SparseM/0000755000175100001440000000000013077170726011654 5ustar hornikusersSparseM/inst/0000755000175100001440000000000013077164663012634 5ustar hornikusersSparseM/inst/TODO0000644000175100001440000000141312316073271013310 0ustar hornikusersMarch 30 2014 Use of slm it is sometimes impeded by the fact that model.matrix require a construction of a dense form of X. This can be circumvented by using the sparse model matrix construction in the Matrix package, or less directly by just constructing X in csr form and using slm.fit.csr for estimation. A downside of the latter strategy is that summary() can't be used on the resulting object, but something like the following hack can be used: function (object, correlation = FALSE, ...) { Chol <- object$chol n <- length(object$residuals) p <- object$chol@nrow rdf <- n - p r <- residuals(object) rss <- sum(r^2) resvar <- rss/rdf R <- backsolve(Chol, diag(p)) sqrt(diag(R) * resvar) } It might be nice to regularize this... SparseM/inst/ChangeLog0000644000175100001440000005254113077164633014412 0ustar hornikusersThis directory contains the development version of the sparse matrix package SparseM. This is an informal revision history. The initial version 0.01 was sent to David Meyer in Vienna June 10, 2002. The new version is in SparseM and incorporates the Harwell Boeing stuff. The version 0.05 was completed Oct 11 and was sent to CRAN for Kurt Hornik's blessing prior to submission to JSS. There were several problems the most serious being that the fortran versions of the hb routines weren't sufficiently portable. The version 0.09 was completed Oct 19 2002 incorporating the following changes: o read.hb and write.hb are now in C and more portable this was the major problem identified by Kurt in the initial posting o the generic issues were all resolved thanks to the hint in Sec 6.1 of the Writing R-Exts which explains how to add ... to the argument list of new generics using formals(). o a bug in matrix.csr was fixed to accomodate vector arguments and zero matrices o PACKAGE args were added to all .Fortran and .C calls o Lots of minor inconsistencies in the man pages were fixed. The version 0.10 was completed Nov 5 2002 and incorporates the following: o remade the pdf version of the vignette in type 1 ps fonts using dvips -Pwww SparseM distill SparseM.ps At the suggestion of Brian Ripley. o altered matrix.csr to generalize the way it handled vector args. o removed the unused variables from readwrite.c. o moved lsq.rra from the "data" subdirectory to "inst/HBdata"; added lsq.R in "data" so that the content can be read in using "data(lsq)" in R; added "lsq.Rd" in "man"; and updated the 00Index.dcf file in "inst/doc"; updated the INDEX file. o changed all the ".find.package" in the Rd files to "system.file". o changed the call to read.matrix.hb to use "system.file" in SparseM.Rnw The version 0.11 was begun Jan 1 2003 and incorporates the following: o the malloc.h header requirements in iohb.c and iohb.h were removed...they are redundant given stdlib.h and caused problems on my mac The version 0.12 was begun Jan 20 2003 and incorporates the following: o conversion from S3 to S4 method dispatch The version 0.20 was completed Jan 24 2003 and incorporates the following: o conversion from S3 to S4 method dispatch and extensive documentation changes The version 0.21 was begun Mar 7 2003 and incorporates the following: o matrix valued response in the slm formula o a fix of a "design infelicity" in the multiplication of a csr times a vector which created a matrix object without dimension attribute -- identified by John Chambers. o matrix multiplication now allows csr times dense multiplication by coercion of the dense matrix to sparse form, so is returned in sparse form. The version 0.22 was begun Mar 11 2003 and incorporates the following: o added a class matrix.coo for coordinate format sparse matrices o [<-.matrix.csr and [.matrix.csr rewritten to use the .coo class o validity checking added to both .csr and .coo classes. See the setClass definitions and their methods for "initialize". This required quite a lot of editing to insure that ja,ia, and dim attributes were really integer. The version 0.24 was begun about April 1 2003 o commented out 'value <- as.matrix.coo(value)' in '[<-.matrix.csr' to move the class transformation of value inside '[<-.matrix.coo. This is a workaround for misbehavior of missing() in our opinion. o added 'setMethod("t","matrix.coo",function(x) as.matrix.coo(t(as.matrix.csr(x)))' in SparseM_Methods.R to define "t" for class "matrix.coo". o uncommented "setMethod("%*%",signature(x="matrix",y="matrix.csr"),.matmul.matrix.csr)" "setMethod("%*%",signature(x="numeric",y="matrix.csr"),.matmul.matrix.csr)" so that "%*%" will perform matrix times matrix.csr and vector times matrix.csr multiplication o removed the definition of "ncol.matrix.csr" and "nrow.matrix.csr" from SparseM.R o added "dim.matrix.coo" to SparseM.R and "setMethod("dim","matrix.coo",dim.matrix.coo)" to SparseM_Methods.R o created matrix.coo-class.Rd o fixed some of the inconsistency on matrix.csc-class.Rd, etc. o added matrix subscripting to '[.matrix.coo' and '[<-.matrix.coo' so that one can perform, e.g., as.matrix.csr(A)[cbind(c(1,2,3),c(2,3,1))] and as.matrix.csr(A)[cbind(c(1,2,3),c(2,3,1))] <- 100 o added matrix.csr class subscripting to '[.matrix.coo' and '[<-.matrix.coo' so that one can perform, e.g., as.matrix.csr(A)[as.matrix.csr(A)>0] and as.matrix.csr(A)[as.matrix.csr(A)>0] <- 100 for whatever it's worth. o added logical subscripting to [.matrix.coo and [.matrix.csr o fixed some bugs in group Ops. o added some commentary in man and in vignette to encourage use of new() in the definition of new .csr and .coo objects so that validation is done. o simplified diag.assign.matrix.csr so that it looked just like the default version -- this eliminates the need for a couple of the fortran functions. o fixed several places where as.integer() was needed to wrap a definition of a dimension attribute of a sparse object. The version 0.25 was begun about April 16 2003 o fixed a bug in chol.matrix.csr that incorrected allocated space in large problems The version 0.26 was done April 26 2003 o fixed a bug in * and %*% that returned an error when the answer was a matrix or vector of all zeros o refixed the malloc.h problem The version 0.27 was done April 28 2003 o removed some debugging print statements from chol.f o removed the uncompressed files from inst/doc The version 0.28 was begun May 28 2003 o the .R files were consolidated at the suggestion of John Chambers after we discovered that different machines ordered them differently and the methods code needs to be read AFTER the function definitions. o a bug in as.matrix.coo that mistook vector arguments for scalars was fixed o a kronecker product operator %x% was added. o return statements checked for the dreaded deprecated unlisted form o updated some setIs() calls to conform to JC's new setClassUnion() form. this is implemented with a version check to accomodate 1.7.0 users. The version 0.30 was completed August 10 2003 o initially intended to conform with Kurt's changed of %x% to insist that it was a binary operator, but this revealed a number of problems with documentation that were attributable to an incomplete conversion from S3 to S4 methods. o Many S3 functions were incorporated directly into the setMethod calls so that now there are fewer, but still many S3 method calls, these should be gradually removed when more time and energy permits. For now, I hope that the changes that have been made will permit a smooth transition to 1.8.0 when it is released. At the moment it does pass R CMD check on the (almost) current version of R-devel. In particular, One thing that eventually needs to be fixed is that all of the ontology stuff should be brought up todate so that you can say: as(x,"matrix.csr") rather than as.matrix.csr(x) The version 0.31 was completed August 25 2003 o At the suggestion of Kurt we removed the explicit reading of the hb data and replaced it with an R dataset loading. Comments are left in the examples section indicating how to do the reading, but the official view seems to be that the old approach was insufficiently robust. o The diag() update. Prior versions didn't really handle the coercion of scalars and vectors to diag csr matrices very well. This was fixed by introducing a new subclass matrix.diag.csr of which matrix.csr is the superclass (meaning that they have the same rights and responsibilities) so now you can create an n-dimensional identity by as(n,"matrix.diag.csr") and a matrix with diagonal v by as(v,"matrix.diag.csr"). In the process some problems with the default matrix.csr object were discovered and fixed. And the code for .matrix.csr.elemul was changed to reflect these changes. The version 0.32 was completed December 20 2003 o Fixed a defunct call to print.coefmat The version 0.33 was completed January 20 2004 o fixed bug in scalar division...identified by Renald Buter The version 0.35 was completed January 20 2004 o fixed bug in matrix.diag.csr coercion ... identified by Nicholas Lewin-Koh The version 0.36 was completed May 12 2004 o fixed a version testing problem for R-devel 2.0.0 o added Depends R(>=1.8) to Description at suggestion of BDRipley o added errfig in the .C() call in read.matrix.hb o commented out some GTIMER, ETIME commands that caused AIX problems The version 0.40 was completed July 17, 2004 o added a check for symmetry before the Cholesky computation. o added a norm() function to do the symmetry checking o added a det() function to compute the determinant of both matrix.csr and matrix.csr.chol objects. The version 0.50 was completed July 17, 2004 o the vignette was uncompressed so that it was accessible via vignette(). o the call to read.matrix.hb was commented out and replaced as in the other documentation calls with calls to data(lsq) ... o a comment was added to the solve documentation indicating the existence of the det object in chol structures. The version 0.52 o An example of Steven Farber revealed that when the dimensions of matrix.csr and matrix.coo objects are very large the validity checking in setClass failed due to integer overflow. The product nrow*ncol was replaced by prod(object@dimensions) which apparently coerces the result to real. o A misplaced } was fixed in slm.Rd found by Kurt's pre 2.0.0 new documentation checking. o version checking was modified to eliminate a last.warning in 2.0.0. The version 0.53 o elementwise multiplication failed for A*B with both A and B of class matrix.csr, as noted by Suzzane Heim -- o added a [<-.matrix.diag.csr function, inadvertently omitted from the prior revision of this class. (Produced a mysterious "Error: incorrect number of subscripts on matrix" message. This also fixed a subsetting-assignments-to-zero problem for this class. The version 0.54 o After an extended discussion in (and off) R-devel, Roger Bivand very kindly provided a NAMESPACE file and some associated modifications of the SparseM.R file. These changes allow among other things S4 method dispatch to find functions in SparseM that were hidden from view when it didn't have a NAMESPACE. The original problem child was det() which SparseM declared generic, but this wasn't visible to Bivand spatial package. Use requires various import directives in the NAMESPACE of the importing package, however quantreg which uses SparseM for certain nonparametric regression problems worked without modification with the new version of SparseM. Bivand's modifications of the R code are indicated with comments "#RSB" in the SparseM.R file. The version 0.55 o Added lazyloading to description file at the request of BDR. o Jon Stearley (Sandia) noted that R segfaulted on his attempts to use write.matrix.hb. The segmentation fault was caused by the "NULL" value of "guesol" that was being passed into readwrite.c. Pin replaced the NULL assignment with an empty string "" assignment. I've also updated the help file SparseM.hb.Rd to include an example of write.matrix.hb. The version 0.56 o the example added in 0.55 caused the windows version to segfault Uwe Ligges kindly determined that adding ZipData: No to the Description file was enough to fix this. The version 0.57 o NAMESPACE and getMethod added to acommodate an asymmetry in the way that the stats package handles model.matrix and model.response fix kindly provided by Roger Bivand. The version 0.58 o several "assign num to lab" statements in sparskit.f were updated to anticipate gnu fortran compilers that have apparently decided that such syntax is obsolete. Thanks to Jan de Leeuw for pointing this out based on gfortran-4.0 on osx 10.34. The version 0.59 o the subroutine prtmt intended to print matrices in Harwell Boeing format also caused problems for the new gfortran-4.0 compiler since this routine (in sparskit) was never called it was simply removed from sparskit.f. Jan reports that this allows SparseM to build on his configuration. The version 0.60 o Jeffrey Chang pointed out that indexing failed to work properly when there were repeated indices. This has now been fixed, but the resulting code is very slow due to looping on an rbind/cbind operation. This would be a useful feature to speed up, if one were really into resampling. o In the process of making the changes mentioned above, it was noted that [.matrix.coo should be exported via NAMESPACE. The version 0.61 o Jon Stearley (Sandia) noted that R segfaulted on some attempts to use write.matrix.hb. The segmentation fault was caused by inappropriate use of default format statements that led to incorrectly written indices. Pin modified the default formats to reduce the probability of such occurances. o A Makefile was added to the vignette directory to rationalize things a bit. The version 0.62 o Brian Ripley pointed out a bug in iohb.c which caused a segfault in some linux systems with gcc4 and was idenntified more precisely using valgrind. Some googling found a corrected version at: http://www.cs.utk.edu/~eijkhout/salsa-salsa-docs/iohb_8c.html#a6 o Tom Blackwell (UMich) pointed out a problem with elemult which turned out to be an unfortunate sequence of if/else's that omitted to treat the default case properly. The version 0.63 o The functionality of reading and writing Harwell-Boeing files has been temporarily suspended pending reevaluation of replacing iohb.c with code that doesn't cause memory faults. See Doug Bates Matrix package for a limited alternative approach. The version 0.64 o The function read.matrix.hb is replaced by a pure R function, purging iohb.c to read Harwell-Boeing formatted files. The new function shamelessly plagarizes from Doug Bates's readHB function in the Matrix package. The main alterations were to add functionality for rhs's, and adapt the function to SparseM matrix classes. As of this moment we have no plans to produce a parallel function for writing Harwell-Boeing format. The version 0.65 o The way that chol.default, and the setMethod calls for det and chol for the class matrix were changed to conform to R 2.2, following advice of Brian Ripley and Duncan Murdoch. The version 0.66 o Bug found by Gregg Lind that made diag assigments fail when the matrix was all zeros. Modified [<-.matrix.coo to handle NAs from the match() call. The version 0.67 o Typos in section headings of .Rd files noted by Kurt. The version 0.68 o Bug in slm.wfit fixed, thanks to i.m.s. white (edinburgh). The version 0.69 o Bug in slm.fit.csr -- calls to chol and backsolve failed to pass along the ... arguments. Thanks to Jeff Racine. o Added code for extractAIC.slm and deviance.slm to permit use of step() on fitted slm objects, code contributed by Jeff Racine. o added setMethod for as.matrix to convert matrix.csc objects that had been overlooked for a long time. o changed the printing onLoad at the suggestion of Martin M. The version 0.70 o The setGeneric for chol was changed in accordance with another suggestion by Martin M. This seems to fix a conflict with Matrix as described in an R-devel message by David Pleydell (20 Feb 2006). The version 0.72 o A ... argument was added to the as.matrix.[foo] functions to accomodate a change in base R. The version 0.73 o Thanks to contributions of Ben Shaby (Stat, Cornell) it is now possible to coerce matrix.csr.chol objects back to matrix.csr form, separate backsolve, and forwardsolve functions are provided in addition to the original backsolve that (still) does the double-backsolve, and it is now also possible to get a log det value from chol instead of det. The version 0.74 o Changed warning in as.matrix.csr to error condition when nnz != z$nnz, and changed defintion of nnz to by sum(abs(x) >= eps) from > to agree with fortran "csr" function. Bug report from Mark Robinson (wehi.edu.au) The version 0.76 o Updated lsq.rda so that it was a proper s4 object as requested by BR to conform with the current R-devel. Removed SaveImage line from DESCRIPTION file. The version 0.77 o Updated triogramX.R to triogramX.rda similarly... The version 0.78 o Fixed bug in [<-.matrix.coo". When the rw was a two column matrix there was an implicit assumption that x[-s] = x when s was empty but this turned out to be wrong. The version 0.79 o I've redefine the class "matrix.csc.hb" in SparseM.R to include NULL in the slots rhs.ra, rhs.dim and rhs.mode. o read.matrix.hb will return NULL for rhs.ra, rhs.dim and rhs.mode if the rhs is missing. o bug in matrix.csr.elemul that returned an error when the result of the multiplication was a matrix consisting entirely of zeros. Thanks to Ian Erickson for this report. The version 0.80 o At the suggestion of BDR the onLoad message was changed from cat() to packageStartMessage() The version 0.82 o default tmpmax in chol was increased from 10 * nrows to 30 * nrows. The version 0.83 o setGeneric code for backsolve fixed so that it passes arguments to the default method in base::backsolve. Thanks to Achim Zeileis for the report of a problem encountered when using lars, and to John Chambers for patiently explaining what was going wrong. The version 0.84 o Several organisational changes of method definition, with the main goal of improved cohabitation with the Matrix package: - using less setGeneric() calls, e.g., chol() and norm() now should still work with Matrix present; - defining methods for kronecker() instead of "%x%" which now works automagically via kronecker(); - defining methods for determinant(), in order to eventually deprecate those for det(). o default value of tmpmax increased to 50*nrow(x) with luck this will make it less likely to get complaints about needed to increase it. The version 0.86 o Changed License in DESCRIPTION to file License and added a somewhat inflammatory comment to the Licence file that was sent to R-devel in 2009. The version 0.89 o added a setAs for matrix to matrix.csr conversion The version 0.90 o Conditionally removed assigninNamespace() in onLoad as suggested by BDR see mail from Oct 28 2011. The version 0.96 1. Removed the LICENSE file that had described some uncertainties with respect to the license status of the code in src/cholesky.f. These uncertainties have now been resolved by the original authors, Esmond Ng and Barry Peyton, declaring their code to be open source, and thus the quantreg package can now be considered fully GPL. See the README file for further details. 2. fixed some vestigial calls to fprintf IOHBTerminate etc that contained un-R-like printing or exit calls. 3. Added a .Rinstignore file to deal with the vignette Makefile complaint from R CMD check. 4. Modified the .onLoad call to include a call to assignInNamespace() to deal with a problem with kronecker. (This is provisional until 2.15 is released.) Thanks to BDR for helpful advice on this and the other items in this revision. The version 0.96 1. Fixed bug in element by element exponentiation when one of the arguments was scalar. The version 0.97 1. Removed iohb.c and readwrite.c which were deprecated much earlier and produced various warning flags from clang in the initial testing of R 3.0 beta. The version 0.98 1. Fixed various dimension problems identified by the new R CMD check protocol. The Version 1.00 1. Added a paragraph in SparseM.solve.Rd about passed values of the mysterious chol() storage allocation parameters. The version 1.01 1. Removed the onLoad() call which seemed to cause problems for Uwe's build of the windoz version due to some problem with the way %x% was treated there. Strange since whatever was happening was only supposed to happen for R v2.15 and lesser. The version 1.03 1. Moved SparseM.Rnw to a new vignettes directory at the suggestion of Brian Ripley and removed the Makefile for the vignette at the suggestion of Uwe Ligges. The version 1.05 1. Attempted to fix the definition of det and associated methods to conform with procedure used by the Matrix package. If I understand this properly, the idea is that det can be defined as base::det which defaults to the generic determinant() and then by defining the environment(det) as environment() this ensures that calls to det() from SparseM will use the methods appropriate to SparseM objects. The version 1.7 1. Removed coerce from exports. The version 1.71 1. Fixed the REAL*8 and INTEGER*4 occurences in accordance with Kurt's email. The version 1.73 1. changed occurences of unix.time to system.time in accordance with Kurt's directive. The version 1.74 1. One more unix -> system The version 1.75 1. package -> PACKAGE [per Kurt's email of 3/2/17] The version 1.76 1. Used package_native_routine_registration_skeleton to remove PACKAGE = SparseM [per Kurt's email of 3/2/17] The version 1.77 1. Changed setMethod for diag (matrix.csr) in accordance with MM's suggestion 2. removed setGeneric for image also suggested by MM. SparseM/inst/extdata/0000755000175100001440000000000011547113521014251 5ustar hornikusersSparseM/inst/extdata/rua_32_ax.rua0000644000175100001440000000657711547113521016564 0ustar hornikusers1Real unsymmetric assembled matrix based on IBM32 RUA_32 36 3 8 13 12 RUA 32 32 126 0 (16I5) (16I5) (10F7.1) (10F7.1) FGX 2 0 1 7 12 18 22 26 29 34 39 46 53 58 61 63 65 68 71 74 79 82 85 88 90 94 97 102 106 110 112 117 121 124 127 1 2 3 4 7 26 1 2 9 21 28 2 3 6 8 9 29 3 4 5 12 3 5 23 27 1 6 16 3 7 14 21 31 1 8 12 17 27 7 9 10 13 19 23 27 1 10 11 21 23 25 27 2 11 15 18 29 6 12 24 11 13 3 14 2 15 20 4 16 22 4 16 17 6 10 18 20 30 1 19 26 8 16 20 3 21 32 11 22 2 17 21 23 12 24 26 6 15 18 24 25 13 18 22 26 5 24 26 27 9 28 3 5 27 29 32 12 17 23 30 13 14 31 24 28 32 101 102 103 104 107 126 201 202 209 221 228 302 303 306 308 309 329 403 404 405 412 503 505 523 527 601 606 616 703 707 714 721 731 801 808 812 817 827 907 909 910 913 919 923 927 1001 1010 1011 1021 1023 1025 1027 1102 1111 1115 1118 1129 1206 1212 1224 1311 1313 1403 1414 1502 1515 1520 1604 1616 1622 1704 1716 1717 1806 1810 1818 1820 1830 1901 1919 1926 2008 2016 2020 2103 2121 2132 2211 2222 2302 2317 2321 2323 2412 2424 2426 2506 2515 2518 2524 2525 2613 2618 2622 2626 2705 2724 2726 2727 2809 2828 2903 2905 2927 2929 2932 3012 3017 3023 3030 3113 3114 3131 3224 3228 3232 1001 0 0 0 0 0 0 0 0 1010 1011 0 0 0 0 0 0 0 0 0 1021 0 1023 0 1025 0 1027 0 0 0 0 0 4606 5512 8424 3816 6520 6430 1721 3124 4236 3730 5644 7860 7952 5242 5145 5964 7868 8072 2838 5360 6405 6466 7815 12120 3550 9830 8962 6284 4387 4860 3862 8296 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 SparseM/inst/extdata/lsq.out0000644000175100001440000065570011547113521015616 0ustar hornikuserslsq.rra WELL1850 2719 45 548 1752 370 RRA 1850 712 8758 (16I5) (16I5) (5E16.9) (5E16.9) F 1 1 14 18 27 39 44 53 57 62 68 76 81 87 93 100 102 109 115 122 128 135 141 149 156 162 166 169 175 182 190 194 200 206 212 216 222 228 240 250 258 271 275 288 298 316 320 324 330 336 342 350 361 378 388 396 399 406 410 412 416 418 420 423 425 428 430 433 436 438 442 448 455 459 462 467 471 474 478 495 497 511 517 523 539 544 558 571 583 595 630 634 638 654 670 684 697 703 705 711 718 723 731 735 739 740 741 748 759 765 772 779 782 788 806 814 820 846 856 871 873 915 919 927 934 942 947 951 960 980 982 997 1000 1005 1014 1021 1023 1027 1032 1037 1048 1068 1080 1095 1104 1107 1113 1115 1117 1134 1149 1158 1172 1174 1195 1200 1207 1213 1215 1216 1221 1229 1235 1248 1252 1261 1267 1277 1283 1289 1295 1299 1301 1309 1317 1324 1340 1347 1354 1373 1379 1386 1397 1406 1416 1421 1426 1432 1438 1439 1443 1444 1448 1455 1456 1463 1468 1469 1475 1484 1492 1501 1510 1514 1516 1520 1522 1526 1530 1538 1543 1548 1551 1579 1583 1587 1613 1637 1648 1651 1659 1674 1684 1688 1693 1698 1701 1704 1707 1711 1714 1719 1724 1729 1734 1739 1743 1746 1749 1753 1756 1759 1762 1764 1766 1768 1771 1776 1779 1783 1787 1792 1807 1810 1816 1820 1826 1834 1836 1840 1848 1856 1861 1869 1879 1883 1892 1897 1902 1911 1915 1920 1928 1937 1941 1952 1960 1968 1976 1986 1990 1998 2002 2010 2022 2030 2034 2038 2046 2050 2054 2063 2068 2073 2080 2087 2092 2101 2109 2112 2115 2119 2124 2132 2139 2151 2155 2160 2167 2174 2178 2181 2185 2189 2193 2200 2207 2219 2226 2230 2236 2243 2247 2250 2254 2258 2261 2267 2271 2276 2284 2287 2292 2297 2300 2305 2310 2320 2330 2335 2338 2341 2345 2349 2352 2355 2358 2361 2364 2367 2370 2373 2376 2379 2383 2391 2395 2399 2409 2412 2419 2422 2426 2433 2436 2442 2449 2462 2465 2472 2475 2479 2483 2490 2493 2501 2505 2508 2512 2522 2529 2533 2539 2543 2549 2553 2560 2564 2573 2577 2580 2588 2592 2599 2603 2608 2612 2615 2618 2621 2625 2630 2639 2642 2647 2650 2653 2661 2711 2752 2759 2779 2784 2802 2813 2824 2839 2853 2896 2939 3065 3199 3261 3348 3376 3387 3397 3449 3686 3690 3698 3706 3711 3719 3729 3733 3742 3752 3761 3765 3770 3778 3787 3791 3802 3810 3818 3826 3836 3840 3848 3852 3860 3872 3880 3884 3888 3896 3900 3904 3913 3918 3923 3930 3937 3942 3951 3959 3965 3969 3974 3982 3989 4001 4017 4028 4035 4050 4057 4069 4080 4086 4093 4100 4104 4111 4117 4126 4134 4137 4142 4150 4160 4170 4180 4191 4199 4211 4220 4223 4226 4229 4241 4249 4259 4272 4276 4286 4292 4299 4312 4322 4325 4329 4343 4355 4362 4372 4379 4383 4393 4399 4403 4410 4414 4423 4430 4438 4449 4453 4471 4475 4480 4489 4492 4497 4500 4503 4561 4602 4629 4652 4674 4703 4746 4915 5198 5226 5247 5299 5536 5549 5558 5570 5575 5584 5589 5595 5603 5608 5614 5620 5627 5633 5640 5646 5653 5659 5667 5674 5680 5686 5693 5701 5707 5713 5719 5725 5737 5747 5755 5768 5781 5791 5809 5815 5821 5827 5835 5846 5863 5873 5881 5888 5892 5898 5905 5908 5913 5917 5920 5926 5932 5948 5962 5975 5987 5999 6034 6050 6066 6080 6093 6099 6105 6112 6117 6125 6129 6136 6147 6153 6160 6167 6173 6191 6199 6205 6231 6241 6256 6298 6306 6313 6321 6325 6334 6354 6369 6374 6383 6385 6389 6394 6405 6425 6437 6452 6461 6467 6484 6499 6508 6522 6543 6548 6555 6561 6569 6575 6588 6592 6601 6607 6617 6623 6629 6635 6639 6647 6654 6670 6677 6684 6703 6709 6716 6727 6736 6746 6751 6756 6762 6768 6775 6782 6788 6797 6805 6814 6818 6826 6831 6836 6840 6844 6870 6894 6909 7309 7726 7784 7825 7852 7875 7897 7926 7969 8138 8421 8449 8470 8522 8759 1 3 26 28 164 166 1259 1262 1277 1279 1490 1686 1827 2 4 5 7 6 8 9 11 1263 1276 1540 1685 1828 10 12 13 15 1264 1275 1538 1539 1560 1561 1684 1829 14 16 17 19 1274 18 20 21 23 25 1265 1273 1683 1830 22 24 152 154 27 29 30 32 1491 31 33 35 37 1258 1492 34 36 38 39 41 43 1257 1493 40 42 44 46 1256 45 47 49 51 1255 1494 48 50 52 53 55 1254 54 56 57 59 61 67 69 58 60 62 64 66 72 74 1252 1496 63 65 76 78 1251 1497 68 70 71 73 75 1253 1495 77 79 81 83 1250 1498 80 82 84 86 88 1249 1499 85 87 89 91 1248 1500 90 92 94 96 1247 1501 1619 1848 93 95 97 98 100 1620 1847 99 101 102 104 1621 1846 103 105 106 108 107 109 111 110 112 113 115 1622 1845 114 116 117 119 1623 1843 1844 118 120 121 123 372 376 1640 1842 122 124 125 127 126 128 129 131 1641 1838 130 132 133 135 1642 1837 134 136 137 139 1643 1836 138 140 142 144 141 143 145 146 148 150 147 149 167 169 1644 1835 151 153 192 194 1266 1267 1272 1537 1551 1559 1682 1831 155 157 298 300 302 304 306 308 401 403 156 158 159 161 1281 1488 1688 1825 160 162 163 165 989 990 1260 1261 1278 1280 1489 1687 1826 168 170 171 173 172 174 175 177 294 296 1269 1523 1529 1534 1645 1658 1834 176 178 180 1270 1524 1528 1530 1533 1659 1833 179 181 182 184 186 195 197 1268 1271 1514 1525 1527 1532 1536 1558 1660 1681 1832 183 185 187 189 188 190 191 193 196 198 199 201 1661 1680 200 202 203 205 1662 1679 204 206 207 209 1663 1678 208 210 211 213 1117 1118 1664 1677 212 214 215 217 1114 1115 1116 1119 1120 1665 1676 216 218 219 220 222 369 371 1077 1078 1108 1109 1112 1113 1121 1122 1666 1675 221 223 224 226 1110 1111 1123 1124 1667 1674 225 227 229 231 266 268 1668 1673 228 230 232 233 234 265 271 273 1669 1672 235 264 1670 1671 236 263 237 238 261 262 239 260 240 259 241 242 258 243 257 244 255 256 245 254 246 247 253 248 251 252 249 250 267 269 270 272 274 288 289 291 1646 1657 275 287 1518 1521 1535 1647 1656 276 277 279 286 278 1648 1655 280 283 284 1650 1653 281 282 1651 1652 285 1649 1654 290 292 293 295 297 299 1282 1283 1289 1290 1291 1486 1487 1574 1589 1598 1606 1613 1689 1701 1822 301 303 305 307 309 311 402 404 410 1292 1485 1690 1700 1702 1821 1823 310 312 314 1691 1703 1824 313 315 316 318 1692 1704 317 319 321 323 991 993 1061 1168 1169 1170 1171 1221 1222 1288 1693 1705 320 322 324 325 327 326 328 330 424 1062 1063 1166 1167 1172 1173 1219 1220 1694 1706 329 331 332 334 1007 1064 1065 1164 1165 1174 1175 1217 1218 333 335 337 1066 1139 1140 1162 1163 1176 1177 1215 1216 336 338 339 341 344 1160 1161 1180 1181 1213 1214 1287 340 342 343 345 346 348 1067 1068 1089 1090 1096 1097 1135 1136 1143 1144 1150 1151 1154 1155 1156 1157 1182 1183 1186 1187 1188 1198 1199 1205 1206 1209 1210 1285 1286 347 349 350 352 351 353 354 356 355 357 358 360 1004 1069 1070 1085 1086 1100 1101 1131 1132 1196 1197 1284 359 361 363 1005 1006 1071 1072 1083 1084 1102 1103 1129 1130 1189 1190 1195 362 364 365 367 1073 1074 1081 1082 1104 1105 1127 1128 1191 1192 366 368 370 1075 1076 1079 1080 1106 1107 1125 1126 1193 1194 373 377 379 1625 1638 1841 374 375 378 380 382 1626 1637 1840 381 383 384 386 1627 1636 1839 385 387 389 1628 1635 388 390 392 394 395 1629 1631 1633 391 393 1630 1634 396 397 400 1632 398 399 405 406 409 1293 1484 1699 1820 407 408 411 412 414 447 450 1294 1483 1698 1819 413 415 417 968 1697 1818 416 418 419 421 427 1696 1708 420 422 423 425 992 1695 1707 426 428 430 429 431 432 434 1709 1816 433 435 436 438 975 983 984 985 986 994 995 1008 1009 1010 1012 1017 1710 1815 437 439 442 453 455 471 473 1298 440 441 443 445 1297 1481 444 446 448 449 451 452 967 969 970 971 972 973 974 976 977 978 979 980 981 982 987 988 1295 1296 1482 1817 454 456 457 459 474 475 477 1299 1480 1814 458 460 464 465 826 895 896 897 898 899 900 908 909 1711 1812 461 462 463 466 468 530 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 901 902 903 904 905 906 996 997 998 999 1001 1003 1011 1013 1014 1015 1016 1712 1811 467 469 470 472 476 478 480 825 827 1300 1479 1813 479 481 483 828 829 1301 1478 482 484 485 487 830 1302 1303 1477 486 488 490 610 612 489 491 493 1307 492 494 495 497 925 926 1308 1310 1385 496 498 504 907 914 915 916 924 927 929 930 931 932 933 934 935 936 937 1018 1387 499 500 501 506 508 691 693 928 938 939 940 941 942 943 1019 1715 1805 502 503 505 507 509 511 1714 1806 510 512 518 524 526 910 911 912 913 513 516 517 519 520 522 523 514 1808 515 521 1807 1809 525 527 533 1713 1810 528 529 531 532 534 535 537 538 540 684 686 687 689 1021 1024 1031 536 553 557 688 690 692 1020 1027 1028 1032 1048 1049 1057 1361 1363 1371 1420 1422 1716 1804 539 543 681 683 685 1039 1044 1045 1052 1053 1717 1803 541 545 547 548 674 676 678 680 682 1038 1433 1718 1719 1799 1801 542 544 677 679 1037 1434 1720 1800 1802 546 549 551 550 552 554 558 562 1033 555 556 559 560 561 563 564 566 638 842 945 946 1035 1342 1344 1357 1359 1373 1375 1415 1419 565 567 569 841 951 954 957 958 961 962 1336 1337 1376 1377 1412 568 570 572 815 817 840 949 950 965 571 575 579 816 839 966 1312 1313 1317 1319 1320 1335 1406 1463 573 574 576 577 1022 1023 1025 1026 1029 1030 1040 1041 1042 1043 1046 1047 1050 1051 1054 1055 1058 1059 1060 578 580 582 1000 1002 581 583 585 836 838 1322 1332 584 586 587 589 837 1780 588 590 591 592 595 597 598 615 594 614 616 618 1451 1779 1781 1787 596 599 602 1456 1783 1785 600 601 603 605 835 1326 1328 1392 1393 1395 1458 1470 1784 604 606 608 834 607 609 611 613 831 832 833 1471 1472 617 619 621 1450 1778 1788 620 622 624 640 642 847 1449 1776 1777 1789 623 625 628 846 1775 1790 626 627 629 630 632 845 631 633 635 844 1347 1354 634 636 843 1346 637 639 641 643 644 646 807 811 812 814 645 647 648 650 848 1448 1734 1791 649 651 653 849 1447 1735 1792 652 654 655 657 658 753 755 850 851 874 1439 1446 1727 1736 1737 1793 656 659 661 852 873 1726 1794 660 662 664 853 872 1725 1795 663 665 666 668 694 696 749 750 752 854 869 870 871 1437 1438 1723 1746 1759 1796 667 669 671 1436 1722 1797 670 672 673 675 1435 1721 1798 695 697 698 700 702 714 716 855 1745 1747 1760 699 701 703 705 707 856 859 1748 1761 704 706 708 710 711 713 857 1749 1762 1763 709 712 858 1750 1764 715 717 719 1744 1757 718 720 722 724 1743 1756 721 723 727 864 1753 1767 725 726 728 731 733 729 730 732 734 736 735 737 740 866 1741 1754 1769 738 739 741 743 865 1742 1755 1768 742 744 747 768 770 745 746 748 751 868 1724 1758 754 756 757 759 875 1440 1445 1728 1738 758 760 762 1441 1444 1729 1739 1771 761 763 765 767 1442 1443 1730 1740 1770 764 766 774 775 781 786 789 790 792 769 771 778 867 772 773 776 777 779 780 782 783 784 785 787 788 791 793 796 798 794 795 797 799 800 802 1731 1772 801 803 805 1732 1773 804 806 809 1733 1774 808 810 813 818 819 820 821 822 823 824 1236 1237 1238 1245 1246 1502 1503 1504 1505 1506 1581 1587 1596 1603 1614 1615 1616 1617 1618 1849 1850 860 862 1751 1765 861 863 1752 1766 917 919 921 923 1224 1226 1228 1231 1233 1235 1239 1241 1243 1508 1510 1512 1541 1543 1545 1547 1562 1564 1566 1568 1570 1572 918 920 922 1223 1225 1227 1229 1230 1232 1234 1240 1242 1244 1507 1509 1511 1542 1544 1546 1563 1565 1567 1569 1571 944 947 948 952 953 955 956 959 960 963 964 1034 1036 1056 1087 1088 1098 1099 1133 1134 1207 1208 1091 1092 1093 1094 1095 1145 1146 1147 1148 1149 1200 1201 1202 1203 1204 1137 1138 1141 1142 1158 1159 1178 1179 1211 1212 1152 1153 1184 1185 1304 1305 1389 1473 1476 1306 1388 1390 1474 1475 1309 1386 1391 1311 1384 1404 1314 1403 1405 1315 1383 1402 1409 1316 1401 1408 1318 1334 1400 1407 1464 1321 1333 1399 1462 1465 1323 1331 1398 1461 1466 1324 1330 1397 1460 1467 1325 1329 1396 1459 1468 1327 1394 1457 1469 1338 1378 1411 1339 1379 1410 1340 1380 1382 1413 1341 1381 1414 1343 1358 1374 1345 1355 1417 1348 1353 1349 1351 1350 1352 1356 1416 1418 1360 1370 1423 1424 1432 1362 1372 1421 1364 1369 1425 1431 1365 1367 1427 1429 1366 1368 1426 1428 1430 1513 1515 1516 1517 1526 1531 1548 1549 1550 1552 1553 1554 1555 1556 1557 1519 1520 1522 1573 1575 1590 1599 1605 1612 1577 1584 1601 1607 1579 1585 1592 1594 1609 1611 1580 1582 1586 1588 1595 1597 1602 1604 1624 1639 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1 3 26 28 164 166 1259 1262 1277 1279 1490 1686 1827 6 8 9 11 1263 1276 1540 1685 1828 10 12 13 15 1264 1275 1538 1539 1560 1561 1684 1829 14 16 17 19 1274 18 20 21 23 25 1265 1273 1683 1830 27 29 30 32 1491 31 33 35 37 1258 1492 34 36 38 39 41 43 1257 1493 40 42 44 46 1256 45 47 49 51 1255 1494 48 50 52 53 55 1254 62 64 66 72 74 1252 1496 63 65 76 78 1251 1497 68 70 71 73 75 1253 1495 77 79 81 83 1250 1498 80 82 84 86 88 1249 1499 85 87 89 91 1248 1500 90 92 94 96 1247 1501 1619 1848 93 95 97 98 100 1620 1847 99 101 102 104 1621 1846 110 112 113 115 1622 1845 114 116 117 119 1623 1843 1844 118 120 121 123 372 376 1640 1842 126 128 129 131 1641 1838 130 132 133 135 1642 1837 134 136 137 139 1643 1836 147 149 167 169 1644 1835 151 153 192 194 1266 1267 1272 1537 1551 1559 1682 1831 155 157 298 300 302 304 306 308 401 403 156 158 159 161 1281 1488 1688 1825 160 162 163 165 989 990 1260 1261 1278 1280 1489 1687 1826 172 174 175 177 294 296 1269 1523 1529 1534 1645 1658 1834 176 178 180 1270 1524 1528 1530 1533 1659 1833 179 181 182 184 186 195 197 1268 1271 1514 1525 1527 1532 1536 1558 1660 1681 1832 196 198 199 201 1661 1680 200 202 203 205 1662 1679 204 206 207 209 1663 1678 208 210 211 213 1117 1118 1664 1677 212 214 215 217 1114 1115 1116 1119 1120 1665 1676 216 218 219 220 222 369 371 1077 1078 1108 1109 1112 1113 1121 1122 1666 1675 221 223 224 226 1110 1111 1123 1124 1667 1674 225 227 229 231 266 268 1668 1673 233 234 265 271 273 1669 1672 235 264 1670 1671 274 288 289 291 1646 1657 275 287 1518 1521 1535 1647 1656 278 1648 1655 280 283 284 1650 1653 281 282 1651 1652 285 1649 1654 310 312 314 1691 1703 1824 313 315 316 318 1692 1704 317 319 321 323 991 993 1061 1168 1169 1170 1171 1221 1222 1288 1693 1705 326 328 330 424 1062 1063 1166 1167 1172 1173 1219 1220 1694 1706 329 331 332 334 1007 1064 1065 1164 1165 1174 1175 1217 1218 333 335 337 1066 1139 1140 1162 1163 1176 1177 1215 1216 336 338 339 341 344 1160 1161 1180 1181 1213 1214 1287 340 342 343 345 346 348 1067 1068 1089 1090 1096 1097 1135 1136 1143 1144 1150 1151 1154 1155 1156 1157 1182 1183 1186 1187 1188 1198 1199 1205 1206 1209 1210 1285 1286 355 357 358 360 1004 1069 1070 1085 1086 1100 1101 1131 1132 1196 1197 1284 359 361 363 1005 1006 1071 1072 1083 1084 1102 1103 1129 1130 1189 1190 1195 362 364 365 367 1073 1074 1081 1082 1104 1105 1127 1128 1191 1192 366 368 370 1075 1076 1079 1080 1106 1107 1125 1126 1193 1194 373 377 379 1625 1638 1841 378 380 382 1626 1637 1840 381 383 384 386 1627 1636 1839 385 387 389 1628 1635 388 390 392 394 395 1629 1631 1633 396 397 400 1632 405 406 409 1293 1484 1699 1820 407 408 411 412 414 447 450 1294 1483 1698 1819 413 415 417 968 1697 1818 416 418 419 421 427 1696 1708 420 422 423 425 992 1695 1707 429 431 432 434 1709 1816 433 435 436 438 975 983 984 985 986 994 995 1008 1009 1010 1012 1017 1710 1815 437 439 442 453 455 471 473 1298 440 441 443 445 1297 1481 444 446 448 449 451 452 967 969 970 971 972 973 974 976 977 978 979 980 981 982 987 988 1295 1296 1482 1817 454 456 457 459 474 475 477 1299 1480 1814 458 460 464 465 826 895 896 897 898 899 900 908 909 1711 1812 463 466 468 530 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 901 902 903 904 905 906 996 997 998 999 1001 1003 1011 1013 1014 1015 1016 1712 1811 476 478 480 825 827 1300 1479 1813 479 481 483 828 829 1301 1478 482 484 485 487 830 1302 1303 1477 489 491 493 1307 492 494 495 497 925 926 1308 1310 1385 496 498 504 907 914 915 916 924 927 929 930 931 932 933 934 935 936 937 1018 1387 501 506 508 691 693 928 938 939 940 941 942 943 1019 1715 1805 507 509 511 1714 1806 510 512 518 524 526 910 911 912 913 514 1808 515 521 1807 1809 525 527 533 1713 1810 535 537 538 540 684 686 687 689 1021 1024 1031 536 553 557 688 690 692 1020 1027 1028 1032 1048 1049 1057 1361 1363 1371 1420 1422 1716 1804 539 543 681 683 685 1039 1044 1045 1052 1053 1717 1803 541 545 547 548 674 676 678 680 682 1038 1433 1718 1719 1799 1801 542 544 677 679 1037 1434 1720 1800 1802 550 552 554 558 562 1033 561 563 564 566 638 842 945 946 1035 1342 1344 1357 1359 1373 1375 1415 1419 565 567 569 841 951 954 957 958 961 962 1336 1337 1376 1377 1412 568 570 572 815 817 840 949 950 965 571 575 579 816 839 966 1312 1313 1317 1319 1320 1335 1406 1463 576 577 1022 1023 1025 1026 1029 1030 1040 1041 1042 1043 1046 1047 1050 1051 1054 1055 1058 1059 1060 578 580 582 1000 1002 581 583 585 836 838 1322 1332 584 586 587 589 837 1780 594 614 616 618 1451 1779 1781 1787 596 599 602 1456 1783 1785 600 601 603 605 835 1326 1328 1392 1393 1395 1458 1470 1784 604 606 608 834 607 609 611 613 831 832 833 1471 1472 617 619 621 1450 1778 1788 620 622 624 640 642 847 1449 1776 1777 1789 623 625 628 846 1775 1790 626 627 629 630 632 845 631 633 635 844 1347 1354 634 636 843 1346 645 647 648 650 848 1448 1734 1791 649 651 653 849 1447 1735 1792 652 654 655 657 658 753 755 850 851 874 1439 1446 1727 1736 1737 1793 656 659 661 852 873 1726 1794 660 662 664 853 872 1725 1795 663 665 666 668 694 696 749 750 752 854 869 870 871 1437 1438 1723 1746 1759 1796 667 669 671 1436 1722 1797 670 672 673 675 1435 1721 1798 695 697 698 700 702 714 716 855 1745 1747 1760 699 701 703 705 707 856 859 1748 1761 704 706 708 710 711 713 857 1749 1762 1763 709 712 858 1750 1764 715 717 719 1744 1757 718 720 722 724 1743 1756 721 723 727 864 1753 1767 735 737 740 866 1741 1754 1769 739 741 743 865 1742 1755 1768 746 748 751 868 1724 1758 754 756 757 759 875 1440 1445 1728 1738 758 760 762 1441 1444 1729 1739 1771 761 763 765 767 1442 1443 1730 1740 1770 769 771 778 867 794 795 797 799 800 802 1731 1772 801 803 805 1732 1773 804 806 809 1733 1774 860 862 1751 1765 861 863 1752 1766 917 919 921 923 1224 1226 1228 1231 1233 1235 1239 1241 1243 1508 1510 1512 1541 1543 1545 1547 1562 1564 1566 1568 1570 1572 918 920 922 1223 1225 1227 1229 1230 1232 1234 1240 1242 1244 1507 1509 1511 1542 1544 1546 1563 1565 1567 1569 1571 1513 1515 1516 1517 1526 1531 1548 1549 1550 1552 1553 1554 1555 1556 1557 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 7.071067812E-01 7.071067812E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 7.071067812E-01 7.071067812E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 7.071067812E-01 7.071067812E-01 7.071067812E-01 7.071067812E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 7.071067812E-01 7.071067812E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 7.071067812E-01 7.071067812E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 7.071067812E-01 7.071067812E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 7.071067812E-01 7.071067812E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 7.071067812E-01 7.071067812E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 1.000000000E+00 1.000000000E+00 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 7.071067812E-01 7.071067812E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 1.543033500E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 7.071067812E-01 7.071067812E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 7.071067812E-01 7.071067812E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 7.071067812E-01 7.071067812E-01 7.071067812E-01 7.071067812E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.425356250E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 7.071067812E-01 7.071067812E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 2.182178902E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 7.071067812E-01 7.071067812E-01 1.000000000E+00 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 7.071067812E-01 7.071067812E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 2.500000000E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 2.294157339E-01 2.294157339E-01 2.294157339E-01 2.294157339E-01 2.294157339E-01 2.294157339E-01 2.294157339E-01 2.294157339E-01 2.294157339E-01 2.294157339E-01 2.294157339E-01 2.294157339E-01 2.294157339E-01 2.294157339E-01 2.294157339E-01 2.294157339E-01 2.294157339E-01 2.294157339E-01 2.294157339E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 1.000000000E+00 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 1.000000000E+00 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 1.000000000E+00 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 1.000000000E+00 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 7.071067812E-01 7.071067812E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 7.071067812E-01 7.071067812E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 1.961161351E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 2.041241452E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 7.071067812E-01 7.071067812E-01 7.071067812E-01 7.071067812E-01 7.071067812E-01 7.071067812E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 7.071067812E-01 7.071067812E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 2.886751346E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 2.773500981E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 5.000000000E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 3.333333333E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 5.773502692E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 3.535533906E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.414213562E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 1.561737619E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 3.779644730E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 2.236067978E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 4.472135955E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 2.357022604E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.581988897E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 2.672612419E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 1.524985703E-01 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.908708064E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 8.638684256E-02 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.270001270E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.072112535E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 1.889822365E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.015113446E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 3.162277660E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 1.386750491E-01 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 6.495698025E-02 -5.740131566E-01-2.420537407E-01 3.457910582E-02 7.814877913E-01-5.088415090E-01 -3.929029373E-01-2.383181751E-01-1.223796034E-01 7.085134937E-02 2.640823022E-01 3.929029373E-01 5.346056362E-01-5.725363468E-01-3.793915549E-01-2.000428199E-01 -7.587831101E-02 7.587831101E-02 2.552270461E-01 3.793915549E-01 5.173521205E-01 -6.979408366E-01-3.130469929E-01 1.488256196E-01 3.284427467E-01 5.337194634E-01 -5.687042300E-01-3.644349555E-01-1.973055491E-01-8.588594491E-02 6.267352738E-02 2.298029337E-01 3.783624060E-01 5.454918122E-01-4.350249032E-01-3.590853941E-01 -3.048428873E-01-2.289033781E-01-1.638123701E-01 1.290971658E-01 2.267336778E-01 3.026731871E-01 3.786126965E-01 4.545522056E-01-7.071067814E-01-1.631784880E-01 2.175713174E-01 6.527139520E-01-5.110634454E-01-3.960741700E-01-2.667112355E-01 -1.373483009E-01-7.985366335E-03 1.644985464E-01 2.794878216E-01 3.944770969E-01 4.807190533E-01-3.512295461E-01-3.288582375E-01-3.064869289E-01-2.953012745E-01 -2.617443115E-01 1.744962077E-01 2.527957880E-01 3.087240597E-01 3.646523313E-01 4.429519118E-01-5.175691006E-01-3.755531888E-01-2.761420505E-01-1.625293212E-01 5.049454637E-02 1.499056846E-01 2.493168228E-01 3.629295522E-01 5.191470550E-01 -5.828042066E-01-3.416438452E-01 2.210636645E-01 7.033843873E-01-6.390281219E-01 -2.954646155E-01-2.061381038E-02 3.229496960E-01 6.321568518E-01-4.864023832E-01 -3.748262094E-01-2.771970571E-01-1.795679049E-01 1.272665734E-01 2.806838126E-01 4.062070083E-01 5.038361603E-01-5.105183892E-01-3.888053959E-01-2.823065265E-01 -1.301652847E-01-8.452291210E-03 1.589030748E-01 2.958301925E-01 3.871149375E-01 4.783996826E-01-7.095242470E-01-1.689343445E-01 2.365080823E-01 6.419505092E-01 -4.710853076E-01-3.680646640E-01-2.959502132E-01-2.135336981E-01-8.990892552E-02 -7.492410462E-03 9.552823338E-02 1.985488772E-01 3.118715853E-01 3.839860361E-01 4.561004869E-01-5.713375803E-01-3.686048904E-01-2.395931788E-01-5.529073356E-02 9.215122259E-02 2.580234233E-01 3.686048904E-01 5.160468467E-01-5.432132172E-01 -3.744479458E-01-2.197464471E-01-1.072362662E-01 7.559277778E-02 2.443580491E-01 3.849957753E-01 5.396972739E-01-5.546845586E-01-3.893127647E-01-2.239409709E-01 -7.235015983E-02 9.302163407E-02 2.446124451E-01 3.824222734E-01 5.202321018E-01 -4.630557655E-01-3.714910660E-01-2.799263667E-01-2.014423387E-01-1.229583106E-01 7.325175950E-02 2.040584729E-01 2.956231723E-01 3.871878716E-01 4.787525711E-01 -6.459422415E-01-2.348880879E-01 1.761660659E-01 7.046642635E-01-5.783469319E-01 -3.521490208E-01-2.082048955E-01-6.426077019E-02 5.911990861E-02 2.236274803E-01 3.675716056E-01 5.526426240E-01-6.953920906E-01-1.896523883E-01 2.317973635E-01 6.532471155E-01-6.084849344E-01-3.928193881E-01-2.079632055E-01-2.310702283E-02 1.463444779E-01 2.695819330E-01 3.620100244E-01 4.544381158E-01-4.720180397E-01 -3.559480301E-01-2.979130250E-01-2.166640183E-01-1.238080105E-01-5.416600458E-02 3.869000324E-03 1.779740150E-01 2.476160209E-01 3.056510257E-01 3.636860308E-01 4.217210356E-01-5.155440953E-01-3.127070743E-01-2.450947339E-01-1.605793084E-01 2.535462764E-02 2.281916488E-01 3.972224998E-01 5.831564358E-01-7.095242473E-01 -1.689343446E-01 2.365080824E-01 6.419505094E-01-7.206576831E-01-1.752951121E-01 2.921585202E-01 6.037942751E-01-5.532177706E-01-3.829969181E-01-2.506029217E-01 -1.182089254E-01 1.844059235E-01 2.789730638E-01 3.735402041E-01 4.681073443E-01 -7.087321464E-01-1.880309777E-01 2.748145058E-01 6.219486183E-01-7.046642635E-01 -1.761660659E-01 2.348880879E-01 6.459422415E-01-5.255787283E-01-3.828569185E-01 -2.605239386E-01-1.381909587E-01-1.585797887E-02 1.676414909E-01 2.899744708E-01 3.919186207E-01 4.734739406E-01-6.324555321E-01-3.162277660E-01 0.000000000E+00 3.162277660E-01 6.324555321E-01-6.425895644E-01-3.365945337E-01 3.059950307E-02 3.671940368E-01 5.813905583E-01-5.498125957E-01-3.748722245E-01-1.999318530E-01 6.815858632E-03 1.658525599E-01 3.407929314E-01 6.111553235E-01-5.170681280E-01 -3.648471370E-01-2.126261461E-01-6.040515513E-02 1.256427227E-01 4.639115915E-01 5.653922521E-01-5.969620060E-01-3.411211463E-01-4.264014330E-02 3.411211463E-01 6.396021494E-01-5.358070089E-01-3.813573017E-01-2.440686731E-01-1.239411230E-01 1.334750556E-02 1.334750556E-01 2.364415270E-01 3.737301556E-01 5.281798626E-01 -5.561397478E-01-3.716141173E-01-2.280941823E-01-1.050770952E-01 9.995138327E-02 2.639741661E-01 3.869912532E-01 5.100083401E-01-6.146789777E-01-4.279410605E-01 -7.780746555E-03 1.789571707E-01 3.190106087E-01 5.524330053E-01-7.436490464E-01 -1.368679227E-02 9.580754584E-02 6.615282928E-01-6.320168708E-01-3.204592584E-01 -8.901646066E-03 3.471641966E-01 6.142135786E-01-4.681454353E-01-3.541621988E-01 -2.564622819E-01-1.587623650E-01 2.035414935E-02 2.157539831E-01 4.111538168E-01 5.902703314E-01-5.631859205E-01-4.054938628E-01-1.689557762E-01-1.126371841E-02 2.252743681E-01 3.829664260E-01 5.406584837E-01-4.429910821E-01-3.793276931E-01 -2.838326095E-01-2.201692205E-01-1.405899842E-01-4.509490059E-02 3.448433573E-02 1.299794193E-01 2.095586556E-01 2.891378919E-01 3.846329753E-01 4.642122119E-01 -4.281149878E-01-3.844297849E-01-3.232705010E-01-2.795852981E-01-1.135815274E-01 -7.863336510E-02-4.368520285E-02-3.814220211E-12 3.494816225E-02 8.737040565E-02 1.310556085E-01 1.572667302E-01 1.922148925E-01 2.708482576E-01 3.582186632E-01 4.193779472E-01-5.132347461E-01-3.466983978E-01-2.967374933E-01-2.134693192E-01 -9.689387536E-02 3.633520326E-02 1.529106471E-01 1.862179167E-01 2.694860909E-01 3.694078998E-01 4.526760742E-01-6.396021490E-01-3.731012536E-01-5.330017909E-02 0.000000000E+00 1.599005372E-01 3.731012536E-01 5.330017909E-01-3.433942596E-01 -3.042981389E-01-2.652020184E-01-2.261058977E-01-1.967838072E-01-1.674617167E-01 -1.381396262E-01-4.039932465E-02-1.303204023E-03 8.666306739E-02 1.550812785E-01 2.332735198E-01 3.407878516E-01 3.994320325E-01 4.678502435E-01-5.986927857E-01 -4.141899776E-01-2.296871694E-01 1.920335351E-01 2.711061671E-01 3.501787992E-01 4.292514313E-01-4.995562352E-01-3.813513795E-01-3.306921557E-01-1.280552603E-01 -9.428244439E-02-4.362322054E-02 7.458163512E-02 1.252408590E-01 1.927864907E-01 2.603321226E-01 3.785369782E-01 4.460826098E-01-5.369652087E-01-4.029581846E-01 -2.895676256E-01-1.555606015E-01-7.309474045E-02 5.060405108E-02 1.330699121E-01 2.567687037E-01 2.980016343E-01 3.289263322E-01 3.907757280E-01-6.443170192E-01 -2.941975823E-01-1.629027935E-01 1.726283334E-01 3.914529816E-01 5.373360800E-01 -5.478841452E-01-4.288610378E-01-2.701635613E-01 1.398049198E-01 2.852776067E-01 3.646263450E-01 4.571998728E-01-4.174538088E-01-3.687508644E-01-2.956964479E-01 -8.870893436E-02 1.182785791E-01 4.104962453E-01 6.418352308E-01-7.132923260E-01 -1.802826759E-01 2.743432024E-01 6.192317995E-01-4.963543015E-01-3.033276286E-01 -1.915753444E-01 1.161062693E-02 1.161062693E-02 2.046372997E-01 7.633987209E-01 -5.422997814E-01-2.662198928E-01-1.084599563E-01 9.859996028E-03 1.281799484E-01 7.789396861E-01-6.524016431E-01-3.249881792E-01-1.940227936E-01-1.067125365E-01 2.425284920E-02 1.988733634E-01 2.861836205E-01 3.516663133E-01 4.171490061E-01 -4.634170388E-01-3.934672970E-01-2.535678136E-01-1.661306365E-01 4.371858857E-02 2.885426844E-01 4.109547324E-01 5.333667802E-01-5.307215336E-01-2.719947860E-01 8.027163199E-01-7.558772982E-01-1.316036367E-01 3.374452224E-03 3.408196746E-01 5.432868081E-01-5.814571896E-01-4.237738838E-01-2.858009914E-01 8.869685940E-02 2.266697518E-01 2.266697518E-01 3.055114046E-01 4.434842970E-01-5.228965828E-01 -4.251153876E-01-2.714592233E-01-1.457405436E-01 4.982184716E-02 5.447809456E-02 1.755405269E-01 2.593529801E-01 3.571341755E-01 4.688841130E-01-4.550760723E-01 -3.613839397E-01-3.078455782E-01-1.606150843E-01-9.369213252E-02-2.676918072E-02 2.275380361E-01 3.078455782E-01 3.747685301E-01 4.952298434E-01-4.733470869E-01 -3.859215035E-01-2.984959202E-01-1.860915988E-01-8.617664642E-02 1.011638893E-01 2.135682107E-01 2.635256869E-01 3.634406392E-01 4.883343298E-01-3.929822449E-01 -3.103808813E-01-2.736691641E-01-2.002457299E-01-1.451781542E-01-1.360002249E-01 -7.509214869E-03 2.770065931E-01 2.861845223E-01 3.320741689E-01 5.707003303E-01 -4.460439606E-01-3.373631986E-01-2.830228176E-01-2.105689763E-01 4.301946827E-02 2.422675319E-01 4.234021351E-01 5.683098178E-01-3.612105510E-01-3.493351355E-01 -2.424563972E-01-2.305809819E-01-1.474530742E-01-7.620058199E-02-6.432516660E-02 6.927325637E-03 2.444356331E-01 2.563110485E-01 3.988160331E-01 5.650718483E-01 -7.056919323E-01-3.320903210E-01-5.811580616E-02-3.320903210E-02 1.660451605E-02 1.411383864E-01 1.660451605E-01 3.154858049E-01 4.898332234E-01-7.317917226E-01 5.227083734E-02 6.795208854E-01-8.070833995E-01 2.964796161E-01 5.106037834E-01 -4.281535139E-01-3.880141220E-01 8.161676358E-01-3.982228196E-01-3.819133527E-01 -2.840565506E-01-2.025092154E-01-1.943544820E-01-8.834294634E-02 5.028752329E-02 9.921592434E-02 2.378463940E-01 3.112389956E-01 4.090957977E-01 4.417147316E-01 -5.322972941E-01-3.125100244E-01-1.614062763E-01-1.339328676E-01-1.201961632E-01 3.056416721E-01 4.017986027E-01 5.529023506E-01-4.942380244E-01-4.167104912E-01 -3.488738995E-01-8.721847489E-02 9.690941657E-03 7.752753323E-02 1.550550665E-01 2.713463664E-01 3.876376662E-01 4.457833162E-01-4.801691721E-01-3.949514351E-01 -2.032115268E-01-1.925593096E-01-1.819070925E-01-8.603713834E-02 9.832815811E-03 1.163549871E-01 1.376594214E-01 1.483116385E-01 2.761382440E-01 3.933126323E-01 4.572259351E-01-7.418707522E-01-9.429052726E-02 2.045926535E-01 6.315686259E-01 -4.433319425E-01-3.670269611E-01-3.517659647E-01-2.220474962E-01-9.232902762E-02 1.671079095E-01 2.434128910E-01 2.510433891E-01 3.578703633E-01 4.570668391E-01 -7.187795363E-01-2.580234233E-01-7.372097810E-02 2.027326897E-01 3.501746459E-01 4.976166021E-01-4.854581869E-01-3.309942184E-01-2.280182393E-01-7.355427078E-02 1.066536926E-01 3.126056507E-01 6.987655722E-01-5.491705831E-01-4.697356170E-01 -2.016426063E-01-1.420663817E-01-9.241952790E-02-2.291393254E-02 5.652103360E-02 8.630914590E-02 1.458853705E-01 2.054615951E-01 2.551084490E-01 3.246140443E-01 4.040490105E-01-6.348441880E-01-3.625249652E-01-1.582855482E-01-1.582855482E-01 -5.105985421E-03 9.701372307E-02 1.991334316E-01 2.501932858E-01 3.352930429E-01 4.374127513E-01-7.774815829E-01 1.727736851E-01 6.047078979E-01-7.217537409E-01 -1.365480050E-01 2.145754365E-01 6.437263094E-01-4.049312450E-01-3.536741254E-01 -3.024170059E-01-1.896513426E-01-1.896513426E-01-1.178913751E-01-6.663425550E-02 -5.125711967E-03 4.613140766E-02 2.306570383E-01 2.819141579E-01 2.819141579E-01 3.536741254E-01 4.356855167E-01-4.912241466E-01-3.426185224E-01-2.683157103E-01 -1.940128982E-01-1.320938881E-01-7.017487807E-02 7.843074608E-02 1.403497561E-01 1.403497561E-01 2.641877763E-01 3.632581923E-01 5.118638165E-01-4.810537795E-01 -3.353499905E-01-1.734568916E-01-1.734568916E-01 1.017613764E-01 4.255475741E-01 6.360086028E-01-3.169550924E-01-3.079506863E-01-2.989462802E-01-2.899418743E-01 -1.728845958E-01-6.483172344E-02 1.872916455E-01 2.863401119E-01 4.574238266E-01 5.204546687E-01-4.106444632E-01-3.470490818E-01-2.325773951E-01-1.562629373E-01 7.268043598E-02 3.779382670E-01 6.959151745E-01-6.783738520E-01-1.995217212E-01 1.995217212E-01 6.783738520E-01-5.387500496E-01-3.587917868E-01-2.575652638E-01 -1.563387409E-01-7.760700089E-02 3.486691345E-02 2.373199593E-01 3.048043079E-01 3.610412650E-01 4.510203964E-01-5.582423491E-01-3.695407100E-01-2.044267757E-01 1.965642074E-01 3.380904368E-01 5.975551908E-01-6.644580563E-01-1.416058153E-01 7.624928515E-02 7.298145864E-01-5.713182295E-01-4.085589663E-01-1.760457335E-01 3.321617612E-02 1.959754391E-01 4.052373487E-01 5.214939651E-01-6.376825262E-01 -2.732925112E-01 2.277437593E-01 6.832312781E-01-4.785094745E-01-4.098786336E-01 -2.726169516E-01-1.181975594E-01-1.525129799E-02 8.769496347E-02 2.935874864E-01 4.136914582E-01 4.994800093E-01-3.801429607E-01-3.484643806E-01-2.724357885E-01 -2.344214924E-01 2.027429123E-01 3.928143927E-01 6.399073172E-01-5.020717122E-01 -3.741553525E-01-2.206557207E-01-1.183226328E-01-1.598954498E-02 2.654264466E-01 4.189260784E-01 5.468424382E-01-4.472657843E-01-3.265314622E-01-2.661643011E-01 -1.756135595E-01-1.756135595E-01-5.487923734E-02 6.585508481E-02 1.564058264E-01 2.771401486E-01 4.280580513E-01 5.186087929E-01-6.414043565E-01-2.613128859E-01 2.138014522E-01 6.889157902E-01-4.180379781E-01-3.663811112E-01-3.018100277E-01 -2.501531608E-01-1.855820773E-01-1.855820773E-01-1.210109937E-01 8.131173488E-03 2.535012911E-02 3.611197638E-02 9.853069051E-02 1.329686018E-01 1.437304490E-01 1.889302075E-01 2.535012911E-01 2.535012911E-01 3.051581580E-01 3.826434582E-01 -6.963471324E-01-2.321157108E-01 3.413466335E-01 5.871162097E-01-6.443833370E-01 -3.411441196E-01 3.790490218E-02 3.790490218E-01 5.685735327E-01-4.599525093E-01 -3.716079724E-01-2.706427874E-01-1.949188987E-01-1.191950100E-01 2.594244335E-01 3.099070259E-01 3.856309146E-01 4.613548033E-01-6.943808910E-01-2.479931754E-02 7.191802085E-01-6.658858077E-01-3.430320827E-01 1.008917890E-01 3.632104405E-01 5.448156608E-01-7.071067811E-01 0.000000000E+00 7.071067811E-01-6.882973783E-01 -3.622617781E-02 7.245235562E-01-4.165577428E-01-3.868881561E-01-3.166251801E-01 -2.881693492E-01-2.212104864E-01-1.922152084E-01-1.212104928E-01-9.936288797E-02 -9.288952362E-02-9.052944286E-02-8.816936209E-02-8.466295638E-02-8.250516826E-02 -7.818959200E-02-7.083962619E-02-3.092054582E-02-2.815587979E-02-2.485176671E-02 -2.040132869E-02-1.770409354E-02-1.507428925E-02-1.150045267E-02-7.319738171E-03 -4.689933891E-03-2.329853126E-03 1.311414340E-03 3.132048074E-03 5.964144991E-03 8.256794877E-03 1.041458301E-02 1.446043574E-02 1.709024003E-02 1.972004431E-02 6.779826104E-02 6.968632564E-02 7.197897553E-02 7.346245487E-02 7.562024299E-02 7.899178695E-02 8.128443684E-02 8.391424111E-02 8.586973661E-02 9.018531286E-02 9.092705253E-02 9.166879220E-02 9.200594660E-02 9.551235231E-02 1.008393917E-01 1.027948872E-01 1.094031134E-01 1.121003485E-01 1.139209822E-01 1.659101900E-01 1.679331163E-01 1.695514574E-01 1.723161235E-01 1.737996028E-01 1.751482204E-01 -2.150769621E-01-2.100485359E-01-2.086599328E-01-2.039260587E-01-1.849905624E-01 -1.795413473E-01-1.735240674E-01-1.546096105E-01-1.492235137E-01-1.452049807E-01 -1.240813825E-01-1.184007336E-01-1.130356763E-01-9.410017997E-02-8.999748909E-02 -8.252848778E-02-6.327739983E-02-5.843832855E-02-5.246312746E-02-3.308580288E-02 -2.814153440E-02-2.204009669E-02-2.452377698E-03 1.734470937E-03 7.309922635E-03 2.771817980E-02 5.769938234E-02 6.868197022E-02 8.799617648E-02 9.788471346E-02 3.909009995E-01 1.274451272E-01 1.530080472E-01 1.561639633E-01 1.809694635E-01 1.875127295E-01 2.098145362E-01 2.178095236E-01 2.391435161E-01 2.442140213E-01 2.508414450E-01-3.180535014E-01-3.177132622E-01-3.172814199E-01-3.169542667E-01 -3.166532858E-01-3.163523047E-01-3.160382377E-01 4.091208375E-02 4.129158148E-02 4.600258766E-02 5.771467249E-02 6.245185091E-02 6.383898053E-02 7.594364920E-02 8.321953652E-02 9.498396585E-02 1.014092549E-01 1.134615790E-01 1.212478253E-01 1.321747424E-01 1.393459408E-01 1.544342467E-01 1.598257315E-01 1.697581029E-01 1.775312631E-01 1.888245918E-01 1.946740912E-01-1.194911538E-01-1.172497071E-01 -1.140942725E-01-1.131367613E-01-1.090891003E-01-8.408500085E-02-7.992853175E-02 -7.666428899E-02-7.581558589E-02-5.823219829E-02-5.736173355E-02-4.476175656E-02 -2.639495070E-02 9.457835859E-01-1.370792722E-02-1.294627058E-02 4.680640254E-03 5.899290880E-03 1.595315854E-02 1.667129194E-02 3.588680090E-02 3.784534655E-02 4.023912457E-02-3.351790296E-01-3.330796727E-01-3.005396407E-01-1.826607503E-01 -1.501732022E-01-2.883037297E-02 3.079852005E-03 1.190168371E-01 1.322427857E-01 1.516093531E-01 2.836064186E-01-2.575553080E-01-2.274295363E-01-1.068214821E-01 -7.459635354E-02 4.569679721E-02 4.837347727E-02 7.115149971E-02 1.967980106E-01 2.217278738E-01 3.481616436E-01 3.754007994E-01-2.866227940E-01-2.819083511E-01 -1.786122252E-01-1.719046845E-01-1.600994130E-01-6.765033848E-02-4.817930623E-02 4.147176559E-02 1.504788833E-01 1.712530949E-01 2.621690172E-01 2.623223324E-01 2.624756477E-01 2.626289628E-01 2.628972645E-01-2.327708248E-01-2.302027949E-01 -2.206589228E-01-2.142580126E-01-1.143731502E-01-1.045609764E-01-1.410499975E-02 -1.130699709E-02 5.749320572E-04 7.320801505E-03 9.555370759E-02 1.175544409E-01 2.164044256E-01 2.241085152E-01-2.404856193E-01-2.361232984E-01-2.303333089E-01 -2.249002365E-01-2.229966783E-01-1.867101001E-01-1.739800547E-01-1.662468495E-01 -1.289291773E-01-1.258755527E-01-1.096953080E-01-1.077520923E-01-7.194140375E-02 -7.071202240E-02-6.904640895E-02-6.642901645E-02-6.599278436E-02-6.190806571E-02 -5.869581125E-02-5.369897100E-02-5.286616429E-02-4.743309193E-02-4.556919119E-02 -1.055165182E-02 5.113045860E-03 4.762584564E-02 4.964837622E-02 6.368711793E-02 6.578896347E-02 9.973575133E-02 1.021945140E-01 1.279718646E-01 1.293598758E-01 1.581908510E-01 1.610858458E-01 1.715554159E-01 1.756401345E-01 2.132750664E-01 2.264810014E-01 2.332227700E-01 2.348487260E-01 2.744665310E-01 2.889811623E-01 -3.252662345E-02-3.227969374E-02-3.224228015E-02-3.203276404E-02-3.198038501E-02 -3.184569608E-02-3.139673300E-02-3.135183668E-02-3.082804641E-02-3.078315009E-02 -3.058859943E-02-3.055118583E-02-3.031922157E-02-3.026684253E-02-2.999746468E-02 -2.996005109E-02-2.981039672E-02-2.974305226E-02-2.954850159E-02-2.950360528E-02 -2.924171015E-02-2.921177927E-02-2.906212490E-02-2.901722859E-02-2.884512607E-02 -2.880771249E-02-2.868050627E-02-2.865805812E-02-2.855330007E-02-2.852336919E-02 -2.830637036E-02-2.826147405E-02-2.750571951E-02-2.675744769E-02-2.263446994E-02 -2.247733286E-02-2.241747111E-02-2.229026491E-02-2.227529947E-02-2.214061054E-02 -2.209571423E-02-2.191612899E-02-2.189368084E-02-2.172906103E-02-2.169164745E-02 -2.151206220E-02-2.147464862E-02-2.139233871E-02-2.135492513E-02-2.107058183E-02 -2.104065096E-02-2.092092747E-02-2.089847931E-02-2.071141136E-02-2.067399777E-02 -2.063658417E-02-2.033727545E-02-2.030734458E-02-2.014272477E-02-2.010531118E-02 -1.992572594E-02-1.989579507E-02-1.977607158E-02-1.974614071E-02-1.959648635E-02 -1.957403818E-02-1.922235043E-02-1.918493684E-02-1.906521335E-02-1.903528247E-02 -1.882576637E-02-1.881080093E-02-1.868359471E-02-1.866114656E-02-1.842169958E-02 -1.839925143E-02-1.821218347E-02-1.818973531E-02-1.800266736E-02-1.798021921E-02 -1.783056484E-02-1.780063397E-02-1.765097960E-02-1.760608329E-02-1.742649806E-02 -1.646871012E-02-1.598981615E-02-1.196411375E-02-1.162739143E-02-1.155256425E-02 -1.153011610E-02-1.132808270E-02-1.129066911E-02-1.121584193E-02-1.119339378E-02 -1.074443068E-02-1.072198252E-02-1.060974175E-02-1.057981088E-02-1.054239729E-02 -1.051994913E-02-1.037029477E-02-1.034784661E-02-1.025057128E-02-1.022812312E-02 -1.003357245E-02-1.000364157E-02-9.794125463E-03-9.771677308E-03-9.412506833E-03 -9.390058679E-03-9.210473441E-03-9.188025286E-03-8.993474612E-03-8.971026458E-03 -8.866268402E-03-8.843820248E-03-8.701648602E-03-8.671717729E-03-8.619338701E-03 -8.596890546E-03-8.484649773E-03-8.454718900E-03-8.364926281E-03-8.334995408E-03 -8.260168225E-03-8.207789198E-03-7.908480470E-03-7.541827276E-03-7.519379121E-03 -7.377207475E-03-7.354759321E-03-7.175174083E-03-7.152725928E-03-6.905796226E-03 -6.756141862E-03-6.733693707E-03-6.546625752E-03-6.524177596E-03-6.404454105E-03 -5.566389663E-03-4.892945022E-03-8.896907701E-04-5.828993226E-04-5.155548586E-04 -4.856239857E-04-3.883486487E-04-3.659004941E-04-2.761078753E-04-2.536597206E-04 -1.264535108E-04-1.040053560E-04-5.910904667E-05-2.917817381E-05 1.129934725E-04 1.354416273E-04 2.476824008E-04 2.776132736E-04 4.646812293E-04 4.871293841E-04 7.190936492E-04 7.340590857E-04 3.666090497E-01 3.668484966E-01 3.669981510E-01 3.671627708E-01 3.673348733E-01 3.675219413E-01 3.676865611E-01-2.071835602E-01 -2.070854095E-01-2.069872587E-01-2.068945607E-01-2.068018628E-01-2.066928064E-01 -1.184716219E-01-1.128824809E-01-1.052049094E-01-1.050794946E-01-1.049213628E-01 -1.048068535E-01-1.047087027E-01-1.046160048E-01-1.045178540E-01-9.705839547E-02 -9.476821079E-02-7.281515508E-02-7.262430636E-02-7.247162738E-02-7.231349559E-02 -7.219898636E-02-7.210083559E-02-7.198087353E-02-7.162644019E-02-7.146285558E-02 -7.132108224E-02-7.115204480E-02-7.103208274E-02-7.084123403E-02-7.075944171E-02 -6.598277087E-02-6.588462010E-02-6.553563958E-02-6.533933804E-02-6.507760265E-02 -6.478860316E-02-6.470135803E-02-6.433601905E-02-6.411790623E-02-6.392160469E-02 -6.381800109E-02-6.356717135E-02-6.333270006E-02-6.320183237E-02-6.306551185E-02 -6.291283288E-02-6.269472005E-02-5.800529434E-02-5.791259639E-02-5.781444562E-02 -5.760178562E-02-5.542065738E-02-5.057855268E-02-4.864280137E-02-4.823383983E-02 -4.778670854E-02-4.768855777E-02-4.723597366E-02-4.667433314E-02-4.233934076E-02 -4.131966331E-02-4.117243716E-02-4.103066382E-02-4.092160741E-02-4.075256997E-02 -4.039268381E-02-4.026181611E-02-4.006551457E-02-3.992374124E-02-3.975470380E-02 -3.960747764E-02-3.946025149E-02-3.438367551E-02-3.392018576E-02-3.372933704E-02 -3.339671498E-02-3.289505549E-02-3.274782933E-02-3.241520728E-02-3.228433958E-02 -3.178268008E-02-3.145005803E-02-2.653706667E-02-2.614446359E-02-2.577912461E-02 -2.538652153E-02-2.509752203E-02-2.492848460E-02-2.463948510E-02-1.863592963E-02 -1.835783578E-02-1.811791167E-02-1.794342141E-02-1.768713884E-02-1.735996961E-02 -1.700553627E-02-1.682014037E-02-1.671108396E-02-1.656931062E-02-1.639482036E-02 -1.624759420E-02-1.618216036E-02-1.596404753E-02-1.580046292E-02-1.571321779E-02 -1.529880342E-02-1.098016951E-02-1.062573617E-02-1.022222744E-02-9.933227950E-03 -9.529719233E-03-9.317059224E-03-8.935361783E-03-8.788135627E-03-8.346457159E-03 -8.073816130E-03-7.970212535E-03-2.893636562E-03-2.599184249E-03-2.097524754E-03 -1.955751419E-03-1.846695007E-03-1.704921672E-03-1.214167818E-03-1.017866277E-03 -7.452252466E-04-5.053011400E-04-3.744334462E-04-2.053960077E-04 4.882085610E-03 5.051123048E-03 5.209254845E-03 5.340122540E-03 5.541876902E-03 5.852687676E-03 6.048989218E-03 6.196215374E-03 6.321630247E-03 6.430686660E-03 6.517931789E-03 6.676063586E-03 6.823289742E-03 7.194081543E-03 7.488533855E-03 7.668476935E-03 7.995646171E-03 1.252148727E-02 1.269052471E-02 1.296316574E-02 1.313765599E-02 1.328488215E-02 1.342665549E-02 1.365567395E-02 1.406463550E-02 1.429365396E-02 1.438635191E-02 1.452812524E-02 1.480076628E-02 1.501342628E-02 1.520427500E-02 1.567867039E-02 1.650204630E-02 2.056985047E-02 2.066254842E-02 2.076069919E-02 2.097881201E-02 2.116420791E-02 2.131143407E-02 2.155681099E-02 2.171494279E-02 2.184581049E-02 2.200394229E-02 2.218388536E-02 2.240745101E-02 2.265282794E-02 2.278914845E-02 2.287094076E-02 2.299090281E-02 2.318175154E-02 2.341622282E-02 2.898355265E-02 2.914713727E-02 2.928345778E-02 2.944158958E-02 2.963789112E-02 2.979602292E-02 2.998687164E-02 3.015590908E-02 3.031949370E-02 3.062485165E-02 3.080479473E-02 3.094111524E-02 3.114832243E-02 3.613765328E-02 3.624125686E-02 3.639938866E-02 3.652480353E-02 3.664476559E-02 3.678108610E-02 3.692285944E-02 3.709734970E-02 3.723912304E-02 3.778985791E-02 3.792072561E-02 3.822063075E-02 3.837330972E-02 3.857506408E-02 4.398426211E-02 4.443684622E-02 4.452409135E-02 4.462224212E-02 4.472039289E-02 4.558739137E-02 4.570190060E-02 4.580550419E-02 4.588184368E-02 4.610540932E-02 4.623627702E-02 4.650346523E-02 4.659616318E-02 4.674884216E-02 5.204353095E-02 5.226164378E-02 5.246885096E-02 5.262698276E-02 5.287781251E-02 5.305230276E-02 5.313409507E-02 5.331403816E-02 5.348307559E-02 5.359213200E-02 5.386477304E-02 5.412105561E-02 5.419194227E-02 5.435007407E-02 5.457363971E-02 5.466633766E-02 5.481356382E-02 5.503712946E-02 5.530977049E-02 5.559876999E-02 5.957932902E-02 5.991195107E-02 6.010825261E-02 6.031545980E-02 6.050085571E-02 6.067534596E-02 6.081166648E-02 6.092072289E-02 6.104613776E-02 6.124789212E-02 6.136240136E-02 6.153689162E-02 6.163504239E-02 6.178226854E-02 6.190768341E-02 6.785671069E-02 6.810754044E-02 6.828203070E-02 6.839653993E-02 6.850559634E-02 6.863101121E-02 6.875642608E-02 6.896363327E-02 6.936714199E-02 6.948165123E-02 6.955253789E-02 6.967795277E-02 6.978155636E-02 6.991242406E-02 7.006510303E-02 9.123840543E-02 9.923769325E-02 1.015278778E-01 1.069152646E-01 1.226193879E-01 1.227393500E-01 1.228320480E-01 1.229301987E-01 1.230119910E-01 1.230992362E-01 1.232082925E-01-4.954589850E-01-4.936227212E-01-3.421921557E-01 -2.627431361E-01-1.615037848E-01-7.703564396E-02-7.519938004E-02 1.538964057E-02 2.028634439E-02 2.212260832E-02 3.375227988E-02 4.268876434E-02 4.538195145E-02 5.211491920E-02 5.333909515E-02 5.578744706E-02 5.884788694E-02 6.129623885E-02 6.435667874E-02 6.680503065E-02 6.925338256E-02 7.268107522E-02 7.965887817E-02 2.030558144E-01 2.094215293E-01 2.210512009E-01 2.283962567E-01 2.320687845E-01 -2.877659483E-01-2.868953123E-01-2.859577042E-01-2.853214701E-01-2.846852361E-01 -2.839820300E-01-2.833792820E-01-4.708769769E-03 1.019250131E-02 3.617763920E-02 3.969366946E-02 5.506374457E-02 8.654058687E-02 1.382764606E-01 1.515034316E-01 2.009287712E-01 2.313675474E-01 2.323721274E-01 2.414133481E-01 2.794869329E-01 2.996789923E-01-2.251706356E-01-2.242727905E-01-2.232627147E-01-2.202698976E-01 -2.194094627E-01-2.186612585E-01-2.176885929E-01-2.170526193E-01-2.161547742E-01 -2.153691597E-01-2.137231103E-01-1.102838703E-01-1.082263085E-01-6.969378874E-02 -6.333405243E-02-6.127649072E-02-4.967932454E-02-4.762176281E-02-4.144907759E-02 -3.957856692E-02-1.900294956E-02-9.650396205E-03-7.779885531E-03 2.320872086E-03 8.493557297E-03 1.017701690E-02 3.898288122E-02 4.365915790E-02 4.534261750E-02 5.656568150E-02 5.881029432E-02 6.180311142E-02 6.367362207E-02 6.872400088E-02 7.059451154E-02 9.322769066E-02 9.921332479E-02 1.040766525E-01 1.095011335E-01 1.115586952E-01 1.192277890E-01 1.212853507E-01 1.424221213E-01 1.474725001E-01 1.493430108E-01 1.560768492E-01 1.590696662E-01 1.736596495E-01 1.996597478E-01 2.017173095E-01 2.101346075E-01 2.118180671E-01-2.112396164E-01-1.933563293E-01 -1.774191645E-01-1.716728436E-01-1.016387351E-01-9.745720175E-02-9.712846483E-02 -9.686547533E-02-9.591871307E-02-9.562942460E-02-9.519549189E-02-9.489305394E-02 -9.464321389E-02-9.436707491E-02-9.384109587E-02-9.347291055E-02-9.305212733E-02 -8.307167512E-02-8.272978876E-02-8.240105187E-02-8.225640763E-02-8.188822230E-02 -8.138854221E-02-8.087571266E-02-8.062587262E-02-8.036288311E-02-8.023138834E-02 -7.944241980E-02-7.861400282E-02-7.819321957E-02-7.715441098E-02-7.657583405E-02 -7.594465920E-02-7.497159800E-02-7.453766529E-02-7.418262944E-02-7.380129464E-02 -7.299917661E-02-6.379454350E-02-6.288722966E-02-6.265053910E-02-6.228235378E-02 -6.190101898E-02-6.150653469E-02-6.096740618E-02-6.061237033E-02-6.024418502E-02 -5.995489654E-02-5.962615965E-02-5.931057222E-02-5.904758270E-02-5.870569634E-02 -5.835066049E-02-5.815341835E-02-5.792987727E-02-5.748279507E-02-5.721980557E-02 -4.539842675E-02-4.512228776E-02-4.460945819E-02-4.441221607E-02-4.424127287E-02 -4.391253598E-02-4.353120118E-02-4.336025799E-02-4.308411900E-02-4.282112948E-02 -4.246609363E-02-4.183491880E-02-4.129579027E-02-4.079611018E-02-4.046737329E-02 -3.998084269E-02-3.979675003E-02-3.941541523E-02-3.899463201E-02-3.848180243E-02 -3.815306554E-02-3.779802969E-02-3.753504017E-02-3.725890118E-02-3.677237057E-02 -3.640418525E-02-3.594395359E-02-3.569411355E-02-3.545742299E-02-3.511553663E-02 -2.622649092E-02-2.593720245E-02-2.567421293E-02-2.543752236E-02-2.517453285E-02 -2.483264648E-02-2.437241482E-02-2.403052846E-02-2.332045676E-02-2.303116829E-02 -2.212385444E-02-2.172937017E-02-2.125598904E-02-2.051961839E-02-2.029607731E-02 -1.933616556E-02-1.870499072E-02-1.792917165E-02-7.317544616E-03-7.212348808E-03 -6.620622393E-03-6.305034974E-03-5.949999125E-03-5.673860132E-03-5.331973759E-03 -5.003236860E-03-4.753396821E-03-4.477257827E-03-4.109072501E-03-3.767186129E-03 -3.070263907E-03-2.846722818E-03-2.215547977E-03-1.203038335E-03-8.480024852E-04 -5.061161129E-04 1.142045851E-02 1.164399960E-02 1.186754069E-02 1.215682916E-02 1.286690085E-02 1.314303984E-02 1.383996207E-02 1.420814739E-02 1.451058534E-02 1.474727590E-02 1.501026542E-02 1.545734760E-02 1.577293502E-02 1.606222349E-02 1.654875410E-02 1.660135200E-02 1.708788261E-02 1.810039225E-02 1.836338177E-02 1.874471657E-02 1.911290188E-02 1.963888092E-02 2.013856101E-02 2.038840106E-02 2.084863271E-02 2.113792118E-02 3.018476059E-02 3.046089957E-02 3.093428071E-02 3.100002808E-02 3.149970817E-02 3.181529559E-02 3.206513563E-02 3.393236120E-02 3.495802032E-02 3.551029832E-02 3.577328784E-02 3.669375114E-02 3.786405449E-02 3.820594087E-02 3.885026517E-02 3.908695576E-02 3.932364632E-02 4.020466119E-02 4.939614483E-02 4.996157229E-02 5.047440185E-02 5.089518509E-02 5.142116411E-02 5.186824629E-02 5.274926118E-02 5.298595174E-02 5.322264231E-02 5.359082764E-02 5.419570352E-02 5.451129095E-02 5.487947627E-02 5.515561527E-02 5.552380059E-02 5.573419220E-02 5.610237754E-02 5.641796494E-02 5.703599031E-02 5.714118613E-02 6.879162176E-02 6.900201337E-02 6.976468296E-02 7.056680100E-02 7.147411482E-02 7.168450644E-02 7.255237186E-02 7.265756765E-02 7.271016556E-02 7.377527311E-02 7.424865424E-02 7.465628799E-02 7.510337017E-02 7.547155549E-02 7.594493662E-02 7.624737458E-02 7.665500832E-02 7.691799784E-02 7.715468840E-02 7.737822950E-02 7.766751797E-02 8.720088798E-02 8.758222278E-02 8.784521230E-02 8.838434081E-02 8.883142298E-02 8.894976827E-02 8.940999991E-02 8.987023158E-02 9.036991166E-02 9.088274121E-02 9.155336449E-02 9.180320452E-02 9.205304458E-02 9.256587413E-02 9.357838377E-02 9.395971857E-02 9.463034185E-02 9.534041354E-02 9.603733575E-02 9.623457790E-02 9.640552109E-02 9.681315485E-02 1.060703859E-01 1.063202259E-01 1.070828955E-01 1.073327355E-01 1.077009209E-01 1.116063152E-01 1.520804019E-01 -2.995209777E-01-2.995209777E-01-2.995209777E-01-2.995209777E-01-2.995209777E-01 -2.995209777E-01 2.523056754E-01 2.523056754E-01 2.523056754E-01 2.523056754E-01 2.523056754E-01 2.677987441E-01 2.677987441E-01-3.655562498E-01-3.655562498E-01 -3.655562498E-01-3.655562498E-01 3.260246506E-01 3.260246506E-01 1.192927876E-01 3.454414554E-01 3.454414554E-01-3.896587919E-01-3.896587919E-01-3.896587919E-01 -3.896587919E-01 2.905239785E-01 2.905239785E-01 8.719931877E-02 8.719931877E-02 9.197351664E-02 9.197351664E-02 3.096207697E-01 3.096207697E-01-2.236067978E-01 -2.236067978E-01-2.236067978E-01-2.236067978E-01 8.944271911E-01-2.980909860E-01 -2.980909860E-01-2.980909860E-01-2.980909860E-01-2.980909860E-01 3.633287324E-01 3.633287324E-01 3.818987328E-01 3.818987328E-01-2.236067978E-01-2.236067978E-01 -2.236067978E-01-2.236067978E-01 8.944271911E-01-2.886751346E-01-2.886751346E-01 -2.886751346E-01-2.886751346E-01 5.773502693E-01 5.773502693E-01-2.041241453E-01 -2.041241453E-01-2.041241453E-01-2.041241453E-01-2.041241453E-01-2.041241453E-01 6.123724358E-01 6.123724358E-01-2.236067978E-01-2.236067978E-01-2.236067978E-01 -2.236067978E-01 8.944271911E-01-2.886751346E-01-2.886751346E-01-2.886751346E-01 -2.886751346E-01 5.773502693E-01 5.773502693E-01-1.825741858E-01-1.825741858E-01 -1.825741858E-01-1.825741858E-01-1.825741858E-01 9.128709290E-01-2.390457219E-01 -2.390457219E-01-2.390457219E-01-2.390457219E-01-2.390457219E-01 5.976143047E-01 5.976143047E-01-2.886751346E-01-2.886751346E-01-2.886751346E-01-2.886751346E-01 5.773502693E-01 5.773502693E-01-2.390457219E-01-2.390457219E-01-2.390457219E-01 -2.390457219E-01-2.390457219E-01 5.976143047E-01 5.976143047E-01-2.886751346E-01 -2.886751346E-01-2.886751346E-01-2.886751346E-01 5.773502693E-01 5.773502693E-01 -2.390457219E-01-2.390457219E-01-2.390457219E-01-2.390457219E-01-2.390457219E-01 5.976143047E-01 5.976143047E-01-2.886751346E-01-2.886751346E-01-2.886751346E-01 -2.886751346E-01 5.773502693E-01 5.773502693E-01-3.534856528E-01-3.534856528E-01 -3.534856528E-01-3.534856528E-01 3.436985907E-01 3.436985907E-01 3.632727148E-01 3.632727148E-01-2.390457219E-01-2.390457219E-01-2.390457219E-01-2.390457219E-01 -2.390457219E-01 5.976143045E-01 5.976143045E-01-2.886751346E-01-2.886751346E-01 -2.886751346E-01-2.886751346E-01 5.773502692E-01 5.773502692E-01-2.886751346E-01 -2.886751346E-01-2.886751346E-01-2.886751346E-01 5.773502692E-01 5.773502692E-01 -3.273268353E-01-3.273268353E-01-3.273268353E-01-3.273268353E-01 4.364357805E-01 4.364357805E-01 4.364357805E-01-2.041241453E-01-2.041241453E-01-2.041241453E-01 -2.041241453E-01-2.041241453E-01-2.041241453E-01 6.123724358E-01 6.123724358E-01 -2.886751346E-01-2.886751346E-01-2.886751346E-01-2.886751346E-01 5.773502692E-01 5.773502692E-01-2.886751346E-01-2.886751346E-01-2.886751346E-01-2.886751346E-01 5.773502692E-01 5.773502692E-01-2.886751346E-01-2.886751346E-01-2.886751346E-01 -2.886751346E-01 5.773502692E-01 5.773502692E-01-2.886751346E-01-2.886751346E-01 -2.886751346E-01-2.886751346E-01 5.773502692E-01 5.773502692E-01-3.924626113E-01 -3.924626113E-01-3.924626113E-01-3.924626113E-01 2.640663018E-01 2.640663018E-01 2.640663018E-01 6.781240693E-02 7.242057855E-02 7.242057855E-02 2.824989881E-01 2.824989881E-01-1.581138830E-01-1.581138830E-01-1.581138830E-01-1.581138830E-01 -1.581138830E-01-1.581138830E-01-1.581138830E-01-1.581138830E-01 6.324555320E-01 6.324555320E-01-3.534856528E-01-3.534856528E-01-3.534856528E-01-3.534856528E-01 3.436985907E-01 3.436985907E-01 3.632727148E-01 3.632727148E-01-4.144511569E-01 -4.144511569E-01-4.144511569E-01-4.144511569E-01 1.315245297E-01 1.315245297E-01 1.943670350E-01 1.943670350E-01 1.943670350E-01 1.943670350E-01 1.943670350E-01 2.114601965E-01 2.114601965E-01-2.896387157E-01-2.896387157E-01-2.896387157E-01 -2.896387157E-01-2.896387157E-01-2.896387157E-01 3.189002273E-01 1.369918067E-01 1.369918067E-01 1.369918067E-01 3.359855486E-01 3.359855486E-01 3.359855486E-01 -4.568704569E-01-4.568704569E-01-4.568704569E-01 3.227126392E-01 8.967458728E-02 8.967458728E-02 8.967458728E-02 8.967458728E-02 3.446001910E-01 3.446001910E-01 -2.831834822E-01-2.831834822E-01-2.831834822E-01-2.831834822E-01-2.831834822E-01 -2.831834822E-01-2.831834822E-01 2.650498803E-01 2.650498803E-01 1.011683962E-01 1.011683962E-01 1.011683962E-01 1.011683962E-01 1.011683962E-01 1.050164421E-01 2.804420639E-01 2.804420639E-01 2.804420639E-01-2.886751346E-01-2.886751346E-01 -2.886751346E-01-2.886751346E-01 5.773502692E-01 5.773502692E-01-2.886751346E-01 -2.886751346E-01-2.886751346E-01-2.886751346E-01 5.773502692E-01 5.773502692E-01 -2.886751346E-01-2.886751346E-01-2.886751346E-01-2.886751346E-01 5.773502692E-01 5.773502692E-01-3.533075915E-01-3.533075915E-01-3.533075915E-01-3.533075915E-01 3.346664655E-01 3.346664655E-01 3.719487175E-01 3.719487175E-01-3.985436537E-01 -3.985436537E-01-3.985436537E-01-3.985436537E-01 2.181901885E-01 2.181901885E-01 2.181901885E-01 2.181901885E-01 2.181901885E-01 2.516118362E-01 2.516118362E-01 -2.897237840E-01-2.897237840E-01-2.897237840E-01-2.897237840E-01-2.897237840E-01 -2.897237840E-01-2.897237840E-01 1.975257060E-01 1.975257060E-01 1.975257060E-01 1.975257060E-01 1.975257060E-01 1.975257060E-01 1.975257060E-01 1.975257060E-01 2.239304202E-01 2.239304202E-01-3.869938671E-01-3.869938671E-01-3.869938671E-01 -3.869938671E-01 2.465516791E-01 2.465516791E-01 2.465516791E-01 2.465516791E-01 2.808843760E-01 2.808843760E-01-2.041241453E-01-2.041241453E-01-2.041241453E-01 -2.041241453E-01-2.041241453E-01-2.041241453E-01 6.123724358E-01 6.123724358E-01 -2.390457219E-01-2.390457219E-01-2.390457219E-01-2.390457219E-01-2.390457219E-01 5.976143045E-01 5.976143045E-01-5.000000000E-01-5.000000000E-01 5.000000000E-01 5.000000000E-01-2.886751346E-01-2.886751346E-01-2.886751346E-01-2.886751346E-01 5.773502692E-01 5.773502692E-01-5.622386694E-01-5.622386694E-01 1.011292901E-01 1.011292901E-01 1.011292901E-01 4.105447342E-01 4.105447342E-01-8.164965809E-01 4.082482904E-01 4.082482904E-01-3.651483716E-01-3.651483716E-01-3.651483716E-01 5.477225575E-01 5.477225575E-01-5.000000000E-01-5.000000000E-01 5.000000000E-01 5.000000000E-01-8.164965809E-01 4.082482904E-01 4.082482904E-01-4.082482905E-01 -4.082482905E-01-4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01 -2.886751346E-01-2.886751346E-01-2.886751346E-01-2.886751346E-01 5.773502692E-01 5.773502692E-01-4.316131859E-01-4.316131859E-01-4.316131859E-01-4.316131859E-01 9.877653958E-02 9.877653958E-02 1.451734308E-01 1.451734308E-01 1.451734308E-01 1.451734308E-01 1.451734308E-01 1.451734308E-01 1.451734308E-01 1.598250807E-01 1.764302839E-01 1.764302839E-01-4.342692722E-01-4.342692722E-01-4.342692722E-01 -3.845158284E-01 1.622669423E-01 1.622669423E-01 1.622669423E-01 1.622669423E-01 1.622669423E-01 1.622669423E-01 1.622669423E-01 1.622669423E-01 1.945940530E-01 1.945940530E-01-4.155859743E-01-4.155859743E-01-4.155859743E-01-4.155859743E-01 1.413954939E-01 1.901185505E-01 1.901185505E-01 1.901185505E-01 1.901185505E-01 1.901185505E-01 1.901185505E-01 1.901185505E-01 1.901185505E-01-5.000000000E-01 -5.000000000E-01-5.000000000E-01 1.666666666E-01 1.666666666E-01 1.666666666E-01 1.666666666E-01 1.666666666E-01 1.666666666E-01 1.666666666E-01 1.666666666E-01 1.666666666E-01-3.415328781E-01-3.415328781E-01-3.415328781E-01-3.415328781E-01 -3.415328781E-01 2.418350800E-01 2.418350800E-01 2.418350800E-01 2.418350800E-01 2.418350800E-01 2.418350800E-01 2.566539106E-01-3.715669341E-01-3.715669341E-01 -3.715669341E-01-3.715669341E-01-3.715669341E-01-3.715669341E-01 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 7.609167506E-02 8.746318930E-02 8.746318930E-02-4.325136617E-01-4.325136617E-01 -4.325136617E-01-4.325136617E-01 1.002259276E-01 1.468283778E-01 1.468283778E-01 1.468283778E-01 1.468283778E-01 1.468283778E-01 1.468283778E-01 1.468283778E-01 1.468283778E-01 1.468283778E-01 1.468283778E-01 1.615449411E-01-5.192221753E-01 -5.192221753E-01-5.192221753E-01 7.577911195E-02 7.577911195E-02 1.278280274E-01 1.278280274E-01 1.278280274E-01 1.278280274E-01 1.278280274E-01 1.278280274E-01 1.278280274E-01 1.278280274E-01 1.278280274E-01 1.278280274E-01 1.278280274E-01 -4.225771273E-01-4.225771273E-01-4.225771273E-01-4.225771273E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01 1.690308509E-01-5.063696837E-01 -5.063696837E-01-5.063696837E-01 1.519109051E-01 1.519109051E-01 1.519109051E-01 1.519109051E-01 1.519109051E-01 1.519109051E-01 1.519109051E-01 1.519109051E-01 1.519109051E-01 1.519109051E-01-4.082482905E-01-4.082482905E-01-4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01-4.082482905E-01-4.082482905E-01 -4.082482905E-01 4.082482905E-01 4.082482905E-01 4.082482905E-01-3.273268353E-01 -3.273268353E-01-3.273268353E-01-3.273268353E-01 4.364357805E-01 4.364357805E-01 4.364357805E-01-3.651483716E-01-3.651483716E-01-3.651483716E-01 5.477225575E-01 5.477225575E-01-2.738612787E-01-2.738612787E-01-2.738612787E-01-2.738612787E-01 -2.738612787E-01 4.564354646E-01 4.564354646E-01 4.564354646E-01-2.886751346E-01 -2.886751346E-01-2.886751346E-01 8.660254038E-01-4.363204829E-01-4.363204829E-01 -4.363204829E-01 3.157480785E-01 3.157480785E-01 3.387326457E-01 3.387326457E-01 -2.278805966E-01-2.278805966E-01-2.278805966E-01-2.278805966E-01-2.278805966E-01 -2.278805966E-01-2.278805966E-01 3.893590672E-01 3.893590672E-01 4.082230210E-01 4.082230210E-01-4.052035054E-01-4.052035054E-01-4.052035054E-01 3.056688687E-01 4.549708235E-01 4.549708235E-01-2.390457219E-01-2.390457219E-01-2.390457219E-01 -2.390457219E-01-2.390457219E-01 5.976143048E-01 5.976143048E-01-3.259894217E-01 -3.259894217E-01-3.259894217E-01-3.259894217E-01 3.609186343E-01 4.715195264E-01 4.715195264E-01-2.886751346E-01-2.886751346E-01-2.886751346E-01-2.886751346E-01 5.773502693E-01 5.773502693E-01-4.369020882E-01-4.369020882E-01-4.369020882E-01 -4.369020882E-01 9.751411457E-02 9.751411457E-02 9.751411457E-02 9.751411457E-02 9.751411457E-02 1.200752207E-01 1.200752207E-01 1.200752207E-01 1.200752207E-01 1.200752207E-01 1.200752207E-01 1.200752207E-01 2.097556177E-01 2.097556177E-01 -1.336306210E-01-1.336306210E-01-1.336306210E-01-1.336306210E-01-1.336306210E-01 -1.336306210E-01-1.336306210E-01 9.354143467E-01-2.886751346E-01-2.886751346E-01 -2.886751346E-01-2.886751346E-01 5.773502691E-01 5.773502691E-01-3.542122690E-01 -3.542122690E-01-3.542122690E-01-3.542122690E-01-3.542122690E-01-3.542122690E-01 8.999559330E-02 8.999559330E-02 8.999559330E-02 8.999559330E-02 8.999559330E-02 8.999559330E-02 8.999559330E-02 8.999559330E-02 8.999559330E-02 8.999559330E-02 8.999559330E-02 8.999559330E-02 8.999559330E-02 8.999559330E-02 8.999559330E-02 8.999559330E-02 1.673510521E-01 1.673510521E-01 1.673510521E-01 1.832909648E-01 -2.069895980E-01-2.069895980E-01-2.069895980E-01-2.069895980E-01-2.069895980E-01 -2.069895980E-01-2.069895980E-01 4.760177513E-01 4.760177513E-01 4.968916838E-01 -3.921872059E-01-3.921872059E-01-3.921872059E-01-3.921872059E-01 3.208902411E-01 6.864515768E-02 6.864515768E-02 6.864515768E-02 6.864515768E-02 6.864515768E-02 6.864515768E-02 6.864515768E-02 6.864515768E-02 3.493486607E-01 3.493486607E-01 -4.113272660E-01-4.113272660E-01-4.113272660E-01-4.113272660E-01-1.385347256E-02 -1.385347256E-02-1.385347256E-02-1.385347256E-02-1.385347256E-02-1.385347256E-02 -1.385347256E-02-1.385347256E-02-1.385347256E-02-1.385347256E-02-1.385347256E-02 -1.385347256E-02-1.385347256E-02-1.385347256E-02-1.385347256E-02-1.385347256E-02 -1.385347256E-02-1.385347256E-02-1.385347256E-02-1.385347256E-02-1.385347256E-02 -1.385347256E-02-1.385347256E-02-1.385347256E-02-1.385347256E-02 1.395574652E-01 1.395574652E-01 1.395574652E-01 1.395574652E-01 1.395574652E-01 1.395574652E-01 1.395574652E-01 1.395574652E-01 1.395574652E-01 1.395574652E-01 1.395574652E-01 2.282568802E-01 2.282568802E-01-4.563066691E-01-4.563066691E-01-4.563066691E-01 2.654049461E-01 2.654049461E-01 2.719510830E-01 2.719510830E-01 2.942079492E-01 -4.364254028E-01-4.364254028E-01-4.364254028E-01 3.238709959E-01 3.238709959E-01 3.307671082E-01 3.307671082E-01-3.535480103E-01-3.535480103E-01-3.535480103E-01 -3.535480103E-01 3.487703345E-01 3.551405689E-01 3.551405689E-01 3.551405689E-01 -2.886751346E-01-2.886751346E-01-2.886751346E-01 8.660254038E-01-3.717136907E-01 -3.717136907E-01-3.717136907E-01-3.717136907E-01 2.579946495E-01 2.579946495E-01 3.236218216E-01 3.236218216E-01 3.236218216E-01-4.944512989E-01-4.944512989E-01 -4.944512989E-01-4.659297951E-02-4.659297951E-02-4.659297951E-02-4.659297951E-02 1.388360790E-01 1.388360790E-01 1.388360790E-01 1.388360790E-01 1.388360790E-01 1.388360790E-01 1.388360790E-01 1.388360790E-01 1.388360790E-01 1.388360790E-01 1.388360790E-01-6.230730650E-02 2.048362524E-01-3.577167122E-01-3.577167122E-01 -3.577167122E-01-3.577167122E-01-3.577167122E-01 1.811045589E-01 1.811045589E-01 1.811045589E-01 1.811045589E-01 1.811045589E-01 1.811045589E-01 1.811045589E-01 9.965296649E-03 2.554431761E-01 2.554431761E-01-3.651483717E-01-3.651483717E-01 -3.651483717E-01 5.477225576E-01 5.477225576E-01-2.981423970E-01-2.981423970E-01 -2.981423970E-01-2.981423970E-01-2.981423970E-01 3.726779963E-01 3.726779963E-01 3.726779963E-01 3.726779963E-01-7.071067811E-01 7.071067811E-01-5.000000000E-01 -5.000000000E-01 5.000000000E-01 5.000000000E-01-3.651483717E-01-3.651483717E-01 -3.651483717E-01 5.477225576E-01 5.477225576E-01-1.846372365E-01-1.846372365E-01 -1.846372365E-01-1.846372365E-01-1.846372365E-01-1.846372365E-01-1.846372365E-01 -1.846372365E-01 4.923659639E-01 4.923659639E-01 4.923659639E-01-3.127419532E-01 -3.127419532E-01-3.127419532E-01-3.127419532E-01-3.127419532E-01-3.127419532E-01 2.671193506E-02 2.671193506E-02 2.671193506E-02 2.671193506E-02 2.671193506E-02 2.671193506E-02 2.671193506E-02 2.365561569E-01 2.365561569E-01 2.365561569E-01 2.365561569E-01 2.365561569E-01 2.533436946E-01 2.533436946E-01-3.179619147E-01 -3.179619147E-01-3.179619147E-01-3.179619147E-01-3.179619147E-01 1.397967096E-01 1.397967096E-01 1.397967096E-01 1.397967096E-01 1.397967096E-01 4.454130130E-01 4.454130130E-01-2.065248880E-01-2.065248880E-01-2.065248880E-01-2.065248880E-01 -2.065248880E-01-2.065248880E-01-2.065248880E-01-2.065248880E-01-2.065248880E-01 1.269840233E-01 3.331531684E-01 3.496467000E-01 3.496467000E-01 3.496467000E-01 3.496467000E-01-3.608060397E-01-3.608060397E-01-3.608060397E-01-3.608060397E-01 6.528182571E-02 3.286815972E-01 3.497535789E-01 3.497535789E-01 3.497535789E-01 -1.825741859E-01-1.825741859E-01-1.825741859E-01-1.825741859E-01-1.825741859E-01 9.128709289E-01-3.668083630E-01-3.668083630E-01-3.668083630E-01-3.668083630E-01 -3.668083630E-01 1.803389307E-01 9.845294107E-02 9.845294107E-02-2.561674003E-02 1.853017178E-01 1.853017178E-01 1.853017178E-01 1.853017178E-01 1.853017178E-01 1.853017178E-01 1.853017178E-01 1.853017178E-01-5.073861533E-01-5.073861533E-01 -5.073861533E-01 1.753557923E-01 7.317672550E-02 7.317672550E-02 7.317672550E-02 7.317672550E-02 7.317672550E-02 7.317672550E-02 1.815484629E-01 1.815484629E-01 1.815484629E-01 1.815484629E-01 1.815484629E-01-2.967227471E-01-2.967227471E-01 -2.967227471E-01-2.967227471E-01-2.967227471E-01 4.553159394E-01 3.427659319E-01 3.427659319E-01 3.427659319E-01-4.209001754E-01-4.209001754E-01-4.209001754E-01 -4.209001754E-01 1.729384177E-01 8.406461453E-02 1.783247086E-01 1.783247086E-01 1.783247086E-01 1.783247086E-01 1.783247086E-01 1.783247086E-01 1.783247086E-01 1.783247086E-01-6.725927090E-01-6.725927090E-01 7.079923251E-02 7.079923251E-02 7.079923251E-02 7.079923251E-02 7.079923251E-02 7.079923251E-02 7.079923251E-02 7.079923251E-02 7.079923251E-02 7.079923251E-02 7.079923251E-02 7.079923251E-02 7.079923251E-02 7.079923251E-02 7.079923251E-02 7.079923251E-02 7.079923251E-02 7.079923251E-02 7.079923251E-02-3.651483717E-01-3.651483717E-01-3.651483717E-01 5.477225575E-01 5.477225575E-01-4.364254028E-01-4.364254028E-01-4.364254028E-01 3.238709959E-01 3.238709959E-01 3.307671082E-01 3.307671082E-01-2.885923003E-01 -2.885923003E-01-2.885923003E-01-2.885923003E-01 5.602463244E-01 5.941228768E-01 -3.534942317E-01-3.534942317E-01-3.534942317E-01-3.534942317E-01 3.376522230E-01 3.587749012E-01 3.587749012E-01 3.587749012E-01-4.081669288E-01-4.081669288E-01 -4.081669288E-01 3.918666195E-01 4.163170830E-01 4.163170830E-01-4.159531667E-01 -4.159531667E-01-4.159531667E-01-4.159531667E-01 1.780436213E-01 1.834313472E-01 1.834313472E-01 1.834313472E-01 1.834313472E-01 1.834313472E-01 1.834313472E-01 1.834313472E-01 2.017496155E-01-2.886751346E-01-2.886751346E-01-2.886751346E-01 8.660254035E-01-3.726697781E-01-3.726697781E-01-3.726697781E-01-3.726697781E-01 2.957108587E-01 2.957108587E-01 2.957108587E-01 3.017732680E-01 3.017732680E-01 -4.081669288E-01-4.081669288E-01-4.081669288E-01 3.918666195E-01 4.163170830E-01 4.163170830E-01-3.161350749E-01-3.161350749E-01-3.161350749E-01-3.161350749E-01 -3.161350749E-01 3.002570377E-01 3.058478959E-01 3.248568136E-01 3.248568136E-01 3.248568136E-01-4.081112546E-01-4.081112546E-01-4.081112546E-01 3.869574982E-01 4.186881332E-01 4.186881332E-01-1.825741859E-01-1.825741859E-01-1.825741859E-01 -1.825741859E-01-1.825741859E-01 9.128709290E-01-4.082409165E-01-4.082409165E-01 -4.082409165E-01 4.033334376E-01 4.106946558E-01 4.106946558E-01-4.999898091E-01 -4.999898091E-01 4.954752284E-01 5.045043898E-01-3.534441153E-01-3.534441153E-01 -3.534441153E-01-3.534441153E-01 3.380769798E-01 3.443492800E-01 3.656751006E-01 3.656751006E-01-4.362784182E-01-4.362784182E-01-4.362784182E-01 3.106112653E-01 3.173857747E-01 3.404191074E-01 3.404191074E-01-2.833687390E-01-2.833687390E-01 -2.833687390E-01-2.833687390E-01-2.833687390E-01-2.833687390E-01-2.833687390E-01 2.106397165E-01 2.106397165E-01 2.106397165E-01 2.151205187E-01 2.151205187E-01 2.303552466E-01 2.303552466E-01 2.303552466E-01 2.303552466E-01-4.362410190E-01 -4.362410190E-01-4.362410190E-01 3.122449892E-01 3.122449892E-01 3.421165396E-01 3.421165396E-01-4.362410190E-01-4.362410190E-01-4.362410190E-01 3.122449892E-01 3.122449892E-01 3.421165396E-01 3.421165396E-01-2.417422914E-01-2.417422914E-01 -2.417422914E-01-2.417422914E-01-2.417422914E-01-2.417422914E-01-2.417422914E-01 -2.417422914E-01-2.417422914E-01 2.095451741E-01 2.095451741E-01 2.095451741E-01 2.095451741E-01 2.136384842E-01 2.136384842E-01 2.275557394E-01 2.275557394E-01 2.275557394E-01 2.275557394E-01-4.081669288E-01-4.081669288E-01-4.081669288E-01 3.918666195E-01 4.163170830E-01 4.163170830E-01-3.272697530E-01-3.272697530E-01 -3.272697530E-01-3.272697530E-01 4.211117480E-01 4.439836320E-01 4.439836320E-01 -2.278707522E-01-2.278707522E-01-2.278707522E-01-2.278707522E-01-2.278707522E-01 -2.278707522E-01-2.278707522E-01 3.805622174E-01 4.048443492E-01 4.048443492E-01 4.048443492E-01-2.980397448E-01-2.980397448E-01-2.980397448E-01-2.980397448E-01 -2.980397448E-01 3.594301015E-01 3.594301015E-01 3.856692606E-01 3.856692606E-01 -2.581383344E-01-2.581383344E-01-2.581383344E-01-2.581383344E-01-2.581383344E-01 -2.581383344E-01 3.684524046E-01 3.934592006E-01 3.934592006E-01 3.934592006E-01 -5.474927706E-01-5.474927706E-01 3.413465457E-01 3.768194978E-01 3.768194978E-01 -3.651483717E-01-3.651483717E-01-3.651483717E-01 5.477225576E-01 5.477225576E-01 -2.886751346E-01-2.886751346E-01-2.886751346E-01-2.886751346E-01 5.773502693E-01 5.773502693E-01-4.081112546E-01-4.081112546E-01-4.081112546E-01 3.869574982E-01 4.186881332E-01 4.186881332E-01-4.362925005E-01-4.362925005E-01-4.362925005E-01 3.050301268E-01 3.346157915E-01 3.346157915E-01 3.346157915E-01-4.362925005E-01 -4.362925005E-01-4.362925005E-01 3.050301268E-01 3.346157915E-01 3.346157915E-01 3.346157915E-01-4.081112546E-01-4.081112546E-01-4.081112546E-01 3.869574982E-01 4.186881332E-01 4.186881332E-01-3.725626365E-01-3.725626365E-01-3.725626365E-01 -3.725626365E-01 2.851640358E-01 2.911298104E-01 2.911298104E-01 3.114134448E-01 3.114134448E-01-4.563039674E-01-4.563039674E-01-4.563039674E-01 2.606357996E-01 2.606357996E-01 2.825467677E-01 2.825467677E-01 2.825467677E-01-3.725873993E-01 -3.725873993E-01-3.725873993E-01-3.725873993E-01 2.859934702E-01 2.859934702E-01 3.061208855E-01 3.061208855E-01 3.061208855E-01-2.886751346E-01-2.886751346E-01 -2.886751346E-01 8.660254035E-01-2.041241452E-01-2.041241452E-01-2.041241452E-01 -2.041241452E-01-2.041241452E-01-2.041241452E-01 6.123724357E-01 6.123724357E-01 -3.651483717E-01-3.651483717E-01-3.651483717E-01 5.477225576E-01 5.477225576E-01 -3.651483717E-01-3.651483717E-01-3.651483717E-01 5.477225576E-01 5.477225576E-01 -5.000000002E-01-5.000000002E-01 5.000000002E-01 5.000000002E-01-5.000000002E-01 -5.000000002E-01 5.000000002E-01 5.000000002E-01 1.502319086E-02 1.502319086E-02 1.502319086E-02 1.502319086E-02 1.350855775E-01 1.350855775E-01 1.350855775E-01 1.831105322E-01 1.831105322E-01 1.831105322E-01 1.831105322E-01 1.831105322E-01 1.831105322E-01 1.831105322E-01 1.831105322E-01 1.831105322E-01-3.827835166E-01 -3.827835166E-01-3.827835166E-01-3.827835166E-01-9.703503652E-02-9.703503652E-02 -9.703503652E-02-9.703503652E-02-9.703503652E-02-9.703503652E-02-1.083455434E-02 -1.083455434E-02-1.083455434E-02 1.196149283E-01 1.196149283E-01 1.196149283E-01 1.196149283E-01 1.717947215E-01 1.717947215E-01 1.717947215E-01 1.717947215E-01 1.717947215E-01 1.717947215E-01 1.717947215E-01 1.717947215E-01 1.717947215E-01 -4.430571734E-01-4.430571734E-01-4.430571734E-01-1.325874047E-01-1.325874047E-01 -1.325874047E-01-1.325874047E-01-1.325874047E-01-3.162277661E-01-3.162277661E-01 -3.162277661E-01-3.162277661E-01-3.162277661E-01-3.162277661E-01 2.108185105E-01 2.108185105E-01 2.108185105E-01 2.108185105E-01 2.108185105E-01 2.108185105E-01 2.108185105E-01 2.108185105E-01 2.108185105E-01 2.982233263E-02-1.002823670E-01 2.980153584E-02-9.976244729E-02 5.756524651E-02 3.013428443E-02 5.729488828E-02 2.998870692E-02 3.013428443E-02-9.608141599E-02 3.055022017E-02-9.581105776E-02 3.876495105E-02 1.767466936E-03 3.830742173E-02 1.621889427E-03 1.788263723E-03 -6.798495673E-02 2.162605890E-03-6.773539528E-02 9.077771538E-02-8.955122487E-02 9.007062462E-02-8.980078631E-02 8.984185997E-02 7.505534440E-02 6.191177500E-02 7.480578295E-02 6.182858785E-02 6.184938464E-02 8.888520776E-02 6.195336857E-02 8.903078527E-02 1.996231593E-03 6.449057659E-02 1.788263723E-03 6.430340551E-02 1.684279788E-03 1.725873362E-03-1.680406387E-02 1.933841233E-03-1.649211207E-02 2.058621955E-03 6.765168822E-02 4.398494459E-02 6.754770428E-02 4.408892852E-02 2.435277764E-02 4.448406748E-02 2.435277764E-02 4.452566105E-02 2.435277764E-02 2.439437121E-02 2.352090616E-02 2.429038728E-02 2.350010937E-02 2.356249973E-02 2.302178327E-02 2.352090616E-02 2.298018970E-02 2.352090616E-02-4.325991660E-03 -5.088999780E-02-4.284398086E-03-5.095238816E-02-4.263601301E-03 6.696539424E-02 2.664042421E-02 6.694459746E-02 2.670281457E-02 2.676520493E-02-4.346788447E-03 2.682759530E-02-4.450772382E-03 2.680679851E-02 5.390501200E-02 2.822098003E-02 5.394660557E-02 2.824177681E-02-1.907091366E-02-4.993828494E-04-1.900852330E-02 -3.122117664E-04-1.875896185E-02-3.930618743E-02 7.362036609E-02-3.943096815E-02 7.357877252E-02-3.943096815E-02-2.364620680E-02-3.930618743E-02-2.350062929E-02 9.154719650E-02 6.390826655E-02 9.144321257E-02 6.397065691E-02 9.144321257E-02 9.154719650E-02 9.335651697E-02 9.152639972E-02 9.346050091E-02 4.756199195E-02 4.467123856E-02 4.745800802E-02 4.456725462E-02-1.514032091E-02-1.846780683E-02 -1.503633698E-02-1.853019719E-02 8.318454846E-03-1.859258756E-02 8.214470911E-03 8.256064487E-03-5.282643863E-03 8.214470911E-03-5.220253502E-03-5.241050289E-03 1.101969752E-03-5.178659928E-03 1.247547260E-03 1.289140835E-03-5.553002094E-03 1.413921557E-03-5.511408522E-03 3.730917595E-02 1.684279788E-03 3.726758238E-02 1.850654085E-03 1.954638020E-03-7.233148522E-02 2.204199464E-03-7.208192377E-02 -4.741693437E-02-7.563817435E-02-4.735454400E-02-7.559658078E-02-7.534701933E-02 -1.586820846E-02-7.526383219E-02-1.570183416E-02 2.953117761E-02-1.597219239E-02 2.928161616E-02-1.611776990E-02 2.930241295E-02 2.934400653E-02 7.611598053E-02 2.938560010E-02 7.634474519E-02 2.942719367E-02 9.755746795E-02-1.132803589E-01 9.745348402E-02-1.132387653E-01 4.566948434E-02-1.892533615E-02 4.577346827E-02 -1.884214900E-02-1.867577470E-02-9.379376942E-02-1.825983896E-02-9.358580155E-02 -1.830377218E-03-4.186419223E-02-1.892767579E-03-4.196817617E-02-9.344022404E-02 -1.853019719E-02-9.356500476E-02-1.844701005E-02-1.846780683E-02 1.609645319E-02 -1.846780683E-02 1.607565641E-02 1.611724998E-02-4.899749018E-02 1.628362428E-02 -4.901828697E-02-4.770808938E-02-4.885191267E-02-4.770808938E-02-4.766649581E-02 -3.706013443E-02-4.762490224E-02-3.701854086E-02-4.758330866E-02 2.894886757E-02 -4.047080750E-02 2.903205472E-02-4.038762035E-02-4.030443320E-02-6.509420333E-02 -4.022124606E-02-6.501101618E-02-4.134427256E-02-5.157863141E-03-4.142745970E-02 -5.074675993E-03-3.602029508E-02 4.460884820E-02-3.606188865E-02 4.460884820E-02 -5.001653274E-02-1.455801087E-02-5.005812632E-02-1.445402694E-02-1.435004300E-02 3.464718722E-02-1.437083979E-02 3.466798400E-02-6.407516077E-02-4.419343238E-02 -6.413755113E-02-4.406865166E-02-4.369430949E-02-6.336807001E-02-4.359032555E-02 -6.322249250E-02-6.326408607E-02-6.330567965E-02-3.090428547E-02-6.332647644E-02 -3.088348868E-02-3.086269190E-02-2.399975218E-02-3.084189511E-02-2.391656503E-02 -2.406214254E-02-2.410373612E-02-2.410373612E-02-2.408293933E-02-2.416612648E-02 -2.050589196E-02-2.052668875E-02-5.750337607E-02-3.123703406E-02-1.430844943E-02 -1.439163658E-02-8.464552277E-03-3.244324771E-02 2.512225876E-02 2.501827483E-02 -1.801027752E-02 2.994477371E-03-6.301686427E-03 3.585340086E-02 3.581180729E-02 2.890727400E-02 3.267149245E-02 3.262989887E-02 2.890727400E-02 2.896966436E-02 3.589499444E-02-6.239296068E-03-7.927761208E-02-7.913203457E-02-1.759434178E-02 2.533022663E-02-3.217288948E-02-8.214990833E-03-1.426685586E-02-1.422526228E-02 -3.090428547E-02-5.719142426E-02-2.013154980E-02-2.379178431E-02-3.880706454E-02 -2.366700359E-02-3.876547097E-02-3.861989346E-02-2.013154980E-02-3.864069024E-02 -2.013154980E-02 4.677171405E-02 4.629338795E-02-1.514032091E-02 9.772384225E-02 -7.470231894E-02 9.786941976E-02 9.578974105E-02-3.015794080E-03-2.953403717E-03 9.626806716E-02 3.502152938E-02 2.813779288E-02-1.451641730E-02 4.695888513E-02 4.716685300E-02-4.637943465E-03 2.641165956E-02-4.762724187E-03 2.632847241E-02 2.634926919E-02-4.845911335E-03 2.626608205E-02-4.887504912E-03-6.946152861E-02 -6.979427720E-02-6.946152861E-02-6.966949648E-02-6.887921857E-02-6.966949648E-02 -6.900399929E-02 7.476418938E-02 6.555121273E-02 7.482657974E-02 6.555121273E-02 7.478498616E-02 6.563439988E-02-7.489442926E-04 6.580077417E-02-7.073507196E-04 -8.672286183E-02-4.369924873E-04-8.668126826E-02 7.921470180E-02 1.621889427E-03 7.913151465E-02 1.580295853E-03-7.565897114E-02 2.678600172E-02-7.570056471E-02 2.693157923E-02-7.557578399E-02 7.536729620E-02-8.684764256E-02 7.538809299E-02 -8.693082970E-02-7.206112698E-02-8.682684577E-02-7.216511092E-02-9.941124155E-03 -8.027819750E-03-1.002431130E-02-7.944632601E-03-3.984690389E-02-7.882242240E-03 -3.988849746E-02 7.216459100E-02-3.327745885E-03 7.189423277E-02-3.494120179E-03 -3.410933031E-03 7.203981028E-02-3.431729820E-03 6.403304727E-02-1.310457543E-03 6.409543764E-02-1.310457543E-03-1.021332810E-01-1.595139560E-02-1.020916874E-01 -1.599298918E-02-1.121365356E-01 1.189550222E-02-1.122613163E-01 1.185390864E-02 -9.499998307E-02 1.019016568E-02-9.491679592E-02 1.027335283E-02 6.276444327E-02 1.023175925E-02 6.259806897E-02 6.239010110E-02 7.988019898E-02 6.243169467E-02 7.998418292E-02 9.907563340E-02 7.994258935E-02 9.907563340E-02 3.857777996E-02 4.067825545E-02 2.087971421E-02 2.094210457E-02 3.853618639E-02 4.071984903E-02 3.843220245E-02 4.055347473E-02 3.834901531E-02 3.763958491E-03 3.834901531E-02 3.826348852E-03 3.930332787E-03-2.433250077E-02 4.013519935E-03-2.410373612E-02 3.876495105E-02-2.414532969E-02 3.878574783E-02 2.790902822E-02 3.913929321E-02 2.784663786E-02 3.911849642E-02-6.679953987E-02-4.558681711E-02-4.558681711E-02 -5.057804599E-02-8.339537591E-02-4.558681711E-02 3.896616667E-02 3.152128391E-02 3.914011253E-02 3.169522977E-02 2.216299668E-02 2.216299668E-02 1.230026648E-02 1.261336903E-02 2.256307217E-02 3.200833231E-02 1.257857986E-02 1.607489162E-02 -3.755261670E-02 1.624883748E-02 3.148649474E-02-7.851686649E-02 3.173001892E-02 -7.815158019E-02-8.294923224E-03-6.835842833E-02-8.799366215E-03-6.884547673E-02 9.339382594E-02-7.564675982E-02 9.421137149E-02-2.669839510E-02-4.536278577E-02 -2.675057886E-02 3.063416003E-02-2.685494637E-02 3.092986799E-02 3.091247340E-02 7.314652797E-02 3.077331670E-02 7.295518751E-02-6.677552101E-02 2.663665893E-03 -6.677552101E-02 2.715849651E-03-1.911110199E-03-1.215326762E-03 3.429027673E-03 -1.319694278E-03 2.420141690E-03-1.389272621E-03 2.333168761E-03-2.111473302E-02 2.367957933E-03 2.750638822E-03-2.059289545E-02 3.307265571E-03 2.681060479E-03 3.811708562E-03 8.382680369E-02 3.637762703E-03 8.391377662E-02 8.337454448E-02 2.378069318E-02 8.347891198E-02 2.381548234E-02-8.505723079E-02-2.228017028E-02 -4.626730424E-02 8.659254287E-02 8.605331071E-02-4.675435264E-02 6.043108566E-02 -4.671956347E-02 6.057024236E-02-1.026051143E-02-4.868189802E-03-1.019093309E-02 -4.833400630E-03 7.525127286E-02-3.149930081E-02 1.078693751E-02-3.136014412E-02 1.052601872E-02 3.738325934E-02 1.071735916E-02 3.747023227E-02 7.413801936E-02 3.724410267E-02 7.439893815E-02 9.117057262E-03 6.029192899E-02 9.151846434E-03 6.013537772E-02 4.161014373E-02 6.003101020E-02 4.157535456E-02-1.888822603E-02 4.161014373E-02-1.878385851E-02 7.876497921E-02-1.116502990E-02 7.843448206E-02 -1.097368945E-02-7.455090091E-02 7.959991934E-02-6.042649716E-02 6.507544011E-02 -6.035691881E-02 1.844055531E-02-5.971331914E-02 7.601663464E-02 3.950865250E-03 7.561655917E-02 3.724735633E-03-1.563543847E-02 2.402421739E-02-1.560064930E-02 -9.149322758E-02-4.626730424E-02-4.611075296E-02 7.126791269E-02-7.496837097E-02 1.306888193E-03-7.496837097E-02 7.465985694E-02-4.277099247E-02 7.462506777E-02 -3.859303820E-03 7.265947956E-02 2.806076250E-04-1.511034723E-03-7.359419868E-02 7.165059356E-02-7.331588531E-02-1.179123499E-02-7.317672862E-02 6.905880028E-02 -7.635993784E-02 6.918056238E-02-2.048852793E-02 6.773681174E-02-2.073205213E-02 5.187294941E-02 2.586804349E-02 5.180337107E-02 6.965021619E-02 6.582340729E-02 -8.114344896E-02-8.194359992E-02-7.794284516E-02-7.702093211E-02-7.776889930E-02 -4.090977178E-02-4.007483165E-02 5.968637214E-03-3.990088580E-02 6.299134346E-03 -7.736882382E-02 6.490474791E-03-8.260134052E-03-8.294923224E-03-7.749058593E-02 6.229556002E-03 7.586008337E-02 3.081135955E-03 3.197354314E-02-6.616671050E-02 3.207791064E-02 8.104366995E-02-1.615402238E-03 8.111324831E-02-1.528429309E-03 -6.602755382E-02-1.354483450E-03-6.557529458E-02-2.648966007E-02-6.494908949E-02 -8.688366231E-02-8.657055977E-02-2.638529255E-02 7.203327447E-02 4.667196823E-02 6.375345158E-02-5.159004752E-02 6.366647865E-02 6.514501845E-02 6.361429490E-02 6.517980763E-02 3.533395188E-03-9.037997409E-02 4.055232765E-03 7.596445088E-02 2.407640113E-02 7.572092668E-02 2.405900656E-02 4.942356646E-03-1.250115934E-03 -8.500404585E-04 2.611482135E-03-1.371878036E-03-7.122853500E-02-1.267510520E-03 7.544261331E-02 4.977145818E-03 2.144981867E-02 2.184989415E-02 5.290248364E-03 2.169334288E-02-6.778440699E-02 2.179771039E-02-6.776701241E-02-2.119845230E-03 1.270034196E-02-2.119845230E-03-4.334501380E-02-2.032872300E-03-4.331022463E-02 -1.980688542E-03 2.275441262E-02 1.840576614E-02 2.266743969E-02 4.439327748E-02 2.258046676E-02 4.442806663E-02 7.639931553E-02 4.446285582E-02 7.646889388E-02 -1.344372065E-02 7.655586680E-02-1.337414231E-02-5.207709593E-02-5.153786376E-02 -1.245222925E-02-5.193793924E-02 6.737152545E-02 2.454930862E-03 6.766723341E-02 2.559298378E-03-5.080729115E-02 2.663665893E-03-5.066813447E-02 6.667574201E-02 -2.606893635E-03 6.681489870E-02-4.313627877E-02 4.420519069E-03-4.296233291E-02 4.472702827E-03 4.455308241E-03-5.985247582E-02 4.507491998E-03-5.966113538E-02 1.447458972E-02-1.967098239E-02 1.447458972E-02-1.968837698E-02-6.910639552E-02 -1.941006361E-02-6.893244966E-02 8.083493494E-02 4.621970900E-02 8.078275116E-02 8.100888080E-02 4.639365485E-02 1.341677365E-03 4.648062778E-02 1.359071951E-03 -2.916842630E-02 1.498228638E-03-2.895969126E-02 7.318131714E-02-4.477136985E-02 7.330307922E-02-4.478876443E-02-4.518883991E-02 7.064170760E-02-4.546715328E-02 1.673588589E-02-3.487385047E-02 1.694462092E-02-3.443898582E-02 7.069389134E-02 7.448591108E-02 7.062431301E-02 7.438154357E-02-7.672522415E-02 7.439893815E-02 -7.651648912E-02-5.080729115E-02-7.618599198E-02-5.068552905E-02-5.056376695E-02 3.764417813E-02-5.073771281E-02 3.741804853E-02-5.839133061E-02 3.736586477E-02 -5.839133061E-02 3.936624215E-02-3.002076100E-02 3.943582049E-02-2.998597183E-02 -6.147017231E-02-9.408502087E-02-6.108749142E-02-9.394586420E-02-6.089615098E-02 -9.377191835E-02-5.785209844E-02-3.400412118E-02-5.778252010E-02-3.389975366E-02 -3.457814251E-02 3.035584665E-02-3.445638041E-02-3.447377499E-02 3.052979251E-02 -3.436940748E-02-3.153408998E-02 6.646700698E-02-3.151669539E-02 6.643221779E-02 -1.822723176E-02-4.508447239E-02-1.840117762E-02 6.354471655E-02-1.873167476E-02 6.350992738E-02-1.869688558E-02-4.548454787E-02 3.947060965E-02-6.609713216E-02 3.950539884E-02-3.529132053E-02 3.742130219E-03-7.317672862E-02 4.142205694E-03 -7.305496652E-02 3.776919391E-03-4.482355361E-02 4.020443593E-03-4.468439692E-02 3.912271793E-02 2.458184532E-04 7.215503657E-02 1.762401097E-04-8.803170498E-02 3.607866540E-02-8.803170498E-02 7.205066906E-02 5.797844906E-02 7.977386520E-02 5.801323824E-02 4.350940725E-03 4.472702827E-03 5.823936785E-02 4.472702827E-03 2.477218456E-02 5.448213730E-02 2.466781707E-02 5.446474271E-02-5.687800163E-02 -3.383017532E-02-5.686060705E-02-3.376059697E-02 2.284238674E-04-3.372580780E-02 3.675805545E-04 7.194630154E-02-4.284057081E-02 7.212024740E-02-4.285796540E-02 -7.241136684E-02-7.755691061E-03-7.258531270E-02-7.825269405E-03 6.462318088E-02 -8.011716840E-02 1.861450117E-02 1.856231741E-02-7.987364419E-02 7.062431301E-02 -2.154634401E-03 7.067649677E-02-8.055203304E-02 1.821442570E-02 5.629117423E-02 -7.966490916E-02-4.198823610E-02-4.190126317E-02-9.234230863E-03 6.629306112E-02 6.596256399E-02-9.947408885E-03 8.734376372E-03-3.708296288E-02 8.890927645E-03 -3.713514664E-02-2.542859033E-02-2.530682823E-02-3.685683326E-02-2.525464447E-02 -3.675246575E-02-2.527203905E-02-2.534161740E-02-2.396744511E-02-2.530682823E-02 -2.398483970E-02-5.308598191E-02-2.382828842E-02-5.301640356E-02 1.169145598E-02 -1.720095120E-02 3.011557611E-03-1.720095120E-02 1.181321808E-02 1.169145598E-02 -1.734010789E-02 1.177842890E-02-4.228394406E-02-3.911487577E-03-4.244049534E-02 -3.163510372E-01-3.162156070E-01-3.163510372E-01-3.162446278E-01-3.162929957E-01 -3.162543014E-01-3.163026693E-01-3.295372995E-02-8.338212162E-02-3.285699410E-02 -1.951712225E-02-1.948810147E-02-1.330784927E-03 4.439624513E-02 4.436722434E-02 4.437689792E-02 5.170947433E-02 9.614991778E-02-1.959451090E-02 2.718693975E-02 -1.966222597E-02-7.762633933E-02-9.678970862E-02-6.374474676E-02-2.288352932E-02 2.859928295E-02 5.519196447E-02 8.738565096E-02 1.068295541E-01 1.512699975E-01 1.429603891E-01 1.260025969E-01 1.014413680E-01 1.014316944E-01 8.440618715E-02 6.207955606E-02 4.686300892E-02 1.250243974E-02-3.913631784E-03-1.573475100E-02 1.645893543E-02-3.971673231E-03 3.979161925E-02 3.979161925E-02 3.978194567E-02 3.979161925E-02 1.149069965E-01 1.456302982E-01 1.812677805E-01 1.165998736E-01 7.348471123E-02 4.687268250E-02 4.689202970E-02 4.689202970E-02 6.209890321E-02 8.440618715E-02 1.014123473E-01 1.162322774E-01-5.528670607E-02-5.528670607E-02 -5.518100356E-02-5.514576939E-02-5.518100356E-02-5.521623773E-02-5.507530106E-02 -5.514576939E-02-5.528670607E-02-5.496959856E-02-5.496959856E-02-5.507530106E-02 -5.496959856E-02-5.489913022E-02-5.507530106E-02-5.504006689E-02-5.493436439E-02 -5.528670607E-02-5.489913022E-02 1.852569576E-01 1.852569576E-01 1.853626601E-01 1.852569576E-01 1.853274259E-01 1.853626601E-01-5.489913022E-02-5.514576939E-02 -5.525147190E-02-5.511053523E-02-5.475819355E-02-5.507530106E-02 2.714749662E-01 1.851512551E-01 1.852921917E-01-2.977330148E-01-2.975216098E-01-2.978387173E-01 -2.979796539E-01 2.715102004E-01 2.715102004E-01 2.714749662E-01-2.503729638E-01 -3.518699686E-01-2.502897422E-01-3.518033914E-01-2.501898764E-01-3.517035255E-01 -2.501732321E-01 1.559978746E-01 2.322288163E-01 2.324784809E-01 1.560145189E-01 -1.786859186E-02 1.561809620E-01 1.560145189E-01 1.562142506E-01 1.560311632E-01 1.561643177E-01 1.560478075E-01 1.562142506E-01 1.559978746E-01 1.560810961E-01 -1.790188048E-02-1.780201461E-02-1.803503496E-02-1.781865894E-02-1.801839065E-02 -1.781865894E-02 1.700209891E-01 1.722146852E-01 1.725071780E-01 1.703866051E-01 1.709715907E-01-3.872509562E-01-3.860809850E-01-1.357802542E-01 1.713372068E-01 1.702403586E-01-1.372427183E-01 1.712640835E-01 1.702403586E-01-1.369502256E-01 -1.358533775E-01 1.717028228E-01 1.705328515E-01-1.370233487E-01-1.362921166E-01 1.708253443E-01 1.705328515E-01-3.873972027E-01-2.429057496E-01 1.302716238E-01 -3.953803117E-01 1.311991669E-01 1.306691423E-01 1.309341545E-01 1.306691423E-01 1.309341545E-01 1.302716238E-01-3.370776015E-01 1.304041299E-01 1.301391176E-01 1.294765868E-01 1.300066114E-01 1.308016484E-01 1.304041299E-01 1.300066114E-01 -3.377401323E-01-3.385351692E-01-3.391977000E-01-3.381376507E-01 1.286815499E-01 1.311991669E-01 6.109227453E-02 6.101087057E-02-1.111585216E-01-2.184896534E-01 -1.111178196E-01 1.548696456E-01 1.547882416E-01 6.532528087E-02 6.528457888E-02 6.504036698E-02 6.499966500E-02 6.410422135E-02 6.499966500E-02 6.414492333E-02 6.508106896E-02-4.769472516E-01-2.931777939E-01-2.930149860E-01-5.461813263E-01 1.544626258E-01 1.549103476E-01 1.549510496E-01 6.512177095E-02 1.544626258E-01 6.520317496E-02 6.536598285E-02 6.512177095E-02 6.508106896E-02 1.546661357E-01 3.149057655E-01-1.234835130E-01 8.301208689E-02-1.132991349E-01-7.704610185E-02 -7.708801283E-02-1.137601561E-01-7.708801283E-02-7.729756798E-02 8.317973097E-02 8.288635387E-02-7.733947900E-02-7.721374593E-02-1.133829570E-01 8.309590893E-02 2.633552097E-01 2.636904979E-01 4.745867551E-01 2.637324090E-01 1.543446444E-01 1.629364037E-01-1.619578301E-01-7.704610185E-02-7.729756798E-02-7.738139002E-02 -7.725565691E-02-1.622931183E-01-1.622931183E-01-7.733947900E-02-7.721374593E-02 8.347310812E-02 8.326355301E-02-7.738139002E-02-7.721374593E-02-1.619997412E-01 -1.624607624E-01-7.754903406E-02-7.708801283E-02 2.638162310E-01 8.271870974E-02 -7.746521206E-02-7.729756798E-02-7.746521206E-02 1.202741122E-01-2.516002821E-02 -2.514718634E-02-1.704396845E-02-1.704396845E-02-1.590104232E-02-7.480668487E-02 -7.481952674E-02 4.992674800E-03 4.979832937E-03 6.272970749E-02 6.272970749E-02 9.150833076E-02 9.149548890E-02 1.010498377E-01 1.010369959E-01 1.114645916E-01 1.114517497E-01 1.010241540E-01 1.010369959E-01 9.145696330E-02 9.145696330E-02 6.269118189E-02 6.269118189E-02 4.889939869E-03 4.902781733E-03-9.799909613E-02 -9.799909613E-02-7.496078727E-02-7.496078727E-02-7.481952674E-02-7.480668487E-02 -7.476815927E-02-7.474247554E-02-7.470394994E-02-7.485805234E-02-7.484521047E-02 -9.789636120E-02-9.788351933E-02 5.031200402E-03 5.031200402E-03 6.280675869E-02 6.280675869E-02 9.130286090E-02 9.130286090E-02 1.008828935E-01 1.008957353E-01 1.112334380E-01 1.112462799E-01 1.289552141E-01 1.289680559E-01 1.112077543E-01 1.112077543E-01 1.221233410E-01 1.220719735E-01 1.221104991E-01 1.110279681E-01 1.110151263E-01 1.220591316E-01 1.220591316E-01 1.111307031E-01 1.111435449E-01 1.288910047E-01 1.288781629E-01 1.008186841E-01 1.008186841E-01 9.114875850E-02 9.114875850E-02 6.235729335E-02 6.238297709E-02 4.568893201E-03 4.581735065E-03 -9.832014280E-02-9.830730093E-02-7.528183394E-02-7.526899207E-02-3.447038156E-02 -3.447038156E-02-1.638903325E-02-1.640187512E-02-3.445753970E-02-3.445753970E-02 -7.525615020E-02-7.525615020E-02-7.511488967E-02-7.508920594E-02-7.505068034E-02 -7.501215474E-02-7.502499660E-02-7.511488967E-02-7.511488967E-02-7.959670115E-02 -7.958385928E-02-7.511488967E-02-7.511488967E-02-7.514057340E-02-7.514057340E-02 -3.432912103E-02-3.434196290E-02-3.381544636E-02-3.380260450E-02-1.627345645E-02 -1.627345645E-02-1.739069885E-02-1.739069885E-02-2.551960047E-02-2.551960047E-02 1.197861212E-01 1.197861212E-01 1.197475956E-01 1.197475956E-01-2.559665167E-02 -2.559665167E-02-1.750627565E-02-1.749343379E-02-1.635050765E-02-1.636334952E-02 -3.436764663E-02-3.438048850E-02-3.385397196E-02-3.385397196E-02-7.525615020E-02 -7.524330834E-02-7.969943608E-02-7.969943608E-02-7.524330834E-02-7.523046647E-02 -7.529467580E-02 6.235729335E-02 6.234445149E-02 9.113591663E-02 9.113591663E-02 1.007159492E-01 1.007287911E-01 6.234445149E-02 4.556051337E-03 4.556051337E-03 -7.532035954E-02-7.532035954E-02-7.519194087E-02-7.519194087E-02-7.511488967E-02 -7.507636407E-02-7.506352220E-02-7.520478274E-02-7.519194087E-02-9.826877533E-02 -9.826877533E-02-7.516625714E-02-7.516625714E-02-3.436764663E-02-3.435480476E-02 -3.384113010E-02-3.385397196E-02-1.631198205E-02-1.631198205E-02-1.744206632E-02 -1.744206632E-02-2.559665167E-02-2.558380981E-02 1.197604375E-01 1.197604375E-01 -9.671490946E-02-1.853362499E-02-9.675343506E-02-1.852078312E-02-9.674059319E-02 -1.850794126E-02-9.671490946E-02-1.146850628E-01-8.729578385E-02-1.146805654E-01 -8.729128643E-02-1.146850628E-01-8.729128643E-02-9.713163820E-02-9.719010464E-02 -9.717661239E-02-8.729128643E-02-1.146805654E-01-8.729578385E-02-1.146850628E-01 -8.729578385E-02-1.146850628E-01-9.718110980E-02-9.712264336E-02-9.882716499E-02 -1.018944044E-01-8.014938579E-02-7.659192772E-02-7.177519246E-02-6.270839668E-02 -5.672683002E-02-4.882036822E-02-4.497507537E-02-4.048215425E-02-3.686173233E-02 -2.488960417E-02-2.754757853E-02-1.984799798E-02-1.985699282E-02-2.755657337E-02 -5.787367175E-02-8.224968025E-02-1.027669036E-01-9.674036279E-02-9.673586537E-02 -8.077452696E-02-6.857303046E-02-8.099040305E-02-8.078352180E-02-9.674486021E-02 -1.027624062E-01-9.064186324E-02-8.221370090E-02-5.788266658E-02-2.754757853E-02 -1.987048508E-02-2.758805529E-02-1.987048508E-02-5.330330930E-03 7.091539083E-03 7.096036501E-03-7.919593306E-02-1.071653790E-01-1.071608815E-01-9.267919384E-02 -3.888107325E-02 7.105031338E-03 7.082544245E-03 7.073549408E-03 5.256592317E-03 3.111323673E-03 8.491221458E-04 6.264014071E-03 6.250521815E-03 5.369027781E-03 6.479890161E-03 2.488782425E-02 3.458875605E-02 4.079969105E-02 4.921885857E-02 4.920536632E-02 1.672500960E-02 1.672051218E-02 7.392866125E-03 5.670256303E-02 4.267511459E-02 2.797305337E-02 4.268860686E-02-2.372477277E-02 1.383766690E-02 1.378369787E-02-2.015733465E-03 4.932778182E-03 3.597044875E-03 1.381517980E-02 1.938298396E-02 1.380168755E-02 1.378819529E-02 8.188909207E-03 4.075921429E-02 4.947970885E-02 3.804277348E-02 5.743114483E-02 9.455733490E-02 8.948874420E-02 9.454834006E-02 5.745363192E-02 3.802928124E-02 4.946171918E-02 4.077720398E-02 8.206898881E-03 1.937848654E-02 1.381517980E-02 2.025998057E-02 2.023749348E-02 -3.343919682E-02 3.057354651E-03 1.628876000E-02 9.349243191E-03 3.928406100E-02 2.720399480E-02 3.927506617E-02 1.504297506E-02 6.319233798E-02 7.556023897E-02 7.425149018E-02 4.853075354E-02 5.890629811E-02 4.852175870E-02 5.891529295E-02 7.430096178E-02 7.556473639E-02 1.504297506E-02 3.322603823E-02 3.928855844E-02 2.722198448E-02 3.929305585E-02-5.510227672E-03-2.717330758E-03-1.139734854E-02 -2.717330758E-03-2.119272613E-02-2.032472435E-02-1.915089811E-02-2.030673468E-02 -1.914190327E-02-2.115674678E-02-5.483243161E-03-2.690346246E-03-1.137036403E-02 3.926157392E-02 2.717701029E-02 3.925257907E-02 2.024199090E-02 2.021050897E-02 -3.350665810E-02 3.012380465E-03 1.623479098E-02 9.277284494E-03 1.623029356E-02 4.874311741E-03-2.377424437E-02 4.266611976E-02 2.795956112E-02 2.211741443E-02 7.370379032E-03 1.668453283E-02 7.365881614E-03 2.795506370E-02 9.450336587E-02 9.448087878E-02 8.942128292E-02 9.449886846E-02 5.740865774E-02 3.799779931E-02 4.945272434E-02 8.175416951E-03 1.935150203E-02 3.579055201E-03 4.905793671E-03 -2.042717977E-03-2.374725986E-02-2.024728303E-03 1.379269271E-02 1.939197879E-02 3.606039713E-03 4.923783345E-03 3.052857234E-03-3.349766326E-02 2.021500639E-02 1.623928840E-02 9.317761261E-03 3.925707648E-02 3.320804856E-02 1.502048797E-02 3.321704339E-02 3.927506617E-02-2.694843663E-03-1.136136920E-02-2.685848828E-03 -5.483243161E-03-5.510227672E-03-2.118373129E-02-1.914640069E-02-2.031572951E-02 -1.913740585E-02-2.031123209E-02-1.914640069E-02-2.118373129E-02-5.510227672E-03 5.845754146E-03 4.928280764E-03 1.773243135E-02 4.445159491E-02 7.165647968E-02 7.165647968E-02 9.700393058E-02 1.039029706E-01 1.091244736E-01 1.169229973E-01 1.169454844E-01 1.091289710E-01 1.039074680E-01 9.700842800E-02 1.084318711E-01 1.163158458E-01 1.201746309E-01 1.128618284E-01 1.078606989E-01 1.070286765E-01 1.070241791E-01 1.070286765E-01 1.070331739E-01 9.081098525E-02 8.947075453E-02 9.453484780E-02 5.744013967E-02 3.804277348E-02 4.947970885E-02 8.188909207E-03 1.381517980E-02 1.938748138E-02 8.215893718E-03 4.950219594E-02 3.806975800E-02 5.748511385E-02 8.951123129E-02 9.457532457E-02 7.047815602E-02 7.048715086E-02 1.670701993E-02 7.406358380E-03 7.397363543E-03 1.670701993E-02 4.921885857E-02 4.078170139E-02 3.456626896E-02 2.485634232E-02 5.360032944E-03 6.264014071E-03 8.446247282E-04 3.111323673E-03 5.265587155E-03 7.082544245E-03 7.096036501E-03 -5.339325768E-03-1.987947991E-02-2.759705013E-02-3.009761484E-02-2.493457836E-02 -3.690670651E-02-4.500205988E-02-5.675381453E-02-6.274437603E-02-7.180217697E-02 -7.660541998E-02-8.014488837E-02-1.018944044E-01-9.883615983E-02-9.717211497E-02 -9.718560722E-02-9.716761755E-02-9.720809432E-02-9.720359690E-02-1.147030524E-01 -8.731377352E-02-1.146940576E-01-8.730927611E-02-1.146985550E-01-8.730477869E-02 -3.818936138E-03-1.324197404E-01-1.958328737E-03-1.082748813E-03-2.067776290E-03 1.692175503E-01 2.296325664E-01 2.286475390E-01 1.684514178E-01 2.286475390E-01 1.647302031E-01-1.399716175E-01-1.326386354E-01-4.585068592E-03-1.326386354E-01 -1.400810649E-01 1.633073857E-01-1.401905124E-01-4.475621122E-03-1.326386354E-01 -1.400810649E-01 1.631979382E-01 1.670286004E-01-1.319819505E-01-5.235850804E-01 -1.705074680E-01-1.708358105E-01 4.226979441E-01-1.858460137E-02-4.636868504E-01 -1.836559090E-02-4.636868504E-01-1.829258743E-02-4.633948365E-01-1.814658044E-02 1.780137841E-01 1.783788016E-01 1.785248085E-01-1.687527704E-01 1.757506762E-01 1.754586622E-01 1.753856587E-01 1.756046691E-01 1.755316657E-01 1.748746343E-01 8.902253581E-02-1.712348888E-01 6.347131597E-02 6.412834736E-02-2.534974041E-02 -6.108584764E-02-2.537318161E-02-6.107998734E-02-2.536146101E-02-6.109756824E-02 -2.535560071E-02-6.110342854E-02-2.533215951E-02-6.112100944E-02-2.534388011E-02 9.071935434E-02 9.785719930E-02 9.081311913E-02 2.283543518E-01 2.289696832E-01 -2.155574860E-01-2.114494159E-01-1.523486323E-02-3.814863483E-02-1.526416472E-02 2.283484915E-01 2.289755435E-01-2.114962983E-01-1.527002502E-02-3.820137753E-02 -1.526416472E-02 9.790994200E-02 9.081897943E-02-2.155750669E-01-2.114552762E-01 -2.155692066E-01-2.114259747E-01-1.522314263E-02-3.814863483E-02-1.530518682E-02 9.793338320E-02 9.077209704E-02 2.283191900E-01 2.289462420E-01-1.527588532E-02 -3.815449513E-02-1.527002502E-02 9.077209704E-02 9.789822140E-02 2.289403817E-01 2.283191900E-01-2.114376953E-01-2.156102287E-01-2.114669968E-01 9.078967793E-02 9.795096410E-02-7.483541436E-02-7.484660358E-02-7.483168462E-02-7.481303588E-02 -7.480557644E-02-7.623779669E-02-7.185535179E-02-7.147118858E-02-6.827480111E-02 -7.044178024E-02-6.955783178E-02-6.907296554E-02-6.943848009E-02-7.491746865E-02 -7.942299498E-02-6.937880425E-02-7.118772831E-02-6.940118269E-02-6.601830820E-02 -6.939745295E-02-7.121383649E-02-7.944537342E-02-7.493611735E-02-6.947577749E-02 -6.910280346E-02-6.958766970E-02-6.946458827E-02-7.621541829E-02-8.809091152E-02 -9.261135681E-02-6.844636916E-02-5.111053607E-02-5.093150853E-02-5.092404905E-02 -8.820653347E-02-5.394140899E-02-5.282621663E-02-6.857318033E-02-6.859928852E-02 -5.287843299E-02-5.397497665E-02-8.824756062E-02-5.095388698E-02-5.094642750E-02 -5.112545503E-02-6.144191681E-02-6.120321343E-02-5.539227798E-02-4.252840355E-02 -3.685546848E-02-2.906404091E-02-2.586392370E-02-2.902674351E-02-2.389089107E-02 -2.273467156E-02-2.217148077E-02-2.808311921E-02-2.806074076E-02-2.213791311E-02 -2.268991468E-02-2.385359366E-02-2.897825689E-02-2.581543708E-02-2.902301377E-02 -3.682190082E-02-4.250975485E-02-5.537362928E-02-6.118456472E-02-7.449227821E-02 -7.951250874E-02-6.249370358E-02-4.230834887E-02-1.716989898E-02-1.078458352E-02 1.277396735E-03 1.161250721E-02 1.009077315E-02-4.457433027E-04-1.420848515E-02 -2.652035800E-02-6.871864021E-02-3.631838588E-02-2.482332615E-02-3.780131163E-03 6.480384503E-03 8.367633118E-03 1.015417874E-02 1.164234513E-02 1.012061108E-02 -4.270945992E-04-1.418983645E-02-2.651289852E-02-6.870372124E-02-3.632957509E-02 -2.483451537E-02-1.028106857E-02-2.213640221E-03 1.495808430E-02-1.041160948E-02 -4.993566786E-02-2.862020181E-02-1.483881126E-02 3.500321977E-03-1.829628056E-02 1.059801784E-02 1.060547732E-02 9.852069773E-03 2.046318103E-02 4.261783862E-02 6.516411897E-02 7.542090490E-02 7.102354107E-02 7.964297096E-02 8.619612473E-02 9.191754645E-02 9.625896416E-02 1.027822800E-01 1.181599995E-01 1.183949731E-01 1.127854436E-01 1.021780621E-01 9.563982731E-02 8.616255707E-02 8.616255707E-02 9.191008697E-02 9.624031546E-02 1.027934692E-01 1.169888610E-01 1.032708760E-01 7.572674360E-02 7.062072908E-02 5.191981103E-02 6.515292978E-02 5.191608132E-02 4.558671193E-02 4.102523954E-02 5.345273434E-02 6.244886804E-02 6.245259778E-02 9.141776121E-02 1.169851312E-01 1.032447679E-01 7.570063542E-02 7.061699934E-02 7.539479671E-02 6.514920004E-02 5.191235158E-02 4.558671193E-02 4.104388824E-02 4.101778002E-02 5.343781534E-02 6.245259778E-02 6.245259778E-02 9.142149098E-02 1.032596868E-01 1.170000502E-01 1.028195775E-01 9.624404524E-02 1.181637292E-01 1.183987028E-01 1.128003626E-01 8.826986036E-02 1.053968280E-01 1.053968280E-01 9.932108102E-02 9.518106924E-02 5.760393534E-02 9.515123132E-02 9.445376988E-02 8.101924514E-02 8.412611888E-02 8.102670466E-02 9.446122932E-02 9.516615025E-02 9.930989176E-02 1.054005577E-01 8.827359014E-02 1.022004405E-01 9.565474623E-02 8.617747607E-02 7.962805203E-02 7.101981130E-02 6.515665952E-02 4.260664944E-02 2.045572155E-02 1.059428810E-02 9.844610292E-03 1.055326096E-02 9.807312889E-03 -1.832238874E-02 3.477943534E-03-1.484254101E-02-2.862393155E-02-7.310481484E-02 -7.316822043E-02-7.310108510E-02-4.989837046E-02-1.038550130E-02 1.496927352E-02 3.442732886E-02 2.637854921E-02-2.202450999E-03-1.027360909E-02 1.095980265E-02 -3.809969085E-03 6.458006065E-03 8.334065455E-03 1.012061108E-02 1.157893955E-02 1.005347575E-02-4.905001857E-04 1.258748032E-03-1.080323222E-02-1.719600716E-02 -4.234191654E-02-6.251235228E-02-7.952742767E-02-7.451838643E-02-6.119575394E-02 -6.143445733E-02-5.111053607E-02-6.845009890E-02-9.258151885E-02-8.806107360E-02 -7.617439114E-02-7.492865787E-02-6.945712876E-02-6.908788450E-02-6.943102057E-02 -7.041940180E-02-7.047907765E-02-6.832328773E-02-7.150102650E-02-7.190383845E-02 -7.629001309E-02-7.484287384E-02-7.482422514E-02 6.406762598E+01 5.883397765E+00 6.402786445E+01 5.957716784E+00 7.641148593E+01 6.419160491E+01 7.637711988E+01 6.417271547E+01 6.420193420E+01 7.681649615E+00 6.424921469E+01 7.683658858E+00 6.798478512E+01 5.151374569E+01 6.788997351E+01 5.148439535E+01 5.152988778E+01 2.026363225E+01 5.157863196E+01 2.026373291E+01 9.116164644E+01 1.060632314E+01 9.101081447E+01 1.058942556E+01 9.092409462E+01 8.424277385E+01 7.841628355E+01 8.420383984E+01 7.840260653E+01 7.839867596E+01 9.045439141E+01 7.836766232E+01 9.042058772E+01 5.144780028E+01 7.943405038E+01 5.142380247E+01 7.941863899E+01 5.144529522E+01 5.149343316E+01 4.317545284E+01 5.151959834E+01 4.323939374E+01 5.149345936E+01 8.094992390E+01 7.036663670E+01 8.088924141E+01 7.037002960E+01 6.144145532E+01 7.043762406E+01 6.143475451E+01 7.046144804E+01 6.145008251E+01 6.148203694E+01 6.109699511E+01 6.144167320E+01 6.108477232E+01 6.112340506E+01 6.087806427E+01 6.109783408E+01 6.085436717E+01 6.109138830E+01 4.861464344E+01 2.779204783E+01 4.863299600E+01 2.776273056E+01 4.863808808E+01 8.056841596E+01 6.251386279E+01 8.052164594E+01 6.250943356E+01 6.251270019E+01 4.859203646E+01 6.252700209E+01 4.853524405E+01 6.250867010E+01 7.468123820E+01 6.318721851E+01 7.467294147E+01 6.316462880E+01 4.216097559E+01 5.043223190E+01 4.211956324E+01 5.043232335E+01 4.214412673E+01 3.300376444E+01 8.353930957E+01 3.301384331E+01 8.357370699E+01 3.305246275E+01 4.008231576E+01 3.304314407E+01 4.007922781E+01 9.153924453E+01 7.920812478E+01 9.153758765E+01 7.925711228E+01 9.152982426E+01 9.153902862E+01 9.230755228E+01 9.146138090E+01 9.230085257E+01 7.176575728E+01 7.049728697E+01 7.177110224E+01 7.050712127E+01 4.375134021E+01 4.225699614E+01 4.379494548E+01 4.224292421E+01 5.427159682E+01 4.225173892E+01 5.425083331E+01 5.426940501E+01 4.820052308E+01 5.422045658E+01 4.819403810E+01 4.829392352E+01 5.110473578E+01 4.827749572E+01 5.112414223E+01 5.112270903E+01 4.804404414E+01 5.114961959E+01 4.804318247E+01 6.735594883E+01 5.141015603E+01 6.729559937E+01 5.143287206E+01 5.143639694E+01 1.818228889E+01 5.149338248E+01 1.826280556E+01 2.947635002E+01 1.685064744E+01 2.947254969E+01 1.680612789E+01 1.687223696E+01 4.343303285E+01 1.684822235E+01 4.347158230E+01 6.381459999E+01 4.349236896E+01 6.374928831E+01 4.345805723E+01 6.377286880E+01 6.376896225E+01 8.464948031E+01 6.372279560E+01 8.469224481E+01 6.368442060E+01 9.420075239E+01-6.877308478E-02 9.417644574E+01-4.123350056E-02 7.111039337E+01 4.223443661E+01 7.115784865E+01 4.224283324E+01 4.229293586E+01 8.662049812E+00 4.240275839E+01 8.673723289E+00 4.982074055E+01 3.194038305E+01 4.982798942E+01 3.191403964E+01 8.745105287E+00 4.228781659E+01 8.752797480E+00 4.233746192E+01 4.230064505E+01 5.772982054E+01 4.225201392E+01 5.768013978E+01 5.769643824E+01 2.859012205E+01 5.779293761E+01 2.860729697E+01 2.921156583E+01 2.871119532E+01 2.922904658E+01 2.924591740E+01 3.397942784E+01 2.924409133E+01 3.397426492E+01 2.923614080E+01 6.347965820E+01 3.242624094E+01 6.350600539E+01 3.246285031E+01 3.250333220E+01 2.142046356E+01 3.254107349E+01 2.144695240E+01 3.203668099E+01 4.821532257E+01 3.199383418E+01 4.824776464E+01 3.443355155E+01 7.047919006E+01 3.439707538E+01 7.046762536E+01 2.827197169E+01 4.411382936E+01 2.822416723E+01 4.412930686E+01 4.413637254E+01 6.603580462E+01 4.410538335E+01 6.602577638E+01 2.199528301E+01 3.087777478E+01 2.194517381E+01 3.090586361E+01 3.107530786E+01 2.225039338E+01 3.106983781E+01 2.226570547E+01 2.232953056E+01 2.231490628E+01 3.680088827E+01 2.229272666E+01 3.678605912E+01 3.676662965E+01 3.981459085E+01 3.673788566E+01 3.982235096E+01 3.982113654E+01 3.980787686E+01 3.981278974E+01 3.982652082E+01 3.979322108E+01 4.140842841E+01 4.138970443E+01 2.482824251E+01 3.654514760E+01 4.409952308E+01 4.406264057E+01 4.673013686E+01 3.602976510E+01 6.179252770E+01 6.175000093E+01 4.249869041E+01 5.185713584E+01 4.770080714E+01 6.656488262E+01 6.655683140E+01 6.347381222E+01 6.515224589E+01 6.510239153E+01 6.342724030E+01 6.348139495E+01 6.657007727E+01 4.772386995E+01 1.506335360E+01 1.513272497E+01 4.267597302E+01 6.185560919E+01 3.613161172E+01 4.683983775E+01 4.412997091E+01 4.414694269E+01 3.668753756E+01 2.493151167E+01 4.150297279E+01 3.996389011E+01 3.321848141E+01 3.996543486E+01 3.319534299E+01 3.323616784E+01 4.149158475E+01 3.320990221E+01 4.148597036E+01 7.145887050E+01 7.126202765E+01 4.379200439E+01 9.424755325E+01 1.712508575E+01 9.426669524E+01 9.332058784E+01 4.918308859E+01 4.921275535E+01 9.354193696E+01 6.616368608E+01 6.308161590E+01 4.400870295E+01 7.150529109E+01 7.160391217E+01 4.844174478E+01 6.232154300E+01 4.837945145E+01 6.228354310E+01 6.229627635E+01 4.834861785E+01 6.225840134E+01 4.831949662E+01 1.951401556E+01 1.936031023E+01 1.950167059E+01 1.940370301E+01 1.974972088E+01 1.939149294E+01 1.968437715E+01 8.400394050E+01 7.987364883E+01 8.400582185E+01 7.984806350E+01 8.396590391E+01 7.986262759E+01 5.017015535E+01 7.992544236E+01 5.018325511E+01 1.172051099E+01 5.031215254E+01 1.175247352E+01 8.603447511E+01 5.133508878E+01 8.598993007E+01 5.130254640E+01 1.671665653E+01 6.251772123E+01 1.667706964E+01 6.256102930E+01 1.671355505E+01 8.420443951E+01 1.166071594E+01 8.420937917E+01 1.162393771E+01 1.828347969E+01 1.170182911E+01 1.827703660E+01 4.610018702E+01 4.692973437E+01 4.603021805E+01 4.695093068E+01 3.267683055E+01 4.697059220E+01 3.266561139E+01 8.277752602E+01 4.902958131E+01 8.268449437E+01 4.898802425E+01 4.898225794E+01 8.271391509E+01 4.895803118E+01 7.912672341E+01 4.990556410E+01 7.915564174E+01 4.991009596E+01 4.899591538E+00 4.344346005E+01 4.925549345E+00 4.342810880E+01 4.331967935E-01 5.589617385E+01 3.717899952E-01 5.585579794E+01 8.062828255E+00 5.507922723E+01 8.060735383E+00 5.508700201E+01 7.855728602E+01 5.507274339E+01 7.850649068E+01 7.846668704E+01 8.628867258E+01 7.848018109E+01 8.629782704E+01 9.482796617E+01 8.626478974E+01 9.481392376E+01 6.776144343E+01 6.869626108E+01 5.984192274E+01 