GTÿLýÀꪞkßNw‡V󓆎4<|²‰‚ãÖžiòL}κ/èm¾ïœâYoÉÛ©ÜxîÔöe½Tœñ§E{ÞÁ|ñ}%ãŽÉˆ4lãÍÁyTÜ»S¸©ñÞ ÷JÕþ>´/×hŸþu´rï: uÊËô&ö–å>8SܬNW~K ¿õËüéTYß·q+mœQûGу(éÜ vñ }(pPÏ~{ŽÓÆ%ÌJŽ]€’²ûlYm2t[®¿ÛZæ¸6.ÉÒwÆÅ—”ÔÐÐõʇ=ßKv=n¥ýþår"èqÏ þ”TÚÌñî°J¤[U-ÿ8«¡š8]Ÿ9“ó íFñZ4¾ÿ²(ùÙw²|½éoÖ#y2÷ÞŒ™ß×KÌÛPðÜòï0õñbíú+Zå{Ћâß×8›X¶>ù—n2¢DöÍÚãmhð¹Ìþg/'ÙœtÑ‘ÿ‰ìK¸›¶®ïÖM t x—í‚cÌ3¾¯_~*f/ÔĹ­nÝñùÊ7”tÞgèÔ¾É/ìHïQ͵nîrQ?é´»-%7)?«ýòÛád3Iûúºî½ãÄÜœ”œ£òÕÜqáä7r“½Eí|×Àö!é÷%/-¢Ûž/•|:,{VºŠ6ît¯5ÞG?Sr©.Åó/]J~Ù4Î3Sûýßg]ß‚7?Q©ªs–Ù¤€Ç=&|^¬½îõ™ºí³qËc”X¾í¾¦ÅÈ¿êŠKÕ^j×ò~Ü5·_ïvï÷YÛGyf¼V¼tº¶SSW|^5)Ñ¥QÁŒë6cûëÁýZƵãE|æl]˜7z!%D™o+?S@µÃmré4ë;em³¶YÛÿÿßfË–+GƲgË•-oÆ6ç¸ÉÓ263þý±;w¶lZü’'#dúèiãçdü¹øŸqE~Æþñÿ³wüëì¯?ð¿þ ÿúƒÈø{E~ü¹;þøÁ op¼!ñ†€ Àð Àð ÀñÀñÀñ ñ ñ ð ð à ‘a#2lD†È°6"ÃFd؈ ‘a#2lD†È°6"ÃFd؈ ‘a#2lD†È°6"ÃFd؈ ‘c#rlDŽÈ±96"ÇFäØˆ‘c#rlDŽÈ±96"ÇFäØˆ‘c#rlDŽÈ±96"ÇFäØˆ‘c#JlD‰(±%6¢ÄF”؈Qb#JlD‰(±%6¢ÄF”؈Qb#JlD‰(±%6¢ÄF”؈Qb#JlD(°6¢ÀF؈Q`# lD(°6¢ÀF؈Q`# lD(°6¢ÀF؈Q`# lDÈ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±0L,  ÃÄÂ0±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL, ÇÄÂ1±pL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÄÄ"1±HL,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹ÀÄ"0±L,‹€ÄÂïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼?ñ>[®Ù²åûž±£`ƿٳe+Ð"cûíü¿Œ}ü…¼sGÏž8~îäé³eËQ([¶vyW¼ÌØÍØšÌU®þ€,ŽØ GÔ²È8ÓË×—þõÿ3ãÚ\YV°ñ†ÔíÈ”ç,³S«_Þ·N¯‰kwÕŸ×o÷šzlJ,0«C µ~`9fZ¿mÚã]èpqï­êv`ðÆzåòQ«§õK<[wNwîBs’¨Û¾ ï“õµz|?­wôzM\³ä–ée{ì&V‰¯,âПš<±l1¡_&®ýI“â—“M¨ç¬(kòP›ý~EÕÄ™vÙ»ÎuÄêl™/ÿ¶€Ô¼h—lŽ #5qµÏ÷.Ó{ µìð±Îº¤¡TÃgÍ…ŸiâZ˜åùì~9˜:MxlvÒ1™šUœÿ£GUM\µ3‹ºo?BM“î·5[V”ªØÛ²i¨&®Ñ‚¢6FN¦Ôž6¿~ñt Õ´ÍxEÌ'MóßsìZÁûÔ/ïšÁͺṖ¶A×üT»l…Ç—#7}÷üîÔôÀSSËËÚç1gm߇u¾S§ãU·³[©Y¿*ík÷ÒÄuèÓõ’•× ê5rÁÀ·ó'Q» ÃSòÇ'iãŽ…Öøò¡$õz³Ýo~8£v¯J|ϽU×¾fûÑVÍêSÏV´ÜÔžÚÔ©pu´µ&®m‡úÏ7¦în9‚;§_£Ö¹¾Äò>¯‰£Ö 8L"WzÌÝÙ5©m›a'æ»iŸïלÖ¯D«õfnŽ¥fßRÌ7ßÖĵj¸ïùêêuÆyGCkjUgS«š´ÏcÚ«r>9QÏ—úNì–Nm&ßpí—&d1iîP]332[V=Wô®Ìÿß²rBÆëbÔûiãöEŸ¡N>"jé»Å™û¼­=¢Rë%™·›„¤vðÞ@­ŸE¨T?P½^eN¤.õœ®Î¯:Óßl®âA=^šŒè^0$sÇÝŲ½-R óv§Ç®yÉ='õÚwéùÁv]U» 3õ±x³F½.£çmÿ47qÛl¾ÃL³©û}³ú[rôu¼FMžœ7#K,;|«_ëÕ®ANõ>©ãíZpõÛ†ÄCÎUÌ‘¿‡:^ÓÝ‹| êyXô™o¸ëL=+:ž Èœ¹Ÿ×wóO Ú”y»û¾'ª\lO2ä›ßíæÕÕóß+ÿ·¯Ôã»±ÈzH—yÔ«K³ÔÀ%3÷-Û#zí‚î™·K ùº”}Cïoó\wB¨Ç'oTˆ9|F=¾™ofç¿Ý„z«X´æØ êù=ª{ʱºMæmó¯Ï6f?µ˜z\™X§îõ¹¼zíZ\ÔãÝyãJƒñù¨Ûúè8ׄ‹™û[í;ïvRý½ÎK.&œ°¥.å:ÅvÌ­Úeþv%§ Qíòü^¥]÷GRÿÒóÎûæJWïîÔZ ûǫǗhW¾u˾Ôc]ׯ/¬Ë¨ÏŸ l,®«Çá]½ÞÍÁÍÉüVݾï„ÊW-K÷ß1x¡:Ÿ—5é™»¶ur¾Û½qöê}vª{ÃÛÜÕý¶«Ù>ß´)Ô}K‹ ß’Ôß/<Ù4ûV8/LÆ}húéYô+¹9[7õz´^Øý`ÃþÕóZ<4rN.â¾í#7¥ÝUí%«/9cVXµó¼"9z?™H݆›t ¨º[ÝËëná7Ÿ©×÷MǵC,ITí]ßqLu¼23>TÓ\¯Ïz³¯íwP·Z3Þ­{ÞLµËÇ‘þ.µS½ïKl¡Õ™ûËÏžùÿ±÷–QUv_û¨twwwmº÷¤»¤”’R@,JZDD1EDAPJ,@EED@AŽã9Ïûîåxî÷Ã{þã|:??­±îqíµï÷Šk]sÎêÔUÔþôγNø“y@T»ÌZŸ0¾ðsÛ!ºzų̀?¾ç´NÉ@•×'Ѹæ|fUîtF½×¹—/nó{õã”(Âs!Ãê¢Ú·oÑú¼ÿžwÙc1¯#w:úô6á9“nè j‡ ³œ/é`ÓÊ|ÅaDµ·Žåå_b¨|§÷v!…ÑÀª›!­Œ¾/ÒÜò1âÄ/¨AÞ¹æ·~Ä€nhÐóTuŽåK—ë^øî§¡”;ó\Õ× Ï­H2Ãw\,&ä”G¶º^EéÙŸ•\'Qû¯ôÚ3jf ù3Û«ÄYý:ˆÍX”@ã’õu] ®u åEhŸæŠdÓKÅó„ù¿<>ðà¤a ž6R nJ7Sµ>qn¥Y{²âà&ZFKßâG6@^kèÊñwƒ„çüõks‹rF„¼ôÛ¨Óz2ò àö¨:ú¯ ïâ>ßÍ'ä}òå'gÃþÔ‡Q4ÿ4먭d'òl²¦Æ=©@E}XpÝ…ðÞøÕk¿þ Äœüqצê£ó OxÎÌ¥xÖvÆ‚÷ª²°µ.k{'æµhžÖ¿àmªF%DÈÛ—[“¦éCÿ ¥¸‚ýh¼ÕŠåp\Dó¢=³Ú•co€áì½0¾í;h|èŸvx€¾kö÷šÄû霺FÄÞVÇ•Pu¾ú'û¼%Q=FuìÌ„A˜²È©w}Ì×-o0 yÇå:Õ#½ìr°8p§Y9½Í'cÞLŒ·y“Ä3gœ-ó§ñÖxVÔOwï7ÖñÑòÂ,•CšŒ´ i³ÔY§j¢i%ÖK˜}®æ-×gž 0õÆ)KH}¥_y½³uœœ¹-ñ‰› `tÌÚ–ù à.‹~zVXÜæ—Í“w~ã¶î‰:r%€"e=]¡'7'sK$™ôzî’5ÐlI…HïyñWTÿÆáW® ìã”&ƒý•VS7ñD·ÅEÁ”GÛþå˘ˆ «ÎZÔF磦EX\ð“–iî òE{Ÿ¢¶0Š:%è…ÁàhzlÕ•ÀDl_èm`8Ó…ÓxUŽÁQ:i¹2ü4!ŠÉõ£F ¹|_ÐcËSÍŒq¯¦çÀZMž’*p vté¶E¯gaÊdælÖÈðÙlììõ õ1Ç£«æ ÇÛuÂx~ã$¨ˆE §äœA·pÝ“ ŽA?ï&¹\ˆ}¶º™åH Lm™ÖWå08Ng?'Š–Âßýu_>B+xʨ\û×oapBO­^sÁ Ðø†ß(y@¢ªæÙ°îÁIõ¸Í$ úÖRzAv)ã¡ÊIìþZà‰Æ¶³«¨éé/eÒƒ0]+u>Çýüýƒ¤÷J ÔÞyË8½ø#œ¦]Ò†18a1ùèìFÐ L çZ÷Ñ‹)&³jI›ƒ®&ÕäÞ]\ö!ï÷<¿|©â¶?T;Ùá—8wVMè=)­ô`eU Nð†d€T¨»hg°lº‚ð,ÿ18>V±)†þ ²“ýÂ~ CLZ8Îp[iûÉP -©º¥ò„•ž¿<úoÜßôoú7ýÏIAb]Äž8@{Y}ÞZ“ïÐpãÿÆá×öÚ2¬7Q‚n}ìܺRˆô¬[n<7Á”‡cÔÛ•­$ò Ö÷@dâ+4캹›ÓÈ©üðÐŒŸÉÓ¡ËÏëmŒ#08|êÕŒZöF0HS2=ùdüùŠ‹¶18þú¡—û¾mJÜ·Ì‹A<•kÏAìúp ï4§èÂ<¨‘]Ö% éP)v²ç¡œâükbzZÐ*ÚyMÖ(äù~Ë»ŒÁ‰Léðk\ù‚å¶;a»A6º˜ü<‹+gÙl—o ¦Y›5&¢$ý¬ÉZä18æê ¼è ˆ•ØååJNþ§418áL7+ÕÉ lÙCÍ ât‡Û÷–ÄcpìÅR¶Aä†yº°qpzŽñ½Äò>¬½üê±I rMºýâ¡wÀÓúj±¤zƒãüjxÂåRH>\к°¯øEoõDèapštûn.~: ¸Ú‹QÖß@ͨ¯°EÛ¿Zs=χ£ÀvìB6c×m0ü¤Ý¶¯ »Ÿa>Å`Çä  ÷hE@¬"šV»^k¹’õ;ì¶8džªP0 eîR~Í…Áid±’=…_;éFЖ¶–¥ü¢„Á‰¿~N7h)Š<’àÖˆG&UhŸìÃà,ÂãRäÀî²]í±¡~Ð3’dovÆà¤+¥NfƒÝ ýbÌûÑB[Ûöƒ3ÐÑa·ù½ß)Ú•p$÷qI–LØý“6}@Þw É 1xüópˆ>ú¾i_äi äò‚Œ'Äܘ˜AÞtfôî:á9ßUVM–öãèûœ:n¸Îš NS!•ð‘ |9Ù£ˆ"*]·¾i,N¡ƒ9ÏP}ƒ÷Ÿ›"Œo 5L\ý"{ ØneI?'Œ?`´:û~¡˜'±Ø{%¡,¿¬´É´ Ï©ó/ó9U¸æó­š/{cƒò‹×MèýLO7{+EÈó©äÄ –0‘ÏËyˆŸPŠŠLqŠ»IÈ›™2Ì¿8x ChÛuW óÐT)§‘Ƹ¡õÁãî}®oê&ÄxÈ P»êm.ïY'¼È_P óeIòÄIå¨]ß~{-x)Ó€:l@é_ÏEH"ÔNÖ ñ-~!ß‘ìhé|†å?ô}O)ì 9Ú¾O®!Ã×Ýê€ë»:¨ñ8•Ws%ı½ïKç&oó@ñx6Ù–»è{¸õæ"q;á¾D7,æD A!ûp·|f á¹ Þ’ËÕ ¹+oÉ€4Ÿþʧ¢ TßöS‡û³%Ð{X|ŽO …ºsÊ$Ñ÷kPL½_-;´¨ë‹qîE€"%5òY9jò¶ˆÆ,`ôôµë¹ú0>²ï8YaŒ#àTø„Sƒ~™‚ìE†Áän5Hæ¢Í-v<¿ùté5³6z©Àl4{ÆÎ÷Æ!äÕ‹¢V:¬~¯ÝRk.ÊÛ(^úÐ:æåÞ‹RG­v£¥ÊçŸúˆ×ã T£(®Gës·©Š£ã `fLwoÔ!ì/0y}Òµ`‘>jÚUMã{صÿ¿ò>‡ŸÜíèÇÊ)<Óy/´ŽÉÞÑZîE¼¼åiÒ×ÝOÇ@‘îÒ‹Ü}Dh}Úÿ’]ôâEÍÎå¾ÖÒ ¸ýˆ£^ž“¹f@Èï8ÊG“÷!ßÿ&æÄçéB»Lu_¼+§ÝBÀÑE©ï¹¿z ÿö¤OÊ®ü®Ì9\îâY- ®—‡ñŸvë¾¢âïqè÷-ì’¬ÏO[÷œó u¢vqÂ8Úc¢Æ×¿¾§Šrv9.L>%EI¢ùI2Ê5«ãše$²_ꦃ°;—Lí„c]áíÔfC÷;ª…âýQÑòÀnfv$ñv¡+:Ué•è=¬ïºûŸŒûßü/Ä {¹žòv÷ Æ ÷ãA/N³ûyÿá¹XĄδ!!oÿI¸d÷Œ (wSÉ£ñ+„·gþh}}¯>sÉõÅLÀDzÏ/1̓äŸbÄ=uxP=,cŠrB+f­ç$3z’¤s±EnhÝsp*nÉI:Fî }H ¼ˆì_sH’G߯ ÷÷ù“wcïhíi´ó|è9¾BÕæ§³‡LïkøÎäO:¶ƒ vŸú” ?vŸá‘X½ ÓxÛµÆ!ÄN5r›·cpòÃ÷¶Lg@¯£ˆáñ@5H©Ž4îÁî›5?NÔn\ï}|á GžPü'Åàpç/°Í–(¼~vK‰¤ÎÞK"Nqÿ7¿®Å²¤*û¸R#ë_¾'ºU1 Ì=2~9J2„.Ñøý9ò³uE€aýÊÌîÉï˜ÿ¥úòÕä&(R'oá­¡'¼4ô^anÂQ_ï¬ûÞòà øÃĶwªcp¤"ãjV­@ü‘ºoÇð1MäIcïÿ…ƒ”4F\~¢þ-6û”ÿÎcp,ZWÊ/òM(_É ÞïþÀ®è·0/ÁñüðÓcyïÅÐÁ©ÀfXÇð ƒãÔY~n˜»Xgê{êšÚÝ®’åÔï‘È=ïXžƒ„ê›V¶RG`—'"Z߇ý_³›¢'ÜAõ–žz—1x¹d²º“718¶$²ìƒWAÇ%BJá÷¾Àχ<Ñ6Û~{S¹ûüAÑÆYµC߃…ÇuRµ08&Áµ0˜ÝÕz½Ù ø­¨dÖ ޹rð­o’%hX6Ö×<Ì^ñTG°ç,^“³D×ݤAñÀ¶C$ˆÙ êÅà84Hö7ŽÍ‚ÒÞ£íÉÀ]Îjþ†«?ẑ9ž,ߪ;{ËÆÂšA€ýÖÎVeìxÉg2­·žUwO-“þzIaìû ±Þ=QÊä´y7ð ¸÷›üÙlƒãþ¦Ó¿éN t‚)û%kŸ€ kñŽ‚Ø³øŸòIdÁóØ{.å^ֈǟw‚ñ'{Ý’)`'N;¬l†Á±žâÍ,(\ñ»'“Ÿ»á—Þ 4dŒ­`p*ñ>aMæ«`r1šÚH¨ ØÛ>ôy;(bp’i_ë£ÅA›C2ºèé$Ð<>Jr s€ß4.×"Óv©ösg ñ3»eBw`Ê“V=¤ËޝÃA*Åo—GȉøÚE N!ßéZ’¦ã~÷µ)åA0èÖö[W08¶#OJŽR6Î$ f(õ{LÈRé`ÛE˜zqØeŽ ´‚òÌ‹£~½>߃ã°+a~þü(ŒÏm,ª$Å›¶p£ Žû˜³Ô¡xP 2¾{Éh8Ÿ uÚcëÁOû¼>[T²‡2»½Cþ~×àÛ}ë ¿ö§º0–Pî}´ßH²Ô³èv`õŽœÈ­ëã¯îÛ¥Ú4 ²ö;|È*ƒSïÞ&5:(…âXAP¼ìRS6–OT™cXýÄ«ziB:_Kwí®³‡Í±å™Fß䯱Òë—wƒÀ%Ï0C{} N,ù¨´½càîy¿¹V t?,iä±û1嚟½ï›vþô¢ù—Ø7Àݲ0­:‚ÝÇH^:|%ÉÛKÕJo9eSÌ©ÍM Nî¤ÑO©‡) ÷Îzk½28d¨¼ß%ƒÁIݪ“{7ºæC¯]S€u÷¥¼÷ÄLœ(9ÿ5ÆœiP{}ß¾äñ80¥ £=;ð>“òy,BÐ^5xà=>”´Þzî£DzXžòž–kçBp [læX#zÏÓc²ˆ·ÄQôR¿ó AãÊ{C(“X–'߇þ ðøí©¦ÜœÛ h½â—ñyv[(n ¼}…À7ãç§:\x€Æ½“gª“c›<nèY{ÝBó§Â|eÍøM¤K3 Q2ó³5byaÒ÷HG&tÖFê“ìú~3•§¼ßƒ8+£ôú.T_7ƒ­{ çj 7ÚÈ`»†_Þ;þÜrå)áý¦·KñO…Ð<&îéd²ôr˜,{ZÈ:÷¢~ ^÷”AúUy½ËîÙÞ¶À±'uy‡ÒçѮǼqˆDó„œ=[FÃ~`¯ÒîeìDýN˶üéôYÂ='8ÿøÖN-3c]*HO¨y€Ä·Õ ñ¢Ãu‡öÔ_ô÷_HßLÌjYÈ0ƒô¢R¥o³®­²‚¤Ù!ÏrÔ^t=}öïÑý‘Y¦»¹1˜ê•‡>“#¬£ ›±P{Gà ©{‹ê`Pl;_‚ê!þáçÎ/wòöLïÎ%:+€áçŽuÕ^4ÞplÙÅ…=Ѩ¹‰½m‰eÊhxíðÂó|ºÏó¯}EåYÙçÞî’°%Î@¤—&Ë,"}ŽÆËµ_wWªäAË?~ÙlÍ—b hþÓ»cK•îC Ê‘‡VZmѽƒÀAú=Ô+è}kÊ÷Þœz ÂÆ!Žî…ìÀËKÅ×9EÐ%¢u扮îî5÷ݼWŸ,0\yý‰ó3§”GÔÂS&¢N~“+i¹ `òà¤Ëê! N•ŠŸçÌày 0ßuJî9Õl˜Y`÷›¸Î#ÉMZÛµ‡4{x*Î Raí¸Ëÿ¨Z×Å·OM Rï"ÕÈã/08ÎÞÚ l  èíÎÇæ6 ¼òkFÇ?=ÃàøtøW¸ÊAÆw”/Ï€àù«Gs] 18º—$¾‚è'«‚óÅÒÀ8«Ajú“ƒã¸èëõýf(àN¨]Ö;:Ü/G-dÝj08†U¥Y#£»Ñî ,7aAóà l}‰_5epë‚àBÍÒéò;ÀP|°½–ð»·KØÏj~EŽè_±\Ÿw[¶<âA“¿Û™;ªÀ¶Ì –ªiík°ü¤ ñ‰):Wb«}b{Û¬¦±Ki^¢¥ê•ˆØXV¡^yøfјmHçÆ£°ö!Ìfv7òƒ A¶}ÖÊk‡Äïù;ë^:9¶bb^³÷/½Ë,ú`ì kL²Ìá…½ëí _@Ø5 ]¾Â˜J;ó©±v=ll—Oðs¸îL­Ç%C5™{Rˆµ;X¿¹ÿ¢Hª¥¿:ú8Åc»mÏbyjÞ‹¶“_ï)Xƒ³%Ñ£ÃÀv郇«$#øsû›þMÿ¦ÿ9)Øš—áfÝ×`Ýü4§¯`“þL^k‹ƒ³Œ Æg¨ N§N…š>‹W0“WH„ÁYŸpÎ>¢/.Ü ²g5BÀê•ñ]òFìýM`CÚ$'¸´ ߈ikë*Ó7ìüf}sˆ‡œ \ÔŒïê•«¥ ©gl*œéwz™§ÕûÀè£ÿÆÊ¶!X¼(ÞŽÕ×[§Æßã{fÙÉT•`;²K¢öÈÿ1Î.‹DòÕã2°úTKÃ5Ι­}«ëXÙÿ¶<á»®X‹€ GvêËŽ §ÍñªÞƒÓžÞ¤ì+»³JÓÇÔ§Aÿ˵!Ï18¡¯hºÇ£AU-Ò3äÄ ˆ²´Ý~„ÝgI‰8^4 zÉ{•<ô@ÑâÚúÉ D Né´GºÇ˜ÄËê>’e °¬áÄê¾µ¥oi16îêÉ`ËYÐg\ž®¾‡í·-1³²ßûä]üL 7ÀFŒž\ä†,¶E–K†¼ž€«½àM.p2TÚÆÚÍþoqæioÞÛ/‡£¤×6‰uÜÛ)3ìþÎp1Ïå6íA°¸±Û>3LÖ–’péNØz0q3›ŒŒ‚Ýfzêa;V°ÈÕÉäÓÁêM.ßúžzçØÝTX0Ê &¶K÷b÷ f)+ËéNàÀ¨°ãxVXé– ÞðÄÚE›džqx¸Évpßßïó¥ø(Ù«}"ÐÌ}¥\"ô#´È^ÔŽMËÙ¶Ä„ç¼íŸÃä ï ,éOßùDd Ì£^¢sŠÀ™ ö~Ä;°EßµfyÓ bôž Ôè|#ñþG\ ²¯T)H Ûü =§–ÏÄ!û!þ"Û÷«E°>o¿±ß‘D÷fœZ€t<4³:š5Çg|2¹¨$„ÃK¾š@<#gˆD´È·'„¼TÁJÀ‰*Àñ-Ÿé«Fïýy$:ƒ1ÿq‰ñNfÈ~¾f“b†t L3ÆÆ‰ˆ/~Rq†É—$*…–¨£ú²dÓ‘ÜBö\¢ úQÇ8'AêÅ4ÍÕ„ó/~‰÷ܽl „_s¨U ¨îw–k“KÈ»‰ÒƒàBÞýÀŸGy‹€g‹¢ñ`Ô( W‰ô&|W‚b~òê%[-U ”ÿR" ñK¤/*}¦"Ý`CvüÓRàÖ;t*Dá"z¿I…Ÿ_ì³Aè®…ËtÀsÕà,¹ÚÇ·ÜOt€ç›ùcIþ瘫2Œìmó^RYvƒÁ½A©v¤7Óê¿Tå̉ÊkÖö\'¡wzÏ‘þËèÞZcU!¯¹›'œ—÷È (ã‡ø ±Ó×õV%½ïé—æ7Ïã­I¿O÷E`ù‰*|ÍOÖŽâêj¯ž€þy9Ê‚]hL…|½’‹x-G­Ë¯—FAAL_!>HîkÇåˆ>4^˜ê™Igå|(‹y(â«ÉNdB¼+j'I~ÍîBYàÍ1SærG<9OÀ”c±.ê}‹ŸbùK wdãÁÒ¯*—ïhgæû#jE³Ï $vøH,þÌDýÎt-ˆ‰Í/¾|¸æL<x$ý´öÜ œËÁnxßS]ßJjÞ/®E¯‚ÜòšØ TÑÀûo‡$P¿I2¯Σ‘žL›Cèþ…{•ØÿìU¤C6½Ò p#x £vô×#Ý­V‚{š:Òc›÷p““JƱ6¿Ø d·¬3™ ˜õéŽmy/?&uÌ"žæ* ]+Þ[6î¬Z?ÄhèN ƒ`ÚùþÝh߬ø¹>ÄkÊõ=>>ÔR ¡L»É·Ñ}·ñG»ÿØ7szÞønpŒÍ¿ìTÈÄ+>O_©ß¸ž9ï²ÚCÙ'¼Ì|(ÚD31‰I£÷;ös6Þå0“ô+¼?šFC>`ï¥É¯¤Ý.ópuê[€ß:7´Ò…½ßËýfõ Ãßéñ‰õ[gKÌ‹F18±z½ŸL”`¬>C\ZÕš|§¦18q3÷|ÇbU0~\w9hë(h¥{6”pbÞ¿á<”°Gˆ FÎÑÌ‘®UŸHJ³ELyä5ýý§@3uˆêV¸(ˆ>¯µ0äÄaÊ[ú|,(«îHµÔÄYš몯Ï;ÛÿcÜæp!ÿS«qÀ½P²¦<»vÝÎyŒõ Ân§p#æ ÈWû7Ü{|5ýTiÇð*Ó¼ž<(²epí>ë\­†¯¸œ°öDBGl÷” €&µKõ­û ü1k;{ïKY®íï@BWÂô_¥’u>óû}}X‡Ä®ðŠ®#€ËãQ¥à\1þ9¦ˆ­‰œém¼-È)Ǭ'ê?η÷Âz\°:7:ºKïcn€šØwï‰v ü¶âåçû)`jÿÖÜ* ZÛGãnPãA|yÆ“¦«ƒcÿYÐl^·ѼÏÚØúr¹É5#¹ ºOÉ룩˜AúÙÍ/*ºw18ö ­áþ(ÐêÐì8“X÷{þjvª¯:†Á±ž“KH¯; êkgO40E‚Ø©2ö~]¹YDoC4ßu'…Ÿú½OÖk˧}ÑŸüMÿ¦Óÿœ´$sîªSOûƒzÉé DKžõ³Îš¥Üʽ»L`ÍéÖ}$FTMîÒ|ùˆ½÷ÑÞàZ;<f­ÃÒ ÌÖêr®ƒ³Ñ¾ÔÚ ¶rµäâŽA ñ+ÌùÆè%þ°ˆ»s,³JŽÜ\|*oråî½ÄòM¸^>v —ô&H¯î}÷M³ƒœcQÚ¥ŠD°¿dö°61ô/îöYÀþ¯6éꛫ~0eú!™ÒêeNB­ X»O•¼k_™NY€þ󋙯îKƒÊDý±ú l=öÈŸ[»üÌ$sƒËvƒfÊÛ팓X¿6WpOËÞ¶ 9ƒú…¢ßëSþ’ÖWÞ5m-·ô5sÆãAÎVJsÏ‹ NîkLTì{Ð3ÜvoíY³[<º}ØûS±{Î ÏøÞ€†Ò¾ÛnT?A¬kçö·Œ< NÚBˆª½éè^l,6Œ©â9V÷)¬ÿ?@ú´¯l`ðS}W¨›ýpµt¹‰m—gqlJç•ÁúÁ“µ'‘‡?þáúTì=’^Ηšß*°yÏ,ëêZʧdßñbǾZïkÞ»`säñGu¾9€J¶Àƒ§^aËs™°`³6Kë[\bJ #K¤¼ýÛ¿vã_§ª™ÀÀÕxÓ3gc¹¼-ÇÚ‡ê«_rŽ£k# Ù2Т‰Ø÷y{ï¨y¬m÷äL,˜¾”ìór[•ášS”6X]Ÿnp)cÿ½0ÕÔ¯-µ¦ÓΟi°<¡¶m„£¢òC0m™Îr? ªC=dmúÈ. çüíÙt^—e™*ÐuL ÇsÌIGž÷€ÛEe'²’°ûÒS±Tæ6è;ÿЛY÷ŸŠCú8¥O}gz ¬®>”S˜Gça•‘mŸ™ ¨ü=)ö-ã&*óV Hw§«Ì§¡«ƒÆµo–®‘š+h-:zö"]‹"­Õû qÄ'è,^.Þ·ð•Ô5Ÿûÿ;Ù=áÒ3Ujè= sl÷e®t3×!;Tù0a×7+H߀ï’óq°dû}Ž»¾†ø0Å壟ŒL¯¡Õòâû°Ô5Ðë{ð!Q ÕOàËÓ;蜪uùa…œ]èù›OÔÝ&œW€å°­2÷žÇ(o>Sáý`œ<äÛª€ôJOØHoÝAv©Ju!‘)G%…¿èDÝNx.3EF:Xô]2#¦K¨AíDâ7CK;T;•[=ª¨5ú\ÙQÞ} ˆÿ’‰b"kDz3'c•ƒAMŸ¿®až óÕê«CÃNˆ±Ï•àŽ‹fdVƒHÏ%añåÍÕfôÝIJiø˜”ö{‡ÎHaÒLäõS¤‡1wú”À¾Œ€'«¸µ—hZ×go·?Úù¯øá³ ©òNég(òó&WìYÇtù³3¨Ÿ©RµÃ3JsßYP¿õ Õq!û3užíT;VgÐmö<6ƒx$ÏN2Š©Q4®ëhV¾ƒîÔ4ye?Ò-áûæ&òÚ#;¹;sAO9æçÄÄGâr‰›…w >@µÇ‘GNÓt³¶-·òÿ(/_*þÆç2´ÛÉ)ÈFÞ|Ðhy­1òÏeHGã¨n:ÞéÆ ˆ·&\Nd@:F®Y^ ﬊ø·À¯˜–/(‡!wü5‰u÷Hæ?96yé4§f$Ñw­evvx7 (ç%Læÿ¡»åZ›YXøCÚO?L…œÞõ[ôP²–ßßøÚ®{ĉeéVÖˆReŸb-:MÈK=Ž ë5oNŽc§eœÿEégd€øNÕÓG‰×¨Ag3–DŽÞï.Þ'é*â¥|ï%•¨vÛ‚£XV`m,âñ d/§Ez,›´™ˆ ÝW [,óˆ ñ¼Šþ¼¼OkCÝ÷¤'Ç«Aœ7€jý*Ò7ñïz`Mwù•ctè¶óöôÁ¯½›)É_Dýa¹!!‹ø6¡µôÒ#ºÎ@}(X/yš/‰ b\RÑxѳ™¹nMO ’l›Ã#nè{Ì7–« C÷J¹ø GæëÀ+¦r-ë” êÉ+mŒ7Pø&º›V­Ǩ2GƒCˆ_×?-¬õˆéT%*®›ªeÐ>e–%GÔOL¹¤oôç.ÿ^ ½A¤„ z"ô!ûWÆDÅÓmMh]±«™ð²ä«Å‘7ThÞQg¿^ôÚù'µœûòBö -ªÎû„¶£ùXчzŒùŸ´7’Ûøüý+Ü?û­é•$ßø¹µsoÂÕìÁ@`-¶Q¤@ã…<å§²7W¨?z×l/N8'‰#Þ–± úâ«+Ψ‰'S[òÊÁÈo²`A}7JÂrE‚qhý5œçhO®µˆ#~·ÑÿŠ«´Çh"^¶z*ž6Á4%Âæxx“@*Ž~èæc̾@‘–©óÂèÚïùIÓWnCäMÃ÷Èûc÷7¸*U:èêÞ,gª¹")k¿f N…#éü‰úÏ °MnœE/-ò%öw„/ü> :c·'ÄeAîQ)¹Í‘q ŽBOòž8{ª=ýDØá÷¼t"G<cçtg"ösƒ\K ¬¶D×w‘ýy¬þŠ^|ukéîG2êš~¸Ã;Ô÷ßÂà¨Ò­.dd½I]1¿b'€µIkßeŽÿÁœøžÁ/‹U }pýاkYÀÙo´žA†õÓÌqÒ·º¾áH^§ÚÔÃ[°ô,]ÇŸ/fê:­¸@¡'ìÏD'èP…%›'”¦¶Ä«ØJ[Ü‘t.ÜÀ/b8:ÏŒ½Gf9çX±g‹¦VÅ^¶}ow-=Æþx ÚcíÔ @¦í²¤Yp4˸TªÇàX•žˆ­_Å[wÔô÷µè²2Ó) ŽËôµäkÐ46å»Uê Â\d]Á׿08ÎðVÏ*¦Rмþúg—x$ˆ;Mô„­GÛÙÜ—§N‚ªjÔ¦vÿàn7Þ û€Á±§†ìt2µ°ëÃsqÛ èb!©Ìƒ=wp»­Òž»ôpOëüDJ‡Aœi“›±~î½îvøŠÿ^O¹L;g$n€p·ê°å ö(XÙͦ"*jk˜¦lAÄ3épïølÿvÞ9¥^[õ{?î÷~ü²Ž÷¸ê«aqïne:h4ÿþžN¯Þ¡ÊR»ZbÏãþ¦Ó¿éN šÒÅ­ýo²ÁL1Æ›äR)¨ÝX8½(ÎŽÁ©¨0ô1M‚aåðgÒ ¤ìÚ//å¥4ÃÄë3K-ŸÝ|› ÖÉuçH'‡}“ŸÃJÖ–¢‹rs¤ •Òk×Õ¯išê2W}: fVË»ùnºƒÚ£ÆÆ„@¬ßc¥ŠiÅSDàäûÄ,º 9k_åÁúñÔ‘t>ë4j–L9’B¿× ¯‡vu}X;M•O ±|¥`Ęa¶ÙD J/Ž5úÞÇà4 Wäåãýý·,AuH*ýL Ö¾VgZùÑ™þ½`ùâogÅNТWé>bŠý_=½}w~¨-P0°8 º¦+ør^캩þÓå•ñÒ¾Éfo‚Àj»án…Wh˾™4ŮךQL±dÁ,&3V¶è¨M=<ºVLŒí7…vOÀÄB‰†ų̀Œ9óKµaýëéT Þ–ã8–§Ô’╉@sÀoOO vŸ¥5,wÎï¾.˜÷KÏrFì ÇÈÄË( æIiÈ ý…йùó/ÿ´„¶tÙψ¼É'áE:(‰ó—^e )ƒâ«&UzžvÂs± Vê«íÈ^TZf“|U.”;xR_#ÞL†=iÝñûAœ@qö˜ªh¸ÇîŸ-DüÔ“¯Ú<¡È/•|­¹°ÆÈ¨Ëêñ<„ô9ä™oÞüwõÅÈ—š“ÊÀÊI~Ð éÿøûOÅXX!Ý‚°û(þ‚Ä5©¿¡lÿðþ¦Œ„ÌÞöûºúYãºÝ§Át>ãÓÆUd¿¥¤1\ŸýéÈTo;+¦=½]&n‰™è¼/S}ã)'Ò ââqO nQü>yô\AaDïð<ª¿R®ö9Ì,Сl’§D¼ hæ\SÎ:×KÆ´äÜ*]¥X\yY?:‡K¶¯ãCð=%ÈÅ›÷?©5Q‡#ÚH—%ͤµûi:_+P*Žï“žõ°BúÉ&¤“*#úÚ7Sú#U–ŸUÔiƒurî¢þ®•÷+_$ø‹qƒÙËO¥O®W#W7oæÿu;+Ržä"-E8S†XÿbZÀG?7¼­DxÎ[Q™ðx!ú­Š’Ù Õ¾,•͉ޛSj9|è>u²%va· hÓÙÞ´3E¼£xØÝøq+WBº.*µûΨH‹›Ç¥ ~—1J3V;ˆt[8m’”ÀŸ@#qà›)âÿpäû†˜ yåE³ŒÍ)zÀ Gúû ¥Ôz´Áä‹?ì gL^ˆ]õä{ñ¨2Ö ÷ù˜‘=œž´Æ´”hd\2syø«SSõ¸)vЫn{ë”À„ð ð ‡ô:TVÚoà73÷F~>@ˆo€Ÿ!mØM‰t¾ ÑG«ø¾÷(ðôj’5J[žÓêªòU"{V ÷ëÇ#sÑrÜ!‚]%ÐÔÍð?÷Bz$••“m!jAòðeµ ÄrŽâÄÄï";í]çMmûRÁécù6ûÛY´¾+Û?ÛœýCWæò°z’ß„„j..}E|#äCjŸ¶¶¹ƒo{un;ŠûbOá&a÷é%=ŒÎdá‚À¦JŸ›êâë@F•u) Ù‹øÔ²Ô.êk”fý„û@ôŒcwGü ¨úÔ“LÀü®Ë«{ ñ-$rÜQÊÈ^õ[ Õ’ :Ó¤ÒÕk«KúDZOoó*äEGªmë@ä÷Lè¼L˜¾*ò§)·k6ù<Èâ†¶Ýæ Ïù>}g¿¾Œxj—ž1ÉÃ`qù ­’ òû¨Í¨4ñ­+bžþe|ëîÀ9¯~ Ñxs+c4\Dv®ÿÄiÐþ¯8 HoúOœd¯¬Â?õn,+$ŽxUÝŽxKŽOs ;^ µ¾”¨nŽù¨PU¿² ÍŸžÝt{мèôè뇛¦`f÷ðÄ}¤³Ô¸Êúl‹ýÞÚâR±F½°yæœàŒø]²:íhœª¤YJïyp$ÖRZˆ>"§œž«Aè>ÅAѹñùüU0Êh—.¤«T-0âÜÞ¾#SEj¿v Íö¾Y;Ù_ˤ0 ÿD÷8ÊD3«Ö®a`q1ËÃÛ÷¨ž5ÉMî!¬œl£ºîq†a0â–òQ‘œÝ§’GŸ°º Ù)÷#¬9`„ߨpp!u›Žo°ö ²?<ÉŽÒS€̆}‘ú¸Ð©‡…´Sœ‚Xe2ÿ='0~ÑQ}é(ÖÜn¦Çêø©œlú®É Âäú•x×§@û5V1bqªQý t¿neÌú ÐvhJ¾¹ŠÅ‘Úz«olho¸Ï‰k+º@ÁL¡¶¿€-_ÅwªÊ „nR^â½ø h«¨ÔeßbýCSJ, )M–€à·©‡¤'3fXÔÌ$&Nð}1¼öó¬&¨üˆË×*Áµ{N-‰Ç´½÷Ž€{ [öéRðÈÖþeªÅuD„†N'eaã(§¿Žª-ãÝË/®TZ6‚ä4öD~ßRçëÅóÈw¬©É ¼)öòvþ{ÊÅ­Óš Ú{ÄX!ƒÉ‡ØvQ–œÒ=u4¢%J†LAðÆB˜ËûÈãß%ÐLò‚Þ~fr¥­Û „›ÙN‹÷ƒKÙÐ*¶1]Ï;ý[™Ì ]ˆ¿ØsËÿ‰p‘¾(tgE½WEK¥] ìr+†#kG*»Éëüêh‰Û\S¾’N߬~¬ÆàÔLv‹Óe-€…¯ðþw.² zîšÚØOìûM\ïç¦Ô“GJÌî¶ Q÷ì´˜ÀÿàwdÚ‚hœ½Œè ôçü‚Ac³ºKn ƒSíxíjRæÝïN‚cz–ÖÏ­òþP5ú¦] }1OzA§Äñ”¦8vß!þŽöãþ{@o¾Â¦5m ¤_Íú>Vƾ_̶pļåïs°×Šje0àj+ö¾ÞœbÕ –ᮣáf¢7¦’@qSI§Z%[Þ™&Ù}±”çÈšk€"ó/Ýï2±ãà«Aà¯Þ gúcÙs:pðF>òâX7hî×·:òôCLx³ÕNüº$ƒlž:—q~z@¿ŸðýcÇ“cË1@¸(¼±ó)²7ã&M®lFçM"7·ˆWù&@s ‹*{ÒƒÉÛ$W}A| èÎ׆s߀ZWUGŠç Ü’+üÙw±uÞ™ºTd>i;x;ïaãÉ/glú0V™îØf,I¨¶#?å¬Ç4šíÚ~f€ùvôþ¤—GÝÒP»qÖOÜä•Aþ¾ØýÈ©—kkA8Øi•ü8ÒÓ±—¼ë¦–‚ÊßKt!­ÕÝ9^0†üÉk•oòEçE™Mé8£bPÛÛB“óù¹b·û\&óì!OMEi¡eÀó…›N­é q!¾3(žžðKY[¦# r¤iUÙs1·–šò¾@~›H“œî± ñ[@õþ<¤¤Êªã¿¼Äüßyüš{ü^Gn »ð9‚ ‡ù {¦ÿzƇS]Er ,2'¹ÉŒÆ‹ˆ–Úá­&ä ǼbsWí¨Þ•»j»†üæ±|:CÛJ…t–|B3‚(Ùóm¼íL¤W#ž~Á…øX¦³uéžùGk]=â••PU>@º+™Î(÷¹ PªxÖé*â¹-–þWb‚LGçzTö/Ýþ7„ó(Oa•@ö¦¸´ayop•ÂW‚¤¹„ïöÓ~-Aú)žá°¯fA,ùnEzÖóšEs¨=i·Ñ¼ŽOãŒ](¬Ù‡ãmH‡Ç²!f¦ìÒÄ ¹f(.€¨àÏ¶Ó ÈW°ü‹šuHÝ0¹(‚Æ•aõOó@{å\ÿÃhä§rhµäÆ/Ä«ðÆwÑõ%ýV Æì`BüçÚ‹³‡¬ ÷½#m‡@‘͋ê€pÎÇoyûÙ®pøŠ>ÿ… Úýd‰Yõ‰—˜Uâ¤#Ó´ðžlÅÕèÂÜIÂ|‡ß^ôJìnB<•ûxˆþ ƒ2hEDr#»ï禬|KâßàgÿI åý+Ê·Ž Þû ¬ÜMR(žÆ¿ó¾·º‡A_Ñ__Ôì;ÏåíZŒª»§WqAˆe?Š—üï¼u©îŽvƒ—ÀñE°š’é¡ü Ãq)~0^ ÖÛ‰Õ±²RFà¿ñÏÈîí7›C÷l,ŒÍ‡âG{ï™Æ0x-üÛ]ÿëÈ_šÉ·Èؘ¶>`ŽÛw;ƒ°Î•Àj°ë4ê¸»È Ìo ѯ™¨? E8;Jèù†… )C¯ì@þDk (½¾\ñV×ìûs@ßAHCXð?ÏTΟC÷ÿÄiPø¯8 „ø(ÿ§ù‹óˆX “; Úf–þž–¯Šá£6'ZxB»Ä~äƒR=ñýë›H_ÇjÓWÝIŠúÍùáõ’wΠEmñcÿ.tï ²BÁ*°Œú¯&ÛþPï U2wО'ܳà§Äl÷ø%¢õB™J§Y(ØWS,ÓŸ£õ‘(&ØX,Ù?;nÍyRH°‚úL¿^V0Òc {¸†-K!~×LÁÿcÑ“× »,¤1T„â²²ËJœ*C::…£ÃSÏ@#Ó˜fwH¼fº=@øÔÃ{èvD€žÚ뀮}ï~ïÓ¦CIß\Ãञ¬ƒù 'аkžQ$¥uÎaunr’‡M;Nƒ®Øe–Báp0ŒK?j‰Á¸I£¸’™GÖ W%±—Ý¿qøõ+_è—ÝAI×î\]Ùðü“Ç”GòöXrëjú>ý)qxÚãy,°v†ÄYÚ;³MÂANnuЗs}Ñu¬$±„w„Ž!Èd}É›3Þî çZøû%18Öpß7Ò/­A˜bšÒðË{à¤Î¥!SÂÚáðˆ]+ødÒÇžrM›áWß7lz­b÷‡4ê‹2*ã÷@¤b¯öUå  ÇË´j=Âcp"çi®g¯-húò%ÃÀáüQ@?ƒãÔÿ8!àÏø{ªïZ³M&_óçDªþ[íäÍ+  ö~牖ÛÀÅÔaf…Õ‘±hjjÆŽihK+Ë/àÑnjf›ÁÚ' ¨–»ì…i0ÊÙ«ªI²¼¨ÝÕž`ÿWþ+Oèœ9hwïø±oßE`^>ÆÕå9«ÙNÏM€þL÷<ùSàÈTØ8.ÁqßlúZHÓJÑ!äGN—€@éß%Zk Ž/§ñî}Z&ÐŽ*£¿iÀÃJs*k_ÕwjvNÈÔÔ2ÉWH_ƒ€ù ç£Øó‰Ày›ö¯u b.,,ßøG<Ú,î+`p¼ñBJßæ3@uý¾KC"ðçîr$7ÄÄ}û›þMÿ¦ÿ9)(¤j*¿»žúáù%ÒÓÀ”Ãۣ߄ÁIÊÛ—˜ª*‚VSËsõå% êI#Æênåúï‹ÙÇç‚^,OÖy»m`Ì+~°G\–]?¨»@"uŒ¾3T9iaãxË–Rû:ø\Ž?äà '/ ×+ ap2Ý7D²¾S1•o å*ð~‘ýh1Œ½¯»ƒæÜ·~0$Ž©{vØþÉcpâ¦Í]¯ÞpÆÃ,‡'À!3ê"³Š-O˜¶ƒ÷Ó!ÐöWÿRÒ&̽z±Û6X½¾øa–ñ":Ð/ëÉg—8r]&3rû18A=ë»ÎPPÓVþ\xÙ /=³íNêÁàøÞ°~V(¸*Až×MŸýÛÌdnùX N@ôˆïä= jÍYˆ›[†·W/Æ8`㇠”ø ]³Ç™5}!¤›³/äa»ÆÀúÆ_¾¬ΣùðâÃ~£=:茓±ËÙ b3Gqïä# Ϲóäž,„!=‘zøóÒE_ï ù<…ÚŸÙ»¿Àeéwåˆó›…}{u£Ï/~U;Å–ÛñâUíNf£yø‚»¡7/+#4L륎øµ¥?6.`’’:ÝŽ¾æIºé'xW–&ʪZ¸h7P:»oäAÿ~×ÇË/}—ù±×s¹ ªùŒ’ø7Â=~»q’J+½‡¡s’²ÿ~*7È1?l‹ìŒ…Ú^@öÍŠñÕô5‰ó xY?åÎâ#E¼YÔŒQ;Ù Z× âÀ«ËÉG¾Í[–‹çÜ=ž¡yVì½.Tõë‚èãë*«íÈ¿!U`ù“=¿8©rGŸ§D ©+Ì0C„¾Cº“0ù*Ç—|§h£ ¼§èÃíɑ߭YDBÞqOß= —ƒ`Ÿjžå‡úSMjR8ý)NÅÌâ`ôqÇKŸ1t_¢ôÝSkûj'ñC¥ÞI~Ÿ÷˜æŠ¾ ÄÇrvÚÖ¶]ˆ7“k»œ,ÕšB.¬—ÄõÐ:EKs©vØ ñNo÷¹RW§€ù4%[MŠk¡¬ófudµ³iå·CP:¢²«Ñ½Š¸áÇž—Ð|§õ8ÿG‘ -ÈÙ.å-¨«x–ir;A—ˆÆí£÷Ò&µA~ÏæÚ(%ðû^ïæv ƒSÜÈ Hé‘Ú1:Æ×Àoûú@.Ö~P;éx»ŽÈó?‘ß+¿2>U™X3š$Íuw³AÆ/H~8XÄ‹¾­aýn0•)W~n’wMo†+´+ÍlÛqì=2ûqã1’`GPHdÚsÂ0¸r­/$—cãdr¨Îz„ŽÅÙŒª·WòRã1¬.ªp Sûeô[€w¥ˆaV$ö¹*ÒNDüÜŽ³dúÀÅ}A@œ{ï+2n^äy¤—F–u_ —’¶Pw ÖŸ³Ð† '¥Ã ©ÿùVN>;°WVñ=XÇú7¼c—r4Ä/ïˆ8õØÄ™”S—°ç1ñÍ♡&O¸÷”'NxõËÉñ?D°ï§_'ùídH³U\#+HNG"Ó ¬~’ß-íñ¡¯O@}øRúî3 >÷ˆy!ý)ÇYåz"ßà(ïœbàáŠÔb²X½žØÀ®†‰PQЗM-ª­ñ\"¿œ¿¶]ø¯Ûþõ¡  [ã >{•ë‡V×'(øìy:õÐô±æR bIÿÌBeaì8³¶0ÉEú/¯è ¹Ap­æuaö¼#NLyã{ àê¼{…Úƒ`Éz}“Y N‚RE¢ü6%(òâ;H™ B{®]f#ÂðÅ Y«úŒµá(5 (%_á‹{ùÖžeaË£;ã¸{o(I§^P¡À†gï´1vVÓ¿éßô?'ûÉH‹SnàQáçÔª|ìw-̉Àê–-K"ÉüdƒÓããÝ&e`±LsUÝëpÿÛø vÙÜñ_BÁåÅ“Wi@7¤äý¡}Øû5Û©×U¼ígÀÕ'%é´×s°üöSGâ§aƒÜJp%˜I£NŽÛÃX½Ôÿçq~ŧ)ZƒÙWeCªz/°ý±ñÜu'v?a¤gvË*¼Å_ÝÒ øóá!Xû_%ÍÇ :£ïÀ„®ëùÞÙO þÔ[ôöiA Nz³!¡×KôlÍñ÷ÅücâÜ2 Øòå¬X•ÀäEÔõ_¯h@£Ph>Åû¿jEt½k‘0™‘³T uV+£ÛÉ[_£È¼ä¼“à䶇¢˜¸ì›#ø·‰18ï5ÏŸ¶óAðñ«žFØçÿÎcû· ¸ÓŽiìÙ6ˆënõå¦É”`,Ïõ¿ÅÙM9ùŒí7›¬K·N«€—ºZJ¶ý,]"}÷¹h€sjßYI÷`•­òsýÖ>٦ªëÖ‰“à’öûã »J5þ‹âØû5〵b`›3–ª_f¥nò5ˆW@õ¸·7Uj:ìÀ'T* L ­/,`ïwÍŸïÏ-G%÷!qÓ-°<˜Lý6ÅãcbU*Az$Š}ïfø{·t⌠Á?1p(nœ.”EçpŠòÀñÑÄaæŠóÆcB±þXñCÌ)K‡…t¹AXW»E6ùÏfþ^|SäzãÔ ×È3À9•áüC”­:À•wàïè2½oÖ3÷‚Û$ÝM¤· »4r¿øâY¤ý ì¤> þHìé(²í¾^Eö>쬇><”¹ B×7n½h&øÆoÔí\žDç úÓf¹‡€ùƒå£_ˆß yëÀÐьڅÓ3ðÅ3£v|÷5×ÔñäGG^ͤ!þ“'2h5£›øùb]]H~¡ŸA ùÝfÿ'¼O˜¿F#Þ’A¡Ç_ÔÙY1çâ–()ï/eõ¬òû¶Ãt¯Ø¼ÒÿÑ&¬>¡v?\¾ì*Aç‹ÿU.ÿXí± ªÿÞ«È«vh±^gE:ÒGˤ,¹ÈÏ=CJKñc³`s½çè‚ôz;òCJR¯!¿ãÜåáµ9ÀfÏ7¿d‰úÝ|\—˜ÿ]š¢¹#õ‡xàË|¶çáÞ?µ¦Õ }é Éy~‰cI¢—Ë/J‚W¿ßŽø;þÂ6»öH§Ù¾üGÈž ˆËTŸ¹Ù"?‰<ÏNçúÉ›­ü‡4¤×£:AN²þ ém¸{ß\åœvng\Ë{n†©ôØìÌq¤KaO9wqsrø®w¼æB<&)U¥ÆI¤Ëc¼F?áp`ñw»L˜ìFß!åÌÁ“ÄEi_éiמöˆ•Í{êÈÞÚ&Ý>óŠ7ÉâºÚà œËs÷_æž+g×J±ÈþÒ9ûH4n•‹ÂÒ‘}.­•‚ç¶Z,°Ê÷ü_Fñ97—ìŒÜ“‘.P®EËìþØ0¹ÓV†„#ûF–× ¸C?žU_ €Q:8ÌT}»ƒüv û寱üñ~/_Þx–»pGßI¬¢våÝ=Ccóé ô5÷mZ‡ÎL°À|}"zõÑ%¨½„¶§³E…G€{ùóGߌ_PæÞ׋x9oÏs?Ü­@¨ä›~ Òeq..rѸ"¾ÓÚ~_`çM%Ð%M="‡úYCÑ´æG<Š'¢³ü“I¬& p±ê,ýqÏ@û–w“ŇíS}²¸?c"pÛ?Ùñ“×}D}é†)HS¨¤2´Á(­5’ÀCáG÷‘RÙË<6€üæ[n5qß#3ÊÌ•<4o©Ê¦Sͱ#{Q³£ñ´O­Ö@Õ˜ÙFÆŸ %/öÅq—?øö ¼ÇŽûÐO…{ß vüø¥A[.´^ˆkX¾%$Bû§­¡øá ñm+']Ѹ0‹‡?ëx1¸Í­4£—e,€û${õî´%ð¹–¿ï fù¿Æ­µ}dïfý ŠqW.j|ÞcoDvJbù!ÎØˆW·A1¾çFÛp» á“”®bqš»–ÕìE|þ³•¹ßëKÇöã2ì~ŽÛT®oþï%— ÉQ€PòÕe] Žˆq›5¬m8mÛm_}Ý ¤:(—`ýð°>8ÇRN= R²ŽOv0gá Y“+–¿b, >ØzŸ4õOþLqb±„ì“ ã2_R§ù¾»Àx§ùjé‘ç ¸V:*ƒõsÍRz~w…è®+¥á2+@êx¹nŽ ƒ£Òôõ$õ‹ÃŽ¡ÊAd÷ü×,ʪì}8®Að{&¿SrTÇ ûU>l<\&Å'Ÿ Ø@Åiÿ¹‚^FÎtõóJJÄàØZæŠG#·@[í—fdÉ/äÊ)Jˆ}?n뎴Gø6Ðd›}ÛÂ~ dÊNE¿»‰=G³¹¹™±ÅƒÆOï&ùV_oÒß­'Èvéøﱓ ödUs$ ¹¾ÊP1ü÷7ý›þMÿsRÐä¼>&¨6EKG@µõÃÖùöÿÁŸÖúÇÑ]—Á¬³¥üƒG(‹03¶,Åàt%(…4"Á"`ë)WŸ¨ûeíÛÓ‡õ3ŠŸ©}h7q,üœ½‹÷¦Õó°À+lyô é\®A`ñÃáõV"¨à‹[éûapja“!ãm9`)™,hÝô4N½îÂ#?Øœ‡ÕN‡û2`ªU•ʶLjêwNTS‘cpšI6qtƒ`ü­á6{Ž5¨yù÷aý hž–.3šƒ÷—YAóÄíÖÓØõU#/~'˜Ñ7Tä8x€zÅÙìàA¬SÍ÷Ka`uÚwÊÁ?ÙzŒýë°ñ9qܦ¾Š^²`’õøºóPÐTxñá;–Ÿ”ºC:Ç%¡:䇢ŠÞ=qÓ£MÏR4±å­Ÿ›Kƒ‹';çh@~zf^Éë×Wñ]S¬ˆQ6¾Œ%Àqƒ¼ÙÁ× c±ý[˜á¿ûÈI°d¼{©ÑctDöîù†[`2³ØZµœîŠTMs~Ã$÷ÈÙa¬ßÝIn>É»º`qTç8K?h'{jß‹õO¬7µwŒÅÌã㦣+Ak)y‚Ùpú¹Ê;ϯ\ëµã±¯¯üÞ'ÓNö‘aû·XØw'¤•UæýQ1Pë¥÷z€ÕmêSš)mƒ¥Ö”Ç(¨ò\n]ÀÚõjpO=fü©&d]•‘‡Óꇱö ZùÍ IóÀt ¡.™®T%qÞùØzhN ¿xæ{«¿äŒ €šÚÕ䙈§[ØÝîˆ$ä…‡Ï]¦Jÿ éËnEDˆ7¤Þ QŒì ¹*®:îíµqûº+¾+Èo4ï…¹Vt.`åš|V8/‚ì¦óÕèü&ö¢Éäûkä‡K·klÏ")àÔïzœÜxáæ *%!•ÿ²ñÞ¯"6 ‘õ+ôyòg&±«WXŠxÕW_ jeÊ‹ÇôV¤7cô°.—rG~Ñ9V¶HßJLƒ€â>Ü¢²ƒ¿f‚ì¹–L‰®~åàéêÇŒH_"4Z%ú•ÕãÓÊÕúó¿÷çŠ,¦#ˆïêØÖ3ø飉Iæë€ËPþ€%<ØR0QÕF~Ÿ„‰&Zx‚A¦õº #×Âs‘ž*]õÈϸH%m♋e€czhÛYŠ~Ïg×^IAŒÚS€µ.ðdHyU'‘÷ >’kòÍé]‘žƒëÇ¥ É RýhüP#²{èxdH‰Î½‚¹ ÑÞ -ßL:‰Îñ‚mP'‹CñRå6G´Ü¼îƒì묆ãÈ®MH³áÏ0²gSÎçøâŠ×ÌññÞHçÆ¢¦Þä…ÚI,ü! UC/HŠÑ¾Ôš@ú$ÞC%-Ï!»/9YAŸàÀ=ŠÈ¾÷ékx;Ö^·›!~R®£uói¿4ÈßòÓ Aý.Ê;ÙN6ò¿Û?êʯdò—¥h;ïí@írˆE‚¥ñz¢¦F/¾éjIýC…ˆ§ =UúùmQ³ð/ M;qõ›àÖ¹GâEHw(zîÖ¾ï4 7Yòήúj?V| 79úÄŠ>ŽO\®Ù@Ûª>dªŸüp,ÖLTkÉò¤ë‘]µpl5ëUäOy×C7Á @k)ú+ç;ÆÏ÷7ë°2#ø8]R/S]-Uf-ÞüZÑ‹Ý< ñÏ:oOÐð̵øIÂ!ˆÏäL6ìhA|±*…àm;ÿRÓ°=°éËXÍö J žß„îŽ0/‚aé›ÂÃg‘½¹ÚWæ\%%B^6%ïÚ‚Ypwmí¸zñ‚ÔÇówq¡øÁj+f¢7AìpŠ…åļµïP§aý€]Om:®€íî¤m>äçÒÈîÕsúdijÚ=&{Dýð)jFñQˆ·Tl$[E|§ÞrÉOò†ylºRã„ôŒÜ¿Ø'„Ž"Ý1s5³BLsŒø~Và!ÜËá§v-‡®ðýÇ“úôN…3`à6Ò'&øYÂoðæðÒ¾@&Í¢%èÉî tÊ» ›¡¨]9lrß(×ãò°÷渓{|§,wƒ.ÝÓ'f…¦ àõa½k¡ÌäÒ5áezMiAÓœj€›å1ü†¿ªh¸zŸ´ˆt«d·˜_ƒ|*ë“:1 ކäüлîNwk·Þ'µCÎÆì9‚ô…ÏZég 5Š™v碄£XµÞuÁ“Ž ½û]IaopÍÏàÇúñ ÙÝsâƒùȼ”ó9í[|“¥û°~†©¾Ø6ë™`Ûî Ó ÀávI©Óë—šò)sOä3›‰>~aÿcà%¯ª;¶µƒäõuÖÕ¹—}»³ƒÔ¥Oº{Nà¸ÚRâ¡ »•ýá œäõ‡±öÄ|÷H$î¯éŒì'ÃoSçÂqŽh¬½O³põCÙMÒÐK÷8ÙË®ÕïäÇàØULUÉGšôƒ`§zhÛ¤a^Àà"÷ô?‘ýóûy}²H@R£ BÓ±vBó¼ c/Ã@ÿ§õ´©Û%Ù#X¿>|=ßÅY¯©ã¦óÄ‚ÖT 1¼-ðǵÈoƒòÔ^éÎ×Ü to·_ðÿÀSwÑr/´€úçôVãÁ œ-A¼’†m?Á¥(Îü/P‹zr÷ ?ˆ2ªÄjaë›yXJê÷þûXm³Ô9¬w<¨ëoZðrhÑÊ &Ë®ö5> „WÝÕ•¬–þû›þMÿ¦ÿ9)€áî*Ŧ`C÷ñÒ`»èHm'ÜfÆàôR>wÝðÛÎþÈd&Ð}$xUž»¾êíÊéZ¢%Û#ü'ËA7©Ú®ðî N}î³€y똒ö Úd‚jžj[Ð66^^Ÿªq6É ¬ÙŽå:«¶¾>íJ,v=T·` p:m&þ‡Æê¸ÔAeâÕ‹¬ÿU iö›ó›Ö`ª5(»k÷qPí¸ÊGƒÁi]Ö]Q£óóY –¬ ¾å¼—’¶ ƒÓ¹‘¤Dgw ,O^'Ö‹VÍ×?¾xbçsÍšxá‚Ó`vG82H¿ÔEÓ6ïcû#2¶sö5Øh ^Éß§ ×/Õj08{±Þ§’LÁ÷Ðêð€Ø|‘jÔ ÌÁàTŽÑU»søƒá]voZƽ tð…Â\+–o2Œ{ÁB¾œ¨9hî;JAWŒó?ÖÿŸ‘©ÍÏ¥³Ôàx$=ÂfU Œª“UD`pºJc|íXñ½ß{WÕ´ÜåI"ʱ:Kc¤&`š#íÿl3Ô˜œ½º€]ç´g2碟‚Å»­¯boâ@SªæäûZì}˜ÉœÕù)àB/Áòû%Ý`0mÂú'„q§´Ž+`S‘ö t×c|kV°ýÛûæ^uXÞÉÿ¬¹7 4¯¥×8SbpOj]F%Á¡† 3ô¦¿ÚmÞÆŽ«Åv`þÓ+× 4ÌF¼wfScpú©ürÓDr`7X”e¯ü ïÙÖ¶<Ö¡mÎk¡¨c`óÁá,ouè|O»¬°®;í3ŠøFd—Æ £k¯@ä•Ð ò#ÅZZÿN}Ù7rž¬àKñóáÌvwzÄ“;èÝ+D¼YoÙɹa`ŒåØOÊG8§á¿V=Ù½ƒ‹ ›ÃO㬦åËá™­xŠ6¡xz4{ªêÚï øšŒ¶.7‡û€³ôDJ Ò[0¦Í0 A~²YnPu4þ|µq¡Ì„ç<¸cy"¶È~JPÃk¼½$÷÷'äx#{5fn¾/¿4~…-ëžô-…-4. ›¯C~¶YÕÑä*³ñåÚ)'¾É+B•‹Î¬åÑI VˆïàÌç•}NÍ Â'”úïß æ/’ÜiBÀí¨)>ËãhT*‘©{‘ÿ5æF²/§OÀnÉÚüÀz|ˆZÈoÁÕO\yéùØÛ*í[ õSÅС…Ú/ãà™ÝO.¥f‘•aÈøš;½F"?ÁDþð§í;·Õè{üXï=࿨~¯µÅ³ VS+DãGÊçr^¸^'(K¾°&%G~©ø¹œÝ]†ê+ê§áªÈô jO°¢s3­ª÷îP%Ä·1>õê×x \;¶½éþ’+ðªs׋yT>Þ¾ª¶æ)ˆ¿‘jÕmÈ#<ç5¼¼ÈðŸØïz<Íó"HíóO^ºg€Ú•nŸTèE4î¹õJ‚ŸÄ ýþ>jV Z~Ów÷šD4ÒÃð‘N·~òͱɔä»Ðyšñyi³©jçíL'­ÖPàWŽž{Œâ3ûu÷©!»>–Ì…Á¦ç|ÉcÙô(Þ"Ëdp‚™ÿ¼r!Û×Á· 4Áy¦>ÙEã¶l§]×½@d0þiæ ÔRK#ãÈî›g‘ G¼Œù¦ ÈïáŽ3çššŽO0ñ,±ÆÑJ`1ݼl ìóHÎJ|ÞÕ‚x ÝJá¯äœ/AÑÁ7}áj/¡Â£ú"%ˆÇ”_Øe§›6 ÂÌ¥’+hþ`öв[Aü©¡÷ù£<Æ ­Ûÿ@òýQ_8ùµQ¤oR=ð홪ð,H1áNù ^–+–gtHñHªÅçGq‘m ¥Wßë™øá*ê­¢{õävæ a°M?¦€Æ›±ðP©9â•Moqvž>Ú­—:‹þ°ãå¶y ih^³«j-1^Ãxß‹< öl üÔ½iKÅ_§#™s®î7qŸäúQ|X£Ê[Ôè}•¿¦fÍ”ðþ‘Õ¹+‘h<©Q‡|Cþ-ÕµMغ£ºK^3R¡ï'–+º7Ík†L6)wŽÄ‚šÑ¹§®ˆ/!÷:nŽìk}M–ƒ†—ÉÁ‘ØSbÉ7ýÞ.(‰ê²¿TL¹ãÐØ¢ñë=o?GÖ^¦ÉùyÏõŸ8 :ÿ§ñ§ÿÄi@ºW[‘ “ïÎ`À3@íÈ„¾c¥=òã±×‘®ÌJˆŒ^­} ôB^/wZ÷p5FJ k¨¼,q÷=0(¶°Aq|”ο݇ƋlKtyÛì–=?ÿµ Ëh!â×q¦äfu ¼11F‰ø~‹AûçSh^³}X”Nä÷ 2éOç¶ýÿç­"gU º·2¼vÊݱŒ ÔYÖ)õQi Zç)¤æo&—HPMz!¸Jõ„¢o½Ö‡Ý—*ïZ>ãûeXŠì ¿" Fê™6eŒÝ©Pù´S3€ï³¡Š ÖždGÏ¥J|Ç)íèk°Þ!Õ•pÔ?6¾²ÂÆ_P¤0ÈùiP¦oåEdd€²k‹àÛä ŽºZº]7ô-W™[qe\z›8•$]ì¾”þ>«ûöYay®šMŒÖ\r¹ :â4òµ?€UÌRGûÄ2Ȫ, 9lì£:ö>´X¿ÏÜ=›|þÄ Ôi(qõb%ðG=̲–¾Ž/mŸ{e³ùÀòÚè‡Ïí ¶_NéŽÖ²Hj“ëšÔÐv‰ýE’èâòq$'ˆ°8k¢‹Z«Š Mv- ~” Ħ³õWú±zB%²¯ïûs¹ö¿—†¿Ïm±[ñîIœì9'fºÞÇ`Dº×qÄù9àtK/'buxÂÚ3Q†6É yÂùë»B*­÷|]ó« é;}¹9´•ÍÞ÷‚8cõâ77¬ÿ$±VA·…ÅFÀïïͰ” ’w.«˜~ÃŽS‰8ÓùÇfÐ +·â­éJÒǾ™X>QôUÿþ Kô½ÁDò'H¤M×ôíÆè;þ¦Ó¿éN ÚKóéKÚ`ô¦åMæ)yÀÍ=­gûô?øµÑP³,t#ªYÏ×'%A²Ûèà1¬Ý'þa}í¢y 2½Òòßy 7kã0™äš")Îib?@4ö«ú‡zì<¨ðeäÓ|úIÐ=]7¢bù $uOóKpëbpzaí·Ä®™‹aÂõNÐ>—´È X>GWª­ró‚3˜È5Ç… F)¯ÁRv¾Ôɰq^­Ìc³GFÑ—@}îã/¬3•M2s—=%€ÿ¥rn•:O-)jÇÆ#ÕžPf÷(£>eºöG¢ ¾?Omé6ž“èöÒòĈ¾<ú‹2j¿é¿ý39».ɰŠPÔð¢êWAšhëÎ3l¿ í«ãh àEªÇûM]»þ;-¯È÷¶Í½ÐÓåïb¼6 ¸#Š;žb×9ÑÌû·Ö³Žê‡ÖÙ–4>–´ÕÊ¿»}"ÀÀ°;Nä[¨µ]ÿ¼3—ƒS‹ÚÒæÐÑów»™4ÙZAŸ½ÊHâ3Ö¬^ \à$ž7Žk!ƒî§ÁjRÁvÖŸ› 9ÓÙ)7Àß¡Ü)ïºñÛõܜظª&.=­ä Ǧ¢Õ0³>òÒƒSΧ,ùnëF‡5A~{†±{ ;®”s×÷ÂÛßßQ`8e–/¨4z-$`í¬UÕ ´mžƒQë|‰hP'Mp¾¬€Áá.ì<ô\ðä}w£rAñgÁîØ~S¶Ô´© lƒÂ>\ÂXPVÕK%Eº’ÓÓ‹,Õÿsø5ås©ã+$@'YGBÊ„tL{ ÞîÁñß/~é- âÙ+ÉËÝHW@nUÄ›½Ÿ0¾ñÓ›ÊsSÌùøïí®ÎNx3üü/jÍ#³„ñˆŸ´yLvª¿!d¶o‰ø²ÃÂá΢ÿ3)K'‘d‹Ûù®¶OÐÿ„}9––‹Ê+«þžµ~ÿKè eÀ/d¯FÝElQ?N„ÞƒÛDzM¼ˆÿI Ï—/Ògö‰æ%ü/—½†‘*~@t’gq`鼈‹=Šä_p®ä®Á~Àü¯çÛr¤R}+¨¼¹‡çœƒ¢å€4pÚ¡¦‘ÐÎøŸ=‡3˶P=F¯°rЉ†â…nÆ• žŒØQ¨0ǃpnÆ/nëK_êš Î®ê‘vÂy?Þôv°á!^1þ-Õù£¤ÍëøIW/1¤ã#µš< 3‡êoð,‘?P ¨|E^w²„¡ñ¡ûÊ{X–À;âœíI<ÿ® vÈDKO½pÅ×!œÅõ ÷ã–Š¹Ò ô"õ¹oÿÐá1©zöíð#ä™åï7,`žåL5¦»!})]`lÀM`ú×s"¥êÚm©ú3sÀr Év.ñ@$ÛL#æMˆç¢îL÷TþL£qy„u ¿Úlw9ÙÙù-™ÛD=J| $w—£íÐùš®ù+] ¡<üYûŽà°| äMõKö"ð'ø­‘Äì¦m‚ž ¿µ»9¯Òá·óȲÑyŸçN1µJð+…_ii9|ú Ð~~plÐù¯"N\¹uíÒCÔoóa­Wßð¹và‰ŒÈ¡±ŽëÏà”€—sÊÌ´GúêW¿^ú Gì,›Ûý7ÀXuP°äÑ<$ÝûGûç½7ªCë½¹¬[ã“L`¸ÙU“†âK0<ºAó.ÕWN7ªôãx5Ð 5D[p#Þìßy°Z5×!nà\èò*IG|ä¿ó{¯ó8ý>o[\OD:Åç­L¦_]³} ²5ÿxN"¾JöÍ ¯R Äó«U7—%(êqèªqÙ7Âúƒ_›=FâøÇ8e¹¢(@VX†ÿLù“XÇ—ÀÓࢲi­(¢PùGÌ*T)ƒðË_ž8ëîÇð³zò×V¸P\ƒlå§š×ÝôŽ…‚^Äûº½ˆÜÿÙ++×Ë?=Ïm ;ü.uVòøüî܃sÈoážÃ3¸œÁM0ŸÈ„ô«Rò/‚ ïÃE¡ÁýŽh ÈÁÍOˆO¤ï~-tñ½ÿÄiÿ¯8 Ý×Åi@÷ ^Ãþ¶3?¿¯œ8Ù žT7A¼ž{ùVîûg þJÈfaù;àêû+9‹x>;!›žvêJPÖÒ>.Øü‡¿N’Ïu¿ÊÑ}‚–û1o%Àû7ƒö@î((füñŠþÊ¥«€Õ¥a­Yˆà?¿%kâ§3†ÚÝeÀ±ˆãËÐvÒ¾¬€üuŠþ¢¾rŒ­«æŒŒ—¯Üû r"S‘ ¢r„çìö¬—_Bqˆqm­å¾]` ®¯½[pd¼—NŸÃÆ¡Tøy¶´``ôýâÚïƒ4G¬!×ÇJ N–Bë%Ç'ÀÇ=?}g â_¢sDZûuvæ2³’TPê )óŸÜ Ü Dí^bíH¤ÌnTIÌþ.¯÷ù7NVOºq<”΃#ý¼³œ$¿dØù¶Îï9™ûuLÿÆýžJ¸+/Þy)šb˜½ Œl㌕¥X{Xbº‹¿.ƒÄ‡Í“À9HÓ]„Á‘ˆô9H˜Ý)ºœæÅÀ­S æXÿ!DµA B¯³@:G-¯Ž8Þ˜5cùIîz «Þœ«£k *–‚Û/d`÷õ¼™‡Y¥[AðiJï~.QØñOŠÁ±Ѥ?‘» bÞÍû->¨ó±ƒ5‚êØø°ÄÒ^B¯m€û@õеõu`qiüyÂà<¶¼]Óøƒ< ¬å£fŒ›Cߘcy3ê3µ~{Ï'‚bð®½\Þ@±ÿþí‹!u?çÓcM=`<ÏRQ7úò‡jø™žÀiÐ}³)ïR”vžÉ'9°|,•W`ÆÉÀU¾5~!äMš/oÖïÀàX>  $†‚VQn-‘®Ð<¸ZVp{^ä1¥ÍaRåµ$ÞâÀÇê®c{ƒâV8aü4Éö 4Ù•õ;ò‘Ø0 Ž«ÛúèÛZP9òò…‘p&ðœm‰õ«ÆòÙÔ‡¬Ô¬çƒt_yA.° ±×_•Åþ/çQe·w@¹â@b¤?%pÛð¾zŒñÛô7ý›þMÿsRP;Æ­WàOVŠÍ{WŸª¤¯ {O#?•Óz¦,³®T9–}ö!Ü úŸXN“{pTÔYåêÓQek…¯˜^?ÖS^Hôé p ¨Ä“ÝÃ/ÄJðŒaù0ܸäK‘¸YÐ5ðÛ9`aÙà[íÇÆñ‘dÍÿEÿ Š2æ¢ÎÎúXß#Ø8´¿~ܶqŒ±ö)†ƒ<ø-áCy‰Âœ @5qh쫊3aÆÎ)š“iX?£mq‚i`w3pgãkù¤»bOÆà$&ý¨¢¨@ÿ’êÆ»óG€ËúÙåeG¬ßR±\Qn"†À'¸¸7Ž|¶}ÌJ!¯TŽG¶ô8>ê1œ0aîÁoL±Ø8èLYªg–Fø@»»R."; (.v- $`pŠ›kù) ƒ ÉÄ'üö5°”ÔÍ–‡ù”É3žæÚ[Áj¢üeÀVGºë'XƒfßJX'%Œïq>tžH/2g>¯ÀÚE¨¶EÕ0Ï‹é+HæSOãgÓÀú›•÷ÙÎféõ3ù¶ïýóµDÎ"d/¶UÄ%öì’+0_yªÂwx¼„7XF±qsUJu}(úf@ßÑjs¥ëÀUïr{Ï…›œo²}ó h™¥LîÛݸÞÞtì~VBr=…»ø88~:•ÿCxK6_0UÃŽS¯k¤–*… ;«sßîÌ•¡M§±ûÅÁ­’pa€"½kýO³àM^iÎ"'‡#•Ü÷ôz†;|ÿù{ÿC‘%{ŽÐ~Àé’Eùë|$×/œ5ã}#°7¯é28|߯‘¡8 ìÃÍiÖ7Û€3€Îw鲨ôv*\{JÐà7ÀÎÖuâ2°í1*TFþ ðËm³­”}HWE$ñäl¬hÐQêHÈBv| wTr]î¡sãƒVÁµ…`aÒªrFú!êë¶jš1(N€ §Ã˰žç¶êµýÃÿÚ‡ÃCˆïà®Ò÷˜’(VsV/á>¤¢ó¼{‹þ Ò_öï,Ÿ  .Æ:f{9d_ÇÌÛ_þf€°Q£3Ä·ãA€ö½ÞÇm‚¿9 ½{Šì 7*¯©¡gZ´8U…p%»våø×G™Õ+ÿ;ÿŽÛÛñé>Xm=kÎ$ÿ;â®VÞÏ"¾Œ•úûùØN¤sáøð°ðCpjèä#=!G–FÅ‘Yt®ä%K7%šÅƒ˜d5Ñ­ãȯ#Ùåy‰Ü¯hþ8o>Ÿ¿ž‚Žç†æ‚Ðy}~».9QñEl_Æß~ù\B÷hî‹æ ýV§1‹tŒ¸§n­á×å@q-® Ë #þ/”ÏÍÿ9 ”wd‚*‡ÌãB5¤;$™¨š¥|„ü@‰OˆÝŒ?N’²7vs qDì}½›îÒ'ÉÆ}«Êòý²gR)2« Ðûͬ&9 {BVʹÍúcW€Õ?-W† ñÌ+d—Ï‘!;dÁÛ*CJ¦: bíá$å‚ô],œ ;ùLë íÒ ÊbÜDg\Ÿ#]IK¥â1ùöjؼôøBaÏ­]»ÏÈð𺗮ßu„»ðÀÉ,çŽÅwK¡s¼éhà-!hp½ÊÿtñÑW?´Óù|5àJµŽ8 ïP‚Ò¾5„0ÿ~ïýs8û4P‘•`ÛÙ€üâsÅ´¯›6"ÉÖâ]jXj=(®¼ÞwqTÕ#w³V¸ùsê£"[¦Ý¢._úPüú KžPäM÷yK[ýFÈi|8cƒtb¾Fv†ÎÓïdRoŸ«·´J:þ°ÏU<º¦ŒúÝŒ’çæeP;³áðÊÅ—¢*®©˜@ý±Ã9…Ñë+H²™¹(¢ùX¦7àÀÊ:DÆ™\)êc°ƒ:´Dô á>¿‘lÏ[ët[j»4ŸoÉ‘çRæ”:¯Ð¸œí‰ôF¼éM>å–:GPºRa±7ûy«ìƒ’?ª‡Î¯ï¤Þµ ¾-£vÖêv )f• ‘æØ ¤ì¡ Qœ@ú8µ ¶¡|J ä´÷»¥l(ÿ“böJ}•©DM æ¨^dG´ü>· ëap–•~zÆí½`"ôM9˜z…aâ¹úX»O•w ¸ºø7Àœ&5˜þûû;¿xÕì¸o†ƒBù?îfƒâÀÔÞ{!!VÃÚ#ð©ŽW3V‚ÊAïÄÒµû xéù8 å= ŽÕ ¶ÜpBd½ì¥¦ìf€ƒl!i6kȪ4èuãaÈšîÏ`ö¹’ùûF18öÙr »2À1Ö=¸éªêZ±|‡x{ÿÞ=§§&mî㮠ܶ‹*±öº"IÝ·uœéhFÚZàlØR8„½§•>;aO~Áp¼¤Âv¶ÖÀýOƒ“×z3=ðÔªH›vjEƒ¤®—sr?ÖÎ…„Ù#«­rPÊk`‘»ˆ_÷˜Q¯Á¶‹(ÿŠ…/ã s¼Ž¥Óÿ pMò¶l`q‚SM­Ñ) y ÀróB®Þ?±ˆõ#XM|.ìþWЪ!•à89šd$ãWÙ?`ûcüì¥SaÀlþ˜Y( çøú.Î`ËãÈ¢ƶšvm:Í^ßAÒù$ï%=¬?þhå쌵— ¾fv³6ë(H¥]ßtèÆúi‘°,ºcÕmÊç"ÅœüˆAÐØÉº&k—*IÜy’Q0õçÓˆq z¤kî¼ÖÏÂæV{÷O:Ðñ_ùºpÞä¼ûb;±ã€™•¢‹Œ$Kòd’•ÆçÙëW×bõ"R4÷W'„ƒ²ŠEÀã2™Þ«ouc¯û7ý›þMÿsRpJ½iú>¼vPdï]—ƒ/,08Ë ,¾·™À#›]*À÷8ß׫:~»>™]û8^lBÖŸ¿eÚÃd»Ÿ¯cuÚÚøwB_ŒÆÀèÜ5Ü!Š1Ðj·â½G©ÁY°ØP€ %8e´%6[œëÊž4MØõЉì¹rŸb/8D—ÿúlñœÆ+NòR`uÐF ÷ß}ý¢ ôIu`2,;¡ÿ ëOÓH£yt"Ð~tµªÔ“çŸo—©bù?{&í3 aä`ÄjÂeÊI ®v—˜Ú±|Õå}wÎêfƒi0M=‘ÐØ]vÍ­ˆhÅà¤~…¯Þ ÔØ«·÷ªÕàætòíø†Á)îöþ”)ËÆ4ÙUþ Öüí~{ƒ3±‰`þ¾¡ïî~6Qª/N¤cusJÔâbQž¯ÀøEĺnP?:¼Ú7‰]Õ¢‘9ƒåöˆ´SàÈkè>bã–ÚO8©‡«p‚KÙ4k— 8% œûˆ½·u~0Ñ*tXü¿JTm œ‚]òG °û"“—y¯ X(ÁÎ~ Wðù °²I47kÃú¹0¹P Vt ì|-\gmÞ‚Uà—׸Ýœí¼ç÷½U-àzr¿¥èÊyp:ÕÅ9ÍݧZ[v^·yNN/Cvļn»RYö ¬_?ói^ŠAEp>2š]C>öw­»hcq&|3Å&£`§q@øÒ™B0¿åvÃ{«ÿ7ØVµˆzÔ ΦÔ¹`ªWïñPŃ3“©¢”øÝÞucãÀ:¬êv©+ÚïSwä“5#»¨²wÉ¢3€að•ðYQ¤· .=Û²YEðë_"}z¾!ܘß>zò‡ +)ûV:ò[ÄòO¸µSŠ/m¾#üúBA7ƒŸÏ¹WePÄ’ll$¯ÐùˆtçFRø'‘(4”žîb 0í³Éñj!ü/~Ån¹õ7ЧGkÇ[ð~ùøJôü$~-±ã£ Þ½ï ×$†SÀvöÇF ;ÇÃo1?¿ãÎU ¦#1úlÀR›s|èÂew.Az;†®n\ãÞ&`%åKÙ¤þŠêû¦ðò;D½xRûö<°ìŽž>Mèü;bœÎãH5kÐl¹|Ì?§x\ª[µßöÑÏHßA—ó¥Í¸XŠW<–éü ~„¬%´ pÆ1ϧVêLã§{ŦècÐÿ¼»ëã ü-™Q®,Àoÿëùìµb¾•¹JÔžº¡œû%÷KÐå éP¤›ÛªÎ. rB~Æy‰^/.×€h´wðùQ¤["~èÂé3eyh©å«A¤émØ•c?føé+æVWçAA¢æõ±ˆ™n[>ý€tó× õP»Ð¹\~:4ì4ƒYÝHw¸Ñç/Æb‰ìæx¢o¦dUHgf¦¸sò‹¶¥¬\6Ô÷‡±j]ž³ç²€9*{T™Ù‡’¬‹:z ñLgˆNß6oî5á&]ä¯kÅ¢ÐýUâ )ÅSn-ŒíÅoz·—"ܤ4÷´ŠAÒv=.yò%PBÈÈjÓz?üü1‡d¤O¢nŒh~Ž¿L aÕÇ‘Ÿ5}Á躂æ0nV¿Œì£e伤„ ñK—O¤ãî L‹l–ì(îñò®s…Ðx!!ÊÜ2U&:Àµ‡"£‡¾£ù@‰û‰lÂ7“¿Ë©Šxd‰D¦ÏMUÈß$Nt&…áñ PüV·¬¤‰ì_ù>“ÇJ û<Dz Ǫrp´ÓÒÖ_¼CxnCÚ²žCŒx 1•š¸ŸÜ1ÀÁd‡üì3E¯_;„øu%Ͳ_VB@ì3ÿ‘¹e‚žøW3>‰ÞA|¶Ã8½ÝË3`&‘ëÐtñ(ú]gv¥ërÇn:àî>{æþ«ÿSìP-Èæ_Eâ†^{€çÞ·Õ‚âZ Ž5‹úSô¡^´pÕY¶¦ã×B 08^êP·Þ¸\P•vÚv­Ö¾ŠSŠ%ÞØý+7CùìÏ@ÅÂã™B/°»äh{ïÀúKápL–µ\ùzvYË3àJr/ü‚“ÄŽƒ,Æ«tÇNÛ“§w\ÎöÇòϰv$Ì.2“*ÉU éøšÎ.#¤w~Ð>‚åEºĘ̂EaEéE¦d{&M’a‚µÓ N%†W¥@E±rÿÙ+ $Ï<é²&„Áцڨ±uè€Ê‰þY©¨ÿÎcpŒî"¸Uçßã»÷XV,ˆ˜˜¼‰_Åò‰já8F¯@ÐR¼u©ç£9Hù\™èÂúb-U–{mš¸^œ±¬CÆþo`plùîËk Rñ½¡ÃÄhE¾lùp}EÒ©©t é²¤9Ï"T ×7Gi±¸—Û7G¢ÒA³2,Ó˜7Ä^M?ŠñÇþ7ý›þMÿsR0Vqhx;çöRôC{g6A÷'•Ñá¬Y'‚÷_bã:ºÃüN ½O6JÚšƒÓ óPÿ¥‰“¬c=í©u l¥.‘ú{¯¢´ïá÷vö g±uÈ­ ¤äî¬ÇÎÓºš×;T¨#ÀÒCû‰f%¨I,4®\ÃÆ-Õmyʵ ÖWd9Þ™õýþ³B,=–¯Sû:R]È+ †åŽ·Çî‚ Ó¬aÎ6Fóê“Ç ÀXŸVï“ïiP­Zß‘Òxû¿fÇ&.Î:‚%Ñå;ûÞ­ƒÞn;µ.K¬žP—#*ŽœVÌ"…J}Ë/‚æ{¾¡Ôjìº)ß!ý1í èçÓi|~—â§žø>hÀêÒ4Rfæ’¹Áz]Zè\K$hÅž–¢ñÀêë”9ŠÔÎù=e‰?AÙ†[|ùèily–{¯µ þÞß-Qœò¿PÊQŸ„o–OTy¦wV÷X˜~KÖÍ?JO~zƯcu_úÙçèî¿)~ûϯ^€ŽËÙ×ÉýœÓ†åÐÞ pª|#ž÷ÔŒ;˜Ix±þõª·Ï\ª›» Ô,ÊgºH»—±qxተ85Xï[ÏÙ< zª™±›>˜xD _šÖEUrì$¯Ï:lç€Þ¨óä¿…€Ã¯]oøžs¬Ó'Öûý MÏWÞß±vºî´_ïÛ®Y¾ÿ[ï¦jÐ܃õ›§ùYÐ;3–÷Ö9ôS„ïÉ!°”É|äbxý÷yp$ƒìô|ÁÝ'·AùágÜp_ËŸ:œ6 áÙÈË~“ôzdGFi*•ôx¾ Ø‹âÔá!:oRyÖ˜$"] ‰t&ýÂ! ïô f%ø‹ÁÿÒô¯}«åHÈ/Ôœ8îÞô ˆºeª•%¿§¡­Ñü…ìæÈÚê’îŸ'fÒ› ŒH@Z¶ï’aß ÃëKgcÆù"Ãxù¤—`”».¼àŽìܘ껕çÕ\çðHïG¹#†n%ùsgæð(( 7vò5vïèýhï?¥ôÛ‡ÎwÌü)åcd·)[=ÉÅ#¤vb4Å+"ÿÿLg{Òûú#Pÿ —#—ÂOU<0o#èÅð³Rý´•>ãøÕá¶gMH_Gg{ÚòqŠ«JaÛ÷¨¸'{ÕJg‰QûeîöÞ{Ù-ÑiI¤µÉ»¢ÈBÉj=zÞ÷c„)ù³¢ÓmY~Ì,S;^z Þ†üF²„µ3!OÑ)JUPyXîñ—¶Çé¡úÞ‰ñ¢AíÇ×fԜ$Ü?—…úe<@å…(òs%6i§x3ĶOΧ—$¢qµÔÙ5mˆôü¬ºÃ¸È`|JÖÕtEõ›®ã^Ó(Þ!o¨dÄÃ8àòÚ“ì'ŽÔëp ²?´0ÉX2pácë¦Ä÷/B‘'"SlÆ=#kªtß°‹i„ìHFº;æ[̼ÛÒHŸÅzõzŸZh?ðõ“Ýuà@qQhüB‚eWýÐ8àýIDÁrõ^F¤(®"%§±î¹ëhœ1ð2ºrúûô‡ìO"ˆw£™¨\>œëˆÊ ¬½ JùûœÝO“ A°/ý_<ûçd@óÚ® [1ȯ½à7×ÀÏÄÍ଎*;Ê^ ¬c›ß-ü~éö¯žhäKÞäùÃŒ%W_J#Fñ=É“Óvkt× £”? iŠSÉ.MA¨„¦^¾„⨠wlmæ‚$ÏÌrâY“¸•Œ ¾ÉÊ’oÖM˜4—ø= q©¤z0/>ñH²JbÔ>ä·§Òˆ‡9Ò32 5ÜxY€üÊ©Çoß°'ÿbË<ÚÙÞˆßàþFF–ïƒø¿ƒfšÉ`9tîÅý2Ô®zDë‡é«‘®×<ç±áhxÝ 7ñFq1åýÇäø¦Qw¨ #HŠ8¦ç^AñL¥^3<´ Fü)ûÓª- ù³|Ò éðv€ëÎÈ£„h6Ò1þ@ñN,sxjÎßÅßrd@<ž¼ZÙ9ªýÈžÝF¯ê S½)à·©&{ýµ’Áð;â‹¥‚Ž}½• |,Z·K÷!¿ªt!]_ˆr‘®T1ÛÚå£Ooíá¤üãû ¸±ç”0ê_›½cÎDYÞ€ye3èä¿§Êÿêÿñ¤C[YŒ6 ÂE•{ìZ_Ÿ¼ ˆ#=±|uX¦ÖêнÛö A²dÞÅuÝ'Ì£h¼$úÓÞåùºÊ{¥¤^‚œôp›³ö>R]ÜM|%|Lʉí©>Ä€:wc¼(6n¼âeчûÄ™Ag¼ŠøgŽƒ[Ùü*Ö?¿’cºëSл8¦£ÝB¸O‘Ï8¢±q<¨$ºeĵAk>XåðàéÌ6ŸóÆÆ¿¢‚Ö' SAælÿÒB `©vtå –¡‹Yõr_Ö„V¯j_àÈóy·ãB<¶¼ÚÈ*æ5—©ç²¹ ì'²p;®Ôcp4j® MGåAfþzŒ’çïuÒñëç–SÌö¨E@C3Èà¯.¥í{ì«mÇ¢8°þH„Yâ¾ß“i#®ÿ%ÓN`ÿH™ÔY»ƒ²ÉIª¤~*4ê²ãK È¿Xphk'Ì8#™0Ò ";iØvÊó— ¾1¬Ž‘7Ó¦õ’(È,_¼ÿc 8¯s±[ 'Xf@ozœ;œŸyɸú¤!¬Îcpü:7Õï l€¾´·\å!þrÅkÝë7cwŸµýUP÷]nž=÷p‰W'â }禧Լ¨XÇ¢-½^SJ÷Ï« µ|Úy}³E3—|å³1$ûì1’C:¬í§öÏËÚ8åDöPUŸ×ÏîÏâiTóñ² G«uÙCgÛþ°(Y·†"kèŸв6%Íßt;h‰ºOK4å6_W¨~a®F)c+Pöã¾Û?ÌUãÌz®Û¶)êë´w·ôÙ܆ò}³å6}uŸì´Šªö}ð;iŸ2Ž8…ïžýÏtµ®¸owç—ãGªq´ š#Gl\ò•¢Ö¶9ú£¾Ú¿2ÉþâDçLµ[JÃÆÆ¿1‡6liûDO&ÞY’Þ¾@ÝW¦XÔ¾<ùÔß÷gµÇ·ôLVýÐeÚ†ó™jÜ,öEéþGÒ7PªÙÒë¥6«ýjY¤UHv›nê÷½óÍ{߉¡”Ÿz²µù.5>i£?0l’ª?‰Ø:üiú J9èíï=Fío¼~Ô‚¦õÔ8dZâ×Y…v”wjO|ïOjÝ÷(b¡S¨~Þ¸û>am{=¤Ô3i95{ªzÄ„ Æ=Z¯Ö‡K–ã/ä|èIYk 7´¼®Î«˜65D+ñ¢.½-¼M|Ïl§ùzj\0á[ÃÙŽ·ÔüÝä'üÞøû¹eßæßÉjÜ&æÒäS]ªqBz÷vû.n”îhuŸïS¿_ÂϤsûÙ©ãuôãÉâÁ”u½fóœWÓÔïwjÑž&?/«×Û]giãäS”ñ0´À`—z¥l\ÜnJ¸ÅßÏ;÷éǨ}O¼&´2TCÍss\Úë›Í¶êdÒçø’ã¥Õz÷¥Ž¬é·¶Œºß eñ¦¥6“GÛÄ!Y¥Ô> Góž þ¦^ćí,_I¡Û]uJ•ÔK’[E⫯Æ¢'çwûTýùߎ«r(]Õs9Ô¼]ååU—šV<©ÅáMz3¬ÚóÈjŸ÷ÑK²Nªy¼®^ò} Ùœú:oÓ$µ/hŸ²S\|T–ùªµZAØCÿuÁ%u% ßV.pX§ÎçjIÏ/N‰¯Oér"[©z«èè˜ûÅ۩שõ²g/¬¡ðAß÷Íbj_K÷ë)ߨqþǃ•äî³#{›‰Ú?Ó|ТiWsTiùˆÈѱe~¦ªùÆ¢äó2áåö…í–oVûŒÚoþu²ù}2®q³jîU5ÿZw¾ñ¸€cjÜ+òdéÅSšö%ßãC«YµTóníâæ‡$Ù©qdŸÀ³mOq#‡)Fg-VûZšŒý¡”Z­©Å]ñ}þªÑÝx–I°ú\à—›5Ñ}¢ÆcCŸ«žÞžÈ½çùh»íjþªùÙ.Á]ÔûüßݧAî®õÀûíJ^hªæûGÍuÐI%ó(¿ZºÖ_(%AgEyCµOkØD»_¾öªÞ;oÖ´˜*Ÿ.kª÷¾Âõó„n,L*°Sõ{nÍWkz¨Y^Hž÷QåMùp³Ÿ- U«çâM»Ú÷!Û9³3Z·S¯§A¥oEÇÆ–ìoIÙ!»kΩ¸“{ø7É·TûZm?j—ã“É6뎺”§p·i=~¨uøÜû4›i;öÿõÄbÁúDŠo²ýóvJ%Ï«éGýi¯3ü†ë²p¤”èÌ.‘SPËme=NøhÚ??nµÙû;e˜ï˜2pü7 «LÞÚë/«»cvýýÜ®ßìÛ (høÂ·÷k>Ð>ï&7·é›c)ÅòÞ8Öc((§móñÿ˺Àå–/ö«7º9Mp´êâV¤÷C¡“õpM»òoG[µ9w« {ÝŽ dFÇasîiÚéUØÕÇsÙ,íõ§é©Tf[³?÷iÚU¸²®Fø›dr±tïTï{.Uª}UìÑ×®çV®þ“†E¿‘SÝ€Z×z<#ý1•;Í´×:·ij½#äó£RoýëõÉüÁ‡Ú~…Úùº6§²Âï&R¸É‡ËÝÚ&gk§‚3»´unÞƒ{µx÷i%ÝèßyÒí±ä÷Ý 3«í­iWÑ”fuÿ{]èò±âöQå}Yú…–Úq$»>ΈF¡oT>¯/9ùׯ½©Í6íó†ØóA«^PÒ¢øÎ×f~!¿yEû^Ú}ó<ì¢o¸w>Îx0jKò¶v¢ý' M;ßÏë¾N"6¹E-ƒ-](ðÀ=ãÌ Úß׽̼¾¾[S|û‚¹_$Ï{Ë~œÓŽÛz™l^zûT0%^¯ÔħÜ&ò­™ó©BíºÏ·' p¼×•ÂgÿqláWDÎyϯÖÞ÷º˜ô·ïr&†¢sò‹O7En#2×ú¶õÔ´óZ³Wƒ½Í(±{S/½Àä³yZÚùÙÚýuWÍmd¼³.EøÅÒŠŒäü«úÕ4í¾.‘¶…;,ÿæÊÀ©ÖÑãv’Ûºûy›5ëáüóøÏã?ÿw)¸bçêdQtLžýì#ßÈmjO—š´nSïØ¹–”ØÍ0Ã~kù}[Ü•"L «|¼´õïçÖ•3ºµnºe^¥}yÏ)¡ÔµãeÉûEûNÅç´ë´&.Ér·ágJ_»iÞ†Áû:kÁÈ6šv'Òî,Zô€"§vÉZ\–|®½ª6§¯v¼.~D™ö…í(õQØ•nü#Ez¨wëÕíñRÊ—þK¡z ÞP™¼§ì=j[E»~häžAþÉWZPâ‡ÁEºç‹)ôÂ`¹-5íë†íºWóù¥Œt«Øçïu²iê‘»´ûÃzNŸýdW?ŠÎó X•ñ™ÂË ¯^!z¦ÏµÛ}ç6ÞF¡›Û•6q]D~cÝ÷û_öUr|7ÑÊÑ…¢û,0ðjiHÃfðN{}ç3ôYl@ä, o×,z†Ã3òëÕæN» í~Sá-ºéLZk@u‡~o7¨ Ñì}óæšÕÕ¾¾ß»ŸíWåñÕÏ\¦§ßãÇÊJµNT¡m¥›)¥^AàÇý(ºÑö kžkç;„›Ä»ôj0—Ò¯^v_ïGTþL¼‹¾výÚÐ§ç §Nð%>¡zK»m(¾Á°/ÏÇkçc‡ÉÌe©ËÎRÒ˜ÐáÛŒ<(d•Y›oµç_ȧ®}\Ë5%z[q§q|…zu¬W'B[ÿ^&ü€þ®)”t1"£a“oÞ¡ç±A¿´ópƒ‰3‚ßSÜ“<ÓìˆGT£®}ÐDí¼èÐYÙºç–T¤ÄNËËìúB!÷«ùÚfªº ³-S>éµW×ÿÎã_{­hNn}òj¼¦æÉøŸµÎlo¤ê›œ“§6üY»Å»u¨t¶äû.‹ý,4QõD®)¾Ùv§Ý(òL…“õî¨ñ0»êù5ª5-¹®IøÓ·v£ £·R… ôœÂ8µžŽ{hH¯w“­K¾¶_´³Åˆ}Éïþ‚'eÔü(·Ug'è¨õÒ]­Öœº‡uŸ¤LUãk¾K]m6ôPõ ‡î®šôÍ™"óÖúLë©Öûq·¹w1»‰šëjïïtgÏ5 l]v®ë}5~c^0º®½º/*}×âa­:dv»0{ŠªÓpkõ±xÙ+5ÎbÛ=gÐZ~ä¿ËwúôÙj\ÔÃ-´QÝU%_WÈy7ùÓÖƒò½[À×LÕ/NóºGÍQõ\&»zwÎ<ü÷yÆ4|ø€še¶+}j¿µO Ñôv)M#}ÉýðžV Z•|¿Òû&7vRëÅ•ÿ¸,qêHs2;qo´'WëÚÛžSúÃN5žbtçïÍ|é¿÷׿ãFœ™­Æ7½Æ4³ŠWã‹áÞuÏÿ¢Ðé×TôUýoÓ~‘gð+u¾D\IºþlïtŠ/==cQ5õû¹FÕ[ÚPzèÄßy•L‘ÝÎè‡ûªñDÏæ_—}ðPãLÁccúo®;bª^Ùm¬¾×B=oë%ÆmOYýžè¶ú¨>?üŸ0§o?UýYà]–S¿M&£NV¢†¨ùµïîç͹ã©Úý»û4ÄϨ2~lrhüƒ=ORë“êvìÖïDõ9‘?ä¦_ÿ‡bÐò{A¦r ÓǧâuÆ©zåv¬<ºn¤Øñƒ+ÚVS.å^Ïú{³•j¯¢ƒÞm¬G•Ç87(Ù×"áó5Óá“ÔçAÈï +=Bçø°´ùjX·Õþ¡ ÔÏ'¶ZýÑ·…:™Ø=óUõ˜öòŽûîQãuÜ—ú¤iD~º»§µq-y_’ù”:óÝæ©÷¿Íóæù³Ž=n.ÊXv%ÇÿzÔ\xu3ôXžb—XW¹ÑZžZµôöz3Ø6أΆ¡Ä/­š¶íøR ^8åùOšv~ŽáÇwQÂï Ÿ)ä™þÂãî ñÚçýÒoGæ;JjÎmk­ºGîÕô?ÝÓÖ¥•žX¼Å9Ç›|^îãÿ^WÙÕ¹mÃgíu³®×ýù_ôÈ×ç¡Ñù9ÉRLèz©´v=2ݯ£ú:âJžÕó²~ÌedÕʸëÏ£šù— Ç593¹7¹_®[õç˜ Tùbš]d½ÍñtRÖ%>Zô¼~vM(×{+YTKŸ­Ý—Ââõ†ÁÑaäÊÿœùó:UXPäRÔCÓθ\Ý™AÈÉêS‡Î-©ÂhýãoÒ5óÉ,7çÆÏ07ò‹UfîÂd±(uª©¾¶Ÿõºµ¯°ëÐ6²Zý,Êði*ݲw‡¹Úëfãyƒ7¾t$Ž’§¥¿Ê{ý€Ê˜Fõyÿ^{˜œÕô|TJr_›Ø»‚ ö‹>ü‡ö¼·¸:ãÎþ>YÖm蹩kâÉ:l’ÓåÚû"Ë7*xlÚMa¢í«ú½ËEfäÍ£ßr4íl/äÌéoêB1;.÷ˆyŸD._³E÷µë¾™oëVË[ /]Ÿ‡ß¬I–«Öu¿W =ï­ìêøZUHž¯÷>êUŸlft9¼nfœõŸÇÿyü¿óHãC¯-FI-:LYà󒌇t³;´CÓÎ+4±v]¥˜­Ó+ç{“þƒ9—õ+kç¿û_Üæžß{%ö´3+ïMš¿§¹§ösÕÏ"0ájüG"=ï•¶ Ãp+ƒ·)Úºt¿VV}Ç?íIT¿xSXl-2œYtõ˜özÂçô³~—· ”ì°N)#&“í½vÅ+:k×çwÏÎ]#R¢“¯{·Ä¿×ƒM.oÚy®c* ¬á;ž’LRvÎ<4–,;¿©’æ¯Ý—µà}±Ca_ŠŸr+ÁÓø8™åýlÝé°v_ð÷x&·r²õÏ4'ïÓ ›¶+žEzj%mj£içXügYäÁ&¾nÞÚóÛ{QDD¯ñ“4íœfø¿·)Ò§ˆ­þ¬ýt™Œ¾,~æ]¨­;tº±<Ò¨ûZŠ4ÜîåÓa2Ž[ܤsá|M;ûú»Ï… ³ØyàaÃ(ª\nÓ¶«µë›†vju'6d%%ç|~úó7Ù´X½ÉcfM»à1ŽW³?›R,ž±¿"Y^œïòø†v¶ÿÚaÖï¿0à¿÷_ÐÖ FÛå–ê•Nl@À´Åä\É ú­5Úë§° :ÊwyJôºú£—?Éöå}§H¿kÚóÊ¥íœv·Sü ½++,Èl÷¨b«³5ínÃÕ}SJ’áFÏ–äé4;$°·Zg۽›Ò×Õzÿnó"+Ü-•Nþy͇«ùV y•›Ý-s¾äëøMן~rkK©~ÞŸVªú²¤Ò«æ»ªçM\]. ³üâÅ“*^è§êFÂŽ÷í¶´¥Ú×3¬a9eÃqŠûò§ZÛjŸ<¯^]^»æ«z‡Ø}o÷–¿ôŽÂŽ[e¼\ÕQD.¸ÛÉöšªÃÉ<™»µ·£¥ø®ºÕ!HÕ)…͹¾~Ú µŽ‘S|ŽlÌUë ÅŸ*åµ<œRƒß¿|RÕ«Dì1¿Þ~‡Zg(ÖÌåBÃ5m(¥só~[ªùaE—·Þx¡Æ•|¾¤¸q£<…Õu{çj5žÑxn»7Õºj1E•ÎX½iM)Ž<6”ÔýkX©*u,¾¨ñÔÈsO­Ý*¹RÒÏÞ?êªù›ÖsWÿ~üSÕÇįWuÈ´ŠDAA6/k©ŸÏöGýk“›MRçSüv£ó¦ü¹ö¥î¨þ .¨1ékFƒ÷û)ýñ—ëNWUÝ¢O½¥UŠsרß7Ì|å³@Šqœs°ì7´åPs“CKÔïÛö¡ÍÓO(qBûMîOԼਧƒÆÚïWõu©/Ö÷~efEé«U<øXõ`û¹ËÖUï¿Øå}ûÝÍ r[§SA­ã\8«®¸¢Î*ß]t<¸ˆ’zÚw,?UÍOŒù¥_rË)bè`cZ_Û6ésZu>›ØÞ?9õLg*s# ´n½’ñÇ„·“nË»] Î«Äí¬ ›ƒ¾/€}2K×Ûûb-Wu›qÇwgÌm6Œ‚|o=`©ZgߦÖ]éo«Î—éû ›$Žk›^©æ—Ž¿{YsU=¿<쇞-±®oÊ[]Põp6µ«¬^RrÿMÞMCG¥Ï\DV/ÝÍ¢÷–ìsCz/F]˜]+Nõë“—Zo“ý{·”¬×IæÝâªÎ°qóô÷}Þ¢*† ä"U‡w»pW¾OI}å­o³ Tt¡ÄÆýßz¥Þ_>Á~u>ìRõ¦‰‰ý”3*&o·Y7,Õ:Ž®s;îòPë¹™ÏÑ›ý¼*él1xrâiÉû$áãÆ]Gƒ"Õ¸¾ûÏû£Ÿ¶(&cÝf·=ÕzkeŒF»wA½nôlÃìGO/“×Ú|³ó#ÕSF»­Vû¯ú÷r{îÛà>ù¾,_6¥Âõúºz› >'þÝ}²-¼µfþlÊ|û½ÃHµoNÐÀÂv¥,à}ývÔÄ«unSÚ꟣|3T ïå—×ëRã†ycVLn°"˜XÚ¢·º«ó*È!bD€úý]—(;²ç²xôªÜø,5P»î‹Y“Œ¾»–ßèäýlo²ôZ:òIsM;ÛºENôkQ¨g» ¹+G£ÙÊŽiçÿ˜÷˜ÜzA7 ¨ls£ìíÝdÕxȯˆª‘šv.5¿tƒ¼n—÷qzúŒ,ã¦åWËu×´ XQsiï>Ÿ)ìèñÜFñŒ\ÛÜ?Û3^»n‰KóÛ­ë’×»d‡æE»ÈRŒVUj××v/ª_a{‡¿çAÍŸ…Ö>ȶ­ü‘Ôgº¦»vrBÈ| è~ßê”'Ù…ž™³¹H;ïÃþA»%aE©9x`ÓÌà¹ä13úUNªvÝC×ä£>Ë)éÙªÁGâëSpä›Ä …švŽqһꊫ3ÿÆ+òœÙìLBí|û·–ßßú…"ǺN×Áƒ<uóÖV;ÏÊÙäx…ÂnÙsãOó ;ŠÈû\ßÎ=¸v? ÷AÍŸ¯½aBAUvæÇ÷™HNÔXWý|¡­Ü®Iu¼¾K/”K^©!ÇoœT÷eF)~zû U‘sÅàû•÷¥“{O«ð'=Õý¦Éìy»ÛŒW÷w®²*´Èœ@^ã¹OãU&êyÒ﮸R/zwÖ½0ή•]3øO¬Úáþ‹¸°1›JÖ·Løp~óœâ¼è„¯_ël(8뷨ЬÙ6µ.•“}qÓ¢M“É-ûݶjÜÈZ'}ÒµÂû%_ÛH1­iF½È¥É9µÞ’ñµâ—W,Ôø“ybÅ7!›=É©âÎÜ_›ÕúwV^‡'.}¤æ}Úíß<¼Ö»£ä¾eøh}¡êýìÿljåªê§œoøgä¿äó%¿s)UÏa•8÷QÝ U¿gwÇ*ít·¥ä~òãõEêõÐ3[VÝVóÊVÔXÙ¬L¿þq»§öÃu˜”Þ´~{µ¯gÔ„ï~æe3)4S¯TCOõzèî˜ÙXÕáØX^°¦Å[²h¾=":K½žú_ͼ·_Uã@î+_´¯CÎ¥Ýmd}5þbץѾ~jÿUoë­î­B–‘kq£€ŽoÕ¼9³C+­u7•ìÓMŽ5ŸýÜ‹\ÏŸ˜;´H«Z_|u£øÖ u^õ;ÞÍÿÌò*zt{Ú·Äb¿cÁ†új¾·³Ÿ­ùÍ•/É}k9“Öj<ÁÜýž‹WÔ8œãs/“o×[@Ñ­âíj=F‹Ë ϬWãšÎ&7(©Û[rŸayöP­7Ÿìx÷fÊMJº0£ÌØÛêýîYáÙ”“Õzle¿žq½âv*þvÙ92¶ä}˜ðÞbC‡ƒq°צ¸Q)âøÁ‹OÕïmßußjýº°ÏF£7m¡èQ¦¼Z§>wœµî²3HíÏüþQ@ì¡¥~Ç7䛣_·KI]ñÂ[Õ#å®éý½_-JºSeS+µ>tNÞ9†ªÎÏÈ­r-»¡¤×pô´ŽªþêGûÕƒŽ©q©uÕ—*Kf¿óîªê4¤Ä›®Þÿ ’§ö÷eGUŒÿTõ±×ÏœÐaÚù®jœ&ãyÅß“yÙ{.ê§ÆK"Êôþ¹þ¹oŠYÕ¨IÁÇž8åT›9¥Tÿäè§ÛÍ*ÿK¸³nÙçúqOÎï_mÄò’ñþ„s~­X©Æ æv›Ð§œé¼]ùgh´ª×ÕI¼Ù°ùõúÄí®ÿ¹Á›\ÚóR‡+ªÞ4¨ê8ÕÔç®ÿîWž.7'çÙWZe’zß8=²¬º­¹úœH[ÿ;ã\7AÉ«œ._½®ÆE£Û ×`_å´9§÷^Bíj¬ÉjY¯Žõ½šÔüÕwŸ†\»gU‡ïèE3M¼«ÌPëø%µ{{çKµnÂï¸KÏ­§è—–Ö§æ×=ð¾{+•Sì½®ç¼c·ˆjLªT0^­“Úãùƒ”Ïj]ÄrG&ó)s‘J­Õ]q厪cüQ&¶¯¥z_ûšÜ¶7}sÜS§ˆ¥Ð6íÜ7”Ô+Rö³ csÍ(­É®Í&©yî±g‹Žû£Æÿãj¹&è^_D©¯>Zªö—õ]9w‹®Êi¾=6˜FSê·Eò_{PÌ‘vŸ¿¿ÐîܼÏÉ¥B)_7á´ëµ¶”²õþýšÚ}K[Ϋ¬ãû„’ôäâ#þPØŽvÖ?Æh×ç7ª–ïЯRS |9é¹Ë—rí2±w›òÚý*ݶø÷Îÿ6ŽRФôÚDQ+gÅNðñ¯íž¼›0hãV=²y³âóÀÒTæýÁîwkÆá~9¤Íuœ|’‚•ÛÚè€+Ù¬·0*7çœæyuK…×Ù›B]ú–‹°³%Ç€-^!‰Úu©ÿÍv ?ø7Ó¸Õç)`Ý×ðÅl,Yë~+ú2¿†æxÙ·Þ¸9ü}Ÿ¿òîi‹ëde0¿ìó-5íÌ›x†Þèî@s~Ü=»Õ…,&¯kæ^^ÓδMñû¼‘õÈ÷dýciÖÉì]‘u³gÚqB›'ëÚ¸9Q¨÷"ñn#Ù=:_+£¾¿öçëuïfí Ã(Èü[?ÓE+É*Þçø€cÚç-c\0;èŸ(Ð=QŽlkLïøešv}íJ‡õ\´Š"6û:=é;—\«4ºÐ¬µž¦‰_Óé¦S;Q쪪µ[uÓ#ÏQŸWu\¬]GÚdzy+÷eG)NWགྷ¼Ìmßîlk­igh¿è×½)‰¹nÏÁ°^3ÉÍs‚>›¨­73ÙõÃrH‡e~¾ÇÈÜ[îäZhj4lžv>±í¢qÎcNu¤DKŸf§o“ßûÎ/®-к¾Ù¦ðàsý*Q”mL/ûWä¾ÖdDQÑM;ãåû»Ÿ¬s’Â&\½òØ\)Ð]§ïlx7ªÍ°¾ßQ‰vÆ“GÐ =ÝGþµÝ?ÿ<þóøç‘"ªõg×, ‰mxУmf ô]jØ6鬦]âàîÛ×_Ì¢§QY›î\£ˆ1©íßÛh×O<;óZ`“$fæ¿r-;ì?ö­jÿó’vßÈ$£Ã§·:^'áÐsuxÕΙ#D—†Ešv g¢;O¨2š²šä„Ô½”ÍçÝ)¿Òìl/íuGb+c«›Ü)»ÌŸÛS­§¸-—+eky¶…ªÃóOùÔug?õóùŸ_ÔiÀcŠnxËêÇ&õ¼>i)Îu7oPçuø•Îá Ì)¡l—°¤†%ó¶Éíùåi†ºjÿÔØ%nXÐ¥„=GÛY»PçÇ“Ñã×¾QçÛ^˜´{ÎKJŸ\Ðv±‡ZçÞ=6ô7]Õ.²ÒUêëõƒbƾsYhªö'ðéµ®Iv–ºN(»ÿz“=»)ñ—Ó’«'ÕyîëmñgÎJ8OkvXd¿Ê—¢îý4š£Öƒ êŸ8ïjÚyu¾ÄÏnþmŽ5‘þÝ å/U}Nв:ÃM\ÔçGnÎûš})‘ê—νrJµó¸œt¸x¨z=J/0Üß$ŒbôLª,±Õä¢ÅP볞Z/iɇ¯á+(Æêð|£AêU*m¬jcH‰Õ9â¡Æ×ÃV=£·AÕ›y¸í™»ý3™mßõ=­†ª×«0 'E¯Ú¯#佨ìž@ÎÛ[ÙÔSëä™o¨± ÝÑ’ý€¨Á © :0¡œÞ¯ÇN¡êª’õ½ÏíܪƑ³‡ïèÙ ^YŠYÿªüÅ'ê}TÇvz©ŽóU¿¬±ß|£AEr:1£ý.5ÞjSL?·¨uù ëÝØóÀ´„/N3Oî¼^².@›ÇårÛîUóWí[¶Jò«Ú‰Ê쳜ÜBÍ_ýõØöݬ 5®”<ÇR·Æ,OòÞðør“5ê ¹ Ü®ýÚ’7Oþ”¡Ö.eØr³ª£Í ¼sèîÊžï§MG>¤Æiý7Ö-{D{ç%öü°jÂhJÊ‹ìve» .óþpTžv6\çõ›L‚v ZZEÕsêÞ<¼I?õùetŒœl™W¬¥~>Ãéßæ4{¢æI‹#^4ºžÇlúXs£ª§ ŠœáWU­Ç˜|tÃð|O 3^>ûë{5nëZÜ86ÄH9‹ßÓ†+{6J¢kƒ…9¥É·Så¥ãkk×ÉÛ°¶ÈäQ(%w¸9¸ïË8 îyÃÝa†v|#xøºyËm(qèÓ´%:å)ˆWúpÃõ© úٵ݊žÙ×kÐ…šäýrœßhíüË kÖç-)EÔr¼KÅß( ù¦oÏ íü ½q›,§T»K®¾Þmõ„Œ}Ÿœ(Ю¿¢ï²cïª íÉ·yïµ³Ã"ÈbÚŠZViÚz® Mzë9³Qä=2´õÌ€›d1øÌ°§Õ´ÇëùþÙ¦YYäŸô|ÀùÚdñé¸ë UÚûòMîÅ^ßBÞ#[ý™µƒÌ3[¼úV|EÓÎzàpcãgAä}¸\Œá·•d–òÝÅBhûÏqe©?Ks Ý¡× ?ÈÖ ÿÚ©Óµû´9uÈKœ?;•B×hã`rxy²Á†ÁÚõ,j˜Nâ\¼Lo]Ü”Ìv…w2*u\ÓÎÎwägÍœ) µËƶզ•Î Ÿj×õ³Yë\Õ´˜bV§î+j–I®ÖO;Dhë,í»$/ºé6’èrÅFüÝÈmð‘ Užkçi:,º[8ózy¢“mgetL"?;v9Jû¼¶¯+Uü=ÿ$ůòïpêPErùõµþ±,í<&» k;”®\Šâܿ޽Ôr û|<³»ÖëíînòîTu7…Y˜Ý(›ÔŠœÚÏîÖ-G{ßëRC'x³ñiŠÎípÐÙšÜÂ-ž>½ª­ŸtnÚìz÷jÃ)j´Óv—2ÓÈ­_Ú¼JaÚ}äì;ËkOŸ¿¦°[‰•s—^&§­qUfjçõ8EÕ.ßJ¶£ˆMÎ>[×_"—nwú> Ьë÷Ïã?ÿ<þßy¤ØÆûÃÏÞœF™Uç=KJµ¦¨•~Þ¹_OÛΣ—^÷Ê´^1Í+°>Eu뺵k i7ëÔÛÛSÖ€™~ PôÁ»KŸïÔ®ƒÛ/qÌþ{n”ÙÎâ}‹ã&u ð{“^ÚÏÁØeUÚxÚ€2§õo±ºêdŠzÞþÒ³êÚq•ØÈÖK*4K£LïÝ=“ )jèÖÚ¦Õ´ë¾Åi1(&(‰2v§åŸÝš¢Ï\-ú¦­×²™»ôFqß¶=Eá›o6Éž¡­ûŽl{º_qBJz¿T÷…5)ÜFFßx«]ß4ºÑ˜È§¾×(½yråSÛŸRÄ­ö¡_7k÷#±w=‘œú…2lfÔø8} Eog1©¡¦n™öð8w—rŒº½×î Å]0wî(;;c´ûöû£ã(£ò罡Ù'ySõPíüË„Ös 뢜ø\ï ×WPlóqÊû¬}}¿ä‹ŒÞ@YW œu˜ö÷¾/òøƒíÚùÉq«Î§—obFY^¸,­ZŠ¢/Ùÿh¢¦]üåsgÛ<=BÙk›¦×mz™bîMرŽv¼îßÝW!1u|Dñý”›þ|y…Êk(>?.©¿vÝ·ÿ:Þñÿ>Þ•ÿ>žv}ØØZåwŒŒÙF™™©›ÙEQÔ"ÝìÔÚºÈøä–^ë׆P¶ÓV½CU­)¦Î­Þóghû/6ݲçæäÖ”ý3xøcOŠš¼ëÏǃÚõ+âz¨º”ÐÞ)Æ“ΧøÖþ‡竺ªðyïy9ªu¸¢wß·wabíß°Ÿ­æ›EÙœì}ÊSÅm0ùlÛÀ‡RW|È=®Ö— ;¾ÑkF¶ª¿ŠÚÛùÀc6‡’×Í|ëÿGíWÝ{ÆýSÔ}~‚¼[icó”ö$øUëx5.ñgáµË÷TRlÃ.õZ¡”Umîk©úÏéÆÜõU››ñ¸Ã1ú½)@,Ki³RÕ#¬ê}pÁ5ž’\fÆ”5›(vÒÂÒï¨þO˜2¤›£ªS‹Îln7º}ibVSŸ¥«y‹a¶<,è¨Z·(òÍܽ7«P²É³ÍòÕ<¼ ÞëçÊ;ÉêõhaógŧȢs½Õ~15j=?ÙOý|TgU›¼w7‰¯.<4cŠ:"rº\\TSµ‹s³IØ=”bT•]Võj¡ëÍ|[¾Tãf‘‚vulúƒ’6viú»«jÐ!çÕÞÛj~gˆýì³YûÖRlÅ­â§«uÐÂ4ŽjŸ­ê˜¢n]ªacþ÷ü;|Üo^ë’z [ïl²Z'1ì‘÷€5S*‹*{÷®‰úù²J5«{^Í·‹ø²¦vûM6”Tcc„I+uÊ¿´ß¢êÅ">–;Ù˃’äç?]‚Õó4_súð9µþzTF£;± ßPrõ † ÚªûõPç}sŽ „þ<<)(#}%…Ì3Ñ­æ;'u¬­6¦…Õ[¶vëu5OÎm}ÚÏNÏÔø®ù ÿ޽.÷¦ Ã3*{”Œg&|{c>Ót¬§ïô*üØ'ä<}×rÁªîÓøÎ·´2gU½NLe™ºÍæïýv»‡ ®QõfÏ/v«}R…Õ›4>£Õ9òMwø=ùDŸc‹Î*g±YÒÿõÀuªž°Á‘Uw6Ì´ *ã¦_·÷TŸ³É×>t0€yÂ?}Ž?åB5Æl=PRoC•/ÖŠèw@Çþ»û4äïŠã¥ô ”-û¬¨¡ÞOáƒ:ìÈ-Y'•²3—Å6²£Ä¡OfwÏQï§ £Û×{Që¤æ ~ÿ6†R~›Ð_9PØÅuÕ ®¨q.×ÍŸ/¹lI–e õ\¨y¸åšN{2÷Í{u|½Á›«´?B.§êÛ WûH˜êÔ{ê¸Ê³üb×¾‘•SÊê_Çnè«ÏßðR^èîQã±)·Fõ©á>€¢ê›¾«úÁk¿SNíjýNO»›IüÙ JôÿÞmÄòIªÐ®¸ÉûVý|QƒBg¦šPZñæV“¾Ô§¶÷þ¼{¦Ý5èÀìÎuʸïÙ}Ø‚ÉùªÿÐÙåœv^jPRÐíâñ[)mßenN¡î{Îx2IÓ. Ù­óEOêQ*p¿wì) fû׺XõÕ´+ks¾ÆÃ*&äð¾päÓßÕ¨‚í«–-×j¯¿*4ùš¸Þì,9v½ºùÞa2¸Òìuåí<}o«éM;’Kž‹Kó‹©Ò–üR?wþ/û4ôîø­¯Ž9_ºýð÷”ƒdðöå°Š¦­4íʪŸñþ:9ת×*ż:x<Œœ¿F»„é¥ÑM ߃ç\ëÌ!‹E<¨œvŸÇ#{FM ¡*ÕèNL/r1˜\©mU­‡;78}õÏŸ1UÕãÖ“7ö亳JÕÎå´÷'¦§}"—OH¾Ûûô=6¡.Y `NNÖÖ'ÚŒZo¢ó«:…LéòàNß¡äàá µó“Äj´µ>:™QRågNg;#ßÜÎg#R´Ÿ[aåß8åD4â²é©ìÇ䣷üÙ¢$íçy~£åv•‰5±iú¨{ …ú÷·¦¹6ÿó*ˆëßF‡2wmžýùNUŠ;ëíqAë/‘÷ì ^, ¤K–oò)Ì8rPמÚú«€^v§ªL¥È_fè&QPßZSmjëÃb[$»{û ±%Û Ì –SDn棧´un޲~ õÉd ´žÓûËØ²¼kÞcÉ{m¾ÏÑ!ÎWJÿ¦è9í®rÜK®-›¤¿êþ¼Û´[(äYƒkC“û²ÄÙîEZõ¨º›f&P¸®…QØûCäÕÍcrè"íºîÎ×ø–Y‡Âºßroa™Fîg›÷ë{~µ¦]„ÓóiŽQ”ü|”ës(vADÙzïkÚ…žº(`üpÊtvhÐèÑ ûacC´ãzaOû“v²âå­ôÉG).o^×ýë´×Yaƒ>VˆчÒ+4X}߸%.žy÷ÖõÂ[_ˆÓ¨+ñï;îøý¤„–æå¢OÞÔ´ ¬qÿKƩߔ°f•ѵÈWäþbëEÚzøè)a}Ƹm¤Ô×{noîߟ"î6l²K[ÒÞÝûênkJ\Tðsï6 ±o÷5ñ²v=Œðø/C>x=›³teý+jÖì÷W«BíïëE“Ž”ÿAI›é=Ö“Böº×)[¬Ö=·º#¼º¢êÌÎ~ö/ëMvý?焌(y=ÈwÿOà &ª>Äìä‹Í¯Èoô™÷fMÕ|Iç1cª¾Wû ˜ºîq¼ð˜œ.\¾y®¼ÏqÊ[˜0Q­SUyª¯nÓ•‡ÉÅè÷s¿.ê¾Å%QªµVÝG›~¼¿çpøRrMéuhoUŸã÷cøÈkT2¿˜®OŸêáý÷>w©ëµj¥ã¬ÃoÛ«ñ#¯›âdÙ,ò¤´o÷Œ7”|ß>yJpÈJußìÜé³Ç÷ˆáä½fcʈm&%ß·¬°ÜûãqUW©’uù`KΗ“®´SõM.†­©ñû%kÇfÏI"ß—ú\é£êZ,̶œzÑ^½~eí?¹î´‚ì×wþ”c®êÍYðÖäòjNã{ž~~Óž\ÇgÔN:£ÖµªüyÂöÏ£TýI©;¦ýBõ×’¹ÿùtÇnjßà ·½/ŽžUr™ðç~ؾÞ' É(íØñºÕ:EfµÕ›¬Æ•Ê5k=À ÞS²ßãÒp5Ë}·‰½ž?¬+7kËýÍs)ÂcólÑV½ž6u&¿ÏUýìí–>Õ-µ ùe§›_lªêŽ,öíÚQNº¨ó§Íݼ,½!äS~Ã#Ûîjý0Ç÷¾TªÖ? ˜n½þÉçI<ËõÖ™VjÜ×1<ÿϧCjßQßÛTZVßNA曆úCJ¾ïV+¬¸ýGõs¸¾z?ñóØ5äï¹ÿ¾ÁõúfÔýÐþ„êgëæ}ùIÞvûmr'©q_›£§®·úªæÑYüµyDË äz J­Yêýa{Ï¿¶ã*Uj¾ÚÙDöÙ ã›ñ/+DîN![—Ö*;]Í,ß%=c£ª7°48oÓ2‡ÏUïð¸ä>5áWƒ²Amî«z±¼Š½_¹ìüEþ#‡Nî¢ÆKƒŠ;[ìRû‡øêÖÉpŸØŒ*6wtîV²Uµ¥SƒÑªÞ)úTÿ_̉ljWX¨{ Ö¯û—¯Û«?3f¥§ŸëÞf¯¿NZ0Cÿò\õ>ʾ¨kƒot¯á±k³Õçbà«÷ûžUëÞ%®mqpwðª8àÞÎêjü°Ôûà´}aj<Æø¹S;·ëæ w“*ï÷«dÀ„OçñQãí #F¾š»"áY•Ö›ÊË¥êuwäÝòϪß3.oì° ñ|2ÑaêRµb9ÓáV¼PëFž7M9é—ô–Ùv©¡¯ú\hYM×D–¬oOÍ'<õßhq×Àú†=Ô¹Ì1õš³AíGl0¾LèÄ…ê÷ÿw÷iÍDÙt¢D‡ å,Ê)qܾ$Ä~„ªC¬ÚOŒÚ¹E¶ê—|·¿šm÷¨#}VUu›é˜)>P¤í°>ûo¨÷¡Kû€íß©y¥¾ç—OQW‡ŒWœÊ°Þ ã¢Cô7T·Uuå¡§ƒN–'‹‡•z5|¢úY·–ÿøy£Õ¿«ô6Úmn ŠtïëêsÛ¥ÕºÈáKJêeˆÏ­æšeú“üïœÞ²úƒšßmÙ`ÔήïU¿?zõvÏäã¯GÞTí@v5ÜFŒ×®Wåg{äÙ—±”ðÝ%w¤™ ¹ÏJOö¶Ò®kïÿÓhÕ½[Ÿ)I«9pîßëzi¨»m‘v¿Öo¬NU?C •ž ~Q÷ynŸ}fUl)m;»µJÛMéìðüïõ©gP†û}í|ÎR ËÙX¾YKíF|w~+9®w¬g¡©7Kø¥µ¸g³­äóøpƒ–AEdn8±~—®£4Ç+Ý3oÊœ9¶äS\ë£Qźd§{²Õ±ZÕ3N9¨¿Œ¼÷ïzZì˜EV.çÂãFh×s)U¹÷‡Âï›È»MZ•¹»È¦œîÜ•µóm ‡¬8õu2y6¿œls÷Y¼Yv´¾­¶îËâIü£uɵøøÇ¼×}©œÿ½¥Ëh¯ÃÍF´Øð¼^;h\D¦#ju¿¥]ßÄ4ÁtËùidù%aüÔÆd\Éì}\Žv ‹ÅgÌiíCnãK…ֽߋŒ÷S™i¥µ÷ æÕ79Õ˜“¢ÆL´¯5¬"™~]uaíQí:(ïŸçs#q!Êáj;2aW&Ť=^¢ëYÓES(aæùv[ÿ½®;]?©šv“þ9?œÚݧØÕ­zùfQ…•¦w×Ö1šÇ^äÍE$%„5íßþ<­5}aÑ$M;›øŽv¥?­¡Ð°™›>´ëGŽßÇœ:ÕY»¿ží´Co賂-ó6N*Î#k×ôYe²µó˜ljøOìrÑ…"Vn{´¼)9j]qL÷«švÖƒŠæÆn£P‡Ñ{ïC¶U´.¬¤=^{ÍÂÇâ×4÷d_©aFÒ'Íøé?ÿ<þóøç‘üšqq†âý‡^ûz§=É/ÏhÛ´+óôÁÅJ¾Ñj¬=™”©=pÃíx„ZÜzÕÛRüÉ?g_Ê£ÊÆbí½Æšv>}J¿²ÜˆâãVþô‘*µ(;oèô\íϷϵھ£Ï‰Z–»09=ŒŒôw—ó±ÔŽ«¸ÍHêïATk™ß4§–d^7êû¡ÖM4í\cټ׊ìŒñ“LÏÕ:öq„¶NËÓ©ÛJ'¯6”4xaœÙºdU‰û]; í/Çè )óÒ)©øè¡±oõŒº•]ì´õáî{òÓN莦ÄÊ7½˜B+Ýw$éj=Ç~È»UZo¥°ÚwV¶~}*})åjÙU[çî:´ _Ô3Š,7÷tÚ÷)dÚoC½Ç´õ„vŽ5ö¹¼—"+ïûkuµ¿¯Ç‚viöÉ&—"ÿ­Å£ã)ôTÿ}– gLœù&C›#Ž57}µÑyEáÓÇ”áøŒ2ÿ|©å¦­¯ _xïmqÍA”x=dXT©de8zU)Cmvè”_«Ã']¦ÄÁúÙ§LãÉ~ÌÖsÇ£žiÛí¶=É¢„%³Ík]²9ÕäÊÛÚ×#l™KöC)®lÐÍ¿;‘•þ˜QNÚëàÓ©å£ÏD¹ÃrÎÜÝC6.÷ û¨á}·“kæ»å¯ttEæ\2Ü¿ûújÚóÙÛoÞÝN•FÅFôwì$YDžÚYw«‰¶Ý™ÅfS—o§øï£Ë»,ïKf>ûë\Ω¨içÛý}Û»Sb(.!aÒöëGÉÌø2å¼ÖÏǶÔÅþ™ý(~Ö÷œÎŽ^dÖûtבjœÂÛDoB™­jÞ¡¯ç¬UCþ„RPÅ›ï>¶PóݧÅ•­¬ê"ÜÓ{üNŒ¹H~^oó»;ªyA6«lÇ¥ªq=?—æ3Œên¥ÈÍ‹[·­Ö“\ê ßºœšôìa£±GŽQ´÷«m¼Õþž¾ÇSÆm`ª^Ä÷üÍÐIóæQèøòµ;ø¨yA^rF·IƒõÓ­1ýÝb(…Í¿s2æí`õ¾-(¼_ÔT{Å|‹~d_Õ‡Â4ybSWÏ·Ð{ݯÛj<ÚôÝë2&›"§Ý8ôSÕ#8]ð²âJµÎR`·ŠÆa…) Ë¢«£«ñÏ„=XFI$E·û~g|…ù$%Wý¬Æ\ïÎý= Æm<Ž> [eÕŠB“6$f^Të oÝ`FŒšò¼åÓå}*‰-FÜSóp]ŽŒŒ îS=4½ßt¢=øsÌq¨:¿mY´ô¹Ú¯/´Ü£OäQܮVãWÞÏ6GÏ]®ÆIRCפÎü{}nðÆ¤‡&ç¥M74ISý»%|cHþßß;(}¸eªº/5¹rvËã¹°bóy­ïH¥¸[í WªycîÖú ¾ŸÔï‘ók§mß^m(ç÷ýQçZ«ºEëµÕþ„¨y[ÑßþÔÿ5pÅþ®ï»ñûyõ9õaÍŸ/kÔy•túAL›!)©hô\Ÿ«j|ÃãÆ¥½/¨}=C –vxbæNaSÇ·üó\Õmzº7z”òTÍÇ wXq{¥*E6ãï÷ÛNRýz®y¸—:ïcÎl<é´0—$ï?«Þž©·³¶/U÷ë¡Ë›¯›¡ßƒ¢Ê<‰[q]Í›õz9pð³jœ)ü„ͯ…#×RÔR{ïúÙjü%Õz–ßψBŠj°qè¢`5ÏÐ5züÓ‘Žê¼·÷îÐ2´®™ùç üX2>—ðíÑ÷7‡÷©ñÃÆÇN'“çK«qEéj^±Áñ3vó.ªºRúu­øÛºÒRçÅ<]›÷ê}S§ãÂ-Nªn.êJÜ€¾›õ)`{øÊq‡U=¨EJ ½ÒÕ¾£UFW¸cô'—­w§/½£^?»É†¶¨þ(ÝÍöwí d»%þá5½üÔig{Ãz“áÇ›þ­YÌÃñîjÎÚË*ø_°. ê[_oŠÎ. „ûnõ\î«q.¯ŠMÌ‘GAåoÏ…úü5H>nÿç”Ú_Ç{áæþæ¯rÉ+uI…Ù©j^v¥Ë«¯ªœÊ6ßÃmóZÊÿu’~:¯BÞ?þ$²Õ:œéÝgÏr/ý’Ò.5 {ªêCýZÊCgº«ó'ïÖ.õuÖSÒ§yu.þQŸÇ{]íÉÞ¯Þ/ƒö lüé+Y-=}{ð UG®×Ð=òC5/:hÓ üâZ‡Èõš©™Ó+å'•¾&œ´XªöõÉ­²òW«+¯(yŨ¨ƒLÕñ”÷|ÒÒ]õk¼eDÊpŠ8ž7(ÌMÍãu©[Sgß5ÿ72)jÓ»ÅËÉ/i»ß҃ɵõšîÏÆ•ÌÇU¯ï£Ü¾­žþ½Žõ9ö¨O[rî^{ÁŸŸÚõ—ã]6U½xõˆ°[kº’|;Gì{¯Ý4jX“‰³.“GÖåã}¦ r[ÑJïz”vÝݨá7ÒöÞºL¾æEö£É½\c[ÝEÚuFÌÏ/§cq‹Ƭ3ÃáYÏžù¸Œ¶þÊbƒÌ«:¯ˆï9r¬î©š¥½ï°L®¸0¬sñï{bîÌ'›6is&¶¾¥=Þø©›‚{ESà´î3¬%ëã§¶ÐÖÃYLµ=;Î:ŒçõŸ6—¬—n5(J»/…KÓ—Ù©mÈëÒò˜¼Y†xR1Mû¼îWV|ÒiP™ü´¿_¼¬#ÙØØÿ\>JÛ:Ëfõ¸S–ͪT±hЃlÎ,½ü~‹¦ÃùœFO£Éí\ÛUí™¶Z¶®Fíu¸kë «ÝOÿ"ŸúU3»‘ÕêèI‰ÉZÿ· iõ®¦ž… =?ãAÃ~äâ syáî™ÚçýÙàcó]NÕmJîÈQaä1Û÷Vj M;çDÿ³Vw›QlÐùO长…ãّôë´Ù”›3±È÷…õp¹ÇÑr亦†w'OízxöÒÇŒ`‰îtèÕú^äñhŠ~ù[Úû·Ë«$&ß  8óŠ;LçÃÓŒzÓ¾î×ös¯nÃ&Û×¢ K¹¶ú/%çâEa–¶NлwÞÉÃ;P˜ùÜï>= ·à€>ËË”Ò>ïUÛ–ö.ÐèI-»óËÈÑÿ}AXuíóvêx°UõOlºökËå]ÈÙoÓ¸~¶ÿìÓðÏã?ÿ‡I yÜ64pU_#ºûý+$¶_Ë<“¡ÝŸ'§ë¥£åS. ÆØ¢¼ˆ¹w—žÖºJöÞ+™M_zSµ‚zÙ»uŸP¶Ñ‰UnL;Εý£ñÀ:7wQµøƒöù"~¥é¯«Ú:¼œ>çïÎ\^ªGô|_½ÌSÊ^­ó*¢¡ÖU²'åÖn¼0†2Òó—Öó¸J¹=†x÷Ò®›‘Ý÷Sï‚àJÊ*l®G¹¯~ž¬QGëuÙ/èDZ¦ô'¿M¯²‚r_núM››Ù…uO4¿ó‚Ò^”¶w}’òîßÏ[ßF»?lvA=ŸEÏQúKyû”çò­CÿÚus#Ä•ùv^¥ìÑ_æo=gM1•§÷.u\ûz„^MZ}¡oJ×ËŸ4³V=Š~®3ᙉÖõ sB×¥ôÈús¦†ûu”‚-<µó9Ãê/¿¾¥KKJ_lx-gp9Š™\÷thGmvØòÆ»’¬"(£ªã“H+[Š©6úiÃsÚu‚ÓÞ>¬þùnÊ+ïêe;i.e;?²|Ô¯–¦]Þí'Mƒ³©VQÀu×@kªæhbÔq™v3§IÅSÏRµ¨29Ž»ÿÞ¯5ÿ¸+ê‡vÙœüÑúkÂúPµ¸b§Ú注J›2Y…´ûpe?,r¯þäÏUÚ  *¥W=¸ÚQû{Wk¶ÕeðßëøjŸ?ü Œ.Ueê¡;švéžvÝy'…ª\oœulõ'ÊéÕhýÖÚë">jd¿q'(¿ŠéÛ³ãã)Ë'úDêCíõ_\åkxË”_iø¡AY/)s†ïF‡ÆÚ~æÅeRyJoÊv&®n›4Êò:yš“Z'Ëô÷ü £}ÕýNEé×ˤU$›ùw;=ï¯ÜÝ\çÍÔC)ªž«ÂÈeVµ/‘½]×c+“KÖ-"«Ã6ùíÔýºùú§ ›’«ëÏ>/n«}vìŽo¨æ½Ztݸ/kOn¨|‹›jÿA+âOÚRõ>ÆmœÊ¾ƒÈéŽþ±Ñö—|¿¼qË÷õìÕ8¡c•)F-^Z“㋾íÎWã•Wéê.ª®Çîƒsõ'ÃÈîóº†ïÕ}|åNU­ËRóæß÷ h}q¹•;rcÇp5îPúTÂó~NjüÉìØ)'ÓÊds¢g;]u¯?Ò¶¿µºOµ«Õ¿j׉¯ÈùìõÙ©ùQ¥Û=¨T¬¾6êyÅjÇÏ(2ß݇uËRõe;Ž˜‘®Ö¹3~`Wú}&›¹/~Ÿì¤¾_þëNëñj~—Qtæô‹_kÕþ§ÛORóæÊ^Úà5ö'\| s·³SÉ̽×%ý!ê÷+÷Ô·Æ£Eêõ0j–àž~‡,yàãÕý¦ùOÏtWûO¿Kauz¥ 9‡Œk¹BµÛ~Îï¤Z÷)¤îì_œ¯‘oô Û×üJÆw¾×ø=þòfØÏÒ—ÿÜž¸Œ–{èͪQ²3éñÄç義uªõS6–jåNVÛgŒOTã •S˜Ñ,5èu¢ú•~UÌÈ­ì½ý—·©ùŽ&åŠ_QùÎê¼Ým;Y¤ý$—™é‡gç¨y¨¦ï« ­úÓþü€š}¶¯û{¼ ÛöoÔÏc° åèE]J¾¶,Úþn‰.ÙÓfAUSiÙêö» Õx Å»ö;ºÏK » õÞeªß×èøªKwUݜͅÝQ_»÷ §ógœ×üÞ8Û F߸Jqç{g^Q?ç¸Ä7l»š?X©Õr½ü9oÉdfz³«KÆ›¾þ¹9fvØGö‹ÑÌ_µ3ÉwPÔ²œ\U7f–pôÅã`užGäÜ{0jõqŠ>õ‰­ø£Æ—\£,Œ¾«qÆ s›WjB!“tjÛ¨}1lOß{ö’çÊ`Ýk‹¥èÌKm®«Æ[âŒmKßTç½kNXFÇö?Ȫ€ðÛªŽ§îîÌágÔ¸O(å-,"OÛdó–“ÔTýob±Ò¸ó/Õÿî> Y ›ÛßN)É­æÍ§Ö[‹ß1ÀÁÛ½dž¥ìyr7%8£ë²¨äû‘¾£_ßtUïóL×:;íf7¥äxÿUYóÕ<טa:¶[¢Þ¯G¯ç̼8’Ì“Ÿ¯žk¢êH˺]y]»zw¯}Óæ¹~ÿnYq›ú´4ÙÐt÷æón¥ÅþÙEIS‡_'5.¹út«ŠªÞ3>0®êûq{)b+™-UãÀ~ÎÜ}®ê½]fénÞx4’’kŽ2ó×ÙMu‡5Ûü];çÑÊ¢0{UgJ}¼1ìi™y³®Ö±æïµû¼»NÚi<à(±¯UçäNÛGQ²®—ež…¦k×¾S^ÚÓË ëÜ(áoÿŠ1ö—ßk—Ú:¼éXb§¯´ˆ¾)(Ê5â¶³ÿÚ.á§ndêÇd7 C¡õ⿵.Ôîç0D´\”OY¹Ýw_h¾‚ƒ w'¼Ô^'DØí]ýg6¥Ï™TinKŠòy= º…¶Þ,Ù>À¬j})sæÓó >ß ˜¹GóêlÔî“;ôCg÷c_ˆOtJÝ¿ò9EY}šµ%Dû¼ãþìx·•Rûصt wùû¼Ž'¿tÐÖ›Ç «=oÇ“=”nÙ¬JëÃ)u}ý‰†cËiÚ…]v>²1%÷x¹¥jÑò9òç€Jÿ˾¥6ÝÓÄY”²³øÕYcG »w.ÀI;îø³õ¯ó«)Ùkï«e•¶Q@Ù]^ìÓÖ‡…Äô?UïP`û‘ý½¦kׇH¨éý}W³J¿à~ÂùÇ Š‰ªŸXúÒbíy°xògC¿q”—QÓ¤FîJœ[%þ‡vý¿Äþœ‘D"dZÄœ‡ùbvÀ…×.Úãe(®~Üœrâ{š|—I4áÞÊr¯l´ÇÛþÞ¹†^sÊñÛ7X¸'P‚µ™˵×OÑ! –æ}×!þ¶Fƒ‘Û(¼|j»èuÚñÓx›Ý†c¿ØPVá²ÛwúÞ¢hÃôÞhë6cø¡QºQúš ÛQWšü}Ä~³ÖžÏ±ßžr,èMéþ#o[7§ˆŸ>ÌrÕ΋ˆuŸóîekGʰm¿}{ß1qëcûªnÌõvïù‹kªõz\†Œ(,•@¾¶öU¿š—|ßó’÷ª}ƒTsŸ°¦jPàžÊo»å©ùG^Sm7õ¯Ròµ[ä eºR°E‹¤=Ô>y~Ûf%êÍQÇïäãx+ß”ÂèPÆÚµ.»WbΕ»§ÕÏçf êïüHAKýªà æzµ,•x¬µÚ¯/Ì«´¸ß4ET´:p²¢Ÿó2©Ó`Û^µþO`ﯹéOÒ)¢[AþUK¾ïA 7G©qŒݯáÁjSx¯Í×L›©q#·ÝígæHU?á›ò}w‡‚•ÚÒhpŽ¿ªÓòx—4y½ú}ƒNßïd3¯…7_Z~Rcµž‘Í÷÷3FÍP㤶ow{OõsôÖZ¯îλJ±Ý^8™·Wã@.3-n½©ú/bGû/ ÊRä¶y±•jç^óëéµÛUÿE¾ðÚ¶¨Åæïg›ªu÷#EÓE–j²à™¾!fÕËQ¨çÃÚ{f©ó×õ\â §3!êy{Æ­Ó›@QM^/:V¨úË}åìö½T}¦CyÎ÷q"…<¯âä©ê´<+·N»ó$ýòÃB,^CaaÞËÃÞ«ûd'†×ZLP¯[€å¦î¿]¦PØú^áü³Ôó>Üõ­ £‰:¯Ä£÷ËÕ£Pn1©y®Ÿðhœ~f÷UUOåwxeøÕK·)ôP¹ý§ÍÔxqrå×_‡ä|¡è1‘ßW©ºGç1í®]¤æ7[L2hNóUxª$—>­hB/Û¨TËlm%‹VäÙòÜU×Q0Žçx)#o‹ªçŒÉÝÐkaãe:bÞkOC5¿Ï¶ñUfÙFÍë /}ÖûwYp­ú¶®BÕ[š¥M×QNPÅìûㆻ–Rb¾Õ÷˜'êyÞ´Y°à ÿóq{÷0l4Yõº5sp¶ZWРͱ竚G¾»Óè Cf’[»õ§_PóÚ­žø»mÈWãÅ îV×¹Ò¡,åî±¹l7FõCr˜E½K?Õ<ÕœÁgÎŒNíH±§Ãžwn­Æë‚6;Íœm ÖAL¸p%Ðsró¨]>»®ou ¹¾ü¨¿ª#5éþufÌýé¤cò˜óÞ0õz4Þõódõþute•s`+2¸zÊp÷Ñ»œÖì}œz_&™7Û99…¼Š'ÞÝ}SÍ/w|6éÕ356ôÈâÕ{­‘ƒaÈ‘ÑÛT½ªY;ÏÐUÔùÖ`â*V©öªR*´ÚÆ5jœ5É×Ëô|îÈÐÔÉç ÈuÚè÷ÑÏ‹OvÝUëõ\¯1ÀdÁ~rI¶ºÙe˜:/†ø§–̯¤|ÿé§üçSZØÐz·Ôú„¡Žßô+É}ÊÖíoþê^MJò©¹=§‚ÚO#àVíïoÖ«ýkóî|<9¿G%~zyhX®ò˜ro¬Y£Æù\«›~*hý™,\WKÿÚj¾~éo•…FìW¯wôË£a×ɹÙÖ_Çj«õŒj¾¤ûZ­kšgìx;Òç1%­P¸§zI½ WíWµK¤ê?6÷~½Ó†=(<`ÂÀ`[•{nG×.^=AÕ]Ôs=öãl{Š}ü©R»ÅßÈ·Më?i¯KƒÓî¿æÔ ‡Qo_аÞ~$*¹,=wú¶·¦¾ãŸÇÿyüÿÿ£ŽNéR::úþ~Qé×)££cþ_߯øß7ýïïýçÿ+­Sáï£nÒÿü…ýÏ_øÿüEþÏ_ÄßgôŸû¯o”Iúÿð †_püBâ¾`x†`x†`xŽàxŽàxŽx‰x‰xxx`؉ ;‘a'2ìD†È°v"ÃNd؉ ;‘a'2ìD†È°v"ÃNd؉ ;‘a'2ìD†È°v"ÃNd؉;‘c'rìDŽÈ±9v"ÇN䨉;‘c'rìDŽÈ±9v"ÇN䨉;‘c'rìDŽÈ±9v"ÇN䨉;Qb'JìD‰(±%v¢ÄN”؉;Qb'JìD‰(±%v¢ÄN”؉;Qb'JìD‰(±%v¢ÄN”؉;Qb' ìD(°v¢ÀN؉;Q`' ìD(°v¢ÀN؉;Q`' ìD(°v¢ÀN؉;Q`' èD†ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹€`aˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ‹ÿÄ{Ò¥ttôÿüýF¥¿tut Âÿ>þþ¯?ÿñÿþ~ï¿þA¹öÝÚåtëZõï_+ÿÇ·îÛ«óŸÿýoͪüO3’ÿþ_ÍÊ4iÛ¨KRFðÍʲQçͺ¶jß"§CÓfmÿõÈ5iÓ¨E³¿ÅT¶KËF½µS?µÎïÿo{Ûashazam/data/HKL_S1F.rda0000644000176200001440000000037313670240241014227 0ustar liggesusersBZh91AY&SYGÀqaÿÿóL@8­ÌUuyÙù÷kèßPII©ŽR•êÿ­[ý•êúH]S%%åÚÕWj))+5¨¾Tqt õ6rPªU§ý?ýrtøÈˆêËæÿ‹Ñÿß# Žˆ9jLdLô?ýƒFº##bÕÇ„Ç=T}dÌàˆ(õáqƒÕc¢Õã"£"¢Ç¨k{먌þ_KˆSŒV?2¼ú#ÂÇNÐ4,¼ú–!ñуþë¯Ã£Ôã"FÇGDŠˆëóO¤^ܨˆA‘qÿô ;ÆŒŒQ ÷ÏÏrpø˜~– ôôtõôuõŒÿitýA‘ÿŸùOÿ¢_@xxl¤:ï­1F=<ªºClLõÓr92>:¦újõû©j‹˜±#FÄê˜÷3úç¢á=ÿ‘Q‘c&()ÕnZý¨(äNéè*½Éëêçã³Êç’ߨÜqKÛSäÒè‡G›ºÒ€å…ÛÚû‘WxŠù‰W%äÝ?:sûÙë>êLØ„g¦dßæIÚÙ¤¯$“wõ|v§’¼2­ÚŽ‹v$ËN Z[W÷,øÑlQ-òiØs÷»”_äõZmt×%În4£`¨9 X9læÐÒV’ù¾_aj ]Ü ›õìCì{ò³67¶Ð‡:ůßö¢ÐÔÒ}8S@ã´mÁ=PÐ!ßà—©š4pÃ÷If+îÒ`ã¹…‰³fRàø+Îsî¿ ° û*×'Q˜÷‹îQÀü¤+Å—¢(x¦ß³¬` 8eV<è^,kLºzÝn2õ;fâÝî9éÔݹ¹çÂ|2È3.ÒÔ°&§ÆM–\ØÓ‡Ìø½ÛƨÑÀ!Ã~\wØGš»6®î;´œ¼§¦%Ý)¬Õîªm|ù^­ê?rW9Û%LryCjëö~þâ7u4ôõ¡ô`r[3õùö÷edò ¤ôF;[aá¼vÙ—f¤IMªìß\%~ëuô£%äßÄõv“ žä×ÿðýä]')`”ñÝÞwö“fóÖºu}/’íÓá·&)Å“,ozùårÓx?e×8_ò²§º©’÷Øæ}–9n¤PÃßÍb¿[‘ßÁU~ÝÖŽ ¿¦»·~]Kö·»^©ßç=™Õ»¬µIãYÖO4Þ߀¬7ö²j÷¡Y'>Öú2Y=\ ÝåàòJ ¨,z¯J~“lÛ>ž@îßâ®6›£Iq¯¼tý@¶Ö]~5Ž$;J—7¦’_m“6 S“Ïrû¾k‘çv³ee?¯]nœqã‰ÕE¯žŽ2$KíÞ~M$yìi3j|/ò|¡¤=l×´7ÿõ¶Voûßý’¬mzÐÁBbkF¸ÜaȾOƽÔúUä=h@pôûCÄß/°9”d@&¡£ŽU($ßÍ^i~‡mÉ5k­z»œ¬¾}j•?´9¹­Z˜nTNv#i°rõú阸 ±ãD291ovDÑ\rNhÔ÷ÒØïdwo·Å¦uÈõpÙtÉÈ.¯‡×*Õ8òZ¼Ä®iç?—âUsÓëš¦ÄØ¬€®IgÈeÙÑeyWê‘ã…ùt~Å“ÛÕ’½û:’“m¼GlýÖdù3µñd§82 ¶‰ ¹¹˜lž÷uìNú#_];×h Yôh}zëé&dÝ{ØšŸ¢É¦ÛšUÊ&’(.í°I™-6+˜Ù._’弡]—Û©nѲn=Ã&’Ñ õ¾Q'Û’ökëõCÛV×'‰&ŸêW÷^Ô#¾·òZ,­"‡[¾QÛr»’g`ú•…ÇZ“3jS»v9¹5œxÊdõ²¹âµâ˘ëD{^ê_Û9ˆlw…´¼Ú¥^õv;P«R/²6ñÉ>š@Tõ¥è­þSÒÚ×ýÞ¬Å)dѪyãìUÏhˆ87éÄÇÝäÞ^÷“áÐ`âé6§Þ×D²zÞ-¨çûcdßi£fiŸv4bõIƒÉe’pw ö{Kr޼?ˆï¥®ý" œ9œ´ÆŽ{ÿDíî=ÕdËŠ\2‘üÁÀ q4¶í©kx ‘Þì²CWî‘g{ËŠwÑedRõ„<7SøRe÷¶7¾Ð û}•˼Ép¦Åù¯µÉvóm‹ùsRX€¬C­_ÏŒðǧ’w÷nšßºì&qdªíÈD7òóÌhåèëädc_:í>yð{×ÕW§þ/¢Æ7ߦOú ­Ýõ³-»ëE¬ç·œ³aë2“Ê{”RO߯';ê«“‹×š‹nþdì•Ó÷Ðçpê×°üÕ®sÉÂemð¥_äÙuíË=/»UG[“î‘wÌÄÆ]†D7_oOÇ5$>¾p®ey”ø@ õ¨Hrͺˆ'žðnåÝ”†d;Þ{J'•ä?á—êÏ÷öù—mç&å¶uºuK†·†ß±:û˜lj¼Ã&ö¡~üËL«¸½d:õÞU§å툹àÛµÉWrlxêãÚyËȾaþlÇä`ê»iO¯}wÈvÞ¤©qÍ ÈÞ÷âe¿# ¨ß^µ³ã.¾%·ŽzžWmóÉüÛñNþI+ÉvÔPuG²¤VSÚ…­ ýS»7…>XMvï,·\¨O¦ï]»ÞžúÇ™~<4Œlí3Š˜¶Ì—i%,ØA*û†¯«½“ '=;lµnÑYÝàwPÌ[—!nâ"ÅI­½1ª=zÕ¯âöcŠí¹×raÛw4êœÿÇ~)»(øLóÌnCitß‚)Ó°›Uà U}È-éx&û?Ðàþ—ŽžßïMÃÅÀË®è“ã’æ_¿¿™BƒmrgøL£ámýc®\JƒŽvÿrdEš’3é~ ù§Ìj}y7 ;ݳúl3yÈ5èüLACêŽ xˆ†M;]ýnØ…"4o_.ÿœ@‘O®¤@ÃÊÓGè—Ñ°Ž³ JG›’uD輨ðóÔçV~ÛŒRê¤Ã"¶v"»¶ê»tÜ>’Éó¦·J!ƒzGõwM°¡^~ÝZÍúö” V•]>4Å"W'ºÞù¬Bî%Û™®žGvùŸæM&m«¯ÂzKæd²ñ<û4$!šì»gvÜñùv×Ýõú9yØÕ÷³×_Mn¾ØwÿÚšìú¸—¦Aö—¾Ï.k¶—¬·[¿î}I—Œ×ÛüJ/9E6Ñ?¬TºCä´ïRôÃ&d2»h”unrКž¯îI¶ß=÷±–¬YÚì]Ò¯Û^k£v ò0­÷þE§ÑÄüO›Ý8\LNº»&—}"ûVÇÇÕÕ¤û%{«×ãk9-n÷+#ç1±·+ÆÏ$û”ÜÇݳÉÞï©ÀÈŒ÷öù—mçþ¢ºνL%çû YdN¿ïŒˆ@Þ±å'\ŠCÈçÇUà5ºæ°³sÖ̶”⯒½§ ­>~ÖŸëÁÁkšì78Iž÷{gØŸ|êOm¦ë¸”‚»®Ö-Ú<€|5ø ½:§É×9üñüe_($)Å!aЊøå=~ò–3r^Fò7<ƒGyßô£!áòg­-Ø/²‡eý—ò,«É¡J¶_Ýy׫I´¶ÎÏÍ )ĶóÛŠµd9£0ÜceÙÌ´!gÕHâq_#bª×—á‰EÞ¿7“õù]eݼ}Étt¿MËˈeŽº;·Û3bÍî=Pí^H÷®ûyå‘ûÈÜÈžÈã2íx×Ü” ÍZl¹üÄžŒ–Új}…,³M^ ÷r&›)v/Z¿}Lþ£FOïQë9_YYxâb$…tM:t(¥z¿>¼ñAѬ ùµ.ÓßÒû8¹øš«%;A¶ ';LêÐŽ\›ºÕÏÜ7•¼ÞX¶u/­E.º éñË›ì>ª,êŸJšs§I]§F–~GžÇkõ¤ÀÉjÙ‡«;}ñÐeæ4¬4(%{”ퟞ{Œøá}V2…Ý Ü{ñëv |¶¦½qA ¹8=i¦9Û–ºU6qtMô¦6Æ7Ï?ò…ì– YIkWhÎí»“¢ÖÅ,_qW‹ÌF–ètW'¯”…Ç4Ò iÀ’£ŽýÎ,¡`“ mjÝ¿KaáåGš¶0§~ux´Ÿnm²·c·Yòx °^4cëG^1›.™=ŸdÂ>³–_ÃÈ÷Åä(›Ãã),Sý®IÊ ¶®íù¼‘>zmVµä™÷ŒyÞ8¹ÿÿã¥Ñ—=µêZ‘Áº3‡ŽEV÷¾ùêa‘‹ÈNÏúr|ùz²6o¸wèå ²]ÒðÌŽuëÉõ\yÓVm2ÉÙÔɧþÍ2²,3õ< ¾‘ƒšôxä¨GvÏOE}9ŸFÎÆÏwænó$qõšh³Ï—œu‡„9M×"geƒ7 ·ýï³ßî©uhŸáwKîÛ[†Ö'·ËÇÏþ°ÿI~ÇÒ~>ß®AžIõNÞ8ÿ•<{‹û´HÛܽûÉBòqé4h¥“99†ž©ÜÀž<“—ÝŽþ“\¯fg…~%wŠÛ"V“è6åÜË‹«É}­Wë§½ˆIl9=âùÄ^®«· %ù¤èý¾²šŒ88ëâÌê÷ ³›^ÅRÀ¦©¬Nã†ä9ïU·£;ÈkàÄKã¼›‘Œü2otœ=y=¤4½y·:;¦sÀ4 ÞZkGâ” ä_PuêÏa ,{«S»Ã#òÿn˜:ö‹ @廫cî’œR»uûMá4ÀCù¶ãaò}×zã^Õ‰äӥϰczÓÉïÌŠ™Z¶à1¨wh­ÓdíÛÐoA­wäýä{‘·A=ò[0¶¤Í£×äm16åaõñqÈ5My}ÖVò9Ú1C£—…7¼°u‰ÚVÅûDÿ¢Ý÷þµØx{–ÉžLò±Njµ÷ |è|áÆ½ 蓤zÁë6ùoj6ëdè¢US ;ÿCÚWë-_ºÓš ··x›³–ü†ïoâüHƒXºÉøæ» (ìSíVFª/ÈhÌÞŠ Èiõ6ƒë:;)bŽOí¤©ÕÇ¥é=ibô²~nSš¾?uÛ)ò”/>¤.çÞÌþLv§Å5}3ƒÌ‚’[D{|¡è7†ÂÊÛ’þ “ÏQ—ÉÄ23(èUÊóÐK{(hSÖÝ„ž~¼þÜ¡ˆã+©ÏHû‹©µÈ¶ùxÞù êEÜÚ›AOkù¬+ëO»Íî<žpŠ<[¹Æ‰S(Ðaåõ´¯Æ$×.}šQŸd÷çSã4ˆlÌVþˆËøÉÆ$n%&o¡ rro6¸ž9mËö>žý»·Ï¿l;Œ®í¯FÁÜš»«V¯·æ+¿N)ˆ§€ùnaf›)hö­è6aÆ5λýóy¹œ‡sØÓÀ.;wy¼\²&yj y4óØë\;òì5´Gãk÷É÷VéÛºù‰6,œéÕ2!ÿmÓwVøP¸é“øcJ)®¹ófH×4 ]è{ÛÑ9ž4Yq¶û’šyoìîøPè'ç²ûÅíÈ¿Çä±ÓúQÀÞž¾Þ>.d¢æŸõx‘eÁµ;g7râªæõèV—Lþè¦ßå6Y4‹¿^äO–…kWZcM=µ"› èq”ÌÝßì8“Zo> áøœúµ90¤ú8Úb²8׿F¼½«ß¸ÜìRÛDéÏ~û?ŽÏÃO‡M0>’¼_,5[S9Ù ªg’ÛÚ™¥Sô˜Z'XfÄO¯>¾J–{,f‘ÉÓŽmŠ&O¤Q)ã‹)Jäš´y ¹¼I(v¶È¦€Swt›Æ6¦o¯\š5ᬯùníá*ê7ôm€ÖÃ<²Ž–s ‹É;é䯗½«HL™|_iÛ¼¹¸jÕR’)§+ß½oI²2ñÙÑQ+É?L»·ý£Úä·bãá.ãõüÝ1óØ$²<Öÿ« [9"‘U?>Õ.Y÷áÏuŸâãT·“·Gâc³wSÉãÎÙÑä¡ÿý^VaòZÜ8ê|BWòHZ£Rñ.™Üj¹©Sè}ؤþÏúä¡kóµô)¤ÕÞ¸ÔøyÍ®Æ16ŸÜÚéßß:‡üÍÓhyD=˜°êã¥êý¬Ârtë÷öù—mçÎ¥“Ò¿8M¶×W,®>ntê9å¾åÍ[ä`©|Øhùâ=‡4™z°z?ÖË÷Ä»\In'FŽt8CÎoæG‡ï''Ó¹rÑòNäºuYäÊq H;æé†Ÿˆw앦ŸVý~=ik|ÔÀbv]Ç/ˆ !ë)g?«UJÍ®ÍüÖ˜ä#— ß.Ç‘G‡ÕÖ]6Nüséé¼äõ®þÈ1¦jÍêvÛÈ•jª¿µœâzÊÕo—’ãùS¿*ÞÛ‘Ó™¸•ö{VR÷ƒµ6»Ï‹¤®—oœšOZgŸÞëy³%õÈ»ZÛ`äZê>u€aáÒ Ò*ÞªÙ6Ê–ÚØõ8Ç®?ikYiß–tê„Îûê9Š4÷ÝÙÔÆœzì°KR{ô˜š=I½ŸÿB“Ú®­tÄ(µ‰\vò¼Ö^êuyRÊQ Rõoô|I#²ò=_Ù¤a1õ¾d3ÎuB©Í¶Ü7iðdê}wÜÌÀœ{¤ññ|Çãã“¶­w·å?VQ÷s«6´w¥nq3^-¿ªEÝÛÏLSku¨ó®Ÿc<ºî­N÷/ëFÖj××_˜]½^{{Î<¤O6ogØ® £aËLUõÎ/þs¾Ý¥å—E—µuhà.ÕR£xo ØÞïÙ˜ñ'ÉÙ)ýÉ¥ÙAÔ¹"ìcza&5oaølXTõëÚ¯³ôØù‘,üþmïoýäHÖÎ:uHÅË_ï¶#a·'ÍÿàA!¡NO›ë§±êÅì¡ðSã$œïE:¶£';(k›^}Dû ùíZ³*_cyþò4<òý¹Qé9rà ’¯§?^Öó4ù/ü8eD§]$ f¾-ÞZ}Ùþw‡”‘‰dö>Ÿ~ $úìÝåŠP2\{+¶GußÏ©-Û£tƒÌ‡õl4~)™v)^¦—³™ô¨ÉàƒÃä±9áaÊ—áÄ.µ½9«{2Ù:wOÑHëKÓú|®ÛØÓÇ{•¾‘ÝÜÖÛl×¾§À7Ë#‹ÞL ÷üN«vm@ö¥nG6%F‘ýÂç•_,È•?0XÿÜ¿xÇ.‹mONå«o?ïräß½}þeÛ¹íÚ§MÆŸmJö‹šEhîH$›=û’ìM#»0Ÿ[k-ì‰-øy©óò`½~¼Zýè%±ÚtØÏò ‘Rl³.k¿Pk@çï«É¡Ãæ+»Ÿy’—áÒŽFƒˆ­Y4‹w¸L6§~{ëV݇îûÊëg:ïqªÉƒzä0Ûrš®Ž29Ä-k°„,Æé ½¶ý4‰®*‘6~'£•&˜“óíƒ#»Ý«65u9@ÖZ!Ç2ÈÉÿꃹC¯“ƒãêTïn“ÉãEEz©ñE¶ñ±¡ëÈqí”o'Î7'»ó–÷=#—a£êê‰YdÜÅàê»MNäÝöÝ"é¶€<ú_/j6zÙª}·¼rÛ‡?Ö R@nk[¶>ò›\/5Yõ~~}âs_*]6ˆ<jï{½úïuÍ?m®~>¾®ïöŸ¬g¼^6wÃ8òÏàï ´Öý¹1jÚÍ–áävÆøÎÂÐ;äºÜ©÷£¹ ÉÃþ­×0çh²×ºiÖB5•\~e˜¶Þ¥DÖ…›ÞYÖ·¥^±Ý䲑«ÉônëGSØØ­ºw7]&§©iý×­+ O¿UïεŸ‚:n*ËlzRq}}¤¥ûôo亷ö‚ –óÈ7|Ð óYsÉ{ïèÞžåä(æÉ± mIÚæ,pä ë›"{*»SÄÔ¾+=hÐÁ™ËÏ^£ˆíu‚SëÙRÄåÎÆ³¯í¡°Æ3Û¼¿L!–;Þÿ®îqК'uŸÌ§‚ïÜ‚BrÎî¾Ff¿»vxøóiünëØ~æ(2ûr`åm2ŒMË£æQ¿“…}ôpÒŽ½W¯\¥#ÿNð8÷B‡ Æ?Ò^M‹©_¦þö£:È t&ÿa܇ Žv)3³îD†ï})Ð$}3%9ÍåÌoþ`æÄd›ðÝõséoLmXo¸?éǪ·ÎÍ=A&½úõiìéï¶›´Fæ’Áç»ïº-«^î6µ™öÎÙ¤Ÿk_¤y'‹ Ýgû-¡~Wæ®Y?¢z\âÖ.ædë?tÐõjµmõ³Y~Èúö»6:¿ (ðÔµU:ŸÈáâxµ³ÛÔHúîûkwÜŸž{~Oô\x ÊSZë¾vI «ã‚]Ét†ƒ¶û× ¤¡’ðòÕ…ûÔ£VΫ¯zÆÔ/6øÛ³ÎËIÏò}ê¶‹† ÷{ò<—º=Š®7eDyž{ܶÉËUärödZqÜAr;夳å‰éBÅ×ìum·fK{SâÓ‚ ›”­"{ûI¾w’“aÛ-6‹(`ãG‡=óhðÚÑlv“Ïh¾º¤[ù>ší3¶©9};6kÞ¸L²šôµXï™-VѰ©fKse1ô—oé×½ú2E»>±Yí­VL$vs·A¿¿©{§1‹wòdîWdP2¼Ùo ©Ÿø}4Ù]<ä>[m9D÷Ksœx˜ÝÎÚ»E•,ß×m<–øÕ¯Û5»“g˾¶ÃTדãÕwÿbrhhßÑúT{rî0R¿\Uýß½}þeÛ¹ïí!*ªç'“çb«ìGíMÈ+i‘[”uu/NŸ0Àëy| ;v¯+ùN<›´Ì׋<ú¬í²©©yZhRz!¼Þé¾Õ‹ÀûÙdîsm®ÇIVwëPPY+²Ê(oѪ¡5õ+Ë+9¡iOK2zt­µ‡,ìÂî,KmN¬õm'·.+È\·íY§ÎŸ‰ßœâ–»ïéu¨—ÉÛuo«‹Ï·t'Ë:Nµ‡œ§þÓWºc8ž¬ÖzÔ¡ŠLªºåRÿ &†ç]LÈjΛē3HÃ/©ï>Ÿ#dy6h“ºk$ÉS^=có/kק˒ŧ)Äa³îõöÙd˜8¾åÓ~ û펕k¾m"Ÿna*³|®~| §_M]†Õéì÷…: [ðrÐÃT²õ¹b‘{¼5Ÿù¶xV‹_ù:ËxÙ.2dû+ÿÝmòèªÿëØÅz0i‘çÜSÛ(°eжzR@ΖƒËú¿¤¾}­^6Շظ´—ãrÌÈ÷{xVêXmr7v<Üçù½u,™<)½iãyÉNŸ|÷¾ÚÞ£þaò UÞ¥XüÍb¢Ê¢Qÿƒã÷„,3'«ûîÖÏWk“ÅÇ.÷n'ËiëT÷©¥ãõû;¥Ý̧®#{ý$ûËNúèë.ëS.z?ˆ% tuœ-9,»sqá‚r+[Zô­ 9ú[Ù|X½~k¾Û›§ICJ‡Ž¹6˜>?ÏuT&ÿ‹&]:>ó%ßkK6øšUÏO“3ªkùØq–«ŠÉgñÆî»Ç[Ï/£uTþœ‡ Èÿ^ Ñ{.ùT¾T9ö”ŒxsëÎäy©óÕ¯äy<¶~û7ÍhðÔˆŸK­)TçUÄ…¦/)\Õf§Ý–ò±b\ËAÃ)¬]ûÚ/P–êE§v¾ÕçáÆOv·íŒÃOL“¯]ðŧ;F‘_àéÑÃ?哿u­sù_Ö‘í›y=L–ÛR·¯fŽúßEúDƒ^d40zëùÈ>gǨ¯ódõqaih—ö±d¾×tß5åedx¡éÞÒ”,­Š†%QÇöËnÛJf»Öª¶?Ó‰4O×zêêžOFª[“"ªò¨ïk1éê=rÑhÅ;¦Œú3öŸóc=©'f<^¹7 w´¥ºÏOC3ë^úEýSïOþ²z=YŽ?Â]ÎWQ¯¡‰v—ö$㥟,+>'“­’•îJî®åçÊílHëa·þ¦D¦ºu+Ç-¾E¾û§4¸ð ñMrHÔ:krXЭYð¬æöÛ#'N>ÓˆFùŸÔú)` ƒÍM3(`T´‡ËÓ„?Ÿ“i›ß|ÑŽÆäžrµ‡^=Orˆýµä§ñVYçò“€d©»ªƒÚ×kä·$Ì>·$ò¾êòbK Ò¾\5ðó ZWüôSh9™ú_ødîqrèÜpÕ„ÕÇï/:ÙÎýq‚¼žÏÕÒµO®u“ÜfÕ¡!·Òms¬*IîùÑXeí|òû±Y{Ën= ìèÒ}c© ™û7oÓÁÙ›ìÔ4F–¼_J4nРݢ¹d|bN§ ë ɪO¶šÿ˜éäJφO¹÷¼³íGôhdLî‘wˆÃ)Ò¦ßRrª^ïd¤jÔ>HRµ<='¶y2o»¼N²tиC“•ä3åͤÊ2'ò¼lºyµjSr™}äRQù-LY1c¹ŒU–âOÃãW¬™U‹¼Õ”nH˜ûïÞ>ÿ²íœ4öøh$y­}RðåUqÇ:‹&»Ú_ëic³›‰©úÄî–t}þ¹Ó¿ÙÍL ÙtóÖ”ºeàn½zmÄ9ò¨ŠÝ0¢_,ÙÎŒÑz´«é¥çÛè¹!«ˆîÞ•7W‘oç+/¿K$û…·ú×õ'“›ÏjpŽ\Ôö|/‰!ϸ‘öã=ÿ\z8o-Þ=þÙ—{×[1SCŸW "×Ðý•A6wÉëÄ‘s‡ÏÆk­7†ZéKHµeCÛ› «·ïó#L"~¼#ƒ §.M?Ÿ!Õ?;-i4˜4.…9øy‹ºÞ[ÿhL7jßóuvۤΤ>pã¶iåÛ©ÝS·Óu=‡R§û×RæÔ"¯wÚ耡Ô$¿õ§§SíU±gÆHê¨õ4Ããy<µpY¨çõŽô“äõ^MH]¯ÙÎ÷¦ñÔ3Êì€ÙƒkÔcÛ•Es­&‘Έƒ÷’7Þ£n1ã.µÿ~:NüQKå~/êÞp[Ó^3¿Qç¼—º?Ž5¥®Úƒüßæx’åÂ_÷7›|'Më–¿Y‘Þ‡£:K‘³î¨ÃsX=²°z<~ËêãÜâ@µ… 3É´‰J¯:õ[üùÜ«¹ƒéK/ûIäüyFú(ãýdXgyÚMçX20=;_¥íê"R *V4$ÖÔþÄÙ/2jÔµì×+% «§þ®U—½Ô¨^ÜèE•äTj¾«yf p¿|óÂ~äàøÕYó=y¬ k8ðù+2ìgyÔÀ‹˜ßÒûK-r±õ»þÇPrˆ»öõÃçêýÞ€ž/~Fç“§îœ(Ï“È^ÛT{Ê¡³ä^çÉdÓÈմͽÕýÉàάØÔ‘ÕÇ;GÏ<Þ9ìU£\²âÌþ|>Îlú'§>Áʤ½¼ó míMû]UyÍNW‡y\p™L&«;ÄêN·&ãÑÎ'ÚuúM¶ƒÎŸxvב|º›÷]’Ý”lž÷_W'`9Žüh7§îzrººnR¥Ñ²êþùëºr=rŽ÷Õ¬1ÙLÿõ²×°–Õz;¼sõñÁä§z¸¼ùwoŸÙvîJûOýÚ†L»Ê)y¦Êäz{@ù46•êv¸T½åÒIԷу-žn?Hã ëj•DZk·*½o¸…ÌOm¿é¶ó-õ° °ÛžâCº©á˦¹÷¥½/ž±¶évùõ¤$–¬w®JѤQ_§°ûGê‘î{îWr>LmÛ">“ í:DIý.<6¹¸Ù·Y{±Ù´lÒõÝ¿Uº-é¬ýöiÊÒ!dì×òíG¡AlZÞë]M½©÷—z›¦h’Û×%ÛëgM¤AùJzcj¥‘ǯ9É·¡™K¢zÏi`B=~ È8ñçs2A£OžŸ±†Ø{2?°ù'8‡Æ¬*m7wÉlê~…‡š®èúg;xxú˜f{S OòR ¼°F-»ùítôLÒÜîÿºýöŸjiZXS@zUöµk¦Ì:ž°óU§ }Ž¡À*›ÄeÕëé?λýã|Ü?>÷ëçn&oï>•ª““¾8–„×ð¤Û‡¿P`oÕ[jí_W};ßK«’ÿ±ÇŽž® z»Ljшgz·öS¡ð¨þ±÷WhÓàKç·»üˆ"ÔöÎhì'(LmƸŖƒi@ûÈQ«Þ¶¢ñ–Ú/ww£ 4v´Ô£šUÍ4¦n>u’>ô!Í6ëÖß?žHê…V$%³Ç±#Ú_´¢ž)Ÿni­J'åYÞG'T‡®û|üýêÔÞ©Áa I£E‘Æâç»Hç»aÏ&ÙϨCÕ±…Ë-ê²ñÞˆEdª}¡žï,ê]¶ar3FzIu½kw £€¾'JôòÒ©Ï<³§Ì[R¯½;[ÌXЈzœw¢Ëà2²9Ý¥ÿ”Ì1d­yûe­ƒ%¤¿Y©A÷‹•Ô3äÒ¥m{ßQŸû'öWnAý¶~ò|ô}éoÿ²÷ÁÓdx{–ÉÎo’¬w9N E>au×¹Ûù1­ÿ‡Ïdþ+ÁrE{Ý?=ÿÇç^íÖ^yöèYœøjVwÃLb=ÞžŸ²Œz”øÊ÷MâI?/t÷ôa7È.æGÞ™Ú¾dÑý‚qçó)¶q¹¡ÚÒd´J¾7¯ºÏóí·¸úƒ‚u¶vêýº…”ŸQÓŸ´üÌœlJ«ºR¿uµCÛ9éûn¾ºp yÎ>ÓçQÔzrNê寺ë.·µZsÚ¼3ù7]û4wVíØ`°²y»Ú¾dz…üÓ~}~i+Îð[ù³ÐŠúÿúѦµ‰EKóÒ²¶L&ßó»Â|Tf“…‰óÐÝ òÈh¡}‹–³ç“uÛº¥‡Wx‘ý¤ÝªºNÉ>çHSý´ÎxTwba^ô±³ÕÇlorÛfÄO.L ÜeFž+Ÿ¯»Ö|9uúp“§’SµD¯9 È!¯•j§[aäÒhª‡~Ÿ_ÿîíó/Ûν¢Û zùvy¥8uy£ò€¹ýIhßÿ•Ôƒ‘ÇM»¹Ÿ\ê“ï ô÷$¹¦ií1Õûýé»7Y´”|TÛºXÙBŽŸÇ-\µ‡êf{ùlP!¯º]/ŽíyÜÝF~¿ÙO›V¶wºP^Ÿ‚–ôú9¤/÷éÖ¹u»Oä;¶Áˆëq/)àµáåGñÕÇýz—´ø|˜¼žz±p"yß?3ìJ’&³jí¯MÞW–w¶9_½ßütå £×ƒˆÇ~?¨õtõé^8A…ôÏO¶µN9LFK>=¼¾nTØV™÷•ô\®ìšiJ½ý‹ Š-ô©‡®¿šéïùÔgü²Z™s¯“–O©k¨ònêË ¾5iTA:÷­šZïw¤žZ}©å¼’zn hÕkF9]¹±âüÒwö?u÷õØ¢¤ºrÌ=ê;Dwbrƒ@2mµãÚkæCÆÓ¯oØœ¸œLë=‰=¹¨3õ¬ß1½üÃ]Ò¥³KÇž"ƒ…·'u"Û•GgÝ˱ ÞA _÷~öŒ¬3^Ìo¿§'ù÷Û{cÚr8{~UõûÀÐ#Ï}Í;@Í'›®|FÎO×ϼҨœ‚¢&oÝ»‚üz$Lj<ºe¦=M¸F݇mx°oËDÒ|vÚxsÛÎd¿yMÄêiêdÝémÓÎM•)zå:‡ºñLw—§«_“ûzÿ£]§ §zoD¹Ÿ(èc{¥å ;ÕV³vÈo2Øl²cPÇíd×­UËa›§‘oURçûáö䙲ä“Å¢óäsp@XÏ^¶6ôhÕJkò <žÐÅœ|S¾'vžMÊ›•÷~zK&CãlK›‘å©‘—õH$kû+W'8’Õm3½c½÷eg¥»µoO ­iŸ§!‡qC6:¬²%æP®[á°†¼ºÞ‹o4þ.9;wéy´a(¹69ãÙ¸åäIGÓ„ÇX²®˜îf<¢?yõjÖtGÊ4r}ýƦöarYÖ{^Êíäi_zÖÅà 9ú̼ÿªÓ`ò8Ö»xjÿUäöáFN»ÿîíó/ÛÎÏÝò¼ä~Ž‚éñÕ×7(øPhìaýVä÷öJ—»ç^Pàã1¯|o–ýËçá$¿v¶t`õñâëŠW7ÌÉ[óEGÏ.:äýcÇ¢†:šä}®Ù¹+?Ì)T÷33J¥Žz'”:SX˜.;”J)Lw\“+'_RØúó¶-üE~K§z|/_Mîç÷¤¨QÀ†ν[LjŸu ;] €îgÍrüm ÙÿÐ÷Cc b=ŸvîãI!¶x£K!ÛÕ›ØÔu#ÿþ=:6¹Ï°ùÂÑ4¨ÎÊݽ?µ !{T¼÷2¤PËü ÛS·Ñ Ø/{ÜjG†GmíE?îM?·°% è=rÓ€_ûÈ¿üÍœú×Ý(pY£Ãõ~D-g¤èœ¤žCÛÜ-"Ëã­t¯µ§ÐÛ£gl¿ BNšöG}u¦A; ½ÞòÏy¸|n@×ÉªŽ’_ÕëÏí"[óa&éWÿ{;?òœº?ùT0ÿçL¢1ÛsúÝ&Óaþ]Zi%StýÝ)u$½ /êþjö§çº>[ºrìs ª»º÷ëO)d“èv`©3wÒ¶¥l²±Zpõܪéäÿýyy¥[yö=Þ)Üò,‰m±±1ó‚)0 iÊ›§Åä}rZ²nß-ä{ô™î† ò©“iѿݲ\ªS±øÍH²,^qºÏ —dsõPäÜÚµÉ8ñ˜®‡Ö‘å¨}&ßkM%s •L·îõÈnW‘ã¡ü{2¬òë>êß n@·ä¼{¸÷¡u½É£ÑñßÃÇ=&·WU6WŒ$N#­3¬ªßwò—¾tvýEž–Nq³òŒÈaÏdƒÞÓ“ÈmqÏbýÀ‹ä5çyï=rMŒ~Òa^,¹7_é|¡å¿{ûü˶s>üòzíØáÄ›\i®ëAöfê WNzDöû»|Øo;‹|ß8ìUGV ½O¾œ:š\%ߨ¨ÚLlÛ¡G ž‡g§•w\O½ýâe§®d¯óùç»–†äqc¨[ËŠêå-emµ6“ó Ógí÷u#§ËÙ—î?ÛEž¶ëlKþFËTÒ«“!BÖlþž0èϥ篲ŸñAâ{Çä›Y‹N'ƒÓ–Mß1žŒÚ­ðzT}Üñ’ñs{ˆÖ…ûÈ-&íǷì]xœœºyj^ý4š ôÙç~8Ь®~5?ûk™l.5~4¾#Nßlû<Òr¸Þƒi*‘õßZj Êd´éõŽ/ÐàES®^سfn'Žÿ Óó ëëªÖ#×Ë/µº‘ç“¶éÏ­‘{rm¯Ú‹ÉÆ·U‡Q¦dÞkæÕýYþd½xþÄYÖ6Ķxíº•\ï¾¾ôzE7ÒÖñ¸çZÙœ´¬fïpèø™äÐIOÆ[‘ûg ÏÚÚÔCý¥Ý«˜öÛÿ¸Ú±cþ÷“ävêBXd“ã¤m±¶Ðy4u2™SÔõ;«¯›M4 S&½Öí$ 8DÝlllÐåüñÄærYs2Ø ±÷À[íÿî¹vð Òrq||-›+óRöEilõ:tg»öÔW¹èû ÇP²¶5 xê8ùjîHýQŸ\Ô¦O˜\‡ìnY,*\û”l伓¢ÈÅtLÕ[òÈÜ–o#ÈóÞ±W›ÖÉ?Ÿ{ûÇù7Ãi—›eFT¿>ßÝ*JY$¸R¨9™,¬×yÜBr*2]sœ¬F:*Ýèù†,ÕÙíbN6¯jÙ·-ÚA=¾ö±y[—Œ¶ÿ|°q?r;çd;úWñ¬Ií¤ß&Y0L~\gHNêš‹ÝoÍ%Ÿ¸3ÝÈnƒGˆË IvËïÆ~iL.®÷ªtòúÿ»·Ï¿l;·-Rsíú›ìíT¼f‘m#=åÑ_›mëþEŽSÞk;:3ôÙ~¼o`áâBv%óž<׈lcÂŒR~¯!'%[ëî×ÉîñÛS"¶òÛÓ\âZÍ«7†˜JÕšÐÌÛdw"¥ÁåÛ‰evXÐçô*rlð›o5xDüÂÙÑ#xõ¸{&×{C¼css‹‡‹Èþn­cqQÄ;+{-}Lѳ´¦ÍJ6¿´K”ãüÉ>+Uõñ3²új^_»ñ4L˧ٕB}Ý’#â¾ uÞ]cBfóú„;VWhtŸð;‹ì-fÎZÜf2ù.~9 çyòâýæK{‘Çô»ucKLÉc”µÉÉãã¨Û»ZÇw8$R¯öíë4x”M¡GêîëಔÖ°5y»CÈ}–¯‹gÆE²3Û»µÆx ð‰ïYÕx9ߘZ9õëLÅrÝ[o²¸¹Œ<·žåt(Š<œºÞ+2µùsû?îÏc¿ëÜÔÂêùkŸ[bsc uß}lgÀ¯döÁñî¸%ÉÇ·ïmÓaÕÇÛãÇt+"¿…IgÎÛýs oã^'Igy4¬è×¢Quÿ¾;¼ô¨"Í›ó?ª'^£n]Û»ïõ%»õG…¦ü&³)NË/7¥Öá̓¯&³„—wŽu_ÿg;—…éGßxÖ¡´ì1äß`’kIbÒð`ŽÙE²uÿè= §ùì›2_TÌ%76tçã‹äæZþ¦Þ©Q4`êµ -O’ÿ€eK÷¸QÀúÔìÒ¨Ëäw=xrÝ1ÝÈFéá6›‘M±±•jr.Y?IóÚ³´ Y0õäM[²¾R§$ã”Ù…Dwoé9XGÏÒF³¯íŽð «Ü~ɇ͸Ù$lÌì yõ«8Û?\º7nìOŽKOþO­´÷"ÿkæ1E=Ì) e鬉ù–4°aàŠJ“b’;Ç=,:ø€|t¶D}ùMÛô¬3‘ÿ;å”4ß\ê#ïMaDZ?W¾,ýdJv. ¾•%ímc¦®Ö('þÛ*6„說bo§ÿéùŸÏÃ%\ëFAÛ8ëv7‚zžwè½ÀkuÝé‘16¬5uˆÏšÞ6­/™¬4ªêgnD=õÌgmÚ>‹¢{&Z-êDF¿Ú/üø.ƒ<&Ö­¿zo …„ô‹éñd1=ÿuçç ¾0¹¤åõO¤·Vyö³Ó‰ó–×vP%oÿèÑíÎ'÷×Þ¶ûñ‘×=ã÷È„¨\ñ‹*~O~W‡<¾öæh¼©¸ú}9ð}½•ESv’ÕöÉzúWªÈäUdÚ‹Ùñ5.Í6F‡[æ­ [6µÌeL²NÇ·ˆ%Y'{f7e2ì]ñò‹Ý ²îºlYvìbkoѯ¾CÈéðäõe+ç}b×å£ ž/ÔP嶉Žh_²ì>9¯]›n·r¹nÞÚây´ê¾;+_ìlCN}¾\¸Ö4ƒœÃ;ï~aÞéß½}þeÛ¹§¥–~êõ7äÝòèîüÏßÈ»ÞRš§s<Ó›ŸÒL¯S}\ûà„çÁXò™e¸¸ay¹ŒüÁŽ’Çu“wÉÓHš_ééÖhy>àJ\ø¡§}Îw0 ¯›3W4Ù^}\¯jœû´ãrNÔ¿³¿á<uö[¥=…‚Oö¼8|Ç Hϯ”?ü'=´T·뮜껎]Î^´|?y-ž•6ý%É)!*g^\%ïºï‹J_‘wø÷‚Ñ.%ä|²Îñ!hàƒ~1šƒ¯“ãë´éÇjm&»KëmlàCìVÚþ«î·È3±óÅ÷Γ—Šš»Oê0’ã6m›“/Ék÷ÊZÎuÕÉãð®~+ÏY“ט NÑkêQõëKw^1'-å.’ï ­^’ïI†3=>’§Yí³ëîWQX­€f›¯Æï´´Ç;wE‘oì¤Ú‰™KÉçyRàè„ú䦪݅ÎãÉïxQ¦^¶)y> ë±o%y­W_5ø‰yæÆÔýÖ´yOg<²ø&Y—-®“²o7õH¦ðYÉidÑíHç¥óG’·¶×»ãë“íÁ´•¥yé ¯Ûóî¬?çáþ±ß¾Àò@Dæa’¯rÞ85´ ‹œÍ;—ÅQ·MY¶çu^“šEN•Müêß*/sd—ÞdÐ<¥sŸÉ 42X#¤­Om2Ü]·ð®ÍU¿ïˆýE¥Ñv].¾µ¹³7l^<ƒ }³™]®¬Þ¯»önÝŽ=ä[ß5LyÐÖߎzu“<.Üðûƒ2… 5¦YŸ $ƒ{HìZA~êë.7 yC¾CL—Œ|Z½O8u°Å2²Žj ö|)õÅÞ«ß¿D¦ãZÛ<»‡,[m¿ö¼}]²öÔߘú¨Ù÷—‰oÇ%׺†·ã|›“™çÙ§o¨[òè÷öî+ÉsÑîÒΟÉóÖoù†žäÔpÛsÛ‰äj}iÇ9¶Ü[MZ6þvrª_w˨œ<6:uog¹(µ¸uÿGr,Z}+}O¹LÕ©óíÃÖ÷öù—mçA}븽»’Dõnä=(;Eþ>þ»;¥Qhô~ùâR"þ:x¢°t ùøíÕjP« yµ6ôìÙ÷ù«nhq±÷hòžÛ¹Ûéo­ÿœ‡ónÖer_ÓêníØÞ-øÛ8’÷¬x§Ó•¼~´~?ëÝ%ò¾:ßze&…G¥?^ðº; ؽøm¼Æ9 ‹©{²Üú!…×µ îw§…-n}¡í® °± ¯‡±9ù­_¸ÄxáY =°ýµŸŽð»mý‡wÂ)@glRãî=ÈÃö蜗;æ‘ã\õ™ºãG‹Îñ3'5Ž’ã³ÃïŒü£É…Éš¼ä1ùxå­¯ëbBž·Ç~õŒ½Lî«G&²‰ÝI íØ¨Añ}ß]ãìå@ rxÒã.Ûgï-Oû¦›¿sŸ7þ•ãH…e7hþŽÔvhÿ<½J“Owh߃,íÞ/:ØPF¾ßÛÊ~ÅG²è:ûôt]ãÿÞo×|©BþÏV­|ü%ƒ‹&/k Ý‚Nm‹o¿é |ÚôG›CÕï;wlÊâ4È_}±ŸJ€eõ~À…Ì~·œÉ»–ù§ÖN>ÜhýZû½«È¯ÓœÑw2/‘ßáe§‡íûD~cÍ_éЃ¬›,m×|Ÿ‘•eØ0G¢’eFËU#©ÿŽÃèIVï?õ¥ˆœºžW¶éy*/8½slùm|0}T{òú¼¨žõbòò›Zµ®ÓX¿: Ù­?–<Öœmî2å6Y.ξuºÐ‘Œä¯_u]‘±ÁÙ:Ÿ¶“A¾«ßÌœp2>ï}¦ùy#²M_º»¿Å Ò6yöèêí1dT¨]òs'ùm¼tذv×êý”9QåSÈÖ­—«EÆ>—;¿Ó}K®ËÜŸÑ:DáJ¦± [´H–î÷¯=kÙèMµþDš/ƨÿØEí57ÝW©NVîB›ZÌ"C¹¾y'ÿ\Š™nø°Å#O2y«©¤®5¹wé5{Ѥt ²½4|̇ zŸ¼n×–´gðö±Mg¾1ÿâ’óšl£\žÇªÆ‘ŸÚÙ;!oG‹®ÿ~C®g{[,þbI>ÊuµÐ'W7w‡²‰äqàÈ‹W¿>gÛîGVïKfA_ú”˜¥Rÿ]KŸéšõ!ópí¶Û†ì'Ó͹êE܃̭ÕW–ϳ ~ÚšO3‚vUîõÕLÉ&Ä5¹~äk²ÈÒˆ ý0…¬ºÖo¥ªFžViwϳÚäí<ŵ Ë…œ“wìüyÄ€Do·ôÝòà"lÍøåd?À “±—%¹fLîR«Ó;r˜ÈSÍ4‚ÈaòÞ‘;vOï±qÕ­ÿ}~7Š “ʉ[Ö’u@/{ko² ׺_²¾)ÙE'Eä™Ô&¦é·CSï Ùç–]S®BvÏ-­Çä’C-ƒÚ©ë{“­yÖ÷!g·V¯üÒ5Ûê÷…àÁEžü.Ùló ðãL¶o´ÇÅVçîÜøÄg²[ïýÌù§yõý·yôôÙÎëœS°$†œžŠö:Ÿ"»)SsëÕÛLömŽL:”ì•:õnyЛlƒLz›ÞþJöYçÝÞ¼!»¡«C½GT?ÎÁ‘ôݸ%… ÿ6ºÁ ݤl£C>—Ö'h§z‘_m‘ÔïøD rþ¼:²Ò’øÅþ[WÛV¿–½=–>Ô³zÜÏOÚÙvNPúšO^M2%îþLÞmÄäÏ7‘õø’tã½ȧj—’F„ù/Ê œº„¼bek§Ÿ ß½ç6ÞÒ•ÜÖןŸ3™|wl^¯ùmqpw+’tÇßkBä³á²ÛR÷3$‹Å=z~‰|ëìöÄóyÿZqøN-òé´egíBg²iyxlP#õÒœ|íJúo²œÙ£mV# ø¹ÕdÝööä°»þ°õ­ h˜E«Aá¥ÿû÷dŽ_N[ïÎHhrƒúšªjlAcuÜfºœ?5 }h+ICéCL‘í4ê¦õªa †1Óùêíî4'‹ ÍìÆGRô»Ú-ž<ñ§^]”?=Rõg;-»®ýêG%÷i>b|Èj [˜ýüô HÒm4úÇøËîdk{Ò¾NZ- lp½ÞÙÉÏÉókc÷[·÷“ŒYp¶»k NžjYG/šÎ\ùæ{(“üUº´ŸñM’ÿùo¶Óú’uv§ûë#›“/K½†Ö&ëŽUú·/Ý ›®ª†…ÛŽ’õ›Y#û]$»­ã®ÖzØ–løaûtâ£:õлWIÖÏ i[kb[•ê’“GÅ:e©Onûν­·ò&Ùf?¿¿L׊DÁÙúyú’³vvÐÆ‡ª×7 K§ÒHl°°ÒL.qœ—Ϋ>^·È>ØÚñ¹6öÖìvþÕ¿{ûü˶óà¸÷Mj§æP@³M 9Ÿü=W¯xî:ùϬwbÚ X}8®Yër þ˜ß:a¬Q‹ÁI Âþ|õÏõ•œ™_H6s=œZ½1ÃP¯ËòOº—3é@õñ¨ûèoÇW“þéã}Ì¡ˆ¶Ž_§…Qĉ—íXiÑ{+—H/Š˜ÜB×ï@9EìJs=&šBžEŽ¢ÇC)„7ÿ¡Ÿx“x>m§LÁrœ°Oø¯ýו CÓ—’¯»ƒYÔ2û6bÖåêõ¥Iè+f›ÈlÊÇÚ{ËÉ^«¨iðÜ ²ý•»}xär¼ÐL爫9Ù$é½|P<|°Ty= /ÝÚÑÜèã {·Û‘ÃŒ ~i-’CëåËVw&ûŸ—ŒNºEv˺ÖÑmK¾‡ÇÿôœÆˆuzê¨6­)¹ï|açb©K®)ë’‚“»é¹¹o® wKë]‡Tçrþëd_3²Ã 9ä¸íòª•-›‘£“ZÑõ¸»d‘zMCµõ¸hfÕhÙX zïJÞÃóâãÞ·%Ûo¤>ýÜT mõÂõѱSŠž/QÙÀ~: 88÷ÒˆåDrHÚh»MÕûSþÞ]oîÌ b±zŸAÒÜrfìÔݪT}€>b©ón2j¸TW¨·£á•µZµ¶¢~›Ö¬kã3ž<Ž8دjV}|4yíâŸ+T(Àøê‚×ü&ùÿŠR“×SßRלù-tȾuLTß²$’…Ÿè™Ûè³ëÀÃÊC`¨_±hY…\;Ð}°=n“¹ùÉòg4Ü*bÎÈO|ÕüÄÿþ[݇Êÿ—vY3̾‘õ¶óš<®Þþ·®uÔ¹Of¹ 7¥æ7"ë+ã{;‘ƒzÝY«>¹Wgo÷޳œ¦-ØÚ¸á"²wkf²àù2r8¶lÄÉŠ#ä¼±^mó‡•äšp&Â'»97°Yg 96™WlHÎo;Ø:ŽÿwoŸÙvîõÔ;‡î«çö䀃9ÈsÑÁ)ó—«“÷å€Ó w.‘WüuÕËu Èó†ÎµzÕǧ/Ìj=’¼CT#6#ϧóÌæ‘—ÑÚ6JãÕÉmþ>ß´"r¯÷±ªÏ’ rgr¾ÿ‹\r?¶oTöž~$^mí8ýÒc 8½cCó èþdÏÚUÕ¯{Ζ½%/,)PùGÙ‚.ÆðâÆ»T@Þ.–³NTU_65ÙÖMoy.w(îrмŒ¾º¢,¼g•4ò¬î§·Zlþ$K'rùœ{=Öû9ºÝtJrM!‡ÃÁ!o–_'W“4å6Ä¿e·ß8¾œÜ;ÚûnœQQýzÞê´¹pñ½Wo{OÎŽ‘ms7&û¨a•wú’ͧő'ꇓӬׇ½ì©^N«CG=<ˆ»N¾½b ù4Þ7mÓEr™Sêðmjõ|Ø]‰ì~Ä®¯“V¯þJ¿[UBîÑÁ‘{û$gÍ®ý—{ËW»î‰×ÕÈÙóµÁJ¯êÇeéܹCõú;E/¹ögÒn²=ub䲸6eä)£È§ägÍÞÈ®E³©/…Ë6—ž}yóßçÛky0rÞ×ðýÕð±žòÒûÊï»äþÞyÊÅ5d nQÑ, Ò¨S÷ç¶Ï9¤ttnm›d{¨Ù¥QÞdº®ÝXß_å42w|;¹é35;Qa&ŠÈýÖÒí§ß¤ Q#½ºhPPãÙüÚF ¾VÇëüÒÛÇ6®è÷‰˜Z “ðE’üæ¾WÉ›LCíõyx›¼¯ ñÐqVj¹—H¾¯“*{\!_£GNiµÍÉ÷ÝÂÒ ³ÈÒcÔà¶¡ËÈ*H%.«õV²Ôž¶;þó~ê?bnQvè²t/]Óðx%±zõlV‘C§Çǵ›¬$§¢ÝïrèÞtÍÑ©#È¡MpÅ­¦Õ=ÖÌx9}*¹/v16ƒDîš>æŒDêNÛv7Hhèd/_CNAò³õ¤Í$ö9 ÏEɵ<óçÁø’êãÏlïõÇËÉÕ@<:ÝØèß½}þU—ÿô_r¨û_ÿáŒÿû¿AÑØè7Úü×¼Âð Ç+¯¸Âp Àp ÀpÀqÀq q q q p pÀpN"ÃId8‰ '‘á$2œD†“ÈpN"ÃId8‰ '‘á$2œD†“ÈpN"ÃId8‰ '‘á$2œD†“Èp9N"ÇIä8‰'‘ã$rœDŽ“Èq9N"ÇIä8‰'‘ã$rœDŽ“Èq9N"ÇIä8‰'‘ã$rœDŽ“Èq9N¢ÄI”8‰'Qâ$JœD‰“(q%N¢ÄI”8‰'Qâ$JœD‰“(q%N¢ÄI”8‰'Qâ$JœD‰“(q%N¢ÄI8‰'Qà$ œD“(pN¢ÀI8‰'Qà$ œD“(pN¢ÀI8‰'Qà$ œD“(pN¢ÀI0‰ ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ0, ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,ÃÂ1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"1,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã"0,Ã" , ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{ñßx¯¤ôKII¹võe­ÿû/ÇÅŒ9&~LdL´’Rí¦JJ– ¦½©þ¥zÛéîá¾3¼Ú7¤{Kf}Œ19L·æ¬o9eÀÒüýŸqYqõÕ»áI%qõ*_¸Ž¦\ï1ÚK³žÔ÷¥t/³þB¼K;>Yr”òúkVìý¡Æ¸‡«'üXö9•nk¶Nlúy%Ï©sH‡×W q-ÛaP4Mxàéµce¥ž½p¥ß 㲕þû•Ü8µë[%å»­ ¬«VcÜõ'½M1£’ÒM^¯MwzÿнÙrFq99u{¿.kE¥ÏS»éÔ›2ç \Ø(¥æýfÛGÛz•Jž‹­½¨úê„1>ÕwÛyÔ"ç-ITÚeá«Õsý(ÇÂ"ÃdxHq7ÿïçQ¶gàX-ïlÊ9fÑê„Xqiûß/œþø •|S½´šîS¡ß¨æóxökÄ¡ÚT1Y%˜ÎUR²“抰“}jŒ»±þ¿þl {§(ÙdD…“÷õÉ\󫯏Œ™yé“Ç®£ÒŸ÷‹wÖu¥\ë³Öš‰[kŒËíýð„‰£;§'Ûz´_B…j[†˜¸×—>ñèG£K©$ìÂÕ©éNøó”ÂãjÎßf»ßN·¥²å³ýÏ¥,÷ۗޮ1®P]žKm[›Š£5Ví:Cé›…±™¢æ¼¬q-J·zL÷µ®?9{åÚVYÞì¤æ¸±©·ºyåÑ}ÕÊÞ“ßPîèb¿gÝšóú) ‰ÉX*9àY2Ò»òwÿXWß°æúr¹¤ËÔí=¨,rI˜ÿë»”y¯!-·|^s½7o{ÞySiÛL?¬lK·-Üç©M­ùøæé©- ¥}gMÿ5²å8º;•¯-PÌï 7¯”³Þ+¶÷«•öÖîô ñÃywTÿÜžç¥öÝt”â}áz÷ú?fý¤²ÅG¦¶<¨X?{¿ži>&Qqÿ)ËS–Ï:Le+¾[îÝVKñ> âÕ»·áyÅzpjãPŸ¯T¾çWÓŽ¼ÿÜ~+«XóLÛvŠù]·K-ŸD*óNÛãýP1®]÷ƒC;ìT<ÞZÓ¯„¬O%±Q‘#Òv+Ö“[çW6ª oò½â}m¨Ä'›æŒP<žœ³o„vV,/nºêØ7Ÿ¨dÇö—;C')þýîwÔ"÷*ÆÌwûºŠ­=N­ÞtFñ|Ë*m~·ý³^Pn匛Jî/éÁÆm”º·øsûµ'Z­óûs½,}ú#íÞt7ìÀ}JkúçöÔ EN×Î(æé¶×C*è¡ò*=çÓŠyÉM6ülp­D±üÅ–7¿î‹£ŠIkZì58©xýþT®còçzÊ’1Q.qDSC†ŒèºZ1/½OðLŠW¼¹-Æw¯R£²Œ3[&-þsûÕ±ºs§NT¬¯ÇL[šG¥+,/Z‡½QŒËŸÕȸÁeÅöiäõy÷M*)Òij`¬âùŽx¹÷w¡by'»¿l±Õ–JÚ”h_š«XÿvËÏ.)–÷æøúûMó¨è‚†^«Õ[Ë[k¹>=Æi˜¨=xE–÷lÛ·Jq¿×RÎ~šÞA1îêªIÛŸ¤ûÁK"_¿9¢˜Sªu¹ª¡b>Ýô[öå©åÙ]x{Þ_¤®N}õçzþ¡½;YIÅK.ÞßsüÝžëö*î˜uý‚¼asÞ.Úù€îq/‰ÌìK9e:z –¼¯1îvkeãäOͨ|¤q´³‰e˜tkÞZ·æþMv¤Ê²!†wèÁüÂÍÓÔ)·‰zn‡„šû›¹µ÷¦ûWÝrr­¤loõéJé5Æ%ÅåOYFeçž~‘ߦÒà1Zç2û×\Þ§Ù·Ö§Êî/Œë[JÇ«¯_<ú´Æ¸,õqVS¹÷6F¿ŸQæ²â N׼ߛ¦£Ú—R…ÆÖ³©–è–Y£a‡Õ¼ßLí€3§wÔ¥Š¶õÇè¯CÓf›ù±æ¸[YOâö7ö¢2Sµ¦ü›Rö^Ù³µÓùšËÿöaά§”ç°¸ƒUæH*™üõýûWÓjŒK›Û«vc§st_ûcòÒ`*\9æÂð©ßj¾ï¦hÙAå;¬)¾ñ™®Ï1ïñ­kÍq«½”ŒŽ¥‡}w,^´œÒê¾½ª«cqÇ×õ)¶ÎèNÏ{yW$½¦ :* ûF®¹¼9:÷’îÆR…iò« §èæš›ƒ]ÏÖwÙ]ÿœúûqô|ÂâìNŸh_úåù%'Õ—:+£ÁÐÂ%ôxÑݑﭺÐUÇb«Œ>_j¾s’žÈëeT6»òqóè®”mPtÅðrÍã„Ì­é½Þ?Ω^_tG,æ”Õræ·ÛgÖ×|ŒeäÚT–2÷ŽÍÞI”=ê´ñõ‡ÍjŒËÐr¹Õ¡ê!=´9¶±t˜]Ï}™¯½æòü–ñ8×êí}œ×á¬.ÝÊÐìùiNãÏÿ\þçò?—ÿç\þw.×÷àšWç ¨ØäõF³ï(wô [ï2UkŽ Þ8¬pö*6Õk6YrGÎOû]¿æýþ‹çárÂ5K ¡ ê7ºÓ÷6å¬i½¾ëçÆ5Æýç<Üÿú<\ö’šWsKé~ù¡1ïçQîÒÓ?_¨ÙõuÜ픳ÇÖiRñØ]}\œJù{¦ )¬¹ßö¯ž‡Ë\>cðËÓ­éÁÕ¸ZWv®¢¼™.·C7Ô\^Ë«… ž *YsëA½êýÔŒ¤®q5ÆÝñÙës³ÑO*JÐlyaíÊéÞomì”Ö5—7ÿ{UãMº?¥è^§GË)çKOóYçÓþw9—§;k‹ý÷TÅ|+Wm_ñé5•d«,]Tw×ÿ߯ý«çárÏì}~­¥âù³ÚX™¼hß¾éˆánÿÏy¸ÿYçáÒ[Ç®Ÿó\0#çòý«Ëè~܇÷ã•¢ëGñžSµç]²ƒ_»Üv¥² ‰Ó&E×S¼î‰­çY*Ž›o— éwò\s* ÷œ÷v“âöñ<\fò&M¯~ë¯wßíW¾s¦Ò˜f¹. ó\½0Ô¾J™î¿já·¹³â<ԥŋ5ãŠÝã¢*ÜJóûÑý×á[fZÜSŒ[òƹA¦bÜ_}î~®Iò‡¨8ÈòN¼¶ÇŸÛ/;ë$Zù*æ«rnb×#ê#(ãm'“ÈfŠ÷­«o†ÛÜ‹Vœ«œ×ÐàYgÿêqG]?.æŠq¯´žD| ú?î_<W9g°¡ÝÛ”ñé„ßh=SŸ×ç &5øÓ-*»9ítÀûbÊmsß§OŒ»b}Ûï8ÙÂSñºÿ«çáþÕåýËçá´×x)›PNÛ½­OŸsVìèyj=°0ûsý/?w¼ÞîfϨÐÖØlçFÅùØTÕÙÖkÞù?®´`½zNõ8•7õœë[ªÁ8³óìó·yE©ªÊjÊßr­né-Å8çžã*U¯o™S­Ño´éÎa³ëãçÍR¦ÍÍïåßU1îsžêËw*”—<çÕÑô6ŠåmÜ•üxâ¼k¹Î¦˜ôO(Ðîã¶øs{ò ëÏ/Ê[+–—¬ôp©ÉsÊßܨ]]ýnŠû½øØ&é’b\îîw»_ÙùP¹¿¿õƒFtͳ§z?ïKÿ¯ÇýÕçár<,¦F6íFeIû‚>jG7'?\½Ý=¸Æ¸s9Zû»4hK•?ÊFŸ5]GY;žW6Zß¶æóøÏÃý«ËûWÇ¥Ì?Z²ébU^×X»÷ôpºp%ùʰW5Æýïrîø&Ó͹··RÕnWÑ,¹9ÕüöH—ŠÿßÇmöùþ·wgÖW›¹Ù>ç@S> ÙD÷³®§Zu½ø·W9ÇÍΞu ÛÅÙ&s³šü¹ýB›Ñþ~ëþ6ãÆd„éÝs£œC‡²Ô5úsûÅ›/S=Û]ûÛŒ{Ü×A­^…%¼6Ó¦å’?·§ÞéÖdËà„¿Í¸òø6’,ÐÝ¥ ÚLQ|žø\‡á/Ÿö©û·÷ðñ¦Ï‹—dP¶ÔKõ º9xɇöÅ›qw–ýö>ÝEŸŠkï:<Äpežú~ÝyÍý‚ÿáã’·ç<ŽV©¤ Ø?kÊ­[±²Ë…ˆ¿Ý¸¼½kaÖõ©xnU[jÇ({}¥qݸŒJKÇáfŸ¨|Z¤Öàð3”Õ¹sgeÒýÛËî}è…ú–çTº(¡DÇDz2N7¬ø»ûÏå.ÿsùÎ%eµ¸é’QH¿ÛE-WK)ë'žÕ2öo7î&©œë¯QÊö¨›î©WI9+úë¯,9õ·—弦©¹;U´7pšœOÙ»«^3«ù9­ÿéãò D†o¡üq*ù·Cb© ŽºÛuëšžø?}\Ö<§=/û´ Ò¯ëÏ6KÈ¢ìd›Ø¯{þ]ÆU_Ÿ7:î–âxýnÝ{[ ÷eQ‘ɦW'æÅÿmÆÝzÚJã~;Åç" ;dÜh÷“ ßö\ãxoçßf\ªÑ£&;)ÎsåW_Ÿ²a •¬2zz üo3î|IŸÐ‚:ŠÏw•Z¤L˜~Ö’Š2¾ÚUûÂßf\úày-”åcÅë6xåå½u·Pq¤¶Éý#Z›q%®› ot’îXîýd»(Kñï«býwg}ÿÛŒ«øÐÝMOXSöźm×Ýÿs{òÉÖ£[¬vüûŒËpioêhL7Ró,ŸÖ_ôçöŒ¦JÁ¿ïÿmÆ™6pÞèD÷ìù]ÑNñýÿŒeôr÷ºn›qe†kîŽ:7…òÜÛZ˜­—¾tô5ÕÓ›qN½4ÐiFeaMTºvýA9ÇþÔÜSówUþ§K:±[·¡o{º·ÿþù.Tª=âf÷V5¿ï÷?}ÜÍgןo׊JWßáZ5Šr?ÆòsöüíÆOµXÖDZˆ'w ½@…ʼûïüÛK~“0pp*o<úëès”}®lD@·¿Û¸ÿ\þçò?—ÿç\Ò«ó›Î5ÛE¥æ¡¿ùÜot½IúõÙ5-gvįÕÇck<¾ÏjЇnn~3ÔíÍÀšãv§uÍ@ebÎ ›¢‹”1QW¬©1îÁ”N…Û¾Uþ×÷‰z·Úß„®.žòiÕé.5ß„9©††Tr´ñ!3ËÏtý`Q§Îÿ ±yq9Þ¼•MÚ:9ÀÌn-Þ¹ôèîá5ÆÝÞû½Á—c«©¬qc¹t e·²k8Ï­æóp“•O¼‡S™îŠ¡Ë]¦Ì#×Þø¿ø}¸ýÍâ5\Be³®=y{enJ‰¿yÈ®æ¸Yq{’'÷¯ž‡°)-&Ò­Ë¿ûÌòªSc\–N·¨ƒ×Sy-ëCÆ [9FžÕ~Wc\æÔM#‡}¥²¨Ö—÷ï ¢ì§ó†ŽQʪù<æØœZäéFåUËÄõzJ×ì w÷ÜWcÜ­¯Í&$¡’Ó‹ªT(WìJìWóüZÖóEUz•TvH¥n÷”´¡gŒAqy†ÞF–Öw©°|´ÅÓ-Õן[,ɳ®ù½Ôìþ‹×}Ì+¢ÆË'Mo2r•U-ûYPc\®‘^êè8=z0»™t|¢DÙ—ŸØïÊ®1.ßi³÷¬®/é~‡ã"¿ö¢Û¦c‡÷›G5—7©êìüçqTürIXÚCÊY“ðèèóšßÇÈy7HÿÍÕ*¹6xùŠ‹”µlÔøǾ5׫ç¡s,«œ©4ÿqÁ¶na”mô,ÂfËšË;°÷†Í¹*sŽ:uïÆYʘú}M“÷¥5ŸGà›¥;“5éAD3åQ.Œ2§+ÉÌšËû¾°Õ”E¿¨´{ãOÁIéÖ¥Û/\Æ(~çén‡ó÷çV|?'÷~­¨Ÿ¥!TÐÀöô\=ÅñpÑþ¬Î;Ž+ŽÇnÎøC?â95Ÿ>ÈÓÿµby‹¾ÏX£ªø¼]vˆiðÎZM¨¨Mf×kO÷S0Kön9÷´b}Ýq6e¸Î0º×3ëé 5Šqñc‡Y+>s{heë3ù ¨ðîÚ…ñ§çnH/;>zŠâyh½Ù’;‘J4z>qü®x<ÅZ¾©˜Ÿ‚˜Ã?–_¤µ:%©g&(–×A÷}£ÚËc£¦j :M%}ÇÏóëðS1î£Æ¤–mŸË[qæÒût?öô¬;ÙÍãv5Î̳j©X^|·î*u|éA’ߘ%»¿–:ÁfŒ}¼â{‘·ŠvOÓ¬^¯?&lQ:ûÏíiIA—gÿù>?Ý:©6Å}yoª¨,“pTq¿ºš-^Å(¾/–æé1LÇ` UlX>QUñ}°[»¿©^>øçxˆ®çT%åªRŶ´…ÅKŸã»Y+º`p‚âqdÝOþ–ëx—ÊÓãÆ_P|¾äjÏîrú3/Åú3{¤Ù´CûèÁãéjç®x´}uXñ<Š®¥5ðìN¯²s¯øþdò®zÚ=ßk.Jè9ŠÜÊé¶ç‹“ßã½–lzÝq^òŸë÷4F¥íLС{ßcïõS|/8ùÜ¡¦-ãŠ.œ¨ß}ÌXºÿè“㥙ŠûÍôÔ)ܾ°Ÿ¢7«…¥ïÖtßVínØQÅï¾e•µ³j=¾¯üêGÚ÷‚T²õsûßM(^«Z­ŒU¬9y‰¥i¹Ÿ©dÄÚ¶£{Å*ÖS×-wy•â{‡9?¬² Ì/Òƒ3]ý ·RÜo^ÝøÓ«7+Ö«; uûw]ú_ßW­Zíòçö² k‹Ü(ÿŠKÒµnOñÒR¯¯¬x.øúçzùö“S-ÓîRî@fÞ".M1î螥ïW寑Ai³)oîŠsúóçñSUÔf4{¡7;i›Û_Ê=öaÁÞIŠï§Î7Œ çÑÊï|˜ô­!å^Û`1k¼âóz)j~5åŠí²|ÑûÏ37%Sna@Ÿ¯{jÇ)©I-¿g—»¹C=ßïÚT2}z‹üéVjÆ­HÕ?¿‹§ç’ÿåø\ *qÞ¹bðïcÕï#Ÿe¿Ó©1.{Ñç­v b©¬Ïû>{¢¬žvu—X­9îÇ„{iOèÁ©M–‘Wõª÷Ÿ=¹í7¾Æ¸œMë:_³lD%göÝ>ôðÝö›¬Ñþ’zq—Ã|[lÚ Båþ¨Y_IwÆéþœø¿8ÏuêÐR¥ÙTþs`$7ŸJ·dú€y5ç&y[T“úÖÊT>uIu„òŽ÷Žzÿ ¨Æ¸«{†O_®\@åÇõ¡ÔŠò®„= ®y^*åÀÊœë¨|Ûé'3wQîã Vë·Ô<~º½¬2ùý *ù½øYν¶”còûä!õ5Æe=zö½ÞžŸT8È`缾ôÄñ·JÎÈétõôÖã-N-¨9®×Î&z‡zÑã9Æ/2 7Qêùé´ñMÍß'º‘3rÑšV©|B—¶õê¥Rv÷FMv?®yü”Ѱh¨ÆÖ‰Tnôaã‚×(»éþ6A—×Ô—¾ñR¿}C:PùÐRU1î”]1ðÌ‚Á>5ïwÝ‘ÅÌf8UÔéPgÙæ†”øtð 5Ç¥êêê¬I¡ò9³ú©%[Svó‡uú }ñÏãþsùŸËÿ\þŸsI·¯=^õ­íjz8{þà±ý)¹ÇÛ «šO¬1.?ÂAöŒîÜ ¾S8ÿû?.kŒ+NÑxm´¼²úøhË‘W,(Õ`|òlŸ™5ÆU˜>\bp=‹ •þû}]-oVÍßs+êâÔs뮑T|iv—Ån)Í.bÄå5‡kŒ»Sð¤4põª¨•ÖÓ¸(„’VôÕ+)©¨ù<4:°~_ÝamÓM5†RÚ-xññ\Í÷ßâžm®È.¥âEõ.M¦ä•N;o–»Ôww¾Þdõ(;*=Ó7(Ro9¥L³öx‘æ[s\ÕŠTïcÕÇ#ïïj¶¡«!:_7¬yžða­W&O¦ÛÉCßœ5éŸ?Ÿ¢x¾I­>ImJÅÛm5ƒÎœ [.r‹mÓK5Æ•öµm^TÒ]ÓÀ#ž“¢éš^v]ý¾5¯£è¼ê©‰7©Ôyå0»ˆ1tþ™WÔû×õjŒ{ ³lõ}[]*´Yߤå#º¦sð\«üš]¿céþôF–.•ìÚf?]§ŠÒÍ;íØÑ æïfo¡ßÕÆ˜Jüï7xJ9*¢ïÓšç' +ÅÞOÍ¡’VZo]k™Próõ&ã&êÕ|®oú(|Me•3 \Ž~¦{µ¼o=¯æë¡ÜäÕý*'*5NèÚìÑ%º¶ ¨¬Ý–šëi!ÕÒ|4ÿ7• ~0ðе%'Ù¾IÖI­1./iüÝv3èþõÍw:o¦Û3oE¼Ì“5׫+Ö‡_ëL÷¦Ýϵ* ”7ŸþüRó÷IЧ_~óBí1•W[nù“ΘÜl¸*¶æãË꼩*¼+ÝÒmêTãw”ºzÊÞ·¿ût¶KO뇊㠇ºñ·¼P^ˆøÐ¦«âóMùÞÓmê¬8_’“bjØÖ›Šž¹´î{óÏïëÑÕëj£o™ü¹^¶ÿþÝmŠéÎ?Ýž²h¹é¹66®ÿã÷Nî5¿º­ÕzÅm_ò]õ·â÷‰ í0iÿ²ïTÀUnÄÀç´Ö†&óQü~uÎÿÅÞŸÇSÕõÿã¸D‘PQ)•T(Mfõ2—(SDQ™3ŠJeiÐDˆJ¡D’!ó<œÃáŒÆsœÁTˆT*%ý¼ß÷}[Þï}ýïÏãz<®ëþÞùg]g_ÏÖÞ{­µ×Þë¹^¯ç³iNú‹ùÀþø¤à‡Z7wfELÍ#PmnnîœmÿÐ?œ:^—x°y‰4yê7Ù·ÝxP°îþ:®ôݯ·ÍR«&´¾&MþÞejœ·[®Û#þpµk®}Òû&.›’ÎÖºw_U ûè,gNéê­¯Uåkçs`ƾjK‘GúFµî—¬µñSù#РI´ºË–]*[ŸÆªœ/W^Œ|êlCÅNÆý²þº]ÕýèzÌ3‹üýQœ[U°¸}Íàd£^{ƒîÌ#1ÄV´F÷+”qÑdïS ¿—$\ú…úWµÅÞspisÓ5Üκ%7¸#~éÄè$WÖÔo¶ð>‹ã?D ¥Íé„K–6 Å+‡‚к¼UÕêãVï@¹Û¿MéËÕîk§8¡8Éö¥5Î'Í ]Óp‹’¯º>ñ=‡8ˆÇi›»úäÐ亞q”4ȸ‹òð*,ùº®Ås-)˜Ž_7]Dü ñô‘¯s¬ÕP¿=ÐÊŠ9½ÚFŽX2AýDônÐ_^ŽæÁ–UéÞÐæg—χø±Ú]×SN‘§æ9 ú=Ëí)fׂQëEˆgÁ·Þ+­xVZO~φ  §ß8ÛûsvKַ›¡1Á5G­Å—âgáœõ —’o»D5êôâ{.RÑsM¼¹³~±4ÒÉ£_8rɸ3Ú!_„ j¯kÄ‘}«œnéiCÅŸ¶ÐšömKwêOß ü[Ñ<ÄìvMÔqʽôÀˆS(7·©d»/Ê?ïâ›÷`ps(Êå7ÿüˆî£Ìæ´’™Òëã\³JÉrJÛé7íˆG-Kx5ì1wLÔ›h°UZUÿ²ûWô\ nx„ôӺδ_à~,ÄN· Á-ˆG)s.¹Ý±Ý/çøBñÖü@®;Øs-µ]g‘ºÐóß5dæšXUDûã…h¾«?³h%¯[-ªo@·±´)œ~Õx$¼³y€àÅ©ý#èŽÐ_³YêOävø„;¢þøŸz¯Ðµ°W~i„ ԛǛý Ýo¾ÃYé“uñ:ô(ðæŸ[ÕT‰pkÌ+Î&À°S)áD¼VE³OÇ®±4¿Ÿ­ro‚Ö‹ÁÇ5”QV-õtôáC¸ öÛ€uÀXaùõu âá²)¢ò¡ñÇánm\m}§ù¥h¾«p;°÷Þ0zŽ8ËÈô› ç€8çó¡³ñòè9¼^ßZvÅ5²òùöŸîrºóî%&ˆw«-ŸŸ{ña¬0>Çä|- ÝâÊ @ñjyôŸQ±;®ý;éá<  ‰ÚÕlàLÓ‡s3Ú,k†Æ7[H•t¥Ý(æ/kÝ ž»Z¼|ã?”·M —œ-îmÛßï׬’ÒÈ‹›¦žo4oo¹$;þÚ¯¯|kÔ¨;+ézBbþ@kàk‡#ÀÞZ5ù½†{ÓX¶Ýî×ðì|óÎ{'¡ËC‰è¼t TǾê^„ý^'F, û¨5,§ÄíÐxóûÐé¹\Y¿P"9`°¾½¼>q÷Ðþçû ›$9ëXSèo´(¿M»\¢:aõ¾òµ®«œÁ¿…&]ém±á gŽ£ìÏÙØïÒúx#Ͱö³ÀY”½é=®–°æM¸ap•¶¤0¿è…Ðù6O©<ZhmÈþŠÁlcêl“ °å£$4_H]‘¨6†Áá¤Û¤û„{bÖÏñ¬Thd¯bKËð`p¹|s¯ß?€ºc‡8Ûzè[î:Z‚kÇà¨-/éG»Aç¹Ð•ýÊö€;zÿRÌq¬_¾ñSqøâÓÐî`tªuëIhURÉ8ªÛŠÁÕ‰9nYwv8ÚKts*¡¡óÖ¹ϱý–ô=döçaÀ1¥cLê ÐV©¤bpyûöf4œòwþ‰*k%èŠ5y^¥_«µp5O·1†#þLçPyâäÛì÷—±ã…—÷¬ éèRŸ8´²HÁ§/|?ˆÁ5ØÞM9><Ù.¬–K^‘@:’BÅêU«“–<ÍÓ‡.Ï“%޼ò@˜uzøöû¿„h¸³ˆ4Õ"·êw€}}ñ‘®ûX\£™½;wÀlàïóØth'Ô&8µì²ŠÃÞo³ÿ.I>`qͺv˜TÑâ,nŒ¾öïòwù»üÏ)¡ã\Á|^á÷кór°ñȨ»È6ïÄàfÌÃͰ¾™âÚ^3V­rÚ-.üØRs#‘-ì|>S_²U\ëfèÐØ—¼%ó û7(:ÿü¯o¦¸Ã½÷+&ä¡c‡êéH~S »°G/ÓÅຊ¹.‹ùzÕVŽ÷.Ȥ¯¸¿Äƒ£Øžç”Blj_§¶I.v%¡Gƒ›)G±ÕºSa­6Y_œ~á÷Éu¼¤Ô¥gØ8²ŽC¿8I)ÐÒ÷ /ê¸ó/’¯˜c¿fì«0CîÏöi Þ5’iËðÄ­òfka$àéèÒ’3ý¤z¡=û«^”Í ß»+§ýlq¨÷}o¾Ú’†¯XçmÂеŸGÖc¿¨^†øÏ1h÷_->ñáéÝ.–t Žö+$³åÍhçz±¾=Fš~ÅÞLœâßÙwè©â_Hº¹I“¬§®-¹ H¾y$Èu; ørÞ óíqÐl1äêö®o¦¸¦„¡|±4´ž#=ÞøKwÉ#è¼I²åîs4>gè«0SîÏös ™,L¶•<„îßjŽðžµ–Àr3vEýÕê·Ìïòû«ù¤ÛÝÉÇÛÛ.‹¯ ÜíÚnž´>®ð)ø¸7‰“‹1ú:W±K'‘_BU˜0!Äbοô­Q}Ñ‘Ùγк¾æûª籋À9L‘4Ô4Aã.4FpÝ´Ž¬±ü~cxƒ°¤},”ï£xZ¸ÝF@¼hKõ±c]ɉ@¿ß’¥ãÝÔñ¢;žËgíG>—íD¾„K~ë¡S Ãjb+âOk¿-Øpù>6Û,Õm>Ý ’·hÍòÿóy«—ßYõ¦Õ׺ùÛ†Ú¦›ÀÐ)­yŒü! ¿&ºÖtoš6Õ|™ì_ÖÖåûµÐ:ÈNFW$ÍA¸w·Êý€þòÕ»çFGi¸Wnª‹üšF‰wúF¾-ÇÂ] ñ"<<8†:7ªïqŠÐzåUÀÚœ¦wÁù wìîðG~ŒÄëú+ñk%¡óøÅûéh<ÏÔáïŽûÓýþ"ÜŒ}fŠkØþP% dÁ <µÍ—-ÙZzôÅÿÃy‡t¾ô Y¤j¾¯½(¡X›OÅ™ÌØ/¡Ù<#ÀS¦ Xy½ƒÒÅÈ·´Ìg®qHÑÿ½¾™â:ÚG¬ÇR¡ýfœä~ âá*·ôðD8‰ û=ð¦±ÈhÆ"‹•f£ë©ôkÿh¤ö˜ËÞÉŒ^]-Îwî@>!Qj¹{ ÏL«oh·[¦'Ðö}op‰EñÕ&úž†¸ÿóyY;ßÜÕø±h§‹_šNÇ8‰ºÿ™òpT]QëÍ~Àði±ñš— ÿôˆqìí‡Èçy ÛlXåÚî/PÕÄ'¹;ap‹îJ•îÄd¬‚²QãciƒX}ÒY÷XáÊN`}×wqø~pëg­ßEÄò*¶¯Â_…#Çkn`Gôk¯/O*Qú_~g\íR ¹;MZÐ2¨!Úô«r¦m‹;0¸ì ëˆO¶BMß¿ë_ /—Vsý vÿŸªgÕýàÛZèL~¬"øµ›>.øƒ<áZß÷göAkŠ"à×@›0î¼8ÖWm¦þ 3åáfìçp_°CÊwÛ$Ž0Þ‰ ƒÌ­A;»wœÂà2OГwP‡hí‡;éo!«íc3;;ž«­]"hA—]ЏôŽA¨Ëœs·g76βꪪí|9pªzfå^Û D…åz©ró0¸b×â×·JWçÅ6G÷¶ƒ@1dÖ©•˜aû×|À41z5ôjE} yU>óÌ/4Åગ¨>nr‡®sš5 öÜ_¹f}<ÆWõwù»ü]þç”™¯ÂLãáÚÓî̾éÌC9®ÍÚ¹×Û¯g™pƒ£5¿yΖ¹ œùFÏ$´OíDKzË0¸¿ÊjOêÒt3˜\G´·*x …Ž?-7ùa}Ðÿ*_…6¶YE…Ì£·J¥¶„‚qŸo…MÊØúî\„ýåòæ—/ß’ÁÛo`aÛå/òU˜i<mß¹ÀîuÀŽÂ7Jó^„’­¯ÓW(apÍ"q‹¬;}HϷǦ Š˜¸²”åû±õýÉþ í¡´‡<½À¼:^~ai=äš‘ nîÀö¿éÄË"*°gs9÷ÓŠÌêKeˆGù«|ò¸Y‡iRdÔ/]êΡU†ÀÚÂ[–½åUr¼*õ;O£<¦:Âi)ÉÎ×@p xmq7bêx5ï1ÅsȤpº=m p¤Ž>¼S6uüÏöU˜i<\mG5+áøÔoâq%Ë‹¶“㦠ÇѪEqdwÿ…û4Ì0î/óiH!®ï½7å«´@©óå€e>¦"ÞðÍËWBK‰OP¼IÝ}ï^%•s¿©Å5Ä‹þÙ¾ •·ä‡yPþùÙ๠K`×úíþ¾:7rË÷Ê£#,ÝójU+0Wå‰T¢|É¿ÊWa¦ñpœ¾Të‚S\@^é¾ú† Ê#-“5 ¾@q œÜó»f EGYZ<ÅëY½veÊϺG3ûÆm¤åI—‚Ðõ=’qVDüäL}Ha=‡<çEAë§Dšâ‘. úω`ußêLطѳá¼Í‘÷t ‡ÌñÌ–9‹ýnÑÜÐ-ýà0Ý¿dÍþ×~GuÝ’Ö ;ˆ„cEâ@ÆŸ_lOØ„Áåé’¼ÍÄ\ …°]âåÝ“À–{¦yG›?ð—ù4XÊMÐCÓ¡íÓþÝ«Dùåé9ûÖW\Ã`㕸S½Ðî÷í[Iè´$Tž¬þ n±’ºèº:à,ûïï8h ¶ŽxgÍ#Í*4Ù˜>wtõÍÙu2—”`‰mªÆw08|Ÿ›1Ó\˜¯µn¬rÛÜúmDZqn5áÕÏcãV«æè'SÑ%@‘µÑYüv{Þ¿¹ÿÂLq•ÚœâJŠ4°k­J‹ Y+à}ŒV¯§ê¼Ú§î5‡•¿m{ë. ú<Êè˜ÀàŠÕ ¥({”‡·öè; Öt¼~{Þ|É·wdÕã·ƒÏTKïZÒaQ ®â²UØú`uåg§îÿÔQ&I²ïø»ü]þ.ÿsJ >Ÿ^܆öì’¨"a=¨ˆûr9RØ‹[¾{Žžj$ÐÛ<.ʯ†Æ¥m¢ÑiXÞ¬%÷Á!fZ$t†9›ì»•¾§d«ˆ`pŒuÁ5¥Ðqëý½EO Xa8Òk‘¶>gâÊçƒÐ¹«/±åšTeÝ æíÄÆ¹ÓænXÁ¨–kØ™KÑo j÷1£ÒwØNFVØc  ×-÷š€xtÑ£ ¬õ|šæµ}€^y|¿Ç ·²¸B±úµ´¨¥¬ü{ÀØ‘9»ã² à^ûÔùV~Áַ̽c½* sV:ÿ '¡lÀ7ý&ö»¨å¾ Ï…‚ÜÉu©vê3–;ÔÒdŸ¾ÙŽÕ¥ “viä•BçÕ 1™Ú @0¼±oÓÍ ®™K›Œ çolk î|ªýË_Øþm&§,ŽyŒˆ•ÌD ¨U9Þ¾û¼Ñš¢r¾#z¡žÓ»-€SÊâÃù¢uÙ˜Q cŒt®ÚÎuä™O~'¨èݲ8„öí;b÷¹ƒŠçjü¹ød‹–,PßÊÐÍ…ŸC‰/¿qêRºÎ/ ¥‹ÍšÛæ} NH§ê@æÍÞ :ïºýëMº+€þÊêÎëïˆ$’vCëÃf/§¢|hn,6]w ­ëk>_Ö |z]G“ÒØgF$°ë(¤¶œEí!eI•@qLgîdÝw €Ž„C£-Aèø>šÛ*%”¿Kæ˜R·:©óö ®Dþ8üè:½”'HÖôíjÔ–{°Ú/Ò j´à6Lº´Í3TMòóg/ÉU<—wßuT_βþŠÇh,ôXz´i°‡ä»F7 ø!¼ì,WBŠ—jÊi¹ ÞwØWùk+¸Q{ ãüºÃÑxhÐ’Õcö+Aû°ä‘4_¤¿ÖpÁ=Y4ŇÔõsÍòs˜\'&?i¿ˆtÙšBbmp[Ñ¿ë³V)¹d<ù}¹Â` ‡òð*ú¢¼e/ ~†vï…ÉNÏëÀ:¯sÞæ*òA(ÊçI²ÐEíÞ©!¯^©^ íá7ï3E:÷UQª ¯¦é¹(¶Lî1ú±ärMÂ-rQ;Žø˜ö5¶ñãšÐAuU®šÆ‹œRÌKGýë`+ÔV¸_·{oVbš¾Wñr]ÑwrÏŠ~x”òñ˜595E|Q×n‡›ëvÅB½ÉæÂ æ¨]kÃ5È*¢ñÜe¿ïÍžåâ€wÍï69ÆkŸðŽ`âÿ˜eªø æhæ}CùAAñ¯UÞ«*ú¶NÓi|Ñf[ñäûž{×È÷d¤ Pñ(}k¬*š× îŽeuC«›ŒlÞ2”Y¥¸<è…âÇ™ÏäŠ"¡µú介*ˆ-ѹTè†ú›Ñù8[w?´6®=sýÊ­¸tåës–/*=¸£HA'âÅ‹&Ðy#Új,~N}ç[;æÓáÄ: ý:–®‹Þ£Õ"½6=¾ˆpÛÍîK'ØeDzvV:Š“«Üæx{<=/lõHÝÎÞ ô}ô½ •;óù'¶ô œwww†˜P%]<Ù<ן+å}ôêÊ+¢ÒQÉÐq39šÜ@d“Íù6NíLáˆzsÂÞTM@'óã6Ùîp ¶ÏU_«Œý®jL¯ÌÏ¿ ì-¼‡ço AÃ}év¡‡ØýWWÈ‚W›€sõIqÔ—PGûím~ö¼nî¶:n¿€¥f“È7?Õ2‹ÍBcp%²³ŽÛ›¶Ð³Fêw¡Ùr³ÑžWA\™\.ëå°‡»”n?Z Ô¹Ò‘W¼+7Aðtª âæŠ<„ö$ík&ë{1¸ .vwדÀÎ0™¯l/”ǃ£²zؼÞÒª®þ†€õ1û³ÔÇhÞpëç’XâÛwŽDÕ ޱÕ¼äBÿmƒ}\ƒvו»«BçÛ±4cÏÏ@½3ÈÅÞoN£€ÊêÅÐÒ8t=ïÙy`6ËzdKecp´Þ€ÛùÛô~DÃ1Çö ÔŸ \,†ÕKnL^Í<Ë·:èž ±Æ ¨ÄþKØ8­ò4ÕµöM7 'ùð×¢)ÔZþÜ›Áå=j¼¶sà$ô•Ο_Êk Õ o¯:|~‡Á¯¼uøxÀCè2ŸjÕ3…‚CÞÎÞ‹=ïùÓ¢ŽˆB¯~ƳçÒåÉïFÊÛc@ÌÝç-¾(ƒ«uŒ5âòY쵦ÏrÿË·kÎ-ÞE1 Þ‘ò,ܬ֦>í¨”SrMÍÄ~Ç Þ—øCsžý„ù…DhÏÐVÞ¾ÛÎ&>{ÞgW³‚~TôìF ‰?фͯ¥ÒhsäÎ@›ÿè½n'9 ¥}_·Ý»„/8ãg0Ù\–ƒ[¯ÜJ¢¤e8¹ƒk« žsct á./k„òMKŽç,(ÆÞGq⦃vZÀ L}õ´ð!×xÌžcýˆÌ§?v1£µ1áÁ§Ív@ˆPŽMiÀê¯50Ïë˜ëºaêÉþ@è$b¿‹ZW> :& ,C•æÎ Þœ‡”ÁôïßšÀLªªðŠ€Šu¢_¾t`}G(G†Þ=î<fM óC+&¿ƒ"ïžÅÆE’Ü¥[j%uLúC Ô''IÇÙ ^€b»fH/í§·« v_”µ]{•Û»¦Ž÷t^¸`µñ6%þsïˆàÕ·[hï!u/@¼c‡?V‹üD)÷‚âÊ3AGëò˜±Ùˆçé ú.Ðá„ô݈\ÿý$?ÞÏëb§|L ã†MÁ­_I›"÷e÷šÒÕRˆ¿"³ÛkoŽü OŸеç‚NÇnûFBã®$WËÅ¥Pôøvª¶«C˽ŗsÐ:ÿúíKé(Έèn7¼ú¼°WP­“7OÓ+ÚzÎ}>Ò"| W÷c>‡¶½sßy""Š aí;˜¦ëï{ÁXÈÏ辪o…× ^¤M7ÒjŸ9Z§]æÜqR¢A³‰ãÃ3¨ýŒ["·<›§ò1´(å܃ű¡ñ™u¹/áÒ‘#íw=yW­¦SlPüíðpß6Oij”›—Lœùò Xã1†5üCè~ú²$¡ø½ú÷¸!_íÍŠ¥Ç<Ñø¸òãGá&¤SÏ|Ø~ùãghõ”ÓBÿ¾¬Ø”jF˜Êç:#ñ‹›ó;h¯ÌIp}…x¼ªÙùFá(î°MäF¸"î)Ðû£Ÿœ@ëßj‡î+Û›Q|ý:ÐÚQ“ð3ËŠC’O¾Fñ'ô»+>NçƒvxB›æSú\oÝö0¤ïÖ¬Ùøœ'ÜZEäË9Ñõàq»îZ£ø8’‘øCÿq  öНí­EëõzNá¡Q<â+(±g×ô½|>·>Ù;-Ïõ®Ý@­"Š[#ñ>h<;‘mγtk_ ¿_JÉé_³ËÎEà×þm?¡MùFVõú ©ã]Q·›ÈÔ9Î}pyš‚N±äÚ4ŽXÛòòÔÞÕ§LþàBÄ ÖÈ'–ÙmB|óþŰûph‹¹Øh\‚òÐ •–ÇÀ9ÔÎÝissšû¸¡É}tSÒUäËRHhù6+oš¯ÂÂ$;õt? û5Z˜ÐPÜbE1 ïâ4»´MÆî0: ø×âPGäL‹NÓ@§ÕH‹\ 8Z°[Æ2”·ÜX÷ÎøGò½f[]‡3ܵ‚·–{ÑþFãÊÑ;¦h> 0xOt€ö¾ú=òP»â¯”µ”ç\œ6þf“¥¶ B㫆°kÇÂQÿ~_·‘Ý5M߬áî7I ÜQNmšæ­æ$•š‰pÔ?ÝîÑæºXö0Òy|5òýS«Š£c/O‹¸’ T QÓmsQÿ~8Àݵ ]›<±ã,B¤ˆ†"Þ½~ë'«YóÑsÍž_յшo‰¢.‘è¹Ãý0toÝ€ô˜‹«ÚEM¹€¢"è{<ÅKÖ?lÅ;| µËËårãd nõJø0ŒtF˺_Ëö ývèÉŠœ—Q@¬»§xÍOuGDj*‚ZQôœ=ì²ZœWð'/àbúGÿ‰Ð?Ø5h_4t´ZàôWƒn z¿­l Ààh–K½>ÖVA‡Èù~©us i}Çnâz¬o¹ñ×§=®r“óÇž«å‹=ÈøâJã`pÍKϲwå@ûõä_ý¯'¿sË® a× &–—û2YÀøG¼9tG<ûå‡ò˜Û4FB¯ Ñf¥ÇáаŸè »_ÿ*%ÿØà¸ômZkt’ç3à/D/¼ï­ƒÁ5N¾W÷J¯ú×ûÈ¡E^h¿ÆàJ¾ˆ•ÏâÍ÷‹,·$Íß[fÎÁàHï oì—†Ž7šÛ…ŸÍ²¥ €V/­õñÇ@?hY|/Œ 5U ò[v18JBy“î*`(Èß~h|Fùvý+öúš¿Z”µ;°¾×)øÜiÀ]¼|Öªú#¶í³?mº•áó0^hè}´@röl»4D Ù™ØçÅ&ïÚy‹ &¨p×ÞØõÉk‰ï–M·b¡ßàÛöÏë+  P»åöF¬^Z¶‰®èÙç6Ðï’|ßuÉ>xc*¦š´ƒÃåW²Ÿ{ºWµynõ•†j©ðy©Ë±õUnúrhç>èemØb.åz†ÆÊÁ71¸¦þGŽ8§eÀ¸÷ñÀܱó@>U46ß[ƒ#ÄäüÐeçÚFOû¨ÓŠ1tÑÁæáÔVz‰ï.—=+O+N¢biˆU v\ ¯YeuX.ršòÂd¨7?9b„õsm<í¼xë‘ë“ëÙ¾]¶jÐàðcdç(&/êwù»ü]þç”PÿÏüGΗ97®>¼àjÒ/¾Ü¿|:wvuªX<|~Úý’@ìûŸí»oŸ5°?ëYõÎ2†êYŸõÃä¿ÏاBÑ­"Ž“­À÷`©ÔÝ[à¸|;vß‚¸Cž°r :Uo_è< ¤[Ç“œ&°|ÝLy8ê?u™ _ŽÈø%nW„Ú,ÕnV'¥wIÈÍâï­Kÿ«ÄàÈ[%ÍòÎCG›Æ›È†ï@úú³êÖw³†š‘Úìš ìÈ-¬‹äj ØÛÿ@Jƒ«5+æö{欧ìWíV  Ì;".óùWv/[Š^z8ÿÐmÒÿÌDídz,Q%}1PŸI Eñ܆Ój¥ýX]…Ú,Ñ*ç0O`VD <ñªƒ]–üz¬¯jÕå¬(§yÀU¨ºg1$òã9¡ ØüÕzï€Äo§vBGÒO>ùËÎÐü¨RÆTóöúfê¿p³×5ÿIл6+:ý È·íú°þP 7èo%åË¡ó@Óñ½Éñ@q¨Xû­ÁáXÂ7›.žö¾£Ö-©Ž@ôÙ`·°{÷KW¹BgÃãA¿ P.ºÅ9bã𚜹)»}9ÀÊ_ýã"²ƒ7wÇ`÷×h÷o }{-2?÷šEÃ>äZñøWðãZ®QÞ>º»%&û7xQA|"Z·P(ç=ŒÄ_¡zß«Æ6‡f­:«¥¢(ž†u^§&MÅwT ï‰!nÿ ´ÙdiÍÄÓà96'-/BÏ»nIëN£#Àzrm›AùÔwГ³îãÖ¢u[ud³Ù‰ŠuÐz‹£ðñ-ycfÉÇPü@#WuÅ!WhÛ„§‹¡ø&Ê6µ—ÍhU?ñ–rå:ëVºáˆâZ½ûÄ ¾ x³ºúnÒ&x‡6ÍBõÍС÷ùŽævœÈXƒÃøÒUë PžaMÿvãav´ši. \ÖÃmNïCïû!G¢ÆÖ°ËžÐ¼ÜA¿í§ ºk­ôPÜÇ?ç[ -3‰’ô=…ÆS”DÏ^ÄCÔô®Ì÷ÒÇø9´¾z¸=’Š|<Ë{Þ¸Ì^ñ:‡†¿‹Cþ’-êTÑAÄ/àVç]yZ‘ÎÇm5P?•f=Æÿ‚x–]û3eMhÙ÷è‡DZ¯â¾ÑŽò mkeƒtêq; òú&€ý¿Ž×á.¦îºò'ÛB6;zŠBûRQ=·”—F^Êü6>€øSšãjßbh+(‘Ùø“vSüÀíQ]tËŽ^x7<Ô»´˜ßÏÝÈcr3fÒ;$&†W©ÅÖ–Ç1H7Ž^Q¹äŽŠ­äw0ûtÛÚÞ\/õ©EùºÍ=™çñ úÖm*¬€6R̼1òá`Û¤F5GBËžVïëN(/6oØ*`Í^nôÞ=nZçsèŸV^yˆâ­J"Ô˜9ˆOl>dW£,¯f»«/Pn¢êµä3õ_ Ï>ÑÅ[ ôàr}—kèþŠ‹×díF¼×_å«ðöŸùõ“eÌA7—cnn.—ÆUÏ,ãVëí€Kê>ˆ×.[¹»Uáâ›9a+"ÅÝ€Fv–ˆ€â1kF:Ÿ\ƒò¬Y•:Š’Ëð@oOsæŸòO‡ºÂíôôPÔï¶ï{[ëü‡)Á@:)¾”ìŒâ ë4\vßEüz—Æe%Á†·Ð¸ÇiJAùêUDIñuHÙ•â&—ú Z­%º^Æ¢÷O)§Êÿ« š×þdŸÖv±µïƒ€ö“n*¶ÍG•½ Ë£þ4_ÛQÑ Ä‡Ÿ^LGz.Ÿ¥îÅ"?VV‘i§µ<h–㡚(N¸Âºˆ7(Åq2³²KJ”wBó>©Î{ï§Åõrí­6+@óû’Lsñ÷@•Q8öÖíÇ”¿øÑ%Κæ#­¿µX˨[ù5Ú¡óÆýÌæœG|4qò{î›úaàhøZ«\…êÆ,kɘï‚úeçƒÙ½`oi(µ$~oº„ÕU&Ä¥®z0Ϻÿù¾¯Vö_'ˆÇàš‡ïÎM¾Ö ¬$ï(îó ¡TZx»é\¬o)Yæå§†cÀ9ǹ~0Ê ‹¿l·Áàfꃷjà¹z_+ô®pium÷ä{ŸS&îô ƒ›)WÈíSà;Ý߬W>BãCÓ²u˰ߛyÉáfmDèi:uRöÅ+hzÿÐ×þ4G<ü,2ù<°D?Ý>^- õ“ß[Šñ$ ®¥ùù<£I §lkÞTºjyvÀœ¬¾YÓâ‘£›¿CÏÈÑÅÃǽ!k²7`÷ÿ›ËTNÞ õzüU·³‡N+È€£†Íסξ©’÷_ú!†¤ë·pPm”eÜ`ŽÕõ#9Z1²¼€Óó:áíl(ÿÊãWõc÷œ²l=ï ¼çjy,O: O%Üñs°¾3åá>.ÝkÕ<èÉ ?ß}Þxè†ÝÆîsWÉ„*IAßçËq±7 ò¸\ô–'$‘ßm¬ÎÕí!î»çCÝíÝ<ög|18\â—¥ãÐ#fx”iðʶn¬ þAÜÆ@Í–UyiÐÛç$5ìe~uÛÕ¶cpÄkÖàðàßÿ|òzû:¾ÁêÈÕ‹š¼ð¨„nµˆoU›¡ò§- >½ÿ߸ßåïòwùŸS•¯/Ø6‚FóãÇBx3ôø#g6θ™Ùë°áôM`}{Ù tŠÞÄ|+YƒÁµZÕÒ^|X¿ù…´ý„¼³eÙ'·cã¾g×ì©°¸×}!°÷ï.ëúe … côÌ08rPüí­!ï€ã”þ~i”ؼ4­ƒ›©¯B£ÓÿA/×ÿÁkÅÿþÞ÷ÿ‰ƒQ®ÀùÒ)¡ö¨JêÞ™(ÜÆêî“~e¯Ðß]g›Wúä@‘¿És n¦¾ u’œ×û.B¯Áu¿~ŹP|,Ô §ì¶ŽF1Þ ì£§ÝN 7C©kïþÛØøÄæâWæ•;Óûv}ŽÅ ¨|P{(  ëƒJ¡*ï°}î —Kî,(ÛV?²ËwR?ò­öùæ ^û L.Âû;Ö³U>5ÅbŽê/YçW½J((áÖäøôÕ¶¼‚ø°â¥º$CÛ)]ÈùmBûÿäÛ¡nQÿ^Ë0”?I*|šÏ[»Ø+OÝiSCzs”ÿ©3 d±¼‡ëìOBû¼{´ûsP| Acâå1!—BTÙ¹6ýtšîu“rCy”3õAh ü¯ÿ˜æ;øß?¹ ûØÿ<>ÓúìÅj–| šú]òµxø@‡ôði-¸ôåUN¿br!> ôâ€[عzè~}fù9Éi|‚£ì’c¼(¿«µñ‹eËhtLx?ø6µs‰ÍI¸—ŠøšŸÂé^m°}ÞLȤLÓKÓÏÜ"tÑZ̳ü®z8@'¯ÏaåÀië\«±ˆ’îiyiö½ e?A«‡cyŠÓª$pª;òþ|kù‘­eÞÀ8˜yÂòâõšøn/Y‡øþÄ›9÷oA竽EK§ù ï-ºà{!õ¹:ûeI´°ž+‡ u<¾ã"7yû´¸9Ý ³oò+ù†ß%Ô^éxBº ýÿbùËw´»¶îü€þ}L«²s$Š›!9ªý((‘ƬƎQÄ÷õ>õ}ÇYUΚD„#¤¬ñÑœžH÷±'˜Ê<Ó õÞ4ÄæåfÏúÔ€ò@9;7,ˆÁoÚ耬æft¹0¬4†tg×Mê}dh4M†{Dþ·­**~2¨ŸûLj_¬à‘±ÝpÉU¤×'§f]sijý]†[*”á¶Z2ñóÅxo®Â[(o“Quvawt'tjû ~À¡<å—eÜr¬iºjU¶óç¿ÕÒ¥ÎÕÏî y¡°"äÊSí|ëvñºžûN§mú€xn¢ÜêÖ=84.{sÒÝl2 œÜ±r•òÍ©´ðP¶ñGùær—;¶„}b¡Ó‚"CtTQQÑÅëQžfocÀÞO{·A™vW®× tUA+Ë÷¢q4Sÿ…nÓ÷ãÌP¨ö§®$Û¡x?œò™5;$Ð~«YâãÆÙIкÉvVŠ/+UÙ߯p ÝoÏ|¦¸âFE¨uÓVe¦MË‹¶Õ8|ýšßgêÓ0Óx8ÎÈÜ—Ât€Ìˆ«i°Cï¯âYûŽU¬Dqdì ³NöBõ§Ì„¯L^°îÉ­Ä/r>%>æG>-TÛÂæ'r€¤¶LÂY–hÜLnjÁ“Ý«…¯_`t‘¹Eñ½ÝUó¡ñ¦iMÒ »©ãEM=WûlÑ|Åá„xÎþê M‹ZMHï úX¼ó}Úgjµ·•›Ë÷s²ýr>5O¾'IóßÒw^ÄòtmÛà]‹ž,¿Å,±¢ŸnȆæï-0^Ï| í•’Y™iÐt.Г4ÜÁQ86ÚƒééÀð¼²{ËzU Ry‡?ð¾QAA¿d5 50}ìî9h«žÓ^ðƒ›©_BÙAéÕ¥-lè*Irö£_âäï'‡gý?×W×uk[½Äö)fÊ­m]÷=±qK•‰KøcË·gí›~í& ëÏKŸÁ‘çú`6·Z–KX2Lå ¹ãDnÓSìú‰2ÀßËÝ }ëw¬Wb”ÐHgBý´óš5bß‚€®££³ïD74½þãuG«`I®Ôp1´? ìã«ü?J Žê{Ðíé h?úñíÁ‹:@’Îy±Plƒkú§+§ÎJ`ÅlG¨¾“µÄ,ø9‡’}ˆ¹ÚX¼_ŒòU~ùQ¾"w¶¾™ú*üËÏžÍ=¢»S(F§*6y˜`Ï[?óë“À> {*ëÈ]hêÞ;7ÝwHl»q1Œ<Œo_¥”€´ùÉ óÔ¥ÉmɆªýÀˆXÑE\æ$î†n´Øú6„º;±˜i…[­çe³üâvX\åZO®Ðyù{zxáA æ²9²k±ºHÄ î°7QÐé±þÄ7¢ «.ÝöÛŠÑOü]þ.—ÿ9%CãvyÏ{ œó÷<Ê;n@5ŸKe[`q•Oƒ¾·³yGpß6Û¨ªCå¨ÊR:6Þ Wîgð¦2X•óåÊ‹—)vý·Äµ1¸™ú*6æ,z=¢Ô½ïu’W.…ök6©×½›þŸëk*Þî¤&â¶åOä…TZ.†ÁUWŸïÞÎ2Žsiüûo@ÜW¹,@»O3cÿ—›ï/0¡5ü^j¼õah94ó–©þ®¯îÕ¶úùf›€•ÝÉÙäÉžùŸ°íÒ,éO(<ª¤[wFöjA«Ñõj‹ lûIX’D#ïë{͕拓ï¥É²®øüfÿdÿаªºž¸<´¬¸>Uj 4êÎÖ¹Rؼ&åúÑ#¢ÀT1ï/ˆbiK•¡ÒalÜ&ž xÂï±°_ÄK½¶m:â›8Y5j÷eT¡^Xñeí[/1S_â¨mñ"¸Ô×&®O€-¾FEoåᶘsÛmB¼MMÁ÷²ZåÀØÿ™ÿjjW’(WØO婼 ¹îù mÛ´#¾¤òòù@ùÇo`Çþ×âÍfì«0ÃúþÙOèzÿéûÊž,  üĪsWvÌéC÷Eá‘]S‰öQÜêe?hSÇ_+}.[» μJ.^Eвò­óºiùkÅ/gÕ=DyÇô±aÜ@NtÜrð)N@qx• J/{†Ö×í[+Ÿ‡U?úžÎŽÓôá^k5š¦ƒ~FÆîÔO \k}x¿ñ“傃yýʈcñŽÔ›— -'M/\Î@ñWøÞ òCÐu0îgŸ¼J´¥á×D®Oã×®éÔÌ¥¡öl©O×ý¢ê ›'ÓòÒJ¸¤©º(Ï•tæ–±Œ‡*°Ì·5ªª ý/â¬ñš»h\Ñ>ŒZó\ž|Ï 2Ž{ ç·aû‹Çïqè¼ÄƒAÍ¡бˆ¼‘Ìâ}X‘·5~¬Üã%ÄûÐu“y›íCü ?>Ëûá% ¯3âüÚ‚òÉ ²Åo(¢|Ñ6µïÒó³UÿU¢û[°Ô™°uÍÔï™ú4´'lzôÆ‘´ŽÒØÞ1Ä?4Í“¹Z®î·‡£"ø4ÊÝåÌ/G>™µóFïïáBqª3õU`êl–>ÚzÈNüCõ7Ñu7¤…Óž)#Þ§ëÝ®»½rÙÐð?÷å òÝ®ÈYéÓòfÅÜw-æQ¿¥«+ =ï5‘_j®Bõs|?_ºšBÓ»¤½:s‘N[Í®î’ #äÏÙ±´û•ä9À{ ¦˜mFñ¡-¢çÙ»Ñ>IÇÎCcO¶~Ò›ƒƒ·Q>e^ä2 ”w<Ó¼Tf‘—)%br¾¤Ý¬}€ø:’ÑÚ>‘#ˆGk¶fÙµoðƒŽˆ/uýoÙ°Ú$õÌê™ú/Ì4/u¦õ5›uüT´~“XqÔÅYôq¶É";öœªŸüÆ'€¨]È¥÷ñîõ6göGûTíÏÄhOwfmÕósomм@ܦþê”zµÛ]ö¹ƒ{ÔÏŸŒª¡ö³ëcâ5¦íG)¯æ òËŸ·Ââ‘Ï+®þÌuòs42Xôïe€"²Óý^7Š¿l\J8)m=-|†> Õ‹ó÷Þÿ" å´gË'š€ÄßÀwñ V×¶~ù§ž{ëíe›Ô.õ|H/wY¾[LÆà*{·š}¾ ÝÿŒ³Ãî²ûòÇ_KXg¡°ØÄÕzïÊj€è»yÝ,Gc n¦y©•OC¾ø¢JÍõÐqž§îgÏqè•P½}B¾MþqÅ@0ŸYÖò~äþy;¬cûÿÎ.¶PL˜Qt7ÃO žÚ] ‚Áýkÿ¿ûïo(ùÇïÿçúê«îɰn{¿Dùp+Å‹µ{aã×òÊRßz©ò[&ú$µà´LþÞ±s—ee<‡­¥}ëÕ%ï%μ‚³ÏX/÷'û/¼~7{ ¢zÜ3÷ŸÀûqÓ9»5°ñf•¥ßÖÙM®OD—°4÷Ôí+M%v'V—¦ÜÖ±4âK$°®ÓÜKÓº@ÕÇBz¶¾&S|òÙ;ÀѺâñ4H÷L¨–X^´| ëõ¢ïúÀ™“G?_Z[‰÷—fcש!Ý”j…d`ûçÍq÷J™Ä5“­˜õØïòwù»üÏ)ˆ3ؽx–"p’2¥…­ÊΧ§çÇà¨á/*yäb€ÍeÃùöõ-Ttl)ž‡©Ã¾š¥ÛGÇÝ¥y/”º»»ü ÅàhñÇÊ36¯–á+½l#PyÇ×–ôû¾¦|—öØúbr}luIÊ3k3T<ÍkžÀÆ5¸ë’eÖ ¬Âð½É”ó@x"ã–uË'âÍ÷uüÚá¬û©»t3”ÈuÖûž#}ι»Ñæ9°DVÙßÝbõxqë0Iìõ彫"Uð@§£Úº;P_³ùí3l~#1)x"Ç7XÒ?=Ròs q%·öX6^¿aW•_÷×;ƒ}·}ÕZ— ®Ö¤áãíwÀ¹vóÖÄÃh¼2N ÇòzĨSª>eËîÙ¼ˆž‹@Ø{6hEÕð¬Ä!í>ÅÐQÂÕçœð(^ Ž÷cßÄ{Vñ‹Ÿ+>týðºDhŠãN­Åúk‘¯w+é,Îú§ ÛÕ8–ctÿôæok½Rœs}Dö¬²bÿþm«ø°>í$}lCÏ5ÀZsÁ’x&GÏ´/½¢€=ïºí«v)Ÿ:­†'b¤9\<«Z±ßO$9Ã}štºhßÐL²¢“GÉ©&¬qoÄÎùÁçE­ ÷† g_*ö»£Q…«‡¼e1°¸åØ‚;€ðð‹Åëöú$7'xõlÛÐ*¶ p™+C&r°Ïeý¢šÓ]`tÇú¥Y<…Æ…¢ó.G`ïCÚYñ×¥`x÷hžX4 i)AëiªG‡pæc¤“Õ¦}Ýo®;Ȇ÷Ok.Dyd]׺—\˜Òq†òV®¡å›y8K¹¬tŠS"ž˜çyGû:ÿú‰ÙE”u“íø5,¿ñ<‹O÷Eë9Ò¥3)_d'¿;ÜÒ²Ê}ny[Y’Ú‰Ûh}GR èaíߊòäHî‡KBîÅÀÓñûãoС´v—^+Šë!«æè ?Fù¶43¿CõÖŸ Õ›`-Å%ú«R&ØvÒÿo p_¸è¼°^^Þ%†ò#;˜ùaÒ·Q^NÄ|l|´D? Ü Dë7JÉá"Ói~³ËEâdf¯„™;)^v(¾„\¦‰_80•‡„Ÿ £sÕ¡Ss]á–ˆŸ¤í;ž±´éãÕ_þµ"Æ èÃ÷*ã–#ݽúñMK]Ñz¶¾±Ú†ya“߃i‡×"?CÒ·ÀÛS¿«ó¬=® ØÏJ^Ú)¡~"ÏZ ÓBGü>Ç”.ë’ ,ÓµÒW þ-½å;x‰‚ò,™å…É”ÇК—€“oEy‘²K"bŠQ< ](4D3ÈÚé'B‹Ð:´ªouô;»©ß­1³îü” úç“k;S¦ùkʘ¥›È#¿öÖ%†þOÇ¡5è­åS:ÐPùkäÓŠÆÔoZçZñÑ¡}÷–_⿦ñÅRüƒëm§æh.Š =´½ÚV»éûÅ¿ÐÔ+ÖoA<™GclYh´.Ò)/@|GÃê5:7W¢|VR±§PÎð`-ç 84ÞhG3“ç ±§ÑÍÆKÚ .m¿Šîƒ|Œ[ð¶>Š?#·ñî²­ÓöšoÙÂÖ¨»Œ3¿¾OÎú >²ærzUÕ#4_têÉø˜|Y-óÞžx”€xÁjÖň禬^l¼"ÚÝ‚ß J">£\ïý•4>Ø7^³¼ôêä+ô¾(Šû*ç’{èvý;Ö~nÚ‹ ­f,·ìBù‘•×–~xŠž#ö!Q}ùýP¶É–ÏÉtO©œüÎu§]"ˆ¬€èh_ú¶ªbÚõ½WO—Bq³¬Çoúï´åµ±åòšaÄ'V¶œ0ñEóAÿþ"uE@Ðxn†Æ[±’é£{SñÀItËT}„¨uÝÇpäZ{õó™g‘®_·0ën¹äwÀy¦·¶4µ³-Õµå âcèOÅ*Ýä´ éP¢‡âK”ÏMI¿Çóý+âÇ9†úYúe§ >x+AsÕ´çßà™Ë=&š'8Ï“³!ðá’×Ð~¾Êhïçsh¼±›-É ]…úON™=Õˆ_ox½ oˆò÷JJ …÷s+ÛšªfbD-âÙ«EŸõ,Ê)³“›Ó|ðúP“§ÞÓÐ!h¡á»¯hÏJ-áCú|ƒŽJl³iüU߉r{…y@û9ó¥}J Êœ<ê.!J榉œ3ºy“õ¥­Aüd͋ƟR6QwOPŠ|gmŸ?†ÚO÷]vYÒe…˜ôà–=rÒøâ‡§Z—\¶31ñ|̳«º˜)9@_á傞£ZÚM[Cô>â\ç*®Ÿ¤»¦Eéñˆ®x¥g´éò±¥¯”ü¤îóþæ‡P}qÌVaÓ|nóÿPtÂ×̾“›¡iCB‘i)ö{„j٤蓆B]“, o°n `õMH„ÕåL%`f¬<–éd þàóÒ¢X\ϬïÊç’€õUÿ@ß—B¨³lÎUÄꛑûç%*Ë‚Î>‹§ýŽÜÐ`³ót©6°xËVVüäwî~3ïûCóÒò#ñG±zù_;®m]]Fî^[/>r×!éêûØõÉÓ­[>,•‚®@¿ZOù'¯ÃW<ˆÝ­Òf¸ý°–Í£ø  ­åNcza¯ïS7TœU#r»mª–eWVg„H­Ñϱ¾ôg.4vùñæ<l¾.õ¨&_šæK`ð.Ö'·äAÕìðlÖgŒtg¾OeÃ`7¼øþ0WªÓegÝÂÆ}Q ZÕ½NDðfÐbh w<߃õA w?©–óƒÎà³ÖaKYÁ+ñë\½Â!ïîÌ5À9”¾>jà'ÔÛ}x›ÃÆæs÷嶃¾ø²»6ÙúPàSÁƒñû„¢z⢋!Ç OSÀí«_0TEõëuÕbuxªƒÖ½…n;%ŽÍêFçÞ Æ®‹*çþhM‘çA·‹ ö°…ĦlhCšmsj²ïäûv“V¸ð ýr;L·‰§GûD—‡;D·‡} ËâMy°þuu¦‘²&9еÌd}÷W¨ßãP_‰=/¡^s›G—<°çTVêо@ã²—¾æX=ìzÓ['W\ö­ÉÁÐx¨ïçœgäÿû]þ.—ÿ9%P^­rn™ ¬qXu2ªûGÏçÞÃæñQñ²mVæí0ÜÕPk¸/°ÈŒƒký§îx;sóÇÞ¡ÀyD9¾ÁêW´í–¾»-ùµŠ_%oaXwï€Ë~ ®Ù¡3l8*|67–¾íœÔ•¦‘ÙØýˆÊ¶4‰ó—ç'…GÜÚ- ˆÕk¶_ë]Á‘Rý$—Qm #oènÁÀj 'DècãÒ[ìÎÈ8e–Áäm0£Í¡bò?ê½þ€Wyvéókú ´êóÔ~zðhÿ3O÷¸éku—µÐ)¡çT¼ ˆç¼2íß`óp›f•·‘6_Ö:}µç=€¨rãAŬNéÃÎWq:Ðia_.Òöæ i Ö'›þÄÒß}M&4KÜglõ×ü¹e{êJ°qÚ4ܸÓ굢ЖpwãˆË) F{ž:Õ-¥~¥³h%Ë CÕm¶¸á;hzä¹m廨ëÞ¬v §¬Ðèµ]_G?×pÌý&ö{‚"vmÎñ1è4uªVÿYÙÕÎÕ<–ØúZ¯»”Ä;ÓÔË:ù%Tß|\šÿ˯Qé§Ãg#ž®úôî<¨ç?žÚ‘‡Í o¤òž–'dзpW)x5\Ãö‡ªÊ®ÝEÀ‰9tø4œ?>7ƒò[_gïÚ(m`<±ž?8šæ™pµ¬Z„WK‹Þ¾zô.ËuÔP»xõÎMŸ±ïuZJâÏCÙÐFÜßÂ:yˆWÈâ3±í÷^(`gæ `<ÌÚgÿúýÈó^x©Ñ!‡×[‘~s}®lã¯;Ð6û´:Òí©ãõ%uõw? 8#ü¨kfƸpL?­f‡"_€JåXÃRÄóŒ'ºÑ%÷@…7AoøÍÔq¢¾6ÏíÄ'TÝoÓ¯Î3NvêF½X´¾®­zàÓzÄ_5¶rIÊ‘spÉcë½(o±aµ£+×;_ÔÞZ}¯?[³€ù¢çžÀO“]^Д¼ åA¶þSŽm(þâSâÈ©+Òoø <¦š–Ab…B°G¿øðoCëAÊζü(1¤Ti;DŒöÍM)—ö¡uTý]ƒ·¼U(©©–;è˰7¸;jô}Aÿþqh(^µ¬:½bZ»&¥™ÜZ‹t»˜Ï¢².BSk¬ó>}Ç[:ÜÔ#Õ€üDØÚ1¯íkÚ€¨Ó¾þ¡\ê?ç·lMÄçÒ¯c–ñ†ð¶¢]§›ÿ¿âT& ¾¹Î@¹õà(Qå¹NJ¥(Û¢|Xöâ}ܓΙ[ö®Iê·doí±:´ï@é Œ«ï«†6×;×¶ü@ûäô¡vÞ•(Ïš¾øõã#ÁÒÐÂD\‹âÍpM&â³n ½¸¶…µ/@Û[Þì[/î^èbÖá8äÇÂ<´ñJåfgh¹>ËãÈ<ôBq_ì«ÝCÛ£¡åNbg¾<òçÍ9c.b¤tÝǨ–[Þ¢[ÐÂ{²ÚCñ‚uó>,ß6M÷’}ጦîUhÛ’?w¥,âõÌ{¼ÚˆÇd†fÔ‹Dóu¡]®Šº¿º&úÏ# h~fôÆx¸ê_*yOÙ]Ãiû·v&®6ž‡«e¶ºÚ!hI«µ×£÷meæì^íhŸ€áÝ®qá>ÐÞ{,ÀŸAׇS;áhø½hÛ¢ûêfåÝà43ç`4|í÷Rß=¥o‰ÚóŸúÆÿŒw†òÉÒªi Wå>œÊvwò¼§Žû’!M­_¥a¾ GÚêÑûxå[`ó}8¿åq'àüŽìµ-‹ÛÕs~“S-p|f«Ÿ1‚ÊŒõb‹"C0¸Ú?òY›ÍÍ­ú¥€´ã¿ãÓ0¸\`&ËÂÛ3„8Ök"Tò´Þ’°IÃàð>²óÒÚ3€E.Y8§s$†ZóÈ0¸Šî½*éÉ÷J…¢7~h2ý¹ÂŸ°ùÕfäwûŽçú åÇ«¶QS}õ2Ö¿‚ô5Gˆ¡ñ ˜¹úÎ#Ý¡Ððdö"Ûì}\:¾Ä{åSè{çoø§ T/3‰âÀàêÕ^^óÖ‹ãó«…¯‰ßrm®8–¯ÃMt¦Z]wN¹nPhòÀ ì;ÀÆî›ã–§-~í’ œ†HÂ'¨Í#>òë-¶žÿ®fù\ÊÖw…ý-öZG׌{œ1Ÿl—c1Òü¤ è>þ"§¢ß,€âJð¢ï·+î8 ]›T—íCqKÿ_áájoÛp/DñžÔ—ù‡>\æÕ(Ç8Y¿6S®©ùúÙÛ:ÓòãÞÙ圎ýZþYHgp¦<îå‘{§ðˆg&^½·x͆ëÀ6¢7ݽ†®o†<ÜL}:| ŠÊ{€Þ[1ÿãe¤Y}ÏeÉ–ÿs}ÍéŸB”O‹Aç’eßÛQþeÍÙžYÕ¿P¾ßLy¸¿ÊÏ¡+ŸuTꟖRHH·¬æÞÖ3/—Lñ3æáfì¿Ðt¬dëò. ‹V)}ËDã¦.æóCS%ēΘ‡{w<¦Ñ@šŸ-?ݳÍuíc½±kQžëŸí«ðWáÚø핎¤Akµîz»ä©÷-4ض¾%NçÞ4YÍXd±ÒlôÜUúµ4ÒGó8ë‚.>ã”Ðö=]ôùUžÑXƒ®ïrBqÒ¹"h‘ÒX£$ÆQÍs íiõw®,Ñÿ|s=4?¶±Aïåš@‡”w(>î¯âáÈIÕö"û¥€}¨oM]çs¨6lÍðÆî›“|oÛ“Õœk}Kxµ âñœW ÜX=™ú4üÙ¸™òpÅ·÷>;¤]ý6{W<»ÄÚS•|Ø|ß<ÜópYqÛ’›a Ùp¿pÅÈ”wy)ÁÁâRGϬ¼ OFø¾ü‚Ì­A;»wœÂà^‰‹ºðæ]‚~W•á*m(¼«ìtQ›Ç„3œÅ¯œU£÷ÇçCã–+1÷Ò1¸òvWÛý¥ÐÛx§XÞv'T ˜þz³¿‹»GÉŽ~D€ÞDéÛŸ ²/b~` Vï°†9LƒîãÇ.ÇËCÝ‹Uò}´°ÏÛ»Ï"áK¡»ÿ¹ApŸÔºÙ•ØcÖm¿Ëßåïò?§„¿§ß4R€Õ·6îVK® NÝ5üo‡›©ÿÂß7SŸ†¿;n¦þ wí^§Õ•º`Ÿ‰·KºœÅwCX›°>Sô=Vã7Búú¥ 7·˜®…ò”}ÚÁ’›ÿmp f]§¿?@ºåß¹<ùµ{Ó•9#Ñbÿ6¸™ú*üÝq•„µ‹í¥ŸÚâyÿ„ÕÎ èL¥ÎÝòãßG Ó¼BD|`ý!¿ÏN6q@o¬­Ú%Yüoƒëݧ£«½š:ˆªW?Z´xô¤åÁ˜\—Gý1¹ö}@JOo¼Î;åsÅø÷U&bÕÿ6¸™ú%üÝq3õUø»ãºzã¾Þ¼UDK÷÷«Ç‘¯u©‹Ã­ÏË:þmp´;¿Ìr%䡃ûi†“R(4¶æü¨µÄî›ÿÝq3õUø»ã(rÕÇ4ø ãÊÀlŠW@ŒíV!'éýÛáfê«ðwÇ7¥®NèæËÌ•€¨× œ;óï†û]þ.—ÿ9å_ç¿ð'ãfê—ðwÇÍÔ/áïŽû³}þ*ÜŒýþž¸û%üÝq3õ_ø»ãfê¿ðwÇvn9Ú2é1Õ*}ówB[CæÐSî¢\ÃÕ…<^a«ÃÝÒTÞèpY¯J)ýoƒ›©_Âß7Sÿ…¿=®Þ`Ù¶=*€«¢ì|ˇ|Fê…¸¬Ñ;þmp3õKø»ãXJÑÍž~@1ZæFD¸ºÛ^ÕKsÿmp3õiø»ãþ*ÿ…?7S¿„¿;îÏöUø«p*¬ìd€=ßkÌ«À¨' XnVkþÝp¿Ëßåïò?§Šçñ]:CIÀ>Û(Ù²Ù*áËø²:í›ó ·Ù{쪲…(Tiy´h)ŸÆàšWȬÓYy˜vÙ³íý š{w¡çÏ ®eÙÙ·y oãÈ‚í‡!¨ØŒ#ü˜ƒ=oʃœv7u`ñ*½¶:ª|]"ŒõÉÆ{¾JÉegEÎãƒVø*³®`ù:’¶{„x˜û=\“÷‡Fz¡#«_Aù$CYq X‘™1㉡ºæýhÑ!¬Ž):=¿iý`äöK[iÏbÖq‰–H¬>'iÖÁŸ·­jµ‡º$ÚpêÙ×í°:¨¤}ëe5˜kÝ‘‡›ÔÊ¡ª¬Bh·Âând ï¾ZÌ»ÇR§pÈwŦ¤dlôûܸ±è®»¬g1áºõâõ|o»8ݰ€NÙ>…“'з¨ö³Ö§²ÿšÞª&Iè|¶>7wÑshX7ÇB«û@Y|vÌî†tÞÀízr½ ýnÿºƒm?Ês)¦D²0¶:ù]ø ûvo¬¿€Á‘óžGnº! Kjñø.Qh´×Z(‰£œ{2‹ ‘ôdóDÞÏÐT1¿È* Û.µâñ¿ˆÀˆ7ÓÏY9 ì•C*°í¬Õò}ÿø `•’(†}E€¿ÀW"ßBÁÖ·"néê¤`΋ðÎS‚úWßáÇŽgêÀ‰2ýS“÷QyJóÒ¹b¨{ 㮲G°õ½Ö>y‰0y}zóZW]††»íO•Æâ ;yõ»sÇØþ”S€ÿ`Xþ@ñ>”çï²Î¡çNG«dh<׃$Ž!]œæ/ÊठÖà¹_p<ÚiU< HŠÚ$õYuÒÿ©Î» =´X²šYËQY«´íZ£ÓH‡§cp?öÐbèPõ¶g"Ý(ÚçÔ/::ˆ/i´cÎ9M…ö¶¾Pß;(²is+Q¬GõË×½ŽZ%™Ðé…SÈlD×WYênÅTD:Aͳ~ Ì–ðþ_Z(^¨ÞÛ»õÒ;'jÞZdóÌKasO% u)±×íeµÒ"œÎúµŸQ¬­Œãz2áè¸á÷¨sžHωT,ê'Zû˜q'·m¼ƒ| pz§O0%Ѻªé°ÃA•@w`·\*™‹âÿÊ#·Ÿ0ýŠôÈIß;…ÔËgèûÈq:Ê["p'i¼îAy´¸î*_åÍtàèI/¼qéÕáLïžï¹‚øÙšžã^ ó¡{E GVåÔÔñ:ƒo=Yl4®?”ö}Óü¡‹_O¬™:ž¾ G.Å1¶ç…ÐÒË–Ag·ÊÏùŸ~SYÞÐðut¿í-ƒG¼±VîAË£©ùðE¢Ô#(o“ò}½›@õvèL©›¼ åÉÕlv=;g^âÔï6æýòw1²ÐÁŸÉ}#å-VÞT¾€òR[«®ü¨‹ÆIÕw~ Q~^½î¼¸OÓŸÏŽE?_'#Èùu³¡j—ñKE¡8.*O=£úz10ý—¸˜GŒSC´§tס™ïù‰“&ŸQóÈí…Hw«©ú×ø£ˆ)`™Åóq‹S€öB@j#òy¨´òŠÚuñz,‘ýªG-¢¡y¬û}DÊÛ+/ù¹ÛHå³ÞŒîÌJIÚ¥þòD„S+WŒ~‚òÍ;‰[õdsA‹lü“³š(O¹:ôÆlù³ÈO„ý=H;}&œ<®Ï}x—WœEJ§ô€Ã(¿)¯Ä]c¦;a DQ Ï äãQÆì 3,Có §)Š'h DÁòKüï§|¡*y}ý‘;è>lÕC’©*8|f5òs¨8ºu– âë9ëoyû”B'gÞµ¨½pþÝkƒ¢ñÇÉkêQù®±•1v#_:¾ÇäïM(NµÓ‹ïÝ~q «=°ŽKD~ºÉyÞ/ÞÛ¡ë;r…šóĈ#ZÏæÄ¶¡ú’ºˆÆ/ÝöÚYíÄ{ÐZ3·Ÿ‡âäª3Q]FÓ|†?õX']‚Ö-¡/üo#ÝÍÊB™÷… È®èy§Þá ´,¨_ì^â¶qg¯¾~èQîƒÝ0Òà ­r[®š[²Ð¸¢ó ä¡ê9L<ËEí²¸¢pq¶,P´`žnÅGTߺ3¿„P|‹ãå-vN(^Œ…™/QþpuDà|õRÔ.¬ºÅ¯ÝꊹáúsEÐxI¹/LJµ@8ßÕ<Ƨ]'ÇK¹ÒšTä‡Sýëgè)n4¯Q´æœ%à€±Ä¥37MóRUÖìÃ~‡“¿)Ì¡K!4èÇRÀía_“_xƒ«¯q‹yÝ Ú3¯ŒAå9›4w ŽTTÙ3KfX ÷uF Ÿ‚MÂ'нXœFŠ—ˆ°òƸ,N|üš’—4£;\Åþ$—ö{UÀV³0vÛÔ“…ñq‹0¸ÂŠÈT9:èÚ}ð¸ÂÊg@|ÁÝ¿.Ϲ·ñÉÞÉqmvY-uPÏÎõ ‹“æÄ3‡€¥Mkܺºš™W?Zm~Á•ÕÌÝ7lì+ñ!øõf©±øö{˜d|W`B$:Gß.õ6âüfµ˜q ®F¿^¨ðý)è²<·½b áÀ~œy׸{O}gZ0O·½ ¿¤ã—^ùoÇúÜRY6i“뢪Ã/¥#- I7³çCÝr,N¥æî·ût`ágóëÓò éÑf½zÏD ®Hî¦@@t×kGÉÿ’„Æ‚´u ÚYÜ›gGñטÛáí…WŸ‡ßƒòBÛo ðX–²ñL>ÆÚ Ð3öþ ÿ³“P+³j\¥ƒ+ýâS&'¨ ½¯OïØóå T«|S©Z‰Õs+Îò|ž0X½~ëEÂvC­‚Œu`+v݆÷–â==ç*°¾nÝólÍQ ¶Ü;Šõ-­~ à^]¹º(‘nîåP¿äBÏ­ÅXÝÁZ¹±Çxõ€SW±‡wY<^äëEuau}êî6ž¿´ÍØŸÔŸÞpâ@S®a-v½Sû¹•z‰ÛÌT—¶Ðâp±Ù£;ô»ü]þ.ÿsJ ß{ߺÃf°Å£Î¦Ð" Æ¶Ñs`øtËl‰5³€á¢´ð2Ë á1¸þŸ"Ë¿V½ýªÓ©ý+ Net~·&×i ,òÔZ-·tô¼q€ NA¬Î@ Wo™ÝÜÀPª¾Ó2Ö µ‘)6·O`ß_M—d7.öæøªÝ6P_gÿåõ9 ŽPgJÝŸìL¯ŸÂù˼À!¦îvþ¥1–Õ~1æƒÎo*Ó#¢¡Æ|ÍÛ籺 ”Jr r–/0XÌ?V ÍŒÞà«Øv^èZv>˜þÑiÇŽ @óçú¹Éϱõ9ÉïÕpX ·õ[å©ÐhL[MÅÎûM–´ËzÐyrGÖîš@êI°Þ€õ#m ¯ha÷!åu1 ª÷܉(£bßÃçÓ…çT =šWªÈ÷%¹¯¬ª7ú¾©¢; ­Úè¦ù/¡‘ayˆ–üõ…Åéµí …Žá6¦´= ̘»`ï£1ÍE•{Õd;}¨òb¯²Ì¡DAá6lû…Ή[ˆ“¶a·z‡x*T—ÙRí4²0¸æY´5îßnBçèUEeßX¨Y¨{ P<[_»ÁzíFèü$jÚ´e48jò¼ÀæOM#·R=Ì“³lOóBƒ?õmwÚn ŽèÞ®dwí=tZyÛÓÒöW®;7M`ÇÕ¯|ÉàEè$<àøxC£Ö½MåX¾æVOêåB³êŽ ðG+£È‰ l;°öjÏ5€Î•ªß<Ú¡þ}Óù{±H·»¦ÅZß~Â3<†ïÞˆt‡–uv»ëÐy¡ÕØ»è.ôýSýJâÍS‡‘ËvsV·è~ŽÝ :ÿáno©û›µÏY,2íÕÔqR[f^ʧ#ñ5íÓ?— Œ…Õ³&Þ"ß9¢kþ!ƒ‡h]E‰“i:šXc«š”OéJBÓ­ß5‘Þéî^©·ë€%hô¥á‹>:î`ù|6Z“¾sNì|½è‰búH¯ªaåÑ+¯ÎÑ˳û§f=°J»%N¡õ5IïžCÖéõ 4æ•,\V%L›kµGÑz®éò€Ü~ò‡$63WoR8L§»3V!E<§@zÙz¤ÇÞR±ŒU¡· Ú®Í߯ƒÖÓ %}q=Ö(Ÿ•ìº|s)ïf`ªœšMÛˆ|i[LV$D¡õ{]Ópš]ç ètÉÌiO@×3z€k»òÍ­ðzí€×~œ·ï¤3iHÏŒè·2 š­_›zƒê †4€yûÑrÜf“©ã%¦v.›ö»Õò“…³Xü*ÌSï´¦Ž—Æâ£,+¦~ÓUuwz½ºœ=Ê—ÍvÝk $Ð}М "k;NC§üZ“ÊHw«.çT71ñLmßHi—¯=‡¶Þžcˆ·¬Z•þy[ˆ)º¾ñźK”þùîµo«Ñ8¯µeŽ•Uµ¢þ¨ ¯äèúÕ’ˆiúi¶ñ^”ýžê&Ç€þzWõEG¤_OhþÁû­黓œ¥åúø_3ÝÚpÅ]3ÔÎ&]e¾Òª©ß,ý‡ZWE3íÒ׬%¨]-ÔýŸª¡öê41VéÛd mËžÑ÷è¢~*—h{´õ;+#±|ËÇМ÷¬úçÊï¨ß_˜vF?Ø:õ›éþ©Ñ9hO®oº(…xÞêÂÚRç3ÈÇ““øÓAöªàcnÄ2r¦øÀwùÑÎm@ã’ã®»¸Èæ¿›´pö"ž·êÐî1ýQÄS±ºä“o-ŠÏ¡â.tÞ«Áú#µˆÏíúl§»úd3…Ë–ÜÛ„| Ê„¾”Ø<Ÿç櫜ävîO –ì‰Dz“ÕÊF£UH‡c!oxyÑ2 fâj$´Ñs\­›¢™.xG¦Ùa­õå\@|˜-ðù”…>Ä;"½CŽ€kªBÞ\ÿ‘*äûR+YnU=Þ€î×%u{ýã*\>Ú¡úíºËP;± iêM€(ÿŠW+=x}ƒKèùí(Ú—5ZÌ-Å{¼£¯"þ7Ÿ’Ù–;-Þt×‚í¢³ %ú´…Ë|ÄãUX|ûqÅ=¯íN´óëÄ€ví®wAz_…£Zû.›L–ó†æ[jIJr¤Ã—'°Ýo âÛ:5sçá/D@s;§jUòÓ¨®i´S²Gþ,·›S·¾yÿ±ËüÈ÷÷úY@iš>\ÀÓ sÖóe¿²gšwjqŸñv¢qÊâÖyîίÔs>Ý<ƒòzk/2=´^h£ûÈcZ¯sÊÅû¼¤¤ÃY!³?˜eÚõÌ-¯lÈ(úÜéüW/XSgPÓ?@õJ]×u¬ŽtePæÄ¬1`í ülÒ ´EW¸Æ±:m¸ÊŸTØ“ëGIž%K€´8EÇÚ^ƒ«VU^¥gì¢ækzs*€ÔÿæÈþÁ l»}W ÞVŒwo/¬ÿ¤OA¹äCZ\Ãamj‹&ûùDËçËO ~züÓO€›õ좈òMh˹*üó<ÚpIòßú=±íìoÓÉ,¯¶ö±VÀŒµ’³¾íßÒómÆ'¾@ç-]ͽ“ëK®ýb*\­fÿñG¤›Ð~"´Óê"àϽÐ]‡å¹ÒY}Œý±ka`‹†ðñ…W ïaX´˜Œ2W>8”¸l£pÂ&œôæÐ€4Öål]/V¥Õ…Ž;¼ƒÞ¼ŽÅf%s¡Ì»~mrw¶¾¹ìŠò/ÐËÅ®:'ð jR*æ[Åcù]BÙýg÷v³y‹î ô| é[Eiùaã@ê¶>•»]%ÞDQ¨k¾r\!e¶]Ö½úÒüf'°âU>K÷>ŠüözÍØõ"ac@ªË«XàhÑ¥-ï''\²™ëÓ€¿#_Å™ãìÇ)5rVK¡±gëë(ŒŸëïòwù»üÏ)Z¥ý…Sè ¾gfñ^þ¸ $K°ó%•©ð¬Åë>´g|º"27crÝÚÖ´ÂëGDÛ)ëäh˜ Œ%»Içé®Po%~G~ëƒÞé¸çŠán*4/JÎÝ)µ $CúwÃàZLÎÛßÿ` ¢³?܆z¥£rŒLìû¡Q“d׿³ ˜¶ÔBõ @òÓÞr^ ƒ#ª>Z{0€¾óvf­Ðä¼z½i#Û\{¿«ä… Ã"€±‰« v¶ ÜâÜø)aqó®’‡¡ÍØ9O~oŸ ÞÅîO’X&ÇE)@ý4ÿõµN ņm¿ùúº$Ÿ2¾k¹@ð9Oºh¤6.|ä½{¿ë¯ž ¦ÄCç÷ôU”ÉïKœ‘ø¯<0ÒÚêO‹r_¥HñÆ l¿Íاaò££v7Ð9‚YÏïޙąœ5{¿Ä…Êå:b€q€½xèÉ} Ǿ‹ ñcßëäASKnè\Rïµ| /4ÅÚ[­xŠí7bO'nû¨=Ð3²Ü—“ó€ìvŸ‘‚½Jûóìh÷0`¨7ZxVlIð]Ÿ6^&aú$Z Ú,E3Ã7uéjÌsJ"ö¼ä_KË·ÈÛÝ"f»`á >7æ-_È5õÿñOŽDDë‰=³ó¼v@‡³ßŽƒ›QœM³n—Å:´žÀ÷*1ww.únôp¡®î“ãÏCh}H¸²4».8n?Õԧ銑-ŸÄdžCþx^¥„š[À2=–»ñÄ(C5ÍQäKI”èá‘äþ ̽eç¢õ4EnWè±SÈß°a¶ëQ<:çs®œê_ Làú´dc ÈëÇ tøj½ÿ"ŠC™©OC›Ø'ÑÄ ÓtÑmÌh ]YhcÏuvIý™>Kà:Š?©Ï÷}ó” ©j)1(.âíAÖœï2«/-E¥ÝH¼Ña{¥ßÀôûNÄÙA—Éö«hÙ´—“óâËÛ‡‘|Õà£rûKÀš‹;ò4ñŒ¤T©¢7§ùM(žJ"j‹çè‚sï×#^€ô¤Ó¡® Å1â2o;ûXçžÕ–}š:^fÅØŽâÛ£’¿¿®ô†–XMŠ©ˆgÈúª ?Ç[ŠÙ]†Ða0[uñ14þpcÊ|ͨ=Ƥ c'ß%|¨Ÿêß²²¿žV@÷ïáÑVã­ô8‰úÜ(³F)ÌUûâ!Z¹…Ý… Ø@ïzÞÙpñ ÞÝ?œßK½òr±ÓÞÉçsg§ûE ê7R‡c9é‘Zw íá/†yOÚOä;@ Ò™U&ƒâðƒ_Ô¯ø€¥è¹QùÍ’+ü¸o!¿Ä†•*¯5€ÌÍmÊ6&(ÿ—yÅüÖbGlÓ\Õd¶:#TÃR7!þ¤ÕŸÁÚ|Bwrþ1ª ˆ˜:^ý4}Ç<ç.Ôþn%.ûÇ/ýƒ1¾2éø—Ü®Üj¯‡üR;䬯D¨f@·.³)ù9Í/µ§ÞÔ0~Ž"]fíõèïV ޤ¡8Ãb¡ÁŸ%è¹n/¼¢Q¸ñ#ÐóWeìÏ@y¨åK²%‰ä‹Ðý2cAÍM¨ üîù ÅAÕÜ+Ûg¨ˆøœ?Û¡ç¶ŒEPÆWÀ=]’½“ñ“e« Fž#¾®ûæùöX÷Éë“ò_$­ˆüR*žD{>GÏ+ÖL<°† ¨²ãø4ѼX­Óh5è€Æ9+EÛL0ÄÈ\Ý^Ç¡|PœíÝ´x©éÐAùW@ñ籈BÏM]ªKÇcAäÀ\ÿ<•±ŒnÃ"ÇoLýó…ç$ºQ}Çu"Îké™xÜM)" ÕW²‚™N*E¸¥ Å×^C@Û}Þpp:oõÂè{VCÈ„n ºõ=÷äxàËΛs§Ür½‚t:šïþtŸ†¯eÛèC•Ъ,Íhü6õ¾…ÊdyrÚ#Äs³$)…ïwõ]çõ&ÄÃU?ù/£†ö­XZY¢O×Çm<3ÔE½õïæÄžiü®—¥U= h²¹›;ÑþPe÷·Åç{‘ßË7äëµö³@ÓV˜‡xàÊØæÙN•È÷†eÖŠ?;,´‡5–@|sÕÜ^óÞ·M Zš>Ê3:9Oä$Ç|XøDG‹_X>Œâ×ÝvE Ø+¿ž8µ UoÞ†×ebpøÒ Ç>Ð]f=8{~ Tìj{)ûû‘š•Éù–[Cfnº_Ô\ GrïðÆàH©ùk}mn~S¼i)ÔðrYgbã´fê«P)ââŸè«=¼#½øh¨Ëôϯ²Æêó¿ ­?H¾Ü=W_mv{ „XÚK#Wü áH¢Êèz§®ÄivbMBI˜ÖO«¸&v©wt3½?¸š˜!ž™‚ý&òrž·z5°V¤™_>ˆV UŸºOxá` hö­ªÎø|%*Öo®¦úÞÝŠŽ@`¨Ì&e”>Œé—H†wy‘V xåþüô»ð(e¥O8”eŒ)œÃ¶Ë ýÈ­V •RàXZûÞ;êeïÛÙõ{ÞÂOQVr›€­¹1a…`”»Z~ëÁ~·QÞ{‰ìž¼>Ü©ô‚èSP6aá,f‚ÍO wÕ©möÕÕ­…ÝüPL3Þºà6o–Úy;ø~ °Éë·è¯|ÅŸÜõHØúœÇôŒxM9´ºCÁŠUo‹J6þA;_}¬QäùX„Ú¥4¡Ä†kãð3¬O;í‚&×2Ò2`_q¼”œ Å-÷~$Ýú.‡.ÊÑ-{´§ö?GúãªÅ‚Ö ïŒ©ïEx'îЭ|Åsݺ é®ÅKöÚ+𢏝®J‡õûªßMý®~_È֦߀zž×~—P+jEž¬9ʇkò6迨“ ªšÛRQÞl· IÝÏ åçÕ Ÿ¬ ƒÚgýOcf#>‘°äpŠŸ Ø×ÌòŸ\Ø¥œ1Aþ™ulЉT ZQ­ÔÜ3ùÏÚu1ŒO©bêx½öÓ KÑõç?‹Ñ9× ìõåïÜP|^ƒ­ž÷5÷¨Zy–°Â«ùŸ uT½û¾ƒû|QÜ ñA{¹+_°š韔EyÁ3öKxcºÁåm•Æûö…Ûφîx1ÛàóJÿ÷úäeò^®Añ0¥Ö.öN± Ð]·¾'ésô´úöM¨;â§Õ—]á­©2Yßè[É äóZµôNª Å›ÐZŠÎ+Õ…‹+}Oœ Ê;®xzuéOÄ4*;9 Ìü —rSµIÏ>̓æ#–—ãíòS}ôñìm l ]æÕr7”¸„öº‚¥ô ‘@òü^™XŽÚ«dMw4ÒmèòÚ+š: HÊâ÷=¢Ð>R©š„î•´oÐå‘$¤›òˆ!‚ŸEl.Bùöƒo¢}¦fÝ{x¼ÕhëyWZáhM©ãýŸ5¦ö9Ð÷È!áåŽ7ý³¢˜ê¦×@°¿p¿æÖìÓÞè›ýÃÈÚ?V½Ügbq½£ÜÖ'cðŠÿ°î+ž ìÆ~oÎÔW¡J‘ë¯á°KµÓÎ-²ó7™].Øú SFM!pôóûL~òÖzýë @qÑ4^ñ‘ ÚÝÏ-[(»ȲzѤ®?ð‘c; ^e¨CÇåþùoF1&£'ê±3w2Q,À èåºkT–ï…¦Dåë?b¿ûZ•b"m.„¶¨D‹«^BƒÛ­²ãŠØu µðœVbª.t,2¡öH¢‚òÛ zظÆ’TÇøÚ À&=•ˆØ»ê¿W®[`ˆÁÕGœ{:Ø’ó=óïñCSßi9¯V,n†¾ x`ƒgQñÀ>f°u«F3%d~4¼ÆòõGfeMž×;Ö÷,ko?;y›_C4¯¨¤ý—ž_«Ë3ˆ—lmmhÄàšBë#}3'×;³59Y"K¨²Äóè,ì:•(\ùb,ã0›»¥ùÔçq™å¦‰ÅØþ & 6~HfHÜO k4e :ù1°8E-Á]߀ùøÂÕÁ7@”]ævcÕÿÆý.—¿ËÿœˆJƒµv}óë@¸±h:TÆP7¾¿÷‹ûË|ø®…Û—Mâd|ʪC&q&‹›³°ù’1¹7 |À 1[üi4™“”,°óôLýt%¢æ.ê‚NA·äu"+€Bä¹m‚ýî˜i}õÍßznü¥bzxûìu@Jél®êØ„½_³ îyøx º~ áve#Ep­;6^o¦~ uíƒy—\Ò€•`èÿiïG ›}H¶ÌÁæUÖ‘T?\O+ç$SyìÈ¡úûsµ±÷»uœ6¦,ïv!£A@šØwA^«oF¬°òcÏJÑ;ë–ÉÐbq@?´»oFNÝW&ÿ-Í©ö¡U+€v‰Ÿ¾;»ú§û4¬—óY}g6ÐV;·_Uî‡æ<ç̃;ap$¹ÓËM僴þƒ¡;'ìG÷ã±÷Kˆ Yfb ¬ãåBG^Ѷ°9öûg ®éé9§ñ&tz‰ÌjRÑç7\nXœdÈĽîÀ´[|Öµu²×óqc÷õš2­™iw€¹R»WSò6æÝ^»Ê#%Ú×^ÝŠx†¾Ñ–›ÛW52ôXWÒ«"_ØØd9‚â¥(æ†ôgÚbоõŠÙÏz”Ÿ×Ø[´¿íÿ7kŒSph7xºôÕQÖøS{ny6Òµi¡ªvECkºôm U´'ž¨'åš"Ü CµÞ Z=T,>× Ÿ†ºÓ?ÖóH Ý!úè¬÷»L… ™Äå_ õà ýß–k_BëTšþVCžÕYСå%о å’¾œEqGÔ÷xºøhç‹û$FDë#BË–x¡s(¿©…´Ümì]´iï×™hG¼Eåè¶èf;ÄQ&p=6ßâ[ÔÞ©ï÷û%Tê4Ç0²C÷qÚN]ïx °|–©]ÉCëýª1–Ì*k”¿K¹,ü¾Î X5'5CÞ ÜrŸe²õÂè¼ú\E2г€Eå~ôùä¿f~퟇òðXÛyî?Ô m«'ªZ^W¡ øŠ¶ÍÓxî£%¸ôÝЦ:V¸÷+uêx)q_÷! ©ßŒŸû–d¹¼v¡OÄû–ÝݾdÅ'²Ì>Ioæ1ƒ–y¥5/—OíóC±×‹¦D4Θ5¿xýt¶@+=j¸ì=â•j‚æ‘ÏŽ!žºcÙ~­O“÷ñô…Bˆ?ÒÍÂIç¼· åï¶ô¿4bQõ ãÒ(e1âûê`•¦b2Êl)É¥¿J? tÉî¼!§‰{î9¦m€â.[Õ´Ïs径öá~;<ºß:‡H+ÉPÔ~­¥þÜ9a¢Ð!¤J,þ‰ø?Ö–m¼uËNO¾WxÒè+§ô:¡~lIø²DÄïÐÝûê 5³ÈøÎ Äóª²$žˆ"ž†)%vÃ5ZüÊõ¤ï!Þ§–®¨ûÅ©ÍÔÑåøžñ[@­Â7*_@¼þÑáˆ_ ht½ ¨çÃá@MÉä~˜…ƹ¾ÕÚv5¤K7c¿‰Gñ™Ê…@’©`ÓP;TË«ú©¢óÊ»Å3j@\á«kó$wÖ‘1Â7ÇùååU½ˆjB¸ K¤ÓXyCn‰ú4~99œdà i›‡xYÜç= ”¯Ï¾`h¿D…p$­ýVO›·Z„:¢ç—è¶ñ… 4ÈÕïð@ú‹™˜g2hœr·í[zâà7ˇ³Î¢ç¤Þäýö˜hÔÎéççoýÌü½ Û÷öS:µÐ@¸û:³ µS›±KÍ U5hS/ýDÞ„ú­çEØi-ÄK·Yz|(Ûm® %=B<þüÏæu”ÏÚb!4Às 5MÀu¥z^›~Ö›í@|]G~]Ö=æ5hQçZ}µá#ªOô¤Uƒ#ºÞ¶“›Ì‹­nCkÒÙõs‚Ðs]OÏç9·ųºŽÇ\óRNÒµZ!Ôs—\ó@íÇ|&|±:ä ?¯1³e ÷&¾:îhòàTt⣢È[Ï¥}çÞrÚwÀçÚEÈE> ¬冟ׯÙm No?Ò7¨;P¿ýŒÚßb)Å©•ý¸䆋†ZëÑõå|³Ú…âugì—p_íËÙ–ƒÀÌ«þá»bòý¾äsÓyl~cýæƒWG;Ks¢Z·ÍH=™cI"^ì•NBÇ °·¾r:û¼ˆ‘:wÊŠ°zø_þ/ŒËíxÆY±×@zæa8ˆÕ¹ySú0J„qÚ+RÔirÀôTº¼¯÷—ù4ä>™;?¯Ú3Ÿ/‹ ¦ä‹îâE_±íç$ÐÇ>:TföfO¾W¿­M2îö‹÷An“ÃÀ:òì±§"ù.íYÿú:Wë˜#0Xs8¼ hû¿Q³ÏÒDû½‰Û]"c ̇ʟn§Uyè`jìã,nÞž°}JÀ:hr4F­ȆÛ~,[եΞmÑ <ŽÐ³ÿ—¸¼úäw®í¦‚5Ø<æ¬gés ·iýöhÔŸ|xíb/6ãÏö_x-h–¾2ÅzéÞ]x¾C¸ƒ«Üny,ŽëVfØv>*Ðt?æk-iÆà*†õco}3öÒJ5Á›jIÍúò»î¨)µfÞ÷öÝû‰sâ#Ò8°0Ô›UñÒ¶ S4ØšzZ·³“€*Uñðº6î ¢àC•{~>°WÑ6^<ÛT†ÙÍüã~—¿ËßåN ”«_|>c2ù~?ñæñT)X oNµÃà¨óäö¾*Tæ»tY;K¨ýܾ`ÿ ޶ì+á¶:ÿäº ÷à—¡z¡êÜë²»0¸¶f3Í×·D&×ÓV«K÷ âxŠšøž?ˆGJ¬Ñ,Øõ˜K›g‰«@Õ[mâU?Я¸µ0ÿe­9°†ãê—vÿ€z)—c ,¿AäcÚQ¿Ì–Â%ýwo@ÓºiÕy9WÇ¡µÇÝrû&àWœ9Öšúy‹+g¥i¦µŸàS» rßRþŒõ- ºæàª¶Xjþ˶†ëÏõþD¬¾)åGúÙ£`|¶á“cùBƒö¥Ç{üÁ~ŽÌ`~—¡ °î/X÷ªÕ=ȯ-Ëû±ýfjx›Ì£i³ÎºgVÇ–°_aïCsÛö»—Ë€qz F Ÿ€¸·1ôÌ‹ýX\P†–GÊUèüÅ種|Æ#2ŸMÌÂÞÇ2;ÖùÙ@Wrùb\½ ˆYŠThll»ä >¾ä;0Þ5®q¾8 ÄÒ͇T °z东Uôa-è\O¸‚[XÞß³ÒWe`Ïû9˜ÓA=ôlõ‰íì0hÌðßIZç­¯ìø2§âf`ì"¦dlÈU»kÀûH®ñ÷š˜fìM:_ºÔCÿBþz¬n. ‚’ΉÇ“éo’•^ „ò‰Å™žX½CJÆ®¼ìÍÀ¼jÓÄ‘¹ ¸»\GpÙXýZêu-«8`Ä‹¯û:õ^º³‡n`ëŽ ôÏë¦Ì=¹ø4¨¿Ó|êÑW¤GN•¯íþ•ˆtî[dçß8#Ô'oݘÊ:y1®Tåá>ÏviPr†fÅ·—¬!}(JÛël~Sô<ÑÈ•Ui=Ða,ϼÖÝ´í}NH׆ääÅ${ï„¶£wtžæËÝ_¢ÃAŠÍWû -œ9Æ›ž ž§qmiÿ)Mć‘·‰;ðœ€N‰¾a‡”'G45—Ö É›6G-ùø%~7çR&7ŠûhÚ°kãycŸ@üèÑ›DË湑٠Ü(ìrÃ.yŠƒ êåÒ#}aÒë·åç-cÖ}ÛtßIukyÔVƒ©Óܰ=têx½"×éª äAòùª²æn°Îéìᚇt•êu¬Æd¡¼·Æ¾Oç¢ã€í=ø8±ÅõË= Q»ãÅ¢ÄÚh:À^¶ÆìDwàÔqB›?m¨ ñ,µKcT®[I§²@Å@yZï¡7ü;_×P>› ¨&ìSÁG »Ðzºlý±9¶¦öË¡}¿Ø\÷‹Àx˜7J”FpÝîZU¾0Ê7m8÷Bài¿·¢cà¬ôQ\#"è¹!Ö8Œ6 ¼Ar½Éñõv‘@?©Oïºz «ËŒ07 Ôߤ´nWž}Bо‰¨8í=tÂ0Õ‰{Z>0£Ëúúµ½ÀÈnú!cꋽ°ô”Êk&\û™Ê -•þ½'PÞ2kq_Aê’¨Œæ—V{‘f¶(éű´ôí…Š&!Çæh¡¼Ôª7ç^ö&¡ø+f€ÏûÆ÷êÐË»´[ò&þÏa ÄÛ²66n¦@sa åN-„k{ª ˜8ÍÏaAó‹ÙNA@ãÜå.vBñz•_ö:d¡þå„‹m¹ 0¹ûÊݾ ñ¾¸Êãö'(O³Ëb^þJ·r Ì}Å˃žÏòoÎù»Q»r|HZ©zr@j×™+Šò-+¼·VØŒú­[È÷’«ÜCh2.5ŒˆCóV™Ï¡ôr¹è¼Ë;\û # i@ZéÛ/tÏÜ%¬¡ç«K¸æÒ«çÝ@î¨ä[‰ö7jvÎS‘=ˆx>¶ç³·£7€pÐ℈ÀT< 4{ÔŽV¢ûè8²`£ õ㡟U¢x«ºh®Ú!Ä·qü$g„†/º»Ã´‘N&^}Wù äƒÂqø)}C ><à2Dqd¸s7dã ø?ÆhmÜ`´(Æ_^f7Í!]AáÚ¢i¼Ôü'f´ÁBhݱÃËDŇUžÒò)šƒü~éѺ鿪7A‹fŸÃ2ºc÷»»t?É|ÿ‘lÿIZüLd¡þ]¯Qm‚â§;%Ÿíóyâ-a¦§êÏ7"ÒŸ¤ÔtÝmúøc¡ùWB“Ç–åâ±|ùœšÅaèÌŒJ“3BÆ.…ÑN¬žK~ÉÉös?àGæ¦\•Á~/k=£î•ëwðˆ‡!4ðäó)aóHIq[½7ë“ív"ÊÈØþcÇ—eéü±=Þ}¶¦îdÑØÉÁõ®Ó­×¥O4(¡K¹[Ûë?Ôþ޹0õG?½n-6«8­,Nïî‘Bûzœ³<µ¡~Êhº‘œÿ-j_ôîÇŠ¸šºCÌçžžnH—Ù~ mTŸN|9±Õí>2;'.l5(ð=¹Ò¤]©éVtèÖÒÙ›üµûîø5výö¡ôh¨~ÏaU‹éÄÞ¯S¢¬ªk_r9ƒ?$t¢Ç¾VÙÆõ£#¹õÅp;íùÍöÏ=ãeÆz\ááñ£[Öѱè{ìs®vßçâ«–=\(èïYãetî{ÍãåÍ´¿ŸŽ·ßPöF÷‡t¿j̲V>§éLãÖ ‡çißG‹/UöÛÛî4˜ÙÛh)7³¯WOí<·âƒ…ykfæÑ½â”ClœèŒeOJ ÌÕÔŸS®…Ã@º·zÞà6~ãèœI·O½'iæ³þ{ùïå¿—ÿï¿ÔÓ3Ðÿû¥ô ôÊÿ½,ݬuû¿ÆÿÿÝ\FO¯bÄ+1ü[Ò¡qûæ]ÿþ·Åÿ·Îô×þŸÿ½Tòýû¯ÿàÿõò¿þCüýw¦ÿûÎÿÏ e’ÿ×ÿá†W8^‘xEÀ†wÀðÞÃ;`xï€ãp¼ŽwÀñ$ÞÄ;xï@â¼w ðÞ€;`8ˆ ‘á 2D†ƒÈp"ÃAd8ˆ ‘á 2D†ƒÈp"ÃAd8ˆ ‘á 2D†ƒÈp"ÃAd8ˆ‘ã rDŽƒÈq9"ÇAä8ˆ‘ã rDŽƒÈq9"ÇAä8ˆ‘ã rDŽƒÈq9"ÇAä8ˆQâ JD‰ƒ(q%¢ÄA”8ˆQâ JD‰ƒ(q%¢ÄA”8ˆQâ JD‰ƒ(q%¢ÄA”8ˆQâ Dƒ(p¢ÀA8ˆQà Dƒ(p¢ÀA8ˆQà Dƒ(p¢ÀA8ˆQà D†ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹€`aˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ‹ÿ÷zúzzþü½Áøïÿ—ÒÓ«ñ÷ò÷ÿùÿÿõ¿ý½íÿüƒòÝwiÙ¼[ë-õôôMôôÊxû÷f½r‹(Í£ÓÕæ-ËRÆÁ¥‹u|CqÃsO¿osä¿þw]]Èõ´ç᥺RòßK·‡Ó)¢Ÿ±ÑäÝ}4u‘,†lÌp¥´¾ëN½;™â®ý3æÆ"M]ÃL'»zeÜ9’í[¦wíïѱ®¦. íþÁ8Ÿ2оþ³Q¬Q_\Gu×Ô…6>»ùõmJ^?xúˆÕ'(ìhÊ  Ý 5uþ{NߺЪ¥ŒûÔ íë*Ó½õ°Å“5u¬íŒ+æýSõæî'äˆÕDvŸC|4užÞÊdž-¤ð/ßüÓ©˜<:7 8³^S^õ†ÛÉ+ý)5¤\’ØMYoÕ%«ÈNšºÀÑYD›ðhLÎð‡~"öl©ùû´¯‡ß û„}EÄ{ìZsdw.%µßw= ÓÔùš”úº÷5ž½2jzgK²_¶vSa’ƒ¦.øÒëŸZÏ ä <úK§Æ”d7mÞ‡&gµuÜ{q‘R^]ÛRí£'EÌœ¾rÕ³ÚñÓ§JÆüOÄëܺê®3e¾©8bôÇhM]TÓÝ›N|A9eŒÛðÑ„R;dïn_ÊUS—йT“1‹rHœ÷Úâw,Å»°®[[M]õÓ7~Ÿò‹d°åã\(%÷iÊ‹Y´o€·ÞÜIT-"äHÁÅ@JMìîš×!@S·v£ÑÛ¡±”žr4ǧ[3Jˆ[V¼gò íñ×üwvÑ1Jßîdt»%%¼Pô;)JS[ÙoÕ¤S”9mV›²I¿)²ðŸ«S÷jêøØw«Ö¦ý¦ÌÁ–ES=ÓˆÖ˜nÙ®Šv\ÊŽh·¡É.Êð¾:·ìóó?çäåýCê«ÇŸpäý‹Ûkt×3Û”ñ¾ZÍŒrc,§ÊSt·Ç$t·n}û¹:ã3gD¾ ´ù?\4£»=(åë•çá½t×#¢BX˽9ÄN¶=’q&B'±;zDx˜é®L”§_Í%fÝ®Jæ©þýjÿ6Ó-f©ãáI«õ›jßóðïˆ?ÓÝžüO͹©SBÕøÝ©îwò&MØï×Lw{Ò ¯ä7[uŸ#”ò¸ËŒð*”ëV{r¾<¥þî#ÛÏmt×½"™“…ñfÔÎ|¤Æw³7ÓªûdèceªG<1?ðö½'ê߇þ>»Ý½•ú»}ë-5rJ™p><_}þû¢óÝõœÑ™óÚL ¶)IJړºÛíöØÇ–9PJwÝmüüIQi÷)jÿú>óWu‡qqÜ÷¹•z}ª'P™ª÷Ëa]ª:ÇÐÛµ†èŽ3 k“§?±ÜCÊ+Ùe½ìƒ—ôRžöRÇk•«L©!eeo/Ù:£‚:>ÂgÜ™êØDw=u€Óô“׿S¶hùÜ·Õõ¹·û„~v%ÝõªžƒÚý8µ‘ª8ômÉÆuüÞÃ6o´—w_W&}»CùzïXwï¢òÅhK/a6IýÝ…kg–·Ei™_ÿ9ZRS=0·d§xÝçe\ÿûkÞ>Ëœü2xšº¿ˆûóŽÍTïÖþÁ^Tõ]îûmNêxŽØi8Å1S½¯æŽlõ|ýÊjåñk’:^bLº¬}tÐ[ß³ðô²”“yz{úŒ…ª.»iƒSn©û‹ôóì””F™>kºÅ)£ÞW;žÎ¯úIGÏÞ0Ï—²§î)•yRw»ÇC§†ÆÑ•ÈòLÀˆ–+Ô8V,ØWÊÔ?ºë¶ú/ã·î±&ó¥)¿'dÿ×퉿ƴüý°·½®Îµwÿµ‹ü<É~OµƒÆ}u·—‹«ç(Þ{wk›ݸP¨aŠwÌ®-êø ÿq×ïcEt½R¡ð¹:>|ó÷å©Þo>OŒZóiYnÈŸúrÊÝí¦S&Ý™µ^½½2Wœÿ³%ñϱåoØÎ êy̼ÞåÐ÷CªîO’W·KÓv9æ÷,@÷ý-ñ“cmö0;V½Ï8åÄžúL¾;ç¹uü¦ž¯OþÕB¿ êñŽn¾ë#›½ËŽ GºÛÍ|Îõ\™¢»^7éíëJ¢)Oé·ÿ=GåçÙÐÂŒF“Õ¿+šêÓ7v™¬ÞhÄ»\õø^^mÖÒK/¹¦U×|¥çþÇO¼×Ýî\ã‰_ëÂźëÙ§w]˜°µ,Å7*²ˆ*ú¥»Ý»KÏr;þ$«0æ7²a J"ç¡F™ºï­ä?ï¦Û•êó½j€òV3)®ã‘3o’ªïQËv÷œ™_KwÝrqÍkL/R…JÂNÔåHâ·KW'>¬>׬Ú¾³#ÏûgZLÍÕqé:UµE*ù´q'ý&u¡è’–ßjö¢^ŸÛ–-ñV¯M~=~B C i9£­ð¾¬Þ‡3öëݸ;W}Ì9µ1_|!êy}›hM¡z5Ö^é©ýÞ5»æ!“uÿŽK«Gö·ŸPÄ>[ÿŸ½™¦.QÜÌkÕ¯„r¯´û½¦ ÅŽê;¸Õ¾©šºhþ}Öï~#(­¤ñè>“,)vëäUÓöüÔÔÅVê´«Bë&”ÖãKýG­L(jþ`÷ukniêìʬ}ôâñŠ<ý$2CŒ¥€Ê÷Ìò«§©«¼ªþ™#c(hhéÕ%w&þZUÿ¬ÓÈeš:‡#·ŒYûuú‘øõÁ²{þu¾oßÚºÈÝõÌ~¾¢Ð‹£¾÷ÜKN²k©W†Úçëx²NËîl…ößuìùãAäè´éœ×ñFÚº#¯Z¾Ê¡ j7·|¿çAΖIO²mÕÔOxÙ×)Š";¸í6Y0Œ’÷úåþ)c©­þjaÚ‚pJ]ù¬ütÃJ1\æžýqš¶îíì6ÝÝ¢ä…sF<»û¼Š<îÒ¾¾…ÕëÇZ þû»éNÀØÀ`ŠèÒeB§‡š:眴šAé†ivÏ`ÈÈãdçôνå;MÅ—¦¯®m§ì!óÞwô¨O• ·œ´Cûû.¼¨åÄù6&”îdÜð×a sŠ^yöÏ\M‡½ƒ?k0‰ª_ýdì™BfNZy-Ôþ>ñœSî]é(£$ýݵØ8r«¸âÌâ~¿µ÷WXeÙÝQuPßWà)òªZº‰Å³cš:¿‚“iYýÞRÒx‡U¯²òÈ_@ñú„þšºÐîÕ\TŽÒ“¶^6Ú^•".õxí®ý=0 åôÑ´ë”úâÝÛ5ãùÜç}íCœ5uþ_çݾù¤€’K&o½î4‡»uÉ6|¶à¿×ý{ùïå¿—ÿs.É«bùúOöí"ߟ­L~w''½£B¹¾¦Îuqû_'\ÛRèßËÕLɳcÓH᪩s8÷Jr)¬õ«³Óº×"Ÿ[?eœÎ×ÔñÝ.‰eo7 ÐÛU6Nò´&Ï.#¢®ÔÔ…T?zöˆ fÖg̳È'äUnBõŶ5u6 ;m|¸úyö;ÙíÞ÷ dç¾Û﹉¶oó¢ÿšYˆŧM’v)Ö,9#¥o%M]ððAÛ®^lOÑ‹LC£ÿëºÀͧ»ÞHŸE±£GGän(¦°ÏëŠâËi¿Ïz”ÝÕºÕ°'üÌíÛÇÓäaTÎëf–¦Î{ö»©úq“(f᡽˚V %3‡>_¢©óm^ýÆü#Ç)jyƒã߯ !ŸDëžzFhŸÇ²‚x‚¢Åù.½DASƒÛí~¤ýþä·¡k+ûqÏ)²°TáãÕäß y›5µZêþwë¿^GÚªç“ßçý@ßJäkÔ³JoÝíNó·tM¨g­»n^k…Uù·ÇÉ7þÒ¬µÛÕï¹ÊâV…ô¯êwÛƒ“Ó¾vý@¡ãŒº»_õõLëŠzŸ²§û*r‹;}ûüú®ºÛí²ÞæôhòEwÝáñ½Öû¾ßÖ¤‰›ZZª¿ÓdŸg™òêwcÞ†¼çË)ÈcLÅÞ5âÔçÏÈ󯆗f«çUêTÑÉ£)xÀùw®¤©Ï³ë}V/o©Ç粪NÕi–›t×£¾õñ_ñŽèíÄngÆ4Q¯oër9;mt9A!I¥Ÿ¿íx™"õZÚŸ¯­ú–žžãŸ%û½VŸÓ[ŸTÈ7J£¤Üï¥æNT}Aû³ œ£úŽá}£m>›"\3M~Ì­®^ßõgŒ.Uª»ñä|Q†'(örü}·”Ûêóq»_«´!=ÕûÓ²¿¾Ý€C41rêžNÔë9&¶Ñ²BÕwpzì\jhE n÷bä"“£j\®ºmZ/TßÑuÒ‡”'gS˜ÕºU»–ª¾™íjw‡”=¡ÇÇÙuòÞçSz‚ùvõ~ó´hvÔ!AÝ_‡á-å£Vtãh´Ñ`õïýê7òª÷â-ùßølÕ{—îv“>í¯½ùªÞm/šÝ«ù™, ‡Nž5N—ŸŸJ¸ý£š‡Ie÷ýûyìS¼½U–ú÷¦[æ|éÃu¹E2n@¯MIÚg9ô]½Cœ–½z·h‡îz¼~þÒâ¶;õyï{ö¨÷g«ž¡WŸª÷Á¢“=û×#Öï k«úž1evUùgúÜ»|°ym²ÿSaá;ÕÏ5Ëë1ªŽzÆÙŽ®0hèfríÔ#ÂkÑ]õ}aåþIK,#uׯ¼­úÊðîñàÎY(ñíòòf¯Uÿ$ïÍ¢{£×¾ù_}ãèè•*ïÆ¤Ç·Sý׸eg¬;2ŽnTx—™¨úPîõn>®QO=Þ‚’ÊÃ{SiÓ]c.m¼¯{=~ izîãÄåêñN:ø|E£B*ßôËá‚rª_U*·IÄ›Õê}étb鈋d¾ü׌R§ê¨ãàý°1ÛJÆë®ûì ÿÒ´5Ù>ŸZ=hê™×7ÛÕ®¿êC6Ï^R¦ôº7T“í©éÞêó(׬Çü]3tÞHþƒÏ¼y²a<ù´rÐ$BõõMT­¢wRÕÑžRÞ5}ÚPÌËyûRïw^ë¾=wÖõï(3Å¡^Ê«_”º(¥i¡Ž+ëU6WQïßÜfJæ_CY ª|Xø]½N‘¾^^åBtF²t†×JSÆÕ¡Ÿgt=ºSëmE[W¨×çÎÙÅNÆäPœ´ï^Ò5Ý톿­ œ$lŸO¹¥ÑëÉóמaGîG«×é{Á¿Ét׫ïXS6oÉ"J3ž}fP¾ú÷&ÿ8\Ð]Oæö~Y›Ý·åÌçYï•+ùޏp(U½¯"«*w!“R˜l¹¡ù :X-tºîs^Óý3“ß§¤…7kÍ \Jî^ ñ¸a¡© úbŸ{Û¨„’_މYsQŸü~ýî^!²–¦.Àªéá‚ó(Öÿz±8þŠ‚~½Ú7¸÷Wíßû“-Ýõœ’Kè8³×,òýpõ˶§Z×7Lp‹.½ŒB¿Êþ¿zû‘ÃÆ3Fu34u–!—®¯¬ÿ<º½÷Jì±-ñãßëG?ÐÔ鯻ÐðÎLJX¿æ’¥ÆdU{ë¡»?iꌶ=œd­HÖéMñÜMUVµ~Ö»uUMÉëû,s[ î²wÌÂeÈÒ¬]ð/ßaÚç1Òyë?>œì7×Îiž·‹ŒÚY ¸ÿ鰦λÚ·ö“‚(¸{ú’no×P¬¡ëáaÎkê*uèÑòOP¹-­ ÷§p$¹¸?\°´µv\ü÷Ž9¹>˜ÜÿŒ>Ý·€Œþ4·þô휦ζ‡wÜ+_ò·Æ|MÓúärºÃÈÊÇ‹5u¯*¹]îK9³ömÞ.žÌjöyÿvÑ.M¹_Ëâ£û¼(ë÷ú³¨Ò¼¯,öÕÔYÏÒeÙ˜¶”{ÒM¸¾ZN«ž´wþóZûw¾§X?¿LIf»§w›ø§a™™3»kÇÅÊbc‹‰ n”ÕsØ”#ÉxO¿'§FÔÔ9·½6¾ÿ J4þ±Žï¹N.fs šì좩ó˜Ò¤ç±†ó(~|êãw· ÉÍ<´í8•»*÷MJ%LÎ¥„î†Î÷ÉÃ+̶Oí÷‡%[}Ê×£(ã€oÕ>4$‡g%›#6j_—zcçí½EqgXY•O.‡Ç%Í~úã¿×ý{ùïå¿—ÿs.ɥׂšóÛ6!ŸØ¸¼™qúd¸°[`mß©S§Ÿ u§‘Ç·××F¯O¥R‹vV«ZðYSçý`²HD!_ÜΟp¢ŠWËþÜ2ù¥¦Î1rÊÇZ5.“{ƒ¢ÁÕ¾“^í Þƒ7j瑹¼xµ$~0MqfÝ4u^• Î>1ƒ"Ú:ÓWýrdÚ»zþ«öí4uB—ü<éJ‘¡ýÊ=LºB–|ÆÄÐÛ«´ã×,2¹‹ÅDrï2¢×ŠêCÿ~©Õ"ºHÛïŒ(S%úrÔeJLÁænngЀ‚Ö^ßPîPJ}îoªYÎú}nÆ›QyëÈÇFê8:Ìœ+~œGnZ´;£æÍš-ôpŸûCõ#׊ø¾YïÉælé{’Ôü!ƒ_ߦå¨Ï³'ÿ$L°$‹÷CvÄéæ'Þ áÄ\÷γ“âw6(K&õdBC]?2ñ[·ÚÆ%^ð>š4ÿE댟d9ü~Ó‚òªŸSªê‘&[ÔçdCËŽ>£›åPÕÔõ·R-ÕÝuþJ™¯ÓuyI¬Þðü¸­3(d6™O¬ú‘•Wß*œ°YyGüýÆz-Æí%›ßEéÏõÔëîPeËJ×FúêyìIÜâ9æ^âÓW·¼6×õ5ÿtH>;b¤ÊÉØ¨ƒ×Š·'¾ïqóªÕÛ]ÝÇ;­>XWýN²nѫͅdw±Âä{T©rHÛ¹ÏÔç}hïúÁ·­$“¿·ÞÉP¯[§·°‹ºëužueýÅr÷Yû¸¨>^XÃÚÑ3.¨ÏÏR;£¯E¬ßŸøùIÆËŒãºïq‰%sö{W÷—²üíã ¿GS´Ã‘cL”c8<¢’ ÔçinnDÛõ=ÖQšåÁ­åƨ:ïf<ëžR‘e¼eúÓœlJº<èV@KuüºõéÖoïåLiŸî®ÿÙ€BËQrŽ«‘¼¨¼¦®rxýÀ7¿íÈ=îç²N|Ù¶¬”º[ûøüÕ/Îèz÷ïó˜Ùkû¨«äùcZH‹“öš:Ï6Fž17Ü(¨RpµÂ ­Èuׄ°IzÚ>œûÏ%‡ß±£Ë’å’ËÈÄñáﵯ‡ñêf¥‹›’ëœ>Ä•!SƒS†¤ý‡õDiÏ~|íS–’÷¬?þ¼lu >mÀþÚqš:ç›Wî–²›NÞ¹O[=aäÑ(2ÿbަÎã½e÷Uý(nÄŸyQæN䵩pÑÂ…Úu®ó_îŸS1€¢dµìÛê>¹;öX”ð㤦®ŠÍìW‡Ï¢À¼Ý™ ô¨Jæ¹÷×gkçOzêÏÝóùM*Eô$³TÓ…äééÝrï¾oš:ß}ysÝ*_¡XËõj;ì ßgƒ^lsP{z3çí9IÝùv7ûnäéîbèV_û|'×øñ&h ETØþ¾ò¤0òØæÿ‰òcÿ{Ý¿—ÿ^þ{ù?ç’¢QÓqµ.RN–_-½ (0:üêÖÚÏ󸨒’ -QµÇß^˜Ñƒ‚»W©â:S»Î0$0¡ú¡XKJuó¨5vër?zÚ¥ƒž6oÂ67½ýÐö1q›¼áv.%äuáÇþP—ÍšºÈ´u74£,û' º/'ß7&¿_Ð×ÔÅnz²!úÔ Ê}»,rg—‡”|ç\Ī=Ú¾E䑿ïŒL¨ê£šW¦6 ¥Äª…OÒÔ…ŸYjÖ-äeµ,0òœý˜ânº}Ú«ÆÿõýE1kï·ÇVQÎË#;›yLû~ùv>œO¹ù-/ϦT¿“odSè´+ûŒÕÔô1Ü"Œß?øØŠòiñàe~¢á{í8oËì59ùU;\ØÚp^ %pÓv¾h>÷)¨l­Â EA”ñ§äû¢ÌŠU!®dðÅÕÚº÷YbÓ)Ó¿tṋ›)*ôuuó?ÚõĬÒÉfýúÓ/×gÜJk¸yíŸÖÚq©ñpXAõªê2”÷ª·’ª-|h9ur{Môz¶g‡u{7«ìOݺrü{=°Úaò¶Í¬q>Eý5¿T'òyÌ»T'ªôÅÚÔøyÙz[Õ¬ãºëž6úšíò£ÐVÏã:¨çç‘1>¥¡—Z‡ÇK&oú‘ØÿM Ôz]›ªqCû–Uó,c‡n×r!ELœl?¨ªîs|lÿÑëŠú½]µ£…aÉÂÄûmÈß½U­[ô´·ÝÁZ­ËÍ8Ò&ÑhúJíáý¼óiµ>ÔÝîN§:è®§—kø }J™ý¡ä£‘Zê~el†û4Ýþ ~ezÊ·”aÕfZ^Û¤j\ÓþyR¼CÍßñO;Ýžxa›?F«ù0Mn*wBÍ_‰hò´T¥Q/(Ú=»ªþýºîêÖýSüV¥ªÅXRRô› ú´U÷'že;{©uƒâÀ™u¿RÔ»+ËýÇ]PŸóWôp‹êD~ Lù5̹ú—ð ^u×-:^è2ŒŒ’>é_ª¯søÄ?ßjwXŸ¨ßñMé@n}¬†7(TÇ—õõ{[tSã—iqèÔäUI”<¥ÏÃQ.j>]øüåÜT]dÐË—žþ͇e³ê«~©+õLܸCÝýg;EÞq¥¬²á™eÆ©ã!Á"êäœgºyæZm¢‘6=ÉÙ?§eälS‘¹ÙKûu¬èÀ¼Á»M)$naìËj°[Ò™íÛʪ~lþ糋š¤äE®©g¬`ÞÓfYª¸Â Ýõj÷:Ÿl°…(Þ{nÊè˺õDÔ}½{Šêg'•}}¹ôÝÏäñmj5¯Iºõläež=ÓßNõ‹¬ƒ§,Y-ñw»í§ÂÞ?P¯Ç»MÛ¿Óå¾<»ÃçÄwVYeïyë\$ñÝ›Á©OÜÔ:ÿhûvñóÉyXÛ«÷«y™.u†TZWEõ½ƒÃÇô[·ž¬£7tÿ®>gmò?½~ß^Í;®Qmõ×´•¨Ö„NãBު痱phLAoSõ:~°±\77Ü?¼K0º >O¬¼´Eí÷åÊœ!Ù”øòðõEÃT¿4Øg²hÅÕ|Âô#?Îß_q2óN(_}~ä¹Ý7ꥎӴrƒ"zÜüBEÒº-o¥z¿úWÝüù‘‡zþ!M/M]öû9¥éÝxxgDuŠÜh;äÑåÚï}íÎÏ_²¹x»?;zΣ˜Ú/ÍÞÙxkêâ{®hëÙªáífSʤý3ÂÎkûQoã'­¬NUŸÍl°òù“¿o€™_Vzkû‘µøTòiÊz;¿Û”2ƒ)Á¡Ü›¯µ}ƒÐ¡Ã{E“Ç™r¯ö$Ÿ>>3Ï׸ôÿ¸:ó>žfÕ¿ö&õ '4»:Ÿì g÷¨¹N»Öñ•ù§‰Ír)øÛØß£¿"÷F{[옦g‡³/KÖŽ¡à¼h¿ãÉmú »_Ùjꜿwñ:|…½ÊêÑlsy½øñÌs¬¶ä­?†WØ@ÁÑu#ÿŒ"·Øèeïfi× •9TßýVhÅVwì¾rS19{د*½A»ÎÕôzÕ-Mš?¦Ô†gGöøØ”¼ÿÌßAyÚuš&ûÍ=×b3¥Ìp¶¿‘1yž+<¿v¢¶ÏZj¨\ôt!E]©=è}#²û}krˆksM]ù7æ$*[6¹ˆÜ|þi’©Ý×Çö`ñ™5ã(2séÉ)+Úï6÷­MÛ/×ÔU1Lôh^Þœâ^ï[:®:ï5²¬KEMkxKÓz½GQR“'åúÌDa‹G–1,ЮKqúùÝ}íùq÷pföå÷®¼í㋉3jëN…‹ú£÷PÜŽM3ÕîEÁs–…ý®™ßùïå¿—ÿ^þϹ¤È£ú/,:1JÚs X:W#ïm²‚{ùjê‚§o;Uqä@¢vÍ'ߺҀ|"svtÛÓB[תܖÂ}7)±úæ›ï;T'ŸÑù‡¿iû/i—÷ß}{ø1“÷÷¿'Ÿßív­\[Su¼ŠµíÖ.”ô[¿Õ©O5É7êÓ•{¥ëhêB:4=oÇ~J^“¸ªéûé´þìí§&Úy}á!•Ç¿ ÞC©½,Úüþ²ŠÂ®Ù¬í×E•ݹ):n%¥ ?TØï]"…Y‡ß3»7RSçÓheÛ¨mã)Ƴ~È£VãÈãDÍã¹Úy䡲Oȶ€Ÿ”b×µãæ†Õ(¸è¾ÿ¤«~š:¿Ê·\W…U¥ÄÉǦÝ?Ò|϶xâ€v8¿‹^“ëøQRùÔ„O¿ü½¿“Æ/æi¿<`qÝdJºë3aÅu3r/w¦ë0mL~eŸÃ¦þ}Ýž¿_}BÍ®üÑo¶®åÎ’‘_ÏíØß´·|CþVŒîßDS³¯eÎô…G(i­Ï׺ÏÓ(vSÒ•¶}·i¿uuf®>J©-»?Ñä Å<;^l¦]›\Íeõ‹²TµR³Ù?M)ñ}p× ±Úï'ÉŒML‡.¥Œ‹Né¥M¢¸‘'¦4³>¥©K˜Ö¦õàÔú”^×oðø‹Îï5»]í|¸°ÕΧ–&¯¤¤›#k¦¦Qð?CÍÆßÖ¡5_LØ]ŸR2·jþà….hïVtð?ìŸ8zö÷Åý×SêñWuâËï¤Qm»­(¯‡Óº}½N~Þ”R'üqɵ¿Çwql—z­Öiê":ÝÍN·oM)CC‚+ÿ Ý ]/VRûɰ#/]ŠÕïʤÛgN‡m¦ÔÙ™7êf¨~{•]m®™î{&…ϲ½b𢠱î®>¤æe¥¼3󔝿YÄŽ®¾¶Û~J37ê·Æk’ª«gYºb@9õ¼ëÍ;2|¢%¥¶æVùGEõws¾ÈÔïæ˜«%eSj|¤ÔNµÅÛª¾T¸“ãüiÕUß+*q@‹ÔnIJ·y¤]V¿£[ž4ì5^=¤ÇÓ*ZwnHU‡Ž«öëšZG™“9+¾¯Z×b}[좴%¿ržØ¬Æ×¶´£Åþwêñ]ÙnÒc7¥Óó©º[íûÕÍç³o7µßT\Ç™=.ƒ(½ì/—ëeÔ|•àPŸ¿?ªùz)—æu2YrŸøf £]‡Ô¼,›Ð‘UãÕ| §ü«'†õõ¤°¬~Í—Õ…ùjÍÎ-¹l¯æ‘ùvÿ'÷÷âþÂ[NWëî"ÎUÿUÙFwœQÈÐÁ'N¤ìÖ'=¢stó>((¥Î»îÔ>Z¡cÚ×jq0”Ò97ÜyNý¾zsoÜÄæªÁ÷FE8ð,Ê>ogzùdîv¯!›*}Uó;’{Î+jâE©åÆ.¯7Eí{v£dÇÓDÝõìÀ¹‰£j&­*UPýá7çËmÇ©ù…™ÍòŽÿh;‚²"}º®›£žŸé¦a†±)êñu•ëòêQ–Üø>yä&õº;²|è¦ßÄË œýbˆëÝùurƒê…;Ϫ™š?uÝÓc”Zkí¼÷MÔñ1vêÝÙªÏÿ|éæ9Ó (cM•…Ï|T8fyõÉ[Æf©:±,«uÓÄ›tKjñÍ@ý-Ó¯û¬úåñ_Wž¯5†Òï‡ó}R¢Ž«I{úÆ_'÷>Säàͪ/ea_²ÏDí7eW¡ÁÖ-[Ç’Yóô)¬uóæf.oúöióXà1w¾w]²_4éYÙ‡ê}\>ëb…ïmÔÝèÑÆ½÷Õã)WuÄŽõ¾Ž_³“Ë?äÚöÓ¤cwÕñå육g®æEYµ~ÒÙ$¬é^~ª«³îs'ñ×»‘±Ÿo«~»y/“Å‹¯vHüqëe]÷™ºÜKüríð]ÃjžpL»¤a™Ýó ‘÷d•PÝíUJßÚ3}‘š§h~¥zð²ºÜ!¬Ö •í+6ßR£Hw½~åO­—Þé@5c†¹,xªÛ·ÒÌnöÿô žWÔ˜Rõ:’ç䃕ԾŒçËÍ/}FͧN,î¾'΄¢mXà¨>?Ýß—}{d“ZÝ(×7gP¥Ú$Néã¥n>ùÞïÍ ÕOÌü¶ñZËŽÇ(uÂ4¯¼ýj_Ыë.‹rÔ]¯6, °Û­}”Ô!ûA©<µ.5´ðËÇ%ij^šsýó¿WþIæO¥]?6lñ°5)ÉçeåçÁ‰Üeë¹Ðc)šº¸@‹_Ó¶·¢¬Éë*ÞÊèKчï”+žÓ[SqsÀU÷±¿¯;EÇ$DSdZµÍFÿ7èÓt^£ÍÄjM›´‚ÂvŸkm¼ê»¦ÎLUåŽÃZSè™yöýüÖWzŠ´ûäÚä¶L:cDA-OW\Z|‰ìf×úzMSgZżiCþ„Ó%í¹}Œ\Œ¬÷;—ÖÔUÚT5rÌ :òvÞ¤áärôÚ§^“4uæUOÌúYЂ‚[†e4®ìH.S'=~5L»žÃæÏÅz7Ç—'¯‰ùuÖoLöÛo t<®©óœô³¥÷¡³råXv ƒ)dáý~Eóµû¯xT©hÝa]CЏ¸Ç²å†-lP”ßGëæîoÇÄŽoú˜ÂCçÿj0ê:¹¶¬êÿø˜v^¤[Õ‚ñ¯ßŒ£PŸ”¾—Ú{“w¥Aek×'ÛÔÏ3¼Sñ3ÅÙW5bÉ¡qUÖ¯–ö÷‰Ãsg]öU"îÑ —Ó™cä¶ûè”?ž/´×õÐ’—ïæQÚ«%AÞãš“×lãN3—hב: ¹ât+°=¥¬ŸÓÐøì5rlÿ®úœÚ}Ú*w¸£ï9d 1ájò}å{r9ü½¢ÓIíqï¼n‘sÚ{Šœ2fÄnvŸÜo™»îí¥]_ëqhôGÇ¢q·ùÎ¶Ê ç“ϵ‰ï†DÞÓÔympu?Æš’D¿:¸è9'íšñ®ëcíë·Ü?óu0Å÷>3¼q‡jäõ{Ϊ<´u‹Ç9Å~Eñmή½^D>{n=Žyaòßëþ½ü÷òßËÿ9—›Ò÷Ê„0}Êu6Ͱ×t Ô¿²úö4wM]ŠÇ«™÷§Ž%Ö¢&kSnî]jê2ë­ZT|êñ»®Þ³'Ph—m¹}›j×Ýç ›Óm85'Öy~¬¡_$Ùµl<"õ‹¦.mÖ Ó¿ñ çÄo ótZQþ’6øÙ 㱋 (ÁÞÚw]gïñ¶Z|Öö-|G®Øsfõ~ŠœÓ¬é¥¥ÈηžÿÍ%Ú<¤ˆ<ú³o8Ñ2—®é~¥È£VhG‹ÅÚÏé8[CÛùkÚ3]ÙrêÎMäÕiÿÔãækêöVmzìËrJ38pÞú«$Ïá#³›Ü®}=žY.š¶ò2yöíùè’9ε l”š¨©‹ü>z÷¡a¶Ã†ûs,;Sž]_¯òñ7È£Òú6´}Ì´ÍÅ—ÛýøFâ𮞥¾§ˆøÜ%!«WjêØ÷nY69”i”iò0]¯÷ ¹_¿PS}ñ‡[ý(ùãŠgn-)ìŠALI7íë–½ýò¨J&ß(«Ç¹hv»…õ½óûôDíþ)©¦öY0ŽÒOffMrLn:6ú¥É4¹y°Ótâþ=–&µº@Á?×à‹Ô¾@ú7Pó×ü6ç u5ØC_;¥.þ¨úW®w¿ÉVû9OXsfðüÙäíë¶F/[· Ù­8ê1r¡šÇmsÈÕsuøgøäÖjž[ÅWmŸ7MWë/Ý/¯ZÛåéIrËx?§æPÕo±Ú~ÏrdŽú]ï™<åXNmò¬™tjð¾ëºÛ-ÂÇUªm ö-ržãuùǃ ÞÛÈcÎb˜ÏµòÂSÔ<·RÞnùÚº=Y¾Ný‡©þ•e?ûñíª¨usN{ž­þ"†’ßÛÁ²¥ZhÙàÔÏþí>ªçñ÷zƒÚS(Ò¬Y‡XõûËvåâˆ=Žº×‡ì'µ+&¿Uš´IQ󂬛ÔsO­‹òjÐàQŒå= .ù¹résµ®¯òóáѧÔ<‹Àþ¾o^_“B݇]÷™®æ¹YZè½Ì:ªëS%þ }nöÁê •y4¶y‰êcš^ò£Üxu¾ƒ=çô¿\¨M®Oÿ”¬¥ú,Žõ;ýJSÇ…ý ý¾ÉóH÷Ƶ–ªuc¶ek0Ü¬Ö ºÍzÞ|öÁ йÖöºê¿è—™ã?ª²Z‡èÓïsï"›Qärî¾ÙÆÕj~ëŒÌž‹·ëæÁRxfYÞW¢Ëñ•s÷«}÷M·xŸm©Öi¹ns=7’Õ$׋ÏF.\«ú‘V¦{·îP}L¿žþ¦túEÁNNo“;¨õµæç×]o¥ú|^i—÷.+êBA~{â§vQçÉpX×Ö(=Bíså°¡¿÷}ÈãâêûæåT?Ñ¥Ÿ^É9G5ïͫïùfÉϪ⻥j¿ó ©ŸÎ܃u–†ö™óÊ.%ï÷óË\°,­ÆySåäÏöjß,ww‹ã{ÞÍ!ßF«ò¯Pë½\§öìØ0Y”4©»ÿ^?5^7«ß^öEç[TöŸEõž×vM|Ã$6Ò×Í÷Kü”¿"2i—ê3ø8„V )K^n9‘n“T_À´V­Eo]Ôzsoçg©ÅMO’GðÛ~ßf©y­9ÃÛ¤~ܨ·,(:äI¶ß;Ô?m¬ú·•ž‘ÿ_ÕOÌ3˜«—øæ%õ3rܬæoþÜsbyµ\•yóºÍK¥Jw¯Öwì¥û|JüÙïi¥avj]nÄ;çÇö ï’ÿ®=mâv«>¡Í¦›»l{«¾c1Ý·D)kf%¦šª~k¨OLßäAÊ Ò_ì0;\û"EÕ7/Z¸R­CuÿÑm`½ñêßŶYyõøH²Ÿ×õå ÷"u|Œ/¸ð`©Ú÷Ò¨sƒ&ß²š'~ú¹ËÒ[×MüðýƘ«T¨Bß{k{&¾›v,iÓ#Ý<ÙÄ']·Ô¬W_Í—Œyã°qØú·ä:-`cèø<Ÿò²fÔhÕ¿ (»£úôS¿ÉbtÒÖøô†ê¸,·ë÷w35OµQ­]óM³­©Æ¼ -ì;ª÷u怗Ã)êó)üpvÙñ (:ªèÊ’¬êuªø9סqõøvŽù]i0E4vð¼è­úK.£ŠWoë¯r_ÏnUá ñ¦ã¶™ þ®óîø• ]ÔóÊ6u‰ð±”‘z¯Ž)µ=$yK¥éÓtKÕžxȽnP|BóW9ÕZ«Ç½w–e›Gê|Bî jÅtv'ëåI+c6«>aųìn½WuÁ¿ n†T#O×ŵҟªýX-¢ßli«æ£§w¢ÕÓËóc\pÛWj^¤çÓN7¿ª¾\RRtÆÕ$7 mçcÚùúÜqw<ä·Wí?Ɍڿ®èSHéé«m#·v§Ä¦žš¢uÁÈÚ;wh´˜’£Wý¼ûòŦžú<{¢¶Ïâ9+ÁÔ˜2N–[Ý»wE >™¶uâ~í¼¹ˆËñc6ÙÍ¡œÙ³“ùé î°põŸ<í÷ Ö×üm­E|}ú½¬&s(²È°8>墦Îdì±s]s÷SàŠð™Ó¾“[Q®AÍ/Z5Vÿ„C2…l«¼ÐÒå9~»j6Ã7SSgx¥ÚÄ^öŸÈ鿘ùëB(|MµUßÎkç¥9=}Ÿxx£#…Ç:žiÓã.Uéx¯ï#‹2š: “£Æ_~8Q`ÛW¦ÿý>ò6§NAGí8‡›½¨w¹CWJÉw?L‰Û“\ Özs`Á­GýO/¡´ÙÖÅ¿)tq^“¿hç;ØæYëzB>%#kÜN«NÕÊî[Òm¼öõ°=ÙtMJ¼ºí¦Ù•Qä³îöÆÑ»îkꂬ<‹ço~A‰3Ýx•z—âM;oø¤ý]äØpEñ 3b³Öü1Þú‘ýæLª6ËKSWúÄ¢YKRS¶ëü—ý›Ì'ûÉWÌÞ¨© ;±ßsXþ~Ê­ÜsÌ«6—¨Ñ’]mzjê¼f´ø5|ËjJy¦ò_r[R?óÜuí>r>gì²Êž^KâWÓ.¬÷0ŠŒ|¸wòtM]pÛ_YÁÇü(ùÖ=ǹzÞñ´i}_´ßë=Ê$nqr‰!–0ÑðñþÕä¿uì›Õ‡´ý:ïJÙÛºg§¤‰Î/'¿¼EÙM…_î=F;Î.»ÌêßC¬ûé±ry'¹¯tÕº¾´ë³ºQ¡”ò¶äÈÏ7Œ¢ŽÌ9·lÇóÿ^÷ïå¿—ÿ^þϹ¤(³÷ûnÌ}EáõÒ¿]ìcAî‹ûnžU¢©óê8Ú׃mÉǸé·õµÿ×¥¦.bÖÉ’„¡u(Ì4©Ù÷‡GÉ-ÿöûa5µûM„Ù4©4Áz_2§ó¡òäb™ÖèÂdcM]èlùµŒ¾9…84üTÌ'“G|`ÝæÚyF¡»í†N¿„â³Á'Jï¦Ð¿Ž¶i¢]_bØ¢èÌùm“ñ°~î ±XÙvÊ“fšºÀý™y>E>ÿš5ñ­1X$æMIÐÔù¿›”â]áEtýþcàÄÅ`8Õ®¼µöþ‚ÛpGÑõÆõ é:‚‚{Wˆlh8DSçä1ñ¤OäzªXýʈY!ß§åβtÓî ê÷«‚_Ã&w(ìLöÃê#bÉû¢±ûá¥+´Ï·ü¤ÁûWt o>¡M¹“}ÈÆkÆñÜ[7µ¯oMƒw­z~¦àÁ}ZQÀcrß<Æ9åÛ&íó ùxè`âß¿·xЀ3Õ=É>åAືھYð¼WQ›=£øßç”F¡‹ô¯~tB{¼ìp0X3°#±s³×æiwsâ$ÃÿpžÖU•óº?¦³U¥ê®ù@¡ëÆ®.^ Ý×ãÿ׺gú™mI4{rßARØ’ÇGZíÐÔ…uYÿ}Þ·©z÷Öè!ÉÃv²ÐŸ Ý¯#x@lÁz÷×5éõ¢1þ­ÿ~¸qôì­ÿ…Îzë¾àÆ@ oV7dÀ?sÈëŒå2£…Úó9Í<öôÀé( ¿ðýGÜŽ ä³ÞÞ‘¿ÑîײvOAÿF/)üÑŒ”Q§ˆ|¶{˜|‹Vý!ýÐíYÍÕ<«rÍgIÖcL=Ö·W¿GÊw]Rqu/5ÄàP3ußáñ€ð˾j=Mi«zd5Býn61fÜä®d³äÖéAÖ꼓úeõRåwœIì¿´+ÙÛ\ÚÚAõÓÊ$\ÐËO²Ü§5CÝë“åÐù›zÁïÕæ;¡ö‘2(½þáŒ?ÈZ¿“žÖê÷ ~‡Œ™ {ëÆ'ñeÝG×N6úM¥J×Ü©æõU|_¥RSÕ*ãþäŸ[d“To¿_—ñïÍŸÛ©ùHeŸ [r®1ÙZž;PõŒ†Ïú‘úg§îz©Ò½¯Í›–ý÷û¼óÍóëUª\fѪíTßFïÃûC»l!¯3Btëaßô¼·«z¡nü—Ø“‹’~~ÚžÞ6°ø¨#íMf«ýö_•²¹í:¡mâ÷#¯—Ž»¯›–øÉ­ì°Ú½Õ>_¯ÿ¹7ç·mW2œ¸ôŸ £Ô|R!_Ï%ÕÔõùßïXgûa×2ªdáµîs-ñí§e×:Ú©uƒ¥j¥>=lhK·þ ¯ö›2²¼ô+ý«šGãÓvËìÂÈ¿ßØWYÛUߢLœÛ³S­ç²´nsõ@D*Ù×í[c]¿$ñãö 7«Åª>i™À·¹ýߤò…›¦´-«æ1–6X7¾Ã[µ/šUqú­½ãȾQî.Vêqëok°#cä0u\ý3)Ôpð1² .<˜úS­ë3z´çÕç ê÷ù¥öï'åÏ «båÃ5ê8¨ð sm7§sêñmæFOŸN>kËî,¥Öµ–³õwŸVç5)dikz{™¯ð¯vÄVí³X¶ß˜á?©ã±ÌÙ;1ÛâȲâÙÕ-,U¿Ôwõ?“’ÓF’¿ÛÜ¿oOu¿ÆÛ÷V­d¡úxv£z%º4³'û÷­ ÷¯×½ßvoSªù)Õ_ó›ùcµýO pk?híÄ"Ýí&Gž,ý|SwþŠû±éF…'Q”0ÌäBå/jýu•@³îûê«õƒ–ÙÞ‘DÁ1£§¯©Ö=›¹ŽŸ}t“š—Ûph•EÆ+£)­køž®Î7ìÚ”ý«’t×íû®/LH¿Üš‡Rº~Uâ·ô—;Ç«ºägŠU䵤p¿“z:Õrw¨ÑCí¿Vëå#ƒÓ6PR†Sô×9ê<4á_÷гQ®‘Û¥Î÷RoPd“s7¿R·û?|SíÓ7­Z³~°íåíGQu·»³Øˆàmêx1 _p ©­+•êÖq×R/Õó8㒻ᷚ'¨w;«¯Ç¬ ‰ïE[vÕýÎO|zfÓë!æjýjtí=÷J#ß˜ðÆ¹ªär¯øVç½jž`@Ået¦*i“ݯ^7«ZkªVý±Fs§œ¬ö†êy,°›[ö=ìûòÌwÕOµáÖ«€ú’kÁK÷øyª­oÑ«ëîmjþYb·±/óž¦è{UËþRó6Ýg»,Ÿ}Ηš|¸Âº9–”žš°'8WíGÚÙݼè™Z7›5(mþ±O¶”™jû¤l”šWštÕ4Æ8Ew=/öJù_s”O;=¬¬ã˜Tì•yLí›g;æüÃ&eË“ù¢>OŽRŸ¿¿jÖÞØ©ºÚÏ1Ü2«pêQ/òùqÙö‘ê›Ùé~éÎ"õw3j­M^Ûü Ñ€µÇ£fÀºö3K*µÒW×SØ®‚5PôœfïB•3x¬ºT©Ý*u¾˜°ë;|󯤨¨OÏjJ¦ 5{Š k¿ÏÅNݡǪIbé-FnË Ð9z§ž½þëWKî?N jAÛŽëÛ‚^N™µî†ö{nèÏke eŽ×:Ñîy´ ¸5ò¡Öi#Þ­¸<¶â J“‡ÿlFA³î®¬=¯e™öT?ôl0…”és¥ÿóMd{}x¡Õ^m]…ê›¶O\{‡Âg:Ÿ7{ŸHNæÙ¾¯ŸiçA•Š29QœWŠ|߇ºö}ßš,V7ýb‚fÿ{*ß)iÐs jÿq­¯9Ù)ª¶¬¾v_å².qCžö®L!Õ¯n¨gBv¯œ-í¥©s4ïZòuøiòžàÑpÞR+²¨º~ÙØnÚù\åºT¿¡ë:²ÍVë…ù rüº ëÌþÚó¯Z¥kÑ#™¼ŽOÜèñ‘2ˆÌÙµ}8ƒ¶s^Ü£Ðg¿o˜˜MÎΞÞõGLÐÔU9àQÍëIOò¬ã^ùb °[t«º¶d¼Ó|jËTµèµÃ¯GÈtÓìv/*jΫ–øõfÕõ5g]¦d£f?Þý·Î´`´_²öùÞmvïbÝ&”¼g¹Õ7ëÈàh× ‡whçVÉ+ÛÔÕà3Õâ­ŒWMÎ%‡¤ñ /žž¥©3­ßȬ㼔ݩÃÀÓ[ûù~Ûñq{µûȸ̭ûÕúgŠhØ.bT]r¾Süêm+íý9ô8Ô7äìWŠq0+Nó$•·z´è ý}l÷§‡Ï¦¡q”4pÁˆâÍ)Ädö ÷'Úý„¼ró6…ìèMi†‘~–Ö‘{'×¶{̵ÏD¿uÃð¢þ­‚ª}0#¯¾Cz.›«ÿßëþ½ü÷òßËÿ9—äþ±÷õûq¶¤hê§ç¯©Ò°YIÝ6hûCAÃ[ôój2"Õèµ`è2O­-drMMÏå6OÖÕ\L¡Ë¶.«¼¹7¿IÙ²ùÞBM]TøÅ]Öž£À ·4¹ö”ô÷UÌ»¬© ÎÜRb|â!…y M·ˆ"¾\ïµxÿR2}4ömz–v©[f„mʇ(äyé]á…yd4n^zƲ¡šº€áëê¦^ý@qíß×?0=Œ¬liyV;¯ÏßÏïÊÈjÍ)¦YÛñÖ^ÈüåS‡SF4u±}¶œ/év˜ÙoÑÂã¹´Kž=Æ7E{Y×,Gn°¡ðF¬yÞÍAd>wY½’ÒÚyU>Söwié]ŸBÛ5ž4ET!ÓK´©=?|ÄÇ)3عcûÎ;ûŒ¬ÝZo‘v³ÐÓmüÚùÀó¥Ôï7šÑÀ½ÎIا=1{ÃÒ3ŸÉ't‡C‰š‡flºéŒãVÕß°9údvJƒ•äc}DÏ 5o$øq•Ž·3ÕùæBû,{Uµ0‚R =×?¯öÉóÿgÀÍécÕúÆ ŽknˆÀ¿ßÛb3Hõ-뢗¨æ'¹Öù^•}ÑÊl™éµ®ÐuL;¿[Õ¼*ŸécÆ«4ƒâ®Ö,^¬~où•I×ë]EÖñ~þ ËÙ6”òã‡ã‡Kj=±oË…ÓÕº*ÇÌ”½(ez#ÏöÔ~}+¯¸¤Qóm¼ÅÅß[Qb§qw÷«×)Ø3íóíÕÏqaÍÓfV(¡ôõ]sRçð½ÙÑ?µ£š'è¸mõ³ÞÇ)åNæÆâAª/ê{"üŽÑ>µ]Ľɟ7ݧ¬o;{-*Vçñ°lÿ®oÍjß'ïÀOI>[îSÐÂs©ü†Z¿¸>£¶áÎpœÕ½Þ¨å^âš|ÎÞ®æY5ZSÔ£ŠÚÍ9<µÃ‰ö¡äòéc6I½›Ú]>T]ýÞﺳ ´kc"ËJ9Më¨óp„™Ôt~¥æÍxNßÔú«AUJ0®òíœêg‡EøÃõx½Û68ÝìËKŠÙ¾si¦æ¥EÜ/û¤r§šêõ¾`zhÀÌlJ¨ºMoÏõ>´+©Ðò'Ÿ¯îoMÚ%þõ.E |ýêû45?)¸™ RǽO×ôG΃+Q\ÌæGjªõ„süV½cBÎG&Øý|¨ÞOÆ“B|T¯“ˬ¡+O½jHFù¶ïtÖÍëMüj½¹³ÞyuÞ [N=Æëí Û]gÆþ¬¨Žÿ2§-ÙƒZêó§ê“½mÿL™Mt¤ö‹ªrlJWkÕWI¬r`¦½Étò¿5ÈÆ´Ï{5{|ª{ öKKÍÈ fÇRø½×[Ö«ý¨Êz³G¯²Ô¼£„¤&+·¿Ú@¾³?.üò[_w»uëºÇ^=UûÈ%䉱6仦aì½Åj>¨uïcÉ ©}%åÌGÛÇQÊž~nÿU}¼ É¢eÍ]€Ò×ü|Ñ®OEdï«¥>O\ºg;D}S}¯èÒ¶ nZ§ÅûfáÅ¡êsÂzLçô}'Ô¼Í*WІÜó5ñ{—Ë>Õ­Küõhÿ€ ›¨ÏÙÌj^U»/Müè¿}ñCgÝçgâç32ŸÀù]bn/);áãP²*lo;c¥:^m³õZg*ïúxmä¼Õ;¨Âè‹+ŵ?œ‰~BàÜÞª¯Ô˜ö½È¾ñ‰jf‰èì‡jþ_Lñªv}¿©û·K]~ƨŸ-Y1æâÕý1a{¥ºŸÔ~ÉO:ü…¢Üô§=Q}Lû#­ÝÓ«ßÈ ¿;ßkO £§™ïs~I…_×Ì 1Ó¾¯}|KIE]n®~»’üûÜ¢f“µëóûm>JÔrÖ“Óeþ½ÿ••k‡hǯï–KÓߥ˜±_'lZU<×–ÿÑC»?œÞ±z£ÇŽ „[“^í:ÒüöÓÀƒ»5ë˜þ½ü÷òßËÿ9—”zoHB³¢ÝTgy¼e³ÚPÔ-Ÿ6“vhÏ·YqŒßËtʼúF¼MB¾+??9ÚAë Ñã>Œ‹È¼FU?¬^nún Øt1H´v?ͨW+Ÿ?¹¾€ª]/ã4Ïüßžª/ïìh{¹ånX¯÷âW? >±föáëÚ¼IÊ>_8öž$¾Ðõs¥c( FÚýroi_Ïú³óBPµŠ†Æmœ¤¤Æ,§NöùÆ]Ö9Æ•ªFZÛöð)J8b»ðI/ëÿëû‹í?+Å<Ø‚ªvžmŒýFŠ+}Rßb^Wíó]¡?ªwÂ2[Ôsû´:ùMÍæL^¦© ªßÔažÅkÊLû}¿Â¼•u·a™cš:¿1+âÙÉ”úñË3K ï>lq~Om¿3zmÇ'÷XSê„á/Ž\ˤ¤®óß> Ý‡#2»þÔVUGRR§EÍòúýýÞß}uæíýU+[Þ ‘ÝMoîœdúUo¶1³î‡\M]öÄö‘C§Qváü1c‹‘x6ýÁˆ;5u™ñQýèêiÊôùÍNoAU³/ÖÖS{Þ§ìúyv¾4вWwiÝ5ã U«ìôÀ÷v¾yöÃóÁyæï)ûÜšÂï_Rµô~?-µë6Ò7d_>{22ÞoÝÀRrþ‰SâùM]Üã¼sK?¦œ¨â7ΡÄË>öüÚF{ä}k½þ^Û¿Ï»ÉÈIuS)þÑ­ñ ´}eŠåwByRUËÎÞ¯gÖ¥äRåzý½US—µ¯É˜Ô”Ý:¥çˆJÝþ~¯n#&Q­Ó4h5­EãÉê{}÷ÅZW®í¡*=&ØØW­?2ͺkˆZ?¨7®wz«µê|ny_GY´éHŽïͨ©ÚGª”Ñso†mP÷×óJzJتR©´¥‹žÚׯ¢O­‚ åÕ>UjæÝ}Ý›*¶jZ·©š¿VþkÇ+ÔG­³v/¨÷¤Ï!ªrÂyóE[Õ?­àprêÝÕjg•Ìe)ë¢F‘³QãyMʪýå îžt¡«šßæß·ÙGÓŠT%béÛ¦Ô¼ ðÆqÚ¶*M.…vvþ—UŸ§ò–‘±×°m÷‚õFƒkR™YÛ«4:¯Ž7× L:©yŒi9½#Ï­N¡çŠ?LÛ ö¥ó(Ó³¸pŽšgT«ïÝUç7;Pê¾R‰Û|ÔãöpxÇ8Éc㢻QDÕ±>à<ÒžO,ý¼TõK‡Í .Þòœ*ÝÝÿµ´Ÿú\´*WxhÅcÕßµ®]ýçå;?/¼ž8CígEz¶ÃªóÅ8Z Þ9n+éŠ:°z€ê7•n÷ôý¼¹ê}è0~K“GsÉtÎД±ÅjŸAãÅó6øªÖë»uüãðº~>•Ï©déßW=ß ÷'ÍϪ¾[½‡üÎ}¸Qéï÷¿3‹Ö«¾hXîwçô÷ªŸe6¯véü;©ÂBŸ@×׺ñOüÑqï…šjÜcÛ7\±!a%DϲzüUí[8:!,YOõá’+ž¬w>#†¼>‹¸K·á¼{kuÜYõõãÏD¼ÛbOa5®ŠWý>ÏŽUÊÄÏWó“S{®Hwt¦À6óóÏû©þ«ç]î5lÔù;̯O·õF¥fÝjÿzéû‹ï~R¾Õs^ý¯‹7P`èû¯Û®+·p¾A«‡fª~{Fd›2£+ÿ¤ˆƒK(B­C(žejtA¹UÜÐu{&õs%?ïùKåNåC®sê7l­|,bsý{C)+bãíø')¾ºEŸŽ­të°ÕqZ:~û}v‡r ÿ²µ¼OUÃX¹QKÿhêBkÅÍ;UÕžÒÄ?ët ès wlÓRS±ôTbü5”ÞçÝârf(ú{ãóckhׯƆ©r¯JeuèÚÀõpCJê`lWz®v¾éG;Þ\_‰Üë„—¾¾o-4k9ùôg­_—Þó³Å®U;ÉC¼š¸«5y?Zn{ ‚ö{ÕÿßëŠ_÷åç?’‡]ÀÌE]æÏÏÍÓ'wÕ®G09jPöm£näÔèOn¿gd;dÉö^Û'¬ü!lÊéìš1×0$Ý{'¹F‹ööpÑÔ•ó[åÒÙ¾=¯Í¥¬9ãÈÛõªïÒúšºRû¹‹undùüü´Q»ÉðΘGþßžiȩ̂´pl½¡ùÍëQõùí1Teœ¹UÚhízÉò½ëݬ]™W}tßd»„\ϵ/r^Ö]Sg˜h×µ;µ)¡ÍlÃ!Ëȵ¢ñÎÌ&šº Õ,vžqùAt®úô ë^Û?r šjê*<`ô¨JŽÛ?ï—’}Ü“éK—’¶_øi®©³®WÒ>¿^+ŠëÙ¾àyÖ :6ÍýÄ"í÷¿È«'šSTz³™k«V&ÿ²ëwßx®=¿®STÆÌ‹Ó¼)n웆á6bgåña½fÝì¿—ÿ^þ{ù?ç’º/}í’èEÉ›~½jv†|GÚ9¥çiÜøcÉD"Zfwi½Mi 4 Ý9í¾jqûÞol˜ºƒ’oOœ=sáò<9+§‚vžV’ˆ‡-ú£Ä¢1Ï“³Ï‘q6+´óÈã­®Õ]Hú”â1|XV3ä}ùgTàí¼ù„Ñ1mëULÜ´ÍöÅîá†J 5ÞjêB­"›µß:ž’VWk9ºânòk2µøåLM]x¯9‹>x—¥¤ìj›ÏlnA~9÷VÞ<¢í¯EÄ?-Yù¥ŒßwxÛ~X`¶Ñ{í:ÍÈÀŽ÷ZÔ¤”{¦?ö&ÿIç,ÖzItý >$“ïÆþËVM!×ÙÆ¶å4ûxRÈí­{ï×+ŒúÕðõè?œçÊÁ2Ý÷àJX½`ñÖ§/«´X¼üçíQ»Ü¹Š»mà†o5âÉgÌäÄïÛŒ´¯ï´*'w®q¤ŒA~;w†·¢ØüiÍNÐzSü΃+û}¾OéûéÓ¥Ç3xÉÖ=åHS—ø¹ÇSzSÚ¾¶ÍxPdµGÙQÙÚýáRæÕmšñb9e\\pjÓ¿ùÚ¥iç>ÚýÜ’îùz¼2ñnæÝøNÑFe½¤vÞ&Ul3÷ËiJÙõcäˆÇ)¨öªß×µûáFlmÑâÕJž³u^— ~ÜëB “Ršº¸ùÉç·u§”umó{úû»`÷nÇE­´ãRÑÄãÚQJ£ª‡»-Cþ×§¹wÑž÷=ÎêØášû>PJƒ“‡ï–l¢ “ÊõŒÕÿîÊ®[x«y>-ö*>y€Ü½ž>*;Tý¾÷:½Î{E%õ{Ó~W•#•ËÝ%WCç„1uÕ:2·âæÍ‹Ë¨}ü½|ÜÚÞÿòˆ°sy¬ÈЫ¦ú_.†¾ü¦æ}¹ûûÈ«Bî«lRöÆ«u€FU¦åtØ«öÿ·ieä½ç¨!¹åÏ×»‹Ú?È­ë©*°.Ò±Ì:sëù´úsþ¡…êó8>ó¶Îêª~çºØzwÝN hR§íuE«ò0Õ_s ëÄbo ?¿écãj«ßö_B¦y”¨y•k÷ßµ©=ù Þô¢ë½ïªnîã€N•Ôü©Ês“v'ŸüD!MÉ{ør²}}ÁÛ ¯U_νgëöN>_ɯþª6Ÿó ¼±ìîÄóª¿í´Ä6 p`òZ=,>ÎYõìGè?x{G½\"ß´ï™|}" ÍCÕü³àµ•¨º¹êÙ·n‡zZ4š‘Üü zÝ Þåû•©HÚ•¬¦ë &þ¼ãÚ×9Wõ‡\,¬&þžAžsô’¿ª}M®Œ:º§ZÏ™Ò~õ™1'(ÉcÕÿ÷skÌݵÞ9L†vt»Õ…|z½ú2,O=>Ûþ's7·Qý굊=…¨z¥á—jÍÑݨÇñÁÁê8zWüÛíh1YÍüþ%ÀCÍû,óuÞ†Ú¡ªßDŸ&,Ê(}…Ö¹=v R»róXÓiîë®×ln~iàý©”²´Ò]ï8Õ— kµ½KÓ‹jýtf¿]§½ªA‘õ߇ZVPçÓõlR~æTÕ/‰¤çv°%9nžwÂI¿¶ò[ßûM.ªu½–s4ñ»V9ñ×NÛ¢W]tï“Äï÷ë§ÿRó÷Ìõ:o_ý;ñëž³«Ì{¯«ûxûUBa’:ŸC¤Í’2k™P•œ]ÏŽ/VëðJm»µÄLõ‡ý†÷Iné·ƒÌ$}_ÑQ­75«´eǸ õùT’Ók@x1å}6bÖ^¦^wŸê‘c?+gqP.¿•ûrïÕÿRÍsªßl÷§Öê}j^sÂŽî¿ÿñs¦è¹çzÕë®öës¯_º\‹AjÝgfTþÞûßÛyßkÎõùäm3êsI—ŒºŸNl?=—R#¶_´)PŸç¹žú|UŸ“9‡…t¿NñÉ!»=Ù¯Þ73<{Ò_õï/FÛüCæ]'Ö^”ëÕGE¾´0VŸáŸJŸxdnMÞlÙüj=TÓ¦É2Ã=Õxft˜RÙ¶,ÅOßùÌ%Ö}/öÏoZÊUw=¹\ÏÃÞ/ÛRèlËsRÕín#gÙü0QΔ~*Ö s!¥Î˜)þL ¾¶ÚVÝüHõý¡M½Ê -)ë㌑·¯éQB»ÖÌMûý0bgÛÙ&'šR†\uΖeQxÒ·œ|í¼¹p;án=Ê|t¦ÃK{k iðÒj/Ó×ÔEß´˜ó³k eLÎýòÐ~+E>0ôÜÕQOSgTNî ÞØ'Kß{¬*¹—™z­³¿v^U¥ØÔg nPHÕ&Ë_·#·êüËàã)š:Ãgž#oï].—‡“WÚéa'µûܘ®øÕwJ_ nl0Ö¸h¹šU¦‘v\ŒÍnÕþØ{$Ü{UÔk¹ó_o¦Ei¿‡{¬-\9·o…$‡-0@Þ¥:_5¹ ©s}pÞ½*Má+ªþçFùÔÜ™c}W»/]åçÿ”)µµ9Eä–¾éеÅ8}:i¹¶êûÛöÞ7{+ éÛ¶åþËóÉùåÌ[“ÇkÏ—ê1çõÃG–o(léòøyÞPÏnzï-ÚûsàõØlG]JÜ0¨m,yzçh^[;ÏÒìûÐëúSŠéá C®“³óâeMߦiêÜ÷¯Ýߦ9e5/¬^™böîÇ»»jê\ž_Ü—°¨¥_ûþ~Ö£qäñ4nÓÏ÷m5uUî68ÜÿÚuJm¹kÐ?ýÉw„r0Yû}Ý‹:õk2ÝŽòž­+Õa,n×/0™ôAûørŠN”;KIÓõÓÄ~ À†çb'.ÑöOÝî¾jÑ~õ!Jšt¡_§c(jãÝø·•µó6½6‡ºàMt>ÍæÉåïä½su™¦µ¯Ç¯JÆ 7}µhDÁ]‹î¤h~þ{ùïå¿—ÿs.)öiñ³:wSÎ÷—O¿-=MÁ7¦èyGiê’Çù~q®NYÆF׫ÝîAž›~Íθ¨u†èÞ=f]{¿„’†î?ÿdZ5²[7íCp=M]Ò¨^z+b(«NÄ·…È÷ï¥pÕÎ_Ol~dMþ•þ”1«Â·ók[‘ç×½“µÒΜšûÆ÷ãJÚî\=oïU üñ4¡oí¼o_{ÏC/OyRêñ¯ïj-{K‰]¯>\3_».0fÛ˸çoPz“Õõ«÷Ì  nùI¶Ÿ5uTÜ¥ÚÈ>‰Ÿ2øu |áßßÓëÛ¬µÖΫŠðøVîi‡¡”ú=¦CßÑ&öÖûè± Ú>aÈýã?g„PNì‹Ñ¾•3(öGµ))AÚõÁúƧ‡$ï:q·ùð?½ªèj¥ôÆš:‡ÚÝÞ–½öwÜn¨5¦T#*?¤Ãä~#B5uaaõ½ )&øXbü!;Š9 YÿnÚþiðáZÝõ·õ¥ä ‹|Çgö¤Ð‡þ5ohê²Ö=¾òlÕUÊ•&ã‡eL¢ôE“=KÖì7A±«¸µ˜»‰Dð§Ñ÷„1Ç«k ÔæaÒìÝL›< Yë=N®¦ÐZ§Ýùç_¾©°ßï÷Ä«èNi9‰B§¤ì)ŒÓÎKOúfzcƶ£”Ë~ˆ¯)aßþ·cúhû8{‡Zm¦ª¦ ŽÔ½B1ûly¢u®ÈºxðÅhÊ Û׸CÂLŠM9uM”ö<­Q?î6ßÍ2(ͬèÛº3ÈãJÒá/]æhÇåSÕ¤Ö›Œ(;UÉÉ*{)ìIR3ÞkÓ‰%Í#O³ºóëŽè5¥þ!5Ÿ¡¼ï¢­Y6j=éèŽ[Ζ¤’á ÛSm¬/¨ûy`B›ºªu8æm"¶8@•_¼+ý&y“îöÒK:w‰ÊRëøÊÅÍûäãH¦Em ™¨ß3¾…«lRç#u8Þ'ôg^srj`ß²sGµþÒµUÉ´EjÝ—õG“Ý£z\&»CŸg5Qçô©Ä÷FoPý÷CI_GV¸Fá»ô‡›‡©yÎ+½l{VçïT……Œï첗ܺZW°» ö3·Ns³U;5¡àÔ/½·gÉ¿èp‹ËuÕþuNÃS~nQýI‹VÔµñéžäÜäA÷/Qêùº´îýõ÷5¿ÐÉñ©Ç¸ÆsÈ·Ìñ½ï¸nÞ&•iñèa˜¿î<3‰?NvÝü~åHÒ<èîÁSjžwUÃ[H½ÎV3^”ùS»79‡nHP¤æ ¾ùº\¼šOT¶ÅËß#]Éâóâ³V{Ô~kŽÞSo_TóÃÊ–¸›o4‹<›Í]ئ†ê“Ùxžsµ…º?£;ÑöÓ߸“ýñ°újª}šìÆ<Û»Põ‘âLËœñr<…ï­»n”:^ŒwÔn=æªÚ‡Ïgþkï™ÛZ×ÁVÌŒuëÁ?×·ªEê÷q…Ší·Ž±$“ò“ï¾ê©ÖoÍøYæþV8¿HíÙ÷ÍšBΆƒï”jtÓRóÓ‡Ó5ž/Þ\çœL1è¨æ}2¯·›>/ØI^7{¶ìo¢ž÷öª;üGªõ“6áoš¤ô¹MÆi¡'—ŸÐ½ÿì²[—§öÍóº+{/rOn5í?—¥ö3[7æýnµÞ7‡7¯Ñ¦ÜUŠL©ö6_õiÜ6.[;zºêSÅ®|ìÙû^5òËrpWõ¾vXQʲ¼—šçz»Þž&ÓÈʹäè²®jžO^×eÆjcüœÊ›ýºO>·ÏT)Ø£ÎÇkßmw›N~ª/3ùàÁuû(D/zøà!ª¯í^øý÷òÙº¤f±ÛŽÎ¶9HÕÏ_Ør¼«:?L|‡ä1O‡¨ýÃr26%¬œkEÑ_=ΧvV}ËÐú)…7Ç«×=7ß´VH“B ;4¥åãfª¼ñA¿Á›U¿¸â±Óå Ìÿô‘|4KƒaÆ”?‹.¨ùÉm6³çÍÄ7‹OMu¹¦;ÏRâûþgŽ×€ïiÛN•[Tј|–Ü­=¦»šo8î£ÇjèŸÆø–9í`”ð÷wpÜwLõ<ÆöÊ==PÍ7«1;Ê´0Åj7ò¬øR͇Ë0qíxÂPÍ_ )y³ä×Fsrøy½{?jý°YÎŽ†eÝTŸ5©bÍ™‰KªSüé·‡«ÁþI«ê¼z™¯æYgFþi|æÙŠ2¶Œ¯UÿÕÚÛ™Y?SÏ#kE“ÝÞƒoS²Åµ5oK5Qß·|Gܪ{IÏbŸhöjm'ŠéÖÿåÓÊÐ/í’ÿʺœê'ú¼kÿ¥]é·d·kû/ý~Ê©, vh–:_wD?Ï2ECê’ï¸fS’ªÏ×w½7ÍÛ ÎÛœ_¦ùëM^ñ3=íÔ>Áù&·Çêö¢ÔNÛK7½BaêçlSÏ×ÿléûï(оY³,kGá{L¶…6ÝBã’ŽÞ«ýžQ=·éã|(wb•­ßJVïfw¾k´vKܸðß ÞRrŸjÿ4þFá•6mí¢Ý,>tÈ‹»ý6PFîïŠÝw=£°ÊænZ¦Ý,¥Ì³c’RÚòl½º!(ÆüPÙM´~]fÕvÀ™¼çÝ<1üÞ}ò\¶È×á`?Mq~Ö¤v(n{[›9ÆÈeÕ¶Oóm"5u¥ êº?Ø­O‘'"s|Hö†G^®}Vƒ–÷ j{˜<þ^:¼ØBö™®åÊ]Óú¿‰ÿ¼!l(äÐúM®$—l»ÐÕŸµ´Ú±ðSöGŠî5Í ¸Ú Y7ñÜþªšºÄJ7­ªÊk”<¦úËyäâ×Ï©åM]«›6o4Å%viØ{=Ú%XZˆÐÔå9— zP£3ÕÌ?|ÊÇÿïïŠÊ‘©Ý–hê’¦-Z|¯ËJì<¼v»ƒ9·ì.Ûì‘Ú¿[óZ`–Ùƒ¿¿'¬'vè°“üÓJ/þº|’¦Îº`Æ…’Ÿ¦$þÉsÙóð 9ýì9B˜hïÏÈ'>|éºA”¼|V¬ùúdšýö¥÷\í>×!Û¼º‡O|DÙeožšsü[ØÔàLOMG^}ãfÖ½)³á„yú¦‘›G³fQÚãÙ¯­…½ßÅCÓ.¼A­Žõ(hSâSËÇÚyÇL:Ös[HÙÜIœ]8€B®_Ù˜V”§ý»ËKÅêgºQÒŠ>âúäbò?<`ÆAí<Ƹk=v³ÇI”e6æ–ÍâŠX—véÆÇUšºÐ ¿rµ¥.3x¸Á΄‚?žÙ»´–f}÷¿—ÿ^þ{ù?ç’²}܇'ü¦ÐìŸYÅ‘ÛÈn­Cþ–ÞÚÏ·¨Í“:ù|ÙDÉ“æWqñ¥ “9“>ÿ~¯©ó™Þc{…å)¶Ê‡’;–KÉibA™ìÿá| kv ûL¹­“C—Óî7ÏX+í~_çz/íÀ)êë‚w6‹J“ka‡3›êiÏ#á^¥ì±Áyþºûø«w’Çá»Û¶Gh÷_sjk0ËÕÞ—¢£~X^Böµ¯ó¥mM]̰/>;V´'Ö;qßø`? **½c}¹GšºÔ +jÜ6-¢„“×.çîúð_—šº°Øíw\8RB×J6·çý¢0½Ò]¶X•ÓÔÙ·nê^~øa ¯©-àJ¹û”©é¦7gØkdÈú£SÉ¥Ç5ÓS•­Èâ[AVû'þšºJCkVþµ«…–®¸x€é r¾ãzUíyä#MÇÍ^±i Å÷XÜ÷ŽùEJ¹í°G²¦®ÊÓÂõJeŠhÒµz@óµä×ýÝÙ±U´ûëz´óí3²o©_£v÷(tÖ„µ?^iÏsë•nì0uq Eu¯ÜlNRXPýËå/js8Ôäó#û—߉ºéo;DታÜ>Gj÷Í5 9¶ìÞ¢AG]WTö¤ð„½>÷¯h÷Í 0/סٷ֔x?c†Qÿ#öOTùT»/ŠËÆø#[m²(je”^×ù'ÈsÐÂZK²µçÍõð7J^Eå>~xïï×î€ugòß}Ÿ¨©ó»Vú猬·”°üƒ«{½ò­y wŒ¶Ÿ“`î0úÞbŠ3+_©Ät1E\üü =NýMÅ~­5‹b—ï»Q×r.pûõBÝ÷ŽÄŸÓê.Xç«úflÕ¯{²éU³¥ÒLµ®Í"k£j}×—~¾;L¼>’á¬îzÏÓ½ndrͨ]ÿ-j•ÅyýÜN%'ÈÍÖ$öÈ%uþ2}ò÷\×­CN|0ãZw«»¤ßªÄtó&Õ÷0N]?ðhmuIý¢™n•®P¥[õŽŽSûŒ•é2þ{ÊG7õ<jœ2µ­HfþÓê<¬æû•Ra²Þ0Ý÷þÄF{Z¸m)¢RÙŸK*©ßy¥oyóáÁ(5Ngåæ=É¢Jc_¶ÿ ¿kÍj/¾<ÇB×ßN¼W½úùŽÎNüuöëºF.ê|š¥ÆÎÝ¡æ;¹zœýV»¼5ÙùX/©†nž`âwû^ßËLÑ­—'Ó%CÌõ$ý67Œš¬Qó*K‡Ì.çôHõ-UnQÇ,læŽh7:J‡¶|vñÀ¹jžþâEëúÝ»½ô†óz[î©óÅZ¦Uaï㦑åÎóï¢G«ý¿ ®=Óï1ÖgôoPïwU¬wbúØNjýoÙÙe}bލ÷ǯôìaKs*µúüƒ'KÕß)½çô»ö.j]o™['*×ýFVüÓ<ëªMt·m5åÂô½:jÞ³òî3” Õec¡~¯—[’µö‰¡êc”Êiv8èÂc2ZëݦdÕ÷ 6¼þ"za6y ¸o8å›ê”µ›ßêÜ9UgVÛr~Ûžd^ýy½ž}.¨÷Ií9†—ÍuùK6'-š9T&—öù=.]Pó¹ôëþØ{˰ªÚnï›îîî^EÃÀ ,rQ ,T Â@QQì@@Q0%ÄBÅ T±0PPDJ_Ÿw¿›ó<ö¼>ì/Ï—÷¾öqìc^“{8×ZcÆžã7B²ü?ìÇf[ï,ûy7>Áõïª6=ØŒç˜<ùÖØbþwÝͱ¯íùó¥ÄRrn+»ã~‘’"²^Á*ÀT6M¼,ˆóKM×F×ßUÆñgë—ׯ¼œá J|Åwì?ñÛï›ìÆqž•ï¤Ðk±2~@öŽû-óCžî‰ÔÂ× Ë­åÝžÐ|>ê§âˆ?‡½Ñ÷EʘxXÎpXZTFù†uMë|Ð0}‘2cœ/C¸þÒ¼1P^g ³ǯ$Ï-é×+Ãqeõ-ÛTÏâ¡-«CòpÑeož¾ç³qRFØï ¦²^®ÌP˜ø»M³ˆÃÁíxî *ä±8g€S¾µ¨Ø<\çj¢»¯þBÂ{l·ïˆhd}г’D‹íp=±B¶îŒO¸ÜHßxnàPÿ¾Ïi«ÐÄsD¬kÙOƒñ|¦Þaÿ {`þ)cËûFßU5ÜŽn•ГeØyïS¨ñ=¸ªsõ4˜å?8áYù„Ê#»¿÷SûÃÙõ\-ûòq6¸.¼Þubº7(é¾|–'ôu®kòæu|\{ÐÍÐû»:ybÇŒW—9é ηÄ]:Ê!«ù3ê¨ Mˆ}ü ó®lë&õ=K=#Îþ‡ã0Ú0Åáð†*\~ØÚ_BŸbÇòŠ9¶à¸ˆ[(T9œ½”s·Þ(„PìLæ>ÛÎÝé¶nár2×AÁ¥úÙÉk©~Ù.éô©è£3';fìÑåºmáÔãÝpWùž¬¶®µGLOÿ}ÏR®•0¢æ1:¦§Žh}‚à).ð3¥yð¶æ‡m;}áÜi}Û„vua{Ò PïÏå79@í‡amŸ46Ó~¸Úåh9_ :î%æ—ÂQìÌ–g&˜<é;~¡´GëU@þÍ“ãÒ=Ô9Wß ýcïfËhí}R È ¿0zFí×Ëx4Ëzú©·à1=ËvÿbPy4;òõûEÅõÈrÁña¤÷Ík­ u)§ÅÈ΀z½Lñ6ŒÐ\ NÆéš—çzò³ÆøÁ}ì‰ÿÿIܬs3ð{¼Té¯î©Û0i¥ªþ^vÿÄßgÊ(Í(Ãsî¤N¾ñÈ%§§Öñ’8ÿE¶¸??ò^*fùìÔ±M]ƒŽ §ð:^¹!ãÇÎTœ—"õð²[Œœ{< ¥+ç Ñ×ʹû 7‚è›íìm±o.,‹öŠËÅy@b¾“ScÅ&òÙ£/æ›·Üå€ï^Í™øû·1Ùòsq¼HnA“÷þä>‰ÿTX³çQ‰LwcJîÀë,9Öô—‹×‚î¾7%¾î¸~PtUŽîò(:Ñ2sÈJ,ŒŒìÀùe“ŽÈÚ2qƒø‡ ·èOƒÒP²º@ôµÚ336ˆóTÄ}Õ5gNóº÷µSpý¯°•‘R¼þÄz“=ä9ÕóHc8h;5߯ë%æïiÖ-Ÿø~ìqÿ֕Ч`à.=eÖ4¼Þœ´Ó°±÷Ãgÿ\x 9¸@{¥Ð~Q ".ÚVrãºÜD|‚ý§#=jÊq0üù¡¾õ3Ž;¨øo`Í=†÷ÍîjMùVÚóÖ¥) LüoÝ:Öƒ£8.¢yñmÂÁÐåíá­Ç}éÿ”¬êÏ-ÔÀçcòiÃŽŸ@9èM»~ ®“Ù=ôé0ÎÇÔ½7®v¸ 4]Ÿ„j6àëWL騉ξ‰ø;èLWŒRTý<·ÖEÕD~£¡÷Z–Ö‰ÿä=U'{ÔÁ÷Χ]{žã¸™Ï­ûQ—qß¼ù¾×¬ÃÁ"dÙõÚ8ÎhU¼f¿¾©~Ží;<²ÊUçïs«riCÏļ_ö9‹/õvâùZ§Zõš°9ë”cT&âì‘G{¿ç'æ¥(¾OÙá‘r™´×2{q?H…–ËXàø³Ý…–®?‰U :©gï|¿jZ˜,Ò]ˆ¯û¹åASæ|°…Èa¿’7öT0V»|ÇÑ5¾²™™˜ÀþóØþ —¿ÿ¾óYs9ñ}íâ”þÀs¦,0\½ö­JÆ÷±’zݪ¢¸æôoË}KÝ·‚ïÖ3S#‰9 ¦ÛÿÌ*>ó»y#3·åÌÏΖ{á÷p¾M¦áÓ˜¾_ç¨1Ø'³g€wí”39/pÜ6ôÜ~%Zö“ê’¡7'/Á¼Yà-ûÜ®¬r܉û8}t䬗µ äXÏ“°¥ƒî?±n…Ù'×ZT ƒ çbÓÝó8j~bÁ¯qß¼`¦{ùϾƒSãÑÏ¿ãünÆÖŸ ¥8¿óпoú{ð[{_HEýï{{Ê’°‹|û5¬æI‚ÁÝ{ß¾z§Ô¯ßs9u™gc|é‘?“Á÷ÉѤ«"?€pv5Žä)Å…až5žQÿÄl?®ûfìZNÍÃó½¾Ô{ݽKà÷ÒxùÉpßX°|úÞ,ë™vtšø# ññ}v»8 :+'ÍѾE}¿g5—q{zÁæøѶÂrPÿ»¯ßFí7-+ö{µþM°ÙþÙâp]轈º·Þ˜bgDïé{v÷;8»Y¤Nž~hGí'}L:J±Sl¹±¯¦ö0­Ýt|_€ôׯ©ú—(v4Öååﻀuuî‡6ýÀÚ¬d/“¬@±3 ÖIf­Ú̓'ßúLC×*ñ&MêÜÓ-ÃNJ`gÔ–3C<L§)ìÝB­_5 ºó#î ˜Hý=£ò0¨ÿ×–bgy$ésȯ5ÀHÌÛPM? &cÍ­øü‹Ÿìñ¤ž_ï›­";fX̲KÝw7CàßmkÛKªÝT‰„)¡ß}zøS ¼ÀWú÷Œƒ‘Ôz¿Ç—Þ«~Ó¯÷‰ôWÕ°¯-*úýŒ5žy<ùܵ/*r*!àîñÔȇŸ)v°pž»[÷ ZØŸ=ûb:¸ζ²xó‰bçh[þxñ¤Ã|è廨Áíàrf˼¨^j½³[Y¥é¯ÛÀ'ï¶Oã#@§ÆßªjQù®SæTo'Ñ>ðo’ظ‰]®ê¿œQÃ\Š«òïmP?ú:Jo·e½ëÚÌñF©5‡ï/·SúŸûì±³{6ÍÃë2±Ûy‹4q?}Ás%ÚÚéR — ¸L×ãMŠWiíëœ8ßì_éÃäÝ@nºÈ’;µx.€†ÞÔ¤7ïpN¯Í¢ð^ ÆJ¦ºTNü]ÎU&@xî+/3¿üý¾ë ¸WìåàO<÷pR¢¡Yî3 Z.û{X ÷AÈä,ïö<œ¡,Õ¸ßã>¾^sjÔhòÐɱ÷ó™èw¹óðâi30®Xª± ¯ç$Ç+²p¾Žæíƒù.[WîuÜHˆoÉ4Úœ—"“^¾ÉçûßõÊßíìk¸ÿ˜Pô/-¾D\‡¨ðúíôÀ or QËv".Ú.ü"îâ<«€yŠr/-ÔÀƒÞ¶°öž«0–öéÊ‘ç8?K£ôø…b£• îwg­ÃC_ãKq—yn¯å#\m”, ª‰ÏRnÄש€³Ïœè[øwhLù¼+ïÔz{Ù£o®'–û‰¹¥ ÷‘£_’ÚÈÚ f_?ûß:±Žõ§'ö[[ãþ}V¯¸lܬ F>ªÇÞNôÇ);Åxîû‰}Õ51|gF*@gúZµª8ïKøEé©9i¸Ïd󯑮j þÑzVÇwï“~»eÁ^mW2s’ÙtÔtzƒ âëY.ØÁ`¶®¯Óû˜•‰.€îþé~ÏÎãúS}õ@¯)íò 1v8q< ÷ƒW8•š(0÷õS1LÔ®ý@šƒÓ‚ü÷4«3"¾fîV6b<Û÷¿·øú29:à¸ï{zxF\´s—ù+­Ôqœ‹v,©ÿÆEÞŸ|åÒôB90t1&Çë ¤ÅzŸº Lì3–? –©˜A݃B8/Ka‰uê…q<çÖrMiQ~—1¨™ë…>)ÂñfI­)4¡8§Ö7¹ÏýôÞ”fŒ¯JY‹ë”eK;»£+'òÀ±höÛþÃÓþúeìºcÎWS+šýNIÇ‹h›ùŽõi ‚š}R›ޝ+l?k¿õ)ævê’w¤úŽŽMp¼Eýˆý]Ídü»mãØqÕ Xg¨þçÿÉ+óU÷Àqyí©’E—¿®…ËG},pýµ’Ýí³›=ðç¶Ìu¹¯ºiÏߤ¿Âñ4ƒcƒ7Ã'òêÁBPÍA`µ¨-Wõ8‚¯­•+NäqÀT§Ôç šL`–Ʀ¡ýy8>TûgìE3®«ÖUR­6äz7§‰1-1‘ß³ˆ£¯ƒë/ :’졳@kÏßýì4îÊLy°Jü%~Þ{Ž+Ÿh¼p8¶ºÉk±Ž8xÈŸtÇý½ï柷pNðè©ù¹8Çæ÷íÌZ†ë¤}.že§E©ƒýþüÜÜT|]2_š õ-!âúa_}xoAí•l×ê.\ªðòmÝö |Ý›Uëä¨õzAUß&Ñq<'[wàA” æîWºšÐ¥ëÀZþÇûgx(¾~ÙOmnà>šå‡n›ÍóGõ¹—OãÏÑݼe»îgiçii—î\yþIáy?€tüë;rÔ¸€Í¹z¯4€ÿl­ÉÓ‚o€c¡Kt™ µˆýâ5>9 «õuÚ`ïÞ§¥sŠÊ#Mùh&A‰à³r›èsã^ ¹¿Xxàæ?Ô-,|½XCvøçÕ=;?÷ïûpFi‹‰.µîƒï•='þ ̾D¶¯Q½Ãˆý='Sì„ç .9#¦få ŒuÁÒ¹dÀ¤Cÿ×í„”æ³Æ˜óÀDA3:{o˜Í;]ýú#µ>„)ß ~úÏ!ðþû®[½— NoŠºŸ©ý’•;â>Hͤù«I¿]ow‚®ÎóýNԼŕëNº},.õ|ž(“þkŸb§!½pÎʪ[`s-B¾¹4 d¶Ö0¢öiÓ/ ’[ù-ì5-c «1MOœ)vJa~nŽÀ¾[Ò° Þíß}éWI;‰{7ó/8þ÷í:—å…«ÁàÙM÷ÑjÞ—ˆþÑ“§Ì|Áy¸{¸Ëô5è™]XtÝœÚoZ¬?„¾wM0ÀÌo·‹2°Ÿ^›½”:ÏA*Mxä7# àòG£L~.Ú-„ÚWÙ¨r§lIž¸;tÝXôc÷ÛŸ ž Ÿê}Âuà|œã*êðlÖ~Xvõ-5_DGZ±Çpùop9ðÎsñ½`±«45ZˆÊ×U— M/ÚÀÇ*ñÞgŸ¥Á¢”ùü»:µ¯Nà΋bÍnàš;O™>{ ÐÎ2Tl¥Ô'ÿ»ýwûïö?g ÌðïÂ[Ñ=ðJžMv7wØDÛ«Pû}:hm.Zoèë§Æâå`¬Yëµ| •—Øýfnm|xåqåie ÷á”Á¥2j¾´ÓÕWN,‹O‹FÇ=¹ïÁÔNêÂþÔþföÞ©–°äxÚÝZóãö 0ª¹7[s5Úªð¥Ý‹9[’ŠƒÅ×+ϯ, æ_[aô9Wî ;{j­±öiÚÕ•ÔùPމzë¦ñ_ïæ†¤—yFäò©;õT»™޽”ò´ã®–’Ï ¿ºcÜúsÕÏ›%Œ.Á7]Y@?Y¤syq?ÅŽqpÕìhŸ_À ’Ôš·ý)0uod·¥=¤ØéÓÏ8;ËñàifûÀä¡ZXÈnêœqã¶Ìv¡Øí8°ÏSG MׯިL­_e|[òØá»¬‹O¦l»;ª ¢ØY˜_ 2ønî7·Øç}—x±ß§(ùÿàZ¼æ[cx7†'*nðg}žðêuàøôõ5ëC.àŸ;{täó=pUÍûù²ŸÚ7ƒ=鋾kAĽš{ÔF_½ÝZò„z¼•%3bÕìÀÓ5<ããàØw=öo7¤úÙùåR>ûË=àS𣲶?œòØ÷gÄQÏkÁÞ«¢—ƒÁKaÙ y d=»LKKoŸzðàßëYûÛ¡ç@_½ÅÀ?勦oŒwf±ÁsmŸã韊`ó^ç·ˆ#5Nè Ö0’_l ï/˵^|ŒßÏÙKå»¶–ßJõ6ƒ§YL&Mdè™Éü,¼îÊÿ²"#¿×‹W6?ͰÞ‚Ã-ƒ¸ÿºËá7g÷W⸅ºñEíú¯¿À$©n±D î{.þ'+ôÈ ŽÛH²RZùVƒêïÒÚÎýxý«Íïç{ÇKæÖSRâ€Ò†¡£ë-‰øÜÔäâû'æE =ÜÇì4ׯ]úäè äñg©à<2uc½¾QßPoûû†‘Šñ+MÓ÷㸙ÀWϽݯ±¿¬gÿqøyËùïzEÃù’òú½Ò:^·'öý¶k¾ºÛ Ø/ v«–âx¿Y•Y˜à~׳O[o¼Ôû>XýY<ïû4ìW+eIŸá|Ø©›ª® û–Ëwb®{ç@ÐRåÕé4êÆŠOqp¿9)Ç5üùp~óÊ]TRô4îæSnدº§Ýµ}ÇsdBE,šmU¥ÁQî´Ëýœ'g&b:u)çïùçT¼‘qh;‹ã{_äà8 =®.¹¡j"/<3®›æù‚Ÿ Îâø«QvøPÔJÌ5ÌFO·†IÃC;«Öy²¼5‚yåù# ò±x©ÿð|¹¿߯üK–Œàþ„Žö÷¿¹Õ«Þ€|íâa\ﯯX2³÷Ÿ¤U=ç[š&ç?ÃçW³ç‡ÜԦʉýHïbƒt“Éþ§yíü~ܯÎëڎߢpCS•¼~£à« 1}÷Å‚8OSrlØ*ë3¾oœ.f$ù¶ö[åõ¦«ãëm C0v_Ün½–$xªË­rÀ}­Fí]¿ŒÏÅçÃ¥¾¡aý ð¸Þx²ø:ާ1[gèßXÏoÁ»ß—×»9·U p´KÊžÙé8ÿÑÀÞd°äÙ!P:]šÙ߆Ÿ3’§º¾çÊ0[~ÉkéƒYÿ–†qœ'§5^¹C8.ßYÝË·ÜDàh•ö°¾Ÿwó«­*q>,ÏÍÛ}1˜¯–îsxÒŠíì}L”øt°ÿrŽvØ»ÊÝ%L³[ ËJç¨}Ú¼Ô‚Dl~,®÷×ú2Àu$-ûxu¾”ÃHÌêçÀÛ±ûâê W`Ͳ{çPJ™ßŽ+Ì6_ƒöÄDNÐCi â·©ýk\wÖ 03 Ê+€eß“ÊT/4ùx–¯¦)˜§¾èH™ º¦iB7ƨë Q ¶N+п,¿ôöü;ÐÛ¢»xÆjÑK¢dç_fûµë’oºÁÀÕ*ÎÖ¡Ø)d<¿ë+6™¡Ž÷\`8µòê×üe;‰>åõÍ@[#*#½d ô}{­q‹bg¹3+;÷š8„$l¨2›6óó=ø¢¨¼Þr?ßúÖmýÛ¼ç믙`˜)Y{‚¾ŠbgdúÒzÁŠ-`›Ø=ëta¨kÛ•qW“bg¿;œ‘ nÜñM;ìv-\-·@œÊ¯m$äE>Õü}®}¼Zôý˜ çéå»PûM›<©c½ÿ°ÜTdvЉ©@Øù”Ôü5M…ºß†c໢òØë`¬&´Ônj0ÅN:zùãa~pØêRúV0”jx.¶PëMü7üéú£ˆý+.Ìˈ‡ë˜×©u3zv¹+Ξ4ýšzo Fº†¶v³¨ëÓ³×Oä:纭RéVa`­ò4rÍ5ÎòOtˆz¡  Ä0‡ˆÑE`¸÷Å!eŠþÚzõJ¹à*)™Øœ9 ë™IGt¨ù6JVî*ýÀ½‘.ïuúïuÀç-ººŽ1;æruy¸-îß²ÜO,ã.«œØAùÜ·ÿnÿÝþçl^hß0yYQ…‘b¢!Àà>»QBí÷é1-k!ç‚ ø¿ÜG[÷j°rüTïŒQì¼ÞOÕÜ?|_z0©ìZ–¹½Êl¤ïë‰*0,÷«Mo¢åÀnžÎ­—ÿÐ÷µÍ¹´Ò€|æ¿whˆÿûÞa°wl© õ}Âàãé¹›î‚Gº©{7ÐÚ26ʳU)vöÉ#ù3§'šÅÎ{àpmíZ´:Õ/éô ꃟžà;…0‹—t¤Æõ\lÞ}ÕåyÇdÉ¡¦wh2ßÿPç¹Ûí±|æhëÅݯ׀íÌÏNPãC̲µIKÚÁsùå#kWk{GýSjþºí‹}ššBIàž3wCÔ XãSšåd¨s©Üõ‹µ§Z‚SrÞj‰Ö `s¢òÉÐ µo®³}wõópãÿ- ÀªÎ^­ÜNõŸãsË û½àvÃDôxÅS`¦5myu,Œú¹«Bê›U; Xm,äÍ»¿ÿ.ÒÍë™võz9$&w;-BÌWg/z³Ü2®idÍœI½F;g³* ½Lɬ;÷¥²¨ýܼT.–Ýí´…Àï"±ãÍ·À9Â%`QHÅ•º«÷æCpc 3f%8}*:+于zÞFË¿îd°À×(Dî§×-` UЖݤæ1‚(¼µ6ËŸ))u;+¥ÀqCM(Mµ’ú;^* HTžŽ–—Ý­›VÀHV]çöˆŸtû½³Êý¨6xzh¸6ãÀƆðÔy'2{ýéW€ã­%ëÕ»_÷o·ðúÃpU·â#GóŒJ2vè·éû"OÒ&òæÁ`…gÆù8ßD¿wÒvZó4pŸF1Õö· pÜB]­œö®ä6ȾIJ­8„óF£%Ù°Ÿ-Š£{3ÿ®Û–*ìLÄqU½õOyu8>2Ï!ýë ðÚ Ò°\ûÑʶ|̾w=þ}EYFŸÏÜæÏu®b¿Ì‘iZ,€ûÜóN]޿ɰÆ6°fã8´wÖxôcŽ;ü:6‰NÓ¿[¯·8nf4?!àâVÏb3ÙvgÎ0×ë50„ãsº,Ûo£ø9úæCû O9p“¾ªßë­åz;ŒßàëÍçÿ9»ƒ×À~‰o¤PÎSd ¥~úíç0Ÿ³Tj=e€e·Éq#œ§)w/OײÇ_:–)Ÿ ƒ¸…¨…¯?~> žY£­&€çáªDà…˜‚èÑ/˜x>ídèý7È~ ËÎ.ÓÑ7G2’ðsU?r÷תJç7Šž¿uÁèí¸§Òˆãª §KO‹ºãûzòÆ•ž´w0%xãŠÒ³Äœ†¤¢¸oÎÖØŸ†[}ÎUרû×;ñ}"Ð,ø ŸÖÀ¯O/U-û±0Æb‚§ýBéΑn?ÎøÔüBdxÓv®ÛŠã †¶‹/‡áø§Ï²ñé¿/´¤àðúm˜?±«?/Çó"¼UÇ6ÓÖ'pJÑuܧÁ¹dÛ½È|~n…¼kaŠÆ¥U5å±ÞÈe®g¥â¾4ÍþØßm`¼ä~uønÌU4 ûýq~øF¯~Ú|¨Ü:Ÿ½Ù3×i[_á³jüù I¤{©€ýŽâœÖrœm¡>ýLâ2<‡„¬­,üà 8+­Yz®!,js«×쥾Gº5Ùu¸zBÀöQ(¹ –·ÞÔ¸™™É-G_{1ž¯1ôId¯ÓˆdRìf±uî?X>¦¥0zi04•ߦö#±++Õ2©™ >®ƒ7Ûî+€Ù3·Ôdj«úÞfjX½ÿhÏ=:Ö^^Lã9©!›¿yÚz°kÛ”U¶E ä®ttq¥ÚiE^­º'º'²"£j/€¿CN®Ì ŠøàÉβ‹ïÀ¤­zZPt8hÛôÛ½›šG¦pH*ðÐÇ K×dD\ Z=g·ˆÇR?7©Õ[ÇÈÌ~ïK^’’*)Ê#¬jNJBœ}ÃIØ/jßßó‰ §©ûôPç(2½×t ¸¥-O±“‚‹US¹¯rsÄsãë3¶h^0Ýë.¨”ùζ¢Î0ìqhÔŽ¿ôËg¡òv0‘K© §ö}Q0­2KšQ^;îI¯Úùh¾ÊSË©ñNá­³*¶‰&‚¿€áWÁ§+AÔCh™îêÜ2£ yÙ×cDÁÓv©”äu0Ï–tŸZL±39üäÓ‰vŠ( þɳrkë‘LªŸ]„ÎMs—_Ó\³µÊ¦`|œOs•îêï=>Õ_XØÿ-ž?ŒÅ1Ô¸žÎ§Ä3Ã3 Àë•—Ú¶â µëRd5^lQbÍ*9ÿ¼ïØ „z Vs8†_ÇQo¾ÜÞU_äÁíõïŸuÕ`6·Âlhµ Õîš~²#x8<Ûìó+L\f¿w¥ô×þwûïößíÎ,zjzŒ‡—¾GŸÏá]±ñ_ÇE¨õ~ÌÛ»;M7}EñÖÐæÐ;Ÿg1¨K͇§ÑÒÚ¶[ýᢂ †Í ûº8x<5QàÝá¡-ó÷}Œ]>ÏDt‹“ê¦üCÞÝ*¶÷•p.0³‚ß4Kî“û¥ÆMï)vò}'ŸzVò€~›%×Ö³ tÆmÏëý׳9x_ƒÛsìJ½còƒÍÅo)³¨ý>-ÏÚîÍΚLÝ{s%ÄöŠÉÅšoÆÕÞã95š xz7À6™cUIÍ#3×m­Ç;θ=cþ)0ñ]œ˜ÙI±3;r#ùÇ¿þ1Ôô1œÛÆ—Þôm}K3Äx(±¥Ãc°ÝºTÄœ!r×,ñ^ê÷ Pì.«Ö]"wô@¯=D-b#µ®—amtZĽlg›5=ûq,*”÷³>Ç,Ry+©q.—ÎÚ þsg÷·,‘¨úB°“ì–FsÙ$8Õ0Tçâ¦Ö³~pÒžÁj½ÃÿÖŽYÍuö¬âw­ï¦ßýAccAíwbšÑ×♹ ¦ù8¿ø°ŒâxÂ¥UÔºmÛå_[”kÀ¥ôÔÍÄRïƒýï–çSìhÏF-ªÙ¨6(» v$í±m£úÅgëÔ v ¾)Ü{ÒV-~r~¨}QèÌéO®-š ö}Á+¶e³Ý ¿Oâ|)Ùö Ëà¸톰udßa0ÿúÀ9¢ç¥˜ýŒí ®Æõ/fŽcâë?e€»Ñ¶œªÃxý*챫;åüD$ö¯{[¾tÖ€Åþ¢ðG_q=RÜþíVkC'ö%TWp,ÛY`Z u§±}âþÕ®öw3ìñ|>]ýómsIËKþzçKè_®·ÆqÚ;ÕV+°Np³í÷žxOe4Ù*î„ëuøo〗7ÝÂ&¸-XëB±˜(Ž{ówΜ¥Ìl_… ¼~U=·¦ÎO ש‰ÞæøÇˆoãÍ’Gôqž‹¶eù—+x¾h]Y³æú¢&°Éšõ&¸~SÅËQ4J÷¯’í¥ºÖŸ‡×á¾lC9³M‹ñ|W•ÿÚ£î· sßàõ¿ˆÚø×Ž%øwð¥sN„=SÕ«ñéã×q_*õκŠ/ü¸>NN&ýXÀac°›öÕÎü0^—ʉxý:]€ërå– Ö¤DYwì-—Ÿ0žbVVŒóÊ‚4~÷Õ€ðmÏŸ«lÂù‰Š…‹aÉ2¼¾¶éße }¶gkœ¤Ä‰<?e¯÷“p\Naâtë¶=`–³ü]B&Ž[šžûºÈ×}Ùö®OJÌ{‡¬  Âî÷лà þO¹ß¼x Ü ÔøgÖâx¢Éì+s3õðuËÚTÝš¯àŸ&•^ëKå¤åèâ:Pãkùma0:-¸ßp¿yu±}+Wá~qòk]Þêhµ‚ÚáÍóðœ]Å›¬õØÏ6Ëü9ðÃó¡¨Dî3¦“ßÇ»w“Èë‹x«^g¶“ÖE^ÅñmQÝ Ë€ýw›° —ù"<<Ä÷ÓW¼ ¿é˜â,PzÚ%šÇÃ×›|yŽŽw(¨)¦¸8{‚¢Šf€=îïÊdÎá‹~…ïk÷Ô+jãúÏÀc™ÍΈø¾1H5Ýc>ç¯ZÞ¾U£`<˜ªÀ瞟«¹Ñ,^#Ç#TÞÚ´…Iÿ!ëŠå£¸ß½ø¢f¡ƒêxnÆÿvNƒûÌ\úq0)YsUMûU{²¡Fø 7›\ó„Áw:ÜŒf}픿‡¯‡ê)IëGp©‡M÷ù[Y`¦-pLr=ŽlÇñ6¥<å¥G î‚Òð6_‰|qö÷éáúXécJ ;_&}…íA<¿öçíÀ“쉼2öÇÞ9¹‚CØ/¸ Çr&âîì¶3),5\—«È—Î׺Ô¶¦.{FÇ×¹üõ˜ªö\){uÃÚÂäR÷Øöêϲ‰ü+öØÝã'T™xžÀôG"뻤WCD]ÍùtŸ÷x¤²³q¾­²6[qÁ4Y´é›'úÙ‚H¤`Ï“bÜ?Í5´écš´ßßurLDíw×2x"˶Z„÷}éõµކ๻kYÊTìºÄû›‹Ÿàù>?þÐÞ–vg´ç4µ^Ô|eÃoÑ·fC‹>ª«ÿô‹"V]§®? :§VðÝ0—¤æÞ²Ÿ0©<~n4€ú¹&_/õöß²î®?ÍÇnÉÙŒâc/>‹S?÷èŠpíA-p՟ÇÔ/žn,¦Øi-ÐŒ¸3e 8¾ðm;bstªÎIë„Róõž=«\ îO]4·,‘ƒ‘ç¹m1”8õ¿Û·ÿnÿs¶`±{Fj}þj`öÆÜŠ‹¶™AÓüFµNÞÆ§Þö@ŸØíQÛVsNäu%òS_Sõß|¾¤¡BŠ 0ežUÖLWé|=áV*3OòsçVo¦Z¬çà”<>:mþê|‹>Íë_+B€eN cU¦‚¬õ®­ ÿð\Ý«Þeúz&Øönv‘9%²Ï·>ñí¥ê°Ùæ)=¯`pÐö›VYÆòÛ?OÉ?Eç`üõ¦‚sÌ,°åj†Ç<Ùh>›Æ"jß7›ÍœÆ4†¸ú)­Ì; Ê›4OÖñ§þ^þœçîÖ[ÀÁ”_MI´ äwÏ”k§Ö¹ŸŸW¿3– ´i²E·m @êmç~SjYº‘ÚäñÞp¨œT–{B”w¾ï¥Æá,VÇø«±.óö‹_›A^Éx•âêÜW«-7:‹ÆÀvóÀxƒŽ(œ<ãù=j_ Ë|FÔÏD`íýõ)ÓÆäïo{o¸ˆ:ïÓêç¯?çÞÿ§¦åýª^‡A-˜¶j[ØiªÝž²Nþa-pZ÷1ôb¨þ~¨¾Ä•ÚwÄp#sé"—`„goÙdr»é:EÔ¾–w µå÷À±vÁîyÂïA•·×3ñµ†…ƒë+©Ü6p¾¸6Br (ÿÞ–àF=og5r<ÁÖ<Ôeæð×+ùu^‡úž`íõ³Í`½ 8¬®^x©Â‡}·7£Ø™úÌ v:´˜Å‹Šû–€ìÃÛ+wûBõË¢Y7{tg‚ýÝ:¿Å€bôç õOÔ>[Õ2tmÃÁÎëÂ×?ñ  »†;×±Ín­?nf6±oÿj[lÓÔVp*å~í¥÷voôýü ç‘iÝø26¤ñt‹„¾Æ}ôøÎ[=KÉøï}öϫ檆ÛEÙÃó5…àø ãEÈ ™x?1g'Ç3?ã@ÒâØÏA8ÿÀïÁ{Ù¸78F¯?yÁ+OS0Í^Çaãø~K]rí¼Þ6Üq"'°l+ØÝɼå?·ÛîÉu¼Ï:Q}OíÔ4ðþT"Ò6ç-YçO{lf=ñ;€V;+Ûáäiðؾäq} ŸûñÕD_4›ï‹î>?›îïÿÊ&æªZ©ÍäeáþK6m¡Íß‘0¸— –‰…à~}ü‰JïVJMä‘°J…ê¾·>Õ {¡,ù3v¢›ïIÊã9 #ÇÇ,r‚¶ƒÞ&?Å*œoåjáç—ÖOßkí½Gõ¹(ðÖÆ¡*–>ïYó^2’pŸ63k¿’Ãm xûÛmŒ{8/ÈJP~mH ÎÓÒô©k/ïÏ9¦»=.ã~õÊGVÔÄ׋…جÁ€G±@¯Ø'¥ž‡óßl¦ùY‰ã'Y9¹MßÁÇ«yúC¢ŽOw×ô­¯ìpxæ!¥ {ªªÁñ¸Sà¯"5šÓ‘Й‰ûã;÷f« K[Ö–³4~ü{ mø“æœ!~gRÁÊò*·ZÞf8þg>òСSóðu¡ÿ•vßcÀeµ-*<7³ýÜ º8ïÈâÉúsÏ6óÀ54É”>Žã‡¶}Á{ý”ñýbñîôïLÉ=à:Ãìyäv±Sÿ´P—ç)XªÏµñz ®ùHà¼>»#Ñ¡^ø|X®9âypÙ`óÏ+ˆwÂÇcœŽ íŸG£Ðœ?'áÿuü~¾4šÕOD?ʲ½Qsibž û;ßÅ¡x^-­t¿¾óÔ‡ öø+2Ãý …oìÔð˜‡óÜüg>:BI`Ë–·Nàw _+-®ßHÌÉÌy•¹¶_ äžN»€ã#²­1*DŸÁ}‹ûžú‚Ó$ñ¦/p½ Ñ§o“ïJâëWËè¢oaèvϨº!jâ<³Fœê³þ€ç±º†epw¨D‚ùÉYNïŠq|TyÕ ÷Y7pœŠwõøÝb~9ðx«ðÅ~çÙ´ú©m½Ž9†·úΨø;êÀR¯&æ}~»ôý{ ~ž¸vÞñûÈoP¹™ã‚êï7T˜ƒë–5Û>]m7ßÅH+;7çaÊëþ‘}‡¿ŸšBò’°höw¯™*§MØ í{ýÜwÎ#uɶžçÇ *µNt‡Oxž³úÃõÙ­'úŸýÄí%eéà 5ýáWTŠÏG¾‚äµü<˜Q÷à5'°Âì\Î-nÀyÇvN÷\&ây Ïä.Ï?"z¿CT>Šã8Ù¤Sö~«Z ÃG:ç?Û‚ŽÓæí¼);ýü‹öû:W?Ö¹K`˜ôÅ(šºN5¦•½„ÀùIò¡ðïÀä§ðî1&Õ/æ’^®Ÿ2ŒÁq~x|éo˜Û…‹æO~Eý½w~n¯¾ ìöYJ/‡Íýƒðcuõü®å8à/ßU{! fGWYùð[SíYŸ‚lgƒÃÉߟ¹ÇÁl…¬ o5®l¡a•Þ¨N‰¥¾g6L _í^¿ˆäÿi÷ïößí¿Ûÿœ-ØÎx$ØæÚ ¾FõkZƒÙãS⇛©sœÌ&={ħ Üc›’ŸeéƒÍ‘êä‚Vê¼Jó~Óx9!^7°UœïÐEÕë-ð|ª ;çc½K ”Ê!ØŽFaÃßu°²Råijݧããϯ͟Y×—{sà]Ø@b Û‚š?ìTÙ}ÆáÎ:þVfW³´ÜßÜ·=~‰š—fw}n¿„¬6tE<ΛÅöš€5’w©u³¬{¥rIô/à7?RÂxÿp~©¿¡'™šßü¿=ž=R6ývã8®oß’(; ÀhÏH{‡6ÅNÕVׯÊ0˜ëvÜ“Ÿz#ÖóúŸRì_Ô%–7ýÆýE;KÁE³ÖôÙqj^úJ«s½~A€Q¹«Rž8~{›ØI­ÿUoø»º(l³ÎØY" o.±/DšQìLs‚RdÃjyÉÜ^ÿìâјÔ÷h­Âm&±Ók(¾ÂÒ„×*sr(vèúÒi¬]¿UYx,o‹èñç;¿‚ž¦Æ†à·ñœèuu~lû±7ˆ:ÿ+prgFzMzœ{rŒ6‚—m.àp”(vþ‡fV?;þÛ,ÎOú ÜaM»©×Ÿóm¶â:¨>gFê¨ °×µYl² æ':íŽÈ9]øüÛ‡*%LW«ÂëaíÔ¸²ËFiþˆ|#oqàïy†`>+¾Ôã… K<ÿܽ,º3¸|ø>”ƃúý¸ÆIþ*f¿°ÞÆ&\‡ 6,LÀù/aúÇÖœÇy*S ~l¿o‘·®Ú¥‰ûé‹5YÊpp~œÉ¹§ë8 f`a0<{ë1ßé\f<ŠëYéË,òÏß¿ ÌQÆ)sq]•^ôãóÃ)¸Žñ³û4öÔÏ`n",£‹ëMÞ{†§$ÖiÇj’—ÏÌOǽÓ+ðúËa’̬·Ê8.‚¦GhŸÎLO‘ÕqÚÞ8ÏÃIÕ\Cø^o{‰ÚÅݰJ¯F÷ÇŠf8Nƈߵ¸mêļ p=›aÔ§ì ìšÝ¥*Ûñ:Ü!†½síÛÕøsË_.˜‹ZÀsò9ã¶M¸‘½³Àë¬ \gåQã·ŽU?hÖ½Š˜Å8¢¥©œî ýòw¿°ì&0J.¯·Å}÷[»w•ù'÷¯lxÜîu?]·àþAô–’æÜ)¸~ÍýïþñíUX~Ù_°ÿè ­SÏÅâøûßýÍí(˜rô9žƒ`uêmŸWŽwºþÝ_ø9|ê²›Ï|ÅqB›Áʳ‰>M!=oÓÞlh‡À=‹£‹vñ\)›Æjœ—æÆ©ˆá^N]¶!M¸”Ñ™N¹ÍÙøüú¥÷ž÷< -$qÞ—QîÜU«õpþŠUX¶€š _›úçÃyUÆ‹;tŸ4âú5_£ìá4‰Pð¼žçq—¨_M7^h†óšüÓ¿š•în¸Áîso“OWm ÞÉàçÕÿvNƒWà*»›C€qÿö÷=gp>¨‘ÐÊÛkàzÂɺÑþ¿¶_Ï… óæ‚*¬ïíKÅ&ãë2xÆFqtæ¸ô´þ\ª…çqÒŒY_Ä“q¾“Î<^R× „6ÖN6ŸOô,¸øk ¾^k’&éždÅ6 ?0™Ð3öø£êõ»«qý´ŒbÕŸ×ÕìAî­ì—³'¾ûçÌ…õ8Ô⬉Dwü}Œã\ÄyÌ }ÍwçC»‘¯´õîjR¾6ÞiŒŸÛ†ÆM×nãù!«ççÄ„¸Ã”/ àëÊw´?û¾9ö»nô§±.ÞmÐ×É8r~Ë„N|ÿæo%2¸¡ÃN•vvÉkp6iÜç-[ÎIJÿU€ë1½Þ/2F^mÁfÜwÓÑŸÅ=/œ‡çy/ö ‹Ævàðg~–àåâÏ‘ÔõòÁ¿#Pý[¤zq ¸G /µÅ}줭uŒ”1Ò½»­æ’ÆcPšsOÇ›ÅVz¬85÷Y´ß•æ–*)3C ðuª÷ªl˲×}¿åOr˜ÏöSʶ¼báónU©´+7 ?ÇÝ,E·é+FÓ³ûä5xn±iF ›ý-ß-Uª~‡¼‚ôןÀuÁ þÒ÷ÔúAÇÄ]š'·ŽßoÅÜ!p+¸Ð>̡ƇXz®F£÷šÀ'X ,¾g8yN5õ4¤rA{ç›3‚vB€L©“à.o`‡è®èØOíCo÷Xá¹À–à¿»õ¬Ú p½¯@“¤Ö¥ˆ”>Óm_ÿ Ì6Í_³){¬©ï»úu«ÌœÃÛ?ƒAÿ£–ïÎ`HW °¾öÝN°)œuáÚQ0Šx1Zûü˜ö}Zulº>ÅN»Zé0¿ 0„?އñÞQ‰ú…n/ÅN“þ~úl“'@Ûv~ƒÓ 0xùÚö` õý_7´c» €izdæýÁi`üçÃ/'Yê{®ìÐÁ(¹‘×`Ð;Ôï³TºW·¿¦ösÓÐ{¢¥_œ 6Oµ;·º¶ƒ–ý}ñL*Uˆ;|èÇß÷]‰£°Zô$§<~0k!ÅNZÇ‹rs1xØÍÙÙrì5OÙó´žE­ç›.2åòdk`c]¸½~è·N[Hë+1”?t•Á­çQý¥o+Á°ž—p)a'ÅN|?[6־ܔmßdÎKƒKÝ7å§ï¦Øé¤œ./÷ûû¾~5ºÍÖh#ÛÞ¬¥úùëOaý·‡ÿ®×.é'š+Ãkóï Ô¸¨Ö•­«K€ÓõgOƒ§hMBgÜ_”:oN«õv`i¨8µ¯í^U~hŠi¿ê:Q¿Ÿó|æ9¸h\ÉÌ—Ú“Qæ×¨ÿi÷ïößí¿Ûÿœ-°úkª„¶Å€ÇC©äóš`xy³+'ŠC±s¢•Œ­<ÓøwÏ—•¿Lw:¯£öµwò[_ïÇ…v8ĹæÜePç4¹”,+Þ½n½}yô?Ì_x3¥uqb/xø6Ƽ“÷+ß¶—ñ©¿×A[ëE[™>¸;¾¬ð¹ Ð7§î;×N+ÛOW¿©•¾ <ºÖ–éÖÅ- jd¡3®+â¤nZóè&®«ô§åë×Í<>7*4ùp>ýíïÑ@c¼ž36šV_ ¬Þyâ‘7p^‹ùÈ£5å'ö5-›—Ç6ë§[´»;®G²ê4ÿN›ûýëxKo“‹SüûÞñÃÑXn-þ–_jvôTâë°öijÓCÀ5û]ÌÖ¸8}çTÜžå*k_ž îF9™x}næÑ³òÛ2œâb¼-Ý1)<·9Æ|KðÀ×ñ—ìÖÙ¯pÿ ÆÀx¨Û})ðˆ|ÝßpÇ[è…ü;>}}.X…Œÿ*··;ä^Åãõ>ím~ß!¯`­Ð/Št)ç é ù+ l¿EÁ låËW¯Ì›õv¯±ÞÛî+Q¸’¾nê+ ç©€4™‡®êá<(ÖÏ÷w¿cûŒCa7ÀÏÚ"âÎNœ‡ÆµÍ¹Û‡óÈlÊ=ÏTi9C@Éíe_;ðçš›ø³•Eq½žuõp©ÞÒ÷àéøÃiÞa ìç]ÊZB¸^ʯæú¤w+Ÿ÷Ö’%Ž›d$LtÅy_GlºyHþûS¨2LÁù]¶}uCCyßiÏË LÀþ3qíú6tè#XdLÑ8vç3é^û)0w _GªìØóÑ ›@VÅö»Áº‰õ{¬.uáSޝ[ „ÁŒe…`°úê×Bàø_xÉ‚]ÙŸ™à^0(w χa¤Õìó'}¸½=YŽÀ–ïá2}¯·ì½xîÎç´vœ÷ãWè-æìˆÁ}÷dúó×ð}8±¯¤“wýYÃàŸuÅeÄwâºa—®ŸQ¹ˆlfÛ>¾Ê$öð‰5öê¹Øn•*ճǕÍ/4ÅŒ´lß=By€ïkõÎ×s´öà|EƒÛLÆXE  gþJž,ñ`Ï^ë"œç7M\3rË™QÛRû±Ÿ'ôá²×’%ø¹höXôÖŠ) c«Ð¡ÕŽóFÅVT¼ ÞŠóhÝX]ù#`çûÜ5ÇßO¦ûßU{ïÃye¾_•S ÷€g°èg󗘃Xýþ±¡ëîKç3½^wšÊ ÁåF>•Dýêò q¿S×S¼†BÀ]¯ÞÑ5Ï=eVMÏg¥àûP?fÓl½òtP¬Û_¨³£tâï —ü7Ëà¼hfkq•(gß?¶â!~ªUö\¯ÆóW8ƻɀó™_±3Ïâç“e¢¹Ó|¿À®›•à €é°XHVÙnâïFJC³¢BqV–ŸÁz!‹|`/v‰´h.Ð\CSY{'úâçâüȆy °Î:¥ím سN„½O±£Ÿä“L_¾|7]¦ fóê"¼ ¤)vŽÅ©+ͽŽãþ¯_4ØÀН(sn¦Ö7:¬ÜÓ|¦8ó›v«•Ã?JìQÓkŠÜ’ ûi®_#¾Î5 VäÇîZN­ ”Üi½¿'˜í ^Ó÷‚˜Ð2º_ ÅNfõ£E+ÕdÁúõ7V•ðUÐ×?’7l@ÍG÷›òñG}˜¾¾Ûæ6m è¥6-^üƒb'½:S|Y×k°yZ9Å ôOÉ+÷,m¦Øé•/)¾ríذ%Ë #ÒAw¦¯‘Ù*jIkw—Öa‘&p<%ófaúпsÕZÎŽúnžp·Ãå-8oM=u:|X§îPL›Ï£Ø©¬<-û´XÌ7'j™tê•`߯ª_ôž Ä>RÖ†ö»™&ðú%öQûWkŠ9;|³¼ï5ºœ=´çÎw-¦òpS‚!7+DÁ?Eþ®À|` Ÿ]L]·©ïÑìp«™ ORLÐWr‰¾ÍŸâ¡rGc`v.£ «ß¥ØÙ ÊžÉ~%Þ½ãÌ™qL`lÊKz™bGkKMu%î[Å…û |ëV»õuµÛòïëO¸†'DÅ¢¿Ñh÷C»ÎL¦æK9è,[:o¶6xȱ”Ó€þ|sº¿"•‡Ù'î2`lHÏEg,Òç£î0=ñ–ÕNãLÆÀC7pßÐðãÏ£éÀPâdÞ^°‚bDz_ù+ºê# ¢ô©:³FÁ^YæõMÜߟߥ9çNò"À#a§ìœv°p}ÙwÊŸZwl/¬:vU `[q|ÅÚ`;sï©í›¨¿7qö‹Á¿çù~½ƒÛÛh`*|f™|“bçåëø¨[\«ûºWxØŸ•þŽbçöVÞø:fó¶¤{ôì#ÛSùÞ)do’!M_Ÿ¼²} v“ƒ]U¨ùæœX“„±þ›¼2Cé’Ê.°_µëÌùy«©ÇKß(lw‚ùÇ}ZÌ3ÀuÖƒäÍÔ¹O®ak¾6ܾ&ünã&[ÁîîKÿŒÏÔ|B'µöÍþBà=ûÓ…·n€ã—¡!;÷5uªw´CÁgÍݱÏI@¿·Â}ÞêÜW#‡µ/DœïRÁž °](­x³ØŽz~yÖçÖ¿ŠÎ©§ïëß›€íàÈ|ó0±Ë>zôñþ=¨Lv©ûõOÎäÎÆy-Œbñªœ·dÀ[™Wû3°®ŽxÙOÃëUÃŲ÷ûzàûiQÃñ»¾à|J=¶¿ ç X¼Ê0±:ŽûZ™oäO_bìv‡Èî¿™‹íÆûˇtq¼„Võr³xwØ?Ót[ZŠë ˜J¯ŸÛ‹MôÇû„€.úà“³â®ËbFZÞ9KÄ!X‚çUzN‰¼å;FÄUê?.ïÅù14§SÝN=åà¶YSÊR˜Ëû¤Þ¡ ç×YÙ8ç,¡m×;W³Ì÷¢{¹ûÐÅõ‰ŒeyŠÞÓ—€;ó¥§p7îófXßhx1÷×g„¿Ýt>`+°*Ž\¶3ÇëASf±¹Âsœ¯cÃÿh“5#œ8S*ožÄë[Îøîlœ÷aÚ'¨Ò\|ØY»ãh×q¿%ÆeáÖ,\Ÿl8{Q[c xv™–qâü ëÊ$ùÇ8^duöN­wŸùßûô‹ø×#¸ÞÙèÅômšE8ŸÃ}ûøK£ Üå,Klw·ÞaÛÜo­|Ýo¹ü Wgã-?qœyð³‰è(Î/rû¼=Åá¡pÞlbá$o¨"¹5l=SCóÉãïS­÷¹ I`bßÿꢷÑ÷·ƒûÎ'«9XGô¥JX#o'ö}£EüdV|deµÙÌo†×æý5šX–¬‰ð: p^¶9ãûÎÎ=¹Ç÷%îiÝÜ÷z^(‹½Ö:"Ï$m}nzaÿ1N¯æOY &‡¼¬:¯{8Æ=ó`Ü—Ó¯êE`écp³=ê?æ ³:ë‡mðuánæbšØÒÌ—ý‰çpÜÜd¥ÌËÁ<7ÈqàyLLÊá½Õ?ÛSbUíŸßÔ÷M÷Ö¤%é­†àkëpmm 8_VÏn ØÙ6¾U-v~þwÿ81-îàß5T>ìpöÓ7L|~Z ïÏ“–¦û9•ßÔ9”Ϊ%ò’Ÿ÷ÏдÏ2›€ÕyÜ*œÚ?Da6¬ ;Û 49}Õ0úS¾nz:µï–Bã­¥ÂMë€õ¡kM´ÈPŠ-Øñn2µo™Â¢ÀßÝšŠ@³ïŸUQ_ F{”Oúùr)v*Òé¢{æõƒõòn€öî“Ú¾©q)Å +4O¼®º©³ºøÐãØ4‚ô)vfÕs2zï=W½áÆ5]°dðbMG©õÖfŒ7oJÁ}•nF™ã;`HÏ줮;hgN]ÝêœWN4\w;cM™?Ô¾/ŽO=õÜÞüŽäÖää@oØ õ±‡ÚÏ…~èFI¶. ܧ'>ÎßqlE‚#3¨ùaÆSÃ¥¶7ƒÇ÷Ú߳ܳb©©<ê¼Oé‘ýßÌnB€u€xüßó§šÊ_=Ç:ÃÊJpñžÕáÀµéÞÊ¿½ \YŽž¤æYš[÷Ì»7ÞÍu´ª¹`ø”öá¸ÅÎÈiãuéÇÀïû…¯£ëÁâªÖO9Qj}Ù¾Çj]WÁyþPÆÆ~°jøsÒ$Žú;ÌÙcO»/E€WBÿ¥Ñd0ÿ¡tùEµþÇrv”ïü°ðŒê@²Â×À~‹PlSuîíÚO»7ÀsÔ³¡J=¬ŠâÄ*NQ×m–•Ón~Î.$å_¼¼çïùfuýÙB‰'þ»ýwûïö?g æ>X„¯Èfë鯥GA7Ö$jC1µO>MðVòźmÀZ¶Ÿ;阹D:dÏ ØY§«é¬MVi uM×.0ˆ ×ößp˜³CÐ@¿– ?@?½`pý®©;ºØLý/,yóÉé†pw0x YçfPçxê7ïyõž¯˜«‚*µ/o£óÅ£ê¶g¨¿CçAø­{5ࢨš7.¿˜‹´öäÝ™M±c˜HŠ»Ç8ShüÃŒ_n`¾íþéË@÷Ã\иhã¢&pX/Ó}sa 0¤· Lµ ØÙ˜dù†Ðyàð¢þ¾á¢Z°>~Çj³5g´e™iÈ^°Ê¿;ùÓ’Ë m|uæå€ªÞëÖ¹F`«µWîÕ˜‡½+“¡SóÿŒY›Þ.ß« Ö7³¾<Íëu–†ZÕÏ6¯χÚ‚ݫɾBÏ€™zÔуCíƒjÚèíK_½·5¥_nã€u÷—µèSw¡–­J˶ÎÙŸ†YÀØ0·óÄ‹Я҇ó3íÁM0.ÅáE:°æÿøµŒ’§ ô›ôt§ïöŒûëéü«¹~ÒÒ[Ô÷ú‚ɇúª{¦­wC[03[é ¿jP?÷Ñ~˳¯»fÏž°Ê¿v©ºÉw,(vfn¿ÎØh ¬WÆ¡M‘`,Òx®U–ÿ³úiü¸k78Î ©¹T´ õu}ûĨ~É‘°dm<ölÝŸè¢)˜œЦÖw0/Z^ÿÒ öeWuS8ÿ®#[U’îRßm–rŽ©nŠû¤ì+*ÒsÁbÏì©>c¸/¾ìëŸ/_ÃýÉ´RLï}Ý€@oÚ†gÅl_Ó˜¤mýs"”ê·Õ¶æã—·¾MéÁë\YŸ©,»³ù™ 0wŒe%øLYÑÆ»Öâõ¹¬Ù æt\*üY§nkU-h^»+ëÔ„?Gꦚ¢^ÿ+&×Ftœ©ƒWöb{pþ‹š7“ùö!cb_~iÿ¦…™`è›7Ãw%®T ÜhÕ¼çÈœ}52­Å ´¦ÓÅÇá¼"í{c´$ðTå0§ +zžƒéÌ`S\g¤âYB{b‡ëÄ÷œí2û± T¯ßqâ;…çMªí}ü¥Ì§ÿþÕÓÊþ®»›®o.MÅþ“xTÚÀœë¯d¼ÄNÞ4yjž®ÚÌ¥8OCxË¢ßâ|8>&|<¤ k‹¨¾8{iü;®Ë¢›ïy?Wbÿ(Ýí¼°ÉdŽœ™ßú ÿ{–ªÈÃÞ†‰}¾¡ˆ‚ëŠ<Ðu>™ç-4qÿ‚8»Ïذ÷•ì;¿¨ßN T3úmÒ›q^†®z–í†×¸•“ë•v‡R¸¼›:Y„È”ŸT`:òÇ+Ì3ò$N÷xù‚®Á¥–¸®MõüÜ_Ÿq]©Á~×BݰìÉX]ëW5uÛ.î‰ëaö-@ÒÏ,ÛSôdGpþ¤k 0dˆû3ö×ÙŸùW^™"õç}©ûH¢-é¸ÿšþà@êœ`Á_>ö±_Ê ·{öâu¸ÊíBÎä'Á Ë÷çb&î“¥ô¾ËõÎG¼WxLû ØéF;ŸG©/ÁñCeÅÁ™LÜ^vë÷Ù«Š@JIµ î7¯’5¥qG2¶Sù:öÂuI&U¥Ö㹨–×n̜Բhíwr¢vã8…Zì%š×œ¦xµ:¾ø¶.(}¸kš‘‚ç é9¼²ûMøagÔ¬YVE`¹dß~ÜïKDîMÖX,Žëyn¢Å‡‰i»áº[£%&Ea'<ðs™7“suÿ`^‰Æñe“ד›nâ¹ ¡ú’Y†à()¸ïް>öm¸[‰ûYS}½w/(¬Wn-˜ècb"ÛŸ¯|…¯°¢™!;f‚iÚ‘ö5¸®Z—Ÿ½öj7ÎÓŒè™ûÂsÇlp††ü×ñs‡®›eµ?7üßeüþûÞb¹ëòdœ7k:%'ÊÇwéíŽ+L·†€Ññ¦Å}Öø~R~¶;tõ:SºA3yb» D¶YÍyŠ9_¾Çƒ„cøy'Öý‘‘¿cœ=ú¶A3wp"ߌý]ðxTÇZç²ÊüTÇ} úüëÒðý¥ÎÊØ8ô ×Ñ>SV<ýQTºÇʤ~âºY™%+ÞËÐðyœušvúRC1ðÒ²^`Žáyy™ŒÜ-ü<1²Õ¨ŒC'¡Õ Kñ÷þa“»°÷ÿsyã‘É}ö{¯k»=Ñç ¶Ns̬Ãu ¾Æ“ëöÅ€çñǃjq]&]«¾ô²ÎÇô³ ¹¹u?xAßlœI7ëΙ݄ã†þï^´s?¬ùšëZq~ãüü°ØvüûõÖŠ,ópš *G|ÕŽáó1)~4Z½Çõ}÷6¥h6€é¬e*RÏãóÛ"›+°>rî #¶ °+ín)\Æq7Ë`^æ&'ÜçÎmžeƱ[ À6!À_ÍÏi0Ôžc;k‘žQuÓ_ÒœÇâ„gɇ„&•[ÔºOÇÔßjÍÖƒ÷êC¯ScìÁ¾ãÆúsÔøšx1®þ/ƒÐÞAlÐÏ{vèÈ#êû?SèøÌª÷að¾È:0Y¨“£³ŒGb´Ç/ó[Þo¼žó}L2[4÷$¤Ø ¹%Ig_Úáw®%­& ê£ã;sŽÅNN¡‚¶N¶ÏÕf~ø Êê¿öŽP9í$û±-»Äýj¢ç¶ß :ï•`ú\Jß-n¾œ¼õ[XqK`x‚Z낾3©õ0¢ Eº–ü:th+½¦i XîöM™b§ØüíîÓ† `à—ðÐçÈyV:ŸQ§OoÕ´{מã‹a7£s˜• ñ¯ó¤Ø©^¬½sí„>Øœ«5¹Ó´Ìæi¬ú!Eåë:çCã¸Õ`y&_V'±” $ÔĨu¤Z‚åIñ`uêøÓð9A·[u¼i •›ë•8œN߆Գ’¹: ÷#÷ƒpP ÅNÖ?­XOô„LjY¤¶-e }¨yi2›ê™µÁû•c$_¤×eD Øi‹´N’ò|rOnδÙB©á¯¨ë;UžÿÁ-‡Á¯…fZ·~Ëß禚ñ¤j©žåü â‚©à˜kõõ`Ê9Ð3ô6ÿõ÷^ËMó]ò<ŸnZÿµŒX£¯O­p¤Ø©‰?2˜÷!\óüìµ}G­šÑ jXŸù6~Ik8¬‘:wtÎ¥œþ.Lc¢GóÇR\;<ö.¨1}³»‘](ùuÿnÿÝþ»ýÏقŬúw`«¦ziùÉJÕ¾¼äÉÁÉ;“›]{’¿Ý·kþÎð+ ©ë¦ÓSL¿d½òžñð/s°úK¢£¶dÏÖÆ&~N§ØÑ.0TcÖ<–lÒÜb^ ;ËÌ~×þš[:õ]uœ(0‡_/p;æów]­©F}ï°èág ŽâæŒu ÐP½™¶ˆ’ï æB'V<¯4‹û’é÷A~ohGŸu>”YÃ’þ–¢àT,Ã:ð ä~%F©»3(vÆìS•¡¿‚-óí¶ŒË »eŸÏÆ“ÿ0uʱH=;QppË _Ÿ¾äÙ¥Ýϵ¶PýòúÛŒ§U¿À!`ða¥çOPff‰Îô£æÍ'Hœ+"Ì®Eå…‰ýwàQkÚzjÎü™‘»u·00?n‘ÝåòFµ¥¸o2þÜÒ(à Q°»8õ×µvPöÏyqª:ÝòÓ”Ñ3œ°½Í-SÍw…Û•µs©:gš¶$ñó‹f°Í¸¸13k:(ºj]5ÊáLÔ²nÞH= ¬#ÙãÛÛ´A!3OÄñ95ß:óXêÐnip=ï½ðe)hÄ.¹°A›Z?m¾#‡þkìTï,ŽÉ-å…G=uü‡ëu÷óÏû%ëWþhÿÊ1/~zÚQó-i‹*ÄÀ^ E!õG(ìVyàçF?›ôOw>m ¬¥BŸ=€œõ'§šµÔ¾y–ïÊØµ‚àà_­î!˜ ½vÛÉO£Ú]:Ù¤(X¶µ²W§Bd¬MšµÏ²EÔÛ.}©d°›ìžWý&ÍyÃz?ñ¿óÂòꓘ8Ê)ù 7¢u)Ø'e‚~/‡)wöxMÁyUf— ãY?_‚eÝ‚,Õå|ü^¼›n9Fô»ë¦œ]» ‘‚a|u8Ï…óôrzµî»cwð…íý-C`[Óyl½)îçÂ;2ð ó~æñõé²],ë{|³^àþrF»•ø5žàušÑ-±Ê©ÉàØÒÛ…ãn¶§– œ”ÇõDn'ot}µNÿØ?ÑŸ›´…©âù†¶÷™n!G'44êE!Ž7ÈÝÜ¿âÇÇc?åîšõª`Ç*õ‰Z‡óõ¬û×<Ž`âu9ãò1»çóñÍ µéÄq8zNÞŠ í¸ß·þFÅD½IàsúÝÊÖf\oªÿyC¯¿d½OÌ´ñJ[Çg_/ãü–µ÷‘Z_œ¿f”›«›ßÓ Ó3ŒãñúßnnhßWc\Gk*”UÛ¼‚: ænYŠãu´ÑÅsÏ|ÅëW}“%ŠÆ6&Àyµ¡gQ6ÑÏéê”U}€ã†ì>c™% Áû˜Bwy$·Ñ÷Ì™g™‰ëõìRçiûë(fBíOœŸd¹cÚ´„X¼Îw˹~ÇT+ ¼òö<–}Œ×ábmѯ/ã¼!·MíêŽq¶OëÆ×ïæ¤J¹Ù¸î­ðãÀ¼‡3}D+Æ“p\Åéìis? <÷–9%ó´µÐð¤ÍµŽòÄçÃÅÏc8¿/#Ú6Ò…W‘‘—ƒp¼Îé!Ú»öþ\–Ôµ°vm1ðÜë©Ë‡ë¾íV®?ÎÁñJÖ”R­a•à±ËvD7Çw¤b ýJp¿2f¶åxÓóÝ€’ìF¶âë×nåιRêj ý{Ö†í‰økâ)zßÒ‰}½c?ü;dæƒøÊiSRþûïìŸ]v‰9Oñç2æùgt} ºŠÃÜå¸.]tGzÍñQœOÄmÚñ¸æ’*¸F4¸7±Žs«l¥–W¸¾KÞñ×õ³¿ƒ‰£ÈÖö+x>‡âüÍçº<ñçN©ÍW(á̯t¡ñÐÓ¸¿¡ïÊ‚Ïnøùd.1Õ×^ T.Z‚ïÁaî2ÆBœoæøöOVÒà °ZVu×Êï_L?ÊÆÿ.bæå·‘åài§Vp<ÿÚí=“–”á¸f ªqÞþÞ œ‡]VñïÃõ Ö…#cmB8?Öã®_Ï™>о³î¥û­…Øÿ.—¾Úwâç³Êô„Fµ~öÈ´é«V¥Nèû÷jïPO_S›ª?’ÂþáïRÞã3Ñ_=´õ“¶Â6"߬lã“ ÷þ®Ë“+ž¦à9jÂç4 p]9£¡îÇï ²Å&UF/ˆ9¹ü¦šMü¸><ª.22‚ÏÂï[ÀÆÜÂ)eÖ:†Ÿ§Z}Ë®¥¦‚Ü™_}­:ÏwöHÊrj%\Ïê6²°°ƒ=¶ßj}hÅçS-zÒ©Š2ü¼ ñ@ßÔ3§íã‘c¸Õ¨d±ÓÐ{ ÛS¦6á|d“ņDà:×°ž©ku/(¸„ürÐÀùȶé­1½ƒ¸TïÌÒwm«@ê@¶_ÅÖ‰þì?…O¡6„è+çù¾inÔn0è¾_~ &þ.ÇX~]4ÇÛƒª¯”) ‚ ßý¡N8^g»Ûgm®ßõj7Ú]´ ;æîúŠãÒSE„D7ãç•ËR÷’u{þ€Û–¡· ‰À²NWu¤ö}óðKK•—¶?¡£ÑgŽÉƒSì Ö¦0j¿Z÷GN.³v‚Wù‚uAû“ÀáãÖ¥öþ¡/HMÄŠ¨¿ïÁÞçåö_ˆËÛ!jê|37Õþ÷Ûz¯ƒWÙÆÑ™.߯†¸[©v ™žQ¢‡éµÐH… úßGSßRû¹(Œ>dŸ¯Ö)Ý_×òÀ ¥C¿Ü…Z‡#ß±O>f0’"„Tfƒ¾QøÁÔ>ÍJ‡†67 ÅãÏg½Âª08¿¹¥Q‰šO¨0œ¶»h0§Ên›¹æ)(ÐŽéð*(vf‚ø/]4ÀïÃ’]`/ü}èX*ÅÎ躪}ý®°6Øaä}ô-WEJ”R×O–+m>m[™rÞçZ-01û!üsþCêçîéy".z,$u^šßÚÙ{êj¨|ÝláÏÁo÷R¶êækÁ«}³ßõšSìŒ/ï¯OêÝ .ô²¼Õn `¬xyi7•#›e×éWž pmÿµþìÍ`•;¬µ¼•ÚMw^Ê¥˜¿×ç®Ö”º¸ w!çjòê{Ôã&…û\·úؾ×ï÷‚ÂMù­“©qGã];d¹Z£à²•užû‘ÞáE±3_úçÛÊBàèøsñãÌÓ`^STøbU?ÅÎÚ8äó™%À.Zaÿ,lø+ΪŽR¿ŸE–iï%0pzÖÓ§¿, ó•î§®³¬f(ôÎÕç{ßç ïw‹œ_Ÿ¨y–óÔ¶nÞ5εÙÑrŸ’À2BÞm¢ÔÃü»ýwûïö?g .e¿_¹jÁðîÜÓ  'ÔÕ,©¦ö¡tœ3”²6ü^‹©÷IzÖçì­ÇŒ¨zãp„ýJPAÞ¬+•I™V·M4Së¾FªÎ?#°žt¢åóQj^šãÇÕŸ.ç*7*æÃëºQ°‰è1Z£HÏí|æDµ~Èk슨¸Ê».Ó‡\–¾R§ØÙMé^Ź÷wz|ó›æmàúY4åÚ'ßaös­jƒíàûi^ஜ¶—}™ªÃÿëã™ðveÌßzûìÃ÷‹ûÈ5¥eÔê| Ëgæ­O…mh/œò XU.œ¤Îs§O±üP'd^wÒ~Ž<Üöí§~H RûŽøïê”þ0Ø ~‚Kd¢Kp¯µ6êÌ¡öëðå^XŸC°y÷ÛàÖßhaã¸+¾bp¨þÖ9á°MQÍõEKúÛ–ØSãkþY­£§r½Á?¥7¦jŸ:p?lã gPí¼öíéû±ò[)>f÷’ªŒÚwj>¼›œo}U!ø¿÷»_,Ð4^ý©‚ªÃΊ/Ååë"+|ÕZÏv¸woM §æë¹Žî•8+<¯ôƒÛ=vﵟˆóÎô„#ÏžÿÍcÓ$9À¦‹sêÿ¡ß„«¥ÛŒSó! äɰÂÔ³Q3®ßrÃyvO‹Ó–•âú3gú‰F›v€K%m¾VÜD~¨=‹Z_Ù‚ëR5Ä“‚¸¯A?Xt›ð¼~ÐáËî~Óˆû ‡í•½; ÌgÙÍÞ‰ãdª§ŸŽ?Äë^ýѽsç?ƒòùU÷âþcFWU~¯z‡ã ÖYüwÅ͸tEÕY¼žÑùr¼ÀçÑÐi ïZ‘Êív*ïO`¢Õ:¤Ô…ç;2_«‹Z» ˜œ¤ËLpN —Kgä>ÁqãÜÜç¤ñzŽ1I©pýù~`jjŸïîÄùz }û =qÃàï¾Ãó?@Xœu!çAi.¼¿èʼεü»ß5Ý ìÏ<ŒmÁ}žÔKül½fàü«òôbí`wÍdìå]\o©å<¬Ñƒãæ 2vZÞ»ñÂ'BÄçª=6êÎÅõ¡ær£wæ3ªÀöpÍ«y¸ÞTßþ®“g,î;îý'PÁ>ªÜ[Ïæ÷êbɚɆŸrÁùlLÝ+q'[^ƒµÞÝióqCgùµž¸žÐõ耗ùŠßàØ´üV„#ÎWÑz檞ƒó.]§IŸÊÿ ¬ ¿Ùfà8°fmÈT¹78Nüš›Ð»'ààÞĈ?܃¯¿a™gÊŸqþ‰SÒœ/q¯¼ÁQlO"z‰ëMµW²pkÀy›–#g?LX´ãÞ×N?Âý¯twÿ––à@sµÚwûZ0]Ѷ8¯ÒàÚÎOí8ŸQöå™Sî=`ÕÝš6i÷›ÓÏ4?ç3û…qÓìØªùÀÚœr&)Çñ,•÷Oy8ÿh—œ—Ç×¥*g×øëí ûJÊ3o¥éÊ«‹[¼ðz_Xi¾ð7?'´~àPU¾x˜ñî°îÇqUµÚò•M½8¾î1§øJ‹Ë[p¼!öòÍ:\çiíúëç¹b¡_~³¤Ô5 L8 ¿[ðŸ÷=bdžñó$ÌDàW1g!¸üÚý[ù#ÎßbÔɆ\Áy¤æË½«–.ª•™ß?‰ã¸Š¸ÆSz¾þÜÌåû®å„ƒuÁŸ#M#8N¦ßØúó‰Ð¹­jwä€Ý¡mvñ žG̰¿&’m‚ãÙ>ŽA1ÚÀªTôÉœŠïOÓÏw K`¢Ï<0ççp²?^õ¢Ö—¬*<Z=s½ÂÕÓø:Rªµ¿¯røT#º^´ãúWÁomü2ÖØÏÊ;ÝEt{@À‚©tã ®÷´5{/NäŸ1¬­ÝG[‹AmûçRÅ:œŸ§~¼œ_¶發®2›« r©3~µÏÂÏUùoq›Žãë*ÜëÜ÷§»l ÜÖêÕGe¬ÞûܯÖ-ÁÏq9¹k£Ý,Ð1>UÙû ǯeö}Z¼s ‡ðÊ“óGÁ±Æ;kG ž3B«Ðy±W ×S{+©Nú,µ<ÖE”è‹âßÁºžÞÕ%õpbßSlOäYß*@±¯’±lhmê݇ã“~³éŸ”9ÎÇeÓ>ÆuÐÌíu6n5øwl¾`t8^äß6Éô*㸞øq·“ƱßY>û¹<s“–4þí8¿Q/¿–µ¢ßÿ^MO:3æƒýŸT™%ÕXolÎíݼãÎWdçtŒ?{ô3&fâ|:S7¹˜¯Ò˜CØN_R±Àxø¶¤å|6eƒóëÉUýw&¸Ó„c¹¬Ã—$\=¥xªáp·Ú>©]ŠZb·/»¹ãÚsð—pñxïP ®M·ºZ¨}_˜ß/E8Î?κƒS78Nýü-èZ+õx3t½æŠ>f³o“é^põ(=r÷uÎÀ$— ¥¦ïÁè]i÷$(0‹Q›_ÆþHµcÔ02ÌÀèžÈ—*ÙT0K1+¸]ÒýßÎÖ"ÞçX'=üš f fI¥;Ü·Qû éÝ?öäcçl`VŸ™©í±Ì†ÞæŸi¥Îµ×Øi_jT¼èRçgLIý[á¹]‡²)vªÁÛ&ߨRŒÚu§Úèv)ªI?¦ö#Sº¸[èé·¥`–ÁãMáeƒöö/M ©ë6 OýÊ @×täGÕ``z~êØ"ê|‰“¥²‚?ׂëJOëÁ¸,f—gO9ÅNrLÍù¦¡5¸_\Û¥Û3Œ7ÅkSç´ŠGÇ©xxøôô†;x€Á®5A_%¨\_tô[ÌŸþn`Û9xlš+ú›ïÃËjNB¨aY×Ê=—*K~¯º†Ûâo<¿µ•b§3´,û•º%8oHtûôÓÊ©ùºoÓ’ÊÜJ€¼Ø `æO`èב¡QçuhÝÔȉ–+—¿×Ó-D3ôÜBjŸ@M•ÏAWÌÁ±?y`UÕ °ökõ8¨×K±ÓîXú¡Â<\œÛÅ„ðíþç›Kuþ§Ý¿Û·ÿnÿs¶`¯Ä+ ¡ƒ'7³Ïí] ˜¼êÚØ¹·Žbg§|ªÓâ–¸ÙÒ}$Á|þ³û!‹©sPí´þÌŸ” îõ=_æù&ëíß ùRì #ƒý°j.¸¿~¼qØTŒ««—¾§Ø9üPh[¸$”š·Ì˜¯ÂW7ð<Ú6ëÓµ•”ñ›ljüŠþÓ¬k[Úið0,ø>{{ Ð7ÇÍ­‰£þÞíãò§ª+%x¤²¥Àfeç®°ÛÔø‹%V²¢(Ü×ÄGl¼4h̬-·«¨„Y? ùÖv ×f>7µ¨ÏÅ+¹`•ùaõ‰7Ô~ÌÝ—ÊŠûY¶‚[ÑJ0…¯ÎQûŒ17½É9X®¯;lù¦ÿYKk5UéÛ>•µ=ןÎ&n`9©_vA*õ:`Ÿ­Øñ'Ö¼}Qz½(œÚ…*6õ¿¤Ø9»K„Ÿgº'CåËñMÅà½pÖ+:õza¤‰5Ü™¾ÞU?÷6êãÆ'3÷Sû¾º9Þˆ‹ºœˆ©‡¬' ÏTS¿ß#Þ ÕàœMyìᜠŽ}’·šPßÇìŠÿ˜‡°»I%¿êÊz´EB¦•w¨ñDÖÖ+'—; #/is—i½zþJn3µ/…C¬Ù+É'eÍâÅÜ­›ê Á.]Šczò‡¢“Bà­ô25Òè6úó*µ¨úo…›‚âÓ“®–.ZëÞÍë‰9£:B ‡ÎvbŸÐ®ûùT Ž5›’Œ×QŽ´å÷/~Ày Æï¸Öùü]OÖ+?HÇs¬MÖÈ:<Áý«Ìr÷IlqÖ•m¢w5p3kåÓ¬UÜ¿Êôøj­éù@3Èíª!ú‚}T‹ýpÏ•°Ñ|¾ªË[­ž.ûR¿1Îûâ2yûDÜ,mœã~«ž»]ov,Às mê"J]/à8$#'ahð¤<8ßX:çÑü½ÏVg]ïÀû„n¸¼Çï‹¿ êâx‰…㥥­ ü;dÍw¼Û“+o9ÎÆyYæÏú½–(á::+ÛÊ Öð!pØÂì€ë‘ômæ5LÆqG“Ù,ç³Ý`'•s:yâùÚZ2žÔæNìëM*ñ¤ä0 œn°ðç˜WÇKdZãøšá½;»¶ægO´C…ó×Ìc&«ü„ë ãž~(à¶××¹m'^-]~ìþ÷l÷uÅ%GF8.>âñÇ-ŒÜo¬® Çõ{îås¾ÛδÚáòô0Ð,™!øÇ?ìoNº·^ŒšE±?Yeد37n ÃuÑNûMÇD΃ïU'c)®;4š*pTf:Οr4`.dNÇÕ³•»˜¸/¢áÜ{tƒn|:>ûÁhãy`o<>€ëî,†TÎÇýÝm¥6Ëœ>mÎm%½m%8ÿÅbç»¶Ü NÖç]]5[ì/ìq8ƒï‹¬´sR¡8/ÒºkÖ­3×UÀ©:ûë÷x]o!T·êóSœçc#ó¦ûœ 8,úU•b‰ç¼ZlKˆÛˆãÊ´g.-Ç\Õ¹òY¸/"íâ£â/]Áð­â…°_8¥º`áb_·UMô,\ç2Wom©Ù:'gÿ1žq^Ï߇á_KŽfïÔ+Ù.8Gº—ž;öǼÕ{˘=ò½ ïŸáx¡é¼ÅòC18߇eì­]qá4X,­hÿ£‹ã jâ7ŽF¿—§qédß"`ûM‹)Æ}Úœ»£ÞÍoÁÏ+Ù»KÍ1Õì7ûn~Ãñ? A—É£jxN»a^zÓ[°ªçÞÛ”‹ókµë¯§üÞŸ/ž£üW:ÖûœÃ}ó ñç0¼jq½øÕtË» va3.1Uñ<‹u¡nŸqüÚñþÏ;ßbÁ`ìDœö—ÑÖŽ›YíƒïÅ+ S¦®þEEäepJ~ïÚ<çB³°I)ñ9{ì@÷ð‹qdö°~—Õ+E7´e—;žËžºÝ¦…·‡ÛñçÚv¿[÷s³ôž¬–tg?(»9%ÉÞ&>g×*Æ4ŽwNÿt{ôËÍn?4;U{÷-ódnJ´ Æu›7ÄOÓÇ/‚N'óTZŽ›‰HŽÈºáç†K¬íøÕ¤°×|±×|=Ž›š«©ïù€Ï›èð­àÃá੾NüÉs|~­f$«ýøŒç\û&ÓD8‹7úÐhà}ÇÃéIæ·Æh¸?7Q'ɲ« àSÿŠ@ <‡‚UÒQ±ÿ(~.êÕÈŸSVø ïÌDæ^ÀçS¸8Þ%œÉÒ|í—ðv*˜¤üxð;®çV[xñ’úgœçëûî¼Iàëwà¢p@nÓ%bÞoÎξ§3ðós¯¶£aýA`&VYŸ¿‰¹™Ñˆó“e?ð<û‡ü±<¿¿ï›Þ £§ŸüÕg>mßïÔ÷ ¼ü’ÿdð½í]qòüqpè·ºÑEå¾v·´^U³æO›G›ï80ƒr4µ¤¨ï›öþ¼[QÞÀ‘’ïìºîÌ¥ E×N¥Öi:º_XcÏg Þ/öW~KV+[ëþ¤·;)³ôÞ«>ƒMö÷…Í`pýüŠíÛ)v²Ûf¯)Jú‰¯O9¢‘ §ššì½œ“Üû½#„' 6GŸ_95:™&y õÔùœ²Î}E©“`Ít=°çF%èoxÞüiµ¿tû@µö7 )Ñd÷‰ƒ~ýûÉßz©s) ÞEhŸ •ziØÇ3Û“ÀðWƒé ƒA±3Ò25WŸ¯¶±ÛÜ ÓöC.Rû›mø½ëñJq°;*×^pln}f½)顨™ÕxÍ[l~l¸w=&{‚¡Çä©-õõ;c†¼úùãÀêêtúyà#˜NÎÉ>Jå¹zFãÞÓ¾€‡}ÚC½00îÙSÔ~–ÚEÍÑÿršÄAକ[·ù$>7›NÍ'ÔŽZu¢¶¸ãïs"Ã<áêê¿÷7È5åYQ?7üð' ß~ð :ºRbÙK0\¢Ô2F7§ãÿ3íÁßçNÓÐáî”­`ô.ãMM$µŸ‹‘çÇ©?Ž|§"‹cÕ5`Þ#—Õ´ŽW6Y ë­d`î›=6.ºVšâ^¡Øæ^9.½Üdè«>M¹ÖÕºÁÓ-]¨Ç ¹¾¹_Ý€Ý\ÃÇá`n—>ñ?w¤þþÿßÿæâã“´ý¯¿KüŸ¿+ü—ýÿ·I|b·üîÿýè¿ÿƒóßÿÁûïÿàþýw²ÿïÁþëBîÿçÿÈDîpȹÃ%vyD‘@äyyyyyyyyyyy.y.y.y.y.qD:‘ND¤éDD:‘ND¤éDD:‘ND¤éDD:‘ND¤éDD:‘ND¤éDD:‘ND¤éDD:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘C:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘G:‘K:‘K:‘K:‘K:‘K:‘K:‘K:‘K:‘K:‘K:‘K:‘K:‘K:‘K:‘K:‘K:‘K:‘K:‘K:‘K:‘K:‘K:‘K:‘K:‘K8‘‚HaA¤° RX),ˆD "…‘‚HaA¤° RX),ˆD "…‘‚HaA¤° RX),ˆD "…‘‚HaA¤° RX),ˆD "…‘‚HaA¤° RX),ˆD "…‘‚HaA¤° RX),ˆD "…‘‚HaA¤° RX),ˆD "…‘‚HaA¤° RX),ˆD "…‘‚HaA¤° RX),ˆD "…‘‚HaA¤° RX),ˆD "…‘‚HaA¤° RX),ˆD "…‘‚HaA¤° RX),ˆD "…‘‚HaA¤° RX),ˆD "…‘‚HaA¤° RX),ˆD "…‘‚HaA¤° RX),ˆD "…‘‚HaA¤° RX),RX8¤°pHaáÂÂ!……C ‡),RX8¤°pHaáÂÂ!……C ‡),RX8¤°pHaáÂÂ!……C ‡),RX8¤°pHaáÂÂ!……C ‡),RX8¤°pHaáÂÂ!……C ‡),RX8¤°pHaáÂÂ!……C ‡),RX8¤°pHaáÂÂ!……C ‡),RX8¤°pHaáÂÂ!……C ‡),RX8¤°pHaáÂÂ!……C ‡),RX8¤°pHaáÂÂ!……C ‡),RX8¤°pHaáÂÂ!……C ‡),RX8¤°pHaáÂÂ!……C ‡),RX8¤°pHaáÂÂ!……C ‡),RX8¤°pHaáÂÂ!……C ‡),RX8¤°pHaáÂÂ!……C ‡),RX8¤°pHaáÂÂ!……G ),â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼xñ>â}Äûˆ÷ï#ÞG¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx?ñ~âýÄû‰÷ï'ÞO¼Ÿx_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x_ñ¾â}ÅûŠ÷ï+ÞW¼¯x߯xܺy|>7þ<çã¸÷è|~ú–_îνo w¯>¼yòáý³syÿKûñÃÿ9¾ÆïÆžþ?v|ŸÆn?}º¾>Ž›hÞßéïË‹÷/¯.Ÿ¼ýëâõ¯/¿;=uº¼8—.ݹ~qúxzóã×ǧÿßOshazam/data/HYDROPATHY_MUTATIONS.rda0000644000176200001440000000170513670240241016276 0ustar liggesusersBZh91AY&SYl°‹"¡ÿ‚ÿþ\a@/ïÿà¿ïÞ°@Ð^y…›ÕUUã€ÉHÞ¨i“Õ=FÚ‰èÔd0Кšh ž(B¥¿zªTb &LŒ FL!Q7ïU$ÉOÔŸª~¨yF€@dÈ O*UOõS €L%ž„õ12† =M4ô€M‰=P¦ÑQ¨c!$.1äÅTm0P6`E@]P6 ljPk$F°ŒJ,Ä)q"qÅUEI•Hªf“”WL$„Ì3\ʵa R’²„µã¬ì/m¶“!_¿oŽ— ¨ ¨‚Ž@E&m”Ä^Û?Ö"Šº¢Áø‚Ž>¾\þ¾Z=üÜú:4téÓ§ÕÈ÷û=Þþ©ÛTÅAPæ*F2-˜â8ˆãCÛ—Bµš!TUÁU4ÚjŒT‘I‘Q"Ë-kJ©´Ž,‰¹"+%‹«Z P¨…qpœÕi ¢²ÆI%†\ÈR嚀‡1 ’Æ1K2W*Y˜BfÄkZÉŒUEU\²ËšY‘‰W …ÅsÕûÈÜßsxÛm¶Ûm°'`  º[$€m¶ÞsxospÊtËŠ¦´-¡pu@¿à{3 $œP¥BÅø"0H¤^>zYE’()É pØËm¶ÊK}þºxùº¶îݹ¸ $†I$™•l0Â`*ÀU€«kK6ÿœ;Óñ½ÛâÛÓÓM4ÓM’I$ñÕ€«V¬YZÖµ¥;ZµSfa†k$“½V¬X °`V–_Ùîiu˜ãŽ8â&UX °`*ÀU€«÷Ó_ èñN]&®;iá§'Ùçžyâ’I$’fÕ€«V¬_%÷ß}÷ßK:ü®vÍ–ÓÙêÂêe–Y2K¤©’L$ÃîÁV¯7qÇq«W)ªª ªÓuT¸!msx m~k“J 52©3À‚hsŠpã e«ûý#ÏèÍŸò)ãc.– QƒXT²«Î ÁÙ² œ1‰Ý$€òVJËUyB;ÑÃÀµ;!I‚¿èó]˜o8r‹rÅɼ ï€eÞk»@ y@E°i\À7Ã(Œ¬©¯+AâÝòR9oˆ8­Ý—Ï„zLöž‚ w0 QOè ªÿÅÜ‘N$,"Âshazam/data/CHARGE_MUTATIONS.rda0000644000176200001440000000170113670240241015530 0ustar liggesusersBZh91AY&SYo’ €"¡‚ÿþXp@/ïÿà¿ïß@Ð>¥àÙ½UU^êJFA£ ÐÉ 4Т?zT5OH~© €Ñ "#ß©UFÊЀ@Í%P€£@2D¢Dié2‡¨dÑ膀õ44Èõú§QÀç"Ç”P@çáßÄv•T;¹PÕ÷î¤0©!’ØyBC!a`X‘„µ©tÌ$Y"X$Že2d¶¬´È–dÆË,„!”›÷ïøŸÁ·ŽÂð)×wnÙä÷¯* ÈrÔx)<}×¾mã6è z ž˜‚ ²„Ac…Ëxµìs6.kqç]uéüwpãl !DAí–@% ”`ÛHÀóÌË-–$…’JVå®[)m¡JI Z–ØBÀ„hI`Ø$€HÙH(\­AEr(£RAÐÂ(-„$ -Žp­°Ì¤&VŒ,D I áÉ(  UE*`nH@ @lj$$FBI@„X[m´!1! YÅVk]3¦•'/o ¡ºÕ, €, €, ÞnìÀ Š·7+emªÖ´×9Ó5(¡J@D D‚ù%ÂÞÍ¢! žŠ!ÚˆÀ@A"‘}ÿEÒ"ŠdDS²zà쌒&“·ã߸œ/OWWV½Z뮺€.îìÈ6Ö%ݤ¬I$’œpÀg¿û÷ãmß{Ûrô'9ÎsœD9‰$’V$’8 à3àI$“54«ªªªª¨ˆˆˆ±$’JÄ’I+3ð¤’Iœ|ü6`¿MT4¥+²”DDDmbI$•‰$’V+I$“8 à3ïµeš)ó¡·›Ëm®Ûv±$’JÄpÀgÄ’I&}\kžµq¬¹e‘°ZÀï[S%—zÛebI$•Ž"I$™Àg‚€œ ° ó¥±òdúÜÔòß” ÁúIZxÞÒè†ÿؤ•OOÊk2OßPU^‚«y–Ôâ“Óêªóç¤Üø 7›¡ÓP5ì:ÕÛæòù´ß¤ânªLv¢0*‘ d?§2< QR]5Àë/\’ØŠYaXEèæ|>W˜AÏ&÷o„ׂ.€#Àé”AsL=]¯@ƒâßÐsë„d!ÙÈ ø/7ú¯‡Ïµ=gÅ¿´ìESp ªÿâîH§  òApshazam/data/HH_S1F.rda0000644000176200001440000000041713670240241014107 0ustar liggesusersBZh91AY&SY/$O‘wÿÿÿsH  4Bïà’· ŠCiÍz<rìve^Te³Ø¬§wæqH- "‡ä5åûž¡FNŽ_âXx LŽãò$w}žŽâ cÀŸòHb&VOÍ ‚?Jì‚9$+?åCª³×0]~m©]²úÏ?zQ¬îôBS€I(½Á‹|*½7ƒ!hK`Æb6OIU¶¯¢1ÊÔ:C’ =¸®.r¥“­¶°ú¥°Qc ƒ®\  Š)ÓÑ9ƒÔâhªdÚ¨rl”7"0_‘…PÖ×17²XÚXYµ„_RãóÒÖŒè`†=™«ÎÄ{qLe…ó›PPW6é yš½£{-j öoˆú.Ah¥i‡Žô ?ü]ÉáB@Æäshazam/data/MK_RS5NF.rda0000644000176200001440000047261613670240241014401 0ustar liggesusers‹ìýPMÛ7|›1çÁHÎùhb“Z’"9*Í9çŒY1g1gÌ‚bF1"*¢(`ÎY_ 'û¿ä½«ž·ê¬ºêûž{jË={lgwžÏüfëô²óÓ¯íW»R¥JU+U­Qögõ²ÿ¬T½‡tÐ4©T©Z•²FåJÕ*Õ*{®éæäåm(*U®Ú꯿«Ö/$.¢ì¹áÿkÿÿì['<"9,)&!%&¾ß_ÿdš¡f\D’rJHRTDJL¿(司ðˆ¾Ê¡!ÉáÊñý”“"ú†„EÄEôKQVõRS鮜Ó÷WÓ[M9®JÈÏ­&+ÇôSî’¢Ü7&*:E3,:¤lM¿ø~š‘ýû…ýìÒW99"±D¿°ˆdåȤø8eá¡׿_̲׊‹ ‹øëm+%'D„ÅD$ÿõ–ëºõO.{áä°þ}û'ÿ]•𔿫R[OG×PSGWSÇèïú†Åü~ûÿù/*²þ1Ê6Êv1Ê"&)^ÙKC٧샗ÕÉ1"&<¢Ÿ²³†²mRLTTòÏ^6á!qÉÊ.Ê<¦ohDRвÔPvïÆâûõ‹Oú¹ZÙ'&ª_DHÿ¾)ÊÊÞÑ}ãã¢cú(»ý*¦K߈˜~É)e({+«–½U#5-ee·__C|¤²w|\Ù[ Svœ‘ôO¹•eù÷UöïÜÊJ§lûÏ7æXVMß?*:¡вS”²÷ïºÿìn’¢¥,£#”ãû'ýüRÊ^Ãéç·ß7>j°†²®©±ª©š†²¾¡‘‘¦¾¡±–rtJJ‚™¶vx|ŒV|R”¶®Ž–Ž©vlÌ殮k¨£§g¤ÿWqkÿ|³¡1}cRWªT¥~Ù÷fHlB­: ¦o#W©Úkø¹þdÞ·i•›Ç«ã›ÇwÉ0 ;ÃOï“v÷¼6Õ^“ãËRÏæ³ˆÇÏŸýUéÙ…%\~ÜR‡ì‡œ{ñqרY-æ-'ÕèÒç¬ÓH2Ò.J\¤×líz\¿”¼•,CúÇ­2\I"û¨Ù÷^Èm­IÿƓΑ³ëB¿oÙ䨨'ìUîurÙeºÄZÙ—vÎÚPElT{M{J¶«¦”¸îŒ!»QI“'$ûêéçLs(¸A³É[FPP¯¹qû¿fPxõ/‘w¬Ï‘dz;fí¨w»jÃ52ZS¯•zk©DQßOö‹ãjPˆ¡ÁŒ'µSÉ­UJÁÇ)TöMOqFYãŠ5bRÉpÞÄeá–Rä0‹SKFxQTÕ÷O¸G!#Z‡ r‘/ë^ü5—’’¬¶Tzg@‘ ÖÛ/QÂÉž,x@ uÌWߟJ¯:*9¶¡ˆÛ¢¬åPø¸”©jíWPXÿJ6qíÆSø‘íߣ€ ÉÞá;™Uk{'§'™9…éF½66éyõëLòì\¯÷q&˜_”öek'bã§ß³7ŒœÜOê|µ:vœŸpëôJÜž^°z …LOyo7¬uqPyÝóG8©Ù®÷Ý;º6Y'TysjénrœS…ßpYNƒÖõ¸U7æ=Y¿yu«ÏÚö¾ÿZ4X­‘sÑÉCÔïí¬¶›t*QâÖ~£Ž”V#óÈ©*†cg“{·]mZ[œ§D‹7Gß ¤pflÜsÇ"2³:ÜôY½t2ß+»]›š@Z«;F)]hGOÇö}KZX ©O†^VO×(“né¤]^tŽ zæ4©½š:ýóËɤkYŰÃTW2øäÓH3-Ÿ¬ýí­Œ›LÖk†-_0Ìšº,¬Ûæð<2 ;“ríÞE²îPßÙí¾Ù~Õ÷™0©Y_þzȬq"• IƒÁó‘E%×ÍF©^›ÁÅ™Ȳñ›¸cf…drÔºÕªä~d7ôp€Y:Y ¼œöãsû‘/FÒªÿ_&íÑ>7ÓH£Ðûj¯‹qdÓMC/óLu³2ío{6ôk§^²ÑW'ýóU§l_—ìmìŸôXx‘ôD¢N“Τ½0hæÙú¯É¤µks¯o³©ÛŠé•Ót¼H­rRt_÷a¤Üñ£µc­V¤Ÿº­–ÉØ8Rû2/^çÁKÒ½t¿…Òb nm°Õ¬GÙ]lÖ 7YwÑ|¸ûÖ#²rß¡ºsúÒ &^LfECS]N{qŸ]W‡dd“þ•yלÕj’áÒºÏ+“Wk›*­W!§Ö¾Q!ä>pôÜÍY7È"¢–gÀr˜@¾±‰«6Ÿ/ª¶:@‰^Û_ܱFêXe­s µ)Ü•;øh.uÖ?±™¹é:´PsíDÔ­êÒܲýD©÷¤{“ȸùæ;{9~ñ•zí‚^SçÞ‹Â_Œ&£Ú.N6O]I§RŸf=,#ýF=zý:žtò5CÇÕ˜úߟÿÚ8W½æûÙ~óL²Ú—_çåéhÒß_G}ýÚ¤œù$$©q[Ò½dkÚ®ãlê^§§Ÿ^íKÔ±¦RNñ½2lZz__«ôªLñ)Ê\AZ9s#½ ÜH?~EâÓzIXaíŽËC©ëÙs¡!]–P×GIÕoÅ!­ÂY ›}ÞI†StôúFœ$ö%xf½ÛÈ"í‘åýó¤:úÉ„d>8§ý¤ÕIçà”¹M’ɹ‚ÓªÛߓLjŒ^ËHãRÎ—Žƒ‘~ÍÍö.C¡kvÏãPìwæCæì¦6¹vÏ­¢À/52§Ž °ØÝ•3#R(´ýdÿ÷ÛPŒ’Wû} I˜¿pÎmÞ–ӅA׆Pȼ꧌vÝ£X³°½ÓŸ3r°˜{eJà ÔïÍã…Cô·‘{k·ãÐI Ù—·hÔýv4h“uç:÷½h·ibu΢Vä4ôùŽúï;hxu½õO‹¾ãùð-õm:iè #ÚÔwÒÙ4>…Â.ÝßÞÆn7ELT[:Ы Eo5QéUó²ãêŒVnA¤·v¹~¬{i>Jp°áršv¢‰› ™>­spjƒÇövCXjýLÒ{˜¸9úB]r,«ß0‰¦ Õ;¬&Ÿõ ÖµTM··¿œ—D]lúxäös§NÍW˜ß-ÉfŸv±Ö4ÒÓ`lÏm(~Ã¥û>¤?²O`ô¥ ¹aa—þĘäÓ{zW‡¬£ Ý/#g¿ ž¿=u¤S:m°Zôr:ºMÿUäíu¨už’*yh²E#:(“Y¿‹íEÙqóÖ8ååÉÇËÆm]mí:ßÉv±e~­WdÙbÛb糤ñ0|Œ¿¿Úz)3wu^Ø}Ö†}Ò2?ö¤á½¤ýèÉú¨î]I¿•¾Ùû¦d™su¡óAÒ\p4½ãÈ}ÔvêºÀK׿‘îîVËì&õ<—6¬÷û°Â²K£Òíãvòkâ2xw—z¶ö"£ác ›6!=›ïk×hAVÊûÜ/§"[\* ƒÖg*·¾9 ŽÚ–DXVÿoÏmœ»FuŠ^q¸6…NRmNõä5>wüÖ™<µ½5¨Óuê±ïÎDÓ·µÉón¿ˆ„¤*äºÏíÍÆ½œ|üÛví§EgäÕ{w€4¤ëIR=§6yoŽEº§&yMZ>€tLïiÉ•ÉU}Ý«ÅÍ®…sZ{m&ßIM5ß×yCgçF^LJN£œ~fõÈsívÝùGz_pf'§,]òÈ0¾qHï.y /rlw•xz ãƒáÖd—õiÛ€KÈ- ñBÑß|WÍË9»cu:®}û¥ÿ ²>©UË{Ô@b•Õ*=eKöß“7ìn?›ÕÒ'ÄoNž}‚r†µkUžça‰ë“–5«OaçªÕ³PŸHNËíLûÔ›fõé”ÑØ®óï‘eƒ½ìf !¶±®±Mfeó&í˜ä³ÎÔ§gÓƒ-©ƒÇÆãeÙtjä·°³;Eäºo˜4g'õ´~§aßá…}{]õfVÑF[íïÉõüÃË–#{ÿÀ #\¨GÀ¨Ãí¶2­U8'™œšfú‹ÆYäXßwá½f»È}ÇÒy]“n”Õùk¸[Ù|Þ0IsŒû¸D¯Ülb¾€ºÚÖ™¸Ì¯:™mž¬s÷2nÚõÊIêjùÈkFêYj\2Åñ}l,© hù•]ϦNîïZ®u=M*íµB¿f„“ΖÖw"[’QVû¬é> Èîø«ûüÖaÌÈ—í \ÉtÁ-õÜÙdRµŠu}ŸÑeç_¥¥Î#ó 5·”ÀêdåØÀÈéÊy2·s›ÙúÔÁÿöøüׯ9UÓ²?·§ÜíÖäõï]ƒX¢ÉžÞÅ›ˆöøÝ_Ö€ìÆmh2åPm²‰0ñhÑ}±¼‚*…ëƒÈþí¶ÓÕŸ“Íú!E­û3nx¬ê¡Ëd¿0oòJd²qÁ‹ù{‘iþüñeãÓÂ; F«ô<²–®52X’c½ss›¨ç’WånÇÄú‘çëfÕ ÒÚ•¯_¯ªtx-¹GNxPhåOlõð°W¾’ïlÐR=‘øŠ/§«¸“±!ûÊæöwV½˜Þ«-ù›ïZ{!½˜zê÷\78†üïݬ±s][róû¸63,|©rªmÙ|R.eA£ü÷Sðû ³¿‘×i«œÂˆŽäÕbÇ(‘:’|òºjsÓøe]‹.A±Dú’ª¶>F½5-[trõ /î߈|<[ïÞ»`3Åêï½²ß÷:õà¥Öÿv õò’ü|çGŠ,°¯Õ{ŠJð6w/ØMÁJ!~cnP°yPȶ˭Éÿ\êÜü>åV:z¦”z]9h¾ïí rwŽ\e·a.4Ýpfv!YlðJ?rX‹¼æ]¹ñ#aqÃŽýW>õ¥¤“› Ç’Ó»G¶æöϦ¡iŸÆRœníaók¥ˆŽ«]m%7¥| ÍoÔ©Á ¶'H'!ýg’]†cô™(èP õQÊ”´6bÀýîãÈ8kï ^û©×Rµ9Á#(¾ê*Ó+™‰!´_oD‘ƒ'NÒ¿JfÞc[WzÔŠÜ’¶¸Þ=A¡›ç~¼Š”^´Ù÷ŽÌ‡ðÑÇ­æ‘Í¢ã¶÷çv%“#¦yÅV&·‚éË^mÄÞÀÂIû–]õEÉdäª~vÞV+RO*Œy{>éη¯=IºÖaÆí ‚Hãó)µm—“A©ãëO–Hçè¢+¯.&­ç3ýû'’VPïq+Ÿ…‘þãäjsæ•Ù eßidþhUH~ÖbÒ‹ÒžÓºfO2iÛÐ.G«:é'½ì ñȉÌÕ,‚ò 2X¿ho¦Å(2krÆÎˆ—öxpwtåÖÿíñù¯s[åmS¥–η»è£JÞg5mÓý#Ù:éxjéÖ Ç.1Ó.§’óˆJž ­F.ó_¥6Y:jµnëµ-ˆLù8mj)9´ÏËíZÕ”œ'y]~öþ¹wŽ÷|{¹ñÍ#«f­$‡è Ù9«Ö‘Óuê×Fä»+QFáäõåK÷=Uɯ_ïŽËΧRØìªº“š|¤€ÒaO=Œ¿ðÛÔÀ±ísróâsÒGþ ó³&×}T–DZћ§¥ëûÓ*guŠÈ¾¦{¥g*5ÉÞ©'¹e<#î{NéBäéo¤»Ù?œšŒ½±ö0™º©ž?oÛšDÂðMu¶PОêßfÍ"ûKO7Nî/¹$¾¾Dž/ïÙkÏÈÆØ(¤VåUä1tÓÄk×—Ík.¼°ÚþŒDòàf’z'_º”³¨õ´}ã¤Õª„<ÙíA7Ÿ¦‘w†ß‹œÁgÉ7}xAl òp¯©W~3w´>ÊÈÛ4qóÃÉ‚<’Õï4J8Ay+îl4E®wΞ‰¿T‡ìõ_n.¼QDÆN®|o«Yäg4¼Ó…Nä2éúGÝï+¨o\þ”b,rŠÑledQ…BêÜøšÁiàöa?žQô«Žg’ËŽø®£nݤwV9†/íAÝNÍéßcÀUbûfí_ïD›»«\8 CÑ,cäžÇúdi¶ýkò^4ouú¶ÛÔï~ëÉÃ\+QHWËÃùë:Rðÿ•ëfM#k·)Ë_`äne8â®éwŠºrÁ/ïøM 0œ:ºõ¥²^{P}éÍ>äµ{¬òàG Tº_;oLnFº±¶ Éãk×ñÛr%i¯N›“¦¤KF~¯Œ¿xB:+ïÌ‹m@Z-OÞn?–tXWnøZ•º.ÜñéÒm'2‰?÷9ºÁ2Û{«õÂâ%eçåyJý®|'½Ž³¢›<&»I.νJ¦É‰òÃ¥+dmy2ûT/²9eÏ÷.dsôêIÖ:’L{OoyBùÙ†œQ=R…V.ìݶàÑêWçÕ²É&¤Ûù—ÿÿgÞ®sv¡çÅësIǤ{§ý‡òÉô†jŒsNerOÚ´‰L‹w»Å8î ½vYKvï#+SÕk¯¾ rŠÓ>q·9Î>~áñšWdÝrèãkÍ-¨k³£ÇO×t$ÝÒ›×Ã{瑆ã.ç“’®ÒñŒEyÁ¤Õ¬ò‰_’I³›Õ®Ämä¨Õr‘fÐ\ro_ðös¡y-®[í©›29¾Þ¿ñI¿¶¤Åâß ïDZ-F+õyCÖ;z5>l8™x÷©~–««’Õ‰¨ÔMÊæmÅ› Ç]Õ&­Ê—b»U'µÆg×ùôÚ>2úa>âu­þPgfWj¡tCiíýdq¨ò×ú‘jЪ›—[™ñá\5ýo/Iwñã¦EUšP§»3;$,$Õ7Òå!™ø6P©9øi x~ýSNZϺŸ¸öXT³\®_XT6>XåÅÒ^Û¯·Þô²Ïùöl¶R:éôy^èû1Ôq\ýFݪþÞÎ{T’:”Õ;CÅë’VÚ“€À>×HËZkÆÌѽI£îžTÓ‚2du凚5±oß\«×“앚,m^ƒ, ;}¹°%?˜é$ç="ï¦Öó¶;C^·c»SHÉíó|kçS4©«ö8€<ú…Õqµ$ý¹E­[Œ!ÝZ‹nÎ*p ÓAý©ßÔ|²Žê¿o×Þ¹4`ż魆$¤jÝÛ­±¾-‚vÌZL¯6Z5ûRD!6UÖ¹M~BQ·“ë•”å@ÞÆœ+É>&*bGµÔ;wëqÿw’ü6wëݰÛ82<»¸‹ï±Jd½!Ó|ñš[d}Xï•ój²þª{ìÇ‹dµ:£’}Ðj¼ÈqrðÆ‘d0MýÑõMç¨ûØÐÅ®z¤kw"ìîÖ.¤ÑvЀQWw“jî¼QC÷'åÑ^Ov/ÙEhñ ¥SS¨Js³mLIÙaì‡s•ÈX¯ç¶ÆÛcH¯èšeŠù2꨽åvaÜ@28°sÚÐ+eçaŸû >ô-”´kLî9òÉ 2°©;ÎgùpÒöüâײó&½Qý;V"Ý]%÷MÕüoÏmœëµÞ3nã7Òq6ºZ¿f)u·+ÕUy5› ”ú» ™{‰t«îÙ¶ýáVÒ=w`Jäm32Ü ö¢}\<éÍt+ÑzšMz#,Õp{NúÊìW¾Iz{M«¿¯Kzcf&§î]@=>N~éŸDº^©i6M^¶ÝA‡dÓkó²\_u³î,u¢¼ƒ­>ñîd×®–ëß²©¿¶öš—ȨÇȼ>îÛÉpÂ×ö9í·«‹7yyI‡¦ö%Ï‘Ùð‹s'¯Q'/ÏÒ7ßW¿%/%ƒk…’\ô:ÿ•Q"õL©œcr±*õÐhjÚØÆÔ3©ö‚ìg%ä5“­ir&‡|«¤ùô6O6÷köñøyo«Ó{Qñÿñöþùw=ûª¹ak;òÒåaãtž–oßËéDƒ¥²ã—Í¢îÇcHn\úx×¥§åÛ+V:õ¦GIyÇ)»§kŒ!Kµ\ÍÙAäXÙd½'uÊòqcIe»ÄÇUK¼­Iûë¤ßF>Ѧc¬&•ÍÛÏÒñ÷f”¸ÅeZÄcöèX« 7É«K©ÞªàÄŽwËÍŽ'õúÍì}«|$W«$ÓÄnUÉaס¦ò[RDûÜF¶V§Èt☬´}ãÈ¿ðöœÁZ)áÑ¡W_gl¥“›²Î¾žL½s–BŸgåŽ éEîÅU‚Ô¿)Sx‹S•ýœ_ßÒ@ßÐMˆµÜ²Î?²¾Szƒ§Ì%›˜æV{B:‘µ»ÿ¹!)dÓçø£96ÊÔ9GÕ¿$˜Qç̘D•›î¤6wþ+åEÔµûþ /ö¥®ò£vH¹å°ÃÓ’¬I»8Ò*ò[uXÿeLëIëæ³ºÝ÷Q·ÍÉëmN–Ä‚vwPvþí}»­sfºhOy7ºìx7óGH°)ÙV_ãúµm46¿ÑEm1V÷ëùx#é{ÍY#¿)Y×,¾¤Ò<¿ì8{l®Þ„Ìÿöøüׯ¹W«ì÷j>¤^Ï&R½Ez~§v4¢Wä±pú‹˜Ì!äYï¶^Èìéäµdóä“»•ɯ«Š÷×r½™ù>-͘¼OÝñ]7l7y[2 å]:俸VIÉþfwÑôùžuáÀÙ^ätÏ»mzÙ|Il«1"±Ir©YWûÉœ@òw]wÁ¤6ø”4t¹…V^¹}®¶&ù|¾ˆvûÇÕÛUÖ¶'ï1é[k’ç¶èµ­:õóë­vÑ&ïÈÖóª#»°–×z>E†V]ŒŽ9m#Ûc5mFª“V#¥g§.n%‹Õf×O$½óÇš"ýw½÷"ÒÔ¹8Réµµ¨PøƒôYѪ¯S“¥ÕkzíZºÆ™^^Íž“ÉÿÍ+ÂN‘åç*3n–Íõ´SnO$ë{‰ú®›Cüú¥:ëš‘Á<ŸÊó½!G·°úÆ_É6wîjó:Jdµ$>òrÄJ2žg´*~5Y$XÐâT½²óˆ—~Oæ q_Jo%#φ_¢o\¤¶›V }׫ u 2O{”D¾_[Ÿ®Ñ)“lªò8’¾‹Â:¸LÒÑ^N¶sUÇ|ªR¯<Ïã}’ê60¥àŽ ô>ê蓽ñMëû©¤¢ÃUÆÛ:SëMú'™Ãë9·?F;Ù¬%_†SdQ/÷Ó§HUˆ_fÈvây§ÙÊ4JºÝçùõ[+Êòü¢ÊàŒò¯Dí׆–Í“ï­^¶`ÙÖï³í¡ÏŠØñ£²ß—%$GÍ9¶iê0Rîý¼uAŸLr š`7¬Ñ3²oz+bòèMÄm[fÉ]É6yÚ·q·ÚŒÛýë„DP³ã×MM"õŽ#R W‘ò¢‘ïœÞ4¥N‡£4´RÇ|…]GÌ"ý—sŒ&ÇÖ¡Æ#nÄ|{2™t“6¼jpa;©í»¾ÙÇ7dåo\Ýî$é-þô ú™öNSö&Ó-ý[Þ8…L~Ô‰|×Z¥ì|¾½™’aÙyøúïc+-ªD†n“ù…Êd2¬êƒ‹S3ÉPÕag±æêÿöøüׯ¹Í«Ÿ{eªOwß2åƒÙtØ2«q²û˜<¥åbÏ®uù`{ƒìbÇïX°é9¥|ˆ:ÑìÙ¾™Ù-oÚY²ïrù¡íe²Ÿ5mÜ©Î ÉÆ¨=õk D6çs7_ÊïFbeÈËfíÉ:6dld|5²›î»µ>9 ™zä鸧äþpHÓ­•ÈÛ¦ÝÚñ.›ÉÿÍ€%wïe“×àêgÏ÷œDvÌ,vî± rÜ]d¨w°9»íµ¸5 ¹lµË_5‡×XW¹ó;²[Ðî@ÖKbu¿Xw=?§ì¼£å­\ /rÒºkœÝkÙçÌms¯v!±—íý]æt!‡¼EiÇ8òèQ\õ¾Qd¾¼O»#ÇÜÈÁGTQúJ\Iýè‡%Ùd½úËýðšÉqíÐs¹z´H 1›@\UkÌ3ç*ä4 gµœZGÈ«aÊS¶Ø‘ŸÛÔ~Æyri]£_¡'—#UVtô!öcÆŠ"¾½YƒŽsÓˆË:¾¸_¬‘òùL)ñ“v³Šu#ûA/½°jd:½ë·½#Z“Õð3¬ËÖñäqÂò{ôðÖdwì@Ûš©…Ô‡¹ô_Ød¹öÚÚnøòMó^S't?%×Ú{ùNn-аw+Ú¯—Jn¯¾.?m_ôJúúÖ¶©;«¤ÎzÒ™ìJô‡¼R&ëýK^¶lcM}C퇧•å§Ù@m±)aäqú‹Wtà)Šóe6u é©åu{_ÙxWnRçcÏOd}¡ž}?krZ?æÐã5'(Üfq|}ë“äû#úðÅ:íÉ4pß§œrlrñQÓÕÉùÝ-s—ƒÈ>á]|SµIdïÜ»ç#Wê’{yã¬Ó‘¤)ü•­>’F×{u>Õ$µ[ì®7©;\û΋²©óB ýžá¤ÛEìy9T4WÌ8Šº.-©ºáó"RúµþEÿ½dõþn½…ß»’áᢦ^vd¤qfÉšçˆ]Ž_y»ã]²XÙ¦’« 'ýÐõZ›ö Ó¾#'îV›LÖ—cNL!³íuv¾³ñ$ûí £ÿÛãó_管–‰lSrMÙYm³s 9ìV¶^3rÒµÇ.ǯä:æ’Ñ´ÛïÉÍ×½U­rx^?K3|ÙuÒ[«9Ô™Üm›PÍô$§ÒÇú„’Sà›¸ÃÓÈ«ãy£™iä:"ãøËʪä«—1½îœ²ýrÚ§;~öÔ]Ù£ ÇÔÃâHð”k{È¡joרYzä±äˆ×‰UUȹCëÏÙ;›’ÃÀS'ªjM ;³#߆%c‹ü—Ü·’Ç¢ªwĹ“kãIæªWû’mP¥¸N‰ ÊrÆa \JÚº-ç­î@¦š›‡œØ·…ŒKª\ø©2éš…]O;RãykW„ißûÞeêê¾Ý{økwÉØþ­¡É¡dRιl½~Ü3² ÑðÛu\©ìøÔÓ3{ÊBr8näÓ×®Y¿–j·Ô‹B枬ûÖ’¼";ßÞ°¥6ñ3™–vO‘¥ë•®SFù–Íã¢uJ”åZþþ9ÊidºëÛjó¸²ãäÚ÷–T'‹þöU­7½%fad–îÝ‘zÒ9­€ÇÈ#kûH„WäS8/Û¹VоöØ~Cs7 ìü±’“gí¸Ø¯ßÚ£b}oõÌÒ^å~>tI¾›nŽ%Kõ«GT¢°ÇG½W|%Ó:á!U´õ¨K‹ûËn*;¿~}#6ìr¹µºêà)¿väîíHréÛôiÍëÕ¨O̦O.ÓØË»÷½åJƒÚW9^ iPºŠÉ÷÷[È3§éµ.îeó¬¢p¿”)e@k·:eóŠ>\‹¿«FŽCœ3—œ½NŽë÷>HÓw%O1þ¸Ãb/r½ü:a庫äÚ™åE’Æî;5ͧYù¢ºûš“iªuÉÞ±fijg….o7—tO50nµ˜Œ÷žÌy`¹–4«Ü,¾þv(Ù2zZb.®©¯WiF‡Ixð•¨ò(wÇ‹äpbÔÅ˺ÆdÙ¦aSË&zdÑ8&«ƒÍ`²Þ;µÍ™£ßÈrt‰gÈÇ™dÓîN㺠EÙ÷Ù÷Òã…MÈjØÌÂu+k‘uµûiß¾¹þ·Çç¿6Î5§y<;ÒõYP²æQe¹;ËÕ"oÝK2 8ÖðâlK2ù¾ªaìü$2_¡«¯>f>¹êß¹þ1kY¶`ƒoܰ ëÅß&ŒÉ#[çµË޵ëM¦7ªï\ºÿx¯HPkq˜LÕç7Tš8¬×™Zôo>ŽÌTûlzvßt¦7kìÐö-Ùj/ßo?àyVßíÐìIv(Ñðb9={²ºe“ód¨·¬MFëoeçõ)þw–×%»Ö—[Ï[1“ì-ǵÕ_þšl’k(­lÃH=75èöj"–o]1Þ‰*ÕõÎÀƪ<Ö6ºß>j¾äÕá3ü¨åõîšOV¡V:ímÔt)GRæw–”^»ê;r$µÍ07. ©óÞ/öd¯1‡Hc¥Iá–Žc©}§ÓÅ7g›Sëo髾X~"ÿk=2ãR‡³ÒT¾5¤{®›Ô8tZ½Î°õWR¡Vš/­îu•Úî·×‰&©Åéýb^eVz“‘eã–GŠIê/yø=é5ñûO_¿ñ ø9ýö¢ËÔéEî§–MSÈ|ij æºÔ÷Èëíw_¦`ë5¢ïI Û÷ºÃóë+I¯q•}žG»›Þ5p›é# <;ª²›!ùnžppu³ÖÔ¢û »—u¿SØÃy› ÉÌ+·êΑdö}™ã”ó{È|pÍN.#I«a£­»Œ!uófý6¾ûJÊ>{?kHº5U¦&Ž'õ-sì¬:‚:µ-½êypu9=óɲ}¤\­8Ù&e#u=PðäCÒzêT4QçÎÌÒ-xœcNuŸîl“ÃHogZ´sô êVÓ(mW•¤_«ÓŒÑµ£HU¥ë³%ºþdº+ÿ£Ã׎¤µhÅ禤sàc¼»¶e絫wþoÏmœ5ê]}îÊkd¼qÙý'kÊŽ›Æô9+)×4s¯n@úRi¶í<²öjecÍÒ²¸J‡¿y“ñíïã®ì"õv vMk7’ »ûç9KÒŒ³¬žÞ7h‚Ê˸±y¤¡éÈÉ¢Zd\³ÊÇ—§>“ÁMWŠ=$ú\9GÐlr:zò@8‘C¨ëÖ„ùdíù=ä‚N>ÙµeOû}*›WùO3mâП¬’ûº56FfK5/¼ÌŠ"}íƒÚ)ïŠÉ4ÒD¹ð’u¹•Øäè'ÒΉ۶¶ÿhÒ;•ÙjïsêUUï˵'¤µxJr¶ =Î#Ÿ¿-;ÞØMªi%ëõý{uªu$“Rïùדiζeãθ’î×n_s¯.%³NÇÏ›äHÖþ“´½“ˆ¬>‘5$óÔ¡‹ùŽriq?ðúêÑÕM“Êeóì±G»9—ÍwTÈ=ò9„mi6ô,™öJÑó]º…˜ÝýØ„¼$²xž5ר’™:iv¢º6Y5‰çÚã —Ž Ü‘º<îõdr bE•]^ÏÿFN6[VÓýBnsÖl«¡~GoÝu¸ ¹ô\~㆖ >>|CîiJlêçk‡b™H·™q‹lÕ1®Ý4êxâz¥—M3I÷ür¡kfMÎG§ô?°[•,v]lvƬ üØŽÇ¡3äp)­c@î2ŠM¯<°}B²µò¾ËË")iÏÁ×#Íõ)á{ýfáLVêEº&“¦¹+(FÅz€nN5 Ý4¸@+ýY gGÈ¥ÿI¯˜òê´/ªMesâƒ7›VÖ%'¹µ°Ïêí¤Ú8³^Í Ï©Ã«ÓšuªMj.›ÜNoŽ"Íž/rJV{Q·-ò»O¥nK–ÔpXs‡Ú><õúöºP2m¢ku/ƒ4ö®%üo“F¬¾YAg?j^+âb¥ï^d³AyÆÌðBòˆëÓ¦sô32±ÓÌt´¾ì{œ±P{Ý^ÒÈ^µÍ¡}/2ëå?©Oò²¿ô´sdZ76{Òªh2÷ÿ^`|Iû¿=>ÿµqî7h攤yäá“`?ï ޏœwvÑ K»w‚æO ž‘Ë®Œzs‰¼fÓËRΡÓ<í&’ÉËus“ýÓ•ÉÏ%Û™\Kþ-2jQðöy-hF>yo©3'2bù-}p”¤Æ·õã®sò;R”zýY ¾~Î\"=í]ª.hM!#OÝ ôÜ@QQA÷̱¤ð‰[6¤O£žSÅôÜ3ÔûL±åÞ´Ô³S›Ð©g¬)ØcÃú®KNˆ¾×2o7¯ÞnÒXü¨[ö·dpè`£¹CËöëã.gÔZŸ&½ž¯Ýõ#½¾÷߈hJFµž§¦[h—åë§ÔÊ GP»ˆ/ÍÈ<ê~·ðÁ$i¤w¨æœI‹Ú’Îd»Z=NRÓçÏöJ#ý¾‡­îÝFšïóºõnkNªškž¹Î™Evݧº7«^•t­†å:!³óÃÛ±§dÒ~ÏN“xÒ=¶¾ë52v{Ñäû¶¤6WmçЮ¤{õû<¯ž§H·tð”a†9D‹BvWDÊÖ1o®nK&=7]uª7$Ïéû§ÚõmH-¿„Z?¤PåKs^|ëA‘ÖÑ¢ê–çyÂȤç‰>¡éó*þ]U²>°¡G)oÛ3γét;u!òÚ'òNÚ¾éÝ(;Î-ˆîæ}R{}.<Ô–èyÞ°»±K(À©•¹rÊ=üeŒïéW‹©û¸5+üÎSpªµ{|Æ1ruÓõX™Cž}oì~&)æÎÄ3ùQ`»cåÖÔ°¿œo»M…|n8]Ë šM¯Ÿ1ë>š¤Aã+ßíÇ7Êšv´l~¡UÙ`GËü/ÔM¹É±õ«íHg\ÛÚ×ý ¦ ÷õ)ÔiNªuÖÿv`59°ø³‹5oú½yt¾>‰ÎWâûLΦú/[寿ö £—ªb€EsÒm2E7ãUÉÆÍvÞs,¡–WÜ}â Qêâᾎ>dýp7o±ã$iv\´6fóPâ ü^5›W–[mæ6jÖ-œ¬<³ö¥Ï6&‹s=îEo¥ÿöøüׯ9qº¤ÕédÿUÃw¸ÒMru<¿ÒŽ‘»“Ý÷½3^“sÐèÁ4jc׬›Ó]­ÈóM#·º“ûÝ…)ƒsÍV”åq•+ ïÈy]`üö*›ÈµÕ-§¾]É)tÎøèYäXü²Óýüröéz/Óý9kݼ¹Ì:Œר.T9Ö€z¼;²ùÖ¾ëäõ ÏdÉ‚Tòyw1îMò®Ú-M 'Ãö« +{?çÛ¶O>”A.¯Ž<;û©y¨Ù$¦>½AnžAÕz22Ø™ºdS_URŸw^õ’c*iL×ïÓ®0—4¬›ê XAÚz ¬^øVó¡Ï:’®ËcÊGÈD®>Úb Q÷ÆZÎûã,Hwºiµ´osHms£oó¶}$£~µ¶nŒnH†g‡Ž ‹IfËV¥¬ZÙ“ JŸªµO5%ç•u_ŽxîEÎ'òÌ ‚¿“éÞ%[*·yL¦§zÚøùËÎR?Ö±™öì5å|™­Z?)¥:Nl¦zâ,#ƒª+ŽÝ”MÆÑéÙéÁO¨GHæÕó%UÉìÇAõS£BÈez«å*á»É¿êïN]Éãà‹‹TºÑ€V±cG]ÜB~oÂîDûÖ&yâæ¶•w_Rò³Õ›|+ݥ؃bÃt­ñäùÝèn`Ô\ê1wì¡ýëIËæÂ½ýV‘K—õÓ#=#ú%úèºzï^ȺV’lÎey2­J!›²ÒZ+ÛÓåõ_8]‰Â’’vÄ=¢¸â5Ñ4!‡*oŽ}îÑ‹¼bÎ.»Ñ¿ õmÕi–Ó€]ª™7£MÙû3Ìê”б-‰s_GßG:E“\sß“ó´Ìa9]ÈaIýV¥»ìIÃÈô@à uÒR™ð±P݉ÔÞ¾8¨þ$Ô6v8×Yë;užRïÁ©·¤sf{sç~šÔ©þ¤þ÷ÈbíѤœÓwHmÞÂä¯Þɤó2¸áŽÓI÷®º±þg'âk=N×±«J–Ï•c.§*•Í?s{Lìü•,m»¯zñ鮪qhå)d½MzÜÝB_kîLíL¦kµÚ¤?=Hfу§ªFÜúoÏmœK½yCy/²ž=D)]ë9™ÎË­d2“¥×ÜÓГ4;cd6‹L£&Q ÝöÄtjÿ˜Õ¿2ñ¥_ÎÕS'»0åÅ÷^%ÛYêk¾­!‹¹y :ì%Çqî>õ7¡Ð•s'´Ýq– i\™ØÌ…Ä“G/´ö“þ«9‹îµô!”=w7æ{’Çù‚Œ€Þ[Évx£ {#ˆ±»·µ3±ˆ}oW½Ì%îrlý¸$òü|ïY·€ b¥Ê9·ªÔ-;^øx©·#¹4nôŠ9£(ÜÛòH«ðI^oíoVr(°þ¸y[(¤õc/r4(öƒÿ¾Ó'ÎPÄb—žj©O(`êÂAÛ]ŸPϦßGõЧÐw'箊ե¨¾ï».#Šjy¼Ó.µŠfFëJ¥¨YÎwVU±¢¨´u…Û÷SLéy¯™WVÐÀƒ›sß–ô¢hÃ7µÌozP|ø¹Ñß÷¡„½<ÖoCÛÒu¼Ó>SßöŃ¿¤ðä®O¿~‹¤ˆ-vmÌ·ZPä—Q‰•(¤ŽÊ‡#d3xû¼Åeç׳ýËÉÇ(B-ªºWÙù¯õ”Ó÷LhÈŒ±·S‚3(pÉw};ýìó`Ùþã&4jh‡Aí¬()ëõ«jc´(À3ïƒÖ€@R¿²áÈܾMÈjéÇÀ¯eó_Ϧ:êGv’ð²éÞ£×q˜UkLñ¤²|oÂ\†GúPðèÔ¼õB)¡rž²ÊÎÚS½ŽÅ³Z”Ð3ÂÈëÓ|r¼¹ì²Ãy’®÷Sꮥ¿A?¶$zSxbâ®ÞóI%lZës/¼HkÜøp¥,O²+h쟗³„øÜßó £lÜÅ)¤±ï¶ÆZçµÔɱIFCÝÔý|øÒÒ'¥¤ó¢x¢M“1Ô½O­ÎÙ«sI+ü Á¢-wÈú@—ØÚq¤ÑïhÛéñd¼µÎ•¥U4Èp¹_=m‡‹dðNÝržåv2”ïrï[-2šz`zJü42û6¯æ§yõÉØòÿxéi.^6ü‚ßt20èõ´u³<2n¡m½,/,¶÷£¤Å¾d¸ÓË9Ó-ë¿=>ÿµqÞ%©ÖÊß;Q·§¹¾A'ýÈ`bC‡°VZdÔã¾Æ–´TÒ kñ%ç”2™-2XÖg©jYð™ß=g)YÛ-{¦Ü÷Y <ºÃ7g=Yî²ÕÈŒôœ›KýÒšô/»Ö|ÂnÒÑìYts'F ¥ÈÝö¤÷$8(„í ƒ[»î~{Aºoçͺ>žôß{ç®ýH¶¥ç?,9S“LºN¿ð&9é·]5(m6˜|`²;˜Œ\¿¿kÒ¶™)4TM'#§…ªï”ÔÉÊw\­ô–ÄüýýÔ*"ƒíG3ê'UfûlLÁ2ØåKƇÚeóÔL·Ø5ÈærüäA:;ÉäÛÀ‘/.!}µ#*ñ“Ú’EX”÷‡L²nð(iưÁd¡—µ/{|+²¾\{¦IQ8Ù6í?ùHdY³þycÎíÌŒüÏr"¹·kµ°ÆÌûd÷åþÌ#û/’õÅ)sRj.$û;9çKRÈz³³jÒ̲[èÙãtU²òªz×|¨:™Úù¾íÒ?»|{^JÞG凑qö˾”И˜q©ú¥ú¡$/­Hêa²‡\ôæl¿u¨%ùÅÏ©²Å›¼’O-¶ú:‚¼e½fÃtw–¿wV½ç§GAÃ6V­ZDÝîΨ±¢ÿÒhÖuZµ'ÒȉšZ-aöo¶>–’Ö“Ù·; ²¡”¤Ëî-E]ÚkøÎkÙ»N* "OßÚüTã.¼2varðЬQÝ8l¤YM šô¼Q0¹?N¿ìÕr3¹uÝVïdÉé3_Yjû¤ÃEW—Ä–èE_o–E"`·ãÉd 2>=©¶}T²<¹E%qu~ºdÖµ[Igãn—¶•=IõÙ#vä¢-ix^›pv;©ß{YÉ6ǃZ/û–p±¡:5\tÚùlCR¿µ~Ç­æ£IYž8ZX‹”õ掩‘tÖÚv^¿2µÊ®=wÖ›ËD—›D4?0‹º©T©} ø,餱Ùï‡Rç‘5|¸\ÖîÑâøi²\<ëP@øbÒ¸¶iy¥/IwÿI“Œ9¶ÿíñù¯s]߯1ã†(S·gÕ¢žœp&½ y¯|ž¬%ƒ›Šª(/$]ƒ½ÞÞ* µìgsnŽ%-鱿zÒjÒyøòð€… ÈÊ¯Û 'kd°Æ6èšÏVR¾`µºÅî;d¨ú àùĉ¤xµžv’é<Ø;¯ÅÄ礓¼·ûÖ ½¼èä*Ñd9çPÏ}k“•ÒåÛK 6ÍÍóÛt%ËüÄú:ËHwÂ¥Lû©wI`ãÙ:!C‹üˆG†kÈô9½A¥dXÛfâ¦3¶¿ÅÐqÏ8Å®:t1¥!õøáœºmËwr¯ûaÇ£‡W(˜ÇÛM¶`äm·{†×ir­¶CɪìüáÕ_’Ë’EÃb—® Ïë‹óW÷ ÐooÝu”B[µï´("—"5î[N«ãEaëfìm׃Â_øz-@PžÏk'–¬¡ä~ö²v\¤ÐÄÝ—g§^ þwiöK3uJ¸x}åñ •)"·9u\ß—"Ó4·¹1êõL¼¿ôr:…u<|‚ÍŸí¹“«É{g çQëWÎ?Ypƒ´«ÎëoBγ»^<ߨ›¬Æwر…‚'\ÐØÔ“Ì—l-édžA¾AGÒ2‡%QÔwßF½»¦RÏ«{Üæ•ï·;7HßœºV²RX›t&móï7ƒŒ‡Oݜڛ“Ángó+õ×RŸçÝ©iH6z+—8PPäë¼öÙm(ªýª©UjQÈÉÈê§8õܵFsHàV2h9]#ü%¹‡ïͲ8õ”zù =ñ}8yë¼-š¼×˜4ÕͯÎ×ÈÓñpbÝf5Iªˆkñ1}ÉÇz{ëéú3ÈéîÍ7ÏoO¡ù wÞŽ_G^ÍnMLíA^Ù‰ÃSbäÏßy¾:»°l^]íÕ±w/“g†ãƒ9mãÉ?øŽþþ"òŒ=xØ@NN½Ôkm5ŸI½“G¿äƒÈ/r–Ÿ"ȧþS½6QäðýA÷öcÉ}O||íš“ÉkûZuÓòMˆxªžJr×ôR“{±ä½ùj÷¼ŽÔý{ÁÚà‰›‰Õ‰ß$Æ1²ô½›~=&Í–õk]Ñ›Œ¿O÷«ŸO6 [\ö¦)y›G´Ñúƒ¬w>è’•%ˆÍf³F›xÓ¹ ŽÏëLöAZ¿›Lt±_½m{4ˆÍ}´þÖ/Ät'noN¬ªÊý­O§ÛµëSÆôÉeçç: uUÖ’£Ë©Ò’²yÝÓ„ H§näðd³êçÖul^|ÌùƒäT»¸ÇûÈöÒŠªùwz“õáǦÕ&f½bUܧ²É[ݧC§Îdñ䑊‡›—Ûç˜jyüzfCSr˜‘¬\D}bû³¼¸ådS´5ÝÞáTyžGÜ,ímlHA;Wí쬴œóœG¾ù4‘ê?[¨7EXSs¡ÔèyMϼR¿ÑE²ñ®ölƒZ#J¨ÓA§š ×ÙÕrê¸Äû&Eë~ *ÛÞš[þO#)Èm|í>¯Õ(dýŠ£t‰‘Q±zdzá²·K›ºx?uï;·jÙqJî9ÔÓJ{™–Z·,wY<¨q™Ì½cg¯êq”ìkEi¬¬©LVbõÏ7Ê#ƒz¥‘_«, n#\wîk@Zé?ê}ÞðŽ:gŒ½·þ[Ò8VÒfnÕM¤åV”¿ÚÝŽ ü}ê÷{IjYÎ÷.)¢.Ë[GG¯Ž!Í5Gc?ÜnKú.ß7›mÛKF›íòÓ½©{a`¦kð$²éÐÈÊæ©ê[:u]K­©}uëHÙw^[ÞXOºA3ç×tnK&•æ?~·ï$Ìú¼nF­Mÿíñù¯s:âf¢ÑX²íÚê¡VWr¸8õÔ‹€d¿¸ãÒ’®#Èn˜gv»d×eéÉbÙÔ°žxñ*7T''Í$ûá³Ãº¶l@vqíÖì*ÚNVù»šÜ»¶¬+7‹{–Ü_.{·¸Vo²k«œõyÂ*²»W§o¾Ù²x¶ÌRÝ2™ÜÜG<ŸmfDηÅäß%Çk_7[¿ö#~'aÜڵȦ§÷«{Ö’Š]ÇêaäÜõ®÷¡§ûÉ¡JJ/¯ôB²R0«fÿ¹¿=ùÂØSŸ|Ó£+»,œCqg>Ÿ~§®Oá'cÇ_QéLNÖï÷Äqoê2ª^„ÏÁ#¤ÛBíÑÝÄ ä<ýØæa dÝoî“>‹/PÒ´M÷|Õ»i­5u=ë:RÀ­è9^ߦˆ˜`=åõEšÙmëã.g(b欴ÑK;“ÕåmýZXFîÎë¬g|Фx•/Êäß#ûT`Â-Ò02p|jò˜,îÍœÑÙÀ“lÏ ×œ=œXÍþ#s6åг¾ßìíHÝ±Ý ný‚ºÎ{Cµ‡*Q·ÚzmgÇ·!õ¬úúi¤ºYzf-xJª+5wpéOºZwté\›ºÙT™Ò=¾˜º†ëiLꪹµB§"ý+FÓ[8‘ŽÎË·ûf8’áàÑ3În%ÓÚAŸ3¶î"ƒ•'´>("ÍíŸßÌ>ôôBç× ™\› ‚7¾ãëL†O ^ŽZÙ‰ôî×ëØâÛ{|þkãÜy“Ïù„ùoˆëêv®#9dw¨Wy79^Ù|A»Q(9&x~y÷J’}¿v×N|ãðpÇÕe9%ª4ªz«;Ù·}ëâ^/rèÉõ/f“CPÍ«}Fã˜fÍ{ÞkAžÖYÎfV6eãrÄòý&’Ó-§íK³»‘c¢Ç £¨)äyï®Yl>yø]œÖ½Ùò¶ *8y2“<úî:»}CⵟŽ\лì8ðøì¶—ȵ±—Óä¼´gíDröØavP·yµ™ö$¾ž>õ8ßdJͱäû¼»_¾ïɻʎ¶á^•Hîí`6­gòuMr—­öRïÊAÕm‡)Q@ã‡3Õûu#¯o=“ç´$¿±ÓݺŒ¤ž[¶œí}º#y.Ì }?z7hðdìüê½èKwõw~0t¹Ç7…5ï¡w'm)öÜB»yÙ5¨÷œž«–µs§°¥;;´ÔȦ¯:‡†ÍÞJ ' ìD½´¿1áõÜv'ºÓ> H9nxþü1ê5Ô£sò»®ä¿¾Ò«^ßÉ^dv_cø˜ìg»*wù6BÛ<¨¦Z6¹»N­mIC£ÃÚêôÚN=Ö:ì0*¸ÜÕ†ïiQÃz]_J¬¾Ú¦;õʲ:=³ÑÒ˜¸¨Ë™ •I§OÈøvÝ]É)¾³¥è¼“S…Q÷4¤¾ÖÞ-É6SuźêO(´ÏŠjSoÑ ªéÇ×ç.¤~9-O[UA ™Ñ ¦5W“Ãò›íգƗÅ„¤ç(ax×Ý1›c)<ðyQßýdéÚÉZ·ñ{²{`Û9(=‹\_NÑïnIÏ'=³ó]CŽó2Þ.›³ƒt,ï^í,éw®›<~$i=›¹òBªiž<`ºšéLÓ9ª÷ÙŠtÏíúîÝ…ÌìÇ&h[Œ!ËÚ¹Sëm!ÑMO^é«A†ú׎œ¸‚È3¾’CíQdgt8áq Y&ÎÙôtùl2›ždØt¨YÕÞïsÖÒŒ÷}T=T¸ˆ¬­óhøÅ—èxZÜ÷·D±ŸòÜ÷®$KËéÛ»RùoÏmœkÖ>Tô´'íƒTG]ßOêOçõºUTv<Þ9Óø)uʯoáÜ”:§‹îÙýµ=‘éñíD uì4éÞó"½£»¯·î_ƒô¢??ªÆ»‘þ†;êN¾@:¬|ji^–ß›*;µ˜NªM«ìXöþ(vó©}øJ_Ò÷×Úßÿñ(ÒÕí8ýöŒ†¤Û¯T}à¬ÿíñùï]‡ºõ«©ùa2Ø0m‡s7NzÏ×uÜèD«Tï¥u™to5ÏíQó*ÝÜürÔÒ¬vÐy:´rnx#d é¶lä('“~óN3|+‘ÖÊ©=Ô{”-ÛiwÓ‡¬”¨?鳉tf;…ŸyCFmw­µ“,Ú¶j+­ÉözåÆŸ.huññ¤:õj‘u-³aFMïuÿ1a½j¸’Á°V‹ÏºÅ“Ißn ^\"³1ÖŸ>mL%4/ñF1};$“û×'¿Ä-¢êNÁº‹N&U«J2x­õ”Ùäõ8wfÓF›ÈOÉG­ÝÌBò+ZœÝàòò1¼­:ßNnã»ÈKýrɳޭ Ñ[ÉûÐÐöõ½¨WÃÌêOŒÉ«ö¸¡“× ¤àûµš6}¶“|nèhhZ‘úê½IÊò|ä[ÇÓ;B(î£Ñ§ö>FÔsxßñÊÎwc‚Zôõ/ð¥¨.#,x‡vÔêë“°‰<×fwÿ·Þä×2}®k[êƾæ5¢^/ÚŽhY4†¼jÚÖšålF:ö¡Á¡=ÉrÖйS_U!>r?÷7Iv+£ {~-¡>6|bªúhâ·kUËxòœäK˧öo¢>ûr–§´¥[ß-›µZ6O]=Ö.tÏ {6”4’¯î2}ìÛ~]âX´‚,šFý8pÄ‚’š.N4mjAd[lbÝÊB,&4ÛLý´Wß­btŸ";Þ;^)­…¹j÷­mëIüûèéÇȳ]SjÛžB؆¸ùÝÉÏ»0bÇûL2;ÖqâÖd²¸øÈ;Éd“ª1iäÈÄFyîQL6´ËÌêéIêêt·(3|=©îÛØäÀ¢Xê\ïó¥ÜoA¤>$­™ë¤šÔ-t’ñúwImqÄôcî.¤}µåÀ-O5H½ÃPµSeóªNÃÕ5 ´ìIíDöõ¼Y¤»ÆJž¿”]¶µ ü:ò5Y-—uçíkN6µ>DuêIuÆö™êJºÍžÚï­GƽzžÞ|/†ŒŒ×X8õ™$wßrôñ2<¾èÊñߟÿÚ8÷¬·L3ÔÚ—Úly2ä‚Õóë§&‘Ï´Z/–8/¢scüB?î&o¯"w•´ä;ØÌ)Þty›¸_¥ß8òÞì¼8!€d|•Ä:qg¨ÇǪ}K$‘óíëÅsƒ]Èçªë÷NÈs¨APÜËäõ¬WƒíßN“Ücò£v¬¤‹>“ÞçÔ àJÆûÌÒ)$ìÞÃ1}¯Qïýç\÷#ï“ñÛ]×&¿ f÷&Ïõ"߇w«n»L¾+òý6©8“Oiƒ¼»3Ö“µý«f‡n$ëe} j¸G6;çw~cÒœt6œ3=*™,ûkÔ0Ï|KÖ•fŽóÖ);¿(¢fÎQsÉfÞµ/S6z‘Þ˜@•퇲É:ÞàÌ(ÕjÄzŽÚÝdžô/t˺߷:<ͳþºƒl«>ˆ˜—FoLI_\ú¤oi•¯FÞ‡o×=fÖƒl4›M¨6Šøüm绽"§Õ?ú|éPv~:¶oÉÀ¹_ÈÁÔ²QÂÜÚDÓ.=l¬§L–SÔU¾Å &›+µŽý¶›xu[Ó{+‹©{ô«-«=$ÛÓÊ–.'®‘gr“WÞ7ë’ÝÀä½öc)úè¼wuHÖîÖ.¨êãò…ZŽ‚·[o_üˆ,?ÙŸ°›œŽôêÚ¸”B?ò©ÇŠLÈçÉê‘+o’¡ÍˆŒ©ûÉeö…OZ]*›»:»m%·VSh ÙS©ÒîF3ÒõRúÑ"f1i¹<Ü'ç"iÔØÎÇ­‹$5ͶCŸí˜Aš“Šî´úNò~x[yš‡Ããkžd¸òdƒW¯©óÃVï«4lEšó_Ž~¼˜ nytàõ•lk˜Ò¹éb2<·a”Þe2¿­kÌW‘Ùª}³— ßHzw4OȪB–ÇW¥T©ó‘ŒœÞ¹·xCæöKž÷+)$“$SÝï}ý·Çç¿wNwü‡]²ñ¬úÛ7Ü&ûÒqV]È!nKÄ£õÆdŸ›Ú¾ {ÙM¬£ªÛËg·¸Ü£S²×Ríÿ­ç¿þOÕþ¯Fþü_8êþ³Òæç‚ † Ž ‰  †`¸†`¸†à¸Žà¸Žà¸‰¸‰¸‰¸¸°†EdXD†EdXD†EdXD†EdXD†EdXD†EdXD†EdXD†EdXD†EdXD†EdXD†EdXD†EdXD†EäXDŽEäXDŽEäXDŽEäXDŽEäXDŽEäXDŽEäXDŽEäXDŽEäXDŽEäXDŽEäXDŽEäXDŽEäXD‰E”XD‰E”XD‰E”XD‰E”XD‰E”XD‰E”XD‰E”XD‰E”XD‰E”XD‰E”XD‰E”XD‰E”XD‰EXDEXDEXDEXDEXDEXDEXDEXDEXDEXDEXDEXDEPD†ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a, ƒ…a°0 †ÁÂ0X Ã`a,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X8 Ç`á,ƒ…c°p ŽÁÂ1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb°H ‰Á"1X$‹Ä`‘,ƒEb° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹À`,ƒE`° Á"0X‹€`aˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ ñž!Þ3Ä{†xÏïâ=C¼gˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñž#ÞsÄ{ŽxÏï9â=G¼çˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"ÞKÄ{‰x/ï%â½D¼—ˆ÷ñ^"Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ Ä{x/ïâ½@¼ˆ÷ñ^ Þ‹_x_©Ò÷J•ªU){®üç/ê&÷MN‰IéŸ߯R¥*õ+U²¬5òeÙßTRZEY3Z/ìWHK5³RfÒÁ²ÖýÙÿü}y¿ì¡ƒï«LÜO¦Ïéµ$úÖÿØ/Ëésúh¹‚wÍ3rJêG‡ M^ï8)+ôÛg9%°…=YU|PkêjZÿ»]¡ßÉÃË>ym7¦bÕw÷Ý¥}vö-6¯ªÐïDÛ/Ý7¤‡¦ï}^‰¥ó¿š+ôÛ©dÔl•õc*ZeýèÄnGÊ1ÝžÞXɨâöÆü\ÆÒC_ ·øµTü¼¯‚š½ jN¥õW”Ö_I¹ú¿– ý޵{³-!‡d­š±6†rªty¾ýë© ýöÚfû×Q §Òx·’ÃÆëÿiWèwð¶–¿¹ï *1÷}¾%ÒŒ2œë† °©Ð/£ë™}—t£’ tëµ#öÐÛç£âu+ô;²ßóÉøöû©ô>ßÚtÈ}Z3äç ­øºGíRë×=O%ŸíÈ.ºK{bÆßÙ”i_¡_fr‡K.סÂ~M´?<¹H9¥Nû]T¬K¥_ =ŠüµÐ©ßÏ·÷ë>TI…I¿Êyùsyõ?Öïî’Ü!ñn¥tûçSÉኯûÙ¨iKÍqT¸Ö0qLëÇtÅdHã»*ô;~éQ´wô¨eè%5–RÖ¥/SÒ*ô;:À§®£zczô6<²­YBÙçg!}*ÿ¿ìWqõ„¥1*ºâ5£oßOtÊiƒViúÍŠßGÍÒÁÕéh[mÝEÚ5è,…|«lcPñsíÒ8»‡%=ê”oÌèÔ®ZAC.ì/ÿû¿¾Gºüó[ö|JE'föR}wRQߢ‚õÚÕMËÛ©¿ÛTÚÁ/çó©IŠú¾Y£oÆûÃÐùÖ¡’+-÷-S™ªx_ -åí=ó~.ó©Äé×¢ø÷§-g½j“¥¨£•VãÏó¾QñQ¯©c&—_h_xƒ…µ#z)ŽGe 6ç&=nøpϳ‹ËË×o¹é3¹ê’:åí–.ûtÛHOj_VN PŒ‹O›†/ÑVÑÞÛ:Ü©h)•ÔV ;‘S¾þpÑõ'L)o¯ë¢þ9¼˜JóG6¼ìX xO^4˜¬^~¼¡C Ló ’Q3vŸ¥8þ8užSö(o¯úݦ§?ÿtêòw]ËÛ+Ë­‡Î§'¿V·._¿ã÷ú ýžnŸny®æUÅë¾wx¥v´âu·éiâé¶eòõ»ýŽèlîh¡è×étµ‰WÎÒS¯ÍgVµŸ¦¨—²‘ußQ·ÊÛWýT·{¯¦Âø‡÷Î[¾~~JÖ2Ý(×òö«‚™û;=§G%SÍB/•¯ßUé×¢ø~GýjÓãQÿ¹þò쟋¢~—‚~-t÷ÈÏå¨büŒz2td¶ey;gåVóçn éÁ½:I ¯{bïɵYåÇM:ëTeâANÞE_º«¦Ðñm>¥Ækf”¯ß6ì^|£GÓËÛÕ•Ö¸Æ~¥+†ØÚ¦8žÛõóoÛ ï§m:¯}ÿV@yîÑΦC*]L«[Þ~øûxEWÿ:ný}{œjXTo0£c7~ý‡âuÿj?ö¬vÍóú4:_Ðÿý7•åë×Çå]|Þ@ñ==îñ¦ÁÞ†«éâÈÉ»“'”¯_±jƒþñnåùAÒÇf&Ü1§ .=–¶Kú¦¨Ëç8ÇaÁ>åíRÝ“š¶ÒøŽ×ú>]§Ø?ªœÌH°|¦èðk¡ƒFâ§~Sÿ¯¥öw³“¦,¤ƒ~z¯Ú*Ž«»Ýð2SSÑoX×oñÞ+è`zT{»#å¹B;ƒß[¯é®èç=)wRç:¨~KÏeGÅöL t“UýŠ&“}[³(Êi0çKÇFãý(÷h‡¢~9A6ë¿¥³gû¨mY·KQçßëËÛÅ/‚cáS‰µ>ùgª*úýçüŠýZèÔüŸËÅ~Úþ×¢xÝíyóèÌW×>:”¯O¯ùr“S-E¿Ý{:\Ö¢3²ùÁ.ý,^„~oã®xÝ›wGLs¥iÉ–ZóŸ÷k—Ù}¬ûUIÍ Í6ÙŸ¢Ì©UCNi+¶ç8cÁÕ)yŠív2dösÊbÞÓOy+¾ßY—^zðTÑoü€ö‰Ó](+Á!8ËüAùúíoN8—´»WÞ¾U6¹Ñ?›®+õYØnk0åPöö åaǼ+öSÛí×x Ýÿó|¦ú)›ÄY½*¾n¥_ Ýý3¯?ù?œ]Ž>³ì¦aƒ²íµýÍïeO~}(@/ªâ÷V¬ç™=-‚ vo ­ú=†N÷*¹ÚûYÅýåæë.χ?§›OóßU·ïMth9¸âùĵÄîƒ×{>¡ü’~¾?tµèœóù^;?U¬ßª•ÖÑÊ©tûýákbíélÝq©ÆÅÁ?Ç̱ã¹?§|à 1rd%ºb¶­QcÝÆ_wùÊa=·Kº=jOâHß·tá¨Wg§ýþî÷¿Ïÿûü¿Ïÿ÷<Ó…ÏÎæ•Þ¬¤û7•–ÕØIg×.ðxYñúÚ…¥ÚÏÖÝB÷Kš´>Zg-û#iÅ ý.5øµÐý_K!‰ùµTèw±K«©Q…TØü×…:3:ïQÙÔ¢b?½S7Ý¢Òýçî7G©¢³M>eíøÐ¨B¿“;Ì›ì0oJ•~-t½[耲G…~Ù†õ…ªÒ­¾™îóÐõ}u^63­U¡ßéö¹Y5v-¦;ë§Ô‹2p ëgê6l–ø¬âöÚß»~mš)忺­ß¿]ÿ¾wKHfn…~§²xnÿ`Gw^½­?dæEº¾qšã–·³þÇÏñè÷ûÿ§]¡ß‰þëgDÕM¥ÂzçlUìfÑ•óvO~9¯b¿q5v{ Â†­N\EteÙÛª&ûÍéþ<.î*6ª§ùl%]ùÝ®Øï’½µãFš•¬jôñåôÒf÷…&ëça=sàî­tûÜwƒÇ¾qtsêý±½.V¼Ž™ýçûÊýó\0ê×sÅ~Ë&ß\6ùÝÿYŽ&;èòïç ý¾žphå6UÊ/û£ÏÙ6ÿîT­¼}Ì̽ÆjJ¡‡¹£º®»SX¾þÀ¤Z¯÷+>ï±Çš †˜gRñ<ýá×¼Vô›¼5ìý•%Š~Å,VÍȃŠSø½¿ÙJÑoªOë«#Ÿ÷XÑÁNsÎY–m¯ë®c‡íáuç76mô^wòÕð“-ËúÕÎ^¾å¼nŒò͉úøþÚFk]ÖO)õ•s:Ñaßh•/ŠýàHµ‰Ï GÒã_«—¯Ÿëõ Hß÷¡àųߢ’_\¢¸´÷SüüOñŠóíõ”¯”=¨ø÷¸W¬OöØ_vªRÞ>ü%¬ûå{{éñê£}#†(ö·–•¯Ø®Q\Ç=žx$ð´.ÍöQ6UÔ5ëjnƒÀkŸ÷Â7ÛI FÒ#_—'âÊÇ/Ý4/ÙL]Q÷ŒRƒ0Õí©T<=2KÍ&Å¿·>æªå¡xÁÃØÂ×c¨øä±ðÑ•¯ËzEäߥØOÇå-=Ð<„™>çÕÅõÓçf¤úEñº‹ï'uüÜŽß:¦^ÇæHùúâ?OMÿ¹¾ª8>ìîò¬ÖPÛòvÉŸóó¿¯keþÕþ?î÷s.›B«ÿ3§þÎ-*zãðÐGhõãà…Ý×ä+êÐ<ûaõ}åyI¥_K£ï6C{¨<Ñ¿Ühçè)çf½W\g-}f·õªó3Ú“79püۊ~žÝ÷4ÎøÿÜïIõí=Ë´«Äjn‰Ujùú¿Û¥œj†5×¢=n½.i+®Ãïüðì@óŠïã”Ùîk ®Ó‰ñŸC3W)Ž»OνhÑúµ^WV›NLpÙ©ú,è7{Óžj3ý²ò&®Š±/ë÷òetE¿“N…Í›ûÿÞïT•ÅGV´.ë7Å`ÛœxÝëÇ6çEWØv4úµ(ÆÓ_í»_ñ)Ýia-OÑöq*5m*r%s­š³WêZÅöÂÎwùAÛŸ]«Çã¹b{ï[tI|¯è7«‰EÝÆSiKÞ¤ƒ~ŠëéGô§Î/j¬¸ÎUr`Í*3¥:´gzL]ÃmŠãØ¡µ‰÷?·\ýRÇÎ+ë—aqëêJè·üÅ•^Šý¥dñü&o¾Òï]=Rñº>Òuô¡Š~ë>r›öˆok :(®îoçzYq]4ï·‹Ñ0ö¤u:öùÔÄëTa^ðà÷u®gÓîÿÁUoývYº[½û» ÍèxJ` ûË)ú]ÿÅ?ÃèAþOà©õ÷Tè—ßöüEç¸õtçXè]Ñk$íŸjã¶ôFŸ ý2ÏèᕟK.eÿ¾îZ¡ß‰‚íí¿zR‘Vºƒ²(;ªãwÕqK*ô;9&¤qÓWèá‹+že§2”}¤Çº)¯VœWýqóG·ãöÞŽÛG‡_¬øþ:ww]¥r‡Š’•†´Þø…N5Ø{ö‘q…~¹{§õ­æÕ’ Ž´m¶xÀÊZ<àòôQS*ösx™Z×'î·X;aëéÊj2é°†aÅó“«¿ÊX~sú¸?!wxà‰¢Ëè~ûéÝuÇn§Ì© .ôK«Q±ßž¯ct_-¥‚ÃMvÜÝ>‚²–ï7P ¨x~²?dB˲þqÁkÿÃõ¿ãnMì.PÑ­ "nÑ鈟ÿQñ:׉?ÛypÉâÍ%‹·tqðã´²GÅ~>gÑï¤S›~.çÃÇúL׈ßj@Ï ®I.Ø/žjؼB¿K5ôŸïH÷W=ëÕðÞ`:Û¯e•=_*ô»òìÝ‹5ïÓý]Ь#®ÒÉÓÃû‡úT<¿Ëá¶ú’@÷ïTP<¡þºø­ÚËqú]<™7vù²ý¯O%]Õj‰tTÙ)~Tô•ŠÛ›°1ÌÆ3— ƒÇöKþDY ó<ÚLëÿw¿ÿ}þßçÿ}þ¿ç™®®²]弜It?”gN'çm½Sãûâ ýrÿäïýÖ¿Ntéäïv…~—ÿ¸YÞïãé?~Vq{æ ³~.³é´ï¯¥b¿Þž“ëÈ {K"òôŸÑ™ÁS:juÞ^¡ß‹ºküFô¡û!ŸÒsý§]¡ßÅ·Nio–Óý®C/—=èüÞ¢è×H+l݆`ºÑ{dç¦itÞßwù™êªúåTúµPÁé‹u‡dÓù_ÿq¿âöf…¨ÊoM÷5£Ç¬;?ŠÎøzný«Šuɱíó"¢Z7zhQøò4»H‡˜ÒÍy[¡ß¥Ÿ·Ë­{GÞý¥1Žü¾ÿ«âë>¹3t[ÿôÐcJ#[U{:ºú툙—?Wì÷áð‹¡w?ÒÃ_1ëFG×—|±|CÅ×[`sΦ6=t-Ìk°ËŒŽ>¸ùÉC功ã÷ü™î—ž¼6qs:íºuQ ^ÅyQÎåYM굪L÷c>Þn¾|eïþ7Õýt…~æ#Tô{~@'Ão¹Í¨ø9þ\ï)øscÎïçŠýª^MrmK…V çÍúÚÎT>cÜ?½âø¸\y¯x7©&6ÍLøP8ˆ²6ŽN3Œ¬_ñs¼¹>w¡q3*¬ôýæÓŒb:ÕÔ·ÛU&÷Ó·öÓsz¦QaËÎ3MЙÍ݌۪x½3'~’U·,ÿ‡'L›zx鮩“óª{Å~¾¾}á[Vçëjn]èôÚ:½sâæ”ÿý¯³Ëë|Q\g8Ùз«òVW*pxÚĦŠûöÝq:iÓlgyûxÏö?E™ŠÓgjœ;QÑïü”Ç>”·w¹<²¸:˜J—þº]¾þ¯ýŒT)èUgt=ùëú×¾Às+ºÅ,+oïTè_2u)•VW·>|ß_ñ:çŒûd+Îo²Ú)•~lFÅäÛâØ†bÅö~_g,o©Yý¼sTÒkà e³Eåë÷¾jtãU¼â¼ïp¾G;•;YTé}ý÷uÕòö™?×wÿu='í¯ûanLü¹L¢.¿Åû»RkqØÅûÛWéEP"½ŸÛïù¦ÚåëyÈ;ÅûéÉÇënð;K‡i„´¼ºU±5èQ-&ÊM1>¬Ø»º¢ÇÏŠ.v8j¢øÞ·{v<ºZqŸ[†Q¯À9ÛêSqœr÷eÇ× ­úbhuRq?Ìñ‘+C z™Òã~yŒãë¨Í¬5s÷]Pôk¸eС•éqîª VaŠû‡J;çü˜H;ŸM]P4JqŸWÆÍGIc÷¯•vZeVö Ç5×P\W=¤r¢mÙ£¼]üç¼ìÄ_÷oþ9_SlOkêªâƒÚ´3ÍFíacÅ÷—ñ,äÈõ6Šû¾JövÓÞ?†öçŒà¶ŠëÕÍß½Oú¤¨Ã“?ó‚õ-åëþµÿ–®÷QﺞvåÖ±ÔÙ¥¸Ž·÷5‹ïlôZÑo‹ÏД‚ÚuxŽ\¬¦¸Þ¼÷ÞKGruïï×iâÚyýûC—ž_ãýi=×Û×}K—,O=n¯A;&]¯›2<´|ýÅšn£ý÷U–>éÃïm™­´ýá$pŒÞí¯¼Q\‡/µwª>ÿ íªÜ^ëÍ.Åë¼yó^ªbÿ+]³®ØSï¥{y§¨. V|oºË«†¶ó‚~g\ëšRáuýÕ.M¬qìŠ#mk·þü{;Åq;cxè®.Šûÿ¸ mÿý\¾>û¯ö?¹œý×þñ÷þSì»3m¥áx:\mìÔg¯rã¡ý›£ãt«”· ÿÜ—¿ã÷ýÛåë¯ýu÷£Ns‹Ç§Œ§YFyÞŠëÕg†º˜˜ã£áÅ ŸÓÖAEók« ¯;å U5…”´Šr°øêHç·ìSªªØO¥¥‡j¾SÜg^2fú„ú[iÿPís[ÇÁƒOu¯Ú«¸Ï¯8ªaó~#FÑŽX/ŸÑŠû\³¶Î¿8«Ÿb{voßß÷§= ”Vs‹R¼¿ð5Ú³¸"ßnZ5[ðÑŠn—ýÑ`ì}:ý3>”NT˜Ü\øsYD·ÛüZ(ûw»b¿?ßïíßó):cô+ˆ*ô˳YÓºìA7ÿxèÙßíŠÛ;Õ¤ÞÖ ”wtÙâêñõ)ûmÚö+ÎÃÿüžœü¹dÒ‘ÿ<®+êþç>³R÷5ŸË_¿U·ÿÌC¯:²§rÓ^ÔìÛûý;*>n¨riçþÚúenØkر›ôxÙù7—í¢ƒí gÙÌÚ_¡_nt=£Q¹ÑTðg¾{úçÕß*ô»:ã°ã“«3© ìÛ*ûÊ(óu-wåÔ×ëòû÷9TðóÏf«èüÞ߯x]Gƒ±e*øó}œúOÇRäþÝîO^íJsö~yWÜN6œêúC-:Ýêdðɬ£ú]Z³ûôž»ëéþæÕ·òÍ;Й-9· ò+noã ŸÈJ¯è~ŸàOÛ*Qöó¾¿V<ŸÈ¹:~VåtȃÀ°÷w(»O”UÓŽ÷ûßçÿ}þßçÿ{žéˆ¯Ù™ÊE)TxàºcƒîËèÊž_•÷Ûñç¼üîïû½é×iûŽGú­ZÛÇït2N½=öÍõõ”ÛmBèåë_÷Ïý^…r$÷¸¿)ÃXw¸å…Åt?óðŒZ'çе ûÇ-«^Áètøª¸ÎÝèÆ2•©ƒ¯´¢üÿü]–¢_›'ÎtcU`-·ƒŸ(ÿÒÖÞË7Uì×1ïpÑÌtc〯áï´)?«Íš LTèwê«Ýx°ítÐŒ£”ÿërSÅëC§;ì©–½&šnìRóéTÍšò}í6hã´Šõý±ÃèÊThÜ)©ìA¹ÿÃýpîSøç÷…ÿüÞ°B¿îCúg¾sý?çQÞïX¦c6¬iF…µWÍêÑt,åÓI«<îe…~»‡9Ⱥ)ãèAR Ç4‹ Êýzÿֱ؎úeVúµÐÃ?Ïç?Wè÷ç~#ÅuÙÿ¡ß®ß÷ÕPþŸyÔ]7Çä§[+ôûãêtûO¾ÿy®ÐïDÓçÎ [¤üÏ=­Un}©bS§´â¼òDªøØ¯¾Ý×.\Qé¢]õiÂN÷ª¸_µ.êÚlÄpº£5¹Æ‡cèveËmc6Ü«Ðï`ÍEÍ $Qê0å9›‹è–ÆýÁÓMó*~Žkž*±†5èžù«fÖ*èÆ­È€Ú'+^>Æ\¸7ð"Ý;uá±ïIgºÙ"Rwÿ(ÅïýŽÿuåÏù,ÿµ~×_÷-ýSï'?Ë­¢8_Êø}ßHyûŸûÃJþów*t<ÊÕ?·¹âünLJjÃwH ’¿Özk§©‹5ç?¦v4Ý@¥ý÷˜EÏRÜ_v8s`£|žXÞ^ðç÷\O&=ï´F¡bœýußQêŸñþôüÏEq]fß_¿çZÿŸ¿÷WÔõ¯Ï1ïÏyóÓ¿®oìÛ»<û’^ùx¦¥uêë^\ŸJOUsçù®QÜÏqê?/ÿO›þúA¸âzânÇ#Öþu?˜úsÅ$*í¤¬qRqŸÛñ¿~_›¹¨Ê+§YÚîcÜ÷×ïÜþÔ“JÜ" S¯+~÷uäË$ËI‰Û?QûüÂcãèñöºöªÇaüxæâR]±ýªÃµv>éKůš)yŸõT¬ï=ÄVç•b|lq.nx¡A=qc”ÞPq]ôHK}ú\]ñ»ë½uz>¹ªõŠJ†Îh=ÁTq]õÈúÃßÏï+oo=¿eïáUATje™ò¤®b??>{ü¤•Éåíë6Ü›ÛöÿaïO ©úþÿq<*¢’¡‰J“¢ˆfÏ4…4 M¨”& ŠJ…J24Ó`žç™{¹î5»æ™{¯áfšTêo¸lÙïÖ§ïw}~ëÿ]ëÝYgÙíóz¼ö¹çœ}†ýÜçãQ ìŸÏÂÞ/g ÏBFÄo{oº­U"w1ëΑwaje—Aºó ]—B‰)*Ç¿‘Ã?Uhá ˆèû» ñvâcWž?S_ƒpýÃIO—Yg£…ø‡#ãpœ%äI.¤Ïf?]l6ºÿ…"N+PQþG™?úSäQøà²º.ŒŠâ)¼NÞë.¡¼r6,Ø-»5ˆóÍ&ÚÏDù¯á±-ïÑþqœÇš+ à½Û87[w”_ŸpðQÀ‹O(ŽÎþ¥‘àÙ6"üâi´ù¨ÄHZÝn`…põñמT!šðêm7uHwb%îY¯Z:캕¿ð¶xc¡§Ü×ïFý9™,-#“ˆô8*‹¤Ñ÷@(«ûå%O]ôûd®Ñ@ïBw¿Ãmæ¿©QºAÈSú7`ßEë7÷­PÙ¤ßtòb¿»Ç~÷ÀpƒßK¬û}ˈýý½6„£&Žï]ó)»7RVëyÔmïGwäãÒ§kEoD ͉•éùŸç&öOs¯FãÛÑæÿª¢ÿ¾9^¯Å×u}UÔç½ñöŽô'ºñ©:1x{ÿÿ.ÿÇKHDÌ] êv®ûô‰ÃùãF߯Âçsó¸ž);õ–Ç[lŸ‹@êïó…è¼ î—[’þp¹\}˜º¾Ïù¦»ÌçÌé§ÍMƒºç.¤þþüÂåÝ ï÷4ê–ûŸF‰÷^·÷Ÿ¿=Åçÿ¹yÀ\2wÏù¥‘zè½Ü/pxp>p¤únàCƒÝk]ßb{HýÎ!Sp^%nòµ·Óâ ‹'TfLLpÄã\”Éw­$ý\ QëjËÚãz¼qæó¶+ø|xÎîYEä°H¨ÛE¬;©ÑiWË_?Øá²¶¦Ïqõ»yÞíŒyG?HÁy‡i‚óR4(Tw-­U„4 Їá„=.é2þ}ÝL¨c¤nS dÆ´yÛŠð<æŒoWÚwA]ØXæ¢9@NÜ*Ê1]<÷¯üWþ+ÿ{JÈü9÷þ(¥V¨[$¤ë5® Ò½=á…?2ÜINWW%c™2k÷CÈq?’ýtÑDW±¼³€0k®­;$5rÖÒ§Ç$ãû¥Pm]&mÊ„úÕùW[Ìve›â͵p~]†ÓÂ…n3Œ€Ñel5~Ï*ÈôP«]ë…Ï[_Æj«,_ ´ öÂPøƒÑŠáÒ VΰLKÚÎm'?Ï"+­w'–áz”H 5}C M³/{c…Ÿ× Åyýkš²\7AÆ»g«| X{uz×uœ¿NÑq¨ê¾:j¹º¯¿BÑ9Óå‹?|Âp©äY! !%0$† iòKΙÙáß Ä)_t/„=yS×p5ȸ§>{új\oŽš:Gçêéc•gË‚¬Ì…ceóp~8iwF±‹Ô$¨/('¹DÒ•¿à•sÇp)—|n< Ž‚ÅÖCï]!=öÍøso —®ÀzIó úãÈ{?¨ž@¥H½ÀÏszžÜÙæN&T_èçÁAÉ\³VÊøq¤^‘¿»ä"Ði3véVÛ@Áíà·ç‚ˆøyé¼d}¬ª/'çT‹C¹Ô®“g»ñ~ðR^Øf|ж}õd>½gXZŠ_7ãÇ.úªÞïÏ;æ¿6@Nš’ÿ¤î ¼ÿíÛæ| î=Ð?Œ_÷$Iòª­ ž¿ßï™#33åý€¡š)³¦óP“×Í÷äý‚ã —hÜvK:1u… òêÎz0 ñýªÔÍcŠ÷~‹óoŒz–Ô›œÙ›†ø‰KœªS^ ®ß-Ý{iŠJÀZ@Ñšr…ú‰àh› ›Ñ|èÝÔØcºÀÎ&û(+RP{ '-_€øaÍwwäJíÎÓ3F‰ýD×ËÐ8V¯`(Ž ~&feí.ÛzÔI›¡ù?H:ÛãÃÎ@ù±‘~¤vùMöõ$rùd‡#Îʈò]„òuHîúÑïÇC£Kó‚×Z{Q{Ÿ mßÓë[o)è l+Ù)AÄ“#Úµ(æy ßí=÷2ñ¤ °| T§pŽðÅpj/ôGS¹·[+°·­ÜÒˇp<&w¼ ^UlWöêE[ÇËZ¶4t⯛ëT,v¡qV€öÕ;|ï÷ŽïoÚ%A¸k¹¯$Q\ÏjRºsü€Ý"tdÑÁó·gÆ,›mCõ`éeíÁ·`q«3¿×é}ß6ô½ž²£s„:MŒ°T=4ì8ž4©M@y_b>*·rl)yÔ6¯DÝYSŠž Õ³ <ÇOꂆu)ERÖ(ÎøN›h¤º¾½oÎ/xõX»§y®ÝÎÿh ßE$Ô¯!DkGá{`>ö¼ØbŽâDçT(î˜5ŵNÓÀê» ©ämȸÃ7fè9 ÝÞÄ%Wä ñÖÁÚÒˆ‡’¼s®h’ Š'¦¸}ùdé`ž¹qéhÛÐøâ²æU8‚òúâú›¼$ªÛÐv y-â«$^nwEé|Åú4|ò¦·{zã­u<(5eÜû¨ÑÅ'Ø}Ôo;X/7ÔD¢ãHbÍT [€â‹ ÷fý$‰L–“øÍU(•3MðI0£ÂEøÕò¯-AééÚiÃt­>Õ_XøðDܰu” Cñ½øÂ}¹é[îćѾgAìã¹­êJh{¼büÇÓ†(ÌÞíþãdà2ˆ<òs–…8ŠÏDoýš›„xjìlâU»Pˆt85>݇ å-ö³?‹K­ÚèÕ²¹’ õü7Ô¢*Ã*æ4¢ÅVˆOFüÕèÓd-ÄOfůû¸gÞ"ˆ•5½¸ãè&t}oì¿03='Yjsx’[€!Ìwõ$ºî ›–ÛõÈu ã0*.Ü»«¦€åƯsÐï+™Ü,ûsCí·®sÚ?}zzßÓü–Í:ŽôY§$ç6òIA|Þë¦âw,ÒÝ>ÎAqCv@J¶h² Ĩü"u­Cy¸q؇)Ng’›^]q6韖‰¡¸rÜ|B*­©`X¿24{¶¤âË'ÜÕFÏÙèB–h}ÏMH¢Ãód<Ä8$œº‰âÒɼçȦk?–m6z]ö.EˆÍ¨ÿÖm„ò\ãJxf}PDÇ_š2qlÃÎr¨ZhÔˆÂé‹ó–ž-ÿs+•.Oï]¡Lg,ÿR©Îä_“‡çiµ\½êxT j¿ióê˜nò²£|½+†+¸Þ}Y£d!