5.987331811E+01 6.774256178E+01 6.872158893E+01 6.770577971E+01 6.865782397E+01 6.767675923E+01 5.221558904E+01 6.768925407E+01 5.225516182E+01 5.231931110E+01 3.965281302E+01 5.231000320E+01 3.972545477E+01 6.783988127E+01 3.971787748E+01 6.787147624E+01 6.302815487E+01 6.805682509E+01 6.301163219E+01 6.806054445E+01 2.067798656E+01 3.012239556E+01 3.011664058E+01 2.790597520E+01 1.326381926E+01 3.019352636E+01 6.309155893E+01 5.913759626E+01 6.325243185E+01 5.935116070E+01 5.425556479E+01 5.424883273E+01 4.896214950E+01 4.898926280E+01 5.431019209E+01 5.936369798E+01 4.899842653E+01 5.090642859E+01 2.228773994E+01 5.106469894E+01 5.915903246E+01 3.155669844E-01 5.924110068E+01 5.072666628E-01 3.793676654E+01 5.850469394E+00 3.768179503E+01 5.518288976E+00 9.225938898E+01 1.818563498E+00 9.263348663E+01 2.806738911E+01 1.814887394E+01 2.812421571E+01 5.881566946E+01 2.808255113E+01 5.887987684E+01 5.886685379E+01 8.151322551E+01 5.887798422E+01 8.144014574E+01 6.741881472E+00 4.386721508E+01 6.736416018E+00 4.388391569E+01 4.140243686E+01 4.165422186E+01 4.414841041E+01 4.163200359E+01 4.364486224E+01 4.163378897E+01 4.363477442E+01 3.109420211E+01 4.363872489E+01 4.376128963E+01 3.127541335E+01 4.408535327E+01 4.382935513E+01 4.436105982E+01 8.711283335E+01 4.418665570E+01 8.709525616E+01 8.700479418E+01 5.512835814E+01 8.702438434E+01 5.504366502E+01 -3.195700763E+00 3.036799924E+01 1.752735933E+01 8.853705758E+01 8.843000390E+01 1.744693829E+01 7.476875974E+01 1.747294307E+01 7.479021760E+01 3.691915182E+01 3.975997768E+01 3.688240644E+01 3.971015821E+01 8.248969366E+01 2.539489048E+01 4.801197886E+01 2.548560490E+01 4.790905034E+01 6.228452170E+01 4.804491067E+01 6.240927433E+01 8.202671426E+01 6.230861836E+01 8.217684240E+01 4.713737509E+01 7.450782422E+01 4.717927513E+01 7.445848548E+01 6.457364495E+01 7.445288638E+01 6.459491143E+01 3.226934713E+01 6.461145510E+01 3.230736160E+01 8.439151785E+01 3.631578336E+01 8.422380874E+01 3.643131364E+01 2.448105560E+00 8.486613097E+01 1.001983134E+01 7.712136179E+01 1.005784647E+01 5.217965221E+01 1.033918903E+01 8.294904893E+01 4.441518945E+01 8.272928315E+01 4.429006685E+01 3.393464371E+01 5.513995001E+01 3.395871894E+01-6.613033013E+00 1.765114107E+01 1.773484990E+01 8.048563810E+01 2.299313376E+00 4.306830162E+01 2.274526066E+00 8.227067769E+01 1.947070700E+01 8.218331140E+01 4.021943303E+01 8.110818013E+01 4.239913661E+01 4.159637442E+01 3.056693466E+00 8.069079538E+01 3.181994539E+00 3.607060819E+01 3.235788135E+00 7.927866944E+01 1.510499260E+00 7.929949880E+01 3.128261305E+01 7.848023656E+01 3.121818047E+01 6.999123341E+01 5.617478229E+01 7.001389862E+01 7.962763161E+01 7.757975800E+01-1.080649899E+00-1.402641064E+00 7.396490208E-01 1.239542883E+00 8.282246385E-01 2.053297374E+01 2.094334648E+01 4.549807912E+01 2.095286219E+01 4.560918470E+01 8.647422679E-01 4.569710104E+01 3.781210311E+01 3.796012897E+01 9.993682698E-01 4.575853200E+01 8.298374116E+01 4.407093313E+01 5.940987967E+01 6.910799244E+00 5.940033081E+01 8.571536166E+01 4.155078341E+01 8.579771892E+01 4.157651523E+01 7.047138954E+00 4.158987071E+01 7.216354804E+00 2.806914679E+01 7.485668827E+00-4.242901921E+00-4.036014645E+00 2.817405543E+01 8.087690508E+01 6.732179522E+01 7.645858408E+01 1.482198245E+01 7.646097750E+01 7.724980901E+01 7.642839642E+01 7.726356917E+01 4.426774542E+01-5.992726459E+00 4.446791351E+01 8.286387744E+01 5.518224635E+01 8.282409436E+01 5.524026037E+01 4.486766156E+01 4.156829433E+01-5.009137321E+02 4.368930090E+01 4.161837626E+01 4.270737122E+00 4.164073060E+01 8.264981021E+01 4.491964354E+01 5.368732585E+01 5.392225024E+01 4.511096409E+01 5.390849800E+01 6.101242398E+00 5.400240763E+01 6.113069316E+00 4.115315645E+01 4.905849427E+01 4.112409410E+01 1.906935864E+01 4.114490582E+01 1.906768290E+01 4.116111854E+01 5.457584206E+01 5.227238773E+01 5.453732807E+01 6.613233927E+01 5.444948533E+01 6.609801537E+01 8.315301499E+01 6.606421609E+01 8.315005569E+01 3.505582725E+01 8.315882923E+01 3.506278847E+01 1.436225050E+01 1.482477910E+01 3.574279491E+01 1.461303984E+01 7.840173984E+01 4.366379222E+01 7.850432744E+01 4.366760720E+01 1.512183387E+01 4.368869669E+01 1.515223045E+01 7.800682665E+01 4.098189472E+01 7.809863869E+01 1.919789102E+01 4.461387104E+01 1.927448204E+01 4.462872690E+01 4.473196578E+01 1.034338248E+01 4.474620324E+01 1.042157651E+01 5.005817651E+01 3.179158587E+01 5.004021406E+01 3.176686658E+01 5.339330719E+00 3.189112823E+01 5.409910074E+00 8.548291007E+01 6.697064184E+01 8.544425040E+01 8.569800692E+01 6.719118204E+01 4.309841639E+01 6.722257504E+01 4.308823193E+01 2.675486715E+01 4.311812656E+01 2.681976578E+01 8.142936578E+01 1.833977366E+01 8.145065836E+01 1.829496313E+01 1.821299848E+01 8.016030737E+01 1.809234018E+01 5.134914018E+01 2.374071859E+01 5.138755611E+01 2.387146697E+01 8.010216866E+01 8.213393798E+01 8.007367613E+01 8.208677263E+01 1.345194463E+00 8.216312246E+01 1.410293791E+00 1.510716094E+01 1.477491115E+00 1.510438222E+01 1.519482651E+01 6.237026833E+01 1.515013709E+01 6.230608935E+01 1.113612076E+01 6.231775922E+01 1.102728902E+01 6.330464306E+01 2.620286478E+01 6.333389526E+01 2.621267367E+01 9.469106070E+00-7.997077871E+00 9.630558111E+00 -7.949278574E+00 9.713022864E+00-7.872604505E+00 1.132110964E+01 2.406854057E+01 1.135319584E+01 2.411875443E+01 2.381631547E+01 5.851737821E+01 2.385291486E+01 2.382030426E+01 5.856909895E+01 2.386490392E+01 2.544873760E+01 7.784529749E+01 2.545136416E+01 7.778015795E+01 3.252714251E+01 1.817915942E+01 3.245050656E+01 7.625517878E+01 3.225319166E+01 7.620120255E+01 3.223612017E+01 1.792045651E+01 6.334190376E+01 6.897948967E+00 6.335281288E+01 2.339913387E+01 4.426059620E+01 3.123422891E+00 4.445236786E+01 3.175004229E+00 4.425068474E+01 1.826463698E+01 4.437876243E+01 1.833856475E+01 6.321668927E+01 4.242657221E+01 8.086191231E+01 4.237324956E+01-4.832363992E+00 6.151482387E+01-4.841852253E+00 8.087413745E+01 7.333835304E+01 8.497470879E+01 7.332855450E+01 4.462588077E+01 4.465834759E+01 7.338900564E+01 4.463163844E+01 5.551949734E+01 7.139085945E+01 5.544439897E+01 7.136640599E+01 1.183710599E+01 2.414898331E+01 1.182695722E+01 2.417213303E+01 4.233945326E+01 2.418336507E+01 4.241186282E+01 8.076104899E+01 1.937799152E+01 8.082584469E+01 1.933753980E+01 3.564561619E+00 3.814366062E+01 3.494914313E+00 3.812703675E+01 7.686913028E+01-5.161697169E-01 5.227474818E+01 5.224371809E+01 -3.865298402E-01 8.007597552E+01 4.115662096E+01 8.009003575E+01-7.660913458E-01 5.203054696E+01 7.237433729E+01-3.144627052E-01 1.981762138E+01 1.984683050E+01 3.731264703E+01 7.769377722E+01 7.750969074E+01 3.692008952E+01 4.690523100E+01 2.240909319E+01 4.698400857E+01 2.236838308E+01 2.862260752E+01 2.872099980E+01 2.253200203E+01 2.872517573E+01 2.257421032E+01 2.871123510E+01 2.868430007E+01 2.941953006E+01 2.870320525E+01 2.940864658E+01 1.392476600E+01 2.951914712E+01 1.388097062E+01 4.854269810E+01 3.305586629E+01 4.383157434E+01 3.303194861E+01 4.855967545E+01 4.856623111E+01 3.303386065E+01 4.858461107E+01 1.963226338E+01 4.014071274E+01 1.953496772E+01-3.033558609E+01-3.029383604E+01-3.033920457E+01 -3.032031031E+01-3.033212375E+01-3.029598743E+01-3.034856101E+01 2.765098744E+02 2.218316066E+02 2.765160839E+02 2.909372001E+02 2.909412937E+02 3.105920458E+02 3.601022106E+02 3.601022532E+02 3.600901410E+02 3.680476077E+02 4.162017698E+02 2.909151103E+02 3.416011048E+02 2.908964038E+02 2.281538873E+02 2.074116368E+02 2.431874699E+02 2.874211627E+02 3.431369460E+02 3.719137778E+02 4.067444226E+02 4.277758248E+02 4.758812710E+02 4.668520928E+02 4.484771528E+02 4.218763222E+02 4.218730429E+02 4.034435900E+02 3.792807393E+02 3.628151567E+02 3.256276534E+02 3.078859269E+02 2.951087563E+02 3.299927587E+02 3.078840126E+02 3.552899496E+02 3.552906459E+02 3.552801693E+02 3.552904127E+02 4.366222525E+02 4.698536240E+02 5.084282515E+02 4.383306068E+02 3.916200832E+02 3.627935259E+02 3.628163806E+02 3.628207844E+02 3.792941613E+02 4.034669429E+02 4.218945019E+02 4.379546406E+02 2.675004481E+01 2.673839829E+01 2.673819157E+01 2.670157204E+01 2.674387502E+01 2.675349025E+01 2.671676546E+01 2.672165992E+01 2.672486611E+01 2.674833892E+01 2.675058344E+01 2.677138495E+01 2.673611205E+01 2.675733991E+01 2.675054534E+01 2.671344519E+01 2.675315564E+01 2.667894851E+01 2.675838398E+01 9.817472178E+01 9.816784201E+01 9.818171183E+01 9.820279936E+01 9.818217042E+01 9.819436810E+01 2.685744900E+01 2.682375156E+01 2.668592314E+01 2.684894450E+01 2.682590367E+01 2.674323776E+01 1.237917228E+02 9.818501896E+01 9.817292375E+01-4.531001715E+01 -4.534171113E+01-4.536506835E+01-4.547639301E+01 1.238315370E+02 1.238538980E+02 1.238058840E+02-1.305119479E+02-1.943774075E+02-1.304883427E+02-1.943654640E+02 -1.304510622E+02-1.943270793E+02-1.304649314E+02 1.251797612E+02 1.731463667E+02 1.731697647E+02 1.251248857E+02 1.568631518E+01 1.251597884E+02 1.250786027E+02 1.251742019E+02 1.250818816E+02 1.251591320E+02 1.250838699E+02 1.251742198E+02 1.250643445E+02 1.251073975E+02 1.565923440E+01 1.567508917E+01 1.560889641E+01 1.567871048E+01 1.564576492E+01 1.568678459E+01 1.657280052E+02 1.660447486E+02 1.660218118E+02 1.656941510E+02 1.657389052E+02 8.591371246E+01 8.596411889E+01 1.217907185E+02 1.657910754E+02 1.657299238E+02 1.217152814E+02 1.657651146E+02 1.657348809E+02 1.217482991E+02 1.217771511E+02 1.658280848E+02 1.657501703E+02 1.217400967E+02 1.217691194E+02 1.657407964E+02 1.657279051E+02 8.587887678E+01 1.066424028E+02 8.905939414E+01 4.754781250E+01 8.906612802E+01 8.903661875E+01 8.909686262E+01 8.904517672E+01 8.909743109E+01 8.908236922E+01 5.212203445E+01 8.907660405E+01 8.907808227E+01 8.898469412E+01 8.902619127E+01 8.903908142E+01 8.907221325E+01 8.901501411E+01 5.204141503E+01 5.205654728E+01 5.200227415E+01 5.204193772E+01 8.903744035E+01 8.910340348E+01 2.665454569E+01 2.664878346E+01 -1.774267737E+01-4.524098768E+01-1.777311869E+01 5.066973936E+01 5.067968557E+01 2.758770515E+01 2.758970981E+01 2.763331002E+01 2.755463651E+01 2.732433509E+01 2.755483311E+01 2.733497833E+01 2.757596507E+01-1.118102593E+02-6.448436276E+01 -6.449482692E+01-1.297570744E+02 5.072610848E+01 5.070482824E+01 5.064990642E+01 2.757607511E+01 5.070388671E+01 2.764738315E+01 2.759764042E+01 2.765076438E+01 2.758240358E+01 5.067354064E+01 1.237881323E+02 1.427564387E+01 6.583114431E+01 1.667731338E+01 2.570744927E+01 2.575803132E+01 1.669404429E+01 2.572816888E+01 2.570250295E+01 6.586103046E+01 6.574285193E+01 2.567125125E+01 2.570449754E+01 1.668741985E+01 6.581529147E+01 1.109061723E+02 1.109963904E+02 1.637401194E+02 1.110406312E+02 8.364496808E+01 8.577866653E+01 4.509057801E+00 2.570841689E+01 2.573599699E+01 2.573344310E+01 2.573924995E+01 4.517806067E+00 4.513926295E+00 2.571610432E+01 2.567404026E+01 6.585177966E+01 6.581210592E+01 2.565455990E+01 2.568125962E+01 4.515725521E+00 4.485338174E+00 2.571037536E+01 2.571079080E+01 1.109652131E+02 6.574208173E+01 2.571531323E+01 2.567884595E+01 2.567878125E+01 1.108592233E+02-7.743035185E+00-7.731185794E+00-1.113979636E+00-1.111450667E+00 -1.723926401E-01-4.818296646E+01-4.819056951E+01 1.692958162E+01 1.692172711E+01 6.403010215E+01 6.403200306E+01 8.751357892E+01 8.750514451E+01 9.530583035E+01 9.529620680E+01 1.038034857E+02 1.037937890E+02 9.528996781E+01 9.530033715E+01 8.748429005E+01 8.748375983E+01 6.401989490E+01 6.401872142E+01 1.687387499E+01 1.688306764E+01-6.703788581E+01-6.703876065E+01-4.825587401E+01-4.825713356E+01 -4.815152727E+01-4.814311208E+01-4.814542302E+01-4.814606064E+01-4.814726846E+01 -4.827566253E+01-4.826605247E+01-6.706512585E+01-6.705479083E+01 1.687108424E+01 1.687094233E+01 6.398984293E+01 6.398996510E+01 8.723216497E+01 8.723268045E+01 9.504932615E+01 9.506066677E+01 1.034941154E+02 1.035056450E+02 1.179588743E+02 1.179705589E+02 1.034904160E+02 1.034914303E+02 1.124031473E+02 1.123631556E+02 1.123965105E+02 1.033739094E+02 1.033651159E+02 1.123818634E+02 1.123839736E+02 1.034807886E+02 1.034928989E+02 1.179741219E+02 1.179652124E+02 9.508755234E+01 9.508863577E+01 8.721697839E+01 8.721832141E+01 6.374072012E+01 6.376255996E+01 1.661768202E+01 1.662845331E+01-6.728566112E+01-6.727488694E+01-4.849640598E+01 -4.848589324E+01-1.521542473E+01-1.521558506E+01-4.721734727E-01-4.829918028E-01 -1.521034821E+01-1.521099416E+01-4.848562459E+01-4.848684867E+01-4.837706629E+01 -4.839201816E+01-4.837738417E+01-4.839232927E+01-4.840691068E+01-4.848094114E+01 -4.848114118E+01-5.213735340E+01-5.212704777E+01-4.848293467E+01-4.848298086E+01 -4.850204632E+01-4.850180023E+01-1.521888527E+01-1.522890230E+01-1.479891652E+01 -1.478805778E+01-4.898694888E-01-4.893632510E-01-1.398120193E+00-1.397532054E+00 -8.021042097E+00-8.020067512E+00 1.104921809E+02 1.104930456E+02 1.104768257E+02 1.104778462E+02-8.049975560E+00-8.048909987E+00-1.441770006E+00-1.430215501E+00 -4.931024071E-01-5.024998180E-01-1.517845775E+01-1.518753196E+01-1.475573000E+01 -1.475470041E+01-4.851284394E+01-4.850105773E+01-5.213108808E+01-5.212983843E+01 -4.849291471E+01-4.848038391E+01-4.852230497E+01 6.374509209E+01 6.373503397E+01 8.721878765E+01 8.721907289E+01 9.503402929E+01 9.504462541E+01 6.373945149E+01 1.660938072E+01 1.660917308E+01-4.853278972E+01-4.853314926E+01-4.843060132E+01 -4.845551924E+01-4.841878667E+01-4.844297700E+01-4.843337443E+01-4.854872693E+01 -4.853831814E+01-6.735704037E+01-6.735707224E+01-4.851767040E+01-4.851768348E+01 -1.524669163E+01-1.523620018E+01-1.481724142E+01-1.482766501E+01-5.215927559E-01 -5.215064891E-01-1.442563659E+00-1.442384895E+00-8.091089017E+00-8.080397371E+00 1.104586383E+02 1.104588601E+02-6.597214807E+01-2.209324741E+00-6.599561041E+01 -2.198774154E+00-6.599047472E+01-2.200058630E+00-6.598629910E+01-6.675986110E+01 -2.976195768E+00-6.673718955E+01-2.955923437E+00-6.674036853E+01-2.950768501E+00 -2.600058955E+01-2.601041334E+01-2.599912360E+01-2.974770967E+00-6.674723003E+01 -2.979176141E+00-6.675627950E+01-2.980406707E+00-6.675990061E+01-2.601686752E+01 -2.598590848E+01-2.987457120E+01-3.701250236E+01 1.362276561E+01 2.190369763E+01 3.311611380E+01 5.422529951E+01 6.814783324E+01 8.653463383E+01 9.547726365E+01 1.059306776E+02 1.143523250E+02 1.422289163E+02 1.360343670E+02 1.539658390E+02 1.539506484E+02 1.360229245E+02 6.544012583E+01 8.689335614E+00-3.907013933E+01 -2.502438697E+01-2.501176021E+01 1.215506347E+01 4.056059847E+01 1.163400588E+01 1.210917905E+01-2.507548950E+01-3.910260692E+01-1.088604530E+01 8.734458324E+00 6.539052776E+01 1.360364338E+02 1.539199536E+02 1.359488920E+02 1.539261576E+02 1.878003652E+02 2.167289744E+02 2.167428035E+02 1.581479617E+01-4.931768292E+01 -4.932502230E+01-1.560864436E+01 1.096517169E+02 2.167499746E+02 2.167098748E+02 2.166993431E+02 2.124726818E+02 2.074807797E+02 2.022149809E+02 2.148302534E+02 2.148000708E+02 2.127451770E+02 2.153277263E+02 2.581972920E+02 2.807858552E+02 2.952460079E+02 3.148493716E+02 3.148305603E+02 2.391684673E+02 2.391583537E+02 2.174386430E+02 3.322977947E+02 2.996289561E+02 2.653876807E+02 2.996611444E+02 1.449693987E+02 2.324446186E+02 2.323483650E+02 1.955309124E+02 2.117066895E+02 2.085960166E+02 2.323986832E+02 2.453692454E+02 2.323733250E+02 2.323759119E+02 2.193170133E+02 2.951651746E+02 3.154690814E+02 2.888249210E+02 3.339788203E+02 4.204543748E+02 4.086501844E+02 4.204369417E+02 3.340382032E+02 2.887994503E+02 3.154280164E+02 2.952016996E+02 2.193427702E+02 2.453631421E+02 2.324056399E+02 2.474159495E+02 2.474299118E+02 1.223919264E+02 2.073651681E+02 2.381668633E+02 2.219896897E+02 2.917082317E+02 2.635721685E+02 2.916893035E+02 2.352588191E+02 3.474108197E+02 3.762197316E+02 3.732359908E+02 3.133102191E+02 3.374406315E+02 3.132449106E+02 3.374460718E+02 3.732739548E+02 3.762029695E+02 2.352400783E+02 2.775949421E+02 2.917226109E+02 2.636228428E+02 2.917451707E+02 1.874756975E+02 1.939737698E+02 1.737493765E+02 1.939572458E+02 1.509138263E+02 1.529112098E+02 1.556300522E+02 1.529279092E+02 1.556329732E+02 1.509347016E+02 1.874340563E+02 1.939335667E+02 1.737148197E+02 2.916450515E+02 2.635101662E+02 2.916460146E+02 2.473888516E+02 2.473790892E+02 1.222726586E+02 2.073213697E+02 2.381114657E+02 2.218990850E+02 2.380843170E+02 2.116175884E+02 1.448601983E+02 2.995871080E+02 2.653276022E+02 2.517126232E+02 2.173563964E+02 2.390498390E+02 2.173505727E+02 2.653349760E+02 4.204052092E+02 4.203544320E+02 4.085717763E+02 4.204008146E+02 3.340105091E+02 2.887962069E+02 3.154688476E+02 2.193130576E+02 2.453305050E+02 2.085832618E+02 2.116590180E+02 1.954595940E+02 1.448929594E+02 1.954715793E+02 2.323080471E+02 2.453485171E+02 2.085819211E+02 2.116565563E+02 2.073132117E+02 1.222746269E+02 2.473705075E+02 2.381062034E+02 2.219771936E+02 2.916960570E+02 2.775938129E+02 2.352151243E+02 2.775819784E+02 2.916781548E+02 1.939062134E+02 1.737162153E+02 1.939212611E+02 1.874114065E+02 1.873925367E+02 1.508977926E+02 1.556552001E+02 1.529409503E+02 1.556926617E+02 1.529655491E+02 1.556828731E+02 1.509397941E+02 1.874412855E+02 2.138591147E+02 2.117109953E+02 2.415065694E+02 3.037265517E+02 3.670767935E+02 3.670901394E+02 4.261661421E+02 4.422428839E+02 4.544124346E+02 4.725840752E+02 4.726381696E+02 4.544237814E+02 4.422538336E+02 4.261778770E+02 4.527684602E+02 4.711222353E+02 4.800915618E+02 4.630522978E+02 4.513970697E+02-9.322790259E+01-9.322349763E+01-9.319757128E+01-9.317585021E+01 4.117519627E+02 4.086365657E+02 4.204341182E+02 3.340342646E+02 2.888530630E+02 3.154866700E+02 2.193007207E+02 2.323866546E+02 2.453599473E+02 2.193287509E+02 3.154758667E+02 2.888447249E+02 3.340604453E+02 4.086548174E+02 4.204628295E+02 3.643627894E+02 3.643468088E+02 2.390871115E+02 2.174321678E+02 2.174225589E+02 2.391174243E+02 3.148522701E+02 2.952092179E+02 2.807381153E+02 2.581271178E+02 2.127225064E+02 2.148285174E+02 2.022042881E+02 2.074810403E+02 2.124929091E+02 2.167186286E+02 2.167069950E+02 1.877466708E+02 1.538885778E+02 1.359198980E+02 1.301016007E+02 1.421321840E+02 1.142567766E+02 9.541342092E+01 6.805636445E+01 5.410624399E+01 3.301290058E+01 2.182596018E+01 1.358132990E+01-3.706857182E+01 -2.995344702E+01-2.603078447E+01-2.605456140E+01-2.605952953E+01-2.608363381E+01 -2.608498876E+01-6.683252096E+01-3.056186543E+00-6.681391568E+01-3.049359791E+00 -6.682921809E+01-3.046087397E+00-1.041767500E+02-1.164744906E+02-1.041396855E+02 -1.040704581E+02-1.041502317E+02-8.778531551E+01-8.200384036E+01-8.208215839E+01 -8.782926339E+01-8.206368786E+01-8.813252246E+01-1.172532826E+02-1.165446683E+02 -1.042835352E+02-1.165351471E+02-1.172480038E+02-8.822371209E+01-1.172666184E+02 -1.042897336E+02-1.165600418E+02-1.172811883E+02-8.827802727E+01-8.794239114E+01 -1.165649369E+02-1.540127018E+02-1.201965520E+02-1.202151599E+02-6.342429271E+01 -1.319630618E+02-1.958146494E+02-1.319478667E+02-1.958259371E+02-1.319438965E+02 -1.957884148E+02-1.319249332E+02-1.037426607E+02-1.037413887E+02-1.037239186E+02 -1.535336851E+02-1.041243376E+02-1.041597801E+02-1.041657166E+02-1.041399796E+02 -1.041501627E+02-1.041542914E+02-1.164856802E+02-1.538855609E+02-1.200991496E+02 -1.201104736E+02-1.292189873E+02-1.930567846E+02-1.292296532E+02-1.930031146E+02 -1.291791887E+02-1.930334111E+02-1.291736885E+02-1.930527863E+02-1.291454956E+02 -1.931031984E+02-1.292025147E+02 7.823027312E+01 9.098810400E+01 7.824118662E+01 -2.185657189E+02 3.252604464E+02-2.176296605E+02-4.617257692E+02-1.112605432E+02 -1.522209040E+02-1.113120313E+02-2.185914594E+02 3.252456320E+02-4.617852150E+02 -1.112649393E+02-1.522603508E+02-1.112933026E+02 9.096000808E+01 7.829268713E+01 -2.176841421E+02-4.617380219E+02-2.176936399E+02-4.617190743E+02-1.112437337E+02 -1.522230183E+02-1.113434678E+02 9.101026504E+01 7.821425507E+01-2.186205832E+02 3.252048935E+02-1.113021802E+02-1.522005296E+02-1.112679404E+02 7.824888092E+01 9.098072907E+01 3.251691263E+02-2.186513738E+02-4.617627011E+02-2.177349376E+02 -4.617378582E+02 7.825390850E+01 9.103616124E+01-2.910529453E+01-2.908277168E+01 -2.905411301E+01-2.906863478E+01-2.906244839E+01-3.293961819E+01-2.064171436E+01 -1.957113080E+01-1.063851533E+01-1.673888878E+01-1.428152081E+01-1.293725196E+01 -1.397735154E+01-2.937599765E+01-4.205092673E+01-1.386211576E+01-1.895284204E+01 -1.392344189E+01-4.411909395E+00-1.388555525E+01-1.897869592E+01-4.207229984E+01 -2.938345817E+01-1.402324358E+01-1.296287621E+01-1.431144914E+01-1.395986750E+01 -3.288760474E+01-6.622191435E+01-7.891778494E+01-1.109937934E+01 3.755032554E+01 3.801805927E+01 3.798675897E+01-6.671672935E+01 2.948212779E+01 3.260336225E+01 -1.162197922E+01-1.167436690E+01 3.250428355E+01 2.943677908E+01-6.677664898E+01 3.795942984E+01 3.800105483E+01 3.752400698E+01 8.569895048E+00 9.251708129E+00 2.557501556E+01 6.170134207E+01 7.763242302E+01 9.951020770E+01 1.084914392E+02 9.960063451E+01 1.140165287E+02 1.172549412E+02 1.188165301E+02 1.022023702E+02 1.021477846E+02 1.187817662E+02 1.172395160E+02 1.139763908E+02 9.959022871E+01 1.084829352E+02 9.949067467E+01 7.759785360E+01 6.163861999E+01 2.552926125E+01 9.229685344E+00-2.810774244E+01-4.218303425E+01 5.616945018E+00 6.230267163E+01 1.328976788E+02 1.508284338E+02 1.846975233E+02 2.137131225E+02 2.094213597E+02 1.798159917E+02 1.411490786E+02 1.065615423E+02-1.194625156E+01 7.900937970E+01 1.112724838E+02 1.703493604E+02 1.991570603E+02 2.044510080E+02 2.094617312E+02 2.136575243E+02 2.093831319E+02 1.797614490E+02 1.411135465E+02 1.065115785E+02 -1.195404820E+01 7.896558569E+01 1.112574387E+02 1.521554192E+02 1.748233143E+02 2.230829060E+02 1.518454049E+02 4.086466300E+01 1.007230028E+02 1.394221035E+02 1.909025267E+02 1.296666607E+02 2.107778270E+02 2.107667394E+02 2.086492058E+02 2.384445559E+02 3.006657720E+02 3.639884712E+02 3.927981007E+02 3.804531928E+02 4.046690897E+02 4.230814782E+02 4.391593464E+02 4.513647062E+02 4.696982920E+02 5.129127103E+02 5.135787534E+02 4.978362431E+02 4.680479634E+02 4.496803453E+02 4.230554874E+02 4.230067237E+02 4.391454269E+02 4.513035603E+02 4.697046862E+02 5.095673023E+02 4.710341590E+02 3.936693820E+02 3.793315972E+02 3.268133009E+02 3.639822848E+02 3.268110073E+02 3.090439412E+02 2.962398458E+02 3.311481546E+02 3.564232505E+02 3.564346395E+02 4.377949490E+02 5.096133411E+02 4.710178956E+02 3.936490498E+02 3.793652438E+02 3.927722848E+02 3.639831488E+02 3.267997789E+02 3.090201254E+02 2.962529483E+02 2.962519733E+02 3.311287086E+02 3.564378222E+02 3.564365031E+02 4.377900116E+02 4.710348423E+02 5.096243679E+02 4.697779361E+02 4.513138267E+02 5.128869275E+02 5.135494141E+02 4.978319661E+02 4.289303894E+02 4.770335982E+02 4.770250989E+02 4.599554221E+02 4.483224936E+02 3.427622138E+02 4.483186339E+02-9.634625500E+01 4.086108471E+02 4.173284902E+02 4.086110126E+02 -9.636514425E+01 4.482963474E+02 4.599311050E+02 4.770349156E+02 4.289241489E+02 4.680362501E+02 4.496491184E+02 4.230286563E+02 4.046327704E+02 3.804553917E+02 3.639886665E+02 3.006575257E+02 2.384465298E+02 2.107507814E+02 2.086451858E+02 2.107440637E+02 2.086491811E+02 1.296443248E+02 1.908495109E+02 1.393721470E+02 1.006642436E+02-2.426569559E+01-2.444682707E+01-2.425984204E+01 4.086620123E+01 1.518168353E+02 2.230189054E+02 2.776643769E+02 2.550578533E+02 1.747887250E+02 1.521227635E+02 2.117555259E+02 1.702763598E+02 1.991135831E+02 2.043828157E+02 2.094005182E+02 2.136226190E+02 2.093498981E+02 1.797439044E+02 1.846642366E+02 1.507911302E+02 1.328379373E+02 6.221888779E+01 5.570212143E+00-4.222146232E+01 -2.817691957E+01 9.202289612E+00 8.520945500E+00 3.749923189E+01-1.121032191E+01 -7.899897740E+01-6.631508437E+01-3.294860349E+01-2.945265561E+01-1.408584208E+01 -1.304743180E+01-1.400938971E+01-1.678081683E+01-1.683210700E+01-1.076610471E+01 -1.965543106E+01-2.077819133E+01-3.308462881E+01-2.913825281E+01-2.917049148E+01 SparseM/inst/extdata/lsq.rra0000644000175100001440000210610411547113521015562 0ustar hornikusers1UNSYMMETRIC LEAST-SQUARES PROBLEM. SAUNDERS 1979. WELL1850 2715 45 548 1752 370 RRA 1850 712 8758 0 (16I5) (16I5) (1P,5D16.9) (1P,5D16.9) F 1 0 1 14 18 27 39 44 53 57 62 68 76 81 87 93 100 102 109 115 122 128 135 141 149 156 162 166 169 175 182 190 194 200 206 212 216 222 228 240 250 258 271 275 288 298 316 320 324 330 336 342 350 361 378 388 396 399 406 410 412 416 418 420 423 425 428 430 433 436 438 442 448 455 459 462 467 471 474 478 495 497 511 517 523 539 544 558 571 583 595 630 634 638 654 670 684 697 703 705 711 718 723 731 735 739 740 741 748 759 765 772 779 782 788 806 814 820 846 856 871 873 915 919 927 934 942 947 951 960 980 982 997 1000 1005 1014 1021 1023 1027 1032 1037 1048 1068 1080 1095 1104 1107 1113 1115 1117 1134 1149 1158 1172 1174 1195 1200 1207 1213 1215 1216 1221 1229 1235 1248 1252 1261 1267 1277 1283 1289 1295 1299 1301 1309 1317 1324 1340 1347 1354 1373 1379 1386 1397 1406 1416 1421 1426 1432 1438 1439 1443 1444 1448 1455 1456 1463 1468 1469 1475 1484 1492 1501 1510 1514 1516 1520 1522 1526 1530 1538 1543 1548 1551 1579 1583 1587 1613 1637 1648 1651 1659 1674 1684 1688 1693 1698 1701 1704 1707 1711 1714 1719 1724 1729 1734 1739 1743 1746 1749 1753 1756 1759 1762 1764 1766 1768 1771 1776 1779 1783 1787 1792 1807 1810 1816 1820 1826 1834 1836 1840 1848 1856 1861 1869 1879 1883 1892 1897 1902 1911 1915 1920 1928 1937 1941 1952 1960 1968 1976 1986 1990 1998 2002 2010 2022 2030 2034 2038 2046 2050 2054 2063 2068 2073 2080 2087 2092 2101 2109 2112 2115 2119 2124 2132 2139 2151 2155 2160 2167 2174 2178 2181 2185 2189 2193 2200 2207 2219 2226 2230 2236 2243 2247 2250 2254 2258 2261 2267 2271 2276 2284 2287 2292 2297 2300 2305 2310 2320 2330 2335 2338 2341 2345 2349 2352 2355 2358 2361 2364 2367 2370 2373 2376 2379 2383 2391 2395 2399 2409 2412 2419 2422 2426 2433 2436 2442 2449 2462 2465 2472 2475 2479 2483 2490 2493 2501 2505 2508 2512 2522 2529 2533 2539 2543 2549 2553 2560 2564 2573 2577 2580 2588 2592 2599 2603 2608 2612 2615 2618 2621 2625 2630 2639 2642 2647 2650 2653 2661 2711 2752 2759 2779 2784 2802 2813 2824 2839 2853 2896 2939 3065 3199 3261 3348 3376 3387 3397 3449 3686 3690 3698 3706 3711 3719 3729 3733 3742 3752 3761 3765 3770 3778 3787 3791 3802 3810 3818 3826 3836 3840 3848 3852 3860 3872 3880 3884 3888 3896 3900 3904 3913 3918 3923 3930 3937 3942 3951 3959 3965 3969 3974 3982 3989 4001 4017 4028 4035 4050 4057 4069 4080 4086 4093 4100 4104 4111 4117 4126 4134 4137 4142 4150 4160 4170 4180 4191 4199 4211 4220 4223 4226 4229 4241 4249 4259 4272 4276 4286 4292 4299 4312 4322 4325 4329 4343 4355 4362 4372 4379 4383 4393 4399 4403 4410 4414 4423 4430 4438 4449 4453 4471 4475 4480 4489 4492 4497 4500 4503 4561 4602 4629 4652 4674 4703 4746 4915 5198 5226 5247 5299 5536 5549 5558 5570 5575 5584 5589 5595 5603 5608 5614 5620 5627 5633 5640 5646 5653 5659 5667 5674 5680 5686 5693 5701 5707 5713 5719 5725 5737 5747 5755 5768 5781 5791 5809 5815 5821 5827 5835 5846 5863 5873 5881 5888 5892 5898 5905 5908 5913 5917 5920 5926 5932 5948 5962 5975 5987 5999 6034 6050 6066 6080 6093 6099 6105 6112 6117 6125 6129 6136 6147 6153 6160 6167 6173 6191 6199 6205 6231 6241 6256 6298 6306 6313 6321 6325 6334 6354 6369 6374 6383 6385 6389 6394 6405 6425 6437 6452 6461 6467 6484 6499 6508 6522 6543 6548 6555 6561 6569 6575 6588 6592 6601 6607 6617 6623 6629 6635 6639 6647 6654 6670 6677 6684 6703 6709 6716 6727 6736 6746 6751 6756 6762 6768 6775 6782 6788 6797 6805 6814 6818 6826 6831 6836 6840 6844 6870 6894 6909 7309 7726 7784 7825 7852 7875 7897 7926 7969 8138 8421 8449 8470 8522 8759 1 3 26 28 164 166 1259 1262 1277 1279 1490 1686 1827 2 4 5 7 6 8 9 11 1263 1276 1540 1685 1828 10 12 13 15 1264 1275 1538 1539 1560 1561 1684 1829 14 16 17 19 1274 18 20 21 23 25 1265 1273 1683 1830 22 24 152 154 27 29 30 32 1491 31 33 35 37 1258 1492 34 36 38 39 41 43 1257 1493 40 42 44 46 1256 45 47 49 51 1255 1494 48 50 52 53 55 1254 54 56 57 59 61 67 69 58 60 62 64 66 72 74 1252 1496 63 65 76 78 1251 1497 68 70 71 73 75 1253 1495 77 79 81 83 1250 1498 80 82 84 86 88 1249 1499 85 87 89 91 1248 1500 90 92 94 96 1247 1501 1619 1848 93 95 97 98 100 1620 1847 99 101 102 104 1621 1846 103 105 106 108 107 109 111 110 112 113 115 1622 1845 114 116 117 119 1623 1843 1844 118 120 121 123 372 376 1640 1842 122 124 125 127 126 128 129 131 1641 1838 130 132 133 135 1642 1837 134 136 137 139 1643 1836 138 140 142 144 141 143 145 146 148 150 147 149 167 169 1644 1835 151 153 192 194 1266 1267 1272 1537 1551 1559 1682 1831 155 157 298 300 302 304 306 308 401 403 156 158 159 161 1281 1488 1688 1825 160 162 163 165 989 990 1260 1261 1278 1280 1489 1687 1826 168 170 171 173 172 174 175 177 294 296 1269 1523 1529 1534 1645 1658 1834 176 178 180 1270 1524 1528 1530 1533 1659 1833 179 181 182 184 186 195 197 1268 1271 1514 1525 1527 1532 1536 1558 1660 1681 1832 183 185 187 189 188 190 191 193 196 198 199 201 1661 1680 200 202 203 205 1662 1679 204 206 207 209 1663 1678 208 210 211 213 1117 1118 1664 1677 212 214 215 217 1114 1115 1116 1119 1120 1665 1676 216 218 219 220 222 369 371 1077 1078 1108 1109 1112 1113 1121 1122 1666 1675 221 223 224 226 1110 1111 1123 1124 1667 1674 225 227 229 231 266 268 1668 1673 228 230 232 233 234 265 271 273 1669 1672 235 264 1670 1671 236 263 237 238 261 262 239 260 240 259 241 242 258 243 257 244 255 256 245 254 246 247 253 248 251 252 249 250 267 269 270 272 274 288 289 291 1646 1657 275 287 1518 1521 1535 1647 1656 276 277 279 286 278 1648 1655 280 283 284 1650 1653 281 282 1651 1652 285 1649 1654 290 292 293 295 297 299 1282 1283 1289 1290 1291 1486 1487 1574 1589 1598 1606 1613 1689 1701 1822 301 303 305 307 309 311 402 404 410 1292 1485 1690 1700 1702 1821 1823 310 312 314 1691 1703 1824 313 315 316 318 1692 1704 317 319 321 323 991 993 1061 1168 1169 1170 1171 1221 1222 1288 1693 1705 320 322 324 325 327 326 328 330 424 1062 1063 1166 1167 1172 1173 1219 1220 1694 1706 329 331 332 334 1007 1064 1065 1164 1165 1174 1175 1217 1218 333 335 337 1066 1139 1140 1162 1163 1176 1177 1215 1216 336 338 339 341 344 1160 1161 1180 1181 1213 1214 1287 340 342 343 345 346 348 1067 1068 1089 1090 1096 1097 1135 1136 1143 1144 1150 1151 1154 1155 1156 1157 1182 1183 1186 1187 1188 1198 1199 1205 1206 1209 1210 1285 1286 347 349 350 352 351 353 354 356 355 357 358 360 1004 1069 1070 1085 1086 1100 1101 1131 1132 1196 1197 1284 359 361 363 1005 1006 1071 1072 1083 1084 1102 1103 1129 1130 1189 1190 1195 362 364 365 367 1073 1074 1081 1082 1104 1105 1127 1128 1191 1192 366 368 370 1075 1076 1079 1080 1106 1107 1125 1126 1193 1194 373 377 379 1625 1638 1841 374 375 378 380 382 1626 1637 1840 381 383 384 386 1627 1636 1839 385 387 389 1628 1635 388 390 392 394 395 1629 1631 1633 391 393 1630 1634 396 397 400 1632 398 399 405 406 409 1293 1484 1699 1820 407 408 411 412 414 447 450 1294 1483 1698 1819 413 415 417 968 1697 1818 416 418 419 421 427 1696 1708 420 422 423 425 992 1695 1707 426 428 430 429 431 432 434 1709 1816 433 435 436 438 975 983 984 985 986 994 995 1008 1009 1010 1012 1017 1710 1815 437 439 442 453 455 471 473 1298 440 441 443 445 1297 1481 444 446 448 449 451 452 967 969 970 971 972 973 974 976 977 978 979 980 981 982 987 988 1295 1296 1482 1817 454 456 457 459 474 475 477 1299 1480 1814 458 460 464 465 826 895 896 897 898 899 900 908 909 1711 1812 461 462 463 466 468 530 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 901 902 903 904 905 906 996 997 998 999 1001 1003 1011 1013 1014 1015 1016 1712 1811 467 469 470 472 476 478 480 825 827 1300 1479 1813 479 481 483 828 829 1301 1478 482 484 485 487 830 1302 1303 1477 486 488 490 610 612 489 491 493 1307 492 494 495 497 925 926 1308 1310 1385 496 498 504 907 914 915 916 924 927 929 930 931 932 933 934 935 936 937 1018 1387 499 500 501 506 508 691 693 928 938 939 940 941 942 943 1019 1715 1805 502 503 505 507 509 511 1714 1806 510 512 518 524 526 910 911 912 913 513 516 517 519 520 522 523 514 1808 515 521 1807 1809 525 527 533 1713 1810 528 529 531 532 534 535 537 538 540 684 686 687 689 1021 1024 1031 536 553 557 688 690 692 1020 1027 1028 1032 1048 1049 1057 1361 1363 1371 1420 1422 1716 1804 539 543 681 683 685 1039 1044 1045 1052 1053 1717 1803 541 545 547 548 674 676 678 680 682 1038 1433 1718 1719 1799 1801 542 544 677 679 1037 1434 1720 1800 1802 546 549 551 550 552 554 558 562 1033 555 556 559 560 561 563 564 566 638 842 945 946 1035 1342 1344 1357 1359 1373 1375 1415 1419 565 567 569 841 951 954 957 958 961 962 1336 1337 1376 1377 1412 568 570 572 815 817 840 949 950 965 571 575 579 816 839 966 1312 1313 1317 1319 1320 1335 1406 1463 573 574 576 577 1022 1023 1025 1026 1029 1030 1040 1041 1042 1043 1046 1047 1050 1051 1054 1055 1058 1059 1060 578 580 582 1000 1002 581 583 585 836 838 1322 1332 584 586 587 589 837 1780 588 590 591 592 595 597 598 615 594 614 616 618 1451 1779 1781 1787 596 599 602 1456 1783 1785 600 601 603 605 835 1326 1328 1392 1393 1395 1458 1470 1784 604 606 608 834 607 609 611 613 831 832 833 1471 1472 617 619 621 1450 1778 1788 620 622 624 640 642 847 1449 1776 1777 1789 623 625 628 846 1775 1790 626 627 629 630 632 845 631 633 635 844 1347 1354 634 636 843 1346 637 639 641 643 644 646 807 811 812 814 645 647 648 650 848 1448 1734 1791 649 651 653 849 1447 1735 1792 652 654 655 657 658 753 755 850 851 874 1439 1446 1727 1736 1737 1793 656 659 661 852 873 1726 1794 660 662 664 853 872 1725 1795 663 665 666 668 694 696 749 750 752 854 869 870 871 1437 1438 1723 1746 1759 1796 667 669 671 1436 1722 1797 670 672 673 675 1435 1721 1798 695 697 698 700 702 714 716 855 1745 1747 1760 699 701 703 705 707 856 859 1748 1761 704 706 708 710 711 713 857 1749 1762 1763 709 712 858 1750 1764 715 717 719 1744 1757 718 720 722 724 1743 1756 721 723 727 864 1753 1767 725 726 728 731 733 729 730 732 734 736 735 737 740 866 1741 1754 1769 738 739 741 743 865 1742 1755 1768 742 744 747 768 770 745 746 748 751 868 1724 1758 754 756 757 759 875 1440 1445 1728 1738 758 760 762 1441 1444 1729 1739 1771 761 763 765 767 1442 1443 1730 1740 1770 764 766 774 775 781 786 789 790 792 769 771 778 867 772 773 776 777 779 780 782 783 784 785 787 788 791 793 796 798 794 795 797 799 800 802 1731 1772 801 803 805 1732 1773 804 806 809 1733 1774 808 810 813 818 819 820 821 822 823 824 1236 1237 1238 1245 1246 1502 1503 1504 1505 1506 1581 1587 1596 1603 1614 1615 1616 1617 1618 1849 1850 860 862 1751 1765 861 863 1752 1766 917 919 921 923 1224 1226 1228 1231 1233 1235 1239 1241 1243 1508 1510 1512 1541 1543 1545 1547 1562 1564 1566 1568 1570 1572 918 920 922 1223 1225 1227 1229 1230 1232 1234 1240 1242 1244 1507 1509 1511 1542 1544 1546 1563 1565 1567 1569 1571 944 947 948 952 953 955 956 959 960 963 964 1034 1036 1056 1087 1088 1098 1099 1133 1134 1207 1208 1091 1092 1093 1094 1095 1145 1146 1147 1148 1149 1200 1201 1202 1203 1204 1137 1138 1141 1142 1158 1159 1178 1179 1211 1212 1152 1153 1184 1185 1304 1305 1389 1473 1476 1306 1388 1390 1474 1475 1309 1386 1391 1311 1384 1404 1314 1403 1405 1315 1383 1402 1409 1316 1401 1408 1318 1334 1400 1407 1464 1321 1333 1399 1462 1465 1323 1331 1398 1461 1466 1324 1330 1397 1460 1467 1325 1329 1396 1459 1468 1327 1394 1457 1469 1338 1378 1411 1339 1379 1410 1340 1380 1382 1413 1341 1381 1414 1343 1358 1374 1345 1355 1417 1348 1353 1349 1351 1350 1352 1356 1416 1418 1360 1370 1423 1424 1432 1362 1372 1421 1364 1369 1425 1431 1365 1367 1427 1429 1366 1368 1426 1428 1430 1513 1515 1516 1517 1526 1531 1548 1549 1550 1552 1553 1554 1555 1556 1557 1519 1520 1522 1573 1575 1590 1599 1605 1612 1577 1584 1601 1607 1579 1585 1592 1594 1609 1611 1580 1582 1586 1588 1595 1597 1602 1604 1624 1639 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1 3 26 28 164 166 1259 1262 1277 1279 1490 1686 1827 6 8 9 11 1263 1276 1540 1685 1828 10 12 13 15 1264 1275 1538 1539 1560 1561 1684 1829 14 16 17 19 1274 18 20 21 23 25 1265 1273 1683 1830 27 29 30 32 1491 31 33 35 37 1258 1492 34 36 38 39 41 43 1257 1493 40 42 44 46 1256 45 47 49 51 1255 1494 48 50 52 53 55 1254 62 64 66 72 74 1252 1496 63 65 76 78 1251 1497 68 70 71 73 75 1253 1495 77 79 81 83 1250 1498 80 82 84 86 88 1249 1499 85 87 89 91 1248 1500 90 92 94 96 1247 1501 1619 1848 93 95 97 98 100 1620 1847 99 101 102 104 1621 1846 110 112 113 115 1622 1845 114 116 117 119 1623 1843 1844 118 120 121 123 372 376 1640 1842 126 128 129 131 1641 1838 130 132 133 135 1642 1837 134 136 137 139 1643 1836 147 149 167 169 1644 1835 151 153 192 194 1266 1267 1272 1537 1551 1559 1682 1831 155 157 298 300 302 304 306 308 401 403 156 158 159 161 1281 1488 1688 1825 160 162 163 165 989 990 1260 1261 1278 1280 1489 1687 1826 172 174 175 177 294 296 1269 1523 1529 1534 1645 1658 1834 176 178 180 1270 1524 1528 1530 1533 1659 1833 179 181 182 184 186 195 197 1268 1271 1514 1525 1527 1532 1536 1558 1660 1681 1832 196 198 199 201 1661 1680 200 202 203 205 1662 1679 204 206 207 209 1663 1678 208 210 211 213 1117 1118 1664 1677 212 214 215 217 1114 1115 1116 1119 1120 1665 1676 216 218 219 220 222 369 371 1077 1078 1108 1109 1112 1113 1121 1122 1666 1675 221 223 224 226 1110 1111 1123 1124 1667 1674 225 227 229 231 266 268 1668 1673 233 234 265 271 273 1669 1672 235 264 1670 1671 274 288 289 291 1646 1657 275 287 1518 1521 1535 1647 1656 278 1648 1655 280 283 284 1650 1653 281 282 1651 1652 285 1649 1654 310 312 314 1691 1703 1824 313 315 316 318 1692 1704 317 319 321 323 991 993 1061 1168 1169 1170 1171 1221 1222 1288 1693 1705 326 328 330 424 1062 1063 1166 1167 1172 1173 1219 1220 1694 1706 329 331 332 334 1007 1064 1065 1164 1165 1174 1175 1217 1218 333 335 337 1066 1139 1140 1162 1163 1176 1177 1215 1216 336 338 339 341 344 1160 1161 1180 1181 1213 1214 1287 340 342 343 345 346 348 1067 1068 1089 1090 1096 1097 1135 1136 1143 1144 1150 1151 1154 1155 1156 1157 1182 1183 1186 1187 1188 1198 1199 1205 1206 1209 1210 1285 1286 355 357 358 360 1004 1069 1070 1085 1086 1100 1101 1131 1132 1196 1197 1284 359 361 363 1005 1006 1071 1072 1083 1084 1102 1103 1129 1130 1189 1190 1195 362 364 365 367 1073 1074 1081 1082 1104 1105 1127 1128 1191 1192 366 368 370 1075 1076 1079 1080 1106 1107 1125 1126 1193 1194 373 377 379 1625 1638 1841 378 380 382 1626 1637 1840 381 383 384 386 1627 1636 1839 385 387 389 1628 1635 388 390 392 394 395 1629 1631 1633 396 397 400 1632 405 406 409 1293 1484 1699 1820 407 408 411 412 414 447 450 1294 1483 1698 1819 413 415 417 968 1697 1818 416 418 419 421 427 1696 1708 420 422 423 425 992 1695 1707 429 431 432 434 1709 1816 433 435 436 438 975 983 984 985 986 994 995 1008 1009 1010 1012 1017 1710 1815 437 439 442 453 455 471 473 1298 440 441 443 445 1297 1481 444 446 448 449 451 452 967 969 970 971 972 973 974 976 977 978 979 980 981 982 987 988 1295 1296 1482 1817 454 456 457 459 474 475 477 1299 1480 1814 458 460 464 465 826 895 896 897 898 899 900 908 909 1711 1812 463 466 468 530 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 901 902 903 904 905 906 996 997 998 999 1001 1003 1011 1013 1014 1015 1016 1712 1811 476 478 480 825 827 1300 1479 1813 479 481 483 828 829 1301 1478 482 484 485 487 830 1302 1303 1477 489 491 493 1307 492 494 495 497 925 926 1308 1310 1385 496 498 504 907 914 915 916 924 927 929 930 931 932 933 934 935 936 937 1018 1387 501 506 508 691 693 928 938 939 940 941 942 943 1019 1715 1805 507 509 511 1714 1806 510 512 518 524 526 910 911 912 913 514 1808 515 521 1807 1809 525 527 533 1713 1810 535 537 538 540 684 686 687 689 1021 1024 1031 536 553 557 688 690 692 1020 1027 1028 1032 1048 1049 1057 1361 1363 1371 1420 1422 1716 1804 539 543 681 683 685 1039 1044 1045 1052 1053 1717 1803 541 545 547 548 674 676 678 680 682 1038 1433 1718 1719 1799 1801 542 544 677 679 1037 1434 1720 1800 1802 550 552 554 558 562 1033 561 563 564 566 638 842 945 946 1035 1342 1344 1357 1359 1373 1375 1415 1419 565 567 569 841 951 954 957 958 961 962 1336 1337 1376 1377 1412 568 570 572 815 817 840 949 950 965 571 575 579 816 839 966 1312 1313 1317 1319 1320 1335 1406 1463 576 577 1022 1023 1025 1026 1029 1030 1040 1041 1042 1043 1046 1047 1050 1051 1054 1055 1058 1059 1060 578 580 582 1000 1002 581 583 585 836 838 1322 1332 584 586 587 589 837 1780 594 614 616 618 1451 1779 1781 1787 596 599 602 1456 1783 1785 600 601 603 605 835 1326 1328 1392 1393 1395 1458 1470 1784 604 606 608 834 607 609 611 613 831 832 833 1471 1472 617 619 621 1450 1778 1788 620 622 624 640 642 847 1449 1776 1777 1789 623 625 628 846 1775 1790 626 627 629 630 632 845 631 633 635 844 1347 1354 634 636 843 1346 645 647 648 650 848 1448 1734 1791 649 651 653 849 1447 1735 1792 652 654 655 657 658 753 755 850 851 874 1439 1446 1727 1736 1737 1793 656 659 661 852 873 1726 1794 660 662 664 853 872 1725 1795 663 665 666 668 694 696 749 750 752 854 869 870 871 1437 1438 1723 1746 1759 1796 667 669 671 1436 1722 1797 670 672 673 675 1435 1721 1798 695 697 698 700 702 714 716 855 1745 1747 1760 699 701 703 705 707 856 859 1748 1761 704 706 708 710 711 713 857 1749 1762 1763 709 712 858 1750 1764 715 717 719 1744 1757 718 720 722 724 1743 1756 721 723 727 864 1753 1767 735 737 740 866 1741 1754 1769 739 741 743 865 1742 1755 1768 746 748 751 868 1724 1758 754 756 757 759 875 1440 1445 1728 1738 758 760 762 1441 1444 1729 1739 1771 761 763 765 767 1442 1443 1730 1740 1770 769 771 778 867 794 795 797 799 800 802 1731 1772 801 803 805 1732 1773 804 806 809 1733 1774 860 862 1751 1765 861 863 1752 1766 917 919 921 923 1224 1226 1228 1231 1233 1235 1239 1241 1243 1508 1510 1512 1541 1543 1545 1547 1562 1564 1566 1568 1570 1572 918 920 922 1223 1225 1227 1229 1230 1232 1234 1240 1242 1244 1507 1509 1511 1542 1544 1546 1563 1565 1567 1569 1571 1513 1515 1516 1517 1526 1531 1548 1549 1550 1552 1553 1554 1555 1556 1557 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 9 10 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 7.071067812D-01 7.071067812D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 7.071067812D-01 7.071067812D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 7.071067812D-01 7.071067812D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 7.071067812D-01 7.071067812D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 7.071067812D-01 7.071067812D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 7.071067812D-01 7.071067812D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 7.071067812D-01 7.071067812D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 1.000000000D+00 1.000000000D+00 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 7.071067812D-01 7.071067812D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 7.071067812D-01 7.071067812D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 7.071067812D-01 7.071067812D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 7.071067812D-01 7.071067812D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 7.071067812D-01 7.071067812D-01 1.000000000D+00 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 7.071067812D-01 7.071067812D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 1.000000000D+00 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 1.000000000D+00 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 1.000000000D+00 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 1.000000000D+00 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 7.071067812D-01 7.071067812D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 7.071067812D-01 7.071067812D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 7.071067812D-01 7.071067812D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 -5.740131566D-01-2.420537407D-01 3.457910582D-02 7.814877913D-01-5.088415090D-01 -3.929029373D-01-2.383181751D-01-1.223796034D-01 7.085134937D-02 2.640823022D-01 3.929029373D-01 5.346056362D-01-5.725363468D-01-3.793915549D-01-2.000428199D-01 -7.587831101D-02 7.587831101D-02 2.552270461D-01 3.793915549D-01 5.173521205D-01 -6.979408366D-01-3.130469929D-01 1.488256196D-01 3.284427467D-01 5.337194634D-01 -5.687042300D-01-3.644349555D-01-1.973055491D-01-8.588594491D-02 6.267352738D-02 2.298029337D-01 3.783624060D-01 5.454918122D-01-4.350249032D-01-3.590853941D-01 -3.048428873D-01-2.289033781D-01-1.638123701D-01 1.290971658D-01 2.267336778D-01 3.026731871D-01 3.786126965D-01 4.545522056D-01-7.071067814D-01-1.631784880D-01 2.175713174D-01 6.527139520D-01-5.110634454D-01-3.960741700D-01-2.667112355D-01 -1.373483009D-01-7.985366335D-03 1.644985464D-01 2.794878216D-01 3.944770969D-01 4.807190533D-01-3.512295461D-01-3.288582375D-01-3.064869289D-01-2.953012745D-01 -2.617443115D-01 1.744962077D-01 2.527957880D-01 3.087240597D-01 3.646523313D-01 4.429519118D-01-5.175691006D-01-3.755531888D-01-2.761420505D-01-1.625293212D-01 5.049454637D-02 1.499056846D-01 2.493168228D-01 3.629295522D-01 5.191470550D-01 -5.828042066D-01-3.416438452D-01 2.210636645D-01 7.033843873D-01-6.390281219D-01 -2.954646155D-01-2.061381038D-02 3.229496960D-01 6.321568518D-01-4.864023832D-01 -3.748262094D-01-2.771970571D-01-1.795679049D-01 1.272665734D-01 2.806838126D-01 4.062070083D-01 5.038361603D-01-5.105183892D-01-3.888053959D-01-2.823065265D-01 -1.301652847D-01-8.452291210D-03 1.589030748D-01 2.958301925D-01 3.871149375D-01 4.783996826D-01-7.095242470D-01-1.689343445D-01 2.365080823D-01 6.419505092D-01 -4.710853076D-01-3.680646640D-01-2.959502132D-01-2.135336981D-01-8.990892552D-02 -7.492410462D-03 9.552823338D-02 1.985488772D-01 3.118715853D-01 3.839860361D-01 4.561004869D-01-5.713375803D-01-3.686048904D-01-2.395931788D-01-5.529073356D-02 9.215122259D-02 2.580234233D-01 3.686048904D-01 5.160468467D-01-5.432132172D-01 -3.744479458D-01-2.197464471D-01-1.072362662D-01 7.559277778D-02 2.443580491D-01 3.849957753D-01 5.396972739D-01-5.546845586D-01-3.893127647D-01-2.239409709D-01 -7.235015983D-02 9.302163407D-02 2.446124451D-01 3.824222734D-01 5.202321018D-01 -4.630557655D-01-3.714910660D-01-2.799263667D-01-2.014423387D-01-1.229583106D-01 7.325175950D-02 2.040584729D-01 2.956231723D-01 3.871878716D-01 4.787525711D-01 -6.459422415D-01-2.348880879D-01 1.761660659D-01 7.046642635D-01-5.783469319D-01 -3.521490208D-01-2.082048955D-01-6.426077019D-02 5.911990861D-02 2.236274803D-01 3.675716056D-01 5.526426240D-01-6.953920906D-01-1.896523883D-01 2.317973635D-01 6.532471155D-01-6.084849344D-01-3.928193881D-01-2.079632055D-01-2.310702283D-02 1.463444779D-01 2.695819330D-01 3.620100244D-01 4.544381158D-01-4.720180397D-01 -3.559480301D-01-2.979130250D-01-2.166640183D-01-1.238080105D-01-5.416600458D-02 3.869000324D-03 1.779740150D-01 2.476160209D-01 3.056510257D-01 3.636860308D-01 4.217210356D-01-5.155440953D-01-3.127070743D-01-2.450947339D-01-1.605793084D-01 2.535462764D-02 2.281916488D-01 3.972224998D-01 5.831564358D-01-7.095242473D-01 -1.689343446D-01 2.365080824D-01 6.419505094D-01-7.206576831D-01-1.752951121D-01 2.921585202D-01 6.037942751D-01-5.532177706D-01-3.829969181D-01-2.506029217D-01 -1.182089254D-01 1.844059235D-01 2.789730638D-01 3.735402041D-01 4.681073443D-01 -7.087321464D-01-1.880309777D-01 2.748145058D-01 6.219486183D-01-7.046642635D-01 -1.761660659D-01 2.348880879D-01 6.459422415D-01-5.255787283D-01-3.828569185D-01 -2.605239386D-01-1.381909587D-01-1.585797887D-02 1.676414909D-01 2.899744708D-01 3.919186207D-01 4.734739406D-01-6.324555321D-01-3.162277660D-01 0.0 3.162277660D-01 6.324555321D-01-6.425895644D-01-3.365945337D-01 3.059950307D-02 3.671940368D-01 5.813905583D-01-5.498125957D-01-3.748722245D-01-1.999318530D-01 6.815858632D-03 1.658525599D-01 3.407929314D-01 6.111553235D-01-5.170681280D-01 -3.648471370D-01-2.126261461D-01-6.040515513D-02 1.256427227D-01 4.639115915D-01 5.653922521D-01-5.969620060D-01-3.411211463D-01-4.264014330D-02 3.411211463D-01 6.396021494D-01-5.358070089D-01-3.813573017D-01-2.440686731D-01-1.239411230D-01 1.334750556D-02 1.334750556D-01 2.364415270D-01 3.737301556D-01 5.281798626D-01 -5.561397478D-01-3.716141173D-01-2.280941823D-01-1.050770952D-01 9.995138327D-02 2.639741661D-01 3.869912532D-01 5.100083401D-01-6.146789777D-01-4.279410605D-01 -7.780746555D-03 1.789571707D-01 3.190106087D-01 5.524330053D-01-7.436490464D-01 -1.368679227D-02 9.580754584D-02 6.615282928D-01-6.320168708D-01-3.204592584D-01 -8.901646066D-03 3.471641966D-01 6.142135786D-01-4.681454353D-01-3.541621988D-01 -2.564622819D-01-1.587623650D-01 2.035414935D-02 2.157539831D-01 4.111538168D-01 5.902703314D-01-5.631859205D-01-4.054938628D-01-1.689557762D-01-1.126371841D-02 2.252743681D-01 3.829664260D-01 5.406584837D-01-4.429910821D-01-3.793276931D-01 -2.838326095D-01-2.201692205D-01-1.405899842D-01-4.509490059D-02 3.448433573D-02 1.299794193D-01 2.095586556D-01 2.891378919D-01 3.846329753D-01 4.642122119D-01 -4.281149878D-01-3.844297849D-01-3.232705010D-01-2.795852981D-01-1.135815274D-01 -7.863336510D-02-4.368520285D-02-3.814220211D-12 3.494816225D-02 8.737040565D-02 1.310556085D-01 1.572667302D-01 1.922148925D-01 2.708482576D-01 3.582186632D-01 4.193779472D-01-5.132347461D-01-3.466983978D-01-2.967374933D-01-2.134693192D-01 -9.689387536D-02 3.633520326D-02 1.529106471D-01 1.862179167D-01 2.694860909D-01 3.694078998D-01 4.526760742D-01-6.396021490D-01-3.731012536D-01-5.330017909D-02 0.0 1.599005372D-01 3.731012536D-01 5.330017909D-01-3.433942596D-01 -3.042981389D-01-2.652020184D-01-2.261058977D-01-1.967838072D-01-1.674617167D-01 -1.381396262D-01-4.039932465D-02-1.303204023D-03 8.666306739D-02 1.550812785D-01 2.332735198D-01 3.407878516D-01 3.994320325D-01 4.678502435D-01-5.986927857D-01 -4.141899776D-01-2.296871694D-01 1.920335351D-01 2.711061671D-01 3.501787992D-01 4.292514313D-01-4.995562352D-01-3.813513795D-01-3.306921557D-01-1.280552603D-01 -9.428244439D-02-4.362322054D-02 7.458163512D-02 1.252408590D-01 1.927864907D-01 2.603321226D-01 3.785369782D-01 4.460826098D-01-5.369652087D-01-4.029581846D-01 -2.895676256D-01-1.555606015D-01-7.309474045D-02 5.060405108D-02 1.330699121D-01 2.567687037D-01 2.980016343D-01 3.289263322D-01 3.907757280D-01-6.443170192D-01 -2.941975823D-01-1.629027935D-01 1.726283334D-01 3.914529816D-01 5.373360800D-01 -5.478841452D-01-4.288610378D-01-2.701635613D-01 1.398049198D-01 2.852776067D-01 3.646263450D-01 4.571998728D-01-4.174538088D-01-3.687508644D-01-2.956964479D-01 -8.870893436D-02 1.182785791D-01 4.104962453D-01 6.418352308D-01-7.132923260D-01 -1.802826759D-01 2.743432024D-01 6.192317995D-01-4.963543015D-01-3.033276286D-01 -1.915753444D-01 1.161062693D-02 1.161062693D-02 2.046372997D-01 7.633987209D-01 -5.422997814D-01-2.662198928D-01-1.084599563D-01 9.859996028D-03 1.281799484D-01 7.789396861D-01-6.524016431D-01-3.249881792D-01-1.940227936D-01-1.067125365D-01 2.425284920D-02 1.988733634D-01 2.861836205D-01 3.516663133D-01 4.171490061D-01 -4.634170388D-01-3.934672970D-01-2.535678136D-01-1.661306365D-01 4.371858857D-02 2.885426844D-01 4.109547324D-01 5.333667802D-01-5.307215336D-01-2.719947860D-01 8.027163199D-01-7.558772982D-01-1.316036367D-01 3.374452224D-03 3.408196746D-01 5.432868081D-01-5.814571896D-01-4.237738838D-01-2.858009914D-01 8.869685940D-02 2.266697518D-01 2.266697518D-01 3.055114046D-01 4.434842970D-01-5.228965828D-01 -4.251153876D-01-2.714592233D-01-1.457405436D-01 4.982184716D-02 5.447809456D-02 1.755405269D-01 2.593529801D-01 3.571341755D-01 4.688841130D-01-4.550760723D-01 -3.613839397D-01-3.078455782D-01-1.606150843D-01-9.369213252D-02-2.676918072D-02 2.275380361D-01 3.078455782D-01 3.747685301D-01 4.952298434D-01-4.733470869D-01 -3.859215035D-01-2.984959202D-01-1.860915988D-01-8.617664642D-02 1.011638893D-01 2.135682107D-01 2.635256869D-01 3.634406392D-01 4.883343298D-01-3.929822449D-01 -3.103808813D-01-2.736691641D-01-2.002457299D-01-1.451781542D-01-1.360002249D-01 -7.509214869D-03 2.770065931D-01 2.861845223D-01 3.320741689D-01 5.707003303D-01 -4.460439606D-01-3.373631986D-01-2.830228176D-01-2.105689763D-01 4.301946827D-02 2.422675319D-01 4.234021351D-01 5.683098178D-01-3.612105510D-01-3.493351355D-01 -2.424563972D-01-2.305809819D-01-1.474530742D-01-7.620058199D-02-6.432516660D-02 6.927325637D-03 2.444356331D-01 2.563110485D-01 3.988160331D-01 5.650718483D-01 -7.056919323D-01-3.320903210D-01-5.811580616D-02-3.320903210D-02 1.660451605D-02 1.411383864D-01 1.660451605D-01 3.154858049D-01 4.898332234D-01-7.317917226D-01 5.227083734D-02 6.795208854D-01-8.070833995D-01 2.964796161D-01 5.106037834D-01 -4.281535139D-01-3.880141220D-01 8.161676358D-01-3.982228196D-01-3.819133527D-01 -2.840565506D-01-2.025092154D-01-1.943544820D-01-8.834294634D-02 5.028752329D-02 9.921592434D-02 2.378463940D-01 3.112389956D-01 4.090957977D-01 4.417147316D-01 -5.322972941D-01-3.125100244D-01-1.614062763D-01-1.339328676D-01-1.201961632D-01 3.056416721D-01 4.017986027D-01 5.529023506D-01-4.942380244D-01-4.167104912D-01 -3.488738995D-01-8.721847489D-02 9.690941657D-03 7.752753323D-02 1.550550665D-01 2.713463664D-01 3.876376662D-01 4.457833162D-01-4.801691721D-01-3.949514351D-01 -2.032115268D-01-1.925593096D-01-1.819070925D-01-8.603713834D-02 9.832815811D-03 1.163549871D-01 1.376594214D-01 1.483116385D-01 2.761382440D-01 3.933126323D-01 4.572259351D-01-7.418707522D-01-9.429052726D-02 2.045926535D-01 6.315686259D-01 -4.433319425D-01-3.670269611D-01-3.517659647D-01-2.220474962D-01-9.232902762D-02 1.671079095D-01 2.434128910D-01 2.510433891D-01 3.578703633D-01 4.570668391D-01 -7.187795363D-01-2.580234233D-01-7.372097810D-02 2.027326897D-01 3.501746459D-01 4.976166021D-01-4.854581869D-01-3.309942184D-01-2.280182393D-01-7.355427078D-02 1.066536926D-01 3.126056507D-01 6.987655722D-01-5.491705831D-01-4.697356170D-01 -2.016426063D-01-1.420663817D-01-9.241952790D-02-2.291393254D-02 5.652103360D-02 8.630914590D-02 1.458853705D-01 2.054615951D-01 2.551084490D-01 3.246140443D-01 4.040490105D-01-6.348441880D-01-3.625249652D-01-1.582855482D-01-1.582855482D-01 -5.105985421D-03 9.701372307D-02 1.991334316D-01 2.501932858D-01 3.352930429D-01 4.374127513D-01-7.774815829D-01 1.727736851D-01 6.047078979D-01-7.217537409D-01 -1.365480050D-01 2.145754365D-01 6.437263094D-01-4.049312450D-01-3.536741254D-01 -3.024170059D-01-1.896513426D-01-1.896513426D-01-1.178913751D-01-6.663425550D-02 -5.125711967D-03 4.613140766D-02 2.306570383D-01 2.819141579D-01 2.819141579D-01 3.536741254D-01 4.356855167D-01-4.912241466D-01-3.426185224D-01-2.683157103D-01 -1.940128982D-01-1.320938881D-01-7.017487807D-02 7.843074608D-02 1.403497561D-01 1.403497561D-01 2.641877763D-01 3.632581923D-01 5.118638165D-01-4.810537795D-01 -3.353499905D-01-1.734568916D-01-1.734568916D-01 1.017613764D-01 4.255475741D-01 6.360086028D-01-3.169550924D-01-3.079506863D-01-2.989462802D-01-2.899418743D-01 -1.728845958D-01-6.483172344D-02 1.872916455D-01 2.863401119D-01 4.574238266D-01 5.204546687D-01-4.106444632D-01-3.470490818D-01-2.325773951D-01-1.562629373D-01 7.268043598D-02 3.779382670D-01 6.959151745D-01-6.783738520D-01-1.995217212D-01 1.995217212D-01 6.783738520D-01-5.387500496D-01-3.587917868D-01-2.575652638D-01 -1.563387409D-01-7.760700089D-02 3.486691345D-02 2.373199593D-01 3.048043079D-01 3.610412650D-01 4.510203964D-01-5.582423491D-01-3.695407100D-01-2.044267757D-01 1.965642074D-01 3.380904368D-01 5.975551908D-01-6.644580563D-01-1.416058153D-01 7.624928515D-02 7.298145864D-01-5.713182295D-01-4.085589663D-01-1.760457335D-01 3.321617612D-02 1.959754391D-01 4.052373487D-01 5.214939651D-01-6.376825262D-01 -2.732925112D-01 2.277437593D-01 6.832312781D-01-4.785094745D-01-4.098786336D-01 -2.726169516D-01-1.181975594D-01-1.525129799D-02 8.769496347D-02 2.935874864D-01 4.136914582D-01 4.994800093D-01-3.801429607D-01-3.484643806D-01-2.724357885D-01 -2.344214924D-01 2.027429123D-01 3.928143927D-01 6.399073172D-01-5.020717122D-01 -3.741553525D-01-2.206557207D-01-1.183226328D-01-1.598954498D-02 2.654264466D-01 4.189260784D-01 5.468424382D-01-4.472657843D-01-3.265314622D-01-2.661643011D-01 -1.756135595D-01-1.756135595D-01-5.487923734D-02 6.585508481D-02 1.564058264D-01 2.771401486D-01 4.280580513D-01 5.186087929D-01-6.414043565D-01-2.613128859D-01 2.138014522D-01 6.889157902D-01-4.180379781D-01-3.663811112D-01-3.018100277D-01 -2.501531608D-01-1.855820773D-01-1.855820773D-01-1.210109937D-01 8.131173488D-03 2.535012911D-02 3.611197638D-02 9.853069051D-02 1.329686018D-01 1.437304490D-01 1.889302075D-01 2.535012911D-01 2.535012911D-01 3.051581580D-01 3.826434582D-01 -6.963471324D-01-2.321157108D-01 3.413466335D-01 5.871162097D-01-6.443833370D-01 -3.411441196D-01 3.790490218D-02 3.790490218D-01 5.685735327D-01-4.599525093D-01 -3.716079724D-01-2.706427874D-01-1.949188987D-01-1.191950100D-01 2.594244335D-01 3.099070259D-01 3.856309146D-01 4.613548033D-01-6.943808910D-01-2.479931754D-02 7.191802085D-01-6.658858077D-01-3.430320827D-01 1.008917890D-01 3.632104405D-01 5.448156608D-01-7.071067811D-01 0.0 7.071067811D-01-6.882973783D-01 -3.622617781D-02 7.245235562D-01-4.165577428D-01-3.868881561D-01-3.166251801D-01 -2.881693492D-01-2.212104864D-01-1.922152084D-01-1.212104928D-01-9.936288797D-02 -9.288952362D-02-9.052944286D-02-8.816936209D-02-8.466295638D-02-8.250516826D-02 -7.818959200D-02-7.083962619D-02-3.092054582D-02-2.815587979D-02-2.485176671D-02 -2.040132869D-02-1.770409354D-02-1.507428925D-02-1.150045267D-02-7.319738171D-03 -4.689933891D-03-2.329853126D-03 1.311414340D-03 3.132048074D-03 5.964144991D-03 8.256794877D-03 1.041458301D-02 1.446043574D-02 1.709024003D-02 1.972004431D-02 6.779826104D-02 6.968632564D-02 7.197897553D-02 7.346245487D-02 7.562024299D-02 7.899178695D-02 8.128443684D-02 8.391424111D-02 8.586973661D-02 9.018531286D-02 9.092705253D-02 9.166879220D-02 9.200594660D-02 9.551235231D-02 1.008393917D-01 1.027948872D-01 1.094031134D-01 1.121003485D-01 1.139209822D-01 1.659101900D-01 1.679331163D-01 1.695514574D-01 1.723161235D-01 1.737996028D-01 1.751482204D-01 -2.150769621D-01-2.100485359D-01-2.086599328D-01-2.039260587D-01-1.849905624D-01 -1.795413473D-01-1.735240674D-01-1.546096105D-01-1.492235137D-01-1.452049807D-01 -1.240813825D-01-1.184007336D-01-1.130356763D-01-9.410017997D-02-8.999748909D-02 -8.252848778D-02-6.327739983D-02-5.843832855D-02-5.246312746D-02-3.308580288D-02 -2.814153440D-02-2.204009669D-02-2.452377698D-03 1.734470937D-03 7.309922635D-03 2.771817980D-02 5.769938234D-02 6.868197022D-02 8.799617648D-02 9.788471346D-02 3.909009995D-01 1.274451272D-01 1.530080472D-01 1.561639633D-01 1.809694635D-01 1.875127295D-01 2.098145362D-01 2.178095236D-01 2.391435161D-01 2.442140213D-01 2.508414450D-01-3.180535014D-01-3.177132622D-01-3.172814199D-01-3.169542667D-01 -3.166532858D-01-3.163523047D-01-3.160382377D-01 4.091208375D-02 4.129158148D-02 4.600258766D-02 5.771467249D-02 6.245185091D-02 6.383898053D-02 7.594364920D-02 8.321953652D-02 9.498396585D-02 1.014092549D-01 1.134615790D-01 1.212478253D-01 1.321747424D-01 1.393459408D-01 1.544342467D-01 1.598257315D-01 1.697581029D-01 1.775312631D-01 1.888245918D-01 1.946740912D-01-1.194911538D-01-1.172497071D-01 -1.140942725D-01-1.131367613D-01-1.090891003D-01-8.408500085D-02-7.992853175D-02 -7.666428899D-02-7.581558589D-02-5.823219829D-02-5.736173355D-02-4.476175656D-02 -2.639495070D-02 9.457835859D-01-1.370792722D-02-1.294627058D-02 4.680640254D-03 5.899290880D-03 1.595315854D-02 1.667129194D-02 3.588680090D-02 3.784534655D-02 4.023912457D-02-3.351790296D-01-3.330796727D-01-3.005396407D-01-1.826607503D-01 -1.501732022D-01-2.883037297D-02 3.079852005D-03 1.190168371D-01 1.322427857D-01 1.516093531D-01 2.836064186D-01-2.575553080D-01-2.274295363D-01-1.068214821D-01 -7.459635354D-02 4.569679721D-02 4.837347727D-02 7.115149971D-02 1.967980106D-01 2.217278738D-01 3.481616436D-01 3.754007994D-01-2.866227940D-01-2.819083511D-01 -1.786122252D-01-1.719046845D-01-1.600994130D-01-6.765033848D-02-4.817930623D-02 4.147176559D-02 1.504788833D-01 1.712530949D-01 2.621690172D-01 2.623223324D-01 2.624756477D-01 2.626289628D-01 2.628972645D-01-2.327708248D-01-2.302027949D-01 -2.206589228D-01-2.142580126D-01-1.143731502D-01-1.045609764D-01-1.410499975D-02 -1.130699709D-02 5.749320572D-04 7.320801505D-03 9.555370759D-02 1.175544409D-01 2.164044256D-01 2.241085152D-01-2.404856193D-01-2.361232984D-01-2.303333089D-01 -2.249002365D-01-2.229966783D-01-1.867101001D-01-1.739800547D-01-1.662468495D-01 -1.289291773D-01-1.258755527D-01-1.096953080D-01-1.077520923D-01-7.194140375D-02 -7.071202240D-02-6.904640895D-02-6.642901645D-02-6.599278436D-02-6.190806571D-02 -5.869581125D-02-5.369897100D-02-5.286616429D-02-4.743309193D-02-4.556919119D-02 -1.055165182D-02 5.113045860D-03 4.762584564D-02 4.964837622D-02 6.368711793D-02 6.578896347D-02 9.973575133D-02 1.021945140D-01 1.279718646D-01 1.293598758D-01 1.581908510D-01 1.610858458D-01 1.715554159D-01 1.756401345D-01 2.132750664D-01 2.264810014D-01 2.332227700D-01 2.348487260D-01 2.744665310D-01 2.889811623D-01 -3.252662345D-02-3.227969374D-02-3.224228015D-02-3.203276404D-02-3.198038501D-02 -3.184569608D-02-3.139673300D-02-3.135183668D-02-3.082804641D-02-3.078315009D-02 -3.058859943D-02-3.055118583D-02-3.031922157D-02-3.026684253D-02-2.999746468D-02 -2.996005109D-02-2.981039672D-02-2.974305226D-02-2.954850159D-02-2.950360528D-02 -2.924171015D-02-2.921177927D-02-2.906212490D-02-2.901722859D-02-2.884512607D-02 -2.880771249D-02-2.868050627D-02-2.865805812D-02-2.855330007D-02-2.852336919D-02 -2.830637036D-02-2.826147405D-02-2.750571951D-02-2.675744769D-02-2.263446994D-02 -2.247733286D-02-2.241747111D-02-2.229026491D-02-2.227529947D-02-2.214061054D-02 -2.209571423D-02-2.191612899D-02-2.189368084D-02-2.172906103D-02-2.169164745D-02 -2.151206220D-02-2.147464862D-02-2.139233871D-02-2.135492513D-02-2.107058183D-02 -2.104065096D-02-2.092092747D-02-2.089847931D-02-2.071141136D-02-2.067399777D-02 -2.063658417D-02-2.033727545D-02-2.030734458D-02-2.014272477D-02-2.010531118D-02 -1.992572594D-02-1.989579507D-02-1.977607158D-02-1.974614071D-02-1.959648635D-02 -1.957403818D-02-1.922235043D-02-1.918493684D-02-1.906521335D-02-1.903528247D-02 -1.882576637D-02-1.881080093D-02-1.868359471D-02-1.866114656D-02-1.842169958D-02 -1.839925143D-02-1.821218347D-02-1.818973531D-02-1.800266736D-02-1.798021921D-02 -1.783056484D-02-1.780063397D-02-1.765097960D-02-1.760608329D-02-1.742649806D-02 -1.646871012D-02-1.598981615D-02-1.196411375D-02-1.162739143D-02-1.155256425D-02 -1.153011610D-02-1.132808270D-02-1.129066911D-02-1.121584193D-02-1.119339378D-02 -1.074443068D-02-1.072198252D-02-1.060974175D-02-1.057981088D-02-1.054239729D-02 -1.051994913D-02-1.037029477D-02-1.034784661D-02-1.025057128D-02-1.022812312D-02 -1.003357245D-02-1.000364157D-02-9.794125463D-03-9.771677308D-03-9.412506833D-03 -9.390058679D-03-9.210473441D-03-9.188025286D-03-8.993474612D-03-8.971026458D-03 -8.866268402D-03-8.843820248D-03-8.701648602D-03-8.671717729D-03-8.619338701D-03 -8.596890546D-03-8.484649773D-03-8.454718900D-03-8.364926281D-03-8.334995408D-03 -8.260168225D-03-8.207789198D-03-7.908480470D-03-7.541827276D-03-7.519379121D-03 -7.377207475D-03-7.354759321D-03-7.175174083D-03-7.152725928D-03-6.905796226D-03 -6.756141862D-03-6.733693707D-03-6.546625752D-03-6.524177596D-03-6.404454105D-03 -5.566389663D-03-4.892945022D-03-8.896907701D-04-5.828993226D-04-5.155548586D-04 -4.856239857D-04-3.883486487D-04-3.659004941D-04-2.761078753D-04-2.536597206D-04 -1.264535108D-04-1.040053560D-04-5.910904667D-05-2.917817381D-05 1.129934725D-04 1.354416273D-04 2.476824008D-04 2.776132736D-04 4.646812293D-04 4.871293841D-04 7.190936492D-04 7.340590857D-04 3.666090497D-01 3.668484966D-01 3.669981510D-01 3.671627708D-01 3.673348733D-01 3.675219413D-01 3.676865611D-01-2.071835602D-01 -2.070854095D-01-2.069872587D-01-2.068945607D-01-2.068018628D-01-2.066928064D-01 -1.184716219D-01-1.128824809D-01-1.052049094D-01-1.050794946D-01-1.049213628D-01 -1.048068535D-01-1.047087027D-01-1.046160048D-01-1.045178540D-01-9.705839547D-02 -9.476821079D-02-7.281515508D-02-7.262430636D-02-7.247162738D-02-7.231349559D-02 -7.219898636D-02-7.210083559D-02-7.198087353D-02-7.162644019D-02-7.146285558D-02 -7.132108224D-02-7.115204480D-02-7.103208274D-02-7.084123403D-02-7.075944171D-02 -6.598277087D-02-6.588462010D-02-6.553563958D-02-6.533933804D-02-6.507760265D-02 -6.478860316D-02-6.470135803D-02-6.433601905D-02-6.411790623D-02-6.392160469D-02 -6.381800109D-02-6.356717135D-02-6.333270006D-02-6.320183237D-02-6.306551185D-02 -6.291283288D-02-6.269472005D-02-5.800529434D-02-5.791259639D-02-5.781444562D-02 -5.760178562D-02-5.542065738D-02-5.057855268D-02-4.864280137D-02-4.823383983D-02 -4.778670854D-02-4.768855777D-02-4.723597366D-02-4.667433314D-02-4.233934076D-02 -4.131966331D-02-4.117243716D-02-4.103066382D-02-4.092160741D-02-4.075256997D-02 -4.039268381D-02-4.026181611D-02-4.006551457D-02-3.992374124D-02-3.975470380D-02 -3.960747764D-02-3.946025149D-02-3.438367551D-02-3.392018576D-02-3.372933704D-02 -3.339671498D-02-3.289505549D-02-3.274782933D-02-3.241520728D-02-3.228433958D-02 -3.178268008D-02-3.145005803D-02-2.653706667D-02-2.614446359D-02-2.577912461D-02 -2.538652153D-02-2.509752203D-02-2.492848460D-02-2.463948510D-02-1.863592963D-02 -1.835783578D-02-1.811791167D-02-1.794342141D-02-1.768713884D-02-1.735996961D-02 -1.700553627D-02-1.682014037D-02-1.671108396D-02-1.656931062D-02-1.639482036D-02 -1.624759420D-02-1.618216036D-02-1.596404753D-02-1.580046292D-02-1.571321779D-02 -1.529880342D-02-1.098016951D-02-1.062573617D-02-1.022222744D-02-9.933227950D-03 -9.529719233D-03-9.317059224D-03-8.935361783D-03-8.788135627D-03-8.346457159D-03 -8.073816130D-03-7.970212535D-03-2.893636562D-03-2.599184249D-03-2.097524754D-03 -1.955751419D-03-1.846695007D-03-1.704921672D-03-1.214167818D-03-1.017866277D-03 -7.452252466D-04-5.053011400D-04-3.744334462D-04-2.053960077D-04 4.882085610D-03 5.051123048D-03 5.209254845D-03 5.340122540D-03 5.541876902D-03 5.852687676D-03 6.048989218D-03 6.196215374D-03 6.321630247D-03 6.430686660D-03 6.517931789D-03 6.676063586D-03 6.823289742D-03 7.194081543D-03 7.488533855D-03 7.668476935D-03 7.995646171D-03 1.252148727D-02 1.269052471D-02 1.296316574D-02 1.313765599D-02 1.328488215D-02 1.342665549D-02 1.365567395D-02 1.406463550D-02 1.429365396D-02 1.438635191D-02 1.452812524D-02 1.480076628D-02 1.501342628D-02 1.520427500D-02 1.567867039D-02 1.650204630D-02 2.056985047D-02 2.066254842D-02 2.076069919D-02 2.097881201D-02 2.116420791D-02 2.131143407D-02 2.155681099D-02 2.171494279D-02 2.184581049D-02 2.200394229D-02 2.218388536D-02 2.240745101D-02 2.265282794D-02 2.278914845D-02 2.287094076D-02 2.299090281D-02 2.318175154D-02 2.341622282D-02 2.898355265D-02 2.914713727D-02 2.928345778D-02 2.944158958D-02 2.963789112D-02 2.979602292D-02 2.998687164D-02 3.015590908D-02 3.031949370D-02 3.062485165D-02 3.080479473D-02 3.094111524D-02 3.114832243D-02 3.613765328D-02 3.624125686D-02 3.639938866D-02 3.652480353D-02 3.664476559D-02 3.678108610D-02 3.692285944D-02 3.709734970D-02 3.723912304D-02 3.778985791D-02 3.792072561D-02 3.822063075D-02 3.837330972D-02 3.857506408D-02 4.398426211D-02 4.443684622D-02 4.452409135D-02 4.462224212D-02 4.472039289D-02 4.558739137D-02 4.570190060D-02 4.580550419D-02 4.588184368D-02 4.610540932D-02 4.623627702D-02 4.650346523D-02 4.659616318D-02 4.674884216D-02 5.204353095D-02 5.226164378D-02 5.246885096D-02 5.262698276D-02 5.287781251D-02 5.305230276D-02 5.313409507D-02 5.331403816D-02 5.348307559D-02 5.359213200D-02 5.386477304D-02 5.412105561D-02 5.419194227D-02 5.435007407D-02 5.457363971D-02 5.466633766D-02 5.481356382D-02 5.503712946D-02 5.530977049D-02 5.559876999D-02 5.957932902D-02 5.991195107D-02 6.010825261D-02 6.031545980D-02 6.050085571D-02 6.067534596D-02 6.081166648D-02 6.092072289D-02 6.104613776D-02 6.124789212D-02 6.136240136D-02 6.153689162D-02 6.163504239D-02 6.178226854D-02 6.190768341D-02 6.785671069D-02 6.810754044D-02 6.828203070D-02 6.839653993D-02 6.850559634D-02 6.863101121D-02 6.875642608D-02 6.896363327D-02 6.936714199D-02 6.948165123D-02 6.955253789D-02 6.967795277D-02 6.978155636D-02 6.991242406D-02 7.006510303D-02 9.123840543D-02 9.923769325D-02 1.015278778D-01 1.069152646D-01 1.226193879D-01 1.227393500D-01 1.228320480D-01 1.229301987D-01 1.230119910D-01 1.230992362D-01 1.232082925D-01-4.954589850D-01-4.936227212D-01-3.421921557D-01 -2.627431361D-01-1.615037848D-01-7.703564396D-02-7.519938004D-02 1.538964057D-02 2.028634439D-02 2.212260832D-02 3.375227988D-02 4.268876434D-02 4.538195145D-02 5.211491920D-02 5.333909515D-02 5.578744706D-02 5.884788694D-02 6.129623885D-02 6.435667874D-02 6.680503065D-02 6.925338256D-02 7.268107522D-02 7.965887817D-02 2.030558144D-01 2.094215293D-01 2.210512009D-01 2.283962567D-01 2.320687845D-01 -2.877659483D-01-2.868953123D-01-2.859577042D-01-2.853214701D-01-2.846852361D-01 -2.839820300D-01-2.833792820D-01-4.708769769D-03 1.019250131D-02 3.617763920D-02 3.969366946D-02 5.506374457D-02 8.654058687D-02 1.382764606D-01 1.515034316D-01 2.009287712D-01 2.313675474D-01 2.323721274D-01 2.414133481D-01 2.794869329D-01 2.996789923D-01-2.251706356D-01-2.242727905D-01-2.232627147D-01-2.202698976D-01 -2.194094627D-01-2.186612585D-01-2.176885929D-01-2.170526193D-01-2.161547742D-01 -2.153691597D-01-2.137231103D-01-1.102838703D-01-1.082263085D-01-6.969378874D-02 -6.333405243D-02-6.127649072D-02-4.967932454D-02-4.762176281D-02-4.144907759D-02 -3.957856692D-02-1.900294956D-02-9.650396205D-03-7.779885531D-03 2.320872086D-03 8.493557297D-03 1.017701690D-02 3.898288122D-02 4.365915790D-02 4.534261750D-02 5.656568150D-02 5.881029432D-02 6.180311142D-02 6.367362207D-02 6.872400088D-02 7.059451154D-02 9.322769066D-02 9.921332479D-02 1.040766525D-01 1.095011335D-01 1.115586952D-01 1.192277890D-01 1.212853507D-01 1.424221213D-01 1.474725001D-01 1.493430108D-01 1.560768492D-01 1.590696662D-01 1.736596495D-01 1.996597478D-01 2.017173095D-01 2.101346075D-01 2.118180671D-01-2.112396164D-01-1.933563293D-01 -1.774191645D-01-1.716728436D-01-1.016387351D-01-9.745720175D-02-9.712846483D-02 -9.686547533D-02-9.591871307D-02-9.562942460D-02-9.519549189D-02-9.489305394D-02 -9.464321389D-02-9.436707491D-02-9.384109587D-02-9.347291055D-02-9.305212733D-02 -8.307167512D-02-8.272978876D-02-8.240105187D-02-8.225640763D-02-8.188822230D-02 -8.138854221D-02-8.087571266D-02-8.062587262D-02-8.036288311D-02-8.023138834D-02 -7.944241980D-02-7.861400282D-02-7.819321957D-02-7.715441098D-02-7.657583405D-02 -7.594465920D-02-7.497159800D-02-7.453766529D-02-7.418262944D-02-7.380129464D-02 -7.299917661D-02-6.379454350D-02-6.288722966D-02-6.265053910D-02-6.228235378D-02 -6.190101898D-02-6.150653469D-02-6.096740618D-02-6.061237033D-02-6.024418502D-02 -5.995489654D-02-5.962615965D-02-5.931057222D-02-5.904758270D-02-5.870569634D-02 -5.835066049D-02-5.815341835D-02-5.792987727D-02-5.748279507D-02-5.721980557D-02 -4.539842675D-02-4.512228776D-02-4.460945819D-02-4.441221607D-02-4.424127287D-02 -4.391253598D-02-4.353120118D-02-4.336025799D-02-4.308411900D-02-4.282112948D-02 -4.246609363D-02-4.183491880D-02-4.129579027D-02-4.079611018D-02-4.046737329D-02 -3.998084269D-02-3.979675003D-02-3.941541523D-02-3.899463201D-02-3.848180243D-02 -3.815306554D-02-3.779802969D-02-3.753504017D-02-3.725890118D-02-3.677237057D-02 -3.640418525D-02-3.594395359D-02-3.569411355D-02-3.545742299D-02-3.511553663D-02 -2.622649092D-02-2.593720245D-02-2.567421293D-02-2.543752236D-02-2.517453285D-02 -2.483264648D-02-2.437241482D-02-2.403052846D-02-2.332045676D-02-2.303116829D-02 -2.212385444D-02-2.172937017D-02-2.125598904D-02-2.051961839D-02-2.029607731D-02 -1.933616556D-02-1.870499072D-02-1.792917165D-02-7.317544616D-03-7.212348808D-03 -6.620622393D-03-6.305034974D-03-5.949999125D-03-5.673860132D-03-5.331973759D-03 -5.003236860D-03-4.753396821D-03-4.477257827D-03-4.109072501D-03-3.767186129D-03 -3.070263907D-03-2.846722818D-03-2.215547977D-03-1.203038335D-03-8.480024852D-04 -5.061161129D-04 1.142045851D-02 1.164399960D-02 1.186754069D-02 1.215682916D-02 1.286690085D-02 1.314303984D-02 1.383996207D-02 1.420814739D-02 1.451058534D-02 1.474727590D-02 1.501026542D-02 1.545734760D-02 1.577293502D-02 1.606222349D-02 1.654875410D-02 1.660135200D-02 1.708788261D-02 1.810039225D-02 1.836338177D-02 1.874471657D-02 1.911290188D-02 1.963888092D-02 2.013856101D-02 2.038840106D-02 2.084863271D-02 2.113792118D-02 3.018476059D-02 3.046089957D-02 3.093428071D-02 3.100002808D-02 3.149970817D-02 3.181529559D-02 3.206513563D-02 3.393236120D-02 3.495802032D-02 3.551029832D-02 3.577328784D-02 3.669375114D-02 3.786405449D-02 3.820594087D-02 3.885026517D-02 3.908695576D-02 3.932364632D-02 4.020466119D-02 4.939614483D-02 4.996157229D-02 5.047440185D-02 5.089518509D-02 5.142116411D-02 5.186824629D-02 5.274926118D-02 5.298595174D-02 5.322264231D-02 5.359082764D-02 5.419570352D-02 5.451129095D-02 5.487947627D-02 5.515561527D-02 5.552380059D-02 5.573419220D-02 5.610237754D-02 5.641796494D-02 5.703599031D-02 5.714118613D-02 6.879162176D-02 6.900201337D-02 6.976468296D-02 7.056680100D-02 7.147411482D-02 7.168450644D-02 7.255237186D-02 7.265756765D-02 7.271016556D-02 7.377527311D-02 7.424865424D-02 7.465628799D-02 7.510337017D-02 7.547155549D-02 7.594493662D-02 7.624737458D-02 7.665500832D-02 7.691799784D-02 7.715468840D-02 7.737822950D-02 7.766751797D-02 8.720088798D-02 8.758222278D-02 8.784521230D-02 8.838434081D-02 8.883142298D-02 8.894976827D-02 8.940999991D-02 8.987023158D-02 9.036991166D-02 9.088274121D-02 9.155336449D-02 9.180320452D-02 9.205304458D-02 9.256587413D-02 9.357838377D-02 9.395971857D-02 9.463034185D-02 9.534041354D-02 9.603733575D-02 9.623457790D-02 9.640552109D-02 9.681315485D-02 1.060703859D-01 1.063202259D-01 1.070828955D-01 1.073327355D-01 1.077009209D-01 1.116063152D-01 1.520804019D-01 -2.995209777D-01-2.995209777D-01-2.995209777D-01-2.995209777D-01-2.995209777D-01 -2.995209777D-01 2.523056754D-01 2.523056754D-01 2.523056754D-01 2.523056754D-01 2.523056754D-01 2.677987441D-01 2.677987441D-01-3.655562498D-01-3.655562498D-01 -3.655562498D-01-3.655562498D-01 3.260246506D-01 3.260246506D-01 1.192927876D-01 3.454414554D-01 3.454414554D-01-3.896587919D-01-3.896587919D-01-3.896587919D-01 -3.896587919D-01 2.905239785D-01 2.905239785D-01 8.719931877D-02 8.719931877D-02 9.197351664D-02 9.197351664D-02 3.096207697D-01 3.096207697D-01-2.236067978D-01 -2.236067978D-01-2.236067978D-01-2.236067978D-01 8.944271911D-01-2.980909860D-01 -2.980909860D-01-2.980909860D-01-2.980909860D-01-2.980909860D-01 3.633287324D-01 3.633287324D-01 3.818987328D-01 3.818987328D-01-2.236067978D-01-2.236067978D-01 -2.236067978D-01-2.236067978D-01 8.944271911D-01-2.886751346D-01-2.886751346D-01 -2.886751346D-01-2.886751346D-01 5.773502693D-01 5.773502693D-01-2.041241453D-01 -2.041241453D-01-2.041241453D-01-2.041241453D-01-2.041241453D-01-2.041241453D-01 6.123724358D-01 6.123724358D-01-2.236067978D-01-2.236067978D-01-2.236067978D-01 -2.236067978D-01 8.944271911D-01-2.886751346D-01-2.886751346D-01-2.886751346D-01 -2.886751346D-01 5.773502693D-01 5.773502693D-01-1.825741858D-01-1.825741858D-01 -1.825741858D-01-1.825741858D-01-1.825741858D-01 9.128709290D-01-2.390457219D-01 -2.390457219D-01-2.390457219D-01-2.390457219D-01-2.390457219D-01 5.976143047D-01 5.976143047D-01-2.886751346D-01-2.886751346D-01-2.886751346D-01-2.886751346D-01 5.773502693D-01 5.773502693D-01-2.390457219D-01-2.390457219D-01-2.390457219D-01 -2.390457219D-01-2.390457219D-01 5.976143047D-01 5.976143047D-01-2.886751346D-01 -2.886751346D-01-2.886751346D-01-2.886751346D-01 5.773502693D-01 5.773502693D-01 -2.390457219D-01-2.390457219D-01-2.390457219D-01-2.390457219D-01-2.390457219D-01 5.976143047D-01 5.976143047D-01-2.886751346D-01-2.886751346D-01-2.886751346D-01 -2.886751346D-01 5.773502693D-01 5.773502693D-01-3.534856528D-01-3.534856528D-01 -3.534856528D-01-3.534856528D-01 3.436985907D-01 3.436985907D-01 3.632727148D-01 3.632727148D-01-2.390457219D-01-2.390457219D-01-2.390457219D-01-2.390457219D-01 -2.390457219D-01 5.976143045D-01 5.976143045D-01-2.886751346D-01-2.886751346D-01 -2.886751346D-01-2.886751346D-01 5.773502692D-01 5.773502692D-01-2.886751346D-01 -2.886751346D-01-2.886751346D-01-2.886751346D-01 5.773502692D-01 5.773502692D-01 -3.273268353D-01-3.273268353D-01-3.273268353D-01-3.273268353D-01 4.364357805D-01 4.364357805D-01 4.364357805D-01-2.041241453D-01-2.041241453D-01-2.041241453D-01 -2.041241453D-01-2.041241453D-01-2.041241453D-01 6.123724358D-01 6.123724358D-01 -2.886751346D-01-2.886751346D-01-2.886751346D-01-2.886751346D-01 5.773502692D-01 5.773502692D-01-2.886751346D-01-2.886751346D-01-2.886751346D-01-2.886751346D-01 5.773502692D-01 5.773502692D-01-2.886751346D-01-2.886751346D-01-2.886751346D-01 -2.886751346D-01 5.773502692D-01 5.773502692D-01-2.886751346D-01-2.886751346D-01 -2.886751346D-01-2.886751346D-01 5.773502692D-01 5.773502692D-01-3.924626113D-01 -3.924626113D-01-3.924626113D-01-3.924626113D-01 2.640663018D-01 2.640663018D-01 2.640663018D-01 6.781240693D-02 7.242057855D-02 7.242057855D-02 2.824989881D-01 2.824989881D-01-1.581138830D-01-1.581138830D-01-1.581138830D-01-1.581138830D-01 -1.581138830D-01-1.581138830D-01-1.581138830D-01-1.581138830D-01 6.324555320D-01 6.324555320D-01-3.534856528D-01-3.534856528D-01-3.534856528D-01-3.534856528D-01 3.436985907D-01 3.436985907D-01 3.632727148D-01 3.632727148D-01-4.144511569D-01 -4.144511569D-01-4.144511569D-01-4.144511569D-01 1.315245297D-01 1.315245297D-01 1.943670350D-01 1.943670350D-01 1.943670350D-01 1.943670350D-01 1.943670350D-01 2.114601965D-01 2.114601965D-01-2.896387157D-01-2.896387157D-01-2.896387157D-01 -2.896387157D-01-2.896387157D-01-2.896387157D-01 3.189002273D-01 1.369918067D-01 1.369918067D-01 1.369918067D-01 3.359855486D-01 3.359855486D-01 3.359855486D-01 -4.568704569D-01-4.568704569D-01-4.568704569D-01 3.227126392D-01 8.967458728D-02 8.967458728D-02 8.967458728D-02 8.967458728D-02 3.446001910D-01 3.446001910D-01 -2.831834822D-01-2.831834822D-01-2.831834822D-01-2.831834822D-01-2.831834822D-01 -2.831834822D-01-2.831834822D-01 2.650498803D-01 2.650498803D-01 1.011683962D-01 1.011683962D-01 1.011683962D-01 1.011683962D-01 1.011683962D-01 1.050164421D-01 2.804420639D-01 2.804420639D-01 2.804420639D-01-2.886751346D-01-2.886751346D-01 -2.886751346D-01-2.886751346D-01 5.773502692D-01 5.773502692D-01-2.886751346D-01 -2.886751346D-01-2.886751346D-01-2.886751346D-01 5.773502692D-01 5.773502692D-01 -2.886751346D-01-2.886751346D-01-2.886751346D-01-2.886751346D-01 5.773502692D-01 5.773502692D-01-3.533075915D-01-3.533075915D-01-3.533075915D-01-3.533075915D-01 3.346664655D-01 3.346664655D-01 3.719487175D-01 3.719487175D-01-3.985436537D-01 -3.985436537D-01-3.985436537D-01-3.985436537D-01 2.181901885D-01 2.181901885D-01 2.181901885D-01 2.181901885D-01 2.181901885D-01 2.516118362D-01 2.516118362D-01 -2.897237840D-01-2.897237840D-01-2.897237840D-01-2.897237840D-01-2.897237840D-01 -2.897237840D-01-2.897237840D-01 1.975257060D-01 1.975257060D-01 1.975257060D-01 1.975257060D-01 1.975257060D-01 1.975257060D-01 1.975257060D-01 1.975257060D-01 2.239304202D-01 2.239304202D-01-3.869938671D-01-3.869938671D-01-3.869938671D-01 -3.869938671D-01 2.465516791D-01 2.465516791D-01 2.465516791D-01 2.465516791D-01 2.808843760D-01 2.808843760D-01-2.041241453D-01-2.041241453D-01-2.041241453D-01 -2.041241453D-01-2.041241453D-01-2.041241453D-01 6.123724358D-01 6.123724358D-01 -2.390457219D-01-2.390457219D-01-2.390457219D-01-2.390457219D-01-2.390457219D-01 5.976143045D-01 5.976143045D-01-5.000000000D-01-5.000000000D-01 5.000000000D-01 5.000000000D-01-2.886751346D-01-2.886751346D-01-2.886751346D-01-2.886751346D-01 5.773502692D-01 5.773502692D-01-5.622386694D-01-5.622386694D-01 1.011292901D-01 1.011292901D-01 1.011292901D-01 4.105447342D-01 4.105447342D-01-8.164965809D-01 4.082482904D-01 4.082482904D-01-3.651483716D-01-3.651483716D-01-3.651483716D-01 5.477225575D-01 5.477225575D-01-5.000000000D-01-5.000000000D-01 5.000000000D-01 5.000000000D-01-8.164965809D-01 4.082482904D-01 4.082482904D-01-4.082482905D-01 -4.082482905D-01-4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 -2.886751346D-01-2.886751346D-01-2.886751346D-01-2.886751346D-01 5.773502692D-01 5.773502692D-01-4.316131859D-01-4.316131859D-01-4.316131859D-01-4.316131859D-01 9.877653958D-02 9.877653958D-02 1.451734308D-01 1.451734308D-01 1.451734308D-01 1.451734308D-01 1.451734308D-01 1.451734308D-01 1.451734308D-01 1.598250807D-01 1.764302839D-01 1.764302839D-01-4.342692722D-01-4.342692722D-01-4.342692722D-01 -3.845158284D-01 1.622669423D-01 1.622669423D-01 1.622669423D-01 1.622669423D-01 1.622669423D-01 1.622669423D-01 1.622669423D-01 1.622669423D-01 1.945940530D-01 1.945940530D-01-4.155859743D-01-4.155859743D-01-4.155859743D-01-4.155859743D-01 1.413954939D-01 1.901185505D-01 1.901185505D-01 1.901185505D-01 1.901185505D-01 1.901185505D-01 1.901185505D-01 1.901185505D-01 1.901185505D-01-5.000000000D-01 -5.000000000D-01-5.000000000D-01 1.666666666D-01 1.666666666D-01 1.666666666D-01 1.666666666D-01 1.666666666D-01 1.666666666D-01 1.666666666D-01 1.666666666D-01 1.666666666D-01-3.415328781D-01-3.415328781D-01-3.415328781D-01-3.415328781D-01 -3.415328781D-01 2.418350800D-01 2.418350800D-01 2.418350800D-01 2.418350800D-01 2.418350800D-01 2.418350800D-01 2.566539106D-01-3.715669341D-01-3.715669341D-01 -3.715669341D-01-3.715669341D-01-3.715669341D-01-3.715669341D-01 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 7.609167506D-02 8.746318930D-02 8.746318930D-02-4.325136617D-01-4.325136617D-01 -4.325136617D-01-4.325136617D-01 1.002259276D-01 1.468283778D-01 1.468283778D-01 1.468283778D-01 1.468283778D-01 1.468283778D-01 1.468283778D-01 1.468283778D-01 1.468283778D-01 1.468283778D-01 1.468283778D-01 1.615449411D-01-5.192221753D-01 -5.192221753D-01-5.192221753D-01 7.577911195D-02 7.577911195D-02 1.278280274D-01 1.278280274D-01 1.278280274D-01 1.278280274D-01 1.278280274D-01 1.278280274D-01 1.278280274D-01 1.278280274D-01 1.278280274D-01 1.278280274D-01 1.278280274D-01 -4.225771273D-01-4.225771273D-01-4.225771273D-01-4.225771273D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01-5.063696837D-01 -5.063696837D-01-5.063696837D-01 1.519109051D-01 1.519109051D-01 1.519109051D-01 1.519109051D-01 1.519109051D-01 1.519109051D-01 1.519109051D-01 1.519109051D-01 1.519109051D-01 1.519109051D-01-4.082482905D-01-4.082482905D-01-4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01-4.082482905D-01-4.082482905D-01 -4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01-3.273268353D-01 -3.273268353D-01-3.273268353D-01-3.273268353D-01 4.364357805D-01 4.364357805D-01 4.364357805D-01-3.651483716D-01-3.651483716D-01-3.651483716D-01 5.477225575D-01 5.477225575D-01-2.738612787D-01-2.738612787D-01-2.738612787D-01-2.738612787D-01 -2.738612787D-01 4.564354646D-01 4.564354646D-01 4.564354646D-01-2.886751346D-01 -2.886751346D-01-2.886751346D-01 8.660254038D-01-4.363204829D-01-4.363204829D-01 -4.363204829D-01 3.157480785D-01 3.157480785D-01 3.387326457D-01 3.387326457D-01 -2.278805966D-01-2.278805966D-01-2.278805966D-01-2.278805966D-01-2.278805966D-01 -2.278805966D-01-2.278805966D-01 3.893590672D-01 3.893590672D-01 4.082230210D-01 4.082230210D-01-4.052035054D-01-4.052035054D-01-4.052035054D-01 3.056688687D-01 4.549708235D-01 4.549708235D-01-2.390457219D-01-2.390457219D-01-2.390457219D-01 -2.390457219D-01-2.390457219D-01 5.976143048D-01 5.976143048D-01-3.259894217D-01 -3.259894217D-01-3.259894217D-01-3.259894217D-01 3.609186343D-01 4.715195264D-01 4.715195264D-01-2.886751346D-01-2.886751346D-01-2.886751346D-01-2.886751346D-01 5.773502693D-01 5.773502693D-01-4.369020882D-01-4.369020882D-01-4.369020882D-01 -4.369020882D-01 9.751411457D-02 9.751411457D-02 9.751411457D-02 9.751411457D-02 9.751411457D-02 1.200752207D-01 1.200752207D-01 1.200752207D-01 1.200752207D-01 1.200752207D-01 1.200752207D-01 1.200752207D-01 2.097556177D-01 2.097556177D-01 -1.336306210D-01-1.336306210D-01-1.336306210D-01-1.336306210D-01-1.336306210D-01 -1.336306210D-01-1.336306210D-01 9.354143467D-01-2.886751346D-01-2.886751346D-01 -2.886751346D-01-2.886751346D-01 5.773502691D-01 5.773502691D-01-3.542122690D-01 -3.542122690D-01-3.542122690D-01-3.542122690D-01-3.542122690D-01-3.542122690D-01 8.999559330D-02 8.999559330D-02 8.999559330D-02 8.999559330D-02 8.999559330D-02 8.999559330D-02 8.999559330D-02 8.999559330D-02 8.999559330D-02 8.999559330D-02 8.999559330D-02 8.999559330D-02 8.999559330D-02 8.999559330D-02 8.999559330D-02 8.999559330D-02 1.673510521D-01 1.673510521D-01 1.673510521D-01 1.832909648D-01 -2.069895980D-01-2.069895980D-01-2.069895980D-01-2.069895980D-01-2.069895980D-01 -2.069895980D-01-2.069895980D-01 4.760177513D-01 4.760177513D-01 4.968916838D-01 -3.921872059D-01-3.921872059D-01-3.921872059D-01-3.921872059D-01 3.208902411D-01 6.864515768D-02 6.864515768D-02 6.864515768D-02 6.864515768D-02 6.864515768D-02 6.864515768D-02 6.864515768D-02 6.864515768D-02 3.493486607D-01 3.493486607D-01 -4.113272660D-01-4.113272660D-01-4.113272660D-01-4.113272660D-01-1.385347256D-02 -1.385347256D-02-1.385347256D-02-1.385347256D-02-1.385347256D-02-1.385347256D-02 -1.385347256D-02-1.385347256D-02-1.385347256D-02-1.385347256D-02-1.385347256D-02 -1.385347256D-02-1.385347256D-02-1.385347256D-02-1.385347256D-02-1.385347256D-02 -1.385347256D-02-1.385347256D-02-1.385347256D-02-1.385347256D-02-1.385347256D-02 -1.385347256D-02-1.385347256D-02-1.385347256D-02-1.385347256D-02 1.395574652D-01 1.395574652D-01 1.395574652D-01 1.395574652D-01 1.395574652D-01 1.395574652D-01 1.395574652D-01 1.395574652D-01 1.395574652D-01 1.395574652D-01 1.395574652D-01 2.282568802D-01 2.282568802D-01-4.563066691D-01-4.563066691D-01-4.563066691D-01 2.654049461D-01 2.654049461D-01 2.719510830D-01 2.719510830D-01 2.942079492D-01 -4.364254028D-01-4.364254028D-01-4.364254028D-01 3.238709959D-01 3.238709959D-01 3.307671082D-01 3.307671082D-01-3.535480103D-01-3.535480103D-01-3.535480103D-01 -3.535480103D-01 3.487703345D-01 3.551405689D-01 3.551405689D-01 3.551405689D-01 -2.886751346D-01-2.886751346D-01-2.886751346D-01 8.660254038D-01-3.717136907D-01 -3.717136907D-01-3.717136907D-01-3.717136907D-01 2.579946495D-01 2.579946495D-01 3.236218216D-01 3.236218216D-01 3.236218216D-01-4.944512989D-01-4.944512989D-01 -4.944512989D-01-4.659297951D-02-4.659297951D-02-4.659297951D-02-4.659297951D-02 1.388360790D-01 1.388360790D-01 1.388360790D-01 1.388360790D-01 1.388360790D-01 1.388360790D-01 1.388360790D-01 1.388360790D-01 1.388360790D-01 1.388360790D-01 1.388360790D-01-6.230730650D-02 2.048362524D-01-3.577167122D-01-3.577167122D-01 -3.577167122D-01-3.577167122D-01-3.577167122D-01 1.811045589D-01 1.811045589D-01 1.811045589D-01 1.811045589D-01 1.811045589D-01 1.811045589D-01 1.811045589D-01 9.965296649D-03 2.554431761D-01 2.554431761D-01-3.651483717D-01-3.651483717D-01 -3.651483717D-01 5.477225576D-01 5.477225576D-01-2.981423970D-01-2.981423970D-01 -2.981423970D-01-2.981423970D-01-2.981423970D-01 3.726779963D-01 3.726779963D-01 3.726779963D-01 3.726779963D-01-7.071067811D-01 7.071067811D-01-5.000000000D-01 -5.000000000D-01 5.000000000D-01 5.000000000D-01-3.651483717D-01-3.651483717D-01 -3.651483717D-01 5.477225576D-01 5.477225576D-01-1.846372365D-01-1.846372365D-01 -1.846372365D-01-1.846372365D-01-1.846372365D-01-1.846372365D-01-1.846372365D-01 -1.846372365D-01 4.923659639D-01 4.923659639D-01 4.923659639D-01-3.127419532D-01 -3.127419532D-01-3.127419532D-01-3.127419532D-01-3.127419532D-01-3.127419532D-01 2.671193506D-02 2.671193506D-02 2.671193506D-02 2.671193506D-02 2.671193506D-02 2.671193506D-02 2.671193506D-02 2.365561569D-01 2.365561569D-01 2.365561569D-01 2.365561569D-01 2.365561569D-01 2.533436946D-01 2.533436946D-01-3.179619147D-01 -3.179619147D-01-3.179619147D-01-3.179619147D-01-3.179619147D-01 1.397967096D-01 1.397967096D-01 1.397967096D-01 1.397967096D-01 1.397967096D-01 4.454130130D-01 4.454130130D-01-2.065248880D-01-2.065248880D-01-2.065248880D-01-2.065248880D-01 -2.065248880D-01-2.065248880D-01-2.065248880D-01-2.065248880D-01-2.065248880D-01 1.269840233D-01 3.331531684D-01 3.496467000D-01 3.496467000D-01 3.496467000D-01 3.496467000D-01-3.608060397D-01-3.608060397D-01-3.608060397D-01-3.608060397D-01 6.528182571D-02 3.286815972D-01 3.497535789D-01 3.497535789D-01 3.497535789D-01 -1.825741859D-01-1.825741859D-01-1.825741859D-01-1.825741859D-01-1.825741859D-01 9.128709289D-01-3.668083630D-01-3.668083630D-01-3.668083630D-01-3.668083630D-01 -3.668083630D-01 1.803389307D-01 9.845294107D-02 9.845294107D-02-2.561674003D-02 1.853017178D-01 1.853017178D-01 1.853017178D-01 1.853017178D-01 1.853017178D-01 1.853017178D-01 1.853017178D-01 1.853017178D-01-5.073861533D-01-5.073861533D-01 -5.073861533D-01 1.753557923D-01 7.317672550D-02 7.317672550D-02 7.317672550D-02 7.317672550D-02 7.317672550D-02 7.317672550D-02 1.815484629D-01 1.815484629D-01 1.815484629D-01 1.815484629D-01 1.815484629D-01-2.967227471D-01-2.967227471D-01 -2.967227471D-01-2.967227471D-01-2.967227471D-01 4.553159394D-01 3.427659319D-01 3.427659319D-01 3.427659319D-01-4.209001754D-01-4.209001754D-01-4.209001754D-01 -4.209001754D-01 1.729384177D-01 8.406461453D-02 1.783247086D-01 1.783247086D-01 1.783247086D-01 1.783247086D-01 1.783247086D-01 1.783247086D-01 1.783247086D-01 1.783247086D-01-6.725927090D-01-6.725927090D-01 7.079923251D-02 7.079923251D-02 7.079923251D-02 7.079923251D-02 7.079923251D-02 7.079923251D-02 7.079923251D-02 7.079923251D-02 7.079923251D-02 7.079923251D-02 7.079923251D-02 7.079923251D-02 7.079923251D-02 7.079923251D-02 7.079923251D-02 7.079923251D-02 7.079923251D-02 7.079923251D-02 7.079923251D-02-3.651483717D-01-3.651483717D-01-3.651483717D-01 5.477225575D-01 5.477225575D-01-4.364254028D-01-4.364254028D-01-4.364254028D-01 3.238709959D-01 3.238709959D-01 3.307671082D-01 3.307671082D-01-2.885923003D-01 -2.885923003D-01-2.885923003D-01-2.885923003D-01 5.602463244D-01 5.941228768D-01 -3.534942317D-01-3.534942317D-01-3.534942317D-01-3.534942317D-01 3.376522230D-01 3.587749012D-01 3.587749012D-01 3.587749012D-01-4.081669288D-01-4.081669288D-01 -4.081669288D-01 3.918666195D-01 4.163170830D-01 4.163170830D-01-4.159531667D-01 -4.159531667D-01-4.159531667D-01-4.159531667D-01 1.780436213D-01 1.834313472D-01 1.834313472D-01 1.834313472D-01 1.834313472D-01 1.834313472D-01 1.834313472D-01 1.834313472D-01 2.017496155D-01-2.886751346D-01-2.886751346D-01-2.886751346D-01 8.660254035D-01-3.726697781D-01-3.726697781D-01-3.726697781D-01-3.726697781D-01 2.957108587D-01 2.957108587D-01 2.957108587D-01 3.017732680D-01 3.017732680D-01 -4.081669288D-01-4.081669288D-01-4.081669288D-01 3.918666195D-01 4.163170830D-01 4.163170830D-01-3.161350749D-01-3.161350749D-01-3.161350749D-01-3.161350749D-01 -3.161350749D-01 3.002570377D-01 3.058478959D-01 3.248568136D-01 3.248568136D-01 3.248568136D-01-4.081112546D-01-4.081112546D-01-4.081112546D-01 3.869574982D-01 4.186881332D-01 4.186881332D-01-1.825741859D-01-1.825741859D-01-1.825741859D-01 -1.825741859D-01-1.825741859D-01 9.128709290D-01-4.082409165D-01-4.082409165D-01 -4.082409165D-01 4.033334376D-01 4.106946558D-01 4.106946558D-01-4.999898091D-01 -4.999898091D-01 4.954752284D-01 5.045043898D-01-3.534441153D-01-3.534441153D-01 -3.534441153D-01-3.534441153D-01 3.380769798D-01 3.443492800D-01 3.656751006D-01 3.656751006D-01-4.362784182D-01-4.362784182D-01-4.362784182D-01 3.106112653D-01 3.173857747D-01 3.404191074D-01 3.404191074D-01-2.833687390D-01-2.833687390D-01 -2.833687390D-01-2.833687390D-01-2.833687390D-01-2.833687390D-01-2.833687390D-01 2.106397165D-01 2.106397165D-01 2.106397165D-01 2.151205187D-01 2.151205187D-01 2.303552466D-01 2.303552466D-01 2.303552466D-01 2.303552466D-01-4.362410190D-01 -4.362410190D-01-4.362410190D-01 3.122449892D-01 3.122449892D-01 3.421165396D-01 3.421165396D-01-4.362410190D-01-4.362410190D-01-4.362410190D-01 3.122449892D-01 3.122449892D-01 3.421165396D-01 3.421165396D-01-2.417422914D-01-2.417422914D-01 -2.417422914D-01-2.417422914D-01-2.417422914D-01-2.417422914D-01-2.417422914D-01 -2.417422914D-01-2.417422914D-01 2.095451741D-01 2.095451741D-01 2.095451741D-01 2.095451741D-01 2.136384842D-01 2.136384842D-01 2.275557394D-01 2.275557394D-01 2.275557394D-01 2.275557394D-01-4.081669288D-01-4.081669288D-01-4.081669288D-01 3.918666195D-01 4.163170830D-01 4.163170830D-01-3.272697530D-01-3.272697530D-01 -3.272697530D-01-3.272697530D-01 4.211117480D-01 4.439836320D-01 4.439836320D-01 -2.278707522D-01-2.278707522D-01-2.278707522D-01-2.278707522D-01-2.278707522D-01 -2.278707522D-01-2.278707522D-01 3.805622174D-01 4.048443492D-01 4.048443492D-01 4.048443492D-01-2.980397448D-01-2.980397448D-01-2.980397448D-01-2.980397448D-01 -2.980397448D-01 3.594301015D-01 3.594301015D-01 3.856692606D-01 3.856692606D-01 -2.581383344D-01-2.581383344D-01-2.581383344D-01-2.581383344D-01-2.581383344D-01 -2.581383344D-01 3.684524046D-01 3.934592006D-01 3.934592006D-01 3.934592006D-01 -5.474927706D-01-5.474927706D-01 3.413465457D-01 3.768194978D-01 3.768194978D-01 -3.651483717D-01-3.651483717D-01-3.651483717D-01 5.477225576D-01 5.477225576D-01 -2.886751346D-01-2.886751346D-01-2.886751346D-01-2.886751346D-01 5.773502693D-01 5.773502693D-01-4.081112546D-01-4.081112546D-01-4.081112546D-01 3.869574982D-01 4.186881332D-01 4.186881332D-01-4.362925005D-01-4.362925005D-01-4.362925005D-01 3.050301268D-01 3.346157915D-01 3.346157915D-01 3.346157915D-01-4.362925005D-01 -4.362925005D-01-4.362925005D-01 3.050301268D-01 3.346157915D-01 3.346157915D-01 3.346157915D-01-4.081112546D-01-4.081112546D-01-4.081112546D-01 3.869574982D-01 4.186881332D-01 4.186881332D-01-3.725626365D-01-3.725626365D-01-3.725626365D-01 -3.725626365D-01 2.851640358D-01 2.911298104D-01 2.911298104D-01 3.114134448D-01 3.114134448D-01-4.563039674D-01-4.563039674D-01-4.563039674D-01 2.606357996D-01 2.606357996D-01 2.825467677D-01 2.825467677D-01 2.825467677D-01-3.725873993D-01 -3.725873993D-01-3.725873993D-01-3.725873993D-01 2.859934702D-01 2.859934702D-01 3.061208855D-01 3.061208855D-01 3.061208855D-01-2.886751346D-01-2.886751346D-01 -2.886751346D-01 8.660254035D-01-2.041241452D-01-2.041241452D-01-2.041241452D-01 -2.041241452D-01-2.041241452D-01-2.041241452D-01 6.123724357D-01 6.123724357D-01 -3.651483717D-01-3.651483717D-01-3.651483717D-01 5.477225576D-01 5.477225576D-01 -3.651483717D-01-3.651483717D-01-3.651483717D-01 5.477225576D-01 5.477225576D-01 -5.000000002D-01-5.000000002D-01 5.000000002D-01 5.000000002D-01-5.000000002D-01 -5.000000002D-01 5.000000002D-01 5.000000002D-01 1.502319086D-02 1.502319086D-02 1.502319086D-02 1.502319086D-02 1.350855775D-01 1.350855775D-01 1.350855775D-01 1.831105322D-01 1.831105322D-01 1.831105322D-01 1.831105322D-01 1.831105322D-01 1.831105322D-01 1.831105322D-01 1.831105322D-01 1.831105322D-01-3.827835166D-01 -3.827835166D-01-3.827835166D-01-3.827835166D-01-9.703503652D-02-9.703503652D-02 -9.703503652D-02-9.703503652D-02-9.703503652D-02-9.703503652D-02-1.083455434D-02 -1.083455434D-02-1.083455434D-02 1.196149283D-01 1.196149283D-01 1.196149283D-01 1.196149283D-01 1.717947215D-01 1.717947215D-01 1.717947215D-01 1.717947215D-01 1.717947215D-01 1.717947215D-01 1.717947215D-01 1.717947215D-01 1.717947215D-01 -4.430571734D-01-4.430571734D-01-4.430571734D-01-1.325874047D-01-1.325874047D-01 -1.325874047D-01-1.325874047D-01-1.325874047D-01-3.162277661D-01-3.162277661D-01 -3.162277661D-01-3.162277661D-01-3.162277661D-01-3.162277661D-01 2.108185105D-01 2.108185105D-01 2.108185105D-01 2.108185105D-01 2.108185105D-01 2.108185105D-01 2.108185105D-01 2.108185105D-01 2.108185105D-01 2.982233263D-02-1.002823670D-01 2.980153584D-02-9.976244729D-02 5.756524651D-02 3.013428443D-02 5.729488828D-02 2.998870692D-02 3.013428443D-02-9.608141599D-02 3.055022017D-02-9.581105776D-02 3.876495105D-02 1.767466936D-03 3.830742173D-02 1.621889427D-03 1.788263723D-03 -6.798495673D-02 2.162605890D-03-6.773539528D-02 9.077771538D-02-8.955122487D-02 9.007062462D-02-8.980078631D-02 8.984185997D-02 7.505534440D-02 6.191177500D-02 7.480578295D-02 6.182858785D-02 6.184938464D-02 8.888520776D-02 6.195336857D-02 8.903078527D-02 1.996231593D-03 6.449057659D-02 1.788263723D-03 6.430340551D-02 1.684279788D-03 1.725873362D-03-1.680406387D-02 1.933841233D-03-1.649211207D-02 2.058621955D-03 6.765168822D-02 4.398494459D-02 6.754770428D-02 4.408892852D-02 2.435277764D-02 4.448406748D-02 2.435277764D-02 4.452566105D-02 2.435277764D-02 2.439437121D-02 2.352090616D-02 2.429038728D-02 2.350010937D-02 2.356249973D-02 2.302178327D-02 2.352090616D-02 2.298018970D-02 2.352090616D-02-4.325991660D-03 -5.088999780D-02-4.284398086D-03-5.095238816D-02-4.263601301D-03 6.696539424D-02 2.664042421D-02 6.694459746D-02 2.670281457D-02 2.676520493D-02-4.346788447D-03 2.682759530D-02-4.450772382D-03 2.680679851D-02 5.390501200D-02 2.822098003D-02 5.394660557D-02 2.824177681D-02-1.907091366D-02-4.993828494D-04-1.900852330D-02 -3.122117664D-04-1.875896185D-02-3.930618743D-02 7.362036609D-02-3.943096815D-02 7.357877252D-02-3.943096815D-02-2.364620680D-02-3.930618743D-02-2.350062929D-02 9.154719650D-02 6.390826655D-02 9.144321257D-02 6.397065691D-02 9.144321257D-02 9.154719650D-02 9.335651697D-02 9.152639972D-02 9.346050091D-02 4.756199195D-02 4.467123856D-02 4.745800802D-02 4.456725462D-02-1.514032091D-02-1.846780683D-02 -1.503633698D-02-1.853019719D-02 8.318454846D-03-1.859258756D-02 8.214470911D-03 8.256064487D-03-5.282643863D-03 8.214470911D-03-5.220253502D-03-5.241050289D-03 1.101969752D-03-5.178659928D-03 1.247547260D-03 1.289140835D-03-5.553002094D-03 1.413921557D-03-5.511408522D-03 3.730917595D-02 1.684279788D-03 3.726758238D-02 1.850654085D-03 1.954638020D-03-7.233148522D-02 2.204199464D-03-7.208192377D-02 -4.741693437D-02-7.563817435D-02-4.735454400D-02-7.559658078D-02-7.534701933D-02 -1.586820846D-02-7.526383219D-02-1.570183416D-02 2.953117761D-02-1.597219239D-02 2.928161616D-02-1.611776990D-02 2.930241295D-02 2.934400653D-02 7.611598053D-02 2.938560010D-02 7.634474519D-02 2.942719367D-02 9.755746795D-02-1.132803589D-01 9.745348402D-02-1.132387653D-01 4.566948434D-02-1.892533615D-02 4.577346827D-02 -1.884214900D-02-1.867577470D-02-9.379376942D-02-1.825983896D-02-9.358580155D-02 -1.830377218D-03-4.186419223D-02-1.892767579D-03-4.196817617D-02-9.344022404D-02 -1.853019719D-02-9.356500476D-02-1.844701005D-02-1.846780683D-02 1.609645319D-02 -1.846780683D-02 1.607565641D-02 1.611724998D-02-4.899749018D-02 1.628362428D-02 -4.901828697D-02-4.770808938D-02-4.885191267D-02-4.770808938D-02-4.766649581D-02 -3.706013443D-02-4.762490224D-02-3.701854086D-02-4.758330866D-02 2.894886757D-02 -4.047080750D-02 2.903205472D-02-4.038762035D-02-4.030443320D-02-6.509420333D-02 -4.022124606D-02-6.501101618D-02-4.134427256D-02-5.157863141D-03-4.142745970D-02 -5.074675993D-03-3.602029508D-02 4.460884820D-02-3.606188865D-02 4.460884820D-02 -5.001653274D-02-1.455801087D-02-5.005812632D-02-1.445402694D-02-1.435004300D-02 3.464718722D-02-1.437083979D-02 3.466798400D-02-6.407516077D-02-4.419343238D-02 -6.413755113D-02-4.406865166D-02-4.369430949D-02-6.336807001D-02-4.359032555D-02 -6.322249250D-02-6.326408607D-02-6.330567965D-02-3.090428547D-02-6.332647644D-02 -3.088348868D-02-3.086269190D-02-2.399975218D-02-3.084189511D-02-2.391656503D-02 -2.406214254D-02-2.410373612D-02-2.410373612D-02-2.408293933D-02-2.416612648D-02 -2.050589196D-02-2.052668875D-02-5.750337607D-02-3.123703406D-02-1.430844943D-02 -1.439163658D-02-8.464552277D-03-3.244324771D-02 2.512225876D-02 2.501827483D-02 -1.801027752D-02 2.994477371D-03-6.301686427D-03 3.585340086D-02 3.581180729D-02 2.890727400D-02 3.267149245D-02 3.262989887D-02 2.890727400D-02 2.896966436D-02 3.589499444D-02-6.239296068D-03-7.927761208D-02-7.913203457D-02-1.759434178D-02 2.533022663D-02-3.217288948D-02-8.214990833D-03-1.426685586D-02-1.422526228D-02 -3.090428547D-02-5.719142426D-02-2.013154980D-02-2.379178431D-02-3.880706454D-02 -2.366700359D-02-3.876547097D-02-3.861989346D-02-2.013154980D-02-3.864069024D-02 -2.013154980D-02 4.677171405D-02 4.629338795D-02-1.514032091D-02 9.772384225D-02 -7.470231894D-02 9.786941976D-02 9.578974105D-02-3.015794080D-03-2.953403717D-03 9.626806716D-02 3.502152938D-02 2.813779288D-02-1.451641730D-02 4.695888513D-02 4.716685300D-02-4.637943465D-03 2.641165956D-02-4.762724187D-03 2.632847241D-02 2.634926919D-02-4.845911335D-03 2.626608205D-02-4.887504912D-03-6.946152861D-02 -6.979427720D-02-6.946152861D-02-6.966949648D-02-6.887921857D-02-6.966949648D-02 -6.900399929D-02 7.476418938D-02 6.555121273D-02 7.482657974D-02 6.555121273D-02 7.478498616D-02 6.563439988D-02-7.489442926D-04 6.580077417D-02-7.073507196D-04 -8.672286183D-02-4.369924873D-04-8.668126826D-02 7.921470180D-02 1.621889427D-03 7.913151465D-02 1.580295853D-03-7.565897114D-02 2.678600172D-02-7.570056471D-02 2.693157923D-02-7.557578399D-02 7.536729620D-02-8.684764256D-02 7.538809299D-02 -8.693082970D-02-7.206112698D-02-8.682684577D-02-7.216511092D-02-9.941124155D-03 -8.027819750D-03-1.002431130D-02-7.944632601D-03-3.984690389D-02-7.882242240D-03 -3.988849746D-02 7.216459100D-02-3.327745885D-03 7.189423277D-02-3.494120179D-03 -3.410933031D-03 7.203981028D-02-3.431729820D-03 6.403304727D-02-1.310457543D-03 6.409543764D-02-1.310457543D-03-1.021332810D-01-1.595139560D-02-1.020916874D-01 -1.599298918D-02-1.121365356D-01 1.189550222D-02-1.122613163D-01 1.185390864D-02 -9.499998307D-02 1.019016568D-02-9.491679592D-02 1.027335283D-02 6.276444327D-02 1.023175925D-02 6.259806897D-02 6.239010110D-02 7.988019898D-02 6.243169467D-02 7.998418292D-02 9.907563340D-02 7.994258935D-02 9.907563340D-02 3.857777996D-02 4.067825545D-02 2.087971421D-02 2.094210457D-02 3.853618639D-02 4.071984903D-02 3.843220245D-02 4.055347473D-02 3.834901531D-02 3.763958491D-03 3.834901531D-02 3.826348852D-03 3.930332787D-03-2.433250077D-02 4.013519935D-03-2.410373612D-02 3.876495105D-02-2.414532969D-02 3.878574783D-02 2.790902822D-02 3.913929321D-02 2.784663786D-02 3.911849642D-02-6.679953987D-02-4.558681711D-02-4.558681711D-02 -5.057804599D-02-8.339537591D-02-4.558681711D-02 3.896616667D-02 3.152128391D-02 3.914011253D-02 3.169522977D-02 2.216299668D-02 2.216299668D-02 1.230026648D-02 1.261336903D-02 2.256307217D-02 3.200833231D-02 1.257857986D-02 1.607489162D-02 -3.755261670D-02 1.624883748D-02 3.148649474D-02-7.851686649D-02 3.173001892D-02 -7.815158019D-02-8.294923224D-03-6.835842833D-02-8.799366215D-03-6.884547673D-02 9.339382594D-02-7.564675982D-02 9.421137149D-02-2.669839510D-02-4.536278577D-02 -2.675057886D-02 3.063416003D-02-2.685494637D-02 3.092986799D-02 3.091247340D-02 7.314652797D-02 3.077331670D-02 7.295518751D-02-6.677552101D-02 2.663665893D-03 -6.677552101D-02 2.715849651D-03-1.911110199D-03-1.215326762D-03 3.429027673D-03 -1.319694278D-03 2.420141690D-03-1.389272621D-03 2.333168761D-03-2.111473302D-02 2.367957933D-03 2.750638822D-03-2.059289545D-02 3.307265571D-03 2.681060479D-03 3.811708562D-03 8.382680369D-02 3.637762703D-03 8.391377662D-02 8.337454448D-02 2.378069318D-02 8.347891198D-02 2.381548234D-02-8.505723079D-02-2.228017028D-02 -4.626730424D-02 8.659254287D-02 8.605331071D-02-4.675435264D-02 6.043108566D-02 -4.671956347D-02 6.057024236D-02-1.026051143D-02-4.868189802D-03-1.019093309D-02 -4.833400630D-03 7.525127286D-02-3.149930081D-02 1.078693751D-02-3.136014412D-02 1.052601872D-02 3.738325934D-02 1.071735916D-02 3.747023227D-02 7.413801936D-02 3.724410267D-02 7.439893815D-02 9.117057262D-03 6.029192899D-02 9.151846434D-03 6.013537772D-02 4.161014373D-02 6.003101020D-02 4.157535456D-02-1.888822603D-02 4.161014373D-02-1.878385851D-02 7.876497921D-02-1.116502990D-02 7.843448206D-02 -1.097368945D-02-7.455090091D-02 7.959991934D-02-6.042649716D-02 6.507544011D-02 -6.035691881D-02 1.844055531D-02-5.971331914D-02 7.601663464D-02 3.950865250D-03 7.561655917D-02 3.724735633D-03-1.563543847D-02 2.402421739D-02-1.560064930D-02 -9.149322758D-02-4.626730424D-02-4.611075296D-02 7.126791269D-02-7.496837097D-02 1.306888193D-03-7.496837097D-02 7.465985694D-02-4.277099247D-02 7.462506777D-02 -3.859303820D-03 7.265947956D-02 2.806076250D-04-1.511034723D-03-7.359419868D-02 7.165059356D-02-7.331588531D-02-1.179123499D-02-7.317672862D-02 6.905880028D-02 -7.635993784D-02 6.918056238D-02-2.048852793D-02 6.773681174D-02-2.073205213D-02 5.187294941D-02 2.586804349D-02 5.180337107D-02 6.965021619D-02 6.582340729D-02 -8.114344896D-02-8.194359992D-02-7.794284516D-02-7.702093211D-02-7.776889930D-02 -4.090977178D-02-4.007483165D-02 5.968637214D-03-3.990088580D-02 6.299134346D-03 -7.736882382D-02 6.490474791D-03-8.260134052D-03-8.294923224D-03-7.749058593D-02 6.229556002D-03 7.586008337D-02 3.081135955D-03 3.197354314D-02-6.616671050D-02 3.207791064D-02 8.104366995D-02-1.615402238D-03 8.111324831D-02-1.528429309D-03 -6.602755382D-02-1.354483450D-03-6.557529458D-02-2.648966007D-02-6.494908949D-02 -8.688366231D-02-8.657055977D-02-2.638529255D-02 7.203327447D-02 4.667196823D-02 6.375345158D-02-5.159004752D-02 6.366647865D-02 6.514501845D-02 6.361429490D-02 6.517980763D-02 3.533395188D-03-9.037997409D-02 4.055232765D-03 7.596445088D-02 2.407640113D-02 7.572092668D-02 2.405900656D-02 4.942356646D-03-1.250115934D-03 -8.500404585D-04 2.611482135D-03-1.371878036D-03-7.122853500D-02-1.267510520D-03 7.544261331D-02 4.977145818D-03 2.144981867D-02 2.184989415D-02 5.290248364D-03 2.169334288D-02-6.778440699D-02 2.179771039D-02-6.776701241D-02-2.119845230D-03 1.270034196D-02-2.119845230D-03-4.334501380D-02-2.032872300D-03-4.331022463D-02 -1.980688542D-03 2.275441262D-02 1.840576614D-02 2.266743969D-02 4.439327748D-02 2.258046676D-02 4.442806663D-02 7.639931553D-02 4.446285582D-02 7.646889388D-02 -1.344372065D-02 7.655586680D-02-1.337414231D-02-5.207709593D-02-5.153786376D-02 -1.245222925D-02-5.193793924D-02 6.737152545D-02 2.454930862D-03 6.766723341D-02 2.559298378D-03-5.080729115D-02 2.663665893D-03-5.066813447D-02 6.667574201D-02 -2.606893635D-03 6.681489870D-02-4.313627877D-02 4.420519069D-03-4.296233291D-02 4.472702827D-03 4.455308241D-03-5.985247582D-02 4.507491998D-03-5.966113538D-02 1.447458972D-02-1.967098239D-02 1.447458972D-02-1.968837698D-02-6.910639552D-02 -1.941006361D-02-6.893244966D-02 8.083493494D-02 4.621970900D-02 8.078275116D-02 8.100888080D-02 4.639365485D-02 1.341677365D-03 4.648062778D-02 1.359071951D-03 -2.916842630D-02 1.498228638D-03-2.895969126D-02 7.318131714D-02-4.477136985D-02 7.330307922D-02-4.478876443D-02-4.518883991D-02 7.064170760D-02-4.546715328D-02 1.673588589D-02-3.487385047D-02 1.694462092D-02-3.443898582D-02 7.069389134D-02 7.448591108D-02 7.062431301D-02 7.438154357D-02-7.672522415D-02 7.439893815D-02 -7.651648912D-02-5.080729115D-02-7.618599198D-02-5.068552905D-02-5.056376695D-02 3.764417813D-02-5.073771281D-02 3.741804853D-02-5.839133061D-02 3.736586477D-02 -5.839133061D-02 3.936624215D-02-3.002076100D-02 3.943582049D-02-2.998597183D-02 -6.147017231D-02-9.408502087D-02-6.108749142D-02-9.394586420D-02-6.089615098D-02 -9.377191835D-02-5.785209844D-02-3.400412118D-02-5.778252010D-02-3.389975366D-02 -3.457814251D-02 3.035584665D-02-3.445638041D-02-3.447377499D-02 3.052979251D-02 -3.436940748D-02-3.153408998D-02 6.646700698D-02-3.151669539D-02 6.643221779D-02 -1.822723176D-02-4.508447239D-02-1.840117762D-02 6.354471655D-02-1.873167476D-02 6.350992738D-02-1.869688558D-02-4.548454787D-02 3.947060965D-02-6.609713216D-02 3.950539884D-02-3.529132053D-02 3.742130219D-03-7.317672862D-02 4.142205694D-03 -7.305496652D-02 3.776919391D-03-4.482355361D-02 4.020443593D-03-4.468439692D-02 3.912271793D-02 2.458184532D-04 7.215503657D-02 1.762401097D-04-8.803170498D-02 3.607866540D-02-8.803170498D-02 7.205066906D-02 5.797844906D-02 7.977386520D-02 5.801323824D-02 4.350940725D-03 4.472702827D-03 5.823936785D-02 4.472702827D-03 2.477218456D-02 5.448213730D-02 2.466781707D-02 5.446474271D-02-5.687800163D-02 -3.383017532D-02-5.686060705D-02-3.376059697D-02 2.284238674D-04-3.372580780D-02 3.675805545D-04 7.194630154D-02-4.284057081D-02 7.212024740D-02-4.285796540D-02 -7.241136684D-02-7.755691061D-03-7.258531270D-02-7.825269405D-03 6.462318088D-02 -8.011716840D-02 1.861450117D-02 1.856231741D-02-7.987364419D-02 7.062431301D-02 -2.154634401D-03 7.067649677D-02-8.055203304D-02 1.821442570D-02 5.629117423D-02 -7.966490916D-02-4.198823610D-02-4.190126317D-02-9.234230863D-03 6.629306112D-02 6.596256399D-02-9.947408885D-03 8.734376372D-03-3.708296288D-02 8.890927645D-03 -3.713514664D-02-2.542859033D-02-2.530682823D-02-3.685683326D-02-2.525464447D-02 -3.675246575D-02-2.527203905D-02-2.534161740D-02-2.396744511D-02-2.530682823D-02 -2.398483970D-02-5.308598191D-02-2.382828842D-02-5.301640356D-02 1.169145598D-02 -1.720095120D-02 3.011557611D-03-1.720095120D-02 1.181321808D-02 1.169145598D-02 -1.734010789D-02 1.177842890D-02-4.228394406D-02-3.911487577D-03-4.244049534D-02 -3.163510372D-01-3.162156070D-01-3.163510372D-01-3.162446278D-01-3.162929957D-01 -3.162543014D-01-3.163026693D-01-3.295372995D-02-8.338212162D-02-3.285699410D-02 -1.951712225D-02-1.948810147D-02-1.330784927D-03 4.439624513D-02 4.436722434D-02 4.437689792D-02 5.170947433D-02 9.614991778D-02-1.959451090D-02 2.718693975D-02 -1.966222597D-02-7.762633933D-02-9.678970862D-02-6.374474676D-02-2.288352932D-02 2.859928295D-02 5.519196447D-02 8.738565096D-02 1.068295541D-01 1.512699975D-01 1.429603891D-01 1.260025969D-01 1.014413680D-01 1.014316944D-01 8.440618715D-02 6.207955606D-02 4.686300892D-02 1.250243974D-02-3.913631784D-03-1.573475100D-02 1.645893543D-02-3.971673231D-03 3.979161925D-02 3.979161925D-02 3.978194567D-02 3.979161925D-02 1.149069965D-01 1.456302982D-01 1.812677805D-01 1.165998736D-01 7.348471123D-02 4.687268250D-02 4.689202970D-02 4.689202970D-02 6.209890321D-02 8.440618715D-02 1.014123473D-01 1.162322774D-01-5.528670607D-02-5.528670607D-02 -5.518100356D-02-5.514576939D-02-5.518100356D-02-5.521623773D-02-5.507530106D-02 -5.514576939D-02-5.528670607D-02-5.496959856D-02-5.496959856D-02-5.507530106D-02 -5.496959856D-02-5.489913022D-02-5.507530106D-02-5.504006689D-02-5.493436439D-02 -5.528670607D-02-5.489913022D-02 1.852569576D-01 1.852569576D-01 1.853626601D-01 1.852569576D-01 1.853274259D-01 1.853626601D-01-5.489913022D-02-5.514576939D-02 -5.525147190D-02-5.511053523D-02-5.475819355D-02-5.507530106D-02 2.714749662D-01 1.851512551D-01 1.852921917D-01-2.977330148D-01-2.975216098D-01-2.978387173D-01 -2.979796539D-01 2.715102004D-01 2.715102004D-01 2.714749662D-01-2.503729638D-01 -3.518699686D-01-2.502897422D-01-3.518033914D-01-2.501898764D-01-3.517035255D-01 -2.501732321D-01 1.559978746D-01 2.322288163D-01 2.324784809D-01 1.560145189D-01 -1.786859186D-02 1.561809620D-01 1.560145189D-01 1.562142506D-01 1.560311632D-01 1.561643177D-01 1.560478075D-01 1.562142506D-01 1.559978746D-01 1.560810961D-01 -1.790188048D-02-1.780201461D-02-1.803503496D-02-1.781865894D-02-1.801839065D-02 -1.781865894D-02 1.700209891D-01 1.722146852D-01 1.725071780D-01 1.703866051D-01 1.709715907D-01-3.872509562D-01-3.860809850D-01-1.357802542D-01 1.713372068D-01 1.702403586D-01-1.372427183D-01 1.712640835D-01 1.702403586D-01-1.369502256D-01 -1.358533775D-01 1.717028228D-01 1.705328515D-01-1.370233487D-01-1.362921166D-01 1.708253443D-01 1.705328515D-01-3.873972027D-01-2.429057496D-01 1.302716238D-01 -3.953803117D-01 1.311991669D-01 1.306691423D-01 1.309341545D-01 1.306691423D-01 1.309341545D-01 1.302716238D-01-3.370776015D-01 1.304041299D-01 1.301391176D-01 1.294765868D-01 1.300066114D-01 1.308016484D-01 1.304041299D-01 1.300066114D-01 -3.377401323D-01-3.385351692D-01-3.391977000D-01-3.381376507D-01 1.286815499D-01 1.311991669D-01 6.109227453D-02 6.101087057D-02-1.111585216D-01-2.184896534D-01 -1.111178196D-01 1.548696456D-01 1.547882416D-01 6.532528087D-02 6.528457888D-02 6.504036698D-02 6.499966500D-02 6.410422135D-02 6.499966500D-02 6.414492333D-02 6.508106896D-02-4.769472516D-01-2.931777939D-01-2.930149860D-01-5.461813263D-01 1.544626258D-01 1.549103476D-01 1.549510496D-01 6.512177095D-02 1.544626258D-01 6.520317496D-02 6.536598285D-02 6.512177095D-02 6.508106896D-02 1.546661357D-01 3.149057655D-01-1.234835130D-01 8.301208689D-02-1.132991349D-01-7.704610185D-02 -7.708801283D-02-1.137601561D-01-7.708801283D-02-7.729756798D-02 8.317973097D-02 8.288635387D-02-7.733947900D-02-7.721374593D-02-1.133829570D-01 8.309590893D-02 2.633552097D-01 2.636904979D-01 4.745867551D-01 2.637324090D-01 1.543446444D-01 1.629364037D-01-1.619578301D-01-7.704610185D-02-7.729756798D-02-7.738139002D-02 -7.725565691D-02-1.622931183D-01-1.622931183D-01-7.733947900D-02-7.721374593D-02 8.347310812D-02 8.326355301D-02-7.738139002D-02-7.721374593D-02-1.619997412D-01 -1.624607624D-01-7.754903406D-02-7.708801283D-02 2.638162310D-01 8.271870974D-02 -7.746521206D-02-7.729756798D-02-7.746521206D-02 1.202741122D-01-2.516002821D-02 -2.514718634D-02-1.704396845D-02-1.704396845D-02-1.590104232D-02-7.480668487D-02 -7.481952674D-02 4.992674800D-03 4.979832937D-03 6.272970749D-02 6.272970749D-02 9.150833076D-02 9.149548890D-02 1.010498377D-01 1.010369959D-01 1.114645916D-01 1.114517497D-01 1.010241540D-01 1.010369959D-01 9.145696330D-02 9.145696330D-02 6.269118189D-02 6.269118189D-02 4.889939869D-03 4.902781733D-03-9.799909613D-02 -9.799909613D-02-7.496078727D-02-7.496078727D-02-7.481952674D-02-7.480668487D-02 -7.476815927D-02-7.474247554D-02-7.470394994D-02-7.485805234D-02-7.484521047D-02 -9.789636120D-02-9.788351933D-02 5.031200402D-03 5.031200402D-03 6.280675869D-02 6.280675869D-02 9.130286090D-02 9.130286090D-02 1.008828935D-01 1.008957353D-01 1.112334380D-01 1.112462799D-01 1.289552141D-01 1.289680559D-01 1.112077543D-01 1.112077543D-01 1.221233410D-01 1.220719735D-01 1.221104991D-01 1.110279681D-01 1.110151263D-01 1.220591316D-01 1.220591316D-01 1.111307031D-01 1.111435449D-01 1.288910047D-01 1.288781629D-01 1.008186841D-01 1.008186841D-01 9.114875850D-02 9.114875850D-02 6.235729335D-02 6.238297709D-02 4.568893201D-03 4.581735065D-03 -9.832014280D-02-9.830730093D-02-7.528183394D-02-7.526899207D-02-3.447038156D-02 -3.447038156D-02-1.638903325D-02-1.640187512D-02-3.445753970D-02-3.445753970D-02 -7.525615020D-02-7.525615020D-02-7.511488967D-02-7.508920594D-02-7.505068034D-02 -7.501215474D-02-7.502499660D-02-7.511488967D-02-7.511488967D-02-7.959670115D-02 -7.958385928D-02-7.511488967D-02-7.511488967D-02-7.514057340D-02-7.514057340D-02 -3.432912103D-02-3.434196290D-02-3.381544636D-02-3.380260450D-02-1.627345645D-02 -1.627345645D-02-1.739069885D-02-1.739069885D-02-2.551960047D-02-2.551960047D-02 1.197861212D-01 1.197861212D-01 1.197475956D-01 1.197475956D-01-2.559665167D-02 -2.559665167D-02-1.750627565D-02-1.749343379D-02-1.635050765D-02-1.636334952D-02 -3.436764663D-02-3.438048850D-02-3.385397196D-02-3.385397196D-02-7.525615020D-02 -7.524330834D-02-7.969943608D-02-7.969943608D-02-7.524330834D-02-7.523046647D-02 -7.529467580D-02 6.235729335D-02 6.234445149D-02 9.113591663D-02 9.113591663D-02 1.007159492D-01 1.007287911D-01 6.234445149D-02 4.556051337D-03 4.556051337D-03 -7.532035954D-02-7.532035954D-02-7.519194087D-02-7.519194087D-02-7.511488967D-02 -7.507636407D-02-7.506352220D-02-7.520478274D-02-7.519194087D-02-9.826877533D-02 -9.826877533D-02-7.516625714D-02-7.516625714D-02-3.436764663D-02-3.435480476D-02 -3.384113010D-02-3.385397196D-02-1.631198205D-02-1.631198205D-02-1.744206632D-02 -1.744206632D-02-2.559665167D-02-2.558380981D-02 1.197604375D-01 1.197604375D-01 -9.671490946D-02-1.853362499D-02-9.675343506D-02-1.852078312D-02-9.674059319D-02 -1.850794126D-02-9.671490946D-02-1.146850628D-01-8.729578385D-02-1.146805654D-01 -8.729128643D-02-1.146850628D-01-8.729128643D-02-9.713163820D-02-9.719010464D-02 -9.717661239D-02-8.729128643D-02-1.146805654D-01-8.729578385D-02-1.146850628D-01 -8.729578385D-02-1.146850628D-01-9.718110980D-02-9.712264336D-02-9.882716499D-02 -1.018944044D-01-8.014938579D-02-7.659192772D-02-7.177519246D-02-6.270839668D-02 -5.672683002D-02-4.882036822D-02-4.497507537D-02-4.048215425D-02-3.686173233D-02 -2.488960417D-02-2.754757853D-02-1.984799798D-02-1.985699282D-02-2.755657337D-02 -5.787367175D-02-8.224968025D-02-1.027669036D-01-9.674036279D-02-9.673586537D-02 -8.077452696D-02-6.857303046D-02-8.099040305D-02-8.078352180D-02-9.674486021D-02 -1.027624062D-01-9.064186324D-02-8.221370090D-02-5.788266658D-02-2.754757853D-02 -1.987048508D-02-2.758805529D-02-1.987048508D-02-5.330330930D-03 7.091539083D-03 7.096036501D-03-7.919593306D-02-1.071653790D-01-1.071608815D-01-9.267919384D-02 -3.888107325D-02 7.105031338D-03 7.082544245D-03 7.073549408D-03 5.256592317D-03 3.111323673D-03 8.491221458D-04 6.264014071D-03 6.250521815D-03 5.369027781D-03 6.479890161D-03 2.488782425D-02 3.458875605D-02 4.079969105D-02 4.921885857D-02 4.920536632D-02 1.672500960D-02 1.672051218D-02 7.392866125D-03 5.670256303D-02 4.267511459D-02 2.797305337D-02 4.268860686D-02-2.372477277D-02 1.383766690D-02 1.378369787D-02-2.015733465D-03 4.932778182D-03 3.597044875D-03 1.381517980D-02 1.938298396D-02 1.380168755D-02 1.378819529D-02 8.188909207D-03 4.075921429D-02 4.947970885D-02 3.804277348D-02 5.743114483D-02 9.455733490D-02 8.948874420D-02 9.454834006D-02 5.745363192D-02 3.802928124D-02 4.946171918D-02 4.077720398D-02 8.206898881D-03 1.937848654D-02 1.381517980D-02 2.025998057D-02 2.023749348D-02 -3.343919682D-02 3.057354651D-03 1.628876000D-02 9.349243191D-03 3.928406100D-02 2.720399480D-02 3.927506617D-02 1.504297506D-02 6.319233798D-02 7.556023897D-02 7.425149018D-02 4.853075354D-02 5.890629811D-02 4.852175870D-02 5.891529295D-02 7.430096178D-02 7.556473639D-02 1.504297506D-02 3.322603823D-02 3.928855844D-02 2.722198448D-02 3.929305585D-02-5.510227672D-03-2.717330758D-03-1.139734854D-02 -2.717330758D-03-2.119272613D-02-2.032472435D-02-1.915089811D-02-2.030673468D-02 -1.914190327D-02-2.115674678D-02-5.483243161D-03-2.690346246D-03-1.137036403D-02 3.926157392D-02 2.717701029D-02 3.925257907D-02 2.024199090D-02 2.021050897D-02 -3.350665810D-02 3.012380465D-03 1.623479098D-02 9.277284494D-03 1.623029356D-02 4.874311741D-03-2.377424437D-02 4.266611976D-02 2.795956112D-02 2.211741443D-02 7.370379032D-03 1.668453283D-02 7.365881614D-03 2.795506370D-02 9.450336587D-02 9.448087878D-02 8.942128292D-02 9.449886846D-02 5.740865774D-02 3.799779931D-02 4.945272434D-02 8.175416951D-03 1.935150203D-02 3.579055201D-03 4.905793671D-03 -2.042717977D-03-2.374725986D-02-2.024728303D-03 1.379269271D-02 1.939197879D-02 3.606039713D-03 4.923783345D-03 3.052857234D-03-3.349766326D-02 2.021500639D-02 1.623928840D-02 9.317761261D-03 3.925707648D-02 3.320804856D-02 1.502048797D-02 3.321704339D-02 3.927506617D-02-2.694843663D-03-1.136136920D-02-2.685848828D-03 -5.483243161D-03-5.510227672D-03-2.118373129D-02-1.914640069D-02-2.031572951D-02 -1.913740585D-02-2.031123209D-02-1.914640069D-02-2.118373129D-02-5.510227672D-03 5.845754146D-03 4.928280764D-03 1.773243135D-02 4.445159491D-02 7.165647968D-02 7.165647968D-02 9.700393058D-02 1.039029706D-01 1.091244736D-01 1.169229973D-01 1.169454844D-01 1.091289710D-01 1.039074680D-01 9.700842800D-02 1.084318711D-01 1.163158458D-01 1.201746309D-01 1.128618284D-01 1.078606989D-01 1.070286765D-01 1.070241791D-01 1.070286765D-01 1.070331739D-01 9.081098525D-02 8.947075453D-02 9.453484780D-02 5.744013967D-02 3.804277348D-02 4.947970885D-02 8.188909207D-03 1.381517980D-02 1.938748138D-02 8.215893718D-03 4.950219594D-02 3.806975800D-02 5.748511385D-02 8.951123129D-02 9.457532457D-02 7.047815602D-02 7.048715086D-02 1.670701993D-02 7.406358380D-03 7.397363543D-03 1.670701993D-02 4.921885857D-02 4.078170139D-02 3.456626896D-02 2.485634232D-02 5.360032944D-03 6.264014071D-03 8.446247282D-04 3.111323673D-03 5.265587155D-03 7.082544245D-03 7.096036501D-03 -5.339325768D-03-1.987947991D-02-2.759705013D-02-3.009761484D-02-2.493457836D-02 -3.690670651D-02-4.500205988D-02-5.675381453D-02-6.274437603D-02-7.180217697D-02 -7.660541998D-02-8.014488837D-02-1.018944044D-01-9.883615983D-02-9.717211497D-02 -9.718560722D-02-9.716761755D-02-9.720809432D-02-9.720359690D-02-1.147030524D-01 -8.731377352D-02-1.146940576D-01-8.730927611D-02-1.146985550D-01-8.730477869D-02 -3.818936138D-03-1.324197404D-01-1.958328737D-03-1.082748813D-03-2.067776290D-03 1.692175503D-01 2.296325664D-01 2.286475390D-01 1.684514178D-01 2.286475390D-01 1.647302031D-01-1.399716175D-01-1.326386354D-01-4.585068592D-03-1.326386354D-01 -1.400810649D-01 1.633073857D-01-1.401905124D-01-4.475621122D-03-1.326386354D-01 -1.400810649D-01 1.631979382D-01 1.670286004D-01-1.319819505D-01-5.235850804D-01 -1.705074680D-01-1.708358105D-01 4.226979441D-01-1.858460137D-02-4.636868504D-01 -1.836559090D-02-4.636868504D-01-1.829258743D-02-4.633948365D-01-1.814658044D-02 1.780137841D-01 1.783788016D-01 1.785248085D-01-1.687527704D-01 1.757506762D-01 1.754586622D-01 1.753856587D-01 1.756046691D-01 1.755316657D-01 1.748746343D-01 8.902253581D-02-1.712348888D-01 6.347131597D-02 6.412834736D-02-2.534974041D-02 -6.108584764D-02-2.537318161D-02-6.107998734D-02-2.536146101D-02-6.109756824D-02 -2.535560071D-02-6.110342854D-02-2.533215951D-02-6.112100944D-02-2.534388011D-02 9.071935434D-02 9.785719930D-02 9.081311913D-02 2.283543518D-01 2.289696832D-01 -2.155574860D-01-2.114494159D-01-1.523486323D-02-3.814863483D-02-1.526416472D-02 2.283484915D-01 2.289755435D-01-2.114962983D-01-1.527002502D-02-3.820137753D-02 -1.526416472D-02 9.790994200D-02 9.081897943D-02-2.155750669D-01-2.114552762D-01 -2.155692066D-01-2.114259747D-01-1.522314263D-02-3.814863483D-02-1.530518682D-02 9.793338320D-02 9.077209704D-02 2.283191900D-01 2.289462420D-01-1.527588532D-02 -3.815449513D-02-1.527002502D-02 9.077209704D-02 9.789822140D-02 2.289403817D-01 2.283191900D-01-2.114376953D-01-2.156102287D-01-2.114669968D-01 9.078967793D-02 9.795096410D-02-7.483541436D-02-7.484660358D-02-7.483168462D-02-7.481303588D-02 -7.480557644D-02-7.623779669D-02-7.185535179D-02-7.147118858D-02-6.827480111D-02 -7.044178024D-02-6.955783178D-02-6.907296554D-02-6.943848009D-02-7.491746865D-02 -7.942299498D-02-6.937880425D-02-7.118772831D-02-6.940118269D-02-6.601830820D-02 -6.939745295D-02-7.121383649D-02-7.944537342D-02-7.493611735D-02-6.947577749D-02 -6.910280346D-02-6.958766970D-02-6.946458827D-02-7.621541829D-02-8.809091152D-02 -9.261135681D-02-6.844636916D-02-5.111053607D-02-5.093150853D-02-5.092404905D-02 -8.820653347D-02-5.394140899D-02-5.282621663D-02-6.857318033D-02-6.859928852D-02 -5.287843299D-02-5.397497665D-02-8.824756062D-02-5.095388698D-02-5.094642750D-02 -5.112545503D-02-6.144191681D-02-6.120321343D-02-5.539227798D-02-4.252840355D-02 -3.685546848D-02-2.906404091D-02-2.586392370D-02-2.902674351D-02-2.389089107D-02 -2.273467156D-02-2.217148077D-02-2.808311921D-02-2.806074076D-02-2.213791311D-02 -2.268991468D-02-2.385359366D-02-2.897825689D-02-2.581543708D-02-2.902301377D-02 -3.682190082D-02-4.250975485D-02-5.537362928D-02-6.118456472D-02-7.449227821D-02 -7.951250874D-02-6.249370358D-02-4.230834887D-02-1.716989898D-02-1.078458352D-02 1.277396735D-03 1.161250721D-02 1.009077315D-02-4.457433027D-04-1.420848515D-02 -2.652035800D-02-6.871864021D-02-3.631838588D-02-2.482332615D-02-3.780131163D-03 6.480384503D-03 8.367633118D-03 1.015417874D-02 1.164234513D-02 1.012061108D-02 -4.270945992D-04-1.418983645D-02-2.651289852D-02-6.870372124D-02-3.632957509D-02 -2.483451537D-02-1.028106857D-02-2.213640221D-03 1.495808430D-02-1.041160948D-02 -4.993566786D-02-2.862020181D-02-1.483881126D-02 3.500321977D-03-1.829628056D-02 1.059801784D-02 1.060547732D-02 9.852069773D-03 2.046318103D-02 4.261783862D-02 6.516411897D-02 7.542090490D-02 7.102354107D-02 7.964297096D-02 8.619612473D-02 9.191754645D-02 9.625896416D-02 1.027822800D-01 1.181599995D-01 1.183949731D-01 1.127854436D-01 1.021780621D-01 9.563982731D-02 8.616255707D-02 8.616255707D-02 9.191008697D-02 9.624031546D-02 1.027934692D-01 1.169888610D-01 1.032708760D-01 7.572674360D-02 7.062072908D-02 5.191981103D-02 6.515292978D-02 5.191608132D-02 4.558671193D-02 4.102523954D-02 5.345273434D-02 6.244886804D-02 6.245259778D-02 9.141776121D-02 1.169851312D-01 1.032447679D-01 7.570063542D-02 7.061699934D-02 7.539479671D-02 6.514920004D-02 5.191235158D-02 4.558671193D-02 4.104388824D-02 4.101778002D-02 5.343781534D-02 6.245259778D-02 6.245259778D-02 9.142149098D-02 1.032596868D-01 1.170000502D-01 1.028195775D-01 9.624404524D-02 1.181637292D-01 1.183987028D-01 1.128003626D-01 8.826986036D-02 1.053968280D-01 1.053968280D-01 9.932108102D-02 9.518106924D-02 5.760393534D-02 9.515123132D-02 9.445376988D-02 8.101924514D-02 8.412611888D-02 8.102670466D-02 9.446122932D-02 9.516615025D-02 9.930989176D-02 1.054005577D-01 8.827359014D-02 1.022004405D-01 9.565474623D-02 8.617747607D-02 7.962805203D-02 7.101981130D-02 6.515665952D-02 4.260664944D-02 2.045572155D-02 1.059428810D-02 9.844610292D-03 1.055326096D-02 9.807312889D-03 -1.832238874D-02 3.477943534D-03-1.484254101D-02-2.862393155D-02-7.310481484D-02 -7.316822043D-02-7.310108510D-02-4.989837046D-02-1.038550130D-02 1.496927352D-02 3.442732886D-02 2.637854921D-02-2.202450999D-03-1.027360909D-02 1.095980265D-02 -3.809969085D-03 6.458006065D-03 8.334065455D-03 1.012061108D-02 1.157893955D-02 1.005347575D-02-4.905001857D-04 1.258748032D-03-1.080323222D-02-1.719600716D-02 -4.234191654D-02-6.251235228D-02-7.952742767D-02-7.451838643D-02-6.119575394D-02 -6.143445733D-02-5.111053607D-02-6.845009890D-02-9.258151885D-02-8.806107360D-02 -7.617439114D-02-7.492865787D-02-6.945712876D-02-6.908788450D-02-6.943102057D-02 -7.041940180D-02-7.047907765D-02-6.832328773D-02-7.150102650D-02-7.190383845D-02 -7.629001309D-02-7.484287384D-02-7.482422514D-02 7765D+00 6.406762598D+01 5.883397765D+00 6.402786445D+01 5.957716784D+00 7.641148593D+01 6.419160491D+01 7.637711988D+01 6.417271547D+01 6.420193420D+01 7.681649615D+00 6.424921469D+01 7.683658858D+00 6.798478512D+01 5.151374569D+01 6.788997351D+01 5.148439535D+01 5.152988778D+01 2.026363225D+01 5.157863196D+01 2.026373291D+01 9.116164644D+01 1.060632314D+01 9.101081447D+01 1.058942556D+01 9.092409462D+01 8.424277385D+01 7.841628355D+01 8.420383984D+01 7.840260653D+01 7.839867596D+01 9.045439141D+01 7.836766232D+01 9.042058772D+01 5.144780028D+01 7.943405038D+01 5.142380247D+01 7.941863899D+01 5.144529522D+01 5.149343316D+01 4.317545284D+01 5.151959834D+01 4.323939374D+01 5.149345936D+01 8.094992390D+01 7.036663670D+01 8.088924141D+01 7.037002960D+01 6.144145532D+01 7.043762406D+01 6.143475451D+01 7.046144804D+01 6.145008251D+01 6.148203694D+01 6.109699511D+01 6.144167320D+01 6.108477232D+01 6.112340506D+01 6.087806427D+01 6.109783408D+01 6.085436717D+01 6.109138830D+01 4.861464344D+01 2.779204783D+01 4.863299600D+01 2.776273056D+01 4.863808808D+01 8.056841596D+01 6.251386279D+01 8.052164594D+01 6.250943356D+01 6.251270019D+01 4.859203646D+01 6.252700209D+01 4.853524405D+01 6.250867010D+01 7.468123820D+01 6.318721851D+01 7.467294147D+01 6.316462880D+01 4.216097559D+01 5.043223190D+01 4.211956324D+01 5.043232335D+01 4.214412673D+01 3.300376444D+01 8.353930957D+01 3.301384331D+01 8.357370699D+01 3.305246275D+01 4.008231576D+01 3.304314407D+01 4.007922781D+01 9.153924453D+01 7.920812478D+01 9.153758765D+01 7.925711228D+01 9.152982426D+01 9.153902862D+01 9.230755228D+01 9.146138090D+01 9.230085257D+01 7.176575728D+01 7.049728697D+01 7.177110224D+01 7.050712127D+01 4.375134021D+01 4.225699614D+01 4.379494548D+01 4.224292421D+01 5.427159682D+01 4.225173892D+01 5.425083331D+01 5.426940501D+01 4.820052308D+01 5.422045658D+01 4.819403810D+01 4.829392352D+01 5.110473578D+01 4.827749572D+01 5.112414223D+01 5.112270903D+01 4.804404414D+01 5.114961959D+01 4.804318247D+01 6.735594883D+01 5.141015603D+01 6.729559937D+01 5.143287206D+01 5.143639694D+01 1.818228889D+01 5.149338248D+01 1.826280556D+01 2.947635002D+01 1.685064744D+01 2.947254969D+01 1.680612789D+01 1.687223696D+01 4.343303285D+01 1.684822235D+01 4.347158230D+01 6.381459999D+01 4.349236896D+01 6.374928831D+01 4.345805723D+01 6.377286880D+01 6.376896225D+01 8.464948031D+01 6.372279560D+01 8.469224481D+01 6.368442060D+01 9.420075239D+01-6.877308478D-02 9.417644574D+01-4.123350056D-02 7.111039337D+01 4.223443661D+01 7.115784865D+01 4.224283324D+01 4.229293586D+01 8.662049812D+00 4.240275839D+01 8.673723289D+00 4.982074055D+01 3.194038305D+01 4.982798942D+01 3.191403964D+01 8.745105287D+00 4.228781659D+01 8.752797480D+00 4.233746192D+01 4.230064505D+01 5.772982054D+01 4.225201392D+01 5.768013978D+01 5.769643824D+01 2.859012205D+01 5.779293761D+01 2.860729697D+01 2.921156583D+01 2.871119532D+01 2.922904658D+01 2.924591740D+01 3.397942784D+01 2.924409133D+01 3.397426492D+01 2.923614080D+01 6.347965820D+01 3.242624094D+01 6.350600539D+01 3.246285031D+01 3.250333220D+01 2.142046356D+01 3.254107349D+01 2.144695240D+01 3.203668099D+01 4.821532257D+01 3.199383418D+01 4.824776464D+01 3.443355155D+01 7.047919006D+01 3.439707538D+01 7.046762536D+01 2.827197169D+01 4.411382936D+01 2.822416723D+01 4.412930686D+01 4.413637254D+01 6.603580462D+01 4.410538335D+01 6.602577638D+01 2.199528301D+01 3.087777478D+01 2.194517381D+01 3.090586361D+01 3.107530786D+01 2.225039338D+01 3.106983781D+01 2.226570547D+01 2.232953056D+01 2.231490628D+01 3.680088827D+01 2.229272666D+01 3.678605912D+01 3.676662965D+01 3.981459085D+01 3.673788566D+01 3.982235096D+01 3.982113654D+01 3.980787686D+01 3.981278974D+01 3.982652082D+01 3.979322108D+01 4.140842841D+01 4.138970443D+01 2.482824251D+01 3.654514760D+01 4.409952308D+01 4.406264057D+01 4.673013686D+01 3.602976510D+01 6.179252770D+01 6.175000093D+01 4.249869041D+01 5.185713584D+01 4.770080714D+01 6.656488262D+01 6.655683140D+01 6.347381222D+01 6.515224589D+01 6.510239153D+01 6.342724030D+01 6.348139495D+01 6.657007727D+01 4.772386995D+01 1.506335360D+01 1.513272497D+01 4.267597302D+01 6.185560919D+01 3.613161172D+01 4.683983775D+01 4.412997091D+01 4.414694269D+01 3.668753756D+01 2.493151167D+01 4.150297279D+01 3.996389011D+01 3.321848141D+01 3.996543486D+01 3.319534299D+01 3.323616784D+01 4.149158475D+01 3.320990221D+01 4.148597036D+01 7.145887050D+01 7.126202765D+01 4.379200439D+01 9.424755325D+01 1.712508575D+01 9.426669524D+01 9.332058784D+01 4.918308859D+01 4.921275535D+01 9.354193696D+01 6.616368608D+01 6.308161590D+01 4.400870295D+01 7.150529109D+01 7.160391217D+01 4.844174478D+01 6.232154300D+01 4.837945145D+01 6.228354310D+01 6.229627635D+01 4.834861785D+01 6.225840134D+01 4.831949662D+01 1.951401556D+01 1.936031023D+01 1.950167059D+01 1.940370301D+01 1.974972088D+01 1.939149294D+01 1.968437715D+01 8.400394050D+01 7.987364883D+01 8.400582185D+01 7.984806350D+01 8.396590391D+01 7.986262759D+01 5.017015535D+01 7.992544236D+01 5.018325511D+01 1.172051099D+01 5.031215254D+01 1.175247352D+01 8.603447511D+01 5.133508878D+01 8.598993007D+01 5.130254640D+01 1.671665653D+01 6.251772123D+01 1.667706964D+01 6.256102930D+01 1.671355505D+01 8.420443951D+01 1.166071594D+01 8.420937917D+01 1.162393771D+01 1.828347969D+01 1.170182911D+01 1.827703660D+01 4.610018702D+01 4.692973437D+01 4.603021805D+01 4.695093068D+01 3.267683055D+01 4.697059220D+01 3.266561139D+01 8.277752602D+01 4.902958131D+01 8.268449437D+01 4.898802425D+01 4.898225794D+01 8.271391509D+01 4.895803118D+01 7.912672341D+01 4.990556410D+01 7.915564174D+01 4.991009596D+01 4.899591538D+00 4.344346005D+01 4.925549345D+00 4.342810880D+01 4.331967935D-01 5.589617385D+01 3.717899952D-01 5.585579794D+01 8.062828255D+00 5.507922723D+01 8.060735383D+00 5.508700201D+01 7.855728602D+01 5.507274339D+01 7.850649068D+01 7.846668704D+01 8.628867258D+01 7.848018109D+01 8.629782704D+01 9.482796617D+01 8.626478974D+01 9.481392376D+01 6.776144343D+01 6.869626108D+01 5.984192274D+01 5.987331811D+01 6.774256178D+01 6.872158893D+01 6.770577971D+01 6.865782397D+01 6.767675923D+01 5.221558904D+01 6.768925407D+01 5.225516182D+01 5.231931110D+01 3.965281302D+01 5.231000320D+01 3.972545477D+01 6.783988127D+01 3.971787748D+01 6.787147624D+01 6.302815487D+01 6.805682509D+01 6.301163219D+01 6.806054445D+01 2.067798656D+01 3.012239556D+01 3.011664058D+01 2.790597520D+01 1.326381926D+01 3.019352636D+01 6.309155893D+01 5.913759626D+01 6.325243185D+01 5.935116070D+01 5.425556479D+01 5.424883273D+01 4.896214950D+01 4.898926280D+01 5.431019209D+01 5.936369798D+01 4.899842653D+01 5.090642859D+01 2.228773994D+01 5.106469894D+01 5.915903246D+01 3.155669844D-01 5.924110068D+01 5.072666628D-01 3.793676654D+01 5.850469394D+00 3.768179503D+01 5.518288976D+00 9.225938898D+01 1.818563498D+00 9.263348663D+01 2.806738911D+01 1.814887394D+01 2.812421571D+01 5.881566946D+01 2.808255113D+01 5.887987684D+01 5.886685379D+01 8.151322551D+01 5.887798422D+01 8.144014574D+01 6.741881472D+00 4.386721508D+01 6.736416018D+00 4.388391569D+01 4.140243686D+01 4.165422186D+01 4.414841041D+01 4.163200359D+01 4.364486224D+01 4.163378897D+01 4.363477442D+01 3.109420211D+01 4.363872489D+01 4.376128963D+01 3.127541335D+01 4.408535327D+01 4.382935513D+01 4.436105982D+01 8.711283335D+01 4.418665570D+01 8.709525616D+01 8.700479418D+01 5.512835814D+01 8.702438434D+01 5.504366502D+01 -3.195700763D+00 3.036799924D+01 1.752735933D+01 8.853705758D+01 8.843000390D+01 1.744693829D+01 7.476875974D+01 1.747294307D+01 7.479021760D+01 3.691915182D+01 3.975997768D+01 3.688240644D+01 3.971015821D+01 8.248969366D+01 2.539489048D+01 4.801197886D+01 2.548560490D+01 4.790905034D+01 6.228452170D+01 4.804491067D+01 6.240927433D+01 8.202671426D+01 6.230861836D+01 8.217684240D+01 4.713737509D+01 7.450782422D+01 4.717927513D+01 7.445848548D+01 6.457364495D+01 7.445288638D+01 6.459491143D+01 3.226934713D+01 6.461145510D+01 3.230736160D+01 8.439151785D+01 3.631578336D+01 8.422380874D+01 3.643131364D+01 2.448105560D+00 8.486613097D+01 1.001983134D+01 7.712136179D+01 1.005784647D+01 5.217965221D+01 1.033918903D+01 8.294904893D+01 4.441518945D+01 8.272928315D+01 4.429006685D+01 3.393464371D+01 5.513995001D+01 3.395871894D+01-6.613033013D+00 1.765114107D+01 1.773484990D+01 8.048563810D+01 2.299313376D+00 4.306830162D+01 2.274526066D+00 8.227067769D+01 1.947070700D+01 8.218331140D+01 4.021943303D+01 8.110818013D+01 4.239913661D+01 4.159637442D+01 