ÔhÕ¸1­†ÜÃ{ ÷]ÿ[JžYIú¥ Uáæ)ßÚÒ!ãäsi<>D žàxxç …kÚLßL‚¬"’]œ§•f1WZÍŽõQ‡ß rJ¸‘ÞÜ8†£,øvÙþMÔ‘,ù̃ òìÏ=/ G^ÿXêtÔ»jéåÁ. \ÿ"ðΟ͗à$kßuçf¯2½t2Èó_¬ÅÏß;J’Àu Ýn<1ê'¤Ù•0ÙÂ8néš6ýEÂ@‹Ü«hرHÔZD®ÃS8“ß̘4ïÉ]M«;²(@úêî(—tØÄhÕ–}¢ÎÒ磵¦œ‡8®Xºrõ¨ @ LÍó»9 ÒÞ Öóâñ¡ôÖj¯ ¿*€ÑhÈS˜ Y—_ÄÖ†´â¸sN“—÷Lƒ:“ÅãýOèBFCAêØ —˜«ŸeŒÝòç5ÖÓ!SÀ¢¢Ëû?ðð&—ÍHÝs ê”a—JþÈ]´Ñ ç'dNkßeºŸTò nCæ¬_„õ W ®š½iÜs Ù‘ f÷¶·AÿØæóø<|¾Ëæ…]|@ß £Ç{¬(E3Ô…•—a8êM½5œÉí@ŒUèP:éê'“Nðáy©y pƒúØèŸx3èwÝ ½;ò€¯žwDý9j-±¦èú—î>ËëtW™ó¼ú#qÿÊå¿ò¿§šÔGæêõc8êE~Þêgö *üQW!Ž«_QÏÕyÏë«ÞÃùpÜyM`ðàGÎßáÒÇÆÚå> S÷¹å,¢Ú§Y›p?‚(./ÃÕ%àÖñãõ¬ìxZu†æ ™ÉBjQ¼•ÂUœ6äÓÀÕ±Èvè[ð÷\Ê»Sû¿œ†úíV‹<õk ûêõö)Ïñù¿ÔÄ­ÊD#hpÚ*¤® d‘ßEñüKâÎéÝSS€µR¯sÑíKß[#ÆQqWÝ÷w²Ïç¯yß ú¶œï è“Å2ÌleõÌþðÇüUâ•™±bçëôñ‡ó?ø@ìǹÖ'­ðãͽ–y7”Œ'Ϋ÷{õÓó_¼–¸êÎ×I„“ˆ{—uø.ë†óàòþ›júhk!f@?Ñ"ú–È!ž{±gß‚¥Øßщ\– u•óëV9A.?mºus~Ô…“^àƒÆ£ë>ß¼“ )ïêÅŽÝÅ#+äȼmë¡þRÇCy‹ H±¨ðê~á’£-/)€Æè÷ÜùÙ¦¦AvÖÇù““›¯¶*ý„†6ÛºX(%f‰¡Õñß×ÂpË™ 4³Ñ¸Hî§Tï#u„¾Ñàü÷H}3ÂÚŽÑÉÂh\yõ­ŽŸè5`o v–ìÞ4´«ï5Tçêaz_ÔÏÉk^¬D<ˆwúNÐxð^dwQÁÐvrWªoå)4.5»ÃïV¿X¢Vή‹†ÅFø æ«pyèº\÷¡z·°oý¾=ží©hî´‘u`u™£þe :ŽíÅŸî²@ý_…Tû3{O&¢øPL§º~K˜?+g·+"ö¿õK©‹ò{ÿÿ?nï¯qzMÔí'‚‡ê^W?Šôn‚æ|õ¡í#ž#C¼ÖÆß}V€8B×oPç±aDjä€n:ŸÖ«¦X¯š:˜9´Ýç÷û²¸Ïæµ¾ 8Yôs!å þ3Ñ~QÙŸ* ±ëÔØÑ-óQ?R÷ªMÝ;TO¢ºEÈ´Ë}ûÇÞuh{b•Ý«‡®èwÄæ^¼³=× Ø‚îߦ ߇çÙ )Ô^ÄîîÝU6ÛÝ•»w¡,âçŽ?ÝE±¦ggÙdÛmn Ìè™ñAŸæ¡çE‚ÎÍèg‡÷·Ÿ˜Ú«Xé¦k-Ê7åò=ÿξ/FòGú}py—ƒüO„©ãô.ÎŽ³ÒŠt4©!žkàÞ'çæ5ûª’}´ZéUŠ<òðw©´ù¯°tï%OiÒÊúµ)üÃâÁ6.|ï)Hÿ‹y´¼uã°Õ]9éä{OÞä>ñ(Ê£çòt1^ë«ýž¹©~¿uÊÈ]º¹¡, ÅoÞÏðu‹8ý¾åÏ^Ÿp’„ŒJþÓÑsÕóªÞCÉäÅæúáýþ=„÷¥‚ëÍ‘Nç”èúëb!6jeƒìóCÛG橲¶¼i¸sª»n#ý\8®—CLÃÕÊ„:Äç ;^¬²>=¯ØÙ¦yoŽT@¬fá›U£ÿ7F=§¾xÔù¡:ƒû]•ßÿY…xž#óM÷T˜ ÿ„ŒýxÔ_GԋǘÅ<…\¾½K@)ý>íð;Óóž[cèÛO'@î@9´Ýo„oPÃyÊJ¯DÈUŠxìKDqíh q¯¶-(Æ^²cw,ß‘¬ çD”Ý>ÑóŽuÄrLé&¤mTr?,ƒúi˜uö‹îèw°7»©Koj‡Möö„t¡`1ýúf”÷ÊÚ}‚PòÂ(V^>Fèzúw=Ðù˜ƒtX·LÛù^¦©÷«PØ=gÂ&ßÚç'âúeWi&Þ{%Ìd­g®õÍ´±x|­<þkI¡Š_³Uå_´¨é·džáºÎ}‚{.ÎÕã£ýþÞAûîO4’Ÿ& j'ŽÝ/•<ŸQþ! [o½ÏÖq†¢F80›å|š¾–£|*{ÿ^.: Å÷eŸ ãº4ƒù& ý¯Ý3#û:Ž¿ôi(â~ÖpóD2|R0ußã¹µ]@3-Í\{™9žÖ’‘>?ðór÷ûJþ¥¡jFdQÛ†ç@Ž{Íš2·¿p*Dæé¨º*E¿Ly÷G_…rþÏ E©áPé¦%”i» È¿§¡ý:l™;ù> ªÞ{/dg®4™“xq\ÉÉëcR-¡jÅ…µ¶%rÆÙâÈÊÇpŒÚ¥µK» €«ËJ8ÅçØ»b8®®ÐWÜó|ò¦ ÒÕ¬]J7ÁpƒãJÚÀón°Ž·§Iµ ’·:·LíÁpÅ_—¼:´VjÄd™ @©aÊãðý–ŸÙ|{Öx!(›b0N‰BöºÚ´X WøåÐS±¨íš®5ºÛÒe…fJ×âñâÂ6…´T_(ÿ¼eSaÊ2(HTf︺ÿ}/fþê‡j±M¯/ÐN@¦Ü–b;2qÜ[ù;—3¡’DœTdzrVÌ*¹‹øÈÿÊå¿ò¿¯„Ün÷3뤲1];¶<¡÷}ü|¢ßÁfœ·”dp)Öºè~ ­®Ø±0/ o‡6«w†ìœ°Þ2ü˜pÜ Oƒ¦ûƒ-V2Þ[éý'ŽSL²b|óßõKEa!#lgæ:Üωҧ:Pmû\Äòx+”ô±Ä-qߊϞUŸå Úã$1»uïó4)뿽ÚaAƒjË͇5J¿{0W7Å}M”Dâó>ä÷«/çÙ@ÍÂÉ;=³” ÄVó‹Í.A —òõÔÙÓün@ÿšÐÊ¿ì~ Q¿çõ÷ñ×n0®×à>çÙJ½NHˆïa¸A®R¯}-BîôæÒŒ£)7"6ÒßÏØCÞþf â4üýE¹ª¯Øš2õ…âY ù%8ë/Ô²Eãÿöixh[âqVzX{\ßçÛô]GeÿÏÛ³O ÈsÖ^Þ™ j{qÎgê¼P¿JÑêK„AùX‰++Ro3Òö»îY”w˜’8óûQÙ‚¡zÒ£žPV;0­Ê2?^Fqꈸ#7Îõ#tÙS,z|¤r‡ù4ÐÅÕRR9ðÜBý~îöKš PÿKˆ9·‚99i³¯å"~iªÞ½n@ãú˜K#ôeÙ,ɼ´Ý$I1=ªâƸÆ<¼úF˜ïuª ¿…Ì÷>ï{€âkQ¶ïXŠ Ðhÿ¨u¢Ò¯#-}:> ÅgcζÉÜW²ëmïeðt¼iAïÞ©“P¼3FœÍûÄ^˜OÖ¬œ>é§ýµ_ÂßâþÒ§“÷¤ï /Ÿ/|ï ßs+=xgöñçÁ£Ñ~ÕRxO ¸þÿ¶ÿÂ_ãþÖ¢Cnæþ„ˆÌ¶~3Å—ÃjŸŒÆKûæ–GH‡Û7Iî£øUDJ )›­0 çzç\¤Ü¿cü4JnîÿΧ¡‰;O0RÇÏgD}–,+15‘†3ÊÓ {stÚùå{±~ð¿å¿ÀáêPùÈsQg÷~¥\tŸ þÿS¿ûµªÀÂb:ÆžjBç‹°š¶C4Šó³3½¸ë‘Ò,Þ„ž "s­=…†á6Iu&ô@äEegÌV ý¡|÷o@û”W·äæzˆð¦P‘Q{qå±bçÅ9YÓÆ|Q; !AÏ"j"Õ˜¯ÁsØ·‡éN7ôaŽq†áÑwò‡é“ÆOmSü¬Šxàe\ÝÆšÝû?Æ¥Êr(ÞyÆ„š9Y¹êŽ xŒ)³m ÇqãÊ5Sûƒù8n²j­Õã ¨‘سa•f<ýJ NëpÞés£ŸÔç^©`¾ÒUï®ý茗¾àêÒq¸åŸòaS]FÌW²‚ú† <4€ôâ¯úá.cpÜžŒ¿ þ—ä„§{z¿‡Ã½ú2ú1\²¦Kk‡@h\_ªýaÝ )F~×C¸BƒúK{¦]Yh«ñ×* ëù”Ãç×v9 »Àj í嬛9VÈ9Ê­†f¸_WÇÜòOç¹\ÝþF¹hÄ#®¶‚=f–Fò?.‡ãÎÝÜfoêôõB—´iÁO?勼Ž8ö¼‘`= ¸ñQÊÀw†K¹¦t´Íé4U(Âçõ¸:¯@ïS‘ìJÏÓ¤>ÝÿØûY5Ðs| åÕŽå]ðÓ®<ï“:è—JjÞMjÞ”?铼qaŒýô’qÆ1Þ5@1ŒÝ¨§Çá¨~ôœÑ€žÖqýu¢Pœ.YØ´ãókÔØŸÎ­Ï†ôƒÊ]oêÌWåÍW†ã’KN’E÷cæ%¾ˆ¼Å@¼6Åã>G}~c[ôÙZ`È=´X?jEòÞ¾ž…ë»PÃFW¯? ÆÎ 6Žƒ´_u¹”ù•8.TÉp¼„-0d潊 Y€7ó[÷P~-DW¸LX´scŸ¼™6eì.`X¾|vu-•T;&æG¸È»÷ùÖÞv®Å+æêÜ?ã¾S4/ ìBsþ«îH?úû˜ƒòû_$ö÷Cãmgb“ã€xÑ´â9—$¿+Öí¥Î7`S;ÚC¿¢ñ:7î6TOâ­¿;‰UìzKë¿ð·~Ñ+ÚÓ6þD¼£¤‹×yßH[=ìø·fS„›¦¼tgÌy„›&_PjõØá»%òøk_…ÿÇq^U9©k«‡|ˆ!ëỷkïõ€éŸ&Т‡òn½’ÆÜA¸ ^ñõãïÓÇ]a¶)ê^4•—¯kQnVo…OÖ˜~wæÞqÒm„àá±×Ñw1‡¨.»Ñø5kvv·ØL~`M°­‹ú3aׇ‡o“Pþcbè òÕÀRÖÙ¨’äƒpª5+˜V(N’éâIÑ>Þò ¡N„Û¡´›Õ†úEbÄÁém*½íy/¤T!^ZÒ³LÑEsPcB¶KH­­1°žjó«pPœ xo+O0ÒEK¼ö|+\>¬]Mcu!ª#ìg£‘Á0\OÎLeÏèkGqÕ¨ÞÊÂ(¾ÎYâ“ݵí-ÄŽÓϬEqÞH§C9¶<(îÃqûìÙã{‚Œï=—nDù– Bü£­ Ãtéø84Âd„n=p|0 ¨¿@~˜ßßî×nÎ ¡³?!H]4gæÔÔ]éiEyøÜøöà¼ßÐö‘ú¬~ù®eÐ6ËCùê„ßçýþÇåËòg‡¶ä×2/Fù<|¹Q¡ÑWQ#~ŸûÝkz^±Uyì 1{­Î.ÕGþ0‰-´X禚Bþ–€”ä—8!“;ÿAsž°ÿà½(È×;?«”©…·w~”dÀâÃ@»Ô8µª7æñ"Îï F­Õ¶€v »¥Mº}v ¤¯¸(1>ϳ¦f8Øw×Ýñáò×g }ñé£QÍx^µÀýÐníH ÛÅ·lU¿ éòùŽ[–Øà¸ØÍÑ®»EîyH_¿D'n®7MMá$nÙyèO²_ ûKBºÂW‰eqá_ù¯üWþ÷”1µfißR6ÈOÂp‰³´[r› N^S÷´è¥/»Ç``¸¤Q#Â0¢Nžò€‚߯8‡«/Œþoö _7†‹-xúüS ~‘SëÉ¿JI愚†ãΓ}à;íþ•¯zm¶Pš’å~}IT½ŽQ̨ÄyZ”Çr$,¶À@8i3Tå»õmÁp9‹¥N„­Ñ†’ )g–†Šø.˜HÜRtòºòD¨˜-`¢o å_f?Žçžô¾ÙŠ€ÞÿzÛ…]ú}o> —ÎέÚ÷üÍß,¢E¡h´¬›áõ³.sDžðŸæO ê–c¼ÕÞÞoè…ÝYð*ÏKMyíÊŸb_ ŒÈžÉiÈW[½œ-ŠÇáÈbÞž†&W¡¼ÏVò®T¾Ò|›öx‘\ßì“û"*@ÿ=®2„ËâÎóú{Uüé8èBÂt¡ÉPªd¡Ó»m)/µwÅpéËW‘ßÙžŸ|Jìä¡fý©Éy8È3ûš›>Ð[—ûó¿Y…ï'4ìúŠ¥ñÔ­Œ<5ªDŠ”n°7B¹Ù9o£ux?ôŒ±ß µá ìSý :oê¹ÄU©ˆŸ6~ë„„r`›Ö™WŠôÈHÔ«û¤|ž!\¼[íÖEyÀºpæLn;Š'¤½ÛИÆ•‘u`Ö-ð½ôÅ׈t½Y¢OÐ8Ü»TúÆùi¥À\éñþ*òÉ$êö'” Õ}gKjön둦‘ˆÏ9ÂÇ€›ß6è?‚Žƒæd…êQ ¼‡Wø_–ÀìaqÁ}塺Û|Fæ}ù4,ü”òø òÝ‹‘_ìÊåëÌ7ÉyÆåU4/Kл¢ý^øxÜa Ò©ra¯Éºwš§¿X¤;ãjï¬ü×Âרÿ$R-;(ÂÀ^%˜ò´ëüÐöP¥ôɽëÈ:4…=üöåi‘úFå;Ñïåæãó÷qÆ·áÎ?‡¯Ðãôšaña¡#A7£ñpܺ¼Û©ôÝÄl5tÿ:—ñË <Á¨„b–ÃJ~`­5¡9ñúâ–è/íÙ‹ü6}>¯Ë{“{šd…s¶œD¼Ò”1Gõå™H‡Ë/nű½íK]¸™QS‚âTÙÐ äÎ »>¾ê²ßÚŪ± ‰D÷!áSŠÛê£èþXصSUØ&PÛ}QÞ-÷:^×?^wŽbΉQ/V@˜Hÿ2´=aM${Ò‘ä(ð¾—š¡U[ÏÍ$!Þ]ÂSOëŒ5(ÎÊI<¬ã_¡÷IFËÅQ<#f o áŠ~ŽÜ”äÈäãwaýŒ =ÄKmîè|ôUÈ$“ˆ_û!íÓ¨W§P?ÔûOà¡ë2’÷µAÆo*¯>ç6NQ1ÚÍg¹Öåis>^nqÞ á/î’V£økĈ~Éù¸;B£" b^˜øÌ_î›`[0ñ¬@¼ª¦öè‹ù?À›'Ëý{ÿ‰ÎËï<`ÎÕÚ©Ù!N÷ÛŽóÏå•[c~Å©¹ùya#òA¹ïEÔÞá>Â){¤žÄlG¸‹Ÿ* ¥j¿ŽR=ì¹hd·ìà ”çß2 ëFÄGÆ ¹Ï¯?ùÆ Õýþ 3€Î3ç²ÇÎÇ!òþ‘póóh^id\¸IÍShã„oh㕆t÷ž°ì?¿BÏÓæ Uߟ³ àþ‘ᫎp~F£ªÜ†ùÒÚ¿åϸïQ¢cOBñºÈŒõCè<±²·ý¬¾÷ b¢“‹oî@:„ó?$2×v¢ö¬¢wÇxÈ@¤ëÂø—³‘rÔ…¹î5 „{»úfé…q.òúÉi4/]çz¶¤Õ WOëPW´\µšJ@ÖŽY¢ødH?sWÙÿ¼vÈßtD<µ·ªg»š÷ e¾s—®ä£Öú‡–àqbî{¯š›“Ñ—Í¢‰û>G‘;"B æÈ™©WÍïýîué3o/åŸy„V,0š&G¶5®*³\Ÿ,à‹IYô)È@ÿkÞøäÔÿŒãêÍPüFq—×7äçð{ž8ÂÌp¾¿ÖêH¿ú¨%»,>4ÿÂpTÙ™ yÀQõ…sniÞ †+‰\/;^h}…V!P2<ʯ¿Àƒ:‚÷G?½xC/Õ7ÀÈ©œ¨0¯ È}n p]j@IÞ¦K`l ߯­i/Ýœ¥‰0wžú¾æý¸ñ>h<ß®åvù)Žœ[˜¿²·¡û–×>T ¹œÃ—˧ƒ†„W þ>ß‚p[Ü®jË>…ÆQמÏ;„è«*:›q¾cöªE´Íü£¡nV©ÚÃõ@Ùi)@¹ñæ×ï^{›èhô‡÷Üýîî†ô$ÎúŠL<^—Å>²uÓ¯ŸP§Æ,êÖºä_<Æ¥a‹ðý><» ÜuVïu3‹RÖ‰…ôôê_»ñ<æœ3×ꣂ-ὤJ´® (©~D™‘¸å¿ò_ùßSBV*ÕeZ±%Ô•+ªþ¼2H¥Fû[Õñ8~ά˜Ù”ûNÀ8·cOˆöȘ!ùö²ÌN —n|Ì´j›0"w±§ía@6Ù¨|e;†Ëujµw¿åo/ì<”+Ž©i¾xiæóÄÈ …¨S>u/÷… ¤;¼ZüÃX Ã¥MþªÒtɤ÷½¾ª {ƒämœwQþ ÞcÔ/˲¨MXtªéÞB(((ÓqÀçA(Ä;Zuwl€&(Zº¹FŠÆ‹,°µÆußÒG¹^†m£kÊ-é,(\Q ;ûŒŽ›|ÄÁF¿hi*÷ÍP`V¸°AÏG$eUHZ®Y õ‹ääÞ¾8™OËŽ:h€áRÇúä·¨P a^‹RÅ•lH?þn¿O ?~ž~¾žØª «7%~Y Ähmê+p>wæÌ çæ÷‚P7}‡bãGqQà¥e'®ëA.¢&ßÙäõ'}}Ó%Öåþýçúºx3=Õ7•¹ßjõ¦w^QœEj“d¥S1\6ûÃa÷E{¡²E0ûÚœ(~3wŒÒ6÷¢S¬S… Œ5uEÛ'CÆi'½„W¸ŽùXîÖÍ1Pä~å¡[” Y¥:ày™²·=ägFAí-©_™G>B¡ÉÌe³&/ÇûÁs­%Ͼ̆—ݤOúc 'ûÎÓ'¯ð¸^Æž§]çu€~ ÂGþ¾ Pwº4x+á>¼V8Wþ< Œ×ñúî=j[ŒòSœçžîÀÚéjûèwmŠÇ[Ô [ù÷˜¯¤sªNÞŒ†€ø£«‹$ ·xÈÍ}È Ò8•oÒg„¸{«zl€yN ZÏ&ÙÔ_¤Xi õ;QeŠ=‘Þ©‚t bsÓ62¨ÉÀš«\»U é¥xZKßC¼Šˆµ·Œd¦+OQÞËùZµdmEyGÑ6õy>‹gUv-ñžÒo­ ÛXŽøMI…'Ú%[ qìeò9[L%Þ ;‹ø±âöÓ¼€ÙüLöR7ú}Š×".~Cqˆ€‡ º¡•ÀöÛ”œðyú}Z¤âö xgplÈ´ <ÒÀö^uÈ ùO}20Dù¡׿ã"{q5clÖ!¾ñÕʰñ ÂD¾kv•v\×áüµ,¾ ¼ÜÀC¾ÏlIv²ÆåÍëѸ>æ^ˆü[A{tLbÛtŠ€™Ü¶ÃqÒKŠ•Þa+ÐõN-Âqú`‰ñtÆ_y<æÆ1”—–²_vÙ˜¼¦mÈßB–ˆV"BRÇõ †°Ü”ý¬†Åì[V£qyjj!Ïz…•À¬Š%Ö›¡~I´»GUµFzvq-W?~Š :n@:ùñòª_GPÜ,z~{|ò´.`Om:·M éÍ¥–5O«B¼¼È'‰ŽÓ0õn¯È—™H×+e´pÁÑô{É|§ê¶kËÕŸ‹½è"RÑVƒp1úã—É<Öc½:'ŸàPÍNuu_€Ðéß|TÆu"¼Á»qsdQÿeÓN†O-K9¨Ÿr¬Þ|9Y Ñ/TCý#’g¼ËñÙy"6oƒ¾@T·aäžùhþ î‘ Ò{#”?Í2?yq©Ç ˆçX:¿zŒÚ#l—6ø¾ůY_Ê8©]•¤Rá6eŠcÆñÉÑF~;,·u«w eá°øy÷kÈG%îA‹†ÁSÔX[øZ¢Ô’ ¼®©RÑüN¬Æµ—¤å(îÅzb(ðM ’ËWX×L@ç!þeŠùš9Ãò¬;?7Û»\‡hïãÖ²þÈ!†À¼ì3Ìõý{ÿî±,ˆ ÿÞþéUÆÈqš·Ê ã¹Ùì„n‚ØÐ[¡/–¡øZܪ=ÁˆÇÉg']Ns…øv£B“Ñ(~e¾gUiÞ·a¸½«6Å®ƒØ_gîKÙ ýŸ™g$Šæ£J¥M¶Æ9ÊBÕÃbŠEþ®òÑá+ÿ!?ô¶síÈ…rƒ³cwd\6Ëdt`¸âŠåJêÓ¯Cy‘qunþE jžjfNÁã%eóTÇ;œ1…Ê Ç}çе =×Ïõ­®#WêS-ñUì T4D>sÎÙßû½]ñ¢q•1†#ó^ñ.öÍ„:UÒãôç’͹(Áß‘á’åM´®Î¸QJÏl„´Ç<°q~eÆ·Û .çpƆÒBÈ´Ó9ÝŒÏ#§__þòÙ‡¨‹•WpYkéî“_ˆœÆó%Òv–\—»# õF|›×ºBÆò·&¤‡¸O[!yÍÜ_kÝ€Z™æ¼Òf¤­\‰Ç¯Šr¾u B –¹ïªC2È.ǬVTdáí}Œ+5w–Z]sÈæe@²-uœ¼ê ŽóÝL^´—âc.«ì2<›êŽÇ›Š&$Ⱦ ´s²_AñÇÕ1¿îa¸ü/ +êÇD]óÒ×4e gúG_Äó˜2çÞ¾BÎ$AÝÎϬ=¤ûxÔYäàñ¿t'ÊIÚh¨ÛÚ´ÅéÌAÈT'ÌÚuçf$/`%Ìûu{GH,×…ô¯E¹µ¢ï1\¶Dˇ€ÏêÀȳzuÒc —Èãü¿ü¯ ÖÏY¤Ó{þüòŒê!Ýšo›ì]ÜÏš•¹>îf2Ð# +°òòdNeò!|Þœj2!àá›C@_U±#ùndn»q¹1ï÷ùkzäÜA 躳JO“›!}‘šà1\¿:_R¥ØÆ0èê¯ï-ŸÔ{ÿ¾°J¹gïHÜ¿ò_ù¯üï)ùÐÀïÊÿo0„ãê?çì.vâJoðú=/aÇå[ êkœÂý­OCò…ÝÛ»²Ó€¥33.j­$¤ÒÀç¯÷[oº%¢w…l«ÞÇ]<>7âÔë=©¸ºadÏÛÃèR?‡ã}4úÈðkÀpê‘7Æ~úoªÿáxIú)úâ· .áàÔ©,ÈQWlÑÜëð…Z‹O¶&½È—½+„ÿ×+Ñ¿;¶o‰¬c¸¿õsÔcb&¶]«ù’4¨{‡ï×ÿÓáŽ[íðFkÎ,yˆm÷Î Ï7ÔÍcìíÖ‚ü>õ'iüúè³C97¿Œë‚·ÇõKg\"½]`Ô/wÖÓ'á¼C’áéÊ•K×ã‚æÝh³j 6zñ}zŒÏ³fnÍu‹5¯:ïë¿  –T±-:ðë‘0=T¹óx=4T®vrlü ™w7Jn^†Ÿ?rC˜©k‰4h•;ßtÔLævY<¾›â§iPZnsNXm®RV÷Lùi8¿.åçYò΢$hÐT²¶Ýà”„8Å ÿ?Ñ{Êø‡K¿BƒO uþ"£”[–2ß‚`@¼Í7û"kûîõÜìMw§.D:Þ„5½& óÿ«Ü;?äà`¯¼{œ`Žò2GèíêGSp½ùûR4ž©÷Cý/u¹¿Ç4JZx@¤Òñ 0ÏØ¯M0+Ú?B§-Aµö¨þáLw‘m/¢xG‚Rú»´CÀ_­ÀPÚ„p4æK%Ýå'sïÈ"‡`ýRŠ˜k4òÿGÿ_§ºÞŒ„ÞçÑ·Çf(þŸwæì— H˜wÙ;áå}`óÜ^/pÅ1ãGðWÞqŸ[M#¶ÿ¯û/ü%.rª¦ZïŠpYKÂzWŒ77ÒWaÐǧ¡¿@zý#òÛ‡žGÌþBµ×ðø§Q0ŠÏ¤ûwÔÚL~ LqÍûZ2ˆ×ùIÄä¼ò Mgþøj/\òyô<[bxué:Ô¯Ò¿î±®w•Æ„#íPdüeÑ%qˆï•,Q0knã`Ö‰½ÛÁÖ¯>ëÞCyiÑQ]ßîoöËwóF!~A-blú™azn»îÝWÒ¶V=câ½Õ(ï6fL÷[Ê^äïºé`¼…Ô-`Ée¼âìrBû­ªÜóæŠÛ&ž$¦uÄû«tç¡]Ÿ†žÐÜoŸrbæXýyçÐv®ÊP]ªµÎ-›ˆbgg¯?ƒÎOÐòI±@ó€ Æ¿z7¢Îùl÷5Ø¿?·áõï>NÐdë¾Éû6Äš°%å»åã•Gk£xicSŠè™iÈáóà7ÀϪsù¨?P¢ûnD¹Û»`¬‹*d7:¬M³CçÁûšf»ã­D„3½åO‹¹ÙË_$PP>³—›\)úÿO]ýP¼é*äîËY3Í ñÿBÆ9›ïŽâ>\Ÿ‹ô¿g$ϵiÓaª[Ä|ìþYç(èÔÇýî?á#žµšôóvÏ NWáXÇ a„»RºÿêcÄÿe¿ë¾Pg™I‚”_žA¼Ãˆjÿ9ÛRSÐq˜.þfÌ‚<ÒŠ½«„P¾ªß¢ü–‘Þ&s¶á¹ÏÓf¥3ãæ7„‹ØŽpý2¾â%i¼½aèû <ûåÙQž6{÷aÁóíÚ@^¡ÒçÔðÇþÇô ;Ê ©†Ì“ûb‹¤¾¤—MÅP¬y X‹áÒ¹ã÷=™û;ÿµ7Ú˜/}¢#ÔLK¿r¸ò2’ŸÞœÿÇ…ÊŠ„ÊNzë,zëlÈ.ÏyUžóÃQ[Tf+z@mµt€’úAÈ=å'«3çKUsýÏù‚ðAû[_…Òdi·dégP ‘ý+™WS¬wÅÏ3—/GÕ¿ îÇ­ø!\²3Js—¸ÖFêCVwPÈÓï¥nP§¹‘[ŽÈ‹Âqó– ¢_>@~зÃå?]b2Sè‹fY÷èÖBº’›²®Ã“ÉÕ‹dpËŒ~9ne —wÀ<¯©B è§ü¬Z ½jâ“Å8¯X+ZVÁÑ ª®‘ :>@¦â‹Ù¿ãùXEçYçFiC•¤ö}r¥m´4ˆ8Ÿ äöÜ×/HP¹ñÏë}½ýù’à»ÙwñýNÔ|ÕŽª¹'ÊÇ@¦ÏÌqÛà8ƒÛêëfAUèÔ5º›6CVõs鯂‘¸å¿ò_ùßSB.÷¹KÈ+ƒ¬Ô¾…„áãpl®žÔâp¥\]ôªg6±ËÇž‡ôþÂÃÅŒê_u‡ { Äp™ÇÖ>¼Qåu!Š‚ö¯N¹üë6­PÜÇ›b<é™à±ƒPÅf½l?ñJê8îÞÛŠç–P­3Ñî}F1”Ô«}8ÃÆç›þÖ§Ò/[¿ êû‹#ƒuw™až{Í h£RÎ?G‚¢Mèokâ0\ײž›¿Qð{^ÜŽÈõq`ôÛ8ˆ@üî@mœ'ö»Ž>dÿ>îÂ%´›T,œœµ‹wWv ~wá×íÎA÷/P§®Ë_™T…ê«ÒÕÝñï ïÚšñ¯£ j\Û¹K¥Pv±óYVÜn|¿\?…Ê~ÙlM¨îsU8„ÇÍ"¸q¸šë«ðÿ:î¯ýþÇ¥DŒ ä‘EñÅÄ\¦ElU+0ûT©,†¶§Žî^OQ\8yÕò®Û³WSçûśш’¢õÚêÉå°¡zÒëå­L÷Œ± î 8Áßú4¤¸7nøAD¾¡I×¶™Ùóáç<õ¿Ôâó<Ö§P<+æÒó‹ëó;U£çë'„cŸ£ÉÛ‰pÔæ©¿¢š€Ùd‘•Žøt©ô—¬Pœ9æ¹Uî½ÅÀühy? é´¥6–%®¼‡x16O$'ióÓ—À³¬ ÃÚK%UíG¸g }o<émï¼P÷s”?ü·¾ ÿÛ> ó=àâ{À>l»Tƒ|EH#êë«Ð´(À+ìE&D”héí:64nÃòhÿº½ ýfˆá«:2Ù4F"´¼ìD^‘«¸Þx¤a'F»FlF¼¥¿õUø{œ™{Oº4¤Ü/yýÎñq߇¿m/ybì†rÏD?vÚÚa8…ŠÔ ?tÝôA1ÿfˆ:w>dП]ßuÎmŸ5·}ÖBàˆ8mâˆú_ûCĵÜ8‹ !ï ôð¢¼[âˆ:›œ5}=½"Mn®ñšŠâÏ G4™T!hv˜€Üø“Ç!¢mEȯE(?<ñ–uçS4OÀîú‘_¼":?ì-×Aùõñ§/žØú=ÙÄ=îW,ö@¤Ù™5icn¢ý>˜šqÙÍ[±³î/9b ‘rËßh4"}„‹?û±¼åMïZÕ\ý<âæÍ+]ê]¡†[& èêâ¸IÅií‹×@uHáœ=Kj€ÐçZ©‰óý+²wøÁÄZ¨Öüz¦;” ɶm/gòàó¯ë¶…L:Õ<¾*¶æ@XjºË çiqu& ^VÕ:çî)ÈéK$ÅãM©OVeLyõ{¤œ;!Ý»]Ä3ü{˜40OõÜø^ú•þÇ-ÚäÜ»B}õ®¢ê]Ńq>wlêÚš¾P®ÿfÁ#"¤çÜØqÌ'~É-»';ä šfÍ7¯Zÿ.-ÜpwÅ8­@ßÅ;•*½ Hê}&Üï«ÐŸ|dw°Ðú§½–CÚ«MVûÏá~n\Ý 9Œ#8Œ#ùôñ’ÞÇyî3à´¼ïw¦-Š…´‹'äŸ~.ÀpÄþϼ½Ðàq`¬Ç> °­ÜØVÏ0\TßWŽäuhä–Ù!×gÃ}ä†üáÎW¼ß®#é,Ë4ú#ÜWxýVø¤£ZÐTÍ÷ó9(éã—}VÂó>“ÃU) &õþ¾ˆÖ{õŒ!cïŹ"¸î Õ`KxöèÀØ%~eÆ$q Žþ’ˆÇõrõvI^Ú,Œr 1 + oÚýpÞ<”:»“ï’Á`\ٖ˾Òj¾ÆO8û‰Pµ%ÅÎÿ ó»t!ÍõåwmVŽ¥¢óUV·CwŠn´ö„ŸµÚØuûWþ+ÿ•ÿ=åNÛ >òŸòó ¥û p€ÎõµI½ÚGŒÃý`ЏñÚeÒÌþë)sz»þ^¼½§}‹3Ð} ÒŠûü=B•Ÿªîgz´r™m Í:Ç™ü Ã… Æ ¹þ<„?ø‡æ¦³5G¯wºI[ö|F dÙëX®Ä}Á¹ºZ@çÆá²2%;mðó—{gý¸«Â¾ØH›äû² V°ØÆÄpé=)›ÓÊø î|×v¡lî:®ÁÃûÃdç‡tT"ÿ0Ï•Kö‘wƒúmIôî…A̰ÙDs.†Ëó%E¯ÿö ê¤ö¯Ý– ;,j{7a¸ n|µnàºÖ1\¦†/³lÇRhØͯkÛ „ë–ßÒžµâ×-İǡê*ÐSˆ÷>+žÿ³O×ÿ”6`‡:RïáDh2„ÖÀ˜k¼%ýá ì z~HcÆwù#tç‡pYöf;ÇcÕZQÏõõÔ«ä’8ß%¦™Qg Ì­§¯Wm¢„ö·sO_â¿ïñ²¹f&0&eøyé¥ùÝå†qÉSp\þ’uµÀX8—Oó´¤%˜¬Ù`¿ ?Ïo»ÎšCÏøYe ²š³W¾>…Ï?gåŽ2îþöê.ɇúÿ YoCÑþɈ¿³÷íÒvô{XÑ÷—ÈÉÞï~ åG.[tõöÔ¢a÷ÄïbZ|>° ¤¯ÔÊ |Ĉï9|4€qnOBÅZ`Ë-úòr+Š«DðP{-“ÛŸ’væ¶/ó½ï&zUH‚ØKĉù‘ÿüÕN`{šžxTòCc¶ž|-¡‡t ß]8vüJ°7‘Ž„ŒE:^í¿ð—¸¨ýJ´_®Ž ûäïÛ£÷¹©öÅ?é<·SÖܶžb­;?Š«ð€‡êî<àA>òÐöÿ¿ù4èõ”Ñïëûyü½ßÓÅ¿ÿ>¯WË–ë@ºOY‰%•Ñé•\gþ"|h»7ÿÒ‹k©ˆÇ”e~¾T+‘˜áýÿÚžÊVyÊVAzXƒþ õîÛ?ºoGñ°‘ú„QÜy$æ½¾éÆ}ܯ>?e((c Çݨ ƒFÚ† /ƒ‘~Qn=ß$#WN|ì±ðd>°x¯‡“DQü‹°û\JA'Š·%¾ñ ckÕ£gŸÑx:õúì ¶õÈg5)üÁ¬u©~OB, õ{ÒÕ‚q7Ç é@¤ËçGšÀ’{ç¿û°|ìƒÌ/W'Y û£:­5w¢"0[&ªnCz}ÍÜq¨ó€Þ+ºï~çIûEs÷:Dœ;dôYej—vRÄåâY5ïcHƒãö±ªs¤è—)ï„ ,ãû.ë%Ãü!ä¾~ܘ‚ò›–Þ˾“¯¢¸lÜ5¿¦©u ´_n¿ôéüî»êäÐû Âmmdf!ŸaΫG?ŸŸ‡ðÔ7ªÂ(ï;Z§EkÓ\Ä;ük?‡¹Šç_€ðÂ?>'8ßdádÀxý4^¬S ùgF­~Ñ’~?á¸|•·ÿ“èßú*ü%nÐ/u¤N¦X0%âN‹4ø>b»¶ ÷7$x·8f¢8Us{Ù‡à¼åë1£rtßDŒ¨³VÜÞÖ»Bâ@|Ý7§ø{סzˉt¯‰%70Ô‘~»œŸsxÖ7M'Žî›”‘ñS•¡„eŽà¯»±Àeµ:Þñ÷Ãkò®õãØÔjepϸfsé Ĥ,µ…tS€]Þ5»€ ‘ë¶Œ¹d‹tAø$ìê¤P{)zx-¿ë=¾Æ' \~Hy5òmå/Ÿã#vnñéLwEý(a‹Eòò[èü5 ‰“熞„€ 7æeFϱØ3ß×]OC÷ùßú*ô¥!ìuŠ’È@Ó¥ƒu W¶åMc*#/Äçù éüe$Ù…+1Ü ?ë _ë}ZÏÝ>¨Øü*ðïëv: ™‚œ—ž¼xi¿´U1 ˜½/ãë§ !²¨mÃóÙ.…ó8õrÎc`z*Fì#tB"Ϧ£Cøxâ¯ý>¿äÕ`îo\¼åâHÔæ+QŒG¦zd¿»ûê0¯ç”J¾ ¥_y>úáq•¿öKôsàú/¤ÿîK‚ãþ'߇õýDB ÅŽ?>ùºÞ…3ºÀíöc ¹ÖœÚEЉ{¥ëÌ£.‹;N;ÊäS17†üÞ»®›èˆáЏ|ƒª[ã2|z0\öÌg&ö ¶•ÿ¸ä;2ä÷óîRœï8äÓv,ýÚ‘×@ðíÃp¹ŒùU/Z¦¼ptl…P×%5Ìì©ÃpÔJ™§£Uý²ý”,i1H7½o—Ýù|ÐrBµCýÇ}uÓÁ]qcÒDYœÿG%8îLZôÙcEŒCúÿ¥ÔoøýQ°Ó8¶¨Fè›fnnºiäÃÄë>jª.©Å­Ùs>ý¨Ë÷ ë.F~upÎHÜ¿ò_ù¯üï)!ÑQPøÀSy`d>˜U ztð=€ãZew…Žã#¢Rø‘§þîË6„ÔÉôK(–è'Ô`8n~0ìS‡¢ßçÏÑ~£®’õŠ.cïE^cã]PØry»GÊ6 78n+àò×iÈoL¨ê[ª¡œËÿ«=Ò¿`8Ê"êí5Ÿ¡ôµö½¯”dè·”ÄùR\^Á.ãRÿ$†#ò?Èß;ï”|ן&²²hÌGÍ9€ëu æ 3æô/Pz¹Áp)Üy¿î8”6ªÁpÛ¡[ýGÉ[”|2cbV¶ˆCaÝs§1\4ÁeÓC£I@Ÿñ Èwÿ[(-¡ð |[áJ¸ºÒU]yëºòÖÿqÞ‘ ä“š¼ÊH™j¾< 5Iã—ßýßmÜønÝáþéHÿ!¹ßb?TLtËð(¿o\îú²u1\¦Âm¿§bS :V}ÛfÿoP¼Ô‚q>½ï>¼xždBš“óvÝ((nÜ%Yƒó@ Óo¶œ§¯‚ÊJï§Ç¾ƒªÝ‚ǧà8áe þï%€~`t¸BÓ!(ÞL›OÒÁ}n6o:ws?Ô|,<ëeî åß8$Ê[ãýêÆ11¥sPSï“zpÿY(;øÁáÙ#"Z÷-6Cu®>;°õ/CÛGæKry ÀÁáæaÕݸyÙì]Ç”œK´Ð~Ï/TtVGqŒÐBØ?íö `Ÿ§óéé¤ÌŠ•1EywA“·4œì©¶ÛúÆÅh;!eqêÞwHÎGM×Dû08;f§ÛNFûIÏô#`÷#_êo}ˆŽS&Jð üU_žeù½›€3ž%ï‘„tR6ðmS5¤ßžžÏ½ôÏDGôC¡]ŠÓDÿáü5÷ÓxD†¶ÿ­¯Âÿv{1âm[äÙ@š×INýöñúbv¸Lo@<²ÄÐè™*€½a¿ÑÔ0t|u£¬â‡÷$‰Þ- ÀþÖº±ÑéA¥ýg¾°úés h¿k×^¨¯@¼ÍÄ×qçO :[•¾Y4Å¿âÖL¢š6Ý`˜¨¯xj:°—ØpEúr‰ Ohì쪇\z¿KùöBàìœ¼è¬ â¹Äe8F_lBý/ä†íÓîØ-Àq›)æ4~¯/ŽùˆœâžÏm¿=nÖö—ÀÏÝèø}vöYŸ‡Ú³¹ÞR®² 8k¼ÞæQo)‰$µç/Ò¥ ’Žœ¿0Æ8jï_;Ëmç¨MºúAã+„]Y½`ŠsÅvD-EyŸœ>sUëS1߀òsÊö?ýñ9c‹ÊZš—@ؔ ƒs?Ebâ]»×P¼­…›õdD|i$‰Ó!2V52Oý’ŠèFyã±)æj7‹Ñïkê§•JB YíÛ’‰xÎÛ±Ýåñ%äIÇ#ü¨€òµôÈ£ª³aÁnÙ­¡@œo6Ñ~&Š—„ǶX<¾7,ÎÅõáÉ$Œê_†êõõ~] 2I@ý)>ޱ]ÏÆ6'¤;Öd¥pÕí,FœWÂê~âÚoß({Î3žó¬wdŽî›äuޤ«¨9ù+Õ–;¬BóÉñGÙáþèþgwçRɇàâ‡-g¦¡ã#Ì=2ÉÒu˜ïëY¾²„;và»ùŽ·Œú0ÐF¾ÆÊ(²ï¬ô®ðl„oit?Íjjoñ[qž¬[tûêV=ÄoN>µf†š$ŠË3§öMäLù›¡íy–m$мKóßìFèDÿ>Ÿ‡1*Ïx¼ÀÃuªÃû­È¿•èwŠqyЇ5™ðÍÑèÏKdŸÀÍ(ûÑô¹´#âŸÕ¿’3“3 ¨‡z¼ŠN¢x]¬—ëÁ{ŸQüŸ=s®ý©8Ÿ¨õelìŽ.¤Œ¡|Ûsé×5š ^X><Â~䮘\€ž'kyÔTO#ö …1¢º¦Ûh?å<šßH¸\ŸU·ñ¬ÿÖ§çºú~ƒÚ?Ç}ÛK¶“ž8È}îõåxh)þö·~ ¹Ü¸|÷yù?ù/Ô]JÝù`]8¤f­4[‘îŒáò4Óޟ¸uÂ:}H@2kó)¯Ý‹·çÿiÇ|¯r¨[ì¹So/|“k½»ðxy©{Pý,h;¹ï =øžÆpÙž™=3 êOŒôÉÂQ.¼´üòi+4P":60hæHäÑÁã¬éýéÐ{¡Ûˆ½£À«t||—îu}“Ì3hxi&oõ½ M¿ô9øïËÒù±ÿ°*ê„ÂÅwÝŸé§Wn3}ëÃe\XÇh§¨B]¶–¤‚‡"P\ŠPÆÇcY'˜²ôãP·s—ñ…k@9^·±;/?/[oÙôù÷ÔIw=w60ʲÐi‡Þ‡àíÍb­¦i©CÝ^Íìg²âFu±îÀâŽÿÊå¿ò¿§‚ÑíU‡Å Þ±úÅζ•s€ïði[<ï.ÍÛæí!ÑÐÐök¦\f¤<»Åf&áó>¹WÛîá†ø‚|£ c~¾Ò\׊T¢¨îhXõo_¸o)éïVioÄußÈû'ü€úÝÞ]|÷!ý¬\àÅ;øÞ΋_·Ü`⼡Á@›×bؼpP«úñ”àïÃÌð1Ñ æuPÅSfâª%<:Þ…âùÄ$ÿÙkw´U=}µ¡ÝÊP Ñã®ö÷¥"Ù§µýü|¨>p±MÄÀJß9±­ÑÃeŒyô"ô­ Ôîò”<}Š– û8q?¬TiÝ‚9Wk¡n}ŠæâÍ¥Ç|Í^q1 ߯}{ìMó  “ç¨S·îü¥©Ýcp}²¯‰ —a0œïætèÇCÞ«Dgùÿ1?zî6ým@/{,P¥kmxóÂûÕìAÆ‹×ã ÊÁÎ{€]ÜÊžô½|/Ü¿ ɰ‚üƒcg®öÙyKK#>\òkûJùc(>..¤ßýؾâsryÑþ{ÒŽ¢¸RÐûIËö½V@i5ÁåK–¦$¡ü¿¤kf1 ÁÀ’9Îl»rõ»5SwžÏªGÐwùÅßòÖ·7i.HÇ›¸§ˆ ·ñü¢›u§oVòiU¦:¾”ÍßÔ¼eŽyäWiíIܣ:uGµ,}#O#ž`ô“ʦÞ§ÀŠiƒòýˆÇãÞæº#¿Ùh ÖÌ%«]µæ~âáŸÞ*2”lA8ñ;zÛ¯ÜøCSw“ÝôÅ1ö9F|û0Ø'r|k]Ñïùk_;‘FHÏ*À½Ýš8‡ìÂëÆYÈWú¯ÛKmyîþ/_„s5ùÞ“¥ ìȸ®ê:#t| i®©ªèº‘_L}š±%˜†Œ…JjH)zëå’;n{ê+·w±O€%ßš/·éÒSìõ‹¡¸^JÄŒ7~hdìçÙ½c˜踠¬giˆ7C0½DÿuP˜ŒÏÎÏ¿ Óçóò¤o‹ö»ïqKÕ0](G >» ÿ_›UtÂ"b¨{Ì?ÇN|-°’„5WÐP|2Ùwïê»nHÏ-Úw´‹ý1k`‹Fn™ICç%Åí®¥é'F=/JpT[ ,Ûz±ï=(O;Åkº º±[Sï”Ö€õÞÆ³fÊ#ÔeFo>ƒüEbÖMfÏ>é×ÛïíEǯDý´iVíWÝ[‚ÐÚ0ñGÒÝŠyò0jýS¤_Åî<çñÍ!"ÜoS×üDqËøì¶í/‘¿F“ÌŠi{KŠÀ÷PÌÓ-&ÃtèØ|'OA<Ð&ÞÙ?L©s äáÙÈ·ï†CÇ㿪P|ƒ“»ÈTÕ¬ B¦R]ÜQÿе¬^Ï?Œ—¦O–ü%)ñóÊ·ÇÉ#±ÐŸjvþB<¨º³!g­&Þƒ"‰¯Yǧ ýÁÉçû/o¦§ÿY³Ÿ b\îo,Cú’aêÍBÏöWý)Òɼ?eæÄ?Œ\TqÌã9êW,-Éw¾/€4ÞùOæu¡xS¸Qu¦ þÆ>CŸe¦- 1;ívg"΄uÏ{.£ãç(˜U}Š3€ÈО·gQ<2&î奉è÷²›"¶¥ñBôû»CEh{ÌÏÛuG£~À™‘ÇPÔe@í„“iòˆY-¡ß½Å+Ùœ ©_ì% ZÊs³Z*âÿÆÚG¼ê©Cý‡£ã+¶îDå›<žðÍïD{ì³Ñ½Xîo/ØK\…ø%êòuõH2¹ÄO6uϰãQ;öZê D‹ˆòü…®o¼i25öšwáÜ!ÎÜlÿBÓž6}BqѸ©Gµ9#>6;Kd‰Ô­›©cªaˆâóqÓý_ -Gcû·(;/ˆ’»Óô\ Å£÷Ȫ„C:„¬‰Ä­ôïAJBdyóSÏ›¥x_ñ;Š›qDÎ5Vš»B´ÒµØ˜3è~ˆQþ4Él‚ Â=š8£ "'MÔ& ^itÔê¢wº2è8"Ã’/l†ØïäçîLÄŽÙÿÞ$q9Šë—ƽÙCOë„*!NHÈ(_H7kùYu~èù0„+²z`çôTÇøÕgŽî¬'nÒ¢Ëp~~ùä/ï&]l… GCÕÐ-3 =~·‚Õ=<¿¡ÜÏйü¨ÔLµ:\¸×1§á~•¥‰ª‡n•CÕ«DÒ× ìHmÙGÅókÒ­§¿:!uê6¯–—ïÞ ™ç~y•}ÃõaHÛγãPaé»ÙÑXÊ=÷§¬½%µ$ ušó5Œ• sÒÚ-.þxœ‹R±IØu1‹f]ŒuÄ_×Ë0ùKqmÄZ¨£˜ÎtÛp287¼f¨ `¸bA/Q7­qP«Uº«AD(›Ç®æW²Çp…v›¾ŠŸZYtL¼®¤Ý¹ Æ ×¥.<°úÁý* Õ¶ ¿}i!mêw6à:hE~ÖÐî@,ã{„ÐcÈâkhŸ#]ã¦ì)¶QZ ´YRñ÷ïΊAõñrÄÃDÇkò¦pÜ»SPïýMwnÐ ºœ}òýß-]ù½C ès.]k{™kvšOÕÃp™<Ëœ§…ºÅG&·B†¶89…Û(m—uL/kCA<ã´†#dËØÔnÁÇYïfœØ8î9Ô^•˜cúÒF½}° ¿nùBé'vª¼ú io‡m®Vá—¡‰ëÜP5#wv¿úíÒµkWðAÆîbËuø8&_í—ÂÊy@ßÀ¿[òG¤[Ô=Ûßã.k_b=­w¿³sM! (v Ý¿ðþ’Ïo²‡Ú0èÆ÷kÀH?Âßøi5–çò¯üWþ+ÿ{JHËWXò˜’ýG?0árô; ««?B§{Gv:wj˜4rîñ¹Ôñ¶ô˜3ÓqòŽnãd×ÐXÆ>ýȵ<ˆ™fàóW”oùmÄFÐ^Àº+q¦iÂ*ø~SŽ4O6O<õ‹´Ÿö˜ ÙŸ}–”¥àº[) r{ä´ ~ÀDzøZ8îyÅbš¥0Ôo|jÿí£d)õTŒÀÛK=cº/éU0ÔKMI4(Ÿ Ù“Õ"âúz)…:Ýë7èC½Œyä…¬7íÚ°¬í‰,†‹ÈÏöbû§Ëqt\¦é¢¯p`_Z5g¬äá^\!y±­!Ž ø,ðy:°­„õzWˆ5º'Ñ»âûÝD›øÖœØëØfo.DA\qÑCÎV'‘ûþšâ·ôÜ~¿íÐçx;zƒC“@ó‚7)CÛc燚º¥ ¼¹p‡ë«sV|S‡/â͌Р¬ëw˜¿ö_ˆ·Ì|§l6l|Ì#t/kÑU` ¨HÎÙúÇãõäÎgsóçÐ}þÀleâ Ŭ-õo;Bö»)Uß%QÙßú%Œ¨¿âêF¶Œø=#u–¸úøÐ2bûßî7$4’Ì?ùx Ô¡¹&Ó»¢ëÖÿxByƒÔóõĸ¼';Q{o_’ŽwH qxº` oä­ÀÁ¼{tžo¯½½å‡rù™À¦÷- tÝÝ×iÜŠøE©Ïg,¿y˜ú ¨½ ûšÐy'ï?!­\ Ìp˜ð±á4'mHéAñ§T=§KcÖKë¦åÕãOÐõ²Ë¹5Ié;Ee_oyÒ;ÎÞ'vr â¯E®ËçkêFqœÐüöÒeKhšµ€ò G¬lú™aqÌPÍ)ªNpB åf×¢<¹¨'óTí¥Qž_ÌBßKwzï7ÎBò¶7Ãt¼ž­*Ýíºˆ©Û}ND<·à³{Ö¾Gñg¶Ë9¡‡«X£ì<Ïåí/›šsÿÙOú~D8â:äm1¸zÝ\ýntÿ÷W‡ô€opj˵樿¾‚Ç<©_Q¾h]s`ݘ¢{PœÐoPž3#|)˜»Ný 7²«Rž=©F×Ï;JlÊEŸeCõÆ f·Êy ÇíþK(žæ%³SýŠÛ6oZôÉ~ä–Û-@:€Þ¯'«óMò5Îâ·©?óö‡¶ûŽÈßçpÏ_\`¨_¥$ІWw¬¯‚|‚9-³g?M€Øveéb? —ý~CnÊoæ¨ÐÇÌmÅ|rÂÅ.¤½^~á6.J)¦GB¶"uŠƒ†V»Ï@~Ó KÔvLÞKôÙAíÁ<º"ŠK5’OLö³šÜûý3/¤æ\jÏÏJ¸MñÈê#ú–HÈýÏÏsÔ^†ÎWëi¥-ôTI…üƒBŸIä?1Gù¡ Ur›®ŸÐí}ÃËŸÆ(O8r¡PÄìïè>d:ž­qʸ™œkyëç!þ«ÿ‘òšBtþ˜¯I§®T°!#8Q«Þa(/‚Iâ´Ù(^ÏüþMf»>È–Û÷’Æ#?ã𥯖-DñûÆCÙ‹&r ë»ÆÌû>A¤äÏÓkå ö zMms„ŒÔˆ…ªÈ—"ôäÛ»¡ßP\¯\ô‰^ï %jÆû{W z jx ½Çpœ€kï Ô< ÇÍ߀|nþJêüÊZæŽ}T%ýÝh'PßL;+€Çiªxdfgm¢_Þ‚ò¾AÎÏãïÇ×6b¸A_ê¨þeÐwÃq}# VƾS7y>ä ø"`¸‰Êìm'ÎåKæÊŠÿš«3 ÇÍ[²Ûè8ÔxN¿ã*1rÏ&ª¯øy½µgÇúÎØ•óó2Ó–ï‚ün¢ü“0½/hùÇÁ:¾_õMçtÚýã½ú £÷èM\ï?w’s¢Ê ·¼ød™«™=åÇž[í[> Cµ}²CÝ¡òwFÔÞ_ú4PGõ/PÄõ—«üƒ¾yCÒö¶-Û zóÉNPújFy«®Ó:è[Êõ€²ßõxÐyîm(ÍÚcgÅçXýÃÜ7+‰ëƒ5È×ÿ“1vú“ØéN@ƒÑí}k‰§É~O —òбüåË™@ãlnéh<EÕüãwÃu$(_Ž‚ʬŸ+˜:§¡Ìž~û`î𛫾zloÂù<Øð §kxïæí•w¿ ¾ºóÊêx{;¦æÂ^M¨t›,ßa›e©Æ'[©8¿“r«îpË(¨ Üxjšœ”9ídž×TÁ¯ÛÓv» @sÈM`ÖBá+‹¶Õ‹ÒñöÔN >| µ3ÌøZx¡(禟Eö2¼=âÌžÍ8 rቹ“…Ù[z|vÙ`¸ŒÂWÚÓ¡zî÷8…t~(îTjz¿d9¾ß—¶2-·>C­Tö޹/ Èn†TÒt4®MskÓ³ú„xoïÓb×é?%»_~#Gúø æGs~ÿ>Æò>Cõ GÄsÈúÐCuOúaQúa1`÷ÙOʯ…Ô+œŸ…|ý‹«\¾k­¶±Ý—Û©h¼?Ÿ ü6~ì]¡©!I¿!éàŸ÷8X÷ûä—56D¿wE÷ÝR›²ÞWõˆÐ}6à{ˆ~÷>jÈ«Aû%Ìà!Ìઇ{©÷®ÀÚl¬Ü»¢óü×~ sV‰}@q³ñõvó^c²ÁýÿCœÚf¡àÔa¸ªõ£…½¸ÒºdÄË(ï 0ËõɾÀøý94ò»zȇfd¿"¸»ô)RÕCêÀ&-h8!Œøƒ)#â"‰F æí]é'ñ³ÆÅmÈ㢦o]ƒx‚Ñ6$m÷ ŠÀ|hÙúb;Ê#E°á\Cq´(Ÿo³¶|fÏ–jû¯›ÐsôqÖqEYÆP=Â.".Þm°_g,@¿/õl–äb%ċЖu_áµ°6´,<;k˜>œ[¬I-ŠGïó\³cùR`¶üÉóù›¤ò\8CPDý;ê¤Ë¢¬$°Î;—¤ÓÆäú½oáËóì¿ð?êäÿm{Rë‚.:ïÛ/ô)5è|¥ ø· ÕÿÖWáÇÆÏÏ3{‰ò-ÃGè9r]MË'AôÒççËÝPeXC¸œ¾Šç°Ò¾¹åÒ!ÅöMÒûèøþï}þ@l}¡)w¿‘Þ¡çyÙS–‡Ù5 W*¹!Ë´ï÷nX |ó’@ÀϤ{ÿçý`Tÿ2¨ÏŠîëõ¿m;¿2¨ÿˆîÿ=ÔÞbNïÒrý jo}ÿ‚p \3}Dâsz\˜~ŸÆ ¶ù'ô^`?•[1fŠDo¿ôÕÅÅ•fN;±½ÅÿÙ±Î/L,+ zÓ{Ý…ûÑs+®=ºèvŠó³7:½ŽÓ󆘡fÏh(/:14ÖÓy/Ò}c[xn­ñ'C´`ÄÓn/ÄŸNÔ•^*üÅ'‡|¸>#ô÷†p‰ ùxO@Õ@^4 ïå5§áñAßËê¸ùõ¡+¸ñºj®ÏË}´'V:{D@õ©»íö¯@¸Sv"ùNþÝÂ}^1¸óAòKä'÷} ”?è´¤ºŒ.˜¯d ýÅ4H×ïÛ‚á¸ýl¨½?ůR ÔÏf5/ƒ†åéÍ kžBúñ'µŽÏq¿¯BSåðÞhÁ‚íÁ‚öKØ(Úðe/Ðt/!­¯fŽûa”÷§án‡²ûrú‡xü¯Ð+í©Wš3Ðâ>jÄ}Ô„4ò{ò{|^º¨š-|Oú ÔÊݸ¨©¦ÂÇ=ûð8!7îtnIù}^ ¿»¦¨æ¯€k]±±Öþ‡ñ 7¿§ö¿€üû÷:Ïה޶9]ƒ†ÇIÛ›‹ÿ¸ß´/ß‚Å~…z¯^ļ€rF(ŠÖ„Ÿ—ßüãéå ΫÜ"­ ä÷Ö7Ø{;1\Þ¸oy›€‘o:ÑÇÒBÒÂÈçìðób~(ºôâ ŸüþcbIP®i{HÄâqǼŽûâ»Ýƒ©×aåž ¤sÂÒQtüzPȇ Ô4€! 2ùL©!…ÿð˜†ÿ•ÿÊåO …ߦFß ¤­XLaK H½5RÎÓ*²˜g›?h¾>óÔ­Ò@Ã|ïB]_®ë6øü®³‹öëûþŠ:Ÿ,Ðt9”Ÿ 3Z×-º®«³>GèV %zQ(ìþij£1\NýÉõš*@«J½$ ¹>îf%¯ðç%•ëçÐg®wvg°ŽáþÖ*!õ};•ô©&Ù²Ý1u]¤,áò! —w“Ô~ÅÚ‹Cë˜Î+FžÞŠë¾æq}3ê¹óSI}ŸIrøï眾Z ê{ÿ®à8@Ò@Çu´Íêh› õ«6ßé]°”—Ú»âǡߘ€z1¢Yï:øýƒÿ¾õÏ–(îM‚ú«§ë~†¤p¾ôV§ÿÐ^äÉÓÙAôÂR3Þ£“þø~å¾Ç¡±ON¸$j¤øn0¾Z¨×/DÄß}ñÐ~¹þôÞ»Sþè_[tzÁSŠöy }*IpüòRwïk\zç¹Sóçß¼R è_C’ŽŸ_ä«íüûŽã:²Ô¹ówÅ®HF…5ý¾Söø×˜îÀózK¦Ø;7Þ‹Ú‡í&É@ÜrCä”îû¿aÿ´/’€ÞNŽÊT”‡´„UŸO÷d`¸‘ñotäk^!3™ÃJé½/µ¯yö q|(£m-Ä ó_ä™%×þØ£8TNG㲄ÔgB†h|1玆ÝäMÀ®[w¡ñqb¾Ã‡êQ\?6ΨþehûŸçú°ûí^ï)îJÑÙÓˆÏÓñᕇ×`;…ÔXÉ#þUÂXq…Žt±W~Ævm¶¶Æú9GuŸ#š§ðüîù(_4±söÉ©'€mhý!<ñ²¢:&—vœEã¾Ä*™ÒÕiÀ>®E<äŠÆÝQ߉¤g¯KøéÒ¬ÀÉö­HF»aùëÚ¨çÑ8<ት`éìšÞö–×»f ¸Èÿßüþ—q­¿Î¶þŠx)yu`¾½:ííU¤CàPö}}e ºn¡Ÿ¯El„¦Q]ÅKPd¤/ejMyÝG` øÆ¡þüû<P×›¿/Öˆßç¯ä÷|›&êi9ÓÍ/¬rVùá«»ÍPü0éÒäW÷o ¾!¯Á¤²ð20{TÏEGq$âÆkŽœ–?ÝáõPÔ¡·ŸN63U;t·ˆF¬lŽË+cÙÏŠm},;÷å•CÊö3§g¬BñçØ÷|å¢wµzÕÑê<”ÏMœ²Üñ)Ê»ŽÛª3G|b.°.8îÑ-G:^ì{Ëg¤>ƒh^ÚÁñÖ(?tä}Íî è/kr†ðÎðû{2Ññ$ÜÜþfaòÉ`sù*q#â¥#ë¬)Ö«zWL0µó0ÿÕUçºßžè[ç•×"?ɤø_«bE‘_%gl¿a¦Wql‹vïŠpîé„YsÊ ¼mÂñýZHóUøKŸv~EŸSCï}ËR_í—6w¡7Šs¶~`-Óx Ñm75§Dý+²Pï´Ñ¬`Ô^Uë嵯ó `„ñ>Éh¹8ºîíÓPt¼¬Ö9…I„­öÈß$n`;Âqu¨FòxGÖ9×{|–Ñý D-™Ð6´=¾`o­2Š_³"Vë í†äµÆf ßø9Ôƒ(~ÅÒWßÊ~é åõ¼.fèzdêk…*‘®seÿY/ûôü Á‡cîè_€4ÀŸCçeÀáê­ï»K͆T×ÄÙ~H bƒ,¯…i ë÷÷¬6W>ÑÍɤâPô<‰/Ý=c—-â³é 6»œ!â»e›Ål”Gÿ­ã§Ôj „³ÎÏ%@¢ÐëoѼW­2Ûm­:/Ÿ‹.DñXCB³ÖE¤H`Õnâ×±¯»-{½bc2ßä-B¼Ã¸;[‹Z;‡êåý6:ÊP1à”ì» ,ÄÔˆh•Z&§wùFå«öºæ-Ycœo*å.¼“cþQG®œëãUYØÿ"rßÛ]×s)c·ÊgÈ4Cåž;Mk4€òP"#ð|˜Ô¾,“KöÀ¼^Æ ÿ£ÿ 23¸o ÔwÆÛãÎ1ƒú?ÐOÓÂ}7SìHòå1«Ù'[Ôñ·]ã^³ð<ˆTþåêo*3´fGÑ*$ùO˜>ÿN+œê'`·hæõ_'Ä@FqÿN#œÔßÓÀZ”{VîD |‘+Äó Eú&šžíÞÛI›fÝJ‚ü•ÃíI8î/ý ¾û^W´›gÞm6tÁ–@žëa.ûUßòhý PÛû\/-“û|¡quŸ©¿¿Ÿ‡pYòT'§í’¡ßc?ú4dsÇ9µ}Ãû÷P0ÆÛ#ε,U<´<§d>ß|MSótË.Z¾ÚíïÛ€~€˜¿XTÒí_¶'Ÿ§Ú×»¯˜úè„ß)‹?¥Þ¨àš¬Ž#=¼ |xЋ uM†tŧNÊî68Žnå¦Y8èOmé?æßJ+s»iòð›+0¿.,¼±·½1w&Ïý éÓ'|y¹Çg$î_ù¯üWþ÷”C:¨\¿¾?êé'qºóyÖ=ƱS³zÿ …ðKMœ3íaçÁoÀ(칫š“…“nNîÎÁyßÉ£÷ëR,€á®Q›æÞ…£^úÕ£”í¶¯TnB©ë:q×ç¡*múŸÍ»1\¾ÌW/—³—¡P=:þäÌãPùxÏ^‹y.Ã>‚f8%Jô”kå¦Lƒ*ZkÈ[¤³5„#põÓâýÿ€Â>TK†ãÎB>—DÕ¿àí lúÀ  |¯à8uË1ÞŽê@/õyõIÉžÛ=Ǧn=÷èp´ÔüõöŒÅO(ùµÕÍhÙ^ 5ðÜ2k Ã`¸Á|g®¯Pÿà¯Qf»|ìy#Èï—§Ý Å÷eŸ ã|=òúxj–”„¶” ÙêCü o)ø÷Nû¹éÉ´µP}qo×k—MPäBÛ4N ?/I¶–cç§c'õ¥±‚!òOwˆäÇu8Òe„¤nʇÊ$··L 3(“+ºÕ„Ÿ¿Œè.ÖTs¨ ùJ£@É…}wˆòàÇ!jâÎ| Uq^Go ¡l͇>êøw/yÉæ™z' Æüýו5aPb¹Ærº3â[MhË,Ñ8(4û¦ÊtÕÅÀ±=ÑÀv‡Ý ”ÏÆÕц¦­ºÒN Ä—Jñɵ<âˆô°CŒÏ+µ£{»ÊÔ–Å(Ÿf¤?Dhÿìßy´@œ|”RÂÍ üI¼Ôìò£R|×P~ÓH¾A”¦þ´G!ÖF)$ÎD>t>\½jΘWErRÈ€hÔ¼r¡,Ò¹çæ‹gªÑÞ„ Hw›póÌ¡k‡ùðn(J ΞßzW„{›¬vãÊó¾x¥ ìpŽˆêL9ôÌþÖWáoq#óqM÷[çÆÜyù‘>²17}C÷½C¿#Ñ_ÐqÇb`¯ñ½œU‰~wÂþãkP|— à=ë1°ÎÛ+ÎJ@ý4aî¾iCÏ/Î6xdyª8Vy+Ý–!·XÂNÂ<¤Ã4}g†Ý–uÀiÜøÒˆŒøy©Â]ÊA(zILwÞ˜` }ýº´Å}ô*îÞ‡úKÈû/%fÀ1íZ¦gŒx=IS˜™ã>"¾SÈ’Y*r€³ò— mÒä@ÄÍ“? 4¬ÏPñ94VyœÛP‡p›Ý_a#x‹ñd_¡(œ³Î·ò…h)„)|šê1ñâ™ BÍ3ëztÖõÈà§m÷Qg¿«y3ÉÄâÞîÿ¼*I]Ï­;Z“n@_aä< „,,h6WEº”ì ì£MΓ0Ux‰S’õzô|aoœ/¯¨ DiƒÆÇ¹ˆ!¥w<ÅE¸ÏŒw;²Î&߃dHêò·Üáü\ÂÊ—má5z¯KeÒmÚWðCFß#ò§ÙªZ§æ¿€àŽSª(âKL®éœ0@ùñþOG¯éÛbþ É#êLn\:h€¾~K+ç­_…ö6¬ÌÙSâá¤^ÃMÑhþ£™;ÞöØ8F¸wE×cD³žÇ¹ñ2‚å4³¤RÑ}’t+Ób- ñ®/™µùT@Úïïo ôËÍoDÇÁåKEõO ¢üæ´Ü° –QÜ‹­£ù±‚ Q·Jg þ–”z$ßbbذߧG|1e „oNÓŒY•2´=.ßìíå¥è9Éfw˜8}€ˆ®¬5ªÃòUãÜŒŽ»ó‡ýu¬2¬õ·± ¿p~6Ÿ®ÌõÆ«þ)¤ö¹ILÅópsÏ·k¹Ý†ºÍM’³uóôûûx—Ów÷®?7ti)}Fv©x{éçÛé–»DêÔÍñ6 1Ñ’Mæme\oš’m×¶…ðù£?EÂT—Õuaøü:eÁ‡:Ð(i¼½áe¬‚ä­5ÿŽûäÃúËü?èsýÜW¨„¾ýôýv¸EáFpÓÕÞýF^x»ð9Œn<ÎÆu‚²òd¿×eçÇß×kd¸¯‘9t÷ÉZwÃbßF¨;-ê2fôC ˆµÉ]…ó2¿é$UÞ_uîoÊK»¨gñ¸rÖ¬VáÙœÅP¿@!Ÿä$$Õ->99øyÎÚ^#éWuǺm;r (2V©¥Ò#qÿÊå¿ò¿§„¬ÈiïÆ€ºìS«‰ã!MbCšð‚+.GvAó—ôz`Ä8?"oí}~tÞ-m“À߇YëŒL7l^u9Û Š+ì!íÑ¥í'÷¾Æp™Ä{‚ N<ïëÒ+H'þ”Žj£áí%–õF?è}’…E|[€\*”Âïë¯Q4‚½·•]ÚóûÍ|:(œçª½»~†K31XF-:µ‡8ïVU…@qsƒÚáØ9x{l]ÇÇPÛ]‘óÙLŠ&_anÜùtó®-ð:Ò;~¯zrózÚha( i¯‡ë¤ß«ËkPµ[EC7¨4BÑ…¯;Uq?”+kWjoÌ„ú©Œ_¦¥¼³bUæ#|~(C9xu„‘"ÐÃ4ïOX­ÔQcµ&ÄõÜRØóÒm’Œ >üû¡Âï‡!sK a©ö GKýeYI…º —î—aß Ûª^rš.Î_#ùGänÜãu.ç.ǶùAöÏ»{K:p`²Të5ä`ˆðMr­ªjÖõ÷‹ñù«ô›¶o¾¹½p´rç' J*îÎtÃu$Š?6Þú™S$vœÞ¡y­ç^Í5ýзד-Ckø5Ž z\ ¨ýà÷[qß×lÆÉÄÞ÷€61QbcOä[hž¡‡ãÇÁLPéñŒ÷Ê_5Âe!×þDmò=\o"C¤ý‹íO _[éc¹¨·ÄWd=:†ï×êQƒËQg ¶åío6ƒœîÐj¡ÿàû”qàÍù <‘@—–Üýúä Ÿ ;˜ŠÏ;f\øüþÁí* û©1 <ö% åKÆ=(™úú$/%®V¨Ôåì6ÿšO"h¨0”ÏÅ/v÷65ÓIÀ¹n8ÅÝù]&g>r—iC¼™åš‹O?8ûWÁ¡“9ÃøCy»ÌKËP|'p̵jóUÀޝohC:OÉK ?‰îAû ÓJ|öù¦°óZrUl¯(®Ôé–S⽄˜;=%b7p–=Øyqòµ$,z±9rÂÐõÈ|‰º€½öÒ¶{o‚xÂ&œzé‚GûÜx³fü9`…NrW}‹ôðÕËIcÐy -›ž§’éì‡!’Þ2Ho*¹e|gÆ”¿‘xñì±Ùd`›Æ-Eüœ¿õU tîôè~‚x þæ²§øïŠg‚‰ôò¹›P{‰TS‘«ÃpvK¤mÀ]Êžê» éŒ—„t½ªD¼ž€M›én¥Àn¾ókÒG#êÅLáe q ÿ—¹JÖÞÀæÌ¦°åiÌ«t_  ¥âX۱϶ÐÐ"úÅ#BŽ%F5ÞGü$s‡­¦ZÀ‘Q\ùb#ÊsMªØHNE<®DO©¹—œoëì‹BÝ}¼CÛã]õô‘þRŠ ó‰­+}%蹆؈®S\kÖFMIԈ߿ø¿o ¬¹ Z$*Ð~÷å_Î|ˆâ¤ñ1¶wÃø·+Ii”Æéayi:—Ú2n¢ø_x±»—fÔ8`;´tÝóaçå͉ÔMä›Q`ôiã`«HXʦê!Ü)žào–È?!ââٺ_¬­¹Æ\lŠŸ$Ëóæœæû°qÉOç½×W³ûnx*:ÏlÕ|ÁËz òtdžê4Ô.A‰ÖzK Å;Ùå’/¤aDòýM¬ߊt¡ïí(ß‘¼zõÛ—!æáS~:Š×ÅM¾¸>eâ³6²Ó³ÄµÏ@šH¡õ(¥a<7Ïuè¹Ãj‰7ÙóöÄoòXMGý7qÏ‹¤RµîÞâ:ßH×^Kñw¢þ¼Ä[ìFÒÃcù.½é$}oõ .èyZxr”ôB·dßÏx2Ó{!"hû¢$P¼/lOg–×SÄ{cï“Åúù¥íÆ7¾ x_¸÷4ùÉañ¿Y1Öw ì åùØí"óQ<-´l¹aHð0}½-­'h!V(cù/$$f½<î/v•϶×ë :6ø¶]Ð0¾¯¡ÐŠ'&çîWÀ<þµ» ú Æ~C/Ä;ŒñÚýÀøæ°ã•;¤¿^cÄÊþ´ÐˆB¾¢‰†ba¤ 4¿Àv>9aÜ• ˆÑ’¯ ›5Ì_Wàqªàôa<­é–5¦”«ÔY óÅÉb–îfÏG:z,·€ø7Ž@ò¼b§+H—-a&ÉÑiŠS7þÚýõŽg@æí|yQñCã¯_Üæ˜Ž&Z.Ñ@¬,ИÇD>/Éie%lo1K8Ü@¥Pˆq^ò1hž%a¬ø›¶OHç’-cØPòø$>óÈoäæ—ºnϯc6¨ÿ°Oq¢š%$Οv×Å-cè„Há¥è¹ÃžH2Í]ìÑØëŸ ~WÚºÙ÷±¨èfïŠá(bĹZPW¨gê¶¶2^–/¥&âóëäu 7½ô~_QöˆüÖ é[NöX7ãq ¿‡ÝäKνãŽ'‚’VA–ÃéREÇÿà¿Pê*¿ø-/ЈXÞ£ä%V«Ê8nÿ=o3ÒX 5¿Š¾FÔ†4…+Ïã¾[EՆƠ® µ³FoÐþ¶Ò”£J/ ãí½³=\éS´L?Ÿ;,HsÜæ¡4×K)l²>næÊ4‹RW·m@Ö{S–²Ãe6%mž© ‚êä)$ÈØìÿ÷‡Í7÷™F‚:óPÒ}¤?HWÍRůoúîµk@Ý¥”‘³ £äo./>aÖúlÁÌyPÏ“;Síóh Û—u pœ+ù™ô¬°Þëñ9^Gïcïwþá«Ö–V.ÿlQØÌúÇ@³¹½g£çtÈÛ~8ñߥ&½P~pbiïw3§R7=(µR2vBø}”ŸïZ¿»k<Ð'¯ô[0…éÓº¥ešà한òѺ ôž7Ñ‚ë€|0´Pþ ÞŸó•^Vï=+ôÝOæt~yénÇ>ÞŒñ"þ•ÿÊåO $¯›–âÍK qS\ù­-¤ÊÔÏŸðð?ÄJÆÜ5§Ac m§õD­S•›ÿÒÃ¥äìQÕOHÆ ©×‹XÎÒ‘ÎÅçiRädæ0öÊ{Ít­·‘k ´ ræÒÐBü÷ÕL¿Rò0W]¡:nM6Ûˆç#Úý|ÄnBY~îºs½Ï·½”Þ‚áR7޾õòÒ,¨×‹7Ø·m7dé ýœt2ÿ}÷uÍ^Œšõ[_I*}4€l½•‹Éáü+R]ËXŸêÀÈêþ¹Ù†òšey4ºñ8RJî£GÞ¥BýNÚ‚©¬ÕÓþcgü4 k£ª¬ÁØ%OY˺]!:cÆý…²x|2áö‡·ã€m!1ùÖÞŸ]4ãl=>ï“2e߆²ä`Ý[z½¡Ö¢ÝÙn³mð|Ó˜mYm$åéÀ¶­˜]GL‚ø[G'ÏŒïÄ÷ûZãWU£wÜÒ"ó&Þ bÂÕ •´pTÒQ›Ý6Õ{qâ´Æ¥|@ýe¼²`®‡—åÔ}ö‹ã^ ¿ðúyº®ryM\5hÿ!žX¿ü¶ÅL>hX´²¤h•¤_j“^Ç‹óúRV†‘î]˜t~ëGæ;\¡¨xî­Ê <Ï5MõÏk†CøiÁù ªî’™)¢…ሮcçøÚ cÔªÅ<¬[wr“6þ˜Ïï²2w4ع¶MÓ¢IòU ÏNyºãµÆñkШè@'-ÖÒ›[•oÚñïE¢¾]ìÚ•lhðœ±AHSÒ…Çl±¿}o/ïk*åù h(§_»åÎiéÖ»•8HO'zsÌ¡£‹‘Y-:oùBu`ÚNuOcÏmý§ÂÇÅCz°¢zÚË„OÀ\ûn7â}¤xí(8<µï;~¼Ê)Ñ%ÀNKбf#ŸÇT×ÍúR5HŸ(~Ü Zý¦}ÀŒ=ùpú¤GDäßÑ> ñ b;©üVÀë¡aZèÿ7mžëbâ„êY¶M§¥¿¦¼à"ÊW‹;#¾èñqÄ߉9>¿õÌ2`{^™É{ù7ÆçÙL¸ü Åâ;\Ûï÷ÞOüU4S´_b묗—¢ïÕÃ5VÎ\âÜ۞之ד¿&Ñм~ÎS¤§ë`c¹g5°Ç´–ÜFñªV÷•݇êïÜ‹¼?-êæºtáã)åæ_û‡/em‡e yÀÅÊŸ(®úÐtMò9äÇðv Í‘×êH"ŸÍ¿õiŸµdóèn¤‹þžy´¹ç4›fó„ qrì‚ý3*· >!õøMEãœePï]ü.lêŸáÁå™zˆg•~Éõ‹…0§6W:Äk†H1;õ‹HωôœGWî*°”[ <ß#}y32øêÔ'¨½šÄʪ´*hØ}tæâí(Ÿ8æWkt#â¥dªLœ`1m4jÜ©e$"NŒüÏcѸ9U¦Ó2¦š¬e·Sò•QÞ]¬e íÛ³a:z╔Πó{ï?†1â‘Æ¶Îy¡‹âuQ/?­(?.aõ†™ß„èÀžaê6îÔP>4 oÐÌœOƒd¾m]×"ý|¶“?Žm¦÷êÅždOÞçšòÌEûP¾kpµÍc}¤C×4WÞµnc-ÄÜ•½a?ñûR‚]#)(_” ÝGåäc ýOÕ£n”·)·|©ùc”wÈ&jlÌ3â¹u¾¡xdà·_Gt¤PiÜ`RN_õ¨!êQ%(nîõ”:A)iÓP½!Vþ´sg'ä&/Øôø(Š FÄ( ­~‡âcÌ–‰$óÀgùsËýÅ—‘Ž¿§²À³[PÿcN^>/áèÈ! ½£6¡¸Œ7+|áççÑïKü¼saÞÈUú²!iÊKõß–´æês{t¼Û•Üšû’Üì_øíDù–ѳÒ%´ÝÐùä<³)ŽN…cµà_Q3\‘oÍØíÃ|8(c»t›!áUÁ%_¤ 9÷^»ücÄ×ã+êê_q+Sd¦#¾jØsš³Ì]äOÀáû9ú+?Ä_àuÖ¶A×-âvNdS"Òõ¬ÿ¥]u«´¨×.°ò[‘¯EÔ´»WBï¡ßÇä¹å°02‰ÑBºgáo;eê"½ÉÆÆy)RWzßû ‹Gº¯C}'9_ºâðLê…*ÆS!ƒ‘ò*IÍøŸÏ^3Œ_Xùäç½9-sÌùÐ<Ä› Û¢»UÓ í—Ù¸ËØT¬Ò·æÈ>X†|_CÖ»ëÌDó¬ÕâŠ3Gw@Z€ôº†m¨½šï­µ3ÐóžÕæ%$¹HÛì>l"¡8apýU¡)ÛÑs’%]}FžEŠº´{ó<¤r0·9ŠÏ²v*ËuÜ;dC/¿O³Ñõ ©äQx`‹ÞoeßÏÊwYÎÕ Å·€šåWŽÎÇ®üè±ýƒ`(¦í8~q½9Pölò0Ä}*Q ©ûÔJh¹•; ê§œ±ÀpÅã,ñ;Ì‚²WrΜuw¡@_ÇLh%®¿RV`­á'— ÅŽ'u×¼üìÖ-=®ø÷ñ£E;s–Cq‡ }Šn]ß×YƒûŒå”;¯»ôè¼0Èšú½wÅps»$§æ æ®óƒÂ×'!7 =F^ç °W9‡Ó€š ±o¦ÖH@vþí抸ßg¡›¹CLTûÝ Q ª†<&%éÔ2œçVN }»œ½*Ênkd‰Z9gå©«ëðx]Y²‹Â¯du¨ÊôÛnk¸HMÖ|]I¥8ÎâQÜ)¯¨ò?Î× …´”©äÜñøwdùÙ‰Ú°¿Êwh¼Ÿ_ ™öª“}ðëV.NzyM\Æ^O+Ç+C†²ã6ñxÜG‚|ó€çýÕg¡ÖNuÞ¢}¡XYèÈC<.EÒÜ´âñ‡-P]ù©™×ÑJ¿ŸìŽ|­€á(Ê˯nÎ…ê;Å‚bgPB± 8«‹Ǭñ©'ÆAům‰PôãÛgõødü÷e(ò¿› 5:©Žz÷ dó[•¶â“.qªÛ}e)¨3üª'”"ùŸÙ¦E]øû5u1fþçãÀPHÝLQ¾ â¯OÃãMIZäX©­d¨×ËÚQ‘/ygÚ.ŒqÃçÍ2”϶3BM5Ï;mÛyPt|¼›ÿ>I¹­»ü!é0t6¶^J]“¨‚;ÜŽâçoë– «3u¡2“Áge´Êž\í2Žq¯Gëõuæ- P~ÿsþ­å|Pù+Kx«.?†ËZÜ5oÔÔ®°ö°Ù…K¯7ÙEÀϳô· ( ÝGØTUë ^Ëàz®ƒ€ÉÑú ¨ÔxÄwuùL(û5½ÝOªo/öý«o®-:4¶˜C¡btøÄ¹ —–aÄJ]´Ã97&Y$CÑ¡ð'·Åð|‡ôŠyV—6‘€ÖuMÉôôwÈ÷ÿ²¯•×ÇÙ6Œkÿt j'HÆL) E!çS-‚âÇa9fôòÏž@3£uQµ ¯]Ô¹~ñÆÒÊ«*—AqO·ìXO`Ëå&‹î´AýÉ -nã)4.õ‰š>É5YµwÜnF»´Ú+E Oi |)¯GÓwkŒÏÖWöÆQþ(žA¹=}ÍÅ{‡êÔ´Hy­VÅSG×JËù`5u Òµ÷Úípmz°‰S”¯"ý¨à…mÓ/ 1&Id=O84.“ñðÒE:@F’M”C<ˆ,è yê= [$[¿Ѹ4³hr+ñ¢[Ô¯!^‡Æ]{áð5ÄÉZpfBç%”O%,úÕ>@/H'†6#DFû¢íß^Å™!ÆHu¯gÚ#h¼8w‰â«ÄÚ¶ˆ=…Ú'0óÎL8P ,gÂþ± (¿)ö½îOò0^k‰r‡Ö³^\ê½¹k†µ×tÔà¹æ°öTw»[Ö‹Ë¿ÙÔª>¬=5ÕÇûó‡ázòo)göû/ñãáØñ½^ÔjÇ4¿Jõ8½†¯ù,°?—Ùl¯=ïÜÛë;¢8^êu²6Ï›a|½§¼³{$–Á‡ûM„xn¤'c×£óÌ雹?¡"3‚­ßLD¼Ö°€Ú§㑾#çÇာšzˆ|~­êIFÂÝ~”8 Pù_û4äí˼${¢nÎf¨Ÿ–çÊ·þÌKM!¦i7ƒp´\iÝ{H[X~,ÆoO_Ì¡Ë,JWëDØM@¶`êåXUáíÕ‹êûÍj„:±ÿ{ÿáخߍ ˆ¨d$g%£¢ó %–‰R´ÌsÎ9çœsÎ9 1‚€YÌYÄF Ñ×óó»§î³zÿïYçºöéU³žÕÌÔôÌ=]Ÿêêvö“?×¢ÔÓÝb"Jj×E¿Rax^WG9£ËöîýÔŽÎl껡ÿÍõIÿnÿÝþ»ý¿³¥+ï¯>4Ä€r®=hh9d¥nȦ©»–~À Ñ,…[>‹¹Ú~?¥yÿúøºåamÝíÓ“úN£ìÅc=B_W¡3ïuºÕC{Ôk“Æ÷¼¹?ƒ²/ïË_ÛçÏ÷Ñ~¿Önjç‡]Í+ð2ñO¥ÇFæõšù–Òî—3 ïwZS—Ù~ûÒžÓéI³FÚít®jñïµ÷¿¼\oý º‡þüžÈ (èVs]ìµeOÉ@íý.U»ßìwüzÜrÉŽ¦ÝÑ…F'?¯/V Ý_ð«f;mÓé±Ã¯îžüéB{‡ï§hÇ_.ò3{ºÆ·¤Ç[ŒrÊìÝLìÝ3š¾,¡©»`9ñu¹›{èÙ(‡žç¢£y®‡û®ÐÎÿ¿ô4Ð.y¦%=í¶å\„åp:žÓvÔÓ†Úñ«K?KŸ>›Ý™ž&¦Æ´hlOÇïdv^ºH;Oûâ‹åóCÌè©¥ÙÂtëAtêJðc9B»¾ÁłŦ?˜IO—x¦™ÔØóçwÖvûM.µÇÕž¶yíü+Ðã nq »QF¯#Ÿ?×w×ö_©óO,O9GŒº´>ú•ÒM_fÌÓþκ^ôk§½ß‡Sö‘ù>m;u¡3eN/tî«~¾Î­·yñèq~Žqã°9táÍê'ï;jŸßà¼1w‹þy~›¾•š@f—}QR{Ž‹‡ºmuù=i½Ü-Çf¥eùf}½[]»¿¥c æ.Ÿ@91AŸœÞЙ´jóÍ♦.kU€óžS5èqÚýÒñ5Й=‘S›w׎¯]¾ß|Ø"Eèñ-º!ü*e†MïòHûy»=þü—àú”ÓÌ*§ó»”î¼åaßKõÿ~É¥CÕù׉´Ý—ZPîļ#Ïbàþ 61í¸ªuÛLþÉØì ÜÍʳ¡j|íàÊO¯ÚßQ>Øóc‡5ùM)÷ź—Iê|0%èã< êã¯vÞSŽ^ºž»3s³oÎ}%ùcÊ7Ú3Á¬ˆ£³ú|Ù«~Íoj9ÏøJ’Kïï´o^-K³¹jý¼”Š!­¾¼U×'ç•ÛçL %¯|󡻺oÄ‘b= —ïSý»rhxvÛ­´_t-íþ[½OÇÏ\Œ¹[l½ÚŸ™Ï;ÖChߨ8i˜:RœýôUÇiÞˆ““"ÞYÒA;~쮇š·”\t¿y¯êóŸ·îD“fìí»1¬ôDþ~ØtÐzºîÐúñªnK†°7¤}çRK^‹R÷µ8ð®èøéåà¾Õ³ÚlsŸDÉÇ#;W4Së£ ­¶~ôC¸_¸IîÚ/§d§ÞenwS×[¸ÔöÁŒ1  n{n…«Çi›‘ß­M Ô|¸ã/Kž;SDÕõvªI–íq ?믞O ÛpbLœ‡ªÛžÕ±Æš'´ótH®þjüöèÉ–›7uP÷×Ì»Q{ב mh÷˜>Åjl¾ª¾W›2¹6ìo嫊 5jÐÎì©;¯TŸÃׄ]KK«¼È­gt'9è-%­ÿ¾ÏÕUÏùŠ–—WãÅ/f™èÕ†Nû‘ÔhƒšŸx2õîˆïëú©ý5ìÕü¬»8}­Ø•p5?9yë‘Àç‡Õüäç³?Ôô°ñŸÏÙŠÍ >7Ô?žÑ©KÛfÊ1^V,W-gó;J©µ¤ÏOõ¼O¹Ä\±S׿…\9‘ºý-í½2äÖ0w¸?ÉÒ"þ]Fªys¹Û]ËŒJ¹D:TÞurÎ8x?Îܨ=UÏæ¬[Ðqw<(v6#pšš¯wh±ÛÂ?Ô÷vn¼Û†³u+ÿù9ñ¹õ÷ý“_7æy6€uîn¾‰)gŸEû??OÔuT÷ÝHi¸{jöu5ÏüöÂ)> ~t§{qëM F:Pfå­kn”ÖûëënY­;bš›L÷œóŠ=~¼’Î/{>Á»«öwîí–MSGߥ{mÏß]S>2§JÍòÖ®ûrwqVÏvþCèήmî…Púi§¯ÑÞwóöfÕ×ènþû¹M=^QæÅO×mËhÇ‘2"w7 õˆ çó«®¶êÏë,˜?qGÚXMÝ©´êuÜ@/›Æ%Öñtø˜eµ+ó´ãf©±‡Ç<ŸÜ˜^l*5¼éÍ”RÃÍc@µÏšºÓ–.½˜H/òl¾YÞt¤”©9+;ìo«ÝßBûª“Žý©[µcÃÑMméhv·›†Ñšºkþ¯'7—Ç)»JçæëÞSƽðFÏÏiûïZ·94záYÊžvx ÷\Eé¿¿mZ]»®ÊÕ~•ê]zÛ‰²çµ‹ÏoE™W:´Öžï\ ŒsûÏïÇìuóŸ'4]AŽ^5ÎÙkç‡]+¥ÛêjÜŽ²gÜ9vÃðÏïð$Çݳhêίýä{Ðè0e¡%N—†RV…IG»dk×A¹ä·ãk“_ý(ÛRUÖÓ•Eå¶-¶§Ý_ÿ擃ï¦SöÐÝsæ‡v¥¬†Ÿ£·kÇÍÎOØúéjcNÙu¯úq¾6em‰ÌX­Ó®ss!(×§ÆÌÒ”ÝòüEËì”UñãÕÈ/ó4uYuã—ßþŸû¥Ö9°Ñ&ÊŒŠ›¾ä·ö¼òÊÊ:“ÞÔoO7Ìã5—P¦_—­&5ÿË}¦MJ´^bE—Œ)Ù¡F,eNùhRû¸v¾C–gð­Ì“eéñÀš%ëžSFÎ÷¹´ó ¯<»a÷2ûÏyÑËUV-(3¬dÓGîUÿY÷ïößí¿Ûÿ;[:æÑe˜äÁôtG¯b˧ӥ”~{#µß[G®or(tzDÊbÑë÷ÐYúè«?8QAÞ íÕ˜rdãÚÆ÷ÎÓµé'#;ôЮ»utÜÀ‚•’(ggUöÍã ]KËýÞ©N²¦.e[D+«ãv”óÄ20¾~2]+#J7ëû_æÃ n75·í&º}{ÄÏeÑ^tïÕÕã}͵ãRgJ…oêºjݶªzµá˜âô “o‹!{´×¥f„,i?üá{ºµ¢~»Öa¹tÿ\Ç^ïiïG”~¹ÿ ¿ð>tsÕÑÉnߢߦ% šÑW[—°eòqítëìÞÀÝû†Ó£a³úÖÑæ\J¯K%¶Š¡‡Q3V4£ë»ÖŸ¤ÍÿSeâÏùÌL~n{“˜Zî ß8©¿ö~³‡ògÕiëMOžÝߤîÊú±Øðèb#MÝIö¹gÏó-éñçìão4§kjô©Þ{¦îx‘#{Ú1zœ’: ½s&Ý(nÚ-¶›¶_2¾übà&zÜ"2~߇ºòfÿ€ mµãWg[¹ç=Ÿ!èæ­eGi|Uº?¬Ñå¸íú$çLq{~‹îµÈùpϤ[-î p8£}S“=®Û<Œn¿ ôõ8J*åä„TÜ®}~ös>κ2†î Ho»ås9º=*ß{ö:í:²§—êRañ4zìÑ}†gãt½òºÐ5¥Ïhÿn¥-ªÍ·¦û~¦kÚ°t·Ê¤q‹jë¦Õ>œñ˜Ýù:x¿wt³»ß¼U{ˆÓîk>ψkBÃjML¥æÏØcÒþ0uýj^øÝºMiï›ÐÉU;©ë¨¾×ýºÔI æ9?«m}y%ÍÖsU¿¦Œ˜¼^—¯æ#å }ô…µüA'9M|x\ÍÛ¿-çdñÕ¯y‰=Ò £îRÒ^Ùú©—ºžóˆGì°àêõ¾2ü&¬[ΟºÔòU»«ë÷ŸÙݵš:^žÖº2ô´»%]õâ2]QïÓîá‡sµV÷‘É¥çúÖ Sž“3*X¯:úN?Øì7m¾eye\Õ/‡>†T1´¼ªž_ZOƒ“ÒI¯M‡ÿV¯÷ðÜ;ë4Tß¹¡îË':˜½á×Ò j}Èã¨Qz¾GÏs¬½0èÉJJ‰KÎôRëd¦tM\³çÌg}¾.í›%'Û‡<ß§®×=Ú*é@þ5_ùZ|áŠÕZRvj™‰¥kQzýôÏêi×û½¶ÿâ¤Ùå÷Ò£A9‹®?^@g·¬>ùL»îó•1 ºšïûE9'‡ÿŒ/ºR¾¨ºlf íþªè²éÓ!z?ÿ—kA4¥éXD…js5uW÷ÆŽ KëC==+Ìiý›ÒÍžÖ•¿ÿ˺‘½CÝ‹l¥œ®£Z\Ýxœ®Î­»çì>ízɧ*LˆÜ—ž´_§Ó9GЕõÑÕ»LÖ®3vª~ϸÖw†Ð]Ê»nEúÒ•»—‡4×^çzªÒã gËÿ¢'m‹W¹ŸÔ®l—‘cô_îûµÓ½í£ ôÄaÈû (+0r¦§ŒÑö_›E–_÷ì§œ=ÕFÿèBic<úuU»¿+1YE·Mw¤œù«;­1EgÊg·óqUSw© ÈªöÇ&Ó“ˆÞ_wUŸDiAºQO«¶×ÖñrÖw¬Ð^s·Ý’·”¶ül…Ì)YšºË«¿Y3Ï›rÞw|R¥ÿJ[ÕwøÀÕÚëa2‹ŽÜXÉp,=ç£V»EZÒ±eR&é´×ëd<šavŒž}iº,êÏç¤ò¾žWŠ×Ô¥ŸÉ06ê4žžåæo+H˜G§æõ‹s³Ò®#“1½¾é/›zöpàØQw“éä÷»ïŠÖ®c˜1#öÈÉõÕéyÑI&Ê_¢“]×¹—Þ©]×ï‚÷™R·¿Î£'%,‡GF΢ŒýùFuü´×õ^нIZQµ/åä}‹ÿšt‹2mÆ| ÑÔ+f··òvô$ãùú[¹)ýA܉N£µëMŸOØÕzøì©ôdàÂe‰Æ6”žñ£Ò{©¹ÿï·*ôÜæáô¤^û¢÷"®RFË;'3GVûgݿ۷ÿnÿïl)ó@‡c^DГ[9|ÚIyVŸ^hç#ŸëXûŠ×3zÒpâ¯ã—Pfüšº_kk×ç<÷3Gúx¯¡œd‘$?eÓ¹Àœœ‰FÚu)2}”g†.¼ŸŸlB}=?ûVººœ ëëOOÇL¼VÙô›>½iê;íº gû^}§\wʾ1e×Ë”5sDÍäaÚõ!ÎU¹S¬†Ûkz3lÑ”ït}ý‹Ìízü;ûoHÙçß Ç19t¥á«K¹×´×Oœ¹¹´åÑKèÁSËIv˜n­9Ÿs¸öùuï6Îëþdzô°h½eÃÎеµú5\¤uåôꙡÛéå\®þaùÍ,º46¨È³DCíûûÓ´ ±=žS|àÕ±WéÊã7Kƒº\×÷“Ÿø‘G9•/o\B—VWíbòú€öï~m1cùª7öWmrƒÛK(«CÓíæ£›kÿnï ‘7\·PN‰Þãž$'Ó•ð6…aŒþߟ,±¶Ù›H5¾vôbQ“ËîÓËñ_ºlÒ©ó­C¶Î:1Û]ßÞëàýìðmÊ}³©fÉ&j>ÍiÏ=K-Pç»Í>–™uè9åN2ïý›¡½Ô<´¤QÁ·§©óð4Ã}WžxD/w›±‘£Ô¸å ߟÝÕñwz²»Õ»Ë%éÅP»7kÒÕüΣ¯ŒüǨuÚÒVtÊJÞF/ZäÏÎSÇý‘z}{5­Æ¯ÒRO.úÞ} ½˜8vÇ µ¾Öɇ#÷­Ô<œc Ÿ?“÷íèeVµ§?ÑE®)¥îWp0töí™…A”›°æ{ štÊç­nÄduÝë­«ÆÒËì‹SnRïû©IƒÏõWó@UŒ*×{Ù z¹ñկѽÕýN&8>¿F ºu7vKnuzyáØ±ù{Õü®¼†g¯øÔ‚’ Ïé»XÍŸ;ÚñY‘MgÔu¹/™''§ý;Yñ@Ý?$¥ôüÉÔóÉ«|¡÷ɶ´ÏÏrj^#u?ƒ£&S¿š_P¯#·Ñ´´MöÑᑳ:îkS\Õ=wdcëßðʪ0«í¿Y;o{ õù:ºdòôì 0Ž´{‹-×òéd­ÝýöþRó´ö¾ÿÛ¸½~~ ½xɇ­ºø†ÒW–¸i­Z¿rßøé”RîC¹çÄûÞ/öÑÉj­ÝŒV¨ù¿{׬2pªš7›{Än¢ac':nl¿ê¼r‹ý¾U'馫ÏWnôþ«»¾ì SS·LwÒ‹b}ûªõs_Eê¶|J§íîì}¯?O¥#±=šÝ3Q×wç¾^ýÃÒ{,L<~ùgu]åáðêMûUó¾r—$´êÝä>ê7»N§Huƒ#篺X¨ûÊæ~¼2éW-:¸òkÔéê{çPê¦ #uœæÞ)ÐÊ‘Ì,j°W]¯{øt…+zªëTs}öPR :r`J·Wµà>Ã%¿Ì·óQëC¾\éSùÇý.t|ʤ¥KÕxsÊ,Z4Å@Ý÷úå¶îÄ”§ßînüà¥Æi$Ѫ–ºßÌËN¿Ê™ÏïA)Ëf4<ô®Ï·=Õ)!F]_ÿ2yNؘ…E騀£ëÞUßG)×Üß=RͧÎ=Ó¼SÝåtèUƒÓ¯ª~Éͺpt¡š›k»6È~íF:öyÖøGUÞnÜùGKs•ƒ¹Ó››ñatÔ°Ôn«aêsxh-eGwW÷YÈmáèm~ ޼«97t”:NÿüÔÕ¼¤îïœÛ§eÑu+OÒÑp‹¾l©º>üp-Û¡›‡¨ùÓ·V.~{£ ݯ2Ðërx{Êv›öÔ)Ôü.¸]oF†]8ºû¾ÏìgOšÓÙIF 6h×7¹µþÝê¦oÝèÞÅ#ŸÆw£³å¶Ý™å = ׎S_¹ï±`ͯDz<åÈó~ R¦çŪŸ×îÏ@÷{®Ëjz÷ieJRefìžš÷ù¿\_“¹&aìãáôxÇ{«Ô¤Œ”G¶‘>j÷g_é³`zÜ¤îø‰g¶P戊 “5Ÿß·ÿnÿÝþÿÿÖÀÀ°èŸ(b`hPâ϶XÇ®=ÿlJýùßÿ¯×þ]‡Ø°õÃ2(úþì×ím“_[9óÝ’4uŽåö…÷º÷’ªr9—Û1že?ô+#L³¿¢×DƒGVu)xñ©¹ÛŸÝ¢"o®ìš^_jê,¦ÖòowòéöèêøÅïÓ}IHžy³ÉZMɬ 6ÅZT¡È»c>¤§ß¦b[nº]®”¦ÎcGä¬JãoQõ#Wì²Oï  ØÓ£óÏkêœ6Vh9å<Õ89 þcÛSäùw«©sM\ø|téÖ¦~ϯRùÛkëû_û¡í¿ã·^ߊ"‹wyæo?ÂÞÎ|±lííßíØyuñÊo)ÚãêùcÎQÅé{oNÐiêÊÖØyúÙÀùDM“vLÉ|CÎùºWCúMÍãŽ]ù_$z3ìá—qnT®ïÑM"¬´¶nࣞ&^ ÊÝêÞn4²#•ý\kx®Ý+íñ¬skººìŠÊ|tÒ1.†\¯|MÌø¨}?l ²nÍN¥j¶öÝw~KN×Lƒž¤ëÿ½õ,ŸoE=‡èÛÕ¶ÿöøQ5¾e:d^Í“úÇÆ{_eÒ@ß6üÛ¦æKßo=-QÿxÀa÷¢™÷Íõí yÁ¾…GJP;_·9?Ϊ÷ëWçí·Þ˜ªçyãžÈóžDuNŽ ç£Ü/Ô²„¼¸Sßì´úÍ”~QÔ´ö%]¼•“þqÏ7ííÛö³Ö·ÃÇ…š^{ôŠäºo«½¢üõû;Þ|µPÿýEwuåJ» .#œ¾¸§¼‚m½2“žïV÷âºÚM=¤o^5<½Hÿ¸ÏçMdQŸ“¯ƒÆ>ïR„Oúº&¿iuýãå;o²îÕ/Hõ‹åÅwK]–PëÈàrÆéß_ò}œ2¸tÅ êûío›:ôiY­˜«þñ"÷ïú}_ª?~t/²ÜsÖ:N!Ë;T/³?MíïròÕFqKÔþþ¶©£oê‘'»ÍÔóã»2s"Õ÷Öß6uÇl·nÕ?î­Û4" f¼:¯ÿp18½†Ú|1ÛNõ«.,çÙ®¥úÏ5Ù¼- æãê8ùC¥r;T]Ù'jûv]ßn\°ì°?©ëœKK_,§Þ·éÍÖË*PÇ©SøÖüÉm¨]·ö£z½­¼a«cÒžëÛ zG„L>mKí-b¿®­žßÒ}}Ë «§êv—Qc uxä;°í4Õ/b¯(7Tߎ)¾ÜxĉËÔvdp„wêø0w-QÉgŸ¾2”eÞHºBíÞMx3û¶ê‡«í«æê?§üélzâKj7aåÏJkÕûñ+Àå~À|}»â›^Õn:Rë€ã¢º«ãh`³eYž:î˜3d#µ}ùj™q˧ªÿÏüŠ 5zGþÅïôßRvZ÷á%Òǵœ±†J•6µ¨‘ÖJÕ=Øwùã(}<á¿}ÆÅ´ëFú¦"Yª¿ò—~úÜ]7<êH~ê]r_—`Þ¾÷eu|µíyîþ4Õ/ýç§ûÖ÷9Cþnõ‡þ£]5íÊøVk ÉzÆ‚÷N‹ç¨ï»´cúÖë°çWOò¾|"¦k}•‹Së„o êsÓ¹ µònTAÛêýûZ×Ö³ä}»«eF9E ‚Oÿêßý›ªÛ¹Ôo½Ë}»UÊÀŽGãGSùç~ØÑL}Ÿ˜í}5lV[}Ûm¢Ù³ä€ºüžñ/gÕ©¦ïç܈ß,RÇ•ç±ú3޵\£ût>ÃÌj‡½¾îí±·‹»ýÒÿ¾¢¨ð9ù]æM¦’]üîW©l§¾O^¼žW¨ÏAªqfµ®š YÛM‰qÈwÑ?^j£–Æê{¢Ï¢Ç!».®§fÇe•jnú〪~ñŒ’õíÊQývÜIåÚç´ŽuVÇËßÇõum˵h&—XQÔï¼\ûw5T—Hì0Îgª:ªMÜ{üô=Š?½îüÀ¢úßq¹«BÇÅÔñÒ)¯ÃàȰ§TÛõ߬gêsh[kÆ'‡úv·f“v/O_Bu ‡N»gª¾ƒ|N mÑx»:îk.7^ui•É90Š|QýWîœè·i€¾]«mßу»"Oƒ6W¶Ü¨ÜlܪÁS/ª\íFuƒîŸ§š/¾·­ŽçߣÌ&¯®ú¥Ô-Ï:§KR”wÇs£³õ{ Îs¼R¢Ÿ:¦yîýÔ—Ü-" êxU#Ç´¨Ò‡Š5Õü.ð.?hRÞ3É=ÿý«Sƒ–R¹UcÖI¨©³¯6kv—uµÉ¦¬{‘Ù‘¯¨Ì#ßaǘiêóZ>èÙjE°ýÓÛ“âþ¶µu²\ZÜíq83>¼ýÞÓ¸ìAäìAš:Ïu-ÒŠ’Õ¨ŽG[;Cö­ óB hꬅ¥Y­<;r‹ßø£{›êd~(uîÆ#4uV–UÃOUv#×"‹®˜HeΖ1Œ)‘£©+ÕÚ¹u¨ÅS*ÜlÉžÀgdR¼ÍÖfRÛ/v%í7¸¾ÞGåÏ^–;Œ,ŒÛ-÷mZTSçá;BÄ’û†ãµ|g†“Y›‡éw¦|ÕÔùu+Vo¨W{ t/wêò¬Sd³7÷–{Šv~#-žÖœãO?gN4>´lƒ6ù»4h¬©³p>˜Õei²Þôé·QºUÇN–ÇhêzØ@û:ªüphê¸*~nÒ«I5²®X±Vìº"Ç Û=9O#¼ª¼+ï«ûf°½ Vb-m?Ooîgx›«Žl3×| Y÷ W.n«}½5ëµ5o8‰<ÖX» kN¶?väÍ<¡=_ôS~ͨÃä_c{µÅ#’ýùOç|pÒöËù̱#ʓך S,&“µ—¥L<«=òpÝX­xâªp$äÃ1óKäqÏöÌÆÚó@ªæ·™šýç¼ã™x6n¾òÒkMë&£èÆ‹ŽQhùŒŸc rÔEz ÈtÖÔ=«µsªË,r¨Ù4bÃŒTtÒÛ#•>jóÁâ«{«ß¡ÃÉ«ÉÝÉ›âb©ŒÉ—µ} c5u&­g…Y’<.›¶e¢9v¥æ‡*iŸŸuHµz{VPhBaŸ!cR¨B@Þlû½žÚ×;ÀÄ&ò#ׂ·¯#›d“ƒE΃˜j5uÆWR'wrïAå8ÝØyú%Ùî§I¡µÓµ¯ÃoÈ·ï§;÷,Ëë»>'7‹Ì»ß¸é?ët…ÖmÒó¬íȵåÀúO¶×ûO[S÷óÎXŸcƒÿüNˆ¬8Ã3¬•òßúyZÙÖšº;Fñò媑e䂨=ñNT4}h'¿O%5ϯøŸnÖ#o§“ãªTK Û¿mÍþ~M_Ý;ãB rþÕ´ŒÙ²¹dºýÖóôÃ5û+ñåâ ¶ö*9T±|MŽMÛ¬¯ç–ª©+·Ôe¢ÝÄ ä½þɪ¤Õ&º5vû˜òÚñº²í³‹|+ö‘‚ÏDtÎÈõ'·¿[M]É`ÏGc{ý¤€§‘C'¾þÏVSg]¹‘É–Ó©äotež®ò<òñ²ÊÕ1›´ïïÊÒãúŸ¸An—+&nM‡8nÈY¢Ý_”cæêYÑäW­tzé6ËȽO‹Q•»<×—|®øXí"ßœ”ÌÞ5ÈÁ1ðý«YÚq8Ó£soœiºˆ<¶¦$7[Fe÷Vy»iêÊôÿ¶>"øy§Zù–䳯WïÖÿ{ßûëê¿Ií×áQǬù%¨^Ëí¥kEåê·ëââ¸ñª:úò·MQÕ·Ø–Õ×9t~0áaž™:ý'>)ór!Õ­¼ïKW5ŽW¶ÔÝÂÄç½õuy‡û¹´\3ˆÂ릿/,¦Î[\'–zguÃGí/¹î°w‰þ~¡­qIõ:›~<‘œ¢ÆáLìhY¡ô[rr¸Rªï³±úÇ=< +õ¨¨ž¯EÑ]ÝM¯O¡èˆYºâ çéwò™¼¬þM5îcjóÌ™÷E‘‹ç–³¼§þùü~d{¡ålýù“dú³T:•û»Uý'§tìâÜëI€ê—ªÓ¶—VÇáÖnÍ;–4&]ÏãÁ¾ê80‹ørÌn×}Ûrç§ëüyýî,»ÞeŠÊƒ¦Á ×$ê“U÷£ —·ëDUu]}"-¢õ»×»ßhd¡:~œë×Ë«µc:ñ â«?ÒŸ_ëÞ½âÕÛ³ú:·Oͬ3b_Pl?«Go¸úþÎ7¸¾Òå™ú»KΞ_S<ª¶ ȹLÿ¸£s·Y!›ŽëÛ¶&æOõFÕÛŽ`öý®ªÿ~c©™qªªÿÎ÷«ûêòîÄJo.7ù½:wÑu?|°ç²7;Ñǣѷr—®/£úÙÉ)ÞRí¿äÚW¥uc)údãÆ%&¨×a³g=¢Þ7óFŸ’ödQôÔÖ±âóõ>•þ=¥ns5\¼búås6RD§ð"/†©ãê¶]~Ÿ¤Žçqëš.ŸØ€tÕ?dnÙñ[ÿxÄÝù«&ëò»ŽOÍRãž6©O÷¿™vNß[Sí}Ý9'tïÇÏ,­ÆoÍÿѦg¥Ol7Ú û6¡ä…)Yð¹þG»aî¶™UŒ¿“YVú»… #õü£“yÀ|ì]aÓ…gç„©ãËÅöÁ÷Ó ÔóëY)èëÁôñÙÎ'°íU5þV¢¦÷Ónj|¬Áír ‹Y…þO®„Žî©¾ìzlp µ'le—ÚÈ#¤¼/œ/yµµzÿ<¦}©°¿þ/õ:Ø¡‡ÉÈ!oê¾Âwj<ñŸí6÷z™$'_û›ŸØ&é÷êtðéõ|É=oî–™Tºæžâ?ªñVƒ‚_gžäžÖ·}–_9Xçó*²¹ºÉÌúñÝÇÌåÇz-Û ¯óé9öI˜3dm¼w{Ð=•ïw*ŸüzY¿5§^)>âf!¹ÞsYÕE§ž·å“ÛÕ<üÔøu„Ý­Ûýú“ùÄžEÛ©qý¢ã/UÚ{TïÔ'¾`æ¦G¥)üô*ËÐë–úÇcÿÑŽ²y¾ÏìÒf*Zzé…}a½ÕßýG»YD÷7ê“«§ó©•OÔxxÐ?Ú}J6ïÛ6õ;…w\ý†‘ò“:ÇZÖ©©Æ¹;ú®È^6$Œü³³ÊYSSÿxÕ %3Î2}»Ý¯ä– :Pùn1 ú‡êí3äÁäžÊqÈsÍžÊ×}ÈÔ®ÛõºãÔ÷¥E“‚¢guÅôíúfw~ ;ùŠ}¸3¢‰þ÷#¹Õ~´¥iò…Vc ~šWŠ|‚~ò(¦>A9ßæç¨~o^ÉxyËg~‡ÏØsv’»Êï; —Âç튊-ž#«—“kVß +xµ·Ï邉šßᛟ³ÜE>vƒ†Ô/zŸŒÿn5u®‘+G'—™Kîýµxðé%=ÝU9¬×JMWð0ÛÑÆfjùæqÉ×Çuï?%l_rµ·¶®ÿïs‹Öå“÷þàØ253©è‘{s’ê{ý³N÷¾Óò>ï-6‘yö–'wø ÝÇíwÔ-œ¬Ù_Q¯SßK}\Ož­Ô¨¾ì ù¨ÉÁkšº"Ÿí*.mlE±ƒ¦¶]EÅÓ\­ì ÷1Š*áåñhן߹£îµi¬û)ܯxý…¦Î Cì®/×o‘[ÿ#ÝZ^Ì¥"#ÖÏΩ«­Ûar/ÿãJ2‹¿üúæ2¡û[¯IŠÁMÕÕ[÷ "·ù-²G^#£V¥¯µÕŽ'–È;6cfÐ'²n]tcÖ u…«f(cÕNûwÜ5Ù7¦;•ºéì_à}^—ÿüáóù{²5u&‹Ü:1lœËŽpÚ¤ûÁ=ÕìœæýøÞ°Gï-†“DZ¬FÇë¬ ;çÇûšjÇcÎÔªò>t•ßd1ªTd*µ|kî©™šý‘Ñ >ø^¸5ùÌ®d8t,Yºtª±C{^YâÛ˜·S6_¦Šc—>é@dÞâðÐãM’4u†½6í¿—0‡üú¬¾å¿¤"YNK.Ÿ´j¶Î¤DÜÌSÎÃÒãÒÙ…Ró­³Ë^ÔŽï:Xµ•í»='ß(¯¦g.£’T¼úˆ&å5uæµlgZMÞDnF^z4ŒŒ £F'íó³”̵J¾+Ü{›øç¸a|ÞÓu·¦Î¢›Õýk›š’Gë®qþ­NPñÅ«¼.ØùϺ·ÿnÿÝþßÙ’y±ØøõדC©ßß gUÑýJܶ~󕥚: CÿC§;RPwûWÏÃW’Õß¶¦Îæå»‚±[Jk¯}_ëŒÉ¾ìõÓ-{hÆ›ÈÐe̽ƻ“E«Þå·Öý¦û:hŦ袴û›íhº§Ï0r;Y!íÓ‡‹dÖÒuõþ. š:“dÓÓÍ rÉ)aû[SçýÿikêŠô­P²IûOdÕèyî—|'20öèØºRMÕ¥7V§}!ïWçʵî7ýÏy«_~Úñ&Ë¢ÓšŒñúÓŸÑGkÕþŽ)Õk^Ómm¯ë´)Õ9ZRɭ˪61rÐþÝ“ Œ,ìrÈwᨵ"©È¦.Aåµã/Væ=¯²˜lòÍœ•6mý1*ºþÛ²ÏÛhêŠwJ¶î9•{_éñ¨h]ÁÔª>Ç¿—ÐÖù5žg>šœJ·u ñ,¢+ØÜej^³,M]éÆÕ/ 2r'Å—»š¦VÖnŸø¨ç^íï'۪懯w"_çGwmkߦ2­³ìj­oò*bï0õ§…Ÿè]rÕIÎ÷ì­ï_»£©³¾²¹ßÕÔ¾j½tÔ¢)#È¢Ùôi-â¦jß•³_神%Oÿ½Ñ[~¥‘õß­¦®ì™ù5èÝ-±ÞCÓõíÈ—Ÿ%ÜÈ¥–§<Ýßr›þñ’_Õý¬Æ¹"Gúל¿v$u¸ôu¸Sõ½²ãë©asôã½T.bÈ23‹øï±.Íèý”|Vî ¤Sãz!eüï_}LmÓ;Uð÷RumF/4Ì7Pu–sžîî@-/nWw¥šÇSoÅÙ‡=j«~/Ûëu£·ÃúP{~ø~£.ê¿÷éRñŠ×4ý¼2݇Ã'î\çJ´´ÿ‰ÄÇjÞR|ר´c–ú¶óÇK†…î¦D¾»Òõbj|-äÛ‡ž{g«÷c÷û–‹75§Ø¿[ýãlc«#;uüX¶êµsnÝXj6˜.z»©÷)jV‡qÝôí–oŒl?eõyÞ+~Q«Óêøø6¾iÀc5Ÿ²u§—åF¬™LbäwªªÞw¯Ë~´þ­ÆE™Í‚–è %Œê·uU™¯j}vW?l£æÇµ}oqsoˆu j7#Ü£P§ÃÖÆoz®Æmš¾÷÷µÂ#ê¹Óºc©j|·Òí•ÎQãŸÕ>=ñµ1u\~h¹Ù[[ýãU.æ»f6ÓÏÓ%]ÚMÛÂ,N‰M†ötܦÎëö…Ýu0VóY‚î”îjR¬µÑ}˜Ý«ø.õ9l?À-s¤wŒœÞ$ìØé\j;/{}œ•?‰|Õzòlc5«ŠsŸ™Ô>êÑåÓƒõ¹@¬•_ÚIW0i^ÚóKj¤ÁŠ;¦WV©yLm3nº[÷ùÞ>±TU×qqøúsj<×;£ ß͗婈Í×›nôŸc]ÁßÇõu5râWýÖšJíÛ\+*©Žúþ¯ylPÀ™Cª_®}éáȨè¥Gů¨çc”ŸÚ£‘³ÏnWÐòmµ;-È©FÒþ #Ôó ZQ¸ÉL¨×;äÒÍŸkOé¾trïѸ^úç÷þ¼{f´z1GWzyŽÛE%´Ûåœúü››OM{\K;¶r}¿ñfê8òhæ8áU-õwu×_îŒ×ËSÛM¿L]Ò‰ì¯]IÙÑEû¸»ÚØ:ÇUÑ·}kN½{ëG‚.7Õ(êÆ?ýóû’q Ìí j^•[ÿ o{Þºèr©üêÃú\Ñå_­šÙÝP_çr6´Sç3[tG®øüý¼~|H÷>+qo_ïõ½=Æ·rqû=ºßk}G Û¢>eþÑt=í¶Œéò‹WÚö­‡~¿¬wñgôóê©sÊþüØ\ª¸©æbãÇúßIÄÿ>®>o¿+g=¶‰ RÉ_ßÝߦÿ=@Åk Û÷l´:Î[z®Ïs(BAóî¿§>OÁßN¬q>§|¡Ö^Ç»ûJ.'»ÞIq]î©÷³êÀfãæ®Pó/,–z¦â]*_éCaí#jž\¥[‘¡ÙÛÕxo“CÉ•Åðñä0ÇüETI5NàPÍÓmóŸÚÔ÷k~ÝOÇë?ŽtRýS¹¾EQýï]ŠõìâÚ©òr²>˜ä÷ä‚þý%Û®÷Ò­Õß2/Ø8¼Ù˜Ôß䯞ŸÅ>]³…zµgôÝö«TÙÔYO¼ô×…ë|Ã1%*ª~÷8nö­Ú‰‘ä½ßw¢qÑdÕìkÔ»úñKõ=¹> qýކä}<öÏAÖÛš:»JS=:ÔúEc›¼7‘dÒ15Óf¦öwx…IŸ_·µyK«&Í\ê9‡œÿ¶µ·÷· þEÈÛ¢øš"c.‘õ¢¶î–>Í4u¥ö¹‚ ¹ÝnÒ±EŽîGpý©ÇFiǹŒj-ïÐ|õ* Ý]à^oL?Ý·iÒ<ëÃñÖé¾ÞLìqÏø39÷,QòÄøæºWs{ö¨¦©û‘°hn®ÝȧCËš'Ò’ÿÓÖü]-ç¶ Ÿé#=Œ¦è¾—è¶¢F3íïz;×.3ºÝ%y³û•þó=³tWæÕÇ-4uJ—ʦ »œŸ¸®YšÔ»ò¹ñÚ~)Ú¿Tü½Íä|ëÎÅ=ó§éŽÛ%oþôÐÔ mtÓüÍ]*µáÀŠÑ‘ÙºO£&Ìs1«©³ÎîS?/Ոܛô³¦É;2T¡Y–cCM]ñÙo wŸ¢r5ÊúsL"³¿[M«nEâ•Òó(ôî ‡”aä“×)zÖIM]©°âhP5r÷®4zæëåd™Þ»ëÆ4u–þÝù·ÕÍÈóóCjéÐìNÅG¤,Ôø?YÕxK_ê1òéûxc—€]TvAö˜“Û4ãWdãúnÈWw"·UFºGQIÞgSi¯_q>XÀúq\äûöà¶dsâ 3[¤™Ç@f;º;“C®Å¬º¾ìãMÆìníY+Œ´ýüîMÇ5û&“דöÓoî¼Eeº<1¯²I{}ÍÕ›=ã_“÷¶9µ.ÞžJe¶ùʼnÿ¬ûwûïößíÿ-9¼uÊØÇŸ¢W$T_eLAׯ®È2>¢©ó,w¨§ÝKŠ_êÖvÀó=ÔàkÔ 3í¼ ·ûötîB±Cí¿uÇš"v|žt^{½©«Y·AngˆÝ«Ûµ‘_…oÒúwyKMû%;î+ ZÎ]‹;~žBÕ:5½X8½œ¦ÎßÕ½ŽoVªÒ¶JêJ×xŠ6Џ9ÅEûüß+mv³HçvñiF3~ÿôìšTaÔ¼-—í´uÅ×3¤qQŠK*a·óÝ|Šþjâ@§5uvÍŒ¬ƒg7§Êg»eݹ‚ª\™=²ûmønxغÕt5)´™Wž"Žמttަ.`‰}ǃó©ÞÿÛ†ZXÅÓ^Ÿ óð«Ò²tÕ\ÖæUZ]jxã[Ú\­›ù—T·`ßJj4ßþзâHvxÚ½YŠö÷b‹šá7üÅíŒNMíÚó?[M]èhÿ¯m¨>™ßëàAõŠ ¿Ð6þº¦Îû–wPLVŠuýQ¿_‘ TÙÀb`ðÀÿòþÚ˜?Y!‘x÷Îê7å»Ã'Ø"W»?¯_õ19Juã쇎-‘I±5öI+¾Lûw]köŸàœL¬]Ë}ñÑu©Úb›¬Å_´¿c|úL­¼e÷2ªùì¥Õ WªÞ*ônãöj~‰“mŽnê5¯Ç¶][v¡ÕWªÑÝãȶáj¾Å³} ;”ÿlSíò†å³ûªñ0Û WÜ\|§o[…FùæK±'‹Uk£Üð×Ù±¿VÿüO[÷y‡ÿí´ô@ª°qÀ¢IÑêïÚXäØ ˆï£o—™ÑcÌ—ý(fÏWù­ªÛ¸~]q5ŽQâÛ—ÙUæFŸ6¥ùE+5_Êõ6;5ü¦þï ÜVlÇF'ªÛ¶sذ®êïºOÜú®T×Oš^«zô¬Du3G½0¥®3]™ýxà@ý¼2ݳºq_æ&PÅ÷›|l¡ÿ¾"ÇÕ6»æ>½¥o¼7 3êò”b§ïwÁ+U½×~4i¬?OÓ}¹Öâ^‹Twq­×,RÏûä®Q.ÔøÂÍ¿mªøësB«†Qê¿_VôñâúñÝ‹¿m (þ¤ûS'õw-3Êt:¬Ÿ¬ûð·Mµ£¦=q0Q×7š­Ì¸1¾³þ÷¨îý«½ok?¤èÂ-ë_T×yµÙú èH§¶Iì5êhk5ï«üš:ŸKŽTçÑ!eçE¬\’L [õÙæ§ÎCËy¬}Ÿ¯Æq]»9Ü}á7U,ž¦Y,VyUàö¥1£ nL7óúT÷e´èÞe’ú\,k²s{¾:o._zÇ£¦‰Ô°ä¶©ö­ô×õ‘ÛÈ {Û¤ªëëìÍÓk™/oKu¬ßq^«æñ•»•Ò¶ç;õ<,&Ù½*5‰ÜYxuVQõù¨8æ^=5nf^¿óÐ"ý{SÌÝ KF]Pós¬žZSW]‡Wì×:…ÎT½DLÓUû;«×ûùÑ¥Ô"êúN Ç)+l‡ ~ëÙ´±êúÎFcÓë~ÛAöKŒ\RÿýN^ß~,¬R¹¡ê¯Æ»î¿ý^I÷léè™oå¨÷yv­`kç+úº¨ #œo‘QÑKÍgVUãæ¥Jv™vçÚwõýý:¿ÆÏg[Èx´c`W5ßÊ|áçjõïªqŸê…ã¿UõO¡#‡>oûA½VµNN™½Qó÷pÚõjK¥äm]Þõ@K5nÆâ7¦¬ž£Æ¥êŽ˜\ûî§2ä¾=oÀ’Áúù@d3ôÍåÃ1úu¨ES£Ï‚B(øéÔ «~ð\°ôµÝ U×öãÍ›½Û‡Ç•´”Ô¸Gð‘÷Ÿ>PómÛÞ43lG&ö)Ü:$K]O>¹]ÃJê:unXéèiºçÝ?M®Æ-Kþï¶îÓ³Å'g~*«;œ1Þ{‘þû]wÎíîµàsjÞg$ï½ÄÒø™þrû:/˜çz qà‡2ôíh›‡n»6¥bæ“¿LxòYõó?Ú•+ULô=ž©ûY±ÞÚ–ýÕ¸ éšæYÛÖéçåQçˇ^NŸöŒí ž¥Æ‘*Ë.Ü=FåEÙôJç½kê”+g0­µþ{B÷æÌÐ#)¥ÔõUggÌßRu¿ÓckzßÿÙn÷m÷ѯýÊ’ïžß+Íj©ùÓUŒ^ø=[ã63¡ïâGad?{†Ÿ‰‘šOçwôÄÉçEÕxjB1ç·áËë’ý°š)Ofä¨÷÷PñÂì¾j<6ÄŠ¶]8$u?S +ߪ¢®s-fxÉÙ§íõþƽk“ðuÙ´[uþí ýõ™d»ØìÜ›vúñ’óŽ¿ÚÜô9¦\Ì;I=¿Úû&n½¨oÇ/Ö1ùCÙ½° ½W_Ÿ›äžÙv{Ý}jÞqÀ~çä¥ÏR¥„#6O_Þ#W¯øšÞsµ¿ë+þõîѰ0 °xøÅ—?È÷Á“‘)¿´Zv˳¯‰=†SLßÄ:Sž}#+ÝŽaõ,Ziê‚”,VqWmŠ™Üt™w#1…ÏÖŽ=©©óŸÛ¿û«º¤³\›–GnsÏ7¾­}~ÆÆ£*zÿ¾B~M/NúMvË79°\SgÞùëÀìV(ô~@Ú¢ÆCÉåÓÛVQ‹ÿY§ûêßïUÑeÖä¼¹÷Ô×ÈxòƳÙw´óL·O éú0‹‚ &NØøÚŽœšÔqº{O{=§ñý5íWÜ4¥ò£[w¨7º Ù×XØlßcíõ5Æ·/œ”8˜ÊîêT¤é%Ýñ¿_ôßã£y~r§Õ*èÖŠ”VµÑ½Xÿú^˜‘v\Ô µnÅ•µ-É&nÂã[9ÁºOŸœ~LX®'PdÖØÃ 4#»ìɃ^Öº/·Úý=¸fQö0YOùî—Öˆî³ÅÓöïh××)¹Ô´y²eùzå–Õg¦îC§âχäš:³Ô²‰2r8¯õ»m8Éí8~®¦®\ Ë@ÿ‹(êCû¶‡ú5§²¯>¶5ÛOSWæäÖc?ï¡@Ý› …eÛSñÙk‹¦ºjê,û[[œœMÁ÷l7Æ.ÛG&¿­=¶l饩³)l6Î0Ö¾Öp¼³'™;ûV‹=â­©³kÕʼc…^ÇÏïfW|ÈfòÊÜœœËÚ¿»¼áùX S qû¼aÁ?²l>üv•ö‰š:ûЋ¦n~I!YmŽ¿]ß‚l6¬ùÄF;?ÑÖ}ò÷'>OOæ–z÷S’U»jbOì¿ãpÿnÿÝþÞ’ƒßáJ (d^͔᥼ÈnåÓ×§|ÒÔù•8–ßrôª~æp³×7B) ÿ½uúzíº.ÝJæßI®AÞ½¿5s…ÜNÿ̽ûº‹¦ÎnIÁ©Î‹S˜éZ»[Eš“Åã#§owÐÔ¹&¶ˆ+h±€*ŵÚÙ~¢¹YÎØØ{ºvž¶ý‚á#—>J¥àŒ·í¶ù×Q¬vÝ 4uŽÖ›§ZPX婦Ö-M~½ZöÙs[ûwkÔYseÎ;аþÝiêæ›T¾ãÀ½&‘Úõo&­¸?«èŸß)/¿U|>‘|¦œ”ËoÔÔ•3©·­Þ™›ê5Õlãç|òi:wÅí¸”Ãž7ÚVþLÕÚvZ{6,“Ê-©{Ý«¡v^ŸiÃo‰‹L(h€ñ»ËC“ÕŽÔz Þçhê,¾éÒÞ7™Cß8ç'9½ª}Ã{ɹþ÷ÛM»{Á5)¤×᤹;“Í’í5Ì&iê,o½ œ±ÝˆÂׯ?™Tá5•Ê1ºÒ!TSç´Òfþ¹éT¥Óþ1ÕCȯ²oD½6Zo*Ÿ÷¨¼o­<Šž÷°Ïm×Pª”Û¿Û™Úë,¼nÆ>.0*J5ÌæW¶¯nJai¦;7}ÔŽK¹®I¹oçZ@Qû®ÜjÙþÏùˈ“›öiÇá¼BgÇ'×üDôac‰Šö½©Xö¶ Ú÷íÀ†¥]êGPDÁa‡N%7‘{lpéXg­ŸºµØréú_Šê6ÀÇãÌV*ÏËl-Y õ]—Mµ÷´›EU¾ïýܤÖiò=Ú©y«2íµÇA뼎ó—:Qxÿ çÓ;’W”·ycízÎöÖÝrvU:¸cû‚jä}éÖ‰OÔx“§x:xuI5ß'0p~“ +¨‘™ç«Cùê}ˆ5Ìôª¢o;Û¸µÿjüvŸQF%µŽgÓš…§ºQYƒÚöéq÷:îíÔù‡[º×~ß»/õm“ÊOçÎ5®K¼Ã•wkË©ópïr=â⇫q —¡§ÜfUmD Çßú::`¥ª+µ§›WÄA}ÛÀ°ÎñÅ{PœÝOÓõž¾úǃº~­’à¬þ»ÖÞ7ÔÍ£–ÆQ…–{Õ<%ÏE'VßëªÖEr<=Fýwª÷~x-–¯ÖòŒŒz’q´»¾mÝ4`m•ª·h×—ýÔ¼,ßÚ—š6l¥ÖûqŸ2E×Ã+ŽâGßk5»«ºN)èüFóû­Õ<0‡éÍfTo¼’š¹×ñQëxY˜U{c»LÝ¡îûÜŸÓü~fRe¾ª‚Ãu5ÿ*¨aîùå~j<À©åŒïn•¥f,®ÅÇj]%ŸöÓt7Ѝù„V)š×ZV—â½>Y—¯¥^ÇØd»öûÛ«×[;®î„'•(þgýjÔõœ•Œ '7ì§ÞG^u±·Åè¶”ÐaÏÚ[Õõ–ný«>÷û©ú©Ö{_±±0…:{Xó®)j>—g‡6¿À:\¡Éïg%—íEòѼí§«óÕJÖ˜û¤Ž?Öáå×%Ó¨õ»÷otÕ{ /ïºÊÃC­“ÈŠ¯|³£QYj7\7õóLýã[Ì»;Lg…l™ýòá¾Ôth½VͶÂ8^…¹Tç@‚:þ¦kôtÛXj~bÿûoÔ¸žÏ)¯RÅcÕø§çî¿·1IV›:¿Ëe5¾à=õö²ªOôméÇæT?HŠM³ÚPG—¿¹&yU¾ê¿$»ìO'¢¨‰Ûzßg£ë¯=îGhü²d¹ñò*§þûÕq½púaßÕõtAuú–üÚ³¸îÛÁVö}u×?^d™cEÕ'ãÙyßõTüÉž‚UÔuŸ&­Z4{ÞMÿ½Fq‰=·÷Ø=ì¯{ §ÆÝw]l´ÛH[Ƭ=ºeØg*Óº©L\¡Ž7ë×ÓN˜ÌW¯·ç|~T漡˜NÏÛk¦?¿£*—ìRóRkœ)±Ýd‘ ÙV;W8z€絪]6Å¡–šç×Ð.ºkÙUÉgÛøë‡Û*?(ûpûþé{ôë³Rç“ü|;Þ¡*ƒ§Íð©æÝ…~ZR&†Ô÷Z»[mã/S˜aµ&ËV·Vïçæ.{ï;¨ùĵ*Æ8ܨ›úç<+'«ö1õ¹±êðæðð‹jÜÆ9£wÇ- uojŒš°ÃCÍ›{3·KÞYKu¼M_Ò?iƒî[±³gz¬^¨¯û–ôóF0Wý}o[ô‘e©t=ÿê!iêó_f×Ð{%»ªqóÊó{ï:Ðì6ÿ´ñÓÚSê:OãžÇÄï!+ôíWëŹ< jMb#Õóa‘ƒÚ>³TóCŒsv¥ö«E&ïû•ÌTë@á¯uQ]ßÙ$©õó2·MɯìÛ«îëg’wØø©/ÃU^tš:âÃ쎌"wN­FÍ“«iiy;q•úÞh×0zÒµIΓ—Ô9»wuýººÔÞ¤öž «C)ظS÷³óÔ÷lȸ¥?Ö[ªë>ÃrûשGF—û;uܯÿ=EFãS¸‰ŸêçZµVd7%ÇÈyOdèÇ‘]íciNëÕ¸a몋µ-I7Ä[¿Fý]»í6¬”[ÉS[JÌ<J^¥ëÛ:å)7óÊ,3ÎÖ ì4þÙ¸…ƒÈ7ð²c×¢ÓÈúä£ÀsÚqšÀ·5M¼×ƒüÓ[vi܃;¦GŽÔÎÏw­p+êúçBò=ÒäįÝ?ÉÂwZåu­,5uÁÌpJI…TµÁýE§] €+†”­Fš:¿Á¯ ëÔ§ 1~-ZtØCN[w®™š§©3_vw÷§Î¥ÉuµÃ ãERɤ÷÷&|7×Ô•zÚc^¯sð eZ‡ÍÉ|ü±fÍækÿóXyê}Èrm²¬ÇëÊ}É(nœg›ÆÚó“†wÆ4‹¯BÞKœæX¦YP‰ góÚuîLŸúÄè&yôŠ<¾ø•,ߢuµÍš:˦­sƒ~“Óƒn)[¼ã©ØØg†ÇRïiêÚþð)í]‚¼n‰“¶³*SÉpÛÚ:jç¹Yyé¾{n7rë5¢¹éý^dBfÌ«kꌢÛ÷zUÌ,ËÝõ|ú¶™®`EÞöofy™Ý™w·è~íy–Õê{¯nžË¢€¹ÎƒwžmNV»|+•n1OSgµ°E—üæä鸶ôF±€Jï½jj`SCSçt'ÄŸïîNµK´Ù>wYWÞ±øÚ¢qš:›º¿£B“ê÷Õ&ó89P™–Þ×,©?-ÛÃiéK ¬Ñ¼õ£þWɺ…ÜWfætM}fÓƒÖGȯÁæ!ûÞ4 ‹7/³&÷Öœÿ»ýwûïöÿΖÜ:—~Õ¸ÄsŠ ³zÚ·ý²øÛÖÔyÜ)}°€*?ni”»æÏ÷û”RŽó´÷ApõuéZåäZª}çü½¹aaÚ¡ÙÓ/4>D¶þåKY„n£ªWºû/j•JEŽ6ÞPêô;M»k»“*=§è–Þë+UELžoz¦©³|];ªmé#{úM–ÕÁÆÿikêü{Œëš:p8E'ÏÚwµâ{r+[Â.¦êgM]Ù‘?,öZSÔÃÆGºÌM[Nô_]ö£¦Î,ñÔ|ƒwe¨bK£”Ikɶh™UGjLJëŒ)6o×:ªvÎõÍ¢*ä<þêcn­©+·»TOY»*Õ°vÿ}ÔÀ‚l?ôõd=µë/¸UX¸wíÌ+T+éKÅfQ÷Èâo[SçyØh¼MNÑM.‡¶¨GV®ù‰â®£¦ÎÐsFø‡ Î“Ð|ÚµÄ3dëzýý%íød¹ö—*ef»»½êÄÞ)‰d}£§k“k‘šºŠv3íc×)ÎÛêo™ETeuë:í‡jê‚'¾ÌySc-Õð>Ÿ•Vú5…8öÙT¹ïBM]‰J.ŽC—¶¥Æ¼UXÚ…ÜóìäòPcM]å†Ñm"×¶¥Fs‹O±úJu†<ýÔTû;¦bȘÚÁÛ‡Sƒ}³·\zb@•cäö¥]ÿÏý\ÉZö˶Sl”…ɺèsä¶£ÙÕQ7r4u~mM^olE1'»Y×&‹\_ö‰£GÚqG×M#׿¿¼DünЈŸw<È»q¤±OŽiëní˜ùaVÕ»åÉIŸ’ä;à3õÓi÷ç±ñÜ×!N~;³|B9ƒLòÔuŸ½^­§ã0Ô²’Ÿ‡³íÍ‚<ªRµÜ]ï£+¨ß÷6K÷NRãHfó{žZc6¢/±9MÍq9Pú§cKýy¸îuP©øG=—PÌûZ‹:©ó¾Ž§Êw™£®‡54¿z¤p*ÕÒýZûa¶ºÉíWÞÚâGÔysɆóŒOü\M19ÖëÊ~Ñ_ßAÅG]ºÔ¹Á?Ûºó\§Äïj”›KÍÝ‹«ó÷Ò}FnkPrÕª¾ÁãàYÕ/åÚºZ¬Ö?ÛÔl¥MÉÚeÔ<¯¤¶#ÕxŒåRûmç˜QÔ³ ¿¿6³RïÃØ®ÙS®ê ²6Ö«OÏâfíZ»G½Ö¹ç›@u¨Ñß6Õæèù$M]÷YäLB3ÿÙ¦j…Ö ò,õ[Mµ)ˆÿ Æ•ŠýmS\Üšüa¯Ôõ¹6…3eªëŒþ¶©~ÚÏF…;T¿Z š˜3ö‹NÕuìX4vùªó¶ýЃkÕy­o«Mt×Z=ßJÛÔ8ÞbðÃ,5o&°å¹×ÍMÔusa_{´ÝY¿(5lÞæÚÁîúÇívN8]¸B]ççef5£¬Õ©oT§·‹ºþµôÌ>ïBj©ëWƒ+Ξ4£vIªW`Uªó6µºÛÀ£MÕqRjðÀysGPƒ ûIµ|†¯u‚ëK]ôH ÌQó8í;íÝylc[ª_ao~ì3µ?ÏoÝ#·TRë÷;׳z°òÕJÈêzÌEÝÂõÀ¯ÖÃß©q=‡/—¿¯x~™êøNñ\ýH­Ã_khLPó*ÛÉÙŶý“oj]ÆOÖ‡ÇlRãTÑW^{™Lv‰ýG?º¦æ¹ÿ£ö¹|©¦vEu/oLýÜG?ßT÷õ·©áÎ"5ê>L§  =+DOVëäÙN*A–7ôíš²Ky¶ˆ%‡"㻺©uíŒS:?\þD¯'®5syñãÕØØÚ¸ÂS5OÑ?rÞ|ž¢ŸçJ1órî[”.$ï´[ª›©ï¢ñqÁb¥º_LËAëíDPÄ‘ ¾íW×s—ŽË?Uï½ú|õ­Ô¦Ç×ïݨI“/%rK鯣€zF+ÕPŸö'Ûú-Yµ”j˜:4›¢æ‡ºnœ°½Å8õz{õµì@Ydºð^3¿ô§pýtëõõ~Ö;TíÇ-G]î²e?w×ÏÿÓå¼Nn²¸»÷u/щ·Œ×}¯¹sEYýý`twú·TûN¸½õÃá©Tz—˽Üãjü¶øÎJï:©vd¹ÃϯLÅw›Ìü^D­[f”ÚqÝæ ÊqZ-ùÚå¢.”jÿî9h†©º5ê¨KÏöêu„%Ô)6´ãB²[j)tRëîÿ£]7dG´YÈr ép¯›ÿ5m;`ÚÜ‹ùª?Ÿ—_w¹ÈfŠ[Õ/¶‚µ~üƒü½š”kø^ßnZæQJea´ög‹aj¼ÓϽ‰É j\¹¹ëçKËŽ¦ð„ä¡,G¿nùL=ÝæIVº±xSóÈ“d³%rI“v½ÔquoäòCŸÕ<ÁZÛŸ2+:„Ür¾4:üZGšßüÍž¨ñÄööCmb‚;Põä‰?.]PóE=/Ô‰»¦¼BZ4ú«)û/öþ¶R¿.?9-yYÚ{™ò#¿Á{sýz#Ÿë¿nþПÜêD­3Ð^o¢³¹8¥íååTÙIžúÑá6…®Ê‹œÑ©ˆ¶nŸy|èt k=±„ߦVT×§•Yäíú+sbº·¤°Û;øÇ5¥À+y¥œ·jÇU*eÍr™îNá¾+MïÕ¨Háß«¤ü­©+µju³ªç²ÈáM]ÓÄË›ÉfÚº^ï4ÔÔ•y^¿ðÒª ÝÏæM¡Ó*Ñ/vaËüu¿+ŸH.t]»šÊÌ;"M‡LÑÔY í½=gÝ8*×hºïì!ÅÈälÙÔ‘S‹jê,®­­Ôóš?¹½ú ξ_KæÃ*ÄX‡hëâÝÆ¯Ý]…¬î?z˜´GûzG-6mPUðÛn”¶9Ÿ\%wp­£9þwûïößíÿ-™Gç=ï^;“< –ùëu„J\™à¾­“özÿÒ¶ó.G÷yNn',¡¢KÈlçø7S»¯ÐÔÙGU^Tò7 lz0ÅPl!ë¾_]sÐŽ‡yÙ»eí’H•×W=¿cQSr ­Xcq/íø‹ý€ÒžÍ¶çS`PÝM {½$ëKåÓÜ–ÕÔ™zí50ŒoE®+tõ‘o©ìçÇŽý ´×-ÚÆüHø›JåÄì?ëy5žTíáíu©¶‡Ûyuמ²ÙOíMÞ‰æ_jjÖ› —}W2V#ª4÷ÔÅò)hÃņÚõëlÏ}Ü  ˜ZoN÷Ýnïì˜a½ÉýKR«›£Ôü‹b½·þä©j^c‰)‹ïó¡¤1ÁB?¿S÷µ¡÷”6êùØ/³8sê(ùtºœšØ[]?üuOÓ6¿Tÿ4YÕóÑÁ*äsjhÐòÊúñNÝ϶Û6½«_GOWðµ\¯ã¿‘{‹†Ÿì¥šwdZsظˆ@u¾nÔc[f’Íb òÓ|ã 5?ϼqûêå¼UÏcŒUÂ©Š‰äÙíHÖ †jý¥"Í;ÛôKí¬ž‡í­-WƒÈ»êIóxó‹ês{hÕÕÉÓô÷'Ñ ü1#¹7ù ëµåiýüAÝ—ª«w¥×Ï/Ô½®ðÑ~}!9î6¿_Ú^§&©Y}“Õ:ú¿ê<7L_–J}¿ÖôDû𦏕ÚÓEí?òpãŸEÈûÞhóZîjܧ˜ø¼ao‘ݪ®}½e¿;­ ï‡O[géÔx‘áèðÚfžª~ÎØÝh±ÇòæÝãïô‡ûÜn¾˜²áùPÝã˜gÏʼVã²EþÑùt…úN÷:'uè­…j¼Åìmú¹v’Û®¯ºo‹^¬ÛL]ŸWöíê«|ZKo¦ûPqØI¿Ô<9Û£3×l9¦Öç«÷ü{ƒ_ ºü°OÑijþ›e±Ÿ¦¶Tãw}RZ 5ZÙ‚¢üÅ÷¬½Zÿxd­;ûÆ‘š× Ô«î1–WÉ¡LÀØeÔxmo¯×«Õxbý”Š3ïnk@eOMK;)Ô<%[«å,g¨uû¸õZëùŠ*_t¨³¼—šÿá4>¼WÇUÇnæ/ºX&QиØÎýÕxK@\‰˜ûaêºÊ:ifým÷:’§aé]lÔ¼@Û^‰Uæ—Q×ÿV¨?çtµ-•¨øÎ·üׇ¨ïNù7/½WßWþ 6»âsêP±#£Ìœ÷½WǃãÇ_Õ§©û4‡_/ÈÜül ëüåÒ%7ý÷–îãÿnSëèû¡'“EÛš¼FªÇ‹ÙfìmØU½?ý,ªíüÕîOþžÚui•CiºÛ•ÊØ=øª—*–QñP5±d1µJï{ uŸÆ\ëèд³¦Îdg§+Jµ¥Š7ú½™*ö’yÆÝœækꌮۜO_šB~ƒ{¥Z¶1¦’#îXÍ=o¥y~Ó&TÍû9ƒì“7Öó:ºG÷='®ïÜ1ÚëRŒ{O¶˜fGåßùŠ’æŸ©ôú°Ak2kj_Çû¾ÃŠÆe’o‡ÃÆŸèÈT:‡Y·Ò^×Sº^ÿ7_³¬É=*µI¿Ç#Èðáï¨fÚ÷Íbù˜>Uÿ$ŠïïÔ_Í5!Ó«j]ß§¿f^ÚX¦§ òØq ûæ—ÈÈ~–Ëáí|Ëí×§ ®ÍÉk¶ïÚ3Éäá{Ƶ÷E1;w¡»Wò²m=fà­údÜ%ùÊž½šuýþÝþ»ýwûgK¶´m½I÷UäürÆæ§ d¬˜òcøòù8<¡~ýTäo[SgÜèýè±ä3<4óÄ9c¸8ïµv¼3,ûÁâ…‹‡R=¿ê×!¯Öþ?´Õ^ká|>~_ùêä½zÆöÏϳ©Èß¶¦Î­2k”|s=Eœ»1 â÷P²¨”¸sÓjí8œ{Íe6¿š˜PhД ½ýßý93}µ8V»n©ó!Ë)7ºRÐèz ¿´Ø@6ÏÏݶên¯©sV±“ƒYS ÞSùbpÐI²[¸®ÓëêÚëŽ=óL†Œß°•"º¿ß:œB›5]ÞCë¶eË÷¿›u¸•o}®æ”í±d¾°Öî´ Iš:ÇõI¡ž[©BIã1UŽ“eµ{ŒSÿ¾É”TÓ}۩摱÷Ó)nN᤭qj¾”cíkU'š¨ë4zݸeNŠ›ksÑZ­Ûå¼÷ó ½öê¾ ®ýŒN¹C Ötü¼úšoæ9ïÈ·!=Õu<^/gy£&žó#ž¾Wç¯.KÞ}®ÜUÍ×s}›aX=¬8Å[x¾']Í¿ð¸ý}Ãá‹j^Šß±ÄRk jP㺵#ªq)‡«WûlU뎹ů؟9íÅ šác>\̓p]ÜÀÑi¤šGãµ„ÖÆ\¯C «îhs5X­/_âí†^§ïã¯õŸ¨vÐú2£ÜÔ:yaËv½ô‡ù„E,Z¢CÕ®p#½G®š—\ivk5¿Ëpé‡ûù}©^£ïÎoÓ_Cºœq¦ôBÍ«*9 È•J—ŠQÃG§È§”:ž"³Ö­nc¥Æ!œÓgŒ·¤¸rÛ⋄鯋Ö}›á³®ÓÄö길5¡ŒAÖCªÒ¿'Ù…¨ù*VÊOÚÙWõgäɉKo†ŒUp+A'›=0Q]_\±Ó¶a¦Q—‡Œz®_¯@÷&ÉèZÃûêü?ðo›â¢ª¥ÍUëú%&§í·W÷ï¨hpeû˨:Twħ%ÃŽWïÓ² UÙkÕqåú¾ð%ßsê®é”|褚·èUtÆ!º æÍy„œºïVHõcŸûÇ=Róf<¿ŸuuVÍ+õpYÛâÕŒâT?°®CÅp_ߤ½¦¾!æêyLëV/Ö¨ Õß°ê)wQ{Zöfê¿sÐÍÃ(± ‰žVmüÔü¦ú;ýïמò§ïËl>º]û¸9Æpèâ­ú?­^â5æDEúN«Y¢ÏvuœÙþÉá°š÷ÉæX´¬NçÈì` ]TÿØÎ/8™š£oG¹¾-øºp4Vv»½û·º¿I)Ãß«—«÷•ŸýË`Á2‹ztÑÝB­£f½wë€oþúu¡¨ÝÙ2)·Ò"(jãøÆ>^jÜÃ'©Ï<·™úùÔÔpëÍ/çÒ\ÈñD“è«7áûȪÇÓiÕºt g/øÖ£>•+ÕbhãlU½¦ìÒ¶jþUÏ~ÂrjPø½½bˆŸr‡Êž]¿Þn¡z~<¦éæävTÑ=¯êþÁþ×ó:ÛTQó‹…ßwŸcUŠ‘EÕYܪë2]®Æ|/vZߎ®±V¿€ÅTtñ֌ֹWU¾ÿ£íµ£n¶u±uº—ëb6ÐÏè ŽùÝtê÷Oò  Ê—qdz-6·³ZìSŽQóÏb®›•ø|ˆŒF–éež æeZ“]ŸÎEÕºom+%õ›Õ¿4¶Ÿz£Jººkµ´C;?²ñu;ÕSÍ.ñèºc|]ÕÏvŠ=a²5ùôþåÑZ#ûWí’÷¾š—×éä€1×~xSƒ‰^`¼4&tNç2?Õº-J~©óºµ·µz¬ÆëC ޼ž§SßÍäÐËÓ×sòéþ²¼ñlµÞbÀ@Þñx5¿6fNŸŽ#Ò¨Ôù%½/ªuø¬»Gšïí©r ö­mZ^@ÖûìíÓºê¯Ë#Ç‹mßlN-¡úo[Úã—%Û®jKXÇ0øbJí ê>º¶:ú|xÒ‚ÜÖ']w0Uï{A›ÍåÔ}%Ë‹aF5(¨Z=ÙqÓrrøíÈ3úõU>¦>Ú¹~þM Ø}¿XýPr0~Ô¬‰í.Mÿ’AÍjL+fmv• Éááæ6©L;^çg¹ÀÚø™ •_;ÕüÎ.w*û·­Ýßæ‰?ÒÌ)péÖ½7çö ‡ûƆoÚh®[Ð}½ó}»ócr¾7Ð#ªW¶îCåþó¢|4÷µÔ}=ÿ©yÔ„ r>WÒíwÔ2݇Šþ›oÖ×\o¢ûu{±åt:EîO·ÊÏu¢u«nT<Ú_3?L÷ý˜øœ0”\Û­ª™j?V÷qùÑÓ½wæhë.Lu¨‘äI®“&Öiö³¼îãæ2á‰ó“5¯·˜g‰ÿaÆd~bÊÁDÿtÝ—‘»Ý‡~¸«©³Š}{¸ÿƒä:2úAµ+“ÈØõű´ÒÚýEÛç ºd^}¬{¯&º/eNPW{Žåà® ¦¼?¹<›<ÔâTßz5sÆÊqš:³ÁËW¸åF“ýÿýŸ½§"±÷/Ej¯_)[sho(ð«{ìêzÉ%½þ„îáÚyÖ'ǶLð¸E¾ËJ,ﲃlçÞ k«}~I†Ïê}¨IÞ½+[ù¹%»1ÉI3Vi7ú^Ì.7u-UϘqËЖBŽ_y6T{žåœûfÞÒ’‹(dúöm%É…<¦1Û™=5ë’mÏKc*U/F>+Æ„Ü>õžÌu®ƒ¶=Öö‹mé £)'ΓÕÑÊo¶N 2'®wØm§=´nðzÅþ‰®äU±Æ’´ôæT*|IË#)ÚóT×Óó÷ð¾ÎOVÞØ÷v²¯³}UR?íü?ûE{K݈”ä—^ÑzgT Yœøh³¬gûÖý»ýwûïöÿΖläß úY–ê|£P‡òmÈoæ›ÁŽÚï#ÿF¯Î¶{Q—â›­1,x˜¢Ï|3?E»Nf‘í;]Ï?F^KØL™º‹lÖ‡˜\𤽝¥½ÇÁÀ½Ng‰­4¼áò2”Â]¢ù÷ÿ²>„ã$‹ÃvPìÈuNM†ºSH‹u¦#µ󖼟W>¿Õ0u ~Þ?‚"þ¶5uÁÓÞÐ¥;¥¨úÛ.™ã«DPì’ôç¦ÎóU‰EÍÞPxõ.ɇt»©ò÷=~Ñ®ÏR¼úšgcïQÕG{”Ù9‹¢'¦ø^Mد© Ø´,УHY¢.Ââ<ˆ*e÷Lùý_^oz[»vÛHwõÀ”¿ŠR°Cî„j•¿jêl6TÙ>ºöiª´ªhÊÎÅöT¾á4K§1Z í~ó~Å@cªo™ß®îp•šSò¦¦Î¡é‰#Ír©ZQï»îä=»û“IÚõHÝî̪r¯J&UÿÙN¶s¢ Ù-÷œÏ줩sß²}rñÚ·)¼ËëÐc(²áÍ.÷µëÈV*æ8¸Æ'Ѝgùté$ªÛ—mÑÖå:êZ@±çØÜ?Ø™ø£.òÙtíº#!¿^:½ù5Õq½¾î¦§Ô0¬vßËÙÚy}¡ëÖyûe7U_XoH±_©ÖôJs~›§©s-Œ¨ºïËTªžgqsYú ]5eÁ¾“Úû„6°ÔÕ5ˆ-²¯™Ûs+UOÙTᡃ¶ŸýµíQ¥ªU¿à™´ ózŠllSo¼£vEßÍ /LkMìMF“vo)zîìç-µÞéëÔ®út÷ZČ˅oDQ£6 ™>H·x4èÒ¦‰êO²x¶^»:µ©òÉé¾ýg¨ó¯"Mã:ùëÇÇtŸ.ûí¼Pb§×zç\K“9 ™àj\GÍ_Ë߸³ÛîIÇ©ZÆ‚ &¡úu[Ȁ߻9WÞ¡{ÿ)Ð╱ùäì¸>ÿ¬ºÕrÍb œ¡ÆO R“rö[ž§ðœUÛÖSë/•ˆz?Ò¶½þùê¾ýmSùûw¦9›©q£·Kû—ÉÔŸëÞèÜÞžHÞAßgE¥ÎëÍŸG§Œâ0_lèòóçGQåÅŸ/ªzLýøûûÚXŽVýR}d«ºÕ“eaâ¤I3©çç¹æÛƒgúó1Ý÷Ãó2Ö/ýL/úìšé¯ÆMµzßÊ¡Ÿ¾îY¬÷_ªSrd~Yu_ÊOï×Ún±˜¡o_99æáë»7ÉÇdoÈÄêú¦"ÝòzmËׯo£{ü·Mág6š6Þ¥®-~óA» Ãõó`uÏÿ¶©J—Þ_ŽWP먋^—?áÄ:µ¿ŠáµöV÷ç{0Çû×auW‰´nvŸUë@•és3¡Ü§TeI¯GÉêþ¨%6´^ó%½È?ÛTck:9A]eºïYÈH^[½®‹lÐ¯Š“¨‚iÂí ïCÔÿÚ+åÞµ~¿œÒ: Í~bie¾-{­îãQjø˜ÄÞj]¯2EOõüX<ˆtvmKþ4Wãx–W\¿ÖW]×gtbX›ˆ™YáÕ³Õýe 3ƒ{ß ºYŸ * ¡ðy½Ïä|QãHæÅL"ç—ÐÏÿÓ}9¹='ÎkE|ìÝÎoµ>\‰y³çšXªyƒÅxü÷-o†RhR•ÇÞ÷ÕøµÙþ£'ΧßßïZ1»WøM¢ðg-ªtTã>¡[ÞÿtÜI÷ØàòÏ1z¨~üGÛnhÉoVKK것ÊÏ­[_Ÿ?ºÜVS&žÎTãrn£Òoô›º]÷â^*MÚ¬W¯Ûæ}…í£Ôü$izæà­iKÉ¡Öã#Ó Õx{§ÈΩysU§8Ý‹¬Óý޶צïoµžž™[µÍMÜÔzv u Ž8{~!×óý–›µWãö×öÏð£Ž7Ýg6áS³Sd±çÐØáúñÝϸO‹®¤«õÄâN÷~?ðP0y†öþÚ;JÍ3´«Ê˜ãg5~Ú-qcÌÐOË)4dÓÑËÔ<¼°F'–>¨¢ÆYZî48a"ù^:ç÷.åªþq—³-Öï Æ¯c&%/óX7O÷©Æ²¼ØUþêø|ìa³9ú÷“ö¶Ÿ·ÇW÷øbRƼúj=ȱëkÚú©ë[%Ü>P÷²ö‹œË­Õ¸QÑÈžyŽ“ÔødLpü¥N«ÉêöÖ ‘ê{ÑòïãúvxÇý—RÆ6Òw0¯•ZW­T¤sËâëÕ8PbD»‹q;ϓьùe÷VóȼþÑúTð#¼š½îçì²Qõ‚Õ<Þ×ÿ»M13ÏÇnJˆ!›°&ÅQîðÏvïCϺmñ™*·;85¬–ºŸiĬû&†ªù§­»ùmî^«>y¦ží´D­sçiÜÙòî“!úv“ÆÑõûI²‘»÷5ýuÛäT¥P&|V÷í`ûþåð9½tßÌ®6Ñu_»Yxì8¥^oÔÏògZm.N%Ÿþú´¸›r*Ë9Þu줟ŸF Sä Oî[e}Ör•úù‹{ê:ÿø2§?g­"û>S²îßUëø9¯èoï6õ=Yl»WïnÉdüã½qóh]ÁˆÈ7Éúy»êý1åàÉN:aÖ¶‹×“Çß­ö÷H£Û÷vûØQ„Ëõ3¯çß$§Ñé­£zgjê*=¿7}MÈŸï»õO{výÁMÇiçñû™öyØöËb ßb¯ËðEä8̱ۋޚõMt…󗟸֋œ+…'¶jžH%‹„ûÍê£YïÿON¹çôüÿ±÷ÖoYlíû0ÝÝÝÝÝÌEw7‚t§€¢‚…‰”¢€"*  ("¢„ˆÒˆˆ "("˜tHóî÷ØŸç^~÷<ÿÁ³ZÇšãbnffM¬s±Ÿ¨OÅ üZýˆ-ÿÝÇÕ­¯–¿t²¸‚åké&­@«¯4ʺ¿W7!öÂÐÜ `ýìyz6ˆSEçqëÜØRϹå§,%ÀYz„÷xZ=ïÚ²ú€÷&eØ6xí=zÒ]W «°ßýMÌTjl¸:N«%ž_@¬?æk`‚)Зq½œ‰Ë‡ÀL„ÞxùÙu‡ÍÜ.ì«À“Á¸ý1eD$H4ô‚Ø¡ÒÌ"  J:qvy ®Ž¦×;-t[ø½^0ÿº?Ä;ÅWÙ÷ãòfûö[ÌÍiP{Ö.pÆç¥GÝ\pu´n×W ÞôUŒïÄ“. ÙP ‘ ú…«c!ׯSí9Ê×ü»)z/u£‡ìÇÿÅOèæ ëê;P>¤•=_¯ tÄ‹¼üËÏñu »£6­Ÿƒ²bEZ(ÐðW'¤`øÜ šö×)I@D¼)æÕ0;PðÍŽÛ…§\QžOµ^¯ôBS@>W°X )ðÅû/³œk{ÕÞm Ò•Læ§ùᲈgÓ.WØßÖOˆË\¶CPÆä1`Y¾?ºÑ2„«cM̈Qúº R7|õVkñVqëJ‡ç?ëþmÿmÿmÿwZMïmÚ!F¥ÏŽèþõ¾ð­]æþ/¹ â§;ò{¥€®ÕUNaz9§œß‚_·àáYò:á,jä7ÒÈA «ið^(”¬Ã˜:ï:dÏ5DwË€À³pºçÌñuÙÉ?Žæ´*x¡ÎŽ›…¬èâ÷sCxºî#Ð]OLà,ÑÙ§ꣲøãðýy(µ´±ínñæR_ pÄÕñ‰ºìø|T¶ÁJöYlÈš`¸‚χJ蛿´± ÔÛHxúÇ@º¾éNc˜¾NK —.Ó4 3¿U¹€Ô«JüsŸcç Ý—¾XP¯ž—É8øøruLmìÒÇ‚³Ô@3ýÇÙ*ûÀ+1‚ÏK—²}V¡ð>˜8< ûÌlB‹3ýìâøó×͹'FT ]ö¤Mä€ðãxü8à7ýQ[s~èÈtò½w¹rîg]Ÿãq[ч÷æúÍ@kéFÛÁû $z¶¢ë ÞŸD®ï…f²tßÿêñê§O Äìïï*k¨­6MSƒ™A½õÞúHP((¤yvï#¡"=gtqH,uüVŠ00ºW¯ž¬Ó€‚Æä•) N0RTkvPp/žT|>ÿç>yjYVм|Š<#DF£’›\àêÄ¿ î¾utºM¨ò€´¬ä”¸·ÛLµñïØ¬0ëASºH’éê%“ÇÕ‰ëÿ1÷è`¢kS› ÷Aîy-^.jìz51Ót??|á,È ’?]þµ!¾¯yô¿ëH·Ä4br4>Û0ÝãGRQ~#ËÚM»„ ÏËÜþˆ¯ÇÄéö|06F©e/¤{â©÷HÚpÿC/J {ôÎ0l[zãdƒæ7ÂwîKdJ!½çöØõK ?ÀR‘úl3Êd—À8Êž¢ù0Í%[ ›ï Jâ8çt é×xÏ/ÅÏúÌG=û½Ý½Àà¾B‹"úÿT¤ÖéÓ ëå@–±ëçpr>í<ôVñ#X$‡„*ÙÑï¥E\:Ó:·ÙŽÓ5 ÝÏ+¶jć!ŸcÜzJŒY`‡’8Ðu“>~Á¹ñ¨ÊØ’wˆƒÙ@•—¢--a;wn}àuÄ$7P®L•£«ƒÁ•šÈOõèãÖøo(×O(mB¼q¿=MtõÓ#½)ßÎòHC„Cˆ$mÎ9¼Öjâ¡oNÈu’¤Ö鶸ONÖqyäþ‘û‡Ñu¢ßÝrPà1ê ?É ” ?&¯ó¦ÞH#|ˆC6ÕZmÍË…EÎï¬Ü“ê)Ã{Å"èwÃ(I¯­¡œ[–')m©Áñ`ðÑÞ5‹ùäq|¬§àA>kÌ¢þ1ûÔƒQ]Ç|8çüÏî¨ÝUB8³¢Û N0¾k&‡ô—<9¿Ÿ$+ ˆ•äPØÞ‚(0üZä w݇<|-íO"^ #Å™]ÁHoòÅ Ä?3Üà{H_Ë´¯˜¡ù>ÓŽÓío¿#Ÿ1µÊD]ÇÝŒ@§Üj6Î7E•·Ý˜?á}ÚaFyV5 ØZnšæÑ(„Ðz-½fÏCã×ÚA=T¼ópü®N@ø(ÏM%*ähÈ¥ºqá P­i/Ñ¢üf‡}AþèÿöR»h#T:ZÏB/v|%@Fpòõñóç·¼×ñáVO,ÑÿòÝÏŒx‹LZQÝ龈ÿçl›±î‘ þ9àÌÉß÷à6/‰é5õ'ô£'v‹Þò¢#Úm«o(§@ݽG÷Cº¾»œsL¢8A-É#sA|b E¡uÕÛä4\æ?_Ì…Í=a(oš›L3ÉRáH iUbJ¼^ØúÄ› ÛeÂ}ŒmÝ¿kF2‡ølbzöùLŸcKîÖ˜Fð4l­fT±~ñÊ  †ç%©€·î¦«G´ q&Ó*èù¢³2ì×­G T$‰‡Îs¢¼Úæè½'Ÿ çXЭкfן Õ2ÁžQIGØ®÷…˜98ùü©]ßùÖÒ¨Ië˜hëÐñ’îºGY®£eç…½ûgB@Xææ0ÿUäßÈûæji?â¯~fî qƒÇ—åÄ ¾®©¡6õ  ­ y]ß+Ÿâ« Êf¢·HÈ: Ÿù’„ôð;^ÈÊó%´‚´£ùè“:ôž’IÍJžSAçå—vŽn[ÐÑ(V?>Ð…ž—où­<Ðz…IBf€ò=`+–XF<H~õg¤±×;A6ʹ€ó0®NIž¬I%3T‚l=z¦@¨X9Ãþö\â¾Âº²[" 21dâÃéM±,§N’Aë~üËû`6v…§dXá~—Ì~¹ëÑÇlaN¼ü(²—ßU„á~HÛžœ{Âh‚#Sý·2Ãtü;ÅŠ­®ŽøÀ¹ÎΑ¿ÞkÃ׋Cì—J°.^gH0­7ãìdÅ ”Óþº=ÎÞ™LÀÕqX{~.ªªa.N¶×;J50 d§G†}$æÅ²ñÀÝmwóiÜ<¶í%ÿÂ¼È WGÛY)ÿØ8÷ðRTÖbÛqWeLâsKgŒŸºqxܸ¦TäØù½qªû&®NØä|]¾(=]]á—Tú7R©²¹¸:æ–‰XÞ8ÑaÏp6O¦æ-æ÷—qD|PM¾vJ™¼‹æRÝ'7.+øü }!^*†á90Ø â¡ºñÔß²™ÑŠás®x{½e®ž©í嘒 Jtÿ¦ÏRÿÿÄ%û„‹®ƒ±äÂ'Õƒ5 |Zzo&>\àLù5ÀîÒKVèö‚Èå1òDY|¹ÛýwfÓÛÝúßµŠ@LÐÎ&ªŸwÂÇëPú P n8Òþ5ßtXccÃçMˆÖ°‡'•w‚?«–‘R/H?)]߯ûë yoÑïì; ÆD"ßøD½@ô×ìõÁGXz¹®p)"]•­µøÉ|sÐ'ze›UŠ|mH|Ò¾²õø?ØÊóÌæbú0;·O¤ìâñÐÿZŸ.&¬¿cã NÅ\) ÷d~ñ™ÈU§ë´އçà`3BPì™ds1s"l§»=ÁöÜÍ—(NèăòaVº-ÄÙüp‹þâmÂú6¶sgWÖ7Yù©»íño•”§ã ª>ê?~ipÚ" $Þnî\@ø[EnwÂA؆#_›í‰£ôŸ$n;¸Ðyí¿7¬Ì‚ú ‘˜û|(ˆEŸC¼ 2íÏŸC8Yòã˜ï* ¢Ø±:MÀ1°_¯«?dŒîìµfçYª ?€ïÿÝT’ŽDohî£ßý»Füû›‹ÛÑ<Ê~àØû‡H/ºòwŒt?‰Q#ß'šß‹^ˆÿ´öwL´‡w¡ù5…'}[pò¹[øuo°3õèÓ)6"\OŠ—G$¸ é͌؜ z¸ö‚;÷*íµÃ„íÂÏ•ÏÛ"¿~1Ûम7ÀÚ‚¸új?A¿L挭"°ˆ»¸œ}Ûy0”åZ7?…pV2žÞé™ã] pd¹þd§Îuñk=_mÑqðî/¥oCø®\à!§ Q °|/—ù¢ 凲·Ù^¶D¸&W¥»‹ÞY?0Îi¹ùñx_žÍ¹öÇsÚ€pÆøèG1ù»y¡ÜCV3õJ— t}è:l¯½=úûÏ™3l ÿ*ro¿ˆ8Eä'Æ,Tæ ¨< ꇲ®vÖ!SSÖ)“V„o1ß:iŸ9P ú#ØDÒ_zȰµ¼yIJ›6Üë/(¡»ãã ¤÷³æ¸¸/v „¿g Òh!=7ãu®Á¡ù?|ã£Ç¤«_Y䱋-Îøßý£8Ý3™_ÆÚ§3»l{nÁQ3[S;ƒpÍáûäd! 5+i¨èü0å$9öy"\e_؉œ'f°«{ˆldédÁ…ºKÈé ]s83¾,€‘ËTQûwÂvåã;uß#\Ï`gÜfufˆÙ°Ñ÷¹"9¢}ÖÚ¦ˆ·´[íÅ‘w_Ç“9ûn4U\p“=‰|¼"X%ƒ*͸ÀÉéñíé_èøTwñ4\GãÙÛ'¶dÍÃô‡/o&ا¶+¾S ›FxŒºkfPAöAlóvõ°É—óÏ>›g…]bÄæjhY¿3rŠ±ï—¶«G_¢Ü à÷»Å¼ŒªÌ>æDˆGɸ_ôÌ14žÍí"Öœk×þÀç†TădYš,º‡ðµÔ‚ž7–_E ¨j®;ì¶?a»á»:ææ8”—lÜwTÖbA,½µagÖ¿·£ñâ±¹ëé¡0o¼ôðüO„C#«=½gÒTÊNk\¼;|K",î¾ AãÔ6=Cµ ¡̰®žÏ \nÏrZn£ç¯ú—ÝÆ.†è>¿xáDH- 8½2½wÈåU«¿> Ñ™h,ÚˆîW'ÍGFYçAÎyþèäûÈ¢Òíöí$zÄÚ|%“ÝËzí}§ž« ¢–fS€ryƒ"~Nõ{LQÒÝb#Âvé§÷ï}þÇ8›©Øg¹JõkÂSèÿúÎýàQRBxŸ¢:Ÿìs[çEA™ª_ {z¤û9x·øñ9ôE¶j‘ ¼ ô­ª¿bÈ€2žï£É°ãŒ `Éuí—Û€ù‰Yä=À¯3jîíîXµP’º_?G@ªÇ%nãžÄôùƒ¯ ‡𠜮pŠrÚÀRæ é.\;Å[ïeP<å^uóÁðX\ÒnÁû‡1…뫼¡ÞHµývÁ@÷ûAÉ3~¼n‘™.)ãàýWÀ'ó^°ã°0Ð8ìVþ†÷_–¾tCs‹:®¹¤`uј&UU¶¿Rãê$D踬3GAð²WÄ»òcÝ?—Êù”ñºC»GW>÷òðÛœb% ½ÈºÔ…?^¡ïŒ×»†|@l@dÜsF‚/¤šø:ªÚ´§7Ž{)ƒÊ·`à{ßP >‚Ÿß ýü>^û­>±lY&MA¼Ï û¸ÊÇ#F»AýÿZz…é4Ï[x4¹ß7„î•bÑœÙÕG 5 ehƒ/‚+çmgߢ晩ïËìÀA–)©x\WÇYòÐÿ*C-(óÍybÀ!½ïWÒæ9/~¬ìè@¥IxŸ¼»2pÿ®zaŽÖu¢7âWÝ>øƒ¬I¯5¯ppI‹<)™LÁÕ‰o%ÙÄÜ{ ;X´~}!þŸ-íUx>ä¨ Y¿l.ÈMè¿ÞÐ9ÿž+rø¼Y1>>ª®S 'ã’¢æÜA;æ¹àýÿÄC¨>Üõè¹Go8ªÃßï„#³B.7ïßößößö§:,¿œ¬ß„X?5ä‡,u‰w®4ž§ÅH:L1)šF_,²ý5º¥wÏ|Ï_—\ž>›&ò…!¹ã~¯Û÷ŝɸç>Q+]á¯iPxÒÎÉGY¬Y¡ 5Mì¸:¶¢¥Oï­ÂÓ««ÚÀüÎMaŸɦœù1h¤–yŒÉˆýÝÇÕ‰5º¤I?ííáG›jôÅ &7'u ¯odfª¢Ê™.'oÒè Ö_eX¾‚Ï_à*hÍ}¯Ïjßy,‹¿Jü§«ãð÷ë#?¬+ƒ¤´_Nr=ÎÇ[^!g:mÿ×wѨh„ˆ+«zƒÛÅÀü‘³ª ÉþEÌ9¬8ë 4Tçq8&¶ùºb绣¼ üàæŠ£D,pìl4Åóæø™jòâAI“jëEñ<È”d¶ 7\ÁÕ‘ÑQµÑ­Å“§êxÄlAð¤ûÕü:+eÿûA;3à'1xn ܶ״#ãò¹q¦þµºm/(Ò]±u÷[¥÷¿göœÅó"9UD$Ù¥uÀ0¨ È~ôDËó,Çãzj?ÙyÈ·>€Ší½¤ç@&÷quBX_4w] ¨Y0-^4ÍÝ;yŽ~åÁÕѾÕp¦H $ø¿^¦ ¾›š‘íhæpŠ'’Éš¨®çêï¶#HøùÀ„ÅmZ`.ÞÊÜéCПcëÒ®l1ÿì›X#‹Ìà$%¼ë@ð;ÁÖ.$œ‹:‚ò¾–0‡è´Žã‘çK¾üÖ±ßmÇ2ä‘kB¤ñÎþ‚6`çoÖhÉ%lï—ß=Bà{b?°¦×í•á¹·߉}a¼èò¨ÀÕeÓŠ÷‰«½ÂdÓÊÉø¡¬K²«Ÿ€çcsîJá+³À­¾5´úèÝaé™RÖ?JlvþêrÛ=àº}þ\¤1'„MN}‰¢ÊDùÓÞöÂØþà`^|!”†ô¯¿N  k ºÉÆ+³“É'€…ø\cmⓚ¿ÉïEû_ŸNœù$|Ä>ç+Zþ@?g4–oŒÆß¯óÏKe^$‡F¯1a=›fÈ4»ùÇq©ŠÉPÅs낤õœ— *Iᮑè¼ÌÆ|ðfôîÓì«Óû ó3l¡ËvŸŸDã œš„ß=8gR§‰åÂPÝcKÇîT¤‹þv!4ÃF¤8k8úi¸fÐï c»{™Ñõž?2àxÔX#ï¯(— í3ŽC¾§w!½ó¸¥²¯¦±°¼Ïªè¢Bã~îõÐÝǺoÑyfÐ Í{ ì)mzí?Ñjïn‹;78\~ùÊ„çŠÿ£¯|5ÿ…íìÇȇ‹_„Ž’æ}åÎÝo·Tœ±_ÉÂ;”o‡î}iË#[-;€z¸âµ²Á?¤ÿÑ7–˜øb»hm™ÍžE|5ôÃ=Šß¶Z1ú®‰¯çäþªâüýê¯GÖ’ÌŒþ¾É $Ç3^»ô!}ùö³î¡m^´îàÌr¶þ­º;,¹ßŠê Ü_ÀsRâ\9 ¼$ÆñYIeäOк?ÚÚÖÔå‡Ô1„·íÊõS5¾@ ²S•Kƒ?¤ä¬Åɳ)ˆgþ•¦6„Ò„?ÙÑð, <˜ê´"qÍ9¨ÅQºI˰õ÷?£¾\‹FãC3º/4áRûU÷”›IÆ¢É6t.¶É^é`D8ŸÑÙC,bVÄÀÛÁ!|ò=:_Œ¢ñ…S¯>«s# w Ö¹%uÿHôÿPxÆíH~€øÊaIœäQ¦ d}öýae4> þÑ”x¬®^¼„ϼ^åb#lÇV~¶ÿÞÉŽC£ÝPîÓuVlUô‚OE,zQÿ£¼-u昌!(Tžñ9ƒ|±ô½„çt!Œ „l»µ ß#¼TÙ±Gº"ár¾­¡K¹a xKÇÍåu(ï;z;wžÐ—'×XëðtÄ~—Þœ•D÷+UŒ¹´ óµwÎ$u0uþLY¸>A7LOW¾|Ï0"ôýR*›Î»]Ùp‡}e1HW­bĶytñ‰Ù2yì‚4@Ð5Ù·¯­‰ÓS;5¡”ˆÂΰ1ä1Ë:¿}TgdZu$Y¸ãÀ+¿òûÝìÆ·ÞØlb+›œû_¯â×KÉ“”_^Øêïô³5€zQìðþ!ÄDü;:õŒAØÐçpV UÕI5gàê(ß{{Ïë§k¶ ‡°Õ;l÷>ÄàëhÄÖ+gj iõíûØzæ3úùkx^éÝ—Ün¤ÀÔ®´§1E[º6~4¨¯o¤]I¶ìåX΃mIŒ ØöûÕkæRøyU´tíïßêÀöM:åÓ¶Vm ¿§Ï#-Ë¡(.ØR2>“#ßĦNý¡*¾ÎÃû²Ø ¨þ_Ë-ÁBÔ±ïûB¦ñˆ£{Ý ¤™*X¨Âž·`<°ˆwÝVeçøûAP#M¾û5ó.;8ˆ?^’áÔ”7­œ ýÚ!¾ß„ šBLñßÃT÷<’}î3oA¶þ‘ˆ@T,ÒJ¥‹ç;pùyºîúú̹,š“”ùÓ÷5m><¿ƒað5¦u„+c‰ßqÙª•ëýKwˆAzM=9Ôö5ÐõPj}þWÇ¿PÊó‹Ú¤B†o±{ïué(<™´¨ôiØ[`êØ©PÀªŒ-197~Æ¿GXÏÛ5DG΀Ä;!M†># ò<4·úWGLùÔ…$tt ­èv½æ¿û¸:zŽW_¬)P¢÷[é¡  ¡ØÜ8y —ç…é'u’ZA†!÷õ±…sÀVgßÐù ûP}½Á©´øÈн jOezâzöáK3ð/š æéÇ9á9éÖXº~}ÈSxòÁm WLR>£‹-\–ºP„ÇÃcýf.¯ƒêzjtŒÿ 0ÞÓµcîÀÕÑ~í3è¾”"¼c¤¿L~b+3o\EÛúqu,¦¼#¯ý@Žºy´>ï?}\³hë•°®½ Û¸M—ÒJä{_‰ÅàuB· GLk€rS4¹£^pfuÅn2ÂÕɘY¹TÇj®³ûiÓ¾ Ážâ:UŒ«“Ø_ó®ö] hûqçùÛ¨ƒÕóÄ«øë‘²™{¿Ã Ô‚¬`oLbï¯'l¿'åhLî½(yy„]J‰~zàùptò'ŠœóÓ@%v^µ¦h9ÍOU,áyn‚Gf‹ú®öƒ²âüÔaá¿fx'?Å4>>׿ŒxG*Á7DGé‚}Gë²@a~,+Ïš~ |®À° I§k z]+‘Æ]O¾¨¼"SÄ·£û»úE,/޼F|•JãÞ°?Žqö±XÄ0ìwé?‹tž´ºé›%ŸOˆ2ªè8ïéË Jiÿ´©šà?¬%^±«ˆÿÃüfÉûˆ×!Зž+ž@Û‹¶ŠËBO’¶EnàEÑ^Pg$r¸ßï‹êÎýxò¦ÉñR›; Örñ¦(ñª32øô\g¥Á'–¿?€ÆþÖ‰œ^t¾|Þ³ÓæÛœr—¤¨ëO sbÙX…éÒ…[7‚>^¯Ä~nmÍ ž‹ØÛ+ùþE”;`X¶I³š‰}9i]©—‚ô— =sÞ×!ß=“bû‰Þsâ᜻Ðtþ±“KÄ?B°ä±a^Ÿ«FQþ(×Þ˜ˆƒÃ¯KÒuÉ1ݪ/Õ«|ÑùâÓ·Åyx$˜5[…Õ–¦‰Ò3Á#èwY—(Æ÷A÷µ½×CËùX <=­‹tÙ"[7LZ QNHdìÆéÿPç‹ËÚwñÚ´®*J]B|§`1bÿ¿€üÞ'±-× ù: ¢FÄ9àG zqMùÊÇÎaójŽ•ì»‘Ž—å}A…®Ç+ÑØØ«üMÞ‡ÍÆ×\¼Špù¼ì]º—b°Ù¯ÍšYH—‰m«ß½z}ùÿ™M9ñ>kܲ]r§y x°ý£¯ÅÎñ2I[þUÊ€ôÿÔ÷ž5ÿB<­ý½ü_Ää@ÌHYrÿ 'tÝÿÑ74Ï{ì áy#Õèºsy®¿ûˆøz¡Glwï’ZI™¶Ï«èúrþ£Ÿ$ø-~¥ù7ˆõ?©ˆ»Žr8ìõx6nìEüÚ˜á_&Úu² ¸úqi¡ùæé¥ùÐʉ ¼-êFêáóà tÄ<É_áa:Öv&?EÑyñ¡Z2²•…³bH×NaYÈÖŽô¦.1Žy—kZ• )ºÿb§f \ y̸˜ß{g\$v] øvý?j‘4¬bÈÑ7[ðñ+Šƒ ”Ò~ÁúÊ—¿9t†c —ø÷Øj/Ü&Ûû<ì/´n~ËÃóéÇó>IQþëù>-ÆáaðŸ>®N7½äÐ"ñ(@Øæ‡'$ ‹íÙ·‡ïC«±#5µ (îʯðžåÀ³e¸:UÏŠT/:AØ,Á4·ÄŠâM™‡q9mØVsfÛIÎØ÷âð€¶T þé*¹®nþ3ïŽkÙ¶ÀYxMå´šökцƧKÁ¶½]‘7e‘ê\$B5ز¯Öƒm&<ÿÄaÈ—{õ=ˆ‡õ^Æv&bk3^Cª*¸ýmÒŠÚ|Ža¿“£îLyØ’ÛFéÝ%¼ñXå^‰ïÀ&[´ý5 ˆ=TU¯ÝÃÕ+°Gõ>Xúª;׃h±¥‘¬Ja\ïÂ¥ÖÙþ •(-çT·˜%æÊƒt÷áꘕ;ùÉ-b€ÿ«¥~ÁgI StŒYgÁã>L+ÏÜ@!ð' Ý/3².’ÌÛm¸ë†Í¿|ÝþFŒ(r·ÄTV¨±Å6‰ö |΄)‹ëÓ0P&zÈ@î~ø^ˆpÖ›âu¤r#£XªpÔz€P!7(¿§{ɼ³WÇ–¬ønãÎ,HÇd×è Üõ¡4õ¤$¸:AÏ®aáPÊžhÛëB®<Á‰ŸO08}JI*¼‚‘ºf¯yêü·jÍz%^OÄ[­÷ë¡ÛÈíJc44Z¶mYŽ„¹øã}=üÌA©47µ³Ân:€PÈþÞÈò‹¸:¾²ì¯=& Kv/Õ?˜?ð ùˆÏEá÷qôž!ïùGhÛeW€íü<ï(N'üoûoûoû¿Ó‚ÄÅP¬w)l‚Ô.ß}î¦]J'Œqu7ŸÄiç&±¬ë‹gë§@õl'¬Çáêùï+.Þ:öÏ®ÿ,æíãø¬Í•_x=b`F· ¸µœ¸-Ôãü×wº¹/u->÷A::*ž½_ù[‘ÇÎ`Èdüþ°n]äkö8ê†Ô€ºæ³ò';À˜ëüZ|ž«ª¸ xO<8 ¨Å¥êƒËK;?Ï <¿Y&•ê­¼è’H|gÚu ö4§^ÁÕÑ埀¥`t'¾Ú¼³l¨ª(~V¯âêds¾ô¥e‚Qaœá=q°²Ï">9„÷#î‰8Áøœ~åôeEÊn]v°>ü¾Œ«hsƒƒð¼jê§þ?漚ÀaòÛ…€3`À5Ò?øïë+æ}ãWïñï`Vw–\ Ü´ÙöñG¿Àãa";…ûº²öUÒoYŸÉf0б>ÅϘ…«³à÷^1›|v§/LH\íºŸ÷SpükиĿØýAOµuÉ)jƒkìcÛò¶9|Ï —›Ï“ÀUa\÷¥ù$œÝn:8€÷_0ȹ½£¼5œé§¿‡¸²ƒsòêÍ»SxݱAàÛ×I÷Á© óé‹ÖB°:äáÍP‹_«y/$¿›Ú+†ýʹ*)`ô®\A*++l½–߸ Vù^®×%µîSŸ}çñ¾#²XNd'Ón°ZygÌý Œ¨ ²¯.ÆÕɽjñ‹mIûì±ÑÉ¡)°:à ~!ô®NI”Ç’1è.Ø\¿g|ï0˜¥X| ¶GófÊæ ×3Û„ù:¶’Nÿì¦×sPVßå\‘xr+GŸ›Ý"ð±Y#Gã³B@2MŸ!ð6ÂQF¼w’¾C°Ñ¿û TÀú®á¤Þ ;¹y*ØB[×D×Ü È©¦ÒÍêȹ„L…~¾Ó±¹ƒ;Œ¦HÝ@¾3;|‰ñnHmRm>Züº°Ÿ *7ž€‚yRmˆ,šwÓûŸ\#ð °OEAfz (ezýªp'|·a«*wúÖüÑyy÷wäE.Å]=Œ®ÓGÉj‡Ÿ ßqXÓß}`IËæ¢]Bçk³àÐ7— ‚~ù»Ê|M<ŽlÿDl9;móK› :Þ¿û k&yχ€kaó;Ü?öJ)¡¿‹)µŠjrQ6ÓPrvä_µ½ðQk¨‹à >ß”ÊÛÀÀOQõ„ò=4N³Õ´s8$¶¨’¬–²ÿ.Èp-iCü2«•Ç‚ÞH/FÕú¥&cÔ¥ãHE^ |‡´õ¡z¾Ù<g§º{2AeõLÜø4¯%’1Áx]nÞ`*‘çÆc—âÊ=ˆüëHóË`v„û[!{¶°¹Ñª>¾Š±Öˆ×¶9kÿ’„¨ŸÐ36qks±æŸÖ–NèX_×[¤ÿŽ *x¸äu÷¹i…üɈµ¯(B÷Ûìè]™¶åS ^3®Ÿ„ò?´gûõÅ_U‰ö¡ÜÒHÇFKKâzð Â_xÎX7¿»ý ûlßé@õùÐOÙ$Mî."è¾ÁZþüŹ`³ðj|€ðBAÆãg¨T‘?¤'–VÀ€Í?²ÝåE‡p–ô [¹Ù€ÌþÍïSµ„û ˜;:ü”E ç| ƒ>çì¡›a§î#JÒÍ/“-åŽjp ˆY©×‚ÿQÖÄ+GT´¼TF„r.Ç~1Ôuv€”uŽÃîZtÝyçDŒÑyŽ(”¬ÚsoÄì8mÞ!•AZütœÊ‹ÙQîJÍÜÏ f®§G£\PÙR¹ºÇ’(gTOü¡¨`‰;6r‚Ë,òŸéÒ™ò"iäGÈkVo7Ü׃}Ò%Yê~玮óÿÛ™ûtýŸÔa3rùŒ9wQ.¹èÞ6t¼ö¹o—¼ltÕãKïf>âo‰Us­£<Ýñz›¯×®ckåTôÊ‘N–éõøSºŽ{Û‰ÕsƒÀ¿ªz,Ê¿ÐwnˆoEë:|ŸëQ¶„*¡õF R)„ï:-½¨Èøé´ç¨«=.© ñû¾ƒ-€ù$ƒgÕ°c °™º#ÿ?cq¾ª=»gp¯eôä೿«z‰åÿ`’;3Js :ð¥¦5ü˜úåg#ž Ì—o½‹©„õ70Òñ“®Žâš…3±°ÖÙb“ìÇÖ²÷VÐÃãZ™Õß—9Ád“÷Þþ·K {Ÿ&ZæÞgXúÈ-š*ãAÐWyäBGHdùáõ0ÄwÓ¢­G@8ö~”[B0¬lë©Âå`kQ=ÑIqñÀë« T§ŽOæžù‰ßßôÑ¡žwc úê1x·sâCý8\ ›L𣹹T"QWTX°ÅV§HVÓ$\Ý: úµà;£ÙGÿ¾¨s}Q/ôã~—m6XL¬ïHÏë¶_úå ‹ÌQì”8_lI:á Ø»@sû>ycMö³Pÿ)«nrèÔ¾T}#×'÷ŠÚ¦@¤ÌªÑÉ ç#‡M›Ÿ?“y[H¢w”²1-cãMþŠÝ;œpûcß]J·Ù­B—à /Ît½Ïë ¼™4ž½$š3jŽÕÉLÙO¾„<ü¸úýRêÆµn°òûîx@×Dùöï°á¾K±yU«ºµ¸h`šÜÑ )a?iü,Tq¹ÀEd“Р±ꎼûˆ€™¾:¯°ïcÄC11¬%}fa×Ï:óÈ= *üqPMØî)oaÏ©(^Þ& Ðˆì¿ «y6C<´ÄúJ›Ô‘o@Xs/OÄ1<‘µÓúÅ1+ l>ô×8䯱uPÁÿ]6Ê¿Ù;AE¨îxTü°¯|Ë¢8?Þ?Z“@!Pöï)ál–væ‰mœþìßößößö§®#Rcó€µ&ÄíÚ–ñÅRGŽø»¸:þ§âÍf³¶€‰5³&³î3ØD}¼?„ÌôËGY²w6 ^cù ¡«h0/€çi‰ùj™Ñ3ƒ‰lçtÅ:+HqÜÙœ5ŠÂÕ‰„Þ§Òrƒ'G‰®­ˆ‰}hOÁó ùN¶PÜ©g²ûŸdAþŽÜJ1+^)•xág_ܙʺ-4,‚&¥H¶l®N`Ñ™?´DÔ¾ ͺS¿éïÉ?Òñ¾yBÕ2Ñ +~~±Ì'”ˆ MÏÆØãê„›ȳoƒî³ïEbû@©âir3Þ_åh̾Z« 0¡š þÖ– ’Då¾åQx¿YÁ¶ã—?þÌHqnH·±ÈMàó¸â¼¨ƒï5€a¨ØrY¤ w¦ÝÁÂð<2>¢³D¾.õŸ3®Š9ª{'k?ã긿P¬ž²¬CÊ#.ÆÇ@ò¦Ó¹«-øï"É«®‰»Ý&AkDøùgâiVóµ+Ãû4¨8íâ{­ ÆZ¶+FƒoXß-´îÄ󿥂ßöï_“­}-#Ò îK¶p)ïÿ§˜¯úDâm+˜2Þ¤8`+ K_&}Y3quò-é\|}Àè²½Úy÷Ð"-¯Ý÷¢E¦Íµq€9øÅ¨~Êiáïƒø÷¿DÈ.í]¹`Xi?·³É”™¿vÐ[á}øD;Åò¾ÝöíÛŽÁ¿õA–ƒ¸ÜKW'æUÕúõé;0¢È].•ð“IR§Ôðûó2>™ë ýÇbÖ_€Â5íÑÓHoEÞ}Ù>vá'+žEcžûf@)!xázÁG[3!ú¾LøÞÃfžœ'•{ÄßôÙIXÒ`[r¤ûü±rIíð@0H íFøÐFæïò+Íhÿß©5 kˆÿÚ[í,A‡ ĪŽeæ[ôšÒŽJ Rž#v\îh~CdN¼k"áKÛô™ÙÅ iòn\ì&Ò‡‘6N°Õ­æÇØï¦±“ó§AæŽÐjÍW¤£ñe¸r ùéÿ|5£O*ÝL1é·®µ'4|yñú¿§}ºÈbßå¶-RïÔ|8 ÝÀ–P·êF`ä¾²üÆýXÛ·¹3›Ô‘®r²ÞI«bÄü¾W¨ê"œ€ªúÛ^C*„ß-òóE-*:_É4‡r\!ëªÃ/ôÿ¥²O7¯Ä€òy5Ç#êˆWAoíiMÞŽôŽ¿GéZTÿš&¹¥ ´¡y.eÆ@Z®ÇÁæ«ÇžÞñ ”z÷÷Š¡ù/kóÐDÖ'ôœîc5`ãDõÛKÆÈŒ5¹î’‹1÷¡àëV§%ÁDG;ïü¤¤;us¿‰9× ãÉ};ÜA% ¬'õ8âQ¿yòF“á4»'o­ðªƒ*þix÷¼´Úš¹{H×ÈùMã^Ý3З~yýʤÞHÞŠgý#7Cí}¥ä*¨VëS!ü™Æ+UðVÊõ%½{ö~q|)¨ _èC¸5é›e{ Ä'Ü }H?cgJV¹§‘ï9y(MeânǼãR…W«Gæö¡óGõ`!m:á@Äõ µi]u ÂseìcÂÍœ<¾¦««\Œ¨>âe …ç¹0D!>úwéí% ×pz„p<ÊÝ·r, ¼ 0÷e/2:ÍäƒSDßî"ü…ãheæáÝq廨ûÕå7pºØÜú‡—ˆÙ cúƒˆWfCé~ÈÛx˜úî7סÜ]ž’SftïsˆW£¼z=uŒ¿£OAzZ­·A̧ÈoËÎ^O·ðhà9¾ùî z>L´$ðÁ!ûmþÄf¿·#þ âÓr>¶:ÆÓNxî@¬œ“¥bé0øp\üÔ!”ç ãMÙæ÷ñ»Åö¦ø‚aãÞíJÂv%e•£šèùbS0YÔÚ ¼Î*Í»P>ŒàS ͽ‹„ëQ÷Ÿ§7Ïaógi»&=‘^Iv^üU áû¤›‡‡.aË^*z¢áHOÿûq´Y8:^3IêØ•X ` 5*I]#ðŸ€-ã6Ì;¡ëÁ ?óCžùÐÅŠ*”_˰0s6ó(Âå’æu$±5O0þä’mn…ø—ÆoŒæþÈmÖ P;)œž Ú‚£Ýý?0×´®°F×ÛÛ'ybßÞ›è6€ðasIǨ÷wÐï2V}cÐ+ýœ'{ ø ˜ÞS¡åà@÷oxD€œû” híûÊ(ˆx•º9c®È—.4ŸÉuGÝ"¨=ޏ³ãÊñUïPû•áŽî_ƒÓJ®µÕû€ûÅ G({:ŽßrƸlG,êi¼´x\ag¾NxîïÈô–é&zއ(|Jܱ³ T’§¯"½¾Z?«câ'ÄcôÑà´ãZ+ùôÚ=—v£ë&[®¹bÛÖ!„ÄÊ­k­ºA”£L«ù¯ï?¦¢e®}gñ둪L}j A¯ð¼†î™— sB§G,µW§ì_I¡¤*ïÖSwÍ‚°D6ÿÓ§…¸:uk7ëŒ ÐZó•¹ùŒxííè‹Ýð9Jϵg|/…ƒšF°ÕŽ‹?@h÷ïE5o|Þ'yaª®Ï¥{ ´ž¤Íw¾(²ž—áyU¤Ü²[-¦ jäqj¼% ¨Î<ÒôÂëWIÞÚ¿)!ÞÁ_T÷MoüµQŸªnxþ©PÁ^ráB¼šì±_øü&9ëÖ¯{,ùñÝ|möpŒØæ…qÂÌãׯ9XÇ£SÈ@(fç ³TQ  9ÓX¼—ÒtæµW°1Uв_ªÄVËÚ%ºð8—°¯¶W÷¯ePШîõ*ôÖÙ=‹Lx“þ¦ŽPãp ºFx%úùÅ'G×&$quì?hß —‚0“i$ÏP9P5s4ìÅë4¨©N îIfkEÿcã@]RP¿¨Š÷i–°ÙA±Oå è$<•eÔÿ¢»‚šÎãrÊ·!ªOå)Û¹¦KñÀyçî9sQ¼~Šùí©{ÇóÏ‚|Â×UþÇ€¥úņžÞ_³Ÿ‘Ò3<”·/Dþh¶N§ŽË/ñëÿ,Ýqû~‚¨ükÁì@ÓLþúu"^Ÿ,Lz÷ôhg$¨??EFV <ÒæR¬n¸:A«ó1‡ÖC@^\²tÌñm½÷xß<Þí—õz"^ û¥ËQà»,°t9±è7jâêøx1‡ï& W3KrÂqØøÚË­q¾Þÿ¶ÿ¶ÿ¶ÿ;-Èޤ䥎[—¯³‚ |xªÏ¾³W'`=ô:½_ 4êÆFK}.Åß-®Ž™õªe˜Ý:(»™ÚE÷­ÙkܺËÏpuâ¬æ!XLó_EÉ y/cÕïþu|N¶ÈuKª˜‹e`X¾Š|èÿë{Òɬ«Ï¦—{ÑÿØõ6(‘¸ê9ÉÇVèÕ&*ü{„£büÔî¥Ý EÙôÔ"â{ëÔ&Æpu¼ñw._>’úãóº?O\±·u‰D¼>”«%tÄr'h—¶K¿m<Âc M^åøßuJjwQQÍñ»zêrAhAäpo¤®Žê¡vÊFY/h” JJEEû·M¿oxÛ1û=)Î`|¨iS”Ö ¹‘•A\ž;(2þ¾”|ð©6\â Ÿù,å½[*¸| ž?Úd®VJEG'Ø~>âõUVœý¸:í֣ܿ`‘ý„³Ïb¸Ö\ƒØpuÔ‰CËÒE Ñó6/R;Ø­w:T¼Ãç\ˆ'g©æ”*Q³Û ª=– |Þ¿¯ç6>÷AI+×»è㘠“;,‘“]CYÃz¸:ΑêÙZznP×xcÞhrD/¬9[â}d…ß({b>⩾xCÎë›ÍÍtfæ:»?>Þ†£ÎãuÖ‘ú»–ÁãþwGÓª@ÈvèÙȤã¡Ùõú`â_( ¹_ö.²9o<. 5ëá”Èw‡uaïð¹í'à—wþËÔn4ÿyò¡è©#šÿ³Œß Ù} vÕÖe~¯B¼¥´|úC–hþľâN· >+ž©†¢yŸÌ¸ûÊŽMÄ¿{(P§LÖ ÞF‘7{‰Pö.Ó]U ÙÿìC`1•¯w:Â_TúI·‰rQ_•Ƚžù¥?ø}ÜþBiΛDgßyÁh4ß–Ô%àPê—Α›aù„ó "7$*oŒ#?q–¿ûà‘æÔxÇ åv*– ˆÁÎRîa–Ò G?ìôcÞ_pée²üxæ×¼÷!pÖNIÄé3:ÇÛßGx Ûß}’£ð{”ø ¯egc.Âñw‚ÿ±]vÊ_ƒå¤ïß}œ§®È&Fû“*Ý’LddAÏ·¿ûd¯ðMñ!Ò«©“fÛÚD¹ˆ–?º²ú¯€ßËr¡®-@×—ßK[å98P¥6§‚øÝ'Â$‘¿™’Ùk:cħTk>.·?Öòèx¬ž"] FS›"MOèë0ù5òCðÀ—ÿX úÿÆUSjPn®Ùáý¦Ô_AÈØ}!-¤Û”ûçq³émutÈ}Ÿöσ_¡xt_ÂwT_j×D"\Nj¾LP=BD?OS” ûMVl”…†ÝG/niõˆ†].ÑZö®ø¯ÑÙ]Õ z†Æßî÷Yò,æàÏyYxéó”ÔÅÛݬEç9 ñõøWðï¸ò«ä'Ê¿Üa|ª ¸¨T~¾=j{ åX52÷],B:<Ý9ï«Xt&°Ù¾•£„ðb*±Åôÿió ',W¹sñ/…§þ ØÖÙï‹Hr ut•Òm>`5“ØŠp-U}áH+”çêˆZÑeVeá“oÂwü1 Þ\rŽExD\iíl†e5øy¾y—ÝO’qñWçÕÍ)æ²YÖ¤4˜ðUÝ`ö@8!ó§‚”zv„cºw­–¯Þý½im,âçqi¼çUý#O7éÓB/$ìÌæ( ¥Gü2cõís†!„÷%„ÅÅe™W—FÛJ–y4.ek†Æê!þškîú§Þ¯A¶Hû¦ÚÜ=t?øiò€Àñy¹U2CIlÙ»ùë)]‚Ÿ6[Îo2Ã;®‡ñE} - ê‹áŽ^@Ïw³“÷r¼+>rD¯]xòü6#:ϯˆ¯´ÔÞG`ñélÁyµàé^‡Î@‚05ÇÙ) #\4f÷.sÍìÃàIn»Ë/­[èå{ÄXv ½³ÆX’sž ð©Ìp]ß®qSËë_ýˆŸéêlaQÀB-jÿONñýà®uUæÉ °aî/r‘GçK¹PTa<­ÏìâLÒJ99æq¤ûŒ²P>¬Ò©«ò,Vÿ å¤ Ï?ÖÖGuï­¸ ž ìOf—¥DÄ£3òJ<Ãô]D—³tyÑó*¨å%wÊùµ‹Ö<¡x¹äŽäǺ¶¡óÀå*#Pˆü­ øÝ^•Þh!°9O=OÖ‰ž;êY÷Z1¾ÿÀç“E¶y} $–Ÿ/C¹˜VÎF1§´Fë'êî•šÕÆop|ŸØ?Gx?¡ï‡_Ü]–œÀNFÏ1Ó~˜¸Æ'¶ö,áê´8ô²˜d_€Ä>É݉©JÀ}×±òÆ;¼?ŒŠ9³îä)P:-)5Ô~Чeªþ¸:©;/:—lÌAäHº•Ùkeà‰k/\Çã¬âzíÑÊÏ€îá°\™UpNŸ^;Ùˆ_g$Ï%{°f,­ñmb=o{9àyFŒñ£ÑVá9ÀÓÚƒùJ/Ш3ÜÅHñ뾬*+¹e©ž ¤e{Þ·j˜ø|Šÿ Î%{]îÔ‰/Àiœý¬Ázj“‘à}†9î”;ýd¸ |¤òêR²ð×Ô#XÂô3®N:ò‹³hr(|,?y,uØ•X ‹2ñ>|ìµ%¯¿õœîê¤Ñ³Ç䤂ò‹Çó¸:“˜ttWWY=ºGjsë£Å=ð9B‰Ü5®)J Z« p™.èl¯òWñâ}PhªíüÞK€d_›é:í/àøðÍX!ïÓÆ-«&GÎRRΚ¿•H)äüÙŒ=x|’íeãJ=ä”yˆBñ‘ÿôqu<›yT«y  ŒíÎxë!”›ï^r4à}¸Ùw‘ÞŒ~J2Çòiûª€åX…‰÷üw3KÑY{õ$àbWz[ü˜'½¾=€ÏõàùÞ\ìRK"ûÛSŽ4Ó´Ûržß!LzýÚ³ç'@Œq˜º5X¸Q|pÓÇ_ç¾Lyc »¿ñNú¾àÐ?°ïlõ\¿¨ï|Ò/ˆÚxR´5|VzMYš/Òÿ¬û·ý·ý·ýßi¬¤LÞ(X¸(Rͪ­¾1çÑŽ” |Î¥V5ñ:S$ð4VÍgQÉöâË£_pu,ªÍ¿F~€$寮w. ÿéãêØÅrôa·ý_Ñy¶?l7Çjõæ„m ®Žñ!µpé%ø$9U~ïðæK†Š|?Œ«ãPSH’?ËÒô¹– ‡Q¡K³¯=quLqš¦ Î Ax9˜¾ø.ù ¯¾Fypl{S³&âó}l¾)¶§}H´èå=†Î ÃÒŽ–§•ä–äŒ]ÁÎĘW¡=ï²&KÀ°åM³—C¥A xÉЧý0š§uó”FÛôê>] S*>T¢ÝÄ>ð6jïî@û“¨»Y/øÔÔ¹ ¥ß£yY×F?WÇÖk„¹xg@?& XºåýAwÅÍ#I‰OÐp÷œ]'ÕÌtNO Øyì$[_!žÉX)vüÖ{PöªŽ–/Cçd8Ïq£ÿoë‹”`¬0È Ð(¼ô@¾ì¬Ö•¬)MHÏFä¨f~[ë$¨sK_|‰üȨK-“{‘_:Ó*Ó-U к%ÑwUåÈ‹¹õÅê¯*hÒ²¶"ð,îýÔÁ´/_`å9tøÄ!Ð}1EÒ‰r‘zÉáñ5w¤ŸdVL¬z_ ´6ÞÉ'ô ¿z‰°9Á®Ch—îËóö3ƒ:©“QQ/a^¼Íäo´Ñøù»–Sy.äɈOÃÞ#74øñ•ÈÿîƒÁD˜¤Y‹YÏͪ ^è¾^Â÷ 5œGlÇŽO€oÒåü â]21u0iy€Ï^UR”çÈ~NlIî>Â+(/æÓާ‚Ö×üJâeô»7Ý_ÿ²Cy 4±³47Ÿÿµ¿}C^—N–%¼X'Î áÏäŸKvtIuÊRñã?Ñÿctä#ÛY„ŸD6ižPN•IAö+4ïfuÝ¥3#‚ÆE[à‡¼K õž(íõytX=HÏÈ÷Ÿòd±{¿!¿D%Š#.;¢‘O¾*¥Ä“íŒal:nè\7[.:ÿècM#ÌÖVš@–ö­VEù²ý£ïp{‰iMhJ¼Ûù _{™ôM½¾5-þø ¤ª•dˆ%â[øÎIåHFl!ÑHPm†ÒO!gR=ÅDñ2áýöô­£‚¬,À­ºq¼Yé>Ù Íd5IÐóÏÁ¸ðr'ð;Ø[¯ Ž+C‚AwoìŽ÷&{UAýeoù2¹LÿÑJÃè¡" ›©ºÂ³N˜cKüÍLKNè}åI¦¯eóø ÝJ?±å²*ý£o•.Ð.øñp¥Œ¹™ô¾ã@,88>ó&ú]/©þøoö† ¶úÜ‘›áýÊ?¥ì£ Ïm—ßÏÅ•† ™' AÏEÝ}W<ÑóN+\6ÏÂ=(t)’­bïŽf°@|Üå%X^§ô·ŽN¥¥+KñˆgÈóã9øù$˜÷•”Þ|\u7íjþÐEÓuq‹Ðü-ÀÁcTj3} ø ôUÃÐý.òvüÖ·×¥ŒŽê,x¨4›ysŸ¨°©Šù*Õ-üú°’¼¾,—*(Wy< æÔ¶Ë!>Îâñ­7ïœz³@7߬§}1„2³ÇFWñßi¢•?sݦÆAB¾Kiùs)PŒ™,,ãׇe¦=BÚã†@ýóf&… 0M\?¿ó".ÏÛÚ~Èhýs¸ºsãKDå¤ êÍšÁ¶yÊÆN^bIç0IuZ Šõy–Š[¯Ç¶ßè/à!_naŠá#@²:"””Š;^lK]Šó­ýMíÿl_¶hñ×{_›á«r'þw‹$Ô»«#A¸û¹øeþƒ@–Êe_•€×õIl™HÅíSÅò{l¾¼hºÃ§ÆÖD¿¼+dâ¼Ï¶ —°ÉÃaK5¸ý±sÕ_&ß6Qýçþ}c@5}›(÷^BÆðÉëÞË#ÀÌšwà:ó lY{û8·¬(®Ž\p4=öé0æÐ_i›Úƒ­¨<õ-æ<‡«c‘úÔÔv Dþ¯¥Ò8¸]SŽó_Á~Ö½Êþ6+Ì·×rÎsb K.žØú/<7wÓù›}¯,ò(Ô²Ó3g³¾ár°µ‡úÚÙvs (Ë÷LÊ›ˆú•(»Kð~ݯ,žÞqeñø§Ñ®Ž{ÿ~¯|A ñ4úë§k©Ø”Й¥Â0<ÿŠûòùt,à hÜÙÁ´B¢¯"puÏËÓ>€Hïbl_¸ó¿©ôÂÕ±¼é8ày} Äá7éY.Û¿æ/‘Ê]§ð¾tŒe_~†à'yr$­Ìî?}\_¼uŽÝ"Ê#ÝÓ ÑÅDG‡›Àñ—-ƒ›¶ ¤¢ì¦t€x˜¨žŸ~…ÇiØOëïbñˆ 2ÓãÀz{îµ?ž÷Eq@£¢ØØýíël–a³Ô;µO>ÁÕ±~ ®£Øï²‘Ï#Þ*÷éß}üy©÷—›¢©½Š/žÒsöž––F¸:f㮚w{?ƒ¸ZåaÛÉ`lûØtDI þ½ÎÄdËbÓ|£"ÅÕØv.÷·øu=nSÍânLd–#Lyªs'…87ž¯Ç1¡±q'ï¨m´=ù­: ÷quJ-Ÿ¬æ:;þúNˆ_6ó¦¿û¸:‘—×–zx@õÚۀꆠ¿æ_í0ê\(ãµ=Çe A±ÜÐõöÓ`!ݸäv ŸƒÊñãy=ˆV—φ—yÕª [üõ¸ú¦äªfHÌt›ÐóÕƒV­é=x¼“ßöJ¾º Hpz~>Ï(¦uvG&ãï7Þ¥Øý?Oo‚„ÞÆ6¼v—¶+»‘z—.#¨E&d¹4BlÐåï-Qh>,Φç£uáao~1VÐgƒ÷éÖ\&„Ÿh¥R·È¾@9öRŒ:sT 6¸úÖnYÄÇ’Ë Ï¼4‹ðY³ÉÙ²ø>ç)ŒÓëB8žÚ‹AC´?éü_ä’ÁÏ;ᬿöô»WÙݶ‘˜üEgÞ®zØõð‹×Dâ)F-‘ï Dü‰£Ê{&n€›"$ÏW'ô;¶Æ¯‹ DÐß™ÛÝ#WŸS]ô&ÏMíÓkáÙ3ˆ·¦Ä½_K;'|~S‰ É!¼Óìˆgà‡ŸIÀf-ü€ÑùPqûüqfBø{Ö‘åМhìÓÙÁcŽÿþzûŠüý1„oHeꉨÒïÂVßq|ºzégÿÑãM†œÁ³À¦?ÙrZ@H9©!V阵k~5q9•âÇ[¼„\`¼þn?zžy}‘~!6 r.=qZ%èþgæ£ÝAü3 '% V¹eŸ”‚x•¤ßHýúÑurÞC4Á+S |soÏÚ£œ¡çÄÇ*'‘^2À›^ õ0)¨GXEmy"]¦¢ãæyä?çö¾©¤Lö"ˆõ½>xvW‘uvºêÏÑ'f–¦~‹­›q¾Oüý™éXØìÇ#~D°E´›TÊ–$#¬‹`‹û.“ûr"Þ—ì£BëFÕ.lšš¹ŸžðÜÂÖÿÞN¨S=kùèº]¶íĘ{€ð÷ÿ샲è†´ÛØÃé‘¡6Âv"Õ}–ÈG.(;2¸+ä2è+É3³ ÜW³úó‘}óHǬ£ ­ÛŒ$]jªH?̼#)Ûfí<:íò·l3$A—3Û¸VþLæF]¤Kõˆ dÉ¿ ú?Cg…ÏP-ØYÑ{ò}ó:v6*qDÔ›Â]SÑóMîiÉ~ćuã.‰Ö±Z¦Q¡³óhœs/ñ¾²@ï-%ŒÁꬼ¶æú»ì#Z·!Î:“¿Ü‹ø„–±ímåÀwè’W…9½9â-~ßC<<7~"©$½] }ù©AqzßJé3å¼ÈAº|»Œ¯yMEÔ ð^¬úØE.‚=¿Ö9?z ý¯ípŸN¸ŽE Î: äå|“Öòøïi#IÏûÉÞ »Xûäiep¥¿ºOW_gäÛ ì]xJç߉? 4{œ£Ëñü5…zQ&Ñu=PfaMi¬ ^A™Îëx?g1ûjï’ªL0þy?0aXUm„É þY‡Í·?´ÔÔŽ\Mö®zNìçÇ#ùn¥8Ÿlöi4ÛTv°³Ÿð¥À¾ß2ÒfÆùÃ`ĊרSú뇱¾Øhï)a#%F\ÝúfØ›áÛß@„áíóUl±ÕÌxà.ç›?__|¦zpŠ÷ï Á~ÖOÊ¥]üŽ;^z]÷ØîlÀuƒ¹Mnâ îÿ²42ç«£f¹Úíão‹þUfÓØvC'E,¿Â6ž‘¾ÄÙT?×Ô…Æ"±¹/i‚çœYqu_d¯¿kˆ×Ææ®+o¥?›ÇÞ>UO»@‡ÏU IÈ*¿ã1 LÔ’¥¯ÞÛb¿wž‰ŸøŠ÷‘a#ÝI]ü$¾Ó2~Î? œ÷-õrEðº^òå;}ßÞ_-âïí¥ =¡øy [Þ…R'áÑ<6­™ ¬Ù³öd4¸:îœùÀ¯÷”A..L?ùB•Üñó1æ¶%™c¿Ž‚86ÚJ…çÆð¿,ª@± #2ÕéÄ@~wOᯧx"¦ËöÔ'@ø6³.\qÊÎßÜœ,×qu”ëŸãºN·«ŠhuÛÍMíÆë§ØTäéÐiDaÑÚù`h;d’ò ïKÇäAÎq õ<3©§Öì]ʈ+rÝ8¼îßößößö§ñ—§•<×;/ÀZ Âѧ¼;'ñºJq˃¦,å`éòÈl°tú}½˜ð¾[²Ü¬¿/0uãÓpíÄf0¬¿ÜJY€® 5óþ*{&ü3nÚqjÁÔ!3Ž„Íˆ“>¸˜úÛyÏÅÑõÚ÷2Zaù¶/¬k¨µ}ž=>šÏ¡hÞÍ̧ùµgå§n1±ßˆ´ðMÅ—žºÄÈg|û 'cA_‡Ír¸1ïKIž«OŽp#Ÿ-êüæóÜZˆ¯·\ä?n'ð×}5:•3ô™PǤÍ.<œp½±¥ò#¬ZgJ@ÿ…‹NT á<ƒø~¬2éúèy‹çº‡<ÁÞŒ±¼ ‹ÿ,âöYÙÏzXlÍü.Ù¸ý]ÐÕüíî)†r.ØäÜâê>~CÇ{ñôú™)pð«Ëä#ßÎÍIâ°¤c$Z)»Ìß® ÆäÖK÷ÒŽÇا³ÉˆÏ2ówŒÆ‹É—Û‹òæ¾³ü#ìëß}Ðã½ÖxŸùá±hè>ï+ ø‰cS¢¹ƒ<™Ã`ð6{¼Í Í©™o´<Œ$àJØ÷¿û`¨'4ʃæƒôªÂ½Xƒù4–vA«¸Î:ÏlÖ_º>œF¹ ký?DŠÀðpõ²:ÒÑ}4Ðe1Ay D;Ýø×®âSº[Íe“$%äBÿeÖ>ÅÌ0¥g8’èø\»4žÈ0¾çìxLºs’è'‘…’µ#¾}ÅŠg=º‰)¦ .PÝR£v‘ tžY¸²#žìE¼HÒÄÚ§t·UV˜Ù[g…Æ¥ìÐ×aˆ§û-Õ+§P]Â_)”ž%®GZŸÄGTúG_e"vqî /¶¼û®¶ð4~É×Ô»ƒø§ñ¦1–Ú;ApÂ÷c^+ú8Q~½ãŒüØüä—v^lE¦¬h’'hEÿ¹š@K1Âï=:>ì:2ä)1¯zÏ€gçÐá£è~õ^ät­&ÞↃ™ÎuhDþBJ²’:ŽŒ÷¤»Jc›Ûú«n“'}ÿ…¿vzޱèQÜ)–‚WÛq=ge¹*¥·yá½îÏͦÔ«@fÄžîÆòëT’ža’•@|[‡è@†¡þû °Õ½çÔ<ÂÃE{KLE£ûRP hjhïo•ú9‘áI,:5_îcxý€°øÊ”½Ÿ@¾òë0½¬Gœr]Â¯Ó ð ݱh¹ŸÛGßj9ËÒîõ=.øïi—õÕ , ý-sžî…Ú3¸:‘c ¾”¦@©{ÏðJ¡ °zŽïÇëøHo?=&Ýâùoèâ†C€·5íš%VùÏ:l¥;*Ä2©øj_¦3ßý Tâ>t›‘x‰¨¼€C³(DBƒÞ(n­“fÐäÞtŽ„-ó{&sŸîŽ…»Å{lwS¦Ìè \Ýæ=b{Å€¦:sáòï¿Þ;5|€Ïicb‹9Ú$6ÂW@FÈjHÎÓŽÇ›X•ˆÌÜîZÔ%¹íz1@s£´LÏ; |pXi"¶~5³ÿÄÇ¤ÎÆÍàsUÉu|dŽÛÈJ} l­)ã“Ü>ߌî¦ü†Ù_ã^øÑÏÎh6 %JãÆûÃÑÝŸÎSË"™œ ÿ¾ý@øª„½ ¿þÏ´cŠÕw%Æ9?ÊÍý~¾CÆZ\Å@Å¢ú{É>·ÕcÛ“%Jµø:Î`¹]ýÌü ñ˜âÔw§ÝÀT{w£þ2Þ7›‰¹,©­|ŠoEîTOŠû~)òä8~0G9™õ»dü%a¢¾ûÀÄÍ@TьϹc¾YßË}¤õôˆ>÷Pÿõ=sr^ï&ÞšÞš¿QñZˆ“¶ÑZ|™êkF­3ßûļøOn­À°rî» |ÿ¨_+õ"æyê&€ÏiùDŸ%°9 &7(sY×ö€ŒŽõÖª~~ð|#Þ`´E*móã@ø›W{‡,®Žg¹ã×~©Û }º·š;ìˆ|—õ%"Áë؈…íÈ·AÉu!/-t|ÒÊœðøšDlBXGŽ8>“Ò¥òi©<Ù2xIãØ(Xm$V0àêÄO]º8S¨šsÓWO©¯‚ ¥Å3a<‘ëí²üowPÓìÞ3B9º™äð×÷tŸFô¯mPßÚ¹¤¢Rb-Qû®ß÷IZÆzw mƒ^˜ï€“{H¥YZ¦ËáÖmA8ëXhÍlqç™{ ¹WûšŸ‹"Lu3HnÿSмØ,â^ ÎgNß&9<^ŠôoBú9ïžóz‚õ«qו?øfòl²“ȇ³h&÷Œx(¸‡rÞ;–9†ÆÓ *˧,„>ËW‰j§,ÁÎ>¹8Úéq„èødÌ:Ñü•FÜë%}˜+.8Íi ݨéb0÷/„«pTò´èûþ/ÎL!tñÔ ƒí^èïwŸ’r÷e—•Òlj¤?P¹dr%øIœßzOOË=±¾$h»Ô¯¡Ý÷‘“õÕ5r’7Ã`Rmr;€éÁøœxµ¥ÌFè3ÆäðÐ+‚ÙaÆ=YWÉ´5|öár\¼c†ýb*`{ú¬æ «œüÙ&Ù( t¼[m±ÂàÒ8æ¦ÍŽ®‡tÇ£6}uÄÿaû¿uö8¿jM–ûö‡¿y箇¾ˆÇ91ø^4ŠܢˆŠ„4£ßUîa|­…øqœ*´¼ŸmµÁÕêÕ¶j¼ªÓ|[äññ|8n¹-Ók+KãڽLj¢|?lQ2„CÚ·}fß%‚ûEï=~ihÞ-Ýý\=ÒÍiþ^ÿÙMç ȦQÞ‚ •þÔût}¥‰<ªXœÀåb­ô­~ôÐ6‘+¢@|ÍÁ:'‹üÀ·•Í]|áfJMã‘ûÑøQ/·|GÙÔ>ŒÃQ×/#¼Sê´sp»ÂO%¢zHZýÀ…œD?]À ÝéGˆg…‘Ž[Ôè.‘øaðÔþÙ‘ø‡ß¡Ä©wé_ÐxáÃ|ÄoIGú˜”\ô»Ÿg/G>‹‚¶¹Éqç‡ÀY%%Ë"±Ö2–»gÑþ„'bKÀÅ;3`^`ž°Ý¶Šû«ùEà–®Ê{ìòG~#5Éu#„wªÒjõ ž¾„m-ɲš!ÞYÛÆè0â]€Öf…ß(S PvÝ–ÌFøµ¾ñl4ÂK©:sôƒ¢;µ¥BÊ—•¨7ýÃwËô­­Òõà\ni¨·FÏ#îV…HÑù §{»ªÐJ¦!T΂ºž–)wcü }‹²­Þ±¦Ns9”KºŒîæñÑÒˈ‡çô¥Ú·èDH=béù4‹xs¼Üi‚üG É£•LUâð&‹¿üá(*Ö{r¸‘ŸøÙŠqÅ–H„Ó¾?ò\¥w¥0!=§ñ|ýVÖÝV`}¦¿Ç\ùrܾ‚•¥"FØ.¦+0Ðà‰Æ ;ÕëÆÞ{æÀÕ§wâ(ÝO —¸“G„Ï-¿örv6øHk@~Šþ `ï|ÏRè|Üœî s÷DXÕ¦‹]ÿ°;'>^.ÌëÄÕjQPÎ/èyþ¸"i2âs$ªœ•Z&ƒô[N½°=•r÷ Çûn‘UEÄTØÞÞ.á G®@7Òv§ÿ(nÛJߥS‰í¾J-~?n! n©cçÁÏ'ˆŠk9L6'€/#¾>\ÂHbå¾ÊÅáבI -iÓB@˜æeõhüa ³»[ùú ž÷Eü”ü­ík7àj ¿·Í äz¯ü3ñúF†ÓÆo¼îÝ*å;/Ö13ƒb¬5akͳêx "r«Dz €Rû£áî2¼_ ƒ3ÉÍK‰6Àq©ã9kñ_ÿGrÂüZü÷!íÞˆÙÀf:àL]R ëböäëBãƒÉ¢eüË6ðLjÍn'‰©Ë~%+üz3SÕ«œÓ‚á 1L_wý<05q<œÅã¬4$ ”é, Z%Ut>àP I–îÄÏ;˜D(øAFpïk–f?`v›ùü,Ïï`ð¨¡9Ï Šö]*½vdÀ\šýÊü^wÄ”–·ùeGH-ù—Þ°üL|·v—(âý“˜äÛsÊhgA Dî|9ãS !>pûÉñ Ô/XzpÄ¬ÞÆ? ´Ñ<·Böáõ&wËÂe÷‚ø“Rv- `¨>üü¾ïäd.=[zõH]ç±Ø³ %®:C¿ñ¸›½UŸ¥û ‹l®'út · ÏÓáÆý¿í¿í¿íÿN Âêj<ØI0òý ðý×~ÒÐëÇ?§E–´-]À Æ·°@ñ(09æIlÞÃÕñŒ˜ 3V_~¦+“KGLpuìƒÙÒ°0>Ð&e¾I,ÖÍZúñ¼tѵ]½çÁ*þçþ~ÿàÞ{Z<¡ì)®Žéþì»Òè0̼, gåGèâ&U®Ž“_uuÁeL’el}u¡M°[ïë+(^±Þòø2èñï“ÛHéßÉ·o›ãϳB/_þá»<`|£nOóz (=³=.á/¢¶t Æ"ã`zùf-‰ç%ÚzÄA'Ž‹ÿ:[;N€Ijj€Ñ]GÐfÑú¶…ÿÞÃfL¥ Æ4uluÒÝ tïe‰S4>—–‡Í†Vþ›28Ë‘o´^¡œïçv»ãÿ?Ý™ñÖßÁˆÕ*å®í M¨šÅ/ Y­bŸ㽯¬Mk=A„#u´éìK\ߨßÃ7=Ápû{d ˆ‘ämÚûáñDÙ}5F`¸"4ewøü=ðùqñ¸`‘ß‘´Z{åàXûŽÔ»!*ìEÌDu“ÏMhÿPF‘>Úßß}ðú]~ˆï| ú]‘ å·/Šåï>ìP=9µï(òÃ,mÔññYSuNñ¹ƒ{ú®ü—®ªrªá×õ(ÿÏBþ5óê§>Ø™0Ø:Œü´”î­›`O0MwH«Yƒç÷EgœKLüÜ'r.tüª·®»äwˆKæAãY­î¡@LÂ'áÁˆÒþò7àÅß$“h)~·|ªûòiÂ:î'V>\L >Ox£˜”/Rü÷Zok§Êæ‚OçÀu%Q-ù¼.%ŸïTòÇ“âßÅíKêU^+<îhž,¡D¿ƒî+ÑS~å®S[ØØeŽ$Äד Ïî;á€òI$t ÷„½ßõîÛ'þMrúœP×Â¥Þ-nk‚›ç5ÓoþÍõîÌðöÄ$Hö?°º‡pxZ‰¡Ï$ï‘®ÍþåÖ¹ àŒ¨ŸMEzsrÍîÅ“9èþ7²²×>`v˜ŽÕÛøÜAÿ©¿ç«>zÄÿñrH æïÝ+·JBéþ¸ÿWÆ:—+‘ß—CëÒÃ[¥A¢Æejý.ëM†ËèþM`˜Úª¹ÞÙª†#/KÕÍg¸Tñ–l²¨A­œ^ì@ø(e¯ì{!tóq˜ÎæMP(¾ØQ®BØÎ@g¯}¤åŽ$† ø VæÃŽb·ëß9>ª¡¢ø""ñ>CuƒèÖˆ—«Jÿ™Âvy–vììr{üS<ºÂdÉ Ê¼EºQ±Ž¸¹·±ˆ/)ysiÝo&[jâz\p… çÆæˆ.ÜdCù2»×™Íoób›Þï¨onénpàé¾·„:“uP´¼“ lƒnRe”HïOŸS𹩆psãU‹gì‡~;‡þ¹_| `<ò²˜Ýÿq\Ïì¶£[ÀkHG0îºî†“ ‚¯×Yoˆ±¸ønjš*æ¢çÅgáa”7ãå=—è}è @ããÙ/O^%æ²ÑD«…xoqYgD­uÀ9Šö…_?zž¨åE3<×C÷QÐàÞ}·Áš‡‹çú*zŽ)çwJjÒ#=qííæÜ#`7¬=fŠø’Êä;Ú #XÐq ÁÏÂñ1(SZ=©ƒÆ=Mµ°úÄst¼6‰of¦­Aòì’ʵhœ³œ´w nDøgèè¿r¢‹`AdËo©ˆü ”>ôRô9¡÷òΩïi´ìµ w ‰×[á“â»k…ÙbŽ^â£ml™Sˆìjê°j› Å_™ðßëJ¹‘_;ŒA.‹ãCË­VÇ9y) çƒÚš·1GyP°M5’åÚÇ>âê4ŒèØo¥Ä‚-[°ý°¨F‘j³Qá×-UY(æÃaPŠLHõÙ²žk³µoñºùy½F†nà8G|v-€ع›®âýMX˜®+b ~èi‘‚=0EÚ;i³áê˜OøæÙìîþ´Wç.ð*}ÙÕ¥|]þu¾¶{2ÀwzËö¾3Ðô‘c…ü¸:V’²¬a?ÿÏ ¼.+À”vãHÀ1œïð•¾üú¢ø‡N ßx ÔÞîÌA£Ú¸:1Lj5ÕËÔ Y¢^t´ò;0ËuæØø‹áêDÒí J‚•Aü¡~þ»Ü7À´é»Š ~ÞÆ£§÷¥Âgàáô»KœO ´»Â<æ^ãñ?¡+ßx랥‚ˆäÕYÝv#`ØŸ>üƒÿ»•މ',@)ü|˜iu3pX(>âðJÄ×ղܜÃTA)ÿÈGNåEà½xˆÓ|ÿ»©{ïxÝ…=¾OÛŠéóí…6ïSx9žkË/÷³•BÙ¢O´Æn`1ûn¹aˆß_½–×7ÕhPüÊ×ñÉ+ 8¾i2_x÷_ø"Sûè·M@Ô_þ†ÕÑ;À½F‡Squ¢Ù¹‡‹Ô@vhWN=ý,p'›üî¼€WâÓ mÄš ËðXØúõyà§=>q›{‹n\QVWѹ·IJ#žg¸¾Œ»ï'Zeh¼-u¤o·ø•äGbr¸?.§õßößößö§Ú§£<ö\‰7q“ PÖž W[Æó› N•jK€„èä-¢Ô,  ÚÉq½W'ÀûA̬¼¯:Çž6Žšg«Ãqul†ÚTŒ¦gAAòAPÍ9`;¾½/é^?ÈZƒ=q;¤^ÞŽ ØçÌÄ!]çUñþœÆ¯Ä´XŸ¾½Œ:Ã>&9ø|næ»õŒ\# Avoâ!k:ð[s7•mÿñÙ‰¬Ãª ¶pN’4PØ®.>Mk€«£pIwÖ~ö7>³£ž®$7üw'%¯°Êƒ ÇYˆ™Nb ÐS¸>¤€Ïõ#g¥N¶Mò0bAe3áH‘ÕÁãW¢§2ÝÝüA½%Fÿ¨çh}þø±0ŸoÀw|™øÛf?(Ý$uôË®…C-bW9ðºYêS¯à× ÒÈ™eùå°ç<¤÷_rš¾|‘tðI¹ÀqÒý \y`òw~ýSæTú;ªË X¨To·y„ö25Àßñp|÷Ý<ßJGt=’Ù@‚øWÃ#[\§zæ²,+È1|¤ h\¡ª¡»Wu^žcsge ÒA.)tí§þbZE #ÁïBgYÙ§óalžÚo8ý˜6¨ÜÝ_A¢‡æs̺#ó„ÍÙ(šÜ¾; ªM'IûÑï’„…}½ DÈ'Ä>¶‰á¬íÑ$?ßÐ~„k1b§);¾@ØÌò“›÷† BÞò8lñz(Vv{ž("è´°õ­Áó?Æ…@lÒà¶öò âTxÀ³? ñ÷H§3.»„,€Ú,¦¼Çå¨2ÝX¾›Ià³`›õ=³vwA¶Vðé=äCO=é!ÀOà×`‹[Æ«½ î“ÄÎVŽx3Lœt{<­¸¶eaaR²{˜£îôQØöǃ‚ß® ÜFr®÷þßnƒBÕúTå⃽¼|®͇)UX"nÿ5«ù(þåö‘“^%CŽ—¶OùîåÈPÓVØ)óGîÉ·ïÃ~#ˆ—BM=dÙ§*ªß¯;Ò¡¼-±xä'Feiú9˜A¹‚EšRáií¯gYxÐøYâޢɵéº*-ÄûbNãÉG¼æ‡Ÿ?ˆý´¶üÈ“ˆoÂÈ$cÒ!›¶ìÆ‹HPI«`©mGü)ú"rÆNnTGùÆ*­H‹T¦Z·æ½£˜N):/ý£¯n¾õ/D¾œ`¤™þº`p*Ò…ÅÑPn`¯¢:|Þ “¦ï!>ùÁhmuAAP?¤] …ô¡ ׿² @¾tÄ ‡$^Ñ告¼z>t¨*t›«ðSlcÐkàèéË ×âZÏüáhôy¶†ÜÕH×H”ñ³ÛÚ”‡[wΡœWÃæ=ÉG0lýá™b—có„íB»Þ½kšG¾TªLþk/`SÏ75C{EÐïü£¯ÇK”Aža…­éº¾%—Gx&{†,™ºv!ædI>@Þ›D·•Šð4‰WugLî!¿/ïÞÖ—<°&Óüv 4^ùzèî¸û#<1j-vsÖ©´0øÔ†ô¸jm¥É‡ÚÑõµ6ž's´öþçÓ·.w£çpMeÉ >Bßù5‰÷h¢8q¼ã}÷GNñ¹± JÄû ÈË¥šêî¥è¥ç%r Ûe»4߬ßCúf¿s;C)f(A–¼pºÐ ù9J²mLÒH#_4//ÊÀ•ȱ[é*ÊG  ½Vå†xˆ’¹\UŠ,á@|•x†q'Ao‡-<%³õ¿€p`ÉÍ®!Õõ@<÷BÍ™€k`‹¼E]•‡Äb¨‹â&ÍTí×h'Ê-¥°à¡TCÇ«^µ©¢ŒGÓŽ 'Å£ñzîüìûûH/ÓÚùmi…Ô~; ßG××ä}¥I‘ò” låC¦«\5ò[¤L§¹0ŒðfûYÕÛ*/ €esD}Q#‘ôý÷|^Ù®ßÒ•®W?9¶ë2‰E½D:òJ׺‰(ÝþÿõTÓ÷GÐxQëôÛEÏ—]z†•§N>¹îÀ¦‡g‘Ÿ9Ë„ ÊÛÐæ5µ²J~ävïNù£ë¶2«•ùæ™oY=¶ú X^Eé\RúßàWî fcäÏèqíöïÖûAôÕ;ûÕºoh\ÑíT)Eü=g…OHêl@ðÓÌ‘š~”;"nMçeh†ðS½¯ˆÖ/»Š³êul%nI,í6î»@…ÅÕZ›½ ”¶îùMP¾V!øÂ݉ÇU伊8NMƒÖÐá©üë¯ïÆ·“òø\‰7}tJ/@ž#„xwën 4â<Äq6W'Ùk$}äjȼ¸[º@ùèToÝ-¾ƒÃ¥°•Ë;u»J'?‰O Õ.l3fBl€ §oÀ6Ys¼,hÄ@ÒfS=µµ(«4NÑlðâê¶Ì+M—̃ýc Zÿ+@2–ÿjÿA"ÜÿGZhM¬š â-ÑレÚ@®ÿžZõ=ÎgÛÎbö‹X^¢Jj½<[ ý&EfÍŠ×s’ß»m8¿è,ã®×NHc¿[œë©kqÿP qhÇ/Û¶µkÓ@¶VFæ+ÔÁ«£%Ͷ.vݶ˜Ê ‘¥G°M¥s¶ß„ð¾ÊÄ•ÙÎ AÞ__Š[ð~Xñº¯7¡8g ÄüÑ Xú¬cØ¢>b+÷ H‰_Ïàê(gvVîÔ¹’zsò’/Óà ó6<Ž$ Œ«bç1&/^¹Òt=ÓjËOfñçåÜ©'æG@FD¦;F¾¥.\(Åûë гŽò¾‰’9§ç‚É@,â7(…çÝH“SÙ)³¾j•îï@o£ÕëèŠÇ•©&®ƒÊðlUžUÚêâ(¦ÖÁøëƶ}¤ÇêÆ Hu^’¨M:fõÿeþÙæªi¸¶$ȉÎ}aÌZ‰â‹Tøy%³ˆ(5¿Î,ˆx'2~Èu±Žˆ·øº«7Jн@LÒø¤Ò‡@y~êk}ä±ÖýÛþÛþÛþï´ÀB¿(¿œõÄrËžG]-ò¤•X M<îÃ}âáˆ÷ˆ/HÐîã·ê½4äÔ^‘&xXÎ}Yó’™í zµómlê¥PZse<^Ǽ7ViÄä>pêŒíYËÒÈC³­zí¸:vg…+ɳ êÜù!YÃ(M¾tJÅO0Q<¶åPé¨pù€2n`ÖM~ê*.§ è_žÞ?ÐnBdá²ããJ@Ge“rô ^gȲ•MÓ â â=Óöc¿¬€¹óqþ‡ÓøïÖ½yƶgA|Gžâw›`®S»F|¯GdNúx­éNˆ3.ÕæD“ÓÓÖ×4/ñ/ä„÷¯`« 6tâ4È% Ÿë 䥺ôn“­¸:~ÇåjÆö P4ÙQã9 lyIÃJ͸:󘆺³ AÛä{Öe¸çe/3z³àêÄ%ØÃ×üE@ùÖtã$‡‘xcgù:®Ž×+¯+ë©(oèÞ¾8|[ö;îÊÇŸ—Ù‘|Ì\TìýNG² WÆ›'÷ð|xVŠtzY± եᥚ4׿;S¤áó!¸–eßd(õ‚ìîŽ&Ÿ¢„Køïc~¥Ý–ÅGA>öŒžiÁn`þHË"ýž_-\ï*’ë“Ððc‰¬á[®ŽÓ+¶Â±ºd¼I7“wycûœÏ3®±•7¡œF)ï)æ•BpNãñåXFøtÙéÜ?rèdÞëÞqøTžÃ§ÓBÎ#þ÷Ë÷Jˆ÷%DJõêJn18¤‘œ´hB¾;Bå­Om³ß5ÀQ>HK¥¿ìúË%‘„{ˆcˆä;Št¤RωÏÄ|¾ÎûµÚGMàÖÉïž±k„¾X¿gsšå1p¼zÿ­oÊie׎ò£üŠü¹y¯°í¹@æaK<*MhÞÃyÚ™"cä¾Þµwê%:`­>¥YÑK˜‡Ÿ§ é‡÷ȧI䑌«9i.ØÃ™'Í„õX€y~Ťq‚ŸЖ|²(–gMþ}ÎÚH—¥ºbFzWà§Ä.êâ¯î<KÒk×F. ~˜Ñ¦ŒÆ…ÓHÿÇ4FÍÆ6uÜÕ#÷]zøoÚsçïI!\“ª¹DMqøØË?{bxhz¿Ž–Ç$#>õ‡Wùé?cÉÅíþ*¤›å9ãLÙ¥‡txf{)Òyì¤`½£Ñ3ÄçS ¾qñ¹Ìk„2{YïBp»ªƒÂEx¯½yX‡pBuÝÍ"ßYmpþ±òì†:š¿Ê›˜Ç2"žŠ©ºðçŒvgð×?µÿJ:¯âI­©ËÃ(À8¼÷æM3ð[Øi9…|ËÎäÝž»éOè+ 4æþ¾# î…ÙmAÈŸL©ÛËÍžñáä'­ÅI€§î–`þ„ÓÈØT›FÞ@|=q…‡ñRSp’Öºb„ôÒ †±Ï+ôŽ+ù”ÖÀ‹÷¸\[< ’‰ø/ Nç?yé£y½Ì娯¼ÉªàÚ·>!£€îWÛ‘=lBëw€¥ˆõîËn¤·X·1“[C<-™Â[';D±E¢û/.?'¬·a½Ì3(_R‹‰Òs‹Æ H×YtŽæ"üšŠ*+çÇ5ô<0zQèý¾èû_š%¿Bü-ŽüÍÖëSF„¾AçêÀ­¦ –Ø£Sø ,BÚ–.§ï58ËšÞ™5 To4Åm£ûZyBÌÿZâm[½Ñ›úÜÀ‚½ÆÈoY­IQWéúã®Ú “Ì÷ä•ÞðsHy‡ã¨Ñs4¸Ñ[6=TÞÚô(ôI ¶Œõ™þágçsvdc–óHf.Ön õé¸m•烓Ɔ¾"?°­…eÎ8^t=Yvm¯:!ª|TÑo3½:lnJñ©Ï5Âó ÛŽ;Ö2X}Ú±ß_Rl°‰%¯Ìº¹ØJÕ³¹oP~aY÷æò7 kïÏNž Ôýõ\0•á=Œø«š;$6w_óÆÖ4Ó'«4úÑõ½m*Ðÿ Ý_‘ç¹;Çñƒ:SÊw ò[3nU˜ØI‹x¹š$ïÉí”_Sq̱·ÿÀáý:LùfÖ{ÞÖÚÈ¥T$\½‹ò~¤ž¥Ð:!þnÅ)¡“o@—•¿ôw)Ò‘š±¼ "|w‚_}cní¦¨f?¾¿˜ðý?wl=rÐõö-àø¾sñýþ§2EÐ}§ŒM'êP!œZ£z߸ÙÝ@Ú¡T»„Žjí‹™ÛOÄ_³!2º'~e8Ïpç(™ ÷]"["z^íp4Ü„½ 隣ûÛäú]ùøwkÐsÖ¹tZ›ä¯·…àhCGáatžÅO¼“‚ÞbY[[ù ñ¦S¼¸s ØŒZ Æðyõ2ß*Ó‚bèÀk>[\‰¼x|·î 2-EË)—σ«Õä÷=Gg)÷¤jÏ>\’zú![ê P¬òs¹6¼ï‡ß5Ÿ¼ŠßßÙª%×¾‚<K‚f.ð4œ›é¸‹÷«'’³­ì©ÁøšGóG°E¹]7É÷âôØz¼ÓŽ›-ë Ò#ÿãj9¶0vlеOW·"¹Ur¥KøKuR>Ûú`sµS3‰?pü:lóÛûáiNíˆû z û]äßuý ®nãò–O\þ lô"7ç̶è+Ô—†ÿ®g¨¢ò{KÏ <ÎùÏÔ[À”ÃÛ¾¡¿.Íjÿ+çî} ´›Ò[Á@ (>EX]Øçá1ðO¶ .ø/C|!t ÝÏÂó¯(w¼²c6cå¢çdû° ±MÝ9ýµÿòÿ]- mïž²¬¶‚N1 eõ—è&!Æ×%?æü> "Ê׃Æ^Ý–¹Þõ”›øùOêï4bk{ ~íêó¢øE‡ìÔ%ñþ<&¯äå£Añ„ÖzÖðe:Gqœl K tfßiç¾*:]ãgy~€èÓáF+ü<«f¶ EßäªÂ…Ž­»‚€Åë2n¼¯Ë —pCqÙs`Îû PÚZ˜(ÄïψäCÄeR~¾ì~+ý>0—¤å~ÐÅÕqü^TçXo©è77ÆH™ª=ë¤<'þx•oÕ˜<´™[g¯Ø_Òx×È[ý WÇI¤·çÚ Hö+ú>ö¦=¿•Ðzá¿í¿í¿íÿ^ ‚ áŒÝ‡rÁŒª9•å €Ò.OõØ{quâ_Î0–¿½ ¶Ró#m½Ô`x¾X×¶ï3&Æôas×s0¿ üUSË´%gHl•ðþf¢þl¡Ñô`åxÃô—Ú2è·oEžLÀ×97-¼¦åË=4‘+ì‘ }ÿΙ{*øüKY©hSNÀˆ{‰Ç›©Ààƒç¡–.<Þ¤ðùÀƒ„p30¬¤²7ñ§ÓìîA} |>§ìgëÏúü6 ·k'ë’ ÚÞlÚGŽ?^9΋!ÏÆžýõÿ_Œü±~ŒUÈzÃñçO.oGž `»¤Ü³eTÀè÷+3|h:ÛCùE°.?zA]¢ø÷0_‰õ“OA[Ö6É%°ÔÎDêâñNá®Lñ"K°Ù›Ûž  ]qºY±ÿ¾~¾;v´;Œ‹O‡¿Xõ.¢˜ú|Î…pS†ø3 0YO%öÜ`­ÑÛÒ ø)%â`’¼v.0K´?a>] êßF¿“‘â¿u+éŸß/‹‹n±y‘ `w눜ÿª¾Î£ð\Ãã°»u6_Ð,(Eˆ&¦ðùæê‘æÔ$mÂ`Íq˜SÊ÷Ø·¼[öÁ¿ÿ5…g}F5ÁjG3…Ôh˜Õ<6òQW'™ôüpÒ&˜Ê†°èÍQ€Öú~C=]¾’!„µÌSY‹ I†2¦Ö§œe8 e¬„$©¶RlMÒ`·35§-…&%Iµ5S4³Ó Rl¥¥Òð³ûÙ®÷ñÜýÏSÇá¸×½º\Ö:×m½­ïëj\rШ»6›:ýëØÉýÿœoVåõîu:–>ð÷9ýì×]›ª¤Sûüø@ó±¸>ü7³—Öœÿ—lNj>kïØ ©ý´µN*½&{ÿøÚïïZ•§Ví‡ O¹{dê²tíµ+ã~ ßmÕlO¶^\óŠY>?¼V²õoåý°:;N®òçîÚº%»þWé¹ .¾åë-é„©cO/È~®/XÙú¿2û·|æuצ#OØ>r×!Ùý4;äæE[7eëaçÔ¸qÙ¤Í5ÓQyWœÓü­ìøÚÖ¿íyækÙý÷>{ãª1Rë_Þ¸oøÙ׳ñI­ë¶Þ‘­¿Zåï¶·¯±ºø‡]3îØ}svåj½¿,¸{CviåÆãœ_ò»âw/¸|Õ5O8­øów{,ª¾%ûú6¹3ݲjãøâ][&u¿!û:•\¾üÆÃ‡xî=[¸ê“TÐé¬Âm²Ï·pÝu]½.;βÀf£Ž™¶´ø—õõª·úGöñå?7u|ÿ®ÙuGïµî‘qo¥ª—¾8äþ Ùשõi£‹þ<2[_kUT~ïÕ—½[ü}»/?½l[v»n|ªWóѹ¯¿’/Ù`^»M/Fv]ÏZ÷?²o{›ŸR£®wM):­Yª°°ìž2¿äÜß µüéô¥Ûžž:ÖY2êìGÏNê´,_ç#žU|ë§ÕJÇ,X½Ú~::Uy穟×ɽ>o«© wŸ9lhJS»|réUSýsÇ_qfã9Û5éþùõÅï]“Úv[W¿ò€{SÝû*Ži|[îºO‰{š¾·wú¾Ôà«)už_?0U­5ûôþž»¿¼®OU­kª?°ÿ9”N©Òå?Ÿ_5ç¾oÅ¿öéøÒ3ë¥Â÷¾¨¹ï¹ŸS…ß¿;êùš9Ûí«5®Äƒ³;¥Ãÿ\ãâ·nü6•k5ó’›ÉÙî· ·Þ[ðÃE©è®§û§=R¥å_l>áÆœ¯Âõ ïì·æøTø‘o_òI‹Tbú¢'mYîÏ;eWþ|O‹¯/N‡ û`d·Kïÿ~?lcÑ=¹ëMUwîžÓ¢í¡éÈ.8¡Ù©|ó×øÜŸc~¾ë c×ÜŸjõuïÏW-þiûÕÜ63÷<¡ ÅËßúda*šÞòÎÖ¯¿—Îß4ãªrÕs¶«tr»ÊG½šŽ.³÷ÒËëÔK½{ü?r¯—V{ûúÍ{NÚ¿´ñí½å»¤Ê=®,:õ˜ñ9ÛUüþ“_š¾´9½îG•Ù;4•ÙºðûÇ¿ÉY?MU/{cLj'NIÇ–½ü©¿¶»#U¸á›¹ý*å^o®Ê¼Ç>¬Ú~Z:¦÷Þ]'=¼$•ïsS\úÕ'9Ûå§Úë_´&5üaþî¢;f¥òƒ·<ñÛþ¹Ÿ‡}Ûb­?¥VsF7«ÿíM©úð/ÒówŽÇ8¼ø™÷o蔎º¾çÄþËI•þ¹¯ñ=·æþ}«Ño_³ƒß¨‘ZþíÚ9Ã_|.U9¯{Ë#VÈý|÷î*;¥Ìƒéè)ý;–)l‘ 6u=iÜðœëýñøÇãÿÿ<¦Ã󮚋R»×^úí}¥SÝ÷½qò‚Üën5˜?ÿ¦yþQ:~ù¼¿¿óס©~þ˜OGV}5g»úøìÎJ R‡;~ûØ —RÑÎyïêý;÷ûüêúKÊu©“:î7úÕcSá¦]'þÐ/÷ºªEã®8±ÌO£Óq×ÎmöI×%©ð•ÛßüöÜóýëÌ:¾y‹¹SÛŽínùbm‰Ôø£zƒÞÍÏ]÷)ZxÑÒ^Iío?í¡®³¤Ã:\õˆcr¶«wyþÆ’%f¦6©û‹s_hŸš^Rb^ñòÜõ—Â÷__0½ÉÜÔ¦â! ÚîY”ލr+ßÎ=²0ïÏ¿´¹znj{ê ÓÞ™´ÿûz‡KOëuZƒœíªýóÀ&Û»¦ŽþE~ëg¥Â[Îyô£¾¹×‘¨¾òåY6î•ÚVï¹í¥¦z{?½×Ìãs?3.?'Íè‘:Ÿ÷ ¦M Îh~M‡•9ÛÕ*º¬ÛÖA«R»ç4ß»m*Üyê£3{æÞ¿¾ÖeGÞuÜÙKÓq[N=¿FɧSÑ9,×'wη¯ªTñá[R»÷­íôJÓÔä”AŸ5êž»NØì‹§ß?âå•©Ó²W58ÿËÔvõ«‹ïžš{¤æsŸ~óâ©Kñ¤î~üDjµêàNu6ž“³Ý‘?·~lEÑ©óË7õþîïO¦Žs¾9»Å°Üu®#?j4ãËÅ“S§v×=Úæ´ŸÓ±Ï¯¨dërïoZwéÊazìËÔþøÙÍ^Úº*5XÔdc åÜç>5(ùÏáÿªxpêøÞˆóZ¯945}±{³æ³r}²Á×Z.Yô]:a~‹ûó¦/HM>-|ö±sï#U¿Å#uZ=wtê¸aÙÛO\8;uõ-s¾û:-z³iŸû/ë“:Ž=gî)3ÞHMþ>soË.Ùõ—ë³ø‰š–}ý΋k®zøƒÔmÔ¸oÌŽW+|uOåæKºx^¹Ëø ‡õiê±ìýžß•ÈÖñ 7´¾Þ¤ìç¢CŸo5xÈ›ƒ“ß;àÚ{dç7Öxîºz?fÏ˵¿ëoþ%u^rÁÚž]²óÜß7á»/gÇlê6rÛQsS·×olÓµmvüP½: çWè“­ÛÔz¦Þsçžv^ê¶¥a÷îÉŽ[jpp©Á3&l=ð¼ÆüñmõÔ۩Ǻ:ÃJ¿’—uØCǼìéìü˪ESïøõ“réÄÊG¶¾mq¶ÎPkì¾ ×’§Ua[A‡æ—•:µ¼áoSÖfÇ#Õ;¥÷O÷ÝoW­¨ ïá%Ó‰ßî(56?;ñˆ‚fióˆì<¦J§<7÷ˆâ ©gÇ®wº&ûsKölÑ´L¶XrÅ3<8oFêrÛc놜ÝðˆåMº½X7ûs ê k°ìˆr)®Ý9øeü|XÿÁ—ÊÌÎþÜŠ¯V¾h⽩Ç܆+>ÎË®§W´÷úßî+ʾºövæYï§îæüTphv¼T“!“‡ñúóãR›Ê¿=óÐú©ï¿z¸å“ìã»óÈ3îZ˜×¶ïÇoù°|tÕÚ;§àº…EÏLz¦\ÿl= aÚGn¯T˜º¯nóÃýE8?ïæs?;{lvü^«óÆVì{cqê»rÓý•Ì®ëÕhìÁÕ¯š­O´z쩞9ꧤJ÷Ÿÿ·ŽÙq‘ ò¯¯Ö¶Ë+ÙÇqÒ3ÎX=õ¼ûÕ¿>;8[jPP¶É°'²ó×[ýö†ææ§S»Îh7®ßT4gá’Ÿ½þN8yÞ·Ÿ”Nžöê5]OÉÖÊ>ì7ê¹EÙ:NÍï*ÞW|âÍéäq׎®]9[Ï©yñ'‡gë1u+Ý;¦_ƒ¿¥ž×R©ìÏéqæ…“ï™úJªüÔòf÷ü%»bÝ)S›-¹,[?=öâê?¾¸iÿϙ՞-|½I¶NYªúMCvþ|àûx:á•ç,Í¿<•znÐö;²õÍŠËçé–¾¸îÛßgõl³T¸¦éì_ªd×÷ªúôê—½GzâˆtØÆõSAó5sÞú2;n¬ú?f2øù³<sóS¿ôáŽÔåðÉ ZNÉ^¯Ç~ËîFÓÜ*uÏß^zïMW¦&‹Þùº…eŸoµn·¾hZvœeŸ6£o?bË©q©Nþ¸?;Ž´ÖôR eë4£ÿòhÓ ƒf¥N•y¿ì~3mn¸~Ë–VÙë~èS½jSûäÔþî¡}¦·É>¾¦³ªÝûšì|Ì“NÔÏø6U+9qT¯G³×[Í%£|h}öúm8fñW+ò/(Þ}ZA›þtà|Ëâ=ïÔóÁ‚ìuÙdÅÌϧ7¹xï‚õ®làzsÅ?~”¸ÊÙ}ZM/|Ö]÷§‚9“w¦3³ïw•'´_÷ùÓÙñ«¯?èá&‡Ÿ›Ê–8oq»ÉÙºeùIKÝQöÀ}¦Ò¸Æ+ùð†ÔéÚEsÞÞž_ÛùŒju+µÍ®ïÖ¦÷š6?×ÊOå&ôê_bc6—CV½²³íoÙ÷q=¹¾ï9ýIM?Zðé_.È®kÙh|ýí½8¾=ZÝ ë7-MÅGÍÛüѯY§:ýpÚŒÂã²õ»¡c‹‹ùàƒÔú¥YÏ=xgöñµ2û¢#²ã)Ïî·µÄÖ«S«'_¿ìµIÙõÛZ­|´üæ;³ë÷wÞé[6|øuª4³ÃØ·d÷')·dücý=&ûúî¹¢öÙë/Jµ‡_ì÷Ùõ&kVz}ÛüaŽÿJg=yÎðqú§V/<ýÌÈ.Ùúk«>%nûj@v>ñi –\¼25~þº÷?j—wÛ¨ÚÖ!³ÏÉÖ] Ïø~Òá'J n|3¿aïSþ¦%õ5;÷zn-§®ü®}ÃFé˜î‹*Ïÿñ®T¤Ùg¬y0÷ßÍG_³³ò÷7N­Îx³póÂR½³hþpîõ/ZMhraÏ;îÿ÷õ­SŸhß=Í,.ýí9Û5›¼nã”÷/I-·•[Õêº7ÓaWö¶°|®—–nõÒ £Þ,N‡O¹ïžfíŽHeóú~Q¡rîõR¾²lÓ»Ô,ñÆÄŽ«¥TæÍxíµN¹×û-ñä#ÛæT-Lõ~éwÄcõ§§’›wÑíÜó/K^ÛsÈúwW§¢ Í[¼ai*uç€Ño‘ûï¹’CöÔý¥RÓTtÞ˜uµ f¦ÒÛWO{µîui éX{ÑìթΕ;'ÔY0;•Xœê?Ó¡uÎvU[/}ìé.SáúO¯ïµcÿ÷ÕϯýÇÇ£7çlWmÒÜ:;nmŠ6õÝûõŒ§Ò!-ÎSñœíÊw(½qÈÉ_¦ê#o:®ÌðÞÅ¿]Ü«Âæµkr¶«\uÙ´'Þ’{9¿A¥Óú¦’GŸp÷øÜë9W©ôÂË•—ìÿ9§Ê¶ÛÝñ[*8½î³Eç®×Õ<èÞëÖý6µj4vm‡ãòSõV>lò¤ÜûT½vÉÔ—îIÍÛNY¿¾ÊÚTuúÈ=§œŸ{_µjE[&mÛ©åÀ껿¼óçTõœR[.úûðVkßå‡*§oNÍט–÷ö€TµÛ¢æþ»¹ÊcK/ýõÆTÍû&<Ù!Úôí£?þ×ïü¼8åž…ŸþššÝR²æžFR•eñ̃=r^¬5âóeõ'mLGþó×zÛö M•§]<ëÅ“êælWû”ÕOîõH:jù—[Ëcª¼ ç_ÖŸrîü^­Ô-`¹tdÓ³®ùgÝý¯ŸNìùðÖœûúýñøÇãÿï?æå•,‘—Wî·ýO*ìÿµÿí¼Ryy‡¶ùÏûËÿûýUþÏûóÿ÷ÿ•Ì+»ÿñ Îÿ}Ãþû†ÿ÷ ý÷ØÿûòÿwgÿyG©ÎÿþOŒOœOÄ''Æw`ÜqÆ8wàÜsÎ8w î@ܸqâ‚;î ¸ƒà;0Ñ8DãC4Ñ8DãC4Ñ8DãC4Ñ8DãC4Ñ8DãC4Ñ8DãC4Ñ9DçCtÑ9DçCtÑ9DçCtÑ9DçCtÑ9DçCtÑ9DçCtÑ9DqˆâÅ!ŠC‡(Q¢8DqˆâÅ!ŠC‡(Q¢8DqˆâÅ!ŠC‡(Q¢8DqˆÁ!‡bpˆÁ!‡bpˆÁ!‡bpˆÁ!‡bpˆÁ!‡bpˆÁ!‡bpˆ!Ãb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃb ‹1,ưÃâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹3,ΰ8Ãâ ‹1,bX݈aÃ"†E ‹1,bX݈aÃ"†E ‹1,bX݈aÃ"†E ‹1,bX݈aÃ"†E ‹1,bX݈aÃ"†E ‹1,bX݈aÃ"†E ‹1,bX݈aÃ"†E ‹1,bX݈aÃ"†E ‹1,bX݈aÃ"†E ‹1,bX݈aÃ"†E ‹1,bX݈aÃ"†E ‹1,bX݈aÃ"†E ‹1,bX݈aÃ"†E ‹1,bX݈aÃ"†E ‹1,bX݈aÃ"†E ‹1,bX݈a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a †%–`X‚a „ň÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷F¼7â½ïxoÄ{#ÞñÞˆ÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼wâ½ïxïÄ{'Þ;ñÞ‰÷N¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ^Ä{ïE¼ñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>ˆ÷A¼â}ïƒxÄû Þñ>þïóJ–ÈË+÷ÛþwTØÿë ¼¼CÛìüõ?¿þýÿö¿ï?¿¡ÌØIç÷š4±ïþ7+þûÝž{+ï?ÿýÞf}löþéÏþÎf¥†zÁyy%òñΊ:a䈉£ÆŽì5nøˆ1ÿ÷žÇ6zèÈûßäo*}Á¹C/z~öQçýú?%Pƒshazam/data/IMGT_VDJ_BY_REGIONS.rda0000644000176200001440000000111213762520614016162 0ustar liggesusersBZh91AY&SY—ànªQÿ€ÿûH @gþ˜·Ýa¿ïÿ°À)0!ªy#J{TzšzbŸ¨ÔdÓ&ƒÊ ¨É½I“M©‚SÐ5=&˜Ò`!2h4Ðh8É“F!‰¦Ó`˜ši $I ÈÈz€õ4-Y•©É˜Ø˜Ùf¡VÊb ˜»£Ø ¤‚p§÷Ýãˆ&kú¥ìòªúªê°K%¤"LÈjNõüt»rÃnQ ¶Ü cFp4`š+hA3I›ri+ $–ñQÌÑQîº×ü\¼©—ôæ î½Ûá“õn y§Î²N&Ó¹H6ïÛ 9Qñõ™§$çØ5‹ÏH‹øNª&‰áËtZ¢´WÄWž‹…9s30ÎÄûÌÒ<4ˆ<>âxˆ+K®áÝ,C° S6=)FÁ(¿nÑ™ø„!gå=?Ûµ _ù;0XTÇÔ´¾ J¸ßOH2@áùe*¥-¡æ‚&Z( hæ8)¨×“¼r¨¦aÎøZðè&ÅIq>|`‘ Š‚A"Öp3jI9£#ßvºï«›@IQBi ¢Vacœó¸çÊën k[ÈܰØ&±Dq¨PŠì,‚ÐX€ßPÈ•K"¤†„ X’’g¨ˆ „f†«N{1üÕòP ácÿÄ’I$’I$0®¹L-S£&;QÏi "&œø£j¸Np®^Ú(É~ÉŽðÓ©VåÑ}/02É)Zów$S… ~ê shazam/NAMESPACE0000644000176200001440000001255715037655463013004 0ustar liggesusers# Generated by roxygen2: do not edit by hand export(calcBaseline) export(calcExpectedMutations) export(calcObservedMutations) export(calcTargetingDistance) export(calculateMutability) export(collapseClones) export(consensusSequence) export(convertNumbering) export(createBaseline) export(createMutabilityMatrix) export(createMutationDefinition) export(createRegionDefinition) export(createSubstitutionMatrix) export(createTargetingMatrix) export(createTargetingModel) export(distToNearest) export(editBaseline) export(expectedMutations) export(extendMutabilityMatrix) export(extendSubstitutionMatrix) export(findThreshold) export(groupBaseline) export(makeAverage1merMut) export(makeAverage1merSub) export(makeDegenerate5merMut) export(makeDegenerate5merSub) export(makeGraphDf) export(minNumMutationsTune) export(minNumSeqMutationsTune) export(observedMutations) export(plotBaselineDensity) export(plotBaselineSummary) export(plotDensityThreshold) export(plotGmmThreshold) export(plotMutability) export(plotSlideWindowTune) export(plotTune) export(setRegionBoundaries) export(shmulateSeq) export(shmulateTree) export(slideWindowDb) export(slideWindowSeq) export(slideWindowTune) export(slideWindowTunePlot) export(summarizeBaseline) export(testBaseline) export(writeTargetingDistance) exportClasses(Baseline) exportClasses(DensityThreshold) exportClasses(GmmThreshold) exportClasses(MutabilityModel) exportClasses(MutationDefinition) exportClasses(RegionDefinition) exportClasses(TargetingMatrix) exportClasses(TargetingModel) exportMethods(as.data.frame) exportMethods(plot) exportMethods(print) exportMethods(summary) import(ggplot2) import(graphics) import(methods) import(utils) importFrom(KernSmooth,bkde) importFrom(MASS,fitdistr) importFrom(alakazam,IUPAC_DNA) importFrom(alakazam,baseTheme) importFrom(alakazam,buildPhylipLineage) importFrom(alakazam,checkColumns) importFrom(alakazam,cpuCount) importFrom(alakazam,getAAMatrix) importFrom(alakazam,getAllele) importFrom(alakazam,getDNAMatrix) importFrom(alakazam,getFamily) importFrom(alakazam,getGene) importFrom(alakazam,getLocus) importFrom(alakazam,getMRCA) importFrom(alakazam,getPathLengths) importFrom(alakazam,getSegment) importFrom(alakazam,gridPlot) importFrom(alakazam,groupGenes) importFrom(alakazam,isValidAASeq) importFrom(alakazam,makeChangeoClone) importFrom(alakazam,nonsquareDist) importFrom(alakazam,pairwiseDist) importFrom(alakazam,pairwiseEqual) importFrom(alakazam,progressBar) importFrom(alakazam,seqDist) importFrom(alakazam,seqEqual) importFrom(alakazam,summarizeSubtrees) importFrom(alakazam,tableEdges) importFrom(alakazam,translateStrings) importFrom(ape,mst) importFrom(diptest,dip.test) importFrom(doParallel,registerDoParallel) importFrom(dplyr,"%>%") importFrom(dplyr,arrange) importFrom(dplyr,bind_cols) importFrom(dplyr,bind_rows) importFrom(dplyr,combine) importFrom(dplyr,desc) importFrom(dplyr,do) importFrom(dplyr,filter) importFrom(dplyr,group_by) importFrom(dplyr,group_indices) importFrom(dplyr,left_join) importFrom(dplyr,mutate) importFrom(dplyr,mutate_at) importFrom(dplyr,n) importFrom(dplyr,pull) importFrom(dplyr,recode) importFrom(dplyr,rename) importFrom(dplyr,select) importFrom(dplyr,summarize) importFrom(dplyr,summarize_at) importFrom(dplyr,transmute) importFrom(dplyr,ungroup) importFrom(foreach,"%dopar%") importFrom(foreach,foreach) importFrom(foreach,registerDoSEQ) importFrom(igraph,"V<-") importFrom(igraph,E) importFrom(igraph,V) importFrom(igraph,as_adjacency_matrix) importFrom(igraph,graph_from_data_frame) importFrom(igraph,layout_as_tree) importFrom(igraph,set_vertex_attr) importFrom(igraph,vertex_attr) importFrom(iterators,icount) importFrom(lazyeval,interp) importFrom(progress,progress_bar) importFrom(rlang,.data) importFrom(rlang,sym) importFrom(rlang,syms) importFrom(scales,log10_trans) importFrom(scales,log2_trans) importFrom(scales,math_format) importFrom(scales,percent) importFrom(scales,pretty_breaks) importFrom(scales,scientific) importFrom(scales,trans_breaks) importFrom(scales,trans_format) importFrom(seqinr,c2s) importFrom(seqinr,s2c) importFrom(seqinr,translate) importFrom(seqinr,words) importFrom(stats,approx) importFrom(stats,as.dist) importFrom(stats,convolve) importFrom(stats,cor) importFrom(stats,cov) importFrom(stats,cutree) importFrom(stats,dbeta) importFrom(stats,dgamma) importFrom(stats,dnorm) importFrom(stats,ecdf) importFrom(stats,integrate) importFrom(stats,mad) importFrom(stats,median) importFrom(stats,na.exclude) importFrom(stats,na.omit) importFrom(stats,optim) importFrom(stats,optimize) importFrom(stats,p.adjust) importFrom(stats,pbeta) importFrom(stats,pgamma) importFrom(stats,pnorm) importFrom(stats,qbeta) importFrom(stats,rbeta) importFrom(stats,rbinom) importFrom(stats,runif) importFrom(stats,sd) importFrom(stats,setNames) importFrom(stats,uniroot) importFrom(stats,weighted.mean) importFrom(stringi,stri_count_boundaries) importFrom(stringi,stri_count_regex) importFrom(stringi,stri_detect_regex) importFrom(stringi,stri_dup) importFrom(stringi,stri_extract_all_regex) importFrom(stringi,stri_extract_first_regex) importFrom(stringi,stri_flatten) importFrom(stringi,stri_join) importFrom(stringi,stri_length) importFrom(stringi,stri_replace_all_regex) importFrom(stringi,stri_replace_first_regex) importFrom(stringi,stri_sub) importFrom(stringi,stri_sub_replace) importFrom(tidyr,gather) importFrom(tidyr,pivot_wider) importFrom(tidyr,spread) importFrom(tidyselect,all_of) importFrom(tidyselect,any_of) shazam/NEWS.md0000644000176200001440000007457015123526740012655 0ustar liggesusersVersion 1.3.1: December 26, 2025 ------------------------------------------------------------------------------- Mutation Profiling: + Fixed a bug in `collapseClones()` where column names were set as attributes when processing single clones, causing `calcBaseline()` to fail due to attribute mismatches in subsequent `observedMutations()` checks. Now using `unname()` to remove name attributes. Version 1.3.0: October 20, 2025 ------------------------------------------------------------------------------- General: + Development of `shazam` has moved to GitHub: https://github.com/immcantation/shazam + Updated dependencies: alakazam >= 1.4.1. Mutation simulation: + `shmulateSeq` now samples mutations from a binomial distribution with provided probability instead of taking the floor from the number of sequences. Distance Profiling: + Updated `distToNearest` code, documentation and tests to match changes introduced in `alakazam::groupGenes` in `alakazam 1.4.1` to handle mixed data (single-cell and non single-cell, with heavy and/or light chain sequences). + Fixed a model mismatch. When `model="mk_rs5nf"` was specified in `distToNearest`, the function would incorrectly use character validation from the non-existing `MK_RS1NF@targeting` targeting model instead of the correct `MK_RS5NF@targeting`. Documentation: + Updated installation instructions to add BiocManager installation option. + Added a Contributing section. Version 1.2.1: August 1, 2024 ------------------------------------------------------------------------------- Documentation: + This is a documentation-only update to address changes in Read the Docs. Version 1.2.0: October 10, 2023 ------------------------------------------------------------------------------- General: + Updated dependencies: alakazam >= 1.3.0, ggplot2 >= 3.4.0, igraph >= 1.5.0. + As of `alakazam 1.3.0`, `alakazam::makeChangeoClone` requires the parameter `locus` with default value `locus`. This function is used in some examples and tests in `shazam`. We added a `locus` column to the package's example data. Distance Profiling: + Added to `distToNearest` the parameter `locusValues=c("IGH")` to specify loci values to focus the analysis on. + Fixed a bug in `distToNearest` where grouping by `fields` was applied after grouping by genes, therefore not treating independently the different subsets of data to identify groups of genes. In practice, this means that if fields was set to treat samples independently (`fields='sample_id'`), single linkage was applied to all data, and two genes could be placed in the same group of genes if they where connected by an ambiguous gene call in any of the samples. Now, data is separated by `fields`(sample_id in this example) before creating the groups of genes, and ambiguities in other samples are not considered. Mutation simulation: + ShmulateSeq sample mutations from a binomial distribution with provided probability instead of taking the floor from the number of sequences. Version 1.1.2: September 26, 2022 ------------------------------------------------------------------------------- Mutation Profiling: + Bug fix in parallelization set up for functions `slideWindowTune` and `slideWindowDb`. + `plotSlideWindowTune` (`slideWindowTunePlot`). Updated the possible values of the parameter `plotFiltered`, for easier usage. The new values (and their equivalent values in `slideWindowTunePlot`) are `filtered` (`TRUE`), `remaining` (`FALSE`), and `per_mutation` (`NULL`). Deprecated: + Deprecated `slideWindowTunePlot` in favor of `plotSlideWindowTune`, for naming consistency. Version 1.1.1: May 23, 2022 ------------------------------------------------------------------------------- General: + Removed dependency: kedd. The CRAN kedd package (by Arsalane Chouaib Guidoum) has been scheduled for archival on 2022-05-25. We have adapted the functions used by shazam and removed the dependency. New feature: + Added the function `convertNumbering` to convert between numbering systems (IMGT, Kabat). Mutation Profiling: + `shmulateTree` has new argument `nproc` to specify the number of cores. Default values `mutThresh` and `windowSize` have been set to `mutThresh=6` and `windowSize=10`. + Added the option `plotFiltered=NULL` to `slideWindowTunePlot`. + Fixed a bug in `listObservedMutations` not returning a list when `db` had one sequence with one mutation. + Fixed bars shifted in `plotMutability`. Version 1.1.0: July 8, 2021 ------------------------------------------------------------------------------- General: + Updated dependencies to alakazam >= 1.1.0 and ggplot2 >= 3.3.4. Selection Analysis: + `observedMutations`, `expectedMutations`, and `calcBaseline` can analyze mutations in all regions (CDR1, CDR2, CDR3, FWR1, FWR2, FWR3 and FWR4) by specifying `regionDefinition=IMGT_VDJ` or `regionDefinition=IMGT_VDJ_BY_REGIONS`. + Added the function `setRegionBoundaries` to build sequence-specific `RegionDefinition` objects extending to CDR3 and FWR4. + Added the function `makeGraphDf` to facilitate mutational analysis on lineage trees. Distance Profiling: + Fixed a bug in `distToNearest` where TRB and TRD sequences where ignored in distance calculation. + Fixed a bug in `distToNearest` causing a fatal error when `cross` was set. + Fixed a bug in `nearestDist` causing a fatal error when using `model="aa"` and `crossGroups`. Targeting Models: + Fixed an incompatibility with newer versions of ggplot2 in `plotMutability`. Version 1.0.2: August 10, 2020 ------------------------------------------------------------------------------- Mutation Profiling: + Fixed a bug in `observedMutations` and `calcObservedMutations` causing mutation counting to fail when there are gap (`-`) characters in the germline sequence. Targeting Models: + Fixed a bug in `createTargetingModel` causing empty counts in the `numMutS` and `numMutR` slots. Version 1.0.1: July 18, 2020 ------------------------------------------------------------------------------- Distance Profiling: + Added support for TCR genes to `distToNearest`. + Renamed the `groupUsingOnlyIGH` argument of `distToNearest` to `onlyHeavy`. Version 1.0.0 May 9, 2020 ------------------------------------------------------------------------------- Backwards Incompatible Changes: + Changed default expected data format from the Change-O data format to the AIRR Rearrangement standard. For example: where functions used the column name `V_CALL` (Change-O) as the default to identify the field that stored the V gene calls, they now use `v_call` (AIRR). That means, scripts that relied on default values (previously, `v_call="V_CALL"`), will now fail if calls to the functions are not updated to reflect the correct value for the data. If data are in the Change-O format, the current default value `v_call="v_call"` will fail to identify the column with the V gene calls as the column `v_call` doesn't exist. In this case, `v_call="V_CALL"` needs to be specified in the function call. + `ExampleDb` converted to the AIRR Rearrangement standard and examples updated accordingly. + For consistency with the style of the new data format default, other field names have been updated to use the same capitalization. This change affects: - Region definitions. For example, the `labels` slot of `IMGT_V` has changed from `CDR_R`, `CDR_S`, `FWR_R` and `FWR_S` to `cdr_r`, `cdr_s`, `fwr_r` and `fwr_s`, respectively. - Mutations in `CODON_TABLE` and the different `MUTATION_SCHEMES` change from `R`, `S` and `Stop` to `r`, `s` and `stop`, respectively. - Mutation profiling function output columns. For example, from `MU_COUNT_SEQ` to `mu_count_seq`. - `calcBaseline` and related function output columns and S4 object slots. For example, from `PVALUE`, `REGION` and `BASELINE_CI_PVALUE` to `pvalue`, `region` and `baseline_ci_pvalue`, respectively. + Model names used by `createSubstitutionMatrix`, `createMutabilityMatrix` and `createTargetingModel`, changed from `model=c("S","RS")` to `model=c("s","rs")`. General: + License changed to AGPL-3. Targeting Models: + `createMutabilityMatrix`, `extendMutabilityMatrix`, `createTargetingMatrix`, and `createTargetingModel` now also returns the numbers of silent and replacement mutations used for estimating the 5-mer mutabilities. These numbers are recorded in the `numMutS` and `numMutR` slots in the newly defined `MutabilityModel`, `MutabilityModelWithSource`, and `TargetingMatrix` classes. Mutation Profiling: + `shmulateSeq` now also supports specifying the frequency of mutations to be introduced. (Previously, only the number of mutations was supported.) Version 0.2.3 February 5, 2020 ------------------------------------------------------------------------------- General: + Removed SDMTools dependency. Version 0.2.2 December 15, 2019 ------------------------------------------------------------------------------- General: + Fixed an incompatibility with R 4.0 matrix changes. Version 0.2.1 July 19, 2019 ------------------------------------------------------------------------------- Distance Calculation: + Fixed a bug in `distToNearest` that could potentially cause sequences from different partitions to be used for distance calculation. Version 0.2.0 July 18, 2019 ------------------------------------------------------------------------------- General: + Upgraded to alakazam >= 0.3.0 and dplyr >= 0.8.1. Distance Calculation: + Fixed a bug in `plotDensityThreshold` for negative densities. + Fixed a bug in `distToNearest` for performing subsampling while calculating cross-group nearest neighbor distances. + For partitioning sequences, `distToNearest` now supports, via a new argument `VJthenLen`, either a 2-stage partitioning (first by V gene and J gene, then by junction length), or a 1-stage partitioning (simultaneously by V gene, J gene, and junction length). For 1-stage partitioning, `distToNearest` supports export of the partitioning information as a new column via `keepVJLgroup`. + `distToNearest` now supports single-cell input data with the addition of new arguments `cellIdColumn`, `locusColumn`, and `groupUsingOnlyIGH`. Mutation Profiling: + `shmulateTree` has new arguments, `start` and `end`, to specify the region in the sequence where mutations can be introduced. Selection Analysis: + Added the function `consensusSequence` which can be used to build a consensus sequence using a variety of methods. Version 0.1.11: January 27, 2019 ------------------------------------------------------------------------------- General: + Fixed a bug in the prototype declarations for the `TargetingModel` and `RegionDefinition` S4 classes. Version 0.1.10: September 19, 2018 ------------------------------------------------------------------------------- General: + Added `subsample` argument to `distToNearest` function. + Removed some internal utility functions in favor of importing them from `alakazam`. Specifically, `progressBar`, `getBaseTheme` and `checkColumns`. + Removed `clearConsole`, `getnproc`, and `getPlatform` functions. Distance Calculation: + Changed default `findThreshold` method to `density`. + Significantly reduced run time of the `density` method by returning the bandwidth detection process. The `density` method should now also yield more consistent thresholds, on average. + The `subsample` argument to `findThreshold` now applies to both the `density` and `gmm` methods. Subsampling of distance is not performed by default. + Fixed a bug in `plotDensityThreshold` and `plotGmmThreshold` wherein the `breaks` argument was ignored when specifying `xmax` and/or `xmin`. Selection Analysis: + Fixed a plotting bug in `plotBaselineDensity` arising when the `groupColumn` and `idColumn` arguments were set to the same column. + Added the `sizeElement` argument to `plotBaselineDensity` to control line size + Renamed the `field_name` argument to `field` in `editBaseline`. Version 0.1.9: March 30, 2018 ------------------------------------------------------------------------------- Selection Analysis: + Fixed a bug in `plotBaselineDensity` which caused an empty plot to be generated if there was only a single value in the `idColumn`. + Fixed a bug in `calcBaseline` which caused a crash in `summarizeBaseline` and `groupBaseline` when input `baseline` is based on only 1 sequence (i.e. when `nrow(baseline@db)` is 1). + Set default `plot` call on a `Baseline` object to `plotBaselineDensity`. + Removed `getBaselineStats` function. + Added a `summary` method for `Baseline` objects that calls `summarizeBaseline` and returns a data.frame. Mutation Profiling: + Fixed a bug in `shmulateSeq` which caused a crash when the input sequence contains gaps (`.`). + Renamed the argument `mutations` in `shmulateSeq` to `numMutations`. + Improved help documentation for `shmulateSeq` and `shmulateTree`. + Added vignette for simulating mutated sequences. + `calcExpectedMutations` will now treat non-ACTG characters as Ns rather than produce an error. + Added two new `RegionDefinition` objects for the full V segment as single region (`IMGT_V_BY_SEGMENTS`) and the V segment with each codon as a separate region (`IMGT_V_BY_CODONS`). Targeting Models: + Added the `calculateMutability` function which computes the aggregate mutability for sequences. + Fixed a bug that caused `createSubstitutionMatrix` to fail for data containing only a single V family. + Changed the default model to silent mutations only (`model="S"`) in `createSubstitutionMatrix`, `createSubstitutionMatrix` and `createTargetingModel` + Set default `plot` call on a `TargetingModel` object to `plotMutability`. Version 0.1.8: June 30, 2017 ------------------------------------------------------------------------------- General: + Corrected several functions so that they accept both tibbles and data.frames. Distance Calculation: + Adding new fitting procedures to the `"gmm"` method of `findThreshold()` that allows users to choose a mixture of two univariate density distribution functions among four available combinations: `"norm-norm"`, `"norm-gamma"`, `"gamma-norm"`, or `"gamma-gamma"`. + Added the ability to choose the threshold selection criteria in the `"gmm"` method of `findThreshold()` from the best average sensitivity and specificity, the curve intersection or user defined sensitivity or specificity. + Renamed the `cutEdge` argument of `findThreshold()` to `edge`. Mutation Profiling: + Redesigned `collapseClones()`, adding various deterministic and stochastic methods to obtain effective clonal sequences, support for including ambiguous IUPAC characters in output, as well as extensive documentation. Removed `calcClonalConsensus()` from exported functions. + Added support for including ambiguous IUPAC characters in input for `observedMutations()` and `calcObservedMutations()`. + Fixed a minor bug in calculating the denominator for mutation frequency in `calcObservedMutations()` for sequences with non-triplet overhang at the tail. + Renamed column names of observed mutations (previously `OBSERVED`) and expected mutations (previously `EXPECTED`) returned by `observedMutations()` and `expectedMutations()` to `MU_COUNT` and `MU_EXPECTED` respectively. Selection Analysis: + `calcBaseline()` no longer calls `collapseClones()` automatically if a `CLONE` column is present. As indicated by the documentation for `calcBaseline()` users are advised to obtain effective clonal sequences (for example, calling `collapseClones()`) before running `calcBaseline()`. + Updated vignette to reflect changes in `calcBaseline()`. Version 0.1.7: May 14, 2017 ------------------------------------------------------------------------------- Mutation Profiling: + Fixed a bug in `collapseClones()` that prevented it from running when `nproc` is greater than 1. Version 0.1.6: May 12, 2017 ------------------------------------------------------------------------------- General: + Internal changes for compatibility with dplyr v0.6.0. + Removed data.table dependency. Mutation Profiling: + Fixed a bug in `collapseClones()` that resulted in erroneous `CLONAL_SEQUENCE` and `CLONAL_GERMLINE` being returned. + Added a vignette describing basic mutational analysis. + Remove console notification that `observedMutations` was running. Version 0.1.5: March 23, 2017 ------------------------------------------------------------------------------- General: + License changed to Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0). Selection Analysis: + Fixed a bug in p-value calculation in `summarizeBaseline()`. The returned p-value can now be either positive or negative. Its magnitude (without the sign) should be interpreted as per normal. Its sign indicates the direction of the selection detected. A positive p-value indicates positive selection, whereas a negative p-value indicates negative selection. + Added `editBaseline()` to exported functions, and a corresponding section in the vignette. + Fixed a bug in counting the total number of observed mutations when performing a local test for codon-by-codon selection analysis in `calcBaseline()`. Targeting Models: + Added `numMutationsOnly` argument to `createSubstitutionMatrix()`, enabling parameter tuning for `minNumMutations`. + Added functions `minNumMutationsTune()` and `minNumSeqMutationsTune()` to tune for parameters `minNumMutations` and `minNumSeqMutations` in functions `createSubstitutionMatrix()` and `createMutabilityMatrix()` respectively. Also added function `plotTune()` which helps visualize parameter tuning using the above mentioned two new functions. + Added human kappa and lambda light chain, silent, 5-mer, functional targeting model (`HKL_S5F`). + Renamed `HS5FModel` as `HH_S5F`, `MRS5NFModel` as `MK_RS5NF`, and `U5NModel` as `U5N`. + Added human heavy chain, silent, 1-mer, functional substitution model (`HH_S1F`), human kappa and lambda light chain, silent, 1-mer, functional substitution model (`HKL_S1F`), and mouse kappa light chain, replacement and silent, 1-mer, non-functional substitution model (`MK_RS1NF`). + Added `makeDegenerate5merSub` and `makeDegenerate5merMut` which make degenerate 5-mer substitution and mutability models respectively based on the 1-mer models. Also added `makeAverage1merSub` and `makeAverage1merMut` which make 1-mer substitution and mutability models respectively by averaging over the 5-mer models. Mutation Profiling: + Added `returnRaw` argument to `calcObservedMutations()`, which if true returns the positions of point mutations and their corresponding mutation types, as opposed to counts of mutations (hence "raw"). + Added new functions `slideWindowSeq()` and `slideWindowDb()` which implement a sliding window approach towards filtering a single sequence or sequences in a data.frame which contain(s) equal to or more than a given number of mutations in a given number of consecutive nucleotides. + Added new function `slideWindowTune()` which allows for parameter tuning for using `slideWindowSeq()` and `slideWindowDb()`. + Added new function `slideWindowTunePlot()` which visualizes parameter tuning by `slideWindowTune()`. Distance Calculation: + Fixed a bug in `distToNearest` wherein `normalize="length"` for 5-mer models was resulting in distances normalized by junction length squared instead of raw junction length. + Fixed a bug in `distToNearest` wherein `symmetry="min"` was calculating the minimum of the total distance between two sequences instead of the minimum distance at each mutated position. + Added `findThreshold` function to infer clonal distance threshold from nearest neighbor distances returned by `distToNearest`. + Renamed the `length` option for the `normalize` argument of `distToNearest` to `len` so it matches Change-O. + Deprecated the `HS1FDistance` and `M1NDistance` distance models, which have been renamed to `hs1f_compat` and `m1n_compat` in the `model` argument of `distToNearest`. These deprecated models should be used for compatibility with DefineClones in Change-O v0.3.3. These models have been replaced by replaced by `hh_s1f` and `mk_rs1nf`, which are supported by Change-O v0.3.4. + Renamed the `hs5f` model in `distToNearest` to `hh_s5f`. + Added support for `MK_RS5NF` models to `distToNearest`. + Updated `calcTargetingDistance()` to enable calculation of a symmetric distance matrix given a 1-mer substitution matrix normalized by row, such as `HH_S1F`. + Added a Gaussian mixture model (GMM) approach for threshold determination to `findThreshold`. The previous smoothed density method is available via the `method="density"` argument and the new GMM method is available via `method="gmm"`. + Added the functions `plotGmmThreshold` and `plotDensityThreshold` to plot the threshold detection results from `findThreshold` for the `"gmm"` and `"density"` methods, respectively. Region Definition: + Deleted `IMGT_V_NO_CDR3` and `IMGT_V_BY_REGIONS_NO_CDR3`. Updated `IMGT_V` and `IMGT_V_BY_REGIONS` so that neither includes CDR3 now. Version 0.1.4: August 5, 2016 ------------------------------------------------------------------------------- Selection Analysis: + Fixed a bug in calcBaseline wherein the germline column was incorrectly hardcoded, leading to erroneous mutation counts for some clonal consensus sequences. Targeting Models: + Added `numSeqMutationsOnly` argument to `createMutabilityMatrix()`, enabling parameter tuning for `minNumSeqMutations`. Version 0.1.3: July 31, 2016 ------------------------------------------------------------------------------- General: + Added ape and igraph dependency + Removed the `InfluenzaDb` data object, in favor of the updated `ExampleDb` provided in alakazam 0.2.4. + Added conversion of sequence to uppercase for several functions to support data that was not generated via Change-O. Distance Calculation: + Added the `cross` argument to `distToNearest()` which allows restriction of distances to only distances across samples (i.e., excludes within-sample distances). + Added `mst` flag to `distToNearest()`, which will return all distances to neighboring nodes in a minimum spanning tree. + Updated single nucleotide distance models to use the new C++ distance methods in alakazam 0.2.4 for better performance. + Fixed a bug leading to failed distance calculations for the `aa` model of `distToNearest()`. + Fixed a bug wherein gap characters where being translated into Ns (Asn) rather than Xs within the `aa` model of `distToNearest()`. Mutation Profiling: + Added the `MutationDefinition` `VOLUME_MUTATIONS`. + Added the functions `shmulateSeq()` and `shmulateTree()` to simulate mutations on sequences and lineage trees, respectively, using a 5-mer targeting model. + Renamed `collapseByClone`, `calcDbExpectedMutations` and `calcDbObservedMutations` to `collapseClones`, `expectedMutations`, and `observedMutations`, respectively. Selection Analysis: + Fixed a bug wherein passing a `Baseline` object through `groupBaseline()` multiple times resulted in incorrect normalization. + Added `title` options to `plotBaselineSummary()` and `plotBaselineDensity()`. + Added more control over colors and group ordering to `plotBaselineSummary()` and `plotBaselineDensity()`. + Added the `testBaseline()` function to test the significance of differences between two selection distributions. + Improved selection analysis vignette. Version 0.1.2: February 20, 2016 ------------------------------------------------------------------------------- General: + Renamed package from shm to shazam. + Internal changes to conform to CRAN policies. + Compressed and moved example database to the data object `InfluenzaDb`. + Fixed several bugs where functions would not work properly when passed a `dplyr::tbl_df` object instead of a `data.frame`. + Changed R dependency to R >= 3.1.2. + Added stringi dependency. Distance Calculation: + Fixed a bug wherein `distToNearest()` did not return the nearest neighbor with a non-zero distance. Targeting Models: + Performance improvements to `createSubstitutionMatrix()`, `createMutabilityMatrix()`, and `plotMutability()`. + Modified color scheme in `plotMutability()`. + Fixed errors in the targeting models vignette. Mutation Profiling: + Added the `MutationDefinition` objects `MUTATIONS_CHARGE`, `MUTATIONS_HYDROPATHY`, `MUTATIONS_POLARITY` providing alternate approaches to defining replacement and silent annotations to mutations when calling `calcDBObservedMutations()` and `calcDBExpectedMutations()`. + Fixed a few bugs where column names, region definitions or mutation models were not being recognized properly when non-default values were used. + Made the behavior of `regionDefinition=NULL` consistent for all mutation profiling functions. Now the entire sequence is used as the region and calculations are made accordingly. + `calcDBObservedMutations()` returns R and S mutations also when `regionDefinition=NULL`. Older versions reported the sum of R and S mutations. The function will add the columns `OBSERVED_SEQ_R` and `OBSERVED_SEQ_S` when `frequency=FALSE`, and `MU_FREQ_SEQ_R` and `MU_FREQ_SEQ_R` when `frequency=TRUE`. Version 0.1.1: December 18, 2015 ------------------------------------------------------------------------------- General: + Swapped dependency on doSNOW for doParallel. + Swapped dependency on plyr for dplyr. + Swapped dependency on reshape2 for tidyr. + Documentation clean up. Distance Calculation: + Changed underlying method of calcTargetingDistance to be negative log10 of the probability that is then centered at one by dividing by the mean distance. + Added `symmetry` parameter to distToNearest to change behavior of how asymmetric distances (A->B != B->A) are combined to get distance between A and B. + Updated error handling in distToNearest to issue warning when unrecognized character is in the sequence and return an NA. + Fixed bug in 'aa' model in distToNearest that was calculating distance incorrectly when normalizing by length. + Changed behavior to return nearest nonzero distance neighbor. Mutation Profiling: + Renamed calcDBClonalConsensus to collapseByClone Also, renamed argument collapseByClone to expandedDb. + Fixed a (major) bug in calcExpectedMutations. Previously, the targeting calculation was incorrect and resulted in incorrect expected mutation frequencies. Note, that this also resulted in incorrect BASELINe Selection (Sigma) values. + Changed denominator in calcObservedMutations to be based on informative (unambiguous) positions only. + Added nonTerminalOnly parameter to calcDBClonalConsensus indicating whether to consider mutations at leaves or not (defaults to false). Selection Analysis: + Updated groupBaseline. Now when regrouping a Baseline object (i.e. grouping previously grouped PDFs) weighted convolution is performed. + Added "imbalance" test statistic to the Baseline selection calculation. + Extended the Baseline Object to include binomK, binomN and binomP Similar to numbOfSeqs, each of these are a matrix. They contain binomial inputs for each sequence and region. Targeting Models: + Added `minNumMutations` parameter to createSubstitutionMatrix. This is the minimum number of observed 5-mers required for the substitution model. The substitution rate of 5-mers with fewer number of observed mutations will be inferred from other 5-mers. + Added `minNumSeqMutations` parameter to createMutabilityMatrix. This is the minimum number of mutations required in sequences containing the 5-mers of interest. The mutability of 5-mers with fewer number of observed mutations in the sequences will be inferred. + Added `returnModel` parameter to createSubstitutionMatrix. This gives user the option to return 1-mer or 5-mer model. + Added `returnSource` parameter to createMutabilityMatrix. If TRUE, the code will return a data frame indicating whether each 5-mer mutability is observed or inferred. + In createSubstitutionMatrix and createMutabilityMatrix, fixed a bug when multipleMutation is set to "ignore". + Changed inference procedure for the 5-mer substitution model. + Added inference procedure for 5-mers without enough observed mutations in the mutability model. + Fixed a bug in background 5-mer count for the RS model. + Fixed a bug in IMGT gap handling in createMutabilityMatrix. + Fixed a bug that occurs when sequences are in lower cases. Version 0.1.0: June 18, 2015 ------------------------------------------------------------------------------- Initial public release. General: + Restructured the S4 class documentation. + Fixed bug wherein example `Influenza.tab` file did not load on Mac OS X. + Added citations for `citation("shazam")` command. + Added dependency on data.table >= 1.9.4 to fix bug that occurred with earlier versions of data.table. Distance Calculation: + Added a human 1-mer substitution matrix, `HS1FDistance`, based on the Yaari et al, 2013 data. + Set the `hs1f` as the default distance model for `distToNearest()`. + Added conversion of sequences to uppercase in `distToNearest()`. + Fixed a bug wherein unrecognized (including lowercase) characters would lead to silencing returning a distance of 0 to the neared neighbor. Unrecognized characters will now raise an error. Mutation Profiling: + Fixed bug in `calcDBClonalConsensus()` so that the function now works correctly when called with the argument `collapseByClone=FALSE`. + Added the `frequency` argument to `calcObservedMutations()` and `calcDBObservedMutations()`, which enables return of mutation frequencies rather the default of mutation counts. Targeting Models: + Removed `M3NModel` and all options for using said model. + Fixed bug in `createSubstitutionMatrix()` and `createMutabilityMatrix()` where IMGT gaps were not being handled. Version 0.1.0.beta-2015-05-30: May 30, 2015 ------------------------------------------------------------------------------- General: + Added more error checking. Targeting Models: + Updated the targeting model workflow to include a clonal consensus step. Version 0.1.0.beta-2015-05-11: May 11, 2015 ------------------------------------------------------------------------------- Targeting Models: + Added the `U5NModel`, which is a uniform 5-mer model. + Improvements to `plotMutability()` output. Version 0.1.0.beta-2015-05-05: May 05, 2015 ------------------------------------------------------------------------------- Prerelease for review. shazam/inst/0000755000176200001440000000000015123530430012506 5ustar liggesusersshazam/inst/CITATION0000644000176200001440000000761514652721545013673 0ustar liggesusersbibentry(bibtype = "Article", style = "citation", header = "To cite the SHazaM package in publications, please use:", title = "Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data.", author = c(person("Namita T.", "Gupta"), person("Jason A.", "Vander Heiden"), person("Mohamed", "Uduman"), person("Daniel", "Gadala-Maria"), person("Gur", "Yaari"), person("Steven H.", "Kleinstein")), year = 2015, journal = "Bioinformatics", pages = "1-3", doi = "10.1093/bioinformatics/btv359") bibentry(bibtype = "Article", style = "citation", header = "To cite the selection analysis methods, please use:", title = "Quantifying selection in high-throughput Immunoglobulin sequencing data sets.", author = c(person("Gur", "Yaari"), person("Mohamed", "Uduman"), person("Steven H.", "Kleinstein")), year = 2012, journal = "Nucleic acids research", volume = 40, number = 17, pages = "e134", doi = "10.1093/nar/gks457") bibentry(bibtype = "Article", style = "citation", header = "To cite the HH_S5F model and the targeting model generation methods, please use:", title = "Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data.", author = c(person("Gur", "Yaari"), person("Jason A.", "Vander Heiden"), person("Mohamed", "Uduman"), person("Daniel", "Gadala-Maria"), person("Namita T.", "Gupta"), person("Joel N. H.", "Stern"), person("Kevin C.", "O'Connor"), person("David A.", "Hafler"), person("Uri", "Lasserson"), person("Francois", "Vigneault"), person("Steven H.", "Kleinstein")), year = 2013, journal = "Frontiers in Immunology", volume = 4, number = 358, pages = "1-11", doi = "10.3389/fimmu.2013.00358") bibentry(bibtype = "Article", style = "citation", header = "To cite the HKL_S1F, HKL_S5F, MK_RS1NF, and MK_RS5NF models, please use:", title = "A Model of Somatic Hypermutation Targeting in Mice Based on High-Throughput Ig Sequencing Data.", author = c(person("Ang", "Cui"), person("Roberto", "Di Niro"), person("Jason A.", "Vander Heiden"), person("Adrian W.", "Briggs"), person("Kris", "Adams"), person("Tamara", "Gilbert"), person("Kevin C.", "O'Connor"), person("Francois", "Vigneault"), person("Mark J.", "Shlomchik"), person("Steven H.", "Kleinstein")), year = 2016, journal = "The Journal of Immunology", volume = 197, number = 9, pages = "3566-3574", doi = "10.4049/jimmunol.1502263") bibentry(bibtype = "Article", style = "citation", header = "To cite the mixture model for threshold determination, please use:", title = "Optimized Threshold Inference for Partitioning of Clones From High-Throughput B Cell Repertoire Sequencing Data", author = c(person("Nima", "Nouri"), person("Steven H.", "Kleinstein")), year = 2018, journal = "Frontiers in Immunology", volume = "9", doi = "10.3389/fimmu.2018.01687")shazam/inst/doc/0000755000176200001440000000000015123530430013253 5ustar liggesusersshazam/inst/doc/Baseline-Vignette.pdf0000644000176200001440000077771315123530401017277 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 11 0 obj << /Length 1773 /Filter /FlateDecode >> stream xÚåXm“Ó6þίðÐqfˆ‘,¿2퇎ãÊw7|(tn”DÉ©ø%øåÊñ뻫•ÛIè m¿ÄÒÚ»Ú}´zvæ¬æÝaŸy>>¿óð™H{>ç|éðÐ÷’Ðw¢(ô ó…óÖ=»”Ÿdþh2 Xä¾ne1ñ#·Ñï˜æ²Ñe1™ æ»å’žµÊÔ|+^Wª®'Üm«É”»jòûù‹‡Ïîpî¥!,«Nyâq9S{,‰hÕW2×°ØQ»¦aìÞ'É Y›`xþÄnsYšç5 ßLîÊb¡*š?Wz¡¬Â}²ô¢Í´´¢×=»,[ôÐá÷À#îùBG>óÃ)÷§~DAD)|æ‰ ¢ |yx? ¸ÇbN:OÀ+ÁÝFÑ£&M:œy)K¹=òD€0†€ ÞáG™¯3^ á.$F€p3dì[Aš~+?Äã†PåMš;o§<ðS—¥ ÒNxaà'•ZWådê'îV+°å‡ÿs¿ü±qÿFÄŸÈlÞf²±IÞ§ ˜ž<}6I@гÀ]–‰u±ÐWzÑʬÓúЪv Ù)ü¡qÞE(qÅUe»¦8ʉ9Ò\â^áO™™‡¢7»Ð ]躩ô¬% Gdý8úÁ2zFÁ^Œlm:ÉÊf¡|-«ýYUÏËJsj…0ƒ3–üËO\tc>.tcˆÍàE(`WÙ¢;]ƒw%À§ e93ìøà9™FIò_¡¿Ážì5J¡ºó†ÌáNì;t A ÝS?>8;|yüJQ‡ñÁôJ±í•LÞ€˜’ÐuY Ó"µ•ÕšmÚ˜Ø[ޤ]3muQf²Æ#ì–u£*m’eU9“3é¦gZÌo… wÙäö;Ðlbb^ìDî¥ë 02<8¬ pÌAz,hŠ‘øQ9R«ŠHɾÉqÒ6¦O¬é#{@íMIRõqmò Ò‹^¨›vº$© \X+ÐÚé+ü ûzY•9dA¦[ìÿ²kÏôt½MÞ ú;ÜÙó_)ÃY­TwB`ùÒà»P¦GºgC2Ñ5=GÛlÏÒ•–Öê¥ê'ËJ„ãÏÍ!„­[×Fù%7'¦§¡ ù[¦€[°ñ˜,`tµj6X =Õ`Ÿ*¡[·³Í‡Ý«ãU—˜fw7gc%1RJq³Ì×]:\èÅ+MIkÀÖ_¹’Ì ÁsU4ÿð‚+UåØ?o¼X\ä²~O&<øïy‘ÀŸÔ©ÀàPrj̧Ÿ|ø¯.áýýSqœ¯Ëª¡±Í«Í€øôêçÌа#üvùät7ºQ±Ìô¬’Õõ¨bš,ìxÚ¤!Eûùåna¿¾Y¿=–Ì ÉÒt€âËRZÔ mà ãro "Nˆàp„.™Þ'KYž1Ÿ¨ÊDSbغûýö +õc€l?ðtöÀ Ì #2nVHN©ÙÙfË/#OýUÂÔè$Fß½ÛíûÝ=>qbêÑ´ó³ËÖåv™dëæÏÓ[Ci5í~Þ šùr~1ÇVˆ<ûŒÖ=]ÜûZßæûܺ…îÝã£ç;è?¸m hæhï&î$ñ¸ óñ?sä¨Xx ·ÿæUÏïü&ŒÑ endstream endobj 34 0 obj << /Length 1771 /Filter /FlateDecode >> stream xÚÍY[oÛ6~ﯲˆQK–‡6M‚ P¤Þ^ÚÁ %ÚÖ*Q®.M³_¿sHJÅMì.Û‹MQs{ å2Œôœ èIü§ÉÔw|È­2 äS›ÙpÜf6§·GX]3µZƒdW†~¶õ݈»xclØoËóàÒ²0F›¹•ÅDý2ÕdØ"×Yž–§Ü Íì(Æy¯p™Ÿlß¾üFómÆÞ.O•V@ÂL²¼µ™oäy!€p>ÐÏñ[;fÊ2mFð0OƒEšœ õz†*Äs-*ÌûÒÉíΣ[ËcA³tÍsÆëc´  ³clyì\$‹œVŸ ž%[C‚ËV)O1ÕŸYßüv=_üq¸€œÕ›"9Ìõªï¦È–\•ìË1fK<ç`eÞäÈ ·þ~T-‘i@“ZíŒT žœÿSgMÂ^çËtÝM5ÔÈwÛœ?‚£6#5ºzýîÃåÑÎY–дÍSV}¨‹xC«:ÿml-Ò9´ñAûDFr!ïÉÛ ÓoÊÛvßuzí~Øo÷C¯ßî?áHv5ú±(~¦^(ÔJÊGÎ`©~8Áf6ikn–É.¦;±@µ®]U³m{ø: ôÚ£5÷C³¬X-Ç]]ÝuøˆÇ]IÆqî’À~N¡M–‹ÉKTÚJšµ¿Âj6)Ýž’íÝù!@”œ×ÃûÓlz7ÍÇ,UN?ˆµß5–œæã­ÊCö‡a2€.9Ô0y-Ï"ª³£ª9ÜP¾fÅ…låq¦Xþ9Ý*º€”ýV{X—1ÿ¬¾ð…›ÓÏL³ñq—?»\@@ÿú.© ¶J?ªÉ:ÙG‡£1ÒÐxÛp•7lc%;e §pW-Ø7³'ç­“³¦*ϲ"¦ÙÙ2ågJ‹“·lZ‹\Òíæ…bÙ¤Yò~sŸ¥ÛwÊá#!± U•Ïû^}66Ë|Q³|{P/5¿ýýò_ãhr B/=â刵*!Y«„Xù>ØÖ%cíÙö¶ŸQOÖ_óAÕPšŠ«‘ÚXÙŠMëÑžâ Ï£6Éêeóõ5Š~»ÃåN+­Ï8¸ §ÖkN8JÀ¾’?*eØX3r“étW¡‘‘À Ž=}{ G›[OÏsÜûnRÃæä:†öw|xˆf:µ„%JQƒy·¶O× !Ù::'üÊ—ûn{Êx\éΈÎ€ãDÝç‰Ó‡ÐÏ8èÎøÐTøMG(^ÈÛêÝ…,±CVus¹»L‡ÃEŽ|¼Q¯Å©EÝ>rõ×»0‡w%˨¸M¦p×¥åè-§ï[6¦ ”'¸(ôa¶ƒO=SÞf§³™å;ꜣ-ºœ¿ú; Í^ endstream endobj 43 0 obj << /Length 2713 /Filter /FlateDecode >> stream xÚíZÝܶ÷_±H_tÀ­"~éÃhb;—8€›Â¾¦(ââ ÛÕÞ©ÑJ}ľþõá %Q·Þµ #}h_N$—Î g~3^´º[E«ïŸDü}výäë«8[ fÆÈÕõn•ÈUea¤Åêz»ú%xžW›¡Êûâb­tEUlú²©©û×W™:êíš–e½-/·C^¹Ukü6õ¦è.þyýã×WʬDfQ&pWF8ŠVˆÓ4Ô:Y]ï7óÓ Û4ma÷Ë‚¼-hpã˜ÜÒïÊþž~éï Ú/UÞ~¼™Œ³0S‹‘Ú³$-ëâ ³JË0M„¿~7Ô–áðbm2\ß—Ìï&g!n/Ö2 ˜ùt’ hA{ûÇäÈÁ 6OgúIt˜f¼[WÖw’R9¯¨Õ7§ÄJ‡:I}BçÄžñ #ÊÈøë/qç8xw_n.@º{bä@¢Zé:™l‹ß†²µ2C¯ë‹C:ÓFßV}ÑÖy_þ~a%‚êá"5n¦®§m2Þ†FŠØÈ€ ÔŸ˜)/¡Ò)+öÄé Lô·`A°ô5Û2üp×0Ì ˜!0Ô·MEÓì“<-Îþ”×yõÐÙ³‡a¤¾/€ˆh•›EžrW ¦0Ú÷:8[Xž"{ºÐè 0Tòw¡d0T}y°fjÒäG¸º½&E\]¤2hª äIÀúp[-5ÊÛõíÀ»ji‚fG¿äÜ/ÞFJámìa%hÕø{W»Ó,«M¶§’ qXòœ$œ©Öé ›Û®h‰ÔÖíµåÍÞ³³lz÷Û'k:eO<“¥¡ÊH¼>g žáP㢾£¾E-ô„" Í–†ˆo˜4ã[¨¹p‚'ŸÁ¥²PJåñ… È«›‘Þé3Ó2 “¦ö,X[Tùì`P€¾÷ÖxNq‡ KÁ›÷gœÝíþ#A˜‡}áIŠM§‹tôÅöÕ@Öá8MûDÈã¢`è,² pd3‹e2sž5Å€*Úcë–°¬ ¥ßÑæí—-3 ³"œŸ#³–*ë='"”™$nÁ¤­5Ÿyf"Qaû4F¹Ð¢#Í®¥¿ÀЮ%[{ ®uçÈø‚Çq ‹É õ¶h«B¤Ÿ·w…Å&ö:ϤSH´"ÎöÝ‹è…Ê!T•SÄ&€Cø|Ï‘b3ÓfÊ/ç!>ÏEØ)€´;é¡ žóFˆü‰L|vGÁ^5Èòñ“…ÕF…"‰GbÄyŒd* ^Ö“±=ŽäFëP8 .Þç{Âp%œ" C:péb ù±±-v9ÀþÉô&¡Æßæ‡nÞ˜«sž`¥ä‚Aò,Z&6,LŠÀÆì(xÎP¤ Õ žÌTÎ@‡-¦ccD˜#“ö9šåÃ2„…±f¦òªkH;“‰`¼EÎòŽ0@q´„oÞQtžâ1ÿ¾Ã7gÛÒ†6ë»¶Ù/üóû¼¾+Ö?Ñ0…wTe–Í8-+Éõj˜µ.™± ,×eD·$=%t÷EÇó ¿Dá6 Šj"`R.‰¡|‰&“ú‘:×¾ Ø—·%.Ç6OÜ¢2öeMo#=ñ>‚%d[„YÅa’°h;Tê;¤Ú´¿Â*“Z2Wwd` -îdà-Èœ²` ¶þ.DáE±n­Î$éYiµà<}pÊ ¾¶˜ÊèÚÚ-tßÝ ó–:NûûØ¡Èc¯Ö)¤Ç’ÁŒd[>yY&g³°?¹ü [Z[ÎȤbËØÂ‘YÞ`°* t:m1Ú-É]£+(Fµöú…4llïúµuHœHšÀ¢—#ð²¿0#§Ã™$†¿î>ÿw¾?v d“ÛCn/¿æwÅåÜs{çAÏ+8lÕ[4ãAÁìп©þø³ËäïìÁ¦4_[ê@Œ [/_}½¾ËD¶O‘ÝñN ’Æs¾×R‡qœÀ]˜óó·RDËU¾~¦Ö,0nxóóQ¥èPÅÊÍ{J|[ñåb2µ€—µY¼ßTÃv|X]º»L38©}8,J6vƒÔ èиoxZG2ÒH­Ö#böù:ºyö›×ß}ÿò§¿¼ù@€Ê”K„À›c¯´2!ßæžN]ý⵸¤1hJn‚4bjº»ÚvQ|9«›ôoXÿf¡ã™ÛÍ“µ& ˆ­Õ8kÕ tÖZ툭¼œ¯ .d\*3¡0ÌÿëO‹-Aé,õiØ<)Ö%ÕŽêûCO=ûÅrÃTÒÀE¼Ãûhv}Éþ m˜2ù˜¯×T{‰ñÞóÚÓ´—ºÊO¨œRÆ‘r¶šÌÑådg ÏÚа»3(0S¿ÓÃQÃ×èÑ14²÷CËy¿†Ê£!Ž2pó’V`‹ª4¤©åÙ]{äB…F‡Êbt—/…|))¢a(ÇÆ&9·œ§EZegM —ÚË´Ý‘m0 ¸ ŸHÉ÷عñbÀ°Æ‹Ù"Š.i,·¹ç–:dÀ¸ lXÇlMC&æKÿ2°9ÃÆ¬ÛUá¦ú Y$§t3Ÿ¶=a½6S3Sò¢ ªÇŠýöo_R{óÈ(5ž2Cê5{ðÌà 9‚.°ÅËÎܵuž¾ÙA—×'¤%D¬öÒàÐõÍþÔùí*°©ÏÿÇœÿ\~¼•è¥bù_pg1u 1M á­ GöG^[·Î>ª¦G¡ÿI?ÔñžƒBzjº’õöÓÕ»V¶q8õ8çf3­§ÏÇBý¢)YêCú“ùˆ5òC¢G TöáP$º7¢¯~±;ýyííYŒ ±VjVš72­aá·èzjÑ›>sNÿ€]ªýŸ®U ¨g®Tÿïü‘ﺑ}.ðØœrõ(^£„]_nèÂ.ÇrhÊåP|¨åŠ´äW)É’ÙéS©|úŸz ÀZvÁó†‹ìs­ÒÈXA×ËÚ¹ <òMÉ«˜»G•Ù‹ Ûº±ô¡R`‡"•î‡â¼qŠ8¦Ö¯lS-p|.ùüȯDó*t.rMO~Ø)ÖvùŸI°Í‚‹E¶MçÑÿL°ºÜ¬–f¾ŒSNœO†)ï¤?úwÍâC?ªÔ· ©„½FÂÛv¨#V¬ò–|wýä?[q?Ñ endstream endobj 48 0 obj << /Length 2959 /Filter /FlateDecode >> stream xÚíkoÛ8ò{…±‹ VERÏÅÞ‡tûHïš¶hÜÛC Hr¢[YòIrºí¯¿y2©¸v²‡û°À}±Èáp8΋Cû³›™?{õÄ7_/Hg¾Fð#¢YPòáÕ“gË'O_&j&|/õS1[®fR„žHÄ,öSÏTÌ~›wåMÕ6ÏËUÕT´þvòÏåßÇ•áõÅ«åÕ/§ ~À³ß¡ çͦks—˜ïÉÐ"…³ží@hö\L9øä‡.l[ˆ@Ñ–Ò÷” xKßB,äY?Ëú²®š’!Ÿ«ºæÖ¶× òªªæ†{íu_vweÁ½¬) Ò¦Ì^o‡ EÕŸr¿jø;Üjš«ª¬‹þGƒ}•·Ûf¸Ê‹îª;Ýì§ÀÕç=˜ì'|Á amJÞ÷{à“Exâ~ú2õmõñAʉ—-åŸAºÛ:cÙ©DÍAÐ' 1* UúÛâ¨$˜÷C¹aÚ*th{i Àz³XÎ"•zÊOgË5êßS}^õümZ èÊo«{«¶c®ΠMUD©—€ª:¤Íi_è=™Œ/J'ìáYXW&`sr2ÇÈÚ¬ÛYX‘{ -oüúŽe^j™lnlº BM@<À`ƒéMH;†s˜µæ‰ vç{8i&<߬C•¡‡æPWÀ›’l2Øh·Ãf‹«Ä¼Ý özx8=~>‘ñ¼eœUm(OÄ|ƒ­ž¡EËÂèy« 4² `Áä2ë@Ši¯_5ãòE6dÞ ©v@>[—§#nsP’!x2²Ñc¢´…Jé¥à ä²Hœ–(…ô¤¨‘?eöàn» JYm›œõŒºF7•”@¹cÌŠŒy4dÀëó…QöžŽ*1~;JÙ“;ðä ¦tê>l'ÍžÇxí9­e© Ë–Úé­ºvm ]6ä·NH˜ ¬&”‚ÅÓj×Ö÷¾Ïb–bîÈ.Šý´˜D08_ t÷x¦ ÙÍœü$ ùy N±tXÊ~¸D¯Akx¥MDÊ ¯Âáõ»U›Cô+¾›rõ^ưkËø/”ILC›•GXîc?ƶ¬Ê®±ß€'ÐÁlm:­(?ù*àí÷ŒD±ÇÖhjPêþŽ@ àGâY隊µX¢qÇ"ù«l[ØIÉ÷ƒW»ÍÐ3Þ‘U#8ÐC!ÉO`-áÒŸ†Âc<*8y'.‘#±PAŒiêÎyP,´TäE‘t‰€‡NDIJf¹€<¾°0Ê?†²éÇ辟5pª¡/<|¨×6üˆÀ÷b;ÓHrÆF‚œ,~µv”ÜËð#ÁjL «³]ì¢ p?0ÖÛ£Ž!„²ÍH‡.lûmVs“"d¦7€…^«±`9¶o³æ¦´ "¨ã¶Ü‰%HO&:ØdëªÍ!È:¯ na¸B\—ºyKJY ¿ØG)à0na¬«¢¤mÎĮ܀¬ý#pKÁd0’ðàÀ¥šŸ·ˆJ».ïè3Z`ÙäHŠ~¸K2gì}û/VRï÷Î$§Ô`®;/xL}Rð\Q¼zquñqy¶|ýîíå>þRAÓ3~dÁœ±ë¡ü–\Ù;˜ÀÁƒ–¤ñ¶Õ¨7e»8t_OBÇb2]8«ÒºÛݘá:ëM:ü-y P–0vÿqò:ÿõù‡wïÏ–ç¿–™}M‰Hf|amRP¢L¥¢L•"'B¤AJö¹mɱ¯û HÒQŽ@Y! ÑBáþ º_ º\µ›Ûvá\mRÈb5 |Ð2¡CÎu•Wƒ^s;‡€Ã¢'): êã$ÿþÝ›³¯—Gänù0éKOAªÎPŒàU˜ŒÚ M­½Ð²c{¯I{ÃÄÑ^èŽÚ íçÖ“HCÃĨîÅ ðå·­³E‰„öH]Å “=D¹ÿ[ ÿòîÍÇ‹Gõ:µc%Àg*Lášì¬¢{ˆF÷Ýw‘q‘ë¢Q­±=q‘®D£oˆ\ßa6Yw A[âC¡:‰=åÁ•×+åïòz%S©uª¢oëþ‘¼^$)À¤Cþ¡ÙõÈ¢$»A¥ûÚz¬iÅø–UT૨¢€}´lt‚¦  t±«®·©Öèˆ'’˜ËjòNIeü0FÖó¤:œ@Ã.>cWW±Moð½Á]M`=<•MŽV¶PQlÓÓÜ弫¸·óÖÄÝ鉂Á‘‚‡*v¨šñl îñî,à/£Pß AskŠÉüýó—Ü ¼z»Ñ7RŽp2N)¸G»ƒG âùë†a:ØbA+[o˜rL”c=e8Ý¡ªÃAŒá”]"zUß ¯fŸA…7¥ÜÙ˜KÁ›'/Ç;ÔIgSôš©vOµEDP= ˆ€2d¿“ôîâÅ¿EK)(™=áV”xAkC1¹ÕgEç훆BÅv€Õ@‰ Á¹j`ÔåkÆw'!XNžWIbk¤pDÔ¦Zàì3¿¢G›o¼…–t‚¼I41>Ïè÷¬¼"pï¼ÁkVßr¢¿ñm5A3vš„”‹ª§ pº\‘¦{à2[Rq*¹LyN'Qm£ËsÉh€½óV§æÏÎ._¼yýv¬Þ ëéX`¹t•H£Ù¯Ñ HÛzÆÅ¡Õ›Øè!žrœU–F! 1 ã>x-dìºâë¸ÇcKc¦ú¼0ö÷ä±ix¼Èa‰‡Šz£ÑójÚø{,ÉZ”X)K´ÅXŽM)s¹ ¦êQ0”ó.£ûN:ÓŽÆûŸí—}§ ƪ ‡gR0%N³íÇ|öÿpÅŒëÆs@ËR 1S:3Žê˜µ ¾ó‡îô‚I¼n‡v –Œ&ø…AØìk>õ…Cµß®×pŸþZ>1“UâŠO¸)›²£d{LYó֛ܯEki;TDª½ æ¾tÐÉœÉ@à_% ‘äñ˜ ¡‡% ³7ƒTˆ§Jíû‘CÁDBá:tYA¦¿ùŸ†Q a ¡ r'Öüb¯ÕÞ?Ðz~W±'á-ݦwìl /–làÅÝžk•E™2Ÿû!,–^h_FÜðÕð…­[ßå;à}!‚e¹ØeÓÄ?ÄÑ´`ȤL„ ü³ ‘£´ŸÌ9¾€PÖ+1¤!’•NÑÒ”Ni¬4üÁM/Çsõã$T…t1+pP_,ŸünШ£ endstream endobj 54 0 obj << /Length 2250 /Filter /FlateDecode >> stream xÚÝYëoÛ8ÿÞ¿Âèa¨UI¤^‡Û»m“íâ8\ƒû²=²ÄØÚêáÕ#Ýü÷7ÃÊ’âĉ“ë-î‹MRäpf8/þè,¶ gqùÊáÿ¯^½½þÂuìØ‰ÝÅÕõµׇÎÂ]„Þ"tbÛ‘ð¥\üj¥uõÙ2SUª–+áEV^-½ÐêTs³ô}+)Ú74žT5ö+þÒ«–F¾æÝŽ¿-Wð[·y—ß,¡Å4Û|[é¹1Ïò4éò¥kUË•kmiF·ã©ûFµ†™Ðª¯iÒ ºá@W@G¥]^WË_ýŒ¢:îAÔ öm{$*ð¶n`¡ðæ2ÀË­Jm“û0b؇¦a¿ÚRŸøFо¡§ù>NKį½\I)­+C L¶UÞõ0¤%I¹v,IA”…ÙX’(ÁAi}v|Å©ûn2W ðÙ¥‰-L)2ú´Ñ'Çó©:*ÎhAÒÒ÷¤JŠz[÷¼aWó0o·êTÛÙ(ÆÛ‹Ø›¢³€]ìÈ•‹« „¹lê~OºŒPÃ-¶¥&!ÃÕ¶PÔNªªîÐrÀjè¸ç†­È¨Íµ'\³}!IuZÕ^ä[×uQÔK0«¯zoR$å¾ÐߥµU•j’õ‰ß5¼àÐpŠôéï/ å†FT’â¡ï¨×kSÏïy# ­÷QßzJˉ‰³P2ŠléûS©ZÍø:ÏŽid%Ý@/Y¹ÂöeLjOë¢/+}@¯[€Îì@àO¼h ŠLGþy %Šç§³<>Å¿,W¾ç[ïêr“WŠ:#énZ7¨Nloné¿ËKµÚ×yÕ#ÀæÂ;SÞ·h2*[»Ì½ª±¥„W÷“à~ñ«Þîo«É60ÏÃ)Nf¹'#‡•zË Å~ÐÙ6üí ó«Ûˆ˜¦<™S¾ý~Æ™ç –i2¢×[¯‡ƒ}„'÷Þ÷©ß´ªëÿ£ö[ «Äv_ 5wù~î™uÕ3ÂYþñ…o‡‡³QÜ`ع¥v‰í¾0ÛÀÈx4ŽñcH@<ÀY$f§àÜÑÔ:¶¥˜*²yo°IKÎK /4?¼tÎ]›Ã·&çx#é<Ïv}öÍ$Ë8S¸ìtœF(bº§Þ¤-CJ”æMV<8iÏwgü4Û¾TÜuþ‰§FÀéF–t 1‹ŠK*jot"æ)”•UQ¯TÙd ñ$J¹@áòÉ1…9„jŸe£È«¹‘Ò‡ìbœ ‡Rï&ORžçù¶Ó Ò¤HÇ®üc †+§ëAkaY?ըï:¯SAÒ@™$ƒØ“QÄ^·K:–b¤cì— [vÀ’´3K4S“Dæ-$T1 ¨!ù¢‚+ª:n\gx¨9È6Phóö†”ƹÜÂɷ*0¶+£ÙþàsɾUï€ÕžÈÂ"&â)mx¡õ±">ØgÝ‘7s<ð0+Ãå}¶@Þu-Œ:«•$ÔJ¾Ã;vR•©vV1¡hÒšlË–/†ÊjаàHØ>?SŠI¦$Ÿã,¸ãŒY7ù6×c¼OO¨9…BI—îÐͰ—·uw»§8•:}Ú<Û¬Aoß.mÒ!Ë—¨Øz¿yC¤kpË‚9{LòÓ«¾Ë«ïÎå-=ÆÖ°^¼üé—;‰÷ÍSe@2—Gó·Éág›]h;à‡Ó\—•Îf>Ô!\žA=f,Žs!ÕsNžRª¥:D|[£»žæ§LnðäRM óNçðóÊ5MàXµöVÜ €SjÙœÌsx34ÖI7D¨ºçp9 ;[Õ”˜mŸÃŸ¡qào­Ë¤ýòl=6j uÆ{uÃ5ZßÏIüåòjý¯ó7(\ɳóÐí Ñïê"SÙE£~ŽØdÎ%HYö%Ó?~Ñ89°eFˆ-远þó*-ýø.‘Û …9G¾0ñ~4ÅÉqtñÃß?}x¶r6J¾\åªýÔÕé.i»<ýŸp3ÓP7™ô¬ƒrï»!ž•]V& éOs Ô×}…æ)ຩK3 •iº{Jj17îoœ\f—‡yj9$¼'›"fŸ°†?fl‹×uÚ·êÅóËËÇE’ø¿bÍ30|dªc¼Šmurœzäk^‡o#;®¡”mnLñ­l¨?ö`Þf¸ìtB8Þ|•Öz(¡ô`OÑw“äx¦Â·€F]«Wÿ‰P»©.øFr–çý ±¼³¼ø<ï1ܽÀ•ä~@ðé÷º’=x39.¾+<èêâf€o– †Mžl }3Gü°› ‹²(áү׫¢=Ö0Þï¡EãýˆÁ]Fz@._øÝ{cXÉáÒLŒ®‹ßÙ9±Ù1ÐJÈÂ,ÏEØÿáFr!$À+øÖÓ"¢\°[)•M·ˆÌy§A°Øâ.n ž-D<ÂgýXÀ^;¥ñ7ßÀ>> Ù´[P—v¸ ÀP¢c[>J ´ > stream xÚÕYÝoÛ6Ï_á¥/2V«â—$ëC»¶Y‡m(š¼µC!K´­Õ–<}ÄËþúÝñ(ÛRœØi`E‹<ñx÷;Þ•`4£‹³ {ú"~(ðG* ö).Î^]={ë |h6ºš"> µò¥æ£«lôÑ{2ž(®¼«…)h4¯ÊvMÃfahP¶Íºmh<½¡gÝ$M[ÿ¼úu«Èû²‚Ñ„ _IM¢ˆã³`2âôƒ´•~˜ = €}´ò~šôdÁ:ŽKB\ìà÷(;N+ðUR›e^˜Þ& Ô§@u;ýˤM§ÙS§lø*¤=­€e(àæÅ@A®: ¡ƒÖ£X~r~@/†´gou0°)ý˜I²éÕX‡ž©›¼˜'"–tf"^– „0•)RGÉ Z†´yYùýë·¸IM/§ðàžiÆð»ÁcÜ:‹²&„êéäkp<øc£ˆùaBÁ}%@Çê¸0ÄÕ÷æX´ðƒHôY€´b÷Hd¡ôc5àŸµ…CÈãÐÛäË%Ž”ŽÍµgªYY­ˆRçó-%ÓÄ ×7Aq2Å~7cä6nÛg¤—Dp¡ƒË3¢¼zyùæ·w’…–F‘ÖÁ¶ø1"Y €é>Å!È„^eæù˜y„yO‘&¼¤ÈhP™¦­ Z˜)KšÄŸUÉÊÐ|“7 Z@~¤Y¹\– ù ¼CVš%A»=ÆuØ;9áÃNàˆq¸sÄOœ÷&`Òàù´q¨'+¤/0ƒÑºç㉔ÒzÕ´6·Î¡­pg–ºMÇ<òÎHõA—“ÚÁv÷4«©°bw‹ÐܶâÌçŒw‹f›ƒ;±Ègñv‘¯Q'\…Vn/g>̬è¸qÞeÔbë.匞M÷ªózëâHpIÀ®JËÕ:©Lv—Xç`­¯“ekN÷–1d+RzRç™ÉHõõäz¬BÏne àí=¸¢¼.‹#˜dlýè0Ͳ<Æzûúiœ–UeRˆÖæ(¿«¨GëâP1âK¥ú=LÁâéŠågöÈå2Y­—æsžÝY1w[vï‚>²'Ðó0©. ‡ÂÄÆÎ„‡  ó·‰äAÐÔ°™yâ'< –a.±„ [Ðà‡ôü1Êh!¥–BEÛy¬ã8bê>Ü ÀsT€Ôšó8f·æÖÕ )dÌ×Jñ®“ÐÄÉ{¿,¿KP pšìw 8_45)"Õknµ‚pJ+Ñ ¬s®ËvµJª›ce>àr$%  ©Râ.5ž™+o<ÞÊ$[Ò2š¤eE>£âTô I4¦‚Š †è&AdÙŒä0¾²€{bçù5îeœl2„Oçz«;’<ô5c§uGÜ ÎôXòìçrÙ®Šc&“P£ø€7©æíÊpÐUq¯v-KjÛ ¨„ –¸D3*È; ´i‚ˆÞ‚]íVI^8FH¸D¢íªš8­U÷÷í* Ž»—]yËAðIïÝŽ©2·Œ Ȱ ¹³ n¦l…x¬a/Ð-CDzÔ ˜L±ss/6‹<Å邦¤ ¶ºÐv6¾ßäaë O';µÎ˧Ôh:U\Ûé,œµ­©ÇtBïñ…>“Q®Õã$?PBßf'ßdpÛ’}çZC":çÌm±gûæžk ÁÆÁ"ÁŒB( =Zô›ÚTà9–MQPƒ Ê%cæ­“¥iÓMêšÖp¼¾ [•÷Z îFa(û :K•ÕÁÛ˾ $\9\{üf%·‡y;‡Ô;qèCb ÆÚ@úL\­Žv`z³$5MMov-L»ÍÁäˆcpÉý@ ¤Ú¡¼ž[Üçw9G§´à‘¯Ãþ~RKMBÅ~Àôs;le­É–в` ¼Ÿ¡Ð ÎðÛ»QÛš>"à2±w¦Ìî"i­x×yÝ&Ëü_CÓýbSê{ Ô¨ Ô”ˆÔ%Ø”$¹wiÈ»+,øÚüc;’šfm“ƒw~6°k'rwß" <ô•il–ÄyâÒÜÞÝP(ˆÞÐÝ ×•½º]ïºZç‹x¥‹¼M×ÿ44ü.4쑨ƒ¸4]4¶ý QnnÖŽšnìäïAÔÊí3>Æç ôP7ëÄŸÖƒBv>”~‚ÞÞWv¼&™WðÑáVÃûôJ[äçÐ)>¦â1Ë)tÒw¶êCpõºÄ»‹_~DÓB!þRVéâÀ5èá^º¿~DÝgye¦Už~ùÕ“à6ªï>ˆäâûŒLÐüåÿ*4¿ªˆL¶ÇME u¯–ÐGtGë•h.g¹»ÙÒRൠkìþÿš|e&ë^>8ÒÔ¢;.¤G?zœ~Âøpqëó€‹\„\üçF¸öxÞ\ý·%7Å endstream endobj 69 0 obj << /Length 449 /Filter /FlateDecode >> stream xÚåSMo£0½ó+¬ì¥•ŠãÏ{IÛTí©e‘ö°­"N„˜rÈ¿ï`“ ŽZiõV!™ñ 3oæ1 -"èÁ#ÛÂIEs†Ä\`I%JK﯇ƒ€a‚#Ó„)ƒcúXRt§½xæ"xÆû#D `¸žèˆè¤?Â\ÄÞt„ˆ’¢xcš’Óþ–¡?W?®}ÉäÕs¡;kµªPi—ëj¸¦ºQ­µ×{ûîòRùµÎ«!%©2kä­îöµ²—n¬¡«bH¼½‹®ßâ§LL Agpˆa6dzÁ|<A>åXBÐô_C㋚Î+õkW–I³w à“W"ɶѻZe+vc£˜ÉAX °ã‰úLÓó¤MʺP«<›œ>¿VºJ“¢ø´ E°œYL!Çs,dƹՅnÚŸ§Å†Ÿ°JMøŒÒ”ÂâéòÛîÖ­ê"µ…8Áú¿Áa謙|ðO¨ñÝÇc½ÐJ~^ØÅza~¬*C2G.=ÿ®(`·§Ëßщ"6Iª:÷ÃH¾Hò;ëÀлØ_¶—†‹Ï7óà›.¹óÎ8ÅlÎ}" n`ùŸ;9÷±÷# d) endstream endobj 59 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Baseline-Vignette_files/figure-latex/unnamed-chunk-12-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 72 0 R /BBox [0 0 530 278] /Resources << /XObject << /Im1 73 0 R >>/ProcSet [ /PDF ] >> /Length 33 /Filter /FlateDecode >> stream xÚ+ä2T0BC]SJÎåÒ÷Ì5TpÉç äTßê endstream endobj 73 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Baseline-Vignette_files/figure-latex/unnamed-chunk-12-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 74 0 R /BBox [ 0 0 540 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 75 0 R /F6 76 0 R >> /ExtGState << /GS1 77 0 R /GS2 78 0 R /GS257 79 0 R >> /ColorSpace << /sRGB 80 0 R >> >> /Length 968 /Filter /FlateDecode >> stream xœÍWMo#7 ½Ï¯à±EF¤>çš `hÇ@‹žœn‹`] ›Ãþý‚¤4’ã‰á¸Û¢Ëx¢H=qø8‚÷@ðM?Ù:gC úÇ¥Èßçßàøsº}þùáöÏ¡sÆñyßÌ÷ˆy¹ÿQf3|™>ü '‚÷ÁÓDºÏÓÍë{Op×*Ëà0 Ðg9aÌ@\â1Ñûe’•ÆQ˜0’&P0Œ“{ÁÉ6bÙ!Á"eôÔð'€¥gÄé1ÇQ2r:+Û;Ìtœ_<æìgä ‡a&2ƒ/½ Æ"(£ íuõŒ<¯öÙa™Wߊ,¶®n3z æë£k± YlÛ»Ù+Óê;òÞOw¥Œ”€£Oz–u&ˆ¥‚YPÄ™€²æ£"Ù2cÊÝ$tómHcÛê:ã0¸Õ7,nmHW×½«½ñ2ß#Þr–Û‡…à÷­§{ZÐR<>EcîSp³V²áOÓ2µì¶ SÔš’5†Íô}…]Ô:ÌͬÏǰ®¨ç^WTr9Ša3=F_qû°ð¥g—>«Ê –QƒŒYÇmW_UÍgßÕ\±©ùaá˜û–¯êú|nÎè;{ }"aŠMa¡ Ç&@ƒ¶«Õ¤[ý*Шƒ°ËQ›!…5ª‚AÕÍjlªßÀõHÒ!`*£¢…Fh¢‚¡iÎÀ çfUµV¿ 4ê e¡áW?’çÛ¢*„\­•ù\ÿŠYûª48h¸ÙWIK Ö‰¡ 4{Õ^LÂv•žÁA½«Ý _÷¯þ¾î_ý»ý:ån qK¸M9&uÊÈ´¡ÜBzåÊp*ñË8Â>ËG.w»‘Cr ã¨DÞ1ì>Ú äFŸØÜo$ÌRLÌ*‰Ý¾Ù?~þvOÓ÷»—éSd9ýßdh“Î×LtÖü|ür.?'¿#CóõÊ¡§LæNG1es€ˆ¡(‘ïòc#"›œõ•îs÷½¡?.=ÄUè;w:TÐIGuèÈH8,['8ã\Š4¤êœÞæÌ”¤yUçðFçTg¾Ô™=zœ=z¯ÎÝËÄoè€5H·»ù¨¯_”¼¼ŠíF`Ð:»Úgj[í»iÆÙ­ö »¼ê|·ìõƒâøûBìÿq•q’ÇuEƒ¼”®«±âe¼®ÄˆHºüu%F~n üß-1ž1QŠzÄ,-ªY ukIö hVCCqRÀÔ‹¯ÂÁ^ï·Ç×ÝKŠëšÂÛ¼¿KC%Ò&k6ÃX P(­ø–·¼)Þô›þ6Yg( endstream endobj 82 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 65 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Baseline-Vignette_files/figure-latex/unnamed-chunk-12-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 83 0 R /BBox [0 0 530 268] /Resources << /XObject << /Im1 84 0 R >>/ProcSet [ /PDF ] >> /Length 33 /Filter /FlateDecode >> stream xÚ+ä2T0BC]SJÎåÒ÷Ì5TpÉç äTßê endstream endobj 84 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Baseline-Vignette_files/figure-latex/unnamed-chunk-12-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 85 0 R /BBox [ 0 0 540 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 86 0 R /F6 87 0 R >> /ExtGState << /GS1 88 0 R /GS2 89 0 R /GS257 90 0 R >> /ColorSpace << /sRGB 91 0 R >> >> /Length 859 /Filter /FlateDecode >> stream xœ¥V[o; ~Ÿ_áǃPÝØ¹8y-‚$8³!´å¢ª‹DûÀßGv23Ù휞mû0ùþ9±¼‚+ø=|hßùí¿› ØÝ„Î9è×Ûݯ&~1®ˆÇï•+ðgøô\o‚«:ï†3ûÛƒý8gýÝ|àb†ð~Cp(ØÖ £3cÌpó >BDU"ô«a$¯@ c ¶THîR‹C ½À" zšèk€qÙ‡”}´@>mÈ]®†w(t¸>{” Ė;çdŒ >GôÈ;$¥}˜¨iä2Ë‹Ã\fÛ‰2ߦ=q&šmÙ££Ùw¥ªï{’7\Ͷǽ.J‚”€2!³å2s<’¥Œ¢T@ ±ýh”Æ#aL²È²Ì¶e¾«våHAN³­¦4û®”i·ØMÞp5ÛÜšËùf$ø±vºwëY‹Ç§¨Ñ™<Á~®X!Wúz‡¶»³F£½ÃœªBuQ³‡EN¡ ‹ÀÞ#«*¬‡ÓhÓ¨I/mØcò½Æ™}t监kâ®5å´®7ò}9ÀØw¯uðÔJf@¢@:x3r…ð3§!íZþ4È}£ßG‡ÏŶäC¿ŽW Ûïu‚Ù©•e¢1cÒöÍȶ{øgwyó ¶WÃËíñæ¬~º©ã IJޅR> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 97 0 obj << /Length 754 /Filter /FlateDecode >> stream xÚ¥VKOÛ@¾çW¬èe#‘eŸŽ}àBCh«(z)Ú:›`Éêu@üûÎ> vŠ¢Øãy~ûíŒ×mEgï ®14çH¦‚™ ¼šü™4Tzã@ô¦>$*Ž>W-šÉ7øõ¦¤› ò¬&GËT FIF3†V_0„rŽVkôß”Mw¢­)‹Ú,Lm‹î~úkõåh)Ô0ŒÊ’X…¥’È„=æ©b; žáîÚa³+ËlŒ¡‡Ë%”òq¢Ì¿Pð,b|¾X†ÒÍ&Ü!—™2œwESGMÞ´&"Ý4írŠ·Åí”ϱ‰ÎÛ¶ÙÝX2I‘áÕµåPðÁöIÀ1‘ÝêÊt¦u”Àº5A@°`wÇÚö¦éŒáÆFµÃô"g Q󽪃=ü¾«*Ý>·‡=n‘("Òtœ–©˜ÄŸÇÀ§ÈH±iZBq«am€Pë:<ݸ@Ñ@ví¶C·ÈÛ€4¡HÆcÝÊø4èª×N8oêK*äÚÔ¹ ¦¢vP€ÙÛ©RX—‡AxÁ÷š]û.vÞ÷½©î÷Ì… Z{Ý8Ÿ»š8p | J ¡à’¡Æt¬¹8s³” ¥hÆÁË­ÃÒà+|<É5_¬ì ‹¥ ’ï;'èè¸ûmM rëî~eNXëNˆý;Äï#q“@d„:Ò¨b*D©‡þ¡¸\RE}÷›õ?Œqå ÈÀН;Ò\¸Hù ¿ÊuYìgíHJT0ûD#Íc"ácSîªúx„×€Á0o7¥¹*ÖïÇ’7eÓž–¦2u÷`üjÞ„1I”Ta3ÁêwÓãú¡Ë±Çû¹ãò½‹}óŠm±­ô×¢*:{üætÈžêª7ôž=E³ŸHð{ ê5!ˆ=Gðk¢ýºÙ¸™û{ýéjx|3ÁȆ,ß™`óx|?ˆÏß²?¾÷? ü1>Èëññ»\PA8¼¸%'ŒÅ£<¡>]Mþ™cùi endstream endobj 66 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Baseline-Vignette_files/figure-latex/unnamed-chunk-12-3.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 99 0 R /BBox [0 0 530 268] /Resources << /XObject << /Im1 100 0 R >>/ProcSet [ /PDF ] >> /Length 33 /Filter /FlateDecode >> stream xÚ+ä2T0BC]SJÎåÒ÷Ì5TpÉç äTßê endstream endobj 100 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Baseline-Vignette_files/figure-latex/unnamed-chunk-12-3.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 101 0 R /BBox [ 0 0 540 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 102 0 R /F6 103 0 R >> /ExtGState << /GS1 104 0 R /GS2 105 0 R /GS257 106 0 R >> /ColorSpace << /sRGB 107 0 R >> >> /Length 1177 /Filter /FlateDecode >> stream xœ­WIo\7 ¾¿_Ác‹"4IíW­Û-ŒŠž¼¤52)âò÷ ŠZÞ̼Úc£‡Ñ€ûGŠõÞÃ|YÞ·ßÅ×W—póua$"X¯_o>7ñÛ݆x÷ö7å&ø¶üñ'Ü. … ‰à×¥þÕ%øú'9ëßãÝ—Á{ø>`ò ¤«OŒ!ˆ`Èðx¿Ã ‡ªX¯ŠC‌Á×ÅÑ¢G†{œÐq§?ìf=…#úâ5H­Ç)WÃ&>,€ ‚¥g‰`¿æDŒ\ð”Ê(JE…Ш›ª1ðGB¦aÛ©ê»jwŽ` Ó–‘Ãô])óÝb7yÃÕl׸o–Ë…0×l™DW¦V‰c®VÀkM ’V§¦Ý‚1ƒçŒ… y” ^sh„âò"˜yH=zîv¨^Mµ2bÆ”º]LÈ©{5¢ªZÌ&54ÍnÕR=ÓØeŒ„ †XsíæZO(J9d¥…:¥ÀØ{ä8åSœ¶F™oÓnœ„‘†-EíìîÛ(Ó¶ØMÞ‘šíî—o±` PŠ®ûÉ`b, B¾ö9MDh>FÝTíŒ>¹žÍ8l2×U¹1êÅÑ,KDOݱæ·ÆíRÃØìV€5ß‹«ÃÇ­C~z«éâ|Àì@Ä«h¿¸˜PR§?-»¥²©Ñgíºªa>gøXiLT[u÷LȘ2fí6ïê=Ùhµo?5Œv4Ì…1†‡)¦,ŽÑgçPö ëM!VûÞ†CÃhÎ¥Ø|4Îð±Òxº\¦Ì“ƒý"œP¤Ójßûmh2æÁ\cx˜ò‹«j㫯Ûï©ÙµÀn=çê¬ëC§hp>žuW; I!<7œÒÕp<òz$>GÇôåõ ÐØŽ±V? 0\ßÛ¬St-söK½ÁÙ;Í×{øî—«Ÿ¯¾‡ë‡åÇëãêlþ ¬´«(æzŠ¥L@•æ”4³ =¨H~H·ˆyÒÖÆâ¦íþëÜ$^•ÀŒ<ápFòà"’4 H´•ÁgÑP Sx™1KÑ˪Y‡†æTJ³–³c‹Ó)­]é,mZe=²§‡Aª—¹nßíïCg;­O®};ÙFÕë³Js½Æ»Ô¨)e':~º¸‘+yÊXÒ”9åýmzøTUù9'åÜÆ;¾&¬ñâªû™kûÛŸqs–ŒÉÀî%gøøwö%'œufI¨B–¨á%£øzAÝ¿2×Ön«üVi‹8Œ=úPsýp÷ñï>oõÜI¼­äVsžõ±nN‰ÉÄl=69‰ÐÅú•b,JÕk¼Qõ…”¼ÞÁCke»­QæÛ´'jºmôú¦è¾2m‹Ýä©Ùà~ÍLbÀ˜Fæ ©` N×/·'7eëy»±)[OŽç6ÅQÑo‰Õ¦tŽÖ1ëÛ¦ݱÓ[lµ)ŽƒvöG=fÃÖ¨¹)ƒS Ûm­èÝ÷Ü”»É;R³=À}¸)›O¯ÓW1Eý›â„ôXnmÊ«çæ,ÈQ¿KµÚ º¹}<>—ÿ[4' ½_G»ÿvíÅ¿å_|ˆ, endstream endobj 109 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 94 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Baseline-Vignette_files/figure-latex/unnamed-chunk-13-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 110 0 R /BBox [0 0 524 276] /Resources << /XObject << /Im1 111 0 R >>/ProcSet [ /PDF ] >> /Length 35 /Filter /FlateDecode >> stream xÚ+ä2T0BC]S]s…ä\.}Ï\C—|®@.Týì endstream endobj 111 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Baseline-Vignette_files/figure-latex/unnamed-chunk-13-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 112 0 R /BBox [ 0 0 540 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 113 0 R /F6 114 0 R >> /ExtGState << >> /ColorSpace << /sRGB 115 0 R >> >> /Length 3409 /Filter /FlateDecode >> stream xœí›[‹%·…ßϯ¨Ç„`Eû¢Ûë8‰CÉ ä!c|!6=&ñLþ}ØiKív»gœÁú¡Ï°¦N•TK*i}R¸>¾àúúú×íÏöw唳}Ö°wùçÛ/®¿^ßÜ~ýæ/½¸>{sƒ”s¾öÏ7ŸÍþ|àðËÿ$ÿÛ®ïnûû•¯Ïop}|ƒëëh9¼ýpÑ·ëŬ V{âvA©ÁÅPS ¦g=?|yË º\µp¹r"­& ¨H¾Wn‰ñ‚ZŽëõG"˜òîV á.)AÞd‘k„¬©MöÔzÈšSÝ%¦Ò6Éz—KÖDu“=á&[NP6‰)ï’ÒàM–ÔwÙR£MŽT1d‡TvI‰·Ûïå0§·„Ûí÷q˜3ræe‘8Í1ÉÓ“ušc²Os®»䜸î§=„ª9aÙu©î)›TTiUÑ©›)ÔUÓ4‰µ<(Ó%fÕmÚÄöý1}*Z>‚܇j=Ž4ªZ–”ÍŒ¦õÁ:½êv¼§.vTé_w7 lnÕzœ0Õ¦ššj6¿jªZ_ªæWMÃt—‡Ú¤ÝÝ€³ùÕä2¢1øÑ˜fó«§fß/iˆÃúÕrBÓ#5¼ ×¯€úÕPžÑ” \Ð(±¶GQc¡qêz¥©_­z{•‘`\кtì»TP¿ÚHÃ4¦Ñ/蘲ú]YýêœPý®5µvA¯R-Ñ]ýêú—T¼Ô Æ<¿¡ú5Øýo¬~&—]Å/Ìٯ׺ø…™¼={N™.Ì5õ£ƒø…yxí”:^àíÑ‹\íQÞ¤ájb­_âB—n|wƒra¤bšäFõ6Dñ QÇ\Ñ-å®ÚÚctñK¾¯~Ëô¦×¤åF¥¼ÊªYnLê3ªê*I}»éž¸\jÛÝ !‹_r¿m¨FérÚÐò€§_v>Tó+Ëc&º¥êwiª‡ø%í¡ýMn¤Á%6èó‰Hât­†è’J¾ÄVmÄ&~‰íÙŽ1Zš©ª&˜ý‹µ<"ñKš™µþÄÚ¿{ý¨Š_ÒÁŽëƒ!ý½ký8KÁÒ­ªÖQJž—ªßg–ŠJ7ìZ>×Dþ¼™îâ—<:^`É2g‰õ¯ ø¥ÝT“úU½¿`)2êø ×+MýªÅž,#U¬ý+¨_2iy•¯ÐÆpÕZžTĆgkï:Ô¯9>bËi´?±¡ú5ÇW#}¼V¿Z•†Xã3¶n~ùø=Kïñ;š_>= <è´ëj~-ÝåÁÞô0¿|jÂæ×Ò4ýr]¦_®›tŒMé—jÊ ϦiúåºÈƒ¹é:ýrÝåÁ yúå§_®YšM×é—ë.ƆÆ<ýr p×<ýr]d Út;ü"©mþÁá~iÇØt;ý¢!Oh†Ó/Fˆ6ͧ_\e"Ýt?ý*ùô«àéWáÓ¯Rî~”~úUsÊ»N¿*Ƀ¶érú%úîL¬»npúÕ(áîG+§_­¥¼ûÑúéWÏ2ðlO¿:ËÀ¿ézú%íîÏȧ_O¿'Øýõôk4™6=¿8ƒ œ›¦Ã/μ6Ý¿8Ã/8üb Ã/–rÓõð‹¡§¶ùÁ˜¿1Ú5~1VØ–RÁ&ŒR@x¥åª¤òÌ"ïELâaN°ˆÉz˜,bY-XÄ5öl,âºm,âzm,âš“6qÝ›61,âš§6q]¯‹L=Ydig‘¥ùôk²ÈÒÎ"SOYÚYdi>ýš,²t;ýrYÚY$´±Hèrúå,ÚXdf‰É"¡E›:‹,u™Ùg²ÈbOgÉRyc‘™µ&‹H+Á"¢5[:‹ˆî#XD³` m,j,¢Ù²‹ˆ,"ÙÕØËXD«IÁ"ZÍ,­È¿XDª…9XDXmga³ÑƒE„Å”­œE` ÏZÎ"¹JÄ8X„wAtvq¡,·,B}²…±;ËO) SÂb‰Ôy‹H¤Æ,"ÚÊ7‘ï+{;‹Èõ,û‹HäÏ=X%òÔ`ùDz°±ˆ\Výt‘jÛý‹ˆ Æ>Î"b+m,2ÐYÅY¤;[Oé 6X¤5ÏæÎ"'{‹4ðû›,2lm`±H¿Ç"mjg‘*hc‘jk‹ô{,b,g"̵•Eèdg`¾Ç"xEà‹ä{,’O±þ,âšl½±ˆë~dëgyf‘gÙõ3‹üÜ,’}/f~>¼}óèFÌíz¹ïÚl;75ïk㦠¤ÑÉJÅ” •äIEJlB3Pªlûq’,„×…I²Œ‹’[°0Hj¾dgŒ$ˆÒ"u¶Èa„Ô5—N@Ù–†@háÑ`+Ýèhø¢¿ÁѨ6Íj!ÍÐhT+ÝÈhx10lñŸHÂ,,êÖýŒŠºæ‰ El טHæ¾¾Hžl^DÔÈ» ˆZö¼h<$[8$“z ªsãÀ`H"7 wÜQ¨x’q*Ù7E „¸KYÄõÀ f»§ &­AŒ^+c ÖžºH‚Ñð€lDÃò“óu™ÕþHÚä ê~¿?Ô,û:ûP“ .ô¡æåùPó:øPó=*ãjŽ!†=2™QPiVZÐ#’ƒyDB 5K¨N<Ô,;ðˆÜö^Èû‚ãŽH Ú¹m¼,i¬#uB²›ã²º9ÖÜÆ9Kæ„7Ç¥BNÈâæ¸TÄ 9Ü“8!iš“oBªi!û4gÛg ‰Óœd²NsrpÍ’†5!•jBònŽ3MHEšc7Ç&$íæ8΄l»93KË„¤Ý'™õ0Ç8fIØJ1!ù0Ç&d?Ì1‚ ‰‡9Æ/!_B¶Ãƒ—%]B*º„,‡9.!ÇaŽaKH<Ì1h ©Ì²æ±„ÄÃã•õ0Çh%ä8Ì1V I‡9F*!uà 9vsSBÒnŽCJȺ›ãˆ²¤JHÜÍq> YwsœN–48 ©l’wsœLB¶Ýç’% KBÒnŽCIÈv˜cH²¤IH’|˜c8²æŒ„ÄÃC‘J"!ûaŽqHH8Ì1 YsŒABŽÃ# !ËaŽáGÈ~˜cðs =BÖÃ%;BâaŽQGÈz˜cÌrìæ8q„¤Ýçm7ÇicIƒ´›ã¨²îæ8h,iœR1#$ïæ8dLùø~‡}kFøyŽEø¥4Â/¥~)ðKi„ŸÊ"üRá—ÒO7,“'‹ðä!Ç"¼¨±"üŒVá%†•á%ÁñŠðÔm¥Ï"¼ű"£»mj0{õM òæ¦6É75 ú¢³ojHbêçå~KÄùþ:‘Åù¶"êq¾’¿¬eq¾ÌK[œ—å_ˆ8/£f8Ïä/JYœPØö2h¾–äq¾Û[/3ÎÏ…ðçq~¥ŠÖZ3Îï/TÍqÞ"ùŠó–Á#ÎãçáŒóùŒóùŒóùŒóùŒóùŒóùŒóùŒóù9Î?Çùç8¿Éç8ÿç§|ŽóÏq>äÿIœ›-ƒ‡wÚ1` ”kš¾ðôÀ–Áÿ&å©5õC5õZ&[ª×«××/>ûüÛ_^¯¾¾ýöÕ} vÌ·ŸÉ… ÿé&Œ.aE<øò»Ç¿/ïajx=qÓWù_΀>ϼ¾ŽÏW-üøL8ë¸OóøœÖqlVñþ­ãó_¼Š͉ÔÔø<¬ ?ó²W L^¦—ÉLŒýRžÎÊ¥;ˆ8¶“s*O=YÞ±‘W_ÖÉùéËlK|œûäreìÊm;w»áǺÒÿÀkè¶2ðjµŸì´9H(9ßîLD–ûÈ™ü–g}uFά÷múIO–íÍÄ×s86–ýøÐˆ¶Ž›Œã2,Ö¼Ž»ÜŽËŠN‰ã&÷çç½¶5‘@Þ;4ueÉÚïÐÒCß{‡†–å¤÷ÖÐ6ýÏvˆ0`Gí·,óèüeË<:tmoþ»¨ÕEH—ŸV1ù”&þñf¿?Z³Wóà4Ó´€n…KC˜ùò¾™O)aŸ í²l¥éK"ÔSµûÍß¼ùêßÿyúŒøƒ“?Û¯ìd¨Ãe«=dæ‘ùûËw¹‰‡mb ã ¿â*¬7ñæÓ×ÿ¼û⓯>¤÷½Ã‹ÝÞpéE†Î×{?ÝôݵåȽ—?°Þü´räMXÚÊ1}”óÞ=ô¸A‚¦ï`Žîsö?~B'{¬ŒÊ‚fRƯÚ÷Úåíº”d7…Ó†—-f¾Ÿ%+´èAù“Ï>½»{¤;=”oŸÖÌ€g3›~ÍœÇl‚?|ôûžšTÞúïö_¸FŒÆ endstream endobj 117 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 120 0 obj << /Length 1380 /Filter /FlateDecode >> stream xÚíXÛnã6}ÏW¨î‹ ØŒ(Q7  tØM³EÓ 5Ї4XÐe«+‹®.¹ è¿wx‘-:Ží¤IŠy1Å!93gÎpHÚ±f–c9ºý09:þÄÆ(ö}ךdVèZ¡#‡`k’ZöÇ4oòr6{¡oSÕüîx„©êä¥1öÖ¬ÈK¦z| -¶ÿ`I3¼œ|>þäùvPìÄXƒ¯ÈO ÃA!BBk²Ã§,õb;ã•ú åÐí[Õ©­y©¾o‡ndóVt"»d,U↫–-™35‰ÝäµFâ«¡Ø´hY­Fs­—ªf:j,‚1 'òúp°†âÅòýÀij Ìž8â {æbG)â8º:¶ªÝJ5æš 3FŽÛ…£ƒK!AQ¬µ^å;a ûæÌ]Hz±¡˜xæz4“˜Ø§Â_jFH,º¡}­h»¡‹eÁ^Û×bPO®ØBν2du[4µR[±‚6lˆíT›ájÒéÉï•Dò’•°„A"™f‘Ý܉¤g€‘G"DgE­Ý¯øbW(±"¼©bVñvÉÒ/î¾@†pš‹u ›³ÍPæå²mÔ'ÀÇ6m¨Ðδšé¹´ÔÊõІ~•AÕS©-xGJ“/VŒU»H87ôL§Z${öAõNBƱZ«¶3±«¶í µAb.Þ—¶}Ã8r ÜØTðV•b«­È.#‚¶fY+"]¨þ5p2RŸºx‰*Y7´L˜–÷v¯/R[t:ýEþU˜ì`³›¤hSm‘ª&aUC!“EªŠÒ‹œGë+×k¹DvléÆ ¼Fn— Œp öT&–»-î\‚nE!»*¥¢äzNÅÆÀÅ.*ÜØE~Þ/ (p=c9ÍšÎU"¨b29AÒÌ©öí~̱ ǂÚ὘¹À»ƒ•¹¡!È^whГÏò’JÜí2øLa‡!¡íÈA8OüÄV§¬)ùåÜ(6[c0ì¹D·ßǾëÛ'¬Qy™æ‰ØŽ¢Ã3ÕVüZK^Aå[r˜%¢ D"cD«ŠÒ¡Gñ‘åò@Ÿƒt:P¾wwƒ0§±‡|NOæ¬ÖhÅ6l%l $ZÔü/´©Ö·ƒÐƒƒ²]LÎ~eփѣáøšÁ4/ùâGÐ×ëž™Ýó®+ ©”/Ó¬~²ˆž®@çéúTÔÁèÝMà%[%‰™5ë„eIj£É|EØ1}¿7·õ†‹éôtöÓi™²ûl%¸²À\_$JC"P^H[ß7â#Ž:·˜¬ãcHÖ+¯ç98Ü_,bß1ÎRÐõB[´/†Dj´¿ßÔ”N/.¢`|zV 6õ\^>@‹öîÝFH^9ZO[b‚Õ¹å%DUIÚfœ^€³Í³÷^êF ÚÚõÆx²|xÈúñÝõÝÑn]öy镜×EK¯?+=k;ÏMSWó^Oú€{VŽ”7~ÍÏÙ ðsöÆÏ£ù9~Îßøy ?w¯â’ m¿ƒ˜DâòkœÔ].‹Û绂 ŸGGÿøüÝa<½=øŸÏ A›ô6kˤÉy¹ó^O|á¨[" 'dŠÈ8þ%ºO«VXé’ñQÏç±çˆøÄ¼æ®¤[žœ½™WغÈgó(—½4Ï2xr•Í/køÇ§ù?Íwí–y›íK­W]^¶ðÛÕ—­¥ãi „´zñ”ºþ£'ï7ÿêÉûþ¾c÷r]NVIiþŹþZ•#D±«+Fl,ù89úýCjs endstream endobj 2 0 obj << /Type /ObjStm /N 100 /First 808 /Length 1923 /Filter /FlateDecode >> stream xÚíY[oÛF~篘·ÆÝ-9÷KQHí8 ÐnÛØÍÖöMÑ7é’”áþûýmS¢‰²# ’ÀgΜËwn)gŠ)Á4N0÷Ì2­sÌ8Ë)ÒŸª[vJ o.Èó jœDÄÝ‘½,Ë |N‘ $Ñtc·‡¥ÑwcèÆóh Kw6JŽçmwÿKQ~ˆ’Ÿªz’×T~žüœ¼IöOEwCjf-;õ.îòBú†¤4±„Fó˜;²—l Uùm,÷ª!tì)T ®Èu#mläˆj÷jp+”%ÍBÆÁÙÍjØ«¡quÈw,÷:„XK·Y Áw¯‡ƒ|TXTºX¢rhOAâGô0»×ÃòušbõU;+F´xe‘Ìïþû;ê ʳ‹½•¬œO§çk¨¨¨ó ”ǘºæf*Í] ŽP© bT¼"ÏcÚ=BeTìøŠZ‡¨W`‡Ô|õ}qCïæ~޾-ÜýœJ®¿Ÿ£)ɇbˆÞ!ÎRŸ½; Éۺʎsx òà%'ùm»Z­V*§Ò«•õú •sÉþ-ý»ê`ä·cdÖ[Dœ%³6æ|T¨U26°|„L øÐ®sá:Wáy@…¹íS]¥Õª«´xž«´ÜÊU²õ®Z!³>€áO„mª„»ŒvíAhŸ ¡ÛB7ÄÅJ›Q2£z¯#“pˆ2kt¢Ô{D‡H/¼ôL¤Í£ºbžYWÌvuÅ<®Öù12cº‡#“h¿\ɵÕü¯H+WµüyˆZ±¢²õˆ®igP‚צÿ à¶ Ð]¥ t[AèÄ2„<™gyÍ^\O.Oòwß <ÄÒìAT§m…,?Üâiè msöâà{Ähñ³×š`Â?¸ø†óo@÷k5#9©Óëë|Òi£Þž¼zä‹´,I—“÷EÃðw§Ó?Ù¿óºh¦b¡… ø­¾“±}P–‘Žì—â&§ðVg{ìÃuÚ¾oò”ÝÜEÏaÕ½Ùñ¬ ½“¢b爽†a¿ÍÛëy»· çÓ±Áo›%ö†¥HZzŒ¥E%ÿJg´'ñD›6ymÉÏùô&o‹,’WeVMŠòŠ~ã/ùq Žv™ãñŸ³‹j:<ýê¶}}ÜÂjèü’ñØoÚk7³ônó4y³¿O'Ìwù~¾LoÆN½QÉŠòeÙ‹íƒâò2GàR„ã'­IfE9oð"ùc^µù4¿lñø©“I§4M‘\ÕéMž¤Ù¼Í“¬¨³ùìršß&m1äÉ,ÍêªL.ê48’fr"™ÑMã—Å$¿LjÈN2$Òtšö‹ïçåUZÏgÓtÞ&ÕUUæ`,ñk®Ó,?ÿšSŸ{NùùäTP_RNQsöã­~¼9/25Þw¿]üÞ Ð‘73¼Ä¼ïÛofxHø¤GœàVûs0_ûóTKèeðgSLð5æk‡~RV9Ž›³j…äoœU¦›¬øûd•°»Éªåà¿û%öµÒ`ŸÔJ?Ú>W_ [)¾ÚÙ‡VŠï„úSZ)> ?ú$&ü3š),§oƒÛ¼0Ò­yaø´7ËO$Ý—B)·Beãg³gÊYüwgÈÒW4ÜÒÒ0£áš†) 9 gøºJ×IOÕv³½häÃØ@Ð[êžéu[ÑõM?4”4\me‹Úïö¼çýí‚uM¿²°<ëI‹^ÓrùPgÔ ‡=‡½ËþH½¼¼°jÒßÞô³I¯ëBÿÇþÑSå=·%7 uÿn×ë¡+æ½{§C•–³!&7ýí´¿Íwmù|³Òô¤u¿vÑ‹ûš5Á=íy´OBo‘sé0G>Éüf(¤&ØH^­ ‰ÀÜ¥âÿ½*Oˆ endstream endobj 153 0 obj << /Length1 2079 /Length2 24905 /Length3 0 /Length 26143 /Filter /FlateDecode >> stream xÚ´»eT\[Ö5Œ;w)‚»‚»»ká.Á=¸wwwwîÜ-¸ËGn?Ý÷v÷ï7PÌ%{ͳöÜ«¨C%©¢ ƒ©1PÜäÌÀÂÈÌ •S¶³5±03ÛÙ˜X™™Ù()EFΖv Q#g /€ËÙ `âüžè`efæA HA@Çw§)Àø @èl¤úÅÈ 1ú (Ú9939½» sKö=EÄÎþ‹£¥¹…óŸ5Øþ¬ô'[˜ mdbmçædm 0™¤åòvnïFK` ´0²1Ø™Tš51e€„²‚š¢ -ãûÂ*.öövŽÿÇEDEUM‚ *$¯*ªÓ$ÔTTÿüT‚Þù›ÓäUßýê¼þI—SRÕRcaús €+ÐÑÉòOÙÿáFõÎ ð7µ÷T3G;Û¿ h,œíy™˜ÜÜÜÍ]œœíÍímþâ§jaép³s´¼?:m€5ÆdúÞNg à¿ø³%YK È ø'IÜî_NÛ÷V¾'½ÛÿCì½ÎÖ´ùW8À ü¯2FNåÊ**Êl,AÎ@Èä=ÐÙÈÙÅ `ø—íýhJý/‚@€ˆ‹£ãŸrÿv9þ§Ì¿© Û½_™®§·‘Ûÿî˜ÈÅÉã½ùïË6±9Y:9;ýkE ÀÌÒø‡½ÓŸ=³ýe“’—SQe}ˆAÎî½; Fgwç¿¢ÿ¬'$*Ë àfæ°ð°˜ßE*2±³µ}gí„ð§}¢–ï}r¶süÂô?ª¶Ù¹<ÿ×jf 25ûÓuS{&5¥ƒ PJôÿbßMÛÌÎfÐt7±`úSê/¥ü1³ü1¿·ÀÛÓÞÎ`fdãô¶4¾? x:¹ÎŽ.@oÏ:þ!°pL-MœßEþ~PþZ] dfàù—ùÉ¿]ÿ·ý4RÚ÷jj²ù0š!0ÉÛ9¿‹æÿŸ3ö?µÄ]lläl4ÿÝÐÿ2²µ´ùòßqÿ¢üC•æÿ‘lé$né4U´t6±øWWÿe—r6z½ÈÜø¾#™Ôþœ#›wÁ¾Ë?3 ÀÀÂÎù?¾w-šXƒ€NNÎ¥ß{ð?|ßÿ‡-€IJX[JMœîäòWÈÄÎÔd`åà9:}A`~×+À“å]ʦ@÷¿D`bÙ9¿§ì]œ½fvŽ6’“ À$òÇô/Ä `ýâb0‰ÿXL#¶wVÿAÜ£wŸÊ߈À¤ú7â0©ýñ¼W7ú½W7þñ˜LþƒX˜ßK˜þ¾³þ²˜Ìþ†¬ï¹f–ÿp¿32ÿ|§dñøÎéŸÁï4lþßײý²¼óý¾ó°û|çaÿø^×áð½®ã?à{]§@N“ó?à{o\þßY¹þ¾³rûÇ¿Óøòüo )þ™æ¿5õO*agG;k †¥éûê?B䌜-Ýu˜ßÏ5Ë»ýýëß¿éýWÊ¿GÒ?²……íÜ=ع9 ¬<Nf®?½`óþ¯\“Í÷¿fÊ»øÿÿ Wè4AXY´3á ²Jn )õËŸ.ƒ¦äa<«ÀÐ”ŽƒZI›î ÀÍÙ! ø·ø¥SØÉJòêù$úƒŠ4)ƒ°lÞ6Z*§nM•>ïùÈù ˆ e«3ª¤Ë-û•u‘ÑKgçi³Ï¦·ÅµÔÆNDx:ºE±NþF»N"Ó-kû‘ íV8ÏÒŒéhƒî¾ŒŠßI°<Ý îüûfL¤QŸÐÊÇ9üì1iûÞnTmºä1*‹RÁeµãçˆÄ¶êh$ÉÀ[¥}'¹öéqÁ/©Hg\‘*øŽw“‹U€Šÿ7íÇyax¼¾jæj뎽©z ÙW‘AÚ¼~'ö8Þr¯è}bèhù@CBr^6£s”WŒ:×ÊèÒ¥F‚ÇT\›;<”œM^O}æ+7qC Z~]§LÚrô™Ý—G¡v±Ô<×’9‚߬„ë÷ht—}½ûÀ‘°‚¬5w§¼œ,DÇÑþî1Å/ë䆸€ RºYmÂ¥+ֆŴ/ÓÁóõ åþ©Kªƒ}N¹xϯ¥¿0vÐÖ§&‘+ g`– ¡gî/;Ûû‡,éÓs䊾v$aÛ½I~Xï­|ÜdÛ®E¥ÞÒÒ8¸ì¹—:ÈásŸñV±‡‚Ò ûÕjë˜ÚCj.zY!‹ŸãÎÎËV0*™/È‚Ôâ˜^\£«ÒÔV§±IÞ}­$PƒÒírlf (Ú±eê£RßÛP$çïé.”É6w 6¡²ö©|f3¬/q¶A×V¹¾^ðGÝNk-€ÍBŠ ÖU¢È¦'ûÜtF ÏŒä˳7$–»wÿ½­‘åŒE™ÈD‹ûêÛ1Åñlè-or¼H¦–ÕÈ$™z{j’{ò>ç¼O¾Ùs}t³ÈçϰnÆÅªj8Ð4$ùk' Ξ·g$Û*Æøhøf«eeö+†]òä Ç«ð õe—DöOÒcÔ‹:-LŒݹø¦DöÅ7¢ÕΠBXMVˆ.«¶÷æy¶Æ@‹9yMÜœ'¡$ãm ü…¼¸ØtOHW’kXDª[„2ò3ð“Ô»ñ~’’mT T€·¤ú«ìí+¥HóókðÿÖ+Ù‡ÚXvèŸ'—Çú×nI…0I|Ejë-||å¡2M0œ4]q‰õZà›¢‚ý+&èØÌr¨ÆÊ"ú[PwÞBO´Ó¿/ “!¢‹T…ElYçQ_ú²ÖŽº\hà¿Om®1EQ䦮¶ð°ò³èæI0+>›Ž' >jÑSƒÉdyÛ„Z¬„M¥±´ÜéºrÛ+³´Dmͤ†ÚÖÂè ó ƒ^J‚ Ãïg¶³ƒ%ç~ãøB{iÀb.¡ ®—͘¥è¤ã›ÿÊw6âT:Œ“TàÍ‘à¢qí‘ê”,ãÜs2pYl2­‡·§]3¾wâVµø QŸ.49'q«ò²Rp•ðd“Ý“ŒÃÞnãZÃ]íop]÷ñ¼QƒæØÁ\ ΕdžØï TÚ ˆpÛa¸Li÷%ïÆww›¤kà ÷Š‘4ÉîÏid˜àok·`:H1™M1éù ©¾¸ˆçÙ ²Û›Å:™ú>¡Œ©7ÊY³Û•Lýf~¡eyñèS¦ˆÏÇÊZ±Í¶“ÛëköÔ3½ž*Ríâ(k-î°G÷0dyúmeÅya'ÓŽèpÍnГ ©“cT›Ó™«·Šü4£+•‹«¹Š>„ú²GÃóùõG𛍨X‡¼à$“Êq7Ýx,CÀÞ©uï¬IþC šÙ!eŠl£IÛî@ÄèשÌý¸¹À·±cuÃ)ù9)Èð ®¿yò˜(÷vgöA"L@íHrifl£ìC£c®¦„kKøÙ|™ßö\øqسsßGdGÙ?o—ÔT(з‹lWu"ßl·+ÝÂE²ÇqNÁH}TÈ ;«ú ?¹Á±T«®Êœ^¦€rÏV°–ö£Ü¼U°lWÀ¡$üóc Tlåaø9`V¯{š×‘¡Æ2^3oC¬ÁÏ(%Îß«[¬{iPƒ 7«Ì¥Cúš¶MõÛ/tBÅâãÀ° öƒ5¢+#ü³wPYžÂ¦}³=Ê-ÃÖ”mžç†Å=°RJ\Ïq›ô—§H‰Œ¥=œðmLJ÷ÆÞ$héEuä$5;’>ÖX.”œÄ3jxçD¨¨·Z_»Ì/lÕ÷Ü÷ÜÒOD?—‚ªÝdÍ7Òœ¿“YW¢€¡ Ñȳ–¼ñ0erCd¾]™Ng™.§)¿Mc(£yš uTíºÌ`xÍÍâúR„9[z¿ùy›Þ‰‰†kÅËq«©6·3Ž~ØpÐ3ò#Ù+÷paÎ%½óݳá<•&·PÒ¡Näv°ìs=úZ s¶?Ô»WÃáOÑÂ.Ú* f;:· êº.j} q7 œEXÌNá'Ý™Úò>Ÿ4]. æ·Ô53³Ü­J£®·xU)Ù"w۵죚×<î¾må—òt‚ãµ}<§M/·Ž®AÃväa;Æ[Êͦu-CPL´tÕ+¢&QeM)¶;½QZÇû"$ƒI€ˆYq‚„ü£jÑÒ̧h‡Ta ÜS$Ú¸3a&!NF”ÙáØ< ɲµ—°5}^WæùmvDè–Žd¹|Ódk±Ñ¨ÑÂ/Ýe‹öÉwœ³@SÈ”®RÿD} ¶Ž›5."M¤]¸-eÆ& ñ`ZiÕºf†é…†—b¹?ºˆÊDÄ{„n©`âaY"mÆ ÷Vý8ÞÑcŒgdaøâRoÙ¶˜ÈO…´.ÿP˜.,Î5¡• #“ ý8[\ylÞýºÊe»Ãé‘`yÆékÙŠ¢vU ܉™léUœ ºT5ûµYÚ–š;klÎ ·$ü‰ØÑ`ÂÕÌ7HÎãVôûéöýjµ½ðz©iY+)£Mìé\øzüFš²wÛõ:ËëjÔ&=M;LÎcÕå) ˆ|‘Ú¨Ò2“~ŸòÙò 7›Éøæ¤ ðQ@ ¼uÓ’åkì¸+È[EŒbèÁÉÊ eU€<ƒ¼´#a¶Òß8)ã¨3ÿú‹šI”†¡zBžkž€JÃeÔ¼1¯hgàΙh×UÕñlÑÝÇ«%!–—ÊÊnÇ4XOº!UÀ×(S­/1 8,ÕËp14¡O=ù {¤«Ž³²þW%DkX‹£µþBeI&mä4}»Púªæ¤äq _9qRÁ—¬<ÚÅãc½¬°å ÜØ}M0çã'™¯†$gø =héB}eÓÖ§¯Mc­•ISÈg†õH?‹p©ƒ¦a)F>ã”øOȧ=?vcÓÁ½¹§}Hò «Éz!„#û1×…nu@NÌ/IÁ›w¬w Lß$D>EÑ©¢ªO8â°³¡Õáu¶~è§J¢f¨oÙÌ©8hì˜ÕÁÒÑ=×^éátÓUƲM’Œþ¶6„ü/à{}5v[¼/%¡,+7ã×J£úÊ䬫„¡Æ?ë/Ì+K{dô;isb¿÷ÇÖšk9ÊW‹û‡~·&D^æbØkÁ’æÄg¥‰Ê‹GÝ–°­+¡5ÃŽ8ÆszC®± 0ÓcJ#Ká0‡q–nwî´q»>ßÅý()ÙÜ(ðs_T þ›° ß”a!ÚÇèCÊðÅN­³R@%ÇžlF=c)šëB?­<³)8(XµµiÀ££›dÏVæbÙÔ%ýâ|w/£#ÓJ?4´{'ÈlõŠh’¶H”s8Ñá¥Ò<"IóÑ4. Mni¤×§µ{ÇQ¬þ!ãq§ÁB—v©|0ulW¤}ÜCÙ”4{ß²½RGǪŽ“¹QÏÞ_ò$)ºfì=(R>pé•°š1œÑ®nýúñN¼ÜÝ’ß$]»\œÿ þµ«•=I Q*é–s¾IŽäÖº/åqÈV%&ã*3 ²Ø»„.¥nZœ0øJÙÇPð2.ÿm·öLÁ?oXÊÒ¸¸„ÝDµ‹ÿ{­ (g•àœ·æ…l³§d³ÐÏO€rÀ>w]@«ût{تz \xÕRài»k 3¬ÁoÿQr˜ì§<î\ÑÒ®ª¿ä ‹†KÜj­eZîîB’¹Žûµÿ!…1*´DNÏ]ŒCí×AÑ9»¦ë\'oë_—j’ÑIwäpÑaUiì'ßx2wRÀ‰³”¢D‹[#ÇñPPÏc•¢>zçH–»£û’ÛSÓ?TOLÖ?Z&öùÏË¥ÝU’¨!‡Šk_UMó¹0'Yå³¹¢×4Oå€ö÷ÒJZ‰,ÐâÕçªÎÕNûYq³ 9">Ñ8/- çKCHöÉL!÷Nì˜x~ú$Vt GüŒšÈŸ‡ÙF4Jcº’`Î[à…üei8Á §…žš×%‚&œëeâgâ Øe Ç£eë²~øäÖ)Ü÷Tæà}cRËýˆѶWÜÛ›û5Ì%à«›bÆpµKðLc°¾4DËÒ.AüMSéH•)Ó÷ÓTCëž/7äP"3‹§­,I¸cMxÂÍt6lš³ñMÛ !³rÛY|l8»<õx$|ŽQ{ã“Ñ‰Ñ HãënÁAc.¡Š%VSɽ-)?<Í™ŠûFЂW2ü«ÚˆÙ®T:¹ØlóâÑÿÖ`Îpw4¸o¦þ˜&r3¢+»ÜðóΕ\¹nîFK:ë>€uü’§a¦êX?ZA¾ƒsë¯új³-&û *ŸmoDæ J”ýšáQ„üœÄ›#3Ê_V1k´ÉP)RöÇÝÓZþà/4ñi±›Á…1!cL¶²§m>ˆ#8W—xXÌo cs(š[|üõñâwp7₪o7ÂD”}™>Ƥ½ýµGU­X®DKÀ'Réß챘ÌY¸1éz]‹w ïÇÁÛ7â±ýæ¤õKXK³Ý±’=–£—yô#Ð'+?owKY:õ/ƒßä<]”*áMâ¦ß £“Áò,mɂՊ‰ÇzHŒÉß8<ï~‚Îãë”jñcMDä'ºÙ9Rz±É|·™0ÁL½®DÑ šB~U¹3Yáç .!½!Q[˜y‹ãZF‹)P®¦Œ-fømã¯ÛŽG„ûk´§£]SSS W {#TOg¨ýè”ñ9¨^lfí8æxŸn“ÿñ­÷ò…|àJk»ÀÈç7¦^Ÿödä:ù—¶åT¶»è~²ÚeæäP0mæz“f^´Á‹É/Þ@Lü«Ïm»-æ¼ñ`0¡?åç ÁbvÑ >öÕÍ{—®Ôk–ü-gTäèØÙ÷»"Éû½*ãDo À`¾ÕkQ\LCJ`Ð"ª`ËÆò8›G:åÿ,LòÕ´$”¨É8ÝU~Ò^ Ó2è±F鵤q’dàqË,»©tE©ÄãU›q3;ð»žs ¤˜§’a¾~Íc÷Ðf}yêŽÄ—”ßmçQ!e“CAti>@µŒo;@Óuu‘ÍÕÜAñì)uˆ1;) á°&¥sd;Õ*Fª×ÊíŠÐ?í$èSʨ1{¯µ‘›îZÂÔ1qãØÅ¹’ÚôŠ‹±rØËî!O¾óñ§÷Ãef ù+›g¦¾‚”ÛøÝ¥4~$î‹ë<màØeEV÷|ÆÍd¦ìáHºýf)Õ°6µ·:—V4H@¤üª‹ƒßˆZÈd©±q$•ôIÞÜ­§nûvzÖ•Í<”é:žï£D&`,U‘AáþÀ¹=$œÏLÆzáÊbj<ÔëÁé[2­<»ç‘Lyæn9"c£Vå$Lk¬›$«Ãq%TîÄsµZŒc6Z3'Š´%µ÷ƒÈù!ŸF/.°¸þlÑGg¦˜¯HÉɸõoP?=QU¨îéw4B_]îê°d€IÅgÙ±¹4öó¬¨##`˜Ý¦vq£ö‡Kâ6òÝŠ Ú¥Û£r§Ï¤9PÈa%ÄR”%X?>¢’<} òÿ@òÁd(úì¼fµÉíî$Éïyë›=¶’S †Â|xdß †/G–ñ×AÎ$ÅSò\ŒÏôŸL¡FúcØ–«¦Xaö ÌÛÊ?r¹#}Aáä¦8²÷ÞiÒp·mœfÚ~ëXej^j‡Ô¬ý©VÊšY†"¶‘¥¹óÁ”Þ07ä'+MÒ kÙ§£ªý~}æ¯b|®zÍØð-Üå¶IÏÍ?1¿­)ØhM‘Ózl7:{&?kd(øT‘µìléÄSÛEÕ/,°3xC§ÇتÍ5o˜’ïÜ!rç3mWè§õd$Ú5 Œ„Þ¦Ëo ê³û£a8a©%åM(Æ WMl½ÎÏ¡†ÖU±­­ $Š/Öšº³DMÛØ.¶ÜݦÊlàˆBnŸ<S΋I*ð¼«Í¾å¾Q=;+7Ƶ”gÐRÀßÑšV1;¦o¯<®¨`1sžõT*ü»éj«lr³{;Э¬n?l`áÈUX\ IuÅRðÓÈ šÑçotsn…'RŠ–¹ëWDƒa³Ç„X˜}_2”â‚'ŽsTß¾/kñm^Ìû‰ÿpßÁ¦GB[x­LlÂîÍ«€Š„:à )Áiï¤Æ N×õÏëñøÊVb ‡£ÐÒÑ“Êípìî²ù{X$±‘µ0,°A3kc–X­ÎVú´OÌöÆK~ñs燣‡gå:œl§ú‘ÄgöªÔ¥'‰½Æ:j9ÇÏ“º‰ÍÜ¡žÙ’Y`¬6 ˆÈ¢^_´NN¤Ùj~N©šËn­ÇˆŒkB`t5fbÍ!:~{ lÚ󮪆c‡è¶i¡¹05•5XËû^Á(Û 8ZçÞñ†>¯ÉMÛnL ϾÃcážH—O÷ul¯òqä§²hÞ B.¬pgF”¼kN-¥Ót’‹!n¿Bðáä}º|äuÊôÊï$À>—L$Üç bUH‡Z$[Ôkˆ(l8Ky¹˜ñ¶G–ùNãg)ðš˜CÎ6.+u‰»v¶_G¥Ó>LDçpü”á¼!Þ8vk—Å[bÐvø2M™BÄŒz|åW²=,Ú0úiäSbkÉ`5š½èÜUrÉÑÈ'£ùîVdÙàŸA^~è¯C®!J¼j%°Å5~»’ÂÐME8¡wxY¡ÕÐÇ–¶{»9Ú1qi’¨¾ykŒÁÃõ–ÍÓv¶.ö³u¼}H&íSZ³Ê+ayRcYóË~^)㩬™ºUY/.?°J¥ä¿Aývùܦ'K‘ÈLtêPTð\©ôù>¾Ñÿ ©ïE¤ÛΫ keŸ*õmjíÅg‡;WÌzר‹Á—¶¡áKiÿæå‚÷ ‚·”rÜÓgœç=ÛP‘ ‹ÎYü’ÐS‚$Õž X#;ÏVÌsÖuÁ‡‰º¯!bW¶I¶' ý]¹‡PâœsmÓH©Ü«&ŵ†Æ v^•ÂÂU6&Óe#òÄ~Ò=„蛈M!"©†ØIÔ¦ˆÒmâ¥=$¯Ð¾J•›Þ£]Ã,•†Ÿ_Óýr%ä‹Fa0¯!Œ­:Ùy{J-ÃdÛ»æè¥=qBôÒ½?Œ®þ¾Ö ãÔ3t¨Y¶.½¢A*‘.™Â§e'óZ«Äoƒ§–Ýž€˜‘t”¡4*'V-r¬`|¸j¢ásGQÎ;ar÷ßQýF®Óo‚îµ_9ÂÖ9Ü–ÏÇ¥Š×Œ¿oÃq4é>¹xnM–SH‹Õù;eé Ùà¡y› °ï+VŒ ¤>|D¬Å=æmg f•¤-‰œûÆü]2kòöH¼¿ÓyùÃÒžQÈ,ÖÞÛ«·6äTàÕsO³Ü¨˜ì'1¦d›_5>ÈÖÑ]äŽ9t>‘¹óÆðNÊk«ÄN†ÎÀîÈúé‡3§OÙ…—–ÖÆh@n(HfŽÃM95š#»†UkØ¿SÜ>µ- 3‹«¥ÿÕ€6‚%:Š5ijQoD¦î[3Û‡»‡2Ù_¾\o6Ÿ"`ÀÄEn›­š»…&jò¦ê¦ò·È(mŒðê]qòU:$t´Ðl¹;/x—»Ögb)ê°`~q.ãfMˆ?u;Û`Kö¼¼ôɪ–æ‹ ‡'·ŽäžlÙ§Öaø—2\Læ‹–¢7ýZG¨æ9bJ½’šª-BQ'—}5bC$Ä2™ýà¼mâIŒ—»LŒ_.¤Ãjp¸vyå$ä@±q”] ø‘0_ Ég¾[u gÄ5‡×h’¤ÄñTãadns³F¶$žs ,öüPY\«§0ÖôóræhEíuR×wIF_þÖ/%<¥"rÚuO[Fª(l<õ˜<‚˜§MV¡Š`lËy­ê±3Ÿ½e¼ôê›KDª5ßWÅ—òC}$¶ZÎNbe"Ü,Y#àæ½a4”:ƒúž,µ#¦ ÝOç¿—e€NÈËJþ8•0ÌÀD±ZØî%Zw8k ½.Y¥ô8w‘äµ£xHe–În^‡Ì@Ÿ&c7‘ÞC\›¯ö£1p±±ïÎq×ÅBÈ«íN—®î ’)†[ÛdÙp·Ñ«é²8BúY¾2I9pâSg«]1^øà 97‹' ¨¦ÎÞÑÇ\¾ÊÚþÞ’/ë‡1Ô‚d÷YT’Cðñ&ÊûLõ¼$ÜQÆIÅXX›º|¨W¬ÐÿP¨ct,Àòf~þýðà¡?´kߪ€W(Ë»úàùB–Ë&C=Y‡’¤–ŒcÈVœ_^`ñÄS“PáœÀ_íÇÝï!èF© ^wá;tè±*€")'bLlé]9Ø|Ÿ§é‹ð©gåê–Ï€>~wCŽ”Àý‡¤Œ^û#c³üˆH"¼tÝv¡‘¯‚Ü®–›×£m—ÖÑÀ‰ŒD~f¦ÓIÒÛu>ótr$,/!Ò8ÌÚ÷'cZø‹7Â*ÍûOêéÍÁbЄL=-„ÃfÑCß¶ƒÖÔ¢¾ê¦ÉY¡£·ÒÅr¨vÓ8¸PpÔHÓow¸¾tj!´kL -&ܹL…UÝRcŽ€ÞP2‹žä•ÚÇœH{tGߢÒfl¡6P¿R¿z‘ è¡×F\xÈ1T–ö%á»t+ ŽÏk(û<ß/T•,^6ÓçžÎ;?)²e <”.—þ¢€ˆ^úÂÕàfF?~èYY†¸i""×qÝöSx¦›'ÛŸ8^à òó'-^ÛV9áÙ‹ˆç`Ìn‹Ðn5¾huƒ”¢fÈ)ö]bL>6B‘“Çâ;óÊí©`†eÜKï­2Ý') Ãâ}Ã!޶Fš;A¼ ØðÓ¦8V?S–tÝ#•Zõ÷&Òõôj‚—K‹_qƒúÈ)¼€O©i–)é‚ yÓ ŠŸæò¢zå´ "@xÖ`avf<0 ÇaË`®¢=c÷8¡~H˜A2ÖÞ=wfØ…‚âµCÃâ䊋"1VÝ„Uù;eÃÇŸ‡–¹¿âÙ§cÃl…¿ºòÝZxî:Q>‡ÕòÏH OÞšðA¯X•'40÷Tê–Ô‰ÔF·Ú5=Ù8•kÇGJ‡‘Ô&î }Ü i%óÜ.p(J¥NÚåèèìH(Yè„j) l Ôë¨p'ÿ{“ôæRÌ‹§.Ù:)Çô5H$¦ C1´² ‹^5òz-#‹JÇ‹i@`2¶[ø”¦£m`ZävCÔ‹OŸÎp-œö&ÎÆ˜2öXëHŠýnþ ¶¥ õóg‹é¤™1–àõ[ÝW°XÞ˜3p¼såŠáŸÙd Ò I>‰·FÖq…Ø> MTe·’ì«|ãÌ´k<ðú`vâL5¯æ»Î¾û¢‹ÄSû™aShôf¼ÚÂÑ'É+B«ƒÅàˆ ç˜i.ÇÁPg7^^—¤õ â*[GnÃÜb˜Ð½W,C,{¯I{0‚u|Hìä„»-®'“¥˜­ìFòÅR¶š“÷dc¨ñPap”¶¶`²v—sÎ]"U—Ôìçë;<¨²<ÄÇe?l©®æjjŽ¿¸s~G$Ò”%îØÚ“‘?/O§­—3ž;äpF>YlåË™”XäAqìëÀ=ž%UÜÜEõÇX_·ŒÂb¶ßLÂD‰‘2¹Ã—¾ˆR?mIåÐJ»},aM|ü‘} Íyõy„mÄ:»n¥sßdþ@ ù1æÀµ™žý â‚Ûy]LÜÅîq)5û–nb9Ðð2q¥åmü(þqsV1íðSÞé‡ MÐeE™¡Í¡‹® d׺«/–}”{óv•“›(­1"«Xf*·Qó Ùs\KR9*at÷^Î6ãøg  ®±4‘Ýc\{F«cæÔ8dt–©ZË6¯}š¥¾LT¥Q9zµ^œÇU’‰XŒŽ0 Èà/“¯Í±š_)óÀxŠÔÍ8®Y#i¨ø͹ úêmØ [Ç`á4|¸*^¦ ë*‹v•0ðÕÇw23\)×§ÿƪ;­ì%ëuË åtˆSeLÐËj?bQNƒ@«¾z«MT¤ äÎgZM–?²¶°û-w8j±Ò@˜Kz‚½0“æË`Rúž„Ô7ÿžµŒnúã –†ÑËq‚X I½ÝhõöO\™‚B é)§®¯Kåk¨?G}kn— ?¬rîæþF••KPüàЄO“D¯H²ôØÿ…?Õ²¦îa²"5ñ;‡SÕ(W,§œªÏ·Îâ6v¹¬ÒrDŒ|ÕeúÙÙ‘ÍK”·Ã’`L¹-âJdu?÷ÿ×»¶Ù:$Z§ ×¸#Ì¿6‡K™²Ýj—êxk¼B]6¼“¨!ªù¨wM”ßuñ[ç ÂÛ÷Îÿž'VŒB/†æã/f)¨=¨–ìˆÇ´÷ðAxȲP~¦ÖRÙ!ë-÷]®®¢ ƒFßöÉ—)êÔ¥³ÕIœ±*hÛ"h¿;AY`ô²Rp%?Í Áôwìӣ˕8Lû©Ù`dÈȇ*­°±üf†9Y`듦êÿ¨Š¢A†°t®2æòcË×4+dòjdnY6åÛ=ÆÍ‹#ƒ:!Böpw_`Y¿5Ý.$ž²E—RF ½á7z©N¥œŒ±ƒ*¯Ìdᄪv`šîä²¼U:TÅ鬣á¥Ö%fÇØgÒxÒ=â§ h2ó¤e›[!]g©W{«ÓRÜx-;št—¦!òõžü¬I Ÿ69,é>Ž"z yN™c‚nBBõÛš‘ÍÉH>xý »:;ü…ÔRof¾k5Šúç‹Põ/¤® ÐHà è°Mê,•ÔÅe‰àÙßur˜æriÔÇdtj(’ò³rw›œ~Ð=ij»×ê¨à­„™yBüœüNå=¨{“èšúè“à“Áp¯‚¤ˆ•ø¶èqÁ™Bçi×¢ä7ÊóyÒ*ü¦Ê§Ö¿o¯5¤ß (¨N¼K¡XŠ÷›Jö›«iIÉJ7L-Œ_’øÎ1Ÿ7í0÷šðÝéöÇX”OþØ3"*C _Z¢îöÀÇNµT)<ݸÜ霥¼îáêâ],ÔáÍ! ±z^³Fþ?x” -dË´¼Øê·=ZÞ²Cp±à ü]öÉÌDó¨à¸®]ì`*™Ìa÷{ø¥´š³t&wB…#©^Ú^÷îéÿÏY2nN"ÎUeDa{·EñÙœu6‰™ÚÏ!H“2äਪ@pAìý3¾ÄQ[Ôj=.¸=Ô»©”Ó×Ë«Ü\â¼ZÄ\¼ 5d·/3ðæ±§Þaq;³íò¤ŸúJ'Œ_¢o˜ê½ã=%û”´Åó_ž$®ž4ä—&cÚÊ.ô3ѰנÖûAþIH=¬7þñ.â¨l Wrݬçšþþ;*c³ó!.TZ£ˆ_;wï°v’ÝàÏ;?5W)Ù¨ ߥ4O…°~ô?(áüê—w„U|&U—•w«% ÷û|.^ÐKÿ~¼úk³VAñ9l¾œw9ù³súã„:Ë—ÎòöHñî- öùãÑ¢Â*,y’CdÑëQŒËYO,( ˜ç€V§½ ‹OÏ¢Jì¥~Ÿk}ŒÜ†*\Íè“Â8zÏjÁV×+|¿‘¥8ÂÒ˜+Ý*, véÀe¤%¿Ýì³øOä¹T]ÐÑß貺c¥¨ìþ°/‹v\Ñ4Âhߘ\úV•'åñvk€!'VñÎÑ”W>ì€ùW"v–TÀKa9lð;Ì[]fÁ5Á/Êz9ÌŸ5G5áµÌXuÞÐî0þý4`ð~Üâ÷ŸI‰HФh–ª«¤iBîÎ[)"«EM Wôô*b៮f¾Ÿ?¬['ýä‚"å+ÑTðèÀG£oVÊ Ì äT‹Û6! H!®áI å_B' ÔE\P•véZ§åÌÿŒàÉYU­¤t„+¹dœ9‡¥¬T²ŒmÑÑrÔ”ÔYù™ŒÀ”»2gï°’äâ¥Fa9àÁIZø'& ç¦ô ¯1ç°ÝI¿M>zñš{2rbfÌðGœ’Jn‡Wx^™šì.XÈ#äá™_cA©— 3n¥Ê½]I¹žì›<©d~¾ôݳðÙ #Ó€ —Xÿ麌+‹§ûJ‡ |×IûÙBA½}cAuß<*=Pâ¡f:q¿¾Âþª—ð4+ëX™Ýð 5ÅÚgp)Hü8 ä¨\§c°d€ey©»»Í-áùreßt@~”UXaöÇÁ82®¡¢ï3~±Í\Z­üͨ’bÝ{ë–Œcý’¦uÞƒeÐéJ¸0÷2ÑÞE‰Ÿ´V¡—kêÂ(¹VÏ­¿ˆ€·9œÑÀ19è\Ø!­ŸÆKõ¼àá/زNdN˜ÏÉŠ¯§¢…ùqµÌÛ^b0Øã/°± O÷N:€“=-$Ž,íç߬DOÏWb@[Ýçp`ü¶±š¤ýåýO‹;ä¡¿‰Ô'JÌÎ[ÏÓ;©Lf$°~{#]Á¥#éÄÅ­s#Ž+ô‹ÁÇ }ÞoÖ-ÓB"ÖÈä£-\ºÊç…ܽ'gõ¤Š 4*«>ö™Yh¶i=‰SŸ¿I S ºÐRÔü4f»;§É°ÈÞØ/ ¬ÝÛÄR]"+ì^ðù, F½6ÛQJ§ôe}²ÎØ$!HÿLŒ®,~->s‚?q ¬ZÐòâ–Zk”7¨K_'qš(™Ô˜Y‹Fý®¢+ß“&¸P×…ú:ºß‚ wÏOÜ’Fɹ“ ´ 5’UÍæ,?©,Ä©Äf‡Cb<8–Ú§2Xiư›ÔGÜ¿ßæç7ÅO‘×''Ž÷ú÷¿D½6¬Â_æZëbÄ1 ÊèêÄç‹»I*¡"?¡~®üde…äû¹P²l3­ÂžÏã™}¨K‘–ÏÙ‡@w6ý°®ßƒÇ¨ÙVŽcæÉ\¹9%ÿV>I¢ÊüC®"zºSl[•ñÍOVf.—à`gw*ë«¶ÂÄ€RúôÙŽ¨B^ó Ä‚nª‰Ø‚ÊT: øÊÝÈÉõ²=6•2§ÒK¿ïFHS1i`¹x'í²ædï^ ýi|&ýæµàpÍ? ,&Û±6Õø”•Nw¥ •#¦/÷ÎÆL"úÒ~]vµ>¨$Ði<ìÀIJE²£ªžª1¬Ê$£Ãáz–ÞõÇŽž›M–¯QkñLNÆ )[šˆ¾ìï7÷ý&ó öwø>ÆTüVøm€³ <ô±Æ‘¯¶˜ .üÁü’|w*ðÃë‚\pÀÔ`jyv,¸]NÄË• K‹Œ[Ù2Ͱ#¬Èß?<Ð#ÎàE4ì'´´#·Ž?‰uû¦$òƒW!–¸$À2k}@¨sI¹dŸª1íãÄ›Ûkì7=ð¹í¸dñ7#…ïVêÙÖLU—¨˜sÖ¸·ïŒÆ[q埶JjDIf-BTŒˆ _×i+ú& f¶ç()iP,ó{c­/IH­x­ÍIÆ_ØI¶%Uqµ!j¥ƒOÚcD\¼veçãô©WÏfqB¯ÆÌw| ¤Ïpý ~tŽ4ˆBǺÀmak0Ü)¿²J?“#©dÖ8r ˆOZ¥ ›œ¹>nÂp÷5„$-Æóð VŽÃwmæI¦çd)%üäíèÙõ ÛÖE¬Â¶7Áå`µIŸÌ?Áð®õ©ë1ìI¢¨µEàmhƒ‡¡™ö>aú½9!u1 Áeþ¤FóãÌëó9Å›QšÝG@̺–Ö_2¿]`k³-Ÿòü°UÍW;«m´Øç 6Øø\³ï6©®HN „~wCN)SNú8¤ƒçsJ»†eÀF0™£QÅê÷rEÉ6µU~©´Êg7¡4Bëmä”<ËXéú$AfÊ&´¾Š\í¾‘]×ýN ­(Ÿ+Ÿ­ƒV¿Ít!Å3Ðñ­$ׯô¤0i½3YY·Wŕ劙auN‚‡gÕ¤¢Œµ/Åצ¤—ðü†íŶOvÈÝ­f·:û®Á¸ßÇŽOëma›á]«Ph¨ÂÕjŒn×SþV[ÚCHJ}AuÂi‰q‚<'á¢6ƒá‘Wûaó3¹ÂÇ{n:Î eˈµCb~¥´"¨îR«ðõæÿ¼k'…¹²†ˆ­hUÜm°/ôCT8(M!ÿþûë¾y+бF@¬ÿ›Á©]”É—_/n¿t£ B is²^ù±é ½«: îå¦üh>5¾VÌæ\â§Å¢óYÐWLûVòîÈ Ù/1ÏWr¸yCs‘ ?áˆS :Ÿà,ŠJbÚ ò€ev‰ZuÜFê­­ä'f‹( Žr³æ4Ö·ÜÍèWOZ®Ku´>ÞªÅXÖ´ÕßÚ¨¿Íiÿû³¶ÿ_çÔ] £,ÀØæLl󮀦mÛæŽ“Û¶9±mkbÛNî÷rÞîŸèªÚ[wf÷hÍ©q"}—PÕÁ$šç„ã/Ä="öBãSN#„^ÀÏz3ü£ÌÍr 7™ŸÜŸEÝŽ{™ eq¹Í dÑΉÇ5¤•$Ÿd‰ŒÉòù"ôTªêsÒ$ƒ;ö…ÉØñÛÆÍ­W“Íä&˜‚RQXŠftÙ¦6î¡B6{Ö®09¬¶ºd©z‹ee;¦ñ®‘{f¬Î%}EÂ¥?Îqs}fR<<´Îi$`)3ø øMç$gØÔá{A‡Œö‹ÛS6"Bc%Ë΢<ßô.5×$¶ÌÎ&‘˜í[É#aU¹0h{ q_­ª¾îH¢Lú}ã³Q>Uoú܇тÁßrѺ'w˜ÿŒ±v#eË:])YuÔíO©yà8kv½>’ˆ JÞý£C¢ Î%!$.Ž9Äu9üX’û|ÀÈÞdäуwŽÉ¦a7ظeZù½xz9IÏÈ ÅŽOQ{±!予ü° ÞöX2LV=Û ¤qé‹ÓWÎÙ1ìep» ööhR§«ƒ„-ÊÂó€¦ël’h•ä­Û \t‡ÎÓŒ”uõ:gßDšý«_ªf{ø¡Ê¬1Ý(©a–IJ£w@°:î.Ú’Òå]ã›^%D+fˆ#ÅXQMÎ/2NÅî ¯¹n@G9ŒX‹Iµ¬A H¾rïâ(Tr)f‚ùˆîŒ£¨ýf¿·ƒì»æ‡äf.ÙýqL¤m?nÀâ).¸Õ àG³„A{׿†…Ó›ÿWZ(v9üDŒ·8¾ +ëƒsÃñ±B(µSˆVÿê.)þÖW4Nvøº¸>q`1iÅG_dèjÓï%ýá  Þ@zn¥Öu0½´E&ÊÞ…þ_b˘¶k²2® >ˆ'Ú«ñ§šgÄši•Z/!×Ýi$g±òÖÒËðóÖÎbrð˜™ÚÎÝHZ)/E;R·Üì~Ú¿}aÚxqy }÷éèû9s²Æ²2W„B0³Æ€€1;=Q}Ñ?éèAÐ}?5¥k“Ò¯m‡‡ìÉúÎä`ìzÙg¿ ‚”Á{ÖÒhd’»?¡î˽GºJmå•Ýy5rÄØ'oJÆ3Òó *íÏi+®=Ô+Áë·Â‹2({÷·”-W:ÿmË>ØFÊÜYç½K¯â,qa>0v´åõ8êÒû&Bl ²% j B^Oª¤=löÏ€›ÐÚòJV4Ê­X«•®÷æÏÒAÆ.ò’Ü0©ºÏç÷Ã=}¿â†¦ÎÍÀÝpäÜÇ $µ'Ö°–AK BC²âåôDðÓ«õopºª|ê{‡Ç÷‰Ñ Ínr| fÁ„ù½%ÀÓZ&>á m§ÛºÎ¼ò[ ×|÷„Ü/¥e¸J±†8ÂÄïÍ¿ÓCÆÃYSwR,¸í!†¹½Ó)ñLóm$X˜r;+ø´ILè ë ÃÊ2¿6II|§3tMcȘå­ÇáGPï€eKç}oi(Dp7Ø)Ÿ‘@’ËÁÉ1©˜»ÚUûõòh°à'äù rË)öµ…wð¶ˆöBN7˜¿se³çèìî,é"5‡í]RÈ62“×÷¾ãÚÀ½|Œð¶_Ö’ÖÉÁwQ@Ÿ>RUÙZp‡Ç¿‰øTÞ#±¼ôìf¤{ -8Ý®m$·Ìx"/ݵ=ÕßébPž[g#U25ßgWà ù~pÀpI¨ÆØ©Iöu$±Fñ^-Æv˜]‰^P™žº)ç—g~Êk—¯äPO±ŠB™uùíM±MO^¾eôã½v ŒwÜewðLØÃéz §rÈÈsðC#±?•á|Hâã;ƒé´aU‡'šZ >`±Ñ#E •[b·žtþšµ·tèØZeöþ9È¡oÜ)ñvYÝÆ/¼`ùø0Óld°øžsÁiðgÜØ +“ýIìË>Ÿ"­&¬bñ¡iÇœ€_šÛeÿŒ0O‘if[’jrj¼,k«4jEÁ¥Þ-1Û  +:6¯¶©-ßÅÍÐCˆœ™FäO~EýØËËéMSý{¼doz:8H]ÊH_ºJÓxdFŸçX@¡q±©Ók©ßXlhwH™¾ñàXœJ5€Ý-„KÉ bï¹·+jw0ˆz/ÔR•ÿ¨¶¹ô:ºŽ{ðûrô¬ßÎ%aäeB!´žâ0«¾ P ŽŽ?½vÖWLÜhhÄ«à‹.@žYi·ä¸´%Õ«çH ¾;v¾^" ¸r“¸Â/=PVéñfü9JýófšÂA&ñGø) ûQÚðÊe£†§segGÇËäø2Ágä›’àx@°W…æßq8 æBlÝm“Õ‡?FcÓÒ‰i…K€ò˜h—œƒËפ8™AC–"ÇQ1|it[‹‚ŒFú¡VË› ì†!HmþñZŒÝu­Ênl^¹‰VÖAˆz_ok±’¯Zç¯÷ “Xs·­¬É§ e|sM°6l<\õæ9°ÅÕv&jïo‹¥L³Ót g”X6£0åý>‘ëZêØVb¡ÉÔ$ž…Â(\,NŽõeFP1 Uvrë%Àæõ }Ñv«ñ²)äÞžküšÅðü ×?»6÷¥y4Ù9ûì+}?°p°}­ÿl”Öî4 â2]Âç…;¥R–³;V{Ü‹ýŸ¼”®c•<_Î"m;BcÂë›Ehhu⨢îóÕ,Z}½O'‹F]ˆß“1(èÚcãe¯N.»ì7Ã3yZ¥ñtJsO ‰ F‹˜'Pù>»=Ë·Sb:OÇ?¿KÛMÊïô‹Ñx¨_¶—Ʊu®©öóKϪJF®(zòmšÞgMÿê4I­€ÉlECbPöp—¹Iÿ‹ƒo¯<q"ž¶¨Z±¤‚ŸÙÐËô(ö÷³ÇV/ãRÈQF/wè-<1…‘Íp…¶h>3HŽð«{I 3ž[Ï|RA„m­¾ñ[-¦nGÓ_Ÿ¢äuu–Ô;Å5›ŽWç̹ìhFFþ¥îó}../ŠMKƒ<ªÎ»Ö™óÙ‡™_O,J[ cišØ;sH'ñÖçÆa£‡²*É»~®$s뢼§e+ŸJr1=PEú<¬÷âê“æ$:„WpX÷’ßä7m‹+­¶>´J*n#¹ÎÑYÔ¬L£6Óô¬n@EÙe˜Tˆw¦÷u?õµ¶’=ÛHVùªÆåùIVæ¦D8ÿ°d‘Ïtû߃A3véîÉû œ\sއ^O*J¥ÐFưL¤Äþ_S2©±Ž;ó|Ƥïã5ÌÄÙoˆý „$0úe"oã€p÷*¬Ã»Í82 «¶+¦ÏwR¸•ñSX6ܧ#¶áv–¯ªÏ @à\PÀ>h®#SØÇ‰^V0H½‹åeJ¤Óóv¬^ÚÙÍ˾TÀ‘‘Z†ù†»d£˜èÒÜBœû>EŠy7¿pИø¿Û<ÊT*èL”]¡ú³[27”‘[J[bºí>U jÕ éUzÒEÛ ™Y§À‡ØÇ×ïz#j(+st­V“%*¡9‰d¼¦•Í—â+7øwCçÃè‹,“ú¼ØôÊH¹÷9Æ ŸP›m)ØîD—±óËÀ¬À9ù¾²[{è‹Í‘·.G+s´QoÒ±A¹š8!—ßtYDxRõ‘Øà!ïýÍý4ÿÈ2YyCöä>ÀKrÖrl{µƒû8W‘:]’p~6ý©?ŸÁ#çã¸àü]¯Z‡û&ÈXôÔù•8ÈyþQFµ5êÀ-âÔöq¸Ye±$ÃL Ækbì^·øÂç£üÑ^¢4ªgMŸív²!ýÑºŠ°Üö^K{ŠðC½ä*ÄJ|k7ï+ù³û“Qû»_zi™MKˆPDÁ›ßH§¯‚cH a–RuàD™=ÀY Ä"!öjV\G¦÷MÇ'àpèšû„|â••XÿÆŒmÓªÎTÃ?ZÚ S]àCy  u|¬_”DÙÙ"™ö±Dé¹b<¡O>tòÚ¸œ".øâ,BsH>÷Ä‚¼§†¾²ÉD…3ôú#è‹´»Z¢6¹¯"Ó†31v„söó¤°½íDZ‹¯#tá‹)  ö™Â´cÖ„G*V 4tæÔß‹õÖïÒˆˆáƒÿ»C_ €MFDo&7‚ЍÓà“ÕX5³ôßðWûáË)Ÿ:ƒ;Ÿ<Ÿ'y¸€F‘Þý«„¼ØY½mù©PÏûÏt5½ÎÉ`KÝ š%}ÿÛ—¦=n¸Ôç/Ý*Ã÷ºøkÙVùÏS×ßl$í·&Çþá(øä)°'¶£{\¥‰‘Ù¡p*[Y…äĵËd h•FFR˜fÔ‡Àµurj:¥Î3Œp2ÅÞ1¬kÇr\†¢ë3ÃlÛ—xXN~Ç3BrÕ–ëåäß6£5^‘Å0P‹CÌžåçø°ˆ/°¹¨…ÑÜVêðªßnèf±úÞ°&rúëÎÐ=w=TF¢¼p &ˆp£ðÕ.Å4óõmTž£¢I‚Q¤/«…é¾l|¤¹ÌN+kµ)£Ûö‚3 > g·¯×¢Þ_ST¶í\:{ÛÜ™ZéË<æ2… °óÒÈErr u}z0KÞ‰ ‚På«W6Þµõaq×jÌW£5½Ãlß µ’!(ZK·Km+L!K8Y ÖË(å³êbo’â¦<ÀT.ÚÆZ †ÁëX¯õذsc@ÔŽÓ ÖžNè†uE@Þ¼ÙGƒÝFïT··éƒ+úõh@Ÿ8{nêmS~•Í¿®n&·‰¡†:3ñHáŸÃ³5Ï òf»o ÒëR“–î±µñ98Ìí]O29'½ÄIzë‰îüâ´¯5š¦DðPˆî`{X—HâKBÜ”½Ã5¤Í“Áâ” ÊžJ2¯;É”,êªÐkµ×ÃøF`æ±ÎÉgÇz F­©Ä©H‘.ÓŸè ˆNÕ&$zmÇxû¬3Á1·ôÕÓÆíÅC_z@'бépÛßFq[våÂú¬&À©O"e‹›õtKYýnqÕˆËK7¥$Œ’.yš”Yj>RÇyD|ÔÄVVÎð!·üð£6Êê•£ð•r‡ØÚ–1‡%`ôyD¨Ô;(c’4r¼ê…µ¬ýSdˆeÖv¶f3 .ˆWj±¦Ö2ç}tj\ẹLPóXiúU”&ôæco>W¨æcí¶lÿÎ{j±—•9=-4ã=”†¹Ö g ¾Ö ï¦а6¼÷À;c”À^ûXÊ•ŽM=[k†2•%Øa_hj{ÿôRQ¦ºL•ö„®–´Só(êž—&A$ Û@ÿ=šH´Èðzð$a&ÌÜ‚Àõ“,ðâØè¼Ÿ‘qFˆÝ| Dÿ¤Ýµ‚I¿\PWÞ'X÷Û£Zã{­£cýF…4£r›.,V­Òû5̦©êˆM–IÕÖ§ yF}‚‰!FlKAe¡e —â¾cZ’8ÂËŠŒSiu”ÇÝsq×l¸j‹Y8ØF—û‰÷T NÅ0Õ·®˜×€}S-'ÄžBaµ>ÉK1iy©•KÑîk¥ôjßS·7ì¬)nõ#:Ö[éòï ÔeµŽñgÇ9Ú¿áÕööìÒnæ¾/)õìèCOŒ FÔï0Ôª÷$àTq ÃFHŠüÏAÈÞ;Q‘ëÚ?Žd‡Þ¡ùÐI6§7Í·h=á߬؛ï’ÇŠŠy­Û'Üè­ÅðG²-§}Zøæ.xßD‡¶‰S”ÙºªA—J ±úÏí[wÔ|E‹bû‚NÁÝe~­yKdÉË ýWAŒ|3—¸}^§œëÖá!@R­•~šò˜r½?æR›Ä"Ë"mð}t/&D —hªïkå#¼ígXL™÷ð©¯àh"ÓB?^´‡ô åAH²ÇcUƒºÎ-¬ ÍÏ6ã L¾µ\¨ÌVlÔYU°HUd_‚ƒQ6±ŠQ7ÍDú¡ç&ÃÝpõõ&Ò>È(çKûW´gæÍ±èõ.$ˆ?Ó¾Š˜¦2ÇÑŠ$š¶“ã‰dK"g‡Œ™ß>;ø/éá¾3ñ»æS­5IeÚÉ“­ÔBTìWìVhÃÿáêz›<.­¢ø —‚IŸþÈ|õð´¹#®Âj³kqà–üÕç˙ݞ_Âûu¿¡³—u5&+õÆãd#ì­ì/^‘D`ä5~½Ù‘m5’Gb”‰’§%»rï¸e©®Nåÿðe}b)a˜N¶%Ü÷[nöÆï)r&…U’±¶F±£Ü›63ñ…ƒ:›Í{»„ÅÕ-ž¤p¤…¿ëeÝRy÷è”Aá¡ðÀT¿à•«3ÃðÍ¢o­¼f L6á1à Ôr݈½4Y½ä!bÎ5—S»¯˜K³wkA=:2¡WI€Â®¤Ñøp$ࢿÇßDžC•è9G+«9™çÙÖχp×ý ²†tŸ`:úw`j›#bÌjÉ€3x„þ=ª(w_²Dí÷tû}ܲŒ¾¶¯ä›ò_<‡«Ï­ÿ9ýÅW×hÎGÞ’ýŒøÝ`T8¬¤\U(Í«u:}»Ÿœ5Ðs½r=Ÿ‘‹õ¾±Á×ÊÓ›dî±-aEŒCèò\ëGN¤\5>q¼g¼ç%€äó‡î¦Fãn¿ö“ÇÀ9eÌ x*IÓlÉÙ;º&)Önlâ?—®ÊOÿ⛣²€`“{"<؃RË*ó¡?r©P¤Y曋„?GâF>BiŸíŸ­ìCWxૼu–’×Õ ­Öf® ánJ°y³Þñu-ØØ19ßZ3Ñàö¼P>òÈΫ%¦4 wÉÞUÒžˆà2}ðX«C«¾e¢Hsáùl5¯Æ$Pp7?ú½Ý”åÊ=€vÙvOÆáúFZÇ™w ãôƒ Úô42iÑòcê¢í¨GOÈ×Ó?ª¿´\v`Ý–EðÅ¢UM@U·Þ¶Ó6`ãuá/‘z>êÚ¼Ødñ/’âÿ„„UVïZ H'GEqeN°Ì„œe™8N- 8¬Ê{¿$RDDº[uþòÿ#hÁ¥™?C)à a[UŽf¤Ð!Õ1m(ä $ñ¼2g(¦¿ÞÃÿc²¶dÞÎ(¨2“`c&e÷ö-€'[à*Û­ 잣ÑS—ÓjÜÉ\Ÿ™¤;tIÎ`±Ã%vÐ8– Ä@íà@¯E9½dÎŽmÊ»n(¹:´CÁÿESª=ÿlòAå¼ÜOé42·'£¼.®LÚt•KQ²‰® ‘õ{ÙÆaª‰[ Æh ‰Úò-PéVA§‡‰Ð¤)Û¸=ìå€Ý"U]À·[x†./Â…{'‹8,nâã&¤çEiÎE,jÁlŒ²ï6T9š„NýøtmÌ6Šü|c[X®òì^E°Üáb¶Idˆ CI{02@‹Jq[W `zdz­é»A_ú"Nü‚»£ÔÁèÄá‰:OüÑj•¯^îdÔôe6éc{žáû·ƒG,E9Q-ïŸå5ŽiNóäÌþíœóÀУ¡#øQyáí\x3<¨ÊHo†\òë¤k±pÉÒÈßRÉ¥ñ?HB—°7"³‡}ºÁcŠ÷ züñÿQ'ŽsðâèöîµQ–ˆ¦?D¦QV :NcÀê»fD¿ß/×DÚžúC*Ç/Þ0µy©p.ÀV]¹«ë"ñå–9Ç)Z1Ú¿á&•†jÛ¬øW8Ílº8›Òè¨dðŸ°Q’ßâýŠkGÏÙóK²O5 ÿøv¾’ÚêÒšXÏ£L?iºÙzw~éEõÁöŒÆÀ¿ù|M¸°þÛZ­†ƒí„žP2ƒó‘í‰ 'uÒU1Û;UHYë¹&¨˜Ю{bO‰¨ãÁ6ÆëJÍ%›Ëõï×ÿ'Ài!%i*NùƨÜ8wÀD Ê»çþ´­v¾ ™6¨„O´àm$wïËãÜ`wÞ¢õ*f‰o4GOÕ¿U•Ë4H·_ “ŸÝ]IÉQÂ8¯ÃBwœ(—`äõ½c¸v3OPzÛÁO+‡~ž|å7 ›O¤¯9Ðð9Aæ—srÊF * ÍÓ@€×¸òüfÅ’b;oCZÐ×Þ(kR6X™|Ž#Æ½Û¦Š¯ X©ÍCÊÓëÇëW •z bÇçž½3WÂ@™´¯HBZ†S)RºÅ?zZÀÿ,Ïõ@[‚‘ k¿ôv™¹®—*Äa‚n;è#ÄÿpÔ7˜ 5»rw¤¹qMthM;;[ÑB ¢*þ(߉w¦îŸzC†Ä^ÐyǦ ¨ˆ¢h+¦{­>–æ ñ8Q³f?»•ÃîÜÂŽú©ÿ×,ÅO{½H¨äA½G·pV_ýPNfdíê,ˆ(ðû9~tomÖ ½2ŽüyÝ(+žíak(²«`ó<¹ÎÌ•mŸa\P·]—A-ë<1aEÅÍ—kªG&´C.šv¡?pæÊ%ˆÖüÀ%háåU`Nä'4zDêt»f"{ðü52½påÊ‘¤fì¾T«el«y­Ë7µb>¦-!+‰!›Î -mØo¡é'z•{w·ž¤štŒÒTU]Œ¿Ÿ¼Ú”+œY=šÒL?†d+|™ÚŒGM ꣆d“€νö_˜iíkµ5'‘.ê,ž—Ť´ ̘Ž5š7÷$ZÄ@$˹Ÿñ)1\ɘÑ*÷k§üój5_÷T™é²á+ŸÀ™”0È×8’]½yYd´o³ áƒ_ˆBÑkŒÝ«$³9õ„„œÁŽ ¾ž›½–È FÂÁOàâgžÍþdæÍ .žh@9E³HÅÖÙ¼?Q_n¹ß^ÿµ¶iÓ•ýðO¦ÙÔÛEúÓ#_IÍ`ÛÍ¿ ?JoB©òû¾ì*?ŸòXÍý«Eˆ$u®'AÅâF½i°Y*d¥.Rakk‡2GD[ô_Âõ¥». ~¿ÌÇ©æb.â6Dní:ÃA’|/àDn䑪ŸðOæÀªx¿a—L¥·Ò6D»óŠÄ@^h}¸fÚɃ\†ôLëÿ§ˆ¸»¼"Úä¥ÌbÞhZjJ¤gÿÙ:äÚE{LÑá-Ì}Â-irøoÖ=™¿.{=\9©} £âÉIŒ©Ö#¸4è ž}Vé|S¼è€á®?ØxF7KòGIOCéѣݜKûœ¤‡ðßL* Ì$è)iа*^a²Ê‰ÁY–ÒÚVTSBÍÙ;ø`~_As¨eŠ>)öBi´l™Wn Rê<^t(6’.ð¶«ØïI[¥~¦ä„~ϧjw•qÔ(•µ ( ü"êbiVÿ:ƒ·±1¬iÞŠQ™lC¢nƒúT•p%:†·Zœs ¥¿ÄCDÕ@ŸÍšèI~?N¬ñ‡ÄÀÑS•ó§vq­^˜öBÓ¹á3îç“QëÌð€zŒ‚|÷ Ûrߨ9"w¬WF:9(‡_ñ‡Ã_óå‰ûý®¤ØJ ùZ2_ºÚèϹ±¹_•1¢ß’^¹±×î‰MzÏ %ÒÕb—ʼnÅmTÿbWGdPF—PÔOÝJÜîwhñ†–™J]h6Ʊ:7ù·F…¾œy@[ò½%NõDwòDú+®rñQêƒL¯0ØufÎÑÉJÜQ„ôÛmtà‚vxš§T"©§¦»û.å÷h%å¨B÷b`†ª?XÙÆK0 +:ž« î_np,Zs;À\”ÚpÓÎgo†>é¿©œ_FåÔQ­âcƒ‚^ÅÕ0€¨õ6d#ŽWûxÊù€Î–˜³W„Ú*™³•ÑêHG¤ÃY† "e¹<1®~úá¥eXNô_<öñ<ïDÜeHUQŠ›áË‚nN§3K½§¸ d>m+9dJ²œPw±•ÝôKÆòf’†4 ={öÐÒdâÜGp?-gTł̶¸Ž;¸ú+”cô„ÿ–ýí'k¨Ç<߈VLÉû*8!ßÐ_ö¨ÃG<áÒø4‘qØ;½,-ÎŽ™Ôx‰ç§kqà5¦PžA eÚZw#!ºý+JÏÁ;Ü€0o’¶o…bœ3¬+•Æ mð9q|†ï&Óă?ÿ—p䤠ÏòomøâÙ¶ìÚY›2ûJ8¡åô%ëñÍ\òN)Î>àÂ~ýšÎ¡%Eá¶Øz «‰¾MÖ4^ๅ¦]ôJÜ;ícDÔ×Y·I¤ûg–ª1xiGÜÎÜD3p.C>twä®Dl±ÀÙW¿ê~Žq(ûaÍõÊõ_$v@ ¹3£Ò€^‡,YÀ<|‘µÇ<“óNLN9vÒ}¢‰ egŸ¸ê;m¬iJî(„í¬Lÿ—g™R&rªÊd &ÿ¬ØÓhõ׸•þeæ" ¹÷)[6~’©¬ãL¶+}i­‚kצ `qɇ Õ` ¶q© gÁœÆ°íŽÄ½^í=”­µ?žˆøÕœDvñ5 ˜ÔöáO €z´n^‚+A\'¿†b¨iuz„1g_é ËKxüTd=¡†G‡íÜën4gÕzRΊ_p?ÉHo¯|ň¿¥QE«ñšùm UÊÁrõH®Ïú}@ȶŽËµíÇÊ~¯C”㹋*ʯûîš# Ÿ—‡C°ô)þoóÁŽì+!wö1‰_ùtàr´¹¶¶’¥*ûû4jÖê9`§{®Í’nã½ùÜ¢J«šßð`²ÒoãÅÃ-S…‡†jý|T[±ç*G ¯;³@RæÒ¨ÚŽ×&^sÕ 6gá’—é¶`ÿBˆ'Eò7!ß—8nr¨ÊrsJND¤3…î5Ôsçêmkõ„+Ôˆì(tyÄu33–²ÍVãátÄùÇs™ÇË"2jºTÞàcßİj»•*NåS¢Šåòé>Í‘çÁˆ{O¹[ó_78ò]QÚ(Vm)Öüç…QJ&švFnU=w¦W ãbó´ÜÓÚÅ_ÁKØ'|½nS:á– Òv;µ®odij»ÉÒQÁÿeh¤-ãÃ#E%?+Ë8îe…Ÿý¸Uµp“è~i®¯p™~J(>è‡qõÒ0v‡c”Á qÒã€b¤÷1º\í¬lXeá1‡á²´)ˆ…¿Î¬Z‚Ï6§¼ŠÛ:=Aáx'·èÐ9%ßè£mî4’x Lï¿âó¸üîÀGKí}Ôp!‡‹þg8¬ê¦š{Q¡dk­ÆQÎAAËí<ÜàæÙ"Õ®äêù«@ï”Á’Í E’ͪz.·³ÃØin5¹?ÑèŒãÝÍ¢s&zz—“÷MEE_^#Žôkÿ JÀ~üt#q8»›²vØúè“&B6PŠÚð¥þdg@¤B2CI×ÁÍ"çÂ+1`H½K16 ²§½”PWËžK"ü‹$ª+pá:í’÷>Zdy¯nuëêÑt¶óЬË|ŒÉ»;7’s¼z >~”Ƌи¼‡Wµ•]+Ðÿ–=¬à‰Ô>ï¹d¸hâ¾Z*q—ð%óûÍ¥"üqÕkYœþ‡Ì–'ô4‘,¹t/jHAšÔzó/ÛtW_mbΜq í+„—ˆg\/€b÷´è/×9=¨ë¦­fÔùwã·-êÞósµu늛òöÏII,hýûD§¹]H¿ž`s@X²È“åtæ:M®toÌÜ0ôD2Á:ª «vóߎ»Ï!yüƒé:A§-4X«‰:ÕéۜۓϨñÐÁù4™¢Ìú¶%°»Ò¦êÅš„Ì}Fº”Þð2êÅ šk|ªþFþ^ü¢¦qºÌ> stream xÚ´zeT›]Ö6îîÅšâRÜÝÝÝàî®Åݵ¸»+)-îR\Š;}æ™gfÍßoeE®­×ÙgŸ{Ý åe5s)PäàÂÀÂÈÌ WPÙ›8°°2ˆ‚ì̬ŒÌÌìH””b` ‰‹5ÈAÜÄÈ àr±(™¹¼9‚¬Ì̃ä¥y üRJ´)Cpí^ÖÚ“«'¯ÌU„·MüüˆÐ$DFó45‚²*ºÉhdó uJÙg²::H£‡b<_zîcX'^1/RÉô+:V `Ý‹°´â€í°<0»ˆ¦º ]^ïqâ¢M¾Š,Ò͆áÊÂ9öõ`è\’'¿_¬>Oð=oóéž ¤÷«Á5ïë+c:k!6­nP¦Ð‚W˜ØHQÏ[\ø¢íêÏ÷°Ü¦›'o«ÈUƒÄ¿—%Ë?àŽƒª÷ ¤×Ù ãþ±E¤Á«:¸äv¶¨õs©îH¿“(¸äDsaƒF‘è©õ@ýUqÐÊèü…â7%Î:úYØ1 6‰Êç<ÄÄ•[ìj»Š_ÚÞf/:>'æ…h\SBÇFÚ×îþ§L†²Ei7Ù·wÇÛÒ=´#† ¤£Á)ž®åCœ¢OLÌ«8ÆI“>¹SrŽö°¯¸ÿ Uߤ<Žg;Å鼟kV í=ä9ãµ ÝicŨæˆk´ˆ®íT["P”àh|·ÃýÃÎÓS)^µ¶ƒDópâù¸ý2Û=|–>ñÁ]Jñš5ãÛAß°·6ø¬oÁ€ÏTQ94˜Qi`tbó_í±¡X:ȼå«Ý´<ßGªç%õNùaÁÈ].‰øÂ) ~Û©w×Ô“±àC¡LæPâ™ýY´Éã?³ƒjh¢¦CWtuR–ñ¥ DËñØ{d‰³,Q”ô1;>V4®ˆÎeÀ/•ò7 ÷-‚÷EXoä!¿•Eõ•Ž·ÛìEjlÌpm^ù N8ï ÅÄ{‹ûõʹBÛ¥­FܵrR †¥Y8PࡤöGVy vª,‚4T¡á Ä}E0Ó«Éõ7äYÚ¶(=íÇ<àBž"-¬|Ðïâ›aÛ}§mòà_Ó©VB·R†Ñ„R$ÒÙ*äKàôéµåä'âVÄæàiÂ8~’0 )¬ò£Ísž4KìÒ~ÇÌMòRTroFäŽ-zÎ+€Ok.\}Ä—#}¿ê¨{NÅ]Çòéµî^ƒw Ìpdßs‘ÍEƒ;‘•ž‚ßs†¹è¤”Fìù®Åê)–OnúÊÁ0ߎÝÍú¥Âš]Æ#%ø;è°ap³f£™Š‚(5Éð—áÒš©×¢cžz˜ÆYžþàÙ¯W…%«Ð6¨¶œŒWIÅüüD\ìy*†m¬\CŸ#¸ ñ·«·.;kØaj…‹[Âë%ß¡w¦(bÌd !Yõ}•¦C]4áí Àú7_ù1¬Þ7Ûqâ¿î=ê¢eØ! Öô›Ã¡6f¥‘å„ëNi,ÔßO£¶]!÷À1IY$œTÀ~Ó!=ékUUé¹ÓgëÝýÀCÇ„j–õÙ´1‚×’7ÍŒfó|©>`Ôk’k¯YÉOlBrßç2&S¢ÜÙÕ»Ïî, 4 åLIqÚwD}ÍÆ9êàTø€F¼$+ë‡kkº² ±§ùkCpr Ã7Ý'e¼ÇÒµ9¡ïÈ“ƒZyŽÄ¾/ô? «5üä¿Çä`¤/óÞ%g!{‚}wòc6¼8õâX0Xtn ˜K‹ú`mo¸Çš ²Áª+º°Qm*UlÀgÄñ¨K[«Šh£™}§åÓ¨c›Ú‘sùváͲºª¾•êV`gc¶LÊÞX>”=+ t´èƒ×¤\9B3 …l¥µ‘W¶wJm]V2jÐE^Vo»¢æ@Ì(ÙÂùw;3¾_±:îG‚¢ÌƒùŸšQÖJHrb0HUÆ·3}&KlÜó³ë9édhëv÷H²u|Ød¬ßJàs³+ìèÐÐïXº½i-Ä{J’‚Uÿ‚+úåý2ÕòväÄtÒVÔ»‰ìó§#©Å¡H|‘òÇî4ÒE!O¨Ã`8Ué÷­1/Ï ºœÕ<ž3WøƒßõBSùíO¨èN È<.‰µ„,R# Ä…X'­õú ‹ªJ¯èî‡ȇÞAh‹k‡Yö/ÑÔ“w®{Ÿ¼ç3Ð1¸vRGEÐxàò}° ¸¦ ±x04 «!;f_uHŠJm¡dÿèðƒde,œêq}þ´AþÀ9mÞÚMy‡ùÙbæë„®»â6M…–uë óÓ9ÒÜÈ>";Ñõ®¡ö%M8}˜Èå¬úÅ'krÔ‘ ‘GööÔÑÇв2Ë©.ó×àÖŒƒ;>/Êò˜¤?yÄ$eöUûõHüKj›Ü^â5)¾¶Ð2ôTî"´ ·—ÆÂŒÕäFœûŽ0~•ãÂâ¥x±ÄMÚ ;Of°ÎX»'÷åV­‚UŸðà9î"ÿÙ7²IÍ“’Kon“x¥žO§ö3{8žã¼PÝÐß4êb„ÛÕfŽ5ÃÝ ðNýƒ-ÜÈý#¾½»[¾Ìí7Ú!ñ˜Än¿Ne{¼^ÑTQ9g‰AIÒ&³Îe¹Æ4ôP/d’L!T¹ º}‡LЈ½¢]ÁXkF(]¹l ">¨©~ÔÄ=r÷GÜ›ˆu„Ãr}4bxk·$´13)½Îh£L‰1úŠ JtucÌë€HmDŸe¤ÏPd™¶¿ªLTµ->=³[[p$ö`áìžcÚ)4y2»cZMzNb¬0”]t'‡e;®Ó‡~ÀþFüÚ·ƒ‹7!ò± £ Ê”e‹.{êÆ|Þž[¿Æ­Þ{ü³¾9жÞÀ‘E[ )Õ,¸"Ïg7ÉUUÍú»FÖìoâò!:êh=Jð1ÂÅŒ(ª¤»§RãZww®lŬÒïw•Ácùìåºç røé‹å*Ü¡™ñ˜¢¼Í‰$û‡ßl–µ ¾z‰L(ó×2ú•Ü8Ÿ±ÿî›A6ÎÄe\›,´á ÃÅ_|.’’Hø£%X§r­’ ÍÒ°ÖSD¤Œ!dÆJ‹¦úw0IKC¥—'«‹Ðž æKçæë]®æd¶à ld0âPÿ êã3ƺQºp¦[MÀƒÞ씑9Å[Žb…t#'š£D;3•?ÚaÖ>`“5›î“`Ç;„µ‹p¾|<‰þ5¸pÀQ—ê©Ó?Vb”i±‚±<–›²C^‘Åʼnü Œoq¿Xâ–w‡,ŒLºüTe6K#>÷®þÙ¥]§V@4ïÈ“ËòÈ' úrC®Wý•{ËŽƒàÅó¢øY±7´ŠÁø…d$+¢¯8ûL>ÜQ HÇŠþúbÁˆ¡ôýô÷›}Ôà å@¢1sûè­;¶´bTçjÖ®ŒvF³žOwctÿ©ëüïáp×꦳P¾‡¸Û6U½{ìÙ±Æsb¹ Ê+í‹vv€i,‹ÛÇ¡à3{m³`žéýLiê]Ü—©Ðé¯T¨†.íiÉ^÷‡¡÷?uÕã‡D/Bä[qÐC~–þÑå·pŒñ+#äXc£)üù¨ñöIH8iÌ»Í1dÇd‹WÁÊôü´0dé0Xì%A°9sÅJŸ>¶È*ǵ‚»™ìƒÅ€T£«ê¬w0\ù\pŸÉç|I>üËõýR>Éìö:î½§AËâ6Œ J®Žòrûu —ïw#l\å}v˜-„öÞº‚+hÖ®N1ÂRÄÀ=¯âÝ=Øóâì”ÔTã±Å W‚YúcôÆ&CTdõáæÉdB—GLÕ;Ó&nÇŸ‰1xP…i³Ý…ŒXï|ѹ9z“鿤ýõ³#Åi p¡åÝ;£eV³ªÕ}HšRAë|?ݵŸq Ýr#zĦ㕗´_ç[ëg½ ¸T[F,† x|ðàÂ)T­§.üÂì“HLEmï,w£z æl¶S…ÉdU>]z4S¹‘Ž'€)ËÑöK7 ˜Ñ‘`g€êA?-p1)—ÔàQè;Å1ã”Î6‚Pœåf 3”• å^ä{EØTlÚ“1JŸ£ ÛðE¿ !ÉuaÈûéöêïd›¹îç¡UÒkv¶%ˆO¢x,|‡êòÙª¹Í¥.#±µ*n¿†éž•öÅ¡øÔ6fœk —îã‹ÚŽý»ó®´½Ðu›]¯ãŸÀ榜N+E0Áöåì º6'd•®]Zê’—·ÑÕ÷ctKÄO´C«µj8ì’̽\ˆŒSåB!aÏó}‰Q|^¦›F绂!"ñ¥'ËxU«TˆBÔÕÔv~ݹêxaK†TŸ¿ö§á®õV±RÝ¥Â-œéŽkÌyÃfÝì_¢mëšã-o‘."ÌÝm¬Gð8ÎÊ,…ÞÊ@Ù´.ŒŽðe×3>Óröµδ3 ÖJ‡¾ºwÞo‡Í¥˜9|MùšúÚ°“gpÒN<™]œ¸n2³AdÀTQÜ¢ r2Á1êÝyÂÕbû ÚÁ5m–ebذ,óÍÈS.Åôã}èï Gñ¥0Þ ã>µ ¾4ÒäS;mWú€`´PùÇó@ÑSÿµ' ÜçÔ´½D&û)qW‚i"ù3c´fl1Ók·DLXŒ6"¨êQõ¼_¿„4̓ó>25PÒªí3‹½Z}wó ƒÉF]] Õå»7ÖOSþ¹?uÊäè ñÛ¥ppó1jgÚ¡:í?èW5ᎵÜ5àË&„‹|1ô5j3ËfW·_ǧZ}\ùî狯lËT-ò·‰‡ÞþhH—h$äTÖê€DŸ•lëù¸ß H2 ¬ ̧Žf]jߺÊA«íælc‹cTœ8»Ï #oeÓTi¨¦@ÀÊúþ>ˆø§÷ÎÜŠdèžö‡èÈdä‡_®Â1OC¿|’,ë7©Ö“?4Æ*ŠGÏÙª3w ­Û¾(éFo˜Anäb¼ú¤S±º,Y»‚auP Sƒ÷Öê«*´™Nw[O Ç©Љi]d˜?ÈRþöfÇTãÿÜòåÝlø/&’éjÿT.Fµ}> ®Na®3ˆE( 8ÖìÎ<*¤sx^lòngªÇï¿ò5’*¬f¸J'ÑW&n¼HxγO¯¶ËYºjÎàŸrYLNºÉ.Í6zâm¹`¦8ˆY*å1¿¡Ô1ÿÜζÂ.ø’šc´Ù '(š%Iö.¼¥5Ó ‰v›Ý ÁÚ–?ŸÕÔÌHõ“Zs¶bË5F4ñ‘肱(OÌÂÖ+¸š(¹ô…Reoí_eÒNÿào OaYd]@:‹7Iø•V1”Què6÷à린§pƒ’l7» /%ª÷¬Šà:ÞÜ÷tH̘hË[B¹þaO¹e8Ðjà|õ¯_ IzT]ÉÕ³‘=ƒ2«‘’Ãã8¿ôVcÂì ÒÙ Ó?ÎE׌ÝÍ&Õ±SÑ%oU|&Rük™ƒ§S‘°ŽùÍ~N>Ó%P%–H”µÑ³_–vå^>tÂ4#³aÁ‹œ1‘où-ó Zøn.B\Ðjzø"d0s=Pê²P:9.é5TÔ}f@îX¤î¦îW)ƒjoü}D J„È&DC·3ïÖaÖnNI¯4[€]=«ý)dëlVl%7â¾;FªŒ$ä©nÚm¬•þõJããñ Ȭr´,J{$†8^F³š¼‚ìÛWüñ³›ÈºP»häViz"dÆÂo_é6Ó“¶r#¹Ø‘è©u4^m¯U.¸‡f½µ‹Å¢fÔ<Õ¤Nï/G?îf3öµIzŒâÏ[ŒºÖ9’xÑ œD½« Ëñò.Äü½—¢»¿þšt åKj¢.‹•ÂÓ`nÕzp;"Ô|ª/åI]:3éh‹tb¬×Ñ/ò¿g·Ÿ¬Ü_7ëáùÑôº;¿ ›Ol ÓŠàC±½ln±ç²;VÉ}·Îµ\i0¦â>¯ïkGŽû Õ†֪ݢ.=IÃ5=‘C%u'"ª̺Ãn£÷S´—ÄbB+èPëa{™¢¤§o×ÝÕ¥™Y"sEó‚Ó …ÄÀy}7ÍüÕæ»ÙMqðB‰ E!QR#ѸΖ š¾íøo›Jç(QÍtGªf¢šL¦EÉÜ1þD"N¬À掘Y|5b2‚ówj>ÕA 8öy•š`Û+#Ò]Wn™_褓ú(a~O;p˜Î|©ü €e¹OÙ=7Æð:³6/³>H} Kö•÷u'tªÂ“8í”Ëß^ßBÉ»6b9fÑ|š_±ýü@òm™j` œh(â KÅvXo8“üë+4t€;(A3ÈR¹Ôs­Æ jo~¶¢BÍŠ;ãxïX`ýº®m¬G û‰…eÃ70>y<ÇEN ß­~ñK¶º$zœ0?— þªŽ©Næv*‚ïn¼`._*Úá„‹'”õú˜(2㕤ù*LøFX‰*/C¤à$w_(A2S§aªÝ× UÉÿqù{¼°ˆNP¡oã’ÜnœøÊîÂ%JÀ$\’L*£·CÛ^P`¦8LA¤¯F-į{jˆ¿É‹¥½•³`¶—*(µŽ5³^‚4:‚ž1"FÛbˆsncOÕ ý. §.‡ÆGä}%{„†\32ñ !¤ ~ ÂÞY–³u؉‡Æâ«w$ÿ{O™êÚÒg²á{5߯É×Fw•J£#?+}ñëÚ*â^t»NrÏ…ÂTŠ…µÌ O4×0û±]<œq%[£õÑQeßwö+Ú’F¥üà »'˜‡Þ°Š3èËØ¥M®‡›1Kê:¦¾ôÆCEÛ™òf33x\Á뇅Cf}'5ôE|^‚ O\ûgTþ£àV0í®þಓ+ÃÔZUÍ;‡ÆDO9rH…¡•#…Õ×&“¦¬L–8Q¢~ÑÕóè ‰M3Ku\¿1ªšzNpá«êqÍ ýøhe962,«ªÙvJ€-ðKoþ÷t0u–`Cøˆ³:ð!ëÖ¬¹r–ðò˜»y¾qÝ8¡•1p“¸4…õ= ­½øo1Râþ ½^ÖýÖ/nsÈøïp‰ó™»¯0V ¦ß»£}a4ÇLýŒ.Åÿ»ÎÄßÀ;võFð§9Iµ¬K8q—LPs6Á²‚äÃC U]7ûIXÓ¡ˆ‚ɳ}‘é2v»è.SN¹Ñ"l¦˜Ð†ÆzdxO}mh¹õž+œ»ÈÖ²s³êÔOj¨ {WbùzÌL ¥2S4޼î¾=õ˜ùÚv¥º#ç…âýf‰éšëø“•w  ô •¦‰á³Y@ØB^zšÉ¸U|ºxÆ\žÙÁB¥ŸD*ï‰WªÁ¢láõb¯¦%o÷˜š‘…~¸y:ÊÌh]w‚ïÆÃ˜Qÿ7ZcGÔ 1̳B9 ÿLíE¥š²ñZž;t2[Å6-›ðÂo3龄ÊG5·‚“¾[¹òJÏ&¯ˆ‚pçµ2ÓÔ¹P{`v~væ©ÕšŒî[“%Ê_›ùÚ¸§Ó÷k|rThQ<­-Šq¤Ùí6£L¿ .ÂÅx"”…¯ê¶F­Åõ~¦_ñ,y}ÂÉù¹AWKÓðùwÅ”ªµ¬õ>?Q0nYGVH)ŠŸÄ;±R´[š{þ°‡¬ßˆ›¢t„·èP³Ðs߇Ú.ÒâðŽ'nC‘ÛMØ/mšn%V`Š:#lœ>;®„—'†ð5“z·í–fØËZp*+豓¸°\[0›®ãÁªoÇÚ dOuO=ºO ²n‹ÿÁR³ÊuÉ6î¿¶ š6üo+¢Ùþ¡Y3â$úÎ1êzi¥/ÄŸsiw¦\¾^žY­éˆÆ¨ Ô”ˆVµùti Ÿy³k]rÒmeÎÔ@52ýqè”"àÆ~ áÅ‘—䋘 séòeL Oôh¾2úú ž•ç̪3ÑNZ0hV±bÏÛ;ª<¼Áb޾8„ðºj¥u×à’R’*©Ÿi·ì0y ˯°‹Ðrì¥k~k |w…Ï} ÓâÕÞ Nbu3éˆÁ݆ÚÅr›ú@g¾™àH/cÐVÈ(€ˆ³$Ô¾0Ãüý€éÙƒ)Uˆ•,˜ÅÅËiкA\Œ»¸…Ù̹kƒ/"–5ŧ† *6bÊ3©_ÞùeÙQ¿]—ßÞGEìXmŽòMŸZŠs|Ü©.´ÿ˜®;!‡ex)yƒp<®0>.µêŽ4`1PŸ‹I’Ìo·«(-|ù›œBA@ ¥-L[z ’lÓúC ãD,µo!Å[u”¦ÌµøMeÅ-à’ƒ·y/!#ú˜tM#°bó=ƒDÃWƒU²MØ‚«JÚ‘ö‚á~Œ(ëHMõ^$#æâ;Èe‰46.f)ÇZØSÿŸ©"å9´«|Aóþ¡×ØÑrRn´®›ò ÃÖÎ÷s‰_%ž 5cúïsÚÅ<2ßáŠ"ä~ˆ½M)þMª»×o†­Pêª.g68÷i‚F®IcE¡јX$pyø[@õ\è7!U؉ÙA &Ýc=Á‡²mÊgâ忕ɮWS)ÍÚ»¸ßHøYP0ž»‘Ódú ù.kU$ô¤ G¬s3n*ø…ï¹+î¢ë£_]ž"k2‘Y×§zâÝ=šå|*•Ò a'µd%p>ùXÒ,ѵ^”õLsŠLxQæÃ?zu#L¿:|ÚÄ•ü!]ç‹jŽPbt£yJÉÒC{ÂÏs2§ óœü+}ªD6?^Y²•ö[]7ïä)ß^Ìð0¦v{Q\~‚—÷òý©Š9 c¦2wCÙ6z‡+cÝÙm÷'+Ï-DÃ=sdC_vÙ—Á8¶7\gJe™à@ù‹Ã¯·ÌhUérV­ß‹]¬´ŽiJ`"âeg„×ö`šÃ1©ëí‰ ¥É‚d7UøÞÏ{àeã®\f…!¯'µ'ÍÒ}çE×6Ô¨]´Â62O,ç~_Àô°(FŘ9½ä—ëádPli¥™WYL—W¾wJ½SÚ±ÍY«5´oÙLâ@ ,Û ÇWÑOEKdк¯:­0E‹7®[•áPF&¥ÑK£õ9ã*Ùø“ë‚}žiºÃ’Óè¥PÕ©¥^¶<Õ;Ñã:Â_œáâÂ’+‚¥¶÷^/b>ÜDôºÄh¢®åj{BØT9%?óˆÐÂÇx>/¶iT 6h3ámwîïc+ù'Õ¹æòƒ"Ù9È·‰å*ÕŸ¬7Ç–ƒÚarî¿`aÔ–ºí©)É:ø=Õ_R1¤Ï·Ïӣ̸GºnÄ7¾[Ø65¢?ó}Ѳ¸³&ÞÕ¥^x1Úw>ˆ=3%…͹·îS|·9*IÄG'éÝÑBØ#¼zu§©V_ÀŠ,ã¸7„ö&Z¶.ƒ!ÇöŸÊšÙb1‚ÁºB#”zB>x¡4wêeœ8®O™®¯"¢WÅlDy$œ”šEY[;å„B®ïV¡y~h«Ùó(L!/Ú ·= è5} uHO7Ó\;)x¹—ØŠÍAFLÄ⥱WÆÏy–ù™[þ@‡ŠY6ß2œhrN,ãŸSí}ò ì¤)l-ë4 f1eÒß«T)ZÝ|š‡ô¦Ô´CÍB¡à–ζå-)OWh¾mlãÜKUþϫ7Q"8Ò5{ŠïoÔVóUCoæå©ÀªŸ|5}0"´–ðÛw¦°V•˜ô ç‡MÌ—bÐqfŸÛ8°¯#(v6.Ý6ϼ·{ÖêÕûƒ©1ž}…‡:ÇÔi;IVã o½µ sÝ¢Á[Þ‰«!P’•Ñ2ð‰¯‰KTNm·ö)_Í"@åì¥s´œ×—¢›rêíkèF•à2´f ë4©5I Ì{Í‚óV¯Ñ%¤+Âzú‡½u~> 5ÞO›ð´  ÃÂwB%sýâ_ø›LsYI:ÓÃÚ@âØ˜r õâíc–·µl-¼p-“ª FâYš“{Çb…øÐ”˜ò:¡§SMç‚`€-ÿ»#ÃT¼òäëK#ÀªìŽÆ&ñAæ´‚ÍǺيhÒÔÔÁ”>j9,å^[|0©ÈËÈXê™þÆL%FVÌë]ð%í[»Á`"|h•¼™ï œç‹Ç¡ØÝh›Û;3°VOÓ‚4ìæ:øV€¸ãú4Ûå¥jwS‘hqM@*.¸:÷óÔS­=‚'Ó.]«À¾ày ÎG’Jñ´®½‡q‰0p”%P§$5\58,÷¶Ku„ãa£%ñ¨Ô UlÉmš*Ó¾+j5sC›Ç+‡œÑãO]Vh§bìæ‰rI6¿¡óu#¨¬Ëµ- 4ÏSëË0NÒkÒà|ôCìÞ_{Ä'ê¾£û¸Dô¼ðÞ‹©·\©¶Âsµ£œ…ïãœzUY1ö¥jƒ,?2ÖŒ=Eä yV‘énQû/'Ñ•Ïþü€¨‡Q-ì´¦°Wæ~²½}£Ué1Ý yíi>î‡r„Óø*&«ÇöÒÔj€èkdd/²pô¨ehjzþ¾°Òš·3¬v¯ææV¥kyEüx®P2ªLßLÓÛRÉa‰99ßž´8 £öÜ·4Ã%›RŸúè’83¬±ýÁ4þ®„ñ>‘Ü~×!¯Ïêä®X­¤ê·+ÂHfËX]§ r)² /†¤ÚéïT,À“x•ÿŽº#ž9éˆ"Ã?yç~h;ç(*ñ"|Ø3t1ÃÝàÔâh‰ð…Ä\ ¢ë6úÂye€4ý\ûNÉwÜ<&§˜JÎÔ½iA§oAç½&éK0ñ‘X¤KŒ@ÌMe“è± s½iIgG§r­Ü¢™ã$2t¦yþE ~ðsE’5ýʼ,ò™W‘†4¾’È|$t´e‚âÑAã|%å¹j$-Bž3H÷‘ðÛÄ'HîTÑ»¦Üj§èo¿`Çíøu%÷UÔìV¿ë¶r[•YÛÏ;ƒ™Å Úù{ʉV1½…nñ}4¶O"·K8ó´•ð¾>Ù*×ý•|7ÄLÕžZð–iÙÇãý¤Ú_T¶ŒÖÖŒÏÕùœMoø£‚y§*mN+–Ák1ñf¤æf?«ˆ7{èÚùbØ4ޱí°I&zô´mµè¦Wci@ Ëeû ãyÌÊ»Ä/Ó6×Å+”+ô²”⓺„zfk-ÔíL¹3£ˆSPcZxŒy°¹–$¹7¥Fž[¡Ã3«&¥xbSð-R^°l xû$óꚣœïžï¶hÀ“†[Ç,~_"ú/M>¬!jUãa ½ž0iÑ,ô¾¬«õsQbV5i¸/]Ó†t'”ó°N÷ÒdûÅã&ï3²ò£åÙãc×…ùÆù†eUh¶T¨P¢OeFgXæF5*ÉÝõaó†NƒºáM·É€èÓº¿e½„Ìœ">¢A¶éȬc_˜O¶ JÌ¡öû=åî¹ÔXˆó1ÝðNÃ7 )Ú#kĵ»•â¢8<ÍŽÄbi Ë`nŒ=_ñ…nuN¿ˆ¤{µÓ¼'’ñÁæñÞ1¥†óë\‡oE¥dßç]Ä-9Ïnt3biÇ“õŸáLuOqc¹’¤ï‹|Nв„ûiß‹ÓÀšÖ™iAUõ_«ã£‘Mxe”í#’äJKHz×%Ês×Ðt—]Øtô¶_zÐÚrìÏ•¥¥2vO¬~X»¢CuÖF?cãå‹Ký„#<˜Pÿàä¶1‘HN^ÐM² nM^³r°*âßBI«`¯{þ0‡ø a1Ô¢h|t|jtOÓ&ûërK± yìgùÄÏç»Ä™6­S·Êªõ¨À"gCG:»¤Tíù½41Kähœ¤Í½ã²EÄÜ‚Ø}„Ü[B—¥ß$]€ 3Ê.2:˜6¾OÚ²ÁSg]ûJ²ß;ÐôÝ+õ~ôl<8¬‰Ë>LÜdgúþ~Pû𰭏ބ 0€ÿ+ ¦ïÃU£¤½^ï™K$ºHÝš«³yørBleÉmÆdûÖYakÙ7ëæ*•õ«e¾vJ«“MøvN«]Ò™[ÿ†ÖËÒ5‡É”lhd4ò½JrÒÈéÖ´ëBøæç¾Ð66Aü ƒ"i¥OC*¨xtn$#DŽ›ÌáÕÎ;¢aXï±»Ü>àÒd\5?SÔíO ®‘ˆÓš\UTü{Uæ„j|P­¾Cî!©Ó¥¨™ tqg¦L¤úwº>}ö~u¿.È'Ї†s![ÜKebÙ±tžVIc’h„ŸŠÀn•ʽî%OãFþ /‡‚‘E¶?g~÷]‹3âðIàÇ,‘ëyÁW:”š2—øŠ$N¿ã[TÌè»…Z<Æ€°Ø”A͸šš?uE`òî0]ô€B·l«EöŠØ%Æ\È ²kŽÈ‘g· ÝÄôc1Åévlï×N:4‘ð.FÛC±“Ž †¦KÎ+áûåõ®§Ž—œÊ«9r™)ë¬F¹SÙµjvL4?ÍÚ ãrp.ÍGÝ»ðëÒ[øQ6¡ìÞM¶×Ò'©Öˆ~‡ÄtG¿dQØ‚’UcN ò"¶÷Às§IбèJ$–¶z(Šçv¬¼‚_¥‹{4ìH$àJ¦©¨ À¿¼ÜET¼±~b; IÂTÔiÌ/+œ«äèíª¼B$^ô·Ð9º·=è!cÙ¶ù_®«è·’»|‰aA»Çfy·kœçÞ6­ÔˆCéü”ÞR …TÃÙì£*ÉŒyë˜è½ã {SéK·ÍßZëúcPD/K»™oæ»ß£¼®¨žnÍ.MÂWï¹ÐþŒˆ'ñ–H€­Æë;|3 §î.9ïDÃù·¹ ޽Ÿ’hçz„*œ“IÖš@àùKuêÏ¿µ?9òÆC\žš™S$Õ|!Ÿ™àœÐ0aàÀK¿þE944ælÜPÝA3¶ÇÓWpìè†Ö3v•í Yd‘ _€x¥€¾,̧‡ÞhϱžüÜ*ZùSª\Fl…ØÄïVS=õsërKRTöÔ‰rØ/3íEƒ)õ–à½9KëÖ»‘Ib”äïŸàxT .(!|~ˆ¹?бõ‰Ô#›÷‰ê®‹²Ï–ÖD¬#="¼ª¸w‚ìµ¢?:€ bÀ3Œâ~$˜IsŽ¿U*Ro<ª!˜g-7~Ij–[’%íeÉ«N˜UÞ· ·=Ç'#¹hE®s÷ >N2Ät C›<Ýòt{pö°‹©?”7$T}¹oÒh(å¡Pò²îÒñ0Q´•:Õ·SWÊÿxxÜèÕj¡‰Ç¨L0Áö%üGæÀúÇ}ûevOÑ5?[–K†ñ†¤Ô<Ç\Ç?0Ú~\ð'Eøuˆêˆˆ›Gò½º…T1ố—úÏ+¶í3ÙCeN‡÷ÊÁÆÍ±È›"“NŽGñýG@ÃísªCÀ·“Ëv}ËêÊÀ€ia¤~ö‹äþ}o}Ž—§!ýì²èŽ…šxöJW㺀µ¢XN·¯Uâ»`æÃ½éÜo* üŪ|U› à ÝÓàIH¶×aù”—ÎÜ<Þ'‰B:ý•"·ïa\!cÍ;ÃëÇ)YR£›³9x¤VÓZ†´N—_±±–‚1§|#ƒOʪš§žk:U#5c¸’ù_l}7r~ìSÚÝ*ïî>÷t*½»ƒµødÇJ[™ö~ã;ÝüMÅÌÚ'âIœHq§œÝðç¨V€†£5±±GöÁráöqks¢²j¾îZÄãÅ\»ÖÎ!oÖ2ÞI0ÕÛP5µû´­p–tÅX§!·OUx¯›n=E¬ŸçûÐn›3òËÈ5}àÙ’þ dY½9ʰ@pî»Q¡ÿ ã§eœŸŸm™8[ß'È¡Ym5ÕPà ³¢Ö/¶*$Ч“Iyyíƒ9ËØ›Tëo˜ï徆¶ öa ÒŒ¥Ž{Hb>?.½c¸æâG0X¥³NŸ†ÏÇ›o*emG—×sÌÈïG#íïÍtng¢Szæ’ùmõ@éI4–Êô¸‹ÒéÍ“kôØ:L¥>ÞTTã÷üèf‚ô¡Ìèߨ̲ýžy¸5x[`ŸQu[Y÷åN¯eø ü&?~+~JOW“$¿2&1ŸÏº­ÖñŽPù²,½""»KËk¬kT¿1¾èî¨Õ vŽx²æ/΢pWÏ3>Î3áè¨ïòpìG%Õ(Ú¹fuî'^¦Å>Â2WñÄ Ê ¦ö×&^ÏIZ¾®mÕF1ïs6ò÷ Që{Ô_Å~Eà Χá(Ü}W0 ‹Ó¿Ôe’ófZ^ø™9åö¼'–Q+ÅJˆzÆÂıPCq:ñ>œíñ–ø˜#AB”ÅÞ/—à ƒ”@16ÅÌe>ÒøøU:ÞJø².püt=.s-ÂíÅÒºÝÕšFŒ>­R>lÉKЈrÔ—|­ÂxwÚ}-lŽ´îÌ€ÎAVóø˜áô›^1ˆ“<2`ñ]ÿtŸeD2 cjµ¢ØâE!N?žõw•–KdŠÇür_uºëÔqSÜ„²ç¨™¡+Ç@áÛ¯‰êý$‹iÑçòÁÄ[FOUߤ¸«èc pQµåV¿y‚ð›eñª X{8Ë.Aø5¥“|[½C(‘†ë¶pÕ\ÜXKZþL¢¢¼ÁiLLœ•ÃŽº§Èeuˆ ®Ò]HJGãŠSˆ“MŸ–2ÞH«¯ºÃÔBøA\µ,ï•îܪn§?›áf³& ¡;8/äßžQ ¾“Ùì ë*bÀªG›,ÿèú)Ö/\ù©*s í*J‡N[ø»<úÍ&ˆ‘¹1a,uKý©Ãäîå.T8êâšÐÆÌ’øÀÛ‚Qo量È|Íð´©bî5Q”@«ný.4×[dt¸ëÉms‹LÌN÷»—'–ÍqÈ…á|ÜZ¦dW4zòäÐ#²î¾‰2moCc’öÐüØìôj. K<³ŸÊÊ=>Oà¯P÷rrß›¹Ø;ƒ ¹Åº¥H ¼yŒà½xC¹×çûtÕ‚«dk ERÒ<)ø&¤¬æœð¦eWŸ[Pj -GÐÓì•¥ç&ìòy©€ówÝGÐ$óö|¬¡yWÙK†K)XÛªUGszer’ÕÃÒVPæu-sZ¢¼dPmnÌ?ˆüBÝÒ¾bî‹,øßÅn‡õJgÅ{bð³u()òD*î¾ýÑZî[ãÊrËT)nß°:‡Ï¬Êœ ol("$ÑAc>âøé³ºtIh¯ê³£ÐÞ ›¯ôë¸ãÊão™L=µ›gkÈkmÉV¿/>Ô7 …iŒˆu pàS0×£?´SÿK¨Ô²Œ2—.{&îÕåwaJR·ƒ¥[¿•bÌ+õ!*ʹ”û}èÀÍDô^ÆT96ºÈoKNµ=†ºVÏ?Ö]Ê.PY!ÒoDº 0<–òè`°ÒP´œJµx†6G—Ã9C/” mŸè­NÚŪ´÷G¿ì2°u^FgÀ,0C9‹4Ã4ª4J~ÅšŠ„:Mkû^w^=ô¢\)¿®¨Uׯ^˜«lYÃüÈÌ Ç,­RdjâjàŇæþêðšbs”Á‡‰úÂ82ò)+™ú=^BÈÕO¿‹Ž µÞ=±jDõvÙ!Ÿs’~i£%C½ˆH¸¼Àñ°Lh~å‹þ4iÔ³ïC6g̰Õ‘VaÛzà§Ï{pf0ÂgGH{=¦3lO;ý•0S-r6åâ}*Åc¹ >u´Î*ÞgΉ¶r³0 ^B ~q†%$‚]JYye>;Ÿ´DØÚIk†nҞါCLû\ú ‹ÐÚ"n`ížÐIÆ—’éÌÎ,çHá¹Uô`¾ÃÖØ‰fW(àùtqJcûÕ_¬óÕ¤ÉTs!ˆ?Ï›t~ÕZ||.¯"(âõF… c¨Œ}‘Nj¯õV²®1Pª'߯i,x’ôO/ݺR!9ÊëhxYa%vÂ-b«ÿ*ÊÝ™€‚9S%ùh0$!ûª÷W*z #Ì=<€cOZ%§˜ì¦ÿSÎÊÊæ£Ux|Õ×ñ˜58ã´.¯xƪ· (k_ù‹Uä½£ñØtLÃí—E<ì@ ìZÖð}§"åu£5xb½)…NžRCÝÞ{æçu0nJO1{jÌAm˜ j‹F–…hy±-z„_QÛ§•³2 ÙÚUqž„povÿà§~Ž'ƒ&­¼ìúÀ•¦(ñ‡ ­þ–é-\8ŽPýÑN5†ˆôÃpe)Z9ßÞ ' ;û]G'FBÙõx&ôhQpeönî0n™Œø|j+ðO©zUìüP°ð}RŽ1~¢ÚOÆM†b[{j;ü‹«Fq¬d±î\›ÀyÑRØç¶þ±®C?Ï*Å /Š^² *&çê§¾_zÊVâÓšvNóf¿‘B+Ì€‡À†Õׂ ´ô"­¯¢“_Û£â<À"C Q.s¢S žì¨dü‰c°Q“Ðyƒ¹–iŽz.Ѹb˜ÔÔy÷l?‘•Øí¢­ð—?öÍS›Š²Ðˆ:RÿäŠHŸå…õTËÕyöïBe’Èñ!^³µ#õäÌ«1|ß9¤Žü!jŠGk‚”Ðv§±úÃLr/_úçõ½ë"k™è¼a.S³„÷5¥4ÁÿŒ7¬©°òä5ä gWêyEóÙÅÇ(¦¤Í@ ¦§že–\8À)b4í÷—w‹(ªkðºkP1â÷ÔÃÖ¼ãwFå$+?œÈ›¸“©“[µqϾw?ªÅ3»>lžæÌò?þ pÕ žâa— ¤ˆÛ2”ÜX:Àûà‹ûs€ùyãbÊ 2¨Á'¬¸8 ])K•ŒÁjëî\]~+‡¶vÃS•eû%kWCwsÈaláÔìÖÿƵœw !Wi“÷kµÉ·Fk—{cô §3Rºc¨ÈZ*ˆLK*ŠWÐ] ä±$…‚Þ“hTÝÖkßyÂ){Ôû#³ªÌõ¬ûYå \ÀßÙsç1-h v¡òÁb“ -“:o0ÉÈ…!üþXöÕ-LP…Wº ¾´.`[ZÔ –C°¾[äëµ9IxFè'|*3«M<Ï*ÎX¬„½ùEc‡f˜Ê³+ÈÙ}êµ+4F¦Ã›z'^înA#é|ï´x¹©ýízý{ ¥èDàŸj“Wôš-Êl,ØÆ &þÇamsݱêöç;‚sªÏúÌaZs ý×taGkõ÷Þ>¡†ûê9-.RÉSVÞÀå)S­#N¾h×( VòßÄÞD« 7JïüL„nRÚܧÆö|ïjW#å>MÄBj߾əÁà&j£äϪî0uç:û¸‡æ–†¸o(7¹?Þ39¸ñÙ^;eAgþtøžêºØ¹ ƒó–¬R ýšK§|øHkC|ÄjySq8;Û†¡ìáGá‘æ"M~ú2‰”2ô²}ˆó^ÆOÇY;ÕÉO›{@vèÜr.NÖ‹tìF3÷«ªï?Û¹y›Ø8ÒMW‘‹yEø 3Äj¢Øf![gi:¤Ê©Ž1–]VÑ Õˆî)yKÆ'4гõ”<µáš~ô¾¦£r¡'Ò3º?ÿx\qdÜ-;ÞÑc±g¸hìéý…À–…}b9lº8ƒfÇ‘˜#'˜ÖëSr-ÖyhéU)3œ\fî÷ŸÒí³ÁNgŠ+>º>Ãw.ŠrÇ*dÝðŽžq6?$¦#EjÄ3ò³ âæ¥çC´n¢`‡uឪ<(KÃØüUF§Ë•?DñÖIáþÑ#l,0‰ ÕèŒH)[8«õþÕ¯ ;âZ™Oê'íôÌÜÑÍ|yIpösv±•–è«^´YÒ<ùIZ#z³> êt?‰ª”¬íì®8¦\)U‚á)_æ:»‘O0ôië€Y»Ÿwæ…[ú„[0Ϧe‰àB4¶j—qSÎhO1aüë)ðR„†rS·e{Hb†Ñå¤Î Ïx¿Fœ›«p—Úw›0{Ð6ÈÀle;Á:wÔ=eÞ×¹› •c!F»ck+kÞ½OuT^§ŸúnZɆ|nŽQ:–D>½¿uÒƒšsçÌctn(ª½@He§oä”OcVÿ³°/ÿf¦¹zù³¾þùåŠQeÁ„— ?­=ÆÈ$XqzéæÅ; #’ü$OŠòšƒKëN„blfJ?Ÿ±5Y™ù 3nì FžØ&òµšè“€ÒH«gÈ+užRgÿ>KN;´ab´kýZÜ"²åóÚ“GS8m¬CÎ*zûMÜ4sÀÀ¨ŽÞ®£ú¥0:Q÷¾ _=“£N.Ž3&GŠýêxöƒrÿ+ÎÎ Ûm­üWÏžþNBZªޝ÷K0¨`ꃟ¡?:OŽ# ¾¼·}í­ïBã¾>bÉ3g vHB<ÙfºŸæD8y®,M¨Ã3P[“F5sÖþŒçºmpUÏÊ¢×Ë•똶¸mÀ´zÄe£WJŽBòÚg¥k©¼Ia~ ¾,[–¦‚¹ÖÜïA·n‚Ë1ò twšÒEÈûx 9ÌòÎzc­’î·'(—Q{;?ŸûY–-w-)c·žzNò¡®Ì„á;ñð’¿¡•ÙƒóVzÊhå™Jíæ”ÅÍ£wÔɽÿ@E §Ù"²ö!lšË k’í»àjÉ¡J{Iܸ<ñÊnï6ª|@ÄŽø}­Ô÷p3 x»üçßñËäNÐfbÇ~¿€W{¢ÔÍE4Ý ïê?ŸI+qüöV¼‘|•]«hBÕÚÕ ä{ ûs÷²š  ”{ˆBž†ðåaá…÷¨EÒ„7%’p"ôý¿O°ámdj{'‘}=¿ôî{2*¨¿XÌæÓÀ†d]Û†ÚG?JŠˆ•-¿ íl¡)·‰l¯âÆ…áI¿Eýž^ 5‘¾Y0ÃVæ¸Á¤ð¯|äÍ©55LB­yÃguN…S&b´jK„Ñîo/—  ¦¨Ê®Gø]…Ød1ÁÁ¿4œð£#›¢ðÂÍ?þáþ0/& Ð@ä¡Êã!u ×Aã„·jˆâî¯ìì¨m¼Öu$O¢y˜ ‘±ÇE˜¼Î?ÔéÇZ‚ORiòxjж²r*öö¿¿ÞYG bö2Ä]å]¡êÄ^rYóL.­àÁ+2O²6š(GHK¡ú´î¢‚ Ë&wŠ!,Ç(*Í5ø²ÇN`˜o_Zj]üš6Ps¬wŸ7õä‘3Öj˜!èÀzéƒ7Z™*¤‰Wlm:Õ¼söB¢‹7'M›ëlGüå>dë}¾•w?µÔ½íëX `7§œ4$åiz·ÂjÞ-ÓwM0$¡>Þ Xµ 7 Щ’­0À.àÌ»!'÷Àá@=«µ+Q¦T–Êf-Õäç:>Ï„q¥èÌû‹=üëœe”ÌÇBÐHÎT³¦ÉqO“rIaÉl:ò×?Jüÿ#Âc–í)A½•^ÄYyC߉?,¼Ð ÇûËî9Ñ&œõ•‘à“G4@ú"vîê#J™$ޞݶråÏdåøœ¢))ƒŸBÝo0¿'øWÿüÇ¿€ñ6:úº÷öJðÿµ“@Ò>þ‡Ø&‰›¸Vq&WáCôÇÃR0Šél¶¿ñJ|Ó”hôr–¥•fÌ‚³Ò¹¿"qR?ñ¬€çÿ—–ÙâÒÆ U:a|Š  m›ã+ʺ>ÎZ¼P•É›_1ñi³,žÑ˜ L´+Zýp ‰ýþÒi;ñEä¥ZÒê×"²f4`õ´Kkw¡“ï,‹’ɧ%Æ;@å`L•€‘gB¬@§Ë>ç?¡æG€ÃO¹$oÀÈÙì ÍZÆÁÃ…ñA·Çd†ÝbÃ,ßDÝŽC Ëv8à »?¬bÒÌÀ£‰×0êÖ°ZÒGk%רó³Öô3µÖc¬·xPøX¡(·'ÆW”J"²sÞ¯\†]êPÅ7Ñ„¨Éyæ–ÌÅyˆÓ·%áfYìÄ4Nq*'ã#í´•š'0ç¨âô ™ bBgŒ\ƒVíçHiƒü4Ù§°‚ѶêK~к“Ñ@³±ƒÌ®„œârˆfÊûBÒ~sÓLBò—F˼ÒM}VŸ¦*G9’tûÈÁyŒïÍXY“žÑ2Fo´ôÂëêä90h"ôJ\¬²-Ê{û(F Þ=2ì}ÙŠÆ÷œ=óÈÞ5÷À¤*©íiÖ©tÖº!Ä’;{“õ*ë]tSÁ0Å&Ê—üàæ;âq!ÌgÌ"rIr„´ŸÐ±¢sÁí¦·x¯™\Æ8™ˆ‚ÿîL„©¡ã kL`s‘;k»$Ê’ž¹ÿp°o̼í¢zµÅï¹t::'4Ê61Æ¿Ñr*U¡[щVØ$й–ŒwϪPoóƒ,P›ØJeí¢¦Áâ±>YC@è™D‘iÆÕ÷àkËz >e¼²ˆ,S½èŒÀSQ9V?÷J¹m”^H@¸ÝT`âaïd³Wª:éØ/M¯ C.~²=èóKùŸžðý~c~,uG$“2Øâ ˆX/0Æß_¢ zŠß¬®T}¥’nBx(ÆA›•¤ £KâÿãófKzRä»Sk[gQÙêU­1°:ˆP\»vý-wzÀ©ÄmPîN5i® $!E#'³}áûìF}—<1 ѯ„b&©¾ÒNkþY!nˆäXl—ñdÊîèww]Ǥ}q“†’‹ØGeÅÆ‰$p"jwì˜B¼ ŒK¡²ò?¯'fÐ]Ý$E–âgÚOïƒõ‹F¢+ÅO{¦ÆfÑ‚¯Af ´½éçI/ÄG_§¯äoÌ%OR¢oääÓèQ bÜC_Œyœ4µ@àÞ*» ª$cìz­9»1 ºñ߀{— só ¤½ 2‹èª‰gÊ-q-Ôf^Xæ§4pkK Fê/ZlŠa>Õ‰"ÂÑ…¸ G¦Cóëí:¼týqrФ|ÖZ¥=bSÚ?ÏÅTôŠ_övîÂ[qÛ:óTB<{úû²î.9 D5\ÄI·¼NbÜfÊ Ÿ¥Ú\_ƒk³¨W;ˆGbsÑ ¤J|ÒÚüVÍØ<”sÝö%Lb?Ñ3Q*Eúë¡oèùÛÂíê§,/}K{q¿Ý¯:¤ŒQGÍdb#ï]æ`¨.º˜¯†(Ý_¿ÙXŸ´'h¯Œ¯ÑI J “Où'AðªÓ'53ðæ%Ò}‹9û–Ì ß4ÜþX´ZqÔéýßˉ{FÖÄç’“–æÞúÙÕ5µŠš¤Ÿæ ïmºL‰Å"²{šf½¥qzïsˆ÷øéxAþ†ò¦€X7Õ¸z~?“+kUા-ÉQ•£6††”“ÿ Û|µÚX€ÅI¬lò„¼»mçq**âwMg8‡Ïè3ï0Ö[µ‰ã‰Ûž@ÑÊ·¿–°²‰ÔÓ(ËeY)½¡ý}Hô£d§ì(SŸê! Ƭž6†ý æK³}&#|µÚX€ÅI¬m¨³:…F8ka=yxwŒRZAS±{¿c¶›ùœ†¤ŽHX{Ok¶#•ƒƒÀi6¹y£Á¸T1{dèÕXñ]‹ˆƒ¿yN§tÊÒì¤XÕŠÛj±TÚç’ïmrþб2gŠàS?+UMçdÿ§.þ«ÓnÕš)53Þ"²™Aêjã.Çâý¾4Ææã(IÄ9zFñ R…½ºàLGÏl^é Æh°‹ “QzÎÈ8öñAŸ¨HëÂÐ݈ˆ-Íõâh•þ1ïëcâ•è‚kù Èþ®;%õ0 êi:Ð_oÊ®Kü`ÃUiŽ0~q!p¡¶0Œ›í/µ£Ä(—» ¦þÏúÈᜮ›ô¤Khƒ ÔÝý{W& M—j¿§ jÇ È qïÃ]=Oìù@%tÏïÌL†y®ÕŒ+&ž–½ øÚÍ vuM—̧b­Æ+à¹×›e5{ñ òxË‹4,­Ô–4OžÅò½„q =Vþ|r&Í‹GgP³¡'ٞמ´n/–†Oí&Bþó‹0]æñ)Ëá-©Pp:ÃR˜=oˆ†‚ï;nvWs¦ SÔ´mÄΛŸñ§H€ìJ‰n/ÕåQL¦‹¶{m ­ŒÂ™¨Ë"¬ö &keLµÂ±Ö(Ó¹¬„P¿\¬GqÌ+û1‰ŸÌ’ý‹Qþ!^‡5•†B\Y>X¢Ž@~V‘–Ňâ•æò“–ˆÆë~wTß—ýØ™ËþÝ .‰¤ %†ûuÇye‚á ©õ7Ú~w?Ew^Ûrc?óŠòàdrO ¹*ÖD#“äÖ{GX$5ç%hw‘ŸøãL +ºÃY¥ÅaÌßšZ–L‘-´—åƺ¶’ ¬ã9ʦi'Vã((üe'«+æ­¶‚½¤3Š,³B: aö»Ú[¨N5÷ì¶¡ÃAϸbÊ…4¨ÕÍ3ý«Ú3¾>•¨÷h…Ý ‡ã‚ñºn瓊6Âú¡š€ˆ¡9ޔ˪n¦ ÑEh‡îвí—º4ó±pcÜ™‰!æ‡òËn¢˜¬²Þ©ôª3G±X›TÅ×ìYÚ5û ‹µçÐ¥ 3#JòŽUvXVùÂOb¼‚„ÔNZ5[·ùކÛþäÈÚ¡ŸÌ#Hs J]ßNÌRÔÇ&EdÏæ%< cl$m²(ê1É«‰„V(t’¥GÎÙÌîÒ'3ÄúQý M*Ìã$µ ¹Ø«Ø«û©Õÿ!ÙÔÄ‘òkèõLa\­xJÎïR´«Zxv„•ô µnèý…(™¼2ÌöÃõPµÐXÚ¸®{¹ÿ [?KŽ£)Á@ü1"Ø!Ë FŠÅSåè¡ú[†ØÖ¥[iñfG^<¡WxÙß{VõÆc]ܧ÷:Wþ–Éë§LË@ŠÐÂ*SÈ~±&¨Š'›s a_„¡{¢-ÊzWD6ô:z}Ë;ÍæÎâMr^÷±Ô3®3 "¹—ð"íÙ Ò3xùý?÷ZQÛ¹pñê(a®PpJØB¯¨Â™z 2‘%ãþ+æ$7Ù1qœZš÷ô¹] æÇ¯dˆÑs½—¯Ð‘Ä=¨ž¾‡§p7Ý –A/s9tl$¢<åà ¤šm ¦Ci0«nÒY„Â2)´ D&ÕpÍ­à@›$‹R7Ž~Ìè-Ê‚,ƒnÁæÆŽÂGp²ß})ýˆ'䇥ÍÔXDí{*FËišê™;F+×07éÍï Áj,Á<‡2ÕF?ZS¥L¹î®ë¹Pý>.àä7)}¸*z… AúK|´P©Ä_ÌyŸb3g™ÕhžYfb熠GKûàn91:"+ð‹êºÌå]-aù¿d á¦òÚyoEÞˆûòÖ¹Oäê:›Û([íƒ%t$€Þ¥R.éçÆUÅT–5d¦*Ha"Ëp[»ÁZ‘K;: ¦ú¥¾¦ßx–bÃËZŒÌþð¿±HázÂotŽÌ½Hwì–ïpjÇx Õ®ëï›jN3ËQ$†¨ÍÅàŽÈ4Jü!—kÑ<ôeਖ9ä„oäÒêÏÊÍR[É6°ãÅ ËX¸ØÍô•‚HÜ£7Îï»tç=Ö ÏîN€ï‰nšÂhU+f¬Þ˯D-Ö2c§?n£(äA%04(d>ŽÒ—}r"‡ÜxK÷^GB€äU£'u¯d)ŽWgÖˆd¾q~ªW~ÓÕY’scØ»¬®K"`môø~Æ;×LéPE7Y%©èHØÆ/ôóÝ+´ ÷2ŽÏJ•æ¼Õ-‘XAs{ÄÐ×’ +g‰î>:ìUnNÇk. 2'/„ˆ,%Ïòñþ^ XY&uÿƒÊò‚Î ×$dƒ‡ñ\§ƒ)¼+åëv´A× ˜Ñ,znÑÎP# Rô@¼aIÎÐŽ|œïjñb^`ÎF{¸PÚ:)ööÔÔÉ¥ÂÞÏvª¹³¼2Æþœ‘z« ®ÇV55ˆn()*B"a +¤@Lºúù@ÏÎMµ¨Ç#·ífX6ÿÒ}!ø’¹®’èH[Š*±¸}VÊWFE”EæÁ—AÔ G¤rZÃ…C¿Ö÷ÙÔa€TM m5íO `°aœ)4Šq8,„hžú‹\mÓŸ¡´û® êùfÈ5"|,ÔfÊ>¦äÉèÕA!ʹxvûYzû†{²1ïv1dbƸz6¨ÐRÒäz—%êŸÔhKNê¢óWûø¥ý¡P}ŠIU~ÆMêO¶ÉܺSORpFÎRtuûAv¹äRO­ˆ„˜õ»?lí­ðOå-st¤šä”ªtÕÚOŽbL$7³KP¦šî1uòT>JKv¦åýî(Ô‚Yè<_j¶MôÁ,xߣ(<» sÌk¡Üx›†"n8°Û:ý—ÝYÌ)kØÖšãäú,׉«àpTçÐèK¼r{2^²TÏ$·¦¢aùy™¬M!'‹1¡82ȼFi…–†úÞ/í§•šqe“ú,‰$“çŽÅåg|:ïƒý(ƒÅ‰ÌI>»“í•®B|Îó¤whŠûiÖUÌž‹{S©ÑU5QCÈC½¾‡bŸ)"wßË'JMœ&Cë츖Å!Hßñ£Ä¦é…ì¬Ô•nTއ1éJŽÅlÊrø,z‰Ã·Iµ¦V8ºK7¾Òùð‰U3Ý¥ qðÌ2a¡^¤yfÓɰ(|k Ô‘è{klé_7ƒæ}È1}ÚÜŸ¢ùœ€ª™dÏUNžU½pFƒ²·áEíÆä8ÅþÍ%iÄ•7ÿþ3ioüq÷í¤j)d4\šP±SU6®É&ÀìÁ «3Q …”øýå D…nÛxªyѧy|ìÙ± o®“À«VÛp–U[© ü½©HŠX.Þ]$›-J{t&t—¿Þ¡½IòÒÐ#teP½ )ˆOgÓøõ¢?Æ÷¤‹PÓÆŠßóé5ÿô!j„c~뎙"·' º¶ãkAŽÃÈ–à6#¬e!ÃP6&ûm&8 ¬a÷pKh¸Ì™´Ï¸I-*,Æ:ÛåßÅeψX­ÛÔúA»x°•73ž—ÄÆvAU ‚›„(¸‡Ae9òO7×uâävh/5nl<‚/žwج9€®Hurtòx5&mù‚¹u cQl¾VÀ;J¤˜?ÛVþ@XÜ€aŸ\ffG÷äc¤`º°Ã¬‚±«)‚/µ Zm_$-A‘i¨F9±™‚sê^øO†Øß‡ϬFK8±b ·›W r8 Z¶¿ØðönÂŒ¸Ù­1©ø·5~ojBoL+‹ýõš1ÝÇꀑ±1¸j(<ÍñÆ Òc{Kº=ÖžÏî6wÖZ»ÿ tLþ^™–Fƒ'“˜€Yþ·b”-mB;cá]Î?ÏrçyEsJ«´³ÑpÂu¹HƒZÓÉJ(³wx€±‘A(bCy"ŸªÛL3îñ»h:ô"ùøçÐ@¸ m•®µ,GxÅT¥é– 55µRJ²‰µÿëÄõ ÚWY1÷ÊêÂû)¦¸­ðpCŽ£6_“ª˜ŽIð˜ÞÖÿ,è°‚ó<¦Ň¥ÑŒ§8ÐðŽðaî`y:)%'x÷öQ XY=[õÞÍäýö*\+é{¸ÊXA–;$Ì7„ÿ–!.¯%^"sÒ†¥þÙŠ1± #?°ŒÃ Ç ¾ëÌÛóŠ`b=É•öµý‰«ä­ Nmj¹!²é˜d³6ÉLÀ¶¥gYTŠÖ¯¾ã+$%UÕ¥ÊÄâÉsÛí}kÛaà’z„ÿ;Ry š Ç_F£àpýí> stream xÚ´ºeTœÍ¶5Š„àîÞÜÝÝÝÝ­q§qw‚»{€`ÁIpMp'xp— Áíë¼ûœì}îß;ÐÌUKfÍZUõÐ %™Š:£¨…“PÊÉÄÈÊÄÂPPTsr0udeaTZ¹Û›ºؘXX8()Å]¦ 'G SÀ ²(›ƒÀ±`^J€4Ðè ´˜y S og +€Æô âäb43u­l´àq'goW+kÐï쌌¿3ýŽcÈ™šÛ9yºÙÙL-rLŠL%'O°Ñ@ãä0Z›Ú[œ,@€¦º¤š:@ZMYSE– œXÝÝÙÙÉõ¸ˆ«khJ3$D•4$@-€´¦ºÆïŸ@G0+€’xüw°ãïpEI Q ]IVæßs°<€®n6¿Ëþ7*03ÀjàPKW'‡ h¬A g>ffOOO&+w7““«“³ý?ü4¬mÜžN®vð«+Ðø0îŽ`9AÖÀ%ø½*s £ðw”Ó¿ÀR‚ƒÀvп‰…ýÎiÿ/w€øe¬MÝþ‰UPQQ8˜Ú8‚€Ž¦Žæ`G)ÈÝ `ò ü ´ þA @ÜÝÕõw Åÿrýw™ÿ¥.æž™½¯¿©ç¯˜©£»›Ï_Úüç´ÍÝlÜ@nÿÊXÚØ³wû½f6ŽÿØE•d¥$Õ5ÀçȨèVÇ‘ äúÇûw>Q > €•—ÀnRIG q'0k7„ßòIØ€u9¹z3ÿ߯¶stòtôýÿ°´q´°ü­½…»3³¦£‹;PVâÜÁ&„?6+ Àº€^æÖÌ¿ þÓ/¿Í¬¿Í`!ü}œ–¦ön@K øÁ×ÍÔ¹ºý}ÿøO„ÀÊ °°1[¼]þÉ.ëhéàý—Ìä‡þ§ hþÙª´à}jáähï °Z"0+9À-AóÿÏNû¯ZRîööJ¦@šÿ£é;š:ØØ{ÿ§ë¹h³¥Qrru0µÿ¯17)/ …Š ÈÜú_ÒþË. 2÷¿¨£•=¼,ÿ˜4o){pï‚Ï›ßÇ€‘•ƒë¿ÆÀminçtspü+ ⿃ÕÿÍÀ,¥¡¡§§DÿÛæ?IGs' G+'ÀÔÕÕÔÜ lœœ_Vpc[½þi3“£pvù,\~/('€Yô·é_ˆ À,öq˜Åÿ ³ÄÄ `–ü7âfÓüƒXÌÒ€Yæb0ËþAàz ¸žâ®§ôë)ÿñ€ë©üAàzª¸žÚ®§þq˜5þ ðÜ5ÿ 0­?ÌEû߈ŒLÿ 03³#V053p#‚÷à¿=À&ó#N°¿¹“=¸þ×ÂÁñÛâàð''+ xJAðœ€2€¹ýÓž9€§iù²+ZÚü `ÿ =þd`eç·´ÿãð;ÜÉÝõ¯„à«¿ ˜¢õÂ`©¬½­Žy€m6A0GÛ¿ X2»¿ Xû¿ ˜®ÃÈ &÷'3'8Ô¼Kþ«áô‡ 8Øé?†Á“qþ3 Næl ¾Hì–ã`ý«ëèÈ®å týçjû·+×?6§¿Öƒ¬ŽË_ksqwßföÿQ†•ƒçÏÈ–beKú—à¬`ýÜþLú7zü%0'ØÝÍÆë-pM7{S7ë¿R€™þ)À ž"ÈÚøW߀¥y:ýÎáþ“õø ‚…õü«§ÀÑ^Apzï¿ XtŸ?äÀ™|€®ÿ*õŸ'™ÊïÛüŸkŠåÏÑö?9ÿ`u«“PÛÆüˆ÷—‹¢)ÈÕÆKŸ|ǰ‚íà¯ÿýÍð? Pþ¹ÿŠsòòeä·=#/øDäOÜ(Üþÿkþ¯'Žî7ðü¿ø÷u½€æKóNæüa¶Ÿ#*$?LUÂPò2TãéÈ%½YÊžê Ä“(Ü" —·åP•8)Èð¤;–éP†aÛ¿¬µ¦~šüe¡*²m @ˆ"):Z Å¤’£¸TÙEN{(WP¬û‘c&§-© 9z$ÎÛÑ}Ç6ñŠ~™NnPÙö£Ƴô;ë,W{ ¯E4‚NÂÅ©NHÐë=VB¬iŸèݬIqΨÜ[çÞnÌÈØRá§š¾;LIš{—µeÍCXý÷nˆDÄD•VÒêÏì~EÜ4è¨IȤ·.÷àbÙ)qêüÐ#üfôéÅ^ö+?]• É“•¾ƒ ; ¾,iµœ«vá/^‚ˆžüit’€Äœ¢c¹†Ežñ†k÷»ç†=ÝQ„—-¸»æ%¸èTÇœãn&¨ÑϧÌr’|éÈAÃbÊ„·ÌVhFÐèŠxͼ‰Ðz\ÕgRaåx,±÷òboóæ¢ô3ê¤g•»]%×nášw!öI«Ë®uyz‡7¸ /ÐZ[[IPˆtæRëèÛ¡¶WàåeVÁ}:§xè`·¦_‰€Á62ÄÃÜâ—ËL\T[¡dtÿÇ1´•åÞÌ¥€m+HÆ?žhòž[cch÷dq\O¥P‹`„$±ÚГvýcýäØp\ moÃ%ªR³Âz}ŒÖRôÓlò¯eÙ—‚ܧTL?·p7±ÄøIE|à[ e*ôW%«ºd \ª Ý…¾ ÑBÂE÷—O4"2ÄkZe.ýªÞ»gÂØBTÆ‹"Òò–-,#zð’Eµ]õ¯ìÀO! +›¸uñ|Ò4 {Xˆð–ßCFõ¡~Úw9eá Öÿ*w—Ü™Ÿ= `éV»»ÍŽáÜä´•Àª#«½¤wÛö\z–ÐöÀãÚɺ$+[=¬F€þ4u–ÄÚà(ÎÆFª<—«ÚŒ­ŽxDÐò¾"ÌwLÝ•F@¼zýÜLÜë#Hh|_>y5áH¯-ltÐÂF(ûE0O(÷k?„á±Â‡âƘñjÙ_5.0F€ñÌ&€¤"ƒŸ¬Ð|p!zKÍïý8+“‹·÷ë@µïšïÅ¡³(Rà-ÔÚ/äf‰¦Zê#ý„ëB7ÕÌuÊ£8ÚðZ߬#?UxËà/. ÉÔ¤Á1ÏOÑwð¹«ã¯›F›íÞhѺ6ïµ4zŒYJï W$3عñ¸ùøÒc°D’ê\<6&’©‘#éô[¥"âôã6·Ve>Wm )%ó>p8L‹öºJ„öh]—?4Bü²¹Bßz!²z öëDã¢èý|As>ïØì·ØÉ=®ÈC'Q]lNÕ:=¼8¾†'“·Ð(Ø[¨é+4òž4øN¯¶-<-å<à‹{»oâ+uCåÒcÐï‚]€lúe“ë>O9b£lôå0ærŠ(è’òëê9ÁsêrÛ$ñ0ab/£Ï—díù“ý¶áô§=7~nÂ+Ný­ýý—2Ží³®^»Ò:x×DO7inÌoy|][1$Á®õ}‡TÞžÒß·v÷9¹£Ñ^l ü²=ãêWé5Œµ¦Ä1BåÌ©F‹¡ßQÕ ¥W¸ tD?R˜‘öæ ›‰Šw4 ”Ø›ÎqõMA0,Ë/,¨âl"êOº3pånð7‚L}f  Ìãn·u ÌêhlC_"üØ—yœR>1S”7ë_Æuâ¸"ÖeÈÎèÒÑ`<×–©/*b?ñ£4‚96݃àLµwd²p‡t‹®ný¤Ö15?‘·?<õq€ÑžäUäãêr!¼O¹…ô:žÍÜÒ³¬Tßw¨Ÿ}Ú^ô\Hné¾R¯qÉ£ÄM”í.é#ñç³bUŽ0"uŠû¢!f± Bˆj¾VúþÕdó2Td»Ò}ÅôX–¶Ê,’±¶xÁ;Çõz: J(¹™ÄlB¤ÏÐ Õd%ä„B}СpûŒœdSmB -²FÛ~>’ÚE©c¹~ÃæQ“žB–ìGqU1†1—·ʈ.%ÑRû;/ëåzÐö‡FmVyª@YõŠ`æ³}b&!ÔéR· QrjVä*/“Moµ øËº 4ªÐ&fCäXRŽ«ç§Nëcv€Æ»Ÿ,“ëO°˜"ì÷I;S§ÉI-¦d&8´»!¿šn•´óùeËSôÈÔ›bd dÖf ]ì J!’^jÕJivãŸÃ-ß k5¿½BÙ:¯³{áÛ ,Ô`F´&<à}{‰Žå[$µkö™¹ëC¡dèÕWÉØåÉÀ¢×è6dw(ÖfµÇÄ òº>\¤S˜ÒÏóÓª(vgøÃ„ïnS «G’OMúË7[<ím^²­¶LöäÇZ»ù!‹-‹Ký}Óa{@û:ëÁXïb¨v½7Ø®é ,÷/Ìü)8O¢ž†¿.£ U}ÇChºókµáHµWî”üXp-ðÌÓ>TbŽÂ@ ÙåÏM;"J>Z¹E¨W¯¿'þ•ØúésŠ #œP*®È¢…Q@¸ÛÈ7ý [þ®eT ט c¯¡ƒª‘ã:ãHN1åAØ{Ȫ% ÔüLâ‹Pè˜æQt+„n‰-ßÖ$?¨¸p•‡¸°g ±ò(Qecù¨Â2Ù<°C¬8^s©’|/¦n’ï'KbKIq›N¸ Ü ËWßoÇ?ãê ,ÇC _­£þT¶2ú‰Òðw9üÑ}éHÀÕJN Ÿ÷™yÚüÉŸ ÞÞ6@ ŽØtÕGx‰[8;P~ùiN¿³ëäæ[ãÚ—û˜Lß',%±•zYß[y:͔‡ŽnØ"­d1vÀKúö ûQYoZ²c7±L!3òÞÅG~×I+¦ŒãsGIœë›©šç\|ÁítU €ȇÏå›3iþH§ÒXÀå,Þ«Ÿùa<8ÃL¤zàAØÄh{H­â‹ªXÉ#õn·6äý÷Å\„Ûçnx¦håqé^•òAî®,ìn¸R®ç›·-$,¶…· ùárq¹9Ü9ê9?wº³®üä8Êò´¨QÛÇÙa±\ª1s'ã`ùb¥¿{½àFÕz$¾ð8v…izDgºu¿º ·1÷ÕV°ÕËèaGr=ñ9–ü”SäÖg[™þ‚ìcÝô”y¬~åvFQÎôãç„J^²ÝÜö×›½¾Ókz)å=uµkG¯¹˜‹dæÎÙ…k(ª‹Ùbïtš`ÛH{§¶Ê;jh¬ðM¡¯„¢Dê|[ÍZ\2Z|Ȧï†#ûòs¢t»—Æøï¿Šx‰Á£pd¥Æ‹oõ4sÛsÁ½ç¼ˇÛg# 5ýÚÔOŸÒèЯüú-zÕá‘æÊ¾ÉS 눢˜@´x#O8ÔøÁÎâãYžÜÛ©åz£jÐï—X•Œç“TLŠýa Øà÷ü·¨„)ýÃý?ôa˜…Åðu%Ssbù¼a?R6~ 67œWùõ¦ «ÿpv.Å#S›ÿa@¾©çZñJ憀îìës¿›ÏN¦ n¿{ý]Ùcí†`Q"FzEêèåp­Bõ”AþøÝOÌiƒ= ®¯ôäÕ'ûÖŽJqÇÙFN}'•6G g¶žví§þ„,ÖÔœð¹¸Ê…B" HjÀ›žþ‡PåwlÙéñ<æ+)Ç÷sò÷Õ' éb+§L2ì8­(j›íZ_{Ô„pÛz#nr©)Yƒæß›÷Ù˜m€*å%xñæx¢²ìPÃ6†dº•M¨±/ÐâÊŠ ´6±#ñ8 ÷=égÇLu ¨‘wº®çT>4;òíÔ‘. Ûã6SkpŸKˆ÷jÅ.-äI|âÒ%jïtñ%é5›õ9"¾»-³Ã$Í-\oûEHM…º‹w|›)ˆª9Tí“d$¯L÷gë¿òI%a»MªW ½XOÓ¶´Sì‚„õy÷ݰI&Ñt?H×·ùIÕù™Ä†h…ë&HÉkùèéòÖþs:Kƪ¥ÈHٕ˵ hÙð ÁR&V‹Fžd~ÛiŸÖ²e‡×ŠFÒ)× HfعÚôŠØª½ÖL†ÊÅ•q±Qγµ9Y:ë•h\{¾àÊOC*›ü¯9aqÌÙv^{Õ¦j:{æÃ3š'…¾{É÷´¯6å£ÓZW-¶o4[1ˆ ½ë@ ï% "P3ÚÌÚ:ì¯0œ£^ø~ôaï5µQN âë?‚2T©3q:g~&·—­÷›f7R<Æ]­­;×’qd©2snØ"Ðjâ†ÊÔ‹DR•6¥ö âXp.j¢¿.Ì0Ãy+R^ȘÖXßF0k|˜–éŒÓ–>^”¿áJ•³-m¦†/,Þ¦èYŽ—JöpM7û¹oµ ä¨\Çgc”bivì+}ÒW<yFÇÁ¢òõ‘°„ÝÜS,¢KCåÔ¨Èc¿þV…e©[÷jÑn˜’Ë2ìÁÓ£~%#dK'•µs´«¤“<€T_Á@|ÐÆ¡ýBés¯m¬ß9ã®{Äü¹[ÁQƒ…'ËóD›ŸÛàÖ°`’Ï6_¼ç6ýS%AEšB¬hQ1©ÛŽ^Yh©±@Hú4Ó§E€+©ìœN*Ï%ãòua«NŽÌÛSÌ‘ìÚ}N¸Ô¥”ÎbùãE°X§°§i½?&ùИ|âΫr % ùݸž"Yl»HñŽ, iÐÓ»h6ï'`Œ.næxÌOArK¿ç¦ vU/ÄÒôc ðMvÑŸgp•H“m֣Êö-`ç@a±á_®”7Úª> °Îð?ÙPO‘‘ð±@ìœe˜Ûc™ö:7.®`;æQ˜0*p#š|uÝ Äj£Vgm:€²‹S”ék©o}Ô6·dã©Ut]=¸?òToÐå £ççæ«ŸžÁÕ’½çú.Ñ9ÖȨKq„CÁÀ0Ð=ª^"Çz`•éxø õª‹G&—åß{’9_´Pétœ r=µÃ½=¨oov5`·»^ïê†|öBECø‚ý Ðî#fh¦‰žâð¶ŠGb-}?å ^7xLóË_ H–3Ó_n [È?É`‹;œw@Τ‚±6nYÙ­Í‘~U¾úÅoYùÅâÇ­.)N÷7’•œ@ãeº–ÓËònâi.ÑIrÒB$ƒw V2÷ðJk(†NoÁ nȳV€‰ÔUï˜\dºrÉåTäÞUqûÀ=D«¹œUÝ­é0½Èƒ½šGWªTW¤JN‹Â eY›(´[ó¶ t8û(µ®k¥k6—vm2*7#W¡¦#¨Ühànù™n•EV´d ¥D†©†A¬2­Æœ]EkÞÜÅg\ÆLÿÍ*Í—âJ冨9‡<`“=ÙÆîÌ(·ÆH0•Uk$íYCP¹áO8fûÏG­lüdsAqæ¶?¼2Å+HÉ<™¨pÍ]7‹ÀïZù¥u•;Ø›0SŸvsžÁLK½÷€*Ë ¿³=1S_æÕÓ\[B÷yâ®AtvKìíésim|s¡#ôÏ•’u~ÀânÌB€EÁÒ!XëáÃ5Ë ºÆ•‘8ûöpQûFý½=i_CÃX ÝÓ±í~®syÙ‹Eçx}ROÏï9ò2šÁ~äɰŠïB”“£ßÄ ÌÎG¦RÌ*3¤Îãå—½%0‡@~ .XáO<«‘8z•uPH…êƒò zœôê(*¼Ä pÙCGìc“Ç¡u!2íl]´[ñ³8²“˜‹7ËUÑëB7}J/QU¼òøe(Ý¡ìÁšÃ@èú¤ºžb '&Ž=¤^¦ÒÚÜ—k¾ŽÖ¼xüJJï«p5ÈjotÜL»(z†"¤|~x•'u÷Æ]Ø9âh,ß—¿÷U›Ðè¼ïujW´̧ж×ogR¨Eb¾ÈƒäÈxc”ŠÃƒ‡»½×ýàtƒ“òp]Ùc ¿mdVÃŒöb‡è^JýÚÉ|…ˆK§®nÝ=#¾¾¾ Å`ÇWcQ!»;ä7Â[CŠÛñ¡á3™ZnG­‚LP4y<,J*òy6±ƒmgÂg2á7‡UïÇ’TJŸ·i½F—Þg³Â.˘>ÕY(Háh‘UF9ešô—õqïȦ¬^MÊâ©Nœs¢‚²n¹,]U¼c«^‘vz³ûz4:`à›+ª Ò>¶”'7Ët•ýfò1!rÖYOjŠn¬ûR†Fè“é¼J!±8Ìçúů_¥EK9—€; ¨rÓX°ŽÞϙأ* ;ô×ܬ7dì­¯æŸÅ©ê9ܵãrBNÙÄnª¨Û]6­ù§9â«–"ñ;se³(O}Ó\ŒrgѯœËV˜Éÿb2tŽ®ˆÿ½ ÒTÝGžIÓ©¦Í÷Zy ˆªñsò<ô‡4_W–:šm'WC cî­¼)$¥]èÚ†a©s©D(š•dmç|Î×Á8Õó›IËŸ¦ó²àùƒ%äcòæ>2ÏC6õ‘‘=³çÈ„eä™b†,Ùmb(,¨GpúÁ ͉¤ðNNƒßÛëÛˆ¾ó焚ŒfD¦ú¸¶ì´Qàß_PÀ¸gk‰§q°(ùŽƒK †…Õ_¦M-²‚´EŠù Nè‹àåóœã”‡Š®%Í],ïÂR¡p–B¾Ž4‘°!b¨Æ¿øV¿Èz;ÃOÁ •Ž;3.z„Eÿ§‘pIÄÜ+ówœñ÷íŽÕÔÕ>¢„UïÊ;°OÑÊßVÄ¡¿óZ{7¨wÍÒ^}A41¡gèO:ºr“ðÊ– ô²•ðœ¸a Á¬ÈÿȈŽÙYtÔmÆM9Û¨=J ÒkÊîéƒxä)Û6˜˜(d‰Ì£ÖAQ/}f6P·¥"Ì(5q{µEà)Nÿeqî5 ì .w‰þ¢äñj! B‹Š©’þ{JF€û­IÖRÆÍç µ_Œ3qp7¼êó@ÐÇŸ¦ªÜ¦Ñ®Šò½ºÓ‡&¡ä0Ä™LgjÓ!ë1臃Â!j­V ÀѺ½þb›i+#|®Èk­)CKñÈ¢eÔx'Œ•yÀÔ@–M@JGz´°×‰rÂUêf6ŠÖ‘¦I=>ö¤Ì¸Œìt…¢Ê4Cõ™³P2?ìÆwÌsåmC86@æ¹tõ•Œ©RM©ï{Í6ÿo!f»t,c‰|³ç=z\rÈ݉7Û 3Q‘·[Ü"iŽ%›7ë|‡ÙæAcëm¡û'VÁ‡¹r¹÷™5þo× »ß»»“ÇŸ¯èLlµŽ¼ñ‹g¢×éÂù ú†ûì¥Çb”:ºÑåŒO\^ÃÍ"f½Ùh™6ÐtÙ< Eè-«5– ˆ«Ú†¾$BûŒÈÙí?:yqÞfg{wQ;IŠêmà_Èi²ažÔyh Ô¯ôSMŽU«á¹à ÅbÔoY¾D®¸V‚›¨¼µDù£ãH«&HÕ‹ ½ðë{Ó1w–‰‚6J­•*ÅÇ´x}ÍŽ‚“DŠÃ0†Yåãú%Äj2n „ïF¡ Öt³Sv3+Ž®Ïz*cgT5Ïî¼e…Ø×ë®i2f¸m‘2ëßæº8­ÐA±M·Ýs9â1·¡±É¤×û?†R…~»/‡ÿ1aØ/ýžâè}ÑHºõ›¸}ÎicÑÛJ„Ÿ½ØµÚelH åþ£¸IU%Ž6 4B(c[ïÛ=mÙVñêðÒuúlO²8(Zvù_†"c§1·þ„oJ‚§ôʼš9Ó|§ëêΕŒP‚c<¡W3=h>x=¡«°ÄGÕ 1À _¯¨ü%íDN»ÒÐ0¬B¶.zÝ92û¡ÄÉml÷ÐØ+ ¥ìÚb»U`ý9Uü-²÷¡=#]›$“ IÍNjeêó¯QhæBoî÷C³Ï—Ÿ±Å‰æåê‚ïT>{5Gk䱩æI#Oå Š¸j3¥©™h”¥=éN?¯(ä2ôU§\§£ðX$ dc`î¹à U¹Ø…­wèÄÜÊ瘮®Bg¯O ›éGrµ~“ÃÑÁˆQ&J 䮞óW˜&ÞÂ^Ñ7H3“~÷«qÖ“˜·*&§³ü«µû]¹yã ˜å¦d¢VçÑÞåíNHrÅz‚­rÜ)ïóä &¤äezyÅ“oÆk-Ágj˜ ƒíCV» ¬Â}_OžèŠÈËyúÒ0‚ëê_v킱‹×ºc—kù»V`ÖôGÝ;딫™ãYÖt›aȇj4TïY#Qé²\r\•µ% |UÖÓ"” u›<[•«Ÿó¬<̯yÔDé°½n c VUÞ‘Ößû}#–¬­#ú¼†ìY.[&­¬î&kfÑ9ë{K³k‚.' Ã)Ÿ6Ý–¢èwA}ŒÂ†À0~bŸÍÒ¾}0C–¬O-DÓaAÙ7ÅìÀ?õ€1;rŽ©œ¿ž ×1Š»Ê åÝ$õÞ=œGp¶_åŠÔÑô#'âæ8b\‚à&æ…X¯‚2N²9KÙXÖ†ã’Ó¿MMÌi·Ó²¿› –vKcí伕—ò-=º’ÚîaXž•þÇæ+‡ìzÍ—éZÈOF¾4Gⶉ¡Ñ‘óŸîÜõ[,ëÔóÞDœ’ïÒ0»’ŸÐrèyÎb¡îL»‘·W;‚iiE/#½ø$§êZfKô°¿Ž‹š&8"ÝA z‰ ðßÞ?ȉoæ)Þ?¼ñ¾€È_ðõ6®ÌÝË•FÅNÅsnŒ¢á4¶K1”M¤ã˜l{O/˜1ö{ß,P‡Ù2ßò°w¦Â<œ™ñs.ÑFÐMbâÄ;¸dõ EQjzmŸ)SøÕâ"`ØÐw”@+án44¡ÇhÆôœefµØeÍä~ ߨu¯Pó÷Cr¨40%Œk4ˆ›(„ê‹ä£MyË{^P¹=4+ nňÄC®p 9=¾±ƒÅÏ )ÙŽâÎ&Ǧû'4Ô{0´¸z||’dl²’NG9«˜Åp\{zž-— {¸Éxl™À—¢ã¡Èsé* ÖoµW‰5"ˆï³ÎÕjbo ãWUvøHz!w—/÷ñ¨iÃD›?¿do$ñîxÊŽÝ3!(4,h=¢äËBËC´¿}©!h™+PLû’'ºR¹öwi~s^óZ,‰ÉÞ… ú¦z©ôz-Q['šWÞæ¼¨d¿g(‰ÔI‹7QÍ- ¹¸öÒ·Õêˆ"¹Åí÷+MšS@Ïò®ÎÏšdSo ´ k_Cu{S Ö<(³çÔc¦Bð~"ïŸçLËÜQ§·7`¾f“—Ò$¿ƒëA?ž0YLŠlOw}x"=Þs%{³Èñó`ì„X¾Xm/Žêü”u?¢Aé•[ ¯f• wÈ+Z5¢GrLåÅ}¬éŒëËfÒ7–½èöåæS1DL§©Dø3Ptðù œè)è­Qqˆ‡¶_»gE:ªZNu2e"¨Ì¦˜üðÌ¥BͶæÎ…&æÞVÇ|1!‰Ÿú”yxPyHßýVòׄso¤åžæXpe+ÛH—%—+SÚ+·B]yêyœ'íʦ†É1 ßjØÿ|è4êÜ,’ÿHß³”2 d¹‡EW? ?Jˆíå2zagñ¨Ú>Hk:â„ïs¶ÖȽCHíŽG(Žþ…šIgö’]¤ð¡­GÂâÑ‹ÉGÒØ‰™ù iÞB2N~ŸÄÄjìÍõ)7•Ëd¦éǼYf†¸:º_)ûœ-|Ùüâ‰a­*dLJŒ]F„3½²·#šÕ2e2çOBÔŽW> d£rk1×7°#mÌ í×,Œ|Ä)‹R³lh%]C÷ä·à†k:ÿÌ[36±7µ2ec-Å%.iñöJˆÀ'ÅI7äkçgÖ| ÈÆø:oΘâ}ÅÊE Ýt+ûfÍÎ)¾§•?:\>àµp½nç«Ï) åb0Ï5¥7ß½Oîvw¤á·EÉ¡0Q>ñäY^8ßÛ¬ºüyñϺ·bGa©…7ibv¡¸ê8{['_:÷É,Ÿõs…B¾æ™F½»f‡ó -Œ|'M})䆘Ý^të8eþ­å £Ê³œKêXå†M–¡¨·K‚Ÿú¶‚ŠvB#Ã…®Ø¬%dC;~(sÆb·(ë„iœ¶ÇÈ^&±!ÂÞež­`¾P£ÀlÚuª±ÖÙTÇžƒ·?éVØf»€ˆèÖùÍ]ÜhŠåœ?|ro©ös+Uµ´&“ÿ*AŠ'ªÌu-Þ{Êì)w§A6À§ò—J« Bç³w±Parƒ©ÔÐJ"OœÂfÏ´%±¡;ŸÄàæ¶pU†ÑZ¾…ëåÃíÈ(K¥¡.BÙÓ!°ÕS%FU$N?[®@`ÉßMJ×ê.¾b*ìs0¬þ¨²Vls¬$ A‘˜¯ùy¦¹«\9|i#Þ†#<Ü›úK—kg3AI•¼ñå¢MÃ祶z¬Å«cÖŽ;ñW¼RÄ·RˆJKRI,êñôŠò\dâ×hà e›ízëLò®7D Õ-mvlø™"y—:µKæàU•‹f~üÊhÅ5|øÞòIÁôÐZ 9ìÞ(>²?_Oq·pr³*¢[aN&ž—?i†……x^öT~’$ö‚ÍP`-Ç¥•£(ÔæQ(“3RiYy«ÝêÍNnÛÕãÑðNV·tê[Š¥í¥§òHÇÖÔwZ8˜-ÌÒyÁ]i ˆ/¿«0;Û Ëª×‰£²Ø–s«WЂ r»é#àú œ–É´'nDý}LEh+Ô:™Äsµ}†—¤Ó’²æg…ØØqtè¾›æCîæmÄãñ±é±4OGá]µùå¢à-¾gB¥×Ñ'¸hÿ·WD¹UÎM¿ÐŸe,mRéÜ*U(é½$F]S¸ü¡W8†¾²Ð†cÉ!Ëâ2ÁGeì‡ô¯ðö¹âfÌmù*Ø@ÒŠ«.¬Ð4yñÕü2ú†kÔKö:£z"AkÌÈO¸š¤íè×çê ÏO…ücÌMï“Û’üõ“žžr?m°Ñ ¸ý²ââ91|NŠOµY;}€õOÍ8.‘[tÆû~`2;±4ìýI5˜¿6ýGÄ{ÔFù Ý2º64“”#^xb£©®¯e1 òcâœKe<±Lñ`ϰïtÃOoa²„> /umTÉ}$‘ Jù•zpÇVM«_ÿýdé%ضÒ]^ß-÷Ž%WëæÌöc¼,ã2ˆ‰ÚuDhÿ*·tî]øšÍ”«Ó€ñ2íÏG¾)46 O˜²!)×–ÊI÷Òø´[ÐmTÑMSËjÒ¨f8ÇØ6Áþ¦öTI¤w„O÷íñu-›K ÒÏ$¡Ï{ygð-›ç‰±îHñu•ÔÝóÐîý‰ž=K¼úì|êCÅNùƒ»é70w,ürt#xõH«y?Ù*®Ø¾íP#åOfÔ/¼¼fÔî´'°‰PLèÕ²AY­ñë³í]ÍuG3ú^ïÆ´»ÊÀgvX΢j àú:=£¯ú gx½¸‘:¶ÄFçR “×–ZXþ04Èïuqƒ²T£¼~_òZýÙѰ)ó y<¨Žžá#wº¨$Ýmú~ÒDDpVž_ì>‘©íB[}: # ÂæüªYÝ~Mý{Éw •’ØŠÍQY‚iíäÎÓ‰¯KÄV¶¡Ãî}× hGÌ'¢Ò¼:&7b<ø«‘vjY‰’h;—†TÍæéÌL[/ñ0û…˜€k<6©sng™¯ÑuSFÉ…Âã´Ö¡êõÙéC5Q ÒŸ¦Œfy"\?¿¬`vAYÌæ >zAL&û(¥ì¤ ­$„|=3D9HÅGj;÷ƒ ,éü¦f£¼smñðúáLÆìu*a²w>h‡s–M…Þæ{xN½Ê5Ÿ©®¥íâþUbmh [iLCñ©mÎäâ1Ñ!/0aUõAœnþÌN¦HÎ:«ŠðI,ŒïíáÂ?hÐó»âÜ`›fd™y|B0dzgãÿmý.ý$gމk²žFcùc³r>tWøôÖ]'æõÊÌ®ú9´vŽøØ é]swð$@_×½M,vÑ•rð•æy\¹%³P­°¾äŠôà/ñZgqþ--¡¨?"¥®LRüY&6NícGØŒïtÕ|Ä4'á\UÅK€Òõ–oO ìä~ùÒ¤ýKºœóiêã0jL% ${ÑŠosuÊêB­)$؉€¼F4õioU‘ë‡H ¹}ª<ÞMg—]ÌÂŒõ ZMç%Á uËxþ+T—ʨ%C+/ìlÂÝiåqâÙf´Ïø[o Õ"¢m—³]âO±› ØÜïaä>Ä|ƒ7f£Ûl&ûœÒV¨»AŽŒr;Š™+9€†ù¶ùrdKŠ×Y¦îÝDÎÈ=î¯pýƒ¸WP¤aˆ’‚ <囤¨Ö%Â[;ËkËn©>£`Uk§–汓ñçÍ2Ù§_=·âŸJ<@ãä#oKñ÷’^ˆù»Å Tü rëFæ^¢^½PÜ”÷eW _Æùú ó%>¼Ú*LÓ9®4Au[) m}f^|; ¡õZ§ü*û@‚HÉ<Šð]·I—rO¶ZØOS‡vxä–H¯9ñ²b«Àäx7ˆêùcPz¡=b‹÷wƒ ±êPêþñ”Þ«Ó}s`™¿Eðd ÒÔàþûpõ×I?d/³Ç¶oøçç< z7Âã§fÜŽí@CõÁ(ßq¾53ŽÿбàÏ’v v¸o~C•ÏošBáoÔª2€ývQæW– õ*îé©FSð¹UÈÑ}êP¤yÖÈ0ǾØÖ¦@©%îoW"‡ !¦¬P‚$Jž‘€?ÑWé”KF²#Þ14©´BœìVæF6ÏÑcÈ néâó¼'ÉšMô}U;sߢi»ºã,Ÿðw_1:£¥_0~èlËdh‰†;à üLÚ÷‰ *Î!_š¬Ñ1ÊQjcT¾$•KL_½Þ¯{gèœTþYg‘r–euÁdŽOkŒ¦ôàÒK‹­…šån¾C$ŠOKcy×ÌA‘ƒnÆé¢Bª?&TŸ·‹5„3Rê_Ð.*¦¹H>V åÎå?Ü»ï%Ó /u¹)yá8x ¥çéö£÷./k”{07¥k±6?É»Qà·-ëé£Y4IÍçÙügÍ"O ¨,ÙM†ÑFK‰ãïŽ4¥ SêÅa·õc ÷M0ÒTÞr:|К¼[o§ÑßÚöz’Ú b¦Ø}uT'øÅ/¤ÆWÎ*@§4 ÿ¶¸‹]‡Sh)ðhøË¬È°Öš¼dK·¬ÈÂøŠ>MÄ0ܱ¯èä4§6œèXwÉbÔƒr‰'d)Z¬¦Lù&* ïØo²wH¤ o4—Ú­jxUŸÀ8´¦­å™ î;2Ø:C¶¾5YjEåàøýñ¯x)Òñ?«çPËHgÚñ‚é,,œ9`–Ã#}6íú‘µ à–5l [ »Ä®ìEƒ™™·­¯q4ÎÐõ~Ù?ö!ñuÀ‘0$#Q»š=ÎÒÎd¯^&FqDްàÈ̤Dˆæ)ìTÂL·žk²(¯Áˆš)øg›}3rñÀ2{) ¢¸`,ÎŽí*9)E’û‘“@Zú×J&Ä2›.ÒÊ*½±e¦ùâ-Wð÷žî‘ÜÃögrÚàLºKZíÌ’ü§ ’Ä—6‡šø‘D¼z¦Š ‚”‹™#}ž'dÔâ»Z‹ó‚†IÂ7×ý…„ü3âi13Qe ~ »k‰}Ž>™z]Æ~¢+Sá%× ƒI´1NNéjËÕ‰d´ÅMéõ²ÙûÒê¤úŸ<é—‘Šöôbr|ß-âw6+šú®9J<â ' ›ðtÕ9ô£,ät¾H}°ÿ~OCãjŽŠ,6…gX Í÷¥æµu¾Ît;žqþ‡]ñgü1õÞsíçÌÍZëlòe²Ž¨ABÌÜ…ˆzØ.‡£Ÿ…NáîÖ «Ï'RP-à1íqS*§O*é„t#2€õ>9²ÈBk³#ˆ´?ôbÚ;¢¶b€à$Õ+[¡ûÒ÷[fçb"ë^J¾âý2fLž<²ð•ÿÌÏT®­ÑQRÃbûöK ´mÃeÞßk—6…O´Zë>ð°’£pÔB%ûŒ¤Ûæ3òê¶=ˆæ°€¸}öÝÕttëܹÜÎ3u—lSÂÿÆíŠºšTTˬåþs92<Ë#–àB8¡&ï¡M’öÞÈ2—?MñûëÇBøñù"ôq·œ–)ªÒä:³®·LÓP~þ‰tï6ã†E™¿~Tƒ$%tz'½´‚´@+ôi•j{+„ïh£N –ü‰ÔÔfHIÇ㆜¯‡ z¨ã†8çÀ@ÓC ^Q ›æKãÐGÿQÔ¥’Ùü!ÀÆgŠc̤vÁodÞ¢bå³)<Ïk…¾óÌŠ‚ñûу=¼[—¦í±‹Š¼g¨ˆe ÑW³‚}ÓCîÏ©—6ð3ä_¹c’p¾+ÍÄ»†ñ8™„ôq1)L Yžô €¤QŒv#Á[î©'ǾªQ7vѼÌ9˜âB¬”‚Ÿàdbˆ\*àJ_„ÍÈ+1™RÇÕZ'j Žüøv-—†Ñc|è‘z×_c&׉Y™{ž Í~6-.A+~›jK†#$²ûäëÃä7eC)$&e'ʸô‰½¨¿Ð²ºåR8Í"¶rŸ@ç̸Íz]>Kç"koáf·Ü W[²vÿø¢t¯E@y 5OðÌûB&aMâ7Ïc7èŸVs-–¤mÄ?ø8zÊ;M•{–´‘"Í!ò@îñ“¯‹LSt»Äëîíå5蜟n„!Õ­¬ÜdfÌÉõ~K‹§éÓ¹Z z.3×=C½MÝuE…xî ^ÃÝ=ò]¿µ®¼oâ†ß ã€Õ ¾ÞæÀ»‹›à ù5; {ïztK¸Â2|ä„ÒŠè½*8éµ ã(~8{õiÜÌ5ÊØú¥w×>G|{Cì©ÂrQkŒîØÍõœýoTYB¹7›‘¹ˆ3ÝôoH¾f?.Œv*ùJŸlêG¨K-i=$ÍôA%L‹TqÅÛQˆ”¦~ã© R —Nî/ÿßËõ#Òê‹å™q­45³öµÌï…0-wŸmO\ETD–ЉOÂË §O¬”È^¹æÐ¤’G µªOßĩةDæt3ÓPœù»J?F`øµßfE=eÊrmöaSñ+w+ÃÞ°zžzcäòðŸã2°´iÐÐçøý0\(` ²”´–l0ɦ2¤S¤ÎDÛ´gµÃIpÔ§ µÅ¼ºt Þbñ±×’.]=Ål„xˆ°¾=fÜ«à‡øf`¶ü@è|éG<ë_ÜÞ™-G¤H¤Ï$GUy¤JmO¿ÊéNQ(r'Ä®¥0êMÖÝ;K_WÞÞ·³ï&ÉлJ.™õ›t}QdÊ9·*Œ4!“cjŠýq\ík怈Bq!dµûš$0CŦKÅÉÊ )ÝW+O%øè´A¡¥XU}øòð ÂžÞØ w™]6ÓôöèÛÇ$®¯hôgtbFÊLÝÃ8L¶Æ E©nÎ]뼜ƜŠY…8m½§È Vòg&ÏÕOAÜ-â°SL4„Aûå%ÒØï¼)ÛÅzû#ý*‡k„dã¶0îxIA$l˜HÏxJKÄ=óßóòsÆè-eI^ƒ'¹üŽg1;¨¶p‡º§{OœSylL©R#=¡“¬Ð¨¡¬RåäJ¬k^Ñø¹ÉÄg¶‘.¸et’_ÊY5áLÕà)Ø~èícmY h`¯WÔ¼Ê6%Ú¤»xò5µFßllØkiG‰4 ž@sgº^D&†U¿¹Ê£`çH4^J@µ%JT¸ï®ú’[/„­ËwAë<8TÖ"íexF3xH¢Ý_þèüÊWùÉ8=ššÂJ¶~£Nð~Ûíª0Z êî ñNSÃÏf¹ÂòðlªG¼ç”CKx7æišœüêÃDÇ“ä’ÆQâ1Ñ>ô”þ Щ0ŽÏËHþ=^ÄÞÅÓ Nåã Ÿýà[d™Ì‡úD²’L- <ãèš‹¼´vEoÇ•·s}Èà7ߪ𮵔…ܘiÌ(4ÈbÑ¥Y%ôN÷¥*<ú=ÃîÈ3êóÉs©¯îÅΔo .Ö –ëL ÙdB–v¥TN™…Z)¢JI•PœãC¶@……Oô½ï$ˆ"Yƒ×E5Hƒr­R(#2!`-njÆDç˜>=ê—-¨ùå’aöéWøÆ…ht §ŒOòR£ŸÆÕÔÖ f) H?pk©¶¸ßÃøqV9#õy6dRÕ§3÷ÕQ ¤+MN„,_1ÿ*¼oñ¾lË¥59Dì¤è +ñÔš¯ô¤ó…òÚR"–]Øé rdðÏ?7/™*¿H;oM‹ÒÀ„G{yå¿|8~O{4&6¤Å몓ÉȬ•ø:o™Ê»yŽ]¬<Ê r矹êSZ"SDP Çä·tà@=‘!SÏ|ÞD–ˆ}“®ý©»l0éàÅb›Mi̘QgÛs$|ш„‘ñÀû€)¬QÐѧÃ$ 7A TŠ ÓÑ[_R‚›â˜ŸJ”¿ËØxþŠº˜‹Ïf3+»æ%»§sà5ã0’!‰Ä5¨|T?]|¿¥²=Er·K„È“oÁÁ]×2¢°® âT„E ,®ÔÍaÛ«¯˜b›g¦|¸Ÿy‚xM&ÀË—ú&Ú¢ò’Í>¦ân{m?~ð]0“Þª‰¯ÎŽE$!E´Á–K¶b¿ª@$ú€™¢Ë ^¶k,Y…‘çÌÿc뜚…Q–&½lÛ¶mÛ¶mÛ¶mÛ¶wÙ¶mkö͉¹ùþBWwWDÖ“YôÂe•‰ãtqµ§Äq¶å÷Ü5M«<ûaÍÑÍÕ#BRоMYb”½ÂõùbÁÎNz*yg :» •+.ŽÑù1ÿiÄ'8·[*W£Ãê!^,£F¸·`Ðm_TmàLk&«S;T 1”5Œ‰@ïG„¦Úæ íô„¯„o@šhÈ#†-å9z YkèàHÍ·4»Vý?±ÅR¯:ïš©SÄ@/Äì÷œA•è²Ù¬ßC—¨ÕÐôÒ !½flZ™!PmÎO:è†jGR8JÑó÷Ç×SÆÑCY-÷}oªŽäýÿVÑŸqcuÚÜa{÷Ö®éolœ›ônü‚òµ1ÚÇW|GUT¾Š¸hu™Bl‹‘(²ž÷¦áD9Íç€ê])ZÚR¹…êîÇI£¼5æm ͪ›àò0’=™z¨ ,Yv|²DÐaȼù°Èæ±üê/š¤ˆìПûcß·ÀvGÖ,K_õÒ "¼pÛüJ²ó/9‚@ ô†õÆø$[²?PìÄw;Á€ä9‰RÚÎL"òGÙý¡mÉ'2 ÙÇ)û}Û,t‘ëÑò,É·\+ëûn÷ ‘[¹ƒÚ|YL½ÃF>¿ª&IÈÿWþÿ÷íDÀô¨–p‹‡† 4’²Ü‚}`w£0Z‰i#LVJDÑD/o¡‰Ž{mÕ>$ Aâ"eì`QðÖî ÃŽóz¶ã1ÔtI@·®\®ÅÙ’†Há?~Laô’Fí5´teö€<qñœ "CÅ«²ßq fÌÀ¾G½&CmûÝ î©/ñÇ€‰ï!X¨ïPÑ•Œ:KÁ@NBWˆ™¸êVƒpBë2Ï2Ÿ¸[)캻@ãYÆ-)†ÉÙЩ.,íœþ–þ`˜ü« þºðŠ=5×@Û`XÒsþÄ(õèÿs¼¹Zºx˜ð&ߨ§Ûà…sèÙ§f3èêÜû2­—Ÿ#@¶“jº™t²Ä°ËÎÞJ(‘54A`èY9â?Æÿx“º…fX$Åkàé¿2iˆ­çâ p¹J‰¢ÆfÁT›³gì„ZHgì%ß ±«ôÚ±› ºã¤³O¢‰|É<#QEÜkÇtK³mŽ×ïL³ù!z‡«Ç=ÌpäoˆP¦¨¾x´ÿàÆîÃ5ç ,êAp­ÍÕ3ɆÛ9Žû±0j'üŽ–WÉåáÿ0~Ü‘&0ÜP« ¨ØmZ¯OÖ!}Eüù£o) bC ÿÄ-½"BçĬ74Ðàâî(µUð~óÞŒÛ_SCJKŽW0ƒŒ:^G¼tZJŸïd£ÐPÀ?¢.TåÈWqm®# '_³[x¢5³òt©gÕŸ²^P˜è»Êÿ=µÔ:)Šš“ÞÄü®h:ºY¼4b&y/‘:wH:¥‚ë:§øÜqïºÞÆS£­W3æèÐh†mµ™ÝmO¹Vh¥<ôªrRHps†C’jïh&5ã6%·×ϤIëË=v?W̸h 9‘­6Üg§²7šŒâ¾æÞp—Â#”Á•„)öt¦£¦¨/Ú®jjÚ⎤ŒüWúxÏ$¿•.l\n9eÏtLJf4† GðÔÉx y˜O‚Ž`J·ÉHÌÞgB%n;Õ` 5PœrîS«ØöÃñE,Ù§¸XU¨|âwœBPÆî+€½Š’`>U½›¸ª¾ü{¿mÌÊ dOÞ$‰±”áWGÆVN¦SXf4ß© ̸¹„òõ¹ªÂ#½~Ô}XÔ6n,[cÃöªik…<ÌT& 5Ïâ³á ç<>íV•òn’BL¯û¼¿»æÍLÊ¿½Vqì¶çã–bиv¼•j镵´‰«1š|R•ý¶ùLµÒ{X݈l`2fÿ•(ÖŠF²l #ÚŠœÃ‰ÔnN²GcÕœM'Óù>$×_BÌ/bÕ&4æõ©6*TZÑ:*­j÷žÝ0ðGo¹võ-bVúÖ¼Y_W¡R™-£¸úÆ Ï¢ ò@Ü™÷Toâ^ÆCíã ^(–aU¨* Ÿë·ëa%°aða~w”Ô$.rtñ| \DWlæ¯ìœUDv‚!5NØbËL FÚÆÝO« $› ²Í¬ãÅ,a+ëï*[û˜c£LrÒŽ_],£Ä|ÛЗûÔßÖ8ºj£ªð$ÀÝkì/%MüIÇYoŠîª¹i„@¯sd«¨\‡;aÿCv¾<ª¢6•9¿^íÂË^ž´XìnµgÞËM•ö·÷¹7iFsF HØö§KkóË"pJîüи÷„ÊFf!Û“(-Ü©¼x­nHutðXÛŒ#LíeñÖd¯ªåŠÓõN»­_ `¸'WêÁü1Ç“‹.|o’â‹¥]Ê Hù\Z‹œÞ V!ÿ¼w˜„YµºLñ4rhÃrió%?ýâ’ Ú~—¬KWÛÍÞc»V'Nóä‹‹Þ“„~Ò8¹û‘:<Ü&ë3Žv_š ¨z“º><ç‰ê8âóA ¡*&Z;e½óqIMX?Ò©Ü}€=g À”÷Ô¤HÚÔ8¸‚š@ÁÇÈ0¦^Ñ[F´„ïÁ¤«uS¶*vmK7­ƒÄù~ËŠ˜#<ãŸ7µ»Y.ÓÖ„U‹A>ó‚0$iÂ($²x¢m±µmºDQ"ê0šÒ>yüh)HF5=èjBXÚ䙬ÍúÖ?ø;„©8eý&6L2†µß;T?éa w¥wP“Ûò‡XôÙ"ºä€KÿÁn¶uyŸ¡9ÚàÜÃo ížÕr }e{aüá•¡xŸ ^óãO4Æ Fæ9’²LRáÉ~ Hq*¤óæ3â颉çQÝwߥ2ü*n|fɸ@L¸Ú/ðZZŸ.‘·‘U_Á†)Þ3„‡ú\ŒyAå‡(<µ˜ÂÙÇÀÓ‡MFHçäg¦MÜ5bÈè2É^,ôÙ|ªG=TO «ÚLËñPC1œ™ÔÞjÑ·æ»NíŧÒf…Žmß(ICðgí¥ÚÇ\‘ / ¼´âò]¨ß™˜Ëô‰«-ȼo¢ü,WWLæÓÅ%¶O™ûá™P5”×où!ȧžØ0øR³2RU‰Ø`¶Ç²÷…º¡[gY[æ¡ClÜøèe<ݳ¼xMõº›ãí0Ñô/jÖ*Ü>£{3Èû}´îȌF¡´’—ÑÀ3å Ææú û+)eT=ÉÆ/^DÓqh¨EzèÒôhsÆ=-‡ý×ÒL,_2_Wöðë©äXZ&¡`ßcßeqXÀ ^i|5¢O©,›Uì»Îù>¨Ósê*3gó*>ic7bËní1ûðËO÷ŒÉ^/†DM~‡ ïa=·ÄFš·­”øòTß['vÐÇhı]éXÝÍÓ{¹Õ¨…o¹Wý1æ€XÅ©ñ& l‚\Ú E7\-­QegQÝÃ’°¦³ªc¡æ[ädÙL£“Œd›ßZ5>VmŸeõX•üK6N·Ë× v7L½.c>S½“áA´GóUhT25Ù¬ýtú–xLÝRîÇB4߆v»°OHÕ†ö·ò(û¹ î9`ºÝŽÛuÓÆ=ÑÓ¢ /8D(¸µµZŸüžºQ,½ræþäs’µ¯;ö¥]‡Aú=”^ö6âºtÃñŸ¨õ„QÂ,p^??$[AàèÏKÿòÈH¹õ÷ôsÝò4ÿÕ®^‰Ù­wU2E†÷9È2΋¾–eãEJ ØAm:i“ •Ëôsòƒ™˜~jïV³ä” â!Gqѹ5ö€äð•oÔ-Ö—eÓWo[IáRèw¡;/õ‘'Ù"’þ>±‹nÄkAµ‡ˆIo?OxÙ§þÝ75MïøW 1ùX×br)‹{Ø€6+—ï³½µ˜ Ž<È®"ƒbkù\Ï´"?GbK˜TŽÒ7§i6 ŽVðê2ôͲ:¬ƒ)Dí#: ð3‚c€ÕNV›ƒáU¿%ÚØùÞXéÿ^Ÿ¨5 "×ü37#à ÓÔ^ð·È—§±=\Ä%Ó¾L ƒšDÒWiˆ Öd™ñâz¨aˆ')„¨‚ÑÆE5Ý hlÒÀŒV.§ žÓ\¯ûÔ~¥ÂÌÙƒòVdÆÇÔ¾8} µ Ç&¨GWÒ,§£9°MäÍDGXÙOºœ °RËí=ç¨PMÁqV¼€mÎuãš4pœ=LdH ó lö¡ø¦¶ˆvœó3R<çÀï„_ƒ¾Ý4- ·l ÇЊ ©ï°Æ+ƒŠÂHÁ„Ëüî$|f pá°:Ë=*§ÂÉýkEÅS$åÊ<¨!j‘ÎÁ¢FÁþ¸!3¸tqKäìåµZ±vx8æ ²4nY£L (ÃëÆj硚ãGf–À°7 ç€ýº»tk§žÂ Þß̳¹›…+@ho·É?iÝ;– .ßPÈr*ˆçKë¯72»Âj{‡@~n9›£þØqs\ì4= ÙOn×vB¹ÝXÂÝø¨ms¨;™ªW¹Ž ¼íB=ñq˜UzUPˆè8­¹Ùüï ½§½2_8‚-~è*¨õ}~Á‘ŠÔB¿²Wç}–‡ÁEhƒ,TºÝ¹" Ç#/¡ƒQJwϱ;¹Œ~\ˆÍ\9ƒäùNÆû ª•|’ä‡ á–çbˆ¦FJO«½ñ cZoÖo¦A¹‡Š06Û› =š)d#!A»fH¬²ÿr:,ÿÝñõÊwvƒ1¸=³ª4`æÕv·ØVºO83qæ‡*ëŽÕæªî@}ƦŽhúvÍ#ŽH‚HˆM&#ÆðPYÆÉ§nžLº.#G±föe³Ê…zÇVktäp?éû±¤*O«bHëhŸ|vè6õc~3-î&Œa¾LRop§ò$ TJ¨½%¡dÉ8 gDFʱ=›wÐ<ÚvªÂ.×(­"bm§oãBÏŽäÔM»ÜU".qKkÕ¾-™’\ÒË‹ýYÕMÌ¡j‚2Á½•Š#iÒè³v²=`Âéua‹Ëšó•q˜‡!Ö €{ö6H‹â™Ê¬p¦Á™ m ~Œ?d9¦^$5÷A“ÑóìöÑl•C/ß{ÿܽ)gÚ¢®šíp X:ì^K‹!Êêç1“8âÂyuH¯U›Fæ© ñsË‚­yg¸Ì 7l‡ŠÍâLïj¿$"ü‡ìv­ç°?qØtQ‚ø-[˜qDhrŸ+t&¢ÞXlª+ ÅâÏE³é¼Q’ ¹ç'dGÉ1ßÄœ_áÔ>È6— 7Äãë bâX†?ЯJ”ÞÐ9O 8!D\'Š`.Á¡a99Ç"ç«g&%—ý1|ù¼oζ‹¢çÜ%ùš9e`‡~­Ù ‚Ú‰(¬œ)r•\ºÛòG“;вdÍa1êó+q?’—MbËн¡yªÝo=Πȥ«kœ˜~qž»tÍ·A¢öÓá°_kö¿•t&¤ ô0ùífj|Éý þÙ5î6c1ö>‰¥½"~/¦ðC(ßÿ÷B¼mì©^QÜà–ä‘h%É¿áî9SUó§>TºK'5Ò`RKaVø’eKð¬ Ü øÄcn9ßËaL¯Ä£ië³àͳ3 oS¸î…¬ ã+Íèr#©`Y¸ó€;º O³¶ÔeŽòeFr3Êè‹{À7”¢x°-À¦ÒðùÝºÌæàñ\à=ÔÕÄæì˜ÙQËïýuÚ¿žïÚÆû mŽlÂÜî%áMJ­‹!™³R^BãÃ<ÈFkŒ5³ã,&wˆF?àmÇ §i;Jkö m3ñ4kƒ&UaÙ}Pÿ_<Ú’ÈÊ”MfåÐY4w /ã’Þz®ƒpª‡vÅK÷Û ·÷€ë,þpZD¸Ìg÷Ƚ›PÉØsU;B$¡Œ(¢3,|­æ¦®Q“ÙXËÛèÿõ%Aï 8!\a¡a>eœã§¾ö‚a¡ÔCq¹¨JMl¼Mòt=ÒÔฟ…/îÇs¢|ùLÞÃbeV~e8»åhó…²ÏFñ€m¹R·ÜERNÎmÐ@`«–Ú{a"¯^T€bt†®ÿb4Ú‘HáGre|sÎ*û…U·†ÛÈý °e)gµŠžúØôðUlú€Ô$¾¯»:·'ŒVΘŽ( &Ù¨x§ÈåÍÇ;€é…í†Ã:®düÊW÷vjfì]éQ7ÕmÍÀ<Ù½¸7 ¢2OI[Ïåƒí ¬=<À¹ªš,ø†›£Vóºw>]\A?3¡HÓȉea½w¦¿“…nUÿ¡S\Lhl×’R´µ ÿÅ-sÎW5M˜m!%-’3bÊÛ$m°¥Þn«æýrÅÛ$ªÊfËg°ãÒÈoiu­ÂEÒÇD3|jïÑ2§3S¸yç×VÁˆeeDï=‹s~1¦r¿AÊ-CÀóÖ›¦§ÈÁöãäÿ\UàÜHUÄN ¾½»ÏoïlñL´áû‹Ï5HñksÁЇ¤Døú"_"(÷Äsždiò¡ zó¨‰ñw]È(ž)Áa*i")a"†ùÁ™¤Ô4ÿxÄ@ È}à^“ùÂü?þQl_!¦»­‡Šý_ÒJÙHq<]­ŽqïÒš6½B%ù0{$å¤_–PûC¯jó'†aWÀ%¤»[Ö$.^‘0`6]æŠyã|VŸß«³(2ülÆ‚ìŒÕÄ(½"° 3™š”µî0e|n¡ÔK]ºàS;L–ËÏÑý² SNRµpÇ+Thqh'ón_ƒo9³Ú©µŒé#WÙ:énZEé]¼ª ÓüÞs¤y軃ŒÀb_¸ë“fêß,„ë‘…lâƒJLð–'³S©"ÕÂa ßY° ¼;Zv…BAš?µ/&ðxDL(ÞÍ6óM|¥¾(ðR¢iéÀ†9gl´CØàkž©W¼=^en¿ñƘáå«vÀEPÈ[¢ýÛ($ÍZ¸Ã¥)=öö¨ã…ŠŽ>³|ÆZ$`Óí Ì@YÇ‘rÕ1—ÎúÉÎ-@~}$õFjôL"Ï“6T-$X›OåtIܵSÚÅ2ß“RG{ðt3I«5BWúÈtù¬ûÔÖl×a0¹ø$¾³³§ 'NîxE"ßð<žÀ§±gpMóüxOüÌ.N[IÿN{ù-L: ’7zºJ‡{L€õ’v¹dòf t–{eU‡rN&ƽ¼*€%p(˜Ùt0åpM•£3ñÒc?øyÝzö]Õ&wD¸ wÂu“»ñúwŠv‹á³Hfý_='Î?'¹äÇr,%Éž¸;ܤlŠo ‡cT£Ò:ÎñU½ömîƹGÈ„aÛ¬˜1ûÍܺL™Y ª½SÒ÷yjhÇÀË,þð8YkQmy69Ö °wžû L“(½= ”z¶‹Lq;¯Zðbö¶ä6‡:ªÁp•Šƒ; —ÄïÚ «)~ß~ #Ûjz&ص¸ïáÆp„Wwןí±7ÙÜZô£¢¥\Œ5±f¦È ÑW¦ß,ä´>ñ¯[% fŠP‡¸¢#íËJõåžK—ERÿ¯è–§Xg?§ö¬§J¢O\BsDòL>³Í†W»Eà®ÅŽ(þÀÇ#–¨ À”¥w Û+¡çg²úÄØìÃD²vYZa™h—ªkš©q‘ê!k"$þ#;ª®ŒqX ‹ý̨Òt]z ´9zK`è‚þ\;Útx*Ë× bkmn„våó9þtìÜÄæ7yðjØY{ÁÓ'úÏð m“vÊ”:ŠÝßÄßNŠîÞKUèÝ|Lº ºh‹±·#Û|Fh½½Þ{eX,ÆÕ¨ú&œ0¤»È5ú Xc>à~3¶¨n%‹¬ yŠÔ´ ¨ð¹¯þ&UÊRT/Hƒ=Ú·ù„¨è‹B†J.¿¼¶gBe1…É…·5n™w%©E;Ñ)Þ±®Ã/ŽËߦ (¸žá¬aA°ö?0†mWjïD[UI™˜ëðÂ.ñgA´Ì µ?N‚¡+ˆ%Å3cé‚<î£àMÙÿ“ÕKö,rÀ>NC±Lú†ßÂòŽ0pΫ0ŒšŠ‰U³àG*gÌôþ9¹£D'ZŒ`ÙôtIóÏqO¬K1T=“b¬R¦¯uHùKšÊS猞>Ø5 Ó>&ߛ™d•´JÆ­ýaz}Ó§ÙsK~'ÏäÝûç¦z5)®št‰ñ8Š.£ƒà>Ð¥D‚®+¬¦÷œ“ rVRû"Ú"›n"i!\œÞÄê Ý/:g0÷ÔW ©«’0Íx¶X©+)yŽý],‡ãK #ä‚9šŠ:¥}È1×fÆþ#RÃÄaÜŽÈô8n^¸³ùbx•ââæ=3 Î*àOÖ±ììäŠ{?žgÎ.ÌhÜÇBsM/¹ø =艟јÝѶ=e<ñ“ÑKl7üeR¹Pl&ͦ»’?rNÆØæRW’8Þr‘·ƒQ9çA³aÅ̉aÅÃí½†q¥ ã·@÷“·èrRr(n*/ J }÷Lª_X|5Ú§›ä·y.xZjæóM²/ŒW´IÔ’¶I¨¢°Ü fb¸5#½5ÃSjè,¥¿îpøWSú½ˆšíè*¾¯]e.¿Ø×èPœÜ­U9¡Îéãíjk2­¶µ±)¾þŸn1JKî'K³‡÷_Ȭ«â{ÏïèoáðAf  4Vlæn*ƒkª´LW,Ãïùz…Øf>/wìôu •”ÜíXª ø[&±{ûŠª¡fÉëð~RÈ`«¸+Æ•·˜ð±™Î®äª¾X”¢" Œœsoœp…hi·;61Hyr–ª¡I@“dƒ«x-þ DNŒ´2À¸f7”üŠ”Á)VÿòæäæxW,“•d%bsvRP•N× …^jÇW^ Kè¨óYÔè®:¯J“¾+4ÓaÝ&Ó…Okñ‹uŽNÙ½7]è¨ÆÑ•Ó=¶€¿º7Mfé³.,³æE¼SÆ*AR=8³ROÒÜœ¬~o& ÄRˆýq”7D¨à .ƒW‰I/wξ/ä‘iŒ-÷EŠNÐ%×LB'h¸ît¾u›7_²Î31ÙqŠå‘ÆŸ"H>Znb^Ùø þìåãóJÀÔ“La´·õÉHÊRÏ#Í»ÔÌ^ÖÖ?©®Ío{f%¾óíœÎ&Óد?¥çóÇZ$€Aån&å@ ‚e†°ltÍ5©¶˜¬ :GG»h°3»óÛêAºYã"Äb¹¯GÛ·dÕÝÐg=r0«(]1Bù `Q²Ô]s®ºí¥\©=w‡bÍ[Æ•AØF®ÕšO™TÑ͘g=ÈuZhDgÙ=3,ë«*dïF–²¿N !ÿ28äålk ¢‘Y¤ÔWá@æ’ï4Y´Á«Ìl  Sus2¿#3ÀlcªÄ2öOU7Uá–U5iN± ¡òy‡¯ÿ12Å¥hA븮6ÉLG;Š˜P ýðPgIm .êòB_犾TC4fqÑé]µmÀ¥[ÕCµ‚ΈõAÎN!iBu<¢+—C†Ud$'’š;ù£)®J¡`bVСIe݉IQÍW¤ª§é‚~%[ùGd€B20çÀ/ĉC\Ù´‚Ú0IWÑxbŽ¢å…ñ=|G,Jùj$µdxÈÃ>Šù®&z8—HžÔ.í¼ ÖŸ;']SÚéÿX±3Õ¦6Dòõtôí²ê¨²=”µŠÀ¬‹šøÅCøqUÁP^!Šrù ¤¼/8˜ìNh7\øÞ|'ÔH—Õ/Û4üêõþ`ÏÆí„cýŠÿÒ&OüŪÐÌ2C 甓uà ©§à->Ü®t ÃÁ½ÝuÐ+(Kˆw¥¤‰Ðt±[^Úá 0WÉq¹Ãön¦ìÉF‡Zß1‘éüO¿‘ßÜX—Ÿe ÄÌåµ+¬?Ë ™¥è¸@·+Á4"¨éÂA@JB*BÁÖªÑH1Ù|ï–ÿX‘¦ÛµåßG#ú' ‹ÌÉÝ%À»¹3>@1£j ÏGëøÛqˆûe÷àyÅŸN™iž0÷Ñû:OjÏ9+ÆËƒà³tÍ÷}ƒí%´Ù¥$fêRˆ$¶é%ž·×n)ûœÐGÜtGþÜÄëá±ZîÐÉž'Š¡Ìm=ë­“œ•8úÓn¾ÐB=/¥iè·Õ8ýÕÁ g&!Ìòš¥¼ó£­9•÷!(ƒôº5Ý–éŸ/«õŽmñP ŠyÓÝ)kükÉWnËr>ÿ€`@ÖL‰ê•[+®3D¡¾$‹c¥wøÂ¾¶W–°ël»5LD*GІ|ÂÍåDqÅv9Ùdø}ÖÓ€jÐ먗¼›&àë6]‚À¹.q²¨3¢}6©D•‚ô‡.X•Y9zg˜÷§&¶Ü·ís“¶ÑS‰7{ ²G5^VU"‰:Æžÿd ]‰ÏmüܧX1(ì‡~ÐüÂ7‡æÀôH¿Ž {^<øBC‰Ÿ]¨ìïèÖC®\ºx QxÑÖ2•ïUa´#FqÑø8«¾žè—‚¼‘•Ôµ´T:¿é);¹lö•ø7Ð Ÿ •?ƒ\¹$ÿ[œº"y úëØjÓ¬t<ø—ôwC…W,“ÒCª(‹%ìÀJ­ùd#ßZdEo·\ºn¦¥oĵ¢âIöUÙžý/‡%—b‹J%L9e"|~¾†úæ`âlGÕ±Sþ×êbs@7aıÐ¥®=÷@ÞrZoÖÇPJ‰”˜A‹àHà3“zM‘õWÝwTÝÛ ~‰8K=$˜i§%8Îãü¿. ·k®)Ô=7Èk®ñ÷¢–¢mAü¼ûP ±:±®ˆàVÞ‘úÙÑ<>¿h² „€åef7?ÅšQ›83(=›BÝMŽ‚ÊWz¾À˜Ëí(¢¸ÀóÍâ½`'6 xZß¶ ôžß¿lÇ…²ïG4æâãÍû /)56£Ç1³ð¼({ Õ!ø¢ÉèÿlÓà#E]r‡ì¥q«{¡ŠØEé„­ä÷Dð6ÚuzUg“RëÜîsØ 2o‡o„Qçàó…(SMËÎ wý›0l“qó|½>ý.u;•ÑÅ^ß<‚·i´Dç¥1Àa]»êºð˜G”»™‹*ž±c«r™Åû û±e•ÄRyU¡J§¸¹éÓüö±«Ä@k¡kcÌbžDÉ/ÑW¤lÖ9Nð8Îètí¸úÑM.¦­„Ùú¾Úüb/ì’P¾0ï‡ð¡$Ķîü‘“ŸÑ­èpj¹b6q|-Ðàô èi|ÂÆè/ fIË3ï8ýö«‘E§’“ƒ¡#R‡‹ºŠqT¦€ðx^KDT·­/WÿŒT–$cOG_‚ÄoÍbâ<£l‚à"Š.å„Y£°ñV+~n? ‰ó,I˜Žlç÷›“¸’X¸Û§qSêoÖÞ{a¨;§ÄbÓ ãØò ã0Ô[‘³ã®‰úÏ §¦¯²}9†ÌQVU¯ßß(d|Æ¡•å`;]spE¸ð#·$¡öÁfúuh ; =ȰèsÂSKÛNÿ•̰ãŠÒ›^'¤›ú+ޮϺ`DnĈò‹1æO:ùjoIyDÕ_Ñv{šýS`é¸[‰ˆÁÁ› dð]Dæ r£ä¯ëñÈÆ·}&Alà˜´ab®!øÜbí£Ž¡Übch§E ¬Ä·:.èsž&LtµÊËxwSÕ±,=¿Ä•Œ’•¥†~t&Èj¬b^{ª2¤ƒß)»AëÇ‚‚ûW´¶IÆÔÖª`i"ÞVV%A‰™õެÅ("bË…„ê{ aŽŠzþ LJ÷ ›éTªÊ ÁYlÉŽõóH‘ŠjÓ;°S– nñkõkK1ìk$¯ eû%‰ ì#æ§â `IC.î.v”Z{žÏ¦±‰oýa«ªÿÂ-§ e¯‹¹K3}´Ç,–C¡üw7Ž—œîêÌfŽÂjÐxýb7@[R‚&,R®>Í *r£OŠWC@%¸am¬6̵«Áý«¾š'¸ {âÅP‚aë¥ÔÆŒ…ï˜bØ<@ƒEùL«¦Ávyâo’ð[R‘\Gb™P^ëú3$E~R¡>p®P©ÌE3!ï5ûNm?yfdêUjêôƒ|Œé=s~lâK«Lšƒ®ù¹2Í Á6:㇦Ä|¹~€WΈ†Ð$Ó. ú(c˜×帺o‚ò~ö®¡<øB…¾!Œ­i´9;•€ùÃî—C­ÍhÕ=vê3¼@{\2ÍPƒØ¯‰wa=–®eX1VXáqM×>Ø~ÅmiVÈÄâ¯/ŽÈÉ“áld4ð–«Zõm$bQˆ ÷‚‡`B_œ„p_·û&b+Àá+C‰ÔüëÉc=ôT~µ¡Ó›îeÝN;ð3U8êPÝEÐÞèSÚz@fžVáoÛ¨ 2s)¶A‹–,l ¢—© ž›Ãÿ²[þé”õœ€ â3öoAhÁéyóÚûÄq€«Ö’¯î´ÄMZ|PæRO¬Û3xƒ=ì9Ñ"ªåo(šôYê.Ȱ۽þÒ™w «¾¥8 ǼD•Æ$}Yè\ó6y÷);Á6t·È.Ô¾8 ŸÚ£æ0ç²kà<´0áCœ  5ï‘¥¸'hBÜÞ {'Öç‘÷8*GÀ‘#Øm] Vi˜ìm9,_û{#ÿM0˜iJF“Eò«Ô¨ÅË:"X6ÜÿÊC¸¢géu°xEËÊËØ­^ÖÄèšói†™ÀL%?u*)J`C^f¿VmêüMŒ"öN^àÛQ}ß\}„Ý<ùpç×ÒçžÞaÚϹ‹¦m‡¡(l*dP¾WçûŒ†«gÏñ Ç@!›(lhíWâôW¸o~ƒn¾Rfï>âWÂà‰%ˆ’AÄ1Á]•~8þ Ÿ€Llèð|/•)^=8öÜ“C<¹&ûEŽúÿŸðNê²–žåÊÅ5íJ‚óž_=c îµ}Q¨hŠùvZP õùº.ǪKøv”!þ•’¢+pIs`l¾ËrìEOâaé¿Ô:„ßM‹Í,¥êˆ\ß;ók8m¡ Ï’åO›ÿ[¸‡ÀBx‚…t–¾ƒëå93^5ã#6—2Ï]T ê›æg±Im°#}hæ&MƒÚC+/’1¨Çþ¥  à’¨¿[`õq¬±¹}öA)ßx¥™ü’×QTÀçüËkô€þ]ÿÞ˜~xß™ä_enj˜LÙ¤Nòþ“ÊÊÍM‚]‰þ6¡^7JUaÓ ýÎÝL‹Ý¶8 ¢ê¹$ÆIë§¥%AlnJ‹&$ï$Æqu½cÑ}«·ôbRµî$€ûÚ}õÞÙ¿‡Ù#¨W­žÎtØ.þ•Ôª``ò™y˜i‚‚·U5öç‚&Ý,‡mñ1 hIxÅ%Á/úW0¾oDgáåﯥe\ïÍYß qï^ïx~M{‰Þl–?'©£Äƒþ)½ø'ßÔ];•XŠ „O,(3ȱ²ñ9òÔˆÆfl•,Jì|Ty`m/“›Œ+ í¡óø:ÚUþT°çÖ— êâPð£¥À`™ žØzrõ^<É:ŽÆ=à[¶Å ðñZÒIî–ÐÍGôm)ç‡ò÷KÑõ^üývŒb«¿éÍGïš{€Áפ'…â㌀˸;` ¼_ÿ)™#6õ²1Ø­âög!Þäóãø%Ô±àÍ8Î+…»à[eBäd—Iä¥|É9µºDþP‹å2p-̶iʘüµæ³EŒ‘ÿwÃ+nlÞA2Ú«+NÚ!ê:•@yr>—÷X`aò›ð¾½ÿl™ºf@™&Qí^š†Ó(¸\¯/˜æK?x=… õ×Ì+ÏÈü,nÇG+=RǸ½“OQ3ˆ yˆl4™E+¨W4ª¦±.‘G ©†âŠ )]¨\ÆŠ?¹ÆÖ,çÛÛ ² .XVù1yß8ílG¿—Áhm˜i êïy'+Ø ß“ÇxãtÑÕe„+*æ=°ÎzH”ØÒe"IMVÜxyuÍãËkÔVa=‘ª'GS¢ù½ôlzš\Я)‹{Ä™¸ j¼–/ýêi¦lVº÷âØ)»ÑÌžƒ‘Ö„bF°½'gÆ+–Õ ½y¦¢1"!ó׉º¬"dt1S‘¸yúŒxÉó"I­')⎚5oB®°8ºR€D?Á²£1ƒô™ÑÄÁ†&äœîê€]³‹\ùf kôuòÕÀ‹•ÕBzs¢Aœ>ôWfʯ©†sØ6ÞÌ÷¡#–÷AëÖ+מڿ̧Íe'èÓÅõîר-÷³_ƒ¼Ò_BÉ_n‡Ø\@_2›–Ãv¥ Mõ‚'šú2Cf·¼ã\¯÷ÓÈz$ì…”FfòÛÆg@8"…^=±dþ—·)?¯ïGK'ù$Âl屮ñ¢µÍ–UÓ’žutq¥š_<W?ö¶îé£ÄÄB‰žÛë|€é RN“¹Ä¢ÝJÉzÅ € [’‰í„+- êûYØq‹ÆeïÒ—_g|l43åB)¹ÎÈ|Ö.…>Î|¡*0=¢ZJxçÕ´ö v ’ê_¦R0yƒ/£ùy¾÷é°¥†s¨ˆížäqžO…EX=@¯rÈV4?¨m þ~Ü™Íð5uÚ£“B[~)3Ïp>çKHH÷UßI›ÞCÑ"7DhÛ䵬‚œò”ª0IÓ’(@æfÕ[LÁe¾ÒG×ZV¤XO„b^²‰~[mî@é±=¦˜V•lø®wÝð|ÏàeaÓú¬Ê\}óÉ´R›pÄUâN.ú`c£ÄkWö½{^Ūh/ÏT¦þ²ÄõÇ~tÒÖz;’}ç”c\ Ómä«ð=T2pÖ¿ð§`as“³YƒèŸ„Åyr «r R…;õïÑš™[·ó}žÔfŒó¦¢è’v½¢8ã/I‹›ÕTÅ1² ð„-?l;õ‰÷  Ù ®–¯u*s—uZ–Å7ѺÖÈGS/Ë–Ç¢M耶»ƒ0¼C+®ý..÷ò’™¦lú›ryø’Ëø7!°—OÆ=}|²ŽÂyr ?îï[ðûÊ'Rºô>å8/bUÿ&v…OñXìⲤò{{Kš!H†x¦øõ•+ŒÉÏK˜xhÕüˆnnÂt¶ô²ÄšM[…[Ÿç]´e ÿºª˜â~e%€nó›×[® ޵áŽÜ5¿N…,ˆ‘AI´‡´~°‘æ¯ Ñ…°t7J>œ(0²/ü¿1| Q&ŒÏ1òãÊcƒPOE˜¦DÂ¥'&=72”Ï}=õýa!_‡äÔwFæÍ¥´Q`Úôa¦}ÁÊW{<©ÓÍ)©ÜJœ°.´pÎÍõÔOC–6½½a43l ^£œÎ`–w&®Óˆ¾¦ãèˆBèßb¶ìxÿj»EuѨΎ÷Ã1×ÍÔÖ¸«œF3Ë.(e‰Xg›¯·ÇMÆj è®%|5€·ùôyaÈñ€ûî1^–†#€àŒ>€¶w=>D.r ·KTüg|݃‹á÷¥?íEL„K6—Öa mržAóÚ+L¢]Ç(nÆ'DOâ¥#!Æ¢‘sN¢˜©€@i<·,!þ§^“?jx:n‰ÿJ‚Êj±"à~ÿŨŽ5›/“Ÿ¢ùcy ædjhu i[7Ï•9I1§› Û¹Sþ´´W fî`?~vš2ëá ¤þŸÂǦÖ;œMe¡-ÿ¦ÊæB€q·ûk¤¶\¯ð£{‡^FÒMU“‰vôÞô‘é("wýqXÑax½ÍÉJh¢Æ\Fƒ0àCSë‰ r?ÿtÍÐd#¶”òÕª¬¼–étƒ|Ÿã‚[› QÚ"Dý]cQ×&÷|Rš€C™F´ZqY.ªmá–t¸´çíŸÝC†Çm>fDxØá]P0¿täE¹ÛCNG…Ÿ¯ø]U‡Fͱ*FQây‚ÕŠjÆÝ‚Êiž„{ébË3Þ"Íi°Ø5Â.™žØ5â ç©]‘séO\AAdË«Dÿàž_XòïàEP‘=ÎhÓãÀ%œ¸³ÃJÉ;?‚bÝÙÒ…ŸtÌÉâ ±½ §$:ÕÁˆV|î!xë (sÅâjûbB “ÙkíëåãTºÝv·ža*nýc±¨nZ¯PäÅÔ¾¿òú¸q@ ¥ÇûoÆ”]_§JŠ‚WåüÝíV¹,_žªù 5|/ñKhP¿$G-ÙòAÜ2Œ `‚gã~Y}·?E¾Ï<³ºc]eå„þp˜M‡–å5¥cŒréÐþz! © ˜"Fru…©§ïVÔ̬fÕCˆ¡¡ k ¿¾–t˜>[Æ3Hܼ9ˆeÙŠš‰A]œð$1(£¯›]ï'ÞÒKr‘G8‹cà„N›ä^~ šû¾@]åæîfê,³Ä¨‚^ROM C»˜·x¹éÛ)ȆÕû½YßÌ0̋˪­û*’¬k‡ ÿ“¼$Ù?J )=Œ_Oçy ›©Åì¸j™´qUBÑÉÿ>y¿õÖuõç Ï8‚.ê…O7 )Ëïîµõ-¼¦5ëÖºÈJˆè]ËA›UÜßóÐÌxy”¹ïh]ìx™j—ÒWéw›¼, ØN]~Veu…‰`‘…ŠWêç´1€im;ñx ±þÏD< ŠstzƒzíA~aÛÁö<4F}Z’ Q¿’,×—ÎÒ—GF¹H¥žÆü&ª Fb"‡ŠB6ªdT,fða š-”»d§\6º‡1‰³æ¢žÿF›H.pFO.…r·.&,POð–Õ¥}ÐúB”j76ŸŒ¯º‘ÔÁÅÂ<Æ,¢eŽÙ§ìè,Ú¸mb²Ã¼=ò€%Øü–ÛïHluÏA,ŽÿPîÏKTûë#ݸ™ÕvþÁþƒÚ¦0Gjl–afáH·ÉˆµY#YJ‘cŠpeÍú÷ükØ— 1Í„ì2¼O ÝìèA”$j³ó¸œ€¹öªVçÔ÷êÈœŸºÀ²ÈoßKÊÝ¢Í)ÎdÍ( ,\ÂŒ¸€Ú–nIÉM¶¦îgœMd‚KB:3Â7 ëíõiE*,š`>¸1 I¸+ÛmÖÕK†ÅÖúÏ â‘Èó²;~Óù¾aDvÌ/þëÖ’Þwß^vÙÇ&ó€@$N@)`e¬ÚNhh³}ŸýGs«­ŒËfî›!07›³^Gå®P-þñaìzûT;yC¦‰( -²%r^Ü#Íaí=‹¥èW¢ï§GAv}i„•r}‚Óº—Ç•ŠôÎP\Jl ,G"5’©lþ-m›‰Übh„*í…‹OŒº×™YȨ›òËæ]\Ÿeù(Ð7ÁĵØE ¸×Šÿ‹Ê á†9Òò,£ÛŒ›)Üæ”qiv¡à4ýã1«½ñ÷¹KhQ–¯Í¥ gþ̺Q€úÁaqáó˜ýKª¿â Eõ×¶¿Í!÷$OÒÙ6Þh|Ž×åµÔV— r $¸gPdêÞƒá;ƒ($2 †2_;iFgOB1;;ÁØš»ø«Ã>íØ.‚MˆÇ£Y}˜•ãÖøp(Mì_7/Ö ¢ˆ…¯¢ír ø»b­×KÖyä©,B¿ˆÝÑlo1VyïÉͽ²ÿ`ÔDs-‹EœGeýWLÝÙâÏn=­ïÔ³K+–ðTÀ2¨ç)Ì)è¿âìËÁÇëî¡ü7´ËQ§I ;ìÈ?H-\KoBЀ´>½†^P^]¼‘v‘ ˆ=°Yö$ýŽqDBàë”Øl妈{KÚ0ˆùJÝMdý¶Ýfû×ÖRùƒ£ŠºÖ“s+=„rþ†(‰X)RƒõØÝº§³vtÙ8Zî1€;0¸TýѨü“Ö¼ïxgô7se òA– ïpÅèÈØD­õ ’[^”Jaæx¯‘ ôÂæðŽ9öØMk\û„aåc°¯Aÿaå{&Uø—/G•µ} ”°/ɱ,êÑBƒÍ|y~âAÙ°ÒëóBkuð$( ¢ðäÜÀóú siéÛö/ç®(“¬ŠòžýW&˜<3}@´”Ì<âÄ_Euã’röØóù“ªÇÒ‘ØÕ£™©p WïΉ¾í1yí©ówŸ: *¿¼à¡ó—“)¸pÊöÐÐêWñâÏnvyfþ‚Ñ4·,ú–ãçºñ™Ž`ÿ†¯?„´Ü÷Έ ÅÔnð7*°jšÅ¨Mõ®–#°Œ8#»Ç3XUü[y]$©Ÿˆ6©NФöÊQ¹/Þ 0Ú¢¿ËeLÈ9"å2$z+%¢$À–*ï!äDiª=ûgÛìÄ}Á'ºäìE.ýQ¸™ì/2Òúm‘åC…Ãÿ·ºô%{Âí‰)«$A|%Hÿü¯ƒOÁe›–Û×÷¾iÈ'η`7”?%2?vP}N°5…¤cѵ>,nòðòðƒ6&-iË´c1oÉl½´,Ù€ÿE¦6Ù#ˆË¥Z!%½(þé'iºt§H£½ Øã¹7‚à7’rU€à‡Ñn,ãwlés1ú™ILÍì˜ëêCäDW­‰^U†Ó¥ø¥\ø=(žŒú#8ÇœÖ}ã`€B }²‚|9’“»>{TlGÈ®š×¤XrˆÔä`äg—xû9õŒu6ä̯ÆP€¿ÝI…øÈ(Œ¥ÖÄ@Fbø¶„Õ¾&³ÀËòû3;ì¼àY$€m_XÕrË63‹¤É9:Ïcøâ‹|½JGüÃÌ·V‡êŠÍo¬5•èd´½€¶ù«õ$ŠðÄlUß&A5hhx» /- 5eDZ*ŠÔDv$B½þþ.m'»•‡¥Æk ÔfoÕI’]R *­1õèNIMÞµÏ ”ŸÐ‚j#×Þýç3D˜…á›<.z|š5Î$Ö©Ñ”óyëÀÖYýÄŠ¬ÿ|ÃÿÆPLŠ]?0k}‚" º9öbÈ yC’×ܳ•»lsHìTV xtž+!)­Ù„7ÿÿ ¢š}‚þ:7LXæþ_°Oüüküð=Ô=2r]¾C9"«ÐWÁYj—œÒßž¥ñ½5(¶FvÎRSéÄIù&Ýü†m‹Vt½°T'ša|.$¤ìò‘Ð=ë%¶åœ"›M:¥p`"ïs±ðÏ+nR‰6~edÂrØ5òãX¯ç[®ìý36=2 óYËDs% •^ ¥`êü¼(³Å5hþWÿ°/2 zi·@¶ÀàtÖácÍ¥of†aó.N¥¿vÀ4Mµg=µfNY)”?!ðâ­Y¥ º•À÷hˆ°ò6èâ¨T,„0 @×»„¿½b;*6p RK –8#HÄD$p ÷ÔþÕë!:ÏT8;ÿEåñK!œ·Ôïð_é{{êIxª—‹}ÏFòê #–DŸmᙡmiƒÍ+>,èÇ>k&SäÍ> stream xÚ´ºcx¤Û¶6ÛvWÔ±mÛ¶mÛ騶m«ã¤c£cÛê¨ã/½ö9{­½ßó÷»ê*܃÷sÌùTÍzH å•hŒí MDílihé9Ò2Šv6¶ Œ4Š&f.ÖŽFZzzfRR!Gg ;[agN›³9@ÎÈùÓ÷Ó‚žž† fbkâø©4zdLœ ”=ìMäy;'gC§Oµ‰­™…­ ŧ‹½‡£…™¹óŸL44"ýñ¤HYÙ¹9YY l’´2´Y;·O¡€ÜÎ`hbn`m °3(›¨T”D•bŠr*òJ´Ÿ•\ìííÿ‡‹’²Š5@X@VY`¢J SQRþóªlbûÉߌ «ü©ÿ“çÓ𻌈²€²†¼ÝŸ1®&ŽNÒþ·¯ŸÌSût5u´³ù+€ÜÜÙÙž“ŽÎÍÍÖÌÅÉ™ÖÎÑŒÖÞú/~ÊæN7;G+À绣‰µÉ_…q±5þ,§³¹É¿ü™€´…‘‰­“É'Q»)m>Kùéô)wþ7±ÏB8ÿ‰iý/s€“‰É¤17púËWZ^^`c`aëlbk`kôièlàìâÐÿKöù41&ûA€‹£ãŸ2ÿ«rüwšÿ¥.h÷92mk/·ÿž1['ÏÔæ?‡mdgëdáäìô¯ˆ&S k“?ìþÌ™…í_2Y Q%eéÏÆ³¥‘±û¬Ž-­³»ó_Öâ KsØéY ÌúÏ&±5²³±ùdíó§|Ÿur¶sô ûÛÊÖÎÍÖëÿP˜ZØ›þ©½±‹=Š­…ƒ‹‰„ðÿ˜Š`þ–™™8è&w#sº? ÿê—?b†?âÏBøxÙÛÙL ¬L|,LM>ß`¼œ \MÎŽ.&>^ÿTü'‚a`[9¶úçrù+º„­©€ã_âO&ÿ«úŸ& ÿk©R|®Sc;[k€±‰) ¬ógKÿÿ³Òþ+—¨‹µµ¬ ùÿSÓÿ64°±°öøOÓÿ2Q3ùÖ\ÖÎÑÆÀú¿tN¢î&ÆòÎFæÿ*í¿äΟý/`kfmò9-‰Tþ,)ëÏÞýÜ,þl_6–ÿÒ}¶¥‘•­‰“€™ù/•Ég!þ‹ñgõÿðÐ Iˆ hªRý¿mó—ˆ­‘±…­€‘…`àèhàCÿÙ Œ,,/†ÏÆ66qÿ«Yt´¶vΟ.{g€©#ÌŸ eeÐ üý…Øtb#Føßˆ@'ù7bÐÉþ±ú)üXtªÿFô:Í¿€Îà߈é3Šýg7ýé„ÿ•2кü~F7ù7daЙZ¸šüCÿÉÌüßùsDæöæ&¶ÿ°ø”Yü~¦µþäÐÙü >³ÿ×á3»ÝßÑ?mílÿ‘œá³Hö«?‡þ9 »Ðgø¤çøøÉÅéïÑ|*,Üÿ¡þŒàü·ú“‹³›Ý?ÔŸõsù2~’óø;û縆ª&Aj€ùµŠ3<ñ%löq÷Å“‹ÁkƬÕ²:˜«©«éCÃ,<édà@‡‡vbÑ;\ͨк‘=A‚|)8<¡Ò("#ˆü~©ü(¬~'¯ÑœÑ†Î·éDXC úATÿ£ö”9¤xqG ,àW@øM±ÎÅUT:¹ÔOG4Üv#¬¤Ü•¿&“ŒMÁGŒjE¾‰ë¨H;­"¾ó ìÅÄøÉÇf«³8Ò`³¢ùË9µiãV¢I¾ HR`â’2›’¤ñ›kþäìînõiâñû¼¥Œo¤²_Ñ…v\ÞÓíŒÁçµ™ßðÉÄžz¬ÊȆÃg¯Kky'†oÖHý;*欦É$ENìN c&Ùéw`c^Ü6@8úõ¾s ÕâòãéÀÌ·„7o¦)RùÀ X£·gÔ¡S¢½Šg|¿^2ìR%ÐÛ¨L¡&ƒõ ŒU…‹÷ÂBQ¡sN;SJ„h,„K\JTg¿V¦lž§ú¼dèNœFzÛ[¢Ÿ&Þ?»aâ»B˜í0Ùl\0'"Ít˜·™Üîs ºl-X]¾¢Þ¾:Ò¨âÁjP‡r öq~8µ–·AB%z´^Ü+²Þ0‚‚åÌÍ‚u_£€Ÿ¼üHÀJ+t6q¡RSÒ¹d×tàÛrË à/+«öw®è²„8EÞGü"Ç7š­u(ÉúÊÄJ-Iäšn/pZúÐWÞØ(ܺžTqQý†;ŸS4n©wŠÜ°Í-PÃlw‡Ï·/M»Ò…$2úÝ>2Ät°iØM«w4)´ãÃûކ1¤ âŒl—®ëì(Ù=ÏQô+. N+Èò•áìX¡ÔÚGeåÂs·î³À ZÅŽÖh&že oõxŽO%vkÕv:P ,ØJ>îZ0œï[²^0_d^/’©Z“v{.I”Uô©Ú÷ÓŽVôa©Yƒ–¯1k5ùz§áSß9{]û*O¼ç·«òÉ… ÿôÙ±_Z|ê…7õ½‚»6ïÏÕ`¬J}œ•¿ò„׉2àUÑúB:6­ÕËžr`Úº fÌîy^öH´Éµ0ñ+¬ŽÀ?ÔäÅ'\#Ûn8~±ŠÑlæeFr#eN:2Q&ùë„tþŽs=Ó:#ŠÒÄ]Ðó/š|ºËfïÆJÙ;ôC—ÚjÊÉmÒÒÊ §¿33=qµ yO(a|Á¿cRÀFRÑvÂsjïåÁ)r¬†™€Wn3Óùv¿¬0ŸÀ sÁO›ý $ò|à=ë ]C¯`¡,+>Ù%uhdð¨FŽ%[ÈP0ÀuNs›W”|é’o^ '­ˆ€‚ã|•Ũ«˜½ ´¦®¼Z³A­ØfznruÄ¡å4é¬.›&˜Ch#ðÃZFÓ¢×c²»Ÿˆµæ8mö Þ4˜r£H퀜Ň*×@¢`þ9lñfd)‰[FbWZíòÖ/IyP¦Ö{,_®Äp¹.LRÅp‹àòRug€‰Á ¹ÇàNÕ8ÿÍ÷>Eõèã]ëkþ/ó*v1ËV®G–MwŒ¶¢T?SÇ»’š7ʸ“£ÃU¥@&ÁÛåþ‹9§QiVyÏ2^N>Ì)&£(ÝkUœ—)á% YPÔ¸N³®4Ê\® Èd 0Õû7|´‹FB æÂ,|Cl‘­xªÙT”[bøÊÓCQ‚oU‰Z]“;9‘fÍë îõ(0œ:l%1Yq¥ˆ–m ªúc¼Þ‰­Š¢hÝÞÉ X}’?ˆP4”bá ¿rå5Pë*á¦OÅáÏ_m¬pq§f\*¼d¯=:j=d¾Ýù5<óˆx@ˆþn|w=XUNp‡U…÷4¾«˜Ú0À—,(5À«ikeéG3ë ,Cfóóí"ÝóÆ`4/6Èïœôp»G@ Î|è Àq–¨VdØòäãQÄX®`ÁlÔçi*.Ú1ôªHYVýµâËþèKœ’©.,¿² 59 ©oœÏúqi¼ä‚н·t=_7xŒãï@fÇɧ†5FØg‹F(]Ãn?.Œt¼0ïSÙzÃmøv;¨A®~FCáYÎ #¯·ÊøÊìO óÂé„%´FÂð© jÖ dçâõÚ¼¨´:+žM¨àíæwP/íÂä}si<æ"ࣆù¨Ÿx')ᄲ± QŸl1‡ÿÄzÔ¦ñ[,H÷Cæl‡úv"yï=o¨z-¥@÷'hån½Ìù ÖÁw«’÷ªéuúRk+æÐMãì`X[òä·+6Xi¢½dêõ¤{[¿m!(”XÖ‰&"WÂyçìÀð`¢XF’™uõ&¬"ŒãËðÄ÷m9ÙûúÛðŽÓ¡¨LýÝÃ,ýmºÛŽñôj0Šè,èçðxÓW_?Ûîî³DלjÉ^?ï’§Um ¯TNÔ/U¤@VîÊ_Œ§³Ù0¹*‚¦­ÃÝ hÍÖ&…a¥_*=€_/X¢ì¦­×ÓbÄ%;•¹Ä8uÚÅT‚7ŠADð¨¦òÄ™q,S­#T&én[êõ6Åt‹¦(@/¶ÎNuÞ:-ëÌjü>ÐJäüAKy&¥°µß`ßé’{ßyØD3 ^x!$â ú­èw̛鵈Ò,»#BÇdF˜¸&Â/æ‹{7«\넌­W:<ùͲdJé/ij!Wg¢0>ûæIŒEBsÎŽ%‡ûvŒU1ÇâI,ù³SC&nd—Å5‡2ýù¼­8ÛÃѹϋݬ[êÁjéRÝÁaCN¢7ý ö3*zG'¦¿»O}äùÝÄ¿lÛªòD†dBί£7XBD´w.áÅyªá´ìúBPݯÁöpéHÖt,²í6Kı0O¨ùugÓu*n  ¬÷Ôjõ<+#8 „I ß)þàÒ†«DÙ*:‰âG’Ðüá{ý¡xyÿ8k¶`þëè~{Tíå&fSÓ`ä{˜k‘5Í’þ&{¡P ÿÜÍO§ÉºYC…EbÆU¼01ÃËÆ+Søêò^)Ý.мøÛêS6ÍbLÍöCÙøqex1E†u—øå)"æ¢ê¯W®x¢Löb÷r^£L £Ë?…L¤aÜU(JïËõ3uéf÷WÅï̲6èú¶^‡š?í»w¤Œ¬|ó¾UÝ-14«Xš ÇU§$ë|¿¹ÃîÛÉRYÞºë+Ýö|¾ ¤ÈÅýÐ¥¿¬{öªk6q2K±à{šRãÆì}ÂË,S˜˜tü{\SPÁ¥ÅØüGyJ6½ÐJ¿ÕP ÛuÜ·þÆ(ºo¹‹kˆÕ!ÈýÔm¤‰Ôd?ê jEkÅ®EöæQ§¨®ƒNq{L¹ÉÃñ@¶çíÛ¾…Ã;(R UÝнG8…@2&˜ß VqúÝOö>‰þ@iˆ@³‘ÌÜ ê+éq0†8´–šäÛ-¶ Q`Æögˆ)ùý(¬4B§Gú؈ì{ÛðB9 á ½ˆ7zP¢ïPÄÿdÙclC:Pþíya‚^Šup€+…›ü¶…ôÑW¤[¹ø.Ç[ë½Ïoy/+[Û° ­­[¼â1Ç›hwVj“¼M¾Úü¹f–È2)Ë}ÖÕ‰;_Ћ™À(X;éµ—º¿¢û[MYt­c<{ÀZ<ä÷ø:¾áoçÃåÚPŒ‘0¢µ¡s–j‰\-çà!iïŒxÈ¥²“D‘á â|SÞ«ìnK«WoöƼ<÷ÀÑy*ª=ARTÁi×Ú«£Â?랪&k*ijNÈÍ È Êœbáo|oøýl„i®hÚ6})et'ùrÝœìÝb5¥T¹é !_¬bÀj7~DzìÜ‘¯ÉÚ ºÉš·èÓ#Ÿ—~ãEàMv2 ŽKéÏûž%7¯¡jOS³8µëßNa`΄)Â:…ɺiâÃÔÿý›]óš%¼ÿîÇŠ_æ$X®Wbîv yãxnc"Òº4yh¹Äúá¯X3/*®¯óìÝÝ™—ÕõF¤Tg7]|”Ä@Í  £ÄÅð55£aVQÀq±ä¸Ç‰^é…]¯¤gYy›p©Ç£Qvø~™ÌW#–aDÛ(sԺƻû˜C-2n1¹ò=ä&’cÙíÌþ®¿÷Uºº›¥”Ÿ¢Gã]Ûù"æÜ“©ÏÕ˜«ÃÛýßyÛ——ÑS ?“†oú†—½ûꉃ¾}®€çÕí¸»(­/ÎÍO4É ¼•¡“¡u¹XŸ3ŠòŠQŒûã©I¢áTç7ícïˠ̺ý}¸Â”jMûçï#ϸ:ÕâÒáÞûU¶¨r¸ÃÀ‰ÃÎÖTüÁbœù$2ÍÌæ¡7Ò¸c.oghJ&Ï{gÅŒ…søP+#ú…šÊ©æ¼uum‹ðL±|Œqw qcð$nN‡…>û±ïF½w¸oÚ×HsvùÔo b]rÔÇI‹X9%¸¨ú³!¹¢ø{ê ž/“ÒŒlQZä ïý’E%Ñø×…9]•Å·רuÂó¬?pónÂØe‹u·†<»©Š%l>ôaö¾òÒ¸CîPœ>Õ㳃níØ€Äˆv•·7DÕ–@3¸>GyºKƒ€à³¢èá"؉?1MüP×G5f|1Îþ¾…Ì£n4% D¡J„Þ> 6ÑÔ›,9,мÔÁÒRu—ƒ /F~ 4†¢Ÿ²ÁÌÂx$¥÷¸Î‘»³<]¬1Ê‘nˆ‚¯Ž©Ãñ»åž¼Nâ–§qK®ì:7C@4/Û„)ýcÊï)Í 9 UÛ-¶Köˆpš¨£Z¡d#ýª8èç›Ù±‹Çµ Jw±oWt¾2„ÞŠŠ%ÝŠBW)šÏ9ZY žye¬¾ã§„È×F¬?’45q7p¯‹ˆk9DJ‚y†Ü…ÒJÚu‹Öúél°ŸádßeÞS,n5ËæÊl¬lu¥J¨pÓÓ”~Q¢áIbä̽D¢ áTg~´h^ú<€+½ây=ØÎ¤ÁÀL“”TúY:óÿk—¸Eüá:/0ÑE=rKꊶŠíäÖÉ‹ÛEØckýûƒø7,VlºÅ” êõ®aÂÉITuéƒ%ϰŒÁ×¶Îús[s&2‹ ¡ÆÒæt ßbÀR-_^vQ;¼RÀÔiÁN rõW¨ øz³+—b¥eÇë@Œ1¯I‚G¦M-@¬uÔJ×öê9=˵ÑEŸðõR¢« 3Û)€sB *!$²kSô·šª~0ßÐŒNxwEò8‡=3„Ãû)ævæˆ^D]ØßKS,d?t>Í“^qW· «çϘEàö‘Ó í7 c.֛߬‚ûûÿ¤‹“ÈÐ\®xK¯Ô¦×°þ@§©®þ&)D«Â‹i¦AšÔÏo€í4Ö] ÖÍ{ „>±–õ¼ð\3Ø@7ãdÿEê·ìãÒè@œ–7¶žÄ$k8Í7o»5¼ê6’çSæ—“‹·'\XX¦ëŸt«–úÑž Ä[šPÚÞk¥.þY¦Q<ñ®¶‘ÕsÑ…sh5dš¯“5 hS$A¢šª%AÀ¥Æw´`~ ˜ +NjxÌ~ #ž³aÔ÷¼øs:SA"MÍå—3È÷¯4.МN§ñ’¥;“]šàºØÒ爜qY91?¦G)RÅî1ï$õ/œV[)épú¶h¸œ2-™»aµžÓ)AR†^H5“P+´,x|ß¡ãZ;Be¾®wÑcE`^IJϡ՗›ñ€UËh;n—°‚MY\n’æ Feí©”Ín«ðžð…IbvÔ9ãôï»ÝNç»âž=GÂ+êåhµê²ËõûøÚ¼ éÙù]’žlº{­%ˆ¨’EYz¾¬¿»¾7…r6Ë™ÁÓ&,ÿ?ÏvrõÚ‰ZØ8ÇK®Ù½ó8k™ý|¯õnöÁTŽïK­el+ Ô¶>€ÉûsürÕ:d Îü{2‚êòµ9Íøé©L ³uøgÚ³î˺<8ljþ=ÔC”‘fŽr-Ü|y´m¸Öíšô1íòVâÁ„~¨ôðØ ±{•¦HÊîñQÅÚ:?‹)!à1Iûm-øÙšžC¹2¶vƒU+<0 ÆŽ¾ï>'j„×oäÀb ×cLi¯ß ‡]3y–¶„RGe¢jð.ØÛèæDñi ô4u,µ²µp*HHìAE0bÐw~ñre…Ù3®SiÉ?`‹@zá~·ÐözÍÀ¨¾Ù®åÝ…"ã;ž¢ü¹`¼´zÄ™4B™¢ ÄÈCp%3bðt<³#r¾7n;úªÍ]yël®Í²Ã¯í{ÿ+„·AT:ô¿úÛ“qwš‰œk/zËÛ|SŒëºRÈ#‹ÀÌÀw^Eo¾µ½Ã.¨Ðê þÝϳø‚}sd˜JªVc#0†Hè>ŠÇ iíi꾎t¿Rê•!c¨ÁlÈ„%a›ú3Õ‰‰Ä÷ýKh—@© ©8 yi9T£‰xe'LÔ|é‘GØŽT¼Øüâ6`î·À>\„“òoÏë?@ZöÞŽoµ r÷ÑŽYòàZ{pñ†uø­vfºÃy´äþ$IZ˜ûÞw@Ç=uŽÛëq̶þ ŽJÂ?§† ÓÂ÷ŽÌÇb Šøöå´½ë)ãæEËËÅ)À(L™`%~]#$½ˆ¡#™ý@¯ýµí>TXì!¦G‚`0  'UcDf8td rrÑõöZQ. ,4ÏyÜÐ5‘ >{&NÁ;™œ>VÝ¢ª_»b4KY_;˜ûn ;g x_1>Œ³Íd«Ü{¶®!®¥ MJå¬m—‰ÓVÞÍcÚ,îÌ'<~w®C–°B“ÂÅSØõÉwúIšòŒ[ø<ÔoÌÅ.÷=;>¡ŽS-¶“.´ù¸!±¿±Þ~†÷ÊÚ…OmOò¼î}¸ÎÞAaËÜØO„GRûî_-Í7³¯,Á(§ ­{ohm ¼êHRgY’VAŽŸ§ñ•+Y•Ù+¿É>é[Y5»ø;>Œù­Üዬm]6–‘œ¿¥ŸG%†ù8hÔ  åªñºêôÔ9wÕZ¸>óŒ²pÞ<€7DÁ³[¡áþ½IN£WepÊïËáßÊ¢)û[Y×ÏÍ/Hè<*x“N¤ ´PŽdW= …ê„Ûå)–î¹·>®+ w¡Gjv²;¾%ûãçt9d§¿¸÷À35€`ó.‹2é.ÝÞ̧uyv5{ë½$ˆk4ü¿ÿ6™ÍæàǬÔýx¬ Üö|ôö¢®œÒ ì‘è§ ˜€@ûE bhÙ5Ò*´î¼Ö¤ƒÔwmÙ‡žãÛå …àãYôê¤R¤iWŸb%ÄðÞ«,QíƒðÔ±±üy|$ ó¨1jÛ»gü”föÞÃVœæ-´'åIX჎£¹íGOBï]‚z[ùûepJ³àÙ½lö£—jÀ½®Þ7«Æ25H®ÏS§Yø"Iï¹U¯ÚõpGåq ýuSëÙø2ïE± æVUµ¦/omµx9<Ü'ê™j%Ì$´‘5{ƒcýLdˆg åüÖó]!s‰[v$d_}ƒ®š“ÓzÞQÙ Üæ2˜#Wä0*z¼9tªÓLP“&†gÄ÷âÏ^ÆviìÓ2-{Lü‡(J5(ã2äÂ_v÷._£ ¼ýÂKû×õåv™ðÅš6CBzÈÆÄ¼x–²Î˜¸›šmÏ‚’'1X³&®,¥)d}ñ,R¼R»¾àêLƒ_û%ÈsmÈu%ë#Xã.ús~Þw%8%ÛÇVÕÂW?hÕ$Y¼¤.æŽúd‹Ãb¢²ŠCdÚŸž½©–©/,[Í۩鳃Ü`~r¬˜ï…„3°tߺäp¨1¬²qkäaÆå5UþíO< ö·wºE-D)ÔãTUzì‹SÍ([jzƒÉiì^ÑŸ‚öµ†¹‡£@s;ÄNÜPo”î ±©‚c•õZáW™’ÈOØÊ€B_0.ÒŸb^\ÀšôvW-¶­ê5»ÝCØ.=_=~ªRd(úS7ì)W„Ó†1s©¾zÂ%Zôþ`5üjž@LkÑ/”D-°¢¤{.%' /f@L™|AÞ‹Ëx…W ^ÉZƒb*Gwï³Í^?ŠšA Ê8!ö*¬ºý8”üH†Žâ¯tR/ ®“kùEV»‰Vw©ÒíG-³÷V§U…VÞ:‡ÌŽ…Th•Žê—TL}¦ÒÂÊ"ógŽº¤*Ÿ…øeŒy`*ÿOçµb²S`e¾…FÅÅsVâ£}pR‘Xbüxdñâ í\9®] PÔš }x²4=L‡.™Î\|‡Š „¹8¥ÞÎ4ýÄÅe²sp¾…ŸE*™¦@ã• —™pt>ÔÑOÑâôåË#­0Q:ª¸©E[j’L%ЙÚp'Iñ+¦.ÊÒD»‘“Æñêâ(@RHy›lW¨H³¼Aã­ÓÂÚD™ÊAåh“Øí±ÑR¼8ãÇ–\òcëÍZmÑ ¹íq¢|"BιdÔE\‡£Í“¼fRÓÁ¢TmÍǼRííVꦻ"û),‰ªÉ«QL6Ž†Ù™—³1´»£N“ƒâ."à&žtV@Ë—bK9‡âÆ>fØ%ër•âDp¦žÒùP¾ˆqˆ„F¤ª¼•U0¥fã¶7m»QÌÝ¢é²÷Ó™y‚îÂ.Ëú{Ÿ7Éž9x©!F­¨ätWŠý½ÞÉ½Øæ£d6FKè~Lð*¦*FþýÜ"£æ•2ãkM÷uö¶f ˜dšòs'Þ1ä×Ípc’±ß9I*!Зýõ7·S?Ø“ñI Í@a²¼.v•­B†éWïhëT¤Ž¿KÇ¥A½Þ á,HâEim*]÷ä³Ã9ͨµQâ¤v¸³HD¤03•ƒÇ,—4YD Ö¸ö‡ã)®–ÀQvî¿ÛÁ¦Ç»i «ŠÌºÈk¾à NE2³§ð£¦)Ú;oâ­‡F6…±Ô§h"nÒÙP¿s}›µò‚~*§2 Ry hð‰oáú=»£8"Í$ggœ¨¹PÞÉ#š#4\žŒTWÖZ¨Ùalç1<³o…p>¦ñlV4[ £¿V¯‹mŠAÙé‰ÉR+ž> +Ì5ßÀ2Ûã’NJ4ÃÑ­0h޽å^–+é"º'EØGÚ¯Ü/ ÃòÝÂ,p¢"&Âã‡_/F¾ˆ×ará4Ž6Fh´p7;’/£ïО¾~b*<`¼:§ØC²Ñàk~zž×¾…(qœY%¼=PdCå4Äî·{y?s>à/ð+È¢iÏAußKÕ°…´©)·8Ńdñ9fî`ѯ†ÚðÄ W.¢ ,¤Óû…Kú#ê0¦õfÚæ¿s)‹Ót ÚŽqJòÀ(ÛwömëB/Õ®ŸùEÕ„ñΕÂðoE¼–‘‘¨ÓGBºæ|b–^èÐóÚ ÄMÀ³ò¾Ôð¿•d`·ƒ\´ìäož5êg¯ösÞ˜Ò=ÌúêÙN­¿íq™[`oB®(™[x%ÐC3p³\ÃX_ô¤¦¦F†KXÜÀÕ ­áµYtDà42ÇZš//©ÕâÝ0ØÉœÊmš¬û £Cn(Ò£p&žü“%ª%{ÒÝßñh„38j;G$´ JÀKù´dû[×Z.ižY$qéÙØ“j&ÒS³dÜÊÇÅ|ä04 ÛTT׋oA,»“ìN±±¾fã{”qQ\Oªw–¼|]Ø+¤hs2DBZ¿Hÿe?é%¦ 8Hºøê°\øbQA-#Úœ(³-±†éŠþ¶C„oïLö‹jB?îK3%5ÚtFÛ1LK§.õùbdz@C÷MÍò ç»L+ ¬[Ú¼|áÔÚ .D4%µNaf¯<§æùQæËG$ZzšE¨×&Ó‹Ž5˜Í[ƒÅó[Ú¸£+tåhŽ­³Úá¢J@g´N `³8©Hºb\•æ/Š?*û@î°ƒ@qìq ¼SEsÌó”ŒåøØpâWPJ͵ e<&34~¶—hr™5Ž‚_ÈÜ6Ì{&Cg8u([^¥åÖoŒEUì5'ó_-âMDó6JnA2i±ÂuÎÈß ¢w7™@EyÉ_ ï'Ëô6© í`enðrl Ì2‘M Rãðõ¦õªľ.öi84ø07ø7²Tû‹p ô¾\ü$*Ñ·”7yx8l¬?ž9ïGèð¯gðÆÔK‚N–¹1O1Ðh(i/ÀbYÿÂS¢øMBEŒëÎ_‚à;W¡ÑÂæÙo¸°To'šj”¯ïò¢€‡b™ڰ;A¸÷½o(N,vT8 ˆñ˜w€a:Ø´Óp—T¿‹™ÖÐfZc® È|ÇPÑAâ(0+b«PÐÍ[ŒRÅcç§È®ÒýåÛè˜XÿüŠ@ÄtÞÖÊüØqh6h½}qGÕŠø¶h¹d¨”§${æn‹9'g£‹Ýy7pî5WÚØ‘&_)Íáüä &°®KƒCwH3QÀÅiÖ,ê¬.»Š¨=w¼Â&6ñ%!¸ÁGIÆó›óBÔú—+êú/ä5Á í|&àVbUÇñRÔ“@ÕP¿ ¸ø¯\ÁÃó/Bp::–Ï t÷ö}™Jòÿ.¢žvÆ !yz;õ¥OƒhÿG CBtµ4ÎAM± IŽ„ÑHÄeî‘’7_  •{M÷ä—ŒTWмqU,¢ J<®¥er‡é ~DBœŠ]…·€<2ó”xCCKÎkÔ3lÀå¥-þá“’¿6?Œ“!êS¼ °¤*ÜšªÁ¢¾g£­-£æEUv ‰_ÌŒ7ŸT% Nˆ¼/›ë þ¸Ã(=s'e:‹L-x¿°0ÂÊ>˜žH¡zi¾¡YŽb0 %Ž%rO°>ÁÏ«ñc®ÌÊÚ·»bhà[LPö ¬Q¬Çd»Ç€ì[¢B#-bކµûC+?)¸k^¶ êëfOF³›(Ýø–IC I’7¼öÍx˜û÷Ñ©..¬E±ÃÕÊiÀ:©Ü¶9‡õö¢YLîó ¢J‹Ä¦|pÜÇÅñ«IûŒ_\(C†áFökbí‚^Mxk¨ª¸çê5èü }_'5vïøpˆ4Uc#ܰ)ô7Æ ÉcdÝCІ³’ µCMK£‰+ŽË½©w;ç0š4ýP–KwZmTßüCf´d´Ã–#Ïygé•”»è“¿¼Nå|ãáÔ¹çVÖÞħÍ?¼•RüyL p#ƒ˜ºÜޏ²ñv„UŽ[úÓØ´n:îø²»îP %$Éfý˜¤j6Y8Ž;ÉO3σcÓ(¯hz†]¤ M¡8Žáë›—+™;5É:¸l¿’ÊýôLßR<ϰ$j¿TÒÁ)BO_*qÁ4 ÞŠOÆE Òê4n˜h%vê0nåâ£QJü3ÿ…åPCGSíHIÃè)Ýåͽ4Ýe)ýûÂX»YTGî&ÍbÑHBk®Á`™;,™ÓœÝÖ2ÒøMê‚ö!J2°Y¢ºÅ9‚ÇwZB`:°H1ý’þCZÈ4Õ~ÞsžÿóÆGpƼÿÕs ÖÒKŽBd£†÷žª}¸ÿów«? øæ8=ÜRÙh7‰B£^ªìJ´"ˆ,°Ù¯øçxÅöêÆaM­_«’vïU´ù¯f3ƒ•)6dôÞÛù æ5òèç®Gd¿‹V Æ(6'½j»ñýÈ?¦ ]§¦Vº2õ¦›'HÅ|×í+–¿Ê¡Û¬»cQïÛ…3jÃàb§ ßâº@¡Ú™áI$oÒ¼i‚N;À2‡©¦þé”ÐÎó{d þ”ÄÙ)ªuM6çF{¯c±ñ;‚Ê}¸R°¢"&žŠ: Eõšià Òû{ßÎ(.⌠šßÕº>@ª½8²ˆsœg¥ÏÖýc«£ì®Ï<õ½C}r½Ó˜˜ï<òìÞìe8g?O…A'9é7vT¤g ÓðtSÝo¦.btŸÀžmö®ô ±ðJm_ÚÆ|| ¬54*`Àq>–÷é‰e‚özí–Ñâ\o$CAF¼È=`™Po'½PPf:y‹ÐƽªÔ;οŠÄé>é»–­6@ÛoUs£Ÿ½›ÀÂËl@6R]ÞÚ](Là·«ÉðšÇÒÊ Þâj!71>âU:*vºÎߣ”•3ïú}¨s=¨íòT”XI/lñˆh2”®÷Ü3‰ÐA ¼°×LžÆ“bÜF$ù/b¦ÄÉé’k¾ÙÇ¿½ÏYp݈ìkÎ.ÕÅpLCÎÈ_ËHç+™ò~üÏ7ǽïc]ÑwT@X¿™gÔórâáod°Ÿç;7 )Wù(ßgé$©G68ëc+ãg”žvZïO×Ìì之 sÙÈy±%$R€+×¹«iŽ_‡ÅVÔ‚¦Û¤XîqYn|Ë*Ë?¬o“W¸C.’wyŒÁ&’PA6òìÒ´0;’ S  †8qƒmٲ܎ðã‹<ø†š£†r"´Õpîì+wß>ž9sØ¥x-ä)‘šŽä÷ý=iÿˆËeeSäò¸Ÿ<çrUñ5ŽPÜ„bKhsÜÛ×ÌgOv½Q»þcý< mù6£Lpå‚ËR;bg¶ ¤p‘ó\K~ûåÕ Ö§lìëf{Û‰¿zºÃ´&zÖç$zµËg "sö¨@`D¼>©©&ÈÔð¯õ#K¾TC±¯í$äNˆàMùP1u­0€]¬G"²²–`¾¶X Æ¡UÉ1'ÃØ%ºö(\m‹õt͆.‰a E2zTâý™b§ü7ZàqäÔt„­ á‰o7µ¾ßqB™³ª?ð‡«¿EÞGªÚÒÓ}Õ×W›ïL”ÃÔè§Bà] áÍžŽyþ­˜è¿¹ÑóŽQŸˆ¿{Ÿ¼w;ßÍŸ’ [{JÁ±–&" éHQÿa¹˜ÐÀ3†Â‡Sr Ù?4«kfü¼¼6¢ã˜DŽøyW'P€ 4‡øžÜQP!ÄÒx¬¨ŸNô ¥A{ù<™×!C/vºÜØAcQ†£Ž¾VôÒÀ±ÂºX4?FÅd·ð[:xzTø[Mž”ãN*Òî Dx^iÅÞÜU:'¥CdI‚îSá8 QƒEœxÏôŠªo=U6dÀ3%áq}‰ÙY»³çP‚sÃ9s%5©!m£`‡;škµm?\¤Ï[wób6á&À€xa›ú}AöÃá®ñ&y¥5Ôšá‹#„¾‹4xú^¹*{} .çE½‹&¨À.‚L¸ Í2t®U%£I›/P®ïж8*ËÖ{ž±YÌôáåòS”9h8öŸ¦;U]M†ÂN©ŽÀöj|ƒv0j™óÞíG®Y«·uL'a»¸C‰`¾qÃB,@ .2s‰ÓmÛ?²ÍLD†À àÙ¶J>\†}€*¬ øŽkVJT -)]œ()NW„íþª™c…H_èÿßẩ=4béDY›•I„ÿ*;­%ö…K\K7n¿o çþÛi=Ö+ iÐãÿø3æ-9ï¢}>i¸´OÅ•/ò¬%ÃP¤l7¡¶D¸"ÝS—r}îê‹Zƒ[4“ÂOò„ ‡º]½áS Yàí£©ùkò–ïý_ÒÙån,õ$`<´‚ð%!²ÆÄ0Á$sd·Z péRA“©¹¥Éï0O4cp‚Úá¤~–ô ,Õ6å¿(fÝM™ƒ+úä1ˆtÁ¢tD¹µŠtŸ:ÚÔŽ|ðæVO'{¯l¼:£º;X¿ßOÂs†§[ÇähÌNe»;¼œD¡;RÏsÝ[XÏ&ßW¾0 /:ç býR¨ÊVI9.ÈJ¯UHº™>ŽõÂñk÷1Ѳ՚ãºÜQp/â„[F0+'Xöj-$ÊRïë\«fŒ¢Ü†:…t ¤qëÙô¨m}¿Æb‘¼øÜÇï`Pë|KMkª„†À%U´þ¼[þ>çêKõúù®}J©fÑ—žF[x‰V.Äær:ç*óé_÷àaã3¦¶â|ú†€ œÒE¬çÀ°6©Ã~Í¡Ðý´Ç¶Ä…G#Š}ÇØdq ž_4ºPÔ•¶kÁ?ÎðQw^Lb‘ïUë`>PB  .Õûb^幩Y]3ªb@›ü>Vããv@n° a&ÒáºçqŠ'ía– ·ø—JµÄ¬si4Æ9ú† ¼#q š nÏ2—ó "S&ïIô×±Çô*†*‹iRr¸†â'Š|øzÙþ•0ü*-X·\S9ï%·}T]ÿ; ø?I#,ƒð³‘l)?È[¶9^Œ—MÓNéä5Ì£@1¯`!?‚îï6õÉË¢–Õž¸ /Ž0‹œ'/6gætº…öÔ¾e@XKŸn_¨ã–ƒzÊ ßðï÷u`i~YDºe^ät™,Aõx)…aXÐêY…Œ'ÜßéŠzL$Êü [áÛr¾ ªÓ4øZã¨Äø•¡§“œÆ€oŠÇYýr½½Éñ»Û ¹‡úÆHpXÆê_pŒ^z.ÑSp§!¾9w¤ÐUûþòÛ»/qrfÖ[ãPÕªë(umÐq‰€|‹¨ïÑWçµÚ"_½Øuùgφ’²ã¶Êtô›·*ÜLÍ 4X×J­¤EE×b¯Z ÔÇ2R‚M¤jbZTžñv•ìa„wa)¯¨U)¢ÐM|šäY®_3B±‘åçŒ?[÷¤ó`$ßøk»æÎõClN“ˆÿ©ªëMÍût•Ç÷«_o’Ú~“›WÚ8ÌЫ3UëÊzºÉP! 7KzmEÜÝ弄ܭ”èa阖ʸ׷›»‡‹„O@ÛÏ«žÁ4g½õÈ5™Ü›Q/oØf ßí`ÁÊøˆÂ£ïùoÐ碉t)+Ù™ñpªPÌÚÞíùQ¡žÍb¿ˆiì,QÈ«õÆù[Æ]p!.¡,HR¹ßË’w¥©‰Z¼ÄeêxÈ×÷·fJ•E©šÕW4‹ceCiú8h<£Üîœøgt? –¢D­‹Ç§_…ÆÛK2£Y¡[ˆB;nZÒ—éÌS&»Ï€í™[ï‚%Žgוo_ÉÑÞµVàÒ­ M¾ÁhÅ€ß2uì«:ò<[ÝÖ窨z’ ÑÅ£ÑÆÇå£Ù*|ÃØP³÷W6Ìphi g3»´ÎS dü±_ayú{wŒ¨ tP"8% -Š®ßÖÏ›ŽÕŒ"%Ò¸C‰ñT¾W^y4êwÿV}?X¡.ùøde‘QU«®[[òÑ Æc="·Göb†­ šÙw¨<çüÊý¹Î³¬Nn܈æZ°ÉùÞÙµèˆRäžlësN Î_×ôº•:\…Û¡-+0,©¡V°LL'ë•ÝèR4*Ëbq_,„áºSUyožìzØ¢  ×`:Ž;Oò Ýýá‰ß.#e<ÌdŒÛÒ‰MÀ¨¥_Û+å˜@w‰`ÜÒ€:ÏêÛW³`ƒ¿‰ õ÷^”–G̯Sþ€>â».B¢Ò÷‘«·RZî6®åЍcDé#­+Ù‡ÿ¹bÚðÏ2ï¢l7®,Xá|O ï6ìίÇ™òÞÃZ¥PÆIHà#†ÁÈxTºÝW¡1Fa µuHðòí´+‚ÁîX§¾øD0ÝG[W¹‡@Éê÷„N„ø*>} äo>'”q,Q¼+YRü}/Òߺ†vàÑW&j"¿Ï’aWè]¬äY{Á¿6¾gwv·¶9ð€v.ø&IЯ‹Ô÷I]š‰á,Ù‘Uò^¾œ!0X.AoOg¼µÎP³žÈ.Kg¨A ãÖ”Þc8¥–ÅñÞ@㞎ÇÌ™Ž›‡ ³ JLêéÈ÷ƒ©úÓBIÕr =£+«“{² rW‰(pQ¦#7¦€6¡cD|ù ý€¹‹P­œ`ËNH7{'y{)Š›%¬÷[?ë | Ð}´ M°¾VàÇ\D¿P³î-¶NëÑca YŸÉö±5_ ŸÎ`8l»×ue·T…Ãr±A¬îÏ+°‚޳ŽÁIzØ`B•³Již|:ׯƒCæø¼A½Rcø ÌAü‰|#+Õ_  -òè·ÖOç2[ä+7bF)¼ës#˜ eúÐëìiפùì….€½µ|ŠÂÚáP¶¶³w9£>§†÷5LEwä=@—_EsÏH¾®¥[ ¡H"-x2Ög‹ò'24D÷Ž%¦ç»Ú¬‰¯ß¦ø’)G|Bó‰9¨®ÏÁ6 ®´®¹s‹ß&Y¼ŸRC$Dâÿׯ9~UâÜ:{šlw&Û¶ms²í:Ù¶uªÉÆÔä&»&wr'Sßßýr׺ë¾Å^{íçÙ¨ïÊ“¶jt¬w;íôq–ßý?ª£ä< ™} oâ¿”}åɃOÈemoÀÌ®6Ìe[“™á’?´ö‡ß阃™ª3kϦQ•.w°JƼVÖÏØÁ:À»Z››‰¥}èE—o¶©¸½›»SônÛ®!ñ¬8“W³+ݺ%‰]<%ÁÅò+ÐÉÈч+ªÛŒyFä:þ7¥ËÿggÜ23ÊWÔéJ¢üöýÑz–÷œ=uø×C˜)*ë’vý·ÀšfÄAÕ¯V8U¡o‰@ “Žºú—eˆÑ‰·ff_Bݱu53¾8"·’Ó­qÀ²Ïª')ÖŸCœÛ·£·ÑÁ©*egˆ»Z) ¥‚ûFéµÄ̪–JÖA D˜`¼ÆH;‹ôòwè,YR~bi£ážm½®Mí¼[<0[=Ï»öhúˆB‡ŽÕ%í6G½o´Ï\£®Ãj(W„¶l#ÆñnOãè°c¤þ>T(=CîÒˆA®¯¿ ¬¡>Åu¸o3)ãBiÔ+Äüæä¶eós|˜9HЧӢøÞ†Þ áökù+Žß»æ+~Ž”×<†ï¥Sâ`‚݈ԣ푊ø¡±7þ´ò‡$à‹|%€é,u ú©ðwíg9ôÍzüÓ†D=©DB©èŒBTs™*~HhßÛñ÷¼9Ú$}:e»r ¶Ôwë‰x¯¾¬šËËg¸4’¹R—/3fTW)_jÌ—h©w ٲĢYðà©ypb)$ƒr ŠšPcúÝ(ªË ¾GDýËÑ©;ìë6Õ¾LÂfû¦×yì+'6†øJ•«+@§îÚÚÑ?hëzÑ$^cN†2ŠÃùÀâc¢Ï=È_£÷?¶û““Ï­ÄÜ“ôÜéʹ3aOqÏ6ðèB®ÿúºV~¼Î𞓃9 L·†™fÝÈÀçw„–L¡t5ˆ·n«G;ñ¿,èÏA‹BòÖ%žt£ñ³¸M~õ$– ñð{ƒÞcêXòù|CéÿVÌâ¦ÒÎ!åöäàš¿itLFìŠ+|×l ¦wïD4éåô>&üzBá^îÐË5ÊÒ Ã‹7¸aíÓ5¥\~“>’ö%û~4ˆYà¤XºókÅ%ET )º¼ÃG  Ï—ªªÆÒQ‡½hí³Çàšò7Þ­#>’(i¼•hª}åzãÇZT؆7iÔDw¥B $D îû½Cðô(^Ì Ý­ÐèäÍ1”OùkžÇõÏŸC–f ^e ?j@‡LÉÒÆx˜]†âq"‚ŽÃ©Dv¦(–:;½ÈÞÄxmøOÚq¨€©ÂÍ}):ãô®3z>‹¿Gnk}Œy›#¿U¬W¥KÐ[ƒ†ÏÍvÍ©¸6äI…ÑÅÿº11—H~ÌCaÍ—L,¤a×l“¤nò‡‡Óµ߹ƾþ½vUi~|õ®%[îòǰd²sŸ\ÿ?z—;¹ï¤ ~˜²}¾îÂÉ…Ö‹‰3ÝÕf—˦ç‘Êå5H6ÂX«dŠ]õ òÉ0÷[i‚ùׯý )=¿³è°±§0z°Þ’ü”„ÆYØc,hŸ $—Uú™;éÙò0¡”z‡IÚ\ÓSÜäpVº[bdÈõ“ml¾6Z =ªJAãÇ»õÉ!fÇgȸ܉[Kˆ€ÃšçÚµlx”Ñ&ã›Yz.ã *Þ„Òs‡-þtŠmd-|FÂÛX³¨“úßÓŸ' ÆÝµé[B·ÙØHêŠÎOvðC‚;±êÔ ½“ë{ã ŸëVe~Û¾6gî—?+Œ(JÏ@[弌‘‰Ìb¾EÍ?âÞcÚª­(³T« 1a¦h¦Ž˜á06ü~µoîs_WH“I·ø¡‰Dqíä´§ÇŒ—;¾¥~ܦ:ÁŠº«MáŒ[à ­î#S̾PÇèêͤ:ÊTHj¤¹)$Ë“1¼\Á´î+’¨—„0Iý{e˜z‰$ÂÕé{²¹,)b,YëÞSç7=G&¶I1´\ ÿE²ÿÂÀÿøÇ¹þc¸¤ÃÇ>è«EîZÊe ñ×šŠ•.…Nó郙·Z€Ÿ'§éü¼µb=üºæ†$ö–’6€ä¾û´Ê©@*Šv\âfëfìŠä% w¶e BŠœ)ØÖKãsX`Ì3‰D9M§‚SÞk5½ÚS HjÐ$¿„p×:sáªdúºhŠþ¦¶uØ÷³J¼¾¹Çß­«{²Û±ì½`á)+×¥GÔ”ôv¶!»ÿI8®›Iƒ–BÀ©Ÿ5óZç³j–˜±AÃJOê‘ô{L* ÓU¿ô×±ÅD¾Ï¡ ã>‰á¾lšÎ;¤sSÞ²&lDŒ†&¥-\bŠÃŒ’ô7Èa…%TñÛ dÍÂb„– Ã¢”rí•ß~½ʼË.ý®”3¦lÊwpi³ßàÓ~Öš¢5‚§+é?3†IžÌê ¦Nïs®–‡ð>ù©6F_r:ÑšüyÎÌæ ÆUe¡Óú9ÓÏÜ“ <¢*©M*¶—&’¶€™I·´·dkíu‘Óž<Ö0&ФÀ{p¦dT¬áhØ)§¸> ñ+GÐåùÚóŸÚâÍl/ãJ¶Ž²˜«äêŸÇêøñ$Ö¹Ûj’£|áq­Ë3kß§‡¹… lB0$ƒ®}Ü_“HÄãjÏÚÝ‹o÷LÀCù>ÐYE‡ócq$ÏÔ6:CÜÊîF,ÿ7¦Á˜ÃOpõ T,ŸÔñ³(çè—ÕfUÆ_fÕì O¼¸“R7‡¹_ÆŸ¼¦SQýàVÁÏØ IËUéÐß%vC¨ µßb5]ÊÚDÒ"Ps\©YŒîÛ\V*…Ù±‚$1 ÑÒ`XÚ„´Ôj¥þKFØÑÕ » Ë—¸5¹ø—dò_þEèSh]¼÷ úÖ<혿Å=l„¾Ÿ¯(† N·Äžc*16ßq`qîï0Ìì–#}[p«-+èÔ¤3® £ó[ ;n1à åÀ0êw f&øŽ"í¬¼c¥?e¤Îp÷¶©©‹!–˜¾õ›SÑÕ&èm¦²ŒëÛSˬ Åo¢„þ7cP¦V°x¨›#}>£@½ÚàÄ#Ü)äSäšpGFUf¬UÂ?IÒLf|c(¼L?ôVVü/§BùCÅù'O÷fØ=ç¶J²åéÔ³'U’5§8ûóZgîº)ñ{ú7Ec`Þ†ßï]•|z®¾,ªô#8U/Þ©e“BÎx‘>ÐuÛm¡"¹Ô¸¯éXH`¨p)§PH÷íîïfè]:ø%7;öŽt•]ë.b  ìÆ›´â?ܧž–Ñ<”ªˆÃף˲ö8.ÞocUõûòèØáýã•7-‚x;@ð˜Â–0ç8á(‹Më¬.kD“ez SzUŽÌ‘î•;%Õgc‡4دâÀ4û*IlÕ“XOs¸ä·o|i‚ßC.Â×&K¶G3müOØû¨|RUÈü¼”Zðå‡kÒ¹{`®}o™0S5TQ¬Z•K†¬"‡‘£…Ø}¥ßbbÁÓq9¹ÞE}¶Šžy„HÇ„ºÂ‘cÊð›xx7Ž=ÖÉ|/|)äiù/“óÄžËM¦ýÔÔ¼3FJ­?ôL1æ!Êi((ÛO­ú?¶tE^|™RŸ–ú±åDøÝ§5©¸ˆ—W1·}P°)I©;wp"šFÒ$'juw£50AòJ˜¿‰QïìJåïªÀ“…4Aã<6ëÉôÚ³6;ÜV¸ï˜»Ë\îc_GK¯›4f¼ý>?õÉBY¿Õ·ÏÓ iÞ$`v~¢÷\4ð…c[Œ¶ª”0'ó Ñ®îô2‚³ÇÆ/»¢¶ûĆJMX= =–ÒÉ8,NòÐÆE;Jo½±@…šZÙo.7ÞÆd¦'<Ž¯Ø„TÿË69ý¨!.›Óåê‰ ñUWyãÒGÑÇËó ï:,t¼ á*×-ÙñŠ="aÿÐ-Ëo<¡ªlà4o±•è­¨\("ÏþLìT,wßT.5æzq½}ÉŠaüäÄ(+³y-G¤LE®ŽÛaè½öĵÕ×!íDCU"DIÙêU,“F9–ë[Û?|& 3á{Ì7Ž ‚0Ègò°ƒ_ôcy· eas÷Ó/Íp)‘¬˜šWéïMA‘$v?–S×½kq9ÄåáDÜ8Ìm¸·n­}3Ë·È©X˜–>sÀÁ~±ÓQ“ÕŸ•)ÉY\Ë^Æ[çÄÃó³¦5®÷LÏXH/K ¯Ãú6#šîÂ@ÛŠh´ªk‚x1nn:q”•$¨5^=—æ 5ÄQëŠbÎÙCy_Ó@ƒ1ü „Ç9¾Î¨±ÔDÇoœ.]ë±ß3!bDó­œs[ÂVè>CvÐ%:¥¦«.g-SϦ¡³À*ºù©£¬Zù­È<-h=øM¼Vù¼dï·´t;%´´Ò ]1wg?›Ú…m&§Ažî/gÁo¯› ƒ+›•LcÒ—ñj K²Áð^Žqêöb0hü_N Ù͡ˆ{XÌŒ ó‘!:6±xóõý»¤ÆBß{œ4Þ[æB´° ²¹\g9Ôõ8ÂÓÌ Î«u|¶CÔa¡Ã¤éÑ T·‘Ü£ñç)ÚˆÜ:¼É %ÅbèÙ¸½3µK×%½V—5Ðí^­A ëMKš•"Çeª×–$Ÿ>&îÞ¼•üÅu» …¢˜EEšW§Zî$ƒç@ucàbsŠ0±R$Õþu6ªC8IÚŸƒb7r‹=ƒ°‡¥:íþvvªêF$¿‘H¼:œ;µÛ2ú—vUM\~ 5û:5ðÕ|î‘“D,[•œÂªsåÇP вè}3À¤‰çÞªˆ¾ágº&±MT°_®Ö½£2* Á3nTµB„”yj¤9ZsŠÌ™à©j—´CÞµúÐ^å4gj-qd­Ê"•ýl˜–¯…K çI]þÅáãL¿Ù(œOøž<ÞO.ï/׸!ŠõK â 81Ο‰Q‚Wî7+þÔß$k^DüÇ€ê{‡SQö9¸µ¢ç¼Ç¡“(\âuEm³_uˆn3ç`3Ö¼`fˆÔ’§…îDzûºž†R-ɬ¿aVˆd¼—²DÍÎG„åôæ äŒ ‘Pî¦[VgQ´x}Ù¾˜GŠ«§áá.ô™¿ëí”°—R9?¨YÔ/X¡ni6×}â£&”]ðë­ƒc/(¼¤þáÕ–ˆÒ“¿Á^.´/”\b_‚%£·ZöÐï_ø#/Ç]€d ^±¸¾*Z¨‘¥õW|œ#îò´XÍ£E? -;Xу’†çW`ä£j>9/G÷\Á;Òj~î~%ãÊî zÇ/~ËQ[\ã3’yæ,╚žÍ1x«•)!rícYeq)Ì8|§ƒrß»V÷ ¢½RÆì1%«Í/ɰ’ÎÕçŠc[Ÿ´SL&†ô•t·;?~|1–yíÕëLN™ú¢M ·ÉþèýWÊ눵Ÿ QÑ•˜ßÚTñÃÛ"Îj¹šé“¬Y,¾è<¸]ž"Niv,Œ2©mz å—[u†Ù?9c.‚ŽéØZºýÛth¢x°(>»ƒ(þ•>eÝS©õflV²±_±÷«eas¥,Ç]&'dÁ{JcKùZq==æ8™¶·Ðàª9ëáø°JÚA ÿÙÖ0rÕ­…2U8ø ¼df±däúù®ñRYu%*.[%a±ñ%}¯d‚e*p.à£3nÁgÎÄTÂ.ý¨ýÊ @êÕÝS˜ö ^ ¦Ÿò( OsX¥8ô÷¢,² +M*A!@<»åòÌÿšäåx²ˆ—¥ÔGw2@îÆM¹¨4pQ0Õå{Z«á\¸¨Â®½rHÅ"N!N˜ŠY±<Ãä«'ƒÉ(Lw×U&‚Ê*âÝí3q«ý Ì_¡Ò´q*}KblÒ"ˆG'|“8&!_IÂÑl× W…ls¬h¿®:kÏ Q-Ýn±u“—ù÷¬±À±+n xvLµòœRÔA¸º%9“ßֹÑ&«U#rIˆ>ä ѩٙ¦4³Ü³Šý£Â6Þe-ß” ¶ÔrÎPòák5cÓ÷Þˆ—È iIWNA 5þŸ»ö´ú¾¦ƒ‘Wu.ÍwÇÈ$˯›íÓRsWUmASEªN+$ÜÎ2 ÀÐÚz ·+Kñ®8„úœ?Þ±HCÊ8TÐ6‹=ŒQa§Ï-Vð ­X³~Ô¤ü_7«õ[RV<ÏÚâ@óbꪳ\•ÜøM¬B¸†}ƒKšÒ÷Ÿ¡»‚Ùm Àca…zB’Ô QSm‹[29 2õçEEÚ¯_Ì÷+àÍ ÇP{™,¸¼qtú©¹?N†‹ôuÿ(/R} EOG±î9AÊÏ(G^pãÍ•ú4ŒÃüÅ”<§|»WÑîÔžoó|¥'½ 2Q8?aìˆ8¢AšVP¯»ÁCs´J‰|??D:%C8'0ü×F9/zb—EJ§™9ñç²OØ ¬.çN·‡µÇ&Ñëeð̵ÒùÛ3AÙg¥Ýß—>Ï=(Kÿ˜Ì"ªGw($ø ù\œù§¦c Gεã×U“Š[­$|ZGÓ gd§úìp?™ â <”†ÎoZp¿)8ÐÊÀó';NY¥ÁÊ)óë½bφ ÌÁ´|A}f -`sì«Ë?‰°$ë76¨xò€œ8Ô6°§Ëvà'Å:¬„ç-òuiZŠAéGù .ö(ßÜÔâܺ®“ãRŸ½žI»sWENð¢à™Í3€ôù¦Î- ˆ[ßðØMm×è…±iÕK;,ch+J)Q:ï` }€6›x—ÔPÁ`'·V%,KK2/é¶ðÇÉœ±iÇ ûdzrn9ªÜÕåü‘¿d: ÝQfƺïÖ^ÑÕBÒŠXYp곔њOžòz0N_›…¾ß¡Ë‘Äæo‘¯@‰b ê!~õ-ò?ÏbÜü§\5 >ù¶öËÐMÈÂR»yCÄò}½ºŠ$-(¨`-œÜ5ªDY:$90.6R7Wÿ;sf"ô6yª?‚mƒ¹KEÆgve0C3«'êƒ<™§‰­o]áNcy~XçÍaPhx8z{ä¥Åì#?ê^ò›rUÄBá®6‚ (Øõ˪ª@z™B#ËÂǯÛÐPeê úp)–Pvùn~WxVåËî9Q¾X¤¯Ð£”Ò. Å|Qmñ'ÒgIÁ €yÆ{Ä(÷_‰0dziù&…Q‡"¢q0ŽeÙ£›ûLv—®-¸]·FI磡¡õ&Qê‹¡e¿¦kîÕ,Àf™W(²åüƒ*·Iý¢çF¬@ÄÏ íúÖ¯ñ¢hH)]uhìù´®Ö bo° X…?Ô€™ìø*]”#/ vÄç?ù ·e*„¨rv~öqÐx~î«·õ¯´C«ç†a¯-E Ý%©}b0+LÊ²Æ ‡iCþù8d™˜­Ffæ,~ f×›yw¡aÓqNünê)Cì"…y¢)ÈMÚcBÌ‚Ö,= $w2Ó¬ë°CÑÆõp^5)VqÚ¦ë)æ/Èðî¥:K¿õ˸\YíšæöÓrròž}hÃ+ÚöÄ ÌÇÀx晩i¤´Ñ‡W¥&²¶6Ýwë§gFl@ÐjI]Ë µ‹¯ÎÒå¶$uCÅ%A’zn°›÷¯^醑œ l³Z6õrQUušüíïžÜ\ÚÏÿfMiaé9ℚ»ôp§‚»½5ä§r×»¯ûä8WÑZ2w^H5ý ´ì$Û7iãZ]完üqœ»}}“‘˜ì“Ia¯žrq0=áÊjäÖ^hÌF\ˆ¶(> stream xÚ´»eT\Û¶5Š»[…Cpw·àw/ wÜ‚»»»wwwH‚;ì}Ï=ûœïþ}­µèÃç˜}ÌjµXP(*Ó ›€Œ€ ['zf&€¬œÈÆÐ–™“^ hælmè`a`bbC  u:Y€lÅ €<N's€‚±Ó»ï»7@h txWšŒÜr@'Cw; 3€Úð/ rt¢72t|WmÍ,l4ï.¢ ;w 3s§?1XééÿDúã-Â64¶¹:ZY mMÒ r yë»Ð@ ²Í ­M S€ P ª,®¤ TRPUT¦ax¬ìlgrøŸZD•UT%ébÂò*â @RUYåÏ» Ðö½~3:€¼Ê»þOžwÃ?îrâ*Â*šŠâÌŒÖ`¸-þ¤ý¯Ú(ß+ü»´wWSÍ_ ÔæNNv<ŒŒ®®® fÎŽN 3;ë¿êS1·p¸‚¬ïW 5ð¯Æ8Ûš¼·ÓÉøw€?»µ0Ú:ÿ8I€þVÚ¼·òÝé]îô¿…½7ÂéOLë¿ÍŽ@à¤17tüËWVQQ`chaë´5´5~7t2trvü%{ÿšPý]  êìàð'‡Ü¿Tÿ›æ_¥‹€ÞW¦cíémèúß;fhëìèñÞüç²A¶ŽŽNŽGL-¬ªwü³g¶Éä„å¥$Ä•Uèe߉gK/zïŽ-ƒ“›Ó_Öâ ‹Éò¸˜ØÌÜì¦w’ŠÛšˆ‚llÞ«vDøÓ>1‹÷>9Üÿ_b[Ù‚\m=ÿ…©…­‰éŸÞ›8Û1ªÚZØ;¥ÄþÇü]„ðo™Ð ÀÚ€nÆæŒþÅ—?bæ?â÷Fx{Ú즆֎@o SàûÁÓÑÐprpz{þSñŸ™`baìôNõ÷qAø+º”­)Àý·ø½’©þ‡Ô*Íûœš€l­Ý&@SFyÓ;%¨ÿÿ™´ÿÊ%álm-oh¤þzú߆†6Öîÿiú_&êÀ?ÕR˃l ­ÿKgá(aá4Q´p26ÿ»µË¥œ ßù/lkf |ß–¿DªFÊú»ïçÅŸã @ÏÂÎò_ºwZ[Ù»ßñ_¿wÿO½F5 5yqaÚÿ—6Ù‰ÛƒL,lÍ,ìCCw¦w.°°³<™ß‰mtû‹,F[Ó» ÀÎÙÉ` r@ø³¡\ÌÆ/D#V£òÿ"nN£á¿7€Ñø;×;Y¿/ï_f¦÷PÀ@£é¿!Ë»»©Å?ÔlFó@vã?µïá­ÿßmþ ™™ŒÿHÌüžôøžØîð=‘Ã?à{"Ç@£Ó?àû’ÿQô{(¿ànŽâŸê¯Écú÷nýÏÉýVvrYÕ-LÞ?µþa"gèä`á¦Íô>6Ìïò÷׿~Óýÿžøx‹ˆ€Ü<éÙ˜˜Þ)ÅÅ`feåú³Zvïÿð5þûýkdßiõ/üçn@c„å1o ercp‰xÞT)47ÃY9Ž€†t,ÔrÚT;®Xö)P0ß¿Ù/2$û™G×'Ñß¶Pƒ"Ûúu£%¡bòÚä‹Ð®¡œЏðh–ƒj@ºÜ’_i')ͱtV®fÛLzkl+@uôD”»½ë!’eâ ý2‰T§´u-Úµ`޹ ËÁÃm ¿ƒ`iªÜéí+:°WxùÓ¬An0Ψ4Œ]Oš®fŠjÑæ圂Èÿ¸ |{mwàØµ®©ƒœBút%ŸnyéüoJ9Üù‚D6ÁÉËm V–Û¹xìm›Sª;ãR6¤ ×âÌ…“ mæ½ÄeR Ò^ÉšcÊ–jÖ†¶‰©g$»Û{KT¤„—QÅ;eórJrQŠSë<Û]°Ö¯K°#çz¼8jß½ñs‚Ù@ FK]n*ÄË $|3e7M²ëK hGEc!·h0!=¹&…Lù›“Ífµ´[Ei­fn}¼B1°òÚäçÁ‡Uø6FõŽ”y4õ,…m<; Ë”ÞDW!ÇëPo=¨bºý¯Ø3íˆ/l16’<š‚õX~³3‹D5ž:Cã½eõ*œí5¯a„]]|T“fá<]:Ê«O¾ÒwÐW_¢=9² lx–pÏNÑÎNbô§¥u‘á›êÂX¸R‘–Ã!Ô¦ cÜÔÁ|¹«3¿_¨hÁ2îç‡Ïï&æRMt¿‘hJá^ßXebK3Í:Òȸ£a{Æ•ˆ³ø‡¼ðÍnl,$Qg2îènVTBTxSÍ™g‘QªKxa¼ùzT^È31ã  e׺Nþ2oºn<3)X¶He–8äœ@“ÏšÿÆ\8ÐÅ}f¹î‹áàÏÚ£ ×H[ Ù…—¤¨98v™fs§t cm[¸%IÊ¿©Óg2 ÔÅC0 |~I]ƒ ø‘Ì€fn"$wþÕŠ3ª—NrA4ôŒ;ÿA5ãt÷ñ·yÏ¢‹-×¢#®tÔš|`˜:Õ©Hÿã[Æ3–^;f×AÚÜo….öJŠÝœFMÉEÔ×f8eXm](­-6ù;ó„FB¹šDøœÃÛ[Ík˜Z1Ь–š¾Z XŒðäphXf•Öf€dt ]±ô»Ñ‡¨¢Îcñ4o<ŠQLÆ9 Ûo† J›%îÌmµñA©)Ž®LÉ›gDuH!†:EÚX´y&S» Dj"’O ûWäý•Sk.æh9®i+q™4DЗפ¶[‘ÊiiÓÖ‚Ù…u.u…SÐë·ë±YL~0(IÌ%Wؤ»ízSåu*·ß¸„®ra²ëê!Ưd*ÙDm3¯r}ú%â5ð[´ÃS#ÑŒ*}0åŸÆJM.¥ xúvRû½î…š <Ú:€5Ø£}Êä$IÒµZ_Ÿv9–z§Yô ¬‹ª Ê'ý˜FfŒÑ?ÞY\ç®Cò["[Qm6í_(c÷áðè#ŽÄæ~­7MûöÜ©ÆÆ¨¬ÅÀM8Ï;FÐöŒTçnîo0ahmñ´ió)9̷͛іÙKsМUQëF^ .¬fÏîmYMÞÁ5®Ñlmm±v;ž„óÏqï£eˆ¨mÆ´óJ곸ÿZ¸•ÞÇ.¼{+ ŸÑ2T|J ep9e1jûtV‡åú<“Z»â±êöòzá°z¨ÚN@Á\x¾XÀÁaã:·;9Ññê&ìTE“cFÓÖxÕ¡E(ï',³žlPŸûG,zÇu¡jä%yï€âO½Ððšs"…ÙKoV5;¸I°…ºi|{:²ZfÂb×°EŒê<§-«aœ§õ‡ß"½ÊxV~:!AÿeÌÑ—PèSo§«—š_EºQåÐykÏšƒPXá+émœyLLÌà§ÚޝrI†ÓüÖˆ7xstªý Þññu4+gGûS8=„S•ãˆÃð)/ÇŽ7Ø›÷Ss‹ëRc/ÒlÀiÔM+51ü5e‹rÿü¨Xá:-Þ—ðÖÓ8^}ÍҔȩùlÛ»‘AÒ å¼gB õaU_½ãÀO½’´ÒÇþLÈI˜†3Õð'¤kK˜‹ ñ>¶–”$=Š.-Iâg íH¡GãVåqûò0½iÌô¾ã;¨ L§Äåí r$"ˆOûV–5oêëV›óÇQ‘çmò¢u¸0ßË…æÓSM­õܕёˆÍ«E]W–®b`µáé] ý¾³3}ða÷)q­þÄT} 7MÃ3ôéêë¢É"mâÇqZnbÌnž%èR§[UÓD?È8Þ²[öñÞìæÐ-²ëOì}tÇ­ª ˜¼ñ¬z¶ëiòÀ-¬áñuÛ§9BïéUÚ+m‚Aâ›TÏ~Èꜯ7îë‰ cÜœ\»GP4?Ä U¼)æeFR[6k;pRc@I~å°‰¿ì®ß3!Õ'ÿxÖ4ÈWp;Æn? N€2Ö[{e_£š~J®ÿX”¨¤ø+*Z÷—ið.éRÏâÑJ¡Ÿt¥î6×Qö›pC ÊÄáëºÇïŠÐÜþu’¶Q›Žèåv—ŽgW><õVÉþ‘Hœ`³g‘½ ÕÍóÜSîÏkjÇí2¸\:uøÕ[·5²Œ,‰þ>޹BTB÷e†žeèyçÙ|åZýÌCñÞoµkÃ×G¿ÁžxÑîbbO®çèn‹×±ùrãÕM\–ÊbÏ.Æ®¾lËÁ­•é?ŸjàËÈžì—iÌœ#܇õèVõy54‰ÂÈKâz©Ô$Þ‡Ê5™Â@ß±§â»ŠE«G½¸m1gÄÚ‡_³ÊmÄSîùŧþ’²]ežFº$-…Ë(?~î@´«ÇÚݘîg>?{à7ããòiCÑš>ß!¸8—™}ã3'[¥–”ý͉‹•í¾„êÉÓìèw©Znü¨ËÁ}äà<5ž`‘¥¶<1Þ¾Êõ@À’Âõ‹ ‹ñÓ÷äÊ·Ç}#SaUì8»zw… xñ×r] ¹“<0Óîh†ϯ¤à×4ëZ /}?‰ï4«h,${Ñ 3`,Æ†Š°rRñ‰RÓ®$Ær« ÚàçV}ÔÚÈ‹°§2š4z걪ùãÌdìiûE× ãQ9êCÜÅÒË™"@¢¯Ö•¼š<&Øñyß%ä%Ú`³Y†Qk)TIx„›F8-”W6§5µ–\ÍåâF‹¦à¬D hÚ0XŠοÄ}-‘‘ÑQ†‹¿ÿÚyµG€Ê'­»Ô³N¦¥Ç²âY4 š•æH›âL³I!3ïzk--C¯ŸCú3}Ñsë4;uâm¥zKÅ€É øÜe‘-kÃÄpËgÕK]YêëïL£½krýS±–Ù€ý´±ÕS?9_õ¹8–ôs±ü —µ•aÁ9Qd‰xб«lŒe¹t!ωæ†{ÆxhÿŒþx§+}ÀY\ ©,e(Y÷=µŸâ/±¨r»ŠgH´Qè&'¼Á!KGºUé¤(ÈÏò“ÚÒ.ÐIx„Ua!LébòzÛŽìíþè'¤¥èù¡Í|–€¨Œê:T±ÚÖR¥ÀŽþ§ÉÓ\6ƒB¶%)eÎ̃³‘ˆoË×N¼µ{¼·Å„þZmÄÌÅ߉‰91˜õí}{vY| Ä­Ô' {SÖÙï©hgÏËÐåp1öL”9†¯¿Ë¬dïŽß™_LJ Ý3Br°Ÿjó(xßánâÐ}÷Ð|ØœÅ+¢ê‘O»'*ˆT³‡W5]­»¢ê®å¦-ù¼}&G6\ÂÙ²Ú.tÛfõ´j¸><›ßWÜHs‰×vúÅ+‚¨à|•,äÊý˜É >ÃÖÂ;„%¼]ðmU$%“æSdnŽP¹ Åc-?2-RÚ#ôúfåà·‰–òÁ -Ýq º@è+O”Нþ•öÁ#Ø0åzq:…–…’*ÚôÛÅœ#]ÅßQ¼l8E•¿Ìf×Á™ÂšäàÔSö4¬àW À*³6UQ¢ÑaBR¥tÛx »e¤ gâýv94˜èÆ€£±ÖmÖšIÃ:)uBíõúŒ­.¤;{ò^@N'ˆïvññù÷ëCªU^?øcWØš±.ЛéQ³½4’ŸJ€€²ëÜIJbÚMüè¨'"%þÌ=ß!}U/ì=Ýx€âu+ÔíJKZ¢ÙMY„ÊÜ®r`"Î}PlÖpÌNR¢ZphL^=êžÐÜõàÆ¹ò@¼Mp Ý÷#?19ô$jP* Æ–` t¯yÛAz˜¢›^…†KÒ]¤ïͰºÓ…ÇŽë}õl| uÁ²öTmøÅr¯}å×±vÿºBõ3¿Ì}`Zí6Ï.\.lbTàmv#Q™ Ê¥›7~¿ÛsÉ9Ë0RŸ³D3¸‡ø©¦d…Ê¡}…ÜΠÌ~Õ©óKìÅOàW™±˜úË8Œ«Èfï {%aqòhËÄp­.À8²b׺¦oþ,¹e: êzD…¸fóùŒešŠÆ”œ.£c[’$Xfb6[jbÔ$ÀŽj­ ÊÙ"xuÀ0ðt‘lbÿ=Ïb¥‘Ú£´ SF ¦Œ*,ªÁ¬°`c¦Ì,«7øá†Çigv°îà 뇻V›¢ÓRf;Ä Ös²èMʶÜöV:=Á؇Åiå¹¢©Ûد¼?pc¿´šûŠóKë\ôîp=ö»}@há¿õúA<ªè_Åÿå8>!Å9§Ø˜a²xS¬’+ 6i~¬µðÒärÎÓÇli”<@Rü ‹’Uˆ:Hd;Ö»8h= “Gg;7fµk)ì2('`  ÜÂø 5¯ìOÆ~íšÔ‘Š{©½ëþ™³Ïéýo86±ÐÄ “㦓ñn¦Q¹…çÎÜt7¤-¥ÜfÓ!nò¥Û5³’î±JPóU˜•iOÌ5Ì‘ü#)4”ú¸W9ÁwuÔÛ4K‚þö!]cÍM&ïVc»z‘&ÉzN~ZÏê|()1ù ¶2µO~}¥ÝOkg­ÍO"}ðW x#¡a–ÈgË!­n|ºg§<«mr©“¸I²¦c]ÒÙÝHD;²èÓ KhçøÞn§*E9MP×±’¿vµÏ¤ˆ›T™Â1]£êQÌw&­HNȘ1©È|3üÝRz/È×Dþ‚Ø+ÔOBözîø\ÅuÁîõÊ\ùÅ|A±of³¡ûÔ5®ä" L)Íø.ÊòÉ`«&hŒ1wt2)!ÂU”]õQçµËO"\æEAw“l|Ù‘r:ذó‘~6»W1@žü‡rúµóж#[–RX8~‚'ý‡h!m¥þ%êv SýÌ·¤…}ö×õp( çæê¿t…ÑEFSUg•m¾&¿òiªsíÞÌþ¢ù—OZNá9U× [}j¤…Þ¾æu{N‘Æ]æ¬1x†m&¬¤ÀkÎŒéPñÅSÖÖ.Âd¯™,^ò‰WÿdùéfÊ8îWVQ<ˆ#ZÓ¢£è`M¡ªëô™†òIŸ%¤Ÿ Ç ‘!»/¹|=·s=3û'Ì–ðÅÃf“ ç‚ñ2à ›ûò ¼ bô‹“ÛdˆG×?b‹° FxkØ`ÏÌ ñG\G°¼‘_ôt=¤ „VÞ%ù$Œ–Ý_þœÊžá>ºåVâ%㊚à$ë‰ßÉÕéõþJ(ƒ™£jØ>¦eµ`µ³±sø*°t“Ë–Þ:¢Ãø|³nŸø¥Ãyyªr9ïªç…áâѺ¥èÍÆÚRQéÛ¥LûõÆ|ïù“oûƒm =nf-eºxÉ"D'á‚ ÛÆ’€(E~Fu´0Š]«}š¦äí*¢Ä¹DB« B%BYRÿ}¨Æ¡Æ_P§å‚çÖ×z%(æ; ‰À¢FB(9¯›Ú†)ÉcÉ-§)Hf³ÙWWHƒ&#s  ;RÓ§I¨ò4¤2XÛ–“È΋ Ħ\ÐôBÙ}n^TÒé!Jycü¤ZFÐH@d:­É毨¢rL¼âŸ×R¸©*ˆL—á0_ø¼ž[’˜^ž÷¥®19\ß`†BÛè‡îg~5×®o;ë°£š?8rmŽ!Z+ëÿâ‘)F Ôw/ÉåѬð¥üÒr0×8ú•¤‡H©îéeáÐÍ8i{6–ø¨Ê€Y<9Côù«¾¸Õd«Þ·³¦C˜| ¤ÔlKwŘ¡ÂwZ}‚Q¶Â‹X2ù°”\2Ávg_ži€ùŠy”žCªÎU.¹÷Û¶¯Ød‰ë%T~fFøÔÁ›9ßÁNÜR“â×*`‡¢}܈÷ÿz±"x«÷a²lÎ%çêáñ1g:öIu|çv}°{FŽÚãz£#Wô™6¸]àò'ÖÉfï§ÙÆCŠýÁðly(ADš²%"êtWJŸ-szZ` ¦EL¬ê Âl‘ÇY ÿä“Ñ!²}–m% ‘m–""´—– ñ=0KÙR½gsغ¸Ý-š°ÛÀŒ¬Ò·2[†Ñà£Ä%׳ͅß&‡JÊÇÒguÚEw5ž‰4ð í¸›œOúÆ|ö”j«ë=TöƒSÛÒXøJËJduçß) 6Ú ± U3™]ÍQ$'š¼†ç$ùŠðÖ·»à$C ~B^Ž›¨!(Fj§f3 *³0\ˆ£Úô¥)@BÒxø¥AèûÆÙÅó‡ãxS“^/Tfö2ŒéwˆåY¯íPî©Õ›ÙqGëϺn!yw´×^`…•XÚ 6ëK87'ó>­?9åOÇ)òê¦19þ‰/Ë0¨·°Ân,Ï&(íÇf×O¡l«3ýíǯk¾ÿÝ€Ûh^`(†9LË>ÎõñNîbŽ€øoC<“§sz¼(#¾= …9á)Bv 8OxÀ!'{£ïµÉ¸::u•¡Ak¦Ê |÷Î󑢯aÆŠLù£tÂr BÕÿLMs ?$œÒÇÉ×íÞo½ jp-¨¨â‚æi>à–‚ødAèÅœÜÅ]ÇU¸ùÏP[ZÔ½ÃßC¡_eÇÏø¿Q™C8r–ü®ÜôŠSÿZ(êH‡ªãͼ–ÙÚ©­å½-]\´îøÉ^¼éUK·8k?ƒm+ …ìû<­ð­úMC[`öâ¤ï¨-±ã#0©]/tÞ¯‚Gü.MDŸiã§~XÇŒ"vë‡Þ‹hkÑ\øhHMÛÙ)¢1²µ²Áôºn¦¼¹ß¹ä êwÊ8üO8Üržxjùñ9“@õ$¤œ@Ž?<|±’[ä~»¾˜@·%Ag”‰~Øw$í+ó5Ò¡$cþ)ßÓL`µwé- X„½Ÿt$#Eƒ_WY}RÆÙ®ª&›W4l>S3Ù.&¦ †_6Õ@Lèªàt„žÉÑ€›o&‹Þ¹®Ônæ\$Rtéû ŒÖˆvúNÓÔxj :¦ÕÒÕµoU`#t÷p—ÕÙ’gc‰â)»dÝU1XQ¸Rí1ÏÔy9uîôä=³´dŽž²ÌQ÷%Áí£ö¸žñEÿ?…ǽôÙ«¸ØôjE d Ù¼Xq'¦ŒÄ~ÁŸyËÛ‚³Ñ•ÄKV†³‹!Šj˜ã{ˆ+îàØú[‹?lÃs”B/všŽÌ³h€cO#ð¨k¬÷A2+í—¡DÓlÒH0¶mè‹hëbs»üúݧ:Ç‚!üÓOWRrøm]›Ó1±ñÆÐ:`3tr¼(Rc’ö©¿fÞ=¾ÚpÔZyе[“7TMÕòÓÐG|ÜD<ÎÌØŠ©ÊyCØ80ŸR¿æZМ“¿†iIºÅ0L¶Èó飾!Y~dÎ Ê›Í/6 ’*;GUN™*¬Ðx8X”þfFð†iò׊KvÜR51-êÍË¿n/^~u49‡êHJœÝû åòâ–ÇlDÚ9ìÞ€#Ä —>8òr\°Ÿ%(T_¹’u÷wåoî¾Hgi%ž„ð´Z=Ѧµš·HéaŸ§‚xãYÃ3N)vCزG¤ýåä÷F”¿žF£ÕåÀ§ITg?õ½QÔ¬NÀ èÎ*¢5{ÅW¾xÈ÷=O‘Çzüò¾m¨‰²‡3(_fZ–‡'§Sò=‹Év‘¡Zø¸ŽA¼1no i+OR+^î#Oàð6e×úÃTS/M©n©œ(º‡ˆÔ·’B¿ÀUªRººÇo¥!®À{Ý ¢‡ž+ó"+¡¡?©æÚ'©RmË;ÍùøºÔ@ÿ’óš—H^øìIò‹Rʯ°]~”&Kt;Û9°Ÿ³Ž3Æ¥FåúV_ܵÊ{éC i¨¼8rbÚwû0¾º5¿)‡ÛÄ F–ú°}» ‹vØZk3©X $¿O«7 k4H ¦±x&<›'Ò,•9c [MÈ^¶…Ó/ï+Þ4ýÞï°‘•V®AØóK¨õ’üIµ€1ôÅëQË äzEðš†RWç¡<ànÈ!Yj¸ÄdÚü1ôÁZc¼ªƒ°˜ê^ˆ"·T>0Ä’‹æçG)ÐB—y»rZлǬ”êzñc–•ŒW$Bn#Žr˜îÜZ%%¬Ü }^%n\¸wâÕ Õ¤ 4ý™ãíÌÞÒ䣞™[(X&â!>!×ðäÇŽÜV·µŒ‡L=Y3äÅì°œÙøPhj2ø‰dj,Òôµf ß9°` ¼·oLñX 5³H¹óÃEu&®#<Ö<27þ7No¶ÆvÜb3²ûFÝU4p5ôç5˜‹.ꨳÀ&f•öp1fFöèöŸ{¯îf(0/úRxlhã »$]3#géÒ¢)æ>~ú˜“(µ"º:9WéãÎÄÍ5¸â¨Y˜U”X csîI4çO=9 utu$XË=,’a¯O¦£â—èCν7N¶˜Ï 2« qá¯FÚH´Ï®e2aTh³RXsv­±™ˆ_Z+‡ÖT¶š}=&Áë¡‹ù@p|SoHç1±n0Ä«õ}ê€!4^:×­áþè!Á o+ÈUÆ”°äâͧVbŒžÒÕ<‰ª8ä…k™Ôh"¾véÉÄ&¥†~{œÏ [9„N¤»  ¤ãŽšo\—ª™Uaç0Ñoš£;’E0¸öqÈ&PHz½‡`Î5÷p%sû™Ïùþ ôXÞÙá£Ô˜÷’’[†Ý>X«tÈÄ+|8gXÐÙÂZ€FãB£ºTÃL>¥ëÚßz¼îa3~ÿ€‘«×Þgà ´ v¸)Oµþ4ÑC9îð©¢p5„ÅEžÇ«ò°Ôü³é&–žî$ý‹&°ºÄNÿFÁ÷‰£6ØñNš7 éHI‹á—èŠ#6ïéO¯;ÉĈ¾RÑy+"óÐaš(rÆ]¸Þañ¯Y €À¸ÃüÏmÈäa%aü×Ó*L³!ƒ÷(Š«¬r3eí¼^Ä÷¿Ýýš(²wwyª–·dwÍ¿9”XJDt®B´:¾¦é¬ g×,D^™L®^]¶s§Ÿƒngå&IÚë‡E&DÞâ-<Ýl'OXæR¸V¦>`#(›ü$ñD =S߃[g”œ~ý¤”ºn•%rIš2\ÌZ3•bÚ¨ú@®>ÏÇøpBPxû²¬÷à!ܸÈ.ú ÜIzà¢^-Ü»ÌïÂÈ4:$OÀ`' ²Vû®¢À¾(æ 5Š…Põ‚÷g±)þ c4ìù¾³÷Z J(n÷ ¬™úb0‹Ÿ“ wÌìü£«;²;¤™ËñÓD_²îD|lé.9ð2`QLÒò¤¢ßð<ž“wA¼²®F#WPj·šƒ ¸pÜWwÙ~—åý¶ŠyÉqUÓžJ_x~Zv`…Dàâ §n‡´1ŠßJè îâ3àgóò>||º%4Lô¶§½›èõÚj:dÎÍô¥3M&¬³ |k ~0ns‘ȸ‹w‹ßýBzÓq6&V°!s8˜À©'yµ‹F“œv[o½ÝJÆ$¿#7/ÕZ˜|Nw‚ýüÀå¦÷u,l™´¶¸ãì÷7E‘½Uë"Çâ'|ê+¹b´Ûaw 8Üßøoácò½sƒÍ¾$É‹¦„zXèóþÌ$DÉD†Þ”›áƒñÂz”–Ù¢ÿ,1Ke}’v‘øYulùñÿ¸7•û OeRž “;¯m .m»P3û&òSiJ㬞³©xJ›¬:êÄ@žßÓMæ8hMÝü¨»9ðí ì3OÕÍ×m~6YºŸœê 2Kq+âÒ ’ш —Ék³®éŸsy³‘rÑçÌe*¥Ó,štGÙ^ü÷_¾Iä+ÖóYöžUcz9ïeİÖÃoMÅê) •3µ}¦W~x³ŽØ«4;a2íß™‚ÉK>X¶¢~;NÛ† «îI¼³{Z0ì™1óuE0Èduâ®wªž ãåA~±H À÷zößy] )ƒÔ=móÀp•øê@Æl“ž˜Ø>$3X«ÿE¯Æãª?û&C¹VJ±“%ÌÇ%yÎȯ»\N«ˆÈ™”e¦² jövRÄÝâ2L6o_„ "¼àËó"'Ox›¨Yä» +¡sCÙL(bËC.Ï<•Cðôä¡Êb‰ÓNcw?wÀÐ5þ6åZ„@Þ5vl|Ÿž#NÌÝWäL;çV;žË¦ …„%èzScれÆxxLÍ Ä–ôZ¸ O<pèkKRDˆÄœ&²8Ã_Q¥rйÄWùLbÒuÜ)<4@Ä=?c‡Ò‰B™›€W—àÝÝ+VŒQaûoÏrIÚÅüX僎màëà§MZœ-¬ëÕÝÕvמø?ÖZ îB<ïÅéÐr°PÖ*eŽñMñgÛl2ö-¶‰»È‚è!z¨ù³¯Ôf¤N­-sS¨‘¿ÐÃOˆç‚d7íι ‡˜5lûšàï%…Êg\ÒQ/?6¤¸~~Ìÿ(ì”/t•âÛÕmž¾×-ä“‚÷jþL'ÛRƒÂ#OF¬xŠà›ÿÜÒ>S¡ÀÜ‘ä›Í²;û^½æôY2–”×Yèž\óò œ™=Ûö·æwaÌf¯ÄüÏgƒqð† ǹ®Ú&p_Ë­+Ðe€ þGï™»eýÅzŒóñuÍÄÂÝË='”o‰8I°ó^¡‰VJ–¦2Ô¹åj>™2‰ÑÃý˜û/w»—ô,©k˜ßû{?‰ä?pèÆN<’§A&uåáíNÖ-zÝ#k$pµ…à¨o…føß%ßp ®Ãxïªúùýæàzl½!¢{ý z¥Œú•­}òÞjx®ˆ3ø¦Ô‰ûk÷“*°@6ˆÃÃoWt,6(020èÂŽðÎÆ$NBº´ñùí"àMJ¦÷ê‹þ)îý”ô Á VÃÇBƒÇ½…žÜ·)n)Ñc´?6ÙÜãøM9îO~,@þK«ö10¿\lc¥"{ù0JeÆÔcÃÀ<ņÈ}L††r¦ðÕKÈf@UútǾcô´k)¸ý*~ù'ØG”kîdFuޏ˜uþ÷á˜8ïìSéÀcÉjÕIEú´!j[C“£Œ^_Îû&]•@7Y/+oˆÑ…í»û #¹¼8ª7WÓ ÆY„2Ã^Å-‚/Í+:äûO‚ð¯GñIÆw¨ëÙ{ÍÛ³¹ß¶ˆhcU=§²¦_…÷gÄgà‰Çé¶’£Û³™8߈̗øN¬ßòŒ— ó˜UÓB*ÛGÀ_©™oç^޶ úÊeíÙ©'GÙ°b€¹‘¾a½Ï&wEÉiÙºÜJÁÛP›ÈÄ–uɤØ#[è@Ò«L¥J n UŒáÆioÈŽmêD¸‰ÍB!ĢÊæ—"TÔÆJ3Ãá­zGˆR¾ M÷É[ñŸ*Ö•*ß(²Û »â«k8y®Žã?é™ìì}l” ¬Éò¢÷ ö4ÏKÁ³BaL¬"h$H”)=|-_š¥ÌN‡Ø¬~¦ WÊжmÐäY-s^iaŒvçYkªÍHdS;„ß7Y@üP>dZwdùÉéxø¡ Ø/î—Õ¬ ç¡~T´Ö²¥ùìš±@ƒhȰÃ˱\ó ’·…ÚÔî"›n‡gKc0Ö[ŽÔð'/Õõ½4•»h‚îBªÕE›¾z¢¼iæ¶LŒW™XwOâ­ g}„MU cÏ%¾üPùOÈÒâ=ôjªú)#ç ´^”‹µßßú2p ìQ>Ögö&ûÀP`LK¶€1q”‰²j ›1CPƒaεÃtÍ'ðÖBl ¹ƒ¯ÞŠ%g×Jé°Ý "äÁ >'Áç‰Wþø3j›¯¦ðh´EØ¿[-ó £rÀ;:;¼ a Ik)®_Î}?R4˜íæG ¤Õú] GT­àžíØÝÃÙæ·"£¢ø0õžgw‚/ö÷­Í#Ô6Ñhx)9Þ\ãã²£ÊR'ýˆØ3Y¿ò’òóËdj'úÖ3Øo?)×¶€ET p, ¢ŠÐü¶Êƒ®° ä$jßoT}‘œN25Arå7}‹oy⤼eó§Ð¯öŠUA¯ÊzQpöÿ¬ŒË>CèÈìýof!}ÉÂÕ‹¢©fhbR«Bލ®eÝùF Ÿ¿E¼š.Ôãá|Äé$/®Ýp`>,Lä®–Õré`²zÆÔÔ½‡¸½B‹ë!J†Û;–¨eðþD*¦†<ŒõX|AhçcÄ×ðnd¶DõyO Y“£Pˆ—ö¾`ŸòãYÔ)ü8TjOœ´o[CÝ•[“Œ³g–ßpJu ‘ œ3¿`«J–ˆ¬n9\v O~•Ø zL™ùˆjÝksuÅ{‘r¼®yÔ|Ä5Ú£òð tDËV«ùÒ£ª= k+ *‘3Â!G8é&úÁ6\øMr:âC¥%  eí; RjöÕSòWý@'OfÁªuO±AÎQ3ãke«íÆÀëºKkÊr(µÍ{•+“ÛŠ5} ãCŸ¥óáÎ'‡VST‹ko­’È”æ_=ךžp¯`u~8})½IbÈQXúØSÒA/×=Ëã<²ƒ…IZéy'õKAŽ¡Ò°Êг{'†¯wwЯF©¿™ßmç_ò…aÜ<ÙûÐe/ºDĸž0:Û°¤b¼Ægë÷m㱯AÙ™ÔU‡bkø x–É_ÒZUÙpKÒZ;WAð}dàèMªÁS¾TçP+…î›`hÿÁÛp­ðØ=a Ý-áÅ4 HzžLÈÒPÄûEùæ+ú±ª1aãg¤±Š­ß, <ªÏºyºùÔG~™Ð‹ÎàÛ£Ö$öî“`5JR ÑÕÓöš5|öE“··">UÕÌí\·àÓfÄ »œßlýð·Ç_'.L,wv6ýwÜòÊâ5‹Ý åc¹Sé§2øW}s5]Î,Þj>täFâ ßsO\Œ^ÎP¬mú1ÜÂ;FÃ>|V•,ÏÝ;GÑâásòÑK„R¯?]?Ù–¹ím_:z z€4J+iðuq_‹ÚÆÃÉWd{^œÆÕ}ð§|J¡Æ·•eo.¦i‹øý£J4Å4ª|ìöK¥;1ºƒdŸeÐÐO¼hCHmò•,÷72Í&<­tÆ¥ÁòƒmCŸ8E Ž»vœ³Ç§ „üHÂ( ˜ìE>ÏÈélÐþ­$v”€Ä˜¾×±Â JÚ­„-Góûpž§Z­åäÀÂfo7#[+:6Má&s1ó³‡Ù aiÜE±”‚çœv¤«xW>­^ãÌZO½PCÎc4ØÔƒê!µï7%Ædª·vf¿Æ­!ó£Ð%-*NgÛˆƒÅ%çû•D&Y{úWÀâþýDÈSmr‹h+á5‚…_ÑO2OÊHˆ½ö¹ð±®ð­·ñ æwåWÍ´4K¼’*Ä_0…¾™HËßù­Àò¥2Á££ï×c_¸£¶x`1ÄMŠ IR:Ö‚/¸•TÌdK«VUM­fQMfwÆïù.žW^6i!î/3 é¿ÛY…zöHëÞ¤Œ1׿y[fùô¦¸ýAFšlGÁ©"¤(‘›U|ñåk8RAñäÒZTBDÚ¾±ú_”ê'gÊ 81ÎۃŲÊBßí&Ö“8W[¬Œ!)‡gIJÜô¢´ä3¦u}~±˜¡¾#=Ã\çÿ<Ö]{{¯ïKi“XAÜ-N—ƒÃý kèw«P‚fÆôûów1л¯4$³ÒæW+ÞÜúþtƉš*éÃe ä„ô„¬ ëš.BAÖ‰þ.WŸí×L³JÏjÁílh6GtL2.áW^åMæCI{§ƒš%# E¯NÏyÚ^W, ét¥Ò¾·ðwÏ’2$|'Ùú¹uFr7®i#R¨ÑœÜ{»l]Ç8Ùúm32äê“gCµ©ÃÈü–ã4Êâñz'øUe?t49ײlraôG™Š´8ƒuÝP­]*Ë—³¦w¾å`cþZ€ÀrWÖŠÿÛ’•…€r…C, fáÇ ÞeVËS¾NW䟩§ñÅÁ•Ÿ5üŠyÂXQ7îàŠîøôI ç­Ë¢5_QÕ=¿êÊlß(3[ú‚ãB¡ÐöîØ0|5Ñ >Eÿtàv©EMOÝø]5)íPv6ÐV êÊ<6.2ñRHó¹ð\fAƒ¾"Ät¦T¢OvþÄ ÷Iv1l¦xŸ½ø|hé`­»g§•²S«}Ú±¿µÙPÚ¤ÕŸý1æÏg@P{X *UT;•h»ÎW<•; ŽÔòˆÑ«½®¤Eê²òÏá&\cõp¹ðÙ¸¸Ýb`èØU7 ¯w§X þ h¶4£k|IÕM¬yáI”ÀÖöÚÛãZâöZçêè¯äî7ްâc!-„$2EÎs¬£æ¬Sxhpçé0Ç;'-9âõ Â/lø.ë;>.³§‡Û¦?÷­ïë˜TV½X£?‚GYWJÙ!åhªx©B´!hÌe¯z±5Â…CöÚýN{_© 9¹N6£ÛºBæTzñíf2¬ÝHfë &s6ƒt¼@Ö-îA–¹Ã"Œšâ´i MrÇ@$J!&»D~OÑMZñGvñ*fO$î1óhC¨ùxÐë% ޹…è;p4Ù²èìLWí·ç²+–ó œÔ¤{ᩌÆÝCý¿ñq¸iøµ[û Ûžn‚ea«|GÐÏf÷-.(ÇØ ¤%ºÑiä=;µ—º¤ñ¶ùľRi¿VÖ–ŸßvJ‚ØéÏïôìØ[DM@5¨_‰ˆÒÚ¸sÿ)RAEˆˆx ëóâo|„4C.gƒ…dÏ;å^¹›|SïK¯tL*4ôò>:vPÖ¶¦Fuq‹Ï¼­°éÔÓá+¸£º£Wßzvˆ©¹`)Ò"f˜îƒªA;»—Ã8<£ë+Ìyÿ¶YXýJUù¶"ô|-Õ÷I‡í3÷ü„£ã¶½r„e½Ö}êóZ³¶zÌöÅ—ûÂÙ‘ÝKRlm šÔýsnB[¢a‚á¢]åÖ¢ŒÏ‰›÷Ó2¯ËÑñÞAmgÿúÇ›qþUVŵ…`ïÖˆÏȲ²ÄO°“aØ}ÔÚe¹ÎÈPjÒ´X»‹ãâr#G´XpdÈâÇc´^ 1-ÔÓ8ú(Dzó·ÕJÛ{„^Š(Ãßh6œ/“tBoæ"+b-Öÿ~–A}iyò&èK¥Ü[å&C7A#¼ÖÉ·„ÚßÏŒ„g.…vŽ’í>´ä6* kÛ°Ö(~ÎbFh2»~Úѿڌv„ªZ¿fß¾¦^=”·q1–&9ýà&£RÞ@ä5r¨iˆ¥V•!ŸÎÏÉ9µ†4&!IÐÙÁ^ë|åÐÑœQÙ¨*êÿ²±;H, ¨lJqªF%Æ ‚5©„±Æ=­ÖŒ]žL²rÏ|” iZ“VÛÉÇiùYpdÁŸžS@ƒ£eûðýÕ]cìÈ)ZZ«qOÖ6%XíÛæÿûÈž†7q;뇸"ÖGN¹O‡áÁáx?Êî6¨}K¼¡w"šw^?Év·l|Ñ9‡<”¤nkûìížõ!7„tý:ìKÀS Ù'a³t•’ÖÑù$7/%áÜlRõÖb5(ƒ ½ µõ¬¤-¥Í2Øž‚úöi¸­”)ñ´E;Ü4¯O©Ë¦î3¦Ø\1{wÝYÀÐLãfGóJ¡Õû»f…ÚËš/ô$œM—NõŠˆà"‰[Ef¥¢³ù y?wõÉ/-.#…ˆ3[€—3.áÞ]%étÉ–?Î\É ß‡ZNVjNB¶<¶ñÍ•v ¦Vo‰uwVE(`DŸ‹JOe-ª?® úìÍR§çÇèØ­‰Yî#ùó¹„ïËþ©®wå7ÝsXÛ±K`LQ¨lá~ï¤4À‚›=Áˆ‡M/7–¾ÿœœ º¥0=>n~”t|’tó1+äy³êÓY<²ãVmu¡\¤´Zÿnt^g0ÕRß:yJZÊ'O¢ ô©§lÁº=.ú;µxœ²Ñ*í$‡·È˜Ž®V¤2EÓ*»áVk³„Ýr˜yÈ‹ëX%¥çR|K•B?m_sDµ‰Åß)"1Þ@]À²¬bSc…¢›Ü±ÕÙƒ¶‘~ú^)ñv¡Ñ†ó‡'tž) ß]4H!¤ù †³úó/)•²¶âGGsS)E#}‘C=½d–`Ü.“ ™ ºêKãŸntÈrœSÑ–I :”6iÒÒ¹cHE5¤’V+WÁ«=–¹/?´>As¶<75…/)U»QÐ\ƒ^U'†Ôhúà\ë!ݰåÔdÅr¯˜\˜³µbzñ äP±,ëñ‘Œ?´ôúžÔòÆ@o®þ8[qTöhÄ!O‡Ô¸Ø*®þÿL³âW, d¤¹¬Ã¡ê¸åJ— º²pÀÇH‹45)‘‰Õ…-ù ˆ©ýl>¤.iù¨UÿË ®þvÜÈ‘–±‡Pñ™§<NÆm1JšJü>¬=éµâ—*M§*kÏìNG¯Ä€¾7Êl2þ£bØ93¬§±®9H$À>+`ö|Îîk¡â$C=—ïh“f™~–L£ü~Êé!Š‘[ÝÛsÜØ`•€_R})nÖgAü‰¸ÞÀ:¤‘ šz½’?õ.sio~橦ÅIØ÷2÷@Ôˆ†^;¡Ì?ZÃyƒ_\¼£¡9ö •(ZU<Ÿ›ð鳓¯pÛ¡3æ´Ùþt™Ø—m³2åÉ-5èhÃã¯À´»ÒL¢ú®æ¯S¥ø4¨Ìr´G#P"0_¯\{jYãn5>¹'—1Q,œCZu@áñ=€U5XW)ÀjS¨æ@í^Õ9ÞoÕÍT9´D—›sÚ-ú‡DM½–‰Kq÷³ë×_·E—˜õ¨ŸîA¥íû€¤Íõ$Ðòº©àÚ8¨.’±¹Ü›lr}™P#.ú)¹YŽ<Ö¸'¨Û?í‡Ââ´šáÖkûˆö%Êuì©Dà¦Gó´ð6øj‰&®Sÿ=)-%º[Xmå×´¥]$U€mO8pzƒâSr6µôb~Ø+»PV‹ú¤††ÅBhá™b¶.%ˆëeý8—ñç~¿=šMïÈæoÅ&Ýêsë›eòž½EpÇx`·×ãñèïìµ18×^Ð öO1PZ®ÉÓŒ$|!òÔ?‘Ö’?ýe¢ÚšøŸ>s¨¤›:ù–sV” ±iXŒpïÚXwY#d${Í¢suóåDr¶õwù»ÏLc)Y—ÝH{ËæK—j)¤míÆ: Iú³¯ðN€¶'ÿºmSD[‹^£µÿ×ËâßÒöKOÂrÍ#æJÕ5[HIœçš-– ‚üÀC-Jxq/F`Í}2‹•«î±M% ø$Žh’ BÏ5X)qŠó¢Ž)3óÞ{7‡nÓ·F¶g±®mÜÚž"e¼ >ˆ2º¦5í?b||F ýÊ:­db)мû'Äú'©6÷WL<;’áAu¬ká³EeAþ±úêx4ybW‚ö½$yï!÷:¼lL‚©C:EÙÔîdy!”ã|ż‹š² vÇtÅ ±Gn<¥ƒ”W£Îëu¿¿ü*©úDÿï#Æçe’«ÄÎz>ÆM¶¡‰ÉÒ? û7Vž,8ƒþt¸ªrýœCÛKt+5£Û1×ñŸ¯±±íXX4=÷dí]é”ËÆv:›†u*òJ0\6aP߬´£2âu<º%ÉÛ/Ü£½#Á4v;Œá¬øÅòŠW‡ìöõçj6a¶Ú‘CÔFm».60ü›û;ÿªm À8ßHãûÝ=¤LaZ!á@¥/­ 3 µemM°/8½à¢¼:èòœy.EX8Šb~—¥ÐÇ×¹ëÌï¥ÜϤ_°üH_'R`Ï,ÚîïëÑ(ˆÿ&Ó&; @‹Œ˜ÜCÛ"ÆSp(y˜âÓ°E>× ³#TïÚiâSPz8çC3öF.áÛÖÖ %a°†}¢¬ú9ùöïÆÝÂE†à;"›e"ë³ô8ÊW¢Ô—µ '+1µÈ8&;Ž ¡üÄ#qQ}¡cFZmoOÚ˜©©ÈGý‹Ó7oŒB+<2:üreÁ¤ ™XI®NÎHÀt`ìÏ »¼RniaõH}ìw™¯4ì¡_Yir×ηÑÏäak‡zúÍXù?̓ÜóïXþKm¤K#ÛÅgtBU•¼TwÐQL«±¹:¬7OÈ>¨‹Ð¬{¶~¼.g†»[ #•6ˆPBÒHÏÏy<FãS’»eã@`ùÄ0ßÕj¯êA5õžtÔk Ö[HÝÑþzsÜMYˆl(ï?7píCÒñy‘Jïʾ?füÌIÜO†aBú:Å:QÄ„8–x[ñ]võExaK–u%"½ôäÁ´FËæh?­´¢À•Ò¯ Å®]lÄávTJG†šdæ=©…$Pù00ËX ï˜éô‹ u-ýÊL nVO¡á1Ù’ï¿SÊÑ­þæ™p/2ÈLáùÉ:âp¥D‹8(™UÿŠòy=«#ö«Néï!n¾› tšÛj6¯CÄ ¥g6æm3*ç®–w»øëÌh ŠÙ! ºY¸‡Ÿ|+á´ˆÉÖÌBÃXÄ$f+²=wÔá‹hÿ;Øvª„Ò-3új2W@mJ0ÄÿÈßœ-RͶÀ‡ Î~Ž€ÃÈ縧?’1ë6\\:zÂ8è$q¯œƒÙèñʇ®Ì*}ÒÓÖÜ,õ:Á‰Ê4‡}’`è”C£”t§¶êïo ®_†Ð©w»ÚqsöÏEó¢J0;êš$º¸OKÙ NÈ6=õ[[ô¾eÍÊ·U>²Z*nàZ o)­f¦{HÖò7Àô Ñ3]DùÕËš£\º."wœÛ“ðÞ«†àn¬÷õÚ;à 0äâ<^~‡ÇbwÇ-á! þ<çÞäÁmHÉ*•¶OÿÙ¬B%@j×p“‘Ž2/GÑf'$vÒæ”¼LŒ ãj„£}—û/Ìz¤¯¹6ÂekYªûtùäh ‰ EŒ¾7qü{B!Á¦w´ì$¡òÓ0Aÿ¥Ùl"_/6·ñ}©Nß ª ?öï¾ãÙûÂèØáMÜ„(y7{xEœß”Cd¢Ó%0b H!›}l1bÚÌ óë©'<¿Ûºƒ,ŠAšæLÆ&Ë=ŠÍñKë×CßtÁØcòFÂýÊ¿!× rªK±›Æêg3p¦<¶[ž?Šñ Îæ•nÏA=è\«\»f´e`y¨ë»ðïü )åòºî¬;”Œƒž,¬¤£9BTÉYS}À”¤] "„WBj”¥g}é !kB S¸™Uéß ’Ù’ ŸÃøîþ@lAzåV²T`£äv“#ªÞˆu]©³µ8À!#:|±ð׬q!Y˜o|3å$2ç°£xýÈèI¨c‚R Å3.ùt]cI&:ÏÏãbV~Ô{ùKcÖz‘’¬#«aTWwðHÓ! g‘Ô2 I˜±D¼oÃð{¬ß‹°†}çÊUÅM:ë¦îO~ä¦wŸßÆ [Î,›{»I¢¤ ŒÀT]æ¢?iͺ/»\¦ÒÞ+%'Kðã@{÷†$á‘ÛÂÂ%£Ó¯Ÿ5?|‚Á4ï …«£ÇÃ-r4wYÖ7¹¤[¶¦ïµ*ƒ‡múf^…Fs]øž¹ÐØßVÙžÓÝ–Uõ’L±©d‚źÛK"aøg‘´C­˜K–uÖgðs×=·ëu'Ž­`x%—Í¿Â^ÊÚ3ãöÖnj@EêP"Ë0!rü †`Lˆ;Í­Ûnõ$'à´˜8ó óu"‚ÕÞ> Ç¶:–—)»Uaé¯<›7Msõ&ñzªU“ÉgÈÀfmC§&Oå :OJèÕÒ v¬ M“=Ø.2O¬4ñÐì¤#ÈöLtY!e2¨# fÞº^‰vÐ4ÌÍ:U ƒ7É#((¡æàHÌ9ðtu=æžæ°o½X¿V3rÛÓ Ër|4¸™Œ‹Žû©ök¾Î¡73{0rÄŠH¿ l›Áj¤(9ïEÀÙè§M¶ØÊ•,4,ÂmDOTÊÿ³Á‹¦o <8½(Uwñd/—pÈewšû`VÛ¨wÊ›çGúâ–@\©*±è˜˜‰Æ…ho²$e2¨# fÞVÃ3ÂFésÐb9ÑÆ‡`ù{!ih®‹r†q+¶ÎÓå.Ü=¯¢|'î’’5³£›q&;|<®È¬HzKáÚMxž6~; ÉdY93Ã}ÏxÖÞô‹‹ëmúÏ®úŽ‘¢¬r)=Ú3®'«[äN G¬¯Gw¾–M³%1ŒZÅÞE£QŸq6¨‚q3™È18O¡&•+ã*n:€ ÄÄCR]¡@…ê†%7´Ïúù¹cJ>g°÷a;Ögç}ÉËõ{³Ö\‹)RAˆÌ/-Dƒæâ<«Ÿ?ëÖ·d[âB½Áýa:·` y³ÇcÎñ·Þ m:sW-y¨Ëá˜Éö?ýp®´q²»5AÜöJ œ¹È¨ëi ví•|%dÎPйZt7¸éub#òÿ[WÃú7¢†™ÙÀó2ãÅ€;[DØ/ Ã@=MüÄJ’2€ Ä w4âT>ÎEæÖ ÖôÄB=ø¡Ý‘¦¼÷ÀZ‰($’bÍjñSvvö½ƒŸÄ-¸×_Ð÷D¡G zgªVDêüM0ô-Ç5±³$wT_ècsH‡îIk/¯yGꪵ[EGßp[¼BkçÑsÈæéĽù3?UWQéG®­þ†¶ù潋D~P@DK Á~Ïðò'„yç/NŒwEh²Ðç«U/Û‘ÕÔñ˜vxÚA .<Cr¨"ˆ“é˜q–îUdŽd!äUÆD!ê¶Vð Ï±]µ’­ÔRhÆÕaõ݉ár¡¦é‰¸û ±•ee‡n—¬pÃ"btÖ s¬1G—;®7Ç8ïØ\ÛTUkÆÇÿhûÐAˆ%Glf¹˜¯Ý5> »,Âw^Ÿ¾˜Nñ'·ž_Û.™ß«È‘î.­ 漞é‹°eUáÇU?áÍÞ%Ìy\ ²ÙJf£0»CVf‰@¹%ª¸ËÇßò\ê,ck{X‹A{ Ó®„nÏ&“”%çÈðMåäu]z?=Rت5Ð]Iñ| æ“W^éÏI1çösš…‡µ~ê†í•óÒVßþfX +§£ÖR§Cª6wº¤7BÒñ›ãÕ6kT¦µü‚ñà,‘ÁIëÁcÁCfÍ¿<ðƒEµ±GCÔ 6m›WŠ#´Šä[ÂþY?V—ïože>Øò’вu|5ˆÔr«LdÝÈK“•.=áù‹ –ðe=ô:ÂjÀ©ˆ†™¾—YÎã±,L×Úª6€S2Èî Ørù’j&œÆ¥`súeg¨(E@:M̉-( v¶D+XÈPâž ¿€“(Ås}yª½ Ù¨H^  +£¬P¥©=1`ydåØ1{wܲwïšI¬©ª– E°S’Fð›‹èšW£6ïü.?áB‹-ªSþâ~ó °¤—À7 ROv­ÃÛÿeîkP\’,¯þžê*œP Wwm6?hä,ç eözê'5èèbÌò„–®Æ,m*‘4 Í¡/†ÜèYñôŠÀ7òmí±ÄŠº'k}Çèî«P¦„ˆ/Zúgv¾´v\n× nƒ!õÛž<‹YI†ñã2.IKÕ±q;›¥˜OÇø&ý¤°ºx&˜3 ©g9·*ýþ‚#™ïdþ›ãuÖKÖ>%GéõXxG¹´ö¼CŸL¥«è.vÈQ$‚DD…è­LèXZ^FƒšóÕôÚš$É,wWºÙdö®›ÒÜül–½;Þ3!¾å!®nÏfI@úýçl°Ñ"@ó…b¸N¨ü벜„€ØúÄBW—¦/örzúèŸ ªWdR•Èw“Õ÷ò.Þ$5ÖãÓáìF4nÈ aq“wÔXÑ“±ø£»|8¼¬ ^ ŽüpÊöÿ¾· èx¹öüÿnéOßù¤ÿ¬¶n®pÒcoXݱÿ‚§]eÒQs<3mzÃÖûÛÖomÆ@a1…ŸYu-ñb˜L_…5ÁAù)Òž¯Dª ÒéÅ!þÊL2m‹0 ÞetzóŽ|Iz¥gl‚|õ“ÎÏÙQ¿mÒ©YzÎ/¨õªé¼¹þP? =‰jšBö{Í?¨|W·8¢NoˆúÁQçòFÌ$ƒÄ y:ËqO›y{&gvôß<.­ Õ­—å\¬ åcVOÁà%Û®›Ý~aKÿçb†FÃ,•ÀÚÙøZÝÍjbo¢(csÆlN@,åØÉä³)é^Ö€Ÿ¢* Ã.xˆ¤™Eb·7<Æ9ØXŸHy šwÝ®r* ë1u+†ô†ÖÑÀ0Vn%Y4êæ×õò±ºªÎ¦HAàé‘m»Ÿ7+›æQ0ÞãÓ·ýO””“÷Ò?ŠuöÑFJz€%&+•òìáY«³±,êu?¼â:ï¡/Ö^3[KOÿnd^ÀrhxÔâè KbMåè]úÙêÿMsæ 6XÄ(D4o,lµ~aÙ“?0¾_ûÓ ” ZßMxeP$«v¢´öáß.h müÞ éò]-*Ò²Jv«H¥ó ¨ôKÃÈyKÒÁƒæÒTn$ðØ‡ iWêYŸ0C„ËW&—æºeÛ¨”ö-O—}ÿŠÚè¡qkÁq)·aKPh8,vdD"®™Ÿþ7˜€ƒùìbF~˜ìæk2‘“ëbN-û˜ºãöcAA¦Q…dŽgòІè¬hœ¶mÙèy…{k9çܦ™CÙÕg«¾|ø y#ÉßëM À9k³®„FÑöq]ŽÿÄâß·l®ñlÓìZ½€©Aä™ÇM#> »ÍB÷ŒFÖ.ľÅEN*Q¡UOº-}°ôÊÍFúQ¡³1Ö†û_Ûî˜&ÚÝ¥ì8N›xúZpvº–ª¯«Næ9Zf°®5}‘paŒÛªTÿ%¡=­C#/~äØ@´6!~O  íIðUêú71/›ÌOMýs—·Mu_Ê5rÆÌÆ·Cl´D\’p!Ês˜*Eˆ×Áõh…³ƒ>=A@g2z€É9t;cññEïÉ–7ðí¯(µô&tÄÏ‚«uFüå/3DìãÏ­ÉÔ«"¦$؃f"r“Õ¦ 7z‚²xw´q„NÝûâÁûú´‡í)=«i„‡¶Fd’`ç—¢#<×Þþ djp/õô|B@™"£<HÒÂ`1ɳÌü@1åÜ)åÍp”Uœ¼»Mž¿0l|#‡Ídè¥=Ôn†¯ÚU@ l¸VÜrÜÄ„N9a¢ÈçøÊQˆ›¾Ž+fZ%©!*6p7 ñý9Ö¼b®¡AB_+ÈÖŸºH‘¸Ïá‹IÇ ˆîÖNèÉU@Õrúu›Œ˜ñúX+ˆ.ª©Ô6ž|#øÒXÝ)Fv*Q3–Þ7¨úJ#0d-`®wtå|D¦-H€iùj0+~‡­v~Þ§B¿[~i“Sæ2I¦^7ym1ø#júOYkLXrÎ9»/qUn8› cÙÐgÓ s“'{2Onÿ8ç©^…QÑ&|!ºè5b’c>7Á]ÓêqÝÓ=m‹ý)”„|tbMdêX9››…ì¨?ÊÊQ^c;8:pcˆÄ}Øññ©‡j\yxÞÎí#]T¥o{L¾´È…~§"’ C £îR/ø¤7ê†ÀwÒ;r{pí—o©úÝîÝ6(ßc˜ßpÞRKÞ(ͳoDâNx“FÄé|V„±KPÝütì[­`ÿÂÑă˜%ÎÙùùÃY¯Å’W0Ó}t½mdâ‡nKŒœx´ÂM¯å_CYäò«{( Ý8a1&* ‰Ê»°oHœô] xü*\Ô13(ò[jà°»Ô™°ñ£Ñ¤f|ɡҙÁ¸è{‚ÂíFo-9„ŠýäøoØ„Ù=æOšÎ>‘ž$bª~(œÈ s“ h­gùæSà.˜ú•êhÚìHò¹o›~×¢L´Xû Ÿ˜ïÜñ‚Ä‚Á iëƒÆ› ÷od‰PlßU,Y):}ŸØØëJ‡¸³Zцȷ'EÒ~Ù:¼ƒT=PS2DÁBõtš”­8+"÷U×BS"³ÍXõuþH¯¢J’™»0è{NAò1ê^ï0ý¬õתžËï¹ yÞ¨æ šc¢¶Šò¨±#tZb:ÔÉÅS`ÝÇÐUªØÈúnüî©ú&…ƒEpU‚ÙÅz©4žvåÉÔN5΄i‰è‚þ±Ð¹xI4q™®HUø¯üÄ‘ qÝêxûUÏÆãjR|¿®´]¿ü?o`«x x VÌTÅ yü¦ g4½øT›e‡ˆlì±L/ÇI´_¿Ði1Ž endstream endobj 163 0 obj << /Length1 1712 /Length2 21170 /Length3 0 /Length 22266 /Filter /FlateDecode >> stream xÚ´ºeT\ݶ-Š[p Náîîîî X! w·àîîîîîn!¸»CðyäÛçܳϾ÷ïkÕªV>tŽÙÇü±Ö¢ QVc1µ5JÚ‚œX™yò ¶ [y'fQ[kS+#33;…˜ÐÈÉÒ$nää0s3²03²23ó P¤€  Ãl 0v(ŒÔÝí€,j£e[G'c#Ç5dn Ò|¸ˆÙÚ¹;Xš[8>b°10üô×[” kdbeëêhe 0™dж® %€Ú0ZY›lÍê@m€†š„ª@JUICY†ñ#°š³­ÃÕ"¦¦®!EQT—5éRjêÕ c ƒ9=@QýCÿ7χá_w uue ¦¿k°\€Ž–ÓþGm”•þ§´W3[›¨-œœìx™˜\]]ÍmÌí¬ÿ©OÝÂÒàjë`ø¸:­ÿ4Æd t8Yÿàïnä-M€ Gà_'IÛ)m>Zùáô;ýŸÂ>áô7¦õ¿ÌŽ@àÿJcaäø¯¼²²<ÀÆÈäL> Œœœ†ÿ`_ )Õ¿ ÄœþæPøo•ÃÿIóߥ‹Ú~¬LÏÚÓÛÈõ?wÌäìèño½ùßË6±9Z::9þ+"`fi ü[½ãß=³ýƒ)ˆ(ÊHJ¨©3ÈPÄ `ûÑ£“›Ó?Ö㉈Ëó¸¸Ù¬,œæzJ€LÅlml>ªvDøÛ>qË>9Ù:¸3ý'¡­@¶® Ïÿ 6³™šýí»©³“ÈÒÞ(#þ_ÆÂÿ`æ@'3hº™X0ýMöWþÂ,á&x{ÚÙÚÌŒ¬Þ–fÀ ‚§£‘ àäà ôöüwÅÿ–X¸¦–&N4ÿ„¢Ë€Ìl<ÿ‚?*ùoÕ€úŸ¥ù˜NS[µ;Àh†À¤hëôAêÿ¦ì?rI:[[+Ù©ÿ££ÿifdciíþ†ÿa£ü[,õÿÃÛÒQÒÒ hªlédbñOÿË8}ð^dn üØ’ ¿£dýÁÙsÇòï``ádûÝM¬@@GG7ë?*àGþ£ÞÎÿ­À¤¨¢ª"-M÷Ÿ„ùÇJdbkj 2°rpŒŒÜ˜?XÀÊÁðdù ³)Ð횘A¶N.;g'o€™­Âß­äá0™ü…þ‘X˜YLfÿ&r˜,ÿGda0þMd0Ùþ›È `rú7‘ Àäüø¿—¥üw¤ÿá+óÿ¬ó¿Îºd5'[+ –¥©“Å¿›(99Xº}aþ Ëþñùïúÿ+ÅÿÌÉ¿y‹ŠÚºy2°s°ؘ¹\lì«cãñþ_®&ÿ:uþáùÇ~ü·üwä@ Ðaå§­ _з”æïe>³åÐ<Œç•؂ڲqP+é³ø8â¹»¤@¡BÿV¿ ÊB[yi^}Ÿ$P±6E–õÛf[bÕÌ©Šðž‘‚>²„ÈDŽ&£F@†Â²_y7)͉lN¾N û|F{\;@câTŒ§³ç9ŠuúíW2©^yûz´kÑ–Lkt·eT¼.üåÙ.p§÷g̘H£~‘ÚÃüïØ²0v}=¨ºt)ùê:éËq:…e}º°*µûæzqb)'Û¿zžV• æ ÝõIºn»O#%~T$¿\"=—<©tÚÚJK%¾Ez&Ÿ¨Ñ.û÷~*ñï;±]†?­è ˜/¢ã·Ó­JÚy‘(î4¾ÃFiå„V·ˆh;Õ NŬÖ‰[ðSF®4iÔjÕ`"öáwõøÏæcT€×’[…êC;jŽJŽ~ñöy¡OM~¦yL‡åÈÕÏÐë(%©bî`u»»d´©j3^„—BºDù © ÖÝû‰L…{m€¬bɉç;$B¿½GXøï1èIo^˜L[1°ÙOϾ' Ýs[71·í«è¿&@Y~—•Ä©«DñÙnÜɦÙ^³Yù5ŸŠlá„H€nFì'i|»½q1§uOx䟙õSqqˆ¾l±(Ì­[‹c¹…4‰âfÑXAF®îúàrªZ¨]±ÅPà^„¿TàWæå ï ò’/WÊ'Á@ó>c¡Ñ†ŒÆÕƒj¹Íĺâ[–RýdOIˆÜ|Ÿñä”o{‹“"ìß–”–æcb'DyšªæcRŒ¶ëÜîöµ˜9Ë„ÖÍæü’ÈàTÁê1JLÔÍ‚;Nm´ƒó3ßÁ»EGÔRÈ~Òˆ¦ñd’x~±Ú0‹PÕ‚¬ËâÿR!Æ™ÑȬ+þ’†~öøžòEÄîýÜÿ¸¡¿×âø(ÆŠ1¯llRÅ´„&„eõf:ÎVìýÙ2 ç?Ú±çz¨1äâ¯þn5K©w-3\×e4$4mžF©;ü†8ÝtÕ –^¥>oN{ï˜[®Ú ie¯Ê –ª[±å9e€Ó/ìáé·¨²(Bf0Ug&¤ñMï¾Ø÷_^_ò2·ZÌ;üž¯ðY´Nž¹ v$ð‡JyÓÆ2Û¬Ò””ÅpÄ3x4U4©;óÍ“; ¹7û“3ÐÌ1ôœ>Ë6ñÈ¢¥VB¿úþl´*B!šŒâe’úuj0NAíŠiÇÔZ¬vÍ i‡¦ÃžØû^þtžê­ÇFóÒ³œ8÷ë-|®c8ß§•êð3B’#¹‹ÒMàbn‰culßÌl·g ã—o^„ hÿ`®@ÙôógŽ©£•®‚往ͱH±Q”6ÁëëÜ™Üb¡Éú¨"ãÒÂi#ÈX¬:8؉.%aowjJ9Ôeì¶nøÎmÀTj“¦X.i7ø¸*aÑÂLòljZÅœ ?G\AôÆ«.àR[äóKȵ–¿$ñKâp¦1x”)ÍérË“ Õ“÷ÜÞžˆäȬ?l=©Ÿo5†ÚJ’{·Ù¦µ¥M¶o.¤(.Ñ»‘BýK4ziI 1[ äý⎘5{QÉ$˪Qó1‹qz ƒ6œ„ÂÂwÝZ>ã'êé^œ-Ìú«kE× ±Å«†Å7ãÊ:À-GÐünRRÃÞ±Ó–æ¦ ¦frßñ¿º‘bÛkÕ*ºŠ· K«K0÷Ã/Ê6Cª¯ÛMV!\i¸\CÈûÞÙë¦ûmm…@¡¬UØ¥èhv±¿Ó¬ýr…_ÈD ]HL:ê±®…£(܇‡›ëü‚vn³…öÏ^êW–Þ²ã&DGçÞ]4Í™‡ìà;ဠzaˆ×&N|î܇ jZ e"õ5x«Z c½ÏÒ8å.^Ëîû#[TÃ’gÛë­ýPÅÑ ÑºVÈîH–nœßÀ¹×¯t_KŒI, K‘¤±æc\¢äqã¬>æÿ=¨’þŸÁ%N“(½9GF7­ ®ãKÙh½Û7íj/&±•àÙÖ‚_P ]rñ"U÷ʇye|ÍÚH°°ºééÓC’3Ë`;"E9ýoæuŽöFq Ñöêß ™ Ñ{öxÜvÊ QQ 0ë‹°ºóoEÕ~V¾ÛjIs>Ýw¦W'šÇÛ&=¶Ù*²Ní‚øÊÁB¾eF^Ò|MNEu<)"3‹_–hp¨Äø9äMBݦŽ(¤œ”.µ°ÿͬo‰×_l4_^V е+5^g…eö,Àý13sku²pßÄ?¯¡åöŽŒçwòo6óˆÖå8B˜VëD{”rÖN{¢) ´¸åh6³Ç‘áñ¡@B¸u@{ŽÀZ0‰"+Ë0wàGIœµ÷¨ßVÞ%Ê  ûoHGÇÐ^ü ö¾§¡ùr^A«)“®­9Ô•= ]Ã÷ÅØîuûñô•赩gñæÑÉ:-oˆ‹õrà[^ÙÌîl¯³ñm®îÖÇ}Y‹¯ÎD”({e&Eó`×bT×96a¸­KS®âû*ú¿Ä€ÁSÖíàsâ 8õò¹Ädæ×Løß¨Ï4 m®?_¼ËÈõß^z1ü‰ØN‘ò$Á’ üV—=Ö¶šž0K=ýÒ¶5-š**õ^ÞS¤?ªù!Š4XiiJQÇ‚Øf.Gõµ6 BéM{〒S™Y(ù¦dÕuR_(è\/ÇHSGCΊ҉pô=bè\À'SÃJ®m9¸0_)7“À·Ü¤¾d²ý Ô soÙ•óŠbCž÷ °rð/YÈ¢OŽ3+åu ¡0 âB—G0R'(p(Pöû'åÝ Nó1׺üøNú'Ô×yÞŒä"T®†“ª¢¢É%ñ‡¿„ Fáç4Í=ËÉ„’N7ÅT`-òqcF\t¨¡ÌÍ]BÒp2}4Œ–€4EN’–PÌöþÕZî4¸Äĸ“Vܯ¤ÕÇk·D)Ñ=Äíeu&WÀ°v™‰ž/*äA#V¦º¼ö¡q¯,@°K™ÁZÓ ŠâK»~Ü^]j(¼Cï•zg*£y»c8ôŷͺ‡9®'î÷@3ªp%k{²39D*üÜGO5ýÉ"²C](í»ô0Œ© ò=ºÉÜ=ñæ—ÄÝ£^£ÕÛb;tš˜WW„²^#â‹ sˆ1µ“‡yÁ„g <"Çíu 3ñþ…ýM@«dÔ–Ël¦–.Õµr„Z¹¨è^Î]ðèêxŽƒ˜¼ýbšf¶ìú±à> Ê?/Í"\’Ü¿×2æyûºÃ¢›µ-(Ú¶À_Æ·¯<ùg£¿½8ˆ;¨›!¢®ÂÝ • uÙFMñ ÜuJ½L¨#ÞŽ÷óvRÜrµÔÈ*ܧK_›!=)è³]û®‰³žåï¤;¥ž‘ä¶a¹g¤sïuö¢5Pž±_bôKÙÒr²BË%oì?:$pZ^à'…«³Š ôs=|ƒ>‰Ø®…ä&À¨ëW‹¶ç±_Ï-"¥Öù0lÆ«!P *ªÁ{¦p·_â <_NÊÍt{- 6S™Ü‹ÅÄÐËÕSÁ“üG¾ÕÆ µà5ÇT)²Xý¤†çüa”HxY{\^ÇŒUï íã?ÐI ï'Ð2ê132ÏPµ§åy„" `oŸ‰¢'ø~æã+ÅÌ‘åð‡Øt¯V¤8ƒ\ âs¶Y…÷wØFx£l÷_¢3ª‡8•HÕÂ)i)=×ÄM£„0ƒÜË…?xáý_rhÚcµÌªê¯ÈO!fRê–w ˆU¦Z«V”uk¿µÂšÉ—ÝÄ iÊÔ°ÿ2J\X§fí¡ðÃ8v»ä×øÖ8J€Ë9LåýÚZ÷BŠ}š¼·¸¾§Gu'cƒóI-> FþtGãÆ«n-õRK(çõaI» ú—äæ 4[ðŸáËû4$§ Á+Šõ +9†Þ¶w˜á…56ŠÝw=âfÛ=S*kJúÉ3ßžLn8+Ù g”¬¥¹.°~qâmÊDh¾¹N Ï ân¡ˆCD>˜=¿Ü˱ R|% –Ÿàn¸ºwÑ“1©%5ŸÜ’O£†$’O­í‚í+ÛpÇßcx”†&Pb‘Œó~Ž^o¥‡’“:‚‚ Ôkª|øTB|+’ÀYnY»Q©”ü‹ÌpU6Hï9š·€!F•æÖúÛ‰±n\”š´#Ø"»„­Ñg°û2{²nf1û¬ä~¿ÕHîIU“Šeâ—°_u>.D÷fc X^Ìðo—Éi½^Èï7(ù_cÃ+¦Rî{D×LiŒm­ þ/ŸÁQÛ7˜I[檙ùÓC2¶iϸ¨$¸'"».¹S½‹9·êûOWnG*÷­súV‰]èV™—7¾Kƒá®­…¾¨Œmš7ÊUš`Häç/®S=Òr½7¡oùIqЖo6‹ièšd:“DÁù³ ËbØA§uÐiš6à‡?»Oi:‹ü¾£ë~)6 ø•”‰N$«¹lfÙ„9Ùyî…3o®ûI½"¿Ã†5No85·Ñâ4šw5uQÏ\>×dI•óW˜²Ï ×+E¯™L‹1) ìï°MT"¡àð'6ãU›õbL£H P&…­ß˜¤=ku6<øæ¦M Á†oª®$ ¬/ŠòGe®ZmIžeìIB}‡s¡F6·÷„C´Ê!_Áf±½\¨ÂÖFÑ- Ï/|~ þÒö‰Íõ|÷7ªŠ<‹êÄ–I¦³ÈÓq¿9Ì’*ËòV«ýþ9?Š”ÏÆœi²*A+ÛIÛüؾÀ°N#ôõzª¸S“r Ù `c©H¢PÆJS¨äÌMjÆ·w¾žö-çs=;]7Ìïë×H!Ç6¯;AÁ5Ö­ÝZÄSõsvDªO×D›¸p`\˰»:]þ•*³øX³Å_ÉâìßUWÚ²ßA´I½ä‰7sG¯1a=š’.“žº• #g8òÌÓ¿ºüÁ#E˜S$ª¶›~¼ ëî×ç{€×—e[8=üd™¡ J–Sd,½­¤þ~‘Ög>E+yFX¶Ì°qTZwŠéˆ•gøMø óæØPw<{ÞÓáרêά{Aä¬c8™D)#jÛ%ù§e…[b*¡¡¢¢ Ç ¬ÒøíýîÑY^ŽâNÜÁ19 £ŠbCÜܶ‹öü˜¢%DHL´O*›R,û*׿n즌.d>B‹nè댸Qo µU픽·÷êèd9X˜ŽÜ«‡åÀ&[ÊÁå)Y>”ò!<,ü§eYE‡ ˆ‹ؾÛír vÊcáÄ‘Õ –zÿ¡F¯wêwªgÞ½ž,Þ¢*%½ø:½ß˜Îç"c‡¿ýì5p’õ¬ ê0K_]²lÉé]#½ b4A¹ äè‰ð _™Rûš€ùôÂ$aõ!§$…mfº¯Z$Ê ¯8•yëžJªë鸾P0©Ó%N©¶6L×èzñ˜­ÚŽ¡ExÐó¦N˜$vø¤AžW d âÜå:¸À.ÓøêzžÖþ¤°d2"5+¼ç$}ºs†xLõæ£I¼¡~ÉŽ°E™ùfí i»w+^ó¥Ÿu74ᕤXØKLgúçP}:¹k$„Ö8lX±Ü¡W Á'Eg4ØÎ¹ûÊ‹à{σWÖ±oÐ<3ÞV:EÐP íÙÇä\Y„ Ysm‘K ˆµ7ÍØØzTû–EÜšœs½¶Íµ –ßn%`¢­;ŸŽ$¥†± †È¾ôÌ‹óær¸í˜i¦´…L¡"K{ )žaeÆÌà 3¤ÝÈr8ëB§Ž~ÎÿØ7}ìöeâ˜|Eôûæë^m1Y÷v4q’´ëˆû§ù+Îxc^Añ7h0j.‚ݧØ`¢†“4Éõ•BdŠP C;óø1‡‚íÒÔÅRs°µXSY^Zöù‹)¥1ûe[’-}‘®OZ,ònr—°¨•„’?<3=ÜãæÚK‹?›Vô6®SãâyØ Ï›‰¥9å³_M}!'i„˜C‰‡%ïuZÂå^,úFxDVˆŠ0D™/î± …-n˜Âv¤Ö£Yº‹”Qu:ËÙ!Ð}ò÷;àNWoý2œsë¹í6qoùá(nå¶¾}ôÏ…Çv9‚÷…d¦iÞÝ+)¡Z5ÿ}b¥éCMôËîoßÞ9õÏ.Ô®º~ñâ4…§f¤ó,Éùõ=íA¥òƒð‚$*§F÷ÜÁ>WØg ¸C–[ü ½j“ý0“£Ò¥E¶ BuÆ9Ùµˆëx®OØ+â¡jŠ$Ñ vB¥A^§Uœ±CKBý¬ìž²Üªw åÝ—©qáWç¤ VÑò„·ä4þ…ÎèÍÜÌöÑ 4”2"Oq6k"M¦‰~ŽwpVJ-cQ'o1P« ‰ß®æ}Ž´iË4fíc2kEÚ$£~@BâdV‰’þíÆÂê{_áf6é —›g\b .qËf¥Ã§‰´%Ië Ì·Ê3yjâIØ‚”èÀíù\B)»sÆè½P¿–ÇFÌu¢»‡q俸üüë¨3ˆaXí ]·¹V[}ºÁÜ•±ØQ²ú³Y’ÃÛÎÉ=r6¶kºfP …P†ˆ Ôìwk\(žÜ©@Ð{BNÓ,åvº?¤!õy9Ly™€›ÚXæÂŽ[Ô ~êªâ„ü6BõšLcçïò¥¢N›e—‰I¯Š ¼áZÅF‡ƒ‹U'èéC@Æ}ÎYI:€@©o²’ŽB2¿—<×=VyM–íÑ¥hW„±÷iá{Dƒ‹ Z°²aMשׁÉ<£ÙNwgdÕ7EV¬Óàhqy(Šd0¾=ArŽútÄ cF{<ÝÌÉÁîŒP{©I^/îmŽö½×?ïÇ*¥l=öÍMh~e%îûº˜­»UpTP0¦y8$KØpô(¨WÆÙög5†[JÛSm †ü©îé·Ù;ñÆÝ F$~.ý®Yà3z_™qšÝÕvß‹8w€ßøÌ£¿98tA£e†MçYô)SD3_8hzêYýP}„ffç[x㟞UQ_4pO†c£ØLû›l–EõÀxÑ›mݼ‚vóQu×îoз;zD9œf7Ïʾ©ƒàNÕ(<¶§ÚÇoDÃàëóÝäÞC6ÀUt]Ô3¿Ã‹(ƒþë%¯¡Õ>÷æŸ)+·+TYwßáU¨|u‹Ë~3òžI•òéí\-Ú”]g‘kj0f˜ý¶ßÆègÁÏ0ûA$O‰¯ÓªëFYÔ$Öv›¤óÍŽZUì ©V#Q|øuƒW«’d^“\þ)ïtA™µf ×ÒRq0²–ÿætfø’ßãýÑ~Å©‰â¢æü)Wãô˜À›.*H_(þ• eõ(ž!¥çÓôêYWq·«éøPÀÔÓÉ+´b˜jšÛ×\䇰 cÿÆxŸæ c•Ü$1ÿºâð×Ð&˜2³9Š#p•Rš¬²uCÄç°ZÑæÚ@‡S“¨Ì¤ò‡ h^‡­Yœö qš.>mÙá^ãÒÍKÉ_CbãÜÍ¿Ùö•ÊXú)ù±`c&lTîô §Wh?³îìFþ‘ìèµzßý>`¶sR·©” ðhòeï‹lÑäRá-1.-dtß_žÉÂ&J¡Ù˜M!‰”ÞA äD) ;± r²Î¥ªÛs~NmÄ*Uô>‰ú”î”1ÿiÔý™Ká]‘Õ;ÿ ÖãDãjµ‡€a@ºáÐÕ×<›É8·àâÊåÇë1¾žgá }…n[pƒÊå)²a³’)?¨…„VùÒrÊ4 £NHŠˆèâ»ýgÿº9Ý3Æ…x!1‚æŽ7Ü܇Î=Ìy½¿}¬4[y8ÊE`‹ÍÞðš½3Ãìfe5.¨!Þ]ôÀÚ´°¡…Ü5¾±Ø™L§dÀ—À†0ÁŒ¯þÓ °è1¾ª,2õâ†~Ù"™âpý»C ¢Ñ'Ò¡84ñi‡m+a¢£%3‰ù–B]´vœÏp¹ÊÞ£8¾ÂÅÆÕáQÞà@X;^[÷JÐì×ò!7E¦Uãšv’IÉVXs«dKý8â¶Œnøý×jXô3²ð×AûŒüÄ@ui§8³2ÅàÞ ‰•ÄDp$Y=‘¡Í-³ê¤-1 @í!¨¤ŠÍ@ÀÀOG‰I¿®Z ie•;Åögª¥uÕNi=J ÓœæaPšì ;®lŽýÃ[4ž´Ï&f ƒ»½nn·™3(, Ùáó|>ۀܗ‚ê=wÊ,’0ü”}è^‰è±h•i“}}§§½8·äöq#Ód~Þ¼èÇjºåmÊhäïø,;è7¿ÃG0ÀÓe=#~u²9XœÔŸ½íÜCä¹íiAµÌVså´o€‹ÿŸ‘u]Hâô²a-!ØP’}Ó™Mn .zÐ ›|ò°6¤Ý.÷ ÑiKžR™eÊKËl.–1í„\k*´yš* "‡õ²\XxŸ®èÒyˆwß`âÓã?¾{ävŒ•Eí#²“¿³gb,{Í¡2s6']Ô1h/Ã~µÌ“H5iÏ)Y0“±,S7Oš“ ØKSõGy¬™iïÀòe•~33ÛýR¡ßh½øTDô‰”YSQC,Dc^lèZã,Ëjˆ Н2õDã§ñzúRL@¦À:\s‘JíV}dU®³ótZסNOîÕ/ðýdÜWB{-X ÷P1\IQ¿¯cÂ[" c+3Ñð°Ÿ-Æ¿‹ÊTP[æ×è¬L®xSù‚FjÇ€I¼•¾þ)Ùã,¢T<½C²ß{ÔOÞ÷ë‰{ö¡¢n‰ +æ‰á÷mí]sAÂvZMK)/ž¦•MjÓðkõ˜ @¸ØyÞ:ÛŽyŽ ‰8Bì…{+¿”¯µ]Ž'*Põó;çÏ·¿ ¨¸·'ÿ¤3iöåJc}¯˜]ãL¦\ƒ$åóÛ:ïgûa¢ný[G]8·M³m,ÄȨ‡¯jæ]­Ÿ‘åî„–5ôì¿yÓ'¡¼z%3æ[¢X“v6"]×f‹‹7ˆÈLµt(2®&Múoöh°bReSJè˜5ÒŒW7 Ü‹à¤;\Opëïl?`X¡qùŒÁwžoúãæºÓ¤kÊ ƒÁ+%#érOQü·?óÞú›>F‚›Kw§ZœQu·œ¦ìœÊÁ­nÒºÉV ¸ÿý´¢)XÝK!nzªÏ.fõ‹õnÞæ)$ë0DdñŽÌœ§~é…©§{…# ˪ýÀ3A@6 ³>ƒ—*Óº°ïS]gêfb1φ1A„q ëïÏE 2,>Aˆ˜®Û„ŠÅׯWêâ ‘Åç|,)û.Õ®®>ÔóR6jT]ªÍ¥Ê;œPޏ•‚ý<ø~ ZÎõ‰ìóŸ~‚A»ú—ÇJ–ÈÍTÇ NÈØ“äUb,aÏ]É»Ÿ|0#)æ£"œ¬[À›ÂËgt•ñìðw³ód0yøÁ•ûmŒ ©÷½0W/vD.ÄÖ1>¸’yH&s°ÔÏù‘Ô‚Ýzô’Å•Ôê’´ÞðrcN1êdU?½°YQ-|–V ‹’¼ÔäÂÈ!ñžhMèçyé-'<"ei›dPæYÉ~-ƒ%iÉhè¾£?†Ãç4 §Å ’ü»¬4T€ðú"°¨ ͳcëj÷S:~ªRe®3ëB •ª†ìc#‹}1ý޽½Ñæ~Å;÷߬¼DC›ÛgÐäSèc'käKKîØÁ0Z ²/µ`(¶¢Iù7°Zë‚ËãÁ¾œ‚óq¤V?™ ›qÛúngª]9õÑør€+Œ¬Ÿ)l¼7Ñó2™cF¸ ·ÇäA’?š¢k-w# ´¡ìióÌ_Í›a-;ñ[w—´çÍoö؄߫“^ ¬=–™;¼† GsÀ¿g¯¾VØŒáO83Âl”ô9.v²Ml§:IÞ4’˜Ñ0 þ®+?TÇh.­²§qçù&_ŠZ¬§?}Оyd®O-”~QçyÊð®1c °«Û[ç)íL·üY¯FX˜u‹d¢Pk 芈}Ê2þ– œŠ†—‚§’‰±øý!DÇQd0É>Þx7ìæs¦ßEjö/ÈãÃ;F¯]Ͷmozéò0Ú_û–ŸDÚØ Æ^Î9ŠôSé™ÊÍ\öe…üÅ:k9‚?iÆoÅ"a,¢•ê(qôèš$My>'๧A¤ÖFaf ýƒÝm¥+´/RVLݸ[ ÔC„Kîâý†òò+I½„tá¡•Ñoh$0S­Œ]U¹3 BîïBü‘L±Òòü(vÞ9µ†Ë÷ä×í/úº¥`{I šÜL£ãêUc“†iÀ.Rºu[…ÖÞ{0I®/ÀÊÎ&GFXŸÝÊ.!^Ðj·JÉat!õ®ÖYœ5í#}ÇŽ~”¤í±»/]¡`_E†sù=ÍùfËÃF8¸—×:ïAÆj½¼ËFêrK8ƒboy©Úe'Õ+w*>פ­ÀQ¼•ƒas1nSt# |ΟïùSÃ,|’&¹©ŽKŽxçk>&NÆõ|ñ6–õcÅ&T/4.뱦LØlÊ©nȓǒ´&çÀ8›Ì¢+ãj[ë~è°ú³2eGBIHï ·`ƒQ¾Í9ý»ÑÅ‘Ø?T;R:ÚÞn{Õ8Ø /m<ÚßÏ:ïÿzàÜí~ÁýçÝrá¥Y7…uVþ¨,¯h[x¤Í@†Íø’FvRXaˆÂ­Qåt¹ùÌÊŽ#amÙžÓ†%…a~@÷ ,d1&®! ÿ µŽd€ð¶ Ð{ÜQ*W¦ÆpÔ°<+HOðÄ’6!S§TÉñPÏÚV ά·ú¬ÐÈ&’Zü™áöùgב÷bÂæh,’‰d’gÐLù Œc{]ª¥ò“Ø[ë !àˆ#ðÉ’jn”„ˆ—ìïz4ÅÄ’ÝÏhПŠfÙ*ùVQÝE÷6úé!ß)î] ¥˜»ÑYZ7ÍzT fjþgcÃ٫ɽd¹¹õª*9|(R•#òöªKû'©p#Êîµ(%1e†–ͨÁvz¾ÐcÁtÌ•"WXª1\:u«òjé“X“Oñ„;sfýë@ QÖÌÞ¤ÇC³ß-$†ºÍèÔ»…ªŽ‘}ÄÏÞš©f\e‘uð¸0H?”²™P£×~Þ‰S~ˆšŒ Åˆñ(¯M±€õ©1AÌ7‹×Jµ©+$½B©Æ–ku¡´‹¾±Íy~…Ÿ¼²­’¬.W/q!aOOp”Ö¨.`Ùü„£Eè’¦8¦ýéYËøUè¾tÀt¨¢;h©¨•†W56JQ›š5eÿN w€Å°ÞÈI¹®™˜U‹^F²€®jªÔY]‚QÈV¯ë~AnŠÊ8Ïܪy„÷3= 1+~o€ß'­0Oª†ü»[ ¯Ã¸í>G~]3CåNÁ1M`èBËž“ëªÛÎpî••3·—Ïu)ª¼¾ÊÄ¡Æ÷GpÛaúóg>e›¼ÜjúáZˆF+óÓ"{lO u‘æðð·›"[`ë ÉÛ Š°Nÿ©ÀeâRz(Ž,¡N­ž7íJ–ಙ…´ÏþB~PÚ3 ÄÁ¯½C:ÆB¶sM4Du•½›20XnÄr µêAruùUÑÕÔ"Ìî§uv%R§G´O¥Ò .6ÛMå¬Lö{©…ÑZF+}Õß÷?1Û•:J_m[š æ É8Ai=hx¸Å‘iù2 FØœJ@’3µðÝhcRo=ž8lŸÏ 4(ô_Îñ$Ÿ,Ž rl "·ñ\ÙƒYLjñYHDÚ­‡Ú2ƒe} ÉJZ²¶ ³iv‡ëó½Q¼waí•ÏIDô£8†góXI0k5»4/îÃB ÑpxóóšB¶•˜ëg/•C¹ú©9x>”`ÒƒýEþªi æÙc{á¹SKû1» ¬yWsê¬>."á2úv /ÚßÉ¢ …‹¥Ì‚éÍ$ò+m8ÉF*’:lü½¤yñÐÝÑpDÃÖ·ï‰r|—:–,Þ‰ñœ hN8õ­›"qê[æ9è°YϢ˾vŠ9œ'#OeÅÔfwÇZw§Þ“!2µnŽŒÉ2/:n‰]tRRÅ¢‰[àŸåj)ö¾:=½yc¶4Êu+Âûê*u®“øŸ"6*ŒŠjbÈjHRI‡± Án ËÁe»ãØ2PÕ™kþÕ¤‘m<©®"®-›Ô“ÏÀ9[±s›¥jü#ÀÃFLà:pDûÅ7–®]vˆžP·‹3¦ÅÛ¦ƒFÅÉé 5n£C‚‚¬I< ‚ȆT_è3³û«]vôüg­bîú³ªÍ"Æÿë5§£ÂÈ©ƒŽñG ³a(Á_g}ã(]z2BHÏPŸõtqš/* sŽE{zs{Áå¨p[6À#³#Øb»a$òB )]*áÊ:éZÜCn RT—l²=PÏ•¥ÔÓ‡öQo¦Â6ÖôJ»äÌ~ʼnR"}jõ‚MÈn2ͺ0t>×þSÙTÈjˆ+4Þ¼,­  ÁÚˆÀtîåÖË;E%«Šr¶íÒú»òj•¹©Ì‘§c†Ó^eTxÿ1!¥Ïór/ôÊ–K7Üt^:fQ“žÙ«¢Stá$ƋǰîÏì÷y…ÚˆÂàq ŸSËþÌ^4• !Ù*ÝÁMóLÝÊÂçË:Œx¦?YDê.rßç–é÷gƒ8S®`ÉUÎMxÌ9èQuÑI‰¶:#â}’ýt% ‹Ú“fw±¦¢Å´(âµ,£¶ˆŠ,Α/+¿°…·R›”sèïב²xÙáË0Ù9 [ò`¶•Þù2K0|¥b\;¶òŽæò^û&‘Xd9Y€æêŸc<”ccuYöÎ=ôuêå¹'D6ׯÞù§{ìoþ½î-ˆ§‚8½ªxWžÁò,ï,ùºµg§pŸi¥õq!|ÿ7ŽHž ;!OfxG Á ö­¨ôþ,‡3N„ƃóÆdËöàæ#G^={²)ÒÛ²-“íŸMv@­V–Ùn4ßIΪTnõ±Ó﫤 ¡ß¬¡E{ *ÍdW˜ Eù…¸(-'µaúTÔFÑ(0M*}|[`+&ët|O„‚LÛº\6Þé²*0 Ña8>e½žÙ#)Ž·Tú‹–‡^^?ÃÖr¨"èoÙeb —–Vù9•w}ƒ9EÛG!VR ¤QA¢aÛöO—…Ó8¨1MypúÕ“pC¦Ñ-s¸Ûï…ì6Gˆ]ù–àøç&/"!š:Ëìb¸’òóýn}›!@ÔÞËòE²å¬FA…"|ÖW¦Ôbð}P[$C$=õ{üu¾©ZØFöU1ÌHêÝö{s”uÙ0¯«ìˆøwò³Ã’YNÌ>Ã_Z#S‘úˆáxGÐÅ´8…ëEp¶Ž^©eú™l•é­xì|°Dc§r瑨—£`Ì£˜,GéêB¡ªãYŒ(² Ÿ.šï¦¡@ÛeJ[{v‡ŠWˆùRAyk¾‰úc,ˆÉ‹°Úneø€q)ñ½üe¼/©Öì½:j Z: ^ãD£$! ›à÷ü¯íû=v7T#_©u½by9½Ö[ä5{5Ÿ¥?{,Ò}~€NÇ{ù\DTþ¤Á(ø]W¥‰±‡FiošèÖ£X§V’å—4¹¼S¾p/Q0«CÛ̈x ¾0øó8DñÁ½èFå¼zzø±©4¡’KG">ëÞkOÏ·?mmŒ¼‚I¸¯}~±ör†{“ªæ`…:ሙ2â2Ã"_™‡:ûŠ‹ñ”¸޽y2€ð(z›7¬:ÎÎÆc« Ñjë´edÌåmzB~ùE…É"¯Â&Î%òþfÿ¥bpµiÜ þýˆÖÌà¶Ú¦Z¹gî—2Ÿ á–‡ç9ƒ¸ÉçÖm8ðK|k]}§t%“¨¿òv~?F.fÁ½`º|¸;Uq4­}/Áp`U[¯ß‡“îI?]éZ™Â#o{‹ò>ʦ¿ 0NBRYÁÎ wÃ’Ÿá ¡ªD̶Îrt{váIÀ¦`²æ«BÉÇ{C5çÅë~NÒ‘ÁûF$”.›bda™&^£6X7òrp/é5¢ˆ3Ÿ+!–å“cãÖ_#³C¾ÐbøŽ vvÃ3ŠîeœüÆ£¶šn —ÖFtCmÙL úóÝ~=4Á8r)ÍÁ²·•áâž§8 ªbÜ'€ûY³#ô‘¬I—Zk‰ÂÃvð²!š•ï·a›ÌîŒfü{[ˆ /|ãÕ`S&_— –x8{jiçÍóP¯³Tlu¡A,P>ŽUø?ï©ÂarÀ×±«à/× ýöë±wc»¶ddh tÛµÒôª^¶nÚ‰¥Q”¹kËÌ‚š"7Ť¿=^(/ÖH8ñýé,…I÷Ivƒ0E¬´ß”DêG³jéMÉ¡íUÊ ÚÍ MYnÕXÃ&‘‡];sSÄ 9[+ ´s9÷ùû‹SÌ–hMáTôGŸìF68ñ‰o·ú´eh–äwÊ6ØðŠ8+#^õPЂЪsZIHdH<7TÁêf¸ÈZ0ý“Úðæï=Ÿ±'O ìí®{i3íÅ–Hgz¿»X™l }pœO×ïü¹8¶ûR~"ã:²Ð=Úꓬ©÷bíòà=D˜(HoÆzÖš•j«¦ùÃ%*å Ëþªn#ùEVFl_I¤ÎµçÏJ›<=XÌ£,#âŒîû¢–ý­F?úª_ Ú¬wXàÅ`™âŸZÿ¥£HñÍêkØGQ¢1|2~èaY&/[åAWq²ã±LjlÐ×ÎzTµé0¯d“Îþ LäÎ×N¹?”j±kÞ•¡Ëtd·²tÏè0"ê4äâÐÖ°~ŽÕù‹”'›´“P÷[ìAÌl4qIJXÃ.$v`Ât%°îÝȉK×LóØ'áÓu&U(Ÿ¿–i L“ê¡lÊ4Söàtih?dæà¬Q>Q•Fµ¼ñ«Uå*MeûŒ M·WdÑH=ìÉwwÇM$,­˜~J´|$•ë> ƒô»Ècø&E¤ÕzPÅè­¬òÿã¾ÑíSR»8 åg¶ë:ÀÆUm­*r@5ãÚõ!jÂíŸùä"—s>c†‚Ír1 ÄL%˜æþÚßWRòvIX?‹5|f3XÒEÊßÖ¥ˆ~J‡ÏŠŠõH‚©¬êüÄÅbóÛßÍ.@]±ÚZ4¥[ÓPUÓ»(ž˜ˆ?a Æ-Dƒ`|V‚—øž`º°›9¥»6ùÓ—†"¨V 懅=ã¼™ê1l¯³yôcz’BøkûH~ô´q¸€ø.€ü‘ÝÂáX* : ýz*z€(áþ6ùÁ3|F,³âít\Z‚ÿýR9hú¡ݘ¹¥-¤í„Áe³Ê»·WŒ‹§âÀvšê˜?Ftä¼ \øø0tà¤7¢ózXyD[¼Ñ ç3òù‡ˆöøQŠˆn‹G§½“UÚø¤oè%0O+PZÎõ^‰6§q1GCë—ê(ßÔÄ52«2⯴cÙ`ͬº?u æÓ„©ÜÙÓ¤«¯Eб뉻¿œAÛz}&NBYOþŽÔÜIs†Q$š¢ØÍAÀûVp^+ Jïö4ÅjV¤qîeü}Éž”޲’8¿¹Ý#d:›|KÐ’ÎH­;mòR[Çe¡‰öºZünä0Ô{{ÓŸÐñà')»ãNV %v»I§\é.qUܰ”ùIÒ’)”RßOÁ{¬ÛVonÔ®œékiÝ)oq´…T³,û9Åaý]) t©ÜAÜÓãÚI]@6wVOK·8 Éhòó$¿dX†òñàꋬéî¼Z!7¬½ˆWUÓC†&nù—:Ï%X®xÍÙeM¬Û†°±Þ K™ñ`‰-òut/‹t+ùø”-¿°Ÿ"pV£YD >-Ù=Ÿ!<Æšg]áé0tÏEÕ¶=°Xø10r·r–}rŒ%–€kqÔÝ·–luËýãÛ„ÉIçíí”߉ËÖGòŸuÝ>)ÅÌ:ÎpŒùëG(ÉDùÞ#Iä4at¨¾Ýÿðâp”3|`ç‹¿iöù‘¶¾tÖ¸Ó7øµßmŽÌžàî­?Öφï£ð险¡f§öõÉFæìŸTä#Ì=f$gœbˆâJ,dÏÈ~Üóñvt`ÙUiïÈZds³ ’E/OAßF«ÇßE°"k´žÊ^co^–Ϲ¡?33÷Î>IIU}¯übw&ú4•ÛÞš>593³$9ã\+Úc ÿ½>MÃ$ê¸vÖ¶,½È”©CFÒîj^dGþjªUroByé)ôSë¸ê°ù{ŒKINs‰aÞq+Ó[u;hsèmÍ¥=uUKÁJìòRCüÌ7‰â··_cÉ2RqþýVŒ#TÍÆS ÇÎõÚ‘¢¨‹‰Œç¼=VÓò–Ô°§7™K ÿÁI¼8±$Ô« æŽ}¿6Ô@ÛÖÂØU€5}Åé¬&”³FW·4fi5DmÙïRË"qΆb|3^¯iصé\þ›L.-ã'¯ML“+m¶ãír®ÍLR®°á—Ñ—…ÃdµŒ¬Z/bö,¾«òÖ¸üè–} búG»sòÅ«õ)`Ö4Ö^œŽûlú«lÙO…¨fX ÊÚÙKF¹º±Ð4@}Ëç÷V޵ ar8‚F=qAìÎJ9é.ó&à“h§è¥¡€‡ê™Ä<+ÅñYÌ“{£0AíÚºþVÞô¢9Í©ùtÕ4e\VùŽ{é%¤Êª¡¢/\+øß¥¾òø†¡`QL×~nô"5¸:—YQ´>:DýAqŠ6ÙÅFþP6`4¥‚ӴјÉîŸÚ%³U¼çÒö¦@ò†ºé©5'·†ÏŒ‰xÌûèpÙ€‰È*oíÂØþ]ÌÚµ+2ŠáÓä”ͯCe}ü#ѯt±‹° ‹Ÿ˜¿”!°ç° ëª$\1Ñò*£¦hp^þŠÉ€——!%2·2ü# žË*© YÄ‚ nÍ{“:,ÈUþÿµq×p8Àá˜sº;&NLOwŸn'Æéš:9955͉é™6&NL·énS'¦c~¿ð} ÏŸÏóyÈ>ª–E 2©ÍµO01ô0,·¤q0¬§;1Áì•64šY(¬ÐÍGò uI/NøE-ˆ—@èr°¢0f‹¹ÓÝ`É>7¾Ò9,rsÿ§û­˜sGìmKÏÞ4ÓÌ®™P¨©?+AR¦yÉný¥ä¶äÓ¨†·^6ä¯Óêýç3{=„„sÅŸ:?Jq…+°–mlÍ$þÕu2r'’ÉÐÂÚ‘–QÜŠ}tPÔŒúƒ!úD‰Új0 x®{ãþ|BŽE¤ðslG©FûÀxâöŠÊè[ªagøÍnbŒrìÿ©²£jÖ‘Ðñ±@,ÿSÖüÎ-K{É.¯Æ‚Þ/wéÿ½Éðp±U"¡•`(qlíŸÔ‰8épdš} ˆâ1Îpî2èçíÀ{K 'öÐÝ!\ôéÿÜÐó+·¹X,b‡ËÕþY Ç$ú9¨Oï2!#šÛû_¡¦ª¤——­¡ÒQéðhW~ãP¤¬P–k™žòÆô†/¹ï5&¤7é_*–^6.7È=úÛW’é0%²vŽ R•Ӿꈊ‹‚úÙ¥^½+…üÜ95\+b™GïãwÒÎ/p·½8H‡>\…?¾ÇEiͨb_DÛÅü†,ÿXï}W‡Â܉V£Yn‡ÿÎÁñ¨Q\Ê ûÛ&9ä(qt[Ö‹Þ®_«ê_”Õª0œ5 õÃæ£|‚šp¹êÓ^3º3~ä@ß.ðáEh¶†¬eþ¢t³Ïì{KDÑB MÞjS/d7ËÌì—¨ŠÔ ­qÂ.ã¢ññF†‹ ´µÔÐ+Ìgž°Ä{ãé€ãU÷݇ý.M¾XKÌj OƒïA$c‡e"oF*ûZúH2½á‰Ø{N½«åì!:b2¯.Օк½‚?\QP›s>f:a‡JíkŒ7ê¶Ð޼êõ~Vi!çsÒ‰–g¢z;°Ü1îTñÎ~…ѵ¾Õ–Í_«n?OËboür*¥eÍETŸÔ³¿åmG?O÷«Z—ÏQÅ„¬Ã&"Uäq©-)”ìÝ)Òl£wûwJúZ‚L3.ëÑû|wr'¤. ƒÿvÿr5ÙGx7âæ¶èC^[¦êë¶×ûÈm?”WWw¤ÑfäRnpÈu¿íˆdÍA¯ÃS•?Ùâb‡&p÷8H]>£? ñ Y¨HØrÚÜöD=ÂÎ×LB ¶&²“À¤åˆÙó¿™f^Û†JÎÏx—lôn¨¸°,0¡žS?EÎ"a¥ùmU stNÒHã„ì) æmÕ÷Šà <²|e›_+Y%Se름gê²ÉÉI—IlÐýSwÊR8}E-Å€U}[Õò<é<Ù÷O9ÙWÊðÃõ­s:µˆ*kßÉÏóÍááÑ¢yse[Åý·y;Ѥsˆˆ8£½ŠPÿŸ ¹,ÁÑ"ýýü\/ÏOÒ¦¹n²Œ %qx÷=YøÅ…Äô…ZƒÐymÎŲ…þžîNt y–£ê'T3‚¶æ­¸çšÖk&¿UâÅý ¹Õ¸a23'iIe{⹌x¶‹Pº–»ê‘q"0 TÛø’A£¡—‘k¶Ð·P¡4[Öì¤âòD%Èq‡ˆÂô{É„]Ôl*9±Z$Ùã˜qè=ð^ñö¨:ëõ%xdÃÃT§i¦rT &Z 8² uœhpJ`”çåÎ}lÛ‹¢k³ƒ«qÈc‡-罎cÖ\ÙpÊ“’@ÔJªõªRVLáKÐ$c¹§:Ÿä0”ö;ÈfûDžÙЛ8ñ`<–‘æ >!•%…:›úåUÎfuê{wÚ@ø¶–>ø–5šc£Â;¿¹n·» …Oš|—[ëpœU{ÅÁ£§íûnÓçË;Š3Lömaà†—î¡¢f¸¯.-j/ú|V`+g›ŒÏ,¾LB7¥¯Ú+hÞzYÇmþÎk͠ʱÅÁ–À߬˜dmBÏñYÔ'Ï~­c°:>Š6i—Ÿ×3ò€ûdÊXªveY;ZY!¢çFÈ) •ÇU3ÜéD Ý‘8C²é3«nõË0å?Däè$ïu|}Ez<çBLJ‘á‚Ëæø">Z¥f­Úfe‘£¦XAÚÄ̘#gï5¹!!ÈÐ'H»qhxZnOü‚é mβˆøžn={!s¹éá² Ú9±zÜ(v0›±TJlºÈÁ*TÃþaÕþv:sÔQ…ò(u¾7dMF¶7|.zÅÝ,Ôo43oo[‹#óq®ªD}°L|Cýžµ_êO~Ÿ­úÍËê¶ÅýuCÐ%ㆵçU{ïÀ5í«;C3þcÇ•„²{0É´å³3ögi\ä¼…Z”vä ‰ð»ÊŠ%[çÚðĤÞÞŠ¿ó޳^”ѤtÌ¢ýÿ;õ¯-)šA<Ÿbœfáª7€Quc¿LÖŸü”ñ“æù¯?„v{–÷%{5{É|í ˆ\Õ7 ÄýñÌl|±×ŠÊu½%¯;/MZïQx3|?ØYE(q 'Š/eˆÅ×x4à熭.H™õ¯[¶ºì©LiNgW5]¥È­¦Ãt>V0hþ&‰-¿@#¤0£Ï«êá¶-‹ÅÉHç5>c¢ƒàµdÅöDsŠÌ»KvÇΖo0¯éQ:bÖߘ¼ÛÀw )0Å®žÙ2¥UûYƒ§;ªß[°|(s-áYà K›½ òç`ýc8>`&ãyK FšWñ–­ŽëûFéÙ¸¥`sŠsš9;æ±z÷…@²zd©¬Ï"!>ĈS §y=•tßë!¦«Èê6m‹nÒÁOÇ"ê µü0 ƒfžhw ='ýÙ‰&  Ò¾múÕ°9ñ‘kUã¹µe¦æ9È^XFQ{:hÝÀñÈ.SÓÎâÈÅË=Oi|ÇrYñJ½ÈÑHÀò—ø C„¡éj6=Ý»åy+õþ¶nÏ´ U3'K8šBZÂYä0·{Šê}ÔÃožŠÈ]© ÷ ±ÿÁTãèJºÄ]rNvVµùßäÿbZ³Œ£N|æ(Hîü<¶ÄXjXSbÏ7¢,P­`QÓaÍ'Éhùiº[e&<§¦ÒW5ÓD ‰Èðï k–Ù`aLr|Ö¸=·H†C޳x<÷5ŠáTÝû¿÷ õsw§'Ýq<ÃÊG¦ Ìþ¶8bè·ÓPù7³¿p&bÃ%Xy€ Ý!F»˜¤ü76^¢ÇeÞ%5N‚@£<äºJâH—ÿ¿qÄ»;ÿ-âÏqnkÅf+'·Õ«/mi¡Ð~,y·I&ÏÜã„ *òÌ_Õ‘+ÈÊ9Ç Ô #ò©$sÒ)[\pJ©A—n¿=“|]¤¼L‚¦ë‹*/C²ec*©ã—,$Ü>U«½À q™IåÍqØ$®}ò¦¶­¢y^šW²Í}¼¼ž ðØmzõs8Eð®ùø÷œ”Ì’f*×ó÷”epÏw¨ï‰wÐí±Æê¢‡¼Æ„T—LhöØWý~NŸ&/ìMy7^S…gf\`Ñ¿ìûìÜ¥»#ñ5¦Î¬;'Ü=/<43”´,³€Ë?šiÐÝÐRê–,¬±|­9ÎD¥mÈ]5ySëÈÄ}'º™Š½%§†{¼¡ÐW]^¦” Ðì! ’ÁKDêu‰i*Rà$>Åàx? v!ª0f•Ï4.ìÿÚú aã;tºö©îX6û 5£ †ùŸ:6q¶ øy%m®ËBŒöÆ$tÏrÐJ 5ɹò±%}¼Cò)g°¤SûŸŽ6’çƒ-õñÿp$茬Õw“"*­ãh†Ú/Âr:H¶3XûÔ/åI–ühT<ñâ n¹pQéÛ£“Ýëjá…G¾FP[ˆè±kB‰h´ŒGÂ=?}èQÝáq¦ÉEºõÓˆiÖBQÑ/––bÜóAÆÌN·J‘YYÿ* øeÐHœ®¶:Pd®¿SaõØ8øõÆ9ÇeQ‚x'cHù[œ(:àž­F9q˜Ê–멤ìâ_ÜÌî'Þ–Í ÛåEľÆí0EJ ÒaFÜýžsódØçó’­6‡¡–ÄŠ[¡uƒôe;ÕÁ&’%ØÄz¨L°ˆÐ†5Œåš˜îÆwÑ·PJKJ’ÙÓ‚‚°,dµXƒ3^3"àb?ùôóòÕœ°*ÏpüYÀsý¶·£> Qõ÷.a÷Å!Ô¤þHJRþùq0«;â,¼Å:E.°Ñ2E±aéNbõ*GŸÿ¨˜f½Ë©7ÍY:kJŸí—R.‰êSo°j€»°lå—þwÚÈÐ,þ°¨Äs&&IŒb¦tÏÞæ)áD-}|–ÂÊû1r”»X¬1N ‹zöÄ’¹¹ ùnõ˜ì)Ï`i‰8ÖûOHÀ$mŒcBΦ­¯0âïC‚Ða޼ýƒ±é•‘âÀÖ À4ÌïM#ùtQ7gB˜ªcSï>HV ÑLœäKà-í6«´ˆÙ™x´!.,º@žü’ê×è,b뀬}H´‚L$x+’Ÿc$LS>/³ LáçÖDËn 18œ?¶ž”ÜýA|¹Y}ñ[çy¢…ÿ©ê1,2t2,dNƒVHåÎc*)}ߤG7SôÑ çï;nVÑO­ªÂ€ÿ.q¾â|"ŽË Õ«$é–Ç|W›ŽƒŠý»vL±ƒQs¢ôîàŠÂ‰28ÆÃ†a.q°¢êaÞzO×çøW™H '_3ÕŸAƒþ‹4Õ‡E–‘€ðNçÇ}9Û¢ .¬@¿™Ø™Â­˜Yì¹Ù%‰J¬w€eð•ϵü‡=^$PÍJô½¥Ú%chð%wÄÔE=ç…`°¡Åõ_ßG» Øí„=P´DÃÛ®Ià™jₜ†XŒ¬ðܦFÛÀjlU“‹²ö6dà6¯Í,Êä­?Tëc®ÆTUpyØíAÒ0.’b1ƒëžäó;í2äŠàÙåX„…§/ô¶¦°J(}ÃLÁ]v …=ò£éP™¹¾‰mÀyÔD{,ÆÜ€åOè&#iÙS¨ÛRKM¾,ñü: ”ó5Úp‡ÕÆj.Y§7PŒy˜_+Cåù.cík6YXƺ5–^‚¾¤ªë2ó-}bçkÍO =nn,ÀµùXHNˆ€sSõë »kqㆈúÝ”Zºg¡kC ¦Ý”¡D¿æ>ˆR­Î€–ø¦›hWSÞ+ï幆Íß‹é$J»C³ 7z¹ƒ¦à<¹Å‹J’^RذNó_\æ‡‚Š 0œÒ¸¾›b-Ù‰cÍ]ïÄÂ? ÏO6\2ÆXoqJ¿‘{6Dòn¤OHÇ7bþîî(Kà-ý ÊTõ!Ž´oîÝÞÄþÄËôï^4éÈe]ðÖ†óR>ƒp[­¶wpo®=‡ó¡_tÑøšõ( Z1–“i\úœ§öÿ¯ˆsî3Í"Æ©³ð‚í>^ØæutNªB×ö.1s|Ô«¶>¶_ àa}übÔ1Ø‚'ŒI3§ÿ5³n2 íD.1‡­¾c©X3Z·'',­ú2.0¡Ñ2ï×»7n´(Ôêqp’³ÛŒP˜ç½É•¥û±>IÁÑ%óS­¿hlÿ<$…{«s†Ð­.Þe?LC±u8>ËŽ©x&¾ èlýÔ‚Ë»a3N:ÚÇÞ7•<}M´‘ÖªS ë°L!{ ˜.{’ýöm$+Æ‹,Ö&5Mã_“ÉØRµp‰š®lƘÐX ÊÔŠ ǼLè—'Ö&éªO‹ÅкDݾyÉÔØËø"‡à^K²­lOQSŠ#€ð e˜Eí*G˜LB¦2bœÁ4¾“ Ð"¼>œž61Yeì‘‘°ÆPuJ'M­Øò±»ØÃn0éñzéC]y’^³4-çÂhÉûöÇyP¥æzN%žÔõiçI¿f…s®¿îïž_ùÅÅ\ì¬ãååf¢7;qÿ*οU¼Sÿúg©‘ZäiÔÞ/SôÊå@‰ðEÈ*hHŒœfDÃ0ÄU”×òFD·ûqÚ¿•ÃRã›~BL¹ ì­ånèØ0YOÙùð |³¯ï)íüîñ";®s3šU+3 ìïÒ–ð&Žåâ\¦†V§G†»Ë+oãÜ«çÙu&Ü@ÏØ>„ðl-cV+šº¶ªdõ¨‰ ËltÝ‘£Îk£Â€O?ºÀΊW x§2[;ö' ÌqA£¡ìXû·6¥–3¼;!É?ºx[Vmj¡Ûï’q%ûÍÇÙÆ÷Ô´ËêÓ²hULâ”]èG>ƒpl?æ·‹I {1>ÒÓŽMi{ mîö»M¾À o¢=’ɬë–;á?̺ÎûMÓ†JdAï_Ó'FžåÓsÚ N)™^ndò°µMñj•ó”PÖÌ×þ0ÖÓÃÀÖºÖ·3ý™eBAGòýÕ¦Áàk¥tn¬«`¹í²ÿõ`lÌì(ÂÉs)ýýÒÞÕÝ(™Dâý^×{+)ô¦ºŽ“ÏG}«Æ_Pû¼É…©ÿ$ó˜øŽ$êÁš5ÁˆÁ—‰¶JÌ’}K%f·Ãn|ŸàùøMbª&‚y]‡°Ë`ö–à>ÒƒÝ×qèTæ˜I,9%ä£ [zרôš¾’Íli g¡³Æ8š´gm+¾eBÕ—.æÏ"In’%êÐÄñÙhÅC<8e®ÖBñGG’©D™Ñ)™>ÂÛD”Þí°vðòN•¼—~ãï~JWÆ0ørî2(Ïz>øaGteºtÇuʓѤ~ÈsÿAâFé endstream endobj 165 0 obj << /Length1 2890 /Length2 29941 /Length3 0 /Length 31597 /Filter /FlateDecode >> stream xÚ´¹uX•_ú=L)¡„´ä¡»»»»»94¤»»¥»;¤‘”–îîN%ßãg¾3:óûû½¸ˆuçÚkßûÙ@F¤¨B'd 2Šƒìœé˜è¹²rr ;#2ÐÜÅÆÈÀLÏÈÈŠ@F&â4r¶Ù‰9¹Îgp*8‚‘‘ ´:‚¦ãO9 ³‘ê'{ €Òè rr¦36r»væ–v@*pŠÈþ“£¥¹…óï,tt¿+ýΦH™XƒÜœ¬-Fv¦iz9z€<È l´P‚ìÆ@ #3È   Ô¨©ˆ)«$”ÔU¨èÁ…U\ìíAŽÿÇEDEUM‚ *$¯*ªÓ$ÔTTUÚù›ÓäUÁþß}À¿ÓåÄT…TµŘ~¯Àp::Yþnû?ÜÈĄ́SÍA¶ÿ4PZ8;Ûs30¸¹¹Ñ›»89ÓƒÍéímþá§jaép9ZÀß6À„q±3ËélüWß›µ4Ú9'‰ƒþå´K NÛÿC ,„óïš6ÿ 8ÿÕÆÂÈéŸ\YEEY€­‘¥3ÐÎÈÎèläìâ0üÇþšRü‹  ââèø»‡Ü¿]Žÿióoê ðÊtm<½ÜþwÇŒì\œ<þÒæ¿—m²s²trvúWE ÀÌÒø›½Óï=³´ûÇ&'$/%.¦¢J' <;:9X;zgwç¢×•"'€™™ÀR1;S­-˜µÂoùD-Á:9ƒ?1ü?smmr³óüíf–v¦f¿•7u±gP³³tpJ‰þ_4Ø„ðÇft0€ »‰ÃïvÿLËo3Óo3XoO{=ÀÌÈÆ èmiCðt2rœ]€Þž;þ!0qL-MœÁƒ>,ÿT—²3¸þe3ù·ëÿF€òŸƒJ>¥¦ ;›OS ƒ<È<”ÿÿœ³ÿé%îbc#od ¤ü_Iÿ7ÎÈÖÒæÓEþO„ð7WJy£­‘Íÿø,Ä-Ý¦Š–Î&ÿ¨ø/³”³xô…ìÌm€à=ùǤöû4Ù€Çüè±üýäÐ1±sü<‘&Öv@'';×?. X…ÿá –þ7[ƒºº¶Œ6Íÿ32ÿ„‰Ù™€L-íÌÌlì#GG£OŒà9`fcx2GÚèþÏ èí@Îà€½‹³7À äˆð{3ÙÙ B¿MÿBìá?ˆÀ òqDÿ .ƒØ#€Aüb0HüAÌÉ?ˆÀ õ±¤ÿ 0™?ÌEös‘ûƒÀ\äÿ 0…ÿ N0Å?Ü]ùwWùƒÀÝUÿ pwµ?Ü]ýwÐúâs1ú£¸Š‘ó'˜šñ3¸£±£‘ øYkæü—™íÿÌÿ:ÿIfú—Ùèü_ñ\,ÿ±ÿO˜˜É¸· È<#‡§U¦W×v£€H®lÈÅLÇ]Þ/¼!·Ã=1(;^îD&Êñk<ý"a¶Ìu›Rb“buyÄ;ýgtï$w̜ڧ:kØO~mpçÀgi¬1r}õ^ºksWQsE_ó}øYÌzÚ1¡Í•Ôt;haöO°*xiÅ4ÚîjóTº¼;JiBßÙµ3¨%C‚6¯¡ûJêßÚ…k7Sàà¡äÚÿû¡ú~é&Éj¥ul€«QòJOËäÎ;Áµh†­8o‹œQ`[œvûå=a—ƒ—€ªˆŽÂªÇD>KñÂT8ÅŒætƒJ$–—I9q~,3ÔÔõò`t>µ ÑYZ£ìs1§’rEL²Õׄ ò~œÏ¾×[é†Ï¡"4¦ ¡ý {‚[Üù¶,´U~€Þ0þ¨ä …q6󓳪ÀøVP6ýý Å®gÅG{jì35N-È=`°xøŽ-áÛò/ÀÚ‡sá‹ ç&ä×`KÂ.|·ó@Þh=]¼3t9GÐâ ß`-C™·FÛ°‰g·¨TÙ&]ýQõ~]úe¥ êbZXo9|‰ÙÒ•àÜ0¨%)Þ‘>ÙËJöƒ‡æÚæâÐ3,I#ä%:´&][ÈU³(ÿv$‰W ºr®)®|ú8_Dô~A+%³MìáTøjôZš¬g ! ¦ôò!`‹„ N,—l¾.¼ÈÉv‚DÃJ™Å&˜¤|4,@ÕãÛÇf îq¹‹.a¼¦£†1R§áOSxºÊ\û]†Z¹JNóaÌߣ& Åtˆ’I‘ù#°kgÅ->%ÉENm"(_¹rË+ePV¿Ä¯´™fõÒËÙïÏ ‹FÛÛ8FôoÙG6ðîÌY i¹`|'Ûâ§9sðèyÈizõ1N©‘Å¡¼×ŒŽ&ù£÷ÏøY(×7˜*X‰õJYœac Ai_¦uDÈ? ŸÔâì±?†Š Нð—¸[ÿò¸#¢6ÿ–‘±4€µÐaæ6 ¯CŒŽs<ôL{ªCÚaGiOËö‚3u†ôÝ-Ì•Z.xð|íì–~ÅÎbþ´k‡«ì ¦!…+wŠð1oO\îssÑ•òzLÖL27©¼ö>OÚOõΫEe-Œ¡¾îðFµ÷æH>Öx4-åYŒ÷º†¶.þ>S‹èã—“‹·õà^ߪüuè·¯Mò.]‡Õþ4ýûbÙ%н°W-#|¨~]ÿKc†‰³ÅR)=k»d»<éà9îþ³iHÍ¥*8³%|¬0Öec(bÖËÉ“B’¡7WÎ iä‹£ó&·m‚·ë5'Û¥òaVc<Ô®c¤Ù;¬DOVZŒª™ÖÒ &jZ1ز[l3ì?¼™:NÓ¬(°®w…·#Mgœ ó…Þïá,Ó–¬žMãúÁ1mR],¯z>vµô¬(Hwh{|rZF䶤²·¥ú%ž«ŒcZS|[x…&¡šùA±ßvú±øZúe‡5q“(ƒ*:S_j(jãàmý´TMRÒœµ!§ÏŸMµõ­>ßÙ{ ÖUýó’fHI47ráA‰lñ Ü€-3ý^r93`zz~ƒA.yay=ëÔd‚õ{vnG„Ää ¯ªô”meß›èÝ@S—ûé—A4Ä]j)ÄYÅ|'2¬*µµµJ/Ö•f^:ÙÔÝ–‰ óÒÖ†/ǾÌÁwá¥:! Ydô5úN»o’€p”Šåªñ¡¦W“ÑAFñëO˜ ? ðlyíZ‚,R¬F ƒ~¹±& –©ßÌdØåyWi›¥Ý3YÄ+]½mEÃKÆ'˜a—ÎW³u瑦meõ!V¹ˆÕc_U?»÷:#Ól®ŠzÎÛ‚šy½ƒé|…êèKšg,?°¸ žó3GÁ%TD>‘4´{m‡µg ûÙ®‡–FgW/…;¯»„¹œà×*©+in*Ç<¹ˆÁ.»‰Äm1Pyô´w7u(ÜuÐ ë³ùóÍ$׈ÕàÚèTAò~MÏÒ7®F~ØôB]¶ ãã¹&ks碩þ¦oSš„g·i• Êì—bƒáÒ J˜¯jº9æq§YBÞU(ûmpÂO²s2N­¸@oÚA´–Á.àgJz4–`lœÇ»½¡?“*&£ìÖø‘O©~“µáóA:ºû¿5¿ŒËÔ^׺]ÕéS% èÂÂ3ÓY/]H.Å¡#…ßk ½~¬äÉ0`ÜxÛ=èÒ«ýª øyŒ›¡(}ÄI‹7bi²Ÿš<ž¯JvZŸ§¡ˆ/"uL?ÐóËs¸+º§ZÓóOëPœÏ„Ûååi™ ´¢>Ž¢»‡š-rÁÔEÊlcë]Õ_`J— ¿Ý=®ó†üøAù©èVòä^' v¨*¥Ÿ$Gãý;S÷L)Ö£f¤ÁtµÁ—‘ïÌ¢¦L>¬Nœ®RH¶ió%s}3œ‚,ýðÆw“/Xþ®¯8ékÿÀmªÕ ¯$)wþ¡Þðsâ:âND ú»TõO*­¼ök„=W£7"…ÀZ= ÂmÖIB9tÂe6‘ÞþN¾p˜ÑéÆìhÎAqi’].W,3¾òsF>ª8Rx8ÉM§à$9­Þ‘õ²à<+°dé£p„!ä%äv¤¡E¼ZÀÝûr°‡ö@àÎiƒ\Üæ´<Ã/\4è93ÆFí÷É·ö=ù‘ÝŽ©m„+…|/Á‹›†¿wU;)Ü­Cß‘9úØu•6qip[ÍÚÁ:Œ"¸†HYqç˜D“ô249Ò¢B›¿&$ âÙjAžÁ±¾@}ä‰qÒÏ|¦åº'^2¾ïÕÑal”¸åˆä¸ÐSÑ7×êIœ‘Ýxp×1.H·EÈ–x?â‘F·zâîÕúàéÔ™°cÙläicì¦vêCé™–¢'××Ù B,È|—Žà4ÞõÏ(äJÂx½‹ÀžœØKÃkéüá@¦…ÄÞ°„H=F£Q±x;aÐʪV"ëÉ= 8Àøk4öØ·â~ùýƒên8Ïú“ùaøE^K»€E—žN¬Øw‰u e1û•oINfrWµi0±™,m™j‹ÁñEoX£½·z\óc…’ÍžÇõêÇøw ¬G6Q–tØXË´_qç)Œ…ù®,Ó‰¤ ¼y·Q1r×*Û³ìX.xÝ"püÇB²Ìû8Íû½Š ¤¼AÕk@2ǵ͇i‹ á ñoô43$|oï*è{|%®hKÇ®¥ÝáP>CKµ o°e-[¯L'œAê¾ÔhTÝ÷X­ïµß±­/Œz}ÏSùNý{ïë–XãlXf*ã\å£SóÉ-ô‘ -…™ü‰c9DJЯŽÎ4f– Š|Éy‡U™ÌLÕD„KÞÆë}·*üèZÊKO°Aù6æF[ÀôP2°‚OE`­"¬üÂÊç–û\U˳ LyïÒS ¼xúƒ¶Ù/R2§Ã­ƒ_rçö¦0Ñí"²_tèÓ^®Ýv2<ÐDŠÓO¼ŠóØ„·FP¡}¤È/…vÈ îzl¬ô¿kÝIc¡û~uŠ:jrPzë˜Mø…':yMÝåªò =Z >òú±•ÙûìÌìy.É3ðÌz‚¬”Î÷%1 ÈžÄ³/²ßáC°yŽW^9ægbÈJžXв9âyÊ(^œFk·ç¦Ä«ÆÙ @]?HãçÔùû¥ãŸð ›Ò6/Q,Iž@ök|¾l ©ºZe²˜ôi&ô9Î|{|žpiþð¨)û®·Q•xÞ¯¡˜ƒù„¡¼„–uV>’ÊÆÌÙnûîjŸà9ìº#2ôè $ú¾¾2›ö7`^驚3:Q’ߢH•†ý›c‚”üè$‰Ji"Hñ˜õeÝêbTŠcxn#éwµó”fšDàïCúl ²È ‡Öùª£ÕX…Mè+W–½ž²å5µ¥òiaJþ`¦íãή›¸¢¤¿/ Ün)|xÃñ0÷­Á| È†%föñÞ ž¿z¯ÐUF¢Gçý‘¾y î§ÀÉ»O~nl„»ù·â¤LZþËÙZDÜX!¨)oƒs"ÃÆ¿’ÃWÖâ»DG… è#L82~Vœr(ÇÇPAÕ´J_A³W®R28$@g)²’ÁsðàœÈ ûî°ù¹@š‰m>¥*‹Mn´xŠW¬72BàËÏvxjÜÛ–Ø®_©Âh¡Cw.0³ÉÄ'»êSo}é»­„HmÏ~€Ûf´ƒbY™…7ÿè Å6ƒ k0PÉ9¬öãÛ:¡àžœ¥Zm¤9õ‡Ìþ©¦¼™Ôèxw5Ó—¼E‡¯jx“âÈÙ~ü‚q@üÞäžðBZùËi\–ÓC†‡‘m¸Ò¾¤¼|Æ:~u(Š ]Ï“"®ä~#ï£ëŠŒO¬Ã+‘x§ç1®ÃôW!â`ÍÆ „¾ÓY‡–‚ŸL:ä9|³£+£lÙYœ²Ý UHtdL«qtËÈ:V~E½æðiúÃë¤<6 29“Sš: ¾uÜ\|œQ¾¡×øŽ4 )àS?”@?¶$?9„iæô¥€4-Å6x-ß.8Ñ ¹àÃ:^a€Â)â³¾ê›cU©ª¨±3Œíû¾â;n//ƒüÜãQŸPmS̤ò×¶çd‰õ&ÞµÕjáæ°èÖ—ãæv%β-I¢…ìæÂƒ·`_Š=s3ÞØƒä×%MÆ_Ͻƒ¼ m^ hÉ£¿½¸ucnÆ-);sKß%lø ™F¶Ý'TuÞg„—ÃtX‡óäñâÀbèW¨„¶q1<Ö6Â̪! ñ5Ç×ÀÂé€~6~GI’Œ3U¬²§v©< •LËó»óxËÕh‚ƒi¦• þ[AcFsy×ÝTâOèoö["µÇxª¡âÝQ¾ •H^Põ{äWœ¼x±zqŸFÝË4;98ÄAXrr_ã2(5«HØß[ %ÔÅÕõYh·\Å×É^®'k‘š{ÝEq"KŸæ.Ò9ˆ~Ò‘ñˆ¾šsu0¿™ÛäI¹½1ZßjqO+@Ln™}…æ YÊô{®š·ˆ‹„€‡½áÑßh¥3 ¤‚ó³®&YH[ \§'êØî'¥~€Ø´fÀü^ˆ¿ªïÙj'ì®·ð¼pŸãAI@~¯tú„’AÃyþÝrå[ºJG0E Ç–ÏsŠY“_dºŠÍÃ}Œ!noéÊœXƒ_\Œ%·‘õJXs‚Ä]]¥Y7ÔÚA‹rŸx}W`]lÅrUf…úKë«’K{¼Aï\õ7øf*åÆ _¸7¯âgB­±‡s3ÅibzUºd¥}ow"SUPtê‹Ã»užä×nº±­õüòáDI©rÜ¢Œ$$xmWdå†üj£Ž”GÂ/úŸM$­ÉXìöW¹^”}_4¡´<}¬aêéñ§¸³ˆ§d9ʳ+_½†~… ê%¯Æ¿­M×*.8Ä< ~Le/Žmô¼v¶$ÀÙu¨ïs|NjÞ"¬Å PáYtøD¿Yû~ƒcWÆ®KÚQIt! 'Å™ÉWW­üœ¹)àEõ¢•;øb½§×üS„ mD‹Gì@“Ð’68j¤ÏÃu'ÃÝ Çs‚NÙ„ð³k§Lz,:8’„ÛˬÒŠKÉçÈñ6c]BB¿èš\zÚùY·û11ò8ë®Æ×ƒœÞ†Ojf™±:ûccyjÑBgC–s³¯âG飣9ßP÷~&|¹Ô'&æýTøl‚%èÒ i¾Bs«;†8ð}ÑþpgÇx7‚ŠwªCžž”Õ­@€´O†}&&ë"Wv¼|e€û‚ŠgsÇ ™S”êÊgZEQÐðL˜FPÉbhðš68ùaéîgãd¯Ûƒ˜~\Bð¢Ühs}ÙM[I­jÉêeÎ-A]¨^|m-Ò)½‹ª¼¤"-¿”qÇ>h1¶óQ6R‰-I'©¡ðö±:s½5ì‘„º•]ÃÁ]€<¯PìµHNæ—âÝVÊîgä–Aû<)Éšõøñ¢gqd¯ •Õz-ŠV«¥Š6kyÊëojf;ÍÐ6BMõUÖ y–~P”mÛ{30x4ƒßµ Xåt2Äëfd_ôké!¡"ëê9ŠùÕ¾§ Ì'l­"¶êêCs¹òŸÊ§UePÌfîÓn¿êå@Þ2Dn¢@’4ß/R²lé)3Z&ék+DE¸@°eñ%5ßßʦ#c¶ÞËœ)¿ àS¦BdÏì§o|*[n±™ wÉ’Û è¡veÛ稇LµTc¥nWMÜßà © ý({/=Ä}q]¾¶´7ÁÞè Àg–bÁPÑ£ÔÙ]Ç,D‘ç¯û‘U<†#‡b|Èë ›¨ØÝ¶pÜEX–• _Œ‹ù‰¿æ‡ÁJ÷¦ª®ÂJÛ(m‹ÓŠBÌèI%AWX™|ˆfš‰l³µ§15d&µüd YPH,2Û@ÝìèŒÆ™´¦BéuiñEÙ¸Gÿ£{¦ Ó#„G6#í]A_?™.oLpÊZœC°æð.µÅË¢n"¬Pü¨‹tÓC%òÖÿJjA¶kÖ/>ìcºÑj+ý7Ÿ~J´ Ÿ6 ,Ñ.–"j yn¹c’nRÂØf¿UÜí0­•N«áú}–W¹C8ú¯æ"¨·3tÓPtPh å˜z*å,×™ãw¹Œ²ý<¾ê®Ý#XG9s¥yPÅÇaèø8ÁØZ]ê]ØÄþ—4ß·%jÆ ×š¦¢>{5§.U½-ž½Ïø e+P!ôÕ‘Ûo߯Qzq åQ0/V ` Âó?4ß®o^!S“fUˆsa¶Š¦"š÷;á¬BœÁퟻ˜‘PÛ)M aÒ7Œ$©“:—j‚Þc輫˜¬C03w‰".ÙVÙb)ÉBÏ@D¶‘(ºù5"5ZPͶË{Þ3Üà·vt&HÝ‹ÓZyGh[ °Ê¢1µ‘ïð|·k$¯‰J>`d/lV7팭ƒ„\Þ5®É9Πrø•æ;d]ÀαuÏ´IÁ}N+2QÏw9¦¡Ý½eÍywWMPŽÂþŒ¼¨Ì©1 qâ¼ î’P­FŪÖÀm®RsÞeµ­k$–aÞ®)?EVU¢Ëðù½7¢øoÐj‡.V Q$$aȰ, $Òö§¸ÈÁðݤm0¯¯œéh×FÛF}8&0«Ðc€ =ß\ '•¿Ìà‹â„§}Çi‡tš–6Ÿ4”Lãà[@p\k+›bë’K8Ê8n*Á‡…â¥;=T1‰¥×¬ Ð-'P~å7 ák ’ÀëŽ(Ÿ›É¬ݱ\ˆ#ŸÊÎöÒûýÞŸå¯{åvŠ%[³þ¦ îµðÚCÃ?$hŽB&—‚ßde,ÆH¸Ý<4t•Ñ-à8‰®Èft²RÅœ}Þ©š„U~B‘G~/`úèK¤\½^€ët÷ªå_v­©2ýŒ-Ÿê'}Cwj¯)ÉILÉðiÓÿüR‚e»E£è`X{êÌ÷e=pÖ "RÀ´°zOÁ×¶øýϹÚY((‰v2¸±¢©/Gõ»[ü©¹ØšËãÂÈ„\’ä¥H§þ¥F±:9Ò ­€/_ NÆiBnt¥mÛŒÀæE¦ IγtËçyl€û5nÝ*¦-ì鞘°}¤àËaqâ}?q5çÒÖpܳjWh¤0Éjäck@©Žf€ðCì’("Τ7ÿ=õŽBîLT„€É)ãèNsX}(/Y Ì\ß7ÜqÔÃÕY,º´½õRÄļBÖ‘­y‡l!ÇÉÏ?¦–4êq=¢íB™Â«Æ5R/ÔÌváS‡Õ‘âo= ~NÕðô:ì<ÁéIm´Î®ðœž’ L¿ž½YJ‡#¦uÓh[4½«Î˜ÿÆ^Óĸœnŵ ܵXåŽX}H=³Zl$%´›ãTòŸÅ§tÜõN·d2‹MâÓ³ðÑê3ù¶Ô%jøÅMÌ3ø/}>sI®(Dv]ïàӗѬ˜-^SBª xÛ{¤ã>~„¯©.ëwwXº>Édzê&›ÅsF–Y#8¿÷LXV;Úx“Ú§„˜ö0’»òâv¬³xþÕÄS: ùÅ?ê!KcÍÿnÔãÁQŒC"¸ ¬b ã®ì>§|¯õÝ‹•2—|ìÊàd¬kNåž1˜Æ”À±òW¾îìþ`ÖþðdÉ7:‚WÁ’ŠnbA~Q?N-×É[.¾üˆàÚ8/Vx(|‚|È jŒÀÅ`È}k¿í–tH…üdòo\‡ì÷Xç±Küup×á–æy×D ë²þâÃA³^ûK’ wµ‹~i?- 7%iCá+ÒªÒÕÎÞŽØ0Ù¦·š¹“MìÉ `jfB…I;c™rÊó2-Ê&…ßYÚxÚÈvªiã>}ovØ ˜W³7Ø%ü`ý1RQI;=÷}³ŽÑ\.×^Þɇܰ5R¶ƒ]uï¡*åP„¨-ü×ñ eÒ± ×PûO/´ùsq/BtÏõ­;´cƒØ)±ý¡b‹”î?‘)¡Ð pgNõ17(Y6mpÛê2k‡ 9ï ³ÎPLJ;9‰Tn0ϺԮt“¢+/O²ÈmùHú?@vtÚB92~e®É>á‹¢Üþúó ²cÏ-"q݈+G…r,DSBÉm”B‰àÀùWz¿U‰¾Ö%|ÝMŒ/ñKK®ÌÏ#ÆÊÌxåüöLl8êËÒ¿qkÝþòôÅU˜¢üû”2:P”x~(Ø:/¸;*ReÜLÿ~Dï•[ì ÆEUêûárîÖŒå`„eúÄÏõvJ­m÷'ñ]?f`¢%çÇÍ.· ÏšîøüO¨oâ°+dÝF¸ê8;t+Ó[r*ó"Û4c¢…¿òw޽ºKïóˆ5å$¸qÂÂï Î"y6:PÞð½œH}ªˆ :Wê'ßòÅkPä$¾€D_Ù>²ÖÈÆOÐç·ùWȹjæ„c!û„J“ßU÷!yÛ6590œùFÛôjvBÐâ =ÎÄ yyÝN×츓Oú¸&§?ü<D SÝ‹¸ï¦@Eù(ÍÌð'þaZ_ÑÓÛûå§BmÄãÇIä §º•¾Ž‘œIÁ,^L½:òyT‰#+7‰ÀŒþ¹áÃŽ:AS¤›t]$8ñDò¹_£ÕZOÔî1Ë(ø¥ðzB!PgËûa"Œšq±nÝ•.ɦWó†>Ý“Yê ½¸MÔ´èéµ6&®„_Š.¡¦Puóš1U,³\#Ä*]6{&¬*üŒhŒü!€[ÌÀy”Õ“Àk?O ½þQÑÎ*Í$ ÃFtÛ‘út¦LògÒòYUlü1Ú~»Á2¥”ì´Ykã’Î((‹³,âÄGí[÷RÑ)kÔÏ,õ†òHˆØÃÀ`t:úªj¯›±:¼÷DªŒÆ€<"Â[â%µWÇÇcÁs1¹õ§ýVh}ÚWS~AJ é|]²÷A%§:'Õ|^ð5…¢/sÐ4+ A–=}N[øçé½_Ì7¥Ír>:F÷ÊEÑ’ÕZmÄ/§®¬©ÝCóΔ®Á—ί£gÇðÃsɳ(Ve5tvo‰°‹1ï¾êðª6}S–ŠS¸¢Ç.XÃ%µ¾&óšžÿÊ/ól|+m•v/Û¢<§ôN»®‰àË ­{»€Œ[;HI€ï'Ͷi­xšóh€ø?™wYxiV¦Wº[™˜øø/³É%Fò¼$0þ;¤lÊ—øê®á“e6Ux+ˆÕéñ0rÓèЄ,ÉþeŸ"ûùZùDáÞnRÜÎùK· |P‰žT®Ÿéy$X¦dÑiç;_NÀ y<«½â¼/B^¬G‡,6oÇS~-C’ž2“-ÄÀŒˆ¦ 2lLÀg‡ë±5µò¤ˆ÷æûzsæ?ÚÏ-«‚Øpôö<Å1‰s-QÀÜ\jG۹ゎþ*ü+öÐqµ‹¦Æ,hº¹äàHRž&£¯1ш|¼ÈŒœjÎjM8BËÛR1k̈²ŒÉ$¦ŸgD6éy<ÙÎ…Sé;[Øûã£IQ U$ZQ ”ÔQD:ÓŒ¶Ê{^ׯ…olîx5#ƒ‚ÖY K` ÍY5ü쥎ƒtfÏRf =Ÿ á®NŸ²œ;é'½¾DÒ$¿Œæð›h*m¶*äž»dBضB½ïž’ðð1E9°I®†®y›.qÂb~àÌ?Чm ¢èË9f]45 ŽÛÒ.FŠ ná¬Uî(6• ;ªžËûƨ"9&èÑðÕXÏh¡ÁXAþxÀkꬬ×Ï@|•EýZ@aºÜN• O/Ò•(z‡¯„…‚«‰çé'nvÏË\Ahøu®.mo‹àΩì9–Жë-“6|KÏ…ܨ\jX÷öwuÓoˆ1ÊÒ϶%þ'ãjÈ™RGUvÌw7†â¾›¸P5ÌD¶±)Ç S'Ø3±ÇT‡íÍUkpθû“ ô{††cXzfú–(‹ !3ý:Ë&DG9I¡D¼¬¯Y«^ˆôÑYzò¯ F<Šõëœg×Ò“µÚ9h ¶ætRQHKeW‰ûäÒÄ8D=Úμš~ìµ6,÷Üëa.GH*á™åQc†dOhÐAÂÁ.4s˜œÕã>Õ V°ï`‘¹‰õʹ<<‡¨Š-ðJ3OfžÞ(nö#­Úv~Ðý²Äivû-añêÙî§ ­pu~Üϵ+hÿû×mGJ e3ê=³{ŠvçÌ͘bçŽú¬* O3¦„‰-#KF¬¢Ohcó)ï¬ì=wk¤/Öà,IAáïs&÷jÈ*˜Vª³z_«>lòÐ|ªÒj¸3‘n %U@󸘷˜Ë¶ Õ€N½§dâ£ÁS.`-Vâaò«Co^.DqIÄËLÕs;IŸYrRÖ…µ´(f¤{y%ÅØÙ¡HÃ!µßÎhkÔNQ©—tÚ?\»“óv˜©ÍV£ø3J¯+ó¿˜Î@´É»±‹Œˆ«êŸ¾(!b¦V^äerP§²E5S¶-rÓ )ôo?PÏy<ªÕËxtMåÙev‚Ÿ´}cPhúc¨nO3Ö-¢G*6VJݨûm2FRjrøZ=o7Ûâ\떺ïJ­tÁ>OR®nЪ[;›ýøî‡è1Ä!ít•.¼·jï•s³ñSøl×É6+Ó݆¹<>BÚ¨¯kÏxU#‡?GÂÝÝý5G ¼×AþÛ^Ÿ²¿ñÄ.*Ü.–ÐEgNH-¦sïÐé½WqÝ%Sš•³,¢Õu~<:™e J²< 9…BãÅ#ƒT „ ï;1 â´¬È]zPN8l ïý´ã±ë¶Êˆƒsu[¾AÅ\Lˆ›¿®mÕD0°7ðŽ| QèˆÝ¿§h~gô3™&þ^‘@àù Ò¤M^°-FÁVéÔ®c WÑbä{p©mÔ‚J°??e?T8;’tº.ÓGkŠõæÝ3Œ>Ln}`ÔèÌÅjó”ÇÒ0¢¡$‹{Ã:ò•†_žp§gN?ŒG¤óbOAáÃìC d˜ðСåТGܪl*e·Zp§H(Óä’ƒðH#ƒæÊÝPðkiÃWWŸÙÞ{l!뜃 9©°"çGÔ1ðk³o"…b‹Þ¢Qå½â¼ê0ùŽ?üdÂóñ(L¹/úqÆÉ©þ>4\l¦vùºñ*ç ¯è~ôSøíý܇a“Âf_ ­÷§‰òwú÷KG]Q½Øx!»JƒP‰:MPÂ/͛㽌•ºÝ²ªijdÑ^„XwDÝâÞ¸c¾ý<«. é_Hó†=+·€m’[jæ2²ôgtÖxšG€.­r¹máTŽhFÎÔ)¬[ôÖ•æ«` ua[؈,¾˜E§•\?ïËuМ!sæù!0ºOœ>n¦ f–¬íy–¢ó²”229;ÆtTåh:ê à©I7 g¯ÿUb*8Ö÷‡à|úÊ ¶+ Àb´¥¦õc¡¦F¾0Ž`j¡Ñ¨º¢ó©Ž§<òÁ¯t,z/®L6‰:,…)qÛÔ¬žæµ´ß7éÊí¹ãú”Óø@a!Øç<6)£ú<œhañ›°þ†‰Ò°SÜ<™Vû±°É€ÜGŸ\Ù¡`â‹×šFê¯v¢¼ßSú{©… ±ëÅ?¦C'-ø¸©´³«·ÂÓ&4ÞÈ/~˜Jßn6BH*!=³¥¸íÛ,eà`à÷ž–€QÖ3Pæøí)ã¯Y/:¹‰£Ð3$¿kùˆätÓ°+þç&j°€s¿‹A'jô»5 "q‹ØóTŸ_lˆG@)™b6ÁïùCµ~håIHC¢Æyý%aÁÞw1œNƒyµ>Öaô/«ƒûê¾ÌTÏÓÞP?úÇ=6·ÄŽZ ¦8¼¹[¦æµª`€@ÈœÝÂNصwáßì ¬4w¦{’ &P÷"y ÃF:ˆ —àÀ÷ždÈ©¶“ÛŽLùŠ—ç3qÞ>/÷N@óÎXâ ¢›Fa‡´_Åùr?‰´q`Âá`ÀÛˆ‡Ãß¹¤EpÜg1žú•'r7#ÿ³+K§8.ôÞ ù>о;´>c)2C‡sW“,húL îÄç ¡Ž¬j´ª€/g2£aLàW™^ÖÓꅜĺ[v—ÉâýgqÅï²"†|ß"°¿îc´%éȼŸPØ,!å–I¸XÃ1$+ø‚ð2Ÿkªª°1D–•FqÆÿunç]e.…‘c~òO]#[ãqÒR©üîƒÍ/<Ð"¼/.PÊ@¸§Pßh”á§ÑyŒtè4(¥)²R2¥nÃŒ ('J'OL!¬ÓŤœ„Ë[íƒ8B*S±òȘZEò!Ãe×m»>XZÛkMÃ!U‘æ[œÌíb*rYP–pé1®ì •k} ‘£ùc/⩉“ŒJlÖÚ!–†‚XØ––¬òÓ l«û­‹’òdzóˆ2û †V'L5ÍZçrk-ŽžÒDêÁèàh ቶ|ç}ÊW‰ÞLfÜû+&þäÂØA®q3ÇDçúæ–î‹<Þa¥&TY䂸³x>¸‰¶ïÞ¤—T„fk¢Òé°ÞWÎóXní¢¬ÌdÖ/BKn¾‰kŸjtH¯¿õg“7’Š™Hò;ŸÏòÍz^¸‰ iCrøúàÅ*{‡'Qå 4ªÝ"ãjÒ‹BÂþÕºµd7˸q;Ö30ÁÂtÐ…ü-oÐ'b¤2ŸH/ĵfÖÝdX…R³œxª¡: žÖímp‰uikXÀˆL@ ïPýØ¡À84lün;v”ZŸ.&’>|«“¡³óÁÁÀÂE(ï°¬ºê _uÌMO$+ŠS÷-7Q ,'ÙtýävÉŠmâ£øÏ­ NqxøôÐu–‘ݼƒTˆgE‰îE b4"@ìÖÝËêåfçàqLà¬Û…ÕÓAe bíZ:J'*X'¢}Íõ0ÏqyK0•8ló|®Áƒ1éÍ66Ò”±”„ú4ÏÄÇ} 1Ç)¨“3í~Ø—¨\ÔåEï*nwãFó؜䲲ë§À/áWà †o- ái…`=fTs1L¬œÖ$y3KøÞÑ•3=H´NðñígÅb…Z{#'‡7Ü{›‡ j÷k/ àAÙ,–zo¨°*edûÙèã7ƒê"bO­XD©¯Ü¿Æ·É÷´ÖØòP°áÊ(6ÈóN.¸Å°*8õ•Ñ}>?Ýåj¹¤s™»Bø³qþ,;Rdmä:)‰g¤ÀwØœ`ËIž0b‚ÆâÆ”HÛ÷óÒR,%9æ'·%·È<ãÚ:1#|'´!÷æ¯_R˜p«l=!&½Õ˜{dÙù0}ÉV6šbs(ÝFbP É)óÊ,D,‰½TϪ³C#÷)Vj‚Ä6¤•&V*Ž¥d¨þ zýµxWw’k'ñÑ›0A«ˆGÊç¡ò£e¸MöÖ(âånéøqϘÅÅ[çØAûg¶÷ÍÅ,˜ëÍqPÁ¢£+礠•\[¦¯"RSÆ«MSÜhöÃâI…LôïªûòÖš{àCæ"3ýµŒ,µy -ÆMã<Þ ÷gUäCV¸zÀÀ ?|•Ôu¢TM¤¿ºìøÑ9ªÇÜïjÍʱO'©^ôÏŸ`(E;XIs¨¯ä£õ™‘!.Ô­\’¸EM†'þþErT7»›2æ&¨ªV¯C½èƒwcùí¡ºMuå[¦£k˜—pa2Â…-âþ¦t¬¾½”(ØV{ãÎá_íMdë6Qb>3?j U]CÙûžÅi¦Â×íjFj¬§¬Ü›Úñd/Ù§3¾9ºU^Dèò~f嚓ʕ`a³Ä%ݱ$ZêZ¶–ëÂð¯É;žûi(Ï>+™IÑ8vßÝĨîBVi,jó5E²ÎÚèVÒ›ðÄís ëIž–¥ãÛùñ±RG5Q®ntïh¬ŸÍY¬E)œÝÁX#¢oUSߦṠ†Å0H‘n6ww£¿7ÌÙ¬0=n¨š­‹2¼ÎÃåKbǬZ4oð¼Bõ"ŠwxцO0PÊ©;6™×øÃDÁ êIà­Âº³3tú½7¼,˜§³Õq®¦j<IºÛrkÊ„²ë×F6 ¹Í:jBÉ—UÌèús-®u²_ˆ Úô'nÏRo{‰¦®k˜Ðº%ðêE{ ”²Î·íe‚#”Ÿ>c«Äñ$ø•xðýâ¶Lý59R¤ð½ž&¹LìÔŽçãÁeTÏœ/ĸÐ|å•©ßÔ@8(à²^ÐÑy4“ŽÏW¸\äLJ»»Â uÞö0€Åè¶v7+£êSjÙœK î7xë]ñaæ¹ÖšRÒJfg Â\F¶8Ýʺ¸{bþ>LmçÛÝ€¢#çw'«=i¢J\£–™ÉyŽ„Eï³ÙLÓ½‰Ú~¢ÿhé^šlÌ;êTüå©þœµ¡ÚT›2Éñ†šLõ ZN,óÇ÷[öPoŸÞ¬»m¯¨·”(…ìïœÎ)k{o§l¯V¹‹Êt(¤‰TÿÄç(‹ŽåžEB7^~òú3ݧt8®aåÌÑ£à6®ø· 2³ÈJë…O€v¯ÿ•7 Dª—åøÙá­Âm&Guµm²<—%iÿöxV¼x¯ŸE%ÞÈgxÚòSÎÕºF³Ÿ;}Å•ée€†~ãŸ?±‹c¯Þõå¾vQ]/*3~ä5Bß@qa²“~P5l(gõ ž*>*&I±Ø©_B"ë°'+«ºR²¬ó¢5y s`P“1~ ÛÃ$]Žt{ÁaXš«HqšÛÃÅ,C©¨ .Âkóî²üÒCôÖäüŸ…èyß%¯^V!õZ.¾˜d<ÒлwßÃÍVAb$z_×UPηÆáhÞwÊJU´ ø3|FR¢ÉÜRc·1oÊ¡ï{e*IùU™>ÖKÏ+¥ÊJÏÙwÀ¦ŸäýÅt-˜“[÷Rèèö®·6[¨"júŽH~Ø; &ì‚üÁA6}±GEc+é3šé*hŽl¯ô]ñ盾ãB·/ñè¶ñA'hµ_ŠÇt3_wæ¿,€øf(S| °˜®¸Q#° ‰?»’SŠÐW‘C^YepDÌj"ÖCN™Äüà³ËkƒM‚ެׅ.šóë¼êWW =FߟE&û²HÝù:_N‚dP?³á¢‘¦1~Õ®Í0!ι½¸¹Äè7Ö‘·Ï;Wòñ¸¹©üÎÂŒ-ßô"‘÷ø)‚šíLnÏãÌò|wª¨Žé½$%éšüók*> itЧ Üúª¸–¡Û·“ýãn7%eù>»EÁ±ÊrÆ/íx»öË•|6þ§ÅÔïËJsä” Ûë¼ WVÎ1_m3âÒ©X¼ÆE®úáæòKh74Uˆ;Ñó&¯ô0$`÷Ã<£GMBÌÅ"© 1Í}£Ê—8_%QùœN+ \h…µÇ³0¢Õ!î/SÛùÛŽV;h-Ò3¸ šš `ƒ]°Èekºânܱkìö€> "B\«_w58æ“åã8ˆC°Y|cš÷äráÂ0FÃzšÚ²ìÆ&†¥ch>%<ÙU²±Ýмgw¢§Áòl–§Ê 7g }4§bÕvÄgÚšƒ lM¯uz>¶p{ f2‡èèóc&)÷A³Ñ>¯„!#Ê;BMOˆÌʇH{•âJ•oäŽóæáÈØú×˽ÏV¨L6px|‘ôÜ‚ wjøoÇÇ6²û‚>oa/-¢,´šÓmª¯j}-2Ò5_ÙvF‚È„ìÖ… ý÷‰y«=ÜŠ7òë©?0¼UÀ1aº¨‘K™Ù‘ùxP”›´ "ñ=Ë~Lé±`7¦óC… ñC“¦¬ÚQGÈÝ»n›UÄÖ$¦Àú"¡(…É/ø+yž÷¿È^q:ïR¬%Õ¤ìŽÊy do“êJ#,ª¯¡ÏÇ ·xŸ‚ô¸Ä;ºE'¯›¢©²mAWn}e fî¸Ût¯ü’oð˜Äã½E ®´ÐB¼~Ñ»K`YâˆÑìüÿl9“Æ3ôMv JÿAöæ‡YïKŠŸöº5ÏmXЈ&#¯vÅ÷úý¿QwØ ÀJ×÷ÏuPý…ü):ô÷;¡ù…ÊRóÝå. •?É÷zQùf·åÔ…%  aÍ/ΰMéO7–°)Å(]|(Åe®¼$ºˆy ÝO£tü>y ŒÒÿq﫱îhò½Û& ÆMõ®LpARœq`Ÿø¡ø_+‚»èÆ$¤[<€˜:cõçF„Å‘~¨ÃÑ,f/Ñ?ÂDqj-)Ñ"ã6Í®L_…=?I¢4ÇæÛÈþé\%€w:ß}*8qÙêæ_›þ«j¯íNg%pdiÚëB?aI üLY5pe7QxñÙ‰C\½U㣵¸[„ù43a[‰¼ò/þHÜm!>‹ÆÉnÈRƹ˜»Ø/p%£×z‚ˆš¿ÅQspa Ä@7“´èkI}=ÁJ$qÖHù¥¨" kgBx5ш!ô}[ò¤MU!ÊÃÅ ¥…pwüzúÉl·y‡ûe N†R7*Õ…»A‰ùLSG_Ã@[’‡ä․ûyWX¼¥¼¢žAûþG»_¡Bë‚âùºÔÐbïg¿ÍYÀjŒ*èyJ•L PC8Üünq¥ßǼ.ªih«ž4”ídús☕˫ïªVר³Uð|% ¶0Ã|0›ñŸõš¦€véÒó5&سaq-³‚Óöˆd܈ªM‹%IØ÷Q§]A£ >Ãÿ'{Bư¥”°‰ô[!73¯S—ðŸ‘i8ûú¦žÊ­a‚"k…kz\amZô:'={Ðì”+‚pe""ü0£š¬ë,æ¥SgÀ4€¨œÚx-§ÚšpµaF†F€Þ|SG œÍru±c¾¦ÀŠ99~r¡ïëÜÒ{V’¦Ù »'Æl¾ï«GáÏ·yEC.Oõ´¾çª,²#<õcmë@)'þ'¶Ôå¬ ÐK:£«]ËkžÕÑn EýËguÊ~xm š÷™î˜} $ Í`F´^0%Ñ»d¿‰.újûép•®6ÂÖº}¡"ÅŽˆ<*>ˆ&µ¢§BÀ¢ý#|ÚQŒ+s-KdX]c E´¯¤Ñ—¯œ`†ÄGóÂå•ëÆ6/H8½:]éhŽ˜é†ëEÁõ$éfUü}RÄoúå-çZJKÑ› ·Šô‚oUý…t<Ñn!…Ñ¡¥¹õ!¦°¬jˆém@(=Æ-ÿ”ÿ¢sêßTµ´÷%«­]w Æ 8.ÌÕtOÙ/Î"Ožze8¯& CQ.Ù°¥Ñ2rή÷ÑX®gôŒ¸]°¢ˆýãüb 7¦p±^R¹æÓ<bið&Îq:vð{$_ÇR>38 í .ÔÍIÖÊ0Aˆ¼G9èÌ/ä0Y_ÿsšO©²¶ðÝ‹áxÅ7f™“(F,7¦ FZÖⱌ ñrÁDeÒÊKŸi\¢Ö¢®hN9åI—Ð×-]TßÇ66n/tv1òì`ЂÕÂLª÷‘«t5Ž4HsS6Ê_tRlØ sç-Ç»¼’¿ 2Žc;L×Å7ØyZKÛ‚˜ Õbö‹ûÖôåâ } Ö^úŸ2¢M߀7_Œª–þ©®ïB ›‚“þ÷æg HˆÄr{ i¦Ê• Æ5¢(a·å)Œ%6NÔ•«øAú=ª%ªñŒ?RÐ2ÜA4Mg8ê T“Ê{ªQÔç¨+n Ñ0Êb«J¿gš2ãvß“?ÌŽ†éVL™nÊ…¨üW±Ýôü [XKÃM¼¹1ù­¹. ŽëÈVôç€!«73íS0#•0*`šÜŒÍŸâyz.É;§Í L…£‚ÏdséÕi¼J±¼ß.[už}áÅ@ôïèpÉüŽ·¡©-‹[țڠLlÄÖÎæGp ­-§vêp>nèsìdF2áüб2gŠàS¿ºÄi«ÒîbfšGÒ bÖo o.sBóšÖ¬ÂafFòFa(¬UŒ¨ Ê֘ܙ`Sý&*«×zÓS'òÂZ >ç4rbr ‘³ `®/ÀZ6=s=J Ãf‰ÿõ­øåO¨ò²}°+«òS䜘ÓP¼ãÐT’ævŒõÒÓqî¸ï⃥­”·­«To¹\§±–aQ©š‹æDK6ºô„wKhuXUÃöiüì¡!Hþk5ê–‹¡?±¶ì-ݾ®I?íÓûîfgí¦¯$Í vSìâLTmo.YfEZü8¶5i§ƒšYXÂ`§ n”=d„¿S¨¬Öª=ãù0³¾ÃÅ‘§È.¯qÃR¤¤¬ãkÑîðêç×SAå–!J)ÄË7é}†êÅmÉ·%&‹Ý®œ¼Þ~`á‹‚38{e†YÑìJ=5â¥{ëÜ9ç«›Šlyþ&*—ziÙ£û®Ÿÿ“ih’Ó5iYÛaá±Lôª_ìêÈîˆÈƒ RnÙ&MOR½·DIy‹ªr\‡Õ£ýè¦áùmKVHCe™4Î×$ Ñ¢¤Â‘£1aÔÒ“@ç¢~±_ަ 6ÙÓI6â$ÇBµ9tI…Yw2À÷qX«VbíbMHt›‡—áSSšC¢ú…Á—ÐD;œ¾‘{‰m )I{$ø`Çfý3R”.ÇèQ¿ÝÑÐãq¥XØoÌÀY†EM}½În«Xåe•j©eÁ1»‰7i.úná>{Ó¥xÉëвà[Æ ÈP>ë(Y„¹ ž ö¯+uþPŽy†*z~CŒß‰DÝZ Êãõª kÐŒ{¬bFvÙ[xŒÓ yÑÛt†¡‰?Õ?Êk]窢ía9@Å4ú»¼˜|E3f*ž¯ü7nB †®h‚Ð0<ÁtèX¾ì7Û¾€Ú»î±t]C>¡Ž/À7… TIÖR¤»zÆŠ&gE°ªyNB ?gä‘ê)Šh ud®pVk_5•ÈæöÝbU¿çŽ è›Œ…[ÄØï󚺠Ó^QæHJöîÊND9[ö”Òœð[¾ê`´Ąѣ—M ûø—žskMúÌ@ª%¹MЇÂ%×V{Ê) Y"½²]T›Çaa“XŸ~Ì„ŸÍÕ¥þ»tùQÎ^Õ9ÞoÕÍT9´D—›pKÌ9¦Môã5lèç¯gÈUàRÎçÿßÊõv:”˜ÑBE®Î"gï‡~é6W_2WÛwצt×_´†©„ráè¦iÁT 1…#wÈ31Ez¤zÀ{b'öE50øò†àJ¾=¯ÈfvϵÜ{¸ŸåÓQÿí¾ ¤±î¸AQÝOVð»¦A CìÂ/H¼~$/¶¼õ}Åîîªæ4eÇ3Ú¸R$>5e¶u\þÍZýb´îu™Õ¤•˜Ð6vŒ Á;3Áæôë¼!ï¤øƒÃàS(øHøjû#Æ­ö &ºáz”Evz_÷;?N3UñJ€ÄØ ÒF®·ôdð$àÙÖô¼7øXùı›šÐ¬qVëÂo©.”zŸ…Ä€8 A…·ã•}^Ë;á@öø(vÇHÄ¡*ʈA#é®ïæ+YÿU´ëÌIƒ'lìæoÏ ðàzJ2dÉ ‘aй¶Ï,si~´Ràêär~@qÆ`h+MÒ2Fÿ\Õ©>ö.êQ²Ó±KôwW+zþå•íg­Dפ>Ã2Lÿ=«~"€ÕU–ËzN[_Òt¿Ä—ÓK”…b<+À7„ s)OÖ'?a$~›5 [¯îÙWÓ%i.FMäÍ>vÉ3—÷™ŠýZdÖ;æ„õK‚Ž[/qÀ!ÕOX€££?>┳îCfpÒ-ŸO†[~=r ¿ò¢!ˆ"Ã,Ù¨,#ð DÑÉÆú™$µb<8Ú §ø¯ïköþ+ùÈçSt뼕¤x@©r·ã·èÆCï}ìÙˆwÙ¡ûŸI99…èÚwh€¼ \¥–9}Í&Wš <#aªbØ’£Ð_ Ž„ENŠóÅíë¨ùzU£ù¯Ž!Œ³Q«¤ ,„ÒnÄ<.?3Ûߎ¾!N‰à$Ú±¿­cñqd¼Yz(y=±ÕÕÓYÖ–¡Ô¶¯ZL`9rrU=‘èv˜‹êŽQðÆýûœÃ@ر| ­²ÈÙ*y=¶GöDT`S;&›/«j‚±O;&Ë™­ãïð!6Š«(Œhm=¡õ ŽLØGÁ壙zÇ‹v¯h°NáÃWçßÊYå­è@)2„ʪҾØ‚!‘²!—ê´½VζÐy¹™¢ æI ±7pOIÝ'Ñäi벂l˜Hó¢XÝO£0u$ˆšsôÍ"Ò‹:uíÙ0…]òºj3%°3TöM‚P©¬Ì„‚[Àdäo=wëd͘TXG5•XT*’Ñ•z–U¶Wmb×OÿÕOû.šøëìÎŲK“¥OS¤îú£´ã¼2鬹³LJòÜ%.£å.Å!¬þJˆá‡w9ú¼5fRO¦Kù´fnr¾xŠc)è&‚Qqb3ü>F™x&#.Ñö¡³~Óñ}àØ.ðá]þÏ=3j¸M4‰{Ê¢ýXHi=¾¾ï‹}gÂFç¨o$€³¡N®XšàbÊÚõ`ØG3ý…$Z’èHàó *IO…eU5 œÿÿï“ÁŠ |½u{ÐHß8(9®Œxšc9÷Óm¯ác‚H–Ü+L…!&§Uø´™1X‰80³T* ¶nOMØÝ´„ö%¾µ~(@]N‘+€´—®Õ‚‹Vºîü °Ìº¬rå“rAÄ"ª:í8ÿ› ñ‰­ 6œ?ÍZ:÷ßW.WÛë< W$ºët©öÄAYÄ'3ì£×=] £µºâC‚Ë:¶H5¢â¤ËÈÙÔ¾Áˆ›Î!×$×~ßgò*¬¹ãquäÀù!JzÚÉ7‚§UyލÌb°Á¾¿8½Vr!Õã±09ãfí(ô Ý!t-²ÌËgT„ÿŽ ø «Âå•ÇØT9xafµ-;-ì¾kue·â³cóbÃÝÁ=el«³uœt™ÖTa¶„§B߯駵í¢a†W‚#Å´x¬A1ëç°ú­±›ú¸²èGX¦¿’ñÖæ¡¯¬27äuÿºÂÔp_K‰í‰„èmbÚŽon”ZE“ª†Ã˜ïÂôòý©ö« q°Ôò£Ño$âÜ«“ çr)_6’ZÁ¯£®½])c.?»âÍ%Ji@_ÇOƒÞxÞhÊ‚ÃTÍÈ%‡f@õK pª:BìÁb=25<×hJ6ÎôÁâ®uŽ·TÏNÓIÜ Ovú3`¥ tV=«m4©*pTÒÉ#‡Y?"ÌN;Žotgjú•úne©‰oÑ6íçeJÝ2ÊØÁé¿‹ãè‚Gˆ¶ª»ô¼hÛsݬbF‰YÿŽp§SÔ¦A˜þ”KèØAð+™¾œÚô õú`Ÿ¾Izëù°ÿªé¥v«Ž¶G· –#G7Ýðêw"ëB_9cHbl™*ŽÐà^D¿9O~ë‹8hÍk~’€tÌQ Þǯ®ãåJ±Ï-åÁ‹5j  P &ˆÈêkJñ‰{6ScÅ[ÃJ¬g"aw:§ÍC¶yÅrö>è±VP¶ñp(ñ†ìS.¯SÈ)À骋&D$¢(¿‰Ábëhêm±WLh¸Æ+Ìhk“ Q§nB+ß$Ö÷ k…·±˜ƒ¹ùýÕ®'&äÒ{/ìR/ .Ðà…ÌFG¾½5²uór½»"4vôÑÍEá8Ê–óõ›Á$;E£þ3N!Š©Š=ôÑTfs …ä%¨¯k§…S/j´ÏH‘sŸÀpÜʈҼy‘VRú.9¥Ž¦4vʤ'!’º˜bhd9?G|¶Õ·‘e™øýJWU2¬xÇçõÐeÏ]÷„nÜCdž©´˜â;VÛÔn»®1«ƒêí¦Çü¤È¡zEå_Œ]æ&QØÞk×MÊ*ìÎm@åi™«ÿ7 "šâÃèÏT‘¤Æ(}~j#ðÅ„‚µR®@±§^7ð¸z7aü»—ƒAÎ …Ë2lw»Ý¶×YÐv/Kj7ü®õÂz:‰ …e¶Ûd(°ßÜ\üÏô9¼ŽCU=„@úY‰Äe§ Ngî&È Û HfŠ)ÁüÍk#×``>¦¢y\M@;eÚSíRÄ…‹Sh@öèÅÍ5½Gk—ŽïÂÒ®[Ô `¿ vÉ|,©4>XÜSšóĘNÃÄŠa ñWšˆñuGûΩ?Ðá†ô;}1Á›7B¯…0ÿš¡¶~ñþÏý‚ÀC6Â)ž‚^‚P=]L”JK[‰ïzM-­©Â–¸2v9x·›àyLƒ¥Àgàï·Œº;èeIûI ßKt„!|/“>Jµ}ÖÇSéÅS>6Œ ƒ@þP)DÒ}7`/ëA"ìxªhÒ7§ÏÜɉR.y‡Ôj”3Uuî+RÒß3ôT&p*ùîa°nQJ’ìH6˜ªzLbÒÌ¡l¦`ý϶‰×ºÏŒmïË>‹sT›®CÿÐ bõ¯ ;œø+[ü„O±Ú¦=Â48V1ºç‹5/ôá)ÕŒ×QÍÕÄ oek€êeÞb3ÃeQYåfN+ñƒ™ìh=:ÂrϨKßGq«²5òjÏk˜Q?ÚßÚ YЍ]@ßS†áG XGéV>ɤͬH¦¬_ Ú–¥¼Y,nÒK*ÚÖb÷Á{Ë‘0Ï}q˜ YǸ8i)•î¢x‘z è¿'‹a*„õˆKõz_â8 èÚE§ý4Rüñ 1ŸCÊö£ö™V÷U1ðAaVgð/·µƒ‘ja^ñ£2«OË mÊ/"MÂ)‰l¥ ݸå:˜%4žÃéªËnY#J&@6Æ{F¯•Ÿym+(uìÿ„ê_±ÒgCAkm ºz´žÍ”BI`›Ðþyðóü:ážLŽ 4u‘°Ÿïˆ²›Å4•ÂO®)Š2g¹B¹Û  õñå²eot%5> é DÊÜ™ mjœ¾É GÙÙ€—ç^)ƒáÆÖáío‚»A…(ì9‘UMõB¢êî;ƒÌ’–ƒêdúj¡ãÀ‡¦XõX¸öh ³ÀYéÇ›¤¡íßj"x›öe±F€£¹e h׋Œ…ÿ?0¶ìQÀ›OTr˜æ^ã×´‚W©Ù;ke«Oñ¤5ï¤à0yw¡_ 6)¬õ¸Ë›lÎÇðC–Æù•ðChÙáÔºŠ»!7p¸ÞQ÷¹Ùç¦5ßµñ¾… ?I’އD=oàirw¢aK¹©Ý ñŠ,(5¦%$Ã<ïèöÍ¡½\fGˆ§Xl!:*Qï\áNN劊„z 0¤` zR¶;Öι<Ũ0µÅÕísò÷ÑYÄ[(muS‹HÝIW~òàèÙÀö@%ÇnP¹8«x@R•>PœÖßO*ˆ¶k›ÌòZÞYè8Eè*YÙîFó3b“Í+êUÖ¸ØÅ©.7g.Uv^=zšPõb•d»WwÏUà'­{Ž »Šº ”^zç³2ä*ó*ù‡µo° q¼K·w*ÂÁrýß÷Þë¹Óq’#k.@bïŠ5O—f(WÜriãI/¸_–|ËŽÔ΀` %£áùº…¥Àí‚ç[^­ý 7®N]GN '‡3ù*»\“Ž °Ì¥£ÞÌh÷¨µK®Ö)ÐòÛjY3:­šbm3B~3þà;©ñ¼(Õ'¿µ{ú?•„ + 8DÅÉl?½ýG0ÕXQЄJ@_;ŠÅo³M×½²xkUµ§çµC>.LÈ“ÙBÁE Lü֥ƟïÂ[`äS"Ì .eÑá’” P• ÛÖbÅ_Òú‘E…´ÚTê‰)1J[«Usä¢ÄÏ«ˆ²™½®â*r¯ µe)ß-(aõQÐ`;Õ!þ%úÓ*øÅ,ö;êíìJ½›ylÁi9?”¹uyÓQ×!H©Rwb!%±]D0Ý>C²š&,öä9¶áB0÷Ä<dð‘kÝBO‚µàÜåúÀ”Ñ1´ÁB{¥l]˜û–‚·‹ÒÆž=RTÈdÀóäX\® /™bãöW13¸Ì®÷ܤQ€¹zˆïÚßTRî1ßÌA¦§‚ž?l´ Ë¡„“Ï3“w›= dù?ói’Œ@›¼ݸÜÝΑh È)3µ»ì!Põã[¨¿`ÊÃ>4,šE”­J-ªÊ.’ÏWBÕ®é+Ôf Ž¢ëHMðŽnü_,ç·eîµ'Ķœ¼U¥ªôÖÎÊJ`ä(]7šÓߤS®†ÎðXçë´»*æq O¡8·ÿÓáÞ™é .£¼S2t_Ô]ø„S] ˜yÆh DÚxIrþØü£–ÀXÎ%œ{ßCÎÿzñv<ÉY­&¥º’}üĘCñN¥æý¶‚v7¨†ß›tœ_RBÓË%<6¨LÈ7×k+¥ÄuüF,ÈThÕ›Ú rÆø:á7šä)tKEßVl:{m }´Å7œ£A¹áTËðmR üb>Çÿu}*Ĭ·ßÙI^&˜›ö2†®× ȦRn¡FF¦« c ¯ï++—£„Ën¢]äÛeð@Ë.ˆËðdybaeJ­ÿÂsv1X}¿='XÐ)þÞñÀ㺮FùZu85k¸&*”]Ù˘ï²奆ÐÏd¬[Ì}5ÉsJŽ%³³¥°©¹nä3áâÎNòÀhôÕI·ÿj‡<»|éWèVKîûÕP—ÙÃrÍp"U¾BÀÔi £Ø’ø:"dÄþ»™gü-iòÙ6œ­Žu{¥1.Q–[*Ž5˜É ´ú_Ö±SúS¿½ô‹9F¦?iÞXއ#—ÖŸ’Û«5þ~„½£u_ç“2x‰èZËiMkDR*ÕÅcRm’7h;€ HˆÑ½FŠoT‹l¨\ :kVzzBF{77`¼W§/ªÐhw}4z‹`G=O°ÊЬKú5ö_¼‚NâØè ¹íTËFmuðåÚ°!E+(¥[‹n£½³[GÎo„÷˜Uo1"xË«jßä9‡ÕÞìÚ’%ó ?‰È4›8²z‘tNµ¯|ðíÛÒtJRå“W nÈä›ÔÙy1N!½Ñ8sQñ2b‡†°w f‰l»<â‚X’Õ¿Ü7©!Ñ#û/8!6Óš'Ò¾~\ñÆÍþLiÙ&ùçhåØá„|V W}ò$sÈžÛŸDN©Ú'z ¼Ü9|…7¥üЙPÅ yF|ísmžáø)ªâF]úFêæ«ècׯ½¹  ¹©F»¥Í2ÕZ£æÊååz:ÓÞÔñ뇘ñdŒÜx²]ÈÖÆy¡þ–åêÝæ±¢À`Wõ·±q|EnٖƹޞY¨w> ¦=0,¼½€°„º?ºÁŸU:ì§u.wÌŒ“ êŒe¬·¢ùƒâ[= åRû9S¨qëlö†}á+;Šb†ÏmÏ:4æª<ËÌÆÎçÇvÙ­£’¸ ï£GTÄëiRê°áÉ÷2‹9‘Óç€ n ªh9Šn(þ³°ºøÆ“gE5…&æfê§H£†ç?'ä€Â]¼¼§ êV­Ÿp3MÑãF›µD‚Ì®áãÈ&.B JqgDÓÑW§—¦^…Ÿš-…iž#»JG(5ui®üßX" !¬cÓO\z"¿zó¼I &z—ð¹`Ò¼È+M¨¬’»Ñõ©S~Ÿè|´-N\‡³žþc¦N6—ÞWewzš²TcwÉ©¾Ò&¶•²:Œ<ǰYO‘T¢üÒº±pž Øuªî>çÇ<ÖÉZvÍ äo&Ü­±nO¸êóGŒ!Iä›e{S?µu²+J·¹ žJY§'wsÁB*;€-9QsŽR7vc N|çJé .raù_sœx¤ÒŠÝ±1ú ù+ ™ÿ•{i¾ßQlM1£A9 ‹¦kηå;æQ•†•îÕ‘38;@#Žiî›Îü‚Õ½‹ÆQ½-z‘Ó\wí(&a}]§»l€ŒˆO8cä†ÕÚÿãS’žãæÆåŸÉi‘¡}§µ_ô €e<Úaž9‘3ìj*ç§ ?”®iæ#@_KÉeâ×ÕÈ=å4†Ô”9Pü¯¦ÛÐ ‘ _/o9ÝÜžœË ·Æ)I•þsÈnfÛ™>"ßn>¥×{Ö îkš.Ãaëñ’¯VzûLgR ‰Wì¿áTwn*eÄ hõ />4³Øï*®ÚSÉn»&Ÿ;¨½ì( uœ‹‘4&ºÉ“wôøMêB¶Pd“J`>ß”@ú†íÀêBb¡|Ì)팡т-©ArB&}s‡Æ—4É_ã…óÄ+×´—µq°`Èÿ– tƒž5ÛVùu…‘êÊ訶œ #XÕ’ü6Ð=åy(&}^¾=Ût~¦øÄ Üm*GxùŽ½Â©†/Ü‚<«"„Eîf•sýx7¦ñv~.»S]Áá†KZÞ9¸ù½®Y½Wµâ¥FŠXt)~K~»¾IŽïnÊß…9ò`÷ÁØÞ:YxÏJìnOlËq3äÅ@zZ”Z§È4$'§Žgêóß]§1€”MŸNÀ¼·¸IËžá´Ùï¼ÐÐTb×8+kðÒ‚YÕa¥`”¬§uKEëÔž ™píŠI"Ÿy¬5ò:w/©tÏÓëz÷$Û‰œÑÈ»¶¾™,š›Þ¼+Kúqûr™"ª±ÇËüçç’®z 'Ý5‹®sKp@ê…zG&þsº˜cîQ³¥XF²åçËPå>–7Ò (5ë‹zkdüGÝ1 H1N3ŒÃogÛÍsEîλZ)7L‚Åi¸{PB‹Ös%ìb‡ÈõÄ(KÙlÊÅKÅÿ{»Ky^ª/$Æ ̦\¬'®…¼ÜÊÆá®%»Œ´ðÁŸ/®I©G‰^ˆáâ.We¦3ù{ñ¬C»I¹¡ó½%Û£Zch¼à@F´-hŽ&¬f¾Í×åbWgþŠ/”p0A’ ²ÔÔ'MFQÁFmcjá¬‚Ï {S‚¦ƒÁî·6ºK &ΕæÜ¢Oç^뻩â$³ÀiRô¿šøkÿÝvµv¨VA.ãû5*À}TE_;R/0F¶êA/GGÊ|S’¾àd8Eúñýq:‡¼-ۃǚ 5X檫…(H›Qr,¸v·õ"ÒÜl¶#£æ‰Î¿S={uÜ­X}]…ÇúLMõ‡h¼iL¶3Þùaš4à£$¾ÕݽEæZ[‹Jè×x÷àD›elýæÌª¨8jžúºvEw¼Õ´iDœÇé@ðV”H&—è¶w”…ù”œÆ×løqŠ&•<‚¹îÛ¹‘ÿ?Ö=ò)èzœZ!‘«üµ«y2¥µamÖªlO˜ìÌõN;m"ô±Ïdÿ Bùßze;/Ùo1LÎÊ7µ„IâZëNÚê–'åEÔyñäfBÜ3¥ z? 'g'­õæhØÏŠ×á±cE .w};ÀØ3ü¿MYC% Z½’â\ˆ|kñ}Û´ÝTÙxžhgvÉdJìudö‡©‡âo_“Qw¦Ìà;s»2@ ±´’>¼vtæ† †qdµÑ¤ÓSz¾G‰Ù |œ)mBq„M²d«ƒ§³‰¾Õe˜ …´ÙOµIµå¾ƒÐk:·þz£PÕÞJîR–Ô+ÒŒûT"™»ã#t·é%UmÉqÅÎ4lÉ£»¢ß«Ý•ézs¦»éŽÙ—1 [€]šH Ø© L#ìVl¶Y}'Çmx ÆÕr–Ã7&âÛý‰C,ÚþlôšlLªnú¨gò­±BœM“Võ(iÁ*±M_;˜­ì‚~ňC™³èmH>™áDbôŒýùÆ[ÁûÌF¿ÃùýŒ÷Å#DþåI`ÃVtõª´ËÙ ¤úå½Ð·þt@“³±*'4ž¬Þ‹ðò¦\;ΙƒJsö§ñiͯØâ¬Ø ã!‰ªØi1õ»8×>>ÖÛ1îïæ;@Õ‰dí!Ù»,ʉf“æÔ¶Õùð›Ïܘ"cÂïY\3Y* ³Îm9¶.tÑ÷—âÛ–PN;…~o§˜ 7R­JÚÕp×òçßÀ“½¨]Q”8ž1ëëå®J¹Y¹?T]¶zEâ2m$É*#vL¢+AòpÄ Ñ+*3TxØ`TóµC#üo sæå|'±Ú·ö‘üû¢“èÇí`,¾&³iˆnÂÑÐtAiO³®¨±¨¦ì‚~ňC™³èSÏʌ̴{ØIb¯D³Æ&—è °õ'uˆ;ÐVÔ°ìÔXëÎŽLª…Un]ìš÷<¤7©OË*вJßÜ2TáB©fÇ"é†CS~ŽVˆù—s´7G`¾ïóúE£ š¿&Rm=ÜÉšÊ2+9P×÷†,n6RÙTûG›Á·ÚçhuE¹ÂºD´ž!„¸™Ä¢¤¨Ÿb&DA^GzÌ!K¨G8ŽÐùÐ¦Ž·¥$Á4.b]ˆ’è‘ÅrkfÒyA…;ûDoC×o{“—¿Ä²¹´Ô Ÿƒª‘hìØÕ®yQŠ…¾IÔ €Ý´Ô"ÿ}ѱE4Ìϱüx´×Z÷ƈuÈ)Pp€eaQ+ùù~¾rê㷹ɼÆcªŽÀÙ®˜[Þ³ùCIá­é­fäæ÷ùƒžö;¿Ô$§MD”IO¸E d ©çë†2,¥o‚ Íóü7†H‚T€³ß)Ο-BôktÍöSRVK„õ‚Ýs]äëÚõ$‰äàÃóhµ_œŸjÐŒ¢€L–Ã|’Þ@ÐE0~Á8TY†ðj²Z\¢9²,Xæçʼ¯ìü=$·qôŸS¢4óÜ.Òº*ì$µVá¡Ë~»f6hÚõO77㯠«RÒOÜ´õ†Žµ^ üÏï b,þ®Ü®`Í×G-×%:Šrìðªìõ‹•¥kß9¾)Oò,¢CÁn|2¶¨¤( êÇíàÞÁ<ÃH]9«Z,%¸Ö¢ê—èÉ3‹–ýç&&jdß¶Ë·¹:…CêKtM¡¯-(Ö´lßµBöü~åéÅZµ=ÒÕT à!aÀ•á‚ê°çs:*-Ëyþä¤H›Æ… ´äý™ÈIP2?®®ULh¹ñhXJy&ñ´+ËðU‰ãí ƒèP¥Ý Ÿ :jä¹àößëQli¡¹?‘} E)#I8Ðv4‹oã˜ã‰ýÑâ ØÒ\¦­u÷äïŒïcö jf4Ûñ£ÿpã][\Nl™Hɤ”!ä¥ú„lˆòÒ·MÕ¦c¸E»Åؽw/ã]¢ÍÑû€ô×0“)8(Ú #о*¶Wvß!n³•½À:h¶Âd—L¢¥º>5b>,[z»í°âÞ÷¬è•èaíª³+Æx»:þî–3ТLx-Ü 0Y8%‹Ó8Br!4Z,Z˜dëM'È‹%Æ\èyÜ^b–¼ñèž*K 1¼…¹õÅЪZ´ù‡v1z"PI±¾DPµ®Ü~BæÖcïx•²ç¹hÑX'þd¿ç —^Þù€8ŽQ-†ŠÕÎÆõ'ºmЇ»óWÑWRjw ç#´}¦ì=¡ ¸÷¨ÃrÑ*ê<ýf9p¬# 2Ÿ4)qþpRc‰°v¤”—[ã¶û1ÿ©zŽ%àz=½+ð`µ‰O ¡Yy%¿ZÙêt!˜PQN©?WµFl´3 ¸2T~^Ÿ:RšUlnžÇfï¯+.?C™•Ýz-Þéô6ÐO?{È~8Dü¼`äb¹¦ àÃÜz_âi…oAêƒè=#NfluEz¦«°×±¼­(¦oÏKí¯Ÿ'%÷›|lP9ÌÖàü4P/Ø ?ój©|Ÿ£ ýöÿ5yKh ”ƒP’ í8%«¥›Y}9Q‹>ŸüUqMkŽ…Y&ÅzÚE™ÁÈE僛ƒ‡Jyy”@ +S\`~är]¥ ,‡zÉ|Ý2Úþ³ q+9wMa$è ~ëâº×ÝÖ:3KesˆÄ«£ãä¶Ÿ1™³3–y½™EÕîümÔЯ©£{ ‰}a™0Ç$IÇg¬U«H¿<ຒÚ'ÅÎÿ Ê“à™>ÂãÃJ:Ç9#0Ê´`hóíß°’/‘3^-6"mçÐôðÒð³‰/6´­4Jbd@uæé›<½Ü±d$þ»¢é·© ÆçwaQŠ`E½Î»bÎÿº¬ÝyjRp±q)Üò^A ó+}i‚VŒN½`?a>ýü_3¾Ç>è_¡åÖËYïŸ,Ç^,~KSVƒUèò¿Ô0ÝßæPrëYœ²šLw” ¡fyj¿,0éÊÛu|9;À×`>xí‘y^îßbK²#“ÝFÿ“dZ½Ÿdæ¯bRÿÓ‡íóbûIðõróÒë{¾u܈†Ê¾ŒTR›5áw¶ßsÄ»ÎEn«Žï`½~nÑÔ2ч Ùáü3âgð¦ý‰ÓLJ'šhNåÉÖŸrÙNn_´'»àp¾1[1,‹é;º™ÎÉ=c {G¼ˆ“߈E½åçO–È't3ÿ†——²™Æ;<Px°@Üìë¤I‚g qíÒâ€þö)m'ãÖDœ+ånú^é»&̪S 2àì4þñ€ å<õŠ’äžcY’ÏAºÔHª1®ë¶ ×^‘3¢³¾ý~ÊÎæÔ¥J}œ-˜ƒ<ªšÈ‘D®œÕÀ5¼ÈÍ„]𚵞Ïÿ„²Ÿz7ô^ú‹°|DêR¯Ì‡8ŠÍy0º`>QûåõŠØ”ì^,KˆH½s¬àÆæÈ $ËKÒ…k¡ºÃ«6$„ZVщ¶øqH3Xá~ÀjÔ™¢ÞneYa®G1g¡•ïp¹–/¹æQß ^Y_R `ïͺ›°-Y,¹æÚ¾·ÅP¯(óÕ¥ÿIîEÆÎsÕ@uçz¢ì q66€B™å]<Rƒjü½ôKoÓDï%¶‹ã5 2䥪×0ì"ÅW²²ø³¸šyÕ#AÐdB²êhìœHÏ¿ÖBL’¾Záþ‰²w=S‹üXâÀ nê£<-"qX]{Ùÿ‰š¬µÅ¾K<ä8ôœý ;=¹Aõ® Öi%ƒb‚F÷_‰E^n2ÖÝÓ=!öcïXøç 1ÑÊ^(÷¾1}ŸP4›mí½«I¾ðXŽ'0lŒÏÒ€ß)? N‰œKOе†B ²#lTP TFébÀ»µ™oÄVˆå’¢þåúq Ãè‰ý  !»Nä¦z…YÏM*ƒ~ó µq(Är"¥ŠÐYòH¸Z3oÓõsP!²D¿#õ¥®—fŽéßäóË€’ÒqX6ž½3ûÇ~2’»'äóów{浪#Ñ¥s¥³2Ñù=l¾ç|ñ;K,z¢ØH\¦vf—Ù}ÁÓçFuœ×u”³k:œªs˜ºrCTá[O`֛ܫÓð,Bç›ê/RR|^~•Ü6%DþÆŽž=ñ¬€XA(0«ýnJñß—ÿîíGÙžu(O‹r¢`RÈ¥e $o¡›„ö oïÕż•ÝT›stõ%°5ö'ì¦ü| ©ÌÀMßR퉬$D•ÌÉÒÔ€‘uqèGeæã9–‡¡Õce5P‹* ǵ½‰¯!dã7)€­ m½xrñ²þægc" Wž p6.¸Þ‹+^¾usÆø eð04;œ£ÑŽ’¶ñxÙW@lX9¢]ÌŠÂ=ù_lêFB9;‘_¶6ÖFİ\"ªéŠC!dÞm;ÔØÈÃW•3}ŠEjõ\È 7þV/ÂRJ}ôœ;;àAZ¼Íêé×Õ+뎇ÓQß”ó¯áâC—³N¦b¬?ØN“IøÝËcàq@ÂWv\Hûv"öƒ‚$hŠ{óÑ’ƒpÛØ'‘1ÍÓ™óK©/WTeWZ¨CGa´1HÙBªÓ¾¤æ*€âƒ¯uÆút¢xíòÆâ³^¾mY嬦swÌhêwî)ã/U¿ ¡"#Úns2ö‘CxÕ†¯3’He[ˆØcñÊX#t0qøÔ$Oêâã.ÌÓ=ÎE¸ù‚á h]O¤m$±]DQ§¼nH¶¡9ÿæÏdx5˜lŒ].ÈS€Ë_ùí.bŸ««¦Nóø' 9µ’ã”ÿ_€WR^+‰¾è;;K'©Ód\l‡Û·ÍÎ;‰û˜£k/ǰt¯Îopî³)²SõR>ªÃc”ƒ™«‚† ¨ <—í»!Ñ mÁ¸buòÞ<ÙçÒ+œ”x†>:Æý1’ø9E¤u*Œþ4²@³Ñ Ï[‰ÎPZ‹mÛjò64æD%÷ÌZn=ÿ]Y†Œ}À7–çÔ¯æVfF•°,f^ñX5Žõ1›8F•Ü™¢«|ÇPü-„“n¬ÃV¤.A"–Ñùié{¨cZ)Æ•ž[ÈçC7 +òÏï>?eJa“º\ﮦ1¨c@¡æ3)´Ö#Êz» €âä ‚¦rÉÙ‹pë¶Jr#-/ÐÔ^‹Äh\ho"C®S.OáCý{îÎÉêd4,æÉó¥±AO©³¼^-v¤,ƒ óHÇœÁØimTÛ)WÊþƺŒÍEì+ #˽¼Ú°C©Ób'È=té²ãùÅÿª¦Ñ¨Á •"éVJ>nÔ,jì?ÒÙ­1ñzÆÂ²ÿþ¬v¼z%Ã3&g³y½zkõAy¡—Pe1Iâ­X£ë‹Ê;Ñu£b–ÿáÓWe‘¾jÉB¿ù§·ýRHæÃ4XóŽv'¯ü˜y[‹3¨†œã•ß™»vaOÁ,Q^Ž’-»« t”½ú7D"f":4­ê‚‡iŠG™¥+ü5Ct£ë \ÉI ­”¨„¾{€ÕÚ¸Ñ\Ú„ÄgÄÀ>í¿£¶,²`–Ðõ6/ý˜¦lP †Ko9èL…îWpÕ!þSãÊa^0¦n´ÜVfnÎÿÏr_!Êß Ìwu”„òᥨGÓÀ#‚=%l·­}4øHO=º¢®DEùî‰I0œº¦NO²d*—ÒâÒ<]Y8 „ÛÑZ¦#’G±ì„:QÁ‘› wÅÊd~¬öSÝS–²%[åé$‘ÿ=jTßa:VȪœŽüø“Ü„€° ŽŒd“…•È- М•7šÏïC‡Ø(Ý6 ¥T* ò W¶O 9ÊR Wä­ð“òÑåÅînÆÔÍîñþ ‰Ñ0¸ú)º^Âu¤‡ì*$ìÉHèŒ+¾“3¥wƒÐ:q(œfà‚þ…V„ÓôlpWc¹ö±òðÑ‹ôõ’Ÿ KÀöÿðfØë®?²…°t' ä̳ÛOB¸+„áÑÁ_§@ ÜEF¿D61>|å½y“DÄÃÍ Çê-¼Q´-Ò„íŒ7~DŽÛ°‚… CX<³5ah*a¡ƒš&²Ô àØµë˜÷Ó(”y…ç[7#¯ øíâ#ÃHUp­õ™C²Óóc·©°-žÖ‹7|ʼn™Ø §ô¿‰t”Ì‘O¾ÍYeÊ?·$ÞSH@‰½R>º–£IiÃÜ90·æÃ°COgZ^ Ë endstream endobj 167 0 obj << /Length1 2521 /Length2 19150 /Length3 0 /Length 20645 /Filter /FlateDecode >> stream xÚ´ºeTœÙÖ5J°àî–ÂÝ]‚{p× …S¸»»»kpw .Áƒkp·@ЯÒ}Þ“>}ßÁ€b.{>kï]cTQ’*©2Š˜Ú%í@ÎŒ¬L,|9yy;+ £Œ³‘¥ €‰……’RÌhäli7rò¸-Š&ÎàLG /%@ :‚¦c€<ÐÙHÍÃÈ  1ú (Ù9939Ý@¹%H N³³÷p´4·pþ]ƒ‘ñw¥ßÙ¢LY#k;7'kK€È Ë$ÏP°s-4v €1ÐÂÈÆ `gPjÔU%TTR*ŠêJª´Làª.öövŽÿá"¦ª¦.ÅQP“5Rêªj¿ÿªA`þæ 5°ÿwpàïty 55m% Væßk°\ŽN–¿Ûþ‹˜à5pª™£í_ 4ÎÎö|ÌÌnnnLæ.NÎLvŽæLö6ñS³°t¸Ù9ZÀ¯Ž@à_¸€LÁr:[ÿ.ðû™ä,M€ 'àï$I»¿¶`)ÁI`»ó‰…pþ]Óæïp€ø?m,ŒœþÊ•SR’ØY‚œ # 8ÐÙÈÙÅ `ø— ü 4¥þ›  æâèø»‡üÿ¹ÿÛæÿ¨‹ÚW¦gãåcäöï'frqòü‡6ÿ»l;“¥“³Óß3KàoöN¿Ÿ™%è/›¼ˆ‚Œ¤„ª£xð@Œòv`u@LÎîÎEÿ®'".En€<¤ S1;[[0k'„ßò‰[‚ur¶sô`þ÷X[ƒìÜ@^ÿ³™%ÈÔì·î¦.öÌê K Œø‚Á&„?6s 3€tÝM,˜7ûkV~›Y›Á"øxÙÛÙÌŒlœ€>–f@ð ‚—“‘+àìèôñú§ã+7ÀÔÒÄ<æà­‚ðWu™€÷o3˜Éÿ¹þ34mSZð5µÙxLfÌ vÎàq ùÿg—ý«—¤‹‚‘-æ_Šþ;ÌÈÖÒÆãÿ¡ üM•FÁÎÑÖÈæ_>K'IKw ©’¥³‰Å_"þmþ»“ÈÜ`då`baçbûÛ£þ{GÙ€G|üXþ>½À~.îùÀSib :9¸xÿrÁZü‹6øü& `UÐQ—–¡ÿ÷Üü%2±3µ™Ø8¹FŽŽF,àa`ãäx±‚§Úèþ×´˜™@vÎà€½‹³ÀÌÎá÷åâ0‹ü6ý¸Ìb€Yü¿ˆ›À,ù±˜¥þ 6³ôÄ`–ùƒÀ>üA\f¹?ÜOþ÷SøƒxÌŠÿE<àîJ¸ŸÊî§úq˜Õþ pÍÿ"^02úƒÀýŒÿ p?“ÿ"pð®þÍʦ`úVøG«ßÈÁÅÈæ`’fÿ…œ`’f–®ÀøÁó@pG‹?ýÁªYxØ[AÿˆÛ,ÿÁRZý‚×fý^Ü?É€Wgû²‚×ò§2;¸0ÈÅÖø÷¶6ÿGCVð¢ìþP—°ýc¬àÚÿqƒKÚo ™ó+ë¬ÿ5ƒ¹Û-íþ!(+X‡?œÀr8¸Øfã,ƒluüwú#ñotý‡d`MœlŒœ,þ‘îü‡'˜ž³…#ðŸ«ç¸ü™ pÍ¿®H';ÇFåuýkãö²µpÿwñøC œê tü[ØÿÝòJ¿o½¿Žt–?gÀÞü…Uí¬š–¦à·Bÿ‘7rv´t×eŸÇ¬`;øçÿþÓÿŸ”®’d‹ŠÚ¹{1rð²ÙÁòð€¥O7—Ïÿ¤šü}1ÿu€ÏªÿÿoEè4AXZ°3á¶Jk -÷•(šª€¡äe:©ÂÔ’M€^Êœê ÄÏß& ´øgQÛÉIóéû¦€J´(ƒ±m^Ö[“«¿Ý˜* ïùÊû¢HˆŒåi0©fÉ/úWt‘ÑÊæj—rÌdµ%´‘ÔÇŽÄx;ºŰM¾¢_¥’éU´­À¸}šcmÆr´Áp_D#è$\œê|ãüú +.Ú¨Od‰nÖ°0gLÖ¾·M‡>­PMëD? ^‹ÏÛ 3¬Ê6‘¸mhtƒ½ŒmSÜÜéJßßÍ7UôE¼k Š&^7w>|¾O*õÿAV¶¥W±!§ók†LI…ç8UÈ!SvûYâ,4níÂÓÿ°„ª]lâ¹"gß=+Æ¢/&‰ž9Á1ôP *kφ0èG{–¸‰í0r£îñ¹Iþ꽚ÿ|”]·I·†FÙ‘F˜™‰ø=&)@'MãÑ\š@ FÌæ1RÆ@:jkožÛ‡¢¯•€2V¯ÝCÑh%ŠZñ¬µÇrz8aÌ’{ˆò›Û‘WÃMe¼ÒˆòšNãn´Ø Ö[nJÕã~!§£š‰ _ìù{jKK‡û‡“zÿÿLø™7ãìnˆHÊwy|™.ø+»í)ï3gWäRhå»íÊ,õF¦M›I#?ÃÎ$æ²4LBêHLo©èðšÎä.Er%(Z)8›¿VTؼA|I›…(ÞÔŽxnº²Széú3†Fzb£ ¡†‘N‘ô:¶*öý‚ÑLßàL´¢ª„F%zR´rÌûT¤Ü•C¶Kií¼m\/UAâè8z[ÞWŸMñö…‚yH{ÎÎ9 ú@n±¸Î½Àޝäbæ’3&6œ¢ØlˆN§Áz”4æ '†“‘¢è$]-:³ðDýêm¼™˜º{ôssã 5Y9]`´Hf¤‡²3S¡¯{ÌIÊÙ “w.ý<ŠÏŸ2¶&6%ï"îYº$ÛãåìEÇˆŽ­g¹µþ½Äs´Þ:\˜¸—Hñ6å1x ±À½ã¤Ís÷«„Ë IIZÚLlÀ,&ögÀÔ¬«xÍs†˜¬ìÉF‡¶©L6ÕÛϽlŒ†PéuŠ[ è"“È)^2Ó’;ï2>¼¥·÷b!•li€rúðÕXÁaI’Y|‰Ý—_@ë¹8(ŒjÚÌÅ ÒÊ”JÔ‹Dr‰‹Û}ç²²o ÞT?+j½5`’u&ò²ÉæP 4 VðOL\L\)¬ O—Ãbmt ïuà ˜]vÙO2T<¦¢Ê®%ë¾5†7è– >“G˜8?¿Ò>¦Ç Ú4ÑÚlŸWý@@UmE“…a¡ïƒýÞ—œ´ÓKÃ[Š(3`£f'È&ø#¹Ç\c þƒ­”E[žƒ¾tçî¾bê0µs %Æ"÷ŠêôWï‚*K¥f 'þ Y"‘ž"†F³ŸÂÊÂwìGnBn2•o!#iÜû‰¹ê5©—š o¤ é.{èIžL{ÖÈ©ê•/¢gìÅ%ÝÖ¢>\”EŸã4Ï>x°ÔÙŽ­¹ âTåÇÅYó¬sB®½$‡”é\+}vðŒÝcq%J0Ï×ʦÿQ.ž@IŸa‘‘ó¼r!˜8Fé`Ö`ƒT[›5dý¸M«IwòAþ8=¤2$“­Öà.ÿ+š:~ —ýÎú‚$†ñí½OÐW™Ø¦z½ ©VrÅåã WÖ þTÓ={ Îi€ÀÜÇ*“ï&frå‰Ru‹q¨uôöÆFÅ»)õôw&aÀט.N‰¾ÊØà†v™rÇ›*”»O%®¬êûOé㪠?¸Æí­‹û§ï{a4€ÎGÔüCÉ2—¿¦žÝ¨OWÔXÐÉPèú3qP†Gv·j|’eöÓ‡ô£>¤LÅO¼ÆB„ù,Ø·Èkàíô¡y¿õ°Åv-žáœ®mÉU¦gdA#‚ »¡Â¤JWl[0Dmê;GÄÄ·Ü]±Í,±Èê¢åÂ)ÁµŽZèz ‡[¡1¿®„C…”Y=´¯íÚ $É­Œ‹µòäRj9Çy‡i6EŸ`2P{õË3a øÃ€ñ¹ùK³d{¡ Ý_½€þ+Å”ÍþÄý ¹bÕmÖº zEH¿F¡~6ŒJ„Ï‹!/% •œÑf*®YÊéYpÏtnEËÊ»uÛèÃ5rvÆÅÐ".¦|Ÿ¤\XêßK;ÂüªÜÆÍUs¸.luxÒ®.ßp÷˜œ3•|>¤ÖýD„Ј$¹„½¤'¤àuË õMœ!ý²/S;„K“›YÜOòÅ«G=ƒGe^϶Åß$–(R3zUÎûš'‘ ¶oÍÂ*â³$.LÉ©ØË'Vû02kæ ŸÄÄMèT'Exè U¢¤‹_/&Ædœ¼þá»ç0ò:»<qªN 2©5DqYÛ †—¼CAÕŸãRѦ¼n»²"ñôÂ’°vÙà +ä(V}¼2Ÿ;jDÂð8F´Þ‰÷½²¾‘r­?“»b‹ÖZåc¢–I÷^œâÞˆ/Wî¬ELÊoúÕ.²Ð¿˜n7¦»·8¤~gùõÂÌŸ„ó$â¦s>D¨ìaK1°£A¸qŸÀÅ£EÝœŽÄ¼YU×#„p>kæœ J¼‹ÐiåÐékÏdñj(8î åë±C¬Knfx–€C†ÿvÙÌ™¯Æ¿#*»ƒ¹ÅjàÈç˜ZÓ}†‘Ÿ——Å£ž?e¿Pðl$áØ6ï#v]çFòð±Äk¬.0¤3)( ½ÔFW_óZãØ“A=Þ\í ,áK¾…¥tÛ'}Ý [tÁ¡ô cܵ8ž¬Úõ¥òW ‘gwçË!Ò¸ûÕï{Ñ“nLq޶ßh½N=“Èà!*ž‰"¾p¢œ¹÷}Ø f9àr!(®ÄNP´RõëÊ2ˆðJñ^¡®,ögFÝ…‡Ôdjùªó¦ª—Ô3Š?È*ÙžI:¡CÅ+ÜBT$¶ Œ¾×ò]¬ß”Lt¡RpËõý•‘tàpF¯c<$éN ¦o¡Ýñ[@ Ûò†/@N3Ûçæ×\_ê:ɘRóv1ûÄ5ï6w¯4qTéYGóˆFº)!çÁ ¾¶þì E¸CC—‡j–Éïã>Ih]¥ï…–ÇÄ6øìÎöŒó>2êÊî)z©„…\³nÒ¿ÙAˆO…;ø:`SxÌ-]ƒB\Ï´úPz¢ :§fç¼³tmç•ÙÅÇêˆ Çs»Jò ¹Ç;ÈxÅûHÛdåͪÈc¼ÚÌ!<Ž$<̦±²5|0é‡åv3{#ýÈ\ßë‰Þä ‘Yy8iT¢;&æØâÀ5ÜW¾Ú‰+ßrÈ›àï箋MoÒrØ8¦³28S2$ÝÉ%»>©‚®Xаêw?.4š. YcÅÔuaØcÏ;¢Ð "H,oð¬°fP¸±$¯vœœ‚–þ¹Ë%%ø*tW÷rÖ÷¶˜ •^, BYô¾åþ1·™\FÒ! ´;ÀH•Òú1ö £êŠpª!„ fO˜['»BEÂÌÆ;åj4%ƒ;å•Ú)7>£¸1ªQ‡úHn?»¿#óujyðÁJk ðŽÆVPæ Ð‘™ ;;h€5PÀõ0ÕG—áG˜«×ËŠÄFF»ûïñP´ÍEÈ"Œ~šß‚Ö³HÉOÑsÞ »Âda!¥’g±^rõ~ }’ýMfE8—ŵ@t°ééKHª]q–·%%gÞç´ëü•rß3³šÖõV$„â?P³œÇ·æVåFݼgkýN«Ô3ÉPiáämæ„JÙ“}K #Õ‘;´:ý°tL?å+‘ÉžššsN«`ÅɾÇæoÙxw ¥¹Às Þs‘"^ŒÏîˆð¤Ölší÷Àq–·§£Çδ86*ä%e†iÖ.˜Z%Âçl…‘»8Å1Ü!v4|ÔH mç¤é’™Iµ=ks,tR wßÊÉ10^! 8âšýZ*qÍ»GF$Yyª2½u|©ƒgSæ¥ÁG1Ò6¦È¸²AL:pj’±‹2X;ŸÙ±•YyM'Þe“}4ã¤Äíãó8}ô7y$¹èW ‰BV^G¾ªvlrÓXгÊSàú¸hÓ¾Wõß\X’µÒÄêSŠšôKÚuKûÕ6°†#ëq¡¯jA¢0[*¿ÊuÕ%ÕÚéä4~ÝncÙ¤?q°É›S¨ 6GŸ’×äˆî2q^OÔkqá VÌÚu.£¿ûb¬d¹ë@ dÂé<Úaœ3§É1f;Ò ÅU=u%ãO›aÔMrº«³ªÍ0Ÿ;ÄNtWâ{«i/ú™†“ÂýçÏ‘ÕN(Ãh‘ûÎbVæjÀçü‚‹/;ü8Ö¾ê¯Ù…ixt¼¡°€øé·áfCM †ÇwAg¿hZ>œò‡ë5šGè 6– Ò›èĽ /Qø &ÚüÁeÊ8 >ÝçÅiˆÓ纇ØW;Yíàvº˜Qxü±'©fv×Ã)^¿l²|¿ü`©æE¦fÞâ·â°â#á–žº' }MBЪÙá™Üg:?*tÿ0Ôt+ý`!áX^N7SíaŠfé‘©KÑðŽ­gBÂKæFŽ»ˆ\Œó­Ö÷(2šÌA9C<ÀE´¢’fú„Õ–Ï.#ïq­2{Rô º û}P¦ŠDšÒgXb¾`•[=–¾<6MZa{µaÁqè _˜PG³ø&®gà]«×A0—å\à‰p;äA%ŸOÞ:½Y£×óv`øZ g4^®½f"ÊÿªN\»y0¡Ûöuëç§õhËS?2P÷#ê üŽY}$§VÕ¢p}½q¿[´Ôæ¾*ý×âo©*‡] ¥ÈFN~SšJFHŸyW•ັ×q¨ï!,/³•f?+-ÏgX­u$>™®M¼R´qƒt×i"ÔHa,ã¨Þ}t<Þ…Á0€(]Ö—M•€õøžgÅ™YÆ÷|Úf+rt´˜‡èuwÌ1†éøÙ²¨åOæùüUëLøCDj|ÛoÔ£³²ŽÖU¾U@Ö%·µ³-êó©2>ËÄ¿‰ns%~ûØŠ°xzŒÔY]ò½±'¼>Øý9‹ØM•¤?4æÝ¹1Ñä]ˆ J õ3ÜI¶ªƒSTšèZðÙ³|Cë—Ãá4ø˜9é¹™¶ò…5AÚqì`¬¤Ü6šªEÔæB‘ÁèŽ(P„ÐÆF`dÿxœºGʶ۰*¥ 5¢bÊÕ¥œ%y²½)q´o6¾7ŽõíÚ&»PV÷cí÷ïéjª@Y$w·˜ßD6í¹†E¯á=%Ñwª{º ¤»áöo.Ú.uhÓkŸXp˜×ÙûU­v+kT"Üaæuz*Y"ÄZà#jÀxû¸“¸–±U¸ûçið41ýˆ»Fï£c¥ç¾ o»•Ÿ#ÏÃâ”ÔÄ~ž/…ùÜa|ût`Þ©Zl^‹ªw°A:'aGaÍy°P––ÊÔ5¹Fº~C‡0椅Œü‰HHi‘æ°3¦]Çð Dº¨á1ù¨[¥iU±3Åņ H_¾=)¼»%CãòÓ£'Ujç/n]e8Çü«aÖ”«ŸŽøþ³°§r{M¾+̘@Öë2ÌðEÊW\ƒèŠJÿšŠÅþ¿,ô¹Y1‘ƒóÞ_GÆîÄNÛ"ûDmX9'¡í—=#SK»u0_]ø~Z{øœsçŽþËò:DÑp¹é¡Zµà„ëºà¥RܾÿPôT@Q?Ï"Û*žàc'kËlmÏì#ëÚÈ› tOdò¾‚Åh]U­âµe}_”bÐÞ.³.ð²˜ÂÏf:°|½09p-Ò7Z@;¥0\*?§Ki^ ã‘óù¨Î$2’ê3©#šØH[eˆù¦5>uït7êf½•FÃHÛ>S g¼b뻘%‘šiQ°½—f5£•òóiå§ì$nj=ctûùbfÒöÀÈQ%‘.£Á©2•úŠ·Hu—ã®Jüt£ IOµ¿rS„ôc‰ì«}Ö yŸ=½Ú!ìG ·_ñ1®ìš§&1+{lï,»ýÐÒÈМ5fwÇò Ÿøië“.ßš" Pg?ÆkUöAæ¥"AÜ4l®FqÒ"øžÈ"è š–¼,âwÕ•ãJAaÁ¾µ …!4¯­6èÁŽ– ÔñCßCõüâ—×)ÈùR)ÑM¥Ø¡±uh„=ï»Xõ`÷^æý¤A èÀž¯Õ‚í“ÄÛƒÏt‡¾¶´¹éÜo®°+jÉ73Ìí²E°QnÇË­q2êø$>‘ƒÖ¸«‚NÍž•on²³DY<³r^ß°$1é(ß\»òöU² B óÙI¼U•XÒY…5Oo%?C ‚éÌн<; 8)²4|€×m!CGŸ•ÕnLÖ€æ:Õ  "zõh&ê>ì— Œd:3ÇF|Zµl»¨¡_L[ðYšªmìÿ`Ë |å¦tdÚ–ÑÌW~æf¾L’&FÚ,[gýžZ8ÚCà¾sð¤m‚VßÂt45¿Ž #ÿ?]€ÚÉásø'ù„ÓêšË^ïnï”È[—Oõ§O‚=©žÄÅ¢0 KZœ4c§‡–27Å‹d´Ÿac?ÃÎPë)vÚÌ™/¤-/‘b/L´ZæˆR6Êàг£‰v”A¡> ƒ …R[ÝZŸèè1j¥ˆù°M\^kt ÄRŸ `Õ ÁŒ{ĨԊ7±!EЧD²!ß¶Ñ÷>­+UˆÞáXÈò_Û{˜Ðbƒ”Ï”…|wEùýêÅM jeª’¡@Îݹì쳤ìh¡ÆÚáNp_Ê’ïpñSŽ"¶eâhºo_—î”w¹èµtâÏ‹p¯yw¿8 Ê>¥tµ}£A¨ß…ê È 9§â?ŸBâ@Þ¨L¤•æøÔn¢§Ä©mÜö¡r½ãW!sÞX"XãééÑ âÒP+7&ÎèõòÇâs"Í!èJšz¨}Š%¿TÏ[«%ÙZϪ²Í&¹éøâðGì"äú ftƬMßCSNã%69CÞ/=·;ƒVy­ÛÅóàˆôyàÒýL5oò¤cæ>®“ýI· )gB&ÂL²è^>ÄõFl†ÎÇpÿlawlO‡oBáÃsVÓD^<-ÒÎTÕ“©ÊÖ¤{Ä=sÝ7ÂØWJΜä?sÉèQö5é˜ Þk *[Ñ }.a¦6D %ÛP¼ª;…§\f?ªk5 ·‰E(‰ÑB.#–HˆµßÍ90Qr«¹ZÍ5²‘lÅÌä×ÍSlëòOØíƒüå(‹1ª£Ý­02 õÏÞj7‰n”ï‘á6Ò ­s. øUÍáLP)~¼¤ Ÿ4Jœ©iú0Žù#rGä²rû‹|ÕªFááÒê~͡ϔ“ª’£Õ–#Zí`3†ÍΔ¯²¿×Üä ÷| DÀ†k­åÑëTå~1íÊ{a»ö¯;;:Ë «™ÿ´ÈìĶǘ9U» š£`,YMÞ7ýYÿÑI’o…˜ǃ¢/f¾ >|‰/cyiøhì»*Jž$ݹ:>kÂÙ4$…ìˆÙõ ý 1àþ‡ƒ×fP™±$õóTÏ´æÝ0å6CW:YdÌ…=5Ç—îh–Ô~ÉêRÁí÷G­K_Þ=„áǺ[àz>S&`ÀOa‘_ èA ª,µWƶb‡dø´¦]8,§\@ËÍŸ{Ý‚%²0„b_&:æÀòôÕ3-?¢(^ñЃçiCé+mè¤hEófD(Qâ‚jÛ^ª¨ó˜îÞá¸7aàY¯^µ,-N>ýAèÒ$µÒþàZËö<¿Äæ:L§ëõ¸ì÷¶mØÚîèÚöí¼°m4‡3òeŠ¡ådE#%Q^ó]ös‘ Œ¤^$¼Ù€O¹~šEËþĬ’Ê(°)«)åç%PôŒpG1âl®,åµW¶,î™(±3g"?obstµk=«Ó¼›n¥Õ ÃÙLzçZà52 ˜«½auØK“ÂE&–H©û"˜œÄ“-Ãg~}:M -š5JŽýÄš´©m«ÒÅVÔëÝÜ¡ù~uÝ\’9L—ÔXý«»\†­ûi­*ðŽ-x…áþfXö„ø'r«LÛ ‡'DØ÷D>£L^t%u› ùÂܧM<”ç«ÓÚsÝýDû½×œ0N…æJiê¡A“U)M“q^©îìŠ/Ÿp^;ƒ-zÝF³ào¦ðZ~b>Ö¢Ïö;k×ÉÞ :¿\TúLO=5‰ÌˆZ hvúÆ,PTq¿=ßx9D5û&ù´c¦|>~ ÁøîU£åYêDß©=ßm—Òé Ýò‹¿¬Vgô!ƒ ¹JLé’!ë íÊf诽Sùž‹übcùF}Ëp‘öÓȱIZ³m`‘uC‹Í–‡[Du‚®ÍšDš³‹Ûài ëmïù’ea@¸ÈÚ@M²mc\Ð(iëLnr¹áÁ]–û÷&+éaë¸^¡o»_HÔœG±“gWßCùå]ž¦u›?E²á9¾pØþXL;}¯$Ïés%NSÍäBûËZùÇŒéXce®É|½Ä¥´* N†ûËÓ[N½òÚ9ݼï|qC\%Ë ÔóÉÍìí¤Y  ¯«…ž·£b ´°©–Q ;ªF«šŸÖìI>\âb ¨;~Ÿûá·#ß±Ìbãýt¼†ÊÐU´)„Ö¦9È!{<¥Ž9‚ýˆ´uÔcƒÛÿvßa¯`o„«K\ɲVûó´ç¬(9 ûs.K§{P’ÀE ËEýWS8 a6Ém|®©éB/‘ãjMÍ #™ú×½/G÷v‰=âõÛ÷o.ñ6pà,h5#¿æûRÕ»œÑ6Ú„LµÍîø_Ï.¬¨vï·² k‰dncPŽÈ ïKÜ>:±ÈRþ8êDÈ…MRwΦIã:;'°FÇ̈Zû±“Uœl±`fr¨Êb+ÐCCúáÔ–Ó½õN¿†~¯X±Õí1ßâÒ¶¾…ÊNFëoõŘÕÚ¦PZêÛQék,¾gWøNEwõ*3Œ ÔtM< ÷©·0cPIWÌf…­ÉËl-ö#·Ï,QD`*%‡ºú樂ÖsnÝ-2 Át5Õ—U!B¬Š#†W]‡ÏaÍ)îÑl“H¾b˶žX+‰XÄü„ÐZ¦%ßðdæáP ]4ËŒ…>X÷¬BÍ·\W)\:Ó!øþÅãÇ~ÛTn47Ì€Ûg÷¦8+¬«¼áPkÔÀK½»—ql扮Vû¨»‡Áλ„%Vp7W ?ƒSÜ÷;/8eæ—ùµòH‹à/ì.ø3ß \Õéw—½ï¼úáÉCÖGqü‘Ú÷ÍØ³$$%#“ç'>挼’ ‚8È‘.“$ ÞæEªX"›…ù(ˆû\åȵHnSÁV›ëç„æ’ Ãß‘¼ŸSÌl'Ä?1üÝ@P÷µº2ËU§´AßipKxŽÜj‡”Azf?ͪ>ךnÂ?6Ð p¦ÐÕ¼qîÙÖµ10n*ì«ÓPXiÑSõ³BÒ¦4‚·$âɘeˆ5`'armtvú¶ÈCÜYæÿ*‹zÙ¤”,–ú½—A…9Æ’ð™>iç SŒ“ïEJ@r†7yäYŸM)èÒA¶zwµ]é¥Ð¾ráNÈÏõâF”­ÁØ‹QC%%PåO¢g¦\…+^ò æhÇ8Ú°zX¸Š‚ûZÓL•éÒi ÑòÇWƒÜlXh†~€»]ÙR×R9ôöÇ6êˆ*™c2SŒ9BìRÈx¶ùhí[oq7¾÷¹œ«©KUsJJ°{“ªÞ~ÔxO÷Ò­ÀÜ5b7X†wõá>KápÁhK”doØê7•Þü”f£ÏV‘‹í>9b°Ô)í‘9ôôK׊Håq>àg:-aÿ±O$†M7—¿NEðptï–­»ƒ9'©ëÁć¢þ™Pa^)2œ‚›o³†‹™¯„L¼YþpÐ̤{Z…‚—·“Í•"¸Ý’ã:8Œ1ñ(Vã]½YMúo½"É*XÇÜ}Œ Pnè(ÒáNväàNõ›&åê VXüП’"‚«+ÒŠ‚¤‹{6ZœJ|b½\’zz 9FãèzäÆÐjÿ̧Mý¸ÙÕÂÌ>Fù N˶“Њ«%J{Ê›ÃW±Ñ`/±ðÝÂãµï:Ö«œ—ZŠ%ëÆi+ˆîFvx/ð†µó¼W°ÎL¢ )CS´kçñ®Bç&š³Ò’ÌYfS…÷LÕ5ÇÊÍû3 ±‚…Z„<9ãq­±ENo4p¬üö‰$ijNÒÈ €O"€©kÛ$\}Ä“±† #¼¯›C7ì÷èåÍÔ_Kî&X‰ÔÄßh¢0Ï¢°£ÜSÚ)º¿‘ë¥Ü퉲žõÇ+BxÆîCݤ;ß¼éë[ŽÇŠŠÀ;ñë‘–Ÿ¼eÕJ˜ÜIXµ¹ÇGë6+žÍ@X { Içüò­ˆ0ß•ºñÄžØñ:’P±5DÐõdŒ9)lO©þÌ¢ÅP6}E²4¼ž—æAÕŒ@Ÿa`¢6%úOAé¶?¢g²ÍÌ È—!º²†Œ« $Ÿ¾‚Ÿç8¯wgÁû‰¹KsŽƒbÝž3>HcÍðZ¥”ªpñŒ¿£-‘þkv$.Iÿ—~þäüwRôzÝЛ„/ €½ ‰Fž¦OM#¹n˜ÂÊ™ÃTG–Z<-n®ßòï•bÏq}€$¡­Ï«UIFVJûãÔh¥²+v+«j7°›0òI!»oô«”?âžüÄÕ-r¦?èÿ8ÆxI‡N%f§p‡ò¶ø6µþ·…­Š§Uµð»”\O©"Õþ€éqï¬âœŸ_ýDøãdM ¾Iò>H$VÖoçÞÕ„óÙ¼ïï’óÐ4ÊQ´"¡†dÂRé »å ëY£s#ø»^‚jP±ŽPl‹1B/@…LÄ ÊnbÊèOèMß/¦)É7q©$‘+!g ›9vößû@Ü53 SgCHÏ_xÉâ-â·ø™!‰KHr»òU›å܉±Ü89¥;y¯Ÿ‰AcM.”¦ßŒƒ“ëæ65¹"–Þ–^óy¤g(žeÍW6¨À·f1 þXÌÔ]˜b…̺{Ò0•µleæqìŠÅrŒÃk °j¢ÌÚ̇ï&Ú ¡x¼±`ùÐOMé°®¹Ò„.-À0'½/*×/läâœ%n… à­?s«^¯Íˆ!s®Z(ÁÙ“X|2ŽÍèÕ·çµ ?S¿ášÀB»â¦${O¨\«öéÌà¸Áé=§Ø×*'þVzSxbÖ°áפ—mI%ët"9Ê¥G=¸)à15ÓÙgàV!Õ éy9¾VÖ{Ò÷CÒ4£ ‘4¯!ljú/¬ùPLþ?;ƒæW¾Ýß«rÊ!¡PQâAÂ'l@²o’AqøÑ|l:ÝîÔ÷rݘúÐ]¿×12ÚÀ{Ç‹«2 úp£Šf˜h·„JN?‰ÃZ¬„ÇëµÄ˜‚ÓâŽGðI^Ü ñ¾¶¦¥¦kx—þÎÝ•†/‘¸ôɲ˜RNC« 5”å¤Ð½9¨Ä“´:IÚÅ(ÖÂŤ.'¯?œ4B&óòéôûrs:ëN‚‹¦,1¦Ûpi…¾\á¯ÓÞ¹»k®Ð_Ufzó®fæ÷£~l߆óE‡áEçn§þnÙ—²²¸ùm“ZTÃ-‡éàŠ ¬à|ÿw:ç°uGªŸ ½¤‰lˆbØâg¿µŸQCÏÈÇøœà ÃžÅ§51éŸß;ÿ,Y0û§ÏvúJ1›]ŸÞx<ŸæC ›‰W fUJe å”Úôª Fø·ÃÊbOîSŒm!Û"-ûãìšåi`SÕ¹âw¾4Ϥ¡Ô‘qkÚÂj•†ÂgYQ–¹Ý-›yÿ0—~—•ÿ½ )üðeÚ1ÏSðøù>ˆMN*I+3èÜI×s½çÞë+¿«ë~bÌëÊÇA4Yì?kw|ÖÏ-lžÔa‡z#¿Èö×þ »¸i ¸¿ùV £„sNïÌ7'å ½8xÑôás—ÃeÔ»³§R´¥§;ÖÏh¢ôe‚H–ó ›Ad? ð`/S ½žP%!kù˜à“¹bÙNâõ—Ÿ‡ÍfZ-–§ 2«±ú_Gð{»̧|Õ‘ƒ—TE¿“Á¶JŸ#†à„6‰ú¾ÙCšd©E9ºÚ!4Ù_—,îWHE18–Ò?öõB‹çkè†Ç=2YÎgÍ.}CJS?02͉ßn~w*­dþ Îï[@Ó›Ÿ¹®UÓ–] ²6D7gÏMwnP×ÀöÙJª T3‹G |^Ë][Ò5—_õŒ¢œšgÁüy8aÝjÝÎÙ»‹ßJËÌ­‚@´t5"Rá“b/ÇÙ¿îÊl‡®u+ƒÕ¾§Ý"ûÁ¿Vn±<žc^wFûj2süB»s-´‡ü(v]s)x‘3²™Î2Ô%úù3›ä«Üadæ37¢£ â„ÉÐwtSy=yž®ôT1×®À„=XÞ7¹F?ËÍIõ„t3oÍd£¦`‘D©92_œ^©aw_ t.ÛÄFvÛ hŬE†f ûB–ô¶µ{)]„úê8[6¿¼™´à—ºëkùºý¥Rþ¢_Ã#£ (!Ë»]¢Š.øl€0Û¬*»ÖKzkpåÈÂD0´ï@ˆÏ§Hd‹¯`ÄâdUħjçÀrý°®íŒt|û °Ó•¤ y_” W éÆÛÿú™¯•úz–O´ßxPï᎑òPëYÕRoðFµ²ÚɽlÔ0áöÈ›¤DG!ƃXpè,“ʤ NÙ”¬ÝTâ—1ޏL“0!ëõʲËa•±¸ ,Fª03†Ö WɆæcŸóK¦/èFü–Ó¦| º!³„2 /1(Ƽ×ÿg·‹5,^Žê¹ûé¹mPtjÿ[_*C£Tl˜À¼ÉÜ;ØÎ<ÈØæîC¦Mê«¶¡x6¡ ¨F%5–AA .Eö/ ÖØÕ¿˜ì.›ÇfSÍÑ3ö$MË¡MëëR®šS“ :†Ç·×XuT°ýé U†ÚîH‰EÉa¹ø4¹î“ èÉ‚VQ –1òýmϰku#]£opö•Ø5;'2¿2þz†™H8‡"<ùLmmÒŽ•˜©…›cŸoß­qh`ŒÂ€ Ócµr9‰ú¥¶l"¿AE8;Úõ£¢\Ï•š¼¯ÛÈzÐIÞ"Äõ—ÒÆ#¨-k€Œq‡EÅæS¨ü}hé«W½Ôœšz¾q´ï±^C«˜‡Ï­ÿ2 ‚bŽG…–Þ“ÞL½´hãÒW° 7Y-¥Ü~XüPBrÜõVašÿ–gâüé½ SÛ¸Ê>òŠœüMNôè5Îìå\öÁH¡ƒÇqÝ›­GKÏÅ¢ø|ោ5¡]i÷Ëel ºÂe,J?´ODy‚{å5Þs×ÂðFzºÏ>’éfhÚƒ©c«²Å •¾$ÎkE©ïÙÆßzæ¬êÙèÈŽlmV]öÐe9^÷™î'-»Ã[2ÞltæTp'²®è °Óýb|Kîã¾æ¯ÚÒI¸ÿŠíì+E£8Y Æ_uÞå`n”ƒâê$]ò]ÓÒ–¿ŸèÌßD‰£¡ Ä'°l‰®Ÿâ$èãFÅ_Aë5nɼIÄxŽ?ƒ–úD?[gu&>Ü4;•0ö-F €–/ç\vÌÜcűtT«6ûý—ã¸âlªù+‹ù8–ÝÜ„f.Ô鈧&Ð$_•Žf9Kí Ì]kã¡–AÑ]%ߢ S±0IŽ2?¨E²' O½w%, ‚zãWwC„YØA:Ä&Fé`oä1vJ¢PÊá‡Ä¥ šÄ’IDÍ|˧U¤ïjÍw`–ÐŽdC®ðí !d’)X˜ÇXŽ£þÅCÀú+Ràuéñ’F@ê7*……O­(Í(ôÍC}ü^Ak”Œé*½í§ýÚ{8µîR´‹âéÐxI½½•5F9B:tHí—•Zý+‡™BsRÎ6¨¿8ïÒÃNîäˆú I$l»‘ó¾QÇ"hÓ0É[«85$<«œD9ó Ô–%_ĸ9£‘+m©rõù¹BšC‹æ§ªHA%qq>|ºK´'.–_ßKa[[3llõÛ^”è;¯~x“‰8׳CUƒëö¬JÇ•Âúõ:R]ÈÃ=„—¶äý‘?Ë:¤7œ^kzÁYèyß&÷[•9ô»Qß,['YmÎ 6­VmNÇæù CUS~”®#jæNšÅé€Zjô34ƒvœ¶šôKبÔøv4 ûimäâÃ×çmþÌÇÕÀþ1d^ì ÄKûË…²¿5|p-ôõÌ!…H"›Èý…>ì¹×æêR*/ÔH>síÅ=§ãâ‡XÙÉ˺´Z5:½g[5iêž_X{ÀÃÅ)kLý÷æA!m…Dnµ&Fúz•F–šŸñ>ƒ†!N‚HM*âlÊÈâh÷÷ùGF?ê¾ T5¿Õr/õâ·.Wã8/:# /ˆ7‹¥ê¤°†ëÛ,2äô…å ï QYD¤³õK7HÔñ£Ú¼¦H½g‘&¿ÍFÒ°- ý¸×;}1ñd÷üT"Í4´=Ô„N¯/SîpIIcé¹DVr:¨_þ³»1³{¥‚¹Õúý¢-bœÞG‹Ò>áðwŠh…èâiL™Nh4o1@t߸D¡½4'N/•­ª½"‚A©!4¥]…A{i„„t³rû­'a,{(£ŽÛçßÏ…äÕ| yt¶p*唣`>ÿlw_ý¯! ÄÔ½…k«zSæ¿Û†Ï±Ï@‹‡)ïÊÝnMÏïMRnWLÖÖµ}E2W’ddÞ|†¢Ä·¯¤'TÙß½×t¥Å¢î†òj.cQ3õ£a„Å HÀJ°sÊ‹Rrö©™sjI$˜ám£KIÛýÃwånª/2ï_~(V}€ gr.À´~-ªMñƇሜ,”"hÕFÞÁÞ @î=CsQ/i­Ó}æ‰.ä0œiÙN}‰n‚”ÞŠ{7îUeÆZUO{¢JL,Š,8[ã—’¦DÓöúŠzrŸ”MHþØ‘ä0½àxÌÝR.¢%Á…ÀÃtE³àµóSiž7À†õ_`ÖeÛ»žï:Žd ÅøHÄ ÃôlÜù«ÂÈ×eæ¦[sfž#>(´-ûä›ÇâôsÖÆ!^®§‡±¬¸ÎYÓ+Úœ¯–>ÂÚ‰bJ™·øp’yúS A÷iL7f#bžÁprovžÓAV¾3mj®‚gRÅ›g5a»^!ó¶…oG2FOäÄuëjUz‰zм6nY‚µŒæwûN|µÝ Ý­S×ì3É3…»Ú.ô ’…ƒ—¥±§)'¥„/*Œ¶6&S6F«K»¼5 ½¬£„Tßý4â! Z§ÑÚOx–~×xNÏ7µŠ²:½ºï¯îïÉHÇaœ~Û°FG/³óƒ]8‡ÚPQ(˜`G¡Cq¢›ƒë.½‡Ìo`‹ ÂÔûRòŠg(Â+w ñâ]š¥'nª‡ì‡‘O–«ï9«ù4Ãû¥••oÖ+ sÞ1LGSá*ïýüE>Ò¢eÓâû©A„:ÚðJ*¢Zº”éÁoºÊ^¼ø ,©õ«qÃ-Êgñð]QS¨]Ò¨é;!†þúYI¦`Âî”|ša¶Ä-÷tÁêàËr¤S‰ÿ22!5ÒLC«•§X®wðMš}P]¦vX[­‘.¶yG_º:¨˜|b 8lÙ3‚CY—ÜàÝŽ}‰Ÿˆß ¢8½0\/ª¿RÞn~"[èˆÃHBÓçÙ—Ír…J+¨rÿ$kšéò3¥¬4ŠúÐ÷½H€xl±‚ÔS7š ¡…ª>Û&;Qò~ã!úÈ£<³Ö˜:e»Ch â5ÍCDü‚ƒÝ¢ñäÀoW}æ­M{®Ÿý¸ì$Öü‡Yž\že×lMJ^Qöîx©˜Ëzš¬4Qóù0/ÐY’„>áÁ‰[êȵ”ÆÏ}!Ὤݱû;ôn,(·PI¥ Úý®„¶Q!2õ Ù Š¦ž¤¹€$Ä ÷•êä³Ó¦:É/¦ö=ÐÐnw#A…^lœtçKiÕ¤ܶ¤ö¶T”tkqÇÚ»[­ŒLR·7Ö‘R ЬTˆ–Md$Çû žÄRm¨W[LÕƒ{sô˜ðÕ*À!4ZÙ¾v‹S SjÓZh8>ìÀź6}' ë7 ³“ýw+˜ìÅÇ0_"ü+ ç_¤X¾ñÌÔÇ#DZ!&={œÑ!¸Gw±~Tï\wMZj?GXÿ´yS¡ŸË.nçô#žÌÞª6Y¯£¦ßg&ì!uÇÚzÂb"øšíQI¿¾HÿÐdòþ[‘¼Ù‰_¤ï-›ä·½ô×ÈÚ©‰ùB´¦Âõ¶£Î?Ú)FM†£L>~ˆõ–kòVœÏ‘!®˜Ñ;(ö<õyuªÇú«_9×þ+ ^èãœâU(†¬±Ært½}è!¿ÈnWׅΚªy®¯¹ (­ÀáÈnƒ|h|lÿ¾e(a½ˆZí–^´êÞ5@õTtzÑM<¤. r/ÿK{Ì1¨i²}"õÓÂíþnf> ÉîMZaΩï¬}XùCŠë-~ÄÔTh$X_’§7Þâ‰ë˜Mf§Ñ/[5Ó®I7«Ô z´ÁÞ“ªèOݸ¡»O¼¡åßq˰Žú\û5`ûZ0€ÝÀ>´!°Û0Ì¢ê=jCÓbÞÅ…£«Øƒ´—WyrêÂ}\–R#7WÞÀ/¹,îÆÐå——BÆè“CdX¨ \¢´­« ¿IMØÌ÷Hð à¾ËÞ÷S[‘éàf12o¯‡P7žêú*ÁÜ À¡Îýæ¸uâQÈ®Ù/¶&ô¾W;“>âúÖ}–=4 'Y™¦g2ÖmêEgížuä¼ÞµiIëK±ðÍ™R ~-3$'ÁzaÇá¾ zãëS¨p<ù2TòÎx'ä?e ¦»ü‚ž‚ÈÜ}r¬MÅ›BäÞízäÓðÛ,Y/¿”¹ùŽbéªW×fHÞÞR=öÝï0»DK`'Ø|Qx nÒÏžžðDì€I¯¯„ÒY«0r+㣩Cê9¹ŠB´õ¼'(v¬F˜,$N§~Æä[#<’eáJ;¸2“ÝŽœGžÄL¯/öáû!&,]“l*°ú> e‘5Ñá]šò¡µûías"kMá%²·qäºrüÅ`Ï\V‰ Šs(‹Ã(ÛK?çXQ7`ŒÁú2'öbò•.¹š žø;0SþÇzó€S&£+Ñ™ö ?ýÝÒÁñ®ùU\NÔŠ|oÔ²‘–ôI!_ÉеïœQ܈cQoÇ¢£žÚÞqUŒ§\ñÃpó(;ªôyüG(MÊcýIrœ[š†pÔož¶2ˆg’Ç%‡ë29©EFü©Ôí‹I1‡¿S7v÷À?ÉÞp¤ópŽP^øbKŠà’@ü¿ïñA>Ð25*ïÙ—­!ÅV7m!ûpm&%*Ñ$fþe«Íª0‚XüÝÑ=˱ŽF+Vû;Êq¿#µÈ0%ÓóBˆ=h)²#•¥9ÉÇ`‹°?٘Ë. šš‚òTfÝW»>Fš Î=‰ô ú­€ëð¥b?¤› 1Sçw½‹Tz¥‡|ë3@uli¯ä¶ñ)8F³úü”´ÔÔ¹.jìJŸ„ù43a[‰º†c…NB‡Ò­–bŠ6Ö˜\ú¸©~&”~,,¨ R]#Fëåu‚Ñ ®]ö Qi¶G‡[^'ºÚC{£^9B’Š ˆ›39ðJ¦èxK¼I.É)ôp<µ™=5´ÉMYùJ{¢é, ,=Ñ i¡V®€ k+ˆa OwÛ{´´ä Þ¸tͱW9±¡¢&.MJ¼„ê®ažá iÉYWua=æžßõJ›Ð”„- 1ÛÔ$“Òߊ@mTåQJ´GËÅÉ‘1´6ãi_R+:Ÿ4&-[½á›,|;Ó{+c ƒçÑ¡%ûH¦$nKâ4˜hçr-¯ZÈ#ß!¥îº)³®ÿ~˜‘b—Sp¤î‹`]î°ôµšÝÝ;ÝÏÅ#¢ôß¡?Jl[Ÿó…g˜Ùxó'þ±RÊ÷Ÿ‘%<©rJúu^R·ƒœlÅ6ºTÖ;ZÓˆ)ŸßrSò͈2"¡É ¤éÀ­øØKFL±ÊŒHÁú 1ŠŠ„C›8pÑä(Íñ‰¢Ýó¤¼ïʯ•ʸ×Ö©Üð.ý-œõß,TŽAôUŽî^á:¤¸ÇØ8u¼`Ô3J´¨7ªŸåÕe‡óËr ÓÍô;»u4 `Udz®yPÃ(oL‹Õ"ó¬zåÕ—¢¾5ÚÄèd¥ýI‡‰ Å/ÈO©sCr— ɈßÍ!ލ‚U741Vô÷ó“¬ ½kOÑd+‘{dâ–(šÃjc&1ÇÐ7Ä~V9c”eùNº¨tsÜ *]õZ؇¸ ­Dž>ë&“Uæ•o5õ¯Ã—„¶Ú;ÍñcÖîGôF"þ7©iZiµ­>yþ™âÉ<ÿ‘ü¬?=„Ih‹ëb*MýXj&?óѧäyÕgy‰—ãRÊ÷<þi'-0Kž1ðdFü!Ïç»wHš–ÂZÀ¸AÜ]Á•g™/îiu›d&VÙUVÌŠ´xÿxÜîb;þJÀ˜¶#*JÁ„/‹ëžïúÝJ¤­DšatþäeÅ\u¯y#/¾U D˰\BÌ‘a„ u†ß&¹RݧjÿÒú€«TsÇjõ®)¢¶æ$''è̩餑ÜÑV-¨ÀÙ9CêÜŒ0†ÜÀUm‰Ù¾U„•(ºòXVÀýU3|CŸ‚`TKU·~<°ÊýßšI û^ ’ØòÑ{öƒ ÿ¢’Ѻ$à3¯/#MÇ?>&øn6Ží¯ý›nÊy$µ¥àx÷D + é=ó7ýêî¥XïSŸè:UÑá¥ð:ÆRÌ_„Ââ§þ&Ô-ÔG¡ï¯ë‡SaÚfº•7öÞúìÐ<ŒwEîûGµx¦^ûy~$W`ýw¡©EuqŠ©1åúJ±G]m±?W;* EÝ<¬©ÃDå‰p:²`.«Z)pA/ŠŸÄ}‡ä.é`ÞÓà‰Ö.¢AÐh´šEÕ «¿¤O#»ßðÔ»…U™ý_ÿâÝõM‡›à9.Zù«¼Wãé+ɨøÎ ä]–qø$Ž-àÈp(aY[Z{þ+GGqÒydíæÅìpf¤’¸÷`µèÓÀZÍvyP©fDþêWôÄm(žÏ¥ëÅxnQ·žŒ‰‹©|Ez­Þ¥ äО[“­¢r˜å!t›Š "°Éš€/ÿ…u¼WRà[xùË"@òaç2ÒŒJápy(Ž¥õÒnsûé‚%2?'­ž­u¨§\¡¯y2ƒ&€ãå¸Ò8-ˆ‹âëÞù¡²ÅÁpîTIɨ\¼é{ã~ÑÖæ³•15®’Ÿk®SÈ™|ýë¬1âmW"‡Ñõ4Þ’[ñÚg}̦*ªk]„š4§n>>G›;f³ß5\2^×÷&Í#dêëR 2ØtÑQÏá™h͵dà«Û"CpQ@R~BÚš(ÀyýÃôJ^Ø=cÐ[@\4ˆ²¡L")%؈m`óY§a²(M׬âðöêÌ‹Ó@S&çæýPq¶‚g$Z _Œ‘)á‘ÕÇëŒÏ‹w5¹iDɹ‰óÝ©ì‰âñ—‹ASöOO~ÿõׄË’Ì”J†ÐàåTUFB¹–°ä2<´©:‰.d¼èIëô…ûj¶@[‹t~0•У‹mœ­®ê-ŸÐ§‡u éÔð.lÍouW¿›W³ÿËAŒP툦DŸ]23ò¢™ÑÆ]šØ2Žœ¯úKÁ[0Lˆ¡¬Òƒ±ü^¦{QÆB RX_aâÂ3ê@ù#½õ:#‡˜ÏÉ1qËJÛ±‘,×]ȶsÖm.†¿“Ï oAÿ_¹Ú怄˜y†˜‹c¸}¥«õÌsdi;?ázOöéåÀ?ˆd¶bÀÙ¾,!Œëì†k±.;<3‹›@äEý7ã-7ìó5Xg-S,O1®Øt uÖ?TMGò€ªrs¿ß¢õò*l ŠÉÑÓ›xDë’ÄÝÐßG#ì»H8®œ¥H:ó¶„ G Ì4ÆX³ µlÎÞËæàGû_‹S5ºÙ }hV?SÛ§; Æõ]Ÿ¨Ó ØñæPüsV¡ ¸Gä.l‡×6õÅ5àO±h÷T%WýŠÒ@"2\¨Å]‹ªFmïļbXã2{†@½Í%‹¬˜êcš9»YrqR[Àc™©Kj‹áí !n-^Þæ¨ŽŒbÀ“|ñ@§ än(ÞS÷¨ü‹­ÔF9ìž0í=‚5Œ0^°ã ® Øæn˜ltyNÛЬMWcu{ûZL ÍXnç–¤ù’Ÿ ñÞSUõWÃR’'eÿ¤6úÌ€­1+“W=Œ dÑØ;‡b*ñnK}Òæí9OIG; lフ.*l•aÔ­ç‡ï3ì:¼ úÃÀLàª|POŠÁ!å¬(K‹á8Ÿœhù!ÃîÀ½”(âAl{ºÈÂYâC¥Äß4Æ<Pœi V¹R‘†‹=­…fú¸^r…E)Šû×2Rò«”^°“Œ¹"PYnèB/PðõJ^’‰nC„‡ÚèEí1Î[d¨SšîôMË&ô8”p.L5ø8ý~µ€oÐhîåÜ‚ð(ŽÅzµBg×Hª!–,è³õ“l`FO_@mAúœêKè ÚUÓë,møsCEÊKÔM¡Ôàmχ-ý8;ÆÝšnºÿi+~*¢EW“l„1£G%¬vs8¸†%¶;HÛzbQÀ/ö|^èd¬oÄMY4É>,ÁÑ}‡Èf×SèvcÉ/Q~ÄbÀƒ›d!“^P.¸üÚ J·ã@²fòyw¦ãCc®™ +~Èõ¥°äÿá°:aCVŠÇ©m(˜ÉÃ-sô"Õ‡%:¨qžw ‰àEU§ºyÌXöP ?*Ævù±òRo¶`î zíÁ*­Q”zÁE^ ŒÛ"††ÆO2ƒ9îÒÍØ;K{@.KDŸÐ*æ¿0VO¼uQ—m5¥„mÎA7ÐhL¾)³¼ó¼åqÍg$Ø­°ênQ ²´°q<ñ°£«JzÙž]É:k~--k®N¹ÑRTr&;#ßæR-ÕA,žî©›©Á:m‡–Ã2‡>“1ÀÉìr‹…–køJ«llÁ[¼ûŠ i{w!}Eþ™J£ê½;³• Ü.gš€# È„ˆ>Â0h& ­1¡›<€`·î¾˜lÖÍÆŒ~/{Oîó‹¹Ö0J.0ÈÏŒ'¥ÜE¹Ó4F¿¡­.­¬Õ&‹úÆ~> šš§’ߘÍñj ®WƒžÚ˜ Æn¯¹áâbØë›õ$’Ð0ø¨Å¿ÂÜOÃ8ÜL[i¾ªðgä ¾`öFs§G…Ý…ÛÊ“:â÷“°ÍÆun²!³©÷£tÍ„Ç;&PjIà‚WèZí9…P³ Ÿµ‚“ÎÛŠ‘ñb§ê²02sk"Jg¹ w<èR&{"º©à%‹‚m羚ÿ÷WãÒw/F¸Na¥Dª»”6ÇÌ‚žé¿gÙô}ßwģ¬s9â–9õèZŸ¦D‡.ç‡a•İBI¤‹¦÷ Jü4ˆHP9§ÁŠÔ´ŠµŸD®lˆžìj~¨Ûeœ®¿Xù2|{Rµ¼=S‹‚VAî¼¾pmuTàÂ;[w endstream endobj 169 0 obj << /Length 859 /Filter /FlateDecode >> stream xÚmUMoâ0½çWx•ÚÅNÈW…œ„Hv[•jµWHL @Úþûõ›™´»Uçñ›ñ›Ǿùö´žØ¶ßºIt¯Õ³;÷סq“òûæÜÜT}s=ºîòùֵãìùA= }³vu[®ªU·¿Üyòªk×Ö¬¯I…{Ýw¬£n_ܯ‰k&‡ãöÑþ öËþr𬯠ÊGÕ§¨¢´Ÿn8ïûîA™{­µ,»¶ìèäLEšŽúvû®D’ÚB``BÕŒè·9zK¼~;_ÜqÕíú`>WÓg?y¾ o¤ò.˜>­öÝ«ºý¤ÍÏ­¯§ÓÁA‡ÒÁb¡Z·ó%½?6G§¦_·ùNzy;9ÒØ°²¦oÝù´iܰé^]0×z¡æu½\×~š3§lw#w鹺ö?¡ŽòE07H6!L‰@Œ@ÂÈBŒ€Öû@æq\s óŒ”*댌ÆTgùäÔÿÇÀ á]8 i/°n¢£ŸTv<ÊÈkã­õØ0†×YÈÚ²ˆ1êg3ÆK`òÚYÂõ³”1q2î2ñ‚Ö%/Ì ¾dchÎJÆð(«S}êßÄØYÍ:sÖcÝœõÇà笟öPÎúcèÉYB¹¬?Aï9ëO‰Ïúâ³ÎšsÖ™âç¬3¢\ÖQ.ë4ôa±Ï½Xñ=Zñ9Ÿ‰#>c-+>c_ZñëZñ~Zñ™8â3z·â3ô[ñ:­øŒÞ­ø ߬øLõÅgè·â3tâ3Ö-Ägð ñüB|†žB|¦\ñ½â3ñÅgâg|2–³½â?z)ÄìÃBü§šü­XªÉßIAuÄp*^+†ÇãŽ&™#ÌsU-'H8ªqµ¼_Íuü A÷û8ñ÷{¿¢Ný YôÐÝ6Þ§=ÖÁ_ã8ßN endstream endobj 170 0 obj << /Length 859 /Filter /FlateDecode >> stream xÚmUMoâ0½çWx•ÚÅNÈW…œ„Hv[•jµWHL @Úþûõ›™´»Uçñ›ñ›Ǿùö´žØ¶ßºIt¯Õ³;÷סq“òûæÜÜT}s=ºîòùֵãìùA= }³vu[®ªU·¿Üyòªk×Ö¬¯I…{Ýw¬£n_ܯ‰k&‡ãö ýì—ýåàY_”ªOQEi?ÝpÞ÷݃2÷ZkXvmÙÑÉ9˜Š5õíö];ˆ$µ…ÀÀ„ªÝ7Ñosô– yýv¾¸ãªÛõÁ|®¦Ï~ò|ÞHå]0}Z7ì»WuûI›Ÿ[_O§ƒƒ¥ƒÅBµnçKz~lŽNM¿nóôòvr*¤±aeMߺóiÓ¸aÓ½º`®õBÍëz¸®ý4g"NÙîFîÒsuíBå‹`nlB ˜„‘„­=öÌã¸æ@æ )UÖ 9yŽ€IÁ(±JÅ5<æ§T`,© M%5ŠÖœR£h”ºäRê ®á1ÚûÌgcßÍïÍ yq(¬ ábŒÆuX&Àá &èq,–Ñ1Ç+à„±N97Î8Nüœsk`Ëq8­ ^—8%Ç àŠ½FMq.â†5„SâhzAìkO × Ápý$Áƒqù1¦7]}Œ©ÎòþÈ©ÿ»pÒ^`ÜD3F?©ìx”‘ׯ[ë±a ¯³1´ecÔÏfŒ—Àäµ!/²„1êg)câdÜ?4dâ­K^˜|É ÆÐœ•ŒáQV1¦úÔ¿‰±'²š1tæ¬?ƺ9ëÁÏY?í¡œõÇГ³þ„rY‚ÞsÖŸŸõ'Äg)4ç¬3Å;ÎYgD¹¬3¢\ÖièÃbŸ-z±â3z´âs ,>G|ÆZV|ƾ´â3Öµâ3ü´â3qÄgônÅgè·â3tZñ½[ñ¾Yñ™ê‹ÏÐoÅgè,Äg¬[ˆÏàâ3ø…ø =…øL¹â3z/Ägâ‹ÏÄÏød ,gz)ÄôRˆÿ؇…øO5ù[±T“¿“‚êˆÿàT¼V *ŽÇM2G˜çªZN(:‘pTãjy¿šë0ø‚î:÷qâï;÷~Eú²è¡»m¼O1z¬ƒ¿'ßX endstream endobj 171 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlöo` òKwÞ{Ò·óÊÕ× ¢¤_ny×È| #¥Ê:##Ï0)%V©¸†ÇÁ²£â” Œ55¡)°£FÑšSj­‘R—@J]!À5£G+>ÇÀâ3qÄg¬eÅgìK+>c]+>ÃO+>G|FïV|†~+>C§ŸÑ»Ÿá›Ÿ©¾ø ýV|†ÎB|ƺ…ø ~!>ƒ_ˆÏÐSˆÏ”+>£÷B|&¾øLüŒOÂr¡—BüG/…ø}XˆÿT“ÿK5ù?)¨ŽøNÅkÅð¡âxáÁÑ$s„y®ªå„¢ G5.–[ ¹Œ£¿ èö¡s'~×» ê8‘EÝlÓUŠÑCüjÝF endstream endobj 172 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMèßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø ®´ÝP endstream endobj 173 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMêßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø YÝi endstream endobj 174 0 obj << /Length 859 /Filter /FlateDecode >> stream xÚmUËnÛ0¼ë+ØC€äà˜”¬W` $ ð¡ME¯ŽD§BmÉíCþ¾œÝUÒ9È.g—³#мúöð4³íðâfÑ­Vî4\ÆÆÍÊïÛcpuU ÍåàúóçZ×N³§;õ0Í“;«ërSmúî|ãÉ›¾Ù_Z7±¾&îµë?(XG]?»_3×Ìö‡ó£ýìçî¼÷¬¯ ÊGÕ§¨¢´ŸnÆTgýâÔÿÇÀ á]¸i/°n¢£ŸTv<ÊÈkã­õØ0†×YÈÚ²ˆ1êg Æk`òÚYÂõ³”1q2î2ñ‚Ö%/̾dchÎJÆð(«S}êßÄØYÍ:sÖcÝœõÇà笟öPÎúcèÉYB¹¬?Aï9ëO‰Ïúâ³ÎšsÖ™âç¬3¢\ÖQ.ë4ôa±Ï½Xñ=Zñ9Ÿ‰#>c-+>c_ZñëZñ~Zñ™8â3z·â3ô[ñ:­øŒÞ­ø ߬øLõÅgè·â3tâ3Ö-Ägð ñüB|†žB|¦\ñ½â3ñÅgâg|2–³½â?z)ÄìÃBü§šü­XªÉßIAuÄp*^+†ÇãŽ&™#ÌsU-'H8ªqµ¼_Íeý A÷û8ñ»Þ½_QÇáˆ,zèn›îSŒîëà/Ž_ßg endstream endobj 175 0 obj << /Length 858 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N7R!‡þûõ›Úݪ’çñ›ñ›‡±¯~<>ÏlÛ¿ºYt«Õ“;÷—¡q³òçö\]U}s9ºn¼w®uí4{¾SCß<»Q]—›jÓíÇOÞtÍáÒº‰õ=©poûî“‚uÔõ‹û=sÍìpG£ýì—ýxð¬ï ÊGÕ—¨¢´_n8ïûîN™[­µ¬»¶ìèäÌEšOúvû®D’z…ÀÀ„ªÝ7£Œè·9zKüü~ÝqÓíú`¹Tó'?y‡wRyÌ†Ö ûîM]Ñæçž/§ÓÁA‡ÒÁj¥Z·ó%½÷Û£SóïÛü ½¼Ÿœ ilXYÓ·î|Ú6nØvo.Xj½R˺^®k¿Ì™ˆS^wwí¹ºö?¡ŽòU°4H6!L‰@Œ@ÂÈBŒ€Öû@æq\s óŒ”*댌ÇTgýâÔÿÇÀ á]¸i/°n¢£ŸTv<ÊÈkã­õØ0†×YÈÚ²ˆ1êg Æk`òÚYÂõ³”1q2î2ñ‚Ö%/̾dchÎJÆð(«S}êßÄØYÍ:sÖcÝœõÇà笟öPÎúcèÉYB¹¬?Aï9ëO‰Ïúâ³ÎšsÖ™âç¬3¢\ÖQ.ë4ôa±Ï½Xñ=Zñ9Ÿ‰#>c-+>c_ZñëZñ~Zñ™8â3z·â3ô[ñ:­øŒÞ­ø ߬øLõÅgè·â3tâ3Ö-Ägð ñüB|†žB|¦\ñ½â3ñÅgâg|2–³½â?z)ÄìÃBü§šü­XªÉßIAuÄp*^+†ÇãŽ&™#ÌsU-'H8ªqµ|\Íeü A÷û8ñ÷û¸¢Ný YôÐÝ6ݧ=ÔÁ_ÁÄß” endstream endobj 176 0 obj << /Length 860 /Filter /FlateDecode >> stream xÚuUËnÛ0¼ë+ØC€äà˜”¬W` $ È¡ME¯ŽD§lÉåCþ¾œÝuÒÍAöp9»œQäÕ·ÇÍ̶Ë›E·Z=¹Óp7+¿oÁÕU54çƒë§ε®½ÌžîÔã847©ëò¾ºï»éÆ“ïûfnÝ…õRá^»þƒ‚uÔõ³û5sÍl˜¦Îhÿ‘ý¹›öžöCù°úV”øÓ§nèÕZûÀºoËá€fNÁ\©ùEâ®ëÛQT©h L¨Ú®™dD¿ÍÁ»‚äÍÛir‡û~7Ë¥š?ùÉÓ4¾‘Λ`þ0¶nìúWuýYœŸÜœÇ½ƒ¥ƒÕJµnçkz~lNÍ¿èôõüvt*¤±amÍкÓqÛ¸qÛ¿º`©õJ-ëz¸¾ý4g"NyÙ]¸kÏÕµÿ u”¯‚¥A² )`JbD>`´öØ2ãš™$`¤TY'`ä`ä9&£Ä*×ð8XV`TœR±¦&4Ö`Ô(ZsJ¢5Rê’H©+¸†ÇhÿÒg¾¸ôÝüÞŽb‘‡ÂÚ.Àh\‡e®`‚^Çbs¼N[à”sSàŒãÄÏ9·¶‡Óºàu‰Sr¼®ØkÔ4ç"nXCA8%ަľFðÄpý ×O<—czÓÕǘê¬ÿâ_8õ¿1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦xÇ9ëŒ(—uF”Ë: }Xì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&+–jòwRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\.ï÷@sGEÐ Dç>Nü®wï—Ôq8"‹ºÝ.—*Fuðgõá¡ endstream endobj 177 0 obj << /Length 700 /Filter /FlateDecode >> stream xÚuTMo£0½ó+¼‡Jí!m0U ó!å°mÕT«½¦àt‘ˆ€úï×o†4«j{ÀzÞ̺v|t®võåïð žû®ÚºQÜf›|Ó6ã'oÚêp®Ý…õ’uïM{¥ ¸}u¿gã f‡c¯¤i"Amƃ§}Ã>,¾†%þrýÐtíƒP÷RJ(Ú:ëŽXÌÌ'Ab~‘¸oÚºŸT‰7h ”uSÓŒÆêè]AòöcÝqÓî»`µóÿsûÒyÌŸúÚõMû.n¿Šó?·çÓéà DÈ`½µÛûšÞ‡ÇÝщù7+ýd½~œœÐ4W¬­êj7œv•ëwí» VR®Åª,×kë/ÿbÎxÛOÔÔ0ñƒ”+³ðØ,ý ¥F Õ§)1<öÂc«8Pø€Æ\ ‹6¦€Ç>!Pp #]QxQTýÙõ“v)#´–êZB¢‰ÔYL½tž/Xˆ^r<ާÀ1çÆÀ†ãÄçu§%pÊñØr_âd·À9Ù¢PSiÆ0@¡Wå„Q_«úUžhÖ©±ÍÖhèÑ諵"œqëÒì–FM]R¯rCpt¨¡3Ì9õÂãж„~ðj™3FýeÁzpÉ8ô8úÇóˆ8Q„:1ù¬bøcäÕ7£®~}õÜðHq”('b ÃÄ„ùŒ>^ÐmØ# &½zdìõÄò…}4¼)Ö` Æð"áýH‘›,¸4%¬!Åþ%¤AQß„÷ÞB[B~)Ò™äÌï Õ_’)ïMн±¬?DM;Ý豬ßÂ;kyoóþQnNçRæð®d\ÆÓ €;‹WæóA¨Î}ïß zŠèÀÕoZ÷ùZº²è£gîòºböT$Z|U endstream endobj 189 0 obj << /Producer (pdfTeX-1.40.25) /Author(\376\377\000N\000a\000m\000i\000t\000a\000\040\000G\000u\000p\000t\000a\000\040\000\046\000\040\000J\000a\000s\000o\000n\000\040\000A\000n\000t\000h\000o\000n\000y\000\040\000V\000a\000n\000d\000e\000r\000\040\000H\000e\000i\000d\000e\000n\000\040\000\046\000\040\000J\000u\000l\000i\000a\000n\000\040\000Q\000.\000\040\000Z\000h\000o\000u)/Title(\376\377\000S\000h\000a\000z\000a\000m\000:\000\040\000Q\000u\000a\000n\000t\000i\000f\000i\000c\000a\000t\000i\000o\000n\000\040\000o\000f\000\040\000s\000e\000l\000e\000c\000t\000i\000o\000n\000\040\000p\000r\000e\000s\000s\000u\000r\000e)/Subject()/Creator(\376\377\000L\000a\000T\000e\000X\000\040\000v\000i\000a\000\040\000p\000a\000n\000d\000o\000c)/Keywords() /CreationDate (D:20251226170001+01'00') /ModDate (D:20251226170001+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) kpathsea version 6.3.5) >> endobj 141 0 obj << /Type /ObjStm /N 48 /First 418 /Length 2951 /Filter /FlateDecode >> stream xÚíZ[s·~ׯàc|ÎX¼ßf:±Ó¤q›¸¹º=Ný Èk[­,¹Ò:Múërw¹ºEn;ç¼tÆËI?€ ––4‚ &fJDx¦‚‡·eAhx--6 œ¸¬ÆB0%%tYÉ”3Å´a ­aÚA¿´Žé¨‘Ì(IzY¢ß™¦Ec.£[ûyC›Õ9:û“qqiÈ ÀÏá G*Ú›°o¢ÏýI^™e+Ìàû¢‘\ø!„k+6†¼ä´ÁU6 öu@ £-*ÐR*¢¯tý´`j³{ÕƒÌc[®ÔוMt×—”M4•x€\ÍRéás iÀlp;hE †*s{¢=$\±á±†R4Óñ”½B¶têý+e’“Êl š+;€F×L-h|HA+(ao§phH…†w‚Vn©3§VÈc¼Ì0Ý„í†Ášú³TiÀ±HÓ yN*£Å0]¶X8kdÖ|"Q䉣D)É5µs$ZA¸ =žŒIj§Ó+ãC–ÊcK™ÄÓX-%Ò¦ã¤Þ´žDçg¿|õÕ€¿ý|W1þt>«¿©–ãÅ䮞/T?ÝBÏÉñùÉ»§ÿ~þâõüv4“âðx>½†éèzÉLâ<>žbï |­ªhñc¯´¾ð£å¸šÕ€IðÇ£»gÕäú&WqBì;”Ô£éd|4»žVL ø›ºº=!ÐóSGȸ-ÞT5{ÄóoøSþ-?á/ùþ–¿ã#þù%¯ø¿‚¿ ¿æ7|§ü–Ïøœßñßø‚/yÍïùGþ;ÿ|ô:9áò²¥×ƒ¯¿Þ —oߟ¾xÙâ¢váâ—€W#žpñ.ÁôpÁê>¸ˆ¸—cBæ aó² 2á¿läSû8ž¾}{~~Z¸Éëêú~:ZlA.JÀSð~ /Šàº¤CD”xˆ ± W"¡e‰ÄQ‹gà)Ïù ~Ê\^ñ×ÙkÎø„Ò‡ûé´ª¬ñ|:ŸAy{;"àHvëRW“€å”_Íïä_7ŸïnªáúkFv6™UïÊ;~7ZT³iuU'jAÒ ß“ù%˜á·ûy]]~˜cSI¼h¡eõæXN>ñåt´¼‹Õ7‹ªâõïóìÌŸøgþÿ£ZÌûfô1ãã“oÎÏ ¯ÞmF¸MÇx'fVÌèBÇý6¼³;¬‰6üì÷ lv6Ý|ËÑì2ù7¦0GãäÙ hÂP¬3rŸ7 ‚ØÙOg§OŽZÄüèøî ñâ?â:Ät1ÝCÌn ¡DL”ˆ½µ#@? 6»ÿN>‚ÓW¯_={¼˜ÏæÏëÝg\Âepαt,Ö/z[Ÿªíú•ô[Ö0mñ˜1¬xB …%öø Xvtvþýy^àcÜ"j‰É¡Ä›Z×­ÐöAÛ;•RG„ûŽ_D¹.Æý÷Kan1WeˆJ!É_«ºm:ul‹†Õo÷£)¯>§£[ò+ Š["â´Z.»°8»¿ý»vr={P„¼›Þ/‹0¹GP¼Ÿ]Â<ãù¢ÚÝƒŽ¹ãÓówÏN:OHöÚâ1;B WÿóŽpˆIЮÐ$DèëNðcN K’ ³ñ¶dû[«Ž•êg³aÖ̲áØz2Ï/'³kÀjruUÁÜãjÉÞK·ãð„Tº9·§p%Õxl«e·>¸«h}®=X SÞ¸^?ydB3—AHëÅ%bèié´AmòY'm'Ú´Ó î¥ CÖaÎà®ýÒ6ï%3ð¹ »ý¼ÜÓp;ÐÛÖðASXþéÔKSÒÜùÀzâœöRIàß\¶ˆ&û™M»œr]¬ï>ð÷û5U±ýx´¬°gûIoÓ2ü_#z:Y,kÜ&à þ|”+RÐ'—õÍ’þ»I¼ªôFjy;7›@#ºä–¼`—®Û¾Vuukº†ž®¢ÓÕŠ=tõâáºîHáWÕ «êJ×SWÐÆ}Ô•WwGªº¢®«êê°Í¬ÜG]õpuw䉫êª/8C®Uû¨«®îÖœnUÙµ]†gY§,¦m­+è}”5Û­ùÙª¶kûLë´¶Ð6죭}¸¶[sˆUe×v™6[˜ÝGY÷? º°Öêë×ôuëúnÈ^Ž®«%¤=ó{üb@}IþLƒ†?¹„³… lK¯„KS²tËÃÒÎÅáz›ðdIaððø%I±©Ò¿iîîë)$Ë ýr„&EéG'TkތԘ-™ᎀ1ëÚêž¾\Té'+%¤i´öÝh»stÞÀ§Õ§N¥Y¦“¥vÊ=Yõ’­,wÉR¾'Ko¥B'Ëí”ez²Ä&Y¶“¥7ËJ£UÏñ œàÑ7óñá›z´¨@>9Ä£Hî‡걨«øéUQ×P—Eݰ[®[¨ûäYüùävR¯LÖp]¬*tÎJ³§’ê0{r†\‡ÙS–”ë0»‰Ef·%¿;`é#»Ô¦™©aÙ¬Š?`^¢Â‹¡¨GT5#±¬Æõd>ûéïVÛ@W3å[kšÁÄ=¾5õºN€'ݬ•##V(gVÑVbµ Ó«ËB'P«ÊöÔ(y·+ŒÎ³ª/:Ъº ˜YU ôR«|•±+m`§”œnÔUôX·« æµr«˜XЉ˜añgv•ƒÌo•ß:¿M~Û];eÓpÖþ"oíPz<‚#|~=Ha¿;/š˜^ÄZ,þš/‡ëêœuüݲê€îªÙ)ÀÚ¼ø¿ î~f endstream endobj 190 0 obj << /Type /XRef /Index [0 191] /Size 191 /W [1 3 1] /Root 188 0 R /Info 189 0 R /ID [<7EFD4E9E24AFB4ADD1145851A263179D> <7EFD4E9E24AFB4ADD1145851A263179D>] /Length 500 /Filter /FlateDecode >> stream xÚ%Ó»OaÆásf”Ë»à ñ†ˆ.¢ ®7¼ ‚‚xG`A;bkE,,Ì)°³·°°0¶ÆÿÀ„BŒ‰‰ö&ëü^›'çÌùf¾ÙoÞ53«$f‰¹-/•C)l€PÕPp³‚×@mF´@3mŽj+l£­ƒzh€<ƒí°Ú Á&`ì^¸ zh£[õ¸¶l‚Ͱ´‘*íÆC“·ü -nöHöB»[ë¢;aì†ÐáÖ9¡é>è„ýÐå6ôGƒCÐíV|¢ö ô¸¾ÉÎo®W×ÎCÑmð‡Ús¼Ÿvës+-éÚaè‡#p`ŽÁÛp›wPU‚pNÁi8ÃpÖmr!{—źã\p›^W{.º•?©½—á ŒÀ(\…1w{ܯÅ×Üžþ?œë0“p¦Ü–¦4½·Ý^~W{‡Ÿ¯¯pŸJÇ9 huÄ30K«cŸƒ2mÕ<,Ðê >„G´¤$ÌÓß:ç >AvƒìÙ R8pà ÀAl£ÖíõsÝ›s7vԹϗUÕ»¯­ªjðd¤¢*ïÉÛ’ª‚'•wª=}öJU“§Ÿßg/ôe&ãkMÆÊ‡Œo´«U?i×f3Ösºƒüù‹. „Ñ ä*z€¿Aº(BŸ§¿š³ü]±äø^p endstream endobj startxref 261335 %%EOF shazam/inst/doc/Targeting-Vignette.R0000644000176200001440000000610515123530427017115 0ustar liggesusers## ----eval=TRUE, warning=FALSE, message=FALSE---------------------------------- # Import required packages library(shazam) # Load example data data(ExampleDb, package="alakazam") # Subset to IGHG for faster usage demonstration db <- subset(ExampleDb, c_call == "IGHG") ## ----eval=FALSE--------------------------------------------------------------- # # Create substitution model using silent mutations # sub_model <- createSubstitutionMatrix(db, model="s", # sequenceColumn="sequence_alignment", # germlineColumn="germline_alignment_d_mask", # vCallColumn="v_call") ## ----eval=FALSE--------------------------------------------------------------- # # Create mutability model using silent mutations # mut_model <- createMutabilityMatrix(db, sub_model, model="s", # sequenceColumn="sequence_alignment", # germlineColumn="germline_alignment_d_mask", # vCallColumn="v_call") ## ----eval=FALSE--------------------------------------------------------------- # # Number of silent mutations used for estimating 5-mer mutabilities # mut_model@numMutS # # Number of replacement mutations used for estimating 5-mer mutabilities # mut_model@numMutR # # Mutability and source as a data.frame # head(as.data.frame(mut_model)) ## ----eval=FALSE--------------------------------------------------------------- # # Extend models to include ambiguous 5-mers # sub_model <- extendSubstitutionMatrix(sub_model) # mut_model <- extendMutabilityMatrix(mut_model) ## ----eval=FALSE--------------------------------------------------------------- # # Create targeting model matrix from substitution and mutability models # tar_matrix <- createTargetingMatrix(sub_model, mut_model) ## ----eval=TRUE, warning=FALSE------------------------------------------------- # Collapse sequences into clonal consensus clone_db <- collapseClones(db, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", nproc=1) # Create targeting model in one step using only silent mutations # Use consensus sequence input and germline columns model <- createTargetingModel(clone_db, model="s", sequenceColumn="clonal_sequence", germlineColumn="clonal_germline", vCallColumn="v_call") ## ----eval=TRUE, warning=FALSE, fig.width=7, fig.height=7.5-------------------- # Generate hedgehog plot of mutability model plotMutability(model, nucleotides="A", style="hedgehog") plotMutability(model, nucleotides="C", style="hedgehog") ## ----eval=TRUE, warning=FALSE, fig.width=7, fig.height=4.5-------------------- # Generate bar plot of mutability model plotMutability(model, nucleotides="G", style="bar") plotMutability(model, nucleotides="T", style="bar") ## ----eval=TRUE, warning=FALSE------------------------------------------------- # Calculate distance matrix dist <- calcTargetingDistance(model) shazam/inst/doc/Baseline-Vignette.Rmd0000644000176200001440000004140615120056314017232 0ustar liggesusers--- title: 'Shazam: Quantification of selection pressure' author: "Namita Gupta & Jason Anthony Vander Heiden & Julian Q. Zhou" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4 fig_width: 7.5 highlight: pygments toc: yes html_document: fig_height: 4 fig_width: 7.5 highlight: pygments theme: readable toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteIndexEntry{Selection quantification} %\VignetteEngine{knitr::rmarkdown} %\usepackage[utf8]{inputenc} --- BASELINe quantifies selection pressure by calculating the posterior probability density function (PDF) based on observed mutations compared to expected mutation rates derived from an underlying SHM targeting model. Selection is quantified via the following steps: 1. Calculate the selection scores for individual sequences. 2. Group by relevant fields for comparison and convolve individual selection PDFs. 4. Plot and compare selection scores of different groups of sequences. ## Example data A small example AIRR Rearrangement database is included in the `alakazam` package. The example dataset consists of a subset of Ig sequencing data from an influenza vaccination study (Laserson and Vigneault et al., PNAS, 2014). The data include sequences from multiple time-points before and after the subject received an influenza vaccination. Quantifying selection requires the following fields (columns) to be present in the table: * `sequence_id` * `sequence_alignment` * `germline_alignment_d_mask` ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Import required packages library(alakazam) library(shazam) # Load and subset example data (for faster demonstration) data(ExampleDb, package="alakazam") ExampleDb <- subset(ExampleDb, c_call %in% c("IGHA", "IGHG")) ``` ## Preprocessing Before starting the selection analysis, data need to be prepared in one of two ways: 1. Constructing clonal consensus sequences. 1. Incorporating lineage information. ### Constructing clonal consensus sequences Individual sequences within clonal groups are not, strictly speaking, independent events and it is generally appropriate to only analyze selection pressures on an effective sequence for each clonal group. The `collapseClones` function provides one strategy for generating an effective sequences for each clone. It reduces the input database to one row per clone and appends `clonal_sequence` and `clonal_germline` columns which contain the consensus sequences for each clone. ```{r, eval=TRUE, warning=FALSE, results="hide"} # Collapse clonal groups into single sequences clones <- collapseClones(ExampleDb, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=IMGT_V, method="thresholdedFreq", minimumFrequency=0.6, includeAmbiguous=FALSE, breakTiesStochastic=FALSE, nproc=1) ``` ### Incorporating lineage information For each clone, lineage information can be incorporated following these steps: ```{r eval=F, warning=F, results="hide"} # Subset to sequences with clone_id=3170 db_3170 <- subset(ExampleDb, clone_id == 3170) dim(db_3170) colnames(db_3170) # Generate a ChangeoClone object for lineage construction clone_3170 <- makeChangeoClone(db_3170, seq="sequence_alignment", germ="germline_alignment") # Run the lineage reconstruction dnapars_exec <- "/usr/local/bin/dnapars" graph_3170 <- buildPhylipLineage(clone_3170, dnapars_exec, rm_temp=TRUE) # Generating a data.frame from the lineage tree graph object, # and merge it with clone data.frame graph_3170_df <- makeGraphDf(graph_3170, clone_3170) dim(graph_3170_df) colnames(graph_3170_df) ``` `makeGraphDf` creates a `data.frame` with the column `parent_sequence`, which can be used to analyze mutations for each sequence relative to their `parent_sequence`. ## Calculate selection PDFs for individual sequences Selection scores are calculated with the `calcBaseline` function. This can be performed with a single call to `calcBaseline`, which performs all required steps. Alternatively, one can perform each step separately for greater control over the analysis parameters. ### Calculating selection in multiple steps Following construction of an effective sequence for each clone, the observed and expected mutation counts are calculated for each sequence in the `clonal_sequence` column relative to the `clonal_germline`. `observedMutations` is used to calculate the number of observed mutations and `expectedMutations` calculates the expected frequency of mutations. The underlying targeting model for calculating expectations can be specified using the `targetingModel` parameter. In the example below, the default `HH_S5F` is used. Column names for sequence and germline sequence may also be passed in as parameters if they differ from the Change-O defaults. Mutations are counted by these functions separately for complementarity determining (CDR) and framework (FWR) regions. The `regionDefinition` argument defines whether these regions are handled separately, and where the boundaries lie. There are several built-in region definitions in the `shazam` package, both dependent upon the V segment being IMGT-gapped: * `IMGT_V`: All regions in the V segment, excluding CDR3, grouped as either CDR or FWR. * `IMGT_V_BY_REGIONS`: The CDR1, CDR2, FWR1, FWR and FWR3 regions in the V segment (no CDR3) treated as individual regions. * `IMGT_VDJ`: All regions, including CDR3 and FWR4, grouped as either CDR or FWR. This `RegionDefinition` is initially empty, and one is created on the fly for each set of clonally related sequences. * `IMGT_VDJ_BY_REGIONS`: CDR1, CDR2, CDR3, FWR1, FWR, FWR3 and FWR4 regions treated as individual regions. This `RegionDefinition` is initially empty, and one is created on the fly for each set of clonally related sequences. Users may define other region sets and boundaries by creating a custom `RegionDefinition` object. ```{r, eval=TRUE, warning=FALSE, results="hide"} # Count observed mutations and append mu_count columns to the output observed <- observedMutations(clones, sequenceColumn="clonal_sequence", germlineColumn="clonal_germline", regionDefinition=IMGT_V, nproc=1) # Count expected mutations and append mu_expected columns to the output expected <- expectedMutations(observed, sequenceColumn="clonal_sequence", germlineColumn="clonal_germline", targetingModel=HH_S5F, regionDefinition=IMGT_V, nproc=1) ``` The counts of observed and expected mutations can be combined to test for selection using `calcBaseline`. The statistical framework used to test for selection based on mutation counts can be specified using the `testStatistic` parameter. ```{r, eval=TRUE, warning=FALSE, results="hide"} # Calculate selection scores using the output from expectedMutations baseline <- calcBaseline(expected, testStatistic="focused", regionDefinition=IMGT_V, nproc=1) ``` ### Calculating selection in one step It is not required for `observedMutation` and `expectedMutations` to be run prior to `calcBaseline`. If the output of these two steps does not appear in the input data.frame, then `calcBaseline` will call the appropriate functions prior to calculating selection scores. ```{r, eval=FALSE, warning=FALSE, results="hide"} # Calculate selection scores from scratch baseline <- calcBaseline(clones, testStatistic="focused", regionDefinition=IMGT_V, nproc=1) ``` ### Using alternative mutation definitions and models The default behavior of `observedMutations` and `expectedMutations`, and by extension `calcBaseline`, is to define a replacement mutation in the usual way - any change in the amino acid of a codon is considered a replacement mutation. However, these functions have a `mutationDefinition` argument which allows these definitions to be changed by providing a `MutationDefinition` object that contains alternative replacement and silent criteria. `shazam` provides the following built-in `MutationDefinition` objects: * `CHARGE_MUTATIONS`: Amino acid mutations are defined by changes in side chain charge class. * `HYDROPATHY_MUTATIONS`: Amino acid mutations are defined by changes in side chain hydrophobicity class. * `POLARITY_MUTATIONS`: Amino acid mutations are defined by changes in side chain polarity class. * `VOLUME_MUTATIONS`: Amino acid mutations are defined by changes in side chain volume class. The default behavior of `expectedMutations` is to use the human 5-mer mutation model, `HH_S5F`. Alternative SHM targeting models can be provided using the `targetingModel` argument. ```{r, eval=FALSE, warning=FALSE, results="hide"} # Calculate selection on charge class with the mouse 5-mer model baseline_mk_rs5nf <- calcBaseline(clones, testStatistic="focused", regionDefinition=IMGT_V, targetingModel=MK_RS5NF, mutationDefinition=CHARGE_MUTATIONS, nproc=1) ``` ## Group and convolve individual selection distributions To compare the selection scores of groups of sequences, the sequences must be convolved into a single PDF representing each group. In the example dataset, the `sample_id` field corresponds to samples taken at different time points before and after an influenza vaccination and the `c_call` field specifies the isotype of the sequence. The `groupBaseline` function convolves the BASELINe PDFs of individual sequences/clones to get a combined PDF. The field(s) by which to group the sequences are specified with the `groupBy` parameter. The `groupBaseline` function automatically calls `summarizeBaseline` to generate summary statistics based on the requested groupings, and populates the `stats` slot of the input `Baseline` object with the number of sequences with observed mutations for each region, mean selection scores, 95% confidence intervals, and p-values with positive signs indicating the presence of positive selection and/or p-values with negative signs indicating the presence of negative selection. The magnitudes of the p-values (without the signs) should be interpreted as analogous to a t-test. ### Grouping by a single annotation The following example generates a single selection PDF for each unique annotation in the `sample_id` column. ```{r, eval=TRUE, warning=FALSE, results="hide"} # Combine selection scores by time-point grouped_1 <- groupBaseline(baseline, groupBy="sample_id") ``` ### Subsetting and grouping by multiple annotations Grouping by multiple annotations follows the sample procedure as a single annotation by simply adding columns to the `groupBy` argument. Subsetting the data can be performed before or after generating selection PDFs via `calcBaseline`. However, note that subsetting may impact the clonal representative sequences generated by `collapseClones`. In the following example, subsetting precedes the collapsing of clonal groups. ```{r, eval=TRUE, warning=FALSE, results="hide"} # Subset the original data to switched isotypes db_sub <- subset(ExampleDb, c_call %in% c("IGHM", "IGHG")) # Collapse clonal groups into single sequence clones_sub <- collapseClones(db_sub, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=IMGT_V, method="thresholdedFreq", minimumFrequency=0.6, includeAmbiguous=FALSE, breakTiesStochastic=FALSE, nproc=1) # Calculate selection scores from scratch baseline_sub <- calcBaseline(clones_sub, testStatistic="focused", regionDefinition=IMGT_V, nproc=1) # Combine selection scores by time-point and isotype grouped_2 <- groupBaseline(baseline_sub, groupBy=c("sample_id", "c_call")) ``` ### Convolving variables at multiple levels To make selection comparisons using two levels of variables, you would need two iterations of groupings, where the first iteration of `groupBaseline` groups on both variables, and the second iteration groups on the "outer" variable. For example, if a data set has both case and control subjects annotated in `status` and `subject` columns, then generating convolved PDFs for each status would be performed as: ```{r, eval=FALSE, warning=FALSE, results="hide"} # First group by subject and status subject_grouped <- groupBaseline(baseline, groupBy=c("status", "subject")) # Then group the output by status status_grouped <- groupBaseline(subject_grouped, groupBy="status") ``` ### Testing the difference in selection PDFs between groups The `testBaseline` function will perform significance testing between two grouped BASELINe PDFs, by region, and return a data.frame with the following information: * `region`: The sequence region, such as `cdr` and `fwr`. * `test`: The name of the two groups compared. * `pvalue`: Two-sided p-value for the comparison. * `fdr`: FDR corrected p-value. ```{r, eval=TRUE} testBaseline(grouped_1, groupBy="sample_id") ``` ## Plot and compare selection scores for groups `plotBaselineSummary` plots the mean and confidence interval of selection scores for the given groups. The `idColumn` argument specifies the field that contains identifiers of the groups of sequences. If there is a secondary field by which the sequences are grouped, this can be specified using the `groupColumn`. This secondary grouping can have a user-defined color palette passed into `groupColors` or can be separated into facets by setting the `facetBy="group"`. The `subsetRegions` argument can be used to visualize selection of specific regions. Several examples utilizing these different parameters are provided below. ```{r, eval=TRUE, warning=FALSE} # Set sample and isotype colors sample_colors <- c("-1h"="seagreen", "+7d"="steelblue") isotype_colors <- c("IGHM"="darkorchid", "IGHD"="firebrick", "IGHG"="seagreen", "IGHA"="steelblue") # Plot mean and confidence interval by time-point plotBaselineSummary(grouped_1, "sample_id") # Plot selection scores by time-point and isotype for only CDR plotBaselineSummary(grouped_2, "sample_id", "c_call", groupColors=isotype_colors, subsetRegions="cdr") # Group by CDR/FWR and facet by isotype plotBaselineSummary(grouped_2, "sample_id", "c_call", facetBy="group") ``` `plotBaselineDensity` plots the full `Baseline` PDF of selection scores for the given groups. The parameters are the same as those for `plotBaselineSummary`. However, rather than plotting the mean and confidence interval, the full density function is shown. ```{r, eval=TRUE, warning=FALSE} # Plot selection PDFs for a subset of the data plotBaselineDensity(grouped_2, "c_call", groupColumn="sample_id", colorElement="group", colorValues=sample_colors, sigmaLimits=c(-1, 1)) ``` ## Editing a field in a Baseline object If for any reason you need to edit the existing values in a field in a `Baseline` object, you can do so via `editBaseline`. In the following example, we remove results related to IGHA in the relevant fields from `grouped_2`. When the input data is large and it takes a long time for `calcBaseline` to run, `editBaseline` could become useful when, for instance, you would like to exclude a certain sample or isotype, but would rather not re-run `calcBaseline` after removing that sample or isotype from the original input data. ```{r, eval=FALSE, warning=FALSE, results="hide"} # Get indices of rows corresponding to IGHA in the field "db" # These are the same indices also in the matrices in the fields "numbOfSeqs", # "binomK", "binomN", "binomP", and "pdfs" # In this example, there is one row of IGHA for each sample dbIgMIndex <- which(grouped_2@db[["c_call"]] == "IGHG") grouped_2 <- editBaseline(grouped_2, "db", grouped_2@db[-dbIgMIndex, ]) grouped_2 <- editBaseline(grouped_2, "numbOfSeqs", grouped_2@numbOfSeqs[-dbIgMIndex, ]) grouped_2 <- editBaseline(grouped_2, "binomK", grouped_2@binomK[-dbIgMIndex, ]) grouped_2 <- editBaseline(grouped_2, "binomN", grouped_2@binomN[-dbIgMIndex, ]) grouped_2 <- editBaseline(grouped_2, "binomP", grouped_2@binomP[-dbIgMIndex, ]) grouped_2 <- editBaseline(grouped_2, "pdfs", lapply(grouped_2@pdfs, function(pdfs) {pdfs[-dbIgMIndex, ]} )) # The indices corresponding to IGHA are slightly different in the field "stats" # In this example, there is one row of IGHA for each sample and for each region grouped_2 <- editBaseline(grouped_2, "stats", grouped_2@stats[grouped_2@stats[["c_call"]] != "IGHA", ]) ``` shazam/inst/doc/Shmulate-Vignette.pdf0000644000176200001440000053767015123530422017336 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 7 0 obj << /Length 2342 /Filter /FlateDecode >> stream xÚÕYKoãF¾Ï¯² °zúÉÇ`÷à±'™±ØšËf-ѱ©Ôx½‹ýï©êjRlš²f3Èa‘‰Énö£ê«w‰Ïg|võ†Ÿx~¿|óöRÅ31)Œž-f" Y,ô, SÜÌ–ëÙ/ÁÝ&ýwº}7_hwùv.Ã`_¤m^>ΊˠÉ~Ûgå*£}oá{U6ó,z{©ÅL–#í%œ3˜Y¨ˆñ8¤;~ÚyZ°÷g†Ï(øû¦Úã~Ü«C “JÑÉ¥Y¹!]&3¡™ÂupÅBò…pøB Æ#A{.ªr®DÐfôpÄ)±„'‚`*Ôp†äZçØòŒ<*иã¦T—ô)¥aè™{ïñ‰Bw†ó?ù¡“äO:0ë5höËBh™Ÿ峅PÌèäÃWäe–>:üÚ:Cì’èÿ»SHÆôfß^FÉP9½vr¦¤vð¾ó¼žÔeÆ%œÃgh~’ÉÈÌt10•å6îêjfö%_g ƒ&ã'üSÑÄþ\9!%ƒ‡ª¦ùE¼~ì…š­i¢Sûæ Æ± Àú"Èè„´uWn25MÙ¼ +È8."Î"`[Çš ð –‹ÏÜpbÞÇJ3©‘{‹Q³ÙZõ»Ë~›*TÝB8Mœ‘Ö¥åšTÒ’ˆ3¼Õîc;úæ)¬¥>Fêí¢c$Š< c"—¨îSTÆÀ}4¤ÔêÐ VÄ@r¦C.<"p¾’‘ %©$ê9H¢x¦ פô0‹­e^Û´~Ìœ£‡áÔøZ“AJ´ßª~_UÛÝþ°œÀдûô>/ò6GUéêö‚Ö$CW€d´ô)KWøqã«ph8“aì”ØRT59àdST–‚¡xòó½1Zº6Á²[Ò±gÀ6º+d; ÖYÑÐÄj_×DàâÖbˆ—âèËܘ Í‹ô¾èïÔMž0fÈOY°Š»5i½ù†˜{¾A+¼ }çðY þªKGèî’÷ï½3—“„@8#+lÒÜZ¼³§»¼p˜ ?£ý—óXNESg6žT¯|ä^Á!†ÔEù!è„áÃÇc8hÎðí(ÒÝ.ù©u÷D~à7 §Q`Ó`éX ÁR>Xê‚e4ãJ| X×~½½37“h <“ÐÆ"§¹d±Éx?™¨àºÚ7½:üðu€=„ ͼÍvEºÊ¶&Zd1Ç?Xn¨Š[t{F®‚›ª\”f%î=@9tçË« üÿ„›ÿ•ð÷>åÄÑÁ0ˆ‰G 9z…$ë„ÎÉI'20 ‘Êß逇žÓ` 7EÚ9¸µÆŒ±ÏA1Ö.XíWÙšuR}å XÈ£™„¢¢ÓjÊŒáú¶jmš½™ÒzKë3i5­©Üó¡&í|¦õ”æGc/‹Ÿ¬f¸sii^X;Õ@Zi•5G<œá¢ÙÑÝ«ü3Wº[ò%OOI#øÅr¿½ö[U/Ä#¢BжŠ#ÑéK»yíÎÚiy{¸P 2åïn¬Y£<_UCH lšåí½<ÿx÷é[¡È„”þN¬`×ÙCº/Z¬;‰ù+ÈH3#Fx-o?$@qa#·±Îz™·¹k <£»@©âÞu¼æ, k…òˆ0þö5¤éPCJ¡ý#Μ<ÈZâc&£-t1P¯Kì4JñÒŒÑQ7.ìU‡hMnVÉ)³¦Õ]äZ¥ÅÊæLk?{pù6YÊÇ.i°†:ü8ˆ2}s§h!®ätžÍcâày¼ òƒiN„@7ŠdÏqtà]ÀȃP/uµ/×™¬mT{*‡®$ìdn*ïgã ž6U‘½ê¾Âã-šNòCBëÓþPTÊõê+F1bšz7 ¸&¸ö"9m¤Ô¥‡/ w'e†§¥¯œ®h¿1â5Y»` ‹&Ú"ÝŠ®Ãµªè¦tº•!cˆB²oS°I8 ‡ÔÑ-9b¥  ýšÉjÇ Û_S­/¡»uÝͰ2tÀÊÐL‡+òK„œ2%lëàä¾±enLifP<á¬-ž,žP pâ+ÊášpÜþ²‡µô©ïqÑB¯™5?4öJ8»Ø¾ß¹®‚³rûmWñÙÃã`ã„Oüa¶eëN†Í%†Mì×P…ú3·X“ò/j²¾¹ôJîÜ¥w´Ý¼¶`íÒÕ?¡)Úx….·Æý/ø£ÝÅÞÌíËbxô‹B‘ß×iý<ê [#nìU6H} —ИÍò¸$SÁ×aÙz´~w$wå«·"²ª‘iåÎÜÚðª¿.FØIÓ­ ÝNoæ°ó»›«óåÅòêüþÁŸ«‹‹«åÕò|¹<‡YHH¯Îñ¿å9[ÂÔwþ5=O¾JE)Ôе{ÌÈšÿãÏË7¿Sí· endstream endobj 23 0 obj << /Length 1787 /Filter /FlateDecode >> stream xÚíXYoÛF~÷¯Òˆ˜]îòš†µi'±Ø z8F@‹k‰D)$ÕÄýõÙ]J\Z–äÄ-òPÉ=æ›ã›Ùƒ Æ2HHû´Y0 ¶Çð/TÐj¶\$¯ÒƒÇ!Pb‡žéíÀw> mÂá+\Y?]ǵ.‹Ùrš5B}eSÍóå¨)æ¥j™ßª§§³e“ag­>—uQŽÕk3Ñ2rq›-§ú89ùxéëY5ÍjÂlž‹éáuúºcqÀêÁ×–-`Ù‹c?ìšECÊl:¥UõD™s)>¢¡ëqI->/E9ÏU'Ê$¶ë)‰g´\àD©l¹œµ¦¿ì)í¸­ó9WBŒ)üw_j jûÀ$Bêp(©+z­^ž'Q§I'QÅ ¾¤q¥Q„o 4ã/Žì4M£gÚÔݤé3¦¯ÇãÓcJ¦ q[©Ü©OðÕÿLz“Ðe=…­Ä* } \„"DýI F‹Ò ½xô”tŽ¢h):Gq#½#à.’¼¥sôTtfßDg¾wý;{óñâÒ=ÿ¨êþàLåßÍÓ•÷ÎÐo/ûòZWï&ÛVK×äSµ4AòI &q$É—vÈ÷âøE©º®Óò*´ª!€P‡ŒZšṪ˜Ëï&;¤–¦ó= šêÍðÁ­iQÂpjᨱPCšJ…x/ü`”ö⟮†3×n‡ðƒtàܦŒ \êÙ¡çÒÌ‹RT0£¡TˆV-õ À0'P†åª«¥V­FÜduÛƒéƒMY©¾‹r±lÌI퀼J?dc݉°Ñ$´!ôµ>µ=â\ÂlNeCŠÙǘ»b¼ _ŠéT½e#= «UC£&sÈÎc »+1%šÜ¨a£ùl&í©hu3¯T¦ÙÙ#ÉEÙ*c› Õkûì{Þ Ì[Cƒ°5Ôð ´à›4²ën(±°U?°æcõ¢’Õ{Êùá”ÊÕŒpå•ìªYF6´–¨æø§,' ò8Aƒ€LII-¤Òú({CKÑdU'±k4¯*Q/äøy™£æ@s-y. §£}RVÙ¬q™%ò±vá”/ŠñDƦVÝkgëñkîPYO»Ôá® |ò:ÔᜮCƒ2÷ä[QãÓ±êåb1-Ð3ØzsèøÖÛJXÖ¢Ro™ž„ü—BÆU¶˜lJæÖn©é@I7tëÌ2sºcó}; Ôœ8ÇØøÖŸbÔÁ¸O@ýª<éê‡ªãÆ 5­Ö'ɪìY¹Em w æëbr³,¦ù»ÉÝ´X¼ÕþÜ®> 0Ü7¥ÈU—*jow Œ¬77›fŸ²¿³Ù\Ç lÎzÚ/2é¤O ¶ ž Ô±Žja¢£>¹h²bZƒK]χ|{©É׿Ú.Ô…Az4Õ¦ÍÆéXwÈ\&'ÓMå 4­wýÐö‘ N`¡.˜ãR4r‰"·¹*- µ-ê0ô¬eų‡ŽÎý­ÿ}—©†0ZÖ*þ<쉗­]«¯®´Ì½ÎpÔï«{}ýļ8U[v|]oÙåâ6WÏÑž¶ÛœÎôùûì"ŽÌ¥su ¿·Lvìºüiõø>ïïG ãRïþAoAV—zi”tnAq#üP(Â-·!?ì\Ú罫©C¯Lîq1åxï{‡! C—ô™u“iZôuk¯ððGaæiy+àГSÕü¨ðÂöÈ!Ä"Ûpô½irî^ž¼J‰ÿú—ßu;XÑÃXñ,g3±ØÑ;þ&Þ‚­°Ò.V¢±XË5¡¸ E£7Ñù *i]˜® ’.Œ[³ø6³Ü>»<þã¾Y©ÄÂë ¸ëB„Nº.ô¶ay&Vpòþ½ÖÃJ Æ]ÆÛ\ØÇòM,EÞéÞÔˆûÔ Û°Ë;ýíõéÉÃXñÒ^•6w’£¶ã³Á6åYjbÞ†¥ÿí›Ò endstream endobj 28 0 obj << /Length 1499 /Filter /FlateDecode >> stream xÚÍXYoã6~÷¯Ò>ÈX‡!EŠ–Nh§5>×ãcø-ë:½ÎŠšŸê.Î6 cU5QZà¤Ö»¦¶ŠÓï\º*AiQ)Ì„­ÆÂÖ$·U™ã ׸+-–¤³,ê4QU« "Ÿšýz9† f´\Ð{}!jü1ÿ2ˆÛ=æ†Æ&­A´ÏuT58*úémÔi>ÝMA8¥0( =bãcוö|<õì’¶ ˜Ëâž$›XG°ÂY ª'ZØ›šŒi«ÀÉç ìæQP0rÊ™ë"Z¤*Kp×Áì»Âa.wû£j¹ÉU¡£à -’4Žrêv•’÷„mèwÀ º’4EÙDMª‘‘ÒµMUd N h Mø’9®Û×wŦ¦©¾s/«h½‚8íÖ/ÇY苾2¨2*ToÝz´(«¼ão¥2u3ö|¤E¤x&Ћf;TÌt—S=—z“FK0΃Zþ”ÉÐE‡è\éUµ|²„ç2_†{UíÃ¥ëaÏÐA€+°cŠÜÔø¶È=³Š@ešN0ëxîͤ_N· ô›4àÆØùqmVÚ˜º}D?Žªê~<•p:Û,ÈÎFé2Ï!"¼(Š`çÏíJ‘è–’îØu™«ŽËÛ3¬ó—$©4Êú1©z¨}aáF¾UÖì"éÎú:Kã´É“{òà!åš} »ßr_$ÅŠ¹s…&œJ8b ²Œ5˜4œ‡˜Â›y„FÌ$ÊjÚ¸T m‚­6‹IKžg6ôH6Õ]”¯3Sø®æÆuÛ|ù„P¹¦Äé{\7=ËÕÕ…Ï õºÂ4Á @â-U9(xÀ\‡È¯«Yúöì7ýôÚSè?XÇå•i0ï%Êß›Og%À¼yí±ñ[赨ìéÂI[Ǧ­LíYM~áj\Ve–E)5Íê ³ÔǚϗÃÃã…’MÙ?<<=iCÙVz†¤É‡¦ÂTWK†ª X¥¸b:3rh¦{Ü¡§j4=[ëûP–»C²;ð#Î$´>àIýZÜú’Ë3¸,Avˆu gE:@( `òËøØs<{®ó¦]*Ósl»fGY¦h|T›Ú¾J“#ô¤½¥1¥È´(èÀèQOb<êS>x$$ó`ÑxÔé†=Õ°ô ;‚=ÇÓŠ] ÚØëI.ÍÆ_‡š¶î÷½o_‚D(}?ppµçÎí£w €ì†O,?6|Û´B.Ó˜2‹tƒÒ„dGgÞ_¿¿Ÿs1ûcvñ<Ñăµ€Ïr±hONióy±P\gÅ›×\T÷åžÐ·8ó|ÔhÔ÷$˜ò<ªN_ì–¾?=bØT–I”×®ÖZ *àC“ì6Àþ/5¼ðÈ%ï x¾u&±ÿŒ<ë)²=D&“”•ñ.‹îËMs:Tˆâ«¨¾j*¥^¬U%KÅàBWÞ²èé+°;œ÷g{ì˲èZe,Vw¯sƒÞÁü}š~Ž:-Zx?ߊóÑÉy.¬åèÏg1 ù# O‚Z›²@ú=üÔ~Ù·äGüv›6+È‘>°1&ªhRè€Õ„§à°Ív¼8:SUž¥…:jY7yȯ¸Rm©|C›·ß¯uÐëù7«{`lïa“ýíbÒº£žÛ(&ƒcnQoÈéó¢õ­µGµÆ|ùøÏßÞ í5æ³ÈŒ¢·CòóZ bþz ؼqû«Wù&ƒOÑ9ðÈ>ÚªÕÏ*â6œ×±˜¹Ùí=ÞOݦ]þ^Ã7”÷¡žN0çøcö÷$èÇÅìp“ ÙðoG æÀ÷\©á#)@¸eo˧ùè?®ßW endstream endobj 25 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Shmulate-Vignette_files/figure-latex/unnamed-chunk-3-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 30 0 R /BBox [0 0 385 332] /Resources << /XObject << /Im1 31 0 R >>/ProcSet [ /PDF ] >> /Length 37 /Filter /FlateDecode >> stream xÚ+ä2T0BC]sS]C…ä\.}Ï\C—|®@.`„Q endstream endobj 31 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Shmulate-Vignette_files/figure-latex/unnamed-chunk-3-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 32 0 R /BBox [ 0 0 540 360] /Resources << /ProcSet [/PDF/Text] /Font << /F7 33 0 R >> /ExtGState << >> /ColorSpace << /sRGB 34 0 R >> >> /Length 1038 /Filter /FlateDecode >> stream xœ•VÏO\9 ¾¿¿ÂG¸¸±_ï,¦*Ú–©ºmÕJ‹:H ‡ý÷W±Ì{*Z Þ`;Ÿý%ùœ„`ðÏôÁþ€0Fû$)H ’ôçiŸáqzóüñê.9 ,¿w·SÀ’àßéÛwðc"ØL ÞOÂsŽ%À$g$ª3æ¿î&¡ˆµ†pÉÃjgiÿS -²æ¤Yˆ±ô!iÆ\JÄaÄ…ŠœmQF0¦ÒF˜)Kô^¹—qf«25 ð¡L$ÁXWe„ ¹€07×Üæ\1Š 9ßúªÞ?Om¡ôoŠ žï§7o l1zØ>f‹Œ30G Û=œÄSØ>L—[Íýÿ`žg q æW€cÁRbAJ ί#Ï@±¶½j`9L$m¿òŒ9½Ë5#³±¶)Óñà¶…”uš_ ¦¤j¡©A{¬vÀ9pk%Ž.€¶õkA´ok3 3Nçû…' rTµÎÜu¶VÝ}ÝZ‘F\kX·,·Žîž€)lL(yä6KG{mw¦†]ñ¾ŸÎ'NcªºRû¥'£D¥•3PëU.¶ fµz­S%ŽxÕŸŽí–‚t´{Š&íØ¬{n³t´×ö¸ór슷ͅBÄ\€‚ Ù\†gÖ“5ÌX3E̱Ÿ:nµzÄŒ)8ëyÔ±ÝÒÜ6Z=sÆ’;ÔN´Õñ¦C­°G“ãV”m¾M"Òö}!/‰iÈKÚy¹µW›|:Ö-˽WÅ4°vd®Ð…¼zÜy9vÅÛç’I7õ ¯áѽ×[hîò‘Â*ƒ¼¤T¬uÄkÄ0¤9¬!¯î1‰t¬É§ç>È«×ö¸ór슷·J(*˜ƒ¼†G%ÒÎT™»|˜j[…¼Ú]êˆKhkÛ±ÝòrÉÄ¡& Ï|—ö¨qrÜŠòªKX5ºh1ñ›Tí.^]Ì‹ñ¨5€ã̰¬‹ö k9ï,»7ž‹öð¨w„¹–\Wݱ؅áÑ•t…ú*»‚»à ïqSÇvkì‚{l5jëì™»à…=jœ·¢lÓˆ¤´˜Æð(•HÚSN3²öÔbQ´Ÿ{\´×;¶[cî1:5¢žù0 /ìQãä¸å6ön}Å j^_ËjJˆzq$i¼v+ß<þÜ==í~¼xµ¿”¢uJI@%ã¬)¾\ݦ»ëóm(›?N!%8ùò9~‡íæ˜|¥´G&…ÐΒƨg“Ë?㻋ciµ™µÃ³±³ÇÊÕîiÿëïÇÝÑ„ô…7&6˜ÐÙ»³Û£™´SLõ÷ÛŒèLîÞ~=6OIM,Hë,õúÓ§òþèíª‚¥¼Ä&^\žå›£W§kÖßò䛿67×=χé?Å endstream endobj 36 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 40 0 obj << /Length 1385 /Filter /FlateDecode >> stream xÚÍWYsÛ6~ׯà$Óª±€¯?(ŠC;dZ‡™ôH'C‹°Ä–‡BRvòï»À‚‘ HªìéCÇ6\,öÛ›0uu’=@_¤£ç¯ÂØa”Ä4fNz넞Ò˜Po¹ó‡ûôéxDžïÖY%ÇÇ>u;ùy-ë9¼û°“]Ÿ©·?Ó× vÂ8ñE¼9®d’ä­ÿîòEJÃ×/ûà#ïm2Mgi2Á/<’Ù,I“tš¦Sঠ°ÕO:MR`'£ԥǰ<‹_ü,~šÇJv±fiš,~ ‹ÛXlÊß½úý0ÖLù•¨g2›"ÖLù5`ÛX¾ %l¨èòýûðÍ1·à'ùÞ­é)nù6–˜]Lƒ+ +yHºØ1¬ÀÆ ®~}}uyziL÷a=Åýíªf„z€O¦ < !žç¤˜qÕ'\0·èfe×àj5žx¡Ût]qSJdõf+Ës³P„º«¶QÒ‘Û´}ÑÔY‰ìz Ö•zÞhe²ÅcÍ-R½µî3u¨³!ú¥D%EUɼÈzcBó‘rÞ­Ú¢^t¶2uBÇ™Äq°ñÖ9‰BŽÞ¾¹ƒ•3ç¾{“u2ÇeS#EXXܶÙ\™e¶° 3À•øR+]kŘ™[ʦ/rsz3!PiÖãJGè}Ñ/‹]È¿Öõd+°&V¸ér8 tp’o9QÂ=NfseزwŠ¢‡¡{Wd¸0xÚ•I–®{2£›Å‚pˆž0úA‹e¿¯à¶ÍóˆxTìØØ.Ö•ÔìÏŒ] Ò]IÆÆn½Z•ÅàCÖŠPɶ˜+FàÞý*xý-IÁ ­W¢÷:€zÄaŸ âí:L÷ù8§E­¶Îê|Ÿz©ÔB{›Ô'¡dÈr4$™ÊÚ>C³¦¶HV#•_²jUJÏØíT |ؘi'S‹z%Qp«)€½ÌŒVYŒ!köt".su3*lHƒ,M¢Ü¼Á4g¨•0ˆ¢ 7ØŸãB ©òzò] Î¹ñ2£k37@U+;ôTBibá—_ÕVT«¬ÅŠM™Å¶û1¸Oðõ´æ±áíXD¶)vGœSâèŠÁÁBBylk9Û±ÌÔ·2O•qŒó<Âq«@E›ù¹'\,&ÜÂÕ(bÓ_ê¥ÀÜ´fæë¹ “Ú¤Á˜ÎÈ=»fϞŊs_”å †ØËãÑ„zfmiÛ¬ëü#õ©÷£z²gOX0õ÷¯qef–­O«Ò‡µiZt0Iˆˆð@0IœfÒ„‡!%ÖlP'}´ƒs~ d#ŽÍ?‚ù^‘€«Gì´pgµ9× \_ÎúÐ{aàL<3»ô=ïéÒ\WŸ\Õ·²…v`OQ7¹ÙRßEûìo’¸lÞ‘~PóæZ µÒÝ«zrlÝ@·æ…zmno‡ZÑî —q}7!P”ã¦ÅÑnÚ©Ú¹JAw[*M¨MAŠ?@Z½Å¹ÖòUÖž?Ø,87?ìùC²„@Ð]g8­ãú¿Ô0ôÅ ¤õ¹’³Qòl'§£vÿ„<îÖSÙôûòºh³Õòìe¥­+³¯Íº?ßUˆìOY÷©o¥|°V™/$ÉÚ¶¹'4ðù#bw8ï'[q'Û^~!ev#K2—_g ýƒù»HGŸGlóIcðÁ`QèÌ«Ñó«Ês^6£_N•úŸ}{Z‚ºØ'mOÊinæ™GÀEe>±øÖ~›hÃpü6O<ó¾oˆþÇð[VëLH¡ªöñð¯Éšð¸šÞ¹ï<.ëÞá¦5¼Ý¯ªÇÞ¸œV·&å°°Ž\¤£¸B endstream endobj 37 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Shmulate-Vignette_files/figure-latex/unnamed-chunk-4-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 42 0 R /BBox [0 0 385 332] /Resources << /XObject << /Im1 43 0 R >>/ProcSet [ /PDF ] >> /Length 37 /Filter /FlateDecode >> stream xÚ+ä2T0BC]sS]C…ä\.}Ï\C—|®@.`„Q endstream endobj 43 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Shmulate-Vignette_files/figure-latex/unnamed-chunk-4-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 44 0 R /BBox [ 0 0 540 360] /Resources << /ProcSet [/PDF/Text] /Font << /F7 45 0 R >> /ExtGState << >> /ColorSpace << /sRGB 46 0 R >> >> /Length 1038 /Filter /FlateDecode >> stream xœ•VÏO\9 ¾¿¿ÂG¸¸±_ï,¦*Ú–©ºmÕJ‹:H ‡ý÷W±Ì{*Z Þ`;Ÿý%ùœ„`ðÏôÁþ€0Fû$)H ’ôçiŸáqzóüñê.9 ,¿w·SÀ’àßéÛwðc"ØL ÞOÂsŽ%À$g$ª3æ¿î&¡ˆµ†pÉÃjgiÿS -²æ¤Yˆ±ô!iÆ\JÄaÄ…ŠœmQF0¦ÒF˜)Kô^¹—qf«25 ð¡L$ÁXWe„ ¹€07×Üæ\1Š 9ßúªÞ?Om¡ôoŠ žï§7o l1zØ>f‹Œ30G Û=œÄSØ>L—[Íýÿ`žg q æW€cÁRbAJ ί#Ï@±¶½j`9L$m¿òŒ9½Ë5#³±¶)Óñà¶…”uš_ ¦¤j¡©A{¬vÀ9pk%Ž.€¶õkA´ok3 3Nçû…' rTµÎÜu¶VÝ}ÝZ‘F\kX·,·Žîž€)lL(yä6KG{mw¦†]ñ¾ŸÎ'NcªºRû¥'£D¥•3PëU.¶ fµz­S%ŽxÕŸŽí–‚t´{Š&íØ¬{n³t´×ö¸ór슷ͅBÄ\€‚ Ù\†gÖ“5ÌX3E̱Ÿ:nµzÄŒ)8ëyÔ±ÝÒÜ6Z=sÆ’;ÔN´Õñ¦C­°G“ãV”m¾M"Òö}!/‰iÈKÚy¹µW›|:Ö-˽WÅ4°vd®Ð…¼zÜy9vÅÛç’I7õ ¯áѽ×[hîò‘Â*ƒ¼¤T¬uÄkÄ0¤9¬!¯î1‰t¬É§ç>È«×ö¸ór슷·J(*˜ƒ¼†G%ÒÎT™»|˜j[…¼Ú]êˆKhkÛ±ÝòrÉÄ¡& Ï|—ö¨qrÜŠòªKX5ºh1ñ›Tí.^]Ì‹ñ¨5€ã̰¬‹ö k9ï,»7ž‹öð¨w„¹–\Wݱ؅áÑ•t…ú*»‚»à ïqSÇvkì‚{l5jëì™»à…=jœ·¢lÓˆ¤´˜Æð(•HÚSN3²öÔbQ´Ÿ{\´×;¶[cî1:5¢žù0 /ìQãä¸å6ön}Å j^_ËjJˆzq$i¼v+ß<þÜ==í~¼xµ¿”¢uJI@%ã¬)¾\ݦ»ëóm(›?N!%8ùò9~‡íæ˜|¥´G&…ÐΒƨg“Ë?㻋ciµ™µÃ³±³ÇÊÕîiÿëïÇÝÑ„ô…7&6˜ÐÙ»³Û£™´SLõ÷ÛŒèLîÞ~=6OIM,Hë,õúÓ§òþèíª‚¥¼Ä&^\žå›£W§kÖßò䛿67×=χé?Å endstream endobj 48 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 51 0 obj << /Length 339 /Filter /FlateDecode >> stream xÚÓÉnÂ0Ð;_a‰KrHð'ñѸ0TT‰AÝÔ*¡ê¡H…öÿ;(â,”Åò$ÎóLlÎ>gÐãWÚ!öãÂ0ÁSÃ`¸a…d7)Ϩ·f¯Q¿'y)u´]}Õq"ŒÑ<Ú×ß¿õöúšž¬?÷?«Cï §ôÙD¨Tgæ<üðŽˆ%hdµÝÔ»]½Mx‚utÒ œ´ˆ–¢>h)'™ä<â!G6 Ìõb2D^LïžuÈr,w²dÈR¾¥FÙÌy^±h]Kµ-íS™O ;³sŸ‚#EVSB8§e;%Ô¡´t×R‹ñK§„mÒ¢Ëy%¤ãßÊCVî[åd¹,î»%„v ]ëw…Kص ßÊÜÈæÕ K./ ²JßÊ«§i5¹iâUë´kc¥Û[V*‘ÊB±Dë2Õ*o¦¢½1#ìý' øã endstream endobj 68 0 obj << /Length1 1846 /Length2 21220 /Length3 0 /Length 22403 /Filter /FlateDecode >> stream xÚ´{eTë²6wwÜ5¸»»»Cpw·àîÁÝÝ!@p 8Á5|dŸ{îÙg¯û÷[³fzžò·Þªê^=Ó”¤ÊjŒ"æ S $ÈÁ…‘•‰… ¯  ²7q`ecÙ™ؘXXØá))Åœ€&.Ö q /€ËÅ  dæò®è`caá§H€NïLs€©'@èb¢îédИü”AÎ.Œ¦&Îïl ƒ¥µö]E äèédmiåòÇÆGFÆ?–þh‹2dMÌlAîζÖs€,“@äþN´Ѐ¦@+; È Ôh¨I¨ª¤T•4”Õh™Þ «¹::‚œþ'15u )€¸ˆ¢º¨ÉÒPSÿó©txß’ ¨þÎÿãç]𺂄ºˆºŽ²+óŸ5Xn@'gë?nÿÕ{d€ÿ„ö®já²ÿË€ÆÊÅÅ‘—™ÙÝÝÉÒÕÙ… ädÉäh÷W|êVÖÎw“-àýè´þ•Wó÷tºXÿeàÏ–ä­Í€ÎÀ?J’ 1íßSù®ôNwùßÀÞáòǦݿÄÎ@๱2qþKW^YY`obíàt0q0{t1qquÿE{Í©ÿ  æêäôLJ¿YNÿëæß¡‹‚ÞW¦oçíkâþÏ3qpuöú[nþ{Ùf gkgçY,¬í€¢wþ³gÖÑDe$%ÔÔåß ÏQôž&—¿¤ÿØ—çp³pXyØ,ïE*á`.²·ÚþOúÄ­ßóäròdþGUÛ:€Ü¼ÿIµ°v0·ø“usWGf ëO®@ñÿ‘}'Áÿ‡f t°€Ÿ@3+æ?®þª”?dÖ?ä÷øz;‚&vÎ@_k àûÞÛÙÄ pqrúzÿñßž• `nmæò^äïÿ—u €ç_ä÷HþÍúŸí§ù«Iiß;Ôä`ç 0ZÀ3+‚\Þ‹æÿOýפ«¢‰=æ¿úO){k;Ïÿ–û‡ˆðO¨4ÿ‡²µ³¤µÐ\ÙÚÅÌê_Yý]ÆÅä½èE,í€ï;òIãOÙ½ìûбþ3³Œ¬\ÿà½×¢™­ÐÙÀÉù øžƒÄûžø?јuÅUéÿQ. I8˜Ì­,lœ''Ox–÷`ãàx³¾—²9Ðã¯"039€\ÞUŽ®.¾ üŸää0‹ý!ý…¸?˜Õþñ¼óLþƒxÌfÿ‹XYXÌÀ¿ÁwMË¿A³õß 7€ÙîoðÝ”ý + €ÙáoðÝ2èoðÝò§¿Av³Óßà»#ç¿AN³Ëßàû \ÿ‚ÿYå?#寎aùOªÿgÖþ…Õ\œ@¶@-kó÷óÌßDL\œ¬=ôXÞËõþþú÷7ƒÿr@ùŸNý›¶¨(ÈÛ‘‹ÀÈÆÍ`åàâú³<.ßÿÒ5ûרû«ÕÞkâßøÏÌ@3øÕ%_ˆMZKX…ŸDÑl%%Ói¶ ¶läjæl®xþ.P¨8°- ‹ª$/Íkà—èPªM‚e÷{«=¹zæÆ\ExÏÄOÁYBd2O“I#(Ka% ²‡ŒöH6¯P§Œ}.«#¡ƒ 1y,ÆÓÕûË6ý†v•J¦_Ù±Qå^²ÀÚŠéd‡î±‚ŠßM°2Û îòöˆù9Æd@d•nÞ¸0 {RÚ±¿U‡èš<œdµú2mÈ÷²Í§gš Jܯ˼¿¿œù¢…ЫºA™B Faz;E=ou¥KÛÕŸïi½9L7OÞV‘«ž+þ0K–ÈIï H¯óŒŒ?xa;Š:H)‚WudÍíbUkq­îD¿ ¸ôLse›F‘à¥õHýMnÄóƒÑåoŠ_”˜ßQ.ÂNµIT>—!&®Üb7{UüÒö6‡Ÿ!âsb|Քб‘¶Ã²{\”ÉP¶(«ñ&Æ;Ý“îå 7d$ž f x¹•ùsfb^Àñ•8)Új’s²—}kÜ}Výg$åiüÇsÌŽ‘Ç¥fÅоcž ^ âmŒ XÕñ1Ñ­Õ–°å hß½ðDÿ°ËÄôTŠ7­½ Ñ<Ìx>n¿ÌvŸµâ>èk)^³FB;ˆ‡qÖ’Öæ!Ÿï»ÐNªH,ÆH4: qùoöX;aɼå«Ý´¹éGc|?ìîê× kö™N”` ÂÆœš5ÍTÜ`E©‰ÆºÆÊjfߊNayê!çyrøIæn K7!ll9™n’Jøù ¸ØóT: ÛØ¸F‹#¸ñqöªw¯;kØ!k…KZÂë%ñP:SQç2…à­ú¤é¾¾­šðö  ü›oü7›í8q~¾B©"gØ! × šC#5ªŠf¥‘Ÿä‡ëÎj¬Ôß Cj»Aè…f–²H8«$‚Ö!>ëoUUé}Ðf÷í“òÐ1#…åE›6FðZò¦™Ñì\®ÒLºsmQr6+b‹íIþô¹ŽÍ”¨pvõî·†‚„`¥œ+"L›€Ó×l\¢N… hÄNÒ±²~ºµ¦+²{Y¾5tJŽeÖ}QÆ~f®Í Å#O jå9›X|VkXäDã`¢/÷>$g!xâ;ùþÈÝöþÄ©÷™•Uç΀¥¬·ÊöŽû+ SsDv&X5rE6ªM¥Š (†ûµ}mkUc4·ýóÓúœiÔ)¬Míø¥ü8»ðNy]UÿFu«G°³ñÇLʾ8>ÄC+ 䘣·¤\9|3 …ìk7¯lï”nÚº¬$¤ «Á¼¬¾vEÍ¡ØI²•Ë ;3¾ƒ8÷TAQ–‘üè¦gÄ­²INTF©/ñíÌÅdbÉ‚‡~vƒ±gŒm=îI¶ŽO;Lõ» |nv…ƒOúkW“w­…Ø/IRPê !X¢]$ëTë{‘Óß’v£ð¦³;Ì_N¤†VG#qD¶ ÈŸ{ÒˆW…<}>C{°º¨J“´Æþ~mÐ唨æñœ»©Ä¡˜hÔ Må·?£¢;38"ó¸&`ÒZ±H]b›±Ö1^v”4·Ö ¶ú@:ÂãÇù{уzvzH:}ð ê³à.÷UNÄ×Â;MïÁù¦§âÃû†á¤Xæ †“®çE|µRŒÐ/Ñ™ZÑø«ž—ïšÓ™ó_¬KHëí>~MÎù1‚Ùð-ÿ ÝÿlC,|³aùú‰'ôlÌ–â£ÕÃD’mÒ–SrÒÙÈÛ9Döz0?bQ¯Y*BCÓ'Ùv5˜A—Ë´x›¯ñŸñƒ5º…©yÛÃI÷0©knÑÉd”M !rëc»HW $ÎêÌ“ŽB2,1™áÑ¡*>}ê§Åù~T­î¼©RDVÝÊÜžÜx‹OœïVy›% c0/“[ !+ û;Y¸òÿ(†<ì“^ÝQ-¾£95í5è¤ï7ˆä˜FªýÀâÀâG: s“?"s‚„ ÕI`ð“<ȼ›æœ—²¬È\µªŒänßk©Í=°ë•IèºêjföÆÊÇ1©µŠÉp 4qµýœÈ»'ÔõºŽQ©4^ÎZÉêÔ:÷Fábéô]$žì®i™ F™VC‰‰õÕJì™Bh¡1«ÎøÌ<¥&ýÎ3õÔk¶‡AQw)=p™ñk4À£ÿY7’=îÌ`1»Æ{´ô©³B1†íƒQº¢u/PÆoˆÆõmóòžRÛ|nh,XîèTä&nþÎÓ%’Ü* br¼êt ãyµL¶ï«ÈÅ#Ãp†?†ÍÛ>U„=.¸° ¯2ÜÃ7î‚DÛ o!È\A=rƒt¥"Ì£ Ý’Ç„ô¢¬ºû™Ž÷¶R»ŒZuKž/’,àÑR}Ò«)2{G; e]è… ðÕß_õ= *“ ª¾©dq(ôá}¦Õ*€˜dF"ѨD§¢ esŸ}°ëc ¶]F;òSX,@p'&ä*Í·9K)>ôq$Ñ%ž @tsVÀ#Œ?¤dËvßüö¡ÐÏŸ^´,#õ!ŒðÔ…Lc0J‚YNßîËÆ¡#˜Œ×Ïôðk”~ +©~yö¿$Ë-YXÒŽìý>[Aé…­W†’èWI0†0Ì~ô}o~÷9T¿ºnù\÷ á“p\¼æ¯DÚå(Dœžá‡P0³…çxNù%üWË噉PŒÔÒ'÷#*Bù/ÝG>'y ³~uæOðpúŠ|C¶SÄú_°Þðàœ?Æ„Q©Ÿk4–OÅ’ÑæÍŸÃ?S><"颖~"D3g‹pªãµþа¾6xáCA9jÙèá8iaJã¢ÐÂ̦£[:L ‰aÌõBšèaÂ×H($1«ø“š¨ýfз‚¹´oi‚&”o†8ó1n·„ µ)”Ô)œÂâ75¾•]b…,¯U€âA§p,˜åDÜ\â³hEàž—w©¶£hp°—Û˜Ù®f5¹²AÕh"¬.D –nïì7ë1øfÔæ!§ŸÑUqG8“j*.ÅU.êó›,Meµ—bNÃý.¾’þMé?SweàkC¿ýJKF9'>î8Zû"øh!/ªeî2/(‡Ýb½®á<Ø2ð_Ó¢ÎjZwÈBÖãÖ¢º› îá†ó™*òÁ4áN]§Ÿ/ð `¿ñqÇ’­<¥×¯Y«rgö†ÔÙøçÈN)º¬„³?ϱŠ!RXÿ˜gMÖ(Û n,Ýð¯X¶nC0ªíÍëã•Ç¢åA#ˆ¨çUð*LÀ¡à3ÿ`ü-8×h¹-Ʋ79‘ƒZ.w]n ökÝòl~éëïÂú²ÕtÊeÃLîÊÙA‘B±¾÷\†„ý -iz¢ y-˜èz^žÎëH¼Ö´cŽö´c’y0ªø`•ÃAcl©0¨T‚í 9wk'%å½gËÜd"+°^ÉfV˜^>B.Ï0 i»­Šsä£&WØÈP'·øþjq"¾àn©¶y?þúÅ›.Nœ‹Ö¤†rÛ^Ý{<2ØâÁÏúh[D\6’’¶$Æ ÚaUÙì¢p&LÔë£}¡¦¹L)f@¬LÞÅWBÉigûÔöL®?¸Ó_~^4(#o3ge…»ûýŠÌd³=~8;œü]‚ð ™P—Xlºá¢ZíŠÄV[3w~}Eq†Â¼†³G?½ŠDÞ;†õ2ŸF¤£Ûh-TTY®7¥j/%SÆÐ:•îx^Z ðˆFM,¢È=^Ô}Ý,}™ªwèLÍ/E°Þhª:j>³xdæÁÝ£¥Í3Múi"c1[~hó@•?pÄMݶê9¸ˆI+¾pr+å^ÂIGU4‘· Ñè³sB„:¨3Kš‹¹«P8òÝ" ±2 ±RàËm'-DÕHÒXmC­‡’_o­øÅšPœá¾pÓÉ¥3|ö7sòEÂ4‡»C“DÎ^æÞÒR4W«˜"Þ>¢Î¯«5½Ëç±J[um‹<³ž/šG]r„@k¤ðß? ]è†åì³d²ðŸl>àŒÒ‰@,Þx”h¸õŸïÝÊJŽW0bÞe×- ˜ú€qDzހ—ÛSé—ASZ”zC÷‰ÀŽo·/ðfË—nuìKª‡ÛFaˆÿ÷uÐ’9{áõ)8bé…s–å™ùuµÄ ¬œÖåørÞÂÏ:šÐS‘è›éÑr1àÝ#$úÙÇ0¿'òeÜòãNIó%˜µ­_¢*ã­Ÿ%ä80D¼IœŽT¶òMŽøJVýŠ «v…嬡êçØôuìIISÿI‡A½˜¼@4B°ܨ/Ž£a‡±f¼6¨M„]–šÄ@8wÚam©Çg½A ¥ÓNœ9=A5áüWÄ é“Š¼mî…¼6äáësól!E1SvêV¾æ2Ô\h{Ô^àÙ8µ­OÖ~÷å%ŽKTE+À…NÄ q§ÍE‹“G÷âü™F¹Z¿H÷Qô`fÀÜ^99™rz‚=Ri£½dÀØ5¯’í ØÓhöà?æc3D嘄‘ß~„õÎ'—¢¾tÒ½ZûV9"â—Z$q"ù G\ =f…pÃzÇc˜Þ¨É¦ÉøbÇ“¼ ’ç ð§ßY,¸9°Wˆw’$q±%œ—ž¯U¬¦†¸õé{P]âPB®h¡ˆÝ¹5‰)Ä#E8PL‡ˆhû¾øœ †Xî³$•ɾӪ©ÕDòÚVK˜+À¤#§ÄµWÐgÖ"?œi±ÒÊ?®6§àŠLÑÒv†×r">Zò(Ó)7rï]JqØAñìèB•øÚ55˜‚h'.ˆZ—{[81¿2c¾r‡Wc’§ß×ùUö•(5‚0¥Ï LýÛ¢iÓN3MA&cÉï瀴äà¬Üö8>Tújdý‹6Y~MޤL¾²\¯^ép¶ívC¯P—»ŽÇСѡ"ÓÉöOº¤~Ê/þæÞØäœ?`¯·´ÃŽ'ßè°ÂrÑ W<ž)EšMjúk»ñÀ½ïõާB’kZ5±FËï0^»•škÒ‹kî1B­m]{ûÄL¡ÈÑÍëÆ„ÚÜeœÇÆÝj¡—'›-¼‡½¬p1Ùúv HBºEcljŒ Ü0Èæm’fÎóXnWÛ$Æö£:S‹Ó²à"}þÄÉÙZMÃ+> ^7  õôôuüRgf•wfvtZ4'ëÁË·\¼³p@õˆ«1¨³ù+wxµ›ÆÄùÂC™«¸OÚcK/æÓ¢ø§ wN&¶ìV"kä&ORªo0`Q]Îaç] ¨æF c?ž·¦>ǺdÀí{™z‚wI]_?nù;LSÓ1FH –q” ‡§ÎÏòhlyà«Âégq; SÀ0ýÌ:Ú˜¦Ú“ÕÉLò–êc,¶Ú©V—\ m?