3.056693466D+00 8.069079538D+01 3.181994539D+00 3.607060819D+01 3.235788135D+00 7.927866944D+01 1.510499260D+00 7.929949880D+01 3.128261305D+01 7.848023656D+01 3.121818047D+01 6.999123341D+01 5.617478229D+01 7.001389862D+01 7.962763161D+01 7.757975800D+01-1.080649899D+00-1.402641064D+00 7.396490208D-01 1.239542883D+00 8.282246385D-01 2.053297374D+01 2.094334648D+01 4.549807912D+01 2.095286219D+01 4.560918470D+01 8.647422679D-01 4.569710104D+01 3.781210311D+01 3.796012897D+01 9.993682698D-01 4.575853200D+01 8.298374116D+01 4.407093313D+01 5.940987967D+01 6.910799244D+00 5.940033081D+01 8.571536166D+01 4.155078341D+01 8.579771892D+01 4.157651523D+01 7.047138954D+00 4.158987071D+01 7.216354804D+00 2.806914679D+01 7.485668827D+00-4.242901921D+00-4.036014645D+00 2.817405543D+01 8.087690508D+01 6.732179522D+01 7.645858408D+01 1.482198245D+01 7.646097750D+01 7.724980901D+01 7.642839642D+01 7.726356917D+01 4.426774542D+01-5.992726459D+00 4.446791351D+01 8.286387744D+01 5.518224635D+01 8.282409436D+01 5.524026037D+01 4.486766156D+01 4.156829433D+01-5.009137321D+02 4.368930090D+01 4.161837626D+01 4.270737122D+00 4.164073060D+01 8.264981021D+01 4.491964354D+01 5.368732585D+01 5.392225024D+01 4.511096409D+01 5.390849800D+01 6.101242398D+00 5.400240763D+01 6.113069316D+00 4.115315645D+01 4.905849427D+01 4.112409410D+01 1.906935864D+01 4.114490582D+01 1.906768290D+01 4.116111854D+01 5.457584206D+01 5.227238773D+01 5.453732807D+01 6.613233927D+01 5.444948533D+01 6.609801537D+01 8.315301499D+01 6.606421609D+01 8.315005569D+01 3.505582725D+01 8.315882923D+01 3.506278847D+01 1.436225050D+01 1.482477910D+01 3.574279491D+01 1.461303984D+01 7.840173984D+01 4.366379222D+01 7.850432744D+01 4.366760720D+01 1.512183387D+01 4.368869669D+01 1.515223045D+01 7.800682665D+01 4.098189472D+01 7.809863869D+01 1.919789102D+01 4.461387104D+01 1.927448204D+01 4.462872690D+01 4.473196578D+01 1.034338248D+01 4.474620324D+01 1.042157651D+01 5.005817651D+01 3.179158587D+01 5.004021406D+01 3.176686658D+01 5.339330719D+00 3.189112823D+01 5.409910074D+00 8.548291007D+01 6.697064184D+01 8.544425040D+01 8.569800692D+01 6.719118204D+01 4.309841639D+01 6.722257504D+01 4.308823193D+01 2.675486715D+01 4.311812656D+01 2.681976578D+01 8.142936578D+01 1.833977366D+01 8.145065836D+01 1.829496313D+01 1.821299848D+01 8.016030737D+01 1.809234018D+01 5.134914018D+01 2.374071859D+01 5.138755611D+01 2.387146697D+01 8.010216866D+01 8.213393798D+01 8.007367613D+01 8.208677263D+01 1.345194463D+00 8.216312246D+01 1.410293791D+00 1.510716094D+01 1.477491115D+00 1.510438222D+01 1.519482651D+01 6.237026833D+01 1.515013709D+01 6.230608935D+01 1.113612076D+01 6.231775922D+01 1.102728902D+01 6.330464306D+01 2.620286478D+01 6.333389526D+01 2.621267367D+01 9.469106070D+00-7.997077871D+00 9.630558111D+00 -7.949278574D+00 9.713022864D+00-7.872604505D+00 1.132110964D+01 2.406854057D+01 1.135319584D+01 2.411875443D+01 2.381631547D+01 5.851737821D+01 2.385291486D+01 2.382030426D+01 5.856909895D+01 2.386490392D+01 2.544873760D+01 7.784529749D+01 2.545136416D+01 7.778015795D+01 3.252714251D+01 1.817915942D+01 3.245050656D+01 7.625517878D+01 3.225319166D+01 7.620120255D+01 3.223612017D+01 1.792045651D+01 6.334190376D+01 6.897948967D+00 6.335281288D+01 2.339913387D+01 4.426059620D+01 3.123422891D+00 4.445236786D+01 3.175004229D+00 4.425068474D+01 1.826463698D+01 4.437876243D+01 1.833856475D+01 6.321668927D+01 4.242657221D+01 8.086191231D+01 4.237324956D+01-4.832363992D+00 6.151482387D+01-4.841852253D+00 8.087413745D+01 7.333835304D+01 8.497470879D+01 7.332855450D+01 4.462588077D+01 4.465834759D+01 7.338900564D+01 4.463163844D+01 5.551949734D+01 7.139085945D+01 5.544439897D+01 7.136640599D+01 1.183710599D+01 2.414898331D+01 1.182695722D+01 2.417213303D+01 4.233945326D+01 2.418336507D+01 4.241186282D+01 8.076104899D+01 1.937799152D+01 8.082584469D+01 1.933753980D+01 3.564561619D+00 3.814366062D+01 3.494914313D+00 3.812703675D+01 7.686913028D+01-5.161697169D-01 5.227474818D+01 5.224371809D+01 -3.865298402D-01 8.007597552D+01 4.115662096D+01 8.009003575D+01-7.660913458D-01 5.203054696D+01 7.237433729D+01-3.144627052D-01 1.981762138D+01 1.984683050D+01 3.731264703D+01 7.769377722D+01 7.750969074D+01 3.692008952D+01 4.690523100D+01 2.240909319D+01 4.698400857D+01 2.236838308D+01 2.862260752D+01 2.872099980D+01 2.253200203D+01 2.872517573D+01 2.257421032D+01 2.871123510D+01 2.868430007D+01 2.941953006D+01 2.870320525D+01 2.940864658D+01 1.392476600D+01 2.951914712D+01 1.388097062D+01 4.854269810D+01 3.305586629D+01 4.383157434D+01 3.303194861D+01 4.855967545D+01 4.856623111D+01 3.303386065D+01 4.858461107D+01 1.963226338D+01 4.014071274D+01 1.953496772D+01-3.033558609D+01-3.029383604D+01-3.033920457D+01 -3.032031031D+01-3.033212375D+01-3.029598743D+01-3.034856101D+01 2.765098744D+02 2.218316066D+02 2.765160839D+02 2.909372001D+02 2.909412937D+02 3.105920458D+02 3.601022106D+02 3.601022532D+02 3.600901410D+02 3.680476077D+02 4.162017698D+02 2.909151103D+02 3.416011048D+02 2.908964038D+02 2.281538873D+02 2.074116368D+02 2.431874699D+02 2.874211627D+02 3.431369460D+02 3.719137778D+02 4.067444226D+02 4.277758248D+02 4.758812710D+02 4.668520928D+02 4.484771528D+02 4.218763222D+02 4.218730429D+02 4.034435900D+02 3.792807393D+02 3.628151567D+02 3.256276534D+02 3.078859269D+02 2.951087563D+02 3.299927587D+02 3.078840126D+02 3.552899496D+02 3.552906459D+02 3.552801693D+02 3.552904127D+02 4.366222525D+02 4.698536240D+02 5.084282515D+02 4.383306068D+02 3.916200832D+02 3.627935259D+02 3.628163806D+02 3.628207844D+02 3.792941613D+02 4.034669429D+02 4.218945019D+02 4.379546406D+02 2.675004481D+01 2.673839829D+01 2.673819157D+01 2.670157204D+01 2.674387502D+01 2.675349025D+01 2.671676546D+01 2.672165992D+01 2.672486611D+01 2.674833892D+01 2.675058344D+01 2.677138495D+01 2.673611205D+01 2.675733991D+01 2.675054534D+01 2.671344519D+01 2.675315564D+01 2.667894851D+01 2.675838398D+01 9.817472178D+01 9.816784201D+01 9.818171183D+01 9.820279936D+01 9.818217042D+01 9.819436810D+01 2.685744900D+01 2.682375156D+01 2.668592314D+01 2.684894450D+01 2.682590367D+01 2.674323776D+01 1.237917228D+02 9.818501896D+01 9.817292375D+01-4.531001715D+01 -4.534171113D+01-4.536506835D+01-4.547639301D+01 1.238315370D+02 1.238538980D+02 1.238058840D+02-1.305119479D+02-1.943774075D+02-1.304883427D+02-1.943654640D+02 -1.304510622D+02-1.943270793D+02-1.304649314D+02 1.251797612D+02 1.731463667D+02 1.731697647D+02 1.251248857D+02 1.568631518D+01 1.251597884D+02 1.250786027D+02 1.251742019D+02 1.250818816D+02 1.251591320D+02 1.250838699D+02 1.251742198D+02 1.250643445D+02 1.251073975D+02 1.565923440D+01 1.567508917D+01 1.560889641D+01 1.567871048D+01 1.564576492D+01 1.568678459D+01 1.657280052D+02 1.660447486D+02 1.660218118D+02 1.656941510D+02 1.657389052D+02 8.591371246D+01 8.596411889D+01 1.217907185D+02 1.657910754D+02 1.657299238D+02 1.217152814D+02 1.657651146D+02 1.657348809D+02 1.217482991D+02 1.217771511D+02 1.658280848D+02 1.657501703D+02 1.217400967D+02 1.217691194D+02 1.657407964D+02 1.657279051D+02 8.587887678D+01 1.066424028D+02 8.905939414D+01 4.754781250D+01 8.906612802D+01 8.903661875D+01 8.909686262D+01 8.904517672D+01 8.909743109D+01 8.908236922D+01 5.212203445D+01 8.907660405D+01 8.907808227D+01 8.898469412D+01 8.902619127D+01 8.903908142D+01 8.907221325D+01 8.901501411D+01 5.204141503D+01 5.205654728D+01 5.200227415D+01 5.204193772D+01 8.903744035D+01 8.910340348D+01 2.665454569D+01 2.664878346D+01 -1.774267737D+01-4.524098768D+01-1.777311869D+01 5.066973936D+01 5.067968557D+01 2.758770515D+01 2.758970981D+01 2.763331002D+01 2.755463651D+01 2.732433509D+01 2.755483311D+01 2.733497833D+01 2.757596507D+01-1.118102593D+02-6.448436276D+01 -6.449482692D+01-1.297570744D+02 5.072610848D+01 5.070482824D+01 5.064990642D+01 2.757607511D+01 5.070388671D+01 2.764738315D+01 2.759764042D+01 2.765076438D+01 2.758240358D+01 5.067354064D+01 1.237881323D+02 1.427564387D+01 6.583114431D+01 1.667731338D+01 2.570744927D+01 2.575803132D+01 1.669404429D+01 2.572816888D+01 2.570250295D+01 6.586103046D+01 6.574285193D+01 2.567125125D+01 2.570449754D+01 1.668741985D+01 6.581529147D+01 1.109061723D+02 1.109963904D+02 1.637401194D+02 1.110406312D+02 8.364496808D+01 8.577866653D+01 4.509057801D+00 2.570841689D+01 2.573599699D+01 2.573344310D+01 2.573924995D+01 4.517806067D+00 4.513926295D+00 2.571610432D+01 2.567404026D+01 6.585177966D+01 6.581210592D+01 2.565455990D+01 2.568125962D+01 4.515725521D+00 4.485338174D+00 2.571037536D+01 2.571079080D+01 1.109652131D+02 6.574208173D+01 2.571531323D+01 2.567884595D+01 2.567878125D+01 1.108592233D+02-7.743035185D+00-7.731185794D+00-1.113979636D+00-1.111450667D+00 -1.723926401D-01-4.818296646D+01-4.819056951D+01 1.692958162D+01 1.692172711D+01 6.403010215D+01 6.403200306D+01 8.751357892D+01 8.750514451D+01 9.530583035D+01 9.529620680D+01 1.038034857D+02 1.037937890D+02 9.528996781D+01 9.530033715D+01 8.748429005D+01 8.748375983D+01 6.401989490D+01 6.401872142D+01 1.687387499D+01 1.688306764D+01-6.703788581D+01-6.703876065D+01-4.825587401D+01-4.825713356D+01 -4.815152727D+01-4.814311208D+01-4.814542302D+01-4.814606064D+01-4.814726846D+01 -4.827566253D+01-4.826605247D+01-6.706512585D+01-6.705479083D+01 1.687108424D+01 1.687094233D+01 6.398984293D+01 6.398996510D+01 8.723216497D+01 8.723268045D+01 9.504932615D+01 9.506066677D+01 1.034941154D+02 1.035056450D+02 1.179588743D+02 1.179705589D+02 1.034904160D+02 1.034914303D+02 1.124031473D+02 1.123631556D+02 1.123965105D+02 1.033739094D+02 1.033651159D+02 1.123818634D+02 1.123839736D+02 1.034807886D+02 1.034928989D+02 1.179741219D+02 1.179652124D+02 9.508755234D+01 9.508863577D+01 8.721697839D+01 8.721832141D+01 6.374072012D+01 6.376255996D+01 1.661768202D+01 1.662845331D+01-6.728566112D+01-6.727488694D+01-4.849640598D+01 -4.848589324D+01-1.521542473D+01-1.521558506D+01-4.721734727D-01-4.829918028D-01 -1.521034821D+01-1.521099416D+01-4.848562459D+01-4.848684867D+01-4.837706629D+01 -4.839201816D+01-4.837738417D+01-4.839232927D+01-4.840691068D+01-4.848094114D+01 -4.848114118D+01-5.213735340D+01-5.212704777D+01-4.848293467D+01-4.848298086D+01 -4.850204632D+01-4.850180023D+01-1.521888527D+01-1.522890230D+01-1.479891652D+01 -1.478805778D+01-4.898694888D-01-4.893632510D-01-1.398120193D+00-1.397532054D+00 -8.021042097D+00-8.020067512D+00 1.104921809D+02 1.104930456D+02 1.104768257D+02 1.104778462D+02-8.049975560D+00-8.048909987D+00-1.441770006D+00-1.430215501D+00 -4.931024071D-01-5.024998180D-01-1.517845775D+01-1.518753196D+01-1.475573000D+01 -1.475470041D+01-4.851284394D+01-4.850105773D+01-5.213108808D+01-5.212983843D+01 -4.849291471D+01-4.848038391D+01-4.852230497D+01 6.374509209D+01 6.373503397D+01 8.721878765D+01 8.721907289D+01 9.503402929D+01 9.504462541D+01 6.373945149D+01 1.660938072D+01 1.660917308D+01-4.853278972D+01-4.853314926D+01-4.843060132D+01 -4.845551924D+01-4.841878667D+01-4.844297700D+01-4.843337443D+01-4.854872693D+01 -4.853831814D+01-6.735704037D+01-6.735707224D+01-4.851767040D+01-4.851768348D+01 -1.524669163D+01-1.523620018D+01-1.481724142D+01-1.482766501D+01-5.215927559D-01 -5.215064891D-01-1.442563659D+00-1.442384895D+00-8.091089017D+00-8.080397371D+00 1.104586383D+02 1.104588601D+02-6.597214807D+01-2.209324741D+00-6.599561041D+01 -2.198774154D+00-6.599047472D+01-2.200058630D+00-6.598629910D+01-6.675986110D+01 -2.976195768D+00-6.673718955D+01-2.955923437D+00-6.674036853D+01-2.950768501D+00 -2.600058955D+01-2.601041334D+01-2.599912360D+01-2.974770967D+00-6.674723003D+01 -2.979176141D+00-6.675627950D+01-2.980406707D+00-6.675990061D+01-2.601686752D+01 -2.598590848D+01-2.987457120D+01-3.701250236D+01 1.362276561D+01 2.190369763D+01 3.311611380D+01 5.422529951D+01 6.814783324D+01 8.653463383D+01 9.547726365D+01 1.059306776D+02 1.143523250D+02 1.422289163D+02 1.360343670D+02 1.539658390D+02 1.539506484D+02 1.360229245D+02 6.544012583D+01 8.689335614D+00-3.907013933D+01 -2.502438697D+01-2.501176021D+01 1.215506347D+01 4.056059847D+01 1.163400588D+01 1.210917905D+01-2.507548950D+01-3.910260692D+01-1.088604530D+01 8.734458324D+00 6.539052776D+01 1.360364338D+02 1.539199536D+02 1.359488920D+02 1.539261576D+02 1.878003652D+02 2.167289744D+02 2.167428035D+02 1.581479617D+01-4.931768292D+01 -4.932502230D+01-1.560864436D+01 1.096517169D+02 2.167499746D+02 2.167098748D+02 2.166993431D+02 2.124726818D+02 2.074807797D+02 2.022149809D+02 2.148302534D+02 2.148000708D+02 2.127451770D+02 2.153277263D+02 2.581972920D+02 2.807858552D+02 2.952460079D+02 3.148493716D+02 3.148305603D+02 2.391684673D+02 2.391583537D+02 2.174386430D+02 3.322977947D+02 2.996289561D+02 2.653876807D+02 2.996611444D+02 1.449693987D+02 2.324446186D+02 2.323483650D+02 1.955309124D+02 2.117066895D+02 2.085960166D+02 2.323986832D+02 2.453692454D+02 2.323733250D+02 2.323759119D+02 2.193170133D+02 2.951651746D+02 3.154690814D+02 2.888249210D+02 3.339788203D+02 4.204543748D+02 4.086501844D+02 4.204369417D+02 3.340382032D+02 2.887994503D+02 3.154280164D+02 2.952016996D+02 2.193427702D+02 2.453631421D+02 2.324056399D+02 2.474159495D+02 2.474299118D+02 1.223919264D+02 2.073651681D+02 2.381668633D+02 2.219896897D+02 2.917082317D+02 2.635721685D+02 2.916893035D+02 2.352588191D+02 3.474108197D+02 3.762197316D+02 3.732359908D+02 3.133102191D+02 3.374406315D+02 3.132449106D+02 3.374460718D+02 3.732739548D+02 3.762029695D+02 2.352400783D+02 2.775949421D+02 2.917226109D+02 2.636228428D+02 2.917451707D+02 1.874756975D+02 1.939737698D+02 1.737493765D+02 1.939572458D+02 1.509138263D+02 1.529112098D+02 1.556300522D+02 1.529279092D+02 1.556329732D+02 1.509347016D+02 1.874340563D+02 1.939335667D+02 1.737148197D+02 2.916450515D+02 2.635101662D+02 2.916460146D+02 2.473888516D+02 2.473790892D+02 1.222726586D+02 2.073213697D+02 2.381114657D+02 2.218990850D+02 2.380843170D+02 2.116175884D+02 1.448601983D+02 2.995871080D+02 2.653276022D+02 2.517126232D+02 2.173563964D+02 2.390498390D+02 2.173505727D+02 2.653349760D+02 4.204052092D+02 4.203544320D+02 4.085717763D+02 4.204008146D+02 3.340105091D+02 2.887962069D+02 3.154688476D+02 2.193130576D+02 2.453305050D+02 2.085832618D+02 2.116590180D+02 1.954595940D+02 1.448929594D+02 1.954715793D+02 2.323080471D+02 2.453485171D+02 2.085819211D+02 2.116565563D+02 2.073132117D+02 1.222746269D+02 2.473705075D+02 2.381062034D+02 2.219771936D+02 2.916960570D+02 2.775938129D+02 2.352151243D+02 2.775819784D+02 2.916781548D+02 1.939062134D+02 1.737162153D+02 1.939212611D+02 1.874114065D+02 1.873925367D+02 1.508977926D+02 1.556552001D+02 1.529409503D+02 1.556926617D+02 1.529655491D+02 1.556828731D+02 1.509397941D+02 1.874412855D+02 2.138591147D+02 2.117109953D+02 2.415065694D+02 3.037265517D+02 3.670767935D+02 3.670901394D+02 4.261661421D+02 4.422428839D+02 4.544124346D+02 4.725840752D+02 4.726381696D+02 4.544237814D+02 4.422538336D+02 4.261778770D+02 4.527684602D+02 4.711222353D+02 4.800915618D+02 4.630522978D+02 4.513970697D+02-9.322790259D+01-9.322349763D+01-9.319757128D+01-9.317585021D+01 4.117519627D+02 4.086365657D+02 4.204341182D+02 3.340342646D+02 2.888530630D+02 3.154866700D+02 2.193007207D+02 2.323866546D+02 2.453599473D+02 2.193287509D+02 3.154758667D+02 2.888447249D+02 3.340604453D+02 4.086548174D+02 4.204628295D+02 3.643627894D+02 3.643468088D+02 2.390871115D+02 2.174321678D+02 2.174225589D+02 2.391174243D+02 3.148522701D+02 2.952092179D+02 2.807381153D+02 2.581271178D+02 2.127225064D+02 2.148285174D+02 2.022042881D+02 2.074810403D+02 2.124929091D+02 2.167186286D+02 2.167069950D+02 1.877466708D+02 1.538885778D+02 1.359198980D+02 1.301016007D+02 1.421321840D+02 1.142567766D+02 9.541342092D+01 6.805636445D+01 5.410624399D+01 3.301290058D+01 2.182596018D+01 1.358132990D+01-3.706857182D+01 -2.995344702D+01-2.603078447D+01-2.605456140D+01-2.605952953D+01-2.608363381D+01 -2.608498876D+01-6.683252096D+01-3.056186543D+00-6.681391568D+01-3.049359791D+00 -6.682921809D+01-3.046087397D+00-1.041767500D+02-1.164744906D+02-1.041396855D+02 -1.040704581D+02-1.041502317D+02-8.778531551D+01-8.200384036D+01-8.208215839D+01 -8.782926339D+01-8.206368786D+01-8.813252246D+01-1.172532826D+02-1.165446683D+02 -1.042835352D+02-1.165351471D+02-1.172480038D+02-8.822371209D+01-1.172666184D+02 -1.042897336D+02-1.165600418D+02-1.172811883D+02-8.827802727D+01-8.794239114D+01 -1.165649369D+02-1.540127018D+02-1.201965520D+02-1.202151599D+02-6.342429271D+01 -1.319630618D+02-1.958146494D+02-1.319478667D+02-1.958259371D+02-1.319438965D+02 -1.957884148D+02-1.319249332D+02-1.037426607D+02-1.037413887D+02-1.037239186D+02 -1.535336851D+02-1.041243376D+02-1.041597801D+02-1.041657166D+02-1.041399796D+02 -1.041501627D+02-1.041542914D+02-1.164856802D+02-1.538855609D+02-1.200991496D+02 -1.201104736D+02-1.292189873D+02-1.930567846D+02-1.292296532D+02-1.930031146D+02 -1.291791887D+02-1.930334111D+02-1.291736885D+02-1.930527863D+02-1.291454956D+02 -1.931031984D+02-1.292025147D+02 7.823027312D+01 9.098810400D+01 7.824118662D+01 -2.185657189D+02 3.252604464D+02-2.176296605D+02-4.617257692D+02-1.112605432D+02 -1.522209040D+02-1.113120313D+02-2.185914594D+02 3.252456320D+02-4.617852150D+02 -1.112649393D+02-1.522603508D+02-1.112933026D+02 9.096000808D+01 7.829268713D+01 -2.176841421D+02-4.617380219D+02-2.176936399D+02-4.617190743D+02-1.112437337D+02 -1.522230183D+02-1.113434678D+02 9.101026504D+01 7.821425507D+01-2.186205832D+02 3.252048935D+02-1.113021802D+02-1.522005296D+02-1.112679404D+02 7.824888092D+01 9.098072907D+01 3.251691263D+02-2.186513738D+02-4.617627011D+02-2.177349376D+02 -4.617378582D+02 7.825390850D+01 9.103616124D+01-2.910529453D+01-2.908277168D+01 -2.905411301D+01-2.906863478D+01-2.906244839D+01-3.293961819D+01-2.064171436D+01 -1.957113080D+01-1.063851533D+01-1.673888878D+01-1.428152081D+01-1.293725196D+01 -1.397735154D+01-2.937599765D+01-4.205092673D+01-1.386211576D+01-1.895284204D+01 -1.392344189D+01-4.411909395D+00-1.388555525D+01-1.897869592D+01-4.207229984D+01 -2.938345817D+01-1.402324358D+01-1.296287621D+01-1.431144914D+01-1.395986750D+01 -3.288760474D+01-6.622191435D+01-7.891778494D+01-1.109937934D+01 3.755032554D+01 3.801805927D+01 3.798675897D+01-6.671672935D+01 2.948212779D+01 3.260336225D+01 -1.162197922D+01-1.167436690D+01 3.250428355D+01 2.943677908D+01-6.677664898D+01 3.795942984D+01 3.800105483D+01 3.752400698D+01 8.569895048D+00 9.251708129D+00 2.557501556D+01 6.170134207D+01 7.763242302D+01 9.951020770D+01 1.084914392D+02 9.960063451D+01 1.140165287D+02 1.172549412D+02 1.188165301D+02 1.022023702D+02 1.021477846D+02 1.187817662D+02 1.172395160D+02 1.139763908D+02 9.959022871D+01 1.084829352D+02 9.949067467D+01 7.759785360D+01 6.163861999D+01 2.552926125D+01 9.229685344D+00-2.810774244D+01-4.218303425D+01 5.616945018D+00 6.230267163D+01 1.328976788D+02 1.508284338D+02 1.846975233D+02 2.137131225D+02 2.094213597D+02 1.798159917D+02 1.411490786D+02 1.065615423D+02-1.194625156D+01 7.900937970D+01 1.112724838D+02 1.703493604D+02 1.991570603D+02 2.044510080D+02 2.094617312D+02 2.136575243D+02 2.093831319D+02 1.797614490D+02 1.411135465D+02 1.065115785D+02 -1.195404820D+01 7.896558569D+01 1.112574387D+02 1.521554192D+02 1.748233143D+02 2.230829060D+02 1.518454049D+02 4.086466300D+01 1.007230028D+02 1.394221035D+02 1.909025267D+02 1.296666607D+02 2.107778270D+02 2.107667394D+02 2.086492058D+02 2.384445559D+02 3.006657720D+02 3.639884712D+02 3.927981007D+02 3.804531928D+02 4.046690897D+02 4.230814782D+02 4.391593464D+02 4.513647062D+02 4.696982920D+02 5.129127103D+02 5.135787534D+02 4.978362431D+02 4.680479634D+02 4.496803453D+02 4.230554874D+02 4.230067237D+02 4.391454269D+02 4.513035603D+02 4.697046862D+02 5.095673023D+02 4.710341590D+02 3.936693820D+02 3.793315972D+02 3.268133009D+02 3.639822848D+02 3.268110073D+02 3.090439412D+02 2.962398458D+02 3.311481546D+02 3.564232505D+02 3.564346395D+02 4.377949490D+02 5.096133411D+02 4.710178956D+02 3.936490498D+02 3.793652438D+02 3.927722848D+02 3.639831488D+02 3.267997789D+02 3.090201254D+02 2.962529483D+02 2.962519733D+02 3.311287086D+02 3.564378222D+02 3.564365031D+02 4.377900116D+02 4.710348423D+02 5.096243679D+02 4.697779361D+02 4.513138267D+02 5.128869275D+02 5.135494141D+02 4.978319661D+02 4.289303894D+02 4.770335982D+02 4.770250989D+02 4.599554221D+02 4.483224936D+02 3.427622138D+02 4.483186339D+02-9.634625500D+01 4.086108471D+02 4.173284902D+02 4.086110126D+02 -9.636514425D+01 4.482963474D+02 4.599311050D+02 4.770349156D+02 4.289241489D+02 4.680362501D+02 4.496491184D+02 4.230286563D+02 4.046327704D+02 3.804553917D+02 3.639886665D+02 3.006575257D+02 2.384465298D+02 2.107507814D+02 2.086451858D+02 2.107440637D+02 2.086491811D+02 1.296443248D+02 1.908495109D+02 1.393721470D+02 1.006642436D+02-2.426569559D+01-2.444682707D+01-2.425984204D+01 4.086620123D+01 1.518168353D+02 2.230189054D+02 2.776643769D+02 2.550578533D+02 1.747887250D+02 1.521227635D+02 2.117555259D+02 1.702763598D+02 1.991135831D+02 2.043828157D+02 2.094005182D+02 2.136226190D+02 2.093498981D+02 1.797439044D+02 1.846642366D+02 1.507911302D+02 1.328379373D+02 6.221888779D+01 5.570212143D+00-4.222146232D+01 -2.817691957D+01 9.202289612D+00 8.520945500D+00 3.749923189D+01-1.121032191D+01 -7.899897740D+01-6.631508437D+01-3.294860349D+01-2.945265561D+01-1.408584208D+01 -1.304743180D+01-1.400938971D+01-1.678081683D+01-1.683210700D+01-1.076610471D+01 -1.965543106D+01-2.077819133D+01-3.308462881D+01-2.913825281D+01-2.917049148D+01 1UNSYMMETRIC LEAST-SQUARES PROBLEM. SAUNDERS 1979. ILLC1850 2715 45 548 1752 370 RRA 1850 712 8758 0 (16I5) (16I5) (1P,5D16.9) (1P,5D16.9) F 1 0 1 14 18 27 39 44 53 57 62 68 76 81 87 93 100 102 109 115 122 128 135 141 149 156 162 166 169 175 182 190 194 200 206 212 216 222 228 240 250 258 271 275 288 298 316 320 324 330 336 342 350 361 378 388 396 399 406 410 412 416 418 420 423 425 428 430 433 436 438 442 448 455 459 462 467 471 474 478 495 497 511 517 523 539 544 558 571 583 595 630 634 638 654 670 684 697 703 705 711 718 723 731 735 739 740 741 748 759 765 772 779 782 788 806 814 820 846 856 871 873 915 919 927 934 942 947 951 960 980 982 997 1000 1005 1014 1021 1023 1027 1032 1037 1048 1068 1080 1095 1104 1107 1113 1115 1117 1134 1149 1158 1172 1174 1195 1200 1207 1213 1215 1216 1221 1229 1235 1248 1252 1261 1267 1277 1283 1289 1295 1299 1301 1309 1317 1324 1340 1347 1354 1373 1379 1386 1397 1406 1416 1421 1426 1432 1438 1439 1443 1444 1448 1455 1456 1463 1468 1469 1475 1484 1492 1501 1510 1514 1516 1520 1522 1526 1530 1538 1543 1548 1551 1579 1583 1587 1613 1637 1648 1651 1659 1674 1684 1688 1693 1698 1701 1704 1707 1711 1714 1719 1724 1729 1734 1739 1743 1746 1749 1753 1756 1759 1762 1764 1766 1768 1771 1776 1779 1783 1787 1792 1807 1810 1816 1820 1826 1834 1836 1840 1848 1856 1861 1869 1879 1883 1892 1897 1902 1911 1915 1920 1928 1937 1941 1952 1960 1968 1976 1986 1990 1998 2002 2010 2022 2030 2034 2038 2046 2050 2054 2063 2068 2073 2080 2087 2092 2101 2109 2112 2115 2119 2124 2132 2139 2151 2155 2160 2167 2174 2178 2181 2185 2189 2193 2200 2207 2219 2226 2230 2236 2243 2247 2250 2254 2258 2261 2267 2271 2276 2284 2287 2292 2297 2300 2305 2310 2320 2330 2335 2338 2341 2345 2349 2352 2355 2358 2361 2364 2367 2370 2373 2376 2379 2383 2391 2395 2399 2409 2412 2419 2422 2426 2433 2436 2442 2449 2462 2465 2472 2475 2479 2483 2490 2493 2501 2505 2508 2512 2522 2529 2533 2539 2543 2549 2553 2560 2564 2573 2577 2580 2588 2592 2599 2603 2608 2612 2615 2618 2621 2625 2630 2639 2642 2647 2650 2653 2661 2711 2752 2759 2779 2784 2802 2813 2824 2839 2853 2896 2939 3065 3199 3261 3348 3376 3387 3397 3449 3686 3690 3698 3706 3711 3719 3729 3733 3742 3752 3761 3765 3770 3778 3787 3791 3802 3810 3818 3826 3836 3840 3848 3852 3860 3872 3880 3884 3888 3896 3900 3904 3913 3918 3923 3930 3937 3942 3951 3959 3965 3969 3974 3982 3989 4001 4017 4028 4035 4050 4057 4069 4080 4086 4093 4100 4104 4111 4117 4126 4134 4137 4142 4150 4160 4170 4180 4191 4199 4211 4220 4223 4226 4229 4241 4249 4259 4272 4276 4286 4292 4299 4312 4322 4325 4329 4343 4355 4362 4372 4379 4383 4393 4399 4403 4410 4414 4423 4430 4438 4449 4453 4471 4475 4480 4489 4492 4497 4500 4503 4561 4602 4629 4652 4674 4703 4746 4915 5198 5226 5247 5299 5536 5549 5558 5570 5575 5584 5589 5595 5603 5608 5614 5620 5627 5633 5640 5646 5653 5659 5667 5674 5680 5686 5693 5701 5707 5713 5719 5725 5737 5747 5755 5768 5781 5791 5809 5815 5821 5827 5835 5846 5863 5873 5881 5888 5892 5898 5905 5908 5913 5917 5920 5926 5932 5948 5962 5975 5987 5999 6034 6050 6066 6080 6093 6099 6105 6112 6117 6125 6129 6136 6147 6153 6160 6167 6173 6191 6199 6205 6231 6241 6256 6298 6306 6313 6321 6325 6334 6354 6369 6374 6383 6385 6389 6394 6405 6425 6437 6452 6461 6467 6484 6499 6508 6522 6543 6548 6555 6561 6569 6575 6588 6592 6601 6607 6617 6623 6629 6635 6639 6647 6654 6670 6677 6684 6703 6709 6716 6727 6736 6746 6751 6756 6762 6768 6775 6782 6788 6797 6805 6814 6818 6826 6831 6836 6840 6844 6870 6894 6909 7309 7726 7784 7825 7852 7875 7897 7926 7969 8138 8421 8449 8470 8522 8759 1 3 26 28 164 166 1259 1262 1277 1279 1490 1686 1827 2 4 5 7 6 8 9 11 1263 1276 1540 1685 1828 10 12 13 15 1264 1275 1538 1539 1560 1561 1684 1829 14 16 17 19 1274 18 20 21 23 25 1265 1273 1683 1830 22 24 152 154 27 29 30 32 1491 31 33 35 37 1258 1492 34 36 38 39 41 43 1257 1493 40 42 44 46 1256 45 47 49 51 1255 1494 48 50 52 53 55 1254 54 56 57 59 61 67 69 58 60 62 64 66 72 74 1252 1496 63 65 76 78 1251 1497 68 70 71 73 75 1253 1495 77 79 81 83 1250 1498 80 82 84 86 88 1249 1499 85 87 89 91 1248 1500 90 92 94 96 1247 1501 1619 1848 93 95 97 98 100 1620 1847 99 101 102 104 1621 1846 103 105 106 108 107 109 111 110 112 113 115 1622 1845 114 116 117 119 1623 1843 1844 118 120 121 123 372 376 1640 1842 122 124 125 127 126 128 129 131 1641 1838 130 132 133 135 1642 1837 134 136 137 139 1643 1836 138 140 142 144 141 143 145 146 148 150 147 149 167 169 1644 1835 151 153 192 194 1266 1267 1272 1537 1551 1559 1682 1831 155 157 298 300 302 304 306 308 401 403 156 158 159 161 1281 1488 1688 1825 160 162 163 165 989 990 1260 1261 1278 1280 1489 1687 1826 168 170 171 173 172 174 175 177 294 296 1269 1523 1529 1534 1645 1658 1834 176 178 180 1270 1524 1528 1530 1533 1659 1833 179 181 182 184 186 195 197 1268 1271 1514 1525 1527 1532 1536 1558 1660 1681 1832 183 185 187 189 188 190 191 193 196 198 199 201 1661 1680 200 202 203 205 1662 1679 204 206 207 209 1663 1678 208 210 211 213 1117 1118 1664 1677 212 214 215 217 1114 1115 1116 1119 1120 1665 1676 216 218 219 220 222 369 371 1077 1078 1108 1109 1112 1113 1121 1122 1666 1675 221 223 224 226 1110 1111 1123 1124 1667 1674 225 227 229 231 266 268 1668 1673 228 230 232 233 234 265 271 273 1669 1672 235 264 1670 1671 236 263 237 238 261 262 239 260 240 259 241 242 258 243 257 244 255 256 245 254 246 247 253 248 251 252 249 250 267 269 270 272 274 288 289 291 1646 1657 275 287 1518 1521 1535 1647 1656 276 277 279 286 278 1648 1655 280 283 284 1650 1653 281 282 1651 1652 285 1649 1654 290 292 293 295 297 299 1282 1283 1289 1290 1291 1486 1487 1574 1589 1598 1606 1613 1689 1701 1822 301 303 305 307 309 311 402 404 410 1292 1485 1690 1700 1702 1821 1823 310 312 314 1691 1703 1824 313 315 316 318 1692 1704 317 319 321 323 991 993 1061 1168 1169 1170 1171 1221 1222 1288 1693 1705 320 322 324 325 327 326 328 330 424 1062 1063 1166 1167 1172 1173 1219 1220 1694 1706 329 331 332 334 1007 1064 1065 1164 1165 1174 1175 1217 1218 333 335 337 1066 1139 1140 1162 1163 1176 1177 1215 1216 336 338 339 341 344 1160 1161 1180 1181 1213 1214 1287 340 342 343 345 346 348 1067 1068 1089 1090 1096 1097 1135 1136 1143 1144 1150 1151 1154 1155 1156 1157 1182 1183 1186 1187 1188 1198 1199 1205 1206 1209 1210 1285 1286 347 349 350 352 351 353 354 356 355 357 358 360 1004 1069 1070 1085 1086 1100 1101 1131 1132 1196 1197 1284 359 361 363 1005 1006 1071 1072 1083 1084 1102 1103 1129 1130 1189 1190 1195 362 364 365 367 1073 1074 1081 1082 1104 1105 1127 1128 1191 1192 366 368 370 1075 1076 1079 1080 1106 1107 1125 1126 1193 1194 373 377 379 1625 1638 1841 374 375 378 380 382 1626 1637 1840 381 383 384 386 1627 1636 1839 385 387 389 1628 1635 388 390 392 394 395 1629 1631 1633 391 393 1630 1634 396 397 400 1632 398 399 405 406 409 1293 1484 1699 1820 407 408 411 412 414 447 450 1294 1483 1698 1819 413 415 417 968 1697 1818 416 418 419 421 427 1696 1708 420 422 423 425 992 1695 1707 426 428 430 429 431 432 434 1709 1816 433 435 436 438 975 983 984 985 986 994 995 1008 1009 1010 1012 1017 1710 1815 437 439 442 453 455 471 473 1298 440 441 443 445 1297 1481 444 446 448 449 451 452 967 969 970 971 972 973 974 976 977 978 979 980 981 982 987 988 1295 1296 1482 1817 454 456 457 459 474 475 477 1299 1480 1814 458 460 464 465 826 895 896 897 898 899 900 908 909 1711 1812 461 462 463 466 468 530 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 901 902 903 904 905 906 996 997 998 999 1001 1003 1011 1013 1014 1015 1016 1712 1811 467 469 470 472 476 478 480 825 827 1300 1479 1813 479 481 483 828 829 1301 1478 482 484 485 487 830 1302 1303 1477 486 488 490 610 612 489 491 493 1307 492 494 495 497 925 926 1308 1310 1385 496 498 504 907 914 915 916 924 927 929 930 931 932 933 934 935 936 937 1018 1387 499 500 501 506 508 691 693 928 938 939 940 941 942 943 1019 1715 1805 502 503 505 507 509 511 1714 1806 510 512 518 524 526 910 911 912 913 513 516 517 519 520 522 523 514 1808 515 521 1807 1809 525 527 533 1713 1810 528 529 531 532 534 535 537 538 540 684 686 687 689 1021 1024 1031 536 553 557 688 690 692 1020 1027 1028 1032 1048 1049 1057 1361 1363 1371 1420 1422 1716 1804 539 543 681 683 685 1039 1044 1045 1052 1053 1717 1803 541 545 547 548 674 676 678 680 682 1038 1433 1718 1719 1799 1801 542 544 677 679 1037 1434 1720 1800 1802 546 549 551 550 552 554 558 562 1033 555 556 559 560 561 563 564 566 638 842 945 946 1035 1342 1344 1357 1359 1373 1375 1415 1419 565 567 569 841 951 954 957 958 961 962 1336 1337 1376 1377 1412 568 570 572 815 817 840 949 950 965 571 575 579 816 839 966 1312 1313 1317 1319 1320 1335 1406 1463 573 574 576 577 1022 1023 1025 1026 1029 1030 1040 1041 1042 1043 1046 1047 1050 1051 1054 1055 1058 1059 1060 578 580 582 1000 1002 581 583 585 836 838 1322 1332 584 586 587 589 837 1780 588 590 591 592 595 597 598 615 594 614 616 618 1451 1779 1781 1787 596 599 602 1456 1783 1785 600 601 603 605 835 1326 1328 1392 1393 1395 1458 1470 1784 604 606 608 834 607 609 611 613 831 832 833 1471 1472 617 619 621 1450 1778 1788 620 622 624 640 642 847 1449 1776 1777 1789 623 625 628 846 1775 1790 626 627 629 630 632 845 631 633 635 844 1347 1354 634 636 843 1346 637 639 641 643 644 646 807 811 812 814 645 647 648 650 848 1448 1734 1791 649 651 653 849 1447 1735 1792 652 654 655 657 658 753 755 850 851 874 1439 1446 1727 1736 1737 1793 656 659 661 852 873 1726 1794 660 662 664 853 872 1725 1795 663 665 666 668 694 696 749 750 752 854 869 870 871 1437 1438 1723 1746 1759 1796 667 669 671 1436 1722 1797 670 672 673 675 1435 1721 1798 695 697 698 700 702 714 716 855 1745 1747 1760 699 701 703 705 707 856 859 1748 1761 704 706 708 710 711 713 857 1749 1762 1763 709 712 858 1750 1764 715 717 719 1744 1757 718 720 722 724 1743 1756 721 723 727 864 1753 1767 725 726 728 731 733 729 730 732 734 736 735 737 740 866 1741 1754 1769 738 739 741 743 865 1742 1755 1768 742 744 747 768 770 745 746 748 751 868 1724 1758 754 756 757 759 875 1440 1445 1728 1738 758 760 762 1441 1444 1729 1739 1771 761 763 765 767 1442 1443 1730 1740 1770 764 766 774 775 781 786 789 790 792 769 771 778 867 772 773 776 777 779 780 782 783 784 785 787 788 791 793 796 798 794 795 797 799 800 802 1731 1772 801 803 805 1732 1773 804 806 809 1733 1774 808 810 813 818 819 820 821 822 823 824 1236 1237 1238 1245 1246 1502 1503 1504 1505 1506 1581 1587 1596 1603 1614 1615 1616 1617 1618 1849 1850 860 862 1751 1765 861 863 1752 1766 917 919 921 923 1224 1226 1228 1231 1233 1235 1239 1241 1243 1508 1510 1512 1541 1543 1545 1547 1562 1564 1566 1568 1570 1572 918 920 922 1223 1225 1227 1229 1230 1232 1234 1240 1242 1244 1507 1509 1511 1542 1544 1546 1563 1565 1567 1569 1571 944 947 948 952 953 955 956 959 960 963 964 1034 1036 1056 1087 1088 1098 1099 1133 1134 1207 1208 1091 1092 1093 1094 1095 1145 1146 1147 1148 1149 1200 1201 1202 1203 1204 1137 1138 1141 1142 1158 1159 1178 1179 1211 1212 1152 1153 1184 1185 1304 1305 1389 1473 1476 1306 1388 1390 1474 1475 1309 1386 1391 1311 1384 1404 1314 1403 1405 1315 1383 1402 1409 1316 1401 1408 1318 1334 1400 1407 1464 1321 1333 1399 1462 1465 1323 1331 1398 1461 1466 1324 1330 1397 1460 1467 1325 1329 1396 1459 1468 1327 1394 1457 1469 1338 1378 1411 1339 1379 1410 1340 1380 1382 1413 1341 1381 1414 1343 1358 1374 1345 1355 1417 1348 1353 1349 1351 1350 1352 1356 1416 1418 1360 1370 1423 1424 1432 1362 1372 1421 1364 1369 1425 1431 1365 1367 1427 1429 1366 1368 1426 1428 1430 1513 1515 1516 1517 1526 1531 1548 1549 1550 1552 1553 1554 1555 1556 1557 1519 1520 1522 1573 1575 1590 1599 1605 1612 1577 1584 1601 1607 1579 1585 1592 1594 1609 1611 1580 1582 1586 1588 1595 1597 1602 1604 1624 1639 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1 3 26 28 164 166 1259 1262 1277 1279 1490 1686 1827 6 8 9 11 1263 1276 1540 1685 1828 10 12 13 15 1264 1275 1538 1539 1560 1561 1684 1829 14 16 17 19 1274 18 20 21 23 25 1265 1273 1683 1830 27 29 30 32 1491 31 33 35 37 1258 1492 34 36 38 39 41 43 1257 1493 40 42 44 46 1256 45 47 49 51 1255 1494 48 50 52 53 55 1254 62 64 66 72 74 1252 1496 63 65 76 78 1251 1497 68 70 71 73 75 1253 1495 77 79 81 83 1250 1498 80 82 84 86 88 1249 1499 85 87 89 91 1248 1500 90 92 94 96 1247 1501 1619 1848 93 95 97 98 100 1620 1847 99 101 102 104 1621 1846 110 112 113 115 1622 1845 114 116 117 119 1623 1843 1844 118 120 121 123 372 376 1640 1842 126 128 129 131 1641 1838 130 132 133 135 1642 1837 134 136 137 139 1643 1836 147 149 167 169 1644 1835 151 153 192 194 1266 1267 1272 1537 1551 1559 1682 1831 155 157 298 300 302 304 306 308 401 403 156 158 159 161 1281 1488 1688 1825 160 162 163 165 989 990 1260 1261 1278 1280 1489 1687 1826 172 174 175 177 294 296 1269 1523 1529 1534 1645 1658 1834 176 178 180 1270 1524 1528 1530 1533 1659 1833 179 181 182 184 186 195 197 1268 1271 1514 1525 1527 1532 1536 1558 1660 1681 1832 196 198 199 201 1661 1680 200 202 203 205 1662 1679 204 206 207 209 1663 1678 208 210 211 213 1117 1118 1664 1677 212 214 215 217 1114 1115 1116 1119 1120 1665 1676 216 218 219 220 222 369 371 1077 1078 1108 1109 1112 1113 1121 1122 1666 1675 221 223 224 226 1110 1111 1123 1124 1667 1674 225 227 229 231 266 268 1668 1673 233 234 265 271 273 1669 1672 235 264 1670 1671 274 288 289 291 1646 1657 275 287 1518 1521 1535 1647 1656 278 1648 1655 280 283 284 1650 1653 281 282 1651 1652 285 1649 1654 310 312 314 1691 1703 1824 313 315 316 318 1692 1704 317 319 321 323 991 993 1061 1168 1169 1170 1171 1221 1222 1288 1693 1705 326 328 330 424 1062 1063 1166 1167 1172 1173 1219 1220 1694 1706 329 331 332 334 1007 1064 1065 1164 1165 1174 1175 1217 1218 333 335 337 1066 1139 1140 1162 1163 1176 1177 1215 1216 336 338 339 341 344 1160 1161 1180 1181 1213 1214 1287 340 342 343 345 346 348 1067 1068 1089 1090 1096 1097 1135 1136 1143 1144 1150 1151 1154 1155 1156 1157 1182 1183 1186 1187 1188 1198 1199 1205 1206 1209 1210 1285 1286 355 357 358 360 1004 1069 1070 1085 1086 1100 1101 1131 1132 1196 1197 1284 359 361 363 1005 1006 1071 1072 1083 1084 1102 1103 1129 1130 1189 1190 1195 362 364 365 367 1073 1074 1081 1082 1104 1105 1127 1128 1191 1192 366 368 370 1075 1076 1079 1080 1106 1107 1125 1126 1193 1194 373 377 379 1625 1638 1841 378 380 382 1626 1637 1840 381 383 384 386 1627 1636 1839 385 387 389 1628 1635 388 390 392 394 395 1629 1631 1633 396 397 400 1632 405 406 409 1293 1484 1699 1820 407 408 411 412 414 447 450 1294 1483 1698 1819 413 415 417 968 1697 1818 416 418 419 421 427 1696 1708 420 422 423 425 992 1695 1707 429 431 432 434 1709 1816 433 435 436 438 975 983 984 985 986 994 995 1008 1009 1010 1012 1017 1710 1815 437 439 442 453 455 471 473 1298 440 441 443 445 1297 1481 444 446 448 449 451 452 967 969 970 971 972 973 974 976 977 978 979 980 981 982 987 988 1295 1296 1482 1817 454 456 457 459 474 475 477 1299 1480 1814 458 460 464 465 826 895 896 897 898 899 900 908 909 1711 1812 463 466 468 530 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 901 902 903 904 905 906 996 997 998 999 1001 1003 1011 1013 1014 1015 1016 1712 1811 476 478 480 825 827 1300 1479 1813 479 481 483 828 829 1301 1478 482 484 485 487 830 1302 1303 1477 489 491 493 1307 492 494 495 497 925 926 1308 1310 1385 496 498 504 907 914 915 916 924 927 929 930 931 932 933 934 935 936 937 1018 1387 501 506 508 691 693 928 938 939 940 941 942 943 1019 1715 1805 507 509 511 1714 1806 510 512 518 524 526 910 911 912 913 514 1808 515 521 1807 1809 525 527 533 1713 1810 535 537 538 540 684 686 687 689 1021 1024 1031 536 553 557 688 690 692 1020 1027 1028 1032 1048 1049 1057 1361 1363 1371 1420 1422 1716 1804 539 543 681 683 685 1039 1044 1045 1052 1053 1717 1803 541 545 547 548 674 676 678 680 682 1038 1433 1718 1719 1799 1801 542 544 677 679 1037 1434 1720 1800 1802 550 552 554 558 562 1033 561 563 564 566 638 842 945 946 1035 1342 1344 1357 1359 1373 1375 1415 1419 565 567 569 841 951 954 957 958 961 962 1336 1337 1376 1377 1412 568 570 572 815 817 840 949 950 965 571 575 579 816 839 966 1312 1313 1317 1319 1320 1335 1406 1463 576 577 1022 1023 1025 1026 1029 1030 1040 1041 1042 1043 1046 1047 1050 1051 1054 1055 1058 1059 1060 578 580 582 1000 1002 581 583 585 836 838 1322 1332 584 586 587 589 837 1780 594 614 616 618 1451 1779 1781 1787 596 599 602 1456 1783 1785 600 601 603 605 835 1326 1328 1392 1393 1395 1458 1470 1784 604 606 608 834 607 609 611 613 831 832 833 1471 1472 617 619 621 1450 1778 1788 620 622 624 640 642 847 1449 1776 1777 1789 623 625 628 846 1775 1790 626 627 629 630 632 845 631 633 635 844 1347 1354 634 636 843 1346 645 647 648 650 848 1448 1734 1791 649 651 653 849 1447 1735 1792 652 654 655 657 658 753 755 850 851 874 1439 1446 1727 1736 1737 1793 656 659 661 852 873 1726 1794 660 662 664 853 872 1725 1795 663 665 666 668 694 696 749 750 752 854 869 870 871 1437 1438 1723 1746 1759 1796 667 669 671 1436 1722 1797 670 672 673 675 1435 1721 1798 695 697 698 700 702 714 716 855 1745 1747 1760 699 701 703 705 707 856 859 1748 1761 704 706 708 710 711 713 857 1749 1762 1763 709 712 858 1750 1764 715 717 719 1744 1757 718 720 722 724 1743 1756 721 723 727 864 1753 1767 735 737 740 866 1741 1754 1769 739 741 743 865 1742 1755 1768 746 748 751 868 1724 1758 754 756 757 759 875 1440 1445 1728 1738 758 760 762 1441 1444 1729 1739 1771 761 763 765 767 1442 1443 1730 1740 1770 769 771 778 867 794 795 797 799 800 802 1731 1772 801 803 805 1732 1773 804 806 809 1733 1774 860 862 1751 1765 861 863 1752 1766 917 919 921 923 1224 1226 1228 1231 1233 1235 1239 1241 1243 1508 1510 1512 1541 1543 1545 1547 1562 1564 1566 1568 1570 1572 918 920 922 1223 1225 1227 1229 1230 1232 1234 1240 1242 1244 1507 1509 1511 1542 1544 1546 1563 1565 1567 1569 1571 1513 1515 1516 1517 1526 1531 1548 1549 1550 1552 1553 1554 1555 1556 1557 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 9 10 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 7.071067812D-01 7.071067812D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 7.071067812D-01 7.071067812D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 7.071067812D-01 7.071067812D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 7.071067812D-01 7.071067812D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 7.071067812D-01 7.071067812D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 7.071067812D-01 7.071067812D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 1.690308509D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 7.071067812D-01 7.071067812D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 1.000000000D 00 1.000000000D 00 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 7.071067812D-01 7.071067812D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 1.543033500D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 7.071067812D-01 7.071067812D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 7.071067812D-01 7.071067812D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 7.071067812D-01 7.071067812D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 2.182178902D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 7.071067812D-01 7.071067812D-01 1.000000000D 00 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 7.071067812D-01 7.071067812D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 2.500000000D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 1.000000000D 00 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 1.000000000D 00 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 1.000000000D 00 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 1.000000000D 00 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 7.071067812D-01 7.071067812D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 7.071067812D-01 7.071067812D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 7.071067812D-01 7.071067812D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 0.000000000D-01 2.180377087D-01 3.997357992D-01 8.903206438D-01 0.000000000D-01 6.615501375D-02 1.543616987D-01 2.205167125D-01 3.307750688D-01 4.410334250D-01 5.145389959D-01 5.953951238D-01 0.000000000D-01 1.014812531D-01 1.957138452D-01 2.609517936D-01 3.406870638D-01 4.349196560D-01 5.001576044D-01 5.726442138D-01 0.000000000D-01 2.076534838D-01 4.568376644D-01 5.537426236D-01 6.644911482D-01 0.000000000D-01 1.078483204D-01 1.960878552D-01 2.549142117D-01 3.333493540D-01 4.215888889D-01 5.000240309D-01 5.882635657D-01 0.000000000D-01 4.465124834D-02 7.654499715D-02 1.211962455D-01 1.594687441D-01 3.316949877D-01 3.891037356D-01 4.337549838D-01 4.784062322D-01 5.230574806D-01 0.000000000D-01 3.140371465D-01 5.338631490D-01 7.850928665D-01 0.000000000D-01 6.281904633D-02 1.334904735D-01 2.041619005D-01 2.748333276D-01 3.690618971D-01 4.318809436D-01 4.946999899D-01 5.418142746D-01 0.000000000D-01 1.496878521D-02 2.993757042D-02 3.742196301D-02 5.987514083D-02 3.517664523D-01 4.041572006D-01 4.415791636D-01 4.790011267D-01 5.313918748D-01 0.000000000D-01 7.689578151D-02 1.307228285D-01 1.922394538D-01 3.075831261D-01 3.614101730D-01 4.152372201D-01 4.767538452D-01 5.613392050D-01 0.000000000D-01 1.570271768D-01 5.234239225D-01 8.374782760D-01 0.000000000D-01 1.969893698D-01 3.545808656D-01 5.515702355D-01 7.288606682D-01 0.000000000D-01 6.560242603D-02 1.230045488D-01 1.804066716D-01 3.608133431D-01 4.510166790D-01 5.248194083D-01 5.822215310D-01 0.000000000D-01 6.654201713D-02 1.247662821D-01 2.079438036D-01 2.744858207D-01 3.659810942D-01 4.408408634D-01 4.907473763D-01 5.406538891D-01 0.000000000D-01 3.113995777D-01 5.449492609D-01 7.784989441D-01 0.000000000D-01 5.553584725D-02 9.441094032D-02 1.388396182D-01 2.054826349D-01 2.499113126D-01 3.054471599D-01 3.609830071D-01 4.220724391D-01 4.609475321D-01 4.998226253D-01 0.000000000D-01 1.066805390D-01 1.745681547D-01 2.715504629D-01 3.491363094D-01 4.364203868D-01 4.946097716D-01 5.721956181D-01 0.000000000D-01 9.206017075D-02 1.764486606D-01 2.378221078D-01 3.375539594D-01 4.296141301D-01 5.063309391D-01 5.907194289D-01 0.000000000D-01 8.888645035D-02 1.777729007D-01 2.592521468D-01 3.481385971D-01 4.296178434D-01 5.036898853D-01 5.777619273D-01 0.000000000D-01 5.163837284D-02 1.032767457D-01 1.475382081D-01 1.917996704D-01 3.024533265D-01 3.762224306D-01 4.278608035D-01 4.794991762D-01 5.311375491D-01 0.000000000D-01 2.516098042D-01 5.032196082D-01 8.267179278D-01 0.000000000D-01 1.179798515D-01 1.930579389D-01 2.681360263D-01 3.324886726D-01 4.182922010D-01 4.933702884D-01 5.898992578D-01 0.000000000D-01 2.952406988D-01 5.412746143D-01 7.873085300D-01 0.000000000D-01 1.083482291D-01 2.012181398D-01 2.940880505D-01 3.792188021D-01 4.411320758D-01 4.875670312D-01 5.340019865D-01 0.000000000D-01 6.055825571D-02 9.083738356D-02 1.332281626D-01 1.816747671D-01 2.180097206D-01 2.482888484D-01 3.391262319D-01 3.754611853D-01 4.057403133D-01 4.360194411D-01 4.662985689D-01 0.000000000D-01 1.147183497D-01 1.529577996D-01 2.007571120D-01 3.059155991D-01 4.206339488D-01 5.162325736D-01 6.213910608D-01 0.000000000D-01 3.113995776D-01 5.449492609D-01 7.784989441D-01 0.000000000D-01 3.108809142D-01 5.773502692D-01 7.549965058D-01 0.000000000D-01 9.166509491D-02 1.629601687D-01 2.342552425D-01 3.972154113D-01 4.481404639D-01 4.990655168D-01 5.499905695D-01 0.000000000D-01 3.001668057D-01 5.669817441D-01 7.670929479D-01 0.000000000D-01 3.058324497D-01 5.437021328D-01 7.815718159D-01 0.000000000D-01 7.643998814D-02 1.419599780D-01 2.074799678D-01 2.729999577D-01 3.712799424D-01 4.367999323D-01 4.913999237D-01 5.350799170D-01 0.000000000D-01 1.825741858D-01 3.651483717D-01 5.477225575D-01 7.302967433D-01 0.000000000D-01 1.747941918D-01 3.845472219D-01 5.768208328D-01 6.991767671D-01 0.000000000D-01 9.910312087D-02 1.982062418D-01 3.153281118D-01 4.054218581D-01 5.045249789D-01 6.576843477D-01 0.000000000D-01 8.982948581D-02 1.796589716D-01 2.694884574D-01 3.792800511D-01 5.789011309D-01 6.387874547D-01 0.000000000D-01 1.533929978D-01 3.323514952D-01 5.624409919D-01 7.413994890D-01 0.000000000D-01 8.158589156D-02 1.541066841D-01 2.175623775D-01 2.900831699D-01 3.535388634D-01 4.079294578D-01 4.804502502D-01 5.620361418D-01 0.000000000D-01 9.899678265D-02 1.759942803D-01 2.419921354D-01 3.519885604D-01 4.399857008D-01 5.059835559D-01 5.719814110D-01 0.000000000D-01 1.033139996D-01 3.357704987D-01 4.390844985D-01 5.165699983D-01 6.457124976D-01 0.000000000D-01 4.072948094D-01 4.683890308D-01 7.840425079D-01 0.000000000D-01 1.799610739D-01 3.599221477D-01 5.655919464D-01 7.198442957D-01 0.000000000D-01 6.869350881D-02 1.275736592D-01 1.864538096D-01 2.944007520D-01 4.121610528D-01 5.299213536D-01 6.378682959D-01 0.000000000D-01 8.787495500D-02 2.196873875D-01 3.075623425D-01 4.393747750D-01 5.272497300D-01 6.151246850D-01 0.000000000D-01 3.475764997D-02 8.689412492D-02 1.216517749D-01 1.650988373D-01 2.172353124D-01 2.606823748D-01 3.128188497D-01 3.562659121D-01 3.997129747D-01 4.518494496D-01 4.952965120D-01 0.000000000D-01 2.202921070D-02 5.287010570D-02 7.489931640D-02 1.586103171D-01 1.762336857D-01 1.938570542D-01 2.158862650D-01 2.335096335D-01 2.599446863D-01 2.819738971D-01 2.951914235D-01 3.128147920D-01 3.524673713D-01 3.965257928D-01 4.273666878D-01 0.000000000D-01 8.435590263D-02 1.096626734D-01 1.518406247D-01 2.108897566D-01 2.783744787D-01 3.374236106D-01 3.542947910D-01 3.964727423D-01 4.470862838D-01 4.892642353D-01 0.000000000D-01 1.355815361D-01 2.982793795D-01 3.253956868D-01 4.067446084D-01 5.152098374D-01 5.965587591D-01 0.000000000D-01 2.349569647D-02 4.699139293D-02 7.048708940D-02 8.810886175D-02 1.057306341D-01 1.233524064D-01 1.820916477D-01 2.055873440D-01 2.584526611D-01 2.995701299D-01 3.465615228D-01 4.111746882D-01 4.464182329D-01 4.875357016D-01 0.000000000D-01 9.849390487D-02 1.969878097D-01 4.221167351D-01 4.643284086D-01 5.065400822D-01 5.487517557D-01 0.000000000D-01 5.914179102D-02 8.448827288D-02 1.858742003D-01 2.027718549D-01 2.281183368D-01 2.872601278D-01 3.126066097D-01 3.464019187D-01 3.801972279D-01 4.393390190D-01 4.731343280D-01 0.000000000D-01 6.561055865D-02 1.211271852D-01 1.867377439D-01 2.271134723D-01 2.876770648D-01 3.280527932D-01 3.886163858D-01 4.088042501D-01 4.239451482D-01 4.542269445D-01 0.000000000D-01 1.873913756D-01 2.576631415D-01 4.372465430D-01 5.543661528D-01 6.324458926D-01 0.000000000D-01 6.758707444D-02 1.577031737D-01 3.905030968D-01 4.731095211D-01 5.181675707D-01 5.707352953D-01 0.000000000D-01 3.268820531D-02 8.172051326D-02 2.206453858D-01 3.595702582D-01 5.556994900D-01 7.109684653D-01 0.000000000D-01 3.059464641D-01 5.669008010D-01 7.648661601D-01 0.000000000D-01 1.169413461D-01 1.846442308D-01 3.077403845D-01 3.077403845D-01 4.246817307D-01 7.631961538D-01 0.000000000D-01 1.660442262D-01 2.609266412D-01 3.320884525D-01 4.032502637D-01 7.946402254D-01 0.000000000D-01 1.489682437D-01 2.085555412D-01 2.482804062D-01 3.078677037D-01 3.873174336D-01 4.270422987D-01 4.568359474D-01 4.866295961D-01 0.000000000D-01 4.242852836D-02 1.272855851D-01 1.803212455D-01 3.076068305D-01 4.561066798D-01 5.303566043D-01 6.046065290D-01 0.000000000D-01 1.904774684D-01 9.816915678D-01 0.000000000D-01 3.178806776D-01 3.866116348D-01 5.584390280D-01 6.615354639D-01 0.000000000D-01 8.192319206D-02 1.536059851D-01 3.481735664D-01 4.198563593D-01 4.198563593D-01 4.608179554D-01 5.325007485D-01 0.000000000D-01 5.060064684D-02 1.301159490D-01 1.951739235D-01 2.963752171D-01 2.987847717D-01 3.614331916D-01 4.048051746D-01 4.554058215D-01 5.132351321D-01 0.000000000D-01 5.346471974D-02 8.401598814D-02 1.680319763D-01 2.062210618D-01 2.444101473D-01 3.895286723D-01 4.353555749D-01 4.735446604D-01 5.422850143D-01 0.000000000D-01 4.856546194D-02 9.713092386D-02 1.595722321D-01 2.150756172D-01 3.191444642D-01 3.815857724D-01 4.093374648D-01 4.648408500D-01 5.342200812D-01 0.000000000D-01 5.028089891D-02 7.262796510D-02 1.173220975D-01 1.508426967D-01 1.564294633D-01 2.346441949D-01 4.078339579D-01 4.134207243D-01 4.413545572D-01 5.866104873D-01 0.000000000D-01 6.750954695D-02 1.012643204D-01 1.462706851D-01 3.037929613D-01 4.275604639D-01 5.400763756D-01 6.300891048D-01 0.000000000D-01 7.413919059D-03 7.413919059D-02 8.155310964D-02 1.334505430D-01 1.779340574D-01 1.853479765D-01 2.298314909D-01 3.781098720D-01 3.855237911D-01 4.744908198D-01 5.782856866D-01 0.000000000D-01 1.595654391D-01 2.765800943D-01 2.872177903D-01 3.084931821D-01 3.616816620D-01 3.723193577D-01 4.361455334D-01 5.106094050D-01 0.000000000D-01 4.856429312D-01 8.741572761D-01 0.000000000D-01 6.420676722D-01 7.666479666D-01 0.000000000D-01 3.224129402D-02 9.994801146D-01 0.000000000D-01 9.572336866D-03 6.700635806D-02 1.148680424D-01 1.196542109D-01 1.818744004D-01 2.632392639D-01 2.919562745D-01 3.733211378D-01 4.163966537D-01 4.738306749D-01 4.929753487D-01 0.000000000D-01 1.216035801D-01 2.052060414D-01 2.204064888D-01 2.280067126D-01 4.636136491D-01 5.168152152D-01 6.004176766D-01 0.000000000D-01 4.178357576D-02 7.834420456D-02 2.193637728D-01 2.715932425D-01 3.081538712D-01 3.499374471D-01 4.126128107D-01 4.752881744D-01 5.066258562D-01 0.000000000D-01 4.262319423D-02 1.385253812D-01 1.438532805D-01 1.491811799D-01 1.971322734D-01 2.450833669D-01 2.983623596D-01 3.090181582D-01 3.143460574D-01 3.782808488D-01 4.368877409D-01 4.688551366D-01 0.000000000D-01 3.619241652D-01 5.289660877D-01 7.675974056D-01 0.000000000D-01 4.431072934D-02 5.317287520D-02 1.285011150D-01 2.038293550D-01 3.544858346D-01 3.987965640D-01 4.032276370D-01 4.652626580D-01 5.228666062D-01 0.000000000D-01 2.275549954D-01 3.185769934D-01 4.551099906D-01 5.279275892D-01 6.007451876D-01 0.000000000D-01 9.489205577D-02 1.581534263D-01 2.530454821D-01 3.637528805D-01 4.902756216D-01 7.275057611D-01 0.000000000D-01 3.580968930D-02 1.566673907D-01 1.835246576D-01 2.059057135D-01 2.372391916D-01 2.730488809D-01 2.864775144D-01 3.133347814D-01 3.401920484D-01 3.625731042D-01 3.939065823D-01 4.297162716D-01 0.000000000D-01 1.214178641D-01 2.124812623D-01 2.124812623D-01 2.807788109D-01 3.263105099D-01 3.718422090D-01 3.946080585D-01 4.325511410D-01 4.780828400D-01 0.000000000D-01 5.665288227D-01 8.240419240D-01 0.000000000D-01 3.332510593D-01 5.332016949D-01 7.775858050D-01 0.000000000D-01 2.823507214D-02 5.647014430D-02 1.185873030D-01 1.185873030D-01 1.581164041D-01 1.863514762D-01 2.202335627D-01 2.484686348D-01 3.501148946D-01 3.783499668D-01 3.783499668D-01 4.178790677D-01 4.630551832D-01 0.000000000D-01 7.529173245D-02 1.129375987D-01 1.505834649D-01 1.819550200D-01 2.133265753D-01 2.886183078D-01 3.199898629D-01 3.199898629D-01 3.827329733D-01 4.329274616D-01 5.082191940D-01 0.000000000D-01 9.001800540D-02 1.900380114D-01 1.900380114D-01 3.600720216D-01 5.601120335D-01 6.901380414D-01 0.000000000D-01 6.359758617D-03 1.271951723D-02 1.907927585D-02 1.017561379D-01 1.780732413D-01 3.561464825D-01 4.261038274D-01 5.469392410D-01 5.914575513D-01 0.000000000D-01 4.306825524D-02 1.205911147D-01 1.722730210D-01 3.273187398D-01 5.340463650D-01 7.493876414D-01 0.000000000D-01 2.841082343D-01 5.208650961D-01 8.049733303D-01 0.000000000D-01 9.109602720D-02 1.423375425D-01 1.935790578D-01 2.334335697D-01 2.903685867D-01 3.928516173D-01 4.270126275D-01 4.554801360D-01 5.010281496D-01 0.000000000D-01 1.113907987D-01 2.088577476D-01 4.455631948D-01 5.291062939D-01 6.822686424D-01 0.000000000D-01 3.143775103D-01 4.453681395D-01 8.383400271D-01 0.000000000D-01 8.980265103D-02 2.180921525D-01 3.335527037D-01 4.233553548D-01 5.388159061D-01 6.029606568D-01 0.000000000D-01 2.248397709D-01 5.339944560D-01 8.150441694D-01 0.000000000D-01 3.922888546D-02 1.176866564D-01 2.059516486D-01 2.647949768D-01 3.236383050D-01 4.413249613D-01 5.099755109D-01 5.590116177D-01 0.000000000D-01 2.233567781D-02 7.594130456D-02 1.027441179D-01 4.109764718D-01 5.449905385D-01 7.192088255D-01 0.000000000D-01 7.364896536D-02 1.620277238D-01 2.209468961D-01 2.798660684D-01 4.418937923D-01 5.302725507D-01 6.039215160D-01 0.000000000D-01 6.748712333D-02 1.012306850D-01 1.518460275D-01 1.518460275D-01 2.193331508D-01 2.868202741D-01 3.374356166D-01 4.049227399D-01 4.892816439D-01 5.398969864D-01 0.000000000D-01 2.336824952D-01 5.257856141D-01 8.178887330D-01 0.000000000D-01 2.537080102D-02 5.708430229D-02 8.245510331D-02 1.141686046D-01 1.141686046D-01 1.458821058D-01 2.093091084D-01 2.177660421D-01 2.230516256D-01 2.537080102D-01 2.706218775D-01 2.759074611D-01 2.981069119D-01 3.298204133D-01 3.298204133D-01 3.551912142D-01 3.932474157D-01 0.000000000D-01 2.707638068D-01 6.052367445D-01 7.485822893D-01 0.000000000D-01 1.728946892D-01 3.890130508D-01 5.835195762D-01 6.915787568D-01 0.000000000D-01 5.184189690D-02 1.110897791D-01 1.555256907D-01 1.999616023D-01 4.221411604D-01 4.517651016D-01 4.962010132D-01 5.406369248D-01 0.000000000D-01 4.280863448D-01 9.037378387D-01 0.000000000D-01 1.800026719D-01 4.275063458D-01 5.737585168D-01 6.750100197D-01 0.000000000D-01 4.472135955D-01 8.944271910D-01 0.000000000D-01 4.190581775D-01 9.079593846D-01 0.000000000D-01 8.919733354D-03 3.004328371D-02 3.859811887D-02 5.872833529D-02 6.744534743D-02 8.879189112D-02 9.536005840D-02 9.730618202D-02 9.801570628D-02 9.872523051D-02 9.977938084D-02 1.004280887D-01 1.017255045D-01 1.039351657D-01 1.159362615D-01 1.167674184D-01 1.177607524D-01 1.190987124D-01 1.199095972D-01 1.207002100D-01 1.217746324D-01 1.230315039D-01 1.238221166D-01 1.245316409D-01 1.256263354D-01 1.261736827D-01 1.270251118D-01 1.277143639D-01 1.283630718D-01 1.295793991D-01 1.303700118D-01 1.311606245D-01 1.456146470D-01 1.461822664D-01 1.468715185D-01 1.473175052D-01 1.479662131D-01 1.489798191D-01 1.496690712D-01 1.504596840D-01 1.510475755D-01 1.523449912D-01 1.525679846D-01 1.527909779D-01 1.528923385D-01 1.539464888D-01 1.555479864D-01 1.561358779D-01 1.581225458D-01 1.589334306D-01 1.594807779D-01 1.751105834D-01 1.757187470D-01 1.762052780D-01 1.770364349D-01 1.774824216D-01 1.778878640D-01 0.000000000D-01 2.954535174D-03 3.770431918D-03 6.551898087D-03 1.767776276D-02 2.087953938D-02 2.441509193D-02 3.552859452D-02 3.869328492D-02 4.105444065D-02 5.346596080D-02 5.680372020D-02 5.995604853D-02 7.108191321D-02 7.349251721D-02 7.788105272D-02 8.919234848D-02 9.203562501D-02 9.554645341D-02 1.069319216D-01 1.098370085D-01 1.134220093D-01 1.249310982D-01 1.273911505D-01 1.306670996D-01 1.426583093D-01 1.602742617D-01 1.667272632D-01 1.780756451D-01 1.838858189D-01 3.560523938D-01 2.012545300D-01 2.162744473D-01 2.181287579D-01 2.327036407D-01 2.365482450D-01 2.496520413D-01 2.543496285D-01 2.668847694D-01 2.698640287D-01 2.737580813D-01 0.000000000D-01 1.761393420D-04 3.997008144D-04 5.690655663D-04 7.248811381D-04 8.806967098D-04 1.043286871D-03 1.858337804D-01 1.860302434D-01 1.884690958D-01 1.945323540D-01 1.969847556D-01 1.977028621D-01 2.039693579D-01 2.077360300D-01 2.138263865D-01 2.171527102D-01 2.233921078D-01 2.274229888D-01 2.330797715D-01 2.367922469D-01 2.446033492D-01 2.473944803D-01 2.525363943D-01 2.565605008D-01 2.624069720D-01 2.654352138D-01 0.000000000D-01 1.944753000D-03 4.682512076D-03 5.513280349D-03 9.025164405D-03 3.071954495D-02 3.432583450D-02 3.715799907D-02 3.789436185D-02 5.315028829D-02 5.390553218D-02 6.483768738D-02 8.077333331D-02 9.242674643D-01 9.178101291D-02 9.244185132D-02 1.077355400D-01 1.087928814D-01 1.175159482D-01 1.181390245D-01 1.348110332D-01 1.365103319D-01 1.385872526D-01 0.000000000D-01 1.126735788D-03 1.859114050D-02 8.185735502D-02 9.929359134D-02 1.644189199D-01 1.815453038D-01 2.437692877D-01 2.508677232D-01 2.612618608D-01 3.321053735D-01 4.166105575D-02 5.782971430D-02 1.225606854D-01 1.398560797D-01 2.044180403D-01 2.058546285D-01 2.180797118D-01 2.855148487D-01 2.988948362D-01 3.667524990D-01 3.813718958D-01 0.000000000D-01 2.563399020D-03 5.872893038D-02 6.237604281D-02 6.879496068D-02 1.190625902D-01 1.296496366D-01 1.783958993D-01 2.376666863D-01 2.489623145D-01 2.983963184D-01 2.984796810D-01 2.985630436D-01 2.986464061D-01 2.987922906D-01 2.928110263D-02 3.067742566D-02 3.586674564D-02 3.934713292D-02 9.365784710D-02 9.899305157D-02 1.481769677D-01 1.496983346D-01 1.561589338D-01 1.598268868D-01 2.078020458D-01 2.197645745D-01 2.735125914D-01 2.777015605D-01 0.000000000D-01 2.336156932D-03 5.436874315D-03 8.346451586D-03 9.365865519D-03 2.879844364D-02 3.561577431D-02 3.975714343D-02 5.974190408D-02 6.137721393D-02 7.004223239D-02 7.108288412D-02 9.026060874D-02 9.091898025D-02 9.181096742D-02 9.321266160D-02 9.344627730D-02 9.563376967D-02 9.735403069D-02 1.000299923D-01 1.004759859D-01 1.033855632D-01 1.043837393D-01 1.231367081D-01 1.315256353D-01 1.542925465D-01 1.553756738D-01 1.628938515D-01 1.640194544D-01 1.821990029D-01 1.835157459D-01 1.973203096D-01 1.980636323D-01 2.135035058D-01 2.150538645D-01 2.206606411D-01 2.228481335D-01 2.430027965D-01 2.500749807D-01 2.536854050D-01 2.545561544D-01 2.757727069D-01 2.835457382D-01 0.000000000D-01 2.274330020D-04 2.618925477D-04 4.548660038D-04 5.031093679D-04 6.271637325D-04 1.040678281D-03 1.082029737D-03 1.564463377D-03 1.605814832D-03 1.785004470D-03 1.819464015D-03 2.033113199D-03 2.081356563D-03 2.329465292D-03 2.363924838D-03 2.501763021D-03 2.563790203D-03 2.742979842D-03 2.784331297D-03 3.025548116D-03 3.053115753D-03 3.190953936D-03 3.232305391D-03 3.390819302D-03 3.425278847D-03 3.542441302D-03 3.563117030D-03 3.659603758D-03 3.687171395D-03 3.887036761D-03 3.928388215D-03 4.624471039D-03 5.313661954D-03 9.111103896D-03 9.255833988D-03 9.310969261D-03 9.428131716D-03 9.441915535D-03 9.565969899D-03 9.607321355D-03 9.772727173D-03 9.793402902D-03 9.945024899D-03 9.979484453D-03 1.014489027D-02 1.017934981D-02 1.025516081D-02 1.028962036D-02 1.055151290D-02 1.057908054D-02 1.068935109D-02 1.071002682D-02 1.088232455D-02 1.091678409D-02 1.095124364D-02 1.122692000D-02 1.125448764D-02 1.140610965D-02 1.144056919D-02 1.160597500D-02 1.163354264D-02 1.174381319D-02 1.177138083D-02 1.190921901D-02 1.192989473D-02 1.225381447D-02 1.228827401D-02 1.239854456D-02 1.242611219D-02 1.261908565D-02 1.263286947D-02 1.275003192D-02 1.277070766D-02 1.299124875D-02 1.301192447D-02 1.318422220D-02 1.320489793D-02 1.337719566D-02 1.339787139D-02 1.353570957D-02 1.356327721D-02 1.370111539D-02 1.374246684D-02 1.390787266D-02 1.479003704D-02 1.523111922D-02 1.893896634D-02 1.924910225D-02 1.931802135D-02 1.933869707D-02 1.952477862D-02 1.955923816D-02 1.962815726D-02 1.964883298D-02 2.006234754D-02 2.008302326D-02 2.018640190D-02 2.021396954D-02 2.024842908D-02 2.026910481D-02 2.040694299D-02 2.042761872D-02 2.051721354D-02 2.053788926D-02 2.071707890D-02 2.074464654D-02 2.093761999D-02 2.095829573D-02 2.128910736D-02 2.130978309D-02 2.147518891D-02 2.149586463D-02 2.167505428D-02 2.169573000D-02 2.179221673D-02 2.181289246D-02 2.194383873D-02 2.197140637D-02 2.201964973D-02 2.204032546D-02 2.214370410D-02 2.217127174D-02 2.225397464D-02 2.228154228D-02 2.235046137D-02 2.239870473D-02 2.267438110D-02 2.301208465D-02 2.303276037D-02 2.316370665D-02 2.318438238D-02 2.334978820D-02 2.337046392D-02 2.359789693D-02 2.373573511D-02 2.375641084D-02 2.392870857D-02 2.394938429D-02 2.405965484D-02 2.483154866D-02 2.545182049D-02 2.913899188D-02 2.942156016D-02 2.948358734D-02 2.951115498D-02 2.960074980D-02 2.962142552D-02 2.970412844D-02 2.972480416D-02 2.984196661D-02 2.986264235D-02 2.990399379D-02 2.993156143D-02 3.006250771D-02 3.008318344D-02 3.018656208D-02 3.021412971D-02 3.038642744D-02 3.040710317D-02 3.062075235D-02 3.063453617D-02 3.676213259D-01 3.678418670D-01 3.679797052D-01 3.681313272D-01 3.682898411D-01 3.684621388D-01 3.686137608D-01 0.000000000D-01 2.706870341D-05 5.413740683D-05 7.970229339D-05 1.052671799D-04 1.353435171D-04 2.446559644D-02 2.600700871D-02 2.812438285D-02 2.815897063D-02 2.820258132D-02 2.823416147D-02 2.826123017D-02 2.828679507D-02 2.831386377D-02 3.037108523D-02 3.100268832D-02 3.705705497D-02 3.710968857D-02 3.715179543D-02 3.719540612D-02 3.722698627D-02 3.725405498D-02 3.728713895D-02 3.738488705D-02 3.743000155D-02 3.746910080D-02 3.751571912D-02 3.754880308D-02 3.760143668D-02 3.762399394D-02 3.894133749D-02 3.896840620D-02 3.906465047D-02 3.911878787D-02 3.919097110D-02 3.927067338D-02 3.929473445D-02 3.939549018D-02 3.945564286D-02 3.950978027D-02 3.953835278D-02 3.960752836D-02 3.967219249D-02 3.970828410D-02 3.974587952D-02 3.978798638D-02 3.984813906D-02 4.114142155D-02 4.116698645D-02 4.119405515D-02 4.125270400D-02 4.185423075D-02 4.318962010D-02 4.372347509D-02 4.383626137D-02 4.395957434D-02 4.398664305D-02 4.411145985D-02 4.426635299D-02 4.546188738D-02 4.574310113D-02 4.578370419D-02 4.582280343D-02 4.585287977D-02 4.589949808D-02 4.599875001D-02 4.603484160D-02 4.608897900D-02 4.612807825D-02 4.617469658D-02 4.621529963D-02 4.625590269D-02 4.765595616D-02 4.778378060D-02 4.783641420D-02 4.792814703D-02 4.806649818D-02 4.810710124D-02 4.819883406D-02 4.823492567D-02 4.837327681D-02 4.846500965D-02 4.981994863D-02 4.992822344D-02 5.002897918D-02 5.013725399D-02 5.021695627D-02 5.026357460D-02 5.034327690D-02 5.199897926D-02 5.207567392D-02 5.214184185D-02 5.218996399D-02 5.226064338D-02 5.235087240D-02 5.244862050D-02 5.249975027D-02 5.252982661D-02 5.256892583D-02 5.261704799D-02 5.265765105D-02 5.267569684D-02 5.273584952D-02 5.278096402D-02 5.280502509D-02 5.291931517D-02 5.411033812D-02 5.420808622D-02 5.431936867D-02 5.439907095D-02 5.451035340D-02 5.456900227D-02 5.467426945D-02 5.471487251D-02 5.483668167D-02 5.491187251D-02 5.494044502D-02 5.634049852D-02 5.642170463D-02 5.656005578D-02 5.659915503D-02 5.662923135D-02 5.666833059D-02 5.680367411D-02 5.685781152D-02 5.693300236D-02 5.699917031D-02 5.703526190D-02 5.708188022D-02 5.848494136D-02 5.853155969D-02 5.857517038D-02 5.861126197D-02 5.866690320D-02 5.875262076D-02 5.880675816D-02 5.884736122D-02 5.888194900D-02 5.891202534D-02 5.893608641D-02 5.897969710D-02 5.902030015D-02 5.912255970D-02 5.920376581D-02 5.925339177D-02 5.934362079D-02 6.059178878D-02 6.063840709D-02 6.071359795D-02 6.076172008D-02 6.080232314D-02 6.084142236D-02 6.090458268D-02 6.101736894D-02 6.108052925D-02 6.110609415D-02 6.114519337D-02 6.122038421D-02 6.127903308D-02 6.133166666D-02 6.146249873D-02 6.168957508D-02 6.281142246D-02 6.283698734D-02 6.286405604D-02 6.292420872D-02 6.297533849D-02 6.301594154D-02 6.308361330D-02 6.312722399D-02 6.316331561D-02 6.320692628D-02 6.325655224D-02 6.331820873D-02 6.338588048D-02 6.342347590D-02 6.344603316D-02 6.347911714D-02 6.353175072D-02 6.359641486D-02 6.513181185D-02 6.517692637D-02 6.521452179D-02 6.525813248D-02 6.531226989D-02 6.535588058D-02 6.540851416D-02 6.545513249D-02 6.550024699D-02 6.558446073D-02 6.563408670D-02 6.567168211D-02 6.572882716D-02 6.710481957D-02 6.713339210D-02 6.717700279D-02 6.721159057D-02 6.724467455D-02 6.728226997D-02 6.732136919D-02 6.736949135D-02 6.740859058D-02 6.756047608D-02 6.759656769D-02 6.767927761D-02 6.772138449D-02 6.777702571D-02 6.926881203D-02 6.939362883D-02 6.941768990D-02 6.944475860D-02 6.947182731D-02 6.971093420D-02 6.974251434D-02 6.977108685D-02 6.979214031D-02 6.985379679D-02 6.988988840D-02 6.996357541D-02 6.998914031D-02 7.003124717D-02 7.149145335D-02 7.155160603D-02 7.160875107D-02 7.165236174D-02 7.172153733D-02 7.176965946D-02 7.179221672D-02 7.184184266D-02 7.188846099D-02 7.191853733D-02 7.199372817D-02 7.206440756D-02 7.208395719D-02 7.212756788D-02 7.218922437D-02 7.221478926D-02 7.225539232D-02 7.231704880D-02 7.239223964D-02 7.247194194D-02 7.356972824D-02 7.366146106D-02 7.371559847D-02 7.377274351D-02 7.382387329D-02 7.387199542D-02 7.390959086D-02 7.393966718D-02 7.397425498D-02 7.402989620D-02 7.406147634D-02 7.410959850D-02 7.413666720D-02 7.417727026D-02 7.421185804D-02 7.585252223D-02 7.592169780D-02 7.596981993D-02 7.600140010D-02 7.603147644D-02 7.606606423D-02 7.610065201D-02 7.615779705D-02 7.626907950D-02 7.630065965D-02 7.632020927D-02 7.635479705D-02 7.638336959D-02 7.641946118D-02 7.646156806D-02 8.230088892D-02 8.450698825D-02 8.513859131D-02 8.662436236D-02 9.095535491D-02 9.098843889D-02 9.101400378D-02 9.104107248D-02 9.106362972D-02 9.108769079D-02 9.111776713D-02 0.000000000D-01 6.544148519D-04 5.462182629D-02 8.293617554D-02 1.190162477D-01 1.491193309D-01 1.497737457D-01 1.820582118D-01 1.838033180D-01 1.844577328D-01 1.886023602D-01 1.917871792D-01 1.927469877D-01 1.951465088D-01 1.955827853D-01 1.964553384D-01 1.975460299D-01 1.984185830D-01 1.995092744D-01 2.003818276D-01 2.012543807D-01 2.024759551D-01 2.049627315D-01 2.489394096D-01 2.512080477D-01 2.553526751D-01 2.579703345D-01 2.592791642D-01 0.000000000D-01 5.260670577D-04 1.092600812D-03 1.477034431D-03 1.861468050D-03 2.286368366D-03 2.650568636D-03 1.710324938D-01 1.800363338D-01 1.957374121D-01 1.978619137D-01 2.071490206D-01 2.261683681D-01 2.574288913D-01 2.654210639D-01 2.952854860D-01 3.136775997D-01 3.142846003D-01 3.197476044D-01 3.427529214D-01 3.549536305D-01 0.000000000D-01 4.708254894D-04 1.000504165D-03 2.569922463D-03 3.021130222D-03 3.413484797D-03 3.923545745D-03 4.257047131D-03 4.727872622D-03 5.139844924D-03 6.003024989D-03 6.024604491D-02 6.132501998D-02 8.153128057D-02 8.486629446D-02 8.594526953D-02 9.202676544D-02 9.310574051D-02 9.634266576D-02 9.732355219D-02 1.081133030D-01 1.130177352D-01 1.139986216D-01 1.192954084D-01 1.225323336D-01 1.234151314D-01 1.385207825D-01 1.409729986D-01 1.418557964D-01 1.477411150D-01 1.489181787D-01 1.504875970D-01 1.514684835D-01 1.541168769D-01 1.550977633D-01 1.669664892D-01 1.701053258D-01 1.726556305D-01 1.755002011D-01 1.765791762D-01 1.806008106D-01 1.816797857D-01 1.927638024D-01 1.954121958D-01 1.963930822D-01 1.999242734D-01 2.014936917D-01 2.091446059D-01 2.227789274D-01 2.238579025D-01 2.282718914D-01 2.291546892D-01 0.000000000D-01 5.256277727D-03 9.940548759D-03 1.162951447D-02 3.221402562D-02 3.344306704D-02 3.353968979D-02 3.361698799D-02 3.389526152D-02 3.398028954D-02 3.410783157D-02 3.419672450D-02 3.427015780D-02 3.435132091D-02 3.450591731D-02 3.461413479D-02 3.473781192D-02 3.767127868D-02 3.777176634D-02 3.786838909D-02 3.791090311D-02 3.801912059D-02 3.816598717D-02 3.831671866D-02 3.839015196D-02 3.846745016D-02 3.850609926D-02 3.873799386D-02 3.898148320D-02 3.910516032D-02 3.941048822D-02 3.958054427D-02 3.976605995D-02 4.005206330D-02 4.017960532D-02 4.028395790D-02 4.039604029D-02 4.063179981D-02 4.333723688D-02 4.360391567D-02 4.367348405D-02 4.378170154D-02 4.389378393D-02 4.400973123D-02 4.416819254D-02 4.427254512D-02 4.438076260D-02 4.446579062D-02 4.456241337D-02 4.465517121D-02 4.473246942D-02 4.483295708D-02 4.493730965D-02 4.499528330D-02 4.506098678D-02 4.519239372D-02 4.526969192D-02 4.874424609D-02 4.882540921D-02 4.897614070D-02 4.903411435D-02 4.908435818D-02 4.918098094D-02 4.929306333D-02 4.934330716D-02 4.942447027D-02 4.950176847D-02 4.960612105D-02 4.979163673D-02 4.995009804D-02 5.009696463D-02 5.019358738D-02 5.033658906D-02 5.039069780D-02 5.050278019D-02 5.062645731D-02 5.077718880D-02 5.087381155D-02 5.097816413D-02 5.105546233D-02 5.113662544D-02 5.127962712D-02 5.138784460D-02 5.152311645D-02 5.159654974D-02 5.166611812D-02 5.176660579D-02 5.437928501D-02 5.446431303D-02 5.454161123D-02 5.461117961D-02 5.468847782D-02 5.478896548D-02 5.492423733D-02 5.502472500D-02 5.523343014D-02 5.531845816D-02 5.558513696D-02 5.570108424D-02 5.584022101D-02 5.605665598D-02 5.612235947D-02 5.640449789D-02 5.659001361D-02 5.681804329D-02 5.993702570D-02 5.996794500D-02 6.014186596D-02 6.023462382D-02 6.033897639D-02 6.042013948D-02 6.052062717D-02 6.061724992D-02 6.069068319D-02 6.077184628D-02 6.088006379D-02 6.098055142D-02 6.118539168D-02 6.125109518D-02 6.143661085D-02 6.173420891D-02 6.183856148D-02 6.193904917D-02 6.544452262D-02 6.551022606D-02 6.557592956D-02 6.566095759D-02 6.586966273D-02 6.595082583D-02 6.615566609D-02 6.626388355D-02 6.635277647D-02 6.642234485D-02 6.649964305D-02 6.663104999D-02 6.672380785D-02 6.680883589D-02 6.695183754D-02 6.696729719D-02 6.711029884D-02 6.740789696D-02 6.748519511D-02 6.759727751D-02 6.770549502D-02 6.786009144D-02 6.800695797D-02 6.808039130D-02 6.821566312D-02 6.830069115D-02 7.095974931D-02 7.104091240D-02 7.118004917D-02 7.119937376D-02 7.134624029D-02 7.143899815D-02 7.151243148D-02 7.206124870D-02 7.236271165D-02 7.252503790D-02 7.260233610D-02 7.287287980D-02 7.321685683D-02 7.331734446D-02 7.350672507D-02 7.357629345D-02 7.364586183D-02 7.390481082D-02 7.660638294D-02 7.677257406D-02 7.692330559D-02 7.704698271D-02 7.720157912D-02 7.733298606D-02 7.759193505D-02 7.766150343D-02 7.773107181D-02 7.783928927D-02 7.801707516D-02 7.810983297D-02 7.821805048D-02 7.829921358D-02 7.840743103D-02 7.846926964D-02 7.857748710D-02 7.867024496D-02 7.885189574D-02 7.888281499D-02 8.230712535D-02 8.236896390D-02 8.259312870D-02 8.282888821D-02 8.309556703D-02 8.315740558D-02 8.341248963D-02 8.344340893D-02 8.345886853D-02 8.377192625D-02 8.391106301D-02 8.403087524D-02 8.416228217D-02 8.427049969D-02 8.440963645D-02 8.449852937D-02 8.461834160D-02 8.469563980D-02 8.476520819D-02 8.483091163D-02 8.491593966D-02 8.771799947D-02 8.783008186D-02 8.790738007D-02 8.806584137D-02 8.819724831D-02 8.823203250D-02 8.836730438D-02 8.850257620D-02 8.864944279D-02 8.880017432D-02 8.899728470D-02 8.907071802D-02 8.914415129D-02 8.929488277D-02 8.959248089D-02 8.970456328D-02 8.990167366D-02 9.011037881D-02 9.031521907D-02 9.037319268D-02 9.042343652D-02 9.054324875D-02 9.326414546D-02 9.333757873D-02 9.356174353D-02 9.363517685D-02 9.374339431D-02 9.489127260D-02 1.067874659D-01 -1.312793849D-02-1.312793849D-02-1.312793849D-02-1.312793849D-02-1.312793849D-02 -1.312793849D-02 3.746265373D-01 3.746265373D-01 3.746265373D-01 3.746265373D-01 3.746265373D-01 3.855131204D-01 3.855131204D-01-1.633917464D-02-1.633917464D-02 -1.633917464D-02-1.633917464D-02 4.662642516D-01 4.662642516D-01 3.220012952D-01 4.798138111D-01 4.798138111D-01-1.424605190D-02-1.424605190D-02-1.424605190D-02 -1.424605190D-02 4.065336761D-01 4.065336761D-01 2.807514618D-01 2.807514618D-01 2.837049115D-01 2.837049115D-01 4.183474752D-01 4.183474752D-01-3.495698634D-02 -3.495698634D-02-3.495698634D-02-3.495698634D-02 9.975530244D-01-1.725579903D-02 -1.725579903D-02-1.725579903D-02-1.725579903D-02-1.725579903D-02 4.924215820D-01 4.924215820D-01 5.067312690D-01 5.067312690D-01-3.495698634D-02-3.495698634D-02 -3.495698634D-02-3.495698634D-02 9.975530244D-01-2.474858313D-02-2.474858313D-02 -2.474858313D-02-2.474858313D-02 7.062400550D-01 7.062400550D-01-2.473343873D-02 -2.473343873D-02-2.473343873D-02-2.473343873D-02-2.473343873D-02-2.473343873D-02 7.058078855D-01 7.058078855D-01-3.495698634D-02-3.495698634D-02-3.495698634D-02 -3.495698634D-02 9.975530244D-01-2.474858313D-02-2.474858313D-02-2.474858313D-02 -2.474858313D-02 7.062400550D-01 7.062400550D-01-3.493564733D-02-3.493564733D-02 -3.493564733D-02-3.493564733D-02-3.493564733D-02 9.969440820D-01-2.474100746D-02 -2.474100746D-02-2.474100746D-02-2.474100746D-02-2.474100746D-02 7.060238710D-01 7.060238710D-01-2.474858313D-02-2.474858313D-02-2.474858313D-02-2.474858313D-02 7.062400550D-01 7.062400550D-01-2.474100746D-02-2.474100746D-02-2.474100746D-02 -2.474100746D-02-2.474100746D-02 7.060238710D-01 7.060238710D-01-2.474858313D-02 -2.474858313D-02-2.474858313D-02-2.474858313D-02 7.062400550D-01 7.062400550D-01 -2.474100746D-02-2.474100746D-02-2.474100746D-02-2.474100746D-02-2.474100746D-02 7.060238710D-01 7.060238710D-01-2.474858313D-02-2.474858313D-02-2.474858313D-02 -2.474858313D-02 7.062400550D-01 7.062400550D-01-1.725836868D-02-1.725836868D-02 -1.725836868D-02-1.725836868D-02 4.924949108D-01 4.924949108D-01 5.068067287D-01 5.068067287D-01-2.404439000D-02-2.404439000D-02-2.404439000D-02-2.404439000D-02 -2.404439000D-02 7.060840378D-01 7.060840378D-01-2.405134344D-02-2.405134344D-02 -2.405134344D-02-2.405134344D-02 7.062882314D-01 7.062882314D-01-2.405134344D-02 -2.405134344D-02-2.405134344D-02-2.405134344D-02 7.062882314D-01 7.062882314D-01 -1.964541729D-02-1.964541729D-02-1.964541729D-02-1.964541729D-02 5.769044491D-01 5.769044491D-01 5.769044491D-01-2.403744258D-02-2.403744258D-02-2.403744258D-02 -2.403744258D-02-2.403744258D-02-2.403744258D-02 7.058800210D-01 7.058800210D-01 -2.405134344D-02-2.405134344D-02-2.405134344D-02-2.405134344D-02 7.062882314D-01 7.062882314D-01-2.405134344D-02-2.405134344D-02-2.405134344D-02-2.405134344D-02 7.062882314D-01 7.062882314D-01-2.405134344D-02-2.405134344D-02-2.405134344D-02 -2.405134344D-02 7.062882314D-01 7.062882314D-01-2.405134344D-02-2.405134344D-02 -2.405134344D-02-2.405134344D-02 7.062882314D-01 7.062882314D-01-1.366752890D-02 -1.366752890D-02-1.366752890D-02-1.366752890D-02 3.900246049D-01 3.900246049D-01 3.900246049D-01 2.693503255D-01 2.721838376D-01 2.721838376D-01 4.013586533D-01 4.013586533D-01-2.894762782D-01-2.894762782D-01-2.894762782D-01-2.894762782D-01 -2.894762782D-01-2.894762782D-01-2.894762782D-01-2.894762782D-01 4.059728286D-01 4.059728286D-01-1.725836868D-02-1.725836868D-02-1.725836868D-02-1.725836868D-02 4.924949108D-01 4.924949108D-01 5.068067287D-01 5.068067287D-01-1.186811192D-02 -1.186811192D-02-1.186811192D-02-1.186811192D-02 3.024921209D-01 3.024921209D-01 3.386753889D-01 3.386753889D-01 3.386753889D-01 3.386753889D-01 3.386753889D-01 3.485172379D-01 3.485172379D-01-1.478841508D-02-1.478841508D-02-1.478841508D-02 -1.478841508D-02-1.478841508D-02-1.478841508D-02 4.220108692D-01 2.914399849D-01 2.914399849D-01 2.914399849D-01 4.342744329D-01 4.342744329D-01 4.342744329D-01 -1.562584539D-02-1.562584539D-02-1.562584539D-02 4.459082708D-01 3.079434896D-01 3.079434896D-01 3.079434896D-01 3.079434896D-01 4.588662890D-01 4.588662890D-01 -1.234547404D-02-1.234547404D-02-1.234547404D-02-1.234547404D-02-1.234547404D-02 -1.234547404D-02-1.234547404D-02 3.522976737D-01 3.522976737D-01 2.432961712D-01 2.432961712D-01 2.432961712D-01 2.432961712D-01 2.432961712D-01 2.458555988D-01 3.625353839D-01 3.625353839D-01 3.625353839D-01-2.405134344D-02-2.405134344D-02 -2.405134344D-02-2.405134344D-02 7.062882314D-01 7.062882314D-01-2.405134344D-02 -2.405134344D-02-2.405134344D-02-2.405134344D-02 7.062882314D-01 7.062882314D-01 -2.405134344D-02-2.405134344D-02-2.405134344D-02-2.405134344D-02 7.062882314D-01 7.062882314D-01-1.747427000D-02-1.747427000D-02-1.747427000D-02-1.747427000D-02 4.858699462D-01 4.858699462D-01 5.131468555D-01 5.131468555D-01-1.336991243D-02 -1.336991243D-02-1.336991243D-02-1.336991243D-02 3.717487845D-01 3.717487845D-01 3.717487845D-01 3.717487845D-01 3.717487845D-01 3.926188917D-01 3.926188917D-01 -1.123907943D-02-1.123907943D-02-1.123907943D-02-1.123907943D-02-1.123907943D-02 -1.123907943D-02-1.123907943D-02 3.125012328D-01 3.125012328D-01 3.125012328D-01 3.125012328D-01 3.125012328D-01 3.125012328D-01 3.125012328D-01 3.125012328D-01 3.300451616D-01 3.300451616D-01-1.440205953D-02-1.440205953D-02-1.440205953D-02 -1.440205953D-02 4.004475088D-01 4.004475088D-01 4.004475088D-01 4.004475088D-01 4.229287725D-01 4.229287725D-01-2.403744258D-02-2.403744258D-02-2.403744258D-02 -2.403744258D-02-2.403744258D-02-2.403744258D-02 7.058800210D-01 7.058800210D-01 -2.404439000D-02-2.404439000D-02-2.404439000D-02-2.404439000D-02-2.404439000D-02 7.060840378D-01 7.060840378D-01-2.406526843D-02-2.406526843D-02 7.066971507D-01 7.066971507D-01-2.405134344D-02-2.405134344D-02-2.405134344D-02-2.405134344D-02 7.062882314D-01 7.062882314D-01-1.859570884D-02-1.859570884D-02 3.664715302D-01 3.664715302D-01 3.664715302D-01 5.460788643D-01 5.460788643D-01-2.407224001D-02 7.069018770D-01 7.069018770D-01-2.405830292D-02-2.405830292D-02-2.405830292D-02 7.064926025D-01 7.064926025D-01-2.406526843D-02-2.406526843D-02 7.066971507D-01 7.066971507D-01-2.407224001D-02 7.069018770D-01 7.069018770D-01-1.964920939D-02 -1.964920939D-02-1.964920939D-02 5.770158073D-01 5.770158073D-01 5.770158073D-01 -2.405134344D-02-2.405134344D-02-2.405134344D-02-2.405134344D-02 7.062882314D-01 7.062882314D-01-1.039521342D-02-1.039521342D-02-1.039521342D-02-1.039521342D-02 2.649511712D-01 2.649511712D-01 2.890376413D-01 2.890376413D-01 2.890376413D-01 2.890376413D-01 2.890376413D-01 2.890376413D-01 2.890376413D-01 2.966438950D-01 3.052643159D-01 3.052643159D-01-1.124052294D-02-1.124052294D-02-1.124052294D-02 1.576414801D-02 3.125413694D-01 3.125413694D-01 3.125413694D-01 3.125413694D-01 3.125413694D-01 3.125413694D-01 3.125413694D-01 3.125413694D-01 3.300875516D-01 3.300875516D-01-1.209258082D-02-1.209258082D-02-1.209258082D-02-1.209258082D-02 3.082133402D-01 3.362327348D-01 3.362327348D-01 3.362327348D-01 3.362327348D-01 3.362327348D-01 3.362327348D-01 3.362327348D-01 3.362327348D-01-1.198572051D-02 -1.198572051D-02-1.198572051D-02 3.332614969D-01 3.332614969D-01 3.332614969D-01 3.332614969D-01 3.332614969D-01 3.332614969D-01 3.332614969D-01 3.332614969D-01 3.332614969D-01-1.353577320D-02-1.353577320D-02-1.353577320D-02-1.353577320D-02 -1.353577320D-02 3.763605229D-01 3.763605229D-01 3.763605229D-01 3.763605229D-01 3.763605229D-01 3.763605229D-01 3.862647472D-01-6.665381564D-03-6.665381564D-03 -6.665381564D-03-6.665381564D-03-6.665381564D-03-6.665381564D-03 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.853301215D-01 1.902072299D-01 1.902072299D-01-1.042624355D-02-1.042624355D-02 -1.042624355D-02-1.042624355D-02 2.657420610D-01 2.899004302D-01 2.899004302D-01 2.899004302D-01 2.899004302D-01 2.899004302D-01 2.899004302D-01 2.899004302D-01 2.899004302D-01 2.899004302D-01 2.899004302D-01 2.975293889D-01-1.009818738D-02 -1.009818738D-02-1.009818738D-02 2.573806296D-01 2.573806296D-01 2.807788686D-01 2.807788686D-01 2.807788686D-01 2.807788686D-01 2.807788686D-01 2.807788686D-01 2.807788686D-01 2.807788686D-01 2.807788686D-01 2.807788686D-01 2.807788686D-01 -1.137016285D-02-1.137016285D-02-1.137016285D-02-1.137016285D-02 3.161459913D-01 3.161459913D-01 3.161459913D-01 3.161459913D-01 3.161459913D-01 3.161459913D-01 3.161459913D-01 3.161459913D-01 3.161459913D-01 3.161459913D-01-1.137089789D-02 -1.137089789D-02-1.137089789D-02 3.161664290D-01 3.161664290D-01 3.161664290D-01 3.161664290D-01 3.161664290D-01 3.161664290D-01 3.161664290D-01 3.161664290D-01 3.161664290D-01 3.161664290D-01-1.964920939D-02-1.964920939D-02-1.964920939D-02 5.770158073D-01 5.770158073D-01 5.770158073D-01-1.964920939D-02-1.964920939D-02 -1.964920939D-02 5.770158073D-01 5.770158073D-01 5.770158073D-01-1.964541729D-02 -1.964541729D-02-1.964541729D-02-1.964541729D-02 5.769044491D-01 5.769044491D-01 5.769044491D-01-2.405830292D-02-2.405830292D-02-2.405830292D-02 7.064926025D-01 7.064926025D-01-1.964162739D-02-1.964162739D-02-1.964162739D-02-1.964162739D-02 -1.964162739D-02 5.767931555D-01 5.767931555D-01 5.767931555D-01-3.399407731D-02 -3.399407731D-02-3.399407731D-02 9.982650993D-01 2.419696210D-02 2.419696210D-02 2.419696210D-02 4.923555771D-01 4.923555771D-01 5.066633461D-01 5.066633461D-01 2.416867747D-02 2.416867747D-02 2.416867747D-02 2.416867747D-02 2.416867747D-02 2.416867747D-02 2.416867747D-02 4.917800464D-01 4.917800464D-01 5.060710905D-01 5.060710905D-01 2.904493941D-02 2.904493941D-02 2.904493941D-02 5.076550283D-01 6.081757752D-01 6.081757752D-01 3.367376800D-02 3.367376800D-02 3.367376800D-02 3.367376800D-02 3.367376800D-02 7.050994211D-01 7.050994211D-01 2.873390631D-02 2.873390631D-02 2.873390631D-02 2.873390631D-02 5.222075152D-01 6.016630127D-01 6.016630127D-01 3.369287598D-02 3.369287598D-02 3.369287598D-02 3.369287598D-02 7.054995254D-01 7.054995254D-01 1.455497655D-02 1.455497655D-02 1.455497655D-02 1.455497655D-02 2.543956773D-01 2.543956773D-01 2.543956773D-01 2.543956773D-01 2.543956773D-01 2.645208784D-01 2.645208784D-01 2.645208784D-01 2.645208784D-01 2.645208784D-01 2.645208784D-01 2.645208784D-01 3.047685527D-01 3.047685527D-01 4.873504843D-02 4.873504843D-02 4.873504843D-02 4.873504843D-02 4.873504843D-02 4.873504843D-02 4.873504843D-02 9.916522907D-01 3.466734447D-02 3.466734447D-02 3.466734447D-02 3.466734447D-02 7.054050969D-01 7.054050969D-01 1.233310708D-02 1.233310708D-02 1.233310708D-02 1.233310708D-02 1.233310708D-02 1.233310708D-02 2.155612631D-01 2.155612631D-01 2.155612631D-01 2.155612631D-01 2.155612631D-01 2.155612631D-01 2.155612631D-01 2.155612631D-01 2.155612631D-01 2.155612631D-01 2.155612631D-01 2.155612631D-01 2.155612631D-01 2.155612631D-01 2.155612631D-01 2.155612631D-01 2.509519182D-01 2.509519182D-01 2.509519182D-01 2.582445381D-01 2.802192246D-02 2.802192246D-02 2.802192246D-02 2.802192246D-02 2.802192246D-02 2.802192246D-02 2.802192246D-02 5.701852054D-01 5.701852054D-01 5.867546900D-01 1.916532832D-02 1.916532832D-02 1.916532832D-02 1.916532832D-02 3.866396673D-01 2.566487447D-01 2.566487447D-01 2.566487447D-01 2.566487447D-01 2.566487447D-01 2.566487447D-01 2.566487447D-01 2.566487447D-01 4.013053098D-01 4.013053098D-01 1.054252317D-02 1.054252317D-02 1.054252317D-02 1.054252317D-02 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.411781365D-01 1.915988995D-01 1.915988995D-01 1.915988995D-01 1.915988995D-01 1.915988995D-01 1.915988995D-01 1.915988995D-01 1.915988995D-01 1.915988995D-01 1.915988995D-01 1.915988995D-01 2.207512679D-01 2.207512679D-01 2.190808501D-02 2.190808501D-02 2.190808501D-02 4.419718023D-01 4.419718023D-01 4.457819040D-01 4.457819040D-01 4.587362500D-01 2.465537195D-02 2.465537195D-02 2.465537195D-02 4.973953302D-01 4.973953302D-01 5.016832210D-01 5.016832210D-01 2.459528740D-02 2.459528740D-02 2.459528740D-02 2.459528740D-02 4.961831896D-01 5.004606309D-01 5.004606309D-01 5.004606309D-01 4.896821283D-02 4.896821283D-02 4.896821283D-02 9.963966793D-01 2.274954126D-02 2.274954126D-02 2.274954126D-02 2.274954126D-02 4.213610690D-01 4.213610690D-01 4.629037096D-01 4.629037096D-01 4.629037096D-01 1.403611886D-02 1.403611886D-02 1.403611886D-02 1.879619397D-01 1.879619397D-01 1.879619397D-01 1.879619397D-01 2.599733322D-01 2.599733322D-01 2.599733322D-01 2.599733322D-01 2.599733322D-01 2.599733322D-01 2.599733322D-01 2.599733322D-01 2.599733322D-01 2.599733322D-01 2.599733322D-01 1.818592793D-01 2.856045058D-01 1.702229487D-02 1.702229487D-02 1.702229487D-02 1.702229487D-02 1.702229487D-02 3.152825052D-01 3.152825052D-01 3.152825052D-01 3.152825052D-01 3.152825052D-01 3.152825052D-01 3.152825052D-01 2.205497337D-01 3.564320528D-01 3.564320528D-01 3.371201652D-02 3.371201652D-02 3.371201652D-02 7.059003118D-01 7.059003118D-01 3.720820751D-02 3.720820751D-02 3.720820751D-02 3.720820751D-02 3.720820751D-02 4.982664314D-01 4.982664314D-01 4.982664314D-01 4.982664314D-01 4.770310597D-02 9.988615589D-01 3.373118971D-02 3.373118971D-02 7.063017817D-01 7.063017817D-01 3.371201652D-02 3.371201652D-02 3.371201652D-02 7.059003118D-01 7.059003118D-01 4.421082650D-02 4.421082650D-02 4.421082650D-02 4.421082650D-02 4.421082650D-02 4.421082650D-02 4.421082650D-02 4.421082650D-02 5.728185352D-01 5.728185352D-01 5.728185352D-01 1.556400969D-02 1.556400969D-02 1.556400969D-02 1.556400969D-02 1.556400969D-02 1.556400969D-02 2.016554301D-01 2.016554301D-01 2.016554301D-01 2.016554301D-01 2.016554301D-01 2.016554301D-01 2.016554301D-01 3.166937626D-01 3.166937626D-01 3.166937626D-01 3.166937626D-01 3.166937626D-01 3.258968292D-01 3.258968292D-01 2.410337267D-02 2.410337267D-02 2.410337267D-02 2.410337267D-02 2.410337267D-02 3.122958722D-01 3.122958722D-01 3.122958722D-01 3.122958722D-01 3.122958722D-01 5.047036646D-01 5.047036646D-01 2.065175164D-02 2.065175164D-02 2.065175164D-02 2.065175164D-02 2.065175164D-02 2.065175164D-02 2.065175164D-02 2.065175164D-02 2.065175164D-02 2.675748693D-01 4.202182511D-01 4.324297217D-01 4.324297217D-01 4.324297217D-01 4.324297217D-01 2.293404842D-02 2.293404842D-02 2.293404842D-02 2.293404842D-02 2.971454972D-01 4.666580292D-01 4.802190317D-01 4.802190317D-01 4.802190317D-01 7.605685363D-02 7.605685363D-02 7.605685363D-02 7.605685363D-02 7.605685363D-02 9.854322783D-01 1.492203052D-02 1.492203052D-02 1.492203052D-02 1.492203052D-02 1.492203052D-02 3.010357463D-01 2.582160065D-01 2.582160065D-01 1.933376129D-01 3.036308820D-01 3.036308820D-01 3.036308820D-01 3.036308820D-01 3.036308820D-01 3.036308820D-01 3.036308820D-01 3.036308820D-01 1.529116407D-02 1.529116407D-02 1.529116407D-02 3.084826145D-01 2.646036220D-01 2.646036220D-01 2.646036220D-01 2.646036220D-01 2.646036220D-01 2.646036220D-01 3.111419474D-01 3.111419474D-01 3.111419474D-01 3.111419474D-01 3.111419474D-01 2.762569941D-02 2.762569941D-02 2.762569941D-02 2.762569941D-02 2.762569941D-02 5.573184581D-01 4.780447119D-01 4.780447119D-01 4.780447119D-01 1.576671465D-02 1.576671465D-02 1.576671465D-02 1.576671465D-02 3.180763305D-01 2.728327145D-01 3.208183678D-01 3.208183678D-01 3.208183678D-01 3.208183678D-01 3.208183678D-01 3.208183678D-01 3.208183678D-01 3.208183678D-01 1.770103467D-02 1.770103467D-02 2.293438406D-01 2.293438406D-01 2.293438406D-01 2.293438406D-01 2.293438406D-01 2.293438406D-01 2.293438406D-01 2.293438406D-01 2.293438406D-01 2.293438406D-01 2.293438406D-01 2.293438406D-01 2.293438406D-01 2.293438406D-01 2.293438406D-01 2.293438406D-01 2.293438406D-01 2.293438406D-01 2.293438406D-01 3.881974030D-02 3.881974030D-02 3.881974030D-02 7.055065851D-01 7.055065851D-01 2.465537195D-02 2.465537195D-02 2.465537195D-02 4.973953302D-01 4.973953302D-01 5.016832210D-01 5.016832210D-01 3.431114349D-02 3.431114349D-02 3.431114349D-02 3.431114349D-02 6.921900257D-01 7.184455094D-01 2.401893037D-02 2.401893037D-02 2.401893037D-02 2.401893037D-02 4.887330185D-01 5.029355164D-01 5.029355164D-01 5.029355164D-01 2.780000527D-02 2.780000527D-02 2.780000527D-02 5.656696730D-01 5.821079370D-01 5.821079370D-01 1.633500249D-02 1.633500249D-02 1.633500249D-02 1.633500249D-02 3.295409200D-01 3.323817900D-01 3.323817900D-01 3.323817900D-01 3.323817900D-01 3.323817900D-01 3.323817900D-01 3.323817900D-01 3.420407480D-01 4.938727676D-02 4.938727676D-02 4.938727676D-02 9.963346277D-01 2.207000979D-02 2.207000979D-02 2.207000979D-02 2.207000979D-02 4.452384588D-01 4.452384588D-01 4.452384588D-01 4.490767214D-01 4.490767214D-01 2.780000527D-02 2.780000527D-02 2.780000527D-02 5.656696730D-01 5.821079370D-01 5.821079370D-01 2.161000757D-02 2.161000757D-02 2.161000757D-02 2.161000757D-02 2.161000757D-02 4.359584140D-01 4.397166762D-01 4.524947677D-01 4.524947677D-01 4.524947677D-01 2.787602097D-02 2.787602097D-02 2.787602097D-02 5.623684236D-01 5.836996397D-01 5.836996397D-01 4.926725504D-02 4.926725504D-02 4.926725504D-02 4.926725504D-02 4.926725504D-02 9.939133200D-01 2.842039187D-02 2.842039187D-02 2.842039187D-02 5.733505148D-01 5.782931917D-01 5.782931917D-01 3.485736833D-02 3.485736833D-02 7.032095183D-01 7.092716693D-01 2.423991241D-02 2.423991241D-02 2.423991241D-02 2.423991241D-02 4.890138855D-01 4.932295224D-01 5.075626881D-01 5.075626881D-01 2.424703691D-02 2.424703691D-02 2.424703691D-02 4.891576146D-01 4.933744906D-01 5.077118690D-01 5.077118690D-01 1.620122811D-02 1.620122811D-02 1.620122811D-02 1.620122811D-02 1.620122811D-02 1.620122811D-02 1.620122811D-02 3.268421675D-01 3.268421675D-01 3.268421675D-01 3.296597724D-01 3.296597724D-01 3.392396290D-01 3.392396290D-01 3.392396290D-01 3.392396290D-01 2.429742390D-02 2.429742390D-02 2.429742390D-02 4.901741173D-01 4.901741173D-01 5.087669286D-01 5.087669286D-01 2.429742390D-02 2.429742390D-02 2.429742390D-02 4.901741173D-01 4.901741173D-01 5.087669286D-01 5.087669286D-01 1.539590890D-02 1.539590890D-02 1.539590890D-02 1.539590890D-02 1.539590890D-02 1.539590890D-02 1.539590890D-02 1.539590890D-02 1.539590890D-02 3.105957276D-01 3.105957276D-01 3.105957276D-01 3.105957276D-01 3.132732770D-01 3.132732770D-01 3.223769449D-01 3.223769449D-01 3.223769449D-01 3.223769449D-01 2.780000527D-02 2.780000527D-02 2.780000527D-02 5.656696730D-01 5.821079370D-01 5.821079370D-01 2.778926901D-02 2.778926901D-02 2.778926901D-02 2.778926901D-02 5.654512134D-01 5.818831290D-01 5.818831290D-01 2.404702047D-02 2.404702047D-02 2.404702047D-02 2.404702047D-02 2.404702047D-02 2.404702047D-02 2.404702047D-02 4.851225003D-01 5.035236986D-01 5.035236986D-01 5.035236986D-01 2.428309224D-02 2.428309224D-02 2.428309224D-02 2.428309224D-02 2.428309224D-02 4.898849917D-01 4.898849917D-01 5.084668362D-01 5.084668362D-01 2.405397620D-02 2.405397620D-02 2.405397620D-02 2.405397620D-02 2.405397620D-02 2.405397620D-02 4.852628246D-01 5.036693455D-01 5.036693455D-01 5.036693455D-01 2.788685814D-02 2.788685814D-02 5.625870516D-01 5.839265605D-01 5.839265605D-01 3.371201652D-02 3.371201652D-02 3.371201652D-02 7.059003118D-01 7.059003118D-01 3.369287598D-02 3.369287598D-02 3.369287598D-02 3.369287598D-02 7.054995254D-01 7.054995254D-01 2.787602097D-02 2.787602097D-02 2.787602097D-02 5.623684236D-01 5.836996397D-01 5.836996397D-01 2.407487963D-02 2.407487963D-02 2.407487963D-02 4.856845287D-01 5.041070453D-01 5.041070453D-01 5.041070453D-01 2.407487963D-02 2.407487963D-02 2.407487963D-02 4.856845287D-01 5.041070453D-01 5.041070453D-01 5.041070453D-01 2.787602097D-02 2.787602097D-02 2.787602097D-02 5.623684236D-01 5.836996397D-01 5.836996397D-01 2.173939144D-02 2.173939144D-02 2.173939144D-02 2.173939144D-02 4.385685929D-01 4.423493566D-01 4.423493566D-01 4.552039533D-01 4.552039533D-01 2.158458477D-02 2.158458477D-02 2.158458477D-02 4.391993773D-01 4.391993773D-01 4.519624362D-01 4.519624362D-01 4.519624362D-01 2.157955845D-02 2.157955845D-02 2.157955845D-02 2.157955845D-02 4.390971027D-01 4.390971027D-01 4.518571895D-01 4.518571895D-01 4.518571895D-01 4.938727676D-02 4.938727676D-02 4.938727676D-02 9.963346277D-01 3.365469249D-02 3.365469249D-02 3.365469249D-02 3.365469249D-02 3.365469249D-02 3.365469249D-02 7.046999965D-01 7.046999965D-01 3.371201652D-02 3.371201652D-02 3.371201652D-02 7.059003118D-01 7.059003118D-01 3.371201652D-02 3.371201652D-02 3.371201652D-02 7.059003118D-01 7.059003118D-01 4.906087670D-01 4.906087670D-01 5.092180650D-01 5.092180650D-01 4.906087670D-01 4.906087670D-01 5.092180650D-01 5.092180650D-01 1.965405038D-01 1.965405038D-01 1.965405038D-01 1.965405038D-01 2.103813844D-01 2.103813844D-01 2.103813844D-01 2.159177366D-01 2.159177366D-01 2.159177366D-01 2.159177366D-01 2.159177366D-01 2.159177366D-01 2.159177366D-01 2.159177366D-01 2.159177366D-01 1.506810529D-01 1.506810529D-01 1.506810529D-01 1.506810529D-01 1.836223486D-01 1.836223486D-01 1.836223486D-01 1.836223486D-01 1.836223486D-01 1.836223486D-01 2.017301746D-01 2.017301746D-01 2.017301746D-01 2.159365249D-01 2.159365249D-01 2.159365249D-01 2.159365249D-01 2.216190650D-01 2.216190650D-01 2.216190650D-01 2.216190650D-01 2.216190650D-01 2.216190650D-01 2.216190650D-01 2.216190650D-01 2.216190650D-01 1.546598005D-01 1.546598005D-01 1.546598005D-01 1.884709143D-01 1.884709143D-01 1.884709143D-01 1.884709143D-01 1.884709143D-01 2.565760265D-01 2.565760265D-01 2.565760265D-01 2.565760265D-01 2.565760265D-01 2.565760265D-01 2.592751554D-01 2.592751554D-01 2.592751554D-01 2.592751554D-01 2.592751554D-01 2.592751554D-01 2.592751554D-01 2.592751554D-01 2.592751554D-01 5.778893290D-02 5.180148816D-03 5.778052357D-02 5.390382129D-03 6.900698245D-02 5.791507289D-02 6.889766112D-02 5.785620756D-02 5.791507289D-02 6.878833980D-03 5.808325954D-02 6.988155303D-03 6.140494587D-02 4.644474336D-02 6.121994056D-02 4.638587804D-02 4.645315270D-02 1.823984218D-02 4.660452068D-02 1.834075417D-02 8.243668644D-02 9.519364383D-03 8.215076913D-02 9.418452393D-03 8.205826648D-02 7.607923107D-02 7.076453294D-02 7.597831908D-02 7.073089561D-02 7.073930494D-02 8.167143718D-02 7.078135160D-02 8.173030251D-02 4.653724602D-02 7.180729017D-02 4.645315270D-02 7.173160617D-02 4.641110603D-02 4.642792470D-02 3.893520945D-02 4.651201802D-02 3.906134943D-02 4.656247402D-02 7.308550871D-02 6.351568833D-02 7.304346204D-02 6.355773499D-02 5.557727845D-02 6.371751231D-02 5.557727845D-02 6.373433097D-02 5.557727845D-02 5.559409712D-02 5.524090515D-02 5.555205046D-02 5.523249582D-02 5.525772382D-02 5.503908117D-02 5.524090515D-02 5.502226251D-02 5.524090515D-02 4.398080894D-02 2.515231349D-02 4.399762761D-02 2.512708549D-02 4.400603694D-02 7.280800073D-02 5.650230503D-02 7.279959140D-02 5.652753302D-02 5.655276102D-02 4.397239961D-02 5.657798902D-02 4.393035295D-02 5.656957969D-02 6.752693993D-02 5.714141430D-02 6.754375859D-02 5.714982363D-02 3.801859221D-02 4.552812612D-02 3.804382020D-02 4.560381011D-02 3.814473219D-02 2.983631169D-02 7.549898713D-02 2.978585569D-02 7.548216847D-02 2.978585569D-02 3.616853906D-02 2.983631169D-02 3.622740438D-02 8.274783174D-02 7.157182886D-02 8.270578508D-02 7.159705685D-02 8.270578508D-02 8.274783174D-02 8.347944367D-02 8.273942241D-02 8.352149033D-02 6.496209352D-02 6.379319630D-02 6.492004685D-02 6.375114964D-02 3.960795605D-02 3.826246285D-02 3.965000271D-02 3.823723485D-02 4.909368310D-02 3.821200685D-02 4.905163644D-02 4.906845510D-02 4.359397965D-02 4.905163644D-02 4.361920765D-02 4.361079831D-02 4.617564472D-02 4.363602631D-02 4.623451005D-02 4.625132872D-02 4.348465833D-02 4.630178471D-02 4.350147699D-02 6.081629260D-02 4.641110603D-02 6.079947393D-02 4.647838069D-02 4.652042736D-02 1.648229169D-02 4.662133935D-02 1.658320368D-02 2.655667202D-02 1.514520782D-02 2.658190001D-02 1.516202649D-02 1.526293848D-02 3.931362941D-02 1.529657581D-02 3.938090407D-02 5.767120224D-02 3.927158275D-02 5.757029025D-02 3.921271742D-02 5.757869959D-02 5.759551825D-02 7.650810703D-02 5.761233692D-02 7.660060969D-02 5.762915558D-02 8.517812883D-02-7.568399245D-05 8.513608217D-02-5.886532746D-05 6.419684426D-02 3.807745753D-02 6.423889092D-02 3.811109486D-02 3.817836952D-02 7.803860554D-03 3.834655617D-02 7.887953879D-03 4.498992884D-02 2.880196379D-02 4.496470085D-02 2.875991713D-02 7.946819207D-03 3.823723485D-02 7.896363212D-03 3.827087218D-02 3.826246285D-02 5.223877345D-02 3.826246285D-02 5.223036412D-02 5.224718279D-02 2.591756275D-02 5.231445745D-02 2.590915341D-02 2.643894136D-02 2.597642807D-02 2.643894136D-02 2.645576003D-02 3.074451960D-02 2.647257869D-02 3.076133826D-02 2.648939736D-02 5.743574093D-02 2.936538907D-02 5.746937826D-02 2.939902640D-02 2.943266373D-02 1.940873940D-02 2.946630106D-02 1.944237673D-02 2.901219710D-02 4.364443564D-02 2.897855977D-02 4.367807297D-02 3.116498622D-02 6.376796830D-02 3.114816756D-02 6.376796830D-02 2.550550545D-02 3.984341736D-02 2.548868679D-02 3.988546402D-02 3.992751068D-02 5.973989804D-02 3.991910135D-02 5.974830737D-02 1.982079669D-02 2.786011855D-02 1.979556869D-02 2.791057455D-02 2.806194253D-02 2.010671399D-02 2.810398919D-02 2.016557932D-02 2.014876066D-02 2.013194199D-02 3.323368202D-02 2.012353266D-02 3.324209135D-02 3.325050068D-02 3.602558040D-02 3.325891001D-02 3.605921773D-02 3.600035241D-02 3.598353374D-02 3.598353374D-02 3.599194307D-02 3.595830574D-02 3.743834826D-02 3.742993893D-02 2.247814576D-02 3.309913270D-02 3.994432935D-02 3.991069202D-02 4.230735178D-02 3.261139141D-02 5.588842376D-02 5.584637709D-02 3.844746816D-02 4.694089398D-02 4.318192236D-02 6.022763932D-02 6.021082066D-02 5.741892227D-02 5.894101145D-02 5.892419279D-02 5.741892227D-02 5.744415027D-02 6.024445799D-02 4.320715035D-02 1.367357464D-02 1.373243996D-02 3.861565481D-02 5.597251708D-02 3.272071273D-02 4.240826377D-02 3.996114801D-02 3.997796668D-02 3.323368202D-02 2.260428574D-02 3.758971625D-02 3.610967373D-02 3.003813567D-02 3.616012972D-02 3.005495433D-02 3.011381966D-02 3.758971625D-02 3.010541033D-02 3.758971625D-02 6.464253888D-02 6.444912423D-02 3.960795605D-02 8.524540349D-02 1.552362778D-02 8.530426882D-02 8.446333557D-02 4.451059689D-02 4.453582489D-02 8.465675022D-02 5.989126602D-02 5.710777697D-02 3.986023602D-02 6.471822287D-02 6.480231620D-02 4.385466896D-02 5.640980237D-02 4.380421296D-02 5.637616504D-02 5.638457437D-02 4.377057563D-02 5.635093704D-02 4.375375697D-02 1.764277957D-02 1.750823025D-02 1.764277957D-02 1.755868625D-02 1.787824088D-02 1.755868625D-02 1.782778489D-02 7.596150042D-02 7.223616612D-02 7.598672842D-02 7.223616612D-02 7.596990975D-02 7.226980345D-02 4.542721413D-02 7.233707811D-02 4.544403280D-02 1.066303360D-02 4.555335412D-02 1.067985227D-02 7.776109757D-02 4.638587804D-02 7.772746024D-02 4.636905937D-02 1.513679849D-02 5.656117035D-02 1.511997982D-02 5.662003568D-02 1.517043582D-02 7.620537106D-02 1.061257761D-02 7.621378039D-02 1.057894028D-02 1.659161301D-02 1.062098694D-02 1.654956635D-02 4.171028917D-02 4.248394776D-02 4.167665184D-02 4.251758509D-02 2.961766904D-02 4.254281309D-02 2.960085038D-02 7.491033386D-02 4.438445690D-02 7.480101253D-02 4.431718224D-02 4.435081957D-02 7.485987786D-02 4.434241024D-02 7.162228485D-02 4.520016216D-02 7.164751285D-02 4.520016216D-02 4.431718224D-03 3.927999208D-02 4.448536889D-03 3.926317341D-02 3.868292947D-04 5.054008829D-02 3.363732998D-04 5.052326962D-02 7.316119270D-03 4.985052302D-02 7.349756600D-03 4.988416035D-02 7.110931557D-02 4.986734169D-02 7.104204091D-02 7.095794758D-02 7.803019621D-02 7.097476625D-02 7.807224287D-02 8.579201010D-02 7.805542421D-02 8.579201010D-02 6.132926188D-02 6.217860446D-02 5.417291993D-02 5.419814792D-02 6.131244321D-02 6.219542313D-02 6.127039655D-02 6.212814847D-02 6.123675922D-02 4.725203928D-02 6.123675922D-02 4.727726728D-02 4.731931394D-02 3.589103108D-02 4.735295127D-02 3.598353374D-02 6.140494587D-02 3.596671508D-02 6.141335520D-02 5.701527431D-02 6.155631386D-02 5.699004631D-02 6.154790452D-02 1.871917413D-02 2.729669328D-02 2.729669328D-02 2.527845348D-02 1.200852680D-02 2.729669328D-02 6.214685445D-02 5.822892048D-02 6.223839496D-02 5.832046099D-02 5.330404087D-02 5.330404087D-02 4.811369376D-02 4.827846669D-02 5.351458405D-02 5.848523392D-02 4.826015859D-02 5.010012290D-02 2.187818267D-02 5.019166341D-02 5.821061238D-02 3.203917964D-04 5.833876909D-02 5.126268742D-04 3.727529700D-02 5.666357770D-03 3.700982951D-02 5.410044333D-03 9.078988104D-02 1.830810265D-03 9.122012145D-02 2.759031069D-02 1.776801362D-02 2.756284854D-02 5.776206386D-02 2.750792423D-02 5.791768273D-02 5.790852868D-02 8.013456530D-02 5.783529627D-02 8.003387073D-02 6.499376441D-03 4.304234933D-02 6.499376441D-03 4.306981148D-02 4.063483383D-02 4.100099588D-02 4.344512759D-02 4.094607158D-02 4.291419261D-02 4.090945537D-02 4.286842235D-02 3.052876117D-02 4.288673046D-02 4.308811959D-02 3.080338271D-02 4.338104923D-02 4.305150338D-02 4.364651672D-02 8.575515281D-02 4.355497620D-02 8.580092307D-02 8.551714748D-02 5.415536764D-02 8.557207179D-02 5.417367574D-02-3.121531502D-03 2.991543973D-02 1.729200295D-02 8.721064697D-02 8.692687138D-02 1.703568952D-02 7.344295378D-02 1.705399762D-02 7.351618619D-02 3.624088920D-02 3.907864511D-02 3.627750540D-02 3.909695321D-02 8.124220551D-02 2.506379253D-02 4.731729130D-02 2.513702494D-02 4.717998053D-02 6.131383577D-02 4.728067509D-02 6.135960603D-02 8.065634622D-02 6.124060336D-02 8.079365699D-02 4.643850237D-02 7.336972137D-02 4.645681047D-02 7.328733491D-02 6.353827025D-02 7.323241060D-02 6.351996214D-02 3.170047974D-02 6.353827025D-02 3.175540405D-02 8.309132388D-02 3.576487853D-02 8.291739690D-02 3.586557309D-02 2.407515498D-03 8.353071834D-02 9.840605174D-03 7.588708548D-02 9.877221380D-03 5.134507388D-02 1.021592128D-02 8.164498377D-02 4.371974913D-02 8.143444059D-02 4.360074646D-02 3.341228734D-02 5.428352436D-02 3.343059544D-02 -6.508530492D-03 1.729200295D-02 1.737438941D-02 7.914592776D-02 2.187818267D-03 4.232833333D-02 2.187818267D-03 8.093096776D-02 1.913196727D-02 8.091265966D-02 3.960958008D-02 7.987825186D-02 4.178824430D-02 4.084537701D-02 2.910988321D-03 7.934731689D-02 3.057453143D-03 3.543533268D-02 3.130685553D-03 7.798336324D-02 1.455494161D-03 7.804744160D-02 3.085830702D-02 7.728765534D-02 3.073015030D-02 6.893916053D-02 5.525385380D-02 6.890254432D-02 7.829460098D-02 7.628070969D-02 -1.061869954D-03-1.482956315D-03 6.224754901D-04 1.107640210D-03 7.140160034D-04 2.011145076D-02 2.055084522D-02 4.478161908D-02 2.064238574D-02 4.495554606D-02 9.245591838D-04 4.505624062D-02 3.729360510D-02 3.727529700D-02 8.604808246D-04 4.491892985D-02 8.156259731D-02 4.326204656D-02 5.846692581D-02 6.819768237D-03 5.852185012D-02 8.429050460D-02 4.079045270D-02 8.432712081D-02 4.083622296D-02 6.893000648D-03 4.092776347D-02 7.131005982D-03 2.770015931D-02 7.460551830D-03 -4.082706891D-03-3.917933967D-03 2.775508362D-02 7.954870601D-02 6.620209918D-02 7.519137758D-02 1.449086325D-02 7.514560733D-02 7.592370169D-02 7.511814517D-02 7.594200979D-02 4.350005190D-02-5.922671207D-03 4.377467344D-02 8.161752161D-02 5.431098651D-02 8.148936490D-02 5.430183246D-02 4.424153005D-02 4.098268778D-02 4.119323096D-02 4.301488718D-02 4.091860942D-02 4.155939302D-03 4.097353373D-02 8.134290007D-02 4.425983816D-02 5.292872476D-02 5.313926794D-02 4.442461108D-02 5.305688148D-02 5.968441464D-03 5.311180579D-02 5.977595515D-03 4.052498522D-02 4.832423694D-02 4.052498522D-02 1.882988358D-02 4.057075547D-02 1.884819168D-02 4.059821763D-02 5.361527861D-02 5.132676578D-02 5.356950835D-02 6.500291846D-02 5.352373810D-02 6.502122656D-02 8.184637290D-02 6.503953466D-02 8.188298910D-02 3.456569780D-02 8.192875936D-02 3.460231401D-02 1.423454981D-02 1.451832540D-02 3.508747873D-02 1.430778222D-02 7.709542026D-02 4.293250071D-02 7.725103913D-02 4.298742502D-02 1.490279556D-02 4.304234933D-02 1.497602797D-02 7.672925821D-02 4.026867178D-02 7.680249062D-02 1.893973219D-02 4.396690851D-02 1.903127270D-02 4.399437067D-02 4.398521662D-02 1.014268887D-02 4.401267877D-02 1.024338343D-02 4.925795018D-02 3.128854743D-02 4.925795018D-02 3.127939338D-02 5.272733563D-03 3.142585820D-02 5.364274076D-03 8.418065598D-02 6.596409385D-02 8.415319383D-02 8.427219650D-02 6.605563436D-02 4.234664143D-02 6.610140462D-02 4.235579548D-02 2.629043541D-02 4.242902789D-02 2.640028402D-02 8.015287340D-02 1.807925137D-02 8.021695176D-02 1.807009732D-02 1.785955414D-02 7.881638191D-02 1.771308931D-02 5.044797685D-02 2.328790657D-02 5.055782547D-02 2.351675785D-02 7.884384406D-02 8.083942725D-02 7.880722786D-02 8.078450294D-02 1.263259083D-03 8.079365699D-02 1.373107699D-03 1.490279556D-02 1.547034674D-03 1.496687392D-02 1.503095228D-02 6.145114654D-02 1.493941176D-02 6.133214388D-02 1.091162918D-02 6.130468172D-02 1.091162918D-02 6.235739763D-02 2.584188689D-02 6.239401383D-02 2.586019499D-02 9.291362095D-03-7.872484140D-03 9.492751224D-03-7.799251729D-03 9.593445789D-03 -7.707711216D-03 1.119540477D-02 2.374560914D-02 1.123202098D-02 2.380053345D-02 2.344352544D-02 5.761559904D-02 2.350760380D-02 2.349844975D-02 5.770713955D-02 2.355337406D-02 2.504548443D-02 7.661940959D-02 2.505463848D-02 7.660110149D-02 3.204833369D-02 1.791447844D-02 3.195679318D-02 7.508152897D-02 3.178286620D-02 7.506322087D-02 3.180117430D-02 1.770393526D-02 6.241232193D-02 6.856384442D-03 6.243063004D-02 2.306820934D-02 4.360990051D-02 3.130685553D-03 4.382044369D-02 3.194763912D-03 4.362820861D-02 1.805178921D-02 4.375636533D-02 1.812502162D-02 6.222924091D-02 4.176993620D-02 7.961278437D-02 4.173331999D-02-4.686874278D-03 6.062728193D-02-4.686874278D-03 7.955786007D-02 7.215223254D-02 8.362225885D-02 7.217054065D-02 4.393029231D-02 4.399437067D-02 7.228954331D-02 4.399437067D-02 5.467714856D-02 7.031226823D-02 5.462222426D-02 7.030311418D-02 1.170803164D-02 2.383714965D-02 1.171718570D-02 2.387376586D-02 4.176078214D-02 2.389207396D-02 4.183401456D-02 7.950293576D-02 1.909535106D-02 7.959447627D-02 1.908619701D-02 3.533463811D-03 3.755907259D-02 3.441923298D-03 3.752245638D-02 7.564908015D-02 -5.217809255D-04 5.143661440D-02 5.140915224D-02-3.936242070D-04 7.880722786D-02 4.050667711D-02 7.883469001D-02-7.506322087D-04 5.122607121D-02 7.126428957D-02 -2.837755911D-04 1.954389958D-02 1.958966984D-02 3.678097822D-02 7.652786908D-02 7.635394210D-02 3.640566212D-02 4.623711324D-02 2.212534205D-02 4.631949970D-02 2.209787990D-02 2.825855644D-02 2.832263480D-02 2.224434472D-02 2.835009695D-02 2.229926903D-02 2.834094290D-02 2.830432670D-02 2.902749675D-02 2.832263480D-02 2.901834270D-02 1.370361483D-02 2.910072916D-02 1.374023104D-02 4.779330197D-02 3.258842272D-02 4.322543036D-02 3.258842272D-02 4.785738033D-02 4.779330197D-02 3.251519031D-02 4.783907222D-02 1.938828071D-02 3.958211793D-02 1.930589424D-02 1.208275568D-01 1.208320124D-01 1.208275568D-01 1.208310576D-01 1.208294663D-01 1.208307393D-01 1.208291481D-01 1.301511903D-01 1.284921208D-01 1.301543729D-01 1.305932482D-01 1.305942030D-01 1.311915699D-01 1.326959669D-01 1.326950121D-01 1.326953304D-01 1.329365686D-01 1.343986376D-01 1.305907022D-01 1.321297891D-01 1.305884744D-01 1.286814832D-01 1.280510177D-01 1.291381809D-01 1.304824950D-01 1.321762545D-01 1.330511408D-01 1.341102974D-01 1.347499924D-01 1.362120614D-01 1.359386793D-01 1.353807762D-01 1.345727237D-01 1.345724054D-01 1.340122745D-01 1.332777392D-01 1.327771222D-01 1.316466762D-01 1.311065955D-01 1.307176864D-01 1.317768430D-01 1.311046859D-01 1.325444770D-01 1.325444770D-01 1.325441587D-01 1.325444770D-01 1.350157363D-01 1.360265180D-01 1.371989738D-01 1.350714312D-01 1.336529633D-01 1.327774405D-01 1.327780770D-01 1.327780770D-01 1.332783757D-01 1.340122745D-01 1.345717689D-01 1.350593374D-01 1.555298032D-01 1.555298032D-01 1.555310148D-01 1.555314187D-01 1.555310148D-01 1.555306109D-01 1.555322264D-01 1.555314187D-01 1.555298032D-01 1.555334379D-01 1.555334379D-01 1.555322264D-01 1.555334379D-01 1.555342456D-01 1.555322264D-01 1.555326302D-01 1.555338418D-01 1.555298032D-01 1.555342456D-01 1.582869283D-01 1.582869283D-01 1.582881399D-01 1.582869283D-01 1.582877361D-01 1.582881399D-01 1.555342456D-01 1.555314187D-01 1.555302071D-01 1.555318225D-01 1.555358611D-01 1.555322264D-01 1.592751641D-01 1.582857168D-01 1.582873322D-01 1.527508699D-01 1.527532930D-01 1.527496583D-01 1.527480429D-01 1.592755679D-01 1.592755679D-01 1.592751641D-01 1.848500633D-01 1.818042753D-01 1.848525606D-01 1.818062732D-01 1.848555575D-01 1.818092700D-01 1.848560570D-01 1.970447032D-01 1.993322908D-01 1.993397829D-01 1.970452027D-01 1.918272054D-01 1.970501974D-01 1.970452027D-01 1.970511964D-01 1.970457022D-01 1.970496979D-01 1.970462016D-01 1.970511964D-01 1.970447032D-01 1.970472006D-01 1.918262065D-01 1.918292033D-01 1.918222107D-01 1.918287038D-01 1.918227102D-01 1.918287038D-01 2.097331186D-01 2.097489127D-01 2.097510186D-01 2.097357510D-01 2.097399627D-01 2.057208988D-01 2.057293223D-01 2.075314255D-01 2.097425951D-01 2.097346980D-01 2.075208961D-01 2.097420686D-01 2.097346980D-01 2.075230020D-01 2.075308990D-01 2.097452274D-01 2.097368039D-01 2.075224755D-01 2.075277402D-01 2.097389098D-01 2.097368039D-01 2.057198459D-01 2.067601485D-01 2.137362364D-01 2.115680705D-01 2.137400623D-01 2.137378761D-01 2.137389692D-01 2.137378761D-01 2.137389692D-01 2.137362364D-01 2.118085527D-01 2.137367830D-01 2.137356899D-01 2.137329571D-01 2.137351433D-01 2.137384226D-01 2.137367830D-01 2.137351433D-01 2.118058200D-01 2.118025407D-01 2.117998079D-01 2.118041803D-01 2.137296778D-01 2.137400623D-01 1.864087635D-01 1.864077953D-01 1.843602198D-01 1.830837524D-01 1.843607038D-01 1.875240387D-01 1.875230705D-01 1.864591057D-01 1.864586217D-01 1.864557173D-01 1.864552333D-01 1.864445839D-01 1.864552333D-01 1.864450680D-01 1.864562014D-01 1.800099688D-01 1.821955016D-01 1.821974378D-01 1.791865820D-01 1.875191981D-01 1.875245227D-01 1.875250068D-01 1.864566854D-01 1.875191981D-01 1.864576536D-01 1.864595898D-01 1.864566854D-01 1.864562014D-01 1.875216184D-01 1.554535810D-01 1.513304366D-01 1.532725716D-01 1.514262229D-01 1.517671903D-01 1.517667962D-01 1.514218869D-01 1.517667962D-01 1.517648252D-01 1.532741484D-01 1.532713891D-01 1.517644311D-01 1.517656136D-01 1.514254345D-01 1.532733600D-01 1.549687371D-01 1.549718905D-01 1.569554147D-01 1.549722847D-01 1.539434695D-01 1.540242768D-01 1.509685775D-01 1.517671903D-01 1.517648252D-01 1.517640369D-01 1.517652194D-01 1.509654240D-01 1.509654240D-01 1.517644311D-01 1.517656136D-01 1.532769077D-01 1.532749367D-01 1.517640369D-01 1.517656136D-01 1.509681833D-01 1.509638473D-01 1.517624602D-01 1.517667962D-01 1.549730731D-01 1.532698124D-01 1.517632485D-01 1.517648252D-01 1.517632485D-01 7.879069361D-02 7.652106471D-02 7.652126512D-02 7.664772303D-02 7.664772303D-02 7.666555940D-02 7.574628454D-02 7.574608413D-02 7.699162441D-02 7.699142400D-02 7.789266208D-02 7.789266208D-02 7.834177805D-02 7.834157764D-02 7.849068174D-02 7.849048133D-02 7.865321322D-02 7.865301281D-02 7.849028092D-02 7.849048133D-02 7.834097642D-02 7.834097642D-02 7.789206085D-02 7.789206085D-02 7.699002114D-02 7.699022155D-02 7.538434637D-02 7.538434637D-02 7.574387964D-02 7.574387964D-02 7.574608413D-02 7.574628454D-02 7.574688577D-02 7.574728659D-02 7.574788781D-02 7.574548291D-02 7.574568332D-02 7.538594964D-02 7.538615005D-02 7.699222564D-02 7.699222564D-02 7.789386453D-02 7.789386453D-02 7.833857151D-02 7.833857151D-02 7.848807643D-02 7.848827684D-02 7.864960587D-02 7.864980628D-02 7.892616992D-02 7.892637033D-02 7.864920505D-02 7.864920505D-02 7.881955247D-02 7.881875084D-02 7.881935206D-02 7.864639933D-02 7.864619892D-02 7.881855043D-02 7.881855043D-02 7.864800260D-02 7.864820301D-02 7.892516788D-02 7.892496747D-02 7.848707438D-02 7.848707438D-02 7.833616661D-02 7.833616661D-02 7.788685023D-02 7.788725104D-02 7.698501093D-02 7.698521133D-02 7.537933615D-02 7.537953656D-02 7.573886942D-02 7.573906983D-02 7.637576837D-02 7.637576837D-02 7.665794387D-02 7.665774346D-02 7.637596878D-02 7.637596878D-02 7.573927024D-02 7.573927024D-02 7.574147473D-02 7.574187555D-02 7.574247678D-02 7.574307800D-02 7.574287759D-02 7.574147473D-02 7.574147473D-02 7.567153209D-02 7.567173249D-02 7.574147473D-02 7.574147473D-02 7.574107392D-02 7.574107392D-02 7.637797287D-02 7.637777246D-02 7.638598922D-02 7.638618963D-02 7.665974755D-02 7.665974755D-02 7.664231199D-02 7.664231199D-02 7.651545326D-02 7.651545326D-02 7.878307808D-02 7.878307808D-02 7.878247686D-02 7.878247686D-02 7.651425081D-02 7.651425081D-02 7.664050831D-02 7.664070872D-02 7.665854510D-02 7.665834469D-02 7.637737164D-02 7.637717124D-02 7.638538799D-02 7.638538799D-02 7.573927024D-02 7.573947065D-02 7.566992882D-02 7.566992882D-02 7.573947065D-02 7.573967105D-02 7.573866901D-02 7.788685023D-02 7.788664982D-02 7.833596620D-02 7.833596620D-02 7.848547111D-02 7.848567152D-02 7.788664982D-02 7.698481052D-02 7.698481052D-02 7.573826819D-02 7.573826819D-02 7.574027228D-02 7.574027228D-02 7.574147473D-02 7.574207596D-02 7.574227637D-02 7.574007187D-02 7.574027228D-02 7.538013779D-02 7.538013779D-02 7.574067310D-02 7.574067310D-02 7.637737164D-02 7.637757205D-02 7.638558840D-02 7.638538799D-02 7.665914632D-02 7.665914632D-02 7.664151036D-02 7.664151036D-02 7.651425081D-02 7.651445122D-02 7.878267727D-02 7.878267727D-02 7.540438724D-02 7.662447561D-02 7.540378602D-02 7.662467602D-02 7.540398643D-02 7.662487643D-02 7.540438724D-02 5.563999397D-02 5.654075309D-02 5.564014188D-02 5.654090099D-02 5.563999397D-02 5.654090099D-02 5.621727851D-02 5.621535571D-02 5.621579943D-02 5.654090099D-02 5.564014188D-02 5.654075309D-02 5.563999397D-02 5.654075309D-02 5.563999397D-02 5.621565152D-02 5.621757432D-02 5.616151723D-02 5.606064404D-02 5.677577874D-02 5.689277389D-02 5.705118325D-02 5.734936558D-02 5.754608308D-02 5.780610517D-02 5.793256643D-02 5.808032642D-02 5.819939228D-02 5.859312311D-02 5.850570954D-02 5.875892787D-02 5.875863205D-02 5.850541373D-02 5.750836657D-02 5.670670575D-02 5.603194991D-02 5.623014650D-02 5.623029440D-02 5.675521954D-02 5.715649368D-02 5.674811996D-02 5.675492373D-02 5.622999859D-02 5.603209782D-02 5.643070961D-02 5.670788901D-02 5.750807075D-02 5.850570954D-02 5.875818833D-02 5.850437837D-02 5.875818833D-02 5.923637457D-02 5.964489619D-02 5.964504410D-02 5.680713521D-02 5.588729598D-02 5.588744389D-02 5.636370733D-02 5.813298163D-02 5.964533992D-02 5.964460038D-02 5.964430456D-02 5.958454977D-02 5.951399770D-02 5.943960003D-02 5.961768114D-02 5.961723741D-02 5.958824747D-02 5.962478072D-02 6.023016775D-02 6.054920509D-02 6.075346591D-02 6.103034949D-02 6.102990577D-02 5.996171491D-02 5.996156701D-02 5.965480602D-02 6.127646824D-02 6.081514350D-02 6.033163257D-02 6.081558722D-02 5.863143126D-02 5.986675804D-02 5.986498315D-02 5.934538269D-02 5.957390040D-02 5.952997175D-02 5.986601850D-02 6.004912848D-02 5.986557478D-02 5.986513106D-02 5.968098572D-02 6.075213473D-02 6.103892815D-02 6.066279836D-02 6.130042932D-02 6.252140904D-02 6.235471683D-02 6.252111322D-02 6.130116886D-02 6.066235464D-02 6.103833652D-02 6.075272637D-02 5.968157735D-02 6.004898058D-02 5.986601850D-02 6.007797052D-02 6.007723098D-02 5.831195019D-02 5.951222280D-02 5.994736785D-02 5.971914596D-02 6.070362094D-02 6.030634032D-02 6.070332513D-02 5.990639736D-02 6.148989934D-02 6.189664607D-02 6.185360487D-02 6.100771959D-02 6.134894311D-02 6.100742377D-02 6.134923893D-02 6.185523186D-02 6.189679398D-02 5.990639736D-02 6.050438900D-02 6.070376885D-02 6.030693195D-02 6.070391676D-02 5.923045825D-02 5.932230906D-02 5.903684681D-02 5.932230906D-02 5.871470341D-02 5.874324963D-02 5.878185359D-02 5.874384126D-02 5.878214941D-02 5.871588667D-02 5.923134570D-02 5.932319651D-02 5.903773426D-02 6.070288140D-02 6.030545287D-02 6.070258559D-02 6.007737889D-02 6.007634354D-02 5.830973157D-02 5.951074373D-02 5.994559295D-02 5.971677943D-02 5.994544505D-02 5.957197760D-02 5.862980427D-02 6.081484768D-02 6.033118885D-02 6.013905649D-02 5.965406648D-02 5.996038374D-02 5.965391857D-02 6.033104094D-02 6.251963414D-02 6.251889460D-02 6.235249822D-02 6.251948624D-02 6.129968978D-02 6.066131928D-02 6.103804071D-02 5.968054200D-02 6.004809313D-02 5.952938012D-02 5.957301295D-02 5.934449525D-02 5.863069172D-02 5.934508688D-02 5.986527896D-02 6.004942430D-02 5.953026757D-02 5.957360458D-02 5.951207490D-02 5.831002739D-02 6.007649144D-02 5.994574086D-02 5.971811060D-02 6.070273350D-02 6.050379737D-02 5.990565782D-02 6.050409319D-02 6.070332513D-02 5.932304860D-02 5.903803008D-02 5.932334442D-02 5.923134570D-02 5.923045825D-02 5.871499922D-02 5.878200150D-02 5.874354545D-02 5.878229732D-02 5.874369335D-02 5.878200150D-02 5.871499922D-02 5.923045825D-02 5.960392570D-02 5.957375249D-02 5.999484628D-02 6.087356712D-02 6.176826201D-02 6.176826201D-02 6.260187094D-02 6.282876166D-02 6.300048273D-02 6.325695503D-02 6.325769457D-02 6.300063064D-02 6.282890956D-02 6.260201884D-02 6.297770491D-02 6.323698746D-02 6.336389244D-02 6.312339419D-02 6.295892061D-02 6.293155765D-02 6.293140974D-02 6.293155765D-02 6.293170555D-02 6.239820176D-02 6.235412520D-02 6.252066950D-02 6.130072514D-02 6.066279836D-02 6.103892815D-02 5.968098572D-02 5.986601850D-02 6.004927639D-02 5.968187317D-02 6.103966769D-02 6.066368581D-02 6.130220422D-02 6.235545637D-02 6.252200067D-02 6.172951014D-02 6.172980596D-02 5.996112328D-02 5.965524974D-02 5.965495393D-02 5.996112328D-02 6.103034949D-02 6.075287427D-02 6.054846556D-02 6.022913240D-02 5.958795165D-02 5.961768114D-02 5.943945212D-02 5.951399770D-02 5.958484558D-02 5.964460038D-02 5.964504410D-02 5.923607875D-02 5.875789251D-02 5.850408256D-02 5.842184576D-02 5.859164403D-02 5.819791320D-02 5.793167898D-02 5.754519564D-02 5.734818231D-02 5.705029580D-02 5.689233017D-02 5.677592665D-02 5.606064404D-02 5.616122141D-02 5.621594734D-02 5.621550361D-02 5.621609524D-02 5.621476407D-02 5.621491198D-02 5.563940234D-02 5.654016145D-02 5.563969816D-02 5.654030936D-02 5.563955025D-02 5.654045727D-02 1.889625121D-01 1.883666206D-01 1.889711335D-01 1.889751906D-01 1.889706263D-01 1.897643031D-01 1.900442453D-01 1.900396810D-01 1.897607531D-01 1.900396810D-01 1.897435103D-01 1.883316278D-01 1.883656063D-01 1.889589621D-01 1.883656063D-01 1.883311207D-01 1.897369174D-01 1.883306135D-01 1.889594692D-01 1.883656063D-01 1.883311207D-01 1.897364103D-01 1.897541602D-01 1.883686492D-01 1.865540962D-01 1.881901353D-01 1.881886139D-01 1.909388432D-01 2.180607298D-01 2.144670736D-01 2.180624981D-01 2.144670736D-01 2.180630875D-01 2.144694312D-01 2.180642663D-01 2.196480214D-01 2.196509684D-01 2.196521473D-01 2.168483055D-01 2.196297495D-01 2.196273919D-01 2.196268025D-01 2.196285707D-01 2.196279813D-01 2.196226766D-01 2.189295259D-01 2.168282655D-01 2.187232310D-01 2.187285357D-01 1.368006732D-01 1.345473413D-01 1.367991952D-01 1.345477109D-01 1.367999342D-01 1.345466023D-01 1.368003037D-01 1.345462328D-01 1.368017818D-01 1.345451242D-01 1.368010428D-01 1.441193829D-01 1.445694580D-01 1.441252952D-01 1.527979255D-01 1.528367251D-01 1.248071683D-01 1.250662017D-01 1.374384644D-01 1.359936419D-01 1.374366168D-01 1.527975559D-01 1.528370946D-01 1.250632455D-01 1.374362473D-01 1.359903163D-01 1.374366168D-01 1.445727837D-01 1.441256647D-01 1.248060597D-01 1.250658322D-01 1.248064293D-01 1.250676798D-01 1.374392035D-01 1.359936419D-01 1.374340302D-01 1.445742618D-01 1.441227086D-01 1.527957083D-01 1.528352470D-01 1.374358778D-01 1.359932724D-01 1.374362473D-01 1.441227086D-01 1.445720447D-01 1.528348775D-01 1.527957083D-01 1.250669407D-01 1.248038426D-01 1.250650931D-01 1.441238171D-01 1.445753703D-01 6.163892838D-02 6.163844147D-02 6.163909068D-02 6.163990219D-02 6.164022680D-02 6.157790263D-02 6.176860809D-02 6.178532526D-02 6.192441852D-02 6.183012075D-02 6.186858645D-02 6.188968578D-02 6.187378013D-02 6.163535772D-02 6.143929627D-02 6.187637697D-02 6.179766025D-02 6.187540316D-02 6.202261155D-02 6.187556546D-02 6.179652413D-02 6.143832246D-02 6.163454621D-02 6.187215711D-02 6.188838736D-02 6.186728803D-02 6.187264401D-02 6.157887644D-02 6.106210520D-02 6.086539454D-02 6.191695260D-02 6.267133474D-02 6.267912526D-02 6.267944987D-02 6.105707382D-02 6.254814712D-02 6.259667558D-02 6.191143432D-02 6.191029820D-02 6.259440334D-02 6.254668640D-02 6.105528850D-02 6.267815145D-02 6.267847605D-02 6.267068553D-02 6.222175675D-02 6.223214411D-02 6.248501144D-02 6.304479285D-02 6.329165499D-02 6.363070497D-02 6.376996053D-02 6.363232799D-02 6.385581857D-02 6.390613235D-02 6.393064003D-02 6.367339053D-02 6.367436434D-02 6.393210075D-02 6.390807998D-02 6.385744159D-02 6.363443792D-02 6.377207046D-02 6.363249029D-02 6.329311571D-02 6.304560436D-02 6.248582295D-02 6.223295562D-02 6.165386021D-02 6.143540101D-02 6.217598743D-02 6.305436870D-02 6.414828772D-02 6.442614964D-02 6.495103601D-02 6.540077630D-02 6.533455687D-02 6.487605224D-02 6.427715592D-02 6.374139529D-02 6.190510452D-02 6.331502655D-02 6.381524294D-02 6.473095378D-02 6.517744803D-02 6.525957311D-02 6.533731602D-02 6.540207472D-02 6.533585529D-02 6.487686375D-02 6.427796744D-02 6.374171989D-02 6.190575373D-02 6.331453965D-02 6.381475603D-02 6.444806048D-02 6.479912084D-02 6.554636167D-02 6.444237989D-02 6.272246003D-02 6.365001897D-02 6.424972680D-02 6.504776831D-02 6.409927236D-02 6.535663002D-02 6.535695462D-02 6.532416951D-02 6.578592020D-02 6.674999720D-02 6.773111596D-02 6.817744790D-02 6.798609323D-02 6.836117436D-02 6.864633990D-02 6.889531197D-02 6.908423211D-02 6.936809923D-02 7.003727254D-02 7.004749760D-02 6.980339460D-02 6.934180622D-02 6.905728989D-02 6.864487918D-02 6.864487918D-02 6.889498737D-02 6.908342060D-02 6.936858614D-02 6.998630955D-02 6.938936086D-02 6.819075671D-02 6.796856455D-02 6.715477969D-02 6.773062905D-02 6.715461739D-02 6.687919001D-02 6.668069402D-02 6.722148603D-02 6.761295972D-02 6.761312202D-02 6.887356343D-02 6.998614724D-02 6.938822474D-02 6.818962059D-02 6.796840225D-02 6.817631179D-02 6.773046675D-02 6.715445509D-02 6.687919001D-02 6.668150553D-02 6.668036941D-02 6.722083682D-02 6.761312202D-02 6.761312202D-02 6.887372574D-02 6.938887395D-02 6.998679645D-02 6.936972225D-02 6.908358290D-02 7.003743484D-02 7.004765990D-02 6.980404381D-02 6.873658010D-02 6.948187330D-02 6.948187330D-02 6.921748248D-02 6.903732668D-02 6.740212874D-02 6.903602826D-02 6.900567769D-02 6.842106399D-02 6.855626200D-02 6.842138860D-02 6.900600229D-02 6.903667747D-02 6.921699558D-02 6.948203560D-02 6.873674241D-02 6.934278003D-02 6.905793910D-02 6.864552839D-02 6.836052515D-02 6.798593092D-02 6.773079135D-02 6.674951029D-02 6.578559559D-02 6.535646771D-02 6.532384491D-02 6.535468239D-02 6.532222188D-02 6.409813624D-02 6.504679450D-02 6.424956449D-02 6.364985666D-02 6.171423675D-02 6.171147761D-02 6.171439905D-02 6.272408306D-02 6.444351601D-02 6.554684858D-02 6.639358085D-02 6.604333200D-02 6.479960775D-02 6.444838509D-02 6.537237336D-02 6.472965536D-02 6.517647421D-02 6.525811238D-02 6.533585529D-02 6.539931558D-02 6.533293385D-02 6.487410461D-02 6.495022449D-02 6.442533813D-02 6.414715160D-02 6.305290798D-02 6.217517592D-02 6.143475180D-02 6.165272409D-02 6.223246871D-02 6.222208135D-02 6.267133474D-02 6.191679030D-02 6.086669296D-02 6.106340362D-02 6.158066177D-02 6.163487081D-02 6.187296862D-02 6.188903657D-02 6.187410474D-02 6.183109457D-02 6.182849773D-02 6.192230859D-02 6.178402683D-02 6.176649816D-02 6.157563039D-02 6.163860377D-02 6.163941529D-02 7765D 00 6.406762598D+01 5.883397765D+00 6.402786445D+01 5.957716784D+00 7.641148593D+01 6.419160491D+01 7.637711988D+01 6.417271547D+01 6.420193420D+01 7.681649615D+00 6.424921469D+01 7.683658858D+00 6.798478512D+01 5.151374569D+01 6.788997351D+01 5.148439535D+01 5.152988778D+01 2.026363225D+01 5.157863196D+01 2.026373291D+01 9.116164644D+01 1.060632314D+01 9.101081447D+01 1.058942556D+01 9.092409462D+01 8.424277385D+01 7.841628355D+01 8.420383984D+01 7.840260653D+01 7.839867596D+01 9.045439141D+01 7.836766232D+01 9.042058772D+01 5.144780028D+01 7.943405038D+01 5.142380247D+01 7.941863899D+01 5.144529522D+01 5.149343316D+01 4.317545284D+01 5.151959834D+01 4.323939374D+01 5.149345936D+01 8.094992390D+01 7.036663670D+01 8.088924141D+01 7.037002960D+01 6.144145532D+01 7.043762406D+01 6.143475451D+01 7.046144804D+01 6.145008251D+01 6.148203694D+01 6.109699511D+01 6.144167320D+01 6.108477232D+01 6.112340506D+01 6.087806427D+01 6.109783408D+01 6.085436717D+01 6.109138830D+01 4.861464344D+01 2.779204783D+01 4.863299600D+01 2.776273056D+01 4.863808808D+01 8.056841596D+01 6.251386279D+01 8.052164594D+01 6.250943356D+01 6.251270019D+01 4.859203646D+01 6.252700209D+01 4.853524405D+01 6.250867010D+01 7.468123820D+01 6.318721851D+01 7.467294147D+01 6.316462880D+01 4.216097559D+01 5.043223190D+01 4.211956324D+01 5.043232335D+01 4.214412673D+01 3.300376444D+01 8.353930957D+01 3.301384331D+01 8.357370699D+01 3.305246275D+01 4.008231576D+01 3.304314407D+01 4.007922781D+01 9.153924453D+01 7.920812478D+01 9.153758765D+01 7.925711228D+01 9.152982426D+01 9.153902862D+01 9.230755228D+01 9.146138090D+01 9.230085257D+01 7.176575728D+01 7.049728697D+01 7.177110224D+01 7.050712127D+01 4.375134021D+01 4.225699614D+01 4.379494548D+01 4.224292421D+01 5.427159682D+01 4.225173892D+01 5.425083331D+01 5.426940501D+01 4.820052308D+01 5.422045658D+01 4.819403810D+01 4.829392352D+01 5.110473578D+01 4.827749572D+01 5.112414223D+01 5.112270903D+01 4.804404414D+01 5.114961959D+01 4.804318247D+01 6.735594883D+01 5.141015603D+01 6.729559937D+01 5.143287206D+01 5.143639694D+01 1.818228889D+01 5.149338248D+01 1.826280556D+01 2.947635002D+01 1.685064744D+01 2.947254969D+01 1.680612789D+01 1.687223696D+01 4.343303285D+01 1.684822235D+01 4.347158230D+01 6.381459999D+01 4.349236896D+01 6.374928831D+01 4.345805723D+01 6.377286880D+01 6.376896225D+01 8.464948031D+01 6.372279560D+01 8.469224481D+01 6.368442060D+01 9.420075239D+01-6.877308478D-02 9.417644574D+01-4.123350056D-02 7.111039337D+01 4.223443661D+01 7.115784865D+01 4.224283324D+01 4.229293586D+01 8.662049812D+00 4.240275839D+01 8.673723289D+00 4.982074055D+01 3.194038305D+01 4.982798942D+01 3.191403964D+01 8.745105287D+00 4.228781659D+01 8.752797480D+00 4.233746192D+01 4.230064505D+01 5.772982054D+01 4.225201392D+01 5.768013978D+01 5.769643824D+01 2.859012205D+01 5.779293761D+01 2.860729697D+01 2.921156583D+01 2.871119532D+01 2.922904658D+01 2.924591740D+01 3.397942784D+01 2.924409133D+01 3.397426492D+01 2.923614080D+01 6.347965820D+01 3.242624094D+01 6.350600539D+01 3.246285031D+01 3.250333220D+01 2.142046356D+01 3.254107349D+01 2.144695240D+01 3.203668099D+01 4.821532257D+01 3.199383418D+01 4.824776464D+01 3.443355155D+01 7.047919006D+01 3.439707538D+01 7.046762536D+01 2.827197169D+01 4.411382936D+01 2.822416723D+01 4.412930686D+01 4.413637254D+01 6.603580462D+01 4.410538335D+01 6.602577638D+01 2.199528301D+01 3.087777478D+01 2.194517381D+01 3.090586361D+01 3.107530786D+01 2.225039338D+01 3.106983781D+01 2.226570547D+01 2.232953056D+01 2.231490628D+01 3.680088827D+01 2.229272666D+01 3.678605912D+01 3.676662965D+01 3.981459085D+01 3.673788566D+01 3.982235096D+01 3.982113654D+01 3.980787686D+01 3.981278974D+01 3.982652082D+01 3.979322108D+01 4.140842841D+01 4.138970443D+01 2.482824251D+01 3.654514760D+01 4.409952308D+01 4.406264057D+01 4.673013686D+01 3.602976510D+01 6.179252770D+01 6.175000093D+01 4.249869041D+01 5.185713584D+01 4.770080714D+01 6.656488262D+01 6.655683140D+01 6.347381222D+01 6.515224589D+01 6.510239153D+01 6.342724030D+01 6.348139495D+01 6.657007727D+01 4.772386995D+01 1.506335360D+01 1.513272497D+01 4.267597302D+01 6.185560919D+01 3.613161172D+01 4.683983775D+01 4.412997091D+01 4.414694269D+01 3.668753756D+01 2.493151167D+01 4.150297279D+01 3.996389011D+01 3.321848141D+01 3.996543486D+01 3.319534299D+01 3.323616784D+01 4.149158475D+01 3.320990221D+01 4.148597036D+01 7.145887050D+01 7.126202765D+01 4.379200439D+01 9.424755325D+01 1.712508575D+01 9.426669524D+01 9.332058784D+01 4.918308859D+01 4.921275535D+01 9.354193696D+01 6.616368608D+01 6.308161590D+01 4.400870295D+01 7.150529109D+01 7.160391217D+01 4.844174478D+01 6.232154300D+01 4.837945145D+01 6.228354310D+01 6.229627635D+01 4.834861785D+01 6.225840134D+01 4.831949662D+01 1.951401556D+01 1.936031023D+01 1.950167059D+01 1.940370301D+01 1.974972088D+01 1.939149294D+01 1.968437715D+01 8.400394050D+01 7.987364883D+01 8.400582185D+01 7.984806350D+01 8.396590391D+01 7.986262759D+01 5.017015535D+01 7.992544236D+01 5.018325511D+01 1.172051099D+01 5.031215254D+01 1.175247352D+01 8.603447511D+01 5.133508878D+01 8.598993007D+01 5.130254640D+01 1.671665653D+01 6.251772123D+01 1.667706964D+01 6.256102930D+01 1.671355505D+01 8.420443951D+01 1.166071594D+01 8.420937917D+01 1.162393771D+01 1.828347969D+01 1.170182911D+01 1.827703660D+01 4.610018702D+01 4.692973437D+01 4.603021805D+01 4.695093068D+01 3.267683055D+01 4.697059220D+01 3.266561139D+01 8.277752602D+01 4.902958131D+01 8.268449437D+01 4.898802425D+01 4.898225794D+01 8.271391509D+01 4.895803118D+01 7.912672341D+01 4.990556410D+01 7.915564174D+01 4.991009596D+01 4.899591538D+00 4.344346005D+01 4.925549345D+00 4.342810880D+01 4.331967935D-01 5.589617385D+01 3.717899952D-01 5.585579794D+01 8.062828255D+00 5.507922723D+01 8.060735383D+00 5.508700201D+01 7.855728602D+01 5.507274339D+01 7.850649068D+01 7.846668704D+01 8.628867258D+01 7.848018109D+01 8.629782704D+01 9.482796617D+01 8.626478974D+01 9.481392376D+01 6.776144343D+01 6.869626108D+01 5.984192274D+01 5.987331811D+01 6.774256178D+01 6.872158893D+01 6.770577971D+01 6.865782397D+01 6.767675923D+01 5.221558904D+01 6.768925407D+01 5.225516182D+01 5.231931110D+01 3.965281302D+01 5.231000320D+01 3.972545477D+01 6.783988127D+01 3.971787748D+01 6.787147624D+01 6.302815487D+01 6.805682509D+01 6.301163219D+01 6.806054445D+01 2.067798656D+01 3.012239556D+01 3.011664058D+01 2.790597520D+01 1.326381926D+01 3.019352636D+01 6.309155893D+01 5.913759626D+01 6.325243185D+01 5.935116070D+01 5.425556479D+01 5.424883273D+01 4.896214950D+01 4.898926280D+01 5.431019209D+01 5.936369798D+01 4.899842653D+01 5.090642859D+01 2.228773994D+01 5.106469894D+01 5.915903246D+01 3.155669844D-01 5.924110068D+01 5.072666628D-01 3.793676654D+01 5.850469394D+00 3.768179503D+01 5.518288976D+00 9.225938898D+01 1.818563498D+00 9.263348663D+01 2.806738911D+01 1.814887394D+01 2.812421571D+01 5.881566946D+01 2.808255113D+01 5.887987684D+01 5.886685379D+01 8.151322551D+01 5.887798422D+01 8.144014574D+01 6.741881472D+00 4.386721508D+01 6.736416018D+00 4.388391569D+01 4.140243686D+01 4.165422186D+01 4.414841041D+01 4.163200359D+01 4.364486224D+01 4.163378897D+01 4.363477442D+01 3.109420211D+01 4.363872489D+01 4.376128963D+01 3.127541335D+01 4.408535327D+01 4.382935513D+01 4.436105982D+01 8.711283335D+01 4.418665570D+01 8.709525616D+01 8.700479418D+01 5.512835814D+01 8.702438434D+01 5.504366502D+01 -3.195700763D+00 3.036799924D+01 1.752735933D+01 8.853705758D+01 8.843000390D+01 1.744693829D+01 7.476875974D+01 1.747294307D+01 7.479021760D+01 3.691915182D+01 3.975997768D+01 3.688240644D+01 3.971015821D+01 8.248969366D+01 2.539489048D+01 4.801197886D+01 2.548560490D+01 4.790905034D+01 6.228452170D+01 4.804491067D+01 6.240927433D+01 8.202671426D+01 6.230861836D+01 8.217684240D+01 4.713737509D+01 7.450782422D+01 4.717927513D+01 7.445848548D+01 6.457364495D+01 7.445288638D+01 6.459491143D+01 3.226934713D+01 6.461145510D+01 3.230736160D+01 8.439151785D+01 3.631578336D+01 8.422380874D+01 3.643131364D+01 2.448105560D+00 8.486613097D+01 1.001983134D+01 7.712136179D+01 1.005784647D+01 5.217965221D+01 1.033918903D+01 8.294904893D+01 4.441518945D+01 8.272928315D+01 4.429006685D+01 3.393464371D+01 5.513995001D+01 3.395871894D+01-6.613033013D+00 1.765114107D+01 1.773484990D+01 8.048563810D+01 2.299313376D+00 4.306830162D+01 2.274526066D+00 8.227067769D+01 1.947070700D+01 8.218331140D+01 4.021943303D+01 8.110818013D+01 4.239913661D+01 4.159637442D+01 3.056693466D+00 8.069079538D+01 3.181994539D+00 3.607060819D+01 3.235788135D+00 7.927866944D+01 1.510499260D+00 7.929949880D+01 3.128261305D+01 7.848023656D+01 3.121818047D+01 6.999123341D+01 5.617478229D+01 7.001389862D+01 7.962763161D+01 7.757975800D+01-1.080649899D+00-1.402641064D+00 7.396490208D-01 1.239542883D+00 8.282246385D-01 2.053297374D+01 2.094334648D+01 4.549807912D+01 2.095286219D+01 4.560918470D+01 8.647422679D-01 4.569710104D+01 3.781210311D+01 3.796012897D+01 9.993682698D-01 4.575853200D+01 8.298374116D+01 4.407093313D+01 5.940987967D+01 6.910799244D+00 5.940033081D+01 8.571536166D+01 4.155078341D+01 8.579771892D+01 4.157651523D+01 7.047138954D+00 4.158987071D+01 7.216354804D+00 2.806914679D+01 7.485668827D+00-4.242901921D+00-4.036014645D+00 2.817405543D+01 8.087690508D+01 6.732179522D+01 7.645858408D+01 1.482198245D+01 7.646097750D+01 7.724980901D+01 7.642839642D+01 7.726356917D+01 4.426774542D+01-5.992726459D+00 4.446791351D+01 8.286387744D+01 5.518224635D+01 8.282409436D+01 5.524026037D+01 4.486766156D+01 4.156829433D+01-5.009137321D+02 4.368930090D+01 4.161837626D+01 4.270737122D+00 4.164073060D+01 8.264981021D+01 4.491964354D+01 5.368732585D+01 5.392225024D+01 4.511096409D+01 5.390849800D+01 6.101242398D+00 5.400240763D+01 6.113069316D+00 4.115315645D+01 4.905849427D+01 4.112409410D+01 1.906935864D+01 4.114490582D+01 1.906768290D+01 4.116111854D+01 5.457584206D+01 5.227238773D+01 5.453732807D+01 6.613233927D+01 5.444948533D+01 6.609801537D+01 8.315301499D+01 6.606421609D+01 8.315005569D+01 3.505582725D+01 8.315882923D+01 3.506278847D+01 1.436225050D+01 1.482477910D+01 3.574279491D+01 1.461303984D+01 7.840173984D+01 4.366379222D+01 7.850432744D+01 4.366760720D+01 1.512183387D+01 4.368869669D+01 1.515223045D+01 7.800682665D+01 4.098189472D+01 7.809863869D+01 1.919789102D+01 4.461387104D+01 1.927448204D+01 4.462872690D+01 4.473196578D+01 1.034338248D+01 4.474620324D+01 1.042157651D+01 5.005817651D+01 3.179158587D+01 5.004021406D+01 3.176686658D+01 5.339330719D+00 3.189112823D+01 5.409910074D+00 8.548291007D+01 6.697064184D+01 8.544425040D+01 8.569800692D+01 6.719118204D+01 4.309841639D+01 6.722257504D+01 4.308823193D+01 2.675486715D+01 4.311812656D+01 2.681976578D+01 8.142936578D+01 1.833977366D+01 8.145065836D+01 1.829496313D+01 1.821299848D+01 8.016030737D+01 1.809234018D+01 5.134914018D+01 2.374071859D+01 5.138755611D+01 2.387146697D+01 8.010216866D+01 8.213393798D+01 8.007367613D+01 8.208677263D+01 1.345194463D+00 8.216312246D+01 1.410293791D+00 1.510716094D+01 1.477491115D+00 1.510438222D+01 1.519482651D+01 6.237026833D+01 1.515013709D+01 6.230608935D+01 1.113612076D+01 6.231775922D+01 1.102728902D+01 6.330464306D+01 2.620286478D+01 6.333389526D+01 2.621267367D+01 9.469106070D+00-7.997077871D+00 9.630558111D+00 -7.949278574D+00 9.713022864D+00-7.872604505D+00 1.132110964D+01 2.406854057D+01 1.135319584D+01 