ÔEödẗé‹ÌÌ{0-ÞZ>\šÿ>ä¤eSYqSÅyéùCÃë˜$w†eψË•@†ž*¨.Lµ¬\#ÃŽaÐÂÖ±°Ö1ÔyOa2ˆ¨-–]Ýß¼Iݵ×òÒâ&J])±b,†îqòã週Ã$o  +ñà L/fÇáUÚ{\S%ÅõE š•yQ HÕ»Kìeê#´¿riºüÒ¡*Ñíí”ný!c’_‰£ŽµP:ÎÒt¢„8¼»¼&žŸ¦CóðišÂÙR®C¯¬2ß·¿Ù„R rÕµUê2ã  ÁñÈ[˜T®oçR7f‡ô~ ø“ Æô›®ÂUh±£åJò2Ôc~¸ a›obšÍÈã…œ•üàZ•¯0×O‰LÑ+»uuW³.Yd°_cBs°oR×üðVšÃ`q- ‰ow;qbÏŽ¼~ן³OêzŸÄìÚ¾dÉ1<àæoY¶ fÃ}¨1§yÚû)û +ê°#–õ¿Z èržx¨È/{ÆÃ‹h&Á„þê¦hMÚ_sªÞ»Æ&ç6Ì‹UÃý9®Dxçž\´gOß÷“BCÞÅ2‹R&‘¸ip9ñìKx¬œÄåáQ>kóϳE²ïþ¨¥Îê횃§üb¹ƒiÈ'Ʀ¾mmÈ*½ýñ2ZÛ>9Ž]f&ö,á£ÁÞÊÆ¾ÑýÊ»Ék¯.àZá‹>æâëêíPÞ<˂؎oä‰Rä#³õ$†>+ lËá’Õ¬ú?ajíöìžòAX#q; ÷dÅ-‹÷ü4bØ;«¯µÀò‡ðH—uÿDå&ô½Wòtw9“žeaJ`Æ6äE\™¦‡kµziž Œ«ì·Æ÷ôžx¬…ây=0»ƒhΦî0\ðEÍô½¥Ó†ý©¼=Ù¨/ÚÈ‚!¿U £HRú£”˜…Mì‚a“.fvr·˜X¸¾‡ý @Ñ˽FCÏW…šT–JR¥L؆ª!»Š§CkënKQ R•Õ‰ùþ©r7ß½À<˜¾¯÷`“áK‚ "›‡¶¶ÚçvOA“;é :D;#ïŽ~6ÇSþ'þæÓ]ÓÃL•äæ­£:íŠ3WœüÅѹÒwšßK} ÌX'Ÿ/4ÖÍK*SÉÛ,¤ 1›Aqàñ¯J…ù¥T¶™)h9$ŒêŒÃÇUÙ6–³’2¹R„òY}R¦ë—Àx<-e_¹¨7€`?ä‡ÇLÎ êbåĈÓuÍöà+ëBU?¤ee"¼|=Êþ~šè 7öo¯-¯œX€ù,ئX{Îc‡AäÊÊ_£—êS›Ú˜Õü}± vE­.€³2Õº¶¶³1¶Òmä¬)‰—7Ó jž§Þ0ôŸ#´p[ö6¦;:8ptªùSøG1mÛ [/æ¨7VñTžž2p€ ß1­þÑÀnÀE[Môu5N«ïPªôˆZ¤±‚(žíJqå>TðóÀáa,3áo–.I‚gfE“%ú[ÙÌñ“&”Aï£e3E&}!“˜ïYô =™-ëÄRt„OjLámЪfû%»üEâb1.žê¶ æ‰ÑcÆÁÜåµß^…•èhr>„°O?8ô©W~ýt>Š»0%†Êy´îWÄÛ™²–Í;v•œýòJÖû'Ÿg:©Åil¤I¨O3øàPÁÜ—Ó ôà4%Ül¶Š¿Í»ÁœÛ£L©Åð•6Jv‹7‰ÊÒ³(;¬5ç Eh÷XS‚  œ;mcîY’HüVù^´BwIA=˜Q¹8OÑ5rom°Åh0QŸy¼lY§”ÓÚ[ÚÐV$Ø×‹ep Y¢HÕš˜à°ܨAA|%Äû0Áä}Žz9@›NÓfÕþ¢[GÞÈq¼¬“å©?jkš(½àæòü˜Ð¿„kÂM£)ŽÇÜš°Ž¯éæ OvÍQVRÍc`õ~éÑå–kwBLO˲†i–ä3kîÚbÛ1íÈ·Œ@ôá̬™!¿Í”ìª%¡_ãþŒ:î,?˜Ÿã>}É–¥õÍ1G¦MÞPÙ/Ô&‰pª$†eF.ê£ß5YöY ²"ß•l¥zB*lžç¡ŒB£x"•‹¸²Á›¶ÎûIÆÔ@gFè±÷1÷@$½Md9Hb 3)Íp’8dýÔsTR¤ç59¤Ø7 Œ¥÷õ¸5õ6ðöÃbJÈ4µã_‰ûBà3 õ¦eݸÃΞéœFÂ<ÉNy»•¹jørqQ?¡ã*ÆœLÑrYN4è1~‡/a “À¤îj½¶-CÀrR¾M%´g@ĶIõ••æ½ ì€NY"¢t§7Ñî³ÜôÚE<+ ¶ØS×¾´K¤©?ætŒF"ò'qò·6§_Ù2Œw`v£lI¯û¹ÄàÏ›4_n#3Eõæ1í”7œžs˜c¡Od#/r¿ys & «­}Ѭ‡ÑEäf#ƒQýù„•{²ësÿ@"†øÍýQ( h*G½,øÛˆ|…‹«éè6¼l"4q(Aöãï?‰±˜sqÐ »]¡B÷á5·ù2#Ùyy¿Í:=ƒ”Vm·‰fc8«~\w7 ÖXøˆ"î»ã äÃ+²+_ȤÝO¶¾’Œ1Çâ|Ä*辕€mÇŽ‚ÿz¢€y檫9ÐCoætµ<V'ò½ Õr€“óbêJÖœra´&êÊ[ÉýÞˆ‰œ³Õí›l î6ص·ü°ÞÝ+ÍRCO='ÿåæß³ÍÙ“Í7ŠôÍŠûK{@ ýEšîILd!;~7˜]˜©æga˜/!± Y¾·è<Š„©ù!óJÌ¢¤;lÔ%œÔqJ:hê—‚“6KÂq}·rSŽ¢Æ…L—¿ûðÒ7 X£ ^’¨± Ë‚cðø£µ®·õ1—¸º9{U/7àúâÌ,O÷$ÌŒàž eþ`L»vWaûfWtßæ÷/f–– «2åÈóšÜVE[Tjp¦‘7õ[½ºä0¤û8ÊèÁ–ù•NÉúÉI (­Ã[ÐcVÖÝ?Ú®õÙ ãêžr\®M¾_‡rÛ±àX?náÝŘiŸÄ—_b§°BöRÕ·µö§ü¬ýlQ ¢Å)<¥uðTO’¸ñ3ólÒ« †öágT¤JJ!׬wmòóœ·ÖÙMî½,3W=,U¥,Öm™’š­’Ù¹¦'î™*Ë©5'&‰í.¦»Wƒ)¿6—XÊì‘«Çòú š%îʵî¡Âs}/aèƒîŽû¯ ZíO¡n®©¬+ù;ë()än†ÎèÆYÊÉÐeyMÉTö½k÷b!Üé¼KÝdY”Ò1ùÙ\ŠÁt½}¥=„º®M»¬P]­Ò¯üÕÐ×/è¸2ó܃ýg¬o![lËÈh¶Ã'桊é5hE×ößý%&Ö†Ý/0: ¡jžïN:rO"0b£˜@ú§87[àŠI¤ìiŠÔ«+Ù]ô²9|K}FSA:=é?±0 ’趆쾴,¤w¡Ó€|gó¾é-Õ3CEc ŽÁýî»Xš¿‡7Ï+æ©m/œöR³r*b˜/ãŠ3¥à'Çpµ+BA×Eö!ƹóÛâ^ó^Æ!ÙÂköPl Dê#•]A-Úeèü:•ÂÝU‚­µ™µ…‘æFókVVì#—Üjñ%¡ÌÉO-ÙÒ~`Å—V²h¢–oo_tª¨4b_ó‹J uŽr¸tixü3(`÷~v%ÐÖtGì\ŒV/F—(µÐ~“e¦‚XYZɪ<¿Ä¿!)P@ýQË j¿ÅñümQ®s[KÿÑÝÛºD–B@²$sòΆnJþ!<ãØþ!Ër:žŽ›ƒ@ÂæNX»bÊlBÃi‹o3 \ïÔä.®é%>Ú|±îËt§Ô—üÌ1l3g+RÌŸ¦9Ô³Lx`w‡u2õC\àÇÖFB‹{}5ëÈYã­Þ„å–×ÂO³O¸¹$4 ¸ªI,öÓ#í´¿Öv•S?SÖhù;Ilüª®E¸ŸZXý¢ p8çz}3q<ú¼Ó:!Ž;pÀ‰9f£©Uz‹£ê“œ3šIí!¬ò%×tr¾'òvMú~·n$ã@.Z“Qø9Jpa~!/†W š¨ûÑ•)LÈ ÇOɪãSñïˆq–mD‘vVØëÍoã9­V¼¨Ñ“Ìrn³È ަÃßß§¯©!mÀÓ©lD"QT÷†Fi•Ûá¬Ð‰bÿÙé’1 SÜ -硼Úsx~Ýä7×K°£Â«åRÄÔ쉧3Ñ«©kYÊþåÏô»þþ§ *}^ˆ½f¨Ë«Ò¢þwþa^á+qÃŒT)í†q/XèUW³ƒÐ’WKÛ¸?-_ Õz±vª;¡.%17ËÀ¨}•‰§p/ËBÃw(³Ð¡¤×­ëXmÏ0ðM7Æ·ýÉ¢ €ÆC #ØÙ°(0AÇ|h¢£¶œ Œ¡µÁÝù š•]€2­'žÑÉõpÎÐ+e|Ûzë ý”Ÿe-cH¿× óÙÐ["½k}ÊïbǾì#ú5î'±F¯»Y Ïû!/¶v‡YyŽ_Th¥~¦2TQÐ/ähK“ÝÔC±õ{º½|j9¾œå°Kö2Œ‰eÄŽŽ„^ YHߤ/œ³lãÏTà\¸n·÷Ò ~hƒjÛíNP&ÓÍXÊœBsür)q(æ¹ä××bÔÝÏDÕŸi ±ŸžÓµÆ ²Hß+÷ñ¥ùFšãÑ£tÊá²Xó1b󨆴vß~aËÂ|ÏL‡0ì1‚Ü©ŒÆŒ^%^fc¿ópjôn Ž=eÙÞx‰…Ù~H`Ã|¹Áhð0\ù`ç.iKØ7þ3;8£6ä ªPÖhjQuŸ5ÄjŒ1(áS1ñ\l?D¶-8Ђ¤DS ¶}_¼öH)Pþ)Ä!~Íôbé@ö£Õ5;Yéži:,Ó˜d%EÞ¡æVŽŸ<Šûh*©½ÍLt@M]€-Âàž®èÃ6-$ªöDÜü!ËCäöAioH¸ê[|ÓÚfœ€üsËû·ìÞÔ³q²‘(cWd3ä0­Ѿ“gWoÊhùö:ˆp}ÑC`7S,ß÷Ž,8}9Æ·ŽI*`qܰѭvå’%2ŽxžZ2U/Íã•Þü¾kÕæÇò¾a„×N­¯o(§»®]ɧ'Þ*~wè¶Q<̙Ɠ-{ù)Ô; “¿YÙiMD<Á=!uÚ›p|~NO~>qž$&oØè' „c·)fÆ£bo4ZíŽp6\XáÇšŠ àXãüBŽ,pÖÏ­”XóÖ®"> ¥e‚b–Üj޵§+P¼I,±VO_¶A½>Ôç<š(®VÇÅ´ð°ÐBˆ6-A±UÏ—TªE²û]@Kå}JÔ4L»‹É´À{{®,¬™Ô¤7nó•ö¨h¥ÅqH-äES`ÃΆ ›š8Ö<ЭN/ µ0Iº3¿j•ê…)µ?¾ˆˆ5;±çû%„±$À#äFÅç­f4ú´È*¦Ü2,ž·è5Êë ˆ~hô´ <¤N±F$ïRÈ è>ôÛfÓa‹¯W]:M]´P#l«ÞiÃúê[.¨éEˆ¤¬@‚‰ %¤Øm$ÊÌ$lÀþQWE.)Xÿ1$%± {” ÿzõvÇé³ptä)S=ºšW³^]WÎ ŸÝÿÏkÈy°ùãæHñ~>¿ ‰aÁµ(ˆKÿ^½f÷>½ áP¸)&SEçÏ…}h^wIûÇ=tR(Ùò1Þóœ à·ë¯{ë¬1Njï0ó ëëuQEZÎ |n*øäˆ¢Ýã¿{a] rgå-‘NYe÷mé9|N³ù‰G ƒÅÃÒ x¥ÚGr(å„cjˆE¸dÊóïçk à0éÜÄomIë/ÖJº•u4h¡W CõýÚ³}¹ï.uqÑvÒ硯‰Þ‚m¥J b”Ùg§òò,¶èè3‚Õr/?² ݆F$S,¬&Í=*¢K®š¶˜¤Tç£;2=îÏ ÁŠUjÏ¡üvmõ}jVìB›wâ‡ÇhenÚsD2p¨êE®v¬çŽä–e°a2’"ëÑYH±!næyÑ-zh†’ßêkZ•؇,áô¼W=â«eÂý3Ûá˜d`ïߎ¨Àf;*¨¿ô—pSïàQ«žD^3 ç^æo>O2H¼H<Í( Ùd^R…˜(®ñR!^¨([Ð/ãÝ~O½Â±,®0€{ T5PÚÀòLÔm f}(‡¦ª¨Zu˜VZ?¤$n8¥ce£ÕŸ§ùDÔPÁ‘7"òÑÔÝ(t&¾z ùŽø&ÍJûù€û` 8`X¢s'+é¨^¸‘ŽÖDîúWÙôrržPÑîÂ+mH $¶Æ~IfÜ·A±M0Au;lé´9:7”½É°ç³²4¸µÀ—£µ}õlŠÖù…ýÑùò«› &{¡];¼¡†¤gÇn¥³¨.FÆ×tW2.nsÝQåq1BÍn’?ôj·2‚  gÛ_HÚyh)«°b›¢4°ú°:3˜Ö+*÷&­S^&BŽ^¢u¥˜$"(ðDŒY­7½?ÎC°=!x*>ÿ˜p–_îØ®"¶`¨ŠÀfí¿¬ÝXù {ÅåÅÏ™2½rjcW~_ÑÔ bˆ+/m‰¶ö/>ø=÷}²{F!c5üG‹wSåY÷â(Åd9›…l"t’‰–Ô„¤'¡ Bý—÷Ñó¸®4Šž7ˆf Á5å[gèíøˆTw$™üqåî®°\Í1!×É‘”áÃP±zLÀ§äZÒÎ%ï¼ä|óâÐ5Y,jºøžæ9Ч²Ë%”Âd¡„µ®à²¸ËæØÌ¦LÒ:×èêO¡àßn©®Ñ‡X¤3¯ó ìmïîFÍVgÈC¹µ©’Å;«Ù˜ \V‡"3 K¼…¤Š¥lxñàÑÚ ' W13hâÀl!ËD&wS55q¯±~¹ñ;²Ter¦n?#µ›ãQÙX3Õgø¬Ùr"CûÅ4œ±¶p½ 9YÔæ‚Q\_%uÚý)™5j@i‰DÅ<òÜKº€T“1ŒŸ‹(èC +yŸ*׉ ׋ÒôçäÄŸ!?Øn?2˜˜ò–?°OY.¸Zi Z-Ü’ÒÅ…Ó…âFho1‘ÒÙ1xJ¤ä#wås\ žÏõ×Èà±ñ™èoH™Ûv+:œCVµX·t¦é/m…ûi•*^ ë™À¨šé:øÚiÒüާmnÍE•'ÚƒvÕygZ ê  %gÝè…dhb¤!4_f¾¿B7G™ré'<¯Bh‹¸9i÷†~U-—U- ûÞÕœ'ÏcÀNx–sZUª°Ï‡ƒˆ7 ƒÊ½¤´ch@§÷Cò‰˜œ‹ F1ÂMØÜj†oDYØ<‡Î<©u×¶Þ!—"ùCZÁïPúd=Ô6-Úœ(ù—<«~èÙrÎÙ¢‘›•šR^N¿çÑ­?iÜ}ˬ0H‰¥A†»Ô[…Èy:‚Q© í¾»­Ì4“ÓÛM“íñ‰·aŽY-\Áb~–r—JaÖ±rý…¯®*¶ÍñêÄ AW¢ˆÄ–‚¶ ¤Ò¬<’÷Rtån„zj)Lo‡•ëB¬ßßJQÜ? íMÌ'Üp'}…d7/3ÈE°K,AÆÒfÃFÍåczU>ñ¯"€ ÿ¨ “è)‘ö`tgGZö«„?¹'ǯ<0Yt¬"=Ú:V!Ê-” ?«ËÊ«ÏâX¨%ÑúAe¹b"‘{—Æ¡—;¡ÈP¶'f‰¥Lˆ½aOiïY´¿øùÅC|l.êkã‰~u¿ˆ:œCá.h7ÜqÑ̈³ þëcdÅ4‚&d‰©ºIྑŸ»3.5‚ÖÉLç–ﺄEö)Nz6ªêÃNˆÎrö8}WiÒZæÈúeÝ…·uÊá ÌŠmLèl¢ì´‘ E!?‚í©· &3[#«fë2Ã;l`§#!0‰‰ ÕOL«–,öÝü­W…ëÖ?µm{X¯lp¹åê”TÙ^šŒæStPN¢ÜnKóavˆYÅPs.êHé:áÌÞ€6hgcí– r‰v† ùC>Z`1ùÚ[æ.¬øG6Ì¿áGÔŒ¸Rä*ïC ¦¢pÍÕýf•µÄþÄ”ÆY®âU."È ™øhmx© ÿôÁÙˆã^›ÃŠ«Önö5™žrñ)Æ“Î)¸2qXGcgÈZr>oÇR‰5b¯–>FÇ{µi¯¨\ñuç³÷;ˆWQ(—Ó;}aƒ0ÇÕ9 ôf{(/ótÞlëJ¢,üs»Ø#˜ØÆ˜R„9^š¸U.ÂØî€DD+™âC|¤EP~µ&tÝO·\«äôºÐ˜d`6Án½ÓÚvš›³šS!4ÛÓP(9&²‡¦¤(”—:ûqDnz4$ [ˆÍ”‡°&üVy'ÏrÐËìôæ¨,!ª>h„â7=…¼H7V%±ðš¤š¸ÿèlÖð2ô©¾óLèòÏS Õ‚9ñä†|5‹ž²ú7•­Éê½úÝjëÞês4©âžm£øn¼n¨A^)úØÓ¢ìPF4Ï¢˜¹aKg~cçg €A‘{Ù¦“!ìÙЯþBHL~ÊirF—è+Úújb>­×–‹f6–øý¤Cͼ›dò¶¿œÂÊd`(óGÏ_£½b}ë¢ÎU#q]ô±¹Ð7Íûþ{7¯bœ¢Ò‘Á¿ñ~=ü˜ý˜UI‡PiEÑ-9ǵX Nfa¨mZ†´ö2D™44¹—×ÜíÇE‘¯ ü¬e㈳rõ–Ѝ¦PN¯˜©ÑÃ;Gþü‚Ñ*kѤdÚè@î,3ˆdŸ5 w-1xý ÄvÀ1KÂp†¿W‰µÙ2Gj•5'JœQˆ ÷?#1€á ¨?1eJg>üR«$/VÝn›Qþý(ûÄTK)ÃkæeøŒ­œt©®Ku4Üp˜Îe°€GÍ`Ïþ½#{­Yé—1Ü8ÊúÒ€¡÷µ,2åECµ+Ä{âáQ@Ãgúí÷ðÒ¶k’ãÇÌiUlà!ß 9ªgöérå“'MÍ·æ„[$i¤S4+š;‰‚Ÿ·N?!ØÍ\)K—€©¨ýªšqaŽs¿Ìˆ_¡hŸ(˜ðkX‚hÅ·lͲ¹~þÈZ(½ŒDä ¨-”œžšîl×Âìl?^’j@mÒÏYõOÊ«f—ö*Ý=7›æêrs§“èÿ î ›ZÿM°¼Ò”êåÛãzMáÎ.eí|ÕJÛk¶BXAºMTx]Dwý³©,ö稜®-Ð$¾ ìƒóÔ7Ö0&™‚`¤lÝÃ’¼µùAòk/±!œèèÜZ[ÛZᦓàŘ-ì³kGŒ²$ê…ʧŒ‰é±(Ÿ2{ß^N>˜ONü~„› pTÁ#;ª¹`Ïý)Ê~ñ/×ņ…J¿½²š$»äŽUì²ëߨ´pÏ€ÒN“eA³°¶¢-ÅTè¨6EFðsØömž›Û:UÈgTJ"<¨hHû+z‰^’ NEôkÜÍ?-³§ß2át^]Œnx~Ñ7u“(ï­&N‰ªÖÓ4úiÛúu DŸ«'¯< «ÿ #î£ðÆÆ™×dhyÚ>÷Ì—šÁ¢ŒLnCŒtð÷ÒîžÑmÁø‚½åù‹‰ãí¦E¿°óã™[Øks2lì0“í¼0γ÷Ý þ´sº‰ë…µéò˜ôÕËÇ#öèðâ‘E0âôÁv3ÁÂ@Ì5ž&v}ým—23BO²]:ÉÛ*×>qarýŒ 2Âl¬Ì8…ʬä³Ì­27¾Í†ì”Rì“ÛêJ3€qvvr‹h²Z,Ùßq¬V5 –á gh5iºÉ¾S&óã”¶Ð÷ìýIbáR¸[Œs3¤ºâ¡ýÓ‘•Aö=>ö‡zún3”s§¬¦×ßö)Ae›tAÁàÂÑ”ŽyeStY,_9Ü}æëüΪ42ÉPhaVìVüÂâJ{<`È7š¯Ô}x½“?tÁLj=:º¶¡Y§%Ò‚™²é-FÌ"EÙ@çºÐ»åëEl’J_ ÜÝš`ÃÿÚÍ2’vø–é’ß …©™Ÿþ{1¯×E°ÅŠáÛuüÑÙgVØ"h%‰Õ ŽSÁC^¿mp6XrœMY¼#·á¸œ—ÿ"Ýé+B3" ®xfˆÁÕÈtvm‘’³‡ß›Z®s N”ÍëÖs½,%éDj’”åÃ÷È´wŒÓñšÇÍL’c.²òjâçùÈèÄùñò®;•`Éß_åï±R³­GTik#K“ZÁ—i`Iô ïÀÏa¯ã—Œ‰>Jr*)3uÁòÚCÛBg{L0e-¡UùâNE.²QEDùAþ÷|úd¹fT§»Å˜š9Ù,’ÀùÔÄYoÁ6Ùå¹°–\R±‘®rˆ ;õú¢ÆÔ2@ŽO>c‹ˆJF=ÀðGÿ××½|¢ Ÿ¨Jôê–ªæC)°ɲEÚ.d}KoâÆ ¬eOvë˜áâýR· ÍOo, Qû^<–Q=åöÂ%½@ôÅÍEOÆ|m@D®PÃ1Mlõú¼‡+·Ë­Ý–7š¯…ƒRý@RðŸS°‡£å(KA…˜Â|}ýü\å1<@ga%ÅÄcõL£«cÅq¥×Þöy/õž;†Mõ³ýø8VYÐdYä—&°û»Ðü ‘ÉŸž£âÕY³,.hùYî ÃV²×ëzZdf;½ßú9€¢LíÝqÒýMý Ÿ(ò WY ’Ðeæ@3± ÓL¥Õæ1Êœ«U/|ïÿúv¶@üPƺË'|ñ˜O΢k÷]Àu‰¤™ÚÆ`SB1jɷdz¾æŸœdÇØEr<[î•%éFä]dÇwûËppOSOm6äÒy¾óá—/uú~`ýƒJ¼èåO=-&6P#$Õ†É7 oPÈùÞ©?`ظt(p¨:"@üϦCK9§c´Þî~ûj9Ù±úf_±seŒãÕÌte¯“3­´Šûô ÙŨe,•ªkEŒ. vIèˆÕ.q±•R4ºqtä¯M£/R -wÔ¶à†Ï&r.5ñß{jŽ˜l«"ðxønrZŸ°!F0˜Ð®;µiwðèÒXÍöR<÷¶1m³ÜÉôèñû:ç÷‘êôÔ,ö¨Ý‹ MÐþÙ ¨ÿ>‡L$ŸŸå«þBɇ~Ý&¹ÜäÂqÃ>Û TMŠVBù°,ëQx£óÂùÒfÍ-ñ^œÃû—hÖ÷½Ìÿƒ~Ð¥ˆ«ãÈÿ,llÔ£jB  ðòþÅmð‘­f|š<9)çëæÑìzì¤ä& ®z÷O8ä¿«eCE=FYµ Šhz7“@ˆ¥Ç•“ê(n\gÀ±¥$Ô’›îû;óªÊ?Îá|x5#œØ&Á÷|t0N†;«=Äg˜–VؽPçäéúÍ¥uxn˜+îÆ»ÖíîoÑ#öŒ@=jˆÍôàÈÔd¹±Þ·/XãO.ãSÿÇë°ç Κ(ïa@ûü¦ŸÌ#Hs J]ßNÌRÔÇ&EdÏê~jÍv6ú¿Íέߗ1u`D¿;ý¢#V SäÂ}B4M;þl˜î pCI‹VÜBùÍ[n™«b4‡ï0‹D7ø¥Ü#<…J|èS–‚ ›|h ÏÁ)€ÂèSúÎ ´£ó‘;õ]’Ú†ÛÎpë)¿¡ÞÂÎ{§wµ’ˆ}ïÙK!‡6#«Bõ9µ„–äӚ豄ӛgÓÓ3òB(ë¤ÒßT>DŸë%ãé‡4 ÊJM‚NäÊSƒÆëˆ7Lav…ÐZäÇèì¦MŒF-ŽGl†IÛ˜ò"Íabïtô £‰ù½@tnê½ S×KGásU?w'ʵêð+>µ$¡G â.6Ô çù¡ËkNIŠxÕ!R¬Ã¯éŸà‚òÄ_ñ0rõŸôqJA+«fØÿ´¨Ÿç›Úõ!=7cÁÅÔÜ ÔÐËr~®’j$d(„gDZ6–‡žœÆØ³•T-^FN®?…,t±Ò|%hL;—ó€4àë ÿðª#b1cí-¶6º3 ‚i3 $¤äõ¢â WT”‰ë_½áÜdi>Zm×ļW?PPÞ¤™V õt{_D¿íßð]L)e5RƒjQO+M•  ¨Ã×lí[ûC”g9!T›×þ,Š`$Ó©8MVvEîM/ ñ‡`Þsš *†ï#ÕòŒSµÈ”`‹(Ÿ`ÿøÇ2‚] e×ÉY’`|›¦ÇñN“¬ì¨”ÇH4£[bV¢¾’ïòú~*Ü\„NŸFøÊº„1+Ÿ*É~pÑ :î—k‰8ý¦@Ë0qš¢9ñßéw_º¡IZW'@q3+ðKˑھϴm¹ƒíƒ‘‡ÔEÊ#JÐ_å%·áRáºØÁ¢#ÛÜÂÁ†DY !'Fhq5pŒkàqµÞBZ ¥rI€ô+”¤?ËT‘ô•,ŒÇÍ027Ò¦+ìÂoZäÄ]`'¥¢gÿéÅ(€¸kOÚç’-—¿ ÎÚ뽦¾wdÊÅ‚È÷5ùušÌÑKfÉÒ ¶1óú(±Æ°w´<îʽ™<•!6l4äèßÉhÚÎ eí«· x(²uâ´1 ¡ŸÁ¹Uç+*dòù‰¦×­|‡]ËÞHجNõ E Ô\Ø£G»óÒkç­Ž x:+ž¨§2?'fC4w ±a#hZfwn0Ã{Þ 8QÇÀó侎)UGbÛÿÆàLd´{üæ»*;/ÐFb?89lh)ÈØðÕ€¹ýÐ|ňö•n¥9øÓÐ2¢4óŽçZêØ7f'¼ÿ­’è "ƒ˜üÚêð/âW^ûÃùû•Ljˆ5d$SÍ29«&Õ€cúDdáÛI#äK™3ãüáâì\ÇVq6UõNuŸÄì¯ÇÀß~ý'UâçùÈèÄùñò®;•`Éß_ä!½þÚßN# l‡ÝTõȽNœÒñy¦¶ úÔã]À¡Ñè ‘±“Û—ƒ•"#”g+Ò˜!ä‘ìäþ¯òAVäéÏý’8`}£X›§¯ÅAŽ8"ñ˜ ¤ ë/îB¶1É™·Â4þ×´Ë&¬ë¹OõfJ‹) zðȺ•OõúÕyÿœIwSMFoµïgŽ’ò¾Î8Ž„fÛÖ–Š!#\û·M¬p§ÎÚ-í 0ì;E]Õ:ú»Ú°&*I—‡Ð™¦`¶vc®×ûY€¹øeÑ9°=W|…æ²\»ô÷Ûž û¾›ßѪ‹ün AN2 \ßs¿}^åû¯<óçšµ›MPeŠÚîãœ*«]¼kM"OÀ½´äó¬6þ#ÉÍèí¥ÄjM%€$#a%ë6ɧüGà 6NÉ]âŸmnèÃHä4 >ÖuëøŸÒ Ô$óeí¾áí5h’ÈW¥YÞ—ø ‰ ¥„y0ç«×ëG™“y^Êh›Ç1—Êõ¶çÁzp"€Ù`v\Ÿ:0J’¾ˆÆ°ÆMl­ŽÀÜå‘é.ˆ¿y'¹.ç¹Ú#ªsþ¶ÃTËex$dÒ¾BÀØêûè‹ÀäwÞÝ~¨º•Äy4 ž„Žž)Íæ¸µ=Z’šèXÓ—¬s HsoZwÂ>QÙiˆ1m(~Ö…úÿ],‹àBŠÇvÖåTpÄyÞšOkR ÔëgçálêCn¯L -[™Ý²QöáÊ.l´ý”õJÄ?î"ÀI \|¯0\ Ò’Þœœj…VoâÄ ²qžVlß÷X¦k<#qùvá)6$Uv[ÿØ#³zƒ^¦†!I»Íy6~Ì…~´P¥êaË[9›©îž5eUÚ"p ‡Â™ÞW›`DN©âf9ÔÇyuuÉÓµ0†ÝŸO¡¯¾u¢(Q )3àšJUå¯d—ötò¿“óÿ܉øW2Wøäº„I·šXâË[õõrf騿ë^§rºsBÓ/IŽ=ÎÞ)}c¸Ü•,Ò/¸_–|ËŽÕðŠ/šÒáïh©GćN >,kåé5œ ‚5Ÿl«ÅÆ9cëoÙ–1tÿ†>ú*¨ŽÀLã´qÌ,MÍ~èÚgÙºàè’"¢š:AÝîõ’V™‚rk—± q.Ôm!¹,]3¢Ó¢úÚ"Ã9æ—ilå þä4¾¥eÓæÜº[¿{ÜÇ3e¹ºUê‘+Ö¤KàiùXQ"Ì—3­¬GûÔ‘bl§qâ¶œåÊ«ªÐ-^±ÝDx2´áÛ§‡ ”žHÉÚkG¿EÀô;³oR‚à¡Ï“­žåç»Ò-±÷Ï-Î'ƒÔ±¹(MH]Ô Íü»I F‚ ÷ü®_â_Rçê€æª?Rö“3D7¾äúÊêÙºþ·ï‚§fÕÛ y… ÝÑß M6%Ë%(ʪÇü³yh¸®ÊÞkØ£º ³A7¹ 3¨¥3&ã(¨ôFĨBÕßú‚#°1#‹šRdî{¿5ÙðtÉŒm˜b°­ÃTwn*eÄ hõ />4³Øï*¬uܥµJqI^¾ÍýSe\4úÕø“ ïÏ Òá(ÀJ \CIV¼{ð=?êjzŤ4˜aóþ‹Í²´G¥4=,<ê-”Úîý òK¿³¢Éhï&¢Vu-àDÄL7Z¬ÖmßÚˆÕ>˜þ'ާë?¾[®Ðã—ßÑZ:S˜_‹I/8eVøˆ¨Cp÷(ØÐÍÿÜ›Ÿ;çË8»Þ-;§€¿¨&ãöZZÞ¼›ˆßh_^)7É[PÐ|c«À„•ï1žGdVO¡á1Ù’ï¿SÊÑ­þæ™qÑä ¢Ç„/Êí.7w8®Æù[QfáÌ«€+(é~; |±1S7…P ³íØl9¨&{=Ñ£ ¡ñÃöƒùã9A뎬þó OϘ?n’/u˜Ë®Ñ…Màð0—¸öߦöÕ!hXm6þ-´WX KÁ^lº#”Í ÚΞ„­œ­O‰ð4ª¢ò.îZ¯Ž#j÷%00Ÿ0+Û¥}¦q¢jj*¾;¹LiPä‘ÞÔã6o/7ˤŽ*O²+)A¶yôËóÂɲt¤ÉÂûº“ñ¥(Á ÇñŒÄ-> ? – 0PžŒË¾«¹«zäR!пf&´ÉÇì8YåžïM/M#²ÜÁ‡Š2ü<§;ù\J:‰2÷sáþf»€þÙ´ò‡Û%öǺµí†=«ò1¾Rä¢Ëì/ž"ó8`rÖ ­÷ö\Öø§RÙåOßêî­5¶y™i.óŠ…ÍŒiÌ[ëÎOô¯Òš#¤ë$ºƒß8s»ÿ¶ê˜ø=ç¹Ú#ÿ xÕ Ú<Á§rY7ÂÉ®ÝùóÙ‰€ÕÝdËn³C–Ë™D–. T»ÙuK±èd†tðcO¼N¶4ŒÒgÜ>ÖÙ¸F+=hÉØë [ÙÑLÒy"º¬÷±(ï›üP|}üi Ç+Œ Ï ¸¯¨¡ñÇåÇÒI¬pWß/ '?ïd[\ïd IOYÓ7_ŸW Øp¤#ø[b¢ÿæã&œ&-Ü&ì\7šh%0Ë\‹E2ø¾4gWO0á¨ÓQT‚…uÜ7Ðÿ¦Ã£Ó¤c»yG|KMFÓe FÔÿôß»{î -hp•ƒÙÃy-@™j(Ÿ“µïÔß‘ƒ«J^Ó”@)€.ßÒ´šË{w/¡oà mS‡œÓ+øßÎÍQç))}á_ØÙégpå ì^€ÅT“ƒêéÓ" óˆLÈ -‡62A3æ¾Ëqû—ßb¼0Ƨ°d•lˆ—® Ðt´‘êø]Ž’|Œâ=ÂfŒ7[%={_m˜__':õa¯êUjq@9eù«è4‘#ïãQ=®3ŒV°˜Žôß5_LŠt\Á’$‚Úb‘öô¸´À €|ÀFÎôƒô¢*¨4sÕÕªTþ¼¤;c÷gvmÞ¾òŸ 2óŸ¿ú/Œç@ÅfixëT{(ŒUzKí={Í)ÐqK}€øºšKû!“ÅqJº‹ùº†RWÀÚIÛlǺ‡N²o8Ò·Áò üþÂSõc'c•*˜ë%—®â$R‚ù—éÕË’¹žùRšŸ/ñÃa_‘§yýã;Õp³n]¶X3ƒÃk°QÂCT+é,Ðù ÁG‰¼ñCO×Ã~]†SÏË·)·‘þ+Iµš“í!°œ.E[#I.i1Cµ;{3°Ï$#ÂM1‡“‹ê8ôJ¿ú}N°­YÐSÈÒ~-<‰êJá9˜Â’…™OëPß4Ó¡ÒJ ÆñÊy×øîIݽãÔµ’E€Qæâ.ún]4ý˜¿áó[k½DX0êBÂò¹‡íÇà™>xß+ *ä_f•Çš`jq.j‰ý•&7àO‘³’QpOzš‘0/Mf0"²®ïp–¶ÊýŠ \oC:vîà2wjªž/pˆ¾!´a endstream endobj 70 0 obj << /Length1 2470 /Length2 29794 /Length3 0 /Length 31238 /Filter /FlateDecode >> stream xÚ´ºeT\[Ö5Œ»»§ ÁÝÝ]ƒ»CáNáÁÝà.ÁÝ-„ î xpwý*÷vwn÷óþýйö’¹æ^{Ÿ3P’+«1Šš;š¥@Œ¬L,|EUG{VFU ¥›‰ €‰……‰’RÜh²vt0ùÜ +À{38ìÁ‹D :]À‹æS/€"d¢îådИü”]AŒ¦&®àe ƒ¥µ"îèäåbmiúƒ‘ñw¦ßÑbL93[GW[k€‰ƒ9@ŽI‘  äè6Zh¦@+; €£@¨ ÐP“TUH«¾×PV£e'Vssrrtùq5u i€„¨’º$¨ÉÖPSÿýSèæoÉPR¯ÿ®vü®(©.ª®£,ÉÊü»+Àèâjý»ìÿp£3ü¡µpq´ÿ«€Æ râcföðð`²ts19ºX29ÙýÅOÝÊÚàáèb ºí€ ãæ`–dü;Áï](X›\¿ƒ¤ÿ^´K ÛAÿ!ô;§ÝßîW ð¿ÊX™¸þ« ¬¬°7±vLÌÀŽ ›+Àø/øhNý7A @ÜÍÅåw Å/¹ü§Ì¿©‹9‚;Ó·óñ5ñøß3qpsõþ‡6ÿݶ™£ƒ«µ+ÈõïŒ@€…µð7{×ß{fíð—MQTIVJRMQ¿Ô@‡RmÊ\»—µö”ê‰+s‘-?E?b4IÑ‘Æä‹èÝŒqaÞˆœS_/ö6dL‰ðS4Ívß¶$ͽóÚ²Æ>¼^¤k72 ©ÿ;’ Kiu²>žGf¿"~*tÄdb±k[`¡ì¤8unða3æÔâ/ûåõA%~|ÙûhûŽ/Ã^Ú[5+̲S¸ÕSÙƒ?•NUp(×ð È3–Åpív·þܰ§k¯3‚ô²‰p×¼dŒ•BæuØË5Rö|Â,‡$É—†ðR¬ñý:ñ-³%†!4¦"© o´.×yÕ©Ô^È'€X¤¼\Î\„ÞÇ:é™÷½.’k·Í;¿ÞT•^ëðô}_ç‚<Çhowh'C#ÑžK©£óx å¸â—Bæ{%°äò5WÆß,ûn‹ÞYN“aP K^}öî¡‹ÝŠþG,®¡ö&¿\z¢êº!F7ñãXŽo›™nqgÍ\ ¸6‚äüc Æ‘ ÜêëßvŽÇtµÑò5‰†Éª i¹pmg\—®îW!AWOž&²68ˆ³±½y?—­ÒŒ«†|@Ôòº$ÎuHÙ‘FB¾„~n&í‰ñ…$6ºû4 y9î@§%l¸÷%ˆX¶U0G(ûk?„Á¡BQaP4côX•ìU̓3$¬!`,½ ©ˆÄðAž—½+° ýŒ„TeÚt¾Mw¡ÝÉ erþBíG%e¿Ô½1M†=c©P ü— Ùá/¨Ý«ìâ9#\{tº.›b:ûîf´Ü"o¥_ФÆ,q„kE Ì\$=s·!4L·R%CžŸE¤KF~DÄ„T Ü)ª·;¿ÃÁä“}Û D™Ð}’|«úU«ÓŒÚ/ì \„+z¦H•€á5÷¡ÏêÒͪðL3Žû˜È7r>Aþàc¹8TsåBæÓ²Xû<8ˆþž¥»:íŠÕL6ÿ{ƒ½¹Í–¿UR ©@S¥hxÝé?€¹}`¢£gµÒ{Ürd7)jšYme"Ÿ=[Éx«D´oPÂvyS÷ O=ÕI=X’XqÓÓøå³…ÓBÚ§ù®ìýxzç¥0rìÁ<¤n†8”…þ3ë!]¡ ý.ÍHñ5"+\f¡¦šÆˆGš=tL{cS<½Üõ”p¤&ùz+^ަY±åB’Ü|Ñl¾œ\œQü ?”¶D|QÌ´Š8J×oÍ;O!Ò²óФCL¦X³¯Z_+Øw#K_:#F_Ì(I,¼°n`9-#1tœ_ÆèÌVTº‰q¾°u¹`ZÍçÉK£3`öë•/´˜÷”IDÙÂùïwUð¿[Wy o$¶õiÁ>†VÞfØö­fË/¯ßVŒ6öÞð“(y5e» «–JzUÙЩŠ˜Ÿ,^LaaÚe}dûZ& ôú ŒlÈy>fºñ¡)X¥Bñ9Yþ…SuNíë%h©d|å›9Õ7ksÍ"Nu ÁŒ‡èÿ¾å6tHŽìES—ÄzkÛ]b"E¤sH4'QñçÚ×ñŽì¶È»uÎY©¨!®K'y< r¯.,£†bˆ‰fþ[r&ZvòA^— B±üÛR)§ŒfÜcì&qÈÇ÷ _*·ÇøU|_°y·Çc³Tnˆ!;‚“Ò¾ö(—z˜Û)uù Gð8ƩیD;•e;ÜÜòA‹|½`Î=<Ö–‰žöË‹Þ㸕K’ WŽFlþâgÚ=Ñý„Ú;†Ó?èä\|Î×-ƒ¶2#îtû&ë……m³ÚrR¥tæÖŠßÝ2ÞÍ»ïØIµ’­‘¦ŒØ=Ù¹Ëvlø:‹„¾m.¾£Ý, ZÒÍÁ‹Ïj@\¢áûYZíÞ'oJî5Ô*ÞY|ã'b—o$rã§ùm–¿¢@l"¯ =MgÜ*=]Ãè€Cß5M¶ö‡/}G°Êú9p¦:ý¤¿AÒyõÞ¿Œ´G RŽ“Q1êùQc@ù™ß2Q;5–BË0ôµ[=ùÕƒÎñkà6&ÿ¹Ÿ6îGfaž£Ô¢#]¡%Q‹°Ã)½Ên°ºõB­Ð¬ø>ÛEÌ›. $)-é0Õ%î—è_0—¼n–¯{¯\¨6Ç}öG&‡Î¤Âx±$óáïS;ó©{ÊNÜÔßAÖqç5EÏ—23ÇŠãm†Œ§þ"ÄpÐyŒtàx‹¢C†±ý†­C¶Þ˜bÝÆ8rΈ×ÕØ£§ÔŒç\“¬…o¯Û' IÙØÏ= µŸO¤CVTO^„‰bW;<7„S¦M§-üKS’jØJ¹œ&påWÔ«@|"à–›úÉ’aDåó®àhÏ0VïCï«ÿ÷*ì¬ïÁت'ÒØpRÔ4MG4YŒ)gÀHýÄ\îaÙõ q›‰üª<5?‚-4ã*qÖÒšAdu:ÀÿÕ8J×ÇûŽk»«X§ÇôþãàÛ/Õu$IŽoìf7âÊ}2µl%” >×gçºasEÆ=ÍI§ÄQo\<¾¨÷ØiÆÐ3I¡#Çë>ºK }¤_Þú,±Þ9ù:Q·SÿátêŠ~§ÞÔm±(úãΩuššñð\–‡ZÆ0%›–-ž.ì6“iw Ï 3Wð •ÅÊCg2ç/ˆÅ0Ý›j~ ñõ`^½—_a&/"ØØ3‘QlRʼNDˆ¢ êIY¬ˆ°Ã«ñ5Þ›\ñ|Vh¼Û Ìê ¢òT…Ñ‚2H8ÖhÄ>ÚÛ ý †¾Î Y€2aY(²º°E W£!LÝã Û=s8lM-´¢ò”?-v ¯ ú•¥ÆG·–7@5›ZXùv\IÖÓ1ý(½¾PôSñà„=¤§Nl‘·C›ÒÔÜ0µ†w…:óöf´Û¯\Sêטþ‹Ø®Gý­Ã¾¹FTtEÔßvñ{Î}r®.qŠì.ÅiÍælkoyðíP|pÃ.ÊR‡×HAÜŠ“תrU8ùa[¸×bß%-4[jœ«½©áÁ ¢!ÄË©u…Âû•˜/Ñ¿®ÑÛˆ½ý0L®Ýž‰;&bÄ«r(†[¡Yãb¨{ò¤ªVBÄòHÍûËOƒ çX/Nh¶;9À±4§!?6@t,º˜(“.Bý(½rq~3¡BX§FZ(BܪÇÝÓðUÂýd]f<«H©õëÁˆ4naMªž‹›ÛJóy¹aï.Gónh€BµÈdײRDInZWÏ©ÿ= ]îÖÿ'ž`¨ÒMiJï×ËÏpAÇÐùß²Ðnä—ׄ«²ï¤ Dñ.E‚Ø;7êk1Í™(ªK̾È^ PbÍè–,ñ–ö%òýH%{¾S‘¯(¬ r˜I'¦–¥ÄùîâÉRö=‘'­™¯îC„Ûšo T-?õ–™êÝJæU#9g<§Ë öè`«¸]“„>L’Mbý*`ˆŸ-7Êú½n SVá’£ª_E§î´4Ý<Žh…·zÜúp¯º~àÁœ ƒ¥µÖ(o9U»ñì* X—Ò<"µŽN+b¥¶X2/šÂžÛþ1ô¤Ž ¨YU„Ð-È=(-ncvÃA±.hEÝ[Çøbá/tè|Ûójü“D<‹µái=C€$ÍO=W²'–Qî…ìǮĺCßÔ"‡JeRÁˆ®.ÙÑ.c!é,W(Û HùìG)`]byQÔjQÿžï“"¹¦ƒqš‡µiæ5Z×-îZð÷5ûÍÑöq ýØ^£Ubwˆ†”ºê“Ê.(‡£^®'±»m¸±›M.Y EŠp‡Ý‡œñPëIõ9¼^r\¤Š?PŽùt}Ó{Y0|vˆüM1ÄÐ`wd“_Nè`,_np*!ÓŒÅKr ¬Z)IE5æ\eDŒeSˆühN“.çû02óBó)A ‰©î¨:¬Ëñ¤½o\ÖER—Ñt¨ªŽÐÂÙ;t"Ú8 ›ì S^=Š=qàí¤ ;ÔJ÷Âf„ð¥2ûî9#[Lï>¯-›;ªü/û<ÙôÑm[¡^Ós8´ Hø’ó¬S| ­-KÆŸL‚*Je“h̵-Þ-C„\}~ƒ)û¢Y´ ”/é¹ÄçBªxü@³øcOà—Klahs\ØEÙ8@û4¡j@.˜³PkÝðLÒ™K¯pÿjyBØôÔBT,%`ǃÓMhËÆŒ±°:‚þ.ïÞ£.p©R’„v‡³P\_b`øí Ê¡È Ý÷Ìò[t¶«Iþý±¢g„‹¸÷è?<×7ùÕe&ó¢v¾JÓá¶pÝvàŸ™vI »ß¿ Û‡ f1ȸ9çóûÀ0“6?Kö<°:Eß69 h/AZy†i0¹©®Ö}À€ÐS©dÅ»¥[ç.·…',a‘éÔËŒíú¿aÓBêÏâ Qtš<¼è&ÖkY&Ry®NU\Öš¹äº®w…Û  ç÷;û%ÞÄ90Ø—Ojñ¶š±|–´^‘&jàT ×R20J#Huš$í£˜ u"Ï#×ÔG)áê ÊW¥¢L7»ùh•]Ë‚3QËE´qÅ̈fk`àš~ÄìñádöGaNµ-øTwümÑ:—ÅégZ¼¬Ù5‘Üi¬æaçÀ‹”1Ü~Ìe:¨@&þ Œ¶HŽ#©©+Dàe­01ÅØ-dí 5˜X¥À{»Xyˆ¢Vm–éhî 5Y¹?©ïJ‡H{”NŠ"žÙœòºA`ã˜ÏëAÕÀÂH)pŸÌ€ ¥*ŽÀ(£Hݰ3®T±dÛžl+Öº§!bưŸ¥qK¾bÆõp-„®Ä4 ìéÖè±+`×î•q’!/fw àäú¯bWw&EÆ ¸ï7¨8ÛÎ$6k%ê×ë&¬ >”;îŒ÷(›Z!Îøù§"ÝäP “aÙ_{ËfÂÇ<Ü Þ} e¿œ‰í)é=U j'¢:wʳëc¹{öÔ]ÇC䈼K”,ëØÓíõÖÏ󉛼”p–LòÏU°»¢í¤Ë¶Ü ŠŒÇãå¶ ã-]œ —}ÒñLév¡—¢ª`ú¥z03ê3Dꕼžu cp’· ¥žä‰¬‰êm~U1±jB„*WXhÉÓc«wðpA_ñ]q¤ 3´…9EÍiA¢Õ[xó>³öK‚sÀ Î†s]*°ønkâWê­¤øUþ¿û aÑ”CfÏ^­¡-•û$£v3Ù»%Oû8Ç3¡l¥³-&˜L±òóÝ"õƒú(´ä`þÏÁ½Ø ÄÃ]Mí(6AL½Ÿl‘*)ÄæŠÖj1‚P¬Vcá· Öþ*î¡ÛÃJ¾ŠY…g‘Bê»ÇLf»ú{Ï7º:hP5íPju/ ôù§7+Ë8˜ï«ùÝàÉ!s.¼‹ì~|onïæ¾g*î j¼¿ DØÅï:~Ÿ àu–ÕðT?µ¹¹›=³Ä40<$ê 4º‡¼£àÁA!%‹6ž¿ sÅQ}gJ‡tújØÛÝNþãðÊ/j]»¯rÂežzµ»¶Èz¦ãE8›Yõ ÉRGÙLùÒL¾n+Ç´hÔßC‘þ³g(ºßÑCªÔ¯—ièõYIBèÔÒAßæ¬£`Îí<í«'ÅVƒÌcG?Àä e¦ËÑåèS­ñaÐ"ýÚZ'ðj^ vƒT„õ< º Y­ÀozcœácB"åþ’’ÈÎùy“møËœŒïê• W¯œd„!¥ÎØ½Š‘'F’SŠ_N%Øužô•ÂmÝãÌ›=Y¾}r_^¨G1ÓæïNÔβ»?K䌡xç¡ä”©ùœ?Úö\†aùt7 Rî†È”»iö %ÜN’l¬1T×ürÀQõsmÌ®—¯[Í s€^v528åÍ'Ë& àhî Ù\h -M7YmᬣÁé¨Ns)PRž/ljԻõ]× [ÂéBºå®1Ó 7“Iª™$ÞÖçêâ]r½×}D!×Ëåyýñ†¯æÅn_– {œñä2Ñ\{ßé«)¸K¸6-a?XG…0™¶.!oHÁ‰ó¾;Ÿ’‡ß¢ù &u6·µ6~ws(á×èÍ’|×~¤þuý+=‚ËÅo!i½ƒ¢v/¬Ö=4‡Q…û¬xó8SáÒÇÒwàÑW’?AP,I–õT"ìä'L”r‡jÿãÖ–‡µÌÝÂØ:/„*¨v»Dì›9iÜÙA£ª@§ºëÓ"– cP›”È‹¾í@¾e|‹:ËÃdF‰ëLˆ¬5$ó–²\"‘£ƒa*âÌ“x~¶îY„·0™óv&šüvIŒÖ¹Ï%ŽÁó]éL‰ØÖ®ž6mÆÎæ1/©5n˜¯ÖåÞ…oE¶›žÛprL̆Ø)þ•AÒÂÒdžËaû‡mîIìèwB~“£`QêÏó ªún-?žµ‰>rïaÙâ¥!@{º»ßÎ׎§dí1« |ñ˜¦Àg¥GpÕs/²¨*\¹ñI+®B›àêGw¯>Ä:–íøÉœ©‚íÿµá2d‡¤Ø °Ÿ¿xJ(úª&,[ÍAXcøâJ4Ëó•·ÖDÓ_êêÐÌNØxøÂãû¹FF#!µÌɨÿ§“Ip´ý­™§—)û·¡ªIG¬sRvcË€oÚHÝ…WøêÝÏÁW»ÜÓ ¨ð'c0®Vò‚ÍQ¬9bwºŒ$„>Û÷Ä™Gå¢hÛž²+hHsWûꤼµüxÅíoîæÎëS©¬åî³-ÝdôJS4ÝC¿ai¥3n‚{%t2_áÑMtM׸Lm È’æ5)1¤"8_l’pÎ…t?ƒ©D®Œÿbcõ’檽yýå¤- Íòe¯j"È@ÕˆÅÄ ÅFǦwŠWÿ€Ú¢Oü³Íuª­Ò“‚š¿ àTñ¨vT5Ê„ôæ(ˆªì>ür‚ {‰ÿVTïH¡™™µ$VÐ*M?qKŠ,ÌuzžQVÁKFlû8aµÄá­I˜ù$Q·Yi´ŽóIÜC#Œõޝ%•¡û-õSf ;EUW3Îa¯î1¼ççýi5íe¸ÔŸœUëµï.VBدú*ãĽàMG}™éV!k)ÏT#±hò\u‰Æ£Y!y>ºðûM"݇âlïcÄ\¸¼×Þí mʰå¾ÅÞDæ‘hûô‘—›\¶x{Q2c‡ÆÙõÔ|Vëud›¤’vÿr$‡”í†cÝ`8q úUýiþôLþWÝùRúwÜg¯÷DTœlñH†Ž•嚉٠øI5ƒRF‘÷‡«piQŸ&|:©¥³±'ÛYW?ÑÍå½K>_oºú~òÞÉ5ÙÎEŸiK¦x½Ì=˜œ!îâÖ›Ò‚aš„0Ubÿ!`Åtn2/ø=Ã:\eˆáŽQ!Ñö¸ï}'^‹bÈg]ßÂRMÛ“\óØƒ›CÇ"‹z.ÂØ|ó=O²ÿõ-gEÐE²á3ðcê ³#}lOèö«¿Â\¯ŸÎ0©üú×䬊YѤ&÷ ñ¨xˆNþrY”E[š¼ÉÕÎ^¦ˆG¹>º³™¯vÝC3Ît:h\0ÐH˨tcôZ•K[:Äsñ¬BÝxR™mu%±zøÄQöæ:¬+¦è¦mÞ¥ÖþþñcùüË®'Ü›MýZ€oü ë߿ƈMVHPNÏKÒР"åXEþ2´Œ›ÉHÔ=¾åÏlÒ„ùí'M<-Zæ"Ý0LÊ(úˆQÊ Sm”}Ÿ0Ú 9xÔ‚Ú£ [¿7Ãaظ@™º ÈH±¦t©CÅV¯ËÔ-/ŸÈeÿ<±ªä úºMcÅ|ƒÈBÜnÜònˆ1,‘¼&{ãW!·ç‘¸ŠáXßÐ-Ô“×AuËô¼óí'ú<±–»IeÝÛµ÷%ߦÖB÷®²0Â\{Z´âæ§ì &Æ^WÌÖs’£Œ}nr*ß©—©8Ø6qkŽ£jUÀdeTКåV¡·;aPÎéMª¯kÏì“ÊbÄ ,HvÔ_ÃÞߤSD/æKYB¦ì–oWã*3ä½ •ùdýs'¡ _·•oðGpûÄÞÐ%ôi®g´jJ®Ð m+°ôsÁgÎdz äƒ¶™C{¾Ê»·)c&—Îë¿´šò¤xðàdfá5M± ¶y8êF CÙ:É>¬ò¾0°9Ò"ÂÃLÚ”ð»éŒNÛña9Ù[fìÉ”?o¿OÇäz­?íÚÁ!ãqÔßín„Úd”°–$;PÙ=•š)‹A‡ö†Rt¤BaÀÔ <Û,ðÍ?¥²ëMåcæiP-<B_ÝêuB£MÁk›¬Ó/ËÈ7“HÌ“Ne§ü®âGÁ£OJ¿ºH*fº‚)(æ°¥þ³Ÿ9YЖÃã}~uÊþ`Ý·Ò„àHBGÙ¸eimvéûô]|â­-¼b×0\w³\âÓ““_Lª{Ô§þâh[Mu{ÙX>clžŸá R8H®äËû²t!Ód‹¬Iœ*)¨ÛQÕ.lÛ6z/±EËñ‰zï*Ì–×bD“{S‚ßç…I­ÕɽÍa ©ZYuôk©d±Þ‹Ete\Ñ v;ÎY*?Çpꑤw­, `¨P/“—(:Ù«\ß„R ¬$ÿV;a _“OƒÜ4T"Ãßú>>ÝÿÁ³ƒbU©CÖ÷ܸõ½aœ½°`w7غܼ ¼œ?¯KI›²Â/à.AòeE…›C0ï长s*S »ÿ)²-#YããhQ^â&ådÍœ |·£$°˜JŒ¨þJØú©aÑMe}@™†«,”XJÍÞ mƒhñzjPÉ/ä„qì§Ò]üÆùÂkBð;I‘[Úu!üä>L@|gb&¤k5º_Û!Vç¤jî:çWèNv¼ûf‘Û°ÒÚ‚¯cáã墨ã?Ú„JjXßC%Fñ‘ ¶UÓV¬¸nļÞî•5·=ÃÉ›"—i°q–S6‡³$·MQ~ÚÄá̵gÃ:Ocÿ5Y}(MÏ“ª•Dtgš4×ÒÏ?Æ•›~Õµ®>kªîgç<ÞŒ™—µÒ‘õ—t¿FÍÔ{?ŒãÒ ´I\3E‰ ÂõøÎ||§0~£©ù±ª¬LÒjm˜ê^½tž{):}ŸM–ã ;Êõ¥Cø·™_KÕZ€ÐBá?+‡khIªnÌlµ)•V¿½•”EMB_x7PHõ\`ºíäyó—nµuy‡`+=ñƒ8[ ‚Åfëóßã9S!kîðg­]ø|™ß¤®cb®ÆÅ¯Â]«ëšHwÈ@ìm *dˆÅŒ¸|@!$¶ñž/R¶rNÿÕuý Aúø"ãI‹”–eRÔÐ-òÒ‰€Â¸~²vÊÛv±¥µ·1¿jÅSÍŒ— ªΧ†o—§×,ë'3„ün\%±ÑÇÓ§Çl–P'ðòCV nx>7ˆ„avÓˆÍ.PÎà ßefqe¸ÃÒ/BI^ÈžpPºdUƒ¬‡LSA<™Q9øÌ‡´ŒÇLƒß 6Ê´dh£+?qÆ}ÔφœŽsl\θ‡WðÓ¼lê¬ h[óm»W×î,8:„Ý»†ÏÖ|œ?‹'m¼Q-<¾0H-—´sJŸÌQ=5 … Lþ(y?wr‘Ö-$¥[˜ëVEu&М¦âwþ$¥á4޶ÛàÑ/2îcå'…q×ÊÕ,Ü7«€ÉÉÀÅ«(½Å-ÖC‡éË77Uˆœn©zÒj²ŸÑ1ˆ—–¦Ñ4ÁsÕW±!þû‹;ò¤«–»)–ĦÊË‚¡ëeq)vž[B&/e?Õ? å½õŸ½FtŠU€aÁoζ†?fÇg?9D÷œZv(”^Š/˜Š"ß¡ D¾"ž4ó‚Js˜‡ TáOÜÝ+?¿7û˜€a ¼¸×\÷©Ç8_x•SÉhTĈS$儱}íÆ¶‹ÄË‘tŽŠèèj“I‚ÑG’±m'šO¢µg´¾™ ËÛi+$ÔçJrgÓLº+êÁ}›m×píúM`2OM¾R'Í¢i3\ó&/Úxøa „Xâb­®$3Ö-¿kfr«éNÈÅúVÄ'G­Ï§'tàf4T)|9.öMm;ÙQ Á2A sο¸Õ~"·;“TM?l87šCsåmRã°! õ(Lnدˆ¼l»ªFõbq4:J±'wæ¾•ÑÆþä@—»~5m˲PSÆÇ˜hü¦º†·æ€{ÏqìYì¥ ñV‚±·ýŠ¡ ɬóHýÈl´>.¹ ¿¯ÝOé£.Úsé«ä"™ÁhûÛ¼ûYLƒÉÛ;ßÅa‰‰žM Æ:6R„o)î©–²ÖÄhÙQ]_¬ÓrÔGkçL¸[ùÇ yÔ$ÆN\#‡Ï—;óƒ²#‡qÇ£ˆá0¹å¼‘ ¶ߦ¯jÀù€Zð>I£%ìV¹ˆŸyó‚ºõeýy1E/ßÇU*|GÆÚ@:…¼¥Es3­Àøi3Û•u‡ÎQ¢CÝdÐHrÊì§HþAU•jÂÅq\nt¨³o1J¡çEo†D§ú2®`AJh>à«Ðã\eoÑ蜤¯mŸÅ6ȤÿË :?o)u ½¡ÙV&ÕdÉãçü\â)çeªÝÊôgã|~?iQoÝ]l~®kì²4c¼wv›u sð+8Îåß\: ¼£2·Þ×@cRƒ&¾òL¯ ¶Âh/i¹À P~6GppÚ‹v ¬p9âƒH"eÙf¬ÀÏÉËÊøÆàjíפº~Ð_ìâ'â9¹6³d7Ï+r²EzY½TpzÈ^û묹{ Qú·z¸gª{¥ÞIe¡ÈÀ–(×#“¹øTúç2… A_ôýÍ5?äLåøï\iJÛf þ„ÔYéóM˜ÙÉpíYPé{+d¯xÑÛûµu`N8^ƒÏ€ÈèãÑ9×DFí…,éø˜Å0eðLj\îúìyîW‚mÃѳgôÔúF¨ó̲©†7´û—_xäRêLzM‹€úJPŸ´¨!>©Ît§H ±îßÎ|õÕtÑ4ì Ø¥&©1dÛ>W>œª;ÕYóÐP[ZÕÍ3ê/U¢ì¤^dLTâ &Q¬¢7çeÇY¨^bíf£¸K& l½ÿây*=§rsm÷踌µš2ì93o¤ùäÚâþ™ž­Òk­cx ôçÜéP÷🢓ºú)JTÝ è¿~T{'¼maÞ$Ô-â³™s@ÜwEr“µá+ 2ÃÒ¿ýðÕ ¤CæQÙsÖ¡>|#mú6¾ÆÄË/L w©X€˜¯Mnt÷?¬_÷íþ3n³ÀršúôÓSµ²=¤ˆt'Þ§ ŸŽö–‚âä®5ˆ9†kE¿—ƒ®¨%¹6¸}ù=ÒyÓAg?š¬ wëNÆé ÊìïÙÆ²w޶¯.3¡%/¾«yù3þ ¬Rk§|®HxwÎæ=é°±¥Ñ EÁŒ·£}¦?@6Ÿ±{¢£ÃI½¼JÈA_z6|y*öZFèßÁ¼²ê kú’Jní3ÈmÜp\¾Ú{óA¨°¿å”>YÃ;¨Âx÷³pÃäÑÌ®?,°•Ʀ=²»ý+逅o<ÝÍàÿM£w𬟻LAâàÁ Ã.Ÿ¬Ù;⡷긜ä× Tâ™ÙÕê‚ùú“È‚‘ôÓoÚiùg²~$‡Fb¿á’t¿C„ªx¦7&X… hâÓý•€,å¿ývÖ+Q:f.|2ÔýTO.¥ò<}×Pžý=©Pœ7)zZùÈYc¬}¦cíÆ¶~§[+ǸÅ-—ОŠÌV¢Ê­qè!ò ûŽM ÔÙª|•$ ww¾ò;,&_·0ŽQcÝÊJZ˜? í5 ´É–õ½HžÍt÷[{Õñý ó§õœ*•r^QéÛPï¶8,CB ¬„·­ Xk‡,]éûÙjÕœ€|ÀwšAˆòÏZ9üŸº×͉'¾Uä¹·ùnv,¬Îó¥9˘ù6â°‘_u5mŸHBf•¾ú^¡æí"h+—G#k<±RΣ ýfXU—â Q«Óo¡ß¤Ò_I{ŠÊ’» Kâ Ë")«*?#f¿­õ‘ä±!˜U]I&”òtµ`wéO%?!ÁŒyAí¦X`ýxe85€/ËŽ1_"œ«Ó +tˆNM‚Ís?Õ60ßwÏUסYzüY%ŸF½Ç^ì|lCw)ø+«¥ð&³úý FÚ§,ÉÏV‡ŠÄ(^3hu¼Mu"^¤¾EDRÏF´,/öûn–1éGQ Ö5ß6¹];4Ús– pcü£‘Ï.Kýüœ«‡¾àÐä~ü>¿knSÙQn{A›óÎPm·fRÒ‰JA9eP"FÚÌ¿›‰4ߨéL²3$à#ÃÙš¨}›¨[,ªa9d¼IÔæþ•&cJpLyµ‚Ú2ê„î{ãò7ÓTÊÜ|­³>Ê™»×_ë!z‚9*aÞ¶}0×Ââ(H§Q šOâÄCFéH¾ ÌW7ª×Mß ,"Þ~šµiIЧK!ÎÕü‰„8è¶­æ¥ZÇ¥Nˆ–“朦û-$‹?BϷ©z©ù¶¾Úûyøš°i"'¾‘ÀÒÛ;awω‡œ Ÿî¶—±™¬ÿ'5¦ w‚¸$™bºHmøÄLËú»¨7?iÇEaº–¸S˜’õƒãfŠ>öÐ?ñOxï˜Gä pû#ÛU¹]-Ú~t ¿jêe\¸$Ž ›'RÏC­ÙI˜X0é(2?}sù=T¹kEúlft©3ò¦ðS WÝþ#p rù‘ý6ª°¿þdLA ßË>W]Cÿa7„+c»Ÿ÷}5‡WÇkK ªDöÂGjõÉ„­ˆ,ÍÞü4Êh ßåþƺsžOq,•ó=7ðßeÊ©{„ÈÞ^i¿ïE•$©Àa˜«èc/Wþú#Õ{Ÿo!]€öNXÀÖù'ÑzV«aÉIRšÓ[c)ùÌzr÷E޽;™ÀÓ§Ïsð5 ªÆ¬Mp„MÓÞjêÐqBkð0|Åí×aýìÌšG@Öé‚¢ÙžÁpü}=·Õª–él”"ºÏ*ž<ǘÕCW·ÛgÑÍ¢øR× Vqª{¹3hì¡k°ÀgyÄ–mÌûSŒ„ˆ))®«C΃8îjt2¶mx¶5µ_Þ<Ö;S˜ƒBðd5M}ã¶oXkÅböÐYloß\éÙñ?c6¨/ëzñ´zuëЊ†œªã¿“®ÒúÔ’¥XñíâsõÁ§Wv•Î (uS+¾"M.³ÇUŸ9IczæF”L‘å>¢Rù¬KgîÍ:mÌŒ]=Ò8#lûøã¬ÓÈþ¤»>\!—# Ÿê¹ní:µâ'Þ\¶b¬Cm†‚x(U»Zçñ‚?“PÆ‚ÃØ¨a% ábLÊÚ ¸EÉ-d®ðšQ¤„K¨¼ùÐã{ôÔvú1Z2éN âØ€ûòܳH‡ŒÞéFº:Ýã¶ø“¦ÉFÔO-oïKÑ"ö– ±Ô´à&HDƶޙÜûx­g–gl­”4ý€‘v›©ôñënŠ G„Å®œZÆû7î ü"µ.i=L{žîS¾ÅžÕ9¤È5Þ—à}ù¶²+†™yÏj Ó“ÖÙW ¸01ƒÃSbS.WËG>;Ο¹¡•¦Óž(PÌñÂýý S¨¨±—ý+˜”†z’Ödâ›Õ|B))£4%Ýɤ¢5?a‡EÚô·€“<îlL°£…>Ä\HIµ@)ï¸N¯t`r“ú‡Xë\zz)7UW‰ÕóñóXÈ=©]k9,jX.Ðïèɤ1„(T¶öÌF$Lí©¥«_VÉôáktToÙ¢ýB€ú*¬ÓÓIDúèÙyñ¶îÝ6D™ÕÀ Ò‘¡ÜU.±a,ǡԙRT—‘"—;o¹Íà,uy×\3ÀMtFAˆ¤À‘‰9¦_ìjêÎÅÇŠx\¸…árQã•òz½H4#ìœËBŸ·t“™X_âM…±äR›?Pþ Çv«Dè3û¸2ƒ7Þ%sl½TUñMH±g_3-~[ÏÞSG˜1ºÜººD ¦þøYøÛÔMu 21™ïª£ eß Ïú~@á¥ÿ@:Y³’[8j,¦Ã¼·®­ý™s/ú'³†…GwRPþ^´ï†{CS¨ÈÁCÓ“³>¤-˜äKS =1)þ—YñÍîw +•¼Ã #’®EšÕb”üâ¤A·|ñ¬JÒ¯½å@†_ÌYñ‰¹ ³œN[ré–lFGvÚ§e¦7ÉâØç.fSj!|%™!ÓÕ­ÓÙ/mäñÚX‡ÚóHÓ¬ô úpßÊÁ<@gcnßòÑafl|‚–î–Ií¶ëÖÑñýlŠ’S!Ùãjxhb¶¿¥ð-I]¸Ì¡ÅÍ{–ÅÏR¯|w¾¨±z²˜~¸<žhp'qj‡¯ñh+½Ë¤Á»Súá`;ýŒ9©jogÑw wý;d#ÞH>&“i&ç~ Ù·çÚÒîpðæÇ@yËrÚ²à(%»¾ž°ý ‡ì×ïVÇG0¶Î‰LåïLŽÐìÆ™†g—b™¼ìÊb…Ù2 íªÔ%QC‘ÞÛëàÝû‡ùÁ¦_ä%¹1Ô“ÝÓϧƒƒÉÓÏ“Ôß+Î}e=s˜IDÿŒ=g×UüvàÉK ÊÉ|a¨J±@:ª˜5Sœ I„:R%æ Z®è{ö9E#ýáGœ~ÓT¬ÁgÒZ$aD ¥Z/ž>þÌé&ú¯¬ƒ0Ó@û®êBÏû´Q¿uÈÆ›vÕ‘¸Zƒ‰mvÑ+[?Öª}?cFBâ0Ò9yìÚ~DZÞ½ÏJÍì°ó¢ÒÀ¸’äø9¶1¶ð¢'FÕµ\mZ›E­ö 3§øåYå¿ E:P1HgÏÏf'ž/GLv’Ëìʹ‘=EßbzªÚèÖ²¶á…yr6”0f¥Mξ]’ÒÿR“í Ϥ]è¥[#‡ó fÊ¥ò‘Ð1ÝzœÌ*ÇkqîÀ†ÃÃí…{djÙ‘üÀE*ñ£‚.m¿+Õ›6yt™<gf_†ØûX.ƒEÉ·…ã:V–-.Ù+€Aû¤ ¨¬V´4ó~äòž±Øf:ž.kâi£k¼':£¢Aõp¸÷¥c„㲡§ÉŸÏ ZV¢æG×Ò”(~`ºöz¶«&1Ô&Õ >¨Ì}„ˆ¿~k"ï4˜ÀVà”öÝpr¢¨Sµ_<Ãz c(˜¢µd @€y»6áCÿüµ÷Ýõ]Dì÷Õ* ÅÏõ¬ 6N”Ø|¨Ã[aCsS]AµCƒ ½L¦b05!t•è…¸!^«‹å¦5:’}[5Sn[¹?ÚBÃ}Á/fåÇVLñŒþ,ÚÏva »“Çü;saoîß8YÁéÏ–¢Í1ÝÅD±…¢1aÂwÈà˜ò("Ûë{¤ˆñ²®5e u‹#÷„rÇ 0¹¡¶»Z ½ANOÖ²…š‹z.„*=ÍIºVž«Ý #mj 0ݼÅ¢¶¦7±“˜³çPÀ& Ò,r?`…•¬z³O’µNf5wõæé#‹ÝÒHöO_^CK¼·9 ª¤Ïg‹mµôà‡†Ž¢¯|؆î8G],ß®i£Õjà~n?Lá×cqº…Diê82ÔÇêCG¹ùZÔñ®AUÑX øòUk]Ç ÐfÅó+è± ²‰ãm8† û0µYñ²# VÜ|1n2ÏÇZsèQRŠ­Œª¤|g@ÆÎ†þÐÚDT8%Š|Écdo4V½ÈX|yôGÍÂ"mcڶǦÒ5­ˆ¥g áÈ<ô˜ÆÓ –Ÿ¦E+â³ÂFcäk¯ïåµî/Än‡å%‰ Å{ë­Õl›tâL›Xw¾°÷6t"ž£ùœóÌ… ƒÑD»äjð®k°æ½3ÇÈü)Ýö¿Ãc<ħÞÕ½æ±èØ0aÖÉÀR:{©Ý¥[/e…Ôœï7å› Àº‡& HÉ1£æW±@ÿ dWqzç4§¿MþÿI8¶ÇŽ^Pp¶¿oJ‘Í"Gy´fšò«ˆF…|NzŒ ñѧ¥v*?,–tˆÌ6Ö0°j<¿fKBÅø«û¿6¦&Àæ©Îc©Èœyª¦ »øÏ}#Î?›&[=ÀšA‰äøI´º$3Zu—2°ª%œY*b5½R¾LQ‘ü©·ÔÝæZ/ÁÐLŸÅ½³Ã3A=Aü£Öè.h6Y+Õ’ˆ~¶eMbýÌâ§+‚ªZ}½­Su›¥)é€áž|“é[ÚuXýÛ¨mŽ®qm ]YJ°W—ð.œeApD´4ònàK¦ÐÝ¿Ãb“”ò¯éíð{Žoa¨JðËi‡0õBñK@•gùápÊAëÖ+öšü¥£ŠøU9ƒ>†ZQ°8‹2â& !Ͼ=âÆÛû ²[±>i~ÎસDžý%Œª:jW2§Ë ´öɱxþbKíZ¢ÔgÑâ² éS ÊÖ_Ñ¡?Z<ÀMˆoè Ž ße Ú?8ŽØ+/z˜4¥þEmòdô'8ó²mˆppcü.!z-,àÈÓ.sóôÂH„ŠàJ,hŠ×ô"ú¡BÖùAùÂ2ãkÓé¶hq1g5^ïs3k%Š÷]š˜iÑa-^ÔI:íoÙðÈ» ³ <×CxžC^ˆìí“VÍÉ gppVQ&­VËNeÙºm‹ÖÿÞ8wFž(ß”íÅÓªK8ŽPY<[ìݼ*Òµ&ÆÍU´'µ$¯Á¨Z+ÕÓÕ» 0[© 4Ÿ1ZQ“ì—`¦?:ˆßVøß"$YwfÐÕš‹ |-èɦóYw±7HüTò(ߢg0–n÷û¯Fa6F нÄûzk ¹]!<žŽ²Ô€ö]÷TÊräËÂ3½ãe½{—Âל}´à±í h°ÝÉ'7ÚÑ’6Êý†m­^|Y3­¾z¶L¯“µÅI!À_ï‹öafZ«f >CŽUm2ÀG¡x¾*¸žV¸KHÞì0EÓøÓ²0…A Te„ª&‰½p÷÷¥ý2W#)‡mW®ó*ãÿ\ê&oþÐ^~ªÄR2j3“ð›ÎðÄ•Ò ¼7nú|%ˆÆÙ ðüì'[Õ)ÙçÇëÕœô9ʰÜ›¨&©¬×…nÎMeiømm5Ê×62øî— Àë¤=,p Y©\¬”ós\ß8­Ñú@áÇ‹ŒvW6mh/Èf3X¨²ƒ(yîë¦059[sñÕ쵯‹ ¬?ƒ8á‘™G}šËáºVU®ëÝÙïoðÆè×u|`²Ž›ê\6z<á…üÆÄê²ù}2V´;Hª*[jó‚n£zkOZØúb„M/cФÆBßγ0‚–ɺ1ÏUÁøO0‰'(Xˆ†d²v™Ï9Â& "¨vl6º6z4(åìÕD×Ú£X[ôýTo hçV¸M=S@ê¨Y!àävåËÚñ#:oçX B„ {VH£™Ibu¨&ªvl#¶òC+Šë<:=’JoQ,lÐì•Ý?}\9¶‚xÎC[í#·)H¨}hÞ§F&‡sÉYO~Ö1QßàŽÔp4Z—üÓIøA‹jñÊL&IÅ×ÎH5|¼C²Ì% Ú3>[¾›ŽR Z¡f™,¦½ŠMqÅ<®Ì•gú9KíÄÆ_³Â]©šqbáHVÆPÑÔÖŒQÐE¥ýŒÏLs®D¥Ï( œà F‰ãÄõ3cŞس÷ï[ 7Uݶ% ­¦_ƒ›¶Ë¬!ÉPsW°Ä#ò½)Xqyc¯¥üÁÇSäs⸾ڗ·ì'Õú²ŸR{j#lâg _%ÐwÌ‘‹E‰6ж£&ëˆ/E®ªòæÕÜ)UOõŽß)ëÚ&˜Ó¦sò[•Å ¿"ضTU¼ê^bhüb™7ƒ'Ñä@‡ä+Éñ¹Æ\ØÆãì]>¾•|ÀA€:CÍ®à/¦d×7¬øLŸxg¯牼¹¼cUÆh&ýW†ÔÛÒŽh`ÓŠ—1 ä“)¼!l½B¬$SÌ`Ž‘>à'ħáwÖ8[ÿ†*Î×±Ü-3új2W@mJ0ÄÿÈßœ-RͱÆ&fýr ßÀgœ ×z²N†ò¼†=w”^$,óc5¢”ä7+¸hì6¹“Ž! ‘'š-Ø.ÿ`¼Øp§8¯±–]žÕ›[E­…³;7ä3[„É€92*Y?:úýL3œ×Œ»åD8$¤X›YŸçF3J[8àÓ_|Ww >AA‹Ü M?¿KS ã=ž¬Àõ-n"ûéÚ4† ²Ò4ÐÄv[nÊ[é ƒˆÝІ‘óþ{FÈ«}££-‹w“»p|Ä@ŠøãX^¦w¥§#¿TI+RÈm¢­±YÞ¢;LÕx0Qñ’±i÷BÉ =—d˜!îáûeÒoF™g(U•ÀDÔ„|{¼ð.ÑYá±už]pÀñ@m<ÍØÁÊç,«±R$¯¡7Ë›&v#OÍS&\åÉ{Aq-£¥,´€†iLŸI³Hú‰Vê ;¾ÔÍàFZb¯õ̓û¹EX’ôÝ7"—48; òÓh x6R¢‘Ü`\‚GpªRxÙxÅ¥DÑ2rÃN÷þVDÿíBþ»-‡íPj_n]–H4Ó˜€œZÚ€æº6ŽÙUS‹{Š]ðëAFÈ4žÕ…Âb5¶sD@ØÅ!©æ;Ɖµ[ÿο¤(»64Àe¤wxƒ•D¢âÒ|¤×´/ø-âÑ,¾C xjï÷fpÞWXþ›:¹\à-õNšUœÈE’e~ <}V,s.š®ª"}‡2—P7ài)4åØ˜Ò"ï’ô¶õþ¹[ó¦œÑÝ%õ#¢‚ƒÆ±²‹9F_ªRlÇbÀ·û‰¹úºr—¦';D¹ÚYG)Á7×Ê^í¤ú0YqÀ[O¡eUáÇU?áÍ-¢•’Šˆ ³áÿfpÐbxHóVÉ_•é9Ùsû9s‰«-3dp»å´õ‡y@0oLw¼Ý0mð/ßjŒji+f)J†80L=‚Á “àÛèþ’(7:Dûþ[{uã+G›4:A½I/v2ÚΆ‡ö«‹¥O\<ÒàZSaãéÁ•\O#ÜGØ×W™Ñ£ƒ9C—€ÎxˆVËǸ«GdÁªÍ3ôÀèË9Ü Â%ä) ǧ9£À#8îcÎÁN)Lé\ûÿ$ýQ¾þ$Iã V1·BrÔ+^¢æ–¡ ñãícV¦Ç`¤–yþø7zˆqV#×ElñT[‰LjгWŠŒƒ„2 ß"¼¬¬k(Fî 9õ?ƒ?'|#¨@gÇvçªÊÓ‡õ{ÚCcl^FÈàk·ì‡=ú¿ª§ù÷ÒixDàø)ÓX±!Si¡ o€§9“'ÔÔ;oü{[¤«Ø ;ká\°U‚ˆ*yk[¢ƒ¨þáopØ»‘§ÍtH¨×°PhDb½¿ÁñÃÍ”óz•›™ìËЭØ3‡¾¯NP˜4Öfïphá|¢øø“ šØôJq`âãVßÔäèã¢ÀbžŸNø“½z•ñÜV<é£û/OÈ4Y ‡=Sôûƒ„4üKr‚tóFb~­ÜŸ('ºÁ.E³­Œþ¿ û UV%Ýt¬ªDþÿókÞ+ÚY?#ç@Ùx­Lžìsóš”ïŸ&ÛÓúì#.ñïŠG½‰ãs¯V{nJoÁ ¦Þc]àÃtº,’X¤K¿±¥-¾K~ óÚ™vG·³ò×_Ìç4¿ wJ¹ƒ½+‡wë>?Ldí½Ò…vϯÄÎz>ÆM¶Ñ_¾±±·9†Õ Í/Ýp­/¡zçþ`ùø„Z“$ô©Ô8¹.'îÎ †œb7‹­ê„ˆÛgùX&¼ Zóè0±DƒS ßk7®G‘ÒZbµ‹„ mîxñk‰™ƒá>Ú'£¤ÇþãáSŸ#<æš½À‰¥ÒjŸå·ÅØŠ»ºÀF¡ÝU$ìÐÁÑÞ]´ò%TŸ¤Àd¶7À›AßKZ;ß 3̱8Fìåi ôé%«,¸÷d•2Ï)kTòOzú¢V`$QIX޳‚•~4BH\òä—¾Šä_x7ü2ä»s —¢6‰áƒÃÀÊï²ÊäMhA4»BzÍ/E?Ãù :Ôú$=%)7’3ÖÐtŠ( é 9¾¢ÉœªL8†Â£ FG\³uŒ Ž@°ÐWQ9Ô^ÞΊ’Cã-—^ºÊXøŸÙìÇïûXJã`Äjø®ÆÖó³ý~Ñȱߪױs%•PÙ˜lv–®š›U&0 *}b°BÙ;À!CLÂýÃZO܈ãeô Wg³£D9J¾vy÷Ö ¶Ý@¨Rÿƒ8¢‘ÄÛ%„•yºàój£‚ÎÚÒ?·Y7grYì6‡ &’ѱ„?·Ø–`V¶Û D_AlÞç[æ‰È «·"Bàº/¤¼ y P£Œªzÿàj'YÚEþÔd”¥m*C9H}}9^ ƒí w}Wx#ç´k›Žñ;¯ ~(^­Q€ŒŒöhaH÷ž»Èàt­å~0ÂAiøXzð°‰â"^rSk]IövQWQà›8gl“̯ËÁÇ~hy$ z‰=ÿýdÛ Ì—`Ɇ(J¡šèIá^¼jiVG~‹}ªñ®(¦²TT|Èjw‡ïVêÊyâ%wÂdhàé±è y·H{¢Ëx`â ^Uª6e»Þê´rßõc±°æ[†”mÜê™aš’ JC2®}d ït«“´-eætV*⩸näöAå2Ÿ·¦äŠ€¡ªÝ‚™>·«¡Ë 7 _äHrTƤâ—ÃϪeƒ¯¹£ ëœá“„yÎ(Ÿ#§7ñG`ü#¬ó˜ºé’C—[Õ)ÕÚºê†Ö‹JŠ÷ÅAa Ìïì2OÒß—lü!ð)%lµ5GÏŒ²1(aq7ݘâjsº ɲò Ƥ€Í™ú%Ÿ? Í.ÍCi0ö{~Ó±›¼tmä@eÔ){9ŠßT¾cc $"«˜ |ðhJQvB'~•N"¼˜8C¤ÚœÐ•óBi ²€C\órÁü½Ù5všâ±ê@)ÇÈ{ÐyŽ‚™ÊM“Tj)9Z[æaì ƒIjð€ú[(Û­ñQíü›+8ïà“u'R)úÿ-Ûãr4;!<šUׯwh8O/[Š% iÁ"šäÏ:¼ŽÀò½èñijôu Ö…´ËÈb ° ûl C%è·(éN™„ñRJým§„s ÁŽàñhÔÑ)Púû[pŽ ßG|Qv‹^—žFù¸,A)*ϤޟŒ8î(Ôçˆ-½4¨€÷î^¤Q¯ì¡êV«ÆÇWWn äÈðñF#'X4ÂC)ú?w;fZßðZe¬µ1e™ùW—cU_YŽLâ5Ô6Ó}1¼í˜j''âÎòd/IÄl sÇt7¿m+8D~²2t h—ôdÅ€m?» i‡”ÅBVk&¯LAîuwE„Žë·§òˆœ`¡©ÿæxWÁQ>Ä%÷Öób‰j‰À\¿ [à]‘ŸÙ•O%ˆKw›n ÕâD§L;ß:Îlø Û”c¸|£¨¤®Ú59XÔ¥qàÞÔÎÛ;e2 NM!6k›qú"î®Í‘”+„'øÝ.÷v~PÄB«ÙA°O¥¢&›ûø§s¬ï}ÕZ(&±w}¦Úƒ?© ì|Jëý¶ô3TýQ-EGF°ë,eÌrœôonª÷pø;ýŒKÚY[vŽ w8ã`ëšùrÆ’3ý&²`w¡Mlw‡ì²êça6¨¾ãïoB—N ûî^TÞ¿<£¹)AK)íµ?ÏÎøm´ðÄõŠÂ4˜ï`{á`Ï“¡’ ¡ÙÛöçò£ V&-CR Ž4YÈ쬋÷™3±¸‹èp"ЉÝ]úºÄÂÝ#cŠc7Y“ËDwYsÛßù[$TÆÒϦ1Å´y¤­F‡en¼gÛîÛë&ÿ¢@xø,(`ù‹?FÚ^6qÄǶ·³U2æmB‰0¨HJÖ·Ö¯Xõ4fþ5ªX'?Çx{Ä5YY_ÞÙÔ9ÔU­!ax7â¿E©Ú~ókx½}UT¸0%ü%JºÖPÖ@öµioMU7i‚;Ꮅ­)ƒ¸°°?ªz²èa¶¤Höw (Û‹.z/xÞ"/mqn›‘äçèü°LJ• Ê“"ì1'Áíà=C]ÿñ^>Ÿ›áIü8N ïTŸÄÈ5ÐgºM2…Ýw*‘ãëa)×FßG¤¿aäÚø«>e˜@K­£Úd }È_–o‡[ór¢Àzö“åèÒ=I‡Øÿ$ó©Æ +á=¹iϦÐMÉgál¬+(húOá4¨0z1¤›Â1EÕoÝ©ÍJl,¾²VRx‘2ðYË\<¶x ¡ñA¯€Ï–€]‚§zûƒñC¹vÑjê Çp¨pF/™u¦ã¢¾jšBö{Í?¨|W·8¢NoˆôkzõÄ|wh¦{†_ˆ5ªÏ'‡½zo™Šæàr´$>Þ1™]w#8åËS‚LlTRãJ9à[úwϲªý2§/‹^ˆ¿çó™]çЉ·¥ä‰Wy·¯4ü¤Yz×kj}Ïø`Ãʨ¹Ø… Åã8ÓÅHÀz´Ç«?Ö6L}«‰-³SŸZâ%CrV…Õ5 ú%) Rªúû×ó%QÙ½·<_U®©”íh+ÖˆjFíFS ûÍ]PÑX\˜t0•l´5ù²¢žOSx°ƒô™nLV…Û'@b.ŠJè¢ò;ÐnËDG„dÎÎ6¡¢¿ë »ýÑÅú¡™8@qð¢I™Ó3L4Ÿmhr†9êä¤Ð„êÏ÷ÿy‰äñT/ÑüˆN2„ká¢Eit_Í|¹X3än·¹„×t¯Nt°Ô0e2È#D> Ÿ3ÎKv=‘Ë!S¸» Á#",ÙBXl=Qš;Q\9QB,4’¾‘ˆcS ·¸¤7(h= Ôz67šb-”N²óüNû޳m_ÅŒ­Ç×wOôÚ·¥£*ß(Á¢³ÉЦ|£Y¤q.>Ë*-½¼å~ÿEã ë0‘Ä/zÆ6V6M¥a„¾–wÓT|O'efR7CŽ'„ñP¹ÌÌwXn9Xm·ËSM4@kzm–Q w.²¾×&Õñ+D‡¯@UÄíTðL  t+õs<ñÃîòçÄ_®|ž¯ù"Ë|Ý_Jx1¦CŽ&ÀN éÊÈÚð‹_™Í|dZ÷\„ì3ÈÓÿïާÃðõ¢X¦ÄbPÝw´HD—r§˜ï¡¥ ^«F¶ý8?5Ñ>@ u}êë¥ñûENŸ´·‚u¬NJòR¨û £Ç@B4‰U®OñžîPödš¥Ôrå8(âŒ`°dæâ—µ€,>Çï¬[Åö#F+ØÔb¨)-Ïd¾‚JE![.é§dÊ ¨;xQ·l`ƒ ój˜Qð_¬ý}OÝ}Ss“¼dnú –W «*ÔÃFy«kÀüÎÿ1>†;¢raÒº£p#¼³(6™mëxq‚A 3¸¶3›af:Üæ“±fEÓTåNÖÉ~Ôõ‘b6EÉ”ëÝ<¼¬®÷£æN×8õŸüüÍf<×âþ<­á{¸n‚†÷†ðúb2J¡^Í÷ðnAck³ÿ"ªXëÈ#nw»%Ʀw£}]÷@qh'P<“ "Ù~]§tëЗŒ½ébôý05+F¶ûm —{óO³ê,@¯Òä´Ü9kéðø£Ù—X·6¥¤6|YÕ=…#ÏQڻܜkàÙ©×,Ou;~¼r]ƒTÒAµ ÎLÄÕLè_ ½Î•»f¥\Ë’$ˆR,žõ²¤×m+ãjylrøLql+&<<ŸU²… jÈÛ¨¶°?LfE¼§ª©”v/ ¡µø¨R3EÞàJì½1«ò„;ï;=³ÀÁQ]³<^]´i4¼{Ë©¹³ÊÂ*ÛðûdÂ-œC—ÞHOCã‚cBȽ£‡†‰Ï9•ÜL–-ŽÎ¨çSÂÞ§ä/Æÿí±†Þ;åì";.B ¥¨hißÕVãªãÆÍ ü0㊮FÕÝHk' ˜'Í”Ôu–ŠP¡ añí#‡baøßá<Àkã CNä,`@vVî3“Z°Wí,Y›B:Å$ò1?3˜´’8 t\$ZLËC ’Z;ÞîÅК¡È•"Gµ¤Š r‹†þ%³€ÒßÃ3…¦=ÔVÝМ’ÜyŸ=q »X€Ïð#9ú–ú3g‹¸ÏP‘¸l”6j¹ w $#”Íaóq³úàçW´ŸFÌd¼»œh¥HÒ2rWÙ¾±¼CÎbe†ýw’yõuûæ·¦ ëìå1©PÀ ¼£¼ ÚKtѽݘ»ü Ä]ò`È"n»Jÿ…Z¼C ÑñŒQ¾ °dØPnâ,Á‘Cs$‡ûØ·HMQ<ÔpÜ«­ßæ®Ð)ë{í½@a×¾µ‹Ï\ÅvŒ ³<öF“e X»N ¥(å»d&§UÝ‘ƒ$š¿ó†à=œ›£ñ¨ÓáÊ!Võe-Y™XûÚ‡Þq­:s!0>¾+¦¦W†Ó*í\ÚöȦûô‹‘q‘òpé1±i™ƒgˆùÆñ&íþk5ê–‹¡=ßV‰r‡X$uÒ㘜;Ôjù´k¼Hǽ¼f£ä¢#¤»7dœûв<÷È·­b—¾{;ÆÓ#„¶™s ! Ûë1ý\1nú/€‡KbQ³`£F†±aºC¾ßw¸@²¾ 51 ÖÄËW‚poü s˜ƒ1DÔR©‡¸³Tiÿ·^®9"K¼6§æGMê›Â¶°¸å®ŸX#ê”—BYAì:Œ‹hg<-%`ÃS£>ÎØ>%[^•ï¥s _Ș¿¥Ry á8t£[9)mHè]'ç°å(©bM0Á{Ù÷DS÷··³Ïº(_ÝRó7w‹ZÄz5’YÅ÷ÙÜ¥/^âÛa ƒ>îubxÝù¹¤e ,Vƒ–jˆ5d$SÍ20jÎ œ& SÛÓC>cãF¹åOóN)S†÷–x¯ò‚4úÞÞ¬GÃ~„i«Ôäý_TÍÐ/»ËGþ^ü-eßµôÛÏÁ i@î8mh쓬^«†à¿4ÒO³]gÃâmÜ3»1púñš:C#Ý1Ù@Ø¢ßõç4ê-æøÍB%ë”ÔCi%ÙÃ2l$H¥‰Ÿé@¢[)¹A©&Vxþðö'…rÜ£¬Ù‚”OCXmÿ¤ŠðÏåÂâ­KM 8à^ß×q®z|7*UÕ²^âA›Ët5$Õ¼šÕ¶åZ Æ(›|N̨5•™àëÅP8*Äb'¨JŠvÀóÆ•ýF Q™Â¥|) òæ@ù—ƒ³Oå¼3gI|•¤b4‡z÷g¸9ˆLóYËDs% •Ëo]¦ƒ…6óþ R®²–™ñˆý,µ¾˜¾‰ÀFÌK”X²S {NH2'ˆ§dH2jGüÖ MÎéà›é¤5I~1¤ÙÉ–ãü#;ñ ÁPäb,·½±u¸O*æ½×’s†]¯¦ ”Ýñž0ÚèÄVsƒž§«™ªî(‰~$Ò‰}„šÎ55_ÚÞžëÙF²bg¸Á,Ú»ƒVzÌ£ÿÆNx°(ÊÃî{r\)H`”-º®ß[‹JKâ™áXy!ðº”;®ö'G¿{<‰KKj¦Ö`±@.ã“ñ*Qþí*„%¸Êg䤎>š²€ôžþ‡ÉŠ•+ç`öE`õ nÀó³ÿ±ù×¾)E6|éá^r½ hÔ;k—&Úÿ7-İxÎÓ/Qõýjµ`rð£C·“~=«%G26µºƒ²° ° §P¡§²µý¥„•Œ!®8kcaÌ>…8K0æç®Í× B I*âÆ]T°u[gb(#â‘C‹2`ˆÑgÞò˜ËÛo×r/J÷ÝÒ/s½äÑE÷榆Tái_‰X®Miålä07²úÁ·-g®b ó‘*ŽÊ¼žPÖœÌÿ%Ù 0M˜×\ps(†ïôâ*¯YO¯©‰%¦Ú'†"Ý=Ž\ è8½±vÁˆHGï>Õ[· öxŠû¢ž¼Œ©ƒÛJ…7-±Zxø'Ë5SŠVñvþ¹§6±Ûè¢gàI‰R¥Î“[õ͘jtÍ©ÌXZðÛ–‰#5TJh¯dƒ)0V€_]XLB´4êà:¹ØÙ#ZÌëNy¼7£e5ôÃ팄Œ‰·µjQÖ]†J¦K§¶‡‰uù´@8‰8µB‚õeX'ÕõÌÉTym1éÏÃÆy=Ut¯®ZOȘ€Ô¨ÛYÚ=Å+5ÈÕ±Ìý‘^ ›Ã_Êib¼BÌU(û…;.-Z] dk¶{^–<ûÙ!ðʉ«¾å·ˆo ²ssRL6_’_E@Ùý/ÁüŒO±¶‰ÎìÔ,Žz~ÇÛj÷†xÒË'4˪†Ùâ ú ¢¹s4rÏg,fú8ÿ£¼ÁÍôi-`Þ]ƒ>ð¥ÐþûœïC^|\»:OGj l“™I’Å&ÑŠj_iú‚Ò"fS/‡Ì¾÷î½RWfìm82¡XqXØ“øG&}$“#BÉi«Š²<§tRÈ£™¹ù9Éu›®ÀµŒM àNc'ŸV‹žÒ%ÙÖ›e†N5¨ïcXØ]–qnV¡¢ ¸óØ+Ú2:ÁYý£úGˆ.©jKǪ¯ž«Ö»'+MÚ¢jôMm}ÑÈèÚìüìó«:áZ̲¤ÆÔˆT¯®^ÜþŸHÙ,½_ãˆt‘Jê'ÅdQtÌØ,@<Í<.)Ö¹ØÜ'û#Öçc½w*˜Ûô‚"Däna°H/ù;ÿƒ%í¸R+ªÇcäªÖg lyžôÃø:G7ªõ]rá&3(6Ÿ7¿¦¢p†›ÀÂïÅ·Ì6µò ‡dŠD]ÀšŒù%·H{ ; ‡Ö¡4\º «üèlÆÊá„»ÔÒè¿ >’L¿cqèE@H|‰ó˜é¶XWä¸ùÖi^ó2½;ªžåQ¤±B×-?‘%ãþ+æ$7Ù1qœZš÷ôަv×8´ ºçb'à-¨¥Ulñí’Ä~³ªÇ¸žî¹âùÏÆ¼ßÙ¤8Á?19 +¶às²A)WGô²=Ćýi!Ò¤£ ZYO£$¨5–{°5TÊu–¸“ ¬{ð• ywî?‹·M/X«ò–Ç©šŸ`h9Ž ˜Ó2/ßIJ?ÉÕµ®BôO°‚R¢5L€«ž.À[«uŒ~i‰æ1îÚàÕ>Ÿ6— CÐJÅ&yí|;fûåÎÁ(–zœ£&ÑÉÝvoÖ]:œÔP:ôMp-(®ßî*¤Cb¡•àx A*`m3Às’HURï%I=¹_e{Ù|FŒJÚ|¦ìåÕ¾I¸4!Žk%è@¥” ‹ AÌ1;°ó}tòšÍÉL]-M&IAFw*%‚3 ,²ôå¶õRíd)ÛlC9Ò'(ç§/U)ÆWõv0cöæ¾Ô¡e^Üe±×£»!ÊÉešWù-è½É¦\½]„•´’œ@”üHçÿùE?˜ÿ’jÅ ÜÆÚG^$EÔg&¦ÔQ…À^Eüå…%i#ùŠpÞP6½œTÞÚm‚ÛþIÃB¯Þelß~YêÖw›4„Îf²AKVÀ¾ÞÑ_a´9ÆÑ}83RÛƒDò;îËn «(—ÊŸñ糩቎i¶ÁÇr¨QL ˆfõ4,{Öëæ?=ÂåÛ½Ω–/N‹#"Ö_ïò °Å¯• Ï_b&Ò]K„½ÿg¡‚„öêO#l¼ÇŠ“a#ƒ#üåî/)X ‘å½”<³ t}>îzneisB«ìGŠ^‹n™Þœm _´b‚à AKö³8COR=ŸÊ®ýÒ@F?}­ ÈÎýƒÅ‘421æóeçsX ©ëÉ#91âi×QÉÿáÁ|ÈS賟‹ÑÁ]‡ißéJG°†+ãÜRÏÔ_J‡¤ÁãÊ_WD¶ã/µeÈŠjá³ò>X6&×Tw)Tƒ_Oï•ù?í¶-g‘Y×ÿ‰"nûKÏ|}ë\‰8@⸻¸ß ×2…©©MJš­b’…Ù5,Áô<OÅ?ê ¼ãº“hÚÚì•–·GÚç¨À­øË-À9Lã3GÓœ}ÿàírº¯ÝÕß5¯8ê4ªÅO |¯¹âÊhÐØ›§6RLí/V „ž°ò$p#ÿ Ò"̱U ƒrÅüÁ™9½A©°-³JebOO\´VØ!/öëq £[ÏÕzÑvF!Ë®ǰ‹l&7~dÀ Ì ½2C`BpHp5j©ÕšÔZ;¶Œ6•¾iÅxͯË-3ŒÚ¼ü³ÓF|ŽöcˆíB¥Úz/Ÿ•ád.•²ú¶Ôdò[›sÄ8ÄÝW&Û½ ,iÛÕ+“»#ãá ªZ^¥lK7$É:‹fÔæß {⡨%-¨JCZ©ƒÎcxW6có}æ=ƒçö.À€e¿Ôj+Ó—¦þÍ4VlLCh<{¨a»_ø·Nâõ½?yûŒOްÉ!ת·Ûó$ÃrWË~)ƒfÝI¼´€ˆ¦;f‚XξXW·˜r¡Íi9ÅéUá>~ «ÏwÓ¨j†^À?°],jÙãY¶Ž£·];l­™fÛbÙ;gˆ´²96N T½ ¼©UqY}3§žhüÁUÀa AõͪˆÕ¿Çé̲8óŽχ¨y•Ö^D-„ Øb£d[§Œþ3x¨¸Ãëÿi!UeÆof·ïg×ðx€Ü ­ÊfÌ>'×ÀO¬Ñ+¸ ùu=î¬Ôz(nXmÚ›“ª5tÑû±9¡T>J"•NR†„ ¢fù›pG´ÔkEú }] x‚€pÚ·x¶‹¤ò®e1oL¡®àÁ›ø²G˜FÇ“Ÿ û_J½­T ‹!Då‘תyü{|{nªçp&wªKä‹0ÖL¯ºJ³¡ªnÿ‚­´Ðót Þ„ÖÄÜNrŸ–„qBGi­Å;í¤­[^Õ4èòqâÊÌE«‰P¦Tçcõ[k€º6ÊŠG§E*Ȇ ¼-³°4vxœ’ªç±½>!ñôŒjââFÐHÙš/E©*R=0Oéáh‡•L§r9üýÒÐÃÙ(ñúSÜ©ÏÔHlÑÉð¤˜C2÷@¦K[’e¢ AwñãJÊ}3 ;pZ×0ºG¼ÑÅGA„£ fiªÓ ›pU I&ñ‡+3/´—þîû ãsr6,hçVJ#úÂñøPÓ”±§åo'[>ÄC8tœdÑÙme|››Ìø7 Ï æ„åg&õ/æåkIJîc<ý6º»‰ñÉ8<¶i\KáàöT” Ma[ì1'Ðм¢c^É µëb4½¼@φÁǼª#3´s<ëµÆ¬RñvƒU >¬Íkõw+㬕Ý÷ßä¼—ÒV¾ì©ÿÀ9¯èÓ5Zná&5ìëÒ‘…§ßß¿;›£î‚[–ì©ciA'sY)š2ö1¬Ç|i»¯€ãÇEw¢³0 ,k¬²%X]/ â¤s5ï›3¡|㮥Úú–ÏãItc4ëULÉwýÙt¿ú½Ž"ÛÙªÚãûm¬Ä#`ÏÚY ³b2ã ÉÔ ‘sÀëõ.«#K)y8$þå<“u£f¯[êÞ6gì·6âõfV­\P|M“ݘº;Ü?j€¾‹í¾tçu%z­÷ƶ(¸•g–Ü. zŸÎn¯F@ôp~“¤ŸŸ?̽¡Y攞 ;×׌™)È:@Óé\ ý$^¹½w­íâÑY7øzëyÏHÌçŠI#NtðéšÌ§x‡¦Þ0RÖ¨ž.åd¬—(ÀöEI‡ØàGø¢×¦äF 6.CA­ï7Ûl<+èiÉåà•HN ÷c°º$µ*F–¸ce™fïX(·1œåOPRíÛ½ÛIµõ»›oùF¥–¢Þ9šƒ÷J‰‰0µqÑÞXüo™P›øïµÅkî㤴¯Õü»”3`*óúÒ¾8 ¿Ä¾QFYJç–}.ë¬$¡(}ìH8LÏeâi÷éËÌ#V©Ü¤”i0ŠöºÍCããÐD—n´<Ïiõ]VŸéjO¡A›•ô­lébSKhOeÒx[t¤+©Û¹h-,OMg]IË#]ð¨"ŒÏòëVÿÕºØ áÊà@n:†v´:9—ÅÒÄÿÜüE§S(wáÆ°êVP|=^™8—1­+´¨M 2OMµZ¶\Iî/<ÃôNeS5‹D›3ÏÜ¡y^™oÝ»Ž%÷ÏЬì'„Ýoòž›°¨Î\2gFç8Q‰Ñò[ÌAD)$@²°é”9ï÷õÎ4 %”_iäx0{Øßa… 98DÑGš4á·VW´ú¹®\ýÙd¯MY£KØ×ÜnSïfVIÿ¼³BT” OX,yšÏ¼—J]&tŸ×äi;ý)' H°’é¶mô¹õŒç'øÁ3l»q%oìˆÖð%+¶Dç.àÁÈŸ’Æ :µZÄLJw6uJÈé­&ƒÚÛGÆÛ´[@ü‰ø;<­Y–i6W åª-h]LQ®Q±À¼~Hm¾²@…?j àTÿ†–â“D²W1ÏêArŸUßêí°GÄÇ/=‚ÝË]™ëu¥®í×êݦ$êy^\£¤(xÝ*³sô¶´„ JÝnÀ+¿”3õÿkSüãɃôè¸Ë c9[–X'* .šEd¯f0ô´náÜê_—¤Åp¹¹€D‘›XhãªS7‹Á²Í ¨+'Šs¼ÐD ab>Ó,´z­ü¸ Á ®LÝá zµB+4ɶ« ,hrðÝÕÝ#*ß"ÍyaÍLtô‘RÓöæ¬tz21SZ¤{Üod²²«${é)3T4äøeÄE‡[= þÇoŸ7<2Áê¥WšWÞ6┌—»GW(Ü}­UükÏYj\q8ª=úd¿5M–!ßÇøOjº¦4lZzð)£Œ_¼\™L‘*Z¬Y‚.õ¿òŽ(Ÿ“x#[0ûfuøÇëøØÉÖòÆãµOD 1Mú·(éçŠuq¬ãØ—$<Žã²4¯÷»l,ŽÿÝ´ÇGØ&ÿ\¾ÕAP{I=ùÔ0ôf1bÂ1­ò€$+ñÌïE)-°2!›³œó£TÛCóÆ´´º`ùúûXeN‚b’‡õ±vqý#í7[ÅpÂsÅ ä‰îÅ3üó#»½ˆLs>…®Â!Ò 1r_8 â‡0ÏÉaÈùbÔÐüãÞÏìÈ€ß.Å­AoÌË›ØãòI]Ð—à °ãÃxÁŽ%ód7v{¸¬åÚÅ^ ÅèÁÙKPÈþatÿÙž‹Íèý’¥€ÐWÞ¬*F‡xÙÙäb¥¦‹a­ï\ûQìŸs\œŸÏ;ªªy¬khd ˆ^y®Å+µØõ4¯†/}Æèz‰6é»ñVø-»QüÄí›Ê[Ù+JAíI:ÔÛêaqâƒFµžÞ%Tlg79þý÷ˆ|Ó?Èp°gÛ•ð@üÀÿÇ:Tš—°Ð®gIoÇ ²Œ&ñ–U_]zýq>9š™ºÀ;†‡÷PøUùlÔP< ¿Ç)«ÅÖQëñVîJà~:nsgÀA§%â!¸+„m¾ìɤDûéJ% _œ²ŠªÉó¢l]¢eÚ5UR7’GßsG+<9;,ÉØPÕóÈã‡"v‰°J‚㦜fÑD¬Ãôcïl%­\ཨmù¹5‰Ü‹6ÝçXÑF²9$g­à°†àø2÷«U¤ ”m\ï©°Áî±â4âRÉݧ¥ÑZÛÂK4ž›€s8ï-r\*K 8˜C›Uf^s׉ÇMqÀ:Ëò0ú”Us®¸KÊÙ„áO iv«Þ€ðö—-vt?´ÄŒóŒ€âÕ0ÉQUkøÐ|sƒÓ ‚¨™ŒÔùÂúÆÂˆ Œ‹MÁàÀ„ Íò&(@«à÷(Ç|Ô·ÉbĪ ëkÐK¶ZHë¨I–Uí¦ŽqÌM¾óˆDÈ&&‘D‰^‰_rÓí›ÛÛÒpPŽPÌï·:é¿y,a\«݀̃¨ýÑJPzl€rBÿÁÝQ, p<ÒkðM7ZmH/º!é§ŽÒŽGµ@ªÃ.ÚÒ%Î6%w 1¿‰ðp–æ<à:cJE?dmñbNþ6Dì=vzÑ&F й)DïµjcßîË7–ûuJË‚ICôf‘^Z6®0v¯¨|'>0iDîZ[°¤’1Ë'FSôÁUÆé»NNÈTË’ÿú»•g×K)°dlHåøéPg{L#õIzMÞL¼Uf6v?0!²§:ëh|¿¸~Ÿnpò~˜JßÄ ž…”5÷e-`V"À̬éúñ(Œn‚MqÁù?M+¾4“‡MgûVþÒbLAÿ[7e³Ë<¦iÚ’’¿CTŠz<ˆÛ¨ ¹cÉŸñ¥+2ÌÇÔX5~:Âò'/)yoS<P¡”¢´i·>qCé u ÞQ6Ô’FõÔ¸° ƒPßíç5Çt@<]Á_Nd)PöRa/úz{DG†“@f=õÏuµ÷í°Ý¤.ž ©çB£€’nZ@ þ¢Õw¬~—”§á®!'Úåâ endstream endobj 72 0 obj << /Length1 1893 /Length2 20906 /Length3 0 /Length 22072 /Filter /FlateDecode >> stream xÚ´zeXm²6ž@pwwww3¸»»[pwwwÜ!!@ ¸»}äݳçÝݳ¿k®™žò»ë©ªî™~ȉUè…MíŒv gzf&Àg9e;[#3 ½2ÐÜÅÆÈÀÂÀÄÄGN.ê4r¶´‰9yœÎçwÛw &&n8r€$t|šŒ=r@g#U{ 3€Êè/BÑÎÉ™ÞØÈé] ™[‚€Ôï&¢vöŽ–æÎ|°ÒÓÿñôÇZ„ cdbmçædm 0™däòvnïLK•` ´0²1Ø™Tš5qe€¤²‚š¢ 5ûc{{;ÇÿÁ"ª¢ª&I–WÕé’j*ª>U wüætyÕwùŸ8ïŠÌåÄU…UµÅ™ÿœ€à tt²üö?°Q¼#ü íÝÔÌÑÎö¯* gg{FF777s'g;Gs{›¿ð©ZX:Üì­ïGG  ð¯Ä¸€LßÓélü‡ƒ?«øli9ÿIØýChûžÊw£w¾óÿ{O„óŸ6ÿP8ÿÆÂÈé/ÛÏŠŠŸ¶F– g Èdò®èläìâ0ü‹÷þšRþ  êâèø'†Ü?EŽÿæŸÐEìÞÏLׯËÇÈí?WÌäâäù/¹ù÷Ó6±9Y:9;ýÃ#`fiüƒÞéÏšY‚þâÉ ËKKˆ«¨Ò~/<½œÝ{v@ ÎîÎiÿñ',ö™ÀÅÄ`æf0½©8ÈTÔÎÖöµÜŸô‰Y¾çÉÙÎуñÿ¶5ÈÎ äõ_f– S³?¹7u±gTY:¸¥ÅþGý÷7Ïè `@w Æ?ÿª—?læ?ì÷DøxÙÛÙÌŒlœ€>–fÀ÷œ—“‘+àìèôñúWÁ¿SpÌœSKç÷Ro¸¿¼KƒÌìÜÿ`¿#ù§èŠ€ê¯V¥~ïSS;ÀhÇ(oçü^Tÿ:í?bI¸ØØÈÙ©þONÿSÑÈÖÒÆãßUÿCEø-•¼£­‘ÍÈ,$,Ý¦Š–Î&ÿHí?øÒÎFïõ/ 2·¾/Ë_,µ?-eó^»ïóÇòÏøÐ3s²ÿ‡ì½,M¬A@''Û_"à{"þñ{öÿà0ªˆKiʪÓþß²ùKOdbgj 2°°sŒ<à˜Þk…àÅü^ئ@÷¿ŠÀȲs~7Ø»8ûÌìáþ,('€Qæë/Š‹À¨ô¿7€QûoŠÀhô¿;+€ÑÌò½ªþÉ`fz÷dñ¿$û;åaoý‹Æ;Ïò_H.£Íß$ó{´Qf~‡b÷·;îw ôw46£=ÐÑÒÎôoDïñ,Ýÿ¦ßý9»Ùý‹Ç÷pùÛÃ{tO ã?äÿžzÅ?ã篾bú{-þg.ÿE«8;ÚY5,M߯Iÿ¢"gäìhé®ÃôÞÌïü÷×?¿éý[ò¿ûù_¬EDìܽèÙXXô,\ïKÈú>a˜™Y8}þÍÖä#ò¯†|/šÒætšÀ­.Ù™ð[¥µ„–ûŠÎT@“s3Wa hÊ$@­fÌtáa‹åm“‹Úü3)Šì>Kñèù¦€J4Ƀ1l^¿·'WO_›* íùÊùâ!Š Oäª3¨fÊ­øWôPÈäh•²Íev$tÔ&E¹»zbX¾½¡\¦’èVtläC»/0·¢;Ú º¯ ãvã­Ìtƒ;¿= ÇE ¯ÒÌ„bNÈÀØ÷÷¢íWé[  f?Îb ½¢iE Ð ÓšôŒ£­‰©æB£cŽâ@þdátÇÕ[F b½GÈE”æK.ãe„ÊAw%|Õ ¥I`ÁKÉ‘”¯3.E©´7A¸b9oí£É(Œ‡’c&UwÿRè·vÁJ²ÿøH•ψJ§HxJ+¹%Z·H6*ï`œ.¬BùÑ%5¸7q;yìQ•¸*¶&?÷Y‰èÎqîIÓœ)jÄ`˜[¼Š„ÁQ3TÊT_üHÔB1KÔF!rD3€• XŒCˆ(M™–—A'¥µ‘øÁ³ÝŠlTk.Ÿ>ú†Ç|>·Š¾0e9ÙõËôv`w…N´Ù<,¬•5é|¦F&ÄËQÝã³­HîxøO}ÌyÓÚÙW}ýÌ”[é™~%m–eŽzÅâd#{¼ÓÌ%q¹Ø\eA¤œ•*nÍ·ßÌ.]K<î‹ÍžZZAä·g±‹ñ‚Ò.uNS)[©“%¢¸wÎÏél£& ¢KûbŸÖìhD·8ÖlNÛ¿¢iH“Ûà.×pG'‰Âgï¶ŸŽ²Ó)<žÄYJJ˜ºk–³>Š'1/š?Ó˜6m%y“ñ¬ø@NZRf[’sBêiÀ¡Šb<úáñyy=ïÀøÅyà§š‡Y Y‘7—Ó"ÄW`vú5ÔW/>[0\Ãzß¹†j)Å“‰tp¶+⋳Ô[Ù|pHìñ«#:#˰o·}ÊG‚·—OviÒm´f§Bî `LÕÅŠwÂÃÐ`sºRJDé-ÅJ\JÔg)*S¿§ù¡í øÃ- “P¨¬¬Úß¹¢Û æe‰HA(~<;VgO†ã1Œ•ƒ&F†Ä),ÝAø°ô¶¿¼%°Q¬u#¹â¤úo>)¤Ø/)¨‚T«6¸¶WÏ?†å&ö#Êö]¼W*ÅWLÃÌ×=Ÿf›WÚøžùLÕ3–n¥æ¯`‘¬¡G¸GôéþYãGn'j63˜.Å cÝP‡÷ð.&¡ÔèbÓýË´MõL© áÐo@³)™Kð~~:÷ÒŽÐ Ýšéæ~Èg8ýæYÚUE§õúhiÞexŠ£?Ï6ߌÓbNì,€W<Ê¥q»ž‘2ºŽÏôyp/Å(QRXp}ûò¡Q‡Žžå•’¬_«_x3yÆ?VƒŽÕ h9JY‡Ü8á+WnPZZ>{‚QZQŒ8Š”\AREI £þÄø<ãB਌J˜qd„®N²V±×¨ámÙöñCµéÙYºú¹} Ž•@–~n³gЇ`…Ѳ'ÊÞ¦'¨—¡WFŒdŸ}Úï*Ù£9 ^~&þpœ-'Í¿bº ̉ùM»Å.iKêÖÁ®*s IÜù"Þ &Ù6wÓS#úKwÔBßÄ35hX©f$àï©)ijÚ ƒ;ÀŽ]»tMÜFª\ÌèR#ØûëÁÖ6«ü)ÒšhYLx2­…«ÇffK´÷Ìu»ñF)°“ÊžK‡m"R>XMñ>GÿƘŽé›¶ýŒñŒ‡>Rïã?yje§·h6EcL¥á˜þøQå ›Hîî1dµ€?±OT|OdÖ¨{"в†Ll-pO'¼ìÞBˆ„_Ý„ yÂ(ž8?‹\Ÿ4É1õ%e„4:œ-1-Ñúú\õP´ÑKçøÄ"šk±2¾Õ™­{4ƒúÆ[Íš±=â­âÊäi*Y±Zº§¿xr«o©Û]¡«šQ—5¤ë¬¡-÷ñm¸iyTë[ºÌB7p–dWáUùôM%Gà†*ò¤æÅ£ã°NwZ'`5k^z• 3 :œMÎóêó^—©³ûè•„Oµ!ŒüéHŠê‡»t>R·ÎEwL*–UÚ98bÔkIð#S³þï1·«Ô—ßé¾íu¬Á5‡UCy-Õ%×+ôÚR.ßiÄkgò->'w¥æ]eQû”“( æ²W‰âMúqÿÎ]^<8lÙ¦óø=í¬Æ>Hæ¢ÈKcxƒ×Bó¸E}!¨r;939&UVl—LÎIêéæÇ:³¹™ç[Ç…Ø®BÝ|ä²€‘¼·ù^l”Kw08yc…e2yÀqà m³½ •ž§‘?BºÝ ßRÁoǪ”@eBXæz0ÿ Ïz³UÞ[=×| ¸-öDÒž#’î­ ‹H”|•¢6N×Ä>? __ñKt0ŠÔïXß©曉»»;1Lp”hÑR«n §|ͽœ€%E%£•B#‹ñ.0îРeðšc§ŽvõI´20ÂÀË÷àããæFìC'¨Š²ÊS¯’´¬í‡ú¨D¡H½ ë!fyzòÁ©å€*SC”ˆ  ™*r†ÍÃÂ?ž¹8bÆ%‡—#ÃxÍô›\U#õIÚ·¢ÔwõèUj£yú‚«‰ àõ3ÜgÔ`*–8-ìE¦yAPѾlR(ã‡F2*M®G$Jýš86Læ¦Ü¬Goï8l‘©N<ïkÒlÃÁó|¤’f(tÚ~Ó¨G¥oªo½°KÜìÄŒÉÀýVÊÐüRHï”î@ÐMÙáVÍ®,«‹ý¨L=ò5+ªµ.ÐÞ‹ þÀBeäãéàŠx=#·ËðáS¼œ3ëM YS%Xâ±—½Ï+C5Ab/;yø“êɪêýO:ϰm%“ÇëåŸ0:‹¾á:yóñ éA%¡_ÈÙ'YˆPO{+„Ç64oßOÅ7•ì=WªßDW:ôéß—v²ÜÍe6§h¢’ØÖVs¬f¢¯©— Ž×j%ÃWªû€` Ó¶•â/tÜH¸~1zeàIë'Ìíqy™ù¸ýà±SÏ=3Ô|àH.Â9`¶JåttçPVªô]Ÿýù¼Jîáx]êLŒ·­Ð>5 µÐ[õH#Ú0…j,ÑÞÐÜ 'óBwÈ)ZžÆÆ _²'F´Âe^sâ' |Ú÷––J¾í=ù˜WQ7ð…ã>%»¦ñQåk×F‡'¿¾02$"öÝæÛ„ìpÈiÌ ö#HFTäõGÝø|iîbÜ”Kœ´Ïí´ªæ ÂF.y 'ßf“ ¦a}4Œ@Nm6(j AùXðƒŒò¤¡d¸0ôâ -JÇEó÷ƒS…šž+Ó8õC쪗ƒ'¡8Jͪü˜¤¶¹‘çÍ “ÞÓ'áBÑj³ 9Æ‘ÊO¬aäÈÝ3ÆFî` ¡ÈßåË¡ ⹸ϗ±{o­à Í…û óEt3„Hîpç‘f`“qd +ÚXwwƒ!ä`öÈTîå @¦—n®¬S‚æ—õ¿›*ØFýrà`ÚÿF&Çinܯ)WóíŸ -(5Ës–<´&²9°Ë7KiÎ ‘ºÔHx9»MÅZE§|¦ŒÒ;ŠÌþ¹Ž³ÜÜaJ…ç…-?êlÃîQqýtÄØºJÞf\(žØV›{¡Õ–¡KäŽ* >óV·.Þ£æGU…6TTŽÑºRÝøÙÊÿy X,™x€r„¿¡öÜmœ"s÷˜ÅGé©@÷¦ÍíÒάpGiÝìi¸J•Mß›ÆÖn!<*"@Å¢LDÆ*êç0W!ÉGõj== ÏI÷cÂËY¿|áÒqtHFJ:TSéjpÝ*|*«À›ÀÖô0Â,õ‘ëC?î„ Œ5Oê¹È5ܨÄúi|7+&!µ3Ýêˆ{Ø–>ÿ1ELŠ^èqô†Æ‚WºSÀ}=1ÐnáQežøUÄŠuʽL õ“Ž9Š’oÖWK¤2AÏœf¶ºÀ!³:XÊ=;dvÙµãºêÑ ÁÒQÈÆ„ö°¹éGÎ7c?IõÚû¸ 8,:Cfxä×8á5Æ ÿÂå߇ >©-õ}¾²¨¥ž:î>Ú8/’²öµ=šµ ) Ùc¡z•Ù¡ª+ôË}—Ùì$cX׊¦‘š'TÑ¿hä°îMÚw!¦š€*Z\÷)*íh|ÜÊã¹ùŠ'¾¦[oÿÂ6N¬1ä5ÌÓH&ljêãÛ’‰{¬Y›^>ÈÍ¡ç¤.+ÇSvŽh²ðc§ïð÷%òèSó}52E-Låz©Ñ"úU`B`ºGÐÀÄâdM"“ /n –œîÏ!èÜĄ̂œoÃ.Ý>-¹q\vùê®âw>²üÄPKnsx D¶3™õbók3`Ô‰Ž‡1)› sIø¹Qà wÝ•†³rûö¾ݹ)Ô)}X9• ¡ª fðjþEœþ\óŠçEØFT 60©ÊÓGõ–‰`¼N¿IÂéQ¿ç–ï»e\iD\hŸ“/W¢§:yx¡dUí J ¡r÷ 7-í)úµpµ„O‡ùÕ¢¨6uï>É>%<ø”ñöç6Ôô!z$þQrSXV'la¯Í:¬–z+?&x†U5òZíëY±9Åo"ð@–¤z¥ÊM^êÇ+jC²ÓÐ_ÏógEE~ô:¤S›ÖçßÖî«÷’ùñæ<>·IŒ'O±)®-Ç%^,ªü5kß6Ú.;¤dážüÚT” ǬÞûJù;ÕSÜ!Æ$UG{qŠ©QŠ˜‡RMXv§_3#yqñ"½º—‡vØ_¿L!ô\ó×P‡/(û)ßo)õÃúL»ŠIK‡ +¡B—¸ÀVOø¼fÒåtµàY|äÇ+ 8rr@wOéBÄdù¤­äm,òc㼞é`y=XÖ;Ÿ0«RzerñµÆ0?rÎ l´"(ŸG-|ÔŒ 1%®7‚¾¾~“tËP#½…B/èé[”ij™CdÓݸ6ó*¨ËZËtÎw©Õú)Q»ØÌá‚äv…ð•2ÇçSÇÒNÐtN â·Ø!ïö%|-…–ÇãFu,Ù—}––8£ú¬–¾% ‹„Î6˾¨Ä”„ @`€‚J{~ÄÄ'O³%ªîcðË.Sݦ–d­P©y–Kè• p C- GºPo}Dc±ÂÁzMkE‚ñPpj Üo¹š’i:«ša.åß~ ¬\™½@u¢ÉÛg'þvÂéPjÊ*yÌdÐãYé9“ÚØ”²,e­•ËBŸØØˆ«Áª?ç'FÍÔOxXIš FBSŠž uå;7OÆSûb>W+S¹£ÞY…E­äá::ÿœ±€ÑŒ ñ Y’B(Â͆™ßÊr Gs”Ŧf¸Êᘠ¿›O%f+ šÒñšH¿áªµ¯Ú_2†q½*—’Ó‘…_']߀RgMèP M¥«æ)J­Á r7Í>«ˆ*ó CV?; ßúXúKò‹ÅÑ\VÎ ’–%Í׃‘D¢kLÔœó•ZLDÄDtlÃîévCÍköþ—ÚÒa£$N?¨H“—ÞU¬N‡Ø,±{á”IIr«—Zé î 5î%žsÑ~ ]]Ðã[¹Â¯£Ýc   °ÙÄÚÌf]‘WE4<*úÞ¥»òÒ:€î´Ïƒã,”L<jÜW¶UŒÛëcçñÖôÝ¡.öºÝ}ßÂâ|ÕëB³Ä!iíç/‘¯81âƒÏçÜ'€ÐE©Ÿ“ƒ‰ °-‡~&\·\]9§(Û+Õw ù§ŠJ@†(XÁcHÚŒoVO‚­ îOËB6'[²éã¨ûýs€Ý-¯qïžkˆThÂ1•ݬvÒ›”ÅÈŒM_´Ø"5âÞH-}ÔÔ£M4ÕûÞ®à{¢ŒNb/Ç4hd'î ŸÊ•Æ©mˆÁÀ²Uûi]ŽùW½?ÔŽŸ§Ã Ò§M:)KœÍ ‰@u~³É1à!ü8À,¾h·Y.gmNV²#µçù]Ø@L ÕÓ/þ´M(Öcô!-¼¤±+¥ÇÍ ƲFìâºF8á]ÈrUôÛ^äK'Äï r¿!GøÄ}”ÌÊst= ²s¥)“„®$IFw$¸ej”N}£‚Ú˃ƒ&ë ê‚»/b<éÃkò•½GÛ‚ý´%Ñ$Ì=Ìb¿‘ÂÜJêCÇ^¸¸nÚH*ˆ]Ù¤ú|;›AS°!Õ䦘^ô`KÊŽ[ï;êqÊÆ³ê»Ø^VHe†rhWŽhн`w›§…U!£’Þ/郒|ª,Ì×ÏG–²}˜r‚çmC™hôùÙê«9&)ƒ¬ê×¼¡ö:¥¡F¡µÊAh°X&37‡áÄõ9ÆKŠ\ @pç!çì%¨ì<Æ‘WŒÕÉ€x/²/¶t©sA»Pú‹´ÑЦù¯–ÀÜAÃZŽÃ³8¦Á.³t¦º©>#e’æÕ¤¶+IîMôkôÉ\þH…ú3ÇŒeŒSÏOì,§ò‘••­=°ôVþ® èíåÉÏF·ð{o`Ä9 ZÅè7¢hŸÎò55?ÙH‚Sd¦öùë¯ÑôûghzE‘>L´¨w²Lx©2ž3¢ÞZÝn¤³bì2{B ›x¸bå †qC>æœûcÛkÕuBtSZ¢v= VÒ¹)3`ùY®¢Ò0ú¾ÞÏ´2¬^Üt©vú#UÅñÖè "a ¦ÈÏ™µ7í"êLÚes•G;àªô­«ßð—öxà‰‰øTbŸ}ãʰõîDŽ1Â'•ê‹l¹ô½»Ü3ªU¿ cãi)«=5¡Eéu«¨fø?~ŠB¯þPž®H|­ýÆV÷á2ACÆoS¸ªU2´ÞˆÖ™ˆLÉ%ăÓRX.1œÚtêEþ« 2Ä„þåæ3—Ä”hE;÷Á5EhÈzͪ Ö"9ìf뿺Ìðui9Di|cn+!x4 (N¤ûe ï»$*“$i±ÆPß æÅX¥æ.áÍúµ^ivr–͈ä… Çã°®‰ÔÔüYODå /:I>™ áüÉg~FUÚïÓ2=þI.Ö¢ C6HDáãÞ­ìŸBcQKÿ–ÏÙÈœU¼_•ÈÑs8ƒOShÒL²Œ9C‹Ã.Ø¿‰‘FU&C "Vå-ý<–Æ Võ¥ãŠ®e ï«tQyDцcr©›û ˜dƒÎÅŒ×Æ0¯“™Û›ÁÚÆ}¶-ó²sïDljH°àʇ8·Ï°›“ S«,ÕÍ!á°¥â^ÎEè8?>ŒzEVTϺ®f…¯T– ºÜ‡"@ BsÑh‡øP‘ÝøFnßW&]¹·›ßtq¸©˜D¦\Y<š®‹m¦Ný$âL»!ØŸ¨ä}…äög3³cèúÞ_7ñÝÉvN©bœÍdª~+/kLÓÝ€Þ/¯£Í¦ÑS¯*]>¨»,ú.S6fïŽÅ Õ~8¢tú%'ùùqú`†÷‹ÒsÜi/•ƒƒÙ§ÔÄqÏ=:à7VD%GõãŠlé!2’ÅŸÙø®iìO¡š†"ò¥7S´Ž•)e%±"†Øhý¿;a$=F£ÕI ƒïó ñ>Ëš\joá*Dåé¼®~ôubÊ¡ ¥®ü\±R=›í'‚6‰|#ídIËVÁ´Ú×éæMËL6Þe“¢sGCNá“ò꘬Pi¦`«£e±ßU–¥)"ã$Ѩ{² °…>ˆæí€À¡ÛŠÄx8ùb¶UH™`°¢2¬ÄŸÆQG¼b2Ý;úC¿3àßK‰ÌèðzóÕ?dôxÐrz¥mi-Cç­p±‘˜²FºÅ²AÛR‘åÔýÎW²é á¢;Û>;8ª‰ðægíYDkLúÌdçìŽäwÿ¿9Øèy³Éáó㽩tŽð–8CA‚$‘ÕOºLìŒýöVŒ›‰K¤ÞPüQLëÞ„'=•ÅYvÒu·,‹V¦9“ ƒG!.bWõ˜‚8¸aøpöb çõmœ ]›õór‘¯§†™&4?4ä˜E¥6µÞ°µ&6Û5,ùòR5³Æ¥dœù$ñ@ŠH `Ào-è#w;Y›ðEöraa†Sµk¡ü—{ èüOÇGï |º€“@½ýÓ½YùÞF1h–8I0çßnÚ{ÓcßOf¥÷“¬|µêÀÂÑ atz™â óoL'DuYõUk?0Ÿ‚öÆ=Ê‘àûþ…/„$‚1.Šçɨ ie׌[*˜z˜êD{øç¡&ÂÜš¨¢öA޹V+‡Jà˜þ¤«þK³Ê7m_];á t'›+rËfóî…–áËçušÉMû‰Ò¢(êÔ—7™Û|ñÍíŸÌi*}땼«£¤øRN?$t)kxÔb8Ê6Š©\šeèK~>ý)ÌäëÚ/0ïªÒ+­½GW+a|1³Xí¯™îâ™ãbs›Q¯“Q}žŒ¦#ÁÚ©ÕsO-yiÚ÷ÖL s ïú }äÜúˆÐnhßYÐìxäÉb:ä**M®>ö‚Q¼Ë^2†T÷ØvM/*#µsÎÿÃàGÒø6n‹xV;ÒŠvƒTwEI¢)í¼=÷[­#º(Zc?ö@—83-“ª;>t)ži §o¡ÂÊ2—.Š>Iîc¤‡‚9 m4zyA^–KÀ ÜAªµ×ú§zM£,_vd£la”5ý¤äÃØrÉÉŒ~ÊÍaÈ_@ÛÕû_\B#6fÝ[&Ùlå-aæê€Q†È÷±pqö´à¬zõ*ÿ´õBv8í·ó=yJqÀòÁüêlîÅe³¯òriý©¦-ýŸÿc.‹Ê7 øÈú :™ÓÙ1½~ut}ôüí,¯nBt¤sR5o:(¶a^"ãâjè¿á/ »ÆÑ}¬a&‚MxsûQ¼ã7ø:Êrò.AXÔK§ôK\“}9fÚÓïµ FšG4„åI¢*$d0¾DNG¨þŒL-Žoñ ÃHukÏ$[PQ.ì1®»ëozËl6;˧Ù˜*nÉí¤Is»ôävì€Ô~š˜oMŽíHjX‘g§œ]CZ)#^ÖÓ0 ÇB»&ª5˜D¤›ïžk'úk lt‹>¬§â—d++ƒê$Üꢢ‰[Kšú‚×é•:ò)á”\ì¶¶-ÖdJ%1•Š ÂOâéÛû ¼á匳c”F˜ÚXåºD¿?Ž<…ûz˜ˆ0M%ÍíU@\y1šEÚÒÃÀÒVÔÉh©çŸ·½Šè'ðu0oQxÓ.˜€„šæÆÂ ‡,6hRëõX_½ÕµŒJŸøÚŸ®?òºôÛ½BuœkឺÈv˜úÃæºbñ‹qWÁ€±dz¹ŽIZðÚ«Ÿ"Ç)§¾YlÌÿJ‚¨CÁÇ©é´ÒĪH§”{Ð †B¯~V t´KÉ‚š‘™YRR´ß=²š¥,ݲΫ±¸Z½× (Ì7äÈ´K>—>iÆèŒÒIÄè©u<¾ðQkÊ ¸š¥Ì}.œª×ýüÕY®ÿº”Åœµ;ýȉ_+&XÓuý^¨ãÙ¹3XŠ#¥i}ô6ôÐ1PzÊÒ#:búÔëS7À¥t48v_¿‚Ýq—#á ©š,åe ­úÿ—_íe7Díõi<>«*ʽ,GaN/äkêõòaᥔó_zr«‘é-QÇ]¾€ Måû–ð–o`I¥-t­r+ùI0 ÍNì3àÉ=ŽŸ¦[÷ ?Œ+òÊýƒÌB|`‡¢g’u#­HQz[Œ•fÓk$ê .1YßÝy·´6ÍzC¦À„CÁ;ŸŒ"¹òMð£j„Wc|ð§|™p)æTœ5•xÚç奺A"ëÖ¡¯™0Qh\µý\%%¬?k¢£ùd¥”b «qp¾ýìèÄL¤!ÔpÙ!óÀ+§%vú8ÿ†µÆ/ký5 uk®(á"FÔ’©4§<ÀBI©øºø›ÑðÌynòÔå‡îãºÈR0¹±&íu¾oâze$]g“Â] ¶©Њ™ª–w˜žö[H½w¼ýpΛzÛŽ>ïÜÐër^Sýþ”iBóP‰ŒrBOª²ù*õ·¨}”)øÎ¨­Ÿ½㙕ø¿ÜNÓàhõÁH'`TUìºót†XÚ=ÁÒTy_ºBÌŸv bkË=µ—'É!Ü †¥ 4Èî©ç5«“ÞÆ·ªW…ZˆÍž¼?Ô‰ABþ±§è&øy F}XIÂT¦é#Ár¼YXë6-*ŒÝûÕ\óŒ}”ä{Ñy#,¸Š¾+&óŠ{©¯u¹*ÛYá)^x~¼YìNz-óÓþâTáîÀIŒ?²Ô±k§ÌÒªU¤dcÃø©3F¹Ã`B„Ïo=R0²ö  Ž:1›~¼Ó‰ŠαµÎ|; ÔèÕ=íß‚AèÇe«3…9M±¿Ä š&qê®(es¤(däÜÇéK"js,tT¸ämºfÄÐ ˜‚³ÔŒ•™ï'@H\ÎM7P™’5•®óÑyJ>ÒQ­ %7/´Ì'œÇœÆ –aceƒU½LÉ“z4¾ÀLÆÐìFªþT>›³ØFq-ëH)»³Ùü¶xÑÚOŠäè+僢YOMf¾íøðx ýöƒâ¨Ì9$Ü­låèêÛW™ê_‚ð¯E'yKWga¡Iî!Q¥{Ø‹»¦ÒÊÚŸ¹cÌl¯RGä"Tš®ê#çù ¿Œâ"žJsiA¡`¬ûŸáîFïÝØK3+w}(lÁþ5cH þ.)åáù®ÃäÒíF9ºÑ„u\â˧ˆ`Åà =ÁBH‡ºt‡é(@Eª¡þ+j^ñ4ª{Ç©¡E‡Ú(v¥Ò÷2œeøîÒuî™1;‡hm¨˜#«À_,èK ›N¼ö±+ikK>1+¤°–Gb d¥ä \@ga\ÎráWF^¦{Ñ37Ñ?—5*uÊyñQ|üÛùnŒbÐR¡g¬cÏÍÚ^ÞàäÎõ!ˆˆá*~×$߉õÑ^uÖgãÊÏŠFâA‚Ë…äøÖÎí±jr'¥}&'?õwL34&£Òõ2 ü…I¦Ý¥R;Ì×›”–Ø2Åö)„z¼‰G¬ooùûÞÑáhñã ýù‚ƒx¯¦¥{…ï3îì2úVÇ*9בjtU¯>-u€¸Íj|‡VOr=öí³SK_ƒÇ v’ùžíjå£<›lûÄ–²É—Õüçj½u·èw¤ƒ·ŠÓ L1["«Gf¦=ZÙÉ-Hk 6kåߨ¬KÜý¤µÑ«j8…áb ¶œöò¬Âýí$ŒêjÉy1ãä1`R7a%-dq ,z[{#›Á,ƒxÄÙha¯¢pÚÝ_ðÔñ;ο¢F<5éýp¼¹­#djX}¹m*•%Ö¨þ.B` ´‚ÖìÖæŒgw9^ïþj,‹{¢]¾`>»Öw ’ ÂX_¾ëbm”½:2]i"4)ˆM‹9…”Á$op4ßlÅÁ£ôOz ÈŽˆ¦ÿ…e;ë`¹’„q%Aaѵ8$áâà¯5†ÅL±ó2íã@PÅ…¨å¯¸óÄëNè×®´—k@6Ã}ÂÆw°ùÊ.°áÈÖ0Ôo®%‹Š9°:ª­ð¬ø&£­Â*^ê;Icê­lcôYs©ÚÕò¼ª€£’}d£7Ó@òþ†öCØ‘¬}Ç›H#mÒ¼éÉÆÞHÉõ7¦Ðta.Ó §ð|7ß͈ÓL¦Þo¦3lIZguì+ù^røSBžžˆ]©ÊÓº ôkþ1Úνӽ¾P÷áŽfI²4LèºÀsH¹¢Â¢l“ (ŸLi¼Ä|qH±nºx»È[֫瘀_Ž®c-Œw„ÛZ˜!7W&ÅIµšÝu°4+Žõšçºy9}7p¥]°W0žÞ°ipnéóM~³ÓªÈ&'¶ß³F™{‘bÃùhÂ)š JE`ú ^H½×”bæA-­ª½Ps58O­–iÐRJ‚ÌñëšÞB‹Ux¤ƒ× ·ƒÊ˜ˆˆ‹#U0ýoØ’3wJJÜQè%Êèî–gMObý®A£XzÉêßÔL6L©˜Î"ˆÌIJhÖXK幆À`)’@çñ‘ð’ýDà)Ñf(‹æ§ßE^_7ó>ĺE° 4ô¹I} 'Y•@–Ôœ‹Ž\ Ù®ª ù6G£r|,z{MÍ@ñ}Iy•¾fMýût•Ü™>m‰ôi,.za·Š“éz— uÑ,Ѻ’¬/lë>§ À8VÑ Ò˜“®íºUê!œµð§Œ ¨YùPÆúÄïæ6’ŽÍfb «{]µ14huúÝ+z7?Ì/ºE铈 üää[Ob4Ø–YF@Ï8R–5ôÏžžgö˜A<䦜i逄Ì·ª%¨CÚ§Bü§z›*ªF¡Ä•h' ·9ƶ[’½à²=µ“nŽw·ü”§*03™ÆÇ¹A`Æ€Œd†5Fvy}Äûââìsk¢|ðlEO¾È‰åWîË@.çPÔÄôBB@Ðîwmapæ6³fíhn^… ÌÞ†e¸V}Ai⃼̭±Œ”lŠŽD•çyrþÃd_ 8¹µ÷ áÚ »Ì¯I‡ŽÌèC¢£=úðXeÍp5?6)VÜv‹’§j¾ß/ÒòwÑž~ò7ûà$@ÇÎD°þ¦9‡jS>uæòóð-í#ø¨ÙT‘‘,2]¦²ƒßJTk«ì«T ·¯Ÿìw¾0—\s/Ž —2ùæéÏjÊ-ÄNÆåû_)ŸcwDÑ5Õ®¥XëéUE•ÐÆCì2;Š\Ž!}½]FÂÑF·&Û®©³Wz»þ" ©mosó²™…¶æ«±S>GHÆñµ±Qäºà!€”Q9ŒAÞªzY6;Ó^N„´6ûã$6V=›Ÿh묬è•Øþ:ÃIsËQqäAQÞn'ô‚t° #Ÿê0®à7‡+Ð¥ƒÛݵ×=·¡µ¢Õé F‰QüLSÚ¦jÖ8âÈ}+²/iZ*o䙸QÑé‚“þµVÄœxèyM°|tK¤Rü£ì¥ä&…ö‡1‹FúŽYÝÂóqI±TÙf'ó°ÀÕ´¥·ë-ú@iPÇdNGëç™&«´áð/tN…_C— ÕNˆêõùs\è“—sÙ…œ{æÇ9ëð§?2ÌðIš6qõˆó…ëô ý6­yúÈ­%â(ئ¢ÁµÑÎØ –߸ žiÁ^Fp==¯ 6*~;ž–EêÊë Ç–Cb7¬)›Û€ "÷ó‘ǹÿ'úŽz¸/9Ct‘ TüW3¶Þ’›VÉšþ©¤%tùfðËx"‘oÞìÏ[EÂÊ ÷µLü›œe’°ýù÷T $½°á¸`í-ÄéùEQìUŒJ¹¥—ù鼊€{Ï[c-Ï»\4…[5òô½í×tMp&ǪÇ&“õ±I]X£¦ò^d»ÁüîëÚdo€lIê®Äœ²Ã«Ì ¡ÆoTå½wˆ!OûûÓÍûÖ²©m8Ó&`­6Ü 5qþekØ §>ìwd€‘´{ÉÉX!Ø:–ÑcI$ž§Õ‡Ú<å¨è’yxZ,qÜ;¹>6˜ñþòk…“_fVç¯åžï«*n£%+:b[Ð4ÆÓ±‰Ù3æ«d×®BTßô»,\d ݤ$;PØù ¦êÖûÔœïÌÁBj>övC‘ÿì/V[EìvÙ>@~Iä2ô!Í’ Ù…~ÅhÈÔí¥C€»§6žVûì_q¯²Ž _ûlAQ§]àë¡ÐÅÀ'L­¡*d'd}0„ŠHåÜ.ì¡aj~49Þâ‡iÄÍ»¢w¤Øøº×">hU˜­Ëœí»ÏoÞ0Žºð±ÕXsêcqÎ]ŽžgÆÅæXnåkl­l>>õ¬ùºã€â­ð|ðø4q—Íoâ”8ÜSû~ã»÷ \);w­¹`.w«¼U¬Zi¤îÓ´Z¸|p­ôRÖŒ-LžOþ9bùWkÇ_ƒ˜t¨ž?óiÁ#)Œx„•¼2CÖ"”±Hg‡P!oÒ q¬DZGÌÛ"|=“\ŠxXù„‘çú¹]iHÖB¼Uô˜m¼¯vjù1ŸðU“7ƒü.näIvaa[O˾÷™dG˜°†,”fí°ÿ³&e7Š4A¦ß2,Ð/it+ ´èÛÛÇøÜ)·‰UÇâŸ4¢»6!FÇ×ËÕíÃMO§¾Ú¡,µÃ8 ƒþ<Õ£C¹G¸MߤD­ìÐOå±ìä°œŠ(n¬1²«ðZq l9~ÃÚáèÅuÄ—_CWµ9n’½C…Ž¢öϪN»˜âñ8îQ@ÿm&’ò¼x´§1›H¾—A^^یВÖ_Ó†ÅlTû©ž7ðQü!À_9†ÜÆ‹cñ̑ډnwr§ójv,–ô³w]íÐ¥q?æ ®9?¯ö["6”œMÀaV[K|¾„„@Þ5 3k£>~J<=¦ÛnÇ.ß•rÛúä-ü¨?sàƒ.å ý¦j|Ãe5:2‡O[#Ýc7GÇÚ+U…1¹]Çê¯a÷Q[xcÐÍ9Tgß(÷f×”-/d• £ìþ»!‚'4Lóå^„wÑWÊï»Ø–Z °ó³Ä‹…ñ†97%¯¹±fpîŸJzïtÆ¿gÂɯå»NÞØôͲþ((‰ŒaR/ôçrc=Qضrž8¡¡|¬äj&žnå IQS47{™À~jù:HŠé“º¾]©JÍ«áeÑ9¹7$U¥k4ëò°½Cwy<]ã >¡ÜÜÔþ¡£fQU¦ZjmqÇmàÊåë,O¼ÑÍø@i›¦¤œbòóÏÀaf °!jøÞÌÚÄqmïY,vÈGÑR âÌMB]qߤDÚð$דÈ//Æå$ o¯b=‚q40ñÕY9ð! ž¤PN½–_£K——³{†¥æ†hrI”‚+~ŠÁâv«%¢Œ—»§Œðz%í¡Ï}!µ™!]'æuìô3ÅX=Ó¹ÒZÊ®=SÙ8=“ŸŒÞ=ÄS‚¡¬Ž¦ø»^ð“¹äÌcŽb}r¨ÒÔ[ \áwiHá­ÝcÛÊøþ6HºÇ`{jä ² ¾ ²»bö76w m†Ô5ôgkˆøø÷ ¿üãѰºîŒ© ø¿ÒP&±ÀÖØƒæVâ"q2° íû·os(ùf‹®­¡Í|ñŸ™Ž·Ê\ëëϘëkóÌ]Ä]@î4¿¤˜î?ºHc2}º6’ü¹¡Ù‰Áùå1}˜ãä¤üy“>õ³¹i××]tK8y¯ÒÁRÚob0€…•PFÇ]?¤âÊ{‚oÈêâ{úÂ?s1_ˆ¯ö,©ùW ̽Ñ÷¥Rf›0˜u'o§0¦øàùxêï p¾Sº-N³j»úyÈÏÛ  žT°ø·¯ÕÒNa’kƒÅ‡pQó6U=ø‹ÈQ[œ†4gN(lÅöÖñ UkTDâ=z»t@L‹¡›Tf1¥%ðb¶F0QÄ€žòDŸ ÷Žàkðð¯A‰¥Á¢/m…F»°ªÜËÉ‹A%+òÑn•?»©©t‘Þ0¾%r’}NðD“Ëóì(ÈwU³Wy`—\91Ën¨“^‰Êχcoý~«Ò(rd&¢°}Ú«Ž‘Ÿ'3H‰”“ p=þ@Ö@õyÊšM§¬¨ÓK`$*‰î$ >©E1ú¡¶°'cªY…E•óŒˆ4:MÉ‚fâRyjBõ—à±ç•xý¯o˜ÿ¹bÜ .áØ*a•âG#>!–3„ûW;zy*ÿ#tê¶0«KÖÁÖ˜ºX|úJuÑ8¢nH±uê²6pË)hÆ%ô¤—uáÒN ­ÌD·;²,A ûO’ú` C'ÿe‡ò¶x²XÖpkŸ”‘£h-ËoêYÄrîa  ¬z;¿úKS°ªI`—§v–øWmVŽlFdú…@,".¾«Y«‹’‹ïhf´4¢Ð@WYöŠ”œ,ŠJRÄû£¶½¬ÿÇ8ëgÝÑè¦Rû¢OÃD¸wruz^$.œþkÁš(š‘¦AæH–Ìmê~:ôÃžäæŠ£‰£ueϨe´Ÿ¯®éPm/ÞæsáwÖ'Ÿ£æ8IÌ 3~!ï\ƃ®£.9EŠþ—Ž+5%í"|J€í>¿tó¯„}Êý<êU¥cߢ6<‹3À(á`]s]ìÞׯ7øU]ÁÀ×_ÇFÊäÌà«q¡óGvHP8ÄÚÀOPûkñiÔ$ï±*Öí#ƒÆ_öìßaA‡ZbI.DÒ9½f%®í²$BÌë„iÁ3Aã Ià¯r_3ÁR%"صI~OâY8¤Ø{Ø®æß|¾€œ*ƒ°ŒlŒïµšW 2áEk‡9 ï©LÈbÝ4á¤?ôÔÛª¡<»“‡D3°N¸Ð¬5¦`û ’žü¦ƒ¨<šÓ7ôrië=X“ÒL›$-9RsÙzS•Ø‚*k eIt¡2SݾaŒÇÝfµj¸œ(•<êVËýÊô9‡vçÛ«ÃQ™ßm²|˜n,m)#Þ4§ÀZþ̇†G\_€°\»SpiN¯nŸë5‡‚Ñxßìàºj¿Ú‘ÐÞÇä M£R“ Ë2“EÐï#¤Ç†~ÜÅT/¿¶ç“9<„ð”KÔ´'‡ƒìk({¯Ò%¤NS¹W.(¨ÙåexrEÜñ­¯ ÷ÌÔÙ«P nî7ýûÊݶ™¨¥¹ÞMO;”:b´ NPc°?.×3ðí/¢ÝnÙ)ò3o”ø#ØÑ°'î,_»º¯˜ôi‹–ðÄÛös©dQöÊ óÉ×_fÈ>ˆZr/iQñ ”Ogš/Røá„Y#4Ž_œ…ä‡>e©÷&s;6¼%Ð,æj³Ñ’k h³óô@·¬÷÷4†ÚH&ËÒÁÌbK(€9yÍ»ÍÉk_yy%NÍòW~¢’¤ lÆÓBœ²â†·8¾'â9hÔ^ÈäóØïhlüUÇÁ_k^Æœ„~Bê°gGb^!oŠöá2þÏv9í{þ\̉E–¢„¢xÉÑ”%˜1ËD·PFM[÷÷†ó9WÕYÛ6"?CN«ü“¶ mdŠÊµ%=§b¥²A;ú#V»uâ‹Cp3TA°-3m﯅`Ó8Ø)VIª†ÅÁècOeýý”‡„äCâÉ®Æî´E›v_¬ÛÍäd9®I°Ë{„Ú´j»X¨ dÅš´Ž‘7ñù-¦¯ÅZdž»TQ¿¶ÅìÚ׺¨ÎÍИX­st4ŵÚÊVu)ùÒxŒêCëÜO°„8Ø(ŽûÍí©sBjµ8p+4äÛTaüv«@Mà¿ïîÇØ=‹säܤ˜Ý s²l†«º¿û$e…Ò89}Žk¶9xdêôÊ”ã 5°ßG…$ _¹& $âˆ"ç4x7¡ ¡z­ÞdÜÉ1€–ý‡µ9‡væl¡.F(ÝßÁîŽ&º¿:ãŠô6t=]±+UÞ¦a213 ãÈRùÙ ¹£Q`d ±w¥ìÚÛ,Û¬ïÞŠ¡¶Ç3—¤4Íò¢¬Êèwõlµ¢Ÿ‘žß+Išõ‹â £3×1N ‡õ ›Vå~¿nžLb†uÇмŔooj€Ò ¥`Fv2}Á>((Ê'm1»ÿåJ…àÉ Ë+G`ƒ×åY~.›ù)lh³Mü„y”°c†›C˲Ò˱]È%ƒ¿ì&B1/àYjt1\lÕoñØrïN¥ïH]ˬA´;¹“vxdÅ¡ð07œÉçcÏQŒùâÝEZ/>ç,³;ûþÒ—y›:€. *ÄOÖº&ûú+•ìÏšk¥Ó ë j߀ú,7QU\svBºÀ=¤r­ È7ÛëûÄÿRP|4sŸÆç˜F·¬^üQä!;ÿ-¶Y­Ñé™>%­H*„`ѱZË‹ñiÚ¿* 0X«ñg™¤…,èš/§Ê鬙‚óèÏ#ÃÀLGžïœøžicƒ é¾Ðýø>Ø´ÇÕüf0Ëú𻸊]µ(МßZ”SÑéÿšÝ›<‡Eá\)ijýLË1&ãýÏ}q¬8O€Pãû;zƒbÒÛ«’àM@…W„„j¿¯ÒE÷'ð3K¹!ÊÁ´RÒÚLwk´Èo `÷„£z{,rHø:Îÿ§‰)ôϵÏomZ±øoë%Á¬³”œ¹€ssýX°%(\x®ë˜|S5x R¢ Âfí_í§ÙLº•cð+¤Áø³°m$ƒÖü²ƒâ•Ÿ>”ö!.œÕÑ L†öï ëbF„&GÄ,0Ð}rŸÔòüæ¹~_üÂM+áy‘GŒÕ‡Ð…vï[J”°ñ˜ä÷”ày…–sO ßR€S“ðù½þa‚¨¼”ÀÕÛÿ2UjͶ omöÍ™æÀP…â\Nõò‡Ì©¼o[ŽÇFzGm²ÖðZªÖYRwE1 ¯bƒzŸpn£6ø˜€ÎL[€\!40IfÎëš.ƒ‚JÒ‰j`ö¦6J©÷¸Ž­Å‘ö§hn¿GÕ¿Çb0C}º_f¨ãaÕúÁÕ˜±d'o8$u‡µ¹³kb¤ˆ¢¼ÙoÀTP°2ÎÏÌ¡ÓÁÐþŠO€'S¿ÿ‘ºã.nÕPU"3Œ¬äüO0ÄÛ=JûâaøÔR“òʼõTS¡úMp|Ê¿&’AÀÚgå¾À@©X±K³×‚áz»Z—åäG¶øq¯·ª qøÃô˜ ƒ½›¤´e#€bék…£Q+ ²´7°»‰BŠ«æ1ýAN5´ÒTfÖqK‹N¦98e*ªr‘ÑõÓƒªhȯæ~y˜U3M¬7`êX›UbóÔ†V‰ ¼dí¶ÊþVžz¥¹©ªE"Æ‹ËáÈ.Ö¹­ÖÊö>¶^ˆ¹ûðt9-@s{’{Í•Xi¸‡tj,U¶8fåRþ9QMÖTE•Ñê•)ýÕ7Á±ïTá3³MÙ¨svµ8«ôxÓÝ0´©n§¯ö~Lc΋ü~sfës †Ä˜TÈ÷MÜ»ñ.[þÕ%1Vã§kEΓ€  MÈ«*²=$OÛíà˜a5êzætpØ>”yF9qö8#p.ÒóÞñù°Œ,ŠZjóÏGÊe)qEŽÒŒ£ý‡û¦QüÈ‹3ŽÆcEŒ”¼§Üea7æüœàNzê,~J‚O€Tþ@'™î{vž`»N‚#·¦ä«üU‰“wS÷ˆ*­´¯q¶ïô´®ê|ÅVõ„YóÉy¨²É]÷Q¨aV^öñï"áÞ’ÄQPÝ&÷Eáщ}3OÕ˜@Å¢WЄ— ; ^¯¡1§8Å^¼®ÑU t•Ž­ãݸíÁts€à¿5r Ö¤ôîˆæe(¹>Û€hS1ÅÅ™›Zì€åÆRM—I‡%fóðB¾I¸rÿ¶ßQê²ìö³þöezqw‚÷¹¶à{]ü%ö (:î¯Zz¶Œz¯Ö¡t·nÉ´èj«GcìAO&~ÿôŠrÄ+¥;Mcö›DHXÛÖ˜ªTÛÔ5heg;æÆ_9&ýÈüvÙñäº ú²1…Õ²f»®WdR•Èw“Õ÷ò.Þ$5ÖãÜ'sçp|­4rU øÏY$¼PÓI¤¬ÛMýAEé4ôòcÍ|gàü…죱7úl£á›è‘«¬çÚâõ®¶ŸòµpÀRl}ÿxõ7:ÆŠ ŠÇÓee|H_÷ÔŽ,*¨(N×h±U\ªÇ‚I£:nJÁ% L‡™™°K÷ÏÂúçp¥êIPi¡ÝñʼnÒéÂyœT%Æ mÛÞéHæØÓ#Š·±fÄÍPžÔÌq¾ïENé‡ÞÝðrLºÃÀ„ó7ÔTíqà~usµ4æ’Øå×Ãÿ½A6]û8 ûu·—h¡aøÂvaERe]1ÇÀ’9yk =ÖúÏ-.³Frª{7‚ó ßåõrC«V^eÜ\Öÿ³°m%µþ£ÕéÎs0`é©Ýü¾«W‚õk糜>f~ ŸÈv†ü"È\"ÆGV$+DQHǬýúIT ä#Ï€=ðÖPS/Ý©(‚‰Dêepf¸L0Uoæ'±0õ˜¡äÒßÀì·u;ù¬IäÂŽ5]¡ÁC]>åjõð äJ?C¼´°L!`'Æ?éÚxëöWZ²!Áøä¤áIæø=ÿH/·ÉômâÓ@ ³­Ê²êV?Ûýî?Â/±ÜIw½ž“Té!§ÝC„„ë–—‚× ·¯QOiœÀlÈóÆ8OO}¨´®îÙ"°wÚŽMq`±î|d$j¨û`ÇŽ天Mð;ÉWÞ @¥˜“-û!•îøZµ(èÍ-©ž3Çïéßob*ЙÇË cÑt±¢¡Æå˜”ˆRmã=ýö ©³»TÒØ3uVÃ/wxS´}ÕœÈFFC½Í|H†>YD_Ò̤@DÏ &VÆ$8åæHg3Šu{Ý¿åÿ‹õ%zTšK©†mv ÀFW­r×Éw¡D,k À˜f; 3eáAè¶)è`έóþéW`4b朧b¢8Ó†§»,ÌíRÁC6)®*?I[t™Ý¥ôXÓM­žw@±-  'ÞSfpàØ¶=ÿ Õ(Ätå/û0¹žîW"Ú"t_U&uǯò蜡ç¯Ë¡ª80ÂÅò‡ÒÙàCä:°<ÑG“z‹d¼Áëlˆ ÛÝ©n†ùi×8’ù陾1ê^y#~ÆíGMÛ~v4¢À5Ûj¯gLÁεþþzù×àª%øY° 6ˆé‚”ïI+OØ3¶¤ƒý¢ÈQFX¹¸­z‰=ÿýdÛ¼Ýðzó­_•3 Q^ÏæÄU ‡qÀi˜–Ï^ܺÁ—sAa"À! ·)A¡³—Œ^Ò©gh·¿ñ|%ñ–sÔÙ$$KYäFEum~òwtc”Àc¾ß:¯\AëãvPVÖN½™ßÃî èÆM˜´ð-@, ÎÛÇ™®{šÎŸV±amô+ ËkÌ}ž¿œ:Cžzq±6$'Û&8ap€³Çª¾ï&9ü| ¾Ï!ÂûïeL(áò­Ä†8[£@ðž?±qÄ8XÉÚ%7³8ãC…ý «Å39èÍñÒ›74‹Ð@Ýrx‹ò±½×»`I¤rvSëô<£z²áoCŽœÞ{5ò/åƒæA`…@Z>3¡E¶Æâðª%ˆÐ†¿­­WGˆ\ª\ºðN*ÞÒušÏì­ˆ¼b1&(,O$7çïü³zU€)|uïUŒ“žÁ¸ÈoL¡ø jQÒ´£cÆJ­»,fÚöáN¹ÌÔ†ú B"iŸ'#×}!#/þs~öÁZ Cv5"N¯SAáîã# 0eC›_ÀKZmql¥ØÙ~0FÐ"Ç6íJ–ÈœJ|,uxŽû°¥.ï—&ÆÁ̸ÿÌïMd*ä¼ë4нÍTM¥¤ë<´ƒÜ/@ÿšÑ Èn-!dÛÜb2kÂ蓟õU–Äm~(©ñß=¥_AÀÔ#¯ïx|ÉkQRœo\ù"FšY3–êS”¶JS endstream endobj 74 0 obj << /Length1 1882 /Length2 22538 /Length3 0 /Length 23755 /Filter /FlateDecode >> stream xÚ´ºst¤Û¶>vl»ÂŽmuر͎*èØ¶m§cÛN:¶mÛê¤ã/½÷=÷ìsîïßoÔ¨zë™|Ö\s®Âxɉå•è¬ €_­­è˜è¹Ò2ŠÖ–úVLtŠ@G };3=##+,9¹°PßÁÌÚJDßÈ àp0È:|ø~X02rÁ’Ä€V@»¥ÀÀ tÐWvµ2(õÿòÖötúöj •‰™êÃEØÚÆÕÎÌÄÔáO :º?‘þx Ñ$õ Í­íÍÍúVFIzz€¬µó‡Ð @im0šê[¬Ê@u€Š’¨¢@LQNE^‰Šþ#°’£µÝÿpVRV£ˆÊ*‹€ª´1%å?¯Ê@«þ&´YåýŸ<†ÜeD••5äE™þ¬ÀpÚÙ›ýIû_Ü(>˜þMíÃÕØÎÚò¯JSngggzG{zk;z‹¿ø)›šÙœ­íÌW; ð¯Â8Z}”ÓÁøw€?»63ZÙÿ8}µþ[iùQʧ¹Ãÿû(„ߘ›ìÀÿHcªoÿ—¯´¼¼4ÀRßÌÊh¥oeøaè ïàhÐûKöñ}þ›  ìhg÷'‡Ì¿Tvÿ›æ_Ô…¬?V¦máî©ïüß;¦oåhïöÚüç² ­­ìÍììÿŽ›Yÿ°·ÿ³gfVÉde%¾Š*)ÓI4žŒõGu¬è\þ²þOPDšÀÉÈ`âb0~4©¨•‘°µ¥åk{Ø?å1û¨“ƒµ+Ãÿmls+kg+÷ÿ‡ÂØÌÊÈøOímT¬Ìl"ÿcþ!‚ý·Ìè`m@CS†? ÿê—?b¦?âBxºÛXÛŒõ-ìžfÆÀ ¬»½¾à`çôtÿ§â?,ÀÈÌÐá£Õ?Æö¯èVÆÖ®¿ÅLþ¥úŸ& ükT©>æÔÈÚÊÂ`4†eµvøh Êÿ&í¿r}u´°Õ·RþŸšþ·¡¾¥™…ëšþ—‰ð[JYk;K}‹ÿÒ™Ù5sÉ›9šþ]Ú¿åúý/hebüØ–¿D*FÊâ£w?γ?Ç€Ž™ù¿tmihn´·°ÿíü(Ä1þ¨þ¾)Õ¯Bê4ÿ·mþ²µ2´62³20³±ôíìô]a?z™ àÎôÑØF@—¿šÀ@oeíðá°qtð[ÛÁþÙPNƒÒÑ_ˆ‹À ÿoÄ`0ü_ÄÆù¬->ô/ #€øøËäÀ`úÈ`0ûügñø‘Ëò߉ÀðDL‰¬ÿ?Ùþ~D¶ÿd08ü~¬Éñß™ÀàöüÏzËÿ9sþ&ÆoÀÿÆa%;ks š™ÑÇÑ?LdôìÌ\´?&éCþñø×;ÿH@þï!þ‡·µ‹;+#ãG—p²˜XX8?3³yþ‡¯áßçâ_SøÑ)ÿÂ%è4„]^°6ä øžÜTâ%š7U IÎEVŽÉ¯. ±œ6ÕŽ‡-’½Cü’ïÛì“N‘o--έã•èkU¨N€añ¶Ñ’P1yg¤ °«ï%ã…‡(*8š¥J¯â—.³äSÚIBu,™•«QÄ:“ÞÛJP=æjÿùÉ<ñŽr“D¢]Úº–é\0ÇÔ„ng겄ŒÛ·4Õêðþˆ¡ß#¸L=«—„9*ùɦû'²Ž*ZŠJÑæÅœœÐ߸L{mWÍ—±;c;¹ôéJ^ò<’ùëO2Ø5²‰¬_&o¶QY˜ïçâ1ðÛ7§TvÆ%,IèïðD™ 'ÚLÉ{ˆÊ$¬I^yÄjŽ)Zªµ[„èÛ&º%^àmîGò…_}•P2-W¯$&?µÈ³Úiõ_‚9GÕåÁTÍôÄÍ bµ–3Xúé¢L´¼a„k¢ä¢AzwC ´ÞQVŸ‡MÖç&H OO®‰F$U q°Ü¬–Td­(Í¢ÑÈ­€‡‘+VÞ]`­ºÅ·i3¨ ÚSäQÕ3¶qï$,SxÞ¯C¼w#mˆèôU¼a̴ý²ÆXŠqkè}©G÷™U7›Y$¬yt×Âï)«Wæh¯áÓ #øIþ¼‘÷ó¤I8÷Om¥Õgo~ÉÈ[…hwv¿ì~890Kî%ì³S䳓˜oÓ’:0MuaÌœ©ðËá`ªÓ1.j Þ\Õá™ÊšP û¹Àá󇉹T#€b ì»_æ?0$™€&id\ÑPÝãŠDY|Cv¸&¿,ÍÄf2h­V€Ux~›3Í"¥Pûê^ðîí‰Wy!ËȄӜ]ëéÃ82cˆü„ÿ`v—[¸Î÷ÁüófÓþ…F/&·.0âHdîj½iÚ»ûA%6Fy-æSà„}ñ¼}MoÁH…aîæþñ#ªæw[‘¯¢Ý|Û¼ M™­$;ÝÈY¥ö—È ¸E¿Õ죠ù€½-óÉèÆ5ª­­-Vý.û“p¾9®}ä !Õmq4¤^³ßþ…[éÐl‚kP÷’00-CŧDf§S&!6곪8tç—™ÔÚý·íT—GkWvóÇíD´Eþ—‹LLVÎs›#kZâªh2ÔÈbšÂ:ä¥ý„e–“ óq߈Eϸ®"$õ¼$ÏëøSdœæœHA¶Ò_+‹\Ä]TÞÝY-3 a±ëüBuîÓ߯UQÏÓúÂïáßO¥Ü+©OˆQ® Ù{ ½êmttSó«H6j£ì:ïmY²br+¼%=3oi€ ½ìâT«ñ5}N±pªkõ¨q½7{GZ,ÑŽ†·ÑPôœ-êp:0sÆ*û»áSZoöO9VÏçæç¥ÆøY¿Ó¨3*?VJh"˜;Š¥¾ùQ‘Âu,‹¯Ó˜½Í’‰ùlkÖ R6½¤Šy÷„ÊêÞzûþKÝ’´’§¾àýbŸÎTŸáï¾:1 íuÒãgmIIÒ%ÿ©)FôòU+RàɰUiܶ™,AŒX^l^%ÎÕÔŒÕwÐÓTÜÔ·þ‹FCp4‰øã4\Dh]ÜK¥÷*ƉN>úqWà³Àï2}÷2”¼‚ólÞrÍ>¦¡x=Ï÷ڵợkgîC䇘ؓ»9Úûâu ÞÜx5#§¥²ù³‹±[¿mèµ²o/gúê¸RÒçø}R?æö!G½ø»T¼Þô¢Pó’8Ÿ…*5ˆö!r¦PQ6„l?óÞÆ"×#]Ü·è‹2 ïì™ç6âŒ)u_ñª½¦lW™¦‘,IJàb3ÈŽŸÛîê²t5¦û˜ÎÏ8AÏøþr¢Þ· Ë· *Îe¢AÙç@f­Ô”°ýuâdnµ¯ ¦rò<;š)±BÃ…|3°”§ªÇ$´Ô–'ÂÓÛB±X’»{µd6|ÎL®|Ú70ü„¨‚gSï*—#úVN¥ƒ*s’bÜMãîOzGµ®IÿÚ{Iô !_ÝOõýH¬Ù<Ãï“ÿØPzN*.ajÚƒØÁXn•^Ìܪwc˜bYÆTF“zw=z5_œ‰”-MŸðx<{}°«Hz9c„µð›E%ž·F|^æWÙ¯mPÙÌÃH5‰ä*Ä܇M#fЇ+›Ó‡šKΦ2q£E~SÐæB… Tm¨ÌÅvç qþ%RRÚJБã¿ý;o÷ðx%u–bÖI5u™WÜ‹úeO³Òì ¡R©6Ic"#¤æï-$¥è¾å\¦/:¡mf§N¼¯Ô@n)ë1z_~šeK[2ÒÿŽå5oæ¬,õöu¤ÒÚ5º{©XûÑ€ñ¼±Õ]?9_%^K"^,ûÊia®_pDFY"šbFä,£HQ.YÈýL¬±áš1Ú7óm¼Ó™Îï‘4®…Dš”"”´ë7¥¯ü•HT¹MÅ‹²/8ò(d“7ÎÀÐw{Z¬ªŒtD„ÙI-I'È$A‚ª0°`Æô'?YÝm{¶v3_”’R”üÐf7ÞŒê:$·±7üˆ ‰R`Çßóäi‡v.«^¡2ë’„’Û #ÓÀl$ÜûòOíÏ}1¯fSq&ÑT¦o¶ ÞÝ»¬[çýŽ'ðöÆ–¨7Ó¨-üçjX˜I.Ðà^o¯+„JÄçuÇë—êh£tnbﻡάððÍÃ<Ðbt܇} ${]´az©¤5”FÚ3Á#Xµ*™R[È€ÆÖÕº3‡VwJÍËv ð(ŧõ=÷Óé9¼8˜–ýYíëüüñ-œqõspÚ ŠèÇïNÝ´<;úäŠ¬ï „Ú* ù^ Ë»ÎmÝUnËøã‡Z›üŸåº¯~ýp ZÀyƒ¢:TírðȵòK™¬H¹^†3ËM‘Õðe°Xþý…xr›ØãÆÎ!¼eÜщã¤*»›°ÓcÊŽÊÆx\e•nv}Ê,mBð„|èùŒÖõÕ*Ç)$0hbð÷¹‡¿ –µ%exÄs&RŠ¢³C¡ŠƒG öð!Il ¾~¦š]Îâ¾ §8÷DÝ¡ÉXsù+ÎIë­@#fϱ t±êo(…N§‹)á#%ê_Â{æêîô럕¢\5É:Kj>·îxº¨ø¦O|óLC«gV'2«‡øMºbïºíq®TiYÜ4uÅû˜…I(ì!ŽYcj-áÛgƒ¦3£LïíðdÄ|ÉïŸozšOGà]àö8œ Ù¡Dý°Y`*!ß:_‚¾¦öú¸²xçÿ2-SèJÜ…K½Že6ó5Eæä§JEÁàÚ«ÿÍvR¢ÀvóDžîÍ”Z`wõ²€w~÷üTº œ0bS½;€ÍKkÄxTÊ +àø²@1&6#6¶ƒ¿‡VÔÇVÜ|¼¯^Öô¸˜Ï{!,Î,P(í®Eá—°Îkç1–]èLjYwX`Süô©°=98ÖxÔþ½Z®qÒ¹âíÎy ’=ht,¤߯ױê¤ ‡[wX()ˆŽñåÄAd t”¡/(ò1T²|ÒzLÛÅVòàÁ©Õoü&sÀ3ö*­\Õw®3Îqïh "¤tn^¸>Epv$¿Ûêèæ±h~SýWš²ãuzô÷áfo± î!¥í³Cò`UL-ìZj-Ãä(ùAiá]xöÏe‡mz•»Œ'GÒž†ú$1·Ð+ Ú,GS¦Í͵Ǟ A8!¥ÜÊKYãõøÇи܈ O…ð·a~à}Æ΢ÜÓ© "å$œ<ÂÑÊ[Uu8¿ÜŠ븈âU¤gØp­¿|Kמ°~UÎ'¼!4¯Àý±Tà×ûzà(ù2xà‘dÚ¼O2›œS+ͳ¼d‘Vã¨ðÔH 5I¾cŒ÷6râvjâ¢QÕ ÀH!‰fW[¤ƒ©ÂWzú2œ£ï˜c¾ªZ„áýzN°ôÌ ÇwÎöNrÞ)­êÐêjãoß9ì·Â†·w´¯¬ˆÕ n„t¶@M ~1òŒQqºû*9«•ÚXHD@W’¤O¡•î"€rì@A™¥ÓDL¼5eÐ=z CÚà j.3ÙÒÄ¢YUS«QTó£+¥ý.¡ñý`(‘LìvÑøŒ¨2’PZ ÂiBˆå¨1†™?U|YKð‘áãsCÈö–Ûv¹!‡ßØý }4Ì39"7Hê§2@çoÝ«(Ô?¢L¨V'-{ »áôlÚŒc¸9«=QLD­LÓÄ2êŠÛ¡‰XF?9ÄÉABDxI ¢Œ•üÓ…ÆŠs7 Oêã:¡Bªd¾³o0Ý0“ó*´ìxíòÝmùK»üt|å±ÐvФ|9¨­*ÅZĬõ úÔ¯ôH l¨§ó׿»«ÐøP ó®í –Ë™Ku­þ¾‡1þœö ¹þ:|¶“c€(’, ã¹5Éó²©Qbò…4ýËz½—™Mm¯ðHæbfûÞ5 ý¯ñ%Ìï+ ÚxT3xŠ3¬Åœu9#¦¹´š ¬£Ÿz6çEœÖEÌOD¶_&üg`2£ƒÓœµ|g>ŠÆø™ªæýmÈüžPN‰Œ›«»Ï,¸Ç'Ž.ÊâøÓuÍûÇÆñ-fݽv¥z3Žé|Ö«ËÍü’P$²Ñ½ÚšrèïŒÞºÓʸÛdrFZäÁ` Yûe:&kIâ˜2¹“æiñƒ“²þWÏ}?/·]Ú«¨(HyÒ)ï½J•$©¡vß´k]dû` Û2Ö>|ý­àœxnwXŠ?“øR‡bðTüzü,MòY½<'2~Šufàe}”ý$Ö¼Z{¸µ*—érgïä[µ,*Ü¥¯ô@‘ž‰ÇÓõœТIûFø¢Ñߘ’ß+k©€vÝ*š$j2X¨„º™à1ªü[½dªoÈ`¥ŒkÝÀg\tR¹4‹sáŸÓÙL:´·yBC½[g."Ýf¹Öù­ ª¡?@ÀÇ×.†Ìˆ “Ü“dÆntˆcä5ÁõØhèîÎ6V÷ÄÖ/a¨•gÐn•»ãÍ®5æsFGãŽé(qòQÀX#å`Dƒâ鸎%LKŠoí§õÖ)Áe,íýûvfrv‹–ìíëZ¸Ý´¿sŸî´bõäG¢xÚs#ð‡€”8µK-H—f],x3‡tëÑÐ ïL‚}·`¶¶«ÌÂñmªyO½+ê)lÑ”ÙôÒHU@wFÕMàtŸ7 ºfó$WC ÷…q£—¼à.3¬ó{Q Sò²KÚºà?øÝkàVøHE%?™ŠWÔvïùœ®ùÄû Ø;lZ%>6d ?û5øË¡*uÓâÖ耂Z ôJú‚­«[¬;lÍe1ë‹N }_r;‡¬~/Í­Ñ2 ÐIÊfÃÌ? “æþN¡d»O|3Væ³q…+ϧ•—Þø"Èïi“ŒC{p1msõ÷¹RÊçwÐNÛ,Ë™;!ñ ãÆ“µOษ4ÄNêáy[æûÈûD()cgZ¯6à ȱÄ!%CYggI1¦½çQ|yƒÈÒàyn¦D>ImBB!ï¦iI|›uÚaˆgWqþÒÛ§ïT‰¯¿4QÇ-ý¿—-ýøJ$òø? Ó Ãz‚!„8à©ÛRaTÁŒ†7}C.Œ6Ÿ”<1Ûã'Þ”–i0lþ›öÉåÍÚ„þÃÉ¡à¶\ß,ÄÖN.-:J]›ÈÞ5«Jõ,x3öÞÁ…å€ç ß/ÍüS>®¼–×KŒ" ÈñYgW‹ùW!-ܺýÈ@•¶Äâ¥Ëš§@íMî3·[ÑšS¯`Ÿ+ùè%\¡eÂb¬K«3Öä™%)œû¨Ÿ¶äÏ`qÆiÉó]ÔO¦´À>”Å€maJƂƫ~"ª FCa“A舔d¹0ù‹Ý/¨Ý[>z¤™¥ëd˜’½¿åu^ÜÄ ÚLÎX*­ê×9´þަfËÙîaËIG~C©Ã9}/0_—”OxxÞ¿ö$Wcz$„½óN{°šð+u™*À–ƒÉÎuñ‡×ù6¯7µÔa‹¡¨zäÔ‘9÷¤—œVP“òýáV›®¢b·„ç˜#b«ªEfG#¥­HZw©~†&EíôšzÎ:)ðÁvËS®#¥‹Xl*ð€>íäsi¶²~Rq8!ðØ õIh/Lè‚v>hžùý _¤%EÖS"þ}à¥a’]Âå>Q?>¿i.E8­–-ïšS‚>JBÆÊŽ î¢¥G*4Í*5:j S[´wcdþp_ŸO2;\÷(Ø`#3³Ñˆ«ÑL…Aß“ýÊ5ìh®ÇžQ?¡‡›è6ìwg€ï`ÖÄGwàè®$=ÍèLå`I¥lœPFß›ªî¼iøÊdw'©¯!ø›ûø¹ýuk§YÔÎ=ºá <³o8KçÁ§³‚»1)tݹ%`×)Û¾0ª¨±³niÒ~ÀDñ)á©ð3pbj1+Å3‰·7Ž]«ný –~(¤_óŠêËŽ—Y¤Ôv Vn9|M‰ 3°UõÔÄd¼‡Êãy& í×­†/±)L½¨ZÉ29¥Lî:Ÿí2<Ï ¿?‹ÿ ¤ÊcîVF_LëÕóëU*v«–÷± :vzàæ%‹Igûó×yÊŽA~È;½ó,®*ŽÖ6&NåŽÐLÜhéÇw“ œú—FÜü¯¼ß>ñtj¶3 Uh¬í¾¾$±¦MˆpX(‡mY|Žåç»yjdÌaPVa ðªX¨¹ÖÕNâ×ãÊšI mõ«‡'Þšüú6èÌ%ì¦(¯Û(*O“ªì;¤ßZßå™ðÎrÂìÛ¿«X¿Ø×m 6Û Sy‰òÅÂo›)ÍÐÂSh`¤TÕk$O±’oÑvÀ*èÑ>x®2yáb×½½rý9mž†¤CÓ÷zÏÀsR2ø8cÉùñåa+%®§æÔcòLÔf!ñ{‡bƒ† ÷§¡3I¡ñ”ü;Fý!á‡ÛÏæÈb˜¬m-õØŠ>GîIC”ß\,1„BEµ¿ÝÌðâê–ßч‡å¶Üyäd(•ðªOdºp°¡OJ9•©d Ô~wMÎÚæg¿i;bÂ'ö oIÌá}… ôQCÀmÕ·×Äöàà˜¦¼ˆv£~Fô_mb`º2óµ‰ÒOWÀÌGn©ñY8ìI%ÝVœph`i¶8ÊÆŽ*#ˆ)2­9‰Âb_P«Û …VZ)ôùŠ•§RäïêuœÀîÊè ”ù.ר±A¤É)š É—åyKàPÝ·KY4J Yï 8yŸµºøÆ:GP›¹Îh¾{—£Ý£Ž³ä2ÎÚzèÔSƒJ¯žW õÿp‡f–ðÍ‹7®:LÏk/Ñi´ÒAƒ«N'VðpöÞ¯‘vdñ¸¾0qt„•×»{¬ž¢TŒÖ¿jò6N½ò\lÂ{KR§Î­Å«‰‰dе= %„+½(yÖèW!-¿ÞMWzÞ[xà°âìœBml xhÞªÓó‰H‘9³¿TcÎ<€ß4ŠNrεÁyÛÚ'šïl•åD£˜ÍÛº“g Ÿöµ*rNH~Ñ·}º–õtª©§3#¥ ð²ó±k·þI¦NdÐVÊ{Xòi€ÿEúB—ÿûOGú]S’ãRãRr$f¹‚)ºï¾EÕíªù?2¾etk'™Í€“(çö ·ð9˪¼(©?ÞU{6OL݃Æ;–Ãî·Lþ±‘V@«2Lï²,Üîá·!#Ê`fwØÒƒéƾÃm@b\úºáŸi®Jå­ôesã©^ nj;YFÜ÷º ‘@§ÄM¬Q!·8«Œ èÞ $š ))þNp²Í£DJv¼[¸aª×¯"UAÆíKRodiïÅïUV£Òæ§qè1”òT”Üâ$sýv%íÏšüÐWÓ7%¡Ymoc!¹;½ËhÖ+zWotõ° Š╳Rá=#Ìtâ¢wG2,Òåºe”Ü(–¬Ø6 FVhv´ÏçBåK$ªIÖÃÈtàJ˜ÊH†ä”H©ÏúÈíyY˜¦œTÉ uMaFÌdÜñSr;ÊM±î P˜ÀxJô"Ì%Â!»2ç| §p¶ÎéñB7Ëh­G Ö)Ü¢Þmïæƒ4 zÄ ÆK’õä>v;ƒ­d$âPu-Y{ÓØÑ™<&Ò²8«Xœë“PÎlÓÀé‘·â¦1„õÈ,.#¸•šë‹k¬Þ%Ž@ðáh$O‡õöZÈŠÞ·Ï}¹2WÈó>½­JÐØ ¶[æ‘+õH"«TÅÍ Ì8fã èñ¯¹(ª"î>m$AŽJ·Ö¿qq2 âMtµQ‹ñìom„‰8…rªG^e'¼a³ýÁÄÀNÂÒ˜æ4•ày~æCZÜóªG!s׊Píidï=ìjlõG•PæÑÐxÆ9MÆÁ¹ŸÑ³‡Áètïæ_õ³ðeÒûÉÆ@Ö[QHúÐuÞYO«ÎUé3ƒÓÊ{©l:Wæ‹;éXž^LA‡UP°ƒ±yMw꿪of3yçPäGv]síÜè·E´/Ép]"Á:Œ>Êàøo"ŠÒi©YcçEñŠn5Ÿto,Üœ£WUJëò'n$™UÑéí‡Ù%€Ì%ifžFRšù“¾¤¦]b:õ"峬Yÿ~…îd ˆ>Á£lg+ˆG1ÒOþ¢騻ÐÝ æˆ}ù¥T“ç«ð-ä°a’©‘Èíä'êDèÕw챑"ß4·™Ï.nwäò ÖN÷û{ÓqAÈ~R”ÌqrAwqèomRÜ[š¨W3LAýH8û¥S=îAÐLšÕ*yâ0„vÈe06ÍõtH«íþSŸÜ|̲M«ÐòÒ˜¬¿ƒ®Ø‘U¯À ^íùÜé(EüÃyʇW ä9³vð»ì¥`!è.ÐÃùLkɺٚ±Ò …p­3Œ´:…ú&(Þø RpÅf±Xlœ©”šHÉ(Å–‡ÃÃoñ#GX¼)ßò¡¢è9ñ(áå•8gµ÷»™©® áb¦i|pûCМY Q™—c“ ´e™J² Äï*›#·(!âìs$œË9Ø+XÇw©º±ðê ÏÕ~™Ú…Ú†7°Æ} ƒU‹"û¢L\Ê[;™bä<Ý„lbžý‡ÇŸB'XH7')âÊdÍ*¥ï/æŒmÅ(+âÆY;ô˜è"¥_GzÑx}\íA²g5ÍŒšu-XKŸX™•WÒRHð© ãiÓ3:ý¶¬j‡Fþ}¡!ë ©2ñŸZ‹‹Ì^ÈïZ'¨ÉúHóÉO:ž]¿Ÿ¥¿ìTqR£„NMÄwGŠ0w¤WšðЗ_@™©uñ6¥Ó/ù@³ýzÍX;. ޳,aU”7ºnÏÜŠEá¨ñ¡= ª…ÖÄÒÝE ¢›Å_ ™h2yŸæ^xTûw¼ÛD"ñÏF-~᪯` öqP/®ò|óÉŠ°gÜž{ñ1å6—Hˆnui;šI%OîL ×"%h×`GŠÛó ß@€\iªQìcî´C…ÆN%;•+Ó÷œWiZZÖÙmsˆ±ív 4n‰Á×íÀ>ç’Ù³´Ý5¸dyÃÑ”¸žèxõÆs”ô(×Ô{’_û/•Ù^¹>Ÿ?l)Šoà/wš¾ž\ŸhÐëÙ.#çNïþ©Í A£#Qb{MN¹-'ãcLƒ¢EŽÿ@dõTJŠ£¿[)ʱ[d±¢ÛéýÚ;±5óÊù’dÖ>´ Ëô¼nà ñÆ´Þ;è4Nç)œˆ}þ&6ØN ¡ÐEz¢Évæ³o/¢†Ù#ŠÂX#9U-=°}Ìá€áÚs›æË(á’, £ öŒ¼šìW°3£í°ëµCL5(›´Ø"8ÐscŒã÷( Þŵüi‹€­/$È¿z„ .FK6ŠCG˜ØAùäìR'3Àê»ûIå¿jØÔÄ6Ïž;R™>’VŽª×âqU¾<|ójÔãûûˆ¾ íÎûåeî{>"–ü0m®G ¯e³ñ ¦<óhÕ—` ³ü¦©dµ|lzó&ß°I° ò¨àävû%¤ÕÌ0Ñ›¯ÓþW“ýă)OgcI2yUõd ûk΀Îké,õÖM…ÇÖÛîÈ¢J9i’\]ö[r7É3#_Þ¸m‰¼MÉ›pÅÈÌwéO¶0žÎò´Â[©¥NÇéFá¦ZiÎÍTºu ¼™N(†P2êÜ*½CVŠ{-„®:îª:ê3±é³fš˜gˆk»HãßË›ü’ÏÌì¸#5<å³{À©„FY§¦®K6›öÒh­.â˜{øÃñLc@*kcB@ÇÎôÎ4‚8sØø½Ð:S1Q׸Ckñ–¤ëgzÈ?ŸaÁ²[T[†ƒõ}ûòTL¾+õðÀ³?n"’ÆæsEû¸vÚÀá>»^Uˆ™Éë2–?'Ûž_&RûîpoŒo‡ÚI}gf3Š£ëx-gU ÛØî@9—,}/pt±J!¢¹ˆk[8¿°žÆ!ÆŠ¾¬}…a_)ñ&iƒ³i^!i8 ÿÝ Ñ3‹¨3¦PAŠÔ.[3‹Le¥tŸŽÿTcÂ04ûrd7ƒ áǽ),Y|±í ?¢¸Œ°¡™gyDÓ}®º7,wIó55…~Q~'Ú–gÀ¾—Å":Ÿ‚hÌuá¯ÓUw/õ^¸jÿ®N/®›ñ#Öí]êëª)@ˆÔ²Y4kœeÉ±î ¾|{)ÄÚ¯Øj"T0ûáÑ,‰üÛtyØ´éKs}²çwñâmXþa‡zîî§Ø,ÒÜ›I7ÌVìMçòW‘éŸ]+ŸÉ±4¢N&1u"!Î?“È`%gÓÿ^í%Mù² ßÕ ÎœÕR½ÜÙ=ÀÄ{5NU;3ë`/äSQs&E™s½R˜ô”ÎËoXÔ·2 µÛ0êÆ¦"ÚûLõ&£=p þ–û–À©Eý[p9'GDl8¤.«e ÎÅçp¥Æ0#7×ò›€´š×d‰&¨6!|®‘Œˆ—j€‘uç· «•Õ06TæLVûû¾ûiJb@r¤¨|WfTèá«í§À çqC©\\×idFöÆÄó:5ƒ%¨of9¢~)F†èPnûîÖ¨K?ƒÝÄÝÉi´£_õºçRP6}%ÚvûØ¥¦ä2ˆÐ ïù¿ˆlâ<µ'ñq’_£à‹P{Ü ®1êúµ½;š®2ë¢="Š-2B—Û;ÚÀñm¦¾Bþ˜:e«fl®né5ܑͰ=iU- aóµh²ì¡QVª Mê!fM–ý¼¼”ÑîC#ùÇg­KÝMžêÞ»fè¸}P-¦Ú‚C³•«‰Á"àʆE<GâBžjc|)ÿçÙ¼Üàïþ” ïân—n„˜Ü›ï†÷“@u#ìFg¤Ðîê0¤,T>؆Þ5ä9­ŠöÏ×Ó…3t¯ÑÙjHI5Ñ8U.Ò¾nu t¤yã%ćÁ óªû2aû,À÷þäáõšÒ½{¥Ä÷ªÎË–ÇB¿(ãd´±Jw˼%ú6T9ÍÌ~«U†Îõ -F€sµU0q7¿ ÛóÀCåWzËn¶â}† L¶´zÐ-0ù)'ÑUb2ªWþ뵪µöþ¶ÝÀËBÝåýç›Ô«h–’Wy=—ç e|NÏTÄÆ~N¶Qj4 ÿüÉîh¤J¯ñb©x µT¾÷€ ê1sh?xVq2f#Wª‰½ü«Ö¢ésL*²à鸈TùÁ±Ë|¢ŽftÆkœ.öü*/×ePÒ#þîßWèÄúE6(q÷ê*A/:+528]zI"gF\‹ÐÈ ^È5óÈR—\™åc¢-…ÎLƒß‡ƒ\d­¸‘9´ SC?Û_õV¹èýxÕ·õ]ÍýîŒ#!>kɬ5ó1,VbŠF¡ž_)¾Iq%NPÌZ‚¢ÌŨa圕ĩ élùG7‹…ã%ä]Wé(•‹K+°0ØøÀdz-ćPÁ>8Í(@t*z¤ÊHœ…û/¯á2¯ ´¢ŸŠÐhö„¨%×ÂL-M˜«î7§\5>j*'0qDª¶ ­²•¾‡°Û&Ö5'Ùâ–0'*é™/#¸\&,¶G`üô¦)Ї©È?Žtw|I"ìÙ·¼Qé$Ûµ¶"Ý?­òVþDæêjøì‚› tø¼êˆöå¹iž õEŒÚ= V„c‰Ú½Ð:{¿~ê×\•;„%ÊíŽÝ–ú´Ë÷Ù´m}¦’sfÖzwB:]ýÒÃélÒßU°kY“ å)¯v®fÜ1ìùG¦ÃžþûæßÝ¢shב¤¹Ú0²%LSM1mëÀ¼vÒš´é”ýÕäekL“dëdt}¤%û‰U/biéõà•òغ:z‘×ÚJ²Ñ/«îx¿›æï #4 «¡i8Š™š8Xî?û¸Ò(,¶êQÞÜQçrýŒ™“»¡3Söó«J—éª_?5‘RpÜS¦ÓšùÓ~BZHBÛêÈû268šÞšúIuê¬HçÅI€TU6ú1Yþ®,É0˜•ª\(Õù©{ȹü”òE ¿œØ5QP4Y‹nQ¯@M Ò7LZcºr¿ˆN)Èþ-›cÅæ2’@‰µ©ÎÍ®o~ó‰Ã×ãÆ:´Þý¾™‰Æ¢Ë$ì•Ä9ðl¯Sù7y%iìvIpViˆŠ±vr=Lß´½ãeu¥V銸à3B&Nûð…¢ÍLütÍlBW׉bí7#˜šÒoçÇémœ s¶m ]Ü 4º =kí´RQ…¢ÐU¦ÉâÜ4ñT‹÷ÍQ¹è·¢ÜÐסьω!L ÂΓnèäùC³“׌P)Æ•>4 ‰m£©c°GN#‹jý)± €Z?x¬Ã ÷`Á¹æ¾O±¦ÿæ§rÙ¼Y½ŸT` ¹1—“e~ÀB°Òs$WˆÆ»žñÃ_‡¸Ë9a*"gh˜¡EÕÛ–†izÚß]xXÛ¬¡HÙÖH6ø atM4}³štð™·])g©D‹dÐC7—Ô}QçF ÁCóïAoîF¸MŒtÜ\_¶jañ‡tÚ­!ùm¼®H†U¸^ È]ÒïHƃsYl½ ^íáé{PX¥omV¿•õG?Þ½í·&GÄ àÉ´WÒå´ Lpƒ ¼EàÆ´‹Ød)ª!?´(dŸ_¹GYëcJåúÎY<2I÷.WŽ€èÔsW «]Í}­àqW?¦¬òF¨UˇíùAU M=ïhiÜìá'lçPš‡Á¶ûB"€s¯ ˆÑçûé@ÎØR-µ¸E3*HÙ_ÉyˆzbY>íWüè¨;!Mbzb¸iЭщYÕš‰sy}Q`UVVðfm¾3‡£ ’}fú¡>…YŒ& —åf¹UYÊ3‚š‚—X$€£L_ÙÀË ísÐcp*út°j#¨eîÓûN¾weŒ`Zj/—ÌߨÖä-Ð`.NhÍ®*1I…u¤WÀ•IÝl£í¯ßù­hT›ƒê‰.ã¦ábôºAš‰Š¶ù8 lB®”ºÛëÒ ça{»Õ•(09àÔãgµOí6cL\ª ²ª½z¡„oصÿŒ[‚¢\jÇ CäåŒV´dL°œœm\üTõ…z'»hXÝí×ìzM;›+pú¯Zeçýcz+æ!ÞñÐ 0¶Ìö/HèUYJ?HB³;sŠª` !¹I Œ öu4ü#FÖ^jkC¦÷bhÛ8«dž@«+wËŠª †ºŽ.а4´îH¿úÎ%Å)'tkû’'=ÎGL€HM“cRYê¾!Òî¼Úí”ÍbÇrSÚ˜+Eâ¸{4¢ó5åLèÞ ¦)‚;à‰íĪéÖe’l³CïÐèU›ûa¦bÉL~F;o×"ã™uÀïsr¬çè5¥0yFïîÖ”!uƒìVä¾B§‚ùZÎÆ6 K¥ö›É£Š<¯%=É]éŽÆ•ÿ•õõädúú¬’º—suaéŒq&XsçO±!‡«FNçž:usy´–Ïvܯd¥º „Ü×PØsá’ ¨@Ñ´†UŽ#é~þ–P‚ãCr+$ôB¦¼01!Wqèο©ëï2—Óù¾NÄ•‘ƒ™¾æ,w CM;õþ>ÈÉ ·=K ×IKÓM á ‚sFþü¨fPg]½½ö6Z^._?±¼B”az¯šÀì+Ÿ¦-†x½„›·xø._ÿ\ sâûhì;DÃFáA;g<¤²žÏ^Šsb,ý‰‰ÖÍÑÇB°#bL®Íl¸n쾨-ÚÇvÊ]ïkÚ  bÞ%öþàý[lÈéû{›ƒ7š‰^Ï© Ú8äÀüÅ·™'[\uË…àXÄñŽº‡mP ‡åÓNɪV'…º‹¢tB²H°6þbÖíßz®·m}.3[M²Ò î:ZJî3ï¡ÐæS}#ûjçÆ,®t2ÔmíºÝ¾»¥·ê!G^Ü¿Vè"ˆÁÖCƒ,ÙÍ98;ΟêteeÖ4žÏTpI#Ø9Û6ƒ) å,„ñˆ¿Áú­P²£Ðu 2ÜÅ( Á„®0•|z1æLÖÿ%l™åüµÍøèËs˜túR*ýxvyoZ-r¾N˜%q_ÊŒCE÷²2ãe‹ÙºŠb H#lZçÀõ{¢v–zíE’¼ ‰-<_„êJOäÜ{!Î!ªy„ð¥ãÙé8ÔÿsŒä”¤ÏØR!Õù!9½ñìP[ å°ˆ€LÅ7 ¬Ê\ÓGH¡¼û1°ï+_òf€ôL'Û þù[ ägµ·ô6´R›+ȶ+ uÐ!”{¥í`W2H>%5v$4”}JÏ"ìWÔÏbŽÉn¤ÏBÀæW:€¢-6ЩeÇpvÐ'´û?šGz¬ëTNSpx’mLëfc›OÛVw­oR_šz4¡Š«½ì çp†þŒ‘‹Ý„šÿÝÎ ¿d'²øTŒÿ¾h¡È‹G^@’˜‡r!ø $n7[*¯ŠK¸ÚvÒõ:†l•Ô¦„Ž+·— fwC®û‘7Ëé`y˜ÿá´Òqk¦pLª?ÖÜÝÓRÃíjxÕ6tQÏPÜ6.qÊ ÑþíÍp´¦…^! ¨xÎF!%/Ãÿ¼Q©«µˆˆ†‚ºî¥Êôx¤ðÔ—|²ošƒ¯{L_ñc†‹ðå‚Ê–òÃ…¹ùÃN‚ð.¸È¿9ÀLŸmèjÑî{Ø_¾Êߺò¸òµ ²ÂHØ ç=Û÷©gs^þê‰ÆŽ5 ÿ›C L GÞ° &wwB«¿íÃ=ö yr“uu0¯zÓRV0c¡¦·dölæ¡ou]p½^+ðÝ޲̿šæœ–¨¾¢c˜«¼á`¬¶Ø*¸ƒõ¡‘Z(ŒxÁRØÛù§RêˆU ;Røˆ]ƒq‰ç„DJˆy³â]ÊÝLu ±’Õõ°®]§.þTÒ”và!ÝÁ§Çn÷|nsRþ@PldÒõ¦øoû¥Æ&z* ¸Ì{IePøÂgg'Á®µÞ­ÏË,­¶Ç–}J¬{ºW\þHLqqOÎe/£ŒßͼAw®&û“MÌmq"ß­­ ê: õ¯cÃÓ¢g@fÛ­œ<þð…§kîÙ€Ú²‘á”Û¸üC7ý§$btƒSªß‰ô¹­¶®Pq-@4eG¿Xù:.†%¸7I¦Jüù`¯¦ZôûrNuï´LÄÆ2±ÕÒ½>' Cì·'ÁMÆ ¹èËDrÂÓté.·¥ ЛC ¯îÜxÇ"u;Ç|²’XbÁ‹>ÓsštBƒpâ {‡ G»¥õò/(bmã½8^…g$ó ¤8P^êÓÓ¿ŠâlHùxs_d?é­"~¸Ž'™¶8V:QÀË2ŠÛezÞvéåÃêjk|ç8QŒ)’qì6 þ‡/f/ÄuºˆèLG¯7èq«^èö^õ÷Lu³p›(‹×ÜmÍoÕÔýþ–Sè"õµµom.ÝÁ§Çn÷|nsPzýB;ôä@kÔ¬'áAôÝ¡ÌR'¼¡X•PMá ѪÛ—«ðIçB³Wì\ÒûNúZŽH«‡ºnž“}‹G#PLtm€kàLÞ (HêÆ'2B «­‹ß>’"Eº¢Ï’‰Öïgÿ™öhÐŒB«ü—à€|Worr‘6•õüéh¡o‚n—ü‘ ¢_7äÿ~µÑl4ÛñmX‘‚ID*GjÆÏQÒg@YÇ{ Gô†èHøIQØpð.‹eÉOà{;OM(S°êMÀ /8äŽ0$“VÍÓÉ<gs]ŽfhåþË\¬¡ÉŒÈ~„ôV³ß"ÃÀáe ¨¹ÇÖÌ}uã`3)=´Â˜Ù¨iƒWéôMT¢Ê¹nƒÿ$¥°k Þ¬—§t;LPoOJZ7À¤¿¿¹eÈ*c'–uæj™•ú[zé%à …É‹ïÕ-9Ck¯·ß qQ÷b^c)n2^,1á®{/Ô5Ûæ€qÐV; 6N)aQaà÷mt _ñEG0ú±ý9@‘uBoúz2PµfHb`7¡÷»a7½,Œ.²£^8”ÿ--¯¯RxÈ-üöʧÓ©íX” ®êBQ³â ŒƒùÜGÖHЦ…ÐBC¿FQÚYÕhv”žÆbNö^îþüàò*ÃrRKÄ”„ ö0Y¤ÿº¤kí¤ šNk€£tÅ v½~½¨€ã³üjÚ‡ß –¼8j ¶XÂXÆwc5Š›+,–IüYx”½r+GG¦h‚B”ßH,æ. bí6u·–Å`dƒPlnÜ“‡¶äg›FÂ^D¾ w¥/I³`½Åý‡Déþù3M"Ž+Û#bìŸFVDZzVÞÝëËM&®±Iµj€ÿ…]Öå œzþ×+©¾üAåÏÚŠjm‡gœ®‡ô®ò!™=HuD!æDK©U†.tAUÊ,Ë0„^äÇÿIøÝuö›æëSÀSëQj©hÚ$X ¦¢ÉÈŒ^î–ͧûøœŸ¾y “°¨ .jÏÈŤ¿zŸ‚¬Laež3y<¬ÇUIÕN*¢òÆÞu7Vl×`*¤ÈfZ<:ìeªTŒx¯ äoöA™ŒktÝ åþ ¯ç˜Õ©)$(¹6‚„íÍç¶’o¨nHcǧÌ\ß)õC‚ÛïxîìÂM¬ðå[|8ŒÇc·°æÁ³È~™-æÞM¤âÉ´— Dæ©J4±%b_žÛrMޏIÔד©NüP¸êé[äshda-„çä´Ñ˜—<¯ömªeŸm=&ú¸\áD×Bm"UÙ(×'8Ÿ‹¶ë°hKQ ßcÔ"‹îCÞ1r£¿}AÜHoÈâ ˆBrõ”*µ)Xr²]or…Õ*3U]·Í{n˜MîIJ{¶7ç~¯HL |ùÊö´ÊEˆÕC Ù”?¦î)šOÙ%Ó‘M ¯/*Œ>‚HˆB®RÙ8›ùIc«“™¢9§N ·ÑÊLã]%ÎgÉÄŠA†c §f®ŠWÖP¢&àhñaF=õ¶Á§¾@fáéA¦Ñ«îˆ/‹Žx´ƒ‚]B˜g.‡ §{t«÷Z¯“%]ŽÚdX­õû×'~Wé‘›Ñ]êwSålÛO™uÛÖªêÀOª¹Y®qÙ—,Ñðeÿ¤žç\VÅX+èœg©lví誗&.À5`Èõr'Cà+ò¢Òl¬‘l±ü¡Áq·±ƒíø«ð…›&iè\Ð$îN²å!¼žºn?Ž×B÷>›Õ+÷—ÅÌý}±Á¶]—FþѤí¯¾Š?Ÿ‡ Ø@±¿Ý„¾žSʵí¸CKqJ:ø$Ió൚°a?ÌàC§<ÎÔ15ª i,>¤wŸnšÊK©} ¸žso¯ŸƒyÝi)mT‹ˆ¿ú‘MOIxÍ‚g~ßèoé`Õ0«]0œ÷•R "õï¾ XÀ³³?SòžS¿Ç̽®-â)«#?à‚l{|1Ë{­múJb§-°4¿Ì,îK"ƒdö1ŽVæbÿleÿ'æ~î*¬ß.†îöi{E§'ƒ¡†Ú‰ð/,Œø¼p™Ÿ™cíâC¼2pÑ×TÂj[íýx±Ë´lò.Hñ˜º]þãâ¯|ˆ$Ó(r.Á…‹‘á fï…žXf±˜ëðT8¹Äð"Uø4)0§Q“èƒÀJÃÒbïñ+˜Ò0:ÖIîKÏŒñ2]<Þ~uó Þ+ê&@'¨}?NÆ7;0²V£—þ¦¤ã¹ÓŒšhâ66¡_¸,àwW¦…Y„Ñ$ãJfF1à Ø MY’ã¦|²XÆ,Ú‰äR3`í€Àó“]âFÅ:'OQ% C×ÖR³0Ãf¬ðë•÷{ NiRC36•äîž04 Üië üè$Ö'Z»¨õ¹73¹'jÿùÃqAª7Rï£xSq5Ûº@ðØz@±“½úË\xñ5k¾Ë&9}éQŽ+ȧ¦õ¾ú+Rëx'nuÜ0L3k¤ï'{ì©ò¾tŒ*î1Wë“¢›èÊ8uÙ?fpá["ó˜ôÉíþf8Ííá-uË“ø:pÚ¢]røF™#\‹0cWïüN·`çO&pÐñAeýï £Xe°W÷XáÿÁiÛ|5Û–EazþŽ¿šÎNF(ïñQj­{‰„n–…(xy-d§¾¢ƒãuÇ”×0ªèhñ…ÕAE€gPëÈëL1v\àŒ|wÖádô¿⸒‘1“—çrñµ8qð”ͯz¬…„ÉövyÒm•!ärÌÚå®8E½Èe›?«ƒªÂ“®7î “ÓŽî«iŠ1¡åØÍ ?Iêå*8Ó*ÝÔñ87aÏñIöCì`~i9L¥Õæ1ËJ!Õ^f옙UbÚÎW Ÿ–,ê‰"h7oç?ÿþ¸ÅW÷^Ïç#‹Þh-`áØâ¸û öµûm\AT•c[ß÷˜¶¸ Ÿñ«þ}6r×jtŠž'ýÒ_TwÖçƒä…Ç‘jÙmÖg’§2¡ˆæ¥|EfÑÈGD ùR=;ò?kº!‘yùϼpµ·32±=-™Bú²-fõɈ\®\êü´x=®É›Ç£¨.³3烬×-¬¤v4¦@“Ã<á0`>­…È_·<ÏÓ§¨ÒÍf2I}ßâ—¬¾1Œå §ŒWÛ„<Ç_ͪ@¥É¥b;—|z´Vi¶Ê¶VR"¡I00æezïa•A/‚r:[úê #X—å}Ÿ¦ø¿[m´îòÒËÿ§}ˆ‚ëèJºˆ7éÈôN¥ú’­Wú*B Χ$šÈ»´‰ûe™ <š2 µ2ª{h‹•½¨ô¼*³K+ŒÇºèöÒÉúÛÿ”ð÷s·ÕE÷R, @ô+¬r>ò.Ž[ …‘à3n7¿MMœëÃ1^Ü“Aö/=U©Ø¿bÌÉ•%Ð(Üðø‘PÐ+·QZLÎ !(1Uc‰Yr¾è‹µ¬ ‰¶µEqmÎÀz€¥ànìð uz6Üæ6ˆcÀëâÍB'¶Nd¶äÑù.£ÙBžÿ—ºÄ"c׳SÒ (À§™Îõ.Œ—BÈC*ª±žG¬Ð¿‡‘?1 Ê —”’!.³Jûtñ9T¸‚ÔY}¦µ„æùJC~é^ï3w*ÝkÓ«ÆO(ä™µËØÇ_ÕPk•ž±’KÔ 6M²N’á€ÝuPD*ãàøÁŽþëQRëQ(‹õ ¢. âW¾’L .ž¼7„z(P² ó(:‚ã¸oo¥8Ôl1SU>¼²9ç.­¦j Üøhå‹ÛåàV±ã‘£ø2…<´e»‹fÅ H€X‘+@Þñ\±¬ú8]œ¬WVacüÎÂzüÓIZ¹ÄSY)8åS5o´‡&£|²=;S:‹á)Øoê¢?¦ÖÃD/]#šù­…Úõ`tp+ÎI)o@ËÐï£î©}CtT˜zÖ_¥JÖ‹2T >­è.£ÙæWÈ#<Ü ŠãT¤¥'€Údà 5±×1vÈá`jfvñ³OOÓl-ŹBÄ9£À*•‘ÉdŸ O•6UmÈ¡GNF9™%`N[0Èë…Y úYNù™Ãþ¤)f™`îã>P ÿHØöübI9BÂxÈ1­¯N@aúàTz[P³ÛБÇÔÐøZt0S˜‡’fÝ,à~Ë»òcÊŠ³ÎêÚíxÊf±ÏUšŸ/ñÃa_د”ðt|Q¯FˆÓéÑo³DEÝ[ˆkYßèy^»yËH;£ëÍš²åŒ¹cr̼i C×X%>šk$Ì”£~×þ7×Ð0&Pl!3_U<Ÿ›ð鳓¯pÛ¡3æ´ÙðÎùx³¢ùrpÏ*¨ì¯Ç›»ÛfÎHléèÄ@aY÷!Â35‰÷Št–`i.ÐÎÄ\Α4á ø\|åæpKÍ6 Ú8åùbA¢|¸þèÿÁ¢üHëÒX!Qû²1 ž4QëÒ3¸x˼0ë¹ÑP›>a¹¬¦’ë ß°¹V´ÇFW·*wã6ç ˜á0üžÂ¬°[Q{ßO4Æ.ìý¬Ð€¯zÞ1[Ö”Æ ÇgôÒŽUÐ,/Ì‚šªzÄTíÙ[BøÐtcÃr®¥wŠ]JW=“2Aøð]ï{àÖÙ–"9É /ºê9òIGlÏŽHþ¡ëȇðG«N+‡a3G ?ð+,sGI çä]­ùÝÚ å€Ÿ\¯˜ÇΧ»Ô9 £SÁ^23øYƒ˜OLòmý)¨¸ý’EÜI-{¾Vzokòד¨ŠÀ…Ù©˜<]·Ùõœk¦B3Ò–gô m±1Ž«â'¹61:Sn±—ñ}e[ }똲ڨ·”ã_¢=^«³ü~?/Cø`Z8“wÊsÎ6Ë›&v#OÍ>bõÁ^×a;jäèö¹/ÞädÜΡŠ» À DLïBŸjÿÅØ¾P;Ù“ôêªrówo ÇÁÈe¡M ,Êå Rýÿó†è t³)âÖ`ÏÉ¿Þó£åäæ´@¬¶Õ R†Ói¤‚óA‚Z½„™€ëÂø‘V8"™Z+_¿=õDfüqk-mˆìrõû"xª<=˜ò-»&/Ødƒ~sÕr^Ç>;–c×$&íKšu`øÕ󰚸0½në›èoðz—ljI–üñ êX!‹¶¤H§>tT ÆÐò󽪎ۯë³,L,eSÏ„ËÚ€R&.¦ñŽñG¶ø„”åT‘ hõçÑÙ5Xc¾íFUÅSvåÞÈ¢¢¾™Í8×ÊÎßy¨TðUr>«£E2Bþt°+= k›‡ßïiÀ“GvÒÁµ 1vGØ%?DCæ”Fß ›eUø>iþ„?îV½‚fêØ-òŒÿ€Yêït‡HÎhÈ—ÐxNú›Ðšį)_„¹ê£áŠh¾³K€}«Y&k‘½ðßÔbÝEó³ïë‰dŸ„¹©Çç$"VæŒË¡^Zz•¼§ÊLÊ–#˜µÄzJ û©œi:î4¿0ö µß{ùÈÍÅ>gÆå·–ÝðifNsInÊwÚS£K™VhÄ‚¹6÷µsÌÅaZк@Úár¶¶í…±'Îûrç©­Zcý0Ei/V;«H*7Bœ«Øjv9¼Ÿ‘¦N‹|¹èKÕRo“ûc#:+ëRbËp“P?Rú4jñT7{ o>›%©x‹T3i­Ù׈йC-ÀÐD2!ÖÒ(aÕNû ¿Ì^Á‡£5-é쯜5ý,G™çE•$L6ĢʉM„ïk¡¤¦Eûs'@aD"t¢¦™¤w‡X$uÒ㘡°˜×í·)VÃqË–ñX 3ôdŒ0:¸°NkÒìlðåçÏ["cà>€a²kœ•æ -ħއc½ãûL%oqŽÎ«­"Ü«Âi¾¦P‘±ÞQÛ H³¼hg'Áû€ÌÄy ÷+h²ÈM´AÆ™—ÊIµÅ®.…„˜ œ 6ÄÝù»Ióá.qüêxÝÅùk·ÎŸâ›Qs¦UF½í"WæÆÐÒÈËÙ„Á-u ~oŽ>y®du´mØä,~ÜgOx#ÝŠ hw^çýÎQn¯ÿ<z Pl_š4ÿþšH{ê endstream endobj 76 0 obj << /Length1 2837 /Length2 29952 /Length3 0 /Length 31533 /Filter /FlateDecode >> stream xÚ´ºeTœMÖ5,H‚\www—à¼qhÜÝ]BîNpwwîîîàëÜóÌ$3ïïo± ÙGêìÚuª®bq‘+ªÐ ›€Œ€ ['zf&€œ¼<ÈÄÌD¯ 4s¶6t°001±!“‹: ,@¶b†N@§“9ࣱ8ÁÄÄ@ÚÀN€‘;@èd¨êndPþAŽNôF†Ž`7ÐÖÌÂH NÙ¹;X˜™;ýƒ•žþ÷H¿³E2†ÆV WG+ €¡­ @†Až r-T [€ÐÜÐÚ2¨5j*âÊ*IåjŠ*Ô àUœíì@ÿÇETEUM’ &¬ *ªÓ$ÕTTÿTÚ‚ù›ÑTÁþßuÀ¿ÓåÅU…UµÅ™ÏÀ p:8Zü.û?Ü(Ą̀SM@6ÿP™;9Ùñ02ººº2˜9;:1€Ìì¬ÿá§jnáp9XÀŸ@kà?Â8Ûš€åt2þk€ß‹³0Ú:'I€þå´K NÛþC ,„Óï1­ÿpÿ«Œ¹¡ã?¹rŠŠrC [' ­¡­18ÐÉÐÉÙ`ð ü 4¡üA @ÔÙÁáw ù»þSæßÔE@à™éZ{zºþïŠÚ:;zü¥ÍOÛdëháèäø¯S kàoöŽ¿×ÌÂö›¼°‚´„¸Š*½¸ñléåA`ulœÜœþ‰þ=ž°˜¸9¹,,,&p“ŠÛšˆ‚llÀ¬~Ë'fÖÉ äàÎøÿôµ•-ÈÕÖóÿµ›ZØš˜þVÞÄÙŽQÍÖÂÞ(-öÑ`›РÀÚ€nÆæŒ¿ËýÓ-¿ÍÌ¿Í`¼=í@vSCkG ·…)üàéhè898½=ÿvü7B`æ˜X;¼Yþ]ÚÖàþ—Ìäß®ÿkª6*5x—š€l­Ý&@SF¸!¨þÿÙgÿSKÂÙÚZÁÐHõ¿’þoœ¡…µûEþO„ð7W*ƒ¡õÿø,%,Ü€&ŠNÆæÿ¨ø/³´“!¸õ…mͬà5ùǤö{7YƒÛ|ôXü>¹ôÌœÿãw¤±•-ÐÑÀÁý Váø‚¥ÿÍÀ(®*­¤¬Eûÿ´Ì?aâ¶Æ  [3 ;ÀÐÁÁÐ Ü,ììOfpK›Ýþi#ƒ-È œ°svò˜‚~/&;€Qø·é_ˆÀ(òqEÿ .£ØÄ æõÄÉ`”øƒ˜Œ’ €Qêb0JÿAlF™?ÌEös‘ûƒÀ\äÿ 0…ÿ .puÅ?\Où×SùƒÀõTÿ p=µ?\AãWÐüƒÀ³Õúâ×ÓþƒÀy†ÿAlàê†àÓÄÁÂÑêOx0£ÿ f0'#Ccðùkêô—™ýÿÌÿÚ2ÿIfþ—Ù èô_ñܬÿ±ÿO˜¬ñBà)ƒÏ¦?™™ÀüMþYÁ:›€¬7ÔŸpMà ¸±ÿU‚ã·ßÞÙÐú¯ðÄMÿ¤€É™Z¸ü5Æo7Èùï೿ ˜§ùÖ`-ÌÝí̶E€mA0+Ë¿ x¬þ‚`Éÿ°ãÏØú÷nûã‹dó2ƒþ”bW²u¶1ú}™ýÅ€X¿¬7)Ÿ¼5QÚ1ô‘÷ÁCÍRgP H“_ô+í ¡>’ÉÊÕ*b›Nk‰o!¨‹r·u>F³L¼¢^%Ñ-mYÍq-˜enÄp°Fs[DÁmÇ[œj‡pz}Ĉ2ì^¢™1È Á•yk×݉¢M›”«ªyÜå™Ütõm˜p6|C› !•¯ R(Sù¯À(• X'23ï„cn„…µUò”Üb…>ã°g)‘Ê—zŠe¥zeƒB$mQ_½7G ‚pgº–Ä6t%Ý~–ÇV¬ºS|¡£ì¨Ÿ¨*•;õ}ÙR‡{”²:3B,½º¾q°‰¾æâfU cã8qN3ëd‹FÑ“†N,øU %Qu*þšUÈ |ª•”h*!2Äõ ÀwÜͰ3lð¯-†³á€¥0:nEDÛÀeS@2Ì2¾Ù¢}³¶2â:ÕUÂ7Å3¯æ^mëî‡Ðw|–Á§ÐSï¡¿a4s3Sô5;€ŸÃ¬¡Fm,£¡ßE#ä´û«Ÿ\Hë¡í¦¶@­Ë·«”,<°Ä¡F#)´u‰Ø[TóÖ6\»‘%ÛnFü!Bµ~ùö‹äjóx?wÔõ'-ãK8ïÏ.½@SlÅä´<›Â仆÷Dö^‚ª¢:×<&sxõX ¿‡SÎjNתDby—’䯲@~¿YŒÎE¸ñB!>4­F¯“{.äRRþ“hÙùy’òz Ï’ Oç§tì爜Êè¨Wù^´ý|U-éC÷7fÉíYÕfC’öIîëï8šô kÆRä…/ŽKµið…wžÐ;È&¤}¯é= Æ#â»pÍ¥92“xC¡Lýä-Kü„=9Lûƒnª= I{¬DÜ{=#, ,ÐÍ‘*‡n„[ŲL½—‚V€ú&K¤ëüY$Ê0w/xyšpo;áä]räNNüY¿‹\ï[–Æýœ„Þæ'bšÊÚÌ¡ùººJü‚7BóbÅyó˜r½©k°¯|á$HMïñž’—Q§VžD`Fì `jðéü8® $a×J1˜7æpúm$Ø„×cQz¯OH\%€ Óž0>k"~³oëE ÏHj¿Ú õö¹6*µD~MNýäÓŒ¤ï&^’Ë!»¤°¶">¡éÆ+Ãn¯¼›þRÀ–\Wü#Ý£Øó-ÙGòéCB4né϶ûïó'¼ÐÍãXü$†¥i‚ŽÔ‰ãPɽzj=ÑUѱӮf–ö»½ y÷q–03&°$÷ß ²Ú†«,EmWî§šþ>m¼Le'ØU©ƒØÌz#si²¼lñ˜Ío®È?¶ìí¦qŽ×áÁàò )=¾¿‰HhS{Y½ûæèѺWÁ‡Žo2¬ë”®fÕÚ.¤Ê¢œ´´ã0½£=Üà ‡Ö‡^îÃã· hÀ\!–¢Å¢ÿê \ðç¨Næ`£èâSÉ~E~»fQ?[öïûk8¡;ÍÈ’4 ÚåËK†k²‡bÌc…¨=z'Ù‚ÈØ%ð)3K™ÙëÎ ‚mŒ6ÃdsýգÕՑž!«2€¸[¸?RìhétéÕ]Ú½A-÷rú†ý‹µ-¤ hÂ1¢¬¹\¹mê{÷lâòÙ/ LBúèk¨"Ë–Öaiæ+·13 2X¬Æ"ñÒU††³v ùÜûpüÂ¥1Ib#žHÍ<å§è1ë‡änïWE¶O®åÛ7›ÊRëøÄ .„ï´ R<ê!ÉüÈéÕQs¾*¢V³“9‡Ö7×Z¡†òJxÄIp¸ç2¾Y-A©­è`e•ÑL•6F·¦,]üÃôüGY÷-ËjâzŒáØÊ”e‡ÞêTr >5“«¹L*7rWñ |ëX†Àþ G!ÿÇUØó½cJ±*Aï’¡PeÜœÙ9‹f)>ãŒÿ‘Fx•ý$´*¬4u®@ÆþÍ÷ý-¯¨¥*â½5n8mã ¦¾ŠbÓôÓu˜©£ž¾ÃH)Ï~ÒÖ”X²aíF2Ÿ¦Ú›ß³­—(²SÐÄ]ÂRem}û˜ûéöu…Xmùðnƒd¿^/ØLÛ?û°ñ>Ë–;Õ ƒVŠ|ÅpÞtä’_Ö9ì³DFò×BÜÆ|Žk(Æ53Nùq6£¢ŽˆUº³ß+ ÷$åÙµŠ£ºf9ŽV6úÆ.TTÚŠ.¢ö?|ˆ(š¿]ÙW¸“Æ›ŽkƒÌ€j;U®1¸ýø½É[•ÕÁ4Á_DÚe²Nã¨÷¥}ÙQqb=:PŒØ¬ô}éièLàv¶aö !Þ¶9!¤ŸÔ¼¦ÁðP¿r*ÎrVI’´@£¯ë ój¨‰Rs÷v§ßeW'^|ÀPØ!/"®Oê¹O;ÃjJñÌK ½êà+b¢N ï4e­òIÿaç§|Ÿów÷ÖUþ,9aºjšì:…æ µŠKŸ/´_é;‡-­¼'}ÜrÝ™“#È0!"5yÔüGpe=âÙ>I<š™Èß=÷ø@¤j6¤Äb5.ÚȃèñUȤä»t {GýïÛÆ‹3¯ùÓó^xDƒO^Ü¥›„„rFËÄŽª8Žýuùí–{eº‚ª+¾%Gà“6}AþDnþ«Wù#(ü((€½lÞIÀ‚ŽPyïEI•OO_,ù§—ýSâŒÒGè‘ÔzÌ—B£@F^JH Ð'ÿ,a™®â§pD<]¿š ¹iwW¨¾½£U2¶,jCÉ ^ÖŒNðßë‰Ä•$X ÞÊ÷£ÑOß…Üåc2«FpÞ玘,-Zû“JËKìl‘Q÷mÏÝG|Ù³ïv~“ÈØùJµß–ëÿ‰#ÂD“ê•fßír¡|v7H]vv×J‘á|¸TqbKX²HŠ#Îöö®Ü¸ëŠF‡3x÷.WËáöç9SÔE¾âP’I§B'ü@ÆÁðTѽ5á«PÑ*ån‰žÞú‚\Ú?Dv@¯[û¹ÑÑ1ë"ë3”ÝÐŒ=–Ű ÏÝÙ…ïçM(ˆá Ú(ïÑWEVá8_¿uð ex·‡,|èÐU>äÇ,i¡úžtÀÝsjç‚Ô9v›î ž‹5eá<¤¶û…ÔÅR1ûLÿÅã<ÛÁE_Cígç*ùÚ¬¨·1+Õš ‡íŒëý@AznU<ý ëÆæ§UŒŸ‰Ø;ØM]6Æ1OÆŠ1}ó·‚R>2VLEÜÖûA¯iìr£Ç¶ò“ÌOŸK6¢]únÓu:Q#S×Áw­ô™ôc~ª’ˆž¯n(þn7£‘ŸØl1¢²;ú-0Ê0=.C‚šÛëËîÖŽâË"!U“‚ Ú` JICÔüöP®üø¦¸gRª—ú‘ë‰ük‰ªû2ªÄϬ±XõFGju'¤”L‚”iôbç«&4µ%£ïz^ìôl‹1Rwþ:¥™™JèHØÌ6Yße¿ÌmkÖìŠøºžÏ”­¿¢@ó”¤@ׯ ”0<) Q¨öS·ùî!q ²ÅŒa/6…“@˜ˆýg¹ð-|¿q“Å–ªìø;ü†–$9ëBWÁ޾‘0ÛŵÁ’w jM8ä'/Å qDŧ©îH(u…\D l´¼³½N!rÉB­³MøÙ´çŠæ`K‰­Ÿ ŸÞ@Ÿ>m°îMVªŒ\õ–vˆÕík÷pZ÷{zI;b7¢bf8¹q(Þ¥By?óZ¶µa8ÅgŸDV _)dñ:É*­.¬\‡oÞG~qÆ[X»jØ;†“g eO ÁÑÕâVïáÂ…Fнh–]-©më³*àã÷ã@²:xl»ÌÀtip9¶¸ë´NŽÙq«žúA·ób[·ïˆ2êr7„Ò`Þ2+IÂ^£JLÕ:iÐk¸»ã|p[þÎ.çãêãrÉÝwıÉTÖúJ5)™8/¯ßd~†6Û^ÉŸ×r!ßuÂw»smÈù±„ö\µ§&ù÷èÑ92ç¥Ñ³æ-RÆ»5gÍ„êLÌ|ê<ýâ9ªÞŒÀêx%™ïTÆ`Ÿ2_ Eâ óTèXŸÐÒðÑ(·"…nL5#ôt¶/æ¦J£ß íœÔá ÌíÌ@:‹Ü%6[ÍK5@øì†Œy3Ò%®øçÅLY|ÀAnMT@™Nåï$/¨{¼Â0¨é››Ÿo`th ¶U¨÷lw$¦âÇïöØì!ÿ•x+%xæ'‚$;îækã^ËBgùÝa2ã{Ój&éwg,â'jÞm£ù)é@«=²ÚA΂A>¬w@ãeKØàY9¸iÿ;šuEkú|‡â\fZÔõ!T‘JýÅïu¸¾… À ¤hå½A6ãžnõØÖKw2³Ç:‘€Æ}%ß½4E´~Ù0þ¦[fW]üÍUhx‘‚…E%ËÕ>ަl཭¹-> 7Ç{à{l*/[Q#áx‚ˆ¸÷†´–è;ªo»˜MÅK-ÙB½Y?Û ~Úíxäʯ}gŒ‡Ð {Ì¢¬ÖW|FÓÕtN÷}#;%ß—üu+ü®Ñé‘ Aý¨vmêlÑìþCÜÒ”>ï•j³K›®0^K¡n5‹4Ÿ»cCïžb±udo˜ŠÞ˜MAI?ñ·o Ì~šzÔH»£öK,ݽ‹Ù[s†chLŸcˆ:pµ(ÉzÛ`Ëtñ'e5Èá5[l,ÑN¯‹ðèѤˆz$’d˜Å×\Ý„UÕ|ÑÝrBQw˜âª]ºG6FÍ~rѳeŽÊ[9!åÿF‚:Ö—™}JUøä'RgøÓšG•±£Ìßë¾ãÒÞ|aÒi»VÓ:ªºÝWŠ™ã:½ßxÚÕ€öð‹‰>þ=”Œ¿DÁ$¾ðSãšdиS­lÂ÷L:†Í°0fÔ,b#ýìq©j­û€$rá/ˆÆ0öÛÍ;Ã…$Óš^âs!A·‰6ÍKä"nI#wŸýäqr5)!«¶“æ³k˹*‘Æ]²¯9%è "ô1ÓÚˆÖšV×&’ð~Ô¢* òô8ì‡SDQû¯¥I0_…dðå¸&cÙþ¢9¡ß„Ú Ð6ÏüЂÐ+i%±kýC» ý<¹VîíhaVà¡Ê‹¢µÉô]áègÁ…  iÌSÁæ ý4Xu«ß¿#l{‡Šêò-Æ·¬2P’¹¥2Ë¢ÿ›þº¸Þ.'õðÕh5LK€ºeMµr2²§G5\U£ j×ã;çaù>åt¨Ü õOsßéºÒ—P)â\Z×äµ:“°Úôª¹Éº(} ¿^¾º{ª4•ZKŽWÊmÌRVí1wlí½²¥iÅ7ué\G?Ùƒ>Fý Ì ’>g¸;”á³I± þÒ¼¯wœ6ümžŒ€>çæ$P®e;¥ù]×v5œôY9µ‘PŒ *ÜÕøúT2í"]Ýaáݧä‹ÛúÛ_?¦PœÆÒw銔¤rF”×Ëǽ‹eÂ*j×@'¯ýâ¾ÁÆä|óѸG³™P䨯¿c%õ2õº^–žEfÍEJ),ÔÿùÈ“â5*#vH.ôEð¹|ÆmñF¡% =iFг>;FmŸ9mK4P•6 øfœn äÅ!‘òõ¾-Ì0ý¤9n¶4ù6ïñšsÙ£¿Y‘Ÿ§Ã¸wV‰]@Ùnî±Uü£$výš Ex­9S©Ãâ`à-м+D7:B£ NØsÿ[1Þ"* ÊZdŠ—N®-‘Ò9¶´>WDl:»<Õž2§ÕÇèJ.ÄyóͶ}¨ìüŽj/T nëÇ.9;äVê ÆêO ©Zô Ÿ»Í †ÖïÖêdP•¶GŸä{^Nx5]Ÿ<ëǪ¡ýÙ8³›’>9«<Ž´wÄ¿Žj}¢¥ê=õÂì:Ï^Ã|pçQS `3/†íÎûÙwbœ¹†°6äðCÈZIÈ>!‚P“„fdõÚãiË(GÇ·8Á;¬°:Š.\/‰£˜nBé‘úLÊÝ^F䨚°Òo&B¯j³¬çÒ;'¡Ùã¾ýž“ÆkSêÖ‰âl)É@ÌÊ'ÈruDºðC)‹‰v¥À»Ð>×Ò’¦#ƒ·YÎßB=è„C·N9ÆIˆG«àêÅ{2déÈ<š&nž”êÂ>f¼sA‘VÒN¤‚Šb¬;B4Ð4¶“*A—í×™ÅFêõ¤CLa»Ž=àFE‡ÐéÓY|sç‰Á‡ Ï|À>„õuŽN.\ÎUé3NU ß‚…cƒáºÐš‚{ígÿì÷ùl<ý.™F7IËçâ1û0k¥Ç\a;,Õ=ïgNbN©XÙ¨àˆào)Z“¨®Ãå\¹pwéí¢ö†Ùœ*7.Ý‘´”¿ÍMµ(ÊèŽ~& S¦KžN¹ÖÚ ×»C•Òa*–„‡ùÈ=GŽ‘æž-X`çW¡+d=òC5×å2g].ûéäfåÎ*¡NÙßPIzô@. DèjuH†¿¨]X|¸óIÙF(­ k›eÔ 7³a W©ï"YF#ìHÙàhÄ·„`ë:tŽ GÁ[T’J=@©ÕF˜¦#ö[õN ›ÏÔ4ÄäBôy@dy·IñÞN¿ãÓDåÀ"«ë>¹í‹±]eÃPGßF-7òO`Ë8Äø»Sµ)&‰}=Ó°5x­Û#üž0HˆR'w°žý±5jÃ6½\?ööÙ‚®\tǶƒ6Kbef±‘R˜V_?/”'QÔ±÷˜´frÃ6 iãÕ<§²ºg¼d,8ÔÜ5öAŠÎ"ˆ£d'{ï`÷rãIž^NºhC×kŸÊ¿ò…#BŠC ^ß_¸«îŠ?'Çéò?Uî!è ãЗàRÂsQ"¼ËoÂ%½Éx;Џž7‚¢eðÞgRÁ鳩¦®«@\˸co”¯æW|WL3ÂÜ8¯-DÍ«°J%(ãûë§Ï•_Týpþ"OÈA4q¿éÍ Ùs2³ÌÖb„a°?ÜQ™å†~ŠoùlìM·Ã¯prYN0þ¸·Í—X’sÍq‹áEŽlã¤U–´HÌ—§PäâÚ– öüoíKòn”¿X´¦Ø!ìjíÎë·ÙƒÕsç"©ØÝª?aàjŽÑHÄ2šCÜÕðmñ¸?Y5ÉyJP–ú'nÉcPøöb>—‘ŸúÒæíÍ+–!·ÿ°Ø“E-Øøa¯ W¼ï!¸ìž%t'üJyPN˜Â¤X-ڋȼÿËàað+^‰±Ñˆ+!ó"iX]/&.ÕPl'Fíℽ裣5¾{+?êõ¡¢¨:ò;É<ƒ»e3ÍÑäž^B•nÎà+¶ñžF›k+{ïv+¹u¨PæÐåéîúiJLÛŸî#¯~þ |ØëqÚn´¶T|î³NñT÷˜ñø¢ …Ì ÉûûŒïPÑäò¾™A!ù™Ø>-G˜~ƒDJ*}vl n˜‚Pº£9t÷ñHýAºel®K! 6ü”’Ã÷²Ôpkc"‘Îw°\¾æ-åä›}{*½Š„¼÷yw“D?]±8¨ ù0ÒmÅP$[GÝ– W ;ŒÒáUýq ÝñRf˜>ç½YDZ2QÓÊ¥iêÚíçï_¨ .¯£€ÔvDH³ÆFÏ™øÔ[yBëw:°¶\)[¡HnÌ·Öl*lUºùŠÃlâö¾<vÍÂêÞܳ5<ÍàÔïÚÂK³b^Šdº)ÙHß·æ|S”PÉ”»c£åTdôÍ6¯b †~F’‰aèS¹"eœáÖÌà'ê>䢪~}E©œ¡ØÐî¦[ã§ã)ûÒÉZØ«ŽŒ9Úo–1™V³‰ú J÷y®gˆ¿.£SùÝU'ýâ„Z“x”dCz´Na¼òaæI7_Î*í»…Ù&‹ü‡ÉƒÄ⢷Ù+>#Â_NèöÅÆB/ÒΨ'Ê{¡ÞÙ¦ÓÇÓ¿q–p0[¨¾g£cï¨9 ©Ð®žž ½¡¼]†2­ÇU/†‚¥?^¿³@ÑÈÙSÃÚ«ò:fmOVhDúD+(…&ÆüPA²Ó&¢‘ ˜ *ˆB±M®QߦfIž&hŽx×à6–>Öæ¯ð2åZc Ê;<]/dÝÎvòePž¬ÐRÔÑÈäÔvPúøÉYåøRÇ;”ñÈ0¨¬j±öUÁ£ —‰¿2Oy5ŒÊ‘LO, ‘¹/,ber<Ãü ‰ë–£ˆâýîá Ô8ß2›~3DJÁ-§Õ"‰=‹éÕàDøvvB8¡;{ªX2ú’ÜZûZÇ8ëðÀ!mØ>bö{åyjâ¦é‚±½§H¾XyÏÚàn]í*Ë&¸cS9’zâ¢VWžÛŽôœ¾ÛYàCýŒŸÈ¢ ï2‚@ùh¦÷7œÆ\_ÚÍ”7 ï —•€õD×} J_ݦ6~8t”¡@ójDî+Ê`US$³·=cšðfmS)þˆ<ÜAQ2§·0jÙóv%üaL œbÎûOº¸{vrFB×ðþ¸­kcǸÍ(¯J\(»ÜõvŸÂCgèª^8p~¨¼¦k*žsî¥ÊðÆ[ÎøÀ—ìýPc (ì¤Ù:¿¼çŒ˜ï’¯šà‘‡¨d5öÆQõŠþ¼-‡W€=1;-í,ldää1ùœŽ‰–U¶6Їpj'ßωU=¢;#)•Ó†þ“¹ê‚VgãýÂ2É@G $/úËÈw3ilg®5C„[îª%;ii-76àlhåŒ)Q'n±º!Op7Ü^åAƒ«ÃܤÁûÀÌV”«õ3/ãc²“uŸËaŸfD9ξýa»³Çò¬ý5^ÕÝ®­…@󃺙Í×…qs3úvþµó¨Ë¢ÛÉtÅݬ0Ýä 9¾òžÍôÈQÏz„ÉØVº†¬W odâ^Mm%‚ó7¯±˜nÔ%³“nýƒ²»§ú—uQØ7öáò°ü’£i×|Ôht¶šyœëÕ&þ.˜-ž)˜ârõQÚüêx9ƒ¯.ÆÑ¹R©ï%Û®¼wLd‡·ÔÆD™ÈhUÍ “eoÅÊô¾=µ€è[`ÈŒ¨´úŒ34XKΊy“’v“â_Äßîw'aϾ“„ÉwÐîH3A&¾/.Fëƒôº:{þŽ;¹C¬2 Û?ÿ¸w« ù$ÚÎbsáÞèÄ sÄ+V7È|Òd"s"±=¿õîÒ "ùO¶•y½RAæ#„Ü.’ãv­PJbý‰eXrìœïEO[²®¨_ØæÛ×ÄM_ünù!ºÚ…þ–^­\Mu~Y´7óD —ÄÔ^ÊFe¥±ÜÔ^\"jè8§ÎÞR²ïX^‰¹@Jñ°ájå4ëåÌý9¯„®Ç„À-“I0]”zÁf6sÔàWmã}ÀN{{ÚT²e=Ñ‚y@×*½ì×-G¿ë9{ØÎ"Óð —˜|Vóù ç-ÍÜ‚t]ûÞ–xžà:m3t©¢ÃÖóõ´í½2D–…NÅÌ™’é ÛgÏÈqX¸œ:e»úØ~&F¬Xfܸ]ñͳ<¬TuôѬ¯«üxh‚€(ÿ‡|ã’vZÆå ¬\d›Þ®ÅÜe”E¥Ø9ް$)™„ÓpDƨþKµ“ «~Vh.¡ÚO–€·šó„Kzžu§?V8™gÞIYSv=b짬Ð?ñ›·äõÜ&¿ lO˯’âúa½9² ÎSbœ{U ­WXݛߊ#ëÎQµb Zó\ÁP/¨RüXÅFƒä&/´Rî:—qŽèZb¦mX¶/1‘Ë‘7=‰Ãr.ïnðõO?-Æ9ÜÚE0웘p…•‰ôœdÅû¸.i`î•ÁZQÔxZ'‘s‘Gc*þBgÇö3¤ztŠ ¨ ¿ÌÚÁ–'^ ƒ-…˜mÓ>!àCâgÑWƒxÑE`)aNï‡[á’vp›6¯l•>Ÿ™QÑ}dÂ.þÝ}ÉÇ^kØyªâ[L®ÜHŒ¡ËÜ(G÷ƒ247‹ßZÙÈÄÖ$ÄÞmô*ìC0¬Ã 1¤Ëxmõú;ø,†ÚzéV4?•6ú©_/9¨NoB¥°”fñŽ –3¥Ë ²Åmsáu!òœoú2Qà‰*ì?çÊ”Dhø_/‹}ú´Õ%p>´Âˆ¼l£”¤l¹à8öqÏð»ßÉÝxƒ^ô`Ö º‰ ª”GB´þ±÷Šj]¢>ÿ¼GºØÑ5°¯QV¬ÚϨ¤lÆ‘÷‡ÅÁñöLL.µpu^UÞ/ŠåbLM‘üµYÁÞoÑå­ò*ýíTð"l’ÅóÊjO˜HÚŽwÑÂß ýû/²9A «ØnïEU)‡CðE“=ôÈÞ¦-hßYµo Ã×Ts”C~n,DW(gd¼º§rñ 0OȘޜ’¥ø)7VV¼-r!Åšµkó¾Î `ïHèZeØEä¹­\Ò3^æ£[zÆæŠù ÏŸD-bÇ`ŽFl5WÝvµïÚ¥?ö£œÄÐðn‹ñyXW²›PZ*@œa´åö®%-[ÇxA'HÛö,Š™K¸H£ÿ—¦MŒÓŽˆ8¼Å–ªæ9–>[럪ƒ~?c1¬•Ö•„ú>2ÉaàÍlj~7÷öÇW¢Ã»iü· f5ŠüG/3µ÷M¡SæøÆÐkP〠ZÖO¾ÙæŽ*¨¦ðŸÁ”8Ozdʺ˜gúÅžg 5 »em pd¦ä³u‚ƒ¿¼‹„XáF°Áø°h4wE®)(4ú¨P¼õéÇå’¯}A¡×ÊŽŸñ#‹5'Êd„?Gyûæ‚Î{ßç³"oYU¤e _N­¡iGqü¯®¨ Òv_£¹JM}ª>$•“ÊàÀÈó §7}Z\Wr…àR­†G5Ð%SoºƒVuC°ù^­=y…e±ÜIƒ€Ï¤ùí Å,}ØN_᥯kt¿‚úèf4ƒ€å f×¶*¥cpœË"îÃÚ“ ÏØõé¡Åà.ÚZb„£ ÿ4gûBøýmöG²ÆÅSƒ¼z©÷qâ)Ù¯¶~¾vã;ªÐU Åwk•ö}í0Ã4E]<¾ÑŽQ ¢º€¼n<"ŽdòÙ»ßP»Üj¦òßʳ°~@¢Ðo¿i#— ¼]-°$†ìZ½ÏµÔ=SÙ<©kÁl$åfL#Nج ”\Cç4G¥èŒ _Q£|ÙJÖâ¼÷þµãÖ÷ ªuVý™yŠªµØT"Pò6ˆ.¤ÃAµðämï¡SSƒB£ŸfBd; ¯M_¢üj6|‘Hã¿Í³>¾ãU@$kÿå“àÑk_BÇ;Ìç·­ŸRêÐó ŠrÓNÉž=å7‰mvãø;g y§Vhìö¼ùÎ÷ ðêÉ©xa.ÐÈ­Ð¥ð´*©ˆƒG_¡9p>KÉ/ÿšÓiï8%U{«_ùrhYÄ0»mͱ¢ÏêÐtë%!•nQVÛcº}­F~OÆ5ÖÈëv°4ËœSŸ-ãX)ØÍ}4À}a‡bæLïÜòÂPäï®$zeÙ­¡ãW󙾿 S¯Éepèê'鮆]µ~§¼”9öd²cuWº°Mil™þ4C*ÐEZy{ÅóõféÊ…®Ç²*×θú:éýËžHªŽÐ7å¼Äüî͈h2÷I¥„/¢*î6!¥z4V‚S‰°í7ât—Êm…ÅCµ¡S„(E(‡H,åd¸L_˜ÆÂ–••(‚ e4­RÎÕÅ6΋äÅà‹ÂßEõ`n=oŒÆé-²nçžêe-›µËÃÀõц0‘Š"8x+n4M÷>q ˜·C’†ÃØBèæ êŒϵƒ¶üüÍ„¡WÚÍÝÇzð(¿=©ÜV01®jõË%n…K#ÞÆÅk þÚ×'ÔÅKÌ’¸y=M Ôå&ï@0ÛñKJ¸£n8G:ZÐËA[Æ7x6Šô³ ?pŒ‹/ ù ”ïÌù“ÝÊO»Ýwiey½Œwƒ÷Côhjp¡ú¥dµ‰ÔR–tÒ\PÖðÏáù}Ëo-%V×ÔÙÐdzZHû%'o‹¬¨·XŒeÙªä50tľV­ã(öœpÏx;ùÓ‰¬Þùzl´ß¿ %þªVÒ’›iŠß2ôïâ_‹’7ž*,é,•~ðúØUD† ÷-Bš?·Í>I‘MßE–ã§A7¤ÑDiB=\„¦õ‚Mþ©6ŸRý\Eeôæg’-\ª|u1ëT 2žþ•".¡•;E0†½:邸õ•ªN¸œåT­FDT ¤Ñ“Ô‘Ðé[îŽÆ+"õc­£ñÌcõèL9œ.„1ƽ|_ZFnÙÉbߘËÒ{lV!t ª¸Jû* šÃâ¼fÑào’xMXèœ){•85j_‹ÃTÞíq{æðçnˆÝÚù Šp»*ôO01 ëM×ÑŸ¤å¯¹«gún ¢îŒ$¦r;YŠOmö…¡M+¢öŠÐGÒ@?5u¥µ…O1xµö>VCDÓä¡o÷0mÁ-x€{§b«RŠ.ŸæË™gsËëæ{ÕnZ€Zuo¿¸mº]‡åû£—£¬ž9ÛÊUMÚšÿqt¯‰¿xë2œ¿BELÙu(å%dO6r#®Ìå5h¯_çWPúµ2›éC"A=bPÔ§¯æ÷cÜú€M™ú\‹÷¢8œI~Oý_úx²§8uæ‹É ¿]PÖñ»É§k˜©¹0MI‹¶¤2ÖzVê‘Æ¶ SÚ+ZÑú,š~eÝÔ ÿ6ÃJ…º“Ѭfën÷Š”ê>¿}-¨"Õ„ÊF?“[«¼=ŸVÔ^†@Š€/uYÏýa»…¡ $ˆ”Á÷¨s®‡µÅƒ¦¹±h|ðUÈŸ'¤b 0¢³A×·~ šÍ <5E4xÖµÈñÕ5*O/!Ý&æWé,«×»ISÒh¡Aƒ0:Tˆ.„ÞO`Éw–µ)|{âE5lQ»»lèÛQÌEð½åM:ùå z”}­°€¢ìqÞ­–tf¹!ÝI>Źüòc.r-9ë¤ Ê;„2Ío×_K°S³0Ñ Ì¹cà¡’gý\§³O]–î×Ê9k•æŽ÷Õ­7dlú&© ³“U?Ê~Œ½)皈ëã3¸=S_$7Ïð­àJ¢_ù¥Йì>ª¶ÖlYé=c i úoLÛ‹¾«[MfÖ˜×ùX@ÁpÒ‹aˆjnYµàµ#HÁàFä¯ töÞoŸº5ðbõ ežÊ%ݱ,GÊ’i`”|Í—>ê•^†ª±^Çú \‡XþÉú#"··ú|\NËùƒ¯íKØk)`sµ”#A÷›Õ;ÖN3™Ž•ÇBÌÀiíyQK»ªî>á„H1,üÕ”çb>dÞídNþìûÕäKÑiæ¯õé2¨ýçß®~eïlÛ4 †Ùœ”©{ºaÔùÀ÷TSqmøLØPj¦ë¨Ð>>âût8ç–³ˆ“"À¡"1Õüšò&ŽÄçdÿé­äÅ&ó2Ë•#cÊš˜"¹µí åÿÑßA²wÐz®FêW; ùökƺػ˜]A*Ä_ÑæG”J\!Ý]ÜqÕ s‚ûq‰?Йò–Ø´klÚ¿wÄîV¶ð²-¼¿{IŒî\½ÚðnV¾ZpЈ=<ŸÊ‘æâï—v›¤ž€ª¼Jã…JEKˆ&*ʤŽîx%:¿ï‡´±ªý»AôM¶w{n§L4ºÆw’m8{ÐøqŠ! –¾’\–â{'Ã[äÙ…[f­ &Ô 0œžùo¿Øs¶›w°VY1ïÏgÖAíf¸A:k2@[y½âó.­š‡û2,ÿ•rÛùÓZÆ+Þ ñ£sçsÞY‘ÀÖ!§s§A²Ô¦?—ɵÔ{ï—R8ÃGD׿qŸ¬qÛD®ðb·ñwôBùĸaˆ±ǺëVUdG8Œ·–fœ°ÒXV²¤x‡ÓDi9»TX¥ÞÖb|¼q[†Ñܹ7ޝç*_€Å½ê7#ùù‰6üCÈJžÂò ½ºš~òÈ(µéÎb_ý*Óácoz@89Cy§t¡Œï¯GØÊBíÛÇ8t$T[üùú°Èº³Í“ø¸ AØíyR¸þæ .XEÐÆ—)Ê 6Óü/ä:Eq}Ê\éór5¿Ö¿¯zØ¡&ÝàŽíæ~.øáÊôj›ÃGâN?Š\ z dùÆc> ˜,›æ¹Ù-2& gjÃ^5û`s>^œÔ m¼e8™“m4§ß·if±Ô½Ë2Ü.æì†ùõnþ :ÈÀFExHqBšûKí¹¨)’Ý4=QÖÇ~‡ž÷~¶w=1c‚põ¶Á&WÁêõW+“Wo…>Ö,Š 8q ÍkfÚ‹0->ôṵ̀M ¼yžVg¿J$Žð“¥P*rŸ”‚fhýé%ü¤7uä!åóªjtÇi‡‰ß¨%=TòaØÜTñ’ÑñÉÞƒó@4DGÒž,­ë3”cb-dÓäÖÏ+ öÊË;Yâ5»¤ÕvÎakt"±šÔp$zÞo”Qžêß%zÝÓJìlæŒö zB7\"¿%à þTGÍ ï̉þ´SxC9ÃêMY”Ó#¨ÇRs/Úˆ·s¶g‡È0´;NúA±´îP ô#W—ðêIiS†¥ÕÀ½:´øä`]û’…€]Qì×’Ù ¹¯D.~}ðLÝ‹è:MDÙ›Ä ÔÚö½Ÿ[.Y‰,P´\››qÿýGÜC*ýÁ‡¯½lø.ÊíìQÓsuÁt¸NGƒNô«…¿šgu?“…( ¹±êè–îê“‹˜&e;g–·¡î(æÿÄ.Z œ%õ¢Äg¤h!«°Å%x´ëéú¥Fã*§ÔR<Þ ú ÏÖ Ô-ûBQpÃä–Ï^J¬Ç3­&Æò~ù¾Ümé^Íö\ cTx©\EzþâÌF~k"ʆ…cLlZP¦£?ÉCŒBœ£Íõ@-y®;3Ñ>`{ª¼¡–h#%*ÅRû8šç ÛB@ö˜“¤=áÐdLË ˜ñŸo#0nÁ.–ã#µ}5ÿÚs¢_SYž¶'òÞfŽž+3~Qö¬ ¼3ÕpO#YÆiã­”üÒ@sÍí±@á¨p‚ Èƒ _ª—e0mÒ%«ø£Àƒ` rfÌ¸ØæÀ×áì–ïÉ’8lXTÃÙ…pá?M²¬±§óÂ;•:Ìó_ªOnn¿pG†)V 25T-‘èâÆXð‘q}$—ãrƒ ª7§|â¾9·ENVpJ²ŽOSóa€Û/i¶æhËÁ‡œN¶å®u1UY³„ë1{ÅuÁ?_Öp"‘÷ ÄÞþÕÚ'PR¤×šWó@–ùËjH8r­¬ß^!M ŠAÂ17<Öî—Á¥ðôïC­ )©½\ .Ÿål2̪„&û>mËAO–ΰ>?( ³æž eJĶàÙèãO²#q3•W(K×Îlã/5°VÅ„ÔsfAPŠåw=ItËWÓË×x@5V~ì¹³€î¶“‡ª!ÆF3†ä‹—?oÊÞ÷kkÃXÃó2ÌE¦Aϼv³Å¥›^)øò97µâtº]gÑ0éß7¯Oëäi8`·!h´útqoÊov÷AÎYjþuµgr\"Õ>gqÙ#—=ÐéZªh¸'^ë¼ 8²×ÞÌ{b£+ÇiQû¹_D¼P³$;žß—ãï›3gU”«#Ã62mC@R]ìÆŽoÈ—|ð•x,ì’i«yÙ¾‰ L2 í}/«mæ–“0óhߺ8Ù½ºÅó«™Pæ ¨ªø{5³ba{ª¶žÑJ³·¨\·\¨Ã({(®Ä®qúéÑò+{é÷¼ýøBë6f/&ß' éùŽêÏHW²p}gÆÉsæè:¸©Á–{ëš~C.ö¬ë¾$#”ˆŒ-ë øÑÛr‰&OhƒV¡Cµô&_ósù¹¶À3Wß»^ž$  £3ê[ËJ½µ1ƒúíвæ‰Ú¸0®ÊÉdì%ùCøˆªðîÙú7¥¼xb Ì‹ð6ÌuaX“Ql,O‡¼­ÑwF£o:j:ã,l†–ž®´§™ÁºQCÒ˜OßCJÌy÷K·ó/·Ö8Ô ‘ ã,r•ÀIò×ÅÞÇ¥íCº˜Yºß×d~…Y¿Or~nq¦6Ñeêò{Ž”Eƒñ‚¿k±.±ò­w0V;ɤ¾èæç`YÇØévƒ»Î–oæë!Û,Úx˜©}9äÙx‚D‰{6ÊjÀgÊøÌ›_ôRÚÀÕ«@}AÉ)+_ícÖ ìKÒ9—WlSvÂ$•–'‚øuÛӂʨîv–©jéÝF.©”uŠq£qGãó^èT3¶ôgœ]}–6$q1‘ç.åÝ=êWˆ¦mn+ºV{ïbÐ=,” ŠDC‡o ÎPŒa¦h@ä-ýŠ=žJêVn™ءߌüѼå¢u,ºAÎÈ’Pf'²Í| ¨ p † Î#+Sœº•mØí½I¶¤”;33b0qrP–ùNês¢ GºjΖԯ|.œr(ÄK?<ñú³ž¶•RŽ7Ó QW}X›Åöݰ£î~»7ˆkâ4s’‡Ù)Aª@q­‡T‡MÔnî;»ÖÝ[“tJ¹êè„ê—¹*E^z´×ÊpËÛ,²‹C w ¯ÓëÅu׬ƽ¿ý(Æ%ªG\ô€ÒUˆ~Ö¬L”óÛòô8Vj¾™,òlòau_ÍíÅ’^ú‹Jl{ ´„’¿¬¤’‚"´;yRßç>ój¬é˜DÒ•ò[­6 ^æÿª­¹–÷º®ô·t¢T†›†ë†?w¾ å¿”‰œ—¶è†ØX+ ùECâÊ£$µáV÷R>YÕÁrne{|ÑjÆäàþ¸G€Ù£Üð îׂÍ]m4E> ûKfZ$ÌÃVxLÐ+`½§ ¶=8¨èUÊWÿDOÕ#~§Ì7Dßë¯%ö†‚Ècê@‰*FAߩ笾lŒÙ„ ð=[ÑîÌ~/1Å0\`Ž\R³R»›uN-Z•8‘™ÄVéJÜY6õ ú§¾åJ….2ÜÝè[f }‚|==º#›Û¼“¨ CwóíñGíð8eŠŠÜŸ¯Ë ¥n¬P2[ÿƒ…ÇýÞ¾ 8 *­Î—%½­ —‘ ʶ%/U¶³¤y;ä{¾,³ú·E¥Ø8y7»7R’a-_>Y!+Ÿ2Jç?Ðt=nÔ/Føæú»rPâU–Û;XY~6ŠÖmÑ+ªŽWÿA¨Ñ{åèøÚõ3ë!ç}vœíÓ'®ñÑõÝcìήá¹ìë¯ö6-Næ„ÚÓуÀoŒ-HòK¼·?k“Mé>S,ä–mjÚG#ˆ@Fm}‚\SÚÖšy:kŒ¡fKy«e±;÷ÿkãb„Qº®Û¶mÛ¶mÛ¶mÛ¶mÛ¶mÛv?íß¼'9ÉwY·•J%k®9±6¯ÇûÓgT K3lªS”¡ëPø•¹Â5/JÓºž!¢ ç¶qç·ZCtÒ„^9—C“*]yñ]‘òô?ˆoòê$Í´4 |ÿ]í²Ïc/?pPõÙÄ,Öé8þ¡ž.•ö‰Ø,ŽD²G¥eif|A.ÆaÖ‘iÓ8;u'öޏKL–Q%¦Th {Ê¢EK*N]ø¥?»ÑA7ç«ã«‡ÃsÀìy¼F´ KM[Âqƒøˆ:}N(¬…æ·r%Šû'U;¡+¶¨mdeÄËa Ðî)ôòîÞ·‡æB»çïêu;Ô€¿¨U;x%Ëñ†ßÉ]“ I7xáã:¢€ÎE2¥òZ*S¶e8e³ÁË2Æm’ê|/?cnêzöí hÌm±ç‡òo§Z¼Ù£.5U®3 'Óô#¿²ìnETìåÍ]H{ʸòkÙ·³‹#0uõ„€×ȳ•C¹YÛ _DU.5Ü`]º¨ÈìM+Ø^û_âÞ×goh¸€Ø*°³QT\ʃñšZbb%3»¡¼"j½¼†±“{XýM“”d¢ÌΘºB z¸¹—v‡¶Š“PÍÿv)WNÓµU¾áÆ ¹…5ŠìWd…j%=Våý׿ûŒétd‚ĬVæY›œÌçºIßw”T–¼=µLUWÇf±‡iì ØïLä³nÏØåì—-W°w¯ßEh™iHé*5OC|a¸%?x :_;²Ñ¨jE¤ýúþÏB Ùç5l­§Õß‘n¼¼ºæñå5Úw:/Ͳ\Ûsà¯2Ê£¬ú-jó>`sKÐhÛÚ/Èa:Ø‹€Î§Ý5ò ZÛ»â$ü¯¿E³³Ýy«Å+I¯Ê‰XœQ—íÉ­çºc$Â?Ô¢æbõUM‚ÔbVµ=Åß :²r }!8©ÿkzyðÙfÃøøgôï2O üÆt$èáÒ‡Z5W.9L_ž"×Ìæ¶#^Å ¥»;l8^f,JÀÃâ«tæz±þÌð«R[¨£° háH4øË@‡Ê{f ƒZ«·Uùks4ßFjNÌÞÝó1éôÙñQ Ì 'myž¤¢U°š˜ôìÓ4ÛW8w/6$ávÂà ˆÁĪÏ­3’"Rè«eÓí÷yÞ oÿD›”1H¯@êpÛ²U‘»”«,.¶ÚiÁï§b ìt¶¯1ݺGW^á0CÑVžlÝe ®ÈÆâqaræ#wòf+:'ÜcêÄg.ÏØ8™êÈë+A`qwÎ9:†šžp{ö’JL‰€DNþ’^#¯Øí·âwε@acø´£ø%EÌJ€ ù©ÚËR 3vênûHñ5äu…Pf³”tQ9%7«vЬöÆk‰2“?‹þÝÎ8”cp®~Î{¼Ò».¶‹Ž$j¦²®¬(s™¢Õç,òd^ m[M4¾­K<¿2Á+Žˆ}Bº+”#z5(bá.ªõu.O2‚èûÅËDpR!Ì8µRÃRoÝq ‰ûƱA">v¨€D4viÆt,éñöð×Ún†Gƒ]’Óˆ·«óAóI6$k¤ì-6ç÷i©¡þxyúÙ©™ebå`êo†h ˜8SËQ2gëLÀ€·÷É¡­ÖwM9Úh—ŒÐû¡q ŠáHƒÌb¦å§æSìÏø\\gsŠ}çiãR"j»DMÉï\€½êßMf¾Päæ>Œ,3Ž4ªSZžÎ`Zª@›—=/qéÂ|®Ÿ{ M|žÆNÆ“©ôÒWímszÉòü×Á |Œì³Á|L[à3Þä64Ý>ÔA¾¿ ³T1èxE¨ éã,¬³—R‚oãæ§“£Z{OºÖ[¿{«ë`w}ÙŠþT{ÖÐó€¨Mtº#5Ùþ*qC‚EåE¹Ââ„â¿ '0x2[u(ìð4ªôù2q¨]÷ ܈¬½”çGÏ«s6¼$TíÈ „òR¼¢JR™ ƒ£å:†ôøƒò—» Æ ãòèmP5ýŠ·‹ÿv#–#âýë9 ‰w|öÿ1 R:I—)^™4¿ºªH/®EïßsåG'¤¶á ¬Îåf)^ˆ7o^9ƒ¥ £Ê{%š0ÜJϧDP][_ñÁ!œÄtˆv‡YC"“&£‡ ‚ÃÇ7ʇC±:—w—£àϲK½„;ö*9½~QVkø‚X‘±gßœÅh[¼Îcµì¾pÒ÷@€…×àâRåè@5©„Õ8J=4$åZß°%’@{_Öv0M^Êð'“ýKüºÄ¼'¦v23Xƒ¥nÔ'ñúQ¢_F'~”<#dÇaʵ`æ—AJ––¼t`@&)u¤Ba`x«·ºB2Sï¤Íw/´¥g)zX ¤üUô²»£5"–´VˆÜsàÉøxV˜4a§pt…ò.üšq`™$-an„Œòüô‡0¹“$öãö_ypù[TŠA;W³m¼í–Ý'ê?‹‰ñ;ŠF¾Äiorà&ܺÉý£šß = ¢|L¹Ió5ë$ådí½À!Ú'[#†ŒyOÅJ =GñúÆè ,?-M?Õaa¢Ä’¸£¤‹àbÂȯ^ÑwÍFV_Ð'~l.l?b¤9BXDLá÷²›ÌU¸‘û5»Ò`K­ô²q$Ûgø§PÄïQuÓr”O²sÈ ±õÜÚ˜&9˜²ó6ýË ÇùŒº©OëéTÒ±OpOZ‰àP§ÚÏøÂ¿¼¶ò3o#â RÔJÙÀº-õ(p‘ªãB³œÏþš8Á>0ÖÀ‰1”¤n£‚‰(•³¾üõòí@Èy [ mvPtÁÀpºj8ðuÂuŽíõ^#²ÝzÿuŸV–syM¨ÁxÕ«j[Ð2Z¹L0‹Æk!ýY QUW‡g¡¤¢ Ík9¯>€˜ú=öü}7±›Q`Ð_#çáM,JoýKEÚÔ]§“kÒñ¢v„zú%ö{жø‘¶ðù@^ëfÉÉÄ{ÿüþG96»J"sß™2ÎTV5 8„hfjHñ§|¢xE÷CúŸÏPXȉnp+­ºÀÖcÔ©<2jwFy¨X—÷?Óܶîýô¥nw8r° Á8N’VbXÿºÏZ±ê"èñO)¸Ç¡‹EÁ{‰)tnÅ ¡\câ÷³mUJ•Üš‰£œ_ñé ¤Â(r*+ˆ?È­/ #R°Øs”pL^`¶|bpK¶uмm•Ä,_¹oæ¹pUcȘ@v$䵕§ Ij±¼R°ã ·/”§çEXÆÓ^î€]^ÈœN¼ÌeD_}.Cæ`sñ9m—iÒ”`ˆ‰Ã°‚9õpu–aꋬ„úv÷À[úÇÆ÷gLÑÚ“{ÙPr[…n3Ï ¿˜Ëï}|E„ââÊÔÒïÞowÂó 1‰Ì¡àyxMî}ù’t²ÈüíQnµwc®ÿšs¦Í'}ÛøW§Ä0¡©Bݧç0£·MØÞË:ŠLà÷­KY#ã8§Gú¸Ú¿UdŒ¡†£Ó2!ƒcV1?8f#T( ú"þÉúÝê}sÍÀ*†oÓJÏ(þj|“}¶îŸ-€Ä•yµî‚ήТ¯¦Úÿ:"¾rÑšÆìþW:»…ìÆ¾O%ݾùÕÊ”-#“¦…_Rl 5 \Uý@Q¶°;JÆÂGÆö ÜHDèR‡öñ–eñu?N<Ã÷@Ç)¦Éýý'å3L¼Ý=ŒK†ü3\’EZõìÜcøú`Ð hòàãüiÇ;3;ÂÇ CyâÈlÖ.Ë_‘ç•„ý÷L¼€”˜­÷–4c~þ’XÇõÅÓteŽSwm»»h& •ºÆ9׬·QÏQ¢ÞakúŽïÇ:éÕíˆ{T¶é>ÙÁs¨VðÎzÑÐÊgé79…Ê4ß÷0º©ÂÓÒë[óTM™tÎûÊ+<‹9h<—eS˜ò§ùž<¹\x¦¸ˆ‹Ù]Üi”þ¾(´p±áW‰6³Ç\…ÉkX¬×å!|¬ûó|>Bˆ§l^ÛµY²¾G&ÈÕÑÆºg—X§[„´÷W¡G“\ × œÍ°¿},ùÅŒuyåê¡"³ØÜqzÛd ” Ÿxr~ñÝ #• ?…žLtôb÷’²è%œ`®šÐ%4¤ k/¹¢‰B›°bÝïZÞ5÷ðšë¶†ù |^-Á<³*›£ü3É”¤èMÈêµ÷ðeçü¿†qûÑÙ­f*‚X.Eâ¼_¥C佊jоoK\q¥µ1Ä6ôÞÒ‘p¬>éîÐs+"P®nÉqEÇ ({Ūee0ÿ”$½R]9hRFÙÃuÂÄH "pñJ ®•oVYƒ:™mq[ú§ t–yéøR|r9[ðØsy€Ü™#þ…¢â¿bÄAVv ¿Ÿ,Y~›3` Õ5îéwEÒ~Îùt¥€ŽæŽÌ˜¶üMȼ–8»¤QN“U]BÞù0”Ú9è›O†æ ¶x×îë¢WöÚ¾ïº>-ºÏ)å`U÷ÒFß“vöÕl¿Œ"eoHðXww¡¨—wV猳–žð‰ì5 >þdé#u¸VÜÈçÌ÷,÷‡ÌIÐpj%*’.@SX:Ë]îôžÓš°7sn¥03û…} 4õ "Xî’wú˜‡34½ÎóèË[cÙ¡–Ù¸¢0ã oáÄ=a40©<«á~à “;P#³þQDí©Ç3ÌÎÌYŠÈ‘ö’oÐ&ʱãÈÖP›p2#‡5a“¿îß—„rØ04ŽÚæÑÇ}ŽpÃ-Ü\&E§ûâ~VÆ­* íb®C—D¨Ý7ki¥‚HÌ~1¶2„üm5ú†|Oy¨êé[Oˆaycæß¦r™f•wÂGš à8 ´å>c].—’Ô&Ùˆ…„眬Ú‹U*ÍéuˆuÒìñ(î¬Ö•ú•JDðÛb¹úø4j)æØRº¤P´£žàätn¨âàÈ»U“+84cúYÖRQåà|C ÑlƒzóZ^ë›Ö”÷¡|ê§Oª«x~'¾&D7ƒÄwÊaÀ nZoß×õƒ žs‡ÁËŤ«6÷E ‘hpÀÇïª3ý—hCp™×>²¿w޶¡'¥ù{/†àX~Z^åS ‚.NV£ p&_[ÊoÐþi4?…ÄŠjm}Æ»8|h¹Ê«‹y+짆Éj¶¸wÊ×üä³M\qƧ×ÅN ·]»‘ÂlŸþŽŒ:°–¹ ÿµŒuÚÌhY!,½_:4a”!ôo¥ù^Õ@Æ·O¡•»fk~žK¥»´o¸À=ekóÅÃËáÌ¥taÌj¸öÓÀÌÄ¢6“^߆5N¦Ì®v(c^ñU?ðÀ2æ3™ÈÀá”+0o_iÐG vvX5¶ H±REù>ááô-€ucÙÕ }ÀTFtYr±6‹èb°>èSÁ€ ‡I),ûECMôh4†òsuIaHx#„ÇåÀ2jöfB,‡ØŸDyC„ ¾â2x•˜ô@Æ1ªÊË­´ú-rEØsi•0Cÿ"…e³b$"Ç+Eû,êx“R¸Ý/÷àc|Å©ypç²ÔPÈ#5BçÚ>ÌÄ9@nØÂ{#zV*ú»r÷¿30ÑU&_Ì*_ð2Þ´}3ãÇ·ùd]9øIÁ7-P6š-`‹F½r$Sþâ6 ükÕqµ$F>e[XÑ“¡ß¶-Š© šå à ‡ŠÂÖÈìB ¦Œ"µ³œ™N"æeïXÛ äMi.e¹eÕ*6Èé ÌvF8æ{ƒ-4 .¦ŸÁ=ä“Þƒ^~´ªÛ3c–8ž¾|B_0>q¸—Ù.ë¦o˜‘èj¢— GWMħ« n0!Ÿv¤un>]…ý¶ƒÀo+}R¬neï¬]Æ<¨ŽF'³\¾ãlH{êI¬5½^„#¿È•×wORž_m|†±¿HÇ.×H•m!:–Ñ‹MÛÚ’¸…g…ínƒ¯²E/õÆór”B[¬§ç8Ýf8ÊF~4þÅlÈ0ï3q{ݶ-8¡¼gaÄÂ̆Løpî'b?"!¤ï`;t J¤’mJÏ5 ×õ(VO7ƒ5ë>7vÐÚkî:O§ŸÐC"}r'F»ÙY¯·4J݉a!·ÉÁÖ=öÖ¢L‹°Õý6ˆÔÈs@¦óFË>ÞGÄFcþW÷ƒã úÌ{å]B6o¦ùÓæÁo 6#¯ ýhÄÜ•t7ŽZ ¯' õò¢ƒ}èµ´»À²6mÎìÊò ×Ýž\ÐŽêÞ+ƒ:„J;J›0ö~U Ñî%0NçB™Gª±ëPlmU(,\˜šwÃjMêhŠé)V˜§ã ™ãÓP`¸Æ‹.E…c`§¸)‘çÖ åhÚÇWI†ï]kbÍΘ¹…6Åf€U0J)Z¦+øN€9»‹"V(çÂ!çý Ç`Ñ9¾ â4üdz —¦È:è3׆Y<æÕß½bŽrWø0Y[Ö}Ýâ‘"@xH¿ö1¾bB¡™S²É*V”œZÚg†€7PÁ’VI ݸHûÐma™§ÓN_ÄÚRùû•½bUo†§-½uDÁtñà‘~vQ-sC¥K‘N¿ìˆTÐÀ1¥òÊÖòÆwjž„ïw4%ÕoN9p_È¥µ:-ê¡ ¹g°t¹Ñ¸ÃÅ¥˜^B·–Õƒ+‹¬æª…äÁ°… #$Q·ÛJúSeÆ;Ï—lŒæìåÉ©%Y­HØ—íüdÖc¬Mqñäøž0 ?ª—Õ…j®ëôHõ‘Òª¡†Á¹Y*~Ôìí¬ßþ²:O˜xž·yñ×hßÎï*¬?k¹¿©”ªToBÃP?ÏÔæ}OV]ƒEoyŶ5Wf=™…MØÂÀ‡ðdç{ d€¸¨m¥7ú…î‚Ov/¥ÊgÁá…†ï4á*±™ç3á1aÆO†iyäêIïÃñfó=/‹”\s!¡TÏÁë&ÐÔ©8³”šwÃФ`ɰD-¸6®–±·¨âÔEÇwbz·¦³TÆžƒšÅWY_r¼<£D„‡Œ«Rh›¬·µ«Ô’Eb¤P²$DÿôžÀ)i…éZüùñÿ­g*Ñ“†Äˆù’šŒÞ¨+¥WÜ/Šø^Ûl& ÕÞ2ˆ#îeS‚Xí¡½kÕýOæmÝhšµnïzõ½ ­Ñöù^-àiÈIßD#€>3=Àp%4â»ð‰w¬„“á(7¢X­…8¹Çš8 |NÖx…[°´\0¢µ] ÆžÒÈJåú!´ƒ£'÷ÂOj®GFà$•PL­óöÃóýÝ¡Ù~´„y֒ѯ|ñKWdÒY+;¾z@›o¹tBy(2îNd9D èC8Óµ|j¸M¸ŸÐ¢åüF¯Oé½'`M^ }ï ý<:Qš†º¡1E<‹ã&¢¡­­ÎþëÁÁ¢çP²½6Úc+ÑÆ7Ö¸¦a£»~„XëõÍ/WüÍçåN^Òaè½õóû)Ýú-qI7€µ§¹“Ó_oòmÊWG9“»+q¼uÿrì ‡ &8îÓžkO®w3§å²vVØÇxà±P€H‚ÔéBw®z¿ÕC;,QuæîožGoTP|YÍP­8h‹GãY.£Ò7óêÐL8QÉܰ!ÞÞ}µ wêw ‰B.(­ j‡Ìö²:÷ëᨮÛÊDñ†ì/?”–\Ö£¯–l¨!ïfŠÚUÃDÆÕ$¶ÃÏç϶§“¶`¥ÊÀË ¯0´OáPÔZ ÏŸ7í3ÇóÅgöÁ,C[nF˜³‰Õ Üåç: ¶ði N褯 À Ø âÐÐS~@7f–ÜÛSrnâüÍ ãõ‹àãuþ]<ùy”Œ]m2ÖPá¦Ià-­gw±òAL§…;HD=”š_º–ø%!ü¸å½ Ðgd«]g×»CUÀÔ¹q“t××—§^Ú5+²ð¤'ŠÖdHr@”ö· ÙŸý %ǘ0ËÃ_Æx¬)(„nWj^ÊÜÅS%«F„,ƒ`Ùõ:™U&0ÎŒ=í;¸SÜÈÞvóªÌm)ÓîŠM¥°NbÕõãŸÊö£‰êO\¥©¢saËϯ{¡ì‹0nó:¾Â.ózÁ¥º °LDÝ.×ÿ$TýË –+<\SÞ–Ÿ@7B¤Vc3;’ÄDö⪞îU›;Æê²™=)Öó“;ÆïCŸ,ÂQMÚ`Þï¶t~]*…@÷gžôŽl‡‡Ö‚~}ÉYÜÕâGJµ :Önã%w^ü+_ÿ$^RÚÕª0¢(ÈEì!´‰ãÀŒ5û/~Åý2 ØwÒ®y©æ4£5+Ýéüz+òOaHRFj[- ÍV7±òìÍ»ÿ¸Nˆ5á#÷ÿ0ÿ°I°:-Óþ1 ÓZífÃÅžÂÑ ü1=`›@ñ†µTÛcuIø¼µF\ß,Ùg·_ìA‡•jó¹‚U,S`æÍ¾é_óˆªÊ[ªÅRØG‚ 8 Á™©Ó¿»†¾–£\iÜ’¸ô»Òf»wh#´›ˆ½ ÌtºßêÆ³w)jh¬¥—Hˆ< ‘Ùþö‘rÒ.;Áh¸§'Ó¬¬Õ R—ô3]°ˆôûÃ*3ñ«ñE-ùÚ/O¡ÝÅÐæ¤ýA<]ω9º(åè´‡mFŒEÑ›Ž]l¨ ¹ÌŽÀ2"¿‘sÓÐ;œLwÚÁ/Jþw„SP=&‘Qý?nnò+ŒÿOhNªšb)»Œ†ú€~|ò{’Î Fì¬Ïàñ6ë²NÌeï¡èÁ®\ÆBRfؽ2?Wºçþóü3hHBvLÞj¿AÌ…Þéncƒ¬ã#}¯Ì¨…(°NvãâA<0ÒÂSîò–<ôD¬^‰9»Ñº´:°òá+ë&ú 2èÅ 9íÇMHª¨‹ržZ0á–FÂCõ%7ŒC‹ÿ [»-· n& lï˜lÓÅ|šûçãÖqå5£¨cöý}4V™°9ýĸWiä€Ï–+O ³æ_£¯Ž=ª²uêšÝÈB†»cÁÃdxY†ò_…X>ÁDK zå&·µ)bµüc ë},pÉá¹fÔDíU3˜²0 Ë’Òñ'£¼M^AœÌ'v€íš´^|…ûÌ'K}þ+ÙñbðnT›õmȼÝl•šçƒOOœùÒBÏõóz\úå½ÉýL1 «2Þ9!©s¥jNÙ¿ŽOLÌùÒègj—±õÃtq’̦8ä8ÚÖÐ\”LÉÏÀŽœŠ t5r9³ôw\¦h×9X8z€@Êp*`æU‰QS+špƒÖË8dt·É¶8`ÀxLõ¤q|F¦ÚkHy<ëÝ‘sÝ>×=‹:pH~SÿO~‘ÆÒú×s–ýu¨ÙDN§ÐÁe‚@Þ~<™Œó^?ÄI-ÞÈ;Çb«?L‹¨úÙÃä×àÑJ¬#x,¢îlD3oë ÎÍCx5¥.PšñOp§mðâG/3âKÞò«‚±Io<^ÆŸ/õÆn¶ÂäÏc.Ϲ: 9ŦÑÞÅXòén2äK5\_ ”ÚDägë0º²7R´=Ï|}ò™B›®É0_&ï‚¢µó,Â<=d¦ºß²Å¬î&$ç•(µ]ø`Îu¾À¼ýB]™±¹\“üÊÄîí7ø@/†é €Š„@.z¶*'•sB…9Íæ˜Uëê𹉊÷9¬EIŸ£ÃnÝ“káõï»ö.’ JQ*>+»üÝà¿-Ô[*5®¹,ÀÐÑÃ)ˆ×B*}cG²Ze9ý2ÕI•°\P1`È2¢EÀ–øòÙ)-HâT¶¡%‰ùyO±cå$t¿˜3$ZÏËãÔשŽcÎ"š±ê3á ᮓbÒ]µéÍ–ÆÁ,óYô¤{Šï'?çmX.KÊ ‡<úŸÜóœ½òrÇšCi}ì­C¦Ñù6PëÈ·`q«HCkUë?ÊHÆÿæQÅr‘þ59ŸXçóħ¦þ® ™ìH>BÅ+ÃWŽP¿+Jl%¶kkÉÊ£•6‚ü¹rtþ†ðñÙ"׺{jšgp&Ô åãçÉNqV8JA˜S´µáØ™ˆÙüž2j¿¨Í8ËXºÚþ†"¶BgMÛ(–#ƒ–äZ† æ Ð‘?ImÍSÜÅ66a‚8YRž­€ž»[, »úãi¤÷Ü{ŠƒLóTB44“ )´aܼ׎´Ù-µÃ0¶!á@ZdÂb]°luÈŒÚfÌšù©õš¹¸Ëær”üË •¦Ü—!’›$‚×Á†Ñ&£tÀ¶¦#Ë©þÔþ€¯Ãd’ãh2 j蚨æ@ÓÕ‡Ö ”îëy˜‰ ¬p!~áaåZãsÔn…o—H"_ÊtèãÃv!6§"ëO–¹ _¾ [wŠt¶c•$j^ø, 6´é¾ ¡XÝPeBÙÇÿÆÐ~¦}]ÉšÓ0÷†K4H¨ä´þD*Ü{t3¹Tò`¶¸ÔA%UÀ-ÉfÝàó-¨t ¶[è;9+ÜénËäFŽº^€P¾v_+Ìêü ¹¨ÁÕ–[æ¸fÔé!8%4Ÿ ZØ)(õqîLúJÀ6Ê9Y·ØŸî ¸ZùHaI»[è"p!Y©ï¼!•¹ºµU2=Ù×$:…+KfJÞ_Ômw÷#’¿Èñ𧜪'‰`ú‘J ‰Ð xÒš8–cxÁ•4mÛ‰eÌÅÂ4™+¶å¯Ì`,‰ÞÛü”mºmàä …@T\?C‰V÷ꨯ\´D„¹þjÞþüÄRôæ®w±ä–­­ˆ:ÕøNM±,ß”ÙãÉh[»E‡ÌGÿ,cÝ: Ðmp´•zKŸ:Fƒ«VÔvˆþQsKm.¨CП¢FÅ·C‹]²œhZ¶ôâ£PôÆ^Öì|àƒ•õÌCÁXå¦ðÞóÄeJ9âýËݪHB-¹€s÷OdÎÊ£qé¸MSíä뮣vòbWk¬õ«·¸¯ÛôöŒ¸ƒEŽ盃òëNêŸ4ÄzðÎ>˜IÍS%å\¾Wó¹²Ï¢—Ó_U"ÂißÄÏí’"ŒºÝØ|™[Âa<Î ”‹Â§cð@¾nýÚÙ¥ï7á-j7ÜצQâ±N*¦2‘]n&>%ÌjÕ½Wõ7±|Ðy66=ŽX‰‹ó«ók°Âføê¾éu \­[W„î ŽwmèŸôÙ)f`x 'ßW†X)t²E3Êþ#£qìŠRBKëPÓ”F·°Oíg¤u5|¹±£ðæ$8ißö`äõ˜¶§³`–ÍçŽò \(̪v é¦1ûCE®Õ¿ýޝñeÈ$6üÒSRvwlf´dµ6@è†qŽùk§‡§Ñ;0þÌNíÜ Êãë½íù'L‡˜C5&¢å„z¢iŽÎš_ΔRhâ¸bv³û¦¤ o'‡¬·l= G…®þ–á‘À 2>=1VW•+{†LŤ–ÖÑœŠ½—ýê[ƒÿ>lŠŸH;vÆÊô³Nêoµ±& üäÝÆïV¢èÏVì÷ãîMøž:}Ë~Õ¾Dö¢ýâÙh¹°¨2Vt‘iø&žqÕãà,/øÇ‡*QÃR"\Lg"ŒÕZa!Z¼9cþ) Ð•YÂŽË·2kÇÿçÔv{±‡ @ðÕh`/ˆ"+ZW{é$¾Â-#X¢Š×Ô'㱋¾ß01$ýÓ@ˆlòeghCÌ¥ÐýC:)ʘ$?¾Ä=j¬Ð)Èñý¤ÌeZ-f7µ‰Ž@Ïl{`- ‰Kž¸tü¦(œî¼ØjL|Ê—Ýy¶í~Ó In·»=¾·òCÑ]|±õÇ‘4 d|öx¹Ÿ{ëub­ô][dò9hüŸ¨—ˆšg \Ö( Ú®¯«£Ýa©§O2ˆf¢{óÂÿZ@N<ý–pìÍãL1±Šþ7|Õ{„¦Ð¦tV áÃu®*E(0â…ï=$:>†w`JíOè•õé!šŠmi z²û’-òùU:>8×JNºÝfŸÍ¯g üfj…ÑNaß“Üþ×Éê˳'|J†jÚ‰ØÈy–¹¥I|6vÔ)rv¶âÛHÕÿoV @W¬áLBh,ÈÌê~$¬P3j g!À±yA ÇÈ" ˜ I޲~ÓƒNŒ­+bÍÖÃŒÂ=7°—áKRrkÚK/òF’Ð5‚FØJå<ºŸ8ccÎÈý`H0/qSíÝfîÈõT§¹U?mŒÌûj7„O,¼Íçaÿ%'µçáU:ÑåA¡š½M½ù§ïÓ=3í|4‡u)¢šÚig"¹Ó52w¹• ¢F–Áä¼ý¡²*ý‘.›~/aœÍÕwðØ1†8Snð>dž•jÞ]ÍMÝ5Pzq˜ß”«€Ø^L¥òqa áz¨F8ϸŒy×bÊ„ÌIƧM³Œt~ü |hç%‰ñå‘hžEŸ EØ3<ó³¡[Õ—¬ª;ïG^ês†”T>[kßÇœÄ$ß..­ˆ½~ÿƒ¤ R@±W’VfßS„9:*´°'«•*i>4§”Gn¬­uÑc(g³BÙŠ ŠÅ-è€Zܪ:ðËqp¿Â.(tÈú¨Â#Šn‘‰z0Cqw†ð“¿Î%T†÷ÏÊJ뤆`k¤ÿežÑª&?î{š@0íu’c¬ ÔŒ;æ÷«Eè„}¾`YüýTx 1Š{"äw_œ¶C%e§'ŠÀóûÄ©Îd…tÿÏf.£·~#A\Íq·³ö*^ì7GÑÀ7I9®ðõ¤¢Ó+ò™Ëõ«@Œqêf*ü1²Á^Z¼ó"ãý^ü¾ë€Çò½ÏûrqxÚuYdÕ¥#æ<(cµÕ€PªÕÙ·,x6ÑpVÉCØå¾ƒM’ÊÌ å »MÍ·ggËèX–M+ôfŸ'C¾Ó 6?ÿ W&»uà?ÙÖGt0ŠOT¶ÐÝÍ}žÿëÅBaAÉܰµZÜþçIчmJ ] Œa¯9ð½»â§&<AÂð¡ 5jr¦7@nÊNDoíu@Ž ¾©ÅиÓ,‘Ij^ô(:Þ—&ˆPÊßF¬jDÊ5ñ[c’m",ý-ã2ØžïUø2ðÌñYÐéÁEu |ãbP¦ç‹³¹'Ì?†»`ýxÊÒšÑoÔFá|ÍBßL?* JJúƒ±=õf|Ý]•MçóÖÁ»<êSð~3´àÖ)>Œ_Ý"ý†%î ª 2ãÝ•´#·¥ã4öog““¥ï¢f+qrP ÓN,?;ôE}¸O4T Û Ï±w‘þ_èÖÒÂ]¾€ƒæ¸…i^%,&ÕëˆCD²'$üvd)Љc¼ØI« D§Ûh츣 L>ÇÒÄRuIÊZû¢Z'V~….æf Ý|Í2 ê^öb®Ø÷©EÓVRæêʉNÀe¦ÿ$“»¼Óœ Ð$^´ØŽøôÙµ—ZŸ1°d‚¥6™0[kÂx׉Î1 ..KZxçÀ5ê ‘ÀB®Þ”)e= °ßŒ›k ä>ѸýµW5‚UÐÒI±Fìý’”<Êí1RjŸu=ŽOÛŒ–0KÓþº d. šnëJ˜lÎm\ÿ>gT#Õ”¤Çf0ºòZ…Ò¼´½¥ÔN6©‘ VÕ(ö¼  ¢É7ìCÇbØ}ï=< ŠøÕx«V2L¹¢Åc ö¬u~Òwýsìà ==*‡…)bÀ‘¸.ElÍYÝÈvC'õbçxIÓ†1ytGm5AÌ…ÿ…˜Tö:ËÙp*©·FÇ‘þ{Ë¥%Y7&ŒD­ÊT:@˜(»%5YaDt)IíhU£^œ=Ç”v{L%1ç–º+Mêê¢m{^ÛÌŠTqt[$o¦ºQT‚ÍcP©ÒÝ"/²ä.³3î2ž#´à·ƒ'ÜPƒÏCz2ˆ?…q’—¥³(¿¡ó FŸ%îS£z ¢mlHLÅÑñZ÷óÚ*ëóÎO€ O’€J*3u°Ò¯ô¾ï3™ñ´½r¾üúƒn tõT·£œÿ­uy…J–ÅMÑÿoœü4!…bA«ñè˜PA#!\ÏiØY¥6‘h¤‚/ÞÌdì¡/EÆ¡ºBo ‘WEàÙyb™5¶ŠÑßÇY³b óÜë+ðKÆ5Í(zÀ!3"&ö/"A¤¼ß/¹… YA’ÓbÕÆÝð`ì²]rWÅ`[a^Ä apà…ÕVð9 ljwÖàãB#Àn:|»¸Cx?„fUžë™¨‹äuV*±(]²U%¼àñ»¢7 ¶€¥fÔ0Äø|™»83·è‘,›€1xåVÑø‚ekÆåÿt¨É`õ$ð¸ï\ll5¼Êø*IC]ºóa?j1îc–4³Žòäy¼:ËÎ,Ü÷tJÎÎ[/Á¡­ÂpZ/æÒ¥‹®ÂÁ±å£$sà›b¶^oï\à54ϼ .%)æ%íÈ­“¢½ç²òÉyx4Ýügxí¾¶Çµ¤ßu¼wþJÆå¾—l~© þvB&âä?™É`Q&Œ·é%xõ…§Œ½k9ÿ,ÈH1RW|-ÝA;§Ó:øL.OÀü­"¾|0‹B»/ mÄ[P„ðŒãÖúr+C©D!”|S2´SÉÛ+|ÞcÄ ”¯øHPeàCs[“ lyù_$è½Ó^ULÀ¿¼Ø26غ÷Y•ñ½DU¤Z>÷ö"„l*A¯þ&½ùÁ:ëÛðb"¤± „ð÷û vT€¨õ‡HPE[û˜i¾Àߟ朆+jñOÊü«‹NeÐÒb­ªÊÀ2gÄ Fr j÷éxÅ5Wtµ º¿Dšº^¤¾¾À?Ml—4èÏßwë@ J;_G`É J¸ë¨ŒQ›··1Ù¼Ÿ¡¹Ž°,;~½™û7™îµ;‡-áE´‹-u[’ÔÜ„¾L‹¼ïù†£È%O³\o•;-ìc1 ,Ÿ ð2K•µam²ú ±†D83¹o,_UÞ}R‡29LNÌ1‹Ù¿üàp|Ö0ÿOÕðéH™ÙýÚ–›ÌÜ‘M‡OÀ ÜG’ÊoÞ Rð‘ Å'Âv?ÍEqøF±Ì…¸k¶åðïq׫"6§S¶Ö¦ôéPR…ö}í,Ã<,_+ùP۳ݬùóôۿ³ºo*St½øÏJf‘êß°Ppì–‹°ä­S2¯‹ÔNKsªvÔº{fTš3Jé蛤Ðõ…k†¥úádBÕ=‰é´ £cÿåf”Ñ᛫üRãH¹R±;kç࿲I[5 ¹.AöKv¨SéŸ7\Óó6¼©”»­¾Ã¤0¨))t~ðNfX ¢b†ƒ#ôIÓéR¬ÌôñþœvwÀ̾…£˜Ýÿ~ÖïŸi¬)øôhm$®1¹û9·žÅr±>qÙ Ÿ³btÝ2k>ÐÕŽldºB2ºñ 5‰`øÁöërä±XLš=øˆÙ•í!z/¤{“G·!Åc?Ôü¥ºaêÈñIæ‡jš4)yÀܲVg3[ÊspLÃÝPc^Üô ²ˉWÍÿû¦ðÏ endstream endobj 78 0 obj << /Length1 2470 /Length2 19335 /Length3 0 /Length 20805 /Filter /FlateDecode >> stream xÚ´»eTœÛÒÜ!¸Cãîîîî. 4и»»kàžw®Á5$Hp$8˜Î9ß½9÷ÌüÅ‚æ)}ªví½á]Ý4êZ,VÎ Yg'VvA€²ŠŠ³“3;‹‚Ðl àdegçF¦¡‘r=ÀÎNÒ@ €Ïàféñtp²³ Óä@N 7ˆÒ `á Pyµ}]@zà_@ÝÙ݃ÅèQƒœlÀN ˆ‹”³‹¯ØÆÖãw .–ß‘~{K²–öÎÞîö`ÐÉ  ÈªÂ Puö†Ázg'€Èè` p¶hƒô:Z2šZ9M5u-VH`-Og·ÿã"¥¥­#Ç –PÕ–€t™r:ZÚ¿jƒœ üm˜ªÚýï<Ãßî*2ÚÚê2l¿kp¼@nîàßiÿÅ ð‡ÄÕÚÍÙñ¯z[A66oooVOwVg7V‡¿øiÛ‚ÝÞÎnöÈ«ÈôWc<¬ íô°ýà÷š”Á– 'wÐo'Yç¿•ŽVBœ rÿƒ4ÂãwL‡¿Íî Ðÿ¤±ºÿ嫬®® p‚<@N@'Kˆ¡ÐÃÓ`þ— ò ²¢û›  åéæö;‡ÊTnÿMóê’ÎÊŒüÞÿ^1 “§»ß?zó¿e[:;¹ƒÝ=ÜÿŽXƒ@¿Ù»ÿ^3°Ó_2 UY-meÈà9±¨8CºãÄêáãñ—õïxÒÊQäãprrØ!C*ãd%åìèaíŽü»}Ò`HŸ<œÝ|Ùþ=ÖöNÎÞNþÿ/±5ØÉÊúwß­<]ØtœÀ®ž éÿ3†ˆÿÈl@vÈò±´eûì¯Yù-æø-†4!ÐßÅÙ` tp‚­Adw àáæ ôÿ§â2À lésÈVAþ+º‚“µ3@ào1„ÉTÿ7ômSȵrvrðX¬‘ÙT= ã@ÿÿÏ.ûW.YOU #ˆþ_ý·Ðìàû?†ÿ²Ðý¦J¯êìætø—ì. öY©ƒ=,mÿjâßâ¿3I8Ù8€,ܬì\¼œkt~ï(ÈèBŽðïÓ ¢çåû—2•–öN ww¯À_*¤ÿ¢ Y€ß¤lšÊJÊòÚLÿž›¿¬dœ,­ÀN6N^ÐÍ è‹ÌN€?dª­@>M €ÕÉÙâpñôX;»!ÿ^Q^›ÄoÑ߈À&ùñؤþ ~›ô$`“ù/âc°ÉþA6¹?ˆÀ&ÿqØþ n›âá¢ôA¸(ÿA.*„‹ê?$ƒæÉ õA2hÿA(z¤ƒÿ"ˆøA2XüAKËÿ"nHLKÈŽÿcÍÁi€Õ? ¤ @AëÿBAk°×=Ïoµ³§Û? &6ÿ€„¶ÿ€>ÿ!Äíÿ!Ìþ!Ôÿ@Q§ÿB.H$'OG‹ßûÙÆéVþÎê…„pvúG=Â.‚@ò»€ÜþºþëÂû— ìü¦p@Šrýã©ÉÕÓrôZüƒ-Dú>p@ø¹ÿéÓoòý!Ê1wûüÃ’÷ H±ÞÎÿPC¨zþYUH¼¿®?wKg·–©×ûä„DùG NHo|ÿ é¶Èíïÿ»Õ_aÏì6ôÿÝía-7g{Ø òwÍ?LT€n`#vÈáÊ‘C¾þó›Éÿ$ ùs/üÃ[RÒÙÇŸ…[€ÀÂé?¤Ïqä üWË¿oÙ¿ÎuÈÁóüûŠ€@> KäÕegK¡»¬Ö¨A2¥³•p4¬§Õx¢úŠ©°«9³ÝÄÒE;” ±²Ðö\Ú2geyA“ ŒP§ }š\‡çÍŽ753WVâ»À • bt‰‰B]V°\••ÊJ†#ŃwÜó¹©d‰c)îÞûDÎéÌŸ™”Æ•ëÅpÞå‹m8nX>+¯‰>¯Ì~„òx¹ÇINH¬2.˜—DáM(»ô÷¾6dÊ*ÑÖ?5ÉEÅ pÇŽ®vL#íœOqW"ðÊÚ>z1u§ô ŽÇ—6J÷lÀЧ,Å, Èe^>(*¶—â«5çz«PQé7IÛ'ã䚣¸ó$s•¼qárTAÛ%5õT™à“›h;˜ÎD†–ê–êôPåô¾K:ï•ÍÃàë'™«¤n 7]_àÕ›¡€õ¢§ã¼†-êä Â×4ƒ±YÄ99(ŸÓS‰ ³tm䉴ᤂéãÌäã·÷—ø©:ˆh’Œ»|Õ€kñtjg}à¹±Ô 0î(ÍŒ3ç±óUUŠú¸Æ†7^Ë^‚Ôˆ>ÖÉ ˜ûqÝÔ× Ü¥;O:0Øõîá´)ä9$Gij’ËUãV¦P0Ç“pm¯+C$gaM9ƒA¥×ù=Øx|Ϊ"®~^8­€½yÚPfn[SØPÀj¾¨öª…péZñÙÒ¥šêÖÊ““¼u¤:ñUý¸ß–¿QKTX܈.úèëïÑ”€ï¨ÆÝÛ•Á¯­ ð¦:04£âÓü¨;¸—+³Ín?@wÉéï"´l¾ÓDåî>FøÐ\Ø”GðLÍ6j°èì‘ {¨¼RÖàS à"Ô ÷´öÌŸËPk3ÇdÔå8Î#Dð@”Âˉ-ŠT @ —ÿ+9¿ü‹î%Àb+-s7éøfëë/ Œ7 ˜ÂŸJÆûø ?æ¨ôNأʹ²Ùa ,fŸÇ †Ð$Õ%e^$?ÉW„áZb=ÏÀ_t:ð¾ôr7?Wø8mvŒ•¤í§Q#d‚«¢‰¿C·z˜e„jHÚHÚJÚZI]L¶2sT‹[L¿7vèÂσìQsµZZ±¼zÊÞk $³Ð^Ùˆ3ä©£ÉóËp½±&,†ø-Ký­®%-ÓP"Ú;ú\,[“@\$s'Ä7é»m£¥=9MäOhitÇ=@Í ¶07A#¼‡cd*ý¬½ÀŠ;ü^I8¼ò;‚¬/΄ìÍÔñÖ ½N¦T¾‹Í,‰„ŽÚ0¶…®&ò÷Ô2Çè<êh°VøÖ´æ†Š«ÙÁ½0ÂÊ4" ±–n[°êÚògÜÇ>b~¾@JÍäÈqþ÷PZ0—¯[ÞÃ'áù;a†%dQ|8Ú°Âq$º$ÌÑ^Y4H Ìâ>H+ЩËüa«· %OÌø£‰Œè—Ußm“ÆE<Ú¼‹´¬·ðF¼ÒÅû„s¼¶…3ölj ϼê¢äd{ÁâMèçÔ²È÷†—êµ®~Iûì^$©6oUôó˜¾ÕÅH§Ò¥¼µÅJ•ÿ´v!š6Aã Œn6‡Cmº®ÏµÜaÐŦM>}Ž¥z ›ÕUÈÓnöQ¹µ§K™À%ç‘Û_%À1  ܆)$µ6u•ë RûrráÅ.4aµï¢Ë3^4­¶ü `e£Òˆ”y§c; ³iˆÙÕÒ¢v[!§“Mn}zIìᑨJŠhîRøàv•O‹~[^áÅ¡sð‹;{2TKõßᤋ}ÙàÜ]?œ.ÈÔõ|\;$Š2çËP†èÙm¨Î\e“q0}l|o».ðÂAZö¨I¼RÆlÊÔKÒ+¢èÀ3—v]‚Ý×ASޏ^eó¡øº£Mq»£Ó.á”æÛÇ7ù³oÎGµ{‘ · ÊÄm%†ã®‹©ú_óÀÌH3gÿÈ€Ã6ˆäÕãc“–}öïÓy˯¹dì8¸bO§»®pÉŸÆ ?°aÿÊ.¶V®â»Ô­g9‡K4¥=Û×À´´-_ØÈLw5$دš!Z$é÷Ÿ--(cyBbÌöÎáT ÷ø¹“µÜmS2ëH’sw–ÍŒ†×”$g¾ž 8r¿îÉ#0ŽNÇÙã\‰)©TI¥^ôÏù%Ú]'MÀ=N¤O.=ðÂ%çÕt8¡(õ“3A]•N!;`e–ïkÊ5a§’ÝØi•­àúv¦g«–lŸv×ÌÏì÷ÏlBéx¿$¼M®~ÆŒkø:Rïê½Kåå×§kËFeÛªnèÃÅxœµñL‘dÈc ;$¹‡ ºrØý›‹Oú¢ûœQÒÆº"ØÅ†Ÿd¢Ñ^©Ìühc‰+ÒfNÙUˆMÚÅ^Ίç0s ˬë=#Œ-*,Ìå×)šuY.~ʸu.J]6x“=£TøO4„E~ÌC Æ|ç`d¢w©{âǬSÈd£ùúð}jc)¡-X¶³ÜÄ(ÜÒSt4û­~¬v2;nýæê‡]‰'ó_G£ÉwßjÈû ÓÞȬÉnŽ3 þ§~éÍÍ”ˆi¯*ŸHbyÐÏ|”ö"Øf=‰Êª°Äß k„Ùi÷äšÅúg¬ÑU•…°aì!Á- ^Ÿ©‹ë¦7Û²0zú:)]b1+¥U ‘ eí?e};Ñ<Å™2õ1ÂpÑÙòö†Ú[Úš—a€ËÐiJ¼Y“v¾ì/¿ó2d%;ì"£Ã§0`5ÐÏÂÙÞ‚¨^^Å«u‚̦{ÄËD*6>®Ž@¸;C_¨}\{7ž tÓÁ ¼D15‹‹ËOµ \œ(IWˆøÉc÷µÉ.3œú¿4ã 9¡h&ôSLÏMŒ(Í'i Û©Ýù§Ð xÂ祸¾]‚JÂFGNß(f×gfsÚá R _Ñ(7ص´vÚáUI ïCr9 fšOåHEiØ6Ý÷êØâÔÒÌFº^‡a*IéÎÙÛ‹ä\¬–?å±-%§Va®ît’/ó›ÙJ }SvÉ[$¸€©fv½€æ JL0¿S^« Y.§¤ç^¹}+qÛc8(ö1I0Ç䕾ò&Yœäk5±Ö’=OJìõQÙ+»6µøÙS«´Ñ ^mÉ™coýŽ!-þ=-žÄ×ÎÍÑ´¥¤¬¼ì¿HsÉ…^*‘}üD_å¿C[7ëdêH3ù ŠÀd34ûºY½§tcЍE^cUèK%{ñúJù\ Ⱥå}€)ƒ¾‹+‘ÛÊ G¶_ …†ðò« Íp¢4e“qo’öÓrŠÙº¡˜+IÔçž±µÝp,wgºaé†å£øÕ«-†DZ™ †7OlÊPð.q€ži0OxQ]ï Ql¸ùfœ_EÄòšó£êý!Ê–¼åOy ÁìOÅ"ª‚¾ Êíº||³C+¿!¸§Þ´2±\”Ò¡ÇJú~õØÎ“ d’:ƒxb„EY+ôŠ|o,m²af©àäÝõ:3q;PéNS ‡N¡ûžB.fÂý[“TM/"Ò÷ ì½£)ñægåÜs¨¢°A0÷Ç3‹£ —0„áÝžt=è»ÒTãš4xho>õBLú7qI_¢.á<>´S½ò:Æ÷^’Ë~Á`÷xÏÂ퉧ò±`•8¶è.MXÄN:JÉÚè'ØPz‘ê4ˆ€µ*Û ÕéIÚ±6]±–$>BhÖ§O´ü`ákXËX‰WŸGñ5Qrí•%aU ˜ïÝÃl‡…NòÃÌZ‚rJüòÕCf®’¤ a³nèG°–•zÏ1Û8ïj0Ʀ}ù8+¦åPo—Êë(~u‘DJ0Ý\WGª.€[¸% ˆÖÙЮß!ù_}„wCŠ|q ø¢ø(†üî¦Â%zØ_‡ðC ¬»†\õÔ ­E#ÓZ:4WÀj"9Õi‹k²Ä äA0CbW? ZC¹Èt^<áÚMr'-)!|h.ÐW{Íl‹’ðÃËwA1µòÜ5z³ßx,kØr]i]Lž9O IizÒÎÃã×FÀ˜ØL¤co ì‰Å§G,é~tŒ&éVë%Oé€ÓB:ã¢ð{â¹+Ñ—A£ÒxôkÅ3Ö$®êíÐwè=Ù‹É£ÙéÖº_¤Ú‹$ûÞŸÕkÏdz^· |E7­"†q ÞRJü:±ï°%¦NFÝýìwÎUجspKÀBÞdy¤Ùk¾–syÍ?ƒf‚޳–ƒ×ûü)P»˜>£U?àx}ü"Ä(Ɇ7³SLü1*gaKË'-±© åÉnåqñp,§°Ü›éóЧ`+ú½L¬—ŸZð¦¬÷˜å×$!äl’- Ɖ[ï´“;-.œJ›kò87q·ýqm1`Ì]'¬-Ö™ üõQæ·í Êó™H^Ú¢ÖÊóæ:‡?ø¥ ˆbdj‡k~Êu¿ õ–}Ý}R<*4ŒÌ8Ž(ƒYŒŸá‡÷Ðí9ÃÈm ´ô fÅ©ÖzùìgÑvü8Êxœ3ΚŸ±EƤT ÌäÞªö\W,wr¼-þúžýx8¾¯¾åQpÈÙ6HS¿µÝÕÞèÀ&ì¼Ãª¯„™Õ4}½‚íe“ÈO¿N´ŒG:µüè1ênéÁ0!s"ú)±Ï`@G€1Ö@×p§uóž ’ûÇÓwçŒö‘ã„וs€ûtµîy¾f’iÜö#šú" èqg£2$[ !¦>>Ü-YS¢Zü%”Z£YjyT1ÃÃp‘úÍ5Ý$¾öâ½cAù’aâ­ãÿ«í+Ù; Ü7[OÁ"ߣF5T±¨)4¬.Âä¸Uì臒^¥T;³½É]«/j±Ú¼5IÜUöœ-¯ÄLH%<Ú—±X› \ú×"°YÛ%„G@‡À_^RÇkkwe˜TwÑT!PH­-ŠOÐÀhÉÅs­ÅÛj2¥GnÿÆìyìGFYùþBP&æüã¥,Nœy= "Q¿ÉÎl²f ôê{$Þ‚îÏŽoäÙ^]`s:^7û›ó»¼¬6‚˜£+]zç7á j”µ¾ Íª™WwžL¿Ãb·ª)it%­?”ÇÙÑNK›mÁÒ˜ÂÏrðןF®f\\…é1Šp[uù®Ñ!=&aV×Ϭç]Š_ S¯}õƒ'¡;O5V !,áxµÿW3ºU¹ç6BømaÊ)3“”Ù| Ào¥/ŸOÅhñ< =‘b¬Î@õ.Tûx®¾öxa)OEÃh®.¡K/މB„Æ©Ñ(毳û~RçaØ;UÞƒÛð¦íÕþ2}ÙC[÷11†‡¶Yê‹Wø£v[\M5ò•œJ©A‘ää„•Bp!CgQõ¦•Ði¢?ßÎ2›áç5*žKk[~4a&~A/{hlA%)±¼wÚ ÂXyÆ÷âœ9˜‹¤5¤Nk„®gŽ–Ø·Ù0qØY%nºÆŸºq ·ä?¤\?’c“˜Íï~".íôF …"ë–Ê÷"•° ªä¸úím㶦~Ymå‰jàÆ¼s)Ó<Üv–d¬ŒyÕ¿ÒÇü±ˆŽ„ KŽ%˜ùL¿&ÓÌbi3ý¥IEÚì®MuÇ t@5··"ؽ+õÍÓ¡çì™í:ý©(4 ‹†œþOá˜ç‹j‰÷¯kÙ BО˪¿Ÿ ×oè‹Ðª_I7´Òy9k$ÅŽñ•¼ù„q,yeüpØégñ5ŸµµY#îŒß‚s¢›©/C7ì0ë0àØUcˆ·¤¦ÄøEQ²â’[0›èý™HK•»¢ÂþLáÝ—>žë¦æÝP2=k³™™Ð§¡¸´Ìú]Yy§šŒU‚0­nô«ª7¾Š5x¯˜±§¶>_ˆÖ)ôàÙ—®ß‚ÎaàÆt¤6*ñÆJAò¤a?fÉSô3ïüvú™ð å5ãi‚²ŠÀáj‘ß ¨Óbùš&б²ˆádúm¬÷ï#Þ†º³°†ËgªÁ·—äW+ñà*à²Ü ÓIŒyÜã2'éÇ[©§¼ ð=—ô(¸gLÅã`Ž×šª£Ùä;ÒJ“Ad`Q½o!ý3ǬZsPðu×eÉO ZÎâ9¡°\þ¸ÅL5å]£CÒþ«%hÕ{“¡3š „À^δBß,-‚D›ÕÖÒÝÈ!ØÇT/]Îè¦.Í+5?IÏu)j~)ÊÔl5Ä˺‘ÙJǶúÍwШ|²Š¡'¨d\gjÅz͘)É'hE$W•ºa~f-qT7ê[ÁÁütŽðLëÒôžhð»ÐM•H›´ª ¯1bçÄÇiòç,O¼¯UËvʸ{×H”ñ¶Cœ.õ,‰2==š+1uеjý õC=ÅÎcëÅœ¢h G”W2 ÝÅ@‚©øó¿H䮆Ÿ˜Uh¥£tòÞ±tŸi–’œlg|%É^ÒOåé²á„nËpMØ%ž4!9$Á›†W}GúÃïû7²üŒVr ñ¥ l£\ÕJáš–Ðj9¡8Ñ¬ó¶ ¿ªÁ`½Þ’Ÿû‰3…M&2^õ—ç+G»è¯Y,jPX/|®¿b»V$Û<-ºNH—Pºï=£ñ!ê|/1Áç¥nö»ëPØêŸI}™Õ|‘ õõÂiU-r c¥s;uš” Þ|IõóH3"zü@¤sw¤ô-/‹‹k‡äkuNK.†Æ«J£Y¸¯°»ç:6tmBeÌZ”/6URróSèz2/Èoߣ ¸O~#ÜÁ´½)­«4T@½ÉŸ,ºÐŒqîQ‹™±ô%Ç—¦bE^ãk;5zøôó—k¡=Ô«ÁáNrë办zñÛŸ¨®aæm—ºïýYÑûã¯cð‡wFR=Œ +)ÕUÕ ”ÒÚ&†“Uçe®Š1R¸áÎŽ/¾‡TUk}žw®Mž\Ñ%¦JLN3 ¢qöùŠ^~2­…æë–#Oæ ã1Vs íj$›¶-R×ú¦[ó‹…f"#Ñz‘%‘•nD(ÿ”×Ôlµ‘e¬ žØÞÃâ-v(9X†œáAù{ìªw´˜ô(Få°¶}ÝŒü`ɽœObéÒ‚9¬–$·ìœ@Ú´i’ñgóSd¡!á ¿æçêî^µx[ u"ØE™»›¼²4îì¢æ½ÐCV»w1›_2jæ3É¥J'Ú:Öh ;gµüRažÇ…uÚ eÞ¢¯ûdí>A)ƒšŸÌÖ]?nWп°•½T`1œÓk+öq¬£Ê­tÑÚùZ»SR™5¦ÍÙ΋“ؽêz ‚R–×V&}•‘ˆžpÜè†0'L%àœ¦7iSמ‘í:M\žÝ0>dHœ£‘˜-³Ì£ÒÈSºŒgböî:ÎçæŸúzÈšM£–¸®"Ìjè8`s9ŒÅÁÞ•oD2jK7wØ ÓXS"oñý¬´&µn¸eÝ)uÓÛÔ0¯ã˜?îרN¤,–?G8—o Ê€G7ÅÒ'ÒIQ½ç„©bx‡ìõKÔê·oËɸ‰[8q¯Bí=Û6õ}î?ãû ×2>ƒäéž%·NZEÞ „wг\Ä/Y"†Z¾ù@üó)-žî…Á©]y…7¶%n]‘}4²?ïK½£³õcY×­ñòlÜ#“o@1}gõæùŒJö³B2>Áãp8ðž×@–•/hUÑnG–M#ÕðØiÙöyÞ‡7¹SŸ,7§°"l¹äÓ®möLa2Ð1þrœCá‘)iÞí^Ÿ\FW>̼ص›dÕâ_õF®¨Ì´ÁOÊrÝ £íÜm°{IkÏ¡û_Vèø~9Ø“qÅÈ*x¨ye’ì&·øÒPë® ¤Þ~Aåqpg6°¿È‚‡|½ëo›¨—ŒŸäúKªC30n¼Ìú6”+s©C^f%ÿjJwìsZ¦5Í-{YØO®àÒkí)Yêï|‘¢¡8Ó§á\ñzù0¾ÑºaÔ.î ØUªfyŸìžNÝv‡+ÓúU)ÈÄáEJCqÛ×M|¡|äåÒu§ÑeGe•¥F²EõèÃlŽðœÖÜ?Ó€ß/éQÉÖZw…´S7¨rÎÀ3~å¼)g•GÐ3y;쀆÷…Þé³íÍ^.Íþׯ×Ùàò7•Ș‘y1ü7$ªOžÍ\Ó‹2dEš vq×ûß|v´ª,ºø ÎøÚ×ÅñFÌ;õÅV{10ÈàL£2 ,b$–¬×ßÖ( ˜$Oª£žx•Ù /ÈÚ¹¬Æ¢/7õàÔ¼§RvHôd䔼(àwXÄ5IWª\´_jÌzJ¡FÞýŒùujj™“3°8¹c·^±‰¬\é+¨†Ü_«œÃ$4œX›`6?ÿ:—f¹·œ6}:õ'Šè<" €×ãx‘¢÷›(|4?s8žO‡¼qàõ­6v î€Q3öÈCÈÐ'˜PQa¾y×O¡ú¡V»¯ô"c:*.¸Ðx‹®F˶rØÍ1sÊ\ja"qaÇq„ì}xQšÎÁÕ—#÷Ô¢…†©´Àl“èDu_è£Bm²GŒ—È'id ']ÕÏ02Šæ¸UôäKRÖ¸ú¦)Û_»®¸À°ÙqsÖ‘Í.>\g¡iUJ;wáI÷p¤9èƒo_ Ti+v™ؽUD¹¬°/¢J«(‚v…÷ÁC"°ë|ßyªñÍ—dy7á°~EÆ (¼þi³IýzúûuV(¶‹®ŸovtÑDm•mŒ‹gÒ~á½}¶üØžxù{îšÒÅP)<$׋ @wY}ƒ@J0FwYX:Úmƒž‡Éi°%ýĪ™– K’”{0_FÊ8æ#”€«`Å:~=Ê*,ïÝ^_á°Œëî‰×±T¦ÔcYè·wú…n–•Ñ ·r™"¨¸^鮎—ÁüI«Éê ±LãÆf¼È4ª«‡2”ïXXJ@Ò [S³"Àéuùέ>[/öùhQb}ÕA'ÆÁωnn+zÌÍÛ±×FŸÀÁY–Wâ'Z ®Å§53s"wcÁñ”tdß5—„¾ì9t¡À!ùüçnŸˆ_Æ¿>“¦å1o»:bŽ(d)áJ—!A[°m—šŒ.ë{%™ÿŒ¬{A!¬k«lÑïR´„”vÝ"‚Säá;TLʶR¨£®íRsW“·ÿÔš¼—±¦×òKu0O3ö¾æU-DRLƒ&¿Aß)PTs[«eÓ G†´ÙfU½¯ÌWΟod Ëâ¢% ¥²p槤Uùë¿3¸T¡÷\Ü?_À6yïx´a¨¤f²½`«b;ß`Î8…Å?ŠÅ"M¢u¢'œ¸ÊäÕ5gP’{ñäu”± n™½¶ïûFZ¢åÝבm³Ýî¶Â¸p®ƒ¶|Â…Òªçf¤?>ÓÁEv&$¯(|p_ž&ÁÏò‹b 5‰6ç»G#yb´WI§[è[•÷í&*NÖ+’}µ 'Ñ1Ÿ¿E–¾¢Å·=*¬¸-7=˜{`$Wí?<='lªã² £tHëÐ ôRôç\è-¡ˆ~8Íh¾a¼G§¼BæÄmnÍ®yûF=‰C™V©‘$•Ç`E5™A³bγ®TµÓ½+Ù%òV]ká%¯¦'õQžféœe úÖUľwëpKÆPý‰H‡”¾*É&:¼Å9Ë3uá­ Ûìà°¡.ÊAÏAjþb*Ò×7`Ï^Q_Õ߬Žî û+~Å&ÍŠS«,ìŠ×ç&^nGá÷}39^ý‚Qç"ßo­gžHÔºçbL2Z_ÉÏŸW'2ª6e…½¯ýŒO™óÓî±÷‹|Œ­„`i]ËW‹PwÌV>kã¤o[³nâç9 /Üa5 *ŒâîJ,¼wL©4ARY«Cd.Uú êï°Í'£`½?°wV¯×)(«›gùÍø8•Á h`ßtqßâ&R({ÚO TB=±9WÙG‘5ï}5ËGRñýþtµ¡ª’ꦷQŽ÷Ùí­YðÌÁ…òëÖeËíyµl]Ù²œ(2œÇP­Q…s´ýÓðè„£ÁÌœtÕφfhŠé­ºÍˆ®óZq2-k_¿ª·¬g¶tÐÝ`[õOð/–¢¦r}h‚‹P\›uÐ'Ô_vH±6³Â%j{Dž9ËiR7¥¿*ÎÐØ€¸ÉrÕæ½AŒhÕÌÁõÅ•½VB”ˆýß}þV¢¢Æ!œÉ¿›aYÊäŸùµ ïv g…Õ™K@Âk-_ÍtújÚ ª‚¦eÚáî>ým&b³4ÁÄ9Á»Û¡ìÜ¥ÓµJ °áež‘£ÿ'íx`=>ˆQå°qÁgo÷¸FµèSM ²e/ùGª–1všW —“u;/Ý5'[ª±Q\C)FÓv·9ÏìA§•cÛ>6:‚¾ák|0*ˆÏ€{óáLNŸ»éUÒ‰£ç]z çøíõ, ¯¨ËÌa(ó²T|žN{õ"U­Üªt¯c|xM0,o ìt¾9š·$£"//Ðl÷“]U¦ØK8ßìö€'±˜—B;\YZà×G6“Þ÷¥w°µ]TÐ _V”v«´¸ëK¦Ê cjœ»Y]2a«ÌksøÎÇÀ•ØXv8‡“ï­*v)EBÀJ4•¸IÍúI¬wýúôo|Pkò’9AvVÀœº¼¸Šõ¸¤¤å„êÓ'‚Cã‰yèóªóî°gûå§b{îqŒsßôIw­»#oøöŠ_ÈBÛ¾³¡ãGP=[GO_'býe—ûÆŽÑ…Z÷Qø¥Ûß t$4Cézm3åeß&{ „°7»žâ"dÕ:±S–‘±’Ƙ•ìwš÷JþâÛ—ýìûõ¨Ä@ÙåHê1Ÿƒ«7Pjqu!k¢|+sX3úX14o{¶¦Äí±àï¹WÉ;Xså4rZÊ[ ÁÕk1{ç÷|³–A™×C‹ß¨¾(>¶I­µRP6e:¢Eï÷å Ú%•P:1|/i$ˆ}Õ±ÑÛá•ý.ë©c,C¥M¨IQsºá>ži¼”uàÙn¼öH2šª’Ñø}?Ðà0¹»7É6ÿàÕ{;‡O;E²ÔŽžáÄz£ð©¨{KòùÆs’ ³BbÍÌ’ˆA'ë_óŸõ Îe’¿—4õŸ˜<ˆÆOŒ~œu·‘ëPZÉ;¿ßÆ•~†k,$â9ÁÿN –8½ø‹6Û”ï䬼ñœç8·áÌ/|(r0ÁvÅy0DÏzâ°4]4Ãt¡ÈWÓiã»a¨©C5{22uÔŒM ¨¥š8qJ¹]ø~,w &>gò^ŠÍÒ˜85­¯œ~”bÿ¾X´Ð‚âÔ°-¹0Tµ öÇ~ûz":)šûs&¶CCqË·Ä,ûцâðúY×ÁÒÀÖ²ýn…½íÜÔ8 ‡œ œY¼i€éÿ´òp[bkF«QÇÉ17,ËO5ó4ãîø‚Î«Ä£oWÄ…Ïõklûq£‘E™ùYu×_áôÒ@=Æ$•Ýø¡Á“ÐhÍK¬á³ÿºkg•¤¬Ð=ã’DfÆz½½°qîËmêæEöåaM Nw/ëêP&s¦¦U¥SëuMéd!›]îzàÙtÔû1L ,UQ/–|osëÌíAò÷y˜¾Çî9­kñU-.´qW&ž¾;¡‹:¨ºÉ€ò‚Ž#9š•¦WÕ•|“p¼×ð*çŽ8¡àe>â¼Âv¢¡yîmi@³’TƒÓN›¶œa)†Kÿ''YÕ 9áU*äoP'fðWÚ×úáK®AûtÉÍ…N5òk¥üõ9—‡°NÏ­M"4L8P’gi{û01’vŽ<î˜ u)‚×&çJ¢òÛîç2¢Cñm‰ÈSžOM–²òï¹<?OÝG…boÞd™lÅMó$qðf{eð‡++²îÙ „wé×Ñ…Í&ˆTŬ4øñëáÿ`Y]¹¥…–!ZõùµÖ2D‰½lÝ d¢¹œ¡¬`ñ%Ï“•k嫽Ðá ï¥8m--›çò¹{}K.IÕAÀÅÛlÊ•ðQÀN$uæ™ö.H¨ž›ˆ Z8ï6mGÕ¹‰Êî¾…š$‹–œ„"î§–yîëÞÀÿ‚\e¾¿CA[ oœ(å•ù_%φ¼?ÍÔÓ˜P¤ámòm—ˆÔLAdqE¾Ôª‡uqolïü‡Ô§¯ºáÖ2#Û•eVϰ½ÉLé kÏÕQ¿›@½U‘xÍ&j¡OÉXNuÕ*B“½Œ5Ê‹a^ÿÁæxj£<­(¨Ã1Å…Gc? 'Ú[еW]’ ÁÍ^Üd=R\5§¹Éc›¥›©i€_C®„`ñ&&:@’:?¹á wú†…Ûzž}ùâ¡\Fíç•§èàWxÒ_Š?Ëk³-Ê7ƒ8諸úMÏWšû¿AÑ¡h댦›KgÃrãñÃÎ)qßôÃ4åš~ºØA•”«º »í[†WR' \★"bInßoi×áoáÕ–\K~l*.¯VaøõÈH“Î[½û ©Šsæ~›¾”.`KlÉ,¿¬˜3š÷ÄýÉSžô&Qý)œË¨mPÚ81´‡˜i<•ñíÉS×ší¡‰–'%H17ìiÓ°ü-º!¶rŸæúÝMu˜‹§¡Eì㔿{þé ²tï ¦ÇÈBÕì54Ó£ìyúkŠóU7‚,Âá(jÄÂÝB ç¦_¶„ ¦Å½’ÄÜSd2¼Ó_0±}Ä\nØÛ@uÄ•2¸–údšmËî¿Ï¥ãÇO°•:õKЩ‹µÔ&†-øaÕt>Z Ø5t!,·ÇbÐc¦»A-c¬ö=¤‘£´x¹¿2b“E<%6xGçS‡†íU/õîMß»óÚ¨=Ylíª‡x9†ìQC}9»ÃíË’ Å(šYVLhµÁÖ%‰§Ñn‰˜\³µ½äI–YŸF×;9Ÿw¸Ñ‹ƒ|§#Óïƒôªå0gßÀ¨)É•o#¼Rûùm»% :©£³â)Åuêh8 nè­µkˆÛ5·•++bä>±ï{åïí0®ýŽ¥ °é¿Çë3 Ö—2§Ëùí{:’­Ç2ÞNB™ìÖzä'IBynìð¯ !ñŒ‚Ã5gävÀ³Y·ÐN-cŒ¿^[†‚•= %¼„Ÿ4£¥Bq ZVçFI‰e ø„,üÁDÍe¶(i{+Íc—îæp¾Ïzj]lÔ4,Ÿf¥<¶®éØön)_“)lóåÄãùù•÷.– ~ÈKÏ'( –a• ”ð~ÓÓÇ¸Ž ÈC‘žSË¥"…Ь‡LBYú,DΉpb¬Mñ?‡—Ï÷»¿hè–Ó°¬Éø)~Ò®, gÉx¡h›/uF„·Èr­T˜Ñó šûGwßà5t…~GºzÓBD §~LŽV“¿ì`—ºüîËüëºØËÖ>ZºgÇ>îò‹½?N˜jYáŒ9¡n mU¹^ÈVgn¹®YÅbÆ©Æb(¨wë;O bþò§Ö-÷€ï ©Ý7›ïãÌKg’HËŸ6 `Šß½L>„JõR…‘ü24h%î@.ä±ç•^mÍ6÷úx§ï†yN%zV øù71ª…†Å½üB*QRDÌqÈßQÕÃH(Õªô PYn#Âl·ºåúy,Óè·•¯Rvýè–^ %¿¨4ò,-¤m1¤±öMRÆ!')# 컇ƒí“rcUç¹tiê)agU¶‹i.-WúrY‣ßt“éÒÆh¢L²´ê¡t™‚ƒ3t1úœj È¡€;†üwPq"û#9ͧYü òDSàܶ+ÍA^4lA>q¿(;A÷>g0Õwô©Ÿº°”—.„ãà«à·¹7/Î59´b…·=†ßW:ÏÞŽþèŒìSè7ÚEwFG‰Y¡=ŒF·‹~càÔ›"w3Å©¦¬ÇCœq‘"::$Hí.lÌÉ{Ôwòc$0ÄLOP¤–ÅÒ«6nÁê’n)š£DbǶ«Ø¾TAQ5ä7=$LBöARœKZ¤[QÝWxH “9?ZÖïŽPB%ä©(fº´{%ÞX¿ÉÂé˹ÚT—ÿ°x¤Àz¶d¬ ïÆ lg%Fa tE(õ>÷úJNj‡I G+†¾ZQß”WÄÈûÜqzåp9–DlãùNi…ͪæìÃ¥XõœeCW$â¡^ÚwSùŒð!Ö7ž¦õ‘ – *»¾ø¾ÉÓœ‚Ör¤/ÄwÚ[H:½MsÛ‘™p~çæl¿öciÈ꽄ȟ<‘Ò(+ÔrŠ“:©Gǵš–Çóž9cºUê H(dD¼³î µøõóí 0ü¤Fhß–6¼’(¾0ƒ ¯•q°(OþÞniÆÊ ÷Α"—Ïkwé§SFlêï>¸ $D™è¨Ø–õN¨ÊÍ9|jŒ¨x"â`óÐ6V# …îͳԗgÏØ\\.$A°ÉŒ‡j”€¯Ù&ØV¸³7é¹bq?P§÷3œf$DßWwY7é“«™2çÓr, Bôëܽ(yÒBB[å$ÛM÷N´x->‰ìxªWxæÉóDIkÅÅ⿌úƒ—øÜIãfåóÕ^ù%À\e{\A |IƉ•!‹®Nòz¸ƒî÷Ø.Gq2̈êw˜(ÁÂçÞ¯±g—Ný ü+²Àè;ú"wKmBÀd ª†]Úg«;} ŸëÉ5Ö%mWEë” }‹ú¨˜÷àñ± a¡6ôú3?ïúZ¹Ç˜s ѽñ„d ³ÜЮBó/ÏXúù^ŠÆ²Å’&À½ƒäæÆZY¥Óë(ã Ž°¶yBgÚ8èSyê4A ™}­9)2ËÓ΋‰>àÏûÎ:Kgü“˜Lôwä0+:Gqg¾X? êYt£ ƒºíÒÏ:G-®TCOÃgÅÔY{LåúÍ't$ziÌ7oª\'_%JŬ>Whß3HÂ|Â:)Ëζ¦|5¢*°³¾œ‰˜:®ñàùv6óWZ„ëü3ƒr¨û!“zœÇt‹{«EÃe?ïÔdX–¼îÂk·-µ`¾mµ¡y+ÔËq{ŸÔ8—|±¤BlÏjÂd¡aïškµM•Wf³//lÊ)ú•dÎØCçð]w_/ôË¡™®ÌîÈVÍzTÃWUÑp4~Q{oµ¬XX¨/¹üj•KY͉%î'ž¤xçØ\_qµ¦ŒuÓÝ©Q¾y©ks‘«Â/¬TÜLîÃ_SŸ´§³°c&¨$…yɾ•¸¨ ©û)h ­žôë­Ö^¦ª[­SòÂÓ1jžW•Ùf#Ü<ïŸo‘ ¦Ñ@»ÿŒY®ö·Ö×ñÄ3-£G1÷×<*ÙJÀPÉlN« E-çBNü0h~ºm·=Ó@Ä ­×zªìŸÆW'ÇÞ$ÿò 1zhŽ'\·£H8dRX<2m‚Wòfâ€æCÚZô Ë(ð”Jh«g4¬Öˆa™±SéèMR´YEJËj¯piƒ„1Ã÷±W3ÓwŽÍýšóœÇSã¨>Å2áaÔQNåý ùoB]c7ÃÉŽí(ŠñŸ¸v>aÁ‹)Ð^ЦÃf]Ü|ºÃe~`±§çƒÊDRÞ©ÇL¾ƒo]  àECó–¼ èfñ8§PFÁFÎ5¤˜!9Zz1æâü´™†á“7½Nâ;»D¯’÷wòkd? »~Ó¼¸ØÁjwªXˆA~ÏÍ4ŠíÄrs6‚šÒÑ¢Ö<=…MœÂ U•[Ç¢½¥š¦ Ue¶rùá`š}«üûé-E\²åm2·ù÷Å%F#QkävaÔ¹.æ‹ÁŸ5 Òäµ5|&+3eGÆòÙÚ3AÂMuo¬{)ÅwÞ‘õ¼WÛéŒgª `³AYE öäP€Eše‰î‹dË{%I¨Ï"ó&7AÐáMÃZӬȰºs05¡éaNÈDË×”u0Qïd¨¡ùµT¬üáfꚥçí—fY¼"wŠ”ïÒd¡Ïñ> ¿Þ.Q¡‹_7£*ß|D(OãÆoTº±l£WýlÛ c ]K35:1ŽX:ñ$Ð9ÙX—Ã@’|h>óq Ÿ’Š}ñZL/Æ®tc²0kÛ¥X£[—™tŸ1:¬Ë©)*©Øé¸»¢XXºskuCçMjÏ{,—ÑUÁØÇŽ?ìÑù‡K…S­›_y$4(N1ã&ï&“6;diù©¼iÄý„ R—.R…¥Ë©Ô&¥õD|@â¥ÞÅÛßu·µÂb°D|kžËή»q¬JÌ0¤í})È⨜õ‡FžøEgêš‘W¢§ñªT:z<8WÒßÓíkXë^¤ŠùfêdÙý#3ͼ´óÛ…\"ß,v&ò× EQìzÿÏòU¼TXÆ¥fQíF˜”åJ]Ѹx]V[ä ¼±g7ÿQvvŒ¥ñ© ®Î×ú4ó•2ÒÐêÅŽ¥LÚœ0,4ù8õXóR•À¨ÊN=#úÔgÿú$&§ëxr+ƒ,Ùç¹2¨ïu=qb…ÑØ€ñ†ÞˆN¹Óö<û Jì‘.“RÒG¸h;+~§èc›vÒbä‘ ¸2@¯u>  7ÆÆl/¬JåÃC-u%E#£MÅv&¢ÔÖ»€IùÄc¡SŒ¾N;©N¼tLÆ/õm?J"®ãîÝ¢©Ù8mçcЈٮÑ;R×ÂÉâ°³pTS8Òá•3ò,†d*,1– œøÓò=é³ÃK <Ëe–#K­›¯Â;éHšfÕLk`7Ò4Ï@²ÚJLª±­Úë¼`¸ÕQx¿uV^ºÞƒ08ÿm%ƒeA5F‡Ëkš%£Yí-ý…#R§7f¨¢ÆOýÕïÄæö¹‚R±ùeÃ÷ƒt)5¤Ö"i¢òÍ'=ßJ&ÜÒ'ådªmiŸHF´vÏ ýjQ½Å©+eÊHŒ’í›PÑucÚK6øØÏ<LK»ã9À~åV+Lyé-wª-CãÁæràÛ! ÃQæ‰'ÆÚѹµP5‡rB>C©‹¯ôtÀÙš lÈkí[&{{¹å‡àCâ—Á—ϤÅ2§OŒN…а<¾=Çš`¬îŽÝÄ,ÝnH5jþZ¡ÑIIXżLk±Ñž˜>µ4,$³Y >"ü‚‘(%\»™±F2 K¨Æ|¯ò,†d)„ñ^ŠÂÀø½UÙÊѬÖÍ[…÷߬¾ËÅ%Á7ðÙt?.‹Nº¸>Ÿ@‡ªî-Küº6µ©2†›Õ0hp‡Q]›=—8³,DjkJƒÄmÏÂÍy‡Ž»Ù^ž,5-0¢2^¿û<´gïÝ<Îûx•HŽ^.L96ͧ3Ý0•Ô²Þ±w1èj%žü‡xðÕïYwî±…Ôâ®æ<¢WãÀ͖҆ðÝdÔúôsMÀu > MoóŒnÌÞšj<Ÿ ûfÊŒçãèM{wÖ]B9À_­,û-§É€=× ‰ Oº =zÁRB>0V8ýwÄñedÆLHÆ‹Cp½-Âeœ]ü©òÕ¿Ð<–q÷ùQñ™7^ÔŒò@ƒ´°qÔ~Yìþ/ŽÒ:4°ŸDµò6`Õ~Â2¬Hw‹›„C#ƒ™}¦xtTÞ»R·5x|¨B<žÎâôŸìü+†¾f§ˆÒ P¶²zZÚ±Öû†Ë6{µ Ï»,Š.Ûÿ&}!ÃY ‹}7‡óc>o9åWy°)ÕöÀt'‹·z\k@ÅM¬!Å*MI‘™xb“<¼…šP¢’ÛŒ/.Èbû…¡C_ 鿘ïØQ]¸)ˆ"@dŽiðÉ_;œI·VsW6þìê­ê|0gîØ´O“0YiÓ«3³0T¿ÄÑW õ×§útm`Ý:ˆþü¸)´¸òŒ’TóèÍùšDÓÍÚ‰qG­3Y;ýs‰‘ÃYàtäµZ†œ–ü§4{œúHô¡”:Ö¡R1¿&œÈ¸”AeÉŽ~j -çï¼~ÎáãGè¹Ö6e Ëýú~Z‰ÂxeÆ~p@¢QæƒãŸ„djm¨on ÁsIeVŠ•ÑH[Ñ=é÷ÅâÑ‹^MÙ•Ðâ¢Zsf¾Áûv ',q;£¶-¥ýU„ýuË6ò<¤¦ˆpÈÛ†FŠ×CÕQGÕòUâSßÒ"¹=Z 0šhw_zÏ™žœ:,úh¼1Å\²l-ç"¿3tÁŽúû`áP (9•mZ<Ä&X&FÈ© eŠa·¦]É¡ýC"±WíqEæ9cé7xß]Ðò™Y´¦‰ºvï÷EßUw˜ÉàBE¤”Ò4«–sHNößÕF_1-e5­æOe þr¼¼Ê YÏp*{ â ÊB˜»´[‘àÔ[Ú&ÀéÜnóþ!è¬ùá4lPª{ VNbÈé×|ܤӧ+¹ëS!¸@ê0¥’[nYÐ5õCT~Ó ô•i§§yX‰#çr¡…€)­;J°»+=¬»&Šœâè¦Ïˆ^—’· M\åd¨9qVƒž³³ÕðìPXàÃÞ×Oò'órï˳ú2 «FÉІ³~y@m«r7çÈoŠÎ$%°ª«L*T«‡ãÇ,9B¥ÖX†¯#Pu%ûl7{Wòcú>ÈXŽìÚÍ%S0Êú-Þ«³6._ÉÑCzC‘O)Rv)Üê’Þ— Mä6’åcÀmÀ†›±äò‡-±±˜™C^ ƒÝŒOREm´ÎŸ»jGf+\ײíNàC1m›”ûwÚ@ñBØ(ÖðÔòfšö1s­5G€‹‡@kÓ ü¾eþõÌk_¨›Ž{ÕRå@;L°í¸d–('0)1Nv=pÑ VÜÒ†î½0'Ö‹¿è †ÐíÆ’Ú ½¼ê¥®U«;„h&]ézwÞRL눉ï#q°‹&3Ž5ÂkЏÊ!u =^Nf(ª‰d>þZ¿Î ¼+QØÂÄ•7õ-LU>§—éû׊4%07º‹>äÉ`ôb+ú6K$ök`feF-´œÖÚÇ:+ÇÔgºi8ÅßW½¬™º™¢ ?^ÑìîÓ²¢¯ö‘z£à54³${Œ5s61QŠEúÿ3a×*’aÖ/°Ü50™Î0à•¿§|ÈÖO!…AW‹¤ålo„¾apKœÿµäŸ§iñµâÉCö§O•B0À¹Ê`’SpN‘2Ó°=Ô oCwªƒë ?^G€è¢a€yçt4¼€v­º<¾•ŒPkCjµÝ>®¦_-]¢žM𷕯G¢wŸ§6C ü¾Õ_C“˜v×îc4dZÒ3L9_”V,ƒ÷jЖíÒ!B1Ø›ñiµ@44’Lá˜ßÅZ›ºThw³ÖdØ9Æqmœ& 94@Ñ9§1Zøx¿ª‚Šã_ßA1ùÖÆkO4p<þM!¡¸xÙ¨ä¥y]ÓŸø°Ià~w8H`¢vÁª¸N…}$pà0—ö«gÒ[‹ñGu²Hj0vCDÌñ¹äšL“!_X½Û]FU[ Ð\PœÓ†Žª¾u*¾fáQB¥UÒÝûÀb¢šÓ©o»Iþ® ©¤¬ZùIÜSÊä°À°CJ‰CÃÏ UMðid—+ÕSñ?ÎyO†$ÀRûqÈõ•à5I·c̾É@á•}¯:ÞFx¶L&§‰aÂÄyØ¿¿ü á¿9‚Øv„ ¿¸ þM­ú­yKÝÄ I×e É¡r¶ìa”fpMßìl¢å¡ç;Â9öñ%YÈòYw-à ªa'š›;Ïás×Ì*Š$0’NjÉ Æí‚…6v\¬ÝÛ.¶²h/©²ˆ–¢_ˆ{„aΡøSCm×i¢(NwYãøø”˜m3aߌ@‡­Ó¡¸º¹Ï±uø¸#¡.=2eåŸÆ=rÁ;ttaŽ›}óQ–?~b†øÂ;§áP ø¨{ÒÁ¨ìK/h0–âyÔD †¡R¦L|=ɤ?_ÿÜöÔÂ*'ëÙ_!YŽœî Û ^ñ'½ðá[»*¨UUþ–¯l–YåX/¹0¼Ò&k;L|l;I$.ôçÅå¼Ðu.ÒèÅQÓ£)~T+Û+{5 ÝÇy‹,ŽtÅ=¯Œ ÂaóÞú£ Íטy[]ßì›1êwQÀ! ë¥JÁsá!—ÔlcZSå±6-~‘&t¬(Ly…èÀ6=š3?ëŒË¹“ Á­#f/;¢ÛÌ0Å$5§"£ÙI Ñ2«FâFÈÔ9‹>ª³~¿QàÐõ\ðb¥^™ ¥24ײáú Å4 ´WuŸ¡‹AŒF:0¨ày+0ê0Žj\Žë¥òÔáßÎG½ ‚¿”K­ÃpODÑhã7×/&;ÆÈ–Y¾R£°Ê“r¡ CÆ• 9sabãàÄÜÛ6¿æm\3ùhmbëº^€@ЪŸ„.•‘æ0,5SKŠ4n4D !ø_¶PŠ¡”ÇUofÈ“.‡§ÓU·ÓÊš?NJ Ô8΀íW3(Eâ{è·@£}8伈x=„ÊÅŸçx,ä!S{ªbU£ MSæ Õg"Ž|¾UèŠd?œÔaêó'g ä[ÒÁy­º}w7ðã´àXÐ,€l™4^3Ï8¡¾÷„rï6 nçÜ%]•¦½»*Ê`ÂbCy­â÷ìЯƒ ëÒ‹Ì×´.ÁÇ[¼ì(À=ñû}ž ¦ª°þK}Hº÷LQ Qó-ìu…WžqþF_ã( |ÚŠ~‚ÍžË=ÙÔñ“uÖå¼%!•êâ룮a&ÚWulm<^zÉS•ÜÓt|§6šg‡4º î¯cóøë”DßrþìÃñ‚#»èV›ã•(â‘«åZy°` _V¹=Vßi«°~ØV‡¿n]Mõ Ã73ÿ:@qÞ0‰'ˆ%v‹naÒR\™"m¦¦}ãu‰µÈͯ€‘.è×°rf éSŸnÿ#õý[’z?Cáýn*ŸPº§È’73ÉØ¤0Ö ^ª~t)Y˜v¾¼÷±sýqçÛÙ¤ÿödËo8±kk±b$´]b뀘Ë0f N{ÝoÀXëEÒ °ÏܧüH&:u±ZÛ3’¥1|Ô©½³?hðÙo’.A—šì-&Á­2£âb^H¿tfÁ¨Iã2ả6eú/ܮٴ’²æ—}°+Òò/Ɇ‡âµý§ï¹,I3þ&àÏÁV*¶PÑUα>ù’qÆJ‹žKhP0(f@øð#',ÑߟŠé;éÇcÚ,Õ$•²¾}þôÄjîšécqkÿoŠðˆÛÄuºÁl‘¯–õ buÌ~$¿ž¯WWÛ)hÒYïPA3)Ǭ×Ó…FiÌlèä+ÀhåÇ`üJ/‘à‹kq\R—rv‰çä-msŠf†Æ§ëQ&jËëŠX24ó\ ­½öžËé·Ú¥“ :qlÿÃÕ ðCKk6Í®ùVÍOjž«/‰)²QÂlÓÂó£Co`pµEoû ˆÿuhZT‡yòÚJ7Xß6ˆKe_÷3C¯W‘Œs,9¦Ûè°[b‹çæ’W*ìfp< Ç(}{èr87ÁÖz¬bãex­¸ˆÎáGÐOîKÝ›£MEýƒu XÌV†2iW¶Í®”*Ãd>4Ã]mp±¢ÒÓI19ees6e“tŒC_ìU´ë˜Á¼ikÇgÍÇý…üω¼x±ˆ ›~|v†´µûcð¸,Ÿ,R—n·L+Ú‰±lHe¾ª"¦¼þ[IARÍíþ(>èxßÞWÔ·ƒÒ#Ü#Ö9Þ.¦Q"¥õ˜úÀD,’ÏÒ)a JàcL‹Õ§¦?™;í‘¢×WQ7Á—sÜÑý™y¨ä´ãØ^xüÄÒɵ¼ f4X{ò§®Øeƒ•íâ¾Ü3K@RîÍ­MDõŽi@\x6¡O¬âðm‹óƒñE¢¾ç4öÊE@åô$yälýñ·¶KJ£Á~ÿZlùŒœÊ¾’· endstream endobj 80 0 obj << /Length 859 /Filter /FlateDecode >> stream xÚmUMoâ0½çWx•ÚÅNÈW…œ„Hv[•jµWHL @Úþûõ›™´»Uçñ›ñ›Ǿùö´žØ¶ßºIt¯Õ³;÷סq“òûæÜÜT}s=ºîòùֵãìùA= }³vu[®ªU·¿Üyòªk×Ö¬¯I…{Ýw¬£n_ܯ‰k&‡ãö ýì—ýåàY_”ªOQEi?ÝpÞ÷݃2÷ZkXvmÙÑÉ9˜Š5õíö];ˆ$µ…ÀÀ„ªÝ7Ñosô– yýv¾¸ãªÛõÁ|®¦Ï~ò|ÞHå]0}Z7ì»WuûI›Ÿ[_O§ƒƒ¥ƒÅBµnçKz~lŽNM¿nóôòvr*¤±aeMߺóiÓ¸aÓ½º`®õBÍëz¸®ý4g"NÙîFîÒsuíBå‹`nlB ˜„‘„­=öÌã¸æ@æ )UÖ 9yŽ€IÁ(±JÅ5<æ§T`,© M%5ŠÖœR£h”ºäRê ®á1ÚûÌgcßÍïÍ yq(¬ ábŒÆuX&Àá &èq,–Ñ1Ç+à„±N97Î8Nüœsk`Ëq8­ ^—8%Ç àŠ½FMq.â†5„SâhzAìkO × Ápý$Áƒqù1¦7]}Œ©ÎòþÈ©ÿ»pÒ^`ÜD3F?©ìx”‘ׯ[ë±a ¯³1´ecÔÏfŒ—Àäµ!/²„1êg)câdÜ?4dâ­K^˜|É ÆÐœ•ŒáQV1¦úÔ¿‰±'²š1tæ¬?ƺ9ëÁÏY?í¡œõÇГ³þ„rY‚ÞsÖŸŸõ'Äg)4ç¬3Å;ÎYgD¹¬3¢\ÖièÃbŸ-z±â3z´âs ,>G|ÆZV|ƾ´â3Öµâ3ü´â3qÄgônÅgè·â3tZñ½[ñ¾Yñ™ê‹ÏÐoÅgè,Äg¬[ˆÏàâ3ø…ø =…øL¹â3z/Ägâ‹ÏÄÏød ,gz)ÄôRˆÿ؇…øO5ù[±T“¿“‚êˆÿàT¼V *ŽÇM2G˜çªZN(:‘pTãjy¿šë0ø‚î:÷qâï;÷~Eú²è¡»m¼O1z¬ƒ¿'ßX endstream endobj 81 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlöo` òKwÞ{Ò·óÊÕ× ¢¤_ny×È| #¥Ê:##Ï0)%V©¸†ÇÁ²£â” Œ55¡)°£FÑšSj­‘R—@J]!À5£G+>ÇÀâ3qÄg¬eÅgìK+>c]+>ÃO+>G|FïV|†~+>C§ŸÑ»Ÿá›Ÿ©¾ø ýV|†ÎB|ƺ…ø ~!>ƒ_ˆÏÐSˆÏ”+>£÷B|&¾øLüŒOÂr¡—BüG/…ø}XˆÿT“ÿK5ù?)¨ŽøNÅkÅð¡âxáÁÑ$s„y®ªå„¢ G5.–[ ¹Œ£¿ èö¡s'~×» ê8‘EÝlÓUŠÑCüjÝF endstream endobj 82 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMèßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø ®´ÝP endstream endobj 83 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMêßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø YÝi endstream endobj 84 0 obj << /Length 858 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N7R!‡þûõ›Úݪ’çñ›ñ›‡±¯~<>ÏlÛ¿ºYt«Õ“;÷—¡q³òçö\]U}s9ºn¼w®uí4{¾SCß<»Q]—›jÓíÇOÞtÍáÒº‰õ=©poûî“‚uÔõ‹û=sÍìpG£ýì—ýxð¬ï ÊGÕ—¨¢´_n8ïûîN™[­µ¬»¶ìèäÌEšOúvû®D’z…ÀÀ„ªÝ7£Œè·9zKüü~ÝqÓíú`¹Tó'?y‡wRyÌ†Ö ûîM]Ñæçž/§ÓÁA‡ÒÁj¥Z·ó%½÷Û£SóïÛü ½¼Ÿœ ilXYÓ·î|Ú6nØvo.Xj½R˺^®k¿Ì™ˆS^wwí¹ºö?¡ŽòU°4H6!L‰@Œ@ÂÈBŒ€Öû@æq\s óŒ”*댌ÇTgýâÔÿÇÀ á]¸i/°n¢£ŸTv<ÊÈkã­õØ0†×YÈÚ²ˆ1êg Æk`òÚYÂõ³”1q2î2ñ‚Ö%/̾dchÎJÆð(«S}êßÄØYÍ:sÖcÝœõÇà笟öPÎúcèÉYB¹¬?Aï9ëO‰Ïúâ³ÎšsÖ™âç¬3¢\ÖQ.ë4ôa±Ï½Xñ=Zñ9Ÿ‰#>c-+>c_ZñëZñ~Zñ™8â3z·â3ô[ñ:­øŒÞ­ø ߬øLõÅgè·â3tâ3Ö-Ägð ñüB|†žB|¦\ñ½â3ñÅgâg|2–³½â?z)ÄìÃBü§šü­XªÉßIAuÄp*^+†ÇãŽ&™#ÌsU-'H8ªqµ|\Íeü A÷û8ñ÷û¸¢Ný YôÐÝ6ݧ=ÔÁ_ÁÄß” endstream endobj 85 0 obj << /Length 860 /Filter /FlateDecode >> stream xÚuUËnÛ0¼ë+ØC€äà˜”¬W` $ È¡ME¯ŽD§lÉåCþ¾œÝuÒÍAöp9»œQäÕ·ÇÍ̶Ë›E·Z=¹Óp7+¿oÁÕU54çƒë§ε®½ÌžîÔã847©ëò¾ºï»éÆ“ïûfnÝ…õRá^»þƒ‚uÔõ³û5sÍl˜¦Îhÿ‘ý¹›öžöCù°úV”øÓ§nèÕZûÀºoËá€fNÁ\©ùEâ®ëÛQT©h L¨Ú®™dD¿ÍÁ»‚äÍÛir‡û~7Ë¥š?ùÉÓ4¾‘Λ`þ0¶nìúWuýYœŸÜœÇ½ƒ¥ƒÕJµnçkz~lNÍ¿èôõüvt*¤±amÍкÓqÛ¸qÛ¿º`©õJ-ëz¸¾ý4g"NyÙ]¸kÏÕµÿ u”¯‚¥A² )`JbD>`´öØ2ãš™$`¤TY'`ä`ä9&£Ä*×ð8XV`TœR±¦&4Ö`Ô(ZsJ¢5Rê’H©+¸†ÇhÿÒg¾¸ôÝüÞŽb‘‡ÂÚ.Àh\‡e®`‚^Çbs¼N[à”sSàŒãÄÏ9·¶‡Óºàu‰Sr¼®ØkÔ4ç"nXCA8%ަľFðÄpý ×O<—czÓÕǘê¬ÿâ_8õ¿1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦xÇ9ëŒ(—uF”Ë: }Xì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&+–jòwRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\.ï÷@sGEÐ Dç>Nü®wï—Ôq8"‹ºÝ.—*Fuðgõá¡ endstream endobj 86 0 obj << /Length 700 /Filter /FlateDecode >> stream xÚuTMo£0½ó+¼‡Jí!m0U ó!å°mÕT«½¦àt‘ˆ€úï×o†4«j{ÀzÞ̺v|t®võåïð žû®ÚºQÜf›|Ó6ã'oÚêp®Ý…õ’uïM{¥ ¸}u¿gã f‡c¯¤i"Amƃ§}Ã>,¾†%þrýÐtíƒP÷RJ(Ú:ëŽXÌÌ'Ab~‘¸oÚºŸT‰7h ”uSÓŒÆêè]AòöcÝqÓî»`µóÿsûÒyÌŸúÚõMû.n¿Šó?·çÓéà DÈ`½µÛûšÞ‡ÇÝщù7+ýd½~œœÐ4W¬­êj7œv•ëwí» VR®Åª,×kë/ÿbÎxÛOÔÔ0ñƒ”+³ðØ,ý ¥F Õ§)1<öÂc«8Pø€Æ\ ‹6¦€Ç>!Pp #]QxQTýÙõ“v)#´–êZB¢‰ÔYL½tž/Xˆ^r<ާÀ1çÆÀ†ãÄçu§%pÊñØr_âd·À9Ù¢PSiÆ0@¡Wå„Q_«úUžhÖ©±ÍÖhèÑ諵"œqëÒì–FM]R¯rCpt¨¡3Ì9õÂãж„~ðj™3FýeÁzpÉ8ô8úÇóˆ8Q„:1ù¬bøcäÕ7£®~}õÜðHq”('b ÃÄ„ùŒ>^ÐmØ# &½zdìõÄò…}4¼)Ö` Æð"áýH‘›,¸4%¬!Åþ%¤AQß„÷ÞB[B~)Ò™äÌï Õ_’)ïMн±¬?DM;Ý豬ßÂ;kyoóþQnNçRæð®d\ÆÓ €;‹WæóA¨Î}ïß zŠèÀÕoZ÷ùZº²è£gîòºböT$Z|U endstream endobj 93 0 obj << /Producer (pdfTeX-1.40.25) /Author(\376\377\000J\000u\000l\000i\000a\000n\000\040\000Q\000.\000\040\000Z\000h\000o\000u)/Title(\376\377\000S\000h\000a\000z\000a\000m\000:\000\040\000S\000i\000m\000u\000l\000a\000t\000i\000n\000g\000\040\000s\000e\000q\000u\000e\000n\000c\000e\000\040\000m\000u\000t\000a\000t\000i\000o\000n\000s)/Subject()/Creator(\376\377\000L\000a\000T\000e\000X\000\040\000v\000i\000a\000\040\000p\000a\000n\000d\000o\000c)/Keywords() /CreationDate (D:20251226170017+01'00') /ModDate (D:20251226170017+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) kpathsea version 6.3.5) >> endobj 2 0 obj << /Type /ObjStm /N 67 /First 514 /Length 3038 /Filter /FlateDecode >> stream xÚíZmsÛ6þ®_oµ¯5A¼¼ét&‰ã&Í»ã&i %Zf#‰ I¥iý= P©XvœÜun¦‘ X,vŸÝ…‹™bJ0Í„6Ì0éb昆¥LÅ„dÚ%L$ÌHÃ,3V1)™uéHj–8Á$à+sÆ1™°T;¦b&b Þ0^“š)š'E¿a€©LÁZ«‘´øu’)<;ÐkŒKˆ 1:!›TG[&µB?†jƒvÌoiÍ  qÒŽŒkERü%c©˜1ø5j@´ C[f!ª®–XY<ƒÞ%šY Q´Yƒ)ш.ƒ©K el Ð>`þ$ZãX%à—$ ¡ö”%šá×i7²@KB ¡ð› Íœ@»%ª‹ $æÒà8– (/,KEJ0' ŸÔ˜dS‹v¨–Zá@ŸÀ¬t¤G³4u0ªëJ%U¬}ÿ=ã/ÿ±<)?d§ qÌøQÑœ±~@÷ˆŸü±ÌžMó¿W.š|ÑÔ,!º?ÎërUó¾ážä“"»[~d§1,aʳ†WG‚{²;‹E .§p<šÏøòl4˜ÑÓŒøËÕy㟋w#~·¬&yå¹ÇgüÈï ÿ@ÒŒvê’HÖÒEš&I#G1:ŽâÄ€ìÛÒz¯ÆÀ¢\ü+’û¤õU ¡#Ø~*#‘X6B,]/†ê‹±±Ê›_~%WKL9¸êb5›í îðËë)L¢"xã TÊÆ‘vjHu?ðâ!ôDÜ: P¢­#4ÄÚ™”÷ðPG(ÓÖ±ØÛÖÉ5¯c þ¼*Ç/s Ç;¦ªò¬)уæõ#<ö0kr¶wøoK,£ÒŠ$ŽEòm,¾‰ão@÷¤œÜDrReËe> Ù¬†RÏOî¿‰Žæy¶X,'—EÍð 2}Ç^åU©™Šðj1©´FÈÈ®…eoIFö¸øã%ÕÛ}ön™5—už±íP©Zµj_¯ÌuZøE3CÏ1ûz\ãš=[5ËU³ß‡ó˜éÈ`éáx¼?´(yLo±¡F1âO³9õ%Xw²:÷^…çy}p\γňß_ŒËI±˜Ò›µµä)xï‘OÂÔxÖ›fMv£ùëbqgQ›îÃââ"‡3aµ6|^,V5Þ2üýªlòY~ïÑšOJè_ןVÙ‡œgãU“óqQWó‹Yþ‘7Ål’óy6®Ê?¯rÐ`H6Ãýø¤ÀuQóKí$¿àææcøìl–u—«Å4«VóY¶jx9-ù;>Έ_½ÌÆù 4“›#¸·„íXž†KÒ›gç¿ÑÂNCαñ0_ª:ÞUåþ Õ¿U¨êäŠPÕîoª*½M¨öó¶×…*¶0ÉׄªÛ¡ªÓ/ÛX˜øëu½I‰k7¶{oUbñMÞÆqü’Š‚Š9+*fTdT4TäT¼ÅInHÕ ©<’ŠuPÑ5¯[²þC=¤™v2äŸPù–÷ y7hì÷G7ì¦ÿïtŸ iòŽ`úÉô~ªªk†²§tÿçû?ûžN“áyöÒ=òÆ©ˆ’5&2m鵄ÒÄÈòm°®ãÛk 5o·5…sQÚ–D1èóÔ¡N}Ÿû•=É'¥Nd$×-Xð“Ø‘LÒ·Z9¬‹¡‘5’(œŽO§¬ˆ¤DF[I Ûö·m~lË]Yáñiù¡Ü›ì¦7ôb"ÖEÛZhâ>¾MkÝêHšQKGÑZåŽÖfH(T* ŠJu¤×éõBÝ—p'$™‰ʬ!›0P9€†yÊR NPº ÜmbÀWÄ6é¢Ö+_w*¤G)G0uV{:¤‰¾Àû8TCi‘Æþ^“t5H¾Ò¶hK¦•Aoÿ+ ¥ä2–h¨5P·­)•¡%UIK±¡ ýÚ¤Þ¾¾¦: ‰$MiOì=_Qú&pB;(µ%ˆÚŸñTí]ÒZ‚S¥§B®–¬+?Rzt”Êlû¿0²å-c”Fw¼‰ÊgBcÛ=˜Ôµ*7–­!¨o1ÑÊ]M¦dóM¿WØ·D˜Ï3'Ú±UèSp-*IØPG a~ÊCSÙ*!Rïk8Ef -2ÃFS ßel I€Ù™A`©×S"7MÑr€$H; eßßrõ£Û:ä"ycªûÚ9}™ â~ òø´$xÙ=–¡æÑ ¡EGXx¾:¶Ý¡Ž:­x=š“Ðî×¶ŸDúÕÍíóô4 ò ”¤i¨÷{ƒ>¡Þ–4ûÙÖQì0¯ÇU±ÄQ-l¢ÃAìÉÓ__<ýöñúòàn9›€`–M±”wýþ~v íº‘§B%”¤­éØ|A{/[>È‹éeûHRßHñô°ÉfÅøÎbгeŒca“Ï_Á{SœFÚAXJÁã2«hë¾Çïñ—<ãcžó)/øŒÏù‚—ü=¯x;ڲàg]ÿ q“ÊžÝñôM§r|pœOW³¬Ú¡5îj$.p4'­eO븯s¼Ñ8Þ¡®ík«D_Û;ü.4>ò™òGü1Ÿòc pÂæ¯Ã9?Ç)(oȸœá 8.çóŒOÏ¿À§À'Ñ ÁØ%¿ücy™/€Üoü]‡š|É—tü¢ãn¨U$_æUQNZ|ë|^„iÞ\VyΛßK¾âøïü#ÿ£}ßû—÷¼yôªçn×cò]¹ ¼·°§+¶Ç¥ŸåqÖì4ÁOüÿP{{Î6ÐŒêâc‹ÇŸyUÀ·rÄ'¯Žîn1¹Œ˜Ñá’KÑ‚w$k0Ô 5Ãì ?×#îƒb/ø@>ùŸÕõmT¿òðÅñ/PýI¹(o Ad” ÷ÝÏ »Qܤ/ðâ¸ýÒ@<ä÷Œ?úpü© Èç½|ÃñÞ’Õ ¼¢~GZ!wããÊ×B\Qõ]Þtͨ‡Žq“¹¡ 0{xþ~•Í(ª¯‹gÊPys,VósÊN?/¾—³U úŒ×ä|ÖFûpö^=ˆöÕWxõ¸¬òuàó??uy{»?~ôøÁÉÆîÁ:;Ìž¶fw~Ÿóåf?ú+ Ìþ&§•x<\|f*ºÕö*Ãä•Ovkín3l …ü+^|;ž2 ¯ ì­7Óödl°[ˆ«Ý¨swïH‡Ö5ƒVØ‚x1½Ê¤Fð(‡Š ª¶Æsí2³yéxçöa€õú:Ã0#(_¬ÃGš.2{q‡Ãà ô°ßëA‹´V ö Vì¿5—›]G/ºhÇ_8L/âÏ>ËBÙö~ö9YóM®|׆mrôÇ Ÿ=*ªº!ÇÑoÄgíƒxz]Lp‡„i—97íØ“òç 2ÉòÕ1~œ×첆¢&b[T9UЍúfQÅíE½fS²%ªÚU›]¨Ú›E•_€êî-Ö¨f[Tã¨Ê¨ÉÍ¢ªÛ‹ºû¿%i²-©ÒIÍFRu³¤úö’î|)m šÞ hÏQã›5iLa½éËJOkYå–¬V|"ëïxºªéhEïãTLêõ_cÚ~´·Ìí V¸ÜÙZíp³8+ÄÈ‹JÐòs“¤8Ô‡‡0‡ìFúûIÓ^ß¡?«ùZ{«äÚQÏq3·æ7iº‘êÊ‘OéºÈ$ý‘´{z{‡åøàe“UÍ> Zí-C$ö™ë=â2IêÞ3.XdŸ\ïÓ?ó6Ïf9½€þ>5/š­©ÖTgÛâtW8@ÐWZ"Ùj#Iâí™ú\ú¤ÝtÁ¶.¨èÒë$½j8té/‘{B­œŽ‚7uÿ~[{ÅÆ"^ßT¬Í5ÍqóŸë|ã@Ï–ù⎟œuï€ÿU#Ùô endstream endobj 94 0 obj << /Type /XRef /Index [0 95] /Size 95 /W [1 3 1] /Root 92 0 R /Info 93 0 R /ID [<4D983D3518160EC5079B7F4AC73D294C> <4D983D3518160EC5079B7F4AC73D294C>] /Length 268 /Filter /FlateDecode >> stream xÚ%ѹJƒa…á3¿k¢fÑ$Æ-î·—¸F“håXÚ¤ò¬l--R‚ ¤Q;/ÃÆ+DÿwlÎa†)¾O’~)ͺH´@§Iq´Bl@ Úa Öa¶¡¶`º "¦È¹ß‹š2ßžRÐcJ|x탘){á5 HB¯)W–©pæÓaH›òo^‡ c*&½öC`ÐTzñÁ(Œ˜ªG^s0{0P†IX)X…i˜YÈÃÌ›j_~tÁÔøô´h–úÝ%³Ó´§‚Ùû±§e <-¸| ¿¢Q¹Š…\?†Üœ„ÜFCî|oö¡U¨Á÷¯áÞsS4©#% endstream endobj startxref 179633 %%EOF shazam/inst/doc/Shmulate-Vignette.Rmd0000644000176200001440000001440715120056314017273 0ustar liggesusers--- title: 'Shazam: Simulating sequence mutations' author: "Julian Q. Zhou" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 5 fig_width: 7.5 highlight: pygments toc: yes html_document: fig_height: 5 fig_width: 7.5 highlight: pygments theme: readable toc: yes md_document: fig_height: 5 fig_width: 7.5 preserve_yaml: no toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Simulating sequence mutations} %\usepackage[utf8]{inputenc} --- `SHazaM` provides two functions for simulating mutated sequences, one at the sequence level (`shmulateSeq`), and the other at the lineage level (`shmulateTree`). Both functions rely on a 5-mer targeting model for computing the probabilities of mutations at each position along the input sequence. The 5-mer targeting models currently available in `SHazaM` are: - `HH_S5F`: Human Heavy chain, Silent, 5-mer, Functional targeting model - `HKL_S5F`: Human Kappa and Lambda light chain, Silent, 5-mer, Functional targeting model - `MK_RS5NF`: Mouse Kappa light chain, Replacement and Silent, 5-mer, Non-Functional targeting model - `U5N`: Uniform 5-mer Null targeting model ## Simulate mutations in a single sequence `shmulateSeq` generates random mutations in an input sequence. This sequence is provided by the user as a string, with the acceptable alphabet being `{A, T, G, C, N, .}`. Note that `-` is not accepted as part of the input sequence. If the input sequence has a non-triplet overhang at the end, it will be trimmed to the last codon. For example, `ATGCATGC` will be trimmed to `ATGCAT` before mutations are introduced. The total number or frequency of mutations to be introduced is user-specified via `numMutations` with `frequency` set to `FALSE` (default) or `TRUE` respectively. For `frequency=TRUE`, the number of mutations to be introduced is calculated as the length of the sequence multiplied by the specified mutation frequency and rounded down to the nearest whole number (`floor`). Mutations are not introduced to positions in the input sequence that contain `.` or `N`. Mutations are introduced iteratively using a targeting model. Targeting probabilities at each position are updated after each iteration. ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Import required packages library(shazam) # Input sequence sequence <- "NGATCTGACGACACGGCCGTGTATTACTGTGCGAGAGATA.TTTA" # Simulate introduction of 6 mutations using the default HH_S5F targeting model shmulateSeq(sequence, numMutations=6) # Simulate introduction of mutations at frequency 0.2 using the default HH_S5F targeting model shmulateSeq(sequence, numMutations=0.2, frequency=TRUE) # Simulate introduction of 4 mutations using the MK_RS5NF targeting model shmulateSeq(sequence, numMutations=4, targetingModel=MK_RS5NF) ``` ## Simulate mutations in a lineage tree `shmulateTree` generates a set of simulated sequences based on an input sequence and a lineage tree. The input sequence will act as the most recent common ancestor (MRCA) of the lineage tree, and sequences in the offspring nodes will be simulated with the numbers of mutations corresponding to the edge weights of the tree. The lineage tree is supplied by the user as an igraph `graph` object, such as that returned by `buildPhylipLineage` of the `alakazam` package. For details, see the `Reconstruction of Ig lineage trees` vignette of `alakazam`. It is assumed that the `name` vertex attribute of the root node is `Germline`, as is the case with the trees built by `buildPhylipLineage`. ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Import required packages library(alakazam) library(igraph) library(shazam) # Load example lineage data(ExampleTrees, package="alakazam") graph <- ExampleTrees[[17]] # Input sequence to be used as MRCA of the lineage tree sequence <- "NGATCTGACGACACGGCCGTGTATTACTGTGCGAGAGATAGTTTA" # Simulate using the default HH_S5F targeting model shmulateTree(sequence, graph) ``` It is possible to exclude certain specified nodes from being considered as the MRCA and from being included as part of the simulation. To specify such nodes, use the `field` argument to indicate which annotation field in `vertex_attr(graph)` contains information relevant to deciding which nodes to exclude, and the `exclude` argument to indicate the value in the annotation field that nodes to be excluded carry. Note that when excluding some nodes, additional nodes that have not been explicitly specified by the user to be excluded may also get excluded. For example, suppose that node B is an offspring of node A; and node A has been specified by the user to be excluded. As a corollary of node A being excluded, its offspring node B will also become excluded, despite not being specified explicitly. ```{r, eval=TRUE, warning=FALSE} # The annotation field called "sample_id" vertex_attr(graph)$sample_id # notice that node "GN5SHBT01AKANC" is an offspring of "Inferred1" par(mar=c(0, 0, 0, 0) + 0.1) plot(graph, layout=layout_as_tree, edge.arrow.mode=0, vertex.label.cex=0.75) # Exclude nodes without a sample identifier # The nodes "Germline" and "Inferred1" are thus excluded # As a corollary, "GN5SHBT01AKANC", the offspring of "Inferred1", is also excluded # In this case, "GN5SHBT07JDYW5" is then taken to be the MRCA shmulateTree(sequence, graph, field="sample_id", exclude=NA) ``` It is also possible to add a proportional number of mutations to the immediate offsprings of the MRCA based on the fraction of the nucleotide sequence that is within the junction region. This is achieved via the optional `junctionWeight` argument, to be supplied as a numeric value between `0` and `1`. As an example, suppose that the MRCA has two immediate offsprings, each containing 2 and 4 mutations respectively compared to the MRCA. With `junctionWeight=0.2`, the number of mutations to be introduced to these two offsprings will become `round(2*(1+0.2))` (2) and `round(4*(1+0.2))` (5) respectively. ```{r, eval=TRUE, warning=FALSE} # The "Inferred1" node is taken to be the MRCA and has 2 immediate offsprings par(mar=c(0, 0, 0, 0) + 0.1) plot(graph, layout=layout_as_tree, edge.arrow.mode=0, vertex.label.cex=0.75) # Add 20% mutation rate to the immediate offsprings of the MRCA shmulateTree(sequence, graph, junctionWeight=0.2) ``` shazam/inst/doc/Shmulate-Vignette.R0000644000176200001440000000403615123530421016746 0ustar liggesusers## ----eval=TRUE, warning=FALSE, message=FALSE---------------------------------- # Import required packages library(shazam) # Input sequence sequence <- "NGATCTGACGACACGGCCGTGTATTACTGTGCGAGAGATA.TTTA" # Simulate introduction of 6 mutations using the default HH_S5F targeting model shmulateSeq(sequence, numMutations=6) # Simulate introduction of mutations at frequency 0.2 using the default HH_S5F targeting model shmulateSeq(sequence, numMutations=0.2, frequency=TRUE) # Simulate introduction of 4 mutations using the MK_RS5NF targeting model shmulateSeq(sequence, numMutations=4, targetingModel=MK_RS5NF) ## ----eval=TRUE, warning=FALSE, message=FALSE---------------------------------- # Import required packages library(alakazam) library(igraph) library(shazam) # Load example lineage data(ExampleTrees, package="alakazam") graph <- ExampleTrees[[17]] # Input sequence to be used as MRCA of the lineage tree sequence <- "NGATCTGACGACACGGCCGTGTATTACTGTGCGAGAGATAGTTTA" # Simulate using the default HH_S5F targeting model shmulateTree(sequence, graph) ## ----eval=TRUE, warning=FALSE------------------------------------------------- # The annotation field called "sample_id" vertex_attr(graph)$sample_id # notice that node "GN5SHBT01AKANC" is an offspring of "Inferred1" par(mar=c(0, 0, 0, 0) + 0.1) plot(graph, layout=layout_as_tree, edge.arrow.mode=0, vertex.label.cex=0.75) # Exclude nodes without a sample identifier # The nodes "Germline" and "Inferred1" are thus excluded # As a corollary, "GN5SHBT01AKANC", the offspring of "Inferred1", is also excluded # In this case, "GN5SHBT07JDYW5" is then taken to be the MRCA shmulateTree(sequence, graph, field="sample_id", exclude=NA) ## ----eval=TRUE, warning=FALSE------------------------------------------------- # The "Inferred1" node is taken to be the MRCA and has 2 immediate offsprings par(mar=c(0, 0, 0, 0) + 0.1) plot(graph, layout=layout_as_tree, edge.arrow.mode=0, vertex.label.cex=0.75) # Add 20% mutation rate to the immediate offsprings of the MRCA shmulateTree(sequence, graph, junctionWeight=0.2) shazam/inst/doc/Mutation-Vignette.R0000644000176200001440000001151315123530420016761 0ustar liggesusers## ----eval=TRUE, warning=FALSE, message=FALSE---------------------------------- # Import required packages library(alakazam) library(dplyr) library(ggplot2) library(shazam) # Load and subset example data data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call %in% c("IGHA", "IGHG") & sample_id == "+7d") ## ----eval=TRUE---------------------------------------------------------------- # Calculate R and S mutation counts db_obs <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=NULL, frequency=FALSE, nproc=1) # Show new mutation count columns db_obs %>% select(sequence_id, starts_with("mu_count_")) %>% head(n=4) # Calculate R and S mutation frequencies db_obs <- observedMutations(db_obs, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=NULL, frequency=TRUE, nproc=1) # Show new mutation frequency columns db_obs %>% select(sequence_id, starts_with("mu_freq_")) %>% head(n=4) ## ----eval=TRUE---------------------------------------------------------------- # Calculate combined R and S mutation frequencies db_obs <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=NULL, frequency=TRUE, combine=TRUE, nproc=1) # Show new mutation frequency columns db_obs %>% select(sequence_id, starts_with("mu_freq")) %>% head(n=4) ## ----eval=TRUE, warning=FALSE------------------------------------------------- g1 <- ggplot(db_obs, aes(x=c_call, y=mu_freq, fill=c_call)) + geom_boxplot() + labs(title="Total mutations", x="Isotype", y="Mutation frequency") + scale_fill_manual(name="Isotype", values=IG_COLORS, limits=force) + theme_bw() plot(g1) ## ----eval=TRUE---------------------------------------------------------------- # Calculate R and S mutation counts for individual CDRs and FWRs db_obs_v <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=IMGT_V_BY_REGIONS, frequency=FALSE, nproc=1) # Show new FWR mutation columns db_obs_v %>% select(sequence_id, starts_with("mu_count_fwr")) %>% head(n=4) # Calculate aggregate CDR and FWR V-segment R and S mutation frequencies db_obs_v <- observedMutations(db_obs_v, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=IMGT_V, frequency=TRUE, nproc=1) # Show new CDR and FWR mutation frequency columns db_obs_v %>% select(sequence_id, starts_with("mu_freq_")) %>% head(n=4) ## ----eval=TRUE, warning=FALSE------------------------------------------------- g2 <- ggplot(db_obs_v, aes(x=c_call, y=mu_freq_cdr_s, fill=c_call)) + geom_boxplot() + labs(title="CDR silent mutations", x="Isotype", y="Mutation frequency") + scale_fill_manual(name="Isotype", values=IG_COLORS, limits=force) + theme_bw() g3 <- ggplot(db_obs_v, aes(x=c_call, y=mu_freq_cdr_r, fill=c_call)) + geom_boxplot() + labs(title="CDR replacement mutations", x="Isotype", y="Mutation frequency") + scale_fill_manual(name="Isotype", values=IG_COLORS, limits=force) + theme_bw() alakazam::gridPlot(g2, g3, ncol=2) ## ----eval=TRUE---------------------------------------------------------------- # Calculate charge mutation frequency for the full sequence db_obs_ch <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=NULL, mutationDefinition=CHARGE_MUTATIONS, frequency=TRUE, nproc=1) # Show new charge mutation frequency columns db_obs_ch %>% select(sequence_id, starts_with("mu_freq_")) %>% head(n=4) ## ----eval=TRUE, warning=FALSE------------------------------------------------- g4 <- ggplot(db_obs_ch, aes(x=c_call, y=mu_freq_seq_r, fill=c_call)) + geom_boxplot() + labs(title="Charge replacement mutations", x="Isotype", y="Mutation frequency") + scale_fill_manual(name="Isotype", values=IG_COLORS, limits=force) + theme_bw() plot(g4) shazam/inst/doc/Mutation-Vignette.pdf0000644000176200001440000056622515123530420017350 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 9 0 obj << /Length 1926 /Filter /FlateDecode >> stream xÚÝYmÛ6 þÞ_atØàÃ.®^ý2¬n}[‡nÀÒ+ ¬Ší$F;³v×_?R”Ûw—ëµ6ìK,QÒ#’¢(’aÞÊcÞ³{ì–ïç÷<•±Ç£@p­¼ó¥'8"{a¨É´wžyoü—kóÑl¾;™)ú?ï:Óuu2“Lø¦2åe[´'¿Ÿÿôà©â¬O´ˆÅƒXo&£€Å¡CÚµ¦ª ¬€dš?vùGìDþ7DûiW¦¢ö¯ ý¶®wˆïO\…€È!%! &ôŒ‹™‰…0ñ¸ ¤ - 3Á „ÝgŠ,â´æp/¹ßåôqÌKíq$,á–ù0¡CqpÝ“?Íf[æÀ•”~f:C°©û’J’¿å?ñ9" hyozÞ›W"ñù˜Ê¼—V‰;(S¦»ÒtNåÝÚ6”ŸžplbÆýêDÄx‚vÜT/›,«J‹ÜÔKúnpº]HFÜ#ù=þä !¸­¤ŸÓEãú-!CODú 4ôÅÊ Qb(ÿCÑ­‹Êñ¹[4ùŠÆt"þ'FzUk±/jíUëôe6EU“žLZdDÜ®Q‹àÀR‚VŠÝu¾)RSºM½µCyÓ9së¨Èß2©ªkNM &G*ù×ôŽ©àÿ´˜Ç½Hx*b˜…w¾ý`@'³8Q(CÔË€*ˆí—µÉh4u&Hf…cïžpéû"ËÝäö/i^'ëd£dädC2·BFc®êE›7ïóì网_ç¦R}\Ë1ÈrW¥¸88¶=êCÃ+¥äçíÌ£8àŒ>ÐâÈ©¶ì û„Dqè×[§IF›Âo Æ»¦.‰°¶@† û[${v%xÅÞGdVàé¡+¨DƒáàYçp´5dí=µDTë1­ëá~†#ðð»u9øtšvv½#ÞÝXíèw| žøYá ‡ ZTS¯É·¥IóMNT"¾ešÍá‡S½©|" åäk‹Òùn¼ñ’ °;rŸ§DsïGçÙæn]A 5õž¾žOæ>zl) ¯;÷ÑWD~žèÒk¶BGª¤†´,+èž•—'±ô{.Ê.o*˜MÒuçˆÁI¢IÎé•Z÷~©èß mŒõtÔY—Ôƒká0<;hÚ¾i£<­Ýk¨ŠÇýã>¦;Ÿ|&b-VcªÖš(I6‹‰ †øÎŠåÀ3«²}dw.ÁÍÃi .§¡¼Ê64»þʲ¨ßƒ“=©eÀdB{žá¿ÝÀ‰P3?D|Â?{>ŸSkž›ÄX ¬ɸ/jzEë¾UZSïËõˆ!¼abÌŸ)Í;ŒÄo“M©zñxñÖØƒzgV¹µAíŸaìþ±¨VÓƒ2 T²7¯i˜·â¡v”IY—¥ ¤> ¤‰V˜—™›‰70­Ëݦjû{xxJ÷n‡ݼ\^5Ò5̢̿½pžÆcÈfb H¡ÈLÞ Î&‹&ú—àA`ÄÎîc½ S« κ;ºáŒ»m¸Ê›MYTƒ /²‹ißD¹ B‰?‰×à˜2·<Å#žävÑD _AØ ´ÿ|³­›ŽÚîL3ê­ ´#ΙõAáG¹íG”ùUé&ÁXY,Ó\NÂk½m[Ë ioß®Ç×·ÂgÛò²ù,ìOà}µÚ–u'þ)øv=QÌÝÍ€YC`I<2€6°Ã–}Ͱѿ|ØÞ;?ìô>õï0w\W ¼Î—?^œ:y Bº°íF#ÊÜÆ¼»}8aTh\¢HEvýˆb×û÷{ ¼ OVóÓ#Ëýi³;üåÀß÷³;«Ð­tçr\[vfz‘âóEœ}ŠävÕ×Eõõçò–^ÇÖðï?öãÙµŸÞU„yvãéÝé›iBeÀêù¢ÈîŠöðsì‘$ú6Ên覈H\-D}i Ò©ìeûÈBc\4‰\Äß N„8„¤÷'!5|WT£‚ ô÷“ã9Äc À­›rÉÛë5€ÍBÎ0)] rSÄÄ•3‡wÍä„J ,”c,«ÛY@úÇ’d¼ˆŠ/óeAaøÃ_^½xqËî2‰ ñ×è”4`õr>*Ha¿¨¶»Žæ U=Ò- "xû¹u^.?íïè9±ÀÎÆkzüG6ˆ»-)ÖÚVi§»b܆‡˜în¶†r Úh¨dM@è#""Šo8v›R‡–ë1=à'É $$Z,¼I†ž[Èž( (–—42§º[ÐIïGð>ʆrEÒ'ãWSÄоBx5ø‡qÚ]ÊAQz08°éAA¹TñþË‘»‚ ¤sêã ñ“ó{èœ;u endstream endobj 27 0 obj << /Length 1307 /Filter /FlateDecode >> stream xÚíXkoÛ6ýž_!d( •§C ¯¤-’ ˆ`C7²%;Âôp%¹nþ}/IÉ–9s[»|1)R<<—÷êòø"m¦!íìUí›áÁÑ)åF–‡<¬ §ô\˜CÖ¢9ȳƒ‰Dû¬L “W/oCÕ ¿ùÉ<®ƆI<=Œ3šåK¤xýê$[¤†X[¨ç?GÆŸÃOG§Ž×ÜW{Ê,Çí˜æá—E˜Nî^¾>¼Wë7Ò§„YØóÚ°/V ü4P5 ·äÆ0¶Å›¸ ¯oþŽó°ec²‰Z6UíuÍÔ0±L [5üc{ÜbQuæ‰A}Qúe”¥…òóPu&~<1°¾€±_††À…¢áÜÏa$†¡;Ã%ºe˜Œý2\VK³x‘Ô€“LyÓÒ(Ýß·~«áô& >‡hJƒ0¨"%«í# ó\lyŒ*óT,q[Òù¢]®~é[ÓÜOª©eTÞª™ÆŠú}5´˜fyò`ðy¶åÞÞ>YŒ„=åèø:œ‰'Ð9œôyºa#®ÅxÇ8ZNˆ~±>,A*Þø"]#zÒéÂY".åÑ4ÎÅv-ê1…¶:L?GI•½Ð¦5”ô kzÊó z¹–ë8°Õ0Pf‹ÐÞÆjb׋,1€, ¡jÙTüxZ9§=r}éÇu› &q˜ÜÞ$ð2a ïq`\ Ñ»a+¯U#?dѨ&Y«x’>+Ÿ*ëu-Fš‰©Å™§6 Æ£l\­€¯ ¨2?˜* Z#`öYîsl¶ö@2,l‹—+Û[#ë•°Y˜ ƒ‹Õ7ÛR‰ã—#X‹,n+(‰ÛYã*!…o¥Û_uèAxWfØ•a­ £Ö#?Žfi¦åa—Ý#xa| àò¸¹:íY˜'q”>‰e±f9 F‰_üõ²¨Èeø¿ §ñ„—ºL9­c~$bkD1½¼9?ߥõ•³ —Õº2é<Ï&½î“_;xlí¾zDÁ=ñŽwO ­ «ÙU dp›-U/ —³EÝUÙr‹ÌÁ{Ç6‘+÷yqòâñ™C(ضecÆá¤ìK«¯8 joŠÒÏËb$/ÖèGX«®®ÐÃ>—7ÜþÏ^'roC?xÀ´mò­žîùlsäw„:0®<Þº«°®š×ª)£ñ8UL5ßTC¥èØ/P0wÖ„  ŒÐZóÀÔ(¯?˜ÆXñ àñä6?1LÏý`ŸHTõ7¬{`Õœ]òÁ‡7CäœÞüö»k˜…ÅhÕ6x{=i¯çŸ.®>òj]C"@Ûîv~uõÖepvùŽöY°S’C{“GÍ???¾F¤~6Tù³Pz4%¾Tÿ–I÷³ÆÝ£¥RoyÖJ½ZIþïþOH%þÃ*%º¥Ä·JÒ[m´ÚN&±•42™CøÎ2‰$E†MQG&u6è$Ñ@(Ù@QäCîí"™ÖXv í žîv¯ÆÚFƒª26‰¦wU’Ê2`OÝËÁÁ¤®`M²d åÆb®C {²úm?Ÿ-à6•µNUk[F¢«6ƒ[Q 3AÀcÕéVLi»Du<˜‡Â¨Z¥šì%wÀýj@ÝÐáêm˜Áù;ö6‚²:“à+/Ÿ¥å¿#-ùOZ‚Û¯´¬SÖž™¬¾ØN„.ÖL l°£Ö‚÷ÃïK–£· endstream endobj 32 0 obj << /Length 1145 /Filter /FlateDecode >> stream xÚÅW{oÛ6ÿߟBÈP@B#…½<¤Ö¦qSô‘%¶a Y¦m z¸¢<Ûß~G‘ªEGvâí`À$¼ãïž:"cf cÐCÍè¸}9žØ7J ê”ÛAïõ°wvô Œœ>êcc85%õ© ¾ƒ\ MŒ¿Ì|Qñ+ëïáû–xâ8 b])^£€xàľ OÑ6Çý¾ Q@ÀÙU¶ÁÙØG5:SÇmjt?Y¶G<ón^¬ä,gj’-«¨JŠ\®¦%ûºdy¼‘˸H—YÎ5€»Ö@úM“ñ¨+©-(Z#ÞêßPjýë‹^\¼Ø1"ÒµGjV"X1v\ÏÕ¯ç,eqÕaQÄ¥fl”LN¼GÜ!áñ**+>Z%Õ¼KôÚš'Ùr$¬|Òåõ–翯é”Ó·³ˆ2ö?»ëß(]2~¯„\Fo>ø|{w´À4É’ê¾ÀiQÆìÇæ|ã6øgl4^=P…]…n_›m«ïÛaÃ2°»BEbÄYïkÏ ûõfkZo5,Špvaã²èý ¿fËqvK^ý¤ƒ×4”}Ï#â;..ý%VpßDi¼L£J4ÐâeÅMSÂ%I¼’\Îùr\²Y½×Ñ áÚDR/ìø(0úÈ Á‘à nZ!1 !AÇ«2‰+¹’-L2Ѳ¨ÛEe´fžpuT ˆä°€×J"ð—Š\2µ#·d7-ï),CIïhsKºnoKWS@j~ɦIžÔµé#(-3hÄ@C¡¶ïÂË”M„Z¾'Õ‚QtoAÝ<Â"â<™ål"OG‡àêÃ{9Ô.¼=.…·> uÌ…Äó<4…Ù×\Í“X¨0—y åF¬{RÑxB[êŠy^wš~Óòú­ðѤт" wSÃ%ÆDB ÚÑ·ÃÞl`Ù™ endstream endobj 29 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Mutation-Vignette_files/figure-latex/unnamed-chunk-4-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 34 0 R /BBox [0 0 524 314] /Resources << /XObject << /Im1 35 0 R >>/ProcSet [ /PDF ] >> /Length 33 /Filter /FlateDecode >> stream xÚ+ä2T0BC]SJÎåÒ÷Ì5TpÉç äTßê endstream endobj 35 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Mutation-Vignette_files/figure-latex/unnamed-chunk-4-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 36 0 R /BBox [ 0 0 540 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 37 0 R >> /ExtGState << >> /ColorSpace << /sRGB 38 0 R >> >> /Length 2437 /Filter /FlateDecode >> stream xœíZËŽ·Ý÷Wp)-Ráû±ŒŒD±H4€†ÆDB"Ì•bKFà¿êE{®¥™X#‹¹ƒÓÅ*žÃæ£Èfp/\poÜ÷ÇŸùÏyðžJ¦)fü÷Ã+÷µ{{üöý_ž?s·ïÞ{gßߪù‹—WÌ/¿ø>mîŸÇ7ß:ïþz÷âîͨž¯ŽŸ¯úpÏ” ‘ÌFw)À.ǽºX;Œü@šó?Üë%ÃÈÑÙ_”ᡤ%ßdpð!4w9r­Ð³À»ã¥˜Cìó² 6z†LÆ«@ÌR_›£B.¦c,°¿.ž3Cˆ¡áã=Doø06J…h 6|B„djl ÔÙHL„Kƒä]&ô:+JÅCó³€ÂUÙbïZ¿Øî?å÷ÛÂÞM ¥àÔVZ Ä@b}q¹‚NØ1¸¥¢ÛJ­|Ÿ~ (*å |~BŸQ pQ®S¬ÌFü ×ÛãÙbÛwªõ Cª |cRC_­DPýPTC¿UìÌêW Õ•€¡¯Vf#~†ë™~<Ó–~°ôÙ~°ô£¥Ïôƒ¥-ýx¦-ýw®ý0:„hù‡1 LÑ{˜R— #aÚ‰åôD±Š0ø)#Œ aêd„L»ð_Ë{×Ò2„²iÁ¶H36F˜õ12Z¦¹ª¯ Šmµ´DÿÔ7Ò?MÈjQ»ð_Ë{×Ò#Ôºié ÚÒÒ3Ô¥…‘Õ¢v檾‚(¶ÕÒ”¥¥ÓL5c²ZÔ.¼Ä×òÞ´”}"¥CŸ=¬ h³ƒ10:ÔJ4ÕE5"J…6ûV¡T£0 ÔÊlÄÏpÝèGŸ°ôÅ>É0Ò"}æ)‹— ±Ëé+(-jò$BëË7Àð+6!#dÚ…—øZÞ»–à¡lï"†e ÷!¯áÎÈjQ;sU_A{Ó2 祥C©K ¡M‹Ø…½øZÞ'- —äMK†—–m,-„6-böâ+ˆb[-!B«Ë7pW”Ø„¬µ /ñµ¼O}Œ¸­¨~µM„ÜWÛÚú˜Ø¥ÝÅWÅÞ¦áiל†;”¶¦aBÛ4,ö¹<¯å}Ò’!´Ìš¦–Ê+h!´i©f%œ¾sô¤´÷±ÄËÝl‡´µSê{û!±žxÿzÇ~Lз¥>ÆÌ8^,ëcdµ¨¹ª¯ ŠmµÄ­,ß}Í+Œ¬µ /ñµ¼÷¬ËŸrÞLÎÛ¢Éyج+šœWýøSÎ[‡Éyk79/£@­ÄFý ×~ÂTÕÒÏ«Í?³ÍNóF_¬ÌXüPT›4FLWÕ/@N3*›4Š•ÙˆŸázJNÆiEÛ%=Œ`ÖtA69Q»ÌFÞ,ë{KNºYØCofe´%'ͬíÓ×ò>%²%5OÎi3që<ÿHbGhK»™Ÿ¦¯ н%…çñÍPLÒHhKÅ>“ÙÔO¼OZ VrÙÕ…²â5ðiÕGhÓ"öÉž|'sßw-t2}&ä3vZ©¿Ô-ö™òzâ}Ò2p¶%Àž3yÏҪі‹]úø ó±¶|òDv_³ì;oëÏvÌa1_Ëû¤¥ãèºìêJ° u6áNc×âÍÖvúNæy_Ýq—Z—–j2A›±Ï¾¿ö¾3¶]Ez‡º¯"}ðv€gòáy;À3=#»Š¨W õD±í*Ò”µŠô u­"Œì*¢vá%¾–7jÙšè¬LZ' \á.v—†»sn÷„Р§U¤ìÕTÂC ÕyÈ#;-F>ÎqoŽž¡ä]!Gº;bx¸ssñ»Ýûîø›{vD¬z*1ã~õâÔŸ±R»zÒt>SÂ3CçR¦Is+é:Jy`CòÉ‘j­s¥ThjWk„ZÔOÀ¤~tr¤Qç¹’ÖÉVaÃ~–+wÔÿÓÿ/ _îå ýÒ¡f U”¨10ôÕJÅO@Ó=£>¨Çô+xä¡Q‹žˆhl6ìg¹nôqo¸7 Õ´ ͼAF´KõUTN/÷žë-àþp½AFˆÚ•W6obÆ>i©þ¬¥v«¥T«e¶ñÔBö©}—–êÏZJ²Zj±Zj9kAûÒ‚¾ïMKM¸M0RjÆO$­Ü(He ŒµMñt;¢"ž ¨àkTFX… ûY®çQ!‡ÅkTÄaFEhfT„vdÕQ‡rX¼FEÈfTÄjF…¯Q«èg¹þšæ¤ÿqú8òBÚÇqôhŽ¥Ž)Ók]óõ9Å.ã”}רiÇSªé›Mß´c¶¯‘ëˉ÷®%FÝÏ' ·²/fÜåj}Œ¬µ3WñU5žOnh§¯Ç¬vÆöš?Ϻٮ¼Øwã}ÒR îï%VL­f¼†§¤³>B›± WöUD±7-™gcñM<KlB›¶+/öÝx_ψ%¢~A5øMò]-ô¾ŠÔŠQ%íL?R׎yq~fıuþÔ"hs¬»#ÇD{ª3Ö¸»ÿµ¤XK¤ Á»‹ÓŒ9¥¿úéÿãâ_Úþú{v³®hì_º©ð‡è‚»yíÆ¼u@?CÇ$ÉywsqOÐòÔݼ9~C¡?í;*Œ¦¾åq¾¡$üøÆÎá‘ãQ~êüÈšc-8G²sœ5k«šk×>›_Ùê™k‰.8Ì[æÎ}¿'ëºd`ïû¼c`¯,ûºb`oû¼a`/ ý¡ë5ÁܧóÕíRƒ¹Ä öíNƒ%ùK{w®¸Ž3|×_>ÿãïÚQR¢¯Î›óósGyøÐô\7ò!ìÇT±“6œ_¾÷á§¼:sxD=&øoL!Ñ`¸—Áš¾úñÃwþþî­{ýëï|õöö§‡ÿÔ]¤Ö ce4Ùã÷QÊsS”»HŸ­ÝrOùƒt.k¹O–8¥ÓYV#@¿÷.O=lˆx{yjú2X='ïGl$º+$Oð=›xÈ™ôªÏ•³¡Ü Jr¤aTGÛ]¾^6ͯhäÑ!{Ŷâ{ÔoÔˆÊ5jlâøTñ?ÒÄ9â÷±Å2ÒVGÉx%d•ÀΩ·©®%Ú†ég›8þ”¬MÌØV|áQ¹Fíß/׿¹â+Ý€Áå¸7K~æJrÕ)æ±³éçšiÓiÆ ,Ù™§ÿæâ¾yróÔ…èÝ“w¾»s—§.x÷D&Å÷O¿u7/®ò>þ\ô/Í endstream endobj 40 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 43 0 obj << /Length 2631 /Filter /FlateDecode >> stream xÚ½ZësÛ6ÿž¿B“›ÎQ3B¼øÈ%½IãG’iÒŒíK®ÓÞhh‰¶ÙR¤”ìæþúÛÅ‚”@S¢l÷î‹.€Å>~X,VöGW#tòÌ·íçÏ^K=â>‹ý˜Î/GœùÆü…bú1ó ,F¿x㉽rUÌ“*KëñDŠØ+/©]^§ÔyEmþ{•³”'J ïx ¯¬hlVc`u‹Ò"ÃiãxqÆŽ0Vé‡,Š´+N}ü'Yв­:H¥‘쮼©J³}6o´H™—؉Z­êÕx½ÙH×V_²ÂoHOÇ0¶¬`DúÞe£ÝÝu6Cþ×([Ç A¬™ŠÉ‘°lSZcD^ZÝféQ³šÚ içD¹Í’]ÖFWéîõ÷÷OΧgoß}<:0šˆ$, ]Œö>J¬n$9ÚIqô~Z(ò~Kg`¥ÕaV®ý]‰kQ0"P¬ø—¬œVÊ_[òMcFœÅ (Á!½Z¤†Ã’Ü`\wcÑY’h‡Yž–K0'ÑnÖu¶ÌÊ‚H’ [îf¿úR‚ºgIÃk~@YVib+DŰ²CwÙò:³|Igè|¡Æ•ÙN&M-9 y0 ‚ˆÉX‘¦·cxIõ-+ð¨Iå]U‰o•ÃÁ\bïÛKäÒžóÇ‘ëkÉŽ&ÂgR×9pýUp¿³¨/ Ɔ3Û éËô‡Ÿ§o:üéS/¢bÎ4+^¢¬’,U“ÜiÒž,Œ Uçeq@„˪\ÐD3â}s˫쮴þ²,’Ú¶40ÏêeVÌ–D¬RtÓßvZjÂ}Ít@G2­â§Ùêôèäý6c…L²c¬y èSEjíE×®ò„Å”f¼=<åVuè Û=þÚR¡+hjRÌ[’2çLú’Œ oƒ>Å¥ú3ÇC‡gÇFåª5Í5¡™tPUEkMŸêî³£“GŸÎí/Œ ¸å”°áÖBt¯* %µõŠbä<»ÍêÆ:¢q«Ø8hM¬…Ž 6Ye¿¿X^nöÜ:70¡&OÀÇL„r¤cɢІ`rÀ’±Õ“í{øaÀªn~¤êȹ֪Ê{“çØÑ °Ìá< ùjnêFôHç¬hIJ“¯ªrEWGj“&¬Í-G<ˆXV-F”ók¸áw\ã…ƒ€…¡&ùO¼‡éeVÐu5`ƒX±XG.“WÊ3,’<ÿFŸé↮ŽqÄ=Ô1”Vo,‹Ô.²‹ñrG€¥íj iÐó«-gJŒ'ÞÃ%[¸öÒòÌËÂÈÓ‡3-™ºÁYnw†#Ýä™õÿ wÜ9ØAPÆ,€;¤ RQ©U5‘Z…±œ¥Ú m»´ c5õŒk,IQ¯‰’ÝL©1¡!I±l‡ÙoMYo†ìzNЈÄzæ0þZ»/Ð:ÐŒë`ÓûNzfP`Jß÷Í%þdq“Ó›~×#x >B¶:6ŽÌÓ ‹¤Íš¾À‰ Í¢Xº‹öÊÏ76î"ÝÙiÄF¼‰ íu¡[@(ˆ˜9îqEY™à€33ËbVæ«E±3â* yk ]™«)î>Í+>­´Ò2¢sâj5œ (ÉT z¶¬‡Ò“¯ årع% ´Nß²§èWsóN†«‰Cmcÿ=ž}H¢¶ï9¤§çÄQSÂs_û¼ËË»mÞÜØòDò{"‚„R;öR¤ GÛÏA<­;Ì ¸Qï¬ÐønP˜_LË‹zzkUöÁTðІ?€ £²C•G¿˜}^Mœ]|»D ˜låPÖ+a;øÑ.´úºâbœòµ?¿°O!\ë3+Ãס¬ù6…·æ4¿îˆ—‰U#°Š9ÃÆ{Þð˜&yvUä–Ï»Ò=@.ŽQ˜GÎWiµÈá)þ)k)§óé"©а\tK¯»¬ï½¿WºæÐ² ü1¬ ™£-iü9Šð¬×/æÜƒ+Ö~i($ï2t(™8èi¤³å캼£^‘Þµ¿?Ž´wÛPHнaHš¾ûþ»‡‡ø™ ËžŽŽušCq¥/*´Ç3›7Þ;ìÔˤZÖÓ¦|Öeým½çpãšøŒÙÚó>¯oxþk¿x¯Ód¾C»}b©W< üj;ø;ÿBƒ?Ž’Ó«Ò"Û6o¨Yfyú’>5PR2Ó9°œëp}L±*y¯ïmú «ö¬lëûDÑ7Ó¾‰·nþjv]}?ÆÂaßWó‹>tˆ;û[Xâ“OúìÝç~xüþ'a‹ý­íCíò.?ýáãç÷Ú®ãûðë (]†Ñ;õãçÏOa¨ºž|:”ѸËÐ6™c€…ÉR±w uß°V¿¼ïoÙ€Àøé oB½1açK`©Òü >rà?JŒŒîá9:ö_¶?Þ endstream endobj 48 0 obj << /Length 1086 /Filter /FlateDecode >> stream xÚíXÿo›8ÿ½ÊiÑ j¾8ª›tk—¬ÓºEm¶»Óî„pš¦½¿þl !&$ É­Wú ¶_ÌÇÏï}Þ—$_Òð”£jØP{{ô¥„JEÉÍðäÍøät`Û’Ô>èkÒx*Yºd¾ Lºò¤¯òO]êP¾@Ä]”a¾D¾Ÿ`µ¼¸¼)ä‘Ç'ƒ_ É%Å~ˆ£Œ/ëûnù.2”qÄWÓÿµÀ‘à´ûçøýêJ§«¿®+ÍP¡Ùçªz'ž¤ÎG€ÞÓ4éC3øõ ½¾ô5?î\N¡ût¶¥Ç6†$Õ›ô8œÜaïºP_T—ªô€ Tëe¡E*ìqÀ]Tè)·¾ˆÉ"Œ^Õ”Ôay™^q=A’ÃÈÃA$ð#æ‡N]Çzi–¦Úš-šÝÇIH‚è(5KŒJMÇsB”~;FÛ=(a©‹.ñ4ˆæ¬Wuè«ëáØùÒþÈñKÖ>ÔM’{ô‘# n‚ñÍç·ÿÞ]£y»®È£ŸZ¿rE)ázh .d{$”z6QSä”ÛY¼ä³/¿›HšSÄ_º9÷ŽÉûð4?êÅëíÓ…¦©&剠@Š v³¦Œ± ÚÀ+)°wJJ3”d©³ ²Yt‹ÛÊpá0;;&N¬ñâÇÚNŒ²FÞŽ‹í“\åè È0·GF­ôR… ë4Dt£`}Aûbø…Y0™|Æ&îùxíú DƒVU(GºŠ® —Þr½ÄIʘ©D©(š.7v1Qº~æ*^ËCÏÝYòº«ôMäsoBèÜ´XÝ9ß‚ÈŽÖø0üoß½kðù·ßí®Ò³©T£©Óû±µ‘;u¾¿]Ám€”kÔƒŠÑ£Wc©ØÔì]؆ˆm¿3?ŒF»°«9…¶¶xsÍï•Öׯ>f8°–ãÖ)7"1í» ÃLš'Ã9J‚”¥Q&žPîØ2κô¹dŒ#¾3ÏÄlK*£?•H,3³ žäâPø5dó¥‹\tD*Ws#çjšE¡?^Ëæûsf”=ú´½!NÍH÷͈븈Ö=ãÃZãMB¶èvhø¹½ëLØÔvÆ¡3‰ï·¹ó‘Tš ÉÑ\È‚ŒàÃÚèUû”m&6Né1½´nÓcz¢îSò*³‡9>F›F®ï{þus#ÙÙÑøþH)M¦Mi€a‡ý-9ºåA!þÝu‡È§›ÿº†ÎŧŸnn[’ ²MÀiœ¸øq£¿t[6£åЙ,wå#IiÌfÆs |”˜üJ |аdòS)U{ú\Ÿëàs|ºuP·TÐ/ÞD}C£°Íwª³³*¡ì'7Ú’9}ý% ßhíˆ~‹<èû’þÝïKõûº¡©ºeP ê=ÚÜ‚Pxåíøäò¦è" endstream endobj 52 0 obj << /Length 1392 /Filter /FlateDecode >> stream xÚµWûOÜFþýþ ‹*’Oâ–]¯×–D„(ЩURöìåέÄö…¿¾³/Î6Ò ïkf¾™ùfv; ;Ç#l¾þc‡8¡çø4FÌ÷¤}¡(¦$T›¡Ú²"faç¤ðœ·Õèwø³[P7éèÛŸŽvŽ‚Ø!ÅŒyÎôJ„)ÆÄ™¦ÎG÷²㠙ˋ¬¬Ì0ÉR=º^Ž)qo›,‘[ÄMät)Š,á¹9QW×jKÔm&½ØE©ø„©_ …^µ¼Íª²ÿ5}¿sD™C0ŠqL$6Eþ:04ÆÈÇ3-çþ-(¡¨¼â«¼ÝÖ³Z\ç<câ¢{‘Ûêu^¦zÐd¹ÜˆíF!ÝaÐgk‰† º5DAÙ¹<{«÷ÄWžXÝ&Pr¨ûYjìg­’úEh—™±’ðRº¬| :>†ŠX¨}œ' +Œ€Ô³äå¢'vMѶY¹°F„Žfw£iIAâ‘(ê›*L ÞŠ«¬Ìäè¡„X°S“b^/V6òh<ñvÆ‘ïVµq¢R{_$tQf¢LÄöcX}"FX›%ÿÆ‹ïáóC¢¬/ ìTö!=6Û:_@•¨¯“€"Š#-[]=†4b(ô£¾Äé“‚Ú1Ib…l ¥’4Ý¿EÒJÌŒÚ2Ò gž¤F¨©Ñè…¬Ô_KM1Ô\Ÿ®B RÉ…Û wYͳD2æãÈsÕØ½Vªœ×vO…ª'?ܱီ5*³,¥€hSl½ù %sR®©«òqUåy%åoîh %W\ç ´m¥÷˼Ýjm5Gw½ÇT·û÷«·[kÅʼn\6nÎA_Ûàa(ŠL›’ô ÂN†ô\%h½^ÛõO˜áGk7$(¢A߯ýÚ}}ðnïüøpvz9Ý›žüzvñÞÑÐC^Ü× PÒ¨N;!…© ŒÒJÁâVf‘çÐ6íIq*ØC”&ÎÚ}`L’ó¦Édž¤ÂDFZU lú²þÔ!®§mÍË&ç­0l“7hKõq ÄÉs=ê´Qy¬ldšá‚õµ–öí½`˜DûLRôaD#è0•ÿb§†‹»¿r~ ·+4ÖnCr&œò¨¾\O˜ÇÜž'+ ]O9¶¹Ô³«Z|^A“¼5SÙFå@•‰ZYI'å¨Ñ'…†j^CBcM:ŸUóf–,{’„à¡€¡Ú½Þ ¸ç|T¶v'=+X ‘@6é­¬%Áž¨¿ˆô´{íß)Ò¬Ãé|Û YŒX U)½½•µ^ëýl7åë>/ProcSet [ /PDF ] >> /Length 33 /Filter /FlateDecode >> stream xÚ+ä2T0BC]SJÎåÒ÷Ì5TpÉç äTßê endstream endobj 55 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Mutation-Vignette_files/figure-latex/unnamed-chunk-6-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 56 0 R /BBox [ 0 0 540 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 57 0 R >> /ExtGState << >> /ColorSpace << /sRGB 58 0 R >> >> /Length 1890 /Filter /FlateDecode >> stream xœí[KoG¾Ï¯è#Ré÷ã“„€D¤`K9 È1 Ö®yñï£êªêéÙÛ»°6Á™ƒwõu½»ff§«ÊF=UF«÷Ãô§4hM6Õ/g=~}8Sª‹áÇËçÔéå`@k­úÏËS!?:ž!?úW“úgxñRiõ×`ÔÓÁ¨óÁT;φ«MêH¬Nz %+g eB€•ŠßÑÍëäõz CC±VõŸ††àÆ0ôF¤Åòý_cÛm)ÖX2ø„ý‚&(‘ú;¼Ä­H5Ürû¨1cÊÝ:SÆ&HI” ”.¦ÉŠÞ„ļšÊÎu¦˜Af,ήêøl[úú&ñqßÞëïèdlOËŽŒŸµ‹þ«UF¼V¥uÄëG…&Cðµ®ÕÉZ=@ÊCur>ürRUß,kŒÇ[……ÞÂ9AËfOË6jÜ?n–egº¶û\ïwæšìÚî.ƒõ­ÞwűÇLÔÖŸtÅ;ºtÁ'Mñ‘Þšà“ž8ÒwMþW…(Ýkò¡o»w}v!OÚ_yý%[ÐlMä“Ç¿ý´óUà-nèDøñæU°û½£Y¹|N|7fêa£ ˜¬’Ü=O.ß~üüîlÓ‡=ìtÊèl‡OTc DS-=ûôñÕÇ7o/Ôëgï?]œ~Þ%ðYð‰ÑX€dUˆø 8˃,Û7kج N6„ëvî&‡YOÈxç™TAýÜš¼ÙíþÐÝýa­©3G ÔzÄ<´pÜV’ÁYŽ‘#yÐN†Qf¦'¬©Ã¬ÉXüÍË=Ï&5rc«Ú ^ î o¹VñĵêÊœk{n±7õµáv¶Ø[(½—>à-ÝÇM±ãÀ‹Sæ}æ^dIÓ•[ì N[L¸7¼åZÅת+s®}Áý2÷œÃ—Q׃ƒ\¶ž’6â£B›08Nzk¡¤Æ ðp#ˆÎ'¼Ó­÷|=øµ•€ûâ|Æ#ˆõG ÙAFx8s3ØèÁàÏŒÈ ªº‰›WÎ6Y ©Œº+ªÜb›éìÉNü¦C¬¬I†Ç•¤ñKô%ƒ_bP ÓÙW–eDºûXbFD6&¼îE7¡>¡³§$;ñûþÆâ2ýv+ µ<ëÉu Ûu × ÑÙW–Tu÷±¸D‘“¬‹´k¤›P‹ÐÙ/’ø½Ä²Ä²Ä²ÄÒÏë·•B¿Ž¤fòÅÞ8²/þ0}eYAmj¿­Ôñ{‘¥É|Ñ=î‹m¡³_$;ñû¾ý¾lûX£‰¦þ§J³`3hK…Sa1µäÐXvúgg-x×Ô7LºVƒK ßJ·0ñ¯6äçê¾Âá}=ì+Ñ@ø þ%Á[ÚôÙ–Ê¢šûšM~Ëì²íñÔàGº§Ü³,¡1Ûm¥fLd)›¢{̶Ø:{ʲ½ßóÙf-ÛbÁY¬"Ôͪ5– ü®¼‡Æl3&]«Á ®lã–í‰ül¶™C²-ºlÏón8q}³B?>h6+ý»ZYÖ¸ZíäzûžÂXñÒ&°‡­Õk×ë'gD:òUz;N‰G;N‰wV‘o¿NTsŸD»ƒ§Ð'çÐÖäþ¾†/,Ê{c°sö ‹ò.fÌÚíåm¾“ª¼OwT•÷ù0UyÑs+Uy_¦¥ï†[U^V¤*ßð UyŸ¯­Ê72Wå}Ù¬Ê_éZ«ÊO]™smÏ-¾•ª¼x%¥ï†[U^V¤*ßð UyÙÃ+ªòÌUyÙâ±*¥k­*?ueε̃¾ƒª¼ùVååeg£,ÿáìÝêÕéÙzïÚüð/Ÿ%‰p endstream endobj 60 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 64 0 obj << /Length 718 /Filter /FlateDecode >> stream xÚÅ–[OÛ0€ßó+,xI4b|‰s‘Æ ·bÀ ÒعÁ-Ñr)I t¿~vì@S@k‡ªª$Çç|>7Ÿ @``!sÝZÛ‡A0‚Š0ŽA@@€"ˆ<ùt®íÍMÇe„ÙT_gìêhwˆÂ#ïôâÂq©0A„HÄ×#©'â3ç×ðDîáb ™õY^ŸÅNgû´c9n@™¤(Àö!e‹ÎÉ»HBÀ ÀÐó< M öC0Ì%ÿ‡z¶ êÛ /ÔM`çü·CÂN̵pš•4¥–ܧõŒg飗޵C"{æ¸Ønx“:Ø. õPã[Þh½DíqË‹‰èV„^¨ÅÝLIç•V«:5^µ¼¬Œh\µJѰӢM&î"'À÷1ôq¤£.‹Ö’Úi-ƒ"=Ÿ:®¼¨Sد¯, AO—dâ)%KUPfW&ALA%Û£/¹XອÚWW[t­$«­T|¥ËEɳådÒ¦}ÑZzð1t3ŠËQ'·[7«2¹¨_ŒTEùÚ²Åô$-Æ~ÜY&$q³lk HëËü(ŸÅªœ±l‚¸Z›7N³ì ßdŒXý ’°®T¾)^OòŒü²~í<CöòD”y<*ߪç¹¶4^2>zw34i“‰%WV‰ÁÞØ3çZS‰iÆ‘‹¢Ñ‚|¦æGYÔË®Ñ$”Ûùý ÿÏÙc9+æSño^múU÷ÿfò¡³cf^2ßx¥~ÑIîbj™Îl-šˆÕ!Œs^È—Ã{{«à¹øäjÝól&êCåx_^­ ÌÒÎ)Ø/­ïò×mÔ©¸ê>QÛO¸þWE’€@Œ‰v;èù|0´þs @7 endstream endobj 61 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Mutation-Vignette_files/figure-latex/unnamed-chunk-8-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 67 0 R /BBox [0 0 524 314] /Resources << /XObject << /Im1 68 0 R >>/ProcSet [ /PDF ] >> /Length 33 /Filter /FlateDecode >> stream xÚ+ä2T0BC]SJÎåÒ÷Ì5TpÉç äTßê endstream endobj 68 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Mutation-Vignette_files/figure-latex/unnamed-chunk-8-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 69 0 R /BBox [ 0 0 540 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 70 0 R >> /ExtGState << >> /ColorSpace << /sRGB 71 0 R >> >> /Length 1235 /Filter /FlateDecode >> stream xœµWKo7 ¾Ï¯à1>”©÷±Ú4R õ99±ë$¶ƒ"ÿ¾ ^ÃYOoãvŸøú(QEpWðiú½þÀ 1õã]ù³ìäïf ¯ázúñö§py;c@o/»øùùŠøüùo2áŸéÍ[0ðçDp6\MT⼚¾z‚ÓN°tsK˜ {L8$Ìî‘4²ŸàÝœ†ÁÌ ú+iôvNäQGFаŸ\˜\ƒ»é¼‰‰²›å +…äÐ’R¨xV`gЦY¡a¥:¯*…å:Tuç¡ câS±RðYeܰâCŒVEhX)„„N¥Üp!ì#’m+¶ÐL5#ë F3:œ„­T×ü•B¸?Z×7Ò²LÈ{YA&B/Ô£¯éL]€F°¡Ë¢d¾†<£I³mCÅwÕn#¶&£÷ÃwEU»ÆîòÆ«ÙjÞ—Ó©bZ¿È%xt<ü…€ÖŒxé\º¼rí¶ ß:—`¥†-£Í³ï‚t.]Þx5[Í{™KJx‘KÊRÝ_6u¦k¼Št.]^¹vÛ†ŠoKŠu¦«m âð]‘Υ˯¨W©û>=Ø”åT©‰CY§²C˰#†rÚt¶yEÁ Sƒ.;0™kÝÃÕ”z7œ7Xí&æ,›à6åÝÒv7½‡Ó‰%ð ß¼E {èÞ ì´V·ãáÆ“ƒÀº„Ñ{‡”Ë"/…a]–Yd<´Íß,„õ„1ÎrÆà‡mGÅwÕn#‰g[–zø.¨h÷ØUÞyUÛïZ°}Ì$©$‹ÉHaø“ëÄŽxé\º¼rm¶ß:Ë…ÚlM(Çgó]‘Î¥É;¯j»à½^°Í#±“Cnß#Pf™²ðm(©¡±(Xkä² IÊ–³Ë1!ÑðÞquµ›[ä|›öîÀz­f»†IÈRµÝCÅu»­60·çºu9êwº™™>-ó·ô[¿0lÞA½SùHIfBÈØìá™HN`s5ý¼)®¿m›æØmé8[òëÆ|œq©gêÆöHãà‘R7vݸϪjîÖ.ÿ•cX5w¶´i£WRSéBŠtn•tç¤ä£SÒÓ,Ÿ%Ý7)ùè“tÛ$òÇÖwMÁ¸Ckƒ»hÍT+Öå‹ÎL“üÞêvA6蹬õË¿þôØB±6ˉ¼0~qX(ßš¦9ïßy¢%ŠÙ)ÒØ7çËÛw_>n9G9ÿAÅ$+Ï¢,w¯Dzõùîâîï×ðîfûéóöúòËcÿÖ‹*FLÌcdðA¾¤M©/ª'›7—,²¡K@±€ò½÷|Ü1ú ˜ 3Sn’³LRyñ´‘HèœÒˆNnõö`YiÜ\òbÐ<c0¸öHâ({CÜ&t¦cøµ‚Ô •5jGN±#9ÿþ§)vŒY³t^¶´ÎCš¯ 4¤8û›p­ÕèsX=}uŠ]–7ê<ÅëÀ÷¨¼ V¨¬Qûûeíœó&È%LÁbÊ÷NÉ'âB?bŽ=MŸê¤µ'FÁ­;3åÄßìáͳçï/nþÚÂÍöãîâr»ß^ßÁþÈÀ³v4Þž¼…ÍÙ*ûé_¯öàJ endstream endobj 73 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 95 0 obj << /Length1 2010 /Length2 23108 /Length3 0 /Length 24296 /Filter /FlateDecode >> stream xÚ´{ct$íºvl›3Û¶mÛéØ6'¶ÌLl›Û¶É„_æ}Ï>ûÝ{¿ßêÕ]}ݼê~îç©êªj2"E:!S{c ¸½ =#7@VNÙÞÖÈŽ‰™NØÞÆÀLÏÈÈ GF&â4r±´·5rr8\, &.ŽNfFF.82€Ðèô¡4{ä€.Fªž@&¥Ñ_@ÑÞÙ…ÎØÈùC ´3·´R}¸ˆØ;x:Yš[¸ü‰ÁBG÷'Òoaz€´‘‰µ½»³µ%ÀÈÎ M/G·wÿZ(ííÆ@ #3€½@¨ PSSVH(+¨)ªPÑVqup°wú."*ªj´Q!yU1P ¡¦¢úçSh÷Áßœ ¯ú¡ÿ“çÃ𻜘ªª–¢ß}0Ü€NΖÒþ7òf€Sûp5s²·ý+€ÒÂÅÅ›ÁÝÝÞÜÕÙ…ÞÞÉœÞÁæ/~ª–Îw{'kÀÇÖ hü«0®v¦åt±þàÏd-M€vÎÀ?Nâö+m?Jùáô!wù_b…pùÓæos€3øi,Œœÿò•UT”ØYÚ¹íŒìL> ]Œ\\†É>Þ@SŠ¿ "®NNrÈýKåô¿iþE]ØþcÏtm¼}Üÿ{ÄŒì\½þQ›ÿÜm{;gKgç¿#f–6À?ìÿŒ™¥Ý_29!y)q1U:ÙÆ³£“³ÿ¨Ž½‹‡Ë_Öâ ‰Êr8ÙL\¬Æ&³3±·µý`í ÷§|¢–ur±wòdø¯®¶¶³w·óþo©™¥©ÙŸª›º:0¨ÙY:º¥DÿÇöC÷o™9ÐÀ:€& RýÕ)ÄLÄ%ðõv°w˜Ù8}-Í€8og#7 ÀÅÉèëýOÅ"8&€©¥‰ËG“L¸¿¢KÙ™Ù¸þ0ù—ꆟò¯IJõ1CMííl<¦@38y{—f üÿ3Çþ+—¸«¼‘-ò? úßVF¶–6žÿi÷_&À?T)ÿgKgqK ©¢¥‹‰ÅßUý[.åbôÑôBvæ6ÀùK¤ögÙ|4ìÇ¢cùgÍÐ1q°ý—î£M¬í€ÎÎvö¿TÀüßÂÿa `WÕБ¡ù¯vùËHÌÎÄÞÔÒÎÀÌÆ0rr2ò„cüèf66€7ÓG+›=þj½½Ë‡ ÀÁÕÅ`fï÷g Ù9 "D#.ƒØÿ"N6ƒÚÿ"®K£#Nƒñ¿Ñ‡ŸÉÿ"&FFƒé? €øÈ `0û7dþð5³ü‡šÀ`þÈ `°øüàôOã6ÿ€±lÿ ™>xØý~ð°ÿüàáðø‘×ñð#¯Ó?àG^ç@vƒË?àGm\ÿ?X¹ý~°rÿǰòøü`åùüÏÑWü³ìý5«ÿÝÿs<ø «¸8Ù[5,M?Ž…ÿ0‘3rq²ôÐaü˜’Lò׿¾éýG²¯&ÿð¶÷ð¦cå`Ð1sr˜Ø88þ”†Ã÷?|Mþ^šÿZ>úö_øÏº=€&pË ö&<_¬ÒCKýÄ ¦Ê ɸèÏʱø5¥ –3§ÚñqD¿î ›²È íe%¹õüRí¾k’}Á´yÛhI®˜¼3UÜ5ò“óÃGÍS§W Ê’[ (ë$¦:–ÎË×*fÉjMhýP=ájïúÃ<ñŽz“J¬[Öºö Ò½hŽ© ÃÉÍc ¯iªÔåý7F\´Q¯Ð2õ¬a~(Ö¨4”COŠá-IÉç劫´~ß«fŸÎ ü@rQ¿JLÓžž†ËFÌŠZER h¹‰­Õ¼å¥vMWž§Õ†PíF9GtX­Qxc¯Â†´ÄŠÒw7,Ñ?ô*1=•ô]c7H8#ž‡Ó/³ÅÃg¥ð”êV‚Û¤ŽÛüq„©¨©¡ßgs*ÀéR‘MÑ‘BK.öë»-:S ±·l…›†ççռġî)?4™ÛåS¡c_(¹¡ÀýE{ÕÎÊ’>!3²d6®Ùù‚m.ÿ™=D}#-ê‚»ó’Œö{*¶çîÓ˜ sŒU±‚$ÚÎøXát¨j—~S¬T²kÎ_0Þ7¡Ý'¼fw2Þn³7©±iÃUyA$kaÜ3¤ŸÍrl7,ä[¯ìÔan”~£[™…²<פe–¢§JÃH‚åë¡ÀÉ;1¼ YÀÏR5Gêh>Ór9åsh }µ¿.z¶>rÜ% >˜Nµ ÝIFHKg)£“ý¥K£)#;·&²MÊ6OÈ ·Î‹´È~Þ ¶Oõ57ÉK^Á½–3¶à5ïtZCþú3¶Ì§ÏëÚWäœÕLQ'ÌÕsXµÞ)Ã=/ŒV7µîø:r~¯¦Â“j±Wûf+ˆh>¹ékÇÃ<{6s5+ù•ûô§ Ðà¡ÃN êu&Jn0„ÃíÃÅ•Sïg0\5u³\9¼DN³½wùß×Áù¬­Ùéï’Šxyñ9Xó”Úô›™9† Ã9ñ°w+vnÛ*Y!ª‹ÃjÄp‘ÛRäQf2à,zz%©áÇß—¸»ûíù ýîüèÖ7ذc¿å¾B*#eØÀ \Tòõ™B!6* g¥œ~ ÓžR[ªyœFl¾ƒï‚b0K8/#„ÐútÞÓ¤¬Ôõ¨aO=нOÄEÍ€hšYh\ÎmÎfB¹}µ’O0êαAÆqØ  %² "~äs“)VêìêÝc3 ÎD6ó=’ í'¬®zÝEp*t@V’–…åÓ½%uÉ“™ÈËâ½¾Sr Ý€ö‹"Ö3­dUN.IÒ`PשÈÏ¥¾WA•ÚyÞߨlô4%^ÀÇä,xOœ'ß½¯1[ÞŽì:qL(LZzŒÅ8=Öœã€6õ%{âsþò~{WdAƒªTòØ€BØñÈ­[k‹²hƒ™­#ÇÕãÈ3«ª‘+ÙVÁí’êòžµŠ&`gC–L²îX„C Rd¤èã÷¤\< ™ôK7|¯lê¬$xÄ ›¾¼¬îyõþ˜Q⥫Ÿ6&<±Zî§|á(üÂŒƒ_£êŸ6ŠçÄÙQè$~Ä·0‹$ó×úÙôÅœ·Ñ5wº{$Y;4åc½$I@ªÒ~Ánÿ¼J¾º11´‰;‘Ýjúr*Ñ¿<-´õä¹3íÓ²€§ØI0”“‹²ä禘·×Zmv± .Ï™»2ìAÒŸu:!©¼¶çäÔçzÇÄ·øôKf©Ëá ¢Ì“–:=àåßÞëî¨' á‚hŠj†š÷­PV‘´žlzŸæÑÓÒ»wTE„Q{âð}²¸' ‹±âà š†T“Óƒ.?ù„Ha¦`ûl÷ga(œêr}Ú"ybŸ6mê$ûýˆZh6Ñ;¡í.¿KIªaÙtÎøò„B·0rËŠ¿¯¯yK甾HLd€sVn÷IE›uÀ©ã’þuáàÆ¥oÞ7™åØ •y0Øöh%eçãŽÍ°?&nÁK’2I–ý`Ñr?¿Á”Ú,s˜xÿ [S`®„É#=•³À#­Ì-Çe«.?c=¹ãwë“v¹ÃÒò™h‘ØC8Ò9+Wf°ÆX‹'çíZ•œEàà æ2ïåñ¤úù÷[ oN£x…®¨ Ûº™C Ïqn°Nðµê€Á•™3õ0C·oX~Áfn$þḫ·¹}{„“XÀÝ÷©l÷;ÊrŠö+¦©$MbË\¦{T}Õ|ñ<¥1ò_¸ð8uèkšeôU&x’?v“Í¢í Ž++žÕQíŸ9û‰´†ArŒEñÐ}´[Ò˜‰„N[´A¦QÌ–®¼=²ªœ!êƒþ]@ ¨&¬Ïª%\!q¦µÇA¹‘²¦YÔ+«å¸[bÆþ%ª\½w€>ƒ¡;ªÅ¤ç$Ê]ÉMgrhf‘Ã&uQúÁKHÏ&Ö„m=J˜1ÓuöÔƒé¢-§n6„[÷x¡®)‚¦Ö ÀAS.Õ$¸,Ïg?ÉUYÅò§•ZÖ%ä5Aé5E4„!™ÓÌéŒ0¢¨»§BÝFgg®dÙ¬Â5îÒ౯¬¥ÚWµ2Ø(uéËÇ¥Jœ!™ñ¨ÂÜ ‰„G'V«šÏ8½^BмUô~ßœÏ X¯{fà 31é7&ó-œÚy£¨1±—_ $Ä®s4ø«•î•2Á™j7º ðQL˜©”i1“”ÑäQ”Š1¹²:ðl9 ÚÛ¶ßsÕ'³ù #‚a‡úfŸ_Q6 3Ý*ˆ ôº³SF*eä± É¥Ø{¢ 9ˆµ0’û#d¶™ЩQqö¼¿0wà-–Ž'0мç÷;h“¿´ùÇŠ2,—Ñ—Ærâ¶ÊÊ3¹8’ÜÀÁ9a›ý^þî–÷/ÿiõ¥Üd“’ßéLÔ»b¾C³Zåþ¢W.Ó3_ˆ}û‰NÅgDÎ6œ7SÔ›¢WIØîr:Ã'&‘¬ž¢ìKÙ0,|- šû›%ºâäð9÷‡#Ä“­Å@ü1SÛèæ´"Dç æŽŒz;“®Ow­3dÿJ‰û¯?áîUgÁ|O0w­Ê»Y³c nDré×Z–mlÓhf¿¸†‚/m5ýM‚¹¦2%=Î)ö1ߦfì/RÁj;4§Å»ÝŸ†>Ïk«Æ'ß|‘m:`£-”œëð‚Z:C9Èør¦¶UözZ÷ëE@0i̽Ùá˞ѷœ…ñÕEþ—•“`‘·þRøÌ5_0]šØ‹×2Îb"³~‰fzWå HG|Î`.™Ò…à£Â­¯â<Ø·›GÅ<âÇè-9Ôœ‡/ƒæEÍ(@¥\? Å-ø–)Š7îŸ蘊G¬;0-ÝÕßpîÀ™;ÚDðŠa½ŠöíE—g§$¦êÎÌ. 9LÒŸ£Õ¶é"#*Nñ¶Ï':-Ã,¡VdÅwaÕ¬ƒþuCÓà¡ÙˆëË!Ú<¿ uÓç¦.œA®]ò·ÏìAFmŒ[•§ýí Ê'ÜQÀV;¦Âa|Y0áo†>#FngYík÷iùT¨.‘(>οùJ7NUÁLc3>*ùmÈÀ½]1µFóò`?w~ˆÒ¼E€ò: TÞXôto9Œ¤á›´þ.ÙtÿOE‘ܱíDÜ–^sÇFl¶üt8J¹]8`p)hr3ΰ/¡òºµÇH½e™éýÉx)›¬¿pŽgŸ9´«|ˆ ¹1žOþöT/m™÷È%@¹ôi&oíYÐ6Qº—ÅûT­¢Åù.”WäWý˜dE=¯CnØÈ‹¬Å˦¥T ÖN«þ¡Éô—~ô,PÔ®ð}]yå+ÎûS4PÓv°™Ö4ö<ê¦dytÒ/}7½&áï0±UÚ’Xª^ì0=Õ½»ž‘Æá™ôG«§ð0&¹>²®ª2&3 Q«©ó܉~!tuOìYqW>g¶ø5RI/(³ùR”*aÄÂèù”YDxB¸óq«³L#wZEBWkÅ—öm.™¥di'9xsŠ®¡X²lšëäpÁXGùã³÷Þ>(AG •Ým'^—H¡ooö¸%Róì‚ûi\rj%Oï°¯\J·¢|E5!RBXrª.Ý’7{X†ŽÊf¢—;¿ée°M5‡' h䡜Шº.´Ÿ”äTVèO¬u{˜ÇÂC÷Ùyl ë²T_°qœ± âdšVÜÊh³1ÖÓ¥¾Öp8Ä)@Û§ ­WF’½¿ÞWZõ>·8£–ÀžUO)”"éA•@^ÒC Ô€?³Ýéi Ô±°âº7Ê àa‚¡ÿh«µT ¬ò(È ¬‘êúf®€ƒ7ÓÙ„â¥fœÅ‘e;)¨´[8s%a1†¼LN·À'2PžÍ±"ÛÄvÞu`AÁ'Eá-bs;ž•Oʃ“L×—ÿ“µiR€çS¢6æ0ÔóÞ^"|cØv&<#˜Þ–\z‹È¡ôê“ÿʵ,Å"˜#EXO¼3ÉIê¯Æ¤:Ãpé;Þµ¨È ­æ \IIqíT.kÍñvÃ-ÑP¦|HBk£–Ž{'Éâç‘R,ŸÃw€x kÖ’!¾ápÃÆù¦\LFKü9üú‹qÒݽíöc*oŰ\éDØ¡ ÔÕÝxxмžÉü¾’ì÷¨Fo[ÄŠèÞŒ’Qâò¸ÄäÝ%UR: Úû{¸ ÌBì-wG™ñn(6!‚¸p0 §™ÎÜšCqU?¶ñkq]Òìa08OºC-Jš?:ˆÔX×§“9Y¾Î «Í¨Á}"&öÞÖciá|y£Û“¿¶¼áxë<½/dž ?4é­)eJá­>¿%àÃrÍÐk$8Ê üRaÑ›¤ÕÊZlƒ¨JæšJRz–6éƒ#ðý‹ôŠ pº%…_ÞÚ}¨•lðTeC¤QºhëQÝ« lë :u3czJ™€ a€ÁNÓùµ¢m_c¼ñ:e§Åxͱæ}uQnïÇ—ÝHåèÄabí%…€G’´ôU×s"EIÄ÷û±ë‰ ÅwžéÙes}’Ó V6ú2ÈïîT§WIÒSƒ õÊVé&îßòö·­{#Î3¸V¼Ú¬ ¼Ê4<$Vdr<ÛxQ’Yb~œÚ~ùŠnR¤\·{ FEü#rŒ>©Fí“+b­HüâU€eѺ,³IÃÊFœ†±&î’­×ë"º>ãÍ‚I3'ãHĦàïs4ší)¾$Ê. ‹ Ûæ5Ý!½uF¹Y).óç®ze”fz$ šG¨¯}%9™3EØ[ìCP€'e ÁKódûó”zg÷ÒÜ3#8…z¢)Ï[|*+Í«ùú=ß³ûà† ÿÄ™ƒ_10hÑ-i×hnfvã8cþ;Èm½i5IÚÜzÇò¡/ÂÁ”Âèõ/.ßVK+zëv£{~ÍÚ~y‹ñe JÉÆ)ßt½+˜w£¥¢ÒÁ “½v7±”z–'úí¢C“b¡±/Œïƒzt&è:#_mAï6FFS­'ÌÚTþΫmb*î{Åó4‘êd`èu„·²©Í£èóã&¨²9Wˆy§ËßæA‘¿<ü¨þní@IY”²nkÈê²1XÜÄê-æJÖ°dcqÐH­‰šq Ck …nwžuÑ—ÁöR¨åµhmå;ùhØ÷³$°e)äk÷³Z@0Qꌇåè´å‹æ/‘q¬á«ïñјÅ;ÌØ6JO }KûÚW(/¿i#0) ßU¼áCšN9üv#£)[Ý'«$ÄÖÏâ}¶îÈ•Ç%¶ †Ô5’ŽÌô1™bª}Yv¼yŠÇ°Ö±Ã|ÈõÝÁÌe:I–öâò€oLü^´_)àÁ+X«% æA*7Ã'û¡y,¥ È#Û&ãÜÃXÂíÑ‚’LZ•´j6rýRaøÈ "¿ Ôl*z‹5@w7ÝÔHöœVÓ²ˆž]Ïsšø_¤—ïüç§òö•®…S4»:È“qjž.1B1ƒ€]H Š¼6ÜêêìP®ê®É„ŸpåÔÁÜ>ýæ#ô]TNŒ¼øv€?R‰’¤jwޱy4ŸþÙÒâÍ4îúÞ·<÷yå;<Þ˜8Å6D˜íùþÖ H¾b.ÆrQ§Êèë–7¡Â«xâxl‚êWÝmÒÂ#CS”ת”˜ô“ Æ«*©î|â÷]ATZ(†¼«Çx‘ñÜ+ÿœ¯Z¥"ÓVq¾nGÁ R~ñ)Þ»‡ÞApŸ>àc“Q‰²ÛoHúw+„ëÕ:Õ `TË, xgðvÂV‰õªBNù¦«ð—o¾§ß†}P€êdÒ‘Ž¿¢™‡±šjÉwi~­‹Ä4aº(C„8\k5¬i¡»…£ª¶Q÷ü.×°=¡0¨Ù¼xÞcÃð¥@Ñ$ÝJ¸Ab‹pZ[ç‘ò‰'· LÂjµ’/'­éüÌh“¶9{¬§A˜Þ—6m@º_Ð"§ºïïF ’È)ÕM ¹=`H6Ù•[‰5\†ÛHä’+€âl_^üЙšÌ#T…Ìm¾}Ës°VÒñ8P›+ÇëtÑÝZ|:üUQd;ÖDɿю…›¬Ä×ãòñëŒÿ%k#É‹‘ÃýºYIJC¥¸<|øþÀÆýÔ×ä×¹×O.̉¸2UžBpÂ4éLw"ý1SûÕµý4Z꺘¼ÃÞ¥qÚB!¼³#'A6i2ràß°wIzûLvç2n×\P×vgèóÌÁÏ<'ÝW]•ÎÝRzpMTãÓ!˜ò>1Q£˜zm¢!åJïŒãBbÆwVhÎRÇè¤Jaàw¢H¤Ì/êöçÐÉãçKƒ£;ÁM0‡…D’9©C%;?å£+ÌEF XF÷gË5`OUüj^³ê²…=x¿q!ɃÑ:^nZý&#b8®uaªÍ»é@‡…Àª8snÈ8Y—¸ÎájRq¡Îc«ëݳSÈygÎb"Ížê‚üøiÜHe‰£;•Øp`]€rVÀ·:ÝŽ—>‡#!‚ùœe=£®hZ^jc³´F;õS#é/«ÑbÜB²pVJŨ½A¦J§ÊС‰ÇpßëZÆÅ*«.“¡fÈ~ΊÎÈ]ÁØ6k_ž'^£²ßÎXúÃm1dÚñÙ Ø2rÇž2ªH+þZ¥‚3üÎb©n&8*Ä-à›ÁI.WÎgá.:ªOݲù¤;že-»«5©ÉtUïfy¢ÒUiíß_ÃކʽVi¾7(€Ç=T†J9P™Á7nz5ø³öD7©s(q—”DÓ{îÍ7 ãÞå E”¶û›("D:ëÝb}â9rŽxí Á5ù$kF›m_O—øë  b­ñ°Dv(-€žžq·eIŸ‡Í(ÛÐ[³@‰7Ûò¹ü‹b—n¹„ãð ï=Šz¡@üÔA¡Qdl´Y„lí«~xÛÂO"ânñ!‘‰°Ü®ý5nî ŽÐ„ùæ/q*òÔ y•yc¦Pï“ý„/î“ßKÇÆ¬[ ;ô‚/¬nñ/óéûò´jaõ¶èïf:—‡¶Ù– ô(ïE{s™®nØ?г\œÁ{J8ÞæR ¹t×$ü- ×é”õaŒLLÇP.KüÉž„â\Žœ$ô3· ÷£Â?#{a—0 ÎGÑÒâ ¡oüë¿B wEô¤h 4i¶îˆDŽOÄî!vµ°„Õ“>GJÚEuDÝh ºpu-jètÄáf’íPôpI©¦ý_³Rê÷I@‹ñÅx”÷Îå"JÈÔW!Ášl„(ý“¥-R<Îã¤qûo©Jzø´&Gw_¾ùÌinÚ-?>y 7sKF 2gI\“áÑÏlSº‡S0ç¤'Ñ÷|*ó>Äß7pƒMɱSëŒ(‚‚vzÜ—˜<_ç”U@úáfÿ¬¤qÐÁ¥B‡šúÜ:ì^~Jù"AðæM§+ä¨å¦üX‹‹˜¼w¹*ûÕ*‚‰eõDwºX´kAÞ'Æ9€Ó<TûpCPRÏIž”Ýìü­r®lsPçJx¥4d‹GL4N žãÍþK¬Šœb³\ÕbM×l•o²È9Az€˜6BŽNË€›ß¶ENxæ2ê9£Ë"¼K.r}”•†[ñà>þõ½ï¢.º0Ës£' !3¢= ‰hªïsCK–Û~i`³·À mŸ­ »î½à«;TZÆÜ ÌFÆÛAXª$™+´x¥.œMaYÅdõÙSØ—Þ,Q|ú™79¤KZ_ “ùmYÝ(ÔíîÃlx"©ƒ‘Uøo^_ñ]ºbྶn:zÍÎ@5™™ÄR'>_b¾Õ}âìq¿n}Es”Ÿ¬„tâW‡G^yf=ªÌßk5 €nYt§˜ÊÝQ¹ÅO©JtàÑ/òlŽCÒ@о’iÅj«CãŸä`)¦Ö=ûvà{¤b²ù‰#Ù,GtÔT³uQi]hIPØ{N,Ї1’·ýêåEµ7¤É©l¯Ð•!kƒô×»“¸LÌüÛ6¸fûmUåôi`éñ#¹¢@M•…ô…Zpbq"Xƒ°²%¬¡ØÌ}ÒTh Öë3'`ŠA‰–Þå(âWŽè F*” ëW#‘…'–pݬœŸ}BÓ>¸›‚”¤ÎØÏÄ¢4¶eóØÓ­ ÓŽ(ˆr–KE@³î'þrÍÓƒ´O›ÞÑ¥õïày‡21¡Ç©$ØwÉ"/väCªMyâ øöÝ «n‰p®Ѭi}A5ÏKkƒ>×?ÛIŽfë÷uZTv˜Ò H+dJ´ÀÈ7R³e+ehšnã uÂaëé°/ PH nîÓïfR8x«»Ão hS°ÀiúÌ0Òb¡í¥‹Éþ^Ék6Nyey ™†”Vý…´Š?hÛ.­k$×QTu_mκ¹¸õtI@*ÀÉæ‘ËHûPÐÉO¦Ë›’ºï¢uGK-çõ£èù³ØdoýJ¤›Rý(—Y9ÂNÑÓ ¿ŠDr8q\€QuC72ê„ÊM@j¹Þ¨ºÎö8OŠÎ*çu+{Ðnêâ1t+æõyDðý‚ç’_¼,Å_7¼`éA¶TŸj\ýL¼ðÐUާ¥V§¥”Š’\SäšÊàæŒÐ>¨‚ò«#¯ÉïƒtÜ`M·9ŒGÁÖ—¶/’ì)= «}$¡çed7‹è¯&Hµu¶ËrŸ˜ü°ƒž4ìÑwÒ¸‰ªš>–}妪ôrƒ²²ë¤ú%”±€„´ÑÛ•Ëç8ki’ƒsæÜvçÅ _È¢'êt0Š˜ééú»ÅPõ{·ù·è3k¸gi¥PÝ5–ŒõåGGhÙW ʳ阕l}Þÿ¹ïÊ‘ýËÝ[j‘]ÁÔ¨Ÿÿý*dµ¦?“Ǻ‹ˆHz—£`]Yɤž‰Ï¼Ìd†ÊïðÛXh—tuÏÀlûF‹Ù­)¨Â"ÆhGÇù/Wµu#.$ yÓÕ€–µ¯u¹e“âÜ*V^—RøÜ:kÙÞÙ/ðÎë+[.‹Û3X%hƒ4ûÜ̵..[ïÐB¤ùÕ(}o‹ïIsâµp9¶M2A†ò˜—.ÎvØPVÕÞølµ¿Ä•ÜSέáËf’S^êP !øKê[¿i¹žÜ¥üfDƒf¶ŒXó •­­Êá¸2‡U¹ú¹Ï…N+WÕw!;OæËÔÞÎ]úrmÇÓª@òÇ¥‡Þ—À¦0ÕÚ5Ö{H¿5µ’ ±¼;£A ŸY|ÕòÉ °ЦÇlÕËT¬QÁUc¯´² ~A„ø©6-Í€2ÒŸtmËŠþ¸žþHœñÅõµ‘zhažèxª±%¿½ä›¶‘×Äú!¼ÍÓ¾´žÀìˉrlM‹t¥RŸqøò¢X¨¥þ&ljI¬Ü ×Ãtë'ì]¦¶h‰!»ˆh:é÷3E ˆG—E­]½·û’;Ñ~BF$UD'®²4…_†H1CåÒµ»gômØÙõ|Ó4²ÈcUG<Œ–HsòÔJ‡²ˆ]ÈÄ¡'3»K¦ÎC’ámºÇf ÂPû¤¿ˆe_˯§ãQ¸q•˱vÇòÇÁ7—È'übú† %§[H´’¾p%¢…o&þÌÓñûBØ®í:a$fƒPp¥:)àÐQæÒªOóƒ<âÒ ˆu£I?ªóLÛðÇmÿšM¨Ï¯¦óÇN~Kâ od: d÷X‰ `yihÜ…—`ø)xà¼'V^…¬éF·oQãµõE¬\ 1 Ú BþÉÁMÜ<åÉêÜo²‹z÷ ’d?VŸ*ê BZÀl&pô+K7Žðá„N§Æló÷”ƒR—‚¼c3 ;gíjh¾ÅÞ3mÀ6Ð8$-†Ü ̶ÂjãÛ]›áÉ{;ñ_TÆþ6Ú¯Ö8K>ÖŒ\5éè“%3 Ó˜Øà¥u3;?4ÌXÔA°Snâ2³<‹³¼5M*£Á»šÌäµi‘bØé_ºœŠ•*™ô¯QeMoê _É }MHˆ¬‹,úi(D0ˆÙ♥ùÍ"5ô eÌ Ñþålgÿgœçh[1?Ã$‚ W´Vñ*=ÔÜ¿±;Ø\ÐN›e PÕ’–^â*ÃÁq.9™^#DîDUÕnõ´` ¼b’dsš™t4¢½„³½·×Ö X.•¼§^!†ºP4Kâý渓îMèÄh†óùÐÊð¨ôïïá÷†ô"zšlŒ4X?i ¶íÊì ®&È#$×¹÷ë–F¾Æ·hÐS–,o¹?]óŸNƒoqþìgÜcC’åÎñHT…CQpÊódÍçÑÆÁ+jDZ»¯±%¾µy†½Õÿ*\× ôà«ø‚ m¶:À`Ê´ÌùÃakœëHa^üzþUœ‚wyÁŒóµ¤cnã3 &ŸÁ¸38ìïEŽlçÞ‰‰mðã§1ÊUµ¢LzQD!‰ªNz[\ªÓ³E¬ÁÅ œ§vWH—|e*tâòkú÷HçPhæD‹;‰9y…©†Pa,88ï^eýÓØ´S÷˜ô"óDè!›Œ ðÔ‹zvçDÕ´Ñ}>’_c®t £¤®W._çj6Ý„o;d¡=P¡šøXßPá;Êvß*-â.Óü~³!ž¥d¾³ ŽæW —ÃÿÔ:æ…1ÔLÌy_$íyPÆ%ëPX‡l[Z&Ñ;•÷lç(²ÝõGAÆ´}ÙªxÍèèëÄú,û¹5+D2££†iSš¶éòí×ÎaýŠó„ÄZÒè ù-…e, V1qÏð{}cÝ(XAáwˆw$ñƒñˆŸ~ŠzÌ•·¡¡è¨1kþ&å;D»m7…º»YÏä1ªÜ”¯Æð)´q|Ço"Mþ1~ã©¢{‡¸†è)Ó.$ïÞ^y«8„¦]Ú,ñ—T'V˜6M8u9Iýø†”/”{ûÞßêÝ“Op•·@×9°š0Fä“ÜŽ<Îùã/ùH¦!S[(æp‹œ˜&Ó%ù3TéB ÷˜1.8ÈŒnËQ™©šˆIögpR3ÃI¦¿_¤èûD&ú&ûá®çütãˆ=Ih•õ* ¬§‘ÕDÁþ TƒLqêÚ§¥N»¬^²]îbà®û¸oƒUªw¡ÕùR`"D¸¼ÿì°µŠ-n2]z CÉlÀoÚáˆ_K|ót˜ÐºÁl® Ù„ “üTáP¶Dîö³ßè5õ ÁÝÚÀâD`ÞÎÚ1’C$„BLöj”›Çx¿BA«ö²–Å{Âúœâ\ׂÌ×µPÍZ^½ “¼:ÈT… ¾°’\#%}ê´Î0þ²éÛmý²^ârÚœRð ]§Øgu`ϘßÖ¿Jb™ Òׯë⺃WE\õ¬f÷Ý7’"碛°°°DiÌ¥¿¤¶\F!MlW¡qï¦çO$‚kå]ª¸¥½Dm¤ØÂ=t´SaZ¾£Ž#ŸAêZ5Ô¿Ì¢,AI^,Lw¦!&Ô¼»{vc8KSÅJhŠ|p¥/Ú[\·ß½~D¿QþŸ‘ÎòO2I³›ÆìŽ&$v¼dÚ Ý-\.8l×™¢ß`øÄO?S”#›”Jð*¨L‰3ó#þ~¤æ¨Äô^±Þ‹^² l5H° 1ÈummùÑR£{GÖ/t23ÄÇ…¼m8—‡d†Hq!èЃiwFPzhÑ=)θ 9ü™˜ðv°ðö3åúŸ†w Ó;j[úGŒéy·QŒK‚¥ÐÉ·H¢ž÷Ýšíè üÉÉ´k;ˆgºs–æZ?•|¶ŠKÅõ*…ßô£9¤ ÈV;×nFˆxWäXO%¹pKÙôØ¥”2ãe‰ÇSµÌé“ík˜IµØCõ„NØ]pª-:;qÝ{ g­?Ê!ˆrm×™ UÙk¾l)IrÀ´b¥î¼F"ŽwZœ+¾Uô±V•[%ÀYcÆôÓ§¹åhü ¯ùŠ‚æ0­ý] ±ðøýu‡'óy-¨oüТ$­È”±MJÜábFh[ö\ ××U¸åð÷$Ãú[p5Ôž-úO¿Ò®žQ>-æ×­7›îa·ê)§“Ö¦Kµ£Ä탃àU¤-V¾Ï¿LÏ!ôNa€qxzþÙìo߉_?‰,KñÈ;ò.J-3 ˆ»qÃ$馋~r@ídzT·T0< ¢¨õx2Í1#¯éÐðãÜðIðeØT.‚(cE*ÔÞý:RlÃŒ¸Æ QWeù€¶%ëéPØÍí„°Š^ú¾çåײÆ>zâC?ŸLÂg¦8µW?Âèƒé| ŽÁ×-§£¯²¤ë‰œ[­§è ÷Vžø½ŸU‰ÁJUvòÖ>ò(ÃAÆ+ðå[‰IÚ™.±frp–¹Æ1KÚx뚘Dþ"Í@Ž-éüóQxWõS½çrÙœp£)­qÿ„SÎ;F(Œ ÐE#gBìŽÚ£žhÐO©ÒJØ E6<Áˆòœùšý1Ø—à)8…9™XÁU»ÍÑéØá{ébƒˆ—X5ÆÎw—ÅñQ¤7â]´Ä¾>=Ïß”© óNâ‘GT…,/½®†Ð²‹¥S‚"í; ËÖÞ3öÜ3+!áìéÅ‚aÝBw£i£“KÂ4÷zñi§FŠpa Lߘ ,ÑÐÌ\@‘v-mQ©>Ó @±åÕnÂmš×Œ¦"UšFŒÛÄÕ\¿éQr§cp¬Ä ^q§íîæZ4C²v9âèǪKç~†Ë8‰m ¸qÍù”™á9Y]â^©=„£(´š€\:9kWï³÷íØ¥8àøæC)ÚL/§_E.-Ê.rnìm©â yqû»Fm…n]3? /Úâÿ8ÓUãS®àÑlÅñdkëóK›¦ µ]­=žJ¢æòò" ¼ÑÛ†ÿ›fϾ>dÞš‡j[LÁâ!K!¶øù_ñƇÓÈïÊ'•‹*jØ>#¾dJž²ªÂæ±LDþ¯CªpÔ¨Iœ “{ØÀö»˜<„‚±ì;lFð¡%c) ¢\ºøIàQÐÉ#´Ó°/Kb6D¦T†îêVÌÌo"Ÿä¨HqìÙàµOÂ7n~ב†:‡û °—ß…»­^øöÈGý^b¿Ž¶J¥ó,š š1(*„“FÁ{_BjÚ¤©ƒrq¥Œ–øö‚7V¤1õá:_¨CÛ Áp.v¹|[™ÎdVº*Ä~­`ŒrGˆŽˆ¥’Ôè?Ÿ)&W~CàIv˜R‚”Ry}¢+Í­á%HÔPí§;x, ^7>wr$¿aŠ×uÒ_ѧÉ?i`2<öú“ƒ=&ì:RÐw…ØâT–ƈöx:Ûï—@OO²€»(9 ƒLŒM¡*.ćp×ìÅïž°4ס&fg&É‚»ã†$™ÂæMÂíÖì‡Íò¤Æ‘³T1tϲ<òqE”äãö{øÅJ/ܹթ³ßHÙÎâdZ1ÞÄ£'“vË-„Åí÷öØ’õÈÀØÔ ¯8_6¨=íÒ± /%ÂcãžvÙ±kŒVªÙÜ:qâ"ÃÎÇÔk–"=ªvï—ÎaŸ2Bž— ŽsH ê×Ë\‹šƒÐMR\ësæë;pèØØú+&bøž4(x+…qÕ…FâhdqFå“Êdûä¶¿wœò`À¹‘šýwdJ\ÚîŸá‘+°.¾¸.K„Šs23óÌJi¢ äØ ¦…§6ÿúZï4ýû}0ÎÛ_ùyʉ/¾É„·CjWg¼þÙÅ«7AλK,i  cšlŒsz]x×…3¤!R¹´s*»I³§£š/Ñ\Æ9ª±â®á=`*V”ÑL-ÝQQ¦±g*êÍÛ¬ª »É£Ã= ®@áçühø¸YûÀèöY¦³Ü‹…Aë{•Çâ¨l(úˆÈ¼¹G'!ß¹©Ïïí³7<ÔMUåšÃºÆ­¶KFäyžP/´=oªk.åËŠõWâ!“sJ9Ë]:ä  :Zi%§ñXÿk@a ¥Ÿ _šÕ£FÁ±9ä·U"öQ?y®]¿ >¾ëüDˆÇì@+$üÏÏ f’¤µízôb+Ýx|Cø:Š&òDß²<öÖ~G¡ßkç©^Pæ.À¦‹^C«ÚÔ [ÞZ+1ûîÁ×~´éš­¢<îŸçjN4hÃ[o'ä’¥•)ÊŠÀÉùBW™¤k‹žÖ"8PváG‰úËsÄ”þÏ…EU^ ¶¼îüàhe`‚+û¸Äöuüšß-!Ðx{q ¶1:N2 JÅ.»Xâq~¼É`T†O"L‘Ú‘!ÒÙ‘ 6$Pã †ÕC~<˜¨Z(¬W›2žÖánh°1îé~Ùv¬Ï•ÞŸÓÿáùsr"/›–6[ 7Â1x²ÀŒ˜ìÐ+ûH"æ]®lulu ¨a‰à¢Ïõ|]¦ÃÔú< `NXäP4ä9ˆÄX¡Jt¬¦¯´”÷·Wî^„{xm-/Ì•ŽÅÐÔ·È ®­¨Ÿ§ 2Æãˆ®n&É¢g£@Ûs¼5Ö§…÷/Ödvݪ}çÁ²o‰Y<à!éºâˈòwU‹µÌ¡ÒÃßBïzÙ'娠\5JœTœ&‡'"~.h˜òüî}Ô@PŽ ŠÑÔo¢ ‹Œ¤ë1€ð¦Ï¥ÞCÌ$¶Kók#=à²ùäÀØ.œGÝ‹ê§^®çè„q¸‡y JŒÀ‹úœF˜°ÒÊ׋4ÌWüZý¤¸Z¹Q¯)k(ÇÇì^¶µ§Ù½Ó×,£$ȱär›ØÎ@…vöfùc®­°×4Ó²#¿‹…èlŸ.›ÿûï!¸ò̳X¾¹±«SÔ(Á7$Ì âEfÌ›€wÚK“¨«5–ñÆÊ‚yúóΚ˜%qŠX3YÐÊÚ‡G%0᪄ÎU[‡š"š„gîh­ž¶ó>­¬j ª%Qu‹tœ¤ÁÑìØ:³2ª¼AG¶¿FçÛ0ÆÞè¤ÜœÊžcS6±iÏe?G­Gä©Ê ¢Ï‡;¯‰q¿ö ÚÌá©à†cœïï/£z[ˆ@ö *³É4¤9 ìü¯ {hÒ ‹²– øç†=Cñq§–rÎŽÜ_¿•ª:!JŲx>3ÁæToGüÚÛëh¤÷¶ûôþ ñ1+ádN¶D˜è2îËìŽC©˜VU†Éþ8<ìî&Éî6º¸t$w°O6ô¬;Ÿ Ö Á53ÿ,L s‹œy¬V*…+2UI¨b2B·àiù|»»œÊ˜Iƒ¿OÖ5ÅvÆ!ÝÏ·hZ‘ùœƒ;GCº â;}$-Hdgù<Œs_?“^9¿CëÙ.®.ˆ=aAkè/åP&{#6Á –B°Ä4l Áƒê5ä⎠Õxà€[¯“UðìÁ1"à=íN™éoV²otOê—ã2=ñÔܼ¸lfý ~–ÀVá5>åªAëI{’W‘,ü¢«Úó ,$þ¿r¨f˜M|ïñnÕþf}½cnyÉ9Ïë„ Fùü-­‚œ'PÌØ-W0]ÞgóKf)‚SéŒ9J‰G1zõùWTï̽Ñbœ­qãõ½˜Ž-ÁÌØ·‡þîBΔûù=ÔUÓ¨´¶ A7âæ#èƒX?õŠ'X /kÁÀWÐöè5A^ïðq —íÈcÃ]£V¦jï1|&ôìa$²¡Ãîu/B½Î5ª]Ê·È!ñSÓ<Ü›(-€_ÒÄV\ïŸ@ÙΉ嘟2¤—’¦/[NQãFƒÑR{ã=–Ž´ü¨ÎSÌŒùð¯0þØïºC,æ*¤0 ŸòÑÿgV¾gOÄëXIvXŽLQÞ é›)s]°¸Ð½CÈzlìj‰ZÖ¸~®ón€‡7YÝ—u¡(؉>Ц‹Þ‹;R.èwØIB¯Þä«Q 0÷2¤üQÔÙèk´;Ðv®ÿÙºþ½RŸ B&­CHÒÆ{‚o†] ô¥øŽŠ"ê!qçÛEz—aïÈDÜ(Ãö—ûïÆï¹’ *ØC—’låì:Äì„ånq’äÈÂçoËùÄ"Tu›B;]L‚ ’G¯# —Fæš„ÊOøw`DãÊQ;„90MÙ‘ë@ÊäÁÊ-é .UɈ›Äo%Ÿ1”¢NÏסžH¼€Iƒ#¤†ÜHçš×;Z]—0E9”ùËÿR¨†y‘ײ¼úŸ…ìÏ¢hŒQªh—§¡p|Ùm’NɰX‘{:¼ "tÏéF»­ùÃB<Êr­*WùR »Õ.%Ðø—¯Nð4Åÿ¾ZUdö ü%d¨þM"!©Xe“ìÞ ®¡í/±½‹¦êYC4£ˆ:L¥ÍŽÿ,ôÕSS¾×-kÊmÁ‰°:cXíX™…}º:S=’Cn…‘o¯GVÍ`è`LDÈÖlêáHF—,DþéËÚ‡q矰“=×>Díä0$+ílh§ˆü`ÛÔÕñhûÐî3á·¿) fÿÕë¬ ÑöÀÖ2jÚ~*þÐQ[‚vÈßÙ6´,³ìÁÌtÇ °;ÏC±Áÿv˜S·),*t‡­O„!üÌ=2~ ŠçÝÍàë¶ìé‚ìÑ+-˜4ÿrîµÆe±–žV±ŸÏþÐUR‡mΪ=3lBîk›_é# åÄ`vXŒ‡**ØæÇº\›èÆõLŸf)PЉU§ ¡‘qŠ”ãáÛA®í½ºÑãù Ì…º—Út ¶KÄ‘ò¨q‚ ,Ü9i~`‘ øaž†MÄdÂXÝØ8v¼.DÐ¥Üë¨ër¢zËL?üN²‰#„|-$$41€Æ\r)¹õ­:sÇŒû—SñÆòp—½Rt„è˜ëá8÷"cB„‹‹dÕ.ç’[ ŠY"þË­í•“ô2Óú`eà†œÔÍàòÜ0¶BhùÈó»~q¯ZlëÇöQFjäKl/ÜÁ&å.ˆÓ^äiAétéT«©»0Í…„ Éß—í Û[l§Çé](x«³À#ÚT ¶o‡â#r)Ï©AY¬ÎûîbŸ•É â¡ÕVœ›°^ÇÛX ®¥ßwwâêf]{òáÆ-Ðe?¤"XÏöj‰_ôÜifýö±NÞïVXÄrC+n¥ÂfªsÝoþ% ß‚r´³ÝѽG å•Q÷bä…—3ú:9ÔÙѼ¥uBvK)ò^ÙÒY•}mhœµeé}]›xÝ´RGsgvÍ­\ïîá#Û² >¥]'è`*T颫©(Ê[ÿ”f±F-¶çP¬ !Ö`b÷4ž×ߺF?Jï§3V:šÀ”Íc~{knuÑO—5B—"·•åÂK‘ÛD0£Ìœ]ÃûM¨uùÐÐÂV5“ºq_& < G÷jLWá ;Tò'ÂÁšžº û HÎH4V\Óãþû*^QŸZ¹q2}ì]+s÷A+2;ÿfÛ3t;{ƒ¿ígCæls(gM¶ÌÝÒI'¾ÈScZŸÈÇøW þW¢ÕwyÝe¦h{”5Äú«æQ¬ZŸ9LƉLv±ÊPû"±‚ ÌÎÕñçý%·S"XèG5$=ed\JøÌàÙKÃéÊ/ ·GkГm÷½iÃE¯.mr~þ)ØØ ÞÐü¿O šlôÜ“éŠNch‘Tc8Ð1ckØ¡¢^°=3ù«íšÙš¸­&¬‡N% h˜ïhâ/Ãýj]u.ŸÖÝI4k}6­ï@ô©Ó‡; SQÆÿØH~ÈÄ<Éþû;í¨åúºãÿ]‰5ïqïyk«E”-õŒCä#òì(²N#Ã{¼°TYµAe½b Ÿp3œz©¢´UÑ÷U•ñMzrf\Š“b˜© B¨%_†;¡Èn}¨¾\S+÷ê1{µ·|­ÚR„ŠvíƒÑ[×ÖqMãä‡ÅM:þ'¡³ÜUÂ6Ûqo»wnÇ ÐFcð±B–¶êá³Qú¸Í2·dË^| ‰+ÎÙ¤ì ¦j¬ëͪòŸÒ]»6éC„QûA™˜ó›s¨+ïDVOmyãÖþŸBíLq´3WAõù°!j~¼¬–ûט¤½H¦zÕyýWÒËÂZœg}g£kß+í—×cpQ….zk¤•6j†Iy½ÄåŒ'!RšCÞm³Ão(UnÑ‘N¼±œ$žóæÇêc¨HäV•}n…T¹k]ßãú×Ù‹ê•Cˆä¼WÏ,#pI¼òJ°Q㾈ԨVÔ¥(+ëYÒô"ÕdT’Y¯ð6´L±E‘n]ÇÆg•…Þ(I÷:òð±â°|Î#ÓÕ¿Ã0ùÜÜŸ5<Á IPºƒåÇw æÑx¢‘XI[!ÁÀ¶r§ªTšTð:é~Tgµ0¸ƒþdI!hR¦þiOéúVT])ªÈ@R(tŒ.uw²¢®C_¢õÏ8â&”-„(&†1)û+* ®KÄÿåÈËαå¯r”A·±ÈrþÛÈØq,^@½0‚> ´–¯Ä8éá²]ÍuD°÷ƒùD‚ó’i-Â}šïΞ¹ÜSFy%H#ᶃÿ8ÙsL†ݱM>òˆ©¯YJDÓͧÀJ!È¡®Îz}Ó€^m1ôr¹Y$œ¾YÏ‹å¡ÙsõÞçÈ~ãñQ×GK—WØÏ~ö º°Ì éúcZ¾_™Åô‚ç±ûzÖ65W§–ñl%¹ÿÁMÏ#=DúÀKÛÉúx¼U¬1jQŸWíì5É}1˜FlÁ¶aô;¥´Ž0ÅûW˜Ô¬œ<Ô. )u±ŒßàI˪[¿§7ÿbÑæ- œÿ…Wh‘,JÉ­¤qÖ½i¼³›¤ª÷÷| ¨z'÷;ÇûG·7B̯B0R®HKL‘ogL¤ÚV‚Ê{ßø‹fj6·ÆTjç*5#­¢U<¦¥¯÷VV`v6XW—fRkyh"Ò1F£1:Ör[kÁoUï:ž1ž±‚6’]œ?8ð— @©æïw¯£¡-2þ¦Pø4r…ÃÍÇ?ø™] ìö¾æˆýt[Ñ5b8\|›ìܧŸmÕK²Ðmô׉þEú±V±Ü¢IÚ8n³*™el¤y†µØyvr+Ž“}¼}?vxä ˜;ˆA”ÞFYœª)êÕ$¾`ÂF•Wuk³ï­qþî>eÍãØ@rX¢§UÂÎ (WIÈÇ¢ÏgY)¨…?¶ãl‹¿´Ä µ¤Y (çø£T·…cÛÕÊ4axÜfyþªe¹ðƒ‹æ$8ú[½ 0,s§`µYÿý öMÂÖÕÿ~î ´L5•x÷ý-¿Ö´”@¯ +rú†±´^s¢.Ç€g¥uX˱»ÙìL#á}Aøå{¤Ÿ?Âx¬׊ïÈ(D%û5&Í@~~ˆb–´—Ò†zTA/KÎtÑ %Ý6_̆ J2}—úYuî( —}ÑÙ~¬QE‰ñË¢süj2r¹â›†}Í9$õ^ÖVyBÑ@|Ç›ý›_‡©SSD«l¯0ËjÈù`!uÞ!|Œz.9‘ô–,ÿ0¶4ãÙ%A¹¸f:Àõ»Tîî³”¾R ÅúÀtZÌ™œ°òô_òDëW|ýÞ—äÁ¥ŸË6÷z$”íT)GÈç&@Cµ¥í]H“yÝw+gýO&Û`Ó¡  ´gˆ¨…¥øòY@‹HrÉI­¡|~,,‡ŸY[­ñÜ ޤ]×ÌÙÿ Ñ>ÿ'gò6ô%ÅîøiX ê†T"DŸ6.ž%÷yí¤ÞÏSªgºÍeéàÞß3”ÂË0}¦˜ˆöm>¦ÁhîIKÅ˽¶eè­ÕÂ~°JwÍC½ž¿ä§²éý¨…ñ©àò~ök$á©lÅmÿ<˜BF˜`úÞÒ…¨_ViËéæQ!kÐ/½Ü\йöˆ>J—@ü tÂ{@®ÑVÏç¶ö(ýä‘ån¢m‰pspmŠXü¦ij‚’Xà#7ŒÒa·ërgÀ?£5è5¶€r —zIcf9ÛEÝ#pöûd50ç4¶ðÞ¸ÝPܹ}Qš…<(öÆ“‚ð˜ïç­H)Æ3TÀv÷'Û£ÅQÞóv°ÕŸâ¥`à¤N”ïVHu¯ï½å™Ð•^jÐÁWÉ8cYJ_l¥m¤¨Õ%Žçró Gü‡Üé¬ãwŠor ðÌ%7¥ÝLJ®Î4˜ÿ ÓçEÚ¡}}S|+ÉÊ}ÂKIéé+ß·˜„%„%±RmÙ¿U^îÅ{mVžÌüY•=[wá¾wfZÁÙa&ÄkùW"[2>B¿G^ò)¾Kµ(¯õ‚ößâÇŸÔQÏå[¸+z•»$³Z¿ÓÇWŽ+/<‘g칇öï†.¸¤|YE^ÄÇpU›pÅ>8ʪSäk?XáôÎBe-(û7Ý¥€šN‚:òO¿r@5ØþÌeQ–rÕô˜ïcˆFÎ7pÞö„µfHã]išÓ£:TƒP^6Ü{Ohô Ñ‚ÚPròO¡£@ìïÏ7™k%¬Ðèí XÇvâ ù€þŠÔå¦ ÿY0ΛMdÉŸ¥„9Ùh4/mIH9;Õ{ÑˇßǾÔKÕwN B¡½•8W°‰¤çÿÔ¾úû&š7Y0<¢4пÇRñµØY­[×íË-®=æl¥Š|ÛÜ{Å74eȾ uæî.‹Ôò”·¬Ìè¿1—”-}|Ag«[@óú’²u‰ÏwLŸ}ž"û×0°Ð¥7;œ‡x‹Öbê½z’.\”×ÁöÉ®.áÎÐq Áw´èBK„ÎRº.y x2åñÿVCƒ‘ïB¦ôJ %KB$sû^?¤R„=»šxÎM"å}œL"qž7â.hÒ#¹€›¿Ü(r¥‡Pí¤¡¢ÂüU²Ÿ©<Ú1íå_l þ¯Àå›@Ï?çŸNÿ]s¼Ö±€ºæËª‚}¾,•7‘ o`ü眯\ÙcÍõm—å\å’ÉrÌ\VvÕ˜×>ûÕ3ðßz½iva¡½è¥‡ûZCc1*>…UÕŽï%° ¨û3B~ W³E[ùTÑCâ;ÝEwÇÎC%¯üÿþð'Ø…ÄöwåeàöúhÝø^>woY “ø­•ãa!§V"7‡\]ȃËEbu ø±²«Zº{K(W¿åH·@ñðLþTæ^qŸ% ø¹ ‹[ ¥ ƒø‘,É]øF>$åÔ¡ÿ1xs\gGìÖÄrÛÚKªð”DðP×|K‚­¬Ó˜BaBæ“·í~—e_ÒU›)ˆC§¢Q%¼ØšÞ@òñã¿Ç–]-²z'5Ó^O)»jfªßÚn½Ä]Yjæ Ù•gnÏËÞcEŽzëš2‡Ð7ò„c3äüÉ ( ¨rvç-xTýæF Õø°ç7Õÿ:ÚÂ&¥‡Þ1T¦'’v>” õsœžFŒ»0Ö‰™¥Â*Î5Äy&Ùt\ã6-¾> FI>C´c<Ëè+…0k0+®m Šà/¶®&\ø¦ÁÍ×ÍÜ'Ÿj‹ÓcV–u›ìXÇÛOß²–¢åÉ3N¦6 ï'±f' •{jPÑãÿix±îóçÈ1°uŸiÕ°‹¶V?Õæ›ÙˆqwÓokóº}Â̺ä•ÙÜɨHßÉØ;#Š/šMâª.àÁAøìź„¶áqTö:lzªÛñ’ó©Hîš"JóFZG×|’ÂpéJH¹«®ìL¸4#^&ÐcHœè4ËÁ> 3ÉMù¨d³ægV´.Âô[nË~å§`û×A?©]™qMîUy ïQ7Ž*ßÐTF_ghŠ 35W[² 2••àÙ-/V›Tâ’°½U.RÉÝE+°Þ0m¦þV-øÚ|g˜e=‹ó|uù‡kºó³‹Çã5Ötô‚T0…Í_Ѿœ”G] x8ªRÛÿ÷tÑä:˜!è÷ß1Ù”²7¸ÞßA’kØ{zjf ò qºåŸîê#“\ö…/²[^çs®ŽV ¦‰ 9nº†ó™ìŽO.R,0‰–8msÉ¡¹¸‹§5ïÑAU° «¾øõ›T)XŸ ¸âôe¹‰2=r~ø’Þ[Q6žMÇÅyT!¶Ë{û3Ênã«È±4êJª×f¢F½¡SÔa:n$¾ÐÓÕZP¨±Û\´AÃLql²8dïW}}ˆ/ð©÷všf8>&oz¤Î‹ A•—bÞtÔ|÷e²¢®Á4®òÌ÷Ì9‘ CºŽ|vÀJÕÑbTÌÄ­ˆÜ®~&îæÈT²LW·kË¢\P—Nøa4ÈX•NÅ $¬†dHo&¨ß?}ÑÂ8PZ¿õ35†H5„ü5W[äD*n´û3™©ÂT›Fè$¶óFÈÏ´¨ù0¹Y>EfüÈô3ö^ýp8ªìµ¨qŒÈ)¨QÖTýJDzÃk€Ë”› “¼':¾°Áñß(ßËÈçcѪùñræÊkÉôT­rÝsfIQ³BSœ¡8žZÛ§V¯%CØ1ÓiìR½Ôy!éyl{!ˆJÆÖÂØzÓm+H‡õBƒ+3µÞ57²K†âáœOþ ôŠhMŸ!ÜÝÂáe»iö/-ÔlF0€Û“•Î[Ì?E¸ŽSš\´’¹$b»»ÝÚ‡'bY' :–„s³Ä¶ïÞÁÛ[÷ëŸ3ø—q³\^äèy³[2#WskË,£·‚0§ŒæN¯x©ò¼S§ ä|™_ô4üþ$[ Ù÷Ü—¾¦½Š.BÆ]ö¶qÀ±ÒEûfÆ°Š©gDÜÖAR±~Kßð¤[6+i‹è…Ba%%AhÒuØækWSiçf3K!§i'a²’ËŸd*h3Ó°ÇÞ׫ îòy¶ù¤kdzþ'âšCÄ>|ÀAíi‹;ö[Šÿèy»xÊ™äZ|.œþZJ×3±ÞÀ –$…} ¼²£¯ÿ‡ܰI Ñß+{÷ØÌb–«wù¡xŠa5§.WñaÄE쾋s «[8ž[·ºX¯ÄM€Ó(šÔts¼AÅû@Tü±PƒuÇ©þÝßžÚÚuÒð·¹Ò²sz†Ø+˜Žü~üÏGŸzÖhVo™)À$Ëòº-¶«ycû°lX_€#û*ä‰ðâñ—²óO-Áv°In‘P›u“.1 âÈ?÷_E(¹.P¼7OºãÃ?N"çúc]Œò´â"™d³¥£lû‰0©í¼¦À[ z`H,Œƒšš%Q½áêÎ,ãã×(ûZ…Ùjº,K&ÖµTsýb„a™ùó»ŽÖô]¦>O%ÈôxˆriIŠJhìX½÷‡9ZYi¥§ÃµÇ1ÿ—Å£cÅÔC$i;(X²LJõ Õh&Âå1÷$VSa³~›È8ânŠÕ:Šø¡n¿"¹y*KEÌ9ß¶LMŒýÂMÆ3ŠHI„çþB)<*/òb1Jfä‡y¾Fó41|wkøÞEô~š¹Z½·×?‘ìÆ^=¥«üÙAÌIö‡é1šeæ z].6¬hA:þ“ß2œåÃt8@šU¯ó˜¬ª-qO“š®bw¿5!|ÎÎ3AŸåYJz™"¨b¶ï§OÓØ™/ö€áq·oîËæ¢KªXŸ-÷(¬Õ|SĽìŒ÷ -zäÒÏ¿Ç!ËÈhä͹èÃÞVÅìMHA,êu‘Rœm—þ8W=0D»M1ÙÈŒ‹v˜¬‚ݱ½}×MÔÂÄ­jp&§U4‘ø% c¦±hàÓ º©Ò¿î XAa™²¾› ÔH!Bþà0\èÆ®Ë kŠÜô¹BjgJÕ2^©Ïθ¹ÅëD>+.Ÿç ›öJpŒBËšý15¹ˆqØP™‰;û¾•*rF»ðpÖN­Ö2ºw×ä{Z& J)^)QJ\ ´F<úÔÎÝÆÿe±÷=›G—¿bEbÓUü…ÞÒøcݨ‡™î÷Oæ³ÿâ¶ç¯µ®yMD¿ÖZ‡’èþÖ§,ÒˆÀP%`¼ÄXªU Ðú^rFL/Ã"š½â%I€dÕ‡;ûK‹ý“Õ‹]Áôw ®Ó@èñ•QÕ¬úCtp }ñŸ³"$ÆÔôçå‹aÙ[¦†ÅÒO<üÀ6Z/âd½Où蘶G§ÞŽÝhwì¼OñÛª«¤î`éµÙŸ7ã ØQb2eÙYôO¡Ö/ÿ!¹» endstream endobj 97 0 obj << /Length1 2622 /Length2 31089 /Length3 0 /Length 32577 /Filter /FlateDecode >> stream xÚ´ºsxÝÖ=ÛvvÒØ¶m³1vlÛF£ÆnÔmÛhÓ4h¬ÆþvŸó¾§=ç÷þû]¹’½Ç\cŽ5ïuo„’LEQÔÜÑ(åèàÆÈÊÄÂPPTs´7q`eaTZºÛ™¸Ø˜XX8()Å]€&nÖŽ&n@>·›@ÙÌ  ò`aáE H€. Es€©7@èf¢áídИüT]ÝMM\AË@Kk -(DÜÑÉÛÅÚÒÊíwvFÆß™~G‹1äLÌl=]m­&æ9&E&€’£'Èh  qt˜­Lì,Ž  @S]RM ­¦¬©¢NËJ¬îîääèò?\ÄÕ54¥¢J’ @ZS]ã÷_  ˆ¿%@I´þ»Èñw¸¢¤†¨†®Š$+óﬠ‹«õï²ÿÅ Ä ð‡(ÔÂÅÑþŸ+77'>ffOOO&KwW7&GK&'»øiXY»<]l G ðaÜÌArºYÿ•à÷®¬Í€®ÀßARŽÿZ´I ÙÝþM $„Ûïœvÿr¸ÿQÆÊÄõŸX€½‰µƒÐÁÄÁ äèfâæî 0þÇúšSÿ‹  îîâò»†âÿ.¹ü»ÌÿRsu¦oçëoâùß;fâàîêó—6ÿÙ¶™£ƒ«µ«›ë¿2ÖvÀßì]Ã?6EQ%Y)Iu FÐà90*:‚Ôq`rórûÇûw>Q > €•—ÀRIsqG{{kW„ßòIXƒtrstñfþÛÖÁÑÓÁ÷ÿX°°v0·ø­½¹»³¦ƒµ³;PVâÜA&„?6K €t½Ì¬˜üg^~›Y›ABøû:9:,Lì\þÖ@Ђ¯«‰àæâô÷ý{á?+7ÀÜÚÌ 4ê ËáŸì²ŽÞ™ALþw醀æŸK•tš;:ØyÌÌJŽn ‘ ùÿçJû¯ZRîvvJ&ö@šÿGÓÿv4±·¶óþO×ÿrÑþfK£äèbob÷_kÖ®RÖ^@sk73«Iû/»¬› hþE,퀠mùǤùû’²Í.èü±þ}|Y9¸þk 4–f¶@WWǿ€ !þ‹1Hýß|ÌêbºêjôÿïØüã'é`æhní` `ã䘸¸˜x#°€f“àË ls ×?Ã`frpt…œÜÝüŽ.¿7”‹À,úÛô/Ä`ûƒ¸Ìâ€Yââ0Kþq³˜¥þ V³ôÄ`–ýƒ@9ÿ PN¥#P•?ˆ À¬ö²¨ÿAf?ÔƒæêAëÕÓþ7â!“?TÝô߈•Ô’)h @×Ò¿=@&³#N¿™£hKÿ×ÂÁñÛboÿ''+ ¨ ó¿ H à_Ô”ÅÈÊoaý§ûoèñ—?;(›…݇ßáŽî.%…XþA„¬þÐ cåídtøËd³þ ‚Ô²ù ‚²ý ‚:¶û ‚èÚÿ¬ refµêø§6È×Ñá¯VXAÜþ,ƒbL@§½ÐâÞ¬ÿcý×Éño3ˆ¤ÐÅÚñ/aYA;ÿµy gwG7àF²²‚ùK.VP÷®äqtÚ[ÿç¦rþözü%'(‰«µ×> •\íL\­þJ ªÿ§,'¨7+àŸö9Aýºy:þÊáþ)íñ1óükN@Ñ^APzï¿ HYŸ?ä@™|€.ÿ*õŸgŠÊïûê?7 –?‡Ìÿ¼àø«»¹8Úµ­ÍA/¶þrQ4qs±öÒcö¬ ;èçŸüGÊ?7ª¿¢ÅĽ|9@£ÌÈÆ :›8@­ƒ¦Ûÿ?bÍþuïÿçN: ÿÿ¾ñ€@/ ÂÚ²£˜MzsDy€dÑl4%/ÓIŽŽ\ÔZÖl'!žDÁ69P¸8¸5(›ªØQA†Ï 5Ø¡T‡2 Ûîu³ícõ̵¹ªÈŽI€b!ФèD¾“fH¶âjPE79í¡\þ'Ý2Žùìö¤v€æÄ‘8ogÏC<Ûôú¯4rýŠö¯…О%‹¬-X.v^«h]„«³]ànoX q&ý¢kt ÆŸ"p&ä`œúz0wÁãJ„Ÿciv³ùî1%iœ7×5aõ¢]»‰Àˆ)ˆ*,¥Ô)ú8žYЏ©Q3(àIÅ®ÝîÁŸdgÅ©óBð›ÐçVyÙ¯ütE46BÒ%O6úÒm)ø2í¥}Ô²#,;„[¼=ùSé$‰Ù…Çr Š’8d÷0ALE¼œ1Ë!Hò¥!‹}QÞ"¼c¶D3„DWÄ#¶áM„|ÏuYu.uö -/“»¥—^'½ Üã"¹y×´¶OZUz£ËÓ7¶Å~‰ÖÖæÐF‚B¤³ô±ŽÎ“4,HÊñ«¸"ßž%—¿¹ îvÙ˜-jG9^n¦A%4YõÅc'»ýF4¶¡æ6¿\FâªÚÝ£»øi<ÇèvV”û‡‹&.lA2þ©Dãhn­Ñ½“Õ©÷:(Zã$‰Už´ßËêg&Çâ[iûŽ(Q•š¾×Çj­Å…Ä2ÆNUÉ^×<:ƒC¦2’Š ~ò¼ìÁU¨DĪó¦Ë­ïWڜܑf—© lTRH=ØÓ¢Ù3– •Àö¯HÈŽ÷#w}cÏà: {ï²-¦{èaFË-òNú@lÌò³(‘Y€‹¨{iæ.Œ†éNªdÄëW¯ˆtÉÄFT\XµÀ½¢Æ§ñ6‡Ð·b¨’у`¤™÷Ï’/bUûµºMÈÂ>ÀU˜¢òŒx (^s_ú‚‘Î÷Ù^iÆü3FÎgˆ~¾–«#5×.$¾Í«µ/ÃèÊ,]Õi׬f²c öæ6;NüVÉÍÄ•¢‘atç×üæ¶¡™öîo}”>Ó–?“ æ™Q†Yf Ps”ŒwJ$Ü-ƒJØ®nëïß`I ç:¨‡K’*n»Û1‚)z-˜VÒ>/wæ&Ð;¯Eaç#t1|@ZH„3³^0z' rØ©-¾I`¥›Ç,tËTBó%ê‰æÝÞØG/o«)¡Q¾ÞŠ—£qQì£Ê'¢¼Ñ¾Ü<¬IÜHŸZ“pEÑÓ+h3±”nÞ™wœƒ¥åäI‡™Ì±æ\·¼U°ÿtŽ.|툚|5£$²ðƸ…æ´Œú‚¦ëÌø:EgöíHµs˜«Ÿõ¤ÓuÝŠ`9_^•i}@¯|¥Ù¼»L"Æ&𰳂ŸbKõ5ò ¡­o3æ)ø¸"ð.Ço׿š-'P¼B¸uW1ù¥Ûð–ŸHÉ»1ûÔUX­DP*Ø»Êö“˜ú‡!ó‹ Õ_sèvÙélƒµÒ@ïïÀ˜á†ÜWáS¦[_šÂo´sH¾gëûXU—ÔþÞ‚–JÆ×þùÑs}‹67,âTw`L¡8ð.°ÊÍÐá#úK$ä\[-­tIIäAàÎn¢¹IŠß7¹NïuewE(¶8¥böFX¸®œäqÈɼ;1ŒŠÁfšøïȘhÙɆy]fðÅ în‰¥œ2›°O1ÅÁŸ”û+w§øUý_1yw‡§ã³Uo ÁÛC“Ó»UJ=Íí”:}÷L”á£N±ê¶£QÎeÙŽ·w|Q¢ß~1çžêÈÄÎ äÇpÜÉ%KE*HÇÂ7õ˜vÍt=#÷L¡Au' ;9_òuÉ |]wº#Í~eGb›E¯¶œÕÿZºð :pŽßÃ2ÁݧïÔI­’­ž¦ŒÐ#ŹËvjü&›ˆ¾u)¡½Í,˜ RÒÝÁ›ÏjH\¢nì"­öà³æèŒ’G µªO6ßô™Ø©D^Â<¿Íú Ø6âæÈó|æÒó¯4JŸ/…ߨl ]e±Œ°¥³æÂ™÷»k·h®·í¦ú(`øíôH4YR gtƒ)p&ì/¾ËŽÅe¡efž>ªE(a%­SñŽŒYL¢.Ðøæ.»¼`Ï«&sˆU*k·Ö-¾î ‡´«3ÿP'‡ˆzTÄÊíú£æ(ÜÕü|µî®8MqrÊ#™ ð{~Ÿú‘Ç0ò ³;+#r˜éO.²‹û|ûk¬ñZ; êOÓë@ØR ¼o¬½Á Õg]p’Îßpˈ»¥Àå8s ^ž4‡T^ø- àe1Sãɵ Ãߺ4RŽY=éƒwÑù/t°Ói˜…yNRœ¸Ù}²D hv8§Wýªa½R+´(~Èö+Ž´“AJ[:Bm(»Û%vÊàŠ×Ýòíà Ù&}ZÐ÷@qòihrìüƒX'žh9R9µ£€º»ìÌ]ƒ¼Ž;¿1vA˜°”™9^{d;l:uÍAW9áÈñI—m—”­]¶Þ˜|ËÆƒ8qɈÓù¥[O© ǹ&E×þ}Ÿ$8~ô—fXî!©Ã]’¢z²ºt$»Úñ¥¸Ü2:á}-Iˆq_$•ršÀu@QB"á™<œ{^êgK† ÕÞŸ‚“Ýã­¼' =ocU˜·c¡˜ªgâøHbä4-GY´9gÀDýÌRÞqÙÍWÂVù{5y,j~8[HÆo„Ùk›ÑÕ€@ ªi¤Îô‡ö»ëx§§ŒÓлþê:¢dGR»ÅÊ}³´m%”ÀzësòÜ1¹¢?þ“;¡ÔH:ýúN¯ÄVÇìÛLÝ^½ßùÜ ý^½!±ûjQ*dúÞ¹ušºñøR¶7‡)ß·RÉ8¾ôs­Õ &‡VMni ±ï=¯ÉêÙ·5×çŒà(™¾ëz÷)HVMt:Ödõû§0tEâÏøe D>Š pÁsRT(=]Î.{'¹æ¾&öÌøÄæùF¾Ƌٟ…zÐ5‘ÃK…|¿^×þ^䣽&¢ë§3¦7iŒ›»wïe}pêÁx†á¿­€÷À»<¥=5@^4ÅÈ}Í–ÓNòäì”t~Ǧjá`“õ`^pUN¬ü¹U#cN!ºc§ô4RCy]œÿ=Ã>¨â:9zSYÆAïMN”©m rá+?Ö™)­™ö…Ä"‰&QÃÂ~ÏèÄÌÊCm3½ü€Å}MŠ`ŦUèôˆÊ0öéÄäwŽ”¨“u¢é_† wôГå]­;™îgê@ê9!¯E‚cÕÏ&44› »ßºiÝ0À¯¾P B'Pð¬)d!—ÆnÂ=ìhÜèùÁÏý: xÕ <ÒsZôÃP£ß΃Kõ¨£PÓvÜðkÙ™w†Åü7d^ÑV¬ÖoÈRLƒoo4®Ö]G˜s5Áå'|þFœ©74-©à×Ám÷<}œt³4µܦ²ü-A²oEçr8©7vˆÂ!dó„°tj Çëtæý둌^2žá†Øe„p¾îl<;µS‡ÕZ¡ø_ÃÖZZ'’ŽñÙ䉰BâÜ… WW”§*ĉ–ðÆÂ÷ÐÞ…ÍèÏ0ôudH‚T`ðËÂ5„-bˆ¸¾BÕ=ݲ=0G’ã @W˜¼‹áreà[Ÿx©ÏüÅù#c¥’‚‡Š,„–ß1#¨ÝqÈ•Ê>fzÖ=G2¹Šx*α•ÐwXmÆóâÚuqø¶ïŸ>„èÎ- AßmpJ½ ²^ Ô…^ëñÒd–?¼>yaØ$‘Q„ÝZš¬bìh´ð%¨TpÆ¿!ÆèGK§Êx؆‹Ç¡‰2å6ø‡’q?I"´—£ò_@0YPÖ¦x“Pz5÷÷` dÌ>cʶÞ‘¿t n÷s§BhÞàí@뻞“e1´—`òÕ@ÂøÉùŽÃv©Õyyk|@Å0‡P¬o©õR†«©1"˜_cd¾->Âë—ž5àÜS|í«ù¬*Y­ðÇ©wÚÐqÁ7%¡Ó÷…‚ ;–Ò¦³MaKhƒêšÊ‘z'ˆ|V–_õ@…¥6¢kÆâáÔC´®©m?œQVY½ËïW¤¹P“½¼¨y䇚ñüYDZÅ1p¾GŒoš3†‚Ûï{ë}eéy˜NÃÚ,§Y‡.s K„çÜ„_>WÚë£æ20ÖìœeÞ‰À$çÉ@½‡ÖKU‡À´ |¥V°i™¸TÐCìoiÁÞ¯}’{bã"¯ç¯ZØÎ~l–q¼ºhI‚9 -›N„/£wè%ñ)·³Ò%\ó^{‘^±ô«Ö iÔˆ9®ö!àEÉ£ûùm9s+¢& 6d]볦yêÔáF.Ópp‚ÇclB¢ [‡·{ëCѱjÊSŽr;›a­Q®ŽسfwÅiB1Ó}+bËF•™Hókx&ÙÃþÎôwÓý~[-§ñ¬Ÿrcñ\;Ϫ§ð‰\¬õâ/p„ zùØØc>Õw¡²?mãeœæOPÙdGB~°™©Ô2β% íqÒw@ùYXøœ’ämŸ^3Ç-×’súPÛ}Á&ðc"?¯¾ù$Ò&ö-OÕ+‹xûä‡5|u¿&ñÝŒ Â÷¼ÜØî¢“G¡E;Ævý& aŒ/‚=­ä º4ÒdÛµZW°Ð³Ó5/XOy]öÓ-Ø1±WZÃñÊùµ¶™K§Ý™=`'ÍC½WŽìOµ´™1ïÑÚ ¤"À¾ÃM~‘ƤKDA* n^À™lQÖrÏœë¤ÙÜy‘ß Å6H™êÕë}•lPiÏË¡$Ýßn~IN¸Û#ê°ÜG¤EwýeŽS‚O¨è ÷è.˜é~„'ô…¢½ÓF’rޝaƒÅ*ýç]­™î$Ü–U#  8­¿¤Š ôÒ+ßl+Q¨?T”‰×‰Ðš—<,¬0™€€â6Ûœb#Œ¶–ÇÇ ü"a’›z^”)¡/,ñnh˜ñž}#ûK²Ë2Boá£È7²½ó…îAR¼§8{zÉãT¢37ÇáiJíL¼S¨°E«k_8XœÓäŠôݧ`<0¶Ÿ¶­J¡eÞ½{›ü{¬ü(ÁvÖKé…/úÂR ¡žÙJg™™À3= S7,‰åéV¥Ž{Ñ2L`2ÑÁxmKSxÑYópxÝ]ÈBÖĦ¾©‡cvÒDt1NC 3ÉsìÀ-’0]á¤0åS‘ÒõÙy2‚6${~ðm>'ÓV±9pQq…m]G¯0Ý‚‡Òµ†nÓâiwé½ÑÛþrnÜJðYƒ©Ls¿rN‡—™r‰ÊüXð10Àå¢asuºËÏéÍ4]Ú}9­ƒIª–A2´WA¸»Á6¤-˜ÎÆ×pÖj²G”ú²NA¨E9f2#§wp‚&VÞiq3mU´=«ø´µ/Õ—¤gãú•…Œ0/¡ b³.ìQÔiÆ;s§\u¥ðAšfWÑÔ#â\Õ3—£&í—‘Å6î¤Ô+¸à¡Û&ÔºîT¤r+,2ëÏgãû‘4Âr3ÓqOÁ¶UR¸B_Y¿ýñ¨ØÏÎ^ꦎ ¯üÜ8ÞE;KØ]Ž—c¥FŸÞ«Ã±&u# ù,À¹T‹c²ŒUU+Ì„¥-$’W²©µŠQWí caÊŠ?»Ã <`Ž%ï9¹óJ$íŠt’VYº1>Ë„ãu.˜ÏY´2¿Ö´ŸÕjçÙ§´ï-„¡d·L„Wã ›4¯¤®8ö½×‡Ã5Äà!TŒÃmÑs‡°húbHŽ:«‡«#×Óªc×@ŠÔ(âjT/#RÍï«sHSøêœËo&°|qMäÌY™´æËÎ ¿ïæä#¼E©!f5Œ´³Âl¡lÿäð`e, œíq‰Ý"Ÿy;¾Rܵ£<:Öͯ¾| ß37yä «ü¬æUUú_¤u˜½«&^ïišE"NEªþàÔÂëÁIS~–:Å’ÐëÉôbŽ©_ŸªÆ<šìš>å'å}g=ˆ–Òܯ3N<§n%©—2Û* fçJ­fŽå%/…÷ÿLb#(/Ì ¹E¶zM©B.Ì…Ðýæ/å<˜,Øÿ|4z‚á‚LºÄ/ÝjÂ?%ò< uóš3L2U /|8C®Ìæ7ýÅ䜖¦F«õûå¾­Ûô¯Aµñw$u°éiZFÄâÊ„ˆ$[Õ”hË Ä†ÚŠe¸½AÝ–ÑÕ˜ÄÄ?TÕeÀÏHà‹Éhe%]mÍDÈÌK¸–5÷²òß?)©HÄü™m(4š¶HùQ—Ü®é…ÅQ¬„¬ÝÅ–ÅçCy4¼©*=ãÎdj†Ì^Ò&e€ut‹M’º¥yªÞØ1"Á+äWóBŽIø,ÝIUª£ríir}Ô5Q>*I«aéé…”j•¨Ià…u,b_g¸Æº.Ð<µé¹4Cvë#ërCû¸ Øi¶&‡^ÅðƒhÊeM½ú)H˜ÚbRýkØw)–Ú ’…È'§ÛÔÞ}éÙ¿xb¿î«ü hÔ~)14™ãØÅFPc?¾ž®:®‘»|&–/B6.«tÛ?mÞ!–£Á|_—wZ I{HÙ˜¥¾…¾$q;A– n0”“ßûsúøÎS¹NvõLŠœ¦‚|ák-SaŠNnöç¼{ZúèJ1nˆ¯š¢)ÕÖɪ¿´S¸ÛôªTdéI}z¥íËHOgĶ«#=n¸R:ܲs›²ÈÆ e÷DÆÚï¤L: ¼Et†ªØØÜËW¾uÈs¼³ÖDXƒòÿ®8¾çÝ'àÑÕV s–˜{0…ú“åÇãK[î-GL~¶ü•±*SejUt®¯§¼Š—né +PPçÌŧ}K+ÌŸƒ3¡éDbHXj]Á'_[Å_>,æ ÔUéðÅõ•*5r›VoÑ-Êy©H–¡èV«QÏ@S­+[U6@vÚ¢0±¹ ÑÅ9›S™ø2vC5rýJds õ5õ[iÉ0XªhžÙ4j[Ý/ºˆñ'ÿÙüJÍ×°¯‡)¡ ?‡XXìÐu„xé4HY²†U^kù¿•XZcåÓÆ£Œ1T½C§*œlÛ¿±c©Š„7“4i`Ðx^/FGÛVò*ü@£ »P÷æÙ;¯„HmÀ±«zÅ/$ë-0F“e¹3­”ð{F9!Na±K¥´°u"ùÜ’ãØ$>ðdqP{ùœ„E®à|}r¬í&kG üD˜duv>'Z+ff¸v"ÖÎ{ w#rä5EüéY_¥A™RÀÄb×]ùáÿ8E¹Ö‚ŽÃFµñ,$-OÀÍ+#æû× F‹å8Oõ‡„v‚‘d6ß ­VX3ø05é•W-6†ÙæÆ†ì<¡Ù_YÎĦ­ã`.1#B‹ÒŸ6´]Û†ŽjôAÔÑa]ר¸¾9H“ ÈQ’?¡'¿)•Bád†0;٭Ê@Û zÂÁÔºz»›~6&=ŽE!’¨[C¬ú`‘}v-†ªêØí΄Ñö4¦–oü¤iù:mû"æ_|ƒ×JZý‹Þ”©‰·R׋‹8´my‹›Æ¢Äå VÒC  ³zÓQ%gÎ*0G$yÄ,õ¼e ­Sæ÷hòä“ÖípSÖ:©Ôð;"ýãÊc±åÎ¥½zX Wýnèq: 3šÆc¨h¦{¦<à{ª\"/ÏÄ^ܶEt ¢5ð¨µý´­Ÿ(\Ÿ3ºSk!j¸šüÔ$ÀYÐïœR#ýxíH‚.áÊ[±ž»£Œ!þ LhyÌ!D4'‹¨'¤Së Ò fʋܺ§yû<¾§W®Éa{~Là;å)xF°MŸ°Nå´—ž ø°{H¡r D¶êdi‘ö|œêõ¨=oÊLǼ!³¼IDI¸QÖùaÒ(„¨Ìs21.kò–mbŒ‘œ“êoP£KÛ­â‰ùçEý©‰Q}ùcOùHô=Ì'xäÜÁèt ¾÷Rcû7³Àƒ»0‡¯âæyåÛüZ˜-T_8«&^cU¿ˆ&QA"˜cÙg!›IiVÇ 7™ÒâÕlã*õæá1…•ê=$qV¯|$•\ΖÞ8ôºKVBÁÕ`?ùî˜ð§ô¾´™W6Z½é]âêÞǶýî¹9!uE—É;;ÎÇ£±Mº£—¡TôPá\ÓËU]Sín‡y@}¸5`Ns',®ü3Éî?Ë^à/®Q-Žš®v« œÎRòðÄ›+å,¼h¸&œel×O¦’_ò“¢N¬Èê²g-Þô‘‘ïˆdtºðb…Ä@;êÁåÛ ò(áÕ)Kè-R)ü[gc£ª¥æÚ¬(²¥Õ<æûƒ˜hÕÔOܳ¾µŸæ}µO¯óî´O'ÔËUáò°2ukå•SV$ ù#[R¸%—#6á0‚Â š ¡…N"O¼0~µë?OÔbP\Ñ£(q1ËÚ°qš'3v½TqN¨ÇlÿèB?UdO\íELéÆq wSÔ $c•J¯JÎÍÒÍÈrUeà š¬–2çЪ0VG—‚âåGSç‹ýK»êxô _¸ty@‚¢õ,ÙTóBªÊÊ+¬HÿŠ'•xóÖÄÁʲʄAη(¿Z+¤xGîK(&Ë=_R*\æ;êç¬vròª:nËcfSà¾Ó‡ A¬¨a†ŽñÒÓ±— AÏ#ÚI%(›x*àC<1ªNÏΨ´36-AÅÛ…®ô\¿h¨G ·Ç—YÊgv.œdn z³Þ¦þN4qíÌÏß Ä­Œ­iöó`ð¸„"Õ8–0ãÓ©vû`7bî[+nñØE0Õ¥hkëôÂ>u+ .½\l×Sx¤Å £\èY+¸†<Î÷W5{ž´a ²·,7$ñF-¹óÖÊJa\(h,%z¶ÅÈ­?/éuuŸ¼Ó„1ª}=°‹-cZܶ&N[‚ w–®é=½A ±’]`AˆƒÓÒ#´zÒúòk,æ¼c4IQ†úþÿÇð²¿À&Ûl¸OOÛ3`zғηÔCŽE9‹íJ×Óѧ•¹íG®jDy¶É.é^-l‰²J\¤Ã#í½AKF ÌûKʢߣâáœ‡Óæ¸—´ì>À˜æ³&m²$Ä“–ªÇµ)Çl"ÊEN¹bŠ"2öcÔÓ”Ô+@œ<97‚m° Ó.'WÒ9&ª½³-à† åb5(ÂÀ[)°Âêx7‹ª€£ë«-ÑSðO›ï‰ -@Šm˜Ýæ9×âÍoM=(f0•ˆÐÏj‚ÐèýË\æmÅõ X0p6Ìg³ @´þ3ßÉÞuNH?Öˆ‚¬æØŸâ€ý®µUår_ØÕèKñµZÉi ê׳<·4KoøoM†vjmßZ&Àÿñ•Žð1{°…® ѧ·Ô©¯!Ø£5pj¸¸ã)eº(Ô_˜˜·O£j—.®¦ßV4£“¶#„8u+3(I“ð›Ã]C C¼ê²ßòÏÝêïÁeê¾– k(Ë.ÉIÖØsC‰n¦£· ñÂây!Ã>ÞÆÅç´M7úŽ~õÕKµ2)]}?õô²¥¶†žzû39´”N5ýØíƒWü¤l×Q§â²Î]¯GÕæõœbŠ œnäù’æŒ6]Q•$÷i- Žy¯é.ÍÞyM˜Ië‘?«¡P¶\†Ÿ—¿œßR¸XjéWÓ7ü×– ¥Jù¬â•Ûµ`Åß›¤…Ý@ÌXê,DÜÿüóþS)À±“Y®G¯Å=¾ÔL¶(šƶÈ¿§Cú“wØQ†¥twgÖ¡†ìØgýÎC_TÞ5#2UÎía¢RõWT¦Žútr™‹ÝŽ˜1" Huzï&ÛWf¡î/NŸåzÂn!‘£|†K"0T^£jÉE4Ÿ?ßM/oþœ €â;ãÏOä›VCÑ÷û§#»£»h•ñBTêóF$®z@™B–õ%ûD(FXðû‡) ) ÞéXʰ-k RNã»eòvrÚѺÅòïðl·µ–ÃÂuÇW§C+i¹òÜ^{n·Ù­í$'„²[šª6cÝŸ­K†kÜæÔûü?râ%R†_™ã*1D¥¶âK؇29?lH µ‡%ðóÐ05üŠ››uF32ã³"ׂý-ç±Ø“9$ÄÕ´[ f¼åêI>W,lz#½nr@éÌüµc²…×+¥B0%¯ ÝFV~<¥EÁßιð©WÙ!C‡ÐÀ]È¢PC“’ŸÉŽR´Ìšà–ŽÒ>­O%¢íYgFá7{¹¢ ±ÒÝò•4ŽÄUØ5A‘EÿÀÈ '=gÞ\éË;K'Õ‰´-"s¯wnMèüˆz”q6iÇ¥Ö·Î жj04ÑŸãø<ýc%îÔ+öÇÈñYàprÚú=XûQóZ&‰qå™>¦ kñ‡-r%TÃü8¦Ö.ù.hšÜP$ýȉ3‹ñi€µßÀ¦Æî2zuåB!•$ÕY:e¹øÜžQÄ,:øƒpȣء4_7sÒ!B—:JÞ}Jh¯Ã«V„8|Ó "¶ O„ ÄñÉTÙ½ù\û™'çÛyy!À:bÒ2áv©032*¸¾ç3L‘ú #J¯Y 6[_ï¶à;üÛ’:k/=©ý—ÚÂyôùÛôèÈ |TL]¨wzÈ2OîS.ís¸çÓ1ßqJϼßñm˲NpLy!f‘!wвé0F …ÞÆÑ÷61âLÄðàGÚ…èÀ+Âò‚ç™Ü–[’-¬úJøüÙ{¥`U&½=SºÄa…†#MîñÖö…“Ë#×sNFÂå>Þ•.M È‹"̺TA=,WáXôÂk}§ (gV¦µ¹æc¥¶á•ZÓ˜¹æ:Gáöõ’Ìk¾®´Ë6€éËd8d9£Åüùeò“UçIK¢1äZª Ñ™œ¹Dϵ@¬ë-Ñ}Á‘ÂÅ·ÔŒrH[·DYòLˆf©WLôQv˜ÂĉUóAQ^T6ø±ûΆ ŽãÎÖLßÀÄ’ø×OãËVFÁíQ;`Á(sWV¯¾,_³7-›Uµx©ÜëÒíE;t?Ü-á/R>: ±X¡Ù¾ÈxWó¸Ú±´ÖЃ—ì@ÍA¬*"½Û©l0ñµV2Ô›Õ©}…"ˆ"à‡@/Ó”¯ž¨Q*pÏ­ÉyÒ§W•d|*ˆú–ÒuÜɯšÃNù>qF—¢SeA¶Œ“̾ë\æëOaaëõ\Ïñcžl@¨Üljy_³0tÇ ÃÅg¤»Â~¨Å.æéÜÓ"!üⲟ¤Á1µÞ'i` ðƒ›Ïu=W9vît¹à³Œ”‰Éç7Îøa’ uõ‹Ù‚ÖB‹Ç1 êõ$³6Œé,‘Jb'ïëª|y͘‘Å5úôËmt©×0¸‡‰”Ü48ަ9bɾYã((ç?$M—,å{Pµ…8땟ÕGHéï6NzCí»ÓzÝÚ#àSM/¸u>¨lÛùÌóZÔO.¨¯Ä¿ðÝÕBÑBÊÇyX >=èçÊÀ5º,¥úQ®êòp¼oÆJ¯–Ø7péî*ùæ‡FÔÑòi3ïù%Om45­h¸m‘‡éÆ£œwÅdÀ­"r9„=Wݨã<\ÃGêž’°ˆä}v½´»Ô>êHq÷•mq°¢G¬Kç,ø &( ÿ½úl+üö“^ÖñÈX©:Z%ê¼ÍÜ£¨ñ“* 5mØñµB›ºU!€¢·C< ½à¸ƒàbs¥ôìjl\]4ly¤/}± á]=^ö1CKo޾dO<`¼ûú×MYŒènë#á’|Aj²É|¬ÓœIÃvp ï}¢àG苨Kämظ%àZžB>^}ÔóêÙfz™‹¥ âòøžÒ¡W‰³7~®¬– þŸ8Ú“Þ’-3¸ y HÕ¢3qeϘ&E€îx¦ró?QøiF@§ô©;î´ø„-é¦ ´Œ·-Åœ˜‚„|®ã×Y|-ª¶7µº¾]Ò þéÓAáôÁȱ{ʦ.8»¸¶ówÆV /“Gð*U7?‹á¯8#ítÕêòª )䟓èz¬è΢ÇáÔ@!ȘmÂPÂM·óŽÕ™F¨¢[ãû&‚õ|Ók°T0U·Ñ«évg ^×ÓEù£¯Ds/Y­E˜Dá›,Æ—Ì÷þmCv! Qô’ÞG4s¿Ó4I­ EJMËãö¼”Ó9?¶éáaNO߆Ã~Mîᔃ[ ñØ&Š™—Ó¹½44äMÙÝh™… ? ;ÏSPý{Š¢Øöç'u5·8Œp_Åb¯šg ¶º #FÂVÍøBû$%ƒï¢#ýÛÒ\0ë(ð>ó]…“ð&:R¾Âñ«“`s6ÖI¹Ò•6>Ï-ŽO?cñê$´®ñ«VgÆWª¦ãœŸ^àœ¢÷&¹bÏ5mhˆqì%á¶•^Ò›4ž&L‚¨fÌ*öðM)—·—wg(H± ¬îÝù S#Š!8\t½˜“T¼lô†ìyØÇð±qèÅV#:Ñ.v.äÓPWúÖ­.<æh¹Îå 9”‰½ *Ë#5H_t9Š<zhrM‚}j†ËÒ Ü”k]b*PxÀðÔî¦× ë\¢aDöíß³Ñ7åãhº¯œÞkÒ­›hÛÌ¿†-Û{Ío+…A,jX¬ŸrσxÊÍs»&4yû>Éçôªv†á^g€ÿókê/V fR…|Õ˜û«yòO#Ï}?éÏ$À@nÔLnÿ çñ[Žb²fµà˜Êmé¡…p6+3ذwÜS¤i©²„ß© Õ%åzX…3•hщpåÄ“TçâФo³µ*u¿àÞ~ïF‚hù =æÐ%½å!œž—-e,Œu¶kS]SÙzf"ÒŠsb垨z ¬Ûzã ü(Ú'Vøš˜Ë_ñôIÛË-„¹ÀJíøûè[Uˆ¢íBǃ‡~ØÓ£2fy_gŒžoºþ£Î…}¯!|z6!,lÅ%ÐG³oHÇNÐ%T2D&ÄYe5—þ#"nŒ<Z½¸êü~µd©ùi¯•þIÝú…kèÝ‚«ïBí>ÝcEèÉïút7D›aÓ¾°šOS>æc@?ùîÄ<5¥0‚Ëüâo¼fÆÖžB°Öù ·ÐGŒœ¼|š»°Æ44>"ê 4y€¸§àÉA&…~DW:ˆã©šñRu*Oâ¸Ó™(‰1á0§7ÃÜ.3§¾çP•vÍÓ6šá½ÛG;‰™ñ£kàR¸Öl ¸öìÂ'ÃÀ²©AÉÓRMA¤À$Å„¤þ=Bifk95Wë¨cÌiüÓ˜4£þÍØ6Ûò³z´6’T-'´˜ÐK?QÓO·YÛg ²9Á"90P €ûç÷⠬閔6)X"WCfxZ¦gÛ˜'ÎdD_'RСÜì2$Ùqñ O ÆÔ•ÊT‰¡p_söæÞÉ7K>ì_A#òa‚ONñŽëˆ#¸Þ^Z8íÉ(v¢sîIci;ºÚL¿cYüòÆäUÊ ‹„è@5nAoü¨­t™c".Y{t»\‰al9Çš»‹þ,/úÈdoM©ùŽ…HÓ¤ºÊc¨g•今žlSEȽb‚¯0\µ|‰¬eKt ¡ÕçG`gФ4Ó?ÞÝ;;ÉšÝÈÇk÷àIùuo¿#Ñ’¡?,ÚÅ ß7‚;Hdž*±ÎÇ)ùö-+)Vã4À©[‚Ka‘×à#«Ü9VO~…ß§Ñ!ÂmƒÔ»1^å$ÚˆÍT\A› ¯Üõœaž|vv¶Ïås¿sßX]Mœü£æØðiCs6©ãÏ>4çZó}¥Ù5¬¸ÝBKAÞ5@tv®žGˆ畾ϸ&Ò‡»]vØåÞ‰þ©T4#ÌOðúä¸/0lƇ_ÉáH€lˆ3,™x>“¨V5ý°P„ÎD°r9Ð…~ಒáÒmÐOŽ…¸`á<y…ÅgóN¼ƒÈyèÁ©®>D õ@:ÎÐÊŒžL8´¾ŒÄÇ…{¾i®ÞEGÿ!•µûÜcÍ!vîéYÂò¦-÷:hi!ͰÚçÆãïà=CZõžLŒá\ZíêÞɸàÕRP¡¾âNA˯P´¸Ì= ®8Û’»‡—‰=cÑ‹Fž;VŒªw’Ã7Û®@tŽk%sŒ©Æb_DçÞUàcÕ¨ƒÛÎ’-Úºôö¯Í$N‚in ¨äÉ”qã®ãïÆ©q‡Ÿõ‰y5àÓ %PÖ¿“Œ8… C˜ï¶¾Kÿ Û¦©«Æï÷R¥Ý+Lî}|žGõ“ –+¼npg O@'¾¡Í:®P“¥là{÷‰.bº3¹Ð vL:±˜Šs׳daè« ˆ>¸ƒadýO‡îK).åèûC”p¨ :ÖþÐûà0t|M&†™öšö¯³_E¿D·4.¢îû¾9†–kò¿!ô€JÜÊ’Ó?æÅÜ #‘œ R9â¢&ÝÖš‚>ÇlæÛ²U"àJ‡¡ ³Ù`­Î{`íÐLés1°ØÄ¸}[©RzÖäCTq_ ~Ýj­qÂY+9gfƒËÎ;!A>„r}ñ¿^¶•çü‚sчIî,oaSË€ëùkhs ÝëõaÚ¿Y½÷˜?ã€^Þ‚‚ép¾½ÁáŠ9Ðæ“‚K£S©ÝrM8Ï X"Þ7ô›[ ∀x,a¡=çr ßQ¼Ê*Ö§d]ŒÛ c6F¥ŸŠyRç‰3ý™µ5_{º•i–—i—?Ž=…ÉÞÓ¤ qûÎ)}Œ]'Eúé@¶B®~©^1¸ªf¯Ú„w½D®¡“òÅýt$_«ßçGÄžä˦ž+šŠ@‘'Àv¥i×÷i®iMFN<¨$ºŽú—â÷ù4bý2äŒãxܹDltØÄ¿*êvza²}tÌžL츈 ¢åÂVæ—&ãÙ(<å¨Y¯'§Ì‹<õóÀ<{eÀ[‹¦.èËS¨dUèEGésOï ,Y?t»-IŸ-õ6eUr±·„KL7òFIÐWh§Ú5•VE?ƒû ÿœC}9MŒ†˜¿µcœÈìeða” ¿Urðßuhõ6¦73IAò#q_ic¾“‡³‰“#ÿgbº°½¥Ï“EZåàˆ×ßùC¯úHt‘ñ”©N!ùâ:'ÌW,¾òÍîZN€'ï¼#r“ê#ð=lÕº€îás Px gÎxÉw¤)çÖÓ¢µÛ)ª*Àrz]m™0ÒÛ†_ú@“C°|‹Ähî¾Ã”?¸WË£œkĹCŠjl‘ïú€€q3È¡¥±20(¶ t³#ñ¦jú2·#!âÇH9¯{[†Û TMݳ—BgOK®;½,%C=<Ÿ—µ”5ÞÌ ‰°¼gù e:]‡XN>V¡Ñ‡@¦€p»†•+õ°‹Ú܃õ˜S«GçD\k§ïOæ#y èa©|¸´šžeµPÖÒ‡1–ÈíE³“ߊà==wÁÐ^WÉX}“©Øå2œêØ‹y§½g1J -{?™Ú£H D©bùC§Y"”Î,›šlz÷ˆ">ûØgV2GØ9”€¢jPŸqinýê'PpHä_:˜‚#Ù4èqÿ U¬šé['ë¡}°X`eýb'(;жÑˬ½ªBÁ‚ó™“ ģߡƒ ÈÂve¦±œµß'm"š¾Y€)ÄÆ$¡h‹âˆÇhòH£Û®ópw‰Ò Æ gHm6W¹BÜ´ÚÆÈ:…ƒp:oy¬nÐ_ªÅxH©´;ŒpûÅÔbûHf§µQØaàhz`|ïþæÕFA·åXñéÅÜL˜ˆ­ 5 ºŸ|‰Ž?‚úBéG:¾/ž èHÙK¬þ|ÚOþdÜ÷Y¿Å ÛŸ¹«‘jüjpCF6þw)Ú³þûe0Ç-v©Ð†˜ ±™A£ËÇúmÙ‰h÷ØÏ ËxWõúTo@>§ -8ã/|5>'~a=`œ z½0K¤“ûðýŽ÷ 6)ÓM:«© ÆSƒ&¸6²7› ;Æ”×iã/úÇè(iHKÁ ¾Ül©Ë…5DvóSM{…§Àý½ píÐaI{`½AqyYÊØ,t|öÿçÊ©TïÍZΰHÝ#yºßgœç.5årÌj›UC”PÔÜøWªKÑ Aøí­T±q_“ò·ÈkdÅ=Ä&»Ë Ô ¢³÷Ï]”yÚY-ÉætÀa¯Ò÷!ž´Û–KÛ‰È{áFÌ… ÊG¤9QþF•‹:wä—R3áDT¦ ë—™0¡`´•%ü4ˆ€i… ¯°ö82­Üµ"£ Pò£ó <Æ´;ÓÔR¹ h·k°ën€oñx€·JG>h˜²l ìy~Tf“K{$ªÐt¸)r!•j.6†V`X Öú¥¦@vL𱹎±Ìä=‘±7î–€är±áy° p&ÓÊå¼Ó—ºܤ=þ…Ø9®\­ï0}ùÎÖðw”±ØS%b±FÌ”¢#©Z½8ÅÌul{XrïÌUv BCñŽÑ:Ô²„|¼ ÿ*—¸[ðIB ;À3–9qÀWV?à/ùÿÉ|y”^tdH`]>=\ ÆÐ5ߘÅ{º÷6{ ç7aI˜DÊKEîEfñ§òqª­° ý"Xu6nÞ§ÐëºîÌ]œd%š±÷´Ø¨+¨¤YN,|èö~¢ñË?L§FÚé˜WU.ðlÚ¦øòWF¨:3çacÃR òS€õ]Ú¹Þcì¶ù/‹*e%4üۈʔŸv ¬ÜÖaž»»öMМx´ÎzΈªZTjY)e6ÕGvùÿ÷0sÈ}Nf®®†DbèÈIi‚ìÕþk¡ì>CU’š¨–)eÅ›jõèå^^3ú6¸êƒ×ẏ÷¤o´Ñ ÌhÇ}"r!ãð *9RmcϵeýQ„«Ù`¸;̵ºæ+J}ÐXœšíÜÞSÛ;¸Aœaʺ«ç× GŸÁiHDDIÛv£!힀øQùI$ìãÛ"NÅ0 £–6¢Y¾rUõŽ $(B ùÈÕ¶SžU[“T»á ^K…<¸ŸÂ#+~ÔßfŸ æeŒ2óûYøþ€¯½v{áU€r=X[„y$Wót^c…”½_<çÄ©ÑЬÊÓvr[ÿ'dŠlÉ2…Hq!û>¿ç*K’háóÐeè¹DŒè)ò¾ÏD£bÛ€Ço‹í᛫k8uúO=»§Õ Æ1û3«×õ·{W÷[¼Ìia¯MéÁ(‚¤¹qxˆ]Õs \š‹_½ü\ ϱ‰¨øä0»íº«.Kéã—áå…¿º³±—ݸmV¬ç/ ²ëuò• ;} «þÈLKjnÀÃQP˜‘ïý ‹µçÐ¥ 3£;V~Ž¥&<^dPÛä®¶Ö‡å·~\5Ç5¤âZ#kQ¼¢ŽY“›È„nåÀym5?<çÖ9ÑQLÄ 6­ðÊ‹3ƒ„lT?HY!éFu(5 µ€<·¼úžP²ýˆ| tʘ5SŽüQ-L3V~óÄàOÄé½¹G®óx‚èÐ9 ‡íçnv]÷4VvÙ_£´@G’ƒé´Æ¹ì!ÖliæÂÖKž©&¡k]YÊ p[ºÓ1íSŸMÅLó‚IçüöF|hÜ\š…“zHï$ÒxpD¼ã€òkòD-H'g]ñ à’«ª¦ŠUãÌÊœOc¬È…®™GœÒ©Ô%MÄ,¥šÀ·Ãèõw_&òÂOšš5øní}[Sm˜F²+u¾29a‡ 3¡9ƒ§TQ±Rý=i&üš`t(÷×aà¯Y‹t‚,‰së‡fØ9KX°i0»d8I¯…Ìy¬V[‡î„%*V;¦àh}Ëbm-gÆÙαìÃA^yú,f»ÁsÓ·¡*qÓ\‚aÃóêf$’Ð}rkÅQëí× ¢Âg|ò×7”Õ‹òHq_J1;fùP<ˆ½§äØóŒ°ÑÔ45­¡·Žq Ÿ!ªR'ä¥= Ó™ÄÔb¨“m®´Ï`o´]#¿.ü»Ó6áó5_–¯ÕŠTb-¯ÏP 7EyÅ+Ú¤°¤aF%ŒÖ…(Ð=¦RƒIUGßç’ šŽÓ’N,T鎥ÔazXô>€ZElÇ~£ÞÛ–õC†Û? ÜX±Ÿ= cu§_¬„qu’¢/å­(Ò¹Ük­"qLÔJÎ)9³ïTNØq™{™Õ<ž™ð·LÕîº ÑÎÅY΄+0Z´ŒâæKtœ öå> s5¢TŸÏkE^͈Rm%éatÊæiÓ¨’ÐôŠÝ>FãWê¿vÔæÂ‚Šòaók :wH£ 0áVþqùµ's´÷‘ä°´ä"ú€jwî‘Lè<  •T¬ë•:¯–{ JIê›´Ñê4@hŠÐ̸‚=…%|o±Xø!sd†µ½òðs€ª(ÐâèÓc%Í’OdR²bÛH·ÈìFø2üå=/.о¯6è;8E+Åzã+¡·/æM%a)mã°©ÝLÑýÕ4­Äɉ{nÚuóxK¨ç!ù™Æ¯LÀÖùw}"&ßwÌþi[¦9C•ø­zr>Á+[Ö>0™ê—H&Bm,S=ÀÖôÀöÛýǪ:œ53ÜèÝC¿˜5…}Ü:ûMjvSSž-?¿`ê%Î\üL‚€k€×§’úó<ô­4m°7Qˆ]µÔ„‘ðË,Ñ’>²çv‰ÉnQˆ÷R ´®ŒëÁFW×1%Ü« \¥„ LÛÓ½I¹”j]>‰$5ú}tÕà¯ËœÏX bü/Hå“J”²;¼‚b«è»JoýòŽOÛxçOÄ–_'¿ƒ'ÉþUµ†ÐW¥¶—)zi UÊ[«jJì_²U0åu­—( ~Šhx¬¼Å˜¥Ó7ÁX_æ«jñ­wBT™¿ðòŠ¥Þ¥ÿ1W1z­åúbJnåmc'’<ºÀsÓYnA{p†%ÐþÀE(Øý£…ÈAnVè>L}ôßáW¤2ŽÊè ¶œÐÜÕMð…pVˆìFýym/0·!WZz#Qf´´Ú4‚ªš!w*‰è¬Kýãek`,%nZÝEOšæÊ´ |NÁÚŒù¬A:•&ÊðQxXŠ$ø m§ÙêYXŸ\à;ïkY¶ir2@èøÙ''$…ŠR+žGÔµíh½Úü‡ˆhbV®pæŒAöÉR‹Ÿõ[W³ØŒa â?¢]Ð$!:€‡ Žþ<kÍñ¢¿çù¨:hTî(ý/R³L»·…zŠîÁŸIÈ+­U­M8 øèY ²ÑÔιäúƽ/ƒõŠ×gI3úa8]]‘z—¼¿}·¶ÿýÏXÓ`اT"mqòæƒ"$ÃfÆ–4“ yuÑrÞt w >Ã2€T9©³u®áaMÀ9õ=Ħ‹Nò5iur(‘Yf½’Hmü?ú£8p«ôßôµ’ßPêðIJºÈ°ÐÿŸö¾±F4ŠB¥£!~àÚØ=ü-B jÖ>áǺ”€*%Á¤ò­lb÷¹36­×@/Ä–¯5x2B4)‰=M£„äƒm'ãË’ï+—Äôu>%9ˆÐ :°ÚF‰2·æã{yšW¸”“’˜ë³ðÁhG›l/Ãß,èmÛ4Y‹Œ®Õ¶Ú¦ÈÇGQ…MÆÝÌŽg²i~±é¤q:˜+ét¥ ‘uß+é¶»ü[1Ÿ¶~¯9EiçIÙUFÛú25›»§økRËKâǧ¦…&©l“±•Þ£6YÑr?tNä±ü4kc¦DJ1í'½SŸxf׳¸2s4Z&¦OãHb,lÚŸ¬&Ûðzn);à¾Ç‚®[)Ö*ºK锎„_¦•»ü†!¼/JCšðñ´ÔÞ9HƒÈYì¾—uþ{‡æ^n\L+÷ý†µÖº…'^S#d•þ‚9ÞUqˆÜ(X•¹ Ó“b0‰Lœ£ç¾Ón²Å+¡Žõ1Þ µ+p“×…ô:ëà7#¾ØÜ¦-vÅ;x¢‹Ä4¯L”]8¥A˜––›×Õ‹)‰÷÷˜IôýcFÓùÊV÷iº6­¿ÆÖëØËzœNd ÷rü´»5û©Q(„ÀAGå’ä%Íkq¬n?tä S ZЮ1ÂÀt‰#½ñÃË<óÓ¹ýIØæSk­s^©¡bOã£?,*¸é6[¶öH¦³hN0¸/\.*½èо¥â¾âë;i íü2âNrF#pgl%’FþŽVis }Cþ¹Äø{.t|ƒÏõNå¦Ö6:§÷‡FÀkïS—DyáÑâ8æïƒ'Ùµ |^/[³…÷§ l=m9« ÞNŠäjŸÅ‚øè&¼p`¯§³%蟼å^nÕÔÚìßø.ºÕ;ëªG@Iú„a÷¨«ç3çþ)=V—=ŽCg9Û®W»ÞÐ/o·î–‰xU }aCŽ&ðô@ß¶4™?œûð¢ ïE÷&!(ù2Z‚ýÓ‹ÙH¾4¹9šìI­ÐÙZ®;ÄÙ˜5ËÆŒLÑ|Ǹj©DɺSb‘iýX±ßÊ:& [t5N×ÈѹÕwTÖC¨îÒ÷aè!‘¤ŽÀäb’èÿüH¯ÿvà MëÊIŒ`ñ-˜Úýñåy 1T@ºŽL£kJªyˆžäÙv¶supÈ=n†ž§ý:LëOc_›[â)ÏÇ„:Ä–Çî…ÛTõ2WñC±}ÓáÙæ|w§ ½E…/…GBq'í¯Â²¦ñÍ£õäFÞß+ôÛVùu…‘êÊéTR‹ù×¢iù³‰ÚD9w¶à¥Á!ÝûY€¹øeÑ9°=W|…æ²\ºÁ'cì!gƺP›íp])ÏÖˆúvb¤Ë-YŠŸ³oõÌiýDŽ~§ZçMwgº(BZH3ž#†‚¸[êÜžÊ=A™*÷{!ê+G²¦ÄÑpfë/"XÞç€èfQÙœ›wÕ×J.<Ï] }€^"ÿzû)8©÷nð#9ú–ú3g‹¸ÏP‘¸l•öó=t—àÈ] Æ"zÌæØw5)Þ|yÁÍŸ…jÐ& J? Òãyü^Fçü^Ö9£¾{yîñÞ“bÿà!’A{p†%ÐþÀH¸ÄÆ0W×·Þô2»ÃCEÁ6“ìM–'T£8æ¹~›L -Pƒ><å¤S悟hµˆ¶»IUdF§†¶mûW¤ˆd  iù漜Xº SB¨¶^qÛÙ2VÍþ\u”âØ·IŒÞsZêé>EjÚÖ°E± ¨rZ´[DËEœï’}fršÓ(·R#ÑV•¶íçû3OO*[ëL™.ðÚ3Ï»…Lñ±÷et¹Ë;2¿wAþ’§ZrȰ¤'P™LŒ´´h§Ø{Ýüǃð1á¢h¤«®A<8ŸA­Ú]9Ÿäk0]A^'ÍÌó1¥‹äpNQÂJ%à9WPIÅÔŒWY™¯ù3¯,¯‹ÿÞ ñmb*–¤Kf˜!†;;jŒæÉ•| †£¯|ˆí5¥9Ü @Ð˜Ä iB%…ß½Ú°Ý{”JÛ‚¤’NSº Íø¼¨UœX´–¨çÔ±#ÒÈéÄñ<½3 „Á%êÜÏ϶"8Øâ ´‚ôbΚ‘ŒËyŒ0Úœ?4ÿís?>†Ã÷²wò9í¹‹ 4HÄO¨^›I앇pjSzÃ@f¦CV½óGäþ'æ^T¹<Üã~âõÃÏ 8ps°VÃwïÚ_’åx”]¶g÷S‚F‘#›‘±EÖãû4?(nPÚ©×µ¹ˆ»‚1l¨Bû™d¹?C•Ø´up%›íj_·ÞþÀÇ PÛKWŒ´_ïý 'ÇÃK{¢¶ü› ùžyäîàÀ­C&?¿køs3NÇ­"ö”©±¶ËP0Ád£+>©ZÚHZdJ4Ípµ­§ÜÉçRô§ÞÓk¾êò*¬žÔ0Y;(ê§EÑÂíH2 u'>n¸š) ݵf`žõýã}YQçccÎ~K°‚߃ýãÔ©*Ò,U×¶£R=!ïÅ­Ž=Þ}:>yÃû_|s;hßy;Äf‘ß)7AÁ'cŽ&.×`W4!=»Õ°eã¹î€p£Çtµƒ F6¬Ýºb•ŸB޹\é|«ëä‡~2ÏEõ'h¶lAëßÅE{‹'K„»Rohù2©jÃ-*áªý‹‚›u}Ecߨý¦nEÉlÿ¼1‹ip®m”å´Èó÷ÈGñÞ‚}œÝVL‚'÷ñ3ýeËø»ó´ ½›ûpÖ\ŸŸ¦›K¨¢jŸÉéÝ!&•l©¶m·4àlHɤÎþ([&Ó¹+Ä!QûÌ©JP¨Ùa*î¡_h:Ö¡$ÇÎÚÙïjmXÍQ®ÃÓArC<ÆRi™ÿhókëùP¨Ø\3]³R ¬©mÊ-Â0*@°†³AÖƒ HÛÌቲžã5(¡Á´Ñjw¤yeŸvhºD¶j„`x¨Ϻ‘úXäŸW7lajò !ü¿&Ó©ä UHâe—Û I¸Ká6-)ð9#jÔ<êÚÉa*- X’Æ…ØÖbwÎ…Ž‹«Íç2##³¢ * óˆè›KÁ†]š?«ð„€Ö¹_rZroUE˜úwÜp¢¹R<@œúÔÊk7(§¤\Ô¿Ò¯à°TÊâ+/Ú^šF<™bÆl#Ô^ï‘lÊÞvCµfídK͹¤zâñ”[oyÀaß¿½¾/¸¿K¦:6>© ½«¤jVÛœ?å§nƒŸ[ø‹ÞÒ6ÞV®~f>u,9¥a3%ÜñY·bû‰#SµVWafŠn£L«¯£:|0pŽ‚ïßC ›s¯\^sÿ*å¶v E~·"òã¤ÆiYmø++àlfZr«8#¨·ì(]ì~gìjWáYÁ îuï#=ò,Žâìx¶®7¥õ9‹‰ígªˆÕRHÆ÷2<;äònv^¯þ:xh¦æô¬é?×™µÍÊZU'‡uë¸ eÛdzîã³|îBDþ"ôÎp^ ‰´Üžw4p,Šè& D1AžlpBÍ¥¬”TÔÿGë‹UŸv ka‘³6¬O[®XÐ"ó Æ€{qK—-Ë÷ÙÁqËß:íL&ƒœ‘*Í´zìãùxnG9ˆ‘Æ,&61£½˜Å6f"Éå> #*ä.|©ŸµMäyÁlN+Õh3+KŠÿ?ÅQ5Z‘’r.ÿG¨Tа|s‚§é¹_–Oö1N~K£ab% ¦·Æ'säãéo§Íúj¬Þ{É$©¨ÆÄ]^ÞS&8 ¦5™¤B<:Ìì‹Ö+å[H–,„L«·¾Ô‰¡ÑèS˜VV }÷>î ZGx^óÄSæ÷z®Ÿ–é&{2¯Æ щÓe$ÉÝôx(XcúŸíÆQoioTÐeU¥°»†rn¤˜¸£aAä T9×»ù”Õƒ¦_ØL-ES°ÍÕ®,ü¯:ñE¹¿þTiNërôÓ;ô¡§aT’„@‡ÆÕ»6Y·é£²…lÍtó Ṣ̌±gŽ8!c]‹GƒnhHTŸt–XñõÀãÔB½=9 †"•ô:4‘õà|º\£ãK”D~¯ÑaÞ׿ô-X¡8èÿŸ¾“9 Îõ˜ÛîO6_Ûˆñ-ì‘‚Ü#z–B2{Ýü‹ŸÅdJænÐM›ÈÿkÑ ó²<¼‚Ÿ¦Î…vêrÚÚ]z;è×F“av²jK[œSXU>v¸ÈU $ö'^.7Q-ñ ¢J1èg˜nöÿÿY!J”ˆ}Áÿ=«—E<0›!d Ûbï=¶çìºÉ¿}eÓ> ¢'"Ú´Eò‡jâˆN4í øøŽÔ g_)jƒ¬8üâßÔ³z›²m£DB8ÌÃÄ&Ëí…Ò°vÏycNc+îö+€êDå/u©º¶=”:›!"p’W¾Ëó&#â€íÇuVY;²­çFWMxSáù-ÕO]3¾rAQw°i c8̉P9+l»ÍçEè¡ïëßԹ첻/Ãm°†M}‘+ÌŸ8Õì‚Ly´B•5i>ÆsÓ«B½åŸFÊoDÒBì‹q\¶™Ämzp¸+ÁGYÈꕂÿ9ƒgÝ/ŸÚ<¥ 5 )^–Žõe<ø¿‘±$@Ø ,ƒ©‚@"!&²ö•ñ§â-XèŒäŽ»S’ˆ­f6ïÃ_"\Ä‚ÏIˆT~:E¤ÚÉ0#:Q‹H @ËùN¨á]÷ðÙq¡`T®ã?rãõ ‘Aªüæs;7ó`0ô,9]\(ŽÝÞ& Ö Nbüß‹â£áüUDcŒ;´W ¼yUcÄÍž}§`ONv‚d ¿Î²i²·D·qBüÅÀ€¨Ê|˜&^ÝϪ%ì ßkŠöÄð©çÉæbÎÊËráL/Û‡©GB^// üA¢g”1%§mx†¤æåötö¨Âä.¯yGꪵ[E·¥ÂG}y¯™Rጣà›j–ã]d*/ÓÊZé©Ùµ…ùÔœ Únž2ù)k€ø{—Ö3‡U”’öýÀp¡éw—­ÏdÊrkEcŸ DÇu†¬8ÙÖ¹âVqù¬ÙkÓÁK ÿõ·p£ïߌð—*DZ¨à›×õm5í@O–¨§Þî–î–{‡n2Y€¿B5™n©Ïõ^:n¤íJM7[-BÛÑ· z^´ý@BhFs¼ëk|F“¸ÌñíåûUAòœÚ^dÖŒo€=Y€v<ÝyjXý™"MÉ 5dÍÒHÛðËÿ3¤è‘èÅ­0?øpP6<Í|»ïêP~ÍYèWnr¨epðëÊ ÌÊ×þFÐŽrkgâùË¿|»ä̬ÜwŸhò¢2Â6­¯BÂâ­?Bg8ª.×½¨|ݵ~ØŸ)? þl¾r¸Ÿ+ußÀ|$ÒgÆ f™ ']1¯±Z 4lotûÊTEÕ´ ¯îùƒ7¦éââÑMË.Å|ÄÝcòR±fPWϿ̖µ\u˜Ö×Ñaá2Ä-PØxWéárO?ö‰ÀίãéUÐa©›¶ÃÞÞ.Ç=SñOðʣݚ~Ũª÷˜­r#ú—Ä®‚fY~€·ÓýIáßÏÛÊeªÈX;°¼aÇR>0»Žõ;\êO‚°ÁojÊ¥‰ƒ<•ÝäÊp餸÷¸Hr…Ø7 ©†ˆ|}¸ÚðôEëÉû^ùkŸé~â¸ÓþÛ_ÙFÍ)~y ‡9x*ËŠŒ^Žkj@˜íëõ1ÀH‰Î* ë@"—廄šÂ(ù.¡Æº0Fã×5Šb™µ÷u¼S¸ágxÄ(O!²˜dâm1Q…ÒÒòôÔÃó‚X'þ*lˆ«W þ= I':ðͳ’Žäx&AØb9\h¬ÉÁ11“m4Ð×5on6UlÑ&rRI²Â]Ý"áQ•Î ûaÚM“8j¾5%Ìç¹w%:°)ªi ÖfCHǨ­±a¿ìƒEŽºâ^‰G<„dµùd:–ãB$`’kXv[†˜ÿ»´ ÞÍkölàSK7\Þ<¦ÝqLuóŽžÑ¯0H‚ïÕû”èÀ< :‡ôò9©ÕÿŒ½ß¯ÊfT<ûrâ$0H­ÖA©ƒÊ;Í“ Uß¾ ¨¹ažIMÐ*Ì¿êH(>­.bÖP C8¤3ÂÓ™\lZd^ô6IŒü>ÕmÞF€oÛ‘z‰òÇ6Þ‚÷zm¤_ÚŠ£ƒñ4<±œÑ¹Àj+#á89FëëCxŸ {Àm€¦ï ¼²XêëV üù4|ijt0¯ˆ£øQ2Ú%ZN:ÙžNAqÆ‚é ëM À9k³®„FÑövBÍHH—”â#Î:Z„“ª‡¥ “t‹62ÈiÝŪàBS¬$zd™Ÿ$!šFN³8²„†’\Ú¶”ÂyôÈÀ¾qSü“V¨yž*µnUšbé*©>HdAÒ9¥¢µìºY~jr£ ’áÖᮿEÇ$«2mض…œøÑ¬RuDõ¸þïÄ×,¹X‘¯¦û®æÆªS®¡ÒÑA G‘|½‘{2 @ ³Ýj_éÆôL†…íBöskÖ3—ŸÁw¿5 ÇÇ ¨VỚM¯XÃ^éödA|„øC/KwRäaÑcMWÎ9ØáÛ\ûLE:i‚Ù[Š]¬bNÿæ±éOµ³bŽ$|ò—ÍE®Üå‚c" _øÜNKy±nçþ6ÓÏOÏöc‡+#­ªØ]€°ƒT¹v‘U´ Ó/ðKø>„”¨ ÛË>ÆŒ­Ó±B,DïÁ‘–—‹‘pØÅh·‡i¤MÛãTZ%cuSOimK±ÒŒj!Lè ›ù¹¯?"t¶ÆðîÙ©V⣺)R¢".I‘š ÞDk å³+¢Æ67aØ©E˜V9<áÁ´;q çÿ+2¾yÞºÊŦßÕkPG…v‹Á7‚E àÃ5+œ·ò¡äª=šD4Bæ6np‚¾oà°BI¤„ÆbçÖÉÂþv¸;ݲÎöàWéŽX J–¿—·*É»Ûÿ=ã ³’£­ÿtþ°¿»mÂú›Bâ&í ŠÊÆáܶÈ"Z7ÓoÜ(n®^l~Á—Èx >Îp€ÂáÑ2ÂÌÔ ð~££ãÕW^›;××7ÝGc+ Š;ƒã™Me-waP׿ tõ˜yVufº@\vÃ^©R¢Îuõ{g&ÂvfÖ³Ù®Ê+‹ެ6= us mëÜ¿…‡Y3èlâZ_\^c¨Ç~.³³Ïò+›\r¤Ñ©ø¿k8á£Æ 8Øýud£_:új«lZ9ë‹%>öP¢`Ä5dü¬÷eüõí=ð]Ô¢®T¿Q©ƒ½© šš„›µœÇô]ûᙉ¼2u2S‰D¥5DepkBy•‹HÔ‚ÛÛׄ¾æÕŸÞ›@^Q©Ë\ŽÇ€’p¯únÖ¨X+Úg1ü"þÎH nñzÙékIRq)îpSÓJÆœž¶5ˆ¨oíFJZúFÝŒ@« þšŒ·Z4þùjÛ­:Âö¸í !âvŠy„_ (˜F~ûåFè®G8n p¶…5Dz5tG‚ó|¨z,¿Å•“t!½tνÅFÝçwSˆ\$›ø5޼.s, ¼ËN‰IÀà©(æf%ÎóîQg.0¸âßôq~lT]Í–ý•wÖ²;óI5’š­`È|rØ¥1dúÓ°¶þW™íòÀñ9k˲¢’0RœrÖ–î‹Ù??Ec6¼fë7J 6!òïÛ­»B¹zÕ=tÿé+lå-üø/{Bç™I4~ÒÝžßkNlŽ"ãXÌD×åÊwGZ­¹³·d¬`üFñ=¢‹3X^½h+*X8âל×Éþ Z1³rþØF¼TôFø5aä•¡•¸“‹÷¼eçˆ)’üä*ô: ñ±~ÏñŒ$}´ t7~(ÉE ˆ—¿vøG7…KJ’Æ |¬‹œ•ÙløÏžCÌX£`÷+Ò«^mïË"ÈyK§—!í«`;r?wÅØxŠ„"fQ[ ÄîFäùÕŽMÜOÅ~ÆÃ~Ròtx’c¸ÄÅÔÄPîX8Ö÷.zºáRoôý¡®¡$A´à”p9f'§ÙŒðÖ”ž ©B‡×·>R?½U"Î÷…»7ûÔ¼`€'pó\ïö±ãIÌÿ~àšiI € =¶Cƒú•¤fè§lÂvW—Žð•en1²Ù;W„ ôÐKt³°h4m(dy8¥™:rïìSõUú71â!’vÆ@~<7[läÀ@ @ß轆nÀ}TÈš€þšcìTÝ©àò, °üòä§K¾ 3A/4Ô»ø’fÎöu3ûMŠI±€-Â$ ¼V‘P:ˆ£F9ڪʺÀÌMÕ®­¦¸40 ž!õSMVÆFÉ.ì2Ág”ãÚáôµòMÊ+@, î‡;±<” "ñ£ï–#ŽPÍÊkOGH–ð‘–]¯ª6\¨Z+"ìsoù™4r¶3±«òK\Ÿ\åWh6Rr7CãõË)WÞ¹Ækí~ô_—¹ó/Ú‰N·»Æ­£çÑP5“× ÌußT_g)@1,9ÑÂ/È)ñÐ=!u«4‰$òĨéÁÛi9!£Ók5Ôãa×ç•ìÃO&Þ:) çãà¿—Ø!úBåÒþ{l­—vî`%Ë{ˆå?Ù®oØà_é#Å_ªÄnam)ª>,grDºˆüôTDJv n ‚¬VÀ›å¦Æ>—p<ÝÅÓGãÅ::õjå]|IÔÙÿ#*^C\=daÄÐÛAê Çhu.÷(£Ó–;¹‘°?ǃK{MJ¼ÅÆ®_’ÔêN<[œìt‰(1̱/ºM ¿ÁÃ"åðø óf)On_¥æ'L»t¯§ˆM—ʯ£µÕTn$ðØ‡ ÅwJ+ƒ½€éβ¼B¦ GÍï#þö·•˜£@×ú€öÍŠp¡§GUê@ùØ£öM.d«!Ä‚¦dö.›Eid®àßO;ö«›Œ Ì ôkA}‡p+ÓÀUTy“½gøQMýT³ñº‡QV±·Ï{›ÝÂs‡‡bO€1Eð ×ñÙÇÃTï¶™ ð§³ °2Ùf«pMXni– vÝgŽ¢ŒÖ§O½Ï_¦™?ºjÁ‰{ ‰¡º¢D‚•ÏÏkI»/â%3…ú‚>9«mÔû ¥sÑUž¾„JD'Õ뱫V˜ðô¢U"u„!]ãß´mÿ¤u4Ç·MD‰…ïÎöãMy#Eêsil¤w)ÅãÈ .†ë8ˆŠ‹Ä9 is‘æÔ úÏ\.íþúÝ×zÍäL+7ژס\.«â”WqH©t¯T–`¥v ±ÃWBsåµr Â]€ãÓ ˆÖÜ»–º¼6T7ùXâ²%î^?–¥•™†dRo¢”±ù¿ú6±ö~fÜc—„ý©ˆýg7xg½¬q»ppñÏ)sV ‰<<9D8Éü¤±=9á”3•¤söFúLTzxÀÒÖz†¬÷·Íšà»Ø^Ð{Q·mçöµ­+÷A­{ÏþÿX¤ì÷¹qŠ˜øê;ÀÊí÷Ĭi¤½•Êj˹Ð1 ‰mž2l&µo/üÎ< æu2ÇΊ1ìDÑBPóüžËdGœñ÷Xw­ˆšä`FkÈÃ<çÿvé±àã\+#‡­¹C˜¬Ø3KêùHD¤Á…¬G@ ÆvÕVc«z4&äõÑ}d‰³-Ì{5圯)¹œÜæ(Òdƒ–kÍlSb²œÅjÇEB¹B°¤R/ËtÅISb ÇG»*JŠÈ:@¦‚ŽHÑéVÓ €&zÚHÈKur}Îlý'Ïñlqv,µC&o"*ƒ‰?œÙ¶ Sš?ég·¬Ð½}礼ò2 q½W4…âС¶iüË„¼…Ö¤é ½I¸aþú¥D¢ÅúÀ¹ÖáKx?R9y'NÔæú¼™‡‚ªKRy¼”³Ñ &åÉj ‹Aó%ˆÁ§;²a³ñ]ø>…Ëù ½a>üùH›/Þv¡15¾M©íùgê…õ3@T’^,â)HËkPl†€É«>›hÑbÌx¹?:ê ‡¬ŸáS_m,ÕÄšƒ9wÇòB!¾äoÇl‚}ôïùÚFRØþ ƒüBûÿ.HE­mIÂWv\Hûv2ˆÔ/7ö—ù½«×szˆŠùÜy©»]8íÀ˜’iäàÿ&o5çL‹<Ÿy°8ê*Î<.A’Eq wÄ(jÂîîžÔ¡ ~s¡Æ2<²ö?QÚI‡¼¨[ ô©ÐNÑ•Ú[öùß_—”Tß‚Q˜6C×'âL ºÐh÷’ œ6ï™òÙMÁYÃNìFõÕëÕµq빵ݘ ÖÚ`¾\o[iaõÎ,åæ-Ú¥KàçÞ¨Ö…V€%SHtAàDù$4ï»óß§z²<ê5@éŸm¶t§wÍ#tNã²ëó·Ñ7c-Cz:G1ËᘻüÚü·!žqK ýOîò‹l«À_5+»ˆá®¸rï±Ü´Ý5 !)ÐAM¤+®›’çi0¬Sؾ™Ai';õDýøÇbä2;¬"ÃâØHðL³›@ÿÐëCâdy’mû€P/‚âQCψ}^°?`³`t$}I'Ùý3à&hÀе šdHwÇ"‹ ^cõªä~ˆ•õÿüTóÆK_=ñ§oéŸs$þ‘ ÌùOÝbø£úèùäϾ{»ÓlÇN9\o1ú¢Ð^ÊÎF¶”Øòtnw“¨;Š…K~ù<¬£Êt£ ",t ‡ ‘(“Æ&à6ïŠ7í²¶Hõ¢1Áº@br²yriiíªB1ƒv¦«ÇKÿ `wÿDè„P'K”éå´{ô(ÚSl|Þf°þY¨‹kÞÉu+.‘"­î‘tY`öÅ”À°\äEiùkÕž»æ'Ì%µ“´§z5O1@ÝöõH[ž'½„ž@Oþ‚ôX˜"Civlg * œß¾€sEÑÍcˆ¤»¤ŸßAµÅKCwØnJ¶ó!_ø‹vKÏÝùaÒµ¤Øg¾&(QªÖ‚Ö€÷4)eÚ:ào€l7%c<¼¸Ü$œ2cá>ãºIµ¬ã«Ò­FÅ ¶TR£»lúIÒ|ÎÂöð儽¬‹£ê+}S¶€oS™pï²Ñ<…äÏÙÎö´æN%·È¢:ß0A±:]øÄ¸ ±\¢œ;¿!)w(¶šj=-áv× òº~±šH-M‡!㸹¨t¹"MË[0´[_’]Z‘?ð.ø€Ñ'yÞÍI†.ˆA =–bÈ×¾/F!Ĩà²ȘìzÚ4ΩÆän$›wjûhuO+¢{½½LrÀã- Ø(¾cb•¦æ;ÓV¬IÐ:´©OÍ}û¥MðÙoi'>ô½dÎ×&=‚Îh…» endstream endobj 99 0 obj << /Length1 2018 /Length2 22509 /Length3 0 /Length 23783 /Filter /FlateDecode >> stream xÚ´»eT\Û¶5Š[p–ƒ»»»»káîîîîîîîNp î‚»Ë#ûÜ{ö>ç~_£Aчö5fŸsA­V¤„òJ4ƶ†@Q['ZzN€´Œ¢­µ #"ÐÔÙÊÀÀHKOÏ GJ*ä4p2·µ6prØœÌrFN¹ôôp¤1  ÐáÃi 0tÈ ”Ýí€ €¯y[G'CÇ7ÐÆÔÜHñ‘"dkçî`njæô§ ÍŸJ²i’F–¶®Ž–æc€$­ -@ÖÖõÃhøjk0šX™lMÊ@u€Š’ˆ¢@LQNE^‰‚ö£°’³­ÃÿpRRV£ È*‹€ªÔ1%å??•6üM©²Êþ?}>ÿ¤Ëˆ( (kÈ‹0Ðý¹Àèàhþ§íq#û`ø›ÚGª‰ƒ­õ_ _Íœœì8éè\]]iMhmLií¬þâ§lfîpµu°|¼:­€ ÆÙÆøcœNfÀø³*is# #ðO’¨í¿œÖ£üHú°;ý›ØÇ œþÔ´úW8Àü6fŽåJËËK¬ Ìmœ€66FNNÎŽý¿lß@cò„œþôù_—ÿÛü/uAÛ+Ó¶òô6pýï3°qvôøÇlþó²lmÍÿU01·þaïøgÍÌmþ²ÉÈJˆŠ()ÓHφFÆöc:6´NnNEÿ©' ,Í `§g0p0è?D*bc,dkmýÁÚîÏø„Í?æädëàN÷…micëjãùÿp˜˜Û›ü™½±³й½3PBøÂ?LpÛLNzÐt32£ûÓð/½ü13ü1 ÂÛÓÎÖ`b`åô67~¼Ày:¸NÎ@oÏ:þÁ1°ŒÍœ>¤þ±]àþª.acb àø—ùƒÉÿºþG_ÿÚªûÔØÖÆÊ` 4£“µuúÄ×ÿvÚõu¶²’5°~ý?3ýï@ks+÷ÿ ý¯5à¶_em¬ ¬þËgî(jî4–7w22û×hÿe—p2øÐ¿€©ðcYþ2©üÙRVÚý8Ìÿ_6–ÿò}ÈÒÈÒèè`fþËüÄ1þ˜þ¾:q9IAªÿ+›¿âDlŒlÍmLŒ,¬w8ú-0²°<>„m tûK,:Z[§€³“7ÀÄÖîÏ‚²1è$ÿ˜þ…Øt2ÿFì :…¿€Né߈ƒ@§ù7úÈ3ø7bbÿ@Övù³¾ÿke ÿ(ü7dù(gbîü‡ÿƒŠÙ¿!3Ër·3Úü#âÃfþøÑÇêoÈðAéÁ ílÿ.ÇñlþîÆÌ  û`hnû‚ ”ìÿ?ø8ü~4wü›þ‡ÓÑÜíoüÑÜÉÕöá#qþ22è<þîþÁÜèð¯ðÿ\wù?gß_›šþo!üÏMá/¬ää`k T37þ¸!þ#DÆÀÉÁÜM‹þcG2|Ø?¾þ÷7ÿh@ú÷aòlAA[7Oæ–4Œìúaú8ÞÙ¼ÿ#×è_çó_§Á‡bÿÿ9@ ÐnuÉÖˆ+È"µ%¤ÜG¤p¶’”ƒö¤ “W]2b5c¶ [8oÈWäßæ—IVd+-Ωã“ìoS¢N„aõ¶ÕžT=sc¬À¿oà#ニ("0‘«J«)³âWÑCDñ[2·@£”y>³#¾ƒ 2q$ÄÑÕûÍ8ýŽr•B¤]ѱ‘éZü¡ÝÁ Õm§we¶Ôéý=6Ê`@`•rA¿ sBÊ®¿íW•®*_öÓÒšFø••QÏÚš°r.$:æègð]F67eÄ@¦„\D ÖФ2.:ˆt‚7!ÀQÊxF¬oI62ÇDåëtK‘JíM`.XN;¿ÐŽ%密C IÇ0«» ·øº­Ý°ƒ,Û0_³ãè0P©åÉϨÄv„ªóIFeí Ó”ÈaœS‚ pöò‘¿=)“7P…×dçßÁ+ÝX/CA=(›3… X´ó‹×PŸUŒù2Ua¾4“ Á~i#<¦ÀŠç+þL€ Ažš—A-®±‘íÑnA2ª1ŸOuËiº[Å_˜¼œä’6³Ð]A¦e²ð–SÊÂ’x!S-ìõ¸îiÈÉZ° g,lWNsÁ¸vîMWëWfòÄì>‚&ã2k=ïbq’îYæ’ˆLÌF®"RÎÊÀWõ÷Cç®%N·Åæ  @ÒFŒ»ó˜Å8>èÔ+­³ò£V Þ„$CѨcvùý‹ jëÈ ˆ¨Ò¾˜ç5[J¡6Ç5«³öq45 RkÜÕÎèä—°¹û½g.ÏYÓz4‹ê`®¦î¦w Óð¤ß?ötxha¿ÍûF«Z7a'IPAO±G'U:Dd$PÞΔïåÕâä5š3Ú0ø¶ kèQÀ߉êk˜C@—v±!ü¯üÃ/‹uNש¢Ò¿J}w@wÆí0ÂNÊ]íõmfl ÞcV+òåH\DEÚjñL~^JŒŸºo–±<Ž# 6-Z8›W›1n%z—tç«€&%.)³.Iš¸¼àoAiùÜéÍÝC£>ƒJû€Lì¡ÇªŒb8 }Œø²¼ž÷ÛðÕ y`WÅŒÕ$™¤È‘ƒÝql˜~1îÉm ‚£_ï3ßP-.:‘Ê|Mxùj’r'• îŽ=v}Lm`:]!z×§xÌwwõœa›*ÑFe3|¯e¬*\¼Š›ëø©+Å¿DˆÆ\¸Äß¹Duެ2eë$Õû9Cwòä ÒËÎã(ñöÉ  ßÊt—Ézó”9y¶Ó¬ xýƒ[Ðy{ÀêL†výâ@£Š÷I«€:”S°Ÿóݱµ¼ Ö&нõôV‘õ’"g~¡¢ç,ø÷ó`vZ¡ЙJMIçReBÓžoÛ5 “€¿¬¬ÚÏ©¢ÛêåÒ9þ¸±ìX­IÖ§P&VÊhI"ÇÐt30£Ò»þò–€FáÖ¤ŠÓêWÜ…œ¢ ½#”†nfÛã8|¾Ò´«ÝÈ"cív‘!&ÃMß@]µqÇ’B;ß0½nhCš ŽÉ÷èʱ%»å9ˆ’áB â´‚­œÎJýT{¯¬\|êÑ}8'A¯ØÕšÏijÈ"‡ã­žÈñ®üÜZàKµ“Òò b5w=ÞÚç5Y/˜/2¯ÙD­I»#—$Ê2úH­ý¨³cTjΠeÑsÜJM¾ÞqôÈgÞN×îŽÊïéõ¼|j³D!È/}nüJ‹O½ÐಾOp/Âúí©‚U©Ÿ‚³ò*Oxƒ(T½1¤sËJ½ìI —®­jÖô–Wàùç>‰öW-,ü Ë_ïjòâ“.‘m—W¬b4Äþ[y™‘\È™SL”I~º?CºâìÇŽµŽ‰¢4q×ôüЦo²„ÙŸ&z°Sö|1¤¶›rÀr›´´rÃéoLM~»X„¼%”0<ãß0)|FVÓvÄséèãÁ)r¨†›DPn3Õ ¼]QXH`†;å§Í~y:ñ÷šs‚­¡W0W–Ÿê–:02¸W# Ç–-d(óâ:¡¹Î+J>sÎ7+…—VDDÅq:ÏbÔU,ŒXQWž¯[£Uì°N?5¹8àÐr†ëFËfæÛÈņ|±7‚Ñ5@èõØý…lo†b­…ùÅ#~5{oL»½R¤|ê„^LJ)×@¦`ƒý>jþjd!‰[FbWZíü: Iý³L­ïP¾\‰álC˜¤ †áÑù¹êÆ “zŸÁªq!Ðç6Uí×û›Yþ•Y»˜E+×=Ë‹f[Qª»¯‰ÃÍ3IÍ+eÜï_kJL‚×CʧóŽcîÒ¬òe¼œ@>¬i&£((Ý U(œçiáes Yp´¸.Óî4Ê\®^ÈdsÕÛW|ôÓFBsæÂ,|ÃÏ"Û :Ts©¨ 6ij”G¢›U‰ZÝS»9‘¦Í nõ¨pœ:l%1Yq¥Hm`ªúã¼^‰­Š¢è=^É Øý’߉P5”bá ɸò¨u•p Ó§ãðçÏ7× ¸¸S3Ξ³×ï´ž2_o|ŒžxDÜ¡DÅ]~®Š*'¸}REð0¾©˜Ù4ÀA,(5À«ike@7ë(Ceóõé&Ý÷ÅÔK‚M–¹4K1Ðh(k(HŒ#)#J²|x@&Ö{r‡ òGžÖÔñ&t:ºvvËÆu³zs*â«ã %w!pX#ùÑ3û.ʺÒúÍÙû|¦_Wø’Þ³°l(s®gß4ÈêN™ÌŽÒ÷ñÌ ÎFA%áDœ5 ¹¼·pRŠòíN ¯.ù·m2j@VhI½9€T-€åóQ޶ªj«§·z6ÔÂÓw…öQ8l;e.µ—ˆÞwáQ›šѤ_)™• ÿ`:&÷ËQäHµ›­`Ÿ¦½”l^î N¨ßÇæeÉÜ9² ‡º>[˜Ðÿœ‡eؑÆ)j¨èÓÇdÿüíH½R—ÆõÞçUchK}}~{ãüà ¹ìí3ƒ‰Î4L$ç¸,xáL”λ#H¼vÇ•Ÿ›á`ï¨GP‡å nqâ8½}Är|Óé^|iã¾ÞukóZʬmìWåµÒf¹ltðžà¹½‡\WL$à•°ä^4çp¼ÚŒŠÿHYÊXØ›!ée¤Ÿ_”§Ûs<’U9µ!²:þ_S —à­í½±Ã3Ù@1$êñ5Xô'#ÝÉüå{ðŒ.—Ê'èÙmFk¯bx‚çÆjñ+üQS$EaÊбÎ;ÀB4¤ÚÀ½šëލgxB+“œ%]p•ÃO’ª¼<*ÞòXÍ5qMcIæ)$»æêÒ±_ª¤Œ‘0ê“oå,ÒHžv!¤³oý.Ñe/ýFâWàê7ØlŸʼn#EÏc¤?•ªE¢çoÎ3¶£ìD¥L«cæCîÅ’‘ͼÖÛ Ö‚%‹€'UKÒTŒ¦M˜ù¬&¸XóŒjÓ¯-ü‹»D#¥„>è§iŸÆC;ÂR)RN»e-·ð½S/ã]%{f¡´ g1vÊ„1VÂ{{/µª‡!°\’Ùñý‚œÄ*Ó)ã5ô€"ˆ³÷i–i.`Rœ€& ŸceàtðWÑÛ+zÖ2F±Ž² q€äËHN±‘ª÷#òØ5„%^7±+¤Ý 1oíG¯’\Ÿ½ßžë¨}ç7Iz褒ԯŠrª’h!$‚؃$$Ÿ\¬œ ÜW#,ÜXjg1’DÆ•ûÛdÐפ´HVÓî_ö]†" þ—õíUë+h=½ÜwHbjwò¼z‘þㇲŕˆ_i]¾) VKª+j J°S”Ÿk‘ò¬O›W·gƒƒ¤l•ÔzÌÇÐ,’-Ù\|j¼Iý¢âö`{LÚ_Õ˜„ÍǰhóC›?Ë5º~“JYï¦=1šö7Xæl¢Œ3Ô»œù‚|4Jh*g”—¢õ¥¥çB>ruữ;†ľ‡tçÁx¸£áE,æ·èáïw÷›O~V“Ë™èkªe|cµIð•ª~6Pøtúér_³‘ÐYøÇÍ4•¬æÞe~<³Îa³z­zŒhTÕ× ~·Œ²ŒRª¾õfúeÅ0V”|aÆ Zz{ïVÎ6"nÖæjÖwïK›Sïãëg圕+®N^‰Ì´ªnd¤(l¸™\ÈÚST¤ÆK‡ÎþN6#Sl‡o¢‡ÇpGT2hθ Ç‚}n¤b‚ëqŸXØùXC£”^0í.»Ð ;ºODÑ.g¼×™>Ù5 H^¨?91(Ú©OJ&â‘vHë‹ ‰pehÈïQÁÓSíÁËpËßÐáÄT ¢}ARm³XJ•C¥ð£ÜÖÈlïó6Àº¬Ë$Ä ŒJíù»çjÒRd‘ðsöP c çèÛ%˜æ~güFþÉš-7MlØñ“0ßëa#ì¥,~²k4„ùÈ‘á}€rØ ©õЕcZ†-að…-–cDZí·)Ú*[èô1ð¹(SèÅfõ"®ïÄ&‹g»¤@, ¸ïˆD>ñÀfVF»ÎONŸo©’2 AN)ò„½02ü­Qƒi©âNzPGT û@ÝÉÌ·|Q¦£ªzÓ¥Ä.*[‘z?"–g›µ5Š#FÖO°8Œ{QR ¡$7E›½æÎl¤3*€]ø„Í[3q¡Ô}f{§;O@öøO?’)à²Uà{«u{9vÂïÎnZîí-ÒªÛ—Ķôa¿ÎªÂq£èúÑ‹Uhi`¯À`ù?ÇŽh;|På‘fóŠºßÙÏûÍŽÔ\€íy;]Rl /ã¦7FÐ~pRjE·øSAº$²ÅÓ¡:j ½l‚¨ê.~ÿEÒXàšS%u™:àGwFðˆ(KQLÀä×Ôá°¼Üutc_µO=?uF¯jæ¡”DâÙ}@æ-쩲°# í‹ WÎçrou©ö ¾Œ÷w=ñùm{Yè«QÜJ±Q€Õ{Ãó @:ó½ÈŒýˆK×êQ ¯¤ï„Ê\l^eA(ÿü“daªÛ«ó¢¼G^P?üÄÎOÁi›s—8>æ‘û°Ý3±ô,¢Ò£î»ÃÂIû ¦w¸‘º˜nkìw-`¨S°_ázÜѺØëfä_2>qu°P2²4›r©iNË+ÕcŸ ¾î“û¼ ×ÔÝ7 çÛb»§‘éUôŒ*²,g¡Ø¢72…‰JK•‹?ÛçC¨x+ªIhö» »’~O;8ÍÝîE{¶œ/ÿñäÛ­ý#C &ý櫹šöö$Ùa)s„\è^½ÅÏv;h¬á÷ï:’K’›OLøÁ<ÔÊ?Qyué‚XÁ6ö+uað 'j“Μõ)ýAtf6ºè5:cۈȸ˘ „´ð4Hj)'ï…ßáÉê‡6NîçÚÇcÁsÒÍ'á!c¢Ò6„Ö‰F”쾺û§í-Ô‰ð.“ã[&`s…ß}ý¢¾éٵܘªZ)ý0Ïg@‡£C;æŒÝËa6ŒqµTëa×K${J0½® ^ÃÖí3‘è}/­ñ%ê¼÷PmÕÎ ¥»W¤£R%ýä`q¢úèeçžMuÜ”¶2¼7Á€æ‰àç­ùÙpóÇÙ±]ékwÖ&>]0cð/e’ç'ªä“° KìbÔøãOÛ~¯ KÈëkè(rÕ\ÎÐùWIáçúc·šC3‰&4hެ%ã'ë:©iI*î2i(× Ú}¸AD_W•¿‘gz‰|ÛI„ÝL„é&ÁÕ»±hÿäëÑ I€K-P°LÚ›’¿§«ó.ž8)”JCƒw‹,ýÊûXæ< š‹*·Ìß8Ƨ®C2†I~“HŽë”6±äѽƒ1c1ŸÏìæ ”â%#7ס-PHIý}oéMbP°q hµí£q´äšÉ4mâíɲ–ûÚAq µ öÀ#m_{9Ü —å’µ„r-4š¸µõ GõY…}[dßQ‰IâðR<;þíúY²ÊqÉ[Á›ù»èmrÕ²_PÈYG|e÷-¹á^9«ð8uAš8üŸýžÀ$8CÐ2ÆŠªÌØ1ä÷G«Ä­éù©ÌR‹ÅÆ®1“?¨oñ)]NçÍ£Š‹¨×ƒˆ“÷f\K¹g…ý9±>Uš(éËïl%dQ£}‰ÎN~n²@®èA{!²ðåÛÁÕÿÔHÞJ–à]‘fÉøVaµ_gR:R`hÂ2 ‘ˆsd7ä—d7é\^ñš /úõð´«PHÈJ £d2´‚-ØýpÃ(e-À Ik0<…jÅfNýùÄoÈ+Ýf_µÿÂÊè>«®¹<>½°FÉ8œÌyÔ„ËPê§/Šs·¼Èü-ógöæŒáüÐ1&T%•‚ih·@;‰û/ʪǪ!væ#š 8f#Ý|æá+,”Z^­\°Ü] Ó Qè”›`@QG³¿@YM–ìב;Ó€ÃñšËG²q·ô<‹ÁM=øó ÝY……¨-¶òTç¨!&èŸ-uŸúOèêp-ô"Ö!:eNöE»]è™$ïã’í§ä´ Xƒ£Øë†kÎOê±D)„r,#ZŸo«!m®Ê«,.DëWò¬_í¦ÖmËZ/µÌÌÈš \k,ŒmÛ#…mþèvLÆRDw®pKöqUyF#úâˆ$½×3Í1#ÏIoN;õŸn¢ òY<¶ø°»¤‘ô”’1ìø™Û´Öé_~ƒœ ý5Aœa¸b… ©g§zÑÙvúÛ×¶ô¾ãsÛb\­™­´$>Á_žµU-Àä„´4io‡{4º²sú­Wj³ Y[D’Ô56=N/k«¥˜wYé>8¸|BfP—ïÔzœ j?¥˜úѬ÷$¨ú¼¨@´¶Z<´íº•8URb:ð¥ ù!¼«Žf0I»ÁÖ‡ ¨SfáX4 ºÖ„ȼËô™õduwó~çD4A=']w“'ÅñÓvà)xÉp\…Ùårô ;³-Eœ~ã¶ÓlPe¾Lµc š²ƒ‘à‚|Iuü‚ËQ” NÔL¦æX|hUDà¨ÒaÓ™¾±E“ Í_96I*8e…œc¹ï~·oƒš*³/¶Òøã›äŠû†¬VѹóàNBP³˜3ö9_…&—¨Ðîúº¡Íã/ùQwÎÎzMt_y)ì T¢uw«H³óŸg–ð}n8§hò=§!Ïî-«ýü¼åÒ™)“ f•Õ±[ååT¢P /ÌoÏŠÜË^Xø#ŽRYJÈà·D. ßÖpdî¾µÖ}žd Ïš÷^Süåo6¹G—^˜[·›ì\ÄþjùôøG’> P›pF€’¯ ùí¬uè©·íÉ*çæ#5n=¶ñ–(2«b}1W:„ ?šØY´ïkºø”„ïZðHi>¾ð^^£’M/´ŒŠm76ˆ3”j NÜlG¸\QVU8r5GVáw¨q)q?öLZ×np˜ý©Mñ0×¢¥ð«4 ¶ü®COŠù5i“ŸvW£ TF®YÙ¯† U™5j³9 ¾“n× ïóÆ=¥™Û³gùå Èj ³ž¹‹´(ù¦sul­UT‹9´¬oÝYâ¹æÍLµüIÎ+OCíŒ4}TT”â}Ù&ƒŽÜ6•"Þi¹°íúUd;(ˆÇ†]€Ê~ 8(Lø›Æa|Zƒ‚êæ–uBÖ]M¾?ÇڋƱey¼}†NUÖlÝ™÷Ï[ªeŒmê/”Yz8º†eú£^Ûƒ®4Üf—ŽËÓø%·ø#—™Ý>Ðsï¿ t¦=FÎ*˜Ø£LŸ¸NmŒg» ²ÞÀŒó#1ÓZCÞ€ƒn—(Ê\¸á„\Û/zxdûó¼aŠãÙ´H’‰ŸN[n¦!lvÊ;åVKìâÀ߯¸)UÚ4EÒ7ÜR÷_ÁEÔb(ó‰=(¹âúp8±>Í?š.ðÑÌCŒÝÂlÃp–NÁÅr#ÙXg@¸a à½b…'¯,U2ç‡? Ïœ±;*·,²Öz©f £Õðxëóäé-Y¿H·àröuÏã¡fÂ)þx]f'l_ÇQuñ„#ºf)-®æÐ1ÃLëfÍÆ>`òBv’2>Péùx*¥Š) ñ¦ÅÈJ£]±÷$žZ…úYïñÇk@m+V¾Æ*È{Š„V{³ìr¹Ñ¸ i¿ø¯„òŠH×` n O¶Æœ„Îâ!€…ù Ò’ÏG‰ÖŸ 9îIÝë~'Ú­ee÷œ¬Öä|/þž¦ØÃáî§88%SïÒBMá續,5ÁÀ«fž_þ™3ÁÒ ¨ò“Ýl„]úuz Å(x‘j‘ÙÙxÈËŒx,Úo‚ú}=«7™_~(Èdˆ…Ú½·ø˜0Ú17ùà×W0ˆ$׵дYi6ªÒÁ_9íFLÉŠ¬ßXÁ£€<Þ3¡á~Žòš¼–“{êbýjòÐÌL’‰0æ³Â4ÉYìØžVù› ÙF3¢\ƒ)ìð'¦±gÙ–ª7–쬿´goÑñ„H‡O†é¥Án¨VÄoé¹GlØ1S™µÂ7ÐMzÓ¶íЩ~lSj‹†3Y؃¸ÞeKô»„g¢Ë„ø]Y¹øÌÝ'òˆ…h~'îK—òa=ãé<Ã_;o`ä)tM,!‘1PïÕ/µ»‰òeRE*¤ú|ZàAç½NÁñ©Ø˜É¤b³²]H(Pw”ô ÷è…¼rÀ+'o4³ å`ôUœlåžv Œ]ý–ÃT؃0賈õ‘çã±e‡Æ¤J9—z¡KvŽ!´‰«À Y\°þnÓ$Ïy$ªÂ§ JªuJÏSc„ú²¯íôƒ{FщåçŒE¹hKWÏx2c”¤mrߊŽùz µjf÷S·ç49•Òpô0"e Þï¿MswâÿÌÏ×F/q9翨M´¨õ¢q m4 ðØÛþFŠúƒÉµFˆe¼ïã¹;e ëaÎ}²£¤P’¤y࣌¿ôFÅ7úMk*b%Ь¨®s¶42ƒ9í⎋ÑgÏhÚq€ªøÄ!`P°aO»^±cžé7\>WéìË#Ò´gâåëœFßâ¢UiÅ+Æ<3¦›;„î§(Û̹ÊŒþbTJ¤oce´ô¥`=H]4êûj¿+ðÙ™¡Iˆ®¸äèÃ~PõÊdÉžU:s  åÐŒç25·€z"ÂüráçKñ¸m{˜°ˆÌ>.îa‰+xÊ—ÈÐöYEò‡º¶í„rËÿì;ƒLÝýͳCˆU³•fHg×Hb¦béõA‰©àtÆ}Öf)§™j ¥\å  ‹¥’þ@W׿NYg¹i$‚Ï]Tßx쳑õÁPGÇP¾Oû4µ/Ø=&—w×$ƒ‡ŸÒ4€&%äõò•2Ìšs‰ï’в.(h£oµ+Àæet’–TÊ&ÆáÄLŽÃ«ökiµì¢®.$b÷˳3DÖè§%þ_{ެ­åM5„¤9ù°z“ƒ·«1S<“hÇ…IØ?³”±÷ádV6›‚îH{š}¾òë€ÊÆSù5%äÕzO ­-ä|ì´¨ã£Åwò dîØÆ7­_ÒY±Ð_HP9N®‚„¼Vw’ïBy:g{Càâ ½Ò|ú°€™ãÝǧßzbÃKb¸?2TQmÎf¸!2¢œ·R 7Ì(ë¨UJeñO7|J•è纮UÑÓ3§ÍI¿«2õÆÞ`ð£íh»Hì ÃCª ½dYßÚ’ZœN R'è^Ã>EvÍUe¯D—éROßÌ,˱j«qép]hdHZ|ßèh­`Sü”ÌÕZ«/ô ¿¸(^o2 A¸²YÍ”FåÐŒü%ñûbÉ"G?Jè–[7¡*:i‹Ëâ\dK(,4]a¼13¤&l?©×ÓÅzhµ° rc3@ (¥È‡j¢ð°=•ë~ž3IÔ¼Ütø;?ù|WÓÊæþ²_Ç”×$û;£ìH™f:‡1âã([ jheE¸*[‚˜ñ~žë‰ºýµâä9nPÄf£WXÉwš‡¬hGÉOȱó=Íuäu5 o’¦w:jög¿µ0òç­ªÐã­Pê_òûí[ëO²AÒM{¼û¬~Ž3„%©rÝÅaìMî+­Z©.mS¯hN<(ê:-¤ ¥¤¡ ‰MhɜȹÈYn¦J¨û4iåNx>élhfðÍ"ëSÞ/ø$).‘púØ’™ ¡*@€h*ŠÜ¶žYxÍ$tBúA´ÁYƒ‡[X}á¹ÈïKò¡÷ Íèe_²“I]>S%‘/ΗØk’×–6ÊÊ\èÁÊߨý§n’”à $ÂÁNöŸ0•N;ù6 í.$®Ê0ù$¹ ÎÆ0¤Ž8¨QÜ€#äó5ØûäMîE˜&È‘nèIŸß½{ié$‰ghÑ»Cšþž|û™8±y××¥Þ¼Œ¿ÝÝ®j£\}Ú~t‘ªL ouˆlªv€Øí¿e-'Š$w§gq2¬»¾hÝqÝwŸp°ƒ3”à´0©îÉ‚þHgVE³"ïD}ÏäÈ®¯•*/¶S»Õ•ž±7!2(DÊÚ^*A]ylvøåCWÓBn!Ì€mÍ|'Z«W­Üvœ(ÝbÁv¾î&.¥· ´é²U8j 2ä¼LTÓë`î²{Xq—ˆŸ‘µµf¤¸éÖóÉæ½ÇÆÜ2›†3±Ò4|‚÷ ïé&ëÅîVQ¿ËÊÅ^'{ /‹n}ãV|â“f¶ˆ;Vø Ãf멜N—ý€îÉ u~ñ&¨À^dO“˾Êj9J<g²k²Ò¿|¸Vâ'Y£³Ë~Xˆ>% þ+ â=i2³ 9É3ßj sÄlÈ ÂíV[ƺ̰).Ý=|Z‚&LâÅãjzÇHÆ<ÇŠ‚ NÞ+›t5GðQ>%.É]tȺÌû‚V¹•r 7%½Ò¬Qù>5Êå…¿4âé(žswTÍPó#¦oâ‡ÈªY>gLš—nßñ7öG5&æYß³ þd{ºŠ×‹|^n«@~›·-Jêyê¸êÓŒ´Ê a›¾˜sp¼ZÛÎTfTm]‘2색) £H…þwˆFlo¤càŒªf<%PÜÞ.eñG¹0ü…Ða-qÈ›hæ´±xµÿ"÷óÃæpî'b›ÈÞ/¦_T <&Q,<]Šò°¦†¥·¦Ü[ÆÃhžÍÐ~‚v¼ui¹4¦ñ¯XuÌÈ?s¬¼$'æa^Fß)Ó£È`7¼ïTO,Ì]·˜–ލeïeôv74qG4 [n-F©î!µVü(ð!%K.Ï2;•”ÑÔêât?Ls©¤½¿sK—’Úu ²LËðÁûTŒ+NlY‘±¯D®9gˆä½¦ ~{\N…ÁçøñòÇwÕ×$TzãôeB׈V…øFðg-/%¸^¡òƒÊe} ù 8ùò+ðp:.?¸^6éd”"¬‹¢c/Ü÷´aó¢aö×¢úÐCK}Q~aÝ&¹‰6ÈnÕêþŠ'À(Ò1ƤIRqËjŠ„e'Îû†ÖÕ–þèŒúbŸˆêÀ†Ï#ÔŒˆš<Œõ¢ÚKŸ»•¿ò¥lä²$ZC¾WÍ7_é{ööÏ‹½7êÌòÌÄÂ%úÀXØx¼éM”ûÁL­vÁßîù[Ì)kU6eL8{×Eòy˜zá’s¬ª¸¦æŒkˆ€ÕÍ1â›™«½ä²Èd)~%‹©»à˜}3XxÕÉ\S5N%¤£e?ªxÛì¦ÐsqëCòí¡Ðçšö¯A­^U«¼~t`a? Š‚ÑY…T!‘˜cR+W%›´‘kùøöeÇ{û}½J Tµ%‰¢—Ò%ÙXZüÒ*OWa?Zk•á™a™öª®ÚQØï~^H®ÃƒÓÚsÀs@†LKƒF dœÚ@û5‰W>ezÝ+Ç7L˜Í­ùš)X¶È5˜ú˜hÕáLQÔ±ƒ\zu9¤Ä0ˆ@ƒÃ}T†®‹êZFXh¯ñ ƒ¼]šsŒZbÆáüôr‘ÝÄ™ø»Äƒh–dt%E)Œ?:ór1˜ë§5„7™fù<"Æâº•ç av­•Z „bÆ*%0{÷¼®t¶Xј¨T5ž «Ò=xb BÏ÷¯²‹dLBoÆ0°3kði­5Ó~%Â9å õؽ"ýx¾œxõD‰Šš'Qÿ.š ‹1—KO$3ü}YÏ µ‘Ê XQGu¶8þüƒ¦Šš2Çž`Ïa!4S eý ì{òrìj–ZPCëè0ìïv®I –oìg¹ñ¾ú®«j˜?« -Œ’äÕž¶ˆ¤ä$0¼]Gqص9]·¢(+¢hÒ² ì±Jô¹î½¤Äõ0|öðÈ´ÐuÊ §Ûuƺ¶˜Ãm®)¬.ð*‹þ,lá2’…‘ðzŒ”»Í„-‰Ay Vw„šdsÌ^ï (›ÊVbO‹žFz‰Vdþ;Z% ÖëAÊ ßù+|#yä-gn¢”Tô*h)¹¿S“‡Ýñ§èX‚ØB8GÛ߬·È7=+&³ šA•'/ M]|v½â½ÈR¾“DøÝƒÁ¤¬øLÍp!†ƒÐJP=‹çë_UhŒNû6È𑾢$97ihF¾Šý}I{±¨o‡é5Ò×SÑûÁN¢´’ïÊÇ¥4yýHãnìÈV‚|Óg .²šk¨CÝKg•phðäDf¹Å«öz¼lCì–ájæ^¥•§D5ß°ú&¤¤²s«£ï¦8äq 8:ö0©k"ð™Á”›fX}xÚ¾ÖØ‚b¢“\£qå¦#c^-ËÓÆ¿:ÈKo i·ËNy—©7qwué†7†_¸ì§·Ñ…¾ØP¦DïÜÌ[Ò/×䙨úS‚ÃÞ&++ñ«æÅq©ðXÏ0„Ðû±º<9EH¨è•Ýð KñpµJŸjÎÓ œ)šÐYõ+ŸíA#ñÇU¶µ»ùð³ ·¥…繡¼ÐŸ$û ùìy—¹$.Ø…=éî¼ZeÍߣ¼É3š¿(U’ÊtGˆtÖµÏÄ”˜aûlÕ™jøÛæ%¼/” º/ ¨bìCÜ’ncZÊ©{üøìЬà|îòÊ™B‰èô(zôyÀ’Jµ³ßÁóÈÚ² ¥2•çK ;¶ØÎêÀ ÀCÄw|–j^¯˜do˜Íüaê·:¼Ïí銟¶òé;c«Ä%ˆ|‰qÏOY»'>4:?š¢C}ü£µã”ªƒ·ø d[ŸÂzù»”¦U?w–[®‘ôîÒî'¾oh«.?¥cÊj*°RÉk¢…¬\»£¢™h>MÎAX÷:×ÁýÁý”8Ÿù4¿ûµO -$¡Š×剪,‹Iú; Ó- ï'Ô³íÚÆßЫ’xWm˜x®Ùösð[‡NöJ™–Ëùö‹YLg©‘j¤¥ðFzÓA/£èæ{§©+šuÈ“¬|4öÓo´º/¯‹Y3¿´:~“(Ë{v4é÷Âw&·;¢?Ï·SÔ3hÜ]¬¥EÙ^XzŸ½’-¸ *Ô #îï:ä ‘å•ÎÊiö¸dD¸IÇ ³ãÉ#¶’‘Æ ³Cª¹];bñ­´hÑiÊ¢ìǽEzîŽìM\ðîe¾?ã£kJ¿£Z8¨™*ÏÆú±¶®•Oùú€H´%A“':Š e=˜‡o)"Ô«^Ägfä©á¤}ÂÞùñ“LiÞc²ªƒÚh¡©ÆÂÀ7ìÂ\<Ûkkž­`ܹr¶ÁF |ÞË—…©!W aˆ(øh o#€ëè¢Iÿ!bÒh˜jcæÝ···шü²Œ@êóí×YZ"TJsÙÐ2/Pçàí4£ø ko€4ƒ6+n£·81ægÅÞ­¸ ¡G®Ú}ŒO·w¶öÌÝ:^ÝîT$-ÆÔ¬KŸ–Uñ!Mg‰A%e6-~ˈ—ÿê­ þ¢é8AˆëŠò¡]LA0¯‘Adý 7Sýï¹õÞ÷~³_Û\B/McÛX¬Ð"ØL°5 ùQ¢é’°:9?Ÿ™L[ЉÎòr‰v¾w}g¸IÅÛÀãúbôÔ/”øžÀ!¡eê–âÚï—Šœ…Ï3Ë ’ö“-<åˆ%%Ó|@mÜ–ÙGªvˆ1´Õ\WW`µ´ôž£K‰ûÞL‚´4 Tm=ˆ{Toª‚¿x¬Ø :•—Èä·¤0ùö‹±ÅWRÌV¿Oe'}WyKg€š"YI˼·d‚õ ¯öØØçG#¾p¯¯¶¥ªa/I¢&LGºa+Ì“Š-j\ðÕÞßêú­:â2•5ÅøRh#šx”v·šú’5ŠX¬ŒIع8Ezá¡ô`ò²SLljM Xޝ]Ú÷4DàAªOÅT¬ôמÛéOäÓʰ¯º»·æÂ{žAùQÉêéá)üòUý–'ŠMp|Ew0}WOJkÁrIì^ƒ.ôq‡î}t3¢s2SUE\ß|ÑÆdî!G^ÇX«÷¨H1ê ø:`¶¡;³Éë@O §1ÛAB§w([k}¶Ï» ƒÒ›œ#(ªó%:9þñ‹%Q¬qÓ1W¸n€Ì©Ð˜dݬàÁbzÁZߤÃ-M,yŽ„FWCmÎsï´+†LŒûÓÕ-ÅÊ#1‘û<èÝÁx¬<€/˜‚G­R—ùB·Üù`9ÆÆü…&ß –=¼½cƒUµµŠùºèʦƒVw (*÷ù&foM|ÈH×ÛS‰ ÕóÂÀGöÛ/ó Vòä6NÙES‚¡¦hU!Fæ­R§#ÈEPsÒÆcuÉqãLòÓ¯@€&ÑEYT˜P Â0rSs¡H$¶8Bžu÷4¯;$‘Ÿí“ßSÞþ 3aˆ÷*+ÖA]ýÎö©ƒÕêó!äa†§y,˜"*Ó.Ø2Ô‘ŽM2ƒµ§¶\Èåºç‚N¹Â$óÙ2-Y½ß¤œ mŽã"zbOxÕÊéQ­{?ø¤<3Iüü=œb4vïh tS@È‚Výñ§ëOýL5Æä‹,·³ ©H¬é‘6:é¶ùe¶kdY¦7%-Cª=·Wkvý‰Ó õëxO®õ¥D‚#ÉD,è ­öÑ¢‘2Õî4”ÆæS@5ݵ_F—û6[`(šWJ%Á…!ÞþÀé€VxKa®®nþÿÇÛ&çqÒ×Bþnu_ÇqÏžyռě•#®“1·g«6”õt“a(B.— ôÚŠ¸»zªí˜»é—¥±:áFË×§ä¤îìö© Ðm·ÚŸºÊËCÌø'h?³%z¼V³®Ö?™èÕ;¢£ö'!€µ‰¸ôàñáA¾1? Ü™EG»­äZ#§UF 1õ7¼¹ýêµÌPd D±ß%U>>l”·#´|XèB³Œì¦!®ñ)ÿBþWÈýÃQƒs*òUÏ ób‡¾€S"Éÿׯ9vUÂ8^;»É® “m×dÛ¶mûd»“ÍÉ5Ù8Ùž0a²ëdýï7ÏZϋߗØkí½®k÷òFÒû>~‚¤SçuÁd–ÉRôNRrõ-*zwÄö™[W‚ý+›LRSÛŠC¹™ô–ïÜWˆË÷£™ »xæ]ˆ׀Ϸþkš9í$ê’kùI’"º¶:ŽÈM líêÒø9‹MwI¢Ö KÏÁ°´Ñ|ëˆuÉþ²÷CšÓ ™ØF® „*6tÊ,ˆ#\tÌ7¦ÉYE•™sQ õ îü_cZÁ´©ÀŠB_/BOÆÀ&}oáEL—ãA$ ¡Ÿ¥s6 Þ! }õî%•÷@v‰X¶œCZ<àJ¯©Å©8Üÿ\žN‘fW¹g¯ËÏePoç§e˜p{šôÒ„®ÈPº>bôÔi,ä À¿${ûÜ¥À¥|K3º‘¡Š¸“äÜ&i‰€Óº›ÐÍDY¸àÏNæš]úþFyIVí”$ÁÊ)}ž!YiÃ,C=¿H?yLŸ/Z†Ì.qyõDÏk‰½oÓHkà75;.ør ]ÔË ˜CÄ˦X¬ù¥`·b*Œ^íü|0²Ÿ’“qœÖô[Ž’¯¨ßÙlž&$Lv2Åíÿi.©›1–yï‹:|ؘãõ6¾ê똕I€¥Zpš§"¿•%Žö¡$ ôGwP÷`èÃy•f,81Ñ5oñ°ï^xìB†ÂSlL ñ?0Ø,; Ü^­Ak2+ê/u¦e~ad¯`ÓŒ§e?< A¾Ô§¦u"5Éâ¡·M¿Â°¼F¦(]Yr¤—7pŠŸ€d~¨‰ÝFwÙz”=]Š"^ÏÅýi¸ÆY`³üiYµé/ÂîÜ=˜¢™ZMÈ£•À£³ï¢(lKý‹•—ÅN¹…ÝìŸenm´´„L³IJ¿Ó/J$½ˆ,ô´=C~ÓT ò)Xo‘).+/s8G¯Ú¶y0›ÍËÑ5.C[Tp”d´ÁõðªlÕoš¦z•/.ûÙƒSyZƒÆÃÜLE4¿Ò×½,×€þêdÀ“~NÆŠv·“êP˜à.cQø’ÒH²\]ŹL¶ž³ ¦®g¨|!ú8ârp€0o­×l\Iˆ²¯Ì ^oÃ?_μâ7ŸéPuq2sî܆Ȍ4˜×Ý}RŽ‚ïÉÌO75iÊ厑2¯G:˘¡+NüGo<Hò;|W÷üž ² g)¡†ŸoÞ*iÂ-‹¶OÅAWþúï×ÒÀ5„L ñÚXzZªagüoV ºÍl”xnòÊóKx½+ÓZ¹ÀÞo«pà-Úk9¨»ôˆ«y 3»¹qy˜ñ G1CFëÕ$XåØŸÎ¢¨á¼§ Æ·ÿu¯AO1“¯: Õ´^ÌéP‹n…ÕRÓðå¿D§+[¨ OÝ‹èH÷îû÷cwÜöžþjN’qjR[-tô7\ï<‹"ÇØ·(ˆQ§Å¥&© ¾!CîŽÔÂÅÌÈë|ìhµÝmôÃÔ£gA¥rB—Ä'įœzç›m‰,÷Þs×?< Ä*¶¡QWBòJ¥ÙXÐÀå÷µ6DºVW5kÈ™`6žüßcVΚ*¢/è™õý#Ê$4Ö½¨áµ}·î{’§ªð“nñ;gY(5Ëü®’ïGÄqØ»è9œ§lEoôº9 <©†Ê5Œæ“™>…¸ÄV‹>i¹Y¯O›jt_z`)Œ°u{æ!÷U”ù’:<Äávêö¿ífõ]W[wâšÂ—ƒ< ^ÔŸ’=l/äX _¦È¤«ž)×R.Þ%?,ÖzœÓkšèo0#×$ èd™r¬Ãf$l6ð.޹ûQæ&¢m5üÉ;~ ù;±H"0 ®Ï L(mMa‰þQÎVÌ-ëÞ¤ÉB>vD*BÉ8lcûªX>NÚ /pñÜ–“–2=tŒªõb‚_6W0NÄ\ïEã’&§YiÞŒÿ&c$§çÊÛ±gM™Ì»í£~ƒ@퓃Óê †"é0Ú_ïÌ•º6ü›+D.Îbµ÷ä­˜/¿ÙDs0Y5 ú,.~îøØx°iº1ëF¦xŸ°§> ´' þ²#¶=Aœpû„{;” üTö,èD}–&pߥ’Ø<˜û*ÈË@š•EÄs5ã`ý:è¼xò«p>Oñ›/ãÅ×£(¸k´‘“í´Œy°_‘]NL`7H—JŠW–³HƒóÓäQ$¹@ß–=Z ëXþT}¾=ÁêT(Jè_Œñ‹ôÚ6ÙÈ[s8µ ò.GÉÄj“?U·CŠ"\s!Üü4ØjÓâ‡N[ÁDι¿ã’•èJ‰Ä¹ãÈ.¹÷M„,Õ˜ÓL?¤ Ѭ›ú4ÏÔ3‰i%<Ì~x Æ1gÈ>wúéFlž]ҾЊ샾`½œ2Eêúˆ<ÿcm5Ðü® VHè) ÖX°’dÛ(ý¡v ί’UšR›ðŒ±òfl1n5Þ^Þñ¤‘åÅ9¢3îÏ4Fuç8ÞÜ=YºXµ9 o%ÜI9ЂÂGìnÝ‹u¯×Æó—nZheQ4ìÖ~ꀜkÕYÔI¤I_ —V¦AŠÖѯ•N´ŠÊ©íB~'þX·w#¦Ä2÷hÚ6ësD k‘ ßéC4\Ëf(ž/¨Ô²I-a èV=°ÐèPQj†Ð, ÷ŸqÏš-í¢å:¿«Yáµ³ØOé^ŠDÝŠnXŸKë®lùbÜY)5£„å#Š(¨Ò7ÌÉìn¶K©–—äY'i-œñ°°^èY WÞKòö`Å[ž¾× w£@°ŸóÊp÷žTØ/âuõjk·$ŽNª£l¼©Ù*zqëûòúÂs "Ñæƒ“Zê”!ö¼¢É-MŸ‚Ïas)D÷ÙJ{©Þ¨ž4¶÷,OάØÉT£Ä}-GG×  6× 8_¹æÍ¿ü1ñÉ|5sI>DÁÚß»·ÔËh¨lzû(púÉY`C¸û­ÊÎ®ŠŽydOêù’¾Í$3seÿ{r|ðÃUÖ”ÍÙ‚ðÆ¿Záe®¬×íÑX˜†zxÀØ£°Ù`Ž˜@L.û~°è±—¸1ù„(S&ËŒte ÝåUéÀ½†°Ë¯„‚êÑ>ÌØÀ»÷7˜µ&’ì×t<)­xf!O—iâS3.‚ù¡½hkûHk7Š`îëÀw;Ø{ɨ4.Ë@¯œÙB­&SGpÛ…45aØåp»ìrUd#\!zN<¥[±õzaÛë¢9ºTv@+ÓáîË¿FT¾#èL̲x®Îɼäl<°Ô'ç³ßU¤³ú³"'I(õÑ™©üÝÙKÁãèÃ.ö÷ ûÍö'ÌÙ´ÚýÄýþãFÝæßfŠ–7¨ ¨cô;£ž:É &M\ÙË„±s+$ë/óë õ}þiqÙ¨?ZÌ›’¿5£—<ˆ”tü—„¨™ÅŽiôãÞ¶AðÁ/ŒWû¾KÅâb˜Ç™SÕŠpjCñæê¾E®v'  Ï¤M»Èÿ0•+]Û!‹?yÌÏÓ8ÖBô,7ßÔ “=š ,æU¯ˆ>¥rMŒÇ ÌbÃO,éùc ôT}Þ†Þ•~@{.K¥ìžhpT`ÝÿzPÐGdþ;PÊŸe÷׊øI]¦,hŸ%½Èg;²oDAìT«¢µoèø2)ç̤^êùÖ›ú{¯G¶8‘¨z¿Ì¾åŠ/ü²ÞìDö±< MSÉ´§JµÌõ»`› çj²{â”’¬Šy^u-¾ÜÄjr„ލµ® ZÇÀïh>ĕ׫ž+®úÊýnw)V–q 0½ðYÍlª9• \—š¾Lþ³ §¹¦Ë}Â\—PÌá9²ù~(€Ï²#ª•ª]Vü®‚³›«Yc¾íÛR±rKiug÷o:Ù„ÏÜž„hf¸×}ÆÑÅQûq\V˜oà¹ðÓrÉ{„J™¤¤såmš¨#Ρòîsó.eŽß~pÍi¡ÿÓ-n¨óÕ½’¥1qFSéüQŸË~„ Ž /¢¾} ÿ5.E•ÀQR}°±K\ü/è8è|’(oìý®ÇMÌw<~I•&‚«„˜±»+ÖQ–E›7‡T°k€Kó•Wo¡%£·…§Ò´ƒ^÷y\2¿Kú¨¨-£~3üù'ïf-˜­öç,mH´‘'å}›m¸ÒQ4Ýnãj¤ÅîªËt+VRY­-ù‰Rj¾ÇC7àª\r(5§©îTÒå²Ãà†~»‹m½£‹Å/Q ·Ã´¢ø6L„ô_Ð2aí'"5¬û«iµòÆíöï¨Æÿôíò÷y /Uá¡ãa#äPâÐú·fË/uàÈæÿ‰s§–#ólA+©ˆ¤XûH äů9i;wÓ¦ùë4T<à…‡‘»eƒaùq†piP= M /ŠæA;ñ›W[ qÈßt`ñäp˦¶†ïµÛ¡ÉlFÛZÄNÜëè³¾kÝß(,²˜¹ïåü™áãÃÖ¶Wóg¿é”¢ò“2'‚–€û¯Ç^*/@ïmnƒ¢ h}¢/8\Ï;BŸZ¼=.‰r\ ¦‘½Ù½û鬘BUq0 ‘Ïðc_N|Î=ë‚e¡ÔÚŽÙ¸(ò×ÓqnîòÝx/di4›áÑUOmÈãêá ö‹ÅЮÝKŠç¶çR4,Ah¬¡//¹„5›ú¾çHÍXøæü~+#°ØP¡¬APeÏŒâR‘J ÕŒ®>½„œ½û–ô)÷•uÛ%÷àªH¡‚/Zöt?YGVçÅ®‹}‡Q)D¨Ô›Q7õäæ6å)Óbš¼8‹ZwÌâ.f}梷zß9Áްk±ûç{¢Ã†ÊæÇxÔFʬÆÒ{ÿ´€¥äÈèbÞc&¤º’vñÚwtè€J_ŸZa*ßY½tËHËWAE9Œ!xÇVj ¯‘õQ%R€sôg|lpÇqýDä¢ÉË‹ù$¨QÄõ<Ä´CZ/K{ƒ›ê¿K²4œ—-ùs+\¤¤ V:ºñ”»w”¿M ±Š&[ikµð¿/cάp†2ñ égBâ@‰ÒŽ\"œrFŒ|BòÁÄÿß®“ „´•õý3óS/C`ã埅¬šž²‘-&ƒÃ!Óû3 ávõ/ÞÇh\ukï}´„Œ|ŽüSU1M£'=h^㿾å7kÞ«$îV?ñ›ÈšŸç øí«uV–S¡YÂÑMRÆ» ÛŸHÔÞ4¤WµäQXt ãbÙàjC6#f­8&—ê§HimšêÔØ ýÃö›%¼‘—Ä ¤ÛHÊþ „ÙEÊT*˜[õôqêc:ÿÍü$˜Á]G&f÷òãP{D z•ª00Œ:a';k–yã§’°ƒ¹¡,ÍQÙMpA—VpÉÀY­Ð šÏcâð|×gF„np4GÝ©3¿U SÐ,5ú ‘õ©ia2‚¿>Ú>^¸qÈVy¡òËö³à‡Iæðàk, ¥ˆç8ù™`/ó2@»ç¸J)® ´ vV¾ú†q(%Ê€UóZfÕjOÞiƒëF$Íå«VjLÔ9rxËí½R\>Óeg)v;ïEŠã»Å)Ž}üÝ8ZQ8’œ2Rg²¦þQ%ìp„å,Ôš B‰È‹Tä‹ ÑFfÇ6æ+ÉidèdUnyFhãS‚çæÖ)b§›‰Dæ¡$g@-ìï²—þÚ8žG0<2òÓ€ìƒÞ$T'EîÇ:zÅ_”Ù¤]C5uèñœxö7Ÿe#ÃàúPŽí톬Û)QÛña ¹ ÄRŸV`(MJÚŸ2僧#Öªå6ÙÖªôã b›7FÜ`¶, ó\œp¤aLв‚08$)p3¬Œ¨¥¿­›SÒS@ßQ«xab¨³zp§ÎoŽœcäþºÁ6´¡¼Q1OéI“fñAC[‡QŠÇëpEëâ ¨×ReÒù%ûð9iüçJ>ý5ß9ç%ÿòÈ „^-¬¯2hÓ:«S¼h¯‰i/€Žàö¢ÎÝîiv…‘Ò‰.@Ðõþ¼I§Ïæ½ävÙÿˆNe¥ñG³“òwrÊé¸Ì=ãDN‚ÞÒƒîI¦MgþçиF6bêòM×…ky±JFõ¬¥Ë²nI¶”Óã€~‘[+…µæNÆ^©Ói¤–G=þÞ¾ƒ!š¶¡ù§írs·úѧ?`Æ.HÊWù3`ÆBDnHõ„Ñ9¡^^^®*DmÝ+"¿×… K¸tÅt4vÓY‘‘¹N o!‘ÓYé1½èæ‡ÂÓÆ$Dô¬ðþ¥8 «‚š?›ç<Œ`ñðvpoVºï Áž˜ãïlÃ)žxðÑ%Xÿ¦ÍÜóªk(©9ÓÁ#˜õ‘ ½ŽÕåŒÁor&–‹ìHœUdÔ>w%ù>šÄ°Yå=9›Ù²ÉrºªÙÙu\^ADÐsá_"•Äú@4‚üŒÌ$ùöÝá¤^‚—§äf2–—gª§Ì*²¦CÐ0ÞLfÏP¼º_H^zW®Â:FŒëß¿ òÉLbh~!‚ƒICÉlI7øç»‰_bÙ_Uà󼿆²Ñ‰[ÆÑœ)¼éœZ(Û­ã,ùðìÆæ}=`sæ=dЬbL4®t°7â3S@°›0À™ß½Rp 4Ì–&8sK±˜Ý¬ÄÆ46Ä[ú8«˜˜f’w‡^À )=õÊ|ÁWš?íâ´ž¥Ó´-A²0*ϣƺŢT^4ÆMëùj) 0Ê[OàbËT‘$0?§®Å¶&có7¦öðä˜:"¾lßÎéÇRJâ¶ °šþÊípSý%„XÀñÏ=¤]MýúL¾›BÁ­2‹è—:C‡šÏåtÇOr¶›Ó ÐâÌÔ¢ré3[ž,¯Ší~‡ ²˜¿ä¾ŒW½ÈhC¼ášüõS‚j e›É¸èqa¥yL-=¦ú—ÄNy TÌ:°¢ÉÔÉø8åu¼oúBø`iÞIËþ2+k!0`3îW‚ÛÞ³Ô…ó­äT5øR¢¡|àew6ä9{#víMe¿[†ÒF¤(W¥™C>3Ä[+OÊX¢Íº–7wpFM3 €à)ú­ÜYn.ÕÎo믴CjÅ91¼J"ð’ïøEðЪR¾q3²dø»ò±NhƒØEjH0ö|jÒ­B©Q1Šã ;Ýú?úÞå™Gv—å]µwÌÂöãËŒœû¦ÒVßeZl°B’„Œº¦ÒSÿ¤é™¬¥ªn€…*ÀYn’¬n A,N\5gbo¢nd¨WNJ΋^áÏÏk…š)¹‹_ÛÇã7Ú›a3m‘è °Âç *ž~éŒÓ½ AîÓôÚ¥—·×Ú}–ù—üÀ’ ;“‚¢Æóãïc Š~{ýöèwM–—m´×ÐŒé¦n¬–FÍ».¶Åj¿Ïâš­2F´sz²×4˜9 pq:wRc2¤e’ªo䨽ªDõt›„ÓH=Эì³ÖµÅéiºOJ¤OüÍ/lÓ´®ÅàÔ_áÀÊß$CjjhpíŠââÜ%Åei5Ûs¦”Žô¬ÔâG7[-Ÿ·ùvRK[àá釔çMè0ª%K8ƒ#ËïlŒK¿ÔñG‰™`×')ÊâÜÏh6ž…’§ Z¡`Þý÷Ï…¼ÌW+¶+÷³û>Ê>f¸—Ÿë”s¨:'SL˜uê†å f@šÅXIC¥}þ«Ç¼–ÕcEè»UaN'3éJ-}™“êЪÌ­_ô‡ã a<êpš{“Ä4äñÙ|Gžª¼GÏ}Ì5}Oç¹j¢Åjaa» _§{aFL’üµ¥TÃ| TxZ烥¹­ÚcÉW“™öjUf9»1µ“÷̤‘ÁÀÑjU¨EÆs[mT»fYj«ÔƒjÂçã¿–*·dY¯Û ßKæ*$Xq½Sóî.0~÷‚(´U둎DaéåÈ.ˆ§Ï7 ‡K©…çqTQ=ߊ åñ,ðÊh2AÙ`w"hë¨A5t@ ‡˜ ÕOKÖð"Ô7%1©1{Í’ Ñáwq“{/.iìW‚ŽE¿¿ý ÜIœ¨ÀañÖ“Õ"ÌIãí² P*·»o˜ml¿5ÁæbAÙÂöG'š—§‹’ѱšº×%`*O%xŸÔ¸ÑùLÈ›­n×÷;Ké7f«ùåX±qݸ•ÿȸ*A endstream endobj 101 0 obj << /Length1 1852 /Length2 22023 /Length3 0 /Length 23193 /Filter /FlateDecode >> stream xÚ´¼uT[Ûº>Œ;”âN hqw+îîPîîîîîVÜÝÝ)Å‹»»»ÿèÞ÷ܳϹ߿ßÈHVž×ç;Ÿ9³²2VH‰äi ¬õ E¬­hhé9RÒ Ö–@+6CcG  €‘–žžŽ”TÐÎè`jm%t0ä°9˜dõ>|?,èé9àH¢†V†vJ€ž+@ÚШäjcÈ þä¬íhô€öjC+cS+CÊAkW;Sc‡?1˜hhþDúãý Ô7·v¶77­ ´Ò´kç¡)€ÂÚ  gh´0X” ÕÊŠÂ ŠQYe9EJÚÀŠŽ66ÖvÿS‹ ¢’²(5@H@FI`¨B UVTúóªdhõQ¿15@FéCÿ'χáwia%%u9aº?c0œ íìMÿ¤ý¯ÚÈ>*ü»´W#;kË¿(Ll8éèœiíh­íŒim,þªOÉÄÔàlmgø8ÚZþÕG+ƒv:˜þàϬ¤Lõ ­ì ÿ8‰Xÿ­´ühå‡Ó‡Üá ûh„ߘ›ì ÿ# Ðþ/_)99)€%ÐÔÊÁÐ h¥ÿaètp´èþ%ûxÿ] !@ÐÑÎîOé©ìþ7Í¿Jÿfý12- wO óÏÐÊÑÞí½ùÏaë[[Ù›Ú;ØÿÑ`djaø§zû?sfjõ—LZ@F\DXQ‰FêƒxV4ÒÖݱ¢upqøËúO<!)N;= €ƒ@ÿARa+AkK˪íáþ´OÈô£OÖv®tÿ—ØæVÖÎVîÿ #S+£?½7p´¡S¶2µu4úóÜ¿eƆz€¡-ÀÐEß„îO¿øòGÌðGüÑOwk€ÐÂÞÐÓÔÈðãçnt28Ø9zºÿSñŸŽ ``ªïðAõå÷Wtq+#kÇßâJþ¥úPüµT)?Ö©µ•…+ÀÀÐŽNÆÚáƒÿÿ¬´ÿÊ%âha!´4¤ø?=ýoC ¥©…ëšþ—‰ªáŸj)d¬í,ÿ¥3µ1u143uÐ7ù»µËÅ€ü°2¶0ü˜–¿DÊ–”Åw?öÓ?Û€†‘…ñ¿t´Ô7·2´·°þíføÑˆÿªø£ûêÐÉˉªH*Qý_Úüe'l¥om`je `daí쀮pô\`da¸3|ÛÀÐå/²èh­¬>\6Žž#k;¸?ÊÆ “þ#ú ±3èÿq|è€ÿ‹XØtúÖú—„ž@gòÈ 3ýüp°øäÐYþ2ÐèþŠ@gýøÊþ@çðøQ˜ã¿!㇯ë? #€Îí/øŸ•û³«üµ\èÿÝâÿÙnÿŠvÖæ†ª¦5ÿ0‘:Ø™ºhÒpáCþñø×;íÿH@úïeúïo߬]Üi˜éé?xÀÎ ``bbÿ#‹çøêÿ½óýµÎ>¸ð/ügÛºêÃ-ÎYës˜%7•x ÿ˜,…$å =)ÇàU“ˆ…XL›lÇÅÊÙ"6äË÷möI'Ë·–ãÔöJôµ*T# @·x[kI¨˜¸1çßzI{á" Œf«Ð*û¥K/ø”vSJdç©1O§·Æ¶”G9Ú»#Çß?_%k•¶®äB:üfhB³³@qY@ÆéÀ]˜ìuxD‹Žö ,~ÑÍ Â•€²ééBÖVAMQ.Z'û-ûm‡gL¶½¶»†ï×¶‘´lúT%·vùâÙK(2i¬™‚Df¾‰«M&Æ»ßñèxmë“Ê[câ–Ä´7¸Â … sm&¤½„eâÖį\¢5‡d-ÕZ­{ßhÛÆ{Ä_lîÌ>ù",Á½ŽÊÝ+š”«U’’[ü°Úiõ_€þyŠò C%Ë'7ˆÙZVo¡ËE‰pq-Â: ÇXÑEýËÍ‘¡õ–’Ú,\ “`06=¹&é‹bˆƒåzµ„sEi6•z^}¬l±aåÁùæ²[|›ê=ÙÊzÆÂ6έ„E2O‚ëàÃUˆ÷žOkBÚýoèÓíð¯Ì1–¢œêº|õh>3j¦Óó5îZøc½eõJlí5¼oºaø]¤]àÜäÆáœ]ZŠËÏÞ¼÷×òÑî¬~9ð²`–œ X'ÇÈ'G1:SÚˆ°MuaŒì©‹á`*Søƒ1.ª ÞÕáYgJÐt»y†#§÷ã¿S ´BˆÔűnnÍ3Ñ% ;ÒHô8¢¡{Ƴy†=ìpŒo-ME?MgÜSß.Uí‚Ux’ÿúm’ý…LUÄ­àÝÛ·òL†ž{9§Öyâ¤é¦ñÄ `Ñ4•Ad{I2`r‰:·§õÂxÓÃÊ“½CÎK¢–¶¼ +JZomgße”Ñ҈¶i†ë’$*ó^¤J“I‹TFÇë/ðšºî7”L‹¬›n (}êoÎÕK-:'z‘ÿ¨œq¼ýôÈÕ¼cÚÆœgÚW:jA20ÂÍ ™êP¤ƒ·Âœñ‚ö½5Ðc/í÷¥lK%évn£ºèü§·f­8EhMm0 f™{“„FµBéÊDØÜý»; õ¨*!Òì–š¾ZC‰=ë>¨íOT–D£‹hŸåJ³ô†Yå´¶çeí‹§¸â‘ôb2N‘˜/i+$É,à827UÆÅ'Y—Ø3Eo_à-UÁùi_©å¨b‘gé0l*à)ˆ¾&Œl_“tâöWN®8™ ç:§-ÅeRÈ5^ݘ·¬¾UNIPµÌ̭±«Ê[¿…ÜüšÑBåE]p†Nºß¬7R\%w¹ÄÂw–“Z…S ¾}QÊ!h›~“îÓ)®Ý ™üM§ÔUþõW©¾ÑÞ•„.gßVCj¿çáÀ³®[;o‡a úhDŸ" k€)Q’Dm§†ÿó6ëBïãwp^‹¢jÜò úŸÓúÈOx÷¦7y…«àqÓ¸B¹±±Á ì¶? çùͱ‹œñMeS ÕÆ#©ÏôÁ¿p#½†E`úN6£e¸ø˜ÂàtÌðM¿íëIUšóËtjíî‘ÛfªË£µÇ+«ùc ÿfê¼ïËÙ3û©Íµ5—vÑVU4 Ê~D1UAr„ânÂ"ÓÑ™þɘoļg\wÑ'µIž[ÖñÇÈØÍ¹‘,¥·KóêDèüÝ”Þ=Ù-Ó a±«¼èßôêܧÌ.UPNÓúÃïÞ%Ý+¿}¾ÐgíK(ôª·Ñþžš_E¼Ve×ygË”ƒ]â.émœ~LŒëNc§Z­ÙEÃ)/Õ¢Ætß@ìùk1…;BèÞFCÑr·4¿†Ó€™ÓWÙÿ´9¦öfÝòùÍìùÜÜâ¼ÐØ‹0ãwuBéÇÄLC{CÖ¢Ø?;*T¸J…- k!2…áÑ×,A†ŸÍ±f^û¢§›tD6ëžPB±_ÕWo?pþ½$­„ø©€'|@ªáD9ü áÆ êÈ4P¸ÏI——¹%%é;i—†(ወf$ÿ“~«â˜myØ÷)Ôô¾Ã{ˆÀL‡ÄÅÍ -^°¯»æf5ÏÐrAÌ9žœ" æ` Xáî)` (·]›Àa Q‘?†Ìxó7™±Ö(9¿ j• Ñ„o)×"î¾µg¾Ob–¬¿¨6adbì#¡ÙWâ¨Úq[ 5¿“/’ºJñç4tø¹uµ¡.Cn*>¯Ú‘§ô¨…Y†ŸiáÈxtea Ý“Ù[ÏpyÏF¸ô±/¾a¿éð×›ïOåíôïÿrž ®6Cô†zDLÊÒ,Ô©5Ô‡ÕQiáQY75)Ÿ5lweSc¼*jÚn·LKBrÀ(ìÀ¦ yfLhŒ¸ª­x{‚}a­_2“eçöK¿yÊqeòð¡ûçÛ~”a×È¢Å잯øŸjÍ]ä°ØDJÜçDØq“d‘@~†oÊ-ÊâÞùB+Êr™d¹ß‹-ëŽcnzŒÕ*=hBg…œþ³â²¶é¤`Ö5ÖpkÈwo±·“ã‚@¨ÿ¹(”!Ï׫Ï&ë¨I¢¨‚»®+ôæ Þ¯Ç}ãÐäRq¸vüñ}Åí€Þ ±” ¢Ëï´ç¤ç¬dFø‹’HCøb£$ù=<ªÔú;ßd#]tÛÚíj<,ê”oš К$ONÓÔ3pc“¿Ý4ô£3­Žð1Žü¨¨ ‘¯†!.$>˜. F?ÐÞSè˜ß¢ó= £$áv„Ëš¡`Rü@a–Äè?µOÿ¥Í(¿}ÅU½5^þPoÆò^bŒÊN—æk´Ð>9>'ŽÈ¶ahý 5Ó}ÇmX-çžú7òFb&wÅ:Þ€”p+ÝȬûCþ¡ïž›¤x‚›U?Îö)RáYAËä­@5t§!K‰úoÃ&ØV,A-ò^Ó!ù2²«>‹N©ØZì)o‘00Ébbf9Ð~cÏÍÁ§>XMD‚úÆÞ®{zä}=¥œc‡;nŠï4 sé¡˜åæ– Ö¥ dmÄAŽŠ×Ö8Øü©ØUÕwIý#^l"Œ³I)ê—V&½$WmEDÕCË›¥æ‚ ÉÊ `µ.@Xv;Åê@|¸µBžLÍØ6óÄÞ”U1GŠâõW.»\“aì)ö^¦·ßËÜ| {Ú¥›ë2æ”Úv/¸4#¦¿˜ì©*µüÒ .C—ùjÅ5Î1#é¥äÐäm*a0„ª¿ž©á´¼`¥k,¿ù4ùÍ_ÇŽÅ6Ó†t·¿B…C ˶l¸hNŒkâx‰l_U”/Ø‹¾ðŠ+ìÝ»¯é6Ò™›K?_Ï…ÁÐÊ#f_ãÖáLäüN܆QÄ ‰Ý¶É¿<ƒMåt‹À¤¥iÚlXš¬CûÛ(Jè嘥T¼TeR¦d~2EH"`ô êd¢Ãù~6 ~Gh©ýj1šPØÊíµCù 14¼nâWiì[þ í-¶à&tܬå/Ͳ(­Jx¸‰ÑÁÖ»Ç6S4õ•_½Ÿw¤‘»ÇÍiJ:pBÁ줨µë ÛXÚãÃI|µhÛ'§…~Ì’ „kE^èpA˜öäld&*áíxUà?-=3Tˆåí´j…OÅðŶsB#-¦©‘ÆÆææ¢y˜çÙée¦ŸMEÑnØ PŠ9® C¯¸—Ð^ɸۯR*8lþƸ¯°ç‚ ÒÙG‚Å_œâg+—(îŸòjÓ+?ßÖÖ@ÆÒì“(7&:£r â6z×ÒŽŠ0 ±•:ìþ µÈ]¬.JšOk˜b;EÊà…Ö̆6°Û¿ ?$#ULÄ ‡ÐÖû•{ F¥#ˆº¥&@üÇ·µóÓgÑiÖËu±¨dDñ´àî 4a —C`àÙùZ7ŸË™Y ƹPþ*~æåÑèJXðI²d[ýš¹癿8º¢‘s6 ÞæÊÃKWЦÈ÷gü¸Ð8íqþø­ËbÌö#YƒC €iF´÷Ô4Væ®`¾_¿ì.­j•ØœãíÏ„ù¨AXïªÙNáïÔÉ(“hŸXNt‚# &›î«3~äûŒ’˜à™}~t ÞrÅsÅTAÚ²P8Ô´ío¹›é¢%-îàCÁ‹¤ÀïjéíȶÈô‚å«LeÞ訓ÿV}r"!® ¼]8îJ» !tø>„’ò[©‚¡,5Z¨+ ÆÉ<:.E®¯cÞ¬7)‘OJ匧Ü_ZáÀÜŽhÿî(ÞÙ4´ÏÛZêã¢L žrôZTŸú Ü!µ{ø!>H‰wf¾û*“…x8óFÎ LíÔ€íöâ¥Mÿ¡úªOÆFmÑ´&­\”´ðxˆ¨®‚Ù;c 7σ)›c0Äâ†Øõ"³¤ÎkùqhÒè1§»`‘i·Ú‘¼ÀàÈ«Ôý¦‘e¼Ç¹‘‹¦)Ç3áE1c+iö¼dÓ5²«„A4"÷Â-fÜ6ñÒÂw=ñ#™÷°r×àE[‘”Сö õ§”¯JÜ¡:ê,Ïø&„yœQ¤g(mÛRm&KÜŒqyŸwrü>ñüœÄC^—"÷å½»•Ç}ãsÔ,&jêRú§­Tü>¹±"º­‰“[èÒ[(ßxŽOŸè/*F³/–#•ì[6l@M›Þ,F&ð~†CqZÉç_ÛmŽ6îÖ˜Ïaì—̪™YXS¹ˆå$ ÞI«Æš:¤§†ðtF(ìR<`”èv0ÛuîÛ—“ƒ‹ò­64mÏþÜÏ;E!ûw‹¨á8¿#Ü6¬TÖp•Â?°—ù?kó%[‘å7̧À®§ˆÛÕÌ^ÅPE¹ÏzÁÿ0é%|<†è§‹ÀÒÍ ¶p¹ e²œ¼÷ò(2M`ãÒ—ÌF qcÂø.O‚ÚÑú릠‚†‚¶T笋S[;&Úùé×jè³’JÒ³’j—§"»}·Ò¤—ñß½ïUýÅÝp‹ YiûÓšå¿KèhúØ&²ˆ„³I`z@•«ƒ"éâì#¼uÙŸ•·­a#öd™[Å@¡ÎúF,‹¾r5y¯Œ ·¡‡‡ÓRD*ØúúmsHu$,Ôý)WÂnôõˬ¨"òY„Ú–k§.T®}|°ª§ñÂ;s™<ÒJ?ŒKxÆ&ËÚBtðù|wQf.f§ŠX5¯ë(IàKg³­ßÈsgøw¨TFúêIWdá ºçGüÔæÎt=¼û‰ô h ¹áiŸA3†ŒÅ½Wlç)·öÁ®áÙ”7sý| HhNÖ½˜‡æ{\^nÿŸØÔ¼‹µ¯>sR3¡Ý¬%g–«*P–Å?wt– '¥·tE‰M˜Ô"*N“&”D@z 2Î¥‚mfö¨½Ž’ÕgØŠݷ̵x=*,6c†)eÄoZRÔG¥¯MUlCI@l>η“ ÀÍ*‰¨CSZ‡+¯~ûÛÉ·uAiQpy¸sMF:–”‡4KÒÅŒYí Ë ©ÍØG“13oUO4æn¦1òÛÛ>V‰=FróÖ›&ì6 )‹gå§Ö2z=iäŸRÁq\¿¥³%ªî™ÖÚ—Bl£ülsÐnNc”³wˆÂ,ÆFjkŠH0 JÜÀÆ^_{ªr¼‡ÙyéžysVÊç÷èvEIuv%b@~ ÒÝ^ m£ºYËÀ@Æ ‰uÛ¢vc8U!ÞÌ aÙ›} ñApôA^GS´@—‹CˆI%c¥•šÐŒºÎçó ^j“+ žá‚Ë© ¾9AdÀOš…ðµ­ì>½ƒ#2Ÿa¼˜FÉË ö‚ªâHé/3óÊ!:08©‰°»Ê5!¹²{G0…M\ ©ï.?€Ž•Ò˜àÚ÷ZrÛ¿áì:¶v(e»Êk—mÉd¼ãôº“œ¬Ybc‡ÈšžùÑéy_eÔ¦ýFzãSöVСÏà;—ð{O7wäx¯®q”)¾ý›ÝxjÖ¥ÓêñB¤0ˆ¦æ|^Þ1%3$[õ¥ÉEÒ`€¤÷z }GË[Ëü+Àسÿ:倘b¼…z£Vµ³¦Á4ùeM_°ý"CSGÿœÎÖâU.¾Çårneƒj¨>ðr„>Ññå€:ô8þv’þU°9ê{AcÇ~»LÉ09Äq‡L^+/‚Z²}o«Ðܤ9b\د:h˺)CpÌ/'+OEa<°Á+¸Rï}5×N™ ®´ãκœ¢d[áñ ×ïy·;í¥B'¯A?-E¯"ãÕ7{1hÍÇ'0‘"»ˆŠª» 7%VRz‘ÂH^¸ü¤0Yë“€~µ¡‹ztÍù.Ø,?'L!ö€r(Æ ]w§é3zWÞP?Û³_Òujȵœç–õLgÏŽÓ ÷…fÝ.vXwNsŸfUà½|?.åJ„±g~bÁçvCÚ¥†n‡1EJÚ ’{b,ovg¤`ô˱vd(­-Y†ÜO\{®Û$œRÈá5ç ƒ¿æOh$ˆ !ûÚùñ ‹é9 ⋎z™þ–Œ‹Ó§0ÒAXÿýïyK‰Y»õÿ »É¬“ÌÝÌ ödËŒVü©Ñ—)ì½AÑDògÅÖkËÛK¥t_ŸPçE Ë?}fzü%z­—X•æäö£ä˜V‹<æ¡ߨ—[AË£Š>S n:n-#Ã:L˲ä³}û—º)C¬ÈÑ¥âÍ›r@¼¡_-ø€‚k£s¤ä h£0?¬u.7É95M7[>\|Üôz›p…r–N)î=Æ®äiîn‚n? +n–™ÃHÏÚª¾=£ðMÉp=Ì"LÍ@E¼÷¹vQ ˳ҙ@mÞXXä³BÖ&)ÕÀ§q1?aÚeëMøÖôMýyÍ@ˆª¶ŽF#"¿*·Ñ‹ŽO½Ï#5 ±ñ[ãå¢ß±XrwE°¾8½‘·Û`µëCü¦æ@÷.¡Û› ×Ù<Üry®Pª‘éoµüÌÌ9Ó0]l $?`£IðãŒeïMu k–æÿ±Ä9RæGéü(ãtSÁ…®Š)$yþñÔ%‹×Ü8…u]+ ñT§k®Š,5ë4ÿÀ¢iŸ?ÇIý)‹³ì‰£ƒpLÉVÁW¼ýÕË îË:yýÓá^ð]²Rì ÃHÁã1¸OÐÚ/ùvϰ@ãéDÀ<ÆIKNõdûMj6›ÏªáT”;z%ë3Ý@‹¹tEðzÕkÙ/Ðàk¾"®wšFõŠ©ÃT^R˜ ±˜¯áÒ9R'õZŒ‘¿x6¾ãµ]lÖ/d•¤¥oÅA`A¹@¹âPNGý@L˜ÅàßP¶¨–ò(ë™ñ$;þÞãsuŠcøyó䘴&|´üéµ\¾U_·ÿ¢Ùç´2)Ý­5å˜m”úkT#ÐH€†weYLç—WV\æ³½8"#ŠÏRÞúÄN-%,}:+rãº?—ž_ì¤BçUåµ +Ñë/eirÓt©Pr4ö ‘hÌü,(Š`( cBdzT¨5…ª aîíå!…@¨ÕïbhL¢éׯ&4Šx¨ÙgÜÐþ²,Øu¶ûæ×p—´ó=¡GÊ H/–ó“c4AÊæ¥:EðbAÚ8‰DlËJ§·p:÷t½³Ï×n©?`ö—|~€F"2¦^¾8ˉCétw t™˜ÕV‰½ô&à‚Í€gq¬Ú +IF^I°‘C I·PH³f©¢+ PkÈÆ¤1îh½¼ÅX0O†Óxb£¬¯wPÍôfe B¬o¹öR0oðÈ™A‚ž°–½ªæ³ô“ýVßHL™WAº£®°ª•®U° Òæ‘‚ùWú[S¤è‘‹ƒâ~_Ѿ0çð†h5‡j Ÿ6~¢Ò׈ )”ã‚p;×¥{Ù y²$%¨vâ"|u„ ÁQè$†IKó÷â; ž@“ÔRH™3 À'ê#¦Ü“Ìÿ,r<¸RHÛ5¨“~†üeó”À÷Xr{0kkÂré±ý2÷¢Sè·—ùåð•ÌCD·ç6Òew ±ý,êîÉYMpõ`ˆ;.¹ön¬Á£$¿Fö¬ASÈÍëß¶Ö-§¹èC$„ô¥U+£íxÂ~5ÍÆÅ>ý¬ÄV|1CqÓ³3n]n¤ð=ýŽ7,Û`Ù%F‘oaЃU)#&Ù2ºŠ#j½}̱€„ò—³çùLÏw¡Kz÷ÅýéSÛÆæ¿ú¾È»«uÝ”¶íß³`ñŸd +Öy½óT•ûLœOU ©œÕ!,&¯²Áïó²#ú¢/1å~œ CÈÜæû¤˜ËcœPhà“Và€žH1øfÒ Õi]-^ÜÄý5x;p­ZTàÔáí+-ÕÇù–¼üUZ ½G÷ßµ‡žÈ‚³×¹³”Çï¦e/œ<@RñG™YÄô'§^e4mãuý•¹=»ˆê%ƒÈ]Ë7HpzèzZ7a"œ÷‘ôn NEÍE°¹#”j²w•ºx$ßàuˆm)“Ó/Jê‘/ðWþÈŒ‹ªß)m¯•{QQ–|ü?Oz†úŸöW!YȆØòì°áfcF§9^ˉŠß©ÉÁF'ÁDh¥ìW‘L<ÓGåó£¬%†=ýŸs½Ñ#§”‚×z-Êù²ÔÑ-,Á¶_nr·Ö„¯An:W›Æ¤%U"aâ­nxá&SûÞç²×sÝ%f*´Nª6Þ\02H­ÊX‚ƒÕPY±J'bÿËõ#ë„;®¢ 1¨ºJQe®Ê1Õ›ã¥Bû $ÞÙû}KX®ü]Ø-I×ÎOúxb.6>ÀõÙ`2(7¤$ ÊZáÖ}éŽþ sÿšÿÛ{Àp2rã¾j7#ŽDð…ì]®¨SáZ2ó$—¾cíbóèäíÇ׀%5€‘Ýo—ÕÔU¢kå*ká–°_Ì5øsç²Äñ“þ üõy„h ?Ÿ,¾(«'îÐ5¶²gŽHüëÞo’ø±½l£T¯$©/^?‰Âb5W—íW 3 >ûÑû[–´þjÇŸ¿î¹ÜðFõR1LݲƒùÛÈÁ‹!yKÏ~\Tw™3`¬ÔnUÒsŒò—ªŽ}‡ i”&Š'Ú!(x °€$6NZ°¸ÐÒ´ÏnŒÏ¤¢¶MÍçö©€±ãô œeõXúò¬¿³”-Ò¢V<è5~}ýæßÈ*õƒk>ô[%rÓ0x°ù§ßfj[¯È9ÅÅq6åËMÞe㫉Œà–õ";ö=³âjd¢Ÿ8 …qz‡ñ‚­Öh›ó;7úø8¢Ô•¬í&h½ÀÊzQøO0ñ7ês8º¥Ô‹ŠÍ/;'ñܨyïíöï]SK¯ßEÆ5^s‘ns³w4ÖåZîuàôÙ[‰ÄšLn˜tWˆa á'èS±Ü~}23*FGöU”ÖþJ•87ëvWñ,B$#ÍÛžX¼æ‘o4(•<ÔuÏthTØ.£nåëêÁGM²}uªVÛi'Z[ß/Í-0LÆvGW¿jñ?Ðí}³lLÙû±žfÖRè<™Ë-±K‚Ã6™ºÀu"FÏg>³…¼òâp5v¹áb?}ØØVMnå¹\Ÿ?ëR¿á2©éW(ºÂC=š¸‘KUÍHžÞú^öÄ~tË'oË*ììÐop½ð šiƒ™‘<ëá.¡j-¼Vó…Jk•4VNú­Ö•;Ìa‰”â-`YE:-UÇsØÖ+ å2€MÅÈ‹†.=ûLŽ4—ÌÂ-<ºÙ†c…07ë7SËR¯¡B¿ f¿7™š¢à]™ÃT)ÖQ‡K‚X2œ}r’cÒËùÒ–WáÇuîY<âA) €*åÂÁr{sVc%FN¢b©DXW%¡-.ZŠE»@îÇ”oÿ)™‡3Ó:™ò圾gÜ>Ù¼•xýž´~kìº&ž‹îáI¸[úÙü%2,nè·C„È(x£ð"¹%<²Y´»¨0û•gÓú„>>|¯ûÎg+§Å~Rqa¦00®À¬[é°TÌ”‚‹C½;mí ®˜ÍE޶â3=ƒžü\ü[!–AûSŒg‘<§¶F $I–³„G>ì’Hiy>ºÀ–×qr$EãgÞLа0F‰ŠJŸÒ)íi5\”|èþÝÃælJ h@Sf—”´t"鶃£:ó³!Þ¹o} ëLÏ›þ‚vòÞ Y3«á²mÅOƒá(£Ëm-xÆ5ƒÖÒ°3Tn9þ=hH²ø0|U]w™+¨7¨ÐP½µÂsÂqÙòÚçNû\ üç'»Ñ^L¦ŽmýIÍA²SNh…”ßäÚ¾vß“ðå.ýzë½ :eé22PëàË®qõ¶;±³¤1±¦¸oë~nlà2zmÅB3d’_l܉>9â&Ø=R­kx6,r;0ÑÊ56³›R&žAÅä¹ÄºÁt‘‡¿\ø^±ÎçŒr”âTá¹.¶O(½5I”#ü Úh„þ k¡ª%°)ÜÀ\»è×&þ®='v5=ƒ*zÈÙƒÛvø:˜* ÒÞ³Ë]6Š^‰lÏ×Q8vÎ[,Ý; »%=e&ËñSDäVÖÜC JìZH_»µ…²À06þï_¿íö»[×3yª Êûµã<7RºÃŒ¦¶ùn%(;ôØ!÷±ÓÂXýCwõlMar[›O„qÈOo”®3Ý~7T&XxÜ;֒˄ּ¹jŸsµÁV/xWTÉò°B¶4-„Œ\¢Y8”ýX½^v# ±%ž¢Ü!pÒçDiBt¸Ÿ~§ë·X k`Þ¬Ê .#V5žÒS:ïíQ Õ@Q±ò¥´yÍX0‚Þ¾'£’Ü“˜”jÌMñ½¤Ž9íÌ$†ÇèÍúIqÞy"ŒãÈŠ‡«KI|]e¡îù|Ã+kšöªßŠ–†ÃNÓ –2e$ôŠ}b×5—dF4'ÿœðʯH2^]°„–O¸Ã)%¥bµ?rá¦Új•˜ñÚwÆ6|`¶ Òœ1áaèÕ?ÁÕÚí£°‚´dGÐÙqTóРj"(5kûß.ÈÏÄ1ÃòÓf¾€¿ˆô=¿rÐ7Áîóde›¾ØŠÎ=@‰÷CúªÇ€m¾ú{(5¥(3y¹uê/Iný$=‡ô<ß&Kc”¯±ÒŠ·mŒ–—{s¨¦âA0OàqŒ1`ÖÆB€é8OP—Ônå½à¾;Io@è§Ì[˜˜‹Â–Ïs^öK±$³ùeA¶×$êukˆ=׿šú›2RéÃö'Û%dûÇ®1ðçâYô©tÕ=ó3”” QvšœÈY)+dÝ-‘ «,X¿æcM†ŠZOωJ&×(œ›Õåß#G»Û{dZøF]ÓÝ¡\ΠÓWæÑ ñzó,}|úñ«9|ç„)üLº¤@Õ&ôyQ7Zö¢vÓ6:ØdÀÝCÜk¬é3FÖ¾ƒ «Üm¸ËJ0©Ç;”ü£KN Hî·¥".o\t—M÷AÓ…6§,õ‚ró àPö™v›Ò/8ú'>j¤ÊŠÌ"‡€¶de—a‰cÂ;©6m àÈç r f]zšÿ¡c#„ ³ä2Ìå£0‹¢0uòF¯%S—_iüfƒqÄ¢¯;yÛd¬Ž›Ÿàé増žÚ}oŒcœçÎyRå[ LúÚºï½ ÷Vi]œâgˆŠJ¬0£À»„'°È Š}±ç4y‘«ü„°ÎLª ÆŒ{±D”6©ÔÀDÁ¨±BÊb3ø|½Öu§Mh¥ðeZiðéKŠ£:m-"ýP¾ª?m!nxuQzö] ž'¡–@:tÞ;0ɯ$Ê•c}M±7£+NÛ ¥–×횯0Ê[ǫ́j…Ô+³¤.àêÙ §PŒgg䃪«Ê\×sd»ÿŒŒlÛïª#Ó4ÞToøï“kÕ6„!ÙqfÏ-¥*«¢ð)Ã&¬rc±’ùwÔrw¨B#ú$Â"L©»µîc "ù‰‡­ækt ˜à> ”óXè4vv7±¢L*]f‚Ì2Ø]ËïŒ`]½ž,]¾Á˜‰Ú“£ZéžíU‹ £ð-Ìf·ááÎoþÇH£ÒK½~ƒ ز÷c'-9çè„`]\¥°e;=mz§yN Ad»õ3~‚i—v7“¼óÍê0u!Äà”ù¸):Aéß©nQ+¦ˆ8Ïž­EÒé™è;o||mwÙÑóšOÇ¢‰Ï椇4]héæ/´»Srk°ctÌ#·jDHÆ}ÿ¡v&ÞF²Y/µÑ&*ýZ}3ÊÓ¨)¿_”[rת#ÉüšÃ´½*²dãA…×·P¼ÚŸ?@Ë”r"ƒË½¨±KËŠôüiÂ÷ÓsIǶO£Ï–Ñ+§ÛOª^›ˆ‡œp«<€óëÊÅjF\6aˆ5UÇxuŽÄÂÑ™*°—¹(ìÙ<ŸÆ W7 úÚ%·š†ÀèÈ,œƒZã±EóŠ 2`à“#36Á†‰´NiŠÑXǵøS åoÐH‡Þ wž VTé:âøs&ì#æîOn¯D׆:úùWÊ@JÔ.WÎQ[ÙtWw2óv¨0&չǕ¼J%ÿϧ.4&´7ªtJx%úµ=ŒSs¯ÌZ:_b«-QJ>·wÆáø+5z̤©6QQ»B)Àúÿ2XóáÕ´ªÙ¿•w ‚ÆÿYðº"q„ñ‰þj³6›W¢Ô­ä0SnxØ|HW:€ý‹¨qòÔy R„:4¥ü×¾á–úÈßvìõ=ai®É[›Ö÷Ø~ØÀwï–±á'ŠøHKÄ k_¦ø‰—Zø,fùãi¦f—Ñvúc˜–)¹ä£ò7{ EòÖ['xFß‘öM£`d ïçÈÂÉzd²°„ûàí}²-îi²/4ƃ?Šñ¿Å7ZÂ.aLcLdV§¢cºÜå1Çs-j¿E`­K°GùhWV/³è—úUÀ qìý³ A–|#aˆ²  ,AC¾¼º"zPeEëÌTpÃeRcöRvØÊá/ƒtù%XÒˆ¾€äèRå±è %>÷pÁZ'BýcÄE:.Z^½8¨&>òÓ/%{M:ú nOÇDïRB[Žë}SÝ¢Ø}«ý%ðÙÌ>(¿ìlëVÚ‡4R~×ÿí & Þ0v†it!æÀ7Æ”üP& Q¸ äãnA²Û6ž'i§=¤ÞøÏWºýHßaœ.öPO8ÏÆnÇWÁ2Óùõs¥®©€ˆÃ t(ƒuW¿ëÜßC:ýÈY]¡ ¿@+ Eˆ<±‘÷Ì6F±óà0$'Þª± ðIc¥"ÃU$>îçôÓØ Lñ@ÉðmøSÎz#³-^3ûƒuH(æ£= kU·"—æñ¼è؈%WìßP¨j‰Ë>n@àù‹—ö•{ži¦B·Píš{]å}ê /8&Øîs»CIü×;<}5iTI}ˆš× ±QR³0µÐù§Çîgûí¯³Z’6Hš@‘]Fº“éË÷À ÑO¸\@/¨Ï°Åm"‹.ñ¦cL‹¹&É%,9OÅD´‡þ׿kíx6_V}¶è„ øH°í“´MnÆçŸs¦ç¿ÀŽ¡†ºl+ThE6¡76n¹A`»œ7|wÖIt?Ò²-L @ì°(ú=õcÅ]¤=h²`Lù]|聯1$°¥› ·~e‚o5«–ô1Øå*ÉåD9Ù—úS«ì«É ÒôY#¤üËïŽØ\H‚ó1•¤/H:í(•]æ$Ý:H\óažÒ ¡L$êt`þF ¢ÜÖqbžý.X#¤Ê OÄÍ[ódÇ+Ð.Wnö·þ"8Õ-TMߎ”9+¬${p曡(t9öå¾ÍÆ\IGÞ"²œ˜ö¸_yaƒƒ5Ĩø¡¥W¤à325] ø}!2®s±5Ò£pn¤cT‹Ð(ì™&æfí±¡¯ºaërdû¸õõ7~ýãÇ¸±ôù‰•9ÆZ rD³=Aâ¸Ì ÆþT‹PŒLaÛ°ÖÖÙLà†ÍÙÂO^• boÛc`3/¸+KÝyÃF r`pÜ ˜™ü¸iOµÝ¬ý'KBO@.—%ˆv,Öï²éî»s­Å.Ay»pRjQ³qç®%ã/È?§ ¼ß9çñ£–ˆ†­Ê㙼$Øo¨ 0º‘ gñ’Ž”ÔQ;+5p‘PìzÚøgQ÷¢Â ¿jÀùs€öóíÕK:kÝ/…”k¿ÖÕW”ÏpJ¿} ×ÄŸEOÍ=¤98ͯà=BÐGþY†š*þäÛœQ<Œ©B.c”|ÏîøëF–ž²l€"]­»nòÌkĆm`]v@EnUs5:Iwl±‰ œÿ¶Bøí€v Òí9æ$/l8³·ÒªÙEàê5á¾Î,‚p¥\9šC>Eç®É"¤Ò³°ÄB¾_ƽØýv2F·yN6[W°ô\ùªÐ¡…–c-ж¹íŸÐ4ýIOð÷:ôw–âx·¼e |æÔȺ괖)Á$*,OhçÞ-´Ä“6¶óæÌË-VUè®>oÐÏD¯ÂŠg„acÉYŃdÆüЛ­ð83g4Ǻ ²ïéu{a—ÓUéÄÔ7Û&c.b…|Sy)kÄÜbq6µœß¼zÓ‚ï¥kd¿ÞiàßÒ…Zr«l|{M$8å¢kÚÆò*xeKc©¿EHk…)uu=öŒðÃ19ÿð5p³=zLm|UÓr鵊r%•Šè¨Ö$R»Kå2HNµXÆŽ§Öh1¬—`Bºk”Öð'a'ù †pÆA*-÷©±gäl›ð&±ã© ÷mzš2œ[ xs_êÎ…1ùs‰!3›KR+ËU…šÈ|zI\ý2’i$?b¯XÃVF›6xì[ª„tp?ÕSÈä¼tÑÆ²Z¥ó¶c”Q@`²¸þX0rr™°ëThƒô£—b™8Ö¡{Ý|¨äÄMQ|!˜Wºkg5d„ó‘¶Ã8i[¯;Ë¡Qàvæ!ÜvÆê(ýÜTEƒò1q‡¾T…n›GOÉeñr(»u To:SØwÜ©“…hMíáæ;è6‡ž—yÕn)2Î<ê ÇÝWf9zêÀÛ(ÉB¯#·ôulË9÷Õ„Ï:ûjØ)W´Ûky–Ê7FóŠ5'Adã-¿n*b¼ûN}q3J¥;h«ô’;/"¾Ï]Íä¸:–ŒO¶mí%}y¥SÆ$ð¾ÊlÆiþ ߬Çîó]ã6ÖÇŸÆô~ŠÍ~W 8¹5êRw_ã+|Ÿ)QA_óNìzQõ8ÞþúM"² ãì˜$±ÓrÝÃjК÷®8;ÓjÏzš†¶uØcp}ÜSèQ™ãÕ†^mÌ_`}Èlò›´®ól?zåÛaH‘JAJEøÕv©Å(2[êl1 î«VЬ|úɪšT„ØŒ%£æ4ey,“¿¨‚A¨§è¡]3ÆC¨…dM„ªFÅàmˆ±>‡¯_h¿°»öûqúý ýŽnsB·0ØE°¾Ûò˜ÑX"m3=J_=î’u],¤¦f8ª'C"³ýzKÒ³±u…I;ú…³ŽÿÄ&¨ˆjýÄ…í–=u'²ÿZW¡ÔóÅKñô€àÊ1ëÖÎG¶Y šyô‹_ve<úYz bä)ssØ¡ÕØEë¡ìNFÕÞ”‹‘Ui æx…p´›tüÞ0fèáoñÎpBå ¢l®eŒšÈI¼ÂÖ¤ìÅ‹’ï¼ÄO ·ˆ '4°Õ†eÙ÷}FŒðoJ@ì”úÁ>§1"OQá…h”1œ  YÍ³Š * ñ£rèÄt-ÛPÑSvü»PŽ›x²LW…ίþ?dÁ,8Ö°Õ¡‰…¼Æ ̧‡S@ø³j\!o¹Á J[Øšf ˜$®Ù’v.?þ Q·Îf½…Ù}Õz’m£3áìtùϤð'ÀJQƒŽ†Ç/äGÿÊÙ!ýÿò%'&Û]´›&ßd³†_Id1°e_9Ü• ÿ1¾ƒÓ1ïÎ…V8þ> Kƒ&ãk«ó‡Ç˜ÖßS¾p1"‘L;`ÈcÏïó–·Q¤Ê*ïÜ×+Ÿÿ_gÕÖÃlQ<¸—âkRÜÝbE ×ww‡àîÅݢŊ»»—8ï͹û~Ã\Ì3kï5bh“÷uÔ:áiK‘VÉŒJ\¢þC'ÄBZõþ¿~¾Ý:ÅòKLíÑwÌÝ<ø~Á*HÙ‚«ÞmVŸt«Ùѻۿ;k…l€ÙŸý°-× ûöUpïç—sY¾×°ÚV{U+áý»Y›`ñ£ˆG5ËEY/L^120¢C³e¤Gô÷ËLŽqòhϪuŽÆ1©®õÅÒo–·¹::ŒØy4% ‚}hÿížâ#J7›å™Bg>êEÂŽ¨}ûÉÉä^–+3&Dƒ÷½)š›Å%ÔúvÈok ‰¸9D?ë“ZP+.0¹/Qó¥M Iö¡e^Ÿ6ZЦ>{z %Dñ~J_înü}.²7Š>ã°ƒüÓª"d)½dmxžfuFŽ™Ls´M=•…ß:BÜþ!‹-FEG›æÅöóÛ‚­¹°³BN07ªÍj‡g~ª{óMû¹tÔ¼; Aã2~3ráwQI¾)£'ó×ᙑ[<ˆyÂeE«—²±­Š™êŽ>qˆh‘LdÖSšá}¥ÂŒö‰†ÎnÎM^ÿß W“iHT(%0D[çEÓÚ‰hrͺ²»|Ñ’Ù2ž…åÔ¥$< JÉ¢€ú,w™xUa¿š½ÎS·ˆ{ß[!’'Œ~ef´C’¯^Õ£|!ì![âùGe2ñÚ¹LfÍ!{”›‚Äq¤ (Ä·´§2Ê»·`M¼¡7 îí).ç|ðéUøÊŽÑÐW8™êµcä_%F<]¯]cLhÍA ~FŸà‰¶3M^~‡æŸÞÛq¨o-á Ù畽å Gµ“Z¸–zweÉ |~´ápøo$ ¼8Z^”#k{ŽÉè‘»ßTž@ðFSf¯Îè¤ëˆrýDuIõB‡©Â¿»C'hÚ̬ij÷Ò–%Òíštç|³<Ä4^ IÕ–°Ø\×r¿µxrû;|§¬&DÇ—Ú>ú-LÀÛÉS~³ö²\‚pì`ŠéoU΄.Ñ~´÷ TdzsOþ©w|0Q³†ó×ü˜’;¥JàÞ¼*XAèô,Z¥³žxÑéï¶•"Wæq·Hhø+Ñô/-ÿî²½¤àû÷ë"Æ}¨èå³eñAø ¶NÆ`ôJç_=€¢×ü†÷$â8(¶±mqA ”‡üÛã•fCä7Ûï5ص›×˜»'jãFìÓÅG”àôõU'¹'Ffêjùœ'Ûª` OÑfù>ö o{”»>îgÎ]×ôNÍÿæ¦'€±Á„n4‘ä-³ƒÊG­>pî¸û=_³U®ÀÕª—5Ù(‡ & \åîÒX9¢¢†-áµþí5‘1c4nªÞ¯ÿ©Þ§vÂ)v$9Zµp•:º]»÷dJnÒ4Ç–Ÿ8R ª{X)£JÇ6ÀÉxÿöÚ¿\‹2Ðoûì”V!¨/20‡7?41Ü£v­ú.õÕÐ?õQ °»Ìa®2Ty÷ÿý•Zñ8¨?`"ü¨fv¦È Õúd»FFaGgŸôª·|bÈ›ú…X¥/šeqùðÕe)l ¯OˆA¤#)1ª¥™3¦%rT¯ª5ÅË· ²Î\º&œ)õ–iáÁôˆ} ©U›ç®ðªA^ìÃnúГ©wõ¥+sZ»X2‡£kÖ°.YïŒ^ÛÒ!™R¥àRHêRyI¤)ñ”›&$HƒÝGƒuìîíOñ³"ä–—qŠ2’%¿P¹S×›ÒY}û@¬ƒ'kù6€ìpu2½Œ¾§[H¤Ð;ÿyÑ“>œytDðczDÝòdIϱüþ1åï#¤uAúQƒâ3¢Økd·rñÁCÝh$ޤNúnAK…£X¼ €Åqøjò4%¯0û>îN)ܾ®%·ûxàuÙR%ú› (ÏÇ2#éËÂûõ1ß«ZÖ†V‘|‚J Y ¥»jÕc£à/%VºÙ[Þd˜­ ÁøþóÀÅê¨Vô«\¼fë¡ç¼lÛcñi7ÜÔˆ$ÃÜ£À}+Mda>iŽe\KJ×èk튾±yRU‰õ­ÿ…«ìÅÇÒ= Í/ÐûTâÙ<./ú~ófh8;| ‹uED:yú[SÈñ÷íàK¿âøû62©W¾¶.߆|&Oœï׎IΰŒŸ"2âý¹fîËÓèêyÍhã9gìwým>j3‚tü*ÖàÎ-‡‡ì̯»Óê—äM&Û­îpVXnC™~ÿ²5ÂݵGÛºÕ<>ÕÉ Êø*‘°­K¶~%¿uèï°'Ö€7ü0zå8b§ Ýw¥Œüï[“¤JWhU Þà¼o¤(ËÛº]/E ó‘“­Ê{3¹¹o%Ÿ÷†)øîßá"~zU/ënƒõJ Hþi®)ËI wùI>Œ!jH”ðgöñã‘á·›¦óRœ«4®n+ádan‚(×d‚Ä~Ìðù½œöt°‰{c=£¤.eB?'_w‰Mèý‡ûOòŠPÄ›†ºÉ_vìÚe±“ÿ¼ŒBàíí×ú×?LRy†åwï)¼“H5ÛwªEµü’|ð?6«Ùc›ÂCì‰OOŒt%þy}­íçÛ§À-">I©pvŸ[@Ü]î5j¦˜¿»r¿ñíÙÏ瘙‹ô& ®Éž{‡í‘ƒ—û—ŽWKj wøŽ‹ˆu€ÅŒïqÂþXH>\cÀ!²¸_Ê]•%(w_Ä„{NÓ¥QDe*®H1Ù lÁÃU¼ø‚êñ;*•ïL˜ËŸÐ€,Öþ Ñ+fšx¸±D ,\x¶"­ïeœRUŽÝ›êüá ê`ÖÕÕ ÅbB,{;9s½g:Ù“îâ.,îA*0-„`0¡wf?Üy~—Mí–eÔšÞ-A¤ýD¨QZ·½‡R÷< ˜ó¡MY‰m:‹.¥fÛËãâ>»Íœ‚Jûc”ŠÊÈÕÆEbMÈÄi^šHӃǹR CüEDR½„Ëb ‡˜ü–6$[<‡Öù¬Øß͸ô8ÄÆ~”׋¤Lc»_ž®p¾œ7j+ÂŽ8[âMë³[ú)«ÆgÜDÕmNiÿœâ;î¶Œ#a†€púîö[fóZO‰ &Ú®à‰­®Ç~kLÒ¹¦håêâ^(²À‹gH#ùäZ”9š/-œÉ7tx"g[@}ÔÏIƒc þÕòF¦3:©ã’ËgޏR”ŽˆF/J—n™¥§ªvyuxl¬ n#q]©{ÏÀXÉïöÙ^¾".2‘¢—wèNòmš^ߌNÙWÿ¥cÀ04Cü€ËŠ ‡­S»ÁYl\29Ðç+’ ûs=™¬›5ŸŽh`/fõDëÖ×ÔÂå¤C¹mS3.ŠDH‹Ë©£j=ÁçP8%´¡é |B_ôµsHê<ÂYfÎot¾“6D ©L‘óBÚY½ËÖÛWäœXQêp8¾–S!#ñ¢ÃÃÓ#l°!—¥Õ7yç×B2°¨~Ú“´O¹dåÐ~‹‹…®ºé†L[¾Ô†Ô·üT¥ÑÂo¶âÛŠIqC~%È}ᤖÝ)$áGê [Í™ZcÑÕòi¿Î²©Ê ­ý$üÛR#ëxH‰ªãÊóÔÐÎQíA~a}½>®xFëçËŸ» QÏ 㽂ì^l¤x˜®kFøÅ;P=uÍN¿žzÜ¿öúÔcföᇨí@Ú÷,O9jAë¯øR¹ìN(ž—Ø¡£*B\;Zñ—;⦀¨»æfÙ•6ɦ!În¼w,n%©·š©“UC5#(x<ÉžŽ‰½ç¤ò•»ÎM™µ@õiÉÛîà†3Á ¢E nµ2´©Æìɸ#¸†O× Ë…ümUN{¤ŸXŠI Îà˜•OW%ñC_™î|ÈM:€_#Bëû³‘\c#t$è{¡‚W‚ž™ÏÌ&„j`óCFÆ5j}C+eÃ÷¶r_XÞâL2³~V§ð&ÆÚTûY&ÓÕë¾!4·St¸)œØÄgkr9:‘Âkãs8M;g´°!‚¦9ú vÄíäÒÆø»d#VˆÝ³-áWö¦7—¾oسÒ!÷Q`3– ú¯ÛµÉ¼ ï–zÊ@I+M”ùk.íÌþëÜ/t‘«Âj,mº†ÙʦÿþdâßßêÒßXBžLƒ”Kÿ+ ½ÄpvÓg3‡%Þ¿Ò¨§µ‡¤…{7ùq„2É›¦xáµ3Ò½xÿø——Ò9hðÓRMÕ¢)IO_”,-Üz?þ¼Ø£ÎW«pï| ˜Ü^ú+R+ß%Þ†MÈÙ9ŽÎIºL'Í?©Ð)&¾POC÷—½<'•~?X¿Ù(:ìZœ«—IS„ëBŽBOÍ7Uô$£V¶ëß(w I&ÅýžfîÉÇ\$”cƒ×›FWh’r˜²¨H>‰f~¸*Ø!6F„w[žªyo©íôWsÌ9V·ïg7Må%(í›ÊȪ‚)ßÉšòUÔÌê/Ø÷•TÝ‘·¾ýÀBë¡÷Æ>¥øŽj#­)¢Îáé0gÂG®Ç²Ìâ Ð{<<Œ­w#šÄˆ?us€ª?É*sÚ°‡é,ïYÜ‚=»aÿDäB. gèçõ3Õ—Ä+¼Ã*Uð´¸1HÅ–Úå[ÓèÙW,q† æ-à±ryâ¨Ù[¤Úéîn¹Ú£D±3®y\ûTÄöjqš;_Yµ5\’5Åoæ[6Ž‘û†«EÈK?^`+fžé ›AнÏNô"ª¤®ÑææŽp`bf‘ 5%:¤PV R´3šÃÕÞì8ÍQ±Ù3T¾ê°ï{ðä‚Fó@LýV‡í6†3÷Š|j´¾ {ÍøËîÅ´Á”‡Û¶vêÀ:ñ­‚VÒÏÕïs†ù‘ŸÍ" ý¬Ùª!U  P}÷Ïß"B°J.–9Èr°ê½>&Qr¡T²²`×°Ý…<8¡%PXVv™Ânª؈!û1ÓzÑ» ÔN¬¨ÊÚnÒ—Ê l3†õÓa_àV³4ú퀟\ÓäÂM„Ʊ9VdSÛqZ[fQ½fþ;HUïQëÉÎ’ÔÌt–És)jøÊé9ÿLkϵ,ÐsSÊ÷§¦¿÷ó‡!½pzKyª—W)í¯*¼ñÀÂ"u-á·[mË(xú4žª3Áã½í>Û».R݉Í%ó™ÊwOÁöˆ Œ¿æ0]“ Hª5ø´üín`:ø/œP‹¢/™Ó²J?|%ov“¯Kp®k‘úç¿ðìéâã¥R*?¤§Â\¤œÚ;kíæ…Ž¹™=_ùÊ~/v]’µ"½ÃŽ#‘gk ­„E¯ÐÔ°‘ä,R{ ’ʃz¶ù`áEä¡ð[UØž4Ý¥’ÚGW&R¢Û[{ƒO¶“¶¹j±m”Ñ‚8àÅ'ÿQ)¨••¬FžÕf)l•pRøÒýV3ªôZh‹Ù¯›ypƒ²g ü¢ç5‘nq#~.Å¢Ò=RFã|e"³ÿújåRÆulº{–œL×"–Ñ5{úgW8®CÖ3…lvrø%nÅG+PË{uˆ¥^}Ì?uœ*ò;YtPâà·Rh·dÿxßßÔ,5Aç ÍbýØÏPb„…sòÛ)(_1¸\=¸R¹$ÖœØ|Ærçrïx&ŠpâêK$=€•{ï1 2»Þ–|Shc¹°A*lùu‹ª&jÁ¦<—t±à ÅjScªÅï«ÛX½ºöå=µÿþ8»hìÒø'ÓdqÐ…÷ÙÆµo™NC±y.cßÀFVZáÍ$£Öv¹ÈŸÐ’Ô .bt½–»¬èMÓ÷ü¼²ÐiJ÷Ì„Éqt¢7•öÀ_K x>‘2'[Ü ñyÇ¢:ÇkÜ=]ÑÅ{zÕ¶d$á|Ê{çò‰™QÇA)åïŸÖ³\SSó—]pjÏÌ1â¥e4¾÷ýémoAÉ4«4e¥Ö+´¯g®#·qÄ|€ÊEqÅœJ—i©èZ…î ýd«´Í»šËˆÌÚêÌš½Åè[Éä‰ ™VýXÞª“m¶Á•ïS§¥áͦ«´ðÞ¾U›C¦º÷¨K•þÕkõ®|˜óºae±”8Å74_®Wz`uÎö÷Sjœl>xz» Ü#­z»YóXĪRÃÖ3ê\J°Z¯¿¤ÏUüž‹:IQÚ[iñ^û\L¦Õ.OqÛçmtÔ.eW¬+ÂÅê¶y?YâŠÀÔ€“¼•;þôL2úUÌ`bNO2Î 9ê{ØûÿÌbÇ“? ˜Y%VIi ð¶¨woK¥ßÕ.þ¸……ÿ–%£!±çˆ ÉF‚ïÖ\ØàÍíTº¼1L¥lKÿ  EaœØ7ßD*¹5¾ãð¯¿|\àŸÀ¸Wšð¥d)uX †ZXTixZ»ß3÷p×|³;cebQ íÄßšiGŸ€+ÓI]?¤×C¥Ñ ŒÁ&ç æW¬X Ê(?ìâ½ó¾Dj-dâwœ¿lÀ e¨/Š ´W`¯âàTJi•]Ô¾ž©žKH`t˜hn/ŸH Ck¤„ pEÓ ÂC½:û÷ÐhÜÓß…2+$öt ncÄ+€‰Ó´‡ÁqøþYׂ¢ÒÅü7¸ÎYÊka«§Ÿó§Uš)‚Êþ (ð»¦éhhÖÚ x¢ Ô?-šíVà½xÇoòš– MHÊ5pW:—ÒGm4<«.N¤kܸê¹­1nν°ü›õú÷nj²H­½¸‘ºõî‡'„Zí4§á‘1?h;X_´òÀv¼LˆP.¤Ó»Fó$±÷L3~,§„ÿøkóÛ»QÚO$nÔ½Y’nßÇ!ºŒž<,Ì‚ˆPa{ çò‡êñˆD¹•ÌÏÏ׸·R‘o¯Xç -Ï' ô¶~ž…»5AÉ èk‹«vÀ™V|ôÌìkäRÀF]’ê”ãìÜ™ 25€ J%«ùð••ïfБËûÓ ây]`Bë“?bÿ™¯­rlX Ï@zs¹s]‰c/àÖ5ø¹Å¶ÎT‹„WB­x„‡ªdí#ÓÙUgG¯MÌjŽ*3•Ȩt#Ý‹}æ¿0©¶ô ¥%S~ÊJ¥Òëúåº ‚ÐŒ9É™™ßO‹7p>JXÁbµÍ)éÉD²e[k¨pÝr°z&|;Fú¥-ü*ÔÇÉmømSí—€^~G]A3ã¯iìmlüZªáÊ L(Ö¦Kû5Æm’$^çúôùxÈ©¸wX,9øÖãÃQ.Èiß²¯Ì]xPb³²†Í~¸&{ƒy³WÆùÖ¹ºz*ì]Sf ï…“;«õç÷ (¼ßÚäBTïWù¬.ØÂM8å0ÿ|Ùµ'nìÖ™Þ`¼ u ÄDX²›5–€Ù­ b(æ®±F ×û¼Mì/Tã)Ô ã-óPgV1V2'E„ÀrcCñÊ’`¼&Û¹¼ˆAãâIZªöô<ÜU«bÞÆà}nZ¸Ó‚ár¦ÕÅ>ºÌ @‘*7È‚Å?'Q÷ÊúŸt»@i˜†¢q!æì»Ù3}n@’ÈËó²Q½/0 ëžësÉ-úê|VýòŸ{AZ6 ‹z]7˜[&º‰Ž)=|\h1#[ú.y*sëÉ–0@s².Í—GxÂ0–óã»Qþ¢’¾jU—„Hù@Þà÷ŒR8 ðò…@˜Ê7wÓ¨ç<þ{zaÎA6þìnÔA…‡RÎeÎ1lþÖÄ¿wúêéo¨G2&Ùl.!‰;1o¾Ý³hýOüâñJ"–¿½â(ÕÆ¯à-½gô~èØŸ ›±Y0ˆ¦$µÎö˜þÿ*pPJ endstream endobj 103 0 obj << /Length1 2808 /Length2 29742 /Length3 0 /Length 31364 /Filter /FlateDecode >> stream xÚ´úeX”ßú>‚4"Ý Ý]ÒÒÝ=43ÄÐ) ’ÒÝÝÝ’Ò Ò­„ Òð?û»·îý{Þ> ç•ç:×µîû>f††BUƒEÜl”ƒ ,¬ìE%%0ÌÁ΢´vs0sp²²³s£ÐÐHºÍ ¶`”(àƒØT, ÐTh;;? @º@–s/€b¦éåäЛýTÁ®s3W¨²¶ )’`'/[kÈï\,,¿+ýΖ`(˜Y؃=\ímf K€«+@ì5ÚèÁ €9ÐÆÌÁ ¶huZÒêYu-U Vha 7''°Ëÿq‘ÔÐÔ’eH‰+kJ€ÚÌY- Íß5 (kf€²&Ôÿ»4ðwº’´¦¸¦žª4Ûï58î@WÛßmÿ‡-”à5hª• ØñŸzÄI€ÍÃÃÕÚÍ v±furø‡Ÿ¦­+Àìb€¾º€ÿã²„Ê ±þ«ÀïM(ÚZA®ÀßI2à9¡RB“ vȈA…€ü®éð¯p€+ø_mlÌ\ÿÉUTUU8šÙ‚ @È1ƒ¸¹Lÿ±A–tÿ"Hº¹¸üî¡ôo—ËÚü›ºº2C?3ÿÝ13›«÷_Úü÷²-À W[Wˆë¿*V¶Àßì]ï™-è›’¸²¼Œ´†&‹"tð@,J`¨: Vˆ'äŸèßõÄ¥¡£È÷ÀÉÉ `‡©4ÈRìèeíŠò[>)[¨N°‹Ûÿ3×ö °Èçÿµ[Ù‚,­~+oéæÄ¦²uvÊKý_4Ô„òÇf „Ø@gÐÓ†íw»¦å·™ã·*ƒŸØ `eæà ô³µB_P|\Í܈‹ÐÏçoÇ#>€¥­:èÐÂòOuyÀÿ/3”É¿]ÿ7ôÿTè)µƒ¼–@+6e0:ôÿÿ9gÿÓKÆÍÁAÙÌHÿ¿’þoœ™£­ƒ×EþO„ð7Wze°‹£™Ãÿøl]el=–ª¶ ›Tü—Yb}qµº'ÿ˜´~Ÿ&èØB/=¶¿¯\^¾ÿñA'ÒÂtuðòÿãBUø¾Pé³°©iË(ËÈ2ý?#óO˜4Èli ²pòðÌ\\̼PØ¡sÀÉÃðဎ´%ÐóŸA°±‚Àh ÀÉ â°» üÞL^›øoÓ¿/€Mââ°IþAolR?€Mú?ˆÀ&óqØdÿ N›ÜÄ`“ÿƒ¸l ´»âí®ôA»+ÿAÐî*ÿAo ÝUÿ h?õ?ÚOã‚öÓüƒ k×úƒ Ýµÿ h?Ý?ÚOï?ˆÊÌì?ˆ iæè= ¿'ù?1P«ùÍ·øâú,ÀÐÉø·…›û·ÅÑñOUvè¢,ÿ‚PM*@¹þ3¬öã·ßÙÍÌᯨVR BXÙºÿUã·ìæòW4ÄúOE¨ßú÷Íøw”¨ÍÚPm¼œl€ ¿" 6Û¿ T+û¿ té(òB×èðûüñC…rü9 jó@k ‡çôÐ^ 7GóßW"ë¿8p@Åÿa ­ þ+‹ƒº2§?nh'3èÇhõGOnŽÿ³ºü—Ì\P ЭþçøŸPÞl¶à?ÛÅ UÒÉÁí¯…q@-Îþ¹]ÿ¹<ü§6÷o#z'2ÿk9 Ö¿6€ºä?ey~# û_úó@Ã]m=ÿ0vu0sµù«”ïö<Ð…Bl\€ Tˆø¯h ·?³ íùσ«ØåoU¡[ëþ„ªîñrB‹zþ¡]½þ‚ÐñþÃZÉèò/ÿ}QTýýLðÏíŽýÏUòÿ–þÁ°=PÇÖú øWˆ’ÄÅÖÓ€z¯â€Ú¡?ÿþÏè¿Ðü¹Íþ•-!öôaá†JÅÂU‹ã÷äõû¯T‹=¶üs›„^Íÿ?3€@O ÊòØB0Ä.¥9¬Ì_º`ª†Ÿõ{%žˆ®BürúT'1Tî6%P´ð]k`m!XQNÀÈ?ù¨X—&×ái½-©jò§¥šØŽ™¿’?1†´øXŽ6«VP†ÒR`y7%ÑBN¾^ ÷LF{B;@kìX’¿³ç6†sâùõÅGJÃòöµ<¢9Ž,Ï%L¢.⥩.XÈó-N\´Y¿ø2ã¬i~Þ˜ÂK§¾L}¦”|MÝã^ŸÔÖ#ds‘úÜ(™\BE5bÙê§ÄEæé¤¥ï³ pa]ó£lìS§L—ªM^°ø”“k$5Ñ®¨5©“šÞhaèKÃ5‹"ÚQ82—õÚÛsN …ñ¼6¢¯QïI6 àNéWËéÉ ³óí­àå–|. &Ê©' ù á›á0È•Œf¡ ŸX ¬N¡ïQ}˜Sξk•i-#7#ò "qÝÍr2k~×PŠäÈ‹Hk~ÜŽµAÄ­Œa–cv´˜­wýƒõK<Å‹y”rÃdò—#þåÚ2IR;[%Òº&£ñ–û¢.Þ…øV`ÛIîW»eL—™1•Ì: |ŒÑ}kzÉÁCù›Õ jò9ÿêÁé¾wVAÂÁóñ³õ“vp%ą̊7؃úÝÙVç0GiÞð€ö¡.3¡ã}am•®òSh±}¶’;¢lãÔ®*Wt¼Gqà;m<ÑBý+KtKI‰Žl׸¨ÜRíìOâ¯ÞãÂ7¹¬êjT8|HÌ)›ZÙ:9, ?Y—yä*ܼšÀ.™S"Ñ‹.3ªkÿ©„N«nÊÏÉŠ$P> ±)¿+09$š;YîJ#Åw;‘~þa¾Ì}‡^f‹ æëê¨_ú웜eBS± Z^uöˆ^(íHgÀGü/´ÆÚý,—lÖîRÖªÖÈóxõÌ_Ä_·T2²ìbGñ9= jÀ’¤3yë{j-2 íª¥Š^æÕÏ`” Ùº„CÿTRÿ©ßBGD‚™ë4+}¥ÙL‚¼ò3É n­íË £Ü…‘žÅ9’ß÷O@+ÕEÇWŽÅ©WÍhäÝξ¢š’*_½'󹊗¦#)èætg4ÞãûZ”SæÇqÂM_®Åä£\úbRZÕa7*>¿QS¯ˆM¶ëù0Iw1NDlGOlp/÷!*¯&&úYéÖ~¡¦žÁÌ¡ŒujWNõ°¬sŠ×:*o«‰ªYýxš’øÙq¹>#‰øÎv7õ„|À…+‹OÑ—¨„^"yÞìÁpxˆU ’]Y ¸Ÿ¹Õ`hóeU¿½„×'Ÿ(Ûˆ¶Ø6"5×âR9V~ˡͫ@ËeªuáÊ`u„«'â]¤—=HŠKîyŠß¾½ã𖏨·+»ŸDÙ¦âY¾uú67üš<àÐÃCæÙË—‹ ˜v±ihº¯~¥;·Œ¹±7_ì5vlqªÉЇø÷ ~Ö²9pä®2RâP׈ 9B{™¢.Øö–Ÿˆ>J|&çüDç.LIÐGQÈÞpÇ~¦ˆl¤L ‹šˆ°ßÈ fTèË K.ó÷nE#¾K]ny=µúx$0êdŠÐÐLÂÈûÃTrísb ~ñAõÍØÐs†Ýl'|f ü6qêå‡ñàÇÒC˜ž “Wùl£tʃ•:½T)Í¢ù”æí¸,RrsUo "›ý~ÎŒj§?…n+%A^oªÌàôà Ùг‘½L¢Ž/î¹Ï\Þ†ù˜·‹ã֓窠“àS±/_ßyx¤z=Âó¹vÔ`Â'fW’yÉ‘uŠÉÎY7$¿å2¦ËG b’Ö‡’ÐH”.Y÷­C§S‹OçñVNx¢ä^˜”!Ú¦'ÙˆÓ„ÜôX]Êž’:¶išé¦½Ñ%¤°ün>:ÛK÷aL*•&vÁ9©âh•ÅkM¨“ä‰;ýÖú©YOä{gšsbwoK2¼¾«Ë·ð´ì¤õ¼B%2…f±jHë2õnlì±O¹ÿíŒÈë[W¥8C}ä—%N1ûá}âQ›~ÚÐÀõ¥â»Úöò[eI\ Jÿ)!û«gýf´±‘ìåõ]Kó”‚Üý˜) Ù+¬Li1®bþþ¹“5Tátå‰ÀTV‹W[œ¨’±£?˜Ã\%:—ØlÛ9PÚ¯q]¹{êšF¦¢-üïç2«žI‡ª‚ßGz/Ò7…e^‡e;ÆŽøGžÎzáD{ Owßr2š¨¤ëOfá 62m0iëúĹXŸ×Ø{{8X¬|ý2ç_2®O3”xƒÛ³•mžß‰–†¥º×{åå±Ì°–9˜&]M"k‘üù«2ñ‰@ÿËv™ÅG¤ñ\Ázûº î"z-üIøþ…x' nó# éÅj` Am!ÞXRÐØ%œJDIá̄Ղ±"¯SFŸk[³ þUd¾¤tm%©ðo ®òø½†CiŸ¢«.õŸ‡·Hx^üœÑ>ÛGŠàbäÁ¾ŽÅI¥ªÐŒf:¼ÍÝ}ÖÖvž¬®ÀµÈm^LžJK†[á´) FÏÉ(-kž³O°xjªÄ~; –‘ž2^‘U4d&Ç^ ?ô]€ü$¹Pä|äÓ„.u ¼$!^Ó qQÈ$ËŒ \¤Vˆâ¥¯Ãup;v NáµÔè›”jc4«uä'÷ÔXë? ב,± ,=^Áˆ¯á»ûêSÛI@(9bTAÝÐ3µázKu9U)íOŒÂÙ¡¬*$v[ëdñÜ<¶×Ž $ï9jýUâ`œðÝfyžšÂ/¹÷™ÉDX™Z]q¼7ÇiŒ¾Yºâ¨Ìž‚ÆDßë½ÖðÊM?n]ãéA¤0É3fP”3˜ÔLT{EPÐþ½Çói²2µq&%Èo˜4àqèci˜âMo"%RLøè Q?y¦Sˆ^ºY…—·GP–Óž–Ä´ä°Û¾úœQ1ꛀ©$å×¾/U §Ÿÿ ÅóKº h{? Óº$û-7eð—ðäuY ë^´‚¶‚´£®ûk°þ3¬® ¼¾ãØZrçni$&ÀÕÕ Õ4L@%‚X#knBÅÜDG|…o;=9„,Ÿà»{#–=éÙ§‘ÀÛæÐò%¡´5±AÁÚóâh_ù>zÕË Šì“(FmQ›¾þsB0{M‘ŽWq +-Ëù»»Þ“5ç;YΔlÚ·Ž›Ï6_±¦û^*ø¯5…Áßdõcëe ·|çè"ÓÁMyé#—²yqy)¶ïÛ÷¨Þi6ží^!çÚe³ïÎê`õ˜U‹w¨Bn¿÷YgqúЉ‘éŽÈîߣñ64H×ð2 ¤®¸¹êÌ›’¸Ó­%–ÁƒaÌfµ•RG­+A³žŠA ïBÃ_=oÁTe7’ öŸí‡!l…X}F;Îý4ðΎ˦"’(ÆîqW÷":Âü­ïôÓøîTáϲ¹6þ›ˆžâ–žÛã¦ýCcŸ!Ržîú>¬Þ4˜Î·‚Š8Ëßt…â‰áHÜô9Äå‚û3m>Ñ"ð–FlùPß­1á³pfÁX¾4¥mçg=>OžìCf#G°–ø€Ü¡å8ß®+9Ñ4ÐU”›ø3ñŠXÝó½4M*Xɵ:¨<㵜Rø½Õ´ªÌC¾}—w¬ªø³÷¾bÏ\•Ÿ¯4äü\MÇH˜C’ÍH±“m¾9GÕTQ~$ªU.¾Ž"‰¥•u\$ºsg(½×Èx‡è·"ÎWÁsh>1–b6÷ȃ3c¦N^É)õb¶3dZk³;d+IR×ûÍ@{ýWøºd?«èoMnw2\¨H  W‡odU™~æÁwr¿+ò|’Tò7ß3瘮µxD#…–—Ì’bò¿ŸÈ"ƒRƒ›'1°õ€>»ù IÄzle†%QÇìRЯÑS±€’¹)ñr'å-Fc §ôos´;>Œ-žXØ7‰ø±ÕÆ$Œ¿”¿\#Þ|žð?JZf¾ßBS{Hö:CˆôSÄàŽ.â7½\™éê¡xöjÓ®~ƒœÉD]^á Ý_g!M¼:˜L¯pŒò•IïxGý®£ÕK˜äláÕd@% ¦æ¯¦Sº¦µŽ2E~V0+=eI ÆÕÿÑé.œàwB½ýÚ¯~×_xX=¢M°™ç^y/Í•AeNÔŒÚ?ƒÕ ætY#È&ß—è¨q'¼Ê… öqž¶c¤9¶÷Š”~2$ QtçU`ñä}%ZÞÖÍøó²$-kú—èÿlOg£"kíœÒ(cÙÒ’t^ÑTî†&R0+°©ÖPƒ¤óœÎñ0?ØÒZ]ç—AÆqŸd#âÞ¥0ýHôâÎê 4½÷bžôÙ¤VÉ+øs" Ð\o‡fÆ-‘×È2ì§“ªnf:ůÍÐÎìûƒ’¿ü(º• Uµ«L$ÅÓx·ÔR’›àD㾃íl$wÞx›_ÏñU^{FÔ–c/û%!DŽeµpî $ŠCœÎå†%ïÕƒ ÌRÜw‘iv Í.öxÌì!Oüȸ„Woi&.¤¹Ê7IˆŠó¥"uTSSœ%Ëžß.È#ˆÎ$né³[º:“”oøºÝUT³JmhjùNæpwVþÄ#ÃÓ…ÓÔàÛnϧåm% éÊ>š0ïµAç¾ëW¥œöA¨'´¥0è>Øj 9r2³‚¢J¯"Ñ­ŽWG\"èÈžœrM×]ÇÎõfJ_áǬñVa†ç©*4ûÖvr§Y%ÿÜý´n—¢ŠØzÜÔ…­n 0/$§½&EmAl-ä#À£·!FBÙóæåÃk¶¿c’dch¢|” Â$ÐÏ1ÝåÅ|àöÿrCB0—×ùM0]õ夵6Šî157pœ‘¤p¡ªA³vææóàò-aé¢Büu•–¼OÜ€ZçªÜš¸Âƒ€©¾þÛ|¢Z®÷•yy[^?j0*Š©Â”µ¨¶IéÓÌòØYã¼> LZ¾X5Jý™W7©­Ø ™}áíÏðK¡¤UX4‘ëP®]ú~a%Ð5±Î ?ü]ߥ;dAñågÂæ 0ë—ï$:ÊûQ'âuzÚuˆ…<ßí¿ˆ´O&R}PÛhÕ¡PÆœéE3xæ¹ÉûŸ=~à^u5[¶!+›ÄøÀÒÚ%„¡?ŒÖ “¿»‚P1¨?Ö¡©ÖëÝ\¦¤øqº’ÑcêÑzUûádþ†§Å+-D¤TYjÉ'aý#ðG¢…1ìÜ5ÖD÷Ö9ö4ÖëhG.0uóu§—áÜ¡>Ÿ)9ç^Ë _$x¡ùöøP›U¨Gx¨D2DÑ\P˜~f˜|ü¦°Œ¶ì\-"€é%¿‰Íë|T]çŽ+º…I™yMhw9yª¤tq²kRø…ëG YÁÐPø>VÍýc‡Û¿ôv)Ù|\©^´ÊËùðîñÑt·ÍhÍK9âôÞ-A¼¬EÌxù qý¥òÇ´RžëDµú–p”ƒ+å9|æ. Ôõ7ÒØ< ¿^˜ (ñúâš®}ÛÏÛ ÀÀŸ¥~ðc°y~…FïŠÖúréšv] K$BÏ©sg:XS%è<éhí²wàŽf#d»g2hŸ~Ÿ|ÎÁËÜ”T°0ûäYs+Ïh‹z>O‘ÈÖˆh¥ýƒ9Ò~ÝÐþ¹ªkñ ükðêIò}ÊÖÑzv¾Æ6ÕpiÜËHŸyÚl¹%±©65 "Èñ[k]cUÊqh޾ÏT¯ö·LõL¶š·ˆÈ„%Ü?içd¿Üœ­õ —à~5ßr›|Fòb?‘ÓC°ŸqýGho¥€z±v]‘ßûUas ¿ñjtÌeK‘m5¼,@VB×Ó¶hC»Km·©Êê§uæE3̈è£ÊúX|äºaÿ×f )³½^ª>¾¡“0àà+?T G/·Ä »ô2V–TâÐÕYŠ Çöm-ô¹Ê\µcvLwwÑLKlbù÷‹ÏlÓ Œ£èÏ5æËì_¯[ĹÅ0¤ùU( ³öœ›ÈuÖ©tÂÝbȆŸJüKJ1†b"=iî}< m´ú¥¨~Ž_¶Ò:#¥¾Æ/9'üÅ\³·ËÍó2vQ§UÏå÷6z(qÅß"8Â,»½í3sy ÕàÊ©6eqªKöCÿ­ Œ¤6¼.oÊ+Û¦ðŒ®O»&nå9¬õ¥ÎWS7¡#÷ÀOr#'2KúÆUîOeÚ„ÃnýW ì’¢¬ZVWRäËÑ6¥Ðt#ÕZeÁ==eéªC¿áÅ*†5¶Ñœ´_>– rO_H•W’»[|åÖDZ Xrå{'Þ;¿¯I§‚ñVù]Q˜˜ð* UÜý%>Õ}ž +ü%2ÿwѦ÷“ºK+¸oåŠá«H¦-¥±èГ>Š. †Ä¾Kp8ÚsŽê—¤DrRŸ4 Ë7Ö#Cà(”ø%覛:˜ìTÚ îPh|h:i4'(Y´W¼f¥°ˆj«ž_ޝ´(w!ê%\]Ƶæ×ëß?½ˆ’'%Ì"òXlåû(OqÔsEþL&x—ˆ¬[ËàêNy"Õþ>g} îÆí|3˜¨Ç=ë§›²iè€<À|º“\ÐÏ‹„2îjpv’:We`’ùÎ@%¬[æU%²»£Ôü[„]ôü¡¶ÑV>7ØÕŸo °Õ,Œë(h´­O¦´•þsÅ0¯{D †vœWfý_#0jjF ¬F¸rçã"¦#‚ŧ»kU%-ø&Í–p¨%ó"±Nr qÇ zX„´‚…¾üâ™zY÷üD{l1?²ÈÔJÛõd>îZdj%†oÒ'Œ°iþUÞ5¨å Ž/ø’ÓÈýsš:dSgäËê#×Ö:ìñÎ̾ÇcIÕ³t—˸ãX0{Á]‚g[Îl¸ÁÄ,9ÀŸ´Ñ'}§™ ­‹’*E_)¶(/W*¨`ÌuÉÔïî‘A8¾í{½cêÉ9u6Nü&Ú½ kù‡R„€bá{Ü”3nÄn:_[»$ñi¹OšŸÜ{ép°qê< qjߑқ¼ÊíìG íÒU&öxÇ‚`${ýýBíafTÒ%š*ØT¸ô\•ÀQ_è=^épÿzäåŽ5V}W”Ž÷r(ÑG EŸˆ,ð Á~Švo¦Õ °‚6W8‘û:<¦Ô݆Ú0“–Ú!Á+lXIþï¸:Înƒ~/z?ð¼"X­‰[V"y¡^LÒAüÈè:(Vù¼ A$à-FÌ©wõñߊèézõÚ ?œ*ʳãÝë}‹<ûêõRbˆƒá½SšÒÉÓÇÉ °Ù[tb€rÝyFÞìØ0éJ7c$Ï-¬1[/*3ªüv9WC¹ñô“w“Ýeh‡±‚Î㬕BÄQ0õKZ•ljã7œÎE-Æ$ 78ˆ=ùxÖLá­:%F0996ýù!šÇ§$ó ßÞ°¯ùæKˆͨ¡ï,ªÁ¹9‰0¤ùèžþ¾»JÈ¥"þFä{ô 5[ƒÙ,‹] j=Ž“ÿ˜@Ø•ÿ`¸–Ë–ÞkˆGÈ D}æLÍn>}À"‡}7wü.h9ÑÜGª[z }ðå&_ß,¦Û;ízÈèGžö¶ñ™gÇ3I«¾ÞXTäPcøï‚]ÑÍu&ßY¿vWË‹žÌÞŸZYŸ× PÞç—Ao³†ÂOVëöB–YñM}ËWøÛ}?~°+qÏö€c7<ƒ|Gìy¹Û½Þ€6-Å‹yñá%¼;öÙÐZz•ð}¥ä#½}EÉs‰{0sì“Ìã‹qcÆ6¡ÎAòòƒ×x¨µ©TG Çš­ÙhóG{Ѥ FÀ…PänÕ•&*»­V“ûµ­4c„9›£°œ2»åˆœœ.+¶&F`Ù‰xúq5%%Éýi‹å‘hÕTÒ`«À7qËU,Œ|ó·) WÓ„YQcGi$º¸Ã1{7»kïïBšz†½PAd+tÑÐùÐGãpùJ<­u¯I÷NŽ/hTÓ¼Îu%W¼?–&ž‹ÆNj)<¾Ò·RFÔ4¬—ÿa…­;I‘HÞÛ§wŸ»MG‘µÅWþòíÜ2ê'T¼7ܰ‹¢r¨EZ/ÅÃæ%(nãՍކ¢è 7UÑDÈ=œ >¼õñ弜+U9`µ˜0·jÌÖD÷ÂDÁà{M’@ «;äx­FY›}K'JíäÔ·g󫘑uÒns§Ê–Ó“(2Ü ß,FHºb8|ÖN§€s¿¦ã^M)ƒ;¾YݶþL°#qWœfd=üà d24b²òÕ1ò“¾H!¯¡›Î?PÑ>/€!Á¥R@Aô3sاN#Ë–lõ¯¹yƤÍ_GDΪ :~æü˜ÌuŠÍ^Õ=Œ~÷ЈIFÐäˆrtUcéc|ŽÊ3¾j‹-žµ«¯½åtAÚ›â&d'X¥0‘D ïšRš³÷aMe©|³tŸv‰á{‰ÿgÇÈPÆN;.E»tÚÅ•TÓžCáÁ.Ã¥ñ¦ ûýóŠ ùÔÇ=ÅßÞ^i÷Cz‡qU…ë@œëÔ8Ù,„ýdWW_!&œÂ°Ž‘‚j©Aû¤eUÑ…‘,˜äQÃAÖyͦ°ñG«fì 8fÍÅè—=žôtj!õLâš>õk˜ÊÒµ¸W—¸`‰ù²°Ï‹Iï– p¼Qï®e´$‚Ø´B™R•¿£è¨­]‹ø1¹QÆ:ayVñP_è.-¼d ÷C¥ÑdÄËè• Y&„&"Í)$NËÅcX¤úUhÝoèMXe¥ìêr£‡Ú—h}Ñ}b2n–zÌyߪã»ÓÓxè~h™fü‰äš’0ãd€q†o­Y:œ‰ñõY˜B#DèÀÙ!¢7K‹¾ãka)g¨‹ÕúúºæÚ ñÿÇçùC檧G=݉¼Æ_<¥2ÌÖ>\ên|%46îçÒµª/<àÈÈùQ"÷*ð»~LÅ» †×étêåŒ LÅ)ÆÎ”èÆÂ IèÙë)®M]žIþ#þ8¼ÿÁ SÇØ€ ã›™CÓ{B%Ÿ•u×Pm_”ú­á…ÞÈ·)’ðÆ5<›Á%Çê#Ça+”b\‘»?fE=KÿýÖqæ9â4[‚ÂóÊÞ À8ûQ(°:~ÜÇÇZ+°t+âã(`Cvf%ÔÛøõ:ûK—nB[É–B!¿h<ÙxïŸm–}¢¼ÌAo‚~Hô·ìjÖFåàaðFFÀv]|~MCDŽGHOAØÀG'•ráIê«¥C1£»­ÄÇEyû-lΡíö’fíœY–šç\–ÝâAØm±¹/£]fM™x¡¨>aQqÛ*Öz‡hã‘´G±%å÷Ëõ’®÷¹¸¶yëm]Û§5%8ÑÏC:: Ü]A¡VŠÄ#ŒGïN¢à„}ŒÊ]-Ç$þ@TÀБî.·‹ÏgŸòOM¡ƒ‡ÏÖE­˜Í@µlÕMÔ¶)ºl÷’$Ù !Nã£Ûñ…¼?mmãÎÀ-áYìÖê v‡I:ºÑŽ& ii÷þqg²ý~ס뱵Nœ„ʧ"JÚâ6ý|߀õ¡EBú¬ªï‡úa/%@°¬p,²˜ÑËtcû  h×Q®ùן\Å<äsr ŸÀ©ìp”Çx°Â†èSÄ o+>¡5Ê7˯ŸH:&Èd—è^Äî=2i¶Rµ¦üè”×’¬~´Æ=]âRÁìÆÄñ0­çìlÞŒ{Ñ{}+ôý1;–MÓ2~)žJ„PAÜFoÎ0ÎnÛm™QiËÃô]€é5©=·ºè8×F³iÍ“Ô'¶9qʽ×{÷lkÑ]¿Šã±&Ó| ª1çž÷ìŠrFP`öN;Eì,´–0¿QqÜ[;ÿʲÀ„w ׈¸¬Ž1°}TÎë<‹‹zµCÜ…âîAtý÷imTXÍÒ†M²-Îççû¶¼1‰'¾ÙŒµo‡Ó¾°0„’Ó¦égZÑ™Š+ЉIîbgÞŒ8ªÚáÊ%Rf=Nj½~! £³ísG³NjóÔMÃÏ2낦ëñq(‘yn¡Ë¢ï;F(9F0—{Æ-lXŒ@•,‚)¦ß/V¨f˦1)0ù¶Ž”¡Z%d#öZlÚáK3øV¡uEaÈÕ#ÎØ¬eS“†9a4«|wáⴜͰ kߨ~_¹€í¨(dç´‚ßÓºÛuÇIž3š¬Î`y˜?8®ù¾Å¦ÿü^*”¨k[¡âºqx0í\톀<%¶QÍMƒ"Ã×äQŽåtË·µ¬B$+™ËgüEVÜ/µó‘!Oáû,ë|‚Š€gi®°õ‰°sVyÐ{ÓaŽaw:¤LcJ¤w«† s\†Hôè—N¢.$3á‹v«±ùî–ê»KD­·*}ó)ÆÑ¢qÖ ‰é£ùû@ÇÈׄ,ìƒ=ŽCž\´–â ‘ˆŽ€•Î Ot†Š‡_ëƒÝ½Ö±ãÇVÏ/܈”œX¸äcÆ3¥Rg›ª*ZÙ?‡bm”7‹†Á‹âš2r;àY¯™k&2¾¿Z¡òûbŒ;FäcÚ Ú8*J>IÐ$–ØàóÒÇ~]§E^@CT6Øx¿]B«ÿõ§aÄz]:MÕ­]ã‰?mGCGÍwð”FÑÏɈÛÄŠÌU†À¬±ÝU(à Sp$¢˜S?†•Î ¶k·ÐŸyëvIÉÏšç8ã ‚t~‡¸1}Ʋ(§ŒºN¤Ø‘Õ Íw²•i´…Û¸«úˆÑ鬳Y·ÓïE– Z$}CÊ×vœ@\VJU©[\ÅÄâAϵh’Þ§u’¥¬Õ½‡?©R”£7‘øá‹—mÉX¹eêIïùÌO yë8 œkõæÞºœ¼5u„·ÆIp?Å}»¶_PPäž {ßc WæhÖ@Å»‚T¾ÇZ|(l,EÓ\/±ãXþcr©. 0ÏÉD¥XÙÉäú1$ùÒÅr¡¹)¬*0ý!tsvE‘3MÃô˜:éT¡—«¬CÏÏÌl¬¾{cÃSõ“]‘1dîØ¢aýÊò]/¿q$wØé „(Ń/¼#¥`Ûb=Ú«Âó9&¾·Ý¡eç[+auÝÙŽ7¯öHýK$z¶"9;-”°4ü½02¯ÄjáºËBÁ;Îf_1Í™‡ Ö1‰ŽýÄx—|r_§ÏatE<–N]g®EÝ;úÏ](82YÝð¸AKuíF®6ö/BÇBH׳3‘äl™ßLïÀÚÿlÜ Ÿ‚5ÜŒK›¸ìÝs(Þ'{è4ä¹GQS˶Y>Nb3¹ ƒ®û@/ÃøjEAê'l¤³Q:韬é"·ö&K2oXCˆ{’sÝ臹9?ly¦ŠT…üœìÑžË<¢€0bM“# 8Þœ0dT8‚ú/“¾äa³~CƒH ¦%¢:ÕÄE¾¸¯GØ–Ñ0 Ó.>NH¸×´oPéSFhpœ£´Ã+ buTxËïtþ ›2•ïÄd•Z¡Œµ4©¯Üò®ÒK}Ìè<¶R ‘pÐŒM˜×ˆÄÑ[Ã4ô)ìÙrû¡$ü¾KiBÃ=3’ñØù¸ñý ¡¡u& Oë⣽%"ì6­Še…9Æ–zÕó¯{ž1J+xÔà+OmC»ñ×ó›ÅòøI䦸Cëé¨ÎœØp£}ÞºA4®$A0Å̱073Œq«ÈÅÖ×rÌ`ïvo† ‚_>©?±¥ñÜNÂßnÛW²ßCŸñã=¾u*¶WÕÈsÊ·uVì‘u²øwW–“5è0áÝ{±‰àï.žQ'ŽIýj›l.¿UáÖmn‡ )eŸE¸lñ I0ÂÇù —[µÊQ?×ë²ZÕZdIÏçVôª-z¤«rTˆV' é×Ãr¾×ÎqÃ6s½ÁÁ¶[« >Ð9šà0ûê ÑÛ%O,W];Ú³÷“ †à†{J77;ý‡Ù÷ø¡uÞÑ…Õ§‰³»=D,ªQGkÓx/¤ƒPâ:¯c*'Š' ð Bú¦#òA»¬8ØT}úkß/¶†ˆ®Ý5ÖUÔVwΛØýÄAVsdŠ´Äz­tVydËcõÙj2zsØé­‚áÔÄà}ã*Ý_§<Æz6_©ˆò˜9õðGÆo»Ô÷E ïåé×µ“ [JÕÜ–@¤,a3•§biBÂâ^ñ ÖͯÀÝúŒ‡ {ÔòX²/_.©dvìí¾†¨ÍǺ¸Ó;ÃÇÏ×4•3~Wß)¼!dû|ÂeSˆFÅák7{r^Ùµ5LõãènõÎ’ùÔÃ8ûJ–FW:M¿vcx4ˆ”à÷\K“B{×ð\¯l·c¯LÖÊ|ïìiÛrÒl™•ꃧYXœlÓäWø¶ÃK0ofLÌÜž´æ›…ÿrÇê:yÙ7F—÷øµ²¬ÕVÛǽrB&ðéHxQÐÖ¢â¢Sm¤± C7ÐG™ï«úW‰cCu­p3a.59/pí–1ßwa²ÞÔ>©”¾û1^°ª3ç,×åðTÞì%Ó¬šeÞ¢÷ÑÞ^˜²ŒH­nùýí~_ ÏiR¼šè§D×ûóK”¡,¹ÇÍFúo3ö§ü’ÓäB¿æOÌ1L­&8¹?ø¼ÿ‚ˆ”רîTtáÃÜO??Ú_È8*Ê™ÖÞÆîn2]IÔC _2è´Ž|*¿sØs¾GTmY.%ÈÓ,x—laÃïm;Gºˆë`¼¤²“1¨Íb ·»±'£=ŸöÓ†R$ú&gþÆÕ÷1ËþÍ šoIs’¶4+÷·û(ßz¥Ö†ÇT ó,Ù<–oR¾HЛY¼Ðê—f:Œ‰¹Ø“þfÙê/ê#@—ÙðÁ ÇëÄËÈ"bÊ£ƒŒÞx!e!§'Ò7õË^Û覀ïá™É åñÐ똑ïܬt%VÙŽæ­a©ŽÇtˆ¼EµF^ëÚ”uaŸ©FY&¼P©ú§“wl¢çŒÊpRjò‚ËÖ¦±®ÁSz­ÈÉ 9"^Q`I!7Âøë”éÊÕV~g×'n¢½e×I‹#;<¹-Ú¹èIQ]Ë­í†è`8&]D¿fÙ`žä—÷5t¹5eŸì”3a›Y/„ R€ˆXî43f4ÎÍâí:×ÉšUïWBk-ji®öÐ%ö3ø†}Ún#+­ªÂZ¹.¨˜×Ð(Lu/ùaš¿Ò_¢kO¯³GËðÞTD+0Ìí­B­þhT K#¶¼a°ž£b7g¿©ƒH2‹Nè 3eAMLˆÄ;_6šÚ-ß§Ä®|ä;Nåé!0“~ˆ7‹oè¼ítø6¢ŽSÃ˱mÛqÌ {·OµVè³eÊOËÁ@GÑ·5¸¾%&m›ØÊØe°c9ñR8dÕøÄ γOˆÅb¯Ø¯¯}¥ÂŒRNÛÎæ*|Å_ÊvÉwWt2.nU_ŒcÙ¶ûeÂÁ§âYlØîë"·ädbu ’]h&²|hñܲÄä§å…:ÄBj‡ÐEÁðÉøŸÊŒdɪ³‚÷-'®cÔæ(DõÚç´¹D~îHš*Ž4õª› ÂÔ=™Iý܉úбFýÒü^KDWH&i 9ö“.øæÍ³ãBʇŒ]ôHϬ·vçhïßdõ¹-ah‰~|öÊØ1c×þ°ŠËÝÁn!€Üx6Д)Ø¥†“díŠN½¤ö¿ ƒœ,]‡÷f‘Õ’æÄÈP!a|`[Q5U‘ÛNŠ ]‘6JI¼¦Üëk{š ó‚feiö¥z½’âÈ.ãM\~IÓÛóý`ª~Ì7&‹lëoŸhì¹­—+#:~]6—5-¤GÜ/ó+7dæ ï/Þ¶·sÂ.\HËš¡6îÕ…kŒ‘‘z`6I›å]EÉäÆîž¤œ0zRáÒtMùty’ÀØB¹QH~ô#Ï i|ÃÞ>|ØéÑú°å÷ð÷k>oÃf÷™ýSôfùª†4D‘ ŠÇÒUp8úºf†qX«nx.=×:ýòl—ʾ(r¾³#È黿Ü\Ç¡œÜ”þÙY4¥üÓÜ„<„†@s{œ¯$ísÌ¢t:—©–>-9€XG|(vç#M*¢cÖ/é<áM²O¡¤]®ðRTk¿ ¾é‹Zê§^yæòË‘‰M›Fõ”ë…²We°ä¿ÒÍësë=‡ùábÿò#Y •LmO­©Q³…QË·bé&$±è•‰þ1ùu^¬É´«‚F £ï&÷µ¾±Tè^ÖeœøüÖ|\T¹LCÆñîA`“B©þ†CR¢VòJ¨¹vÙ»¬ñþžÂú^n¼^`¡‡gp²TþöT„ˆÁa eÕ–·V‹ã‹8ß+$ Ù°„±~è ‡¥-—) Z™f€2a<-Ðto:¦t^ÿ=Ë)½ò…v#ùŽEzáôgá¢ÑIÅ£ÀЧ¡°äíôÏ­¿®#’@Æj7\×à߇×q¢d±u6˜Ö^ i•~–¦ÎhŸeEPÙ …T} zsÕœà…eLŠÏßñ‚—ÍŒãUÃJ‰»«EÍñ»/¼“ÞS6’;ư/QWs€?MÉôèæÔUÆîÜiF(«ÈÏW½\hZÅß´é5}å¿»±#m'13¶Ýºb«Jîøò`©!æpJFHÄäM·ŸÁ!5¿[ß§0aä´,•qi`²Ý6Ãñ1eÂý¼×°’›Á22OKê¿Ñ6’ø]‰ÂDA§¨à õC^ûI=»0,Äx]ÛöZ¹y h…q……iªŸ;¡TÃäâõD–ÍúÙË@Î6:ê÷âØW..AÖBiê+lj3g$hób‹bfyæÇŽ|q í$0NK&—ï-ÃõøËfîœ^âÙ¨Þï¿O¢Ñ6ºFð]ŽVmòühõ%»ÿ—VII»L>OnÒò7™!·1YÝê‹\˜{VN¯c7ŸÝÊlG˜ñ^RÐÞGØë÷7ož¿P¡¿‰§ü^k92-?_í‹Å 'í(X—Reyq@µÕŸÃˆ¦ /ÔØI"ò ø*ÓIK“*Öœö„X™¤›¾Ì„·r[½Ã€î7ý\ç‡WÇÐͬ GzV½û EÂuÐgþÑÌO¶Ò ]SbjËËsÇ¡šðd»¦ɩ¾ÓÁØœ I®,Y,—zt)±B¢A?j_/à§Ÿ/Ê­@ÙbßS7üÆláÍŠ3¬hß^Ü8n“Ü뙇ýÞ5ì`=½NÆ £qHÅÿ ö}nŽ0În«ÑŒ4vH Íã{ç‚¶H]ÕË7J+OúÛÉ¿X'¸¶ïƒ$)‰X£ê&È¥‡¿àìlÆÅ¸•ä2ï¦æÈÉ[PºE.|;ÁXÇ‚´ñ؉Oá•Ti- ó庂ˆD!4¦Rrç°§Uo;…z³QDÂ3› BÌøÃ¿ ˜Œø¢zXý|·”óx,˜\]÷ÈH…=`–ÉO=½’—J«´Bîc掭…I—)Z;=‘=¸{·°ƒÐýí‹äÚjˆú~¯{}ÄÆÄÈ®Aæþ“ÿ¨(ÌÕ°B´“‘¶ÔKëÇ|v5hyðŒ5Ò[€Å©V'&P·„õýl_©BKSûny&OÊúÀóóúÓ^;íóeÀžöwr{Ù¬ŽØú;Ø/a«é˜¼8Á$LËa×§)6§Árw*Ðo»5¢ÍåsoæºËH»X?Ñ‘;t¿qþv^Hk—x¬iXy‡âHó8”飢›f»è$ jZÁË‹2÷û¨Ó>¿|-J›H2rîâWÁÉ@֢í$—^lï¾SÔNiGþôY·Ò¸]޹Wû5Í9¥E­Â¥H™Q‰üÝ­˜v‰ü×>CoíÊpDȈ ̹)Ñð™Ã•·†UÛjUs¹¨¶}·ü¥ä7•··ˆÎ Qþù_#ãª)Ì•—‡n¶8³!Îã¹Ë* ÂÜ——¾µ½’!h3Ïö¾]˜ƒå+ÊÍÞM f…ª¼¬¦*‡ƒâ‰ê¼6 øËa*wºÞæµ72"¢¿`ÀWÓk¾2gŸÎn„:/n=H¨ž¡Yß)䱨}¨èØY&ÈD•U‹©vD®îX%Bañáœ#„ýÀob.-{ÈxðãwÔm«·zqN ±µßÜs‘•>}‹èÄ<òâh¸ö>Õ˜Œ‰ºD2XÏjI{Û.¯ûÁ³Çkï91ø‹Ôg^µð|;f`àû¡Õ;tX&±ºRX'JO'|tAëÊþ=2n¾áCÒ^Üôw»”+†‡;š\;KXô- ÇÒ`«?$ÙùpÑ9'WÒ06–Ý,¾^¤r3nKQž¼®ã4;«Jš{@§¿Xãx©Å€¸¥d̨ÕÓÕF/“ÿé²’/p†WÊÃþ,vl‘XõŒO·3ýTËOœzûÙ,æ± Î#sPjƒ¢âáÀ]L3-N1[H= ÉÝþ‡’¾Êüënfç&gº—%r]Èåª"‘£¾kôQà%3Cñ­¼Ñ³™Q°ÏOSÎïJ3Ù·zë$ms`ú…êh*¿Y*çèÚ$Vdš6ÚÚãÖ•tœ»ùôT”‰Üµ¾yQG¹„±BBq€ßîc¹=u½µ€¡›PaP&Hì‚Y'’ß´àÚÒ\õ.ÙSÉœKhlÀ¾M0Ð~ Ý$V’Ùgô’ß«ï£|Ê#Ì9Z`îè4eåñcú´¢%c6ÙwÃŽ;*©a ~êŠ.ÙíÖt>rׇèØéò=;=¯Âɘ7n±M>.J2Ø ¹·cK.™•RŸ?¹˜ç•¬e­Ù,åp柟E2îî7†¦êÇ« Jd¼VøyÉÔv¹Y+ч¢(~Ö³[®oÖï †G3¯“þˆlSÓD¯PâþåS=!à-»Çþ¯.œ=$ì“þ©Ê…ø±AxÜÚ«—Kì¾¶žº~zôÝyÔL¢[6˜ß² :´4Ä Âvu‹sÛâ^Õûx ²Ñ1ÐÓó)x¬†}Š»óÔ¤×ð7ä9­ßî ¯DI®Œ Ëïq‘‚v|Ézç h¯:Â÷ö¾’VžS 2°®B.ŽåZ¨oô†ðµAæÈ¾(bajÍ¢ì°OªE)c«¬7sŒÂ¸ˆ]«4QhبÃaO‡X…¥©¹å ä´‡¼¾ÖÒeä,+äöoµ¶9ŠËD ë‹ør²·_N¡ŒÍƒá‚"æÕà.óØ Eqãë·C·¶‹cSÏß§Ê…öøéÞƒ¶“ŸbÒJ=u{‘VÊ^]æîஜ4]å×çÃé¾_’é«å®?¸p÷Ä ³o;™ ø†¿Å~¶àãÿLúBÌÁŒ|ÀëŽç×é›ÒlÆZv˜¿Ü -•ÆèyT' ?¨•zô™½ÚšŒg¦ÙX‡ÍïCó$ëÓ(E–ÔÕáoK½ý]4±¹›Zß®ÒêËò•w~J³û¢Bîi'„ÊåËuàex“2¡ܳøœR]¢BúQa¸Ùlˆ!~ïÐ:ì*2¤Ö9-Z‹,'I§¦iµ«È»P%ýº 1V¶!ʨ±ã‰p'®+VÇùIÓ+WÝ7ÂðXÁgòÿ~8Ç;Gì5“†ÒtŒÆy=Ut¯®Ñ'=õ6×'pÇ”M¤EùEñ9˜¥îà˜¥ù>*ýA¶!¼¦U½ž”Nô}ç“+9K¡â%’]&8ð}í·Õ­"l÷6ÔÝR´ïrLAû}ù” qÑkœ–$4âY5\´JØuÓÖÛ'o j¶±š¿ëO{dä(&ñzªU“ËÁô=¤Å ±ËøCÊN2ÉîÆ·½åe3.á)l«nnÔ0³œŸÁÈçúž:7ÿRYI°H”Ø€Y’9¾ï$ ×—L_Š96£CäÙJ£ÐÇ)ôv˜9š(>‰Væí5ÜèøÓ~íiÑA Ùú‡A¼^9GYó÷õ#Ñ6Ìèµ.ŽI ù¡ñ ¥œhÿ0!õM¯èi½I-sÆô™ avú׌›.k».[œš»*’ íL[È×9òu|GÅÂOò‰sõø³xBD7ôÂ6T¤ýBSŸpHëuéañzºNÀD® hpÎqú äÁQGR•>PœÖßOª'¯337YͤoH”² vU`Ùãf ,Ÿå·{þ×ÞU ‹V[=(†ß$ ,ç;#3ê£(³g6ýÓ³>«¶ÓpI@›â²ù<ÿ\7¡3š©6Jù]˜?=û]§¥©tz§ m÷Ô¿ÁPO¾ÂU¥šër³/¨)‘Áœ(àûÈîŠ<õø¤ß¼_ 4!@<° ‚÷7hžë€×ç’ª›à‡|¶EY¶Æý#ÒÑ£íz‰x?ý ª­ÙOFõ– Cß÷»'á«dôe=ñQíÒ•IÓOºm_Ï590­®RI³ÕÊâúÔ˜¥À9¯]¥ŒSÂŒÔz¦fÓ/èaöIpó FlXYzà–¡XÆ6Ò‘?lãc”# HÞÚ“‘ý*¢EÐhÃï_D ÅÎŽ+_Ã?6䥗›¶Ë€=/¤ú\:³—>˜)¨û^|~iì ò¥F¾mÑÕÏ¿„°êwvL #‰HÝ:åP³ØËÖ ¹W.(¨Ùæ<ÀÀ+Hy4uVâqŒGBáܵ83¿j?èšIœ­+{á!³P&ÌÛ=5këuñ(§; ì`‚Êš}C4™&ÿIô7ä Ïm|Làˆ&ýŠ"S9"™LøP㢕ÜúdŒ¡(’,~ù¬ˆcQ»˜Ïm„À&J8s+ PaÛÓæDÄ$|J©OÖ1—ÎÏÖ’ö zV`ÿ:*ú3p%šì1åe±;³ï±­<&û“¦-]þS) æj“A ÷ÈP€üô<¿çG7Íž{ÇPÂ<,Ñ%üË€otÀs¹+hœ•Ú4¥!^Ç#HJÆjþÙ$hêò„èk-3<÷Z×íO›œ§®gÌÄP“Vîö²£6ëYÚ$=& /ºÛÜdÔïìQ§E‡Xs]“qAê÷”7U¿†Z‚Ýz’‹k_„˜­ö‡=ÌvÎx¥ðzÅ>ñ®å»  L:Ñz»Tô •£)W4É!kÇÅÞD;4y¼ au ŒØs; yâÄ`t!8˜!ËŸnäÈøt78†ÿ›~ÁñúÍÈBºìM>/juÕ˜‚àÄÖýHócí †×`¥õE¤ŸdmÆLØÅ@'lݬxN´}à>Ë8bëè}Ï4§Þù ^EûPObjJî.zG¬Vd¼µ§c¸°dK÷åµ{@$»¶KÃsAWD*Õ©Š•¯½¤–TóØ©W‡ ZÊž4Ä[®ÙÙù=©˜GuÈÓHÇýÉj¶ÓÄX »DÕÿ±ÚÐ=Ž^[ÂG€\ïŒ#&žö ršOqÜÝÇ8¯´°îìIL»ÃðÊ¥n‚x.|ªA†â¬ˆì\\x|Ž!WZ6Ï»à^(V®U‰3Ö.×°C\ºXy£ßØê`ú»ŸÌ>mòÔW©›RXÅÛ*óe=ü\™?ϬÁ¦ZÐ öO1PZ®ÉÓŒ$|"» Ìš@ÿ¶î }p^¥ª cÜJ-˜)…Lƒä·\ý-m–¥!yù4O®G0—-4/¼^ÐþŸMÐ’ñ“§è2Kh…É·YFõ‰”7‰’«ûIšáØ ÉÕQX[’H§¾¨ü8ûþôGs 6rÜ- k¾Z5îÆnÜ+ƒÑ^èS¥ß¯™#—þÎÝ;Ò;XtI#qW!yaصö(Þ!3‰(Q¶|^A”ÊžxQÖêÇ D!)€~ÀèJEŒë³ûõH±\Š-õÿµEì…z&`’Ñ ÏâÿXËúöÛQt°%¯¯Ë 'Píðo ›÷ gFÇàýKºÓOYó"^0J·|LdÍé4‘fôŽÙ®Ÿ£dxΦ)_L 0÷9ÃÿÊGXÛÈnø:%¡…©NB¥ÿ¹ðò.•Q„"(ÞUÅbûbÞíÞ¯ìs¸óAšùïñ ì¨6÷bÇòÇ“WÓ=¡û©yÝìÒnø!Seº"[žÀz]ÖK[³®2QaÜòùº³óRòÌ!‘B²6t%ƒšè wûî Yº%è2¾Ù×þšÇŒØzt'¬WôùB4ÞâÂX{Ob>’0´™`_Š £à éüT Ž$˜uÂï»ÜâÇÉÌîNìBS'Œê®ub“Yý~ ™ØžÍV ©”&{¨Ù5ŠDD0ˆ>ìšú—âÏNvèbÀ†ÀP‚#Kkåg®ÝÞ C3&Á%#Ór¾¦–ˆ¢n¯`Ô Vá’Zݨçì\v¾ÀiIpÕ¶}œ©ÅÈ埓Ldd‹Œ-ò‹±–8Ë óµW’ìÒÅÌ}¸ƒÔU%#+Wq+ö°ªž}y‡R_SU³RµšÖy·ˆæ¥S·üHÒßÝE†úØíöºÄ"c׳^ô2{O]oía¸¶þ×à “ŸN]²íNÈ6‘õ2‚ ðb{\+ðÒOö·šÈtGJM¿»AC62¢DÒÎݤ_øM·‹ë#wìÿ„ê_±ÒgÍófˆ|Åžõní# ;&Ž\dà‰–ä™wú22Él¢Š™pcoƒ£ Á¦ü‹•”‘ ù´miûíÆQÐ)é4kÐr5-edºH¡äÛK‹.¾½{XæŸü­•¬[@Ð?¨˜ðú(à¼ÿÕFg\è_gƒù?foN«)Ÿ¬ß°Æ 3£Z_óDIa7˹ßVW;£ÛSàê¼5ûªiÌéã1õI€lûf™ØÕ@ûØ3Ñ•ˆERâ±ÏŸ0ËÂöÆÖ¨þ¨2«‘ ïCÏäÀ\€À_%x–òªÝ…\œ«Õ¼•ÁDºã.7“x·-ÝŽMaÉRç»ÂÆå™d/Ólä&Þé‰jmÔ®°ZL œŸïã!³bOôÚϸoи^$ \>*åmÌø„t h­ŸïMÛziõ©l?Ó.²ð*¤½BV·å`‘ãˆ(M½õB_ë5ÇhÈLë+Ôþ”—”ð¤‡ù´Í8‰Z³­ö\£iÝøÆ‰Úz>ÆÚ\&ÈÃë.‘®Žä?}4 Ó‚})Ë€>bU„YÝñžÅÙ½(›–ÙEô§Û/†9W)%""ß‹=õ¡D SØÙ“FÊÈÓèÍzI° ·4 ²seÊñÂÓÄ%2IY´faú_bþ¹¸i–S±’¼»Im½T >ÒÃß1D/@Ÿ„Œ&FìXì`—Ä0ÚÁð,eè 'ØÚäÄJÅ\¥iÆ]ñº”W.SãO•Dµ{^°M2þP«Cu6¼f™?šPÞ䕦èDÝÁ™Íß+/ÃO¬bˆ]¤¿˜BY”ÆU—›@/Ç‚gi HN_WÀ ¶\f60Ô¹c$×…²FL” ÐéñêgȘn“-Aƒc €†ÔÓÌÖϱ¦âí<î—&<Ã*²¶º©Dž Ò£Tnжò‰ dVFý‚x«ÙÛG;’µD.Ô3~Ÿè‘ÅrkfÒyF*(øæáà/cáw# /z’¤Ƶ?Ÿ¿UõÖRV‡5«˜aÀØ\ø¹ó·ŽŒ‡U2†OTr˜æ^ãש.b‰ïzÎ ÀÄýÜë#Š%T “¡s•hÖ8za¬TØÃÚÎôÐ!¾ßìæÉ§Î¤tú‘QÚdŤˆïÐÖôöŽh˜M"5· ?£z(ìvw¬ĺHZˆØ«stä…éDÏP+ „·+/WÂl^6Q껡UkÊ|ܧîy–¨²ÑÐ| 0×/MÁ…a;1ß]Þ'<Ž›ÛÁ~ŒÚöÝ{?®r‚°Ì±–¤fõ}¦Ì±ÿ OëÂ$WJ)m5ß‘ÒDo³•±jùàDcSf$ÛÔiÉ,EˆKZÙüÛ‹VSܾ-—ÿOÜ2üìR¾˜§ËŽ”W=Œ dE Â…` ËvñGg§“Ž?ei†¶ÈÀ]zV§Ú¯˜z¥Èž‡yHÊLù/¹ã‚[tŒ†U“¼U_3å ×n !µÕ¢Ru|Kx“ݘpýçÙ[³ºp0?,nª3ZnŒ?³ýJ?›^ê°¢ãx>´²)ÿ¶SÝ7p‚2øÛqÐE)CdW\@†Éé=–%ÒP.¥^L&˜‰ó†¯bÂÄ-ƒgÚ—”x"ýp½SÒXà4þ9S·€ÔGY¨Í厤0A,I(+8ÒÀp ûl–jŒ“è Sn‡Ì¨ jB¥”5“cû:z¼Û&¼…/]à;= B3î”*´ˆ-kˆH{vx˜‚tÎ*à£÷z’à§<‰] ²VX(Åû d ôwO‡ú@ U…BúŒRð¼¬T¡×•„µðz™~“±0çL~m,“Úß’hÍÜW)i†H¦rAÓ“ÝM²%•CÒŇ[çªôŒzGÅ>ᦒš?Jdáž, b\1ˆZ‰³9uþÌDúpÿL¡*i¸ $Ý[©‹²ÔþÅŒ-m ‰ÃKSbãöW13¸Ì©uùlñÞ‡•Ž”x—GtÓ5Ú`Bzbø…úÀ µ=À@0üÞþ¤u®Ä> ŠtDY 6¢BxPëÖÁ~ñT^îE~¡`(ÐÌP~þadŽ£–ž¨¶Zd·oMÚå=C½g]Ó ÷'[¾X{Ô5ñÿÜŽ¥X<þô ®¸ƒB]ùv0æb<þ¤‘w@=Bâ÷X‚1ò¾ &—JdQþY-´%LÑ<ô…³Êàà2~â‘1'õïë~æeôçB'µ£(¾Øn±¤ïHL§éÔÂWqIxãRôÓòiä&êvà‚Š« »2të(á 4j?JïcHc8>Õ°ð>?™l¹–ƒ †tüØf’E£Ç½{„õ‰3c›¡6¼.êj¥Ù¬Ù¹+ÿ‹T6AF²5ÞÖ´þ›¯B¬²èqYÉÕH)7Ø™åÅk]ë]xB“ƒµIóœ‚dÁ¤ ™XI®NÎHÀt`ìÏ »¼Rh»á5bæŒ%ŸÊÍpðÌñ.HŠ?"9g“±fbi³Q(ˆá ɤSô‰ûý™ƒ ¦€ï„YT†ýyö`ÄÝ ß³³­'µÊ˜©!cý¯Þÿ“Î|Çp#Í2\xS®p ÃmÔÃñKTfØA,µêBèÈD0ðPÁü3ÍÉç&ùnt¬P•¹…k÷¯°WÂlý(”ÂfÊÁ±#zµÌü$Ö1Ùv9›¢]Àj¥åÍðÛ|÷4ö îQ;g°`Ðî*éu„”Ó§ÐC!9©cÈpò{#x é—ÿàÈò ©çþÂNš¡ˆc=² >Ù¿ŸÚ÷xØ€'­>PÏrÂ÷ݦ¬-5:³=‰I¹{ú.Tà2€ä#^h5í"¯ïeƯ:Ú²¥ós7(e½'É–þUÂÛ¤‘Žìß@;Í;È’ JQ(âQ& ŒîLZ«zšˆÆ‹CtR´Qx|˜ÝЋ:^‡Ø&µ‹­ëù—x’ûDbÀ8úŒ×€ÐÙìþ,Ù&µ· êð­G‚­uåÅÜN’cRµ~}®€r·íÉI,ÚßI¼¨_”L¢“Ôt›£Y÷óŠm”Á]O -¶@$léŠÍ –sþ!«×Owçƒ üÆlÿ¯ÞÌ3âß_»€B1æ¬ËŽªüðŒèr0Ò¤"" Ø3uô2¼ûØ(>èìuÜ7Ç킌ˆm¶ÿ1º õŒ¡ñx7²C2éÀ-4|DT·GS P!M³ÜBRÁ·Š;ré¢Z¡™&¿«MÂ_Çw`ýZp™(å ìüæ‡nNw ׋ð”QÈOâÉÍ—÷ 2JA¢ÂéˆT Ûáîâ™›,ßÍ~=ñ@zÆ Ý¡çŽØcì’4 ÅVâ¨ê£ü»‹¥êžÈ.òʾiÃ"ë³9~íjjÉs‡ìßÓaѼ»GïlS‡ÊÙ¶WÅ?x…ärÇgs±¡ì)â¬;!F'fA}àǰKU°çµ!7ù‘&½äÙrbx i³>û·VŸ·ž’[eìýãÌÍ>†0Bδ ?FÝ-¯ÏOC¨Uˆˆ‰$ÇŒ²–W—`3§£«¤hú9°‘DãD–`›2ŪG¬ŠVGJטgu§KØ/d­î©ó?¬Ñc±»… +]\"ÙÜ6ÿ,ÆÉ™i­úµxG›xÅ‘•š\cËnå ÿ=T ¶DßÅ{wdwG‹Û»ÜQ‹SŒú.½á_ìºðÞL"6ÓôfýFX°*;âr,9ËÀÃ~0ø­#™3<·þæ9kgsë¢'¦¹Z„|ãĈšÇ¸ñÿh(özGo™{)noyÆÛ¶¸¢”‚EÐO¬ÎªµÝa¹ð,#˜û„ŠçØ É†O!øt⚺ڸqØîPX»½’@'ƒ~N:ãQ]‹ò,2"ˆ±ÈÓ¶Sé 0Wß¡šœì8Dǧ›®ª®%Gï½{&YÙ[bsP¶AR‚ó3IhSÔл´&¶ˆšóàd¿È¬®Éõï}Þþ¸¶âî*4h Ru‘ŸvwÕñ¬£Woç®2 ˾íh¸LVb'Jà­sø›¸ÿgž1¦­ÌçÄÅ(‰®@=MTM´ý^>/#F À[wwäßI_Xe\M—N,†å0k…0—´xR±´/S}ùRÛ»cÀÚ!ÇãHà¾c$Ì0PÏ–›g\tÏÄ0þ|€³ì²¢¨¤ ÁŽ–tã]ð#IÖþwÒåD¦vøt ÒJBÎóËñ”["´‹,ñ idßbv\µ~Ê!b½)ðé&¡+«^µZ­qNj„rTv<0«ç(¿DÁ¯ãì»!ìΣÍè¦-˵à9ånÏžÝ-$˜³çuå4L2ºlPP.ÂMN÷q7|Ëz¡µ[ #×.x*D`¤äSàdhcÊïáÝﯹÀ"›WÖJ,(› ƒîoÉ$‡u‹ìPÎ |Å÷Ï.ÑAz¸cÂa_-&î× Jƒ2•"À?ˆêu}RÁó‹D –¯ÜÃê’FkªQºsbù<ê‹ùp懸Z2ɧy¡^.¨ï¿^.áh!O¥š©€o³’Ú‡ ºŠÊ-RV¬6LwKøCÎ’gU_Øuâ~ ?ú]„läS¥¥ ù­cÈ9¨–¬üûÈ3a¬c†‰àRR=uX Ÿã½«oÓtã5w—¥r‹FºÊ5ÙAé0ua ÏupB!Dîrr~|Æ BÛÂ`£z¼øVp@ÜÕÅK’4a„€†…€kÛÅ#Åij±(]Ú·ÑhÌ'Þp‡ À{;¤°'ƒ_ ¼Â ĽXJ×Eâõ¼¸iÀ‹’•‘ÜЃ×ÒÁذ„¢±d•oÕBçp‘ Vï÷35h?í¾Ñ=>£ñ¦S›}ªi O×túl& ÓgP©Q»NÍ©˜çô‰»oúé„Û4$"ì2‚Xô=LtÚVHY¸ü¦ßÑåãïPr”¢w! §òÈH÷¿pÖ7×l>>ö–.¹)O¦9øBHÚ9£­(™O#_©hbÖ„œÊö¯Ò¾Lôb“‰ëZÑzZÓöã¯ÎÞQ°1œÏĉ̱ˆcÔû6jLÖÆug×ÏÊ…–¡ü’yºW AF?ïXb¥O]²aC{@_–A>ú¼QÜÎQýã¢T?—‘ß`Y®„Á†º=ߊ=¦&{²rA@Í•™ ¿.!Þ¤ì+dÜ:¯é«rýS3ŽÌIœ>4jMºf·íé2ÿÛÜ;&l}Px§Qgk]ܨÀ—'øÜóUGò*Šcz¢ußøÌ‹‚7'À eEil¬€B`]õÏðH"ˆ:NÿóI95À[Ö#+ tt¶À±?_]ˆJŽ…#+šžÑÛ P 5qŸ Ÿ4©·\J/Í`ÀÇ ‹ª5££‰0±žcÄÖîʸèiÀŽZ•(É `UeYc.\.ðyŒCe¸‰™_pQð·²t/WˆÕ—XR>øêQd>µ‘6iPÜ e–±iÉfUPy_Ú€@o2èIP¦¥Iæ¾áGÔö‘¡¯%Þ˜”MµÂ™‘Ö÷ȘœQ- fÖØ.îHàºSçú$õQèŹßú¡ïGª@¢7 )јö•ø3Ï,ýÊšÿ—.(wq÷(ýÜè»v‡EØ#q8½QZ‹ÓuÛÚå•ýŸj‰›À«ˆÔ§3¹‹éþ—e¸_&¹%*×µtÈAFœY— Ûë¥q…Jºk«°[¤F3„mJÕëR¶µSÐmÈ£®G~úƒú¢Ÿq|LÕ7o!»[ãqÊt)²K´ …)YÏO·#â#е^é/𷣕)PI®Â»…gˆÿ^¬Uœ‰Lª+¬“K·Ù:׃æ¼â‡uÇiÁ,yŽP4Þj^Ö°ÒŠ¼¡Íb}0 3ËÚœ¦IÞÝ1jE% Ò€K[àöÅÆê–-`Õ,~.'úÜö¿~঳!ZQ2@/|ÿ±ámŒx¦|uû+F³å{-e‚iÈd«“LåÁ–“>MVÉžn|ô2Q“ùh¤0nʽc:¯ ûÿÝX7a •³h¸Ž ÷†Z<{Xœ [ È9“H/Š¤ç¤«Òƒpl×V5 fI°j aÍ‘™7ì{li@o‘4SZ"ªfþA ¤]°ýù¹O•Ï’?Ja¾<÷shžÒì²Ï®|²<VsŠßWû:J ¥ÕFM™‹“ ‚u¦]…o“OSB`÷½Yj&uÁù`úE»„€—,ðÞAm†2Au ^©ŒØæ!A]5ÆÐ¡³2!°V½Víõúû© Pq‘¸EÎŽnš„?iŒ=­äEˆûk¤-d¡`žóx¡®-fêjˆ¥mqžäVUñ5ð"ŸÐüQ"´8¥§çB•1•bªm4Ssµô/â÷îL ëWèÔ @ÀÖ mñ²·p èÇó6f­ñ.:k¥áî´½è;èÈ#›$ýßbhÊq»Ð24E×°ÑHá„=5MéËÜôjr;¶·kL<..[…„­St¸ôèF!háf3´0Ñ;Øl5øðr-u^¹µ+P¬UtôFŒ÷Ðåñ:Ä 3Q°â¿‡ð ÃuÚ&»”vU £W{ަ¥*JÁ}ÿÎÜT¸BÝ2ž ž˜–Ç`­Øüí³.&‹®FeLõ#Ñ6Ìèµ.ŒêîÂæîDn-&o—Œ‚"v¹™?ž#žz‰“;à¼=þt]2¨ JB6ø£ŽÇšÒšƒp3c„N»Î8ÈLãsÆÀ×8ºK’í}ºÖÂÜÆ·B?0C`†y³Š§Ll)ñú›ÞQê«Þ8W3Øþ>#²rgÝ·‡ÔÎRðû¡P2”â¿\˜iœb§ôovq^â¤çuSùÁ¤]@†e  ™ÚÚÉdÖiôñŠxég© 6ŽˆÇBIùx·`Öt<Ú~Ül Æ%KD,ؼ¸îg$>ͨðŸàÓé«MòÔii%ÝÁ£5.ŪTшì„SF¶¶ÁÚØÞâð2EpŒb»¢Æ­1 €É°OT/ÆpÌjCWÔÄ=C‰BÔÐ`üµÖSÚÑJ‡%æ±ÆžB¦d¶/Ž«SŒøùHª>ò”Lè.³Y{Œlß _„¢žÂx¶S µ¹.¯Ft½‚ΖÃRwµ v ©­xx9Hý{Oͧ€Ì%Ýz—x#8±PjÈJqç§B”8³;]6Â!¾ˆmŠÖ*ƒÒz”RO·½Ç/ïÒ[Öo#Kñò—éœÎÂe‰mtÍüÔ&‰ãózÊ"¹Þà;…q;A‘â-‘[N|’¯taÚmb¾/A^î`˜’„>Ódî …ËäCš"ëo¸må+¥‡§ïÍ¡5±e³QlYp¦cÚï]Iâñáãryã´võ´qò9ËSÅZÍUÖ("fW$Å'ÃtßEU™74žÊ‹µ›ð×} v`GN2­!­WD >œT‡[!FéU[ù"I_0å²Í1.w,y (kÄÀþãöOÖ'쫲ĸs¦Ùνï8îHdB5Öè‘ýú ó›kÃÍd·^É”ÝÏüiḪX}?3x/ù¡° Û:W¦ ¢k“a©öÜùØf<2"•Ì&‡PO°GÃÄ€sì…zù4iÈ_Û’»•ÔU•ñxfëüƒý½¯uÅÉ%ŽSWù5eD"wj#ŽÆïMÓûÓfñŒ®ÕdHmdH$̈žzC±›;hTÙ®!wvÚ K)†6.\kbÜK[°MÖ…Ù‰7Ñ{pOŸYž®åÊ€ü”ÅÊjóžÍ3Èí·Ò*ÁF˜ô]oÙp\!yê´÷‘ÆY!c‘x0¬•4RM2eЯVÔbzl¼jù›¦…&£¡Ï…„™'Ö€Q§‘g¤\â=ñ»ù>óþÔ?€96Â0ß1Ùjf®”‘Ë'4›E¢ÞíxÁ©\þõÖ2ú’õ€“Àôƒ_"^ øWHw›–T'ø Óà¹&b,Z¿z뼞ªqr¨jÿ˘ÏQtŒš¡Ý q)>ž-5ßSøo·®Oð=¡G©—tÔÚĸ–Æô+u•9‚ëG±:Ï.‹i‹yÞ¨æ š(ðYc{Î÷ÚýäêÆF?‘zý3¥tÄ+¢ò–¢êÀYÁdÒ±Þ¿ ̬BGÏ¢'¾¯ëéµÀ%Þè6{ÄØõ¡EìP £ˆ… £ˆ’e±z›I† ÂäÖ¹r3mð=ê¯Ñ)-(ß“@ci‚ȯ-šïPT¯"ãõ‹•ˆ•Ï8ÚN8dD ûàíMæ+ðŠÎ‚Ð7ÁÑd´˜yƘÅéåCWïb òg…ÔýØ}³Ñ¶\”h£9kâclàuxÀ ëæ”Äi&‰˜b<*ü¥8¦p®ÔÃ]Õ >fö{ßÿÓ3ºzŒ«¯IT/4Ûí8¶ÕÙ™úSíVÃz{ò“›ZV7deWL½§Àf‰Š5ø‹¦j%/ײ›=LKŸ®W^”`å‡mA v•¨¾”àY›Êu^J8‚±#S*ÄN B–Ç2)2¦æ0. ¨‹-…è9½ “Ng”› ¡>Aþ h–izÀ32ÿK)€;.Ÿ7#i{l‚Òû† { \ÔÔÐʤpxÙ„1“x’Ö‡¾jÔD\ìòæâ@™Ž‡àjpÒ4GF3Ò•SAÁŒòHB±+ÌG¤~>Ûv΂fµ¤ËÕ¥zOéõ|{ÏÍöªö0ÙOçfL«Áëé›}i³tΨ¹p;a0æ7Ÿô+¤«+¬ßŠ¿£W×¾~l·˜ß (­-zVºv%%YDrÒ™К®ÁD“qÕâ¹ÀÐÒ¥÷†š*ƒîÑWñpBT ùÏÈxfãÒCçAæáGnXë9'h)gÊ™%ë˦L«Â C¿ˆþ¶•ÚÎ%êo°I¯Û÷Pyé}èÍïv·—Fa??ØØ¯õˆ5hL¯kz%­œ2[xGŠÿbÃã4›µƒõ;…ÂE¾céîÉýîbŽmE ;\VsÎHNù`l:¼`R 0o¼µþë«ÍlEù¡Yí¬B.É<Å&cÒ½¡Ä â+ñóM=ÍJ[[€)G~zƒþ Þr´Vê'Ìú·/b¿€ÞI lE ±iшZA¿àÛÔ2­eûω•‡Á±^²ÁÞ‘k)ÞÊZ¯Î£VO@ª“k&lÐ~ôÁCIßÅm£éR1BîÜÄWJL‘hcEúw:A¯|SþÔgB¡wü˜S‰uÌ\+Þþ9¹HÕÌ xNHÅD­½U»µÍœc¹ÿ†¥®Ì݈+n²o:-]2Ô k”Á[Á&BF`0ðÔ« gfµŸª¢™ÿ—.»z±¹g{ÎýÈ]®Dß’üt„bW5™”—gw/T!+ÀZùË\´E÷`•¢ý“Úƒ§.sÕ8ؽK›w|I³þ@§H…‡eíù¸ÅHÍm|¶FïçÅ£âSçÍòÄtrЏp X2 ŽŸpÜr6q!*£Æ?_.ZµäŽÜ(ì½uàÃ?9ŽYþ§˜Ï¦³¡´ÜíúÂ1EÕoÝ©ÑK’-š83° °ËïÜß@êrƒ %ÙÜ6ÿ,Æ­è<¸¦:>‡ÒÿúÝÖ'ìÍÎÙoñWf ‰U¸¸ñWs)õðÎ`ÿ¶ú6(±ëžsƒ±7>H¹lR/¥ÜÕÉ9ºnœ”P•ÚÍÜ7â¢Kó§p)inRWµWÐ%+ƒj‚EœO܇¾®?°×¼•ÜO“ÂA“UAX º$‡ú×_OÓgì-Nm6õÆß_~ìÄ—¥¨èžg'Úþ}7)ŸÄäNîËFº³÷ ÎKjGá’õö µÈžX€súù«í÷ ø”ßßÝ]t«Ãîwܤuª#¤7Íy(Æzû2'„IÞ¢5¾âE  wL†q7½XÞXWÃÕõÞRá6pcÄDp6ŸàÍØÏ ï¿w°—û!êKè—,º>NIßåûj·šÿ-ÛPBñÉ Žªò)<ˆ7™†'r²AÖº˜,2Wð*ì¦nlb“ˆðO‡||:^vPF®LÌ‘m}ÄÊÅGç­…já]F|¬¥(êQÁ |Æ£Že Ý7ôì&¼å:p³XGÑLŽª;§•é^eHš¿@ÂS²ï>ê"ñ®–p‡¸*ˆ4IâoNkO'1{ í Àü'm`b[žàº¢¥‘&àÊ‘"ö ‰Òø5Þn²Å+¡Žõ1B¨Å`)„MÀn¶>¨*)e³ò^üBF,åo ò›áØþ(rw™§3Û%`Äìøñ|‹ZY„- ¾ÙÈc'¡UŒÝ;­ËÊs гº¸ï•RÛ<¤¾±‘¨7»ñV˜û¥Fíª‚:¨âÚ’2b™œÿ£û RÛ(Ð-=*Ͼ£Jw.[Oú -ƒºu€ŽÏ¦4¸òù3¥8Ϩ.Šú6Û‰ÀuñþiÀèi~D'A›Ív&\á“RÚÔu ð²P9 ÇDä|Aú^Ðé}H”Ó¾ánkùÔ3*å÷ ÎPÂAœÎgsGXœëĦÑPÒ&LáÝ8›¿9ïÿc‚¦Î„¶6+›Ú²‹á’Î wµSÞÆœø …==nTóV‚›#ðNSC©èn Û‚jª3_•ë÷S‡8 ŽŠfx…¨–ŸMNh5jzÜ¢c€Ç ³0_´ªÒK½‹B.%ÙBR7”;Gm˜bá¢âº‡Êþ>e\KhÝõtå8\þi@¦3¬5 3,Åê2^öæ×än\%–º|@… ñ£MÅXÀÌÌY7´‰Å l³z|ê#vãó¼Ìã$33ð‘ˆã^|ÕN^ ¯1dÚ_,9šqÓ¼tÕkqºŽ_ƒþª™“§2é/µ“%¢ð› ƒB{Y:¦›þ}u_b£´d 0½bÅ›g[§÷º­Q¡„11;œT¸µù¨‡¿®n¦ŒDMÜ»oÅ3k©®n” “£’%'±'­x»ü·ÃlÕ°ÇK›ä À€w·h÷>mþG§uæ¨ù®=x½ôs“·Á9Ó÷Þ``©¸ºeÕo›2HêG•*=A!Þ(×Ô3ž]þx€ŽMŸd0 <ê]bf¨Ð‰|°fFäYõy¤M&G¹%6èI×5ºQú”@x1›ËÙ3Ðte_²*Ò Ö–Èd¢¼¨-“’C¤Zá)G+ŠtOîZqÎÞ¡öõkï £¦‚:Á¤±¹Ž¡aJΊUÁ<Ôþq?„Q±»’z˜LpäÕ‹ö3ÖÔ! h¢‡a€Æ§$äŒj%ˆ‚§¨ì`˜M»|~/kœ°;²­×wá^âj¶¬&…aš-Æ\,^èuN\ ¹tâ­ÙHkº 5XÎüµ>=³3λLbQÇhNy  ì>…J,Šž8(kç¡2eWf†ÚÒ¯¿ P¸PëÖЖF-›ÏCf®è$XOà5?0p‚Uá“"[ÆØ^lôüû7Àƒ1Ë¿˜Kåômò)¹)ÿG–bo»c=šúÃ.Ò›¾I#MFÀGaøØ€~Ù}Òì¤ ò6%0¾ª^•”JÊÔëW÷lÆC§s!_§ +Y e¢Ôß×KÃå z]È›†h!•aÏw’Œ2ࢠ儴`_IóÍÉÄ…üe¡[þmÕzüs¿–îRé-ñþœ.r˜eƒ˜Ì¦¯ˆ× Æh‹<>L.…‹tÚº¡Û¦»³ -ÝÂʨ;ÉZ‰Ðbråy*<ôå\õegBáƒä,îɕ͂‹j™³ÜV¨ha_†ÙhA£†—iR5eÌ=¹‘<þYV„tÆ ï``‘Ž||Â{°ó`3+úyƒ±ŒÍܼ²òp‘,yÓ é¾Z¯„ — ò¡ºÔtÕEþ~]¹Xìt\.¸„_k^ä÷olEW)"|è‰pÊÝqÎ¥BŽà3-jw÷Þ²Jq¾@^|aPeöî3½BÞ±!ªÓ˜Ÿ¹³´õ%A¬T?¤`“ßÀy…]°I HíÛÒácCœàlüšÉú­ ¡/Ô7÷|i|ºT‘N¬ûl1o£*@}>“ºI¥ÿ/Aýð\¢½æ`Ïq;¶ {Ù4K ‰²NÍþÒg"„k|}koâøJ:ÁŒXJRW¼-£rUAõ£MhÐL8ŘØb÷5+ÊÍ,!î ˜O•¼ŸëÞÀSÓc­föྠ˜L ýÏÈ€³TŒN»[Gš›ËÿçÜV~ÅyÆFãl&„ÍçÄÿèGÉ3Úu»Hå]«ý³‹ÕEIX*áû݇#”"½-RZº¬ƒ#`ŸäŠBˆ´ˆD¡ìÂŽ? 4™þH2ü áp#ºqE ͰGˆêüûam£Š3'A¨Ïá±+'9äàpò´þ‡ß«=ʯTv‡¾wIº»üê;ÂôµŸhììø:©³\ŸâT`eÞ–õ‡üÒÂ`Ç‹|Ç¢åáû7À KÞ3ž­þIö>ô¬ôFLä÷‡æ4™ð;lJeþßH‘ìJç\ä8FG-Ïm´” bftĽր?(q¨;_îÑ~kMıҎ]{˜OÝ“*™ëüœŠ"þ}vä¬{‰>™›Ì±†íšû“g¾¦x…,ÿ¦…0Äü&Ó ‰Ý+×Á€Køi"‚Ýe!â!àY3†û|GD1¯ßùðQécR3 m9•oíÈ\BKÏ7;9¡VêQ”Õ ¡¿±“àïñ5Ì‹b=l»r RH [*YyÞ¸ì³Nº/¬5¸*âˆÁ6½ÓZ*AÐÌ> stream xÚ´»eTkÖ6Œw—@ãîîÁ%¸»7»»»»&¸»kpw œ— /9óÌœ3óýþV¯îêkëUûÞ÷®µºª)HU„MAÆ@ 3 #3/@VNdbafv6²±4°223³ÃSPˆ:œ-AvbFÎ@^—³@ÁÄùÝÓÀÊÌÌOÚß•¦c€ÐÙHÕÃÈ 6ú (‚œœŒœÞÕ@;sK; Í»‹(ÈÞÃÑÒÜÂùO 6†?‘þx‹0dŒL¬AnNÖ–#;S€ £#@äö.´PƒìÆ@ #3È   Ô¨©ˆ+«$•ÔUhß«¸ØÛƒÿ‹¨Šªš$=@LX^UT§Hª©¨þùTÚ½ó7§È«¾ëÿäy7üã.'®*¬ª¥(ÎÂôç,W £“埴ÿÃòàojï®fŽ Û¿¨-œíy™˜ÜÜÜÍ]œœAŽæŒö6ñSµ°t¸­ïGG  ð¯Â¸Ø™¾—ÓÙø¯Ö ki´sþq’ýKiû^Êw§w¹óˆ½ÂùOL›™œ€ÀÿJcaäô—¯¬¢¢,ÀÖÈÒÎhgdgònèläìâ0üKöþšRý‹  êâèø'‡Ü¿UŽÿIóoê" ÷3Óµñò1rûß3²sqòüGmþû´M@vN–NÎNÿŠ˜YÚÿ°wú³f–vÉä„å¥%ÄUTdßÏŽAô^;Fgw翬ÿÄ“}oE.n+++€ù½IÅíLEA¶¶ï¬àÿ”OÌò½NÎ G¦ÿmkk;›×ÿGlfigjö§î¦.öLjv–.@i±ÿ3~Áÿ-3:˜@ÐÝÄ‚éO²¿zå˜åø½>^ö {€™‘ÐÇÒ ø~€÷r2rœ]€>^ÿTü7‚gá˜Zš8¿·ùûVÿ+º´Àó/ñ;“«þ¯¨ÿÚ¦4ï{Ôdgã0šÁ3ɃœßÛúÿŸ]ö?¹$\llälÔÿSÑÿ53²µ´ñø/Ãÿ±Ðþ¡J-r´5²ù¥“„¥;ÐTÑÒÙÄâ¯"þKü¯LÂvæ6@ ;#3'ë¿4jv”Í{ë¾Ë?Óë]ÏÉõ?º÷®4±¶:98yþRßkñ?´ßài“†–ˆª¢ ÝÿöÍ_Vâv& SK;s+'ÀÈÑÑÈžù½X98^,ï]m tÿ«[LŒv çw€½‹³À äÿgE߉1‰þý q˜Äþƒ¸˜L#6“ô߈À$ûÄÍ `Rþ½[ªüÞ-ÕÿFïù4þƒxÞ‘Ñßè=»ñ߈ÀdòÄÂüNÆôÀü|'`öøÎÀüÀdñÈÎñŽ<ì-€vÿ°x—Yþ¾ó²þ|'fóøÎÌöoÈòÎìïPlï‘ì\lÿlód`y' ú|'lÿøNØáð°ã?à{L§À÷Š:ÿ¾“uù|'ëúøNÖíoÈúNÖýð•Ç_ð¿{OñÏøýk¶0ÿÝŒÿw]ú «8;‚¬–¦ï×ä˜È9;Zºë0¿–wùûëßßôþ+Åß3íÞ"" w/vÛûIr³±ÿYhNŸÿr5ù×⯙ô¾iþÿŒgè4_]™ð[¥5‡–ùŠÍ”CSð0žUb jÊ$@­fÎtàŠåï’…ŠZý³(‹A²R¼z¾)v_4)‚±l^¿·%WMߘ*}Ú3ò•ó%@ÏSgT Ì’[ñ/ï&¥9–É+ÔúÊ>—ÕžÐNP?åéìùÃ:õ†v•Jª[Þ¾QíV²ÀÒ‚éhƒî¾‚ŠßE°2Óîüö3.Ú¨_x•vÞ°0{\æƒ}_ª6]Z¡ªæ™^œ &¯·FX¥mâÇöI Ñit ÖJ0N´MqK—+]g|ïhTQ½X÷&$u¼Nîbøb¿dêÞ£ŒLkŽBcN×`†ô—rÏ Ê^q;‡L™Ýñ_¡q›žþÇ_(;D'_Êsݳb,úc’èˆì+ìJ;IJÁÌP_Äob;ܨz}n’½7ò_N²ë¶Éã6ñP)"Ò23–c’ðµÓÔŸÌ¥ðU¡Eý¨Ÿ"¥ ¤¢v¹|ÈûÛð)bu;<ŒÖ£¨~µõZÎŽ$Œ[Ra SLƒXO¼o*âG•6ݰ›ö£E¿iÂpQ¨œ9ÔLnùb->¸PYZ:<<ž5ø¿úgÊÃÍO°¹! *Ý‹çñfºà­ïw¤dί˦ÐÈõ€J-uGgM[H"«?Ìñ'æ27NAh‹Ïî(ókó˜ÎåWEt%á/Z/øµx­ ¿}ƒðb'e¢HpS;ê¹íÊFá¥ãÏùÍ yõg)à'¢nçNù¡ßc0ª)8ödŠrhT¢'yû¢OyºÁ}D‡¤æLÓ÷¯Êˆì'0ey Ùä0¯äLÃZ ç,¨#Ù•â:÷ržr‹™KθèHŠB‹!­:ËI6â¸3¬(vfD~ˆ‚7RT”ÈÜÒ3Õ›·ñvbê^ìÉÝöÖ3 J²R4ÿX‘ôh/DW¦|ϸ5¢¤“ÏBúy¯?ElMlJÞE܋ԗ@,ô×é£Ú¶~ìµ^@Ö÷å/ž‡vßÛF ÉaRž‚‡ Ü;ÏÚ=÷Ř_‰¾¤5nJÇÉ``UËfæYÄj^2Dedζ:µL¥³á)aªÕûXà! !ÓëväÑ„§R¼¤g%öˆ3>¿¥w÷a•ì¨Ûåõàª0ƒÃ’$²x{,.ëí¾çbo!3¨j1Ë˳K)ÁS(R­Ê&®ìöŸËÈÀ>‚W½(hÂ0Ê8zÙd³+šËû'~K\I\/¬ O—Ťmr ïsØ_s9L6T8¥¤Ê®%í¹5†3è‘þ%?yAƒÒ±Í º[’md k§®,A|s(¦öê³þýJ“e#™RˆøW5‹ ÈïÚhMM ÷_$ÕÒ‰MÂŽ€o1Ýâý±ÁÒeŽ79”È÷%_\YÔŸÙÓ'TäpMØ[Ì>ôA«õÎGUýCI3×Sݨ͖×XáÐH‘i2±‘GF÷wj|’¥Ó‡õ¢>§ÌÄO¾Å‚á‡ù¬Ø·Ê©ãîõ£zÃøNÚb¹ÏqÌÖ¶æ*Ñ10£‚‘ÞPbP¥+´/¢4÷Ÿ#`àYî¯Ûf~±Èê¦áÄþ‚cµÔ ô@ ·Bez[‡ )µzìØÜñ'É®Oˆ¶qçRÚÕrLðŒPo‹ëJxa¹\ù†Wæ³`gp.û(¾&±Xÿ ¸¤kÃѸŒèk´æ/#•tº÷Ê ×V|™¿]áÞfĔܶ_í 3Ý«énSº{«Cê2óïW&¾$ìga7½›«ða%[ò¡=u‚­‡NnMª–tD¦íʺ^!,t€ó¯ŽIÂtq„v›ûvG&³WcÁio(o/¡.q¤#˜YhèE. Lnú²…!2_•>~O:T0vc)-ŠÅÀ‘×70µ¦ç^D~^^·ZþŒýRÁ‹‘¸cû¢èuÑ#1¯ñºÀ®lÄ 0´¯6:z×ê§žôjytæÊ¨G¥ õEx–²Pí%z:A&¶h‚ÃéÆD8ªqÌÜYµßWËÞÔ…_Ü Ÿ/†Iâ~T¢§Üàãm§i¼Îž<“IaÁÊ_#ê9¹÷Þf>â™qÁ/®@ÿ”<¤h¥â×eá•â½NUQìÏ„²¡.ÁØ:¨ ^ ÙGâÅd•lÏ(•Щìn!"[F×gù›6âƒßŒtt¡bpëõÕ‘TàHzŸc<É^ †o!èú¶%ÌPUÀÈö™ÆÌõe§ª“ˆùjÞ!jŸ¸éÝî=A"õ9ëdÁH'%ä<˜Þ×ÖŸ¾gxøòXÕ2Y ®D\ó*}ß(´,&ž Ñg¾wܘç‰AGfTÁK9,äše›¶|>>öhpȦð”KªùcãÆ2Ôd;TNÍÞy××ͽ7&«üÏÝJ b2bˆx…‡HÛd¥íÊÈSÜÚÌa\ö=;8èmc%\0Éçµ3{#½È\ßëɾä-áy9X)|Â#Slq àv7…&EüÊ· â&xùÜu¥<-‡•}6+ƒ#…>ãQÂL¢»D¹Ð³a_Mßh¶@œh“CÇ…þ€-ï„\#?±¬Ñ³Üš-BþÆ‚¬ÊqjñJên-–SRðMè¾îõW?L1#$ h@¹’ÈCëÃSn™´„C˜ÝJìeJ›~ì3zåÁÌ|)ôÁ'.íìreq3h±” ®”7*§ÜøŒâ¦¨&Anª UºýXÎá|ÌàÌÚ·G+Í¡À{j@ZA©ƒ|3Xfö‡ù¡@ÌÙ„ÎÇ™~Ú ?‚\Ý>DVRšýÇxÇ¢]NæOh?ó[Q{W(øÈ{Ï[¢?¬3ZXH*çY|ÿr%0Ô1ÅžYÎiqÍl~®Igy[¢SpäU§]篗ùþ2ë¤nû®oED ñ%ËybgqhCvÌÍ{¾Ö/ág¥Z&) ¬ÜŠÍ‚ÐWc¶dß/‘jHš]~˜:N¦%FùФ2¿ŽMÍ9Çf•1b¤Ë#±ù; ïn¡48v”ö„‹‰ù=aîÔšm³Ã¾#XÎ ‚²ŽeZ:¬L‹S£B&èv,ñà"ô™ B¼xŽ6hÙ‹ŸØfcQ‚; ŸÔÓ‚ìvóÒtH͇%Û_´ØW º(?õÜËÊÒ3\ÁÃ;â˜ý^ýâš÷€ð hý¹ÒôÖñµ,œYT‰‡sÙH˘<ãÊ!èÀ¡AÊz*BÿR1öš¥fܶ CŒ‚ºõiF¥> 5œšuÚœ(Ç“à[­2ëÐ˘áÀ€æVîlyy*[#PÏ1ÔôÊ–ÏI¦…Ô£6¾.™ƒLä¶°Æ’õ!îÉаü¹éÓ¤r£*yù-§ÃO¤`´öR‚¯­¹Ïyö¹Ð a9Œ×=9ÎÁ(t1Ag›ù…×ôzÊu©$í¹ØáB'¢÷tó>La8VHŽU}PyEn5#½,úp³æ³ür~‘ÕxSý¨‹hþ}˜¶ÐåÌâÛ@9Š MP2óeFLgÆÍ6G±$é#{FGoù·(²!(¸ˆ@Uê¶RïÝ$²tÌÒ8Lw¥çE˜c·o?g>l‹"œ+æ€)Ú¿ÈI¡Šû£›Ö¨Úã,þ~û<')w × ªËb{4¢A«º‚Õ-@Ñg¢JaÐUÀá¤Hšb{VÃåïí…¢“ò`wQÇßuˆ–ŽÛÁê%%â`:®{ê2´e<®‹ÚÍ9[^%jz†äÛK;B3àEde|…ˆ— lNâê ™\·Ýf#!… £4á#]øèö…v™Õnp™[&'.C$°-EJ÷H`6nã“3Œ,…zh‹ <ö]’M&ü7Ým¹.Ïk<v Á…W~ˆ«á¢Tçv¡h¹™FPÕ$±†¹y´áÀÚÅÌÎÌŠkZ±n›ì“9h'E¾p(Ÿ§Ù£ ÏT8É£ÉE¿‰ä³âÉj£½æ?ÒBr˜Ód>…1âØõB“q}ÀŒð¨Õi!ÜÅÌþˆ_°ôm¬ˆºGãæÕq ã£Oi˜–=ýPÝ’ÍíÑÄzµòPI³É@üëò£d=H?÷¥!‹{L˜Î<,Îgw9’±¤(–t¯,Sã‘ô¢{4…Å‚tÙïÞ£¸Ùu%ÄžWK1ým4èÝ(( ‡}‚N´H¡`¸VÞÈ/¼Sþ³œ­N0ý:¸Ô·¼”ذo‹Û>¶«· ççYªðͰ+óS-ý=§ß‘®ª›ÝÔ—t­òÔø9õíZ*ÞáÛK«2V˜=ãŠQS~Iûni¿Û‡6±e<.ô´ÒìZáÈL–Jo²ÝuIµöAÚ9Mƒ»íÌÛtágîo6vræäÊÅ‚-Q’Õäˆ3r\O6hrâ –/ŒºÖЈë-÷h€ŒØ]'{ æÔ9Æ, 'êÒ28*gvÝÉx³fè 'Sîj,ªsL籓=ËŠ¼0Šö"ÕÔ¼äîww£]†ÑþÂ]Å,LU€ê­ü‚‹ú=>lë-ßrµ·ìÂ4\ZžÐ€%¸G)˜p³áfyÃÓû _¿©[?ÿä ×m2ÐFýÙô…ÎD;<ü‹ügQ‘þàÏ.3Æápé>¯NÃ>×½ô}µ’Ung‹>M<õ&ÕÌï{8åÃÁé•N•–­Ö¼J×,ZÜâ”—ëìáªy2ÓÕ$m˜×Kç¾ÐúQ¢ù‡¡¤[é }zýÀÃáfª5BþÈ$5úEòR$¼sç…€à’©‰ý>"Wý|§MYZƒ)È ~˜¸ÂZô¥….ac¨µÚe”X^[Á*³7E¬Š¡Å—y¦H¸9}Ž9¦³Ìêé«€à·óhÓ¤uÖ7fl‡®ð¥¡I5T‹i1]¬ZÝNü…,çço5Z;5‹Mœ.(n¿¢F½ÞV´FÃõý¬«úbź?è9”$µ-— “Ãì Ê(ÔpNR­ñ·ÁAG†§‹ð#RÒçKôÍ9æû×Z« Êeôo(¾£¯Ï\!®Ë},Û—)ç&EJ‡ šL^pIT,€7ºüIfÕ`2@¿KœY-¶w|!.åÓ+Ðí]IßC[4ܾfïi„Í“nªb”…"¶²@§¡à–q2šowJ;ôFn…2©‚'ä*½02ç—h‡Ë­ârÓ€–A¡F¶¸¾ÔÐ)›õÄÍÚeGUÄd×§X:öÖ‹á¼R̘‡M1”º/­Š¥Ÿ\æÓà¾ìèªR°léøïm¹³ßU®ˆqs7Ð ~ÏæŠ ¼V5‘c Â"‡öùœ·m\{ʲXdª¨™&øŽ-”È8÷PÂþÊÀZ•‚tM }RU‘ªj:5ñÀ¾o1DɆhu‡S.,(“ÄÒó)T ÉÙÅì/¯gývÄÔµ¢P›¦UèËŸÄjÏT˯™ýª³¸¹°çiþ½¼»FU4 %Nã¯Ìl—†mrñ ËÊEÆ<¨’ÇÃ0ÅVU.ñŒ…3x‚Q¨ËýS·ÔÇU ÊϺ<âúª ›Å5ÓØp¸)¥ÐÌî4nÒ7`ªº.óºÎ½{©xtÝbÚÇ;ÓÉŸ&ØÉmÄÐÀNä>D0÷û™µ[¬ÊÌÊøp‰é¿©{ÙÖ˜éÊÒïmcDéfßjaФqx\ÉÈBŠÂq2 Ï‚c¦1Kø ‹#)la¿$ÀÚÚ6»W lfèTÃêú´Ýò‰VÉ5-¯t'#À¿@wÝ0R—z§ÍFmæ÷•UÝZ~4·I¶³$¤‰äóþiSØ¥k¬3,¼#8÷T+E€•™ª†Û…Ô< ¼yÂ+œtzX'hÈJ”ÎxŒò$Â~£øZ#»½Káùr—¾mµ@ ?u¿ºXvp׃BïT€gä`2Þ!_Ÿz£i¦ã’OUçÁ†ìYæ9¡0ùçV­i‡>»p¨ÕÓ-•Ó1Sm&Th£ÖMÉÒPJîʽ°> ·¦7¼@àAR³Ã`Ì|vë¤:%—*ÿc»C‡èjŽn“çtr›{ls°qXÊtèuQ Ã}õî/#oä63wóœýÆgU5»/ªÉ‚¨’g˜ ‰ðó²“ïøL„JTA nS9™™Ž‰¥¼*†CÁ‚^öÕZš ‹û¢pk/¢«.tKõüŠ`¥Š=—b`¾½ÔÕAQx.¿ ZožR0?ó@ÎÔª“ScÃ+•ÅzçÏ~Š®G¢®øÓsýª#p"|Àn¡¿ˆGÀ.ÈC7%n?ÿqŸµÿˆ{ ÉòŸÛ-]#«"´¿ ][*ÜýÍeÃ8±<ðL†»¿wÖRfÑÜø&Z K•uZþIþ3Å&J§ƒ…¥}®ôôµ«nÐcü]eë„B¤}7S1^/?nœ|M]âs£O¯í©ÝÞ®|4N`ÅÅác@v¢'£äÇÞ¹ãÏÝI»…ÎswÈÂJp…o.¿+¹ë9þ#Éð2àŒ|AB!¶>nŸ™møZ5 íR–0¥â¦‘dÌŠ$ÉÕ(2ìôa‡ô<ÔL's}¾š¹hIïɉjMJæƒÆy$`vëqräÀ—ô‡èˆЮ>u8Å/ç6häÛ,ùR¼xà•ñB„8.E¶Í¡.` ÖõÜ¥°u±¤œµ>w`yeŠ$x%KØq³­¹¢‡HåòiÒ ¦)Ú·VçÜVmŠÑ£È²ÍŠÂÚE;—# ºàh”X‹âæv¢tž·ÚþrF·ŸÎ2ìlF ¬5»bL~Qïäí]Ø0<}sî?œJÞ8·¢ß/ûˆj°YõÄA3Ü>œlH´àïcP½Wò?‚«û) ð¨¬æ×”‰6'=Ø'\ÎPu^ä$„ö½Ï‡]Ðd/mj?â`•°*5>Äñšï]·°~ýd^陚£ªÇöüÙ1~d˜ÎOªB²iÆ#âÄ9ömu±‰™ì˜ŠçVä\)Î'ÇœnêC3ÃľµìÅS#µ>ÖdÂ!pvw}Þ™1¼cŠå¡dºw|ÛØœ“–ÏðÌÖüVŒ`d•cœ«0 BFtà“ÑÿY,¢òÖØU»šúýÈšÇ>LMוÓqÏÑA{\R4¢) ÿ#Ïçòýcm ëü›ò ™D¸Iü,œ`ŸùÄúq•°ÿ0”Hedjès{Œ¬ÅH‰åS™ê§šS tám™TÆ®t~†,ØÝµ½ß§çf/5Ñiùû·5uC}>«½ k,¾<ŸƒÜ<ÎnÔD_ÊÚa¤ ><ø‡,è›Ù±ÌDMjmÕ—ÆÃ$ÀZi¶†k5º¥rÄ•±”³ïŒTTÑîïÛÒ§ö»[7”Ùˆ&ùÌaX]"»³}»;=½d3OEðCŸDH¡¬¨ä:Âlñá×ö87Ý䃣G꜅K<ýÆGî[¤µÖMž.ÌRHdãй³»Wã¡dpHÆTsûá2É¡>Sº%âéZC+>ÈÒn7Ó¸µCešŠ§Û úHíËñ\®NÕñ/6z›kF( h[bЊˆZÏx.v;·ÇpÖòCär*ñÔÃ_iŒRÇä -£øé‡ÏQ!:³Ø”¬C%½ìô ·~…¸+¾éÁBínAÜòŽÓÐí–l©”³¶ð4ƒüZæØ+]`·Ô;È÷—*³*6×ч,ÁLQdå‰Ilìª0^÷Ÿ¦vþœœõ¾æzµpÃÁƒP#H0[¹URÿ Yâ¢*;â3мék‡®7èj?ÜÐÓSZ‰?ÑùË”7L4q‚9öÆó« Âpœk’Ôk¡Ô…Š®T” ÝΊ£ÄóÌÎDˆƒÅóYÖ–Pfî*Mø–½œ:H“×+ýeóÁN;]¼fÙQ)oRü¨ôö3)Ô Hâ6‡8ÿ‰o\ ¶§³2-3\^¦„÷Àû$¢‘4-4rnºÉ*tû+X×ñ­³T?ôÒ¸ù3“ø¼Éj?Q€WPö LÕÁV_§÷|gÊ¡Zm?M&%òÌ Ç ÅÅÃEÓoÔŒay|ø†åzô° 9–Ž¡oÐâ´SHg­Ì5¤Ô®7”EhZÍsW³î’˜'Óœ"ÃôãQß²GédE×Ä·UOáÄ07êd35¾$%g÷‚‘ÝßR’"r5ÝJEïðÜ+¤\È{D¶b›Ü ¹vfîàÒäƒ3³®#!'w2ÓâKñQ{Ï ü,p©û†›9¹“Vл膎‹M>Ki=Ì'@fòáÇŽ"Ð&v@²WÑo“á÷¢NëLz×4Rϵ»ÝïbÔ+c¥0Ê¥3az²¿‚ÁB”Gm¿AM%GL`&WîÝŽ÷IøÐ{ÌÒëÚ·-ÖðÈÕê~}7‹’lðøaÈÞæg.¸§÷¨Q“Ì?35s³J"ðá^å™o5/ÿÇEª– Ð³}÷ÒŒ\c ÊZ/„ð’P®|Ñ¥+^;[VЍ£v£vWŸ§MÊ~v>xjµæ®gþÂcžÿ7YGñznïOa§ÌBÐvßW×SÈ FÃ;å™…nyâç/_·gÌÃm>Q};0¸ŸÇŠ2‚9Ú‘³š§Ú©'4ä A,Ã4¸ãÖ9þzÒ¡út»Ê5Æt5áëo€ã!ûˆ®äkËE­ô®Âí«b½Î ô¡ÏC4nôãÀ¼JyÓ‹ÄØI[Y ù†_^aª?I|u¡Ÿk$`88Æú“2™…ù?þyr+}Â<2cà‚ývQ÷²5šÈcaìg`v4þ½Á!ïRâžîÌž XŸV(8¢C4ŸD"§{g0ør‚¼7˜p¶WÜ*¯§µÐçWU“Q£<Ä_£›T¤ÞzL°gºý_ËÜ®k–?dGÄYó5í›âjèG¡â°`žó"l÷~±ß¨§Ü!F,âêFÝA“°fùðþš@Ïö=ÒFC+¢GÄ~ï˜êØï¨ñ%–^Å}s²• (VË;Sz®[?'Ò)Êl |d´«Æâ˜—•F¸_‘•, ÅïNW5ÄàïwO#Å™bцè[êHVÕ®æ0N=R0dP»?õ^VZ_ÙJN -E>Oú®U’d±ò¨ˆù,Ýš¨n$MôðÕ<.jEð§÷"8#ú37ù3¥8¤JÜ·ž¨@6!ûø’ŸîuHž´¶tBQK>œwqƒËzÄ-I‡Ÿ\†·9]"ywó8yþZ'öCI <]‰¡ ¥TCx @¿Q¶ÁÝÞÃÊ\âþ «#g~0øÍ_?üRë¸ß0¤!¡ûø1>v|µ’÷þM¶.çð ëç_æˆ\ÃôÏ¿åÂBEû¶×ãGˆˆ·Ôšßï€ Ñºrð Þ¤Õ ÖÝ7ÕD¨' Â²– ’ xåÑi8­56‚Ç£–UzQOõ~ú*²›£d}—ÏÐ!ÓÎË@š²"F ïyLS—vM™*)úz(1þ²ÌüãèÞÜ2‚}AÞuž<>ô›#×k¹ñZ!‚¤ØxÈßâ&„.Zî„h­€Y$v̧×Ò„pyõ—¦0¯KÆç3¡ß¦š÷™à'I=9ð³|ÖNdý£‹‡ 2”æöŠ÷†£îš¿¢ nÕ3â5¹¶àáM‘KÅ)!ÇgÌö(mþTb€¢¾Ö;‰‹¬úÁR˜ïML]¹Ù`9*òz\ºqò°:–9­Åj<±ÏTC ?÷ŠwlÞÚphoPânßkA +w/eð9ûi%›£“û„ ²iyé ½’Èeü`Î]H6+ïO›&mÄÚ ÝÖqÀ(¬§ĽžÌÒ×N8‡Ž[öÙ€“ºt&Ø|59çð Àfn“¿ `c}¢ ö•RÍ<¢c_0¡H”‰Ð8ָĠqøÆ8HstìQæÕLLyÌŸp*Ô÷@°xE«“3¿$»”'õNŽœì´Ø ›q6a)»JbåQÞxîÛÍXj—Véìð>`wz‹åô>¡}=[]ÔÿÔ¦˜G£å£Bœ[;,½â°m¾oPÆË7½e‰J ÷ks ôÊ4õòbÿŽ×Á1c>‘¶¿lç2âwÁ·çú `SB˜!þ7gœGbî¾j qnìíøâL[¤/1¢–ÌvsZÁý¬ô½\ÑØÐ ÅGµÜ¬¬|±Q=ýL(H£ÅTØà4Ô^,‹rÝ; îë}©ÄËM³’Â[ʇ°M¸Ñä_‘CÃŽ ’ã§âÀ¦UÐ`ù"F†÷ü&fa¦ope—Õç6"PK›õ¹yñálÁ$]áø&-·¬£Øc̃’j\o­¦BdzÓ=—±µ{Œyלv^²e‰Vj*ø@|þ·Ó¡I¸#38dª‡ö^o{VƒLH¡ûzŠ`‰àôñG¹»scÕ^ªMÃhv‚UÒ¤}ýYòw-ö)Æ«-í&çV’½¢ãgˆ(æý1´/ºŠU€ç5 C1‚œ‰ÖZW<5¿õÁèù~Æ:U¿ÌBÜ„ò*,ƒÐèöP}ÓxÑÞÞ ŽýV³:(ÎpKl6“¨ð„Û$}ÿ:9‘–Iã ?æ{÷ÛÚ(É÷Å”‰7˜”{§üÏŸ…N2AØa3i°W Kjª=ëæ?žE5ú™7¹²…ò4"³x&ÌŸŸ€ü™ós6œ™~Ózh°€1‘3¿Hpò¶Þ€ú§øH†Ú°Ž­š4x(ÖŒV+ ʪ!ɂߣç#ï·êÝâï¢Ý ô1mØä©´/¬qÙÖÈL¤Á'æÑv* ‚>¹ µ‰;=$’¨GÚ¥\ÍÛ“™6¾®«Qdýò\Üüä› pY\È¡“[{*}R:èwªƒ&ÁyZBÄêòÌmwi9R¯Õ?©û¦œ“òÿØ…õ«5¾Û<Ôzè`‰¥ºírC[Oœ‹ËäœÎèŒd“½¤ÎüôåcLd¿ž.û|‹"gˆœ}órð”r£s!~Þ74$ùØ3FßÔºXoA¨m' §dI-é(ô~H2™±~sÜ ÿì@è…äø9‡‹È… ¬õ è¬Wä±5çýãß`¶ØÒÞ—Œø=’ÏÆæ…»UlDD›xŸŒ,¹ $†¸„ñ{3°…Xª9 $Êù᫪—oj4_Çfz´^)ß–¯ Ú>Ý¥”ß\ãƒçÊ®SNÓñÙA&BdˆÆ^¼ü–ÚíNÉë®ü¡Ócøéé9C3ƒ…Û¨q…¶7ÜÁÔ­ãö ¥ ûW0¡Ëªd¨Äûfâ[piðèFõX¶ #º{˜h#[”>‘’s„ ¸u¥ý®hÃPìZZÈB‡ö]Ö3ùëx&ä³6S<z†Þ)—JÈÔ|£ûZ#CÕ0jëv>ÔT]Õ%+&ñŠQ`k ¨6àR ÏÞc½NCxZ´NE.Ú <ÆÊø˜D ×p3…[¸¼úfd\Ö«&ôA&Ñ\›žsÕÝ»AÃÑ£b'†ý˜¢œŸ+òÜb§†S6î5$íV·µ6ÜÀ¿zøEŠjR¹øó™}„v&"g¥—÷á¾7x˜ÔÒÉF­4tø~(¬Ò‰(6¸tT(TO<-z¾YEuy±B€…GÞBïèùpR›¡‰_†J¯}êŽûî*6àÌ‹ª‘&1MäQáeFGŽ«%þÇã´7Ì•ô3t K©É*IAà†7@ÿ¨/¶Öµ"9-^gá•GT“„þý¦R<jÔzËǤ9JĬò¬)FnÞRAÆ„E`gã=ÌG@|mÝSxŠÑh.w’‹Ë\°T¤B­mMˆƒ ¯sPL+Ãgͦ"ZÓ뉼$Ÿò/òÍlœ+öŠEù šVûÑ>8fÖ®æÏºœä’cÂÂ$o1 qȽ£KÎŒ)Tá‘ÙÙÚÂCÀ(¼ ë½—ô¡sXÖÆØ÷.ŠÕmT~+†i:æ$}¹ô[‡A6_'~e§.’÷k/mœ¸Q º§±ÑôVpO ƒMß_-À§õ¶zNW®±ð+´¬¾a±ƒÚÔ!Rõ¬ôš½:¢ÆWŽRKqK÷&Aš­ŒvƒîúO“øŠñæ¸R$¾¢ÈÙyo’ËR”Åä0Béô¹½IË¿Íí‡Ù3*áŸÉÇQÎ_w°½aµè&Ío`{°Í´‚°ÄC~ì ì£‡Ü<ÙòVL…~û9¬7ˆk¦{®¿>ïŠ;%3²©@çtÍß²¾ýC[³ˆ‹ú‡/¢žÛÞÑusªÈ+bµ ú˜ãe‚î4?f ÑZ:ÓÜ} =«úŒÚíf]xlœg!º²rå²”%ÅØ¯O‚aÙ…ÒqD§BЭRSµ+!ÎÈ\#˜Üï˜Íõl5¾¥ZÏ-îQZ‹Wè*n8·ÔB?vºq²Pªîàå•ñyûJïÃÄ[%¬“J¬<ŽìÐGæ[“|H˜öf`;….#vöÍ\*ÁC —ƒjçðˆð{ßz~3;ä: 9”÷'V¥±Ð´fìÙÚ$… ³i ¾üd+ŸéèFÖau¯÷ÍQ!˜µ÷µÓ)FsTB´§W ëJyA`ìž&ÖÁ=2#Ê[ǽ¾dÒ¼JŽJ:¿”ËŒú@OF÷È¢4xò8#­_ﶸK†•ð˜¬ç¢ò{¬«;ám\óXŽzàÌýÃ5$nG·qËMÆäÛ¡¶3åWº(É´J[p¸/„X7 y+‡Õx7[!'mŸ¹–r@mMý}vQŽ¥¨~ØÙ®ö“GäÁÌÚøYMÏy,n,žèW ’쵈>B­®³ò™WÚÜ~gÙàQž`’¡Â´Ý(Û#íÖ˜8›¥¢ƒ]8 ?8[%AÇ–:Þ/Õ¨‘lrÓ˜³fZÞ#±mí|nWQæWŠ—2_&;­iQ~P%:|@- †Í¦b°£”"¨rYÍkí2œÔ aaMâ|Í/ª©cf ‹?y§ƒJŽð&ðž[×îæ ¾ 2`­´n|¿÷íA:õäÂÐ}ëd\¿Êåé>ÃËÙqü(TºÜ]D7utk›Š«³‹°n‚¶5øú†.Ï& y|žÈŸ-ð¢r¡ýx¬.“#ƒjç-؃f.<’Ü#$­hèuþ$Q؆׹À±îî2ìm>»• ž‰àeùA$ûˆœ‡®°Ì“Ð0¥Á›A’PRh¤:¥Z³ºÎ›ûSnòÌIçã¼Ó´ Ù.ÜÑMdpÉôýŽ‚ßI­¹¤±> (òy‡õuÚ•ç§×#ÎÀ3Ù›èi±†PV’Ì"oTÒ*Ž<åy,˜w)S>‹àÜ-‘@³C&Å)*‚?­],„´ÿ9 ´7¾¶kߡިO>Ñ!Ïò„qÒætòÎØiY‚:ãy6¹ï¶KÌ¢¦8M߉UB9£Yó·ºôÙUÃïUx±3^%ü–Ü›ß~Åô*ž¯€+æÄ‡!†¢$sŸÚ¹’š7F(/7:ÿéxÛ²ÀQûtB·î¾šÄnÛËùá+P;î*UÏj´¯Î»8¶jf×ø­|+ÁŽ4¦èð„»Å³ˆe½¹¾lÔo2z-râ?/Œª1 ³ÃÌ`ÅÛ5ž—¾¸"Âû9È<5±$RÉ^Éa¹!&ÖßÉçòºlOSÉG¤xmØ/‚;ÛpæúQ®Ø…Ú­É.ðøt?5»å*jý¼šEYÛ…÷ƒ• Ý UóvTª½HÂ2tƒ5õ^ƒÈÙ•ák¶{¾¨~– M–ãI¦º$ƒ«ng4åÛ„¹ûèq&1D­%lMDNð )Õ%ÿp½ú.‰×¥–æ*=[xÿ'y Ù€×e× zÙëÉ G9Ç7lÁ±Ú8÷ë)H¶´C€ìG{Æäáèo"äu#N‰e/Å0”Åm§›&$^OuL33ýêõékÑ61Õ4z§‡(Ͱk™ž7^L|Ë!7|.¯¾Çç_ìÞX¾;ûâcñŠjÿˆ^™`ÏD¦ÎÒ‹0¡½¬Vý•˜B$ mÞ»Ž-–bIŒeú†ám,aZPѰ%]Yê„„êWy=b˲G)sni°=½%LÅã/ Ú¡¥ |3 <åŸ9ù:9éÅaÐ7òìT­)†ŸGOrÒÙÚjÓæOlɺ¡‹Dʈ ÏÅb Ï„WØ÷øØêèºLpPvLs0>vî,·UE Y“ÀšÎ"÷h<h&Dœ›})éö;PgÈåeÛ(j*Öù=|Qâd¿b1¡eçäyÚe¯ïªl.îÍe0_?€!/©•ò)ù˜¦I *Wñ6Ûéùó×=D^frF´M+bø^Jªë±Y±ÛÆÌÓˆQïêÏô#§@Ô”oÝ6eD¹"3w“©*R©Ÿ¬"•ÙK+ñz–38v0È}|]·¦µ‹Œó™7ìe(Ò,êpvŸXÆr ™Ûìu²âf‘=¢ªÞ}Æ+®†roÿ N£~a1×2§Õ¼åßôï»p¶˜Æ"ªFsãcj¤vÏs%ò 6 ~wµßÈkõãW> ˠε ¨ÔÕfã 8²˜åØ]³#g Zßt+rUC“uo‡`¨mAFRõ h²o4w0]Eââ¥À|¢Ð-±­µ¶^*ß×ÑhLþmk³)½@Û;Ã&÷k³½™p6é{DÛ¢r}wÞ8Q»É(ùQi K{u£d ÀàðEuãêùüz?Ü¿k6µªø ÑÕƒ•E¦&Çøª478õ3]Åëq‚Ü«õÚ.d4¯}˜?‘á;ü]àFëìG¶Vdó©$kþ¬âýö½q­`"Jo«H1ÁbzÉ£("jbôŸTà±PVõU”$VwTBHTÜߌÕÇíñ~Z@ønyyY ˆÝ?s¬³L:Ë‘SX’¼H8 |·Â¯žÄ³Ý¤¾á^³¿Zî¢þôé#z8ZÿQ28¶!0!ó5êâ‰rô§Ùõƒ€Hó \eœ3Ä Ùüdˆ<âÈÀ},j¢5ž³8²âƒ³ö66•lì#< uð”A“Ö¾¸5h$Ë ƒcÆë„%[Ì;ª{âè1é+ukßb‹ú¥è›ÐİÅ:$l%j8M ·£”¦K ýp!ÒÏ.NþZ³I«6@³C©gØãNB¾¹`ÉÛ‘º– %2ügl5žä/º-Õ¶í).Á$ÜYu¨5åž¹t;Al8N³jæËnIäÓK4©õ:D3ÒÞªì j†©ÚÅžÍ_†ó}ËÜf¸¯qZëE.^ˆO—ùahó]ôש‡Q#¯Å¡ôº‚*ä\5ó".ˆÔ"mU²q›¥pžrŠÄ“ˆ5'g ï‡Æ~pu0²À—jð }¬¦¹Ý}ÿ}!HITDª#˜‚°È¹¨à›ž ÃbךÍVM ̤˜KÀ~»CÌçrš$“î· Qø‰&.—"Yú>Çó9ú¡Ç }KÐC½È îWæ7ɔЪ‡×Ãó}¬ÒRÙ˜Ü/ŸKjVLSøn½¤pÀ—(.O››ŸenØc+*üô{í•ÖºNËêV[œwV‚ …K͸4ËõŠC‚…ÌõAqb/"–ÎmÉqÝ_Çž_sªÈÊËŸ†`‚“Y]ŠB¢p;g`ªy ÐC´èLOF8Ň -w¼D¦#÷@Â:UðÜ’Ošjá}J80Ç—\ó7ѲùÖ‚K^·DÊM÷÷:Ò1Š¡¢=^Ü-A#:¦܈4ðL2‰]îFb Ñ0¼„hˆãà(%,|1i¨Sð9‡°=¶/ö=ñPÎ zý¶Ñv>}CíNúUf}ˆÉ{"îLQK¼O†*òà•£ ¡æŠÞ×ú9…Aúà«Ï!_Ÿ0Tlä8‡n¾ù›s§‹P·ÍEê!9Îpò’ÁÅ¡ Þkjî ’Ù7°¯Þ®©¥#›™×DcŸ±?ï­_¥½‡` ŸÑ'1ÝðDÏ¿®!rïêJ¼×˜å®ßþŠÀf‡·1£ÓC"n9ÕŽú 1Ø…Z)ü›Æ‰#v7’Ó½ãeú^F.0c3›Òé‹Üx~k4=_àécBžTD—ô[$yû'X3ž'ÜfUÖ©Ç®>P³PT•a}+븘-ž÷ò·>ôŃþ=ðÍœLÏùó™íêxµàD‹¼±^Q0TËÒë·Q“êþGÌJ@ä<Èä¾Ï£Ýó3à !Y%¿éÍG¾þ20nîÐ`ݱ|žÅò»m)6spñ[yÿù) ‹0ñëLÏ|Â(f罊 îZiÿZtéz·s~}e¡ÓŒ¿¿Ø—§‡üÖ\_€gøÄ $kò+Ú¦‚š-!{õ`©“¡~b35ÊY^bPÏ*ȼ©ÕT²1•–,Zù`[þ1-éã¹X«Gkã›? H¼0,›}¦ (¬Êžp~­Ð¹x079‰]xÓZhl”6îÄô‘ç/E*õy?KH¾ÔCìê_öJ¿»ŽKTuJ¾t•{¢ qæp9T0Ú”Ûˆ97mþ_f™ý†Anè׫Þ:ضÏR±™fiöQi›-:U•! ð‚Q3'Jj­Î§{–ñÎVDcM×€ëGÙd&üª÷º(î™ËÉöˆvk¢Vo½§ëב3ji\ÔõÔ¿Ü÷ý\,žê‚Byu‚sÊóŒµûË%(1f€ Ýuf!@‚zgq%›ë–Sb½>…™zhÛÒZŒWoék4å ?Œ+álÖIåøñ^ñî¬-qTLî%MÖìh"šÁ«9ê‹5˜u£‰<€a²kœ•æ -Äà.T."´Ze±XÐ<@ò {IÜÚ1TF`jR¸E8Æ~KdW£ëÁÛ®8uj}øý$8ÎMëöˈõL :2ù8uO?BÜ”’•šQ¸6«ÖÙxùÁoXó̤¶Œ´Yo>DŒÝ¤Ää¦ûgj¸L½Ô2Ûj­S—eêÂ*<2ssY°,¤Më`/ÿù÷ZîÌÇ´@f;ÁЛýK ™xÀñø±í]€Šm­¾p᧲ŘzÕ9éÍXJÉž£W‚f@PQý:±amm “eµ•YÈ|þNjĺt‰“Fï¶¶" _ ÔÜ"ñÕ|]yÖŽd[¯¡·_ôœDë^-}£I …å`*4ÊA̺ª×K9´ŒF¶$?ížçóS¥”™G^léÇ2VLäG»wõ‚5ÙI#'°=_­V2“o„H¯ì!¢:èâµ<¤›Mì“¢&~žKj¸<§lÃ#Šžô}"uäï°p* nB„hìDLTó:Å-RQ‘?y yüëb•ôçÌ’'ÉÅÜÜ3<©ŸZ=HùY endstream endobj 107 0 obj << /Length 859 /Filter /FlateDecode >> stream xÚmUMoâ0½çWx•ÚÅNÈW…œ„Hv[•jµWHL @Úþûõ›™´»Uçñ›ñ›Ǿùö´žØ¶ßºIt¯Õ³;÷סq“òûæÜÜT}s=ºîòùֵãìùA= }³vu[®ªU·¿Üyòªk×Ö¬¯I…{Ýw¬£n_ܯ‰k&‡ãö ýì—ýåàY_”ªOQEi?ÝpÞ÷݃2÷ZkXvmÙÑÉ9˜Š5õíö];ˆ$µ…ÀÀ„ªÝ7Ñosô– yýv¾¸ãªÛõÁ|®¦Ï~ò|ÞHå]0}Z7ì»WuûI›Ÿ[_O§ƒƒ¥ƒÅBµnçKz~lŽNM¿nóôòvr*¤±aeMߺóiÓ¸aÓ½º`®õBÍëz¸®ý4g"NÙîFîÒsuíBå‹`nlB ˜„‘„­=öÌã¸æ@æ )UÖ 9yŽ€IÁ(±JÅ5<æ§T`,© M%5ŠÖœR£h”ºäRê ®á1ÚûÌgcßÍïÍ yq(¬ ábŒÆuX&Àá &èq,–Ñ1Ç+à„±N97Î8Nüœsk`Ëq8­ ^—8%Ç àŠ½FMq.â†5„SâhzAìkO × Ápý$Áƒqù1¦7]}Œ©ÎòþÈ©ÿ»pÒ^`ÜD3F?©ìx”‘ׯ[ë±a ¯³1´ecÔÏfŒ—Àäµ!/²„1êg)câdÜ?4dâ­K^˜|É ÆÐœ•ŒáQV1¦úÔ¿‰±'²š1tæ¬?ƺ9ëÁÏY?í¡œõÇГ³þ„rY‚ÞsÖŸŸõ'Äg)4ç¬3Å;ÎYgD¹¬3¢\ÖièÃbŸ-z±â3z´âs ,>G|ÆZV|ƾ´â3Öµâ3ü´â3qÄgônÅgè·â3tZñ½[ñ¾Yñ™ê‹ÏÐoÅgè,Äg¬[ˆÏàâ3ø…ø =…øL¹â3z/Ägâ‹ÏÄÏød ,gz)ÄôRˆÿ؇…øO5ù[±T“¿“‚êˆÿàT¼V *ŽÇM2G˜çªZN(:‘pTãjy¿šë0ø‚î:÷qâï;÷~Eú²è¡»m¼O1z¬ƒ¿'ßX endstream endobj 108 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlöo` òKwÞ{Ò·óÊÕ× ¢¤_ny×È| #¥Ê:##Ï0)%V©¸†ÇÁ²£â” Œ55¡)°£FÑšSj­‘R—@J]!À5£G+>ÇÀâ3qÄg¬eÅgìK+>c]+>ÃO+>G|FïV|†~+>C§ŸÑ»Ÿá›Ÿ©¾ø ýV|†ÎB|ƺ…ø ~!>ƒ_ˆÏÐSˆÏ”+>£÷B|&¾øLüŒOÂr¡—BüG/…ø}XˆÿT“ÿK5ù?)¨ŽøNÅkÅð¡âxáÁÑ$s„y®ªå„¢ G5.–[ ¹Œ£¿ èö¡s'~×» ê8‘EÝlÓUŠÑCüjÝF endstream endobj 109 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMèßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø ®´ÝP endstream endobj 110 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMêßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø YÝi endstream endobj 111 0 obj << /Length 858 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N7R!‡þûõ›Úݪ’çñ›ñ›‡±¯~<>ÏlÛ¿ºYt«Õ“;÷—¡q³òçö\]U}s9ºn¼w®uí4{¾SCß<»Q]—›jÓíÇOÞtÍáÒº‰õ=©poûî“‚uÔõ‹û=sÍìpG£ýì—ýxð¬ï ÊGÕ—¨¢´_n8ïûîN™[­µ¬»¶ìèäÌEšOúvû®D’z…ÀÀ„ªÝ7£Œè·9zKüü~ÝqÓíú`¹Tó'?y‡wRyÌ†Ö ûîM]Ñæçž/§ÓÁA‡ÒÁj¥Z·ó%½÷Û£SóïÛü ½¼Ÿœ ilXYÓ·î|Ú6nØvo.Xj½R˺^®k¿Ì™ˆS^wwí¹ºö?¡ŽòU°4H6!L‰@Œ@ÂÈBŒ€Öû@æq\s óŒ”*댌ÇTgýâÔÿÇÀ á]¸i/°n¢£ŸTv<ÊÈkã­õØ0†×YÈÚ²ˆ1êg Æk`òÚYÂõ³”1q2î2ñ‚Ö%/̾dchÎJÆð(«S}êßÄØYÍ:sÖcÝœõÇà笟öPÎúcèÉYB¹¬?Aï9ëO‰Ïúâ³ÎšsÖ™âç¬3¢\ÖQ.ë4ôa±Ï½Xñ=Zñ9Ÿ‰#>c-+>c_ZñëZñ~Zñ™8â3z·â3ô[ñ:­øŒÞ­ø ߬øLõÅgè·â3tâ3Ö-Ägð ñüB|†žB|¦\ñ½â3ñÅgâg|2–³½â?z)ÄìÃBü§šü­XªÉßIAuÄp*^+†ÇãŽ&™#ÌsU-'H8ªqµ|\Íeü A÷û8ñ÷û¸¢Ný YôÐÝ6ݧ=ÔÁ_ÁÄß” endstream endobj 112 0 obj << /Length 860 /Filter /FlateDecode >> stream xÚuUËnÛ0¼ë+ØC€äà˜”¬W` $ È¡ME¯ŽD§lÉåCþ¾œÝuÒÍAöp9»œQäÕ·ÇÍ̶Ë›E·Z=¹Óp7+¿oÁÕU54çƒë§ε®½ÌžîÔã847©ëò¾ºï»éÆ“ïûfnÝ…õRá^»þƒ‚uÔõ³û5sÍl˜¦Îhÿ‘ý¹›öžöCù°úV”øÓ§nèÕZûÀºoËá€fNÁ\©ùEâ®ëÛQT©h L¨Ú®™dD¿ÍÁ»‚äÍÛir‡û~7Ë¥š?ùÉÓ4¾‘Λ`þ0¶nìúWuýYœŸÜœÇ½ƒ¥ƒÕJµnçkz~lNÍ¿èôõüvt*¤±amÍкÓqÛ¸qÛ¿º`©õJ-ëz¸¾ý4g"NyÙ]¸kÏÕµÿ u”¯‚¥A² )`JbD>`´öØ2ãš™$`¤TY'`ä`ä9&£Ä*×ð8XV`TœR±¦&4Ö`Ô(ZsJ¢5Rê’H©+¸†ÇhÿÒg¾¸ôÝüÞŽb‘‡ÂÚ.Àh\‡e®`‚^Çbs¼N[à”sSàŒãÄÏ9·¶‡Óºàu‰Sr¼®ØkÔ4ç"nXCA8%ަľFðÄpý ×O<—czÓÕǘê¬ÿâ_8õ¿1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦xÇ9ëŒ(—uF”Ë: }Xì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&+–jòwRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\.ï÷@sGEÐ Dç>Nü®wï—Ôq8"‹ºÝ.—*Fuðgõá¡ endstream endobj 113 0 obj << /Length 700 /Filter /FlateDecode >> stream xÚuTMo£0½ó+¼‡Jí!m0U ó!å°mÕT«½¦àt‘ˆ€úï×o†4«j{ÀzÞ̺v|t®võåïð žû®ÚºQÜf›|Ó6ã'oÚêp®Ý…õ’uïM{¥ ¸}u¿gã f‡c¯¤i"Amƃ§}Ã>,¾†%þrýÐtíƒP÷RJ(Ú:ëŽXÌÌ'Ab~‘¸oÚºŸT‰7h ”uSÓŒÆêè]AòöcÝqÓî»`µóÿsûÒyÌŸúÚõMû.n¿Šó?·çÓéà DÈ`½µÛûšÞ‡ÇÝщù7+ýd½~œœÐ4W¬­êj7œv•ëwí» VR®Åª,×kë/ÿbÎxÛOÔÔ0ñƒ”+³ðØ,ý ¥F Õ§)1<öÂc«8Pø€Æ\ ‹6¦€Ç>!Pp #]QxQTýÙõ“v)#´–êZB¢‰ÔYL½tž/Xˆ^r<ާÀ1çÆÀ†ãÄçu§%pÊñØr_âd·À9Ù¢PSiÆ0@¡Wå„Q_«úUžhÖ©±ÍÖhèÑ諵"œqëÒì–FM]R¯rCpt¨¡3Ì9õÂãж„~ðj™3FýeÁzpÉ8ô8úÇóˆ8Q„:1ù¬bøcäÕ7£®~}õÜðHq”('b ÃÄ„ùŒ>^ÐmØ# &½zdìõÄò…}4¼)Ö` Æð"áýH‘›,¸4%¬!Åþ%¤AQß„÷ÞB[B~)Ò™äÌï Õ_’)ïMн±¬?DM;Ý豬ßÂ;kyoóþQnNçRæð®d\ÆÓ €;‹WæóA¨Î}ïß zŠèÀÕoZ÷ùZº²è£gîòºböT$Z|U endstream endobj 122 0 obj << /Producer (pdfTeX-1.40.25) /Author(\376\377\000S\000u\000s\000a\000n\000n\000a\000\040\000M\000a\000r\000q\000u\000e\000z\000\040\000\046\000\040\000J\000u\000l\000i\000a\000n\000\040\000Q\000.\000\040\000Z\000h\000o\000u)/Title(\376\377\000S\000h\000a\000z\000a\000m\000:\000\040\000M\000u\000t\000a\000t\000i\000o\000n\000\040\000a\000n\000a\000l\000y\000s\000i\000s)/Subject()/Creator(\376\377\000L\000a\000T\000e\000X\000\040\000v\000i\000a\000\040\000p\000a\000n\000d\000o\000c)/Keywords() /CreationDate (D:20251226170016+01'00') /ModDate (D:20251226170016+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) kpathsea version 6.3.5) >> endobj 2 0 obj << /Type /ObjStm /N 91 /First 742 /Length 3609 /Filter /FlateDecode >> stream xÚí[[sÛ6~ׯÀ[ãݵ@ÜÉNgb'ÎýRǹ´Žh‰¶ÙH¢"JiÒ_¿ßHŠ”%ù’´ÛN;cA pppÎw. X°ˆ)¦ÓLÇ “‰d–i鞬d"b6qLæ”aB3g&bG®'‹µaxˆ“´QÂd âH0 j¡#â-$(Ì ÀMÎ`*¦6ÖLÞYÛS`ëbÃXE˜NÒ·}„ï8HLÊ¢i|'1ÓD&Ú1IâjLmè,¾MÜ3跘̀ÞA(ƒöÄFS‹H2‘æ7 S2RÌ-Á"i zLm"Ç,Ú­Ô=K" 4˜JÐè"¦£$bØ 'þ´H³" ŒÃ³Æ¤N3m œƒè&=DµF÷‰ }Ñd¢Ä²" è“(J2t…ybØÁE–ðÀ”øŽM¥!Ù+Ñ¢—@$ a˜(Ä’ðT±qÞ8àA¦„ò‰Êþ‘ï†ò1ULS«‹tOª8u%0¹Pd`L'Ð(¤E;ù‡†%˜ ãÁÖ$“¡’ÈLFšœC“CÀ}ñ–äv15¡Æbr È%ìÀÑhA㈃v4>ÒzÖDæhÍ(c’“„€›ž ae¢mïûïÅøƒâ¨`ü;VðúCÆòù ûát÷øÑ—iÆøËô<ëñýb2Ï&ó’%D×ã‡YY,fƒ¬„«û†gÙ0O÷ŠÏì8Bƒ€ü¤‡á3Œ#¥=ÙÝɤ—cÍg|i}é|yÒëÌîé{üÕâtæ“=¾W̆ÙÌÏð‡üß?þ$ÌÙqìú îidÜ×Ú‡W?&O×Q¦Ù]¶‚Àóbò¯¾Ü!¾©B÷cøDéG”S¤íy…êÛ‹‰¾¢äàd?§#¸ú‰³ÛÅÐß\ o‡TqÒO(7$Iéj»¦-ÆÒ_ßýô3¥g\?Fz™,F£“ T”¢+(ŒSý¹JAƒÛN…¨ï[¤øÕâÈ+y@IFVA§} uZKLU§åÅVuG‹AUG"I])ÇPSð—³bð*ÖÜ{ŒeŸç«1µÑÒ­†´47‰é¥þÒ^m”›”ûZ…”\UHE·P3ƒlÆîL‡gGÙ»]ÑGöfSͲt^ Íõ#¼ô^:ÏØ{ÿ•–])­À"%ä¿#ñ]}ºgÅð*’£Y:fCÀŽJ(õòèþ»þUCm_!¼jµ·*#¶hA}Gù|„žCöz\䃒½X̧‹ùNÎC¦ûY¶…ãáN×¢ä%­C¢ÇŸ§cê“È5i™yOâ³Ñ§lžÒ¿?Ã|rŽ—‘ÚŽÇüÑþ>ñfB'­IjúÀ®Íßæ“»“2_vßËÏÎ2x¹V.ÃÇùd¥Ðò‹bž²³9^5о,s~>K?e<,æä³Áb|6Ê>óy>f|œfÅ„ŸÎ2Ð`H:Àùø0Çe^ò>’ë0;ã3ÌÍðØÑ(m/“ót¶ÒÅœçÅ$ûÀ)ñ+§é ëd#q½)ºYKŸ¤7íú@íó2ƒQ¿{qú eþhŒ7Ðäkb[«ÕØÖâvÉJËo’¬¾e&Öñ%åì-•s7Q®mȶrK¥o©¹”‰Íÿ1ë«3±þËdb½M‹?M&6ë2±ý»ebs½Llº™XKÝOVßE—A{­÷ÄNFêfbL`¾&¶­^m+¯ÛÖþ±m¯Žmû—‰m»M‹?Ml;¹&¶ú›Å¶U7Yi7¯®ÝàT›kçÖ-Œ;ø¸÷Qݧâ3)c*¦TŒ¨È¨x鈾‡ ÕÜ×vzWlRt&ÚoF{Î*Íã’mgJßrq©Ù.“†´lS¥Mß°Ý|FŬáù±a“5ôžÞ´u¸ ºeÜp˜wUÉúÉz6Ÿš)f×Ð:ëêšwõ¨©Ê«5˶XN#ËÝ ”_‚%yCÚÑг>íBp¾Žÿ]Íe]_w!ì¸Ò¸+Nq‰`é6‡›6º|i¸ç]7t->î’,±ï°œ5ç]?šoqßù%ч áYWÁÛÙs§wŒ=LöÏçwùœôŽÃZròÊ Ú&V}œ3á ÀTe¬¨%”GE’ì/l·ZCÍÛª¦ˆã~R•DÑéóÔ¡N}×ýÈw©ÔØÐ—u ~b»(&™¤oµ rØ8‚FÖH¢ˆußy:…-jc¢£-ðH„­ú«6?¶â®,ðøTü‰ÎÐÑ™l¦7ôÚO¬—ŠVµ0ÐDm|›Öº>ÔUäMÑPT†V¹„£2…éR •¨¢Ý×µAZ½AP¥ŸÎ@0x(vú«G¿$•Æ{?öeäJ{¨Ó“ô¬ý³nQ,ûTS =_SV}{=ižP3J@?ÿ¬Â-8Y ´ Q8ƒ»8¢ƒ[uBúaS‹N8b˜ç¶Î9‰º† Pt€+_U‚^ ‡œ$†ÕžŽ&ÆA¥¬ª¡´t‚Rc°D¶©‡T-80KÈ<¿¡ ø1^ ÂréŒ~~ßáûü>ÍS~Ê|È3~ÆÏ° Á/xÎG|Ì'¼àSþ‘ÏxÉç|Á?ñ_ùgþe'ˆ|cšÄ´÷¾®BâÕÞÑO¯$¢ÝÃì|1JgÀÀ)箿ĢýíÙ#jC-ˆ6 `Û (Ñá.ß÷Å€Cþgü9Éù+~pÞð· Sìdsà4(FØ6ãqZcæa;Ã^?ñ3lz /¾L/²  ü…hàÄÎ ÒÆ!íÿ„ÚŒÄâÓl–CÀíw‡B!_f々Ÿz»Ö)º^ÃÎW­ã Ó¶É‹šˆÖ¬jöõ¥«óÿ¯ëK›-çï£ÆÒK·k%ùu¾ƒ?§¬Ô©%x™×{¹@pï¤Þ]½£x— ¾ìý²^EêõÄ{mðòÚ¯kçC^Qx±lÕU’ëg¼´œ+Ï%Ët×Ã5–à¿\ y¡lµ*Ÿ\çhyö³é}¬ t·Öþä³rN®‡[Ï=þ4­pñ´‡#Ÿ!ÎÄèz®'m΂âjìQñz¬‡äRÖàm‚ny]Z‘5¾$«ëÈ*—²ŠkÈß\Ö-o ]YéŽòа*Þ$¬º†°Éͅݲz¯ +W…5…ÕW +¢[»qÉ]•U_Vo’5º†¬âæ²n\3VE½\Êl®Ø]CTù‡2O[Xzª…MV…/ »f¦«%ÝEXÐas³€îÑûáOòaY_Ç­.¥V×ܪ[_Õý¨pãâd s±‰¹UW u5i¸ÌTÝ{XƒûÖš²Â‹îöûI.úÿøéf¤?þ+Ê»ôï¾ÖZõ¼ÄÙ7ýû@¾0T6C£-C]eŒçtÞ\ÉÒáã’šsÛø˜6Ÿ5ò8ÛðÑëùø¡®“gé­ àÞ¹W v_ÍÓÙ|‡…ÄM˜¡/vXHÕ3ŽÄeÜzÆÉµR­gœ‡jÝzÆ™¡N‚ÅpÁ}œÏW&«©NVòív‡þ{fÉÍíÐÁøçæT’$Ô+mRÄ+mTŠ•6H+ÕªtõÌm²KâµE¥^eÑîm?4l‚K‹ê您n3ˆ ô&¨Ö1BÊkÖ£ýy°8ï…xZF^,-¿ðJ Ù¸ñy†‹3]fËÈz1Í&w½¬q¾ÿ@ˆã— endstream endobj 123 0 obj << /Type /XRef /Index [0 124] /Size 124 /W [1 3 1] /Root 121 0 R /Info 122 0 R /ID [ ] /Length 328 /Filter /FlateDecode >> stream xÚ%ÒÉ.ƒQÆñ÷ý 5UQS 5ϳjª™š‡RÃBlí%$.@âÄ ˆË° Mj!‘Hl­7`Á÷m~yžóžóÅwDD~GÔy»’‚) i­">Û’X€(dÀÌÃ"dÂ2,A¬@14@.ä¨xÞíË^•‚RK%àSñ®Y-‚<ÿÕ|(?ª“6(ƒR•–¸Õ€JdÄR%”«„¾¬V@#UÂg¶VU*ã «ÕPµP§MŠJüئФû¿¨V¡Ye7ÅÖZ Ú ]åàÄ]°ÝÐ1è…lBôà À Â,„a†aFaLåH춈Êã¡¥qÕhÀÒ„êõ©¥I÷_XšRçìÜÒ´:·Ÿî‹¸»ry˜rIPŸ.]ž']^¾m߬Ã6ÄavaöÕyýqO|¬Èdè0› endstream endobj startxref 191053 %%EOF shazam/inst/doc/DistToNearest-Vignette.R0000644000176200001440000001337215123530406017722 0ustar liggesusers## ----eval=TRUE, warning=FALSE, message=FALSE---------------------------------- # Import required packages library(alakazam) library(dplyr) library(ggplot2) library(shazam) # Load and subset example data (for speed) data(ExampleDb, package="alakazam") set.seed(112) db <- ExampleDb %>% sample_n(size=500) db %>% count(sample_id) ## ----eval=TRUE, warning=FALSE------------------------------------------------- # Use nucleotide Hamming distance and normalize by junction length dist_ham <- distToNearest(db %>% filter(sample_id == "+7d"), sequenceColumn="junction", vCallColumn="v_call_genotyped", jCallColumn="j_call", model="ham", normalize="len", nproc=1) # Use genotyped V assignments, a 5-mer model and no normalization dist_s5f <- distToNearest(db %>% filter(sample_id == "+7d"), sequenceColumn="junction", vCallColumn="v_call_genotyped", jCallColumn="j_call", model="hh_s5f", normalize="none", nproc=1) ## ----eval=FALSE, warning=FALSE------------------------------------------------ # # Single-cell mode # # Group cells in a one-stage process (VJthenLen=FALSE) and using # # both heavy and light chain sequences (onlyHeavy=FALSE) # # data(Example10x, package="alakazam") # dist_sc <- distToNearest(Example10x, cellIdColumn="cell_id", locusColumn="locus", # VJthenLen=FALSE, onlyHeavy=FALSE) ## ----eval=TRUE, warning=FALSE, fig.width=7------------------------------------ # Generate Hamming distance histogram p1 <- ggplot(subset(dist_ham, !is.na(dist_nearest)), aes(x=dist_nearest)) + geom_histogram(color="white", binwidth=0.02) + geom_vline(xintercept=0.12, color="firebrick", linetype=2) + labs(x = "Hamming distance", y = "Count") + scale_x_continuous(breaks=seq(0, 1, 0.1)) + theme_bw() plot(p1) ## ----eval=TRUE, warning=FALSE, fig.width=7------------------------------------ # Generate HH_S5F distance histogram p2 <- ggplot(subset(dist_s5f, !is.na(dist_nearest)), aes(x=dist_nearest)) + geom_histogram(color="white", binwidth=1) + geom_vline(xintercept=7, color="firebrick", linetype=2) + labs(x = "HH_S5F distance", y = "Count") + scale_x_continuous(breaks=seq(0, 50, 5)) + theme_bw() plot(p2) ## ----eval=TRUE, warning=FALSE, fig.width=7------------------------------------ # Find threshold using density method output <- findThreshold(dist_ham$dist_nearest, method="density") threshold <- output@threshold # Plot distance histogram, density estimate and optimum threshold plot(output, title="Density Method") # Print threshold print(output) ## ----eval=TRUE, warning=FALSE, fig.width=7------------------------------------ # Find threshold using gmm method output <- findThreshold(dist_ham$dist_nearest, method="gmm", model="gamma-gamma") # Plot distance histogram, Gaussian fits, and optimum threshold plot(output, binwidth=0.02, title="GMM Method: gamma-gamma") # Print threshold print(output) ## ----fields, eval=TRUE, warning=FALSE----------------------------------------- dist_fields <- distToNearest(db, model="ham", normalize="len", fields="sample_id", nproc=1) ## ----eval=TRUE, warning=FALSE, fig.width=7------------------------------------ # Generate grouped histograms p4 <- ggplot(subset(dist_fields, !is.na(dist_nearest)), aes(x=dist_nearest)) + geom_histogram(color="white", binwidth=0.02) + geom_vline(xintercept=0.12, color="firebrick", linetype=2) + labs(x = "Grouped Hamming distance", y = "Count") + facet_grid(sample_id ~ ., scales="free_y") + theme_bw() plot(p4) ## ----cross, eval=TRUE, warning=FALSE------------------------------------------ dist_cross <- distToNearest(ExampleDb, sequenceColumn="junction", vCallColumn="v_call_genotyped", jCallColumn="j_call", model="ham", first=FALSE, normalize="len", cross="sample_id", nproc=1) ## ----eval=TRUE, warning=FALSE, fig.width=7------------------------------------ # Generate cross sample histograms p5 <- ggplot(subset(dist_cross, !is.na(cross_dist_nearest)), aes(x=cross_dist_nearest)) + labs(x = "Cross-sample Hamming distance", y = "Count") + geom_histogram(color="white", binwidth=0.02) + geom_vline(xintercept=0.12, color="firebrick", linetype=2) + facet_grid(sample_id ~ ., scales="free_y") + theme_bw() plot(p5) ## ----subsample, eval=TRUE, warning=FALSE-------------------------------------- # Explore V-J-junction length groups sizes to use subsample # Show the size of the largest groups top_10_sizes <- ExampleDb %>% group_by(junction_length) %>% # Group by junction length do(alakazam::groupGenes(., first=TRUE)) %>% # Group by V and J call mutate(GROUP_ID=paste(junction_length, vj_group, sep="_")) %>% # Create group ids ungroup() %>% group_by(GROUP_ID) %>% # Group by GROUP_ID distinct(junction) %>% # Count unique junctions per group summarize(SIZE=n()) %>% # Get the size of the group arrange(desc(SIZE)) %>% # Sort by decreasing size select(SIZE) %>% top_n(10) # Filter to the top 10 top_10_sizes # Use 30 to subsample # NOTE: This is a toy example. Subsampling to 30 sequence with real data is unwise dist <- distToNearest(ExampleDb, sequenceColumn="junction", vCallColumn="v_call_genotyped", jCallColumn="j_call", model="ham", first=FALSE, normalize="len", subsample=30) shazam/inst/doc/Targeting-Vignette.pdf0000644000176200001440000065426215123530430017474 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 9 0 obj << /Length 1701 /Filter /FlateDecode >> stream xÚÝXYÛ6~ϯR ˜á¥ƒAó¦É&A[ ›Eš Ù–½ÄêØJòæøõáP¶$»NšHûbQ‡3óÍÌ7¤y° xpv‡àùãÅûOUˆ„IéàbˆX1•¨ Ž#¦x\¬‚WáË«ì}V>˜Í5ÃçÕ:o[mfsÅeøòÙ/4è²f“w»ù²žÍe®ò¢ýyñâþS-!˜‰"‰z¢” ™s•0žÆ¤æ×¬´]â w¶½¡a~O3/¶…Í*ÿÆèÓWõw¢„ Øf®“JÑv’Ëh.$XAÄ&š);æ’Ç,F-OÉ<®«™a—ÓÛ®¢@pf¸S±† `3tåž¼ÍÊ›"«” Wš®a03âüsÚ˜/°Ë7ñ8á  ¼KÊàÕ\hiB1žåÁ\(iC€»,$¸‡‰§4%^‚‰Gï¯yÄÛí¢íl·íl]‘PV­üò™LÃm—-la;¿©þÆíVò$V¿Ûv›ö}þA¼“ügsè+ÀªNÂú8+–Û"ëŽÁ $0›‹ÐÎDØâ Ëª¥_Wf]cß"Éÿ%™†ñHfRñ@‰`1Op Ó€½¸¨$x;€_]¦ÊT|·­_Ö¯_dË,¸Þ4Ðu¬qœ/ì5Îç…½¢-ð7 ý×zMÏŒ7YÓY lãµz‚@½-=.¨9DYÜFZ™Òn0¢Z¡ñØ  ÇpÕû, ‹kEþ¶ù_Û|—KØ 4vùÛŽ •á‡78…'0?ë4‰lÏq¶kób™£cÕåŸw>÷Y¿‘u}=_ÑÛº©KÕ ôµEg›Û0E¿d¨°%l圅ø3pV+¦&g½½‘ë’ζ´·MOl‹Â¥køð¤*šZ¸~®Éªv]7e¾ÚvµGÎk²í®þ¢p½­–=FÚ/Mu ÷Kž{jìÓÒ4$Š¥Ðï¤aF{ïÜ‘% 7öÖ«¢WtµÍ;zäqÖÂÐö:ÿaÂ%j²KÔ$ôÜì—¯é¹[^/Ú¼!M~I‰â}L]…èºÃz‚=uåw¸µÙhÏ$\×EQã.ov©;ðÏ>&òiÛå7íƒqe?BjàáŠ)©‰'ûÇê7†I8l*Ó¬vvNhb-»7ä V¤’á›+»D®H‚rš÷ÉÆXHßk* Â6 =›„ÃÖ«„‰>쳜˜SÊ dC•5èjFÂ0ry`0†@ö^§’ERŽÊªÊ.›ú#$Ž&Pb?‚µ%yn5ѧÌ$j‚·!çÓ#G"ú}`2ö÷É¡'£-öí²Èëlñ ëN=°ºg@l.{~§ h™yS¼Û£èz9:¦’ÙtŸÛ_(ç;ꋃkYB çè}Z³ØG"2IY$RJG>ÊŒz¯ óámïÑóósš>ϳÒ&/}8ö×Á>§å Ý.‹íªÇÁVôqp&ÂÅth¢7OÍâHŒíËŠìïçòMk͟߉]g›Ü5c=ºß»Oz€Œ53€=ÑÖøÐ;MÐxÌ6y; ²ï1)õKS¤›=Fxuƒ¼Ý–UK—²aÒ/\>øŠ¹%#Ðí4± E>îV€r:ëHóz-Ÿ Å!ƒ§·ºçíK»:©éE|¢&àM ×}e…›¼) [ ^®.ˬ½þÊzo/—Xwn=ƒÿª8‹þ˜ éñÌ9î{ ‰£üQP¿ƒ»Š„c^yS7}¦®è ª+¢™É— GÄð£½úÑÌù¡+“+caMÖ¼›+ýEáþcsiþ©¾rç-7fäåÏuæ½ÚѾôlø%Ý;ØÓûæiø§Å=ïÀ}/¦Í¦ÑÌ9µ›} N,•Šh‚ÃÉfœ|x·'Æ»Glú|”ÓÊ/á|û\B†rùuöìŒFpEñƒ NÍ~¼mÁ3Œ¼„ó:ÜfÜñâTmŒ{ôjáÝà¼w_x@F3{@˜ÿë {É–<<^·r9,Ù •“zø)Av’wèAÞA9îÿ,FjÐ1KDâ/+#‘'wþC‘‡¡ endstream endobj 31 0 obj << /Length 2573 /Filter /FlateDecode >> stream xÚíZYܸ~÷¯h8/jÀ£)J¢‚HbxÞö /›ÀШÙ=ÚÕ1Ñ1ÞɯO«¨5=ݾ› òÒ¢(²ªX¬ãc±£Íam¾yñó/×Ͼú:Í7B„y’ÈÍõ~“ÉMåa¤Äæz·ù!ø®Ý›~{gI0ýÁŒU{ ×¦ƒ§v¦¦÷DI4L7ÃXÓXu-õ펇oað47U]Ø~€ bûÏë¿~õuœlDæQ.PF"ù¢Ød"L£l“j*•m®éúÖÉ8 öS[2'|ëzjT(rOrÂëJ&èé‹Ñ ÔD¡Iz20™‹0Ó±/@Ù ðvA÷u1öÕÏ—£dÊxµ«+KÙMíVê`dÙF·NèÍ‚©Áß›íü^i·G–াä&ÍT¨s¦Þ AÐ: iÉÊ`ßw µ zª{eZz½)C­±ãq5nqˆÔ3ø“ÊršU-Aó<ñ–)”†VDËà&åA7Tn3¤Û¶™‹ ’«Æoº±ÚKâ±%Ž«ÍÊŪSÆJÓªwÅ‹Ãí•J"k/g¶XÄ:”*÷)4Úõéýt\E…I–øÁG¦ÆØQ^Á›ô¤Åq¨×ò¤9ÀÍÀÚÒ•@uÝ¡4ïgÞ›i -‹yŸ‡;²®²Ú?PÏû[ƒ[îô-ÍLea–çÄ„(ˆ£ Ó+o©¬í:3|Ázaî?NªÚ,§{³–¢ òqoAÂ$˜‡¯d𲫧¦¥mѦ±ïÖ3‡¢¹«OZU¬B™Ðó¯É´¥Añ³,8˜¾©«)¤™ÿQsÔƒþ¿Ó£$MØVK¢p-©v>MÝwÅ0žl-ƒûÖÃ*FrAü¾§'¬ãZ0t³UâØ*¦[‡?'df‘ Å½¼-Úƒ¹úú'Æô}1Õã€zŒ³àÏ[pÚÝÎ:-,äa«“ çŒOZ7I¬•Ï«Òèû5oí)«^ˆ+ ™ú4fU À Ívc Àjvµ KøhGQ0$æ³B’…F¢,‰x"rjŽ@9ÅM æÚjCm³~V‘5dUIÕîÌŸv|J N> έ²ÌŸ?b `éLQ¢È·ô¶Ÿ¤¶¼lж ­ŸÕ4íõŒì*Ež+ÞÕ¡ízsIì$JOeîUo@ëuÇMHòR¾ä@^ ½9ýn ØoÕlÛ*x_·Ôëí«ýæm^ˆ,žE`ˆ YãO¾éù=o¾0 X.dsFKEXèwÛ«D&ÁK©íƒ ì¡Ìa›Ó`MÐŽÃÐ6òˆÙª¬\ŒÅÖºÞ"HL–70z7'%XL ?/ìb¼XÌæËíW›ÈÆ·² f5x=Ç™ç²ÐLL´»yÁ‚ H‹)Q´ä½ž#y»š?®„ƒ`Ë‹HyY^<ž¯eøîRd@*]©—ã7¥ŒO”Ši¼+jð ã爹Ú—n>G@Gã(à»Ý»¦~ú‚rÞ¿„ ñ9BÞ¿Ãdùü„‘‰ ð‡Ï *×a–èåYA¥Ë³‚Ê@÷ò¬¯=ð ³ ´¸Fô~éô2Ì”ôE"·zíÈ?|´S2{L‰ ᮌŽð>ºeŸ>:À>:øpGé$”Q>'@}é” < ÍèÌÆc@=½Íh][úöI’@Ãbr„'8aø "É8 ¿ÆžíŽ L”«ºvE‡vÌð¼aB’Þzí/œS¼Z¬$á¾­šª.zJ¸ÐSpZo»“|Yå~›ÀG˜wãr?ãImW‹ò „[©Gƒ‡®Ï¢úxò½aÖÌ$­·"`2„‚aÆÎgäQ ë\ª ιÎ~ÉlØÌFý‹æB˜ôëäÂSN{*:h@Rþv2c”†B‹ÿgÆßdfDïäý[ºé'¥Å–RœÆ¡LÓeâ‚`¥RˆL->“ £´ò£‹ìåHß1þ㳬á@{6GÆIƒÆÔƒ°á2±y7_©>¬Ë2Íf‰wU)¼ø÷ ˆ–VGAᢇ8ŽË|“Ñ›qê[GõÆÅÌåÕFÁ1Ž”˜øÚƒL©kkžY”s1áx]² ½Bg¶$OÈrÅ,Õaê&.ÎR¡–ãî·–» ã†dè_Ì–½€$ŠY|ˆùK wy`©!û¶:»ÚÝi¹9N·ŽÏU.g*›3óG9S­s&tм‹/„ð°ek«8ëÚTÚ$FôtŽ”£Y‚η߾æÉó_¤<µï @‘żÑ|Å)½¡¯®Ÿý`Â}Ö endstream endobj 36 0 obj << /Length 1872 /Filter /FlateDecode >> stream xÚÅËŽÛ6ðž¯ÒCµÀZ!õÐÒ I[ —dÛKR,d‰¶ÙÊ’+É›n¿¾ó¢m9ÞÝì:h/9œg†ó ò–žòÞúG÷>Ð^ßÍ&û^ˆ()"‹Ò&=åγcÆŽ¡àä×t¤ËÝqyŽ^ó€·e:HŠÔK“8ÈAx2ÆËiEΩ‚} èEà':Ë z‰À‡ÑlVeËDˆÊ0™:%/³"Ív 3óVè§B…àF¶XlÛŠL{ÏŒÀ¥âèè4Çj$?º_)‰Jƒ >cÇ‚Øvazd€Eràбª„±ËûäÌu ó#‚/p·N“)yÇ–ùÃT#ˆ%~m{7·<ãk‚#¶%"”c9˜1¸˜Åqæ¿\–¶½³Lj¤ˆ‚<‹$F A][´TÙ aâc‚J!É€/„±æÌÿ¥iMO80 ýrùhÓ[ ô¸Ž ÿØÜÖh<‚R>|gEñ }²ã ­„x¥7]+]Ë[³´•Aÿ•ÿª#ÏL;l)ò¦¢$‡ÌÊ=Ì_[„¢¦y\û¦tiÁ² )â†Ü†ò©Gr*˜ºhwøU˜(°d¶TÕ5M¹Ì+Üh8eáÌ¡s‡ïâãÓs3 DiìÍBQG}™Eɵ{áÔ¶hCÊY ºƒŒÁ^;ui¢%½^×óÿ0Í~¦èãüZÏ/E #¥Ì‡˜N L‘èl»n¿?,LÜR9ÒB<üç¬[??è¢hH_)¤ÃiÓ#œãq]6vÙBpÏS< aù–¦_7ö<å9{ù®k(߆?¿‚˜N-D±ê¤xtÅ@¢½xÂâé>¦Ÿ~kOZùQõ´•z™"]o(çx$a‹W)Ÿ)éûÒš#óTäX¡"ò¯.ÆìÃÇ$ä8‘7Ûñ¨ÊwVwäè?Š=kWyý?õý~÷iøq!ñÑAˆÎóÄ~ÎMù01عQ°l®«³‚!T1˜.¿v¬«óõvó j¥s$º¹®€Ãó»¢Ì‹×pÿ´Š$ 9€8Í„EêUó›¶=ÿÁj&›œ®©òïhTt €Í®vLUæÅJYQH«Ãý…òod“’{vQcU:O¥Iùvàé¶…ú°¹•RJùïz˃£ç‹Œ:K„cm™‘ 4çZ-,k5åz Q“Ë–ú®Š¡ÓXRE„UÇMŒ¦[í Hl<Ãd_ÇÏ¢Ta’Ú™ß<]w£] P˜&Ð$±2 1u‰Ýo”¬€nq^Rç#RÔáÒ¦q|ÕIeËÑÁÉÖKýbµµ@éôÂûóN-Êâ Sò ÕØ?¹e°«NÞð‹ÖÒ¿äßRú è[†ÌËÁðÈ DÞöÈwýœŽÝ‹[–v©©‹uÊ„%TʸCü’·ƒ8)èLN‰lÞîNûú¡¤ÐÙãµBâU‰jÍ55ÅQO¿Ü®]»|ßSb’CŽÌ¦Ü†ñ¶1H  M-鄌 R¸nŒPÙÅ-‹d “"õæÔIáoeê¥YuKž‰w*¥" ¶}µmʞ -tB>ê°!4Øšç| —€?ÛS®ÐAÅDŠðð¶çîJ““½µÿ3=Ch÷bA®Ÿ¸¾i×Å)©b$Þo*ûQEqÅËs´™&% Œf%ôôƒàI¥¾t;ºiÿ4¹gæB ±™ìàBÌ-÷Bßã¨hÈT¹^¿j DŽút7˜¦TJ7xèjgt„ÂôTCøFú[žígìT4.îy}táô@ýöùm=.¥ä•ô‘ù@óOËÈ/¿B5…×ÿi»;Û<¿»ïØÕÇSŸ #xa„ŸYI¥9«9šÐüxõì_Â÷Kp endstream endobj 41 0 obj << /Length 236 /Filter /FlateDecode >> stream xÚP=OÃ0Ýý+N™‚Dó%vš…ÒV 1Pyƒ¥1i$§.Ôúïq„pÅËôžÞ‡BK†_ÿ‰ð”4•QÀ¶cÙ}'àα'† NQÁGÐÅÈjÉn5ËSy…•ý6Ø©‚«²]Ãsz°Î?žüæµµ­?_­õÃw‡À¾ ÄÎÕÆ^Lï‹\ª1fÈŒU¯šH’éþ´µÆù¶6Ç›È9É^V„£òÑ#B4™%—eþÜáèÏÖü/}gêÆì\“ü²ˆˆ°l‘ËŸS.8•9Lˆ(t’ãÌE¤™kö þ}mŽ endstream endobj 33 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Targeting-Vignette_files/figure-latex/unnamed-chunk-8-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 43 0 R /BBox [0 0 386 435] /Resources << /XObject << /Im1 44 0 R >>/ProcSet [ /PDF ] >> /Length 37 /Filter /FlateDecode >> stream xÚ+ä2T0BC]SK]ss…ä\.}Ï\C—|®@.a5\ endstream endobj 44 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Targeting-Vignette_files/figure-latex/unnamed-chunk-8-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 45 0 R /BBox [ 0 0 504 540] /Resources << /ProcSet [/PDF/Text] /Font << /F2 46 0 R /F3 47 0 R >> /ExtGState << >> /ColorSpace << /sRGB 48 0 R >> >> /Length 14522 /Filter /FlateDecode >> stream xœÝ}IϬ;nÞþûµloª5Kw#6Ѐ 8ç^^§ØíÀ?xøš¾ê䪼Ëâ:ç-R)‰3ýãÿø—Ç¿~ý ÿy¸§sßðïìÒòŸû§Çß>þç×oÿø_ÿòwøã—:|¹üûÿ`ýûoþúÇïÿZÿñõwÿpüò?|ùÇ¿|yAúW_ÿÜ_ßÙï¦éž©…‡{6×î™Jݧùý¯¿OÓ=þðå–i†ð?¡ÇgŒ×WÈåéò#ôðìíñó+äŽÿ Ý?{ĸÄg©ÐÝ3xWù}«ÏVeÜñ?¡eüñϯP> ÍãgG µ*üš~M@‹qÆDBuúûRþçg€)AÆééƒÀÓ¿÷ÏŽï;þÃùËü>Ã8㇡E€ù9Ößÿß¿Sr»g‘} !É6ÿSìî>ß×XOÉÏž—õ–ðtaÙÜð³¹_ÙöK÷3‡§_÷;õgí =RYz¥ªðu=©è~ë8…¯ëÏå™Ú²?¹>[[ö¯¸§wËþ–¸ï)ÏØÞÐûçž=yìQ+úoìß÷?•ýÛæûúÂBúºž”ð?s½ÉÉ~ýˆÇ~Å„ÿ™û=>œûMz„.ð½B“ýüÛαaãæúcÇÆÍýI7÷/å}S×ýßéÃý‹²S¹ÓjºçŸÊþmó}õŒó¤ëçM÷cœGݯq^ãqžu¿ÇyWzŒû@é5ï‹õ>ù~¾lýãüéþŒó©û7ίîï8ߺÿãüôáþ½»&ßߎ:¿è‚ò¥ÊØ%åÿŒ¿wOO~wrž»æ¢ç/sýíÝú¯ï“ î÷ô€_Ÿ¾èýè _ÏgÃ÷¡ü‡óíåZ&÷f¾×çsÇùtL$´†iýüÂ5¡ñ×D¡6åê1ü}/oæ{Íï¾×—0Vz„Z@¶Ÿ2ÞÎïùžÔD~J Û÷ù^óφoÎ×v\ö'×}Š×ûLçSò3½{ÿ®ùgÃ7é•ý³å…RÑó¥ôÈÑæGzåªüÌ÷Sþ!¾ÉÏ)<Ûr¾ä˜‡…_S{¦´ðsÆBßÌ÷š6|ã¼ãÚ#êùu¿¿æ{ÊóžªÞWÇ|?¼ßKî×ùľïOŠrŸýIŒ3çsÌ÷š6|¯¯#gÒ+4‘ÿļóOìÂÿƒ^Ç|¯ùgÇ÷-a"“ŸƒÇDçùŠˆæùŠ™ü|Ì÷þ½]ñ½¾‚ïŸã¼û¾ß7§<:å);ïÇ|¯ùgÃ7ç3îC︟߸Ÿu>ã><æ{Í?¾I¯ñ^(=Çû¥ôï—Òk¼Ç|?åŸñ~)?÷”ü>ßwå×ñ¾+?÷ô˜ï5ÿløÆyŸòÆ&¼‘§ô¼yã˜ï§òÊ?¹@°ŠÞ?kV}À·GôNå»’Ÿ%=¢ëÏTéáÝÐçâ³÷GtùY9®Ï†õħ—õ5ÿ ëwú^'È“åY9ˆ<É÷¼?Sþ!?t/üÞÒ³Ê~ôð¬Ð/Ý3Š|Ú£ðOÍÏZu,ú¥Wz÷ølEä÷u‚œ?Êÿ=<]—óø=öJî êïEêzž[þNÙþ>ð¾ò&_ôgnˆ©¤_Íò^ÄüL]ßÛÞ`KGùHö bº“¿/ñ™âÇ4S¾lÏî`ëLþHX8Æü}êÏÒ×q–õŒï“ÃÿLx±<Ê/†§óË|‚(^s¾ôë žï»­×7¡ßØÏ÷lì—Ïœ–ýô^Ö3öÛ;0Τ‡w`œI/.ÂBOïD^ôöÂ_“¼¤É/>Ðä'_„~ƒß<é5ø1M~ ²_“Ÿ¡_ù…ßczº¶œlTYÎ Ò°œ§T¡Íó¶Ç7÷AªÏ’eíü‹¾âŸÙë}²ÌWß¿üŒ¸/ÚÓóïQèrŒI_èó+OVOÁdôÿ½Mv…ÿžÎAø¡Gð`‚èòÿ5ý6ø´ä*w¾âk”™®²ïøïm +üeÌ¿à?¼3p‡÷>ÏðŠÿÞÆ±Â‰ VšÀwîè^ô8ð_Óoƒ| cÜ)´¶‚›2ñÿš~|àã›Ñ؈2¨ê<þkúm𯋌׺î_ç›ØŠÞ™þkúmð__¸|¡óµ¤:|8Øb:êoðßÒo‡|2„ˆJ”¹¯6÷㿥ßø¢È5ãW™ß‰ŽËûôÀK¿>ñm:O»ÏàÀK¿þ\Lcu_²ê„þ{ú­ð'ýàzêËþÿlþ þOéGø“?sV™[ù>ÿÿ=ýVøóüeQ}òŽj#9ðzþÞ/)Û}2lf¼oü÷÷ç ÞŸÉ«ÏIï¯aÓ<ðzþxDf^ïg¨*å þûûs…?Þ?ˆþu}ÿàºroðøþ)üñ¾Cõ  Î÷ó¡Žzà¿·á¯ð‡üÕGñÑG3TÍïø?”_þÏ zUóáˆMÂlrþkúmð‡ü ÕòDQ›ƒ×ópàÿPþTøC¾Õ³Mù6Þ/þ{Þ èP}Ë¢?@õnþ þõ…?ô#˜bºéX¸ïBÓý<ð_Óoƒÿ6Jßv›ehfÃØñê#!|ØL ¦¹¾$Îõ¹¾ÿ5ý6ø/±ÀF7è—"6nÒïÀM¿ þKl~åÏØ‰ÏøóÀoƒ^á¿ÄæËrþ¢Ú(íüø¯é·Á‰ §­÷K ´A›ÿŽÿޱ‰ 6‹qªcÜŸþ{à Ÿ>¼÷ã}YÖ?Þ‡ÿ5ý6ø/±±Öõýƒ m}ÿü÷>¦þKlª1,ï»§Íj¼ïþkúmð__ÁuùÅWlÜ”_ü×ôÛàŸÚðL>óÃÍóp࿦ßøøÞùÓÓÆ7äÏÿ5ý6øÀ'Σ)_{¤§|}࿦ßø¼Ø‡þààúÃÿž~+|àsbcú‘w´™š~tà¿§ß Ÿø6/ƒ+·qø¦ÝÐÏí1&Šè· è·þ{ú­ð'ý†þ®û7ô÷ÿ§ô3ýÝøgØ'”?†}âÀO¿þ<Ãþ¢ü?ì/þOÏŸÙ_ìüû’1[ͽÁO¿þ¼?‡ýLï¯a?;ðzûïïiÔûyØü÷ïß ¼Óþ©ïϰø?|ÿ¦ý“ïï´ïò}öÝÿýû·ÂòË´_S~˜öëÿ‡òË´_S~šöyÊGÓ>à¿¡Yáùsú(ÿMÿÃÿCùsú(ÿNÿ åÛé_9ðßÇP­ð‡þ0ýG”ß§ÿèÀÿ¡þ0ýGÔ_¦ŒúÉôø¯é·Áþ¹7>ìÿ§1*ÑYŒn„OUÆô™Çg(Ä¿ÄÀùÜûÿVø/ñ÷&ãL_Oðz>ü÷1ð+|Æà¤Â±Åì×&ðý;ü÷úû Ÿö‚že̘±oþÕÿ=ýVø/É9Àý-¦<7øäÁ¿Œù8ðßÓo…ÿbŒ&ù‡òK–÷øj{ƒÿÞþ²Â§½1¡«¿8žÿ½ÿv…ÿ’¡–d¬1àßýÕ+þkúmð_†.„ZŒbN‚³˜¥ÿ½ýl…O{]þ¦1ŸEì¹Ñ[Èÿž~+ü—Øÿóš¾çˆyë‚OÇ;þ{ú­ð_CW¼Œ™³ñÍÿ¿ã¿§ß ŸöV9_uÆTË{Õ4äÀï_á¿$F$%{‹}ýÈÚñßǘ¯ð_cÓ€¿èúƒSåýoý þ{ûõ ÿ%öðd¬9lG<ÅÿÞ~½Â§}>ƒ²ÆÌÕ@yªÌœ‹ÿ'ñþKb8;ö7YLS”û܉=ðßÓo…Ïœ¹“Þ/U e[~ƒÿž~+|úW ä…‘qƧìøïýG+ü—ø‡p¾ZÈõU‰¯ðéYÊü÷þ£þKb¾¿,Æ1]]ðÑ~pà¿÷­ðéK”‡‚ÅÀbì£ÊþOâ_&ü×—«áþOöÇûìøïé·ÂÑå~,æoÌEä[YÞñßÓo…Oÿ¦O¼-Æ8Sžñ þ{ú­ð_â†~ûŠð#ñ9}ÿü÷ô[á¿cÝy˜¿v‹Ÿ:ðßûßWøêŸŽr¾:ù%‹<}¯¾ÁÿQüÒ€ÿbŒz~§|ÛŠ¼®éy<ðßûßWø/ÆcDáw]_ÅE ýÙ·7øïýï+|Ætê{J¿3mÇO¿>ðÉÆŠ>Iþì"O¹¬ïÑÿž~+|à+|oœÊGÝaã`ÿHõ þ{ú­ðÒ™cÁœ"ăT‰9Ïñ þOâÏ&|à“ðcüÏø¾ÿ=ýVøŒ·ÿ8óÇõ@~ôªøïé·ÂG<‘ÃÅ~`Œ6r>¢Ä$+¾ÿ}üÒ ŸñKxïa³ø3ø“{ל¢ÿ'ñK>ã³ ÿ:óÿñ’þûø³>ãÏc¶5G&KÌ~93;þOâÏ&|àKäw³ô"ñ½@ŒøŽÿž~+|âCŽB·tދďG÷ÿ=ýVøÀÇœ²ÞTž8ãOü÷ô[á_‘ø iŠOrâ¢úÃü÷ô[áŸäØØ{Û›äìô‘sµã¿§ß ø„0=ß9ðNíŸþ{ú­ð¯±fФ’ý|Ï»ã¿§ß Ÿø çÏ÷÷]—œ&¾Gþ{ú­ð9¢]åk\\’ƒW¡FÇO¿>ñ月~ ÷k˜ø«Oü÷ô[῾ððb[…™äç·øèÿ5ý6øÄ'9…òðÉ8ÂÌóÿ5ý6øÄ‡ó…¸¤ð+ã­…^'þkúmðÏ3ž;’>’ÜÊš#¢žø¯é·Á'>ÉÉõ´Oœñæ'þ{ú­ð‰¯VæV…œÁÚhÏ=ñßÓo…|Œï«Íø1Œ®øÿ=ýVøÄ‡œ²ªö#ÀGŽÌí þ{ú­ð‰ïwÕÀÓ9"ßT‹|tâÿ„~>ñ!ž¥<ºÂÌ™ å þOè7á+¾%þå̇8ñB¿5þÅð—ÆBƒ_šÝoñ?UCe‡?éW´&•í_©ŒG;ñJ?Ÿü‰R[iáR(_œø?¡ß„?Ï_ÑšQg~ɉÿÓóGøó~)ªßÙù.‘9Ò'þOè7áÏû³x“x•ñþíø?½? ¾Yõw»Ÿ‹7úíø?yÿ&üùþåÆœø3_çÄÿéûGøó}Ï…9Àö¾æÆöÿ'ïß„?å—œíþÒšnËû·âÿT~!ü)ŸåÈš;&!UÙ¿ÁO¿þ”?s >yæ?ø?•? Ê×ÙÙù¦|‹xO÷ÿ½þ°ÂŸúCRûƒÉï9ÿìø?ÕêG©=}]ô“ì_vü÷úà ê©h<Á·|²ÿ§úáOý¥ ¢_¦nö‚ÿ=ýVøSG鿲èÏÉüÕþOõwŸö‰´f†ÚRÑx·ÿ=ýVøÓþ’¼ÚÏü¼ÿ§öŸö¥d5EÔ¾“’Ùïvü÷ô[áûJ‘hþ$íW)Rß=ñh?SøÃ>(ùi±Ï¥`ãÿ=ýVøÃþ‰R6qµŽ|ÿ‡öO…?ì»’¿1j ±Æýþ{ú­ð‡ýZJW-öc„ ¦ðÿ‡ök…?ìóRŠk±KéÍðÿ½ÿa…?üÈ÷aM3ôÀÿ¡ÿAáÿJñnôo€¾j?ÛñßûVøÃ„ü©`ùÅr^òôç¬ø?ô)üáC˜®_üS(MTÜü÷ô[áÿÂzýâ[òqwüúÿþðo¢ß#úÁO¬‘xà¿§ß øofíÿ-ø©¿Ãÿ¡ÿVáÿ4ò×t}B(àÓc;þ{ú­ð‡ÿaà£&Û–ß|àÿÐÿ®ðG|Âä½Õ$‚~ºåOïøïã'Vø#~"Œx]Æ/€ë;üÆO(ü‚üʴćH>j|ƒÿ>~b…?â_$Í¡Ìø“™ïxàÿ0þEáøäÇÖ%¾çEkÞîøïé·ÂñKHÑüs‰Âya¼ÍÿÃø%…?â³0f|2ã£$Í"½ÁO¿þˆ?C)º5þlÉ¿ßñ¦ðG|ÒZ(2¾ øX£óÀ?¸Âñƒk ëÈ÷*Z|æŽÿÃøA…?â#¥Ô_šñ‰À7k°-øïãWø#þi[}‰ÿœùÔþã?þˆoÅ8-ñ­rßù7øïé·Âñ»H»Òz ?‹ûN{:ìø?ŒßUø#>ã´Ä'ËýZÞà¿§ß Ä_K)Ê%þz©±ãÿ0þZáørŒùÞ1¾øt¼ã¿Ÿ_áøyŒý?/¥ýüÆÏ+ü‘ iš#>_Jû7øïãçWø#ÿã5ÿa©·±ãÿ0ÿAáüI{%½X³Ô›>và¿§ß ä¯ Í²[Èc¾k¼ÁÿÃü…?òs0Öž#÷yWù÷ÀŸ´ÂùGaÄ»}«_²ãÿ0ÿ(Œx7æ?a¼æWùõÀŸ´Âùcš¢F<ïÿÃü1…?òã$-wÉ“ú)í þ{ú­ðgý×÷šù³ÌŽÿÃü?…|Nj°ÎõÑ~<×·ã¿§ß ÿ%5aQsxÐ/u©÷1é·ã¿¦ßŸ=pP#yðgj|ÿG½™ÿ5ý6øÌuëùûV_gÇM¿ þKzÈ@¿÷ Šá†å~9ð_Óoƒÿ’|W¿ÞŸ‰ïϸ?ü÷ô[á3ßúõxkŒ÷áÀO¿þKjz£æöxÿÞÔ+ZñßÓo…ÿ’šÖ¨¹>Þ÷䤦ôxßü×ôÛà3_[î“_"ߟ!¿ø¯é·ÁIþ7j@ù 5¼ý"Ÿø¯é·ÁIÍpè“CþüVÿiÇM¿ >óíå|…ÙÓ ¯òõÿž~+ü—Ô‡ýaè1 }‡þpà¿§ß ÿ%5Á}]ô£I/Óü÷ô[ῤ‚¼ß¦ÿ}«§µã¿¦ßŸõPƒè·,”5õÛÿ5ý6ø¯/5„Ný=ÒŸ<ô÷ÿ5ý6øì"÷±Ù'ÐÃ#,ö‰ÿ5ý6øZ_cµ¿œõÉü÷ô[ῤ>ˆ_íKAš LûÒÿž~+ükìûÅ~²è£Ã~và¿§ß ŸõQrZìƒAiÚü×ôÛ࿤çD\íŸßê½íø¯é·Á±~M]ì»ö‹aß=ð_ÓoƒÏú6èY2ì×ÁËùöëÿ5ý6ø/©ÿ×°Ïc"a±Ïøïé·Â±'ˆ_üßêçíøïé·Â×úDuñ¯øfþßà¿§ß ÿÅž$eñùjþ”þÿ=ýVø/öL©‹Ìú“Í?và¿§ß Ÿõ¥üêÿ;ëø¯é·Á>in3ý›>±g‡ù7ü×ôÛà{Ž ÿ-â²øoü×ôÛà³>ðÿ´—f9Ó?}࿦ßøØ£oøß¿ÕwÜñßÓo…ÏzkàŸ_@AxÆøïé·Â>ÆËŽø $ZÖ%~âÀO¿>ë×¥5>ñwq‰9ðßÓo…Ïú|GüË·z™;þ{ú­ðY°®ñ=ˆ‡‹K|Ïÿž~+ü×—ïìi7â—Ð\©.ñKþ[úíð‰ñÃ#> ‰¤i‰Ï:ðßÒo‡|m?;ëøoé·Ã>)´9ãë·Æ×øoé·Ã'>_–øA—-~’ïáÿž~+|à+"ïøH—ÙƒÒâ#ü÷ô[á_f'‹ÿ<ë¹øïé·Â'¾´Æ·â¾ó3¾ôÄO¿>ð±G­Åïâ¾+uÆÏžøïé·Â'¾´Ä'ËýZf|ð‰ÿž~+|à£?Øâ¯¿ÕÇ=ðßÓo…O|ÒãKãË/Çß}â¿§ß Ÿøü?øÁÏøõÿ=ýVøÀXÏ·h?Óü÷ô[áßšÿð­Þðÿž~aËÀñ–ßø)ÌüŠÿ=ýVøÀG{ªå¯¾ô¬´z£þ{ú­ð‰Ozô™ýÊy‘O-?æÄO¿>ñáý¶ü£oõ›ü÷ô[áßš_|Rºývü÷ôó[~ÆÉÏü± ñ¶–¿uâÿ„~>ñÅ%?NêG·™Ÿvâÿ„~qÉóÚ“uÔ»>ëaø?¡ßÚÿÈð[~£Á·üÂÿ'ô‹K~£í¯åoÚþYþä‰ÿSúYþ¦ñå§X~è‰ÿú­ù©v>,ÿö[}ñÿ§çÏòoíü[~±oËï=ñB¿ ÞŸ–?m÷WïߎÿÓûÓò§íþ¶üp»Ÿ-?ûÄÿÉû7áÏ÷Ïòß¿Õk?ðúþYþ»½¿–ßoï«åןø?yÿ&ü)¿Xý“Úòþ­ø?•_¬~ÉOVŸÁä#«pâ¿§ß ÊŸVâ[ýûÿ§ò§ÕŸ0ù×êk˜|kõ-Nü÷ô[áOýÁꇘü>ê‡ø?Õ¬~ˆé/£>Šê'£>Êÿž~+ü©ÿú/g?ÿ§úŸÕ1ýsÔ·QýrÔ·9ðßÓo…?õ÷Q¿GõçQ¿çÀÿ©þnõ{Ì~0ê©}`Ô':ðßÓo…?í/£þÒÙŸáÀÿ©ýÅê/™ýgÔ—RûΨ/uà¿§ß ØÏfý,µ_úYþíg£~–Úïf}0µÏú`þ{ûç Ø?gý³³ßÅÿCû稦ö×YßMí«£¾ÛÿÞþ¹ÂöëY¿ŽöãY¿îÀÿ¡ýzÔ¯Sûù¬ÏGûø¬Ïwà¿§ß øfýÁoýCvüúfýAú?f}Eú7f}Åÿ=ýVøÃ4ëGÒ3ëGø?ôÍú‘ô_Íú˜ôOÍú˜þ{ú­ð‡ÿoÖÿ<û±ø?ôÿÍúŸô?Îú¦ô/Îú¦þ{ÿí øogýVúOgýÖÿ‡þÛY¿•þãYŸ–þáYŸöÀï¿]áÿû¬¿{ö·9ðèŸõwéÿŸõ…éߟõ…ü÷ô[áø‰Y?™ñ ³~òÿÃø‰Y?™ñ³>4ã3f}èÿ=ýVø#þeÖ¿þÖ/hÇÿaüˬÍø›Yß›ñ5³¾÷ÿž~+ü¿4ë—3~hÖ/?ð¿4ë—3~jÖgg|Ô¬Ï~à¿?[áø³Yþì¿tàÿ0þlÖŸgüÛ¬¯Ïø¶Y_ÿÀ¶Âñƒ³ã÷fÿ€ÿ‡ñƒ³ãgÆ'Îþþ{ú­ðGüçìÿð­ŸÕŽÿÃøÏÙÿñ§³¿ãKg‹ÿ}üî ÄïÎþŒŸý;üÆïÎþŒžýI<û“øïãwWø#þzö_ùÖlÇÿaüõì¿ÂøïÙ_†ñݳ¿Ìÿž~+ü??ûç0~}öÏ9ð??ûç0~öb|þìtà¿§ß ä?ÌþGßú­íø?̘ý˜1û;1¿böw:ðß篬ðGþÊì_Åü‘Ù¿êÀÿaþÊì_Åü™ÙŸ‹ù1³?×ÿ>e…?òfÿ±oýëvüæÍþcÌšýÕ˜ß4û«øïé·Âùc³ó·fÿ¸ÿ‡ùcKÿ8É_[úã9ö·²þxþûü¿þëèÏ÷½ÿÞ‰ø~÷Ë—ÓÍ›ÿÊßþE|øÇ/ÿüèOýsþK†Ø©ÊHÉ”¿¼¿ùó?{üò/_ÿåüí_þ´ì?•¡$Ó‰áòýOa_É ëÅOÿ«ʘÉå§yóSXÉæ„ùÕ?Í™Ê3îõ˵fÉê‹|·ÖÊ2šM¤Í»µÖJa´ ÿúµV«CÎt»\k¬sà¸[kaIÜdår­93ZÑÙ„ýZæOýZc’ê9á_¿ÖP€nÙ¦_¿Ö !Z q~ýZƒDs.,ñë×Ê3oŒxq^骙ìÿë×ÊðÌåеºgtx– ¯íîh6‡ôù_÷÷÷øÇ/ÿø¹8+szLs€D(ÜõbE£˜TÕpŸ£’«j í’Ù—¼r4H!)­ÇÏ/šè6=ÓÔ¢V†ù6¾(ÁJÄùE1ùé½öƒùÂÓ…H¯cLÈ]Ê*!:ºès,_ N~h=ã×1¶/Pê¡Yë»mÌ/¼ŸµjÍ-X¼²um.êö“[Y·º^yù‘˜d½¢A©å¡5ñ1îm@6O*²£Â$iÌ@Âõ²RÒs­êÛDz’UÉŒ¢0'vŠí>R’ðÉžh^ƒ˜˜8#¶7Ðà~uÂÁ*­q((Û á¢òÉ—DXWëÜrEgÔu(ÉK 3ˆ’`Ü“6*²øÐ­ÁS‘ͱÒë C@Eþâ 2g¤Th .Ú$V)JÁ3Èl¹Õ)¿a•šÒŒ Cúûê,äÐÍ ɵymZX43ª:й%•Ø"O¨Vu„³TSÔå1CΨÈÕ†=ãߗƦ…^›¦à•mœ¡Œ!Ÿ‘Ïø÷Ñ‹P5¤1c¤W-s%öUZ8=ù¦KÙ˜fm¦bãGê΢”gY@3Ã’‹í‰èP?´ÑšÜã·<¾Pö2ç€Uת­˜`swò Ñ<0¬ºZk˜2š„ŠëéɲjT,ƒ6ïÒ9¬cûå6˜žð:Æöh[ü£æØ¾µ«SþÛÆë¨=št¥cÝmrhé*ÁÃòë%é¥Û)ulÅ{$kR’5Ë]v¿èNÍYCáŠe¦‘¶cÁq¥òmŠÌÏÖ꡼™PV¾¨åS–qLÛÎ1ñˆ¤ñRVž5vvÃÀĨfw¨U]‘ R/³ëšdÆ‘‰¸Q …–À{`R·$mõƒ]MLÕJÊðǕÈTVÌ ³uù)É3,&g§Ž©p1ê©“ÖZê Á©KlÄÖ7U6c®Ç›©‚Ü3\iMR{Ú8Ưœ2Çë©Å¾˜ãõäg0ÖñzeµìãõÆÌUù‘ÕÏÄ€ôÕ€4'{52›*Y“¡$¢·øfêö äL·£Ä1´'…i.÷¾l‰ÆÞÔ´­^vr’–݉´¬ÁNÚÜöòÁÀ—¯qN6Ç ÀêöZç`­›´.Éêz’_ÎËPÿTômL^JCÀV³KÙš³ø&sJZ|Q &åa3¤Û®¤ wbòz*Svîse³‹ñg6—ˆÚœ«F+Æ"ÎH(Ø‘ÅèI·Æ{6mÙÅ^­X¶œU°S&– (ØZ Vî!(ØR,På(؉ūåíN‘'À{JD)‰å"8 >˜RVê,ï$* ¼ž¥®ÑB½4J]ñ‚ÛžK¹Š®ïL¿}0kWÌttE»5he”¨Ùä¹e)Ç€¦Èv ” ––÷x3X.Ox 1nQsbI€‚ò¥¦ã$H|Z®Nv0T‘^\çÍ wŒÓò6)ÙQña“TS³†z£’re–‚Ì)ó¡övîeÄäDZ‰Uߎ$f&qFtÝ!Ç!#¶ÊŽç˜©ˆá+Z™¬Á–6 ð]¤vqG‚'ä„_ 'žlø  Å·q¿bÉH !Ø×;ÄË.ð¤§$™õÈ °×S¥û¤º*TPkùÄJ²‚äí¶ òrĪc¤,­%oª,Ñd-_³–·×´ðY[ VÇ’LAm-µÍÜ¡,÷ˆ/|uêmlâñôðCY㣒>«cxõ ÷±ñ壺JéÌ€÷*NAß²zH«¢ÞôcÌ(Õ‡/KëžúK7?V{ø<´ õ˜JÎýŸòš%Wq_ ç—~*|‚D›‘Ë2ªbÄ÷ÐSͳÖóÃóbTÑ+|V/Éð =ô ¼†¯±3HVu×aOhÐPmyøZÔÇOÿ)f@ïc•:2˜·ö;ø}ÖOuàS÷âŒ*gÀÂç˜é ªUîAP¯20TK0¥šï‹J¨b(B&€Ò‡ * oÈŸ²òIKЧQŠT éáC?¼ïrž›úÖq»;õ`9<$³Ÿ3Ìx“}‹Ê'EÔ;–˜ù1ŠöNU^X§öGQ߼싴$I2޳"üPaA¸¥ËhQ{Ñi0Æ@ý«2ƒjEîqóMIU0ø…;µVß ÄäåÔòIrÏàÔ6+ÛïooîA„úƒÛ›i]T¯|Q~ý!ƒ_8~ó‹hsâ©ÙÆü‚ÅÆÉÝÆü‚„qmcù‚ªï¼1£<É}«_ìÕH З„¼[ŒI‰b„öuFD¹Ñæ+Ù’‘Š!xBdÄG”Ð@$µà¬,1X Î:TKyÒ½ìz¦Ôº8^>-*ïTë¼d=Ï_$k›Ã×õ8«ü"ZP¢Ä— ^¼Ö–V$Ù·-µ¶I‘…b\T| ž€È8š »â[Už Ê1]Ï1„KìBÐÂL^_ãd…e3Œ4>K„– *Ÿ,q˺ꩾ3Ñ<LJê3D`¼öò9Q!<ó÷´ðLyx§ ¤P@{xçIEOù½G^Žò¦»UÕŸRvƇGU³Æ/-è;E¬@W–‹V÷["•!!AÌ·²á$º\›ží⸹Êö ½œD_¬.©Äg Öòâ´ñ¸ëXBy ”Bv}ø¨Ésï 츙nø“u!âÃ{G'Žžq/êÔö艒‹o",Ñ—e(»Ú¹—?„[rZdTäÿTy!Y,ˆaÛØ¢ ¼‚eZ*¨EÓ~å†Ôø «ƒlO·íÀtѽ(êvè­lbõrCV+£ÓÒÃ[ÙXp¬(0»fåœi¯¾°Èå=eKßE‡ðN­F`ûìæÄëVâ£i<,£–Gó¤åá!d©bäñVU].©jU‚;ÍnUuÅïà›‰0^ºfA\ÈV¢lUFåTâ V5³>¢V• "NRC©Yê¾*,àžFµ/YŠô9ÁİÖüòÀ_Ï¿_`o”2ÁõÁ=ºãs%òqz´`‡ëOÄÊqÎL*°u%èÝèéU+ l¶Fƒ>¿`û¦¡Ù¶Æé±ôkhœÎ›EV:ÄE[„aÖ(³7„ÀÛÚ4ÎmÌ/±šÖºå ß9SÓ|·1¿hbáÚó6ær§î['æ!øa­¥ï%,Vj"XñVè숴3˜ ´–OûL-ønÖG¯€#va#i±Plc~1šZÐʱù…c™~³”lcù‰p4­-Û˜_з?,6×;­ûJ'FN«·&`˜]ȉ!|ZŽ`†¥ÕÇäa*Óúä´Aä´ 81-%º=mK}èÞ.Я¬Š£…Öñöä®MK®sO«˜½ßNLúÃZ'æPZþͦãh1‹Ÿr „áYådX ñ(¨eXO Ö6-^m¹1óžåZ;:+0Fû{¶/ª•°ÖœÁ|ªëà6Ʀ¥hl^ÉY¤²¼Þ‹e÷s§ÖÙL³œl³îÊÝå‹hzo3º¼TÚ¾ ™1!æ‘ØÇüBýáÕÙÇöć<ÊF¯c~!n¸áÃSéAT|-$,/V¡ï)eÞ1PñÅ2­þa 'à OVRKµz=q÷kfT,c)N"fè¤PiMZŠê øê“<"ª§L9¯OæŒÄׄ×'Ò/A‰,RƒˆÝ" EªÓkŠgEö$òå€Uè_”g3ˆ:#¯3¤z: @’O…z™gmñ”ÈßGõ”‹¿1(MO°(‘œ‘RA=¿jKÐ3âž0Aü¸Ig \©>TÌÀÓËßÇh¾›>g˽y«!  b6Q¬&ú¢Õ?…ˆ_W}Ó ©–¸ëô_A /¶/RšQ$ûx|±D¶ìãõ ‹ŽÁÞFŽÉÓ•>㪠ºj’>»Yé /CÕÈ$зq8Ö¨!¯’.<ÈZ€5o«°ÌÀ3åP„KO tZ&‡e–TU$f[CÕPá*ÿžÔI|wj2êŠJ(%RöÓe$rn‘/ä…Ä8U­]g 3Ò¢j˜ÎmÕxváñ(‘Sä·Dù«ªö!J$‹„Š6ìU²¬Õ¬ Æ …súP•,éVmw_cYTžsܾ^ÆäØXV¶ñófyh"Áʱíµ×Shcûx=ɵ¶×ÛÄ"ñöñzãY´ îºÄæÅ¦·~bd›Þú=¨6aØõ,8¤ Þâ ˆà‡¦-tä%kŒÉ4ˆQ¢|™`*fÚlæ*Á¿p¦ñÝHlq×óÜK¾\õ 3—¯ËI‰CÛkk‘ªbÎNò9„¬1baCÙä®Y?pkH”fž·*_t‹ŽõÌ’*ä¨P[‚ÞÛ²\q+]5Îq7ŽÉ‰ñÕšuæSa¡7{Mcca5Í€ðÑYa)žJ¸çYˆ‰tób×—05ÙEW¬PŒÈ(½³’†Atoe„ÿ[dB Uâv£ÉÞEž©‘Ô™ÑÓÑY^¡ÉC[,.œòPG%ö†M¶»5“Ýî²Îv[Š‚i!öFâ³£½qÒdXŠîq/äºÅ^ðþˆrù!à‰k‘ÑýÚ„Î{ñH …Às#ç€Ô§±rvÉ‹¦œ4é-§Ab?¿ªx%±‹cP£†©üüÒŘÍåi⤅fãéÒŠ¡ÊŠMB‚z%»Ã®è¹ìŠèËš7†Í›bôrMV¢š^Ž d´ÈÕx½žq9"¤ÙkEWµ°i3ߘ…7K+l¨i¹‹Ê"áŽøœqÏ’†‹¯é£Cà—pie5‘¨¡,€žñZR·ÈvßfySnŽF?k.6G²4zæÇÀryž÷²JI’@Ñ·«kù° ¯'ò޼½D‘ù¾ª¡$äQޤ«d‚¼$C1f>j(Æ9Ì*f†åÏ/r8˜AvÆÔ,Ì ¤iâ¥C\¯‡UÌýù’wµé-óO™QL²$ÏR¹Â?QUH>sn^ŸeKL_¤‡æž¬ ZUñ€Ò랪ÕéÔ:ÚNR*¬xP‘Œê²µ˜âhIûxQ>GâÆ>^Ø‘ü±%x$ìãE‘I(žQÎǦŒD©ùΫ´l ýH†ÁL‘"éGȳFB £0Zµ™2ÅÎ’röñbœ‰=ûx1pŒä }¼If‚Ñ6^ -3IɉKâÕýj¬™‰N®²&W©a~Téb²½‡’gh0D˜ WX&œ¸žfÒ=aµ¯fâ—Vë®m±™<;j”‹Üìü4ªÍ4/Qd8Ð*Ò«!n&±yñL㋲÷f"œ×;m$ÖÓ¾6“éÇäo£Š3!Ï3Í-Îò4TΤ>¶´Äæ$¢ñs&Òf'w¯™G ïnK6 ,ZGâ—agÂbHL"A<"¬…ï™ º—ÁL²ÝÆ‹Ïe&*oãÅi5“½·ñâ(› æQü"’ÒnÎ:Ì+YýÖÀ”õ¬~!Ø‘Š[¼Ög#^dÙÐ=Ä!‰" Ó \¤À€…µÐ¹7“êc¢`a*Ñ[b?ÃX‚D’¢ˆ˜ARQu¬B¢$ /)µÄÓ³Eµ6uhÎBÌûÅ»¢=‡™ª—4HQfÄBÅf„B%XMQ¦YU¯tÏ“ÈØ¦ÎˆKM½ÃI;‹ÄJ*4ëú-6}Ì@²â˜˜e¢¯›­K1~_½:ƒ<‘˜A3+~ßÚtW“N£Cìä㑨ÎçYÄJc96«¬†)i`oPs$å1”!VÙN8Ã*_E¨d—l×}]ŠÆ¨,׳†)DQŠaÍ v1DX›‹€õY˜"+ÂÄz‡#â™.QÊQˆxf-5Z\5¯®r&q×™J§þ,Ž‘˜Ò»U“˜ ‰n&€;:gåœ$‘ïSt•œC'qç ö¤[µÞí•|8uÆ=²KVñè¯þ׿ÿ¶r>†‡H~ÿ§ž‘eG}÷øƒÔø!†¿’7¶G¦—ïeîÿ|<~¼ÃóNxþà©’à3ñ ö´¿Ås±omß¶6jùGv’SùËëñw¿ùÛ?{d÷øÍŸÿö—¿ý³¿üò‡u÷þ³Øº¨+¶¿þ§ÿýïÿögï¿ùo?¿áûÕÿ|ýƒI)” endstream endobj 50 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 54 0 obj << /Length 325 /Filter /FlateDecode >> stream xÚR=oÂ0Ýý+Nt Rcîì8C—ªµRP¶¶¦BJH0ðïë bißùï½'ß!|Bΰ;F&"$""ŽH°¬ØèµðR³)C.S@K{d°7}}d–³ç‚&!ÏÐÄbmédfêIÅ >‚‡a¨„ r½Õûy£ým1ßû䧬ŸÕk«c3_lÊMsjïõJ—ïâíb9 ã€bsD­±bŒ&iÜu…’äÊ)+û~ê²›ê'*t²¾b9‘«ØK8½2³]Îìö¸,uÝlVúðtãY(Ûùÿs=Äqƒ|pkæÏÍ©ÔÿS7cÜù rظè®LJ>/ProcSet [ /PDF ] >> /Length 38 /Filter /FlateDecode >> stream xÚ+ä2T0BC]S]#c…ä\.}Ï\C—|®@.eÍz endstream endobj 57 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Targeting-Vignette_files/figure-latex/unnamed-chunk-8-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 58 0 R /BBox [ 0 0 504 540] /Resources << /ProcSet [/PDF/Text] /Font << /F2 59 0 R /F3 60 0 R >> /ExtGState << >> /ColorSpace << /sRGB 61 0 R >> >> /Length 14393 /Filter /FlateDecode >> stream xœÝ}K¯m¹qÞüüŠ=”&[|?†éFÜ€°N‚!hÈ6áî¶øï_}U$ÏÖMs9£ úÁ{×®"YÅb±žþñÛ‡üåñ¯ÿÀîéÜÃ7ü;»´üçßþùñ‡ÇÿüøÍ_ÿÓ?ÿõÃ?¾\þý×?Û_ÿøùæ¯?ü{üi}üÇÇÿôpúðß~øÇ_>¼ ýÝÇwp<~°)žMÓ=S ÷l®=Ü3•zæ×¿þ:M÷øí‡[¦rÀÿ„Ÿ1>^!—§ËÐó·Ç·;þ'tÿì㟥>BwÏàe\å÷­>[•qÇÿ„–ñÇß>B ø04Ÿa(Ôªðkø5-Æ ÕéïKøsœŸ9<¦§§OÿÞ?;¾ïøç/ó ø ãŒ†æÛXKüýü ävÏ"ûB’mþú§ØÝë|_c=%?{^Ö[ÂÓ…e?rÃÏæ~eÛ/ÝÏž~ÝïÔŸµ/ôH dý6蕪Â×õ¤¢û­ã\¾®?—gjËþäúlmÙ¿âžÞ-û[âuÿKyÆö†>Ø?÷ìÉcZÑcÿ¾þ©ìße¾¯,¤¯ëI ÿ3×›œì÷ظíWLøŸ¹ŸÑãùßÑФGèÐ+4ÙïÁo±]ù/6lÜ\ìØ¸¹?)`ãæþ¥|ÝßÔðÃeÿ¯ôáþEÙ©ÜÀiµÝ¿ýOeÿ.ó}õŒó¤ëçM÷cœGݯq^ãvžu¿ÇyWz y ôšòb•'_Ï—­œ?ÝŸq>uÿÆùÕýç[÷œÿ>Ü¿wbò½tÔùE”ÿÀ(UÆ.)ÿgü½{zò»“óÜý3=™ëoïÖ,O.ø OÜÓ~}ú¢òѾžÏ†ïC+øçÛË#´þLîÍ|ÏçæÓ1‘ЦõíCׄ~Ä_#…Ú”?ªÇDð÷½¼™ï1¿_ð½>„±Ò#Ô²}“ñåüî÷IMä§²}ï1ÿ\ðÍù@lÇer½îOñ*Ït>%?Ó»ûï˜.ø&½²¶¼ðO*z¾”9ÚüH¯\•ÿ·ùÞåâ›üœÂ³-çKŽyXø5µgJ ?g,ôÍ|ùç‚oœwˆ=ò§žßX¯òkÞ§<頻¼Úæ{Sþ(¾—È×ùÄ~ÝŸEžýIŒ3ç³Í÷˜.ø^!F0ΤWh¢ þ‰ùÊ?± ÿzmó=æŸ >Üo ™ü<&:ÏWt@4ÏW ˜Èäçm¾ç÷íŠïõ|þçÝ÷«¼Ùõ‰Ð©OÙyßæ{Ì?|s>Cê|‡|V|C>ë|†<Üæ{Ì?|“^ã¾PzŽûKé1î/¥×¸/¶ùÞåŸq)?û”ü>ïwå×q¿+?ût›ï1ÿ\ðó>õ‹>òFŸÒó>ôm¾ÇôR|>(ÿäÅ*zÿ¬Yß¾=¢wªß•ü,é]Ö ï—Ñ÷\|öþˆ.?+ÇõÙ°žøô²¾æŸ¡sýNïë}²<+ÇBÑ'yŸ÷gªÂ?ä‡î…ß[zVÙžïK÷Œ¢Ÿö(üSó³VËûÒ+½{|¶"ú{Ž:AÎõÿž®ËùNügMäß÷Eêzž[þNÙþ>P^yÓ/ú3·ÔTÒ¯f¹/b~¦®÷mï°¥£~$û5ÝÉß—øLñcš©_¶g÷°u&$,cþ>õgéë8ËzÆ÷Éá&¼XžaÅÃÓùe>A^s¾ôë ž÷»­×7¡ßØÏûlì—Ïœ–ýô^Ö3öÛ;0Τ‡w`œI/.ÂBOïD_ôöÂ_“¼¤É/>Ðä'_„~ƒß<é5ø1M~ ²_“Ÿñ¾ò ¿Çôtm9ب²œ\¤a9O©â=4ÏÛå<¾‘©>K–q´ó/ïÿÌ^åUÈ2_½ÿò3B^´§çß ¢Ð哾xÏóaœ±p;ÂQ~߲퇗ï›VþÞÉù©UùËS¨ñlŒßa[Žñþ„Võ÷ïåt¿q¾rÁ2”ߪ¼ïÿ¾ÒÞað°ÿ]øô¡b‘ïÙ€óêTIþšè7¤_Æ}«ëùÁýë3y=_Ð§ç¸ üñ} ì„W mâ«Nàù@>úe¾µÐÞa뼈ËzñPË~´(çuìWKbOû‰÷Ⱥß-]éÑ¢œ¯A¯ä==èÙœü~л¶g\ù¡fù~ð ìY+?•&¿üVømòcq¼ïŒ_sL~Þøýî{>x³gÖ§‹2¦|ËúÎ[[Ï—·óûs…ÿ~€<Ëâz}|þþc}æÿ%üÖ1ÿnï‘D|NñmøÏßK+ü—ÜW¸ÿ}ŵDz;ÈŸ¦û¹á?¦ßþKÎä­ÏÊ¿ÕSŸ0}~Ãn¿]á¿„ÿs~(Æïüš æ|ÅL¿ |Ú r•ûAñ5êWbï+þs{É ÿEýó/øå ä}ï󼝸Ïí!+ü—èk¥ ¼!Ÿ Ï{Qy±á?¦ß>ð%Œ!h_l7õç ÿ1ý.ð÷KO`#ê«ú^àyØðÓïøºèƒ­ëþuÞŸ­¨|ÝðÓïÿõA÷aKúÞï[ÌLý þSú]á_ ¾!jõsà«Íð]ñŸÒï ø¢è5CŒëûÀÉ{˜òtÃJ¿+|â»Øzºú6ü§ô»ÂŸëƒ­.ðKÖ÷ã†ÿœ~+üI?¸©ú²Å?›ƒÿ.ýògΪŸ+Àßâßà?§ß ž¿ì ÖOþÏQí)þ»çð§|IÙäɰ¯QÞløÏåç ÊÏäÕ?¥òkØ?7üwå'áûAôëU>ãYSÞà?—Ÿ+üqÿá™P×ûn.÷ÿÍûOáûÏêë¼_1¾g7üçöþþÐ_ðLR|ô'ÄŒgéWü7õ…?ô3<Óªù{Ä~aö» ÿ1ý.ð‡þ‰g"õ‰¢ö ¯çaÃSÿTøC¿–gj›ú-ì'”/þsß ¼ðL.ËûÏôæßà¿ù~Pøã}³M·÷ä]hºŸþcú]࿆=Ó·«}34³w\ñßõ§>ì«Ó\_Gü\߆ÿ˜~ø/±/Àž7è—"6nÒoÃL¿ ü—Ø7üÊŸ±Ÿñç†ÿÜ^½Â‰}0–åüEµgÚùÛðÓïÿ%öž¶Ê—h¯þ+þsÅ ÿ%ö.Ø7†üTÈŸþsÄ ŸþÜ÷ã~YÖ?î‡ ÿ1ý.ð_b­ëý{ÛzÿmøÏýQ+ü—Ø_cXîwOûÖ¸ß7üÇô»À}×e<ô_±qSÙðÓïøÔÞgú™þjž‡ ÿ1ý.ð÷ýÐ?=íCÿÜðÓïøÄÑ4õk/ŠôÔ¯7üÇô»À>/öÃñ~ðNð÷Æÿœ~+|àsbï#ïh_µ÷цÿœ~+|â»øƒˆy‡/ï£ú¹k<Šâï[…?Þ·þsú­ð'ýÆû]÷o¼ß7üwégïwãŸaŸPþö‰ ÿ9ýVøóü û‹òÿ°¿løïž?³¿Øùö%?⻚{ƒÿœ~+ü)?‡ýLå×°ŸmøïÊÏa?£üžöA•ÏÃ>¸á?¿ÿVøãþ›öO½†ýsÃóþ›öOÞ¿Ó¾ËûuÚw7üç÷ß è/Ó~MýaÚ¯7ü7õ—i¿¦þ4íóÔ¦}~Ão³Âúçô?Pÿ›þ‡ ÿMýsú¨ÿNÿ õÛé_ÙðŸÇ[­ðÇûaú¨¿Oÿцÿæûaúø~™þ1¾O¦lÃL¿ ü׿Ÿ{ãïÞðßõÿEgñ¼þWÓ¿Ÿ¡ÿ/7æsîÿ[á¿Ä_Ü›Œ3ý}Iü=ÁëùØðŸÇ˯𯓠Çß_›À÷ïðŸ¿ßWø´ô,cÆ—}ñ¯^ñŸÓo…ÿ’üÈ·hñç¹Áþe|Ȇÿœ~+üã9É?Ô_²ÜÀWÛüçö—>í=ˆß]ãŠãþ9‹÷¹â?÷ß®ð_OÔ’Œ5^ü«¿zÅL¿ ü—Ä‹!Þ a†Ï„ø”à,¾éŠÿÜ~¶Â§½®ÓøÐ"öÜè-_dÃN¿þKìˆ MïsÄÇuÁ§ã+þsú­ð_oW¼Œ™ßñÅÿÅN¿>í­r¾êŒ¿–ûªi¼È†ÿÜÿ¾ÂIWüçô[á¿è¿Œ"‹ùsýV㛯øÏé·Â§Ó'ÊG‹GÎÔ§C|ƒÿœ~+ü—øƒñ¾†¼"üH|Nï¿ ÿ9ýVø/ÆcwÊó×^â§6üçþ÷¾ú§£œ¯N~É¢á½Wßà¿¿4à¿Ïž„ߩ߶"÷kz7üçþ÷þ‹ñQø]×W!(ñ~öí þsÿû Ÿñï=¥ßvÅN¿>ðÉÆÊ{’üÙEŸrYï£ ÿ9ýVøÀWxß8ͼ̮Áþ‘êüçô[á3>¤3ƒùGˆ©ŸžãüwâÏ&|à“|ðóöø¾ ÿ9ýVøŒ·ÿ8óÇõ@~ôú>ÚðŸÓo…x"Á~`<7òC¢Ä/+¾+þóø¥>ã—pßÃ>fñgð'÷®ùGþ;ñK>ã³ ÿ:óÿíñ’þóø³>ãÏã»5Ÿ&K|ù5WüwâÏ&|àKäw³ô"ñ½@øŠÿœ~+|âC>C·|uŽ‹ÄÃG÷ÿ9ýVøÀÇü³ÞTŸØãO7üçô[á_‘ø iŠOòç¢úÃ7üçô[áŸäãØ}Û›ä÷ô‘ŸuÅN¿>ð #`þz¾óåÚ?7üçô[á_c}I;ûö&ž÷Šÿœ~+|â+œ?ï?È».ùO¼6üçô[áóI»ê×\’¯WñŒþŠÿœ~+|â+ÌO‘÷È×$þ0ñWïøÏé·Â}àâÅþ¶ 3É·/ñÑ;þcú]àŸä?êCÀ'ã3ÏWüÇô»À'>œ/äË%…_o-ôÚñÓïø<ã¹#é#‰°¬O"ïÁÿ1ý.ð‰Oòw=í{¼ùŽÿœ~+|â«•ùˆUá#¿°6Úswüçô[áãûj3~ #ß+¾ÁN¿>ñ!ÿ¬ªýð‘ϳD{ƒÿœ~+|âÃý]µ^Ï¿¿ã?§ß Ÿø2ãD_ÄÏ.ùtJ¿+þsú­ðài=ÑoªŒE?Úñߡ߄O|ˆ§@Ù®ð#ókCyƒÿý&|Å·Ä¿ìù;þ;ô[ã_ iÌ74ø¥™|‹ÿ©z+Wø“~EëWÙþ•Êx´ÿ]úþäO”åJ ”BýbLJ~þ<EëKíù%;þ»çð§|)ú¾³ó]"ó©wüwè7áOùY¼é”_eÜWüwå'áÏû!ëûÝäsñF¿+þ;÷ß„?ï¿Ü˜?¿çëìøïÞ„?ï÷\˜/l÷knÌwßñß¹ÿ&ü©¿älòKë¿-÷ߊÿ®þBøS?Ë‘õyL?BZ³ƒÿœ~+ü©æÀ÷äžÿ´ã¿«þÔ¯³³óMýñžî þó÷à ¾’ÚLÏÁøçŠÿîûðçû(µ§¯Ëû${ã—+þó÷à ¾ÿRÑx‚/ùdWüwß„?ß·(s–÷eêf/¸â?§ß ¾ßQ&°,ïçdþê ÿÝ÷;áOûD Z_Cí©h¼Û†ÿœ~+üiI^íÇ{~Þ†ÿ®ý…ð§})Yýµï¤dö»+þsú­ð‡ý eK4’ö«ùÞÝñß´Ÿ)üa”|ƒ´ØçR°ñÿ9ýVøÃþ‰²7qµŽ| ÿMû§Âö]ÉßõˆX„þÇ ÿ9ýVøÃ~-e®û1ÂSxƒÿ¦ýZáû¼”íZìãR¦3¼ÁîXáÿò}X?dÏÝðßô?(üá_ #Þþ ÐWígWüçþ‡þð!*X~±œ—<ý9+þ›þ#…?ücÓõ‹ eŒŠ{ƒÿœ~+üáÿCX¯_üoK>îÿMÿŸÂþM”mâ}Dÿ"ø‰õ7üçô[áÿ-¬Ýâ¿?õwøoúoþðO#M×'„>­GvÅN¿þð¿# |Ôo»ä7oøoúßþˆ/@˜¼·úExŸ„nùÓWüçñ+ü?F¼.ãÀ¿õþ›ñ ć ¿2-ñ!’ßà?ŸXáøIs(3þdæ;nøoÆ¿(ü߃üغÄ÷à¼h}Ü+þsú­ðGüÒF4ÿ\â‡p^o³á¿¿¤ðG|ÆŒOf|”¤Y¤7øÏé·Âñg([·ÆŸ-ù÷Wü7ãÏþˆ¯CZ õAÆ·ëynøÏãWø#~c­wy_E‹Ï¼â¿?¨ðG|¤”L3>øf½¶ÿyüà Ä"m«/ñŸ3ŸzÃ3þSáøVŒÓß*òοÁN¿þˆßEÚ•ÖKøYÈ;íÿpÅ3~WáødŒÓŸ,òµ¼ÁN¿þˆ¿–²•KüõRâŠÿfüµÂñåó¾c|7ðéøŠÿ<~~…?âç1öKü¼”yôoðߌŸWø#?@Ó4G|¾”1öoðŸÇϯðGþÆkþÃRoãŠÿfþƒÂù’öJz±¾©·÷؆ÿœ~+ü‘¿‚4ËnýB ù®ñþ›ù+ äç`¬ýIåyWýwÞ´ÂùGaÄ»}©_rÅ3ÿ(Œx7æ?a¼æWùuÞ´Âùcú£ÐF<ï†ÿfþ˜Âùq’–»äÇIý”öÿ9ýVø³þ‹ë×úú³ÌÿÍü?…|NêµÎõÑ~<×wÅN¿þKêÇ¢>ñ _êRïcÒïŠÿ˜~øì—ƒzʃ?Sãý?êÍ\ñÓïŸù¢n=_êë\ñÓïÿ%ýfð¾ò…sÃ"_6üÇô»ÀI¾«_ågâý3äç†ÿœ~+|æûâ}=î‡Äzäã~ØðŸÓo…ÿ’úߨÏ=î¿7õŠVüçô[ῤþ5ê³û=9©?=î÷ ÿ1ý.ð™¯-òÃô—Èûgè/þcú]à¿$ÿõ¢‡~†zß~ÑÏ6üÇô»ÀI}q¼'‡þù¥þÓÿ1ý.ð™o/ç+Ìþ}Õ¯7üçô[ῤ>9ìãý“Ðw¼6üçô[ῤ~¸¯Ëû(FÒËÞGþsú­ð_RAîo{ÿ}©§uÅL¿ |Ög@½þñ¾e¡¬ù¾ÝðÓïÿõ¡†Ðù~ô'÷û†ÿ˜~øì/"òØìè÷ûĆÿ˜~øZ_cµ¿ìõÉ6üçô[ῤ>ˆ_íKALûÒ†ÿœ~+üëñûÅ~²¼G‡ýlÃN¿>ë£ä´Øƒ0Ò´nøéwÿ’þqµ~©÷vÅL¿ üë×Ôžh¿öÝ ÿ1ý.ðYßýM†ý:x9ŸÃ~½á?¦ßþKêÁÿ5ìó˜HXìóþsú­ð_ìâÿ×úyWüçô[ák}¢ºøW|3ŠoðŸÓo…ÿbÿ’²ø|5J‡ÿœ~+üû«ÔÅ?æ ýÉæÛðŸÓo…ÏúR~õÿíõ7üÇô»À>i„3ý›>±¿‡ù77üÇô»À>ö'þ[\ÄeñßnøéwÏú`À?üÓ^ëLÿô†ÿ˜~øÀÇ~~Ãÿþ¥¾ãÿ9ýVø¬·þñT„g|Á†ÿœ~+|àc¼ìˆŸ@¢e]â'6üçô[á³~]ZãC—ø ÿ9ýVø¬ÏýwÄ¿|©—yÅN¿>ëÖ5¾ñpq‰ïÙðŸÓo…ÿúðýïFü1Õ%~iÃJ¿+|âCüðˆÏB"iZâ³6ü§ô»Â¾v?ÛënøOéw…|RhsÆ×!n¯ÛðŸÒï Ÿø|Yâ]¶øIÞ‡þsú­ð¯ˆ¾7â#]f¿J‹ÜðŸÓo…|™ýž,þs¯çºá?§ß ŸøÒß yçg|éŽÿœ~+|àc?[‹ß…¼+uÆÏîøÏé·Â'¾´Ä'‹|-3>xÇN¿>ðÑlñ×_êãnøÏé·Â'>é¦ñåÀ—ãŒïÞñŸÓo…O|~‰ŸüàgüúŽÿœ~+|à ¬ç[Œ?´ ½7üçô[áßšÿð¥Þð†ÿœ~á’ÿ€1â-¿ðS˜ù;þsú­ðöTË_|éoiõF7üçô[áŸôó3û•ó¢ŸZ~ÌŽÿœ~+|âÃýmùG_ê7oøÏé·Â'¾5¿ ø¤t1ú]ñŸÓÏ_ò«0N~æ·µü­ÿúMøÄ—ü8©Ýf~ÚŽÿýâ’çµë¨w½×ÃÞðß¡ßÚÿÈð[~£Á·üÂÿúÅ%¿Ñö×ò7mÿ,rÇ—~–¿iücù©Æ–ºã¿C¿5?Õ·åß~©/¾á¿{þ,ÿÖοåÛù¶üÞÿúMøS~Zþ´É¯:î¿+þ»òÓò§M~[~¸ÉgËÏÞñß¹ÿ&üyÿYþû—zíþ»÷Ÿå¿Ûýkùýv¿Z~ýŽÿÎý7áOýÅê˜þЖûoÅW±ú¦?Y}Ó¬>ÂŽÿœ~+ü©Zý‰/õï7üwõO«?aú¯Õ×0ýÖê[ìøÏé·ÂŸï«búû¨²á¿û~°ú!ö~õQô}2ê£løÏé·ÂŸï¿Qÿeï'°á¿ûþ³ú/öþõmô}9êÛløÏé·ÂŸï÷Q¿GßÏ£~φÿîûÝê÷˜ý`Ô'RûÀ¨O´á?§ß Ú_Fý¥½?Æÿ®ýÅê/™ýgÔ—RûΨ/µá?§ß ØÏfý,µ_úYþ›ö³Q?Kíw³>˜ÚçF}° ÿ¹ýs…?쟳þÙÞïbÃÓþ9꟩ýuÖwSûê¨ï¶á?·®ð‡ýzÖ¯£ýxÖ¯Ûðß´_úuj?ŸõùhŸõù6üçô[áÿì?ø¥ÈÿMÿì?HÿǬ¯HÿƬ¯¸á?§ß øfýHúofýÈ ÿMÿѬIÿÕ¬IÿÔ¬¹á?§ß øÿfýϽˆÿ¦ÿoÖÿ¤ÿqÖ7¥qÖ7ÝðŸûoWøÃ;ë·Ò:ë·nøoúogýVúg}Zú‡g}Ú ÿ¹ÿv…?üï³þîÞßfÃÓÿ>ëïÒÿ?ë Ó¿?ë oøÏé·Âñ³~2ãfýä ÿÍø‰Y?™ñ³>4ã3f}è ÿ9ýVø#þeÖ¿þÒ/èŠÿfüˬÍø›Yß›ñ5³¾÷†ÿœ~+ü¿4ë—3~hÖ/ßðߌ_šõË?5ë³3>jÖgßðŸÇŸ­ðGüÙ¬?¿÷_Úðߌ?›õçÿ6ëë3¾mÖ×ßðŸÇŸ­ðGüàìÀø½Ù?`Ã3~pö`üâìÀøÄÙaÃN¿þˆÿœý¾ô³ºâ¿ÿ9û?0þtö·`|éìo±á?ß]áøÝÙ¿ƒñ³³džÿfüîìßÁøáÙŸ„ñÁ³?Ɇÿ<~w…?â¯gÿ•/ýÁ®øoÆ_Ïþ+Œÿžýeß=ûËløÏé·Âñó³ã×gÿœ ÿÍøùÙ?‡ñû³?ãóg  ÿ9ýVø#ÿaö?úÒoíŠÿfþÃìÄü‹Ù߉ù³¿Ó†ÿ<e…?òWfÿ*æÌþUþ›ù+³ógf.æÇÌþ\þóü•þÈ?šýǾô¯»â¿™4û1ÿiöWc~Ó쯶á?§ß äÍþqÌßšýã6ü7óÇ–þq’¿¶ôÇsìoeýñ6üçù+ü×ÖŸïkÿ½?ðýðó‡ÓÍ›ÿÊßü]|øÇÏÿòèOýsþK†Ø©ÊHÉ”?¿¿úñןÿòñ_Àßü]àOËõ§2”$`:1\–Ÿþ—“ŸÂ¾’Ö{†•1“ËO:ù)¬dsÂ?ÿâŸæÌårýp­Yr…ºÄ"Ÿ­µ²Œfmól­µÒCm¿|­•Åê3Ý×Z#ëø¹‰% ÉÊáZsf´¢³ ÿòµ&&2ÌŸþòµÆ$9Ôs¿|­¡Ý²M¿|­AB´âüòµ‰æ\Xâ—¯5”g¾0âÁy¥«f²ÿ/_+Ã3—C7Öêž­§¢=q9yïh6‡öùüÓÃ=þéÃ?þ"‚³¢1§WÅ4hTÂY+Ťªb9ÊÅ–-1+GiäytÒ#V§†£,…‘c‰ËQ -­XcJ*òðß%—ðH.¨£.KN‚}ÌËÆM=!ç)d ´Î EB ¾%¾{ÿHÉÓ°ú)Ó3_L•ÇS .©ò+fh–¹b¯c<ÅJÐT ¤Ò{®˜/´ÁŠùtÏEZÿaÅö÷h-Õ“†jæ‚­Jôð²€/²b†®æ R$¤:Ùß×$+®ü{ÉÁÁŠ‹•.ˆAVœlÅl¦%8šÅW¬—%›Q¦ªÁ¹Šr³5/­b (A•ù,]бâbÅМ¹65fçbaÅÚÜU¬ÒX±ÿpBÔеf¡¹?’ëÖ,ÑÃë…ksH!VLž)b5ÁŠGñ‹Ì Å>¹‚.+Öö¯’'†Ó½–Å=ƒ;›1ž#$=Çh[ÌœUˆ‰“†ÅWk;Iªp'Ã/¸µ ù‘œ·ò$bÇÁŠé®-r±âÑþ3VY1ÍÙEÔI¬XÛY9IÕÓOYQåŠÅa+{Î;+‚q©¨A+è²b-X¤N1ZTXq°1µi‚Aá)iÙ ÖPaî°P„˱b-B.†ŸÊ ìD/+æ©*R°/k0^W¬ •è`Å@÷)+RÓ„V$„*"¤Þ¸&¨Tô\”(-ùrRdaKãÔ„_„½béz®‹äîÅZ5„´Ti‰Ú,§ˆbˆG[Aó²bo%’Zy$˜°ÙÐci –{+ÑÔ¹bJÚJž@çq–Êx `Å"Y?e…BcÇ [U±âl4A“ÉTŒ+Ùä "Ñh9P,h§ˆäÀе)kɈÚ_YW€jyy‚±2VÔÊAV;ˆl® TYqlº‚ìeÅLr«"+…¨çÌYí•«d#%Hb§+޲"<3DVšabS7}79VLIU*$IÄ¥uE²Bo{ì„ÀlÕhYmn\ýé[š+ÂŽõ`eØ$^+Ö²^SO®Z[Í.4óYåD“üy¬˜4mbOÑYLjK'E-ãñɲQ6³Šx¬c¬V(Jö,¦l’CDV̇V•VÌA!°þˆ¥é¹¬äúZŒFÜÁf‰`wÐØ/…öÜ#²¾3W ’Ë s-@Î$øÛ¬cWu¬¶,çö=6”‡jŠ•÷õ§¬0Ðô@×si|:W“ö]\)k¨Ke«6(*VÚ ­‹Éæ*ÚV¬¥å*%Y65iE‡­·Ör޽†z4ñÁÆÞ4ô¸%lUrv›5)U‡s‡¹87)5›‚Iº.‘ð¶2ÉÅûÆkÆŒq¬V¬ÎË8%½á«(3X±žKj¸¤l…ƒùf¢‘duÞ7/ãô>m‘²Ú)W7•ÝUÕ­ÊíâLÒµN,ê9s`…ΊeGŽ›5×Ë2† Ó$W7s––Ëór΢…ëWj)YûVÎ({åª*ÊVf0•¢’¤‘/µrž0á¸YûI܆­kxF»!Vì¬ü.4 —¬<µ˜·’J„_A’õY.»¸G UçÛÅ®˜b"}Ф‘¼ I*í±â0¸’ËHjµÓ ÔÄr³bäVì­a(¤×¨Zf“Ì{¬Øâ6kÍ‚IæmìEÏ-ÔOœã¥ ·h v{õŽ­ž­Aîo8¬ ôpØáUˬ¢•aÅt¡AÒ@rek‰[)«£Ý&äÒl%N@CÜÏV2 Ñ…OëWr%wE`ÄæŒALL9´ܘO·Û«Wj™a–ä÷ÔHºµ°¨ÔH´%‚ä–à~Ö– •+Ä÷IÉC'ƒ ´‰r´$•4É‚F›Tÿˆ©[Ñ®Âн­;T’U…8Rqà $Y·&hYœ.`n+ŠSÑ“5¡r"‰œ§¬—hÞÏÚ´¦PMΤn+6)AÓ&²[æû)4mtc§e6E#I&íÐ4y57yÍaÅÎÎ!Ì”yÈR¶I.Qu¢.¯vhÝÎ] Ö¬ €py¦¤“ø¯H„+J<ÇŽ’+ìEn+m+Õ¡ŒAv‹~1Î-ܰBc/’Ud·—ãÓÜjÿþÔrœAÝUAË›¢gL³}0Ú³&•¸Ÿ¦)ˆCÍiY½å†Ä I5QYòVtJj~~hô5œŽL2Ö¦Ô1¨ÜoMvI·J¯Æ›$D¦ÉmÌ×~µ²ÜØOK þ伂ü‚ï0Wã]åõ¢ek¢æ'ïGº²µUuš„UòdÙ›¦{òu1ÎkÆ,Î?-žö)XÝ'tWw¶ •÷Å'oÝ..óìlà†D—Ìj` ¶-Ç;SV¤d~Z\¨o¾¨%e>ggAÅ"ç8Ÿ!êKEåyWÅyÒ ê¹2Ê,üb´¢>kë裑½‚9[„ L[À#’­½µ^mtuYhæç)§‚»§ÍâêàÖ¬\ýÎ:$Mº5°)”ó¶~mªWØä]e¾4YâÇÓç©×РõízråOìÜòrga«q«§N½ãSö ¼ƒ°‘¨m Ã}%"ü)€%7r޼Ô?$€9ff +@~>gÐTßî¢&J?k\!ÉM&Âð…W‰ÁË*{©ç¶w†ÒɃ›­D„²¶BòIdAÔŽ>E.cŸ-8P¢ =ƒI¼î«ìB£¾%ÿ“¹jÙçÀ`Fœî£{L Ô˜UÉ€äÐw( qÕÚIÈk\qŽ‚}æíÖñ²j¶ë Œÿ4£œW9"rîÕ.ÚMI#,\1žÔÇ·)0JÀ””ãXæ,k–»F"¢ðgSŽ—5]Ù ‚µ¬-ðRªÊrœg?xz½o&ëÀ]Eƒ »6EÂ>; ­…’o#áç*¼ ±S6ªƒåƒ8™U1$¶1˜<ÛXápE)‡å2¬1¿:†ÉÉ>bŸ1p%¢¢bg‘˜Ç$ÐU A¨G_û)†"»"z¤ˆ;/”~@ÔÖÍÕZßA»¨­ý<ï:§¡òz b Î f†‘Wè:ÀREúˆaµò¾]ˉÜm­æŠ§UÃÙ½''ŠÍµ9%mÎ艌wú²fŠt9_Fé*åÉúhw'l'áÄ2§ †9QªRVÚ3k8ˆœ(ÒÉÛ¾‹¢·°Áœ6„îªI„À]²[QÏ|&oÈá̤‹P"É ¯±Á`&½Ú×b lhʧЈ¥O¹ÿTêp†%0¤¿ê 3÷ $;Nö€ûN§vÞ㚣†hËŒ“ˆ§9ã,Š·0œüžj,иþÝ à¥é%·†´š.Új-ˆ¹;©g€ïiÉü(~Ú½5»¬LÎPËžÈ6ç¦<ôA8gºN:Ê3³+ ! ½­m7ÓTg‰Zn®ë{(”»îÝnT‰„’pÆ×^Ü ˜c,z÷yBäÝ‹\ëÅì Â\ER„´å¨6òøv ANÚ#kÕ¢I“íäŠ|D®"T6ÁíÚT‹ v-HhóÐË|ªôµ1)mP–¬U=Ë‘eÇš–ÅÅYGšžÓ¶ªÀD+q3½ä¤y&z)yÉËà êMâ¸vvq$ SíšB@)áf·ad«¦owu]‰™¦ (–Tµ8«Ì~yoœo#žØYw¶°9q5¢‡àAÇö¿Aê\h×îlaû\Žc’ô̦áxD¦ï…2 JBf±9‰ÃKTzßeÁ(z¶H~/UïÖØS©Ôoà•®Åä°§7³Ð§!´ æ÷6 “l¹*4«ª3ËS>ȸ¿d6©U™%.01óö´ªAeˆÄ´á¦´ŠL#¦TÓ²«Ue!à,WgüBw®ù±ªÆÄìn7¢`ð&u ŒÙIo‹9^g 3\Ô/æxݦǿ¶ñºû4H¿¶ñJa˜°í‹9^¹ªø cŽWÎ-Î`¬ãõtdµ3]Çë ÌÕöc¯§>g]Ç«dïÄÚÎñ*½r˜ «çx•ÙZÒ]Æ«TNE¯ãUò§fmØÖ±}Iª½–Ö1o%óÃ=£¼}rX,)°S­Á)|Sšúf3Ÿ{Ìúö1©Wtji4E–è8)‚tÕd’¾|ÅQ¤,Woí J“³F–^ Eå:¾ŦX\³ÒeÞ`$6‡uïÌâ]&;¨ùJ¨·7K’P„dkí¿Ñwif,õ@ ?ðÇ—Sc‰¿æÇåðá9}Í!i6º©½ŠV4Ê´ÉÛ¶³,½Á; Á‰­šoÒÖfáÉñ‚“ß8m]§­´ZX_•ò6ë.So0䙂ßtk¾¹ö=;_ÞRVÔëï*IüåõH­ªE ³°»X1ÏPÖ^¬ôg·/?%I Ö…7#›ñ*ã*k¿qÝaÇ ½hŸ’H¡xxFf…/²ÍCKmÛ9‹b.Ò Y~!¾·yV#›Õ¹J?Ï'ÿ$-çéIä<¯k ¼‡ÌRIIèÔ¿'k‚(µSF…,çÓ©¯øSR™â*ç‚ÔŒr¥x`³—!+ƒ„U†jR=.òÖ+µ´<Ú§$ ÅUf{RÏ ??ôjšrßK‰fFËxÏöåîðâ*‘&:÷ürÿÐI/º^|lóƒˆXLæy¹Ìç=èµUX²×3ìrÜ¥ŽÍ|ümåŸí>V]Ñ÷AO/!%óNw…k›œçG‰{ê.ŽKéBÆžº…ש„±êiv¢$NýDÛ&ó¡÷Yã*÷Àô!§í;Çï0_ÜYC§rŽÁÃX¡“ܺ¡—I‰ˆ&ë‰zrï=Óí¼iriØÖ(—C?D )[\FL”e{è˜R¸¤³z_@Ã0=¥[z™¥Ä?YÉO]×ksc‹Yù”ÕÅ:õe|á8¯ÂyxVB:7 )V•WX8Íôv”p‚üŽÉ¤¾Ð¢¹‘k‘Vg_T+sË2}mAb5Š£ 4y{ƒøÆô…Øíýƒ/ÖwŒgü °ƒ‘åäÙ[È71¤‰Ð®ß‘5Rgy{]Ç„œøfjV¦nó‹(óµ7àul_€ò(-»Žù…æñ½Ží‹ç{ö:¶/p¶ìM|ó /·‰½«¯cûgÂÞæ×±}k˜½ï¯c~!®ða#¸Ží ð•Ù®cûB‹sl_àF2{Çul_`îf3¹ŽÇ‹Ýå:þö7½ŽöY|| ´J©¬ñˆ#É´øÈ¸Ú±<ïWŸå ÄØs,€$x=èñ¡!Gß>|dkçê©‘ùÀ¤—ª¥d={2I˜Çb&” ,Ó@Žq‹—½1«VX\OîæŸV/¾¥k¤|ñ¨Jd,¯MŸØlÒŠßù$æT í²]‘Ú»}H´™©Üô¾˜ePbä½c³àªÑĽ[­;¹ñº¤UOüd-šQاR_¨½Ž‚ŽFE ³Q ±ûö‘©ÆÔj1c$31úF£AMT.°5‘K‘Íô%±Î`¦ÙÜçbSoýÂÌföÄfë/zUviœp1vÁA­‚!KH¨Æžb,>Œ¹y‰æ«º}Ì2Ãæ”ÝÍîÍ);xŠà¦F° æ×‚ËIpœÀëåÀšé+h4ýŠ[ÜW‰»ÇŒD(úBóEÕ¬ °Ö¸å±‚Ȭ-Q¶°1ˆšH°‚Bã³³Zf–è#i$ÇÃÅÓ½ž€Ä'Xt~Ê™e59¡(8^f¬ Žª5:¾DÄÓy+$ïYý 4¢½ æK±@5‘£—Fù9}¨ÒÂL¬²‘Õ0 ëfñÖÅi¦1ÅÂ\nž%Å}to"+ù;KgˆÜrz–„?ƒ¹PL™17 o‚S£z‘½Öš`|aïI¨QäÔ† I¾ïj>ö©ð{ “ðpâîžpxôtu{¥^`Ê—3÷’¹$–n¯×“|_- È6s…bâ–Ô¤4¬O!²W ÎU—tÎU•ùRÖS¬ºäxQpa)–°,+« ©ÊŽÏœ!åWаª;à£$Lyg2>“ÈêìG 5ã±ÄoÖC, o¨í£6î*Ïmñjb÷ ³Å‚6ÉòŸx¾¨¿æhöM+!j‰¯âQñåT@Zô¢·G¡²‚@Q¹ÍîÁzä(JëÊ'b1‰Ù^•?P$»ÈnŽ;ÁN´>5£7%ó´¢7 ÝåL8n²ÀZXâl÷¾ñï³ò›gŠßúë³Â|Õ$Iÿ*9A"‘lž¡®ê „lÆÈ—åŒ)Rå×`lŸ$’@¼`Y²Ìê<¢÷@!Ch’×jŸ^«'§÷Û¼JpSÔûIª/¨–ÓdcXQT…´²4ÞŽò¦2Tî:Í Â ÓØœ¶Ä[`s¤¥ú‰esXº1pìX:M£–} VJ­”ïØ ìÕhñ&x›zޔݔÁr‰™ÁËŠh×"ÉPcfÄ{‚«ÇÌi8®…BÆ[¦0mMybŠ&¨XD%Ö1(&„9"RÎiÙÌ@Ê &ÚÈ1ƒÈX§>„¯#á“^L‰±~¼¸r`$f3QÉØ‹u‚ ÑX'yÑCÐhY*Ÿy Q#½g”¿åŽxW™ÓæÌÒd‹Âžîa›v-Õ¨×çìÒTÒYìÇbȤx6÷Ý ˆÇ‘¡<1ìAŒM¶X:|‘ârÈ¡=vè¢P!D¯Š“¯Œmž·¨ªE"øŠ^s5Ï‚P/uŽØiD‚FÛÉÈ#›Ôn-—vNßÞžÒ7¢QÉò­Ã+A«Ðˆ/Ä9’]Ò–\Øib¯±ëò´aÔ¦ž«,ñU!è«®ˆ%1”]Ï.z8›QVdq½´\Jœ°Æ¢qbëO±Èào¢:h„³>$*32L1¬ŒŽ jѰž¸PœÄjãDÉ»ãM¦m¸p7Fn“+ãƒÆ+‚ŠeH¸«¥JšCá‹ÆçÎ ?ZøF,,ø9é®–ÕJ8âk¥´mdéBÎ1ðÕÖy¸%&xÌ©[i”n¯q‰ŽÕ(N™c•œ…)U’äÒÞ……G™ª(xYKgã:ËÌœÕÇ #2KSy$™:Ã*+ÇfÄãì BØgÝ¥žÈ9ꇧ5½ŠÒÙ3G V_€Ääw½Þ°ëÉM©ÞNyÄYÓz;â¬=…C´lŸO³Xp±>óJ«ñ;Öµ8Xôëx±Zxöëx±|˜øëx±žÏ8ûËx±ÀÏØýËx±âÏ|€Ëxñ̃Ëxñ&Ì<…ËxñHÌ\‡ËxñjÌü‰ËxñŒÌœŒËxñ®Ì<ËxñÐÌÜ‘ËxñòÌü“ËxñÍ–˘_T‹g^Ìeü½[3¯ˆuî4•å+¡P¥<¼Vô˜ÍÜ« ÒSk ¯ÛÌG Í%–D ÌŽN3/3jÑBËÙ‹ÌúU+5y¡È92^sèÃê-œyŽQ¬@sc†VFÜBþ✹ ‘yöÑr)£Xç¤RA3Mj3X콜36fJƒ®YAQª!ËÂ|qôœÎãÈŸ¦W¼¯3ï:²\bÒøF 6ÒÌ óJUËMOCÒ3‡5Ž•3ó÷³£M«×xæó'æ‚%Í>ƒÓC*¸qr艞5RdåŽ8¼ñôfÏ:)›¬g.qbæLö#ZA cZ©2gÏiæh+gŽ^*rç6<ŒIsÁ¬¾H+p275ÉË 8Í¿JÏþRƒ…èÍçñýÿò¸ùëïúáñç¿þÍÚ\ZÿÆ»kŽq×øÈPØY(èwÿëßÿÇ¿XÃC$?þ­KK^,£,Ž{üVJãÃïäE]ü#;¹÷_1÷G{<>ßáyç û>aç>ñHÿÃóNœ~4©'ܱ¼Ås@Ÿv% ¡Ì•ôÈN Ú Î~ÿão~úÇ?ìôùOâ‘" aÅóù?þæ§ßþ?Æ#ò°.xþø«¿ÿçÿýïÿöë‡w_ý·o¿þÓãçß®ø~ñ?ÿ³W55 endstream endobj 63 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 51 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Targeting-Vignette_files/figure-latex/unnamed-chunk-9-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 64 0 R /BBox [0 0 504 307] /Resources << /XObject << /Im1 65 0 R >>/ProcSet [ /PDF ] >> /Length 33 /Filter /FlateDecode >> stream xÚ+ä2T0B©kh¤œË¥ï™k¨à’ÏÈTŽæ endstream endobj 65 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Targeting-Vignette_files/figure-latex/unnamed-chunk-9-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 66 0 R /BBox [ 0 0 504 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 67 0 R /F3 68 0 R >> /ExtGState << >> /ColorSpace << /sRGB 69 0 R >> >> /Length 4509 /Filter /FlateDecode >> stream xœµ[Ï$7†ïçWôe"¯«\>]’¬´RÈ®Eˆ )QÁ!þ=*»gÆö~.¦&ÅÅ~¡ç¥«»Ÿ>ÕÁå†ãíÇÇ?.¿ïÿï¼ï¢'þOÀöŸ~8¾9þvyõñë7_ß}¼€óÞãßß]å×ï^ß½þÿš_þðÇùÀñöÇh›ûê²ßôåøòºƒm'£w‰@xP .¤3ºT>ÙMï¨àá]ñåðŽRžwóSùÓÝôÇÛ‹v3¢ õ€âb9ÀåÄûQñÜË~¬Þ¥f‘Úö>ý•7ÉAÜò®ðÿ¹¤ó/úô×f(º {C¡­ o;W< ­¿6CÙ¥´7ôÊ— Æê-%pP,%t•,%ri{ú5ŒRr´=ý*FÅ¡púŒª«ÂéœQ—·§_Ã(GÛÓ¯a”£Cáô?Î('W…Ó¯`T\îþÇïâöôkt˜-r^8ý3*ÑeáîW0Ê.nO¿ŠQu(œþÇUp^8ý3ªèŠp÷?Ψ’‹ÛÓ¯aT“ ÂéW0*Î §_Á¨º"Üý3.š¼üÁLÞþ࣓×?øäŠðÐp*.™8ÞØ_4q‚«Þ„D—Lœ€ìÈÄ ¨„«@Á =¯hÁ ›woÁ É‘‰'˜ W†SvÕĬ.›8À‘‰7!84q «&þ„䲉C¡¸(\ N䚸@載O\6q €¢‹Á†SvhâUçmü‚È¿˜pŠè¢_É¿ &Έ˜pÊ®l¯§ÚlpJà‚_‚¿ ‘+ÛP\Å)%—lü‚T\°ñ ²w < œ2¸bãäÐrŠœrtdãäìÀ$¹)B§â]²ñ :®§Bb–PÁ©D!M¨ã”]¶ñ Jud’–ƒ b¦PÁ©¢«6~A%—mü‚𙤿 1[ø8'ô­h`À }_ý—sB„„¡†ú(f 5œ²ó&~úâ²I†Á IC'@LürÞÄ/@ˆbÞPÃ) ‰C§ê‚‰_€ΛäéQÌ*8!¹dâ &.yšp*\C5áTÅÜ¡‚S—Lü A(Õª8…(äUœBs‡NE¬Ö*8‘ʵ*N„BîPʼn‚«&~R+¶NYÌj8U!w¨â½X´UpŠ(Vmœ"‰¹C§˜Úø1‹…[ §*Vnœˆ¹C§Úø)ŠÅ[§”„Ü¡ŽSs‡ NÙ õ[§ŒbWÁ)!w¨â”£‹6~AÎB WÇ©Š¹C§â…Ü¡ŠSA¡Š«âTH¨âª8•$æ5œ²;ÔqªBWÅ©‚PÅUqªAÌ*8UrÅÆ/¨I¨âê8!w¨á¼s‡s Ä*î㜂BWÃ)ø(äuœ²¿ ø"VqœÀ‹¹C'@!w¨â$Vqœ ŠU\ §,æ5œª;TqB«¸ NÄ*®‚’˜;TpÂ䢉_°ˆU\§à…Ü¡ŠS1w¨à‚PÅUq Q¬âj8e!w¨ãT\1ñ y¡Š«âD(Vqœˆ„Ü¡ŠEWLü‚@Y¨âê8U1w¨àAȪ8Eª¸*N‘„*®ŠSLbîPéˆ}NUlôPpJ äUœRs‡ N)ŠU\§”Äf §"äUœ²Ú=Tœ2ŠU\§„*®ŠSŽBîPÇ) -:NU¬â*8/æœ ¹C§BbWÁ©$±Š«áTÄÜ¡†S:?Tœ*ˆU\§ÄÞ§ÅÜ¡‚SMBWÇ©ˆUÜÇ9‘÷bÿÇãœÈ£Øò8'òA¨âj8‘bWÃ)‹ NUìQp/TqUœÅÜ¡‚Ø¢àIìÑpÊBWÇ©Š¹C'±DÁ ƒØ¢à„$äUœ0‰¹C §"Vqœ‚;@œ¹C§„§Å*®†Sª¸:NEȪ8‘:@TœÅ*®‚‘˜;Tp¢$äuœ²XÅÕpªbWÁ)‚˜;TpŠAèQqŠ$Vqœb;@4œŠ˜;TpJ^¨âª8%«¸ N)¹C§ÅÜ¡†Sª¸:NE¬â*8e/v€(8e;@œ2 U\§ÅÜ¡†S;@4œªØ¢àT@¨âª8s‡ N…ħ’Ä §"äuœª˜;Tpª Vqœj;@œjr‡*N5‰¹C §"VqÓy/v€(æ/js<…6<¯w&<‰©O„´1¤š›§Í´5¤˜w¦M©³5¤wÆ€QŸœÅ€QŸÁÄ€Ñ9͇¤s" JçT˜ÎÉ,8õé,8õ†| N½eÝ‚Soê¶àÔÛž-8õÆ` N½uÖ‚So.µàÔÛ/-8õENg Ÿ§³ÉÍ€ÓÙfÀél”²àÔ[‰,8õf N½Å‚SoذàÔ[,8õAÿœú°x N}ว>´Ú‚S|lÁ©Ï5àt`5àtñ4àt‚4àt´àÔÒYpêCÍ,8õÁXœúp% N}@§>äÅ‚SbÁ©›°àÔXpê¥wNgqÚ€ÓY¾5àt8 8%@ N½HfÁ©—‘,8õB‹§^аàÔ“õœz:Û‚SOøZpê)Q N=ihÁ©§Õ ö©'žˆØ9à‚þE9¬Ø™œmþÏ&hZ¦ggI*ötÈÞ”"V샽)uPmêŒ;-X¡™«3z±`u:ø¬NØ‚Õé&Z°:=) V§³aÁê|[°:_Y¬Î§º«þ´â84pv­={öÛykKלÝ.wÁ–Æ‹m—ÃÖÖ—ïÛ'0ü1þes¯~8ÞÔÛ2ÚŸ¶ØÚÇñ öé†÷=>{óùñþÇËoÞ³½W¿Å¾fš×l‹‰¸¤Ð/w^ñ×®X‘£àûН]‘'ã&ÞW ÂÓ\Ü×|ÿ𚱫”‰³ºë ?Tîk>~>C› ð¾æãÇIm Æûš·ãä§sF_ÿö'äú+?!=¿˜nÞ‰ÈÐ µš.çLùÞHçÃ’§˜Q„ö*:ÅÄißA$NØœZæy…ÆÛ:§X¹2¶yó4ŠØÚ±N1°‡5ˆ!ppŠÄVÆ5ÛÐ¥SL\C›· õ*ƒ9šmtùM2 òÿL*,ÞÌ$†%ҙĸD:“˜WfË’´Džù&îüdžÌ&ì…<-®É$Æ}ô³Èl£ž&ì…–Œí$â>záYÒöP ->Éôˆ<HP–H'æ{2‘çM™Cžíúpâ¹P÷…øÁ}UÃâ¾L–1.ÑμnZÂyݲ¸$Ó^¿dl'Ë—(f^7,^ɼn\Ü’i¯B^â˜Ùr]â˜É2Áâ™L– —<ìd™h dFËšç”yàC[ì;T€_Â<î•¿òþ¥ûõ¹s™ÚúÁÕòá Oºõ¹úJ¹È®æ' `óÀÙ8ô¾ðAi€¿µ§XŸ0@->îê3b«U³Kø„ܦìò3Jd/¹ŸFxÆ@mƒSºg ¶ä/$­l 6À³î=a€‡eûÓ@~ÆÕë½Äó?a µ/hwñ9^o¦¸@¼>4úãõ» OÇî?}‚ùó mC_](ßÃ꿞ϵ¾ôÓåÝ©ÖÌáóUíKw•GAºÉçâ cë ½é}qÐCâ×ÖMNmBÉ›Þ}p×ûâ gb'ù¦÷ÅAçÑ6Ãöûâ]çŠ[ñ7ý\th/²›ÞÛYnz_ôP9AtÓûâ GOι8è© k¸é}qÐsÏϹÈú³o)ý›ìåÄçÅß®Ä~=~÷› ·It° çæËÿ«ýü§?ÿðÓ?ÿg½þOû5ì˰‹\_÷ñ>qª íØßþáû—oʶ‘—\ÊVÆõΆ§…n£áà6&îû—̼”l5”¢2óRœÃ Ln—ÿ_fð^z¢ñçKk:8~¾™¾ùúõ«7ß~³Âû¥ÛéuŠa;ï¾}ýêÍ×bìô¯ÛùÃg¿ûð¯ŸÿùùþøìO?}þÇãýÛg/Ôöïò_û²† endstream endobj 71 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 75 0 obj << /Length 965 /Filter /FlateDecode >> stream xÚVIÛ6¾ûWÓ‹ Œ8\D-@{i’I¦@P$ñ­í–h[€G¤;ßG>Ê’n“d¾ý{ õD£cD£÷:ýÊ#JX´ŒFà®9Ÿßo~Þm‹,b””´dÑîå<ÊiIh TýŸÛÁ~¼XµoÚÆ¾lÿØýrÒß©¤ÝPëö%Î/%2Ã0>æŠóÙY%’˸¿T­lSkóÓÊ+%\:³™@+Ž÷ßíî^ƒùÏŒ}iõÿ‹¾WãÝb0Ï{·Û0`Òˆ¹r¦L<ªnóuCJ^ÈÒËG/š,ãá©K£·Ãæü&QÞ’Ùï^VFŒ‘RJº'Š”H™c÷Þ¨¶º´Êêm"r[5µmú#’uc¬ê« ì”›¿\B.g‚ÊÊ9!‘ RB)vDxêÁšç±=i<¼9©þ¨“_UÄçæ¼M€«Û¦×÷³ª²ž¼)KÎaôU˜“‘‡oAãiN²´XVíÐc¹Óö4x<5·  ½ 1„TTøoúƒG]Ô‹Ú9WÁnÉ6IE?ÐËÅèÑ8¨ŸªÆHFóHH$–"²çÆœÀ$£±_B–Î*ð!Û]¡hÞ¢Ö&(Æ¡ Ö'݌Ȭ•UëPʘæØ#o1 Ùc¿ìžÏî¡u£¿^4è4; ã”&-Ó!2Rdé\}åp Çár†dî‘xýõäJWÆÃj÷§Y£èˇ(Z–ø#Œ´Ác·õE·H9ôEüÙQõæàÊ5¸Fw“צw1|)@Ë׳¹q¬D \kSïþ}`]Ò\ÁdH.ÝnÂûv*îíá„•9áðrZ9:\úÊ6n,Ó4Gm/co!Ý„8^¸³þ<P4µÓ ûv?D«ÊÑ'¤dÒ骯ѕ×(@Ãõp—|‘2l‰<ËBÊL 9ûâ}ú”‡æX…YÀhx”N‚MFp@ɺàN°WF»ºKW÷Æ Ò”§S¨Tp¥Z3›k×}Ô½vóQ£Ì'ãÏÐÕ±±ÇîQ3êʶ/8Äsb¼Ì 9&æ‡D#E ¯x‘¶YÒS2éܱ[ã"`ý÷²ò¯ægÀ¢¿oLx6‘°âDÛaµ¯8°¤Áxá$á2óáÊ>/ProcSet [ /PDF ] >> /Length 33 /Filter /FlateDecode >> stream xÚ+ä2T0B©kh¤œË¥ï™k¨à’ÏÈTŽæ endstream endobj 78 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/Targeting-Vignette_files/figure-latex/unnamed-chunk-9-2.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 79 0 R /BBox [ 0 0 504 324] /Resources << /ProcSet [/PDF/Text] /Font << /F2 80 0 R /F3 81 0 R >> /ExtGState << >> /ColorSpace << /sRGB 82 0 R >> >> /Length 4525 /Filter /FlateDecode >> stream xœµ]]¯ä¶ }Ÿ_áÇE‘Ôçc7h,í.‡ mšY¤-ÚMPôß”<3’î;œ°{ωeûÈ6ÉC‘†ãíLJ㟗?ö‡wÞ÷?ÑþaûÏ¿¾?¾>þ~ùü㟾|s|÷ñÎ{Œ?~w…¿x÷ üî‹?ð¯ùø÷å›oüõÇÛ .Ð÷ÕeèËñæz‚í$£w)€ð‘¥3ºT^œ¦w¡àá]ñåð.¤<ŸæKøåiúãíŧÑQ= ¸Xp9ñyT<ϲ_«w© ˆÚñ^þʇ‰ÁAÜ ä] ÀÿsIç_èå¯m è*좶K,|ì\ñhýµ ”]Jû^£òucu-8Jà Xp”ÐÕ`ÁQ .m§_ÃQJ.l§_ÅQq(L¿‚£êª0ýs”Áåíôk8ÊäÂvú5åèP˜þÇ9ÊÉUaú—…§ÿqŽŠwq;ýŽ :Ì•à¼0ýsT¢ËÂÓ¯à(»¸~GÕ¡0ýsTÁyaú稢+ÂÓÿ8G5¸¸~ G59¦_ÁQq^˜~GÕáéœ#ðࢉñOŽL¬?øèÀÄüƒO®o OÅ%À;2ñ€ýE€\õ&rÙÄ)€]$ž²C·BuÞÆ/ˆü‹ O]´ñ bpdãÄÄŠˆ OÙ•í] ã©¶1 xJàÈÆ/HäÀÆ/HÁ•m(®â)%—lü‚TÙøÙ;Þ ž2¸bãdjš¢O9º`ãäìÀDƒ\‰PÅSñ.Ùø]îO%ˆ*¡‚§™PÇSvÙÆ/(ÕY*ˆJ¡‚§Š®Úø5¸lãÔ䂉4µˆjáã<¡oIžÐ÷Ý=OèI 5<¡¢b¨á);oâ /.›(t^ U<:2ñ ‚ó&~BuC OYutyÿéñþÃåwïy¼Ï}Ï4ïÙ6Sà4A¿ÝyÇß>ºcEŽlï;~ñèŽÜä—ÆC~ùðž¡pëŠûž_%p~xæ2Ñ·ûè‰ëDjÖŸ¸Nnóè™ëälÊÏ\'—F=s\´„ù™ëär‚RŸ¹Îà# '®3p¢>s!fö5ž¸NN[Owüã÷­Oì*ñÓ]”÷-~©Ü÷||>©5ý»ïùøu†ÖVñ¾çí:½#ϯûÔß«Õ_ß˯ü†ôl˜nӉȤ•Ðò´¬ƒúû~¸k ì°ÄBîËÜ)hƒUNu X@ÎétŸË0‚ÔŽr‚ÄîÕbew俹v{&NŠ gnÇ,¼¨r²¡-\„²‰oæù„|¸‚‘ã’˜YDÞ•go²î–úú·ßë¯g¸‘çËæ•Ž}îÆA;,°0½ÁÚ¹l°ÆÍ€A RN°r›” Èb1nAâÈzNò½~ÖÄ å VxõÙëp¿Ù$>µÙ°ìÀÌà,ü’o bKs¢Ð¾ÌµE›“1 ÜéŽìÇgX‰¼¢‘_€ã¾ÍÕ¹¢™×$ hiåŠV6À»}¸Äü¤§|C‘E§.¶¸¢×ølÑÄþàˆæûí\?]F~‘]ÑÊAçf¸P};CDüólÉë æµ\M¾>añÆ8^~³CYŠŸ®<ǵоC4¿³ëm¶¸:{~[ø!¤‘Ý-šù>žµo‚\áÊm:w;Gàœë¸s%Ör®0rMünVt'~LöpaÙ`3¥±IJ½”íû#µOçíÀȱßL¼x`nำç p"—JoÌ5·è®«»Y]n»=»£ÁæVÚ÷ûVöt6¶•[^×­Yæ6Öik—¹5uˆ{4±o¶±¯ÜBú…—1 •³+;´/ó2°Ü|#âÎÆåÊŠíë#‡%ê˜À¸ø˜¯cë>î@βíüõ8xÝN‚åI¼ÙansH«sWîû–Åç­4«aeÌó*Ÿ9ô--· œC‹ß1£MmÜ¢e =FKËmøæÐcFqñ;f”x5¤ ç¬Ì¦ Æ–;à…™&_eÁ/1Ê⣌––ÛÉ…­•&~‰†=Z^†Z¯c¸9¹;[Ü=gÜp wÏa\⎠L‹Ï1í½¸É/1ÇârL -µ©º¢‘3[4¯áÆ`¥‰êâtŒž×QÍ^QùFÀ%à 1÷Öš#Žeç´xä»*Ó5!Œh]¢Ž °xc°M‘Ïc Ôy•VÝÎQL{E“[?m%MJ~¯ij¬8g7çø¤kízZâ“‹‡2Û”ò"‚†Ä×-K|šS¼Íuö‹—²À¸ø˜îÞå°DËÎq‰;&[ËM„òÞRsg ¸·ÔT`>f˜dœÔÿcÓ|L`ÙÇTýâzL ,ŽÇÒ>öàF4ÛØƒj^ÜŽÑs¿˜YíÍ<÷€™£ÑTs_—Ùó˜÷ ‹ë1š[î¿2‡3š—ðcFëâ|L(À"{Žæ–û™,ºç„†U÷œÐ´8Ïòe U‹Ë­DæHe7eiñR&0.qÊhn¹/ǨÌhY %¿è£3ŠKø1ÜœÜæb+r犭<ÊÍ(¶òh`+¹sB€Åï˜@\Ï KÜ1i‰:Bóœ®hYüŽ­‹Þ9êíÜ'a9F½ήû"pCãâ{Œ¦˜{ÌQǼoYÅÎÑÊóúÄÙû`Ç«ÜP\´Î¥%ôãm.ä_œ!’çÕŒ[¹3¤º—;¹„~+wrUüVîÔØq^yC[KrZµÑ ÍKŒ2Úq.HŸ”ÑŽóŠÊYÍí[W”–eFÃâ{ÌhZ|-Kà1ÙÙPýz,0¬ÞÇ Ó".p\âqFk^œ ,‹ë1¦›½ß/5}•ì-?ÇÛ .±åÑø‹åx´5¬¤~/¿»üñøçSÿ8çÿñO_¾9¾ûx» ïû¤sI@™—´Í~Bø-Í+ùþ7Þ¿¶¤`¿?×醶?KËßæƒnNP†ÜàÛ`KBðÕ¥úÄüš…68äH9@hn áÄÊž@ †'È­¹€Ó”¦»õâ3Ô¶p£PA?@Ýãx#iÀ–+èĸļ`ÙŸ”òÄ¡^Ÿ¥àÐ?1@jß‹îÄ'n$χ)¸2qp}iô7Æï.ÜîŒG¸ÿ}ùóç Ú¾º„|žÿv¾×úÖO—w'Z3‡ÉW´oÝQ^T@áŸ›Ž­ò†÷Í縥Üñ¾9ࡵO¼á}sÀÙ#¡;Þ7<6µ7¼o8/FŽß7ï8g»Š¿áçæ€C3e7¼o8¶ÏÜð¾9àT9r¾á}sÀ#Ž“sn8kÃñûæ€ç2ÎÏ¹Éø³VJoÉ^_b{ÞüíNì÷ãgprkƒm¡3ßþ_ýòóŸÿòãO?þüŸõø?×p.Ã)"ûÖäëíÄþñó?¼þPf|v1[Ú*üñn‚œ[ô|u•xm˜×ÂPþH¥ÿ=Œâª_{µ´ _s>MÊ7Ÿ|ýéýñÉo?ÿõ§ßïߎ×þ+Æ‹ca>Ú¾ÿåç}z€?>ùóO/ާþwù/‰æºŠ endstream endobj 84 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 106 0 obj << /Length1 2008 /Length2 22667 /Length3 0 /Length 23910 /Filter /FlateDecode >> stream xÚ´{eT\[¶5$hp-ÜÝ-¸»»S¸;Á!¸ww‚»»Càîîîð‘{ßë¾ÝãýýFªSsÙ\gíµ÷‘:EJ(¯D+`lkµµq¢e¤càHË(ÚZØ02Ñ ÚZ˜èX`II…€Næ¶6ÂN@.»“@ÎÈéÃÑÀÄÀÀ K Ú>”ÆCw€ ÐÉ@ÙÝÈ 0ø ÈÛ::Ñ8~¨6¦æ6@Ê![;wsS3§?1˜iiÿDúã-H40²´uu´4Ø$édè²¶®Bs…­ Àhf`e°5(Õ*J"ŠJ1E9y%JºÀJÎvv¶ÿ“‹’²Š @X@VYT¥ˆ©()ÿùTÚ|äoJUþÐÿáù0üã.#¢, ¬!/ÂHÿgŒ ƒ£ùÚÿÊì#3À¿Sûp5q°µþ‹@aæädÇEOïêêJgêìèDgë`JggõW~ÊfæŽW[KÀÇÖhü«0Î6Æåt2þàϤ̀6ŽÀ?N¢¶+­?Jùáô!wúWb…púÓêos€#ø4fŽùJËËK¬ Ìmœ€66F†NNÎŽý¿do 1ùß BÎ8dþWåð/šÿM]ÐöcÏ´­<¼ \ÿ{Ä lœ¿ý£6ÿ¹ÛF¶6ŽæŽNŽGLÌ­€²wü3fæ6Édd%DE””i¥?φVÆö£:6tNnNYÿ‰' ,Íà``0r²>šTÄÆXÈÖÚú#kGØ?å6ÿ¨““­ƒ;ýuµ¥­«ÇKMÌmŒMþTÝØÙŽ^ÅÆÜÞ(!ü?¶"ØËLNÐt32£ÿCõW§ü3þ”ÀËÃÎÖ`b`åô27~l`= \€'g —Ç?ÿ‰`ÙÆæFNMþ1Q`ÿŠ.acb àü[ü‘Éÿªþgø)þš¤”3ÔØÖÆÊ` 4¥—µuúhŠÿ?s쿸D­¬d ¬ÿYÐÿ¶2°6·rÿO»ÿ2QþI•âÿp6w5wË›;™ý]Õ¿åNM/`cjü‘¿D*æ‘ÕGÃ~,:æÖ,-#;ëé>zÑÈÒèè`cûKü¨ÁåûQø?Ùèå%U¨ÿ«]þ2±1²56·10±²  Üa>z€‰•àÁøÑÊÆ@·¿š@Ogcëôá°svò˜Ø:ÀþH6v½ÐÑ߈@/ò/ÄÎ  —øâ`Ыþ q~øüqè ÿ>¢ý 120èÿôÀ@&½É?à§é? +€ÞüðƒÇêðƒÈúßñƒÈæðƒÈöðƒÈî_åÃÖÎàc}±š8ý[Êø?Ò¿;öß¾,z‡À¬ÿ?*óOãÒ8ÿ2}0¹ý~P¸ÿ~dõí/øŸc/ÿgÑûkN3ü»þçhðVrr°µª™ ÿa"càä`î¦Åð1!?ä¯ÿý¦ó¤ÿ^Kþá-(hëæAËÂΠeâà0²²³ì3»×øý½0ÿµ|tíÿâ?«"tÁ.ÎÙq·Hj*ñÉ›,…$å¤;)Cÿª.±˜:Ù†ƒ)œ½EäË÷kòM#Ë·•çÒñNð³)T'ýŽfõ¶Ö_>qc¬À¿mà-ム"0š¥J§âŸ&³à[ÚADy(™•«QÄò;­%¦ 2z$ÄÙÖùÉ4þŽ|•H¤]Ú²’éZ0ÃØˆê`…â¶€„ÝŽ³0ÙêôþˆaÐ#°H5­Ÿ„>* e×݉¤wMCL°X~‘ÔçuÑäÙ1ŽãG&ì]fÜÝ]LÞ€«‡V^#O¢öIf|#A9kq¡MÝÙ‡ûi¹>H3KÚR–½–ýÇ~š$OŸ+*¼Ö;Zc„ˆ'`f#ŒÊ_.„Kq`Éå|Qmv©êX»' ðTuaƒBÄç¥ñPù]{fÀLïâä’uñ<èPGæyñÝÀ™Cèf»ŒGÜÚb?üGFäÎ/U q+4«ÇY‰y“¢ ¢~¬“mñNVÊa]ZüÑ’—[éïö§Æå¾¬¿ðãÂ]ÉFÙF;YÖ†]g(•BIO~0Ÿ¡¶ <ÎÕËvqžs™àï4ÑÚF*f©4®í”›B“ÛBQxmÇú]Ä&'’¼«mû f¡þàæðNmvó\Ê?憺ã2ªÅŰf,h¬ïó\ß‚òu8W„gUaЇ§€Ð‰Ê~·þÆØ Mä!]î¢æNªœ;Ø5é!u½x,pè%3è׿;o«§ÜQQMÜÏ+`Âý™4žUŽsz6o“Óç÷¼®’UÞÍiqJ[±-%ës×q¤¿)ê²H^M Ç(Ád¨<*§>côDÒKŽ{h« ®Ð#3“ò)T—é«Ä¨$ˆ¡Ê,âÔ`®ß$ã&Öë?çr-—¶jÑÖJðEh—¦¡lýŽDÕi˜¤_%¡ÅÁru ‘`dèß Íûá¦)›Â´ÔŸi8r9óÔP²m/ î†,ì·‰ö¦Íøh¶†øD’™Ki¥ ¡´©Õ¥¤Ç£W„æ>Q±ÎâÑóɬò ̳֋ìRŽ gÆ}“•s­‡áˆÊ{ÍÊù”TŸ»úŒ!…O°j§yAÆQÅ~ÄT5ƒ^ã‘1ÚýÂgqUãŠc¦%ãýšb,8!¦u±k²†â™™¼r8Ľcu7S½”[±Kw,÷é[^HŸúoÚÕÇz+6Œ·ÜýWHE„+8>¾³ Þ^c(øz¿}EÁ´d=âãìá`ÍI•…ê;þ)ø¦¸N(z1“˜ÓR<È~ üÓîFE…Î5[Üôþ®]BN*zx½ ¬°|ÃÚ.S®$#ŠÍ‹¥\jßQWö5Röýz9]t¡mÑÏëÈT‘Ggn«~HpFÒß…a¸I#0Úªµs䉟|kÑã4ÌÌŸnÍ©ŠŸL„^æouâ#iû5_äÑŸiÄ+3±ˆãü9…Fz_ù•jfy‘Y騋¿âÓàÜ1¼v²#7<ìÙ´¢‘5îtŠò0»!-ï8~ZUl‰N¿–õÙ:#òëU&’EùæÃü Û¸¶4+Ðû½q`¿üÛ0ìÚ¢røBz˜…³¸ª¬{¥¼Ñ-ÀQŸ9•´+Šûó¾ "BÄá{\¦¶ÐDò§¹ ηt„vʪ´88xÿ«Þ¬´®fYÕ¾ÈQ¢…‹+#î½( ×cÞ¤¯‚ Ùáuϟ׊fDÙhÅ~þh¦Ï'ŠÿZ»ïmÕyÚJÛÔáêgi÷´IW½Ãíb•ÛÒû¤¢Ý²t5zט‹þ'©LóM°`™ly;t|*n+ k<½ÅøåX¬oq0C`#‡ø¹# ‘ÏÝì(ÊÑIQœ 1òíµF“M¤œÓý÷M)ÆÉH­V`"õ)Õ©Î!‘Û5ß‚Iâbˆ0Ó„¹V7x^Yaðsí ÕãP ñ ˆº°ziïEeqËѺÇ)·Ž†Î­½2<´Ê»×“™ï-ip¤/–ïऊä˜Î§²#|xr9ëg›÷àHX3}àd§ókøñÛ”qcéãr¾É8Dϸ¦«ì6E‰šyã)ÃË1ìÜð Îí®®ú5E´Cò 6–þ˜£b›g"ÊĨf-§äý™ §®iïDš}TêÞ@ʃ…„§+×ç%¸1Q3â$ Òô;³æÛákŒ‰MRû±·øê|3ÅŒnɉynI¥.Nµ¹)«ñµ¨-Oev ‹“¤Â"w!§,œ©*¨cÍî×(•2fÝüãÄHh‹<çýDª§…ר?ä:ÃϬkÿâëïW©òäoVú}¢¬ï’ƒ~æí`âBìÒõ°|Ù«·ƒç6Ü~ŸLw{¿¡(#o»`Œ„–ˆS'2Ïd¼EÖuSÎ¥MÀV¸!»Ç‚ìý²¢^JWi„-þs;Þ$Â÷°¢üYÙö™£7äÑ@¨%’},ü«íG»Å!Œ‰iµF襊FnhËÚ’"Ú(Ëè#ßéÞøFò‚ªÃx.ÛPÀ惥Zºí•(ª›„¿²˜ÿ2aíDAÝ=ÇE¶’©óðÕ¥×wE6›pŸ@Z¡-¾êˆJ-°[§*$üÒûؽƒ†>.@S‡ÔfȸE•>ygQ"£ô‹¥t%QØ -Ò²ŒNöÄW°°&‹….YpüpøË/eFãh_N„=ÊgÛÕ«”rpæí83Ÿ¹ymÛîˆµÊ à9¶¬X1ߌ‘¯ ^ÅaºËhõŸñ†Ób@º ÒÏ¥ƒí”Ðq4̨o¯ôh‹Ž÷Àg\ïà6®äýpÆŒ­#¶¬Üš’ @àË™ÚSšélŒ:#Ý]Ý4N}*Än³G‚ý n• §Á¼ŽÐ¶-ʺöYÒ£ô箄2iåWš­¬S(&÷1œvƒçÖê>FœS©ân§ä»ho“¿mÏöÁjÚÕ§D»\Ÿ f5• Å^}—nÜc¥ÍŸiÿµp‚²—òýDe£.øõ¸öþ…?nÌæK“Ý÷ƒ-.3˳ÜïKGBo1_KàRW¼À´©£òÌ2œK9ê‰MúÄšèœ× íq88¥Jæº ò}5²E¹1®×ЏE¿4gPqì¿ ˜4!52½Qå7àš'ÉØ]¸Fô¾ É°@@lA7wUå`Þ€3µ· aÁøí+ØÝ·ÚgXœž›¬=19Çc1J~Ž8TÙ¤ -?ÆÞ<ˆiw‹Œ&Ã2¬ã°›DÃÌMjîÈ¥C9ìÃòBä`튧š÷ÑN $Å@–t쌛M+–wêŠù¯sϺª¿¢êºdȆt Mý_RŸ“m¬žöÈaWl6ÌáôòE‡ &Q4Ÿ¼ò®Á´ŽÃ34a™î†uêÌYl'òI*„_»Õÿ"sÁÃÿc;@Z‚pP´âË€ ù¨œâ?k‚ê'‹ôLº¤ôé3u«0ò¢~´ÜEͦ½ÿgG©ßà)òràRoÒ€ý¼/dnÌê‘rùØMOvm°RíHÒÞš]Ú;éFÎY?©U[›b„Çý>»-Œ€µ{nUÜg’áYš4ßBtL‹{¡’Œø7ég£™B%{zÁ7¹l}(jÎuÞfÑj!äæ½ó@>T•Òh$iÆX¾v‚Wf|_¥j»æâªuö¢‰h™E82[+‡úRHÃÒÅC7YÂ÷=èu:ýeò Hê ü``žO*ZœÜÅB[Ñbw üš¢IÛÛ¢Y ôá‚qï:V+'у!É$ĶfSñ-øuŒU3ý^ó~¼¼©d¿61/X6|¥B:F¸¤QÖHçÍ ÷XŠôæ«ø>äHêØ—Áuºu>Åi ±D„¨Ð;xšTÉõx¢àDÿâÉß¿Zj¿ˆÜè“HSÐØ6ÜdGâÂP<ÒŒ ‡’óòö= ðpR¨²†‡wô i|_¨8õh¯‰²)ï'*ã9½äØœø–H}´†V@2ã)ð!Ä9¼ôpltÅY¦³ŒïÌR‰ì%õ¼êx¶Qв×ÊZæ œ(µëRlˆ¤˜Ä¢ÎQëÈ[ÎÔùü{›ö¦Vί¯ NЦ5Ýæ0~ÅæØQ#Uí  ó;1¿¤ZVŽãj{~©\ýñ #(¬ìšÈÖ¤PÅ|"”{ýE—lÓU«Ý4Ú ­ÿ}¯8KQúþðýgޝÖû±Ìl¢­ˆü¶ê¡µz6-¸Ð¾5¤¢¿W6£˜Œ¾.-¦ŠËÆ#´î‘Ë|oÕTñQ¸Ò3ò&_†KHWû†µÝÏ:ñ±|fó¿^´:RuYqx|§zÑX?΢Y¡yH˱ÑíÞ´˜9>ú9CöìH Óö÷ö ½z)ù$Ïi$Ç­—yëÂK|žŸtaõYÐ#;»ë†-C-Ä›~ZoR¡û¤}Kg‹'Ò²´Ô-)hÏêÇÀ%¯(Qyà•IÐÀ™è߃*ãæj‰ÇVÇåõrûüå;ºJÒý†±ƒ|3Õœ0qÜΜ‡˜:ÉÖ ]ÂóâJ…N¨#¥¾ïœîÉõp’æ8îÙ“֜$•!%ûΡ¨!Ž<õ³#æwgmévZÈÇ»²4wºˆûlÁc|lfœ¯!_%`Ãí[æ@R‘_Î&aà ÕÓ¸K.ç‚Âß²¸/ÆëÞùæzØ‚ ®³‹sˆþf3¥Ç4O;¡Áóè+϶•¥U¹>0¶)CN^íjùó-Íá7÷”íl_¼dÁ qê©.š1ùHaõ‹à89W]aœe‹·J§,¹I  Ê霅áäʱ6ÐæT©¨e„ŒV˜|éØ\ƒ7´¦=9ZH :•HQ RBtd“ßŽÈ ~𺫮`W´È~FæÜ¾Ju»_t•(!ݨOd;( lŽyœ˜ ªõ$鬣n\£7çáÒ”NaúQ• †Áˆå$I1ð뤥&¥Iµúw¤M: yeJÔ=™˜G³K¤õ3ù…R,r\FMh>fXLÆ$ɼÓW܆É/k’l4°/?[k,ðÔÚ6„=)r»®5„_¬Wc’ ×uâ^Pè;0ºˆnòK—G·Ú½Úý¤ÒÇ”Îu 9;êÊAõߘ%Ð,>AcF:~_¹‚eˆA~Ý0QÇ¢ÏIf S—÷0—h[Îx˜éªd#³Y­†4×¢“ ö®¾.Øå¦Ï!•$Øî¡¨¼l0Ѝ ¾UZÇ+  §3ˆ™¾¢cÖ»]F±2JŠ£–|âiX¥¸†WZcˆˆý¶!ý9Oƒc«Ÿ}ƒ£èÍn\3÷ñ»o üŽ—ºÁ¢, ]³U£mE4xÕaòXóÒÚ·„"qÏru€ù¶s÷^C¼¼’i&Ï€’Ì„û@$Èiðddˬ5˧24qªaàT:L(Nª Z+ìP`¥Y‡‘VgÄ2cáv0´ÒTµ/èÅí…±®2ç^…õ.Y}¢0&À‹äV.Z°ßØ"}Gè�Êx¤û—¯Ìì´`´Ek»<©ô[IäÀ¨¼"ž½«ß'3÷0.:“)ÖTÑ*åmw¢ÎF˜HÃé¬ëàßðpŠ:U]ÃØ9¨ ÚCþ-âš! ?v…'äQ©?o¤¦îj*uâ '<{õ%iÅg-”'Oü4ÔsÑx´ý¼A1‹:ôÍ ö›=‚R9BÈ]šûBd-9’C“dÁ{¶í·ÛMÖ,hÉü†Á³w½¸írä…ç¦ZJ˜3÷7J‘dŽz^èN¶nt‡5fG¿ÈS*—~'áÇŸyƒ”“ðŸ'ëÈ/o¦d^{$ V{!ñ çe2ü¬ dzàP‹£Üd£z'zuR17k ö)qBö'¡H»Æ²å˜ÁÔ4VZà.ò¢Òc1±{¾ª•„£“atL þè´_b­ù:¾X@´ÉU“ãz×öÖG—Šv‚U ýä@TÊê^c¼ªpt÷ÔËÍ>óÖ4F/}oyM[¯g?¥µm8ò·àø†æPë¾Uõx—†NI •G]5µ„Å8;ÉU½;àýý$¦9Ç8ÅåKÓØ°¨_lðTZ(KBHájOñºrÐ íÌ#Qþ€F™û;ÎkâK_¦7 yµhd‘i«]ìªg{|ð0î{c†;Ò§£™Î¢¸å¼,;fÊGÇó'œ¬7^g§çZšâŸ•Ñ6UËóêAE‘\øˆù:Z÷Ú’ßÒæ ÚW8³6& 4†9Sì‘CÁðôÑP¹÷ø0ºýÎ¥Óµ8ÔÀ×+w©æ¬N‚&Ä&*)p÷pQm¨¶²}¡åÌi¼BúmûžCóŠ+Ö.Gs?‡™Y…ƒ°:j~Þ0Dáª[±äø[1Ñœ Êý“”G_PË´Šg˜†êÍ)ŽÆ=;¡ëŽv=?Y?¥DKB˜¬¬ÚåÅ÷ Éñu2±´i*nŽü×£>`Ä–œ×b#µ¹w…sIT9î·U Š#Þ“þ‰hÜ;Þ‰©Îµ¶ÞBÔ±Xx}ýe£)êò1 ¦“ëL*lž”é¡XÄ÷¢Cå1£ã õAï°á.V73ø´Kñ’^w¯ž>Î; ßÖ ?Ê—L÷H0$z£êž6ÂÅ…ö{œr‘"wënYÈ-ì¶Ü]Tz·„bQV$寈¡þ¿„Eî _4ÖÚidÄÍò0“: oCtmóð g•^ró­ðL]|ˆ£¥Ä¹Ýð†ËÏŒÒÏ ®jµÙBììá¿ÏÁÁðûn.ž¼#—Š6Òà+û–{jîé­±ž>˾É:¾%š_kO+yA«y£›6Õ ÆõõÞPžw­9…1”U»»‰Ý5Ú¤&\¥Õý„B¤ÿ†© cØRMKââò:®P3˜JyûíÑ$îpRé.E¢xÇøT,, ܧš­j›ú*(55‰3ê3àöc$£±¥¶¥†ÉtûKâ785J2SõHXýl‘ 5çóÜÙ®ëDHn“¨¼²êïâáŽÛ¤ 5›jÑ¢=»7‡õûׇñóæÛôOƒôƒµ{Ûo Áˆk¸$«"ÊÆJ¼ˆqyUéЭ¢áæ¹ˆ”>«>PPA'G%÷e"˜öÃ4è…³4æ–ž'—–ÍxP›G‚öÅ¿™  \”ΑLÔ"Û@)Å`€|&`£Yêê÷3Q4TŲófÕ*Ú`•CÃ% ½liq øg4,Î%·Í†œþ™¹GÄ—¨³SŸòÎ|ˆ§ö,EµJ÷_Ék8ŒÓúSÂ-$Ìá¢Å¦ãVejH„¼#eO×Â%‚k9ÅÖrV:GA¨÷“O:Ah•˜Ã)~9[q …ï5‰•ᮈò¨[ :ýº*^³dÈ3m‚%–Oá õ+ŒîtÅ!á-¹ú,É3¤‚ GÚÒm›”¬Ê.!øz×#b$擺døöCLJ§œýæÝó[ô£äRÕ³%Ϩ Lb‡S‹àZíLÈ?lÝøDå(W`ÄF¦Hp´€‡òxáF@ûr¦×ïÛU´ò|t`´`i)ÞKßð;®9òµîí=˜´s-Š]EøüŠõ/ÛÙ¸¼]{©ð2yoÅ|bÌ ¿ŒÉ¸>ýR›‹ëÜ—°o¤u½ÄJ†K½Nç¤Áã¹ðDgå”â–®:N4æTcªj@WW“%»©úó¬´É=è¾{þÚ­¶Ž'¿+ÈüîdëÒ?‡ß œƒnkzO)b±z“:@Òô¨0Œåãææy¥Ü˜ú§1c»\B»žu.­6ëÓçŠJØX/m¯• Þ±Ê>QÔæg aèÐ7G9rªuu¸'òªí{D‡cþ[¾4¶ù¥äÏ~ Q tS¬ïk¾JÞýî_«ûT†CËÁd×é~¨ïûòzŽ,Ÿ¥—y»Î§éŸK+å ò°çÖSÀï$XL‰ra~¾÷.‰Ò40§Š{ÚáøD“† ©E¡yZÈÎÇVDÒ­È%W©¸ƒÉ#ç,Íà9i=4ýÔ8 Ê­ŸUÝªÞ €•¨¨dÙa›–°j'f#׊*ÕŠ»œ¾ÄÒVE\ÔÐ)w<ÉÈôøI›œ ü) }ƒÞ×]¶Èiä÷I¾:ÎlزEµòÒ~"‘Ø]ØXJNýév¾fchâqü E×"ÏÉÉŠŠ‹§ÍàH×Þ~au&ÁX°¯Gž ØôO­Ø2ËK$)š>U!¬ÏêŒeë7ÞyÒ?pΤ 3ŠMiÆ@pçU%‘ì—²ºÓ¹—\[ó¢Ô„Ì£¼;Ä›Ø0YÎA…ëÒlÖ²37NeñÙú›?úÅ1héð¢ )µÖ±{áoÖÎXù¿¦má¿üà fí· š°Î˜ðábÙ+åý26@0¾?èxñ°T„a2\5-üyCbç59€ 1zo€˜-fÜBǤؤ³|c¤ÛJÄÑŽÌR%m¦NÍŽûf'%ˆxP¨QtòHÇÞ)ñûÁpÍqÍé.9Àè‹[Ç]È7ÚÑyºUˆÝ„ŸÐ-ÐNw+¤“êÃÛ"¤Ñ$æc˜CÇàùj~ãÙ¬ðŽø\1ÆñUü¢hpÁoxR±s#ËÌ\¢¥@³›ä絸ã(lÛ=èw)Ý|/båìÌÖx©ñïÖ‹ÏŠ–åP6â;ìõP!zqà õzåo¾ ¥j‰±ƒ œ„ˆh×°ÅËCFªJaA»oÒ˜#‰¡½Ö•´©ÀÍ—›B`"$úà]è2Ö©1ðã×WJ=üü»N6$DØ6OahËaèÈï÷^pywy"guWìt¸&3ª;ý«ßò jÍg7?Ï㨔Ý#2ÝLrþzÂÅ~…¾Š’C\vÛöxg½" ¡g1Õ¥ÿ)ž_áå ² Û)Ññðxh],F¢ompõç— >ø B”)0%‡½È9º¦Ï¼­¥ÍíVx.ù_Þ~Ñ”QÞýœ;êejî@˜°Þÿª 5`ÿ½u¼–FŽ5ÌÎåË€ä½Þ™b£D;åÂjOÞפi‹¦¢õQ¯ù¡ûË‘3(ðõ´RGçd»ø)k}ÑÎ×¶"¬¤×ê:Ê­j¤X—r—Hö"ØçS D®ÊO8=hmaD)h?eдŒøÇ—2ïr$WÒÝßvÀµy©—P°~×êÞ=ít & `YTÍ7Iü8õs¿s’¨~¯çÈ#JhÓ;˯ÑåäïmkÉ7U>×RøÇi»5p´Ú]–¬œäÃë^¶<‘¾6…@í)"Q^uZoÍÅÖÉäÆ5ö™»æ5ƒPí‰j° šƒÀÞä]áŸv[䆴‘I¬ÞM^Ç9멾¼ïåHÀs Íë7ë‡M÷8Ý×ÞÆšCý2ÃŒ¢îñ{Ê–Lo[奰˜Qû¶N ÔÒ53îœ&?ö'ý¦¿É wû=®…é7 ‚ý ¥7úpn¹³åzTe*f¨Khv‡°Éô6áÂyêñ¡¾Ðº„&õ'^QŽ;e,‚Bþy²Èª¯ðk< tE„ƒj|F*Òç3‚zÑ” ÎLÒÈ ’†5ñ®‘ú!ªpÃäÃkP î'*¢Çy¡;ŒÔHºÂåAÏ–vÑ}Ù%Þú‹ïêNðGpŠ[b‹Zå:©ãÓß¼Ó—‚jÕ ÎÑÚ@crÐ@OÍV Ôä{" &ÂÙ´ïiêKa§oó«R!ïaá/b°õTÌ7‹™àÐ6˜|Ízlˆ§J—9{ûã,gE!$\‘w³Ç¼ä ò¼hìþLq‡§Ø÷êQö<Ÿ-°± Ã÷ˆ¼õ’zͼüDqÕäåS g$¼ªâ-Ûe &åÁÞ±Ðd°{•$HÔlZéZ¦q5ô„ [“³÷‰=U ÓÏO„°_ËG3½~b5æúPo¤€4À!@,r2#—ç‰Cƒ!ZôÖ)r:ž„JŠh?-Hc‰}j]½<¬‹]Òðªâ¤šc¸ Ìû¹Õ)/¢”Ç™;ÙP.ÒyŠó00²sKÕßkø©fœöDiΖ™¥¯|.Ûf1b‰JM7_}‰Ž`±Æk"Z9ÖöÓ"p¤K[Oû‹© Œg^r&®nUj–ðo ø€Áìas—•¥Ùg¢Zê¬$Ô^Ô{¼JX>¥ÓŸåâ èx¾X7È7Ñ7Üxħä<.góöjY2\»QKjñ”P˜"ÞšéÕR´:?ô¾rÂϳÊRiZ(Æ)ó"«ÇpÖ}ÎäžiÆsî¨5»8Ú›ÎfiR;€kpí»mp‘_œaI°r .oŸp¬NTêmyÂ.çÏàÁÇFש&<ŒÕŸšƒÃX¢rüZ†™åoøç)ø¹*KÊ ±2vŠÂUþ«VXÖFÑ‚64‚›ßw""X#}=€6@‹u)>§ËaƒÈÌ\ÂÊi¯Yq¿!såÁ0÷áí;ŒFÅõ¶`p‡ Æ™æ2­?Ç»ræ€/÷,Wˆÿ%%†ƒQîbÆÍ€¨æ©Z›ä:”«¬DÔD¼ïK0êT~´Ct=¯`^ÿCj1dÂ^ö7_ËÏþ¯¨;‡èÓF[@&Ú§@1˜0‚¸´'!½]}}d„œÃwê±Ôƒ[éŠ0"ÏŸÀƒ»¥wÌÀ›™2•ÎzVGut_•U/½·Ñ€#ôÎAšÊŠ©cß§ú’Ðݯ¬¹¢3,Ãxâá4pÙXYç0³VŸ!²ŸJZ$s¼‡]8»…]¹^–ºprU×_Â÷˜“†ŽBqgðv* møžµ¥Të´ÅMè-É©¿„û]_ÈÍ£ˆÑ‰ˆº‡ÞëjGÁòò Á9°Ïãð[_£Ïúöe b€B­8êæ%1ÜŒëä?Œ¼…œýtó¦í3Í)„¼ W$»º P‘qZ'Ë”o…*å@>ù+‡?†²»A?o+c–°û®R`§èÈëWód¿¡àaÔ;“Ü-l ôV \âkî÷}‘)rV–2úí7¾ÈCtvgî!RD´zAOñÐæ´^óÜ!”Àk˜’÷3G+Ü£µïnÛÁ 4誒òjõƒrÿ±V¼I½G3ÓzÀmje¶ß¨¥c¯~²]†'ñáiM³ÿ$ri¦‡çl®VȤ#[«‡÷ 5ŠYEÃìya<àp–¿ðÂäí!# )Qݶ8ÜQ˜¥+è»eNuMç¶Åã6ò4nÝIÿÏ•tSG Qšmó …F‰©XìéúÐÉL7(×ô1÷¿-åtù@û^#W"‰ÃH•sø0(.ö#èl`<Ü"‹Éì»úMÊ¢ýasH:SCÅûA¸²ýoÚ¨¯T®ù+V˜‘H¹á}A.;®^@HÜkÕ¯~–ï‘ìGþ ÷…yX§nê2'Î(®”z’’6ac<ߤ*t”y˜µI`—¸Ô>ž ñá.F¤l¥3-EJ SH?Vh¥Bn@(¨€$ÈúFPC’dg­‡8õU;\„°âØ‹ä€ù¾©IÉýÄö=?%*8³”>B1ܵ‡ZLñjì"°¦‚x!• ñîs1•¿B‡ª«F¢ÿHÖ[&D#¸‚»Ð1ëïüÚ‡Mm–5uƒŠÀÎÈŒLoVo„x!ìAT±ðÃ'&q*Ìï\ަJ(GÀX`‘­ñüì±D­v‹»d:0ÑSáM¨2câst.~Hüﮌ|Ö­©H²Ìù0 æ%ï–³í!ƒ@¾±ÀEWÉÞI„@`®˜°.bHœ¢3ëØÃ¤JŒ9q,SèåB ÕdD·fMÔ‹¨ ¯ï¼ö’å TsN“Ü‚J¬¬ÞkæÖÌszª–s9€ëd{•U†YŒ_'Ç{:²Œó~Süì'¤N¬\½ÚYy~ÐL±b˜ ‚i£9꼩dzTxòdDª2ˆ WÖb 뽕ŸÖffâÁ˜ ¼²‰3@EUn¶%Rv<‡È™Ò*‹˜å¤•5•{ÐBnÀ1ú'µ©š[¿kÅ2!Ð,Xi¯U½„0þ<¡“O$5Ò¿,YÄH­›ê[H¿Ö<a’Õ Àå1³øŽ\{âl8Qy9…jõydÓ%ÓgN ‚Ûw»r‹šXìO™Hç8ĬöF}pìÔaïØÁ}ú2u´Øòå ­ÑïÜ¿H{®ð"g!½ÎJ¿>åÒïè ô¬Cµ{õ¬·­šG]ÍÞ¥}'ã÷Æ.°È¢è+KwR챸ù´íEvÓÈØ{|Âtí®CyunAî|M^ ¬rõi3üÕŒÌÓ_ÌPß?{êxu?¥Ñ§…Baû;Û1~¿4é˜M¼!º\9ŒžBŘ؄€Ê޽¯f¥ñ>GÝxŸ™s¸‡Ê#ÿ´)½£?Q—Ä&ÛTÑ8–>5yï¹MÖTi%¿ÐÄ£†æ;vLqrÊp+L$÷FtÿI4.´]³&ûŒU@ržS›ˆ–ÑnJÁOO^«°P„Ž»²¥mýH×çÃQeæ zk3l¹âšaT=á×25G¤5_þéÖ!Ö|8QÚÏ¿ŒÙ óoã—h³2S|Z¨Q‘$9®æŒnp6í b¸µOú•há.¼‚Í ·®5±RîB¯j£¨ Øz¾=›á"êF2Î}Þba~ž\oôKÒÛRœÑ™jŸ{R’4À AÚöÇ-éÒsOºÊ"<¯Ò"®î£¥zåö€<5QV2ĈK‰vÊŠoé!H£p±ÈÙORº¸s:«Eã$ZcÇk'…Å_âY ÛúHËâ¿çÎfø!:ˆ^­²»>ñL<.vS’nÆiGb*xf¶Ušzs¦6¯Z;˜Å9d^'-‰DéïA†­–¢©q„ SI'ö©{]%™í]ãÇç [ ´û2F\ 4­öÒ¬ ¯F Áºpl'r!™–”Æ¥®%iûöZ[¾e-Ŧ͎f¯]« ¾m¤[b±WŽ=«)±ƒB¸/7!/"\ù‹Ù S ÃPë²;õí®Avp‚¢£×\[¶…K¤¾˜JêÊUœm­_¹µ¹RS1á´¯FÝ#µ¸›ycîpj䣼 ƪíèV|æ Ü\ÁÞÞƒo3ÁAPGౡ±w/úùµy*éÛ¾õW–JëE{ ,òY‰±Á>ù‰8FgËSè>wÍÛ—’äZ"Z®fÊZª˜ÁŠk®6äÆ&9ÐU+ªå8 f ×ré 7+ë“¢!ºc•…èb݃«š£1L£8ä"VI`Cpmuï¢Ôñ†« ƒ™ÏcÀ „ðëL‘$ÏŸPÏO\ TÛ;[Ö‚¼R%rßM‚{(ÔûÜ<3‚›Ü›oCR×LÅÕ‘ø2lù“B›î³ë¦ß¢=¼ójb‰æ°üi¡'4Ç2V̲˜rOfëQg eýö!vkn`*\ÿ˜†ù ªõ3™Ä'àfÛ–¹·mUP¬ìˆ…—í Ø>XPåÛç0š9Á%í1 ÁÒoó] öl"®Ïñ_/‚‚N“ˆó[Á™B΃©öÑðo~-9Ð~’1ÝMSXl™4ú-ææà"¨ï,”d<0M¶¹óy{×À$”Œñê~Õe;åä÷§ P+—«‘åí?Ûc)‘j®"£|ÁáиöG1^Ò,Ùà$vü¨ø:„< uP“ž=÷D©@úYe2¨SƒÂú™óX34¼DG]íboa„ûIÈ’ñ,PiÕkÈb•¨ŒÚ \›lš÷™Rª_5Ôn‡Eì¼g6GßÝ…Îò‰qP®Äå•XÔÂ|j$ÒÀ2ú·0¨ËIèøc:­£"IX÷{áœ1໺8ñé|DpfÈ$*ÈTd¯»†ø3†ÄÌèí+÷ðsoT‰Ùž+"Z`ðã\µ›YàÜï#Ãݦ#Ôš€áÍ[XFyø§Ò(š\0¹Ã™åÄQ\cèÇ`î7Äâ¦Wºæ¼š1x*d:/2›K^Ì7Q»åîâíVb‚4šÔ[y#Zê¡\^”RlJÝÛ[8à 4×{$—$Fe-†bbæÉ…V•âoÚo®lœš<]2!¶pÂßb:+Xí:Äû=z§.‡¹lü]œ…Þ®É=ñJË—j½Õ=¼uܤ–v•W;÷í–LcvM˜^óÿBV1›U]¾£¬Ã/¤$¨d«•òv<˜b—õÊ}•÷ùôó§8¥ ¶ËÀåekj‚9 hí/iƒ{\½C;Œ^ ÈO]0ãÚ\4½T¬ûnZqEŒÏúZåuRÉìð»¸dõ3Z[ÒI¦¦G6÷÷ÜÏÄÓ‘ëervê«f‡ ì„Í/þÑCÜ¥‚ûXñÕ5?¾Ñ­’Br³yã¯QEsÚkŸœ ‰‰º©‡†ÍRñ‰y8f–^x2ôÃÇ\J2ªÌ`b•õ"¿ëXûî m3(qr ‚¥¢ulo!dVÏôõ o(€@1!×ÊtžŠ™Fy«P_+ùÍU½áŒ`Α´2€ó6+½Þº‚(5‘¿Å1MúÔçB13EÅQÕ*†þéà[åˆU!m¿Ì õ@W/E~ xšÉ”š‹½Åpëz0Žì&#ÈU¬¬>^ÓUBøÍQû0ü""g×TûX]YìúÓ¾üÖÍÐGMè:Å{’ )”V€F¯mdÀ~ßôî–z¾'üH¹ âͤ‹r/l”ï4ÐY·¸  m1R€¨ž³{‡È_ ¥'¤u—Y§¼­Õ§UL Ébm¿0 ˆB„èP¨|BU´@}É%*/ ~™íêyŽÌ3š•¦ùúœ, õŽ2]ö¸bVàNzE*Û6 Çì ƒ,¥Ú°cŽÅ÷ûÞÅ$—°€!—Eã-ôi,¦4ÑxÆ ¤­‰ üYùôúÑ·æôÀ·aÏéz²ß]ͬòs† ÄYŒûû³]òP=·sYK¢“_Р8Ü Ø‹ÈU5ÉgJæ{Ãoç]ä–§·»iæ^MÓ ûivˆù¶˜ûK@Øôq$"¬žpEª– G(~Y_åaX͇Cn0åKž•ëq]±¡çN#}:4ÝG¢o­ÒŽÈ´YLÏEïI׋¡ö¨qÔ"$ÆÚŽ\O;>W6<"ÖE‚œ0ewðr6AÀn¹¡—Å@vŠš¶0jÐ÷°b©ç†C?L†|uìZAËhbkµezMùZŸ¾jô1Q¸UÖ™ú©KV×ij%¢‰(¯L6÷t7"ÎA•]U//ééAìqE ~»Ojßu 7?Åuhë^–2”<|'‹)Ø%Fên¾¡¹ŒUK‚àÓó‹¡±0ëF?ÊÇ7_îDZ]sÛí×Ê‹‚ûxïo+ž%)áû­ƒ›Ž¡"-ˆ&rX³¬€fø-õ”á7þ ¼:¢­ oW<³_1v _MN |qFÄ„¼6^¿A!JµÞ$0C¸?µÀŽ{ûZmô£–\4+}Û%ÃúÇ;^?÷õB°«î;cS%NžšÚ"ÂÖÚí,2*á„3nQÍ "Lj“2¹Ròw@®Y¦hŒ:2ÎÛTfáY&#oç|bð’åÃÞ{_/$*Ú:iœpˆU»½7£ð4x¨ CÌ?t l2÷!ü’pÓ õÖJ¼;_@ëªv“‹ûÕ$A e!~ãsÞ™r;à[GËLVBÄ7)ªòÑoôt :V a¿®Ÿ8¡®Q=rDç# è;ò²E®WY¼A³ß«—AøËÔ]j`rç½äËew£‹—ívåòÈÔPNªþ©¡°0ôK ©c>ñËcG5)/¡LѦâÞÑÒ¿u|:hDP(sg·ño®Ñ0jÆ«â:øÛ#ße‘n…5rå\ÿø¦/àÉ4óO…›ì~×  ˜¹/†¾\e/ÍŽº¹õ.”’"rt¤û6r­@\T¶B/áÛ°û•ziâÖRy3¾ÅÒÏ KjYŠë“í¨ªXèÖãò!Io¼ÐÙeþ†,¿lWI (#Eëú…¯¹ç Òx¥‹í=¸ŸÔáúUz<^"$Rnt„ ƒA«'Áq‚„E¬ˆ)¬ŽƒÓ¸—cý¦w…«pG÷”X²áÓ`ñ 8,Rz/×¾·l5Å!M3\”Ûp)%(™Q,…þJÄ93‰Â¶è8æÈ¤½XgçÛ-'ðʰØ×<¨I¦Â?8 ú¢­ dõía(c—ý‘¢‰éhÞU¶™Å­íGÅÇùIúM‰î΃׳Liˆ’72n¬;¶Ù*/86/ @Še0´À¾Æ³ ?+Ú¼bGËlû²ij²1ƈΘ¬tÙçÄ“)?] vˆ«¬q;þÒâÙ9ÿF ÄwuÐzùÉöÖ%œKá4•ȰýÈÁ¶ Áò¹ñ ÚB*,ÔÌÐö¹BnÇÂô( B@cìÍ•7U÷ÎЫ9­°vI3ѱ Rs‘¦Ø©s2~b‘Øï2&vŒÃ”’È÷¼‘†AOӋݬIæ‘ ï‚Œ¥6_…8¡Gb¥ùš4¿tüCª\éjŽ AZ¤UÉöƒ'ñrýSÿÏbI?{T¬v_] êøÿÿãä<9–û Œ:š8lGpeÖùö·ÃÂBX˜ºîÃèg•š‘Âm“£Âõ½ÄrÕø‡ß±Û£!ÁSR @öi½éÎy}¡ž¾Òô|¯¶ÿy:OŒèËg¼wÿ)Sž‰Ø¬åXtéúK‡`ìn_àm 8hê÷ËÒgÍAf¦Yp(Å‚XnN¡vM8`ëO™î¸s©¼ÓWŽVÝFµò™‡DšKǯ}~Nè{Œ/ªèƒ×ùìc~J‰wku³øòK°ß_êDäd@¾âmJãôÅÂ,±C[SBþîãˆ]úã>nø8 „¬Y[N:,¹sô/xzwcW`V”"æ+|ǼUé2þš#Ès1ÉW›Ÿ¤¥¦Èœyª¦B%w<~¥ Ðñ:BéIh†4‚€}CF‡þê<ùÜmü âiÕk÷H0‹®™®mÞeÿÁV…øÏiœQ%€HÖ87ø‡¤ ÑÏ%W“è«àuzWÞ,jæ}À²RÿžÕðÒë·J–ÔÙãU=â`ÿÕ¾ÜqÊšÔ¬°™›ú õ1 W\C‹-ýÑ2Ö~ù€†ð:o„ËV‡¢¾ =4κ 6zß÷Ê@B„› KG*ô^ÊÈÇ â‚bÁ| øï,»^áeƒ*³Ì».Ù3Ø¥Ù^\÷ïHeóîT° žónr#—†}÷h¿]I„–Œ$DgIÇ;«ºµ?O~ÍÍ—ìH=MÍÝ8”Ê· s~[¾ÍØ~æ×¾zº:Ð; ‡.^¨A.¼†aêß“®c¡Z}˜2ë™0õÂ`Ó ”ÃПü­•¡ÆOûÆ1*–Ü-B%Wh›‘RŠqƒ…Œ¾øõÛy†[ªªIZk‹¬Æ?ô`ß™<ì(õØRhP¨`j~òcW½'”Žã‡5‹†IÚeõHÆíùò »ØÖ°ýì väñ_x{+VWFÂáQ‘ Î" @-²HX¢Ôgé*°b¼–²#÷åÄüÓ•AÌçÅžÚQ[N¾ã”G9ZpØ×¦ß”#ýøp⅌ۣ09†JV‡'´oiáTãæKæ‚`\äëŒP…¼0dbè­YÜãÿÇü–3BšÊ¥‡úݳgb ÀéE4Ьq`ð ™và,¼OãŠó}2_¹’îŒ(Ht\K¨;‡*‘W¯u«G"4Ž©iß6m>K&mã4ë…KåP4Ø”ci~—Ž{’í=S2ÿÆñ,„©¯áØ?2d`²DJ¾)°B ‹Õmƒ˜q…ìßÚaHñr-Pí™YcÖWÛü°ÛÛx3ôu´ƒ¾Ê¸2þ –d2àmÆWkæ¶šéyƒ­ùKMÿáÛK(ÎFþ° ™@ù$× ¸¶Î*˜eÖKÁyóQî@ÿÝÏr‡ i¡W 5Œ^ξ@¥[=¦Ý½ØèÆsoðO·އ5#4kÕ©‘Ð ®âò¨.-EÔXpF°]:‰ƒå`®1ã!C•([5Ò´Âù%5æ,ôíœk`Z¬s½NëEB”Hm—-°l;K˨A”(¾}?¡ŸX> µ-œí ÄQKÃ'"ïìk¼ÛUu«ƒ]þ6¾lvM(±!‹†ý!(¹ÖßO0dì)[¾nLL÷ÕºîS•-æÛÛŸ«ÿÍè´Ó±S|M¹í²ìך"C­³ëz„é§Ÿáøþ‚~Gþ±-L8A\çâµùÍT@0ôV9QEO篢œÝï–éQª©¸î³ù³h^½iÿõ©§±‡KÆ[F‡c(+Ä7Â|øs)¸ï–¹Ð¸­y³S0ðó„ÖÀãÐÎ}£Ù»'yÎ;¦Æ@E<Ú|&cp2a°›òWI\F—¢„Ú…*ROÄÈû—¿7õ˜¸WUðÊÅèoÈ âÊÖÔÂ<¥ë¥ù¸ e±Õ „CÿH´—&u¥¢8‚1¼…R¤ãP¤Ñ¯ð¦—ÄkG¼lô±ŠûË©ÍWac”³oµm*¡Mô’¥iVzÐ&ÍÙ{ Ð…)ˆ´ik!9ô²qš i5¨ãÖqßb»¥¯ ¢ªª—Ôa&Í“tl˜E3 ìÉSN¤Îݹ £ZÃ2Óžùõ«}·)£ºÕþ$»àˆ¦ß>åQþê‰ÆŽ5 ÿ›B]=ýùíqÔä˜ÕÕ“‰4 g±îŠÅ5X¼Qâ_ÞÞ`ðS.;s bö<ЇP˨E™Dju¿Žö-%ÎkÐî1)»ÐâúÍãõ ‚TÓZk2çN‰,9@úµT‹Ô¢‚V›ó>-&3̉¹DM÷°Ð•峬pñÁëžžéR4`ñ'0s,’šè¿ž.4bò6¹|£ê³æòƒvZB™E“p7 ÿ’LL¿hM(¿,ì˜Øür-aG«hÂqŒÌþ>^º’7”(ª®€óòFå Lý+ÿ)Æh¸‰VµÂ¤X*èEB¶ËðÍç²~ÒprRPKltѱ!Y=Dz,hýpérîOkÒGˆ ÉÖÿ…Ðv>Ïfa9æl÷Òw«¥ªêUªy‡q«/G6r¿þy»m™­ZÆ!EǤþX8€þüÆ8.}%GÉ´x÷½¢-sÏe8ôÕ´,Ò,XÓk:±K»}[»ÅãšñÏ@ý©¢ wUd7ËMn3Äû)þM\Æî„Xþ¢þ”8[*øAÙ£DÝ\yÐ&Ο[x¥’;”j÷P÷Â8± |!ã R2 ,tÃúL…Ï` >®îõ×Ä›ÊO’TØ€¨éàŠ•®A¿I¬á®é‡fw¨d¦1‚*¨1€sÉñ2zêù|ø×óãkX-’EÅy:*] Ñ×˲k^éTÜÇ{Ì™“ ÍЖY0ÀFÜØn0-ÜD ‡èЬ? pxiÅý@Ù@¨…1 ÖÕÊœ5áReMéž È!¢y¯•ŸÃ¿ÒIX|í¦¹1BÜG „b þ…(‘rqxýL5UÞº¶mS¿PÖ>¦¤9ñ“äõ­«­~9oËÀZ mÅBûS-£k9|\ˆß9Píýlê ÐdqD+)ëÎ_J«µ&ìâžX6›Ö­Šy`RLW€s£1™½E£@zG}}—&Iñ媠W'˜iª¿‡÷_ÔúÎj¸¤lZz1ôÙmÇÂÛÊÞ¬¼g‡»^¤eÿ ú͛Ԗק–ÍÁírˆB|隸mÔ¸aã·FÑóZ›ë‘J¤‰žþRó€àrÙ»±å㡸‰˜ Îú’º2ªK*6úFª\½=ØÁÍ^>[.1•¯]Âv~›uLÜeGù×(æ½üWûó™bHòµ³mç:i1fÛMìöŒòþiV¬÷måWXÉ‹…Ä-sh »X¿ &ïÓÂi?žcµ–ŠnJ_fÖŸäJ†»ºu`s5ê0É3ãîÚÔj­yRp‡j&A áX@;LûdëM€WàP—qµ·32±=-™Bú²-fõɈ\¯±6B«°Ì8¾¶´EÜîD§»p® ™…ô‚ÉÇóê«h99X]@+ÜØc§F.ú±1·ÕP@¬ñ?`aüà…[vZÃz sY?]µFÜïá§?˜õ;²s{~悈¿=á"]˜(©»…σ±CÎ\.’ô©ÇŒ OŽ7AMIÓä+”ȇc™ÊÉ4çB£1´FÙs›œ :9„ŒJìôUÉžÖ>p©=6Œ‚ãrŽ4_¦†5Â*4›Š·³½¼R2iSN 3ªÓ@·7T' žÕÐlNOá–ë7µ¹g‡)¾5rÚãÜ„KÓ{EâUíâ²¹Ü¥Õ ~5³%%?îåô3rµ·Öîl“–_‘â¯zBD,Á§­ê.ò„ÂÚàŽ6d·ÕÃH˜²8/óÕ‰ÖóxÄ=¾ç¦E ƒ§6Gòn‰X™ßƒ`Ñ€Ù0Ÿ&ü&ù_U!ÄT9M¦ìû¦ð8g!˜ÝæœÂ°oöí}æÂ\™¹ý·0Ú†ÉÊ I!ügþô6€uœSjĬ±» °c—ÚŒ5’æ¶äb®YJ¿kŸz)^9GšÙ묥CØ±Ž¦jéRr'ÞŸùaG÷P%láßdAÛÏ'YÏBÈSä“oBg<»Õ°eã¹î€rÆ0P–&yÄ”Ô$¨y7á“(êi'mºt„À`/“Oup#£ÎPŒÍQGäã7žÓ0žE+¼í1rÜÿO‚¨×«!ö‡ö­‡CqCöªç(küÚ³Ä5¡ò1k²»;©I<”ØàWdïç¸Æÿ¯Vã)Åà6nVz¼¡VT¿³dI›nYT¢0ºVEÿ³bøHX–éuàse²¿œi|]2§o nʯÀeSZ³++êK UU‰ÿbvS"Lb 9¡ŸàR;Ø›¥š ÐÚC³¶Ð“a¦4a«ãÔ®D.ÏË{5o m†›/ÛPÅ>=" ØGÿ\kгÀ’ÞÍørxÁ?Ïö´rð1j0s#¹RœÑ@À¦[s‚™ÇvxÖË}=ÞãPeÀ‚³ð`¶Ûu¯ <¿X€ƒÔ¯9;\˜÷À–éì°ñûÎÞè§5)Ï’IÂóiÿ¤Ø¸èþ륪wÁ‘q´Š\+m64¨ ¦ãv¹þM!þÞ{WÑEEø ôÙéè¬íÛ4oŽu”‰ }}'d=ZD#Pjš*žÿñ SK?a93¥vưuIó]DP_s¥ h(ÈÓ§¢ÓôŠ™Qýk("x“„÷Ùî„ËHÒ’Ëñ\Õ1ãm¡~i­**œ«¿È4SáÀöÕ%h­ÄYÄ"ÿ0 L!Æw´¢®Ó ‘¼0ÊüyÚ0GxaªÔEøöœ¤¹ 4˜Œç,åè.lx©šjþig‚ÌªŽŠrâ}:Ì“ÑÐæ³~{¬²w h ¤ðá5”ûÔ,f&ô®Þš­,‡Κ³áv 8_îRÕ÷9ÑÏÝ”YÕouý~sì¬MýÁœSêhýæ'T®±áY3GÔØM{D™å…µÕO°âü8º©# ;,¼{ÃИêÇ…ó apPÏ"4ªl±¾³Ï¿r[Ö×»(oˤ¨µÑ•B*XæhïÌM SÕºÀ¸žî¹âùÏÆ¼ßÙ¤8Áá·¼“û¸zÀÑ\(ºËªËØ)б›SÎÅïåc4±7÷j> /üÔÞóÜ™ÆWðÏJØ!E½û–Ó~–K¾Ðu²…¥’ß÷áá³”ôv×dE´å~Fp©É'Ž'LôYÐQÝl‡bìŸ"ܲ"ÖÛ-BPÓúAê TÀ1fEªlHdý–kÜ'UW`zªjÕšÂÇï\'͘H…«>Ða"–c-p‰§%Pnf`‚»3ÔF*O›šÁy?qçšX¾öé'€d¼h"<¥ønzš¹ºÇ/ÿ•F¶¹,€…–2;¥K-PÆø®J…*=´úÞðtC€ìë û[НŸ˜Â§Î}ƒ"‹÷)”ºUÀ§»r±ºçƒo0þÊt ¼ °ö¬zü6®/þ]:Z"£Œ!”ï»í+g¡2Keêaé{(ï“#A‚L!WÛvZ4ž"oÅXKŸ² SMáë:tÃD‰Â(+ÜWÔPWý W0iZÞÿŒJt2•üí~«7ó’C ýáƒCV¦tn¼²|µ,/©æè5²øÿZþ¬{Ö§e7ïÚvå~ `áížýK¢v1»ϬR}:'û¾>Þú-—šÄ‘™¹EÝä‚~±™ÛíS/ˆÊŒC2„a: ísî{ðä¡5<Þ[âÂDõO;R-­Ñn%¾7å±%Ôßñ¦`ƒÏ¢7w¡2V÷~7;.X"]„“AA Ê‰i"zÙçñ¬˜Š#Ǹ”bÁv"t6ÁÐZâ”îë[×”¾:ÐOþȼ{J^³Ž1Çý0ƒÞõ)<‰k¦Úq¡hOmæÝ·á×%!³¼_Uâ5©¨&VŒòÂáÁ Ñ$ +5DŽc?Â3?qyò?ŸØ»Y›¿¸¢‘q¦T‚U`GW5ÏŒ²YNéd-x]N…ù]¶Û³G*úS.‡¸xÌ^‚`°äwЍq+.gæ ™zó> m<Í'.Š[ÅþÔßÅ0UKÇ!ô#yH‚á“’±VÀ¸9áÞÿMµ싨nNZ¿vSÔá‘Ê;_b:D½ƒâìDº«àÚÚ7alÀ‡Û¨…NJraþ”º±ChSÔñ3V® Áñž4#‰Ú?3ý˜-.†³ËcÉhC•t˜Ì1Vî‰ÓÛæ$ç.:Øô|„hÔ#tBþç*»%’G°¼‰jdpÉœ@ §à0–NüRÙ¡ÃÌÔØjÚéÀ#ï¬V73‘~£\…ÑqÀ7‚™q-wªti÷…á:yÆ_Ü\ÀØ¥À%Õ¦R|0æÖ7ƒ[—m\ºÒ ¥8 Ê>Dî^ð8@r Š[ 5Fó–r;~ÅFÈ5Î.:æ\ÐÁ6› M§Î+q”bM3´%'£u û³yÕÂÙIñÏ|ÙþדgNÄN84øuûœòA¦øÃA<°QÄC#{3iíëŒBÎ-Æ<´Ò|>cõâH)]I¤œU©ƒ»FßÙX»^ Ùæõ a‚ù„HC³f`û1Ù3ºB%‰: ìá:eÔê` ÜL7L*î¡cÅÏeÚNl-éoÎZ[×`Ó¨3‹ibÆÎ‚ ÆBÈd.'A$ú·ˆîiÏ©T›¸ˆ(v±sþ–ióZ­Ó\îqv.â ·8j9Kž"óPi pØ×]{M¹QÒ¬5­îââ1ªÖÅÓÓ«ù9½7ƒÍùܺ ¨ôV/2 Ü4>+1…CPÜÜQœ„Ü|$«Êí¬Œ‡ñ? ã [Z¢‚…g/Y‡‰Ñ‡Pý#›Uœ @ªÜ_Ï*x– ’xgºᘠg;+´ñÛ=ŒÑäÀJnšßfUÈÛ=Æ}ÑÏ`làØrU„´wC3\ßž$–¸°¨M€ Òù¤t-Ë­f`– xzÏS1™4*¤êé|çâJšx‘K‘Ð'Z0uYŸ­¡¤” “Ò³Y×KËÄglu™Ÿ²¬A%ÜNDÒ@:°ÆœtÍÙG(»Û}Œµ©G³u§’úÕÄüÃgêV>÷üÑŒgÐ7`‰K¼JÚ„6'œ6v@&a@XöÈŒ#{¢  ¥Øeã#jG2„oªú®ð(.š€Ïâ¤g).aGè«&$ôŸ¸ÜÝiKà$–ßÏ*a†ÈU!'W*z¥Âð¶ Á-‚„”Ë55&' :U{qrÏï´@.![k;J|Ã!,6ÚŠKˆ$:ž1ð[¢Ã½ˆéV"å}eÜú—P"I8í\Å>ã ‹iˆï[IÖ»Íd³ÑCN$°8à&: ÇØ8ûÛ(—|ê U&eÕ8³&„à=i+¢°Èëý_SZ&3M@Ï“t:ßF¢‘Óõá4±àœ¾ìf³íÿw¢ÞoPœÑhœ Æÿ¢‚óuMž<ú^!ÓVv,Z·Tº¡-Ò£ÛÌï:«c³‚ýÒV+²¼N 3F¿0fpC‹õz]No2p©²·©#a<Ì·ÀÇ÷µû¿^Á¾Oç¨rbë*ÑvÉJÙÛö²p\E®j/ž(ï­öˆ9ŒI›3S2ÁðÒ„þs'nCб­ÊÀcŠð­\dF™ÝY˜«PÿŸ‚ê~ jÞ4âf>ËÛ<]Ìé)£úT|׎˜‘ß¼/F¢JoZTmÈÍÿ€%îÿéÎ'«ìİ—’”ˆhâѪz7%ìlÇh@œ±ñ£6=&_Riù”ÆÒ8ä¼b¨+ɶɨ¥·}2Õ±æwyh5/R‚,nñ–Gù>¯3 ”ziÛ_whÝZþ€',M)ì÷…@Bp‡ÚY'E€Mïp•ÙÐcƒ›yÇ í„H¼æÝyAK ¬K˜ë=:K«÷±YŒ°«°Â餗SC8À]wrÜxýè¿?‰“éN4îï<çÈÀ4Åi¤QÓnˆ Èîe].Ï%éø³nÄ &Ö;‚—¾Z“.!<Žü++U"i'ľ#t9ã+ÀÚ¢9¥À=ÒÖ É»é6‰µ ElÁõx® Ðòyr¤JxÒ7Ó+Ñ[‚_CøŒª1”ñ檳²Ë®!K€ Ü\ÛІÍNfP¼Çuª|Èš™5œR9÷Ê W[çýä p~úâdŠ˜VõÃÿ]Ðà+P–‘õ^„óöQ¦*w{åõv¦°Œ¸ÇЊX/’JQ6Qù4ð‹_˜þkˆÜÀUÃWÎFe[ÝG‹èfšêµ: ºüÈés/¸8&4=_I=PJRey÷4—>ÙS“¾—x$'Ü-5`•÷[ÌáðÏšc>Uâ¸{ÅøÂ"g5æÆ{~§¤àn³å Y[Pï2šjã6u†Ï¨ŸíkéÜM°cX÷tÚJ½­ð4k±JOFboìjñºâd0bG3S> ÁÇ©¡RfˆŽ¶*vtߥU ÒºÂ<© ?ã—GÒåå?¦¬º(Êÿw¼…B(,‹ôbä%¶{?ËÈýCZÕüx“ãGfotô”XglðRf?Њҙ¶ÇIµùöe<Ûwô|ÞÚªdÓ†môVÀÓ ¿wG€©ÂÍp3ÇWÓný .Rë=@AéG޽uÛJþ)ípNYÀf¶ sï(}»ÝÙ– c˜=t¶:×'4:×3‹ž²Ó¦p»¾MÒä 6ŠÐv_vB‰FHRbžÝôGgoMBV¤R/Ø _ŽLT3ED:bã±o‹LäÎZ"ÈÞ½½îMùìÐÓ–s›FéxÞ¥+\-ºéÁû+—:Z&w)@ðQxg:I·†‘Æó^öƒýÕðG/ûö– O>T[Æ„¿˜ÚKÓ'fþ? y7}>/å ùvÇ_ÌuÝÉ7%ä_ºu^ ÇUû'çn›kSšýߔНe{…i¤ H¤*>Ggp gÓ6Uÿˆ´6¥|H’¹Q§Doƒ`°Gþdþ«ÕÕc­³ÜR˜{™EOÉQä1š®pKɵG·ér½ÂV\¸ yÖÖŠR(Ý©(‚‰DêeÑöõáS—ŸËQëG<5>½ë[(Ø&u¿ ޽ÍU•<ëwk÷6Udø_,¿TªTŒ‚S¬`Mè­«’¿±ÀÛ:…è,¤‘ïþØ€óž±}!âŒzuìØ]ìå!uÏ_ókÈTÙ_î·f mÌAÀÖÀe¢±6€M‘XшÒ0+¦ Q5œÇ‘–xÃ9ÇîßæÎe$ÂRªœ endstream endobj 108 0 obj << /Length1 2478 /Length2 29513 /Length3 0 /Length 30976 /Filter /FlateDecode >> stream xÚ´»uTÔßÚ>Lƒ”tÇ€tÝÒHIÃÐ 5tK#ÒÝ%HIK§ÒÝ!-’ïø=Ïsôœç÷ï»X0\w^ûÚ÷ÞŸaÖ‚–JMƒUÂÜÁ$놰Ù8JÊêö&` «:ÈÒÕÎÄÀÉÆÁÁJK+å 2X;€¥M AÄ  jæB#88Pir 0Èê4˜z”AMOGÀ`òPsp°šš¸@Ý °¥5ÄM‘rpôt¶¶´‚ü®ÁÅÊú»ÒïlI6€‚‰™­ƒ»‹­5ÀlP`Sf¨8¸CÖ0Àdebgp°h‚to5dÔ5rêªoÕ4Ù …5\œÿ‡‹”†æ[9€´„Ц ¤Å{«¡ùû§& åoÉPÑ„ú÷þNW–Ñ”ÐÔU“²ÿ^p9»Xÿnû_Üè Ì¨AS-œìÿi`°‚@ÙÙÝÝÝÙ,]] lΖlŽvÿðÓ´²v¸;8Û ¯Î ;Ð?¸‚Í¡rB¬@ÿ*ð{WJÖf ° èw’¬Ã¿œöP)¡IP;äßÄ B@~×´ûW8Àú6V&.ÿä*©©)ìM¬ÁØl „˜@\]ÆÿØ ß sú¤\÷Pþ_—ó¿Ûü/uIèÊôí¼}MÜÿ{ÇLÀ®.^ióŸË6s»X»@\þU°°¶ýfïò{ϬÁÿØ”%Täee44Y• ƒfUv€ªfƒx@þ‰þ]OBZIÀÏÁ p8 C*6—r°·‡²vAý-Ÿ´5T'ˆƒ³'ûÿl[°ƒ;Øûÿá°°›[üÖÞÜÕ‘ý-ØÚÉ$/ý?áPê›%à€œ 3+öß ÿ™—ßfào3T_oGG€…‰ È×Ú}Aõv1q ή _ï¿ÿ‰P|sk3tÔ¡ÇõŸêò` €À¿ÌP&ÿëúŸ!`øç¨2BÏ©¹ØÎ`²@eWq€@G‚áÿŸ“ö_½d]íìTLìA ÿGÓÿ4±·¶óüÏÐÿ ÑýfË âàlob÷_>kYk¹š5ÄÌê_ÒþË.1οØÒÝ–Lo);èìBïëß×€ÈÍû_>èXšÙ‚A..Büc¨ú¿ùØßj©ªkI3ÿß±ù'Nlæ`n ¶pòðLœM»Ô$`—ù7âã°¿þƒ¸ìò4Oùâ°«üAÐ*ªÿFüÐ*ê´ŠÆÄ `×üƒxìZÿFÐ&´ƒé¿ÚÂ: ÐSðï¨Éì߈oæ`ÝŒÿµpsÿ¶ØÛÿ© äà°›ÿvÐ_JÜâä„Ö·°þÓ€ë7tûÏó;ÜÁÕù¯ÐË¿ ”€Õ:Ðm°òt´ÿŠ€Ú¬ÿ‚P=lþ‚PAlÿ‚ÐÚý¡ôìÿ@ tiUB—æð§74Öü×RPîŽÜÐ\Gè½l²ø£/7ð¬ÿ:ãÿ6CI:‚œ­þ]¸Ó_› qru€€þ3„ ò—\@èê]þÈ uºX{üå†Vù“Ìe±rý¥?”5ÄÝᯨ^®A¨^nA¨îí.4û¯fœÐòžA¨>^– ­ärþW«ÿ<Ãj¿Ÿcÿ\Ðõÿ<àÿÁg[¶µ9ôÍÍ_!Ê&gkwÐÛµC¿þ÷7ƒÿh@ûçÁðW¶¤¤ƒ‡7+7€•SzpC—ÝS>ßÿÈ5û׳öŸ›zûü/þý €@ 3Ô…Y3¡`›”ÆÐ2?™‚ñrDZ¶Ÿ•¢: ñ éãm¤DÒ¹›Ô ±ÂÀ¦€ ºB¥×‚~ÉàbÚ`|»§Õ椪±Kó7â[&~Ê~¤˜2#9Zloßg(Ï”wP3î+ääë–pOf´Ä·PÞŽH ´}ýÍ9úŒ}þ‘Z¿¼e9ѽhøÏÙÇc‹¤t~¼òü /6ʤ[biÊ8?”`Dɱë+îب"±‡ ?2oqe~9­.¾ÝG~áÒŽFCîOCVn) OÔG%pOïQ&L†Ä/tép Ì——¢Ï: nÀž˜¿àºðÑ×\zŸ"ós©{/Å–F0Í^ÎK=#Ô²U싇š»P2“ .#ïP¡öN™ÿ{Ë•ëíúcížž½îêÓ&ÊmÂ1Jd8ãð+ÜHAèã1»ªŒàGŒ€!XÉ:ÕuÒvK,Cxle"r8x=Þ³ÊÙ½àR"€d„¢$RÖLø»”¹)Õ¯Î2«7( Û0»”•ÅWºü]Cë¼°gXÍÍàf L2™¤&wÊàY‡e¿”,šà3‘%¯¯¹áfÉíËÖ2¢¬4ƒ DªªSš»6.+æ¥PD|C"ÜM!…Ô¸yõ%¦VW©£hîÁÍôpטÓ^%|*¡ïqÆ,|šëƒÛ?ç¿ëé`æj‘ SÄU¸3®•|û6ÝÄØU{@ûR¥Aiíó­…ȇ©„ËEù§œÌ‡$\ž»ɸ˜1eb’¹*ö³ŠeM ¡Ýuݹî2‰\Òy×§*†Pñ×ä«ZÅN÷=oH<·OÄðEéŒæÅå-š8†õ^ÈèçUw|¦yæU½WZÚ@%¬‰”c`ÙÁC{a1}ø~ä¼rÿ²]˜,íóe©«ÌÙ©Ÿ~_ÕooÒà ×­†…ÈjO¿Útž»—h»ñþH;§*^Ù¯D…¯?‰Ö‚¥89)Ug2ß4àk ÔAOÀ;OºÇç“Fó—Œë/ÛÔó>%q¬ž’D¶OÁ2¯psöc<ÌÆ§ÆÇr£•# Ûwì–Ë–$ÁlzŠ{É’‡:ä¥ä¾Ý'ä,{§kÈùÌÐñ+ÈjdlÈõ¹fÓY‚–Ž;󲨶5Úå>mKû]Žsü!~ø§ÿ<ª‰~AÛ"Æ.é ¯džÇyí*jÖ/ôÈ‹åÜ‘à‚ÓQº™»¦€]§¯Óiá$øªD)îŽÛ8tcS·:ˆÆç'„–(Šïay‘èÃõÕ÷@ÝblQ$SþÆÑ–IeÚôåŸúŸ$œNå^ø!0Â6.`îÚø¤ù,;Ë‘z«>'oÞ½‚Óõ~~‰3·¦¿Iìd‰ t¦ Ã\UŒâØ82¿¿Fäö.“·œ nÐ ÆÁ âfT£D¼é^>qz¼Ë‘–$âÆ ¨èe}Sßx³¼lû¹«(|ú±2~r â"Põù§"C9S_Î3½¢ Y™  €®â­8ðÀfoôNñJ̬0Ê_å¡ú‚lR¹ñ9¿Ó˜LûêËg'ðÂÇþæÕl\ÞV._•,þ)QÙ­›æ!Ö@²þÅÚc¥žüNɽW“_n%ãf©Ó,a´Žâ(8¡o„̈3E‰÷ð˜Çp½ÚP`"r³o^û,åÖ)týPáKv¨á*h ³„T&åfoÄ©èJdѬ!EaÙ) õlî{ĬÒð§W¾xí“ )!õ¼F;#róöæåw#Ïd}¹§‘µh æyÂúiÊÖA°žP8¹SwáÍniÏŠ¾ÿ‚¹¼&HIìýy)¢ÚVizi^ŒÌ.€óàR‰ó¼?ùSM¸ãõHþädði*Ýâ­öœœò!q”b6Ð>foP›I/tíXËœ˜’ ;I苽ã”Ö“ž¾‹%j¬yä)ŸgûÎ?ØöväRyWì°3—€ò ¦å2‡÷O7'_šàOòÞÊlñ=õˆ\ÔŠ |=*Ø‘ Ê€Hz+p…,ÂfïÒ䥷z´ Ì~óuÝ2æŠe©ïŽCL]ˆ+µŽ ñ‚mÉïëÈ ñX£P ûü²˜.¶äÛƼ0»¬«DûVlÓ3›Ö¢—tÊÀ3Ä9Ÿ5¢ü£¢òÀ`ª×…ÝÜÙ—haÓÓ¬ÏDEgUø=¾¢uc±o4"p2E¨û´6¯wh*»ëIpa2²ë„~@¼ÎDà­:8ö1ÇF‰¯ÚÌ8^N+ñÐÂ3δàg›ÝsèÞŸ`}QCˆfÒ«v^ey…Î?aF¼¡¿¸¿îf„U¸[AqqŒz¡] )»éµçEäyYˆí`~ta¸ÃÄCIÉ^D¦„fh"vÒÿE<ïÉÒñ_š§¤|ü¶Bˆjgý‹SjR3ÑÏs-Få*…šïœægû´D‹O(Ïûë·ŸQ}Y“1j4Z2÷k'oÞ }+Ãt­U‹6ÓªºV»ôBtE›ƒ-¹4.MêW¦Ïã×[I²<÷7•÷É8l£D-_¯2—n1(k^ãt²N÷ÓMèb]ˆª^+Ur‚xTá1¼Ä’ß;ëÉUm´çîŽòç±ÂÜR|šyãnuæSö[’}ÑѪyp£›fóUz-ËÂD' Ï£KÇ)<ô>+vBøP›ùß~—××#§é0o›i¸JL)£¼~IB–çÀÆà$4­-àžòùjcÍýì‡Qò+À°ˆnZŒõÅ+«±Þצã_àö’ÑrùãÍUަWâ ÎþªíÂðï>µ½Ê*CÈ ·ë# }jÅ—T$l©¼·[áòà¿ï‡:Ûªñv{VaÓæÛû¶7¸sÅF¡'ÞØ:ߘµ¬&ÎÌ=tGif¨2²ÖÒ>ÐÆöË¢s¤] ²ùb.¬5Jõ!™+Q¬ñLÖ}¹{ ùÊ@'«·˜ný)KòíãÃfœ®€PxŽ\:+ (çäoîtëvã¶Hk:WÐ.õô¿r°п¦:)À‹¿:ÛÉ8é +ÛLE¥­IÆ\ñˈ%¤üâ$Wõ¾ÊŸõYÍ*\-¢¡Œ)ë@Ùp’´µŒðÊE¡èÇVÿ>4‘AÂÉÓ/#ä&ïxwÖV˜éô3jа;žÉ‰Å­æ%ÐéÍéãÔa/údñD©¡Íô§S¾HLÓ‹„¾.‹ªþgyiÅC9{»;óEÌJ{†;/gðÜKÖvQ÷/¯´š$>'Ö#½«!þRXµØ{˦ÉÌk®¿Ü–{À·+‘ìGgrÑK C„s¡Äân.1\÷MnÀi§!)‡ µK¾æüÓÐP«yZÿѲì2‡fò¶ë/Ë‹%1J–i«s¦YV%È#¯-»qѬûS7d1z—ØSD_í(6fw¡¡÷A§ñ8d?ÎíOÑÄùð•¨ÈÒ¸8õ*$É$ºúB‡‡¤Näû´¿*@tqâB—в»*¶8ûIÖŸh)ÃB·c‘uPòº tWŒþ&Ï:h ‘YX-KŽ6hO>áe:²@ÂE6¢7‰·He/YÛ2&Çù®ýˆ;•õ K-á2²½Tü~ÖÕø¼S÷½ âãÕj°ä3îa;ÒÜË6·6xÌÊ¥Ûr}Úã±|™ÿq;êý›¾ñ»ëF–ü†*¦ï*n,ª‘[€RâÆ^Ç!–¾ ?©Ø—lÁ¤8­-v\wÏŸu•Ý ›°­Sad «‡í>_[­Ž®ÏŽ[Y³¨ÒŽÉâ"Vfˆ)?ÍX²ã²!éò­~|'M8y¹|C,¸zqpüQM]Äx?uôÍ8iÊñÐxå<Ã\äD Bã÷eËPÉ&“䯀öP¤çµÀÜn”ßz±BwÏÐéøöÙY]½±bÉY)éª}D*?*-~d¿®ƒ ÈŒ‹ð¥µJäˆC) Þ1ñ{¿ëì~Ç_>‰›ºò› ƒ°¡?©V5ºÑ:òH]©î&4*zM¸k2ór9Óž [=Cúr(ÑÂmQ‘IL¡­îqžûª;*¥þ³;Š-–,¢6tõg‰S»ZÛ¾7»”ŽéŠNø6»U˸nÅ…\Bô®d«Üõ¨–/GÞÖqÖß¼ A£ ºC3Í¢/ŽÉG‚­8:›+Ì 0·à­¸©1 Ïïûå;Š@G£º¼v*x°[ItivATBù\B–˜UrgJwï¨Øãçwî?hfê¾r~ýªiF:…Ä%á€_8¼ª†gôœfš]›²J]ÉÔ .=´6*t™„WË•¥í°( Ÿ|­FÝXëõRdñó4N¡!Nô&À€~òÈÙéÌîÇ{ "¯Â —RþéO-{z.pϽ ãùäãð>ÁÚ23õ—|t m‹æN7ºj5}Œ6{rÝXÎð™ï‘¬E¿êÛK QEóÒ«n7?^âðVñ÷]®¥õ%¼äKUçÔaðPƒP†•Àß„!@j‘«nÇ~ˆ \­DégÁa=s,²ÛʼGéxœË˜ïíßPØeŽtA¦2Ê3dT’ }7¦™¨6ò’¨ å` ?õ´E/Ę¿ßÁù…º¦È@;A°aÙüÝþ"ÏÃR2­¯p)­ ”žS©úìV+»\NÔ÷íx!7B*?éÞôѼüö£Ö ÏNÐckÐaqŒ4\6â½éäRfº²xˆv0I° æ×êII³•/£t$]x¾_g0LgLø§ñz- ö ]”Äû+®›,›-—§JßÅõêuÞe€‡=iŠÖ×4´sU#!ß‹„ühää2Y¶¡ÉÃî·Ý¿[ÞZûI‚‹ž]«—K”Ô«S‡\Dó㢣éãòÉan«q_–øeô/¦óCp¿þ¤'oî‡&ú ÌŠµ…£Á×2&&mîµ’ kMƒ¹úþH1OY%ró-8by!jLt¹ãâ.?Õ•ÛòÍì–ªÃô›Õäb‹…Aƒ-s÷K­mé’ûL¼K¤CðÔH铈 ³¯T±6ÊOéíÁú±úQ»°íçýØ3Êñ*EñI¯Ò"Z—³Ÿä§ž¼åNëû:xý²Š–¬¼Þ©žšDÀ®ÎHpÇ¢%`Å-}Ñuë†MÈXÏ ¹?NSÏ™–´ÃK;%ÈùXZ?õHiUĈ)ך|Ó+×Üu_îS8góòqÜìsð±-½Šù9·þ°èØÃÏè ¶#c‹;_„ãµS—oŠàü›Âô…n@Êó—¡ þe¬ä_b­&· “ü7­7ßÍŽ§Z‘^°òf¢´ßûåÇò»¨l”tËQöôãféìÏfÙÇÎÙ±J˜T«õ]vgKiL*NƒêE<”3µ-ߺT—Ä"\á,"ÿXd¡a#Ô©E†"¯Ê¨îƸ|p¬ÄµÑÔŸP<ÑœêÞ]ƒô&‡]hëÃÏý”ðÒ^“\#,|l/…:qEÃöÌ:x,øÙ¹ aD8w„²A¿ôðý¼5*r5MÅ]O¹Üy•²)‰:)Å}1%N#§ÚRbDä»›¶”8º\U˜=1°×ò[.0ä©I[áD›©ÞÉ4}8X†¹dªò^Þ˜‘Ì °OµÑg¸k Ö ½À†¢X-€u‡W¤©oWóE"†áD÷|^kÐóÇÏà©Z“Ú¢h™BÖ„4ÜáÑ3ž"YÆ$«‹§ºé £=3…½S´Ú(QÜA£Ú†’ŒmŸÕdÝxßÛùpWŽweìÄL?–îé3üR¼Ãlý—³”Y“ö®Ú¸|4¶Úî)ÇjGÈçùÂØZpFUæf£«ìÈÒ³üÝPù®„K'ø½=å»Ñ«K%÷À&èþV¥ì'°L+EÍ%W‡l•šK–_3§•ä¥Å2§¶5ƒ]ÓjØôp#äDÏg©%,Ÿp1b“”¨Ë»mZul_»kqš5‡Z¥í¾"[ è§;¦Õ[1Ïe'ŒåjñX£¹á¶rÞ“KFÌBÅ9Ý2ªSeâz;lk¿ò,ÊR¸•æýµ±"Õa”öÞÑoA<®ÙëÔÄTÄl÷CÉÎ3¸H¢|=ø¥†ø>sÒwQ}7âž9Ëê\ûž>ø[¬…]rÃàŒ†–ËåíÁ©‹¼í®šøÆ¯"D{÷𠉊’AÝ\ƒÕ™ŸÁxŠŒ7싯6³…¸·êˆ)…œ£ ~IŽOIØT³]ÛÒÄœ1rLä¿“ž)Üþ¬úFîÍó Þò1jëÒ6ˆÔó¬ÌÞá‡(.³/Xì'/º ‚³|?ÅÃé)Ùó/awuXÞ€ýÊüÛã·|§²x§„F˜uÆ6XÔ/»F‹!3|õÈ–©8¹¨5‘3vXìÏKáð!¥6w­+Û‰JKß$c?öÉw<÷Jç1 kæÐÀ¿Ž:ðé Æ3`Âiùrõi¢Ò{²´ RÊ“Yl~“}Bµé# …¬",B¿¿×¦_wgÇuF»bg,[áÀ0fè’|VPŠåx|©´Ä¸p;îßPé^¨‚ö’–ÛÈŠ¨vgމGÕÒ­vê'UB;+›îÅ^,3zîn€ë{*:' l´ùPºÂÂ0ôdY„÷q”ßs¦Áà:7‚(ð&îBð”|µM™µÛµ×FÖ£ýuì“‚OÎ×ãο4qgÇÇhç ¯²H‰Gn3ÖFiÌg¥Ì^å}cQÕè`xM;,AÌSýQ¨Š»N (h[®êsþM»Té¾ÄIëçÃŰÆ!ºoê¡åh&í5ç!GûVõö½7yM®ja)òÇ é6"×RÙ4ŒëÛ¸¸ kc:“bMP¢í9£Ê¬|)i¼ð°)§ºíNƒ’ÐBY'½[*¸¥˜p¼!±ç¼NìÞ%¹~„ ââgËãñÈÁ/ª‡Lj@¸Ÿ…]óÑëº|á"Ñ´—b×"ëOŒ&ænyE Pƒï ~F|ìxûïP¨ç7&Þå˜ÝéãxDHZ¾Þ.¬¾@¸|uª‡ŽA‡r"ªiZ‹‘“žÿ2áL2gö6çD£à%”2l$(a3’¬æIJ»ÒûÓä@éaä¼Áh枀Õ_•&Œ*EµÇ“=lòÓ 6 þPGœÁÔ˜¥Bd^ÇÎ$.…ä±ÉÍ8Ÿð!Ï´>Í…äÕÙ$ñÀNŽô`XZ¡iN^Ÿ€<~¾e®2ƒÁŸ~_§úG’é G2ô<“¯§»7["Æò›sëǸ6}ŽŽÎÈ¢¦0çúiô›¯uCLRØ»#£½JÎg#+kK ‹ êúÑæðÅÆ&ù7ë勎fs9`‡¶A=«žbCž áGT­”_®,¦Ø±f¾á3¹e¸­wrf¾¬Ðœç-Jµ//ÂôÈj Q^õUHAš.Àm†£S·†Ú›µ;"Ã/.eÿ oÊ6ð,•“‚eðßhÏQÀ!&Å׌Üt=ø!´ÃÄTmôš™†étÙˆ`ð fÔÕö]½5·ÚÛ›“yãá'·/œû>ëÂä²·vŒKÞžëÐ÷kÉvñ´˜-'š^ø&1M7–t~”ó~¦Gʲ‰›„¼½&Öº¦bnEyyµG¯\”¢–'ÙW gðñÒQ¸!MÄÿ\H³àœ(ªÄ<þoš'"£ ]ƒ=2¾a…Fe‹àš×xäK½ÚŠÊ¬‡J=Áti—ï€ÕLÖïÇ+5—*YcÚäÀf¯µâh‘¥$ö%Vûéwcàìœ@Z$múw ±wÆ®“hß¾Ÿ\jü)s¸Š‹C<º&æ’_ì(5lfü[ë,|ŽW¨mk–yïV‰Õ˜`F^žA@Ô«îo²(Q0¸“;ëÝK.(+GÚf“™Pšà™(£ënzg^Óò~¯JXÔÕfwW$ŽËñ™p nL‘€E&Gª…ÝÚç-BY:9`6ÿ`q@¹^ƒæó2g¶Ëöëy¿–Ðâ‡__k¨ÀyÊ«Ä䤸ãÓáí?Œ˜ ÎrF˜$Úm$µ;~`£Ö‡ŽÀûó…ƒ9ž¡;wñ¹F6'q¡VSÑ(×åÛ˜Z"Y)Â,élçT4Ù}D©×2f¶m̱îßÉŠÙç¶«=ßœ )”`o–OØ Ñô£U±¹J£©Voµ6 yH—›œ¸¾-nþüî‘O"ª@”‡¯Î‘¿Ç ‚Ñ=©³-cEqü.&wÜLúF¸ð£hähל¤æ¬QEúä·F(üÚ&Éép›TXGæ¾È±Þ¯z¦zyÙeo4æf7ê¾¾ùºI~í(â”Æb£¦Ðü_)«9‡û›Î)lˆŠ9 zÌÆ~´õèÛ·cÍÕÌÃäUo£(éÜ Ÿ†B÷W¬MÉ_7Xÿ²@ÜwIØ®9]/’àþEî­0¼¯ Šzª{F¸øukeJÄZÿæd-ÿÍ~o?; ?!]çUŸÙQç×÷ÑÛ¥·§8:Ç.÷uLga6ñÒh@™ÌÓ{*ÒÆ‚Ý„üú)•ÐŽ2µøÑ ª¬˜9ð\Ö ™‡²E=1}剓 ìE:¦+þÂKýŸ®¸{u\“gËT¯Wˬù¨Çâû™„-mpô?Iî³r¼\áArèy2‡€ºÑÔ•t)\r3×jºXÂå#ZmtÌTV"P£µ“ÍÓ)lÀ5­´$z"R®ãò=p‹?Ɨш°·+öù%碜M„ùÓ¹ÿa¶îäšÀËQÍ<Ÿ²$ì»05ì]`ÊCìNõðH.ÐKVBtõÌÐ\¸+Æ H]L=nMÜ{ýx¨ÎËgúèt0ÛÐé-d>3G<0ŸJ»ª”.Ø8‡AÀäF>DJã¸ÁVåò£E2<ïjjùNóˆí’)5Ú¹ðy"wp©Ç*ñåÜ ~JIêuxvE^NÝmî1ó.nðjôIÐLJÏöת™×»÷‚Ñ£OÉ©\}½a†ŠA=ä_'¥@y9\°8[R…ûQâXòz=~§ÏêÇW7“¤I䤡 ¦•_X¼ò·¤¼áüüf9V]Ô³ðžD'©m¶¼êÿTÊ$ Èõœêo+¶SQwÒÎ’á9)JËVÒ˜,ÀŠõØ'dú¸àŠÁ.ÕDв…Ò6ñÉ+ø?ü2F®.Ö»|ÊAEY£¡Ò¾œZB$>ˆK>†|n¬~Ëq¾8½áÖ€Ñ$18-yAæS‚^(A™Ñ—¯\tе3ÐÓ¢ò‹ÖiÝ6z±ÆŽ`£g"É5’Zî<-\&7[¢•÷܉q{_t‰œ;–€¾cy ‘Þ¢}œÃ@ví‰È€r÷ì10Þ,4Ø%áûÜQYu)Or;—ž§(ÇòLP<ü‘Òm;| }œL‹Á“QÑSüžôñ|Ñ÷H§PËfõ•§,ýÇþ‚ŽF‹R…ù‡ìvXòªj¡&¤/ 9ýt ~T¯–(œä¯*Ñ­èof>Ñ!eØÐ.×*•ý¬HÙ/S´‰ö(Äá̼A Ò?ã$½£&§®ˆ2¢ÑN®Ò.¾v?X"Òr,ô'ù,çUG¯ÞƒQ<#nT°»ãLn¼ÁkÓÛP•¯4㣽ú£ñÜ€[},ŸíGXÅï"¨¤æƒ£CÓ­Oó!õ¶äV°[iÀ³rfý]oiÕîæÌœzß/Ú–y-õ¾Ø˜cޱwù|ýˆ)’¦€¥j³vßQ_ öûÚQªÏ‡Ò/¬Vöò˜iÎ$Ô£”l Í't¢Í,Y׋‡EÝ?¸z>TóhÆ%%NÿHx°î,áõ6¡{åky¹³O¦Ðë}¨·W÷”÷¬Ÿ}Ó€ð5µÓ†hjÙjƒGhÂE,æ–ÿÌ´â‹2ƒa7ïú]¾érGÅKìç}Ô€çôà¨]TN”­§09WLµ¥^Vš‘ñ×'d}½ðáw]ïqðóc´,lK¼ÕD›Ü6¥g¾?…YˆûÁêºs’;ÞŒßï.¶ßdÖ4”ŧ°Û×dÚî4²> ‘€?EW~«U{#Cã£Kÿˆ)>˜KçüѰ¸eávÉÑ"ýÚ³×õúÎF`â°Té©rPõ›FDðÑæz@¥þÃNè;ÀÀBMeÑÒq“&NÁÑOô{tïe8/ng ÕöácoQ ùWÍ»î‚ְãQ ù›,4î5¸iD7­÷¦µ óˆknßkÙ(SÄI0Þ¿"á#e’Ce:¥´,§­m•Æ%7ðD` b¼@wÒ¤F5ï,nÊxšv«D÷¢ŸKâõ…_âìåXT¸8f"Vòš_.¤’7¹üÜdº) ÏsýQÒϾ'· ýA›·"r`Ôa9½kÞXV}f™t#u»*Tv¸wt}špÏu~@µT tfݲQúÌ2ˆŽmnr²Ú勤?{àYÊœRi³zMTA›ó¤º•iì0dõ;–ötù¹¾«.UíÜÿaö e³‡ò 0ü ¢‹&2‰þÌH…´¿9¾ç‰³þóç¬ótWE8ý¢Z¡ ])‹ÚU­ç𯀕ïH³­¯®,ãHhjYÞ_ˆ©Û’ ãBCbGÆCp¸,ÈEz਑(àÔjÒLj£oYUÙBm¾Ù=u§®± 8‚sÜsÕ3ûÛ»ã6!Þs¨’¾6“v” 6ü­8ºù_ô£¯îÌþØjž¥›Âô˜;z˜o|R9áæ‘*Oª`!ü½ÜÕJñCNÃObôc#±ÍºŽ©Éœ°8OyGcŸ Ià +È…£çËÜ™3fX‰ãwXBå‹?¤çÒTÏß¿ xX麣4%%{ó÷0 pq…¦d.ë¾Þ‚j£È«ÂãhÒ!»Rz½Èê{Ažv|ÐË‘ ÷¢ µ°&Q˜Üïë•8nî‹!>üDGxêçf å=“ 5ѯ ³ã0é4Êwª‹5RQ í¼C÷ê}z¥.q—`_®Wôô´ý×äñ%™¬&ðJòëã'…?;]må²D…Ò~æÖŒŒœ@ÓzS9}(ÿ£vTï'pˆ‚ŠÕO¢Û EMñmORί`  1 Ó-ñ SÙ‚i¹QVm/r?*¬‘9[>âkP )D=¯ïÕúÄï”Åñ>aÇ"éý¦ùÌ™¥Ýû°¯’|¦®€ÿh_¸ÁÔÀ¸I„Òw\¬n¥‘qщÛc{}–WDŒgz›åA/ŒJÖÖ[ë8´}±_6Òg,*”ExÍL±ùv“êQ%B=ÍÃèšó:beÄ4°>6f ¥Kr¬‰Ž0é¦ï©­>Íï¬Ïyt®@”­ÛÐåñ…Óʸš‰ÛÇ©í@½¦7 \Á[|ä(Lÿitù9¶±„_oÊa™Aꨞô'˜›Ù½‡h|ø~9’®B•ñ–*W‹W,¨DóÍgõGkº‡tcà åœÉvŽG[GK¢1¢–”¼s'|µígLªîÖºÕö;§Ð5³D%m‚£ž+DÛÅ$íÌ:Æãåî‹«U]Éh ‘š£b)ír&/®K«÷IŠ¾ÒŠ™¿¬SÜK#ÛÓÐzh}ÓŸ7ãE?£\DX[掽®N!Û1×2ړйó\§?¨±älSÏN-X¾:<æöàa+G\í+vg餦ÜÝl|Lˆ½Ù&kµÜEcDŒv¹ìé^É_~ëò¬îú”ñ¯˜Ï§€º„Öñ ®k¢)ÁÈ•ì7²ò@ùâùî(Šƒ%^«ÕXKÞЇÜ神q‰Iª¥,Ñ«8Ë G˜µcH›AWjþ9GÂvtIK-·ïo=°ËÀ+Û†ñ‡x4ÇŤ9B²"ÇÒ#¥è¯”íý0l“ø:™)íëªó¾*bû)^§D„¿ÄÕ…“5¢2¹þIzp?¶’ùËN88Šá;˜¢^¯•sVõ~KN¯®nµ'¤/Qôêú“'÷ìÅ—„]3NÙ/ï4¢ý¼Û'8ÝŸÙãŠãžAʯt÷çCÄÄdÌxÛzn«&LWó-}¥$:ÉÝNŸútøñÚû[*ë,Ї7sÌ8î†Rá»{ô ð‚¸#ËËmüäß¿É4lÐÆ¿]ÜLp!ƒþ“T¼‹—×çY®Ä%ÁªaþÌʯ€OLŠE&*ÂF¯Ð𨟑k¹EŒ—Ù…ˆy!vÏêÓ>å¥bö4=.\YU§:¾¦äÃ{WS(o¤aàì0ád)܉ÍÇšoðp‡ÙÃ_#êu}Bc„6]'6 ×€d°Š¤l^ã£&ÑÞì]@’åjº»þGÿq‡½ž'ôC ÒsÕÃûR" ÓŸ8L]ø5û©. ±EýIWí¹-ó34<Ûjëûâ*nCZoŽ@A¡sšƒb;ÌSéØ%‚°4² ÇÆtã&¶}Üû‘RŽüwRS£Jx©©¶¤P¯OW¸:qGNÁk¾*Õ[ö@„ÅUŽŠ»4ÖŸGJYëó­!sÍUŒyzð­ï¹ÇŠNÂÀ Ÿ,âoBÙYŠ×iCÚ'g‰éä”l†ýV¥,ü¿AŽ0„öò9Ü 73™å.ø)ε:Ï å17ÏW%gÏ„?î’1¹>R˜¦ûW„g¾.t ØcE‹NhNG&j®×cû’}ޤŽáIV/}~Ð=<€L®Ôp^+šX0â(dú‹ÒªwvtGÎ£ŠµÄíÀQ¼çòäåbVd¥Øì¾ýB UÌSÓ´¤!žèuxÎ[?{¢—..f lAý¥égWA¦ˆE`°×³•&_ú`~Ë™ÇZ¬ý „IvÇÑr1¿#SlMaÝ¢‡ñÛ±b8ïŠáø+“N&T^kªéR:@ÊjƒåÈQOçÕW›nî²­jüAI?õÌRÏ]9k€š‹ŸU™z°üÑázUŠ?Âx8$˜ÌaúíÔÑÔ!«a§¥:žV7’fi¶îê Ë4]Ø?ð צ¸±7ôª» pòôªÉ½ÅÜ·æ’¸™†%ùÄÊü%e©Ÿ˜2 p˜ÔÄív|¦á¡øÙž9kõ¬Èþ:Ð9ÿNé°èlÎõMÓÉók£d´J/ iE¨­`Pž$áEî7·ÂrNÆqøìtaSîµqdQ¬eÌÇ9ôαۗc0/^gËE¥=Ÿ† Î=‰lº:ì“rXQ!Æ!xÌ=~zä«&p³W}Ö“{s4;½–§™fÊ3¶ÃÄ [ѼlG&SÉVZy¦P˜0éêÚðºˆÞŽsqÆC²¥#²_¦ha{vwžÆ±±.íöÛ,Ž…DŒÏ°.HšÊ´g¹ÖgoøX*?Ë«O•z”~§"ðt’ï~9e Ô¤Ý' ŒÀÌa"‰|"³9CXN^i§,ê‚Iq’Mð>¨Yg2,à¸ØÈO<=o\¼ÐpJ¹$Þqf=¥¸üÐB9v×{d^Aô1¸ªãI|™Œ•(·…Ø]Yïc•ð%nä@=Ç[Ñ©=Ì@1*wéý÷_zóƺͽ¸¾/ Ü޲<ȯ?ÅX÷œ›ÞÑgT”žµª"×óNêðËu‰ùÛ*Q _Ä?8_?w|AÝóh¾ß¡£ˆbPÒš.Ÿ,îe ßeåÔ5Ð3¦w5/ÐVÈ„+‹È\ï²åʰÊÿ„—fÌcÓÖ†‰Ï=üðéýЙJŽDñÍ|ŽÙ»ä¨kλÕf˜uE4ÜZۻȀ Z„óN]R¥°èEÊK—·Ó”½õ”e#mkÁra8+‚ì¥j?¹èœ`Äwý¢¢Ù­«j=œv±¿œ¾´ˆ„¯L÷%L–§9Ù±@àWázÌV](VKrø‡Ò_æQ …Q(k8ÁôÎI¶ß^r*Ú«†Hm·º¶¨d"ΞóF ÁMŒ“-Ç•ç‡re†p…4„y¦ö7ík~±ƒ+]Ô|•¾NØ£é²yÑäQW͚ǘ*vÈì"«sÉSÚÆ|Ñùy´G(V_fÜÏÓÎB™¡ˆ¬[œí×]àœÜùnÊr|¡ Ý&ìGë}ÅѲ>õyM¸sÅx³t³²Â¨g#O~üâ0ì\÷娧Yp!F@Jà<≭/Žv…/HF_6\q@zÊjìm§6uÙwì:ÑüWj…ûãI ~¤\{ÄVó(ë{F´ùä <#.¦€a}`_b`k+’«‡MZSFf˜ Òpb©¦¥Ý'¡Å£è’¹AXû—-Ú,…´äæa€å½£Ý£´ËX¥B¤ãØÈ燕°¦²¤%ü<ȉ’üºÉ5h—僙Åê××› ño'òø$# Ø­¨´foo_i•,é|D:ì"È¥Õ™¼Ú€d¯1"ê¶–Ï»ÃûuŸ¬Ñýâ+y|βùõÜJœE6ûY2A™Š†Ñ;I™ s†oô½Sy9LF…~…ÓoâÂnÒœ?„ˆÁ¿Ñž^,’–°FJ7V_X3L'?Toæ~­Ÿ©& :Wÿ‘ùâ:eÚÅa'ùRc…´P¹Àªux­2¾“UÅKà–m*Y ÞE†Bñ틨Ek¿ï)Uø»W€Â—`¤ÀS[SçTc¯b®e¿ˆ°’×E5!CßÊ^:ïehíÙO¬,ôÌÅùåX}µÞŠR,ƒD|DN®º  <*GhæÀo›Þ›æQ^èzÐÀð_[Š"v5±×xÍLå±Í]GÙ›X5Õ• a[(v%<7IC«Ž²mÔZi|Ö&%;Ì”ê_O Êú|Ä’lR§ËΩ>yÉî@î_¾.Z$\Os€eM£3¯ìüΚ\ÏvÑ›uI³Ð÷=åÅW|²ïi•ºKiŒúHB 5ëK^ŸÏšD-÷&²Ô9´xFÃäª}s®LŒ‹Èa-—1ajx»ø'çrà½I÷)ޤê•sÙª:ôD¤éW7”ÛúNÞ9I*ìz£]äËn´ éÝ4óå\ ¾_aO‚glI7 "¡¼žÜþEŒšƒOõª$—ó-Šº¾c«>3‡ï–XŸû.;Á(czù=Þtß%€ðcwØs—HÇ¢j·­{WÃ+ŽBBçJ:ÂCCâ«Qÿžf¶ù&†)Ï¡¬G¬ÞT5G’"©"áàer«ÔHΞ0²m=ãh¢¥ÙBâŠõm\Ÿü÷ß>qÒæ‘m3Ë9€îǯ¥€TFìë^³æ•5™ñ‰jr öò:ãÀ/ÃJûd›[*0M7%_E6÷,†–¤¸m^m2—%»j+ Ö(æËK¼y{¼QX•BpÓwsC"cB¤o•üÁ '=§/­ÌüÙTvö© W]‘¡IßWýU©ƒ±±‰E8Ûãi‹-…‘×Ì´àk•JV¿Ìbž‘†z’J*_¹Ê/VK|ͤhš XüöÞ/(~‘]G·f…r/¿¾>1P* }·éœ'E—[2®ª¶&­7ªe—Ô±~?fxº;¼ò„#hèÃvµe2–˜^ýA¸ÛÒƒˆ*Ó¢9R¯6bˆFÃT°e_t/ð³ÀSùPØôšËÇžVƘ^G§‚«2ûFý7Ë’:Ió¹ |•ÄØ¼}-¸ýX‘í>¬²© ÕU’ ÆÂ±¶¥Á2™ ÓïŠ_ªÛÙé~h{0?¿Ì‘p‚MÄn/)#Ê{ìÉ*oVæe¿àR#§M § õÇ ^©&G›ytÇ‚çËHqª©ÅV• ²ÄV0¤åSšžt8|!±}Õv˜ÝD€U&Ã.zk['v3?bBgI_nø†b†¾Ú) ØPë nüÄÆOW{ 'cû°%â7oÛÞæàtM‡Ú`F ´›‹~aU…°qdêÛ9ÿ#ßü^µ/+Q'èŠdwå”m³WÁp¡[Ð8w ½ýŽ¥õ k+¦…U(¼!$ßxùµhµó@†Ò‡ª]«)ÇÆÚ~­ú}áÖÊŒµû·oAŸoÓ#c»èÖçO1ÌýÊRwVçnÖ2Í ª;lÀÔ”àaW¥÷ÛñïØ¬•µ:9|ˆfrëq¸'§­‡ö$Z=q]¸aúI’³''Àùµ–B¢±¯¾´æŸš~ʲ¦•m5Öz›”‹ÿh©ï{­˜ÁÎK…;ͲTaäkžâ®HMJ Æ¥©4à„m0Ùƒ¯:ó3|¿ã&í+w¡]¨‚ø}½«¶°ÔFy-öëÞ•ÀCV*Lø¸®Õá2ã Æä ¨{îD¹+½a$ñT,o\þI¯óê©§| ¤&*Wó<$ÌÑlÍ ª¼wS!züj™¬F/öy¢SÒ‘fˆe×ì0™áÁ`I#ñiKCa ‰[5¤´ƒ=Þ µúwØVÞøÎni7ŒÀ«u) —¾8^5)z4Ø;¥¯Z†@fyW´m1&‘7þ~úȺ!íþñÛÀ2Ú® ¹û™âÂÕvMàiìUXwiôáÑšJ¢ »m-4òÿ@7¿È¦E°~جY®Uð÷Ö¦ó5þò˵‰"ðP2AΈ÷‷œŸ"I50ïÂöþ_Ø–¶ïOóV%Åöã}ò¨¬âab ©WUÖ”¸Qfûnr8;(°½Ÿ¼© ÄÈÔ`#}}÷RëÈ+ê_ÀÅt sAV–q° M<˜™A9ÜÊPòy.ÀŠoÂ.„žý›¤¥˜(´Hd€†£ HDÃÖ·É;‘@Q(hœ}TÍ3ìtŠ™™hÀpP1Ä@§ÈÑV“΂5°…IcÓe#jÇZ– ­ð ó­]bEd5rÇAõ&âòù@V§IÝÁ\zV¬‡tÉrð`Èú“X.XÀÃá ÛïDË,ÄXô\È2øâÉb%ÎîívÖ°ó&N9%ºïç{ü}U¦P¡ñVV¾­“/™¤r•m§|Pnèi8˜ˆÂëWòQ÷üw ”8@kA¶®´@ÚG^$EÔg&¦ÔQˆXZáe=ój)ÈÃ%M@-@õÿí¥§Ôô$ϱ€WäÍBÈ®á¼Ì¡ Æz¡{I|çʈ‹¨qxSboþ;7}ùvgÖ_†-8°×W—¨ÕwÊÅEE E9?º@ú_,ëòKêϼ)•Ûu.â!¯E3˜_´Ï•MÄhJÐÆ  u¦/rálCí–ív—«=&“F“Ѿ)âÁ‡£¨¦4¤)ùдs7à "gVI{BÆÓ>Ô §ûZ`Ÿ º\>ÞÁBç'P³šZû¥bª’mFÞé;¢¿Ç< ÓbtÉa²Ã$C¦üx*I;SYC»gy[¥Ê7Рy=È7¼3 ¢ÔF0*²‰±ùV|&G­ÙÆ¢§Å—|üª!ì–ëc‘4* ÉÚ\þgÓ7üÕ’5H‘YJ°Åçhñk‡â& RŸ‹šV’ÿÿ_;'+¼ÓÊlQ±=wµç´×i]YËÎ3{MÍ;FKuIb»Ðu.ÒèÅQ¶5¿<º<¾÷(,*BÀ.=AýFU.|¡³kÆeÓØ0È€pä4GïÂå ^¯;dÃ-x³Ýé¼\¿Š!ç€)f5qÕ “²'_¯~ am‹<.ðQÉÍÙm‰ÔàDX¸§j™Ð_‘iýÜxÙÛ{“ƒ€ž{TÅ~,ç}o'/É‹óX²îV-¡¶1¨º‰ŸRò»hV{Qž"Ê,²~’þÙ[]ŒTUôó–)’ 6µ;NYÈ‚yï¤Ê'­¼~qX½1&âß^^ùW7Vü•'R•6˜SÈlúBÆ€—]ºÜ¡^g |-ÅúkDöMßÀÖ}‹€žyöiîÅî}X¯DDqŠ5sír×KÓWBš…͇1_¸Y pgjæhë¶íЧ­Ê'Åã&ð0)õtô—ÁöÐÕ[®~úÕ‰j!ÎÒKŽÅ—Võºh#<þèý°$ÂKý´¾¢0zïQ‡ã[ÖЙèìM¸éý‰FTÙ  “›ÿv£AC×Ò Qȃõ¡‘Z(Œ}ÌuÍ!.k‰Øæê p Ÿ«ç<´2_ÿºÂàø¬«Æõu˵ŽâéåÇ6Î)Z}—‡BÎçÕÎZA­J"5ÔbË ¨µ÷Àï¡å7}ïg„ £"*¼É‹?ö……M¡dÛ*ZV’K˜‹ì]•…8ài$¥,ž3p4éIÇ Zù&-örJˆLã_†šHQ« 6“¢YDe–)¥¯õëkP/$ù#“£¨þwûË»sc4O\êÚŠ“‹Ðxƒ`†"¤5LÆ&9¬yÑ@¡±Öâù6Y#Ýâ¦(G_Q[ IK;“S6ó°Rœøâ|F&Nî°«¿.Ú„ ïeJ^?3¯pÀÔa ÍÞSî"Þûš€­·WäZ‰GaŠ®xYαWv[¯2I ‰Åò»Ê,0Bò­˜…¦ÔZxPŽ> 4’~°dØ›ˆco„ů)¿2ÝXÐ}µ¿ÄxTj¼Q%»àm‡ãÍꃓV›÷  ”ñô3znh[í[sÞËÏhpºR²R¼ÏFPš1ÙEˆlí/”ã)Ä ú,[3S‘Y\&±m@Å¿šûŠW§J«rÇþ[­éPLì:À7ýR¡–ét<&DöÐN}}ÔØÆZì=!ÍͰæ~W˜Û˜VĪ5‹ÇrÝ¥<ÃÚÝO3§@¥:4™šn»ô˜:™"·úmÎÞüû¢? ÞÙÀÒÿh«š×usCò`·¾«¶¶ôɤ”AÕÃ*AÕôx¥Uý’)Ö@ÊMx*s­»Œýüµ§a·®;úWÊÑá õ2L@ÓžmÆ0Æ÷Ӈī«xx ©ÿci§êúG™MC4*ዽ‹J[9~•N@CëÒý¬c»Va'šEÀ.€ViÏxÛ>\ó™”~Ñ1EÞ\”’ƒ •Tó ¢˜âJ8~Ú©‰×m†±>ÎWRãž÷õ½Gñ‚™žÝu¸ºš¶\æ×\Ó½!ÐÁtZŽÖ%çpO5 Bm 3d6…¨¸wàQÀƒJŸä'͈Իο ò~-0à°À"”|æ ¡Nc© UôÂ4h °HBŸ¶*Ýܦú#>?Ô êε¬bf‰Jû¡À™Ó}ÍÕB ønØ?=9»’ŒÉÏ©”µ €%ˆi"èQßßÀçfIgL›Í¹uvá4šK~÷`Ê4²„7Ïå ÇŒ½±äù7L‡F6|Ù¬3ò±°mØ iO Ó©7Ý7–¥ Iÿ³€Œ„À3°C|je>¨ÂGÅîci]òg;­mo(2£d(®)œ“RË^8üöÞ‰ª+K?Û¿RI f °—Ë;ÙmGNfÚ÷ :ó´*Þ0-.Í-8áG­.¸i ®É@ŠÿÌÙCIw7ëbýq–³Q ¸{»~ÊlHQO-èÏ 'ôN:¨ä_pÖ î”ºd\‹s4ºnœ”P•Ú•Ÿ5<O‰«Ã¥9TF:mÈOÚ±WõâãºÂítBÙÔ!Ïp«WqÈ펾ÿ©¹½ÖØËÐCÛĨ‘çT0Ò®[KÆÁ‰«¶XÎ#?ŠT+G=Zƒ"Üé„ÔÉ-©± ŽË³¥¦h¼ÃKÀÁÍ öÁ ëôYÑF™®O妜kóÐÆfþpC§/3Ø^›Õ³V kÉ"Wî øIâ­ø —{L¬ŸÜ±X}a R5yZRŽ^‘”ÿD†‚t™NùÔü¸£y~9“¢†OàÂÏáü;5aÀÆ2øÐCè4Oª”òÄõ|@Ý–r-ì?#:%!ûÕ›®dW ©è0Àe„…Êd3F¥ÄGwÝ®úV²p‘Y‹-ûw¼Úr›êÌÛ_õËÐÊ¢M¾® çSy/š£&ÑÉÝvoÖ]:œÔP:ôMp-&ÏgY[¤ˆ æ ·¾š†"#ÅÆä—ê…ù<çסÏèø\ÍÍ#é®ô<ŒÄñöãà!\ lº¶+m§•PÎÈì~cFwKíð›4ÛY•Ó£5‰—g=Ï; ØóÔ)ËG~Ì;O¾ÉÆ"éð9ÿûÀ홯P‹Á¾”ó1¢eÑÃ6â@m2F§ìP…؃¢Ê†|,µ Ï6×cgCRWcƒû‰Ëðb+{J[ški†<šÿc/I|_$ŒÑ%ŠÏºXvbcSý€XÏè.¼¾oÚ)ÛznöÅ9‚"XU˜Íj…X¸Ä‡æCg¸™£hÆX9'ì©T™ú>8rd‘%)ýƒ‘ðóÞg¾ØeXs¥’“ß÷б2ìi餧 Œ/ZàIƒ<"kÜ=€O§„ÎÒ¾é7](¡ßøwÜ^®¶Õh— ïªz©«4­ï›¨w«ì$âûúí&| AÂ9B¥f ņ“ ‘§›áÈÐg¢öiþ~¬®b:üžÂCÊ@ÍǪH9Cþýg »²vœŠ½*(O¥¦òNpÿ„#¬ÏëHë€-K°¬‰u ãxÄ ]O¿JÌšXŽ8ƒdÿ‡™œÚ»TH£úfè#ÌÁO‰2µtXV=猡1Ÿ—XO”Và|Ð#Mê âôÍÞK°‹ Fû^û#/ËãÀ_…à„ðÕ.'¶…7‡Zoã[*~È÷´½ëíièˆû¡âTMà»* ÷¾DÛG0G#¥WÄÀññȸ'Xäð½Â9˜ 8–ù¸åÜ“„lÌŠÎÐÌ‹!&§Uø´™1X‰80³T* ¶k5‡xÈÃ’ ,&6ÑBCló%åmì-œ²)–So%2ò›¶ÅZ÷{¤Žô"ÀiÜKaä@Ò˰¹tE&]ŠÊ4G^yµ"M;·Ó×STB~6Žù&®u‰©·Ssý–‡ó8’6ÂÝkÕPŰ`‘àÒÂÕvÛÖ§?´ÀpIk@¢ðr¢®ü¾JÈ-¯îøn¶r®[ Ó7ªG ŒZ@±¬fœÞ#iœG€þlö8Ÿ¥—w‡=d§Œ'£³ú‰lÝ€“F¦#<¤“œ,žË|o{‘™)Ÿe¹„Fê}Êj >­cÎ×IÙ®ÀUiçÉÆÔýo²p蛓ü Yb(‹Ûpާ÷è8¿ÂSö~ØG|íެŠ\×Õñ&Ù2µ òÊÅ› * §e/í±C‘ >4d¨·þyñµ› ý®,>vÏèîú 8È ƒ£Ç½vFü¶Âˆ†ì! „Û&Æ7d¸ÓçGÁ49zù&®kéoÔP‚L ýXùz•ù[Ú>>€ýˆËgß&fUâÿk&zÍŽÔ¶F^cfc …•¤yÒF‰>=‚ƒ5¸MDmªBý4l@³úñš:C#Ý0%‚A@LtÐW“a*Ñ!’ÊCœÑ’ÛÂA³²Z`±ÂÙºê\ÕB•ÅåÈ:- ,æÿauзÑùÃ;c˜ç,]˜‚Y®7üæSW‹ÍJ*ã¼-[ó[’¸×¿Z)¸fî .V÷±ÀÏtýÐV&¹ÿR°ÃNZ ˆ1ˆQ~°(šüÌ«Úñš¢ñøzÌŠÈ%è²ï¸â€7T@„Ï0‹|Ô=†YžŠMý'(ìÑÚ…{lÑÓ^•ó†ë™zp9¸%Žä@Áü¶ÿ8üX Êíç¬'œáü³qqyzC¢ûÐ'ó8ix`i`CkÒ KÆ2[Œ•œšÔ3}‚aýè ÜüìóûfúƒuD/¡ dJruþݦYÄ 2‚ŽáÚ¤[D€í:@peÆãN#¯•ÊîÞ›Ò·¢jÁÓGVÎMl$£·t í§^ذ¸¸íÈU¸¦äF=xñ½f¥°öqØâfâ´õc^LC£>¢œ¾*¹ŒÐ0]Ù5Øðõî6Y„ûil„ˆ¾Ï„€Å¦ýœx¬*?‰’Å!Y†¥~·I’7º¿:hƒ}¸Oâs‡þÝÑ¢f¸c\wºó °DQã”}8€{M÷6øÝÜ3N77lcêÛªxYyµ®oÇõR’TŠm°°ö€ .!òÿxÊT“&Ô†á ŠˆW qì /{j²Å…o:4çlðˆ;µÊ]á›ÐÌÕýйæ8Öê¡yK.CÐÍYÂŽ@Š—Î1ê‰nw“íè€3ìe¡{¤™n^“Û=©x°‚ô`nh¡ªF}3›i|!‚„W§‚žwOW"vÀŸ¦gVl*R~…Ÿ!–B”†æ³-k*¨‹âT˜Îq£¬þ…îVoãEµé)Ë߯ä®@b¤,‘ÿH3@{Po„eV½cpg\}öK›/6"Ê;j¼{˜T%ÏÄRm¨€~;_OJÝú·"#!ûMëé-Œ—´Gš·wªï¿JÌé?ïwçØ±ë¯°îrض”n'®¸½ydó~CPàGT¼®?ÃÀY ²u¬xZýà£}111ŸðlBÝÛµ'[(‹œòs,× ‹ŸGÚ‹|Ž-e°Y »>HªÐ\>3¯üòM Y†þA±³1RY»Ã™ôœÅ4EqÃ}{#?cFÑ»z¬ÈKæØ=2/¥Om™»u“vtíã ²wº|Ñ-ŽÎÒ‹œŒ·ùw÷7Þ÷(ÚËz¶%5;Ò782Òj„_LOôáYuÈ‘$ÚÚXÉÏS„Î…éH>Ön[´¿×ßù®þ÷»ê¡4•ü#õ,ίRI÷kí•å²t\sC’¯4‘Ìh×q*C--ãsãò‹.Je3ðÙµÝôË Œz–Îe»áº¢à$?mIŒOÀëÄŠ~D%O¹¢- †Õ¦dItr^Z¡Bƒ “¶?C,Ù ¿§øz±(²Z'é iìš^Ÿ±…¶`Y™9±C"%Ê@ÿEAëÄ\Æ…ðÉDôìmk8ïëDÓ?ý7à¿‘Î/à-Š?¨[™¿ëŸDƒà>Edi‰‡•[{©%¶.Rb >Ê~AœÀî:!iÍ J9×Vfy¹ Á€Þ÷–ÿþjÿW:Rÿ·=²DÇŽbŸ«xO×crÊ”úgò’¤]²Á–ïr›µ¿@KˆèŽš¥s,ÕBs醺wìAÛ¬â‚kÝsÓ6å³ ¡ÂB(ƒñ¬¼¨xšà¸‰k‹:wMá…X׊¥è\kE*ÿ2(P†_?f YæT‡ïýÊÂun•Áž¤¦MD[ìÇ:@¼¾G÷³‰® ì(Òî_JŒHm—JqÏÞ‘+P§Ÿºe·­¨ÿWáá¹ÙºN™³¶`”å´Èó÷8J)p/ ¢²ò£ ¨° MuH½ OëÍNÐ àÏ´‹Ùä}‡p+ÓÀUøÍöæ÷ ½§¢1ÌTìF¤çuM;¹@RŠÔ{¤M·»Z§‚hBÂhi“€ÈÙÐÔY™lî‚Û_:‘;U¯ò-c"3ügÃ[ìë ‡£Ö´wpðý4þHâÿq`Èì\zùÉàømߦœÇDX“µG)§ˆÇb&'QÄÇ_Å“haT*0¬¦‘Œ†î]!ÛÓH€"½ÑŸ‰‰t ¿‰V ˜þÕŸ¢hÛ)´PË—=Ýäƒv=ol8Ö'àtLÑj¤ Œ «ªðE¸ƒX/Ù†¼#§FI´~¿oENJéâŸËÁ¨êökš'™È[üŠõoº+Êèþ -ILJ+]ÈvxT¼VóÉô‘µiÔ¿ÉnYdSHÝ›˜?‘cM·t4½Çš)õáÈO¿l—®¸ü]!Ôe¾½U¾jÈv«é!µíû›Îýæˆþ­¡ä)ØýöÃ;_i4ëð‹E[3¿V®k¥Pà©J_“/Î,Ùl§ÿÈ|p=v¾‘£­ C8ðv ‘Êi±¬¥ª™^Ü¢Í &ìϾ© èŽ;qÌ.¬ ·?o$˜©}xïø Òï4¶#üapõÝfÁBÐÍϼ O¢Óšowè*„yÓe8±«Ì6ê² 9ï¬öŸì’®ùSͦ7ÎiP(s= ¾<¤#Ä»æ4® îÏ!ƒàSJnN(gg­Bá·z?–… ö‚âe q³g$KÊN‡_å*W93ÝÀk¤€¿Þ"ó Æ€{qK—-Ë÷ÙÁqËß:íÀE_4ø—d"?}Å[¦i¸y?HÊŠAQvr6ïKT}±ÆGu>líSãg‰-S£º>«o¸jÊÔV ëå|ŒgÆÖݲ„Qy*O¬³è*3Ĉ_õ2Ü9P¯‡r¡ê‡å‘í4GuQ;ú:vÈ›AÛÏ&¦A6XŠB4üpÌX=c V=œ3üå¿sÕœToJÇü ”ó$™Àøª3ÒÇЃ†yVºCʘ Íèy‹ÏKÜmflÑò0Z€VhLŸ³(®’Öµ®º æ¸ÌÔfÈæ¥ùÕŽËR&€ÀŠ{”¿v‘±n‹„|ŒÁ¹Ÿ2»p+¸ˆ2.Î^c¢§¸ƒà7áéäBêt{ðz: ²1—êýìH*Û™½œ¹Ö D Kqm¬L}üö¬i‹ù¹ŒÔ ¤ñº ÀxIåä²/1`‹¸Š;éð5~_c‘Ãgaÿät¥†W¦â¥D:;NÂvF«Ð– ~¹mp5Q–bï©Ùñ·sOÒܵQvãÊ€„( cÀ¿yo¦ˆÄŒ}ʳó&);äu¶¯ VÝ??R]¢ce¢ßrȇî¢"©-U¬tIÂ!lãP¼L„ÉY§oÝW jä:!É|ûfËEæöo•\RaÚ /sÎ[?:öXâÒù xüBQkoq8à#3È’¬wðæ#ƒ 8ǵŠöŒþË 1?WE°+K¶ dM{T&vM%ŽªÃNÊÙ¬XʦÉb üñwV: «úy,1ÃzÉÆ-Á•ïúÏ|òIü‚u¨cÙ!¡‚Ü| [GÞñˆðÛ2Õµ$­Ù²ÂÏ´j†¹EÜÆ©:lJ*ç¹0¶£¢Á"_ðöy š‰ ‰‚%xyÄjÔËç-ƒ¥üU .ܱÍÕ`¡N“p™ÒFcc;»å¡ÿb´Ð+p)s˜.CÈôõO;Rôd¬À#uåR±ß‹&IмùIÀfÁצ2°tg° rSÞË£J áWOPû9šN—{WUKk&tÈÿ‹Êeu£;I¯5$Xf±å,gƺP›í4à°Ú ”4×þ“„r¨Ϻ‘úXäŸW7lajò !üº4Ðí1Eõj·£*w­ÝDŸa{¶‚ít1ÂîœÛ)h݆žô º†`ÇŸðøé+U£;ÏèÚR|S ‘šŽë(ho‰#zK`ö4;’ñ¶~ ‹™Ü×ë´àÀ•¾¶¥ Zó>4²…ÍùGVÝ$ cïk]eDExÏàƒx±ßp†1Z}Êtî0®,xw¹w߀·úî¼Ë¢eÃ#>¤Ò\¢¸ ó·3Mú®…ñަP†¼c×ñ·³À‘1>"ô“¥<<74–òøûLÒ¾!ú½·KDð+9ôƒu§×[Ãë'„Á¡]g2ËO6ç—c-ùVrœåPV_#vj¨noÝ>¬××V8ìÊ»9ö!¯ävƒzPŽ¿S‘ñ¥n}"¦_¸'NO}ᓚ^n“(…™††5õ—Š£ÝRGÏŠ­üCßšCâìíXØ4 ô°+×DÖŸ÷r™,V7 '{¢ã1™=÷Rµú‚Tãú•{i¾ßQ¾HJo¡² y»3û]—›@ I5"¤²`ÅZ1ª9Ð(sÈ´É,ž§&ªÔŒbÃÌ«ÕÃîr‡Ùïɼ*… a:c;ƒ ‘Èã xoþQ1 :qDŒ¨˜` E€ÏYE«¹®6 °À’„èɲë²íå'Sp$àØÿG2Ì…ÄgTñšÒB,•ûÔâ³ Júp.½+òòþ;¼£ QÞÿ!ê”dÈ üyé61Ù;Õ$1ô›륒ºº-¶óÖc€Œ+¶³¾[bñNÙPéºÊïìa¼ÿÍN/9uÅêûŸ§Àë\À|Ó¢_:%wQ—Ž[ œØÃmˆµëãë Ç6)ÐZZ¤@ª¿<[t(ö®Š(2Oš ¡&Î]‡A᛹UÍ>½ ¦Kùã7EÅ…[ÊEyÞ! v"j°Aqn.Šm:ƒ÷•Ã}ô¶3ÿè&ج¯t±ô<ìb~Ñé£N’ã’T„ãúE4LÓÔÓ¦‹q@ØT-äƒã,o“Ü ,»¸Ä<Ø­2o¢œÂñn]t–Iµ‚Àc´ Uz÷úý\N1[Q;LŒ)­›A)spËŽYid²Qœ}ÃWìù9€ZÓòáYFaŸ2<×ò©ÍWK`üÜ3xŒs…ç7 £º¤ŸÊæã-ÉÑ®Ò,.§$ÎV;­òÌ¥»iã¦c4ø_¯¼ÛÄÍÅäQH7º–âd×9U³¡ZzÎePtv2TÙE±zå7D¿ÔA™ <”¦7ÎÐÁßKƒ¡ëwXadR9ìnƵŸGBFB€_zÉ@ßAnbkfBЉַbزÇÒÇXÓ‰ÔÂLFuÿi³Má•°çÄ ‰að][ƒÎAª|NNªvßþ¯Çš”GÿaK<¬«Á*A[@òŸÏFo ùPq½›‚‹Ž]ÞÅ®'°Èþ"Ì“o¢,Þ˜<¯CQBX’å[úF‘”Êà?=ófm‡¸ 92?à)ëk°ž\_£6Å"äÂø7ÒŒ1.­.¿¶¸ÀïöÔ Ÿë훢LkbÅ/æ5×+dð¿Wö37|{@i:ì9Ç¥—²Ú‹g&vÈ¡.p ôÛ¨2éÖb!t½ã«9ãKž¯]ïÇS¢m‡£ws·L?ëڣ럗¾®+ãø”†QÈÈ9qšÃëjvR³h˜0Ed‚,‰së‡fØ9ýþX[—ßîÎS.Ÿ0Ñ;»Ø™á=¸éá ¾*ªù;*zægx‰;¨%ÍfÖŒoJ„{ü?QIþѤí¯¾Š?Ÿ‡ Ø@±¿Ý„±ƒ±CÎ\.’ô©ÇŒ OŽ7ACT-ÇÔQЦ‘u[CLsKuË!øR”‚‘†3ÆmF˹6»´)Ò£’9çHô°ÊˆkT€e[ÂÝcR.úŠIB¶¹òu˜³._ó‡,•…CñÐÐpî6NÓSz ¹)íÕEîË,µ ³&¨zuV»f¡‘FzjÅ‘¿ÏÜÕ !«y¹Áè:‰+—=ìóÁšaÖSVMŒx›ËßÉ5àꋊ«œ™dw§cÃ8»6…J I. ƒ‘S¿ÒàwwöRÃþ“ 5OZ·Ô%³•ÄOUûGÅ î6¼ZUv¼y’ä¥1Sá"éì|;Ù‡¼KçGÎ’vqHþpÊŸ 3þƒÉsæúfDB‹7Ï ì*»¿í’â¶jœö µãÇVÕ pü¡È›ÁE*gƒ =*Š7P,ÑüèE— ¦Gl¿ÉÕnß·ópN³wÍ#fèÌÍ, M €v<‹´õòÞf÷%ªEõ#t»ûöHQ0^.'¶ OêÜ„n€é S-¾!oõßuÄÅ¥üè%VIïÐŽ,áˆ–Ê ßGÒЧs½riöˆåRFÛx°ê¿«Óüÿ>nÖË ã´—G4sw9å\fä·ÈVÌ>À3QŒ5åUTnbh:£V6nž¹÷»Õ??½$þü ”zEìÆ¹ô’—ÃFÏW˕̪N“ÃjQ:x£Ô¶5žÙÎ AÞ¼±üOåýª Ø?ÝãX?Øré87rD†h(Yô]I¾ŽÖ ë+°ñ|EyÝ5¼üBQ©ÅˆÊ g˜+ŽQözµ²ÆøN•¶B›pɭѦÂ"8cr§”ðÍ”½ˆáÚÇ^]H]CþÆŽž=ñ¬€øÿÏKÙÎr~°škj.`kV-ªªŠôЇ%°¸Ã6CîF=§æÅà•%YŸ™ã‡;íbN;"è °r)å\ÆÛquÆkÕêäÌM ÊÍcãö7¼s›We*òÏ<˜>sdùÛƒÜQä”ý½ßoÅíPÍýüJw-Üó#ÛoóèÞÅy…Áóà%alÀvÜry8.s,¡ž³³ðŸ­öØœQ+ôn^-ÅÖh·OÆ*mPÌN* ì-4—N'ÙØœ¼ 8Rë'ÛÓ,j1õkY¾¡†ŽEˆìiÄk±´øô°xu5{Ec6oèQ¶U›ØˆäéQapñ•#”w|F0†Ô!UJâˆIŸãˆn- Æ"Lü)}±¨JVδÊÖ-Kܳ¬¥g¼'J½ ªaØ,-•òwoº‚¢çŽ&4šZý<+dJ³¿jÞÀ é¼ ƒz£ÑtkŸ+ |¨7ÅA×ÓM°—ŠÉxý4eh‘%Qó™e@Þbæ*AÁlz6>àƒÒ" ¬RB ÒtC\_Æ8Ñ@ä¹ÁZ6…:áD¬Z~¿XWÿÛOR:„¨mâÞÙJp©ùkuëŒpîŒ$]3:X˜Ëv~EŒ/Œò.—Ýç²JÚs@VnZ¸L“Ã˺¡À£ªU=F§`Þ6¾ÿ$X{‹¸OdýÞ´›¿º™#a¹qÏY¥c´¾[|á4Ó¢`µ4ôt²ÖPKONlÏR[©?\íùŽMcÀ¹D,ì/Ž>c±ï§—¢¹úé¶reXQaÝF´Üå)åâÄëÚ9¬HΣKº{“ósHåéña˜nÓô×u‹ú…›^HÍâs¤M‰ðLî5À´àÖ!ŠA 'ðͧ73 "Ì”ŽoÄÝÿX Üd ]D!˜t!s, no´‰âæ$¾g4`Šdú—5×CÃ1þN>«S4/Oß6ÔÑÀØ_1ë³`ëÇÏ`Dß^B ºª¯¿ti0*§'hA¦YòÔ Xªâ†×#÷ˆÌÁ Ó¿´Y?U–UJ‚Ä?Zñ¨çÍšÁÌAKŸ@û—`3á¾;§LXå͈‚¿ò§Ó‘úlÑìï(JÂa0‹¹i‰wUúÁ¢V }¹+LYDÚÎc^ÁT $,ãE±œ'&÷ÆèD¾\‚õ!4 @ É=H½ð_/2»v0a¼óÀþ~'h—þм¦æfhôÄ ÒŒÈ¸-ÅÍÈæšq$³ †0›’‘ê;X£Š:ÂUñ¾]8uYuLÜ ™Ù:Èþi"–•HþÜ‘DCô™GJOË$ȌۧÕ9·ÒúâøŒ—]jïÓ¯NÐK³ù_®S>a›€-“¬Ÿ: Ç»BvÝH$â6âÏ«Ö^‘,®þÁÓIÅ™ÇɆ̤+jUö°4@ý4£UÂÚ^ùkŸé~âdù£Î$ŒŒÛÜá–_N­quzº72[‰âhO–EëеЗ0Éx®|Ÿ­ÏΦŒ… ešìÞ"ºó@¶-Z_N  få3¨uáy—ŽÃÞ­tµÐzûÉ9K©1“©²Ò2,D:A›8ü«Y!H_¹Û >Çîˆ&c¡±ý eØ D}šLÂÍ]0Ú‹Icãùõè3þ˜n#J±ª˜Öd‚*ágäˆÚmDqw¨£’¸ÐÍ8´Awxi‡g½gGb^!oŠöµBv‰úJ‡æ«ôLÿÝÚ«¸~òÚIªçùêAÇ廘 ‡r1ä]ÃRxîèd‚tŸQ€ú\*(Ø.‰k£S(µÿz[ô¢:Ñ„ÊMåúRÞCwtõ½æ@ôCèhu‘Ã!wÀeîMÿAéu÷&“ø¨å+ §´‘@Юĕ°|…o–`<˜a“ÒhaE"瞢¨ß’ß(‹þͦ“_“gx¤¦ºþY¥ÄT?QhÖ°(o/*µ¥®Ôò°¡D䘣ޗª*žnµ¹±D0 z¶%T†°¯‚Âi‹bš±@e@f~Ñøðñ ó ‹7²­<§ †Ô]WzfBJ·BÒd–ºÄB“M'­5ÞU˜àu"huôú!