2.411875443D+01 2.381631547D+01 5.851737821D+01 2.385291486D+01 2.382030426D+01 5.856909895D+01 2.386490392D+01 2.544873760D+01 7.784529749D+01 2.545136416D+01 7.778015795D+01 3.252714251D+01 1.817915942D+01 3.245050656D+01 7.625517878D+01 3.225319166D+01 7.620120255D+01 3.223612017D+01 1.792045651D+01 6.334190376D+01 6.897948967D+00 6.335281288D+01 2.339913387D+01 4.426059620D+01 3.123422891D+00 4.445236786D+01 3.175004229D+00 4.425068474D+01 1.826463698D+01 4.437876243D+01 1.833856475D+01 6.321668927D+01 4.242657221D+01 8.086191231D+01 4.237324956D+01-4.832363992D+00 6.151482387D+01-4.841852253D+00 8.087413745D+01 7.333835304D+01 8.497470879D+01 7.332855450D+01 4.462588077D+01 4.465834759D+01 7.338900564D+01 4.463163844D+01 5.551949734D+01 7.139085945D+01 5.544439897D+01 7.136640599D+01 1.183710599D+01 2.414898331D+01 1.182695722D+01 2.417213303D+01 4.233945326D+01 2.418336507D+01 4.241186282D+01 8.076104899D+01 1.937799152D+01 8.082584469D+01 1.933753980D+01 3.564561619D+00 3.814366062D+01 3.494914313D+00 3.812703675D+01 7.686913028D+01-5.161697169D-01 5.227474818D+01 5.224371809D+01 -3.865298402D-01 8.007597552D+01 4.115662096D+01 8.009003575D+01-7.660913458D-01 5.203054696D+01 7.237433729D+01-3.144627052D-01 1.981762138D+01 1.984683050D+01 3.731264703D+01 7.769377722D+01 7.750969074D+01 3.692008952D+01 4.690523100D+01 2.240909319D+01 4.698400857D+01 2.236838308D+01 2.862260752D+01 2.872099980D+01 2.253200203D+01 2.872517573D+01 2.257421032D+01 2.871123510D+01 2.868430007D+01 2.941953006D+01 2.870320525D+01 2.940864658D+01 1.392476600D+01 2.951914712D+01 1.388097062D+01 4.854269810D+01 3.305586629D+01 4.383157434D+01 3.303194861D+01 4.855967545D+01 4.856623111D+01 3.303386065D+01 4.858461107D+01 1.963226338D+01 4.014071274D+01 1.953496772D+01-3.033558609D+01-3.029383604D+01-3.033920457D+01 -3.032031031D+01-3.033212375D+01-3.029598743D+01-3.034856101D+01 2.765098744D+02 2.218316066D+02 2.765160839D+02 2.909372001D+02 2.909412937D+02 3.105920458D+02 3.601022106D+02 3.601022532D+02 3.600901410D+02 3.680476077D+02 4.162017698D+02 2.909151103D+02 3.416011048D+02 2.908964038D+02 2.281538873D+02 2.074116368D+02 2.431874699D+02 2.874211627D+02 3.431369460D+02 3.719137778D+02 4.067444226D+02 4.277758248D+02 4.758812710D+02 4.668520928D+02 4.484771528D+02 4.218763222D+02 4.218730429D+02 4.034435900D+02 3.792807393D+02 3.628151567D+02 3.256276534D+02 3.078859269D+02 2.951087563D+02 3.299927587D+02 3.078840126D+02 3.552899496D+02 3.552906459D+02 3.552801693D+02 3.552904127D+02 4.366222525D+02 4.698536240D+02 5.084282515D+02 4.383306068D+02 3.916200832D+02 3.627935259D+02 3.628163806D+02 3.628207844D+02 3.792941613D+02 4.034669429D+02 4.218945019D+02 4.379546406D+02 2.675004481D+01 2.673839829D+01 2.673819157D+01 2.670157204D+01 2.674387502D+01 2.675349025D+01 2.671676546D+01 2.672165992D+01 2.672486611D+01 2.674833892D+01 2.675058344D+01 2.677138495D+01 2.673611205D+01 2.675733991D+01 2.675054534D+01 2.671344519D+01 2.675315564D+01 2.667894851D+01 2.675838398D+01 9.817472178D+01 9.816784201D+01 9.818171183D+01 9.820279936D+01 9.818217042D+01 9.819436810D+01 2.685744900D+01 2.682375156D+01 2.668592314D+01 2.684894450D+01 2.682590367D+01 2.674323776D+01 1.237917228D+02 9.818501896D+01 9.817292375D+01-4.531001715D+01 -4.534171113D+01-4.536506835D+01-4.547639301D+01 1.238315370D+02 1.238538980D+02 1.238058840D+02-1.305119479D+02-1.943774075D+02-1.304883427D+02-1.943654640D+02 -1.304510622D+02-1.943270793D+02-1.304649314D+02 1.251797612D+02 1.731463667D+02 1.731697647D+02 1.251248857D+02 1.568631518D+01 1.251597884D+02 1.250786027D+02 1.251742019D+02 1.250818816D+02 1.251591320D+02 1.250838699D+02 1.251742198D+02 1.250643445D+02 1.251073975D+02 1.565923440D+01 1.567508917D+01 1.560889641D+01 1.567871048D+01 1.564576492D+01 1.568678459D+01 1.657280052D+02 1.660447486D+02 1.660218118D+02 1.656941510D+02 1.657389052D+02 8.591371246D+01 8.596411889D+01 1.217907185D+02 1.657910754D+02 1.657299238D+02 1.217152814D+02 1.657651146D+02 1.657348809D+02 1.217482991D+02 1.217771511D+02 1.658280848D+02 1.657501703D+02 1.217400967D+02 1.217691194D+02 1.657407964D+02 1.657279051D+02 8.587887678D+01 1.066424028D+02 8.905939414D+01 4.754781250D+01 8.906612802D+01 8.903661875D+01 8.909686262D+01 8.904517672D+01 8.909743109D+01 8.908236922D+01 5.212203445D+01 8.907660405D+01 8.907808227D+01 8.898469412D+01 8.902619127D+01 8.903908142D+01 8.907221325D+01 8.901501411D+01 5.204141503D+01 5.205654728D+01 5.200227415D+01 5.204193772D+01 8.903744035D+01 8.910340348D+01 2.665454569D+01 2.664878346D+01 -1.774267737D+01-4.524098768D+01-1.777311869D+01 5.066973936D+01 5.067968557D+01 2.758770515D+01 2.758970981D+01 2.763331002D+01 2.755463651D+01 2.732433509D+01 2.755483311D+01 2.733497833D+01 2.757596507D+01-1.118102593D+02-6.448436276D+01 -6.449482692D+01-1.297570744D+02 5.072610848D+01 5.070482824D+01 5.064990642D+01 2.757607511D+01 5.070388671D+01 2.764738315D+01 2.759764042D+01 2.765076438D+01 2.758240358D+01 5.067354064D+01 1.237881323D+02 1.427564387D+01 6.583114431D+01 1.667731338D+01 2.570744927D+01 2.575803132D+01 1.669404429D+01 2.572816888D+01 2.570250295D+01 6.586103046D+01 6.574285193D+01 2.567125125D+01 2.570449754D+01 1.668741985D+01 6.581529147D+01 1.109061723D+02 1.109963904D+02 1.637401194D+02 1.110406312D+02 8.364496808D+01 8.577866653D+01 4.509057801D+00 2.570841689D+01 2.573599699D+01 2.573344310D+01 2.573924995D+01 4.517806067D+00 4.513926295D+00 2.571610432D+01 2.567404026D+01 6.585177966D+01 6.581210592D+01 2.565455990D+01 2.568125962D+01 4.515725521D+00 4.485338174D+00 2.571037536D+01 2.571079080D+01 1.109652131D+02 6.574208173D+01 2.571531323D+01 2.567884595D+01 2.567878125D+01 1.108592233D+02-7.743035185D+00-7.731185794D+00-1.113979636D+00-1.111450667D+00 -1.723926401D-01-4.818296646D+01-4.819056951D+01 1.692958162D+01 1.692172711D+01 6.403010215D+01 6.403200306D+01 8.751357892D+01 8.750514451D+01 9.530583035D+01 9.529620680D+01 1.038034857D+02 1.037937890D+02 9.528996781D+01 9.530033715D+01 8.748429005D+01 8.748375983D+01 6.401989490D+01 6.401872142D+01 1.687387499D+01 1.688306764D+01-6.703788581D+01-6.703876065D+01-4.825587401D+01-4.825713356D+01 -4.815152727D+01-4.814311208D+01-4.814542302D+01-4.814606064D+01-4.814726846D+01 -4.827566253D+01-4.826605247D+01-6.706512585D+01-6.705479083D+01 1.687108424D+01 1.687094233D+01 6.398984293D+01 6.398996510D+01 8.723216497D+01 8.723268045D+01 9.504932615D+01 9.506066677D+01 1.034941154D+02 1.035056450D+02 1.179588743D+02 1.179705589D+02 1.034904160D+02 1.034914303D+02 1.124031473D+02 1.123631556D+02 1.123965105D+02 1.033739094D+02 1.033651159D+02 1.123818634D+02 1.123839736D+02 1.034807886D+02 1.034928989D+02 1.179741219D+02 1.179652124D+02 9.508755234D+01 9.508863577D+01 8.721697839D+01 8.721832141D+01 6.374072012D+01 6.376255996D+01 1.661768202D+01 1.662845331D+01-6.728566112D+01-6.727488694D+01-4.849640598D+01 -4.848589324D+01-1.521542473D+01-1.521558506D+01-4.721734727D-01-4.829918028D-01 -1.521034821D+01-1.521099416D+01-4.848562459D+01-4.848684867D+01-4.837706629D+01 -4.839201816D+01-4.837738417D+01-4.839232927D+01-4.840691068D+01-4.848094114D+01 -4.848114118D+01-5.213735340D+01-5.212704777D+01-4.848293467D+01-4.848298086D+01 -4.850204632D+01-4.850180023D+01-1.521888527D+01-1.522890230D+01-1.479891652D+01 -1.478805778D+01-4.898694888D-01-4.893632510D-01-1.398120193D+00-1.397532054D+00 -8.021042097D+00-8.020067512D+00 1.104921809D+02 1.104930456D+02 1.104768257D+02 1.104778462D+02-8.049975560D+00-8.048909987D+00-1.441770006D+00-1.430215501D+00 -4.931024071D-01-5.024998180D-01-1.517845775D+01-1.518753196D+01-1.475573000D+01 -1.475470041D+01-4.851284394D+01-4.850105773D+01-5.213108808D+01-5.212983843D+01 -4.849291471D+01-4.848038391D+01-4.852230497D+01 6.374509209D+01 6.373503397D+01 8.721878765D+01 8.721907289D+01 9.503402929D+01 9.504462541D+01 6.373945149D+01 1.660938072D+01 1.660917308D+01-4.853278972D+01-4.853314926D+01-4.843060132D+01 -4.845551924D+01-4.841878667D+01-4.844297700D+01-4.843337443D+01-4.854872693D+01 -4.853831814D+01-6.735704037D+01-6.735707224D+01-4.851767040D+01-4.851768348D+01 -1.524669163D+01-1.523620018D+01-1.481724142D+01-1.482766501D+01-5.215927559D-01 -5.215064891D-01-1.442563659D+00-1.442384895D+00-8.091089017D+00-8.080397371D+00 1.104586383D+02 1.104588601D+02-6.597214807D+01-2.209324741D+00-6.599561041D+01 -2.198774154D+00-6.599047472D+01-2.200058630D+00-6.598629910D+01-6.675986110D+01 -2.976195768D+00-6.673718955D+01-2.955923437D+00-6.674036853D+01-2.950768501D+00 -2.600058955D+01-2.601041334D+01-2.599912360D+01-2.974770967D+00-6.674723003D+01 -2.979176141D+00-6.675627950D+01-2.980406707D+00-6.675990061D+01-2.601686752D+01 -2.598590848D+01-2.987457120D+01-3.701250236D+01 1.362276561D+01 2.190369763D+01 3.311611380D+01 5.422529951D+01 6.814783324D+01 8.653463383D+01 9.547726365D+01 1.059306776D+02 1.143523250D+02 1.422289163D+02 1.360343670D+02 1.539658390D+02 1.539506484D+02 1.360229245D+02 6.544012583D+01 8.689335614D+00-3.907013933D+01 -2.502438697D+01-2.501176021D+01 1.215506347D+01 4.056059847D+01 1.163400588D+01 1.210917905D+01-2.507548950D+01-3.910260692D+01-1.088604530D+01 8.734458324D+00 6.539052776D+01 1.360364338D+02 1.539199536D+02 1.359488920D+02 1.539261576D+02 1.878003652D+02 2.167289744D+02 2.167428035D+02 1.581479617D+01-4.931768292D+01 -4.932502230D+01-1.560864436D+01 1.096517169D+02 2.167499746D+02 2.167098748D+02 2.166993431D+02 2.124726818D+02 2.074807797D+02 2.022149809D+02 2.148302534D+02 2.148000708D+02 2.127451770D+02 2.153277263D+02 2.581972920D+02 2.807858552D+02 2.952460079D+02 3.148493716D+02 3.148305603D+02 2.391684673D+02 2.391583537D+02 2.174386430D+02 3.322977947D+02 2.996289561D+02 2.653876807D+02 2.996611444D+02 1.449693987D+02 2.324446186D+02 2.323483650D+02 1.955309124D+02 2.117066895D+02 2.085960166D+02 2.323986832D+02 2.453692454D+02 2.323733250D+02 2.323759119D+02 2.193170133D+02 2.951651746D+02 3.154690814D+02 2.888249210D+02 3.339788203D+02 4.204543748D+02 4.086501844D+02 4.204369417D+02 3.340382032D+02 2.887994503D+02 3.154280164D+02 2.952016996D+02 2.193427702D+02 2.453631421D+02 2.324056399D+02 2.474159495D+02 2.474299118D+02 1.223919264D+02 2.073651681D+02 2.381668633D+02 2.219896897D+02 2.917082317D+02 2.635721685D+02 2.916893035D+02 2.352588191D+02 3.474108197D+02 3.762197316D+02 3.732359908D+02 3.133102191D+02 3.374406315D+02 3.132449106D+02 3.374460718D+02 3.732739548D+02 3.762029695D+02 2.352400783D+02 2.775949421D+02 2.917226109D+02 2.636228428D+02 2.917451707D+02 1.874756975D+02 1.939737698D+02 1.737493765D+02 1.939572458D+02 1.509138263D+02 1.529112098D+02 1.556300522D+02 1.529279092D+02 1.556329732D+02 1.509347016D+02 1.874340563D+02 1.939335667D+02 1.737148197D+02 2.916450515D+02 2.635101662D+02 2.916460146D+02 2.473888516D+02 2.473790892D+02 1.222726586D+02 2.073213697D+02 2.381114657D+02 2.218990850D+02 2.380843170D+02 2.116175884D+02 1.448601983D+02 2.995871080D+02 2.653276022D+02 2.517126232D+02 2.173563964D+02 2.390498390D+02 2.173505727D+02 2.653349760D+02 4.204052092D+02 4.203544320D+02 4.085717763D+02 4.204008146D+02 3.340105091D+02 2.887962069D+02 3.154688476D+02 2.193130576D+02 2.453305050D+02 2.085832618D+02 2.116590180D+02 1.954595940D+02 1.448929594D+02 1.954715793D+02 2.323080471D+02 2.453485171D+02 2.085819211D+02 2.116565563D+02 2.073132117D+02 1.222746269D+02 2.473705075D+02 2.381062034D+02 2.219771936D+02 2.916960570D+02 2.775938129D+02 2.352151243D+02 2.775819784D+02 2.916781548D+02 1.939062134D+02 1.737162153D+02 1.939212611D+02 1.874114065D+02 1.873925367D+02 1.508977926D+02 1.556552001D+02 1.529409503D+02 1.556926617D+02 1.529655491D+02 1.556828731D+02 1.509397941D+02 1.874412855D+02 2.138591147D+02 2.117109953D+02 2.415065694D+02 3.037265517D+02 3.670767935D+02 3.670901394D+02 4.261661421D+02 4.422428839D+02 4.544124346D+02 4.725840752D+02 4.726381696D+02 4.544237814D+02 4.422538336D+02 4.261778770D+02 4.527684602D+02 4.711222353D+02 4.800915618D+02 4.630522978D+02 4.513970697D+02-9.322790259D+01-9.322349763D+01-9.319757128D+01-9.317585021D+01 4.117519627D+02 4.086365657D+02 4.204341182D+02 3.340342646D+02 2.888530630D+02 3.154866700D+02 2.193007207D+02 2.323866546D+02 2.453599473D+02 2.193287509D+02 3.154758667D+02 2.888447249D+02 3.340604453D+02 4.086548174D+02 4.204628295D+02 3.643627894D+02 3.643468088D+02 2.390871115D+02 2.174321678D+02 2.174225589D+02 2.391174243D+02 3.148522701D+02 2.952092179D+02 2.807381153D+02 2.581271178D+02 2.127225064D+02 2.148285174D+02 2.022042881D+02 2.074810403D+02 2.124929091D+02 2.167186286D+02 2.167069950D+02 1.877466708D+02 1.538885778D+02 1.359198980D+02 1.301016007D+02 1.421321840D+02 1.142567766D+02 9.541342092D+01 6.805636445D+01 5.410624399D+01 3.301290058D+01 2.182596018D+01 1.358132990D+01-3.706857182D+01 -2.995344702D+01-2.603078447D+01-2.605456140D+01-2.605952953D+01-2.608363381D+01 -2.608498876D+01-6.683252096D+01-3.056186543D+00-6.681391568D+01-3.049359791D+00 -6.682921809D+01-3.046087397D+00-1.041767500D+02-1.164744906D+02-1.041396855D+02 -1.040704581D+02-1.041502317D+02-8.778531551D+01-8.200384036D+01-8.208215839D+01 -8.782926339D+01-8.206368786D+01-8.813252246D+01-1.172532826D+02-1.165446683D+02 -1.042835352D+02-1.165351471D+02-1.172480038D+02-8.822371209D+01-1.172666184D+02 -1.042897336D+02-1.165600418D+02-1.172811883D+02-8.827802727D+01-8.794239114D+01 -1.165649369D+02-1.540127018D+02-1.201965520D+02-1.202151599D+02-6.342429271D+01 -1.319630618D+02-1.958146494D+02-1.319478667D+02-1.958259371D+02-1.319438965D+02 -1.957884148D+02-1.319249332D+02-1.037426607D+02-1.037413887D+02-1.037239186D+02 -1.535336851D+02-1.041243376D+02-1.041597801D+02-1.041657166D+02-1.041399796D+02 -1.041501627D+02-1.041542914D+02-1.164856802D+02-1.538855609D+02-1.200991496D+02 -1.201104736D+02-1.292189873D+02-1.930567846D+02-1.292296532D+02-1.930031146D+02 -1.291791887D+02-1.930334111D+02-1.291736885D+02-1.930527863D+02-1.291454956D+02 -1.931031984D+02-1.292025147D+02 7.823027312D+01 9.098810400D+01 7.824118662D+01 -2.185657189D+02 3.252604464D+02-2.176296605D+02-4.617257692D+02-1.112605432D+02 -1.522209040D+02-1.113120313D+02-2.185914594D+02 3.252456320D+02-4.617852150D+02 -1.112649393D+02-1.522603508D+02-1.112933026D+02 9.096000808D+01 7.829268713D+01 -2.176841421D+02-4.617380219D+02-2.176936399D+02-4.617190743D+02-1.112437337D+02 -1.522230183D+02-1.113434678D+02 9.101026504D+01 7.821425507D+01-2.186205832D+02 3.252048935D+02-1.113021802D+02-1.522005296D+02-1.112679404D+02 7.824888092D+01 9.098072907D+01 3.251691263D+02-2.186513738D+02-4.617627011D+02-2.177349376D+02 -4.617378582D+02 7.825390850D+01 9.103616124D+01-2.910529453D+01-2.908277168D+01 -2.905411301D+01-2.906863478D+01-2.906244839D+01-3.293961819D+01-2.064171436D+01 -1.957113080D+01-1.063851533D+01-1.673888878D+01-1.428152081D+01-1.293725196D+01 -1.397735154D+01-2.937599765D+01-4.205092673D+01-1.386211576D+01-1.895284204D+01 -1.392344189D+01-4.411909395D+00-1.388555525D+01-1.897869592D+01-4.207229984D+01 -2.938345817D+01-1.402324358D+01-1.296287621D+01-1.431144914D+01-1.395986750D+01 -3.288760474D+01-6.622191435D+01-7.891778494D+01-1.109937934D+01 3.755032554D+01 3.801805927D+01 3.798675897D+01-6.671672935D+01 2.948212779D+01 3.260336225D+01 -1.162197922D+01-1.167436690D+01 3.250428355D+01 2.943677908D+01-6.677664898D+01 3.795942984D+01 3.800105483D+01 3.752400698D+01 8.569895048D+00 9.251708129D+00 2.557501556D+01 6.170134207D+01 7.763242302D+01 9.951020770D+01 1.084914392D+02 9.960063451D+01 1.140165287D+02 1.172549412D+02 1.188165301D+02 1.022023702D+02 1.021477846D+02 1.187817662D+02 1.172395160D+02 1.139763908D+02 9.959022871D+01 1.084829352D+02 9.949067467D+01 7.759785360D+01 6.163861999D+01 2.552926125D+01 9.229685344D+00-2.810774244D+01-4.218303425D+01 5.616945018D+00 6.230267163D+01 1.328976788D+02 1.508284338D+02 1.846975233D+02 2.137131225D+02 2.094213597D+02 1.798159917D+02 1.411490786D+02 1.065615423D+02-1.194625156D+01 7.900937970D+01 1.112724838D+02 1.703493604D+02 1.991570603D+02 2.044510080D+02 2.094617312D+02 2.136575243D+02 2.093831319D+02 1.797614490D+02 1.411135465D+02 1.065115785D+02 -1.195404820D+01 7.896558569D+01 1.112574387D+02 1.521554192D+02 1.748233143D+02 2.230829060D+02 1.518454049D+02 4.086466300D+01 1.007230028D+02 1.394221035D+02 1.909025267D+02 1.296666607D+02 2.107778270D+02 2.107667394D+02 2.086492058D+02 2.384445559D+02 3.006657720D+02 3.639884712D+02 3.927981007D+02 3.804531928D+02 4.046690897D+02 4.230814782D+02 4.391593464D+02 4.513647062D+02 4.696982920D+02 5.129127103D+02 5.135787534D+02 4.978362431D+02 4.680479634D+02 4.496803453D+02 4.230554874D+02 4.230067237D+02 4.391454269D+02 4.513035603D+02 4.697046862D+02 5.095673023D+02 4.710341590D+02 3.936693820D+02 3.793315972D+02 3.268133009D+02 3.639822848D+02 3.268110073D+02 3.090439412D+02 2.962398458D+02 3.311481546D+02 3.564232505D+02 3.564346395D+02 4.377949490D+02 5.096133411D+02 4.710178956D+02 3.936490498D+02 3.793652438D+02 3.927722848D+02 3.639831488D+02 3.267997789D+02 3.090201254D+02 2.962529483D+02 2.962519733D+02 3.311287086D+02 3.564378222D+02 3.564365031D+02 4.377900116D+02 4.710348423D+02 5.096243679D+02 4.697779361D+02 4.513138267D+02 5.128869275D+02 5.135494141D+02 4.978319661D+02 4.289303894D+02 4.770335982D+02 4.770250989D+02 4.599554221D+02 4.483224936D+02 3.427622138D+02 4.483186339D+02-9.634625500D+01 4.086108471D+02 4.173284902D+02 4.086110126D+02 -9.636514425D+01 4.482963474D+02 4.599311050D+02 4.770349156D+02 4.289241489D+02 4.680362501D+02 4.496491184D+02 4.230286563D+02 4.046327704D+02 3.804553917D+02 3.639886665D+02 3.006575257D+02 2.384465298D+02 2.107507814D+02 2.086451858D+02 2.107440637D+02 2.086491811D+02 1.296443248D+02 1.908495109D+02 1.393721470D+02 1.006642436D+02-2.426569559D+01-2.444682707D+01-2.425984204D+01 4.086620123D+01 1.518168353D+02 2.230189054D+02 2.776643769D+02 2.550578533D+02 1.747887250D+02 1.521227635D+02 2.117555259D+02 1.702763598D+02 1.991135831D+02 2.043828157D+02 2.094005182D+02 2.136226190D+02 2.093498981D+02 1.797439044D+02 1.846642366D+02 1.507911302D+02 1.328379373D+02 6.221888779D+01 5.570212143D+00-4.222146232D+01 -2.817691957D+01 9.202289612D+00 8.520945500D+00 3.749923189D+01-1.121032191D+01 -7.899897740D+01-6.631508437D+01-3.294860349D+01-2.945265561D+01-1.408584208D+01 -1.304743180D+01-1.400938971D+01-1.678081683D+01-1.683210700D+01-1.076610471D+01 -1.965543106D+01-2.077819133D+01-3.308462881D+01-2.913825281D+01-2.917049148D+01 1UNSYMMETRIC LEAST-SQUARES PROBLEM. SAUNDERS 1979. ILLC1033 1471 21 296 947 207 RRA 1033 320 4732 0 (16I5) (16I5) (1P,5D16.9) (1P,5D16.9) F 1 0 1 29 34 45 49 53 58 59 68 72 74 84 88 100 112 114 117 118 121 126 130 134 143 147 151 161 165 169 173 176 180 184 187 191 195 196 199 204 242 259 263 289 313 318 328 339 359 362 376 385 397 400 402 414 427 436 450 453 472 473 476 481 487 494 504 513 542 552 562 572 580 595 601 608 612 622 626 633 637 639 641 643 645 647 649 650 652 653 655 657 664 669 677 681 689 700 707 714 715 719 734 741 745 749 751 752 755 760 765 766 769 772 775 779 782 787 792 797 802 807 811 814 817 821 824 827 830 832 834 836 839 844 847 851 855 860 863 866 871 876 879 883 886 887 902 907 910 916 920 926 934 936 938 940 943 945 948 951 954 956 959 961 962 964 966 968 970 972 974 976 978 980 982 984 986 988 990 992 994 997 999 1001 1003 1005 1007 1009 1011 1013 1015 1017 1019 1020 1028 1078 1119 1126 1146 1151 1169 1180 1191 1206 1220 1263 1306 1432 1566 1628 1715 1743 1754 1764 1816 2053 2111 2152 2179 2202 2224 2253 2296 2465 2748 2776 2797 2849 3086 3091 3102 3106 3110 3115 3124 3128 3130 3140 3144 3156 3168 3170 3173 3176 3181 3185 3189 3198 3202 3206 3216 3220 3224 3228 3231 3235 3239 3242 3246 3250 3253 3258 3296 3313 3339 3363 3368 3378 3398 3401 3415 3424 3436 3439 3451 3464 3473 3487 3492 3498 3505 3515 3544 3554 3560 3567 3571 3578 3582 3589 3594 3602 3606 3614 3625 3632 3639 3643 3647 3651 3654 3657 3660 3665 3670 3673 3677 3680 3695 3700 3758 3799 3826 3849 3871 3900 3943 4112 4395 4423 4444 4496 4733 1 2 3 4 5 6 7 419 420 421 428 429 685 686 687 688 689 764 770 779 786 797 798 799 800 801 1032 1033 8 10 483 662 996 9 78 79 80 81 82 83 91 92 894 995 11 12 484 661 13 485 486 660 14 15 16 654 655 17 18 509 511 575 576 578 641 653 967 19 21 505 515 20 963 22 149 495 496 500 502 503 518 589 646 23 132 133 148 24 134 137 140 141 144 145 519 520 559 560 595 25 128 129 218 525 527 540 542 556 558 598 602 26 529 27 530 537 28 29 958 973 30 632 959 960 972 31 631 917 974 32 630 918 975 33 34 57 622 629 910 919 920 976 35 56 909 977 36 55 908 978 37 52 53 54 620 621 906 929 942 979 38 928 930 943 39 42 931 944 40 932 945 946 41 933 947 43 45 934 948 44 46 935 949 47 936 950 48 925 938 951 49 924 937 952 50 51 907 941 58 623 628 911 921 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 84 85 86 87 88 89 179 180 181 182 184 186 194 196 197 198 199 895 994 90 97 98 99 107 110 112 113 114 115 116 117 118 119 120 201 570 93 94 95 96 100 102 104 106 407 409 411 414 416 418 422 424 426 691 693 695 724 726 728 730 745 747 749 751 753 755 101 103 105 406 408 410 412 413 415 417 423 425 427 690 692 694 725 727 729 746 748 750 752 754 108 109 491 493 568 111 121 122 123 124 125 126 202 898 988 127 130 131 135 136 138 139 142 143 146 147 150 152 153 154 155 156 157 159 160 161 162 163 164 165 170 171 478 479 665 1000 151 880 1001 158 166 167 168 169 177 178 191 192 193 195 200 893 998 172 173 443 444 461 463 672 870 1009 174 176 244 351 352 353 354 404 405 471 876 888 175 878 890 183 185 187 252 253 268 269 283 284 314 315 379 380 467 188 189 254 255 266 267 285 286 312 313 372 373 378 190 247 248 347 348 357 358 400 401 203 210 211 215 231 232 240 544 546 554 603 605 899 987 204 207 214 205 206 208 209 212 213 223 224 225 226 229 230 233 234 237 238 241 242 243 216 217 219 239 220 617 903 983 985 221 616 901 902 982 984 222 227 228 235 236 900 986 245 246 349 350 355 356 402 403 877 889 249 322 323 345 346 359 360 398 399 250 251 272 273 279 280 318 319 326 327 333 334 337 338 339 340 365 366 369 370 371 381 382 388 389 392 393 468 469 256 257 264 265 287 288 310 311 374 375 258 259 262 263 289 290 308 309 376 377 260 261 291 292 295 296 304 305 849 858 270 271 281 282 316 317 390 391 274 275 276 277 278 328 329 330 331 332 383 384 385 386 387 293 294 306 307 850 857 297 298 299 302 303 848 859 300 301 847 860 320 321 324 325 341 342 361 362 394 395 335 336 367 368 343 344 363 364 396 397 470 430 684 802 1031 431 683 432 682 433 681 434 680 435 679 436 678 437 438 677 439 440 676 441 675 442 445 460 462 673 869 1010 446 459 723 868 1011 447 458 721 722 743 744 867 1012 448 456 866 1013 449 450 455 720 734 742 865 1014 451 454 697 708 710 715 719 741 843 864 1015 452 706 712 717 828 841 1017 453 707 711 713 716 842 1016 457 464 671 871 1008 465 466 472 473 474 669 670 757 772 781 789 796 872 884 1005 475 668 873 883 885 1004 1006 476 667 882 1003 477 666 881 1002 480 664 481 482 663 997 487 488 572 656 659 489 571 573 657 658 490 492 569 574 494 567 587 497 586 588 498 566 585 592 499 584 591 501 517 583 590 647 504 516 582 645 648 506 514 581 644 649 507 513 580 643 650 508 512 579 642 651 510 577 640 652 521 561 594 522 562 593 523 563 565 596 524 564 597 526 541 557 528 538 600 531 536 532 534 533 535 539 599 601 543 553 606 607 615 545 555 604 547 552 608 614 548 550 610 612 549 551 609 611 613 618 904 981 619 905 980 624 627 912 922 954 625 626 913 923 953 633 961 971 634 962 964 970 639 966 968 674 696 698 699 700 709 714 731 732 733 735 736 737 738 739 740 701 704 718 830 839 702 703 705 756 758 773 782 788 795 760 767 784 790 762 768 775 777 792 794 763 765 769 771 778 780 785 787 803 1030 804 1029 805 1028 806 1026 1027 807 822 808 821 1024 809 820 1023 810 819 1022 811 818 812 814 816 813 817 815 823 1025 824 1021 825 1020 826 1019 827 1018 829 840 831 838 832 837 833 836 834 835 844 863 845 862 846 861 851 856 852 855 853 854 874 886 1007 875 887 879 891 892 999 896 993 897 989 914 955 915 956 916 957 926 939 927 940 990 992 991 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 8 10 483 662 996 9 78 79 80 81 82 83 91 92 894 995 11 12 484 661 13 485 486 660 14 15 16 654 655 18 509 511 575 576 578 641 653 967 19 21 505 515 20 963 22 149 495 496 500 502 503 518 589 646 23 132 133 148 24 134 137 140 141 144 145 519 520 559 560 595 25 128 129 218 525 527 540 542 556 558 598 602 26 529 27 530 537 29 958 973 30 632 959 960 972 31 631 917 974 32 630 918 975 33 34 57 622 629 910 919 920 976 35 56 909 977 36 55 908 978 37 52 53 54 620 621 906 929 942 979 38 928 930 943 39 42 931 944 40 932 945 946 41 933 947 43 45 934 948 44 46 935 949 47 936 950 48 925 938 951 49 924 937 952 51 907 941 58 623 628 911 921 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 84 85 86 87 88 89 179 180 181 182 184 186 194 196 197 198 199 895 994 90 97 98 99 107 110 112 113 114 115 116 117 118 119 120 201 570 100 102 104 106 407 409 411 414 416 418 422 424 426 691 693 695 724 726 728 730 745 747 749 751 753 755 101 103 105 406 408 410 412 413 415 417 423 425 427 690 692 694 725 727 729 746 748 750 752 754 108 109 491 493 568 111 121 122 123 124 125 126 202 898 988 150 152 153 154 155 156 157 159 160 161 162 163 164 165 170 171 478 479 665 1000 151 880 1001 158 166 167 168 169 177 178 191 192 193 195 200 893 998 172 173 443 444 461 463 672 870 1009 174 176 244 351 352 353 354 404 405 471 876 888 175 878 890 187 252 253 268 269 283 284 314 315 379 380 467 188 189 254 255 266 267 285 286 312 313 372 373 378 190 247 248 347 348 357 358 400 401 203 210 211 215 231 232 240 544 546 554 603 605 899 987 220 617 903 983 985 221 616 901 902 982 984 222 227 228 235 236 900 986 245 246 349 350 355 356 402 403 877 889 250 251 272 273 279 280 318 319 326 327 333 334 337 338 339 340 365 366 369 370 371 381 382 388 389 392 393 468 469 260 261 291 292 295 296 304 305 849 858 293 294 306 307 850 857 297 298 299 302 303 848 859 300 301 847 860 343 344 363 364 396 397 470 430 684 802 1031 442 445 460 462 673 869 1010 446 459 723 868 1011 447 458 721 722 743 744 867 1012 448 456 866 1013 449 450 455 720 734 742 865 1014 451 454 697 708 710 715 719 741 843 864 1015 452 706 712 717 828 841 1017 453 707 711 713 716 842 1016 464 671 871 1008 476 667 882 1003 477 666 881 1002 482 663 997 618 904 981 619 905 980 624 627 912 922 954 625 626 913 923 953 633 961 971 634 962 964 970 639 966 968 696 698 699 700 709 714 731 732 733 735 736 737 738 739 740 701 704 718 830 839 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 3 4 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 1.000000000D 00 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 7.071067812D-01 7.071067812D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 7.071067812D-01 7.071067812D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 1.000000000D 00 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 1.000000000D 00 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 1.622214211D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 2.425356250D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 1.961161351D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 2.041241452D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 7.071067812D-01 7.071067812D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.886751346D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 2.773500981D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 2.294157339D-01 1.000000000D 00 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 3.333333333D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 1.856953382D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 1.000000000D 00 7.071067812D-01 7.071067812D-01 1.000000000D 00 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 1.000000000D 00 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 7.071067812D-01 7.071067812D-01 1.000000000D 00 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 1.000000000D 00 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 1.000000000D 00 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 5.000000000D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 4.082482905D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 7.071067812D-01 7.071067812D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 7.071067812D-01 7.071067812D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 7.071067812D-01 7.071067812D-01 1.000000000D 00 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 5.773502692D-01 5.773502692D-01 5.773502692D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 7.071067812D-01 1.000000000D 00 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 3.535533906D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.414213562D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 1.561737619D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 3.779644730D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 2.236067978D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 4.472135955D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 2.357022604D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.581988897D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 2.672612419D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 1.524985703D-01 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.908708064D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 8.638684256D-02 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.270001270D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.072112535D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 1.889822365D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.015113446D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 3.162277660D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 1.386750491D-01 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 6.495698025D-02 0.000000000D-01 8.919733354D-03 3.004328371D-02 3.859811887D-02 5.872833529D-02 6.744534743D-02 8.879189112D-02 9.536005840D-02 9.730618202D-02 9.801570628D-02 9.872523051D-02 9.977938084D-02 1.004280887D-01 1.017255045D-01 1.039351657D-01 1.159362615D-01 1.167674184D-01 1.177607524D-01 1.190987124D-01 1.199095972D-01 1.207002100D-01 1.217746324D-01 1.230315039D-01 1.238221166D-01 1.245316409D-01 1.256263354D-01 1.261736827D-01 1.270251118D-01 1.277143639D-01 1.283630718D-01 1.295793991D-01 1.303700118D-01 1.311606245D-01 1.456146470D-01 1.461822664D-01 1.468715185D-01 1.473175052D-01 1.479662131D-01 1.489798191D-01 1.496690712D-01 1.504596840D-01 1.510475755D-01 1.523449912D-01 1.525679846D-01 1.527909779D-01 1.528923385D-01 1.539464888D-01 1.555479864D-01 1.561358779D-01 1.581225458D-01 1.589334306D-01 1.594807779D-01 1.751105834D-01 1.757187470D-01 1.762052780D-01 1.770364349D-01 1.774824216D-01 1.778878640D-01 0.000000000D-01 2.954535174D-03 3.770431918D-03 6.551898087D-03 1.767776276D-02 2.087953938D-02 2.441509193D-02 3.552859452D-02 3.869328492D-02 4.105444065D-02 5.346596080D-02 5.680372020D-02 5.995604853D-02 7.108191321D-02 7.349251721D-02 7.788105272D-02 8.919234848D-02 9.203562501D-02 9.554645341D-02 1.069319216D-01 1.098370085D-01 1.134220093D-01 1.249310982D-01 1.273911505D-01 1.306670996D-01 1.426583093D-01 1.602742617D-01 1.667272632D-01 1.780756451D-01 1.838858189D-01 3.560523938D-01 2.012545300D-01 2.162744473D-01 2.181287579D-01 2.327036407D-01 2.365482450D-01 2.496520413D-01 2.543496285D-01 2.668847694D-01 2.698640287D-01 2.737580813D-01 0.000000000D-01 1.761393420D-04 3.997008144D-04 5.690655663D-04 7.248811381D-04 8.806967098D-04 1.043286871D-03 1.858337804D-01 1.860302434D-01 1.884690958D-01 1.945323540D-01 1.969847556D-01 1.977028621D-01 2.039693579D-01 2.077360300D-01 2.138263865D-01 2.171527102D-01 2.233921078D-01 2.274229888D-01 2.330797715D-01 2.367922469D-01 2.446033492D-01 2.473944803D-01 2.525363943D-01 2.565605008D-01 2.624069720D-01 2.654352138D-01 0.000000000D-01 1.944753000D-03 4.682512076D-03 5.513280349D-03 9.025164405D-03 3.071954495D-02 3.432583450D-02 3.715799907D-02 3.789436185D-02 5.315028829D-02 5.390553218D-02 6.483768738D-02 8.077333331D-02 9.242674643D-01 9.178101291D-02 9.244185132D-02 1.077355400D-01 1.087928814D-01 1.175159482D-01 1.181390245D-01 1.348110332D-01 1.365103319D-01 1.385872526D-01 0.000000000D-01 1.126735788D-03 1.859114050D-02 8.185735502D-02 9.929359134D-02 1.644189199D-01 1.815453038D-01 2.437692877D-01 2.508677232D-01 2.612618608D-01 3.321053735D-01 4.166105575D-02 5.782971430D-02 1.225606854D-01 1.398560797D-01 2.044180403D-01 2.058546285D-01 2.180797118D-01 2.855148487D-01 2.988948362D-01 3.667524990D-01 3.813718958D-01 0.000000000D-01 2.563399020D-03 5.872893038D-02 6.237604281D-02 6.879496068D-02 1.190625902D-01 1.296496366D-01 1.783958993D-01 2.376666863D-01 2.489623145D-01 2.983963184D-01 2.984796810D-01 2.985630436D-01 2.986464061D-01 2.987922906D-01 2.928110263D-02 3.067742566D-02 3.586674564D-02 3.934713292D-02 9.365784710D-02 9.899305157D-02 1.481769677D-01 1.496983346D-01 1.561589338D-01 1.598268868D-01 2.078020458D-01 2.197645745D-01 2.735125914D-01 2.777015605D-01 0.000000000D-01 2.336156932D-03 5.436874315D-03 8.346451586D-03 9.365865519D-03 2.879844364D-02 3.561577431D-02 3.975714343D-02 5.974190408D-02 6.137721393D-02 7.004223239D-02 7.108288412D-02 9.026060874D-02 9.091898025D-02 9.181096742D-02 9.321266160D-02 9.344627730D-02 9.563376967D-02 9.735403069D-02 1.000299923D-01 1.004759859D-01 1.033855632D-01 1.043837393D-01 1.231367081D-01 1.315256353D-01 1.542925465D-01 1.553756738D-01 1.628938515D-01 1.640194544D-01 1.821990029D-01 1.835157459D-01 1.973203096D-01 1.980636323D-01 2.135035058D-01 2.150538645D-01 2.206606411D-01 2.228481335D-01 2.430027965D-01 2.500749807D-01 2.536854050D-01 2.545561544D-01 2.757727069D-01 2.835457382D-01 0.000000000D-01 2.274330020D-04 2.618925477D-04 4.548660038D-04 5.031093679D-04 6.271637325D-04 1.040678281D-03 1.082029737D-03 1.564463377D-03 1.605814832D-03 1.785004470D-03 1.819464015D-03 2.033113199D-03 2.081356563D-03 2.329465292D-03 2.363924838D-03 2.501763021D-03 2.563790203D-03 2.742979842D-03 2.784331297D-03 3.025548116D-03 3.053115753D-03 3.190953936D-03 3.232305391D-03 3.390819302D-03 3.425278847D-03 3.542441302D-03 3.563117030D-03 3.659603758D-03 3.687171395D-03 3.887036761D-03 3.928388215D-03 4.624471039D-03 5.313661954D-03 9.111103896D-03 9.255833988D-03 9.310969261D-03 9.428131716D-03 9.441915535D-03 9.565969899D-03 9.607321355D-03 9.772727173D-03 9.793402902D-03 9.945024899D-03 9.979484453D-03 1.014489027D-02 1.017934981D-02 1.025516081D-02 1.028962036D-02 1.055151290D-02 1.057908054D-02 1.068935109D-02 1.071002682D-02 1.088232455D-02 1.091678409D-02 1.095124364D-02 1.122692000D-02 1.125448764D-02 1.140610965D-02 1.144056919D-02 1.160597500D-02 1.163354264D-02 1.174381319D-02 1.177138083D-02 1.190921901D-02 1.192989473D-02 1.225381447D-02 1.228827401D-02 1.239854456D-02 1.242611219D-02 1.261908565D-02 1.263286947D-02 1.275003192D-02 1.277070766D-02 1.299124875D-02 1.301192447D-02 1.318422220D-02 1.320489793D-02 1.337719566D-02 1.339787139D-02 1.353570957D-02 1.356327721D-02 1.370111539D-02 1.374246684D-02 1.390787266D-02 1.479003704D-02 1.523111922D-02 1.893896634D-02 1.924910225D-02 1.931802135D-02 1.933869707D-02 1.952477862D-02 1.955923816D-02 1.962815726D-02 1.964883298D-02 2.006234754D-02 2.008302326D-02 2.018640190D-02 2.021396954D-02 2.024842908D-02 2.026910481D-02 2.040694299D-02 2.042761872D-02 2.051721354D-02 2.053788926D-02 2.071707890D-02 2.074464654D-02 2.093761999D-02 2.095829573D-02 2.128910736D-02 2.130978309D-02 2.147518891D-02 2.149586463D-02 2.167505428D-02 2.169573000D-02 2.179221673D-02 2.181289246D-02 2.194383873D-02 2.197140637D-02 2.201964973D-02 2.204032546D-02 2.214370410D-02 2.217127174D-02 2.225397464D-02 2.228154228D-02 2.235046137D-02 2.239870473D-02 2.267438110D-02 2.301208465D-02 2.303276037D-02 2.316370665D-02 2.318438238D-02 2.334978820D-02 2.337046392D-02 2.359789693D-02 2.373573511D-02 2.375641084D-02 2.392870857D-02 2.394938429D-02 2.405965484D-02 2.483154866D-02 2.545182049D-02 2.913899188D-02 2.942156016D-02 2.948358734D-02 2.951115498D-02 2.960074980D-02 2.962142552D-02 2.970412844D-02 2.972480416D-02 2.984196661D-02 2.986264235D-02 2.990399379D-02 2.993156143D-02 3.006250771D-02 3.008318344D-02 3.018656208D-02 3.021412971D-02 3.038642744D-02 3.040710317D-02 3.062075235D-02 3.063453617D-02 3.676213259D-01 3.678418670D-01 3.679797052D-01 3.681313272D-01 3.682898411D-01 3.684621388D-01 3.686137608D-01 0.000000000D-01 2.706870341D-05 5.413740683D-05 7.970229339D-05 1.052671799D-04 1.353435171D-04 2.446559644D-02 2.600700871D-02 2.812438285D-02 2.815897063D-02 2.820258132D-02 2.823416147D-02 2.826123017D-02 2.828679507D-02 2.831386377D-02 3.037108523D-02 3.100268832D-02 3.705705497D-02 3.710968857D-02 3.715179543D-02 3.719540612D-02 3.722698627D-02 3.725405498D-02 3.728713895D-02 3.738488705D-02 3.743000155D-02 3.746910080D-02 3.751571912D-02 3.754880308D-02 3.760143668D-02 3.762399394D-02 3.894133749D-02 3.896840620D-02 3.906465047D-02 3.911878787D-02 3.919097110D-02 3.927067338D-02 3.929473445D-02 3.939549018D-02 3.945564286D-02 3.950978027D-02 3.953835278D-02 3.960752836D-02 3.967219249D-02 3.970828410D-02 3.974587952D-02 3.978798638D-02 3.984813906D-02 4.114142155D-02 4.116698645D-02 4.119405515D-02 4.125270400D-02 4.185423075D-02 4.318962010D-02 4.372347509D-02 4.383626137D-02 4.395957434D-02 4.398664305D-02 4.411145985D-02 4.426635299D-02 4.546188738D-02 4.574310113D-02 4.578370419D-02 4.582280343D-02 4.585287977D-02 4.589949808D-02 4.599875001D-02 4.603484160D-02 4.608897900D-02 4.612807825D-02 4.617469658D-02 4.621529963D-02 4.625590269D-02 4.765595616D-02 4.778378060D-02 4.783641420D-02 4.792814703D-02 4.806649818D-02 4.810710124D-02 4.819883406D-02 4.823492567D-02 4.837327681D-02 4.846500965D-02 4.981994863D-02 4.992822344D-02 5.002897918D-02 5.013725399D-02 5.021695627D-02 5.026357460D-02 5.034327690D-02 5.199897926D-02 5.207567392D-02 5.214184185D-02 5.218996399D-02 5.226064338D-02 5.235087240D-02 5.244862050D-02 5.249975027D-02 5.252982661D-02 5.256892583D-02 5.261704799D-02 5.265765105D-02 5.267569684D-02 5.273584952D-02 5.278096402D-02 5.280502509D-02 5.291931517D-02 5.411033812D-02 5.420808622D-02 5.431936867D-02 5.439907095D-02 5.451035340D-02 5.456900227D-02 5.467426945D-02 5.471487251D-02 5.483668167D-02 5.491187251D-02 5.494044502D-02 5.634049852D-02 5.642170463D-02 5.656005578D-02 5.659915503D-02 5.662923135D-02 5.666833059D-02 5.680367411D-02 5.685781152D-02 5.693300236D-02 5.699917031D-02 5.703526190D-02 5.708188022D-02 5.848494136D-02 5.853155969D-02 5.857517038D-02 5.861126197D-02 5.866690320D-02 5.875262076D-02 5.880675816D-02 5.884736122D-02 5.888194900D-02 5.891202534D-02 5.893608641D-02 5.897969710D-02 5.902030015D-02 5.912255970D-02 5.920376581D-02 5.925339177D-02 5.934362079D-02 6.059178878D-02 6.063840709D-02 6.071359795D-02 6.076172008D-02 6.080232314D-02 6.084142236D-02 6.090458268D-02 6.101736894D-02 6.108052925D-02 6.110609415D-02 6.114519337D-02 6.122038421D-02 6.127903308D-02 6.133166666D-02 6.146249873D-02 6.168957508D-02 6.281142246D-02 6.283698734D-02 6.286405604D-02 6.292420872D-02 6.297533849D-02 6.301594154D-02 6.308361330D-02 6.312722399D-02 6.316331561D-02 6.320692628D-02 6.325655224D-02 6.331820873D-02 6.338588048D-02 6.342347590D-02 6.344603316D-02 6.347911714D-02 6.353175072D-02 6.359641486D-02 6.513181185D-02 6.517692637D-02 6.521452179D-02 6.525813248D-02 6.531226989D-02 6.535588058D-02 6.540851416D-02 6.545513249D-02 6.550024699D-02 6.558446073D-02 6.563408670D-02 6.567168211D-02 6.572882716D-02 6.710481957D-02 6.713339210D-02 6.717700279D-02 6.721159057D-02 6.724467455D-02 6.728226997D-02 6.732136919D-02 6.736949135D-02 6.740859058D-02 6.756047608D-02 6.759656769D-02 6.767927761D-02 6.772138449D-02 6.777702571D-02 6.926881203D-02 6.939362883D-02 6.941768990D-02 6.944475860D-02 6.947182731D-02 6.971093420D-02 6.974251434D-02 6.977108685D-02 6.979214031D-02 6.985379679D-02 6.988988840D-02 6.996357541D-02 6.998914031D-02 7.003124717D-02 7.149145335D-02 7.155160603D-02 7.160875107D-02 7.165236174D-02 7.172153733D-02 7.176965946D-02 7.179221672D-02 7.184184266D-02 7.188846099D-02 7.191853733D-02 7.199372817D-02 7.206440756D-02 7.208395719D-02 7.212756788D-02 7.218922437D-02 7.221478926D-02 7.225539232D-02 7.231704880D-02 7.239223964D-02 7.247194194D-02 7.356972824D-02 7.366146106D-02 7.371559847D-02 7.377274351D-02 7.382387329D-02 7.387199542D-02 7.390959086D-02 7.393966718D-02 7.397425498D-02 7.402989620D-02 7.406147634D-02 7.410959850D-02 7.413666720D-02 7.417727026D-02 7.421185804D-02 7.585252223D-02 7.592169780D-02 7.596981993D-02 7.600140010D-02 7.603147644D-02 7.606606423D-02 7.610065201D-02 7.615779705D-02 7.626907950D-02 7.630065965D-02 7.632020927D-02 7.635479705D-02 7.638336959D-02 7.641946118D-02 7.646156806D-02 8.230088892D-02 8.450698825D-02 8.513859131D-02 8.662436236D-02 9.095535491D-02 9.098843889D-02 9.101400378D-02 9.104107248D-02 9.106362972D-02 9.108769079D-02 9.111776713D-02 0.000000000D-01 6.544148519D-04 5.462182629D-02 8.293617554D-02 1.190162477D-01 1.491193309D-01 1.497737457D-01 1.820582118D-01 1.838033180D-01 1.844577328D-01 1.886023602D-01 1.917871792D-01 1.927469877D-01 1.951465088D-01 1.955827853D-01 1.964553384D-01 1.975460299D-01 1.984185830D-01 1.995092744D-01 2.003818276D-01 2.012543807D-01 2.024759551D-01 2.049627315D-01 2.489394096D-01 2.512080477D-01 2.553526751D-01 2.579703345D-01 2.592791642D-01 0.000000000D-01 5.260670577D-04 1.092600812D-03 1.477034431D-03 1.861468050D-03 2.286368366D-03 2.650568636D-03 1.710324938D-01 1.800363338D-01 1.957374121D-01 1.978619137D-01 2.071490206D-01 2.261683681D-01 2.574288913D-01 2.654210639D-01 2.952854860D-01 3.136775997D-01 3.142846003D-01 3.197476044D-01 3.427529214D-01 3.549536305D-01 0.000000000D-01 4.708254894D-04 1.000504165D-03 2.569922463D-03 3.021130222D-03 3.413484797D-03 3.923545745D-03 4.257047131D-03 4.727872622D-03 5.139844924D-03 6.003024989D-03 6.024604491D-02 6.132501998D-02 8.153128057D-02 8.486629446D-02 8.594526953D-02 9.202676544D-02 9.310574051D-02 9.634266576D-02 9.732355219D-02 1.081133030D-01 1.130177352D-01 1.139986216D-01 1.192954084D-01 1.225323336D-01 1.234151314D-01 1.385207825D-01 1.409729986D-01 1.418557964D-01 1.477411150D-01 1.489181787D-01 1.504875970D-01 1.514684835D-01 1.541168769D-01 1.550977633D-01 1.669664892D-01 1.701053258D-01 1.726556305D-01 1.755002011D-01 1.765791762D-01 1.806008106D-01 1.816797857D-01 1.927638024D-01 1.954121958D-01 1.963930822D-01 1.999242734D-01 2.014936917D-01 2.091446059D-01 2.227789274D-01 2.238579025D-01 2.282718914D-01 2.291546892D-01 0.000000000D-01 5.256277727D-03 9.940548759D-03 1.162951447D-02 3.221402562D-02 3.344306704D-02 3.353968979D-02 3.361698799D-02 3.389526152D-02 3.398028954D-02 3.410783157D-02 3.419672450D-02 3.427015780D-02 3.435132091D-02 3.450591731D-02 3.461413479D-02 3.473781192D-02 3.767127868D-02 3.777176634D-02 3.786838909D-02 3.791090311D-02 3.801912059D-02 3.816598717D-02 3.831671866D-02 3.839015196D-02 3.846745016D-02 3.850609926D-02 3.873799386D-02 3.898148320D-02 3.910516032D-02 3.941048822D-02 3.958054427D-02 3.976605995D-02 4.005206330D-02 4.017960532D-02 4.028395790D-02 4.039604029D-02 4.063179981D-02 4.333723688D-02 4.360391567D-02 4.367348405D-02 4.378170154D-02 4.389378393D-02 4.400973123D-02 4.416819254D-02 4.427254512D-02 4.438076260D-02 4.446579062D-02 4.456241337D-02 4.465517121D-02 4.473246942D-02 4.483295708D-02 4.493730965D-02 4.499528330D-02 4.506098678D-02 4.519239372D-02 4.526969192D-02 4.874424609D-02 4.882540921D-02 4.897614070D-02 4.903411435D-02 4.908435818D-02 4.918098094D-02 4.929306333D-02 4.934330716D-02 4.942447027D-02 4.950176847D-02 4.960612105D-02 4.979163673D-02 4.995009804D-02 5.009696463D-02 5.019358738D-02 5.033658906D-02 5.039069780D-02 5.050278019D-02 5.062645731D-02 5.077718880D-02 5.087381155D-02 5.097816413D-02 5.105546233D-02 5.113662544D-02 5.127962712D-02 5.138784460D-02 5.152311645D-02 5.159654974D-02 5.166611812D-02 5.176660579D-02 5.437928501D-02 5.446431303D-02 5.454161123D-02 5.461117961D-02 5.468847782D-02 5.478896548D-02 5.492423733D-02 5.502472500D-02 5.523343014D-02 5.531845816D-02 5.558513696D-02 5.570108424D-02 5.584022101D-02 5.605665598D-02 5.612235947D-02 5.640449789D-02 5.659001361D-02 5.681804329D-02 5.993702570D-02 5.996794500D-02 6.014186596D-02 6.023462382D-02 6.033897639D-02 6.042013948D-02 6.052062717D-02 6.061724992D-02 6.069068319D-02 6.077184628D-02 6.088006379D-02 6.098055142D-02 6.118539168D-02 6.125109518D-02 6.143661085D-02 6.173420891D-02 6.183856148D-02 6.193904917D-02 6.544452262D-02 6.551022606D-02 6.557592956D-02 6.566095759D-02 6.586966273D-02 6.595082583D-02 6.615566609D-02 6.626388355D-02 6.635277647D-02 6.642234485D-02 6.649964305D-02 6.663104999D-02 6.672380785D-02 6.680883589D-02 6.695183754D-02 6.696729719D-02 6.711029884D-02 6.740789696D-02 6.748519511D-02 6.759727751D-02 6.770549502D-02 6.786009144D-02 6.800695797D-02 6.808039130D-02 6.821566312D-02 6.830069115D-02 7.095974931D-02 7.104091240D-02 7.118004917D-02 7.119937376D-02 7.134624029D-02 7.143899815D-02 7.151243148D-02 7.206124870D-02 7.236271165D-02 7.252503790D-02 7.260233610D-02 7.287287980D-02 7.321685683D-02 7.331734446D-02 7.350672507D-02 7.357629345D-02 7.364586183D-02 7.390481082D-02 7.660638294D-02 7.677257406D-02 7.692330559D-02 7.704698271D-02 7.720157912D-02 7.733298606D-02 7.759193505D-02 7.766150343D-02 7.773107181D-02 7.783928927D-02 7.801707516D-02 7.810983297D-02 7.821805048D-02 7.829921358D-02 7.840743103D-02 7.846926964D-02 7.857748710D-02 7.867024496D-02 7.885189574D-02 7.888281499D-02 8.230712535D-02 8.236896390D-02 8.259312870D-02 8.282888821D-02 8.309556703D-02 8.315740558D-02 8.341248963D-02 8.344340893D-02 8.345886853D-02 8.377192625D-02 8.391106301D-02 8.403087524D-02 8.416228217D-02 8.427049969D-02 8.440963645D-02 8.449852937D-02 8.461834160D-02 8.469563980D-02 8.476520819D-02 8.483091163D-02 8.491593966D-02 8.771799947D-02 8.783008186D-02 8.790738007D-02 8.806584137D-02 8.819724831D-02 8.823203250D-02 8.836730438D-02 8.850257620D-02 8.864944279D-02 8.880017432D-02 8.899728470D-02 8.907071802D-02 8.914415129D-02 8.929488277D-02 8.959248089D-02 8.970456328D-02 8.990167366D-02 9.011037881D-02 9.031521907D-02 9.037319268D-02 9.042343652D-02 9.054324875D-02 9.326414546D-02 9.333757873D-02 9.356174353D-02 9.363517685D-02 9.374339431D-02 9.489127260D-02 1.067874659D-01 4.422903425D-01 4.422903425D-01 4.461031903D-01 4.461031903D-01 4.590668727D-01 3.869240137D-01 2.568374918D-01 2.568374918D-01 2.568374918D-01 2.568374918D-01 2.568374918D-01 2.568374918D-01 2.568374918D-01 2.568374918D-01 4.016004418D-01 4.016004418D-01 4.978494921D-01 4.978494921D-01 5.021412980D-01 5.021412980D-01 4.967845916D-01 5.010672174D-01 5.010672174D-01 5.010672174D-01 4.456728317D-01 4.456728317D-01 4.456728317D-01 4.495148389D-01 4.495148389D-01 3.297169252D-01 3.325593125D-01 3.325593125D-01 3.325593125D-01 3.325593125D-01 3.325593125D-01 3.325593125D-01 3.325593125D-01 3.422234292D-01 4.978494921D-01 4.978494921D-01 5.021412980D-01 5.021412980D-01 6.938255721D-01 7.201430938D-01 3.182345893D-01 2.729684624D-01 3.209779909D-01 3.209779909D-01 3.209779909D-01 3.209779909D-01 3.209779909D-01 3.209779909D-01 3.209779909D-01 3.209779909D-01 5.583848458D-01 4.789594152D-01 4.789594152D-01 4.789594152D-01 3.085908655D-01 2.646964752D-01 2.646964752D-01 2.646964752D-01 2.646964752D-01 2.646964752D-01 2.646964752D-01 3.112511316D-01 3.112511316D-01 3.112511316D-01 3.112511316D-01 3.112511316D-01 3.012034630D-01 2.583598670D-01 2.583598670D-01 1.934453276D-01 3.038000446D-01 3.038000446D-01 3.038000446D-01 3.038000446D-01 3.038000446D-01 3.038000446D-01 3.038000446D-01 3.038000446D-01 7.040655037D-01 7.101350339D-01 5.740464387D-01 5.789951149D-01 5.789951149D-01 5.630250734D-01 5.843811969D-01 5.843811969D-01 4.364682802D-01 4.402309378D-01 4.530239736D-01 4.530239736D-01 4.530239736D-01 4.895895636D-01 4.938101633D-01 5.081602022D-01 5.081602022D-01 4.895895636D-01 4.938101633D-01 5.081602022D-01 5.081602022D-01 3.271428450D-01 3.271428450D-01 3.271428450D-01 3.299630420D-01 3.299630420D-01 3.395517116D-01 3.395517116D-01 3.395517116D-01 3.395517116D-01 4.906087670D-01 4.906087670D-01 5.092180650D-01 5.092180650D-01 4.906087670D-01 4.906087670D-01 5.092180650D-01 5.092180650D-01 3.109275565D-01 3.109275565D-01 3.109275565D-01 3.109275565D-01 3.136079665D-01 3.136079665D-01 3.227213604D-01 3.227213604D-01 3.227213604D-01 3.227213604D-01 4.861073341D-01 5.045458881D-01 5.045458881D-01 5.045458881D-01 4.906087670D-01 4.906087670D-01 5.092180650D-01 5.092180650D-01 4.861073341D-01 5.045458881D-01 5.045458881D-01 5.045458881D-01 5.630250734D-01 5.843811969D-01 5.843811969D-01 4.906087670D-01 4.906087670D-01 5.092180650D-01 5.092180650D-01 4.906087670D-01 4.906087670D-01 5.092180650D-01 5.092180650D-01 5.630250734D-01 5.843811969D-01 5.843811969D-01 4.861073341D-01 5.045458881D-01 5.045458881D-01 5.045458881D-01 4.861073341D-01 5.045458881D-01 5.045458881D-01 5.045458881D-01 5.630250734D-01 5.843811969D-01 5.843811969D-01 4.389837175D-01 4.427680599D-01 4.427680599D-01 4.556348240D-01 4.556348240D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.412095294D-01 1.916415041D-01 1.916415041D-01 1.916415041D-01 1.916415041D-01 1.916415041D-01 1.916415041D-01 1.916415041D-01 1.916415041D-01 1.916415041D-01 1.916415041D-01 1.916415041D-01 2.208003550D-01 2.208003550D-01 1.880175106D-01 1.880175106D-01 1.880175106D-01 1.880175106D-01 2.600501932D-01 2.600501932D-01 2.600501932D-01 2.600501932D-01 2.600501932D-01 2.600501932D-01 2.600501932D-01 2.600501932D-01 2.600501932D-01 2.600501932D-01 2.600501932D-01 1.819130460D-01 2.856889447D-01 1.965405038D-01 1.965405038D-01 1.965405038D-01 1.965405038D-01 2.103813844D-01 2.103813844D-01 2.103813844D-01 2.159177366D-01 2.159177366D-01 2.159177366D-01 2.159177366D-01 2.159177366D-01 2.159177366D-01 2.159177366D-01 2.159177366D-01 2.159177366D-01 1.506810529D-01 1.506810529D-01 1.506810529D-01 1.506810529D-01 1.836223486D-01 1.836223486D-01 1.836223486D-01 1.836223486D-01 1.836223486D-01 1.836223486D-01 2.017301746D-01 2.017301746D-01 2.017301746D-01 2.159365249D-01 2.159365249D-01 2.159365249D-01 2.159365249D-01 2.216190650D-01 2.216190650D-01 2.216190650D-01 2.216190650D-01 2.216190650D-01 2.216190650D-01 2.216190650D-01 2.216190650D-01 2.216190650D-01 1.546598005D-01 1.546598005D-01 1.546598005D-01 1.884709143D-01 1.884709143D-01 1.884709143D-01 1.884709143D-01 1.884709143D-01 4.217978911D-01 4.217978911D-01 4.633835986D-01 4.633835986D-01 4.633835986D-01 3.155111430D-01 3.155111430D-01 3.155111430D-01 3.155111430D-01 3.155111430D-01 3.155111430D-01 3.155111430D-01 2.207096728D-01 3.566905317D-01 3.566905317D-01 2.156596946D-01 2.156596946D-01 2.156596946D-01 2.156596946D-01 2.156596946D-01 2.156596946D-01 2.156596946D-01 2.156596946D-01 2.156596946D-01 2.156596946D-01 2.156596946D-01 2.156596946D-01 2.156596946D-01 2.156596946D-01 2.156596946D-01 2.156596946D-01 2.510665101D-01 2.510665101D-01 2.510665101D-01 2.583624600D-01 5.082986434D-01 6.089468325D-01 6.089468325D-01 2.545035319D-01 2.545035319D-01 2.545035319D-01 2.545035319D-01 2.545035319D-01 2.646330257D-01 2.646330257D-01 2.646330257D-01 2.646330257D-01 2.646330257D-01 2.646330257D-01 2.646330257D-01 3.048977636D-01 3.048977636D-01 3.025773701D-01 3.025773701D-01 3.387708354D-01 3.387708354D-01 3.387708354D-01 3.387708354D-01 3.387708354D-01 3.486154580D-01 3.486154580D-01 2.650084512D-01 2.650084512D-01 2.891001286D-01 2.891001286D-01 2.891001286D-01 2.891001286D-01 2.891001286D-01 2.891001286D-01 2.891001286D-01 2.967080267D-01 3.053303112D-01 3.053303112D-01 5.230719651D-01 6.026589913D-01 6.026589913D-01 2.657998556D-01 2.899634788D-01 2.899634788D-01 2.899634788D-01 2.899634788D-01 2.899634788D-01 2.899634788D-01 2.899634788D-01 2.899634788D-01 2.899634788D-01 2.899634788D-01 2.975940967D-01 2.574200075D-01 2.574200075D-01 2.808218264D-01 2.808218264D-01 2.808218264D-01 2.808218264D-01 2.808218264D-01 2.808218264D-01 2.808218264D-01 2.808218264D-01 2.808218264D-01 2.808218264D-01 2.808218264D-01 3.083035201D-01 3.363311129D-01 3.363311129D-01 3.363311129D-01 3.363311129D-01 3.363311129D-01 3.363311129D-01 3.363311129D-01 3.363311129D-01 2.018021360D-01 2.018021360D-01 2.018021360D-01 2.018021360D-01 2.018021360D-01 2.018021360D-01 2.018021360D-01 3.169241600D-01 3.169241600D-01 3.169241600D-01 3.169241600D-01 3.169241600D-01 3.261339219D-01 3.261339219D-01 2.974585708D-01 4.671497018D-01 4.807249923D-01 4.807249923D-01 4.807249923D-01 2.680898894D-01 4.210270747D-01 4.332620495D-01 4.332620495D-01 4.332620495D-01 4.332620495D-01 3.127504512D-01 3.127504512D-01 3.127504512D-01 3.127504512D-01 3.127504512D-01 5.054383131D-01 5.054383131D-01 3.126394842D-01 3.126394842D-01 3.126394842D-01 3.126394842D-01 3.126394842D-01 3.126394842D-01 3.126394842D-01 3.126394842D-01 3.301911746D-01 3.301911746D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.853548275D-01 1.902325862D-01 1.902325862D-01 3.126394842D-01 3.126394842D-01 3.126394842D-01 3.126394842D-01 3.126394842D-01 3.126394842D-01 3.126394842D-01 3.126394842D-01 3.301911746D-01 3.301911746D-01 4.006137334D-01 4.006137334D-01 4.006137334D-01 4.006137334D-01 4.231043289D-01 4.231043289D-01 3.718817593D-01 3.718817593D-01 3.718817593D-01 3.718817593D-01 3.718817593D-01 3.927593318D-01 3.927593318D-01 4.861669392D-01 4.861669392D-01 5.134605218D-01 5.134605218D-01 3.765330307D-01 3.765330307D-01 3.765330307D-01 3.765330307D-01 3.765330307D-01 3.765330307D-01 3.864417947D-01 4.927885537D-01 4.927885537D-01 5.071089048D-01 5.071089048D-01 3.748203801D-01 3.748203801D-01 3.748203801D-01 3.748203801D-01 3.748203801D-01 3.857125962D-01 3.857125962D-01 4.665134071D-01 4.665134071D-01 3.221733615D-01 4.800702070D-01 4.800702070D-01 4.066987888D-01 4.066987888D-01 2.808654883D-01 2.808654883D-01 2.838201377D-01 2.838201377D-01 4.185173861D-01 4.185173861D-01 4.927885537D-01 4.927885537D-01 5.071089048D-01 5.071089048D-01 3.901704008D-01 3.901704008D-01 3.901704008D-01 2.694510118D-01 2.722855831D-01 2.722855831D-01 4.015086859D-01 4.015086859D-01 3.524857528D-01 3.524857528D-01 2.434260584D-01 2.434260584D-01 2.434260584D-01 2.434260584D-01 2.434260584D-01 2.459868523D-01 3.627289285D-01 3.627289285D-01 3.627289285D-01 4.222880197D-01 2.916313846D-01 2.916313846D-01 2.916313846D-01 4.345596374D-01 4.345596374D-01 4.345596374D-01 4.460716747D-01 3.080563360D-01 3.080563360D-01 3.080563360D-01 3.080563360D-01 4.590344413D-01 4.590344413D-01 4.927885537D-01 4.927885537D-01 5.071089048D-01 5.071089048D-01 4.927885537D-01 4.927885537D-01 5.071089048D-01 5.071089048D-01 4.927885537D-01 4.927885537D-01 5.071089048D-01 5.071089048D-01 5.717587342D-01 5.717587342D-01 5.883739453D-01 5.663265740D-01 5.827839274D-01 5.827839274D-01 5.663265740D-01 5.827839274D-01 5.827839274D-01 4.395066301D-01 4.395066301D-01 4.522786176D-01 4.522786176D-01 4.522786176D-01 4.395066301D-01 4.395066301D-01 4.522786176D-01 4.522786176D-01 4.522786176D-01 5.663265740D-01 5.827839274D-01 5.827839274D-01 4.892979052D-01 5.035168187D-01 5.035168187D-01 5.035168187D-01 5.663265740D-01 5.827839274D-01 5.827839274D-01 2.565760265D-01 2.565760265D-01 2.565760265D-01 2.565760265D-01 2.565760265D-01 2.565760265D-01 2.592751554D-01 2.592751554D-01 2.592751554D-01 2.592751554D-01 2.592751554D-01 2.592751554D-01 2.592751554D-01 2.592751554D-01 2.592751554D-01 3.665983220D-01 3.665983220D-01 3.665983220D-01 5.462677967D-01 5.462677967D-01 1.208275568D-01 1.208320124D-01 1.208275568D-01 1.208310576D-01 1.208294663D-01 1.208307393D-01 1.208291481D-01 1.301511903D-01 1.284921208D-01 1.301543729D-01 1.305932482D-01 1.305942030D-01 1.311915699D-01 1.326959669D-01 1.326950121D-01 1.326953304D-01 1.329365686D-01 1.343986376D-01 1.305907022D-01 1.321297891D-01 1.305884744D-01 1.286814832D-01 1.280510177D-01 1.291381809D-01 1.304824950D-01 1.321762545D-01 1.330511408D-01 1.341102974D-01 1.347499924D-01 1.362120614D-01 1.359386793D-01 1.353807762D-01 1.345727237D-01 1.345724054D-01 1.340122745D-01 1.332777392D-01 1.327771222D-01 1.316466762D-01 1.311065955D-01 1.307176864D-01 1.317768430D-01 1.311046859D-01 1.325444770D-01 1.325444770D-01 1.325441587D-01 1.325444770D-01 1.350157363D-01 1.360265180D-01 1.371989738D-01 1.350714312D-01 1.336529633D-01 1.327774405D-01 1.327780770D-01 1.327780770D-01 1.332783757D-01 1.340122745D-01 1.345717689D-01 1.350593374D-01 1.555298032D-01 1.555298032D-01 1.555310148D-01 1.555314187D-01 1.555310148D-01 1.555306109D-01 1.555322264D-01 1.555314187D-01 1.555298032D-01 1.555334379D-01 1.555334379D-01 1.555322264D-01 1.555334379D-01 1.555342456D-01 1.555322264D-01 1.555326302D-01 1.555338418D-01 1.555298032D-01 1.555342456D-01 1.582869283D-01 1.582869283D-01 1.582881399D-01 1.582869283D-01 1.582877361D-01 1.582881399D-01 1.555342456D-01 1.555314187D-01 1.555302071D-01 1.555318225D-01 1.555358611D-01 1.555322264D-01 1.592751641D-01 1.582857168D-01 1.582873322D-01 1.527508699D-01 1.527532930D-01 1.527496583D-01 1.527480429D-01 1.592755679D-01 1.592755679D-01 1.592751641D-01 1.848500633D-01 1.818042753D-01 1.848525606D-01 1.818062732D-01 1.848555575D-01 1.818092700D-01 1.848560570D-01 1.970447032D-01 1.993322908D-01 1.993397829D-01 1.970452027D-01 1.918272054D-01 1.970501974D-01 1.970452027D-01 1.970511964D-01 1.970457022D-01 1.970496979D-01 1.970462016D-01 1.970511964D-01 1.970447032D-01 1.970472006D-01 1.918262065D-01 1.918292033D-01 1.918222107D-01 1.918287038D-01 1.918227102D-01 1.918287038D-01 2.097331186D-01 2.097489127D-01 2.097510186D-01 2.097357510D-01 2.097399627D-01 2.057208988D-01 2.057293223D-01 2.075314255D-01 2.097425951D-01 2.097346980D-01 2.075208961D-01 2.097420686D-01 2.097346980D-01 2.075230020D-01 2.075308990D-01 2.097452274D-01 2.097368039D-01 2.075224755D-01 2.075277402D-01 2.097389098D-01 2.097368039D-01 2.057198459D-01 2.067601485D-01 2.137362364D-01 2.115680705D-01 2.137400623D-01 2.137378761D-01 2.137389692D-01 2.137378761D-01 2.137389692D-01 2.137362364D-01 2.118085527D-01 2.137367830D-01 2.137356899D-01 2.137329571D-01 2.137351433D-01 2.137384226D-01 2.137367830D-01 2.137351433D-01 2.118058200D-01 2.118025407D-01 2.117998079D-01 2.118041803D-01 2.137296778D-01 2.137400623D-01 1.864087635D-01 1.864077953D-01 1.843602198D-01 1.830837524D-01 1.843607038D-01 1.875240387D-01 1.875230705D-01 1.864591057D-01 1.864586217D-01 1.864557173D-01 1.864552333D-01 1.864445839D-01 1.864552333D-01 1.864450680D-01 1.864562014D-01 1.800099688D-01 1.821955016D-01 1.821974378D-01 1.791865820D-01 1.875191981D-01 1.875245227D-01 1.875250068D-01 1.864566854D-01 1.875191981D-01 1.864576536D-01 1.864595898D-01 1.864566854D-01 1.864562014D-01 1.875216184D-01 1.554535810D-01 1.513304366D-01 1.532725716D-01 1.514262229D-01 1.517671903D-01 1.517667962D-01 1.514218869D-01 1.517667962D-01 1.517648252D-01 1.532741484D-01 1.532713891D-01 1.517644311D-01 1.517656136D-01 1.514254345D-01 1.532733600D-01 1.549687371D-01 1.549718905D-01 1.569554147D-01 1.549722847D-01 1.539434695D-01 1.540242768D-01 1.509685775D-01 1.517671903D-01 1.517648252D-01 1.517640369D-01 1.517652194D-01 1.509654240D-01 1.509654240D-01 1.517644311D-01 1.517656136D-01 1.532769077D-01 1.532749367D-01 1.517640369D-01 1.517656136D-01 1.509681833D-01 1.509638473D-01 1.517624602D-01 1.517667962D-01 1.549730731D-01 1.532698124D-01 1.517632485D-01 1.517648252D-01 1.517632485D-01 7.879069361D-02 7.652106471D-02 7.652126512D-02 7.664772303D-02 7.664772303D-02 7.666555940D-02 7.574628454D-02 7.574608413D-02 7.699162441D-02 7.699142400D-02 7.789266208D-02 7.789266208D-02 7.834177805D-02 7.834157764D-02 7.849068174D-02 7.849048133D-02 7.865321322D-02 7.865301281D-02 7.849028092D-02 7.849048133D-02 7.834097642D-02 7.834097642D-02 7.789206085D-02 7.789206085D-02 7.699002114D-02 7.699022155D-02 7.538434637D-02 7.538434637D-02 7.574387964D-02 7.574387964D-02 7.574608413D-02 7.574628454D-02 7.574688577D-02 7.574728659D-02 7.574788781D-02 7.574548291D-02 7.574568332D-02 7.538594964D-02 7.538615005D-02 7.699222564D-02 7.699222564D-02 7.789386453D-02 7.789386453D-02 7.833857151D-02 7.833857151D-02 7.848807643D-02 7.848827684D-02 7.864960587D-02 7.864980628D-02 7.892616992D-02 7.892637033D-02 7.864920505D-02 7.864920505D-02 7.881955247D-02 7.881875084D-02 7.881935206D-02 7.864639933D-02 7.864619892D-02 7.881855043D-02 7.881855043D-02 7.864800260D-02 7.864820301D-02 7.892516788D-02 7.892496747D-02 7.848707438D-02 7.848707438D-02 7.833616661D-02 7.833616661D-02 7.788685023D-02 7.788725104D-02 7.698501093D-02 7.698521133D-02 7.537933615D-02 7.537953656D-02 7.573886942D-02 7.573906983D-02 7.637576837D-02 7.637576837D-02 7.665794387D-02 7.665774346D-02 7.637596878D-02 7.637596878D-02 7.573927024D-02 7.573927024D-02 7.574147473D-02 7.574187555D-02 7.574247678D-02 7.574307800D-02 7.574287759D-02 7.574147473D-02 7.574147473D-02 7.567153209D-02 7.567173249D-02 7.574147473D-02 7.574147473D-02 7.574107392D-02 7.574107392D-02 7.637797287D-02 7.637777246D-02 7.638598922D-02 7.638618963D-02 7.665974755D-02 7.665974755D-02 7.664231199D-02 7.664231199D-02 7.651545326D-02 7.651545326D-02 7.878307808D-02 7.878307808D-02 7.878247686D-02 7.878247686D-02 7.651425081D-02 7.651425081D-02 7.664050831D-02 7.664070872D-02 7.665854510D-02 7.665834469D-02 7.637737164D-02 7.637717124D-02 7.638538799D-02 7.638538799D-02 7.573927024D-02 7.573947065D-02 7.566992882D-02 7.566992882D-02 7.573947065D-02 7.573967105D-02 7.573866901D-02 7.788685023D-02 7.788664982D-02 7.833596620D-02 7.833596620D-02 7.848547111D-02 7.848567152D-02 7.788664982D-02 7.698481052D-02 7.698481052D-02 7.573826819D-02 7.573826819D-02 7.574027228D-02 7.574027228D-02 7.574147473D-02 7.574207596D-02 7.574227637D-02 7.574007187D-02 7.574027228D-02 7.538013779D-02 7.538013779D-02 7.574067310D-02 7.574067310D-02 7.637737164D-02 7.637757205D-02 7.638558840D-02 7.638538799D-02 7.665914632D-02 7.665914632D-02 7.664151036D-02 7.664151036D-02 7.651425081D-02 7.651445122D-02 7.878267727D-02 7.878267727D-02 7.540438724D-02 7.662447561D-02 7.540378602D-02 7.662467602D-02 7.540398643D-02 7.662487643D-02 7.540438724D-02 5.563999397D-02 5.654075309D-02 5.564014188D-02 5.654090099D-02 5.563999397D-02 5.654090099D-02 5.621727851D-02 5.621535571D-02 5.621579943D-02 5.654090099D-02 5.564014188D-02 5.654075309D-02 5.563999397D-02 5.654075309D-02 5.563999397D-02 5.621565152D-02 5.621757432D-02 5.616151723D-02 5.606064404D-02 5.677577874D-02 5.689277389D-02 5.705118325D-02 5.734936558D-02 5.754608308D-02 5.780610517D-02 5.793256643D-02 5.808032642D-02 5.819939228D-02 5.859312311D-02 5.850570954D-02 5.875892787D-02 5.875863205D-02 5.850541373D-02 5.750836657D-02 5.670670575D-02 5.603194991D-02 5.623014650D-02 5.623029440D-02 5.675521954D-02 5.715649368D-02 5.674811996D-02 5.675492373D-02 5.622999859D-02 5.603209782D-02 5.643070961D-02 5.670788901D-02 5.750807075D-02 5.850570954D-02 5.875818833D-02 5.850437837D-02 5.875818833D-02 5.923637457D-02 5.964489619D-02 5.964504410D-02 5.680713521D-02 5.588729598D-02 5.588744389D-02 5.636370733D-02 5.813298163D-02 5.964533992D-02 5.964460038D-02 5.964430456D-02 5.958454977D-02 5.951399770D-02 5.943960003D-02 5.961768114D-02 5.961723741D-02 5.958824747D-02 5.962478072D-02 6.023016775D-02 6.054920509D-02 6.075346591D-02 6.103034949D-02 6.102990577D-02 5.996171491D-02 5.996156701D-02 5.965480602D-02 6.127646824D-02 6.081514350D-02 6.033163257D-02 6.081558722D-02 5.863143126D-02 5.986675804D-02 5.986498315D-02 5.934538269D-02 5.957390040D-02 5.952997175D-02 5.986601850D-02 6.004912848D-02 5.986557478D-02 5.986513106D-02 5.968098572D-02 6.075213473D-02 6.103892815D-02 6.066279836D-02 6.130042932D-02 6.252140904D-02 6.235471683D-02 6.252111322D-02 6.130116886D-02 6.066235464D-02 6.103833652D-02 6.075272637D-02 5.968157735D-02 6.004898058D-02 5.986601850D-02 6.007797052D-02 6.007723098D-02 5.831195019D-02 5.951222280D-02 5.994736785D-02 5.971914596D-02 6.070362094D-02 6.030634032D-02 6.070332513D-02 5.990639736D-02 6.148989934D-02 6.189664607D-02 6.185360487D-02 6.100771959D-02 6.134894311D-02 6.100742377D-02 6.134923893D-02 6.185523186D-02 6.189679398D-02 5.990639736D-02 6.050438900D-02 6.070376885D-02 6.030693195D-02 6.070391676D-02 5.923045825D-02 5.932230906D-02 5.903684681D-02 5.932230906D-02 5.871470341D-02 5.874324963D-02 5.878185359D-02 5.874384126D-02 5.878214941D-02 5.871588667D-02 5.923134570D-02 5.932319651D-02 5.903773426D-02 6.070288140D-02 6.030545287D-02 6.070258559D-02 6.007737889D-02 6.007634354D-02 5.830973157D-02 5.951074373D-02 5.994559295D-02 5.971677943D-02 5.994544505D-02 5.957197760D-02 5.862980427D-02 6.081484768D-02 6.033118885D-02 6.013905649D-02 5.965406648D-02 5.996038374D-02 5.965391857D-02 6.033104094D-02 6.251963414D-02 6.251889460D-02 6.235249822D-02 6.251948624D-02 6.129968978D-02 6.066131928D-02 6.103804071D-02 5.968054200D-02 6.004809313D-02 5.952938012D-02 5.957301295D-02 5.934449525D-02 5.863069172D-02 5.934508688D-02 5.986527896D-02 6.004942430D-02 5.953026757D-02 5.957360458D-02 5.951207490D-02 5.831002739D-02 6.007649144D-02 5.994574086D-02 5.971811060D-02 6.070273350D-02 6.050379737D-02 5.990565782D-02 6.050409319D-02 6.070332513D-02 5.932304860D-02 5.903803008D-02 5.932334442D-02 5.923134570D-02 5.923045825D-02 5.871499922D-02 5.878200150D-02 5.874354545D-02 5.878229732D-02 5.874369335D-02 5.878200150D-02 5.871499922D-02 5.923045825D-02 5.960392570D-02 5.957375249D-02 5.999484628D-02 6.087356712D-02 6.176826201D-02 6.176826201D-02 6.260187094D-02 6.282876166D-02 6.300048273D-02 6.325695503D-02 6.325769457D-02 6.300063064D-02 6.282890956D-02 6.260201884D-02 6.297770491D-02 6.323698746D-02 6.336389244D-02 6.312339419D-02 6.295892061D-02 6.293155765D-02 6.293140974D-02 6.293155765D-02 6.293170555D-02 6.239820176D-02 6.235412520D-02 6.252066950D-02 6.130072514D-02 6.066279836D-02 6.103892815D-02 5.968098572D-02 5.986601850D-02 6.004927639D-02 5.968187317D-02 6.103966769D-02 6.066368581D-02 6.130220422D-02 6.235545637D-02 6.252200067D-02 6.172951014D-02 6.172980596D-02 5.996112328D-02 5.965524974D-02 5.965495393D-02 5.996112328D-02 6.103034949D-02 6.075287427D-02 6.054846556D-02 6.022913240D-02 5.958795165D-02 5.961768114D-02 5.943945212D-02 5.951399770D-02 5.958484558D-02 5.964460038D-02 5.964504410D-02 5.923607875D-02 5.875789251D-02 5.850408256D-02 5.842184576D-02 5.859164403D-02 5.819791320D-02 5.793167898D-02 5.754519564D-02 5.734818231D-02 5.705029580D-02 5.689233017D-02 5.677592665D-02 5.606064404D-02 5.616122141D-02 5.621594734D-02 5.621550361D-02 5.621609524D-02 5.621476407D-02 