Ù?©â)αnLË,Ò¯;Z¥Sɗ즺úÌÞìÅ 4áyUµ#–G™¶*ªGåÅ»fkïMÐŽWÝ’O Ø>SE±H¹ÚB ]/O˜.'»äp5±`?­z@@ (mþBD—vPìÅÑœus°ÈR6cŒQUöZ²£]›h#£ üTÈü; s3f†õ[,Î yJƒ»±£zulÙ­"ç¶ÛŸùûܨëuê-úæ×ËÛ /̈¹ïHKæ>…’½Êɲwd?´ï{ }¢î ª0œS¯kø_·,_y^£“?àrdLh¶ÒbÇcïPÀ‹¹4<"Mc‘ö $`:VŸørâUµ†âë“7ØŠðþ½kY ÌŒ ¥(wEJ‡ÎDiï\¢0?mx3ëˆBýWÚ·»äð ˜zq ÐŽòU½{¶°J¥œ"4†Î©ÛôÈö¼¾Âi$IÓq*âûér~Ô§Ý\8æËŒµ²Ù_ò!%ƒÜæüLÐÂ6X©ñ*žR’€M¢X'°GŠøŸqPxSB™·7ú(‡` ïB¿Sæ´› 6F¯×/€.2'8,®ÉÞKý öc–EUûC\¬x0X²Xb3¥Vè/û£ðœo«²|tXª+Ò\-tv=¼qü¯çê5Ñóà\h€mh´cì ¸€í 'J‹ä6 <¶ÍzJP®í($?ü@m›!ýVÿÃÿ6ÖŒé8·c„?}¬¯°Èfk'#Kj1RérQ@¦§{­¥ŠÄ~ÞÄù7 z'aàøýHýà´(ëYÖ'í ‹“9M&Aé ‘¤›½ÚÐuÒ„|&…™4!ÄÝ+ßó¯Pì5ú)èÎ^ñ‰ (%r„¤¹˜@¤–GüFAéæqØÚSÛ¿3QļL}Ë{.™)OóbË•¬(!×½QUêÆ T˜Ú#0ö!þoC9¡j·O‹Ðìd,±c 9ñäg1ÕæÈW—Þ”ÓrU¶€Gò‡5ÌÞ@\f>ºïÚvô2M«?Ü߆œâÚA¤„ºp¡wäÉb—vxšŠA «©"^Í#Ðj!]ÛÂkÜ"…Å2±%\å+ÊüGà"ŠÙ67FE?¡È» ™ïÏÐy«³BìÉ<2®~ýž} ¸°v˜á¡ûnØ>vä‚Нt4Xec‹a ÃÚGýiúúÂ*ø1q"3ª¶n¯Gªj;ý '¹³~}õÀˆ|yÅ¢z½ÚÒ2¨0 B4€¤Ù+™‹›_,õMþ/Y2’º¼ÅM¿— …pS÷³QJ¯ÂÌ\Äá Æ\-mÀB‰bMáeóÚó}f V´Ì È 7çrnÔLtd²Àʬ(DòaÿÄ«r¹d›¨b΃ÜtÂÞ¿8YiTóº\á®éÞNžß7D3~w+ÖAËÑ¡X3AsÁÔLò ™k¡Xè?´7ÿM2%kÖ,óußN¯·/èìÜKç©COað»Â¿Ñ‰õ»NØ\ØC¼ÇT!†Ÿ^ƒcË*,ò&²,Èn"Ä|«¬èSívvíÆ ˆºXGó1ö8û#ƒ<ÓÜ&¤ø„î­ùí\ôÙZ¡aƒ€ÕKS_aTðÑó‹ý¬‚žZ—ßãmã.š¸0ŠŽêI¸P"1„-`=Ãp¶uÜÆmº©¢>ÕРĶæg0Ù»1îç!ö[>ˆjÞéz\„Ë0NãÕb|Æ®ó â[Ðà¼f¨n÷·ªKÔŽ2"÷Åýöƒ+Œgð¼ oO¦7•”ƒ(LZ•Mbì³ÙP¨„ßëþ·Mö9‘Ô“&GÆ/[.?S^N‚4Ô†Æ3® ù¤ß-ÿÎÁ7$ù¤}õÚÑtg©a!Ƕ½[€ç L33ÒuÒnQõ@®’Aê¼a¾ÀÚN]º²‹#xPÁ£¬3ØÇ ·±Z¥ó ê8Ì•ùÍ}£ªÑFÊ(4§Ô+GÝ#í;ª¶¹æHu«é>°6Ƽ8t¤vÇŒŽÁDr¿ªTØœ¬å­š¢rù:Ñ-Çj ß¿F7ä:®ƒé„8š;ŽåãxI#ìgFÀ–ŠÉÝã\ œoÛûáþb&;/é±JJ'ÂË3°8}Ý¢"ðcÖÔØÎ½Ð8/€&˜±ÁöÁ¶F2²ýÖ6–âÚEÜÖíÕA,€(›Ûœ‡bSˆ\nÍïë9S–£æ‹žaæs½Øp)‚LTuk?­nLEîðT†‚:ŽéÆËT«A§qäyÿ$†.\ËÈÑìà-Ç^ÚÝ_Ý¥ý¹ÿËCy!Q4¿T”J«ÜÅet° endstream endobj 110 0 obj << /Length1 1988 /Length2 22205 /Length3 0 /Length 23438 /Filter /FlateDecode >> stream xÚ´zeTk¶6ÜÝi4¸»»%Hp‡§qw î ¸kîÁÝ-hp îð‘3wfÎ̽¿Õ«»zûSû}Þ]U«›š\Y•IÌÔÎ$mvfbcfå|TP±³‚ÙØ™T@æ.6@G;3++'"5µ„#èli–:ƒø<Î%ç·Ø7VV>Dj€  r|3šŒ= g š‡=ˆ @ üKP¶srf2:½™A`sK0ˆî-DÂÎÞÃÑÒÜÂùO&¦?™þD‹3ä&ÖvnNÖ– Ø ϬÀ P´s{SZhíÀcÐÆ `gPiÔU¥TT2*JêʪtÌo‰U]ìííÿ‹„ªšº #@RLQM Ò`Ȩ«ªýùTßð›3ÕÞìê¼9þ WRSÓV–bcùs6€+ÈÑÉòOÙÿÂFó† ðoho¡fŽv¶ÐZ8;Ûó³°¸¹¹1›»893Û9š3ÛÛü…OÍÂÒ àfçh x;:‚l@5ÆlúÖNg Ð?üYÀGKØ ô'HÚîFÛ·V¾½éÿì­ÎrÚüÃàýG  Ó_±••?l–`g6yst:»8ŒþÒ½½A¦ïÿpqtüSCáŸ&Ç•ù'tq»·3Ó³ñòºý÷ŠÁ.NžëÍž¶‰ØÉÒÉÙéA3KÐôNÖÌü—NALQNZJUéãñÀL voÝ3;»;ÿåý'Ÿ˜äG~/+7€ÀúFR)°©„­íj'Ä?í“´|듳£Ëÿ&¶5ØÎ ìõÌ,Á¦fzoêbÏ¢¶tpÉIþû› ñß:s3€r€ÜM,Xþü‹/ÔlÔoðñ²·³˜mœ@>–f ·¢—ÐpvtùxýÝðŸ"ÀÔÒÄùêoÛñ¯ìr`3;ß?ÔoHþiúÐþµUéÞö©©ØÆ` 2CdQ´s~£íÿŸö_µ¤]ll¶ ÚÿÕÓÿvÚZÚxü§ë¹h‚þ ¥U´s´Úü—ÍÒIÚÒdªlélbñÖþC/ç |ã¿ØÜô¶,©Ôÿl)›7î¾ÍË?ã ÀÄÆÃõ_¶7ZšXƒANNNοL ·Füâ·îÿÁ `QTPQQ‘`øß´ùËO lbgj 6°sq€ŽŽ@DÖ7.°sq¼ØÞˆm rÿ‹,f°ó[ÀÞÅÙ`fçˆøgAyØ,2Tÿ8,òÿ–xߊÿKâ}óüô/‰À¢óo‰Àü—Äñ´µãÈŸõý§–‹ÀbfùÆÃ*ØXߪYüKääz“<ì-@à¿y¼é,ÿ&¾%¶ù›È`±ý·Èöéo±loxíþýÍ×ü·âlìû›¹ß$£¥Ýßð¾¡s²tÿ[Ä›ó¿ÍoÕœÝìþf~ëË¿¾Aõ9þÃþŸ+«ügºýµmYÿ½Ôÿ3öÿ’Uí¬Aš–¦o—¼¿¹(-ÝuYßöÛ›þíõÏoúÿQ€úßãâoÑââvî^Lœìì&vÞ7†p¼ °·&ðøüG¬É?&ð_ûý“ÿ”ÿŒ?ä2A\š·3¶úÒð¹ÔW*²ì5óq®°–|<ÌRúd¾dÎH¤  Éÿ+MÝGY~}ßäp‘u0ŽÍËÏæ¤Ê‰+ÓO¢Û@__"T)±‘l fõÀ¯ ‹þetòÙyÚÅœÓ_[â[Hê#‡|m÷Ñìã¯)ze-«¹ïÜ gÙ±m0ÝÑ Û‰'Û!_ï±c£€=bKô3FyŸqGäaí»;±ö* ,0E2¦pÐ^°´Ã{ÄL:†°–’jÙï°q 7ÙyÜ õPƒ8îP²Qå¸C“JX`²°]I_$´ƒèãÙñ“À G¥+,ó‘ªÍuP®xÎ{XGòJCý¡ùÔC¸‰•mÆë :ƒÆö ¹^®uxÚÌ8LFeÔS™ ‰Êœ9ªEã41Õ÷ð.)Áy„ [¹èƒjïA«˜’ËŠÓ¯Ðå¨îÜ硞ôõ_%€Üæé¹ËXuS‘O_5æàÉjChúÈšhÄè{ðâE H±åÞÉIg”Õ^M€ól¶¢ОÎeŠºæ7ŸÉ®àAÎO^HrMØ l/£Ñ2›!@àÿ`eM9óUó+ÔóÑ÷‡>g[ñ&¡°M%ÜÓª©ݽ¯É7r“ÛPBŸtظ«…ç “€öD§_ç¥bV³UDв{hù´^÷Ù\ÚæùÝçêË<µµƒ¨kqnÎbæzâDà¾\螦¼?l¤NH2–Ž:âUÞþý›Ñ6r&ª¸+æqÙŽ^bƒÇiÙæ´yKSŽÚ€x±L80J6u»õè)Àæ5i^eU"P×^÷ªmžt°p`!Æ ;°ì¨dÿÔ¸–ˆ0J… y‚'>0ªÞ(¥ ˆñrªv«¼¯u§¬]ŸÞ„#òÓ‰ü+ô+EuoÕ!ççÈùMq|˜€‹€ðóBý“†¨4Ú³ŽØ.D-&øIÙK~u ôŸâ·¸•*"Yr¿£"ít DŽG æãÇnë¬â¨CÌ fN§5'L)^å=DÊà¨!)‹Jl‹’F΋6`4´úv0iM`RŽ\ç,¤x£?¾ÿì+=×B$\c¶‘Þÿ°2y‡’LéiÈ­†a<w„ú´°’s`ülƒÞ³©nÁm–LUàÄÇë45 ÊL»‚ö´… 4ªö®©”U>Iƒä¼$?6K¹ù í?tyÄ´ /“¾éR9¹¹xL·û"‡ÓÄ`?rkkª!Y¸Š…ít€Ö–P$Ád)YàR¤1ESžòóø‹ÏcºÁèñn¤·½Îaâõƒ;‰+¬ù&‡íÚ g"úd«EèrGPÜe}ÀíBƒuùäȤAŒ¤›ÇÊ/ÞÍÿêÔXÚ„` Ÿ@îÑxr­Â}Î “5=“Óñ*äà±7?5ßä ©ªýNœkDÇAdÝ-—T´¤¤Òß¹¬Ý öcLI4n(ó3‚î®<÷C(7}´<…ShšŠØañMwiC`­dãjRÙIå3ÑLVÁˆ•á!F͆ Ø7N»£8‘ÌKíèRCÍö‘ŸÍúë!Ýtk‰†’B[_p½¯˜Ø?×Á½ßb)Å?ÚKvÏq”¦!‚Á$l„Z<3žÎÿðKóµ¼|î¡ÃàAìŒ »lSwú+±UÆ{DáÊ‘,Ÿr‚Æ’\q|"@W‡Òs"v‡hé",p¬DEQk2׺^ü4“À‰x"Êœù!õpà=åŒðõ“¥š¢ìXû‡]à­&U8¾b>[I@ŸÀ1ÓeNAò©K®E1òGTLBç³ v-ÀÌÐY  cùÙŠ-VÙ÷øC«#!3?¨§ÿû@Éé4jÓ{™>?üÕlmVCÞ »ë™¾X[IQÙˆ½¡z¯ŸÀq÷gº¤V¸høRmt:^(„ÙËg+y¢*˸âJ—çy ¸_%š]ûÊ¥ªl§«’T%ðl—¨.W@<\a¸m6w†Ú™ ßë@L¬½×]šÜ ‹ ^«F[®Ÿ\î¸M_<ü̯©¾=ÓÇìí.«rˆ_ö©õœL; y|äVö,æ‰à q˜DÁüÖ€%|—\°ÔV„ÆŠk3oO¥Ï脈L¶„!Ô¸.r#Á>©%·äÌÏ 1&Z¯AÑg˜ú‚™¦D™¤?Ü•&] ªHÔmÛÌŠ4¯_ Lp¯ÆDä×ç)ŠÑΈ+F³j‚Ò0.óNlT‘ÆîðNfÃï–Ÿ£ÀÔVEΧÈ©a4P%4N#™Þ?[[Éü’~úé1såÖQ÷ôëó•¯I̓”¬ô]í½¬ë¯%iµw$ OÓ«² ˆ5 !Š|^1ø[S#W6P©;°u€ÇÏ·zÛ{€DÜ0 !YáÜ"¨]“Õ9’—GUB‘d}w‡Niøà#ö98h|\G߇ÜùðÒIÒ=]’ÈÝæÅ¹@ä;ó{WRÇeªnø^„Ä(ÛrÛŸ³)ønÉsV¯ü’¾¯SÛæÁ67j4öô~÷§ÀïàOò Ç²Ü©è¥ Dù£è_n>O>°KÆÌËøYTÁj  Ö ä"øA‘@ÔSÂÔhôòÑÊ„y˜ýÔ<€ˆo¯& ùÑù*9þ6ã*´á÷Aaq$ „…Ãã|=Róêgˆþ/óNzï¶gÌÙû¡iE¾ÌÃü¾6+3Ö_ÓlJøð5e]F¸¼ƒ‡ZåLn¯¢È¾×˜Ú}?µV¦×WŸ wÉPίÙÌôÇá#ù‡¡ó'¢ô_ÅØqH± âõZ.üÝ{;ï =ƒ[¬Ÿˆ “P‡Yº#âëN¶â‹k·%ˆ/ë—S&}™;hÕ–‹ë•²ð±© ;B¦¶î²ÝpÑ@’öò[ßAÔYûäÕ Ô$× úböüÎtyo£Ü‚ƒŽ£åc«RKÃÈߪ|ô|V7„Fkèú¤=iC¤±³OŸ¿†LÈ  }a1à&?¯³Ûz"“>ÖVÊ^ ˜£©HÒ‡µÞf¢¡ÞiöÜjºmH{…'4r(Y³„T8þ¢ªÈÉa.ÕY–Õ1•çC³¯¯,^ÚÓ f„×})åúèˆ&æeÿ™zò¥Û]òÔm"{­u…ÏCP+.K)}Š®©)Ö²˜VÕ7X¤Q|¬\±ëR%Ô—+ÕÿRt‹(Šv-(šalØX¯¤¯™º£]o°lñ-gwsi:SµJx‘ø½–¶Õ,ª½Â=К¿\ôb]Ñj¦lÙŽ §¤mn(´3‡K3¢‹d3É‹TŠß%&ÖŒˆÎ7ÿû8î¾hû;·±Er,<õ:¹®y¹ -…B·î¡¶*(%ò“o“xŠÅR,,ç7´ÎQ~D¶qy³Ëc–¶Jé £Íä9dßD¯«j‡f]`Ê~}º&û¦”u(òYéÇAã5ÎͲٲ\=†ç>é}rŸžmUe‡hÚ2[r^èxCš¯^”dú_É€ëÞß9Éû¯¬šY‚UItí‹Ožœ,ýf ØSøt6b44mÉegK}ê%|´|gµÑö‹Q^VòrØ1Âj½ª¼ -„¿í¸~éÖE>4Фi"òZ„Y$Éõ¬+ÆÙ8‹w{Ç| %W J'êtùxϨ.eùóµåZ6T·—×é /&ójÏ+çÜsïu¯®q¤>ºZ5ÛB„bzÉÔÆ° \öÈ"=A=I]TS!Ó‰qÜ{žuñ2ä^¾K4»H$ ÞÒtg¡´ë¡Ë¶1BKª/¿É>Ê ˆk¾˯¦ŒŠçÔõ«(uuHøË­i9$&t%'Ê’tÊ}?DØTfKPeÿìj“vÊUéÉ÷T¶±ÈánÿÌm}_-º™ôdƒÍ+ÅÛ»M!’ʼn Ú}‰Ytü¹ט1ªâ 40åÊ€èulgÅïc†~ØÏ|¯ÑÌ7Áµ=“÷(QÛö.9.3Uƒû.¸å|¶7xY)Ïöa^/‡Cç”™—yÏ¥‰Ê§8$J"îx–*Ž1t!Yc,ˆ,Ò;’Öí vöúÐKç-*`ð™ÃÑŒÞ|úºèÎî±ð'= iÔKÑ2³Äè[Æp%«ht?D̯ÈIjè|°ëw£Ò‡XL¤¯ˆ£”½¼ÊVÎ0¶#ß>9þ.¥ñ¤ÝùÐú>Ôq{ÌòÇäOøúWJ©›£îS9÷K—d­óT ëö3ü凯ZM&È×Wª"ñ už¨\˜Qÿã]ĘëH Ÿ%ÒŒpSÞ›"É·H—ö‹ ¸Ñ+Öob:qÊsu¥Æ!àGÖVžSÎo!§ø”7†™ÊÜB ?ÐÄp4c=ãF.e­’•Û‡•nêõòu<”‹‘äE›–±Y&u ý9Ë]zQŽ:˳˜ÙÓ-·êèO"½¿Ð™fžñ»«î ûCF Å<³9*‰Fɵ)€¹Á›‡©¦×ä0ðe÷V7v"cI´É›o*5L!U !Q¨¹›42¿} Ê›~ È=—‘kˆa ¾çÁ(–¤]â¹Íb­:ÝÛœ,u—ÑkÔ6«ß¢9¢cɇ٘dÑÖ#õxÞm­pä‡&Òã2Žæ`ÈIæVjvs&ËðƒØÎ”(¥c5'UjhJ9a™@²“·Ägëq—ì (I¿Ëù~mª©P ÙŠëá,Ê—Ô­öŸGÉØP•EûäžÎÚ âÁ5óø|±N±Âä#×.–¦x¤¨ÌCîU0B,e±–Jp<ŠœE /fI°YX¿æl„.¼j~ Þ"ö TϺ-ˆì'’)þºãšÀæÈi$µ•ëtŒáRq±1k¢ >•_»Æ!¤+”Só0p°»ÜH}iPóCÿÕ•%—(]³í‹M$=ÏÎ+ñºÉ~Z…1ßF?é~HwÝ)lìR´˜2œäðxçûË9W7#DÓ&®0ß[gÎ7ýˆ>ïF]hø~ª¬Ù fABØŒV{±ë&!2 ¼Y/ìÜGZ§wüÓ>W*pJõ>°ÁÏ˹¸‚q˾ …¶¯Ûnü¹–f|ô£Ej­Äã8EùŽÅ~â²² JY¦×f‡v)<çUá^h´T½ÉÄ ¤¹õ þß}Ô=ö¦^ìÞQ­ê€¹)˜èAŸìÈN~Ú`Ï—ˆ´Q¶¬¦ c÷ÞYIÇîßøA“êgí ÆþSPp?Í>8ÛH‘,¶GŻޟAŸ|.BQµ*O:ƒm$0áTÙÙÎÈщOÿÐ:|Ó‡*:G¿!`wˆø[¤"±gs^-üõöPnÈß³=Ò^li5†JI9IÕ¡çû†ÌS±¹°ìѯY çêžI5“=qåÞ[ѯ?àZF»_yxÏK0Å¡Ž=C&ájÝ.0Ñ]Õ´ð•6KBI”ÁÝÊeÁ FŽ‹e¢ ¸9ÃB '±h¼å%=ž»·lÃá;ª}¢]ñªV"'>Î,’îo'ësֺЖŸÎ t¾]Èñw­é/Î,¥¦›l>ÒÜèñÏKa׳]ª²MœL3yµ*ë$‹ŽOˆ©­±nSÀЏ!†vKQâÖé;ú^ølÆOUõ„-»TgÊ{üÒ·É-½™wE¦†æÍkÛ¶-¾¥Îè(1qÓô… /¿è½+ã%/ `SNªÀtákUžÈ±[º¤é÷pfaA»^³‡9DR¾Ÿ¼h©õ,qš^¹RG>£@y“1,ØŸ™ù¨‘îMn;À _i©÷†R¥~EÇ|B;f¨É4;õfCŸ$sÖè8”‹¼ðhCIÊ1ݨPÜðÎ/4ªFä;¹‰§J´ìŒRR¯iŒ,ÕUw§›á%8îºLÅóPLo'Ã)™Œ);ÌH÷¤†K2ÉéQýaœ(ö7”Px\¨WÚc¤C…ÇRpÀiµfð&-µ+,ãžgú‹Ô›-T”Õ·Œ=Z=xÏ×£Tª*„ß Û3ï“"Þ©0{|¹èÂèÐ4)³z rÃÕTxÿôà¢6-9„•jdp/í¦¼8:ö!ÑÛ§ U¶8x|ºã€Gßge50)WÅ;²µî»*×õAûboA #³vÔ/9^ñë/jô‡ÓäÏ8Ž9DZMª`gZâ[[ž;”çâÎÔ~¶%åôëÄ‘/$ÂY5¨Ücó\mµ¸K)„¢$K ±Øm©™ŸbDÓŠéüsÙËœ )A1Ó|é–Ã:@ßtˆ?û³{›Ÿ[ÓÝêê ’aè#a†ªÉºÕÏÓRxÂjYR%Ûû€«_ëÊÂÁmÓ¢Þ¬2«kæÈVY¥‚8>TágèÉÑ™?OŽ7¬×A0H·„é_¹Ó\ß0,BI]Èë/›Ûx­oqÂöëÏ<ÄX/f6¦©Ú ÈVª3tCA:"†Cêù‡J#ÔÙPž÷¶µ„HPÄýj\§bÄ›5=ï„ÇÇŽòÀ Ì8†.ï3t:Øñø€~¡ˆœÚ9ÿ×=’› ¶F¼*ãyS“m•={™)ü‚>XEà v„V:"Ýjé¾Éé!¹¼6¨¼3cs¯œke5í#FÆ=4¤ #rÜOŽÓ›´2k œ«ƒö®JÌ««ÁøsƒI¬<°CðÖÉ"«ÔvÈî…³‘°`afʺóÒ›!#i"×ß[‚Ò¿=^1+w2ƒ[ÿ qtá3¯ºýw¦¼«Ô÷£¿/¿n }¬Ê‚]ÔWzžPŸÔmÙ»‘ãÕû¸Všh"®LFÜ¡Yœ¶j$~ÉWžX,A¥Ú *ßœÿ½žüKîìÚP˜"6LW ܺ" íÂì ŽM·` ž O¶ÉÇ>نĠÛM‘»„(ù<4`jiëMa_7§º¿÷4zÕt9utyñdÀûBÞ[±¦Ø¥6~×ö'7AÍ-™¾hd¸f,P%¶´\1= wÈFÑ…:«_Î`?¬0éݲÌÄ—ÙÖØN|¡>u3»—3²ùëmìôô"ÆFóYLÊ«m B¦BF¯"ºh^K*€D–6ê%ÜöQ³™[6 <ñæêÝSgª®„AŽIüÚëÙF‘xg Ê‘yŽáŸì“ý{i•÷Bë•":¾¡­Gß MXžÅHYNôdãOÀŽ÷4%Õ ·1|PSÄD³^"¼G‘Ïß9©=ÏTmÑ:M ½ìd¨Æ—Cš/ÈYß¼ás>õp“p?QUH†WwÌ åBT²0§-àÓ^ÀE\Kè+Eç±Qi[\íÆoƒ6"Ø ¬îôÁ\Xu]©àb2t÷Δèà¡ Ž‹»«¡Ÿ­ ŒG}™€c)›Òµš‘þXÉM픢+÷ûf®•äÛÑ3ãôKÃY|j]e|—‰Cð³ÿŽa ÆååÏ ˜ý䦛ßÎzå¢#{ЪÊÐìÅJØ$¡î‡—ñ0Ÿk©Ë¦,V ²<5 ¿§u%-›3fÂ>=Àò~Qú9/S [2Nw\†÷Àº–­&Ý¡G£Å3-úâVG±ñÀ™V9€JûCbHçâ§…x®ÚÕPÐ 7‡1ˆóöVû³ß7;U„žC7;å­æ³d}QÆg-<`[¨#Ùëö Äc>3¼Gn6$ìG»õ92ke™×€÷ 8~ž­ÁÅʹVrV&O—.!È/sí5¿˜Yu”ÚÛæµ6èÛŵ:€åú‚â0¯F²ßŽ-׿ÃqOvñlý¹ö7ÐñVƒÕ‘bkœ(mà[«£°ìDWM™L–p¥žŒüçäØYygênÀ(èX <+¸.« Œõ"džÅ2¡¾ k;Ãö”?nÕÐJ¨‚‘âÑ«ÂvY3¾#æëªæò¦NY[pZä%˜ô«gø²Š¬¦’S:àU~ ”ä–÷¥'45ñ°n‹ ,˜£ÊYLVµSÇc*ˆN’ò·;] ô…ûÎî¶8ž°ˆp-ÑôRyñ½å‰…·€§•â"¿LúÌvoRzðT„÷Üb²ŸE:\è•kSÊ}ã¯è¾|øtÞëªÉõÈ‚¹¿žþýg_2ñÉfNzÏûúB§ÜGÊœàëSxÒŒžì²GQV”ÿÑ0<®ùRd»:2óï¿ýnJßSëô „þ=¨9ñ-âsä-Q—5(‹C·Sºm˜23wÍTü™Æ™Æ+· §_.I¡’!ê2Å¡¨~Àä„ðÛrc¼¡ÑJBVªLUȇ‹ËmZN\Š×fwÉGg…Ý€¥âíqz¢mO^õÉS­³°ÁÉ ”«2màÃ̼ÓOÄßXQeç”DfÊ5r§’ùZˆÓ¸¶êaMª véÚy€å:XäˆÇß–‚ðð%Ed1HßC/'fO}Hëçâ>9¡–ÐkŒù}UrÈ;ú¹öÙãÖ`Ë÷doSÌÕsOõ¤›UÖŸr)áîªOÓ3 vØþ]ׯ=÷…žR©_{Ì'¤xL  †üÁ$n‡fúñ8T衳¬ëþvÚÒ]rã (žÌô™²!„`ŠpDG½Š¢JÐrß%ž† +|”ûÖX¹,-)£” GŠ9*- ù‰ÓJ™‡Q‹Ü¡ Š|üDP¨¯¥P‡PREò’w2Ë1øj Y¤ £[-ŒøévÂçâÙ:À¿Öñs(Š÷¤OB&©#Eèª;Ù‡[qˆu¼| $ú†¸‹ÀïÛX¼7™ÁÑÖ-p"mwY§¿RäÌz!bOrúñHÞ•E2Ó¦V;G‡å»~Rvç†íƋݒ‹™¢MÎaØ>Õï"Ì. Ã\Õ>4œTÕ¡öWtDÒÑâºQ™ÜHLköåCÄCÅîq*KÓw?ºð‹-~û½n.H{Ù,x ŒÆJy7ióûíúüЍð[ËNVÂÕÄ¢7=µf êqÀ8cü]1h2B•øÛê¾hÀ/t(¼I€UȽû7©ô°[ˆÕ»\É5¤ïÎ ±À†_1œÊAˆü0_×´¿ÒEÊBœk:LòóNÝçïÿHÔh‘eÐÅ‚ÿMñ´^L²qG'gX ê(… Á} äk·IYWí,w¢ÞàaÄŠð«V×ÃWð°U}áÆºªfŽR„óX!ï¡!Åc¦|L“4|áub±go]´˜þïýΑ`UÌÀ2³Fý$ŸÈÖ¨- j$¤ wå*#‚½P­HLVðL¥bG1“vúû®Óyí¨Ã´\P\¸¸Íì—-ò¤‚¸ÕÇ*>œìÚ"ª2œš…rrèÚ6Cõ-®R(Ȩ‹Ò;Luú–¸CÑù‹Ú)êš"—Œ$Íç̾€RFðùU"ÉFãÀ=߸êC«”bÅè‹A=„ÊO×— ×­%}”Ʋì|Î!®Þª&%_¶žjy¶'ô¾+ŠWÅqöÈ!Þ5H#•?VNV•Fùo­§Ë§s%¸ŠR[³a"ßbü¤®4Vh³J×Ño¡½‹š‰YÁ3¤ŒùñÜÞ{k~\úB2‚Eœ3sknÜwy/ŒCÑ’÷¢Í<V|Ü%Gë‰[ 4‡ÞïÇfsr„E¬¨.óñjï/a¢_?ij4)¢´H¤!?Êg<¸· À­e¼S5G~Ú$µ [-/ÊØÓw.ÙÝDöDaX­k¦q +ûÚ&´'oò¹·\Cdt89làÑÑT¸<Ö6âpj]3¯ a5ìRYóS¤°Ÿþ¡é=a¦ºF#–TŧÇT ÑÒêåõý%÷!¾dŠ}û|»P–ŽWj®‡ôû¡\+7𒣂‡ýÓ r®Û5FX¨¼äÆÅàaèÇÄÄM»,¦G ¬™'îv w~šŠˆçÑÈ-üjMUÀÔæÛ¨Òª¾²!¤Ìjö}SÒQøX»E—Wë§ÉÝ·==t¸²RJž*0Ãàº(¨¨Xü•>Þ*î2ÚLlL¢QW£­p1í\ó'Ôq]”N¬cN¬öR›vݼú;]”B¶Ÿá´ã†çaõÅäPç ÚïÑÛã‰S“ÒýïŽÌ÷^d„u“3l쨧7/ª! ú³ƒcýžHmïRkË¡AôV*tÏqÒŸ^\Fø·%—Öæç­M9”[ofzÑÕ¦ "{­lh¿ü“º…w™[ØY™Þuîéot0pÇJƒÀ‚î*©À:HÝÔˆ`‹=lëçB>§àAhH²½žÊ¶«±º ¾.Ða,y_Fí<þ ‡dD¸4³›38¤éà<—†  ßbÆÃyº¡qj%‡òd\5l«¶;×$»Š¬&$Ö§X¬ƒ(¡ÂhØXànqV¤Wºœn´2Kñ!-K?Jê7Úð•#޶Á„}mB,$j7ÕÇ!¬bZ. ¢„ëA.þ/©Í¼Â–Š­%‘>v-¤˜¤;ìÙxu,¾<›î'Í+íºjhîΤ_ž`Õæ$`$¸ôìï™èîÇ.sQ6bÕ~ÁE’$Þ.•ç¬Æ§6&K©ó[ïQw¦N(â(†ß!—ó«s?K›¢Ø#íë›}Š‹Q/1}äÙ¿E@»ç@ì·Z ýìMíˆ7¨=… íÿî ÙÑ‘ò«OI3VÆDz›JRy•Ö¯O•µÅ“ŸÇ> ¡‰EÞo„™ñ%˜²†’M}=M6ðŽHðIòÅß[Ëvå ßÕU LbÀ‚z¨üIwCy¦}döä—äš²îÇU}ȳÐñåuËzÔˆhÇʶï> ³’d*è†Cm®c:Þêv\žfÚ=UlnÊÌ.²êüԿе<*8þ˜']ŽMc¹k °°+ð¬]‘,™ySÚŠª¯Pän΂ë¹5ÑÐ’×à4uy ¡CÄ›Ô2æ4'TÓúæõ§Æ˜GDzµBL´†ÉÝÉÝ=â2_!/üÓ‚ÃH?I»b:ÅN½Gwá»X"„+Ÿ D*kþÀšº½%qûé¥~Muߋ˼vø¾ôëªiI“S1Gæ©9â¬ë×,WËëká^­ã[ Ü~ª¸¬øçCäÐWôΆ==g»ƒAŸßm›ý@>Ìéí[ƒrB#ÒÝhbçÓ„µ“Pém‡JÛš#c™.ýU3©HËV>©-<ž*Xາ„Uü¬ïÙž®Q ãp•ÁÏ|¹ðÄ—ö=oéóÚgg<êŽG´ªoˆxÚìn§>FÕöùž>&EÖÝ'ÛlçTZ?–³`¼â}ÿ ^„In^Ö©U¨ñM0DsÅW–gž(HÁÒ˜•hòýÕñ#R̾ÐÏ¥Œ­(¹&KÙ§@¥d chb³|éÄòoõj±Óth‘r£þ1ÚhΚX­Ü¤üÝÉŸ7V\ëæMk3êà:½À­Ë¸KÖ'%âCMpÑF¿ÐÁ|þølGpYâ7®G‹†äzDk¬†êîC*‚ÜiÒ½-3øAú2pˆÐ¢­^VÍ2ÏÒ c1ñú9z›TûF¦èÏUI³M£mÙEã!ï\­òQ&h ZÙÂEïúPY»“µûi”PŠâK1û»~249\oç0F…PWsªÅðGÌñ!©N}¨vvjPþá¼'š;%òËûl¸å+MÄ7^…úÐâý_Y÷Ì6ÝÓmxUs‚‡6¯ù&‹0¬ª‡)Q"µÍ}Œ¤8Còñßñ¾Ä]À}Zj½ &!²Ÿ)|€û%Qõ®-ÜÉ®”¸}¤è W™q½° 0Üœ~]÷¥E™Ä!ÔmN"±B¢“¿|…j4 ~Î6ÚÞãrb˜Õªò¦r&nkæžH-ÇVsX#æ"KžìÂoBà  ÷Ë´tN×ÕŽÙšÿ3dhÅÔR!“žOÑ]ûDc“süÀO‰}'.M´™²*¡Uâš’~1@Þˆ»£H’±¾3~IÂÄÑ«Ö7âÉ«ú\j²i¤SBÇ…ÜÀß?OëS®4ëa»jÍ$o G“ìéðÅÉ¡ü™½ì²ú±¾Ê´î¿OáÍ¡—6|6Í i¬òïmÓ7mÌRYÈÎÑgß«Ýw¤U¨÷ã?¥|(Xè®Q¡ç©Vp“XrBÎÂkfú.&Š~æY|²y Þ%×kNúçÿ›Z½/Ç –cäH8«òËî²±gš±¶÷·ìë™pc3šz—Šßõ*.é,@ªÌï¾ 6Š¡úJJUÁŽñœœ%—@^©b·“^Q3z*ÅN¸«Â~†+î=u ªBO Üxm‰Ãï†ç eÕÇf"’Š1çZ#»õ¥CãKäÕjý –2Û]±Õo5h¨|°•%»ÏÿíçØbÛD»3‡_Í\êO˜x>}¨Ë{bIÖA‚ÈûpFŒÖ×#ž5Ã64|ÇÚåu»™NçŒ\RÂ-ë ðæK>jD³Úð¶Š~¹Hª£ Á;ñ JAëÓ ;£k¿¡ ¼"b×.±‰ á -+‰Nuv-¿§ÆÓŽ9WÁÕ†9I~O¡€e‘2?¨« ¯MŽ<ˆr/ìåì5µŒ$ÖÅÈa¢³ófÓ4/QÊñÞy‘çi6cá×ÉW²yEÂOhõáŠ-%Çp®R'G:ˆòæ»Öݽ¤…'wà˜}Y裠½ YQ±LÛRÛÏÀîë\›NoèŽËïZzWªÙ«fñö.5[IzÁ)„{î)Ÿ¥7\;ÞÍVH\Ì„ÎDº¯,ç˜ê²TÝŒÓðô^·ÿ(º¾©zŽ}·Û5£³¡‹Œ 6vþ2NŒ„Ãd¶)»ÙÆŸ•«¦EÔ¶µ‚˜ÿ¹­Ë½è—ôÓ8ÅN²G¶K"Ý¡ #©’ûïÞ`C¶š<[ûíÏqŽMßÁŒ–™V†/(P&ÚQ)çñèD<ÕAŽý Ò®’´K7ÑÍ´òšÔs®¯?¯ÙYmo”Yróâ™@8´õ*ºæ˜ù–r†3lj%8üC°ßLæJáÓ˜ûB†?óaëpâȽË#|œ- ¹ZkêÇS† ÷Q„¤™ïàVá!,|†­Ê¶…Ÿ.ê¤ÅIá:—ž¯õÂòƒ5£Åý¬üR°‘%`P¢VÂêÔ7Œ±†äÔ¦J”“ÕOæ/«ŠíµÂ$ÀUÃ÷èôÔ¿~ËŒ;ÓîÔôô|Z£¹•Úœ ÷áPšKíÏÓœ þ'¤LjÜ÷¥¤¿ÛÉAV„fh¦˜S0´ƒÞõôûfïyáÏÅ‘n“Øn”Ó;ÖKìNчy¯ 9,ÁÕÃÇ&-YožÚESì­;ÿÞ6ãÀoUQë^­wiá¬ï~÷V¹e>FVò¬\ÁÞð‚Ø#6‚ #™Í²Ôz~ CF$Œã½áÜøfñ1½{á3:ݲès a“CÅè`^¼ågpfŸøí‰·ÿ‹Ê)¦Ëw}‚ÝÕä%>ìF¬@”O ¶ÙC ¹y<ÕcpGÁ”fíáHÎ5gHœ 7‰°c5Í Þ(®ç-¶ƒ¸àÁ¢/g@–#4!ÙJüø‹>ÑŸ] ÍÄ}׉¥½FËz¯\vý¿A‰‡â¼uÙ ORy~óUúö„TÖ…Ù¤R[àqÏî©$ØŸ‰ÆîKT …+Qsš ¢¥±"Láx3NÓ™)œTN¹Ia4Hh¨u9!ˆ?Õ3ù‰ì½nŠ?’";r ˜aZ¬9q*AOÖo¦uIHÖ %Jûn· QÈŠ¼ÌHM„ӾŌðÜ]ì¹]èý‹¹îrj^ÆÆ‹¸?vÆó„ª¨ è\òG§¯ÓcIrt<^S>CB s‰Ýƒ¥~o ÿ‰™4«Ö*E3l±Dz9[H z¯¥/GÉ=‡/}Š+V/"àc­Ûàƒdè·~öv_´¯Ô—MìZš®ïX®¨³ÇaÐÙà‰À%äfª-ø,~ßuŸýÇ®ÄZõ¦í?#r¡ï6ß¶föF™À²LŒI¢œ7¶°ÛÀ=vq‚ò£=I1J{šµõ—¡’gÇ„P…';2tæâè5n™ÖFú&"ô7ÌÖÔ®¹+ÙªGç…O1nœGàGp5ñKîö™øE¤ÇS4½3>v*¹ÚÀ 'b)mÒõÔ)õ©ÂwX}u½¼»W0KäÍG“¬0=ΣxŒºä\ MÎrÓä:~ù¦gV»ÎD ½»†ðàË#øøõ[®¸ø |2]j«f8”’'×g}Ü1¼s¸”ôx²>X±Eà}pšqæ½ ×e îd*ù]³C\õAºäÖ®(˜[G—õnUf0á—ÐeeJü,—&‹y…àWj¬5y Ô—A¾`Ĩ _kÏßΡPr€uÿ¢ë=޼¯^’î€ïÑÏ›©þ$Ùè>ˆnj}=®€ùqmê¸ìþŸ|3Éï´ò#ø{¶ƒüº’natMn™Rze["Ìü𺾠ç@¶Ô’+'yôyˆD“¬¾´Qq¬HÂu”-^åæßeé†Q¦¨ Ž-Ñß°Úì"Ó1~OöºÈLºKA¼-1©]®{ïÁ£,›Ÿø{E[ô…>n&/«I­K2TaL«Hk·&ŸòKá‡2ÕƒÝަ„ù^q ?òŸñ4dRÚ­®x¼¹q¸sLXó_ ý®ÛÕÞÕÇvö."¶}‡åâAËE&¹pï³R¢ùÉŒŽ,ô1óC˜3~š­¯D¢I¸E¬,Q+Š^^§®ûôî¹Í¾IýSŽiZ+ŸÇÇæ«“É4ÎëFñÉO«¶™® ~a÷ÅM­žòxÑ .Ò=GU‘pˆQ~|ËYV(þü*ì54ÛP±ž °ÆëóU–ñ¥,è`ñ†y\Þoã¾ßj­ààø¸Ýe†Is ‡+¨Æ]•Ùí# 0Æ÷ƒ¿j,ùĦ=Ž4ÑÅŒ¬kCÇòƬaN‡[;u›ö2µ¶#Œ_ ͲÄSG8ìwyUuç—ò÷«H$qSa¬fŽàëb›jT])i\år®˜W<7‰Fò4™A‰rÒól1Ë&X±bXFßq’57Ü™ì´f 9‡Ú-y \„6üäwD³æéŠŒLºpá,ã»n¾Ã˘Kêsßaàä²LmåÕÞé)¬1Ý߸X Ý”!âï}¾æw«¿jk’àÕ©xéúÔØÎ;d_ªW–EAâƒÜÆOæQ«ºÂrE˜Ç‰ ¹uöªßçǤê²!°ÞERÓá°HAT >7Ú¿ØÅ/ô´{½ä£ö¿A¼ÞôªÀ€õ¸2}ŽÐý>¾ºócå›Ü}Š9Ò:«~QóM¹›U=‰ÂTR¬2ëe"+Ñüo™Wž5pòUT—,:º·r¹¥´‘`úð¤Ÿo]QÃKUžSÃôz^r¿ÄÀê¨Z!3Ëoâvª»åÓ¶«éHÊYù®"Øeaó–ÇÏ"–Ü’˜šÞ™Mèq:nÒPWo²—‘3½ÈÃ`Iž&¶[ÿú‹†ÈEi¶e×Fü½LˆgþL¬úlçeö€§ôca±/º)fÐ°Š´Ÿ1#áY²;fЂûmš9y?ûOçcq&ï–=ÿwƒí^X óRC8J?‚qP>rù£(oL ä˜qH)/›¹é7J u¹™Ú‰sº!äLBµ\ ñ@£³­üN¦'רOåË(ñµ”ÏOÏÕ+¿ÎÜF³¦}_,²ÅȸT&€¯¼†dæÇc=Nà^Ï0Ž2]åìéCäÀÛ}EöÙˆt$ÊêÊFù—¤Ú\\ÝlGGÕÒ>25?ù Vù@=!¼ »_]ÒÛh.û‰† @^ƒÎÊfO¡QÜ\wÁ qªßO½=]ŽgvZ‰•%½Õcç@û‘Ð Õ·4ÇÐú+E´»}§%;µñ/aÂZV/›p ;¶£ºå1zß'F~tpÌWÑÖ¤F¢ ×óQÌønÒˆ¯Ûݱ£súãrRÌߣ~ëžñ4†hÅÝÙ›~>|–ÝL D„µÔAšßùƒ¡-Õá?ýZ$#{]Ë@~ÞØÛ±¹ÿŠÓª»ðh&ú³½¢O_Æ'4ìl êËÍt‡‹ƒÉr÷w'I†½Ü’~Sã ×óK]IwIÍÎ~™Æá×…ÔÚÐI÷·«Û ¦ükZ…AÌð&exu>Ô¦µOý¤¶"DóòQÈ †Ý~;Á+Ü’OáLC$.6»]1‚?>Ô%6ô«Óße@D=¤}qNƒª©aöß!€ÌЉ}Å‹âÛaê[]Rã2}}oV€:B‘[N‘§ ~FnleÂêVÕï²çgýeV¥¦S¦nXJy7Z»ÖFÒé˜áàS(Öãïé½´ñŒÿXŒv,kåÙƒÞ•Õ¬*óÞÆt_“aÊß–ˆ-~x ~—3ôj8Ò’è÷ÉŠÈ¥þ—lê'Ù‹Ç=ã°³K9‡Bž-þAßJK„OSFæÏdïÑÏFƒé¨ErÕóEvâ6ºÍmÏ27[F•µ[…ì±ß—»0ù޲½Ï˜öYVÙxßú\Gª/žç#0€Ô„n#èèct†„ÈI<+±qÜk ÒÐ¥g³OšØòIþáÆJÍ•BµÔ^^9¨]‘Ù½¾¶šûåEáÏ /CûiCЇˆ‚^B^à·ÄR±Nû½²4ÁBuež`l5Ú„»¤³à#zÝÝ(#ÚváµÌÙŽçK Ó=ÊÐ@+ì©€Ž‚ÃÃ¥Gz¬Ô1ü  ¨}³ü ™·1˜JY‰-<ŠÎDZ¨àïm²ë¤‚Ò"³ îˆ(Ü+…ý!üôñÀ*¤©xíŸÿ§KdŽ}iÝvg*®IÜ‹Æjj`]¸­ánÙåp¥ÀïLÐÙ:]Cg‡¢ë}3yHmŽƒÉSøÍ€0AƒÆ¹€'\P|å–ø\1iZŒ†,Õô™ñðýš;^a7°áëÏ`‡ÙÔúÔÓ™{M­Hf¸ß>ÁwÏ×-Úø>3|¹åVOÂí%REì„ÛtÍá›Lª[W{:'¦x8•¤BR8?ÁÎllQ÷@™¬•ÀÏ–ê)Þ A8»Øo¢½¿cpÞ·k“"C|wÛ1»'û½ eR²&k3Y¼G«~êÓÙ: oê! ‰3õ„41!Ɔë 2£Ûµë°«y²èö™VRÜÅÞØlðØùa‰EÎù…¨ÛÅûþaÞUÍ•#K14••r.NRûD ö}o$¹ÞÉò/ ­*9 Ë™ÎÖ|JuŒt´¾Ò13ƒaG7ìˆýx‹~üfä0ÓiRÍ+ÕŠ­§ßðÁýŽÐ]ò]!:cI=í0ÎȨb+g[˜kX­ùJ / ÙÓdйià—-ÒéÙ÷¯*\Y-l/r€ê쇿2 šõå O7ÙÝõ¬^¯ºI |fÑçÎÓÀ_Ì©v…S©³q{=Šœ qÔÌ$X4S…Ud»Kî<\ÖäÍŽ±‡,„¿–XÎo·¦JöÈìÞñÁ´þ6V+èÐø²‰Ø¬2¸ YtOI@íÛL7‚1daÃ[’Xxm’N#7eÍ{dLÒ dIí¬+í,šx¬@ÎÝ|‚ ``Fy(¹µSžKv=w⸶S4Û‘îVŇn¥Žx–ƈÔ× ì›áöïŠu"ÊX†ÈéÆ$í8½côïàU]°qð4èrÐ/Þ‰ØñŸ©õ`‹÷Ìt¢™ùaÄ"{™¸ªx‘¢}±Öµ*"\ù(üÒ"&Ûut®¸Sºšñ1À[*¤XþMÖK7Íôó•s*œ6C¼ó:EyŸ™Ç6®ÀIPrÍTP¯js–Iš­´Ø!lGÉäð…Ž¨ñ¹fJNÚ¯Å)Áq(p˜J  ±:5¨ù>àyîÛ{èiT/–ãO^«?͵ ŠÒg¾x††Âs|™e¥'sPŽ”.1]ìF„?ìÓ˜©ŒÔñÜZ7õa”4¬ñï.‚–"Ä©xQyÿ‡#ýسž-² Õ0‹,W_Öô›eó³ ü†ãÐé_3/šRÊNNîÜ`ˆ'ríPÆŒ®)NãPJë¹ÈÞÚ¯ ¾ÝŒ ‚„y7œ_¥Iuã¬ÓfëñÒŸßÁQšCkpݲc‚/qSäý}/ß1í‡m¾ Qá܃à=sù™Y†Qlvç:õ¼[šºìZÔ8GFM®œ£ÏV劸€yU¾ÇDèê:ÉÎÉ"á«­vËþVÿà¯!OýA'Öå¨1ï|Tü9üò‚Z%D׎ú¦56Eܯ˜&ã¶×|ÿù«§ñ©õ ðĵ‹³ŽHCi@õ¼jÇ‚C†C +Á†}Dû@C›K²#ËýýN?™KŠæÆ=Ûƒ^·:×Qî+2)úÖn>E#Ì—MÁœ²rpôê¸âQö€˜K¶Eσrvïm:$ÀU³¯0l]D`SŠ…e•gµÕ´é,µ“.êýO6Cxi?ÇÖò×Âç÷•cwÿ/ïå­©1be38 ìÙ§qX=ÏÅ“LB‡±V¯j!Ϫ;Ù?樌îiÏ©T›¸ˆ(v±sþ–ióZ¯°\ ݃·×³îÚ{!«æ¸$ÝnšÂglC,ßu}©Ñö¸åέÕxû£¹òdã‡gnµ0L¡Ê\Š3 ü+‹¦ˆŒ‘“æ3vÑ‚.$MPå£Ü9 #Ä?è¾L“SÍqz ¥d‚—]}åˆx[ú#¨Íñé7÷Î8™’óø´T&¡L |½Am•¥†›ùGÕP©‘}¸v§Yâ­N¯ƒ# ŒT,nLiälœ" ŠfA¡{žmlŠÏ,i†¤õõ~UVV$-àxò·Õ;`Ÿ¬ÁšX¶A–RSkÁŒý¯W:œV Sôìð$½0apæiÍIÜ{EA)æÝˆÿïÈ…tc$ãtò‡·o‰æ(×\¸4òLJ¿•¿€û¬c}¿Ó#ÓÉ ¤6o4Q>~ijÑ ·–gKká+V©æî_¿3‰™}!Eö³GÌà×>]ï`=hØM‰duÈzûòBpˆ Ší¨ é ä u}²ÀcÅ{>VâXBs#… º?V˜Yv`¾Áu,ܽo¼-óO–u§)>·Á½íz!>^—ÞìxÎûRy;_Ï‚Ž ]„’¢2D(¯æÀ*S³>ãhðøz{ {{¬iªÁì5¯,>gJS³¢Ëã‘¢1^¨Àq«cÍÃêwTF³¢Tñvþ¹§6±Ûè¢gàI‰R«åÿµcÑÖFatQi‘¡–©Îiν¡¡ Ѽè²T4¼äÍà€ãfdšw­œ„ìs_cÌŠA~€ã–4œÎ=GðŠà¤Gž‡ñêS™Šþ¬DGWDM'½Ûh‚Õ_cCââO3ùØiáòü?ô¶ÉýÕ9äuLÒÆ/ø¤BÙNÐ_˜:úvdÀ”“ÔtîëÒÌ¿˜œì>Ì:äˆ?ðµb¿zŒÑÆÍ@»³ZVz¡, âPæL$©\“Í­æïßÞdLȬ_ôüÁlsÀ5BH¼yrPóŠÆ…Ø:*ÏS:"}ÕÝ݂Ի§ÙÍ–^hg”p°\ ÏÉJËî‰~é_6£½mþÙ¼1ÉjÙú—ôP u «jæ«W¹æ!žÒn/]D½rè>æl×ñBmè},ž-UÛ~½ž¸· ÍHy¬¡^µ¬Ó¦çâMk$¼¢Á‡˜Ž†éÑó0°˜vç;³¾‘îS8!Aå#Ò0f Ç¦Õæì»û–acwbˆ¨äFäŒ}'æÃ¡Ø¶ïñ{Ô8([’£%1¦ì›è‹û>Ð ù¢ q*¬Æ nhi6½¾Hr,dH@†Zâ¦Öí‰ë(ö÷·œ¡rc¹ð6›fºläA–í“Vç%þÅ™@7x|úzœ´3]hzXöûFÜa€͆Ҫ^Øõ²!DØ,õÐñå %ÆæÁî]8rä…‹bJÕù\ƪ0êÎä þ hüa‰E†!Ä¿œSjÈ÷<Y^úç¿âûæÞ€ ^€Û,œêÁ“ѬŸÃÜ,«—ôvÌŒq*7ö V—ªŽ±þ˜n•ÛŒ„ÜuÓ«óE7Ì×óø£Ÿ6D|¶i÷H0‹®™®mÞeÿÁV…øÏjF‹ÓÙ.ÅÊÇAnNÌè åLw4+A\³b¾.Ñ|}*#áÉA/ħRöø‹Äíà™d'í Êàñœ+[‘|P‰"ZˆÐT4]ñDsÒ3+^„Äjñs¢g‹#§ëÊù€—†×3µQëøÇøÅ˜Ò&"¨ÁxÁ ¢òjcœôh"ø´ˆ¶õ¨ïiþù2?®nªÂâ !ÜÇUh4Ý?fïÇOT;ùt†A×}òå•íg­Dפ>Ã2Lÿ=«~z!̤ÃÁâç\?67ÌØIY¨O]ÝLx ·¶­•xMékìù[b_›èB™xåe§^'4ÚêažReD§¹‹}µ’³ùjc s"ÆÉLJNR¿ßP@PøÃ|r%¡²X\¬ïœBg{s¡²*ãk•u\/¬!5èš÷’ê¢o‚ B4G¨ÖRUúZsõAÑ`:œŒÒˆœS¯kø_ܳTÂ/¯T,§`@ùïz¹.u¥—x[¾Ô…rÜ蘞ÑqfÑšs®‰L¶%Dõ³ÏĬëÞþ‘'œ%‚Kǹ8¹P´'Ô y)ó„¡lnÑ/öuj0Ž;™Ç_«Ëœ's«ÉÝ[_Ì¿ÊÖ·§'t.ë¶®L k…ª„ægJ*ÚÖb÷Á{Ë‘0Ï}q˜ YÇf³gŠ[kFgÉ òìÏ®tËRµ´º7èöº€DŽ¶Ð¶¨hD6ÈV4®½ºh¯dvâ²33«òáYþþ‰Ênˆô>,‹ÁŽ…Ê5Ú6«#=‘íÁ8O’®ÿ¹QF¹Ò~æ×¾zº:Ð; ‡.^¨A.¼é^¢÷tõˆ:ð5©lØ81G.8zŽ.¹î Ö„GiyŠÁ”³¡æ“ÞY×>ØÀ =“Ǿ@t…tMT%!1F—©j¶ßÓfBµ¨º{®¢·mÂä„‹® Ôò.‹:^Ü!#°¥FDÜЭȞ‡yHÊLù/¹ã‚[tŒ†U“¿àkmpÝååcaÍ'&Ki½%¥Ñ¥tfbiZÖ’õa uùgR£Èes˜e‚Mªõmâ±ÒÐk„sßò+ö×bÿNUYOCÝSüA:¥¶É.'!Æs'îƒøü‡¢šÖ×\HcÜêÕê~oæÄhyF [›|;VJeúü˜¬w|ó!~msïfn®ží$©›*…T²ýîCX÷£@7ðlä%!ÇêXìFöq`_¬Õ¶¯šˆz!Õ“T/YXlBMæR7û"ÈBOÁ$—×£šºÓ=ÙAÞOÀ†»!«rQCUýÅ¢“HÎÐxºX\øa>1¯eãÝ´®¡Ž¾EqRÿ—#oU¯o¼Ù¯wBнé ½ÿ?Ö {B•wÕÙÖj‚hÔªìßF~KV“m°’Rð÷Ŧ¶hè€ ê(õKd:›¾M;’7?+ %¢ èî‘tù°\ªîœDÉ.|ÊkuS¤`ãnÌ$ÐŒE‹tXv¥þYEʈY?ÖZ É~¢äª-l¼)rŽPÈßrkÕÕ2€´AµŠ©¼ØãØl‘“2Ì×8Ò/4pñ9}Å­•æ^˜´©¦Êc‘a&‡KU G·.ñXÀ¸ØÉuxBÀtè†5¶°eo¿]M—¦Oö‹)»½¹bßfòy9Nš„‡¹­S·é&Œù;—cºpÇz‚°+B—=Š 0Ì鍊3óÁ55á|ˆ Í”u'ØWýG{¥†ö†L·«&:Ð=…´W̸u£>þô2¡â¨åüG¸Àt°ð_ÞyÆALL ; »lc 1•?´ún²7øí”¯"ò]­•œ1“KNÈ ëšzÒ³(;!¸ƒ–!’øóŠ^A1›‚xƒíȼÝßËj‡ÀÎ-4öojóFûÕõ–7VµãŠ@ŒIæ Í(MîÊÔâ!_PíìÏØ/™uÚu~¢ÅË#IOE±£xÂ3Cvû4a Jý6ªÉxʺ÷lZ„·£ó ™»)?ÏìÖá†3'‡)€j²b1kl¢?GÊæ”è×?¼ ³ßMhš•L”I“D#÷LÏ¥I¬Ðÿþñ"r›n˜_¦Àìò’©å‚·Ò»äººÇÝ'Â:¢)뺼Dæ:Ý'8ì,rº- ÷ÆræÌ ‘ÍTp-ò•’ë}4Á°<6¨ñK´ûÍîâÝLãD`‹ïÇ/£¼ °¬¢Ðà%Ê7QuGÙží®ý÷þBBL‰ªŽ‰W„¹×D$ÄÝUu1ŽPÓfá2±Â Ó‚ëŽì)‚34( ô&½¯JÐ/•ôFFêe/£ÁЂ/ Ú¹ ùÀUmí¹¦Uî4Ÿ VÛmbhÆÉV9)—GBAõ“ôJ`ísÚ·*/ÁÚ"¨Lß½쪶ÚâØvq$…iOC­Þï @Ö:rr©ÓA¾ÀÁΔ€ºrawƬu f,–‰5Áì±Úݬ’"Xnüy 7ÇßÆË­G%ª‰yÂ9M{ïÁ7÷%¦tÓ^ ùÇc»S"ši²ÞÖÖŒ‰$}™|Œ•¥ mX,z”Ü^Ü$FÉ@l "ÌgÔdVÄ,@á>«AÏt‰Úà%cõŒE?EÂ1!ŸÉr}[×|`¯êÎrÔ}u;]ÕÊ[ÎWXÇ¦¾x#ܵòT|:{”¼Ë^U(ˆ!„úÁgQË^ i+<›ÞO…$) ž2"$¹}·†nŒå+ÏDÚVû' kk>c0‘YÁ‰aX—©~´—Ï·ú« ׫ãOtÞv¶ŸK û;v GæeZ¿GUBdŠMûe×­N ¥³U¿ñ‰mn%»á¬î~?ǬåEÛõÌcRÐD³æ÷‰‹À7?=þÀs*>ÒoÐ4VPg#¨÷&¾ó¿ñUëϼâL»^+‹1¡82ÍÏÀ:~ùjŸnoáþê¦îfÓé~h2Œ°ÑŸÒkÿ틺ä\g#´½ÿ[Ƥ‰v‚³Éì†cj³fS,îš#Aô¶ù„6 ·½ùþHŸc…*´a»ký7‰}…B£xùU©Ê|W[At(ɵ8WF Â{aÀ×ÑnÖžµ+ɽNæ¸5«0æZ̼@üB(÷üÊ//|¯Ù<¡‚²_lÝfý¯7qì‹d íA×$öó9Ü–Úš¢jû»¡èm5/ø©¼uÓVZÉÏç‹ö¶ÀˆþOŸµ6’Ê>d­«¸œèBî³;]87;2:~†ö«ŠëUÎý¬Æ¸i+¿,…!«kÈZ¾h›€ ƒeðŸŠßu‡ŒÊã2(áæâFRU:á4%´÷ý˜ ש+'|c±xõè'/NO°66ãñW\ÙúéQ°n5š·C ÐÌv>žË8(LÙúC\`óñ!Z÷Û[½ƒµ4-b&¯Æº'Ó%ß ¸ÞÑePˆxƒ³É¬#œ%ÇTç,P„”7Û–Áx hÖYKV2=¡ƒØf”¬4H•9å¶ud^FczÖÔ8¸Ÿ‡ 8lQ¼¾Õ £™+?ùˆê€‚öj>+gúu“gsw¶F¨¦@BÏ”§NK2Éø-±¼fc¯ÔÂ$8<ðùÛÃUteúÝûuLÇnj_1Vì†} ¥Ö[Ä}ÒWH¶Õ¬ót;¦AªË>»†´Ù[8ê ^`ÜË+‹ެ6= Ê1&ÙkÕê%„zðDº$IH/'Ðq¼ë'Ù§×5 ?tâÈåÿxhAÃÔ¥3wË,áRæy-³ÁV5ß m¤Üc®žK?íÉcá]0є׆.™ø¬éD#ÐYä¥Ör+ÐxòrE‹éNƒ¬ã\”ç¯JÂÊ›õ*‹ÐýÞºfϴׯ}ój“ü a–ùvî1Þ’M0†¦¡Ó¨e0fÄnD§E™hóÆÐ³‘›ÄÒEˆPùLfÚö$Î÷[5ñÁ³£ªµ[ùtoþ©gïèf¸ìÿ}jkª «µÐcpw˜Ü£bº¨Ý毀¢éNC5ŠQògJ²¶…ÂÜ›°âÁÃpQI ™Q`hüžh¤1{ï"v‚âÆ´Ø!ܾÓ q¼<‰pv“1Êz5æ¤äA»r “7†··sÅb¡áp•+ɧãSâ3§œ‚;hŒâÍ Q¡§¨Ñ7pf°Ûeú6é˜ÉÃNtÝ÷¦÷ ò9É̃LN¡?È,Ü?#ý윰Žrí²p¯µÚ†¢“ÍPì‘BJä’̱E-¹+Öìð¹ŠÌô`õØ« e¥M={e:•ük§¤¥Šó«&ÇBw@ôxPšæ3F 1ñ@Íow¿8x°lq@¶Õ_ûø!Ðgÿ ÀtƒîóÒ1îÿ¸ÙÐÔëýh¼D§õUV¹ñ ÔÆ'BÜù‘|É›@Z¯L¤>¡€Ê:ø1‘ÞçÚŸm¦[ÝÍZŒ}dhb²+†®]¤ ·}ßíKy­FÛyývƒ@ræ Ñ,WêOÖ¤b´ªêý½J“—¤ujÓ/MÒ“v¿> t¥ï£C÷‚ÉÇóê«…;€3Ê’3Q<Ûr6á~Æš”aÇ À,ÅÕ³UƒçÒXîQ´Èb>·^z-×:oDÁªúÝs{èÝ^©?»bìÂx`¨ß"O({ä’Ï´ÎŒ ˆP¹QL¿f&0 éKåHs>Øg#m†¨~j#à¦ZǼF‹ÜÖÖ<ù\ÌìÎÌc¹w3rœ4bßÊU¶>ïEæïl8VXñi¾˜Æ{ЇJ‡k T‡ ][Øœ•{uÐISÚ¸Ú36µìN~Ô—%© ¬N ¹tdîâf0õàÛºþAþ¯û”s Ïþ­ÃÀú^Þf­*¡ñÐÙk[Ûó„¿»ÔÛ%¯–E÷­SM¥fZA¯É(EG˜j–Ë$3ª)¹v‰àFæ!´›CdU¹6·ryH×¥àÊ!Ä\Aù#D@3 ZMEadT9͆y²#F²ÔEU®ù €« ÞØ÷ÞÒ:uBVב¬O„<˜çèÌ‘µùÄÙ­Ž,qíU΀ávMð9‚#±‚‹e– „C™Ž÷ýT´rÃ1(¯ÝÀ ûL4‘×ÈÃö¸}`ÒOCM·üÍÙz =Œ„”í/2e€{èÝJ!™ìMwöTõ@ß àš,ŸW^c­ãš™4@«פ‚l/“‹ THqMè©õO›Ôý)$Á»z³Y±‚ì¾TG*ve7YÄ¥ÒÀ4}IôºŠìò“<úN;÷g>`ö)+#F¿+§ël À²[½p¿Y†œÉ¢ÕYè#AìÙ¸'¨}¥©Zf<Hí mb(™¦Í¡¶ºÐ.ñ¤þ¿˜é´Â„CbQˆd³Æ ÊÔØcŒpÑêa˜‡´&¼¢ëk¶G)`—®ßjoM _ü>ÊÆ=¡ ?º)Ù(¢ú²"cGè4!î¿k¸CJŠÙŠëœê_þuDrŽÒf™t¶ƒ37K(³²k­\ÛŽ ¸· endstream endobj 112 0 obj << /Length1 1925 /Length2 23122 /Length3 0 /Length 24296 /Filter /FlateDecode >> stream xÚ´»eX›Û¶6Œ»»îîî^Ü]ƒCpww‡â. /îVÜÝÝÚâN?ºÖÙg¯½ßó÷»r‘p½Ÿ1ǘO2 ”¤ÊjŒ¢æ S ÈÁ•‘•‰…ðQAdoâÀÊͨ ´t³3q°1±°p PRŠ;M\­A&®@>·«@ÉÌõÝ÷Ý‚…… t:¿+ͦ^ «‰º—#@còP¹¸2šš¸¼«–Ö@Úwq£—³µ¥•ëŸ쌌"ýñcÈ™˜Ù‚<\l­&æ9&&€"Èã]h  9LV&v@¨ ÐP“TUH«*i(«Ñ2½Vsst9ÿq5u i€„¨¢º$¨ÉÖPSÿó¬txçoÉPT×ÿÉónøÇ]AR]T]GY’•ùÏ5Xî@gë?iÿ‹Õ;3À¿©½»Z8ƒìÿJ ±ruuäcföðð`²tsqe9[29ÚýÅOÝÊÚàr¶¼¿:í€ÆÍÁü½œ®VÀ¿üYÀGk3 ƒ ð“èo¥ý{)ßÞå®ÿKì½®bÚýmpÿ#•‰Ë_¾••?ìM¬\&f&®n.ã¿dï?@sê¿ ânÎÎr(üKåü¿iþE] ô~eúv>~&ÿ½b&n.Þÿ¨Í^¶ÈÁÅÚÅÕåïˆ@€…µð{—?kfíð—LATQVJRMñã{ã90*€Þ«ãÀäêéú—õŸx¢ù<,œV^NË{“J:˜‹ƒìíßY» ü)Ÿ„õ{\AÎ^ÌÿocÛ:€<|þ……µƒ¹ÅŸÚ›»92k8X;¹e%þÇü]„ðo™%ÐÀ:€žfVÌþÕ/ĬÄï…ðóq9,Lì\€~ÖÀ÷w ÀÕÙ èçóOÅ"Vn€¹µ™ë{«¿ Â_Ñe,@Þ¿ÅïLþ¥úŸ& ùkTißçÔä`ç0Z 0+‚\ß[‚æÿŸIû¯\RnvvŠ&ö@šÿ§¦ÿmhbomçõŸ¦ÿe¢üÖFälob÷_:k)kO ¹²µ«™Õߥý[.ëjòÞÿ¢–vÀ÷eùK¤ñg¤ìÞ{÷}ÿ±þ³}Ù8ÙþK÷Þ–f¶@×ßnÀ÷Büã÷êÿá `Ö”ÓPü¨Cÿÿ¶Í_v’f skK'ÀÄÙÙÄ å½Ø89>¬ïmôü«YÌL ×w€£›«ÀäŒðgA¹ÙÌ2D#v³ì¿7€YáÏ»Níï»Îä'€Ù d÷~±ÿ’°²°˜ÍÿYÌÀÀ÷´ÿ€ï±-ÿ9ÌVÿ€œfëÀ÷dvÿ€¼fûCÖ÷¼ÿ ÁúžôøÙùð=²Ë? €Ùõßí¤÷_ð?—FùÏöô×ܱü{­þgßþ «¹:ƒlZÖæï÷¬˜(˜¸:[{ê±¼ ë»üýñ¯ß þ#å¿çýÞbb OFŽ÷º2²ñpXÙÙyÞ³qúý‡¯Ùß[è_ûÞTÿÂö/è 4CXY™ñ‡Ú|j¯ð—,ž®„¦äe:ÿ‚#¤-—µ’5ÝAˆ'Q°K. ú˜MUú(ÃgàŸäP¦MŠm÷¶ÙšZ=uc®"²gâ¯àOˆ"):–¯É¤œ­°XÙEF{"—_¤SÎ1›Ý–ÔF Ð;çíè~Œc›ü~•N¦_Ù¶^íQ:ÏÚ‚ål‡á¹ŒFÐI¸<Ý îúû+!Ö¤Ot…nθ(gLƱ·Í@3C£|k’j^Il_pB¾£¾§NxüÆÀÂYA){¦FÀàK1ÙÂ% •^bi‡ðÔÕ;ÛÝ| ö‡vÑ­iÝ Y{2¦BIÖ²©ÔÅv+Ê>’*YÙ+¿tÝ UëWý¶C1¦öÉ^Ù$Ç»Ô ¤U„×1å{5«/Ú5â”gvÅ{`m!˰ß/0 ùq4óü Ã9@J¦ËÝžê$+›± tK5Oò›+R hW]{!΄x(•)ûS] ¹Z¤«ýÖW9UŽêÊ|z¢ÆX$x¥ÏÀš󟇸kÞ)íúÌZÃ.TÅ´leí|»©+T~Ä×'P¿{Q7% ªß°g;_9í¥ùtŒ…±ç´­g—ˆë}ôG'úªÕ¹;ê„ÞŒ£‰º)»!›¨§,cøºõÕÖž„äU|¸‚ • ìù–ñÎÏÐÎOfä á[¢Ùx2‘Vb 4gˆ†=µÀx¿æÄäýP×…e>(Ž^ÜOÎgš„F’êÈâÝÜÚæb˱-;³(Ly`{'TIòG| ,oí­¥Qgsîn׆k† ªý¨Çç­òÉ©´¤|±JøÖüPdaÅD+¨÷˜úeÕrÓ|n^ºbÉ*u(<…¦XµºÄ\<4À{a»éOäÌß§¢ÐÎZ‹Øƒ—¦l9»t[ðft"cíØz¦K+þ.×bÌeBiH` }Í\‡ þÄ„fœm.¦pbËßÇ ½(uÎ[ò¨‘s¶÷ôÈÿmߺ‹£Èº3¹rÌŽbpT€ :ÓµÜèÃ:GÎ –af˜ïaÖü¥R7g å^a³ŽôêÛ7ýd5X=(ÝmÅ{«Ôfí2…:Ú4øÂ£»;˜Az ÊüÖºþz) X¢èÔ¡h*hTf•Þ~tl ]¹2Ït„K\YoIÉåó  ŠibÎ Ç%Sµ<•ý2oîŽæÄì4×*O®ôí ¢½¤Ó+ƒ2}Ú‹Žc5" 1)]êèÞ5Eá@Íôº»Z¡GÖjr.-±róÕ €c×A¬fFŽÖ¢­tnqGKé ôy3>§)%¹ì›~¿Óh¡¶Aíy‰Gä¡ýqA+bÔä\½€¸}öM¡ß¨B²~›~tú{³z?̺ñJ3‹Ã+9c¾þݦÌ¿“Á‘oÆÞBÀ:ì±Ø~5 ®PkÒt¹ú.Ýç=®å¾6CH!»ò¯„_¦Y¾Ïš¡=}¸·¾)*Û€´A¶¥Þj9ø¡†ÝÃgŒ=–˜ÿµÑ2Ð{¯‘”¨¾ž6éòyÁ%–¾¿ô{µYÑÖÁ&é! †î6_{¹ž€ªóBû‚%}•“ã÷óZ}ḈKÁkÇá ¡ûÛ¶S÷pÍë´ÛÛÛ&=.§1‚ó¼h9bš;2˜Ž¾éýÖ!eÛÙpœ¢ë°wrðð9­#ŸÏH ¬îg¬b¦"ítçµÉX/³™õ§Þ;™ž ßW.ÛÇ:‘TÌ% ¡—‹88<ŽÇ W~ƒTÒÝÚ Œ£ØÏôu¾Ä h±j©+ì§›TfçA±K~É=å¨ÚÅé~» ”3_4üo…q¢œ•·«K:¼¤Ø"=´½ù­³MÑIBØb¦ >36—šY1wH¿ÃÎä}jèNIÑ™qõ§–ù7:f–Ô’mÖÇ;wÝ9±ç'¢”V*úšg߆²“ƳxŸ3&ÖMx¤ch/µã'ŒßÀ\ÜDêq%;#™ßÆ¢° wõèb!lYj]¾;ž1píúÍsø=kõXnîCš >‹?§ fç #¿¡jUX“(Û ÇWÁ…·“šÁñíÿ&G… ](ql’sš§ŸR-ø¤VÐÕö7º þ4¬Èª {*Ì…”†i:׈yFAº±9µ“ìw7âhÍH7¤ìÖ•&y‘Ò‹y2kS›púm8ƒ™Ýr–ëš¶²SM¤O,Aw`kS÷ «ÎQàÇ'f ¡Šã“Žã{Û½c2bÂhQ‚£8Yα/@õ‘L oŒZD³ÖŽt*¨’E˜ðäW˜–§"n@—–ôHbCG_?éÄH£Ü«hE.o¬žò“‘™¨°¡>ÊsØ[3ðÕ î¸ú‚³,ˆÎ˜ª†@%h¬¨Oâó‰§íáàãQ~3ü_bøoF"¶G³¤EûGŸÇ=ÀÅ#¾š+#…À<"§ çé•ÕÍà4[5·¬ÍÁ¾LK;¼¸µy®Ê;žvG:ì³ÒQ\qÊ:‰ži/¼}#ÝVÀGž½y •ø!—’í â©ÏâóÇôÛØQ=Út ö<‹ê1i¤ºXœ…Õºb@KP”0Ϻk~"`ûRû g½¨1ž9ùûæ® œü °O|o_.Î÷¦'Ë™œº¼Ž1_ ò'«$õgêéØ r¸µÞf=XÿÎÏ`{ /˜qcÊ>¥›?¯üã­ü(‹`Ýèç"W²”ÔÄåQö²à*)'zLJ¶±¥y6aæL¶W°•fÛã°òRlÁ¼õP¸À¹Ú>æÌÔ[ZWaùò¸†c$gBö7uEÁY¿Y4éuMìî6èk‡p}‹ø1³HÛè§Qò!îAgd­psQ ½Ék»Uê ±)ñŸM*8Qhj»àxïD^ v³k߃O8i™{uT ˜ªò XiF¿”¨Ø>U¼'¿‘÷tÔð!o†aN‚½*Lp¬n™ÆÐw¡‚dÙmª9{wgmÇ­°ÁpÅb”d Ef›œí'™Ž`Ý..È|€…w_R[Wúòëx¬}*SI\ƒ‹ÃÀ«yI·Šy*y®J·Ýf¾À/)™* )^÷g¯¥×à¿ø›RX|ܲSÄ™ œ`(­ˆÎJó cw}båb” ­,/{¾bí6ëéjØ2ôhëz÷)®±K J!9]t(„ñT‘v+t!Õ›ÿذÝ&¹új†Å– ƒSМÏÄ­†á Ì—©F÷Œ1W2Ü®®Í¾ùŽRnU;?…· —N&­š÷#sÖA.±ÞÅpf*G‹ŒnÃü~H¸•†˜}œ)Qß$ ¦e(à•i¡:™[ñæ…ö ®ëÈxaé›o«o]T¹~ÄAr/œ4çy °:;ôwç¯Ä"´Z®µžçÅ:õ ‡úèÁfp‹€Í,4ñ?š à‚`\»¨aà,®´ÑÓžîmß°{Ù¾éxþtk(áê<¸°Ð6ã’t–lñkêZ¨¶†³†æ ‹¼Åê„)ÁjÏ—„øYJ‚¼Ú[•!uÌ¡T™z5ðáÖWd#Ý™.÷\ø}À*ð–*kvÏ%’€¦&«œuBœ©"·•[WáæœK“f¾ðŒBTŠœü{?L¶Ú(¤ù8yÃ礈î\º×’Å;JOÃáx¼¯’7` ò`Èâ0BBLÛ&í/xPð™:<ºvüdVéÈУÁŠŽ„$ ³nÅÁšÌíMœes6ÆOÕ¢5¨^uMËßš²þ^¬ûF˜§Á/ç/ ü÷d.s9‰ôD7­#ö’Œ³·„@/£âÊ4ÚÊ9ÜÓ]«$@[ÒTZÉ×3H£#Á¬hu–_\åcãWZ,ƒû?ö {˜…siEßÃÚxý,ö›ýÄñ3kRÄŽýJi¤ß¢´ c›T4Åà5?žtÐj©øŒÉT¢Õ]›Ð´€’b÷m,z—ø‚ÄGŠ>ÊIC±uf$ëlÒ@aÿ¬¶R,Jö¯¿m[2, fÍŒñq”êÌ,릒2û«<ˆ^?,æï…À Ô?[~à$ÿÞ è]êå"pKŒØ©Y×ÑA‡a²¦·ßQÛâŸÇƒ-a»»Îv² =ˆõÍû`]W©ÕˆLpa_¬8*¿º}ð¾MM͈á²ì_Fz„ÏE£—y’à5o¬#å¤}ó6Ê´8QÈ0ö^Z:°’üvòZ܇ÞÇu#}GñYó#ùÚ#ê’hŸ6^Ѥðxf"´É½ž» xôÎø¤Í‡ ÊèlÕº˜X¾ìœ q„g-T OéGòB §9P=ˆûgÍIô¸ˆjIÐá.èä“aÑ ÉS¡“º—~Ë9ÞgŽŸ#Ô¥‘yjDóÖ÷gõ“eßÙþT=/E{O¶¶}$£Ô€hŒ#%³Ä%Ÿ½Ë•Š8g´æíá:C3»b]ç*òN:✢l8*øË&´nÁïwjÿñxꂎ©³ë„CÁÖ¦‘eíè“Wbþ0Šì€÷#›Á¹€ôx°cs]KÝ ÈøîÂ=fÙ¦@3•ëuÁª[+Ç‘ïo–8)V¦‡W4¾È›’£©ðC])™Ël7kPœa&µ öÿÈël½íAš9q臈ÞÀåJ0Ø*ZC[6±_ Þ´-‡j¢‰Dnéq†Ð‰Ýz ;ÔØê:ü µ¹N,¤ÍÅå:µá²7îÔ–{Jrf!>ZBR8>×#s×ÐZ/;ØjºÌ瓈+ªò‘‹¨úx!…©†Iº?~-–¡Àƒ±ǘËçtý ‹™¾Â»ŠÂLSC(ÜxKi$¨®>±Êýl†€k‹ ‰àù\$Õ¿^qÒ;fÜŽç'À$z¦ìSзœÏ#¸šÔŠŸî‰ØbÜF R Ö²M~åLÂÐãþì'÷ÐaÆyúL‚½\zhÂòÁWy·T&–£0ÁŸ¸='ò8VÝÀ.S»¢EΣÕT|ïï0Ѿ…[ª ȬžE@A!´±#ÑPšÇE@ˆÜ¾w¶Îߪ›^k›á»Ž´4¼ªå9ž;²˂>5ÕK©^qZ‘tBçŠêu#©Ù¨õ‚ð„ò€ÑâV5Ÿ°ß:G¦ôåäq•f€“¢àù< ’˜SšÜí5^åbÙôÅU`mÍ‹Ãç³>}w³ûx ¢MTŸÝÇ‘o©­šáìDÏV°·Ü9ñYz‡¿‹e‹"Žó汑"uÐíàxcy©„W ¸¯æÞÊûÝ,̆qÕlÆEáœFU‡C°>ª$ yZ&ROs~ÛW5þu‡.zÊùVÜžaúÜ;•R“àþp”w9áïL…Ù8ÇÕàœÀA‹Üy\*6Å!šôCgáID˜ÙŸ-¡/ ö•‚ijøÉÕ^¢58?aÈÑ1Ú¸Ãéö‘©Åf*äXˆø:Ñö{³ÍÐéSâ—Ç|€Äþ?–0©_aµ klT՞ȉÔjF’¾èÝÕÖɼì>Êp™”§2J‹¬BHí¦ï΢B (ØÇ‚®ï…Ó$¡Ç†m“¨)ô¼žé>Ü xÐ.õŒ´#f»r„o‹/†o,í ä×Í8|?‹&­[Q¥h‰)¾UŸ¢¨(÷‚¼é‚·ÂÉ”V§mÊR AÜ´ÄìJÀЭB/šÞ÷úŒ%±Lù9e %êô4zÿí²7Œf¿‡€¸÷sÞÙdl÷—ãÛ÷¬É{TM‘lN2l«âÖეÞʳp`8¬~m¥ÈDypDÜš{ƒW5}°Ã\â$!µ,%Ö¨³'Kù({O é|œòç¨ÜY…Ûeëx'åL ðh;ަ¢¡·R?åŠóÕìGØžTiLö¯ŒÌ£’•£å9Ç©ÑÓR`‚#Sa€Ä¤h?b#Ī‚ðÜ Â-3iâW3r:ÚiØ‘¨(ã ÉG·o5—ÄÃ322·\†?`phr¨{Uœ1º¯¦² XÆäw•Ç™­ ÔayÃû¾à78ù”wœ¢í¦$°8šfñÝ`zFepiÝkMz\Ë,Á—È+…ÎIë @Ë;î]#µ©ûLþŸW ˜Õþ¯;ê9ëŠfE5ŒFš DŒ1ïL…Ý”YYHHÒRBñœu0çïÇrØãÕÑz85Üð5¹ƺvfÈZiÒY¶«SþHt&ï¸_U9ÙœG„ˆ;Ååв;Ú2Ñx{Ý-ŒŽ/Î~]êÞTR¼ *T³LÈO«8¦¼UË`–ðký=h,Ü`oÿöã·U—>‡.fêušØ(Cã‚Ξ(+V+m¶ýý¥ëä׎#Ù±üìŠÙ&=ãÜmÛ}ƒæSíi®§p VÙãÚϧœh‚}lB¤A§ç Þ-šQ߯ò?Ug§Ûà§(õvß\”ªz–CU¾ÿµVÔ–C…ƒF;}ICöå,LE¡»·mÅh#f¯%]T¤s‡öç긺êÖŒ…iñhBHp$‰°¼À"RâÚÙCvmÞ4GøÙi¿\Ú”m˜hB×-¶Uš-83±o,y^]Eºyôû3b;‘gxëŒH_‰ïÔqh?Ö’q¹Ü¨¼¸!Ô€{ÙaûÚòJÞFE?±0 9âóÉ‚šZÔ»¡fkðŸ[¬?A˨³&nðʇ*©<±*ÊlV·‘TmwOã\æÕ>´Û~ðä£xÔ›þù:‘ÐcR´’ ¾å8AþK )]ÅÿòEJÃqåð€G¿ØäN-˸ëlj³K=»tŸ€"cS2²ŒÃ—Êqå˜\*_¯ )é@·]cša…öiÃ*cáyë'åSDÌ-M\dJR) ¯ÊãëރǪ`>â’oªÎ"‰œÒ1$e&’RÕU¸MäI¦ÆL@Œžn“Œ85þ<ÊA2ÆÒ“Ñfã²o)SÝ${©èÛ½—^É£kÀ„¥õÖNG—.ŒUŽäꋤ 1ì#v¨}GýP"ÑB Ã!úK¸ƒ"ÚZ¸[ ï6"Ë MHd7›ût‰›Ÿw æUÖšfkËœˆtVDbö…æróÏÝiÒrx•*c¯‡Xz¥·Þ§|‡#ì©Âr‘›ŒnØMÍ|#"¢“mɋɯ­RËÄ‘WÝ #ÄÏ…ß æ…#…>xÉç ÔFëÏ pø÷Âì¯"<›QL[±Ô©ٕ֫&«Mšz™ˆ Îö`ázmhý}îÕDk¨øã*àšoLýWYu¤ìcìcA»@De¢h¯xŒÏÔ]öBÉ›¬»jú lŒœgÜu¾ßfÅ2i™6˜ƒÍ KÂef_¢ùX²pIÇ—(•QQ<È*iZαÊiùz£.¼ niHaðÂIøÿzkðäE,¼-tøÁCwçªxÎµŠ²A`š_öZ£Pav Ó¶kqð]ù|P;Q²še¤Ü!ì6ïkÊX!ã‰ú5kÀ3T˜çÜ`4â6ÿ÷I6#Ïrò”5îÃ<äk}[ñáÂ$ÎØ;ßѸ‚dÄ¢Î(S„U²¡p®i~Ì·ï¼­ä)°ß^ßÀˆ­ŒÜ²ò… 冨‡½*çך1 ®œCú⪫UH¤ä¦ÒßšUÉw6ùŒ¥QpÅj Ó‡‹ç,”—0ø²÷r1šLl¸H)îâÐÇŽö;K¶)NÆcߪVJœFÒ<ûõÙêИ`DOqbiØ7¤™Ëöüß.ßzœòù-úrÌ8q Æ=ÃȈž¬;ç^ªý5.99bðcÊ]4Y—- àüÆù_z³´›EñÓUÕl{qíY©åÄib¬+Ž1Fa¬ ëù–ÉœJxþbtÛ}AHýÂ!Ó¶ª²èl¸QV»å—þ`ç²jËIWÆ›Iå\@%l_MáËðN{!¡ÖKlI;ÌR"Ç8wü@§ÑÇç´CY"®Y÷yJ˜ÂSµMsÁ̯ *Uƒ½£³¸ÔE Öjý$Ð[™¾Øäì-×§)‚Å‚ž5Bùk*÷ɵ0Ÿ§=.ú˜%@ÓYW#þø‚zø¨Í°°@1±?ÖHãädidä1hG²ú) ) ÂÎÛ½¹U¦0ö)#úxo‡{Öj ×o/xöó_´õ6Û7‘idâN‡¨¹>uBkmªÒ†×ØÅÚòÈ5N}1‡žÎrƒ®ÊJ®ÎÒøÃÕ+.%tZ!¡H5Ä[ÎÒm ‰PÛÒ¡ÄÀïÌI=gÐw|h¹½%-ÓÝå>GËÞÝ€§Ïëü»^•g’Yí¤›~ <‘1xÿ̶wÖ¬ø>MömÇTC†ßpÎáÜ…–’¢ŒÈN™k\– m4-ü9ã× Ôv{8>ÁàK%ÊLþ¾ý÷ŒpI$®a”Íß$cÌ-7õ%¾*Ì*ìùÕZîcÏWQn­û$îíÖ²ÆÔ\ζw?r>5>tº-3ÒH5>kt4•E+çÐûÍ1ÞN1C×õRˆCÛ• á=›œÚ£ýàØr?޶ç=bæýŒÁÒ…™؆örÆd¿O®’v0 ½É&Bò)ófÝçZ¨ „?Àâ_/†Š;lrV›;h‘øS[Î+ë·Å„Ÿ¾I¡…Iv˜³åyyNixÁs;<õDg<1‚IÛb ~¬b˜iù!»‘j[; õ…6Ál{ÐpÑ‚©ÚŠ’â>E"jl޹Ž»BÞýZ~; ]Gï[Ö6Pî5„9h[÷¾­†ùl¡ír—grcS}°e·–Έþ:zsˆÖíISJ{zÓ˜Ѥí‡óh„ôÄ–ßy?|z÷8 _8R–ogm¾JXx*ç”âøe gtp.Œc¡­§DRî¹hsxK|‰Þ{}ñJ¼©v‰òÛÈn5­—j}ÁdÈq«IKåºÏ_¦qbá*6y–½V¶q,[ó‘—P@@ pÀRÚ° <ýÇšNô\ñyzH&Ôi}ò¡ïD½í¾NÁþýžÎö`|M1 =½÷÷s [Â/4ãY&I‚¬Óx½Pµæw¿ç)=ð„ŸÔ£Lµyg~vEU]ðc‘R¸¯"]|d&ÒØ`»&ÆaÁœùQc9,í2îOÊóm ga+ÙNBã-`l‡bLº/¼‚ÐöÔdê3°1¿¶æDÙžmóÐeÇc‘:ëZn½"`uæ)~¶Á$&¤« ¼¹)þþw*(…Fu.Müʸ¥«ª¹ù²;üà1iƒ;84gåpe\PMšÈ^Qïêû”îú(~tîí¨þ8¿¼ ”…’ÜûŒ7.Ÿç¸5#`Jþ4ZÍJAí!Œû;Cgp èJºýkàãq®ÈOž×'Ø·TpÄ[ŒQJpŒªÅ ¸‘]W¢¾ÖÏÕ[ˆ‘š‚H÷.Øàð‡Ü‚FËJù»Bô¥Œñ;usøG|M“XÔŸº7²à‚…”ö¨ÑÖ^wåk¹”¿Ú8Nò“¦9å¿·ú×¾¬‡Ùî…œ·_9¥Gn0C˜úúÄgMåYä?ZIî~;»ºG’eÁkÅ!ü.ÌÆ^zÅYÓNÕ+I‘‡RØ]l ÈÌ@—dÊRˆHÎmÿ‚L-â-ÈUx•ûiúÙÏÃóÅÕ7§xšî"$r¯øZ)%LK˜E‘5šoE¨{µiÍÜ1‰œ!/€ZGÝìl;¹Ýèg®ã{Shâ°3xÁQ3?%³º›_¢ÝÃ:£þÜÖnMK®¾ÂF7%Q[P¬äF|vkACÿdUhòÐçn"© 4@ã$™ ¾­¬÷®øêôM–"î`ªÖ·ñøÉ Âæ¼–O¨ P÷ÄxÚ.‚àðH‚'ƒ)À83¡j$+~â…Ûï‚Ý ú¬ÀŠ‚¨™t¶•ˆŒ¹€*üYGÉ„³!~Þ]ó‚¡#È—*ædf¿I®b{ÈamKix“<9QÛí…fÚÓù&át½êsBþ;jŽB}DØÄBó¹L'ÃE­{º™>”ö> î”ÁûÃç¯PìA6kùYOj¿°§3leyœ(¡D7ˆn'‚ŠËn8‡‚œ°|Û®b³ò¯¯õ ¢[m-GQs0¾ÈgÝØfp?mNmÏq/2ž¢œ¯ö|é­×ÞËš:»ÀX”““á"ÆÂ=Ë>rÆëó]m uÊ «Ü´º~›#b ¹²‚¬(Ü´|Åg¥Î™õ[U=\ÇܤöXe×õpèå£üõÍ¥èYãÅ&’`înÈ…=?Úþ‰e@-+A à$êo—rð¼½{ÌÏpý~ jK:š®×š\Ûòç j¶UÄ>‚çaÝiŽf&2$kýfw1¡2š°-Š*v?øÌ‰¯›çÒÚ º%Þòµî‘Âs]ÝîhÃWg“ ×s«˜$Ýf«L¨wêã¶ ¸ I(SS¯¨O˜Äš4jøŽà ?Á ½]µy_UþJ¬àÄyŒ÷yìEÙLopŒ*\‚XP'´ÌÂ2߸eÒÞH¶¿09ó«¶qPp‹Ij)ÔŸ„[)£-Ù®àC]#ØÛ½\9Ní†ÂM–•JjÖˉ̴¡Þ×ÛÈðÚr.šÇ¯´2¥EíK›Øìu ¨×+ ئ ½Ùµ›è¥ÜÁðÝë–h²¤âáxê`q7°tk·ú5Ýf`ØaˆÆ•ÅiÀ•¯4›&è» WüÓRÛã‚$Â}jëp™ñ÷Þ¿ *Þ©‰¿ô4yü.\²,Á™Æ¨¾4¼åŽl¡hdsû£°®àšZÐÔ¸ç5:yi^h¹Kñ:ZùÀ ØŠ÷ÍõSsÀíP79¸*e`žõ÷`ytß•ScÙŠê(FVw…¦ÎÏ Op2úüDiä&÷zv+ÍÀJ±Ž0»+=”É»ÀBâ–vn·²ÎÉó©jŒ~,KITÔÄô>)J:ö»\{fÞóq÷è¯ü(g– Ÿg‡¾X `´‹ª‘ÏVcFï={L~úâÑ}„A&N—î¯4ÿaÃxq:KûIÃáš3°Ú˜¯©HªÐW•½ol”qZ€ :˜? ¶ï@Ú<ç €»\¢ îLïxÈmþ ô¸vÆÁ3”bó‘ïwH³ƒDn ?tYµQzf-Ì­`-;Ì!’+yLÚÙÒõmŽr-Hž ¡‘rNbûlÛ¦wB1 ZÁíŠcÞÇ—H¡ ÿJ³Ñ·f¸Ò~(›î|cOñíljìƒJ’|¸B9sëPÃ*J÷Bß)Øe+ø­5mYÁ{êÿ|“ÃMX¬Â͸ö©Êüe¢ì–½Fº-húë3¾ÞÑ ø€ +.þÉ„rµ®Ò ·ÆH6ø$3ÁÃkç(½ùÚM,cÚ.Ù)HRwð¹/Ó¹­0Ã/õ,èÕ„™¤9O߀¸$£gB÷Bò—„¥“«Øš<›]]Õø"®ú­ªïéñ"AN–ÓD†urÑÇê ã y:üÞz¬0—¯†Ô%ˆ]`é ”¬±°{"¿ˆèAÏó{Î ß ÁzQš›xS¨¦øŸyë{ Ì×ǪrÈXÌ}´ƒ4o׺?´Q<É[Ž\þl–Äz:CHÇÉ?Œsnjó2VDÕô“Í1Ö¾P÷:ì\!Áõ~£=ó ZyódH¹—Í;ñÂX©Ë1’r¸-“„k0¢Y ½û:¯t¸ü•A ðâØµ8­ÐŒºÚ!ÇÌ•GCEödçþKBe‡†Ž‚í8áÆhâ›ÃÆ^ô©…ø+R.ÉJ}HØ@%æ[Ïømž’¤QÌ,&H¶éhé •ç Ø2.GpÞNíôaò!×Éu Ñ:x)˜DÑɧ5«œc#3Œ² %ÄïÆÊQNG3òäÙç\øG܃ïŽþi.Y¨Ô2%·ä;úqÎ;{¹øŒ“wK;Ѿ§_-¥M IAÑw(;loSî¼>/*)Ž?"thú)‘Ž*åJŠz ^-K`‚.âÁ£¾³ÕÀD¬““zx®A}Øò“ ôÞYê¢ã±Ù€ðÝRµØ3éhÁ Ú.¼¹‰„Ãu¿³×ôœ A€¾³ñŸLê0·ƒÇý –m/)sƒ÷Ù è.DjB¤ÆÏ4.]Ó[þ‚±qCi˜ ‹r•s1.éD(ÀgZ]zË -øL%‰g®etØ7ç—ØÿƒÕ)Çøxøu°H8ãÛŸ?~€Z)q2Fõè§ó]òüFº`¨&¨[gMŽ}Ãâ¿[”‡F¡C¾¯Ce{ÖCÕõËT7¬ ãñÇ÷&sÁy.2Ü8Q.\nÐâ's·Æ•@Ô‘"À»ù3U‚€@ŒËÎ_¡£¥.jV9û6ú¸ã_Ô‚°Ì ÈL*" bâ¾8ÕyXWÖñß±«§LãUàÖ!²]ÀÝM†»a¥²Aɂٯ:NQ<:K1œÍßÈŽ¡q:&¶ø‚Gñ•­ì·hÓM¸~‘ê 2Ù|Tz ²,øzŽf䨵´*aÃWô$šúÐhnÅfÍ8sßÑ ]ž°5ÛOœtÃýq¥§ÔÔý¼²í² QfLN*Κ}ã¢L*.c­dVfã±Ò§ï€`íxžÚ|Ø€î·Ø:-þ8ŽoIß¡ ¢|%Õ1Oxü5øZFÅG¥ÿ–tpâtïomÙ°²{©÷ïV B—×o© µ ®3ã¢]]Òº" eäÍ?·Ã%Ť"T~T:ñq3T„¸÷ ­ØÍ}ñÄ´7©øÆ2v‰ SÓ¯·Ÿ›ÿ¿Ç –«+øŸ sÓh#!v M B´oÛÁý…åuHy*!²7{ûÄêRmÝdóìý#¼Y¼Q UŽPŠ_’ñ*³ÊNé&ÂT&šO¿<]ážÀç¶NqKœA¾µÁ¥m{dwþhZ´íh {A1,-Ýé«ù~j¼¶/© ýª?i‰Ò—Ê5„›;©Žê¢ûCc †q¥¢6SŠ$ªaü+VήZíº ÛTϧ¯F¹‰ãò&rG· ü/FN±b˜IŠˆkçûå/Úë}¿(ýó:x^Þ÷/­u×Ì®u›‹ô-ie’:T}"­ÄDã #è{­é¢`üœÌr¿Ì„8:ªC :$2^÷x0vr¢ Bwʧ“–ø½ n^¼f@û­sØöå-ß}‡G¨ÛG˜ÍýŒà o'jX"¾¹+0{~³—ãc7d-J„5ŠR¿ïvн&¿þ):fÙA§ 7åçv¯ž°©=ã¸eKJpÊ–¨¹F¸]Ç}WúyÿÏòçPgâˆÚžÖ¢«“§ ÒDÞJ˜àå©73Y¸%k¶©ém¬] ;C1îðð剺uª`B©¤öUÆ!µbZ³6+ísˆ÷[ža™*•š‘3Õµ¢þM:mä£h$†+ok*α)âÈ‘á/fa•Å£E„1¼(²*(‰/p KFž"FEÐÀc>ÅÌ>ÎTNJ Ô~6 #ÝÌÑ/ÃÙÖª 9Ruf”=VzwP­,t ªSÄdYÛA7Å“žät\hÆ •‚jè³]30FÞ`sì.^\_x)ÿ§+· Œ«ù˜j‘é/ Œæ:Æxi3èVŒ¯†{ü-#(Ô¹¿[n~é›…}a¡– °Â¥»®ÄµðǛè·¾¬å%6Ž‚}Éw=iÜ6¢ZoÊ#÷ôüî“4¡ÔæHÑ÷:û™¡;všêŒ&Bkt'õ<ã…C˜‚äŸ VÑÖѵ*ŽMŸ­Í^Nå;ÿ€ì;™áWmw-ýù¤ëB¹4¬ÚæÁÃL™¡_çZͰêN·9®Pjø£W˜,F>*“E¢Ón¨ô™2ÆÄ½è u0e`_Yk4î®>1A4róV?ŒRSðíëk’¨ö½<òL “,vµÄ&ÌéwËÃ,‡–ÈY)nÔ®©ÊÑ2Îñ¥‘Éü›Uµô—1xšÐcÌ Ž_ÐlrÖ Klj«9ì,)önüí5 á\¾ºßø^øŠ£óI‚i€!k˜lÀ³×à1ÓÁÙöÄOé;ÂGµÀ¢0^Ìè]_SŽ‘ í»ç´æŸû•œk} ‚¡€2¥ÈÔc °W µ¿Z"ÃJôc=µ»Š .‘FpRîMÙÛˆ=—Å[zÃbfî0Jaëý2ÜËê¨]¤îQ^ýû;äø}˜9M4ÞVDèÓxggSÛ§¯Î#ɹª‹Å2^1艑ƒ‰èI¤«©D é£Su©ö wr¥Ÿ¾*nIòÎÓÖè|ô‰Ì¥=8“è~­r ýA³j„¬u±VÑêçZ”„8ðܸéô5þ¦ÕóÈ*âüýbÚeî}mm…þ­“ þB÷Ø8ľ~ã˜0©@8t•²Ç AŒO£5”Œà±BFO=¤{cέ¹zη’B†ñ&kx‰æd' Ô/:èß-ø ä„Z4•ç6¾º·í®òÛíO¬6{…Pv‡ß¡p·zì Æ¤¢[ôþ¤¶þt#üj1ùLô„Œ2ˆØpØ¿=¹Æ}Þ]ñ{{¤eÜøböÊ? ÷níyQ¦Ü¼#«ž#ðÔ>ŸâQºõ™NÖrþ¬™Q*$4ñá¥Sd|xWššªÖðåuÔ¥iØNt"%Š“•~‘b+Æh atÚ¥€a–VÛÑ Ëú¥ÐäÀÐð[8^·ù¦ü†¯Wf?=Ãn8AûœEu¡nŒ_vŠiCƒ×`qQÖˆ+ÄDØy!;䔽ÄÑé/*C0DÈQy;3:çzž’îŒoïÛÀ¯ïÖT“©ýÅ‹J$ßµVöçchћӆfe¸-Rà)°îe¤ˆƒËø²Ú©%¨[MˆêiIèfµõnu; ­t†¾ú9=¾I~”Y¯âüN2´¯€¿®€1×t«&pĤfj°¸±dšôÃR 1y}m»êSjC:Ž^¾³³Zʼnº·Ñe G|lE$§EžÇèxüþ$Äf:T^rùV æ:ƶr2¦ 8×⎚4I»ðÓYèã=ÅQK,§‹_ugã$ÖBzMJu ¤øq¯·ŽËù¥N0[s©?»Á!õ\¬;=ùKoRi–¸5òÎÕ;_ ÒÄÂù®µQ,FýVsdqP žx07¼6¤Ü—PëÕhB.vWF8ý~˜BØðŒ: 0÷Ö%I¿ XŒ³ÇB·ÞŸÓœ¬®uÕ°ÎÂw·[T®eÌÆUkèLËM£©Ù*`æ­½vÓT³—¢Á;ÐûtENkv/~šÚ';‹óý—4ˆWþ~Ú­3Žëzîa=íìùq”ɪ"az}àë«àWÏÎì(]‰0øÈõENê¹î7øVDn€ýzv½6wÊ Ò¥áêæJ«Þ€¤Éa¿¦C´;/,J¹ŠHÃÎÿ…Õòƒ+ªü+×·Ÿ=’9ⓞZ1K>|_–füB(6²RPP¢Ïºò¶D«.’ÛızP„[CÏÆ–‡™ Ö|ñý²Ù'j@“g ˆ…ÚwúêY]>æØÍŠt AšÀMäã\LNö¸ujQpè+ç¹0K ]x£Ø$Z)êßµ¿xs&¿y=ú’±:jx„ÎišˆhïGÊÄXݱ7´8`ü„Šq…>õ¶í0;é×ex™”WÂÈcw¹ºÕ"ÙäùDiDÝÝErT ö¢;ìnV0EõÆ>6<óË!}ÁÂBÒ×þu—Ñ™îÜeiU™ ¯µD¯]Þƒª?Y·ûnŸVsIj,ØÈ'未¬.__ñéaÈ#Ë|ì¢óR¸ŒxÕØ‹Aðo_ìÅ9†Œ©Y®¼¨”ûSK®ÅÑ{ÍnClÌb1ž¦š\X]Èðûetš'v2BÁV'W‡TÝ¡ü¢ `ÆKPIŠñ¤…áÇTõ ZTð—f p•m d0Ï!¸µ•2®²mòþnß«`Ñ¢ú7Iß“x’jˆ~€)ÐWaÍF$Ñ„œÆUî°XQã7¥2^«rMLŒ ™e5Ó쟂©ø Y,S¬†k*8nofŒ†é9N£¼L÷~(„¶î‚\gúEôSq‰/šòu·Ôºñÿ râs*«%‰So£´>’„ Ò˜p ”êímˆÒ>u0»[/­Å³JÞDÀñx,îJº63©»Y}aa˲¾ßßxPÃl ô½Júƒ#³&þ Ý«´Ú\•e¥ûBËÚvó mìò rµŽ¨S{ß-VÖ…×jËWâ6ý OÂãÖB‡cˆR…¤Üc/YL`vRn  &áL^L‚Ï a¼ksÏ…êNÙ)áYë,U<û%+H˜%úA¬Ò0±àÎvâ‰Ä.«°ö¦›­B$¤ÔȾÁþD’Ù80cÁŠO"¥M§:8_šønöãõ!¾#Ï¡{Þ_–pí* s‚iAéªÙ \Û[i*óê0aŒÞo8GÐùV×wã4~íŽêkÊÄw†[aÿ64jRé”Õ$+Ô-X¥¬;ˆ"$”Á&Q‰JÙ}'†|ÞTŸã ê¿\æŸX¥"—du.í⸑Ú”¹¯“«*¨û=Ë\ñ@2m¿³ÊÔÚAiÅBÊÆKeö¸)ÀŠL3~Úùµl6þ¢çz2ñÒqÔ…õ<érÅù´I¼ú]Ôè~CeäxñßW¬;¥p ¡Ëzåõ?¢åo„ÅJò°´®³ó öHëû*yb—k²J»´Ì\|<³‡JGhKh¿·½-g¶}çgnC8»’:N;/”c$ëÞ~ô-óo®/ŠÝ?2àéŒSau7û‘_&"¦ 9i<7€f%ŸÕÐK±>ìÙˆtG=RÃ/ºÈ/ TÑÝWþîÁ½‘I±»ðƒ$ÕýnA¬X%Ȉ{jíäÿ…‰^Wà|ð –nÏ”òi ¸Ìb…pEÃ?‡fÔ—äò ­ Â,:‚ 3_|QPÓŽéšJ \>Í<‰ßsr_kȧk}©%ô4 2åÎ~ÒæQDÞÜ'æ1Ý~ût,Ó^öqÌòX3—Æ¿ K|Ibš.Q&pÙøò‹_ ¬8÷³ó—Í¡yÞ·L4/à‡l‡2$lჼÿDª„i½ÙZŸd•FµÉ–G"ÃõØXJľH Ú9d­ÏòQš aNwLé Ó øÃëgD8?¹E—ï ”/ŠlA(öSÑ4ó#6ù,±i°õ©U¼ÝBwÔx»]EpB,Þüg. -UR½; 8¯Ä®§ÝHËGÙöôŸ¸ç1k,±%ëN›Ìò!q3 E…ЉG\°=ÑÑ #”2γþÞ–8À¸êº6 ºÜÓ,é÷.6ý†ñ¢4ýø­ëU+~~ªW~ÓÕYGU2=¢ÑjT ·¨i p#ûÂåsEÌE‘‹ f³yL:¶ë˜¸ÉPz…_‘†™ êÛš±ññ¡Ìy<ÿîéË"»qàá' b©Þ=¿JkŒhH_hëŒ'áuE·G2y‰þÀl´àÌ™¬ Ü.PàûÿDÞ‹™Ö _ìâ=r©öàœ’˜vÀcyKx0};uk‚–+xÐSrYÒÀy¤ðèO™ebÚ[µÓþ†R·¯®§vË„ÖCqÇD¼}ò¦.#ËO¨Šù"àÜýïs‡C ­Ô¬õõVp@ÜÕÅK’4a„€†…€kÛÅ#É—ÁÔPö{ýVtä…>Mn¡—mÛ÷ÝÊÝv»›‹†{ïaæ]y¢Iª:ðæC„d„[•@­ÙqÙEq6‰ÁuÂä,¤º"˜ß¾Ç‹Ão…–grÆ7ŽÅ]@Ö,}Àƈ’wÐÉÊÉÓ×ÍŸªÇ¹•|›(ÀFĬ¾Þ6Ò"¡v‡hÖ.2DPyæÌc‰x–Ò¹;c ˆpýhFТªâ¹ã©Ëðk¾àÜ+fˆ¡^½:<Øpô„Ý•ÎÍ–ÊJ/°‡$Ø«i¤ŸD™kÍÛÖ© ­ýÁ3É6AýöÕ®¨Õ`ð·,¡ëÔtúQ¥3œF–HLÜ*¾gŠ.)Š­–z.§ÜB{çÐÆà¡›ƒ°ýt = ԙð:˜ëé ê{2CPÕ’kóª·ÏF+ŒFÌÀûvf¾{¯¼yó>³­ö¬®Ó#Ù¢cM½¥¯õ°g4ß×á‹úéŠ$?6%[ÅœŸÀæÎë÷wO°QØîF"(ª&&¦:Ãp1Êîbó~TëvÙÙ§>ó.ƒNÜzÄÔ´Ånïù¤2<Èœ÷†íµüŽKup?ìSTš€ú ‹­©€ìKJé 46ìl5h„ަÝ;«HIæ{…¾€Û£;§qOÒ]ßûTbç!öŸï'5ùo©ÈÌëpc5}¼vžÆµ¥Îˆ]D¾¹ºw‚“þ«g‡…§ËÉZ@íðÔÏa7bZ6ɶÁVó{NöK ÂJÞª´ Yel®  x´T§ùc’ÖÈ*ÚüD“õ óÙ~Èàæ?áðÌÇõ9—bѼ™N”¶›|Ð$9§qty§›þ–EY€Õ8vÃ’fQõ³øfn6Ph*’ [ÒãiUKH”»’ªð®V>t‰Åuâoý™Ú·& FNskL9±ÕËÖ9(èË#Z>öñ 7<¿ã®âð€è?ˆ»"~TLÙ­ °\WhSþÐýtÄYÑñf$EôÞC蛚9žLVLRQö90`‰-T½7`¹šç’,R:ï™}5-i6T“^M€P¿|UQÿ’&9å|ž8)¾«ª[<„Ø•9 ³ñ­Õx¡ù[ôúÀp`“X8ätâ0¶ ¾õ e}yŸ@±…äR®3%Š¥¼g³v›6®Èô!.€Ñ¥µ; êŠc|ÂcåÄxÈÓnyüµoûef£“•”|WK](¹koª-Þ RR¹Z_L\K fKµÞN³×H`i{%\r„opÄŸ‘ôr(ó P> ”>4qÑÎ5Àò¶óŒ[¤<Ïk /]ã4>¦+sžÂ w\á €\)yÔ äÖ‹¶ßÊ2Dß6­‡¡PJ[¶|²Å¼4—è‚[;NwvǽܫruêÕiç¾ø‚M¥¦Ò²|´.Œ¬\vxP–#K›.‘Aï‹"h¯)€¨ùõ£Ô Â5I!òÍ7­Ý½®´{p{’ÿ~œÜÊ•-ñÆ…vûC:õîRo†‰w{Ø VÏXF¨£ M´kÝéêU0VÀË‚ìèYdæX”á†1€«vÄuȹ9‚§í¢Åg “A޼C~¢e±üýó#§‰šdDâ”kùs¦|¾):ÅÕ„¶ÄÛYËêÕ*þþM“án)pX²…oC^‡F|ŒŽÍË} É&'Uâ÷Ù^¬*ñÇ,XRÊ'£7uºÐ§Ï꩹5º‘ñh,‰WôÍ~©ÏÓ&b‚mše–·§px·—ª&á®t¶<öÃòù’Ä,ý¤Œy2ö‡GÏÔóÒMÏ»…ÓöF‚ $üë¢բЩFc-»|ü“‘Ñr4²ÄÁgYKÂÙÇZW zªßHè†@h‚o«ŠH£pk:¡Þ5Ýþ–¢;Í›‰"ŽjÉåõz‹9Τ(·½qšÄÆì Ü[¤JôÃ9ei½õšÁ¥ŒšŒ•VI‚Çyì;E#Ë¥þßä3Wò/×Ó¼'•Ê)ã;º–G]:ógIn4¢æ=i=lóèl!h*Ø~mnî³à°ðO³dñ3D_ž ¦ƒ# ŒT,nLiälœ" ŠfCIH!ÊX9(qO?£ÐÁ¦–wVXÆj¸x.á}‹"%Ý…7F8 ’ásžGCÙ Z¦„­wÊ7#HyuàEŸÊüN%ùç9‘QÅ_XjÈxé:Ï’'@ÖÛ³áj˜ñé*Ä¥*„jIñ§Òd¢,£ÂDÀg²—I´žt¥”¿® ôèA^ßàOh¦l,;^ý¬¹§öˆ(ï ÷K¨w³ÐBøòX'ÆVFÁ5ºcÜ“d±ÙÌEõË8 «”ñ©"I"´¥Â5“øv^'Ì×ÙIfËûF邆è«[¼Å¨Ä1Ø×½Ã¤s—í¸Y©ù¢W£fÏ(Š'ó+»´ iÝhxWÕz4ʽ¾K †g¿åJŽgº²îô1Ä</K/Í027°Òª®Ž{Le•8Áù~oÆekz¿þ¿‡c@0[ÜSFW:ÈðS š¶h:sðé¡Ê±ƒà^ùódKòS ±Š»žÇ1;@#Žiî›Îü‚Õ½‹ÆQ½-z•" Â;\¦úž‘Ø¢Œñc6¾NÂaƒù7h&io®4Ð`!éÿE£_êZöS ’ä@$S]lZ7M~&%­ÅL9ÁŠ&2"RoŽ Å&„žåï×¢©J+ß.S‘¬"âýÿ æz¨È¨à ísäŠaEóe'7NßJ¿Æ‚î:"ÐUFɉÄÿÏ£´‹V!óŒÚž ¬äDØâ nô'D6H4ÎÊŸìº-ûÜ.uR0Ådßì[Í£Yý•,vþ?¥š‰uV/ O¿e„ªe5mšÜì›C‡NA_º’Y C×ÖR³0Ãa¥¡|dzmü¾[øž\VÒ™¥ú¯ãÞxÚž±N{w§ZŒ«¶ú‰m#H¦"“å'\Ì$=÷¶ŽG¬PWO‡™íÄþ$qLºT?*±\£­xŰ>—¸EÒT°ùÁxsÖz¤°õ`› ø¾Þݺuˆ Ó 'œÈÁo?Ò­&zšÂ9­Ï6Ãv­ëíJAºß/šQ`àUíâ²¹Ü¥Õ ~5³%%?îåõëÙÁÔ§U¾l\#Ë!mq*r'œ‘“Œtoû/›±…›žµL÷|ñ-f'ô€Ûr.KdlN¼{ åaKÍæ¿7åÄIôÎb÷ 5§|šthûøójc×u§­2e‰‚ƒ4fôVqÚ ºB·ÆIøÌÛ(½,¯^¬Á-'3“ƒ­¯cby¨°$uCTÜ_c(‹e,zlƒ‘áoóõ=ù½ sZõ/øw€dB~E­ã"±”çu!§Ù1„H8îš l†$Pù00ËX ï˜éô‹ u-ýÊL D¾j¥t^O¬´Ö¥eÒ‚f}™ÊLåe[›`p‰€>Áygå"#Úò(ó?Uyö6¡ì¢ì¬™!™n$ƒéÄò,{^*¸ ˆ7ím;AÌ€Îêz0Z¨‹ Mõ‰®Óá®Â´„ìý‡1º“ŠAcФù’uæj™•ú[zé%à …É‹ïÔsÖ×sÑ{žÿßIûAz@¬â •m@Ι˜†\‹m~äP¼WÃÀ„—²üx-“?ËL‡iD€D€å”ýÇÀÔ\öu‡ÚâL¦'ó`%¤àŠb­ï~hy¦Lf~hUSíéÌÒ}èý•iLáS·^œlŒÍ™¡IÄvÝm0a¤çQ¨òƒ;¯0ú>Xe/¨‚z¾"›©”ûJ…ãƒøòÝ(b66}?Ö mñ²·p èÇö_o‚ÞõåÞlR ûIøÉªÄ0WÞ÷¬ ÅÓ—Û-× "¨Yz¿˜BÀ× ÍŠ.íÜr•ꜱî—|ˆ®& ß…—M³ u®ª6'õÒj\‘í`é.šjdEEJ AÞºç¿zñ}qB](<‚*GµŸu'ìûžyßOûñŸÖ—ƒ“ˆìÚÎò^ L÷Û+Ì©½¸ã—†x•µ¦ƒí¨8Ëò¸ÉKZPÀ ŠdÛÑzRýÿ被’¾Ø†°S<|€èOÓ¾ìu#NJ½(Ô÷\Áå¦z¾œ@ÿ¯a,¸¢ÊÎ fˆÍ½gc~ÕÊØh—Q "®–ymë‘8šLÐT@VøLˆ©…°àã°ùÏÓ|"”ß ¥ðk…¡Pz<ŠË×þ9ñРP:?§Ça,åJh¼t鑳+c 8 퉶¢”¤³Xi½Ö¥Ž’Kô ~Pן5Aßð|Ábÿͧ­¿n¨5ùšà®B X<âkÖ¶waÞsIz;H"žëšÅäð%¦-Ń *‰Œó+¯$à¡únTâEžö(9-Úž!7»°Pt~}Q/œg)l·5ĬxK£€]¶¹ÅÖb³Å™y*ÖoÄ#6‘Îj]f¨f¿­àÊÁlYmu!eê´ÞfŠÃ‚µ7eÁ›BÚ=„ 1ÌÛN³ú`îÕˆ,y%ëI ûœ–]bqaƒý¶û_>Bf·Ó'1.ûw û¯(+Q€‹ÄBYFi‚{lÁæÝãxŸw4Áá GúDì‹­_çÕ~,¹S!‹òïo¤æÄü³yh¸®ÊÞkØ£º ³A7¹ =†FλµOŒ4bÿ•˜5pt–šÉUÐ ÈE(iÞüR˜M±lqG¶B·âòͦ“_“g·îP:çP\?¯‘޽¶¦Í\œÿäYs™í‘žU%{»’ Tl5wèzÞ“jj¿š•'Õx£8nVšˆ±Šˆ‡šÔð³øúDyš|ÙÌ~â?;;Æ@êWC"Â7¬##o_3æ<‘ø$054‰MðÀìÎlÎLêÞüÓzÐ —Åè‚e1˜)öS¯É•Ÿ9-Û¡‡²O`uóÅáßb>ؾèDÏwç;{¤ŠÛ¼çâqª0±bŸžå° ÜwøÙDˆSNí!‹ŠOÅf̺;,V¼¤ñrOÓÆNfƮǒ=~eO€/ƒô’sà é¡|¢0¥íÅ “…s㬨Pk{Qâ%yïQ•^>óô’(ºw ž¢½ ›Z“ÆõÛ[Izrk—ñýÈÀÔNaÎâàmBjø[66Ì࢓ù—J 7Líñ£@•0ú6ËG*±æû‡!fÎ:þQZþ ‡*%RD;3«ç¡“è?¤‡·#=Æw­@+2ç™À–8ZXêÛ0¼ÿ£§ò=ý¯ç&B…Cnúާì™ûÙ§J3® 8Ó„èJ‚€™Ý5¬ÊÞØ'y÷7º a<@æ^`ÖoX{f¡(\%ç2Çœ*åó¦Î\þýç÷ÕQ#°r¿|»¢3ó{fÛ×fqÂåßOŒ6ãQ%áû9u¼¹z*‡\÷æÜ÷])6`í~‘†uSÑ,¥YãÖ.áÜwÇF£B±l3ê©™”éîiÂT>æ6½¹ <*uÓ‚Ç÷6Þ3;_zõÚ­ÖX×öLR§¾ËR¶2IÝé£N’ã’T„ãúE4LÓÔÓ¦‹q@Ôùu$cã))n߀˜Ø?eu9͈_Iïî€N1ì7 ÐQüǖ‘p"+y¡¶I^ßn ªh9Šn(þ³°º÷Ö åß!Õ€ßßGx!©>§ÓÏ40¾šîN\÷CIY¸òEùçó à ’‡Þ£K¯³gÎr§€ÑTà•]ñ1ïùŽŽøv×:±ÙcÈ6^‹ Fæø› é=çCá˜Ø 6n,r¬ú–xF¦.ó)«>Ï–0x£0> ŽS£xôݪ¾Œ N~92Lšp‡û ñøÌöû¯GáŒR»{ 0%¦ØúȲ+I[¢P/€çQþòÚË5Ý›‡_>ZJâØ6°Ií°d“é„™gñ.c)_NúqÁ%ßì'_ŸŠCm=n¸H®³íÊ(TT׋0OiÚ¡ šÇ¹lzÓRµÄ9xríÞN¨v‰ÀkpM<¼yç7. ÿÔw‚©Râ&9Ï_AX\ž €²¡¡÷¿â¸ŽIvêxáÝooàs(”b(ág^É ö•‹T×\uhFNðKœi®g$‚N ¬â¯'«‘‚/Qm¯‹ùð÷Ù†±Ô5,bçI](Ú~*þ­“jàf«ÿÎꦇ·Æ¿ƒ!–ÒxiîÑiüX÷CÍÈð¬Eçz„J}Ämüië{cæeEµfÊ0’hÕÙ%ߪÉ+%åC`?+ZN¿ô1œÇ_ÝbùŒªìÖL}„hÚmÏ'g§;£ûÎË:Ï®6Ë~ùÞ¢ÿ.¤½h¯¤ò¤¼Î¯*Òœk9p¹Ìäø—aÅè ˆ&÷aÆÒyÌ"ø¹nÐ Bò“vÑkißcä4½Æ 0/‘#ˆ›VüÖ€ø¬*év¥2óЄ}d(¹’“ÃϧR£w5¹Áø–¡üv_®âõïDÐ ïºZ*{9ÆÖáÇþHdºœþ'ük¨àj ;’Ñ<€ZùÍTFfL9‘§?!0¡R=hb¡#b~’tÂÓb\Ìó Û¦Ý!þM–×·¦Ì >Æ^ˆ›‹{…;”{ñá]c9f;öü~ˆ®ÀE±>‹yrêÙLZ6|Û/I$èÿSY•l2‰Ç œ¥Ÿ*´I å»]äF= ÇGÿeT”°þÚH(jKãø….ü!yüû7mXÐGÍhT™¦»¾a‚ñWGMœîµmÈçÙÖÃ.X€MÑP›¬PI댞Pf‡Þ 3ƒÌ:±O²Õ Z‘kVOÏEkL—Z±§gfͬl•úêƒb9佊Fî/pµo¢®×—¯‡z©x_E~´ƒŽväh‘?ŸÂ¢G±µÿàZùWøQè!”÷ Ñ›™Õ4Í6šc ȪX”ÔÿÜ5 æ|[ÊÎñ=¹¹¦.xE=R t J,”ìç¶ÃÐ/'¾RTaÕð£êDž¸ýúúší?·md‡gß«~Vа~éœçtÿOOÄ0¢ØiHÁ¸ yÖÖ,Ê,ÞÅe=œ&Îãg×èPv”má‘®›ãiˆøB%ÙÈv™Où™»HS»ö>t—¢O9`ÖCz^ñöµ¯Ny¹Øˆ‹Á‡®Ê»%>úËqUøþïu‡Ì>ÅXuèC*ü~¡dIj„¿ñbvFÌv¬ @O ªèlFBòî3Ǹi¼è r"rïeh¹¶ Gƒ«sõ§g¯–ë#6‰æ—/uú~`ýƒížB“‰švtλ“Œ)Ñý«DvèÀ5Ö·wüƒ'mN:ŸˆÄHr€‹% ž‰“N†“óÖî*!¶hií9tÑ£Õ®%ÜW¸¥§. =ŽX aÕqr¤Új=n¤DÔSôé¸ÛxP>*= ó£Ç’G‚µz{]…þ7•uÎs]‡¶Õ;ÊÌ•ß9ô ?a·ôñÔ–³ÑfSý˜²hYø]oõ2^r5oöÇ%¥¹K§×=¨IÊ-ºüo‘·f$s}ôy¬À‰ƒÈo8ᦜd ñËiÒaßê*¸c´gì„ìTé2­šgGg½¤a¶TÃb£ÿ$䤟ïÀ£Ø—Iæ×²(‘«Ä§$"`³Û’Ç!ï&Ùq%"@H„L ¿e¬¨ôÓ¾JËãî–ÂIžM\@J—“ÙwÓK’î¹Û„i·~gq¸×Ã7ƒ=Õ;ÓšZ—æ7é$ªh(u˜a_Ý_S¶žMð˜å„Ÿ ÍrEÒÊW›2P¾£!Áæl§Ò ±´N1N§ü³wep¹ $üZ`ú"¡æp6ó¤/¸g2>'Ý#(ª· ,y¡¸í|2Û3ãæ8ËÔú³tÈø`>_4Š'HŸ endstream endobj 114 0 obj << /Length1 2373 /Length2 25437 /Length3 0 /Length 26872 /Filter /FlateDecode >> stream xÚ´»eTœ[Ö5Š»»§Ð ÁÝ]ƒ»{áTá\‚$¸»;Á%¸“Á!¸w÷ÜÊé·ûœîï÷Œ¢˜KçZ{í½ð-¥ª³¸%Ø(¹1³³° •”À 0;³:ÐÚÝÁÌÀÁÂÆÆ…BK+é4s³ƒ¤ÌÜ€^7€Š…ÄbÁÆÆB ‚€.¥%ÀÜ t3Óôv²èÍþª`W7fs3Wˆ²¶ .’`'o[k·?18™™ÿDúã-ÁP0³°{ºÚÛÌ@–%€2Ø"´ЃAs ™ƒlÐê´4¤Õ5²ê*Zª ,ÀîNN`—ÿã"©¡©%û %®¬) j¿Èjihþù® Aø[¿(kBôò@ ÿ¸+IkŠkê©J³³þ©Àðº¸ÚþIû?Üè ÌSƒ¸Z¹€ÿJ ·qss`eõôôd±vwuc»X³89üÅOÓÆÖà v±@Þ]€À¿ã²„´ÓÍø¯ hk¹ÿ8É€ÿ¥t„´â‘»ý‡¤nb:üËà þW3׿|UUŽf¶ 7 È d1t3ssw˜þ%ƒ¼€–oÿEtwqù“Céß*—ÿ¤ù7u 0¤2C_?3Ïÿ]13»«Ï?zóße[€A®¶®n®ÿŠXÙ:ÿ°wý³f¶ ¿dJâÊò2Қ̊Á1+!ݱ¸y¹ýeý'ž¸”"dyù6ÈJƒ,%ÁŽŽÖ®(Ú'e 铨śõÿ™k{ØäûÿÊ­lA–V:oéîβuvÊKýŸ5D„ò·Ìè`@/ Ö?éþš–?bö?bHü|ÀN+3W Ÿ­ò†âëj渹¸ý|ÿ©øo„ÂÎ °´µpƒ :d³ ü]dðÿK aòoÕÿý_•²K-Á o€%Ð …UìúÿöÙÿä’qwpP6sÒÿoKÿ×ÎÌÑÖÁû¿,ÿÇBø‡+½2ØÅÑÌát¶®2¶^@KU[7 ›¿ºø/±¼›dôÅAÖ@Èšü%Òú³› c 9zlÿœ\fvÞÿÑA&ÒÂtuððÿ¥Bºð?|!­ÿÃÀª«'¡©¨ÉôÿŒÌ_fÒ °¥-ÈÀÁÍ0sq1óFaƒÌ77À—2Ò–@¯¿ÀÊ»A\Nîn~+° ÊŸÅäá°Šÿý ñX%ÿF|V©¿?€Uú?ˆ—À*û7â°Êý8¬ò#HL¥ÿ >ˆ¥úßb©ñ7â°jþñCüÌþÎÑ™¹ý­„P3ÿA¨YüqAL- »ñogv66«å? „<ðïг»™Ã? ,­þ¹!,­l=€ÿÐC$Öÿ€Œ6ç‡´ÔÆÛÉú‡Dfû©ÍþRÍßÙy dþŒÆßzH}ŽCvˆÁ?b³CøƒÿαƒþÁ•R‹Óßjˆ¯“ä|uZýÝN.öÿ“þk·þGÌ]lÁÿè;¤tçÿ@NHåÎî`Èéiþö±C¤.ÿ€âÿQ ;$ªÛ? ¤î/%Äö¯ûÈÕìòÏ* -òø„Téù7ä€Tåõ)ÇûÒŸ¿àï0Õ?Ì_g'Ûß[îÿnÞ¿°†› بck ù­ã&Jfn.¶^lƒ"‡|ýû'£ÿJ@û÷™ýo °—/37;€™Ò ^Nö?Éã÷_®ÿºÿ:s!GÿñŸ z-PçÁ‚¡v©ÍáåþÒ…“ð´ü,ÇU"º ñp‹“¤DRy[T@Ñ¢ ÖÀLº"°¢œ€‘r¨D—6ßáuíkRõĵ¥šØ¶™¿’?)†´øh®6‹Vp¦ÒB`EÃBn^)×tf[|@kôP’¿£ûá3ÇøoìË*ʶ•|xÏâYö<¯,’NÒ…ÉNh·ßx±ŸÌúÄgL  Fœz»±ô™R 4u{|ÓZ/*¿SÌF®ës¡dq ׈娟’›g—DçâC»DÙ:اMš*.|1eýî[ñF#©‰nI­IÜô^ƒC_2Àê 9DéÄÐŽÒñ]yo Ý¡=§á¤ÐÇQnl#úõîd“®Œï}j¹ÝÙávz*y¸$…äÖˆ‘ ¹ñN³äI~b¦þ8þ3°ö[*}·êó¬rNÈcƒ¬Lkù3’Ád®;ÙNfÍA eHŽ<ˆtæ‡íè8ë$\Êf¹f?sôî.X~ÄQÂΡTˆ&¿év9^­,’Õ)°±V!­i2Z‘nzüÔ%¸ß üz’·Êìù¸ˆå2=ª’U‡%Aˆ1²kM¯ 9¸/¿<TM>ç_Þ{$ßõÉn'ŠŸ'ú}øÛúU;¤ŠjzÄìIt¶Ùñ½,Xx@{_—È™Øñ©¨¶ZWù5¬Ä>GɃQºqrG•óSœgI`6h‘þ%º¥¤Äzû=;®klT^™vN¿8f4>\S±Ë²®Ö÷J‡ÕˆÄ,‘òÉ¥Í=‘}Áâ°'k2/\ÃE7ã¸ßg•Èô>•Õµ]ë£Ó©›òs° T HlHÄíL ‹æMGV¸ÒJñ>Œgœ'Ì•{lÓ«@m2A­.øeÌðå– M ÄÌky×Ù#z¢´!_Ðk÷1_±Z{HY«Xï!ÏÔ¿û!ŽÝRÅȼƒAÁëôŒ¨M–VÂä£ï¥õ“ÁPhG-M|h‘G?“QV,J³™ yé:É fåëAþF¹K#=‹s$¿~ ‘êOGÌÌBÇ’´›f´7]ÎD5% TV}&ò9K¦")ßÎêN7hD~°¨ *ˆå€™ºZþ\€rõ‹rߪ·Qñ¥„OM½2&Ù®;a‚n€$=àj+ôsðå£$“åÂÇì¢Þ°V/á-}0<ÛL•àG87«@%»J2Ñ¡ÂòqØ—ÏÞøX Þý©éŒ$µ`¯àá’ï·Ü CË€\ì3‰óP ·&Ìßa¶oºÈQøψBŸ Éf­ðL”\ >&P…„陾G0ÛFL<½ÁÁÖ`sãI˜\ôÂ1º7»ÌÎ3$°± ÛrnŽÙ2TœàÛ0©¥.ÙQ8ÞÍND†åßæç52-M{#D÷|`O³¶§9þæP&~èPެPjåLWFýäég1%Ú‚^JV›ôã‰Ä娕mïJ\ÙÅcð5;’tíϺÈbWÇ j;uaN‡0ꊱˆ`MŸ!â|q¥k›. ²AöÆ4®ß½§È°»Ê=Ü¿}å.=)€´FÃI颕§ BáÑÏŽ¡\|¡LRŠžÚDQ¿ôà+Q*QËÙ§ÿò¿Ò dŸK4ʨã¹;5-koÃàeA1¾áqÞ »µæ2}Ç0Ùö?Í—KÆ"HÇÔgŒ"ƈ)ã·fv8)òyïT„“~}ƒ½’‹Ê(¡ŒÓ 1þ«úó§ƒÀ=}jÔHaüh6Z!û¸_{Ðô{˜ˆû¶‹¨Ÿl/›+ãGûnÖ:öD[}’¶\œIZàÃ#PühJB{÷Åmd\;ŽÈ í?Èd'¶Ž])‰²¸¤‹Á}F&E+!>Íîž¶gtªGÒ?¸#‚tþ5RG™G&÷š¿¼4©ß~/ÒŒw*úÿHí»\Ѿ@Cð>‚KÉçJq·ÃÒÍkøJƇ4e»0òæË6ö^C­õ‘ä3èiÅ/ˆ§KJX]èµì$Õð;ÑïØß©§ë5gRwOÛTØÞ_û"e”É®¥:Äf‚·ú|SYëòÉÏÞÆDv°:†TxÍO@X‘ÅTêš…7™ìÜë<#…à×F:Ç¡ùÛùG‘*ƒ SDk\ÎŽsm¡/Ü’Ì ïcŽe.âSk5 _ìŸM¶µ ™š®x{ o•‚^yŹԃw•4ņUØ­1dµQú›ËÐøô`iíêC=üj®8Qý“ëWóƒÞÃGuœ[$3bâ\Æ ¸©KÚ•-Ü:š6Œ¦‘é¹xìlv«›‰yú·j•‘£•”8.ïz`’Lè ˆ–|­ž€r´Át0¶Bˆ8´“Å©¦±/|z_”¬Yì×·wk£Æ:ÃÍGdA¾­Öcp)¦z·]tG÷ãšêC>â ¦»WÙâö:šB¼ë ÐÍØ‹ …ã^*>ݤN{MÜ3¾˜¶]oê``Šëü9×sƒ´=e5™¦Â|Áª¦3|ÝÀõ7äÅ’ÙL Ù‚óÜ=zL¶/Õõ^Î{Ø-ç˜VQ0bU~„éÜ—ˆ£±p=ÕÜÏ/ËwÍ}]¶ ðÕY+œ0“äÎ|KÏ«AvŒDZD§DÐfÅmôú²¡MýÑçãäÈ?ŽíKŒ†µh†X[’µü½1©&òà"Ô<åá|~1)69ñ”ò…©*Zq€ÉÑŠ«{2ºmQ ·Ÿª¼8z‹P¬7)Á—õ8E?ÉänJ|Yi«”'T[xŒiYs÷9>ÅþPIªà¢È`C„¯ðsÚ噇[¦eÐ%—?EíôŸ [ŒsÃný.ž…V Çl‡íIƒÃü®Ï–²eÔÇ­ÌĉXÃyØa[Uˆh¤ß¾¤ÏþŠ@ÙåY !ظ ÇE?œß-†×ÍrS‹–` ¢Ðz“.­-–° H«¼™êÂi·€NJaéùœM‡âÆq4G== ]Ùב±è”Ñ s|ÂwýËê°É$Q¡[„UW±WŽœ¸Ñ£ˆ)©6¡ìb.ÖÜåè4‘ŽšÛâƒ%J-,ˆ^FûŦ? ‰q Žl!²Âì¿(ÓÓ­1)Ÿ/ǰkzñçû—™ÏmÇtxy.£N¦×å'cÉB‘‚¬.ƯŸŒ½&WÔ²tkˆÄÔs¨6x]±Ea¥×l≸ý–ö©ý¸pàù·RqÈ51– ¸%5šÐ2™¿û §Í¾¾²~ bx ùhK€TÊ(»,¥¡¨ËáBïJ< /Wx²Ãû³qª¡ßè ò®×yIa:b‹jN``Do©¢Ô5¶Z”Éër39ˆ&eÉ…¯MÚq] è×~³.Èâ5‘2§i†åº'Ðý”YÖþޏM±˜Õ+FÆDØËˆÞýzÌå{âÓk!ˆVãQb×Ñah7•îž«x_à8”ËÈ| s?‘º±Yì`?…Z½^Ò^h„œ`»/=üº¤Ú7[åùc³”U =Ë|´ˆ—Þü§uÔ•×dèEYAÜíEÔ¸þ«!àYûb.s¶_Zdh@ÌNA7WˆÌp‡ƒJK”DßGNôVZiÿôɦ×4"gÄ„sZ#ìÊM¸"úF¨ªÄ›³t¡–2ùîíܸ׻Ƥcá7HJÖ‡Pª•kÝ1±5´Ë‚ŽÖ)Ïão±?›êW¡{¬aêÉ,ÒGoƒT¯8z3;YHÏóê3Ÿ —'ðfGL"eDn',ØÌŠC™+áÞ¥¨×Ÿj|…{3Ôž*޾ò¯qÀ'TþässÉ%›xvƒBÎz¡Pº—4¶´Š("F‘çö„"¨ÏÚ8J(ºÔ¸÷ÅÚ‘sÏ87{Be†c(%j2Œ¥7çÓ[ÜŽ$êZ ,(÷Ý*Ílñqk¾š,×7”~5šæSJ >}ey@'Ã@Á‘ÅÙêîk@XUµ}ÉSe¾KÐÅ›­±?”’©.ëç¬h"i ¥fÉ ˆ•ÄȦïk¯¸(&Ô¹‰è˜$iKÑeÔzN-¿#ÞðnñÊáÊæÕœ ÏÛÏ3ñd?“ˆâ{ÿEÄšñ²4£»¾ÊË*'UAí#I+%ÁbúòuÙõ—/?kX™#NœÔrûvs @4=8ïÉ•­×…(/&Õ¾¬bßšl\(U&O‰7*Ï:b)ëGÒÓÛ¦ì#'¨'‹7jtºâÅDP}7yû‰3ÎÿÛï}›Ëþùlâ·ˆumv¬ŒW4Ÿ½Lñä£öåňp÷:[m ZùŠ z©«r¾ŠøCwB‚;— ãšW/›’Ýë ל1<þJv¸aÏ#¼,¾e ¦×£NA•°:’Þ@{iºK®Ð…¦fÃUàíÿCO¾W4ʧÓßHFØ °xV{½È:‡º&ÀÏ[‹;Û¬Œ íÙUòƒ=h]Bä®4uÇs=ÊsïCµÅxŸääˆÕfcÑ›:©UÝ€Í]>Uô¸WãðQÂ&}lSeÁ®¥Rᢠ‡Nº¦$¦õü­ä•Ü”}ð4ÊgLMml}ðEº¶½`wLY4ÞIš8Æ€±æÃœ]ÁÃÑZ ›à¶öKÒŸ3$¹ö»2ôž}xùƒ@QÖ^û±,I·Cûw#Á»Ó×qÙœÙfj†å)c‚=Ñû çG·…YÃÂbwZ|$VdÓÄTq§{imj¬ðr¥m•áÍF…!vXĹgãn¦šU’’pìƒ-!EË‚œìÂ/‰mÉ æ«°iä]/X¦÷fCÁ5†šR³Þ â‚J~_!gk €ÊöÏwªCÆ­5yl‘O–EoAF\v^ÃþãµK4l*Wè’t° †‹Ç±žÔ•‰\Ò_ŠÔlwÏuK‡­a“3%,4ëVa Ô¡y¶§¿.ï‡U†LÞÓbNÞ¢:Kë>õ¥{¡·åg[QŠ)_1Ù>¢n„÷Ê¥²ú°O‡Üy™V]kë2§$‡R§`ë1SÒE/eI3ßŨŸ§]íWGàut³,3@>gJ†ž‚3ðéï~EeÕ‹ˆ¬I6YR&l²~s /°,ÖU•?ZÅM9K¤ÊïÚ@Ö“¿dIª"A«Ûö†_wåþÖ™fÜòöEŽkiÿ¨D‹ï—¿‡ž÷A2‰)EÁQ¿½jÜÖÓ¨¤Š|5¥t©‚Xh«Ïù¾tëÎ \M/‰B®ôäF(꺆Z©£Tˆí#p#â³È: åsÓõ£'mx›Éü‹g?-կᅌ‚#ÿ©¨UË¼Ò µ ½›L×ÐsÜŽ\×Q+­ÚÛ†ÿ¾‡¹$C„žÉ|‰<©ˆNƒ¥¸9G£¯ >è1øújûf¿¢ ½üRÒìP1µŽ:èlÊ‹^|êgöY\*)"ù·ÿÀ®'­53P4—rÓ±ëÍVçG¦¼ªKV=›±ÇË á³j7Dé:¼æ‹o$ë^Þ>ýJaÂ¥Ü}8ˆ‘ ¹Ð}''ЩH)æ8øÅú+’\qõX²ñ¨¶¨Z·ËÔ–õýÜœ±mn¥¨Ü·s}FlfžÒ‰æùÑš+wEŒH®‡J×H¶#÷Rk6%ú ä_ÇÝtÐV*\ š†¹ûN2M鎨”ûi./Ú £<£çº%+0•¸?7å A»áç 8ª0EÞî)‡ú&ß¶¯‘hs«é4Ë=Îâñb«BoJÙ·ï¿°˜+¬ê†§›z U†^„²59O­é>ƒ© gÓ—s÷%Ú†´C¬.ún¶ì÷¥"CÝwÜÄ"Oc¿£$z#é3‡]]@WQ¼Z{ ‹k`c Uº@ßnSÜè¼<2ºÊ9'XÖêΤkýB(lôÇNÂ]MÖþ-îrQìüLÃ6øCŸÒ’€kÄ!Óì¬Kq§)7-ùxõP¸ª±–KÝÃ;–$þ©‚ùÃXCo£¯  ,+Ùõó$µÝÓØÅš§ö['u63»4òÚ¡yÕ¬N%öéûÈQ:L—·gÝõ…Áº”å¶)v^¹W~î4V#’ÑQ­ï³ŸäÎjâè$,È6í¡Ôö­Fc8…e_«õ’6½Ò,kIÁkYÍÏÖ;åÙi2€z}ÂËS[K?ÿ*Š’è$ãá÷adVáfÿMeÝ„§à/ÚÀ‰ûŸ&F@*3ÏÁ'ù{“ã´({¾„>~ÒûºV‹¾‘³£Ù!·tƒoíôðÔ]ó(ÍK¤H4¼í¤¸4ãyh|Ϩ©5ì¸kR‹A@µ/C¹Gô¡È?`󳡑 9øŽ„¶Bšà†ZÈ+KÄ­ýéVNMG9è˜ì1qnÉ+áus²åt$P?f aô„λZ‡A¡NDúËÑ'P>¼-ˆ‹â½ñÚT +Ë7ó§°|ÉŸõéT" êê0½ÍøÚ~ªÑÖ’ýÉ!„µe‰ëÙejôKžŒ ÿËEfäÈ… lA·Æœ‹‡yXõ"ò.›Ò 0»NÄyÒo…ûr-Šaâü§rïß¾•u•”Uð»rD«Hž6ÇRe‰¥§£ŽÉý­~u8 ¼4,E­Øìz`éobš»¬îL$oÄ–Æ‘°8û,c=ú´ðŒ¬×-¢škÆ·†´h·SY$ZKê¦Þ6~ñ+p—ck’žÀdQ ]µ+¨…QŸ::´KûTi*k8‘y'8Â*YYdª¬ ‘.(S ³YM«ê(ËÀ#[nnE]µõ†.RöN{m y;v÷ÙÈ*Wåïq4|ÀU9NB“~þy­ðýhÁ–¿<6‰AޝV\>êúbf7ÿ%îc\…—OP@Å}ˆKŠ®±vtä0 c̘ðcš–Ô[‘±z_#l¬ÿuwÑ‚Yâ s̾ä)˜µ^Mj6´£’åÊ1‡IÝI\/š°_õ@ȈN¡]µdª~÷ÃÜ+ÓTã„x¶²ñg'¤äçOÁ4%PgSõ“Ú“c…a«'KŽ »{äÐŽugGï•üŒÎy¾Å½®¢ß ³å·¿^Æ!|HÑM6™..™)âí­ˆdp«ˆËŽÈwjžö¶t׬³–fVc]ž)³<3—NAVÓ°©àÃLÐe„UìÕ —eQN¶I}©ÑŒO\®Æ7ú}¾ (c-ÑG]« j+9~‹µ ,èÓa“ùHÆ‹lÕ‰‹o»”ã²¾½¢ Ô&꛼a¬Ì JÒme:š'ë9=oè}Éš+¿­:Ë;©4Íà+‘¾·‰Ëf9ð¤‡ÖSkà•» þú‚9ÅÊÞcY8P+‹³VR/.+¬¾­RŽMdÐÎUrts+Ýz[üIµ²¦BýØ„Þn÷C2"!˜ù†ò¬ãרaÎÓѨ®EIô›ßz‘Ãy€n¢Á¯r,CvËFê²ÄÝ%àÕ^3qÅÍͪ› ‡0´c¤ ZZð†û<:¨H•ÏܦÖ*–Uò˜É\Jš¸A8%V7³¯ÔSL>žuoÆl\°<‹·%:]ÙOäRkHHæ~ÓFÍï›×qçšÄM$MÚ-þ°x.Šgåñ•å½§úŽÙ”…’Î8ÿÂæ²á“¢49›Œ.Žgó©¡(L¿§â–7¯+ƒ‡nàpðû%!íU¾­\J?°E»0‰*ß™¦6íHòð×&¢°ð6º³û×FãtðîŒfÊ€o¹±3e f!s|Rp¼u*9·…™âÐú@¥ëï&évîJ1(cmÌöŒv?‰[ÚõmNÕçJî$Tô×q <Ôsi´ýâ¦ÙÇh˜y{às!=×Â]nd½¶*ÿÇÉßitœN²7Â&–.Êm!4çÝ.Æ;¥FÁú½«^›Žq½teF'LmAQÏï¢Û†³E5:6?]û³{MEù„<_Ã:67¹|ŸöFMðåûyUÇíŽÞaEªI60õE!õóKÉæ¸ÞôÆF~˜{E.K}™óMÄ ÑÙ*ò-š¿¼UããB kì-|'œÀ¦)þdk˜wkNÈ´FÔLÛÔp,C9,ÁHd 7ñ‹¯ã¶.â;µ¬ä‡a©Å$ßÁ2¨‡%{ßšp2k‘ÙG¨¡ãál ßíÉEÔq“EÊt‰’¸µ´ÔW¶+è™®Ãægs÷£ð<ãXOyFœÍ˜9šòÙ‹1\¹wr/xÚí|3Fïùß„}K§›q„Ù¥ÀžÓ!Ì?äùtŸŽìÎXwC_Ý#†ÕjzŽ:\z¬=¼£X§wT$¥´ŠÜâB§"cÝp\^;ˆ“Û]˜¡Žj©³ø¡š)‰1¥üßd¤ŒÇ±ö#42mò¬v»œžw@ÝàÔÓžhÄÝ ”x®µˆ¢ÝåúÝaæêº9Ø&´x*ã@Øú†Î©]TÖ‘¹½½+¸\}œò’ù)ôò‹­’òÀCrð7GÊ€“{å ®©…SØf¨­½¶Sb,}*û.¾Á^ñqÒ—óýªö‰tI-êD‘TrNB8Õ‚;¥ÒD8…¢Òó¸ê/¢-ACºè] ÓªîW¦Ô)ù-ýSq ú·•¬ ¨:Ùp½¦:" ¯ä¨8sºz?\Éšùneæ†Mþ#”æ çtùpL85IrÛ¡]Âm–Îõ­A&xˆ',|ê;G%W8ˆžšm|š%(<ã?\ÖÎZZʾm}H?<»˜ÂÍŽâ>„Q$]Eè@½C¯ûÖÿ2¤O»lßk‡ó(›™íác²÷ ú‘oЧÔGQüØ/Üh©³+TïXÁü´2j…qhRŸx^¼•êYøö”¾\‹µ÷yJ6#ßOEÜ(TöøÕzyÖJ²½~qyÎ{Ús± Cö0¥ƒM \¨yBÄ{õX¬Nð«çZ­ƒÌA v_Ñ=€†Ö!X)M‹þTeÅ_×vjcßYJ~ž¢‹}Ü?&°ÿÙžÜÔWj½ÄPþÜö$¢‰¼N0~3‡v F‰KÄ] N­ê2ÇÉš°ÑÒÉç×ý ÉŒÁR¶‡Íˆ³‰Ûù„9EX^%,øçf:’…wJ·Èå±$Owf8>¯Dl;R‘½ƒ2ç×møAz[üŠJû=¬‹Â2?á÷‘š“ä+n¶H'Í´_Ÿ-2½Âĵï çz›t¾÷’3SøÅdüv“úá—€äÖ¤ÏÊ/ª&„<çGè^1®û»ó=“FF&UázmGçHÂÏðIOBíOÕâTÍoKæ1oqϨ¼ë0¥LÑõ%ÝeVOú†OwÜ?¤ n m•¾ßcLÖÉKÖ H÷i‚¡ ¤eÖÆÎOQ/y/MCòÔÝ=Ém¾ Úçûé·üÄÙçDH/¬*#iÍÏtÛ‹~t­7%¡}ïöœÒ6·”‚BÚü¹‹|%ñÃMM";†°V£àðkoH§Ôóù@ 7®C‘„Pæû ?µÍ}óçõ—‹·¸…¿Îi}4hR¯®o\r‡ûTã(ñ¼Ñ -6yz?8ëü’™ÐÒt;-9ˆî¸ã\Á†¹ê<@)|¬?7Ø~-eÉ}R=8¥ˆAßF O}Í®´ѶoVú‹Â Wàþ’^¾³Ð‹‹­°¸+G鵯&˜%›ÍMÛ³dÐÝ$µU›BJd®ë ¬Ÿ ^ŸòÌòZ9ó–Z›øª]+J+ï»Ð\7¤4¾É‹‹`!OqAä¨ !nëøñÃÙY,ñ3õûúµÚÚ·’*„9q„yw¤–4—ù€3ð#ôñ'‹³œöR’«£, žKÌùdŒ›`‰¤uhBE ¶Içå0<Ýö8Ÿ×Gžq«ô3áªÈO§Ÿ¡]¸œð³‹ xÕ²tÙ[k…9Ïl¬±§×W¬…÷ˆÜcÞü9牉Ê~Ààé´`3¦rõQç: (d ¿ŠßÄkzõ1~‘l+ýX×~|„jî‡Tß¼Õu™Tú‹)¬Ê†«¢Ö½-Ã÷,›´²ý¤UPu”$ëX¸¦`;¿`z’±åÔÖ pÌ(ob_Øï„øsŽ€ùž<$ƒ ØÀwÜPFzß6âgò¨b\ôÛÂC€]˜Óâ‚ñ¹6Éó3àv,<ªýݯú^饭fœ‡x¡,Âd"FOñÏ7Û’'®Ñzó 9ÚGK(_h±ó\ß(>J“Î~ŸJj)Î]…úFoã¬pÙè‡(îȨÖ*p„¯±§‡_'ð‘â> /¦ åÐĵvc] È;Ï´'f3ø°vor’¤ƒ‚Ó‘Á²HcïææˆB¨£aEO×Ý+óG‰Cþ&oã\Ü\__kÕ‡ÜüN+=´ÔàÐ7°D'°whÒ¤bÐKY4r3½©Â¶ŽàŽè“±º‰†ú±fäÚ‰ÕÐÐZÝšÒÜÝ\û9xØŒa:ÏNƒ u¥ehOòÉ/TÕªÉZÉÏû—¿à\ƒÃ¾Õèâ ïúÐ+²þº[›¥éBm_N/D—ÍÒÞÙíä¿6éüPæ~šÿj¥¸IÁYÞ¸ëÇ ¬Ðë•Õ–PÂ,•uôAYUÀTK3(¢ŒÑûß&ö´p×ïš¾ØbBQÛÓLð0© žê’(ƒ6DõÇW'í‡cÈ#ù€uq…1Ku­×åÈ7ÞiŒˆÆ>¿Ð&˜7;'ICzu<[.ÏmS­í‰¦ëâµÂµyIÔr/ãö%ÃéžLL#ô0®FãRÒåQ|l5Ø*F‰ ô½d²ÓdÓ§ØæéŒ:´›Ì—±Ë’'9›+”¾FW+å„D}œ¯¾Gs7hµªÕeÃ…ŸRýB'‚n¶Â#ÚD«ùÖmé kT:¶‰MÜÂÝ£º}Θ³Ÿs—ìª ™¤àò6ä‰1cšsMF{g¬·ŠDǼKîæ1¢àÑžqÁßtÚ°Q u®Ò`yÁ)e’Á+ú3Ç é„"Jž*wVEz Óá›!%zVM;º¢´éºxÈŒ^ìW])Îï¸Ä§ÚF BƸFD¶\„¾£å_F†A6 Ÿ¦A9WÒÝ…Ç Ø[_íPÅj ‹g±:ÐDhçåê%±>ã'N¹×bÝOTß9»9ËÖ˜ иT§¬…ÈÁf]y)u|˜3DUÒ3{ƒÒ­û""Éç±&-fjú«ç¡¡*ͯ?pÞ$¨Ð{-öèI©E– ð,·ºjoAŰ—õ8WZý€ë?ôÔ$iþvºþ–áEDîç±;Á–Åp¶]*Ýç"°VýJ:ëvß_PÉÝÆ€%s,çÙ^ü;×ñ0©8™†€áÐw³ÐŒbtAB’ͪw\sB‘’´šFGëö–uܬ´³öë<ô½ðU[IÞ‰¶t7ÎÇ2g¨)yƒôÑr»¶xÙã3†ùÌ”› û`Pês|^Ép²¤\õú‡ulóþ-8#$ý„LúòŠw”F~µ‹~â¶(¡gïÐ ûl-„¿Xã¾æÅwµU§B"îR•y¢ oža²4ÏB8”ys쥊ÃÐ^¨d.šaÕ¹JxD|䟩Úg”ŽfIˆz}=JϹ<ßh…$e–{I²ÃÈ‹ÑÐ$›¥4Ë^¶~EÒæ}—BïáZZìM îùi}8iCaæ(©ú¨Uz;œà~¶ÿ‘Í«Ÿ~-Y”+i4}[îØ0†ñ3Á”D«è@t»/9Æà™:éâ‘ðþFý^Ã!ÑEÿ– Áƒë›â¾ÑíRª‘ÌÄÙh•« H-8æ/§YE#Äþzd£:ËÖ)7…‰žk˜¥®ˆ¥¶½]ö1f£1m-‹ÄV¶¥ÏÞ€ ^ËÏ*Œ~™Ò,OäÓ™–Pþ¦÷·~k}kÈ“?Ý~âËSÐ ñIëa˼/˜ÿAU‘Iç0HPµ€¼|…ru«'”îŒ`}ÄËß2`Œ~g ¨³ÖúZ‚n$s-Ú©Ûû)p]ë­?#}öBWÝ!¼@P’€«ås‡S!ºì†·þ}°ãƒ•ƒR¼v…­;1ü ÅIo‹ºZ÷½˜,k°ç¥ð‡øög³æÐmD-´7Zf3͵Ïe±0;ÎîÙ;=D§0(&0„Ž7­w]‘c@TË­!ŠNÉ¥Q¥fèBÝôcø6ï\—žPž¦\ˆrÅY½”%®Ëükˆú•˜¢”b š1£°—²—r² é%=Ù>ƒ´€wkb™ã#p(õ›­Ÿúýý3ÄVýѧ·‘R¿~°h¿lgÉìUaB!§¡QMfúƒQ„Î=UÛdgj‹ |ئHÓÒ¯Á{0û•Æ€ÁõEÙR(›:¦frã@«Ri–5Tͳ|`‚\—*¯ð!BÚÈç~î³ã‹©’ vF Ûf#ƒ¾´†…(æAyWžÖ}f·¨‘_e^9•óðã¼Ì1átÅTP‚_å•-ÇrêÇUbo‚¡‰™s{6ÓÐ aù3ôÝãŸúSÒ¸à-ˆ¯ìϤ癖ú+—å¤.‡lïò³ºaZùŸçÁ:³˜‘˜ÃÛÆa EÂpö(Ý#ØšxG2êñd”ÃLaÕ§Ñ=Ü1þµŒŒ?¤tg)¸/£·=ð-µünÒÈÐ÷rú®Nb»—€,Lqã¦ßáèý:XØÅYžGo|Ó¶cA$Ñ¿]ePSÈùÎ_u%@J~N™6³Ç³LéÈ‘[™GDÇûÁçƒuØñÆma¢,ó~Xm¿Ó–¼ … ßf6]©´5]ܾÕÁúÜ×8úÉ=ò–‚‚øxIÏ;hÁ¨. ý6|M5™ÖQÊZ.}b’~™D(B/ñ”(â'$šÁ¸óå8#ÂGì?³!«™¹ûïÛt®wÄÈ…ŠYT Åmý¯Æ~‰§²m³ 0´FÂÄfÙž™ôjY¤êrÊÄ=Kç϶Xê ¤»j·¦<(râæT¤…ÉÒ~¤Wü"ó²n8ÿù¦ ã½—¯z|^ýè'䨇’¤ÛwÎT^5²«J{ÿåzÞ7Ÿ)Ðìë_Êé½ËÁU4j\{d„„þœú$žP¨§Žƒ†˜²ðG[ΣGÝ áWé‚ѹ¢ï#™Òƒ¿Íž³1š Ppî@žÉæ{KÏ0鹤½Ð/q–¨”3cöSüÛ'ë:%·˜)bÝÏu”°ê”ó+ËDñR>«ÚO„7…ñ²ÈýÏ$Øn¸jÐÕ/K:ØJ«žßµßð—‘MÄ%ò• Æ­åH'•w’®¹&ˆ­%.õ|5}{¶ bˆvÝW@ €¾:£xecµUÔ"w±îÿl)N"þ$5iãK“‡ÿVLyi>|ê×'&²& ‘ÈÒ‡G¥ÆžPŽÎœým_ï V¨¤Ä„´¸£†ó^ÙLPXûàÇë«~áLóP$3û›ÈK{jƯÄîFvIQÃG™¢ªòZQTêDd,áä;œì¡÷b8UYûãÑn­U‹€ƒõwk×àÙü#D+tÓW±ïZ§…Â~-„‹Õ(‹ÿ~º¬Èßðº3d¿Õœ)à¢RÝäµÀÄ6}˜óBD%¾Å—jS·i›Ïl3ªF@n˜á×€aï³Ók¤g²gD,Q¡Á¬VÜ>?äPå  Û¬hŸM#usœpY¼Û"ã·K‰&ç^¢\CÎmÚÉyÜ9ã|㎅ÔJ ÐN@ÎC'G»àÀ¢n4ÇM!VMžÚöá&ÅéÚvˆ›˜[rå$:œ‹‰¯}Ze-:ÿURs©‚áÒîaÄÓû6ÁÔ÷[ã!‚Ò‰#9ˆ“}ÉÓ¬.oÒi_LI„ôœm÷ƒoô@AÅœéÕ1Ìsù±‡Þ MÉmG=„ GǵÂí@šÏàõ“wXŸjoe´A(_ÐÑåÐêäUq”¥ˆõ¾(î«U6æfžœCéKæAÑ%‹ú˜F˜<ÁTúù=ïÕ'þh;;–-¿Ç7¢flIzâGñÞË,!aà &¶-“`Gw§éz?ƒì²‚]ç^!ÝŠUÄ›ï$*·•óeßÅ5‰7Zøã¥Û| ¿ÎyjÎK–ûª›×[&@=zB Sõçï3}\y÷Nã̵°n —•ôb1¶{ùûæêÁ@Ñq5Eû›r3æ™,ßØÈ³ŽŸŒÀ+ÁŠ}¨ˆßßD OÙùP}Aþ5|íU=¾ºÜw´heTe®ü{·î@…¼©Á<†æÃ«·_tþóèf&±ÛÞTDfA£]5TiD*%:ÛRì‡#Y±]¦U–úÕ5¹/ü¡‘ÓÃïT­´¿ü[¿ˆ-½ dìÝn=?\Ë%‡úp¨f–Êkàâ´B…\lšß‡ž8¼ ɵ:ÔÜrC–Ù`âL{‰ÖÈ\ÉcD!cÓ­¼À²Î$âœSÌKãx³­ÿ[q»àLôæ¤D@ª#Æ ¦HÀ§,ê)XG/„ùÚ‰×:ßlç½ûD[Ç¥#5Ǫ9®còÉI¹² r«l‹Ðs)øä|»üAnU(â%‘€Ž(t¶ž§« ƒÖ„e4·Ïœ›ƒSRô.R“=å)¶€""iº'»ˆûxÀ!„ô¶Ó¨è_9Èc@×+Æ^È1\hœUã ›i:Ž9xçȾwÚ¢ð.g8ÑÉÆz; ƒD»y ÕÚL|¦äm‹ý§Å|»gá¹ZêÙÂN%å#–ä3¾`zl5¯ãK§2Ó€"¨CfØ”èeŠoüGrdßH—Àk U¥Ð¼hŽnô•*_9~ÑvœD«?Ê‘°AF×mWFEΦeTV½¯‚JM ÚgãŒwçóju=*2€ÓÚ±/ÿY‡å>}f‘p0ü…°”¸¶ |¾ßk~Ô ¿¬!õ”kõxfºf´ôˆý­zÉyírïá:¯*ݰÈègy3ÿ¤”NDñõ·ÔL J3CD *}·S8ÕXN} ÜÍHÜÛÞß{²)”åYŠE/_*é~‡2oÁÝ>¿”´sóÎ}#2j¸“IÁ:ÅF©D‹´‡7& )˜²DËá¢k§ šº¼~ΊdM’ ‰'.ñ ØoÕÎÒk3²ZÞÌÉëšVàebO•JÞ£ìunä¿7´|À/]}‹TM eŠ÷6²¨#ûâØ&[ñüþ2„¸÷©<~ºïäþ¸pžÌ¬¢‘åïh?ø®V×Nê3`w´‰´Ë}â]¿æ! ä?óœêèÒ!+PI¦”¿Q®t­€SÚ\c}‘W% (o$¾¾•°Þ×Ëyѷï 08\Ž¢¶ö}áÍ›—±UÂ(´—½‡‡L¼àÓÞϼw´%Øn3Æ8€‡a‹v$ ªôfnY…Ã{úø1Ø{þèrñîú³íà–G÷ >°hžŠ'ŸÙ±x¨&±':‹˜?ìê{¡ä*¼‘Œ'#×À§ «yñZ;DðyØ XÝ63JI%«ûK”ú§„oTú ïUNB«W{”¯Q âÚ⊅½§Ÿ\'£/:”É0]ú)¨º…ýBG[¤T VWÊCÜàκ¯ï¯1¬¡µ÷¶ƒÖNÓ]~ÁÀi/ž û·)¦'SCçDûæÕî_°cQ§Ï)­Úvä îxŽ#y†ÆÊõAF«ñƒ¿À~PÍ?Ög2‡}¸§ÖUÆÃ ¹ºòòÎL¥L ©¶^¸'a“ªÖÚŽ\r7qТ¨²øá‰G†ÄÐV.pqù4¥vâ¯A3‰z˪æðùéÉM­EÌ¿ÚqC?†x] ± ›Tš$ýÆ™Œ„9Mm©½wY=sAÈ g+ ÔµqzY á8n¿“W´û2ЇåáIð máèÚ:@«Ö»+D¹•údÍÞÃê‡Bí–wmî¿ÀÔ®ªáà^r“Öª@õÆéu²ÃD¼–-…M#*€©³—Ä ƒ6@Ùœû¾¬aÒ«>JO4$Cò0•‹ûÄ?ó£ °÷)í¦¹§­H‰Ì¼Aû9Á7xÛ˜íVëFoCÝðl“ïT‹×SßË=ð4³-ˆÆm•ÃÞ®3öâsBÛ>É7ýÏ\]¢ ¹jØ„u½Ägs÷,A“ffâB.é© 98bÞ®&«©»äDÛU‡·~Î7§Ê.=9;²ÕIr¢¨ò™.Êb$ÐÂ;SÍ\èn`OØÑ^³Žée^ŠI˜eÖ#!b7:Ndô3îàu"rØ»sÝÝë+¼‚ÆÑ¦€8;ÇM%‹ Þ#dlêºæŠlrfq·Œ$úÀ™÷S<ð'.ßóãCìT5 ó ¢-–ìÃ&Ý„¢Š:ϺÖ@îë½Þ¡Æ÷|âYøÞw$G櫈j¦M1Ùß.¡ Ji›v1PâЬk;—R•È5¨•\Ÿ";+bi™¾ÿÚ ÁY¹ö¹"umᘣT­ ñ)Úàë[–ØôîtbÊ_ö]•¦‘ÜÞ9üËÑËÞ¬Ãx0ÒýRÖö3µafõ@†û¬×ÈÈ·XJù«„.s½¿‰VL@~6Úµëæ`䓼•0§PQ…Îc“nádR™"K$‡à.ö|ÊýI§±4…ý²WHöTs#K„úIã”$ ¯GÛ¶¶|üÌ?øP¯âwù¹rÏ+ؽðÝ.”75kÁ J ®5 Pʦ]~ͼºï+Åÿ ”~¯–沤J’òéóÁã×2Œl7Ü£¼ôñßKJ$êQ·MÛˆ¥^slüù݇db+$‡q=É ÄŸß(¿»¡Ô¿[6è iâb6§«j{;C»ŽÜ¤ f'ÑðŸ¯Ï}˜.÷0 ‘{ÇäÂ[>©(}è7ä<]mÜIÕ‰aÑŸÛ§š`A¬\Åx>ü¸«c(áýõ;rþ"ºgðÈšˆ¡qn ðùæ6• âsµ¨Þ m—WCP•ûA_V.ì³síÞûÝð&Ÿ9\ý¶a³ŠF§vÛ(ºB”‚ÜõìÆÙ8Ò$ ÕFlðX_ån­Ÿ8Öà<‹†6jÓêıÓ;>U¨¼££ê¯£ò$Ï¡1 ˜JoµH˜­_ÀxûÛ»\ÉRy,|ä× ¾^(Ï‹¶$ Göí•8‹ëõkÕ‰’Š„Ûr–¤ˆ‚#^œøëŸÞ3X8¨ŠÕ­9\7¸°n•ÀZ]M?ÆX*\#»Ö÷°èW ñê8—DGšÄa¾—©{ýY¯ Í&d´oò~û «§ ë%à×H÷Þ ùÞcÎ,¿ÇISŸ—¡¾6%f%QKoÇð*m{ööa¢’×,TXÓfÍ8Á)ÕÉ“^¹aª‘_²ô÷ R ÎYïEM»ÔäÞÁÓìEz̸ئ é‘ýš´Ý¬ÅáâŠöC6ˆÏ …?X-Ÿøð„°nøç{°1Ûö‰|0ÿ§â–íµª-d„Ÿ5ÓÍQ~Ýw6û%¶À»díšÀPAq¤=>/g²9¹è÷<~‘ÿÿÚ8§Å:F ÆllîØ¶Û¶mÛ¶ídÇhl›Û¶y¾›ÿî¼ÆZ3ŽrÁ†W'é:Ix]Ä ñ³Ec5?t´Ìý‚«qRóm%ë (í絇±13lt꺫6WYDªJËûs GùÇÏ óÅée¦ÑédE–CˆÑHfÈSª– ¢3jÞæVÞËÿAªðÂ}MY.Eì”Ä>d‘—øžüàÅ•¡aR˜Š¤ ¾‰·ein=³¤h¢üšÐ~‰ñrLá§4Òi*œ•hvà?„GYB&#޶‹¹N¡»'‰ò Ù•·ÞJfpÝŸÂ%ؼÓzk^Ž…÷̳ÈJŒºGmü<­—ãP¦vO¢$=[”G›Ç@3BöR0®o¡ŽÇçÒ±°ëðünû|ýÿÈ8'£Š)£;ù€ÕÆØëvÇaØ+´“Ù\Y5“úÎîùüiær‹v&ëƒÅZ’Bçzo錳yŒMá‚VúklÒLj<qÛ½†ÑƒÉÙmÇÅ/8x‘À{æ9q"IyèïîyÌàíÍT•¼Ìõ—PÒ,âÎÂ7×õ"+ÌvÒ7¸å)ð_6ØÊ ÇK½”ÿ1XµMI4,Ü(ÜÃoçÎ(ÈþWªâ¡ì~j¡Ý ŽyåŠ~IPlŒª²$j]Úž.†x&(ÈV,0œøäNèž_Ò㻼‡eý—Õ­¿¢¾ho–5áÀ¬‚ì¨àcyßÉxIKr×Ï <7‘“C¿Àô‰9a@¥ Ö*Å Û$ËžR¾¢Ö+µ•s]ÖÇ'Ði¥Åí–¸Yp€rË?Ð@|²m6ìÔò#‚•Â;¾ܪ"kpË@=½‘é‡äYd…\ ü•¤àÅFöfEžÎZÊÚ¤aYª»^™y±¼zÖó˜BòÉõYþ™ ÂKmd[¢ß"¶¢€IÓð¨–Â÷¸?§Ó#MÓ±VH`˜Éuû).„'bºÓòsÕ7¶.­ë+²²å"•ß~")£Ê^ 2ÛîƒÄP“"Vè[ÝqÅÑõ`ßÏb¢’dÓ»cÇ öÞNJ€$ø/z ¼ÒA"{Å̦ê®~B‰Yo%n –pJ¾*ü yºóEkzÿz«%ê’À‹©V· Yãð˦íÉÐÝ4–(ûI46Þõ²ÐüôÜ–—ÝhfÔ$”}¢°Ñ×é¯<¤MðrvÍF˜`rúAXƒzÖΪð—6ÍÚàÄìSgž¦+LÃÝs ZþzÌv°ÛÖÁ@&F‘’õpe˜öÅ[Oeƒ˜þ3ØÌ³×ˆºœðá.ùË ”e³žìŽì‡™€Ñ¹ê V£ô÷¨@Žèï§qJN4T•«¤ÖŒ^¨?U€±%[áÓ‰š»Y`ù9¤Ÿ¦õS…œê'Í@l£‡³½jY0xò9Ûè„ÁUV•+C}^Ò^dÇ3.n¤kÚ†0«Ñ€ò¾Ãý8r½ùkQ{s‹TB È#QG]yüÁB›c¾­²tÔëN䟢ûHÊGÞ–ŇýDW +ê@ ïM@‚TŽX9uÛgW…bÿ¡*Ìð"–7€nî´áËN·S„ì+¨ñùI–oJͶ9þ†?Þ~&Gsd/qF]"ÄþOÝXGÙ ! ¬òÃcKd2¯¨ð½NT¹©…Hk„yK0’ŠÀ§²/Œ>aø@ùõ™R4\S K-ô§§;žGûb3êCýí>11v:_IÉ…¬,š-pkNò Œ7?:äþ)m»T<¶j°-^'徕“w9 Õ|”q D›?NÏ~óÀoÛïïvÆ?ø¯WlWžs)èäîè0™ôªaöÇTœ8v÷½Æ=ËØQAäQ… '0ø{]µóžôµïE¥ExÚÞPbñêw4ŠÓXUHó˜5¯¹½8uúÅäÈË uV;ÐÕß5‡’ÒR‘?;å“~|<¦àåz£ù«FUžep4€‹M¨>*³‘PNõض›¾ GbI%‘ÔøÞ%C¢ÉÁÌõЙ;™ä~Ų±s±ÿìu¤bLÁ'îB„Uÿrô©GþcþéÞIÔvîKº¾Ÿ€‰´gÔÉ‚8ýSÐ *›€ò¸ê*ü¹ ÊR®ÛÇ\iJ4Šâ“&´ ®ý¬EÉ[û7çÀ¸ _6ÈzÑ“ª Lƒ¢odv•Ã$ÚÛãN‚£Å¾Ù/1h¬‘i·ŽÏ‚ZÂÐ]KGR7ÖkÏþô"E¥‚«:{êݨ’­¾:ï_ ¼û:%„g;G톘¯¡ú?rÓ¸tïðÓiß59h—ySÎÕæ¬ßŽùüWzVùýB‰“ÿóçÍÁjuEÒEæ"²¦‚j¶`-­4 AhbÇy–sÄ aÂ+FÑãÉéÁ"9¯V!„Ö;×™ú¸­ÝËŽ¯¾(rªwCš{ ±û>å2©Š>´É¸û¤¬?næÀ"o95Ä{óë(”+ÜiöKÝâÔ=îÇÑ{9Ö{0úê>O¡—gÀ$qÏk_ŸSöáMi>­+5³{X›A¹ÔÏD}z»acåiM$úË'ŠÁ™º:ö5Ê‘©:³ÚËÑß×Ë·¢ gް 8éö$¯²¥\¡B õç_%2!š 1’o4¶WClAb©˜mtlØnã+RTÀ wœ¼ú·á©ñK8÷O^ €­s?"¦Ø-„àLz‚,&\3.ÔSaçµ á¾`LóDËçë>»kw<ÞŒCWdhL™ÈØ_¤ÈJŒÅ“·ÍHÝmi(¾cÈ ò»+Š4ÔS(M£xÍhÖû£Ô­xDw È9YpTÌή·¬UJ‰ LÄý%F«Niˆì:d#äìÞ+cy^|"taŸÙ‡áóÍ$é“Á2ùæ—ˆSDFðÊf¥D-°‡œlìFZOõ8O=¶‘š6¡¢×$€¬í—¾¾s Be¥ò«/ȤÛ`˜f]W«*¢Sã„öaŠ £é½Àâ€TŸˆ¼…×q .¸|÷š_¨KuÆŽ>tèÔo—}Å6L´À¼£..úš}ç, ÿÍ•?xÀâ½Öš6ËðM¤[!-”ºØ˜Ã$è¶Ø–ÎfîGŸÞ.ß³)v×yO…G+†R 9Ú#6N^¸kÓMùc».ÄjWƒËC•Þuž"‰f]>LHyÓ岿Îü€P‘œƒ‘è1¨©ÜŽˆÁU©‚ÏwõÁÖ5/Ò3Wùn…ªoxš( )WWS}‰ ¡iW–ïÀÿKÔ—sCL†ÿ+¯äcˆ~ö€Zœ:qƒÚðŠÎX¶ª¢Ÿy{ ™ü÷ïKšß´+œQMÍäÄVˆq{Ÿ¤5°Ú{&|a—OÎNL*g$T\Ô†)h¢s¯'§ß"çäY0s ¸ZÃpšà9!Úb9{ÝÄ:Êœ°Y¬èi!xض¼k™#=%]˜š9wÅ\˜ ‹”¹·¯Ö´N˜y—­âœø:/X}yãHé(›p¡ŠQ¨#AR°Sâüu_Yj^ªF þ³•™žåus9\8‹ ÷.&íuÊa@å®há¨*Ðk虸ôŽ®¤•N8à¢e0ûÏ[9ôézˆxatçQ")º\V9áFR»H`ÍVYôòÌžCšM˜sR÷zŽäm½qyü§Ù¾—5ILH¦{zft-µùÌ&GoÛ8®q 89›\Ô]1Ž‹÷«&Òá+jzÓøÛÌ IKfcÞ»r«à¥Ê ÍíD ¼µ`F&î[É4àF ™\ʬa4*ùs”0Ò‡#ÞôYbB"½­³ aöqhì!Çïàõ»è•­(ÜÇBò†È®A-ÝÚ㻫ºÆûúæ…ÚWšfFŠ××o?ô¶f™^ECØm…îMRCñ¢9z:šÌò¼â?¯?¿°s&—’˜€>™´$¤qa!¨fQ CÔ ¿$×Á}«@UñäGÓL4áæ÷Ž›õoq;üûµª=ÿU š5üÖ?Ô3ý3¹C'ïk½ÓŒÒ¼_¡Aùº–_|Ò`îÜ‹ýÑqD• J*ö†YtÄIAK Ô +WÁ-Ý3ÄðèC$n“Ö—ÄE!77ÃÍôG;pJeyÖ_|>IŠ¡9æh™ôÆüç€ÛÄ“í+ƒõÀ¹”д]ÅЙç2Tc¦¶Žh{MW4N»užíÁP§¥Ì–ÌxÓÅ7 Íè[¿Ð×o ¿ê«dä$VjlAþ«½šŽ$F•mxG ÉgGYgê%f }ûU,F:¼˜×3ü¹Ç†· !¤.ÊõRêý׎Á¸w§²½ùÌe3vÖœA³¸Ñ\éor»ÿæ™,`9‰dp2œÄ5wEÅí`³e)™;ï §ð@”~ãÎ"o*Â̘Ää3¼ãLXÈ–öNü&Ÿ›;ÖÃ4&€¯k¹=Uõ/Sf&ô^ª:A-´ñ³›ô/Í’±‡ üßT¤ž ÄN`zkìØ hÄçÃ06ºF©÷m Šip¬ÅßÉò욟ۢW[ÖV©ñåã³Tqú–ÿk¢êÄèç=1"‡°9OìYý?û„†…þ†W<††ëòP¬ó“Pv]B‹Zµ¾±fÖ«3Á¤Ù1ž–Ym² ¹uS7Åõp1½ŸäRW•úxØ û 6ö_bwS*ã bÅ"ÎSÇeQƒQ æo…5”¼6êìUi _ß^·Dšÿ¯óó…ÓãÜiÝÌ€–ÚÕ¼ k'Å,à¡Ûpë§šÙ­ n^=ð챸߄¬~ÕØ•ëÀeäÛ{b\0II{¸à±GEÝ-~˜†eedâa£Öë{3ÿF{Ô Oà¶ LÏ8º±J×§ø Ì eÑÄ|˪æH‰±‰|]•=¹6âsZÄ–ÐÅ)™*'r¤€¨y²UILeD¿4ã‹Ê^\°åȘÕ#GƒbY‡Ú°G%—hj/7w:Ζ¾îßY‰Óq¡¿ñÇ å Ræ•ãH§Ô[êb™ãöíC7Ÿ:‰œu!`…¨³C >6,lÌ…7ezöþ[ž:4VPdß5†)µ%~T‚» ÅQ÷ΓÈ\þf1¤öæLñE:(g.5”Žyc‰,ea'ZÐNuW½/²[g ÃøàßËü`~_K|8¥Ê:²tl"ˆFßm”ûlÉø‚È&È‘Š³¹2yò¹cˆœèÇÆn±¢Â½©\Æ™pqbKƱ*!×°ÌIWŽv ‹í}}Úx…ƒéA ¿¥a×çØáyž0ø+ƒæŸ~¢fR-¯Éè?qQoä“<ÚYøîV ÅDkïÙ,P´‚»ÄPºÏàãÆ *ŽÓd' ?:O)Ä„­þ%!ž_ãbõg¸”éIDe£+§:¬ô“G ý *L NÁl{F-Æ’äÅk®•à=ØWOAý‰ Â¥õŒjº®]¹ËG”Þs7«¥E ƒ7Âd#Ù—QiÄ80·½UÕÔ Í9"~Vˆ«El ®FùåÀÖôŽKJL®nÁ{5§NÔ\ã¿T‚Ҁ͜ùÖ„^ÓùÄoŠ7t>^cö‘éãÄÍ4¡1Êò™ð_ú `EÑ: S*hœ0Ö¨:+…Õ­j¦ßé[U¡FþHÒ“Ž½Ï°¦»¶iŽ;‰PPº“ãU"Î(råLîM¬6JöžeFXr¹óIç™hb»ýuÅW>âw£öÓDÍ‘{km϶#ßÕ´þÒ²°ýÒ‘ ¦ÁY®mR­_xY…}é˜ÛÃåZÙ²žE€S‚«« ö·IM•C±BrñBñÔ+®Ò 5ŠHW±Ÿ#‹OËnÈ»Ú õÄN+´oÅ[vžÌõ¿¬ Y0ÕMk,ºM„sYI¨P˜¿ Íëëã|´PØ+-Tz³ &a–‰)bÄþLpå!8»-t~b[!ÇÙlˆ9Ê—œéL ¤î—¼¹j¼Û4Öº³Dyý¨lÍñ—¸b»žÙ<Ý#üiK3ã_J%%”^Ôö ׯׂ vÛøTØGdg3¹<¬GG> üÀDSqè[©ÍòIÞRxnŽYüWÆÈÆ2ÍQþÓÀHÌzje ?æ‚ìo^€ZçQOÞ\Ø5!I n–hiçX íþ:ìLp 4ÒU#KlBÅµÏ u0äÚVMÇ3³4)àž7’JöîÉxàY—ŸûŽ•¯çá.9x Æªº¦ñ!…ttÞ¦=úˆôcV¯AqXºG!ž„œ$»ÊaëÐD)Q\”Sœ« )îÐ`0»é¸rW`-IÔX¥Ø5›¢¦šÿøD_mbõ+ÐPx,œ< CÅ¥_€±ã¤Ú 7Ô$–f﹡"VÑ4dó‰êSeŠáŸ á&¨Û:§;æÝ†óɆ¬[BfŸD]7÷¢µþú,vM™ÕiãvÇr–¸8ý+úaËýPQÙu¾‡4›¬ïBélŽ).žêÖW3r¦Ýýx„ôÛÕVP•d&ÍXßC›©é”?âaIJ?–k¬Ä±ëÆ*g¼ÍëU~ ”ë 4]ºÊáý¡«Å7.+ÐÇ“ T7‹hiV‰˜8uåºÇ …gLH#«‹ Ôã!ƒÉõM¹§h³JëÛ»kÐS²[ÝgNÐ"ÃÙ%±¨'Vû¹þªºõŠõ­™{µ–ý×& <®—ùÓøúnØæ±UJÎæù? ñÖf6E¬ó8¼§Î|v´=€ålàX¶ctg%0åX³·¬ùó©vº Ïw°Ú‰¹Ñ±†ËùBlZóhj‹:Fý¾Z¬‹’þe~9¸ž¦L 0‚z7f{÷·ƒ‹å#Éš/«Œ_Íù,&yÏØÆ0íiú»6ždŠ?}Ä«ïë…ä˜D,†b³ÀMÿ)ü±æ šë 7‡Ï­FœE¢Ñªæ¢!Á _Ã9ÅâB5Ÿß û² ï ½G¼Ëî£Ð÷ñºè2[™tŽXQ‰rÆí*÷ª#  nÆÓŽí¡ï‹Ø!ãŒ&bÛõC\DWÄ¿Þ$¡©=DÄB”S‚•aUõ)€€Ügòë>•ól¤þ1eÑuþßí¸ÕÖfȳ˜§“%qØÛö‡þ¨Ÿ¤Py¯óÆÅÍ W»z¨O‹ua÷O«VÎÙ$NÒˆ~Í|¨…Û5])>-Ì©¾Mà#G˜w Ny˜î­îçVO­ÙE£3z˜ÅïÁÖ¶ž­…Ÿ¨:^‰²Ù–”øç¤Û˜_Bcªçá!F§³$xYj”› pÕ^&;ÝXg+Ë*/¹3àOò$û Bÿ„†l8áTˆ„hjµÂ‘a†Ì‹ðç鹟º™…„À.êsÁ­6q §¨%´HÛÿ‚ägúsÈ•Ù+.uHÜ‘¿Í8†Ž‰×ò°g„¯µÙ^—H¬=¡ŒóÉ{ïv¤qi«7Jݺ~íÍmÙìï•üc ªíX–Ø6„¥šST xP)$±8ÒÁGRü~ûæìê#¾¼µ*Èõ~d³KÇÆOÿÔKJ{ÿd-ù>›¤Í’\å>Ž_êý:‘ø³ÔO²—§w.¨[IÓpšÉýÏ]ùÛN"í©Îzå7GØK˜ æ]ù´hêâ"“–È^Hyôkäß‘’4?“X°i7¨¹1§(³FÔ!ê˜FCìc’0ËÄŒG+™…â‘oŒÀ«O@ïðö>Ä^¡"ê‘ægÅuàWi‚ÔèJCf×z°Ïëć…~Ù¥Ù-pdà€9K(Mçš øòx-£Š+QÝÇàÊÍ'á] bÈ©øÑ—F\…‹VÏ/Á?Þ:°rÛ—rËæE f"W«ô‡4$AyS!#æDãäÍÙœˆØbG®!^3É4”LéàEOò­¬J&¹¾Ò¬ˆG8®Kcl©2¤é•ýÇiRêûC®#_„Z£r¿«nnm$Ú­Ë ]kszåP¹Ɔἲ‡`Ùlª@Sóe)žŽ¦‚J~ŲAM¬jŒ€þñeöƃ|ͰTœýzÕô®MÄÿ  UWHåƒ'üI‹ƒN jÖϳë±ô}!0Ešÿ¶àA¸E#³EòÊ0^(d#+þæ¥.tóÛò¡\íˆæ2DáñÛ¸ò‡„ ÆcæAì¸|!h·í¤¢ –qèÕ³[œ…b°öE0ñL< ñ©¦#—!@Ôá6sþN_;f®Ðí}þòÓDõƒó3s9p)¥ÁôK§=tV.wÙl´Ÿ0ÏV\{âó¶-á罿lTdš_ !K¬¤Ç)¾D*·†Ýÿó¸ÞËë…É­‰øEO«/obqùå×ÐÌâÛÔ©œzóÇJ¨àÓíX‘ó˜cXJV&tOw˜z<ÃË1J³påêlæ©sžLaWœ•Ÿ\MÅël^³0ß•'Ñ,ÍÖãÚñ ÕcŸÿ(jܕʿ”|NéKJ¹™5ÃÍ:$޶4MŠã9wÖËlö »óóØ0¬­^ñ®¿§³ÃPåˆjÇÀ\¿-£Jyã¤~0W,=þ (N¢Ê;ýóã$KÙD%ÃvM_×¹Âæ ‡µ4„9É>9ÿ¥ŠñnýÌmb#ÖKÉ0 ½ “iªWo…*pÀóû&Œ `áïºÔÉW™¡ÌLÚÓ%ždX¬û1ùnuf3¶I 0’³Ý9€ê®†`,…³ñÄÄGxgI}ÆÐ8oS·IícH,³æ‡Fbl¡]‘T™ê}lJRhàyìÜÎuÜÄFJ$Fº›‚óªä’Dî¬1ï“LµˆSm:s×u€Dx»l’yYΪüšŸaè¼›]gãm "NÒ_Žui\œr:07 MØë 7ßÏ5q³ðÛø ¹ |]Jè£OEß½¿û×Á“6Y^zL¹Ãß92±vYfh ¸ §Ï*ƒã–XæO5 tJàF€¨çÌÉ¡SðcUшÁÉÓž®×•¼)Á¦‡vGtý¸¤t ¦¡˜±àtŒÉKçò¢‰ÆëlîÓ§’,=uíp=ú:â0!Ì-¢râÉ—YIŸd²d i= pï¡ß.9ÓoÝÆfi¸*Üܧ­SBöÚ£èä¶Ò-Ú¨©Ý4q™7øë”m!¼I®o:£É†Bm¹÷@»Ú<·©*LâÔËÄ«Ñ ™Œ„—”›lkð(WhŸú¥û˜ba{¥HWšÈAñ@–­¾°¶,9“7ß'—y3¯%jÙ»JÓ`†Hkß’ <Ñ$ùeáþvße !Ù–k>a€-zwùv¾óžè猾»&xu M<‘ý‘Xtd‹ï¯œêÃ{¤Þ}$%)Â.¾­¸PÅ öÃ;¾ç/‰p¶výrm—UëÈ^D[l€–`öTcÓ2G‰Àjƒ) Íw qd ŠF_¿1ªK(Ú >Vé*>º¼Ã®¸)(v×Ö!W•ÁžŽ¾ò’j!¹AË2|®ö6ýš㺠šªÉÏ'@G°jÞûh=¶kMóÝ“’Îî:^9˹øz«Ð´·+°5Š‚’vù¨ÎÃA U'?X»f¾çÅÖ¿ÚÝÌ¿8ÿ¦KF (€¨YÎXˆ–¨´ ©ryÂÎÉøo›Ñç'”®j§OЧl LE}“°?¤Ÿ@ìAG ù4¨?ÉÖ‘3þs³P±Àzðڠ‡Ñ›¤h©&H=yx8†éÁÆÍyú¡Ú»5~¤‘^ÂK~ V¢$«©·¿à.þ¼v¾ûDolƳ]ÖØK9<#bÊ\-U²@•èœz–¢psª#NF>Tµ.½ 1`ƒ‡h…‰˜{…²RØq¨üã[Ò¬ ¶>"~µ(²uWGô©àAk©…ö¿8ñZ>ðe 4õAõ”™dJéçŒ(ö?ê|áðQÂkH³œoºêh`4mÎõ/r«'æz%‚îvWÓ9Ý‚±úÇ¥4ÙÑDÿ ;Š7æÒ·ì…üe…>처“äÖOç{=îˆ “`¸ÏA§®Ø&× Vü¾ÃÓM;"‹1ü<›:ª¾±ð$=aÖµLïZ¯BÜð¶M¦¯€QßR™I|ÈTuþ&(Ê·g*ã 0«@Î'ïkbùøÃP@½S!:Ú£÷%F…¢¼ÎFUµMPÖû_¶,4Þ[ëž±v–ƒ+žË}$n/È^ÑÓñõ< qöl´5²âk!P~Í3l>eÜÇé×Ë—Üáû4“5RìÒÊ |Nû£we¸|ôàzs¡fI #w~Ò¨M÷jsºðxŒÑ»‚L–Ýp"XŽ@@d-D¤¸½óU‘7wUöI±SªÉꪹð¦ZòPû€¶b´>|yÓ;w•:rÂ~k5Ô€°{Ýù’äŠ g(©‘—>±ÆÑˆHåÚ©‡ í}-lì°E6êÑûÔ:Ìe©ÇX$™E F€ú|žâSŽsÇÒ6ÖÑ,ëÚ£÷佇’G!Õ”Æá_•q˜VÊgó{º ÄX„öð/7ôúׂ1*V™ë•¥õG‘þѪÆ÷lyWoë"?X~ôx§2"¥â.¬qŠÂBû3óƒo:Y_GWÚx16ÿ6B«ã¾ôKÀ\uôå¾wJ·N^¦Oj[‹27ø*õfšŸQŠIñpš·Ñ“EÚUÃÃBàáࡿב ¾™Kש TEl“°vÁ1̪8/ZdAd9MŠ(Ž#vÊÿõ5ºþæ©>Ó³Èíõ߸¾CvüZQ@»DPæè×w(è•m™žýIZË@ˆí`„MÑj«@Çž¥&Ý–'øÚA³C¿€÷å;q„W¸$;ßÉà$:òm½­äÝoô7žOüO**véÊ }^ŒT‹ðj%;W¼<0Âcr˜xyFùëžP ge×Ó4‡´ñ}¢ŠR{+W!Mµñaz"æíOZlíuþEK²œ€9n1ŒµUBOkqÂôÄÐ×ÿFâªpÎcdé}xAñ…³e[8‰nÓs|òjÍ3)EÞT‹$qeH†%¢T>\>µ"ÒdåÉ­ýÔ×I¡:xÑçf¹õºSµÉLJSWüaûjdW“‚Fe‘ïú8êÇàKLß™‘„ÕdTÒñYê/_æ´Öðaʹr2<>5?ùCà0ú7Øš¿‰­®½ù#‡Ñ„ñgÇ?Dî¿]õ¿¤ÝÕT]µÕsIÄ‚ôu:´gÙ×Ij{™æÞ€«å‡ÒOl´yÃ?;&Dü3¹DÜ$›'œµ© RŒ6¯+QZ7ˆ:ÉxU¿Àýœš8Ùå²A1 vƒLòñ Gl¿‚†ì ýÞ…³CØDo§B»/Ž×’—Àž€ „ÁïþüY©öeíp,o”v+÷K†x›½f™Ÿ í?wäbN"t+ÿ±;­¬€¡†&û(¿Lr LÓzÞê1ºGŠ3@páÏꘟîȹj–o$¾â\î~dµ §Ÿ¶¢ îâßRo†Îš“˜›oÿx7¾¾õZà`8Iia|£Kë:zsúåÿºù¡Û&•ØÑò'_S* ·V%“;×&àbÙ&Ñ Ä{ÅÞiÄmä!R'ù¯½ÝQ£ÝÏA>Îì"CŠÐ­•Ô«[´ü3^÷§Aœ=pfpб7zåA‡G–]jãð/„T “Cr‚­l¡Hüt)€ &­ääK$ \ˆº½‚K3‡àÿJ?iM endstream endobj 116 0 obj << /Length1 2166 /Length2 16076 /Length3 0 /Length 17417 /Filter /FlateDecode >> stream xÚ´»sxÜëö>ÛlÐdb[ ÛNkâLlÛ¶m5¶ÓØFã& ý¥û|ÏÙûœ÷ï÷škp/ÞÏzÖ³>s (HU„Ll€â¶ 'Ff€¬œœ-È–…™AÊÉÐÚÂÀÊÈÌÌŽ@A!â4t²°‰:y\Næc§wO+337@:¼+MFî9 “¡ª»@møP´utb02t|WAf Í»‹ˆ­»ƒ…™¹ÓŸl "ýñfH[Ùº:ZY A&iF9F€¼­ë»Ð@m Í ­M¶¦U &@MELY ¡¬ ¦¨BÃøXÅÙÎÎÖáÿ¸ˆ¨¨ªIÐD…äUÅ@uz€„šŠêŸGU è¿=@^õ]ÿ'Ï»áw91U!Õ/Šb,LÖ`¸-þ¤ýn”ïÌS{w5u°µù+€ÚÜÉÉŽ‡‰ÉÕÕ•ÑÌÙщÑÖÁŒÑÎú/~ªæŽW[+Àû³ÐøWaœA&ïåt2þ+ÀŸ=ÈZAŽÀ?Nâ¶ÿRÚ¼—òÝé]îôbï…púÓú_æG ð¿Ò˜:þå+«¨( °1´9A† ãwC'C'gG€Á_²÷;Єê_g‡?9äþ­røOšS¶}_™Žµ§·¡ëÿî˜!ÈÙÑãµùïeÛ‚-ÿ0µ°þaïøgÏ,@Éä„ä¥ÄÅTTdßÄ gû^£“›Ó_Ö⠉ʾ·"×'+++€ù½IÅ@&"¶66ï¬þ”OÔâ½NN¶îLÿÛÖV [WçÿGlj21ýSwg;&5…½3PJôÿŒßEËÌ€NfÐt36gú“ì¯^ù#fù#~/‚·§­ÀÔÐÚèma |Bðt4tœœÞžÿTü7B`á˜X;½·ùûQAø+ºÈÔÀý/ñ;“«þ¯¨ÿ:¦4ïgÔÄdí0š"0ÉÛ:½·õÿ?§ìr‰;[[ËÚ©ÿ§¢ÿkfhcaíþ_†ÿc¡üC•ZÞÖÁÆÐútŽân@E 'có¿Šø/ñ¿2 ̬vFf6NÖiÔþœ(ë÷Ö}?¦×»ž“ëtï]il::8¹ÿRßkñ?´ß7ài“ªÈûÑ ûß¾ùËJ dlkb2°rp  ݘߛ•ƒàÉòÞÕ&@·¿ºÀIJuzwØ9;yLmþìè;1&‘?¢!n“Ø €IâoÄ `’ü±˜¤þFœ&Ù¿Ñ{L¹¿Ñ'“üЧw?•¿€Ií?ˆûÝÏðoôîgô7zgfüÄÂÌ `2ù|g ü|§júÈñžÒÔÂåŸúw‰Ù? ;€Éü?ý“¹»9ô‹w™Å?à;Q«Àw¦Öÿ€ïTmþ†,ïTÿÅö älcôç™ý#Ëû lÿßW`÷7¥÷òÚ,lÿ±d–÷5Øÿ¾¯Ááð=ã?à{§ÀwþÎCÖw†nÿ€ïTÜÿ‚ÿÝŠFò_ó†ùïý¿kÕ_XÅÉÁÖ ¨aaò~þ‡‰œ¡“ƒ…›6óû°`y—¿ßþýJ÷¿Pü=çþá-,lëæÉÀÎÍ``{_Æ'6ö?ÛÍéý_®Æÿºjü5§ÞÒ¿ñŸ‘ ݀ƫK¶Æ¼A–©Í!å>b…3ÐÜŒ§U8üšÒñP«3DóvIEþ­~™”E¶²’<º>Éþ MŠ lë·Í¶¤êé%Á=C91¡ñ\uFµ€L¹¿ŠnRš#éÜ‚/¥ìs™íñíDµñcîΞÇhÖ©ßèW)¤:íßó¡]‹XZ°¬1ÜVÐð»VfºÀ~?bÅFö ­Ò΄àŒKÃØõõ iÑ¥¨jžêfÂócñx9b†VÙ$|lŸžDEc¯áFYµt¹ÐuÆõðŒFÖ‹vo@RÇiç,†-öK¤\à=IK·â*4fw ¦K•TxLPöŠì3¤w_Å~…Än\xø•PvˆL¾VdÿtËŒ6ïN¤#BŽwˆ=U‚Ê:D³ÀÌžÐ^Ånb: ]©z½o’½¾ç½gÕm“Çnà¡Q „§dd .G'Æãk¥ª?›Iâ«B‹øR?GHéKFî,ry“÷·áSÄèt¸+®GR)üj뵘‰· Â¦˜¶e=öl¼©ŒSUÚpÅiÚÒ„å¢P9p<®ÜòÁ^|p¦²°°x:mð{óˇŸŸ`sEDRºËåÉpÆ[ßïHþœ1¿.›L#×c[f¡3:kÒBQ3Ç—ÃÜ8¡%6»£Ì§Åm2—WSŠäBÂW¸žÿkñZA~ûñ$i¬HpóuÔcÛ…ÂSÛ!$ bÈeí,”p†¤Ó¹SñÓ÷)Íg² U9$2Áƒ¼}Ñ»"Mÿ¾¢CBs¶i³T‰½ó¶¼1·!‹öœiøË‚­S&Ô¡ìJQ[€ O9ÐÙÔ9{\d$Y¡ÅVå8 iÜ N'#Ýò |Þ0>`\NÞê<éAÈRÏ 'Ðo½ˆ¢eÄç#ù€|ŽHµz»•v¼N!Òãä]ã˜XØ¢òj’@É/š … Ys®¹®£(i©®=¶£ºpM]±Ñ4ˆ+ÉËS›|«©Ç˜ƒJí\¼‘µG›‚–G§j|q÷ÏIÙ3Içê=/„MHbÛÑØ«:òž·Ó¢ôi—ýÉИ_‚95¸˜D}Åß<{ÕÒ?)/êØ ¬û‡ÀFhD@}—õºþ”À Ó¿af^#Ž ]r&rï\ÌbJjÅ´å°íœâ¨µ¥ì§B˜xñØõflDÎÁí¦¿-§µÿ‰=VÅÑ<^*¥–06swÉà’{8°ºx(6mÆëÈñ¶;3âƒNh"Ö>ëJXA…\<ùwoÏŒþÎZ¡Ðì£øšÄ¢ý¿YÀ%\Ç¥E®X£4¿ó0RI¥y­ÌpmÅ•+ð ö6§ä¶}¿®0Ó½™ì6¥¹µÚ§,3?¾1ñ&â¼¹êÞ\… (¹ÛÛS'Øzˆçü¤IÕ’†Ä´]U×+€púÕÂ1I˜ ×jfÿ¦Õß‘ÁìÙ˜ÒÂÓk‹X—0ÒÄ,ðíU >Lnú²…!"O•>nO*„?fs)5’EßÇ' ¥¶ç^x^nnæ'µ¼»¥üWC1‡öEo‘ë:W¢'bÄÏñº€à®,¤ÀPôRkm]kõzµ\:3e´Ã²øúBü¨&DM¹"0Æ:ØLÓxž>{$66’Â%€U¼†×s ürë—Ùb>äžqÆ/ªÄLú¦`©âÛ©î™ìµNUYäÇ„º¡.ÎØ:¨^ÙGâÉh™dÇ(ß©ìf.,“J×gñHã;# U Ôzýpe(0ŒÑçA²€éS`{ ˆf]Ûâ¨À)`fyOcæø°SÕ‰G—šuˆØ%lxµ»y¦jMP£JÊd/"j'ŸÑûØø±Ñâ_©Z$}Ž-Ó¼JÛ7 )Ž#hôÞŸï7â~fЖÞ#UðT ¾fÙ¦-ßCˆK;üf]pÂ%Y‹ò±ñû2äd;TvíÞyWéÆÞo:Önp÷Íö±o%[‹ÄVŠÁ.A‹Iñ‘Ø^Eö™t¢~M‡‚{]RqæÒXÀ·-ÉøÓ—ÛÉ϶Î%8Wœ3ÌÏt(¯«Å`e4NÇóÖ–9—KÊE»ÍKýmY4Â.’~Ëš(P¿4}Îçø1·{( „i0¾,l–¤œL¾ I?¹Q-BèϦí ÃÖðè MÓ¯YnΟÿûAÝôLÊÔÝìR,÷×¾ö 0D¥JiµûŽš¬Aò]W·p ­“àQãæ&UZx”Cœ>Õf¸ßÆÈF Ž^¼¦Í’ʢͥMÖKU9 ¹æÒg|ú»OˆŒåzHþâ­­?<a½›‹Ø÷‹sØÀ÷Kæø.Uñ{x™‰Ih'é¢ç~Óڛṃ*¬J_îü8„¶.¼0£¿Ç¤ðt·í’…¸7aâ|=Оq!Œv/[V 9œñÑ_SE©Íì¸Õãv©M¸Ã( ¦ðGwÍý —/K^»çŠ)äÕ•€Qõ…eå´¨ý I…D¦¶äƒ§ñv¡º:÷øêG‰¬là öëJƒí k!ƒðÏÊü-‘vç#s´1éÂ^DçÌ%ËxdßN›¥DБÏÔÉ6Kž#0úÛXò¾€Ÿ”N²šÏ€¾g¥sbh,||¡•›íæ*ÖFÕlìW¼ \æîŸ›eš+X¶Iê<Ú½°•*¹Óù¯™§}›¼!Xð2ö:’½Šómücþ–>Ó^ë•õ6ºŒ†ªrlc( ëTq^¥ÈçHå´EmŒ B>Þ„ùΦ­­„ †ÐR"hýYSÙ¢ÅÞmP—ki m¯bDÒ+ãÌð¸2çd2‹þs {ÍíŠ ë9ûùÛæ©›äro§/v¦‰óù%?FÙYávU¿H,«_Å@ÉÐÍ;±Å±âjùS!™èE“ ¥öÊUœ­Žù€µÊÔÏQy+låÞð_€OП…½ Oui<êÐDb3ʧÖÂ\fU…@¯dTP0ËÛXî¸ö¿83M,b(íã!G‚÷]à½~|°ÚÅ-¸ÞØÙzu† %“1ãqUFøµÔšÀ®‹k'¬Üdw«ó¶D%ž?¼Ã©(s Òåïì¹nЦɱ±½r(§£ó°},»Sc]\³¯.|¸è…¯€sâ’;™G\-ÑLÉä-O¾\ ‰|ËMæ½§3yólk^u‘Ì–~LŠ«/—¸ñÅj’ª;A¦dùòü¡ßChJ‘¯òÝEp{íðøâ‡BOc¸”H=ÏÞÐ-nųWëcÀŒIœ½( ÎÉ”¾/KÎ*°â°¼DØùfÉu&%½v­ôÒ¡êírɺ9»¡âÙþœKHè„>Ñð–è ,è2åxsÓªÐûsDoÖ N<…°è—_‹¾>Ù­!tÈRðÔ RÇ/å.»sº½Z;Úi]}Ò@³¾Œnµ‡ÆÀxˆ]úÞx¤¬^£M)JS²ÚŒÆNŸ¤^ …ßÌ8Í\¤Ê¿ÈGÊkßñúMo=Uœ3T¨Šƒã¦½t̯õº>aI7@SÞ÷§‹R!‹Ã!¾]S Õðû•騪¦TíhNÓÙ]ØÃ‹þ~c†X‚6š›È³.1xnFA_nŸŽ²Ô~¢)m ßÿV9}:+mÔX);p¢›¾Rõ!n_ÌéèI&Ô€ø¤l¹ÝàÇ‹:ЊLD(H:™Yól$·¹iÄv‹Pªèt73ÌS!"o@`žj>‡÷hÐ#xE®JÕ”ŠŠHÖ4dÀLUþù,Ð?º[­‹ŽÍB’U ò·[lýSuÝPŸx¿Ë]V)ƒ­15–Üñ÷.Ô}šøI~f<3§¡RÕÇœ2“ˆ'g߯öoänW>¸”=×=›†ˆ™†ê‹Á‹Ÿ©¼ÊZË8ÔpêÌ ¢·Ê7¸ôXCmî™õ±fŸ‰êtoµ¼™{8÷>N”ã®/Hܰ6äÝœP›Ó+ƒ¯?|4à)Û$Ü_ˆFÞñ/Á Œ¹†¶_CÛ2ä t·8ás„\ ½ôŸm¿4Ý1CeöÙ/5KO”år¸¬ÏŒYMc¾í¸’Ëo#­g¥wvÓÐv¬ó ¦“æ^ßÃ{P¬_Ÿ[ÚÐÜØN„FLÆTΖÂ>;uâͬh΃\ ]‡.ßhŸ3õŠÀé€}êÇc'¶°¤=«ó»¬ÕúºJÈ·|CÃ*Ðúƒ~µ‘}ª¯2ûèsãBÁz®&ûy^þ(ŸÚyÓ·Íþ&ïoƒ@”:¸ÐñƒKCKïû8ßiËìÙ¤¯ÜŒyˆ]ç­t6ÍGŒÛÌNÌÇ3\ޝߨµ‰\ìW ôeµfŒh«wè€Û+Öý`U][mÖ:¬º¶€‰­öS=mü‹r‚£¿õžÞ”[ÇFme=è¯$‡EO>c_Áízßfƒ­µ‹ˆ5¯ã^Yµ¼6c_€ôKBonqÏ!t—Š®ôôPÚ*¾¸l·ÛµÞRƒ‚ó\ŽÒJÍýåÆ2‡Ÿ|‰Âû5‚p8KÑŸˆñâc5ïÞH¿p$ú±ºÉG׳j±ŠÚlŠl‡¼ø§ð³Ëb…yb¤ºy‡*_Nˆøô²„ò"^0 ãÁ¬N£Uf<ƒ³@ô ²ðxýЫ¡&#…ºKpóꈵc„)¶,Ú‡£Cœ`¹µˆ=Í•ŽeðyÅJâèɪ}×1sYÂ}½OÔžq<~V-`,lÊGi~ÉÔPè“YÉ^Ó%,YDÊ3)ê³Áå}—*$U.Å(?!óeT>*Só…¡œî.‘çÿº÷›ª\Õìæ‘Ú†®¥fXÖî,àRáNp‡Qèå~ku^µG'B'³IU^5·‚Kd‡^o†Æ‡úÑ¿Q">FtÖ«æîìé4Í åµÀcŸÙTy—šx‘þ2òûTú{Ê„xj×—Ä;Ã}A^Hªâ˜¤lªåé-ú¤¤çÓbÌ=#’„œØ¤«ÝCy¥0G@Ô2ûˆß„~âÁJ‡‹0’S8Ãwç¢+ã~¥C•=[ý öŒúP²ÃÍðuœ2(E`¿ }>ª„Ô(UæŒ!ž þˆ²†ޏ:ØÄ0vúÁ0£¾Çs€auû1: X_y¶¥±O9ç<ö’k–ô’¦dGÐˉ–Ö}Ž&¶Scõ;ŒH æîƒ®4Ë/k !WF÷ýˆý@ÿS'eXTAKáŠ)$µð¢lk§çðr:+OÝvï/C]ô5F×Ùà!ÉŒ‰ðÔ Å|•Äœ2ÊaŒÆì8þPIÇ_gdÛN•«Ça¾cIر<s¢W.¼{Ùv‘BÊ«LXZë%È+¹ŒîûiвLíœnÈoØ8{ªVÇx+ܶF|P´\´–Ž9Ü4iÒD0’#Ó$„ú§UìÄ­ƒj1±$ô7ZÆ]”Û‹iq–¥Ö%ßá^Ùp?Í|#&Ä)Þ[/TšƒË=&¢ú8„O|;\y7FžL]oUÃ]²9ú˜ô4Iš7yƒ`†Ð“†œÚ·|fdœ'ë!%Ú@m>S‰ m«´2º|bÇ´¤šF‚U²kØd©Iݶ‘7„„„¸OQÏ9'mAìÚë–Íõe~«:OŽKѳ{›ï`…Ó|¨écáÃAÒ#ÜîÀC×Ó'YÛÕm+Y+}ïÆgµbù Ÿ•bD Ú~¬³êÖÚ4}ªï1Ëž&D"úÅ6+&1\Ò<Îos¦n‚GLˆžÄÛbc7¯þ¦‹¥ãh†Œ.¥”­QåÞ¤k"[I£¦ÀÈòj.òÛet´ Ó€†:YžÙi[Üñâ<Ì•7›8–$?^÷å eà¿¥±~¿@ð#åv©kN(¯.NÔNÒ-ò‡â1B„[ÿ lù¯gmy¨Fte|›¢@®öýYs$ÇWz{«ÈOÆýÖ{óäùDXì5õzwX—Ýø+£ªàŸ|~UÎõÁ*¯Å¶ož=²_˜Ø§kKóÒj>Ì.{«ff6gìNÌð¿| MÍÕ­pžëÎ-±½ŠÙ´©å–¬èôïW/ôɽ%Ë2b‹õi ¼¡"ùå*ñËÔHá›qla="#Ä-ç ç;Ny‚PóéÓÎÈ;¥hm‘ßʇ±g¯üQ¡QcP´æ’'n¬‡Ôá­gæ¯ægi4-o´œ3Ïe%¦F%Ïà*ÎL…,l¶7±¦Žd¿Æð¥8sðE±Ri72_ÔÌXÚÓh9}êHÏôŽÓ(Ôô÷‘ £Á1á)zU6LD÷„Ðy“EöÕ TÐ.tÍE8«À—©0  ƒ#€iH¿âN KOZ°j ¤©yb“rIK|º‚œ4û 6Èu>ˆiýR—£´ŠþàÌwsÈy_ Å÷IIŒkw_Óññ£Zà9u?ÃÜxðYû=‡îËDþTX6WÉÐnTÝo½˯ð¦ó¤6»©+Oú•ùT\¸Ÿšv1Ìs‚E{ó«|ÍbU:d77çržfkP”ÄK :í‹c_Òž«ó7´ …ǘÀÈâOìøpk¶’•PÉ_ÄdöËnÄëŒ ?0XÂLEUk<žM:‘§•iW^Ô–)¥¬™*ž5ËÝ®ˆ|U×tïEŠ*'`Obÿ]™:ÕS=êÞ^¿ÜÇxš°‰u¦ÿxžjƒ0êÚH@¢¾•YsMp°ð¹¿P¹69BSªø²Ç§ RG!/7ý†x®X÷í-{8ÍZëõãz’-ý­Atû¨9š¥41½¼\oÓÑó7Öq飮 lMB_ˆÀ&PúÚÊGYíB8Où¯ub9á¢yÍœ÷ b ¸¸±TÚi§‹“`2oWK+ß¿•ûö3uq‹Î9Xw™Ë˜qè€?-„JFhÞ—·ÀˆÉȳj‡Ua2¨—Ã5]2}JAô ŒJŒ&g6“:$5$ó JHã¥hmEÜoA–ŸòKc4FÝaEñ»¤qYäÛî¢Æâ1ßѦø(®ÇߥÜú†g˜³P¢Í%¿#Ý%gB®?3߯{î_Ì_&<´£2ŽdRªA'V½¿my3(2ÁxeàŒÚE½ƒŒ5áÔ$ІÜ_?b«ÈÁ_$Óõɳ$±’—_Ôft´Œ÷趬#ÔÙ‡£ˆslE‘ëðr@ad‰Ðísâ–œóŽ&¤ªD¶¸Ñô†{Ô~ øÆCL»q@a¶7…žû"W€àŒìP  Ïœ/õmUƒPÏLM+~!û‹£·ñƒÄ !OÄw·å\•0¼UvÝKQÇslt¨¾zAƒ–wNºòÁPþºÍëD ´„O*Œ¡­00C\™ý¡è•ã0'ZœGHÄÉÔVHºÝòô÷€àYÚŸ†s9Œ†‚\%h` ̽nrŒàe±Úø%Uñ›c÷ÍIdkÏÒïÄw™¯‘hW¤æ;÷fkùL‹¡@UšÔ_¢’(;$6oZœî[‘oõ,òç)þ ÞáÆ¤™ê²cÃÔ}&ú»Bú0äå1ãs„ó% ­¡–wžÜ= /t$ «%-©:¹iìGÚåÑ›e7°°oú Ì€ŒB Ÿxj%Ç;ò~R¿ÒÞò¥R.ZüI.o«– (‹ P þúôyÔ™òÃ`ïElwGÙÙë²­ÁÙ2EÀ‡ŸXovj>FšLd±O $ÿ µÎv§5¿Ç9žË¢o2¹9cŸØ’ÎjCU9E­£à˜‡CÅØBÕqH/½“ûÐp9µœøUHuÉ@cÛH[ÞiäØ%Íè¡úµ2›ô$ÂͯCðæšExf:ÿʪæ°ðPx´ýøáKIÇŠ[ý~ÖÃS›¢eØ\$UåÁëà&¸Mÿ¢ðöuãKÝ·ðËÜOŒL”JÒ|r˪Uš>GBImDÊ5Ùåˆãذ=µ¹œÂXHêMxÎqÜûÉóŠþš ÅxM3¾FÛfPÚ@{ä¨ý󼸬‰àÅ Œ&á;M«uý®¦$ hL0ÃM—ØL°õâ2|äç0”ë/?MXÐÏÉB]RÈñ£ï’Ö³Í&pÃ8Ñ­»Ä/½Øo Â+,ðv¡´:uo£<º²]K&kQnóöçúÍÚ«`™”ºŠc"Ô̆ÐàÑð{ò£Çëâωt¨%¯fÑÆ|0Õª¡²ƒ½LbüOqÇs8¿@׎÷í ßÔ‹™“†gÁµµPÿ„¼§c¼SAàËÄA&ÕÁn=Ä—7܃4H½3…¦ ,Ö„ñfêeQÜU÷rú²Â’…Ð,B%,C9em÷uI¯v‹,HnšØõ<Ë ×\Fò¨ðXš{b¢êÙtXºŠL ¸³D™ävaÏ,E£’°ÐYDÀ$žY‚̧‚(Ÿ¸àtÇÖ±¯¡^Ñ kkCÐÙ”7‚ù3ÇAxV‹ÇA»4gÀmˆ¯ûüÒÔ .¬Ê×*AèñÜa²’ÞbtiQ%…ôh3 C^¬ó£·àÉ0,ž:±´zXÛï¡àPœ2u¢ì5•HI;Ð: ”ö~_³º›ä\·¦ŠÐÔˆl‡s‚Ìæž ïRê¬~£ØbhzK¤úÕLÙ–b¨’ÿ# ŽQ~mZý¹¸ñ™&35{?Éõ°>ö›bâµ%Ç(…îÙÓÙy¨T„@Ä(€FÅ”Ÿ×lâMѵåØÛg/eÖ˜˜°YV-¹Þ5 ¿ôŒD4xäç*…UY}ã• |u– ¥ˆÊš•`{ÒÖÃ^èpĔU=–[Ým=%nUd®ÄYÁ)3èš3ðàVœH`ðÛ:e ƒÕ€å€/äE(®Ø¢O!õYÊ?pmS`©Ï csB+¸4%»3OôhDÐ@Š)ŸUy¯ûiöŠc@ÝÝJ¤º‡îá3ùÑ–¾7!ó|ô«“.åU/Åds¾¬Ã‚c\C¬ÿ¦?ÐüZ l¯MëEÆëÇà?7ɦ"~\š+ß0Eûi±ÿ¿¿öõܽToüâ _lÝñEÀսϨw¿>¿ÈˆÖÍU/€ŒÅ±s>Š¿«Ø–)·›N ~IÚgak~a ¡o¦¯mÿ––O`þ±Ö90•”Ôëx¶-01SÙ¡v•õ:Î"W˜á&fMd‡ºÖQ ÚÊsýÝn“ˆ0Œ!*¾Ð1=<€Ã嵤²Ã¢ÃØLÓ¿v¨ÿ‹–£ZÒ|üÔ"‹,aB™òt턇Ç£ÌÖ‹›í{›uñ0«c|UËas2ÚJŸ[€üAUÜîì~ÙÔ5ÿÊ̈¢€&³ÿ@¡šIiŽ$Ÿçº{ãÜéÍ¢o rç’K°SB¼Ì¥z14¨œ^fÒ¹äçJ³;oošI°Á ׳Ùüó˜Gb«$6y­Ýi¢¾¤Aâ7M÷²cr|ø<¢Õ„bÊqÇ btJÕÁM.ÁûÒ~‡´„Ìg8ð‘0ƒ…°õ›þác^44Þyƒ®zk"—ö› ·Õ$Áåè1Õµ]`Ù¼ùCO@>¹Ì—jL_ýR¢Å '9½™>r‘nÄ–"ÌúëföñœuÍ–njqÚwïo9R³Ñ‹»—œÛØ6Ûòp2íã4Îþ˜O¬,Nb­u+ o2 Ì›6Ð+B‚™ý6þŒÁ*JâÒÅ,ÜæÑ’§—Ï~<¾¼î ,ôNäØ­Ò­HbzÇwÏýgõ>.+M5ASïœ$@ZGØc×D'øI‘–æêœJMèn¦?ítîÖÞë„HGjß1E*}+CÒqøTÆÇ_œþ¥ Õ$áоÅ^°F_Dû°PæLªm³ žõלͷPIô½ñmkÿ—7™W¸b#bk«¶?äïÃÁúlìFÆ£ðbÜùõk‘Núl¢TX|/ý9I\-ždšb:–žI`ªIÇc@÷=alÀ´hLM‹rp…"kȵõ:‘)<‚txÌ:%õâò»ãY´+]&ÔǾøìÃaÁäü­„§RÀ!SMoDZÇ9òRZ€‰ –þøs:[> ê2:v^ ÅáþiÃë!<Ø*÷k\ë8?N £Ê‘{¦cЈ·P})øw%8\íËì?J×eóŒ9ŒÑÀa7Ò Ød¶ÐD '‘~–€lyx6Þç°Ð#Ò çO'èobUûÃÖñ Óì½×¬„— Ÿ­´œøhõ¾îÜûOPÿP¡…‡ ËizA[)˜ª›ü™?^%zô•«ùØ_ç³ÝÚ€toPÓn³ø÷¶0²Ò“±G¿Ôt}îz§­õÑY]}MR¼ææT@üX>_q($k"CªîO¸ˆÔKäÙ¸Çlq5½. ý}=¤§“ž‘…­j^W––›ìá£ï} H&š©qxQ0i’vä‡ÇŸÂœöŠû†ñ|pQ@’Yñjé5»Wï\ܾÒ@ '½kÆz`êIQo\°Ü Ì輻;/^ëΔ`ƒ=øžþ0D–m?–us›Y³üðlòÈJ`bí6<±ùW×£µÏI³/ íã3íýòN,ÙÙrV-¤Bœ輓©J:`´¥Û"à ^=´…Ç—%üZ}ŸÔmîãá§9R/¥«“9餲¢/ô‚*L}ïû2VÛ}ƒÞ]åfº¤â Áã/Œ½7óoåË€QeþÆwÿžÝ·|•LFCûoT?4ÊIZäùÀ”¾òºÚÙ3ÂO ä£{÷*èHMÀùÜJ)im\)\¶TüÌœÕGð㳬§3úù‚_†‚ §øŽŸ¦gËwØl¡Í –ñZò‚KÙˆ8°0 K{:X»¶øëíã˜E!½ÀCo~Ĭ+g-gžPÂHµØ4”xÏMWdåRiQÅwI¬Ä{ŽÄñŠëçGÕb³gçà„ÓÕX’ÿ[ýÔœÞ %ã9Ò>¯æñEýæŒàË= ‰k÷ÎÕý€õ±³Å ­;阮vóXv,U§Á®®ªlMØ–B›Ðb7S⤌ŠóÚÕƒWÓ =ÓÔÂ+%AkÏŸbµ! ¾[)xœ5YBü˜AÑ„÷™¬‡;‡Xä)ŠälÅñÕ8²œXÌØä ÔHÜê[Xÿ°lKã?ìµ4°]C[Ps†ÀSªbîÖM"ÒbPë(ÃR®‚‰>Ž :ÕÐÒèJ˹g²tÕÓÐñîÍYßøí²Fø8¨?¼*/ÿv%Á½3R÷'mIäÃH¬J ¶\S?[$ª°>•µÇnZÙ’òáô&siáÛ?J%@•FÃ%üžþRƇʻ›Æõ9oèî{NméÀWÛÍZZçÝéowó³–m;Méª7ìóNS€t*ÒÞðJ¾zœâ~o ‡œœm\ùKÚ u‚ŸGdЉf™‚ñʹØÔÄÇÎÐ:¦)QëLñn°+ö“A]V^럩#É^*l:vÂMvë­Ý浂27l| “¦%¡î’ýÓ§{†!þce9´uÁÅ…÷|ß«ÝöQ`e‚ß– ÷‡”¬›=¶æ>H+F‹‘(iTãLTº“é+Pú¤b’æzò´3«eçÈXÁTÜ"K†Uâ!¼\©mxù‘ëæDcæ.pEÖÒV\Þ.\¹f›_Æ#‰«wâÒ“üxLxDJd¨12ëÅkÛÄÇxH nØô¦‰4©Gb—UµÒ3~¤©†kSΕˆÁ@ƸœbQÊ[4éâÙOâHémc"£ÜcfÊ ¡¡ƒCÁ6]ý ˆ¿¯V“òŒTê\—ü.$½OÃc õ%D¼ù´ë.7©³‹Ð•l—Ü~ðô†L¾2ÒËkj^×°Âõ°ä%±Ê7ÂÔ¾ÄÙˆ «¦§ãžïzçÇ÷Ó·œˆüåÒŒ5ÃL:R1ŽH(ëýAÓÌ‹iž(÷M¯¯Xñ<‡ióë ‡æp–¾èX¸3â~P¤»m@HØAvCï#ž¡‡ÍМ©HºSûù¤6%Y-Ô Aëùsg%lÙcžoƒ˜6áA¢å•'ßæ ²§†Ur¨_(|ËØÓÕ§÷:l†Û@‡÷ñG”"rÈO’Ú1,Ôƒ–pLg»¼CwªÑ VqÃÆÑ*ì‹ÝKÔÇ_<0.6uÚeËZ¬è¶}"ýž­M»zײòÙÖÃ#ÏVܱ§8KœÆÛ‹ÈS˜©¢ EÞ¸s©eˆ'ôz£Ó½…uåk¿´<^ôØ a)’û^wÛŠbPI+þW¾þe_ð$hÍ<Çq铼õ,èƒ n˜F(Bµ$f}ÚÆGŸ;Éæ\ >²cI”µìWj:÷N|戫óæBt* Un r¤€.ùKîÓ¤8Y?÷£F¿4=µü J/R’W8G2t„®—ÝÌ€^ÐBÇö¤j"¡2¢a¼» žh) |ï9Ò)ÒÅÖ)ÿ2¡>³g—ͰöPLM”ÚÖh\ÚÖÊ\U1Üx@á& ðÝZ´ 8 Ý H;*ñÒäwNþ¬¦µ `“‰ûóP#«l“ëÔ¨ÐØ>\%'žJB©¬|ÅJ(1°Œ$×Ú™–”·*¨DFÐæ¤*ü†E}»?*ÅlðV]rj;ËœÏèûé [3ÚE¡~Uôû•Ë>NÚ×åâVï VÒX&¦‰¦ ¿¹{£$‡ÊO}1çU‹x[|râÜÖÛ} So 7Uµ«î9‹JÈ™‰êm hgnïzH».8.*#S“— 8*PüIV`†Äùúþ3WäŸ_‘Ì›˜øÀle›~¢õ#¶@³›xȯ4g·~Ê·„8;¦™îo3w¯2K8Ķd›t+Å@Ô6C9ù6T®¯B5ƒN ¦æBœ„oßD5LÞäüðN¬#¡´²Ê³˜«mD°¢(<ñ5YÆ;ìéDø¥èô·¸áº#÷XD.C:âìGO´O6EÃUR³ÏnÇl+H¡F·že-÷¦'#ÖêÛsg%A.QàÑó®øh%å=ú?{I‘ƒdª ϶KÇTÛ¬¿^-޶>~äHkêÅ Ö+e¼Æ½·Ùxâ™à2¬C²ºbÒº´'ÄÞ/€‹øVˆ•†ê=ðž¿}“Ç ‡˜.>ÞGgùM:èÀNÓ¹ž¥˜£3ëd·’Ï ßlE@Òk}M0F.N(dlâÌäÄû•`BL$yèûd¸Öô„œ~«aqWf@dŒî&º æFJéZßn¿ýCéî½m5µ\7é•sέƒŸ(üû¡b' ˆÀ«IÄDÎ[õ Bšï´…0ÒE¾}Ç~aIk#4'ðîæ÷òÜÐ PwÒõÝ›±º~…hض›O.6¶Ë,;îeãñ‰ÍE`{ u<øbÿÅfX˜¯–'cIF刣ޒ4ùl`è¦bRüª Vå)­…‰‰l+UZyãÆæNŒ­ ‰K¾RIÙrÚss2n^0OqAïÆóF0 )éœFÀwb¤ú¶£Üzþ”Q’ÜÂ&<´7ÑÛË£’tK¨?TÉâ˜|‰ä‹fõñ­{åˆç&“ ¡a#äó^>'ÚïÁ´®m8ä6»Ž‚ö ‡Ã¹+I6ºjäÓ¼¨ÂL/¥2Äa6 æ£düÅØÝñBc]Ú=nèÄŸ+½ýÁ×OLwENɳ&_iNœÍ<øPD6±Zàµ@—¦ør¥žü¿jb ÷&¿ªT°’¨è§SàC« Û{ñº#Gý›ˆc‚”ü$IÊè"È?Λäª @ç§g$7µ1ìw`…º]Qcš¬ãS‚ljnÜ/í™!zA–7ý(Qï-É¿f·-SÑ7…j°ócÞÊÅò=¹…ßß÷3ê=;c2/E¼a”—WÓÌæëUÜ» Má<̹Ov”I’v  |èacÐkÌÜÅsŲs8­– (g«.ƒ(ÃÌg||óz Ú[£…ƒMÌŠ"¾eî úå÷é{ YåB®ô¯uZ¢X¥bà¨P§°i¡RBCŠM:´—“·€û,Å%mj›¾%‡8ù¡yiMJêâ)¼†/®Vܾ ™H}†¥ÖOF ¹Öl¤‹d×2.r÷ЖxsšŽ¨G’5ˆÂÄvÜ1¢ª­Z¹sf¶ŸWpß@6Ù/ÕL¸J°tœî§@þžÀŒ"¤`ù×zíÙ W÷o^9åIÇ–<>õɨîkwÁ §WŽ–içããÍäeÃ+Ú‘îf,Š?‘2[®>,e‰›ä6?ýü„Á­$¹]s¹§K~»ñlÒ¶*ªe¬p«M6^h<é€-Ím4r æ®Ã…©ö îÈü9ÀµÒLs)]Ýg>£ÝðÖ7MÈ—ìŠ:Ÿ×êšBžû”?ðùÉýË)ªïû;Ô<јÚ@á!oq¢ó%[ë`ûf%Úè+Üdy½ã/ÇHΘCü‘~ Á*?šØ•ÈXDª­²–¤¯ŽסZÉ8U_ÙæhæšÎ!ûv%„˜>3.ݰnIO8ÕÁ’£¦µÚ@ÉkyÂü–Ã4˜ü~6›Åˆ$æO´ ~PZeÑF€-ˆR‘®ZPlɃF¦¹˜ðÂ9ÓÂKb¬:%ŸýýÀ»ýƒi¶@×+˜¢Ñ³_Y2<òÿ˜ÆŽ‡ñwcÐÁT~B~!¥ÁrùÕb(ϨÂöbÊæº³`‘=ÐþáüÍÕô¬ËkÛÒ¤×]¨÷;ÝÒr\S{LþSlÖ1ûJ F‚—ƒCf‚u*˶öϼ3qw.{+j&GË_ø Ž¢ãyrøˆ+Y:'3 •2Ã_cd‡"Ñç<¨*< ¼Û÷1äüƒYôJá…à-Åät“6>UŸ þYxêvÏÆ:-T#×›<Í`ñ£ž›ÇÈp¼³SÖw+U™æ»’4~‰ýDl%ád3_ º&¹|5M0¶çú$tìcÉ!° >Ä33ÌHTOhnTy%D#U›+#@6ö4þÁoƃö:Jœ‡óV°Å§Mn¶ƒb.}Ú2¹ê• #åõÂ=B$õÅŠú~«…I3¹¤ éãnÛwþ„Ûa®·9°5 ‰ÛHÚXˆÐðÏlÁ·ÅÂ1úK¯ì‚lJBÓ¬ªý7ŠšžÏ/¬ƒéL¤pÓ84àXÌ–[f¯WG´ÝON€4G©£‰QaI¾P·‘„¶\± óYPÑDؾ+0ÎÛ,ÉQºs{±%¶ºÝ$¬gÙÜ«{¶¯$ý½¥å@ToÃ>‰U8#¬”‘“hȇ%ÛUvM`3îÚá89G­»¡åùðó˜Z`@Oœßß µì°ñb¹Ä­þ”'é‚P¢Ž<åÓm%b¯H”~Æ×3á’m¶G%tpvj8²bçØÀ{ãí(k·gÞjÕúª"õšÎ2#`iZ&÷ûáŽöÄ¡cªEþÒÊV‘Uƒ¶Y ¦>#¢è¿¸ëžjãòò8©Y÷«}Á} …œ+™’ÂŽ=1EǶ®¾ôÄê·–¾¤ïÈ! ÑÝÝVËÏ'ŸKµ:‡–h–~)xý–k‡‰…mI µê½ÌÈ ¢®Ù• aw_`À0TŒV ¶Õœv‚ÔЦst^Föà±X&AÐ÷+LpÿöDB”].x0eþ\]À3:=h³ïû5Ê +¦½¨ÞGï|[HêÐûß?Öÿý§‡ŠöÐß¿KBJ4‡.´@:–5*ó §d0ͬ®®ûØÎ2wüýÚ£|îTÁñár·ymzZج8 ê¼ï›Â±oÓmvšHÛ*nW’’ûmÏúþÔÆêºêÐ<Ø®S´îçå}=ʼ‹*Œ_àShj¸ Èr”"uŸ´²>uîV«{ ;g¨Š ’á5§á¼Þã¯ß JæÞÜÕ]û»ß†Î:lp,j šŸ­ô¦fß?1»±Ö'‘ÜU,×lÿ’lÆ×J–ÁÈð©Q ½ud2@ þŽéX¿ŽÜ¡–ô1zÔ‘Lè<5˜ çÇ5…ÍÓåQK’¦eÖ,áõ=ŒM¸3J÷Ú7ê¬çȨµÎ=ñ—Z=y#‚usëŸîÜÉH`£wê5$4¨ß°ho§*,bÈ¿8ŸìŒ6IãÐÞãz¼rZ=Ö î$]]+`|°éìN·½5|E;M.j!uÕ­[à÷†ŸGvˆFä`í_ñOÓÒ?;ql›ªL+Þ‡M݇}\œâ ýNÀÜÞ~ƒ J9`jŒc™‰bpŠ9ÔÈeü‰jý ÉäÿY™›&6É1vÍ”ö†TŒè‹ëBWÙ¡À·ÉŽ”õ¶§z¯Ä‚½EnÿY¹©@ õi`®ÄÛÐää$oböü™yÑ^Ö€»yn_wG{rÞ%bö&;‘žSòCeŽ:ÀÎK—ü§„l<Š‹é7;ljù+Œ¨—¥ÉðFõ9}SöãËJd[|e­1Øúá¦QË«ªPWTÁéÝÛ_̬M[j(÷¨]ï«åò>—I<~FœBÄHç$9Ø3€‰1ºÄ<‰OUÝo}NôÖgÜŽá¼ä¥?k/=Z³ØUQôøM ˜Š“º½st<8IdUî˜O.íSsùì_Üßrj‘®“½1¤²ÿ†æ†ežÎYÎ#Çà¥G»g+…Iÿ¨m7DÔdda>ˆä`G½DMŸfq™«wµ×õ ÈHÁ7vN·ƒˆb½¶F3H¹ iIôâ Õ¥Û›I(Œnµé`¬KÄ—ƒ(X™þ¥ŠKÄæ¾S–ªñØý¸CG#lu“èY Íý,UÎ0Öá>f«ÜkmI«+>”O–Wî¸ÞM×è¦á-?Ûê<ŽÃ„ǧ,%61xB®^x™ =åòÿƒ|ý9»ýø n¾,sšEÒö˜pÃM]ç¸rRÜË|¬"× \’jÐ0\v·J¥¢ueÜ ¿ãüŸË¹äà-®²õÞ?ápß]­èí%g“Çêu7weµ;Qÿ3FçØå=–rÕ½Æz¡vx/%/:ŽG ÔŒ›¶{”5 g®ÞG—ÆZµõÔÊ™ªˆi.nåЧ㳗x)ݵ]‘­çaL($×3µe Á±ë„™Ùç†W­Íhj1îÅw…'ægšœR¹¾Õäå*h87õ™m~¨„Á¡q§(ò$`˜K¢ï¦_Þ;ù ãO&¾xŠB†áe~Ù^ ï¤ =NK}¹ý:Ù©)$(¹6‚„=T+šq³ÐäžNˆ«…î¼Ðx‘·@Æ>,|œÛStm\C.9ôñTÞ®w›Ó݆W({;¢ê£)¢ÌññgŽb>WÆ-{©pük2ãø(0”üEsÆð€–ï,Õ„e<.ÓïâûCº}ðÂ(Öˆ3©uºB+…fq W¥’!›®FÀÒ£)Nå¢Å·-ÎîÔïG Óä*hYØ—$ÁZ F­½‹÷óùíArß™«ü3ÙZ1Cœ;-dùm]Í«¸t¥dƨ) 0).T¶"þ ¦L!²½ù–põ~à{ôº]`½G~úGgR®½Îëðóž’³ÈJÿ]¢jn–Èç‚’¾JósnY–4ãHš²`OäèàWÎ` ÑM’°Ó¦£Æ–,Jèütpn‘"Z¼¯œy›JòÃlWÿ[pT¥zB˜A”·‚ñ6à»mwÝgŸ· /{0Y´b&•Á¾ î]¸§¬ÙVÄ"éÁ2î endstream endobj 118 0 obj << /Length 859 /Filter /FlateDecode >> stream xÚmUMoâ0½çWx•ÚÅNÈW…œ„Hv[•jµWHL @Úþûõ›™´»Uçñ›ñ›Ǿùö´žØ¶ßºIt¯Õ³;÷סq“òûæÜÜT}s=ºîòùֵãìùA= }³vu[®ªU·¿Üyòªk×Ö¬¯I…{Ýw¬£n_ܯ‰k&‡ãö ýì—ýåàY_”ªOQEi?ÝpÞ÷݃2÷ZkXvmÙÑÉ9˜Š5õíö];ˆ$µ…ÀÀ„ªÝ7Ñosô– yýv¾¸ãªÛõÁ|®¦Ï~ò|ÞHå]0}Z7ì»WuûI›Ÿ[_O§ƒƒ¥ƒÅBµnçKz~lŽNM¿nóôòvr*¤±aeMߺóiÓ¸aÓ½º`®õBÍëz¸®ý4g"NÙîFîÒsuíBå‹`nlB ˜„‘„­=öÌã¸æ@æ )UÖ 9yŽ€IÁ(±JÅ5<æ§T`,© M%5ŠÖœR£h”ºäRê ®á1ÚûÌgcßÍïÍ yq(¬ ábŒÆuX&Àá &èq,–Ñ1Ç+à„±N97Î8Nüœsk`Ëq8­ ^—8%Ç àŠ½FMq.â†5„SâhzAìkO × Ápý$Áƒqù1¦7]}Œ©ÎòþÈ©ÿ»pÒ^`ÜD3F?©ìx”‘ׯ[ë±a ¯³1´ecÔÏfŒ—Àäµ!/²„1êg)câdÜ?4dâ­K^˜|É ÆÐœ•ŒáQV1¦úÔ¿‰±'²š1tæ¬?ƺ9ëÁÏY?í¡œõÇГ³þ„rY‚ÞsÖŸŸõ'Äg)4ç¬3Å;ÎYgD¹¬3¢\ÖièÃbŸ-z±â3z´âs ,>G|ÆZV|ƾ´â3Öµâ3ü´â3qÄgônÅgè·â3tZñ½[ñ¾Yñ™ê‹ÏÐoÅgè,Äg¬[ˆÏàâ3ø…ø =…øL¹â3z/Ägâ‹ÏÄÏød ,gz)ÄôRˆÿ؇…øO5ù[±T“¿“‚êˆÿàT¼V *ŽÇM2G˜çªZN(:‘pTãjy¿šë0ø‚î:÷qâï;÷~Eú²è¡»m¼O1z¬ƒ¿'ßX endstream endobj 119 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlöo` òKwÞ{Ò·óÊÕ× ¢¤_ny×È| #¥Ê:##Ï0)%V©¸†ÇÁ²£â” Œ55¡)°£FÑšSj­‘R—@J]!À5£G+>ÇÀâ3qÄg¬eÅgìK+>c]+>ÃO+>G|FïV|†~+>C§ŸÑ»Ÿá›Ÿ©¾ø ýV|†ÎB|ƺ…ø ~!>ƒ_ˆÏÐSˆÏ”+>£÷B|&¾øLüŒOÂr¡—BüG/…ø}XˆÿT“ÿK5ù?)¨ŽøNÅkÅð¡âxáÁÑ$s„y®ªå„¢ G5.–[ ¹Œ£¿ èö¡s'~×» ê8‘EÝlÓUŠÑCüjÝF endstream endobj 120 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMèßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø ®´ÝP endstream endobj 121 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMêßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø YÝi endstream endobj 122 0 obj << /Length 858 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N7R!‡þûõ›Úݪ’çñ›ñ›‡±¯~<>ÏlÛ¿ºYt«Õ“;÷—¡q³òçö\]U}s9ºn¼w®uí4{¾SCß<»Q]—›jÓíÇOÞtÍáÒº‰õ=©poûî“‚uÔõ‹û=sÍìpG£ýì—ýxð¬ï ÊGÕ—¨¢´_n8ïûîN™[­µ¬»¶ìèäÌEšOúvû®D’z…ÀÀ„ªÝ7£Œè·9zKüü~ÝqÓíú`¹Tó'?y‡wRyÌ†Ö ûîM]Ñæçž/§ÓÁA‡ÒÁj¥Z·ó%½÷Û£SóïÛü ½¼Ÿœ ilXYÓ·î|Ú6nØvo.Xj½R˺^®k¿Ì™ˆS^wwí¹ºö?¡ŽòU°4H6!L‰@Œ@ÂÈBŒ€Öû@æq\s óŒ”*댌ÇTgýâÔÿÇÀ á]¸i/°n¢£ŸTv<ÊÈkã­õØ0†×YÈÚ²ˆ1êg Æk`òÚYÂõ³”1q2î2ñ‚Ö%/̾dchÎJÆð(«S}êßÄØYÍ:sÖcÝœõÇà笟öPÎúcèÉYB¹¬?Aï9ëO‰Ïúâ³ÎšsÖ™âç¬3¢\ÖQ.ë4ôa±Ï½Xñ=Zñ9Ÿ‰#>c-+>c_ZñëZñ~Zñ™8â3z·â3ô[ñ:­øŒÞ­ø ߬øLõÅgè·â3tâ3Ö-Ägð ñüB|†žB|¦\ñ½â3ñÅgâg|2–³½â?z)ÄìÃBü§šü­XªÉßIAuÄp*^+†ÇãŽ&™#ÌsU-'H8ªqµ|\Íeü A÷û8ñ÷û¸¢Ný YôÐÝ6ݧ=ÔÁ_ÁÄß” endstream endobj 123 0 obj << /Length 860 /Filter /FlateDecode >> stream xÚuUËnÛ0¼ë+ØC€äà˜”¬W` $ È¡ME¯ŽD§lÉåCþ¾œÝuÒÍAöp9»œQäÕ·ÇÍ̶Ë›E·Z=¹Óp7+¿oÁÕU54çƒë§ε®½ÌžîÔã847©ëò¾ºï»éÆ“ïûfnÝ…õRá^»þƒ‚uÔõ³û5sÍl˜¦Îhÿ‘ý¹›öžöCù°úV”øÓ§nèÕZûÀºoËá€fNÁ\©ùEâ®ëÛQT©h L¨Ú®™dD¿ÍÁ»‚äÍÛir‡û~7Ë¥š?ùÉÓ4¾‘Λ`þ0¶nìúWuýYœŸÜœÇ½ƒ¥ƒÕJµnçkz~lNÍ¿èôõüvt*¤±amÍкÓqÛ¸qÛ¿º`©õJ-ëz¸¾ý4g"NyÙ]¸kÏÕµÿ u”¯‚¥A² )`JbD>`´öØ2ãš™$`¤TY'`ä`ä9&£Ä*×ð8XV`TœR±¦&4Ö`Ô(ZsJ¢5Rê’H©+¸†ÇhÿÒg¾¸ôÝüÞŽb‘‡ÂÚ.Àh\‡e®`‚^Çbs¼N[à”sSàŒãÄÏ9·¶‡Óºàu‰Sr¼®ØkÔ4ç"nXCA8%ަľFðÄpý ×O<—czÓÕǘê¬ÿâ_8õ¿1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦xÇ9ëŒ(—uF”Ë: }Xì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&+–jòwRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\.ï÷@sGEÐ Dç>Nü®wï—Ôq8"‹ºÝ.—*Fuðgõá¡ endstream endobj 124 0 obj << /Length 700 /Filter /FlateDecode >> stream xÚuTMo£0½ó+¼‡Jí!m0U ó!å°mÕT«½¦àt‘ˆ€úï×o†4«j{ÀzÞ̺v|t®võåïð žû®ÚºQÜf›|Ó6ã'oÚêp®Ý…õ’uïM{¥ ¸}u¿gã f‡c¯¤i"Amƃ§}Ã>,¾†%þrýÐtíƒP÷RJ(Ú:ëŽXÌÌ'Ab~‘¸oÚºŸT‰7h ”uSÓŒÆêè]AòöcÝqÓî»`µóÿsûÒyÌŸúÚõMû.n¿Šó?·çÓéà DÈ`½µÛûšÞ‡ÇÝщù7+ýd½~œœÐ4W¬­êj7œv•ëwí» VR®Åª,×kë/ÿbÎxÛOÔÔ0ñƒ”+³ðØ,ý ¥F Õ§)1<öÂc«8Pø€Æ\ ‹6¦€Ç>!Pp #]QxQTýÙõ“v)#´–êZB¢‰ÔYL½tž/Xˆ^r<ާÀ1çÆÀ†ãÄçu§%pÊñØr_âd·À9Ù¢PSiÆ0@¡Wå„Q_«úUžhÖ©±ÍÖhèÑ諵"œqëÒì–FM]R¯rCpt¨¡3Ì9õÂãж„~ðj™3FýeÁzpÉ8ô8úÇóˆ8Q„:1ù¬bøcäÕ7£®~}õÜðHq”('b ÃÄ„ùŒ>^ÐmØ# &½zdìõÄò…}4¼)Ö` Æð"áýH‘›,¸4%¬!Åþ%¤AQß„÷ÞB[B~)Ò™äÌï Õ_’)ïMн±¬?DM;Ý豬ßÂ;kyoóþQnNçRæð®d\ÆÓ €;‹WæóA¨Î}ïß zŠèÀÕoZ÷ùZº²è£gîòºböT$Z|U endstream endobj 132 0 obj << /Producer (pdfTeX-1.40.25) /Author(\376\377\000N\000a\000m\000i\000t\000a\000\040\000G\000u\000p\000t\000a\000\040\000\046\000\040\000J\000u\000l\000i\000a\000n\000\040\000Q\000.\000\040\000Z\000h\000o\000u)/Title(\376\377\000S\000h\000a\000z\000a\000m\000:\000\040\000I\000n\000f\000e\000r\000r\000i\000n\000g\000\040\000S\000H\000M\000\040\000t\000a\000r\000g\000e\000t\000i\000n\000g\000\040\000m\000o\000d\000e\000l\000s)/Subject()/Creator(\376\377\000L\000a\000T\000e\000X\000\040\000v\000i\000a\000\040\000p\000a\000n\000d\000o\000c)/Keywords() /CreationDate (D:20251226170024+01'00') /ModDate (D:20251226170024+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) kpathsea version 6.3.5) >> endobj 2 0 obj << /Type /ObjStm /N 99 /First 809 /Length 3560 /Filter /FlateDecode >> stream xÚí[msÛ6þ®_oïÎÄ;AÞt:ãØM›^ÞÎqÒ´‰?Ðm³‘DW¢Ò¤¿þž Š”-YÎKïnÚÅîâÁî ÉÓLKf˜´ŽY¦rÅRfTÊð–J&Kó”IÉœa.͘t,é@f,3(ÌY–)¦Ëñ¯$Ë-*Xž[¦Z¢D+†‡f`+•mŽgŽrˤÎä@;°v¨ÇÓJÅH”µÐ íSƒ§†L­™}ž fRÈŽ‡g–3“1¥ôÎñÌíÀ@„%¹x·©`–D#±hçÀ ª=µ9úýA¢•,%U³Œ¥PAƒj ¢Öƒ4eÚAnêÀ’Ê3Rhˆ—v …Á(Cˆ$Üñ,ˉ¬0 \í”FYƒ¹¥Œ%¦F+t%§Œ§<§ ˆ”HÉ´4™1³P (H™BGE™ŒFj*T•&+Êil‘Ñ ésF˜SXH=E–›‘¥0šŒŒÎ "ð¹”øQÛ\ 4ÕÂR Þ´´’ÌJQ*) ýúkÆŸ3þ]}R3~Ä^k8Î1ãªæ”}ó ªüäÃUÉø³â¢ðÃzÚ”ÓfÎr¢ðãr^/fÃrÇðËQUܯ߳×)zíru:@óÚQ=ÙÁtZƒËkø'Éó¥ðOJOO=éž~ÀŸ/Îÿþ¨š¾ðûõlTμ$qÊ¿çùáké_H³aÃ^g.!<­ÊçÂÐ$ìÈ‘gAvÀÖ¸7Gêžþ-Q{„ÀgUCšÄ‡m¸°U.‘-Zèϯ…‰öF& ΋À”ä.Ý®†ùìj<WÙ̉ÉóÄ(·] ÛUce®¯~ú™9„ë’ 1nºO7PÁ Í·SX§òÐíTˆ ”¾…Jg"1ˆF·PYhD¨[¨tž8{+•Ô ¢ZèüÖ£ú@gŠ‚“Š1C6æµ`!(£–ôˆÄjI3VÁy!‚?›ÕÃç%âèã'åûf݇×"ˆ–ë!Dåw‰!î‹Ý¬@¬™Ì>Ë7á´ ŸŽAºŽ6‰Ý Û7a"ȶrk¿»8}$æšè±H-†åŒÝ»Ÿ”¯ö%Ü.Qv¢feÑÔ¨AñòÑä¨hJvï蟘ƒB(õw!¿â+Ð=®G·‘œÌŠ««rŠñzvòí«äÀ<+¦SÒå䲚3üþÁ^–³9D3H#mN‹·}•¤KeÙÒ‘=ªÞ•Xw*ýf½½*šËyY°w±)F apÙííÙÖ R¿jƨ9fß¡—ÕpΞ.š«E³×…ó˜™Ä&ª‹ãñ^DÉb:ÊRL¨NaN(楷*þ}9~W6Õ°ðo§ÃzTM/hqÛÇ8ê9î߯ǣÙ¾æ©Åsžv$-é϶5ÿ±šLçÕªú¨:?/axd¡X·X>©¦ ,„Rþë¢nÊqyÞ`±oø¨¨óyÅ/fÅ»’ÃESòa5.&çãò=oªñ¨ä“b8«§ülV‚MŠá6ÍGDÌ«9O0·ŽÊs>ƒl>„#ŒÇE[x¹˜^³Åd\,^_ÔÓò-Äo~U ˮÛbãÊá»N¾r~rìWOÏ~¡Ù›ÈNh ó)>oͺÏ[õ—Ïÿ‰|>U_ÄçWl;>Ÿê?“Ï&ŸÐ·û„þ¿ñ ½­ÿ3>áÄñ‰ÛŽO8ù'›­¾Ë<Ø]àî:'Ò§^ {8¡í®O™]ŸþïÍÅ‚?<dú‹Ä‚ÛN,ÈÌŸ,8³Ó·rLÑÆxb±ÛºÃÒyÓÞA¿ > ÉØ%dlÝ­¼÷F»ÿîâ[JÞSRP2¡äŠ’1%%%o„ôµTÏí nÙì zHÉ”’ó–ó¬Ë¾iÙûâ‹–ÊWTmó‹n#¯oÝjW¶š/ ÞëŸsJ”œµ¯+ÆM[»*«[‰K^E[2º¦Ã¢ß…³–͸/äCTJnAÏ\GïeËeÕ‘¢Ïþ÷köùÝ¢¬½®ìa_»a«ñ¸oAŸ®ì¨KÓ¥á5!“¾³¶ùû½Ák‹yä¯ÿ/ò:xí"èé_(ÿ1hã€4Ñt^šØ˜fšJBJgŠÆ'»8Å蔆œ«%E–%yL‰¢Wç©CžêvýWîZjœJÔ²›qNd¤“ò¥©†)ÎK,K­"ŠÌ$ÎÓéT&’ÎAZ§À#—i¬e¾m䎭mñ‰ü‰ŽŽr…jÅ[ZCëUGc.4´¢ /él |È㘕JZŠ`(U+8âPØ>u Ð¹LèÞ$f9 ÚЩ— c0Ú‘>µ©"cÀǃ–”Óm.Ô|J9ú4óZ’œ³‰áÝä„Nòp¢hѬqþŠÁvD‡A%ê<Á½ÜQ°¸,aàpûÀYô[ŠÔµ¸‡A#žfÄÊç3œ)?ú.S¤Fj< Æ»ŠÙ¦™kµ¶+4€ì²I,1)™ž ã⟒ÆJ¸ˆ•FBiNi(É=þ¾]KêͽøüŠÊׄB>¦BP8…±Ó…Žpx˜ÅÔdH§N¥è>åBͧ¤Ä…þ÷njR9–àp*…žË‘tÆ;]šÒ€è0LÊSÑq&ì5\¹ Zøì?w±>ð -#o%ZÓò&*íot¤í‹Í³Øåà¨*%Õ­€ &¸TB ´9ÜŠIºõ¾Ã¾Ì"†dþXB‹–*Ô-” yÔa˜”!3iì„̽µzà4 n(!ÐpsÅJaÝt±&%– …ä0œ:RjE4ÆÉȚຠ]C õ‘«oótÊ }彄(Ó§¹¥0Õ-±ˆµ2êî± 9f %‡óiäkDÚÊy‡Íz4“Pî£wÄÇ)¿}Û.OO£¡]š¢ž†|·6ô'äcJÒO×>ÊùpV]ác<|–…ãgŽ_üýÑããzRL¥Š_ÄÆÅŽå}¿Ÿ²OWzö]¯±¸×„ë;þ.œ¾A/h‹«ïËêâ2¾’@ªÛ—9Þ6ŸL/°{ ð™Þ”“—t¡ßy±B6x\3ú²»Çù·¸ñ’üŒùˆ—üœ_ðŠù„OyͯøíéÐ7tÈ͈ Ÿñ9oø‚¿çøï{¡*EܼyÏàf`^¼|züò¨Fì—‹q1Û€ Ï÷]£2týIª6¢‹ŒXá"6€’v1Ѳ‹ÉG….<æOøS~ÌŸó“ˆÑ¾»ËP ë1¾ê‡õdRDØÎñWáÛçØ/Œ—üòÃÕe9ž¿ð·-¦ØØ„ëU9«êÿ5ì\¬°žWØžàÍå¬,yó[ äßñßúü÷rV÷‡ »Ë<>ç/z“ÇÍø´ÓÅäŒvÊ/â¼²³3—ô!»a&Ù°é«\ˆ¾X¯Æf% ¦Nøè„Ö›F3d4›Øƒ (&}G¼}PX ÁØGzßg|E7Äj*˜”·:\t&{<À§E°V,—"†?`|Š¥B]0àü%Ëÿ‹¦Žmá®ïÚD}¹6µ\uðl ñt' ¥NãìvºËŽÿjŸÓâ¦gÝþz³?;zPÍæ ÙPþ¨ˆ/’ÌñÇj„#KÚÓ¶›þyl|R¿˜V(#óÈv=œX©ºe¹±®m¾®­rµU;h›ß]Û-3óš¶R®k«³®¶Òu´5·k«ÄݵÝ2K®k«×µµÙFlíÚÊ»k»yF[WÖ^ƒÖlTVî ¬º»²§ƒu]¯¹˜¶=]e«kží ªþc= ¨«-½µÈŠuuóëêÞ0ÅÒ‰öœŽ´´úðU£ùò¦r¼‰/£Æ+jñ„ÞÅÓÈ3ÁŽ«)ñó:ÓO¼¤2ýD¿Q¦méróHy@¿ñ¹xR.—?Ex†ãFü§׃ÐT·Må–¦YÄã Ñåö>bÉ'˶ñI»|nÐ's-{3ß4ëÅ;ZÕ÷{GõpÿySÌš=B»÷ ŽDî±`»ñLj!¼Çwœö…ßq~Bî`„}ûx§?˜TÍš°%ÕéºB¾Ò´êpƒ4í:ïfºõ8²¶óžîÑOŠü{{hE™u–Òºd×Tꞥ*¹Æª©uQ†[+ƒŠ*[ßåÜ%mUÞ!£¹Ê뜺ÐÞÄ~:©n˜ô ¯úb\³ý)ÎÒ·:fäñZ,­ì¢Ä‰’¿˜—+G|zUN¼|ÖNÿ'>]e endstream endobj 133 0 obj << /Type /XRef /Index [0 134] /Size 134 /W [1 3 1] /Root 131 0 R /Info 132 0 R /ID [<4AFE443C21627002C21A30222459C20B> <4AFE443C21627002C21A30222459C20B>] /Length 337 /Filter /FlateDecode >> stream xÚ%ÒÇ.„aÆñs¾£ÞFï½—Ñ:z1svî„H¸6"nÀΈßÿØüòŒÁ8ìÁ¬@Va¦`f`æT¾fíZXu¾ÎÒ¼ê㥥uʯ--ªsždiIÏ3KËê¶|{©ãÚ£gÕ£Ÿ:tå1¶âú±Ý.Á1œ@N!¦îL²7ŽœÊ–3‘ endstream endobj startxref 218721 %%EOF shazam/inst/doc/Baseline-Vignette.R0000644000176200001440000001565615123530400016715 0ustar liggesusers## ----eval=TRUE, warning=FALSE, message=FALSE---------------------------------- # Import required packages library(alakazam) library(shazam) # Load and subset example data (for faster demonstration) data(ExampleDb, package="alakazam") ExampleDb <- subset(ExampleDb, c_call %in% c("IGHA", "IGHG")) ## ----eval=TRUE, warning=FALSE, results="hide"--------------------------------- # Collapse clonal groups into single sequences clones <- collapseClones(ExampleDb, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=IMGT_V, method="thresholdedFreq", minimumFrequency=0.6, includeAmbiguous=FALSE, breakTiesStochastic=FALSE, nproc=1) ## ----eval=F, warning=F, results="hide"---------------------------------------- # # Subset to sequences with clone_id=3170 # db_3170 <- subset(ExampleDb, clone_id == 3170) # dim(db_3170) # colnames(db_3170) # # # Generate a ChangeoClone object for lineage construction # clone_3170 <- makeChangeoClone(db_3170, seq="sequence_alignment", germ="germline_alignment") # # # Run the lineage reconstruction # dnapars_exec <- "/usr/local/bin/dnapars" # graph_3170 <- buildPhylipLineage(clone_3170, dnapars_exec, rm_temp=TRUE) # # # Generating a data.frame from the lineage tree graph object, # # and merge it with clone data.frame # graph_3170_df <- makeGraphDf(graph_3170, clone_3170) # dim(graph_3170_df) # colnames(graph_3170_df) ## ----eval=TRUE, warning=FALSE, results="hide"--------------------------------- # Count observed mutations and append mu_count columns to the output observed <- observedMutations(clones, sequenceColumn="clonal_sequence", germlineColumn="clonal_germline", regionDefinition=IMGT_V, nproc=1) # Count expected mutations and append mu_expected columns to the output expected <- expectedMutations(observed, sequenceColumn="clonal_sequence", germlineColumn="clonal_germline", targetingModel=HH_S5F, regionDefinition=IMGT_V, nproc=1) ## ----eval=TRUE, warning=FALSE, results="hide"--------------------------------- # Calculate selection scores using the output from expectedMutations baseline <- calcBaseline(expected, testStatistic="focused", regionDefinition=IMGT_V, nproc=1) ## ----eval=FALSE, warning=FALSE, results="hide"-------------------------------- # # Calculate selection scores from scratch # baseline <- calcBaseline(clones, testStatistic="focused", # regionDefinition=IMGT_V, nproc=1) ## ----eval=FALSE, warning=FALSE, results="hide"-------------------------------- # # Calculate selection on charge class with the mouse 5-mer model # baseline_mk_rs5nf <- calcBaseline(clones, testStatistic="focused", # regionDefinition=IMGT_V, # targetingModel=MK_RS5NF, # mutationDefinition=CHARGE_MUTATIONS, # nproc=1) ## ----eval=TRUE, warning=FALSE, results="hide"--------------------------------- # Combine selection scores by time-point grouped_1 <- groupBaseline(baseline, groupBy="sample_id") ## ----eval=TRUE, warning=FALSE, results="hide"--------------------------------- # Subset the original data to switched isotypes db_sub <- subset(ExampleDb, c_call %in% c("IGHM", "IGHG")) # Collapse clonal groups into single sequence clones_sub <- collapseClones(db_sub, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=IMGT_V, method="thresholdedFreq", minimumFrequency=0.6, includeAmbiguous=FALSE, breakTiesStochastic=FALSE, nproc=1) # Calculate selection scores from scratch baseline_sub <- calcBaseline(clones_sub, testStatistic="focused", regionDefinition=IMGT_V, nproc=1) # Combine selection scores by time-point and isotype grouped_2 <- groupBaseline(baseline_sub, groupBy=c("sample_id", "c_call")) ## ----eval=FALSE, warning=FALSE, results="hide"-------------------------------- # # First group by subject and status # subject_grouped <- groupBaseline(baseline, groupBy=c("status", "subject")) # # # Then group the output by status # status_grouped <- groupBaseline(subject_grouped, groupBy="status") ## ----eval=TRUE---------------------------------------------------------------- testBaseline(grouped_1, groupBy="sample_id") ## ----eval=TRUE, warning=FALSE------------------------------------------------- # Set sample and isotype colors sample_colors <- c("-1h"="seagreen", "+7d"="steelblue") isotype_colors <- c("IGHM"="darkorchid", "IGHD"="firebrick", "IGHG"="seagreen", "IGHA"="steelblue") # Plot mean and confidence interval by time-point plotBaselineSummary(grouped_1, "sample_id") # Plot selection scores by time-point and isotype for only CDR plotBaselineSummary(grouped_2, "sample_id", "c_call", groupColors=isotype_colors, subsetRegions="cdr") # Group by CDR/FWR and facet by isotype plotBaselineSummary(grouped_2, "sample_id", "c_call", facetBy="group") ## ----eval=TRUE, warning=FALSE------------------------------------------------- # Plot selection PDFs for a subset of the data plotBaselineDensity(grouped_2, "c_call", groupColumn="sample_id", colorElement="group", colorValues=sample_colors, sigmaLimits=c(-1, 1)) ## ----eval=FALSE, warning=FALSE, results="hide"-------------------------------- # # Get indices of rows corresponding to IGHA in the field "db" # # These are the same indices also in the matrices in the fields "numbOfSeqs", # # "binomK", "binomN", "binomP", and "pdfs" # # In this example, there is one row of IGHA for each sample # dbIgMIndex <- which(grouped_2@db[["c_call"]] == "IGHG") # # grouped_2 <- editBaseline(grouped_2, "db", grouped_2@db[-dbIgMIndex, ]) # grouped_2 <- editBaseline(grouped_2, "numbOfSeqs", grouped_2@numbOfSeqs[-dbIgMIndex, ]) # grouped_2 <- editBaseline(grouped_2, "binomK", grouped_2@binomK[-dbIgMIndex, ]) # grouped_2 <- editBaseline(grouped_2, "binomN", grouped_2@binomN[-dbIgMIndex, ]) # grouped_2 <- editBaseline(grouped_2, "binomP", grouped_2@binomP[-dbIgMIndex, ]) # grouped_2 <- editBaseline(grouped_2, "pdfs", # lapply(grouped_2@pdfs, function(pdfs) {pdfs[-dbIgMIndex, ]} )) # # # The indices corresponding to IGHA are slightly different in the field "stats" # # In this example, there is one row of IGHA for each sample and for each region # grouped_2 <- editBaseline(grouped_2, "stats", # grouped_2@stats[grouped_2@stats[["c_call"]] != "IGHA", ]) shazam/inst/doc/Mutation-Vignette.Rmd0000644000176200001440000002302715120056373017314 0ustar liggesusers--- title: 'Shazam: Mutation analysis' author: "Susanna Marquez & Julian Q. Zhou" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4.5 fig_width: 7.5 highlight: pygments toc: yes html_document: fig_height: 4.5 fig_width: 7.5 highlight: pygments theme: readable toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{Mutation analysis} %\usepackage[utf8]{inputenc} --- Basic mutational load calculations are provided by the `observedMutations` function. `observedMutations` provides multiple options to control how mutations are calculated. Mutations can be calculated as either counts or frequencies, divided into replacement (R) and silent (S) mutations, and subset into FWR and CDR specific mutations. Additionally, alternative mutational definitions may be considered based on the physicochemical properties of translated codons. ## Example data A small example AIRR Rearrangement database is included in the `alakazam` package. Analyzing mutations requires the following fields (columns) to be present in the table: * `sequence_alignment` * `germline_alignment_d_mask` ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Import required packages library(alakazam) library(dplyr) library(ggplot2) library(shazam) # Load and subset example data data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call %in% c("IGHA", "IGHG") & sample_id == "+7d") ``` ## Calculate the counts and frequencies of mutations over the entire sequence When calling `observedMutations` with `regionDefinition=NULL`, the entire input sequence (`sequenceColumn`) is compared to the germline sequence (`germlineColumn`) to identify R and S mutations. If `frequency=TRUE`, the number of mutations is expressed as the frequency of mutations over the total number of positions that are non-N in both the input and the germline sequences. In the example below, the counts (`frequency=FALSE` ) and frequencies (`frequency=TRUE`) of R and S mutations are calculated separately. New columns containing mutation counts are appended to the input data.frame with names in the form `mu_count__`. Mutation frequencies appear in new columns named `mu_freq__`. ```{r, eval=TRUE} # Calculate R and S mutation counts db_obs <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=NULL, frequency=FALSE, nproc=1) # Show new mutation count columns db_obs %>% select(sequence_id, starts_with("mu_count_")) %>% head(n=4) # Calculate R and S mutation frequencies db_obs <- observedMutations(db_obs, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=NULL, frequency=TRUE, nproc=1) # Show new mutation frequency columns db_obs %>% select(sequence_id, starts_with("mu_freq_")) %>% head(n=4) ``` Specifying the `combine=TRUE` argument will aggregate all mutation columns into a single value. ```{r, eval=TRUE} # Calculate combined R and S mutation frequencies db_obs <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=NULL, frequency=TRUE, combine=TRUE, nproc=1) # Show new mutation frequency columns db_obs %>% select(sequence_id, starts_with("mu_freq")) %>% head(n=4) ``` We can plot the mutation frequencies and explore differences between samples or isotypes. ```{r, eval=TRUE, warning=FALSE} g1 <- ggplot(db_obs, aes(x=c_call, y=mu_freq, fill=c_call)) + geom_boxplot() + labs(title="Total mutations", x="Isotype", y="Mutation frequency") + scale_fill_manual(name="Isotype", values=IG_COLORS, limits=force) + theme_bw() plot(g1) ``` ## Calculate mutations within subregions To restrict the mutational analysis to a particular area in the sequence, the `regionDefinition` argument needs to be assigned a `RegionDefinition` object, which simply defines the subregion boundaries of the Ig sequence. For convenience, `shazam` provides a set of such objects, for which an overview is provided via `?IMGT_SCHEMES`. Each of these objects cover the IMGT numbered V segment up to nucleotide position 312. Different objects treat regions within the V segment with varying granularity: * `IMGT_V_BY_CODONS`: treats each codon, from codon 1 to codon 104, as a distinct region; * `IMGT_V_BY_REGIONS`: defines regions to be CDR1, CDR2, FWR1, FWR2 and FWR3; * `IMGT_V`: defines regions to be either CDR or FWR; * `IMGT_V_BY_SEGMENTS`: provides no subdivisions and treats the entire V segment as a single region. * `IMGT_VDJ`: All regions, including CDR3 and FWR4, grouped as either CDR or FWR. This `RegionDefinition` is initially empty, and one is created on the fly for each set of clonally related sequences. * `IMGT_VDJ_BY_REGIONS`: CDR1, CDR2, CDR3, FWR1, FWR, FWR3 and FWR4 regions treated as individual regions. This `RegionDefinition` is initially empty, and one is created on the fly for each set of clonally related sequences. When supplying one of these objects to `regionDefinition`, and with `combined=FALSE`, the resultant mutation counts/frequencies will be tabulated in a way consistent with the granularity of the object's region definition. For example, * With `IMGT_V_BY_REGIONS`, mutation frequencies will be reported in columns `mu_freq_cdr1_r`, `mu_freq_cdr1_s`, `mu_freq_cdr2_r`, `mu_freq_cdr2_s`, `mu_freq_fwr1_r`, `mu_freq_fwr1_s`, `mu_freq_fwr2_r`, `mu_freq_fwr2_s`, `mu_freq_fwr3_r`, and `mu_freq_fwr3_s`. * With `IMGT_V`, mutation frequencies will be reported in columns `mu_freq_cdr_r`, `mu_freq_cdr_s`, `mu_freq_fwr_r`, and `mu_freq_fwr_s`. * With `IMGT_V_BY_SEGMENTS`, mutation frequencies will be reported in columns `mu_freq_v_r`, and `mu_freq_v_s`. In the following example, we will explore the mutation frequency in the V-segment using two of the region definitions. ```{r, eval=TRUE} # Calculate R and S mutation counts for individual CDRs and FWRs db_obs_v <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=IMGT_V_BY_REGIONS, frequency=FALSE, nproc=1) # Show new FWR mutation columns db_obs_v %>% select(sequence_id, starts_with("mu_count_fwr")) %>% head(n=4) # Calculate aggregate CDR and FWR V-segment R and S mutation frequencies db_obs_v <- observedMutations(db_obs_v, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=IMGT_V, frequency=TRUE, nproc=1) # Show new CDR and FWR mutation frequency columns db_obs_v %>% select(sequence_id, starts_with("mu_freq_")) %>% head(n=4) ``` Plot a comparison between CDR silent and replacement mutations. ```{r, eval=TRUE, warning=FALSE} g2 <- ggplot(db_obs_v, aes(x=c_call, y=mu_freq_cdr_s, fill=c_call)) + geom_boxplot() + labs(title="CDR silent mutations", x="Isotype", y="Mutation frequency") + scale_fill_manual(name="Isotype", values=IG_COLORS, limits=force) + theme_bw() g3 <- ggplot(db_obs_v, aes(x=c_call, y=mu_freq_cdr_r, fill=c_call)) + geom_boxplot() + labs(title="CDR replacement mutations", x="Isotype", y="Mutation frequency") + scale_fill_manual(name="Isotype", values=IG_COLORS, limits=force) + theme_bw() alakazam::gridPlot(g2, g3, ncol=2) ``` ## Use amino acid physicochemical properties to define mutations By default, replacement and silent mutations are determined by exact amino acid identity; this can be changed by setting the `mutationDefinition` argument. For convenience, `shazam` provides a set of `MutationDefinition` objects defining changes in amino acid charge, hydrophobicity, polarity and volume. In the following example, replacement mutations are defined as amino acid changes that lead to a change in charge (`mutationDefinition=CHARGE_MUTATIONS`). Mutations that do not alter the charge classification of a translated codon will be considered silent mutations. ```{r, eval=TRUE} # Calculate charge mutation frequency for the full sequence db_obs_ch <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=NULL, mutationDefinition=CHARGE_MUTATIONS, frequency=TRUE, nproc=1) # Show new charge mutation frequency columns db_obs_ch %>% select(sequence_id, starts_with("mu_freq_")) %>% head(n=4) ``` We can make a plot to visualize if mutations that change the sequence charge are more frequent in one isotype. ```{r, eval=TRUE, warning=FALSE} g4 <- ggplot(db_obs_ch, aes(x=c_call, y=mu_freq_seq_r, fill=c_call)) + geom_boxplot() + labs(title="Charge replacement mutations", x="Isotype", y="Mutation frequency") + scale_fill_manual(name="Isotype", values=IG_COLORS, limits=force) + theme_bw() plot(g4) ``` shazam/inst/doc/DistToNearest-Vignette.Rmd0000644000176200001440000004110615120056314020235 0ustar liggesusers--- title: 'Shazam: Tuning clonal assignment thresholds with nearest neighbor distances' author: "Namita Gupta, Susanna Marquez, Nima Nouri and Julian Q. Zhou" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4 fig_width: 7.5 highlight: pygments toc: yes html_document: fig_height: 4 fig_width: 7.5 highlight: pygments theme: readable toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteIndexEntry{Distance to nearest neighbor} %\usepackage[utf8]{inputenc} %\VignetteEngine{knitr::rmarkdown} editor_options: markdown: wrap: 72 --- Estimating the optimal distance threshold for partitioning clonally related sequences is accomplished by calculating the distance from each sequence in the data set to its nearest neighbor and finding the break point in the resulting bi-modal distribution that separates clonally related from unrelated sequences. This is done via the following steps: 1. Calculating of the nearest neighbor distances for each sequence. 2. Generating a histogram of the nearest neighbor distances followed by either manual inspect for the threshold separating the two modes or automated threshold detection. ## Example data A small example AIRR Rearrangement database is included in the `alakazam` package. Calculating the nearest neighbor distances requires the following fields (columns) to be present in the table: * `sequence_id` * `v_call` * `j_call` * `junction` * `junction_length` ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Import required packages library(alakazam) library(dplyr) library(ggplot2) library(shazam) # Load and subset example data (for speed) data(ExampleDb, package="alakazam") set.seed(112) db <- ExampleDb %>% sample_n(size=500) db %>% count(sample_id) ``` ## Calculating nearest neighbor distances (heavy chain sequences) By default, `distToNearest`, the function for calculating distance between every sequence and its nearest neighbor, assumes that it is running under non-single-cell mode and that every input sequence is a heavy chain sequence and will be used for calculation. It takes a few parameters to adjust how the distance is measured. * If a genotype has been inferred using the methods in the `tigger` package, and a `v_call_genotyped` field has been added to the database, then this column may be used instead of the default `v_call` column by specifying the `vCallColumn` argument. * This will allows the more accurate V call from `tigger` to be used for grouping of the sequences. * Furthermore, for more leniency toward ambiguous V(D)J segment calls, the parameter `first` can be set to `FALSE`. * Setting `first=FALSE` will use the union of all possible genes to group sequences, rather than the first gene in the field. * The `model` parameter determines which underlying SHM model is used to calculate the distance. * The default model is single nucleotide Hamming distance with gaps considered as a match to any nucleotide (`ham`). * Other options include a human Ig-specific single nucleotide model similar to a transition/transversion model (`hh_s1f`) and the corresponding 5-mer context model from Yaari et al, 2013 (`hh_s5f`), an analogous pair of mouse specific models from Cui et al, 2016 (`mk_rs1nf` and `mk_rs5nf`), and amino acid Hamming distance (`aa`). **Note:** Human and mouse distance measures that are backward compatible with SHazaM v0.1.4 and Change-O v0.3.3 are also provided as `hs1f_compat` and `m1n_compat`, respectively. For models that are not symmetric (e.g., distance from A to B is not equal to the distance from B to A), there is a `symmetry` parameter that allows the user to specify whether the average or minimum of the two distances is used to determine the overall distance. ```{r, eval=TRUE, warning=FALSE} # Use nucleotide Hamming distance and normalize by junction length dist_ham <- distToNearest(db %>% filter(sample_id == "+7d"), sequenceColumn="junction", vCallColumn="v_call_genotyped", jCallColumn="j_call", model="ham", normalize="len", nproc=1) # Use genotyped V assignments, a 5-mer model and no normalization dist_s5f <- distToNearest(db %>% filter(sample_id == "+7d"), sequenceColumn="junction", vCallColumn="v_call_genotyped", jCallColumn="j_call", model="hh_s5f", normalize="none", nproc=1) ``` ## Calculating nearest neighbor distances (single-cell paired heavy and light chain sequences) The `distToNearest` function also supports running under single-cell mode where an input `Example10x` containing single-cell paired IGH:IGK/IGL, TRB:TRA, or TRD:TRG chain sequences are supplied. In this case, by default, cells are first divided into partitions containing the same heavy/long chain (IGH, TRB, TRD) V gene and J gene (and if specified, junction length), and the same light/short chain (IGK, IGL, TRA, TRG) V gene and J gene (and if specified, junction length). Then, only the heavy chain sequences are used for calculating the nearest neighbor distances. Under the single-cell mode, each row of the input `Example10x` should represent a sequence/chain. Sequences/chains from the same cell are linked by a cell ID in a `cellIdColumn` column. Note that a cell should have exactly one `IGH` sequence (BCR) or `TRB`/`TRD` (TCR). The values in the `locusColumn` column must be one of `IGH`, `IGI`, `IGK`, or `IGL` (BCR) or `TRA`, `TRB`, `TRD`, or `TRG` (TCR). To invoke the single-cell mode, `cellIdColumn` must be specified and `locusColumn` must be correct. There is a choice of whether grouping should be done as a one-stage process or a two-stage process. This can be specified via `VJthenLen`. * In the one-stage process (`VJthenLen=FALSE`), cells are divided into partitions containing same heavy/long chain V gene, J gene, and junction length (V-J-length combination), and the same light chain V-J-length combination. * In the two-stage process (`VJthenLen=TRUE`), cells are first divided by heavy/long chain V gene and J gene (V-J combination), and light/short chain V-J combination; and then by the corresponding junction lengths. There is also a choice of whether grouping should be done using `IGH` (BCR) or `TRB/TRD` (TCR) sequences only, or using both `IGH` and `IGK`/`IGL` (BCR) or `TRB`/`TRD` and `TRA`/`TRG` (TCR) sequences. This is governed by `onlyHeavy`. ```{r, eval=FALSE, warning=FALSE} # Single-cell mode # Group cells in a one-stage process (VJthenLen=FALSE) and using # both heavy and light chain sequences (onlyHeavy=FALSE) data(Example10x, package="alakazam") dist_sc <- distToNearest(Example10x, cellIdColumn="cell_id", locusColumn="locus", VJthenLen=FALSE, onlyHeavy=FALSE) ``` Regardless of whether grouping was done using only the heavy chain sequences, or both heavy and light chain sequences, only heavy chain sequences will be used for calculating the nearest neighbor distances. Hence, under the single-cell mode, rows in the returned `data.frame` corresponding to light chain sequences will have `NA` in the `dist_nearest` field. ## Using nearest neighbor distances to determine clonal assignment thresholds The primary use of the distance to nearest calculation in SHazaM is to determine the optimal threshold for clonal assignment using the `DefineClones` tool in Change-O. Defining a threshold relies on distinguishing clonally related sequences (represented by sequences with close neighbors) from singletons (sequences without close neighbors), which show up as two modes in a nearest neighbor distance histogram. Thresholds may be manually determined by inspection of the nearest neighbor histograms or by using one of the automated threshold detection algorithms provided by the `findThreshold` function. The available methods are `density` (smoothed density) and `gmm` (gamma/Gaussian mixture model), and are chosen via the `method` parameter of `findThreshold`. ### Threshold determination by manual inspection Manual threshold detection simply involves generating a histogram for the values in the `dist_nearest` column of the `distToNearest` output and selecting a suitable value within the valley between the two modes. ```{r, eval=TRUE, warning=FALSE, fig.width=7} # Generate Hamming distance histogram p1 <- ggplot(subset(dist_ham, !is.na(dist_nearest)), aes(x=dist_nearest)) + geom_histogram(color="white", binwidth=0.02) + geom_vline(xintercept=0.12, color="firebrick", linetype=2) + labs(x = "Hamming distance", y = "Count") + scale_x_continuous(breaks=seq(0, 1, 0.1)) + theme_bw() plot(p1) ``` By manual inspection, the length normalized `ham` model distance threshold would be set to a value near 0.12 in the above example. ```{r, eval=TRUE, warning=FALSE, fig.width=7} # Generate HH_S5F distance histogram p2 <- ggplot(subset(dist_s5f, !is.na(dist_nearest)), aes(x=dist_nearest)) + geom_histogram(color="white", binwidth=1) + geom_vline(xintercept=7, color="firebrick", linetype=2) + labs(x = "HH_S5F distance", y = "Count") + scale_x_continuous(breaks=seq(0, 50, 5)) + theme_bw() plot(p2) ``` In this example, the unnormalized `hh_s5f` model distance threshold would be set to a value near 7. ### Automated threshold detection via smoothed density The `density` method will look for the minimum in the valley between two modes of a smoothed distribution based on the input vector (`distances`), which will generally be the `dist_nearest` column from the `distToNearest` output. Below is an example of using the `density` method for threshold detection. ```{r, eval=TRUE, warning=FALSE, fig.width=7} # Find threshold using density method output <- findThreshold(dist_ham$dist_nearest, method="density") threshold <- output@threshold # Plot distance histogram, density estimate and optimum threshold plot(output, title="Density Method") # Print threshold print(output) ``` ### Automated threshold detection via a mixture model The `findThreshold` function includes approaches for automatically determining a clonal assignment threshold. The `"gmm"` method (gamma/Gaussian mixture method) of `findThreshold` (`method="gmm"`) performs a maximum-likelihood fitting procedure over the distance-to-nearest distribution using one of four combinations of univariate density distribution functions: `"norm-norm"` (two Gaussian distributions), `"norm-gamma"` (lower Gaussian and upper gamma distribution), `"gamma-norm"` (lower gamm and upper Gaussian distribution), and `"gamma-gamma"` (two gamma distributions). By default, the threshold will be selected by calculating the distance at which the average of sensitivity and specificity reaches its maximum (`cutoff="optimal"`). Alternative threshold selection criteria are also providing, including the curve intersection (`cutoff="intersect"`), user defined sensitivity (`cutoff="user", sen=x`), or user defined specificity (`cutoff="user", spc=x`) In the example below the mixture model method (`method="gmm"`) is used to find the optimal threshold for separating clonally related sequences by fitting two gamma distributions (`model="gamma-gamma"`). The red dashed-line shown in figure below defines the distance where the average of the sensitivity and specificity reaches its maximum. ```{r, eval=TRUE, warning=FALSE, fig.width=7} # Find threshold using gmm method output <- findThreshold(dist_ham$dist_nearest, method="gmm", model="gamma-gamma") # Plot distance histogram, Gaussian fits, and optimum threshold plot(output, binwidth=0.02, title="GMM Method: gamma-gamma") # Print threshold print(output) ``` **Note:** The shape of histogram plotted by `plotGmmThreshold` is governed by the `binwidth` parameter. Meaning, any change in bin size will change the form of the distribution, while the `gmm` method is completely bin size independent and only engages the real input data. ## Calculating nearest neighbor distances independently for subsets of data The `fields` argument to `distToNearest` will split the input `data.frame` into groups based on values in the specified fields (columns) and will treat them independently. For example, if the input data has multiple samples, then `fields="sample_id"` would allow each sample to be analyzed separately. In the previous examples we used a subset of the original example data. In the following example, we will use the two available samples, `-1h` and `+7d`, and will set `fields="sample_id"`. This will reproduce previous results for sample `+7d` and add results for sample `-1d`. ```{r fields, eval=TRUE, warning=FALSE} dist_fields <- distToNearest(db, model="ham", normalize="len", fields="sample_id", nproc=1) ``` We can plot the nearest neighbor distances for the two samples: ```{r, eval=TRUE, warning=FALSE, fig.width=7} # Generate grouped histograms p4 <- ggplot(subset(dist_fields, !is.na(dist_nearest)), aes(x=dist_nearest)) + geom_histogram(color="white", binwidth=0.02) + geom_vline(xintercept=0.12, color="firebrick", linetype=2) + labs(x = "Grouped Hamming distance", y = "Count") + facet_grid(sample_id ~ ., scales="free_y") + theme_bw() plot(p4) ``` In this case, the threshold selected for `+7d` seems to work well for `-1d` as well. ## Calculating nearest neighbor distances across groups rather than within a groups Specifying the `cross` argument to `distToNearest` forces distance calculations to be performed across groups, such that the nearest neighbor of each sequence will always be a sequence in a different group. In the following example we set `cross="sample"`, which will group the data into `-1h` and `+7d` sample subsets. Thus, nearest neighbor distances for sequences in sample `-1h` will be restricted to the closest sequence in sample `+7d` and vice versa. ```{r cross, eval=TRUE, warning=FALSE} dist_cross <- distToNearest(ExampleDb, sequenceColumn="junction", vCallColumn="v_call_genotyped", jCallColumn="j_call", model="ham", first=FALSE, normalize="len", cross="sample_id", nproc=1) ``` ```{r, eval=TRUE, warning=FALSE, fig.width=7} # Generate cross sample histograms p5 <- ggplot(subset(dist_cross, !is.na(cross_dist_nearest)), aes(x=cross_dist_nearest)) + labs(x = "Cross-sample Hamming distance", y = "Count") + geom_histogram(color="white", binwidth=0.02) + geom_vline(xintercept=0.12, color="firebrick", linetype=2) + facet_grid(sample_id ~ ., scales="free_y") + theme_bw() plot(p5) ``` This can provide a sense of overlap between samples or a way to compare within-sample variation to cross-sample variation. ## Speeding up pairwise-distance-matrix calculations with subsampling The `subsample` option in `distToNearest` allows to speed up calculations and reduce memory usage. If there are very large groups of sequences that share V call, J call and junction length, `distToNearest` will need a lot of memory and it will take a long time to calculate all the distances. Without subsampling, in a large group of n=70,000 sequences `distToNearest` calculates a n\*n distance matrix. With subsampling, e.g. to s=15,000, the distance matrix for the same group has size s\*n, and for each sequence in `db`, the distance value is calculated by comparing the sequence to the subsampled sequences from the same V-J-junction length group. ```{r subsample, eval=TRUE, warning=FALSE} # Explore V-J-junction length groups sizes to use subsample # Show the size of the largest groups top_10_sizes <- ExampleDb %>% group_by(junction_length) %>% # Group by junction length do(alakazam::groupGenes(., first=TRUE)) %>% # Group by V and J call mutate(GROUP_ID=paste(junction_length, vj_group, sep="_")) %>% # Create group ids ungroup() %>% group_by(GROUP_ID) %>% # Group by GROUP_ID distinct(junction) %>% # Count unique junctions per group summarize(SIZE=n()) %>% # Get the size of the group arrange(desc(SIZE)) %>% # Sort by decreasing size select(SIZE) %>% top_n(10) # Filter to the top 10 top_10_sizes # Use 30 to subsample # NOTE: This is a toy example. Subsampling to 30 sequence with real data is unwise dist <- distToNearest(ExampleDb, sequenceColumn="junction", vCallColumn="v_call_genotyped", jCallColumn="j_call", model="ham", first=FALSE, normalize="len", subsample=30) ``` shazam/inst/doc/DistToNearest-Vignette.pdf0000644000176200001440000101514415123530407020273 0ustar liggesusers%PDF-1.5 %ÐÔÅØ 12 0 obj << /Length 1634 /Filter /FlateDecode >> stream xÚÍXYÔF~çWXÊ‹G¦Ýݾx# P‚”ÝÉK B=v/|°,¿>U]m=»ZXXVy™é«îúª«Íœ½Ãœ—ØWþÝ>zòB$Nû<¥³½p˜Ÿ¦6™81÷YäDQè :ÛÊyëžÔU=Ýx’¥îv§îXõ~ã &ݬÜn³ñ·V%. Wõ}±¯+]oxätl8tº?4e§{Zº,†j­`w˜&p¤Øx·ñà·é6ÿl_ƒn¤!¥ŸÄ±Iá‹$&ó¢Té>y!¹~†íóÉ€$t<û,‰œm$oTU „‚ˆ—c;¨Ç8ŽÝó±Wum7þPÝÇQyL³7E¥èЛfì ZTuNƒ×cY¨šöÿôiíïC3’öRúQ"A…ÀçB œñÐ 8IjÇ`Ÿô…ŒHmÎ" ‰O>‹¢ù­©7"pMÖ`:„‘¥R‘/"źéžVU[jPK7Wh¹ gÈØüÉ4½.ÿ‹¿[L/ÏrÞBFñÔ Ö« Mø¡Lm T™¥*àôcš Ls“ã‰Éñsœ3ç±™¾c!;hµŒútEKTQÓ´Gè!d>ŽÓ¨ÆAÝ}°ñ"8÷þ»î£Äå⣔ÚËtYi«ŠNçtÀ80™Hx…3¥å>ÌŽ—ŽÕ|”b|xjšWÜjÚ_ý54t:׃¶¸ÍʆʬX•Ùx²a.³À&Jå}Qþô u®[s@è6a)¯ˆÃÅDÓ»^=­6«Rñø)ùßhzx–«¬kzkÓ¾kÆÖ®wj8èn «¹W]šS†ª5QÈåwØ—ÜÚsÏ&Žía—E¯½É¯RCW|¶‰:y¦©­=öºJ #ÞE†eóû¾`n*Õ鉙~šÌ #Yâ3Q'ñ¼à–§ò;ª«fÒ´¸YÒ$Ç‚¸‰ÑÉÔìÀ4¤üÅõVuC.±ÌC‹gLtÜï4xLç4™ë,zZVYÖ ïú4…Ï a›m©ôel»¢fŸA?F„ 4íL¤å‹®©h¤•DšMúÐŒrOL C\ˆZ=KåKt7£#p•¹½rš¼cBÖ&õÐÒuÐDsž¡V éî:­>ØE‡¹ h FhhÕ–Çó ÏXN>ò«C—+{“ wºb7bÜ&beÞk)„¬'îÔ  ¨0¾¢õ9®¦šYÿJ袧e{‹¦E±/â”L›ó‘ ¥»=¶ZYyS[k>j*ö¸hʲA/_Î6öƒnû§k<æá4vœ¾à’°\CÂëZÉ£:,"QS”cåØFYžÖÀ¹Â/Sîxû·Ö(~²€H­3ÓÔç±p€™2 ð—ºÖÝl£2Ê\pëÐì;Uє̚Q–f±›“—­Íb“óc÷R0eL™Á\]LEž¹•2×ÞH‰‡ë[ã4 « ™Œ RxáX¤Ïœ3{Q„È—&Uç°Ï™ìÀÛrÄÐyL­å¬Æ¡©¦<kþÔ¨dˆÿø”Y¼ÀxltdÁ«Sœ¾HâêÇ O|›NÈü0àýÇüÀ>MŸ¡ðÈí+E8ëøÌ‰Üg¯ÎÎhtÑëT½×•m.h¥î ^{KB ‚ÿ:+ÇœŒm݈Œ×Œ’Éú½e5i`òl©¢*Õ|?Å8 OÔ4\“¶Ê4ûÔ^ð§+ô ÂcqU ¿«ésÐ:÷' ¾¡Ž`qÖ¦Óœºð¬)Ǫ¶ŽeK-«¸/‚ N‹2©]©× <¯<¾,X6ŸÞñ€…'Dæ;‡9=—÷E~«$¨–mßÝ}zŸav~«Œ©¬ÝMÈ¿"d¬ ÄHÌûR×{h¿ !|ê¸DR§6ë•3dš²•&sÑYÜj¿`£º¯ª¶éÛ”Ïi CÀõ+}ô‡ '€FË—VüjåìºM'×TYì:Õ]Ü©7S‰8¾4¿AÜøçmyÕ}óð«¼÷û¶lþ³Tï'޹{0“ zÇeüÞ(pó=ô¼¤ñ|à„z[¡Jæª5ç[x]û:pLñu­çøá³Q$ð…ÏZ¾&}¾}ô·d endstream endobj 35 0 obj << /Length 2881 /Filter /FlateDecode >> stream xÚ½Z{oÛFÿ?ŸBHQ@ÆY wÉåãHÒ¦IqmÄWàp9ki%1áC%);î§¿yìR$MË…“³ÜÇì<~3;+¶™ù³Ÿžøîéùræ{"‚a:«¡uØòá§'¯Ïž<{›¨™ð½ÔOÅìl=‹å,öSÏZÍþ;_éVŸüïìçn^hûä+ÿǯºØå懋SþŠ3úžŠxZmÐòG.”Tó^~Ñób0«ïI…CBø<~ÐBãçOu®¿è?uñt‚'a9¹{ß0h!OE›lLë5Ƭ¦6j'%f€âèÀžkaö„·ñ5^ruá¸õÝ.…Ý÷ å ·ç‹ÑÜÔÚé¡Ïçb¤ß¿ü~¤{ȇ6´äyyD\÷±†y“ý9mwÉYùþƒåüwfYíËvJ*VbÙê`¦#wE¾¥ï2d¾¿û´Wüh³‹‹Üü“ É¯ŽšØ=Î"TÜ©,[,d½Ë~o5êü|¹­_ڎϳ²}yÛÔ¸®àÇ?b˜:Œ‘ëo¹^ˆ­ëÆØÿÙÛØŸ á¥JI"”GêIpþFçË}®Û¬Üœ,`²4º6Mëˆl³= Äüh1¯jn^eM«Ë¥i˜DMlÆ~—×Ü´Db«³’ÉÆü±78ÀééÙÛ`‚T‘R…¡çGÑì¬_Ôa‹šµÞçí)¢«°cE =%Äpäö¬úÕîëøâÒ¼4Rà NHÎÛ­ANÂùô9ß—Ë6«JÛ‚’A&—}q×VTÜÄ(“¹iOàÿÕ‰ŒçÆ”ÜÏ\Y_sG'0þ¨K‚б”p|3Y‹ÊdO ÖLŒ Ç ¿Slæºiö…±#Ú­¶Ý³–[2û¥Þ—%F€^á¾Í‰˜×v©ª\4ð=7‹¥Ésn,*Zjex”.qЊ ·’tÛŹ®íšånߺ]‚u¶)P%v›¹2e>A”šI´A È\"amÈáP)½ÊˆshbÙïûÆØ¤m²| :ýV¥‡ºIçï[þÒê/´¥!KksÅôN׺0­©þÐV¼×Þ>ýÀ EÂûÔ«Ï{Vb8ßVl.¤92B|!ed À_¬áV^0/ŒnöµYy\ω¶xÐyˆ‘Ÿ¤ðGƒnu˜°$fax~2óïAdQ˜¢ ð±1eÕ¢l®wNÂØ¼Õ ¿X¹£' ™•kS×(ý(Læ{Ü]CFˆd»e$ä¹­È£V뺙c0b†(£†\·Ùfcê;ð!T©ôFBæ…ÛÃì ü+vÖÅ"8†“]”œ+žëòL,?'™]ï8u:ÂH•à æøä¡É1nÈ€ÅJé°}®äOzµ2¶˜#ubŒƒÌO/tƒ ÃÛK×#k¸Ë²Ê÷…ª Ï»f¢s$$È‘ú¦îv­”—¦a³²i^±áVk¶ûƒ©3òOŠÒW€p°å²ô¦d$®cg¾ ³ä÷fÇZfëk zÁ­†$¥'Ý”—Eó7<ïÄÚQ™Pä:ëzØ[¢¼Ú±o¦²?€r(ˆBƒ€ÿÉ—ê¾Þ‰|›a(!!³zF ”tЧÀòœA¦ašE¯Íkc»,—`9䎵níçßùAB§7˺‚žÅ1ËTn»—)8žLG#+^Ýš8ÁS„à@lêj¿cýE¶¦:= °•ÊÄKÒd|š;ÔÙV,ãAx¥ùñxq¡¼ ´‹¿=IÀ™j`´F¥œrԤăÃnm#nnÊ ¸´aµ­º\C×6 ë‚R‚l³¯ö 7ýŽ9ܘýÌã³!#×ç¨ãæÔe †_º¨v4)sÛñA.iÊÛYgõt2œŒe笺óT§ZtU—ˆØÉÁt¼~¤(͵3½}õ¯?N-îyç]ª b/•<Ø#ý±4‚$Á“ ã£i)c<&Ä`8ŒdøâÖõW•2$ƒáÖýÂèQv±/)·íñv½9ŠW Gf87q3„,cSòGlB_³*s¾c3PÀ-›Í ; bàœ]{ë,ÀòRx«99âUmÞSŽÂ† ƒÇó8žxLJú|Hþ“ À ç+Xs—;ø*Ž)ª•ÉïŠõ*òâá°ƒÿ-BåC „×"#= }µÍ(3Ù2ÙÏàsŽq¡óï~áï]êž3M:0’b ¥ ðti°±Í#ô´!>Áè|y8…a’zÜÁ„¤‘s/xK†ìdôàwy…Íq³HãfñÉ~§ ½_æ¦j³•m{§‹‚DG3v§;¤®2LOñm£wvºeU60–òY¤µm×– Ýò1eÚ þ+?ì9<»•½¤eÌ!Û=—‹Æ˜ú䶺˜´µØI½ î t ß’ŸØâ±[Y\úÂr4¯vxÒj˜ÈÊe¾§M¡ùA‡Û}AäûÍ‚`É4–bÀ’¿9Åâ;‰°/6hë[?÷/²\[F8Ãè–mk j]p=¦o}¼ IJèG.­©Êg4à•'@†V_ léÛ4ס8&= ÌÁüÛíy#ÖSúìq&cÀ #©C óiØ<áe ‰À„¡¬8WåŠs&ø¤é‡z$á0k¾¶Ó;Z×UÁoÿ9I ¡ël\Éè„§^¢,kç a@Žñ FBM›¢;…&ì…j4 I­ï*þ@¥!êã`$ Éò@V†L•:¯6œ;C;ÕüBeˆ¦Äšš¦)5Ü`ÅooöÏ1%h„‚NPÎwìNJ'ôdØåBÅ—óºå¤<¤v‡•r55¬,…L§n™NH“>¦¸™æ§Ú–™=v(‹=({ ÞDB´éŽ‚ZOj[ÀîÔ ˆ»† •J3v‘&6œüZµP)ž¶¤nð!ôA=e0ò*ÌŹüĦbKHö¶ ½l §áo¶zF™¼íp¡)z|éå÷cN±ƒgf0ã~ùø.y~áÖK¨´{Ḡ%„r¬Ž‚ù›-×ñ6˜;,ðí7þ“@Éj¯¶ÒyS±æv5?.3*4påqÒž|IÄÅ'´sÞÅ=ÎÓ÷2QQ™PÅ„@¶¯ËPMWh3†îüaÞöQl¸ÑÔ7}URçê~§Eßi^°ìj`yÐ|˜úu×ßíº«Í OüHUd÷þÊyxHY!í0äLŸúxñRqÀŠÁ„V$×·Å· CýØ y î¥Ç̉ùè×;˜UT:–}û5î3^|Ú8HÕ!n¹Ú›¨À¸®.‰W¡9ØCM»WvB€µ¬À ¹/ƾ'bóe>võŽ=îÒ ™Wý ðá&¦Wûµµ>Ûš=Œf­ú¼ºÞ(W÷°xÆW…‘½¨´| ÔШftëÆ—Sÿƨˆ/e/÷Bºƒ{$–ˆa©êBçpµÉäÅ5??w1HAñcÓnÇ'>5bmp‘ «Û„ø®p›yã>j|«ù·Þ­®³ÜÖon½\}(7/óù®;'‚ð€_CˆpâPâÊ\¤}Üo$œ¥Ý`ðÌŒ¯W8~Oãë‚oáUðù[YúL,ý…B¢ÚÈãxÙNü¢åÁé€çq<$ý<@&µ|Ôo:Äí¿èÿTbѹÎÔ/&>¸Ë`$²Òòè QaÞÑ€ ×y`AOZ¸Ðð7>?ž=ù?VÖ‚ endstream endobj 40 0 obj << /Length 3160 /Filter /FlateDecode >> stream xÚÍ]oÛ8ò½¿ÂèaË⧤½Û¶Û6›¶èCêíËî¡Pm%V«H^KN·ûëo†CJ¢ü¡&éÃ!@LŽHÎpf8_d8¹™„“‹'¡û D< -ð_2ÙÔ‡\]ýÇÙLq5ý­Î¨q“•Uóu“­¨ûž~ÒºÎoÊÛ¬lês ¡5»Í¶Ô¼­VYa?–vzY¹ßímZä§M^•gÿ]¼j·1«>}ádÆD dBä­òºùP«kš„!ìMJøÇmÙƒÀ–'¿„ÿžyX`Ç![fyn&b\To³t›Õ·óG¨ÂÕGK Wµ¶ÄxnÉþóÃC©¹Î‹|€Œ:½ÝÙ‡|u_j~úi@Ì7Ï|úÏhõô-ìÜÒ¤‡Ò´³’Á•˜ŒQÖ¾”ëìÏ]V.³_ªbw[>„¾éÓO»r‰ÚµGà=ˆ(ßÝ/iQ<†¦»KXáC{¦C‰àÓcIúdHúLRÄ#sêFÊz'ûñ(¢¸ µ–Ø6ºD¸œÖjõTö)E uD„‚ŒaÉÉÙ9²y ßäô׋Âi³Îk·Lë ‰‰C8$ ʯ^eש‘YÑØ¯K\§(jZ ÅóG(ä–Î[šv—¯ÌÞŒp½¦¢O›tÛä ªEeô¡¯hTËX€5ëŒæ@4a”ÝÈG÷v,ÀÎ1kðp¯î¾Î‹Ê‰fÀ=<à ‰Nmë¹9…3!C *n1£sh¼ò¾ÀP\¯ýš_[mŒÞfËY’­Îiì§öìà "+oš5E'æs»L³î¶ÚÛ)Ó`Ök:3žDdxPçõÎÊ$vÓØ¥M¿>§¤€'åC˜U8bÞÓÚ( uzEýîKËüŠ,@`m4nŸ ¡î±ÁÐß²!ðm¥5x¡@ wö®4â 8j§VCÔ ŸàžÜEïÔ˜¯©5$ØÞÕtDÅôšÎ LN øÞó&}D[1ÃÿÝ ¤DçVwJÁ)¶¢”1‡ÈÚ“ßÈ t„‚ í ë,á9õ³t‰H×ÔÛV¸Ù/ØáÓêz°Ø¨.E YY§­dC"’?áMeÜ+K^¶†etº ”Ú}Z©Ìi7 ­à€æKLZ«öÎ rÞJeÊäôz[ÝR‹¶ :&ØV¢Í¢Y,hyùW1 ýØùj¹‰ÆÖQçò9ý­2cN±5â µO>ŠôrEò1÷cçK)'ƒùf&˜p)ÕômÕdnÇiÓ#iÈ@¥•ĨLŒÎ¨•ö×t€ C’ý•.XˆÔBƒ¿O!ö ¹‡çÙž8Â2Û=ð$2õžç#xÀ`a¦|ÑI¹l2Äw1†OA"]g4÷â Í4µ)ä6ƼúŒÍl˜ŠJC±À”mt3=$…‘ =m,„¶ÆPÀ¤úcî \¢ÐÒ¾EêÈši¬I䂲.„÷‹á#ú*“¾Ø®\&' –š›§5T:ôqbÈ´O–Õv›-›`?¡ U†qÀ"ÕF©[›6˜Ä Ó‡~"WåKû¹²éäµÍšb@ˆ¸·ÕnÓ%–m•ôI‚¤¬js ÀgƱ7éMf“Ñ-E4Õ~®™Ú„ƒÂGȪYíæ%Þ¼ƒÁ9žÍÛjmØ•–˜8LŠz—Ž¡8 "Õ*ÊûWÀ òMvPŒ þJ*74Vï£þØS`Þ#a T’æüÁY8˜vÔ'IÀa>½Â%&&•æ.[E6¢,#¹cdâÀ) =í¼MÌ|4-~zùó›w/Æ ð˜à$¼\¶ih¡šC£ËÙ9åì1åì¸ÊÙ«ÒÎÙ«‚ÌËÑìÒPCRâHšÎ™—®qn2p€b’ièÕ&óö!”/ JW:²é5¬@y%µ‘Ûïg¯f}Ø’ ùc^š;Ÿ–3½uq(e‰Ði7Ç;“P ¥ ²\2~0õH0Ÿ!”5•£bLy8Eÿ `Tu{^ÄQ, H¤TOuÙÛ+v¦/Æux¶>‘*GN•5®Ê< "Hƒ<´*/®~{1æÕC*Dz+8%²Ue †T`]-*Q=½NdWÚ‚¶ÑĨ§‰0¸/´/­F'zÀF° ,´ÆÏ•Ф«âH*©Þ«…Vö•ñ7Cõª[`¯²³§Rjzl½ ÖBn;›lS\øì MC•! Um¹|ŸµÝU¹²žIxÅ,iO[Wí”­y¬.„ï µ&©#[GFHJªXW©5¹Jøí\% ê¹Jø„®ÒT)m £^Dë1aäcœÓQ!Ç(£z“*B„:€Þƈ­G]È!Ó±\Gr˜[,¦V-)dpÌ3 [òÓqÒ“)Íñ’@K”exóŽE|m:yuq½Åþ‘ ¦ÍOg_I Ù¢7cˆDˆwj‘?ÏWbóÉô+ @Eü5Ž7:ÜêJ}]bñ*Œ÷0=Å”à•‰¸—è$lÂX qý<† “)>äÆütú5›pÓÅ(&¸R‚íËnÑ—]{€Ë"O&ä0XÎmEú¦êŠoÛ2[yÖúÀ–P÷°M^ð°þš¥w_¿9@þ†×9ç9æv7T±<ÛËÝw‡îp×Íã(‡/ìâhé©i}ÿ Ù>õéÝØÅûn¤`Çø^?|&¹y¯ZÇð=hþˆ†Ñ´ÖF0>*tîݹslöL°£º•lêû¾Õ9ð†‰cžÛ7Li“zÁÓ]ÜûµÁ&]~I<ìÁCZ¤ŸÓ¿ÓÛ§Ç žxЬåÿѬGp®_Ayûpxvõø'#½òÉÃ(1 <†÷Ù Ò`ï|uçx@”NØðÏ,èAˆ¨6u~kºSùÝh8ö“éÞÝ!‘‰¹ÊnÒíª°u&‹~˜ ~E)¢2Ռژ¸ÖéönU»¢ öïVµŸ„èÎjÓª.TìâÃC‹Ø ÀK­pp¤%?O«aòããU-áÊGµ?ÏÕÿܹV[@pÑï—œêŸýK¡Ú»båîŠÞ÷/Š•ãšê_+wQwÅûÏ7ˆ=LD÷TÇ^!Ãe_<ý·zNw¼»o¾3ŽÜ1w·Äµ»ÌßfÍÎ'£Þ—È¡à>‚ë­­œ¬bÇ9'þì.¿Œzù%ÃÂÓ ^ ’ßThñ2ÑÊRú7œ‡ö ñ5ܹPéíá{ `ËŽq8ÜÇAˆªX{OU}å—ÇM´XùE¡ d‘ôÄNÁ-à4Txc^,žüB âÄ endstream endobj 45 0 obj << /Length 1827 /Filter /FlateDecode >> stream xÚÍXYoã6~ϯPÓQÔAÝ—½²-°-ÚºO»E@ÛŒ-¬$zu$›ýõáP¶ä8ÇÆ@·‹Cræ››dà­¼À»8 ÜïËÙÉùÛ4ð8gY‡ÞìÊKC/ 2DÜ›-½þßM^­&S‘Æ~¥U­›¶ä«õDpcÈ˼iUµÐ [ãȺÕu™Wš†‹ÂTª oÕ4ùª*u…Ìóv ‚Ö¦X6“f¿ž¿±Ç–Gˆœ!ÀØ^ÊY¤^"%‹¢Ô›•€x¶F)™ð7u^ªú–]ã¨æŠ~Û~YÙ‘ ýî”…ÁB‹®Pmn&ܯˆ–»ß¿&Sî¿S_aF½wS͘×Pû¡d³ia:Ž” ½$˜ÌœB[kÀ®(õ¯¬­áckEøV Âè-JkÉH‚Úä>X‚b­5åØšNj˜&,áÙXôk}°_ ý˜+D”±0ØÛSß8”Öf€êÕZU+=ýùµþˆ¨Ú"U=à^og  X(á X‘˜Z¹ 9øe@(¡[c—7kb ´8É­¸%lT­^ÒÎFî´‹]˜ûÄA­7€ÁY´_7Ÿ€J·÷Üäíš&À96â€H© Uà¿©`Íy=JYše¤ÓUmJØ/S]XèÖT(DJ l(– \Óµ4èEçZÑi/úl2á߬óÂZ[05®¼¡Ý†~•ÚâÊ\`h¢4V›eÁúV’ó¬dÊ«å@E±0& ïØÍ5ÊGùk™U­JvÇ`.÷¹`Y˜ô¹¿-–W©¶¾ÎºŸ©pªëca¥Ë~ùnk^5Ú½€"PÑVÑç³Ö ;Ø3=‘·ú4¤_OŸ£!n­Ž^r`± `"uùÔ§s€q®ÝÀ³ÌÁ‚êZSº°†á°|ÀÕ„4èõÀõÅÊÔ@Œ7µA0×ùY kα{°ŒD¡`<ÍÆ°¡ˆ,gÃlÞ¯#•cØ(…ÜcÐU0»c ‚X&L†rر²jLbʼPóÂ’3¿Ô,¼ QÀméÄ3ÉBÉÇR–ºjòöömˆ3)Åx«M`—?ì¹$ÄÑšÚÒ¡Z>Mĉ5÷ˆÿª,% ØK®;°Vª,Õù…ê +«ÊÙ+ÿÒvµ³é6í ª${ù§‚…©cˆØmp«Úe3ÕƒÕN\çŠ&î‹*޼íAÄzí`ðÙ¯Ù(H,Lãm‚à™Ä Ž nÇ£‘ Ý,Š£~9£%Y8\öP‚"ü`’G´t6H;¹«.ÊåŒ «Dh³JR9‚Qgû9ÌQÁŠ+8ƒÀðwÒeËûmm›Lñ úrzÎÌüö$5/žÓ0áæéO+÷y÷)»­IùÑ@­C¾ý>‰gÒR_Îov€è)mî ’Ë1ûûÎk›ºof'ƒ[J³$–Þ¢<ù|Â2‘ÁuçŸvªßáç¿”Ü{mNþ€¿~j ܦ;vöyþî~ð8”ÆL÷œöÒžç%½le~‡×{iÿ~%ÝuòŒVºÃ}êºZÑÃ¥ô+SÛtþU?øî€WÞ MFÖêÞg‡í»C7äl¼m÷¢@†ïéèõJô7ކô¶–ùn)žI/CECwáéöúùö %À' /WŒó0E£¥of'ÿ;eæ endstream endobj 42 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/DistToNearest-Vignette_files/figure-latex/unnamed-chunk-4-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 48 0 R /BBox [0 0 498 279] /Resources << /XObject << /Im1 49 0 R >>/ProcSet [ /PDF ] >> /Length 33 /Filter /FlateDecode >> stream xÚ+ä2T0BC]SJÎåÒ÷Ì5TpÉç äTßê endstream endobj 49 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/DistToNearest-Vignette_files/figure-latex/unnamed-chunk-4-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 50 0 R /BBox [ 0 0 504 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 51 0 R >> /ExtGState << >> /ColorSpace << /sRGB 52 0 R >> >> /Length 954 /Filter /FlateDecode >> stream xœ¥VMo7 ½Ï¯à19”á‡>¯6’R õ=9Žd‘Ý"qŠþý@3šåZî,rXŸ)Š”D=†×Àp„¯ÓÛú{qÿǯWp{?1Øñþö\éë›Gè›ëßË#ü;ýõ>L ¯'†ãÄ„Dðfš?óàÉ•¤T>ßî&¸ÚVð¾‚&t ”13¸@HĆowð'œÿo™OùOð±¥A˜EÀŽ% B¯- zÆ2yÌN“Ë ½Tøeº©4« Rã+6™1¨1Xp3( ΡT\ ’Ãèjz§Š$I±*4»„L_¡1ftq3¨ÐD‡©E¨Ð¨&”¢BcàˆÑ·Zƒà0·Ú,º³´ÔÄiWÔšš’ô5]°1ÜÕ´bSta”lо`cƒƒ¯H~KhA6è¤íÊ­AÌs3X Ý§È-B…vW(”?·]Y 5S Q¡ÝU”¢BkCÉw3X 1 T—ÁŽåB>Þ.Ž“Ï¨¹î$ †"“Ö®)t4'Ì•^Î~G;WÙÑqÏ2¦XY.:utD–•ÁØG¦Ö¬X=:²Ë³¬ÃèW6Æ4ôŠÎÙÊ»r¡nå„i·^óÁÌ"Ù Y ˜dȺŒ.Ù ÈaTçÚ[,;OVÙÑó(#%BNNæÕYY0…¡³øÒæG§£¶´ANê SNýp5ú¦„y¸‡µjé–Ã?¨¥“€y¸‡N3úá:/(ÃRÖæ=` CN@Ȫu´RJœ‡U4'–Œ´µ)¨pm2¥ËȬ%Úø¸üxZÜXÑqÑïêÐ$¡RQmœ•Ò+†ÃGțꙇ¼Ÿù|PYïáÏè9ŽÓËÃ<ŠÞAÎèhv™'û„QgWaPáTZqq»£rš]c,M¾¸2ma{Éy½oSÿ#Æ|{NJ˜ß»™ÝdA§ ¿ª‚N$4~F0üª :‰Pø½Çé§JP•FFŽ›îXN¼‘+Ý©£:6ÞŠ#:V¾Ó Fs¬|'AŒäØx«@ŒâXùN€Á±ñVØÿät¡¼œBeñóÄÝ×£èŽ/ïöZ!ë+û¯e(/…õÕ½¾åå”~Ín·oÐr¬ïî~à$ÎK7¾a·o&ÔÐùƇ½dϦ:÷:v'„¹¿`)!–ª—ø¿½?>Ÿ?Á‡Ï÷ßߟoï.æ‚€&Ê/&8+jvRºh yý÷?çï—$}Ñoúü™2ã endstream endobj 54 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 59 0 obj << /Length 1344 /Filter /FlateDecode >> stream xÚÍXÛnã6}÷W¨id4f(ê4@»ÝMv ´èÅoÛ"mÆ&"‰^]âd¿¾C›Žì8v±[±ÈgxæÌ’:s‡:×jžoƃ‹+?têi~YöaSC"5ØøiIÖšóù2—¥ þ¦!í0`É­ÛIÍ{­(:nêðöܘcaç@d\²$k`ßá‘+jRf;a¨Dâu}OýŸîa ì(e¼ÞCŒ¢$ŒÐŽ6jIîÃå¶…>œ¯eîû×3KlD¶ƒs.‹›þ>ÂשÌeu¹íŸÜ³ÕB4ülÀù+f×¼LD¹³fÑ Bï0ïD'A^ÿ_"2´'&÷¹(ùɹ'ʆWS¾lŽâ#>9'$Ä­¨ø¤Ó»Ó“BQÙ<.ùQ$°¯›!æDžMN߉ðsuL8´âYß'ðôè<ž ëgÙ–ÍÙÿcíÖÓ,ç77SY6¢le{rÔ&ÏîêËc¾”5ÿ´göƒ²Ÿî ï!ÚšÓð?0ÑÛ¯_¨E ~3YõñºèÏq’ÄK¶ªÂuÚ’=7xð êWUDûTYaδ|4ˆýX¿ÜhêWŠ\|(˜óVþ€¿îÕÌ6ìõTíÐJ¢õä, Iô`~ÐÕz ‰[¦,?ïämYʪÈrñ™Ï”GÛ…r‡‡ù1aq`ϲX¨BÕvccqø\µúô0ã9âXñʱ…ÌgØ]©3†l»®:x¤®ªª`Ô‘øÌðq? #7ˇžÛG^7º;Ù$nLwÊúÜU|†‰¶†ûÓÐgnÛÈN Eâ[“ìQ–2¯FÇ\(Þ§Š«b11ƒÖ\¡óüѸ‰|wîM«2‘ÅþsÀÝÑé¥DÒi›CU(EÛBqBîTR¥H轃™Æ±mIËßBÁüîRÛ€lˆ#º‡FóOCÓ›'<³šM…:éàÙÖ¢œä@0¶8hyID\‰Xªöú„ùÕ2Ô龦ÝKa×õ‚µ¯úë=ëôËߺ¬¹å [3ª®áJ׬ÆoÝў̹²1%8FíËÝÚÜ‚Gã'_vÝw,ºSûaǪïö]F¼ºtG;ß™`ì¬ÛŸW^GGÀH­h„øÇm¤ÛˆŽKå˜Ð4±RùwUî»g<ïIgŸ(ž.+³n1È%ˆÕ÷Ð^¯MÉ—.3w”­Hò«ÓªMÎ˪·›œüªÓsÏÉðiÝÛ› óñÓ3Š Œ Í µ}y7ü æîCâ endstream endobj 55 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/DistToNearest-Vignette_files/figure-latex/unnamed-chunk-5-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 62 0 R /BBox [0 0 494 279] /Resources << /XObject << /Im1 63 0 R >>/ProcSet [ /PDF ] >> /Length 33 /Filter /FlateDecode >> stream xÚ+ä2T0BC]SJÎåÒ÷Ì5TpÉç äTßê endstream endobj 63 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/DistToNearest-Vignette_files/figure-latex/unnamed-chunk-5-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 64 0 R /BBox [ 0 0 504 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 65 0 R >> /ExtGState << >> /ColorSpace << /sRGB 66 0 R >> >> /Length 1172 /Filter /FlateDecode >> stream xœ¥WËn7 ÝÏWhÙ.Êò¡çÖFÓ @ ¤6ÐEP…ã5z]$NÑß/(iFçÊ‹,®Æô!‡â"ȽqäÜÇåmÿ}ÿôËWîîi!@Dg×§»Ç_ßœo®Öÿ&÷ïòî7‡îýBîÍBîa!D÷ÓRu èõÁ9ëãÓýâ®¶¼udðÙ A!ç#zÇ!’ûtï~uÿ·Í—ì÷a„P˜]5 „ # |F{yb(É_2îâ_ËM‡IÞe£P¢…&Ýp‰C¡Ëª¼~çÞ©KœYµ&BHaûh|ï‡B­Bö@<šh˜2m ]´ !/C¡‰V¡x <šhDòˆ²‹V!&#Ì.x„ÙE«à5çC¡‰V!ే.Úµ+ø–8/»Ì7Ñ$yŸø&…H»ÄwÙTp1•Ñd£"…&«BFÄM2ñ?ÒÚ$.À‘Õ.Z… ¬vѦüø¢]´ R€FV»hR€<²ÚE[TÿÜꢉVÁàe­BPp(4ÑÖ3„f‚øâìªmé|ÓD÷°„Rz©$ï˜dé­1FHbÑ ø¶ão@¢¨åÐÐLàqgª'¹c’ß[êk`‰€y·##- zí0líÆ€8š@˜*!瘧`¿0yȳ„JfàYB%³ó %jg>öy?‰´eÏÀ\™ãy#ð,N/¡LRÖùÅ ÌÀ³8}§qFÖi0*e9ï!–ìH¤¯–Ä;_-ÓJç•' }ð¹.®ƒÏ9|\YþXÏ_ ^¦è7ö:pÑïêv\•×µÞa^±#wûÁ•í>R—Ò®$µˆQ÷{{rßà·îöaùá¶¾÷ECÑCUŠŽ[5äp™%…¬C^MÃ…NY‡j¬¦é°WÊÕ4%%jJ¸¹Ý_¯%õ‹kRìⴣƕbUtãÂ;jlð• ï˜ñÀ7&¼#Æ_‰ðŽ+~´œ¾êtz]t"vÔ{píµÌÛPíÞ1oô7ÜoC´W|Ç» ÏÞpK» ÍÞp˺ Ë^ñé6${Ã-ç6{Ã-å6{ÅwŒÛ&ð+Ï{hŒºù‹Î{.º“axü౯‰Ý,é°OŠXs>L{-Iiå0å šŒ¯•2L·¶„JÕ†©ö*˜j} ÓÃ^ÅûZz›©?î5£òczØ«§T vTÄýôøÜÂþêuÝÕ1ÑÞ}“YoO:ãK@¯_ÿ~^¹÷>}þãñîþù^.ðgœ|g|“€dGžu¨Çë¿ÿyü|IÌý–ÿt.Î endstream endobj 68 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 72 0 obj << /Length 1848 /Filter /FlateDecode >> stream xÚµkoÛ6ð{~…‘íƒ Ä EŠzë‡[‹ (°ùÖƒbɶ0=\=’ôßïŽw’E'±ÓCçx$ïýåb»‹÷’ÿûð+þ"R‹ÀĨp±®.¾\ˆ$ˆtd7g Ý¯0âú÷J/~m.þ‚?)t¼"Ôø“,Zàáb>8®€åjÆóíÍÅõ»v¤Hdâ/n6V( %Õâ&[|ò~Z®Œ2ÞŸmQ÷ö»6ïvM™-?ßü1)%ÜÂá'`1 ˆqý.6s^r±òµ0°iYí-9Q@þ-l†~?ôù.ËñÐQ ´ Xd–ù“ÿ™)TƉ ð:(¬Ž„P±ˆ}¾üf©•7ôM•öy¶\éXφeàeyŸ¯û¢©i÷®H Hi»*ú¡Í W5ð_Á•’XkGßZˆbÁ¡ŒÚÄ»©@’›]N—\£¾LIãÜØuv3÷Î †~¤…L÷þPŠ™À+êu9dy‡+Ðn¿o›t½T‘·#\àmš–7É`Å:-˯´‡Vj«¢.ê-Ÿ!üºlê´dT×Ûz…’:¶P øBG>‰Uå5²µá7zc¹ò½¦\ú^†€©Âs&óãP$‘v©_n«êòŒ±”òEùx$V¿÷‚dJØPݦU•^¿OP-­ ?EŠ?ÞŠ½Ì´E6›Sb¡$ ]îg} P•"‚ìÐ*±bg£´§¸FF»w¬ðÙëgM6çéZ„±ÿˆ)¨¬µñöÖ9x°…0ª:¦ô¯JŠj ûCµ*‹ÊË‚íÆÖÓhsô=Rmiwg”ƒ€kðú¥ÑÒ¥~Ç[YÑõi½ÎW}³ªó¬ÙO–¨Ñ¬^k? "È*Ó·ÅíÀù¢#oèXŒÐkêœpàX‹Ø4CK˜uc»-ê¯v|aÃ4êâniB/m ¨?´—åuWôxé+#0ä °\‡Hà-‚“0á”ÊÝ«“‘E®J—5øb…?çRb )Iÿ§ê1Uï—ä§ ½C.à ->š­Ãh¸:%æQ±Ë…d´‰v6oÌœø±”eÃbF‚O‰šÖÃ~oÓ<çc–5‚ÆQç¬6?*Ž„ŠXB'­í'S6B‡GM8¼ad ²* 0ì1>j î -®k2Q8@ #ø)½NzhR,ˆa ´>R¬Ÿ<ÔÔJǤŒg6…N*C7Å´† ˆ¼·˜;JB2mÒ¡ì­vc!ð§Åéû¢, ºå2e]^BçϳqK%“…Æ·Ê”  ˆ22äC|ÒžìŠ5ºl7?û¶V­žÒ2„y* I˼M·xCª2Ù°JwX)H,É!Œ§:.·ë æúPN`¯ÍS’Ŷu@=³2Lˆs=J˜P0I9®a8Øl^_6û¾¨Òò¹Æ1êà4f\“#•÷¦„¹kçꙓžÎHjÃkf¸ „!ò UI¸¾n  f8X¥¶c Pv AØOÐ#Ež½"ÍEìi L-{úÎÐÞQQá£xXts®ç¬ÈP@qq%­#2‘{6³˜Š‘XaèR™2;v…Àškf+­`@Š9•rŒ•Ú†»Ö6ÀÆÆÃqQGÒÏj”ht¬­Góåæ@õõÓš@[2³†»¸UÀbŽ%}.Øuð¼íu"â(9)ê~}JÔp.êS ì+.p¿C((íSâ#?¤Õ¾´ *:ÛXÚ(îÉiš´ †àû‚Ö‡é’g3:£©é^0æŠé0 ¦<ç>MyȾèè?Ø‘êÒ]ƒáTg´žÒ\*FÍçÉíÕOáK®ýösD˜‹ò}Úr1Æ5}sà—‰2ê]IßvtôËCyîh9Öt„g£%.mÝã~CtºÎxûL’«úïjP5àÉ×gûçÌFØ'.*—ãø¸Ÿ˜~ 3‘1‡oL;ð¶”<0ѤÝ.Ï`ê®yLo5¯i‰éÏ h;ÙÜ)K:ÍÄ81yº4wSNÞïò‘Èt" íÔë4÷ºÃ©Àiz˜âGåÌ”’{õÂ3åÁí…p˜z!ìÌz¡ Wˆ¼»?®?TPayWÔÙñÓŠ]ò‚[é ÜtÞAÎ<«Ðë Ë,%¾Æø.£ù‘fŽùˆo.–Ï/«o~Þ᛾LŸsÐûÿìÒŠE‚ÑY$c {?²Dø›íŠ)PÍB’ÊRr0¹Àiø"A¦¢8æÛ°‰þ}üŠÃ‘uý ÎÞ„b÷á¯løÝï´¸ÚÁªÙ¶iÅÝqþä1Ðw¼‘ŽÁm‹úPý߈(ï³oˆßì(øN¿/²~÷¤¯¬1Á=_ò ÿáÒ}™_¨¼ÿð¬ýÁÆû+.%/  ©¶¸­²}-XoQ\ÇBçÊo7ÿÌ`©Â endstream endobj 56 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/DistToNearest-Vignette_files/figure-latex/unnamed-chunk-6-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 75 0 R /BBox [0 0 494 276] /Resources << /XObject << /Im1 76 0 R >>/ProcSet [ /PDF ] >> /Length 35 /Filter /FlateDecode >> stream xÚ+ä2T0BC]S]s…ä\.}Ï\C—|®@.Týì endstream endobj 76 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/DistToNearest-Vignette_files/figure-latex/unnamed-chunk-6-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 77 0 R /BBox [ 0 0 504 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 78 0 R >> /ExtGState << >> /ColorSpace << /sRGB 79 0 R >> >> /Length 2589 /Filter /FlateDecode >> stream xœµ™K¯]9…çûWxŒëåÇ´›‡©‘ ‘ (A"!þ=Z«¼Ï>·»Cn rÒ+Þ.ÛåªÏe·”EÊÛò÷ã÷?þS4ª´¢³J/>¬ºu©6Ë?Þ”?–÷Ç/?üá·_•ש­µòøûáõûã?õ?ÊwG«ÞZyüE¯4úõËŸ0úòëßá_Gùçñ§?—V¾=Zyq´òöV[+ßÞk×b«ŠkuxQYÕ#~uŒQ­?mnv5K›˜ñc»ÈC³Í:ãi÷ªëlí«ÆzÒê5ÆnÕÖªÙSÓsÞÍÆu=1=®‘µKòéÞKk<˜X²›M ÓüÔ²,¼6Ò¼ªøÙ:½Žù¤µ]#»D ýd«÷ªýS­­êÔÒªÚ*­†÷Wñí}¥¼=ºÖÕ¸ÝË»£{-ª^Û*·£G5/Š(£ì5z;—AL^-ªNÈ…áÕfU-·c4ü­Î™ÝŽ!Õ½¨+|};†ÖÞ‹º#poǰ:gQ p;F7VˆF¯¦”N9j8¥Ðò¬£³¯a’cÕ5hY`j æŽq“œZ]8+ H«ÝŠÚ¨³A:bPÍë„åÙ7XoöØiÕQÇ€œ5¤¨2nÇ\u=iè»Z]QT¼vÌji•Q´-¸ìv,Ãdµ9Ü~;–×.EÖÂ:oÇŠ:µÈ²:±Þ5B2gU ´&ö]°Z^˜Œ^– ­á?d´:µÔ¥EzÔfÔ·I¬ªù½#m% ŽŽ³ˆÚ'u‡oÄõì?kÓ"ÖkdÿU)!µñ{iÕ{Üh©}Ñ–ŽÑ:W‰Œ ¯"ÝV§ä2†5Î_:ÒËHM÷¯½ "³®U–m© Nšk¬LÅÙÁEH­=ÊÔºR|4Vœ™¢ŽLÙ«IûÉ8dOK'æßg]\….L¿w¬õvÀ2Kw¸R«·Ò5w[ÌÒÞêäŠ3ܰ!JÙkë%F)Ò+z†0­Dd‚Š-|†`»â ó ­‹¾wEÄé:7ø!9é`j4ì?$wÌr`Ã}!ö gÕ(>3èÄWõQ|lçw×™˜‚ øÈEl‰?ŽäC6sV 9²™¾ ~摌‘˜µ $“ŒakAÙ¨â HÁä=k ªøù€[+îÛ9€›Bæ¬7‡ÌÜ:%£=!ƒ¦7š"p£)ÏVn4$ûn4•~LqO!qu=È¥]OP’“Ü¢œÔÀmPòã©øì>IÀ¦:× ¸ÑTzp£©™¦FUšÊ@šÜh'‡!zyà›Û!€w!wpã.$17îBúy1 °¿œ$àÖ¸ûŒ ÀM)'h‚ØË–æ#=‰s¾OH&»‚ 1)AilŸy†®æ Qm<[·NÙAb_°9qx!&åF¢!~n‡‚i†ÄÉiiÁ´RJFBs€ü¶’M( Û³ά„g*h=šHÕ8áv¨6^±Qª ™4šäÊVÃácO4#FrùÚ‰‘™‰ƒC Y{’ ™B’é š‘HD2@éàO5…—€/£4äH—ÄO… Ž š9äʯ®{6‘A]VÈ…³«ëÞ_ÐL ‰kœáb¥[’‚fiœ³³ ì–©r`,JN%L ÍhмRDMå4@³4ÅBpba Î 4£)eÔf9+N4 Î9Mu`+¢ë°\/¹¡yÜhÖ!g~ÀHØ^hÖ sËká° ‹ð‰„šÑCÔšÀá±£Î#*,c M1 43ÊFI—^r#w¹ˆ‘S ù’BŒÜ¥#wé¨Ãò2¡ÃÃ’“šÑ‰d M1ê 4£)f¨f4¥üXy[…ÌVF²fÀµjr½mP0¦¼ûKIÈ„ ÍâÚ@³Ùs …d Íd7ÐŒ¦r Mq÷Í §UhF¬f¨çŠ@3…ùñÇB@È Œ„lçØFB²°1o˜m´ $ÍxÄŒ”tZ´ oÍ‚çÇͤp÷½ƒê¾öò7ƒ³r3ç¥<o‡f™~ÍEŽ /È‘;6Ëg¼úÜ[<¦}fAe Ogæ¾ÅÂJQr  YƒäÆÀ1åÉNo€fŽsŸ7-Í:$Ë-ë¼Sú¾Xçe%Çí¬Q¯rÜ,ÂQ~p’ Y°8á¸Y±£’áÇC‘Œgc k¤‘³VDA•w½¾—š±FbIlc²èµ< 4H&»f™KÍ’‡—f£¸îiLV¡®YÙäûƒŸ š)¤åÇ“E¯ž¦¸ï¾‹|[,Z\ö¦€f ²s ™B:Mf©ùq°è•ƒ«³èmYBhÖ gö],z[ºÎA3‡äò4ë,½1‘}ß5¼9‹Þ–ŽõÆzÞ[®ÈA3ƒl)¼dûðrÐŒ¯9¬Ü\Ðd+Qï sû‚f|âåÓA3šêFÉ‚ÖV^Ó\:ö2[N+[ šñ5†®sÐŒ;²ƒf|aî»*lBæÇŒØ¾ß;hFS£ƒf4¥Ù—%$— §•­,™\¹p[Y3¸ñ6g+ß4KS´l,;með»90b+‰äØÙK±•·'ÍòQÓ€Óâ’Î÷H.Ð ÌKŠÞKòJrÉ?me˜á!kÉצKÒÃw šéƒä’†˜É71H‡K/ÀÈ%;B÷’¹$Wz—WƒS¾Å?ÓÛ6~þ~Ök|–ÂÒÃÿêûÿòþõ›Ná †¹ŒÿâQø¢ ÆÚ€½yÿáûÿú’¥þ?Ýy7øŽô0½òÍ›ýÛ·Ÿœåño ŠÐ endstream endobj 81 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 84 0 obj << /Length 1727 /Filter /FlateDecode >> stream xÚ½XYÛ6~ß_¡n_ddň¢(QEóÒ#A 4h}H‚€¶hY€WG6ɯïCÙ¢×kïA¼Å™ù8Ç7¤B¯ðBïÍUhÿRø =ꥑsAx”xëúêß+’Å)KÍËÙмšDìÄË·uìýÖ^ý ÿB„’„éŸÌëÀ†;óþ`1“ÁÌæ/Ë«—¯3x’,̨·ÜPL(Œ¼eî}ð\<âþ_]Ù 8¶ê·m•/>-ÿØo*$ šÀOla83ãåkÁç¶B/ ŒpxiL팹R˜üò°‡Ý8Àˆº&§U '‚MG±…l1 Ÿp ¢8cThqØpä€ ™8„‰˜„!÷–5(z×ê'”aü&„±#ÁåV-°ç÷[¹[QæÛçvƒ·e?´E'k|ÜUí0¨V‹HøßЬë¯)ŒQJ [ŽM­ãM]/çÑ9ƒ›%€;f®Ž²GE«1|Yhà]ƒÀ2 ,`f<ÀÏ ŒyLxB]í«²¹-óa{IÅÑæ$øJZò8`)dOpÙ :²€ü?•lʦ¸´,ñeƒ>…î¯õ6¶0P¿P8W6øw5 úò»}u[VÕ^PhÁIhØÚÁ¦íj4dâ;•C »r5eÛX0·Û²ši8çEÁˆÈÜ-u}Ñ1I8wÅj5l[ÈDá›ÄðfÄxjÒY0æ¯ÛzW©AUÆiñä¶w ŸåjgT*¸X69.i”g°¤…êñ½õó;%«IT8¾Íå î1ˆ”dœG–.¢ŒD”a™ÿ*«õXÉ ‚)÷%!÷‡é¡,¶ F!k!aý¶ÃiÙ¬ ’”O{€¸ rj¢Šƒ~\õj°&Âi(°VžŠ5ćî¥$ײ0%ô@ gBžqBÓx.°)U•÷ìPÆ eйœìбÖaIMX²ÄÚs–i&HÊæ´¯–í;ëÕó¢4%\ˆ¹¸-0ÜïªÒ`˜ æ0àgð€³¡þ&36š . ‰YBḱDO´h½è zí¨)`×#²•ì ÑÁÛ¶¹C4”¤ÐÈ¢ Ú·¿,xêËj4¹GÈ!1µ[„Ao©]~ Yl”ìëˆ!ÝÞÖm5ÖMoú›Y‚õëBX7@© {ý5ަ ̦ ÌLö îþk=6i «ÕW©kúÆÊn¬â í> NþF^$ ‘‡³hQàÁµöëX åΰÌôÆN†â0Õš³ÍŒÅPÓ™k“þÕ5ªú\æ×"; Iâ*¹ÕÈڱʖ¬ªVÏÜ⣂ k=±ÃÆ1æ‰!X`'e#«oßÕ •Æš¢´Ñ^é^eˆS0Ÿ`"¹ç“·Í î:õ¥lGËŽ6NöéVóªÂñˆ '™pŒ­‡MZa¢+‹²A‚ÝkÅ5H±A'ÌLlÓ? H>C¬Ù›;Ù챈ð4›9]ÙNg[gª‘ãÀš2ÂPèÙ­ÇPSÐ>ÊJ®*»nŸLçRˆg„Rê èögéd£²#¦kï+…š \‘i~);©€F¹bæ8MÍ2Ý{ ö¬Î3£àúXà({tÁÄB½íDçD¡Gá1Àb:NwšÛP S»Î+Æõ‰lÖ-¾rè§Üêì)“ñÔ&Õc0fjåßB9 *¦Eûó†Ìs44³Ê&«ñ9«,$QM z:¢ÐM‘SŠÆá¶ÁÝ‚×ôó¡ë»R¨/E±¾1{WšÏ¼×Wsuù9xô-ËJÞéÞÇ·ª|ucÑ€\ÇuTct:3u›«êÕ¢ˆOÈ»gÆHû×[Y_£x´ýÚ²‚èÓ0Tªy <™éÜYmÝ= Ž[«Ïs ”áú$ ó PL3ˆ‚žH{®ÙÁä€S—í÷cÓ˜†¡ôQãÕ=ÌV*X+ÍnS‘SåÀÎ`kŽútµÄ²–¶Wé«îQ =œý̓>ûG´oáOå??ûhaÖúÓöôOkiJ‘4(>üd#sù›Ëñ‡•ùæ˜ómåj”>2àSѵãN÷yý°ÿNÐ;!¹çC ·ßQâÿeŠÂã½L i:Çœ"©uNEñâ2Ø~x¦àLy/›fºFôÿ›‡o2ጻä!UÆs)~ÿë«c §p>Ös/ï9(4Б¸,T[>|ëzæ^ážÔvO£Zøæ2¨çÓìôëIL«v?Ù>98{J8:«À!1FàbÃ×^Ôý}yõR8_Ô endstream endobj 69 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/DistToNearest-Vignette_files/figure-latex/unnamed-chunk-7-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 87 0 R /BBox [0 0 494 276] /Resources << /XObject << /Im1 88 0 R >>/ProcSet [ /PDF ] >> /Length 35 /Filter /FlateDecode >> stream xÚ+ä2T0BC]S]s…ä\.}Ï\C—|®@.Týì endstream endobj 88 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/DistToNearest-Vignette_files/figure-latex/unnamed-chunk-7-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 89 0 R /BBox [ 0 0 504 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 90 0 R >> /ExtGState << >> /ColorSpace << /sRGB 91 0 R >> >> /Length 3619 /Filter /FlateDecode >> stream xœµšMÏ%7…÷ý+z ‹»ªüÅ2áCŠ4H0#±@,¢dÝ ñïÑq•]v’KÞXÌUNüv·û´]>~ºÓýùîw÷߯ßÿßM=ä|S ©ÜRZèõ&IÛý·÷ï×/>þá·ŸÞ_~¼Rˆ1ÞûïÇ/?\ÿéøëþúŠAb¼÷_¥'ýìõœôõg¿Ãÿ­÷?¯?ýùŽ÷WW¼?¿âýîJ1Äx¿ºr ­ÞÜCâ;QètSj!Ò¸â§WáPûÑœj I¬¹–PÓÙÌ¡°µ¶Žÿ>ZSàb­)RÈr4—ÐÒlM9H9ZG­•\yÖ ÏâÑ*¸”µf DO-ãöžµ¶âÙ+ Tgk§ÐÛ³ëRÌ¡Çgg†ëíi¯ˆS¨O{E"¡<õŠr ¹=ó™j ùìU±ÍÖÆAÒÓ;ê%ðwp iÚÁ±ÊÏf"üé³ÑÁœCìÏ…ø´_\bèüôØÊ¡=ïV+¡Ö§­½‡ÒŸy)‰BIϼÊ!?í•p ’Ÿ¶æøi¯¤H §ã.j8q¿cÈ’GU üíª é~weÆõ(E¸óþÂ,é7ñ°òqåŒAD’ÑÇ• ÊeÁðx\y›óÙdÆHvY¼è?FBX«7š>«äé³J u—ÑeEevÙ¦Ï*ûássÓ%ù"Éžj sH[Ÿ{9|î5Ô]¶Ðý(F_ä ʸKÚ}¦(»ÏX/d—ÅÓdCirÙwŸ± n>SJ¡ï’1¿\ Š€Ë¼ûLX>¶>§æ‹:d÷÷¸ˆ"J“KÚ}&âÝg"Aár9–-—ÕSdÛ}ÆR»ûÌ ÅÇ%yz„dß/@f—åð™ëá3w,üKJôô™BÙú,tø,rø,ÙS+dñm dCìrÙŸs<|Î «¶KöÐ )¾İϹ>c Þe÷ÝÑ㢂=Ù&éð¹ðás¬þ.‹‡eÈê›#Ȇå}ÉŸkBpI¾+ƒd„—ˇËrø\ëásížÑµè›2È„uÙ%>79|n1ÀeA pÙð.ûás‡Ï|oɾ„D —ùð¹×ÃçÞ,˜ì†ä˜´\Òî3GÞ}æ(¾',¾ …¬L6Ä­%SÜ}æ”vŸ»Ž]²Å“qËeÙ}æTwŸ9ußü>.¦8c€Ê„8ä’wŸ™d÷™)Ï ²Ì ²YÜ2ÙwŸ™ãá3“oº!yÆ•bqËd>|æzøÌmŒ¼·Ý‚¤=°Å-“|ø,røŒl¼ËºÇìWÛÖgdî­Ï9>gÚcgÙcç<ã–Êrøœëásî{ ÀÆx‹\’ïu!ùð¹ÈásÉ{ àRöÀ¥íq‹K?|®ñð¹Ò°!ßbWÙã×¼Ç-®õð¹¶=pí{ à–öÀö¸ÅŸ[>|neŒ ÜÖçÖö¸Å=>÷tøÜiÜeÜó·¸—Ãç^Ÿ{ßc€Ä¸Ç‰i[y÷Y¢ì>KÌ{ Xö ±íqKbß}P‚²IÚc€$Þc€$Ùc€¤²Ç-Iu÷YRÛ}–Ô÷ ”ö D{ÜâÝg—Íg¡²Ç¡ºÇ¡¶Ç-áxøÌéð™i²Çá¼Ç-árøÌõðY÷zKJÜc€HÚã–>cǽõYòDê¼eë³ô=nIŽ‡Ï™Ÿ3ï1@²ì1@rÙã–äzøœÛásî{ ’ö …ö¸%…ŸK>|.e¯`©žk¶*¿Zªì¶*½ZªïÙJÙÕR´[ªäj)Ù×{åVKÕ=U)µZªïf*³ZŠö•^‰ÕR²©¼j©º¯òJ«¦RXµTÚ=TVµ”ì ¼²ª¥Ê£”U-Õw?•U-•ö¥]YÕR²(eUK•é§,VµTŸáIœU¹¤é¨8«r)sQgU;«Òƪ„ô‘«‚¬Îª„ÐÕŪ„ôµ†±*Èî¬JH_–«š¯ŒU ë32VYU k½2V%¬EÆX•°Ý‘²*a»#eUÂvGʪ„í)«{“d¬JëábUÂ:U £þ/V%ŒQ½XdqV%¢¯ŽŒUA6gU"º«Ò3,V%¢ÙX•ˆÝ¯²*Èâ¬J윱*Èâ¬Jƨ²*È⬠/’£³*Èì¬JD‹›±*­´‹UAVgU"ú’ÉX•ØË?cUÝYöÒä¬ 2;«‚ìΪ$›“ʪ ÅY•ŒÐ¿X•dHʪ$ëË.cUâ¬J²MeUÍY^wEgUä¬ ’UÍwcƪ$ëj¬ ²:«‚lΪ\VÙU¹¬J²MgeU.ÇZ3¥±*—ƒUÍS«r9X•ËÁªf¯ŒUÍ[0V5oÐXÕ¼}cUâ¬jZg¬J²fcU°½;«šOÁXÕ|Fƪæ4V5Ÿ¯±ªùôUͱa¬ 2;«‚dgUÑY•âžÅªæ5V5°±ª9¼UAgU"ºÐ«ÑÊo¬ ²8«š³ÌXÕœƒÆªôËŪ ÉY•ˆFcUÙYÕ,ƪP(ª³*HvV%¢ï/U‰èûKcU³"«B½ªÎª ÙYj]wV5KŸ±*{dʪdÄ×ŪDtá3V%öŽÝX$;«B}nΪf¹6V%l¶+«{En¬ 2:«š/³UA&gUXDгª¹Ä«ÂTUA’³ª¹Z«Ö|e¬ +]wV5>cUX»³*aݘ«šk¨±*aíʪ„ÍIeUs96V¥+ÚbUX»«³ª¹²«ÒeÑX•XeUBúa‡±*HqV…€ÑUAfgUÑYÂIqV™œUa TgU«B jΪ„ÔIcUBZÛU!AegU2ÆÀbUˆ[ÕY$9«BTkΪfr3VUIÒÊ`¬J’k¬ ™°9«’¤ùÊXdtV…LRœUiDY¬jfQcUâ¬jWcU’tÄ«’¤¥ÀX2pwV%Iㇱ*HrV%I°±*Iº.«‚$gU¨iÍY•${ ʪ “³*¤úæ¬J’ocUä¬ ;‚æ¬J¢VocUä¬ ›‹î¬J¢=#eU«’A«Â>¥:«‚gU5O¾¾b(½Ý؈±ýî_eÝI0j°å°´hìFôÓÐ÷÷”Ew®÷Òø*Ô¿ÿñgº?ÿ‘oL_ÿÐw­/ú÷éÿº5ŽøäÌÇwª¿¡;Ýo¾¾[}œ?C‚iÔ› À›÷÷ÏâÏï7ï®_¿çýñÛ€80¿ô@ìwèMÈ2ŽL/¾¦ÚÓ‡þÄ«"õ7‡Òºêtr}Ïû’GŠïyÓö=/ÓòÞ¶Rmíã›ÕÙªÊ[“Œ’0›Mní½aµ[í*½›”W»I´¿t(ýWèö‡2¦Ûû©šfÆ×j”¸š§\íƵ¯ö)W;Šk÷ö)Wûÿh6ðˆ`iÄ¥1ÂËÇfi(¥û±ôâ¹Ô+’Ñ~¬¼ôX,Yr[¾;²_^?¢{þþxýñ±iÅJˆ«ÿê›ß~ñáË·ßíÂO¸ŒŸü¿b+pfNz¡·>~óí¿~Ê­þ?mÐ9‡ïòµ2ýöÕ«ûÕÛoÿú·¯~yÿå‹÷ï¿ødü>íîõoÑŽê endstream endobj 93 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 97 0 obj << /Length 1573 /Filter /FlateDecode >> stream xÚí]oÛ6ðÝ¿Bs_4bIQŸÀú°¥iÚa°Öoí`Ð2m«Õ‡+ÉI³‡ýöy”b9Žׇ ¨CyßÇ»#E­¥E­«mÿêZ”°~¼ØªÚ‡¼»ý:½xù£$¦1³& ‹±D,²Bêhn}°—²Ì§×YZȳ¿&¿u,`å#õ)ÂIJü9hv=È;½ÿkZ4²JäºyÙ#E‰ëþ€+4Ñ{DJî®çGðw|×·“2+«½ìæxǾ… ûñ"­ä¬J“ÏãÁR(k6·ky’Ü=~`F‚Çh¢%x¾ÃùÛñƉ3™˜Õƒ#âL sŠ?4âøª*7k9G2oDž§Å'ó´nD‘Èáκ*äE¹)šñÿä5‡1âù^ßw ‘Èfº¬Òù>Ö"_grÚ.>^¼v¨i 9Úàu"2YŸxH+)§·ããˆ4+™ËéìfŸ‘·$zŒ¹Gx`¼è#õuV6û(¯½ŽöådÄ`‰ZÌ ]‹‡1áQ`%ùèˈÄ^ÈC½¸5ÔK-мx›ûÖ«rô'ük— çlÑÓÅ„÷ЉbèC \÷mqæpÎÁ(i­FžˆZž·@Ù*Y¯ÊlŽ[j™É¤‘s\\”•Rë^ÙŠ|Â|È‘Èèy8Ç]}y\ªk›ÙTK™×†e‰¼nÎÜÈ.«ÏÕ3™e¸ög(”QGÓa`,êŽ~¨é3› V†e$ö}Wa~´å:©°ÊÄ…È’M&ëxàÚ…`µ¦¤ËÕwíÌ]PÁm>Tìf‹¤*ë—–*‰šq%À¥Y‰G7)xÍŒ0H{ôe:|;ÉÁD® Y%ùûõ™£ÔNÒÅ-JGÚ÷ûlkh0/ 4d}B(ýaæ “ñ (ªå&—…2~cØ—‡¸»'qö‰([NÊ?ŒÕKÁ]—DÁŽøNè àß:gIëÛ²¨;ùôßš'ÊŽžÊ¥Žº³»±OBÚ*mœí1jüÇÎã̳7‰ õ•ZfÊç nÔGR ºè‰Š.ÅQÑ¥ÐÊ.K‘¨ÅÎjùe#µjjv“ªÓ¤F"ÓÑ/ÔÏ­‘«SO‘ûðUjìV]¶•ÛÜÈ…´þùH9—•òs¤ýÌUÀÂQ+7Jã5J5)‰¶Ù‡‚_²¬TRÝ`tH~ÕÕ'˜p\ËæPàpÀ±û‚i?¼c?9Z[I Y GâÜH²J[KëiŠ™ÊøwG­¹hŽR´ÈÁWÖ "Ð9:lµORÅA‰!ÆÝ¨&ŠùÁc •,ÞAy sosbP#÷ñêÎE]ofà™Z{8¶'+¥ï¦>ÇÅ»DÉ}»P¡ !(¶":Â|Éý^¾ÌE ocÒÀuVTlQ„ {Q˜´m}7â}¼Öß‘Zâ™Øò ïêG¸[é —®Ž¶¯«ºIVÖÆ.|ëÔ©*èPÐ…ÌúÑQåW‡&"#ϾÖg«ªÙÇÄq9´ŠaJ¸ë!å¤iW T+EÛVŽ™æ®¹kî~vŽïî>t‹^òßí¿.1c¼šßøË_”Ù&/Nk€?mŠDU!÷€d¯™½†¶#"ÙõŠ[6]Ê¢Twßùð›Ù§¡"}Ò" d§ãÏ˹ÌN“e%òá7ŠúÞëŠjñÀÆîAÿë_~9ÜænR@_"²ôoyš-2Y ·Û“øw7àáRëªLNzça_bwžûÀôí‰ÕÙ‘£ž=׋w›¢èÞET>×r•…S4“N¢¯9 ¨Â— yÔJ˜„؃€Œ/^Ç´WµúÉÙp¿’…„[…<»s Ûª­Æp'lÊe%òþ“ÒnØ9mkÿû¥ýåò¡ûöãoñLw²Ê]);?ö¡â§t²ÓšbŸ Z†©Ç´K*îÔÿóÇkz÷„þ^ør—ÂÃÒ~·5Z2¸ang¾âYôBYÅÙ>`Oo£ß~®Ó_:ºL4Ô‰¾4Àå®ùœ3K‹›tÞ¬NüÚBÝÈ-O ž>@ѧCÍÜõUüÞ ºz›pà’M¹y°z¨—“Ñ¿òIò@ endstream endobj 94 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/DistToNearest-Vignette_files/figure-latex/unnamed-chunk-8-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 99 0 R /BBox [0 0 494 280] /Resources << /XObject << /Im1 100 0 R >>/ProcSet [ /PDF ] >> /Length 33 /Filter /FlateDecode >> stream xÚ+ä2T0BC]SJÎåÒ÷Ì5TpÉç äTßê endstream endobj 100 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/DistToNearest-Vignette_files/figure-latex/unnamed-chunk-8-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 101 0 R /BBox [ 0 0 504 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 102 0 R >> /ExtGState << >> /ColorSpace << /sRGB 103 0 R >> >> /Length 1346 /Filter /FlateDecode >> stream xœÅXMo7 ½Ï¯Ð±Ea–¤>FºÚhShÖz(zâ¤ÑuÚ8Aÿ~Á‘4¢f¬Ínœ ‡•A?R"Ÿ>ÞHdž2wæŸéçü3ˆ¹ñèäÇ(Þ½2¿šûéÛ‡_ž]š—"Ý>¼¬ðÕõ#ðõÕOòßÙü;ýö»As;‘y>‘¹›hîÇi<ôd.k‚K’6‚‹†|‚Œs Ñb?Ÿ˜çÑ&󺂘n¥o[!¸)¤ôКÃä"¥jÿ5]Æè›C±•ƒBXsȶr3`TÙ" žj‰‡jsdð¼x°õà±y[yX?ƒKÍ£ØÊÃÍIy¨¶òè§¼0¼ðטÉv«‹’ï”C¶UálÁUx¶•ƒgðš™l+‡Hà“rȶ8ˆ«b.›º¤ÙuÄ[S›BG\±5q;b+ë’Ñ­,ÜÇ÷š»ÉG+•ÄÀhˆ—ý3#Ä ž–eœáh7pÔ2š<ðõëÖ$œÁm`+$˜Ò.5l›,IWCØ-gA3ØZù°”:ŠÜ8"„ L@µlJ¼KMÍèw©©Î™æc©1§c©±£]jöv—šâœCØ¥æ ¸ Ï( Kv'àT`‹,{emÉÁœ†«År€”†…Y›Ž¥f=íRÓÑÁMmö»Ô4ç]jŠT‡¸KM‘ꈥæØíRÓ° 0ÇajÎEHc!¤hÈÚÒj½5x^šª¼w±‡¹b¦Øõ2FŽ ^¹µ‹øGÔôZk·ÒoKè òýxügRoÏå`ÎòÍ&ÑÊØ+œM%`ä ªðb+çå8nÙVÊ«;4!w§„»:¬:¾:®«Œ¯E¦«Ãªâ«Ãcªmgi׌³Ù*’ƒViz6œXMŇE°ú“ ÛMŽk®Uœ[ªY}Wºª87º²ø®tUmnldí]Ù¨Ò¼:|šg‚vû<ë°娍GL–áAhVáQhQáAláš5xØuÖàQp–àap–à!œ%XÃ!ù^‚Gp‘àQçE‚5ì¬,¬N‚5,íg Ö°÷0S/ÁÃè,ÁÝØIÎÖN‚‡ÑY‚»ÂÐ×Ô‹w¸þÜ+"¬ñ@6"<*­ˆðˆ·"Â]çpý>È"¬á Ô¯ª"ÂÃÔ²Æ."*"·‰åScå¨gןScå¸cÛņS&û3°Å¼7,æ¡O.ØÊk¥eýK$ûóB™—¯C õgŽÊ.uKè|ò¨rÌ;#ŠmÃJˆ[–Ÿ´}¬‡Ùµw±î™,Ñ/x}ë^ɾ¾Šud ¯bÝ™Âë›X÷D¦7Ø]JÖÉ:o%-Á‹/«á¼Å/zæâå(Iþ ,…zÙÒW¯6Qõ®¥o^ ­W-}ñR‹¨Þ´º‹×)“üñ‰ÇÂTm»‰'êÙ̶œΚY¾ÿ„ÍgïÞ~øûÕ­ùáÅáðæþsûæáý‹û—¯¶Ÿ1°íB%AVˆ!Ç2Ÿ2ôÕÛ÷ïO=<ÏþMÿv$ endstream endobj 105 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 109 0 obj << /Length 1600 /Filter /FlateDecode >> stream xÚÍXëoÛ6ÿî¿BèP@."†ɲŠeÖ¦AòaÆí€uƒ!ÛŒ­ÎzT”â¦ýŽ<Ê=/¦E‹ âéHÞïw¼;™zKzgÚ„r6‚G˜x5p]Îë³ÁÏ“Áñ«qä1Jš0orå1“1{1M µðÞùÍJær:Û ÿž\lÿ/QøgÈ¿‡B/##>`‚DÀ3â«uÙ]E[á§“ƒ)ê1/æ^ÈÁà1óæùàÀ$a,b3Ù#ÍT·Å2ŽÏó‘÷²üÝT₞<ãẄPºUÎȈÆ^H)E±7ÉÁÔÉ*SÃ@îÏÓB¯êrÈÇþu¶8“"_ÉBYNyeÇ!ýk½ZÖë´BælhF£Ù3'­d•æÕZZ}eíH7+Sý¸A~Sâļ̫´¶Š7Y³ÊŠ!ëzE~Zgi“•…ö·×s¶Ç„Ñ1žu+±.•êɵŒÑVÑBŽ_Å ‚‘$Џö#õžÎ¢~©ÏÊàd‹¬XG~[áX¥Y½É” ™jÒb.ƒëª¬ž3Õ‹X_°{8@h¯°òª¡`¶°¢÷…AÙd-SYÀ<,¯½§W]ÕeŽ»6HrÁE°K^z&/œ5 Û² ð ý°-›Ã–íøUBïB‡U<Ä*þdGù§¡‰3É^\ýšÓé×ô6ƒ­cÆ’:‚õØ*+Å)¯½¶ön“µýþÒÚx¹*7V×Jîô#ejIÊäÕ86÷ ÙS«3²sYMâùlwLuê†XØî¸ÏÑv¿3Ê~ öšaëa㌗3+ŽGÝæ‘çpvâžþôtσ÷èÓh@ŠãFã„éìæP«ÞÁ=E¤{°óáÁÉ ÖèÏ ê†iL“³†çC½´A§ÞqÛ¢<ä°tþ“~JóxÉþüá@ZØÎd!Õ!;È‘µÖSp»‘åpv8]eµjNö,‰DÏð0»Z2yýæô€ ì[E øÝ‘òì ¸ÀÁô‹m,yÛèëP€É?{ýë›ß¦ç/O>'^ªT¶`#®ßOM„=8Ž”¬öí»×-x2}ò=‘Э ‹÷éE-M¯¼-Hf õø é4:Ó¨æö_h¾nÑ ÷¯]„~³B!‰y|÷õï ýÅÁªì· º÷ÌàVÝvݾ/½(ÛÂ6Em‘}h¥[Om3Wɺû_Öw]|©6Ï¡ïþôètyyþçég¥Êâÿ®Û·Ã,&alîß÷~1Äб´®Óby^÷rûBªù!ÇïÏû—eݸ9e!çP”ùbÜ¢ñu<®äZN/³í¨í÷ÐÞ¯%B àWYGöc1qvžNÿ3FÔr endstream endobj 106 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/DistToNearest-Vignette_files/figure-latex/unnamed-chunk-9-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 111 0 R /BBox [0 0 494 279] /Resources << /XObject << /Im1 112 0 R >>/ProcSet [ /PDF ] >> /Length 33 /Filter /FlateDecode >> stream xÚ+ä2T0BC]SJÎåÒ÷Ì5TpÉç äTßê endstream endobj 112 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (/tmp/RtmpEa7d8f/Rbuild18e3d82b8c7097/shazam/vignettes/DistToNearest-Vignette_files/figure-latex/unnamed-chunk-9-1.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 113 0 R /BBox [ 0 0 504 288] /Resources << /ProcSet [/PDF/Text] /Font << /F2 114 0 R >> /ExtGState << >> /ColorSpace << /sRGB 115 0 R >> >> /Length 1383 /Filter /FlateDecode >> stream xœÅXKo7 ¾Ï¯Ð±EaV¤ÞW} @ ´6ÐCуa'mŒ¬ÓfSôィٕ³ë:èaµËýÈõQÃo4¨^)Tê¯å§üQ´ÎƒÓ–¿(FþúðZý¢—¯÷?w©îö ‚ÖZÉqWá«ë#ðõÕüoPÿ,¿þ¦´º_P½ZP=,¸N÷Ã2ŸzQ—5Á5IÁF….AòÊZ‚h 'æùäõ¦/DC"Rrä…hp¦/DoR®-ø v‹«ýn¹.DÄÓ7‡b @N8d›bª+ØU›"£ÕƒŒ£»G±…‡±‚ð(¶ð°> b ±¢eáÞ1=}áÙëÒ"‰ue[8XDámá5X-²ÍŽÀ b²)3Z2—mÉ\Là$sÙ–¼èIò’má¡ÁؤäÈÛîø]¡ÕÃâ"øÆ×Ò*Ö•½4ÿP !4PÚ¢í¾IÐŒ(B‚¢vÂøXa qzm¤þ ±[{YËc¶s›íàAjô&5 ©e#D7e”´^·Éäâ„´þ?FGSa²`Â6ˆ¦©‘ ýð¾Â¼«ôÁn Š|[<pq“›æ¾QðäÀÒ6ù¿ì`tÚ¤‡Úô²LkW¸ó mņ´É,`›À„M†L] qü{Tw¬ñ¬ŸîXâÚöÆÒèvñ¤ítKZ\§ lêÅ-®js3¹ZwKŽë46aí+“»ÅÚæ µÍû5* hL¥¢2Caª¶>,H‚i]J»v)¥¸MѪ¹}<.ÓŸÐËk©ÎB¡ÍÚiž/ÐÇã_HŸñNh’Í.1y›58›FÔ’¹l « +¶Z]×rËqB»«C“òæP¤º:4%oE©«CòæpL¸Mà±eœÍ¾"ï! ÍÍf‡“g¡ip6ä¸ýv>²Ý%»æZ¼§šºÑU¼Ó•ºÑUõ»³‘õ¹±Qå»9.ú<»t–çYlVç!kHuÞg‹siIªiunIçkóL*¥¹öß,æøÑj¢Í¢C%Çáj†R{Ÿœ©¼¼Y4 f5ïã:í·¤PݼÉ}ë"ñ˜Ú+=?EˆAÝìÔ_…û/ÕÍÃòÍÍ–ICæíbáèäÿÔšw“p™¬Ž×«Á¥5õ¹±¦Ýâtvl€~5=öEîãı|7¾ [Ÿ‚W¼½úÞ„ ¼¾ù^„ ¼¾øÞƒÉûà³VÜX–ù³ N†‰÷†›[®÷y‘‰øp”«}^$wT¢RìÏPëz\’‡§^©zZ’g§ŽÖÃ’<:u´•†£Ó)UþtåuaªŽCåG6³ÍOðΨµñ2›WÞï÷ûÛÝŸï^«ïow»·¿«û·û·w¯·DŸ1»˜òBd‚†ß‚ %.ê:ÿû¿?žÚéÎþ,ÿVž( endstream endobj 117 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 120 0 obj << /Length 721 /Filter /FlateDecode >> stream xÚ­V[oÛ }ϯ°º—Vš)ãÄS7©ë’jÓÔI©÷²‹"'¡+g±ÓË~ý0|¤¥î%}1øóáûÇp—N;ضÓ#«G”Ku#ÃÓÎÇ´s8èñ€`”à„éE@ⱘ]œ ©Ð4ø¹_—‹‘<ø~YgWÁ_˜cC”«”jÊ™JNd¨ñoÉ@ ëY| \ˆÊp8Hð&QÞE´«>†oBNùþ /j±4ýº„v&l`a:¿õ% “8©¢E#¨%ÏE!&u./ÍëøŸô›**£3¬‘’àQ•ÿÕVëÌ­Í1Ì% ñn=ÝÞ«­Kâü> =^Íwµîãý£\ÖBõÏU~ƒì%­0 0Öm…1 ‹[a‘…EÌN£¸E±ÖdñÓ`] £­°Àhû  ãÌÀþÊ Ô‹v†¿€Læïl†ÝýQ­ÆU6_Â]ŽO(ìÏÁI@ÆåÀC%ð"š9!Äq†XÔ³›úì[Ú6)_ J›®M ;&å•éÙ6³¢Àþ·Z»4Zos+ž³VBN@⛼ž™ÞRd…éM³:sK®äM^¹ªÿg=,VVÚuWÔ4¯jXZKå°ÊÕXüfD¯®uzB>~8ÀȦZZž‰l)lY÷ è¥>ß)5#›l:µ¹OmE;)‹Õ\¾÷ê#DÏ$f‡Š˜Ceïj%•û–rϧö 6„Æ®Â×'YQìÂêz4QF—B–õÝBLwag´ºÚ•Ò•¦´ ÏØæåT/ã2Ëæ¯Hä"_VµO„3×|¼ˆ!28þzÞßù×Èr9Ï u ¿LŒBÈW> stream xÚíZ[sÛ6~ç¯À[ãÝ ‰ûe§Ó™ÔŽÛÌ´ÛŒãîf×ö-Ñ672劔ëþû~‡’(QÔ-¶:IëÌX œ+¾€`œ)¦ÓL8Ï ªŠY¦µgޝžÂ±À¼Lp¼c BªH`Œ°hF“†IÎÐ,™D“tœI Rîщ§¶L^;É”eÂXÍ$ÆYéàgµŒT+á ÷P@b¨‡<…g¤D ‘º„ˆPj &uÐÌ@´q–…g0DJedÀÓr¦ž!0þ¦Æ3Å1ÞB%aƒJJsË,¼` ”…ÊVe•ŽÀB˜¬ˆA;ñqð7†9Õ!Ä9ˆ€>ð§6ï ’ìôPÁÂ)NÁí#§ñ„}p•&ûàmáœ'“”a"”—,ÀTà OA2c o(BPýÞ™¤èÖ,Àâ-ñ\0KŒ—0œ´±&P‹†™2<³¶`&XN„âç8EQt‚B†ð;å(ö0Ñ€·d»¯gs ‡õÐ ³ÁyØ'8Ì hÅD¤ãMáQA 0w˜—£%l—°NÔNAd¢îU ù…áŽl‚¢Þ!B"à°3Îh‚ÁmA^D`0ÂH?Ôd¯Šb>g@+I4uY÷­Túº u)xý¸ˆZ*Õ,¢äÝø²ªÿÿ!/>DÉ·ÃQ?ÕÂùEò}ò&9<õ?¤m¯bgÞÅ5Ö¸ Ó˜sÕÇÂ8½bKnyQb`>,þËrË>Õ^b© b‰¼a¸‰¥Ó›ÕPûWÃùØKÊ<vÈuäJ ÚðX ±Y Á÷¯‡ÄŒDÞÔÂÄ‹’V6öVnÑC,ê1Ï,ïÿû?ZeœqăãÁàb 2–ÆÍƈ8¨-DÊøXû­TZƒ•ÞFÅulÃ’âÇH‹µ+Ž)=›iÕH´vZ§…ÃOë”žÃ´Ž¥AÎr.K©§u,rÂ"’·£aï]†ˆ ³ä4{¨–³áR‚Vf9A+õ1 zÁ~½[ät;0È'+î?-Ú½Ö7‹þ€çݾ|£yÇ7þ‘¾ »ù&´|cEˆ%v‡k|3·ïcýôXtæŠ~Ì\äþ¸—Ø‹»þÕiöþ¥ˆ5‡¡5ÊÒjˆ4ÏþEš8J«Œ½8ú'öÂ(+ç\þ‹¯8ÿ t?ûÛHNGéÝ]Ö‡ÒA £Þž¾~ñ—iQ.§7yÉð7ÑéìßÙ¨„h¦bì›°q´F½”±)ËÎIGöC~ŸÑ]°wiuSf)»Ÿµ±Â¢33{£1bƒÔwšWôœ°ï`ÇMÞ+ÙOãên\,ºó„é)xÑ'íˆÒìYÈðÔ(¢ä_é-õI$û´Ìê–|Ÿ î³*ï¥Qòºè ûyqM¯Ó8ž%o‰¸ÏL=§.„Ìè'ìšÑÉòâUQæóî£üê*à ¡©„žInób\b7Ÿü2VÙ »ª°ÕIëË2O®Gé}–¤½q•%½|Ôß^ ²‡¤Êý,¹M{£a‘\Ž2Ð`HÚëaò%ý"ʼLb¬nýì*AvÒÃŒ Ò¦ñf\\§£ñí WÉðzXd’^JüÊ»´—-¢Tï–è´^Z£dð~³…Ì` ¾}æwYÖçÀ÷?]þŸVlbõæûù”t`Âr:0îK:ØK:›¬ølÒu+ÒõÏ,¿S:h‘á³Ã´‘zíþpÛëÖù9λئDòl»Î{»ã_°ýŒ°íù l{ñ̰íÄNØn‘IúTs«?vß¾¸nÏñßÅ6¾™Ú§`Ûëel{¹¶ým½ÛúOƒm½ÉŠÏÛA®ÀvPÏ Û~·/M~ùëˆqr³l/îç»8Ç9Ex ΃[Æy0Ÿçf;ÎÍŸçf“Ÿ Î騫 tœñ<3¤»Ò[d„t;`h‡/“«½ùí'vOú‡S»ÎÑwŸßv;¾í|ïß®·pÏ ßtb¿ ÀÛt´"‹ØkõG!ÜÒû“ .y÷ôÜ?âd»Øábµí‹{ºAWV½¥l²pã1ù‹så,~îðzMÅ)·TÜQ1 "£âœkNÏ~CUÕµƒhËAxKÐa3ºæÜ£bÜü;g›SQPq½(¼hÔ©IGÍ¿e3²Kš7ln¨¸¤bØ oÙ•·y¥ £^[ÒlÐ97¼a<×랊ß { UÚ6oFP6~i|’­oÄ¿ëgã÷r…Îó)û²ÍaÐ36wí€ÌÍê/Rm î\ÝÖ¸Á 'TŸlR˜î¤øy ?×°W ¯›¬éË9·m³²Žß ¯¢VT˶‹®úÛv,ªŽš7+åU¬¦uêÛõ7]—~‹¥Ñ3 ¼­)è.³â1®-CÛ€÷ \…ÄË•BKÀ8ºËÍë«€¸Ê] ¼öÝ¥ô Ow'quš'u¼ž€ÕÄ=ž(¼íD,Þƒêæ‰u鸌ý‚½ÓZ­Ï„bÖ2ó¹"³ºt¨O¢C£'­­˜ñY 'q˜Žkh©_;²[›º¬£2ï›x‰jø]> stream xÚ´{eT›]Ö6înÅ PÜÝÝÝ]Š'@pw(îPÜÝŠwŠ»»–â…¢ÅûÑgÞ™yfÖüýVVrçÚr®}öÞç$9÷ ¹ª“˜…£PÚäÊÄÆÌÊPTRwt0±±2‰;Ú[Ø™YY9‘¨¨$À@SWG¤©+Àãj P1w}sØYYù¨2@ü¦´˜y”€®¦š^N@6­é_@ÕÑÅ•ÉÌÔåM YÙ€€to.ŽN^`+k×?cp01ýé·83@ÞÔÜÎÑÃÅÎ` ²È3+1”=Þ„6ZGÀ hmjo p´huZRêu-U :æ·5ÜœœÁÿ‹„†¦– #@RLYS ÔfÈhihþyÕ‚Þâ·b(k¾éÿð¼þqW’ÒÓÔS•bcù3Àv±ùCû_±Q¿Eøwho®–`G‡¿´Ö®®Nü,,ÌVn.®ÌŽ`+f'û¿âÓ´¶qx8‚íoW0ÐøWbÜ@oétµþc€?%(Ú˜A.À?NÒŽÿP:¼¥òÍéMîú¯ÀÞáúgLû˜\€Àÿ ±6uùËWQUUà`jr‚LAæo†®¦®n.“¿doO Í?$ÜÀà?JÿTÿEóÏÐÅßffhïãgêñß3¹¹xÿ-7ÿ9msG‹‹«Ë?F,mì¢wùS3Ð_2%1e9i) M&Å·Æ1)9¾eÄìêéú—õŸñÄ$ù¼¬Ü6>Në[“J,$Þ¢vAú“>I›·<¹:‚½Xþ««í@Ž Ÿÿ–ZÚ€,,ÿdÝÂ͉E dã씓ü?Û7Ò¿eV@W+è zš[³ü¡ú«SþˆÙþˆßRàçãäè°4µwúÙXß.H>.¦î@€+Ø èçówÅ"$6€…¹ë[“¿-¤¿F—Y:øþ!~‹äŸªÿ+?í_‹”îm…Z8‚ì½@K$eG×·f ýÿ³Æþ‹KÚÍÞ^ÙÔHûŸ ýo+S{¯ÿ´û/àŸPiÿ‡³‹´'ÐBÕÆÕÜúYý‡\ÎÕô­éÅ@VöÀ·Šü%Òú³ŽìßömÓ±ù³g˜Ø8¹ÿK÷Ö‹æv  ‹ €ûnÀ·üW¼o‰ÿ-€ESSLRI™á¿Úå/#)¹£… È ÀÎÅ 0ƒM½Xßz€‹ àÃöÖÊ@Ï¿šÀ rt}s8¹¹ú,ÁH ÉÍ`û#ú ñðX”ÿ…x9ߘÿ…øx,¦ÿFo–fÿF|ó!®7¹£ýÛ¼ÿ)ace°Xü ²X€ÿ†\oڷ雺XÿÍäüïð-N›¿Á7 û¿Á7~‡C¶·ñþFÎöÆæø7È`qú|#ÿ ¾¹ü rX\ÿß’àö7ø†û¿!û¯çßà¯×_ð?ëªúgCûk½²þ»Ðÿ·Óÿ…5\ÁŽv@‹·O¹¿™(™º‚m< XßÛ›üíñÏwFÿA@õï}âoÞâ⎞>Lœ¼Ü&v>.7+ÏÛ88üþÃ×ü›î_ ý­$ÿÄv<è 4GZ]r4µMo¯ð—*š©„¥âc>«ÆÖ•O„YÍœé$—ÌߣеfQ;*Êòù§Ju©Bqí_·ÚRj¦o,ÔD¿™ú+ù¡I‰çi3kg)­VvSÐËçê•qÎeµ'¶“´ÆO$ø:{bÙ§~c^¥QV¶oÀz”,°µà€í±ðÒÑo…+‹#ô×±–ÓØuîO7Z+¾H Ò¸ñ&Vú$ïR?ŽV}mJI/Ìcvõ׿Y]þ©Ó‰ä=Øî‰£äK[8ÐÛ˜óÂKÚM‹YÔÉ­¹ {fËàu/Ö!•Qè^>Oô›xó“ágßwàHdqKa~.2€ëèû·ã÷véMÉÁä súhÄË—ìMK™^3a M¿ª‚2–5û] ž^*°÷07§§RQkˆgƒá–K`gï~vu Ù0fæ+•Ft¦á9¾Ê¢oöÕÜo³ÇŒïÖcÐìè霈}ýÙ{''v'!à9ë§ác8IñÐæ˜ÞGi)}‰_¥HžçÍ/ÌS1-_( .ƒÖãšYZg¨ÕÕלüIëôœþí¥†H ưÜÂ\ºçÀÒO­½¿¥J)ØÛ9\¢gåfNí”<ì^óÄa"ÒXî>ì4‚,­¯quµ„õ²›ÙV Ÿ‹’f¨ö>‘B´ùŒÈ˜%€7nH*%aÿn¬ý Û›:‰¹.ïeÒ<éûã¹7ü鑈9Þ¸¶#×¾ÐÚižéß¹ü‹,Ÿ:a[$DEá=ÌÊ:5µÞÁÒ’­Ÿ0¹úÜœ‘íj@›bÑF1š`è)†sòDÇþZ‹ÌÝHpÓGcÓ¢D@³¥o‹i EÐù¸˜®«.üš GÍ“k#âò³®g ¨à+X¨àÌZ¡x‘L±2¿#j¤.°Ѹ……Òøñ­®­)Õ'”¡Ë)^½(ÿ8~˜¸&²ý$pU½¤ÂUí¡Äz¿Ë:Ñnßín‰„©TOh¢»íü=¤Ö1`ÇØv†%¦™n¨ZF¾ÿðªB„5^ê&RÖÙ«ð˜T9‘Ì•Û&ähÏ^QøÚKÝ1ÿÉm‚$!~”ƒ¯y.}•sø'±|ˆØ¾ˆ= fgaÆmÁhôobª4›oµÔ|ÝHSªu'êAr/þþH”Ãz4MÇwé:æxöïÌ+VLæC%ò©ûßo'D};îØ¯FZ5nÿ.Lû£Á*F˜³ »îß%ûh…#‰õ8Ùnv_ŸÞ—QUHX5ö+ %vÌ: ˜ñ: ôÓéÓÂqÀiùj屿å–5Ðç›[‡gŸ˜†Q½§ 9u/d?—¸tIA§ÂùWÉp\Â.y÷kŒð;º;SttÂt`°0~ Çìtã$ðx餂ԘõB… ×®“1V)–§åXW$Qüs‚­|6ã»\æk!¸o4äü…êù$±—wüòx?¼Vw¹‹×ÕæUµ…¬»­§Ò·˜ÃãýÏ¢¶N[é’ £á‘3PÝ_Jùôo°GÃØc‘¥žÃ}©é”¿‰š}kLš›dS·4.­ÖƃIÛ…úúqì•}‡v-Õè^4‡ŒyŒ°:D`+œµõd)mØÂk]nã°ìf•€h<ë© ÚÄôáÏ­&àºO“õ8¡Xý¾@åÈÆÙr]4Ûž/v8ØÕÇÜwëi×D¨OŽ‚³nH4œÆ £ìe=3of¾s3BËçcýðäã4HÕÜô¤÷EO¶”HAº‰4Qâ™ôwž Î™+Mt@%ÎB@ƒ‡Y%"ƒ‘”’ùÔÛPÍó©ŸPàY™Úm!@:qçø›&Û{ã‰ÖçûÍêh,y~eKûp§¯ÍãGzåæy\ÃK÷æÔwǪ(æ×Ÿ@Œ2/6Uìª>¤¸°’b[u  ºÁn¶wg¶ftc¼\–-¢–ÿ¡eí:¹i*ŽpÌ5±†`ÁèÔí8Õ)ƒ¾òF×re‰‡»àPÎÞ½ÖKõövÅœIá,ÿͯIðnþVuG¹úlÚùï«ÕƒÖ©˜‡kZËš±°Çñ„Í{â,З嵠, ,XlÓR]’%ϘÒVõè<†Ø@A± f} ä‰CÆåëÁ^á][210¸œyV×0¯?Ѷ`ÿ­[^w r2øsël¿Í§ætr€ìKI¯„ªïûœ‘þŒT£ –<­¾GtyšvkÞ?œï¾LÒÔÓßC)K‘kÍ+È˪!Ï`UTd/LnLc6<«-aÞ£bÐw#›K¨ëxçõf•oìÈ}—õ™ð`ÍǤXÛAŽ$3ó–̰í,3Éu³‹úžb¼lï €6²øà9ó_Q8œwÓ ß^kËÓhçjâˆ2y4÷s$[Éæ uíÏl™iBçÇú“ôDÔìͨ܎dNz o¹¢HŽÍÝã“bô~¶èÉ%¾|{=H™Ç¨Ð\ úô "}$GºËR2Ù¥+,n "Ü»jꚯ0hÂ÷0\BªT¹NúþH^v¼IÅñ£bÆ!±à¡v˜IšM²mí÷~ó—Sòuü‚Âz ³6z CÈ.ÅÁôÆÔíx<£žKï¶ò/ÑsÙj\"r"ûýàýˆã™e"¸eq¡žE­ªùö½ùÕ Óàä!0¬¦#6‘sjè;fßå^ª°AßÏó7ªö©9øÎ݃n®#ˆ6²'y³•ؘvϱQIà ¶éèf©=[EèC:lý¯¥`u™ëê†XE/‚¥¿ÏÖ!aAï_íéóÕâî·, ûŹ®L5âMb’k~JdÍ•˜´¨7 cøh6U˜)íB¯êDs‡¿¿ð˜MMÁ£~Hñ'DôçæöÉ1Ç Á’~ÆkhOdÀÕÓìJ/N)±ò>»Lˆãmpêp5ô‹ƒÆÚ ¦ïÖR20KUar²liD˜ïo.·A+!Ú-öř͇foÃÉ1œyŽz³(¼1¹Ðy "«hú 5`ÌЉ»P¹fàUpבW•[%7ßYi‚<ÆÛËI²™:-“Ûgù÷ÐËîßíŸïp|§hæhAç]4JfÝTOdÂ’úø¬øÝ¨ê¥1zQ*(rÖù6ž4#Þ¾Ïk¤ìÅŒàYruúñâ‡TXåÏc­«õð7‚[·sÅD†[³‹®ÎÑYŸo¡î§ÓwvKìíf‘k¶K;ª³2|{ðw×Õ‚ÞÕ pBR¥êáãy—–G“â+›»©q1![}X˜غŸ-®V|óB£u*½ÚW²©ü#x‡†Ø™±ö’86„“n‡y’<ç Ö°döwÐø¦':‘á¦øoM¶å t…c#]I´FÜü|Ô*ÖÁ˜Éc±Ñé©íÜ¿EÓ%¾,{•G„ÃQ(|•h©çÈ…¼ V[é©Ý8ôb±Ë>¾›ØæÁÜ6´kx9a‹¶Î¼KMJÃ80 —ýo™c}<Š%,î-3ÔI¬¶ÚÎÜ®uZVs¢êèöÁCâ:¶ û–sŒô-{õ&¾Š~éÛ4ô㮃ÈNOª$ž÷òûd³‚ŒæÓ ç5›ƒxz“rÑ –³Œ´sMeÍam žÃ÷ªt6gìÇã¶±§ˆþöqpÆ!?”ËH.½Sá{lc@Šì¢S–/]Å…•ÐÚéà” eM eÒhÆkê¶~þ÷žótßs¬ƒ®ý>µ^küô»ÝO÷ç]|.gñ,Œ§lˆìÄUôšô"š/sŠúÕýq»¹&%7ËóÕuÓ˜ÿI2-cx£ÇçéEÙ¶ùç å;}Ué0N.À©³GÃÅvZþZg2…ö;×bsîzˆ[ó‹UNµ´Ô“ÖúX¢¤XÆÖ±»–Ù+X\/~µ Õ`fEërø¾¢§¯§æ¹ÛÇ”#¸´Š<ôa4ø Ê^‹JBAW LWS·T3îKl+o=’Ò z“TÉN¡&¶"KÚyçþYÝ‚vàÈÜ‚ïùp¾ñø×Îdé"¨ÇvR·Ç-IluùÄ´š]X\´8OŽU‰œàµ&MoÕþ¾Ýè‰×Ÿ=õ²»ÞýŽ®q]²Pg Ùä $Ÿ˜Ì!cëmÍl=„Þ«;®dl¾æ¹™MÚÂÝZî}X#Çé4×ëלÚ¦ÇÁRX¹"£(SæØ£aCå±´L ,ëA>'ðù4:y?O@á8nC=•2P´¤BÖJ褳º¿M‡Ù` t§ó¬m,yÿ30¾”  ¤)„Õ¹[°RǪZÿE^†½ëS’ÞËÉWÇ‘ÎbÎje èŽÃnäTuêÇŽç•ýÞ,±íÜ^ÐÛ‘ƒÝ¦ £åu}9duèï*Ë%®©ïÏM‹¾.Le&ýÆÀx”ñ|U‘¸[IF:ôª‚‰N¨ÛDsÄV\ÉÏI}ñÈ<¿Ú}•/ÇO¢ñ4ºÕ±É3œsCÏ›ãܧJ¬¤hXÒ:Äü#?5ò3›­!‰âÂû4©÷åNÓ(öu!#Ñ¥9h&[›BjÒ#°V—&Æ„Ÿ‘¯Ï+÷(¥•^%Úö0mI¢1À.’Út—i=x!fùû 8UòjåïÅiõ7i< 7¬Z)‚ô¨®4 ªÂ;L{ì6­>äáÍU›áPç*«­$’Óg˜É×Y­ky²#»è-Wyî9ƒ¸à;z†n2Ø ^ŠHµÜB†5ÿýËñ“@³ìhŒá/Ĥó«4Eì–ï ?ã)ﯞªî5¨½(Þ¼PI´\§ÌÏ™mNQȯ½l>éN¨Yx/üº~â¹¶ß}fˆ U mŸŽù5îc¬¶T>4…¯ °–V)v•àϲ#€á§²(èÈt1ËóDˆvóB$3y8NÜpÚ­cmïc/릉ؼ_»ò0ÍÃÀ „è*?lUQÙÞë!×ê5‚xì;·÷¡·Ô~w}QEË,;‚ŠjIö×?7ˆ÷PÅÍBý›é»£~Òé¥ÕìtmHBùÈœý–>ØÒÈ¥LŸ·~Öñä —Æg74 oòHgÅâå;wïõnŸÿEUæy±0ýjÝ®}je5ÙOw%DÄRŒ§–tzÌÆN IÅûhJ‘D£={‘mVúó›nGÚÈ1Õí/^.ƒçYr B0G×Ýme¦¹‚Á:¸èd-œáÃZ þ½^í;^ÑŒi¥X…p.âhæ s„£ùEà>]Äf ´ÔËô /?Ù}” Ë ³ÂJÒš”üLbq«7KhF[%V³”á™çŸ?‰8Û‹ÈýwÖVr„ž™ÄQl±–„w,æ;,z"™mŸŽáRk¹û—Úý ¨T?b"™Ò×XР껫P?ECÆ/—énjóñüfÕÖÏfÇe‹ÃopRVYZlVÁõîâžú1¥`G†WÅSÐÀ@æHÀþ4N'ÔýѺ¤5¾ª~’ Ófrz9ö<8º¦Ÿ ªéÔRd95ÛAãÁ}aø„¥´/à¯Òü6l¸HºNÑTÉ-¹ÓÒ:Îã¹1aK—»×ÁB‹¢î1ÏpxÁúw-ÐõÙŠéplQ<~^ÀN_¤1?…ª¨’ç.êrx]ídƒi™Ç1ùöè±õa·Ï¾yñ*!”!ÎgñwyÔcFº°9À´À+Fs¿±÷_)¦ïþzânz-Ç ÃžoxÏr-ç(>äS.ºw{1a­v^•ÌW=ß¾¨nî`tDßlAŽ’ÿDù¨BD“ëHìK·I^Öç²ØÉþŽa ÙãÚ5eÜÃò¨¤²pj;¿ãÈ#פC:˜²¥tŸ êY+2ÙCãW,îwÚ6k¤ö“Üç^U2yè™Èì(a¨+>b•ÇÑêÇžÑ ´¶,ÕzL·´ƒßÛÊ4Âëº-$ À;ܹÁYR¸ÍÆ2ÏÑB ßwž! UsqVKº5Æ_v|ð˜Hä?Ò[Aóâ-u 4Ö)˜Ùøâ2ª×Ýä†*Õ"›ÃÂÖÃö-2P#ÛW‰©IŒ,9‡KtÌZ_Ã~ö·Òþ÷,‘Š‚Wlù$qgÄ‘ «²Å9ÿú/Y Ö\=xm7ÂËx5¨½²NõšGÇÕUÂ&m·;ç‹»¼.Eƒ ›dˆbû%)ËÎ8záÁYÛ¹O|ÍYÛ`INPáÙù¡ ìëaýI²©þÓË\n :á{æpÕôºÀÚi/¢¡;'’›gÕu³2ïK·µ¥}Ã…1ŠJ“S²Ù>SeÜxéä§ÜDX×UíŠ|8­ 5¨hR¾Ù û‰µê­CanäBièÒ&ÊO‘ÈR.Çn HŒs¤ê@4ÉéÛ§ á•6ê%>BðZ$”—x°J›ß>*dß°v~œb/.ì§™—Œ¹ŒqúÓtÊ ¯ÏÅ®óaï6­XJØ–íÍõælu¥¶æ»FIø²K~N–÷:ûfò8'8­“r";[']¿<ßú°¶»úµöžYÑõ ÛbÆ~Jöö¾½ÚÕ…Üq ø¬<„@“½é‹)'x!wº¾z=Þǯ•TPph4Ÿë!P¯=¯ÊœÏóo÷Zˆ×ÂÆÕxjy$ £?¥ªQ?ö`JûÆoò3—‚c©ø——¾ˆ5š¼_‹ ¢š‰Óü¡>3G¿o0¼è©jiÝe›X™î55 õ¿ÔãŒÙœXõ*"hsÑ’‹¹Ý¯< &)‡F*"ÚÀÊéüÀðS<.N€Ui«<ùôDð»ðâlÚ¥Uã[¾aºõ\Š+ߪ!±è¸„(¹¨SN©•阓€mhí¨eæým–Ö2rš-q’j+Ø_Kë¿ÝxùêqW·&qÄ©R™rõ•øÖWt3 Ì„s&BãM»ÚúÓ¤ÍfA"êS >OÛñÁüµàšç©ì *ÿA—·œZf‚¼Ø­9†¡À·qyÞy¤ƒð¼ù.§1ø Ÿ´ aGŠÌ¥ˆi5'–Þp×Êèê;>Ó>5Õ‡³Y"ÿì_%©iÀ}ôo”T¶Ü¶R¾¢cÞïCZ½¬#À”ð›ÑG*À‰–˜aõ%qÐ烥ÓëXüˆ˜‚§ªêáaC²a™y=m'ÆÜÚ¥©½Àv:SkÐwª^º$4ß‹|%?/¹Ã$h]9ÀY»ÂÊAèòËm*3!ÇÔ'le®Ì}v´Å1ÇvÊOë –£ ë¦7¥x¸/«Ô 7ö¬Öe8JúÙgiöh=½ö¦[Ì:6ÁìGHaV8"ó°gŒ2©’E QÊmÒ56}Qûsõ‹oœy¸ZÄ2…ëeëqF0΂&‘X©ê:ÙéòÎpã]v©ÜÖ&›­â\ ‚ÁÎÝàÐEª}p É{n¬d¦ÝȆÜo\´$dªWºyÑtï2…Ó‹~6ê‹m¼_ÈEÁ£ìåóÿ~Xú\ç´»$á©8fT›_’GK3äéßÚ†‘º§—)“žI8¿}.Ù-‹Nå«F,ºMâ"pÀxNôðÓèAŸ‘Ej Ì”K«`H$Õ…ÁùüxZ$jœ–ìW–qz´hp¨¡ŠåÊø{¯E;“ÒÚÄð\ng"B7¼¦˜‘µU÷ÖH‘í®jïRÉ9 ÃI|„ÝS+FdD‘}T ›o÷ïÀúm±Í–QÛ7‰@‘=2ÌžnP†w©g¥EÊ4í æ)£Uk¬t ûjõŽ·`goBOÔÍLŽ DÓh!­Ú ±gÑÛ5þJT©ô°ÜixGÑ%mú&Lð·„ŽÊçç‚9¨£‡¹l}n_*ˆ§Îqµ³­1ˆô¢#]Ýóׯ£éᚊ´£Ñ"CkL¶ZT(`Wµ ížS[bŠ'mÝÛVÖÀt¢°Kõòû£—¥ü#«—BÜݚ؟Ò8›eðÑdÝ6õ9g]ˆs|ãÚ4øÅÞ”¢{„„'7fHÞñŒw'g6(T•ŸßcD‘ª‡¼< šÄ_{}Þ²{¬w›]u;ÁR°¯óî»%ŒiÑC´Ìo©ªPª3T1X=OGb)Xwò ØÊò µö5¶X$^4`4Ô¸AÏq&6|eýŽLJk¼”¾”ŒÓéûiò{ÛØ¿ÛŽHDkìêF,Ëó7_™+í@©‹£Ÿ4y²#6oÌN5BͶïµ””(Fñm‰¼ï¶XhZ7P{A‹áÌ%ÿ®6 •lð#òÒª%ÍL/!¡µ][ úw£Ù½¬nѱ۾JŒ)^ñ»Oš•šPwŒä³vväU¥6ˆX‚òù¤t“Wß}¨KfÞÛ`|·9jÉÉSbTpų~x¼Cƃ]aÓ‘óÎ@?óbµ¦#ÓÇ©n‰Ãž÷ÅS©ZK§êT[ñ|VÖR-È$ʵþ"ñ’•ôÈv+úqv6šú³;òµ©U±·è®›(-Îñj!O.Àaoð}«­pÈÈsÁ‹V1†˜v¹¬¶ýÿ¸gÞˆX˜ÿØzÔ !/ûí&ChûÃvòèaéÊ«Î@ZƸÁõ­1¼‚à³2à%¶ÊÂb×tþû^eUQ4«c›Q ŸÄY=fʼ”²Í,ýüÞ V&¿÷6v¡QMç’€uÄÍ6ôÅ?°qÊ+óG€"WX<ÄA¡ `ZÍÀ'ê.ø( &÷“;éç\õJoB_ÜsXAËÚ-þ*—9&¡«†Ý‘ˆi0+l íÄAFn@U–úüe‚NçFÄ{’ŽY鯽m¼æùÚ3b_®†åM–´cï ×%ï´?OíáÞF*×ò¶üx|²è$ÂYM“²Ð²KòzNLÙ µt+Äá~0×O—Ž‹^ë¼qlg-øÀÁ9¾Êm§Ÿ²C"ÅMG-œ>ºAН›a沞j1IŽôõIIþ´æžàkFãP ´jS/,¥cMXºw§à²á=âöŽÚä.Pl;¯=m#V}fÞÙç¡ók¥'öÕ©4xmºí¾É¬6ë­©wûú½Âtñ·=ì+ýã—ãŸBÓ‰L&íÈ™¤bdη̉œYKâÑ9Äf¶ëGÚú¡&í»%FĶGYÍÙ÷¤{ÆDFÁø$uO¯GTõëSÂF󪭾ɵ/>~R÷ÀZÅ"f"±‡ñ îY{gÖÊjÆcÞ 6Ruå Ril‰"ì¨ÌúSL ÷èw¯Óeý‡H¢áWj!k+¡åEBÛ1Y¹ðùmuÛ¥ ÷-¿+(°Õ>fçÙQ¹H Msäpp ¬ñmÌŒ8:ÇØ›ëCÁÄžÚgÇy=™R’JrïaЧºd㾜ÊnlJ|'õ•‘uÆœ·põq[§–_2ÉŠ^€µÃï9öÊ¡ü…ª;Ðæ\Uù¸ÿ:3™W²ÛJYaUõ(‰%ðPûjjˆàv*` y¥m#q¦)‘Jéîü&’‹A¡[ÞMDHô™E¼/i"4ÏóÓ>OzÜoè^îwÂGõÚxªÍ—dN´—ágÌuc“ªi 6AÌaҥ˹ϼIíQÏmb¼ö9 BãøÎk&z§+­ªÂÒM¬×xû•™!33qÕ"~ŽéoÇŸ@OÃP7µUGN¬I˜<Ÿä>¢ZÚ†_²yÉ«”ßcžý8ùÖà"-<=–·|‘Ôd8 (¨ôO ´j€­«–¢¶áe¯Á)U •õ¦p¦†T+Æîû^O¤Ù©Y.Š ,:Aá„ftÔz%n(‹JI›—X ÐIQsÙD›Spó;LÀ½l֖ƪ2:>èÚH¯#].ð~F&’kУrz±}ë”+w`znuý(ãÔFx¸ŠxÈ¿þW%…»FwRæÿÍÌÒÑ"-}¡u,=Öv$ÛÈÓ©AÝѤ¯õ”èª~ô#.&ô+%®¶¼T(±»‹>7òå…bA˜£!ŠúITH‘¡©û ªõ/\r¶6¹·hô ž“ë07‹l½NSüX˜fßxÆkd@¢ÕÍ®Wc2Jø*̇ºÌ¥L¯o«ž¥K¿“æ`´ô’’—ñ,Òááoñ‘gáàÃBŠëjÜ‹{¬]–ÿSèݧæS4½áØÑSù#!âæýmMÇÎDyÇ[j™S¬ÂÕ#¸„e¯ïÅŸ‰yÐd/µàçdzÿF€ºHî‹‚øbw¹ùÌ1ã+ýàr¦ŠóïO„ñΪ, B8˜0z›T>*›RZqâãò©@›P „¢ßÐG”×t3j¹úy_c ¤'ºëý†lD¥z³Îš³•õîR¡8Ú2ÖãíÖGÆøÐ@Õ9)΄zBZáÅ2O±ãvˆî Ù8áÛW–wòýl½ºÝ™X}ƒËó–z|£5¡Úî¬R‹þ)r¬RŸÉ\ÇèK´IpÄJ²X\Z·‰t¿¤ú¤`èú^Ó#“Z€p0´«š^ðý¬ŽŠ9i8Ð×õâ6=¼ C¶Ôéevñ©Ò;•v<ô/4H—e£xƒD–IÖ"20d&"ŸÈ"u»!Ÿ9‘›3¡©]Ì8ÈÍ:ò8~uíˆáèürhá;ü«=­Ñ{I³û„m²|:AÒ"SÑÖ5–ýbå@Î*·Ô³ öªtBØ’µ¦¯.ÚÀ"Ü"<Á¬Fp­£OM0\|[±â'QÃiÍ­èßÔò‚©ç€å×TÊ*±÷,$‰ ¥¢€æ£ñ_Q0wŽ› ÎȈ„åÆ=.X´M–IöΗê÷ñŸ¥-i™u”¡g‰©c“ÛR²Ý?ÉC€gÔõ¸Ýš¦Z-)Å-%QEl•Zö_×Ëîƒaò¾ÐÞs’ZåÝŸsUøÓTôð¹(hL‹!5^—r–7IbP›öxå_öh®Î ýhPÜØ—Ù¼hF¤×œÃ¾RKÕìK¶ùù`„75§ä„Ÿ¸1‡5úôªmÁŽ¢ëö²8áø¤4òt ·Hjò^°znÅ ßë³VœÍÙ”âT ¶$ÐRhúhª>»0ÌÐÄo|dµ_!eþFeøv­ bT‘ÇÚ¬!ãÉü¼§¦-Æåµt(P pq»¥ò–÷†åtOEöÃþúh?/úØ8/H•Ã\nEË–Lè×6 I¨üüâÎ>ú/HaKùµdWE¢•QÃc’ùJzA?à:±Ú¨]RT¬2YÔïwCõ (9ã Ýd*_ã‘k{;¾U¿ãСû‘ùEæIw®Ø÷ ôøˆ|Ñs nR|G$[üH4ãà›Ê€u`aiVªv.6Ö†ÿI@ö?Ne޵:ÄÅŽúéødf½û9â*Ý&ÀjŽ1ªGqù°féÌ?A§Y“ã?ˆ^!é£OfgÂTß‰Ó 3ùf„xè[I  ˜m¤å§‚›Ä„“¥’þvx޶ÇU¶ê‡ò„ì-óQeqÙ”)Rc;Fj0…›Õ5¼èÇì¿æðš8TÙÀ õsHú!·›v2'Ç––E?j ‰Bßµäø1ãìeÇèPN;‡ÒÀì8¬Ut%ù—Ò'×qÓ`áL N83¿Y9ÛÒ¼G…æ³òîÄzŠ òÐdíÖlU>¶âÔ–Ú ^‹‹"àxÕ`MÍFÝKð)<õòÛ˜l+Æ\ªÖ:ó¦Ô¨$/êÜ ‹&‰ª§1=óÙN•%Ytãä5P"S}½4Q‘Ü©Ðx󚯡™w†‡°Éò¼uÓ¢éLy¶¯k­›<Òo:^ Q›ôHø4«ƒ+J;zôa[¢ö'MçÍýjŠ‡ÕªGeN…J®ñu󯼶óŠp•ò&0V8‰îç¸ K0EE%î‰2¿•—Õ.Hú ²Ish[ßÛÁî+Õ¿'?‘i³x™Æž`£‚~õ   BÀHÎO{#ˆj ò•“—t ¡üœ°º“R†”Yí’y(D=†*ðþ°0í²VÞ®êè;Cy%Ùªxù{ž88Ü4ä¨g…ÄLY…´l¹W˜AŽbˆúåû”Æ+"ãŸçgs¬ °9†m¸´~:yS¯6÷ J{ô¥¾ýÅuÀD, ;P=Qjñ³ sÕÇlœ~Csƒ¬j:$<Ós×ù Øñ* Å¥6)‘^¾´E%ýºÎ³ ûnQ‘Nܶ«±zBäψW…BŸ¸Æ†¹ïàÞƒ.t¤ u)ɾ Œ)%"oÆï·ŽÜ™ \Zï%‘nÎÅÏôØÓiªo,èŒÝ¦‡¸ í¯~¿4ÙÔ.¥¹h¶¶°~]`Z‚ª°P í?rxÎ~úárºŒºË)q?©}4¯†*ÔÁ4Rÿ£åkϳgO|PGÞ:ä~ÙžtÍø]%"ã··ÿy0ìð¥À¯Í÷ê&í,]¼ÝR1…ILªðÑÌî߃ pºß?>ïmýª>Jåó{¼¶l ®?ÌŠù¼:˜»ž¼¯ßjŶ`C–Åaš¿ÎÏúaPîf9OaKC•”y±œ$±ü=f>âK oH²l„Z$Á!Êå«þ>£Ó¿óî`¨,i~…™'’ùýÞÁq^5v}G$‹%ý~×™lšäÎ?r"øuجùÃ…&þÚá°ŠFÑʰóê?ð2¦”¢ Ú*¥Rã(t•ÀHîžHôýȪäIb[7ä`v´AHIþÖ2\ÔÙHö‚šDsÒmªžü´ Bˆ[.xö1¯“ï“ï_66>10 É­*¾¶l[‚¸Û•.ý‹ƒUd'ì^WãQ5Wùkyç¯Í/–Á 2¨ß1_#3x§+€þeF»€s$ Õ'5ÞÝçyÈ*XÞ± õœ•_"ø• ³a~§ ÂfUc¤øØâ Ùq~ÿ>èg†Õ–ú¡Ö”sû8ïÆµõnЦGFz¬7™ßm\»CÀÌvô`;c£í\¼0­Ç)EKe»•HÅd¡*T©Eþ¸¬NëŸëH,tÖ»öƒ~#¹·Û2r6 ï áw݆I¸ e—ÿÒ¼º={Ñ@˜}ýA6éÔTfLŽXî9%MNEÈX¯0h9Mâ)<\o ÁZ0Ú×C9%u:«»)°„ýj“Õ9ÚCϤ@5ìó8ç,Ú®a™çÉäFN"»ý…ü—룂ÆQÕAéÓ,Û® ™kÎi}”A¬tþSNÓBžH¯X`æd±Ö½û$+°L:ßG ÷Àùjþ”ø¹>ç£<;ÄˆÍæ`厸Fõ{to‹Œ¼÷äé"\çš.€-¹ÑçÈñ¨’Å^Ns@þ¨ÍD;€ÕôÕ1aúka~PÞym*…mý<T®aÔèt‚;’€¸} “F]åÉÛpÐüñUŽ åÓ¤ëåÌ„®K¯‡ç u¸ÿÎÒ ¸>7…Ýìêà¢a~C⹨œ²,[l>ba†rÊáºgKìá1—$Ç;#ö^ü,Ã}ȃ³f@å=»‚gD_@àЧ›™¼l‹þ2c^X–d¶ ´jÊñ¼Ñ±ÝøvB«ÓÚ»n±‰½¥!ø!ŒžS¬`ž}ùå[,â"Ža©}ù~“J=[#!H#ÓõµOª9!µükpÙñ¾ªXƒÈ1^ybmñQ½K42.Ý"Î3Ål°‡JžÔWã¡Z…[Žº/õê¡ ÷¯R”ú?NV©«²Z{ˆ·HcFÛ¦å.¿ÁB]X^ Í ØËÖÞ¹S"‰µÓmû"ˆ®DÞë°cêÜﷇʵdêíAü:êitBMH–l‰¡¨`eè šÍ+ÙΆgI±2ÕPÀÂx=³gq)$§]3ÅÇ?˜×ÛtXOqÏêjí¾ö»ªY>XúÌQûMøä«ÁMè&¦ô¿Šä§¼‹‘áçä`W¦#£yïÜ)ï¿°×=Žû> fc0~s.åÜ?ñÈ2ôùm6:Û k7EÅÐä@ýÂU„|è’q&:m5îÞÊÄ+ùé¹Î Ïíà×vLG—»º‚hèâún²4­zdĬ¸ö|ŒÆ¡»Z£ uÃÉòpí;EÉržö±þEY¿õ šJ¯œd„aNå‰ ï¯»˜‰ TÂF&ÐJôaFŽE™Í§ =ï)–òÛÊc<¸Îø¶WU HˆrR¥ó™L/ ôçp/í㺻_göiÊè.e¨ \ÙÞèqÂÊ@Žl?wÞÇݾ²‰kô])F6¬JF:°Lx6 OJó[W¿0M-QoúóâGÕVÎéVÚåü{ä)³Pî'9[ýÃâ_Úßš”L§Ò.¬E¸IòýcÉþ_]¢ã a\½>0.D0دy˜=Qq)ô—x­Ø(žð† ªìG‹bI¡%°®×¨;[ÚÕ%Î8GšŒ¦Y…÷Ù¡À}Šç4PF*Áûu:AØ®ðßg‰<òHÛØ'ˆ7ydJ<”+ })ެÙo¤¼i¢æbB‡Žq»‚Õ^ôðŽÕd¸aãDKmõ(ü  Lå»|>SëžO“s á+@ˆÔwñØ„³jgð$¥ÄÔ !cB#ðT@¾Fy3!l ?‚•GûÛv ÿzÒlÜZâ…ñäR´š®û/…êÚUÈ_»7é ‚Za¶qMWˆ¾T*!¨ *غڣß<.Õ¥T|K‹,¾+k\nRVwË(FŠšjÙù¸sñ„WùS|&þø7 8áBªÕ4›Äw>•,p¤s®Â-±ãzVÒgNñš2F”­³µ$Iêß§—®¶³Òl;èU¯$†ÍõNË ÷Р ›#¼“|ˆIµÑŽ˜`+¸oáê—´øßc|©F¿—ô„ Åº?*­œž …Oªz#s¿iÊÊÓ°/ñ2°«ý1‡÷ŠzÖ©m,ž°þ‹Î;Ÿ Ÿzf‰5H'aC6œ¿Ó_’ˆÄHr€‹ˆùBPc†¬•Âñ}|)$ÑBLDKoÜÐV&¹ÿR°ÃKÍ?ê.f'Â’(¤(ø ’ÞaCš‡Ñsôû¡mîóq¨‰ànOzÝ©jérÚ ª!g¼)8íÇRà·e2ñ…uÒÅ|œÌ «Þûœ{£Xb¼NP%ªÞ®»²K@DG‘·×5—Ät –©'Žªd¨é6n ï¹u‘ùº]ƒ[wbK%x8èÈ.Ö¹­ÖÊö>¶^ˆ¹ûðt9-A"ªÚç… ftͫнØ}íõÞ†;Ö ¸CÄjÆÉ}  Ï‚ÅJJI„~â©Ûmà À_ï‹öaf•¬ÑK5”ˆ+Ib±oï´Ä¸ ¨´çßÊäéDÂ_çÒòùá““h‹Û£‰ÕÛ@¶Ÿ t"+P,fy®_€ Mhül\„:3Ä}#Gì¯äùåú)û&ø/£TI_ 01] r˜"p—ï~z+ˆÙË]«2lü†²D,,7-÷ÿÍÑI4­¡Y{+#AbJb¢®”LÞÛŒ°H=ºà67ÌL0ß&ÛyÜ»5°Ü›¨&©¬×…nÎMeiûŒÌ ÆÏyb¨k&ó«p¨ÒU&ºÐ M«ê16dé5yb3ÈLjÃ\Ô¥õËÀ¿>HY‚cGgws‚ÐZŸ,îËFÜÆÜÿ*úh,eÄׄáC(]¶¥µ4ÎÃ3ÁG„Eøñ)¹H3¨¹q¯û¤ã”ºÏÿÿ8àš7ûóaã_aÆYmòº+úg0lwûÎ%n¤ÍA{ÌþÕÃÙ‹¶{œáÐ×Cµ²zX¥ø‰¥ñ6l£SY†ðj²Z\¢ËUùþš <–±¡ïNç¡U=sá_–yRÖãß*1¼5†ôÛdWêQ‹AÊ9dÿ™Üê-õÍ=oÌu¦? ¦Ümšõ~¢ƒî »ÖįB`Œná7&žÇþî[‰àÑæ›â Å÷LETìõÍÅÉDumöQå‘Bº8}‰çq7N¾§-Yš'ÀîÖYŒê™¡?e‰F»3^H¼Î’ ——cѼ*—¸$F?íÏ#óã“Ãó3HTÅYï D5> âu£üÂÆË³ÄØ(Áˆ¯“« ”ÙÂãцûg~婬Ò`ïP‚,$_á—úþ±+­¦}mõ§èU«ú:Ò%øŽºÚ¸qØî¬«Mւܼ˜Û!ê²\‡úþLárbY`ï/¨8òû£Ê@t‰?6ÒÖ©€æä÷{“©%ÌýárJYLWÍ\Ð0[¿‡]p‡Æ*Û%¸[ýù¼©×Äõ5u_úk1¼é‘-2ø†$Í9§’eÇî¨bÙß7¯dx0•{¼Pjª¶±?}*‘ßD˜ä¶*X™æ[Ž_Ymí›ï‰Ã‘ÌЧÀŽÍÒÑ-À¼]òC?]å·û¾ñ]Ái'Ϻ#¬v›]Hès‚…ȯXÄ^èŒ|Á>ßþæµ€ë@‹žÐÆ•"G¼(³_ý&ƒÞ¯·" ?*z³¡Ý&j^sI_GĚх/ç»î°ë­Æûxs.Šèº_JáÕ?õ­k±EIÖ?N CœbÉÓpÁ‚r;O©yAÓ’9Ï¡•ÎT»þŸäñ?eùnî4ëÆrè\ äPWo ³A7¹ †•w«†xÔ ;Xاö]›¤žGÂq ZÄ# Ò;Ånˆ®È/±VàQòßÅ—×ï>çt]d`ùF"¬Qnw}le;ôŠ‹Ç¥KÙ ½F¢‹IÊÛ_GÔÂðo {õΦ¥aR‘M|_ɹô‚ì ƒ[†—e±z›I† >ÞÓÊ )Ü[ú‰ÑP(bÌþÔ1—±Ç•;ØôÚíìw:5̦ЮPׯeuîÏþ.i%–.ß•ŽrVŠ7—jÖ<œò;›lª¿Ñ®;$%m6U‘æË£týþY!‹–«{fbİ:.€ÓçÆ{èP ë‡zÓiY§)&`B±Ð°mÖ¯ø©¨Xš²ÉŸì"ÒX©÷Ï1ƒ 'Šå>z]]5a³÷“Ôìß›¬N˜q¹'׆’Ä[Ð Þl‰„:œ´ÁëKAz!¿Ö†mRW¤úä^¯YSmõ§èU«ú:Ò(¤.öûõ]ŠoÙã; æÒ1‘F¦;ózíë ß°¹VDqƒ:{¨à.¯'+/q{¥,Ywî¼Ýd0Þ) ö/¼ É›PArN„ÔÿºW ØHÊFëQWRlÖ2öyè*øÛ6ÇÆ¼*•ôÿaÌÉLoU FF§®q 4`­vˆÒú±!nØ‚`‚dÞØÃ$ ìY¢Á ²Ê–§»ª*{æ À#@Ü‚í È›öK³ÚeõÝI$G]GËaDÇM¬oºÔŸ5vMæü âS»C=ùáÀ0ÜC²$_mò3&óœÄœéHv'w(æámÐÕC[‡¦þ1¯ ª­à/Ä”ž|Ï—mêªëAsçƒpSL¥b j˜­ü¯)˜#i 9ÁÏ/ªéD X¦¯8Øýud¬™ Áî³(àŠß‰sZY¤¤´Š¿Kƒ]1‹[–¢´~LºlžoÚ™2WöyNOƒ81m°‰”?™îAô·Ö¥È¨ÇBR#îЙ»ñ¥ÿéoŒc!ëñÀPÈÑkû¸ƒNŒ¾<ÈI‡;CŠÇm½¢•Ï£ó-qóMç óɉËóSÿÔº¶Eÿ{è€ÐŽD0f^Ü<oÝO4^2µmđʗñ"‚½»&yš…̽wŸÇ¬¼óŒÄ¡s©­S¡ æ‘î¼>nºÃ7j,7Ë/·Ä±1Û—À{¢GrTp³ õ0HÓÿ`ÀÒ¨#:ÏŽmºu«á½)([êÿÎ’7$L‘zM¢ÑÐé½z½t<Ü·[W°îzâË{Ï`­K[¾vriC–h=A%ÆŠ¸ðØŠeÕuSsÌóÅÃÕiùò¦(¼QÂØ gsì%¯We‘”`v„Þü ƒW\xÕÔ1F(BðþØÙthWì(²£õ¤«­‹ß>’"Eº¢Ï’‰Öïgÿ˜ÁÍ b¿…êêåM{}f´H#¶‰y1A\öûXeN‚b’m$áfª× OèêØ™äEâš12 ,ª]Ê$Yå„Efäeô1µâ¶VRKmHù£óŠË–-üTÐ\Ÿ`KÀ¿œ;ü3Œ“`@ÐfÓñ“uÖå¼%!¥ÙY¸¨ …nÁ 1—°U’A7Ôŵ-ÍÜ[ó_ÎGƒr•x‡,œÄÞÏ$mü»Öâæ:¯âÑ/Þ;7ö¾_4}!J0V5ÏÎkƯˆ{È8º8§S«ÅbqàÒjA:§oä½Ñ¾ËOXEÓ”‘þ´šÊ«zLlZ6T…aÎ}kómÓëWRÊXŽsc¥hKÆŽ„wåÌP ?yTb¾f ;¼ªr2–àF?‚Gå_Žœ«gƒ—¼~:¸F–0@yÒAõ"H×áÞM¦A¶ÏÑyÆ­äiS0t6’ÐÛÁ_^®®ÐÐÖ„’vŒÕŠÝ[EʤªüÅ#×N;f¡Âšº„¼B:dĨ0¿@¹£ìæ¨:öZé*‰h=Î>Åæìhíð󪤓^âˆòH섳¤gJõs–g¨¸s§3îg Ôv›žv?iõõ>ÇSá¼UÓ犜µ½ÿ®~Ȫ¾ ¡:6‹?¼l­Ñ½íO%-¬ŸUDŒÈ‹ÙŠû -è ëWá‘Úy_ßqÑ]½Z7ð@­)M¼Ï{¦\»fTKà3MYʉCw!‘[x¦ì·¬Ö¥Ÿ=Û“e•%¡⹋éf„¿·‹Ð5bÝnè8×}Ûû6QÁ5îv %>šÔ (|üöB¹E¨YD¦ÞjøÙmw›eAP7•×q2‚V‹Þ î½°%7Ê’%l¿Ç7pÖf.HöI|¡Œ¤„á0YD¦^+<œˆpP/S[%dô:”î¶ñ[=b]þM§#•€s —Ä#1&iä³õz\LÑKŽZm®Lbrv6XUñ»¦×G¿Ï@¼É…ÿKUû1ŸÞÔ÷ÊÊó8ôjwO«ð¸Mª•MÈ‚ê UÉŠpÒÔn)ÌØ÷㨚…_ åÑ]ÔbåiY˜áfÚR‘=èânHè¯býeûW`$¤s™R›­øÆ›Åì›Ë EZò’yͬ‘\±ß8)Û"à1}sÛž,î ñú´wÐu nHm9Ý8þÁÆú&‚û‰·—å¨ëÄf”Ñ6ð\Òã ë œÃaGëÈØi0pß–IcõJïV뽦01þOzd·~£OìjÔ©ßU£™ðÇyx€šPz¾‚61 o|Lý“—òb/ÅL9ŸQu3õïºÎ»À`ƒ•©Âºš”^•'éñ~UÖ‹òíŸýˆñZ®vÆîüyÁ0CHJÝY©¹­òEó:BÏ"O2|γaê!­ê©@È «*׬¡ÒЂ~ÿÝÔì5 H˜ÿî•^|Š’}”~çÝÊv7:.fÑ5àšF°Tãy"¿· ôbÕs|FH³[œ„ûä¹Nal Ý´JQâÍ^ÉcV™wú}|.bY[õ~@蟒šp:÷˜À°øØS¦«2þß=g”3ðV%U ES¶@W¦éG'M52fz°Gæ4Ö/o@…ëU5äJdø¾ÝÙ)hcôbyØ^Jâ¿Ö‡ø}§Gbõ~Kð]9õv>¤ÒW»NÊgtÔ*Ê \V³Ö'ƒ–€³“YhiúõoÅÛ‡Ç7q¦ÎÐq^ÿCGZրݠhp«åt›v-0©$¬A?RõœÏ0i3@ù8ªøŒ±Œÿtü‰®š 2ìßп•p˜z?ârÜlUóm³\Õ¤€¡É´¥>wí+u5n‚^ðfVª;^]ÉÁÓÒ[HÝÑþzsÜMYˆl(ï> P¾-I3¥I+êË"?ê;l¤Ð§›ö`AËó£Ì4ÀloºŠíX"t¬Å ¾‡5 r¶ÄÓÑXqvµ.v€LÜFé³ìR×îÀß^ׯiAɲÚ8õ·Ó°p§=Gêç*ø[áʑֱÕëµ2§++&Œâèõ¸íåÕ2Ê÷ÓiC!› ­ A€MfŠ6¿hçñ¿¤’;Ø¡‚qÈø îüH¹~_—]7˜d¤ÌÓ(:/Ëšmº:³ŸÀ_¦Á‘÷¨<2Jðbš&’ƒ*¨¿XÌæÓÀ†d]Û†ÚG23i7µ·'@¬’Ì/û;7Ÿ Pè?]jg¥7›€9—q°²‘,‹àBŠÇvÙ à2JþAn“Ê(»ÔÁÿŸ×ð—h;Á¯9 ³?q+$œà÷»®@! Û*3µ™‚£á-I¼ç¾›JuÐ'¸.{G" м°Ø0žp£`iQöC.‘@¶_½Ë̬1ò~³‡C+ùBycëQ¢"Þkêûrµ¨žI„ˆŒì¨îñÔ‚ßZ«(DY›R£î -n»ˆrÙ $ífGp1m©W oÁùœkuóÈë»X‘ÔGx¢{rHeaH¯÷1ïÁÜh0Åàh`Œòª·˜;ó9T 8®QPN,þ˜gû†Ž‘ãS0b ’õûûŠÁkÕØm•ÔÓeñÕåÇŸrØûß5ÏW/3û®„r|$~@FEÃ>ºÆK%ót œMÎí29%ÓrA6UµX…¤³Üô—â’{gÅ–]í’ „ôŠV«ÓA6G'Öápü;k= ¾™ &òΪ/~‘vKœ/‰¿3Œç0æv]i4SJËÚðù9XÂ÷‹1ý­LŽƒJ#e!$蜶»ñÔ †IöŸ±ªŽ£Î‰'f…s¢l³ ¥=-±á£¨%`(Aé4Ÿà¶-f"6ÐèúPÂt€§Ç4‘zÁo—Àƒ¢á¦¼ZO¬‚ DÆæ°ÉÄ/@9ÇËlòÜ»—F7KYR9ÔF≠þ­©(3ã§ÖÂ?°)²‹øîwÁOß”’ÙyK9Vê¦}ò–žŠ}Ã%ÊÒ9Ësþ(ªd1¯Ì†ìÒ ûëå˜4œ~b§Õ,+T K«±„W”|ïàŒ7ÁZ³ƒ~Ô†‡Œ;Ç#¶ µ{«[cf„Åš6¯Ò7 ½KÕí­ç=¼ã® „Ó¤—g7ËC7•çÜØùaUYFнÊÙ{Ï-N׸ÌÊñ"ã/xf!–ÚL‚œÃ>©†Š)ðú¼#"¸*ªÈ´#¤ è`g€«UC8Ê£6‚|n6‡ê—´ È–°ÓªbÙ1#´!NÛ@-æ[£$d pé °”*x”šþu«&Ýs-U TÅÖ5€Ýß›äÜÑÄ…R8PíÀn*Æë¢X¹Q,.¥ÛMkÚ7ŸÂ­3$Å"Ý-Ð$Ô@©­zã([¤ç˜—€0K''@óžf^‚@ÅöD¨Ðõ1T4½\7­m(¤9ÖNÙTžÌÃù4V+½Øàt¯¿U"yT\˜À™°˜J#mÙ ¾XBéM¾?‘cŒ6Ó#ž¶Sé÷cÛZÓrI­˜½1ž®Þ”µhR#ÑC¨Ô×M\ÊX»g6†xs†¸ùÑåz͹& ˆ6.wY=!¯Aq9,š.’yµ3ûšzŒ¢øõzê:æÈ3*€_C[*ùɯâȇóCU=ÓÁÕ=C$A1ÓkîRóPŠwe!¬Ö§ Ufî~Úˆuæ °]³øÞávn]e±áé[YñaB“¦à¶=lG\¬ü¤IßFU€+ÈOzÚê•8¢}·4YräÅ6’G-E¼ïàZ?¿e•›‰I_r«YH~¤æ0qÔ…¼¬,²èuàòG&Ò%‡WñòM¡´iÀDÅ^ pïâÒÆ¬T.©%X?ºsíÙ÷9âŠ6,ÞÜQ*ü”¾N*óëÍhû¾ÎW“+¤ÉÛP¹^Àh.)Þ³ÐEzŸh‰4ˆ›““oqÃÑ:Ä£¥ g3ÄΕïN½q³ØbÚ±öœõ·aWº³s‰°`sà/ª”]èEr¤%#°ß¢Û´šRIS’±”†¿z*怴Fwá²F‚†‚aqŒo‘N>e“B} M TÑN4~9ÀX’ùi Püõ¿*°K+Œ•ž3]Ÿh}ùfO8XgTÒ-è!„ìûGÓy‚ê|;TH“æ ·Œ2WŒ»Â<{GÏæ~÷–jYÍJsˆøOFòŒØ"ÿžJhwé^HêgÙAÐk[ªßÆÄÓSñƒûþõÂÍ»˜ØîÀ“Oùs‰ºê_ t °9;&ÞW› Ur|o ‡°_õ˜ 8ôûé¼(UÔW÷[Õ¡ñ> stream xÚ´zeT\[¶5Á=¸Káîîîî ‡ÂÝàî$xðàî®ÁÝ‚~äö{}o÷x¿Q£d.{íµWÕ9£(H”ÕDÌ@&@I½  #3/@^AdglÏÂÊ ²5°223³ÃSPˆ9]¬@öâÆ.@^—‹%@ÉÔåÝÑ ÀÊÌÌOÚÞ•fO€ÐÅXÝÓÈ 6þ (ƒœ]LŒßÕ@{ +{ Í»‹ÈÁÓÉÊÂÒåO 6†?‘þx‹2dMm@îÎ6Vc{3€,£#@äþ.´Pƒì&@Kc[sÈ Ôh¨I¨ª¤T•4”Õhß«¹:8€œþ‡‹˜šº†=@\DQ]Ô¤Hi¨©ÿyUÚ¿ó· (ª¿ëÿäy7üã® ¡.¢®£,ÁÂôg €ÐÉÙêOÚÿâFùÎ ð7µwWs'Ý_ Ô–..¼LLîîÎ.Œ ' FÛ¿ø©[Z9ÜAN6€÷w' -ð¯Â¸Ú›½—ÓÅø¯¶ oe ´wþq’ýKi÷^Êw§w¹Ë¿‰½ÂåOLÛ™œÀÿHciìü—¯¼²²<ÀÎØÊÞholoúnèbìâê 0úKöþšQý‹  æêäô'‡Âÿªœþæ©‹‚ÞW¦gëíkìþß;flïêìõÚüç²MAöÎVÎ.ÎÿŠ˜[Ùÿ°wþ³gVöÉDe$%ÔÔäßÏžAô^{F—¿¬ÿÄ—çp3sXxØÌïM*ao&²³{gí ÿ§|âVïur9y2ýWWÛØƒÜí½ÿ[jneofþ§êf®LöVŽ®@ñÿ±}Áÿ-³º˜@GÐÃÔ’éOª¿:å˜åø½¾Þ €¹±­3Ð×Êøþïílì¸8¹}½ÿ©øOÏÂ0³2uyoò÷ƒÿWt{s€ç_âw&ÿ«úŸí§þëÒ¼ŸP3½­'À hϤryoêÿ?gì¿rIºÚÚ*Û©ÿ³ ÿmelgeëùŸvÿe¢üC•úÿp¶r–´òš)[¹˜Zþ«ªÿ’˸¿7½ˆ½…-ð}Gþiü9G¶ï û>t¬þÌ, ÇéÞ{ÑÔÆèì àäüK|¯Áñ}/ü¶&euy)MQºÿj—¿Œ$ìMAfVöVN€±““±'<ó{°rp¼YÞ[Ù èñW“˜íA.ï.W_€9È þÏFrr˜Äþˆþ…xLÿFÜl&µ¿€Iã߈çÝÏøoÄ `2ù½G1ý7baf0™ý²˜€ÿ€¬&óÀ÷œÿ€ì&ËCöw –ž–@ûX¼Ë¬þß™Øþ¾S±û²¼Sù‡/Ë;Ð?à;‡¿“½Û:¿O [ ¹ËßR–ÿ‘þ«§ÿö}çíøøÎÛéð¤ó? '€éŸ¾ïµtý|_‚Û?àûÜÿ†¬ï´<þßùxþÿ³w”ÿ Í¿fóßÍô?ß&a5' PËÊìý›ô& Æ.NVŸ˜ß4Ë»üýñ¿Ÿôÿ#Åß³èÞ¢¢ ov.N+7€…ƒ‹ëOi¸|ÿÃ×ô_ƒý¯aòÞõÿ‹ÿLUè4…_š™ò…XýöÍO¢`² Š‚‡ñ¤KP[6r)}² G?Çñ)Åý¾cšuu•2ÿ 0Ĭ¬U&ׂQßHVÏYZlÓvõç{\iÓÍ‘·QäúÏ¿Ÿ!ËßëŽôé H§³FÊ<»ñ™:H)‚WµÙí|Ikn¹úX¯?¸øTsqƒZÂÿ¹ñPýMo®ßÜðâ•ü’cýãyØ  *‰Òç"ÄØ•[ìf»‚_ÚÎz?">+æLSBÇZÚÓö÷œLš²yÉwoÒ>Ü“méš!¢‘`zòç[ùÇèSc³ÊŽ1¢¤(wÊΑöµ!÷YõƒHŠ“x¶3Œ–þßó Š¡G<ç¼æD;M  Õ,ñA¢k;•°ä¥ hjßíðDÿ°‹ÄÔò7­í ÑŒx>n¿ôfŸåÂc>èk)^Ó:l[ˆ‡!–¢Æ†^Ÿõ-è§sU$ f#$jH…ØÜ7;tp–VXRoùJ7-OâHõœÄÎI?4H¹ë¥c‘C_h…À¾Ý¡úÏï5d}"æ|ˆ_8”xfæ 6yü§w ŒÕth nNKÓÚJA4OÇ1A+Iô Üñ±¢©Ð´.½fX)—Ü÷°ÞWa‘Gü–æ•7rÞn3W)±_!«r‚ÈV1Ây§ÉljͳìÖËçóm–·ê0×¾I0,Ï@ƒ$µéYåè)²°Òàù$(pŠNLoÆV}34MŸ?i?Ñó8åóh¡å‚.‹îm·É‚÷¦R,…è·’‘…’%RÙÊä‹¡õè´åäÇãVÅæa¨Ã8晄~ñ#/pž6HìÒ £f'y)*¹7ÀqǼääÁ|mÈÿõ„-GDüËA÷‚’»š%ꈵz«Ö;r0²ë™¹ÀúªÖßò“‚ßKš™è„”FìÅ®ù2ÒšOvêêá ߎíÝlÍrþ÷]Æc%˜ˆ°A§Í:S7XQ*ÂÁ¶Á’ï“o'°<5u3š‹=/Ü8}‰aèÓ}VÆz¢—®Ê Å%Kêjä9^ìyV«ãÿÊÁHWê|ø’à‰sä仓³áíÈù)Ž…EçNŸ¹¤§ ÊæŽ{ Ъ¹"=¬è¹~6¬J¡Œ („û¼qmcYm8½qà¸2mòùÖºjèB~ˆ]x³´º¢kµ²Ñ#ØÙˆ-¢3–qß’ü#rôá[R¶ž)Ð\¶ÜÊ ß+Ó;¹¦:# )èª''£³YQ³7f„tñbØÖ”o/VÇýX EP”¹?7ªþ q­dV’…Aª<¾™©Tì‹`ݾŸmOÌi+CÓOw$‡ÇMÆš­>7Ûü–žG ½–å«‘»Æ|¬ç$)(uúLÑ6âÊ•íÈñ©¤­Ï¸ã™-fÏÇR½K‘Ø"ydO?¿- yú€C{°¸¨J7Ƽ¾ÔêrJTòxNß”a÷“×} Má·;¥¤=Õ?$õ¸ÆgÔZ4OYŠb°úÔQPQþTwCû{0lL[\;Ì¢g™ºªˆ¬åhÝû”˜O_GÿÖQ Vã‘Ë÷Ñ2à–"<ÆZ7`` JCvT¦âˆ‰Ê\ÉîÉþ-<ÞÒH8ÙáúµAöÈ9eÖø“â÷j¡ù8d÷¸®»â6õgr-«ÆSæçG2øù¡8vüÛ]íkê8§Ôy@b" ¸³j›O ÚĈNìý™ƒEÏD†ãOèô½þ^´k{wl^Äe„QIK~²¯`™w–Í·Cñk,)Mrû‰·DØÚB³¥,©)Ü_Ëܲ\6êòÓ~}©ÃøÝòè„]á°¸4I!^$q|ÊΓ¬1ÚìÉ}½V¥`Ù%Ü?N†‚¹ÄÞG:¡yZ|áÍm¯ÔufW7½á9Æ þ¢O£: F¸YmúD3ÜÈ-ëÌ/0ØÜÌ?¢÷aå:»Çp‡Ðc ¸ý6™éñvC]AÕvÁ+“¤Mj•Ír‹j࡞Ï$™Œ§r%Ay‹€S‡¾ª]ÆXeŠ']¾ýÅ<Dpø½òIôÄÝñÛX¬%Šk4JÐá½Ý’GM¥>µF¦KÄlè)‚(>Ú«+¡ÞÜÄ|ІóY±§†/'M·ñØ«0VÕ6za·3çHì@ÃØ='@µU¨÷0`2rGµœðœ@Ye(½úù%,½Èa¶(”½à9´kk\„¾¥Ü„e‹6sòÎlÁŽ[¯ Ò­Æ{¬PÏ Q[kà@¨­Ÿb\–㳛䪪f5l­‘qŽ uIðm€–*ò!…Ó ìù´(’ÆwO¥ºµŸ?³E Êf”.qËɃGsÙ¿é^ÔÊ`£Ô¥.~SáMŒGåmH$<8ê³^Ñ~ÂéöWæ¯bô+¾s>5d¿ìšF0JÇd\›È·tjã ÅÄ^ê)’H¸ÌÒ¬V¹UIC‚`©]ë(ÀWF2e¥AV¥ÇìORESDQ)ÁäÉhdzã‚lkÝ|{È֜ȼƒŠ †è™FzzAY7,ø(œîö=€R¿33y軜â=G‘ˆBª!ÈÙA¢™™Òù(ã°Éš€N{ˆŠ³ãÂÚŽ·ðm,‰î-8¿×A—ò¹Õ?Vb„i©Œñ[,7Þ‡yEG²+xx'lóßKÅn9ÂD+Ϧã˜Ô‚N'âÞ•síÚÕjyø <Ù,O|¡ ¶;²O•ÄHÜ[¶8¯f¨WE/Òp¡ F,„C `]E™çòájXø:–t·W‹† %G÷ fÝïŽ6®”ñGÍ좷’m=š¾!9W²¶§53Ú›vÄxº{èœ|ôÿ.u›;}«n2î{„¹m]ѹϞk4%–Í ¼Ú¼dk ˜B3¿Oàq>·Óö7 æ™:H—ö8¥ÚÅ|œí¥€×¶kOIvº?ÏéªÇ&ˆ^…È7îqÐ}(”žm÷‚^<ù¶—r¢±Qþr\wÿ,$œ4jÞä²c¼Å«`irq–²|,öš ø !}Õ\.¶À2˵Œ»”ļWª‰ÑUu ÊŸ;˜GîÛ|p—qa€N®$öõúA Ÿä!zs-÷þs¿EQÊ J¶†òBó$U2—ï°!:¦ò;$älsguÎ k{«^ \à¾WÑî>HlŸyifRj²îÄüœ+Á4õ)úPc“ásdå1ÞæéDB»GL%®I=·Ã\b 8Nþ×Ö™ŸùŒh‡½¸¾¹9:¿ÐÎKûëe†Š¾&@‡~û¹3Rj9£ZÙ¯)´Î7ç®ý‚aà–¥Ñ!6¯¼¬ý6¯ØX3ãÇ¥úcÈ| Ç7 :œ\ÕjòÊ/¼Ç.‰ÐDЄk±û¹CÞz;E˜TV%êÚ£aŒÒh,ÔOñ ù d,€ù#<Ô4P=-hÎ#På‰bY ‘®UuÉ(Né¢vÓ1ÑYn"MY BîU°_€NéÁ¦=£Tׄ-òèІ /׎"ï§Û©·“iêzƒ\N§ÙÚ” >ˆè±8 Þî³õý>›ªd”ÐÆ²¨ùò猴/ùpPÓ¨Q.¦tª/R3úeëCIs¾ë6û§>;ÔCM9Fòv`‚ÍëùaDUVÈ/Úfi©k^Þ:W_úèsÈG–k•ÐèÅôÌ`\pŒ“ß„BÂ^f2Ÿ'ŠIå!ú„äâ¤!¨ÐL¨õT=¨w· ®©+“uëÙR½I“Ùû˜{8À¤žÛþ*rÚ__®(,õqæ=Ó¾ÊòF¦å`rQ‰Ñ?f}<Æžt‚¼9J·Æ•ÀU¡‹S¡:«&9Uü"‰@¼ô-[ú<ŠuN…ÚJø¾†ÛoœËBŸ©æ‹¿Œ¤»å{À#Ö$ìô”¦¤j¯˜V‹ËÐ:\0ª¬ÙCÞ’?é‡jNshzñ±)m &ü¥~€ˆ¼íuÉÞ2 öpÑì§À:n+éƒ ù$ä¶nSé-Äu‚)m3ÓaóþS$ Ù>d<2ð\¤*•&,ì(YӜ᎛¾Ñ4ùÍé}¨°ôQôuÆuz!Õ©äØÈ;H~$útÙõ/¤á)A¥“Ó2c-uè7†ãäŠ4LÎM’á¤(–E4ï 3“ÁÔ‚‚}oh"'ü4Úœ¡¡£bú€gZCf†k²ä\šû‰ïý¨_x|•8]„–)ü? ®‚e¡&:„”æöí7Ä·×O‘fŸÉ1»[´rJ'u”5Dö­çßFÃÌ]«hM^X4v¡Ñ«Oï·'•c•Š=Ǩ§j9Ó êiÚ›ZýáÄ|~}}R2£ëùc{,1Ï¥zKØ…í9Än jœ@Ï›½êW¼vØçŠkR;X±!»ÕD$ ßú³!妻^¯iá´#Ö¶0 k¯4GUþþð«ª~–QWçûÃÒEú]|[xæ»Õn¦ IÓ è#i_wâõíËñƾ¿™,¬þ"õ>^Й¥ÉQgÄîn‡Ëë 1‹-m0!³‰V¢@‹GƒF ÆÜŽ{3ÕÒ >XGrìràáÂm"]Ÿ‘y®»-÷ÃN­åÒ*0°Ñ™}À¬Š”Ó5ÎògK¡Í%@"u:9‚´ŸÂ çåçÐÄ:>ꔸÄt¶X2ƒ³|SÅôŠþx*JáEõ jòýqŽû‡ø:›¯û`H[Wt¤Öe{sè¿`ç.Ó~Ÿa”ŽêJÑiÍ%+>î)°žÖÿÈ/eb—Šõ¡Ê’>p"àз~]<æ_£F „ ¯¿F%ÄK²½v° Zœ˜ÿP³˜û«·ahç´Îfdæ%ON“Èå w|œMtèÙõ–´Zê³_NkjÆÁ÷i;†À'(nâ°g¯6uNtŸç‡ø}sJReŠ`˜Ì·]Mßo7ë»u*>((5¨|çBSçŒþÕØ”ÝBQ «¬ÎA×AŒÿ`UþrIúÙ¢ža2çÎS—% )ATÂ)_ñ™\K´^à(f؉G“Žvõ(”ÙýûýyGçZ›µZC²ÕöäœB¬×GÛÈ ™ŠZäØÞs9]·éE¥ósèï¦&HªÁý.M –Oža–G‘=¹ßV­BéÙ´ž×À½ÏjÝL®›ùÖ™wŒZHÀÜ¿*/£eu¾ôþTž+‹)“j—$i¢ ±öØD,!AA™îDüôÆñw«vOLD’,ñȋۤîô²‹?¶9O£\-hMœs›2.°‹p÷¹ cüªÎèX#nÚœœß{CºR"¬J0Z‹}ÖȤ—ß ÙÚDå† %Þèc³PÊòJh+vmøOX>£äE2ïê·p{”Ÿ+îì›`ÑÏ5ˆ® TûªÔÞ©ÎÅ1¾w™±¿rw0ÑdEÈŸ±:ü•½–Þ¥¨4™’ܺ²¦´¦[¬œ2õèÞtNöJåçi†2bBR¶â³êr^Ïè,Ñ¢õòa'*Ùy…2ºÆ’]¦'<«Ž¹¬ÈÕu«ÖìazL—]A‚,fò1Ç"F†f> — ¦¦Åš‰ «Ñk§‡ýK%‘HiÊÇò`£Ô¤›‘É—çX¥Æ¡˜Ã×8Èå™/#Ö×´leCÃ-X÷¶º!×€´V¡!¡7:†Ùcý(g‡é·²†t@ ÅyL"}ÂíPNf§Žz–(¶Ý‘" rA8vM¬“ “”ppvÎ â² ^ŠnÚBésh¥æÞ$ù™bí.I[`vKœ%âoF^ž~@4Y÷¨$l4úôÞFepX„" xžS8Å3U4hT„á#:Áˆ¯ÖðŽYT;Qg¶[Ê`ã‘!š3! Ö–:5v[ø¤g[:±'RxX+éÑýA;ØþJ·°‚> ÖjÿÍíyj{V„îã©ßm—£Å…%z‰åõ"xµ ¶uŠ :è‰énSÛ¯Qc?ù¿ƒ;`ÏfËAËçM±ú}.;ÖŠ_ZáÍ>Uøqý‰ !-¸)û-—¬`ýe3°QeJ«yÝlÞ¬¯ã¹o<Ó£#¿‰™5.ÝN²ãÿ¸¶ ÍeûØöCÙ¯®öÒè¯.*Q¸å@b’\†"žS7+–dé…ä‹BÔÔ&¼ê¥81Å„ÊÌK´nVòóëT;?ËÚcô=çIʤ¦ÝZdþÑ£@„_hh~PR¹ÖXŸîUÎí]<Í¿1–쎒WmÛƒ4µeè¦ ¶Þú? «þˆ¿7}’÷$¦Ù5*µmÿT´dó¥¬c¶-fž˜Âû°Âæ~&Ý1J™ ,&œ‚mNºZhMnT}Ødîc0L%Læîêõê@S¨I±8ˆnñEv‹ãæÁióJ®8vøuŠÓ’´&ÆoòCóæH'ó¦·– ˆ¢d‡À}Ò>Ï#£Žb)OH„¤ã°sMÐ4©5K{Ös íÉ;  _¥§×4jÂ=›„"4%0Ðñm™D핔϶÷DHîL¶ h­uÂušHí°IƒЉa{œÚ¯²%;Fïÿâ}’‘Z~a’¶UÜ(Zs :—KãŽ%ûá Ã+4#¨:8}[¦HJO/c{7‚–Q²=ŸÜ,š%$êÅÿÜÜ Å>Ÿ ~I]à\ºB ‘Ácþð›Í=.€/×’òjAžÚžýžmºª<€·³#ùi¾Íoôt£œ;plÙjVßbq]=‡B:ú*Ò5šôxW'ôƒÀ+ÕŒªÉë#¤dwÕ1 †"í@´0+f`PNö Ý^Œï‡ºùO/íhË7Z\ÄņDÎØ“3Èíâ¦÷E¢C%\ü¼É6ôÚº^Ý {+lR’ˆŽ§m ,+ÂÚÛþži`_íú5oñ_q­öxÇÌæ\7èÌÝæMœÄ=ññ›²‹¿‘~¨Úõ·ž6Êâõ)F? ù£°]“q,äíc1*㿈}?Kïù\Iª|x…ë»ksÌè° p¦ù’ñXH‘Îz.h½‡ª/áš¡8‹™½,T ‘ÁË儨II F/°Žô©zê¶ðé;¢ ³„7ʇ}Ú¿uÓ²Èføý¿”WÂZЪš\yìn¾ðu‡VÃL¡ë‡³@ags5–ñHàûӲִ2ŒÄ+œöÍã2L†w÷õ¯›eö¡èÞ²À'‘vLÌE ‘50ê=•2á$^+hô±ëø•NpìGDb•Uá3íBšmÔdY¢‚ËŒ¿š“gˆé2À´fa"™}¢¤SPþFcå¦ÖöºWbÑÜÞ:ÍLg6©èí~Ü+̵Æ=Iè¯9[}2»ƒ9š?³¥„;ù€avf놗¿YDîœ6g6D€ŸÛ_ÚM}®ƒžŽ²¡1‘éíNÿÉ…çlÇ&ÇM#~¦{8…bʶMÚÞÑç0oyKøü3MKšSÍ@™M_-,!3ô‹™ vƒÝ=­(Ï´êò0KrÍ ‹×Ò³«àÉ7ÿù¨}¼žð9‡q†õd~û!ÿÑmy‡/pyæžÖôoà…‰µªÉY‡§Åö¿‹ØŸ•G†Ú¬ˆVENâ‹Jà EÎá~dNfa¬ÎማqL–VDõ1¿V\~Xî]ØÓ€ˆ@7†#FVr_–„2]¨óZ ïäe˜WŸéå×»VÉXSŒ \±@¼™Ìƶ§Ô»”ÎKéxeO³ÿž¡ÖÙ–9±G½ñaÈœcW’H×ý‡åé+xt¦Z:$Wƒ&½ ¥Ã¦û`c·øOzîPFÂuœk+ù^~ûûŸø2Š_\®òam„Ȥèívu1—´]ðKÄ…È^¹wz¸kÔ‚¥Åš|ïQO45/z­×á&LÝê¤è¢_Âï{Æ ë»;Ò_qmg†HxÈÉLgŠ3ï~.+˜­§!4&íHœX b†ýtbÓÏ9nVHfWìBŸïMSdÿŒÌSiýA §éÂìzU?æ 5{æ6îåaÔÏ’7D³.™ßz¡ÕÔè0ØF®¢n¸ ‚e~ÞcŒôó@ßQ ä©TH£è~Ý ¬|f£È¯Ñ1÷{£²Vne ;Oôÿ>=òÜTþ•ÈñÑÒyM/©;Gœ“^á¿')yfz1´Úngs®,CÆMõ¼ÚÉL.ANèlb7p‰åRö†!7„ˆž •µ (Í–³gd¤êÑ– §Ý$'‘^RâS©ÐéÃ>cEŒÉ´ãlE²‚jZOLhë™ö˜ƒ8âï¿3ædiá ¦‹°tÓÛd]±ÈíÒº>Ãß©f,ÛŒ±¾X~¨I#‰ÓI#!mž«)ÊÀµr Úù^KŸÅe2„ZÛ‚² Y,é›Ò}ž¯ˆžÂ–[UŠubn®²"ö1®gõã´$ô^\Ž ýIüÍFÅ¢kíº›Ôa«Xx¬à-v >ŠÇXí£JRÊçÇØ¨íUÒV;Á‡ùã¹c÷¡¡ü`N#fhêdq8f— Iç‹ó¨à°6<¯,­ï—›«ãÇe>·kmû‚ß+Â4]ÌÉ‘yub‘Xê[K„‡gÝ^xZCYq•–®wŽnHeá#¾úܘ~hÿøébÑi a¡•èÃQÚäñ!}õÁD…´çˆü‡3wÔb·Ïo’¡*I$éuWà!½Y‚F99Š_žæí}ˆ4k>«tÓÌÀaKDú²%gâ|ƒXw½)˜s£§¡1à ÔQ¦T–.‘ž'󄆞7GgwSrº/Þ×™ÞØÈËv-Ëa¬-u¼˜¶{JÌBÅõc½å´»¢ËÏógÓ•foÅäÈùäBئë:n,a‹Xp¡Þ—þü‰nÚ‡MÏÌÐm2\fµ,ñÈ´;ÏââºÈNÕ÷w£’éìmé[‘.S¾«²üiâ¹ÈÖŽÅ)&Î",:4EãLJ ê ÕiÌ0ý]Žb†­J¯{šµNÕjht›t-0ó¬¬Ï©†âkF;UÀ3'´\\nCÂ3Õ¹{ž©‰__tæ@Ž…4°`Äs|RMÆ|c#£?îHÓsÈú’Î@`b©”K£ ¦·-u+é¦_"z2¬âĬn✄É.hJ,¥•…:y^›\—SºFɳŒ^…Íc ÈÊLÖžñËóóI© ÇÂ0’X•]ʰ¦„¸UC¶üÔ9!GíŸô+Ø¢1fƒ%s,û"3ά6†³AÝù€ßUüÉhªìü²”K¦ÃÀJÐú‘˜Ý±Ô—ŠE²áϘe('Ý$Lg-Ëx£ÊÀ…Q¦U´‘øÁŠi]+AäŸTØ÷ °±ýØt ƒÃ—Û© åŠ_Ì2¶äãÉwóØcš*±ÐJ_™Ú­ño}0­‹³Ý7*Á:keOݱ¤÷±Ok¥Ú§2¿,Ë—‡ðmOGÿª_—Ôo.­¦h­Oá`u§¹<~$1þ†3´Àsºk0j8EßbÞíí–ã׿!Þg”ÿen_P’ð ÜïdØ‚`¾-GªÍÞHÜR¼Ñ©ÙÉJýNg±nÀ“à*é®]«ž›!§ä†©¸šÛ úl|\úÖžë9êvr÷aZtâŽÛV`…½×V‡Ä·e¿»éþP$©ðLNvû’ªñ2°6àŽÐÛ&Fj~Ø!Ð=*Εy,ˆ˜ûj 4¢éRÇØ0ƒ›¼›%O‚ ¢SmÇ”Ù}ë4µL:=ÐP± ì$¿¸WZ#ÍCxøÂíÇ{QPÝ~šÚþðøŽ“ßIÎÝi“+*³ÎªĶqC°bäNi+®¹à޾Â<)tîì‘Êíõ=ËÛ¼Ý ÁdõQn®»ÊR»Sm1Å¢KÄ÷ù¸lJåEý#’pUMyFj†œƒ÷‘¯®ŸqA£‡ ý¤µ±çi_"ùÃ}¾ë`®Ð¾ J‰e’]+ªÉ¥ukÑGJ¼ ‘þÛp3™üˆ*…?Ž£àfB*ÈY“OE‡ÏØE«Um mÂiño8e§Xí{¸e³ÒáÒDƒš“¥õfì ±w|r‘3îe7×̰೉q9¹Kû‚YS`P(›é³î–‹ºw8òöfU(Ù³6ìQp,.Ò5%àhÀ gÍË–‰c(à˜¢^ÓíÖ"ÀÚ­:¿Nú4Y„Ïí`Pc°6nù»!„•¨l}"=µhJþ@[«­£±Ö¨ã/H‹ÁÀÀ£òc ÜFÿë 3U3I/Ü÷¯ýBraybA±æf Í(qÍåħâ!2˜¬'%ém‚{ˆ`,”ÀÒuÀˆ&· y÷iüÉ‚¸MÒèï‚̉×ùA’+»–- ¤ÙŠ\•#x0f77:°ó|ÒøºÕ@ô|nÁ¡¸`‹“ü0&eî±:#hK8z‘ ¸õgá7Õ –ÎÚ¸¥6^·ögw~\­-6©ÞD.è’ÃTÎiÌvÜSJÒê/9j›¤ÙŽûS9·úÈt[ÄÃÇmBëf>ö¯ê“wn—¸ž.Šê»Õ°?dÚéoK­?£GôIº9‡\óÄÊË>oæd鋨x:Æù¨mË+kEÀ×Ñ_êˆÎ˜CÝÒà‘¾ð>‘8¾ê j×>y`k9ÉCÒ>9aÄÎ÷³qýºuï(Áÿ $WK¤lEÏài‹&ù¨f§ ëôšB`’¦¹f‹gö^È––ºßæ4)Á¹ý çp»xª ÷ú´Tp˜EhL^P¿2<·ÛtHß>:˜;>{.\ÂM4wÏÒ å!|ùŒŸŠÃ§Ínß95âl¶xÔçˆáÆÅ‘ò±ëMPºó-¹¿êwJ€ÈôWýI^Ö¾Ëú¼3ŠÚ#L7"ËiÇ vÊœ¬|¤¬»J"n-.zJ¦KíãgÇ–ÈÕ8–Ë•ü6q©aOŒz£ŽPlYƒ¦Uõý>–ƒå½(²‡“ E4˜\Aøc) ¹;"gä®çUcN‹c"¬‰„Í&‹2©´r‘³ºÍ×WÌ;á"vZ4 $õݘ:†ésŠÌ¡L#™sÍ›ÓLhÑïÄ^‰ ¸«Ni]ˆÐÄÓ`ÿ.šò]pTiàÁˆ,vsäÕ¯^Ó_ åfÓ[6Ú+ìb•—éÕäHöݺÒÅÝhÎ ¼²@«\1V/í¨èOóI®>¼ŸÂ¶ ·¿k0ìÌ—»3'Üq±²!rSÏzÔŽ½ÿBÙˆë;‰#€ÕglÖåšµ N-pi5íªni›Êe1¶NÕ0Mo¤‡úQkj¤*zÛÖ’‰¬ W]Î.{¯âK‹EÜEK‹}äFñ­éaMÜ« ßråDå>”Ê.NwÓ¯F›¤'À¢npðjß¹™§-àõŽ¨Ò”Òhð;q8.–íÀ ³–Zp?Ë3zñŠsOMÙôa©=æ[j’ºëgö%X¼‚*¨.íÀhaRMRËAJ:ÌWûhÄÖÆHfvÑò£îºh2ÀEГ°oõŠâ*ò9¿Ý‰ÇZ#¬Ñ·¹_㿦#×Õy©õyó I•DZ6}Ò(Òš‰éâAvÖ[ñ}Ñš§ÓÚØ;ãX°‡é±ŸÛí>ñÓñàÏw˜t©±'³Á†œŸ¶a¥\Õ_똷„ žÐ½ƒ/¬EÑ$hÅMBO &&¬êœ‰­$¯}XcR‡ˆä|bHÑ™Eß+Fr÷²‰`JiVùͨ¯¨2Çz•16¦¸¬f¹âcDÚÖWP¬“"¼Êµ¨Æm* d­r\Y¶ þi¤õB–3D“¹Ü‚VŽ” 'Uk ÜY‡wtûÕèÙ‘~mÃe`!¨((ùLw ß£='ËMCÐX¡— ç2 ÛÏ”¸\5zPn²í¸¶ °‹;W J¤O£A}ìÉ€…qCÀÃz¶%¢e›ôuCM¢ö+,y÷Ea8ÆjD‚#ž;¦tþó”äúånÄaâ ëL®à•â gn'Çɯ”À"ÆæÆ3Ž€~œ®@%TFqCÖί°ØmÂZ4Šùºy:X±­ô\n?ä!9/ïüÇŸ½,^ùáh­Ð;*àr‹mÂxÃ?ܱðžb.@6œÿÒŒZB#V¥Jß6lyid^È>[¼Þp¸fª´K#ùˆ…)Ëô<ág{'»»ëÑ™uOmÙö¬¶uµéç¥õa‚¥.'AÃ'A=ýx ×mÙÞ[^ØÐâ$ô)¦Ö†ˆ³pF>îd^«%7Ì"ŸÁc¹°o:21Q÷mlcü–*ßCDµ3VÂ9×'½ÐðY”rJ8F±œì#[i¾í1Ï“s¢¯Î#æ±è¨ þ…ªÊ÷ BÒÊS½þA*” =×°™@¾AºÏ¯#ର0¢—áÛVµÔÀC=‚ÐÌn}BŠ'ýR¥ÂQËF-t2šÇ+V|Âî/â‡ÜÎý,6¬¤SwmÔo]r»M“^Àá ` Ìkuÿ%Mà÷@q‚Ná³S ~PÍÉ¥ Ç5šÏ¤ü…ÀÑ_ïÅnžõ¡\£ë ªC»•+„ºJu[ÀoZd6N¿[Ö‘ žˆ­âåæAy•.¡X'²¤,}ðGü®Ë¯¦›vŸ¯°•£dZÖªl¶¡de£Aê^ý¸˜BìY¢æ{ú›…8´Q›V}“5 ’±Æî¾‹~³x4_Z8¥hާ‚ÕúÞmMÍÑœ˜6sÒ;§ì&šdB,Þx§ÜcâŸÞƒãïé(µ¨’«ƒ¬{©ôFÐ1mÀõ¯vqv() 'M¦ð=^LQ¸l˜»Æ?ýÜÎ)×ë7eáÁy“alÞ€†X¦_åÃ83¡1ÕzYê\ãHƒØ§¬9"ÌžÉíÕ]É•d}ÜL§žåBñ jœS1±¾DÕRÅåò àû?®Ãf6³íXYk@©òŸ Áxû(º4²ûØ(µ9,C³Ýq8ŽŒü°pß„£ø=`ˆwwôÏ9»Íf9]Ô‡‹_¸ïH£$Ñîlnb#)ú5jñ›ŸÄ“¸|mâIFÍš°mïý~žòë욟MùæÉäšCÃHvSm›ç¿#îÙŽ ‘ÀRÀ4jd“RáÅ6C4J#NËvkͲ+cÌTdœììÑuõCºoÊöäê,óãÚø¾û2_ä}¼( ³£±Èr¹6^?/ å¶eƶú½±Yü†{U½úÜ3‰û$K_Ñd•[´™ÉäSï#gF™C‚e^»ew ïG‹c/ ²ÛË‹îk j~RŠ’~ʼniÔ´-¬1û¡ñÁ>‰{S#c÷ñ‘ÖÖ±ÛBø‹(vGëYÓ@üá" ޲”‘¢ÒFÄ­®•Õ3œõpžCÚ`— ÁÐ2Ýk Šäò¢ÅÔ#ÛŒÑm9®È~'ˆý{ûR¶º…;KÄT¥hcšÄ΋÷ uëþô É!¼!^•æš é ó x{”ËK3’’ÂÓAOêõdàßcÝ 4æ–Ñ`ŠÈF´ yÊíP0ع«ßõ *@;hd<å‡Hƒ„ÆO³Åt@ÀÂÉKú»‹+ÚIà =`*^*’z£á=ãŽ=¦þ„±;^©ÑwubŒ‰ÄÐ x_ž¸È«åíþ€_™ªç\­ë93hŽ—Ó~deÙäakß=öUCbXqÚ :¥"NÆóàRª}…°&ÂíéÑY, ³ËÀ›S(Å!¡©Îµs‰gÞ~¤:£Oýðÿ¸“ÂÐ.sm³²ÞWö]6/ ÅVlO/)Q?§ZÈ9˜ót¨Û@F˜y…dðuc¯Ž¥¿÷[øV ]t!881[A´v6ϯȞ ôù>_ºpz¨fuD!ýÐääÏR{F?ˆÇ—óÓ„É”-ŠõitºªÜîy1ky!–Ñ“£àùŸW¤Æ\º»š;±œQF°®I’]êº1Šžß–·<…¾yÓú}¬ŽÕ_ÇÜ:lל»Â~õÜ}†ruÊÜór÷éç—ÏfšaÄm>*€¥ŠòÌ™{ê„ÌpÑÌÌ8ëW6Ä„@O1ù¥aH[XçÂ3˜Ó¨÷Xý¢QLF-fÏÓLÑÂéÐͪ@®É÷äuå4%% v b¨ôÎ}!ý`¥²­)‡{0ö9G™ó^Ì3µó›¡þÖþrý„û)þ.¹žM``±îæ5rI]‚hxÂCÇ,—8ðI½«ÉØn´>9ìs†—GMÿæ a¡@LßáG‰Ý)úêŽG1Û¦ò,¹UãrŸ-N¡»zÍ®ô›Ò=ƒ#½FŸS‚c”“hL³+>6; ¨|ÅîBTùÚ±]¤êvÀå’9c@yfgšáŽÓ¿Â©»ÉB/P’2â>¨Ü2ða*;¨ÎÝuÉÖ¼ Õew°¡ùÊç÷±_ë 4ŧ,~™ øFþ3F Ù¾¼s4ʹ}CáWb ¼ipx#A £×ïY%ß,òu¨‡2déÏŒ’Äe™«.;Ïç]qkïCžÊbž M×ôIœ;Åc»<Á¡$Ìî$i;‘Å(úŸË'SØöa$ºŽUœ@º?yê$)³rt’Ò©"û†/;>L«ª‘ZE_ç› tm2’ò®›VãkXmÅ ]Ö„?/û^Y-Ã’Í¥¨œ}¿DŠæs˜Ã5\ùÉazŠ6{–£¨˜ÁÝàdàý°3®u³úžÉ<ýº½ ÅVÀ3 åöÎŽ×ÈŠªÔ.>¸ó€v ¢Ã8ò£©e„óLߥK‰oD˜®ÔªQ®G2ËÃ?&„¬›tIj3#ç•õ(Í­ ëQèã–ž çý*?ÀŸC#ì€ùØO"pM¨‹·›Ë‚[†é£x8Óæˆ/‚Hù,šNëë03<˜¼aÓ¿}Ϫ&=-C$ ãŒÊÿƫژ… 7@ÿ3Ì™ŠBOGƒÜHl˜Ž1@"¾­\ÁVš¼n„æ×F,ɼŒÍ'_TÌd铉Lò:à×6G ãƒw‡Bò5oÐQ1|mûbcXL?fZA€»íþËrXdà·lr ˆS›¶Fºa»€Ã¦ýÀGýb¤CjUr}C]Öx_–y‡ÄÁóû^x¡¦rúÚƒñDHx •z/üðƯ̷fâÙ—ð”_,ëÇC‚9øµ2Ö‘áQÄ*GÚ Í}ൠzø-4PÇý&d†2¨•/O‚à>®ƒKòa4PV¤¯F|Ë”Xç>éÀ7þvÏoWGn3öÙAjâ‘J*´ãÚï-APxïõÑ”²`4$™ü×±øÓ«˜aŽÇsÞ…("—2ñНtü¢Ï-Qc¯4¨·S¹Î÷[™ÆèyÁùBëйèîÕ%h˜ &?ˆ7˜?ŽIQ†ù3¥‚Þj 5¬Wûmˆ´ï"Õ4’Ô2ŽS0sÒÿòö©\â7CY ân¯4F›Íý59¶†ÂO še+¨òX2ùQ~ž.J[߀äl¥`éúÄ1É ¿‰­iI㌱oð• s~C÷qÉ[U½>d’óàrØ~ëGâu—`6fÃ+Á:?0›(ÊW´§#D¸]£'e}OÄÊUP±kuǾºZ¦òãÁi/­Ú ÃØÅÅpa¡»Çø§T¹çwŒ<+4>8 Gjá²,•‹šž1pÐKUón´û›­^È~l½Æ&°_cftRw°/ÑTsƒÆ@¤uçµM9o}õóXèe‘Ì5`Ù¦½ógÃMV„¸¨†¯à¾þ·w<_h$ÈõãØ?¤è}±È*¥²€>ñqù,,½h8C6kÌÒL-x‘“™KÃlïG$aY ‚vúó?§HÝ•üWÇÒ„ï]±×졟f{ýòø&síåâ Ô¹­p>¢»<Ô²åÖÅšÕkúS'¦çxÞ¥âã~¤t—SÞ¡ƒÓ †k[!¢ÍZÝ2_éõ 8¸í匩“¥¾ÒÜiZ"6–Ü Ðn3Ñ}]Ÿn'ª‡l?J°ËûÏÌÎGùc}û5Áà_ⵕ£au¿¸wÊ_#LÛ+qy޵´QB ŽÜ÷µK ιÒmkë{ÑË‹‰êB}ÿp,¾3AkCh­®88G \-a·Œ*OIÍCÉ#[xÑÔ<]h¶›çÛæåú!FÆÎâ'TËU{UŸwµûX ÷Œ~ ŒkN·Vó™èdÊ@ßË/Ñù&ª†Oˆïóã¢ÈêÙãd…+†O®Y^2ÃVc©zöë,ªSíágÐàN;wÊßy’ÄÌ­ú ¸Öý¼èDÚM2}Ê2„ñSƒ>ôk¤; ã¥×®Ggýç³G¸»é ÈãêYî,4lX§×s¢,i×µŸ=_) }¢X!Szeî¦aæ`;„L1šÙShB^…Çã5+¹U ÕéÈåˆBï4‹°Gnâ¡]·‘ëY‘ÔFR…2Šö½ëî¾™j*øeû ¢pÖþ îkÕëÇ"t'­;©ô)ÿ=´¨çã@!ºÚ{Ç0;¼X]\;³pN= {.l˜Õç•UÈœIWô™5°%›áíM8 ]QG¿eÕº«ñŸ4„qìñÔ:݆ý&¢´Žr<­¡Õ¤Ä3\½Š’^ Mù­b!Ô~\hõ`áW׳£x6"ÙRw_é!L*5*Òs¢?3 mŠF1”ᨽnù]#V&[K°÷‚c,ý\3Ü)†÷Z‘åºÄ=‡ìõƒcXÃùlà÷מtküôv=8Ælû$å›Å/OX~ý# Œ“r¡W÷‚6× ycû2ÛÜØ‹s-5ÇXÕ]P©Œ +¥rè«*k$¨öÁÁÿ 5=»¶$x§8—•àÇœ¡Ðwf0§`L¼Ùà+/UÚY ÅöÛ1BSÀ±âšXŇ;Ÿ¤Ä ¯W90×îAKê£xDò:ÔÐ  ¸Ì’P&3œµÐa “›3]üðäð¾Z¡c†Ù?$˜Íÿ¾kìéÕž‹ã Düðþ™¢LG:\RjaühOSVùÔ¯m+ܯFªê÷¨ýE£±ÓUj»¥L¶dì3YøéïÌDqA›}Q®2t‰j‡ï‰Þ¬ÑIzÆ2¼¶[h`[a“ž+6Ò ¥³¤?lÃðÊSâ5BQÄæ½Á•>Y«ÿöv¯’°Òë(±a’qjs|hÚfzÝØáÝ<éõφÇt†ï¨J¨ßÈV9‡b½wU¡S{¢ê;ofÔ–w…Ó%˜qÉ’q'ž$Ëw—!äù.Ç7{L`±¿i{$‰k‹«hÌìl]À«rd¾~\ÓqAh|Ò7kÇŽVÍ\iƒH¿Ç܆Ðc‚.ÁБ™o=øp¨œ ?†áw{‚lC;…¯ù𡯠Г!NcHÚ¨‰AwÁ½Æ6ºr+6LýÚ@—›…ù¸ìOzB¥{Ö-Ö‰¯WÒbÇþ‰±ÃãMœSứcžøT‡ õóûÉá}’ ®17l+p6K*‰F1§òàŹ¦òªŒbZ}@ðä–S£¼ƒ&¦×ï-ök}¯‹¨n-©Ky ‰Nukùé+Vˆñ©ð$R€˜œ8+¢˜àö䜇É«UAZ0ðåÄ¥ Þ7žAå(”…sN‚=ŠY4dÏ][Zc…>™WÅ·CáÇ,žÌ/¶¹ó›áVÄhÄ*ÒŸÈ£÷fú#™Ç•sü#ýèç¿ÁÀ̽1ˆÛ|²êíÐ5 Õæ]zÁãÁ¤™Ú}°o›ÂW¶ y–x-¤Eñ¬ºÓú¶¬7„ðr Êþ¬bFÃáÕ¡òì±E03Yõ¡>……œ6;üÜ– fâ:_ÈIPd—AS㓈‰wBZ¤çNÊÓŸkÌø yE’êÏ{'puš`®¶[påñ ‘¼³÷Ê'+ì÷ªr ÐgËÊ Qì6‘fGøÿÖ)᤼‚¹‰ò‡ò³9-%·«çÐØÎ·á¿L+ÓÜŠ‡uŸ§ˆÜRt!+Ò9ñ“ž(ÌQT¾Y¢ï$ö`–9­Ôk?ÏÁ)€Âë8´‡-Žˆî?Y ¹:WGí¥x‰á•:¸P*³d/Âs5GtTpJ@5¬‡¬ ¯±à$ öûlQM#§¤õD¨1aÐ;$Ž~u¼d)}<‹¯;ÉÀÒg™p ƒÎ¾êí$Áù©åñ‹¿v$>‰$B¯…–­Ð«~Åš,h_¨ç¨Ô¸)ñyU!Cìq급ºä”dšøùÇN6©Bªhûã×tSnœ™—¿ðµÈrÄ8ؤÖ÷t: …?ŸÜ%ô”;r¬2£„â"\}N†e{›ˆ8­1vW PPp©ÄÞ˜Óo€Ú¼ôoº0¡_34ÏÙ6kZ”àCI &È  ”ø.^R,FŒE)a8ï„©Žyþlƒ>Tœ¾S°‰fg솙÷p¢mr¢ó¸,¯[ìë ‡£Ö¶ÜÙÿpï#Œ„JÇ4”'N@ü59C®.¢fWÇow¶M`V•aYP´ZfVñ³Ç»ÿëð÷ ÝfL“»NΦES6€OIgJ׈7ŸUŒ#²Âž×STB~6Žù%TE¥ÄGwÝ®úV²p‘Y‹-ûw¼ÙK©q-Ídlž¡À;>‘) (hTMR’k£f°ŽÕÿxnér$ã¬Ã¡Í,T~åÜ~¯¦nävô4 qi­ê÷C§<žozƺֵüî<2vz3Q\ÝYbYšãº n澃0´™TX¼+;.Õ¥T|K‹,¾+jª¹„$çm“œþ<ôãw–P×ÂÜ8»ÏÙ½v·¨Ì #uã•›¨ÊNf5¤¶œ²M¤L`«õu šM«#Í_é‡;ã€0ãl$Î>"/ #¨TZ.;Ã×óªa.ݦí¿ Ê¢×Ûßø19ê5«€)Cµb‹É\ìO»bÅ89Ÿ>Æ«¾Ú–&MwA{ s™°I³IëÄZ•h…u¤Ò‡J²™+”3؉‡)ÊU C™Ax­lóΊ=_Âñ7¹I7Òf5"¹„•²äÍG)ªù¸ÌhBS/£¢WKø’4}î~®îC> óFi¢Qý)ý¬û¥¿³œ 3™+vMªÌHÍFÐ-ûs“ ™W `7X5”m¶°Vé*[ô!+¥»¹ÅÞH—;mêBö¥=ݼ®0¶)k–LV¡»Òœ¶bŸa{Ò¦(9#hÖŒ(í`ÍÎ Ñ?Tðöþ  6O¤uwE}lIÛºéç„2i2 øò=qs‡Æ—4c_† \ô¬ÜÄÎ`DQ©¬É²2.B–“ÚÈq¡E?„¸—G¶¿§ê}Øu—?HN¬ÒD›¶DÐfèQº&«04çI´\$,M߉?ò Té•~dƒ=cîgã1Âe¥·ô‘Uä›Kàm¾1ܱ-ò.aúò~\¨Dë,ÃÞÁü.;þn3¼•@ÖQøâJã_EÌ›ÝÞ ÒA³\NÔmNZ‰((i–è ’R•9¾„‡ï*XÅMŠ·XãíX®¸;rË/Y¹#Ñʪ½cÄžf^ž›"A‹3 $ U]Tf¤i¥Œˆ\”i=ÏÚÐ6úêêbb(Kj–°^7`C›´ðÒ8íö¥!fé°"Ü–<Ò=‹*÷jNbôòµM Å)z vÕb°¾<švÐ]V$¨<¸oÄÚ¾å7*/šÀ·ÃèõwÑÎôØ@ñÚ˜)&¨5¿…ÿÎHSžíÚÁBÆïÁ‚ˆ0VBf&¡Ðéø¸“¾ Ñx>o$1T÷˜$V`ÔD(›cv„=‘Ú"’&£rYϰ­;Âdg™I­EÈOlE’íç~CB8âË“õ—J*ÅÖÜfWÚòÔƒê)N¥ÕÏ’} ëJ„éG°UÏX×-šÈ(nafI‚³Hö©ZtÊ5¦ßø–fxõiËÅ®¹ )îÞãê••l‹äø¸Qÿ¹9q–áÂcËœ}ï˜ïŸ ”8aþªn.è•XöT“2øŒÉ~‰í\Óz]æ ó`_ 9€Q>WóÏu­/9ß/KØ^‹ÿxé[ôN~ă4 íåÙ§É »krˆLã8 Ì/å¤+/9KÏ™!Œ8Ô(Õ¿9^† }pi{s¿­êÒUÃÐôš"Ä£åƒ~þù¹M£•¢WQ£>‡É‘B{urè(µènŽ p.+¾àýÙz¢‰ù`bÔŒ¯!<†fH·W8¥Èé3cz9‹q½‡Èr“6}Û4ÈÄ0)…J I. €€&ßoþ8Z)(:Q´T© §)‘žïczqûbØçªgX‰M™Ä¾žnä¶«ú:¨‡œ§ÞFáÙ§â…{ÈÓUÉÍ\:‰äøArðÒÍü¯¬vkµ­êlÅì»ÃR¾,ݦ²bŠHW‡×[¼º7úfOOF&£G¤jr—ÚA=zîÛ&{B±š¥EñÑc$c‹,§(÷[Ô8IïšÙÎË-†äs•KŠS~6éÎÊ”¤x’fk–i]‘¹›»øäháÉ¢;Ð`îgD7ïé,ä­¢m(A±–¯dž<ÉчéZGÿn“>!ðõäÓÔÂEÏv‹«ÜpX“?ˆWU´õUßÈÂsVðôi–…ؾœêº+i®ÛK°–ÞYb*.÷‘´c÷˸ãÓ—›¥­¸ðîjâxÓÙ–mÇ«YŸØ?x„­.ާ Ú+Iè¾Ñ˜#msò[-)—çS®Uq/.\Zù B,Êën§‰¶£­P—Wg}“­áB¤‘;1ß'c~Cu^¤«é›ç2ÖQû°æ²¹¼ËÇúuk×ï1ôx…ÎÇ0çÀuAHÿÉ(Üp³½«Ë\’˜I¼Ü˜__Ø‘{,ñê‘Úª¾÷lŽ‹ÿ‡Dº©Ppñ^ì¾€ôð0z6ÂÌÆë7ëcøTÃHZ G§Zmf¢ÊŸ Í!òëÙšãüƒ¨_ç±”SÂ?þ“á‚11„èz ÖfCHǨ­¿D癤(œ”¶ì…køéÓlܲ쳆{[©ì‰âñ—£_êZöS äm…Õ^š>P/a #T’3@ IžU§")½ tYñtôúè†ÁÚ­Y•‹ê?å§É2 t8Û#¨-Œ¹w{ì¤z\)EÂWv\HûvŒaˆð/ò2}X$RÏbÖø›?xà¢ý?§(íüx÷¾Òí†û€>jE¶Xnã,›Å”ØM}l/'zÿ“ÈÄ£ãB_ö+¾Z†¿ˆ½“e‡Ð%êmÀ¯÷þ .?¦úðAfM>°Nû@FAkÛn:gÝ*Q{ÛÁLôT¤ Â)±X=}ÿï€q¹ñ¾¤„T¶*j˜ÏDC¿.MO’·=zè{ñòÄaÙHóWi‰õ\ˆ‰ SÅñë+øÛôDãŽîs¾¿âù,šhZLM8¯¢®âýÒÍÉFK|¼ðŽŸ5‡ÿƒoðžÑÄê4î¸f±|æy)7¢òdt¿ˆdÌ(תØê?»»@~ ÌVà•šõ³!ÑU Àä­"EÑÂH\¹Ñn¶q·T¿Ò®û·i—HQ?1Ùæ¨(X!øàhº‹¾•ŒƒNªÊ‚ÎñV~'gÓPÌTº‹†êþF…Gã&-,Ró]úvؽ(²ÝÂ+T ÒãØù@¼‡$·=#…ªMtätƒ{ebÚ1ÖÍ”¥LÅÎY),nRoYQpØÝÒõ&ûÂøã,„uŒE‘l²KX=¿Ôa;ÐÛ*på|·<îæ¥rµ /•ზ¸Wî´è¿ yy©ŠJÍŒö°Ñ±1 u¬…´ÆBú7ÂÉQñÜxºægš¥ÐC:„si‡ßf3¯L²©ƒ×µ¤F¿RjXÚF‚Éò%Iþhë­ßÎ'&µÕœ‹½Ç³ÕÑD†›åŸ §f°õs›JBH·…2³,­UÝ$¿<­î~Œ•dTeÆÙìÿ.­$6qßG%´ªâ*—žUD²õû8Ue›3xw5: „"œ"&FÝR8òpXù¬ÀR tfàò0XãÍýl`‘áGˆÕumf¸|ƒ…’Crtª£ 5ãÿ˜MQoMº¹É H ¡gO Ò¾°¹x>ìVH¥01Å»­W¨el¯á‹é9 ÎI»Ó¯~nh§u²WÑ|µ–Š8O™Ñk @¢h°Ý²[Ñ„ýyÅ|ž©”î¨[suÅ8QÒ]ª(Âmð}žPgTøuçG‚HÏ!˜mDêwï€iYo·íŽ{¥ZTqõ|¦uœ‚"0œ¹ÂN!"á±;Ë Ã~ÂQ½E(r,ñš=—OŒGJ޵GŸMlå륷ZæU HÃKTª;A)¤†vw˜Ë:2ƒ b7NúµO†""’[Ò‡JüJl%¨Î8OÍ.’V´Á5M:Û“ŸÃÝ«x«KÞÑB0e Ò®BQy—ÿ~Ö”ýÆ×½Ã¿Ðä‡qÔG|,Ý÷ÖBɱ´í¹ê‚T©®tß>Á«nùš3I‡¬SEN~Ýîûžì™5¹w¿ù­û§î`O¾pˆ%Ǻ™6Ňà <–¿ùOFÃúL[ŒV‹`õ˜"ÜF;u8ž4”GçÇmJ”ý¶@VZ=q8zõƒƒën¡½[çÿzzÇ$:Gú¿è:s FBÎJ†6kfƬ7;QáN«ÿº( Ø& ,1k ¸Õyö W¢zï$È–Ô%”Y:lµý0oG¨²¤<§. @Šl–9H.D©w¼;¯úÔY‰<—ïÂ@ìù›ÒÍè®øf€ôL'Û þù[ ägµ·ô6´SK Y3ˆèåd{¨ÞV}NÉ E@L]u¸HEsoîÐf4Tw)D.ÍÅ ›#•?B@Î#y“s·G‚ÀfNHiŒÀ_ã$?Q^R‰Ý34q×qî |{gØÇ¬óLÞÍ«W‰K?óä_ÑîF7]Ž;”瓱µJ$6®˜[¼²c“=> ïÐ3ãnÞ1óÚˆ(TïËÇü ùý´ ƒø_¹¶’ ¢’Aî´öqMA¢ÑÍùÕ_D¯ µo ’FÑo)H'6 Bƒs¥QWº\› ‰~qÿñîj¾3GŸÉà“Ï£nOÛ´†-²•g,¾øÀx ÑÎÑ5!8À™RdXµo‹LÌj¸yf- -/Å}C+.pä˹oÑI';,PUã$I0Lm²3’#ÜÖð@Í*|{'ÿ‹é÷bûnÕLÉäebË´óß2®V3‚Tô&wr“N* d;Ï“e™ <š2 µ2¦ ^äÒÖ%£q¥øã––ù¸Ã’55¥2Ï¥ÆÑÁ»ãyr{ålÓ3MÑQfÙ§îŸNJ< *7„ õ¡Y€á(7ºG êŠMtÜt0 F9ÆÁïJ5îCSÔBð©øÝ|¾¾ò˜ŽÌK•Gî ”Å¯¾¨€ç%îÜ…£Bfäÿ•?Ød¼'˧ÆrÔó𢌌3ßÖ%§‹*K׎AqØ4R™µ6ܱ ç°QeÜîúrÜ2×òT!¶ÞB:ò+- ƒÄ‚cø‡ý3±üöSÀv4u{ £ãìiTì5¯EÑch²ú±ßó…6&hM¼‘KC¹SÒìV‡c†Ç+à—‡I7]’ª3X7®(nÂU>ŸYÁbI#®m¸™MÔÛ E.æi Œ¡÷C<5fœ&@¦ 7¿oPärró2aMÀ+uÂS‚sÕEDp‘ÙÐEI,(NÄÀ ”|‰5• ]|pÐÆäµ pÆ ô¶¨{‡žfÕè}$[›Ëˆ•žnVÿŸ™kƒûÑQu¢Ÿ²„ó@þ…Nîª3|iµhábËnb+ŠÆ ‚]j#àµPÊ»Êi»ÐbQ^öSÇóŠ.ÙaÁÑ–áþµ-ÊÖ½w¾)£}QûÝ•+™…÷â$£ÄK>"(Hªl›¨4#3±ÄÅU~7d•¡¯‰}ÇÓ¡š'—ÄM ]4ü@l‡zêCõc\=ý£ðǰ3{h³\z¼†ŸÌ"•‹„2¾žED £fÿ·4AîO“ŒöeZ–v)íßÓ4uûÁ½Ç44.Úw ØÍIoŸ/›(“×àÃ;Ëp# Ã"{·Bôžèlj©¼cP Šs]ó¦‡.WŸ¥ˆÐ ôj†·´ –på-sB­ÊI:Ob+IaYí²%é£6/¼ñ–yX¤ÒÔ§¥`nÅE*iáÏ8Ïåõ ÷•Ú¤e6êgÿù+K­_ ¯šç=¢ëóê7+^ÖÂܼt,KަE¯h—H:) â _R:‹.xã%ê…Š%Âj»ÄÂX àÓÔ3ÎL;ïØ™Dl(øÿÆÝîŠÖc+/t¶}韺G«…æ>U(‡N¢e¡Æã$xÒ[ é¬ò~ã7s j÷ë›h°Ê1u¥ž}¡à£Ìá¿Þ#Nb{eýJ£7÷¹ÁQϹŸõÇ¥Uœ ØÖk+ß­3J»ŽæÇ™¬ pÒÚR,5»*dþFÃ&Ñ]Eá{Nÿð|Uˆ‘4‚l!:*Qï\à‘Ù'ôɲD)äY ä÷4íœO…fÄQ»Xw]ŠÆ¤ ÷+ö"áe@åÐJÓ Y‡Kƒü²#šwLe (™‘-2’hô«ù5òüÌXv@€©Sš4ÛY•Ó£lGªÅ¾ÜÓR5¥D·H:ê1¿1@lÞ³í.¸V›Ë‰™zYŸlYZ/y?*YhBwÓ~jØ3?(Üßí>SGòø®1ŽÂ¶B|#‘˜Ún$ÒÉøõ’Ý—i9:ôºûÌÊ[qÓ’jâ´0ÀþwÉ»Vb+êÖõÇ}'F¢éþz™÷œJ’Ó»€Îís+Ç‘bZÑ+¦¬$&PäŸF[ &Uøôì%Ë­–ùVWl'eÓÀÎÓ•÷âÛA­º¿íD›êawÍ,pU÷–°=„øX¨zVå¬?ƱÃÙõiÈjì*»~ÖÒø1×&òÚOñ˜|ãœKôfû{¹õí½}vÝÁMc)ç5Œu·xÎù«@÷Œ´-²:>Õá£aÆÏÃ(½Ô¾å¸:ÐuH®ÉªJÔJ‚Ñ6IJ –š;ñ|¥! Â4#®cÂ$„Âa¢ç%X€ÏŠñe¾˜o÷6€ ²Ï0Ö., ¼€i‚ŠìÛ0o"ey‡¢Óe±f+84½›ílx7¢Ö pëj“” h„`÷Ÿ¦!·9ìØ¹o%wžzéÐÅÒ$oü w[óÃ<#\æ|ð¸b(ƃWïkV¼uQø#Hð‹&3ê3ÕÆ¦C¢ŸJ–"¡‘#àÒf5N Yu£­WÞC!öG×ò½…Y~îß‘Žz°Y‹V i~qÒû ªœhE“eVf#·WŽðÇÊèK=>É7¼HЂ‹á8ÎÞ2¤)v’¨X1V¯v, ÀºÖˆê«/3º#¢KÙ‘ØXbà¿$knëãº/ r„ŒÒy¯ÙúÃëç¶õ?».‰4Eá$#“ý×ó…\Íp2£fÍ}z‰ø¥úà´uÜ?3K¹E–’:qï ¦@¦q¼ÑÈ×QeÒJC*ìhðD¼õ¾Öàµ"ú·ãÊË„{‚q¶‡Ú+¦ …î»ÒÌÆênÜL¹Ro^Ö´æ¶P[á‘:!ðoFEÕ¥ŒãÄN°ÍV§Á°é2<Ú¿·³÷‘Ý8Ç4È… á‚’÷Rf¿1ÄŸ]–‚ˆƒ¥²Ü`5qñö‘3€¹ò^€0·ÿê»Ü3¨¿ÝÅzd’¾1­uvähÛ/pd0T-‹±¯UµKá­¸M©¿†OÒâžF£c]*Yˆ ¨xƒŸ4\¿€%¾õpS6¸H"Ÿ0ªºlðòÆ=(d üJp‚”~ŸÒÍÜ’õIV´F0Ö=l,»{»JQÌNÖÓöè²­æNVÃF´³©‰#²Çñ ñ ­´Ù÷.7hÞ‡Ð8W0ÑæõÒo¿‚q• >Ð+4<ò,–XV0ÇŒº“RÁ5ŒLÑÚOF‰Êd˜ÑŒ¾nÁv2êNæE¦xŸje¯ “ÅŒ¼r<]7~Q  qÓ̪݉S²†n$u]ê®ú?õ ¸pbK–*žh·U‹;ˆs®WÞ•YI¦üF˜§âôQ¶nƯæýÛÅ✎køÂ1¬bJ ;Ù…À«/ZÎy•?¡L®RÙJsxcÆì"1 –ÛÕM ¾2·ËÂtrœ*¸_¥tÁC»ó·fªb‘å÷$*A½“ù:Îèᾬo5%ç¯ Õ'›Â/”Úîý òã?]žqŒœ¬fÚæ³½‹‘6ֳއ©lzK5‘—Â2±I‹¡üMª}çN!OÌÒ½½ 1N‰ ê‘úš)VЍõ³s’¦“²»yÜU+#ÄU@÷'…5TLÛ¶öL©œ,>QAÅ ÁŽgaÞ8l ²í¤ö7,¬É¿‡%ØžËvoÔ2PFc£m¤X´¡z#N˜VÄàýÉW!Ë¢G!äßè ã’n =’OògÊÛkbÃôŽªh<Èü1’Ÿ¡~®ó}Ô|'8¬$oËlŠŽyÛˆ§-³Ö} [Ðt³_aa w‘Åä c!“œC¥Øûx—÷U¢„ö 6,a1[,••YÂØÊPtŽì×§%T –žw_û·°<52$ºÄ¥5 œ”%ÓVÎcØx‚Aì_Ñ&¶bxL{v}U½Ýã·ï2g`F§®úÖnNqgzƒÔ¸ÒPð?|{®Òx2ù9RìÜQÔ{òE¶=$qÃ’4›†BûÀ…Fà#Õ*ºEËôbÒW>};éŒÂ±Ä#Ûý…wXÄõUgÓ'¥a¬˯ۡ×ì\ßZÒù|a¥KQ˜VuàØ}7ˆWcicsÕt Œ‚Nšn-0Hw0ð§g/\7¯¹c)A šÆÅ!7éO0H7à>^€žÄÉ™ endstream endobj 160 0 obj << /Length1 2726 /Length2 32406 /Length3 0 /Length 33891 /Filter /FlateDecode >> stream xÚ´»eX\Ͷ5Š» Þ8wwwwm q§q Ü%ÁàNp‚Kp'Á`nçÝçìdïïü½4cÖ”Q£f­Z½hh(Ô4™Å-ÍA2ÎN`fv6€’²†³#ЉYdíátp°°±q¡ÐÐHº€`[g') $àÛT-ÀXˆ? @ärƒ ZÌ}Ê 0PËÇÄ þÔœÝÁÌæ@wÈ0ÈÉÚÖ Ä ‘tvñq³µ¶ÿÎÁÉÌü;Óïh €ÐÂÞÙËÝÞt²(°(³Tœ½ F[½³Àdt°8[´@zmMi M€¬†ª¶š& $±¦‡‹‹³Ûÿp‘ÔÔÒ–eH‰«hI@:LYmM­ß?µ@NþÖL-Èøï:ÇßáÊÒZâZújÒ쬿ç`x‚ÜÜm—ý/n´f€?Ô ¡VnÎŽÿÐÛ€Á.¬¬^^^,Öî`g7k‡øiÙØº¼œÝìW7èa<œ,!r‚m@ÿJð{UJ¶ 'wÐï ç :B¤„AìàƒþÓá_îwè?ÊØÝÿ‰URSS8mÀ ' “Ä {¸Ìþ±A¾A–tÿ"Hz¸¹ý®¡ü¿Cnÿ.ó¿Ô%œ!33rð zý÷Š<Ü}ÿÒæ?§máìänëvÿWFÀÊÖô›½ûï5³uúǦ,®"/#­©Å¬i<'fegˆ:N,`oð?Þ¿ó‰K) øØxìü\6H“J;YJ:;:BX»£ü–OÊ¢ØÙ͇õÿml{'g/'¿ÿcÀÊÖÉÒê·ö–.¬ÚN¶® y©ÿq‡˜PþجA`ä y[ذþ.øO¿ü6³ÿ6C„ðsqvXÜA¶V È ŠŸ;лy€üþøO„ÂÎ °´µCZ²]PþÉ.ïdå àÿ—Âä‡þ§ èÿÙª }jéìäà°Y¡°ª8ƒ!-AÿÿÏNû¯Z2*@Gýÿ£é;m|þÓõ¿\tA¿ÙÒ«8»9þkÌÖ]ÆÖd©f ¶°ù—´ÿ²Ëƒþw²vA–å“öï-åé]ÈõÇö÷å ÀÌÎÅó_c¶´°w¹»¸þ‚ñ_Œ!êÿæ `Õ3ÐP—`üÛæ?i' gK['k7èæôAaƒô77ÀÒØ– ïšÀÊâä †„\<À+g7”ß Êà `ÿmúâ°JüA¼VÉ?ˆÀ*õñX¥ÿxÙ¬2;€Uöâ°ÊýAœVù?ˆ ÀªðA¸(þA.J„‹òá¢òA¸¨þñAêiüAzš¤žÖ©§ýAêéüAzº¤‚þ¿?d øoÄ©„\EÜlÝíÿ¸@šÿ±sAâÍ!½ Ù¦ÿö€˜,þ¸!þÎnùwZ®ßGÇ?…ØÙ *[þ!2ƒþd€Ðÿ§ƒÿ,ÑïqW Ã_!®V „ƒ•ퟜ¿¡ç_9»;{¸ý•âbý„´ùC¢§‹ Èé/ˆÍö/ai÷„(iÿ„¨ð7[=Ç?2ý?™¹!¡N­ô×8d¾ÎÈ@‚ÿc2—?Ãd.@Èiã²ú#ûÿXÝþCIÈþeu,°ó_ê³C”pý B”øK'vÈ´Ýÿp…pq9Úþç sÿöyþ¥7$‰»­÷Ÿº9º;ÝmþJ ¡ò‡7„/ØÆ ô×’Aæörþ+’Ãã/‘Øó/aæõWC@¢½ÿ‚ô>Aˆ‚¾ÈA2ù‚ÜþUê?¯]j¿Ïï&¶?³ÿ¹±ùk‚ÝœíAº¶–›º¿\”`7[oC6ȩ±C¾þ÷7ãÿ(@óç@ü+ZBÂÙÛ™‹“ ÀÌÁ¹rA¦YuÞ€ÿˆµø×=Æ?'äªû¿ø÷¼A(K ΂avï?½+”.šª€§ág9®ÂÑSH‚[Êœê$~-•¿M -n Ê¢-vV’0L v*Õ£ Ãsx^oK­ž¼¶TÛ*cH‹åé°h‡d)/UtS2(äêäšÉjOj'hJòwöÜÇqL¼¼ºL§4ªh_-€÷*™coÁusÀö^Ä"ê"^œê‚¿Üã&ÄûÅ—ÞÌš¾ÃS@péëÁÙ…Ž-ýC¿›%p‡#Mﺾ¬}€håÞ…JEú–š¤ÂZ@—b„‚ï•9 L9‰TìÞí\(?%I—zHØüjzñŸóÊ__Lk%ä½ôñJÿþ{{j GY_¬wÖ¢-Þ¨^‚io¤‰YG Ê|ãYL7w›O ûŽúc(ÏÛHwÍKfHÑ©dNYG=,0cEïžNYP¤ÒуF¡%U7‰oY­±L`_)¿&µãO„5๨:“Ù+{͈R”@È™4|_';«Úã&½~‹Ô¼õƒ¼ªôFŸ¯ot“ú«­Í© ƒDo>µîyXŒó*˜ORUàåµ5O€¥ÁöÇQ{ÌŽò×9Æ•ðÕçÔœ6Œ+ïàñLŒ_ãl *|H\ÔXy3Ìì!yÇ5²éÞÌ£„g'L!8žhÅÄ«µ9²w¼8n ‡‘¯Cô…,±ÊØ‹aãcýä×ѸV†¾†CL•f¥ú¥è_³É×ËòÏyÙ¿Rqü¹ÂÝ%ã'•¡A–ª´¯^T¬ë’© \iw7õ¿õ—‹ç/z[½Oõ¨ìsEœë”º'‹‚zûÔLÚ/Llz_öúj‰,^WÔd¿?„ƒX¾E8G$ûó”ñ‘RQaH sÌx•üu̓+4¼ `üC@Z…É_‘Ÿ³3¸ óœ„T}Æ|¡Õà[›‹ÚÔÂ¥ÆJ%̀̽}–#s©H bÿt…‡<£ UªòôýÚöíµu1Ù·bÌÃwó¨–†eÂYŠa8Ý_<ä $-¥púOräŠ8™õ˜c^®¦¦E6w“`Ž·¨óKNo¡àõ•L0•oL`µ+8‡z/ço¸kRlX ‰×´ÍÝÂ:3“2."Ÿ˜š»?ð¯ñ;î‰OC;.œëІÍïl¢.ò‹ñ™šßó &r(±¼Wa5ÜqÎFZ+åK;FhqXKYR‚$m ª‹J´†) HºÕ»‰¸þ­G£îãqü2{蚺{þ‹·ÜQ›ÐgÛ­š`ÿÒÉDtj†·@´¢«óÜm·4¶"Ó!\ ŽŸyÍ4Q 6á¢q×r5—ògÉê/3vJ®ÈÞ(a‘jY‚0áÃ+ôE®$t‚>³’1Ù¯¿_ï«÷_ <;ãD!pÀ¬_£o†4K5ÕºÒ:&Ü仫Ô¤9Œc¯õËÃ=dòWG¶ nqeJ¦#Žyú}‡œÝ¹6þ²e²•×ჭo¥£Õ‹bÊVr½"ýž“÷5¯€`Bz ®ØPRýƒ«çæD2zÄCÐv‰˜$ãûñ·¶·Ö¥¾Wí›L)Å y¾Hø,‹ú*ÄXÝ—«Z!þ™<¡Þ¨ì>ÂzÑ€Tÿ@?ð¼/‡Ãâ6'¥çeè$¦«í©F—§7W‹pxò(e+½’ƒ¥†¡RãQµÏ¤ÑQ®ÆŽè´ŒË3"zìí3?™Ÿ´®½F®xyèÀ–-žûÕw›¥cÏ1—S$A—4§¸WO ^SÕè퓤£Ä‰}DŽ ì~?²õ§jk.F8ŽÑô_ßÝy‰¯Ì¸¸ ·üx΢àÚ9ëî³/©CpKôrךãÅÌèÞŽy Û v«ï?°¤-÷ñ’ÛÞûÁÍõ(ôlkäŸéW¿Æ¨ezÝ–Çr“µ¢+D…¥¢5©I/wêÊ‹(|¦6'ïË5—îl*¶ ÎóôOA1-+~ûF¤Ž¿…j8éÁÄ“½)ØúÎÀ@YÄÝîèç™×ÑÛ…>¿ Øç\æsN©f¥&6*k6¼ŒëÂwC­ÿÌ”ù¾[O‹Iú\W®¾ €ó8àå+ üð;wªƒŒ¥ó8´{tU[µFçÔÂDÎÑ©CÌd/bWév{)ÅD^Wgç3êy5óÊβÓÎíÒ=ù¶?¸’ݾùLgºvÈ£ˆ7Qº·dˆ&˜ËŽ[ñ…­KâÈ 5ƒSJ\;*Zeî³ÙÖe¨Øo…Ç ðHž¡Ò<‚¹¶ð›Ï|·›ota„S"ÉÍdæbýÆÞ˜f+!ÇԚÎù;g”d[BX2Xuðº t®*Ëõ›¶ÚŒÔò«…•…ئ<¼:_ôi –ò8©¼mòTëÁ;C\Zµ ¸e©Š”ßLµ7eT$êóŸ\ÆWRœËZ. mlh›O• Í^Í=G'Åõr @#ÁËQꯈ'’[Ÿu}°‡)Jz®ÕT*¡ß[Œ ·ŠÕi 1E¸ÂØ>¯³ؤÉ×bEkC|þÀpù ׯ@æ[¬ù'Öî¢|éЫÏұ˓o †^¢r {À°7k<&^PÖõó zÆ”|êZ˜VÇx´?£&%¦ú™˜j\õ%ù4ø0P¶Õêå`ûœl³cq |ôNg/7d±uqi`¿:ì;ÈáÙñ ‘Íp¬¯O!L‡ž[ú7¶ûgVÁü_â^Æ×—‘ÃÄê~ã!ô=¹µºHäº+÷ßTüÙ,_[¤ UãŒÁCaÙçÎO;¡J?Y{Œ¼Ó¬Þˆ"½Nl«þT£æÊŒ$Æ’‰+°leíq$ñKo¡åÈ…ãYƤv‹¹0õÙ¯ürTgÁ-¡:Œ¸ú]½³˜‰NEræŽEäÄ›b÷ÄV¨Áué"õÕÚLSmÓ/&¼£}k®—lÚ$¿‹é‡ŸÉ÷“ű%äMÇ<0ÄekQÛ¤ñOCËñ°¢W˜«oU­MN0Z@q?#F?z, ¹Y+èò?±N[ü à@v° TA"®ùŠ.ñŠf¾U\þ5oØÕ}L¥`Zû¼ïó‘eî`ÂJO¥¯•=ÊÚËy¦9tlÓ…b%ƒ¹+˜YگݟÖfËŠ¯‰mz™ÿ.>bN[,­&ú«€Fêä|ÿLå÷òÛg‚.7Ð h¡\äly³ŽÑoÔóx\$Ûc Óà‹Æƒß;RˆU =ˆš™ìŒ(`•·¨Kß9ÑíõèBßÏ-î Ü>õ!ã³D«Ëö©• óvgàõ •ð<ýDh%c³Ë¿MÈ UˆËÎâuÌÒÌ:yÜíɸòWà*ÍÑ¡ÃìçDÄu­ÂÉNœx‡(+;çýLYë™pð,æÚ¥ïDéÑÿì&ÚÎÚWP[ÎQ/g€ÁóËDÀ©øDA™×YbeºÝ×¶éׇ#Í+÷3ê2–Õ“ µœdûùÏ?¿÷ŸÞ0ʨ~×Ô¸qòž¹ØLfíšýÖiC{1ûŽŒÔ'>Ø.ÂÁ¹½âŽ7|Kä3±8‰¦€ÑÐv³N#œŽ:›j4¢?‡8+rH¿gé«àý ±˜·2WFj¼äÖHo3¯ƒ)R•Ë:¢A¿­<ÌôKÓcJ£ã€êË`ôšã#ü•%r“—PÆ!u!‘xáfŽh¨éƒ½ådz„©åz“*ð¾_Ën¬Úû§ã@ÏTêû¢ ‰á¹\Lâ”ÑU%CxVQ B=féÔ¬XÄ4-ÁÆ j×pí¸³ó)žt†{Ñz/€kÇX 1­ø1ØË.ÙK9éÜ™ëCQcÕhõjªô—ÛH„¡ê€oh•äý$Ý8›aû$¡½¶Š¦ª×/nŸç]¿hUoÇj OR`‹‰±|ÚëW5Î_ÐÅ)9\Œ›«K Ó’ÌS¦4õ€Rœçòúõz¦IÉÒ¢÷õªO?jíÎID{W©Eô°aÝda‚ÇaYD)üÚ¥³‚§èu©›Žw‚˜Ó§×6ÁG´Ìsq«muR ­3 F£Œ[E@mvØQ#‹ÚóÕÍ Pl¿ip yø!,v:˜¢„!ëÓ>ÑÄs´q •³+ç­æú¥\“¨9ÎõL¦OËM¡é²9Ó¢h´ ÇèéPK×–IóÃë.i§èÓo“Ãçú¶‚7#o‹ÂˆÑ‰Á׺Ëô¨­ì€()j3!ñ“Žtöf¬"Á¯¸C6ÕB·„È—öö¬K¡Ñ˺Ú^¤ªiEÙà×¢â»ÎL:ÍÙßknðõ—pÍÂkŒ(Þ…÷:ìÊŽ&‹ð¯L NO¯›8»#6þX‡:9ª‹÷_õMW¡¿ =½‡;²Õ¯Ÿ-zo¥Ã¦Õ0£fT'žh5ÞÉùÆú·uÆÁã óW‡ê;NCÆÉÒ)¨ƒ>‡N÷l?É&Û*üò0Tdì{o¸„}ÎMR3Ú²1qh bh§!üDY÷{a…z¤B-ƒnzßõ>%ès -+|q·ŽU¬œ×)¤’—\%ÞêHaF 7Ì’Žœ[zT&iÔ½gf>·Ü†¾Õöd ì¾À(%¥—5U7Doã÷¥JÅ;¤²ÿšÈq}f?xjHè2‹Ô!”òõVmÅPŸ\·A·™S©4{e8”’…Xüôƒ\¤“5NlÕÔ@Žs¦?æ²€:Ù7 D©åDñó3¸û=h"ÉJ=®ûÒbrþ¤QWIÐèíЮa h_ð©e¿»o0¢Å×l•q/x±ko5ÌLqC£žŸX‘½”E;ØOøà+MãJyŒxbY³ØäÓ»R3˜°;Lì¾ËHFêCŸóid:»£WRcÊEÀZ˜“2L$-;+â-ÞŠ«ÔÛ*â•p4ÇÀ§4Ópјü^,+Ý&£ö<®jôpá­ÖóôRõ‰\‹·Ef" lÜœ5 Íg×Âk²1w[­s>ȦØ&ªnfyx"WlQ•àSÕx„$<Ë"î®wœËºßPûó8¯Ÿœ…04â'Ôp7¯Êg_—1ÄH¶eùšVÔ§ÀÑ[-è‰ðpÊÍeÃTõìo@14o+û'=gM«´&Rlç[ßÎéÐnÕ ÂŽåö«wIÓû1Á]d Š ³¼¡˜¦i¥×~í§*1í¢öæ'=>õà ªÏ&Y—‹Ÿ²Äá…?ù]X–aH°Á=ÛiKMÂ4ç|cé >R0i∙ÇTtúnÌü©²&˜s¸«$_Pïô›•ñk¹«ZYFÉ·h d}sÚëŽÍéû‹Ý|#K\c©Þ¥®62~Šô¼Fù³0ÍÃN€eH4¥ÖNt\.º9Ü€¤bÕ8¬íî.}©4©ßXŒËò:çø§ Nú¢y–“îú¸E8™×¤ÕÑÌ”“sÜ!X÷Nx ämb円 ÇãzF5žÜÉõ¨™)wbÌ~R‰V¯*q™³i1 ¸Ž g E»ŒÃÔuU©ì¦]4­J%Ñúu\‰ÀÖ£èÄÿ¶Ö!¥›·3'1ÅÑH~‡Ì/ó[x~a|„çšØj0ÅÞ2ø]èa×3Rí9DùÔEe"qsÍžôλǘÊzPÚ¯ê‚Ë]€¼|¿$¿¨ê7^mFÀؘ_~úA€ý( S)E×q’<•Ñ4óÎŒöóò»Ê»Ó*ÎÝNf©n·äý¯ÞHÍñ1˜BÃï$2„ ¾ç°Ÿ‚éµÜ©–©‰h:ŠŠÈÄÍŸÀuh?.j<ð†Oy„¨uÊà##\Cп£»3´9ªà¢Â•r·’Â5Bqeë ]¶nꌳ”S,ydLÔ¼ý¨R/½Zër¡¥Ï3naŠ`ŽØœ2kM;B¦ê ê¦KÇu’pÃ<½Ä‰–±!¶_=³&/ÄìŠÚ‰›+é×÷¶¡#ú¤ª¾‚°ã\áv,•LʶË,\A“—ËH³œKÁÛQ§ PgͶfpháþŒ/oʪERnÑÀßÇ1½ð$ÎedJ•„^!X~I«å×qe —dœC›†6¾^ReR-yˆ™¦ðmŠ \ZÆ\kBÔu7!b™!ë8L Å­“ö§sXÁLÈÛò™±ESvf/(¬¼(·Ýàqy%/ó^ÈIZxZ·Þü8i|÷éLµÖˆëÃtîTC}¡tä6×çØ)ÜiºA²Ü|¨Vñfû{Ëà›¸x\€5×s@pBªXoðæ ¦—”#tL@"‚¿3åë4œÞW…$«_Ääo.G/NaÎ÷–V…[àaCü«+ýþ*b7—juÇ׉#:¬ÅŸ¾¡&¾ |'Â2µAºôô‡¿çHöEù|; uPí“DøfY­ô!Œ‚†õjõ•Tšÿ¦¡šBì@´Ý'0Å …͈tVÛÍwwWhݹdÚîåW5z'†ÌÐÛû‹é³F—>|I¡éC¬šÇv‹&ÑWÒÔ÷0ÚKŽƒó*2EKŠbÞ"Èîuð!—8àeÞ«µ|ˆ(þ˜ÝQ’«Åls™~:E´zY€™µð\δ³:¿^±Ö"K-k¤3 ‹÷½%„VÓú%³~ØÛÍÝôí=s¤!ÃC+Qsc*¡†K‘<ȯdƒ*'bNi¶5L $H»ClÍÄ\}L-„·í\weœ´#<²!¾uNzé÷ÓRéi¢õBÙ¥O²¡.|fÇDL¢ð­›A’J.çwÕ ÍÅjld8À¾b®NæµèLX~qüEëM,½¨ fFÚ1*ÉÁ´C5ÛÉëOw»ºp{…%äûätRi¡’éÓé=êkªÛ8„;!·šêµ­3¢þÙ^K‰Ïã±éGÀk)lÚWÕ–?µŒ¿5 E‹úÈ(‘ZîÀÊ R:pa7¾…:ÿð6LátJÉmB‰§ ¤zÍ;‡æwÜMâÔу`D/èï'8ȹu)tt+¼Jleª5<>Ê@*Z¨?IN´OL Õî£h{w‡aF±ƒ·ÑtêsŠå:–AÏæÛ —·Müá1®X§3Éë'[”÷ݪ‹öÅå[ÀèÀYÄYW|;ˆü“¦?¸Pš\†tžQ—4*N’a}ñÔ+åìi| DWá³Úp¦‘#Ií}ï*OF†œý³¸RÔÛź³£­д¢­U£*Ý„€ÔÀ$,*ý襡ˆ¾^V×ca_¡°Hnâcò¹©LTö2>5ØE뫈µtpë~”5Ü~ûö*í‹ÒKÓ0bë×3„Ô_ L)ò¡¢!œ½ƒ…Ç„o¡ÌâÀZåÊÙXE—»ö¾Ç·£„d|€ÃÖ’9Ÿ9 7¦Éô@«Mk""4ÿ~ï0[¹Î>^·Á-vÔ»_ПæØbPæåŸÂ™t+pov¯‘ÑlŽÈ6¸kĵˆ¡›¶UCMÇÞ½;d¹=èù[«² —ý_š9”ú븤VÁzmêèóy‰”6ÛIÕL.1Œ<Ò™‘±k¢._añðTØLÌÁî¬jZ[š°FY-Ao»Iãïb6°ë¬y\¥à+`©“žÑ×Þ8éè d›´•£™´è› 9ñæÿújWÑPL« b*Éá[ÄS½(ÂËøÅ‹Ê“’°Ê.o¶Q ¼h¸œ 46ℹÿ¿žHÂÃÉ6”ôo7ú©ªéú9â ­e‹+Zögð3¹M>hðÐŒÏb½{Þ Î%|e°[ž™°E\®–.dZïa¢IÜ–'´UÉ}ot ÌzŠæWŠÙD†ñ‡x#Iò^(j´Ý&s²+¬ˆ½ñÄ´ÂÙOÂú¡ÚNÄ‚ºÆÂ)¦¶|üË·½'té}@cöhÃM…˜;•S;¥•oöµÞL¸©¤xËܯ"}QçrÉ•ï9äí¡`Õë´c «‹ØMùøS¤ˆˆw4¨_·\Î~aÏL_r;G [¨”ãtÍ¥¬¯)d|eEâŽwŸ‡Z*™$„rÄAä Òé,‰Ãt˜B¦Wxhœ€Wú82Â‘ŽˆD+ÒÆ”ósù¨¤ïqd%Öö÷mú‚}»Àý¾yÔu¨|¼{ùTdò‘ì[ÀËl{Âý*³=LoºÑ*zÒ‘œoGÇöv”M‡€]®d>;,þmÈ«ê ¢ò4¥XñBMÚ-š;øÓ7ÉÓœ‘R‚øÂI$å°r\Óðà3„U0¬)Tš^ã),»¿OÇŽ Ó›{Z;$¬Uÿ3»Í$¯V3H× ]!IEŽ“o:#øýVܼҽ2ÉÕ1føã“Ž›¸Ã;“õnú°4c*(þá³*ÃÁŸT2ÕQ!tb¡ÎÄÇd÷Yq3ã'‰Uܱ3¦bY–Lßx#®F醓‚NÅ\¥Ò9¤½ÁÄ 9¸LkHÙ•¾^üéheÁ«‡9‰Û`eµkh?Ä—ëþtÔ;u=ž`ºz³肋ùå½K‰#pföZNœê]!¡ñ•E¸–ZT2ò#¦ï7›ü<$ïGiöðŽø-˜)1û:Sz½åÌ.3)ºËi"ÉSî 3«ø|ª ™Qz=]a¶±™€´ÏŸÜ8øRç”ÏWþ·»ŸóýŸáž½¯Ë°^Õ?ÕÓ“¾·£”~¶M“B2Ÿâþ^å²Uß|Î’ž¹á°Î³ðÖሤa ùV2éGFDñ×åY\¾§RºŸýÅá†R€W—bî‰ßruóé4ª½ŽÑFg¿Ù|­˜? úþ–çéav#Ú㔵\_AKN9îñÓÉ-­PëùYÄb£ÍQíGD:©Û¡‘U®ú ÝNIÚÜèqG×›ì¥ÃºBúîkêÝ3C¤òhøeÞÅËç Ræñ|Ž=Ï~ËV|‡ÛÀ¤î!ãý=sòÓé·PÚŸâp|æ÷bÛþ¬kóø…¼øq[†½OÎÑA¦¶{Ÿ€i.þ)Æ}Â%¨L¤’2Ä…o~{õ>àMëáéOD‚¯\®E)–XØòBKž°.…ë½ì›ÝsõïCª©I”XdXPÉú”½²£w˲£˜59ÝÆ9D”¶¡ôÀ®äÏó×€_‚{üæAr0)±¤¥°5õqJ{¬¯ó¿éb§ç§]xK¿¸¼‹ÿ¶@4JŒy„âÃmm’ÿúSM¶+(_KUhf¦DDzZDß oö^ssV¤ÉúË")¢¬µÀ5´4§=¾¨²ÛÃå·Ü‘ë¹á°º£FºÀW¯^mß&ú¥Ó~Á7ËzþÐìð̤<½†^ýì®x ú„ÕÙ\¨õ hÅš7ê,Ìhžºù¸*¸Óž‘u·Á©Þ®.¹À#Xx"æ–Ñ<ºì†ìcäA–Õúñy³•h—Œ A„Ž-‡Ôy3¿_fH—'¿rÀ],SþŸbÓž¿qOƒ4WsÑüm~•ÅD‰&ÛÛÏšº.|>Ô:q×è¹îN‰ƒ/­QÏü¨û,¶r®Ý\t쉔Ð"ZêŠÍ7Ô¡u¹cb¬fØy†•{%4ÛÂv‘AÙOKéÛ&F˜Ï0ßý›ÉàšÒ,ÔÑ4Œá·¬ ­Ü+xÖí›úÍÓº8½ñT§Fß“Kƒ jàÌ aÍ"aÞM®”ïyb®=qC-Èûñ5“]3`ö[†LüáMµÅ³CåxËJx!ÿ ªa­ÄvhÛ·þ¦êýpÙçº[ÙM,³Ë¾§Äe~sâ©_c)ѳÖÓ»3Rs=ºÂO]Àü ñ6!ûò=èÔG¬Wïm €wýž@i 17ë¡x¹]Z@í7ŒA¸‘†–ÒHw!óðÛ…Ã&¬Æ-vÿKYJ•ɼ'ÞÎ å»,çÆÔ` n X¡¸ ‹³Ýõ[.>hB+œàùÕ=¸«_¬WÃÙuzÚÕWòñUÝçYMý?ß; YhÎfÎùçnx¾ô䇶;m h™—.Ò ¡è®V2Z˜†‡²Æó¶á&Y3šÉO{P¯ÚšÄÞ¾µˆÎäšÈô!ð0Aé’ÐÛ‚p Ã|+7GWo¶H^QQ9›r~J»C fãæŠR>ïÝT+·Ì°Šü×Pv/ë‚búd§~Rš£% õú|«l¯6: ;Bÿá;šƒ»™×Ã]ÆÒ3ËÇaï°‰ÐÓµƒúˆ$_Ó.Ø^c´·T b&yÌ/ÒÊ*Ù} \—´zû|‚.¸_ÈÛ¿U~\© œ˜gæ]*ú¶– vxV˜ÉÙ•ªyÝv ÄfNî¾I6˜£Í ê™nðtÿìÈ2 Eu$”ÍŽy² {d¶¯Ïe³P‘ÒαA÷À¸»U6µäwDÔ}’ËoJNºdò5FŠƒÖ9ÉŠrtžõP¨H#Jèkp> e ‚ÅG]7¥oœêh¢ý™yïêÎ!h—kl”U?ùi×t~JyÛlI–2͆S/¶ú$ÕÁnÏëº>û›kÙ“ÛX‹ŒJ¶[lw‡D ôw´ ¶ºËOI;e}kêhU¸Ó9OY«W¥Þu–PÍ÷’6¼ð­žE: Þx±¶¸®Ðú£ Ý‹ª`'¡GûøWpó^m¤Á}QÉ}¹”4®mëOËD_*a жöÊlÇ /Z¤¸"¤SÜXN­—ŒQ8r[ã ÿµ ÐëPÜj©5ä?dZq‹{ =ÞÎe¸+Ë€UÛúŒ±æØõÊèÓ&ŸÕ~ÂP&6EZ¥;lò˜Cd±e4‘•NTr Â!£é‘ðNÓKÝÓD óȨc1Àv‰’¹\ ·âÏn®,—xÆ $éw<¿à¯“`¨‡Õ~Nùéãà›Iö2‰Ù“yLcÔ÷¤Äl9lÖÊ8m¡ÒVÊ¢°¸úþž)Ì0©d¹„’vJ'(Oç;†(SzÓW”€;68¤uJO@5™×åè-œ†îŒ–…`Wª{¶>QŸ¹yR°õ³Y9_eضKK4Çà†0˜qÌד>5¡82L]ÙúäÙçÕîéfoµ$û”ok‰×æÅt· žiág}6¯¬y\ZÍ:ô@9…ÈB¹'‚ _DmÕ½„æTáz\ÜÔÞcI.uµ>7•…¸á†ŸÏ®2ÛógqLÔ¿Ë)ü<óèyãyZiÓ’õű>‹b„>ôÓ;¶›·¢ùg%ƒq«j鬕$/)jÙ;Bq×ò ~⟋Z’;©HΤßÁyW½¯ç«”UE"bE¬+·ì©o¸ˆ$OiC1°W†Ô¬¡.3hžøzØÞâʾLˆê‹ r)›žƒÝ$V³%>Š6é‹õ™¸ ^ÆÔN(= 0Ôøº|…ü€»f& 0œ3ÀRÒPöíºD|HoO¶`ÚV9:¯~2~¿ƒÆŸŒßd˜"Œ~Ðõ<®@€ xL†${ jš†u¶æU—Æ/Ä_~Ì~¼ê*ñ^“-l|2jËÉÎÔ“}U®nêJ×_SY3UY;æ ù¼kÑE~hwéë=ñp|wá!^ÜúѯE=2U–ñ“bLņª'„ÓQ þƒ¶"­ÿ§½ÇìÒ›Öø«S\T †}c¥Qª]™Dö)‹Ë’û£Ã^êPu†Î÷\–»€HKÖª§¤©¥tB³âvÊ D•pѳÕ9L í-Ú­%ÏÃ7êV˜V›™Uo©"Z2͘“ËBS”}smòedy;ļωÄK¤¡Þ¦á¢­%|ϘŽÖI Å8{Õä|Ì«izLpš®UÙÕåIùÒÙåI}./¡õ»ô‹˜Óy ¿6ºfË-± ½ÈàõÇl.þýMe@p CÁè#·Rñ·e.ƒ³$³ŽÒÆvœó!„»­C]‘°òF[„–Sw¥DKOËf‹Vj sÁ·$eßvõCßÛ­äßS…o‹ø «}µñvo|Š×îi %g—÷£šF‰áô Ï¼6ù*¢9²ð ? ö§i?%añWA: à ç„*™fò ìCƒå°æö/OšlHŸ6ø8ÎȬº±‹1«fÞæï—ù .FÍz¤P{„Tåhud?µð”j)yܯÕy Ô Ò¼1}ßW†à3V Å5¸7=ê3«“tà”–²…¢~Âÿ> yàñ#ÏaàŤáuý( Ïé®P^rN¨_~R¹ìOú¸v‚¾ìd—b–|8¸ri̲“ì´;O“®¤U|ªpAj;‚Þ,‚s†°ŸbìwFUÚnÅ\ܹðÍ-x¾°ŽÑ'ZúØ®U}A©fe«²l×Û]¶ƒAaYá¿COì‡%‡+1øoÎ>akŽðûUÉl \Œ˜pß#…[¥t¸|¬Êb€ç¯wÛ¾dbú ‡Ä $=jf“É<–‡Æ/W" 9Ý0ã½ѳ{޼C$a·¶S¸úaþ²&6ÑÞ÷Æ@!'Þ° ¿?ìªÞó«a² Štd­îÎxM„ƒáºðyƒ£’h…¡Imì=¬pÂÔn¨§°3±ßœ¼èBlŠÀ›HLu‹éŽcµçó|Jh\A9CmâÄݾϹ×èÏ„î« ~±Xƒo?RL¼ßzÊÄxNñÔŽ9ãã fÞwIߟ—k|æZÄÇ}ÜáE¥öIáÓCáyaçÊ«rgx>-þ ƒªI)´3êtãT*$ÿÊ-F?ök¬‘JÞúo‚FvÜ:_·íú/ÈÄþƒkꢶOùjÌ·Ézxásµö‡bèHHëçIêëõ‚ÝéHMlá³P¼n1j˜Ø3ŽÔQCTYEæ{Em?xˆ¯ýOpiCºcUXÕߺoTÑfìcƒV®SŸûÂM+vð7ÛCfFÒ˜%T+C›*Ç\p .ÅAŠÁ“h¶ú½^=w~»P"Ø ÄGwy3Ðh8s8ÔW “îÅêÓl9p(*y­´y¶ñx2«:ƒ;˜¼¨ó§©?ñòKIÚb #;ÃMÚ€L m¤ð£H[½îçÓg?%¦èu£å: 1‡\¨ãÒžŒÚ)3«HudAß;rô¹Üw¤^ s‹Î”ƒŒ= †4“ í–ûé' UWV™+õm_\g]ãw°/ßT]Î 4/=û …Æ8â< iÎ+©µ!¿½"Á™‚ÆPL}kû!Ä‘À½ñÉeµJ¾G³[âpZ§Êýsj_Gû4áÖ‘OÍ {Ó¦»²‚ìå¸eáyN­5ÃÒÖÉgÂ-'Q2øæøŽx´¦­óuè-íÞ¿ Ó¶¬‡&Û ©ˆ¬~9Rç'}4Ô•Þ8½éÃg€j¾83Q®ø¤{h¤5ú)Å8Óqú™¢@Ý6æÝt‡„¢S¢·›°>¢¬YôÕøB ±>V#+Ã8¼ 8V°Û²*2X€Š?Šé2eµ„ÎáØ-&»h:K5do£W:L•Š6­ùýC2\ +‘¨z´ÝÌÕÌà;:¨Œ¾:Má]yƒ:yƒC@gds)ž3CØfÖKúdèÏYº®ü¡sLÚß6ï½|³$V“éÙH½R¡ì;@‹øÉG¹­¿C¼Å¡”,±…ªyîhÕZ³Y:Ë1)÷}ŒãP~ᮉv±û•‹$9ŸDAÝ—'•‰·hDôß P³•vׯ–`M Íõ;_`ß;Y×€¾0ö»ìîÂÝåÇ8Až\<­ž¯nKˆijöò†Ã£iÉ/hwøEÓZË>ÂýÔa}×ð#•6¦aºéËòëððÑ«ïiŠ<;,JVGªŒîjÈÆ“×6aÕþÁÕÚÏ›<*‘%‹,ê·q+«;@d\—È*g•™Îƒb<‚Ä5ð·BiçûÐ×OûO 'hPHΜðÚD»"’ø(±Æ®jqŠëYµ5¬×+Šk†–vÎ1êÃÂÉœòJž¶£mŽPQv@ÁÎnÆY¦Î‘-\ §sÙ#Ç aïóª5Ï·¢Ü„½ÑˆI,¹§'FÑ3\–UË}’ñfßÚóóôÀò?ÍSéÛ \Ó,™²?Ò`ùµù÷¾¡øò‘@bIÚ‘˜å£ªr$ôökQO“óÏùïb§*\1RH;§xcãZmrM\¡õz‚œMtÄx¶_ª]”Vãögz:ÎjÄ»Ê|̃˜®ÖPÎp½]ƒ0+F‡¯Ñ-ξ™P¦‹0œþPÐÈÜŽ§5rg¾—€ýŒXæS¶Áõu ±ûXŠÆ0´Ø3øäÝ« g´ú/tz|úØÑ[D BœÔSïɶž=y’»6$ù ŰÝaoЀ¸ùÖ‚,ª|ñZ ±Ç™·ýÒXÝ@‘“HઉÝ(vü¢)@ઠÑ+ÔÛÆŽ¶ê¬è6dIÔØ(ç$lÀü?àaLríùÚ;ãÑxÍFLƒô­’*•N#ñÄûåWpuÁ5îŒsèú) ÎŒ—쯴JúT®°&bµµÕóפ‰a âQFLãqG‹èÈãSbQ)Ø‹‘m±¦|ö²Q4KÝ=VgjV O V[²8V‘/ºá˜Ø”IÁìÄõÂrâÜ=Û<ÉP›ïÒwº~MÐ-b™£›¬ŽÀÔØ.©­p#íUÅtah¤Úb<ÚŒ7÷59¶GÇ#!Àcl˜Ëõ*?°%“ŸˆNžžÜNPi†w@+Þ×KSG›ZÙc*ÿäõ´Vz€¢ ´Jn_?Çô`v„ÆÒ@PÜJäfð&D`b þ0s¯e)ŽêjòK¬+Z({.RwK̘ÛFŽß­ƒSyîÏ<&B@nÚ±†éÉ U=1ùžýé c(^òÉQ¯U‘vËü#‹{{-›î ·zÁŲÃ-ܱ”ó[[½¹…K—.æ„ÐG–¹vµa£ïÎr«è¥HLŒS›òb>7h¨"æ0ßSù‰Ž€FÉýÙ´¢«sîT­#áñR54»‘Lb*ûj”êžøXh»QBñ³x Õ¦ ‘ûŽºôÉ++.~Pš ÷#âK‘]èÁŽ•òzfE'Ï2± V”»€ü]±ŽÇ&+¤‚˜¹CñAçIéåumL^åИg&;yËÌXªRÝü‡Ç³«Åíîëå‹ ŸóÞlL(æìàGäViãÒÆ@·z  (ÿBJwï­RÖH! £ëYe!¢¬£¡Ö¨‰Ê%ØUfÞº¦É3Ò!| A 6HjMÛ|ͯµîÜ*‡[(ôM3ÔŒ}f<§{¯?wÊæ¥®¢xËöÌybœ¡«QgÝ’pÇ.éÅi?®…‡øÎ°,EÞžKÖ”Ù¥ ÇTiƒÍ‡ñØ<Ñ»õ.¿{Óò)ˆA¼÷·ô¤Á,úýi;ðôÔ‚Pmµ 7BŠªö]œrÅìU¤¯ß'S'œ´È=0K’ÄË^7î itò•åøJªeº]%F™­ýØcIõÚÕûÆ{«á¢s¶Œ><ØLì¿¥Cš¡âRaS3U¥8ZÀË…]¾H"êçIu7(òóïÕ²²Ú ^™È>ãYÞRl6¼‰ÑàŒ¾òæi"¥8eðÿÇÖ9m‹¢íZpÚ¶mÛ¶mÛ¶mÛ¶mÛ¶mkêî—óvÿa´Ñ’žTE¢–«Oá¿ÆTVMLOerÎêa;“&¿¨cÀ?1ˆx°ÍöñçÙr“õÍ÷x„Gr»>:@Á^FmÃhdšú¯ŸO6 ^¯&«àþ¤Ë…)?¥~~Ÿ–ò£p‰vÔiSùþ÷ϧÖê@+2*Ѝ=…ýa[:õ´?ãh¯ÚMÄ E±ýQ¯¯¾?,j$©>IGCð§)¥r¿wžåªL¼‘"-0O¾ð¥ã¯“w{õRÖß‘áÕn„°(þH\»…Ù= 1-8³eHï]EzHR}MŒØE,mƒS¨! [7¸`B©Xk!˜Æ w8kDÉþ3êÄb)qä¡o…1>Æ­Ûù:@ v­?áŒÞ×î $ºÊcþõÏ&Hù&]úló&&Ä;´õ>UÝî£wÚîmüb•è}«~g`ë¡Ú¨,; óiÖVqeÏPzí¾¹®ÝçNCèX:©0ÕÃW¯µ€uNµZ´[¨0-… R¯`ü{D.RД"™Ù/Q¤ž±:øê¶ cÞY÷],SX°Ø+n.|Ô!)9j>»é1üXç ~uTq‹çÚƒ¼\ ;¡Áóå Êiÿù4Ʊ6Éfxj\3/ƒ•t ÙvˆEæàÅødÌÑ3Þ!ìÊËÞÙpè¼$h¾•õ|^\›Ú…ãVUèö±ŠŠZ§9! i…óm;+pÖ—Ò ³¹¾bƒÑÕ ƒ(ŽÉlf_”hÏ3ã‘J¡CÁ£Yê˜v·?"¹‹qÓ2Ì<çÙäŒ@=¥fºi[Ϥt%U¬Œ˜§$9‡&Öꇯe~„€ E„A 1`Á§Ññ3ÒP@[¹§úÒ?‰†5Ýqja‡YÄÙÕžÄP…ËåÞœ9¡Ñ²+Û*läÍ=þ|eçHrê[ Šd¬ïxŠLùE +^£.]÷ämôy”…%¼v§àýØA)Íë~ÌVãC‚8ÝhÓ™ÜÚtž] ‰6nö¢í|U™hÐ sozhï¾nw<ˆyž-‡8´íT°5–iI\,lŸÖføžŸvÈÚŸ9%g˜ƒ”é\Þ:ˆjÒŽH—Œ@ËySk`3'áöÒ7./¶Ô·Ž†tðÆ·‡Ú²"1’öÐ7B>¡×—½Ù‡¾›òH’¹O*ãªSE<™‹èÀUûÀz¶&STÐÑck|<+ik_e¨Ú•æåhÞ•zkHäâµ¾Û/SêÖvàø×îxíyÕïìk”ª¼0ìIÊXl½ž§r[â*^ku¿£ÏÿªY‚{ЧœŸ#ê¼®¹ª~èS†ñƒQ>”ÙYóƒkÖì¼p4}ïv·ž!±8>:Tx—-…“ŸÐÌÝ%“µ4C¨D„q„fddc›´eU;Èp¡û+è!¡úÈiÅi5A‰$‘ÀwÆø»Ô©<æ> ’-tÁ¸R—Yo>C(,]ºIWŒ~N‹QÔ§ÿ¦æýd¡u}8ðÌ_Gh|Y·ùÓdVÙáÀC?…$óÃùrRöZ¬ q8ÆY-T T†CÞ?fûå{\«no£äöß °Rà8à³J»×NV´ÇWpÇN2GîÁtãžóöÑ>¤×MÍU4O>ú*RLÊÊAD­ó˜”Ö›ô•!¡5o_Ý<‹Õka‹¬Ø«µ¨™€ù㜕RÆÖ] Å_ÕŽ B€ ¢”ÑN*‰’–…O €¥ë“» ¯ê €_[+¡]{·3¦FÏv]‡t•˜Ð¥û ™Äöh“îúsZ×ð1=2×CÁØ  ã”ÒAt·š—éúGß;bVùV\ôçÿ0ÈN·FV˧Ý=2ßêµ%P6Õ-l®Ž†˜KWÿ ³6¦^w,Òê×d ›ë³’_ͳYH'.ÒªS ìãÐ8ÍZLü}r>̼¸ï §Þ×\ÅÄF;5dEB¥oøÙÖzvAžÖ­ª¼N Ü*:…K7³Fÿ:• W0jøŽðˆHvÀHh®hϵޛBâéö@‡Ó«ðºlÆãbâà=ô£%g¦$’,õúõ?Ù„Y¶imYëÝÑ-ÈÖ2Uàv>!”kNAífB›ê@ˆ÷²Øàß`*¨‚ûÔÜJyŸQ›¤LqOv¿´âM|ö^ä¦4ó•‡B49êÅœgþ®Ãÿ•w4òN_KØ£/ `\VÑ…1AƒnU:ø$ÓÿÊ0lN…dºPíþ‡ÖÑÕf-V¦·>q˜as©ÞpòX3Êâ!× ”÷`lZ¾QdG§6â’¸2Ú;]õ†NŒœXf(öFNë¬S±;µd*çý Œ|ÉG¯ +:x) †ßÊX7˜É dê7ɹ U:¼qJAâNª±wà è­Ð‡5‰#çŽKîëö8zÓö,c(æï‘[]•.yáÒ{Ì$ïÂuV‚þ­˜:3ƒM‚³ê±BHõa2 ”±ï%¼à±4åž6òŸðIïšdlÐþéág>lUxË @ÒPM?ë“̸ (¤_¥T‡¬ÌðüSa«£p ™9VL´#~uORZ»Ä„Jv´çmœ.ÑeÉHžFUDÇ)9¼Ðå•¿ù Eu×¾Æ 9†ç:€K¿k‘æŸVˆƒuŒ%ÿz”XâYËǯ’H~ù°PQÄ´ ,ã˜y™%QHù39b;ÊŒÅÌÒäá¡ã õð°²X8|—(f‚£/®³xfXÿÛðÖ?‚3ÓFC¹X̸ø ¸Ú}ój§Ž~09³wØ­ó³÷‘¥]e¦ÄáÜwòÅÜe ÕaŽül’Â%¬œi#z‘¸%¡íé‰6§ãe1v&RpxVÜ?#šê ì u@Ž! *%ýZÓŸK04Uõ·ëæp–ÿ„F¹ Ú˜3¦=ºÉ2¶!ûò€Ùº}@ŸØœ¸Ûizšñ‚ú·gÍV{Áiz4õOØçpæWƒjÙ8Cx!¾§þ`k;òUBÑô4t”ÜÛb½T¡œÂwädOÏÉWáb ½ÁˆÇ¹Ò» rêU‡5RA§?8HƒµŸxù-€ÿA³w‰/úéŠïh°¦ÆÄ»"7¬Èk_ªfCêî»…T‘±» hó^äEÇÔߣÔÏq˜>c—šTÆ_á«\)Óqz Í qüg½¦€æyšKsV2å‡/ï`Æt%ˆ`f¢\ر†Ã@Ϲ•ßÜèÒzzL%/‘ºƒ ؼQj&`Î컼bvÊŒ‘¶™ØUSóʘO{ ŒmÔ‰Ð-CÎÎ\ƒm@dN¥ÿ3z94J÷Iu(.µYžÑÇñ4¦š«b„âû1‚î·;Ž<„iír•kפO{’A£s85£Úxt÷¾~4’ãÍ©DD@ï¬×ǧ¨ŸÑ«(YÐÞº}/,ÚÐë }@c$x /êE+݄߾à\€ïÊ"CŒ`nWÎòç?î›ÒsmugeÈÃeqbv6X4L®OãaLŸ* SófÀ¤I÷`ÅÔ? ‘˜éŠ P9XBµ@)Œå•Ðüm^êŽ â›n}ò[ØáúÙ 7o¯€<êYxRãvr γCYýµH=š$ûº‘Äü¿Ù+o2„í•ÚÃr¸ˆrŠ˜÷*>œì|¡ïXeûƪΊýP© ¿LNÑßf”³agë’¨9Ínèbäû3oÁl5t%Ü·™êLT Îw”W.HCè;_‡èÒa9SOÏ “;¼|ÂÝRVÞ»þ)¬ù“% ð6™`Ÿ,_ m+/1Ï@>­q—v¨D¹2À %Zœˆ]v´~&Ý®õ¹QNÔËXÿRF?T®avèÖ™8z3S.Érx׫o‡¾8œ.•þ×ÃÄØJ¨j‚v®Ñi¬ûìgHMCáU¹Ð{¡„¾h>ŠÚùÔ!Ÿ\ÅwK ¤×Âpç»9üŠnX냼Qù!FøVåê9h9¡d”hdÈ&C¬F°}XÕŸöo“éõíÆT6/ÝÉC ˆ.ƒ¼VÄ)¥ñÓn¥F»Þ;"ÐÞXÏ]¯Ñ2=‰ÀˆI{5b6Ê ,ŸìæÇÑòý¶Í$£}%ã” ü¨Þ™Ç!üôçfžúÿjÊ¡¯Ó©¡‚Àƒ:°¼‰zWômHROÅÓÎF­? ž©©kD7ø1¦¹ \•ÃÏå6ú5rÿ3j¾ìiøè_ßÄ“*)Îâ±/êÒ©ëó)ÙÎåbSoÌü9™>9ï+#ÿýçÄ#,ïH—$£VÁ»OÛöBa ï«)á?£¶›À§PRõ£Šï4=î]Z±ù3ôVzx.Ö)BüÉ'ùµ‰]&õ¼wa゜¤@þ*Ø|ůKÜIeš'âèïéojNÊß,0È‘Ãàa^ÕAÇÅãÞ7¹§,ž”lf³¦m£¶›@ÿày}kš5ï±qV1Nn³VåMúl8Ìhn}Åo*ÊêÐÝm’’%Ö]@‚lÕjñ,Cy4»ÝöÊÕr× ¥yQèÙý&:)MWd4² º‘JZ1dé#žë6 Ä5Ñæ€“ô®_xнšy©¾XÞÁ~ô’ü½"õ µ±‚4¡¶4CÈwöÅ¡*öçàIÞ„ßNè§Þ©,\‡üš­î•' ÅeÁí]êUÞœ“U2#a¥Z•Û&‚èÀªÔ¿F<3€=lÁ«…±rÝr,³sö~“óRµ`la6'šxÀoO®´o¨*”HÞ‡²Ìñ ¥°+Ýê Iï©8k‚VdîªA¸Œ7=îņ(žç}1P#ü|yw6~uÙ^ÉP5š¶sF °)æéÅ&Ñ…~½ˆqÆ“ýCÿ{ú1ˆA³%U÷ؤÕÏr8Œ¾Ëõ"'lªš² ]\åjøª—Gã:OLÌ›lwß'µ÷ÚlÚ—ÅÃè†]¼ª—Z½e !¼ÉÆÚ†Ÿ&ÿ¸cÜ™´"“]ÚŽL€(ukŠCy_UÞщ¹¯¾q‹Á³=«³_“ýÒØjÇ:ˆ™äsÏ6Ž*#¦Œ_ÔÊõP`äÈ»fÔ·^Y ¤B#c ¨S’'¯…h- lã'ë*<ÌÀ´Â.†üã_ésÄ#Q™j•¦,Vs¶ªØÀp5¥ûÒæ¦ßп‚䜚žó¼LÑÏî;±ü¹g ¹*óÈŽc©[ÈÛ:ª€ëz©]c¹Ò ›cã̲:°A=x^)ÝßÁ7y ð”6å‡ëÊ$êðË ýS’ÿä÷ƒ²a_RjwYú.1*ÿŽ—ø ^øP܇ ˜=.@YKÒ蛯£öBÉC:Ñ´™ËØFOsH¿ÌVï{ÐØ ¿lÅMå­ÅtZ¸ƒDÔC©YjÞ“°åDdð!cznUµÊ¹ÇRÉ2%ýI]‘m#^ªÎZ|\!½—$Üÿª´þêQ*Ç–¥bèDÂû·í¨Äþ‘ÀOÌ\?/áës´þ7àšýjæø#ip*1º¶ ú6Êß«†­ ¡ˆD±O±¦&Íì5{I˜ù¼+\’K Ž”ÆY3drû×ôFr’ Ÿ¾ÿ&Þ¹8M@ùt©•òã)›k÷~ç˜åáYA;é'Û`Ÿ -.5W_¬šXÿE¬Ü‘ u,Àvš©À_ê­Cá#ɲoØ·/QZÁÏcW·EÅf—÷68ûÙ™ð†ÔÙp„…€¾˜sÕ •Üp†ñ§\¢­Â s1ÕxfU‰y¿ä:zT‘Ý®×\ovó44¸&L—MnFGxò9ÚÅM æ·—©ñ%7ü³¢š«JâúkŽgR1‘ÿL'OäúKÜÍÐ?¯ËžŸÎ½öÓª™ÀËþš–BÅ\N

~è/ç‹Å«Iã©J±ëçØ—G0m=·bik†–½cU럹FÍ3ySknð»-óˆm@/e[pë‰Ó^žšofñfË+¡é‹K Dè µû§5A¨ÂcïÁ^ψ/ÿáV§»_Íq¸Žë½AA¿”–é:Û ìì#ÕœB\Ö%,ÂÔzœïîxdéTP ~BèK-¦‘ep°3oëÈÄ•hú+®ƒÔÊs§¥ƒáOÃMÑW¯Ñ|[j„MCuqÕBJYH™+~¿øîòôïŽ@5™YáèÆšÓ§ÖÙôD6L/[%®ŠÌÍÕJO'*™XFßÀâ\6ÑšÓÍÕði)®ï°‡úgþ“šQ+ï„Ë>¨ÊŠœø@bnyŸY–Õ’0àKÄi„ÞòíR¸]Y;ÄB*zº:Ìší¨€ŸÍ>öœW•DÊ4*Ï FÜ]fØ™ªxÓf¢Eê™5vÇØš¸¥,¼¸[Lº²,Í0Eab'Áý\ýYn‰%ïå*ÁÌùÂçºu0’Û©$Ú¬ù³NTñÉÙãñR.^` æó?ÚAk,ëȳڸl¤Yrøû+@°Â92˜©‡ãÞ•6£o¯—œýÒ÷µ‹¥|^HΩOéŒB¤µŸ? ¡-މLß§dK…¹'‰ÔжìÙ¨ò´Â`µ—(®ÿ;íaI`Æöœ\Àéà|ö7Å2¹¯^8ˆO¥Ú¡,‹ü#Ç3Ö7ã†;1îÑðB ’GD‡7臛 !ŽèÒÏ,z·©ßìåÌìîÐ>éo‹æ½}· é»weäØ:é;eœ„•Ôp…óú“ÛÔ³œ™„cÚÙ-Ý3PêDÝZØT†À©ñ7`rK>^ö=Äsg)Ø&ßÕ›£n5°öÔ>dT*·«Š”ä}™÷hø ¨Óªa4 `_„Þ$Ý9ß1¤À~¹–+ ´Ð{Uú !{*¶Ñän^ 惘mmX[X„bøF0‚ˆ>bO1 ‡qõÛÀ;Wdrh'S ©ÁÀ„¿ Aõ~Q]½ q²‘}MÅj”ç'OÙNckº»ýIí.FÈ7ULbÍÖ³º¦gz7@¿Ì>¦A=ñ\OdØ…ŠÚ&|¨ …øn|o”cMŸœR¿Ì±ñü|)]]–²½•Ο¹L‰0€jöùÖäoÆÚ>{dý/åÛ qGV_®3ŸõèWÈ-Oœø¥8 ',òGo ì)š¡ÊžËMÛòÔÍèyUd&Y0í©´x;ÐísÜ™@'}ØØf(.Е‹Í«Â'kð³gÞFCÏ£t¯Ç㇦ÜÝf]¦ ¹X¯Žªîé×.ƒ§Õl71§YN;<ä0 eŸh‹§y5æÚÈøÓÙÏØ&)Ž~Ûk£ùyΠ ªóû¢˜-ø &`bBIwÒj“óní›=}Hf‚ÑmŽç43ð ð¶•&Qù"·:"(¼êÀ%êü12qû‚NOî'—× v1ã€pÐÌòm2°¹. "’5ƒHô÷@ê ;$ðéãüY"Uòò 0{ÞW*1rÔyØe þ0–ÿÍnάbs«6¶šÏÊÝù–8¼ðŒ ©xòéÙ•=jñvéüìÂ>†q§ÒÒb7·Õ²›pã3}¥D¶b¨ä…ê‚ñUsÿ:ŸfS”æ#»ÐNoðОÀÂù7x½ž’Å=ýù×_ÔJ¯ÇÃ^?¹¡ƒ·¶ECþÞˆ™ÝÁ­ú ­uâéÇñ’aʱtWM1K»u*®•ñM4pxùâ¥Aà0[ËôSBšcF€®V”6:d+e«’ÀñÃý÷kÛw䥕]’úfVÀ®g²²¢²™E·}Š#ħçš%žIŸOT=@p}æòã–Bz4Ó룹®Ø[F >SÎÀÞûãià“fJr$²F­[¾®Eð¹"ñ¨Ä™g›¥Ç__2µÆï_1Nž¼T®S\±¨¡´P…É•ëè Ý‹s¬UïžoÙYíü&­~oms)+鳆®J÷‡òv«Â&<ͤO.þ›}ÏÂ7è+·Œø:ŠC«k®ï••ËÆD ¡w/|•ðŠÄànâxªmô˜’´zôÙÎã”ûä'b÷×:¡]v€_’z]³ÕO¢W$Õ°%çÑùpˆIÉq ©Ù®eÄc\?¢b[7öre¡ä.¿`½FRÓ|sö¢é…¶"Õ_]vähšfº×XŒ&jlÍÊ&€v»ÁxÄ ™‹S]ì#"Ÿñ•\lúÖ]n0§ÐK«õ«§lé6Š&¿:„ŸÁat3‡·¹á{aN?PÇ(çÁCú |$üø±^ØÖ:ÎiíÎaù„¨ ý™­…’ZÒØž‘M qð¥­{kÓUVÖR)ú’²”ˆ=½¶è mI2u:#ç3Åù%m± £øog9[ãöE¶ùd¤R«“Þ®q*q¶ΨRÙ U”Û…×ñ2n/{™Üq3‹ Í=»:ôFÒ–¨ÔjÖaÕ>hpœ›ˆWŠ €ülÿ²¸¡ý#Xrj ®v#ã÷Ö—N›ÇÖamù­I—¥-Šþô0C&³¢<º0 eö—¹GÛ×ò½ò‘Ó³~«´Æ’²A…ïS:é­MædwáÆ7>œ{§„.Þ’ÄJÞ̺AKÌÏëÒg1<š¸È8फFÞœEäŽC.*S95aüL7¥lI3°Š÷È+Ÿ%ëR”òÜJ(î–>3–KÛõCtÂaÿ5Iîfom``PûžŠáOÏÏÖŠ€Îq<Uó¹]£RZQ‹ŸL`—MžýV&¾ú›§œ|0·àïújLZùÁ3–Dã®=ù2áÛ'ÁOÕ:6޵Bžš=‘ ^y}Êq† >(½Ì(ÃÿôD«ÛÊ÷Ùjb`­¥’ÝñŸÎx.úÔ·Ñó•ÜÔ ºƒ´ñ¹Aè]-äKͤqÓèNP»y?4“cúPtdÌ#B¬"XO_ɳ×ߪ©8&‰ú±MÛ|OÔ]óÞ\¼¯]m´¯r&dj®À'ê÷ìÞ9ñw¸ýk›TRØ™${y»mN§ó&§9E””Áy Ó} ª”ÜÌùT…WʃììÆ;›i‚ôAN\Úhÿ® ˆ5ÒO}óË>ÐûÕ Âƒ`­¿½÷ºñeS,ˆW Wâdþòå³I‰5vâ^>Œ1¿G>ÿéùuðk$ï¶2h4}E{O9‚7Ö“ô²¨ˆç¤c}º½44ð¹*´“jg8ÉÝÈåÐú(ÐzWÎ+¨äz|Ø9iå7ŠŸ1°GÊ‚JGBê3Q¶¶%7‡H¶ ÌL.­$º:2€*©ꦚHaS Jy‘:1ýž"K;vÜýÔVàX^±êÄqÇÉ*>Ä«‰3\gÉbi¤2‰RtæŸ Cáš(þjÆÒâµ®×`*÷Tà¡Ü11¼l¿{azŠî1üäYÖ,H„-‚± ­_ã€uJ\ûšÐé0vÅ‹ÛÝÇɉîû+eŸ`NXTªO,ZI$AdY›ªµØË«âñd9™ ×óòlBtÍÕ£vùZ.²ÆI÷rÖ_1ž3£JÔ‘5§\°ÚÛPV—ÀÏ+¯Ynš¯o¾×›¾a—Äd AªÓ|èQÄtÝp–Ï‘ì oªP Bc˜­—Rk½7ÑíË"| iKI—¦|œ+û´ÐéDÊdþÑYÃvN›<…NüàÅbßj“ôØ%P8аþb-^Ÿêžo†2Oíãz`ùÉ‚oóÊ£Õ‘‚«Šù´è'‰5Ï÷;  d«2¹¢ã®ûØhHõ&È:`À ×¾Bô¿I >ÖgÎí7|“G+åhÛ ·jñsMmW jΠÆ©r ¥Åß ßäk>%«‚ä2ã40>ä<í¿äqe‘Jšs\Áq‘ŸF¦{X—Ó%vá’kºò¥“· "Xÿ?®ìÓÚHLv;`€üéJÔå š7¢Sâ—g®çÚõ¶ý3øÉõ}gO*ŠaÐlAK»†åh«ÿÙ«çFÜô›áxM\/ÎX9w±ã@ÍGt§Ü™ŠòÙ â,Ô*Í­ Z’×WÅ>Wì5œ_N=X®åÎddû~ü³X¥bX“ÚÚ‡ÓÕ1z³ söëj&‹$ÿƒÐ>¹#Á ¥º±|ÐÚQûQTw÷›qÑËKò¾–Í& {^˜¦tÒ¤KÀÎ^ä¾ÛJÏrá‹F±Ô(ùhuïÁXTâBåtˆ¨³n(ãŸXœ¡qd•<6BŒÏêã¹Iðô ‡ tìÍ­£µ­@“òÕwXÒÙj| ÷‚• &Ô²…½“U×sR…„Oò( Ró×°OGÃ7L\¥Ýe;g‡¶÷걨ïúÜX¹)Èõ>U» R;a ƒçŸÒÙr'˜Fým<-î%(ÕÛjG©Uô½Ê4XQ—ŒýôOKZ}qê€û¿RQN;H¢¤R/Þ–®sêZqp¤X°ùwß„‘Òê­¦=1a-8ÑщŠ4ßòyÜõ¢l:=[¡=ä7‰óЫ¸ñSý;ôÏû½"˜1o7¤æøµÍ+)•vsDI®åÁŒõ³µ/Š=»§ MÒx¸ ã(‚Qq·¨Þ7=7“)¢á˜!©®¡\µE‡`zFp@½y"TF"9HŠž©%YÊ->’Ћw@µüÕ{–[v•3pé¶R)TV®‰ à‡]H•åœÒ£ä]ÏÌN#\Ë`v?4Hjyê–1’ÑýŸË†Lìöó¦.–qWýøD ­&^vÅÔ'2&3 "&¤ë·ó¢ëÏ#¨µxÆ…2ÿ‘ž+§V¿TþàŸŒRQŽ-ÏõºÝàÊy›ÏLypmWWçeÖR?%.^E–=_Ô N'h]Ac†›ÇôY‡ÏC="°¾ Ž¶&OyØ«T@ô›â.A=/K±`€i“ãÁæŽÇl.ÚÓû9*çù2çK©~ õ!!Éï/ÙãçŒÑNÜqæ¢Dy"ƒìòÇצЕª\-6Ô]-S‡¢É*º(ˆÿwꧺ쮜ìº0—"ÈURKKá"Ž÷1}{*¯üž~DG²¦pÎàÙͲÁ{áŽêÒ5$b¹|A˜¡ÒiéÅ*Љ»­ÝZ†‡ŽN;4¤PÙ¥iÔjEþI§8–¼ ߳Ļd¾Ʀ4¢¡TfþAÜ¿·üS°ø»mÆö( 7šì€ã;žóÙHú_ƒkBfžp[÷HÄ+Ò˜£«¸%: }?€dWÞï³ûI¶²°ZA¦xè'x,vpþæ½6¿ÏW7ß¼²Þ¨XÅl®îìè'h!,^(q[á³p7‚á¼ìüü†¯ƒCü{ß䨣¡y'¯S©ÕÝ?¬Èfý^€‹;ù4~ne‹kJÝèQê®…àø8=ÅJ’8éw/7Ïlü µª†ãÄ•qÛø8×u1˜C֑ÖæU·2R¨#›ˆ¤Î:¨‹Æ7΀Áð£~ƒ|éCEùß•d“¥ tÔóØýÒˆõRµ¶œÛɵ˜+¿³Óóú·rŸÝ 7o¸oü›oþ3µNMÀF’ýhð×Ì”’pÂÆÆCê\’âöB³aë˜{þaF©öÂÎ\çS>(!gõ€ÿîh»rÛÔW¼uF2’p2N«N þúÌû•Ýâ@/è?‡çîPæ‹(?NtµRwêàJaÉA-%ÌqjçÆ0åé:°²¶7âP.Ì_“Ÿ;Rê6ýÁ.—êìÔIyEeoí_f‹_O€Äöö©_¶Õ>]C¯¦Î29T¥Ð’$›ÁkãÓEÏ*·cE¢".¹ªä‘Æ„^;/…Š6Þž5J®«ftÈUËswð(°üÒO'ßKô˜yòfn®¥.Q3ë“.Ï‘sýÿJç q)xm­†Ì*1™ð¿9[´)úÌ]ïiú6_AªéÜzcFF͘ükÆ 7æWõ:è`@Ë!ùí®ÊÖ8~X‹1߇mwÁèÄN¼¬Ï€ºL]w¸ªxí@ÕØ– ø’QÚ `)çwoè\þ©A¥ã,ò¢|í8®½I‚n7ƒ4„焞ƒé·ÂQãRQXg5Œ%:•7·Œ²FºBŸöš ÷u ùB ‚ïªP À½›/œ\¹ªU’»³µ¢œ÷¡–¿š|;vÒ©îêj¤?òm7³ÚçQç¾W%^^>Txªä”å¾ÜVQéƒëªo¼"ý„ƒ¿Õ†# ; ¼USXo5pÕ9˜ŠáOç¹i5c®ž{©wå$œ±C¢³{1¼ÂmNŒàÏ[(‡Žÿöóÿq\!ýÈTÙG‹4Cͦb ÀézJ®ß·®³j¶…©¯Ã ´nä– çŸ:ŸŽ`à*lãÀ ŒªµðÖL—°Äú#‡K`}$άËË<0³ˆÙ¾¢"ÒãÈ×fÂEUÔ ´f…,™ó5ú3íÕ1íç…¼XÔvN˜LŽWý¶è jáœpÅÂ×4h&?S°ª¡H/ºà<."Ò»ä;©çª¿p.ÿ?‡Ò¶ý~ìjQz^ Òa*’ \-½\8¼©».ÏûRÖJçÙ?Jr*e•p;|Š[Sº]Gh“˜qbäº=˜ËIœú…M¾•pmB±ËÉÏ“.,Ô¢4UÏ6Òû“ë’Ê¢'çëaO€âÒÀâN¼ÿ'×@K§«ü½ä\L#Œ¶©^¹P½Jš:§¤µœ>ÒçF Ë=*ÖÄ×Y`ƒµâ¯¨Ò@䑺ñô¹'¹,F¨CŽŠT¦CÛ^ÛøbX ×:zÆVj-$FoÚÿ!N"€°»D^ c½,•gÒùnàB‘‚h}üÚŽÄ6ºš€O¥3+­x1 sqô ?“@üÁÃEÀQ{êýà4tßà¶:×MCîñ„8>ƒ‘òÏãJM²$Á7å =5 g†(°ð¸ltßÏEG3åB*ÞðCaæØòz̰ïõ? †ŽÐ‰ ³¢gÒt±,ßÿ~Õº‚óé#ž·MòÑ, ð¥ZPÁkÑêfZ“ÿ:×jÞMf¢¿êN—ÎC×7®”ø¼ðð‘á}e =¯ú¹Ÿ$m¡º;·,lmPè~( Áñûbr`{þ«¯ÐÕoNm²¡¢•&÷~—Ñw.s OˆC]€ýªÚ¸Ì.È•²x‘j{M÷Å%ql5¡õ…>³‡ð“¿Úæäì•´ôeèèé¿CJ‰A¸›VÒøÏˆÅË+;éá£ÿƒêI›Wb<ôåÖ‘ìP ´P¼¾>$kZ›‡étýôÁÌ$0D}j” åÙ~ÅÁjU¤ßË¿?|r «W´3²’oî<‚1r¬tþfãÂ{]Js5ëPÒbÏöžê$ĸ҉m”#Îa©w+t@ Ñé¿S”1‚eož1ʆˆÙc˜xÔš¤wçÄc‚ Ó4ß÷b!Õ~î ~¼õŒ{Án±êÃ;•ô/¶Ò6ÈÚ ˆÏUô½c~ÐH»ƒHœL,®œ– ñHaš~ y.¹'ïA…åþ/Ðå4@Ï òÝôéûLž©Dîõ{ý*³Øbk´•¶¹7å£Uôæõ8WÌ5kÕaQ«L¶äR_èÉnJÛ«Ô}]lÂ÷«ô¢rpU þüÜ/™¼$Â&¶× ±HZظ‘R⊫“¥û+õ}-jÚ⤰NzKÇå!Aýók¿–ò/® }^'«Àð5"Ò =ëŸÀD¢'Ó†«êüúàY皣à:’3… ªµÒ¡€"äÏ5%&ý4¡þ(e× i7ªžÐ“3P¥‡ŒÍùã ™Ðâa ª"jŠÏ‘¸²@ß|°ñj﫼í~YãŠ-Ý «ƒ¸)þ õ:¸^J¯Ë ²ÚË1µÏdÕR‘ç Šƒs)… in‰¢æÈ“#Éþ{Mï± ž91 ·[ZÛ~ êWM|^m½evu÷Uå†Ñ|@g\’4`íi‚ñ­ÏCR߉CNÛŸWê`c%;ˆ&x(ÐfµÝ¤LPR?±hˆG3 Ht»ÏN¬D>0'E44ÿó­õ†í*M ˜± £!<‡Ù5„ q Ĭ~ºrf%gGµÀÓ¾œÕrÈmõV§çÙO_ÁÐ.\Sª¨É2ô_ò§œ2*>ÌPÊ.+_D{Øgµ;!Á;I§œr¸×ã—/Vš[ˆ"4çãq™ÌL @6>è)A©ÈSßÅj¯”ô¨òRQuÒE¥ÍQ^—Ž5üÑèM v†z€T¨¡dRW~íeYTò•Øè$§§Ðõhq±1ãè5´I…M–J Mz¶Ž™ù“Â˹_X;…ªXü“tûŽVÙìÖßb"¯öâ@iö¾ÉÉï">Ëó‘[ÑÛƒæ¦RU £ËV¶XAH¢›|ѱ‹Ön0Ÿ5²¯ÄÕè6Yb{a’mƒÂj|”x$ÊW2nôž*ù*mKÌËðÜ"ú6œÔÃ'ܲǷ”/[A;#£Åå6_{P-yÎe6Òå ñê¼ܵ&?Š»‘,¡HjzòêãêÂQržWGaͺšß­œIÌö¹ÛL­¸ÃØ,)œ¤ yçAÇùðiµJÍØÀk+Ë>&k˜[´\ »Úñ#Ð:Hµ;¤‘½ÒŒÐ"ÚªèàÛ‹/<áž{ášdè. {ÔañÍ7Ù<é}Ys;ÅñíèN¬½)YåÊ×^ÈMwªT‰£7àt¬tæY´]…Ëè‡ 0óM+÷pê(ˆv:á— °ØÁ{8wñsÕÌÔu‰X•ôtžñ,àŒ?9Ç¢†‘³nÃÎe ád3 S¢Üú\Z”ßa»"ÉÕtý*…tᦫê@¨ôh\as:n§,©ÞøÓÃOPæNÝÅ;¦ñ͆49`§_Æ Ü÷Uá1·1¸Žmçú­)hR4ûË›MÙ¢î§Ï{x¹z6’)Ó€ö_äм8jz,²}î;¿t?û€ŽPQ=Ô÷ …(æú½Ûä‡+d¬¡ÛÞÙiʼõP Ö'ÔBÆ3o¢j€ö°>Ùø–• #Èb~cK¼Ÿ‡qÁkƒ\ˆOÍìÕAèÚ4¶ *þ¨ãò£öÈöÆÃ(éVy„‘¶!¸¯¿ÙŽ/ >¯üžøl’òÃF¾{ûÒúÿ|Rbž\‘ 9C™qOí®’rŸ¢eø[> ü–Ý%ˆg„b¿£e†"l7ÿñˆð]Ôf¥íSJû5G$2I§àQ! ·<N#®-«¥ÿ­]ÑwS—×VEìëj梜‚ó?Zᔦð<’Ý"fñ Íü¸T¿º¶Ì¥;@ߣÌüsÅî a³å¶áƒ¶Ûê–úgçˆíÌÏù°Ø×|ïzr|îl®~“Øod˜>N%Ü…ägÄŸä6øû0|s€O5÷uŽo®Wâw©üKÔ® D¡xÁÆC©`õ[ öÇIüϺzÈLåÁ»~÷__Έ-”¬(ýý5«ÑŠ?aÝ/½€Gl9Æ¥-zVö9ÎÏw†À,p@ÌÞÔ%oMh?2ª½½ÐçÇØÙ {§  ?ÂjéùpëJv‡¢àBq¸ìt\à;¿À׿µ9ŽÌÈæç÷š¦(rÍ_út’*ªi0¢×Ó*} ë;>Ê_¢T%Hfk›žWL€¨]o*TÐÄÊáyFÕçÈ"íªðo{°ZNµ³·ºæŽ„$ËòBª,’?C£ž- —3úÛ8·Š¶EÅÎZ0Cz†Î𢖺fäg ‚7 é@¹ÇŒœºÃ?¨èV¡¸Ï¡Ãvl=»œ¹Êå¸lÔZ7†«c©Î³ð ÅKúˆ(:û¼8§OuLmAx SRÞÞ£”}w¬¡— ¸û°/ýÓ­d¨^š8˜õá„ö†ºŸ¾âbmMÈ£ Š,¢œC ÏRÅAGz‰ˆ2ê࣠+Â×Aí4ŠšÑ¦±±rÙ·çú!Ø“ °öƬá8 gEÒJ»!Ίzl*¶ª©vÜâÁºÏuµPCRþC‚ç o(¥[βÀ}õø±²É\ÑÜ\{–EXˆEYƒ0ªjz*8¼¡{É,6´lÉ(mÕ ÎÚ|Ø”ßlfÖZ%Ut û/ įuÿ¤Ëy#ÆŠ’“¸LŽÌøK½èOz%çÔä®i&p}5ªu t’H1Àqëc7¿þý쓘}~LŠ–”HHó·B±<ŠÞ(ƒÃÛAiLê5¿ÿC=Ì%4¥òú—…¤6G¨_µ”ñA/¯‰Ã¿íoQÄo:Ô@Kì1R)e6fðìÄzcBÂpŽ÷³ŽðÈt -ÐÒlâܻ̄)åªái_¢UA>FvwÐ1Ç1ËÐøwb2™¶]u&Ê)ÈÖÓNvoQ¨€IJ¨ü‹ry¹’½ÿS×ÉÝÉk¬XfÞ÷޳×À@r.¸TF18ôÍ»è ‹­BDJN ‡á»ü½ß¸t§#)Zج9 Ÿƒë%QˆDmšÈ òù¯7«¤·0€¡.r†0ZŸö¹H¨ÝÏŽvðwõöùà³ê×¼EÙ‚×iåoM±N37äeÊ·GºüßOl½jü…bmÚ©ÖÍÂܧYž&ÙÌF¥ÿøîsA?!Ò›Î%Ÿý!‰q(cð³u‰Ž Üf„^üC©ueIó',k˜üwݹŽyê²Iû ò‡·B$™@Æò¸+8ân˜Zë°ífQçJf4ÎH zÕç®5ÆA„JNšûñhø“ß$¾6 QjH¶þ ¤_‹ŠtzãEÆSþÊf˜Jã’7#¯­5$½S­™z }r¹ºÅ'[ßt‡A ¾k[ Ì«Geã[ñ¨ó‘‡›–°œsñŒÛƒ8Îøà*SMU…`wØ9¶Mh«NŸdP¤ ûÐëŠ/’@z‡¶8XŠ€2Êô'—Xó¤+5ô Ó*­±ÎYTT&N»áUxX¦HL•Àôb#ôà}†º<]÷&H\köÊ ô¨u¶Bš2%ÛOcð]+¯CxÛ¶ég¶Ì«S3…°ûtþ·rÅ¥¨§º z½}Ú‚Ï‚4ÎüF?×>Aû+XÖœ¾¢È?7)fK—ùùÐn‰q¾íøˆðjþe;…Y#ö§ÀÀï k~!trÔÑßûVCáò߀3œÁÊ>Y#ÌaÍzuͯðü$ Ô]Œ›yÏèd¯@!”ëýYá‹ #6¦|Þ~S™;ã}ÀOœÉ6©Ç—¥È¦VèÇyñœ™{ž£g+­³¼at+H™ÅöÄœêÊY,TÒkË|Ë@Ù “½0á<ƒ.lßp@êåU7]¿Õ¡"­ =§ç‚êcVíÄ‚êÐÒïa­ˆÄak–̶5ƒ_X —"ôªX}Ð4h±(™íT“HU !½Ë±¿ˆ_ìšÊÿ¼Föª>-í„X‹ì­Û»óJV4õ¦Š¿é¶‹b#k¯>Àª½ã1ÕÄ)߃Sn-ÕÍ‚©-yÀƒ"fQ“ä'–*WÀ£à¸âª¹M«÷¯ÒÆ, rÿŒ1J”ÓYªêÖ§^JtMö‹_0:‘?Í–#Ûv çß¼8ÐcôXäÚxU£ý/s­AøOâdÀá‰}EzøúŒŸ?uVïaÿqÔaiAÞ¤pÁ*™vE ÓþË6Q®Ñ*×ÌšEAΞr¼<“4×ûñÉ‹Á…QNæ‰ÞÕãÀêŸ×8ñpY Š2j5ª”¢6QÞ®Uq%½Î«¶W‹–ñ½F˜—¾]­—Xî‘rsM‹Kay&H‡Ù@<8-)u@žRºýÝ5”¢ÆäF(íCX|IVb«AÙÆH¹{¢é´ žËžó¦ãEJ®åIIr£©¶$³±Thƒ½»^?j4Û—œÕÄ<–±‡§kú¡.ºÖ¤S¡¤ÍîñÃý]1õõéPà'ÎܳïïÜË”G;,‡Zë endstream endobj 162 0 obj << /Length1 2102 /Length2 23423 /Length3 0 /Length 24699 /Filter /FlateDecode >> stream xÚ´ºeT\Û¶5Š&¸»¥p§pwww‚S8®ÁÝÝÝ îׂ†àîÎ#ûÜ{ö>ç»_£Aчö9æ˜cµZkQ’*«1Š˜M@’`{F&f^€¼‚*ØÎØž…•Qdájkì`ebffG ¤s»XíÅ]@¼.K€’©Ë›ï›33%@ drzSšL< cuO €Æø/  vva41v~Sƒì-¬ìA´o.b`O'+ K—?1ØÿDúã-Ê56µ»;ÛXŒíͲL LE°û›Ð @¶˜€,mÍ`s€:H ¡&¡ªRUÒPV£ez ¬æêàvú.bjêR qEu H“ ¥¡¦þç¯:Èþ¿@QýMÿ'Ï›áw uue àŸ5Xn 'g«?iÿ‹Õ3ÀßÔÞ\ÍÀv%ÐXº¸8ðîîîL®Î.L`' &Û¿ø©[Z9ÜÁN6€·O'-è¯Â¸Ú›½•ÓÅô¯v oe ²wýq’ÿKi÷VÊ7§7¹Ë¿‰½ÂåOLÛ™œA ÿHciìü—¯¼²²<ÀÎØÊÞdoloúfèbìâê 0úKöö 2£þA@ÌÕÉéO…ÿU9ý;ÍÿR¿­ì£­·±û½«³×?jóŸË6Û;[9»8ÿ+"`ne úÃÞùÏžYÙÿ%SQ”‘”PSg”k<{Fð[uì™\<\þ²þOD\žÀÍÌ `áa0¿5©„½™ØÎîµ3Ÿò‰[½ÕÉìä üÛÆìnïý(Ì­ìÍÌÿÔÞÌÕ¨aoåè ’ÿó7Âß2 €r€Væ ·ogc7ÀÅÉäãýOÅ".€™•©Ë[«¿„¿¢ËØ›ƒ<ÿ¿1ù_Õÿ4Í_G•ö휚ím=f s "Øå­%hþÿ9iÿ•KÒÕÖVÑØDóÿÔô¿ í¬l=ÿÓô¿L´@ØÒ(‚ìŒmÿKgå,iå2S¶r1µüWiÿ%—q1~ë{ [ÐÛ¶ü%Òøs¤lßz÷mþXý_F.ŽÿÒ½µ¥©=ÈÙÀÎþ— ôVˆÿbüVý?|@yyIU1úÿ·mþ²“°7›YÙ[X98ÆNNÆžÌo½ÀÊÁðfykl3Ç_Í2Ùƒ]Þ\®.>s°Ÿ åb¥þˆþ…Ø@Ù¿¨ð7âÿ¸ßüTþFl Ú¿3¨û7z‹büoô¶^ éÛù[ÂÂüfnöøôoÈñÙÜÊ ôý[Ë¿ãq¼!OKý?,ÞdVÿ€oÄmÿy@»¿!Ë[öø²¼eÿýÍlÿä,¬ ÃßjÎ7r²ÿƒ>ËaÇÀ7¶Nÿ€oÔœÿ^Ü›ÒÙÊãê·€.«ß¨¹¸ƒÿ¡~+¥ëßõŒ×ßdÞ–érú—ùö’òŸyú× `þ»¹þçBóVsqÛ€´¬ÌÞ.²ÿ0Q0vq²òÐc~;å,oò·ŸÿýOÿ?Pþ= þá-* öðfdcÉÈÊýÖ“lo#ó­€\>ÿákú¯™ÿׄy;ÿ‹ÿ \ä2EXZ›ò[§µ„~ö•(šª€¥äa:ªÂÔ–M€YÊœê$ÄÏß" |ñÏ¢*ËKóêû¦Ø—jScÛ¾¬µ%WO^™©ÿ2öUð%D‘ËÓdÒÌRøá_ÑMF»/›W¨SÆ>“ÕžÐNÐ;ãéì¹aýþŠ~‘Jö±¢ýg¬{ÉK+–“-†Ç4‚.ÂS].¯÷XqÑÆý"Kt³F…¡8c²ïúz0w« ,1„r¦±Q_0u"úéEèM»G0—ÅÕó`±p†ð¡7Y¹<ôQ‚ØîóPd8Ã’Ëù€0¹Xn$/b:ACt ¬¸ÃÉö ‡dŸW€ QjmMPn¸.»˜‡²J#_Ê(Gp’ª;MÖA´Ä­]Að2ëp49ñ@l e*”z© ±êüyŠ!EG“ 5j8×ÔàB‚Ä­´áujÐO ñeÅ™WèJÎó0H/ºæ,1cNÓÌüeä;| 3!•,Íy¸!Tƒð¾P‰Òõã&•à“`ÊP§åg2HëüL|ïÕfM1¤3SÀ}Ík1›WÅ…T”²˜ì–>¹ØUA¥m>‹Ï+gmC>›¥•õ|X÷0èb'ú…`$|SÉgÖ¬vúÅ@o7+åFfꔀŠ.ë"g½à|I²±áIÖ‚„BìÏ.ƒéÄ6¸œ—mOÚF1µd(íËCã§o·½øX¼§,ê1­«Cøšºš^u,"’÷·Ž@"Ìð}«Þ¡jV•ÖÕ$øq Èc\Ñ¡qö@ Ù@ô—õ[å=íƒxeæÌ/ØBkΤ5ÌèЯdõµì¡ ›¢x0ç%úÇ+ôÑ4rsNX®„í¦xÉyK=~M Ì5Ñ[œjU¡\™³è(°^±ÐÑ8þBRÂÄm³‚Ía·6Š·þL®8®~&œM )ñK ª ×­ ®íÑ÷a}ƒ÷€¾uïJ5Šc”õ²ãÓlûÂDß=›¥þÜνÌâ9’-ôà1Ã?ÛqDòÐýXÃv ǵdÎp¸ æàÉÕ4”K|²oñœ¾©žY2µëÚ~:%kÉÏOïáNÆ v®K;Ãâܯ­ÿ¿Ï"[·ªøþ¤Þ3íS9¡2ÕÐæ©Òê«É=ÎØ¯9ÈŠ…4·Sr ÛÈT¯'gðBܾ í•%÷÷ô÷z H¬WÔ}:D"«ÉSþáðZt¬†Å‹Qªz”& £ÜyAii ÆiÅ1œèÒ …I¥-@ƒ±‘Yà\à¬Z˜I.tÄG½dcÜ vRï!o’÷ºrm “ÓÓ õ3»Tœ5j¬}<æOö†Ê©{šaž_€ØÉ>»ôkj9C¹L?½ýÚMý¸ZŽ›ÇtZL…ºÄÏèKëV .+sÈ‘=ø#^Q ÇÙW·“ß  ni …¿KdiѱÑLI"ÝÑRÓ Ö´‘·C ¹u~4uÿVåŠlÎÁÑwT±¼Zå—H•ÖÔ@Ï:`Ê›e#R=<5]ª»cñ±‹pˆ:1±Á‰ /©üq ì«mDÊ{ë ¾§è=ìɘÞI;yì't¬oõ>þý1Ð'Ö`ýyó :-§Œ‡{øˆ*_øÌäw”žƒÖsDc»ŒA%wÌ5cÅЗÑh‚mïD=ZHP‰ª[˜1£³ ‰³³±hÅHIãœé)ßÈ£ÃÙ –YPl®ÎÔĽõŽŽ-£¹ç+[]Ø»†2i¯?iØÛ"^+.M'Д«eºûJÆ7zº<”:«ÙB:O¾ä=¼~mZÒùž!;ך&ÛVzQ=yU˼f…‰<îz÷ìÙ~P÷qR/`){V‹v‰' 6œ]ÁëR~§ÓÌÅcèRʧڈ‚NVñä[ŠúûÛ ~r÷®yÖ%úARŒ+)ÈC3󾵘É%Ú‹5†ï;íËÍaÕ0ž‡ uÉõJ=vÔ‹·ZñZ@S–òÉ©ù—Ù´>ŸÉ”ò8ª ?ˆŽûñìå-Îï´lÑßSÒZk>ËI<ÐvmÖˆ¸éãþ° ¿®èš\¥”‹ôøî[h¬-˜óN$EjÅ%®|âKueúlÒ¡ƒç3ËSpQiý$èÙ…Ÿ=$/–.ä>Ê4?5V7cT09„KzÞWŸ94êÝösŸPw¡'©G {ìÚl9×»ûú¡Ðô[+y¢{l~ KÜïsö¶– ¢&©¬‘ñOëŒØ†d”ƒÆ]›Õ¢{•TW–ÑUß~¿¨ç¤pÿŽpÒ¼”ÝøÅ"V¼‡(ËíED`±‚£¾NhZ#ÿðWEÇ ×s+Áõ ŸÃvŒ˜Šo rÝìÕÞZL†M;%jZýŽíA]ÀûðµN"ů"/±ž©¸=-g·Û„RîëäubeZ›£ü¸;’ßÕQüž—*ÑÛØ{Ư°Y8Âȶ·™(€Îéá>!CÑ5x~uÕŽ_OîË5¿èŒÍ.Ù³Hzà Ïà¼#Ÿ*mî¥÷[îÙ´Þù)CÉSqˆ‹Zvt}éš ÇŠî@H}K~éa Ý‚M]s•2iÒ'ø['wÚ ÌÙä MxÖû~5Ól*¡¢ÏŒF5ø¥ÓÓBn²°úXœ#3~¶‡Œz¦ÉÜ!ÕÏ–ŸÎmü›lS þqû|“{;£Ylöj5°àjoÜʪä`öPÊãÌÛˆÎo7›œvôh7êÀòA{BžHpâ¼¥rµ#Em&S 3¨¢îÁ8ÀÑ®æ¼' MðâÝÛ; ˜¯|F4ãUŒØa¾OÁiÐñ‚üä6ESѱ¥N /1$>ÙÛç¹»²üžd™Å*6nÀ–|<ÖOÙa„ÅÍ¿€³6”ë ås"^ã ýÈ®I;õ%ï”>mðÊU’'| À[·,Á wªM·‘j§¿ðœœ—ñ${Ðáî…gÇö%pKªËïM¨¨—?ŒÎƒšBáã[z7˜ÿÓŽNŠÀã>¶«ÿs(¦R£”MS'+„ýBRÀå•ä@ bžŠ=ÏVšdg}çϧ.‡¢:ënÝ :U›Ê--O4§î9"º» ^ßS³ÕáéQÿl†·ZØå~hz*vR–ä†ÊÁÚëUØÓyvé)°¨‚Ö¦e-¿‡5û ¼K{XÁ¨H¶ DhÝ«öŽ WêU\z’,õ_³žê¸>5“å¥cŸ&—Ì—wÊÖ˼7p4(ž½SÜ’gã(EbN^s™º)¬uÏ–lž,ÊK˜ÖÖ¤²¤¥ ÒK³ûØ>ƒPòØüÈß'®Uˆ"±AË4¬À“<å~~xÿ’ I€x1B ‰Q¹€P„(Ô[_‹—yF‘N‹Êõ¡´®¤( Nmíîî³³Á›øq¸öðйR©Oò¾±øÕ¯ÈU”ŸïL5µù%“¿çû^î ?ƒ#2¸¿ïÒ¦žŠ¬¨ Å—s8@tpdËq Yôk¿ûænÊ™Ý-G!4?º'ÕX­=¶ûåë°IСÜêbqê§ùŠÃ´§r;÷_›Êb9¢7Aˆ^C‹\k òŸ+|$'UqªÇHËeE^æ_¬¯u‰ÉÚÈSöÜMÜMÚä’4 `€%Ø‚óâÚIŠD…©ó Úþ­ £jÔ+/ÒzøÅŸ1+ÑÚóšcÅði?Ùƒ4eÂÌçƒAÂ:BŠ‚“ï”t1ø¿ •+sç Èš*s؃”¿çÚNÌ‘ ÍY¯nfæŸúÁó$3Õ§²FÕ®ˆÚ¤®?KI$Ö&ý‹‰š/ù3íì“FSFˆÑ&&ÛknßòNÒçÿãRò£ÕZC×],“{Ò’‚娶Ýf­$W@Çj¶’-¦‘Y½gpZ+p½Söà6D½Ÿø`Öù[3PAN£¢1_ñ!ÃIHMD-ºWÀ“‰;Ì~Ä Šqrxn2Ž”ë/(ÚÔ^–ÑDî‰7’ÎDý"ƒ”Tå[‘s›T ØøŠªQ®à¿`\À¶ñê­NìÁ íØì%‹ö¦ÞÓø¢½-W La›òÿ°¯Àß²ÇìˆÒKÄî®u:9÷ÑhÊ ¸œ¦Î!î°¡–zfV®qænð´úÌÔ(tƒâvŒYe6–E=áø~ŽŒ±Žå½Ó;O:Z„9ºÍ,äƒb“…ñSW¯GâhÈ}JÈà ÊÄîGBÂÜ¢ip¶Ï=^ñ&‘DyC¿~jß»¿cwŽáJfKý^@m Òá…GÈJáó üšnvŸ(^nžˆ±Hd<.Z5>(á \Ϲ£Ÿ/Ó³Ùc%Æú–Àö†á[t%“t2Ú4 ·Ñ‹®f  ¯+BOšÎîîjÑ ‚„ÒÒ¯} âWÐéKÆgzåÖo’Î-Ê—`³‡ø•Iξ‚›Î5ûã"Š»†Œ¾ÄÜy­ŠñùóýgSÝ[rImU9ÇfmÆFi§Òë…r>„{‡ˆÒÉýìê GhG‰š©š¸Õ¦÷˜çnº$6(O[¼Xô¥DïéÈîÅnü»Ñ5#êíð?ÈluŠlcIHF·¸^£¾|v‰õ¯.eV…âŽ0“ ÖÊÓ[ØcœÞ› ñêö;‘²ãf—¬/†á/cêLJƈD³Må‘fÿìèÏ ÔU[° _Ñ 1÷á<3†Š²¨njôÊEšë¢SOP$&gÐè«áˆ´[K¿ÓDå§MPׂc½'x.8škîÓþf9qQ;æÉ*‚\ê«#¸žP Ï÷g æ­§%æ"eGÌÏÙdç5~ûÊõéã7†Õq:}%¢ä¸ùk¸SÏÒßAÉ]AØ|˜“p?BØìNÕ´”†ù§g`â6øŸÕF´c–'(Õ˜“ãn¨Ì¿„§ÀY#S`4à…9XÓ}´Ú­áAkï:YÚþÝÜ5y`4€ô•ŽŽÏB‰—o§3OÚCÀèè–$ì¬ú\«Á„çÂx;ʈžÝYõ¡_çUJmý§¡)MˆáÓ¸£ku-¾ Aó3ú™‚Öåù\k!ëœåeR)ž+ÔàL¡M!£`I¨ƒ˜£ŠoŽ\JÜÈ æïçÛ_Ð]Œ¬?_q¨ b¯ùˆàBE'¯GÇyçˆM$èåCá8‘¾ ¢„Ç;÷ ’òoM¤r¯1ÛׄŒ•M=½ì…û=ŸŽÍ;;ia2¾~}3ðËɳ“¤ãgåáùäifð;¯ÖÀ2LR(Hq• î€zGáýÅU—•o8nr­œ²T1sËÇsaŸÞÁ #ï/˜!~áÁ|ÄÃ{(}=‡6Ø/éS„õCLÓ†ÅZ˜}›žì˜ÓºYRžÃn /ÄPa%|>áaˆŽýwôà‘]o¤ì,O»Fþ¬²çU~;B³®ŒEõ7#„¹1óßl?QÑkã¸áBf#Ï«W³TfÄi“všže^S¤elЊõµÈc’¤òD­%låôlÖpþ<[È*r‘{ªóï„ÊëQY¨ýNÿª²,sj{ɶÆ–'r=ì7šµSS¯6.¤ô9\}Þp$’>wà=;tV©¼1ƒ1ù:éÍsàŒo%êTfW¦kˆ-LÈDx<ã5°©ŒÒY2ø~¥û|÷C.JƒæŠgÛ”0–H¿À:ND,MW‡bš~†•Oø‘ŠÊ.E®g>ÂÝÿ³9ŽRÊGFuÔõ67k½@D(,M³S”§(+õ‰£.ýŽˆØWŽ­w}Õ´Dsglâ¡'³÷‡ï¥óÀv&}IGøKW,æßÚÀ¸WÆgÔZ¯Î²çĉ•ô´H‡¦Tž](‹÷§fÆá#Ò^Ùê&¾ß¡m{|3À>¦C}»c°f|0%³{"ÈFoÜ_‘â³%tfmÈG R#­üíy¡Ç°éÅÛk”ÔÁOÙ ZIŽÍÌl´SÔÏ^˜T‹Æ¥,ÕßèÖ/0ù–Ñö¨KÓá$ –aÑõhÊÅCÛMøa¡ýˆ)%öá«ò5®¶÷Ü5¶úk$ªìÝÌÙ+_š^«TrOKß õ`î" ¼ƒ5¿IImŽäµ´ÝÊÇI‡“§Ø±W1ï÷³Ô{aZ¹]OÌéŠl(ƒ$¸Û²}¸oÏtÅö µbNåbŠÁø³G éBÅMú Y;ȃ‚ ¸ k¡è› ‹F­”!kÖ–m<™m8>K#È{0ü^üƒ*A†Ë’MØàU•“Qûâªñƒg‰ßì/“0ÎòDeÛ?‹9+ðÌåß±0x¹úÛŠtE+u2¨X^6_==*N¡¹È#»²¥&Äóf–˜\‘¸ó™8´œ’'‰º¼úÇÙ| q2üh?µ2ÄñkØÚNnÈGÈxl‚p‰§Zšÿóê¾6J¢Õ”vD7mó„fí7zëð.¢b3¸,[ᣠ7dÇ-euÇO£µv¤Ó•«œŸÖ¥é“í}ÜZ߉Mµ`9Sù¿oì€ S^÷õ4®‚RAÕ³ßP”h6ÞÏtßžZQ¦¨ËW'efgþQë™. âjA’?‹OÉ*eûãàƒîõû±^Ö½þHAV­£¯µÕ|Ž“vN¿w}‰Ô@˜OØÏ—äe™„¥ÉEw¥!NRÕ"ê^ÔKL~ô ~¾%Qæ^—[|WÞ×ÄJŒÍ8EO5pÝ «¡ã&ÃWrMÎÔŠˆUdݧ•Œ`–¤Gr§xÑzé´ð“aÀM©^'+ŸV[!7ll ëd)ÔáÊgvz«w%<é”GáòOU×6/Æ?’Ô]>ÝG@®½3©ÀV’>k²e.ªPf§rQÔ¯´æºÎ}¼=ž§‚?G©pŒÛ„5;fÔÆî”$'ÿTOÆ›Ž¯ÿ@…ä¥ =öbAEéÂ$ô]*aofœjô§im^—&Õ†Á6Ü6x‡Óh=já­¨ ìW¨OÂ÷kI!·9:éOÕ»00(¼>:æEZËç²J5ÆÂÜúqžþ²Ûð›4øâzûȱ§ch£±Qyiƒ®¾,-Q£ugë‹™ëïÕ"Lå;шV’‹¿Ç ._ï¬îZ!n?:|?žèÙ§Dí3?u3\¦=~äîGSo±èß”®ú¸9ªˇ'ü|VåÕ‚ñ"’k­1óÌÓíáÅú]ÄóœfYhß"r¿òuBO§È\8xRª}DYáHgû«¿Ö¦LJyõƒÊ¸-oðìÜ\}> .<9ãʇkf(ŠTUÃ܉îm:+?Ù¨%S5t´`–$S‘Ê´•ΓîÝ÷žnù›½ŸÛØMŒèï>ãÄ'r U¨—ò 1™lEL"°QÓWÚ=›â7:äó´Z³œ³÷÷“×cšÍ…S²ídÐÐîÝæ†€¥}”&}ïØD~!ÊlÔ:²õ©R’ýh–ñ¥…6G¼vèG1ׂÞº†\Òkž/9ÕVž‰{¨ØŠÖJvQãs7…fœlŒ^öuÍæÌë×tRL^Èùä­JkšxgÆÉfqWÔ¨;>[ãÚ¿BŽF½ü‰¼&´ï…&‚~^žj¿(©¤’P3B(ÛdžHYÔ»pû²ëÜrNø—$ºÉd¡cèù?’‹LcÏFÇ÷§<ÑðÒk^öräûгã Ò•Ÿ/%Ù%ºDaÞägõx´]£lò IÝuMF0󨢣”­ µïáôÈÁsåËÍõSt1=­ÞY+“¤Èãn|¹à½Üi2íö‰ÍÒ/æž"„Iäö„§IÓc=´ÍNú|éùqˆÐKë0f°Š?â>rw•û–‡ÃâŠfe+îû+>—³ž¡â]ï·XU}7?½-ÁÍ2ëH±L§ó²t;'7é¯ìE—&Ë?¾˜©À×WïgupCÌ9v@ !Ñþx¾à3´b?<‹’ÐcëѬ±É7Ša}¥8éë¹OÿQsW–ê›IúÀ¥ñÄÞ4ÞLúÇ )9‹è𠯧˜>ˆàsð·X}”Ûܸ¹.W’¡am:™Çûœ hG¹bm*+˜7¦Òì,{©$b.Ò®Ðî‘ÊVE¯®’©@L$úi¶lÅ}móÜJ•Ã÷·Š#¦•¥† Wõ÷+"œ¨ÔË%´[wmý1¯ ¶5p<:¢NB_Ô4 ¸¶; šë/å?Oîê¶ÐD©/‚õÐé‘jí æ €þþ‡ ùÎäk»è:Aî_ †·ÎÊkÚI ÌFc»k4ƒKAvþYÜëódˆ9Å·¦Ô’4A˜ì›»Ô/'Ð"xM()Lð¡Xý+B%>°̣àÏŸ¬}Ê$ýÑE‘»¡t[Éꦅ"çà`kûXWy9ÁˆÞQ%$¤4‡2¤`ˆib²ô/xƒ¾SÖˆS¨üp9öY2Ä‚ˆz!m#µw¡ l!fÁg$‹õ÷Ú˜'¿OTwç%¢è>|-Îê®oÃÔBPi¸·cfºKà·iß¾À0ïÄ9ÂMÏFS½Û Ö"gÕM2Hæñ(UÂæiâ7wý)Ã3 i”Ãcñ“̾¡ÍŒÚS©~9GÉ`çûÕøRm^GÖÍã\V‹/r20ÒV„æFÓ»¹Ò5ø„*jÕYëxås›Karé¶L°ººäteÚ˜Õ#OòÄÆ“ÓA{©²oµi»”É_ñò¡…¹“­[T39šåL ~Ü{·B“Ê®9tÈ `Ê„ËÐ>—ÓÝn“¢œXýýÚðøÃ~ÃøÉÞãRNi¤æ¤µIQAÊüK$ý+¯·Îs˜™^KÉ#méÌkÈNˆv;ýÔÈ{“ØH(±ÁÈGd*žÍ·º²ÃS”KeT‡’¯`)ÜìËS.B)ùÙ5ƒøÍ6÷–¹ŸÞ®¯gßš¸èlÇJä¶+'çjºÐ«âøûo€åÿã.š¥ˆ3Ó7;¹ºò·çÅŒ…¿#äZt|¶Ð·œÒN´L ža ü=ϲë§·6ܿگ¬+ ­‘'Æk»>ÑLy8]ŃÏlèü{20ZÊ£ø% Ää½Ö"ž{[Ðs,i"#Ye«kü+¦õg´ 1Š¡#“+¼òJ•¶¥Q£kvd¡"PO•¿4¼J–uvŽº´Ìb5òÖ^àà¡T¿V´]ü¦æ¨•@:ZŽ=ÏX|ANš¸nê8RÇQÆp“!ôÄйšoTðå¥4ñß÷œB-ZØ1oªŸ¢þ¥2A.M¥¤êÞipNYΓ…VNŠƒ'ÉÏ8=¡j(#¶ï‰;àŒÝNó?-`9ÏôÁ8ð©ŠåP":Èv›FÕ(c8ÜR©}ƒ;ø!Qäqýzð˜7h~Ã[8…Ýc‚X‡ò1Œ££Vù VýФz>¡Áü·›ŸÕ’pÝŠã—`ÔôN~nL¯€E}½Ý_:á¢)«‹ýâæ¿Eg"Ö=8fºã›¿,–·º>¦e7ËÈO§¬@KÌ2´É‰ªÓú`/¤\&{¹Õ™pQÂúÄOquD­ïððôâ89Ç7 “îaÓd¹`‘×¼ç÷Ô;×&õŸ§r—ÈÉ•fJð3‘$í>eÙ<Ÿ>KºM>DÈÑ¢XK+p G«ÛFÁva{Ê$µªýNd°ŒY Ô÷õù¹LNükÝ•Öùó³!8ö1á¼Óz¯ýÝÏh6"亡iÖÿœÀ´ ›Wn]é’ák{àzÍà°Ç×w¿•$=@T¿!¹ƒËó†jmŒ³Ó‚ßù‘t/»ÇysïCä™í‹ª!}5êZJp­›ÈµkËx foï5gV;ã©sÂÅúïR¹K %ØYc°‡ýRðþçi1$¥n‹ÜMÈí»&¨ÔùËK4lŸ;zžeÍÒ“I¾†>¡ ìÃZk'§¢— ¹w$€¨ÊÆ2 ±¶›ð¹ˆ.4nÇÔVš‹ì¨ Žâð}óÂÇ ¥Ío ­˜ÎSä)è߀F[ ©‰÷ß,\„•êµJñÙÊ™Na},NÇŠÏx0âzò߉w†X[(Y’´¬’3XœÑÔ£œŒ5¦på‡2¾,1 $¨½õgv´¼¾! –lô7Òª5  1Ì'yçS@ii"#üÝÀœ,°wbðÍQæ eØ(@bV{~P÷•Žwµ~+•âB?=Ô(u*já’×umØâ–ܰ{åÃ>HTLväyz/Naw—€‰»&ïºh-©ãè?uªüÄ­Ó;¾Ó#úÑŒ+7îýtãäË=„ÀÃ7nj`iç׺s¿‰Œ÷lw›ÉqîXÆãþá(…|·&è¡ú¡»f€er»EoiLeÈmkÏêò±ý´åOœ\‡fnPÊôñ4„%g5$»Gs"?Øñ±ßÕÓw™â¢nš9eÆ6ÝŸùfØ[Ô;#!›Í9vÍ(|Ïg®€"Iºñ"î$馋“8 XiZI®9`¥ï ím·mÒŒE²¶ bHf¾ À@–Õƒ®© µõ/8ƒ=F3¡V-]²Ì™xx¾¾;ÈpÎAô'f®çøÄΪù¤ÞSTöœ\׸Oއ‘ rkun²àݼb¡£éðh8v+¸›âUÀÝ¢wiuëh–ÜÃY„»|¸:vû¨ãyjÉP+"P9Æ¿•‰tx>˜ƒQŠÞ_{` ÃÛ a!ÏÑ€7“¦ ¤‚²âA9U’&j÷Ì­ÃgÐyúqéÀ]¬ÑÑ/ü*|ÞØ/mh«½ä/Éñ28jØfí¬#™¹¹²îI=`ºÚa¡ ¨ƒá”äØ_i9Œñ2ME-/+´¾K“€tD¬8#ˆ¯ [!nIñËuÝLÕÊ[ÿ{ wQòTÃøø»ÃZsw¯vñÉz†oS^Lª/V7Qj½hsÆPâwŠé=ùèë—šå"ÊúM“…lž<×âvÁ‡ë‰®ÔÂh5ÝŽLð—÷V‚An¦Kt—׈&Û›_¯¨¹Gá[hÆÍŒÉŸ²é¿´ae·¯yyÓÂBiE qÜõzwøZ^uÖ5ÑNC ècµç?ÍòBG­{ŠËÜA¨p‘È×DYà6Ы÷_DTôž”ÝAt†ŽÆ8™b‡]Âã §@Z$Ÿ$ô5äbìàÏ Ý @„Ã/~ ùïBˆ_™È“zý&?q·ó¼§ô~ïF²ª¨’=Œ ]¨ð¥·©ŽìéG]µtOZ›SbA•Ž¨Ø ®E¹ùù}Sƒ·Ù˜€8Z€Ÿ‡tFÈ…‰A~sËŠ– ®—•4©{j6^ɘ¦€ <awa7ŽÒ¢ñIz憮ì–aþ“¦óãôÙFôÝM‹1Û Æ‹x˜F}WY¼Rì¢Þ 3ýpqo¿¨¼ññ•º ôÆTè&lœÈ/~qåÙvûÈZÞ)Üžæïݬgâ|ÆÊ¥¼o¡óôû~Hy†ï‡ZëQˉu0Α:Àv &ÿÞ°ó[uúF° šäº="Þ”ïº}<ë³Ün.­î`âQlMp± ­/d8.œ‰öÂö ×ñ=ðʾÿ¶ì±)7!/|WÍ”·i4Óh‹mlŽÙ84Åk©ð˜…Œíxîí­ÜFK‹ïâ•…3:[^ï(§ërôNÔùœk@™ÂOc‘%ó½ì&Ÿ>àý®‰²^e!ÊÝh¬X8,Ë ±î¯ü}^VHÙCµU“©Ú6¢ÜäµB¼f¥ßÒEvÉà¬> Ÿb8CC0\uÝËïbSrì4#+",r¹¹¬LäUÐòTWÁ¡H=Î%˜Ø–9nµdÿ­¬˜-s‡!d vQÛ婨¯k){tŒüœ*QOoϯ¢ccwò3C{™ÈUÕso\@²õîà£ð]»)ƒõ/Ãø?IµjcįÁ+øÊVÇ·Edn÷nå’Ï‘©+ya9PYgyd2Éå.$©“@2Ë‘hÂɃ^DÓï‚“í<÷ð=g_â.0_Ù°tu÷{0mæDŠæÝ„Ö?’Ðɪîõ2–’ºÈöG`:… Kñ±|²¼w«ì@›é óòdšÎ×3ÃB}‰ÐTC†&@tžb¬o×/’{!á NvÑ6/e ²šÇæ‰ e¨b6ÜϬ–Bñï–¨g7ohƒ|Êè"]ÖEžXäÙlŠO¨½>_tã¹DÓ°híAçåbROUßÓª†¢Þ'µ1r·¥DyªLVDä‘i¯wÏ›2dt#´0Bö…Ü¥>Oâ(dÄu¬dæ†Ò(Χ÷Š´ÞŠ§;¯ZÏæîdl#i D¿¤·D°@ËŒÚe­¹SòøJŽ#ÕÓtڛìSÄ q&ð xÿV×ܾ.Œ>7T,¥ýGtFH4Æ-±ÊÌLØu_zDʲVá/ 6"³âåqî­ãpŽÿÕ5 3ƦàºÐ‚{øB>‘x+±šCú¾ÛéÃ:J·aºq$=Jøiýß5°"f,ù_³œO‹Âî¦,¥âÆ…rE«ÔÀÇgl•Ï‘ê¸ó‰ôyþæaØ k9w÷àA•ÖZBЍuíç©:JlƒÌ ‰or{àðÇç>•Ù ö3Žv'‰â¦O0» óÌLKFcz#¬‚ *ŸÜ?D]ù<Î)9g«²â²'nØkãjé׳eã©Aý¬„5r.ÊADI¾å3€'øäâ_¹Èß°ÿ¥Ûwˆ_:ÈÓ\–aÜõ¡O.Ïïæ8‰R4ýT`„Ä@ù»NgzQI¢Äeë~ª¸&#ïîöÂî:žU[kåîÞóYYŠlj€½y  K"E)4ÿì4ެT ³Ñ7)N¤¶ð!“h‡s—íVL±ÎggÈ’ŸÌb™0ûlÉþ]Ï>|“Cˆ¼ ìÍÏ_ø3H:+(YŒtLƒ¥Ÿl£6jRB ÚÆÎÃ1}"ìI슙¯ÑxÆ¡0Bw˜I¹ñÝöÖJßÞçºôºÀÚÖõƒyªÇGDìÿä3ïœ^!b3$6}`j £ƒA{vœéó=Qûaÿ¶U‡­–Ž?ýÎgÆò9Pl$4x”`¨r|gÒt-Qg×›ÿJ¹5Že?D+ 94QÂ’Ip„o¥"ñÊCažd§á‡Š/Ý,Ð’CiµÍà;—É’ÎÎ5=ÓLñ£'ù[ïÖñ*!Tý $½t>B§ƒÜ%}”j25ï<ÈÄæ²fæÓú†F}‡sZŒè{µ‹ ¿sm{Þ›µ’~œN€Û³œ=㣠ɈÆuQM:Ñ('?'bÊÝógúµ¹î©]öëà7æÓÿ ÏŽÇYíS®g д7 û‹áLÅ/•Š•ÑÍŸR”#¤—!¡ý“_ÊzöÍŠ"&¹ýÓºFhqá®nrÓíx[޾ÞËÂiO_žZ8O¾Ûß­RP1ú¬ðXI=îYÑ»ï—^Eg[.Ö-¯crò¯ö“˜!òßë´,Ž:Þ[?[ýïþÞùØ­+¬ÿ*.]¥·ºªÈEQo´Z:»TÀÚn'é1J–ò‘5݈¦‡ÆÚ˜p#ƒH£¿'IÃ$<6Í‹iy‘­7$a¼qÖ n?RÜÚá2¨ŽªLŠ|j í…ìøþu»WEQ9Ç[½C;à8nnÍdФ‰ùƒÍ^¶~GÛ:ùáAñæ~' ùñnÔ§|2Ç9! §¯˜{¢Wô³*d×ê÷ã§>ÍÍ6•/á¥îò>)äóªž<Û÷Ó9'Hª:’ßËþœ,›gçŸKæà·l äg{”|«ÎÕۇħʉÐÙPå ˆ•Õ?p=-@è.¨`¡zÇ/nAñìP¶Hg¶ùÐ:~p´’|™³¤–Ï«yª‚¡‡l¢•>"ê–Ú~1ÝàôjXç$¤»×–¹¬Ím15Æ”Á8KA¯„ɽrõ45-ãÛ¶¯ \rëX.Ù«¥ð™ñž†N‹BbaŠ ˆU¢fj>ÉaîýŽÎ²ÈK«$L«Õ +LzÙ/fE-qHu-8Ùj±Dv(æ]C‚õ )Fq%^9\Há†pùh»=Ѫà¦*ô9Rñƒ0ù.Ay ÒL³«·VÙµL˜íWjÙð/œÑ‹al¨§Ð¬ì7]ˆ²ÇnE¥0‚*™3¿ýäÅXÚSâܸi„^>º|®ÌîÓW¨(iéíy× æªÎcöë{àçl¸ ûè ¿qpVúТB{­ @•H±T×~ænéU¯;÷j̰BùøÙ„x’f°mè7µŠÖdÏr·:rÙÚ;‚³x˜ŸX”jß±¨x›oÅ %Á…I7z(”ÑŽc/BÑFªÞlAõ{Ķd1ÈqjoCš›[Â2ug¯É–èyê{¬ïǺ—Õw@Þgxc!îÐà£ù<ó&Œ¯•¿&c%ŠÈáædtDÅa˜EÑÔH4ÇÏÓ³Ÿ9˦ܰU4He)-,‡%5¼Òù]ù &˜3”§Ý&+ˆ±Õ0´­3bÚ¥”ŠpyŸË¹àHÛ秉Ên''ÁÑdnÍdÀrn8”D„gГtZrÕ~a›¡y¿4TîÁ¼ŒË'_R ´ü”sºÚLe7ªö¨» ¾À‘ñüN_BÍÒ˜^B®•¸ÏˆÌ%¶÷÷üøîÔ›¢Ït3çÊÉA+äЂ`A¡Q®iÏ'q»„Em“lÿèßRX§Ü®Ô÷Doßq× R&›þˆ~$p;ÈðØyDÐЦZH"Ý­k-AÛb¨¥ÛR “©sìÜàF6‡Ï²š$g—csEX…$cCkœe`àµIŸï¡ºŸ$\ÎÎT´Ð ’ü`ñ|¾ Ž¨ŠøcíÃoÕ@™‘™ÅŒ€ƒ¬(eÕmìÊOFe5î¯õØS>7O4ƬÛpù‹qƒ‡Â;â>¾ßÚF…9ªZy¾™&äÂýý{‡€Tø!û‡ì¡mèC{ßCçS%C}žú{wÎO… ›·;"áÏ-ëÒw¬MÒŠã×*ßX 5[Ô|CD¿fÌí´u ïÅj¿ž$šÚ<3oÙ'{¢BáXúé€Â<7¯mõ#±#Tcº‘41"Š D  ÆÂÉ¢V’›ü!Å4éˆ)ª­šXH6´Ìí_Ëz>êN—4ö c7掫6øA x=&õ; ÛuÉ@,ˆþÞë»}XL§Qm®ó#­:–]±¬ü[¦U,ò¬d"LžuûÁ¤”olMò–·l†™äWd×ÉñE=Yt5QÛÂ0‘BªaÈÖUP¶ïòìP¿?ÔäÐH"cõ/-ï]TGÇlô H÷õå¢Z˜_g(îF÷{!Á°4%¿•<¼:Od0)%22ó÷’® åO¼b»ÖúU}Y+Öâ'ôQˆÅT!XG~ŽS’ùæÁBˆºlDþÔ«ÝéÛæúøÄÓ™#à½5¸;°ÃÙ‚Ì”ÃmnÆ'¸‹kw¼OŠ$¶º~¨©ˆL CÕ‹íò/y¿‡ˆ²ÅDÍ…à4½3+ø qY:p©MÌâJ7ûTCuÙHyˆäxã&ß ¾`†yLž¤¹Ã ›ÒCÝÄ´kã"ß>n𫋍%5#üÇ•âPdsÄFq~²H-í@ž¾îˆq¨ybÒk·|D’““føb87ó6]…¨´õ5~æ‡JÃÚvZDs^õ?&Cä‘9H¦AˆtbM홈Tºò³’*YGñ%ÊÅ=‘ÜF½£^dIy¤ÛØÚyœØn.²ž‹W옊¨¼½þ.çá áMÞ6[q{œ#õ +Ð[ý›ï‘¿¼‹|ê¿]:Îk¾§Õ*ÒmªU,2IÞÔqŽLXßÀyVýºë}È!‰5á Åφ·gbG•v’€Ø¼â½H IÕ›EFÖÈ85%u'S¿>œA·¤!˜4†´—¤–Žü€³kÿ»ëMuBÌlŠGb×l…ÌÕ-¨fOò¡$£ÜÙ›U=€z_sõBxšïÁÔ… ºÏyÀ%ÂÁ”O¾‘6B¿ÿ¿áá°ã—gµi”Õ}޼ÿŒµ‹ÑM`†*«/*©©·ð?SVÖ¢6žVã–cò‡kÿ/ˆULúýÿ–ˆF}i¡Fæ‘ülHR|Ÿ’©‹ GÓªà³S‡zÄ¡_ýyì&cÞø(E`,› ijklÏåMÙ#T=0šÆPþ¯;Ý¥giŸ*Œ£_”ÎÍ¥J2ñŒ•CqŸ!{­ì¾Îîx=D¶Ì›É¥-ä:*¡s& ¹n¥€ñ‡+ dŒI°D^M‘ráµèÜvTKˆmæ…„ä¸÷žs«RÒ<}¼ˆÙ AÊww£‘‚÷wTÏöŽ­qNðîOŸ‡ô0n»ûól¥e@9ó¿Úƒ¦Íg.?é€÷&Ýb›ÅA×anmþé *ìÖò.®NÑÎM÷ Áð”ÞÌÝŸCª¸†@Ðé4x¬.?)SŸ·øáe–ÿÔ3,q‹11¢ÒŸô¡š9ž•z{þp–3¯Þ;‘¨±¼—7ÝÛ”%Þ] C§¡H¿mã~ Ó)²‚üS¹ôç63e+ë^kh¿]æƒQ´p†h;ƒˆ‘ã¶Å…Ãëd칦€ŒÉ^îÀ\q/¡2¤äΣÏüw>5(=µæX}¦z#¹¬±¦SpBAøÑ²Ïf3h{šðù4‘öÞ‹BÑztªã°3ák»ùyi¬’2Už½íu³Qçj +¨L%Å¡®X÷UnîðYèVÛŠÕY¥^f2V]™rQæ&+±HÛ^ZijzÚ˜{ýIƒ§¢òXV¨ *N/ícù öP&p{Ó›HžTC ùkûÖ¼~Ìíà«Ëƒ ·žç0Q+»‡~l#È[çÓÁb]ß˵—ÌÅZè4§nbz©4äT>LHžŽ¢â̽‡C`øëòì9Ã|oÂwyü§. z,{ yçÇ(Ø®tb¥ÄÒКĸØ)z'軡—UÈSqü¹†N%@ª'›A=h]}…=*_•e*:—I¤v’y¤­¯“9£îû»…Ò-x”‡a¯*˜ÇÅPƒx±âñ3haéöÊÎÜgŠT"ãØ¾rN)Õÿœ8ÑÙµ،ΫIýŸýÛ_9i7„1j–ˆÐ@ÇÙàœ…Ü&á.?YÑ{‰á‰Ú h”è±±ÇòꑾÒÿ6ÊÛh³2NcÂÆ[c8 äý£YŠÚͼÚòB»²qASð£Gž‡ñêS™Šþ¬DGWDM'¾ŽåI4Ôü¦À©àS Œh‘ï*~=™CM`dh×^-¿…¦“²N‚;à€SÏÒKt÷êvƒ.Ÿ~0TQ¥PP.¶/UÙÛRpCK1²[·•Ä3Iyч*Ö#(ïqŽÍ¿×P:PpB®/„Éò’•w ¶SÓ”ýž¤ñÿQõ™'%†z•ÂDq#!€ûüô7+:·M ŽŽ;vïð"=¹¬¦Q¼¤Œ8ÄœÑ]Id2ÛBŽ 7`è²ú‹Sñ XˆPÌ'a °¿ñºšh,buäBß²ÙÄrÜeE„ÉùDMä\…‚[ :ⲿˆsÅî= &ªù%Aà?ËZ+ƒÏ~+­®½õ­Ò7ÙøF¥‡ \w¶uñóAcS ·pÑZ¦Y ¤éÛ³Y¦ƱGZ}Í{9÷©C ù™¯Ê¼CÌK“ù]°l„æk€äÖŸ~íïèaºÖPz ö¦þvÚ‰Ha¸ÀDÇl†2¥7éÈqa|(¿å/ã5Ê›À.™2Ä)^%˜-áÜZ|éóÚÐ)Èwér!±BN2ƒml¢‰ T~Ó]ÍØ<”sÝö%Lb?Ñ3Q*EúæXMpå'¼•3-³˜Iú;ÃÌOÅ1{µü–I92™‚uŽeòVmû¬¢Ú{çùz ŒO:­n¥‘x¤ÃžšŽ–^iÀ‡ÇûǧßÅS'ìÏ^Ì{ (S?âñEbk»4Xàÿ÷º„)Ñ]úN"µ ËOÈ,K¸HÐ~Þ ]7ì=À˜ÁDÖ ÁûË6_oPq2ÑOGF§%K2u`¯éyCšŠo±\ºq ‚¢j%™(V«½þ7 êÍÑ0Nh2YјY4ŒDW(K«Ä>ý¤-” }a¾Ó.MoÑÌx²ëÁ2^¿¬¯ž6å_D%+\H΢fï$QÝ#€NUÇÌ>%ØAä¥,ØÑP½^£0"þ.Õ$ œ›´:[›Í Ó¢é¯cÔ9Hñh¶có2! Zˆ¯u,* «P˜îÝp @/øà³‘¯‚}«qMYäL(Véxˆ×@O·•ìMWZúÆv=8 “+ºéö!=f¿i!A6š0éM-žÜÃÝè9WþC`žF­^2Q—ð‹.ÖÚðttüßg¡ hç¤XW¢B@—£`aÌVPtí[{N t5ª³ìAáÈ»ê±8>1#•AŸ NìæšBMÜÕ`±‰Ùô7£Þ`ÀÿÔÍö›ÿÛP×3˜\Pdó‘«Ê÷ ‰y$(È>e6™m)´§ p^o66ª¦'%™¼&AÛïºÈZ¬@cyiˆ“"òR/ÙWæº_…ô€gÈWÇKÜ9M pƒfDо{ÚËi³žM; ?Ú2 ù¦°‡ô¡-²£aêöœ’«‰~K<:*п ‰PlÑ' >¢5½ïãâ@îóZfnód? ZtB KdU$Cð#Ëé±.kÅ«s®¢ž%+NÈ9OQ8à£N­½Ça—Ú,Xczßßz0}ºcp´B·G´7=,.>CA¿Ý]í“-\‹ƒÿíx`â©ÝÀ&3 ´—8×j?~…YM%'8šzr}ïžg“¸R Mrc ôÛãP-Þ+/VÄ®½?ÿàŸß@µ”¾ëa„Ó'ìbco`æÈ9y"¡‚.ho:1º]ÒE±nY }1ì¼ÖV>±­R z¾]û´€f*÷ $-t%òiâdç¤O~çÊœ,¸ žñ¦­?ÎS9átKcÝóJ ãcé*¬‡NK÷TOÃ&¬{Öγbz(ÇýQk›âÐÒÈ ù3ç—J±‚8‡÷è×9‚Ð΀Y8''%Á+¯¹ØÀ#†EÂSç᪽ÑË%0%¦A’bÝ_Š‘´'zIÆ~%òÎÎd·;÷5Þ5x¸¤—yfrôû$®ø=Ή‘8ý%Î÷@ÉiüØü`‚»G2íXâSË_¤ÒÔ†u&YÉ …Ù+¯)ÐÞ;¸y—qÅ.¸¼uýÝD:e™ïC2¸`o„sª¾ g3HõŸHç€&ªçX°Vªëá€UùPÑ¢7Qß„·¿|WŽUÀ}% j¯Ný‡ö=¤ÌáuŠ<”W 6ÔÍDÂÆJCò2ŒXÜ:.'I˜|ØÐ7ß©M_d L®ÓÊU~³­u¾BŠ€ÿnt¤wÙ%¾—1lÒãÕèJr¯šf'­‹Ù.Aû^ÑÕJ6aÚÌT\|Öòˆ+ûSÍ&ŧÃçüZ‰û†7“ÇnEûÆ'~–8Øææ¹q Þiˆôì —UõÞªëß×ðµÿ©VŸ òÞ_Dî™4’â–~ùB.Ùm{7f]¼WwâXˆ‘0% À4“±%”‹á‘Õ øS ÈÚŸš¬XÁð@ºò$û\¥, ‰ýyg&Ù¤ é£hößKîyõ+§Á¼2m!e`¥-WP|¼m¦‰ãLŒ¢•q»„Á`†'VŽ'š·ã}Ê«©]û‡y±MãÓ‡j|!3/ñ}GŽS6Âx$© ¢F[·ó]P)k AŽ4u½“Áøzèâïì`I¾­&½´^Ï bï3LUG7­}Y”#g—ô0dq?u½Ì©ùpÍÎãnú­Ãnõu%V~¬–´î.ý·9»(ëšìâ´h›d¼*ò_…KÖ õîc °¤ÛHÐ!™›GX-‘ºo Ï¨†ãN’ Ì»÷Ê¡­w4UÑ{Óz'ÑSõµúì` sóá,÷ÀkÃTê 1'|dµ´Þnkaüý<+¡Äב>úôBò¯"†B pg  ¸Nç jÙ>] û0€9Å#ŒUAk Þ§;Ú*|£I”ààÊh=ï³YŸM`ûÄÂpk‡wÀï]&Wuó-ze48ÑOŽ`W÷R|ûjº…¤À¡%ÏÂ/[ñ‰Ø³á’—íù¶&¼žZ€\³Ùü²žKNô´îU<8*«D¦c•¯h~ÈŽB˜(-c#f#îñ’¯VzûLgR ‰Wì¿åkPþt°+= k› :ÅÍ1²‘ªì{I›çu‡íÓ…ƒ?©óèaM1Ø]<ï}µ3ƒª/úÃ0XæN¯×òõúÚ!7/Ì4?á%Ž’Èò$be¿ìõ›ïr›µ¿@Kˆhï©Ö´=õÍÞNϹ¸sÓVw7‘²t_CKû ìS‘<èžóɽހÄe>€òCÇFEP#_Õo¸NM±ƒX&âváMÐÆ‘ÆÖ !¥tiá*kݹ…ÍɽU~Рש§Ù¶‹h{nü7­tiÅTòZ¥C¹+ðþ6ž-z²ü¼+Ä)-˜µ‹Ï …prÄÙXÕ˜Ÿÿ+ Êìdde}d´>¯JˬH-¯ÔXðÜ?Gå1Â-Oi¥@ÀcmYpIª{… éÅZ:9ZûF’îÃXf‹nQQÒ¶2;!Õ€cjÜx˜C©!Æw.&·hÏÌŽYˆ99´Œ¨ß70Ø)éµ4Úà7€í #sÄ»]^3½™%0éý·fÅVœèš²È¤l±1Ùœz£·P½êĨ²{óxØc4ÀìÀm®¬ Žc jøYzê°´ƒÒ"9B™²ã£d€ ò¡¥¿lì::Ù~v™°ÙÐ/QóÆßi©Á«OC—/ùWF•cÐÉ’&@åúëM£Qšãʈ_È&שü±”¶”PФiEÅ2¼ýƒ&$°Ff(.WNÑ&‘Ø\îÂ!b€pY°» \•¶‹ãy‘ùÅ4ŸIB¨Ú"âO]_}ðîgø ¯à¿ÞÊUëKF"”M9”'ñ# ã¶>.Š”<”ÅÐ,ÂkE(Žpx—»· ºY!ªG›[Hø{cà£VV9ËÙIxܺÑ:ôˆg^ò±A8@èÓçlšnØñ!šØ 9M~÷7à'k™Žô™:?xÈõ¤~=nôݬãVŸ®f-QM˜¤f"~Ö9o-ÀÂw7Ú8>ãí n˜ûijW‹Ÿömx×8ú…üEL##oô¶`çøÒR#`Jð_FÇ9ÝÈG— ÛÒ£qZ¿À¨A%l°Ïl;·ƒ[xya ®tj5ù-¢—‚¡‡\lŽt°Èl <Ú'Û Éò3Ø…½BÀMÉ0 LúO‰£ä¶iÜ!&•l©¶mÂ?½ÛµüUhDƒ—'˜P’2™‹±õî´¾r˜ïO¾•1…-õŽˆÊ²Ê.‹Ç† Ê…C‚ª\£ˆ-|hÑ-©vqO&AjŠΰ­è'{\‚Ól PSÿÉ@×Aë2ðÄ[#Ö)x¬ü½Ù5všâéó %… yX‰ ÑýØo±‰W?!Âp›š0æb<þ¤‘wAíÅèåñè*ñ•R×fæÿ6N, =f˜C0°O4[š/Yœ…¡dÙìfáIAB±Ó¤qm/ÈÊðÚûc¨Â0áYp‰£­¯V›rKgë‹‘öÁX\~÷ùpd÷Dà=@èÏûð3ãÁ¶ÓÚg:.&ZÂòîJYÿ\_©P%Ä›9Pò0DŒ :sõ~Jç’Fg;,C‚x}Dú»ÞX[)~U¦ R*Àš\V¸N ºF™ ûJœúu„½¤ ê&‡’,Ò "MÕ˜~ÁŸ[ïéé<øa·x,;2À,©Z |ÉFR…H·Ô- 1,Q¬ÊFoC4oŽu”‰ {šû4éîŒ r n\0HkËä]„.ùÅ\ÊjÞ¸‹YâOä©jŒù§¿ä …;\~é‚»î­×£–$ úÿÜ7ŸÂ­3$®l—ÓŠ~ÛRÿÖÈAU5<6 † 覢°ÉÖU„þ+¶äÛ‚Ãõ7À¯®ñÃÈ+H;¬ ÔŒKŽÙþyYî.å)Ié•çï‘S\žÜ‚$ ,S•´¦(Óx ˜Æñ†š¬|±œ?ïã”l¨7°ßAà0ypÝêÚ•¿N Ûm¶v9+„ÏA— ²Ìxf`õDÃÖQ¨ÙÎq¿üç>Í›¯í{Ñ87%+[ßYû@øóõ±„ ÂùuG6@hó&u\ÿ5B… TL)hìj¿´RïŸé(=ŠzWÛ4 Ãÿ ûÝãSÅ$Ùsî¹ëu™½N‰·a¨Þéï=B›–=„j;ëlœúö.!Aß5÷HÞ°ü”›üσ*¿¼*Âú)6,à å¦ßÀ½­ÎulýD ºå­¹êß `ž'1 hž–‹³çäD®Ú&U¡ø²’†‚™û ´†êöj gA?ï1ñ뫘ò㾈Èj[×8ž êÌÓü„B[Ô1•i¤ObíLTŠ …oBÚë+QÛD¼cÅå ?ÓÛ ƒ'§ì¨R«WÏúÇmÙ­ª¿{—°ê\Úø@Dhè?œ<¥ßÍ´î<Þ pÖÓä~]ŒßXOÛ4ԶŶŒ'$µëÕl$]z®2$ö7»ycÀñ}ú› ~e$ñ¢ÉËAf9:¢dòNc¥x!¾e­§ ™jiìïÖVø¦v‰6‘H ›“ åã,¼LÛFêcÊ}<Öá›û (õ]$¹Xâ$ ”gj®>Êq%Þ¢û¢ÞÃfB÷cŸAT•è yF‘pWwë…µ™#§Ö ½þÈA—Ÿ0wò 0nRöºŠš%RsòZë•Ý¥´e8gÌ NUªn¢»Z”±{ë<ãýX„C³bh“ø2kÕ¹ê·íßc]`i»?¡&ŽSIGRú¶Ôãváˆ/Æn³;ë^{àŽCÎoNE”×5 ^ÞÆ?Æ ”ò©›ëßQïo¶üáÍmþðŪTd“¬Å!»;{UGù[‚gc2j†]QnÍg;ïªÁjÙDF–²ÂGÄ´/Ûs‘Jº7È3ØÏ᪵F§EKªšØXZ,M´ì=P´úH­‚G,ãÓßð¦%ÒŠ4C–UœÚE"Ã8!¿òtf«l»@Úc0–|ûL‹ï‡Î3b…~K2 K8p`åóW`Q=ˆ¯!Ç+fq&L¦m²½€C.&íW{*FˆÏézµ|§cÏɾ@€šÆÀz=b§³™ý¨ð&X»bõاÂäl°¨º{—ÐPÔ»¸ÚyR1½$5ïÜAZŠ’ác|zÙpÅ%B†µˆªÉ› :oi'žÅÐå`:°Ñ.p§/n9¬ŽÅQ‚J»H"‰‰ÏtFŒõNÈŠ`3±V 6o<å³f 'rââ’—\ :ˆ|Ã~ÏÐÔ{é B®^!ChYO`s)Á ßä™âK»Õ·Ãö‚Q\ WB·Ifž®²ëlž„¾Þý[†XÔI¼âcTñ€™<žØy—¡¶ÞTô²´ñ‘H#D Ùç~¹Ë•¼ÆÁU¡Çà‹#R’ê‚mwÌüõ“–E‡G‹¬YÇŸ¾ð gs ŽâV‚5DybްbÔ‘;ŠÓeŒ]ôdMí;1>0(´)EÚJ”U½>Ÿ=MžÕùlŒŸž ;™ÆÈg±ãÛ,F#| J®I&pÚpbuxEÜð9©qû„ÃáVÎþë;Xvùú{áˆÉKJmŒyI±ùÇÎf¨ëpÙ&º<Ù,y˜ì5ˆ¶2"á6¨l!_Ѩ¢³¥±Äpÿ£Þ-8«t˜">ãbüb²Æ2'½èF5''zÂè66F4dzž \I®ÝHGø$ÎG¥§åT"·/ékÉ[Ð endstream endobj 164 0 obj << /Length1 1940 /Length2 23359 /Length3 0 /Length 24523 /Filter /FlateDecode >> stream xÚ´»eX\Û²6ŠwNãîNp÷àîÐ84î—àNÐàîÜÝ]‚[p× —¬uöÙkïïü½O?ݳßòQ£ªæœ-$Š* ¦ c ÈΙ…‘™ '¯ ²5²cábPš»Ø9X™™Ùá)(DFΖ ;1#g /€ËÙðÙÄù]÷]‚™™ž ´:¾3MÆy ³‘ª‡=@môP9939½³væ–v@šwQ½‡£¥¹…ól ,ýÑaÈ™XƒÜœ¬-Fv¦FyF€Èíh  ÙŒF6f@¨ PSWVH*VST¡a|7¬âborüŸXDUTÕ$éb ªâ :=@RMEõÏ«*Ðî=~sz€‚ê;ÿŸwÁ?êòâªÂªZŠâ,LÖ`¸,ÿ¸ý¯Ø(ß#ü;´wU3Gí_ÔÎÎö¼LLnnnŒæ.NÎŒ GsF{›¿âSµ°t¸­ïGG  ð¯Ä¸Ø™¾§ÓÙø·?»³4Ú9ÿ(I€þfÚ¾§ò]éîü¿½'ÂùM›¿ÅN@ั0rúKWNQQ`kdiç ´3²3yt6rvqþE{M©þuqtüãCþ_,Çÿuó¯ÐE@ï+Óµñò1rûï3²sqòüGnþsÙ& ;'K'g§¿-f–6À?Ñ;ýÙ3K»¿hò Òâ*ª rï…gÇ zÏŽ£³»ó_Òì ‹Éñ¸™9,<æ÷"·3ÙÚ¾Gíÿ'}b–ïyr9z0ý¿…mmr³óú?f–v¦froêbϤfgéà”ûñwü¿iæ@g3躛X0ýqøW½ü!³ü!¿'ÂÇËd03²qúXšßð^NF®@€³£ ÐÇ럌ÿDð,\SKç÷Roø¿¬KÛ™<“ß#ù늀ú¯V¥yïSSÀhϤr~/ êÿ:í¿|I¸ØØ(Ù©ÿŸœþ· ‘­¥ÇŠþ—ˆðO´Ô G[#›ÿâY:IXºM-M,þNíßtig£÷ú¶3·¾oË_$µ?-eó^»ïóÇòÏø0°r°þï½,M¬í€NNÎ¿Õ€ï‰ø¯ˆß³ÿ'^“”°¦ª¤$Ýÿ[6ɉۙ€L-í̬œ#GG#xæ÷Z`åàx±¼¶)Ðý¯b01ÚœßUö.Î>3#üŸ åf0©ü!ýØLªÿ‹x¸LFÿFÜ&ã#“Éÿ"Žwž Èæ}±ÿ¢°03˜LÿYLÀÀw·æÿ€ï~-þ9L–ÿ€ïÖmþß]Ûþ²¼;ú‡_–wG ÀwËŽÿ€ï–þ9LÎÿ€ï vù|wäöoÈÊ `òü þçN)þ™Vµ!ó¿·îÆø_XÅÙd Ô°4}?…ýCDÞÈÙÑÒ]‡ù½‡XÞéï½Óûÿnÿh‹ˆ€Ü½ØßÓÌÀÊÍ `acã~˜•Ãç?tMþž¨õï{ý ÿg Ðh¿¼2ùd•ÒRòE]ɧWžG: C)S£PÄ.8yµ…ÎÆz7—€EÐ*¼1¥¶=.mKÊxƒ/ÎR8™¸ÐjAÑC\& "}ù$YsHù£Z·e_„±u¢[úÑþîÁ ÅqþeTñ^Å¢\³’\”âØ&Ïn¬%péÃÈ)ºþ'lõ,¼œvÐgã¥NwUâåõHP2ž¹Š»ÙÍ ´­ª9ÿ Öˆ—h ‘1=¥&™L%ÌÙv£ZF™½¢ô;Vn}$"Üçb`åéùþÇUÏ„V]&A'Ê<šzÖÂVÞíÄeJ¢ëÐÃ5¨·n”u1½¾ŠW¬™6„öX[I^-CÁzL¿YMË™E¢šG/Ý!üñž²zU®¶WÃpÂNŠNÈF>ªIóÞN]•Õß¾2÷Ð×J1^œÙýŸ!ly—pNŽQOŽb ¦eôàšêÂY¹S—# Ô§ bÝ5À|yª3"²ÎTµ?0íå‡Oï'æRMõ‚ÂH´¤qnn­3±dX€æíiäÆ<1ºÇ•‰¿óy;â™ßÚZJ¢ÌdÜÓß®V @TøPÍY|'£ÔðÆ,xóõÁ¯éÇ<2c‚úDpoy“[¸Éo…dMµÑ´w¦‚Õ‹Í«Œü%6w±Ö4íÛ}¯«ú3&x©xÞ)’®·`¤Â$wcodŸ]{“·µH‡OÙq¾uÞœ®ÌA†“a䤊ZW0ê a1`5ûWÈ|Ðî¦õä=lãOšÍÍMv£.§£þ9ž=Ô õ-) {ïä^ˇÀÂÍôvXáŸîdàà2~ CY\YDŒ…ZiOªâ1ÝžgRk÷Ž<·RÝAÞ/œÖ5B[‰È‹bÏg ØØìܧö¿@ÎôŸôI¶«bÈÑ"‹éj¼‰êP#Uö—ÙŽÖ)MNÆý#}⻊P4ó’}¶A ÇÞ¨¸Í9QÂ¥·+‹Zí<$XB]4¾ÝíßÌ4„Ç­ `‰×yM[]ª£Ÿ¦õEÜ!¾ËzUÒ‘ ]˜pö&~©·×ÓOͯ"]¯ gŒV£Í BææcŒÌûØ/~-á¿å6(»2á`Rݶ A£,6†ËÄ ¸¿ÍWö]ðÌm„ñ˘–•ìá—È“©ö¶Šy’(¨¦û<{BŽ˜røÛ0ÓãUÐê ‘-xmdg§AØJüinˆ°ò¼j§à†¸qñ1Qièóö˜N)u£õس»š†cý¤*ØMSÛņÄAÞg/‰Ø¸z:¶NÂÂçf,cz+tÏàÙYŽc¨—¡Ûå›~J™|ˆ¹L‚»;Ó{v¢L@íH2fl£o ou bÊ‘r9KîÄ*±× ;“¦hTCá{½BVü¹Šs]oç=%­+l›¥C"Ú˦)HâVËüÄÛ ë;¯÷ T ›íUØÊí?‹ß~³#æßÐ>"süTo„[a¿Í¦ØÍ«x7Êú)šì—¥Õ¹úcÙj³ì€ñÒœ5;£ :šÝ©ðDTA?rÖF˜dãÌdþÉTäæå)³Ôåë>Z×'‘0j6^«,ÑlHìû´ŠR¼’$¹Há|®daqÚ)šäƒ¸‰ÿÔLïÈX3ÅÉÌαä,]—o ‹h˜ÓF[¬}D¿Ó;up|I²s IŸ$N>Î'‹ëísÚAøÛt€6«E¤óƒP fX;€T½w„[øþЬ•wº¼2 UjÁ+q8|Ÿ]䘽' m'[ýÁÇ àØ-ô×†ÊØoºPš‰¸»• x§Žå*C.V ܱó w&ù`‘æé‡"Q8Çt@Ûfa³y;±ÂÞ” gÕe(‚"0sbZüyàé‹úþc'_¹âMlÑ¿¥}waSÊ5ñ…Uƒ:gN¨¶Eð›X“6â5)”Õ*7^å‚)UŒä”ÉÒù[§Êm}Þ‹üŽÀ­ý€ì&’űÐNÌVQEyIÿ3wvý«Z âK±ŽÀ3΋ØÝpBsÄ÷•´èÊ*HyÅi_ZŒFG”sµç ÝRË›Uù»ùFå5,FxtÝYª ÎIJ_б©âÌ>›&O–!z»Ò،㧖Ém •‹ïn•=*¿›lÑ3‹•„‰}¨ïñ_(î~W$ZWËã ·Tå²¢œ/âîòT+`%8\”®Éú¬ˆëVfjgô~ÅKÍBË]rÿM!Ü`TÙ]U׎ îuo@ž/¾òå8˜°…á«^U½TÄUHfQ÷aÑæõ˜ÓH(Þ£0@›»C°´¬q ìÓ§í¡c…ÛºÈði"ºìM(J¯®«ÓZ¥äÉoÒ‰ltfõ-ÊÞ¦p·M¶mW u9«ïá&K_}•¿%C´LoËt?¸KíD‘ú,ösÄ…IÃÏÖþ¨ÀõS>£6#n!‡]˜01<÷y!›ðÈÛÓådv·•@QÌ[-føk02vöçÓ–ø†Ô ž2ž›J}ða¾DñVgŠÎ/¨~uþg>ó!l«}†—~+2¸(pãHžÄ¾ Uht.WRqöM%¡¥V‚þ’k†©þ¸g ÷õ‘ns(MdÂj8B%#ݦÑîjÆBëB~ö£ËzÜt‹Åê• @öÍa3X¶Ã­ÆUqSq>þ.þ3j ÆóˆÍ ,¹ºÜFUŸs~¯JÏJ7>Ì'p‹¡C H¡ÎW'Ñ)ÎIy—õ3>4ðö·†c›+L1dùÉ«ÄM\¬Ü>(%æ@®­$NÂ|';¢¾Ôã»C˜i…Ï?@(–¸!¡_¹‘º©ºËp1Ð(£ÆU1Q!Ñ$0’Ÿ\˜çÝü¥fõÑbˆn»­ðÒÃY¡¯´ª#½Ôgö–èχYê26öY™Fè¤Zj¾éS*>ˆ¾Ö½8¢S2yi¶¬ÁÊ¢–|u͆,]¿&í‘3®cA6M%>vƒÓ®qÆo©¬ûqOö£ æ:;Žè6Ò¡rÏ|ÄÎ*o!ø„}w±4GVX6-ـâ†Ó\£²~äz÷ra–]hVG厚6Ñ c`È‹[<Ç­Ëí¤¸öË÷\C›Þ.gQŸÛË:£íBœ¯u¸ú%³ñ´ˆòjHªÐ gÖ¹öÉD¬Ã'Iéq­N‘6 ,Ž^V”DÖCB£áú¹Ãßiês²Ò¦Ù*=¸ãJö³¬qJ´3©œp޹-«‰Ýñw<¹Õ¦Î4ÏÆ¦äèÈ~J¶Ùbö+|…ô›È®ÞX¡Ë£¿oöŒ·Pæ îîZÌqîC!3+Nu3cÒ9ºVóªæ·Ü¿(ÈÃG;-Bs“ìÌu|È»}ŸDþ©¾YîB¼W¤>?&QÇÃPÓá³/¬Lï•eFxì'‚N¬ÙäÑB˜ójÉxѳv$]fã‚X‹g‚ûå-R¼ãÑ1Ùµ™Âûé®êj³ðø†£ñnIj„å–g·íÆçõ(;Ø/%>øÓn3~ü¨wY½OüÂô‰^)¯no¹‚#Ð] ¼âeEmR~ÍmX˜3 ˜`2)½QÒØ§q Q‡ºà6Ä—ðÃ”ßø èæAL}m¥„ìÉmˆîK@Ó .ˆòkö„¾/Zs.'èâÄ^åÙ¬kÝÏOÍHËn¡p½¤kß6òÝìTÛ%¶Ì¹l,ªª o ´jz±Ãs„+VXé¿6 fE:ô …¢æï(¬X5´8åÍõÖÞàé`àꘑPN¦4Ó°–)Q€ú¸n©nªZ··ÒÜe òÍ‚8r8ƒ;ör+³_PŽô iUUÃÍÇ¿M†æðò¦8@KCD¸L%L´lÝ­[d IãâÀ©@NüÈOËŸÄÝ yð£‰JÃ|ÐÚƒñ^;œ¨ÿBí>žÜ¯üJ:œøê¦ž.¿=uæÇߢ™‹‘T‘Q2ÔØå²¤B0úíõBi¾Ü°2"mJc’ ë·w¨u+éåë3~ÁŲÅþÀ•]¶JGì#ßÂ^èplLpPY'~ÁÏ։߼ØsMGvfvXj9hÙ“ ʰåkAl!i`“}ɲ1Ú«ª´WŒl♩VÔ9šò.Èe|©mqñh§-k` 7.äh±Ýް{nå¹í/Àûwùs…ØÑ¿ùf°‰ øò&ÂêÕXK¸I°L)¹Ž†çScFüNèªó§ù1åwkh¥õPÆ¡ðiåÏÓ"CJpxèðžÅì#é:Ìš7Ͷ#*{Ððå>¥VC3ñl×¶4ß“S¢ †9t„DÌ97ý@çC%ÍoþÒZˆ‘Æ×îĬ¯PÖ}|˜îcY·´[|»ã¹_Ó&õœ«"¸&^x¦ñ2Uº#Ù9N! H¤ÛðuF E³ºǽÉݙβRTÑ#žÓÙÛD︒OOÐjÙÂ%¹zÀŠÐûÕät"šVî£ù!½êÉí˜c>”æ®d˜ EiD憎 aÉ<éË+p"û0øðÓb¸C„]Ÿ`°¯›7dMÌŠ¾¸0ÜÖîóÑ©ù‹=Í~¤ÞÙþñOúÐBSƒzê`Àù=‹ìj²õ-ÜÎ$%‘b'ÈÜs±˜nø…D—Å¡‰- ÝQεòôySÜì—ÞÕy‡Éí²Ë¥vâÐa†ý îæ¾þþ„#‘‘+Z+o.²Zâš3 °O—f+GéóÅB"‹UT‰NÉl«º­…[úòÖØ[1©!ÌRZóWÏÈHþ©ÁpG ºlÇ;•7Jó}ÔƒÆZi`æ»Ë¢ÌJv¿Ý:(3wj»úìB381¹…N°o°a,úŒ?OóÞ?×PŸåä†Ð± ØáÜ,DNÀT&!±æÔ‰H¯"ZvY Uöxe˜0^rÑÔ%Ö²åS¢—Êqb÷4Áœ-Y>Mp•LSt›]5¯ÜyCº •lé÷òt<•‰«±7ßÿ|Ͷ)oœ¥ž/×þ€Ø},H;Ð/ ­dÁÅìÓ\N€QQ)‹8Û=ôÖ—ñUDò­´³HÀ”¸"Iz”FE¾º"6Ò»P›ÜÒ7i(Ý\¿WQéD¬;)û2«Å3Ö™‡LídÂbÁ}~ËœÄLIJ6ÒÒ&«½¦•hp¿@xñý<Ö¶÷‘ ]æÃmæ½;ÔΧ<‚šê:{³tÏ ýLÏ–åLM×Ðúz]ñCžÁ^C-¾îòÇŒBéõ5+q ¸?YÍ»þwT"ªÝP€†ÖÚÔµÐw9Cÿ¥ôß=Ô?Vm†\d¶³*µ‡\±»z,ÔúiÔ!^«éø­Ó¼ýã,kãÀ_8`q¹;¶ƒe5ˆÓ¾©}8—iÃó½&§—ŠkSö ³ŽÎ ¥ë¶|¤ý ãî>Li+™ëý4êïæ¬¿v—nEÉ3›ŸÛ¸ºMÓêzmó5žnÙPl. KëWüN@Y£8/2þÁ"¾# :np=åá'ïiÝ /¡5»²àeŒS­Ñ´šA°¢‡Õ^¦çvyCùÌ^4Å̆”Ï"C£¬cîRRUˆV`BŸQ ž%NËvô—½,~&.ºÐ’áõmÝÖˆ ŸáQ@¬±l-YÂÚ¤Ë%Uu¥#7Kœ“y¬ aØÀwý£ƒR¾;ßtZß †»Ò½ ¾ÄTå©Ç½!E€^‹ñÚ:g"¨³o:h”ÝáQó1BO— }jt9ÖëaUØ’£“BEáÊX"ñ‰û»¾»±Œ˜öYãêÜM=øµ“ÏI½%´¹Rowuý’`E‘Ïßz;Ÿ÷$/yÒ¾*”P™f¾1à:[üœ~Ó_O+Þ¸?©*P[¼Ùb‰#o䜌4"%Þdñµ©?yåkŽÖW^Û^F ÿ(÷Åê;éèœTªËYÓ {w’KE3,ØúÖ\ã±qÖë³E¶ó¤‘Ãå`ZÁ“Ù›ìïï¸ „ël“k¹j‘Ú´±Ÿ„̈P9HàDÖÖvØ*#éCT,U /6Æ}‡:äÇ-,øš*hø Ö=ø—åWÜÉæ”_ìK¨.Ðh·”pοdõS?:²Bð?úÈ}®RÛRêý~!¹S–w0¿Kç.BžßÌâŠI6WB¥.àYkã|Ù×ÝeVˆ'YSð5ÑiNàfÖ†Ïú™A˜¶}Ø«¿ó|T¥D 6 ë1U«JösÂbLoߣ82Ö:ydltÜÆ”€ 9a´-™jj: ™ÃÇ Y21îñ™/"x¦&¾cCÑcŒ³¸¼Õî6.Ìĩ›֬ËÓ©É‘§â5^É!=ü‰ÇG™6YÀ‰µÇ Ö››Ês{ý»´iâ,fÈ™”Â̤ƒ°VÚŠÕúõ*#á9ÃéWyâE3¢ö¼X¹ø’û"ù²ÍÃ$×SîžÈÏ­dœëÃ,¿|eo¯¿ QZ ŒÜÚeÐ4kyürï‚Ì¥úÊ'åÌþi#·—Ê´G‡~3ÄA€Ç”kÖC#p•6ÿ¹â¹h‰œ´£4ÚUÒÀWÏÉÌp¹LŸ–ùa$q1zηj¾C\Ÿ>¥±} ±²²èPŒza‘¬‹˜×‰a GWi!^È@Ï.èò6Ü2·IH3€”¤:v¬Þ>œR͈“_°i—1¯µÅ†­Ëïq´§Þƒ9íЩ55¢õUNÊj)« ‘dúÍU.NV­²¨–'l:è*­\—J®Ëw*f±1Pyd,wQOÊTâ€3s7FCúÀÂöBЯV@2R»-×<¹Õ8°¾€…¸ZÑ#4|.Ž*[uÍE*ba~ÄWñ‘Ø>ôÌ‘Øt™­-4†1Xkc™eo3âkõN"¦áXu©ÜÞ=ÜfŠŸôæÃaaýþú·ÆÂZ‡‹ 0µŒÓ—Ѳ‚Gsô$w­6å¢‚ë ‘QÛ-*7Ñ~9ÎßD Ÿª‰é™?dŠB†ÈÑdÚ&ÉHzHV›“Ñ8>EµÎľ¤BžTóëg àÜd;º‚S°_œýA¼«w¿¯ñè˜˜ï ±$¯¹Å[Ç6®Þf´É€‡öužì §X%Iw¥CÃzÖïVþ&ƒô‘ÁK0u%ß“h„d{rÓçHbÂt©8˜ÏR×Ì@Üî4ÅY÷‚ÁÉ]Âf•ŒÀók"ˊǹŠëªž”~ÔNê¯u)Ók4íïÌƵô”þòŽjl7r“;±ÁþÀ<°8ÈNNùÍ·6\Š«Ã!¬K@{ª°º·éŸ¿çhÙ²1×WíŽ Ñ$b}‚%Eçï5úVìé¥á'›+ÎÛÞ’ÚzýûnúÐîÓ ÉŠ=WXfó#b«A§ªL?£~Ò$´ä3UÌ#o?cá 7ÜM2LPÎÕü –—Ò›Cn•†uðÃaÎ×Ä«±‹!³ÕXeÒV¬ó]…ÎoëÆËÇòõîF‹[^Á YÒJäw–q+ú æë)ñÄBp‰p¦ñiu_Ú–_bzÕä`ýS¥øÝÉŒƒø‘Ä·ÛÏ1¾lhŽZ×rŒ›ÄgÈIXv¯Ó½ÃY ö%üœaügšhÃeTyXi-ÓâìÃkcè‚`¯¢â(|ÿŠgÊFHΦl¿‘ˆ%ä¤0]¤B3¥4úò¶ÌŽÿ N ý j-tIöA¡ß8'éðrt;6¦‹u%8ûæΦ²‚á§"*Þ2‡(˜ÑÊädÊ\k6Œ¬O¨ÏaýìþSGœØhÿw-%c]µY-É ÖêXVcC¬¨ì~Øì¤ cEȕݳžÆ`­h÷Øq†Ó~ËÌß)Ÿ)=EPÀ•B8ûüïÖª][¶W>Ù쎯4zúSt†\"Þ¨Ò¹?îê¯%9Òn2%™n‚ Kãs­™Žç-FìH(l¶&z;>D/HµóS¾Dy«Ñ4¨'šú h~¯‘Qó©w§¥¥$QÒÀ™QÆ1Õ±Ÿc"./Ms=¸)à<`~ùÆâò$퇆œ›¨u°.$¥ç¨@ÎiöFùZ=× ±1Qþ)}õfMBcèÛ0Ò‚rXÑòᣦ×U&”à« Ör‰¶ó‡¶QJAöRLÊ‘¹Dyï­êG$|Ò wœãÔâ_pd‡É‚öy>ЬŠ¹ÃP/`'#Sv^kC¨³½ƒ›³<& t­c„úå5RŸÛÕÍZ_œ6IñTë%¾r+}€* AW:-gµ˜²û™‘L̉®1Gø„M+¿Zöì2‹ë¦Ýƒm!­Ž%݈˜Ÿë€™†Õü»’ÈŸ½M¼ßé7„Yxÿº¿¢›K>ßæÖ¥Ä͇¤‘³a •¥Gäìa¸Î'ÐvÂÓ%di—®ì޾q%£?ºšÇF Y£9€ƒsê¹TôS†­Dà`tïcž.ír›ˆ@Fþ*xÚºzh÷•á§áVZÿýbÎP¿Ü_XE'ÒµY¹7Z Wß D¼X.ÃÍXVøžòôji×ÑQ)«wWY7œÏš8Æ ¾ˆ¿jÿaï×îûè/‹¾ ^ŸtÕ! Ñ;ìZWOLiÆZ1*Ç2#ÃÞù¶·Óí»±9YÄG¦GUATÚLN Ù>éO©w#©®ª½ÏÈË4â@¢Õÿv²m£ýT P޳0+½?ÿŒàÃzÁ‰û9¬úUüféå®÷“%ûñE„¸[§z¥uÖñk(L-Ó̇G<¦ PÒ€²¡­2ΕŸë9Óãâ°PD•z“ñ„<´–|c?ëy$v1š&sͬDx‚YËHÕ¼ƒŒ;XŒ_Öýû'-ÿÓ×i «ÂÒ¼Þ·mñúù°Œæ…òßNM'·G²Œ!®e»×vÙ0[ûQÁî—-ªÌŽð+àăâr¤ _Y±bðÁ20~••]]-’!cŠf¦°hJ‡&%@Æ|îbRd<ŠÈÊsÑç4‰ë)mFÃÒë.kZJ…ð«B8ÀCŒ¹•áøáôiµŒšJâ…ƒ«;…|´ ‚7“' ½tj,¾ü-®ð½¾) 8J¤­h¯ÍÀFbéwLÖp LTF:—mºJúéïÝÎÔk×ô·RJ­U'Z­Š *Xº$¦‚«ê8%¾þ&b%—\ót²EmC+‰}?Ú™½¬(lž£¯)Sã&Kìo Aì ÙÊ DŽe¢¶lÁp¦‰ù7,ˆ ú£§î¥ž+êá|šôÃ/!B~ÔBÈnbÔA|U/oÎO‹¯;U7k‹Q+=\Uê ¡2‘`òP„(XÍZd>¾Ê8y•æÅí§«W×÷¦×RÚ<äîyŒh#G¿}䌨úríÊ%_ªú±[ŸZÑ×5uh¾¨Â)ÓÆöÍŒ KS5Ìaä¢úý|yò»0€Úšþ8sæç}ë²8¨Éo©ïŠDä˜x¹Q'c¶+ÏeC™Ö'Žã5˜–ð÷úà~ý騴æý-‹‚IRËlSYÙš‘Kø•ÌßTEç\AÇYK„£¾ŒÛ{=Ü%h]î å¤Á`ÈtÛÃÃúà¹×î’F_ê õ”òúS%êäÞ¬q+Œ÷jQT´¬žÏ…³3 'j5öEü’G´ÅR ®¶m›k ²Œk=B´³_%4"ŒBZéojc«ôл!Ç2V u{½¤ä÷tztZofrüënÛ? lðìW+k®œ5ICS. |Áf»¶FJu3ûUPš;±‘ÝÂa"Sf™Þ><û wº›&+\xù»œS–€+ˆM&ì;íÝ6…_®Ba¶I*fÅË$²ƒ×Ó;ö5lHþÄEV¬XòŠ"+it$šMoØ6Š^Ò¥wO2ƒW--D…`¦ýç^ÅýØÕ>yIm‹þ›X÷ŒõPQVâxJ!Q–Ž!õ×_S†‡±\óàyÑ~Ü*æñœUÀ¹3g7¤çòjyŠ›áþNÀø‰’QQY¢ý¾7*ȯïûä·›GEÂIËçuzgêõö òDÓÙ9·.e7>jŒðsô.È´ðz‡ Hž{³c%ñr¯ ÝW_)9‡Ï@¦¼Èñг –JÕ¥dñäK5¸®CklsÄS\g±*uQªÆÂCPšÓ¹oÎû“+(»ÑAi!=ò‹jo¿pöi‘ÝzRHC®j”;ˆ•w}¬×Æb,2œ„Ðïé(ôö]‹(;iÚ¤Üã¿]šPÑR,rŒz\Ä•z¨¬Wˆi¥˜yÊ~G¯Ä£Ô?ú(¹ Ûmn ªv.ôÐI³”l¿;ó öe:TnQd&c6{n <³ç€ÏŨPçXþô4’+:Ÿ’¼ ‹,>˧-ë²ÂbH9‘¼µ[‚úµ‡M…1&ªGê1ƱºZ~ï;ÖPöúн³R¹ÁÌ]V>0ízþf% –|˜ÞM£eÙô®2}šq*ðG[Ï}àÛ § ¸àâ˜]bÏw݃Ÿpèÿõg×§ÓHò²8Öœ ›[ÆoL+ÞYÏ?A:öL夾s-¾|ÑÝËÄ–ø/h…øìuóPgîne¶üä²øð’/xYÂÏ쯿•ù½?8aÉf¨ B^+´,ÖÀ‚}Íκ—òÖ!sÂà Á¥©”U²I|ÿ)Ú"‰ñ1]cúGš]Èm·¤/j}Îyö¤OÓìþ–Ù+Ì\òÌ6ñ²¢6»|qB¥1¿’vá˜-̈m&FFô8v>y|^’£’‘Ï =>Á$¡Ø‹Mß”¬s»¦ðG‡DrÀ„?`&ç狤lBÌÌÿÆ þî—øŠ1ÿµr0™\ˆšSïBÉ9“¹PˆN_ÆHµnÛ¸òAQ}}ÖØj£úCÍ.ÌÍ vÔ[S&£fhaM}(^à³æ¾ø j>5*£J«ˆð¯Éi϶èR—1G%PôDÊB¥Ró™åµf3¤p*v¨.S]4å—ÒÀïh&jÃD&zùÑäm•Ù¶åÛŸÜ»”þø¿¬Ô¤[ øÝUù‹õÓÔÏzfð‚„UÌ¿þòlã,,cé3ÏÚZ"ì= +Zn-³³6Ùƒl+#–\4ŸS sý¥ÝŠ˜üºÙËêývœålüôÒáôp÷˜¤xÔ˜Â÷A?G–Yë9ö¾É[òPxÀXyUX|ŠGGj~‚p'Ùä*Ôã­ ±ý Í¶dˆÄÚÙ;Ìe|øüøÌN ß©€t[A¯‡oÒ|$ⲆJ,qǤ6öM—ø‰‚“i)¿{/lOìëIcçÆïÑäΆåoÍRQ&æ˜Sp2ßa7¿ÌÈŸW€Î{Ñï–¯0§WÉ,,#\@v<9þ½`U–XÏ<èêú|USŒcmô ÃvDª,CÔˆ`TtJÙ×+²¥[ºß!*N 6ìMëÍ#ïYj¥ÃõŠ—íÅ’Ñ/ mù>;ʂNJÈyñ¬"èüž)ñ’§¯©Æ}V(@gAMÜÎ4h9îﻇ[îsäZ\.)ÙI6*×´þ>K‚èpx^¤Íë ¯èÅÏÛ¦¬Ã‘€àÚ÷\{î¯è_H÷¦¶FëPúóªVŸÏª‰}&zS‚&ûkÌbrÊÐÈÙ°dC$Ïß·Ša}Í3^âa+/ª©ä‘"ï 3¼ûR¶½j›Vh‘ÞAÉ]øÑ:b¡ è3Ì10À˜q©•EQÌgÉ^;f¨:N =!æG}ÄÇsº ¯õ’¸ÿmªPºP¦äKÕæ†EJ\!—Pšf®sk6‘¼ÄÏO‹ÈTSÖõzE‘n jn#MšÈ|J2Û ° …¾!‹Š*°Vú¤ðÚW´à¤®ZfLMè^N&ñôø½ÓÝ„ÿ6Ë·ÂtÌÖ)¸ì® ²¹{›1hqä^ìN+Î3þCQ›¦À$­åHG×bÄ™µïÊÛd/p!†ubMV¾;Ï ÑQ¯,a„ÁC¤Ë˜ËÚ¢Ðßòvá4ýî nœýË÷w”´©•ܧn}.ܤF;ê‰ñëÑz;j1ìy>x”•ñ«.ÌAýÇF2$2nøŠîŸKíqbc<…©>ëÂ:ðÙÆÓÆŽ¹#Õ«JlÀ3lçTL¶Òtü’5ó„ˆÚB#$ÑmË×XœÛ\´±DÌÙƒ,܆ϼa½ RJJ7ëeÎF†™8B³Pò‹Ó9¿q¨ÌÔu´.!°àŠÏ®ò3èÈÖpd`D'RN˜¦óÌ­ ²ƒ¯ÁN©I?ÄH™Š• }dsGI<ú¨!ô“Âï‡wEb cÇ«,Îà½4/êŠPQ'"zGû,CMÜW§4-öûŸ~P§|9š;˜°º5QùXøK‚ ´y©!¯€Ùu`sƧaãr+&vcÞ Jë=öÐàg.c`°HâC\ð!.ºã‹Að•4Q×e)"£¾¤·æÜÛMÙ÷7C1(¾È8$Ž•n‚j!ATœ}°‡€cù)ÊrüÄ\]Y×XSÃm>Û1ûƒÙÎB÷3Ž~1í=åâÀüLv2ybÎîéà¿Z?Ý<ß ¥óÊU¾òÓ‚\q±¼ùd:$û1ræaõ¬GSª‰‹ãe kÌ ô„âÍ•¤fçصjG«2¾ìoοU­‘šº‹'tjì¼±Këò‰êî½5sÒíøÉÀß$5ñNÀ¤¿íV¨)⯱Íÿ®¸…pLkü~o^+¬Ü^mz¨´ñQ0qæL¥(t®¸º˜“›}ùB¹ñýöxøB§,ù…$%¦kÏz”«ûˆ©<5& v#¹Ñ츜±O!BœÆO¹ÚœÕ¥B¼¼æè…?²LÒ^Õäõ9^rÁd ­:›7ð©‚žK½äÝ~í€Ih诓2…;½Ñ§~všW@‰óé‹Z²Â*æî‰lÈËk—$¨·Bšö“#SuÙÌAÉzl,·•Ù~™ úÂ2%ãÌU< (l4pÙ±NjMþ•H‡•ÁÖü“fD• Ùáy.ž\qZVºd¡Þè7?ºÌTÞï§|¹“ú~]Öͨ1þM2*‚Ö‹­ú¥ÔüR…¯½Vƒ†˜P$~(¿Ÿo¸èÐyëÉÍð@„Óñô'ˆoßøÚ9R™΂õã >òéG¹_;ÈËzGö¥Ó„É¿<ÚRÀµ‹‘F¯~¥ÑÏ÷—dï6iŒ§Ô«‚ni+Íùxcòn(“èüQ3kÁo 7ãù‘’¡ˆÐ^J\‰,’ÍÄšáÇÝ¥^£Yæ%]ßî™pñ¼áìõ˜¡èöRH¹™}e¤ÉÓ3kê›Â:*Û»˜}Ü6͵Lx)¸¼†û”01àÈ4-(vLÀ|k±>ªv¡}Ü5®ª=älw/µM¡ݙ“¼Ú­Jk}hã6ˆÄÒËLÿ/jqÄѪª&Ì)›Ó´i¨±§Í+ á×-E H»NW«@ÛöA¿¢“‹ÍxeÙ!Æäàö4iŒ¡ãzüùY‰Iá~ã)¿uŒ±?x>JÍãJ€ކ|¹Ãa•¸à²—ê ¯žÒÏgÂRb,'ÑªÏ ¬“¥0o@B@¡+c]KuÍ@ÅÓv°Â``Õz[þØ®¼5½YLM„ÿ<¬´Ë’5qµ«k¾DçÝ”l~ñмܸ9ëEjxÅêÃî~»ËóÕ§×Ï=nЧr¢\PN#Ë\?@èáÚ‰aãBŒŒÙÇõ³h G"ô u µlq•F!Âè’Tò¬¦´]QuæŸÇ‚iÚ:‚ȵeõ“[H‘W‹£q¾žÃÀo/Úl-§&ñÿr‚oÐþ¡D_q\γýVœÕ”gY’-så´P3 -Þ0Œ1â<tâÒ˜QUMö4Õ¾,LwÚÄ7ðëò,; Áµ-)WÓº6ù .Ê™qi–µöåc‹nn”w—ÎWôÞtYÑüùŠbý>ßøG}6¶'[he’4'¸9©/÷a”f?õ%Årýù “·9mˆ¦Q®ºAg±¨öÙä ´5ù±ˆ™Ï]÷ohrà „Å`¤ 7!›^åЄ~ç<~ïñÆ—Ö’]g?…úãÃ`›$tÕRwÑ£©º£Nw-·„Ýšk~×'É­™|7ßÍ«ü»q¥èFoª—ÍA>iG¾:Åï4±i`éfã*Y)žh)N½’mFÏ™É,cÜiVê»/ÊØüX´Ð"? jiÈ0ÐX*5PV½µŠtœc‘¶Ž’~øÿnûµ$±²/W>Õ–Aq1¨éd', ({”w£%µÄOÆ=þ¼u=ŠìnrV_Ç1åK^äž¯à œq?ßp °íì±T(ÖâΖ[Ū1ìÝ® nÜ’ƒé‹ÅQ¦CÚÚ@w¼×Àíº<϶{*ÛÜ•Æöñ¼áÅËþ0Òk5Ù’ÖWÝÌÙE¨›Qòó#)sÅN[F@Ï*ê{¨4ÆÍ,n¡þƲ#¦D2-N,ÅþQÕ ·©|ÐÜyáz}.-¤ ÿ¬ O³>d4.›¾­ZóÌÈ`U,Äʞ™ØÔ@.Gá“ê—Uj2½ÌxH~ä¶_Í…>fšRÊ*¢M·x;…4”ÈpáǬ’d4ížÞ|Ùè`éˆY¤˜¤G»¶ÎÓÞ>?§sPMáÍmúF8 ­>|6—ðXŠŸd\þ­£µ%JV¥´Õ,H1h$B4ùUöL®˜9éýÚïJöñ³ì¤wÿ'¥áQ&Rã×|(ëüñ['ó¥ÝÃ¥ÚœßšØ ¿1µ‹cé¢LÆn¯ßÇÜ£ô Tì qõ!AéòÈýÇäl§Þ–L–ÜmÞu[„x(ÙS¹ÆÇÑÙHÏ@•XCwÚ§~“(d‡  5}3`)Ñu)åÊÅÂÐM¶1ŠMÁ{iv5GÔ4xÒqö‡F^>÷LÝyEå­ *rQy ~è·ÂDÍ"Šå …ò¦Ÿ3ÒyLæ«’/™]"üLsq30¯…*TëêÂöæûíÔ’]í .FúMÊ•®~¼º¥àA¯0¼jHÛ7§; ¥‚ãÖÄ‚L{#C`œÁ‰R24£viOèÓ˜÷åx»eqm7ÙAÊħîã+`„Gè©Ç“ª!Ùô—úé: 8dö\ì‹c”§.Ū8a¹zmȘoóû¿ìÕ^ ­g²eÕ>•Tç(f&@¬Ó‘I ¨¢Ë¬ünܬ¹G¿E˜ÅÉQÈÓÐ|»° -Ô'ép¤Ýz¿5{ê£Ïl|:äæ'϶J}¡h³Q‰ ƒ÷®‹t 0…TRï<«4-}·µÙ…¡Ä,6M ÇÉ¡uóI‹†^;³yOô¼71(ÕüjŠ™wyd‘¢EòYEÒÀpR&ý“ãò®y‹pCØôœ‰ˆ£úL<h®%ŸG¹òËgh#‡9÷÷‡ 3ë*ìä×Ýöî:RW¿ ÕnôEAG‡I1î¢1î ÈO¿D¶IG¤PˆIaÓ¸?$dzPàòPî^9•VL‚R“ k©‰SÏ  $…•]Fe$âyÕñzy lÓÃwàKù£zPl¬“ºFœJílð« Á|V)~ü|‚„ÐÒç ±ŒB-肦„Ô\š©RXbÄ¿PGXÂøH~1´¡pý“64!Ió=±e Ý0îœö¡ôñ™,9¿áGLÛl"ã[ ñŠUý1½iVø¥W`å†ðgŠð[ôÉ D±“0Ú…‹¯fc;²kyešm%CKV¼%,qüð'øZ ™µå¹½îòîTÝEz×4ü_Â{1¯ìº¨Q–±Z`áõû?Y%Ö™yŸÃ:lT¦épÊt}æKFï÷ÿz|Í&Ê<+ÄD¾µ¦lyàTÙXùýKa}vZ Ô—ˆ}ËÙÕ‰ßK»Ðj]ƒÕÒUáÿkãÿêpn¶¹°ps˶m¬º¹›m-Ûµl»–±¸lófÛ¶žï‹çåïŸ8çshП¹D˜s¸5Ç0YÀY¯¬ =t­¬™Ÿ_þôr=Ö±T'}ÓjÜrÖ/27§õÞ£„æ".ãRâ½åö¢y§KÝ€§Aûʵï6wµ]ºÐøòR¢ž´Â./@ôgA»!§W¥ûÃäTlËWºÒœV“ÑÎ!eUƒ‚Z÷ ÑM¡£“Ò†_ü¢WÏeCªpÀ4ÉOœê4¢¬ˆë‡kÙî©ZšáNñ3Ôu³¡D™¦Â·ùºQŽJRÝ^¶pã¶œÁ¦¬Î°yºÔ°ßÁ¬ê\ürî­œÁ’Åý"{[·ë]\îl-‹LÁÕâ[òq¼ ÇçZ¤´¤Ië/ŠEŠég_¤ð•¾Â–îíM˜à§¢EW’f¡NSÂ]d6ÙÔ 4kôþ9¦>‡,TÚæq;àš.]{ \ 5béêÒã/åDf‘ >uŒºTÜnNJLSBìÊV:b³êñªدÁ­0Á¤KGHŸŸñP%ÅÐз°…‚ë|«9yh ;I{OÇ´qD$L€m% y ÅK:ŠüDðøú–xì'gGÆ-›KTõ$ä~Û‘¹ÈüQá,óϲÑž*™ÒÎj²ï^<4V k{­­þ fH§?ÖäcÞÓc×Ö–×ì,L «î0¶—ý³”ºRG|›ÔW™ê¥»þG;M£Pœùù9›X„@Ô‘D1.lÇß©Na… ¤¢ã\#G ÝAÞQÇÙ·¦É3y`QDt\½ò§ ¼•Ow›à2Ø-¶÷_ųHL±·2/‹RWƒ:V>kªÃ¿{Âb£7ükzÔþcwÚAaÈ.à:‚· ªÛÃ>á‰rÞ#öåb‰‘hðãÓÙ^ø.*t§j@ä¶â~’`=‚ñŽ”þ›}?¸"t7ú? Žˆ8êâÌ M½‡“ÀõÜ:s¸M‹M!j/ÚlÄlÆf€ž/@…BÍüL~ù¤»Bu ·1ȨQªÑÔ2ðÕu¼¢Í GÒÙ¾·5ÀÙÈ­,Y+Z‰ˆe;`gk¤ø"Æqâu?7¦™iðŠIB¤šfMÂÔð«„ã 50¦Œ'7"G%nKXˆcµfÐz°š[|º¬¥ćæ|Üz7(]yïã5¢4<[tàvŽ“ ª¬ÌÅID{.Kå3çöõ"Jžs¬×šc‘{åÁÚOܚŗE*”¾öMËáYñr¦=’è–üi‹Ò×>òÖ*t ìD÷”ºh)}¸Úød~‚Rw¡äYŸõ¦×OJÇsCKãåjÕžEž%ù‘ ÷-,è³LAФ¹Ž0cvíd瘙if û-´âmÂÓÜ«+zs²îXó¡„œ ORϪ)6ÈG•ÄsÉ)ï˜f¨Fõ’²`a%|DñoÙÆ£ó޽AÎüÊ•¬Ä»'Q1·3Yé ãŒ+Ç ÷ºƒ¬‰û¶°¤²xÀ!:k ·Ä˜œÏÁa˜T” ¢Úž3Bj´Ñªæø@ƒ´éŒÊ°òÎGm Eð’ší%qšÇ6Á>ztâ@ŸÊ`žSAÏï]¢ÍYÏÏ…OÍÄøXi™LTŸ‡»¤×ɔޞ¢·hþ&“prùãܨ—¨¤Ë÷@]‚D’˜+Ôî}”P~=?Ø“ ŽËꥢTJDÂ7ÀS° !Çȱ”ÿl=;e˜©º¨nòïezBÔUç9`Þ&®ˆŠŒ2és-ÇN3ôFý¤B…cÁó[+…6Y³òé'—0ˆî×½}‹®ŠŽCª(²•=&|IRfIn%U(M¥ƒ°ÒÍ8ï)HS½'Ö™´x>bL”qH¸µ;_Ac­zÄÓ'…׺ ;R¢Áðl†âcfΗ-ÅÌ3ïØÉý¼Ï}e!ž½Ö¹Ul7Wz8°šÊYýáb+mLüÑ+ƒ™œoº½éÏ VøÝî­Â³á¢Ý²˜Hš[8MÑR!2a{è ´’ B)OríI èÄ’1dUŸŽtf;RU«TÕ–ÀÂ×Ú€IkWa5˜‰9„^ÄK·+ Á»™MÔŒðw"IîáÖ_lôÇ€Ägi!dRÊF¥kçßì -¾3j2QŒà¾Ó\¥@¬‹D=ýº-4ÝKyºƒÕ@»_ 8†·ªz¨òô·+ý0~úë¬ãÑ— q„2㯟ŽhÝéPZˆFÜ@Îd»î¯–ã!NÛiºêƒõËmÌVÛÜmf­Ô)r[!âÞ /r”gnjÙƒGŽÛ ìñlÔf8;µÜ¿G‚Tus£Çó ™¼ôÇ–i.ÿΜV¹‡ËYû½ô5xÇéÁôŒ%wÊ~Bo7N¸ï¼KN÷Øv‡q­—µœç–áxp ç1A´8ºê3ŒV×}¨PÙ Òcv3 •´Õ_'ª^NõÜz¹H_WÃÁ7¨õJ…XvºÀv”Ï/8éé,Q¢ÑOmÁ¡î4·=K5bÔ„|±c [Œ0½–ï^&wÜô¸Ç’7µwÇéè3ß¿XNUþã€*üÍ/bÕvê×ïÿ™l0©æ‚~l+X¬s$Pº‹d¨´Cì0íÜÀ>[ABÂ;Ô%ú°‹!ÅÅG>D¢Í X™)¿MhÅ W¨ê®‚§S‚‰ñ0 A‰6%QŠ;–c¿-X´ä6{4 k^v··ó‰Ao2 üÚ%ìßDt³ŽüUv–Òy] =&®üáùgäÝÖ$àüÒé]vä·¼­ù?ÆÃú°ù<œFZ|9ÍI Ÿ†:+qr¿¤Do‡/âhÑöR„“óÓçk!˜³Éƒ¤ŽÆx”YI)Öuü}]·÷fÌGLŠ^Èf5i{í-¾ 1Ügó`Æ¥CZÉþZÖIá_9ù¶¸o*«¦£,¡ú]+Yå†üz³çÚ¦.æÉ&ÃY¢¹êÊ)•†¥€·Ãll…Ïôò`O¥Øqqk¢¥Øè/œ"ü=‚®h”!Ÿ.ê©ÓòÊç>’%º6M]ˆš÷‘I– ÿ$,Ö¯ë„ë¥vß¿Dwºý²ë˜™¤ÒlT•dmšÎ!—ñ¨j^\öîn ”ºƒ|ÇxÆ_Š\vUy©?`GÞÝWnöÛ_X±BÌ»ÏXÊ×Fwtb"ëM¡í ˆÇË‚ÌoÜDûŽB{B±5‹?y»{yÑÚÁËñÍ>J‰ö™ˆ·—þæiûpÍð`…/IÒ_!ú¼R=3wͱt¹v·ýŒa3”7 …ÖÆK¤µ¤k€=k­½‡Ø–Š ™ËäÙ©-Fºñ0¹æÇ…ôbv}¡ð 㦠=ûŒ{m4I:+¼£®úã>ÿÀÅÑÖw Éêó„Ö%DŽÅ'ÜðØ ldxÐàŸ®¥’V:>µøX%1!¡ n+ÔU¼ìJYœÈÃð~5’‡~Ϯɼ-]¯€Ç7ÖPÔ*žœö€m5c´~‰Š€r¥‘ŸgNÓ™ÿ¡ðщÍ,¹™~9܆^#»Ø²gEá.š¼Ÿ3´W$]û'x`ª £ šH G·Íæ‘þð¨ï’ ø_dáxà³å³ßj‹·z§××~-‡_‚EsXpOT#ô‰ÿèXne—Áàd̳¬>(D;É…f+—©ÇJHª?R±ƒ–Ô â•@} ÄÄu”®-õdqCf¨.V$L´JúôŸ‡)çÉÏ©Örþ¬MÜ«bg†ÏÀz„ü‘¦H:ÚùWù€œ“/TŒçküúÚƒÜ,Ø#Ïò¾ùYìV3 ,ÈV»súÑ•W„ß·,¥Ñ+>ð¤˜o§SHÒãê´%F Á¹O`uˆ]v»tdÓ* ÛC&nÄyÆ\ΊRÛt÷—ÞQr.®»ÈíU\š—ÏŒ±I¾¿kæÜ5EƒÒú…šðuÀþz$*×¥¿=…úŽC ‹\.ñ‚nç ÄÁw+,k¹B|¬ʕɷÄ>~OÍ*"›]ȳw'¬S=Û‚T Ö¶¹ Ž‹ö‹˜c…TwÚ}`Hþ€™ á—L\]CR¼¶*§ž¢œ²Y7¡«ëÐ&ç&":‰9Þ’äÌ¿=,Ûèâò!ÐÍXPÝÏtu²”štÒöaŽ`!µ%ý#_h¸°ç¹¢s&qû ´ïk’Ýí}³}'t+÷ýl~×áÈ…‘¨7n %EÏE‘—¶J™$òÇCWe¥ .ãQÿÐDu ÆÛ›0Ô¹µÍ`RÛ`¶‘@›øÈàäÞ{Õ Ë9ŸŠS͸Aÿ. ½Ñ8âëbµã°+­BÑü¤«ÄnÁ;à'êfÆçaxª U]'û—ܘìÓn­ÀC×°%YÁ½ÿo&ë+ÒÕÛ@Àùø”›;AªÙ°¨ÓSÆj´‰§qЛĉóºhs/)ÁIêŸÇV‹6‹õùr:ÝÔë:tëãWëØÏÛä&êPü›Ð_”©(M±ò˜ôîÊM-Vòíà1´H”{šR®.¯îéë=ÄÊQÅñVÌпÌÉ­)ði Ù‰Š‘€R7]„ŽÕò"‘ôvL ¼ ¬!#ÊÈ)Nê²Ü€·W%ZI|B0Ý4âÀ?Hc>÷ë{1¶&cÏ­Ncõ’cɇTCÂóá<Æf¥2¡‚ É5.WV¹g¤ýqÕŒ™Ó#æ:»ûiËvÃêÌN…ÓŒš†éc™}hV‡š7¹ÎÊÓ–üýÉVÃŒOÓ’’ÐŽBÓ/Rñà`ÿ‰>tå«,8x&èô'‘åŽU1wˆç%åNÅÅHq–Î긫Ϻºžêî&Ûuxém³…^c`­-'y^íáoˆÏ»$/ð‘ÈA“¯CÞ«CÆ‘Z,³—‚Éè¦z#Iåv ©QRwÕP³Ø?,¾$Ü4ë•”Ý ¾(ŠiþÍM zi‚°q$N¡hn«—l‰$ãõ”òý¶Å>q'ŠÞ9”qRãëˆåþ¸­ÇC¦Ý[‘QEª¡N ót̳GîCwQÔŠ ËwIò…ãlNÍA…çgK1¢{4ßk¬¿5Þœ=1¨¥å#·IýV(+¬o+°5ü~¶“MLS >»ïŽò ã¹C‰Rwˆ†Óƒ²'–ÆJ׫áKŒ‰Gç¶9%å°c¡z–tÌÞ¯šýÄ`f’#NGßx^Èá“ohð Ž"9 AÎQI±§ªb?5dlI‹ lÌÕ<È"卯2Àâc¯ò”•̈UÎkP{³Ê“ßQUþ\H2;ÆÇ=Š}ÞZ/‰?¢:4ßÔs6 úÕn9gª Ž(^›ˆ¾GÓŽŠ7;–ÅhÀ;ºÔýЙ¬UŽÏ8õ;’œ*ÙféžcIçxGÓȇt¨9X¾°UXcö3Òï”Ü‹ƒ­éÒŽ Lòñ›>tŸ)aЬïTdmp*UÛ]Œ_N£_ÃsZuXyÊ¥A™ÊöE›Ò[ÿ?xúµOœJ|-bš4ê³¾QðÕ&ë#?£ÝõðÆz­“aò}›ýÖöË ÍÔ=Éî€_·ƒFÒ¿iläç°'ÊZzØÌda[$ èFžzèÔ.¥JÛ§dÓêW¸bе#°šXç½A‘ó5êºfû>úEá´¨ÔcR%yÇÕÀñаL¹¤'ÕÎÅ^Ñ¡í Ú9 {OºZOpÅžK;J‚àæ= ØŽ²'D[uÃbâ%þ·Çúù ÚW²ß BûwÀšÿ‹»ôf8ûÖ  žÚ~oµeí&ü ‡"ÉÃÒý½òNÕ]Ñ9ùvâ/ùÒ×ÃCuëŠzUZÊŒ‹çSÒᾎú¡(`è/‘X§­µ: ÑÏ¢¼Å»¯x¼)ÅéÈ ¹ûQã¢nK”>ñ7ßb ôïžáØf8ŒZèôCÓY›Ý5ÏÁÊ#¼Ž|ßE¶«¯ŠeKê½"þUk \„$Æ<ïÄUAC¹Üä’zN17äi ÿ×Õâæ–¶À"'Ågm2f8p•Aá!¤P›,ÅJXîž~áÇ”íîÉPçJÓm–s=÷Èn¦@g°|og‡žÇZsJÜðuh†|É¡¶]ßo!B›ŠŸÉ(å0ãxï·ÿ¢²U€‹™E°˜í”Ê Ì.‚IƼ´Å̧û!z H÷t•qvh?.¢O¬y¶ê×”©E®† 7¼Zàûù:nÿtþ«o«a_ǰÌ"ý´c+·ÖÕ·INMwAÅD³?P|h·àé}&/v~fÜýÉÍÛAäɼÅC¹³ Ê޲p[’hx婵»ÿŒ6ܤáçÍYüdžØú¥Â':ëÔIeì -Y1kíQ ù+Ç žgƒìÏO“ìÜ*\G®íAæœ0n#¿I ”·Á<)EÚ?¥b÷S|ý?ÝÚLÌí^¨ëÍS_ŒˆÇޏJYWv.Ìéõ—®]ØR>[S’Ü&Òqt8GTtæmçšØ. _œôÿ¨5pÚM?¹¹‚šiŒ½*¡ì”ºô§[TÎsuøYšÙ3 D]g.QH¿Öw”¥VºHË“?¾>Ž•JUÌì­]–FˆTsì+³Ëý¿òKG¨Ñ:Á‡wïºH4ß |O°5½Õw'Esb»ó®§¸ÿ๳hK4 «eÝ¡÷MZcpAO“sÆÙæÜ¥Vöìî5}¿ñNˆC'v þiЄöåzµƒn^$šú®’HËëÓdšÃÿݧ‰Í{Á—äc$bÑÖ|BÓaéª8-«Ì~!V×tïPRœ­vBž#˜D•éÍ>e~˜k\{»U3RJη&ò 1D–_€õ@Œ^{£#i‹Ù×CXBÉfaª€VwBréo§Î¤ŽøÏ|¬I$õ†ƒIFÜ4+W‘1AÄq×§Är”ÏÂ}|¨ô¸ d½4óHDNÈ·]Ðx0âþ§Åi|ýêMvØ•G%%^”8ºíT¿i\Æ%Xb`?ÃÓõrŒªvÖqì¶\ÕÇ"Ë9ª~òìNz»+lÊ4`3ܛܬБž˜ó)7Q™WýÉÿèÞÙ!g#Ф âõì=_ñäo[µ– UÃÐ:§” p™‰99Ÿ;Uð7 Í9á¥ø:Øìu) ü¤<h¦Ö §æÖL+=¤ÑÅV²ù ¢½$ÑGa°> stream xÚ´ûuTßš6 ã®àÒ¸»»{pwmw·àÜ!¸ îÜ%¸»kpyÉïÌ<3s¾óï·zuWß~Õ½¯½WUõn %U3 PdïÂÀÂÈÌ ø"/²}qaafÙšX™™Ù((Äœ€Æ.V {qc /€™›‘…™‘•™™ ´:}¨Í&žy ‹±š§@mü rva01vþ0í-¬ì4!b O'+ KÀG6†¿™þF‹2dMm@îÎ6Vc{3€,£<#@äþ¡´Pƒì&@Kc[sÈ Ô¨«J¨¨¤TÕ•Ti?«º:8€œþ ‹˜ªšº=@\DAMÔ H©«ªýýTÚ›,è jö¿u>ÿ†ËK¨‰¨i+I°0ý= À èälõ·ì¿a£ü@øh¡æN » ¨-]\x™˜ÜÝÝ-\]ANŒ¶ÿàS³´r¸ƒœlG' -ðŸÆ¸Ú›.–À%ø;€/V¦@{gàß IпŒv­üúлü?`pù›Óö_îg ðÿ”±4vþ'ö‹’Ò€±•½ ÐÞØÞôÃÑÅØÅÕ`ôîã 4£ú@ @ÌÕÉéo ùÿ69ý¿2ÿ ]ôqfz¶Þ¾Æîÿ>bÆö®Î^ÿ«7ÿ÷´MAöÎVÎ.Îÿʘ[Ùÿ¢wþ;fVöÿèäEd$%TÕ¾|PΞAôÑ{F—¼ÿæÿ àâf°²p˜?è)ao&²³û@íŒð·}âV}r9y2ý;¡mìAîöÞÿ?js+{3ó¿}7su`R··rtʈÿ—ó‡ át@3èz˜Z2ý-öWþªYþª?šàëír˜Û:}­Ìogc7 ÀÅÉèëý¿ ÿWB`á˜Y™º|Ðücª ü“]ÆÞàù—úÉ›þ‹ÔÿLPšÙi²·õ˜Í˜@.t þÿÏ,û·Z’®¶¶ Æv@êëè¿»ÛYÙzþ›ã¿ùhÿ‚¥þÑVÎ’V@3%+SËšø/µŒ‹ñïEì-lCòJýïT²ýàìǺcõwÁ0°p²ý›íƒŽ¦6ö@gg7ë?&àGþ ïGçÿ¢0É)Kii(Óý;aþñ’°7™YÙ[X98ÆNNÆžÌ,`åàx³|ÐÙ èñMLŒö —€ƒ«‹/Àä„ðw(9yLUÿH\Ü&…ÿ‘>lŠÿOú :“Ú?Òÿ…©ôwŠþÃ?æÿÁý_k×?²ª‹È¨ieæbù¿]ä]œ¬G}‚TëìF$Sæ^é#+‚Xpá ƒDèuôê‹|†óå…ɉM!>úÍvNo\ÅÝ´.ºµÏ8ª$N[&’H¼ËñhãN1Ëñ™Ê.¨Á6ù-²G"z³¥ómw'ìÅ{Õ>à‘c3ßë§áâ鮳ÈO¯ÚŠvùúS7d?›Æ2zygÈ—SÅRõ‚-Ž÷,ò¥¿2?eW—|±òË7hÞG "tÚ¯C uö}5óÜæb‰M iɲGó$DþxrJ7ÝÅߢßêfâãGåƒDy“ûª‚fâR7k=þíj2rô— ­šO|#ƒSq«Ã(1U3m;¶Ó -L†wŠª¦’ý¦;NçÉ"ñÖµY3RÑ„¬Íæ×­ãˆÎl`ÖIÇ<¹OÕqx? <¬ïí¶<<ˆ³aÌà+S6+¡ùʲ|5‘g+öþh•€cÍ~è½n9ÝÛ©j%õN¢iŽë¾ˆŽŒ®ÅÓÄ(u‹_Ÿ “¡ÒÔ­ØãËéèwÃõ#3PÚT †Ä§2“¥êFlqZ àrÇ ;NxlSCÈ £âJÄ<²ŽãÛÿ~í£›?›Õ¿ÑdÑðxÏ¢yôȵ%ÿ«”G!}¤/«Å&]é@‰Q G¶a÷Qyñ6'“(‘:éŒ÷lï’ò©Â‚lrçj0Õ]… Y¢ó«J _´l r#¥Ô—²ÇÏéºñIã÷»‡u÷WI¹ããêçi“lND_°üà#ß¾óØL±¶Qÿ²‚öHQ ¡•ðõ¥˜'§'ðu«ò&ÎmѼöÚýú0áb ?Ö4¥)6íŽÞ¼Å½KŸ“ÉÀVU éq!\_Æ›Gø`aô¤ìÒ»P»8 Ÿšéh☎ìYY]<îákÐ5Ö¬ŽvÕY–bì}¿h¨ò ­Òý%FUÑÄRùµ}¶¦Õu©_Iïîl’üÓ2nïL.VÍš`ßë•…n¤¥b„“V¡ªÕ¢X* ŽŒ¼=RŠ:ÿš–Ån²0‰^ÕŒ­òŽé±ˆFóRÆ7 qÎ;î4GÓöM´ do°G••6Óîe’AìéÍNÓOä£È5P‡xR…ï믭àkkà;’úÂß>Ûi+c€§†T/sRS6úŽùŸÑ¨¦EÈl‹ ¡%)Á!1  £†8p³C¸ð¹¹|IU&B‡¹KÁµÁ­WpÞ6¨â)€ß_™ó*–Y×yÞÛvÊ{˜4¨~?¥î‰ý£:“žŠ–â ZÒKŸ²eŸh %+5!%–(óÇë!(J<üÜäÅÿ”DÅ3bë̾ œÍ ì‘8{®ˆ(Üp'v·¿?«LÞÆ ð¬eDÌÕ¡UµÇ()Ò›Ó¦¥iä eW5;T1úV2dšÆ6.Þr@7ˆbA†Þ^e`¦}³ñÂæ+UxYüÄo—¡…³[{¢#¸1}/—Ü^g€ðU‰¿³ç.˜ ·ÿ2‹>†:iòMumNn);[m?Ä/u?.³où5¾ƒ³¸†_ÃÁF‰N‹ÊÜ £Ý÷G«…µª{qy¿_/~BQ8s©x0Ÿ‰BÈhË¿·Ÿ² ýÕ Å ô*똬w[r& wôJožeÇ?ßÏªŠ–6 WS$h'82Ú´ç€_{,L38ä=僿ˆÕsŽæª^ÜR«ûÊ%](ÈnçV\=½òÚ$«Z¦'‚î1Ž|òÝ8Ó]ÖoAºÊó¥i¤ê†é泑,×´öþ»úxÿ§ÒPŠ@t÷\æ¸ïBS¼uÜœ^˜—gD•”»âm,õÇ{>TµËMw * ÉÐr\ðJq4d!¶;®’æuÀP‘G¼.ßöìóÀ—´ª9Iaö8=Ÿ„"k¶ërS³ Q¡¨ÇúçÜAvX/ç í¹¡x­,ÿ—\û+Dz¢'aäFͰÎ^èàÇ71{n[ ÍzÞÿF>6º=FGøÁ‡a=³ âø4hÖöÎ>‚Ù ŠQ`%“KéâjuÝÿœ¶uYZÝJ‚g6ÛY­R ´ ÈL¼Ä›E‚OÆ=’#*ofÛÝA Gà1•&(]ØÕNµ^ÉûSDº-è¡ÑƒpsÎì÷9+¨èÀVM°UvRðø‡Ólú/É*lz–°Ì-(ã<ïŒ0™¦€hMõcøDbh GðV…êÀ„-ó.)£‡–|\”q¶ÃÆxV"<‚ì¸ð~~K¨œ¦¯8D®‹çÃÙÛVÑOßMY_î7Ó{pkO|&OµÈfW–}[¡°)b_þ «¬;ý$¦kT2BG³b…ó¿åB& pÄôx•ÚäÛýþ¹:Ö…,F%Úi9„¥UyOº‘Êêûd41’°ʰì,îàç«‘Ö‚¶\Gü.´& Õý‡'¯¡5bù’¶Äó|âoáÇpªD™õè=÷¨„´Õã›Âö¼½°aËÔ…Ž0T|ž/Áº$fßõ;nÏ'å‹LEØê¯Ì•ê+lƒ1ëLßÜF9ë‹ÿÚpµÿ:#œ@x™áÍÉàÓùc„:/íÀ~í¼õ+òã2¹âjàt9Ô÷ÂA§xI%á"‡Y‡XÜÔÛ\SˆUºÀæÝ1A'ô+…÷‹Ÿ¢ „sÆÞ&séÊð–NtD­¤}#ÁhIù•³‘ ÊË6/&Ýu1,-éã‚Ø]˜¥ Ñ ŸgÖÆyÀ·'ÎÑW  ±ºƒÊ 阄&z7¦OHЬ ‚R¦m×#à±ì˜ç›2àEFæZLZÂÔ¦.Î}œ ˜ia¯ÆSy­°ça$fžŽOûãÞJõÀ®Žë‚þÐUY©âµR³ Áÿb\Î}fEíZÏCñ;Ïõ OÙ½–L¢wv¢£Ã J!ú¹û«ëÈqQÀ-zžNúÔ‚ršØ$ øxˆ˜†B¤&Žgf RÄc˜¯ì Ó‡0×Z’’fH“| ßy§‚œHáÛÐ"Omñ[ñY>ΞiGO?“0ßÖ‚uí$2Ý9þWDíˆ+Kça§Ô¡•/Fãí¼¹aSt†0«a\îùØsOÓµÍsSwm¯ôŽn’“g™Î4ty²Ÿ»„ Çw»kÜ“Mеz™°m˜±8aS¡ÌüÜ4 ÞÃBlòkëºv¬wÐg ¦ÉODRqG»ÕC•ƒ‡™¨÷2àTs§N‡¸S°ÿ°ŸZeÖÒ³=9íëµ¼7L ·ve<—Ñ")Wƒ!E‹:ø ä°ç”ŽàTQÞ,äa†6h™&êo33ÆQ¶>eEa1¤1þ‰'IüÁ£|{!Ëo—n5&üú ½nÂdöHØ„0˜ÌÏFx¶ÌѽÅ*„`å\"Ó¹ŒHBã=Õ1ƒ´ëÏ,A–-êP¦ÀU G˳¯…Nß„ò!G(Šñ´êcP£¿·K¡&· y÷Yü邸MÒØcaÖ«Ä‹›Sq:7³ÍóPÃjSAÇ•™1žÙ šêx%6ÒOã0´6)Ï8êŒ+Ê- _ỘxTf¨5'᯳b|·  %”,ɲÓÙÛûYÆí[< 2ë› ™ñ¨U¡e úä‡vƒò¶©W®tÜP·ð®‚jÔþ‰CÛižÉý æ¬Ë"6fž¦ºLÌÂEå‘bI·òîsÀüg¨i&¿N^Çþù‡¾8ã7˜vÓî[qüW5#b„…£ž¯e”}Ý;6§Æè£D ¥®ªyËJUc¹Ð;õÅêSŒËÜ 9,X*°øè”Pp2 2‘¢ëìÈüªHÿÛ=ƒ”™Il}òLYo c‰Ç@zº¤^“¯%>:ºÄN’éPdzQ̦š/ Mæé(kºfuáYÈýúk¢šJP(ç¤jqî> É¥•Ü›sæ¾ÛX²¼dIð‰£iMqÕOç9Í8Îk¦ù]Ì›9B:Õ_?1ôo¸sß…ðÈŠXts¤‰ûŒt]\€¸ˆ Ɇw}Œ@€ÕFº8øƒ ýœͰ «µ&íÖ &*å¾ÚðNÁyR•†lþð62$ßtò”~ÛÀyÓW›rK‡C¨¿± ¾é$ ¢;ÈO†’ *ÇJÌþ碯ÈИÒ6’î"S5Uetk­õçËQ.“5ahÁ„{ðÂþv— û}á\óyl%V‡ˆÖpçŠç ½W¬¥Êpþ)¯Ï9cÖ¨vN›DÉàï)²€¡ËxãZ1$€¼‚o0£ô1ƒ‡ì“¤p®™–ÙhaâÂsÂbKƒÒ^oö†¸ît‘úþÎËÚ\.¤acª çcæìk¾œ‘Ë9}x4JN Ž ï¦vpLÝùMÐ|•´¤{mOÉ‘d\ø¯¥=ó²—OÁÝÉoæå:rwº¨%S];a‰ð£¨×#gÁ·bëõúÅ7<‚:iPÇÆRŒðÙø#ªe2é¦ÑÀ[]TÍ#ˆÏ‡/eòEÌ]SއuïÖ·q.oiSpØ&&µ:ª¼ž˜Ò"Þפ£X$W\G>“Ã! ®Ü!Ó¢h…—šb{ãNÁÎä»Ö™ä0àÖªü£Ù—­Èúh^áï×Õø…7jþ×’0@"­¯oṚ £eÆÙCäfHŠøÛp„.ì.ZZ–Äö¢ë³œÎ4 9K5¼Õ‹52A¿žyD¬L()®ex— ðèÞ§Ú E{§Õ°Ý¨)ÜuÅiŠŽ ÍIgXlÈ=î`ïöÞÁ×ë×úïÃ*p\Xט2á뵋. J#–J ¢¶uœ({Û&ÀÔk0%g‡óMÉôye“%t6›õkE“%ŽâHÏã﮾BÔ\Iüܦ§¯éUûIŽ‘Û¥«mSOcÓî¨Uô\ 'W<ß:K{€aŸè’“(j^ñãO b û^Ž •ð™߉ügZ¥–΋'“!Ôk½!ŸP@l!Öž¤qÖ w !±@Ôå©Ñ`°A=u›€/}Û?ΊHÑ?ÝuÕÎQS×±µ'†ªlò ) ‘±Ø×/6£@(ÓY½‰-Õ«"2¨#ø%4Ä\×*œÁ` Û.·Çy`µËݶ±Iá3 ™<¯kñ)=ñ}±s0äƒá öŒð­Yâ˜Ô‰©dA…ÐWN¨÷;‚“¦2–tþq©jüó"ßÐ4ûèorÛ¨$î>æoêD‡¬àøÖÞ¬õƒ` P¿[\ckdF3c11–pò·Ü=cäHB3Å. ¿èDÇkñニŸ(è6À6´FФõïv]—1wø“”ÀqÜá2VÐÒUKvÑØOÑø%IƒÃ5@™Œ¿K¦IcŽ)otÑä—µ’$”ï"6ØÁÃî ÷'Þ‘ÉßëßV—êéx:&b³©§/[œÈ²ÛѦή/¦6 ñQÿ¸•oK|õ,ôðMš’öó¼c(ÊÖ ·ó÷®Êì¹*Œ­TžìØ/¨†+»F;¸ª°ãRmÁÿôPáù=⼫]§\Õ>zœ|ž³$6q —0ÔÚÁåðè/¹þqI ×ÎûsÔÀ|Î I:¦{íô,p$N:m)¢ŒîE‹äY½rÀ.,ªJ…ˆ'õF™©5&ëÀ;™XÈ(ö$óç+Ì·x"K»ß1îhÂë^ùùâª`^¹âGоÿ>äÍ:â/ ˜D‘äÃ6*”òbÅ#ëa£;™>%!DOJ ›QZ`·¯b{[\‹Ü¦þ;PÃ:”R ÖXI<µ œ³Vÿy¶>Ÿ{›EW8BÝè³'|‹P§Kçþ7}AYì#êý|Ĭ/»k£K†&Úíï©ÖdÎÿáÂ^>ÈÃX“âP©qBØw²[ÊæçøiKèW¨Ü_,~ØG²Ù‚zƒ+OÌ4:_M¯Z}:´„/¼Ù5o9i·³ògª!š~áê éˆß :T‰§"›÷;Ÿãâ–u9YÆC§1GÞQ'-´tlF· âÇÎl`«U»”<Ôæf —pýNÅáÿT°¸Á¼8BíE…äxÏm¾gSh!0Çþƒ(Üú|791|ýÄ-•Ö_'–hÄô%Ã`&4ØÉñén̘3F ³Ïßz±Øµ>M?eeˆµ! ë¦GÝ·ïseR$6[ïzˆ,q‚¶ãO]‚Û:iI]-v ¥íÏ?æõ×Få›<úö'´–x|[Î2÷s%Öz7%ÞUpâF æÇ²ñ¢!¼ CªA©½‚ævçus–Néê;gã¥éò:è'd—£ŸZšÃ“)7z ¹ðbñÇ&t×½è3>É€­Åa³zⱞIÞÏcSY{ºÁF0¶ò'Éüe¬“ÐúéïlÚwdTo䥛MÌ©è˜vU)•šGñzjÃIúvÓo$ùÊVQ' k†,­6kïXÓ"íkŠe¿½Û%Käó¥´2ªÖ3k‹y…¥Žk;÷8¡b5Ƚ?˜hØ[üÚ0J; lNN÷Š(ä}‡.Pçk¬ßw`5ÝÄÓÌ$ïRì‚Ò«7Ï1y ¡YaJzØæ¥ò=Šÿ¬ªˆÒ4[ä-eÞ%1§:G~5`8¼hKì,ùVK•"Õüi±B ±Uê ×u.èpB€#Ÿ×ÍcS_"9ýBûÆëÕ¾BÙʤ¿É'€ ÊvžLÛ¥n^b/ýLLàþ|¼e¡ê…)\¡UøÊáæøå³Ó̈ ÕŠš%^úm™u08ôb„¦¼&ƒT¼4âµÅ±£ì„°¹”HÄìêF»È‰F=E9 Ž‚òXD©wo@ŠîÈÍ÷Tígžâ4AX0tiXôËÄ7 2=ˆ°&ã”%™XÔ>^ö"íéy"d&?å§=‘›Â§Y·‰:CÄî•ÐÆp¯%©¤)û½pªÜË– F¥ôÛ“1¬'âAýà™‹Ún†²€‘äxÅÒ¼Bƺ"Í~u¶~—ËÄ*²>ÇbKšÚ/pô„ò¢Zº ôžhÍýacuõv½ïoiÖ œÅŠžðD\TÝÍ‘?/y §np¹`º))ÙWëÕ¡±8¿¿’ÎßÓå’¨Á\Â:EÛ}図”OôÑöÄy¸«ëPS¾ní¯‰€¦4ߨœf¨K'8(UŠ›oÙ$þB±lfˆóÊ«9PáVðk”LFQ¢¶Ð£—MÌí™ÝOq‡„ÿ×鈥% Â-w\P0óOrøÁw’©šþð[Q¤·Î¡•àOÎ †K(ØyòqÀ óNdµäüš¼ÊÒe ìµ»f¼î*Æ ×óÛ]¥æˆ13? xÑ=?NÝ|‘ ò× ÓÈ2+¼Ùø±øð^ËB‚–°U#2e‰qªÌÁu±CgMÔRJ©òU‚ºÒ_R«WJFß-qäïéÇgnïsO·Œ@™¹Óöåj×¢,Àëo2ÒßÍu/첬×Y[¾’”÷^"ߦPÇI^÷(Šð hêéqÛg©oá}¸g…Ûk-CŸâªœÎqÚ$a¥ægßêéuÇ yØ·mC°&ÜYéqâmȽˆXí£ªu2ùõ}&VjËÖC¶žl}½øliGÈþ¼ŽkçTæ³ù¬€–Ú³®Þ¬­wž‡ÔÇæ÷ë§Èâõ“¤Ú<3…«®ñ½ìO[f,§¼N–M©¶™°^|à7ÍÍ|S`KÎ)T'Pè¨R)]ð ð®L_±­‘ªz rñ Ý=k†ºY Æ!}ïÝ) ¬àÑ9X¢t«ÕøÅG¹; ¸˜r^¥># uã>{_Óò¥¦I$®=*i^[Þcx!±ÇI b\@,(ê¼- ú}7[¢ö¯/¦±ÍQžsÝ·ÜûóQ¼Ð.#×jsd¾8I^*¬]R\è Ô1®Â‡ú ZØMj}™À¿Ã‚•ì@+Ÿ<õaø2y“[é÷ÓfÛsóÖüj7¤Í/èÚI­6Xñn²—¬C~Ó@Gû²×R®ìšï"úÔ¤ó—£úh Ó£|ÓTÍòޝJ ·}ˆ?<Ùdt¾)Z€|Ÿdð‹ëHž^ú©ON(LBéPªhAˆ2Ÿwœb7Æô·‚‚oRcŸ¡™ËIyâå„SúÊ! G„]"„8Qg~—ìïÞ{'•Q€‡·Æ­»;üù½®Ë 9Ü>[¾Ô¸Z…q‚Ï/¾ ݿսª‘Þév ³»_ <—ʲzɇ»îÅ;HX*9Ö,y‘±Ú.n³‘ºÝO¢:Z«t¸¹I+𫲅ÄÓ]n»² µNÆY(ÞNS/Ë×ä|—%ôª³ u²ú"ð’äcçÛñ¶º˜ÑÏÙRK£lÍåQ7,•Ì Èáƒæ×Žï5à¨ÉW`]ZGT‰FÝnA$îÖ™fÜÙ[óªÅÁ%äÖ’BÕеyÑ—¾‚hx§™Z"7Z‘~$Ìif+”c†÷¹æ{3Íq¬ì8Nið9hŒQ•_p*;ÊŽWªìœ,Òõœ*»±Vßi­h×Í~³ˆÔžåí¿O/ÒïN…p0¦^~Û>µ@Ëïå°HøöŒë™ÂEüåZ<òÐðS/8 %Å"T³Fî³ä‘@5³Î9»nRÅ(†3ö«¾)“¡Í ÿz×½¢•‡ôÁ„| jG§¹ôäM‚)m ÓAþ[ŽV—{ ¹«hà›P9#¾ÊF, Óó31¯Ìv­Ìå^Éq5Éd׉´â,-5Î"‡‚¬vÃýËÉÍx˜íÊg.ŒÚšKÐÆ'?ŸÄRמQ³ÊV(Û‹ð ²G“ú,‹«–ÛÌîÏNöò\rµ°Râ*‡¥¦±ý'’¬«}a¢HkÜð²¤réú6U˜Òs†>4Uj›†ièf¬fÔLcHS)ØdþZ§ŽŠQ!žŒ÷SýÛì¢sÐ1ÄTnÖG‚9s3µ×›Äœ&öܸ«­ÉJ]cÂG%?Ï ŒÃ4ƒÈ~¡4xTаœ;hRÜ_)Ì­ë†+–ÔÁê5ÇY¿eeù¬.ÈŠ'·Šm(¶öp%ßZ£Küz͉#¼ª ñ£›;gÿtúS—È)б½ô X”ˆBgÞ/ˆ¶æÒ1%GY†Ý—[YÞNÉ2òŸË~nëGÁÒÿæôø²IØ´˜ VAŒ¹:ÚsÊIL1T§ý#¨…Ã?0°sä!Öl·‹˜(åéÍ”Èhõç8¸+´RbJþ0Ïî·¾¼I®Ó£KÍK ØV"Äuܓ˵šÂ.ôÛïÕb«%’k]aÒ6µMßäÚ¯ ´IÊÑ–¶UÀµÍ‘ J{~hHB ‰£§q°(Ù¥“\hI¹\Ø÷n‚Ö|$0ÖÃniÎŽÃb›ÜOå¡ðÙIîË·ÁÃBÞ v«óΛ±¾É]øó‰A¹®Uy ~ó³Ò÷£‰–Gøs`‚ßXª ý è>ï/ þúxñÆ-—\Zrƒ9Þ½ëþ ¬d½*E@¶2@Ê…‰¿Çj w2kê!õrÛžæÚƒF °æQŽûNö€ˆ—n5!q¹ƒñ=Ö`ÚEþÛ¶†OmïÅ“YÝiUD´“Ó=š[*‹š.ó.ÛÔ¢r›z©—ab´ñŽ»ô\1˜Ù¨èíÏ5˯47—z°NúÔ¦ÑÄtcŒ7::µi1˜ýô4Œ…fz½@÷³(M]Åñ6jñǰ驖2bÔàå鳨Xlþý¯JƱå&³Æ6=Ï|>†‚‡—T°_<8ÉÀ’½Ž/Y /¥”çîÎQF ­<\UMeGM«It/n¯Ç[œ²-òÈó+$#[ ÔpwókŠ»S¨€W'ÜFù¸×´~/ÏÉ£yÔ Š 4 q'…¼™pŸêØ¥=僥U™ª›˜‡'oyÎ|}¶,``,—Ó¡›h®À’ÓDØ´ð^žt뛋¾fz‚;WÛF}ß6ž}-Êà’Àõìû™éÚ£—È'Å7j;üÚ­üá©öó¯—5 ~e$¶¤Lž’\—nñ¯,›Íº.¡vw-EŸ­Á—Íî/”¼Ey1~pк‰LÀbíSâäE«:íµ$Ûæ8Cïl…“–¸¥„¡gFôìòÜ8þÌ_Š!6†ùí>‘åê_vÀ ¯N~U{ þ‡û 4¦AúÍŒ|6íHóS8=œ÷k÷«ˆ> ÿdÅf¶/¢oZ?˜,ŽF{¾r×:$t¯õTÊ’§Q­}NE_§oG±žÏzNxŒ¤¯&ž?© >òZÝ=–cœ³øjíqšŠ!bh, ÝbG­œHbȤs7˜ Hë¤Û‰ÁŒÏünhÈ®?´T9Eœ¼K£ù¶XÂPƒ™\dä6÷ÖßdžÉtU­Ç‰šƒßÑY»YòK.Ê¢@ºW™Ï÷¬ü|»×ön5o¼–Åû·¥ ÙYý°»2å0ÓBÆašuÏÏáÕd]!á:¼Œdå /×jÑäF^“íôˆ9]Tÿ¨kߣòPS DˆèÚG ·á/5W£mÿÆÐàÆ=Á[#k aGá§|ìXN–¦´Wó}¯ù~³þ%4K–Ú+::,k§µ¹?‚вÄx…s3\c‚ãðÓYó’ø!™è0&SX…³ðqJbh)-™àNz)í~XÈ«käÄÑUöø ‘Zv„a`P˜:@Êä€úâÂëÜkÁÙ€ƒXY”˜ÜKì¬êNõ7Ò;Y CÅ%Ö¡a²™N|ƗˈéD„ôÔ£Ür†«duu ]¼4XXº÷ÚTÅ«E…äü* '¦çœOY¬a¡›âÓu/L’¶½ ù*g,…bžâ²^7ŒFwƒÌÑ—ÌEŒl.q:¨oþA‚ÔØôµð…×ÓÞ:µBò=£:§g™0Ê¥%àT%¿cL“•Š–õmýå|¸³4ÐI2ÂýÁCy/r…F)*]CKü’© MaQ{îè$àøWÑûø'¤ùÑCÑò,UN6†êm”¡ðšuüîcÖÈÐÛ‘Ẫ­ìÁðë·îZ:D¾ôè†*¥*ÕHë®þþ£…vˆO¶ñ=PãÛà¯À0¨àà‚~«+¿¾«-ƒÕÞLwð”œÝ)ïÁ8¯)$ì"¹À/à2v“á•çi/ÚB`fò™¹Øïgâ·"‰*ú¸åïÀÑïn=åÍ p¡¾Áú}Áá5ÜŽ•MoË dyþ¶(_×Ôþ uÀ(¤åäé~z½úÝòJÉåÇõ6FÉ*WÙNàeÕ ‘8÷|¢$¬ôŠ¢TãPÞÌò§‡f$Ö”c]\xdª­sN¢‚©kÄѹQ5Ï(.•=_Âô¼¡—0ÀqýÝ^ÁÅþ(*Å–Ú¥Ï0Tgwŵ‹hí2‘`*ýÅê bÍ„hF&/±x·Sw௬w©méé$ò³f+~¼$kÖyÏc‚Gá=Âð(7eY×ÊÃ$¿gÊi ¹SF£Ó‚°ÙôNà`ü›ñv)WŸô âï3¨#;U‘!¥a¥Œ££ýX5â”äT47=Ýu·Ü¨SÒ1x%¢@3Åt¨œóæx‰z¡~ƒÒ&ýòwo‡ï" 8LMó^çØ1\…ý2(tâpbC†‘]c߇Áfy¡v×I{e¤ú>oF&U+غf™Š-§”¬²‘λ‡t•A®êe7šôßn× ’IRªª?_ßj½Ðé­Q$h2À•ýj¡E?ëã˜òܯÈü-wéX°i¨ø‹ ²2fDoVJ:¿ã™åÇþO¢Úpι{û¤œü*¨Ú=mzKF¥ÆäO'àVü­Œ(² QŠê5IfÜ ÷¯jˆ¶æwUÖ¯xubJ´aÏ8rž#d••ÔÈB›‚ûîò<[×…³.õüS4¬cy&±OÏôõA/¸ZPh¿@ÌU“3³fûdlqÒÚØ¸h$¸Gâ)du ½èìÒ² ™•(Q l‘ØŽÍè[!ûÁ3ÕÈù"ùEû;^Í$Îo“ßöãö4s`[‘tµJ3ºÏKyß³/m ˆCóÑÁ³•¼ø#GÞx®CfÃd±½aÉŒÍÁ9’)J¦Ãa|KF÷UÙó3ˆˆyœ¬Óû®ÖCÚ¯½¦ømþ¼ë4"5 ÷ç,­ïš™üFÈŸ«|œµð–1Óâ¶È¤x$IZ :çë—nàÊgng# ÙQ¼ðÝ4h\Á®ÿáÄl<îrj• Óh™5ïÈ‹UÁx,ÂûåÉi’%u¿ö†ÜH <âÇ["å2_|ÖQÑ3@Þ£jèªõ\00Ä:íj á7¢©>“Óx-}=WoÈ@ðŠº'!I RÁ÷å á5žfZüýᦠ(y0—{wÞïk‡Ð*ÑTtdõR¦oqÓfH”FØvO‰ª–™µK¸wèP? í‰ “e;aøÊû(iðõûռɾ D:úæ©ÀÅ]~ư¯puש_FË^ÀÁ  òiÌŒ`ªWšk™$Qºj6Ô´à·ÝÌyQ Í–ä®ñÉ$3ĦìþÉ€5ɧûÕ6È€D"^¦;cA‡j~Vc}¹³CÞ¦ÀÌ««|/8l¡xn^ÞÌtë¦ÑÀ³ÅŠ«”+ŽÔMf JC‘g§-ò'¤‡Å@ðb$½|)•+3ò†¿¤`1Êê> Öé¸ibÄìøa8fÜ´ Þ©ö{| º}ŒúÓ˜öïVêƒáœªËîÚÃö l/óøˆ¯ƨO³•˜Ã#ѵ}IDœåAG»uÆN8UìÜŠdA(€0…R¢ZQÎ?¿‘eéÆXCÛ ƒ*¢£Œ|å„,ß´jegbŒžÓf³á°nKbñ‚<å*æåTà »»¯{c=Ê$Iµæ7º–oèÏ à­ß!±¨7—¼}GÃõm 6"ˆ‡`×/ó§£Í~X%Ò0*ŠÊô& +q71î„,iL ¡rW-Zú]²]6‰m›¬ÐìƒIJôÌëWˆÛpŒ2èB"sõ(^¯ç:Ñ´» °>ªmé{eÜ1Ç›!IÔF<ô¥– ª3ëX=.hÑ3›Ì% =’éq|.ÅK¯µ¤mK“;§%Äy?KW“³GvÜmÒ0¯àQ ]- yb˜Úêá(¡eku 1$'å@å7ùž©Ï–‡ó%]…˜kš½ñÕŠw»‚ Vt±Ëµü*¡§ñØ®ç·íC¦\•çá‚yú븠¼:‘Föè¦"µ«Iý?¿6HsË]yJ[.|ÒéÞã1u¤µ¯B%‰©¢ L&¡§§Æo©ªfˆ<…ö¤N‰óeu&xà zgõËVíoô´û̶;Pÿ1ÈT+<†d%|ÎmgyŠxlh*F¦¤¡GËxæÊ?‘)Ë‘…UÖ€1F¼n’m(`Ðþ³ÖX7aÿùrÐÂE°îS© r½@ü–D¥½›Y?{rá2ÕAñ Fÿ‰-u»"KQyzeÜvO£c0±Ú-žgº¯ò·›¼—`nˆ®ÌöfO“Z±cg×öûdF=îðM{ž z“7ÐÅ~ N@¦Ì6ËSõ›KoNa!5åDi©’:Ó ÍIÃ+Ҳǀúd w™ð3f¼§í.ÄNÔ3çèõþÔ³˜x¿ …–c· ÁЦ÷ö”Í4õl€ZãìB¿`xk0¸Ó@˜Úf9»Õ®¯{¶úEݳù¿Øa%÷L¿#XM¿H÷¥…„(öhP+jˆQBpVQ6 ®¦Ëu)pÆó9A¢skï- »i_¸C¼Å£‹àÑ`ÂlçøæÖ¯ÔÜÚµv V|وώ$.U¤lª®Í¨ÏªGÈH¦áþ·YCŽç@ž’ä‚Âë¯>8î‹~ÐP{ûwJ3ȶƒ`NÄo*”AV)¸RÚnI|.dÐ0vX2<)Å4Ó¯­²|òÚâçOñïØËr6#Ñczÿ‰iâlrÅ' >ùRYÆzÆ[ïy•ëY˜° Bo©(3*YpRøÀ‰Ò28WrÇïsæ<æÑ¶¿ ¸W­¿õJáfË-T0p]“Ÿ&³1͉´ú„}âºS¯Epdœ=Ä‹˜s %\‚&{'6.iNzSÛun?œ8~*·ç‚xñÕ‰Ïw'ìDe9 âÂN™€û! 箜ˆû3ïPöžìÖÇ+º‰2k¢VBbH`Ľï•+ëŠ×ðrâ²xGǹ©bToŽáé¿@ Øõ…H•L6ò(B›*Œ"Ïíkå6Týl)Á œ®`¹©¥Eó D'±”-Þ›·Ô•Tí—,1pÒ''š¼ œSqñeÀA7¸)ª†g~g¬¶  :Þ©U”ÕéÕƒõ/ÞØ úTÛ¥ÜBꢦ8ªÙn$Ö{"TSºÃÚ>¶+¨jó qG² =1 ‚vïOJN·ÛY9Aø˜Wº˜ûæ*F,“=ì?2è/í#ÝÝ„1á§×â¦Ç×(«ÍÆÙE¾%ê(#åq¦½%²¸9B.ÃÄ ‚XŠÖÝßôÀ:¡zýèQæv})“a‹ýŽÕxôüœAc d!p´ÖmwLÙœ1¨IýÛêĸ˜ÿé·|ƒzE,u$¬æ•¼l±1Øû8*Iò.¤ì{&"*B8͉ÐÌ:uçz\ e iX<5*ü)/ñ˜™÷Nhà©+-àÞºãç’NÌ%K#÷RK 9¥í{õbáËp:]„DÏík…Yyaç‘çlŽS4”MQP¹qzm¨ zJÛº’1“$5êÚFÏy D,„?ekïNä½¶ÿy›*jZÐ#KïD¹Ô˜šz}Vš÷ÏêwÁ¼ïþü9T„oÇ[¿&ç­L¤Ç¬}ûVž%¥Åw‰èÿ oüªÄ†EZ ŒÄä¢öKGÛÆWKñ]$‘íPºUâù÷r€¢?l­nÁ×Àž{Y¡ &Õ£.ºQðx† Ý›žÓÂû܇—=B¨™Šß1ïETÆX X>æ×‡+éC¤)Å#þ,ªø€÷*|Švç þ»:¶x£N~ò+/­ LŠÀð̬ñ)´wˆ¾¤Ùú}QHM­HºØòµŽ°r™…u^CÒ¼äãHËùvÜÓ‰SÞ ó=ñœ÷3L[êïEŽÕÖ57\pz‰ò·8Äêîÿ³¿Þƒ)´²®ÊM\* çåË ÙˆÓÌzœ`óCg¸µ¦€õbwWàØð‡–ÈE;†\¢‹E!= ’{úr4§Èeœ“¤ƒÒ§¤ÌžßüÙ:iŠ0ƒýÅ“"bálû­È&}Jgï,–š5µù³Yû;Ÿ‘R ÚˆÀFZÆt—]úRM3\•oCîIó÷q׌ëäпwÖÃCÍù™0ä~žBf A¬HlqC] ˜|êúlcÀ·±ÕgwYŠ§ï²’B==ŽsÿfXŒ'½m¤èîÚÞS7"Øgmd‹ÒË€/[ƒ) ΚUdոħåÉ ˜1žx¦ãYmìí¾VoO„²³3j?ü¢Ç_qãb©Ç±%¬ç÷'˜¿åÑ[2ëY$V½^Äó|Å“o­ÎN›–uÛwˆ¸ó†¬71eLg½÷»üÔµO½m£Qü ÙÚ0ì ËD]Åo£™ÚÏl¾´m%i{÷ÞQø“weš(ûÜŸb? ðé<™ ì_1c =H”¹É½S}} 9K0ìEZ7D 9Ê9u€â­ ó¥ñéò¡fmà 4Íá,ÎÍa¸é¯Ja/?XÆê0V!~uøLˆny«NÊrîŒrZg¨[ª©hø%w")ÈĬ…ýBµíX0Ì) “Èþ„D§+ã¡ÏÄz_ £ÒÌY5XäI˜W¤pËÂm%4Æe±v÷z—±A³Ôlý›å1 ¿Â'MnÅzÄŠDÉ JPþï8MPQÑÈápÂìüRVÏ{Šé-tòŸ6´éìÜ5ËØGï !ªr…ÞD/‰%I‹p›o€(¤ ’»‡Seˆˆ0³î ¯“ÿÃ~þ¥à_wQÃ0Ö;mÐX÷oAýúB ¯qÆËÿi«;šêaâÖþÇ“5]”Mvâ{³3(ý£ø;ø‹Þ0q©ù›3zÇTÕ6¢³,1Ý }+ȳ?dR;“L”\ésÂ[îÀ.Q*Ø‹ØÜµêƒEB‹=à ÃQíS°ºK¡ë ®¥7N•ã vüà~iÈî¥jJu˜] ž63aP®‹Ì÷KPB/ßàOmì7—>âÄÙåJM ¶õd7b{38ÀC(ႇ宎¼?ÎâŸöI ×ܱ¦:ȋŇܹçv;í»Æ“Z6ɧç%ÿzÐs•Wf¦EH>@áš–û5·…æX¾Z¼ìÅg˜oD±`±¤)Y~½ aþé8½®õ"-ü5—¾’{(Úâ4 Œú!ä¿ÖEÀˆ”‘t/5G ½ ÅHùU!PNÀãÖúö¼0’w±†á¤îõwç,ŠàÄïé³Ë6,’¼\€‡ïøî·r‚{e+ÌÕP"Z«)ýê Ò›Q`ÅÔ|OægÀ¨€ÀÜ@¡83Ääå =Ⱥ%ià}9çí—sŒ§©tXG!bVQŸ¼8ERø²ôIŠ$Q¦ER£kŠb{^œòù“pœ*ý—ÀÐÕ-³¹Ñ¾ã6JüKõ ½ÑJ¹sRuýþ%O: ¾áøž³‘ÊN*+{Ñ„ºXê…- ›cöKÔ¨‚¡‡RÙÅ™^úÕh“Œ8ôM!åXšãxÕ_7?Ž™]‚DzùÜìp|pôr`‰áÊ]ùê?±;=ŽŸ“X(Ô£Ê^—{„Žÿ8aŸ’!0GäƒÛ. Î1ç˜ÄÝrYÅþÓ J´áªåÅt¢JŸ~³óÅHRE–Qƒ•Íç:å¯p÷ø*sx)x*«=²:„F^1 ·8Ym;ï«J¸Ž¶`åÁ?=½è{îòJÒ @$+,kÀÇ& 8©/ªx¿:óµßnæŸ.\ƇÉbøT3åºâÇ"%*¯}±$Qú@ueå‹ä¢Þ± tˆÁl/MO 2ó'1®÷FX T¡p7­R,ÄÒ¯3Dãt<ÆÎÍDû›™s<; trèv§óD·ÂO ¥áîvwè/œ6ª²Œœ‘Vl¿Ï91îµd%76¥›¸ûýHì—k)x«ÿ›¿Ò°Žï8#RЋ†j <ÆÈ–Â@¶ŽÊ©Ë €} B8Ä¢s€èÞ`þ¤ôe5Î_Yªen§I <*ëŽmö¥õ»äå ôtD8˜üoô K‡0\\Zò.倌Õâ±ÙÈ|ß.·í®d’C@±'E²öF"ræQИ{Æw¬Â'Mí¬X6³‡AH£69#yƒNÅþjßp þ£}P2P¢Éª†m>&[ØOöV¸’ÆpnTU¨ð‘.Ön¦€vQÓ¡W÷lGû.(ÿÛˆ…¨jú‘b…œ·ªþ{CxŽ N†SÏÆ\§r\®y‡ o˜t¹G¹êi#­·,¢=ý'3‘oæC‹N¸_0uÍmxYŸ–áºïðVõK`¥Uß jŽ©Hñ¡tãìóÜÉ„OÝÐ@ʵ-h1@u endstream endobj 168 0 obj << /Length1 2906 /Length2 30034 /Length3 0 /Length 31700 /Filter /FlateDecode >> stream xÚ´¼eTÜϲ5Œ tpwwwwwwww÷Ü-¸ îÁÝÝÝIÐgò?÷žäœû~} †]U]µ{wõ¯›)¡‚2­ ‰PÌÎÖ™–‘Ž #+kgkÇÈ@«4s±6t0Ñ10°À“’ ; -ìlE \vgs€¼±3h((‚ž ´:‚œ&#€,ÐÙPÅÃÈ 0ü(Ø99Ó:Ü@[3 [ %hˆ°½‡£…™¹óïÌ´´¿3ý-D24¶²ss²²Úš¤èdérvn £€ÂÎ`47´6Ø™T€UeQ%e€¸’¼ª‚2%(±²‹½½ãÿpVVQ§ˆÊ©ˆ€j4qUe•ß_U€¶ þf49ÿwPàïá²¢*‚*š ¢Œô¿ç`¸,~—ý/nd f€?Ô@CMílþ) 0wv¶ç¢§wss£3sqr¦³s4£³·þ‡ŸŠ¹…ÀÍÎÑ zuZÿÆÅÖ$§³9ð_ ~/ @ÆÂhëü=HÌî_N” A »ó¿‰„pþÓú_á' ð?ʘ:ý3VFAA`chaë ´5´5::»8 þ±>&äÿ"»8:þ®!û¿.Ç—ù_êBv ™éX{ùºý÷ŠÚº8yþ¥ÍNÛØÎÖÉÂÉÙé_S kàoöN¿×ÌÂö›¬ œ¤˜¨² ­ ¨ñlieí@êØÒ9»;ÿý;Ÿ ˆ ¨Ù9LLLP“ŠÚšÛÙØ€X;Áÿ–OĤ“³£ýÿék+[;7[¯ÿk7µ°51ý­¼‰‹=½ª­…ƒ PRä¢A&ø?63 3€tÝÍé—û§[~››A2øxÙÛÙL ­€>¦@Ð ¼—“¡+àìèôñúÛñŸž‘`baì jtÐfÿ'»¤­©€ó_f“ÿuýO Pü³Q)A»ÔÄÎÖÚ`4…§—³s5Åÿ?ûì¿j‰¹X[ËÚ)þ[ÒÿŽ3´±°öøÈÿŠPþæJ!gçhchý_> '1 w ‰‚…³±ù?*þË,élj}A[3k hMþ1©þÞMÖ ¶=z,~?¹´Œlìÿåu¤±•-ÐÉ ÀÆù Rá¿ø‚¤ÿÍ@/((¢!/DýZæŸ0Q[c; [3+ÀÐÑÑОÔL¬¬/FPK›Ýÿi=­3hÀÞÅÙ`jçÿ{1ÙXAù›þ…ØôB;€^øâЋüAœzÑ#v½ØÄ ÿƒ˜ô3€^òbÐKýA .Òˆ‹Ìâ"û¸ÈýA .òÿF . ¨ºÒª®üª«üA êª¨ºÚ¿'(§ÖâbøoÄÈ 5t2¶-¶µ ðB ì†Î(ýA ‰ŒAít¶šþÅüoû¿6ο 9ÿ±‚’ÛYƒzë-,,¿-66ñb‘6ù7d±4±³þÝ7"@,þõ=ð?вýö;¸ZÿÉâê&kC›¿²€$6ý“ajáúWÚßn;—¿Ë‚BÌþùÍ~òÀ¿C@Ó1ÿ39ÐÒ˜{Ø›mÿŠÙ,þ‚ ò–AÐYýAzý™Hëß{ï¤î_3bü)Å Êe Ú³D•¶u±1úý4û‹#H.»?¤A9íþÅÈš¨ý7¨†½!è ûõgaüë®>3ˆ‚=ÐñŸ£÷ß¡lÿØ,ìþ¬1 HX{k—¿&Ʋ8üIRÕÁÅtÖYÿ²þ%=#hv2°þF@׿”g…;Y¸ÿ) âædmèdþW µ?DYAsr6wþÕ ¹;»Ùý5”ÃåO¯ƒjþs'q2¶sü[@Ð*ºþA»ýµ AIÝÿ‚ ªAøž8ƒ2yÿÅà?» ¿oÿ¨ žÃÿsû+;;ÚYÕ-L@WÑ¿Bd A;Ö]›t2‚ì ÿýN÷? þ9Èÿ-$dçîEË’Š–¤;3ãïÝÉæóCÿu1úç ÿ‹ßJ@ ;Ð~iÞΘ;Øòó·Ð2_Ñ‚ÉrhRNºÓ > ©¨¥ôÉv,‘Üm" a@³Y¡Œ—®oJ€m±i0ºõëzKråÄ­‰¢ÀŽ¡¯¬/’¨à5:ÕÀ ÙEÿò"Ê#©œ|Í–éŒÖ„V|€êcaÎöÎ_1Lão®S‰tÊ[Wó ÝŠf›>:Z£º/¢`ÇYœüîüöëc\´aàÕŒA~(Æ©wöÝ(ZÔŸóU4Ž»¼Òš¯¾ãÏFlh±Àg2óU d+ã¥ã•jGe ƒ;åGZX[¥MÈ,VéCÒ{•('7’-+6*áüTÆGÒöÓ;úÄ{¦cIhCSÖíoylŬ3Éöƒõƒ.EµRgоKúpbNgV¨¥w×W6á·Â ìœjA,ÜgöiFí\áhZâ°ñÿš¡Ï ϳrÙAõâbÍe†ØÞ¸N»Yö†ßêKamØ`ÈŒŽÛQ7°Yä s ²5®èÆâ !çàËùtR:l1oV—pkeýè+`×U¨Lq¶\40®·ü[Îr×hÝ—P§ÈgÖƒ a"ì›QH ÷Jþ\é*¤\r®<âí{fµa%Ìc½¿™½ªUMxÚ¹‘\lµ1–æ òö©j`9|²y*¬©Ô{ )¶Ê–u%„áo˜ÜU`ŽŽw+öPÃà/Ôº3A4ÚhûɈæ™[ª–Ý+ˆ…ÕX丢¡:üÕz-<)“¯lryë€ï»($ìl]ì…e°pón­|xVW3ºL·¶õV=‘LÉ€“‰–«¼OhS(~—kb?w:¢Ü‰T„ý×xúeâ\™ë…<Ø5ØÚʈOú GdÏ$W켪G­Œ‡?|+ìðE sŒLO­‡ö†ÞÌUÄLÁÏìn£ŽfLðCSí.Z8>»ý3Œ28nZ1µ§–»ê¥Ï®bšàÀ›V•¸@hðÖ boIÝ;Û­&rl\”\ûÑŸ‘*ßpá–o“í!V[Æú9$®u5/a}]{¦X 6È6ÅiwßÞt8xó«k˯yNäqë1/NE’ÏjL×+Gaz—åÇ1ALݬ ÆäÃßx£šÖ¢5ȼs(*}M±ìLœ ëÃþâw³nð½ÿ%L˜Úd1¬ïCawH³;ï¶¹–òŒ4ÃLw”³©¿¬åW\þ‚²qÈ—tÛîU_­©±/TØ5vîƒÅÃ÷¬‰+¿‹h.„.ƒ‘ßB,:ðà9/>ybtupgM?êË:j‡%û…hH¿3ÜI:¿Cý ÌàÌ–8¹ä€ªûÓðÊ?+]@ÃÜH%«êkÆbÉl³Î²Íø0¶Ÿ¥Y’cÞì íD™Ì:æ ¾ßÇ^§)Y;ŸÆñ‡eÜ¢¼\Yózêhî>Â_•—j×òôpZAä² ²·¡ú%–£„mR]|Wx&®’ùA¡Ïfú©øFêu—%i‹0ƒ2&×.¶®Ô@ÄÚÁÇêy¹Š¸¤)kSV/›r{ .ßÙgÆUí˲FhI >ráa‰Lñ)l¿ Ý~8r9`zza“^6eqy#ˆóÌx‚åGvn{¤øä ?ŠÔ”ME/tÌ^‰ËîC¢Ôë â•$âœB¾)æ'åššÅW«¯¦`ÞÚÙT]ìI‰ RV¯'~ß™Bî#JµCå³Héªõõœö “°‹åªò¢~®"¥æÓ›0þøÜϽí}¾gagžj9RüË%q°´ÿXív–?Ã6ϧRË4­èö¸˜ÑÜ00ÎHñú] n þ,›T渪;·M ‹/‘âÈeœ.ÛšÚùƒ÷)Ü©F£PeôKÞ6ÄìÛ=Ô÷7ˆöþÞä†òCó«9AQ3ä“ ÛG™6{–¹ðOQmºhi´¶u’8 ŠqË+‰þ-:f&²L“KèLq;H\æýuWÇ_ìpï§Ž„:ëe|÷£~BOrŽX®N¤´Rw/p6ðÁ¤—è°îÞªÌÏ›¯Ï_ðŠ|0y—Ú$/88·C£¤_f¿Ü›QÂt]ÝÅ>߀3ÍŠPu¨ä¿É7ÉÆÁ0µê1¾e ÖR³ˆ—)áÙP‚¾y‘àMw$*YLAÙ«ö'›Rù0&1jÍë‹$x|ÿ!áa{a‡±­¶e§ò»oe4¿N 37Ôì÷:©B2IvmI¼®8+ÈE/ú~£†»®A—­7y…/c\ôEé#Nê˜<‘Ë“}Td ¼­”2ÓzÜmôE¼iäŸÆô‚¼¾½D¸~´öRm¼dú©}†ý…àS›œ Á¢fô§Ñîá¦KœpµQÒ;Xº×5À7z¨’§eðû§ žÐ™ ¢;‰Óí4˜¡bˆÔ>âõ÷êgî¯Ì’,ÇMH3!´5!WQ¦ÑSÆ6¾$MWʧX´ú‘ºB§"K=Bûm`ð†ÈÝ÷'wöõßµ£ZîãóHpåé^¿$mà"îˆ}D˜¡¬ |Vnñä±_g'è¾½.nÖè¢̨·Z% æÐ •Yò púðÝ”V'vWcž‚Sƒôjåë ÃGÔ“²#¹§“\¿át*?v²ÓÚ=i3ö‹<Û'æ^rG(.GjÄëEœýo—¡ôûhøîÖÈÅ­N+³|BEƒŽà³c¬Tþ~5öd3#{í3Ÿ[ V y_C–¶ ~=í©|'w· C uôµî(mäÔ(ಜ³…;r…w ´äÊ4Æ!î¡ot¤A…4{KLĵÑ?‡ey…øÄë(¨—ùBÃù€? ¼bxߣ­ÍÐ ~ÇÅ~©«¬g¦Ù4+³ ðäªeX”j1Œ”)ñ$z4À6$.ŒiñÂÙ¯ñÅÕ®5)`Ã6°ZËÑÄÚNíÖ…Ñ1.ÇLnl°‚…š/’ú-ÃÉ«#ôÍ*êçJ@y#Db-Lì§á6œq  ×Db«‡‚„_F¤£Vÿºt”€3¡ß¢Z"ã ÎÕ¯0Èðk$îØ»ê~õãƒÊ>7N!÷Ƴ>.ÙQÄe^s¿!Y‡ŽV´Øo™ee)ûwYVz²G¥q0©‰4m…r›ÞñUwX½úcOոƧ¯ŠÖçH¸ž7kŸBáäYŽ­£-h±0Wh:qÈ„x¯-Ó‰¤ô‘|xvPÑs×+Ú²l™/yÜ"±ÇB³L{9€M= ‰$<ÁUë@RÇõ­ÇióK¡àñ:êYbÞw÷_éºýį©JÇn¤ÜaQ¾€K6#o²f­X­N'žCj¿U«W>t[n ï·Ý³n,Žx þȇ®@PûÑó¶-Ú0žù™a¾âÉ©éôòXš†’ÜTîTž! ,õ+п–Ö$v¿’lÙy—Eo…ÔTÅX˜SÎÚû}— Üèzêkwˆ~ùÆfkàôP ­¼ï× ¹ÅÕ/¯Ì¹*çÁr>¥gèêy t¡‡­sß$¥Ï†[¿åÎïOa|´Ì~Õ¦K{½qÛÍðD.N?õ.rÌcÚA…ôã—$»Ü%…ü¹ç¸©¿¦ß‡Ð²›ÆLûãú uÔ .ô°Òîc6Á7u5—ëŠó1ªpQ7O-L>çç¦/óÉ^AçV¤¥´~¯IEöÄ^½QåxBÌr¼óÊñ5¾Wpw×Í-PD[só`7X¹½4&ͬe/uüÁ±^>/<,Ÿü„£Wßú.eýÍœìd»ÁãÍšø~T¦H•:+BÀ¼À^hKȳ*Í5aÛsà2¬Ëûu*8u¸Ø-˜—øÁ¢Öò»¯„’S¶Ûû„ª»ícWd†î#-˜xoç“iP_=Ƶ®Ê‘10ã;J2` šDq8 ‘ 6XÑŸV‚°”:’oÆ´7ëN½B Ýk>X¯£»4Ó8ïÜw•9PF(¬ÖO ­Ú2|BO©¢ìíŒ5¯±5ýˆWCb†‰¦—+»vnâ!˜‚îA¬(h§¹ðš0?PoÖ_dÍ;÷ô` ÇWµ_è*-Þ­ýþXO¬Ç#hòÞÃ?Õ`/ÿNŒ„Q3`%[“ 3Ôõk껜¨ðñN2¸Š<—˜èp~=ø G†/ S®åxèʨ–é«h6 Ju‚ŠúGø™‹,¥q<9&2Ã8l})bd]H­Ìb•€-žâ퉊äÿö³ Ž ç®9®ã×g!´°¡{¨¹¢Ó  =µ©w~t]V3¡’;s`wl!˜×GæàÌ>9C°Î¢Âè÷Wp «Î lìËZتÖD™Q}Èì›jÌ«—þ“ ï®j²ù銧¨ýèMwR 9ÛŸO ˆ×“ÒQH%w5Ã|vDÿ8²›CÒ›œ—ÏP˧f'‚"Mk›Èý¬€#qÐÀóäº*íç0c)œàô2Æy”þ&èB¢ÑÍß{6çÐ\ð“Q›,‡÷Sv4bE´ ³S¶»2±¶´I•¶N9=iûjâ¯è·^8íÔ§z¤ Fg2J'|Äwnc“KO ¡j/÷Âtê?†Áù} †é¦Ã—å&‡0L¾¤å Ø„¬çÛ†$9!Ü£[%È÷“;E~ÑS>Q‘¬Œ{5EßI´ï-¾çòöÖÏÏ=õ Ó2ÁH.k}IßhäY_Té¯j iy=ijSä(Û– \Ìn*<ìw ñ#ß7Ã7å‰KÔÿDvSÒX`Ôyá=–ìC`ýzX@C3ðêÖ…±¿¬äÌ%uŸ¸é;dÕúXÙNôYf@TÕnÁǃ ƒ®÷U9Œ •“þ©¦ÁjNYh„”·)¡V›ØîgÔ$A‰¸x…Jû*—Šã0‰´<ÿ{Ïwœ ÆØ¦šÙ ÷ 2ЛÊ;î§’~BØo _֜઄‰uEûÉW yCÔí“]sðà~Ó÷u/ÓøÎÎá$f‡)+ÛŸA¡QIÌöÞ)ù°6¾¶·È\«ù:¡V6èj#Eˆ|ÜÔã.‚Uú<Ï™Îî@ø“–”[äýм«ƒÙíÔ˜èÇHêMØ­áÆv¿°{ZbJóÜ$;Éìr¦ÿ[LåÔžy|\?Ì-·Þf ­i%¬¿U•ñ*XúØjÐ*aûN Õ#Ø–=ÆB\¸5=¯[!wÝÅ—ÍÀ‡O |²ųg” jŽ‹÷õÁWÒ•ÛCÈKØ·}_RMý£Ò•­b pzJWçEküãc-¸ ­VÛÅïk+öžC]¯ãKêPÓ6A­v 2÷’ƒÝVÍûMö=iÛ)GE‘ÅdìTgF?Õò ¦ÆÀW•Ë®Ëî3Hkš2°^fϸþFÁE$9ôŠ%[ú`öúàm^Èg³ [ïϬ|÷T.£·ÜN†ãËÐÑÑé¹!õ¥žP4èd(è4 ÇÈ#sq·µ}b™›ÂÛ¡Í/õ6irÛ>O⬗p’;ºzDÒ²däQç>ý6Àµ…"ÑBI+5 ¸O@y"Sîx@©?absv_Ë€m¯5¶j$ÉËpíiÆáp—ü‰ø£þ¼€S6Ü\ÿúÙWF]fml ‚)}…å” ~ä댱AÁ_´.Ým|,;}èyµ×ãÁN@D§áÓê9&Ìï}q± Ü‹5has¡+¹Ù× £t1Ñ ÐT=_Hß®ôˆˆx:ƒ _Œ±¢\ºÀÍvCIbïtãÆû,9ÀíîíERòLµË‘ÀqÙeuÉã#bCž‹Ê¸È–݆¬\ëÃü¢âZßs€ç}v ã5)‰&/¨!Hï`6ÐKœü°|†½yº_ÈåID7..pYn¸µ1ž²1B[YÒyìí w½ìa˜¿€:Ö2|#£±–á§Åd”c¸€y³?^ÑeCRª Ëæ¿ñ ÝT˜}±ë†üÏuŸ÷ ÉÞ!€3°0/2­wù]çËçÈWÊôÙÍÛ»]ÐåÓxøõ"§c-qmޏ€”‘ŒyÒu@+:œ ªkÉ¢H3„¤îNˆú]é32F°°”³ï3d;ÑÔuP>…ÜdUq=øÌ-ÝÙ·Ži™c•ë¯üÛ•7tà¾ÙÛÉ-ª)jeÎÍÁ¨Þ¼­ÍR©=Kí*<$ÂÍ¿”pÆ>h2´ñR4PŠ.K%«¢ðô²8s¾3è–€¸“YÇÆY¿øªÐcž’Â'É3·£˜ÝÇ:È%=‚öexŒ„¿ ÄHf–ŒÔМ™ÆÉ[ûäÞ‚¾¹€@«ƒ5/­²FUGÞ ÎGŠ×ùde—"©‹>Éç`l¡ºÊèýô¯²!žo#ÉåÌ{iÕt¯ª×¦½’Õ ãE/ÂÜbÈêvðÚ«kušä-`ø–Ë_C[­¨å(nTMw› ­ë*­6åó,ü!(Zwög¡àq©hé³ÈjgˆÕÎ˼ÉëÕÐCDÕÖ±ó©þHí_HÜ^ClÑÑ ätå;“K«Ì $ŸËÜ5¢ÙîaGÞ6 Bn¤åG’0;(R´¨é.3\!îm-DýpcÍâIh¼’IGÆhy>WzEÁ£ø –={¾ <ô­h¾Ã|b„Ü#Mi£ƒÜ“i«Oš§2NÒT‰“¼[3v×'¨<4Sö^jˆ'òêºrcaoŒµÙˆ>Î$ÉŒ®¬K¡½·Qˆ"ÇW;“U²pŽ-‹brÄ㓤ÐÕºxÒAP–•(W‡ŒƒáAƒW=£¿ŒÒµ%‹ªã¿Ú:JÓì´*ÿjô´¿Œ3¼ƒT.T#ÍX¦ÉÊˈ <“Jn2–´/84™µ¿vntJý\JC>™ä¦Ú¤ø²lܳïÉ=Ó…ñ Ì3›æ¾ 7’T‡'*$u=Þ!DcxÊüuI'‰F0aÔEªñ±ùq3àPùsA¶kÖ5ÌSºáZ Ý€oZ7ÐÚ_‹†pS5È,·Ü1Y'9ql«Ï2þn˜ÆÜ•V³þæ}–w¹CÄÇ_ME¾ïfi§!h!ÐË1Èu•Ë™Áo2Çïsdú¸ýÔ\»F0sæÁKó ‹O¾‡ÄÃ~< ÁÒìVéÀ" ¸j þ±#^=V¸Þ8ýÅ»éórÐ'ÈüÅçÂÙ·Pñ+ª˜žš#rÛÝûu o®@¤f "[‹Ýþ‘†˜@-(ЉaÝã¹è®w_?> êÁŒm©8'°©XfQ›X˵{!ìÊiG¡’õ$™ÖNÇ8ci#!WDtŒkpŒÓ+uRÿ§ Ü=±êž6.xHÃnA&ìþ!Ë8´·¿¢±àîªa—#0+ '"½MbDKLo”´à‚³,X£þuM³ÿ.ש)ïªÊÆ5 Ó oO–„<«2 Ñ×eøâ˜N— QlŸ'x­]3È0 œ tX iÇ#>j0b/ùSëÔÛÇf:ûÓᎾao ¶1Ôä ˜šY×/×ÜIùÃ/S¸¤¢x¡i¿qš!íÆå­guE“x¸f;X0ÎõÕÇ-Ñ ‰el%l7}冣B±ÒÝnÊØ¤ÒzHñæSÿòÛĈuy àM{´ïídÖˆÎX.رoÅ÷f¶Ò‡ƒžjß•ÝÎýr[…Í’§í¹“EúK÷8­¡áqêãÐÉåà謌¥Xq·ÛÇúŽRÚE,>á5Ùâ¬v6ügQg_ÓÓð 9¡÷üfvŸü•Ê!7 Ð`œîß4Ên4”§_°ä>ûKÝÒžÙkHpP…PÐ{l\\‰3ï4«kM༎ šÓÿÅoRXµ/ïgSüþç|Í„ „x)˜˜‘‚‰{ÂÞÔ|\õUµQaTb.ñ)òr”S_¬bƒh­,ÉWÍþÀoß NÇ©Cou$­ä; À[¦%Æ` Žótx‹—,€û Ní† ÌÙ¾¨}¸À=óAqÒCQÇòöpü‹JGX”ñZÔSK`©¶F+€àCÌ2’µ"ö¤ßÕ®|îlt$¿ñÃè.¾vSx]i#Ô|ïN¢j·ÁÚ&mÚªîF)bR^=ËÈöŒxÞkèIÊËÌÔŠƒzŽ—|ŒmcDå¸úçKUÓ=¸ÏÃjH · ž`?§ª¹{wŸau%7[æV¹/¾LÉ¥ßÌÝ.§Ã’ Ó¸©·.™ÜWe, °U72¬¤[r®÷Ì׸"× á©f׊ %÷òoJžà²x/B:tìŒç°ˆ}»?¹@|!Û‘¼BG¸Ü§Ž}½Óç;ŸìŠBh۟眾‚fÉdþ–ZUÀÓÖ-ÿé\uUÙ÷qw‡å›ÓLÆç.‚±9œygdéuÑþ‹ŸÁÄÕãMèϽŠhñ€iOCÙko.ÇZó—_̱¥£àߢ³Ô×îíº=Ù‹±‰V€•ô´\]ï5x³Pä’]럎uÌ+?0„P›à;¶ƒpæëÌ f O– ÐZã¿ ”¬’ïv ðá‹øshºNÞqòVãE†ÔÄ{³ÀAàáç ƒgP £-…€Xùï4§ƒËç§ p±?´c‚_Ä-óÕÂÞDX˜åÝÒoÈDŠ Îé{\.K,Þ×,ù§ý´0Ø’ Qx ƒûšžX™®zþnÄšÑ&½ÅÔtb_:˜C#"\ʣȄCއ d^6)„`aíe-ó]U ïËÙ{Ó£z¼êƒûÁ¡G«ˆQ ŠZé¹ï›|± çsÉ9÷óN?䆯“°î©ù U*…IÃGo㽯$²‹^º†Ù{¼Òç÷ÏÇ¿ Ò¾ÔµìÒŒ b¥Æõ…‰.Qˆ»ÿD¦€@ÓÇ™=ûÕËT¯hѸÉe£Ã¤Á?ä¼;Ì2K•áä$\±É4çR³ÚEòQþ™³Q¡ÿn‘rÛG™~fæ–Ûx"ž ÉbZ6?ñ+­Òc)²8íg~I3±9â%.‹'’÷x2£ÓæBÈQ «óö‰ß4`åö7_V‘»ï‰jG\éÙ¿*õÅ5&æß}…/è?4뤓÷ï¿UïmiÆW_ÆsðÜÛBÿ–°¼ìÊô2b¤Ä„[ÆgÿȈΊ­¶"ÕÏ}ÿã`3óÂÂ×ÁÄ\†»yÅÝ„ÁîtwÓgo1•(’ëg™1 —Áø¤XJèŠ)Ê3¾wÉë ˜Û5%ù÷ž-}<+_ á¶t\j` ¬Aòš<‘„3…k +ÙÔ'Uì(ÊÑ×Ì%Æ%ša¸Ìøë9Úx;-Z˜ï‘Œô”×àjgô~¥½Ù©/ ‘{èGN|=FG›õACH?ˆW¶¬NÎÀG›ü~L ð¹è¦–»Ô~d,Ž,¡gصµ4¥‡Ã}¢©oG³/÷¼WMJ-ùüíÖ²óíù›«yù)¥@¢…¡«¼r¬è(åqS½;¸ ;:ïÜ‚QNÊR¿Wó3˜³·‘j?7Ú(´·wÜŸÅöü™€IŸ¶:Ü‚½©»ò=PßñÇc}•qá¬åhשHoΩ.ïôS‰þÊß=Qðî*}Èw"Òç¸×?LâÞlGæ}å?•ô¨ä ¾Pì#ÛöíWà ºÿ¸º |b©–I˜ Ëoø*몑‰ì{&Eöã`TÍ—ìõ]ëÔdÿp&´–¿Ý›é)~³ƒDÂÍ8#½ÄÕMm“ã^l>ÉÓº¬ÞðË`0 TUâ›<%YÔ“\` GàS¼Tvći=/Ÿ×Ÿò5‘OŸb%'œjS•{ÛG±K$²xð±1tkÉPÅ-ùÝă2úæ‡ÚCkLnÓu`ÅB“ÈbemŽVi>S¹Ç® à•Âé †Bœ¯„ 3€kÄǹuU¸¤˜\/l:DúvMf=©%öà<5RÑ|œH¯±6v%øVtä0…ª“ׄ¡l‘å)Zá²éjGð”|eš]æÅ}~2J¦åžÒFÒ9AX¨“ò°/ÄxqÙ1¸VùÅ+qMþgdCÔ ?N1=}ÔqVw";Žý¾ÖÆ'[Ë4ãdt(‘Gª³Ù2‰ŸÝH+ç•q 'hmú+’2Ó¦- »HÚ£vYe‘§ت]ËEg,Ñ3^YjõåQ`qGA!¾ôié*« ¼oÇjpߪ0ò© UߟN.ÔÇd7žZ õhvÙ]Mø(Ì¥òuHß—œiŸ~¯âõ†«/y‡¤^­v°èîuÚÆ3¿Hïùf¶%ešóÉ1¦G6š†´Ær3aåóêºêx1Ïlé:\éÂÆÇìX¾q¨ÇíãÝ",®Åw!XrŒ¥}ܧ´7¹…)ç.yæÅ*s £"ÎîÍ‘¶±Pf]CíÞU&Ðeù¡1aaØ…«ºlÕœ’ëÒoéùoô Ò/FwR–i2ÍJóŠZµõHøßfiiÜ3Øø¥ÝÚìùiqRï˜Ôˆ¥9j‚~“yŸ…›fir­³‰‡÷:—Rb(Ç£O °Kªt…§æ1YfX‰»ŠX•ž%;ý’à9% Ì#ª·…WöÝeàÝ|€T3Êå˜I¥ºÙî'ü fí6Þ‹•DÜЧóškއ‚`䥺AÅfm¸Jo¢HRS¦2…è‘1Á ‰xl°Ý6&–^ä >¼·ç> £}\2ʈõÇï.RÓ9Ð’øÍÌ$w±œÛÁhé®#:±†Nª\4Ôçðí¦›J%ä¨3z’ ÉÆ‹LÉ(ç-×…"5},²Æ )Ê#¡ú¸GÔh’_ÆSl]8°†oS²==QF¡AˆCG¦3Îj)¿çqí,„¶¾çш Þ`/10cQ§÷·—< Öž;¯O3ðz6€½>{ÎrþN7éý-Š:åu4‡ÏXCq«E>÷Â%Ì&¨â}—Д¸§¯ Ê¡uJdõ»tñSf³Cg¾þ^-,+;òÞœ–%ãøm­b¤¸fŽ¥öb™¨ðãªù¼e‰1É ÏúN#Y\ÃÅz#y¹“~ïM˲²}±5fµ~Bøér[F\Ý(W˜]ÞBbfrÎFrìçŸ|¹Ùݯóøa7¹Ú84Éì@6Þmü{§²—8ÎwŒZpÍÑܗ°£²ŸÃ»v~¨™ Æ*I¡¿Ø”œŽ«"ãgIVÚªG2ÝÃßô‹ùmá@T3‰ÚÄ¥ž,NbÍÆP™·5U®Ã:ãLÚ¥Ú70ÐÃÔ5Õ³@Y¢ íÓ^1&<ÎI#äayËZóF¤‹ÉÒ•{[4äV¨Ûà8¿‘š¬ÑÊA[´1£mŒFZ.»N: “"Â&ìÖÚtæù®áÏVcÍü@εîrŒ¤‘Y=f@úŒ,âB=ÁQ5î[Uo ƒƒÌ©@¤[ÎééÕ0D%_ã’¾åa˜ÆžìhJ|Y£UËU2#uéÚdGö¢ã½*'cÚ4hIÇø˜du'EöìwŸ?0U¢"H§Ðݵ°®á÷e ëƒ 5¯ P¨šÈùq J1æÐè‰ ÉË"ˆ€ûábvÖâ1AªŽýÄIêÜ‚ƒ¢6¼¹Y!#ÝÛ;9ÖÖE þ°¸Ó~'£µA+U¹NÂéàhý^ÖÇaÞNu® %€AnC‰ïÕd¬U–ÈÍHxDLP÷<0¢ˆˆñ¹‚à2/“ê3kdQ…Aë |ßÎ#Õ,©ç“j´gÇTžm¶A—ܤ ´~¡ÉÌPí¾Fœ>Zd/·d\œ¤ša×»ôn¤Ï)ëYt<]¬Kó-Ûj¿*4Óz½H8»ìÖÜÚX-éÆ÷>Ä„Ž!i¥+wøâ¾ R}¯˜ŸK˜Âc½I±^î2ÈåöôÔÚD}ËXÁ­9ú9áî 1á³a°ãí‘=À·$·TBÓœ=%1ŸÎ½ÿH糆ä†,áœÚ¤x”e£f¤=óhàŠ>ˆ6$k©tÆOVäM{çÊè½\zÀèC‘Ù˵¦)ÏåaD fE|÷ú äkuÿ<¡^|$¯pì>L(Ï(ç¥î‚Âmú¹ÇFjðp¡¡#‹¡%Ïø5™ÏÔ]ª!ß…Ã'—„Fè5Vï‡BÞJëwé½;zM÷ßc Z¥bçèËJ†9?¡Ž®Íâ„ÌsHïkÕ²¥·ÿ|2 ÅÙ>Seln$ÍÜépFRðÊM­7o“™„X~Ëå¸1‰Õ,Bù[ÏÓY“Ý®¶ª‰öˆrËÞMaMº•+㹫YTØ îNÁ¢¹ƒüKô× i9Òœq‹^=¾·¦u=ß&«Ÿë=Ì›«pFÖ­ ZQàêÙ[`˯ Û&ɰÝÙí»Ü.Ü¥é_;¢x²š<tïxêôøÐEcýìy‰Ý-›«¨~õ8ù½V’ETí1t¼‰­’ó,Û–C\±÷ I‰“àó£—Ü—ìBc’0hÂòëÁìK?¬Nÿª‘…=ú9KÈ6ülÌ õù$Dq òqÖÉ©î!,Bt¶få¦á:šGšïãÜÎAîã0·ñ§K!ÓO¯ú VÓ„ù»}¥£®¨Þ¬<€Ð=ÅAˆ$íÆ(WfM ÞFŠ]nYU4Õü2h¯‚Ì »"nñÐîï¾Ì)FHGÀRC³eå°NrIÎ^E•þŒ‰ÆOó ´Ä¡Q*·)œÊÉÈ™:ƒq‹Ù¾§ÔxÈbg¦*l ‘Á5ïà°”íãy½ÉšÑgξ<ÅôŠÑÅÏv@Í‘¶¾Ì‘›¿*¥JÉ·2U>žŽ> ŒxiÐN…ÀÚëuŠO…¤Óø½Aaã_L_›Âtº€6W·|*ÔPÏÂø\``8ª¦à|¦í%‡|ø+“Λ33€U¼S~JÌæ‹—Y Í-Ú2{®ø^¥4^»ðP¬À nëÔQ½'n´ð„-˜ƒ$)˜).îL˃8˜@î“o®ÌPÑå[uU§­Ï@Cj_•PáÑ/6Ý„ñG’tÈä΂O[Š»ëqº«Ü­‚ã |bGŸéÚLGHÄ¥f·vüš$õôýßÓà3ÈxIŸ¼;c˜à1íùHfì( ô ÍïX9&>Û2èÆLø¹…ÂïÜç"Šÿ5aÝœPÌ<îâ³ï/VÄc ¤t1«Àü¡´òd¤!£¼¾°ðrŸ{óX§§Á<ø_«pº×µÁ5¿¦*iÐTñOMÍq£©Ð÷+T<–_éÁà3ç¶1‡÷ì]8EvÚ *ÌœiŸ%BðÕ¼‰ß±c#äÙñ¼…ææ†úƒèsªlew¢R;Q`ó|ç#/Ú†d$ÔFâÐðˆnê…íÞþ_/Vúˆ pB!:ŽÏO ™(wL¬>CÑ@A>Z*ľ!ëØ »rè¿‚u¨Xcò®Ã8™{0­[Ìs3Iê´KN‹JíŶºi¼r%I õ09ËÏ”¦4} _&Õ(0FáŽ(cUR[D0Y`Ëß É”µÚEk“ ÙÈ_™e¸Þb&n—g,,ÿR»ÝýÍ! ˜Xå„Ϲº Ûx@Ó1:”;>{!PÂïÑ‚¬ï.Z–Ï&½$·¶":®áÎ-x¼ê¶ßd~£çbz¨Q7*—5Ó9h(©¢mϿ̗˜¡t ÃAlR;@uȈ+ÌN»™‹·}Eƒ*Ðï"pÀl4õ+7^40õvVîgG–vq|؃·øûDº¬°ºŒå¨ mŽ= ÒàésQØSßgøZÒÊÑÊÞÏØ“õcüÞeºYÏk—ò°ânÙƈ_Ä~ÈðDý d{;@oM$Õ–~?!¿UBÂ%Ô¹Žm@ Zð þu!×DE~3rˆ4+üœ¯s~¡"—ÜÐ1?å§Ž¡ µÑ8I©d~×)³þÖ·Kn|HažW% ìs˜ÁO4Šˆ³˜<ÚŒÔ(¥©2RÅ.ƒŒ ' '/ AÌn“¥[¤œÄ«Í;­ÃxJÑ@²Ð¨Ø²!ƒv%×Û^›~y+ ƒ!á¦;ìÌbJ2m»,¡Ò™WJ׺XBG³§ij€'iå¸^Ìõ#LuyÑðmM¥çU˜÷;E¥Oç«fý`eöÁõ-Nª5ÎåVšìÝ¥ITƒ1!1âÚíùÎoâ¯<™L8׌|)…qƒœã¦ŽIÎuMÍ]—y(<Ê(¨2Èñç ¼°­?|6I®( L×ÕE¤Ò7a|®à1ÝÚDX˜H­^Ÿ–?4$Þˆi©·Km¼ `•3”ŒHö¿HXÈöËzY¼ m†Er°ûèÍ"s+^é4ªÙ&ålÔFÂúÕ²½l;ǰy7ÖÝ?ÆÌxØ<7è9R‘O¨êZ= ïj4¨D©^I:SW™Ïj÷79E;´Ô-  „'Àw)gwéøÑ ~ØŒ®KN¾ÓÎÐÞí„wÐ7wLÀ=*«ªô©Œ¹é gEBpˆã¼ã"Œ…á ®›Ü)YµIzû¹½É!—¶Á<²—wøìE[ÞA¼k ¨P‰½s÷¶|½Ý=¼Gã?ïrañrPîÿº~#­¢Ù6Èêz”縲-‚J¾u1 [ïÉ ½ƒ…4e$)®6Í=ñé€\Ôq âô\«æÕe3z3ueɧ’™Ë]ý¤€AÙ,.'¥ìôæ9è[Äõp½Á;sH8A$ÏY•D#tcK§u‰žÌ^Úrz§~ñ– ^Þƒ¬8Ì0+䔈ú[£áïòÁíÚüÛJ¹Q¶Š%ßȯIÚüC6ü4¦_UD䥇(ÙÉõk|‡l_s5 ΩŒ|“,ïô’Kó+‡žÒGß/ÏÁ÷9š.éœf®`¬?ËŽX8OKÈñ¶&XsR" ab09±%Rö}<4ËÉŽùD)í)Í2‡/86NLð?¬É|øê–å'Ü*ZNì“ßiñÏ?1ï~˜¾b-Mµ>’j%Ö/ÐàŽ—~c$’ŠÂZ®cÑÞ¥–õˆ“œ ¶ m¡Ž“Œg.ªƒþXw#–řÕìúè:\À2ò‰›âåV°üx6Tƒ­%šh¥K*aœØ+viéÎ9nÐþ…õ}S13ÆFSóJDQNsêžT\ý)?4SY+&Ä/¨Ôý/'oÓ¼‰9´jF«ë>U ÿ ”³t&ÑP]l™’ ÍY]Wj•EÈŠ|r@6ù’d$þ¥à5Žû‚eä§Å¬\þëåöÂ¥¦½¨4¾¾ÂämÉÍýÁZ¨{[G dœžâ¾„Ôýùˆ¤+uÇ {å/6µ sA¼)»’èüÉšY[xèˆ,Y¼BlùÃPÕ_R‰Õôõ3A¾w¨Jho¯Údy׿‚ßï—‰ŸT½ÛÏÀÊÀ"‘o?ѦŒýÊO譢ϠnN×6F#.4LÑÅB“ïP¯ ƒƒ×$7啎׬WÄê»ÄY›9Œºë òáüqšþ!¶ITl„± áòÞFå€å>„Ðd¾ž]ÞïIî,VKñ¯£p­3lÕcÞTÙÏZ¦–B5”v>“!ÄÞt8!»ú1üÃу€ä{`’ª ™ó•Zã8ØL„³ýf²ß[è§áFUrÑýƒ¥”ÛÃÍ‚s˜õºª×ëÓQëF…'(E¶-µ¬åY £Dé • ºCþœ)\N²èMGÅõZ†fãÂ_ô-,zÁ®¹Ôžž^¡–G: :«ž†‚R¯_¤~uyZÅM°ÈôvíR¿O¤Ë³l1^µHNÅùÑÝ=arFò0¾D¿-¹þ”ƒZe\v¾†#Ny­oè»éžð.:a‹76´•ì“c4­RÞz² ­f‘Ýû~–‡ï¢Õ¯»ùL{lR • \?Å~+F¼ét§ W ®£ñPÔ€…mÎ(Q1EõŒaì%Ã…ê%5ÂIºè0ÝL,ã%Ü|Pø¼Ã±Äl5jDb-õ1“L¼Š,îgø[žÆ÷ l· tQ  ÒñÆö.#Îb?•"tú܇3ôô`vFžº^K†L![+øãÕ:o {™g^Àþžë2_ÀP°…ÿ©*u[]sJýÏîÂìxľÙ>kWf3„V±õýò…ÑzMÐ?Ÿ¿|ûrd„&©9„ó¹ý$Ü»©á½Ü"5×^™þ=¡!#õ¬ùG³{4 `"j+µõ5¿«I1J¾#êjœ"AXËYGWBïý<ÎÁôû|B—ð”×ÿ?‡ëÎb¼ç[ëNÍ€¬-M~4€lŠ]Ç9©B/˜Ì‘͇j¨jSÐ9¶¥¾P&_笇¥ºÌÛA1óI˜+‡sì=½HÜ›©°ÿh³éq•úÒãH*Ïš cA¾ñh!ôWnÈ„éµèRqnX+o†ÁÇ2²i¡7D˜aº‘èuȼ]ÒÒj«B7Î h+eÖk¸xEÈ™¦¾¨Ø§ëâ.(€ÍÊúQ¼Äþâ qdS­iߘB¦ëØlð^æ†íÂmà=´„Éñ@¦F(âÏË”Š›z9†-ªÓÙÐÿÄ9;ƈ X5—„ÝN‘”î3À‚q¸|”O_Y&“ lÑ||PË"öD“¤ÌeЪR$ÁËÏíþüÑ\fô¬eþ£¸ñ]¬ÞÆ9´†¯›ËYž7ò§¡÷;˜‘)Qè—~,A!›"9_d¾lPt…‹1ì÷+ë›V‘|븤\c\±#Gy±»FblJÈ–]¢FÑ)?š•5?1#SI‡¯ÚTâ7I2²2T€þ.—b¸˜F|†è~ó ³áÐMøG'ÿk6’1Ù §X^K2ÂÕyX­õf0|Ò~%h€&?§’g¼Ó;鹫¹a´Å÷9›>N „9áÉx™£+®ß¬²-ô%M5;*på\B« ,œBvøuÔJ÷Ë4° ¿ GÖÝgrÇ× Eª#êGZ P5a5N3w¥ÄK¿r;§¿Ã¦&RÉ×òãÈ¥!qи=¾öÉœ©2"àjžlçIïc¼8ñ©:ÂÖ`],Éj‰F „…²„³Ê/ à—³ „$}%aO©„5î v*æµ ¥é=ïFêæ6XZ z¼ø‘3&”ljÐP‘±'z²`E‚H—ØK§6á)…HCJ ?íð¬½áÈ#ñèÏ—ùüóÛ‹'×1˜…ûÑl“nú¯ãyæLEf૚Í$½dFÑšvFÇø×Å׋|' Å­ƒ :Xùñ+ýöpAáá×÷1¾¹=èïò‡zw㊼Úž)¡³a»ÓöQ ³ÁêÈTʧ€$«Š)µü“ýàÉ"©ì³wŒÿñÕ¶> ›î/»:sIÎ{¬|ÙЪþë Ø³ç£\–¿˜þ&¡æ1JËÍÍJæH: „”Û9yWÜÄ]¼#¸A7×ÊwÁôeRĽ±ÏC–c9-ƒ¨.Yc{þ°ôÕ«ù>Çc÷³~èܶ*¼µb`J†5ÞTÏVh‹‚bt!ö¨,¡ç=×–·{÷tF-m•ÅMaÖÞò³}¬4{ÐÓf.ºï/Ї“¯ÑÕZz?i}ÕC\ö™ïü|/õ?kCß²¿“kz[66ºLœÓ²gi­¢yšW›@7l3J$å˜ úIgª’Oz U_ê-8›pßæ#šóUòº2Ëæåéí  þ`ÿÍF^>D2¾awƷôH6ûÍt»í²?6°«ØÎN”KHq¸ö‰ÅŸ! LÆÖÓŒâúiuÊÍ=K¥ Z>yµ…0ø]+ÙnÄÏé‚hªZ¨gm|ï•qkœ¹q«ÆOH)V凉ö¿Cé… +­vù˜•ä‘T€FÎßËÍh:›dÅqïZvþ€K‘Ñy°ÍåÖÄKâµlmwþ´`OÆç¯‰øa°M7´s&œ9tCk¦ì‘UÅJô¥ï›ÜDÖgƒ°ÜL+¦‰òQ@2óû¨ ‚ŽÝwcçÇûyòÊ»¨ëˆºúr7Ÿ?R·Ú ‹¾´@ ME3õÍ®¹V· ¦ ìB5ÕyžÏ~d˜|JãÂáp}‡uâÛðêô$CvÈF5Y®ôÅv Zû>c)gßN½ú6|bßù´·¦ &)-Âúý¬Ý„3†šÏ7[U¸lš ÆX¬àŽ«mQ#Òä}íóqŒ ãd§i0˜%hm+OÄÞX% ÷J›—éò˜TŠçq ™81Û/©Uíáð°XÜ Õx$8ltéËšF ¬žó¤Å´èÁïó7–Ù?s° L¨fûbºHK *Øš¾nôÅ–ZK ösºŒôŸö)¢ûÊwká—(5‚)»Ò¤ Ì-ò2Â÷Áž<è1ŒÃù5Îå&ù NêKTö,Åñ;Ÿ!(7Ãöùâ°•É` )¶ošøks-ŠEÅúÀ1’/¦ÊZ5é@ ·çýº«¼qxKtÎQýã¢T?—’GQžÔŒB*žŒk´ž §Ó‹zàÓDeT]Ĥïpê"1繡ì–—þŸ³­ödMáÖ{tMwÒT=݈ÃB^v‰1s  cJ‘7VQn¸eÀƒ¦q\s …ÂÜ’¢cÌógOÇ [žK/ˆI9Í(¯!—kÂ?`ïTÓ;Ö.o_f¦S6æk%œ©( ˆ»©¥Kù¾Ü€fpèTåŠhqn%ÿ95«¾Ê±eÍ6ž¸üŠk4¶NæñúÙê°¢(¾Ög" {™.ü¹¦º”쀭7‰–(³½ÕömÇO5ìaõš›«ÏÓÁ¤›¥çJÊÆt¨J[¥øÁ×”þg$oÜdg­éüö¶ê³VªH{ {© üfáô¢d Ÿ‹@¥ÙÄð¼„ýì܃F+ÿ 'Ž™Ôèƨ¨'rQ¤jN>ži ‹%ÌÙ +W-–¸D½_Eñ/I-hñÄ54imíÌ]Svú€qŠÝÖO % r–å]•È6Ne4 ©šHÛ*ÙÕ›ôIùVË7Öõ·º| äňôFƒL¸¼$T f·åHœ fZpð±î_«>Yžèd2µ»†B«l’YÓ«Ù´žòDÈ6ƒ2|׌ÞE©ñ¾™?¶m´î.h…²œØÐ‰DÅ…^ûl{i8G mʃ뗥_û#x‚q¥@úJ*§…¾<¿/‚W؃lÍèÎÐŽ÷ìµ»,íh±p§‘áMØÏZÚ³Ï6Â" W2X\kÝ7,޵: Ü߉V÷`s¬O™ ƒGpV=k¥0‰Í?q¹QI¤×'½æƒîúbfçêÞhA‚¢gcÇSjÌA%¸òÚqÿÐéo»DKS#>Dcœ÷ ±ËΚ;§xòWhªX¢Ó9kE*ÿTÇMÜmûp'¢ãPωDqäÒ›„èV×7äöc©Ø`Ó&þ;ÈÝüO¶B;ØÏø#´¶óâbù5]Ûö­žWû3mßÚ‡2¶•@\ô9©eN‹kyûF³ ¾=Ö ³ŸöšÇlŸ“Áî;–»]ttÍ"Ê~¥æ‘ÿײé;¿CQ-iî¿æÐk±« ê‰J‡rLrî< $¼¤ñ¯XáÚj;öÉu;™É·è&³íÄÊuŸZEæDG4Ä~#æÎE²Ìd±}‰‚‰þP^ =©_9Z¿!è>%”Kö±uFºÉ„=ÀU~þadŽ£–8ûB®Yå¢gx=R®‘wÛ †b{ä:|¬%è¡Ü÷pdbˆõÍäî0<+R¯Ã˜7z‹?ßV‰r‡X$uÒ㘜;Ôjù´k¾ä¬]'†6ƒ¡¬ýqÄÚ÷'öYIÖœ°²±qßÇxŠ®Ùw`/Nu[6Áãñùmùs¥[ëua,$vIž5³Ê8T™¢¿œJuÛ »¯ÌË&ËSgÙüQ§~§~}NPºö!› Wé‡.{Ÿˆ¥ƒ,ÝæKêî°Oc fòôE°&+;å>¬èèÍ3}i]7m wYRШC•®w„®ÿîxó’kCyõüø9²ëp.ãZ®ê¡{9A)îþ“Žâi¯È©Bˆ¥Ž!bKÑÆâë°(úÎ{ù?›m zfÚà? t¦ßªG÷¦¿õíàgYŽ‹oÞÙN”:ÌÍ5‰6†è}äê–>&ºMÜgç°³aŽìñ~ãzbg­ËFÕôfàùdM:Š*¡:š°°\£°Õn6oGÇ;L()3ò.²Œ‘Zd#C:k=O–r±¡:H#æE7‰Y㤕‘2ÙÅ/‘v, '‚)D‰•òh4 }’Q«¾õ<±Ú›¼Ñ0Z;¤³)ܬŸZÄ# Ò;Ånˆ®È/±VàQòܿ˱Ÿ’ÞŽ¡TpúËM!€#3é¡SôTðùñc-V¿÷‰”ܬoêæÎ³D[q)ò•BÛýB¥ÇrÔÍ5("`Öm—]Ó¬¤!Á Pì¾}«µ[Óõ YO¨È¬‰bÊÓkMŒu‰xNõT …¡­îcõ83Åsz›˜wç«IN¤LG£ÈƒÞýæ^­óò­öè”e$"±2=¿HrÌé…2ïË»€Båú£‰uþøØlêX±›[\êPó×§u.çWÀ¯?^UëêJm–v]i ÞBeB#Ã+½ýÛ¡ÇdFF­|ò$”|ì±Â²EÍb*K”Vü‰˜0Ö Ã#|PGýO]ß#ÝÙy =Ü&цa¾ú-ÔW†c= Î¿é˜$’‘ÙÆÐ㋉Tò]EÖfâ^H­’€þŒù¢ù|‡Úç»io{£§JüÓ°ðR‹Dée&жX3Œ‘WÄj´ç}ãH‡ÀÝn þ‚Üê'&ŒðždƘzb+±ÅÀ£æFÎÜ´¢/x6§<úÁ~¹:>º“4ìYž—©SÚ9ZUÞÙ|ð4Ú~½õÅl+öº°Õ¬M$€‰Aå÷ /–Á«,zûýië6f\~òžÄ»vüÑÕñ¸๽zçim1³í_ªo{Bc¥™Ò†Ý{ÁMZz‡Ðõ›Ž¾á~œ s¯¤C«ÊÎÿƒpƒò&Ï0=°SÌãX… PÇcœ(ÅÀŒ†«€4~'Æó1x£”„»¼}s{2_%Oç à †Z©O8þ¡ x²I¨²A5ÔÜÁµ_õög}Ê•#¶Uò( ×R¹¾„mÕ(Ðßñ_÷βÊamRlS.ÀöÛØ?gtÌ"ƒ²I°uG–ÒHÖåŒø+ °ÊGŠjk¬ŒÑ-XÈûJ7¼­!¢—ÆŸçü ÞNwhÖ‹'Ú oZ³¤}WJ=hþ8Œ ­mÁDk?š¬; *’X9ÈÃLÈ.r‹9R"Áé¼#6°ãO‚Cèvi™Ñ~¬‹(-+ÈÏÅë³§Yþ& n¬úRè¸ Èê#þL}VìAÏé5=)—…Íù3Ðâȸ òü|+Ò¥û$çÅ\¬­úx°×iñתéjW–"¢Y÷€ŸYÚT£ÿ%la˜¨»ºvd”Gœ×Ÿ€•EªïÝklŒOòÒÇžAL2L}ŒÕ–ëÆ¤Ð@i¡%Ø,z ,z(ëÙ©SŽLzñS‚¸Mq÷eMq)ÚP*Ûè5Ä®W›¨äüñlœŸ¶^àÀ#PöE­‚£hÐßA!‚—&FöþØúX-µÊ…WÔ©îÚÜH~g¯6TÏEt`ìåðs¶ñö:’¶cÔ.`=õ«Å<é˜ĥì!wŠÂíìmæŸ%þGD'CöÁR±½·‡Í”â%‰BÍáè(Þ¶~<“*mÑ[>bYGUOߨtâ¨!áë±[¬£ÝÒôxZVM¤.ùÊ’ž'þƵ q <îVÚT ÿ§¾m纡â‹»‡s˜'½ûÙøJМŹ öÁX˜L/Û‡©GB_Öll²ƒ[wµdXiÕX£Ï«4&ZbÄ+H*ÅÁÀBzÒN,™vI F¹g¡ON àعLÚ@W´ÕùýAjÙÌü`·óõ|7ƒˆ ú¯gɨ° £Í4~ª]L°;&Ä£C¿ég‘¬¶¼îÙØGigâUø­/„~ÞC#‰œc|ÈmñLKüš¯B ÌŒ`>×;‹àìî9ÅEV¤×]oQEÅÞÞ SÁo>žeŠCh®Ä—þ½ÈÏ[„‘HM]Ž&ŒÔq\{8ÝIvÀÈS #ƒºþɨ.0ª§¾¼-XãWéª0¾K÷"Ø Ö‚–´«°Iììî[?¼Ö[¼t;nüf’±ì.†lç_½“Hgµyöž4*ÿPŒç¯K TNu¸HËa–4ô/jáUº´&LHø˜¸ÅÔúÃ']ç¡ËdµÑµú˜ymz€ÿ;Ai¯éQî6d•ôæÞØ1ð^~ ƒÆ7"ñ[>×Ó; þd=ô²Á †õQèD5å÷¸pì‡ àe¬qMõ«Á,¤è/5ùßMšé‚=lv3ï§7Ï@ÅñpíܳµQ‰!yG®ÛɶTc©òEGY%.„¿^¡I .j¢ËóºèÇ¥­ë먅²/Qô·CÏÅ€|UQÿ’&9å|ž8)¼Îu#EWAŠ(ºÙ'å€y•%‹ÈB.?œµö˜¯ßxvñÚb§;­z2å'˜ž%/PYfåZî8A§{OckÂÌà ÛÜzH $Éñ r^µñ¡±5µå ~`¯ßršS^­UùÊð0w¹ +T°—å‡üAåÀKCJÆG’ÖГD° °ŸOV‡Î?¾r™"úÛ¿nk?Ô4ýá2›ïå ÈN9w2‘<Þ–.é0" `„*o¬Zú"ˆöÝÔYcsÜR`ö’„}œÕÁänéµ!8¹ŒæMöpjø[Ó®ÂRn>tjBˆ\b×Lô Å8u Æði6Èš £ñx=Ä-sÃøv6Xn5x’¬JÌê„>âZÜ:¯ M˜¯ [€÷Iýb7¢1DHaÐÈ{y!®3ƒ»‰óóŽ€Cú6=Ê¡Ž'ÐËŽóø&ã?e5}PIA ¼ÀƒM Ž I_£Òtw8kfjqè”ăڱhëµä v¡bþ. ¯¶tDhŽkŸG×ÞNJï^#Ö C:M•þ 6ö€NxÚêüõ·Šñú:ÛPâ2S’þðŠë0>c£¸r(¦Rµ‡—~W› Õ¿ö&¤aù.'DàÈð¹öíšö ¸~bgÓ³ÈV{x´~ ±(8ß‚~Îm%éSºn§éCg*Õq>Û)̪C4éÔ$Î¥èùàçð[a ÷æÔ%ÛËüÄ¢P8¡¤ÒØeìÁ¾)–Iz·ÞˆÈUÒêÔm< ü2Ý=diE·|Ö\”sÍ$•P[x§–/Ì5Âd:R“Q óä§?÷ƒàõ¬Q6ÉEAÇ”âX"·$` sŠÈ–d+¾Bvà¤4ïÜZ)¢i¢–«—=¦8GàÙÂÃAø˜Ôv»<8z×][¡õÁÝZÞšR%^õ¸rõ¥ )vê6`‡ “B/º5»n”1ó°!O4ÛéÆàôº5^Ï2^\ È^Rji`ÂëxÍÆÕî_Òúq]ˆ¢XmÔ~þɆéÝibHʵiùfés—Õ¬  dhHøÜôz˜œ#ªŠw:mi Jºòç! §dÛpÀ¶©(U>Ò…_²¦¸¸S7ü¥>áD$ÂkŸ¢r˜:CZصi [Êm¹å õ)x<3Á,|àtxšþ…|§dAÒ9¥¢µìµU>6dé5yb3ÈLjÃ\Ô¥õËÁj ºÏ‚N±ç¬a'¦ŽGã ½“dNL$6ÌÉß¶$¢Hò³ûlpaQvô¹g{ÏwûIúŒ²9Ž~ÌóW¶´ÃÛèKÛºŽ'ë¶¡¨&õO ”úLžÐa¬jsNÃô°j³Þ®Øû»Oüäz g•*ÕcJR`*J@lã¬V(&Ê©ozP>ûÁV¢ÈØ 6Üj±Pµj5¾Zª¢d•^óE(žÁÏxN®9pI_ Bk¾™š$?¿D²Œá Ëúƒi¤Wz›"Z½ûÂ#‡òæ càü·Á¦¡På™É“ÚÜp.ãV?…lnýåÙzeØžØrÅü|z7®#ëŽ;™Ç_«Ëœ's«ÉÝ[_€2ò&[]w”L ¹^*¨5U|ðòÈémðž#¢DÛNÕ`­‡ýøZ?e½ÄQqû'+H Œ²—¸ôØæðmw+Y“à«ëýk«U”î3è9Vü@—6¦´}SAªBÙPëgÔC9N.¦¦ýäßgé^ Фó6¡‚^ÐÖj¯C1˜ÝÐ-†2´&È“øŠÒo·îš3rÂBüÈãÕ‚££Y‰]ã/˜Hù¤-ôÅlýíXG&€oÖ…tó‡pm"§çäÏá—ºç‰t2Òì“ãHtbÆ.T7ÂÉ4˜ËI¢£^=2£€å>5¢FÔ4"~÷¹_/ÔoÍ4sëoÒÀ¼Hf#7ÕŸ¢ÕwHFº7™ÁÃÃù°&Ù×t˜E"Êû¯lÒu³ah_&(Áœ #/zåVl¬§@!ÒñÒ_@½Y&’ǯíC°¾ªð[1¡ßí[T¬ǰó7:Î³Þ h {Ÿ7Æ{òλe¥|¶EÝF¡Ä«†?Ó³ Ùkêá({†BEíL}¢?4ÝÚ‘›kKøI–GM™å}Õ­¡ מqÅ'†{¸>ÈQlm=؇Màãž½l¸z'ã®bþ¾å+3­o¹Ç÷ -¯åZ×z¦'sÎcÔY8;Úeii)êJ=–ðû³ô¦?åt ìw\G,VÈ$Àmð¨]tÙ"jÔ_¶ŒP|L]¹ã9R¦-o­œ*ÏN²ÁsWÔáÏHƒÄšÙn’,w*,žv¼€ÛQ³QØ8ìÓMÏé^Ö–ùO”¥tÔç'o–è‘îK_r‚ý@óý2z1h2è1IÆ µW¦ ÀÜ8ê½K!|t!‡†HÁtбw¬×™ïj[iØ;kèãx"&rµG,íiagƒ:6ð¶0ŸôšI‰¥úO:ƒ Š«<`ÉfÚ>a"’!#èQ’ÕrÈ5iúÈŒ®—½‚?”SÏŸ©Zß?€óÄÎYúùTQ%Yð¼Jè…Ä¤È™Š ­b‚ØÜ¤!Ic=ôµò¶MxÀ`ч(mGi ­¶t¾2Õÿ.;§½Ã):rpSs–L Q&dUR@¼Ø¢šIô@ãJÐhöÔÛy„’ªÈg¿4³û‹iðŸR oD¯¢ºûªÛ¸9qsþ4Ê{Y"ç B²~ë¦wŽqÁ«Ò‡o¦ò’%´ûFO߇ìØ¯Öo®‘óØVÏh:"êšÏ°ËûH¶S°¤–†£ý»õNýÅà _-’ðNàk¯×å½§i‰§ûgºHMWM ²|ò•nìàÅK‚¨6ø$Öþ8ÞbI½nMÓÇQãýjCõ¤‰ô{›×÷[Yê©53;Ù]þŒßJ:oÞ0šÚcÑ*±¯ÅŸ]Ü„O°üš/už.Fá„’¿3iRC¿¥ÿήž—fG2kcÔ7ì‚ ‡jaî’6]JÜ–f~(– ÇWYäx>­oQ‚1@Ž|«ŠØn$,¬I&{ÜE½,?èðØÐ<ƒ+®Ñ_Ð ¼FmÖ¢‹ÁgŒa*&wmk©ðºQùÄ>í÷‚qíEE°yÏã |>atwœß†>»RâRO'ªÁv‰®› '$7Êík Ú`® æÙ¸GÐ\ý¨Ö›œ N¥‹‹é!wÆšŠTþ QR©ÛÀ‡ýÃø“Î+_ªhÙâûQÖWyžgŒÈºüf9ÎíŸÐ1ϱ[ççžj4ÚÇÃíW4 Wá2_·Ú™%—¾–‹[#¼Y2‹’áÌ|.àîÞè<|cqn©ý¨7¯¥A](0;8ê\i²– ¾¿ýx ƒ ·úJf ¶çD~³z0“ø¼-Úã&ãŒ÷€-ÿº…wÆc÷#c”aEl £€ðTÁGAŽý·D.iUã³aék`t¸¢!ﺽÏzKº¬,Ó—hh4¦º¹nàò“q`ªAŒ”Ë«–î@Ý¥î¾ôm3 Í(…ꤣ?UOX öĶ.WA^êT÷•ÅœÜ)DÉÌ K—[Èåyþ”ý‡˜ÌýG›Ý˜¥ŠÔmƾ5 Aœ ?+|š„— Š¾èÎ4­j®@f“˜{?Æ5¸‹CS?@ô”ûÒœr8m-§^(’G±ì„:QÁ9¿þ˜8ÈAÑžk >ŒwGîfbM ãóà†½Lõœî˜¤«T÷˜ÍØOFÔ 8ÒÕ©6©eS8Ç`ÈÀd‚ôE.“æGÏ_löÓMz œ³‡ HqØdÝÃÖš.‹Ç¸xÓ&iQŠÃ¬êðWìÔÅy}ú¿Ò›m’ˆ±ÝÌ…¹7öwkú _§cØÿÀ·µÇ!²ü¹©aTÝÁLÕšÙƒÜoû(ê*”ãdö'?χP륦6ѹƒò^ü6@óÍ>ÈŒgBþÿS­UBÔ¬9¡°4bd~º?6Ïiˆ'Çm4JßÕ/ Œ~ÌíDëGnÉz ^-¥J’gnÚ(\JO–¬iÂ0µsW1½ôò„p–߯ªñÒ €[B³ÈO¨â„"ÎÒAÕø¶¢‹uFô©òò»57™ßÀÒ/Û)`í,bLQŒ‚ÙK>¶ÜšA:…Ô‰[#¥³*jWɃ>¯˜Ù›œ½ÞÉf[¿Èj4*ej\:½7lo#q·ý© &‰1K™ Ky+C¯¬Y²aÒ¥ÐmŒ_Ú”2 å-¨ïèoNÜ8ÛØ¸.1Çî›ØB£ç%ÒŽò%î÷Ùç³´‹ö¾éuAþ†D„ñN|ïZòÊ© [wú!­ÓÈwˆ„ZŸ•4û‰¡ü3~éé6»Å (µÒd%¿f³ Â/zà€åÐëaÞ\Ô¾ð Ôk³Ð«rg&ñ9Ä™pnÍÀSþ€ žÎ³*D±x7¾q“M\å›õl‹!³C“ Ì'kô¥c¼ŠXГVû’ç-ì‡)ŠÕû t#|”ÞýÚóÝ䌨όè­—±DŸi'-øú·È…S«ÏºH¿ÀéúŽ'WéÛ†Ô˜Ú±Ñvœô|h!4UöëÚS½@_AS½LFF_"_5hÚFy—³ž™iÐoª/ú°„ºLUEoå…‚&Ë5ÛÊÊᚘLÍ©`–‘¹§Òþùw&Ì/)sÒU4ÇWèE›Ëµ¡—&nÎÜÝm¿mVR Z¯*'¸ ¢À ï0®Ü¤2ü*K‚áÔÁiÉ‘Ò(|JjšGY·ó²à± jfÇqÕ̇è\%ok¿Ù+wŸ³³ÛäãC…|i- ‡Úü±h!±0ûÓwŸàðTU§†-óo½ƒ0³¦¾[U»{ 0%¦;›“ŸÒŒÊ„ÂÛ@HB)ä£Û‚ÚÕQÐìÜÄÍš?ªwÅ‘è2›ÞNLÀN¾Á ºPqRW¡Ê`yNíÊb€r¡_Éš‡»lîïÂÒŸˆ®éQÂE‡àæñW٘⠢ëÛ%2ϯ³ídHívâªâ¥8®þÄb³f­3e=¼¹z[xerIzhY»‹Ž}p=mú$]ðqJ®ë¼0¤]Ʀyý±Îà@"<®È2ÿ¦/×=8Üe÷À/2kÁ²ªßÎ,ð…G iŸ÷!ñF9í²Q“j¤=¬ÓT£’NÏ£do&‹M9’ë/­¬l8)úÜŸü0ør‰"LìtÉæ¯\õ¥oï˜ÎW¤Í²e:¢ð¬Ÿé—É}h<8ìÊ|Õ”ÝoÂv³Ð€bY ¨õÑj U#ókü´íÞv‡|Ž‘Æíò­íß7[(®³I(BÒÌW‡°.›×Òzaš}Ÿ-FâìSÇxöwš–f:?.;/èÈ–cÓÑ'¼ð±…X¡ô³¦_¡È»_L…s(¾üßbˆ5Ðc& `‰“1VbÀëiIL³3âzvÑ׊ñm“IN] ôïÁ¿úY¼ØÙgwàŸd#ÿ’ë:ÝüMšÚvP¸¶½‹`ÿo(K©=é\û\jyÎ{JõŸú" P¾w 'âOŸ£Ð†~˜»ò&€Qº§QËeTB€9-îvBª…±aóÂN¥x6‡zà5‰é¤*kÿÀ÷—Ó$S½«5ü„ñ×xyCªÍ z£»¸ƒ€€-Vã @¿=^siëË<Í;e–A$´¹a—*ÈQ€:½)­Å¡õ¾*Ù„&h„"³\Ão5«ÊðÒÅO~I¹81.SKÙk9ŠKÞhÌ`³êê¥Á…yʺ‹eÙ„p¤”ð6´iV¥õC=à‹Is…k ]žX~bÈ~êù7¡IŒdmwô9[¬â2R cl1Ý"WC·Z ·µY­s¡s,‰ŠOï tsA}ª»ºÿr]M!ÂÀš a¯ÏØWHšù™ V •sþ¶Ccg6ãTÅD/…à~êÙ¹[S' ÃZ䃥©Õ츭©zx(9ƒøòt5¿ÎºK_‚87`á4v¡¦¥EóL¥û›Êü{µ [Ê­8WÍâ”~Oaçìgϰ¿Ë»z²²iw]Ïäióà©üŒº|¯t‰Ûxô¶/s$‚ôSÍKfÈå =_˜!NaZ¿¯.²ß•.5Ø «j^•q=‰àn ˆƒúwY€G±FøÌÕ‘ÞÃkZŒ/ ÜËnÅ ®&¾rT}^Àw?yÒ2¡½ k&œÆÐtgô‘­àQCæ“uyw`€d=ªðÕOR¾ŽÀ£•‰…f¥ã'Ï9ý~HF÷U…WCW§”ì®y°<Ò²"rDÓƒ¹€2JàRËÃaDŽ(þ·×—?5`ß·ñNµÅžvôÇ­pnRîGðú£Œ§¸®üxøÊž:ÁÀÈæ§+¹Àv†0À¯Kû?Ápˆ^š[P°ù ü³½62nÖ£ ýŽxÜ´;šw$´H Ò¿Þ_ý<Ña6±ˆlÒΞwÕ…¤[x¦Èœ\çÍX­X¹*MwªÙx/N^aíôÂ×þ÷`Ðì÷ºÚN®ÇTœ‚T£V¶¸ò‡ÙÓžÑ'‘£J}‚Ç[t¯œL~ôË4Š‹°p…{£Ac;ù ùqû>ÝÌM°eª£æç…ï*êÜç:gpÄ[xSM7ÂùJü‰ï÷®ó^™û²ˆ[ð[ ¼¢–þWûJ)©ÙF+ãGiý4UW`¿j8’QsÔÓ±1AÎ×Ú1^­íú/Ùbûª3õØ®“8aÀÖžæÔf#Ý¥–´O ѬÉ2ÕŽ²(šÁ«èïzñ·I çãåjíhëÕ[Ÿ‘Û×JÍ¢§h¶}ØÑ± Áh§øY=ÿŠiŸþm8%¿€ê\eWT¡ª×Z&d“ƒÉ–ë?Pï›Å8P-ì¤pre 8À·^£#`·!½¦,Ùž.-0Êu»Ë•…™¼±ºÄë:ðÊÖ¹ # œRínés{ {‰¥5ë{­J"6e«úž’:cd™`]R"ÏÇú†žß,iÚ>ÈPm.þn+ünA6JÅÐŽèADÎåi„Éãø¤_†ÿ›Už,‚ȇc¨u&w™ FÇ}¢x]6¸;òœÈJúÁ7Z\×Q2ç5Jˆö¶’{Ùl½ãþÍCQ›T–Ãþœ®`œ2FFöÜ®sì’ï= ”mTú[Ïoýç&¬y°~LÔµ¶¹ß ³Ld>Fjþ"ki—_bvI(ÝKÀçí…ñ¸ãµPdc2¶ƒPÑìqoF‰çOæ@½¿,§…°4p‘XûÄB$mjß/Øé‹óŽ>siO!’FøÞ†Õ ™á·F{9nF6$WÀtJrÞ4„!?^­w8¬7Ú´ý÷Òpvj§äÓÉ/5™ž=I´ÖK~ð '‘´à`U.½Ú’S!ÔÝväa,ú‚5‚BÉñ‡;Ó  :6v©à|ª‹¶IA˜@ ãÒlVëÚÚò¿72©2 ׻݄ðü¢5§ÇC®:ß[‚1s–SÅ©à~ ZƒÔâÂ~aMzô4Kzø S;ÃrŠÙÂ×f­ÖÉXyWÛ¸ƒ&哽ҽûÄaæ vÉj>ªËÖÊœPJå\©½` “éV©ˆ*2&›4U2Ór*XÂÿ~kx‡|¼zmŠíTY½<µ„ÔoF²Jâ<…/Jê7uF­I _†-ùÿ’øB¢å[ ™¶ù^4U' sÁ–z®¦î­û+=ºáDg›Ü_¾È7SÐþxj»šyzƒ‘Äö¦Ù^½±zÄ >„2ì—j„¸3—6„׈Ȋ䗛üÌ%ßR4B«ÐEmkØf÷ò¯u‰Lé'û|¦-j\­“Au[¨ZÎcöT~HßíäéÊ)ðþÖ/}0v_ç­cÅa-œöÊöÞd,…”F }¦©7ÆÿÝÕÑËX±÷@\ûŒ1ƒu²9…„kdúa J¹š„‹<¾cìdï1š^7ß Û3äy "}ÃQF·«§nçm„Àkÿr¬/P}•ñ .}s*bšïÕbîêû(#Ea­Ü†ü`—eådžq›l'ïY+,,"I*ø! 9ýT€ƒøMî4Üé^½@];Ä÷ø˜²R³A›ã9f Îû¯ÚTÇ;L()3ò.$ô2¯WÚœ0zŠå´Gbíšù!W*,oäY—ÒÁt; Sv[ÍêFpÆí&6ÒcXzÔ¤Ú©Ö ,rÝCD/ׄÀFË‹*A0Öݳ„¿†ñ˜»Ð• ycÌEz1kcR}`qMà ÁHö]íSL¡Ï“=ŒdHEÜLëgïSkó(—5ú?¢ &ÿ>[¸¬ÁØfYìD÷í®†+4ŸÄ5î„îí@@tg?¾4kìæÇd(à¨|³l@”ZóyÛšI/‚¯eQé(K^‚ä ýrxîÜÎPP –Ÿ#e¶û„gf‚¯•Â`¶ÒCsä²›iVìþ]hDÛ ‡,|Jû{¥9›È¤üýéñ†§°Î¼V¤¿µ '…ë¡Ùxhlp]° ßÄ"÷•Ý<Õ´kžuÌç‘Þ+i.KXâ9V YX"`&Ìí¢ÞxFYW¦lÝ*~¤ÝKQX£nWu m*Ô”.‰Gs†AæÝþÐ?túÄ/Œù7a{Èd ]Ò`›à†ƒÔl8½?ÃgÛyªUñ´óø‹ïÞ¤‡í×#Û¦i[Ëd«b,óƒ¥OœXèðò=œû-0töÔ+× È n;?ï½×~ ‰/X²;gËü¯nÃÌÚJ³š'®0éJo$¿~ÁŠÜ€yÏ+‹í)ÒÄ_æòÐ+³_ÓLŠªkϳzäñGz°ü”-\EÓ=>·Öö†…dJ2þj´û«@Æ3zÇ™Éü—gO(C\ˆ1-1øüxî8¶À)¡Cÿ{õ¾ÍÀ˜ÇÐlŽî ©-ãGBRó¦…$•=ÜûmV6$…ˆ ÄS…¡`œ¸¿·¼Øxw|˜õÑì( ÚG«ô¾p%ü¨ý…0o/ìôQ¡ùù¢¼¦³Ïœ›ÿ°Ý«u,ƒƒÙï ÍúÙ{¦¦$„Nµ•Ìg(—èû²`\2Ú¾410µen_óÀP·ÍÇjïC…ÙO\GL"6QÑæ®`D˜ Ú„Zå®IÝ–“âaîKH–—¢æ— ÒöÒ$( endstream endobj 170 0 obj << /Length1 2497 /Length2 18920 /Length3 0 /Length 20374 /Filter /FlateDecode >> stream xÚ´ºeXœÉÖ Ipw‡ÆÝ]‚»»k qhÜÝÝÝ-¸kp .àî4Û™ùÎÉœ¹÷ï}x YÛ÷ª]U oS’*«1Š˜>%Aö.Œ¬L,|y=ˆ•…QÆÅÄÖÊÀÆÄÂÂOI)æ4q±Ù‹›¸ùÜ.–%S°§€……ž ´:•f€ž ‹‰º§@còP9»0~0q«öVö@Z°‹ÈÁÓÉÊÂÒåw vFÆß‘~{‹2dMLm@îÎ6V{3€,“@äZh@ö€@K[sÈ Ôh¨I¨ª¤T•4”Õh™ÀÕ\@NÿW‹˜šº†@\DQ]ÔdHi¨©ÿþ©´×oÁPTëçþvWPQ×Q–`eþÝ€àtr¶úö_µQ+ü) ìjî²û+€ÆÒÅÅ™ÙÝÝÉÂÕÙ… ädÁä`ûW}ê–VÎw“ üê´þEŒ«½˜NKàß~¯ @ÞÊhï üí$ ú[i¦ì–»ü·00.¿cÚþmpÿ'¥‰ó_¾òÊÊò;+{ ½‰½)ØÐÅÄÅÕ`ü— ü 4£þ»@ @ÌÕÉéw…ÿ¨œþ›æ?¥‹‚ÀéÛzûš¸ÿ{ÅLì]½þÁÍÿ¶m ²w¶rvqþ;"`ne ü]½óï5³²ÿK¦ ¢(#)¡¦Î(<{F˜{&—¿¬Ç—"7€ ÀR {31¸jgøßô‰[yr9y2ÿ{¬mìAîöÞÿ/±¹•½™ùoÞÍ\˜5ì­]2âÿg Áÿ‘Y], #èajÉü;Ù_³ò[Ìú[ &Á×Ûä07±uúZ™Á/ðÞÎ&n@€‹“+Ð×ûŸŠÿEð¬Ü3+S𘃷 ü_ÑeìÍAÞ¿ÅàJþ£ú¿ ùk›Ò‚÷¨ÈÞÖ`4‡gV¹€ÇæÿŸ]ö¯\’®¶¶Š&v@š1úo3;+[Ïÿ1ü—…ðw©4Š ';Û鬜%­<€fÊV.¦–‘ø·øïL"ö¶@#+ ;Ûßß;Ê<ºàãÇê÷éÖsqÿKžJS{ ³3€‹÷/ÌÅ¿Ê/Àï¢Ì*jº²òôÿž›¿¬$ìMAfVö6N.€‰““‰'< xØ89Þ¬à©6zü5-f&{ Øààêâ 09Áÿ^Q.N³ÈoÑ߈À,öñ˜Åÿ ^p!ÿEÜ,fÉ?ˆÀ,õ±˜¥ÿ v³ÌÄ`–ýƒ¸Ìò8ƒÒ8ƒòŽ©úcªýAà˜ê¸#?œAó¿ˆÜŸÉîïÃÎnú_Ä Ö™‚lÁ‹÷ Ço‰ÝVp‰fÿ€`€øú]MlÿanÂüO pæVnÀèÁ‹@pFË?ùÁ}Yz:Xíÿa–Yý‚›µþwkónéŸÅ€ûµûYÁ½ü‰Ìlïj÷á÷F·øGBVpS ?%C€ìÿÑ+¸A‡?jpHðqn 4wù#eý?éßÇÃÅàÚ€NV Ê æÃñ̇Ó? ¸Fç@p€?á8ÁY\,€ÿ,L‡ëŸå{ÿu÷9›‚œþifÉíÜ¢ûÈnÉãœÅóܾןŽÀ‘¼€NÓõ¿[[ù÷íö×ÑÍòg¯ÿßµÿVsqÙµ¬ÌÀoyþa¢`ââdå¡Ç>wYÁrð×~3øŸ”®Œx‹Š‚<¼9xYŒì`¶xØ9~Ï,—ïÿ¸šþ}ÿuäƒÏ¤ÿàß·ôšÂ¯,‚LùC¬Ó[Ã*ü$Š¿TBQò2Vc jË&¾[ÉúÒE€+^°C* üMU’—æ3ðK ´/Õ¦ Á²}ÙhO©™¹5SÞ5ñSð#@–™È×dÒÊVX¨ì!£=’Í/Ò)ã˜ËîHì hL‹ñvõ>ƲM¿¢]§‘éWv|+„rÿ8ÏÚ†éd‹î±ŒŠßM°ü¥Òåõ3>Æd@d…î«qQö„,´C/ª.}z‘ºö©A6œ &Ÿ3Fxµ]QÇÐä$&k9'ƶ¤­Û¾+¡—o,º¸Q¼gý-M‚^ÞBÄ€TÚ%Þ“¬ì§b¥æÜî¡L™ÒJ¯Iª> {Ç,Ù_çañë—^G¥TbS¿*s<²c-b“鉑ퟪìË;Ås ,žQIÜÆu™¸S÷ùÞ¦ ù|+øuœÓ°E¿Ž‡J9™N•…°›œˆ¯›®ùl!¯%æOó%c$½½¿ÀíK1ÐŽO§ßé©d²M­tÞÞg5;š8aE5B9b;ön¾­JPSYwÇnÙ‹Ö†á¦T;r>®›ÚôÃZxp¥¶²r|x:m x ÈR„›ƒœdwG@T¹—ÈçËrÅ[ÛëL}ŸõuM>•V¡Tn¥?6kÖFU ='”ÇÒ<ýFWbv[U@—×l® ¶ ÑT x­ð|áFIqëá—½´y¨2Ámý˜×–;¥·^cXPÔ°òêY8à Q¿k»òÀÿ)Õ {ªE5,:É‹¢cÁ·2Ãè¾âM§”ö.LËF™*"G×1LEs~SÌ óˆÎ<È%ûÝ¡ürIƒG%€O5ØÕÜ5wBl4U©ÍN“õ8qÂV ;+² TÉ)XºâèÜâOêWŸ[Ii»qÇw[›?QPRTbÐÆ‹eÆú¸ßtg)ôNØ J92[cðÎg\DóPÆÕÅ¥æ_Æÿ’. Â2E™¾ìÓµó`¯ö²7–J½ì7ÚG‹’ö“(`RŸC>'ztvxì I8²¼—¦7¯ËÄÊb`Õ*¾|Uf¯û•)&+{ºÙ¥c&“OS«ÙÏÆÿÆømFƒÒ¶"šÈ4Rª·Ì¬ä.I¦ÜKqFgH?&|qEᶦ}Ю3$iygàBVÆø ²æ—’6Œ“¬ ¡·m‡riˆb@ÒpÒrÒZQ]D†<&CX‹SD¿;Fà×U׃Œc¥**¡œz²ÞàŒ{%CÎà§Ž&/n‚µFOèÑi£·Lµ·:Ô ñ©j¬i²Ñ- |±ÞÃÛæ$ï¶÷d5‘üBJ¢>î1QMarâÓÃ~:†'×NßóÍ/}Àé…Âþø€[„¾ Âci†¡ˆ6¶huÛÛ†’{Î73Æâ=Ù©¿µìÈw4îÞ;PJ¥v©£D_æ^S›ò)¬f±Pjqâ “%á›è+¡k¶ù+®-.a=pðpû’©ÎÀ‡Žñ”Cª½½Am)‡ŽÃö¶G ŠI'­8Z7ôÿÁËR_ž×IðMçþ|”§Q—ve©µ)M@wÕGOŒÿÓ¬oœªIå2iÎA\Ò]`=Zî²<æ»íë“·KƒÝĺë0vuA|¼ _áç›õ—Ä’ÐrÝåZG¯¸}7ÂD‹Líúïu15÷v«^¢q·Ó:_ZG}ÞHÇŒT¹ã 0°³ÄYëÇèÞ&þh³"üj?<¨Òµæ  Øæ]0°´õKÛ*-½u`ňaü6[޹õ”Œ÷(dÒ.Óùú^ų#m~ˆ´IØ_à!}ŒíeW…ÞÜk$ ®, Ÿä’®Â¢®®Š§¸\‹Hý¬li7ûçD8:³Èâ=mK"á}F6Ñö²lîž ÔGÓ¢ HÆDD½ P¢f:À¿V‹{vutK8ÅN°`ºÚiÅ’‹t&á<ðgFͼ¤0G¼¾Ob‰ŒŒ5ûu5Ý”% ì={&'…|/LtÉÕˆÀc÷~ëµ6‹†;ò«…Œ-DÝ—ïÍc,ÞfÞÙS+¦ ’ßÕâÐ\Y‰ôãúƒû÷­@@O+Veµ^MhZ§ =­L=ƒT:ŒŠ¦'™ùÅU>6~¥Åj\º\æ`ßÇñmÊ ~—] ã/½ÅWçGæê©-™„Kþ+¿ëvQâ½ýRçí7’ÊQY›ª°\€¢ «Snâõq6yjfŸ„ñ¶G¢cÜT Зc„ýžSüíoο€6­Ò²8FÅRj±˜Î(,«­úÕ¬ñ¡äî£ì¬^%^}Þ¨Ó!¢‚9W¼tFw¦¸1_Þ:-Üè·ì_ÙF“hÂ4_5aø 6wñ¬­(b)vßR_žC«¹æ;º*3dÊœ]Ò(d$tÙÙ.zm Ïnv=LÉÑ=1»ïŒ˜ wÒà9k›™n·±(1Þt­¢ýO<ödÐ_s¯¿2L@;Üð=[Ê$ÓŠ‚3r¼Pj?èÊŸ2` ñA‹þ~=÷£yQÏi%ö3Oà Úaá2¤¢Æ†qd§¿ÄöÂʤåBÁ¹C/->¸*8m°*™ú± Þ0¬œ<Á ÙEáÛBN?o–šP ˆC#oßhüE6uïÐé>]ȑʪ£VD3 `‘ªÔÓÁ]†Åzø?¬GÝ ìI&ên:¾’§ÉÝî–š×…iÑ’›!¶¶ë^"5$z¹ô¾¼—81Ñ]]tî!{¿^—ZD:z\*åU½ŠqçJòƒÊ÷®³?ªx‰ù âŸÆˆªô÷5%{DõCLh[qkqcØB äĨfÌÅI¨—µÏв¸ Ÿ9òeD!ÊãWÉv” Œ|/ÏÍ' (%DŠ_¤Ð¾8gëA… ßÊrü–÷÷Ì _ÆóFÛ®¯\tÜPˆ£$ljúX_Aˆ2åßy¼TŽ~‰…©<,ÓÈ–£ë‰àgšïÑá]ùñG BXÎT[­â’äMÁˆh Ê0½ØÍË!E£ûF»t>9úª?=­eŒ;#ÆfëFQÁ5@(g@äÑGc\7p/æà>v-ÇÕšÑ1k›A­“½ý͵SˆÂ#Ã@l|M@ ‰¤ìøÐYƒxé|¹T ° ©w3wÄF*pKÊGFdá*tïKg2«¬~îCÑj<ú^ä üSè%‡ï{[=Ò¯‘›ŸIÏñÑu–靨•{q…Oñ ˜ÇìÐpŸDb“«ý*sï“K™·>£h”Ë1û€D”‡ÜÅÉÇrh°í»öÐ9×á«ómB6»´=˜á•V§ø¾Ä¾x Û‘SâTº¯ó¸Öe<“ì?»p´vá–[?´|Ô@…ÔDûy¬‰ÔLF[Ù¯ÆxÐæ©*Z¥î¤Å¶Ó,ÎåÖ=ÿùCíª^sYº.ÅŽ‰äi.-tÝx ¡ÉwË^j ÙaÅ^Ǩþ­ê‹¬ã&£Rµ«8¨­-O¤%Þî¹Lͼ=‚ë}ê›I)uJ×ô«ä/‹‰)Õ&òšÊ¤d/|Ü·Ú/!ƾy1ÍNÚ_FäF_öÄÇà–õ|l‚jè*zõÌòFÅOà´HLuuï=SQÄÁÄbéã„^gŽ¢¬¾¾t–{™pIUÕŽhvz ¦„z—1Q…_fÝÌ_9u+™•9_žíLº{Ä:ÝšÂU/Ó™õ¸Î_‰—;t—™¼d‚—ÙCÆpmÕEEÄú&ºÎ‹E’ÐCм’NÒ-^$daÁÃ8¨@LóC>!ôa—•EûQ`8fðès^¦%@~¼N1Q›Á¶¯ê ÿ­OƒJþ&À!Xh$˜çzfšFø¦Ê;•cgN9˜›gãbû£M 2»–zGY§Ñn`[–Ǩ«Ø‘ºõº¹­ß¿1)W½<ÍÙ,XMVnøU3 >3õ–9§ÅÓ²¯KTÈߪ—³]ròšç&å¡Û‰:{°~.vÐ!³-’øeò[ï»¶x’CœüR“(¸•¢½ëïQ,õ„lîfû 5ü›øºÞKŸg›Ñmj)°ŠI¯ë¶[S4#û-Q¤Ÿ.¨_©¶•ê† ¡DñvÕ˜"åDñ[8A¯íÄ…H°KŽV–YpE׃eƒû•>fÇ¢n‰¥K+‘·O¹¯Æg Vß“Õþœ0Îz·ÜÎôH‰c‰áµG”"lá¼HÓê~e˜3ãŪ¶t(ü¨í¶õgèúñ¥vt7ï²?±ÝeÕ(£¦•gKôYž/Š7+¼þì ,ÁËÍéó’NÑ—s!¿]MÁkÁUÇüìÈB”hޤl˜—y4*<œmg)Ë»¶‚2ôÃÈÞ´î’Û t¹$PM1®šœ Ae×ݯTrOC²Cö€|Ÿ”®<ؽäÿf -UH^+û„”Þ˜ö838ú#Zyeß{n$ÛnSÉŽ Ë‘)Ù¶É­môo#­Ñ"GøqÍ<Œ17sÔí’ ©ðË ®÷i[âÜñ+# ZŸ‘û^›ˆ-I‰Ö!‰r_Þ?S@Hšw„p¾ ž~`êÁþ~Ú¦>ȸkØSÔÇ DÝÎqxŒè‹†DÇað[ê—œQ²"ä;^A•»âSæè* ëwÙ6 / ü´á†—Òù¬<¾Ý`lŠøSË”ûCÛU­@C׺`—†â±.z_α–ÛdÑZ"ø'Ör‚€jÄm†DÚ%©õ‡’É}&CÒ :çXÊZwò|S#ý£yÜÅ+³}V ])ÉxÆL/Î. ÜÜÝéÊ¥décY=µÄ¾RLàf…Ïl}cBk5¦œÆI§S=Ç#†DO‡õ„†–Ç$•ïqbÉ&,혇ËDÞÏ~7ä[}Ä>,ráU @§ñH¸þ©Žó£nL8…v«%èK¦&”Â;v·™HoÖqÔKúÑožÅƒ\ÚÅÈS~88•òõüTCÅb½ç–²cQ,Ø”âœü½x‚qH(ØÏó½¿D¤[Ÿ!>^²EÙ.•›ç©e¦Ò°ˆÚ×NdŽÛÀuˆ©×=|iÞdÞ °à,˜è­N¬”š}“hêðÐ\È—Ë©o ¼°ý+-O¾g´ù…•#fG£ ]pl¼é¼ýØm7¯tÓç$5­Êu‚ÑvuX¨Û^˜ÃiEÄ^Ì”!Ó;%î”Òðh?_­GPç¦v›T!뚥ºÚ¥Çà5È8ïœÏíÿë±9<+³«Î!ŽÍ!Ê©¹©‡²]ñ áW$<ˆ/¦x°\ ã=2C‹þº$§ïT×Þ’FÖÃ’(ëÛÔÂm ºžòMîîÂ#§Aâeåd†tKÔ¥=Çë-˜•9@¸jÇ„+iøðj1$ŽäT^×KUòÏ®«áù¨Á $fÅÐX‚âפ÷bPéáêÇ¥¢¬mªcfµgtøgcˆËôäI>еȾAÞ A<ªJå G«TQ|@#˜“¹’él²îú²‚í{z›NH5²îÓ£4ì_UH4øDóÓ<·Ò)XtÆúzi™mã­ ó{3ãPº “WíYWԤȪGxw^(úœÚÝ@dÆ©[¨7UudY1qOïS¤².̆J>ÂrUò*qÚ3Dá–™#·†Œëò¸Çb(¼ù;ûàåëNÞ£ö3ŽûkŠ&7öq~âEeÚvZM }ž­d #îÎQðM÷rY/ó‹iÍ£>É Ã‘–ùiäGE÷–¦¢Cî¨àšäÚ~ª,Ë:ê×ÙÀ°vo…¢¸}¸÷tºy@Î&ÎäÑÏÜçL¯‡¦Úbo-D]Ø)8GϰÉ( ºï¦ý[ï8‚6 á_K{ŒóÏÊ„dB2ïQ>†ROçýSBw2ÉŽ‚G†á‰òüR¬]¾‘î­ÀŒrÛH=îìbÒý ï«¡ÐÎiÛæ‘ ~âˆn%”‹"dÝ©{×½u¥˜'¤”WD×£…î.P̺àì.µwÀsåUðnå}ÛâË| ¸lsá†0«·>œ°£“ìÎ -Ö`0/Z´³Oªw`èµzúoå*ÂïÕj»ËY^GNEhÑSì4ãC°krH¯¨Z>iÝ×›D ^Z×3SmiJDËo¾³!ó%u®;S Áú~ª´ds[Òê-ŠåîÅñ¶Å´ýG;®‘ÿ|Š#Áú@û§¤÷õI¼È²vöñíx'Ø¢Jæâ±•ydëUá48‘¬†G úc˜ïˆï=< ¼¥tÐ$劧Ès*³i0m?cW/Ãíb0äz„YA’ë›×së*ªNãÃV€úfaë{ÌìE.·™ah÷®Þ™”¯÷Àâ;l÷ÝÆ©ú{¯ó¤nzõ˜ä«JŒZz)صco³ˆŽ{¼¹¸~Š¿þ&8ÄöÔ¯Ød@=Ò»)Áå˜Ève&Œ:¾§J¿õNÿñ0æÕ{%9,Â÷§.*‚Eƒ¤˜-¼ó¹²D®-_fÒ/ó>JU³“£Mý†5UDÔ‘œ8³æ‹âä W«rQçÏ€¡–ÃFQ/ö‚VÄIH›|µ:šð„  g!­"W!ÝÀ- «Ó9„Àƒ;©û‚bœÆMZÍ „c±Ÿïüp:Kn§Tä \ ©)¬•GEÔ™º´º]è†1uÁ}Y_Ц/‰<Å…¹ÚHxS¯æ”vÄž‰ }À>/  PÂÑp&ù8Ál…Ýó.«v$zš%v#‘'ð£À“ƒÓL8Ó¦Ñ6†"×…èæˆ.ý½K®‰Ü—x8X,¨¼7£‘*p3ÊIdqWqçF8Ò0ŒÞ/D)^"Cº6Öéø, µpètÍHl¼P?9rõ¢é?äv\qµnk¿æúZ ­‹­ÏµÊ-èÂ]X§ÉÂÏÎ fyÀx¯:\ï,Ñn ^òóaã`Z?z(޶~7Z…ú¢°c¼"E–jÉ®Ss–ÖçO I?ê»»zÛ»,/̨ê‡<ïûÙY‚4b þÏØ‰ºEœCÝ£žqzúç.oY¹…uð“=-Åš‡4±Mé˜>ļ)ûüóë)éf/Ïüñ¨éðëôSwÕ¸t4•‰Ð®³$^ÎnèJáWâO†OåÉ}(­v¦ÒÖóðªÃ’¢?±è†U‘:űçóôƒˆŒ_K‚™¶iï?Ò~6Dç5¡à§5J1h±xNщÝkZoc)ËŒŒˆr«?…€ W`ÓT`·¬!Ú)¹ÞAŽj^epW€¦¼‘N+|Íwi¼Á\Yu‘‚žÚ5õ€ºB)ni—¢ýX•~oË‹Î1¦Àg{P&xµ±0Çf ßž&†òU¨û]ìÊEÆÏxøÝ*rW(¤ÄQ݈—ö ÌLœÛ°©v‘¼YŽ©µ‡\÷”þFŸ¾Aÿ\PèA‘¡ª`bÜü4ù¨Ÿ¶"ýÒÚɬúˆP ['›í“«¥žMÉc>t*#^·P7nñÕMަp}W•½<;<Øôù1„EÆ´?Ï`Å]Ÿéå#¢ä©2ô–·s §ƒ@ñ*»÷Û°ÚVL¤»[«;×í”tIT ÚÛO‡sÁ9âèkù0“ë­ôÚ|¿ªk·Ú.òò¦¬19)Åé: Òq\Ì !’ôDlš¾Ö@ñ›É2„pžnJ(¸ìãèCe@C“ (µ ZÕF“;ÃÜ*ˆ¤ˆ t˜­!ÓÞ%ÜCys¾9"7PSÏH@.!â: Wë¶–ÎßÅ7´½RÙÑÂ-cÁðƈä#’Ú¢m˜–9d=uëAþq¸³ßÔæ6»%ÏtäòñæEÕ綘'UÆs¥mvK,çÃÎZ’Žbì•c—]òÓlø~Uù¨9¤SyŠˆ´>öKÔršüzPE7¥ Ãv)ò©tñ âÒ‚Eƒœ à²íÅ"²)ž¯°ŽFçbnþÜ<ÃèTóÖçÆ‹[ ÑaÕz©hÝN½½:XÖ¯w"Xïp³N ÛŸ ƒFâO½ƒ¥·¨M%ê9—u!šG…»/ž£4ÁEy‰"ÌÅyË—É#¿èz.ø¾+Z'e3,Dµß¼%~7d0æmφ±c¯œÔU)mâð;ˈm~‚²ª5 Ÿ¬àJöJv¡ÍÇÃó Ž9m½02“0ù‰;c(=Ê›°ŒÅR“²Öt߯C•±–ødiÚxrq·÷w(–WÇjÌÒ˜e?BÚM4ŠWA"VcK#±ótàU\÷jä'šŠ¬bLy9˜œØÂÇ'ÏêŠHƒIâö(ÀPLôHëÂòn?Œ‹¯ã¤mí–ºêÛý[$˜0# ÃPlâžà¬@ƒ¸ ˆ½ÒAêÇ{#h‹T…ÞeF‹¥’‘!% ÛÕ[·øŒ››Ý5XW¨Ÿ$ÙEÆó#O(¸¸U×S×Aß­OIž=ð¬¡Öò}}m3 GÞY¬¿<öuÝÖiOA&©›VÎùÅòô¼î[ Ûâ[#¸wðq$9ÈO<ï<÷!Ób’~º—ñÈt“â¬ß\u$©À/‚rÇÞš ÖœŸH¶ÈeZ|/ˆûlr`‡Þ«ë/…@š±ÞØ]±UàÑoMkW`¨<‡€²¹ :õÐÃ-͆äŸ^ZFSÙ]p÷s:À×Lãîü™Q îÎ×~,‚Þ÷mqf‰¥½èWlå’±¯ÓgÕöþoîÛã¯0̪$Zj„p‡YŸ¯èMÕu=¾sì"1{=õV^AoÕ´Õ/`"›)Yru¿d}™:÷ƒÈ!²E–¬Òôó<ôxô°xºxl~ùþC¿gí¼&2ÛÕ jZÿžPo""«¥ŽTŒÅ3#Pgþ^³cŸ¼û¤oà.â§DªƒX§nÓí÷Ãðz¡Õ·mOU,(¤v“E½S—çvÂÔ7£ý» ²g \ËÃB{ˆ€ìÖc¥Ýòd ‰ZU"ô‡ÊñèºT{ôt,׆Â_<Šx5¹á°{ÃúÆ•Â$»¯f…_ Sd\§]™îÍëâ-¤¥IOg§¿Õ‡¸£eN`sKɼ 3}Iùìñ†©8qË«æAý “ð+)0I®Iƒù ‡è¥9è.Yú½Jd›@ô=nH ²9 ͇£ŸE{O §®žõ7)• à‡«Úä3P-!J~­½ÆÁÔìï¦kJ~Åa:BûÒ^mÓw¹¦9TµEŽáˆ»„"£b´,ÌNpÚT­ÄÅ»v6,À´òžÝqB úµ„!ú ê·’ ¾ìodòä€c´m¡Ê¨kwõ©eåž³n4)ên`9 @^?=é¾¶’MŠÔ.>ídYÅn+œºó´‹' öxuò61ô=B &3´»4Ïwxël,¥13„ÎbLŒ§'ìļ ‰žoM={DœÉælí¯ßu¸¬wÂä¦.á÷~Ô%ˆWùnf(i¦i¿%P ºúUÄsÄØ«šÆàîa÷Æ,Ó¾ÆÞèÇ|©R Áã5Îæ{OWšÐdtGs(ECMÛ›¸‡wXæ#AÖ'±‚’?}ãšÝ_*í`5%žm’$e¦ÿmèóúHׇb”ß×Þ¾Š^ú„mÔ0§ê@xW”e\XŒ~rÔ·5k R¦ ;°šÀ Ààõƒf„ÌÙËVEÂÀ¾ yóÖ{hl]uKÃÕ³Š_S…Š¢y¼~KÏ—·ò°õÄa*:ܳªv¿ ‘G\>ê²§±ûàW`â-ÚÊÁîu§}×ço#wèÈY!Vu¬R†¢ ޼U… ˜l²°zm~§vï}±í ¡b…¤/96½²M ?#äÐryðßÝ¥Vß>ì" æåßÏ´LØ ùfÔ Se`UŒ_e%ì$« öĈ>b» £dªŒ_bã#8‡¸¢8g$ÛÐù±l…Œ’1í?âéÀº·D;듈^#Ä;ô›ŸszSbîõ<”ôY`ìW6 ®pMœ~ øÁz$WߤǧñfâWQ—bvCJ'–àµß/¡>Ñ‘œËRCÓaÅÑÛ¶§BS·´Ñètd+½3!˜#Ï«äKáÀ€y”^­æ¨Õ¤‚¬ÏýÈæbfeäî㸜%§RKîNŒñˆ˜ŽO˜ÎYŸlc]õ`m¨²cæ°U÷;g#ýÛW7ãghÇBÂmLX¡Ý^îxprœžRx(ücY5ˆ„˜[¾ðxC‡b)â1ÅÍ fnó> Þì&Û³};,_Iqq ‹\xáHIɨÈ~¸÷¡{hÓFJ´½LLòmmÕRŒ9OGçI çlòNôЇðL âX¨¶-|¹.d~9à1ûI°VæÂÏ)§ïßç¶WKej(]"{‡Z{_iIQ[·ÍÒv_ýBGÓªÝß7ÁÞ£óòÂ6®8ž³ìÁ.6‰!vgä3ä ÞK½+î46+ˆR=¼a-Ôøe¾"Ph!ŠóŒfì¤×ÈêÓù‚ µ]Te¥ÉeÌæJWCôŒ xlâͦ7^–nD̆©%Û›L_’):Í4΀ö“†˜÷ϰ,v:µxõ^¯ù@1Ÿ{ÇΓj…!(íÄß´Œ™ÃXLb ŽõcfµöMs+œk1Œ¨=à<Ê–&çÖÒ€Žaß¹$gˆÈÑõ}z n‹n•¡´6+á5Ìf•è1]2á?ÑühïŒ:Ħziì°üjzZœÁÏE!ƒàÀ5“'ÿþfš=,>«}%’M'×Ùæ 8—¬BL8áfò¯JW·òžaQPfcKÍÖ1mÊ×9ûÓªb¾+š É–’óR<™rg÷lâ¡6- SUoî U¸c(Ì;±#Jo·"^aÒÔx¿ì=胼ÚhœÓš"üu*«L™^@ ªòÄqŒ¡¾6=Ë8W’¥¸B$ð‡3BéÞ¿?÷\qïîbæWž»!¤™Cu¯¾¼Š(ígŸÓ·ŸOO,¿xS'ó“EÕ¯ŸùäD„N-º´)z$°Št´nÆ@®N-k€‘ Èz¡D.¯¥§íøUŽê½mêÄà&ÖÃó[ëBÆO â'’ pßÏ´óc ­JÆÝÊÄ îü›Wöý™üéoÝæ8çUƒ>䨽X/ͳÆP¿Æž“.‰ºì†I*ŒXQïÇ4 &sU†ˆs®@Uªz|×Ñéö? zÇ ÿÉêy“´¢ý“~Ã{Õ+b"™Y÷‘4ÄZä0vLúáÏß–Ùøåo¢aãŠ}Œ×_i”±á½¾Yyi›ðáp^\ÍBà—J#|²JÑëD*—Jšz8xÔF!B¨}ìÆr´ùÒe´zà1Mó«ôî;ž C¶7gÊzÊÉ NžcêUh|þ±³ÈBߘì°N$èz>…^$\Êé/¥~íV–ÅÃÔƒç•Gß`C€ÌãC§/~fÛ ­ó_"M< ·Cvdð~å pAFoäø"µîÁ+îü "9òd5ÛŠ~Êw·‹xÉ10<òÇ=vº~«ýB¼Ã;¨§z Uæ\@²·ŒèŸfBØø2[ÉZtF*)â“6Pj©´É·çÒí>%ÒÒí,½oû«ó‚+(ì¢ ©~Œ8ô…íXhX©ÐÞ®‚Á2Âä¿$#ü¾*¨µis¥4—úÐÑAÜÝxD)~LÊÃùzï G+úñ3{çgŽªPƒ‡Yâ®úíÆ@J£àÛÅqƒ/Ô›¾5û¦”–ô'”Q±A""Ù <·Ÿ¡˜"î?l1{à4-¤„ÙnÙßãÏC(Äæëê5³}Dƒ ‡K}ƒ`ì]té½´áóøÐ‰W¶ý¹§Ÿ²iKë<Õ¡€b1Û?Å^¤™ ÷ÇÕ»Zýù¢__Ö/Kòz*ax¬!ßMÎ Gö²‘Dg4÷3àÛÎ;@ãi#\½åšÕˆ\hɯ¢½áÑŽ,Mó­{jÙk´ µ˜Lƒ^oø‰Tº'Î+a:§þ‚BMö\íáë+ÚLÁ5{ʱz°Ò«Ì®ÆD$ÜG*`3ÉAµûkÆ×‘¨ZBE¸ëåÊÓÄšžd=tœ]†`u˜w 5Ö'ã'ƒÿaü¢&¦¸_yÒÕöQì„ྡྷe] ó®ò³ƒCÒéÑV%¼},“’¼gv›Ï)‡}è0ˆ, ñz×£qD)-b*:³ñããŸ.1EŠO‚ä#g¡1/Mç;n>ƒÞ-æ{ó§6åW¢ÂKh6ªÆã*ŒT[¤tÎדPƒ†wtl»° ÷b(Ñót’5>í EËŒù,FåûÂ@._¢'0—è ºV–õkœÌg*×ö4ëÉM5ÉUaÍ ÍêG…­ÐW¦Æw…n·àG–-ýôÂëvJ+>3UÌ-õ•öŸ\\=´××û)Í6 2ØUK$¼Ø!½´ùè†Ð \HŒ›ú7ªzwª|­ýÄ îy™pmãΩ§E÷üy.„æw´|H [7Z¨QÙE‚ ¤tgÓ8þ¹_«hC®¯å8&óWŠÑª‹’ä·ÆD ùÈ.yÇÇø-]*Kù˸Çy¯"Úš‚ö'Îo‘%C~3]P’¼\Iæ£ò?8襲$U¸»ƒ`ÙÎS–²â¸ü*<÷n¦¢ô¥Â¨#¡¸( 屈»Ñ9·ŒêÉK¿Ëžš#¿©ÑG‹Ou¼ÈH¸ÈGLá1y©´g:Lõ×¾SOׇ\¢^Û¡N2N»>µi¬¶,ïÿdh‚ü"Äë‹&2Á1¢zY¾%mHç1"‰DAÎ_Þr–ÚTãê r…sŠí8dp¬2×$¡N&RmÅVd'å Üë‘}˜ËÅ2걚‡{ç’žÁ„Šç5/ÜCÚ¦ëšFíêYÂ~¾‘S0^buÇþ1"rªË=@G³¥ôíZ„KN² „—2$W‡|ÎWÿF «š" …‚²#qšÅ%ò>>gÆe\}•Å$a#Câf±|ä)¯A¬óc•‘úòuD¨0øŽ/¢×ÚÔÚ’ýœ¦ß’ÍV&…£•¾?¸@ró„½f¿(Çð¹¢j±Úþ C‡~:üq¯Zl ¹¢ß´f^K+ü`z´¦ÑŸ‘¬ôã£]˜ôSè¾ö…ï©‚â’ëb)[©ÈÁ×Ò•ù¡Äk›Ãò&Øú5¾ÍQ´oòÅ?Ÿœ•e¿¯hxP¹RbS©(WÏh•¾`Òõç¹DÏ0Åá‹úÊë2KêFò Ú£Ÿ¹4âzg.ܼ¯üf¤p~íÃ7¡~YZ!óóXÐöl«ª+æ/–x^2¹ú“çW)ÕÌ<“)„,‡ŒJÒ ›šß«óHD¾'¨`é;C¿ß­¯Å2Åb–“‚ðªÝù·ûííbû ®dC•Ö²é8ejVÌ ¡ †¼¾ä¥G ‡ŽÌjøŸ‚´\L$gUœïk$ÛpyFlý—Ó'ß+HP$é:œ¥õ´I½;ú?ÔeUyÑåHjeM#™mƒHwbÛ4ž·óDþFÇû}iSÏÑ †ÕåußîgÎó™óÉÒ6‡ØÃ”æáW$>Šæû|¦²Ì;O(ôЇ„W‘/Ÿ v.ý[:l]п{CŒR~„HFö™ÂrŽTztëû(ªš4 "a.C†RGy©‰N ›ï Ò}Æÿ<Í É“îCoT¹a³öÖŒT´Ä“‚,*rËÌH{ο¢lOâg)BN²ª°+=c†¿ŸÃ§Ĥ–t¦ûisSôFA¢µTŽ_'†V4«7ìŠÂÙ÷ÚRJ÷îhÅÁg6#b#Uȑݠî³ú¶åÚLÊ1f ¢ï°mÛ)b.¦{ÂrNÂ7P/L˜ô8¦æâÑY˜ÐíL›h¿¿rÍÎ{ìlºÅÝ0Èë_VÖv¶Ò‘¯Åßw+Ãd꾘î°m«©‰íó• |t…L€ùª§Á"ÔOf¹æT ÝZ~<>‰^ùä-Ä@4v¨d†5’²n.jCÍgܯËu Ö-;kZ8¼ptR [£Â™ÈH.9MqŒÁØ2al8g!©•Lò@²ZÉqr-kÕ÷ì¶¡ä•“Aê^ÃxmX<ªðZ ‚\˰DfÊÁ1™´¡k™+Ýô GÖ¦»-¢iRa^s’‹ïx̳o|•ö• Ÿ§~D×àÍT,Ð̾s`’]„Ü+^J5¨¥½µRqdà”#nõÓÈßà`G?¸õV¤ÈÇ1¨ºÝgt&²du½–üÁâLw58IV’'°¨ï“Þ DU¡ÚtFbmçQCÁQT½1WTÛ~ÛåÊÇøØˆ_QÍNE›¡(‘ˆÏ\hønü–Ù×–È–Ð>DúÙtô${r¤/tÇû’ÄëÁÕÉú¶oeU ¤7p"^s"7;ƒÞßC|GdV€ èÉ`´Þ;H«™ö ! ³Ôìmúél¾—øö®¸3¦ñɱÄt+¼6=lá•ÇZ3Sþ5 ù³é-ü-vŸg]t_Ø©Sñ¡ß¯‹†¯¡2{†¦ÿWÁ‰¶hq}²lõ Lñ)¼Žø¡X…lùybZ)‹I-PèÜ/AÚ÷·FæÀWÄS•’ó»’Ô Ö¤ƒà/s‚‚=_ƒT³1i_/3TN™;|^ ¿ö}>ã&rcµµL~¢9]©P‹#‘y‚Î]Ê•ö²8&Ê"û{^.£ä=¯%BØá66r­{òì3q%hœ±#zÏ NŒ•Ÿ$^oϯxÖ™D¨ÛÕò¶2Þˆ>JVsÙüüX“hÀ@šè‘²)*S^ŠÇ+°oú>£üvþäô€-”ö ¹ð¹re‡M°ÁYðœÐËhå,s@Ç}MqšÂÎ+FCh ƒ`3±-‘ÑUûÃÊrÔ³$b ½Þ#pNu6ÞîçjUJk››*Ô2½òf¶ã½bydÀ Þàl¿ED "SbÏDß%NÌíí°Ëx¿‰ ˜¦f©û©tã‚ÁùÒD[ßÑ€ÍÂsbj”!A–ÒÑ"4ö½IìÐ FnFůkv~N"žõÆOñèÙð“äƒ=<ÊÖ.ïìÆX5õõ —=ë)ÄP* <¼±N§‹[}ñ£=1ƒtž˜ωæHçÃŽZª&DfñÞňÆCgX0Á½LG³èU•±>’Îî%“‘’µ”o²ª6Ÿ•¨àµµX¢åi¢™ùÄYÕš¡©ƒÎÒb›<5§@¾é®¸ùË’3SF ƒÅ#qDÔå¹»@ôSªLðËF/íåƒCä»·*¶P$eÇßÒ'ë[m6¬SÓr–>ÇöL§LíŒ?:¸]‘­nÖÚ5K~ê”V2=v\4Žuãtè$à‘¤P‚ĺš™óFeâkT9É_T¿pÉ)P¼Œ¢lmݵ«¼ÚÀB¢r¹Q#…þQ|êø¶ûÀkCd—œÊX^gÒ„29‘¸öÓgQ¨‘lÃ≋Ÿ— ­{õí·ý;ÍR"Ìï™oÙ6e']Ça†¨vµ1zPÖí{Ñs›ÊHËìßÉ/Ÿ?$±5É-Ï–&´sgÖ‰ê„Ć‘°ˆ4ð¡< ‘`©·òê…¿õer N8}Û15~øÜúË€V2}œBu^c*Ý4HåÊ1ÚHb˜›¾ ²5ÊÎçÿã½E®2@®ÀL150¤u烵1ÑMøt,é¹ár‘¬øÆM¦š©'kž8æ0— }DF! ȆÁb8]S¦‘ Ù}ÈhÈ2·O‰ù€ÿí¹„¼«BÅmèÚµAÁT) „äæ+u8[ŽÙªÙdÉIs"”šâÏmbKÚoUeïs \J…šÄc O'làk¯âŠ qÓ-­ñäÒZC„ï"Æ'6eœ 6Ý…0R~ˆ‚ko\WQ<Ùé¬ F(£ÂmyáäµÄΉÑ Øo™—®¯ßaxXô_ËåñÍù{I˜Ëîö•U³4ã͘Ϭ4"–eáúˆ-z›„ΓÔìì«i¯îç€Ç9½?$¥j½²§o­¶Xn¥Ü`b+Uæö ¿³ilë?{]^]Ü^ý’|Ú½fØé㕞ÿÒéµc˜ãbáˆs"ùÿ•òû¥9’½Ñ—Ü_4ôž]B…,QßWœ¾ZŠÐ ©)^Ùi­· Ⱦ§oÆ$l2µ^VcQNȰœ‡9ñ,¹^йdÎg àJ¾¦MÔ;à%Ð6}¦ Ý-°Z ÒóØ$޲üÅ©*ƽ!E®¤BÞˆººlÄ)A:OÞ!s, rïsð 8€û¾(:kU¢R7ûÿñ©Â©½|ÄCð3~&Õ‚“öÛÌXá_Þ„fu(îˆ(_È,Žï"È{·*™WN?¢?×Ë ì&ï%Vrx(Æ+Š% d×CÏ®>v ví-ž ÆFL£nø•5p®h@‰~rW3‡Ï[6Wå\Ñg{N¥€œ1`3Ɍȕ¾ö¿Ÿc€®#=|R ‡E/Ñßù¥ôëÕOãi¤‘vÛ»£ÊU‰¡DT~[FyL^þÔYæ±Û¯ Mž»’I%µz^iÊ¥êsκ4þNKK† ‡2M£»ŽãµêŠ~梣wI¤ò#½˜-+ü2,AFéì%í8¼¨‚ýK)+¸˜C^ðüO÷’¢‹AÌšr(kJ˜Ñ«Oô›5ËG’O²ã á•7ËwÎ$f*wãð7cKF棂ºØ^蟑O/÷€i„jÖþØtF««¾ïá=9ÓvQ…^B²·ÕÅ8„z”ïr8þó!bÁÏ^¾g™»û!üõSÖYó3næÀO¤‘ë\K km%R«ò™æMçzy£8hIcÔ!2a1Jâ22ü¦À„€‚(õAcºB(í .ÿûØó̉œPéè»@¦dùÏĪ~ù »KP¸ÉŠ:ŒM³¨¼¬yÝ;ÌËÝC"&K–úD¤ÜåÇ.玴ªúõŠÒë“x‡èž­¿ m7J¨I–Ì%quoêpµë26s¨ŽÄ7½ù:@ ¹Ñ`füÑèjT/ʇlUfeDàÝNÆÐ-‰w͹+mz»p2+È5È5+9M£vòÿ =òñ{+úŽõvóX‘®üâD<™¥xò®€R|‹§òˆpŸ9¿Du6+gÌ–`Yö¾&ëøÎTRÆzAÞÚd#c-dÞ“ŸV6’#F_ßú+m¹Ò¸ŸxèÌÆšFþ™\ 4œ_83LÍDa–p½Ùä*!R‹{=±lQ†áÑF[Ð+&ô>•;pÌùa÷”kaXÐèþQg–—AžœÝøËèRUP1‡@·™ÛòñF •}KR ïHêrG„ &±rÊÿÂ%]äÀ5Ò0œM‰ 4:H&Áq{}eáÍ´ÍæÎ­¨ßEšO¹·¶´Ãó`Ž,©h€å˜›ñrAÔƒ ¤L·1ÆâGß4/ý]~°ò¬=1)jR&¯º©¿Ë MÁ_´cÄÕžÅ~€Mw±2œlh!|ax:„ó;ŒÄ8X&p=†™_±ôÏAŽìF ±@Ô¶£é™…róa£"d‡þ×y-9w¬þë½)„ënÊZ ¬úöÇ€—ì"wûœÓ¢ ¤ð,×6­zæT§^‘=¦Za4äA  *ô2µ.PH0ð:ê^vÓî$ .Æ‹-œsÓþ@cýev¬òÍóÚ°Í\Dn”„ ï…sª— ÓŒ-”ÈzB©ŽY³ÊZ”HÖv3Ýtqë8ȳÌÅ‚D_ Í;~À˜uÀ¼ËÎ:ƒÈ]àg!$×Vh> $X¿³`ÞQê%ŒûÐmÍ·=¬¤ Š©âJ=G‹£ÆiŠv2Ç–6ŽÂžÒM·›"äÛÌÀnxŸïs\š7€¹È²<¤åC©DCè&PS¡îM ¦Gr}SJW”Ì 2]†BÔÕ‰q”ÊÓù=†8lA$žBwŽKÂ-ü²¤C¤˜\ £kÊA{ÖÄá±ÁZ´!õ󆾩ßÙÈ'…ôðÂ{ Fhé,6*´zaU– ,JÀ%‰â¹Y\ØÊLám «¶@L>3¼Nzä …cðš€Q5?I?äÂrWG1+ÚŽaÂÓ¾‡ßuRNF øTGù¸WÚö‘N‡fw÷ï2 £Ê`_ÀŠÌ{õ­ üÛa@•’шX‚ ½gøÇ”Iõ E Ô\ØX.ö/ŒŸöÑub–­ôO¤Œ¥­tÁd•ïh=ÉZ{èÆÍ¿¤TbŒžÆÕ¯v΂' ) ž»G+U°öTºÙ;Ê?ÄIOǬ+W<”f%í-^é2ì¯y¾ëà2„KæL-ÈrÔ3åú®5Ön¢ea°jîâvè©a¯ùhSD’9·Gd ]ïqÂêGpY¡–^«¯„ê~v”$çè?™îÿ·` ‚FݤKÛ™‡p?Äw$æ”5ÌvÏm 4…+ã#c45ã¶dB?݈ýüç„`ßÿljF]=ã\¨T*OC¾H\â‡pà@œä=+—@ܪֽþ¡Õ%š²lm׺4Ð ’‡’ê‡v…c—ãgÙQS\;†fH·W8¥È ØÁE'Ûy‰ò¤û%¬Ú…• Dèœ9ÒM …ÿX=VRиwú°$s‹{“ÐçÕˆ CëÇNú{„”‚ŒÈóÂÌߢQe"?°œÄô¾Ô#ž@ uõô,ÊÊâµ1‡|zT?Å{àÿ"lo&C`ÞéExRßô\ŸßH×KÐÉŽ±ΚW’$Š1ŽrÑ_e㌢5§F|ž ^k–VÔ2Ážæ«ª~ŸK0Æ‘\³#Ò­B+`ˆúµnpÏo;Ú†9#âçÒ}£Ã#½P­ÄûÂÒ{3übóî çƒ)šë¤v"OºÏ_Ï‘=bzÑPS4ÀÒ¡Vh>äãÜð*ªi'Nå)v–pjÒÄg¨ðé³(ÔДW—”7­[%zàóÒõç˜ðFéÓa b¿Œ2¡öŽäƒÓë"cwÓ½ù&¬ªÔzh–£•^çèþ›ïŸ!Z·CÉ2Žy‰±&@ÎrÃE .W$ÔåˆèÂݺ}oo:F›xìÔÍëîHØçŸñ¸U‚U3åK­å¶X"^mkØ Ô«¸]v½:'¿wK Ƚ»Œ°¹1‡F!¤“@1ŒòÐ[­Ya×”ü áHîs>ÄN%“Ué4¦§ûKÆaô=¯Å¦ —þP¦U'ãë<üK?êšòn‡O…WÐÚR#ò[QYD'þ+Ù\ñð—2£cœRÕð­lîuê;†¢)´ì³" 0•v¤b/˜²÷ÍúÊ„žÉõÙ¿N¢úßzH– óö™ ±Kò=¸@úúZ'|}¦0`¬-éÐ¥=¬Òs~¦þ >9<Ž2îí¨^Ù‹*ßyàb\QÅ+̺_~©B9âÜðV'Mæîât±ÖÜ牷Áèjg¼'K<ÑÅöÛœzw‘Óý°Ö‹æ¯[GÆhVâdPµ媀W=D)BîLÂP&B6¾HŽWh­Â ¢kËQËÕ 8…Ï#ÊW£w‡&Ñ»™‘Ú~Ú¼ –vÎ%oS&e"Ç&^ZÍød8‰šÑ{”ƒ!p弨»t(¯¬ãÝý]G!;„†„¤{íœwÆ2”ºÚê‘Ëó5t®¥,µ—®¶³Òl;è©†ë © ìvzREûë”ÀãRvÛ;\çMD¢â*BáÇWÉŠu€`ã«aèZƒƒZ‘¢—ÔµÞÂ4îf§vû.Ü-‡'¿¿™\`EÏ<`—N­w뮤[ÑOFyñÄîQ ;¤Ø>ö`À(œ¼¤†!äèS5/_n®ÜSÆ@ƒ+f}žÞi)y$žvÝÆ\´ýa‚òTö=hEkþ¿rQ؆TÃ=qƒžÓ¦,°àÊÜCì¸d—Xš's_ó\l:Rf2*-WÈýÈ{YOàMGëìTJ+t!9ÀTÓ>Z墱&÷œ]‹.;üÝÌr:’ÅØÓ aZ%öõXïRš0—Öíwâö)Xrˆ¡bÅ´áaðì¦þ*:5Akç@¥Añ¤µ!¦„Á3‰èჅº¯M‹’ ï&û–„´ƒjÉí©€IeGÿÙ-OwãQu7Þ\pâ®c]•V]Vå4Ùf›±›^ ó´bêù{èèðhyv»£ŠI>Æl<“µ¥õz§…³9ãùžÙ:¥ë£2O,y)Î]cF6²h{@é6s3¶„_oØÞí¥¨”á]6ãa‘ ÊÁLé7èæÙÓýƒ•Pïˆñr÷‰9èZŸÎŽlôÖDòG3uèÓNª…Î#­ÿJý.ý¸Ã ùaÙ¨“ÚwÊKդ݂ÙEeŇd.–©äÎÎá/ º$ôfCѶg×­@6ééT³$”Ã+‹b[iH£{‚½-Ï+O¨Ýyfä«ñÉÿ=ïwœz;.œ)u=—iGâí½Äà±ò6_äδ€”˜Ðy)™oÀ1£5L©Ød³æŽæocž¾ð¥ƒâ™‡x´àt—Ú8Á¹Ú@rŠtÑ,W9S¯‹Ï޽ÐÒÅT×ûSÌ5@ýhbb¶pGªtºK_ 8¥Éo£”&$^¾' ¾5 ðRø½–×q÷Aá䎽®²Ó6cå¨åÆ_½‘ÜÍø¡¨W2«xšÂFkêþ8|ƒôÃjêoô-︤sp;Ï‘ Ú`¸ iX¨— ÕMa¾!àÛ±)«Ã¡„­ùªN^¼ev ]úø*«–íÆxö¢4CÏv‰ûâá,¸ fO˹Ml¡eÐ þTŠŸöMþVg¦:ŽïÛ’Kiô3k¡†+ÆGçÖžíÉp \GÔ- õ-%Ý5ÊÐS«UYôÛ#üú6º›N oð…iöY=Šæ³´‡ªkÌt¬k—Ô/—ÏÎ^®ˆP^4‹Þ=]"óŠ*Ìöù£SÊ¸ŽŸ´„Ù&¥|òDý ôñ|@D(/¨5â>ZÆ1™r$­õMŽß“`lÿÜXøþŸ ÙDý•9‹"PõŸw¤©|ƒ¡wDoà÷9ϱ§óöø™ý%^ù"Ù;E4øïgEFøÔGŽx“š‰/†ƒ g­ø&è»#º¥¡ì0x£ÿšÇŽ lRæ àGžÛg¢rÑXn°á Ý&h•±ÓjmZÏðëÓãYGªYÓaŸ·:nD•*ŠF´~mŒdÆGH.´J'ýø»»,ÑnâÒeÆeóª¸ø¬×°Ï‚<ü§Ö»ê#cFj8k¸¤¶Û¨U”pf²gX3§!ш"–ÍII;v"Xoé=çäRÊv³² ×JHi¦æ-œÉCDÎ/ëq¼¤ßÊXÇ×µjÛf5†nà«‘H¯s@ªÈü±Yþ þºYuw°ï+_*¹Éêd 3¬‚,£±ÿÙWô PEhèÊà…ÿ–<<¹“—€÷ÕÞTè®Ä˘P7KU: IµÄåaè‘ endstream endobj 172 0 obj << /Length 859 /Filter /FlateDecode >> stream xÚmUMoâ0½çWx•ÚÅNÈW…œ„Hv[•jµWHL @Úþûõ›™´»Uçñ›ñ›Ǿùö´žØ¶ßºIt¯Õ³;÷סq“òûæÜÜT}s=ºîòùֵãìùA= }³vu[®ªU·¿Üyòªk×Ö¬¯I…{Ýw¬£n_ܯ‰k&‡ãöÑþ öËþr𬯠ÊGÕ§¨¢´Ÿn8ïûîA™{­µ,»¶ìèäLEšŽúvû®D’ÚB``BÕŒè·9zK¼~;_ÜqÕíú`>WÓg?y¾ o¤ò.˜>­öÝ«ºý¤ÍÏ­¯§ÓÁA‡ÒÁb¡Z·ó%½?6G§¦_·ùNzy;9ÒØ°²¦oÝù´iܰé^]0×z¡æu½\×~š3§lw#w鹺ö?¡ŽòE07H6!L‰@Œ@ÂÈBŒ€Öû@æq\s óŒ”*댌ÆTgùäÔÿÇÀ á]8 i/°n¢£ŸTv<ÊÈkã­õØ0†×YÈÚ²ˆ1êg3ÆK`òÚYÂõ³”1q2î2ñ‚Ö%/Ì ¾dchÎJÆð(«S}êßÄØYÍ:sÖcÝœõÇà笟öPÎúcèÉYB¹¬?Aï9ëO‰Ïúâ³ÎšsÖ™âç¬3¢\ÖQ.ë4ôa±Ï½Xñ=Zñ9Ÿ‰#>c-+>c_ZñëZñ~Zñ™8â3z·â3ô[ñ:­øŒÞ­ø ߬øLõÅgè·â3tâ3Ö-Ägð ñüB|†žB|¦\ñ½â3ñÅgâg|2–³½â?z)ÄìÃBü§šü­XªÉßIAuÄp*^+†ÇãŽ&™#ÌsU-'H8ªqµ¼_Íuü A÷û8ñ÷{¿¢Ný YôÐÝ6Þ§=ÖÁ_ã8ßN endstream endobj 173 0 obj << /Length 859 /Filter /FlateDecode >> stream xÚmUMoâ0½çWx•ÚÅNÈW…œ„Hv[•jµWHL @Úþûõ›™´»Uçñ›ñ›Ǿùö´žØ¶ßºIt¯Õ³;÷סq“òûæÜÜT}s=ºîòùֵãìùA= }³vu[®ªU·¿Üyòªk×Ö¬¯I…{Ýw¬£n_ܯ‰k&‡ãö ýì—ýåàY_”ªOQEi?ÝpÞ÷݃2÷ZkXvmÙÑÉ9˜Š5õíö];ˆ$µ…ÀÀ„ªÝ7Ñosô– yýv¾¸ãªÛõÁ|®¦Ï~ò|ÞHå]0}Z7ì»WuûI›Ÿ[_O§ƒƒ¥ƒÅBµnçKz~lŽNM¿nóôòvr*¤±aeMߺóiÓ¸aÓ½º`®õBÍëz¸®ý4g"NÙîFîÒsuíBå‹`nlB ˜„‘„­=öÌã¸æ@æ )UÖ 9yŽ€IÁ(±JÅ5<æ§T`,© M%5ŠÖœR£h”ºäRê ®á1ÚûÌgcßÍïÍ yq(¬ ábŒÆuX&Àá &èq,–Ñ1Ç+à„±N97Î8Nüœsk`Ëq8­ ^—8%Ç àŠ½FMq.â†5„SâhzAìkO × Ápý$Áƒqù1¦7]}Œ©ÎòþÈ©ÿ»pÒ^`ÜD3F?©ìx”‘ׯ[ë±a ¯³1´ecÔÏfŒ—Àäµ!/²„1êg)câdÜ?4dâ­K^˜|É ÆÐœ•ŒáQV1¦úÔ¿‰±'²š1tæ¬?ƺ9ëÁÏY?í¡œõÇГ³þ„rY‚ÞsÖŸŸõ'Äg)4ç¬3Å;ÎYgD¹¬3¢\ÖièÃbŸ-z±â3z´âs ,>G|ÆZV|ƾ´â3Öµâ3ü´â3qÄgônÅgè·â3tZñ½[ñ¾Yñ™ê‹ÏÐoÅgè,Äg¬[ˆÏàâ3ø…ø =…øL¹â3z/Ägâ‹ÏÄÏød ,gz)ÄôRˆÿ؇…øO5ù[±T“¿“‚êˆÿàT¼V *ŽÇM2G˜çªZN(:‘pTãjy¿šë0ø‚î:÷qâï;÷~Eú²è¡»m¼O1z¬ƒ¿'ßX endstream endobj 174 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlöo` òKwÞ{Ò·óÊÕ× ¢¤_ny×È| #¥Ê:##Ï0)%V©¸†ÇÁ²£â” Œ55¡)°£FÑšSj­‘R—@J]!À5£G+>ÇÀâ3qÄg¬eÅgìK+>c]+>ÃO+>G|FïV|†~+>C§ŸÑ»Ÿá›Ÿ©¾ø ýV|†ÎB|ƺ…ø ~!>ƒ_ˆÏÐSˆÏ”+>£÷B|&¾øLüŒOÂr¡—BüG/…ø}XˆÿT“ÿK5ù?)¨ŽøNÅkÅð¡âxáÁÑ$s„y®ªå„¢ G5.–[ ¹Œ£¿ èö¡s'~×» ê8‘EÝlÓUŠÑCüjÝF endstream endobj 175 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMèßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø ®´ÝP endstream endobj 176 0 obj << /Length 857 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N)ˆ$‡þûõ›ÚíªÐóøÍøÍÃØW?Ÿg¶^Ý,ºÕêÉ†ËØ¸Yùs{ ®®ª¡¹\¾w®uí4{ºSãÐ<»³º.7Õ¦ïÎ7ž¼é›ý¥uë{RáÞºþ“‚uÔõ‹û=sÍlMêßÀä—î¼÷¤o番¯AEI¿Üxê†þN™[­µ¬û¶hãÌEŠšOâv]ߎ¢G½B]`BÕvÍYFônÞ$?¿ŸÎî°éwC°\ªù“Ÿ<ÇwÒxÌÆÖ]ÿ¦®¿JóSÏ—ãqï Cé`µR­ÛùоÿûíÁ©ù·=~p^ÞN…46¬«Zw:n7nû7,µ^©e]¯×·ÿÍ™ˆS^wwí¹ºö¯PGù*X$›¦D F á@ä¡F@k} ó8®9ù@FJ•uFFž#`R0J¬Rq ƒeFÅ)kjBS` F¢5§Ô(Z#¥.9€”ºB€kxŒö§>óÅÔwóg;ŠE^ kC¸X£q– pD¸‚ zA‹etÌñ 8alSÎM3Ž?çÜØrNë‚×%NÉñ¸b¯QÓDœ‹¸a á”8š>ûÁÃõ#h0\?Ið`\~ŽéKWŸcª³þ‡?qê¯1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦øÆ9ëŒ(—uF”Ë: ýXì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&ÿ+–jòRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\,·@sGAÐíCç>Nü®wÔq8"‹ºÙ¦«£‡:ø YÝi endstream endobj 177 0 obj << /Length 859 /Filter /FlateDecode >> stream xÚmUËnÛ0¼ë+ØC€äà˜”¬W` $ ð¡ME¯ŽD§BmÉíCþ¾œÝUÒ9È.g—³#мúöð4³íðâfÑ­Vî4\ÆÆÍÊïÛcpuU ÍåàúóçZ×N³§;õ0Í“;«ërSmúî|ãÉ›¾Ù_Z7±¾&îµë?(XG]?»_3×Ìö‡ó£ýìçî¼÷¬¯ ÊGÕ§¨¢´ŸnÆTgýâÔÿÇÀ á]¸i/°n¢£ŸTv<ÊÈkã­õØ0†×YÈÚ²ˆ1êg Æk`òÚYÂõ³”1q2î2ñ‚Ö%/̾dchÎJÆð(«S}êßÄØYÍ:sÖcÝœõÇà笟öPÎúcèÉYB¹¬?Aï9ëO‰Ïúâ³ÎšsÖ™âç¬3¢\ÖQ.ë4ôa±Ï½Xñ=Zñ9Ÿ‰#>c-+>c_ZñëZñ~Zñ™8â3z·â3ô[ñ:­øŒÞ­ø ߬øLõÅgè·â3tâ3Ö-Ägð ñüB|†žB|¦\ñ½â3ñÅgâg|2–³½â?z)ÄìÃBü§šü­XªÉßIAuÄp*^+†ÇãŽ&™#ÌsU-'H8ªqµ¼_Íeý A÷û8ñ»Þ½_QÇáˆ,zèn›îSŒîëà/Ž_ßg endstream endobj 178 0 obj << /Length 858 /Filter /FlateDecode >> stream xÚmUMo£0½ó+¼‡Jí! ᫊"RÛVmµÚk N7R!‡þûõ›Úݪ’çñ›ñ›‡±¯~<>ÏlÛ¿ºYt«Õ“;÷—¡q³òçö\]U}s9ºn¼w®uí4{¾SCß<»Q]—›jÓíÇOÞtÍáÒº‰õ=©poûî“‚uÔõ‹û=sÍìpG£ýì—ýxð¬ï ÊGÕ—¨¢´_n8ïûîN™[­µ¬»¶ìèäÌEšOúvû®D’z…ÀÀ„ªÝ7£Œè·9zKüü~ÝqÓíú`¹Tó'?y‡wRyÌ†Ö ûîM]Ñæçž/§ÓÁA‡ÒÁj¥Z·ó%½÷Û£SóïÛü ½¼Ÿœ ilXYÓ·î|Ú6nØvo.Xj½R˺^®k¿Ì™ˆS^wwí¹ºö?¡ŽòU°4H6!L‰@Œ@ÂÈBŒ€Öû@æq\s óŒ”*댌ÇTgýâÔÿÇÀ á]¸i/°n¢£ŸTv<ÊÈkã­õØ0†×YÈÚ²ˆ1êg Æk`òÚYÂõ³”1q2î2ñ‚Ö%/̾dchÎJÆð(«S}êßÄØYÍ:sÖcÝœõÇà笟öPÎúcèÉYB¹¬?Aï9ëO‰Ïúâ³ÎšsÖ™âç¬3¢\ÖQ.ë4ôa±Ï½Xñ=Zñ9Ÿ‰#>c-+>c_ZñëZñ~Zñ™8â3z·â3ô[ñ:­øŒÞ­ø ߬øLõÅgè·â3tâ3Ö-Ägð ñüB|†žB|¦\ñ½â3ñÅgâg|2–³½â?z)ÄìÃBü§šü­XªÉßIAuÄp*^+†ÇãŽ&™#ÌsU-'H8ªqµ|\Íeü A÷û8ñ÷û¸¢Ný YôÐÝ6ݧ=ÔÁ_ÁÄß” endstream endobj 179 0 obj << /Length 860 /Filter /FlateDecode >> stream xÚuUËnÛ0¼ë+ØC€äà˜”¬W` $ È¡ME¯ŽD§lÉåCþ¾œÝuÒÍAöp9»œQäÕ·ÇÍ̶Ë›E·Z=¹Óp7+¿oÁÕU54çƒë§ε®½ÌžîÔã847©ëò¾ºï»éÆ“ïûfnÝ…õRá^»þƒ‚uÔõ³û5sÍl˜¦Îhÿ‘ý¹›öžöCù°úV”øÓ§nèÕZûÀºoËá€fNÁ\©ùEâ®ëÛQT©h L¨Ú®™dD¿ÍÁ»‚äÍÛir‡û~7Ë¥š?ùÉÓ4¾‘Λ`þ0¶nìúWuýYœŸÜœÇ½ƒ¥ƒÕJµnçkz~lNÍ¿èôõüvt*¤±amÍкÓqÛ¸qÛ¿º`©õJ-ëz¸¾ý4g"NyÙ]¸kÏÕµÿ u”¯‚¥A² )`JbD>`´öØ2ãš™$`¤TY'`ä`ä9&£Ä*×ð8XV`TœR±¦&4Ö`Ô(ZsJ¢5Rê’H©+¸†ÇhÿÒg¾¸ôÝüÞŽb‘‡ÂÚ.Àh\‡e®`‚^Çbs¼N[à”sSàŒãÄÏ9·¶‡Óºàu‰Sr¼®ØkÔ4ç"nXCA8%ަľFðÄpý ×O<—czÓÕǘê¬ÿâ_8õ¿1ðBx.BÚ ¬Ã€›hÆè'•Ý2òÚxk=6Œáu2†¶,bŒúÙ‚ñ˜¼6äE–0Fý,eLœŒû‡†L¼ uÉ ³€/YÁš³’1<Ê*ÆTŸú71öDV3†ÎœõÇX7gý1ø9ë§=”³þzrÖŸP.ëOÐ{ÎúSâ³þ„ø¬3…æœu¦xÇ9ëŒ(—uF”Ë: }Xì³E/V|FV|ŽÅgâˆÏXËŠÏØ—V|ƺV|†ŸV|&ŽøŒÞ­ø ýV|†N+>£w+>Ã7+>S}ñú­ø …øŒu ñüB|¿Ÿ¡§Ÿ)W|Fï…øL|ñ™øŸ „å,B/…ø^ ñû°ÿ©&+–jòwRPñœŠ×ŠáCÅñ8ƒ£Iæó\UË E'Žj\.ï÷@sGEÐ Dç>Nü®wï—Ôq8"‹ºÝ.—*Fuðgõá¡ endstream endobj 180 0 obj << /Length 700 /Filter /FlateDecode >> stream xÚuTMo£0½ó+¼‡Jí!m0U ó!å°mÕT«½¦àt‘ˆ€úï×o†4«j{ÀzÞ̺v|t®võåïð žû®ÚºQÜf›|Ó6ã'oÚêp®Ý…õ’uïM{¥ ¸}u¿gã f‡c¯¤i"Amƃ§}Ã>,¾†%þrýÐtíƒP÷RJ(Ú:ëŽXÌÌ'Ab~‘¸oÚºŸT‰7h ”uSÓŒÆêè]AòöcÝqÓî»`µóÿsûÒyÌŸúÚõMû.n¿Šó?·çÓéà DÈ`½µÛûšÞ‡ÇÝщù7+ýd½~œœÐ4W¬­êj7œv•ëwí» VR®Åª,×kë/ÿbÎxÛOÔÔ0ñƒ”+³ðØ,ý ¥F Õ§)1<öÂc«8Pø€Æ\ ‹6¦€Ç>!Pp #]QxQTýÙõ“v)#´–êZB¢‰ÔYL½tž/Xˆ^r<ާÀ1çÆÀ†ãÄçu§%pÊñØr_âd·À9Ù¢PSiÆ0@¡Wå„Q_«úUžhÖ©±ÍÖhèÑ諵"œqëÒì–FM]R¯rCpt¨¡3Ì9õÂãж„~ðj™3FýeÁzpÉ8ô8úÇóˆ8Q„:1ù¬bøcäÕ7£®~}õÜðHq”('b ÃÄ„ùŒ>^ÐmØ# &½zdìõÄò…}4¼)Ö` Æð"áýH‘›,¸4%¬!Åþ%¤AQß„÷ÞB[B~)Ò™äÌï Õ_’)ïMн±¬?DM;Ý豬ßÂ;kyoóþQnNçRæð®d\ÆÓ €;‹WæóA¨Î}ïß zŠèÀÕoZ÷ùZº²è£gîòºböT$Z|U endstream endobj 190 0 obj << /Producer (pdfTeX-1.40.25) /Author(\376\377\000N\000a\000m\000i\000t\000a\000\040\000G\000u\000p\000t\000a\000,\000\040\000S\000u\000s\000a\000n\000n\000a\000\040\000M\000a\000r\000q\000u\000e\000z\000,\000\040\000N\000i\000m\000a\000\040\000N\000o\000u\000r\000i\000\040\000a\000n\000d\000\040\000J\000u\000l\000i\000a\000n\000\040\000Q\000.\000\040\000Z\000h\000o\000u)/Title(\376\377\000S\000h\000a\000z\000a\000m\000:\000\040\000T\000u\000n\000i\000n\000g\000\040\000c\000l\000o\000n\000a\000l\000\040\000a\000s\000s\000i\000g\000n\000m\000e\000n\000t\000\040\000t\000h\000r\000e\000s\000h\000o\000l\000d\000s\000\040\000w\000i\000t\000h\000\040\000n\000e\000a\000r\000e\000s\000t\000\040\000n\000e\000i\000g\000h\000b\000o\000r\000\040\000d\000i\000s\000t\000a\000n\000c\000e\000s)/Subject()/Creator(\376\377\000L\000a\000T\000e\000X\000\040\000v\000i\000a\000\040\000p\000a\000n\000d\000o\000c)/Keywords() /CreationDate (D:20251226170007+01'00') /ModDate (D:20251226170007+01'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.141592653-2.6-1.40.25 (TeX Live 2023) kpathsea version 6.3.5) >> endobj 151 0 obj << /Type /ObjStm /N 42 /First 363 /Length 2543 /Filter /FlateDecode >> stream xÚíZÙrÛ8}×Wà1ž) ÄVuu•½ãl¶“Î$åEblMdÑ‘¨l_?çERK¤é©~š* Ârqqpî²0˘0’)çñ­Xž)|k&”u¨&œ·¨8&…“¨äLj-˜°‚I§0nSÂ娦´=™Ê™œ©Üb'˜Ö µfÚ{ iÏŒÊh]|…@ÛH,3cs¬o™ñ˜/ ³™Ö=1+1*³*Çâ0XRjfòLZfs¡к,ÃRXÅe¼dNh,¡Q‘**GÅÊ6ÉœÂd¡bÚv†Jé˜3[ÇÎbªðqdƒìàCÛ‹4·–Šc nG%õÕXë± ë‘‰4¹w,ÓE¼4ЪȨ±‡(Åùn4•ðj:Ë-Ñ#‰N›I$œÜ4$qÔ’'’`qpTJRaá·|ÊK~Çg|Î+¾à_ùwþã(‚~4ÆBt9ËØyï÷ß÷"ãÕåÙã·§5rŽÈ {¦q × ÃëÔ܇Œ,ßJÆ}þ_ð7‰"â¿ 7?înŠi‹Œ»Á¬˜NŠOU¬ÍHÿÒàèÛ:Kþ–Þ½?urÚp™óâz1̶…«5¼†îႈ’ ¢²&MÙŠ¤l C¶Imo9I@Ó#þ˜?áOùü?ãÏáE/ù9È»}oùŸü_ q0¯ŠÙxþl~\L&EUûذ¼½DO Ä_ƒ Èþ„¿1þ¾‚ùr1k“ÿoþ9`:ž°B‰r‹%î°p9J™·ã¸î¼ø Uóñw>ŸƒW¼º™¯¾•+£ñŸüg1+[¶³Ù!¶;;{t~r¿áá»m‡§/8yxtÒÛYߎx¿_Ä[³Õ„a22×kë=Œ´2E }ƒ³'š[Œ‚Á*±¶‰-y[ONÞ]>~\³å~ÁVFžNÍáÙRÐCÈŠ-ÕfKµØ2ÛR‚o²•5ٺد[yqñßøÏ6úž½~üîíkp𼜖gÕîoŽUæÓ½Eå ²V°‡fMÞ1l!€xÚâ.Cd_¶·vPº?9yðîåiÚÚ/óžü• «^d®öfÚ‡Ÿi~RÊÿu6{ÕÈgïC6ŽÇÕx2*ø ¢”6 ?UÈ<©sO7ÉÊ öÛÉuÅ÷ádpK)¯‘ì®gÅ)s=éMŠù|•ù¦‹ÛÅl>¾žþ2 ;Ëн›,æˆß/‹²*F')5îJˆ‹éë ËY±37t®=|}ñþ³•;D£mñ†H‘.y¸&ÇcïX–^Y»HuòâäS¸ünÆ_ŸùÁÛ"G‰Ž´µèh„=ð@žw‚ pü1xf ™àõË|y–‡˜ˆÔ§¸aVShþ*¬_7/*xXÄ]å}3šñüÜ h<¸4øg¹[»6 M—õ{ ÿ‰W¶‘B®ö2^¡¦›ÓÕzxÁ¡«Ð¤Nxòé`^ÐÈöçVT†Ïä/üÑx6¯(ðºÇÏ©!¨õçxTÝÌq¯ŒI¿†^7‡žËòÍ6‘n9øwaÝö8ÐÅšw±êlV¼jß«:ëŽKy.Þàw©u-¸²WîWwÇ=´ W­±«·ÂÕûÀ5‡ÃÝqìÂ5]¸Æo…kök‡»õÎÖ»etÕ`é¹µ²½°ºÃ±n¿„uÁ®…™R-fmƒÙl´þp´[ï°n-È”ÙæÚí6ÿ{s|¯j«ó5¼~ ¯ßpà¿\s\kÊ=ôОÑM?Ù…éÏÆ#-!Þñî8~…µX$„Å÷,’{µC¹Þ¦ÜGíy*\Ü¢B!ò_iÙR…Œs½Ý0å墚àF0OL†_ÃêÄdø%2´¢JWÏWtGÒ)ÓЫ’X­7‘&¾š_Ãï˜MnÓ쬞­üÎÙé¸|Q|_AjëRn¥ËìÔ¥šº6âRz¥KîÔ•µtÙMºD­Kæ»tI×Ò¥6è’~¥ËîÔ¥[º²MºÌJ—Ú¬+Ζ­Ip¨{ÊáñE5˜UG°Gp®{OñDÐGLf¶D[Äö|“Æ…j¶³#ºm4z0C%?ågãÛqÕYn)uÕ…úÕÓMmmÛh›#f³FÛ1×ÄãŽðN¾ÑöG,÷]4Ë•–"›¡äØ™HkÍ‹a5.§ÿûwÝ>p D·’ÑùÄf·8¢‰Ö@Sl e=’¢k5äATô×FÈÒ]ð Ìv±ƒ4§;}ý° ³‰ )ZCéK¤HÿοMúÞé(›âýóÃZª¿?ÀÁX^÷b]eáe‚lF þq"ÅÍuñ'3/VÙôå]1= ˜X.öÉÆB endstream endobj 191 0 obj << /Type /XRef /Index [0 192] /Size 192 /W [1 3 1] /Root 189 0 R /Info 190 0 R /ID [<78E34C61A9A165C553DB263BADA29210> <78E34C61A9A165C553DB263BADA29210>] /Length 518 /Filter /FlateDecode >> stream xÚ%Ò;LÓQÇñsîÿßR XD  …*_(ˆ(ˆ_(>¨¢ˆÕ¸‰«1:«‰—¸¹'uss0q4.Ê䪒è@ÂÀ Üïqùäüîé½½í=""«NĉÊççB¥à ‚„2HAFE2¶£*~Ô+©ªa=1 U°Žµ:ÈB=4аmD·à(œNvÕ*Éö•ê3TœâjUj&­Q§ÒvÛªhPi^±Ø [ Q¥]mm#4Á&È©t͆?bð~`ªdÙ­*}¿,¶CäU†ªlm+lƒ6(¨ŒÃ÷Æ­»v¨L|±Ø » S¥ôÇÖº vBÊ­·Ö8{Tîô[ìçG7RíU™ûakû öÕǯ×Ͽ²î( ª<íµ8‡T^ X‚Ãp†U^ÂÞwÃÖ= ÇTÞü¿ËI(ª¼_°8ãpN¨|øm³0¡òé®Å3ܹ–j’ª•êœ'Ú]€‹D{ž)(m.Áe¢½à4\!樮 Ñ^ð•Ù,\‡¬1uî&•hœ^åjžA÷ ºgÐ}¬òµÅ Õ»½Oª>)ZU¦®>oUJÝ\Öªruߦ­ªÐ¨ÉÞ×Wj4Ÿ³*­ÑÏNÑhñ{àïÃÀRw`™¸ò ð/ÄX‰G¶ƒqôŒ£Ïså™+Ï\ù0¾CãÔ³°-;#k‰`B endstream endobj startxref 268126 %%EOF shazam/inst/doc/Targeting-Vignette.Rmd0000644000176200001440000001773515122475334017455 0ustar liggesusers--- title: 'Shazam: Inferring SHM targeting models' author: "Namita Gupta & Julian Q. Zhou" date: '`r Sys.Date()`' output: pdf_document: dev: pdf fig_height: 4.5 fig_width: 7.5 highlight: pygments toc: yes html_document: fig_height: 4.5 fig_width: 7.5 highlight: pygments theme: readable toc: yes geometry: margin=1in fontsize: 11pt vignette: > %\VignetteEngine{knitr::rmarkdown} %\VignetteIndexEntry{SHM targeting models} %\usepackage[utf8]{inputenc} --- The targeting model is the background likelihood of a particular mutation, based on the surrounding sequence context as well as the mutation itself. The model is inferred from observed mutations in the data. The model can then be transformed into a distance function to compare Ig sequences of a given dataset based on the likelihood of the observed mutations. This is done via the following steps: 1. Infer a substitution model, which is the likelihood of a base mutating to each other base given the microsequence context. 2. Infer a mutability model, which is likelihood of a given base being mutated given the microsequence context and substitution model. 3. Visualize the mutability model to identify hot and cold spots. 4. Calculate a nucleotide distance matrix based on the underlying SHM models. ## Example data A small example AIRR Rearrangement database is included in the `alakazam` package. Inferring a targeting model requires the following fields (columns) to be present in the table: * `sequence_id` * `sequence_alignment` * `germline_alignment_d_mask` * `v_call` ```{r, eval=TRUE, warning=FALSE, message=FALSE} # Import required packages library(shazam) # Load example data data(ExampleDb, package="alakazam") # Subset to IGHG for faster usage demonstration db <- subset(ExampleDb, c_call == "IGHG") ``` ## Infer targeting model (substitution and mutability) The function for inferring substitution rates (`createSubstitutionMatrix`) counts the number of mutations from a given base to all others occurring in the center position for all 5-mer motifs in the dataset. The `model` argument of `createSubstitutionMatrix` allows the user to specify whether to count all mutations, or just silent mutations to infer the model. Column names for the sample sequence, germline sequence, and V call can also be passed in as parameters if they differ from Change-O defaults. Additionally, the `multipleMutation` parameter determines handling of multiple mutations in a single 5-mer: `independent` treats each mutation independently and `ignore` entirely disregards 5-mers with multiple mutations. ```{r, eval=FALSE} # Create substitution model using silent mutations sub_model <- createSubstitutionMatrix(db, model="s", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call") ``` The function for inferring a mutability model (`createMutabilityMatrix`) counts the number of mutations in all 5-mer motifs of the dataset, and depends upon the inferred substitution rates. Similar parameters as those available for inferring the substitution rates are available to adjust this function. ```{r, eval=FALSE} # Create mutability model using silent mutations mut_model <- createMutabilityMatrix(db, sub_model, model="s", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call") ``` `createMutabilityMatrix` creates an object of class `MutabilityModel` that contains a named numeric vector of 1024 normalized mutability. The numbers of silent and replacement mutations used for estimating the 5-mer mutabilities are recorded in the `numMutS` and `numMutR` slots, respectively. rates. The `source` slot contains a named vector indicating whether each 5-mer mutability was inferred or measured. A data.frame with both the mutability values and derivation source. ```{r, eval=FALSE} # Number of silent mutations used for estimating 5-mer mutabilities mut_model@numMutS # Number of replacement mutations used for estimating 5-mer mutabilities mut_model@numMutR # Mutability and source as a data.frame head(as.data.frame(mut_model)) ``` The inferred substitution and mutability models returned by the above functions only account for unambiguous 5-mers. However, there may be cases in which the user may need the likelihood of a mutation in a 5-mer with ambiguous characters. Each of the above functions has a corresponding function (`extendSubstitutionMatrix` and `extendMutabilityMatrix`) to extend the models to infer 5-mers with Ns by averaging over all corresponding unambiguous 5-mers. ```{r, eval=FALSE} # Extend models to include ambiguous 5-mers sub_model <- extendSubstitutionMatrix(sub_model) mut_model <- extendMutabilityMatrix(mut_model) ``` These extended substitution and mutability models can be used to create an overall SHM targeting matrix (`createTargetingMatrix`), which is the combined probability of mutability and substitution. ```{r, eval=FALSE} # Create targeting model matrix from substitution and mutability models tar_matrix <- createTargetingMatrix(sub_model, mut_model) ``` All of the above steps can be combined by using the single function `createTargetingModel` to infer a `TargetingModel` object directly from the dataset. Again, the numbers of silent and replacement mutations used for estimating the 5-mer mutabilities are also recorded in the `numMutS` and `numMutR` slots respectively. Additionally, it is generally appropriate to consider the mutations within a clone only once. Consensus sequences for each clone can be generated using the `collapseClones` function. ```{r, eval=TRUE, warning=FALSE} # Collapse sequences into clonal consensus clone_db <- collapseClones(db, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", nproc=1) # Create targeting model in one step using only silent mutations # Use consensus sequence input and germline columns model <- createTargetingModel(clone_db, model="s", sequenceColumn="clonal_sequence", germlineColumn="clonal_germline", vCallColumn="v_call") ``` ## Visualize targeting model The visualization of a dataset's underlying SHM mutability model can be used to investigate hot and cold spot motifs. The length of the bars on the plot of mutability rates corresponds to the likelihood of a given base in the given 5-mer being mutated. The plotting function `plotMutability` has an argument `style` to specify either a hedgehog plot (circular) or barplot display of 5-mer mutability rates. If the mutability for only specific bases is required, this can be specified via the `nucleotides` argument. ```{r, eval=TRUE, warning=FALSE, fig.width=7, fig.height=7.5} # Generate hedgehog plot of mutability model plotMutability(model, nucleotides="A", style="hedgehog") plotMutability(model, nucleotides="C", style="hedgehog") ``` ```{r, eval=TRUE, warning=FALSE, fig.width=7, fig.height=4.5} # Generate bar plot of mutability model plotMutability(model, nucleotides="G", style="bar") plotMutability(model, nucleotides="T", style="bar") ``` ## Calculate targeting distance matrix In the Change-O pipeline, the `hs5f` cloning method rely on an inferred targeting model. If users wish to use a targeting model inferred from their data to assign distance between sequences for clonal grouping, then the observed SHM targeting rates must be transformed into distances. The `calcTargetingDistance` function returns a matrix of distances between each 5-mer and each corresponding mutation of the center base. This matrix can also be generated and written directly to a file using the function `writeTargetingDistance`. ```{r, eval=TRUE, warning=FALSE} # Calculate distance matrix dist <- calcTargetingDistance(model) ``` shazam/README.md0000644000176200001440000000607415071741227013031 0ustar liggesusers[![CRAN status](https://www.r-pkg.org/badges/version/shazam)](https://cran.r-project.org/package=shazam) [![](http://cranlogs.r-pkg.org/badges/grand-total/shazam)](https://www.r-pkg.org/pkg/shazam) [![](https://cranlogs.r-pkg.org/badges/shazam)](https://www.r-pkg.org/pkg/shazam) [![](https://img.shields.io/static/v1?label=AIRR-C%20sw-tools%20v1&message=compliant&color=008AFF&labelColor=000000&style=plastic)](https://docs.airr-community.org/en/stable/swtools/airr_swtools_standard.html) SHazaM ------------------------------------------------------------------------------- SHazaM is part of the [Immcantation](http://immcantation.readthedocs.io) analysis framework for Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) and provides tools for advanced analysis of somatic hypermutation (SHM) in immunoglobulin (Ig) sequences. Shazam focuses on the following analysis topics: 1. **Quantification of mutational load** SHazaM includes methods for determine the rate of observed and expected mutations under various criteria. Mutational profiling criteria include rates under SHM targeting models, mutations specific to CDR and FWR regions, and physicochemical property dependent substitution rates. 2. **Statistical models of SHM targeting patterns** Models of SHM may be divided into two independent components: (a) a mutability model that defines where mutations occur and (b) a nucleotide substitution model that defines the resulting mutation. Collectively these two components define an SHM targeting model. SHazaM provides empirically derived SHM 5-mer context mutation models for both humans and mice, as well tools to build SHM targeting models from data. 3. **Analysis of selection pressure using BASELINe** The Bayesian Estimation of Antigen-driven Selection in Ig Sequences (BASELINe) method is a novel method for quantifying antigen-driven selection in high-throughput Ig sequence data. BASELINe uses SHM targeting models can be used to estimate the null distribution of expected mutation frequencies, and provide measures of selection pressure informed by known AID targeting biases. 4. **Model-dependent distance calculations** SHazaM provides methods to compute evolutionary distances between sequences or set of sequences based on SHM targeting models. This information is particularly useful in understanding and defining clonal relationships. Contact ------------------------------------------------------------------------------- If you need help or have any questions, please contact the [Immcantation Group](mailto:immcantation@googlegroups.com). If you have discovered a bug or have a feature request, you can open an issue using the [issue tracker](https://github.com/immcantation/shazam/issues). To receive alerts about Immcantation releases, news, events, and tutorials, join the [Immcantation News](https://groups.google.com/g/immcantation-news) Google Group. [Membership settings](https://groups.google.com/g/immcantation-news/membership) can be adjusted to change the frequency of email updates. shazam/build/0000755000176200001440000000000015123530430012630 5ustar liggesusersshazam/build/vignette.rds0000644000176200001440000000054315123530430015171 0ustar liggesusers‹•“ÑJÃ0…Ϻnº Ì‰ˆB^À=„Œ!ÈDìocû¯ ´ÉÖ¤ŒÝùÞ‚ÝçfdzÕ6ç$ÿ×sÚ×6€a#@PPïh8Ð@ˆ€î×” I·/"•d õžóÄŠW}¡ÍH=/HŸ£;, 7BI¯Mò2ãÆ{öň)!Ó]uï2¢Œâj›•\1ñzžÕ¯+B.cbF1¹ád’D:yS…õœ9FÆ%ÏZh+ÜDbÍ'dÊ4ÍJªÎɭٙΣû!3Ž•å*¡LqšŒ„¸uxBü&þ q+úB¬Ô]¼Ž§c—ïo »­ž~äi×eæë¶Ú²†ÚÀá×úÃ@Í24$ÏÉÕ´‹á@dä #a¾êOý½­¹·8êÓ”dâ>„ãZÌU‘è½A­BÍ{nØIõ˽X.—ûDqƵ#r‹í„Þ<'Ÿ+Lÿî5´shazam/build/partial.rdb0000644000176200001440000000010115123530335014751 0ustar liggesusers‹‹àb```b`aeb`b1…À€…‰‘…“5/17µ˜A"Éð¸F$7shazam/man/0000755000176200001440000000000015037732576012327 5ustar liggesusersshazam/man/observedMutations.Rd0000644000176200001440000001703715037732576016343 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MutationProfiling.R \name{observedMutations} \alias{observedMutations} \title{Calculate observed numbers of mutations} \usage{ observedMutations( db, sequenceColumn = "sequence_alignment", germlineColumn = "germline_alignment_d_mask", regionDefinition = NULL, mutationDefinition = NULL, ambiguousMode = c("eitherOr", "and"), frequency = FALSE, combine = FALSE, nproc = 1, cloneColumn = "clone_id", juncLengthColumn = "junction_length" ) } \arguments{ \item{db}{\code{data.frame} containing sequence data.} \item{sequenceColumn}{\code{character} name of the column containing input sequences. IUPAC ambiguous characters for DNA are supported.} \item{germlineColumn}{\code{character} name of the column containing the germline or reference sequence. IUPAC ambiguous characters for DNA are supported.} \item{regionDefinition}{\link{RegionDefinition} object defining the regions and boundaries of the Ig sequences. If NULL, mutations are counted for entire sequence. To use regions definitions, sequences in \code{sequenceColumn} and \code{germlineColumn} must be aligned, following the IMGT schema.} \item{mutationDefinition}{\link{MutationDefinition} object defining replacement and silent mutation criteria. If \code{NULL} then replacement and silent are determined by exact amino acid identity.} \item{ambiguousMode}{whether to consider ambiguous characters as \code{"either or"} or \code{"and"} when determining and counting the type(s) of mutations. Applicable only if \code{sequenceColumn} and/or \code{germlineColumn} contain(s) ambiguous characters. One of \code{c("eitherOr", "and")}. Default is \code{"eitherOr"}.} \item{frequency}{\code{logical} indicating whether or not to calculate mutation frequencies. Default is \code{FALSE}.} \item{combine}{\code{logical} indicating whether for each sequence should the mutation counts for the different regions (CDR, FWR) and mutation types be combined and return one value of count/frequency per sequence instead of multiple values. Default is \code{FALSE}.} \item{nproc}{number of cores to distribute the operation over. If the cluster has already been set the call function with \code{nproc} = 0 to not reset or reinitialize. Default is \code{nproc} = 1.} \item{cloneColumn}{clone id column name in \code{db}} \item{juncLengthColumn}{junction length column name in \code{db}} } \value{ A modified \code{db} \code{data.frame} with observed mutation counts for each sequence listed. The columns names are dynamically created based on the regions in the \code{regionDefinition}. For example, when using the \link{IMGT_V} definition, which defines positions for CDR and FWR, the following columns are added: \itemize{ \item \code{mu_count_cdr_r}: number of replacement mutations in CDR1 and CDR2 of the V-segment. \item \code{mu_count_cdr_s}: number of silent mutations in CDR1 and CDR2 of the V-segment. \item \code{mu_count_fwr_r}: number of replacement mutations in FWR1, FWR2 and FWR3 of the V-segment. \item \code{mu_count_fwr_s}: number of silent mutations in FWR1, FWR2 and FWR3 of the V-segment. } If \code{frequency=TRUE}, R and S mutation frequencies are calculated over the number of non-N positions in the specified regions. \itemize{ \item \code{mu_freq_cdr_r}: frequency of replacement mutations in CDR1 and CDR2 of the V-segment. \item \code{mu_freq_cdr_s}: frequency of silent mutations in CDR1 and CDR2 of the V-segment. \item \code{mu_freq_fwr_r}: frequency of replacement mutations in FWR1, FWR2 and FWR3 of the V-segment. \item \code{mu_freq_fwr_s}: frequency of silent mutations in FWR1, FWR2 and FWR3 of the V-segment. } If \code{frequency=TRUE} and \code{combine=TRUE}, the mutations and non-N positions are aggregated and a single \code{mu_freq} value is returned \itemize{ \item \code{mu_freq}: frequency of replacement and silent mutations in the specified region } } \description{ \code{observedMutations} calculates the observed number of mutations for each sequence in the input \code{data.frame}. } \details{ Mutation counts are determined by comparing a reference sequence to the input sequences in the column specified by \code{sequenceColumn}. See \link{calcObservedMutations} for more technical details, \strong{including criteria for which sequence differences are included in the mutation counts and which are not}. The mutations are binned as either replacement (R) or silent (S) across the different regions of the sequences as defined by \code{regionDefinition}. Typically, this would be the framework (FWR) and complementarity determining (CDR) regions of IMGT-gapped nucleotide sequences. Mutation counts are appended to the input \code{db} as additional columns. If \code{db} includes lineage information, such as the \code{parent_sequence} column created by \link{makeGraphDf}, the reference sequence can be set to use that field as reference sequence using the \code{germlineColumn} argument. } \examples{ # Subset example data data(ExampleDb, package="alakazam") db <- ExampleDb[1:10, ] # Calculate mutation frequency over the entire sequence db_obs <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", frequency=TRUE, nproc=1) # Count of V-region mutations split by FWR and CDR # With mutations only considered replacement if charge changes db_obs <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=IMGT_V, mutationDefinition=CHARGE_MUTATIONS, nproc=1) # Count of VDJ-region mutations, split by FWR and CDR db_obs <- observedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=IMGT_VDJ, nproc=1) # Extend data with lineage information data(ExampleTrees, package="alakazam") graph <- ExampleTrees[[17]] clone <- alakazam::makeChangeoClone(subset(ExampleDb, clone_id == graph$clone)) gdf <- makeGraphDf(graph, clone) # Count of mutations between observed sequence and immediate ancestor db_obs <- observedMutations(gdf, sequenceColumn="sequence", germlineColumn="parent_sequence", regionDefinition=IMGT_VDJ, nproc=1) } \seealso{ \link{calcObservedMutations} is called by this function to get the number of mutations in each sequence grouped by the \link{RegionDefinition}. See \link{IMGT_SCHEMES} for a set of predefined \link{RegionDefinition} objects. See \link{expectedMutations} for calculating expected mutation frequencies. See \link{makeGraphDf} for creating the field \code{parent_sequence}. } shazam/man/collapseClones.Rd0000644000176200001440000005153515037732576015575 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MutationProfiling.R \name{collapseClones} \alias{collapseClones} \title{Constructs effective clonal sequences for all clones} \usage{ collapseClones( db, cloneColumn = "clone_id", sequenceColumn = "sequence_alignment", germlineColumn = "germline_alignment_d_mask", muFreqColumn = NULL, regionDefinition = NULL, method = c("mostCommon", "thresholdedFreq", "catchAll", "mostMutated", "leastMutated"), minimumFrequency = NULL, includeAmbiguous = FALSE, breakTiesStochastic = FALSE, breakTiesByColumns = NULL, expandedDb = FALSE, nproc = 1, juncLengthColumn = "junction_length", fields = NULL ) } \arguments{ \item{db}{\code{data.frame} containing sequence data. Required.} \item{cloneColumn}{\code{character} name of the column containing clonal identifiers. Required.} \item{sequenceColumn}{\code{character} name of the column containing input sequences. Required. The length of each input sequence should match that of its corresponding germline sequence.} \item{germlineColumn}{\code{character} name of the column containing germline sequences. Required. The length of each germline sequence should match that of its corresponding input sequence.} \item{muFreqColumn}{\code{character} name of the column containing mutation frequency. Optional. Applicable to the \code{"mostMutated"} and \code{"leastMutated"} methods. If not supplied, mutation frequency is computed by calling \code{observedMutations}. Default is \code{NULL}. See Cautions for note on usage.} \item{regionDefinition}{\link{RegionDefinition} object defining the regions and boundaries of the Ig sequences. Optional. Default is \code{NULL}.} \item{method}{method for calculating input consensus sequence. Required. One of \code{"thresholdedFreq"}, \code{"mostCommon"}, \code{"catchAll"}, \code{"mostMutated"}, or \code{"leastMutated"}. See "Methods" for details.} \item{minimumFrequency}{frequency threshold for calculating input consensus sequence. Applicable to and required for the \code{"thresholdedFreq"} method. A canonical choice is 0.6. Default is \code{NULL}.} \item{includeAmbiguous}{whether to use ambiguous characters to represent positions at which there are multiple characters with frequencies that are at least \code{minimumFrequency} or that are maximal (i.e. ties). Applicable to and required for the \code{"thresholdedFreq"} and \code{"mostCommon"} methods. Default is \code{FALSE}. See "Choosing ambiguous characters" for rules on choosing ambiguous characters.} \item{breakTiesStochastic}{In case of ties, whether to randomly pick a sequence from sequences that fulfill the criteria as consensus. Applicable to and required for all methods except for \code{"catchAll"}. Default is \code{FALSE}. See "Methods" for details.} \item{breakTiesByColumns}{A list of the form \code{list(c(col_1, col_2, ...), c(fun_1, fun_2, ...))}, where \code{col_i} is a \code{character} name of a column in \code{db}, and \code{fun_i} is a function to be applied on that column. Currently, only \code{max} and \code{min} are supported. Note that the two \code{c()}'s in \code{list()} are essential (i.e. if there is only 1 column, the list should be of the form \code{list(c(col_1), c(func_1))}. Applicable to and optional for the \code{"mostMutated"} and \code{"leastMutated"} methods. If supplied, \code{fun_i}'s are applied on \code{col_i}'s to help break ties. Default is \code{NULL}. See "Methods" for details.} \item{expandedDb}{\code{logical} indicating whether or not to return the expanded \code{db}, containing all the sequences (as opposed to returning just one sequence per clone).} \item{nproc}{Number of cores to distribute the operation over. If the \code{cluster} has already been set earlier, then pass the \code{cluster}. This will ensure that it is not reset.} \item{juncLengthColumn}{\code{character} name of the column containing the junction length. Needed when \code{regionDefinition} includes CDR3 and FWR4.} \item{fields}{additional fields used for grouping. Use sample_id, to avoid combining sequences with the same clone_id that belong to different sample_id.} } \value{ A modified \code{db} with the following additional columns: \itemize{ \item \code{clonal_sequence}: effective sequence for the clone. \item \code{clonal_germline}: germline sequence for the clone. \item \code{clonal_sequence_mufreq}: mutation frequency of \code{clonal_sequence}; only added for the \code{"mostMutated"} and \code{"leastMutated"} methods. } \code{clonal_sequence} is generated with the method of choice indicated by \code{method}, and \code{clonal_germline} is generated with the \code{"mostCommon"} method, along with, where applicable, user-defined parameters such as \code{minimumFrequency}, \code{includeAmbiguous}, \code{breakTiesStochastic}, and \code{breakTiesByColumns}. } \description{ \code{collapseClones} creates effective input and germline sequences for each clonal group and appends columns containing the consensus sequences to the input \code{data.frame}. } \section{Consensus lengths}{ For each clone, \code{clonal_sequence} and \code{clonal_germline} have the same length. \itemize{ \item For the \code{"thresholdedFreq"}, \code{"mostCommon"}, and \code{"catchAll"} methods: The length of the consensus sequences is determined by the longest possible consensus sequence (based on \code{inputSeq} and \code{germlineSeq}) and \code{regionDefinition@seqLength} (if supplied), whichever is shorter. Given a set of sequences of potentially varying lengths, the longest possible length of their consensus sequence is taken to be the longest length along which there is information contained at every nucleotide position across majority of the sequences. Majority is defined to be greater than \code{floor(n/2)}, where \code{n} is the number of sequences. If the longest possible consensus length is 0, there will be a warning and an empty string (\code{""}) will be returned. If a length limit is defined by supplying a \code{regionDefinition} via \code{regionDefinition@seqLength}, the consensus length will be further restricted to the shorter of the longest possible length and \code{regionDefinition@seqLength}. \item For the \code{"mostMutated"} and \code{"leastMutated"} methods: The length of the consensus sequences depends on that of the most/least mutated input sequence, and, if supplied, the length limit defined by \code{regionDefinition@seqLength}, whichever is shorter. If the germline consensus computed using the \code{"mostCommon"} method is longer than the most/least mutated input sequence, the germline consensus is trimmed to be of the same length as the input consensus. } } \section{Methods}{ The descriptions below use "sequences" as a generalization of input sequences and germline sequences. \itemize{ \item \code{method="thresholdedFreq"} A threshold must be supplied to the argument \code{minimumFrequency}. At each position along the length of the consensus sequence, the frequency of each nucleotide/character across sequences is tabulated. The nucleotide/character whose frequency is at least (i.e. \code{>=}) \code{minimumFrequency} becomes the consensus; if there is none, the consensus nucleotide will be \code{"N"}. When there are ties (frequencies of multiple nucleotides/characters are at least \code{minimumFrequency}), this method can be deterministic or stochastic, depending on additional parameters. \itemize{ \item With \code{includeAmbiguous=TRUE}, ties are resolved deterministically by representing ties using ambiguous characters. See "Choosing ambiguous characters" for how ambiguous characters are chosen. \item With \code{breakTiesStochastic=TRUE}, ties are resolved stochastically by randomly picking a character among the ties. \item When both \code{TRUE}, \code{includeAmbiguous} takes precedence over \code{breakTiesStochastic}. \item When both \code{FALSE}, the first character from the ties is taken to be the consensus following the order of \code{"A"}, \code{"T"}, \code{"G"}, \code{"C"}, \code{"N"}, \code{"."}, and \code{"-"}. } Below are some examples looking at a single position based on 5 sequences with \code{minimumFrequency=0.6}, \code{includeAmbiguous=FALSE}, and \code{breakTiesStochastic=FALSE}: \itemize{ \item If the sequences have \code{"A"}, \code{"A"}, \code{"A"}, \code{"T"}, \code{"C"}, the consensus will be \code{"A"}, because \code{"A"} has frequency 0.6, which is at least \code{minimumFrequency}. \item If the sequences have \code{"A"}, \code{"A"}, \code{"T"}, \code{"T"}, \code{"C"}, the consensus will be \code{"N"}, because none of \code{"A"}, \code{"T"}, or \code{"C"} has frequency that is at least \code{minimumFrequency}. } \item \code{method="mostCommon"} The most frequent nucleotide/character across sequences at each position along the length of the consensus sequence makes up the consensus. When there are ties (multiple nucleotides/characters with equally maximal frequencies), this method can be deterministic or stochastic, depending on additional parameters. The same rules for breaking ties for \code{method="thresholdedFreq"} apply. Below are some examples looking at a single position based on 5 sequences with \code{includeAmbiguous=FALSE}, and \code{breakTiesStochastic=FALSE}: \itemize{ \item If the sequences have \code{"A"}, \code{"A"}, \code{"T"}, \code{"A"}, \code{"C"}, the consensus will be \code{"A"}. \item If the sequences have \code{"T"}, \code{"T"}, \code{"C"}, \code{"C"}, \code{"G"}, the consensus will be \code{"T"}, because \code{"T"} is before \code{"C"} in the order of \code{"A"}, \code{"T"}, \code{"G"}, \code{"C"}, \code{"N"}, \code{"."}, and \code{"-"}. } \item \code{method="catchAll"} This method returns a consensus sequence capturing most of the information contained in the sequences. Ambiguous characters are used where applicable. See "Choosing ambiguous characters" for how ambiguous characters are chosen. This method is deterministic and does not involve breaking ties. Below are some examples for \code{method="catchAll"} looking at a single position based on 5 sequences: \itemize{ \item If the sequences have \code{"N"}, \code{"N"}, \code{"N"}, \code{"N"}, \code{"N"}, the consensus will be \code{"N"}. \item If the sequences have \code{"N"}, \code{"A"}, \code{"A"}, \code{"A"}, \code{"A"}, the consensus will be \code{"A"}. \item If the sequences have \code{"N"}, \code{"A"}, \code{"G"}, \code{"A"}, \code{"A"}, the consensus will be \code{"R"}. \item If the sequences have \code{"-"}, \code{"-"}, \code{"."}, \code{"."}, \code{"."}, the consensus will be \code{"-"}. \item If the sequences have \code{"-"}, \code{"-"}, \code{"-"}, \code{"-"}, \code{"-"}, the consensus will be \code{"-"}. \item If the sequences have \code{"."}, \code{"."}, \code{"."}, \code{"."}, \code{"."}, the consensus will be \code{"."}. } \item \code{method="mostMutated"} and \code{method="leastMutated"} These methods return the most/least mutated sequence as the consensus sequence. When there are ties (multiple sequences have the maximal/minimal mutation frequency), this method can be deterministic or stochastic, depending on additional parameters. \itemize{ \item With \code{breakTiesStochastic=TRUE}, ties are resolved stochastically by randomly picking a sequence out of sequences with the maximal/minimal mutation frequency. \item When \code{breakTiesByColumns} is supplied, ties are resolved deterministically. Column by column, a function is applied on the column and sequences with column value matching the functional value are retained, until ties are resolved or columns run out. In the latter case, the first remaining sequence is taken as the consensus. \item When \code{breakTiesStochastic=TRUE} and \code{breakTiesByColumns} is also supplied, \code{breakTiesStochastic} takes precedence over \code{breakTiesByColumns}. \item When \code{breakTiesStochastic=FALSE} and \code{breakTiesByColumns} is not supplied (i.e. \code{NULL}), the sequence that appears first among the ties is taken as the consensus. } } } \section{Choosing ambiguous characters}{ Ambiguous characters may be present in the returned consensuses when using the \code{"catchAll"} method and when using the \code{"thresholdedFreq"} or \code{"mostCommon"} methods with \code{includeAmbiguous=TRUE}. The rules on choosing ambiguous characters are as follows: \itemize{ \item If a position contains only \code{"N"} across sequences, the consensus at that position is \code{"N"}. \item If a position contains one or more of \code{"A"}, \code{"T"}, \code{"G"}, or \code{"C"}, the consensus will be an IUPAC character representing all of the characters present, regardless of whether \code{"N"}, \code{"-"}, or \code{"."} is present. \item If a position contains only \code{"-"} and \code{"."} across sequences, the consensus at that position is taken to be \code{"-"}. \item If a position contains only one of \code{"-"} or \code{"."} across sequences, the consensus at that position is taken to be the character present. } } \section{Cautions}{ \itemize{ \item Note that this function does not perform multiple sequence alignment. As a prerequisite, it is assumed that the sequences in \code{sequenceColumn} and \code{germlineColumn} have been aligned somehow. In the case of immunoglobulin repertoire analysis, this usually means that the sequences are IMGT-gapped. \item When using the \code{"mostMutated"} and \code{"leastMutated"} methods, if you supply both \code{muFreqColumn} and \code{regionDefinition}, it is your responsibility to ensure that the mutation frequency in \code{muFreqColumn} was calculated with sequence lengths restricted to the \strong{same} \code{regionDefinition} you are supplying. Otherwise, the "most/least mutated" sequence you obtain might not be the most/least mutated given the \code{regionDefinition} supplied, because your mutation frequency was based on a \code{regionDefinition} different from the one supplied. \item If you intend to run \code{collapseClones} before building a 5-mer targeting model, you \strong{must} choose parameters such that your collapsed clonal consensuses do \strong{not} include ambiguous characters. This is because the targeting model functions do NOT support ambiguous characters in their inputs. } } \examples{ # Subset example data data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call \%in\% c("IGHA", "IGHG") & sample_id == "+7d" & clone_id \%in\% c("3100", "3141", "3184")) # thresholdedFreq method, resolving ties deterministically without using ambiguous characters clones <- collapseClones(db, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", method="thresholdedFreq", minimumFrequency=0.6, includeAmbiguous=FALSE, breakTiesStochastic=FALSE) # mostCommon method, resolving ties deterministically using ambiguous characters clones <- collapseClones(db, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", method="mostCommon", includeAmbiguous=TRUE, breakTiesStochastic=FALSE) # Make a copy of db that has a mutation frequency column db2 <- observedMutations(db, frequency=TRUE, combine=TRUE) # mostMutated method, resolving ties stochastically clones <- collapseClones(db2, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", method="mostMutated", muFreqColumn="mu_freq", breakTiesStochastic=TRUE, breakTiesByColumns=NULL) # mostMutated method, resolving ties deterministically using additional columns clones <- collapseClones(db2, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", method="mostMutated", muFreqColumn="mu_freq", breakTiesStochastic=FALSE, breakTiesByColumns=list(c("duplicate_count"), c(max))) # Build consensus for V segment only # Capture all nucleotide variations using ambiguous characters clones <- collapseClones(db, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", method="catchAll", regionDefinition=IMGT_V) # Return the same number of rows as the input clones <- collapseClones(db, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", method="mostCommon", expandedDb=TRUE) } \seealso{ See \link{IMGT_SCHEMES} for a set of predefined \link{RegionDefinition} objects. } shazam/man/writeTargetingDistance.Rd0000644000176200001440000000210615037732576017267 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \name{writeTargetingDistance} \alias{writeTargetingDistance} \title{Write targeting model distances to a file} \usage{ writeTargetingDistance(model, file) } \arguments{ \item{model}{\link{TargetingModel} object with mutation likelihood information.} \item{file}{name of file to write.} } \description{ \code{writeTargetingDistance} writes a 5-mer targeting distance matrix to a tab-delimited file. } \details{ The targeting distance write as a tab-delimited 5x3125 matrix. Rows define the mutated nucleotide at the center of each 5-mer, one of \code{c("A", "C", "G", "T", "N")}, and columns define the complete 5-mer of the unmutated nucleotide sequence. \code{NA} values in the distance matrix are replaced with distance 0. } \examples{ \dontrun{ # Write HS5F targeting model to working directory as hs5f.tab writeTargetingDistance(HH_S5F, "hh_s5f.tsv") } } \seealso{ Takes as input a \link{TargetingModel} object and calculates distances using \link{calcTargetingDistance}. } shazam/man/MK_RS1NF.Rd0000644000176200001440000000222715037732576014041 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \docType{data} \name{MK_RS1NF} \alias{MK_RS1NF} \title{Mouse kappa chain, replacement and silent, 1-mer, non-functional substitution model.} \format{ A 4x4 matrix of nucleotide substitution rates. The rates are normalized, therefore each row sums up to 1. } \usage{ MK_RS1NF } \description{ 1-mer substitution model of somatic hypermutation based on analysis of replacement and silent mutations in non-functional kappa light chain Ig sequences from NP-immunized Mus musculus. } \note{ \code{MK_RS1NF} replaces \code{M1NDistance} from versions of SHazaM prior to 0.1.5. } \references{ \enumerate{ \item Cui A, Di Niro R, Vander Heiden J, Briggs A, Adams K, Gilbert T, O'Connor K, Vigneault F, Shlomchik M and Kleinstein S (2016). A Model of Somatic Hypermutation Targeting in Mice Based on High-Throughput Ig Sequencing Data. The Journal of Immunology, 197(9), 3566-3574. } } \seealso{ See \link{HH_S1F} for the human heavy chain 1-mer substitution model and \link{HKL_S1F} for the human light chain 1-mer substitution model. } \keyword{datasets} shazam/man/testBaseline.Rd0000644000176200001440000000545015037732576015244 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Baseline.R \name{testBaseline} \alias{testBaseline} \title{Two-sided test of BASELINe PDFs} \usage{ testBaseline(baseline, groupBy) } \arguments{ \item{baseline}{\code{Baseline} object containing the \code{db} and grouped BASELINe PDFs returned by \link{groupBaseline}.} \item{groupBy}{string defining the column in the \code{db} slot of the \code{Baseline} containing sequence or group identifiers.} } \value{ A data.frame with test results containing the following columns: \itemize{ \item \code{region}: sequence region, such as \code{cdr} and \code{fwr}. \item \code{test}: string defining the groups be compared. The string is formatted as the conclusion associated with the p-value in the form \code{GROUP1 != GROUP2}. Meaning, the p-value for rejection of the null hypothesis that GROUP1 and GROUP2 have equivalent distributions. \item \code{pvalue}: two-sided p-value for the comparison. \item \code{fdr}: FDR corrected \code{pvalue}. } } \description{ \code{testBaseline} performs a two-sample significance test of BASELINe posterior probability density functions (PDFs). } \examples{ \donttest{ # Subset example data as a demo data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call \%in\% c("IGHM", "IGHG")) set.seed(112) db <- dplyr::slice_sample(db, n=200) # Collapse clones db <- collapseClones(db, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", method="thresholdedFreq", minimumFrequency=0.6, includeAmbiguous=FALSE, breakTiesStochastic=FALSE) # Calculate BASELINe baseline <- calcBaseline(db, sequenceColumn="clonal_sequence", germlineColumn="clonal_germline", testStatistic="focused", regionDefinition=IMGT_V, targetingModel=HH_S5F, nproc=1) # Group PDFs by the isotype grouped <- groupBaseline(baseline, groupBy="c_call") # Visualize isotype PDFs plot(grouped, "c_call") # Perform test on isotype PDFs testBaseline(grouped, groupBy="c_call") } } \references{ \enumerate{ \item Yaari G, et al. Quantifying selection in high-throughput immunoglobulin sequencing data sets. Nucleic Acids Res. 2012 40(17):e134. (Corrections at http://selection.med.yale.edu/baseline/correction/) } } \seealso{ To generate the \link{Baseline} input object see \link{groupBaseline}. } shazam/man/makeDegenerate5merMut.Rd0000644000176200001440000000405015037732576016775 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \name{makeDegenerate5merMut} \alias{makeDegenerate5merMut} \title{Make a degenerate 5-mer mutability model based on a 1-mer mutability model} \usage{ makeDegenerate5merMut(mut1mer, extended = FALSE) } \arguments{ \item{mut1mer}{a named vector of length 4 containing (normalized) mutability rates. Names should correspond to nucleotides, which should include "A", "T", "G", and "C" (case-insensitive).} \item{extended}{whether to return the unextended (\code{extended=FALSE}) or extended (\code{extended=TRUE}) 5-mer mutability model. Default is \code{FALSE}.} } \value{ For \code{extended=FALSE}, a vector of length 1024. The vector returned is normalized. For \code{extended=TRUE}, a vector of length 3125. } \description{ \code{makeDegenerate5merMut} populates mutability rates from a 1-mer mutability model into 5-mers with corresponding central 1-mers. } \details{ As a concrete example, consider a 1-mer mutability model in which mutability rates of "A", "T", "G", and "C" are, respectively, 0.14, 0.23, 0.31, and 0.32. In the resultant degenerate 5-mer mutability model, all the 5-mers that have an "A" as their central 1-mer would have mutability rate of 0.14/256, where 256 is the number of such 5-mers. When \code{extended=TRUE}, \code{extendMutabilityMatrix} is called to extend the mutability vector of length 1024 into a vector of length 3125. } \examples{ # Make a degenerate 5-mer model (length of 1024) based on a 1-mer model example1merMut <- c(A=0.2, T=0.1, C=0.4, G=0.3) degenerate5merMut <- makeDegenerate5merMut(mut1mer = example1merMut) # Look at a few 5-mers degenerate5merMut[c("AAAAT", "AACAT", "AAGAT", "AATAT")] # Normalized sum(degenerate5merMut) } \seealso{ See \link{makeAverage1merMut} for making a 1-mer mutability model by taking the average of a 5-mer mutability model. See \link{extendMutabilityMatrix} for extending the mutability vector. } shazam/man/minNumMutationsTune.Rd0000644000176200001440000000652315037732576016627 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \name{minNumMutationsTune} \alias{minNumMutationsTune} \title{Parameter tuning for minNumMutations} \usage{ minNumMutationsTune(subCount, minNumMutationsRange) } \arguments{ \item{subCount}{\code{data.frame} returned by \link{createSubstitutionMatrix} with \code{numMutationsOnly=TRUE}.} \item{minNumMutationsRange}{a number or a vector indicating the value or range of values of \code{minNumMutations} to try.} } \value{ A 3xn \code{matrix}, where n is the number of trial values of \code{minNumMutations} supplied in \code{minNumMutationsRange}. Each column corresponds to a value in \code{minNumMutationsRange}. The rows correspond to the number of 5-mers for which substitution rates would be computed directly using the 5-mer itself (\code{"5mer"}), using its inner 3-mer (\code{"3mer"}), and using the central 1-mer (\code{"1mer"}), respectively. } \description{ \code{minNumMutationsTune} helps with picking a threshold value for \code{minNumMutations} in \link{createSubstitutionMatrix} by tabulating the number of 5-mers for which substitution rates would be computed directly or inferred at various threshold values. } \details{ At a given threshold value of \code{minNumMutations}, for a given 5-mer, if the total number of mutations is greater than the threshold and there are mutations to every other base, substitution rates are computed directly for the 5-mer using its mutations. Otherwise, mutations from 5-mers with the same inner 3-mer as the 5-mer of interest are aggregated. If the number of such mutations is greater than the threshold and there are mutations to every other base, these mutations are used for inferring the substitution rates for the 5-mer of interest; if not, mutations from all 5-mers with the same center nucleotide are aggregated and used for inferring the substitution rates for the 5-mer of interest (i.e. the 1-mer model). } \examples{ # Subset example data to one isotype and sample as a demo data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call == "IGHA" & sample_id == "-1h") # Count the number of mutations per 5-mer subCount <- createSubstitutionMatrix(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call", model="s", multipleMutation="independent", returnModel="5mer", numMutationsOnly=TRUE) # Tune minNumMutations minNumMutationsTune(subCount, seq(from=10, to=80, by=10)) } \references{ \enumerate{ \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data. Front Immunol. 2013 4(November):358. } } \seealso{ See argument \code{numMutationsOnly} in \link{createSubstitutionMatrix} for generating the required input \code{data.frame} \code{subCount}. See argument \code{minNumMutations} in \link{createSubstitutionMatrix} for what it does. } shazam/man/extendMutabilityMatrix.Rd0000644000176200001440000000410615037732576017337 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \name{extendMutabilityMatrix} \alias{extendMutabilityMatrix} \title{Extends a mutability model to include Ns.} \usage{ extendMutabilityMatrix(mutabilityModel) } \arguments{ \item{mutabilityModel}{vector of 5-mer mutability rates built by \link{createMutabilityMatrix}.} } \value{ A \code{MutabilityModel} containing a 3125 vector of normalized mutability rates for each 5-mer motif with names defining the 5-mer nucleotide sequence. Note that "normalized" means that the mutability rates for the 1024 5-mers that contain no "N" at any position sums up to 1 (as opposed to the entire vector summing up to 1). If the input \code{mutabilityModel} is of class \code{MutabilityModel}, then the output \code{MutabilityModel} will carry over the input \code{numMutS} and \code{numMutR} slots. } \description{ \code{extendMutabilityMatrix} extends a 5-mer nucleotide mutability model with 5-mers that include Ns by averaging over all corresponding 5-mers without Ns. } \examples{ \donttest{ # Subset example data to one isotype and sample as a demo data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call == "IGHA" & sample_id == "-1h") set.seed(112) db <- dplyr::slice_sample(db, n=75) # Create model using only silent mutations and ignore multiple mutations sub_model <- createSubstitutionMatrix(db, model="s", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call") mut_model <- createMutabilityMatrix(db, sub_model, model="s", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call") ext_model <- extendMutabilityMatrix(mut_model) } } \seealso{ \link{createMutabilityMatrix}, \link{extendSubstitutionMatrix}, \link{MutabilityModel} } shazam/man/GmmThreshold-class.Rd0000644000176200001440000000360315037732576016320 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/DistToNearest.R \docType{class} \name{GmmThreshold-class} \alias{GmmThreshold-class} \alias{GmmThreshold} \alias{print,GmmThreshold-method} \alias{GmmThreshold-method} \alias{plot,GmmThreshold,missing-method} \title{Output of the \code{gmm} method of findThreshold} \usage{ \S4method{print}{GmmThreshold}(x) \S4method{plot}{GmmThreshold,missing}(x, y, ...) } \arguments{ \item{x}{GmmThreshold object} \item{y}{ignored.} \item{...}{arguments to pass to \link{plotGmmThreshold}.} } \description{ \code{GmmThreshold} contains output from the \code{gmm} method \link{findThreshold}. It includes parameters of two Gaussian fits and threshold cut. } \section{Slots}{ \describe{ \item{\code{x}}{input distance vector with NA or infinite values removed.} \item{\code{model}}{first-second fit functions.} \item{\code{cutoff}}{type of threshold cut.} \item{\code{a1}}{mixing weight of the first curve.} \item{\code{b1}}{second parameter of the first curve. Either the mean of a Normal distribution or shape of a Gamma distribution.} \item{\code{c1}}{third parameter of the first curve. Either the standard deviation of a Normal distribution or scale of a Gamma distribution.} \item{\code{a2}}{mixing weight of the second curve.} \item{\code{b2}}{second parameter of the second curve. Either the mean of a Normal distribution or shape of a Gamma distribution.} \item{\code{c2}}{third parameter of the second curve. Either the standard deviation of a Normal distribution or scale of a Gamma distribution.} \item{\code{loglk}}{log-likelihood of the fit.} \item{\code{threshold}}{threshold.} \item{\code{sensitivity}}{sensitivity.} \item{\code{specificity}}{specificity.} \item{\code{pvalue}}{p-value from Hartigans' dip statistic (HDS) test. Values less than 0.05 indicate significant bimodality.} }} \seealso{ \link{findThreshold} } shazam/man/editBaseline.Rd0000644000176200001440000000250415037732576015207 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Baseline.R \name{editBaseline} \alias{editBaseline} \title{Edit the Baseline object} \usage{ editBaseline(baseline, field, value) } \arguments{ \item{baseline}{\code{Baseline} object to be edited.} \item{field}{name of the field in the \code{Baseline} object to be edited.} \item{value}{value to set the \code{field}.} } \value{ A \code{Baseline} object with the field of choice updated. } \description{ \code{editBaseline} edits a field in a \code{Baseline} object. } \examples{ \donttest{ # Subset example data as a demo data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call == "IGHG" & sample_id == "+7d") set.seed(112) db <- dplyr::slice_sample(db, n=100) # Make Baseline object baseline <- calcBaseline(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", testStatistic="focused", regionDefinition=IMGT_V, targetingModel=HH_S5F, nproc=1) # Edit the field "description" baseline <- editBaseline(baseline, field="description", value="+7d IGHG") } } \seealso{ See \link{Baseline} for the input and return object. } shazam/man/createMutationDefinition.Rd0000644000176200001440000000265415037732576017622 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MutationDefinitions.R \name{createMutationDefinition} \alias{createMutationDefinition} \title{Creates a MutationDefinition} \usage{ createMutationDefinition(name, classes, description = "", citation = "") } \arguments{ \item{name}{name of the mutation definition.} \item{classes}{named character vectors with single-letter amino acid codes as names and amino acid classes as values, with \code{NA} assigned to set of characters \code{c("X", "*", "-", ".")}. Replacement (R) is be defined as a change in amino acid class and silent (S) as no change in class.} \item{description}{description of the mutation definition and its source data.} \item{citation}{publication source.} } \value{ A \code{MutationDefinition} object. } \description{ \code{createMutationDefinition} creates a \code{MutationDefinition}. } \examples{ # Define hydropathy classes suppressPackageStartupMessages(library(alakazam)) hydropathy <- list(hydrophobic=c("A", "I", "L", "M", "F", "W", "V"), hydrophilic=c("R", "N", "D", "C", "Q", "E", "K"), neutral=c("G", "H", "P", "S", "T", "Y")) chars <- unlist(hydropathy, use.names=FALSE) classes <- setNames(translateStrings(chars, hydropathy), chars) # Create hydropathy mutation definition md <- createMutationDefinition("Hydropathy", classes) } \seealso{ See \link{MutationDefinition} for the return object. } shazam/man/U5N.Rd0000644000176200001440000000106115037732576013223 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \docType{data} \name{U5N} \alias{U5N} \title{Uniform 5-mer null targeting model.} \format{ A \link{TargetingModel} object. } \usage{ U5N } \description{ A null 5-mer model of somatic hypermutation targeting where all substitution, mutability and targeting rates are uniformly distributed. } \seealso{ See \link{HH_S5F} and \link{HKL_S5F} for the human 5-mer targeting models; and \link{MK_RS5NF} for the mouse 5-mer targeting model. } \keyword{datasets} shazam/man/makeGraphDf.Rd0000644000176200001440000000530315037732576014770 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/RegionsExtend.R \name{makeGraphDf} \alias{makeGraphDf} \title{Build a data.frame from a ChangeoClone and an igraph object containing a clonal lineage} \usage{ makeGraphDf( curCloneGraph, curCloneObj, objSeqId = "sequence_id", objSeq = "sequence" ) } \arguments{ \item{curCloneGraph}{an igraph \code{graph} object for the lineage tree generated by \link[alakazam]{buildPhylipLineage}. Note that the field containing the nucleotide sequence in the object must be named \code{sequence}.} \item{curCloneObj}{\link[alakazam]{ChangeoClone} object used to generate the lineage.} \item{objSeqId}{name of the sequence identifier field in \code{curCloneObj}.} \item{objSeq}{name of the nucleotide sequence field in \code{curCloneObj}.} } \value{ A \code{data.frame} with sequence and lineage information, including the the parent nucleotide sequence in the lineage tree(\code{parent_sequence}), an internal parent identifier (\code{parent}), and additional rows for germline sequence and inferred intermediate sequences. Values in the \code{sequence_id} field are renamed to numeric values, prefixed with the clonal grouping identifier and labeled as either \code{"Inferred"} or \code{"Germline"} if they are not an observed sequence. For example, for a lineage with \code{clone_id = 34} the new identifiers would be of the form: \code{"34_Germline"}, \code{"34_Inferred1"}, \code{"34_1"}, \code{"34_2"}, etc. Note that the original sequence identifier is preserved in the \code{orig_sequence_id} field and the original parent sequence identifier is retained in \code{orig_parent}. } \description{ \code{makeGraphDf} creates a data.frame from a \link[alakazam]{ChangeoClone} and an igraph \code{graph} object containing a B cell lineage tree and associated sequence data. The data.frame contains the original fields and additions such as each sequence's parent in the lineage tree, the lineage germline, and additional rows for inferred sequences. } \examples{ # Load and subset example data data(ExampleDb, package = "alakazam") data(ExampleTrees, package = "alakazam") graph <- ExampleTrees[[17]] db <- subset(ExampleDb, clone_id == graph$clone) clone <- alakazam::makeChangeoClone(db) # Extend data with lineage information df <- makeGraphDf(graph, clone) } \seealso{ See \link{observedMutations} to calculate mutation frequencies using \code{parent_sequence} as the reference germline. See \link[alakazam]{ChangeoClone}, \link[alakazam]{buildPhylipLineage}, and \link[igraph]{graph} for details on the input objects. } shazam/man/createTargetingMatrix.Rd0000644000176200001440000000550015037732576017113 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \name{createTargetingMatrix} \alias{createTargetingMatrix} \title{Calculates a targeting rate matrix} \usage{ createTargetingMatrix(substitutionModel, mutabilityModel) } \arguments{ \item{substitutionModel}{matrix of 5-mers substitution rates built by \link{createSubstitutionMatrix} or \link{extendSubstitutionMatrix}.} \item{mutabilityModel}{vector of 5-mers mutability rates built by \link{createMutabilityMatrix} or \link{extendMutabilityMatrix}.} } \value{ A \code{TargetingMatrix} with the same dimensions as the input \code{substitutionModel} containing normalized targeting probabilities for each 5-mer motif with row names defining the center nucleotide and column names defining the 5-mer nucleotide sequence. If the input \code{mutabilityModel} is of class \code{MutabilityModel}, then the output \code{TargetingMatrix} will carry over the input \code{numMutS} and \code{numMutR} slots. } \description{ \code{createTargetingMatrix} calculates the targeting model matrix as the combined probability of mutability and substitution. } \details{ Targeting rates are calculated by multiplying the normalized mutability rate by the normalized substitution rates for each individual 5-mer. } \examples{ \donttest{ # Subset example data to 50 sequences, of one isotype and sample as a demo data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call == "IGHA" & sample_id == "-1h")[1:50,] # Create 4x1024 models using only silent mutations sub_model <- createSubstitutionMatrix(db, model="s", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call") mut_model <- createMutabilityMatrix(db, sub_model, model="s", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call") # Extend substitution and mutability to including Ns (5x3125 model) sub_model <- extendSubstitutionMatrix(sub_model) mut_model <- extendMutabilityMatrix(mut_model) # Create targeting model from substitution and mutability tar_model <- createTargetingMatrix(sub_model, mut_model) } } \references{ \enumerate{ \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data. Front Immunol. 2013 4(November):358. } } \seealso{ \link{createSubstitutionMatrix}, \link{extendSubstitutionMatrix}, \link{createMutabilityMatrix}, \link{extendMutabilityMatrix}, \link{TargetingMatrix}, \link{createTargetingModel} } shazam/man/makeDegenerate5merSub.Rd0000644000176200001440000000406215037732576016764 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \name{makeDegenerate5merSub} \alias{makeDegenerate5merSub} \title{Make a degenerate 5-mer substitution model based on a 1-mer substitution model} \usage{ makeDegenerate5merSub(sub1mer, extended = FALSE) } \arguments{ \item{sub1mer}{a 4x4 matrix containing (normalized) substitution rates. Row names should correspond to nucleotides to mutate from. Column names should correspond to nucleotides to mutate into. Nucleotides should include "A", "T", "G", and "C" (case-insensitive).} \item{extended}{whether to return the unextended (\code{extended=FALSE}) or extended (\code{extended=TRUE}) 5-mer substitution model. Default is \code{FALSE}.} } \value{ For \code{extended=FALSE}, a 4x1024 matrix. For \code{extended=TRUE}, a 5x3125 matrix. } \description{ \code{makeDegenerate5merSub} populates substitution rates from a 1-mer substitution model into 5-mers with corresponding central 1-mers. } \details{ As a concrete example, consider a 1-mer substitution model in which substitution rates from "A" to "T", "G", and "C" are, respectively, 0.1, 0.6, and 0.3. In the resultant degenerate 5-mer substitution model, all the 5-mers (columns) that have an "A" as their central 1-mer would have substitution rates (rows) of 0.1, 0.6, and 0.3 to "T", "G", and "C" respectively. When \code{extended=TRUE}, \code{extendSubstitutionMatrix} is called to extend the 4x1024 substitution matrix. } \examples{ # Make a degenerate 5-mer model (4x1024) based on HKL_S1F (4x4) # Note: not to be confused with HKL_S5F@substitution, which is non-degenerate degenerate5merSub <- makeDegenerate5merSub(sub1mer = HKL_S1F) # Look at a few 5-mers degenerate5merSub[, c("AAAAT", "AACAT", "AAGAT", "AATAT")] } \seealso{ See \link{makeAverage1merSub} for making a 1-mer substitution model by taking the average of a 5-mer substitution model. See \link{extendSubstitutionMatrix} for extending the substitution matrix. } shazam/man/HKL_S5F.Rd0000644000176200001440000000201015037732576013702 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \docType{data} \name{HKL_S5F} \alias{HKL_S5F} \title{Human kappa and lambda light chain, silent, 5-mer, functional targeting model.} \format{ A \link{TargetingModel} object. } \usage{ HKL_S5F } \description{ 5-mer model of somatic hypermutation targeting based on analysis of silent mutations in functional kappa and lambda light chain Ig sequences from Homo sapiens. } \references{ \enumerate{ \item Cui A, Di Niro R, Vander Heiden J, Briggs A, Adams K, Gilbert T, O'Connor K, Vigneault F, Shlomchik M and Kleinstein S (2016). A Model of Somatic Hypermutation Targeting in Mice Based on High-Throughput Ig Sequencing Data. The Journal of Immunology, 197(9), 3566-3574. } } \seealso{ See \link{HH_S5F} for the human heavy chain 5-mer targeting model; \link{MK_RS5NF} for the mouse kappa light chain 5-mer targeting model; and \link{U5N} for the uniform 5-mer null targeting model. } \keyword{datasets} shazam/man/shmulateTree.Rd0000644000176200001440000000617715037732576015273 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Shmulate.R \name{shmulateTree} \alias{shmulateTree} \title{Simulate mutations in a lineage tree} \usage{ shmulateTree( sequence, graph, targetingModel = HH_S5F, field = NULL, exclude = NULL, junctionWeight = NULL, start = 1, end = nchar(sequence) ) } \arguments{ \item{sequence}{string defining the MRCA sequence to seed mutations from.} \item{graph}{\code{igraph} object defining the seed lineage tree, with vertex annotations, whose edges are to be recreated.} \item{targetingModel}{5-mer \link{TargetingModel} object to be used for computing probabilities of mutations at each position. Defaults to \link{HH_S5F}.} \item{field}{annotation to use for both unweighted path length exclusion and consideration as the MRCA node. If \code{NULL} do not exclude any nodes.} \item{exclude}{vector of annotation values in \code{field} to exclude from potential MRCA set. If \code{NULL} do not exclude any nodes. Has no effect if \code{field=NULL}.} \item{junctionWeight}{fraction of the nucleotide sequence that is within the junction region. When specified this adds a proportional number of mutations to the immediate offspring nodes of the MRCA. Requires a value between 0 and 1. If \code{NULL} then edge weights are unmodified from the input \code{graph}.} \item{start}{Initial position in \code{sequence} where mutations can be introduced. Default: 1} \item{end}{Last position in \code{sequence} where mutations can be introduced. Default: last position (sequence length).} } \value{ A \code{data.frame} of simulated sequences with columns: \itemize{ \item \code{name}: name of the corresponding node in the input \code{graph}. \item \code{sequence}: mutated sequence. \item \code{distance}: Hamming distance of the mutated sequence from the seed \code{sequence}. } } \description{ \code{shmulateTree} returns a set of simulated sequences generated from an input sequence and a lineage tree. The input sequence is used to replace the most recent common ancestor (MRCA) node of the \code{igraph} object defining the lineage tree. Sequences are then simulated with mutations corresponding to edge weights in the tree. Sequences will not be generated for groups of nodes that are specified to be excluded. } \examples{ # Load example lineage and define example MRCA data(ExampleTrees, package="alakazam") graph <- ExampleTrees[[17]] sequence <- "NGATCTGACGACACGGCCGTGTATTACTGTGCGAGAGATAGTTTA" # Simulate using the default human 5-mer targeting model shmulateTree(sequence, graph) # Simulate using the mouse 5-mer targeting model # Exclude nodes without a sample identifier # Add 20\% mutation rate to the immediate offsprings of the MRCA shmulateTree(sequence, graph, targetingModel=MK_RS5NF, field="sample_id", exclude=NA, junctionWeight=0.2) } \seealso{ See \link{shmulateSeq} for imposing mutations on a single sequence. See \link{HH_S5F} and \link{MK_RS5NF} for predefined \link{TargetingModel} objects. } shazam/man/expectedMutations.Rd0000644000176200001440000001012515037732576016322 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MutationProfiling.R \name{expectedMutations} \alias{expectedMutations} \title{Calculate expected mutation frequencies} \usage{ expectedMutations( db, sequenceColumn = "sequence_alignment", germlineColumn = "germline_alignment", targetingModel = HH_S5F, regionDefinition = NULL, mutationDefinition = NULL, nproc = 1, cloneColumn = "clone_id", juncLengthColumn = "junction_length" ) } \arguments{ \item{db}{\code{data.frame} containing sequence data.} \item{sequenceColumn}{\code{character} name of the column containing input sequences.} \item{germlineColumn}{\code{character} name of the column containing the germline or reference sequence.} \item{targetingModel}{\link{TargetingModel} object. Default is \link{HH_S5F}.} \item{regionDefinition}{\link{RegionDefinition} object defining the regions and boundaries of the Ig sequences. To use regions definitions, sequences in \code{sequenceColumn} and \code{germlineColumn} must be aligned, following the IMGT schema.} \item{mutationDefinition}{\link{MutationDefinition} object defining replacement and silent mutation criteria. If \code{NULL} then replacement and silent are determined by exact amino acid identity.} \item{nproc}{\code{numeric} number of cores to distribute the operation over. If the cluster has already been set the call function with \code{nproc} = 0 to not reset or reinitialize. Default is \code{nproc} = 1.} \item{cloneColumn}{clone id column name in \code{db}} \item{juncLengthColumn}{junction length column name in \code{db}} } \value{ A modified \code{db} \code{data.frame} with expected mutation frequencies for each region defined in \code{regionDefinition}. The columns names are dynamically created based on the regions in \code{regionDefinition}. For example, when using the \link{IMGT_V} definition, which defines positions for CDR and FWR, the following columns are added: \itemize{ \item \code{mu_expected_cdr_r}: number of replacement mutations in CDR1 and CDR2 of the V-segment. \item \code{mu_expected_cdr_s}: number of silent mutations in CDR1 and CDR2 of the V-segment. \item \code{mu_expected_fwr_r}: number of replacement mutations in FWR1, FWR2 and FWR3 of the V-segment. \item \code{mu_expected_fwr_s}: number of silent mutations in FWR1, FWR2 and FWR3 of the V-segment. } } \description{ \code{expectedMutations} calculates the expected mutation frequencies for each sequence in the input \code{data.frame}. } \details{ Only the part of the sequences defined in \code{regionDefinition} are analyzed. For example, when using the \link{IMGT_V} definition, mutations in positions beyond 312 will be ignored. } \examples{ # Subset example data data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call \%in\% c("IGHA", "IGHG") & sample_id == "+7d") set.seed(112) db <- dplyr::slice_sample(db, n=100) # Calculate expected mutations over V region db_exp <- expectedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=IMGT_V, nproc=1) # Calculate hydropathy expected mutations over V region db_exp <- expectedMutations(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", regionDefinition=IMGT_V, mutationDefinition=HYDROPATHY_MUTATIONS, nproc=1) } \seealso{ \link{calcExpectedMutations} is called by this function to calculate the expected mutation frequencies. See \link{observedMutations} for getting observed mutation counts. See \link{IMGT_SCHEMES} for a set of predefined \link{RegionDefinition} objects. } shazam/man/consensusSequence.Rd0000644000176200001440000001042515037732576016331 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MutationProfiling.R \name{consensusSequence} \alias{consensusSequence} \title{Construct a consensus sequence} \usage{ consensusSequence( sequences, db = NULL, method = c("mostCommon", "thresholdedFreq", "catchAll", "mostMutated", "leastMutated"), minFreq = NULL, muFreqColumn = NULL, lenLimit = NULL, includeAmbiguous = FALSE, breakTiesStochastic = FALSE, breakTiesByColumns = NULL ) } \arguments{ \item{sequences}{character vector of sequences.} \item{db}{\code{data.frame} containing sequence data for a single clone. Applicable to and required for the \code{"mostMutated"} and \code{"leastMutated"} methods. Default is \code{NULL}.} \item{method}{method to calculate consensus sequence. One of \code{"thresholdedFreq"}, \code{"mostCommon"}, \code{"catchAll"}, \code{"mostMutated"}, or \code{"leastMutated"}. See "Methods" under \link{collapseClones} for details.} \item{minFreq}{frequency threshold for calculating input consensus sequence. Applicable to and required for the \code{"thresholdedFreq"} method. A canonical choice is 0.6. Default is \code{NULL}.} \item{muFreqColumn}{\code{character} name of the column in db containing mutation frequency. Applicable to and required for the \code{"mostMutated"} and \code{"leastMutated"} methods. Default is \code{NULL}.} \item{lenLimit}{limit on consensus length. if \code{NULL} then no length limit is set.} \item{includeAmbiguous}{whether to use ambiguous characters to represent positions at which there are multiple characters with frequencies that are at least \code{minimumFrequency} or that are maximal (i.e. ties). Applicable to and required for the \code{"thresholdedFreq"} and \code{"mostCommon"} methods. Default is \code{FALSE}. See "Choosing ambiguous characters" under \link{collapseClones} for rules on choosing ambiguous characters. Note: this argument refers to the use of ambiguous nucleotides in the output consensus sequence. Ambiguous nucleotides in the input sequences are allowed for methods catchAll, mostMutated and leastMutated.} \item{breakTiesStochastic}{In case of ties, whether to randomly pick a sequence from sequences that fulfill the criteria as consensus. Applicable to and required for all methods except for \code{"catchAll"}. Default is \code{FALSE}. See "Methods" under \link{collapseClones} for details.} \item{breakTiesByColumns}{A list of the form \code{list(c(col_1, col_2, ...), c(fun_1, fun_2, ...))}, where \code{col_i} is a \code{character} name of a column in \code{db}, and \code{fun_i} is a function to be applied on that column. Currently, only \code{max} and \code{min} are supported. Note that the two \code{c()}'s in \code{list()} are essential (i.e. if there is only 1 column, the list should be of the form \code{list(c(col_1), c(func_1))}. Applicable to and optional for the \code{"mostMutated"} and \code{"leastMutated"} methods. If supplied, \code{fun_i}'s are applied on \code{col_i}'s to help break ties. Default is \code{NULL}. See "Methods" under \link{collapseClones} for details.} } \value{ A list containing \code{cons}, which is a character string that is the consensus sequence for \code{sequences}; and \code{muFreq}, which is the maximal/minimal mutation frequency of the consensus sequence for the \code{"mostMutated"} and \code{"leastMutated"} methods, or \code{NULL} for all other methods. } \description{ Construct a consensus sequence } \details{ See \link{collapseClones} for detailed documentation on methods and additional parameters. } \examples{ # Subset example data data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call \%in\% c("IGHA", "IGHG") & sample_id == "+7d") clone <- subset(db, clone_id == "3192") # First compute mutation frequency for most/leastMutated methods clone <- observedMutations(clone, frequency=TRUE, combine=TRUE) # Manually create a tie clone <- rbind(clone, clone[which.max(clone$mu_freq), ]) # ThresholdedFreq method. # Resolve ties deterministically without using ambiguous characters cons1 <- consensusSequence(clone$sequence_alignment, method="thresholdedFreq", minFreq=0.3, includeAmbiguous=FALSE, breakTiesStochastic=FALSE) cons1$cons } shazam/man/calcTargetingDistance.Rd0000644000176200001440000000412615037732576017043 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \name{calcTargetingDistance} \alias{calcTargetingDistance} \title{Calculates a 5-mer distance matrix from a TargetingModel object} \usage{ calcTargetingDistance(model, places = 2) } \arguments{ \item{model}{\link{TargetingModel} object with mutation likelihood information, or a 4x4 1-mer substitution matrix normalized by row with rownames and colnames consisting of "A", "T", "G", and "C".} \item{places}{decimal places to round distances to.} } \value{ For input of \link{TargetingModel}, a matrix of distances for each 5-mer motif with rows names defining the center nucleotide and column names defining the 5-mer nucleotide sequence. For input of 1-mer substitution matrix, a 4x4 symmetric distance matrix. } \description{ \code{calcTargetingDistance} converts either the targeting rates in a \code{TargetingModel} model to a matrix of 5-mer to single-nucleotide mutation distances, or the substitution rates in a 1-mer substitution model to a symmetric distance matrix. } \details{ The targeting model is transformed into a distance matrix by: \enumerate{ \item Converting the likelihood of being mutated \eqn{p=mutability*substitution} to distance \eqn{d=-log10(p)}. \item Dividing this distance by the mean of the distances. \item Converting all infinite, no change (e.g., A->A), and NA distances to zero. } The 1-mer substitution matrix is transformed into a distance matrix by: \enumerate{ \item Symmetrize the 1-mer substitution matrix. \item Converting the rates to distance \eqn{d=-log10(p)}. \item Dividing this distance by the mean of the distances. \item Converting all infinite, no change (e.g., A -> A), and NA distances to zero. } } \examples{ # Calculate targeting distance of HH_S5F dist <- calcTargetingDistance(HH_S5F) # Calculate targeting distance of HH_S1F dist <- calcTargetingDistance(HH_S1F) } \seealso{ See \link{TargetingModel} for this class of objects and \link{createTargetingModel} for building one. } shazam/man/IMGT_SCHEMES.Rd0000644000176200001440000000730515037732576014532 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/RegionDefinitions.R \name{IMGT_SCHEMES} \alias{IMGT_SCHEMES} \alias{IMGT_V} \alias{IMGT_V_BY_CODONS} \alias{IMGT_V_BY_REGIONS} \alias{IMGT_V_BY_SEGMENTS} \alias{IMGT_VDJ_BY_REGIONS} \alias{IMGT_VDJ} \title{IMGT unique numbering schemes} \format{ A \link{RegionDefinition} object defining: \itemize{ \item \code{IMGT_V}: The IMGT numbered V segment up to position nucleotide 312. This definition combines the CDR1 and CDR2 into a single CDR region, and FWR1, FWR2 and FWR3 into a single FWR region. CDR3 and FWR4 are excluded as they are downstream of nucleotide 312. \item \code{IMGT_V_BY_CODONS}: The IMGT numbered V segment up to position nucleotide 312. This definition treats each codon, from codon 1 to codon 104, as a distinct region. \item \code{IMGT_V_BY_REGIONS}: The IMGT numbered V segment up to position nucleotide 312. This defines separate regions for each of CDR1, CDR2, FWR1, FWR2 and FWR3. CDR3 and FWR4 are excluded as they are downstream of nucleotide 312. \item \code{IMGT_V_BY_SEGMENTS}: The IMGT numbered V segment up to position nucleotide 312. This definition has no subdivisions and treats the entire V segment as a single region. \item \code{IMGT_VDJ}: IMGT numbered regions for CDR1-3 and FWR1-4 with combined CDR and FWR definitions spanning CDR1-3 and FWR1-4, respectively. Note, unless the definition object has been updated using \link{setRegionBoundaries} this schema will have a value of \code{0} for the \code{seqLength} slot and the \code{boundaries} slot will be empty. This is because these slots depend on the junction length which is unknown in the template scheme. After \link{setRegionBoundaries} has been run, these slots will be populated with the appropriate values for the specified sequence and junction length. \item \code{IMGT_VDJ_BY_REGIONS}: The IMGT numbered regions for FWR1-4 and CDR1-3 with separate region boundaries for each of CDR1, CDR2, CDR3, FWR1, FWR2, FWR3 and FWR4. Note, unless the definition object has been updated using \link{setRegionBoundaries} this schema will have a value of \code{0} for the \code{seqLength} slot and the \code{boundaries} slot will be empty. This is because these slots depend on the junction length which is unknown in the template scheme. After \link{setRegionBoundaries} has been run, these slots will be populated with the appropriate values for the specified sequence and junction length. } } \description{ Sequence region definitions according to the IMGT unique numbering scheme. } \references{ \enumerate{ \item Lefranc MP, et al. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Developmental and comparative immunology. 2003 27:55-77. } } shazam/man/distToNearest.Rd0000644000176200001440000002764215120057013015374 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/DistToNearest.R \name{distToNearest} \alias{distToNearest} \title{Distance to nearest neighbor} \usage{ distToNearest( db, sequenceColumn = "junction", vCallColumn = "v_call", jCallColumn = "j_call", model = c("ham", "aa", "hh_s1f", "hh_s5f", "mk_rs1nf", "mk_rs5nf", "m1n_compat", "hs1f_compat"), normalize = c("len", "none"), symmetry = c("avg", "min"), first = TRUE, VJthenLen = TRUE, nproc = 1, fields = NULL, cross = NULL, mst = FALSE, subsample = NULL, progress = FALSE, cellIdColumn = NULL, locusColumn = "locus", locusValues = c("IGH"), onlyHeavy = TRUE, keepVJLgroup = TRUE ) } \arguments{ \item{db}{data.frame containing sequence data.} \item{sequenceColumn}{name of the column containing the junction for grouping and for calculating nearest neighbor distances. Note that while both heavy/long and light/short chain junctions may be used for V-J-length grouping, only the heavy/long chain (IGH, TRB, TRD) junction is used to calculate distances.} \item{vCallColumn}{name of the column containing the V-segment allele calls.} \item{jCallColumn}{name of the column containing the J-segment allele calls.} \item{model}{underlying SHM model, which must be one of \code{c("ham", "aa", "hh_s1f", "hh_s5f", "mk_rs1nf", "hs1f_compat", "m1n_compat")}. See Details for further information.} \item{normalize}{method of normalization. The default is \code{"len"}, which divides the distance by the length of the sequence group. If \code{"none"} then no normalization if performed.} \item{symmetry}{if model is hs5f, distance between seq1 and seq2 is either the average (avg) of seq1->seq2 and seq2->seq1 or the minimum (min).} \item{first}{if \code{TRUE} only the first call of the gene assignments is used. if \code{FALSE} the union of ambiguous gene assignments is used to group all sequences with any overlapping gene calls.} \item{VJthenLen}{logical value specifying whether to perform partitioning as a 2-stage process. If \code{TRUE}, partitions are made first based on V and J gene, and then further split based on junction lengths corresponding to \code{sequenceColumn}. If \code{FALSE}, perform partition as a 1-stage process during which V gene, J gene, and junction length are used to create partitions simultaneously. Defaults to \code{TRUE}.} \item{nproc}{number of cores to distribute the function over.} \item{fields}{additional fields to use for grouping.} \item{cross}{character vector of column names to use for grouping to calculate distances across groups. Meaning the columns that define self versus others.} \item{mst}{if \code{TRUE}, return comma-separated branch lengths from minimum spanning tree.} \item{subsample}{number of sequences to subsample for speeding up pairwise-distance-matrix calculation. Subsampling is performed without replacement in each V-J-length group of heavy chain sequences. If \code{subsample} is larger than the unique number of heavy chain sequences in each VJL group, then the subsampling process is ignored for that group. For each heavy chain sequence in \code{db}, the reported \code{dist_nearest} is the distance to the closest heavy chain sequence in the subsampled set for the V-J-length group. If \code{NULL} no subsampling is performed.} \item{progress}{if \code{TRUE} print a progress bar.} \item{cellIdColumn}{name of the character column containing cell identifiers or barcodes. If specified, grouping will be performed in single-cell mode with the behavior governed by the \code{locusColumn} and \code{onlyHeavy} arguments. If set to \code{NULL} then the bulk sequencing data is assumed.} \item{locusColumn}{name of the column containing locus information. Valid loci values are "IGH", "IGI", "IGK", "IGL", "TRA", "TRB", "TRD", and "TRG".} \item{locusValues}{Loci values to focus the analysis on.} \item{onlyHeavy}{This is deprecated. Only IGH (BCR) or TRB/TRD (TCR) sequences will be used for grouping. Only applicable to single-cell data. Ignored if \code{cellIdColumn=NULL}. See \link[alakazam]{groupGenes} for further details.} \item{keepVJLgroup}{logical value specifying whether to keep in the output the the column column indicating grouping based on V-J-length combinations. Only applicable for 1-stage partitioning (i.e. \code{VJthenLen=FALSE}). Also see \link[alakazam]{groupGenes}.} } \value{ Returns a modified \code{db} data.frame with nearest neighbor distances between heavy chain sequences in the \code{dist_nearest} column if \code{cross=NULL}. If \code{cross} was specified, distances will be added as the \code{cross_dist_nearest} column. Note that distances between light/short (IGK, IGL, TRA, TRG) chain sequences are not calculated, even if light/short chains were used for V-J-length grouping via \code{onlyHeavy=FALSE}. Light/short chain sequences, if any, will have \code{NA} in the \code{dist_nearest} output column. Note that the output \code{vCallColumn} and \code{jCallColumn} columns will be converted to type \code{character} if they were type \code{factor} in the input \code{db}. } \description{ Calculate the non-zero distance from each sequence to its nearest neighbor within partitions based on shared V gene, J gene, and junction length. } \details{ The distance to nearest neighbor can be used to estimate a threshold for assigning Ig sequences to clonal groups. A histogram of the resulting vector is often bimodal, with the ideal threshold being a value that separates the two modes. Refer to the details section for a more thorough description of the implementation. There are two modes of operation for \code{distToNearest}: single-cell (all sequences are single-cell data), non-single-cell (all sequences are bulk sequencing data). Mixed data, where both single-cell and non-single-cell sequences are present in the data, is considered a case under the single-single cell mode . To invoke single-cell mode the \code{cellIdColumn} argument must be specified and \code{locusColumn} must be correct. Otherwise, \code{distToNearest} will be run with bulk sequencing assumptions, using all input sequences regardless of the values in the \code{locusColumn} column. Under single-cell mode, only heavy/long chain (IGH, TRB, TRD) sequences will be used for calculating nearest neighbor distances regardless of \code{locusValue} values in the \code{locusColumn} field (if present). Under non-single-cell mode, all input sequences with \code{locusValue} value(s) in the \code{locusColumn} field will be used for calculating nearest neighbor distances. Values in the \code{locusColumn} must be one of \code{c("IGH", "IGI", "IGK", "IGL")} for BCR or \code{c("TRA", "TRB", "TRD", "TRG")} for TCR sequences. Otherwise, the function returns an error message and stops. For single-cell mode, the input format is the same as that for \link[alakazam]{groupGenes}. Namely, each row represents a sequence/chain. Sequences/chains from the same cell are linked by a cell ID in the \code{cellIdColumn} field. Grouping will be done by using IGH (BCR) or TRB/TRD (TCR) sequences only. The argument that allowed to include light chains, \code{onlyHeavy}, is deprecated. Note, \code{distToNearest} required that each cell (each unique value in \code{cellIdColumn}) correspond to only a single \code{IGH} (BCR) or \code{TRB/TRD} (TCR) sequence. The following distance measures are accepted by the \code{model} parameter. \itemize{ \item \code{"ham"}: Single nucleotide Hamming distance matrix from \link[alakazam]{getDNAMatrix} with gaps assigned zero distance. \item \code{"aa"}: Single amino acid Hamming distance matrix from \link[alakazam]{getAAMatrix}. \item \code{"hh_s1f"}: Human single nucleotide distance matrix derived from \link{HH_S1F} with \link{calcTargetingDistance}. \item \code{"hh_s5f"}: Human 5-mer nucleotide context distance matrix derived from \link{HH_S5F} with \link{calcTargetingDistance}. \item \code{"mk_rs1nf"}: Mouse single nucleotide distance matrix derived from \link{MK_RS1NF} with \link{calcTargetingDistance}. \item \code{"mk_rs5nf"}: Mouse 5-mer nucleotide context distance matrix derived from \link{MK_RS5NF} with \link{calcTargetingDistance}. \item \code{"hs1f_compat"}: Backwards compatible human single nucleotide distance matrix used in SHazaM v0.1.4 and Change-O v0.3.3. \item \code{"m1n_compat"}: Backwards compatibility mouse single nucleotide distance matrix used in SHazaM v0.1.4 and Change-O v0.3.3. } Note on \code{NA}s: if, for a given combination of V gene, J gene, and junction length, there is only 1 heavy chain sequence (as defined by \code{sequenceColumn}), \code{NA} is returned instead of a distance (since it has no heavy/long chain neighbor). If for a given combination there are multiple heavy/long chain sequences but only 1 unique one, (in which case every heavy/long chain sequence in this group is the de facto nearest neighbor to each other, thus giving rise to distances of 0), \code{NA}s are returned instead of zero-distances. Note on \code{subsample}: Subsampling is performed independently in each V-J-length group for heavy/long chain sequences. If \code{subsample} is larger than number of heavy/long chain sequences in the group, it is ignored. In other words, subsampling is performed only on groups in which the number of heavy/long chain sequences is equal to or greater than \code{subsample}. \code{dist_nearest} has values calculated using all heavy chain sequences in the group for groups with fewer than \code{subsample} heavy/long chain sequences, and values calculated using a subset of heavy/long chain sequences for the larger groups. To select a value of \code{subsample}, it can be useful to explore the group sizes in \code{db} (and the number of heavy/long chain sequences in those groups). } \examples{ # Subset example data to one sample as a demo data(ExampleDb, package="alakazam") db <- subset(ExampleDb, sample_id == "-1h") # Use genotyped V assignments, Hamming distance, and normalize by junction length # First partition based on V and J assignments, then by junction length # Take into consideration ambiguous V and J annotations dist <- distToNearest(db, sequenceColumn="junction", vCallColumn="v_call_genotyped", jCallColumn="j_call", model="ham", first=FALSE, VJthenLen=TRUE, normalize="len") # Plot histogram of non-NA distances p1 <- ggplot(data=subset(dist, !is.na(dist_nearest))) + theme_bw() + ggtitle("Distance to nearest: Hamming") + xlab("distance") + geom_histogram(aes(x=dist_nearest), binwidth=0.025, fill="steelblue", color="white") plot(p1) } \references{ \enumerate{ \item Smith DS, et al. Di- and trinucleotide target preferences of somatic mutagenesis in normal and autoreactive B cells. J Immunol. 1996 156:2642-52. \item Glanville J, Kuo TC, von Budingen H-C, et al. Naive antibody gene-segment frequencies are heritable and unaltered by chronic lymphocyte ablation. Proc Natl Acad Sci USA. 2011 108(50):20066-71. \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data. Front Immunol. 2013 4:358. } } \seealso{ See \link{calcTargetingDistance} for generating nucleotide distance matrices from a \link{TargetingModel} object. See \link{HH_S5F}, \link{HH_S1F}, \link{MK_RS1NF}, \link[alakazam]{getDNAMatrix}, and \link[alakazam]{getAAMatrix} for individual model details. \link[alakazam]{getLocus} to get locus values based on allele calls. } shazam/man/MutationDefinition-class.Rd0000644000176200001440000000214115037732576017530 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MutationDefinitions.R \docType{class} \name{MutationDefinition-class} \alias{MutationDefinition-class} \alias{MutationDefinition} \title{S4 class defining replacement and silent mutation definitions} \description{ \code{MutationDefinition} defines a common data structure for defining the whether a mutation is annotated as a replacement or silent mutation. } \section{Slots}{ \describe{ \item{\code{name}}{name of the MutationDefinition.} \item{\code{description}}{description of the model and its source.} \item{\code{classes}}{named character vectors with single-letter amino acid codes as names and amino acid classes as values, with \code{NA} assigned to set of characters \code{c("X", "*", "-", ".")}. Replacement (R) is be defined as a change in amino acid class and silent (S) as no change in class.} \item{\code{codonTable}}{matrix of codons (columns) and substitutions (rows).} \item{\code{citation}}{publication source.} }} \seealso{ See \link{MUTATION_SCHEMES} for a set of predefined \code{MutationDefinition} objects. } shazam/man/MUTATION_SCHEMES.Rd0000644000176200001440000000230415037732576015224 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MutationDefinitions.R \name{MUTATION_SCHEMES} \alias{MUTATION_SCHEMES} \alias{CHARGE_MUTATIONS} \alias{HYDROPATHY_MUTATIONS} \alias{POLARITY_MUTATIONS} \alias{VOLUME_MUTATIONS} \title{Amino acid mutation definitions} \format{ A \link{MutationDefinition} object defining: \itemize{ \item \code{CHARGE_MUTATIONS}: Amino acid mutations are defined by changes in side chain charge class. \item \code{HYDROPATHY_MUTATIONS}: Amino acid mutations are defined by changes in side chain hydrophobicity class. \item \code{POLARITY_MUTATIONS}: Amino acid mutations are defined by changes in side chain polarity class. \item \code{VOLUME_MUTATIONS}: Amino acid mutations are defined by changes in side chain volume class. } } \description{ Definitions of replacement (R) and silent (S) mutations for different amino acid physicochemical classes. } \references{ \enumerate{ \item \url{https://www.imgt.org/IMGTeducation/Aide-memoire/_UK/aminoacids/IMGTclasses.html} } } shazam/man/HH_S5F.Rd0000644000176200001440000000175615037732576013603 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \docType{data} \name{HH_S5F} \alias{HH_S5F} \title{Human heavy chain, silent, 5-mer, functional targeting model.} \format{ A \link{TargetingModel} object. } \usage{ HH_S5F } \description{ 5-mer model of somatic hypermutation targeting based on analysis of silent mutations in functional heavy chain Ig sequences from Homo sapiens. } \references{ \enumerate{ \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data. Front Immunol. 2013 4(November):358. } } \seealso{ See \link{HH_S1F} for the 1-mer substitution matrix from the same publication; \link{HKL_S5F} for the human light chain 5-mer targeting model; \link{MK_RS5NF} for the mouse 5-mer targeting model; and \link{U5N} for the uniform 5-mer null targeting model. } \keyword{datasets} shazam/man/makeAverage1merSub.Rd0000644000176200001440000000315715037732576016273 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \name{makeAverage1merSub} \alias{makeAverage1merSub} \title{Make a 1-mer substitution model by averaging over a 5-mer substitution model} \usage{ makeAverage1merSub(sub5mer) } \arguments{ \item{sub5mer}{a 4x1024 matrix such as that returned by \code{createSubstitutionMatrix} and that returned by \code{makeDegenerate5merSub} with \code{extended=FALSE}. Column names should correspond to 5-mers containing the central 1-mer to mutate from. Row names should correspond to nucleotides to mutate into. Nucleotides should include "A", "T", "G", and "C" (case-insensitive).} } \value{ A 4x4 matrix with row names representing nucleotides to mutate from and column names representing nucleotides to mutate into. Rates are normalized by row. } \description{ \code{makeAverage1merSub} averages substitution rates in a 5-mer substitution model to derive a 1-mer substitution model. } \details{ For example, the substitution rate from "A" to "T" in the resultant 1-mer model is derived by averaging the substitution rates into a "T" of all the 5-mers that have an "A" as their central 1-mer. } \examples{ # Make a degenerate 5-mer model (4x1024) based on HKL_S1F (4x4) degenerate5merSub <- makeDegenerate5merSub(sub1mer = HKL_S1F) # Now make a 1-mer model by averaging over the degenerate 5-mer model # Expected to get back HKL_S1F makeAverage1merSub(sub5mer = degenerate5merSub) } \seealso{ See \link{makeDegenerate5merSub} for making a degenerate 5-mer substitution model based on a 1-mer substitution model. } shazam/man/slideWindowTunePlot.Rd0000644000176200001440000001277015037732576016610 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Deprecated.R \name{slideWindowTunePlot} \alias{slideWindowTunePlot} \title{slideWindowTunePlot - plotSlideWindowTune backward compatibility} \usage{ slideWindowTunePlot( tuneList, plotFiltered = c(TRUE, FALSE, NULL, "filtered", "remaining", "per_mutation"), percentage = FALSE, jitter.x = FALSE, jitter.x.amt = 0.1, jitter.y = FALSE, jitter.y.amt = 0.1, pchs = 1, ltys = 2, cols = 1, plotLegend = TRUE, legendPos = "topright", legendHoriz = FALSE, legendCex = 1, title = NULL, returnRaw = FALSE ) } \arguments{ \item{tuneList}{a list of logical matrices returned by \link{slideWindowTune}.} \item{plotFiltered}{whether to plot the number of filtered (\code{TRUE} or \code{filtered}), or remaining (FALSE or remaining) sequences for each mutation threshold. Use \code{NULL} or \code{per_mutation} to plot the number of sequences at each mutation value. Default is \code{TRUE}.} \item{percentage}{whether to plot on the y-axis the percentage of filtered sequences (as opposed to the absolute number). Default is \code{FALSE}.} \item{jitter.x}{whether to jitter x-axis values. Default is \code{FALSE}.} \item{jitter.x.amt}{amount of jittering to be applied on x-axis values if \code{jitter.x=TRUE}. Default is 0.1.} \item{jitter.y}{whether to jitter y-axis values. Default is \code{FALSE}.} \item{jitter.y.amt}{amount of jittering to be applied on y-axis values if \code{jitter.y=TRUE}. Default is 0.1.} \item{pchs}{point types to pass on to \link{plot}.} \item{ltys}{line types to pass on to \link{plot}.} \item{cols}{colors to pass on to \link{plot}.} \item{plotLegend}{whether to plot legend. Default is \code{TRUE}.} \item{legendPos}{position of legend to pass on to \link{legend}. Can be either a numeric vector specifying x-y coordinates, or one of \code{"topright"}, \code{"center"}, etc. Default is \code{"topright"}.} \item{legendHoriz}{whether to make legend horizontal. Default is \code{FALSE}.} \item{legendCex}{numeric values by which legend should be magnified relative to 1.} \item{title}{plot main title. Default is NULL (no title)} \item{returnRaw}{Return a data.frame with sequence counts (TRUE) or a plot. Default is \code{FALSE}.} } \description{ Wrapper function for \link{plotSlideWindowTune} } \details{ For each \code{windowSize}, if \code{plotFiltered=TRUE}, the x-axis represents a mutation threshold range, and the y-axis the number of sequences that have at least that number of mutations. If \code{plotFiltered=TRUE}, the y-axis represents the number of sequences that have less mutations than the mutation threshold range. For the same window size, a sequence can be included in the counts for different mutation thresholds. For example, sequence "CCACCAAAA" with germline "AAAAAAAAA" has 4 mutations. This sequence has at least 2 mutations and at least 3 mutations, in a window of size 4. the sequence will be included in the sequence count for mutation thresholds 2 and 3. If \code{plotFiltered=TRUE}, the sequences are counted only once for each window size, at their largest mutation threshold. The above example sequence would be included in the sequence count for mutation threshold 3. When plotting, a user-defined \code{amount} of jittering can be applied on values plotted on either axis or both axes via adjusting \code{jitter.x}, \code{jitter.y}, \code{jitter.x.amt} and \code{jitter.y.amt}. This may be help with visually distinguishing lines for different window sizes in case they are very close or identical to each other. If plotting percentages (\code{percentage=TRUE}) and using jittering on the y-axis values (\code{jitter.y=TRUE}), it is strongly recommended that \code{jitter.y.amt} be set very small (e.g. 0.01). \code{NA} for a combination of \code{mutThresh} and \code{windowSize} where \code{mutThresh} is greater than \code{windowSize} will not be plotted. } \examples{ # Use an entry in the example data for input and germline sequence data(ExampleDb, package="alakazam") # Try out thresholds of 2-4 mutations in window sizes of 3-5 nucleotides # on a subset of ExampleDb tuneList <- slideWindowTune(db = ExampleDb[1:10, ], mutThreshRange = 2:4, windowSizeRange = 3:5, verbose = FALSE) # Visualize # Plot numbers of sequences filtered without jittering y-axis values slideWindowTunePlot(tuneList, pchs=1:3, ltys=1:3, cols=1:3, plotFiltered=TRUE, jitter.y=FALSE) # Notice that some of the lines overlap # Jittering could help slideWindowTunePlot(tuneList, pchs=1:3, ltys=1:3, cols=1:3, plotFiltered=TRUE, jitter.y=TRUE) # Plot numbers of sequences remaining instead of filtered slideWindowTunePlot(tuneList, pchs=1:3, ltys=1:3, cols=1:3, plotFiltered=FALSE, jitter.y=TRUE, legendPos="bottomright") # Plot percentages of sequences filtered with a tiny amount of jittering slideWindowTunePlot(tuneList, pchs=1:3, ltys=1:3, cols=1:3, plotFiltered=TRUE, percentage=TRUE, jitter.y=TRUE, jitter.y.amt=0.01) } \seealso{ See \link{slideWindowTune} for how to get \code{tuneList}. See \link{jitter} for use of \code{amount} of jittering. } shazam/man/findThreshold.Rd0000644000176200001440000001266415037732576015424 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/DistToNearest.R \name{findThreshold} \alias{findThreshold} \title{Find distance threshold} \usage{ findThreshold( distances, method = c("density", "gmm"), edge = 0.9, cross = NULL, subsample = NULL, model = c("gamma-gamma", "gamma-norm", "norm-gamma", "norm-norm"), cutoff = c("optimal", "intersect", "user"), sen = NULL, spc = NULL, progress = FALSE ) } \arguments{ \item{distances}{numeric vector containing nearest neighbor distances.} \item{method}{string defining the method to use for determining the optimal threshold. One of \code{"gmm"} or \code{"density"}. See Details for methodological descriptions.} \item{edge}{upper range as a fraction of the data density to rule initialization of Gaussian fit parameters. Default value is 90% of the entries (0.9). Applies only when \code{method="density"}. .} \item{cross}{supplementary nearest neighbor distance vector output from \link{distToNearest} for initialization of the Gaussian fit parameters. Applies only when \code{method="gmm"}.} \item{subsample}{maximum number of distances to subsample to before threshold detection.} \item{model}{allows the user to choose among four possible combinations of fitting curves: \code{"norm-norm"}, \code{"norm-gamma"}, \code{"gamma-norm"}, and \code{"gamma-gamma"}. Applies only when \code{method="gmm"}.} \item{cutoff}{method to use for threshold selection: the optimal threshold \code{"opt"}, the intersection point of the two fitted curves \code{"intersect"}, or a value defined by user for one of the sensitivity or specificity \code{"user"}. Applies only when \code{method="gmm"}.} \item{sen}{sensitivity required. Applies only when \code{method="gmm"} and \code{cutoff="user"}.} \item{spc}{specificity required. Applies only when \code{method="gmm"} and \code{cutoff="user"}.} \item{progress}{if \code{TRUE} print a progress bar.} } \value{ \itemize{ \item \code{"gmm"} method: Returns a \link{GmmThreshold} object including the \code{threshold} and the function fit parameters, i.e. mixing weight, mean, and standard deviation of a Normal distribution, or mixing weight, shape and scale of a Gamma distribution. \item \code{"density"} method: Returns a \link{DensityThreshold} object including the optimum \code{threshold} and the density fit parameters. } } \description{ \code{findThreshold} automatically determines an optimal threshold for clonal assignment of Ig sequences using a vector of nearest neighbor distances. It provides two alternative methods using either a Gamma/Gaussian Mixture Model fit (\code{method="gmm"}) or kernel density fit (\code{method="density"}). } \details{ \itemize{ \item \code{"gmm"}: Performs a maximum-likelihood fitting procedure, for learning the parameters of two mixture univariate, either Gamma or Gaussian, distributions which fit the bimodal distribution entries. Retrieving the fit parameters, it then calculates the optimum threshold \code{method="optimal"}, where the average of the sensitivity plus specificity reaches its maximum. In addition, the \code{findThreshold} function is also able to calculate the intersection point (\code{method="intersect"}) of the two fitted curves and allows the user to invoke its value as the cut-off point, instead of optimal point. \item \code{"density"}: Fits a binned approximation to the ordinary kernel density estimate to the nearest neighbor distances after determining the optimal bandwidth for the density estimate via least-squares cross-validation of the 4th derivative of the kernel density estimator. The optimal threshold is set as the minimum value in the valley in the density estimate between the two modes of the distribution. } } \note{ Visually inspecting the resulting distribution fits is strongly recommended when using either fitting method. Empirical observations imply that the bimodality of the distance-to-nearest distribution is detectable for a minimum of 1,000 distances. Larger numbers of distances will improve the fitting procedure, although this can come at the expense of higher computational demands. } \examples{ \donttest{ # Subset example data to 50 sequences, one sample and isotype as a demo data(ExampleDb, package="alakazam") db <- subset(ExampleDb, sample_id == "-1h" & c_call=="IGHG")[1:50,] # Use nucleotide Hamming distance and normalize by junction length db <- distToNearest(db, sequenceColumn="junction", vCallColumn="v_call", jCallColumn="j_call", model="ham", normalize="len", nproc=1) # Find threshold using the "gmm" method with user defined specificity output <- findThreshold(db$dist_nearest, method="gmm", model="gamma-gamma", cutoff="user", spc=0.99) plot(output, binwidth=0.02, title=paste0(output@model, " loglk=", output@loglk)) print(output) } } \seealso{ See \link{distToNearest} for generating the nearest neighbor distance vectors. See \link{plotGmmThreshold} and \link{plotDensityThreshold} for plotting output. } shazam/man/createRegionDefinition.Rd0000644000176200001440000000163715037732576017245 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/RegionDefinitions.R \name{createRegionDefinition} \alias{createRegionDefinition} \title{Creates a RegionDefinition} \usage{ createRegionDefinition( name = "", boundaries = factor(), description = "", citation = "" ) } \arguments{ \item{name}{name of the region definition.} \item{boundaries}{\code{factor} defining the region boundaries of the sequence. The levels and values of \code{boundaries} determine the number of regions (e.g. CDR and FWR).} \item{description}{description of the region definition and its source data.} \item{citation}{publication source.} } \value{ A \code{RegionDefinition} object. } \description{ \code{createRegionDefinition} creates a \code{RegionDefinition}. } \examples{ # Creates an empty RegionDefinition object createRegionDefinition() } \seealso{ See \link{RegionDefinition} for the return object. } shazam/man/setRegionBoundaries.Rd0000644000176200001440000000572415037732576016601 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/RegionsExtend.R \name{setRegionBoundaries} \alias{setRegionBoundaries} \title{Build a RegionDefinition object that includes CDR3 and FWR4.} \usage{ setRegionBoundaries(juncLength, sequenceImgt, regionDefinition = NULL) } \arguments{ \item{juncLength}{junction length of the sequence.} \item{sequenceImgt}{IMGT-numbered sequence.} \item{regionDefinition}{\code{RegionDefinition} type to calculate the region definition for. Can be one of \code{IMGT_VDJ_BY_REGIONS} or \code{IMGT_VDJ}, which are template definitions that include CDR1-3 and FWR1-4. Only these two regions include all CDR1-3 and FWR1-4 regions. If this argument is set to \code{NULL}, then an empty \code{RegionDefinition} will be returned.} } \value{ A \code{RegionDefinition} object that includes CDR1-3 and FWR1-4 for the \code{sequenceImgt}, \code{juncLength}, and \code{regionDefinition} specified. For \code{regionDefinition=IMGT_VDJ_BY_REGIONS}, the returned \code{RegionDefinition} includes: \itemize{ \item \code{fwr1}: Positions 1 to 78. \item \code{cdr1}: Positions 79 to 114. \item \code{fwr2}: Positions 115 to 165. \item \code{cdr2}: Positions 166 to 195. \item \code{fwr3}: Positions 196 to 312. \item \code{cdr3}: Positions 313 to (313 + juncLength - 6) since the junction sequence includes (on the left) the last codon from FWR3 and (on the right) the first codon from FWR4. \item \code{fwr4}: Positions (313 + juncLength - 6 + 1) to the end of the sequence. } For \code{regionDefinition=IMGT_VDJ}, the returned \code{RegionDefinition} includes: \itemize{ \item \code{fwr}: Positions belonging to a FWR. \item \code{cdr}: Positions belonging to a CDR. } In the case that the \code{regionDefinition} argument is not one of the extended regions (\code{IMGT_VDJ_BY_REGIONS} or \code{IMGT_VDJ}), the input \code{regionDefinition} is returned as is. } \description{ \code{setRegionBoundaries} takes as input a junction length and an IMGT-numbered sequence and outputs a custom \code{RegionDefinition} object that includes the boundary definitions of CDR1-3 and FWR1-4 for that sequence. In contrast to the universal \code{RegionDefinition} object that end with FWR3, the returned definition is per-sequence due to variable junction lengths. } \examples{ # Load and subset example data data(ExampleDb, package = "alakazam") len <- ExampleDb$junction_length[1] sequence <- ExampleDb$sequence_alignment[1] region <- setRegionBoundaries(len, sequence, regionDefinition = IMGT_VDJ) } \seealso{ See \link{RegionDefinition} for the return object. See \link{IMGT_SCHEMES} for a set of predefined \code{RegionDefinition} objects. } shazam/man/TargetingMatrix-class.Rd0000644000176200001440000000122715037732576017034 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \docType{class} \name{TargetingMatrix-class} \alias{TargetingMatrix-class} \alias{TargetingMatrix} \title{S4 class defining a targeting matrix} \description{ \code{TargetingMatrix} defines a data structure for just the targeting matrix (as opposed to the entire \code{TargetingModel}) } \section{Slots}{ \describe{ \item{\code{.Data}}{matrix.} \item{\code{numMutS}}{number indicating the number of silent mutations used for estimating mutability.} \item{\code{numMutR}}{number indicating the number of replacement mutations used for estimating mutability.} }} shazam/man/createTargetingModel.Rd0000644000176200001440000000774215037732576016721 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \name{createTargetingModel} \alias{createTargetingModel} \title{Creates a TargetingModel} \usage{ createTargetingModel( db, model = c("s", "rs"), sequenceColumn = "sequence_alignment", germlineColumn = "germline_alignment_d_mask", vCallColumn = "v_call", multipleMutation = c("independent", "ignore"), minNumMutations = 50, minNumSeqMutations = 500, modelName = "", modelDescription = "", modelSpecies = "", modelCitation = "", modelDate = NULL ) } \arguments{ \item{db}{data.frame containing sequence data.} \item{model}{type of model to create. The default model, "s", builds a model by counting only silent mutations. \code{model="s"} should be used for data that includes functional sequences. Setting \code{model="rs"} creates a model by counting both replacement and silent mutations and may be used on fully non-functional sequence data sets.} \item{sequenceColumn}{name of the column containing IMGT-gapped sample sequences.} \item{germlineColumn}{name of the column containing IMGT-gapped germline sequences.} \item{vCallColumn}{name of the column containing the V-segment allele calls.} \item{multipleMutation}{string specifying how to handle multiple mutations occurring within the same 5-mer. If \code{"independent"} then multiple mutations within the same 5-mer are counted independently. If \code{"ignore"} then 5-mers with multiple mutations are excluded from the total mutation tally.} \item{minNumMutations}{minimum number of mutations required to compute the 5-mer substitution rates. If the number of mutations for a 5-mer is below this threshold, its substitution rates will be estimated from neighboring 5-mers. Default is 50.} \item{minNumSeqMutations}{minimum number of mutations in sequences containing each 5-mer to compute the mutability rates. If the number is smaller than this threshold, the mutability for the 5-mer will be inferred. Default is 500.} \item{modelName}{name of the model.} \item{modelDescription}{description of the model and its source data.} \item{modelSpecies}{genus and species of the source sequencing data.} \item{modelCitation}{publication source.} \item{modelDate}{date the model was built. If \code{NULL} the current date will be used.} } \value{ A \link{TargetingModel} object. } \description{ \code{createTargetingModel} creates a 5-mer \code{TargetingModel}. } \details{ \strong{Caution: The targeting model functions do NOT support ambiguous characters in their inputs. You MUST make sure that your input and germline sequences do NOT contain ambiguous characters (especially if they are clonal consensuses returned from \code{collapseClones}).} } \examples{ \donttest{ # Subset example data to one isotype and sample as a demo data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call == "IGHA" & sample_id == "-1h")[1:80,] # Create model using only silent mutations and ignore multiple mutations model <- createTargetingModel(db, model="s", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call", multipleMutation="ignore") # View top 5 mutability estimates head(sort(model@mutability, decreasing=TRUE), 5) # View number of silent mutations used for estimating mutability model@numMutS } } \references{ \enumerate{ \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data. Front Immunol. 2013 4(November):358. } } \seealso{ See \link{TargetingModel} for the return object. See \link{plotMutability} plotting a mutability model. See \link{createSubstitutionMatrix}, \link{extendSubstitutionMatrix}, \link{createMutabilityMatrix}, \link{extendMutabilityMatrix} and \link{createTargetingMatrix} for component steps in building a model. } shazam/man/createBaseline.Rd0000644000176200001440000001032215037732576015522 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Baseline.R \name{createBaseline} \alias{createBaseline} \title{Creates a Baseline object} \usage{ createBaseline( description = "", db = data.frame(), regionDefinition = createRegionDefinition(), testStatistic = "", regions = NULL, numbOfSeqs = matrix(), binomK = matrix(), binomN = matrix(), binomP = matrix(), pdfs = list(), stats = data.frame() ) } \arguments{ \item{description}{\code{character} providing general information regarding the sequences, selection analysis and/or object.} \item{db}{\code{data.frame} containing annotation information about the sequences and selection results.} \item{regionDefinition}{\link{RegionDefinition} object defining the regions and boundaries of the Ig sequences.} \item{testStatistic}{\code{character} indicating the statistical framework used to test for selection. For example, \code{"local"} or \code{"focused"} or \code{"imbalanced"}.} \item{regions}{\code{character} vector defining the regions the BASELINe analysis was carried out on. For \code{"cdr"} and \code{"fwr"} or \code{"cdr1"}, \code{"cdr2"}, \code{"cdr3"}, etc. If \code{NULL} then regions will be determined automatically from \code{regionDefinition}.} \item{numbOfSeqs}{\code{matrix} of dimensions \code{r x c} containing the number of sequences or PDFs in each region, where:\cr \code{r} = number of rows = number of groups or sequences.\cr \code{c} = number of columns = number of regions.} \item{binomK}{\code{matrix} of dimensions \code{r x c} containing the number of successes in the binomial trials in each region, where:\cr \code{r} = number of rows = number of groups or sequences.\cr \code{c} = number of columns = number of regions.} \item{binomN}{\code{matrix} of dimensions \code{r x c} containing the total number of trials in the binomial in each region, where:\cr \code{r} = number of rows = number of groups or sequences.\cr \code{c} = number of columns = number of regions.} \item{binomP}{\code{matrix} of dimensions \code{r x c} containing the probability of success in one binomial trial in each region, where:\cr \code{r} = number of rows = number of groups or sequences.\cr \code{c} = number of columns = number of regions.} \item{pdfs}{\code{list} of matrices containing PDFs with one item for each defined region (e.g. \code{cdr} and \code{fwr}). Matrices have dimensions \code{r x c} dimensions, where:\cr \code{r} = number of rows = number of sequences or groups. \cr \code{c} = number of columns = length of the PDF (default 4001).} \item{stats}{\code{data.frame} of BASELINe statistics, including: mean selection strength (mean Sigma), 95\% confidence intervals, and p-values with positive signs for the presence of positive selection and/or p-values with negative signs for the presence of negative selection.} } \value{ A \code{Baseline} object. } \description{ \code{createBaseline} creates and initialize a \code{Baseline} object. } \details{ Create and initialize a \code{Baseline} object. The \code{testStatistic} indicates the statistical framework used to test for selection. For example, \itemize{ \item \code{local} = CDR_R / (CDR_R + CDR_S). \item \code{focused} = CDR_R / (CDR_R + CDR_S + FWR_S). \item \code{immbalance} = CDR_R + CDR_s / (CDR_R + CDR_S + FWR_S + FWR_R) } For \code{focused} the \code{regionDefinition} must only contain two regions. If more than two regions are defined, then the \code{local} test statistic will be used. For further information on the frame of these tests see Uduman et al. (2011). } \examples{ # Creates an empty Baseline object createBaseline() } \references{ \enumerate{ \item Hershberg U, et al. Improved methods for detecting selection by mutation analysis of Ig V region sequences. Int Immunol. 2008 20(5):683-94. \item Uduman M, et al. Detecting selection in immunoglobulin sequences. Nucleic Acids Res. 2011 39(Web Server issue):W499-504. \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data. Front Immunol. 2013 4(November):358. } } \seealso{ See \link{Baseline} for the return object. } shazam/man/groupBaseline.Rd0000644000176200001440000000765515037732576015432 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Baseline.R \name{groupBaseline} \alias{groupBaseline} \title{Group BASELINe PDFs} \usage{ groupBaseline(baseline, groupBy, nproc = 1) } \arguments{ \item{baseline}{\code{Baseline} object containing the \code{db} and the BASELINe posterior probability density functions (PDF) for each of the sequences, as returned by \link{calcBaseline}.} \item{groupBy}{The columns in the \code{db} slot of the \code{Baseline} object by which to group the sequence PDFs.} \item{nproc}{number of cores to distribute the operation over. If \code{nproc} = 0 then the \code{cluster} has already been set and will not be reset.} } \value{ A \link{Baseline} object, containing the modified \code{db} and the BASELINe posterior probability density functions (PDF) for each of the groups. } \description{ \code{groupBaseline} convolves groups of BASELINe posterior probability density functions (PDFs) to get combined PDFs for each group. } \details{ While the selection strengths predicted by BASELINe perform well on average, the estimates for individual sequences can be highly variable, especially when the number of mutations is small. To overcome this, PDFs from sequences grouped by biological or experimental relevance, are convolved to from a single PDF for the selection strength. For example, sequences from each sample may be combined together, allowing you to compare selection across samples. This is accomplished through a fast numerical convolution technique. } \examples{ \dontrun{ # Subset example data from alakazam as a demo data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call \%in\% c("IGHM", "IGHG")) set.seed(112) db <- dplyr::slice_sample(db, n=200) # Collapse clones db <- collapseClones(db, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", method="thresholdedFreq", minimumFrequency=0.6, includeAmbiguous=FALSE, breakTiesStochastic=FALSE) # Calculate BASELINe baseline <- calcBaseline(db, sequenceColumn="clonal_sequence", germlineColumn="clonal_germline", testStatistic="focused", regionDefinition=IMGT_V, targetingModel=HH_S5F, nproc=1) # Group PDFs by sample grouped1 <- groupBaseline(baseline, groupBy="sample_id") sample_colors <- c("-1h"="steelblue", "+7d"="firebrick") plotBaselineDensity(grouped1, idColumn="sample_id", colorValues=sample_colors, sigmaLimits=c(-1, 1)) # Group PDFs by both sample (between variable) and isotype (within variable) grouped2 <- groupBaseline(baseline, groupBy=c("sample_id", "c_call")) isotype_colors <- c("IGHM"="darkorchid", "IGHD"="firebrick", "IGHG"="seagreen", "IGHA"="steelblue") plotBaselineDensity(grouped2, idColumn="sample_id", groupColumn="c_call", colorElement="group", colorValues=isotype_colors, sigmaLimits=c(-1, 1)) # Collapse previous isotype (within variable) grouped PDFs into sample PDFs grouped3 <- groupBaseline(grouped2, groupBy="sample_id") sample_colors <- c("-1h"="steelblue", "+7d"="firebrick") plotBaselineDensity(grouped3, idColumn="sample_id", colorValues=sample_colors, sigmaLimits=c(-1, 1)) } } \references{ \enumerate{ \item Yaari G, et al. Quantifying selection in high-throughput immunoglobulin sequencing data sets. Nucleic Acids Res. 2012 40(17):e134. (Corrections at http://selection.med.yale.edu/baseline/correction/) } } \seealso{ To generate the \link{Baseline} object see \link{calcBaseline}. To calculate BASELINe statistics, such as the mean selection strength and the 95\% confidence interval, see \link{summarizeBaseline}. } shazam/man/calcBaseline.Rd0000644000176200001440000001327715037732576015175 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Baseline.R \name{calcBaseline} \alias{calcBaseline} \title{Calculate the BASELINe PDFs (including for regions that include CDR3 and FWR4)} \usage{ calcBaseline( db, sequenceColumn = "clonal_sequence", germlineColumn = "clonal_germline", testStatistic = c("local", "focused", "imbalanced"), regionDefinition = NULL, targetingModel = HH_S5F, mutationDefinition = NULL, calcStats = FALSE, nproc = 1, cloneColumn = NULL, juncLengthColumn = NULL ) } \arguments{ \item{db}{\code{data.frame} containing sequence data and annotations.} \item{sequenceColumn}{\code{character} name of the column in \code{db} containing input sequences.} \item{germlineColumn}{\code{character} name of the column in \code{db} containing germline sequences.} \item{testStatistic}{\code{character} indicating the statistical framework used to test for selection. One of \code{c("local", "focused", "imbalanced")}.} \item{regionDefinition}{\link{RegionDefinition} object defining the regions and boundaries of the Ig sequences.} \item{targetingModel}{\link{TargetingModel} object. Default is \link{HH_S5F}.} \item{mutationDefinition}{\link{MutationDefinition} object defining replacement and silent mutation criteria. If \code{NULL} then replacement and silent are determined by exact amino acid identity. Note, if the input data.frame already contains observed and expected mutation frequency columns then mutations will not be recalculated and this argument will be ignored.} \item{calcStats}{\code{logical} indicating whether or not to calculate the summary statistics \code{data.frame} stored in the \code{stats} slot of a \link{Baseline} object.} \item{nproc}{number of cores to distribute the operation over. If \code{nproc=0} then the \code{cluster} has already been set and will not be reset.} \item{cloneColumn}{\code{character} name of the column in \code{db} containing clonal identifiers. Relevant only for when regionDefinition includes CDR and FWR4 (else this value can be \code{NULL})} \item{juncLengthColumn}{\code{character} name of the column in \code{db} containing the junction length. Relevant only for when regionDefinition includes CDR and FWR4 (else this value can be \code{NULL})} } \value{ A \link{Baseline} object containing the modified \code{db} and BASELINe posterior probability density functions (PDF) for each of the sequences. } \description{ \code{calcBaseline} calculates the BASELINe posterior probability density functions (PDFs) for sequences in the given Change-O \code{data.frame}. } \details{ Calculates the BASELINe posterior probability density function (PDF) for sequences in the provided \code{db}. \strong{Note}: Individual sequences within clonal groups are not, strictly speaking, independent events and it is generally appropriate to only analyze selection pressures on an effective sequence for each clonal group. For this reason, it is strongly recommended that the input \code{db} contains one effective sequence per clone. Effective clonal sequences can be obtained by calling the \link{collapseClones} function. If the \code{db} does not contain the required columns to calculate the PDFs (namely mu_count & mu_expected) then the function will: \enumerate{ \item Calculate the numbers of observed mutations. \item Calculate the expected frequencies of mutations and modify the provided \code{db}. The modified \code{db} will be included as part of the returned \code{Baseline} object. } The \code{testStatistic} indicates the statistical framework used to test for selection. E.g. \itemize{ \item \code{local} = CDR_R / (CDR_R + CDR_S). \item \code{focused} = CDR_R / (CDR_R + CDR_S + FWR_S). \item \code{imbalanced} = CDR_R + CDR_S / (CDR_R + CDR_S + FWR_S + FRW_R). } For \code{focused} the \code{regionDefinition} must only contain two regions. If more than two regions are defined the \code{local} test statistic will be used. For further information on the frame of these tests see Uduman et al. (2011). } \examples{ # Load and subset example data data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call == "IGHG" & sample_id == "+7d") # Collapse clones db <- collapseClones(db, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", method="thresholdedFreq", minimumFrequency=0.6, includeAmbiguous=FALSE, breakTiesStochastic=FALSE) # Calculate BASELINe baseline <- calcBaseline(db, sequenceColumn="clonal_sequence", germlineColumn="clonal_germline", testStatistic="focused", regionDefinition=IMGT_V, targetingModel=HH_S5F, nproc=1) } \references{ \enumerate{ \item Hershberg U, et al. Improved methods for detecting selection by mutation analysis of Ig V region sequences. Int Immunol. 2008 20(5):683-94. \item Uduman M, et al. Detecting selection in immunoglobulin sequences. Nucleic Acids Res. 2011 39(Web Server issue):W499-504. \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data. Front Immunol. 2013 4(November):358. } } \seealso{ See \link{Baseline} for the return object. See \link{groupBaseline} and \link{summarizeBaseline} for further processing. See \link{plotBaselineSummary} and \link{plotBaselineDensity} for plotting results. } shazam/man/plotBaselineDensity.Rd0000644000176200001440000001161615037732576016604 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Baseline.R \name{plotBaselineDensity} \alias{plotBaselineDensity} \title{Plots BASELINe probability density functions} \usage{ plotBaselineDensity( baseline, idColumn, groupColumn = NULL, colorElement = c("id", "group"), colorValues = NULL, title = NULL, subsetRegions = NULL, sigmaLimits = c(-5, 5), facetBy = c("region", "group"), style = c("density"), sizeElement = c("none", "id", "group"), size = 1, silent = FALSE, ... ) } \arguments{ \item{baseline}{\code{Baseline} object containing selection probability density functions.} \item{idColumn}{name of the column in the \code{db} slot of \code{baseline} containing primary identifiers.} \item{groupColumn}{name of the column in the \code{db} slot of \code{baseline} containing secondary grouping identifiers. If \code{NULL}, organize the plot only on values in \code{idColumn}.} \item{colorElement}{one of \code{c("id", "group")} specifying whether the \code{idColumn} or \code{groupColumn} will be used for color coding. The other entry, if present, will be coded by line style.} \item{colorValues}{named vector of colors for entries in \code{colorElement}, with names defining unique values in the \code{colorElement} column and values being colors. Also controls the order in which values appear on the plot. If \code{NULL} alphabetical ordering and a default color palette will be used.} \item{title}{string defining the plot title.} \item{subsetRegions}{character vector defining a subset of regions to plot, corresponding to the regions for which the \code{baseline} data was calculated. If \code{NULL} all regions in \code{baseline} are plotted.} \item{sigmaLimits}{numeric vector containing two values defining the \code{c(lower, upper)} bounds of the selection scores to plot.} \item{facetBy}{one of \code{c("region", "group")} specifying which category to facet the plot by, either values in \code{groupColumn} ("group") or regions defined in the \code{regions} slot of the \code{baseline} object ("region"). If this is set to "group", then the region will behave as the \code{groupColumn} for purposes of the \code{colorElement} argument.} \item{style}{type of plot to draw. One of: \itemize{ \item \code{"density"}: plots a set of curves for each probability density function in \code{baseline}, with colors determined by values in the \code{colorElement} column. Faceting is determined by the \code{facetBy} argument. }} \item{sizeElement}{one of \code{c("none", "id", "group")} specifying whether the lines in the plot should be all of the same size (\code{none}) or have their sizes depend on the values in \code{id} or \code{code}.} \item{size}{numeric scaling factor for lines, points and text in the plot.} \item{silent}{if \code{TRUE} do not draw the plot and just return the ggplot2 object; if \code{FALSE} draw the plot.} \item{...}{additional arguments to pass to ggplot2::theme.} } \value{ A ggplot object defining the plot. } \description{ \code{plotBaselineDensity} plots the probability density functions resulting from selection analysis using the BASELINe method. } \examples{ \dontrun{ # Subset example data as a demo data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call \%in\% c("IGHM", "IGHG")) set.seed(112) db <- dplyr::slice_sample(db, n=100) # Collapse clones db <- collapseClones(db, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", method="thresholdedFreq", minimumFrequency=0.6, includeAmbiguous=FALSE, breakTiesStochastic=FALSE) # Calculate BASELINe baseline <- calcBaseline(db, sequenceColumn="clonal_sequence", germlineColumn="clonal_germline", testStatistic="focused", regionDefinition=IMGT_V, targetingModel=HH_S5F, nproc=1) # Grouping the PDFs by the sample and isotype annotations grouped <- groupBaseline(baseline, groupBy=c("sample_id", "c_call")) # Plot density faceted by region with custom isotype colors isotype_colors <- c("IGHM"="darkorchid", "IGHD"="firebrick", "IGHG"="seagreen", "IGHA"="steelblue") plotBaselineDensity(grouped, "sample_id", "c_call", colorValues=isotype_colors, colorElement="group", sigmaLimits=c(-1, 1)) # Facet by isotype instead of region sample_colors <- c("-1h"="steelblue", "+7d"="firebrick") plotBaselineDensity(grouped, "sample_id", "c_call", facetBy="group", colorValues=sample_colors, sigmaLimits=c(-1, 1)) } } \seealso{ Takes as input a \link{Baseline} object returned from \link{groupBaseline}. } shazam/man/Baseline-class.Rd0000644000176200001440000000643615037732576015454 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Baseline.R \docType{class} \name{Baseline-class} \alias{Baseline-class} \alias{Baseline} \alias{plot,Baseline,character-method} \alias{Baseline-method} \alias{summary,Baseline-method} \title{S4 class defining a BASELINe (selection) object} \usage{ \S4method{plot}{Baseline,character}(x, y, ...) \S4method{summary}{Baseline}(object, nproc = 1) } \arguments{ \item{x}{\code{Baseline} object.} \item{y}{name of the column in the \code{db} slot of \code{baseline} containing primary identifiers.} \item{...}{arguments to pass to \link{plotBaselineDensity}.} \item{object}{\code{Baseline} object.} \item{nproc}{number of cores to distribute the operation over.} } \description{ \code{Baseline} defines a common data structure the results of selection analysis using the BASELINe method. } \section{Slots}{ \describe{ \item{\code{description}}{\code{character} providing general information regarding the sequences, selection analysis and/or object.} \item{\code{db}}{\code{data.frame} containing annotation information about the sequences and selection results.} \item{\code{regionDefinition}}{\link{RegionDefinition} object defining the regions and boundaries of the Ig sequences.} \item{\code{testStatistic}}{\code{character} indicating the statistical framework used to test for selection. For example, \code{"local"} or \code{"focused"}.} \item{\code{regions}}{\code{character} vector defining the regions the BASELINe analysis was carried out on. For \code{"cdr"} and \code{"fwr"} or \code{"cdr1"}, \code{"cdr2"}, \code{"cdr3"}, etc.} \item{\code{numbOfSeqs}}{\code{matrix} of dimensions \code{r x c} containing the number of sequences or PDFs in each region, where:\cr \code{r} = number of rows = number of groups or sequences.\cr \code{c} = number of columns = number of regions.} \item{\code{binomK}}{\code{matrix} of dimensions \code{r x c} containing the number of successes in the binomial trials in each region, where:\cr \code{r} = number of rows = number of groups or sequences.\cr \code{c} = number of columns = number of regions.} \item{\code{binomN}}{\code{matrix} of dimensions \code{r x c} containing the total number of trials in the binomial in each region, where:\cr \code{r} = number of rows = number of groups or sequences.\cr \code{c} = number of columns = number of regions.} \item{\code{binomP}}{\code{matrix} of dimensions \code{r x c} containing the probability of success in one binomial trial in each region, where:\cr \code{r} = number of rows = number of groups or sequences.\cr \code{c} = number of columns = number of regions.} \item{\code{pdfs}}{\code{list} of matrices containing PDFs with one item for each defined region (e.g. \code{cdr} and \code{fwr}). Matrices have dimensions \code{r x c} dimensions, where:\cr \code{r} = number of rows = number of sequences or groups. \cr \code{c} = number of columns = length of the PDF (default 4001).} \item{\code{stats}}{\code{data.frame} of BASELINe statistics, including: mean selection strength (mean Sigma), 95\% confidence intervals, and p-values with positive signs for the presence of positive selection and/or p-values with negative signs for the presence of negative selection.} }} \seealso{ See \link{summarizeBaseline} for more information on \code{@stats}. } shazam/man/summarizeBaseline.Rd0000644000176200001440000000565215037732576016305 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Baseline.R \name{summarizeBaseline} \alias{summarizeBaseline} \title{Calculate BASELINe summary statistics} \usage{ summarizeBaseline(baseline, returnType = c("baseline", "df"), nproc = 1) } \arguments{ \item{baseline}{\code{Baseline} object returned by \link{calcBaseline} containing annotations and BASELINe posterior probability density functions (PDFs) for each sequence.} \item{returnType}{One of \code{c("baseline", "df")} defining whether to return a \code{Baseline} object ("baseline") with an updated \code{stats} slot or a data.frame ("df") of summary statistics.} \item{nproc}{number of cores to distribute the operation over. If \code{nproc} = 0 then the \code{cluster} has already been set and will not be reset.} } \value{ Either a modified \code{Baseline} object or data.frame containing the mean BASELINe selection strength, its 95\% confidence intervals, and a p-value for the presence of selection. } \description{ \code{summarizeBaseline} calculates BASELINe statistics such as the mean selection strength (mean Sigma), the 95\% confidence intervals and p-values for the presence of selection. } \details{ The returned p-value can be either positive or negative. Its magnitude (without the sign) should be interpreted as per normal. Its sign indicates the direction of the selection detected. A positive p-value indicates positive selection, whereas a negative p-value indicates negative selection. } \examples{ \donttest{ # Subset example data data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call == "IGHG") set.seed(112) db <- dplyr::slice_sample(db, n=100) # Collapse clones db <- collapseClones(db, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", method="thresholdedFreq", minimumFrequency=0.6, includeAmbiguous=FALSE, breakTiesStochastic=FALSE) # Calculate BASELINe baseline <- calcBaseline(db, sequenceColumn="clonal_sequence", germlineColumn="clonal_germline", testStatistic="focused", regionDefinition=IMGT_V, targetingModel=HH_S5F, nproc = 1) # Grouping the PDFs by the sample annotation grouped <- groupBaseline(baseline, groupBy="sample_id") # Get a data.frame of the summary statistics stats <- summarizeBaseline(grouped, returnType="df") } } \references{ \enumerate{ \item Uduman M, et al. Detecting selection in immunoglobulin sequences. Nucleic Acids Res. 2011 39(Web Server issue):W499-504. } } \seealso{ See \link{calcBaseline} for generating \code{Baseline} objects and \link{groupBaseline} for convolving groups of BASELINe PDFs. } shazam/man/shazam.Rd0000644000176200001440000001273315037732576014107 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Shazam.R \name{shazam} \alias{shazam} \title{The shazam package} \description{ Dramatic improvements in high-throughput sequencing technologies now enable large-scale characterization of Ig repertoires, defined as the collection of transmembrane antigen-receptor proteins located on the surface of T and B lymphocytes. The \code{shazam} package provides tools for advanced analysis of somatic hypermutation (SHM) in immunoglobulin (Ig) sequences. The key functions in \code{shazam}, broken down topic, are described below. } \section{Mutational profiling}{ \code{shazam} provides tools to quantify the extent and nature of SHM within full length V(D)J sequences as well as sub-regions (eg, FWR and CDR). Quantification of expected mutational loaded, under specific SHM targeting models, can also be performed along with model driven simulations of SHM. \itemize{ \item \link{collapseClones}: Build clonal consensus sequences. \item \link{consensusSequence}: Build a single consensus sequence. \item \link{observedMutations}: Compute observed mutation counts and frequencies. \item \link{expectedMutations}: Compute expected mutation frequencies. \item \link{shmulateSeq}: Simulate mutations in a single sequence. \item \link{shmulateTree}: Simulate mutations over a lineage tree. \item \link{setRegionBoundaries}: Extends a region definition to include CDR3 and FWR4. } } \section{SHM targeting models}{ Computational models and analyses of SHM have separated the process into two independent components: \enumerate{ \item A mutability model that defines where mutations occur. \item A nucleotide substitution model that defines the resulting mutation. } Collectively these are what form the targeting model of SHM. \code{shazam} provides empirically derived targeting models for both humans and mice, along with tools to build these mutability and substitution models from data. \itemize{ \item \link{createTargetingModel}: Build a 5-mer targeting model. \item \link{plotMutability}: Plot 5-mer mutability rates. \item \link{HH_S5F}: Human 5-mer SHM targeting model. \item \link{MK_RS5NF}: Mouse 5-mer SHM targeting model. } } \section{Quantification of selection pressure}{ Bayesian Estimation of Antigen-driven Selection in Ig Sequences is a novel method for quantifying antigen-driven selection in high-throughput Ig sequence data. Targeting models created using \code{shazam} can be used to estimate the null distribution of expected mutation frequencies used by BASELINe, providing measures of selection pressure informed by known AID targeting biases. \itemize{ \item \link{calcBaseline}: Calculate the BASELINe probability density functions (PDFs). \item \link{groupBaseline}: Combine PDFs from sequences grouped by biological or experimental relevance. \item \link{summarizeBaseline}: Compute summary statistics from BASELINe PDFs. \item \link{testBaseline}: Perform significance testing for the difference between BASELINe PDFs. \item \link{plotBaselineDensity}: Plot the probability density functions resulting from selection analysis. \item \link{plotBaselineSummary}: Plot summary statistics resulting from selection analysis. } } \section{Mutational distance calculation}{ \code{shazam} provides tools to compute evolutionary distances between sequences or groups of sequences, which can leverage SHM targeting models. This information is particularly useful in understanding and defining clonal relationships. \itemize{ \item \link{findThreshold}: Identify clonal assignment threshold based on distances to nearest neighbors. \item \link{distToNearest}: Tune clonal assignment thresholds by calculating distances to nearest neighbors. \item \link{calcTargetingDistance}: Construct a nucleotide distance matrix from a 5-mer targeting model. } } \references{ \enumerate{ \item Hershberg U, et al. Improved methods for detecting selection by mutation analysis of Ig V region sequences. Int Immunol. 2008 20(5):683-94. \item Uduman M, et al. Detecting selection in immunoglobulin sequences. Nucleic Acids Res. 2011 39(Web Server issue):W499-504. (Corrections at http://selection.med.yale.edu/baseline/correction/) \item Yaari G, et al. Quantifying selection in high-throughput immunoglobulin sequencing data sets. Nucleic Acids Res. 2012 40(17):e134. \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data. Front Immunol. 2013 4:358. \item Cui A, Di Niro R, Vander Heiden J, Briggs A, Adams K, Gilbert T, O'Connor K, Vigneault F, Shlomchik M and Kleinstein S (2016). A Model of Somatic Hypermutation Targeting in Mice Based on High-Throughput Ig Sequencing Data. The Journal of Immunology, 197(9), 3566-3574. } } shazam/man/createSubstitutionMatrix.Rd0000644000176200001440000001345015037732576017706 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \name{createSubstitutionMatrix} \alias{createSubstitutionMatrix} \title{Builds a substitution model} \usage{ createSubstitutionMatrix( db, model = c("s", "rs"), sequenceColumn = "sequence_alignment", germlineColumn = "germline_alignment_d_mask", vCallColumn = "v_call", multipleMutation = c("independent", "ignore"), returnModel = c("5mer", "1mer", "1mer_raw"), minNumMutations = 50, numMutationsOnly = FALSE ) } \arguments{ \item{db}{data.frame containing sequence data.} \item{model}{type of model to create. The default model, "s", builds a model by counting only silent mutations. \code{model="s"} should be used for data that includes functional sequences. Setting \code{model="rs"} creates a model by counting both replacement and silent mutations and may be used on fully non-functional sequence data sets.} \item{sequenceColumn}{name of the column containing IMGT-gapped sample sequences.} \item{germlineColumn}{name of the column containing IMGT-gapped germline sequences.} \item{vCallColumn}{name of the column containing the V-segment allele call.} \item{multipleMutation}{string specifying how to handle multiple mutations occurring within the same 5-mer. If \code{"independent"} then multiple mutations within the same 5-mer are counted independently. If \code{"ignore"} then 5-mers with multiple mutations are excluded from the total mutation tally.} \item{returnModel}{string specifying what type of model to return; one of \code{c("5mer", "1mer", "1mer_raw")}. If \code{"5mer"} (the default) then a 5-mer nucleotide context model is returned. If \code{"1mer"} or \code{"1mer_raw"} then a single nucleotide substitution matrix (no context) is returned; where \code{"1mer_raw"} is the unnormalized version of the \code{"1mer"} model. Note, neither 1-mer model may be used as input to \link{createMutabilityMatrix}.} \item{minNumMutations}{minimum number of mutations required to compute the 5-mer substitution rates. If the number of mutations for a 5-mer is below this threshold, its substitution rates will be estimated from neighboring 5-mers. Default is 50. Not required if \code{numMutationsOnly=TRUE}.} \item{numMutationsOnly}{when \code{TRUE}, return counting information on the number of mutations for each 5-mer, instead of building a substitution matrix. This option can be used for parameter tuning for \code{minNumMutations} during preliminary analysis. Default is \code{FALSE}. Only applies when \code{returnModel} is set to \code{"5mer"}. The \code{data.frame} returned when this argument is \code{TRUE} can serve as the input for \link{minNumMutationsTune}.} } \value{ For \code{returnModel = "5mer"}: When \code{numMutationsOnly} is \code{FALSE}, a 4x1024 matrix of column normalized substitution rates for each 5-mer motif with row names defining the center nucleotide, one of \code{c("A", "C", "G", "T")}, and column names defining the 5-mer nucleotide sequence. When \code{numMutationsOnly} is \code{TRUE}, a 1024x4 data frame with each row providing information on counting the number of mutations for a 5-mer. Columns are named \code{fivemer.total}, \code{fivemer.every}, \code{inner3.total}, and \code{inner3.every}, corresponding to, respectively, the total number of mutations when counted as a 5-mer, whether there is mutation to every other base when counted as a 5-mer, the total number of mutations when counted as an inner 3-mer, and whether there is mutation to every other base when counted as an inner 3-mer. For \code{returnModel = "1mer"} or \code{"1mer_raw"}: a 4x4 normalized or un-normalized 1-mer substitution matrix respectively. } \description{ \code{createSubstitutionMatrix} builds a 5-mer nucleotide substitution model by counting the number of substitution mutations occurring in the center position for all 5-mer motifs. } \details{ \strong{Caution: The targeting model functions do NOT support ambiguous characters in their inputs. You MUST make sure that your input and germline sequences do NOT contain ambiguous characters (especially if they are clonal consensuses returned from \code{collapseClones}).} } \examples{ \donttest{ # Subset example data to one isotype and sample as a demo data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call == "IGHA" & sample_id == "-1h")[1:25,] # Count the number of mutations per 5-mer subCount <- createSubstitutionMatrix(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call", model="s", multipleMutation="independent", returnModel="5mer", numMutationsOnly=TRUE) # Create model using only silent mutations sub <- createSubstitutionMatrix(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call", model="s", multipleMutation="independent", returnModel="5mer", numMutationsOnly=FALSE, minNumMutations=20) } } \references{ \enumerate{ \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data. Front Immunol. 2013 4(November):358. } } \seealso{ \link{extendSubstitutionMatrix}, \link{createMutabilityMatrix}, \link{createTargetingMatrix}, \link{createTargetingModel}, \link{minNumMutationsTune}. } shazam/man/MutabilityModel-class.Rd0000644000176200001440000000204215037732576017023 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \docType{class} \name{MutabilityModel-class} \alias{MutabilityModel-class} \alias{MutabilityModel} \alias{print,MutabilityModel-method} \alias{MutabilityModel-method} \alias{as.data.frame,MutabilityModel-method} \title{S4 class defining a mutability model} \usage{ \S4method{print}{MutabilityModel}(x) \S4method{as.data.frame}{MutabilityModel}(x) } \arguments{ \item{x}{\code{MutabilityModel} object.} } \description{ \code{MutabilityModel} defines a data structure for the 5-mer motif-based SHM targeting mutability model. } \section{Slots}{ \describe{ \item{\code{.Data}}{numeric vector containing 5-mer mutability estimates} \item{\code{source}}{character vector annotating whether the mutability was inferred or directly measured.} \item{\code{numMutS}}{a number indicating the number of silent mutations used for estimating mutability} \item{\code{numMutR}}{a number indicating the number of replacement mutations used for estimating mutability} }} shazam/man/createMutabilityMatrix.Rd0000644000176200001440000001207215037732576017314 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \name{createMutabilityMatrix} \alias{createMutabilityMatrix} \title{Builds a mutability model} \usage{ createMutabilityMatrix( db, substitutionModel, model = c("s", "rs"), sequenceColumn = "sequence_alignment", germlineColumn = "germline_alignment_d_mask", vCallColumn = "v_call", multipleMutation = c("independent", "ignore"), minNumSeqMutations = 500, numSeqMutationsOnly = FALSE ) } \arguments{ \item{db}{data.frame containing sequence data.} \item{substitutionModel}{matrix of 5-mer substitution rates built by \link{createSubstitutionMatrix}. Note, this model will only impact mutability scores when \code{model="s"} (using only silent mutations).} \item{model}{type of model to create. The default model, "s", builds a model by counting only silent mutations. \code{model="s"} should be used for data that includes functional sequences. Setting \code{model="rs"} creates a model by counting both replacement and silent mutations and may be used on fully non-functional sequence data sets.} \item{sequenceColumn}{name of the column containing IMGT-gapped sample sequences.} \item{germlineColumn}{name of the column containing IMGT-gapped germline sequences.} \item{vCallColumn}{name of the column containing the V-segment allele call.} \item{multipleMutation}{string specifying how to handle multiple mutations occurring within the same 5-mer. If \code{"independent"} then multiple mutations within the same 5-mer are counted independently. If \code{"ignore"} then 5-mers with multiple mutations are excluded from the total mutation tally.} \item{minNumSeqMutations}{minimum number of mutations in sequences containing each 5-mer to compute the mutability rates. If the number is smaller than this threshold, the mutability for the 5-mer will be inferred. Default is 500. Not required if \code{numSeqMutationsOnly=TRUE}.} \item{numSeqMutationsOnly}{when \code{TRUE}, return only a vector counting the number of observed mutations in sequences containing each 5-mer. This option can be used for parameter tuning for \code{minNumSeqMutations} during preliminary analysis using \link{minNumSeqMutationsTune}. Default is \code{FALSE}.} } \value{ When \code{numSeqMutationsOnly} is \code{FALSE}, a \code{MutabilityModel} containing a named numeric vector of 1024 normalized mutability rates for each 5-mer motif with names defining the 5-mer nucleotide sequence. When \code{numSeqMutationsOnly} is \code{TRUE}, a named numeric vector of length 1024 counting the number of observed mutations in sequences containing each 5-mer. } \description{ \code{createMutabilityMatrix} builds a 5-mer nucleotide mutability model by counting the number of mutations occurring in the center position for all 5-mer motifs. } \details{ \strong{Caution: The targeting model functions do NOT support ambiguous characters in their inputs. You MUST make sure that your input and germline sequences do NOT contain ambiguous characters (especially if they are clonal consensuses returned from \code{collapseClones}).} } \examples{ \donttest{ # Subset example data to 50 sequences of one isotype and sample as a demo data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call == "IGHA" & sample_id == "-1h")[1:50,] # Create model using only silent mutations sub_model <- createSubstitutionMatrix(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call",model="s") mut_model <- createMutabilityMatrix(db, sub_model, model="s", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call", minNumSeqMutations=200, numSeqMutationsOnly=FALSE) # View top 5 mutability estimates head(sort(mut_model, decreasing=TRUE), 5) # View the number of S mutations used for estimating mutabilities mut_model@numMutS # Count the number of mutations in sequences containing each 5-mer mut_count <- createMutabilityMatrix(db, sub_model, model="s", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call", numSeqMutationsOnly=TRUE) } } \references{ \enumerate{ \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data. Front Immunol. 2013 4(November):358. } } \seealso{ \link{MutabilityModel}, \link{extendMutabilityMatrix}, \link{createSubstitutionMatrix}, \link{createTargetingMatrix}, \link{createTargetingModel}, \link{minNumSeqMutationsTune} } shazam/man/DensityThreshold-class.Rd0000644000176200001440000000223415037732576017216 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/DistToNearest.R \docType{class} \name{DensityThreshold-class} \alias{DensityThreshold-class} \alias{DensityThreshold} \alias{print,DensityThreshold-method} \alias{DensityThreshold-method} \alias{plot,DensityThreshold,missing-method} \title{Output of the \code{dens} method of findThreshold} \usage{ \S4method{print}{DensityThreshold}(x) \S4method{plot}{DensityThreshold,missing}(x, y, ...) } \arguments{ \item{x}{DensityThreshold object} \item{y}{ignored.} \item{...}{arguments to pass to \link{plotDensityThreshold}.} } \description{ \code{DensityThreshold} contains output from the \code{dens} method \link{findThreshold}. } \section{Slots}{ \describe{ \item{\code{x}}{input distance vector with NA or infinite values removed.} \item{\code{bandwidth}}{bandwidth value fit during density estimation.} \item{\code{xdens}}{x-axis (distance value) vector for smoothed density estimate.} \item{\code{ydens}}{y-axis (density) vector for smoothed density estimate.} \item{\code{threshold}}{distance threshold that separates two modes of the input distribution.} }} \seealso{ \link{findThreshold} } shazam/man/plotTune.Rd0000644000176200001440000001144415037732576014434 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \name{plotTune} \alias{plotTune} \title{Visualize parameter tuning for minNumMutations and minNumSeqMutations} \usage{ plotTune( tuneMtx, thresh, criterion = c("5mer", "3mer", "1mer", "3mer+1mer", "measured", "inferred"), pchs = 1, ltys = 2, cols = 1, plotLegend = TRUE, legendPos = "topright", legendHoriz = FALSE, legendCex = 1 ) } \arguments{ \item{tuneMtx}{a \code{matrix} or a \code{list} of matrices produced by either \link{minNumMutationsTune} or \link{minNumSeqMutationsTune}. In the case of a list, it is assumed that each matrix corresponds to a sample and that all matrices in the list were produced using the same set of trial values of \code{minNumMutations} or \code{minNumSeqMutations}.} \item{thresh}{a number or a vector of indicating the value or the range of values of \code{minNumMutations} or \code{minNumSeqMutations} to plot. Should correspond to the columns of \code{tuneMtx}.} \item{criterion}{one of \code{"5mer"}, \code{"3mer"}, \code{"1mer"}, or \code{"3mer+1mer"} (for \code{tuneMtx} produced by \link{minNumMutationsTune}), or either \code{"measured"} or \code{"inferred"} (for \code{tuneMtx} produced by \link{minNumSeqMutationsTune}).} \item{pchs}{point types to pass on to \link{plot}.} \item{ltys}{line types to pass on to \link{plot}.} \item{cols}{colors to pass on to \link{plot}.} \item{plotLegend}{whether to plot legend. Default is \code{TRUE}. Only applicable if \code{tuneMtx} is a named list with names of the matrices corresponding to the names of the samples.} \item{legendPos}{position of legend to pass on to \link{legend}. Can be either a numeric vector specifying x-y coordinates, or one of \code{"topright"}, \code{"center"}, etc. Default is \code{"topright"}.} \item{legendHoriz}{whether to make legend horizontal. Default is \code{FALSE}.} \item{legendCex}{numeric values by which legend should be magnified relative to 1.} } \description{ Visualize results from \link{minNumMutationsTune} and \link{minNumSeqMutationsTune} } \details{ For \code{tuneMtx} produced by \link{minNumMutationsTune}, for each sample, depending on \code{criterion}, the numbers of 5-mers for which substitution rates are directly computed (\code{"5mer"}), inferred based on inner 3-mers (\code{"3mer"}), inferred based on central 1-mers (\code{"1mer"}), or inferred based on inner 3-mers and central 1-mers (\code{"3mer+1mer"}) are plotted on the y-axis against values of \code{minNumMutations} on the x-axis. For \code{tuneMtx} produced by \link{minNumSeqMutationsTune}, for each sample, depending on \code{criterion}, the numbers of 5-mers for which mutability rates are directly measured (\code{"measured"}) or inferred (\code{"inferred"}) are plotted on the y-axis against values of \code{minNumSeqMutations} on the x-axis. Note that legends will be plotted only if \code{tuneMtx} is a supplied as a named \code{list} of matrices, ideally with names of each \code{matrix} corresponding to those of the samples based on which the matrices were produced, even if \code{plotLegend=TRUE}. } \examples{ \donttest{ # Subset example data to one isotype and 200 sequences data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call == "IGHA") set.seed(112) db <- dplyr::slice_sample(db, n=50) tuneMtx = list() for (i in 1:length(unique(db$sample_id))) { # Get data corresponding to current sample curDb = db[db[["sample_id"]] == unique(db[["sample_id"]])[i], ] # Count the number of mutations per 5-mer subCount = createSubstitutionMatrix(db=curDb, model="s", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call", multipleMutation="independent", returnModel="5mer", numMutationsOnly=TRUE) # Tune over minNumMutations = 5..50 subTune = minNumMutationsTune(subCount, seq(from=5, to=50, by=5)) tuneMtx = c(tuneMtx, list(subTune)) } # Name tuneMtx after sample names names(tuneMtx) = unique(db[["sample_id"]]) # plot with legend for both samples for a subset of minNumMutations values plotTune(tuneMtx, thresh=c(5, 15, 25, 40), criterion="3mer", pchs=16:17, ltys=1:2, cols=2:3, plotLegend=TRUE, legendPos=c(25, 30)) # plot for only 1 sample for all the minNumMutations values (no legend) plotTune(tuneMtx[[1]], thresh=seq(from=5, to=50, by=5), criterion="3mer") } } \seealso{ See \link{minNumMutationsTune} and \link{minNumSeqMutationsTune} for generating \code{tuneMtx}. } shazam/man/extendSubstitutionMatrix.Rd0000644000176200001440000000254715037732576017737 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \name{extendSubstitutionMatrix} \alias{extendSubstitutionMatrix} \title{Extends a substitution model to include Ns.} \usage{ extendSubstitutionMatrix(substitutionModel) } \arguments{ \item{substitutionModel}{matrix of 5-mers substitution counts built by \link{createSubstitutionMatrix}.} } \value{ A 5x3125 matrix of normalized substitution rate for each 5-mer motif with rows names defining the center nucleotide, one of \code{c("A", "C", "G", "T", "N")}, and column names defining the 5-mer nucleotide sequence. } \description{ \code{extendSubstitutionMatrix} extends a 5-mer nucleotide substitution model with 5-mers that include Ns by averaging over all corresponding 5-mers without Ns. } \examples{ # Subset example data to one isotype and sample as a demo data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call == "IGHA" & sample_id == "-1h") # Create model using only silent mutations sub_model <- createSubstitutionMatrix(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call",model="s") ext_model <- extendSubstitutionMatrix(sub_model) } \seealso{ \link{createSubstitutionMatrix}, \link{extendMutabilityMatrix} } shazam/man/calculateMutability.Rd0000644000176200001440000000201615037732576016616 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \name{calculateMutability} \alias{calculateMutability} \title{Calculate total mutability} \usage{ calculateMutability(sequences, model = HH_S5F, progress = FALSE) } \arguments{ \item{sequences}{character vector of sequences.} \item{model}{\link{TargetingModel} object with mutation likelihood information.} \item{progress}{if \code{TRUE} print a progress bar.} } \value{ Numeric vector with a total mutability score for each sequence. } \description{ \code{calculateMutability} calculates the total (summed) mutability for a set of sequences based on a 5-mer nucleotide mutability model. } \examples{ \donttest{ # Subset example data to one isotype and sample as a demo data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call == "IGHA" & sample_id == "-1h") # Calculate mutability of germline sequences using \link{HH_S5F} model mutability <- calculateMutability(sequences=db[["germline_alignment_d_mask"]], model=HH_S5F) } } shazam/man/convertNumbering.Rd0000644000176200001440000000207415037732576016150 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/ConvertNumbering.R \name{convertNumbering} \alias{convertNumbering} \title{convertNumbering: IMGT-Kabat number conversion} \usage{ convertNumbering(locus, from, to, calls) } \arguments{ \item{locus}{string indicating heavy ("IGH") or light chains ("IGK" or "IGL)} \item{from}{string indicating numbering system to convert to ("IMGT" or "KABAT")} \item{to}{string indicating original numbering system ("IMGT" or "KABAT")} \item{calls}{vector of strings representing original numbering} } \value{ A vector of string indicating the corresponding numbering } \description{ Converts numbering systems like Kabat or IMGT using these conventions: http://www.imgt.org/IMGTScientificChart/Numbering/IMGT-Kabat_part1.html with Gaps (unoccupied positions) shown by "G" and Asterisks (*) shown by "S": arbitrary mappings (multiple possible "to" values) represented with "NA" } \examples{ convertNumbering("IGH", "IMGT", "KABAT", c("51", "23", "110")) convertNumbering("IGH", "KABAT", "IMGT", c("51", "23", "G")) } shazam/man/MK_RS5NF.Rd0000644000176200001440000000225015037732576014041 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \docType{data} \name{MK_RS5NF} \alias{MK_RS5NF} \title{Mouse kappa light chain, replacement and silent, 5-mer, non-functional targeting model.} \format{ \link{TargetingModel} object. } \usage{ MK_RS5NF } \description{ 5-mer model of somatic hypermutation targeting based on analysis of replacement and silent mutations in non-functional kappa light chain Ig sequences from NP-immunized Mus musculus. } \references{ \enumerate{ \item Cui A, Di Niro R, Vander Heiden J, Briggs A, Adams K, Gilbert T, O'Connor K, Vigneault F, Shlomchik M and Kleinstein S (2016). A Model of Somatic Hypermutation Targeting in Mice Based on High-Throughput Ig Sequencing Data. The Journal of Immunology, 197(9), 3566-3574. } } \seealso{ See \link{MK_RS1NF} for the 1-mer substitution matrix from the same publication; \link{HH_S5F} for the human heavy chain silent 5-mer functional targeting model; \link{HKL_S5F} for the human light chain silent 5-mer functional targeting model; and \link{U5N} for the uniform 5-mer null targeting model. } \keyword{datasets} shazam/man/RegionDefinition-class.Rd0000644000176200001440000000207515037732576017161 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/RegionDefinitions.R \docType{class} \name{RegionDefinition-class} \alias{RegionDefinition-class} \alias{RegionDefinition} \title{S4 class defining a region definition} \description{ \code{RegionDefinition} defines a common data structure for defining the region boundaries of an Ig sequence. } \section{Slots}{ \describe{ \item{\code{name}}{name of the RegionDefinition.} \item{\code{description}}{description of the model and its source.} \item{\code{boundaries}}{\code{factor} defining the region boundaries of the sequence. The levels and values of \code{boundaries} determine the number of regions.} \item{\code{seqLength}}{length of the sequence.} \item{\code{regions}}{levels of the boundaries; e.g, \code{c("cdr", "fwr")}.} \item{\code{labels}}{labels for the boundary and mutations combinations; e.g., \code{c("cdr_r", "cdr_s", "fwr_r", "fwr_s")}.} \item{\code{citation}}{publication source.} }} \seealso{ See \link{IMGT_SCHEMES} for a set of predefined \code{RegionDefinition} objects. } shazam/man/calcObservedMutations.Rd0000644000176200001440000002530315037732576017121 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MutationProfiling.R \name{calcObservedMutations} \alias{calcObservedMutations} \title{Count the number of observed mutations in a sequence.} \usage{ calcObservedMutations( inputSeq, germlineSeq, regionDefinition = NULL, mutationDefinition = NULL, ambiguousMode = c("eitherOr", "and"), returnRaw = FALSE, frequency = FALSE ) } \arguments{ \item{inputSeq}{input sequence. IUPAC ambiguous characters for DNA are supported.} \item{germlineSeq}{germline sequence. IUPAC ambiguous characters for DNA are supported.} \item{regionDefinition}{\link{RegionDefinition} object defining the regions and boundaries of the Ig sequences. Note, only the part of sequences defined in \code{regionDefinition} are analyzed. If NULL, mutations are counted for entire sequence.} \item{mutationDefinition}{\link{MutationDefinition} object defining replacement and silent mutation criteria. If \code{NULL} then replacement and silent are determined by exact amino acid identity.} \item{ambiguousMode}{whether to consider ambiguous characters as \code{"either or"} or \code{"and"} when determining and counting the type(s) of mutations. Applicable only if \code{inputSeq} and/or \code{germlineSeq} contain(s) ambiguous characters. One of \code{c("eitherOr", "and")}. Default is \code{"eitherOr"}.} \item{returnRaw}{return the positions of point mutations and their corresponding mutation types, as opposed to counts of mutations across positions. Also returns the number of bases used as the denominator when calculating frequency. Default is \code{FALSE}.} \item{frequency}{\code{logical} indicating whether or not to calculate mutation frequencies. The denominator used is the number of bases that are not one of "N", "-", or "." in either the input or the germline sequences. If set, this overwrites \code{returnRaw}. Default is \code{FALSE}.} } \value{ For \code{returnRaw=FALSE}, an \code{array} with the numbers of replacement (R) and silent (S) mutations. For \code{returnRaw=TRUE}, a list containing \itemize{ \item \code{$pos}: A data frame whose columns (\code{position}, \code{r}, \code{s}, and \code{region}) indicate, respectively, the nucleotide position, the number of R mutations at that position, the number of S mutations at that position, and the region in which that nucleotide is in. \item \code{$nonN}: A vector indicating the number of bases in regions defined by \code{regionDefinition} (excluding non-triplet overhang, if any) that are not one of "N", "-", or "." in either the \code{inputSeq} or \code{germlineSeq}. } For \code{frequency=TRUE}, regardless of \code{returnRaw}, an \code{array} with the frequencies of replacement (R) and silent (S) mutations. } \description{ \code{calcObservedMutations} determines all the mutations in a given input sequence compared to its germline sequence. } \details{ \strong{Each mutation is considered independently in the germline context}. For illustration, consider the case where the germline is \code{TGG} and the observed is \code{TAC}. When determining the mutation type at position 2, which sees a change from \code{G} to \code{A}, we compare the codon \code{TGG} (germline) to \code{TAG} (mutation at position 2 independent of other mutations in the germline context). Similarly, when determining the mutation type at position 3, which sees a change from \code{G} to \code{C}, we compare the codon \code{TGG} (germline) to \code{TGC} (mutation at position 3 independent of other mutations in the germline context). If specified, only the part of \code{inputSeq} defined in \code{regionDefinition} is analyzed. For example, when using the default \link{IMGT_V} definition, then mutations in positions beyond 312 will be ignored. Additionally, non-triplet overhang at the sequence end is ignored. Only replacement (R) and silent (S) mutations are included in the results. \strong{Excluded} are: \itemize{ \item Stop mutations E.g.: the case where \code{TAGTGG} is observed for the germline \code{TGGTGG}. \item Mutations occurring in codons where one or both of the observed and the germline involve(s) one or more of "N", "-", or ".". E.g.: the case where \code{TTG} is observed for the germline being any one of \code{TNG}, \code{.TG}, or \code{-TG}. Similarly, the case where any one of \code{TTN}, \code{TT.}, or \code{TT-} is observed for the germline \code{TTG}. } In other words, a result that is \code{NA} or zero indicates absence of R and S mutations, not necessarily all types of mutations, such as the excluded ones mentioned above. \code{NA} is also returned if \code{inputSeq} or \code{germlineSeq} is shorter than 3 nucleotides. } \section{Ambiguous characters}{ When there are ambiguous characters present, the user could choose how mutations involving ambiguous characters are counted through \code{ambiguousMode}. The two available modes are \code{"eitherOr"} and \code{"and"}. \itemize{ \item With \code{"eitherOr"}, ambiguous characters are each expanded but only 1 mutation is recorded. When determining the type of mutation, the priority for different types of mutations, in decreasing order, is as follows: no mutation, replacement mutation, silent mutation, and stop mutation. When counting the number of non-N, non-dash, and non-dot positions, each position is counted only once, regardless of the presence of ambiguous characters. As an example, consider the case where \code{germlineSeq} is \code{"TST"} and \code{inputSeq} is \code{"THT"}. Expanding \code{"H"} at position 2 in \code{inputSeq} into \code{"A"}, \code{"C"}, and \code{"T"}, as well as expanding \code{"S"} at position 2 in \code{germlineSeq} into \code{"C"} and \code{"G"}, one gets: \itemize{ \item \code{"TCT"} (germline) to \code{"TAT"} (observed): replacement \item \code{"TCT"} (germline) to \code{"TCT"} (observed): no mutation \item \code{"TCT"} (germline) to \code{"TTT"} (observed): replacement \item \code{"TGT"} (germline) to \code{"TAT"} (observed): replacement \item \code{"TGT"} (germline) to \code{"TCT"} (observed): replacement \item \code{"TGT"} (germline) to \code{"TTT"} (observed): replacement } Because "no mutation" takes priority over replacement mutation, the final mutation count returned for this example is \code{NA} (recall that only R and S mutations are returned). The number of non-N, non-dash, and non-dot positions is 3. \item With \code{"and"}, ambiguous characters are each expanded and mutation(s) from all expansions are recorded. When counting the number of non-N, non-dash, and non-dot positions, if a position contains ambiguous character(s) in \code{inputSeq} and/or \code{germlineSeq}, the count at that position is taken to be the total number of combinations of germline and observed codons after expansion. Using the same example from above, the final result returned for this example is that there are 5 R mutations at position 2. The number of non-N, non-dash, and non-dot positions is 8, since there are 6 combinations stemming from position 2 after expanding the germline codon (\code{"TST"}) and the observed codon (\code{"THT"}). } } \examples{ # Use an entry in the example data for input and germline sequence data(ExampleDb, package="alakazam") in_seq <- ExampleDb[["sequence_alignment"]][100] germ_seq <- ExampleDb[["germline_alignment_d_mask"]][100] # Identify all mutations in the sequence ex1_raw <- calcObservedMutations(in_seq, germ_seq, returnRaw=TRUE) # Count all mutations in the sequence ex1_count <- calcObservedMutations(in_seq, germ_seq, returnRaw=FALSE) ex1_freq <- calcObservedMutations(in_seq, germ_seq, returnRaw=FALSE, frequency=TRUE) # Compare this with ex1_count table(ex1_raw$pos$region, ex1_raw$pos$r)[, "1"] table(ex1_raw$pos$region, ex1_raw$pos$s)[, "1"] # Compare this with ex1_freq table(ex1_raw$pos$region, ex1_raw$pos$r)[, "1"]/ex1_raw$nonN table(ex1_raw$pos$region, ex1_raw$pos$s)[, "1"]/ex1_raw$nonN # Identify only mutations the V segment minus CDR3 ex2_raw <- calcObservedMutations(in_seq, germ_seq, regionDefinition=IMGT_V, returnRaw=TRUE) # Count only mutations the V segment minus CDR3 ex2_count <- calcObservedMutations(in_seq, germ_seq, regionDefinition=IMGT_V, returnRaw=FALSE) ex2_freq <- calcObservedMutations(in_seq, germ_seq, regionDefinition=IMGT_V, returnRaw=FALSE, frequency=TRUE) # Compare this with ex2_count table(ex2_raw$pos$region, ex2_raw$pos$r)[, "1"] table(ex2_raw$pos$region, ex2_raw$pos$s)[, "1"] # Compare this with ex2_freq table(ex2_raw$pos$region, ex2_raw$pos$r)[, "1"]/ex2_raw$nonN table(ex2_raw$pos$region, ex2_raw$pos$s)[, "1"]/ex2_raw$nonN # Identify mutations by change in hydropathy class ex3_raw <- calcObservedMutations(in_seq, germ_seq, regionDefinition=IMGT_V, mutationDefinition=HYDROPATHY_MUTATIONS, returnRaw=TRUE) # Count mutations by change in hydropathy class ex3_count <- calcObservedMutations(in_seq, germ_seq, regionDefinition=IMGT_V, mutationDefinition=HYDROPATHY_MUTATIONS, returnRaw=FALSE) ex3_freq <- calcObservedMutations(in_seq, germ_seq, regionDefinition=IMGT_V, mutationDefinition=HYDROPATHY_MUTATIONS, returnRaw=FALSE, frequency=TRUE) # Compare this with ex3_count table(ex3_raw$pos$region, ex3_raw$pos$r)[, "1"] table(ex3_raw$pos$region, ex3_raw$pos$s)[, "1"] # Compare this with ex3_freq table(ex3_raw$pos$region, ex3_raw$pos$r)[, "1"]/ex3_raw$nonN table(ex3_raw$pos$region, ex3_raw$pos$s)[, "1"]/ex3_raw$nonN } \seealso{ See \link{observedMutations} for counting the number of observed mutations in a \code{data.frame}. } shazam/man/plotMutability.Rd0000644000176200001440000000444315037732576015645 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \name{plotMutability} \alias{plotMutability} \title{Plot mutability probabilities} \usage{ plotMutability( model, nucleotides = c("A", "C", "G", "T"), mark = NULL, style = c("hedgehog", "bar"), size = 1, silent = FALSE, ... ) } \arguments{ \item{model}{\link{TargetingModel} object or vector containing normalized mutability rates.} \item{nucleotides}{vector of center nucleotide characters to plot.} \item{mark}{vector of 5-mer motifs to highlight in the plot. If \code{NULL} only highlight classical hot and cold spot motifs.} \item{style}{type of plot to draw. One of: \itemize{ \item \code{"hedgehog"}: circular plot showing higher mutability scores further from the circle. The 5-mer is denoted by the values of the inner circle. The 5-mer is read from the most interior position of the 5-mer (5') to most exterior position (3'), with the center nucleotide in the center ring. Note, the order in which the 5-mers are plotted is different for nucleotides \code{c("A", "C")} and \code{c("G", "T")}. \item \code{"bar"}: bar plot of mutability similar to the \code{hedgehog} style with the most 5' positions of each 5-mer at the base of the plot. }} \item{size}{numeric scaling factor for lines and text in the plot.} \item{silent}{if \code{TRUE} do not draw the plot and just return the ggplot2 objects; if \code{FALSE} draw the plot.} \item{...}{additional arguments to pass to ggplot2::theme.} } \value{ A named list of ggplot objects defining the plots, with names defined by the center nucleotide for the plot object. } \description{ \code{plotMutability} plots the mutability rates of a \code{TargetingModel}. } \examples{ # Plot one nucleotide in circular style plotMutability(HH_S5F, "C") # Plot two nucleotides in barchart style plotMutability(HH_S5F, c("G", "T"), style="bar") } \seealso{ Takes as input a \link{TargetingModel} object. See \link{createTargetingModel} for model building. } shazam/man/plotSlideWindowTune.Rd0000644000176200001440000001312415037732576016602 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MutationProfiling.R \name{plotSlideWindowTune} \alias{plotSlideWindowTune} \title{Visualize parameter tuning for sliding window approach} \usage{ plotSlideWindowTune( tuneList, plotFiltered = c("filtered", "remaining", "per_mutation"), percentage = FALSE, jitter.x = FALSE, jitter.x.amt = 0.1, jitter.y = FALSE, jitter.y.amt = 0.1, pchs = 1:length(tuneList), ltys = 1:length(tuneList), cols = 1, plotLegend = TRUE, legendPos = "topright", legendHoriz = FALSE, legendCex = 1, title = NULL, returnRaw = FALSE ) } \arguments{ \item{tuneList}{a list of logical matrices returned by \link{slideWindowTune}.} \item{plotFiltered}{whether to plot the number of filtered ('filtered'), or remaining ('remaining') sequences for each mutation threshold. Use 'per_mutation' to plot the number of sequences at each mutation value. Default is \code{'filtered'}.} \item{percentage}{whether to plot on the y-axis the percentage of filtered sequences (as opposed to the absolute number). Default is \code{FALSE}.} \item{jitter.x}{whether to jitter x-axis values. Default is \code{FALSE}.} \item{jitter.x.amt}{amount of jittering to be applied on x-axis values if \code{jitter.x=TRUE}. Default is 0.1.} \item{jitter.y}{whether to jitter y-axis values. Default is \code{FALSE}.} \item{jitter.y.amt}{amount of jittering to be applied on y-axis values if \code{jitter.y=TRUE}. Default is 0.1.} \item{pchs}{point types to pass on to \link{plot}. Default is \code{1:length(tuneList)}.} \item{ltys}{line types to pass on to \link{plot}. Default is \code{1:length(tuneList)}.} \item{cols}{colors to pass on to \link{plot}.} \item{plotLegend}{whether to plot legend. Default is \code{TRUE}.} \item{legendPos}{position of legend to pass on to \link{legend}. Can be either a numeric vector specifying x-y coordinates, or one of \code{"topright"}, \code{"center"}, etc. Default is \code{"topright"}.} \item{legendHoriz}{whether to make legend horizontal. Default is \code{FALSE}.} \item{legendCex}{numeric values by which legend should be magnified relative to 1.} \item{title}{plot main title. Default is NULL (no title)} \item{returnRaw}{Return a data.frame with sequence counts (TRUE) or a plot. Default is \code{FALSE}.} } \description{ Visualize results from \link{slideWindowTune} } \details{ For each \code{windowSize}, if \code{plotFiltered='filtered'}, the x-axis represents a mutation threshold range, and the y-axis the number of sequences that have at least that number of mutations. If \code{plotFiltered='remaining'}, the y-axis represents the number of sequences that have less mutations than the mutation threshold range. For the same window size, a sequence can be included in the counts for different mutation thresholds. For example, sequence "CCACCAAAA" with germline "AAAAAAAAA" has 4 mutations. This sequence has at least 2 mutations and at least 3 mutations, in a window of size 4. the sequence will be included in the sequence count for mutation thresholds 2 and 3. If \code{plotFiltered='per_mutation'}, the sequences are counted only once for each window size, at their largest mutation threshold. The above example sequence would be included in the sequence count for mutation threshold 3. When plotting, a user-defined \code{amount} of jittering can be applied on values plotted on either axis or both axes via adjusting \code{jitter.x}, \code{jitter.y}, \code{jitter.x.amt} and \code{jitter.y.amt}. This may be help with visually distinguishing lines for different window sizes in case they are very close or identical to each other. If plotting percentages (\code{percentage=TRUE}) and using jittering on the y-axis values (\code{jitter.y=TRUE}), it is strongly recommended that \code{jitter.y.amt} be set very small (e.g. 0.01). \code{NA} for a combination of \code{mutThresh} and \code{windowSize} where \code{mutThresh} is greater than \code{windowSize} will not be plotted. } \examples{ # Use an entry in the example data for input and germline sequence data(ExampleDb, package="alakazam") # Try out thresholds of 2-4 mutations in window sizes of 3-5 nucleotides # on a subset of ExampleDb tuneList <- slideWindowTune(db = ExampleDb[1:10, ], mutThreshRange = 2:4, windowSizeRange = 3:5, verbose = FALSE) # Visualize # Plot numbers of sequences filtered without jittering y-axis values plotSlideWindowTune(tuneList, pchs=1:3, ltys=1:3, cols=1:3, plotFiltered='filtered', jitter.y=FALSE) # Notice that some of the lines overlap # Jittering could help plotSlideWindowTune(tuneList, pchs=1:3, ltys=1:3, cols=1:3, plotFiltered='filtered', jitter.y=TRUE) # Plot numbers of sequences remaining instead of filtered plotSlideWindowTune(tuneList, pchs=1:3, ltys=1:3, cols=1:3, plotFiltered='remaining', jitter.y=TRUE, legendPos="bottomright") # Plot percentages of sequences filtered with a tiny amount of jittering plotSlideWindowTune(tuneList, pchs=1:3, ltys=1:3, cols=1:3, plotFiltered='filtered', percentage=TRUE, jitter.y=TRUE, jitter.y.amt=0.01) } \seealso{ See \link{slideWindowTune} for how to get \code{tuneList}. See \link{jitter} for use of \code{amount} of jittering. } shazam/man/slideWindowTune.Rd0000644000176200001440000000765315037732576015755 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MutationProfiling.R \name{slideWindowTune} \alias{slideWindowTune} \title{Parameter tuning for sliding window approach} \usage{ slideWindowTune( db, sequenceColumn = "sequence_alignment", germlineColumn = "germline_alignment_d_mask", dbMutList = NULL, mutThreshRange, windowSizeRange, verbose = TRUE, nproc = 1 ) } \arguments{ \item{db}{\code{data.frame} containing sequence data.} \item{sequenceColumn}{name of the column containing IMGT-gapped sample sequences.} \item{germlineColumn}{name of the column containing IMGT-gapped germline sequences.} \item{dbMutList}{if supplied, this should be a list consisting of \code{data.frame}s returned as \code{$pos} in the nested list produced by \link{calcObservedMutations} with \code{returnRaw=TRUE}; otherwise, \link{calcObservedMutations} is called on columns \code{sequenceColumn} and \code{germlineColumn} of \code{db}. Default is \code{NULL}.} \item{mutThreshRange}{range of threshold on the number of mutations in \code{windowSize} consecutive nucleotides to try. Must be between 1 and maximum \code{windowSizeRange} inclusive.} \item{windowSizeRange}{range of length of consecutive nucleotides to try. The lower end must be at least 2.} \item{verbose}{whether to print out messages indicating current progress. Default is \code{TRUE}.} \item{nproc}{Number of cores to distribute the operation over. If the \code{cluster} has already been set earlier, then pass the \code{cluster}. This will ensure that it is not reset.} } \value{ a list of logical matrices. Each matrix corresponds to a \code{windowSize} in \code{windowSizeRange}. Each column in a matrix corresponds to a \code{mutThresh} in \code{mutThreshRange}. Each row corresponds to a sequence. \code{TRUE} values mean the sequences has at least the number of mutations specified in the column name, for that \code{windowSize}. } \description{ Apply \link{slideWindowDb} over a search grid made of combinations of \code{mutThresh} and \code{windowSize} to help with picking a pair of values for these parameters. Parameter tuning can be performed by choosing a combination that gives a reasonable number of filtered/remaining sequences. } \details{ If, in a given combination of \code{mutThresh} and \code{windowSize}, \code{mutThresh} is greater than \code{windowSize}, \code{NA}s will be returned for that particular combination. A message indicating that the combination has been "skipped" will be printed if \code{verbose=TRUE}. If \link{calcObservedMutations} was previously run on \code{db} and saved, supplying \code{$pos} from the saved result as \code{dbMutList} could save time by skipping a second call of \link{calcObservedMutations}. This could be helpful especially when \code{db} is large. } \examples{ # Load and subset example data data(ExampleDb, package="alakazam") db <- ExampleDb[1:5, ] # Try out thresholds of 2-4 mutations in window sizes of 7-9 nucleotides. # In this case, all combinations are legal. slideWindowTune(db, mutThreshRange=2:4, windowSizeRange=7:9) # Illegal combinations are skipped, returning NAs. slideWindowTune(db, mutThreshRange=2:4, windowSizeRange=2:4, verbose=FALSE) # Run calcObservedMutations separately exDbMutList <- sapply(1:5, function(i) { calcObservedMutations(inputSeq=db[["sequence_alignment"]][i], germlineSeq=db[["germline_alignment_d_mask"]][i], returnRaw=TRUE)$pos }) slideWindowTune(db, dbMutList=exDbMutList, mutThreshRange=2:4, windowSizeRange=2:4) } \seealso{ \link{slideWindowDb} is called on \code{db} for tuning. See \link{slideWindowTunePlot} for visualization. See \link{calcObservedMutations} for generating \code{dbMutList}. } shazam/man/plotDensityThreshold.Rd0000644000176200001440000000466515037732576017024 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/DistToNearest.R \name{plotDensityThreshold} \alias{plotDensityThreshold} \title{Plot findThreshold results for the density method} \usage{ plotDensityThreshold( data, cross = NULL, xmin = NULL, xmax = NULL, breaks = NULL, binwidth = NULL, title = NULL, size = 1, silent = FALSE, ... ) } \arguments{ \item{data}{\link{DensityThreshold} object output by the \code{"density"} method of \link{findThreshold}.} \item{cross}{numeric vector of distances from \link{distToNearest} to draw as a histogram below the \code{data} histogram for comparison purposes.} \item{xmin}{minimum limit for plotting the x-axis. If \code{NULL} the limit will be set automatically.} \item{xmax}{maximum limit for plotting the x-axis. If \code{NULL} the limit will be set automatically.} \item{breaks}{number of breaks to show on the x-axis. If \code{NULL} the breaks will be set automatically.} \item{binwidth}{binwidth for the histogram. If \code{NULL} the binwidth will be set automatically to the bandwidth parameter determined by \link{findThreshold}.} \item{title}{string defining the plot title.} \item{size}{numeric value for the plot line sizes.} \item{silent}{if \code{TRUE} do not draw the plot and just return the ggplot2 object; if \code{FALSE} draw the plot.} \item{...}{additional arguments to pass to ggplot2::theme.} } \value{ A ggplot object defining the plot. } \description{ \code{plotDensityThreshold} plots the results from \code{"density"} method of \link{findThreshold}, including the smoothed density estimate, input nearest neighbor distance histogram, and threshold selected. } \examples{ \donttest{ # Subset example data to one sample as a demo data(ExampleDb, package="alakazam") db <- subset(ExampleDb, sample_id == "-1h") # Use nucleotide Hamming distance and normalize by junction length db <- distToNearest(db, sequenceColumn="junction", vCallColumn="v_call_genotyped", jCallColumn="j_call", model="ham", normalize="len", nproc=1) # To find the threshold cut, call findThreshold function for "gmm" method. output <- findThreshold(db$dist_nearest, method="density") print(output) # Plot plotDensityThreshold(output) } } \seealso{ See \link{DensityThreshold} for the the input object definition and \link{findThreshold} for generating the input object. See \link{distToNearest} calculating nearest neighbor distances. } shazam/man/slideWindowSeq.Rd0000644000176200001440000000351215037732576015560 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MutationProfiling.R \name{slideWindowSeq} \alias{slideWindowSeq} \title{Sliding window approach towards filtering a single sequence} \usage{ slideWindowSeq(inputSeq, germlineSeq, mutThresh, windowSize) } \arguments{ \item{inputSeq}{input sequence.} \item{germlineSeq}{germline sequence.} \item{mutThresh}{threshold on the number of mutations in \code{windowSize} consecutive nucleotides. Must be between 1 and \code{windowSize} inclusive.} \item{windowSize}{length of consecutive nucleotides. Must be at least 2.} } \value{ \code{TRUE} if there are equal to or more than \code{mutThresh} number of mutations in any window of \code{windowSize} consecutive nucleotides (i.e. the sequence should be filtered); \code{FALSE} if otherwise. } \description{ \code{slideWindowSeq} determines whether an input sequence contains equal to or more than a given number of mutations in a given length of consecutive nucleotides (a "window") when compared to a germline sequence. } \examples{ # Use an entry in the example data for input and germline sequence data(ExampleDb, package="alakazam") in_seq <- ExampleDb[["sequence_alignment"]][100] germ_seq <- ExampleDb[["germline_alignment_d_mask"]][100] # Determine if in_seq has 6 or more mutations in 10 consecutive nucleotides slideWindowSeq(inputSeq=in_seq, germlineSeq=germ_seq, mutThresh=6, windowSize=10) slideWindowSeq(inputSeq="TCGTCGAAAA", germlineSeq="AAAAAAAAAA", mutThresh=6, windowSize=10) } \seealso{ \link{calcObservedMutations} is called by \code{slideWindowSeq} to identify observed mutations. See \link{slideWindowDb} for applying the sliding window approach on a \code{data.frame}. See \link{slideWindowTune} for parameter tuning for \code{mutThresh} and \code{windowSize}. } shazam/man/HH_S1F.Rd0000644000176200001440000000203215037732576013563 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \docType{data} \name{HH_S1F} \alias{HH_S1F} \title{Human heavy chain, silent, 1-mer, functional substitution model.} \format{ A 4x4 matrix of nucleotide substitution rates. The rates are normalized, therefore each row sums up to 1. } \usage{ HH_S1F } \description{ 1-mer substitution model of somatic hypermutation based on analysis of silent mutations in functional heavy chain Ig sequences from Homo sapiens. } \note{ \code{HH_S1F} replaces \code{HS1FDistance} in versions of SHazaM prior to 0.1.5. } \references{ \enumerate{ \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data. Front Immunol. 2013 4(November):358. } } \seealso{ See \link{HKL_S1F} for the human light chain 1-mer substitution model and \link{MK_RS1NF} for the mouse light chain 1-mer substitution model. } \keyword{datasets} shazam/man/plotGmmThreshold.Rd0000644000176200001440000000457615037732576016126 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/DistToNearest.R \name{plotGmmThreshold} \alias{plotGmmThreshold} \title{Plot findThreshold results for the gmm method} \usage{ plotGmmThreshold( data, cross = NULL, xmin = NULL, xmax = NULL, breaks = NULL, binwidth = NULL, title = NULL, size = 1, silent = FALSE, ... ) } \arguments{ \item{data}{\link{GmmThreshold} object output by the \code{"gmm"} method of \link{findThreshold}.} \item{cross}{numeric vector of distances from \link{distToNearest} to draw as a histogram below the \code{data} histogram for comparison purposes.} \item{xmin}{minimum limit for plotting the x-axis. If \code{NULL} the limit will be set automatically.} \item{xmax}{maximum limit for plotting the x-axis. If \code{NULL} the limit will be set automatically.} \item{breaks}{number of breaks to show on the x-axis. If \code{NULL} the breaks will be set automatically.} \item{binwidth}{binwidth for the histogram. If \code{NULL} the binwidth will be set automatically.} \item{title}{string defining the plot title.} \item{size}{numeric value for lines in the plot.} \item{silent}{if \code{TRUE} do not draw the plot and just return the ggplot2 object; if \code{FALSE} draw the plot.} \item{...}{additional arguments to pass to ggplot2::theme.} } \value{ A ggplot object defining the plot. } \description{ \code{plotGmmThreshold} plots the results from \code{"gmm"} method of \link{findThreshold}, including the Gaussian distributions, input nearest neighbor distance histogram, and threshold selected. } \examples{ \donttest{ # Subset example data to one sample as a demo data(ExampleDb, package="alakazam") db <- subset(ExampleDb, sample_id == "-1h") # Use nucleotide Hamming distance and normalize by junction length db <- distToNearest(db, sequenceColumn="junction", vCallColumn="v_call_genotyped", jCallColumn="j_call", model="ham", normalize="len", nproc=1) # To find the threshold cut, call findThreshold function for "gmm" method. output <- findThreshold(db$dist_nearest, method="gmm", model="norm-norm", cutoff="opt") print(output) # Plot results plotGmmThreshold(output, binwidth=0.02) } } \seealso{ See \link{GmmThreshold} for the the input object definition and \link{findThreshold} for generating the input object. See \link{distToNearest} calculating nearest neighbor distances. } shazam/man/shmulateSeq.Rd0000644000176200001440000000474015037732576015116 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Shmulate.R \name{shmulateSeq} \alias{shmulateSeq} \title{Simulate mutations in a single sequence} \usage{ shmulateSeq( sequence, numMutations, targetingModel = HH_S5F, start = 1, end = nchar(sequence), frequency = FALSE ) } \arguments{ \item{sequence}{sequence string in which mutations are to be introduced. Accepted alphabet: \code{\{A, T, G, C, N, .\}}. Note that \code{-} is not accepted.} \item{numMutations}{a whole number indicating the number of mutations to be introduced into \code{sequence}, if \code{frequency=FALSE}. A fraction between 0 and 1 indicating the mutation frequency if \code{frequency=TRUE}.} \item{targetingModel}{5-mer \link{TargetingModel} object to be used for computing probabilities of mutations at each position. Defaults to \link{HH_S5F}.} \item{start}{Initial position in \code{sequence} where mutations can be introduced. Default: 1} \item{end}{Last position in \code{sequence} where mutations can be introduced. Default: last position (sequence length).} \item{frequency}{If \code{TRUE}, treat \code{numMutations} as a frequency.} } \value{ A string defining the mutated sequence. } \description{ Generates random mutations in a sequence iteratively using a targeting model. Targeting probabilities at each position are updated after each iteration. } \details{ If the input \code{sequence} has a non-triplet overhang at the end, it will be trimmed to the last codon. For example, \code{ATGCATGC} will be trimmed to \code{ATGCAT}. Mutations are not introduced to positions in the input \code{sequence} that contain \code{.} or \code{N}. With \code{frequency=TRUE}, the number of mutations is calculated according to the probability of mutation at each position. For example, if \code{numMutations=0.05} and the length of the input \code{sequence} is 100, then the number of mutations will be sampled from a binomial distribution with 100 trials and a probability of 0.05. } \examples{ # Define example input sequence sequence <- "NGATCTGACGACACGGCCGTGTATTACTGTGCGAGAGATA.TTTA" # Simulate using the default human 5-mer targeting model # Introduce 6 mutations shmulateSeq(sequence, numMutations=6, frequency=FALSE) # Introduction 5\% mutations shmulateSeq(sequence, numMutations=0.05, frequency=TRUE) } \seealso{ See \link{shmulateTree} for imposing mutations on a lineage tree. See \link{HH_S5F} and \link{MK_RS5NF} for predefined \link{TargetingModel} objects. } shazam/man/slideWindowDb.Rd0000644000176200001440000000413615037732576015360 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MutationProfiling.R \name{slideWindowDb} \alias{slideWindowDb} \title{Sliding window approach towards filtering sequences in a \code{data.frame}} \usage{ slideWindowDb( db, sequenceColumn = "sequence_alignment", germlineColumn = "germline_alignment_d_mask", mutThresh = 6, windowSize = 10, nproc = 1 ) } \arguments{ \item{db}{\code{data.frame} containing sequence data.} \item{sequenceColumn}{name of the column containing IMGT-gapped sample sequences.} \item{germlineColumn}{name of the column containing IMGT-gapped germline sequences.} \item{mutThresh}{threshold on the number of mutations in \code{windowSize} consecutive nucleotides. Must be between 1 and \code{windowSize} inclusive.} \item{windowSize}{length of consecutive nucleotides. Must be at least 2.} \item{nproc}{Number of cores to distribute the operation over. If the \code{cluster} has already been set earlier, then pass the \code{cluster}. This will ensure that it is not reset.} } \value{ a logical vector. The length of the vector matches the number of input sequences in \code{db}. Each entry in the vector indicates whether the corresponding input sequence should be filtered based on the given parameters. } \description{ \code{slideWindowDb} determines whether each input sequence in a \code{data.frame} contains equal to or more than a given number of mutations in a given length of consecutive nucleotides (a "window") when compared to their respective germline sequence. } \examples{ # Use an entry in the example data for input and germline sequence data(ExampleDb, package="alakazam") # Apply the sliding window approach on a subset of ExampleDb slideWindowDb(db=ExampleDb[1:10, ], sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", mutThresh=6, windowSize=10, nproc=1) } \seealso{ See \link{slideWindowSeq} for applying the sliding window approach on a single sequence. See \link{slideWindowTune} for parameter tuning for \code{mutThresh} and \code{windowSize}. } shazam/man/makeAverage1merMut.Rd0000644000176200001440000000276215037732576016310 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \name{makeAverage1merMut} \alias{makeAverage1merMut} \title{Make a 1-mer mutability model by averaging over a 5-mer mutability model} \usage{ makeAverage1merMut(mut5mer) } \arguments{ \item{mut5mer}{a named vector of length 1024 such as that returned by \code{createMutabilityMatrix} and that returned by \code{makeDegenerate5merMut} with \code{extended=FALSE}. Names should correspond to 5-mers made up of "A", "T", "G", and "C" (case-insensitive). \code{NA} values are allowed.} } \value{ A named vector of length 4 containing normalized mutability rates. } \description{ \code{makeAverage1merMut} averages mutability rates in a 5-mer mutability model to derive a 1-mer mutability model. } \details{ For example, the mutability rate of "A" in the resultant 1-mer model is derived by averaging the mutability rates of all the 5-mers that have an "A" as their central 1-mer, followed by normalization. } \examples{ # Make a degenerate 5-mer model (length of 1024) based on a 1-mer model example1merMut <- c(A=0.2, T=0.1, C=0.4, G=0.3) degenerate5merMut <- makeDegenerate5merMut(mut1mer = example1merMut) # Now make a 1-mer model by averaging over the degenerate 5-mer model # Expected to get back example1merMut makeAverage1merMut(mut5mer = degenerate5merMut) } \seealso{ See \link{makeDegenerate5merMut} for making a degenerate 5-mer mutability model based on a 1-mer mutability model. } shazam/man/plotBaselineSummary.Rd0000644000176200001440000001035515037732576016621 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Baseline.R \name{plotBaselineSummary} \alias{plotBaselineSummary} \title{Plots BASELINe summary statistics} \usage{ plotBaselineSummary( baseline, idColumn, groupColumn = NULL, groupColors = NULL, subsetRegions = NULL, facetBy = c("region", "group"), title = NULL, style = c("summary"), size = 1, silent = FALSE, ... ) } \arguments{ \item{baseline}{either a data.frame returned from \link{summarizeBaseline} or a \code{Baseline} object returned from \link{groupBaseline} containing selection probability density functions and summary statistics.} \item{idColumn}{name of the column in \code{baseline} containing primary identifiers. If the input is a \code{Baseline} object, then this will be a column in the \code{stats} slot of \code{baseline}.} \item{groupColumn}{name of the column in \code{baseline} containing secondary grouping identifiers. If the input is a \code{Baseline} object, then this will be a column in the \code{stats} slot of \code{baseline}.} \item{groupColors}{named vector of colors for entries in \code{groupColumn}, with names defining unique values in the \code{groupColumn} and values being colors. Also controls the order in which groups appear on the plot. If \code{NULL} alphabetical ordering and a default color palette will be used. Has no effect if \code{facetBy="group"}.} \item{subsetRegions}{character vector defining a subset of regions to plot, corresponding to the regions for which the \code{baseline} data was calculated. If \code{NULL} all regions in \code{baseline} are plotted.} \item{facetBy}{one of c("group", "region") specifying which category to facet the plot by, either values in \code{groupColumn} ("group") or regions defined in \code{baseline} ("region"). The data that is not used for faceting will be color coded.} \item{title}{string defining the plot title.} \item{style}{type of plot to draw. One of: \itemize{ \item \code{"summary"}: plots the mean and confidence interval for the selection scores of each value in \code{idColumn}. Faceting and coloring are determine by values in \code{groupColumn} and regions defined in \code{baseline}, depending upon the \code{facetBy} argument. }} \item{size}{numeric scaling factor for lines, points and text in the plot.} \item{silent}{if \code{TRUE} do not draw the plot and just return the ggplot2 object; if \code{FALSE} draw the plot.} \item{...}{additional arguments to pass to ggplot2::theme.} } \value{ A ggplot object defining the plot. } \description{ \code{plotBaselineSummary} plots a summary of the results of selection analysis using the BASELINe method. } \examples{ \donttest{ # Subset example data as a demo data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call \%in\% c("IGHM", "IGHG")) set.seed(112) db <- dplyr::slice_sample(db, n=25) # Collapse clones db <- collapseClones(db, cloneColumn="clone_id", sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", method="thresholdedFreq", minimumFrequency=0.6, includeAmbiguous=FALSE, breakTiesStochastic=FALSE) # Calculate BASELINe baseline <- calcBaseline(db, sequenceColumn="clonal_sequence", germlineColumn="clonal_germline", testStatistic="focused", regionDefinition=IMGT_V, targetingModel=HH_S5F, nproc=1) # Grouping the PDFs by sample and isotype annotations grouped <- groupBaseline(baseline, groupBy=c("sample_id", "c_call")) # Plot mean and confidence interval by region with custom group colors isotype_colors <- c("IGHM"="darkorchid", "IGHD"="firebrick", "IGHG"="seagreen", "IGHA"="steelblue") plotBaselineSummary(grouped, "sample_id", "c_call", groupColors=isotype_colors, facetBy="region") } } \seealso{ Takes as input either a \link{Baseline} object returned by \link{groupBaseline} or a data.frame returned from \link{summarizeBaseline}. } shazam/man/TargetingModel-class.Rd0000644000176200001440000000451215037732576016630 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \docType{class} \name{TargetingModel-class} \alias{TargetingModel-class} \alias{TargetingModel} \alias{plot,TargetingModel,missing-method} \alias{TargetingModel-method} \title{S4 class defining a targeting model} \usage{ \S4method{plot}{TargetingModel,missing}(x, y, ...) } \arguments{ \item{x}{\code{TargetingModel} object.} \item{y}{ignored.} \item{...}{arguments to pass to \link{plotMutability}.} } \description{ \code{TargetingModel} defines a common data structure for mutability, substitution and targeting of immunoglobulin (Ig) sequencing data in a 5-mer microsequence context. } \section{Slots}{ \describe{ \item{\code{name}}{Name of the model.} \item{\code{description}}{Description of the model and its source data.} \item{\code{species}}{Genus and species of the source sequencing data.} \item{\code{date}}{Date the model was built.} \item{\code{citation}}{Publication source.} \item{\code{substitution}}{Normalized rates of the center nucleotide of a given 5-mer mutating to a different nucleotide. The substitution model is stored as a 5x3125 matrix of rates. Rows define the mutated nucleotide at the center of each 5-mer, one of \code{c("A", "C", "G", "T", "N")}, and columns define the complete 5-mer of the unmutated nucleotide sequence.} \item{\code{mutability}}{Normalized rates of a given 5-mer being mutated. The mutability model is stored as a numeric vector of length 3125 with mutability rates for each 5-mer. Note that "normalized" means that the mutability rates for the 1024 5-mers that contain no "N" at any position sums up to 1 (as opposed to the entire vector summing up to 1).} \item{\code{targeting}}{Rate matrix of a given mutation occurring, defined as \eqn{mutability * substitution}. The targeting model is stored as a 5x3125 matrix. Rows define the mutated nucleotide at the center of each 5-mer, one of \code{c("A", "C", "G", "T", "N")}, and columns define the complete 5-mer of the unmutated nucleotide sequence.} \item{\code{numMutS}}{number indicating the number of silent mutations used for estimating mutability.} \item{\code{numMutR}}{number indicating the number of replacement mutations used for estimating mutability.} }} \seealso{ See \link{createTargetingModel} building models from sequencing data. } shazam/man/minNumSeqMutationsTune.Rd0000644000176200001440000000637315037732576017303 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \name{minNumSeqMutationsTune} \alias{minNumSeqMutationsTune} \title{Parameter tuning for minNumSeqMutations} \usage{ minNumSeqMutationsTune(mutCount, minNumSeqMutationsRange) } \arguments{ \item{mutCount}{a \code{vector} of length 1024 returned by \link{createMutabilityMatrix} with \code{numSeqMutationsOnly=TRUE}.} \item{minNumSeqMutationsRange}{a number or a vector indicating the value or the range of values of \code{minNumSeqMutations} to try.} } \value{ A 2xn \code{matrix}, where n is the number of trial values of \code{minNumSeqMutations} supplied in \code{minNumSeqMutationsRange}. Each column corresponds to a value in \code{minNumSeqMutationsRange}. The rows correspond to the number of 5-mers for which mutability would be computed directly (\code{"measured"}) and inferred (\code{"inferred"}), respectively. } \description{ \code{minNumSeqMutationsTune} helps with picking a threshold value for \code{minNumSeqMutations} in \link{createMutabilityMatrix} by tabulating the number of 5-mers for which mutability would be computed directly or inferred at various threshold values. } \details{ At a given threshold value of \code{minNumSeqMutations}, for a given 5-mer, if the total number of mutations is greater than the threshold, mutability is computed directly. Otherwise, mutability is inferred. } \examples{ \donttest{ # Subset example data to one isotype and sample as a demo data(ExampleDb, package="alakazam") db <- subset(ExampleDb, c_call == "IGHA" & sample_id == "-1h") set.seed(112) db <- dplyr::slice_sample(db, n=75) # Create model using only silent mutations sub <- createSubstitutionMatrix(db, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call", model="s", multipleMutation="independent", returnModel="5mer", numMutationsOnly=FALSE, minNumMutations=20) # Count the number of mutations in sequences containing each 5-mer mutCount <- createMutabilityMatrix(db, substitutionModel = sub, sequenceColumn="sequence_alignment", germlineColumn="germline_alignment_d_mask", vCallColumn="v_call", model="s", multipleMutation="independent", numSeqMutationsOnly=TRUE) # Tune minNumSeqMutations minNumSeqMutationsTune(mutCount, seq(from=100, to=300, by=50)) } } \references{ \enumerate{ \item Yaari G, et al. Models of somatic hypermutation targeting and substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data. Front Immunol. 2013 4(November):358. } } \seealso{ See argument \code{numSeqMutationsOnly} in \link{createMutabilityMatrix} for generating the required input \code{vector} \code{mutCount}. See argument \code{minNumSeqMutations} in \link{createMutabilityMatrix} for what it does. } shazam/man/shazam-package.Rd0000644000176200001440000000315315057524221015460 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Shazam.R \docType{package} \name{shazam-package} \alias{shazam-package} \title{shazam: Immunoglobulin Somatic Hypermutation Analysis} \description{ Provides a computational framework for analyzing mutations in immunoglobulin (Ig) sequences. Includes methods for Bayesian estimation of antigen-driven selection pressure, mutational load quantification, building of somatic hypermutation (SHM) models, and model-dependent distance calculations. Also includes empirically derived models of SHM for both mice and humans. Citations: Gupta and Vander Heiden, et al (2015) \doi{10.1093/bioinformatics/btv359}, Yaari, et al (2012) \doi{10.1093/nar/gks457}, Yaari, et al (2013) \doi{10.3389/fimmu.2013.00358}, Cui, et al (2016) \doi{10.4049/jimmunol.1502263}. } \seealso{ Useful links: \itemize{ \item \url{http://shazam.readthedocs.io} \item Report bugs at \url{https://github.com/immcantation/shazam/issues} } } \author{ \strong{Maintainer}: Susanna Marquez \email{susanna.marquez@yale.edu} Authors: \itemize{ \item Mohamed Uduman \email{mohamed.uduman@yale.edu} \item Namita Gupta \email{namita.gupta@yale.edu} \item Julian Zhou \email{julian.zhou@yale.edu} \item Nima Nouri \email{nima.nouri@yale.edu} \item Noah Yann Lee \email{noah.yann.lee@yale.edu} \item Jason Vander Heiden \email{jason.vanderheiden@gmail.com} \item Gur Yaari \email{gur.yaari@biu.ac.il} \item Steven Kleinstein \email{steven.kleinstein@yale.edu} [copyright holder] } Other contributors: \itemize{ \item Ang Cui \email{angcui@mit.edu} [contributor] } } \keyword{internal} shazam/man/calcExpectedMutations.Rd0000644000176200001440000000650615037732576017115 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MutationProfiling.R \name{calcExpectedMutations} \alias{calcExpectedMutations} \title{Calculate expected mutation frequencies of a sequence} \usage{ calcExpectedMutations( germlineSeq, inputSeq = NULL, targetingModel = HH_S5F, regionDefinition = NULL, mutationDefinition = NULL ) } \arguments{ \item{germlineSeq}{germline (reference) sequence.} \item{inputSeq}{input (observed) sequence. If this is not \code{NULL}, then \code{germlineSeq} will be processed to be the same same length as \code{inputSeq} and positions in \code{germlineSeq} corresponding to positions with Ns in \code{inputSeq} will also be assigned an N.} \item{targetingModel}{\link{TargetingModel} object. Default is \link{HH_S5F}.} \item{regionDefinition}{\link{RegionDefinition} object defining the regions and boundaries of the Ig sequences.} \item{mutationDefinition}{\link{MutationDefinition} object defining replacement and silent mutation criteria. If \code{NULL} then replacement and silent are determined by exact amino acid identity.} } \value{ A \code{numeric} vector of the expected frequencies of mutations in the regions in the \code{regionDefinition}. For example, when using the default \link{IMGT_V} definition, which defines positions for CDR and FWR, the following columns are calculated: \itemize{ \item \code{mu_expected_cdr_r}: number of replacement mutations in CDR1 and CDR2 of the V-segment. \item \code{mu_expected_cdr_s}: number of silent mutations in CDR1 and CDR2 of the V-segment. \item \code{mu_expected_fwr_r}: number of replacement mutations in FWR1, FWR2 and FWR3 of the V-segment. \item \code{mu_expected_fwr_s}: number of silent mutations in FWR1, FWR2 and FWR3 of the V-segment. } } \description{ \code{calcExpectedMutations} calculates the expected mutation frequencies of a given sequence. This is primarily a helper function for \link{expectedMutations}. } \details{ \code{calcExpectedMutations} calculates the expected mutation frequencies of a given sequence and its germline. Note, only the part of the sequences defined in \code{regionDefinition} are analyzed. For example, when using the default \link{IMGT_V} definition, mutations in positions beyond 312 will be ignored. } \examples{ # Load example data data(ExampleDb, package="alakazam") # Use first entry in the exampled data for input and germline sequence in_seq <- ExampleDb[["sequence_alignment"]][1] germ_seq <- ExampleDb[["germline_alignment_d_mask"]][1] # Identify all mutations in the sequence calcExpectedMutations(germ_seq,in_seq) # Identify only mutations the V segment minus CDR3 calcExpectedMutations(germ_seq, in_seq, regionDefinition=IMGT_V) # Define mutations based on hydropathy calcExpectedMutations(germ_seq, in_seq, regionDefinition=IMGT_V, mutationDefinition=HYDROPATHY_MUTATIONS) } \seealso{ \link{expectedMutations} calls this function. To create a custom \code{targetingModel} see \link{createTargetingModel}. See \link{calcObservedMutations} for getting observed mutation counts. } shazam/man/HKL_S1F.Rd0000644000176200001440000000211415037732576013703 0ustar liggesusers% Generated by roxygen2: do not edit by hand % Please edit documentation in R/TargetingModels.R \docType{data} \name{HKL_S1F} \alias{HKL_S1F} \title{Human kappa and lambda chain, silent, 1-mer, functional substitution model.} \format{ A 4x4 matrix of nucleotide substitution rates. The rates are normalized, therefore each row sums up to 1. } \usage{ HKL_S1F } \description{ 1-mer substitution model of somatic hypermutation based on analysis of silent mutations in functional kappa and lambda light chain Ig sequences from Homo sapiens. } \note{ Reported in Table III in Cui et al, 2016. } \references{ \enumerate{ \item Cui A, Di Niro R, Vander Heiden J, Briggs A, Adams K, Gilbert T, O'Connor K, Vigneault F, Shlomchik M and Kleinstein S (2016). A Model of Somatic Hypermutation Targeting in Mice Based on High-Throughput Ig Sequencing Data. The Journal of Immunology, 197(9), 3566-3574. } } \seealso{ See \link{HH_S1F} for the human heavy chain 1-mer substitution model and \link{MK_RS1NF} for the mouse light chain 1-mer substitution model. } \keyword{datasets} shazam/DESCRIPTION0000644000176200001440000000612215127666577013272 0ustar liggesusersPackage: shazam Type: Package Version: 1.3.1 Date: 2025-12-26 Authors@R: c(person("Mohamed", "Uduman", role=c("aut"), email="mohamed.uduman@yale.edu"), person("Namita", "Gupta", role=c("aut"), email="namita.gupta@yale.edu"), person("Susanna", "Marquez", role=c("aut","cre"), email="susanna.marquez@yale.edu"), person("Julian", "Zhou", role=c("aut"), email="julian.zhou@yale.edu"), person("Nima", "Nouri", role=c("aut"), email="nima.nouri@yale.edu"), person("Noah", "Yann Lee", role=c("aut"), email="noah.yann.lee@yale.edu"), person("Ang", "Cui", role=c("ctb"), email="angcui@mit.edu"), person("Jason", "Vander Heiden", role=c("aut"), email="jason.vanderheiden@gmail.com"), person("Gur", "Yaari", role=c("aut"), email="gur.yaari@biu.ac.il"), person("Steven", "Kleinstein", role=c("aut", "cph"), email="steven.kleinstein@yale.edu")) Title: Immunoglobulin Somatic Hypermutation Analysis Description: Provides a computational framework for analyzing mutations in immunoglobulin (Ig) sequences. Includes methods for Bayesian estimation of antigen-driven selection pressure, mutational load quantification, building of somatic hypermutation (SHM) models, and model-dependent distance calculations. Also includes empirically derived models of SHM for both mice and humans. Citations: Gupta and Vander Heiden, et al (2015) , Yaari, et al (2012) , Yaari, et al (2013) , Cui, et al (2016) . License: AGPL-3 URL: http://shazam.readthedocs.io BugReports: https://github.com/immcantation/shazam/issues LazyData: true BuildVignettes: true VignetteBuilder: knitr, rmarkdown Encoding: UTF-8 biocViews: Depends: R (>= 4.0), ggplot2 (>= 3.4.0) Imports: alakazam (>= 1.4.1), ape, diptest, doParallel, dplyr (>= 1.0), foreach, graphics, grid, igraph (>= 1.5.0), iterators, KernSmooth, lazyeval, MASS, methods, parallel, progress, rlang, scales, seqinr, stats, stringi (>= 1.1.3), tidyr, tidyselect, utils Suggests: knitr, rmarkdown, testthat, tibble Collate: 'Shazam.R' 'Core.R' 'RegionDefinitions.R' 'Baseline.R' 'ConvertNumbering.R' 'MutationProfiling.R' 'Deprecated.R' 'DistToNearest.R' 'MutationDefinitions.R' 'RegionsExtend.R' 'Shmulate.R' 'TargetingModels.R' 'kedd.R' RoxygenNote: 7.3.3 NeedsCompilation: no Packaged: 2025-12-26 16:00:25 UTC; susanna Author: Mohamed Uduman [aut], Namita Gupta [aut], Susanna Marquez [aut, cre], Julian Zhou [aut], Nima Nouri [aut], Noah Yann Lee [aut], Ang Cui [ctb], Jason Vander Heiden [aut], Gur Yaari [aut], Steven Kleinstein [aut, cph] Maintainer: Susanna Marquez Repository: CRAN Date/Publication: 2026-01-08 08:40:31 UTC