5.621491198D-02 5.563940234D-02 5.654016145D-02 5.563969816D-02 5.654030936D-02 5.563955025D-02 5.654045727D-02 1.889625121D-01 1.883666206D-01 1.889711335D-01 1.889751906D-01 1.889706263D-01 1.897643031D-01 1.900442453D-01 1.900396810D-01 1.897607531D-01 1.900396810D-01 1.897435103D-01 1.883316278D-01 1.883656063D-01 1.889589621D-01 1.883656063D-01 1.883311207D-01 1.897369174D-01 1.883306135D-01 1.889594692D-01 1.883656063D-01 1.883311207D-01 1.897364103D-01 1.897541602D-01 1.883686492D-01 1.865540962D-01 1.881901353D-01 1.881886139D-01 1.909388432D-01 2.180607298D-01 2.144670736D-01 2.180624981D-01 2.144670736D-01 2.180630875D-01 2.144694312D-01 2.180642663D-01 2.196480214D-01 2.196509684D-01 2.196521473D-01 2.168483055D-01 2.196297495D-01 2.196273919D-01 2.196268025D-01 2.196285707D-01 2.196279813D-01 2.196226766D-01 2.189295259D-01 2.168282655D-01 2.187232310D-01 2.187285357D-01 1.368006732D-01 1.345473413D-01 1.367991952D-01 1.345477109D-01 1.367999342D-01 1.345466023D-01 1.368003037D-01 1.345462328D-01 1.368017818D-01 1.345451242D-01 1.368010428D-01 1.441193829D-01 1.445694580D-01 1.441252952D-01 1.527979255D-01 1.528367251D-01 1.248071683D-01 1.250662017D-01 1.374384644D-01 1.359936419D-01 1.374366168D-01 1.527975559D-01 1.528370946D-01 1.250632455D-01 1.374362473D-01 1.359903163D-01 1.374366168D-01 1.445727837D-01 1.441256647D-01 1.248060597D-01 1.250658322D-01 1.248064293D-01 1.250676798D-01 1.374392035D-01 1.359936419D-01 1.374340302D-01 1.445742618D-01 1.441227086D-01 1.527957083D-01 1.528352470D-01 1.374358778D-01 1.359932724D-01 1.374362473D-01 1.441227086D-01 1.445720447D-01 1.528348775D-01 1.527957083D-01 1.250669407D-01 1.248038426D-01 1.250650931D-01 1.441238171D-01 1.445753703D-01 6.163892838D-02 6.163844147D-02 6.163909068D-02 6.163990219D-02 6.164022680D-02 6.157790263D-02 6.176860809D-02 6.178532526D-02 6.192441852D-02 6.183012075D-02 6.186858645D-02 6.188968578D-02 6.187378013D-02 6.163535772D-02 6.143929627D-02 6.187637697D-02 6.179766025D-02 6.187540316D-02 6.202261155D-02 6.187556546D-02 6.179652413D-02 6.143832246D-02 6.163454621D-02 6.187215711D-02 6.188838736D-02 6.186728803D-02 6.187264401D-02 6.157887644D-02 6.106210520D-02 6.086539454D-02 6.191695260D-02 6.267133474D-02 6.267912526D-02 6.267944987D-02 6.105707382D-02 6.254814712D-02 6.259667558D-02 6.191143432D-02 6.191029820D-02 6.259440334D-02 6.254668640D-02 6.105528850D-02 6.267815145D-02 6.267847605D-02 6.267068553D-02 6.222175675D-02 6.223214411D-02 6.248501144D-02 6.304479285D-02 6.329165499D-02 6.363070497D-02 6.376996053D-02 6.363232799D-02 6.385581857D-02 6.390613235D-02 6.393064003D-02 6.367339053D-02 6.367436434D-02 6.393210075D-02 6.390807998D-02 6.385744159D-02 6.363443792D-02 6.377207046D-02 6.363249029D-02 6.329311571D-02 6.304560436D-02 6.248582295D-02 6.223295562D-02 6.165386021D-02 6.143540101D-02 6.217598743D-02 6.305436870D-02 6.414828772D-02 6.442614964D-02 6.495103601D-02 6.540077630D-02 6.533455687D-02 6.487605224D-02 6.427715592D-02 6.374139529D-02 6.190510452D-02 6.331502655D-02 6.381524294D-02 6.473095378D-02 6.517744803D-02 6.525957311D-02 6.533731602D-02 6.540207472D-02 6.533585529D-02 6.487686375D-02 6.427796744D-02 6.374171989D-02 6.190575373D-02 6.331453965D-02 6.381475603D-02 6.444806048D-02 6.479912084D-02 6.554636167D-02 6.444237989D-02 6.272246003D-02 6.365001897D-02 6.424972680D-02 6.504776831D-02 6.409927236D-02 6.535663002D-02 6.535695462D-02 6.532416951D-02 6.578592020D-02 6.674999720D-02 6.773111596D-02 6.817744790D-02 6.798609323D-02 6.836117436D-02 6.864633990D-02 6.889531197D-02 6.908423211D-02 6.936809923D-02 7.003727254D-02 7.004749760D-02 6.980339460D-02 6.934180622D-02 6.905728989D-02 6.864487918D-02 6.864487918D-02 6.889498737D-02 6.908342060D-02 6.936858614D-02 6.998630955D-02 6.938936086D-02 6.819075671D-02 6.796856455D-02 6.715477969D-02 6.773062905D-02 6.715461739D-02 6.687919001D-02 6.668069402D-02 6.722148603D-02 6.761295972D-02 6.761312202D-02 6.887356343D-02 6.998614724D-02 6.938822474D-02 6.818962059D-02 6.796840225D-02 6.817631179D-02 6.773046675D-02 6.715445509D-02 6.687919001D-02 6.668150553D-02 6.668036941D-02 6.722083682D-02 6.761312202D-02 6.761312202D-02 6.887372574D-02 6.938887395D-02 6.998679645D-02 6.936972225D-02 6.908358290D-02 7.003743484D-02 7.004765990D-02 6.980404381D-02 6.873658010D-02 6.948187330D-02 6.948187330D-02 6.921748248D-02 6.903732668D-02 6.740212874D-02 6.903602826D-02 6.900567769D-02 6.842106399D-02 6.855626200D-02 6.842138860D-02 6.900600229D-02 6.903667747D-02 6.921699558D-02 6.948203560D-02 6.873674241D-02 6.934278003D-02 6.905793910D-02 6.864552839D-02 6.836052515D-02 6.798593092D-02 6.773079135D-02 6.674951029D-02 6.578559559D-02 6.535646771D-02 6.532384491D-02 6.535468239D-02 6.532222188D-02 6.409813624D-02 6.504679450D-02 6.424956449D-02 6.364985666D-02 6.171423675D-02 6.171147761D-02 6.171439905D-02 6.272408306D-02 6.444351601D-02 6.554684858D-02 6.639358085D-02 6.604333200D-02 6.479960775D-02 6.444838509D-02 6.537237336D-02 6.472965536D-02 6.517647421D-02 6.525811238D-02 6.533585529D-02 6.539931558D-02 6.533293385D-02 6.487410461D-02 6.495022449D-02 6.442533813D-02 6.414715160D-02 6.305290798D-02 6.217517592D-02 6.143475180D-02 6.165272409D-02 6.223246871D-02 6.222208135D-02 6.267133474D-02 6.191679030D-02 6.086669296D-02 6.106340362D-02 6.158066177D-02 6.163487081D-02 6.187296862D-02 6.188903657D-02 6.187410474D-02 6.183109457D-02 6.182849773D-02 6.192230859D-02 6.178402683D-02 6.176649816D-02 6.157563039D-02 6.163860377D-02 6.163941529D-02 0457D 01 -3.033558609D+01-3.029383604D+01-3.033920457D+01-3.032031031D+01-3.033212375D+01 -3.029598743D+01-3.034856101D+01 2.765098744D+02 2.218316066D+02 2.765160839D+02 2.909372001D+02 2.909412937D+02 3.105920458D+02 3.601022106D+02 3.601022532D+02 3.600901410D+02 3.680476077D+02 4.162017698D+02 2.909151103D+02 3.416011048D+02 2.908964038D+02 2.281538873D+02 2.074116368D+02 2.431874699D+02 2.874211627D+02 3.431369460D+02 3.719137778D+02 4.067444226D+02 4.277758248D+02 4.758812710D+02 4.668520928D+02 4.484771528D+02 4.218763222D+02 4.218730429D+02 4.034435900D+02 3.792807393D+02 3.628151567D+02 3.256276534D+02 3.078859269D+02 2.951087563D+02 3.299927587D+02 3.078840126D+02 3.552899496D+02 3.552906459D+02 3.552801693D+02 3.552904127D+02 4.366222525D+02 4.698536240D+02 5.084282515D+02 4.383306068D+02 3.916200832D+02 3.627935259D+02 3.628163806D+02 3.628207844D+02 3.792941613D+02 4.034669429D+02 4.218945019D+02 4.379546406D+02 2.675004481D+01 2.673839829D+01 2.673819157D+01 2.670157204D+01 2.674387502D+01 2.675349025D+01 2.671676546D+01 2.672165992D+01 2.672486611D+01 2.674833892D+01 2.675058344D+01 2.677138495D+01 2.673611205D+01 2.675733991D+01 2.675054534D+01 2.671344519D+01 2.675315564D+01 2.667894851D+01 2.675838398D+01 9.817472178D+01 9.816784201D+01 9.818171183D+01 9.820279936D+01 9.818217042D+01 9.819436810D+01 2.685744900D+01 2.682375156D+01 2.668592314D+01 2.684894450D+01 2.682590367D+01 2.674323776D+01 1.237917228D+02 9.818501896D+01 9.817292375D+01-4.531001715D+01-4.534171113D+01-4.536506835D+01 -4.547639301D+01 1.238315370D+02 1.238538980D+02 1.238058840D+02-1.305119479D+02 -1.943774075D+02-1.304883427D+02-1.943654640D+02-1.304510622D+02-1.943270793D+02 -1.304649314D+02 1.251797612D+02 1.731463667D+02 1.731697647D+02 1.251248857D+02 1.568631518D+01 1.251597884D+02 1.250786027D+02 1.251742019D+02 1.250818816D+02 1.251591320D+02 1.250838699D+02 1.251742198D+02 1.250643445D+02 1.251073975D+02 1.565923440D+01 1.567508917D+01 1.560889641D+01 1.567871048D+01 1.564576492D+01 1.568678459D+01 1.657280052D+02 1.660447486D+02 1.660218118D+02 1.656941510D+02 1.657389052D+02 8.591371246D+01 8.596411889D+01 1.217907185D+02 1.657910754D+02 1.657299238D+02 1.217152814D+02 1.657651146D+02 1.657348809D+02 1.217482991D+02 1.217771511D+02 1.658280848D+02 1.657501703D+02 1.217400967D+02 1.217691194D+02 1.657407964D+02 1.657279051D+02 8.587887678D+01 1.066424028D+02 8.905939414D+01 4.754781250D+01 8.906612802D+01 8.903661875D+01 8.909686262D+01 8.904517672D+01 8.909743109D+01 8.908236922D+01 5.212203445D+01 8.907660405D+01 8.907808227D+01 8.898469412D+01 8.902619127D+01 8.903908142D+01 8.907221325D+01 8.901501411D+01 5.204141503D+01 5.205654728D+01 5.200227415D+01 5.204193772D+01 8.903744035D+01 8.910340348D+01 2.665454569D+01 2.664878346D+01-1.774267737D+01-4.524098768D+01 -1.777311869D+01 5.066973936D+01 5.067968557D+01 2.758770515D+01 2.758970981D+01 2.763331002D+01 2.755463651D+01 2.732433509D+01 2.755483311D+01 2.733497833D+01 2.757596507D+01-1.118102593D+02-6.448436276D+01-6.449482692D+01-1.297570744D+02 5.072610848D+01 5.070482824D+01 5.064990642D+01 2.757607511D+01 5.070388671D+01 2.764738315D+01 2.759764042D+01 2.765076438D+01 2.758240358D+01 5.067354064D+01 1.237881323D+02 1.427564387D+01 6.583114431D+01 1.667731338D+01 2.570744927D+01 2.575803132D+01 1.669404429D+01 2.572816888D+01 2.570250295D+01 6.586103046D+01 6.574285193D+01 2.567125125D+01 2.570449754D+01 1.668741985D+01 6.581529147D+01 1.109061723D+02 1.109963904D+02 1.637401194D+02 1.110406312D+02 8.364496808D+01 8.577866653D+01 4.509057801D+00 2.570841689D+01 2.573599699D+01 2.573344310D+01 2.573924995D+01 4.517806067D+00 4.513926295D+00 2.571610432D+01 2.567404026D+01 6.585177966D+01 6.581210592D+01 2.565455990D+01 2.568125962D+01 4.515725521D+00 4.485338174D+00 2.571037536D+01 2.571079080D+01 1.109652131D+02 6.574208173D+01 2.571531323D+01 2.567884595D+01 2.567878125D+01 1.108592233D+02-7.743035185D+00 -7.731185794D+00-1.113979636D+00-1.111450667D+00-1.723926401D-01-4.818296646D+01 -4.819056951D+01 1.692958162D+01 1.692172711D+01 6.403010215D+01 6.403200306D+01 8.751357892D+01 8.750514451D+01 9.530583035D+01 9.529620680D+01 1.038034857D+02 1.037937890D+02 9.528996781D+01 9.530033715D+01 8.748429005D+01 8.748375983D+01 6.401989490D+01 6.401872142D+01 1.687387499D+01 1.688306764D+01-6.703788581D+01 -6.703876065D+01-4.825587401D+01-4.825713356D+01-4.815152727D+01-4.814311208D+01 -4.814542302D+01-4.814606064D+01-4.814726846D+01-4.827566253D+01-4.826605247D+01 -6.706512585D+01-6.705479083D+01 1.687108424D+01 1.687094233D+01 6.398984293D+01 6.398996510D+01 8.723216497D+01 8.723268045D+01 9.504932615D+01 9.506066677D+01 1.034941154D+02 1.035056450D+02 1.179588743D+02 1.179705589D+02 1.034904160D+02 1.034914303D+02 1.124031473D+02 1.123631556D+02 1.123965105D+02 1.033739094D+02 1.033651159D+02 1.123818634D+02 1.123839736D+02 1.034807886D+02 1.034928989D+02 1.179741219D+02 1.179652124D+02 9.508755234D+01 9.508863577D+01 8.721697839D+01 8.721832141D+01 6.374072012D+01 6.376255996D+01 1.661768202D+01 1.662845331D+01 -6.728566112D+01-6.727488694D+01-4.849640598D+01-4.848589324D+01-1.521542473D+01 -1.521558506D+01-4.721734727D-01-4.829918028D-01-1.521034821D+01-1.521099416D+01 -4.848562459D+01-4.848684867D+01-4.837706629D+01-4.839201816D+01-4.837738417D+01 -4.839232927D+01-4.840691068D+01-4.848094114D+01-4.848114118D+01-5.213735340D+01 -5.212704777D+01-4.848293467D+01-4.848298086D+01-4.850204632D+01-4.850180023D+01 -1.521888527D+01-1.522890230D+01-1.479891652D+01-1.478805778D+01-4.898694888D-01 -4.893632510D-01-1.398120193D+00-1.397532054D+00-8.021042097D+00-8.020067512D+00 1.104921809D+02 1.104930456D+02 1.104768257D+02 1.104778462D+02-8.049975560D+00 -8.048909987D+00-1.441770006D+00-1.430215501D+00-4.931024071D-01-5.024998180D-01 -1.517845775D+01-1.518753196D+01-1.475573000D+01-1.475470041D+01-4.851284394D+01 -4.850105773D+01-5.213108808D+01-5.212983843D+01-4.849291471D+01-4.848038391D+01 -4.852230497D+01 6.374509209D+01 6.373503397D+01 8.721878765D+01 8.721907289D+01 9.503402929D+01 9.504462541D+01 6.373945149D+01 1.660938072D+01 1.660917308D+01 -4.853278972D+01-4.853314926D+01-4.843060132D+01-4.845551924D+01-4.841878667D+01 -4.844297700D+01-4.843337443D+01-4.854872693D+01-4.853831814D+01-6.735704037D+01 -6.735707224D+01-4.851767040D+01-4.851768348D+01-1.524669163D+01-1.523620018D+01 -1.481724142D+01-1.482766501D+01-5.215927559D-01-5.215064891D-01-1.442563659D+00 -1.442384895D+00-8.091089017D+00-8.080397371D+00 1.104586383D+02 1.104588601D+02 -6.597214807D+01-2.209324741D+00-6.599561041D+01-2.198774154D+00-6.599047472D+01 -2.200058630D+00-6.598629910D+01-6.675986110D+01-2.976195768D+00-6.673718955D+01 -2.955923437D+00-6.674036853D+01-2.950768501D+00-2.600058955D+01-2.601041334D+01 -2.599912360D+01-2.974770967D+00-6.674723003D+01-2.979176141D+00-6.675627950D+01 -2.980406707D+00-6.675990061D+01-2.601686752D+01-2.598590848D+01-2.987457120D+01 -3.701250236D+01 1.362276561D+01 2.190369763D+01 3.311611380D+01 5.422529951D+01 6.814783324D+01 8.653463383D+01 9.547726365D+01 1.059306776D+02 1.143523250D+02 1.422289163D+02 1.360343670D+02 1.539658390D+02 1.539506484D+02 1.360229245D+02 6.544012583D+01 8.689335614D+00-3.907013933D+01-2.502438697D+01-2.501176021D+01 1.215506347D+01 4.056059847D+01 1.163400588D+01 1.210917905D+01-2.507548950D+01 -3.910260692D+01-1.088604530D+01 8.734458324D+00 6.539052776D+01 1.360364338D+02 1.539199536D+02 1.359488920D+02 1.539261576D+02 1.878003652D+02 2.167289744D+02 2.167428035D+02 1.581479617D+01-4.931768292D+01-4.932502230D+01-1.560864436D+01 1.096517169D+02 2.167499746D+02 2.167098748D+02 2.166993431D+02 2.124726818D+02 2.074807797D+02 2.022149809D+02 2.148302534D+02 2.148000708D+02 2.127451770D+02 2.153277263D+02 2.581972920D+02 2.807858552D+02 2.952460079D+02 3.148493716D+02 3.148305603D+02 2.391684673D+02 2.391583537D+02 2.174386430D+02 3.322977947D+02 2.996289561D+02 2.653876807D+02 2.996611444D+02 1.449693987D+02 2.324446186D+02 2.323483650D+02 1.955309124D+02 2.117066895D+02 2.085960166D+02 2.323986832D+02 2.453692454D+02 2.323733250D+02 2.323759119D+02 2.193170133D+02 2.951651746D+02 3.154690814D+02 2.888249210D+02 3.339788203D+02 4.204543748D+02 4.086501844D+02 4.204369417D+02 3.340382032D+02 2.887994503D+02 3.154280164D+02 2.952016996D+02 2.193427702D+02 2.453631421D+02 2.324056399D+02 2.474159495D+02 2.474299118D+02 1.223919264D+02 2.073651681D+02 2.381668633D+02 2.219896897D+02 2.917082317D+02 2.635721685D+02 2.916893035D+02 2.352588191D+02 3.474108197D+02 3.762197316D+02 3.732359908D+02 3.133102191D+02 3.374406315D+02 3.132449106D+02 3.374460718D+02 3.732739548D+02 3.762029695D+02 2.352400783D+02 2.775949421D+02 2.917226109D+02 2.636228428D+02 2.917451707D+02 1.874756975D+02 1.939737698D+02 1.737493765D+02 1.939572458D+02 1.509138263D+02 1.529112098D+02 1.556300522D+02 1.529279092D+02 1.556329732D+02 1.509347016D+02 1.874340563D+02 1.939335667D+02 1.737148197D+02 2.916450515D+02 2.635101662D+02 2.916460146D+02 2.473888516D+02 2.473790892D+02 1.222726586D+02 2.073213697D+02 2.381114657D+02 2.218990850D+02 2.380843170D+02 2.116175884D+02 1.448601983D+02 2.995871080D+02 2.653276022D+02 2.517126232D+02 2.173563964D+02 2.390498390D+02 2.173505727D+02 2.653349760D+02 4.204052092D+02 4.203544320D+02 4.085717763D+02 4.204008146D+02 3.340105091D+02 2.887962069D+02 3.154688476D+02 2.193130576D+02 2.453305050D+02 2.085832618D+02 2.116590180D+02 1.954595940D+02 1.448929594D+02 1.954715793D+02 2.323080471D+02 2.453485171D+02 2.085819211D+02 2.116565563D+02 2.073132117D+02 1.222746269D+02 2.473705075D+02 2.381062034D+02 2.219771936D+02 2.916960570D+02 2.775938129D+02 2.352151243D+02 2.775819784D+02 2.916781548D+02 1.939062134D+02 1.737162153D+02 1.939212611D+02 1.874114065D+02 1.873925367D+02 1.508977926D+02 1.556552001D+02 1.529409503D+02 1.556926617D+02 1.529655491D+02 1.556828731D+02 1.509397941D+02 1.874412855D+02 2.138591147D+02 2.117109953D+02 2.415065694D+02 3.037265517D+02 3.670767935D+02 3.670901394D+02 4.261661421D+02 4.422428839D+02 4.544124346D+02 4.725840752D+02 4.726381696D+02 4.544237814D+02 4.422538336D+02 4.261778770D+02 4.527684602D+02 4.711222353D+02 4.800915618D+02 4.630522978D+02 4.513970697D+02-9.322790259D+01 -9.322349763D+01-9.319757128D+01-9.317585021D+01 4.117519627D+02 4.086365657D+02 4.204341182D+02 3.340342646D+02 2.888530630D+02 3.154866700D+02 2.193007207D+02 2.323866546D+02 2.453599473D+02 2.193287509D+02 3.154758667D+02 2.888447249D+02 3.340604453D+02 4.086548174D+02 4.204628295D+02 3.643627894D+02 3.643468088D+02 2.390871115D+02 2.174321678D+02 2.174225589D+02 2.391174243D+02 3.148522701D+02 2.952092179D+02 2.807381153D+02 2.581271178D+02 2.127225064D+02 2.148285174D+02 2.022042881D+02 2.074810403D+02 2.124929091D+02 2.167186286D+02 2.167069950D+02 1.877466708D+02 1.538885778D+02 1.359198980D+02 1.301016007D+02 1.421321840D+02 1.142567766D+02 9.541342092D+01 6.805636445D+01 5.410624399D+01 3.301290058D+01 2.182596018D+01 1.358132990D+01-3.706857182D+01-2.995344702D+01-2.603078447D+01 -2.605456140D+01-2.605952953D+01-2.608363381D+01-2.608498876D+01-6.683252096D+01 -3.056186543D+00-6.681391568D+01-3.049359791D+00-6.682921809D+01-3.046087397D+00 -1.041767500D+02-1.164744906D+02-1.041396855D+02-1.040704581D+02-1.041502317D+02 -8.778531551D+01-8.200384036D+01-8.208215839D+01-8.782926339D+01-8.206368786D+01 -8.813252246D+01-1.172532826D+02-1.165446683D+02-1.042835352D+02-1.165351471D+02 -1.172480038D+02-8.822371209D+01-1.172666184D+02-1.042897336D+02-1.165600418D+02 -1.172811883D+02-8.827802727D+01-8.794239114D+01-1.165649369D+02-1.540127018D+02 -1.201965520D+02-1.202151599D+02-6.342429271D+01-1.319630618D+02-1.958146494D+02 -1.319478667D+02-1.958259371D+02-1.319438965D+02-1.957884148D+02-1.319249332D+02 -1.037426607D+02-1.037413887D+02-1.037239186D+02-1.535336851D+02-1.041243376D+02 -1.041597801D+02-1.041657166D+02-1.041399796D+02-1.041501627D+02-1.041542914D+02 -1.164856802D+02-1.538855609D+02-1.200991496D+02-1.201104736D+02-1.292189873D+02 -1.930567846D+02-1.292296532D+02-1.930031146D+02-1.291791887D+02-1.930334111D+02 -1.291736885D+02-1.930527863D+02-1.291454956D+02-1.931031984D+02-1.292025147D+02 7.823027312D+01 9.098810400D+01 7.824118662D+01-2.185657189D+02 3.252604464D+02 -2.176296605D+02-4.617257692D+02-1.112605432D+02-1.522209040D+02-1.113120313D+02 -2.185914594D+02 3.252456320D+02-4.617852150D+02-1.112649393D+02-1.522603508D+02 -1.112933026D+02 9.096000808D+01 7.829268713D+01-2.176841421D+02-4.617380219D+02 -2.176936399D+02-4.617190743D+02-1.112437337D+02-1.522230183D+02-1.113434678D+02 9.101026504D+01 7.821425507D+01-2.186205832D+02 3.252048935D+02-1.113021802D+02 -1.522005296D+02-1.112679404D+02 7.824888092D+01 9.098072907D+01 3.251691263D+02 -2.186513738D+02-4.617627011D+02-2.177349376D+02-4.617378582D+02 7.825390850D+01 9.103616124D+01-2.910529453D+01-2.908277168D+01-2.905411301D+01-2.906863478D+01 -2.906244839D+01-3.293961819D+01-2.064171436D+01-1.957113080D+01-1.063851533D+01 -1.673888878D+01-1.428152081D+01-1.293725196D+01-1.397735154D+01-2.937599765D+01 -4.205092673D+01-1.386211576D+01-1.895284204D+01-1.392344189D+01-4.411909395D+00 -1.388555525D+01-1.897869592D+01-4.207229984D+01-2.938345817D+01-1.402324358D+01 -1.296287621D+01-1.431144914D+01-1.395986750D+01-3.288760474D+01-6.622191435D+01 -7.891778494D+01-1.109937934D+01 3.755032554D+01 3.801805927D+01 3.798675897D+01 -6.671672935D+01 2.948212779D+01 3.260336225D+01-1.162197922D+01-1.167436690D+01 3.250428355D+01 2.943677908D+01-6.677664898D+01 3.795942984D+01 3.800105483D+01 3.752400698D+01 8.569895048D+00 9.251708129D+00 2.557501556D+01 6.170134207D+01 7.763242302D+01 9.951020770D+01 1.084914392D+02 9.960063451D+01 1.140165287D+02 1.172549412D+02 1.188165301D+02 1.022023702D+02 1.021477846D+02 1.187817662D+02 1.172395160D+02 1.139763908D+02 9.959022871D+01 1.084829352D+02 9.949067467D+01 7.759785360D+01 6.163861999D+01 2.552926125D+01 9.229685344D+00-2.810774244D+01 -4.218303425D+01 5.616945018D+00 6.230267163D+01 1.328976788D+02 1.508284338D+02 1.846975233D+02 2.137131225D+02 2.094213597D+02 1.798159917D+02 1.411490786D+02 1.065615423D+02-1.194625156D+01 7.900937970D+01 1.112724838D+02 1.703493604D+02 1.991570603D+02 2.044510080D+02 2.094617312D+02 2.136575243D+02 2.093831319D+02 1.797614490D+02 1.411135465D+02 1.065115785D+02-1.195404820D+01 7.896558569D+01 1.112574387D+02 1.521554192D+02 1.748233143D+02 2.230829060D+02 1.518454049D+02 4.086466300D+01 1.007230028D+02 1.394221035D+02 1.909025267D+02 1.296666607D+02 2.107778270D+02 2.107667394D+02 2.086492058D+02 2.384445559D+02 3.006657720D+02 3.639884712D+02 3.927981007D+02 3.804531928D+02 4.046690897D+02 4.230814782D+02 4.391593464D+02 4.513647062D+02 4.696982920D+02 5.129127103D+02 5.135787534D+02 4.978362431D+02 4.680479634D+02 4.496803453D+02 4.230554874D+02 4.230067237D+02 4.391454269D+02 4.513035603D+02 4.697046862D+02 5.095673023D+02 4.710341590D+02 3.936693820D+02 3.793315972D+02 3.268133009D+02 3.639822848D+02 3.268110073D+02 3.090439412D+02 2.962398458D+02 3.311481546D+02 3.564232505D+02 3.564346395D+02 4.377949490D+02 5.096133411D+02 4.710178956D+02 3.936490498D+02 3.793652438D+02 3.927722848D+02 3.639831488D+02 3.267997789D+02 3.090201254D+02 2.962529483D+02 2.962519733D+02 3.311287086D+02 3.564378222D+02 3.564365031D+02 4.377900116D+02 4.710348423D+02 5.096243679D+02 4.697779361D+02 4.513138267D+02 5.128869275D+02 5.135494141D+02 4.978319661D+02 4.289303894D+02 4.770335982D+02 4.770250989D+02 4.599554221D+02 4.483224936D+02 3.427622138D+02 4.483186339D+02-9.634625500D+01 4.086108471D+02 4.173284902D+02 4.086110126D+02-9.636514425D+01 4.482963474D+02 4.599311050D+02 4.770349156D+02 4.289241489D+02 4.680362501D+02 4.496491184D+02 4.230286563D+02 4.046327704D+02 3.804553917D+02 3.639886665D+02 3.006575257D+02 2.384465298D+02 2.107507814D+02 2.086451858D+02 2.107440637D+02 2.086491811D+02 1.296443248D+02 1.908495109D+02 1.393721470D+02 1.006642436D+02-2.426569559D+01 -2.444682707D+01-2.425984204D+01 4.086620123D+01 1.518168353D+02 2.230189054D+02 2.776643769D+02 2.550578533D+02 1.747887250D+02 1.521227635D+02 2.117555259D+02 1.702763598D+02 1.991135831D+02 2.043828157D+02 2.094005182D+02 2.136226190D+02 2.093498981D+02 1.797439044D+02 1.846642366D+02 1.507911302D+02 1.328379373D+02 6.221888779D+01 5.570212143D+00-4.222146232D+01-2.817691957D+01 9.202289612D+00 8.520945500D+00 3.749923189D+01-1.121032191D+01-7.899897740D+01-6.631508437D+01 -3.294860349D+01-2.945265561D+01-1.408584208D+01-1.304743180D+01-1.400938971D+01 -1.678081683D+01-1.683210700D+01-1.076610471D+01-1.965543106D+01-2.077819133D+01 -3.308462881D+01-2.913825281D+01-2.917049148D+01 SparseM/inst/doc/0000755000175100001440000000000013077164713013375 5ustar hornikusersSparseM/inst/doc/SparseM.Rnw0000644000175100001440000004465313010640254015435 0ustar hornikusers%\VignetteIndexEntry{An Introduction to the SparseM Package for Sparse Linear Algebra} \documentclass{article} \title{SparseM: A Sparse Matrix Package for R \thanks{This package should be considered experimental. The authors would welcome comments about any aspect of the package. This document is an R vignette prepared with the aid of \texttt{Sweave}, Leisch(2002). Support from NSF SES 99-11184 is gratefully acknowledged.}} \author{Roger Koenker and Pin Ng} \begin{document} \maketitle \begin{abstract} SparseM provides some basic R functionality for linear algebra with sparse matrices. Use of the package is illustrated by a family of linear model fitting functions that implement least squares methods for problems with sparse design matrices. Significant performance improvements in memory utilization and computational speed are possible for applications involving large sparse matrices. \end{abstract} \section{Introduction} Many applications in statistics involve large sparse matrices, matrices with a high proportion of zero entries. \ A typical example from parametric linear regression involves longitudinal data with fixed effects: many indicator variables consisting of a few ones and a large number of zero elements. \ In nonparametric regression, e.g. smoothing splines design matices are extremely sparse often with less than 1\% of nonzero entries. \ Conventional algorithms for linear algebra in such situations entail exorbitant storage requirements and many wasteful floating point operations involving zero entries. For some specially structured problems, e.g. banded matrices, special algorithms are available. But recent developments in sparse linear algebra have produced efficient methods for handling unstructured sparsity in a remarkably efficient way. Exploiting these developments, the package SparseM provides some basic linear algebra functionality for sparse matrices stored in several standard formats. \ The package attempts to make the use of these methods as transparent as possible by adhering to the method-dispatch conventions of $R$.\footnote{ The first release of the SparseM packaged used {\it S3} method-dispatch, the current release has adopted the new {\it S4} method dispatch. Our thanks to Brian Ripley and Kurt Hornik for advice on this aspect of the package.} Functions are provided for: coercion, basic unary and binary operations on matrices and linear equation solving. %There have been a few linear algebra packages proposed or implemented for %sparse matrices, see Carney, Heroux, Li, and Wu (1994), Saad (1994), Remington %and Pozo (1996), Duff, Marrone, Radicati and Vittoli (1997), and Bank and %Douglas (2001). Our implementation is based on Sparskit (Saad (1994)), which provides one of the more complete collection of subroutines for BLAS like functions and sparse matrix utilities available in the public domain.\footnote {Recently, a sparse matrix version of BLAS subprograms has been provided by Duff, Heroux and Pozo (2002). Unfortunately, it handles only sparse matrix times dense matrix multiplication at the Level 3 Sparse BLAS, but not sparse matrix times sparse matrix multiplication. The sparse matrix utilities available in Sparskit, e.g.\ masking, sorting, permuting, extracting, and filtering, which are not available in Sparse BLAS, are also extrememly valuable. Sparse linear algebra is a rapidly developing field in numerical analysis and we would expect to see many important new developments that could be incorportated into SparseM and related code in the near future.} Our Cholesky factorization and backsolve routines are based on Ng and Peyton (1993), which still appears to represent the state of the art for solving linear systems involving symmetric positive definite matrices.\footnote{There are also several new direct methods for solving unsymmetric sparse systems of linear equations over the last decade. A rather comprehensive comparison of performance of some prominent software packages for solving general sparse systems can be found in Gupta (2002). Unfortunately, the comparisons do not include the Peyton and Ng algorithm employed here. The top performer reported in the study is WSMP (Gupta, 2000) which requires proprietary XLF Fortran complier, XLC C compilier and the AIX operating system, and the library is not released under the GPL license. The runner up reported is MUMPS (Amestoy, Duff, L'Excellent and Koster, 2002) which has a non-commerical license but is written in Fortran 90. The third best performer is UMFPACK (Davis, 2002), which is implemented in MATLAB Version 6.0 and later, also has a non-commerical license. Since it is a general sparse solver not written specifically for symmetric positive definite systems of linear equations, it would be interesting to see how it compares with the Choleski factorization of Peyton and Ng adopted here.} In Section 2 we discuss in more detail the components of the package, provide some examples on their use and explain the basic design philosopy. Section 3 discusses some refinements proposed for future implementations. SparseM can be obtained from the Comprehensive R Archive Network, CRAN, at \texttt{http://cran.r-project.org/}. \section{Design Philosophy} In this section we briefly describe some aspects of our design philosophy beginning with the question of storage modes. \subsection{Storage Modes} There are currently more than twenty different storage formats used for sparse matrices. \ Each of these formats is designed to exploit particular features of the matrices that arise in various applications areas to gain efficiency in both memory utilization and computation. \ Duff, Erisman and Reid (1986) and Saad (1994) provide detailed accounts of the various storage schemes. \ Following Saad (1994) we have chosen compressed sparse row (\textbf{csr}) format as the primary storage mode for SparseM.\footnote{Other sparse storage formats supported in SparseM include compressed sparse column (\textbf{csc}), symmetric sparse row (\textbf{ssr}) and symmetric sparse column (\textbf{ssc}). \ The data structure of \textbf{csc} format is the same as that of \textbf{csr} format except the information is stored column-wise. \ The\ \textbf{ssr} and \textbf{ssc} formats are special cases of \textbf{csr} and \textbf{csc}, respectively, for symmetric matrices, only the information in the lower triangle is stored. \ We have created new class objects, \texttt{matrix.csr}, \texttt{matrix.csc}, \texttt{matrix.ssr}, \texttt{matrix.ssc}, for each of these four formats.} \ An $n$ by $m$ matrix $A$ with real elements $a_{ij}$, stored in \textbf{csr} format consists of three arrays: \begin{itemize} \item \texttt{ra}: a real array of $nnz$ elements containing the non-zero elements of $A$, stored in row order. Thus, if $i>= library(SparseM) a <- rnorm(5*4) a[abs(a)<0.7] <- 0 A <- matrix(a,5,4) A A.csr <- as.matrix.csr(A) A.csr as.matrix(A.csr) @ To facilitate testing we have included \texttt{read.matrix.hb} and \texttt{write.matrix.hb} to deal with matrices in the Harwell-Boeing storage format. \ A list of sites with extensive collections of sparse matrices in this format can be found at \texttt{http://math.nist.gov/MatrixMarket/}. \ Details on the Harwell-Boeing format can be found in the help files for \texttt{read.matrix.hb} and \texttt{write.matrix.hb} as well as in the User's Guide for Harwell-Boeing Sparse Matrix Collection at \texttt{ftp://ftp.cerfacs.fr/pub/harwell\_boeing/}. @ \subsection{Visualization} The \texttt{image} function allows users to explore the structure of the sparsity in matrices stored in \textbf{csr} format. In the next example we illustrate the design matrix for a bivariate spline smoothing problem illustrated in Koenker and Mizera (2002). The upper 100 rows of the matrix are an identity matrix, the lower 275 rows represent the penalty component of the design matrix. In this example $X$ has 1200 nonzero entries, roughly 3.2 percent of the number of floating point numbers needed to represent the matrix in dense form. The $X'X$ form of the matrix has 1162 nonzero elements or 11.62 percent of the entries in the full matrix. \begin{center} <>= data(triogramX) par(mfrow=c(1,2)) image(X) title("X") image(t(X)%*%X) title("X\'X") @ \end{center} \subsection{Indexing and Binding} Indexing and the functions \texttt{cbind} and \texttt{rbind} for the \texttt{matrix.csr} class work just like they do on dense matrices. Objects returned by \texttt{cbind} and \texttt{rbind} operating on objects of the \texttt{matrix.csr} class retain their \texttt{matrix.csr} class attribute. \subsection{Linear Algebra} SparseM provides a reasonably complete set of commonly used linear algebra operations for the \texttt{matrix.csr} class. \ The general design philosophy for this set of functions is that operations on \texttt{matrix.csr} class will yield an object also in \texttt{matrix.csr} class with a few exceptions mentioned below. The functions \texttt{t}, and \texttt{\%*\%} for transposition, and multiplication of \textbf{csr} matrices work just like their dense matrix counterparts and the returned objects retain their \texttt{matrix.csr} class. The \texttt{diag} and \texttt{diag<-} functions for extracting and assigning the diagonal elements of \textbf{csr} matrices also work like their dense matrix counterparts except that the returned objects from \texttt{diag} are dense vectors with appropriate zeros reintroduced. The unary and binary functions in the group generic functions \textsc{Ops} return objects of \texttt{matrix.csr} class. \subsection{Linear Equation Solving} Research on solutions to sparse symmetric positive definite systems of linear equations has focused primarily on methods based on the Cholesky factorization, and we have followed this approach. There are three functions \texttt{chol}, \texttt{backsolve} and \texttt{solve }to handle a symmetric positive definite system of linear equations. \texttt{chol} performs Cholesky factorization using the block sparse Cholesky algorithms of Ng and Peyton (1993). \ The result can then be passed on to \texttt{backsolve} with a right-hand-side to obtain the solutions. \ For systems of linear equations that only vary on the right-hand-side, the result from \texttt{chol} can be reused, saving considerable computing time. \ The function \texttt{solve}, which combines the use of \texttt{chol} and \texttt{backsolve}, will compute the inverse of a matrix by default, if the right-hand-side is missing.% The data structure of the \texttt{chol.matrix.csr} object produced by the sparse Cholesky method is comewhat complicated. Users interested in recovering the Cholesky factor in some more conventional form should recognize that the original matrix has undergone a permutation of its rows and columns before Cholesky factorization; this permutation is given by the \texttt{perm} component of the structure. Currently no coercion methods are supplied for the class \texttt{chol.matrix.csr}, but the computation of the determinant by extracting the diagonal of the Cholesky factor offers some clues for how such coercion could be done. This determinant is provided as a component of the \texttt{chol.matrix.csr} structure because it can be of some value in certain maximum likelihood applications. \subsection{Least Squares Problems} To illustrate the functionality of the package we include an application to least squares regression. The group of functions \texttt{slm}, \texttt{slm.fit}, \texttt{slm.fit.csr}, \texttt{summary.slm} and \texttt{print.summary.slm} provide analogues of the familiar \texttt{lm} family. In the current implementation \texttt{slm} processes a formula object in essentially the same way as \texttt{lm}, and calls an intermediate function \texttt{slm.fit}, which in turn calls \texttt{slm.fit.csr} where the actual fitting occurs. Rather than the usual QR decomposition, \texttt{slm.fit.csr} proceeds by backsolving the triangular system resulting from a Cholesky decomposition of the $X^\top X$ matrix. The sparsity of the resulting structure is usually well preserved by this strategy. The use of sparse methods is quite transparent in the present \texttt{slm} implementation and \texttt{summary.slm} with the associated \texttt{print.summary.slm} should produce identical output to their cousins in the \texttt{lm} family. However, the speed and memory utilization can be quite drammatically improved. In the following problem, which involves a design matrix that is 1850 by 712 there is a nearly three hundred fold improvement in speed (on a Sun Ultra 2) when we compare \texttt{lm.fit} and \texttt{slm.fit}. The comparison is somewhat less compelling between \texttt{lm} and \texttt{slm} since there is a substantial common fixed cost to the setup of the problems. In addition to the computational time saved there is also a significant reduction in the memory required for large sparse problems. In extreme cases memory becomes a binding constraint on the feasibility of large problems and sparse storage is critical in expanding the range of problem sizes. This is particularly true of applications in smoothing and related image processing contexts. <<>>= #hb.o <- read.matrix.hb(system.file("HBdata","lsq.rra",package = "SparseM")) data(lsq) X <- model.matrix(lsq) #extract the design matrix y <- model.response(lsq) # extract the rhs X1 <- as.matrix(X) slm.time <- system.time(slm(y~X1-1) -> slm.o) # pretty fast lm.time <- system.time(lm(y~X1-1) -> lm.o) # very slow slm.fit.time <- system.time(slm.fit(X,y)) # very fast lm.fit.time <- system.time(lm.fit(X1,y)) # still very slow cat("slm time =",slm.time,"\n") cat("lm time =",lm.time,"\n") cat("slm.fit time =",slm.fit.time,"\n") cat("lm.fit time =",lm.fit.time,"\n") cat("slm Results: Reported Coefficients Truncated to 5 ","\n") sum.slm <- summary(slm.o) sum.slm$coef <- sum.slm$coef[1:5,] sum.slm cat("lm Results: Reported Coefficients Truncated to 5 ","\n") sum.lm <- summary(lm.o) sum.lm$coefficients <- sum.lm$coefficients[1:5,] sum.lm @ \section{Some Potential Refinements} There are still many features that could be usefully added to the package. Among these we would especially like to see: \texttt{crossprod}, \texttt{row},\texttt{ col}, code for \texttt{eigen}, \texttt{svd} would also be desirable, but seems somewhat more problematic. Support for other storage formats might be eventually useful, although \textbf{csr, csc, ssr, ssc} formats seem quite sufficient for most purposes. A major improvement in the \texttt{slm} implementation would be to replace the line \begin{verbatim} X <- as.matrix.csr(model.matrix(Terms, m, contrasts)) \end{verbatim} which coerces the dense form of the regression design matrix produced by model.matrix into the sparse form. Ideally, this would be done with a special \texttt{.csr} form of \texttt{model.matrix}, thus obviating the need to construct the dense form of the matrix. We have not looked carefully at the question of implementing this suggestion, but we (still) hope that someone else might be inspired to do so. Our primary motivation for $R$ sparse linear algebra comes from our experience, see e.g. Koenker, Ng and Portnoy (1994) and He and Ng (1999), with interior point algorithms for quantile regression smoothing problems. We plan to report on this experience elsewhere. \begin{center} {\Large{\bf References}} \end{center} %\textsc{Bank, R.E. and C.C. Douglas.} (1993). Sparse matrix multiplication %package (SMMP). \textit{Advances in Computational Mathematics, 1, 127-137.} %\textsc{Carney, Sandra, Michael A. Heroux, Guangye Li, and Kesheng Wu.} %(1994). A revised proposal for a sparse BLAS toolkit. Technical Report 94-034, %Army High Performance Computing Research Center. \textsc{Amestoy, P. R., I. S. Duff, J. -Y. L'Excellent {\small and} J. Koster.} (2002). MUltifrontal Massively Parallel Solver (MUMPS Version 4.2 beta) Users' Guide, http://www.enseeiht.fr/lima/apo/MUMPS/ \textsc{Davis, T. A.} (2002). UMFPACK Version 4.0 User Guide, \newline http://www.cise.ufl.edu/research/sparse/umfpack. \textsc{Duff, I.S., A. M. Erisman {\small and} J. K. Reid.} (1986). \textit{Direct Methods for Sparse Matrices}, Clarendon Press, Oxford. \textsc{Duff, I. S., M. A. Heroux, {\small and} R. Pozo.} (2002). ``An Overview of the Sparse Basic Linear Algebra Subroutines: The New Standard from the BLAS Technical Forum,'' \emph{ACM Transactions on Mathematical Software}, 28, 239-267. %\textsc{Duff, I. S., M. Marrone, G. Radicati, and C. Vittoli.} (1997). Level 3 %Basic Linear Algebra Subprograms for sparse matrices: a user level interface. %\textit{ACM Trans. Math. Softw}., 23(3):379--401. \textsc{Gupta, A.} (2000). WSMP: Watson Sparse Matrix Package (Part-II: direct solution of general sparse systems). Technical Report RC 21888 (98472), IBM T.J. Watson Research Center, Yorktown Heights, N.Y., http://www.cs.umn.edu/ \newline $\sim$agupta/doc/wssmp-paper.ps \textsc{Gupta, A.} (2002). ``Recent Advances in Direct Methods for Solving Unsymmetric Sparse Systems of Linear Equations,'' \emph{ACM Transactions on Mathematical Software}, 28, 301-324. \textsc{He, X., {\small and} P.~Ng} (1999): ``COBS: {Q}ualitatively Constrained Smoothing Via Linear Programming,'' \emph{Computational Statistics}, 14, 315--337. \textsc{Koenker, R., P.~Ng, {\small and} S.~Portnoy} (1994): ``Quantile smoothing splines,'' \emph{Biometrika}, 81, 673--680. \textsc{Leisch, F.} (2002). Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis, \texttt{http://www.wu-wien.ac.at/am}. \textsc{Koenker, R. {\small and} Mizera, I} (2002). Penalized Triograms: Total Variation Regularization for Bivariate Smoothing, preprint. \textsc{Ng, E. G. {\small and} B. W. Peyton}. (1993) Block sparse Cholesky algorithms on advanced uniprocessor computers'', \textit{SIAM J. Sci. Comput.}, 14, 1034-1056. \textsc{Saad, Y.} (1994) Sparskit: A basic tool kit for sparse matrix computations; Version 2, \texttt{http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html} \end{document} SparseM/inst/doc/SparseM.pdf0000644000175100001440000156646713077164712015472 0ustar hornikusers%PDF-1.5 %ÐÔÅØ 3 0 obj << /Length 2954 /Filter /FlateDecode >> stream xÚYKsã6¾ûWð²UÔÖˆ!¾ÛLj¦6›L’{OI4EI,ë5¤dóëÓO²éªlèÐèÇ× ðÃÝÍwŸL™2±&Ï¢»udŠ4ñ>*Lž8o£»Uô{|»0ñ þêþ íçïK—¦ñ{ü1#þú¡eÚçúÜw0ð»¿-lA 6¹‹ë t[^b Í#Nçî—ÅŸwÿýî“Í#cŸç³•OlQEEb³Šåú7ó?å[Z“%ÖÑÒå‰qžY¿à´#îaóø§ãb ¢´{XØ*jYqû7hâ)ÜýeƒFÎ%Yaa#—¸2çõߟH|fß1»uÐ~'mh¦þ•,sVFUâ‹‚už'Þºh™™¤2"ð{à½àß¹g½A‹§Â1Ç©KclRå.)Œ{a01‰‰?/–™Mi°?.¬;:&(d`Ò€سM°óQ€®ãA…4¾¾BD¤N,wÝv ú|v±+¶wp¶µÊ,ø#ãà¦p^â~â¥L¼%­ã+8àÒ€ƒæ¢¥a<¥HžY:DMšëDÌvHË2Ïâÿ“#ˆ½æ_Þ"ÌÖÔxjI½2€>ùE©w¨Aíküß®Ž „žyÑš‡Ö¸Ôž\äY„X ÷.×M´ƒ‡N¯»'m/A»d9v5›•ñ©ÉDˆ³*yÃ$Œ­`²³xèñ@bCŸ·ª/îw{ñž]KîpÀsmG² Ê\RóëEÐÚ¾åvçNÌuàÁ}­ÖéØàxƒO-…I·Ýà4QcSÓ×8ÑÚž%WÿÒ  Ýͨ7 0•©IÄI“ß°o»§MÀ?œÉÉrdQŠ¿ÔRcØ—J³ân#ÔýIl~=O&dE9c»—ì[&Ÿ*ÈEÚ%[µÌ·>ö2áD‹X–´Q­wºÝ¬M;U4i Ywà¿.c§ a4_@¨¼ {œ74CfARpˆÚ”!²Ä§%$›ä•aIÌ¡4$‰œ¬tÄ„¯.Íä(´byÀ`[àz)朤J%+}FÙàP%C ÿé$ÎÍšƒp`†îÀ¿ÙIɃ6š‘ ”ÄšÂÕq–i;ÊÍê9¶'gktú9kŽ úy‡Ð“ÏhQޏ­œ"Ør-ŸuK®€XÆŽâ,}p·Sn]áɇ۞qû-Ší6OH ï™CÒ Iñ¼ÞÉ\ª0 ¿?©KÂNkZ}Ï,\·Ô‘4G7LV«Z®ohyÚåÜy7D†FaBú–e(à‘¾#¼Ý(€]Vº+$÷ñªæn?!U€g *}“Ü‚C-ŒauÑ6²äð=B‹çܧÎG¢hãÒN´@}\ä9—uÈWK`Oƒ_ðáÎÝ$ãêØÀð[óÏ×yÒA•tEª‘—b¼ßH “øªF qÏuZÏ4Ýä¯Vl‰^”e’ =[†”R—œ©2eüãgÈn¡œ­÷ä³Ö–€œŸó«އwLlTCÂy|ØsÆ;j$ ’J(2¯œn`ÂJW¦ôuàÁ} K%¹[Ùù›‚®µoqég& “’GŽë³” ‡¹ãN¬ËSÖç "æc¡T˜nþÅ¿dø=°eŽ<ô2¸q1´T?pü€¢8SNÖ,GFŠ¡ú8ª‹’ ûQ¦µ:³È{Ëaþ|4kµi«RË|lâ‘/ г•¸ŸCU•ñ•ÇÕrPÂ7ð~"~-¼ÀR0ÈÓéjtœEÖý*»u½¨m?*H¶Õ8Âö¾>Hͽ'l×´t«åßnN€"9î_O‹F+ˆwãÉ`¸Pp'ø®_Ö’.h‘±°T,œD¬1úGU¼þEšÅŸ•cÓV\ ÷­tDŠFak§^/œ´ÞEëÝ‹ `çŒ ¸`«OÉŠÖ³ÚŠj¨ îYÝ­êœïJu½!ߦ™é(a'ÉÊVמ¬¡´„Ö·Òà€@TîD¦•I”"þp‘úø)웉Òèêu çXÛq¢~åU™q‘G&W©ß%¼B$Ó¶ƒšG¤(ÖkY3.€™¬PKª44‹œõâá¹èÄÙÛZsÛnôà+ÓˆoÓ*@p 1©s/ë¦Nï±ÎÙð à8iÁOˆLšð@6S?’Ió‡ÃÉ¢œ§ÁÏ©NÅÕgÙµäC´~à7—E9ÄxÉñ›eI•g‘)|’¥åÕ· ˆðSƒŒYb n-=sÓÝ–Á‹ž(-ã“t‘ò“tËãÃߥ.»wñ¾ìc¡1 lé¾––kŠ%%°NkŸ)b•é3Þ[–©/Œªý /x›œîú´€‹i»c'ÐÍ©ƒa´³€“ÉëŠh ªÀ/N÷$Êñ‚¯­©ÇÀ† ÏÒDÐF¨ôlŸ‚#R¹¨à‡<éE/xƒ€ ´‡\«#饹LDÂï©Æ&6kÉñÐü»<òu¼•´Ëö-G+½ôÃÀøN WÝ ™ßøÉÜàR£¹SÖ‚ØíÕÕ†/|Ãâ÷8§™ã<Ï⟑¹È/¶Œ©EdH-Z²ägîˉÕxìÏ’å.þæn?ÚPÛCÓ ÖTó’;mCߥÎ|ÁÜíž™*¶80΀j(òW*²%ÿÙr6c‹¤(¯Rà? Ò´Õ²~8suØ·ò¢å>»Œ”2v{𳩠—ØF¿äí2ðÝR·ÈdJŸäyÈþ·nFncW³I®ÈÕIÇ¥Ó9Ø rÀcq#ˆ¢KßO?Ãè)õ `Û´L øÖÔŸ¶µ^Ë WRÇ“~rpE¤õ±qhŸfÎ…+Bá‚”͟Φŧ£Õ¹ú ¥œ2ÏMü+%Q„Jæ•FŽüû¡ïè©©JéómwÚµèe¥—ªÆ¢Ü™;ÿ¡'‡î™ä3)ÈÛ$Wý(ê¬(ã7ZeRo êÕÇk.m P›3SùµK „L³ž“Ì”qÿ®@/öIUU_ÇÜó7/a¢> endstream endobj 22 0 obj << /Length 4079 /Filter /FlateDecode >> stream xÚ•ZK“ÛÆ¾ëWðl•ƒwn+Yr[²")±«l@KµZÿútÝ3—ØX9ìb==3ýî¾øøì«×ùªð‹Ô¤«w«0Šü,ÍWi’ù&JVw«Ÿ½c9Þ„^O5ý}¾Y›<ôÎÔu¨©gj`€À+oLæ}ºI¯ ý•nT2σ­àâ¥>1âEº€5»c)KBÏ¿ùõã?¿z­R¿È¢/ ?É‹Uä§a*Ç65¿^îga¶ZÏ€~ tç^¶~yàmÜáwúÿ ÃwåV¯×õ|‚?ù&¸m×êUÛïµZ› ÷£ ]­ÃÐ/%_†P5é€ >ݘܣGyÂvgK¾VIÈ3%O)° Õ ¼y”gÞÛ½·;xÇ[1àά`¿I@]¢SDÍšÏoÖqz÷!4è ˜ÇWüayy:Ñ]S¯Â™ô|À›—WƹO,4|œºåS´e’zãAî'™lrê@w'_+ÜÆ¦£´ïÀ]¬ÄTÒíe”ÇjбìeÃá!›„Þq8‚¡Kƒ‚ÇÒxˆLÃ#/àU£U€íÒ…:Ý0ׄOˆuoÇ(~ ¸ÕI½qEôk ’-‰8í—H¸n]KøºHý$c Lè+`ß²˜Æ±÷·´²,ÂG¤&ôI¼{•HÜñ9†<Âmµ KÍc§’ hn‚‹"3÷&˜mwT / ü8¡fž»Uºä4Sba¹¯DfMj0µ©oÄBT¢„aìq¬ìQ5º£U%’áÏŒúxR mKUSÒéè5vÁØYÄí²µJ¨¨€HÓ%énÊÁ‰ •½®`«rÝИ@7yL¶n–wV²ìQ£%QdRÔ¼ã§ìIÒØQÉ~.’ÕqâË ó'PØ ¶µ<„Åj ÝY?pî'æ#2¾Só3T]/`…|uÁ/½_÷$¦†7~C‡0t¡²•Ɔ>P-ît'|­žÒƒSâGéÏ%’º/!¸cu*O¬mf¨÷ò¹í‰| ñ¶îY»þwSR­—ïoß>_J½$©½(ù…6~˜&ÄS€”º£ŠÙßéï+ýÛêK祿VXQÐûMÍžÕ|_Ç{X:ÆueEÂ(ñ³ÈBm™ºE§†&Œ3?/ò¦Æ/Œó¹tC“x_‹Ð‘ îU-²Ä{'ÞAïY´7{Ù«íI MèçA>ٯȨu¨ÕýP¢q©4zo­.c3³«‰z"^ÁD·vÖI;5!PÞ“Në~z6[ør¤Óµõ4׊ÍRåÆüÆ!ÞÃe­/4Z©ÚZ‡¶ýº·ä Jhý)Ïýq#±Žá =Cá´ô$”aÉÙ[Ôáîø3ŽC^å ±\Ša1 Án²N#Š%(³Ø{C(‰»BæE‡+å¡`ûˆ82 }¨ ;Ö÷f¤QNÒ´sFܱZ^¶¶o5Ó®UÚÓÜNyO‚éÞSœEÙ5¥rï]ñ؃ ­•ÚM ².¬œkzd¨—ý>„¹÷ª´YL=ÄDaný£ø"S|„]dH„›ÂOõ3ÔÜMX:iNþ««5Ä 3µ¼V±@þ¡ÍÝUØì¬'¯wÂ…ZÁâmy&œx6 di]j]kÁ¦—c Ð]r²îÈË™QpÛˆH•ºB‰À{ç»iœÍDÊ8jë¶N@kÉ)ÊÁ—8‹0¢ÂIDFB2©ë)…PÃe²ÂÅÜÞÂñ¥Îã#XÖÎuˆ=«ø²ÃÉ ï•¥ð!meodÜxÏǪµã‚˜ŽêËF:ÕBü=,왇~»=K…f´O|“rRéÇE,Põo×GËü ¤ab³TH"-Ò n’>{õñÙÏBÚ3X…®ì¥SnÏ~þ5Xíh’T¾è‘@3?Î µ›Õ‡gÿzö‚KX&£Y¦Bûy²Ð7Y|Q ¢sfHRD€±O‰ôÚøy Ð{$YD«ˆüCCéW! '©ôD¼‡8ýPI÷X¢.P–î'^‡@bÐì:ÔÌ6ð^|Kã [î˜Ì=¢¦ã 3‡RìaÈTŠæÔwŒ\R] À˜þ…ð}f7`3äØûâ)ŽÊΟ5!FÄÃÂS%ŠËd)‹zÇø»?Õ+šÐšyà?Û Ÿ­kèý›m™³ã¹*G¯ˆT¼fWnº¶h€Rþ«yÎŒšÜUÝ`jryâÑ.ÜI~6B‡ôÈ„@”2ÖlKHó}m8RwÖ‡gH›pp=ª’Æ÷L5ac#P‘Lh>ª†™'^0,xú\@6gÅÆí´=¸$‹$PsGç­aIqË'ÁµêÊK7Õ[ùó Çó°ZXb£QtÓ¹ìrWⓦk˜&íöé& Ôw—›FW×­|?( 9é­Çç’`Tþ^¢Æ;È|»×@ûQò]ÁéUð»—Ž3x#Q*„£Üº…×ì 3u ©ê§rJ o‚j'“¤’FÛ©DÐòÚv““ºq•kžt•óX.häR.æøËfPí"0¾ëg\Iâ“#”"•ܼÛY7%B&IìH]-ð¹©Qù(Q­¢”µA±lC¦ýzÐqùôˆ–ël™H„¦Rµn÷2ÃTdLÍNµòmÁ$HnOhËÄ©Ô"ÊåV·«c ªŒ…PJÛ°P½f#V¶£ |‡ªZàúQêj ³ˆb“Œ' ™›â¨†’RdA÷¶»¸òQ­þ €£ÍG¸ƒ`‡äu=ŸìÕn‘ùÊ¡iG,«vv{wÒs |#}N!ûª¡e6þç WØ-1LH¦b)·'ö'Í%C«4Žºt¡ää R?Í‹Jòÿvš¤óÕYF¥!õ§fèdtPªöˆAh ½©±«{­ab„dî@»Ý `wRšÌ0+ËïeùÊùGÁ@ò§;Ï|3¯JþGE _LßI[žrŒª(°õ”BOœðµU2èª/›Èa”Ö•örõ¥”ãV2ǾµÔ¨­V!+dõíP õ.&%å:Í€QÆ)DO(Bèg%€vkOb X i‹ß׺sB„pzXE¡›–ÜIY³5-å-‡æŒ+ÌÞï°U{ëÀ3•†£ù4/\Ñ4@[„H,<4wKc‚VŹµåœ œ”ÏmÆŒÂËWŠfÐ÷›3#Kéq c8ˆ 4йV©YH½iåAj i²Dƒ„,˜±ö¼dxÇV* '÷Ÿé«Ô¶9ï”/4ä¤%Ó˜«âànè+5Þ*Õ2U°½<>އ£ÌWò~щác<ºðP©Ö?ⵋbJ¸¬Å™5¶3!‚dH_9+jk[4 3‚²$Û=FX}ý‘] grïdœ¹ð žÆ’)“O^J&ÊËÜk¤øgʈǘJ‘‹ÜžúZ š‡^òô'šùþ5…¬&â¤7éÅ!ÐL,‰þ©AÀÓóchldý½˜—²\9^+¬ÌS< ÁàöúßÒßO2ÞYâÊ«‡}XäúòLÈucë xÚ=R»©QÃæ+i=,°ÖF.qƯ:M%OÅŒ-ƒvØSgFKÃß¼ÃUÑnê­†×d¬r ë>Ú·WF kg8H»°LDD|x?ÚýXŠyÏzõæ$><ÇBp+a½Ôß ¼¢c¤¤RÒr‰ÌõE™5{õÙÖ›¦rF«H ¹ýÊ.#ˆ‡îTÅͨ¬1ËÚ–5ç KR”0‰¦[Xþµ0ÿXõRYl†I‹]I#¥:´kÅs@«VÇmò‘8oÛé- ¡ãÄæV³bLÝk½hã¥A‹6—Ú,§–™ZË9`ý½~ǸåÛ¿¤îwSqék }aÛXO™pD5UR¹Œ¢çÔòîçŠÄ©o!ÈÈ´=KÒâ ¬þ‹EÕ6e‹ÃÂKý@N[¨ÝHú Ž8ö:™@7ØøÀ6·k©®> _k®išy(ÀÓR{= L}‰‘v+ñ÷µŠ'zé²”ÊÀ5Ÿ­êÈ ‹Ð ýa ׊Ã6¶£hg#%•ˆH~§€ˆÅ:«åu6²à™é×õ8÷œY¤¯!„¸ã–¥nÇËÿ8‹]†äý¸ ª 3ÏDõšÍ"K`9Œ6Ô‹’PÂþ$@؃5÷ÒG‘!™9d›ºÒÜ}=dVüvBгŸ÷Ô2|‡pF°ê?§ö𜠢’k_X_L¾:á€/›£+t=â÷Aš¾0,¿$,ÿAüÔ%žÇSqÂÕñÎ=ËÅI|õ`”HÝù|š¼ýNV²ºòô'Ðx‡—)Šil‰?‰g¯ÄÃÁ"˜3ÒŸí“Q÷¬¶]Ì.ù¦0•ííYBã'&œ—¶aöcï*Y`Û>/=Q·wbuYbŸ£ 듸7ñaè—úYd.ëëŒR$¥°‡e–2ÐVüÁÌjD…Æ& luO*4‘Ÿátª'HL%h­äy&Ž…÷Û•6^æ3ŽýÙ÷¹×_Ô˜„¸dâ Å•¿ÇÇ ý0ŽÿšW©oŒ+aÏE’+Œâ@ù+Á 5†R~……NigYìí’'Ž“ùA/½Š\ž'Á/ž> stream xÚ½YKoã6¾çW9ÉmÌŠ/‘Z, döP ‡b}ËîAk;~¤¶ƒl÷×w†3”(K¶åíÁ¦D‡óøø i˜Þüô«•¢,T1š>ޤÖÂ~TX'”¶£é|ô-Ç2ÛŒ?OY› KQän”“Ôlb;K¥œ(´ŽR ´Ý­á»:Œ'Zël†=øÚã:û~ÑÈö[•a×*_Àׂƪ]X ÔŒU‘ý&Éì-_ªdý‰4B•f4Q\’dÆ'%s’u©­ø$£©¤½ëO.Œ©…Þ'Ö” 7ÑÞ…)hdµÂ÷¢e¥+C'¸”J™huVe£ÖÍæ{wa• Ö²ÈbÅk­›±òYŒ,À…±³ é£Êì+‰„b(½Í6!ú“ï ¶uK¾àkXc½sYÝþŒ*—«2šxßõÁ ãT¿ÃñÑDËBäÆB¢¤(-c.à`â9‡UÎ(„Çh%ôFïÛݱ[Œ'F—Ùô ‡_w(¦ƒ†>³¥r¢Áñr°ýJ³_°É¶ ¬ã–ÛÓø jK „#_ÂÌàp˜h& äÔoÕ *§¢;CËž¨£U"dS=à±á¢š„”ò(§¦.I ÛÐr6AŸ²RH}g„¢VdÓ`x]׺ªµ¥6ødöÀüÜà `KiÒ ›9KϪˆ¿}6ŽfÎáÄvà ÛMi*3pô*”o§,M{éÔgÃo a¤º}“û!ÑÏ›ZÿôP"ø¨Ï„À§;B ”BF ÇŠšH þoø¼}]Åâ£è¨`|à³&ž8›“ÇÏ7ߨ‘}ôc.˜Ú´x7E&¤G¦ÇXeWlIR“ñµÅ¬¬ óñijâãûk\pGw®$XDÜr/!¸ñÖod„@œ4«w7èݾÔÐÜUÉÖ‡Ebé4G—¯Ò]¾~†;™W<ûK]Õ¨E›’eöÍK†ö¸ßID†ðåmì±öŠš÷xµ¡Ç—«-+[7ëXøü3D/1jÅ–ï-Uœ-òyØ´2s{­É[k­5î;ÒkV‰qûÖ^ùŽý¸æÇ}Ï…ƒ/^B[Éz`•’¼€“œ®ûTOŸîé3±ú„³uX"µèÕßÑT ÞQskØCÞƒQ -ñ,&qƒÝhëÿЪçåzöÀk§¦§yÏyÜò»ïš®“a›ˆÛÿÊô$êº1ךpô·EbuôÆ·Í*YÔ²xù?ZoN`F³šmsl›î^'^šºm™îY[ü¨Zã¿0ÝžÁŒK°\öÛt&œWˆMØ›(Z´‚€Ÿ.¡ç½T~ÏZfLˆ»U<"˜xûȬ­¡&·û>2+.¬ß%·#ËïéB€³·LåÏ\]fT³ãÐ#=θ FOöÔ}{…C·}pøÈz·Íª·IE¼?kŽàd©d?s^Áš-¹3´9”Ê:;ï — ä—ÖÒ§ æÄÖr×1BGî%´ŒÊ ¶ó¥ HfSݤä+-J)ÏçùJà%†F]û¦[¦kêYK—KóKð¦6¦ÍrëbOŠ«Š*-Þ1ÖLÞµKÝ 4õÙ$ƒØs7&\ØC“o~™Þüyƒ?ä#Yÿ“#•´³õÍÃç|4‡Ap@èÒÞ‚èDáPæñþ·}¼ùãæþ+;Qº\¦ I¸>+«ù’·Të³ç@™‡ýù RÍ<¸×ÀA0ÞªÖÁ±]pI¤µÖ2Jh%[ÿiµB6"t•ÎN)½¤S÷êÜŸ5ôêÄô °s¢­á¿ÌèyQU~ç‚.PøH?ÐìɬWþ•½ÖBVÄ«ZZ'¦Îxh)¼÷dޏú(Î*• endstream endobj 35 0 obj << /Length 1677 /Filter /FlateDecode >> stream xڽɎÜDôž¯èn)®©ÅvÙ('„"äéeÚ¢§=ê%3É×ó¶*—»=#‚PÕ.¿zõöÍýêúÅÕk_ÏÕT¶š]¯g¦1Ê4nV•^YWή—³wÙ»¹É^Â2°ÞÏsg avæ&`ÁÞ_ÿ<ËtaËYnŒjÊ„…T¸jtáé]ÁÒBR ™Ržzž—ÖE4”¤4“ Œ¦jÓ‹¹>‡ èKÑí™èˆ—‹VÄöQÆ‘è.9.ôò ˆîÑ‘W.ÖSò¬©ƒ6õX¬FPKAo¾ ôÅ1ãD'²y‘Í]Þ%Zñ9½jaÙHñsE¯ÑËgbÆ'±ÜLËôŒ9?-mj52.þêuS$5t± ‹ñ¬Ë7ŒRO`ÔŒq=¯]ÖCAðM¶n@¶Ûâ¬#¬V|LÛÃQNw°ná ÖÙÃÜú€´ÁKøþanëìytO°–+üaÉÆ®ª•Ñ5‹¶'ÖHÑÙwòŽRìE’G9CÖ7— ûJÕU$ÚîžbÞ¨Úš€öÐ?Šÿ‘n«Rú¬¨"0{QZ¶G»åd܉¼Ã6²Zý=@„¼bðO-bŠ?L†ßb½VK‡èä̯´·BaMRó¨ ú-À¾å£-Þ>òôÞ¯Y€C4Òaª<„cÔÈ»lõÐQºb¥ðE†Zö$8j°áÖ2£c t¸G1QüÊ!‰µð2Y ÀÁZ°=näPŽÖ¤>Þ£WäÞî˜Í جÊVï$¶[ò)ܸ ¢³R²Mq¡¬_ú’•FÒF"hec¸"Wa  øÞÛ'"0Àö·Dì‘î\D¤ñÐå¡lH¬£›5dé÷x‹’inÑ@ºFÃÓ3†ìÓ0ÛJœå¯8¢c˜Ý2.8çñ"pßUu¶@Ëãæ†ÉàKÃIÆ_2@¼‰ˆäMÁ£í–,MïjSˆl‘Ôþ‰ÊÓ ÙÿÿU_•ÿ¦òxÓ|±ÊÓ¸(Ub‹€:ûJÉß à·âï¿âôAÈRÓ»å€%V¦ýyAšŒ”¡“üŠîãŒè½mÇ:ð;*[1PZ&èøÙìC¬ŸÈÌŽÖ]“½œµ;ÈùZήäΉ¼Áï›$+„NȘ¿¯ø`‹É¬µºVõÐc”~Æ:Yö¸ qU-C€å t·Eö;Õ—S+2tŸBLu=±ŸšL­\md^àp¸4®µÊèì]±·Ãô‚3JW1åЈ§Ý¹+‹ÆcgY{ ¡©ÛMMFæh<0Zh¨pFæ^4ì÷«a#{*°{ñqÄMÀ¤þr~cè5œ™Ð±>òQ ŸON™ª7óž$:”RæûPl– ì7”‰¹êHº`®Åh^–vp¿ö©QC3§`Í=Èû†&72FãKo¦c”é±ÅË÷Û€5Ìz¸ïB$“3‚–adŒ³ÉðºäZÌJÞŠÍŒvP&/[Â(åÑΡ®PPðÓ§û0/+vM—²N£0ß%@ M.?=É—Ep~”ú›0Ü NÞ>¡+z®© =ÊÛŽš±¿ zìçé-%$R$ÚPÉ m¬¤¯T­-lùã(¯L2‘N÷Ü÷p^ÁÊ[7™ÑÏXNΞ#cx#FoÜ‹ÁCH»ÈS_†g'ýô‚ð?¦‰ ^{‰€ l&ôÝFÉÈDÔ2ÊÌú7þLp_q[¾+ÊþžùbÔö÷2AÕ(&¡ óŽ­ÕïΩuk V]Ä-Ï´¯”0'¾Ù%×ã87¡<¥Z{"T ¤1I2Z•eÓþ˜ÈvSK¬ Ôk¨ÂwµE÷à³MΟBëù\< ¢ô?;Æ:ÝnD°LÆIÁË1Фœó\;uR;uF¼Nwø{ý²ç3ÀçÊY¨Âû±‰`‚Ãñ¾=¦c‚ô]ÂÛ6ÍÀLJÙ}/“ŠÖ\ÞVÃç'¥i Íg‚ iÇp€[± Æ|Ñ:NM°]ƹ°ŸYw%…³£.:r¹ƒ6Zå™Ï›Uªñ®F”FiWÍœ‚ÀHz‚ŽU¾¹/ÁšŸÜ¹BUþ¬_…¦‘;+µÂŽ 9¾^ÔgÄÝÐ c*‹;KF—ø“àÃÛ«X[+³£¬ŒŽDCŽ)™$¡9ì$~ŸrD<Ⱥ»ÝTRF/;þ>q‡£÷Dgž»ñ¾©å`ÆÏm©Uþ”¥f^üpýâ"„ë endstream endobj 39 0 obj << /Length 1483 /Filter /FlateDecode >> stream xÚµWYoÛF~÷¯àKº¨ÖÜ{ ô¥AÀE‹ ¨ÞŠ>Ðm+–DU”㸿¾sìò¨4®´ö˜kg¾™•Y2“.©ËL—J(i³Åæâ¯ á´³†(CÚ’ñ\\¸ºÞÈì§æâü¥­Yâ90};¿¸zg}&¥(­UÙü6“Z ïB¦ÚØl¾ÌþÈ•¸”¹¾œI©L~ ãí²þ ?«íÝåL{“WÛ%lþW‰÷þœÿrõ.d¥(rȽ=‚ÐA2ßë-.kø÷™Á •÷Àwpìò ïkßÂø÷‡(©ÁYË¢üP–I…‘$jT7I9â}¢œ "ØTª1ß |ÙñÝ¿”/ZÐìG–ÊÐR(cÒ‘ Uð!ù>ÊB÷ã­,Èz\?‘kèõ\¬‘IKÔäá§K@‘œÙüã#îI6S¡Þ;¸+Š f°Ž‚.•Ïé6JÖ¾úçŒÛ.ñ<^ /áínQn<³©:3P÷º%CfF¹ü=ùrfMþ±NWÜò)¤¯qŽzîÑÑõ’Ü >Ï>TÊŠ²°/ €`¿&‚R/ €žo³Å]^ãAòÅŠãž\¯ %LéÇ®G_j­òw…Ö/b<´¸¥óæ–ItJ{'´Õ¯(+loù(¤P‰î’*vÆ@£UÏp¬–¡4ÿ‡Zò¬ZääŽåM ¢CMŒ‰Ùáv´P€”Ê‹àåM„À_ɾº"ž€?¢Ð»ú†.õ<î1¯ßhW!i‹JüÑ_˜|5l0 ?­(”(?h·âr1×l+4å>óz¨ÙìÖlqÍ;-ÏiŒ‘b /šÍ†ØttþØÆÄBÂõ ¨kЖÕ`;1æ;SÉ:tŸ;à£B0îðc*2Ja‚}d~ q¼tùœêJð`™I*¯Y¹eB'”u·åE¼¤ûUô{Ó64g">SÖ­ZÞk눯Ra>JrÌ`ó… G»«ø›xƒiž|Žn¨¦ÂxÉÌ™þ»“µÓé’ŸÈ]kœXp°­£ÿ–LPm£Šcì'újÝrMÑÆÇh<5c¦ p¨ûóÛ@ÃÎ't«xùu~â1uF \Ø\lo¨ bÈŒv1ëá VµÇ†ð endstream endobj 32 0 obj << /Type /XObject /Subtype /Form /FormType 1 /PTEX.FileName (./SparseM-002.pdf) /PTEX.PageNumber 1 /PTEX.InfoDict 41 0 R /BBox [0 0 432 432] /Resources << /ProcSet [ /PDF /Text ] /Font << /F2 42 0 R/F3 43 0 R>> /ExtGState << >>/ColorSpace << /sRGB 44 0 R >>>> /Length 150720 /Filter /FlateDecode >> stream xœ”ÝA\ù’X÷ýû½Ô,Luf±ŠÉ­Û€v6à…áÕÀZÒÒÀð×wVÅùGŽQç\¼Þ¼±ç§zŒf¼qÏ$oüÇ?nüç?þûßþ·?þûþøóÏùûíãóü|»þÿñÿñüñ/ûÿÛ¿ÿ×ÿýýüó¿þíóÿÕü¿=ÿù¯ÿü/û÷ÿËýù_÷÷ÿôÇí¾ÿU_ÿ1ÿÿ·?ß~üùñÇíñã×ý¿ÿ×?þÝ?ÿ·ÿòÿü×ù§?þþŸÿö?ÿýë¿ÿüü›¯úŸþÍÙóÿó÷Çsº·_ÿ ÿç¿ûÿíŸþ¸½ÿñïþßú¿þøûüü¯ùü'yÿýãÏŸüzûñóçók>>¼ûïß?ÞïçŸeÿAn_ÃÿÛÿüüùÿ}ýû¯çþøúyøO‡~þ¸½þgÑ£èãÇÇ[Я?‹?îEÏÿlz=þÌ1·ãqÏ1Ïå÷¤GÑÏÏÁNï?~}ü¸ýê1~õã÷Ÿ7§ßþ¸=¿ÅšE÷Eo=ÆÏã½Çxÿü_8=¿E‹žß¢EÏoÑ¢ß_¿¦ƒjŒÛŸæ·?o9ÈíÏûÛï¶ßio?~¥ýüñžöþã-íãb–‹Y~ýøõ({üxOûýã­ìöçÛ…ýN»õ,Ïߨs–çïÞ=ËÏ·_m¿ÓÞüJûøñžöëÇ[Úãb–ÇÅ,¿{–ûŸ?Þ?Ên?ÞÒžß»ö;íù½›öób–÷‹Y>.fy~ï¾—=¿wÓžß»iÏïݲ·ç÷î…å,o·žåù‡žœåíù½üööüÞ½°ßiÏïÝ´ç÷nÚ¯‹Y³<.fy~ïÆ&¿ý|~ï¦=¿wÓžß»ö;ííb–Ÿ³<¿wckß~>¿w/ìwÚ¯Ï?C†=>ÿ`ö»gyÿ³gyZÎòþüÞí}{~ï¦=¿wÓžß»ö;íýb–‹Y~]ÌòüÞ­þ´ßiÏïݲç÷nÚó{7íÞ³<-gùx»˜å矵ß?ÞÜÓžÏdöHûõã#íq1Ëïžåן=ËÓµßÝ~|¤ÝüL{ûqOûùãÏ ëYÞ/fùøñ³vøóyìžöøñç…=Ò~ÿø({>“å,[Ïò|*ËYžö¨þ|.ûH{~ï¦=¿wÓ>¾žüËz–_³<.fy~ïÖ>Ÿýya´ç÷nÚó{7ííb–Ÿ³ü¼˜åù½[;üùœVg‹ÛóA­î·ç“ÚŸV—‹ÛóY­f¹?ŸÕj–ûóY­f¹?ŸÇêzñiu¾¸?ŸÕê~q>«Õãþ|V« Æýù<Ö³|\Ìò+¯÷ç³Z]1îÏgµ:cÜŸÏcuÇø´:dÜŸÏj9ËóY-gy>«õ,?óŠðiu͸?ŸÕêœñyw¬{Æýù¬Vûóy¬gy\Ìò»gy>«Õ-áþ|V««Æý~ϳƧ=ÒÞò®q>«õ,ï³|\Ìò‘wûóY­î÷ç³ZÝ5îÏgµºk|ZÝ5îÏgµœåù¬–³<ŸÕr–ç³ZÝ5>­î÷ç³ZÝ5îÏgµºkÜŸÏju׸?ŸÕz–_³<.fùwûóY­î÷ç³ZÝ5>­î÷ç³ZÝ5îÏgµžåçÅ,ïyKø´ºkÜŸÏju׸?ŸÕê®q>«Õ]ãþ|VëY~÷,Ïgµœåù¬öý–ðüÿüÿýÏ×;‡ûó îûµãê-Åýù\W7O«Èýù\W7ûó¹®n ÷çs]ÝcîÏ纞åWÞîÏ纺ܟÿ£n ÷çs]Ý@îÏ纺|ZÎò|®ËYžÏu=ËϼܟÏußo —ßϯø~¹ü>x>Ö½äþ|ü~/¹þñòOsýãÿÎ;ϧÕçþ|^¬ÛÊýù¼X·•ûóy±n+÷çóbÝV>­n+÷çóbÏò~1ËGÞ3îÏçź­|ZÝVîÏçź­ÜŸÏ‹u[¹?Ÿs–çóbÎò´œåù¼X÷Œûóy±n+÷çóbÝVîÏçź­|ZÝVîÏçÅžå×Å,‹Y~ç=ãÓ¾ßV.í<Ÿ"ëâr>EÖÅåþ|Šü~q¹ü5÷|¶Ì¹ŸV7¡ûóÙ²'|Ï;ÌýùlYw˜ûóÙ²î0ŸVw˜ûóÙ²î0Ÿ/ík–·ç³eÍòö|¶¬Y>­î0oÏg˺ü=Ÿ-ëóö|¶¼§½çæÓz–‹Y~åíãíùlYw˜·ç³eÝa>­î0oÏg˺ü=Ÿ-s–ç³eÎr{ëYžV··ç³eÝaޞϖu‡y{>[ÖæíùlYw˜OëY³üîYžÏ–uûx{>[þyau‡y{>[ÖæíÞ)ËÛ½[–·{Ç,ŸÖ³tÎòvïžåíÞAËÛóù±î0ŸVw˜··nZÞÞ:jy{ëªåí­³–O«;ÌÛ[‡-oo]¶¼½uÚòöÖm˧õ,]·¼½uÞòö³û–·Ÿ¸|ZÝaÞ~vâòö³—·Ÿ¹¼=Ÿëöñi´î\Þ~vèòö³K—·çócÏÒ­ËÛ{·.oÏg˺}¼½wëòiu‡y{ïÖåí½[—·÷n]ÞÞ»uù´ž¥[—·÷n]ÞÞ»uyûèÖåÓêóöÑ­ËÛG·.oݺ¼}tëòiu‡yûèÖåí£[—·n]Þ>ºuù´ž¥[—·_ݺ¼ý²ÖåêÏÔo¿¬€ñ?|=i½ ÙÆƒlá-}ßw­;ȶd˲]·ô}Õ i½ Ù¢ƒlÏA¶æ–¾oÈ–d;²Ù†[Ê1l¿A¶Þ†´Þ„l¹-}ßm­6È6d‹ ²zséû*l«A¶Ô Ûi­´¥ÃëÍcVo³ö²ï[ä˜m´c¶ÑŽÙF;fíe=‹m´c¶ÑŽÙFôÞ|Ù÷vÌ6Ú1ÛhÇl£³ö²ï[ä˜m´c¶ÑŽÙF;fíe=‹m4LëÍc¶ÑŽÙîzÙ÷7 Ǭ޴ Å´ Å´ Å´ ]«{IT¡˜V¡˜V¡˜V¡k9‹W¡˜V¡˜V¡˜V¡kuñ*ôêù%ZQL[QL[ѵºŒD+ŠY+zõ¼­(¦­èZN¨­è1­B1­B1­B×ê^Ÿé‰ié‰ié‰ié¹V÷’(=1-=1-=1-=×z-=1-=1-=1-=×ê^¥'¦¥ç—Eé‰ié¹V÷’(=1-=1-=1-=×z-=1-=1-=1-=×ê¥'¦¥'¦¥'¦¥çZÝ¢ôÄ´ôÄ´ôÄ´ô\ëY´ôÄ´ôóÒÓÒs­n Qzb½Dé‰uø¥'ÖéK”žXÇ/Qz®Õ $JO¬˜(=±N`¢ôÄ:‚‰Òë &Jϵž¥K˜(=ǼôÄ:†‰Òë&JO¬ƒ˜(=×iÝÄDé‰u¥çZÎâ¥'¦¥'Ö]L”žXw1QzbÝÅDé¹Ö³t¥'Ö]L”žku‰Òë.&JOìgÞ@¢ô勉Òë.ÆKÏ«çï?¯ž5âooóÒë.&JÏ÷ÏŸt/=‡tã éÂ;$ûnH×Ýn»!]vCºëɪû"/=‡tÑ éžÒ5wH6Ë.¹!ÝqCºâ†tÃÊ1t¿ ézû"/=‡t¹’Ý6¤«mH7Û.¶!-=É*Ò­6¤KmHwÚ®´C5F”ž˜–ž˜n´5Ù"˜n4L7¦ Ó¶Ö³èFÃt£aºÑƼô\“†éFÃt£aºÑ0Ýhk²Ñ0Ýh˜n4L7¦¥çZÏ¢[jÌëML·Ö[*êMLëMLëMLëMLëÍ5¹êcZobZobZoŽy½¹–³øçtbÚibú9ØO»ê¯ÉUÓ"Ó"Ó"Ó"s­gÑ"sÌ‹LL‹LL‹Ì5¹êcZdbZdbZdbVdÆŸR÷+¾ßúãO©|…~N'¦E&¦E昙kò6Ó"Ó"³"óòçÉ;͵ï·þËŸC¯71­71­71­7×ä ¦õæ˜×›˜Ö›˜Ö›k9‹×›˜Ö›˜Ö›˜Ö›kòÓzÓzÓzsÌëÍ5y€i½‰i½‰i½‰i½¹Ö³h½‰i½‰i½‰i½¹&o0­7ǼÞÄn=‹×›kòÓNÓÏôÄ´ÈÄ´È\ëY´ÈÄ´ÈÄ´Èó"sMÞ`ZdbZdbZdbZd®õ,ZdbZdbZdbZd®ÕE$ŠÌ/‹"»å,Qd®ÕY$ŠLL‹LL‹LL‹ÌµžE‹LL‹LL‹Ì1/2×ê@E&¦E&¦E&¦EæZ]I¢ÈÄ´ÈÄ´ÈÄ´È\ëY´Èó"»åµ$ŠÌµGš™˜™˜™˜™ku/‰"Ó"Ó"s­î%QdbZdbZdbZd®Õ½$ŠLL‹LL‹LL‹ÌµžE‹LL‹Ì1/21-2×ê^E&¦E&¦E&¦EæZÝK¢ÈÄ´ÈÄ´ÈÄ´È\ËY¼ÈÄ´ÈÄ´ÈÄ´È\«{I™˜™˜™˜™ku£ˆ"Ó"sÌ‹LL‹ÌµœÅ‹LL‹LL‹LL‹Ìµº—D‘‰i‘‰i‘‰i‘¹–³x‘‰i‘‰i‘‰Y‘yu“ˆN³Nóê&&¦&¦æšT˜vš˜þìc^dbZd®å,^dbZdbZdbZd®Õ $ŠLL‹LL‹LL‹ÌµºD‘‰i‘‰i‘‰i‘¹Ö³h‘‰i‘‰i‘‰i‘¹V7(21-2¿,ŠLL‹ÌµºD‘‰i‘‰i‘‰i‘¹Ö³h‘‰i‘‰i‘‰i‘¹V7(21-21-21-2×êîE&¦E&¦E&¦EæZÏ¢E&¦E昙˜™ku‰"ë<%ŠL¬•(2±NT¢ÈÄ:R‰"s­n QdbªD‘‰uªE&Ö±J™Xç*Qd®õ,]¬D‘9æE&ÖÑJ™Xg+Qdb®D‘¹öHëv%ŠL¬ë•(2×r/21-2±îW¢Èĺ_‰"{¿˜¥û•(2±îW¢Èĺ_‰"s­n QdbݯD‘‰u¿E&ÖýJ™˜õ+WÏDÞi^=÷ÄßÈŽuëE&Ö­K™Ÿ‹Ð‹Ì!ÝxCºðɾÒu7¤ÛnH—ÝîºC²ê¾È‹Ì!]tCºç†tÍ’Í2¤KnHwÜ®¸!Ýp‡r ÝoCºÞ¾È‹Ì![nñ è|Á÷¿~æ t éÒ%8¤õæ!Y;Cº‡téþÒõw¨ÆˆzÓzÓí·&Óí‡éöÃtûaºýÖzÝ~˜n?L·ß˜×›k²ý0Ý~˜n?L·¦ÛoM¶¦ÛÓí‡i½‰i½¹Ö³èFózÓ†õF‹zÓzÓz{¿˜EëÍ5y€i½‰i½‰i½9æõæZÎâõ&¦õ&¦õ&¦õæš¼À´ÞÄ´ÞÄ´ÞÄ´Þ\ëY´ÞózÓzÓzsMÞ`ZobZobïÿøß²ÎWü…¿e}¿BÞ `ZobZobZoŽy½¹–³x½‰i½‰éçibÚi®ÉL‹LL‹LL‹LL‹Ì5y€i‘9æE&¦E&¦EæZÎâE&¦E&¦E&¦Eæš¼À´ÈÄ´ÈÄ´Èó"sMÞ`ZdbZdbZdbZd®õ,ZdbZdbZdbZd®ÉL‹Ì1/2±[ÏâEæš¼À´ÈÄ´ÈÄ´ÈÄ´È\ëY´ÈÄ´ÈÄ´Èó"sMÞ`ZdbZdbáoYç+¬Ó¼Ü]^obZobZobVo^ÏmMçõÜZzbZz~Y”žØ-o>Qz®Õ¹%JOLKOLKOLKϵžEKOLKOLKÏ1/=×êð¥'¦¥'¦¥'f¥çÕ÷÷ŸWßwQ…bZ…bV…^Ïf­èõlZbZŽyAŠÝòbéÚ#M RL RL RL ÒµºÙDAŠiAŠiAºV7›(H1-H1-H1-H×êf)¦)¦)¦éZÏ¢)¦é˜¤˜¤ku³‰‚Ó‚Ó‚Ó‚t­n6QbZbZbZ®å,^bZbZbZ®ÕÍ& RL RL RL Òµº“DAŠiA:æ)¦éZÎâ)¦)¦)¦éZÝl¢ Å´ Ŭ ½Ü•Þ•®å„Þ•bÚ•bÚ•bÖ•^îmïJ1ý[á1-H1-H1-H×êf)¦é˜¤˜¤k9‹¤˜¤˜¤˜¤ku³‰‚Ó‚Ó‚Ó‚t­n6QbZbZbZ®õ,ZbZbZbZ®ÕÍ& RL Ò/‹‚Ó‚t­n6QbZbZbZ®õ,³hAŠiAŠiAºV7›(H1-H1-H1-H×êö)¦)¦)¦éZÏ¢)¦é˜¤˜¤ku[‰‚ëœ& R¬ƒš(H±¼­DAŠuTéZÝV¢ Å:¬‰‚ë´& R¬ãš(H±Îk¢ ]ëYº°‰‚tÌ RL ÒµºDAŠu;)¦éÚ#í#o Qb]ÐDAº–³xAŠiAŠuC)Ö M¤X74Q®õ,ÝÐDAŠuCéZÝ@¢ ꡉ‚ë†& R¬/H¯žÏ¼+½z&Š¿é}­çîÞ& R¬{›(H¿”¼ Ò7¤ ïì»!]wCºí†tÙ é®;$«î‹¼ ÒE7¤{nH×Ü!Ù,Cºä†tÇ éŠÒ w(ÇÐý6¤ë틼 ÒåvHvÛ®¶!ÝlCºØ†´ =$«dH·Ú.µ!ÝiCºÒÕQ…bZ…bºÑÖd‹`ºÑ0Ýh˜n4L7ÚZÏ¢ Ó†éFó*tM6¦ Ó†éFÃt£­ÉfÀt£aZ…bZ…bº¥ÖzÝRc^…bº¥°ÞRQ…bZ…bZ…bZ…bZ…®ÉUÓ*Ó*Ó*t̫еœÅ«PL«PL«PL«Ð5¹êcZ…bZ…bZ…bZ…®õ,Z…ŽyŠiŠiº&÷{L«PL«P̪Ðcá3=÷+þáÏôä+´ Å´ Å´ ó*tMÞ0`Z…bZ…bZ…bZ…®ÉUÓ*Ó*Ó*Ó*tM®ú˜V¡c^…bZ…bZ…®å,^…bZ…bZ…bZ…®ÉUÓ*Ó*Ó*tÌ«Ð5¹êcZ…bZ…bZ…bZ…®õ,Z…bZ…bZ…bZ…®ÉUÓ*tÌ«PìÖ³xº&W}L«PL«PL«PL«ÐµžE«PL«PL«Ð1¯B×äªiŠiŠéçtbú9k=‹–ž˜–ž˜~N'¦ŸÓ¹VWލ7¿,êMì–³D½¹V§Ž¨71­71­71­7×z­71­71­7ǼÞ\«£GÔ›˜Ö›˜Ö›˜~NçZ]>¢ÈÄ´ÈÄôs:1ýœÎµžE+Ë1¯,±[^@¢²\{¤ie‰ie‰ie‰ie¹V7¨,1­,1­,×ê•%¦•%¦•%¦•åZÝ@¢²Ä´²Ä´²Ä´²\ëY´²Ä´²óÊÓÊr­n QYbZYbZYbZY®Õ $*KL+KÌ*Ë«gEo/¯ž£ÈÓ"óòÇ×NóòÇ÷zÓzs­n+QobZobZobZo®Õ=#êMLëÍ1¯71­7×r¯71­71­71«7/¿G¼éÄ´éÄ´éĬé¼ü¾ó¦s-'ô¦Ó¦Ó¦Ó¿½}­n+QobZobZobZo®ýNÓzÓzsÌëMLë͵œÅëMLëMLëMLë͵º­D½‰i½‰i½‰i½¹öý¶rùëÑ›NL›NÌšÎË_s^z®ÕM(JOLKOLKOLKϵºÃDé‰iéùeQzbZz®Õ&JOLKOLKOLKϵžEKOLKOLKOLKϵºÃDé‰ié‰ié‰ié¹V·(=1-=1-=1-=×z-=1-=ǼôÄ´ô\«;L”žXg/Qzb¾Dé‰uú¥'ÖñK”žku‡‰Òë&JO¬˜(=±Ž`¢ôÄ:ƒ‰Òs­gé&JÏ1/=±Ža¢ôÄ:‡‰Òë &JϵGZ71Qzb]ÅDé¹–³xé‰ié‰u¥'Ö]L”žXw1Qz®õ,ÝÅDé‰u¥çZÝa¢ô勉Òë.&JO̺˜«?zÿyõçÊø›Þ±nh¢ôĺ¡‰Òë†&JÏߟÿ’½ôÒ7¤ ïì»!]wCºí†tÙ é®;$«î‹¼ôÒE7¤{nH×Ü!Ù,Cºä†tÇ éŠÒ w(ÇÐý6¤ë틼ôÒåvHvÛ®¶!ÝlCºØ†´ô<$«dH·Ú.µ!ÝiCºÒÕQzbZzbºÑÖd‹`ºÑ0Ýh˜n4L7ÚZÏ¢ Ó†éFóÒsM6¦ Ó†éFÃt£­ÉfÀ´ôÄ´ôÄþ§_óáÓ¯÷+znÝhc^…bºÑ°ÞhQ…bZ…bZ…bZ…bZ…®ÉÛL«PL«PL«Ð1¯B×r¯B1­B1­B1­B×äm¦U(¦U(¦U(¦UèZÏ¢Uè˜W¡˜V¡˜V¡kòÓ*Ó*Ó*³*ôeòÓÒÓÒÓÒsÌKϵœÅKOLKOLKOLKÏ5y€ié‰ié‰ié‰ié¹&o0-=ǼôÄ´ôÄ´ô\ËY¼ôÄ´ôÄ´ôÄ´ô\“«>¦¥'¦¥'¦¥ç˜—žkrÕÇ´ôÄ´ôÄ´ôÄ´ô\ëY´ôÄ´ôÄ´ôÄ´ô\“«>¦¥ç˜—žØ­gñÒsM®ú˜–ž˜–ž˜–ž˜–žk=‹–ž˜–ž˜–žc^z®ÉUÓÒÓÒÓÒÓÒs­gÑÒÓÒÓÒÓÒs­®Qz~Y”žØ-g‰Òs­NQzbZzbZzbZz®õ,ZzbZzbZzŽyé¹VG(=1-=1-=1-=×êò¥'¦¥'¦¥'¦¥çZÏ¢¥ç˜—žØM. WϘÞ^=cFŠiŠiŠYz=·µ¢×skAŠiAŠiAŠýÎÛJ¤c^bZbZbZ®Õm% RL RL RL ÒµžE RL Ò1/H1-H×ê^)¦)¦)¦éZÝK¢ Å´ Åôs:±ß³h:æŸÓ‰éçtbZzbZz®Õ½$JOLKOLKOLKϵºQDé‰ié9æ¥'¦¥çZ΢¥çåï§ÞbÚbÖ^þ>ìý'¦ý'¦ý'¦+<ö;ï_¡›ÓM¹Ösë¦ó*ÓM‰õ¦Œ*Ó*Ó*Ó*Ó*tMÞ,`Z…bZ…bZ…Žyº–³xŠYzù}§­èå÷¤kò¾Ó‚Ó‚Ó‚Ó‚t­g±‚ôòçI»ÒËŸ'­MYWú2y iAŠiAŠiAŠiAº&o!0-H1-H1-HÇ´ ½ü÷â])f]éå¿3¯M1­M1­M×䦵)¦µ)¦µ)¦µéš¼±À´6óÚÓÚÓÚt-gñÚÓÚÓÚÓÚtMÞX`Z›bZ›bZ›ŽýÒÚtMÞX`V›Ó®³®ô˜¤k=‹¤˜¤˜¤˜¤kòÆÓ‚tÌ RìÖ³xAº&o,0-H1-H1-H1-H×z-H1-H1-HǼ ]“7˜¤˜¤˜¤˜¤k=‹¤˜¤˜¤˜¤kuÁ‰‚ôË¢ Ån9K¤kuƉ‚Ó‚Ó‚Ó‚t­gтӂӂtÌ Òµ:èDAŠiAŠiAŠiAºVW(H1-H1-H1-H×z-HǼ Åny݉‚t푦)¦)¦)¦éZÝl¢ Å´ Å´ ]«›M¤˜¤˜¤˜¤ku³‰‚Ó‚Ó‚Ó‚t­gтӂtÌ RL Òµº­DAŠiAŠiAŠiAºV·•(H1-H1-H1-H×r/H1-H1-H1+H¯ž#£+Å´+Å´+Å´+Å´+]«Ë…w¥WÏ´Ñ•ŽyWŠiWº–jWzL RL RL Òµº—DAŠiAŠiAŠiAº–³üÒ‚Ó‚Ó‚Ó‚t­.#QbZbZbZ®Õ $ RL Ò1/H1-H×r/H1-H1-H1-H×ê)¦)¦)¦éZÝ@¢ Å´ Å´ Å´ ]ëY´ Å´ Å´ Å´ ]«H¤˜¤_)¦éZÝ@¢ Å´ Å´ Å´ ]ëY´ Å´ Å´ Å´ ]«H¤˜¤˜¤˜¤kuwˆ‚Ó‚Ó‚Ó‚t­gтӂtÌ RL ÒµºDAŠuN)ÖAM¤X'5QbÕDAºV7(H±k¢ Å:­‰‚ë¸& R¬óš(H×z–.l¢ ó‚ëÈ& R¬3›(H±m¢ ]{¤uk)ÖµM¤k9‹¤˜¤˜¤ku‰‚ë†& R¬š(H±nh¢ ꡉ‚t­n QbÝÐxAzõ í]éÕ³©w¥Ç´ Å´ ꋉ‚t­gé.& R¬»˜(HïŸÿ"½ Ò7¤ ïì»!]wCºí†tÙ é®;$«î‹¼ ÒE7¤{nH×Ü!Ù,Cºä†tÇ éŠÒ w(ÇÐý6¤ë틼 ÒåvHvÛ®¶!ÝlCºØ†´ =$«dH·Ú.µ!ÝiCºÒÕQbú™ž˜n´5Ù"˜n4L7¦ Ó¶Ö³èFÃt£aºÑƼ ]“†éFÃt£aúégz®ÉfÀtKaº¥0ÝR˜n©µžE·Ô˜×›˜n)¬·TÔ›˜Ö›˜Ö›˜Ö›˜Ö›kr¿Ç´ÞÄ´ÞÄ´Þózs-gñzÓÏôÄô3=1-2×äRi‘‰i‘‰i‘‰i‘¹Ö³ègzŽùgzbZYbZY®É¥ÓÊÓÊÓÊÓÊrM.õ˜V–˜V–˜V–cþ9k9‹N'¦å$¦å$¦åäš\ê1-'1-'1-'1-'×äRi99æå$¦å$¦åäZÎâå$¦å$¦å$¦åäš\ê1-'1-'1-'Ǽœ\“K=¦å$¦å$¦å$¦åäZÏ¢å$¦å$¦å$¦åäš\ê1-'ǼœÄn=‹—“kr©Ç´œÄ´œÄ´œÄ´œ\ëY´œÄ´œÄ´œórrM.õ˜–“˜–“˜–“˜–“k=‹–“˜–“˜–“˜–“ku¹ˆròË¢œÄn9K”“ku¾ˆrÓrÓrÓrr­gÑrÓrÓrrÌËɵ:dD9‰i9‰i9‰i9¹V׌('1-'1-'1-'×z-'ǼœÄnyÕˆrr푦å$¦å$¦å$¦åäZÝ5¢œÄ´œÄ´œ\«»F”“˜–“˜–“˜–“k¿Ó´œÄ´œÄ´œÄ´œ\û>K\øù í)1ë)ãú?_á•%¦•åZÝ@¢²Ä´²Ä¬²¼ü¹ÐöòúŸW‹LL‹LL‹LL‹LÌŠÌë&í4ǼÓÄ´ÓÄ´ÓĬӼü9ôNÓNÓNÓNÓNs­îÞiÓ"sÌ‹LL‹ÌµœÅ‹LL‹LL‹LÌŠÌËï-ï41ë4/¿¼ÞÄ´ÞÄ´Þ\Ë ½ÞÄ´ÞÄ´ÞÄ´Þ\«;LÔ›˜Ö›˜Ö›˜Ö›ku‡‰zÓzsÌëMLë͵œÅëMLëMLëMLë͵ºÃD½‰i½‰i½‰i½¹öýsùëÑ›NL›NÌšÎË_«^z®Õý(JOLKOLKOLKϵºÙDé‰iéùeQzbZz®ÕÍ&JOLKOLKOLKϵžEKOLKOLKOLKϵºÙDé‰ié‰ié‰ié¹Vw’(=1-=1-=1-=×z-=1-=ǼôÄ´ô\«›M”žXg/Qzb¾Dé‰uú¥'ÖñK”žku³‰Òë&JO¬˜(=±Ž`¢ôÄ:ƒ‰Òs­gé&JÏ1/=±Ža¢ôÄ:‡‰Òë &JϵGZ71Qzb]ÅDé¹–³xé‰ié‰u¥'Ö]L”žXw1Qz®õ,ÝÅDé‰u¥çÚï´îb¼ô¼úó¡÷ŸWÎóþóeu³‰Òë†&JO¬š(=±nh¢ôĺ¡‰Òóçç¢÷ÒsH7Þ.¼C²ï†tÝ é¶Òe7¤»î¬º/òÒsHÝî¹!]s‡d³ é’Ò7¤+nH7Ü¡C÷Û®·/òÒsH—Û!ÙmCºÚ†t³ ébÒÒó¬’!ÝjCºÔ†t§ éJ;TcDé‰ié‰éF[“-‚éFÃt£aºÑ0Ýhk=‹n4L7¦mÌKÏ5Ùh˜n4LKOLKOL·ÔšlL·¦[ Ó-…é–ZëYtKyé‰é–ÂzKEé‰ié‰ié‰ié‰ié¹&o0-=1-=1-=Ǽô\ËY¼ôÄ´ôÄ´ôÄ´ô\“7˜–ž˜–ž˜•žñ§F¾ÂúÏøSã~EÏ­Uè˜W¡˜V¡˜V¡kòÓ*Ó*Ó*Ó*tMÞ`Z…bZ…bZ…Žyº–³xŠiŠiŠYzù}ç­(f­èå÷¤¤×?¾v¥˜u¥×?¾Ö¦˜Ö¦c^›bZ›bZ›®å,^›bZ›bZ›bZ›®ÉÛLkSLkSLkÓ1¯M×äm¦µ)¦µ)¦µ)¦µéZÏ¢µ)¦µ)¦µ)¦µéš¼-À´6óÚ»õ,^›®ÉÛLkSLkSLkSLkÓµžEkSLkSLkÓ1¯M×äm¦µ)¦µ)¦µ)¦µéZÏ¢µ)¦µ)¦µ)¦µéZ]O¢6ý²¨M±[εéZP¢6Å´6Å´6Å´6]ëY´6Å´6Å´6óÚt­Ž)Q›bZ›bZ›bZ›®ÕE%jSLkSLkSLkÓµžEkÓ1¯M±[^V¢6]{¤imŠimŠimŠimºV·•¨M1­M1­M×ê¶µ)¦µ)¦µ)¦µéZÝV¢6Å´6Å´6Å´6]ëY´+Åôs:Ǽ Å´ ]«ÛJ¤˜¤Ø_(Hù ýôεº¸D+Ši+Ši+ŠY+zõŒâ­èå?¯¤˜¤—?¾w¥˜þ òku³‰‚Ó‚Ó‚Ó‚t­nQbZŽyAŠiAº–³xAŠiAŠiAŠý…‚t¿¢®3ñIŸ˜µ¢—ß[^bZ®å„^bZbZbZ®ÕÍ& RL RL RL ÒµºÎDAŠiA:æ)¦éZÎâ)¦)¦)¦éZÝV¢ Å´ Å´ Å´ ]«ÛJ´¢˜¶¢˜~þ'¦UèZÏ¢U(¦U(¦U(¦UèZÝV¢ Å´ ý²¨B1­B×ê¶U(¦U(öóó¦UèZÏ¢U(¦U(¦U(¦UèZÝV¢ Å´ Å´ Å´ ]«{FT¡˜V¡˜V¡˜V¡k=‹V¡˜V¡c^…bZ…®Õm%ªP¬™¨B±Žd¢ Å:“‰*ëP&ªÐµº­DŠu,U(Ö¹LT¡X3Q…bÌDºÖ³t5Uè˜W¡X‡3Q…bÎDŠý¼˜E«ÐµGZ÷3Q…b]ÐDº–³xŠiŠuCU(Ö MT¡X74Q…®õ,ÝÐDŠuCUèZÝV¼ ½zÎòVôêy)þ¶y¬{›¨B±îm¢ ź·‰*t­géÞ&ªP¬{›¨Bß?x¼ Ò7¤ ïì»!]wCºí†tÙ Ù®‹ï·óß`|»}}¤Cº‡t'ÙJ¼Y»ÒË‘uyéîÒÕ9¤›ó,Î!Ý›C¶6¯~´A½ú9ð2õì×!]¯Cº]‡t¹i™zHÖÙnÖ!]¬CºW‡t­ª1¢LÅ´LÅt«®É&Ãt«bºU1ݪ˜nÕµžE·*¦[Ó­:æeêšlULËTLËTL7%¦›rM¶¦›ÓM‰é¦ÄtS®õ,º)ǼLÅtSb½)£LÅ´LÅ´LÅ´LÅ´L]“7 ˜–©˜–©˜–©c^¦®å,^¦bZ¦bZ¦bZ¦®É›LËTLËTL?ƒÓÏ ]ëY´6óÚÓÚÓÚtMÞ`Z›bZ›bZ›bZ›®ÉÛLkSLkSLkÓ1¯M×r¯M1­M1­M1ý Ò5y[€égbú¤˜¶¢˜~éš¼-À´ ó*Ó*Ó*t-gñ*Ó*Ó*Ó*tMÞ`Z…bZ…bZ…Žyº&o 0­B1­B1­B1­B×z­B1­B1­B1­B×äm¦Uè˜W¡Ø­gñ*tMÞ`Z…bZ…bZ…bZ…®õ,Z…bZ…bZ…Žyº&o 0­B1­B1­B1­B×z­B1­B1­B1­B×êzUè—EŠÝr–¨B×äm¦U(¦U(¦U(¦UèZÏ¢U(¦U(fUèÕ"Zѵ¿v§‰‚Ó‚Ó‚Ó‚t­.QbZbZbZ®õ,ZŽyAŠÝòéÚ#M RL RL RL ÒµºDAŠiAŠiAºV7(H1-H1-H1-H×ê)öž7(H1-H×z-H1-HÇ´ ½üýƻҵºŒDWŠiWŠYWzù{˜w¥ku/‰®Ó®Ó®Ó¿~-gñVÓOÅ´ Å´ ]«{IT¡ØûÅ,Z…bZ…®Õ"ªPL«Ð1¯B1­B×r¯B1­B1­B1ý›Þ×ê^ý'¦ŸŠié‰ié¹–³xé‰ié‰ié‰ié¹V÷’(=±÷‹Y´ôÄ´ô\«{I”ž˜–žc^zbZz®å,^zbZzbZzbZz®Õ½$JOLKOLKOLKϵº—Dé‰ié‰ié‰ié¹Ö³hé‰ié‰ié‰ié¹V÷’(=1-=¿,JOLKϵº—Dé‰ié‰ié‰ié¹Ö³hé‰ié‰ié‰ié¹V÷’(=1-=1-=1-=×êF¥'¦¥'¦¥'¦¥çZÏ¢¥'¦¥ç˜—ž˜–žku/‰Òëì%JO¬Ã—(=±N_¢ôÄ:~‰Òs­î%QzbµDé‰ié¹V‘H”žX×*QzbÝ«Dé‰u±¥ç˜—žX‡(Qzb¢Dé‰uŒ¥çÚ#­{”(=±.R¢ô\ËY¼ôÄ´ôĺI‰Òë&%JO¬›”(=×z–nR¢ôĺI‰Òsíû äê^áýçÕý þVx¬û•(=×ê2¥'ÖýJ”žX÷+QzbݯDé‰u¿¥çÇç¿/=‡tã éÂ;$ûnH×Ýn»!]vCºëɪû"¯7‡tÑ éžÒ5wH6Ë-¹ø…4_`›/~Íè:Òmx(GÖ]8¤«ð‹ü³B‡t’=8¤kpH·à.Á!-2ÉÚÒ 8¤ pH÷ß®¿C5F™˜™˜n¿5Ù8˜n?L·¦ÛÓí·Ö³èöÃtûaºýƼÈ\“7˜™Ø_øôk¾â/|ú5_¡ÛoM6¦ÛÓí‡éöÃtû­õ,ºýƼÞÄtûa½ý¢ÞÄ´ÞÄ´ÞÄ´ÞÄ´Þ\“7˜Ö›˜Ö›˜Ö›c^o®å,^obZobZobZo®ÉLëMLëMLëMLë͵žEëÍ1¯71­71­7×¾¿¸ü=Å›NÌšÎËßo¼ôÄ´ô\“·˜–ž˜–ž˜–žc^z®å,^zbZzbZzbZz®ÉÛLKOLKOLKOLKÏ5y[€ié9æ¥'¦¥'¦¥çZÎâ¥'¦¥'¦¥'¦¥çš¼-À´ôÄ´ôÄ´ôóÒsMÞ`ZzbZzbZzbZz®õ,ZzbZzbZzbZz®ÉÛLKÏ1/=±[Ïâ¥çš¼-À´ôÄ´ôÄ´ôÄ´ô\ëY´ôÄ´ôÄ´ôóÒsMÞ`ZzbZzbZzbZz®õ,ZzbZzbZzbZz®Õõ$JÏ/‹Ò»å,Qz®Õ %JOLKOLKOLKϵžEKOLKOL?ÿs̛ε:D½‰i½‰i½‰i½¹VW’¨71­71­71­7×z­7ǼÞÄny-‰zs푦õ&¦õ&¦õ&¦õæZÝK¢ÞÄ´ÞÄ´Þ\«{IÔ›˜Ö›˜Ö›˜Ö›ku/‰z{ÏÛ×›WÏ=Ñt®õ„ÚtbÚtŽiÓyõ,MçZÝK¢éÄ´éĬé<¦õæZÝK¢ÞÄ´ÞÄ´ÞÄþÂß ¿_‘jÓyùïÅKOÌJÏËÙþÊß6¿_Qw˜¨B±÷‹¹µ Å´ ]«ÛGT¡˜V¡c^…bZ…®å,^…bZ…bZ…bZ…®I‰‰}äÅ%ªPL«PL«ÐµœÅ«PL«PL«PL«Ðµº­DŠiŠiŠiºV·•¨B1­BǼ Å´ ]ËY¼ Å´ Å´ Å´ ]«ÛJT¡˜V¡˜V¡˜V¡ku[‰*Ó*Ó*Ó*t­gÑ*Ó*Ó*Ó*t­n+Q…bZ…~YT¡˜V¡ku[‰*Ó*Ó*Ó*t­gÑ*Ó*Ó*Ó*t­n+Q…bZ…bZ…bZ…®Õ=#ªPL«PL«PL«ÐµžE«PL«Ð1¯B1­B×ê¶U(Ö‰LT¡XG2Q…bÉDŠu(UèZÝV¢ Å:–‰*ë\&ªPL«PL«P¬3˜¨B×z–.a¢ ó*ë&ªP¬s˜¨B±b¢ ]{¤uU(ÖULT¡k9‹W¡˜V¡Xw1Q…bÝÅDŠuUèZÏÒ]LT¡Xw1^…^=ïz+zõ¼ƒ<¦U(¦U(Ö]LT¡Xw1Q…bÝÅDºÖ³tU(Ö]LT¡ÏeîUèn¼!]x‡dß éºÒm7¤ËnHwÝ!Yu_äUè.º!ÝsCºæÉfÒ%7¤;nHWÜn¸C9†î·!]o_ä¥ç.·C²Û†tµ éfÒÅ6¤¥ç!Y%CºÕ†t© éNÒ•v¨ÆˆÒÓÒÓ¶&[Ó†éFÃt£aºÑÖzÛh±}ø Ûs±}ø Ý~c^…®É;L7¦ Ó†éF[“-‚éFÃt£aºÑ0Ýhk=‹n´1/=1ÝhXo´(=1-=1-=1-=1-=×äªié‰ié‰ié9æ¥çZÎâ¥'¦¥'¦¥'¦¥çš\õ1+=/ý{ÿ‰Yÿyù{ƒW¡k=·V¡cZ…^þ3i+z9·¤kò¶ÓVÓÏÿÄ´ Å´ ]“·˜V¡˜V¡˜V¡c^…®å,^…bZ…bZ…bZ…®ÉÛL«PL«PL«PL«Ð5y[€i:æU(¦U(¦UèZÎâU(¦U(¦U(¦Uèš¼-À´ Å´ Å´ ó*tMÞ`Z…bZ…bZ…bZ…®õ,Z…bZ…bZ…b{[°&o 0­BǼ Ån=‹W¡kò¶Ó*Ó*Ó*Ó*t­gÑ*Ó*Ó*tÌ«Ð5y[€iŠiŠiŠiºÖ³hŠiŠiŠ=òxU(¦Uè—EŠÝr–¨B×ê„U(¦U(¦U(¦UèZÏ¢U(¦U(¦Uè˜W¡kuL‰*Ó*³*ôêχފ^ýù0 RL RL RL Rì!^ÿ3YWzýϤµé˜Ö¦—?¾6¨—?¾—©k4-S1-S1-S1-S×ê¾e*¦e*¦eêZÝw¼L½ü÷â½*¦½*¦½êZ]r¢WÅ´WŬW½üþñ^u­'Ô^Ó^uÌÿ{LËÔµºïD™Ši™Ši™Ši™ºV÷(S1-S1-S1ý\ѵœÅ?WÓÚÓÏÅôsE×ê¾)¦)¦)¦éZÝI¢ Å´ ó‚Ó‚t-gñ‚Ó‚Ó‚Ó‚t­î0QbZbZbZ®å,^bZbZbZ®Õ& RL RL RL ÒµºÃDAŠiA:æ)¦éZÎâ)¦)¦)¦éZÝa¢ Å´ Å´ Å´ ]«;L¤˜¤˜¤˜¤k=‹¤˜¤˜¤˜¤ku‡‰‚Ó‚ôË¢ Å´ ]«;L¤˜¤˜¤˜¤k=‹¤˜¤˜¤˜¤ku‡‰‚Ó‚Ó‚Ó‚t­nQbZbZbZ®õ,ZbZŽyAŠiAºVw˜(H±Îi¢ Å:¨‰‚ë¤& R¬£š(H×ê)ÖaM¤X§5Qb×DAŠu^éZÏÒ…M¤c^bÙDAŠuf)Ö¡M¤k´nm¢ 궉‚t-gñ‚Ó‚ëÞ& R¬{›(H±îm¢ ]ëY´ Å´ Ŭ¡¹ºãxWzu‰¿mëÞ& R¬{›(H×ê)Ö½M¤X÷6QbÝÛDAŠuoé×Kw/H‡tã éÂ;$ûnH×Ýn»!]vCºëɪû"/H‡tÑ éžÒ5wH6Ë.¹!ÝqCºâ†tÃÊ1t¿ ézû"/H‡t¹’Ý6¤«mH7Û.¶!-HÉ*Ò­6¤KmHwÚ®´C5F¤˜¤˜n´5Ù"˜n4L7¦ Ó¶Ö³èFÃt£aZ…Žyº&[ Ó-…é–ÂtKaº¥Öd3`º¥0ÛR±Íù Û]±Íù Ýhk=·n´1/H1ÝhXo´(H1-H1-H1-H1-H×äªiAŠYAzùïÓ»Ò1íJ/ÿ]kmzùãkƒzých™Ši™Ši™º&o 0ý RLTL?ƒÓÚt­gÑÚtÌ?ƒÓÏ Å´ ]“·˜¤˜¤˜¤˜¤kò¶Ó‚Ó‚Ó‚tþ—^®å,^bZbV^þÚÑ®ôò׎֦×?†5¨×?†–©˜–©˜–©kòÓ2uÌËTLËTLËÔµœÅËTLËTLËTLËÔ5y i™Ši™Ši™:æeêš¼…À´LÅ´LÅ´LÅ´L]ëY´LÅ´LÅ´LÅöbMÞB`Z¦Žy™ŠÝz/S×ä-¦e*¦e*¦e*¦eêZÏ¢e*¦e*¦eꘗ©kòÓ2Ó2Ó2Ó2u­gÑ2Ó2Ó2{äQ&ÊTLËÔ/‹2»å,Q¦®Õi&ÊTLËTLËTLËÔµžEËTLËTLËÔ1/S×êHe*¦e*¦ŸWŠéç•®Õ¥&jSLkSLkSìq1‹~^)¦é˜^)vË‹MT¡k4­B1­B1­B1«B¯þœ­(¦­(¦­(¦­èZ]r¼½ú3g´¢˜¶¢˜¶¢ku߉VÓVÓ¿™Ó*t­gÑ*Ó*tÌ«PL«ÐµºÙDŠiŠiŠiºV7›¨B1­B1­B1­B×r¯B1­B1­B1­B×ê~U(¦U(¦U(¦UèZÝ3¢ Å´ ó*Ó*t-gñ*Ó*Ó*Ó*t­n+Q…bZ…bZ…bZ…®å,^…bZ…bZ…bZ…®Õm%ªPL«PL«PL«Ð5)11­B1­BǼ Å´ ]ËY¼ Å´ Å´ Å´ ]«HT¡˜V¡˜V¡˜V¡ku‰*Ó*Ó*Ó*t­gÑ*Ó*Ó*Ó*t­n Q…bZ…~YT¡˜V¡ku‰*Ó*Ó*Ó*t­gÑ*Ó*Ó*Ó*t­n Q…bZ…bZ…bZ…®ÕÝ!ªPL«PL«PL«ÐµžE«PL«Ð1¯B1­B×êU(Ö‰LT¡XG2Q…bÉDŠu(UèZÝ@¢ Å:–‰*ë\&ªP¬ƒ™¨B±Nf¢ ]ëYºš‰*tÌ«P¬Ã™¨B±Ng¢ Å:ž‰*tí‘ÖýLT¡X4Q…®å,^…bZ…bÝÐDŠuCU(Ö MT¡k=K74^…^Ý”¼½ºãÄßL¿V7¨B±îm¢ ź·‰*ëÞ&ªPL«P¬š¨B±nh¢ ź¡ñ*ôùPóÛ¼6=fµé1«MYmú²žÅjÓcV›bZ›³Úôeu‡ñÚôX§7^›ëøÆkÓcßxmz¬¯M_Vw¯Mu„ãµé±Îp¼6=Ö!Ž×¦Ç,º9Ö}צǺ°ñÚÓÚôXG6^›ëÌÆkÓcÚxmú²GZ·6^›ëÚÆkÓ—å,Z›³ÚôX÷6^›ëÞÆkÓcÝÛxmú²žåÿ;ÏWüãçïùŠns¼6}YÝa¼6=ÖmŽ×¦ÇºÍñÚôX·9^›ë6ÇkÓ—õ,Ýæxmz¬Ûœ¨MoŸ ÛkÓ!ÝxCºðɾÒu7¤ÛnH—ÝîºC²ê¾è¡›nHÝî¹!]s‡d³ é’Ò7¤+nH7Ü¡C÷Û®·/ò‚tH—Û!ÙmCºÚ†t³ ébÒ‚ô¬’!ÝjCºÔ†t§ éJ;TcDAŠiAŠéF[“-‚éFÃt£aºÑ0Ýhk=‹¤˜¤˜n©1/H×dKaº¥0ÝR˜n)L·ÔšlL·¦[ Ó-…é–ZëYtKyAŠé–ÂzKEAŠiAŠiAŠiAŠiAº&o 0-H1-H1-HǼ ]ËY¼ Å´ Ŭ =f­èËäm¦U(fUè1ë?ié¹Ö³hé9æ¥'¦¥'¦¥çš¼À´ôÄ´ôÄ´ôÄ´ô\“7˜–ž˜–ž˜–žc^z®å,^zbZzbZzbZz®ÉLKOLKOLKOLKÏ5©+1-=ǼôÄ´ôÄ´ô\ËY¼ôÄ´ôÄ´ôÄ´ô\“K=¦¥'¦¥'¦¥ç˜—žkr©Ç¬é<¦õ&¦õ&¦õæZÏ¢õ&¦õ&¦õ&¦õæš\ê1­7ÇZob·žÅëÍ5¹ÔcZobZobZobVoÆ%f¿âû„q‰á+´ôĬô¼þñ­ÿ¼üñ½ ]{¤iŠiŠiŠiºÖ³hŠiŠiŠiºV‘¨B¿,ªPì–³DºVg‘¨B1­B1­B1­B×z­B1­B1­BǼ ]û~ ¹úµã­èÕ¯(H1-H1-H×ê¢)¦)¦)féõÏ“v¥˜v¥cÞ•b·øo›?_¡]éÚ#M»RL»RL»R̺җÕ& RL RL ÒµºÃDAŠiAŠYAzù=â]éZ]g¼+½ü>ðÚÓÚÓÚt­'ÔÚÓÚtÌkSLkÓµºÙDmŠimŠimŠimºV7›¨M1­M1­M1­M×r¯M1­M1­M1­M×êfµ)¦µ)¦µ)¦µéZÝI¢6Å´6óÚÓÚt-gÑÚô˜v¥˜v¥˜u¥/«›M¤˜¤˜¤˜¤k9‹¤˜¤˜¤˜¤ku³‰‚Ó‚Ó‚Ó‚t­n6QbZŽyAŠiAº–³hAzÌZÑcV…Óþs­n6QzbZzbZzbZz®ÕÍ&JOLKOLKOLKϵžEKOLKOLKOLKϵºÙDé‰iéùeQzbZz®ÕÍ&JOLKOLKOLKϵžEKOLKOLKOLKϵºEé‰ié‰ié‰ié¹öˆ¥'¦¥'¦¥'¦¥çZÏ¢¥'¦¥ç˜—ž˜–žku[‰Òëì%JO¬Ã—(=±N_¢ôÄ:~‰Òs­n+QzbÀDé‰u¥'ÖL”žXg0Qz®õ,]ÂDé9æ¥'Ö1L”žXç0QzbÄDé¹öHë&&JO¬«˜(=×r/=1-=±îb¢ô勉Òë.&Jϵï³\ÝN¼ÿ¼ºxÿy¬š(=×ê¥'Ö M”žX74QzbÝÐDé‰uC¥çZÏÒ M”žX74Qz~=Ðyé9¤oHÞ!ÙwCºî†tÛ é²Ò]wHVÝyé9¤‹nH÷Ü®¹C²Y†tÉ éŽÒ7¤îPŽ¡ûmH×Ûyé9¤Ëíì¶!]mCºÙ†t± iéyHVÉnµ![jñ›ð|mºø=x¾@×ß¡9ªPL«PL·ßšl?L·¦ÛÓí‡éö[ëY´ Åt£aºÑƼ ]“†éFÃt£aºÑ0Ýhk²E0Ýh˜n4L7¦m­gÑ6æU(¦ ëU(¦U(¦U(¦U(¦Uèš\õ1­B1­B1­BǼ ]ËY¼ Å´ Å´ Å´ ]“«>¦U(¦U(¦U(¦UèZÏ¢Uè˜W¡˜V¡˜V¡krÕÇ´ Å´ Å´ Å´ ]“«>¦U(¦U(¦Uè˜W¡k9‹W¡˜V¡˜V¡˜V¡krÕÇ´ Å´ Å´ Å´ ]“«>¦Uè˜W¡˜V¡˜V¡k9‹W¡˜V¡˜V¡˜V¡krÕÇ´ Å´ Å´ ó*tM®ú˜V¡˜V¡˜V¡˜V¡k=‹V¡˜V¡˜V¡˜V¡krÕÇ´ ó*»õ,^…®ÉUÓ*Ó*Ó*ÓÏô\ëY´ôÄô3=1ýLÏ1¯7×äªi½‰i½‰i½‰i½¹Ö³h½‰i½‰i½‰Y½yõÀçMçÕ_”ž_¥'v˹£ô\«³ˆ—žWÿ¼ÑbÖ^ý\DºÖskŠiŠi:æUèZSâ³B1-=1-=1+=/ÿ½xÿ‰iÿ‰iÿ‰iÿ‰YÿyùïÚûOLûÏ1ï?±›½YÀ´ô\{¤ié‰ié‰ié‰ié¹V·•(=1-=1-=×ê¶¥'¦¥'¦Ÿнåm%šNL?+ÓzÓzÓzs­gÑzÓzsÌëMLë͵º­D½‰i½‰i½‰i½¹V·•¨71­71­71­7×r¯71­71­7±·¼­D½‰i½‰i½‰i½‰i½¹V÷Œ¨71­7ǼÞÄ´Þ\ËY¼ÞÄ´ÞÄ´ÞÄ´Þ\«ÛJÔ›˜Ö›˜Ö›˜Ö›kßg¹ÜéÞtbÚtbÖt^îf/=×ê¥'¦¥'¦¥'¦¥çZÝa¢ôÄ´ôóÒÓÒs-gñÒÓÒÓÒÓÒs­î0QzbZzbZzbZz®Õ&JOLKOLKOLKϵžEKOLKOLKOLKϵºÃDé‰iéùeQzbZz®Õ&JOLKOLKOLKϵžEKOLKOLKOLKϵºÃDé‰ié‰ié‰ié¹V·(=1-=1-=1-=×z-=1-=ǼôÄ´ô\«Ú$JO¬³—(=±_¢ôÄ:}‰Òëø%Jϵº—Dé‰u¥'Ö L”žXG0QzbÁDé¹Ö³t ¥ç˜—žXÇ0QzbÃDé‰u¥çÚ#­›˜(=1-=±N]¢ôóÒÓÒëÖ%JO¬[—(=±n]¼ô¼ú³¿÷ŸW†÷þóXw1QzŽyé¹V÷’(=±îb¢ô勉Òë.&JO¬»˜(=×z–îb¢ô勉ÒóççO¤—žCºñ†tá’}7¤ënH·Ý.»!Ýu‡dÕ}‘—žCºè†tÏ éš;$›eH—Üî¸!]qCºáåºß†t½}‘—žCºÜÉnÒÕ6¤›mHÛ–ž‡d• éVÒ¥6¤;mHWÚ¡#êMLëML7Úšl4L7¦ Ó†i½¹Ö³è–ÂtKaº¥Æ¼Þ\“-…é–ÂtKaº¥0ÝRk²0ÝR˜n)L·¦[j­gÑ-5æõ&¦[ ë-õ&¦õ&¦õ&¦õ&¦õæš\õ1­71­71­7ǼÞ\ËY¼ÞÄ´ÞÄ´ÞÄ´Þ\“«>¦õ&¦õ&¦õ&¦õæZÏ¢õæ˜×›˜Õ›ñ't¾ÂšÎøú~…¼À´ôÄ´ôÄ´ôÄ´ô\“«>¦¥'¦¥'¦¥ç˜—žk9‹—ž˜–ž˜–ž˜–žkrÕÇ´ôÄ´ôÄ´ôÄ´ô\“«>¦¥ç˜—ž˜–ž˜–žk9‹—ž˜–ž˜–ž˜–žkrÕÇ´ôÄ´ôÄ´ôóÒsM®ú˜–ž˜–ž˜–ž˜–žk=‹–ž˜–ž˜–ž˜–žkrÕÇ´ôóÒ»É,—¿Gkÿyù{´W¡˜V¡˜V¡˜U¡×s[+z=·¤˜¤˜¤˜¤c^®ÉÛL RL RL RL ÒµžE RL RL RL?ÿs­®'Q…~YT¡Ø-g‰*t­N(ñùŸ˜öŸ˜~þ'¦¥çZÏ¢¥'¦¥'¦¥ç˜—žkÿðçòÚbÚbÚbÖ^ýúþÓþÓþÓþÓ¿A~­g±Òóòç×ûOìöÿßÛòZ…®=Ò´ Å´ Å´ Å´ ]«›MT¡˜V¡˜V¡ku³‰*Ó*Ó*{“›Íå÷·¢˜¶¢˜µ¢—ß#^bZ®õ„ZbZŽyAŠiAºV÷(H1-H±Ÿ³hAºV÷(H1-H1-H1-H×r/H1-H1-H±·¼ïDAŠiAŠiAŠiAŠiAºV7•(H1-HǼ Å´ ]ËY¼ Å´ Å~Zµ‰iAºV7›(H1-H1-H1-H×roE1mE1ýüOL«ÐµºÙDŠiŠiŠiºV7›¨B1­BǼ Å´ ]ËY¼ Å´ Å~æÍ&ªÐµºÙDŠiŠiŠiºV7›¨B1­B1­B1­B×z­B1­B1­B1­B×êfU(¦Uè—EŠiºV7›¨B1­B1­B1­B×z­B1­B1­B1­B×ê¶U(¦U(¦U(¦UèZÝ3¢ Å´ Å´ Å´ ]ëY´ Å´ ó*Ó*t­n+Q…bÈDŠu$U(Ö™LT¡X‡2Q…®Õm%ªP¬c™¨B±Îe¢ Å:˜‰*ëd&ªÐµž¥«™¨BǼ Å:œ‰*ët&ªP¬ã™¨B×iÝÏDŠuAUèZÎâU(¦U(Ö MT¡X74Q…bÖÐ\Ý9¼½ºWÄß uoU(Ö½MT¡ku‰*ëÞ&ªP¬{›¨B±îm¢ ź·‰*t­géÞ&ªP¬{›¨Bß?—²W¡Cºñ†tá’}7¤ënH·Ý.»!Ýu‡dÕ}‘W¡Cºè†tÏ éš;$›eH—Üî¸!]qCºáåºß†t½}‘W¡CºÜÉnÒÕ6¤›mHÛV¡‡d• éVÒ¥6¤;mHWÚ¡#ªPL«PL7ÚšlL7¦ Ó*Ó*t­gÑ-…é–ÂtKyº&[ Ó-…é–ÂtKaº¥Öd3`º¥0ÝR˜n)L·ÔZÏ¢[jÌ«PL·Ö[*ªPL«PL«PL«PL«Ð5¹ÔcZ…bZ…bZ…Žyº–³xŠiŠiŠiº&—zL«PL«PL«PL«ÐµžE«Ð1¯B1ýLOL?ÓsM.õ˜–ž˜–ž˜–ž˜–žkr©Ç´ôÄ´ôÄ´ôóÒs-gñÒÓÒÓÒÓÒsM.õ˜–ž˜–ž˜–ž˜–žkr©Ç´ôóÒÓÒÓÒs-gñÒÓÒÓÒÓÒsM.õ˜–ž˜–ž˜–žc^z®É¥ÓÒÓÒÓÒÓÒs­gy¿˜EKOLKOLKÏ5¹ÔcZzŽyé‰ÝzÿLÏ5¹ÔcZobZobú™ž˜~¦çZÏ¢E&¦E&¦E昙kr©Ç´ÈÄ´ÈÄ´ÈÄ´È\ëYÞíRi‘‰i‘‰i‘¹V—‹(2¿,ŠLì–³D‘¹Vç‹(21-21-21-2×z-21-21+2ã:_áæÚ÷óF\Iù í41í41í41ýÙ×êòE&¦E&¦E&¦EæZÏ¢Ÿ½9æí%vË HT–k4­,1­,1­,1­,×ê•%¦•%¦•åZÝ@¢²Ä´²Ä´²Ä¬²|YÝ@¢§Äô³71-'1-'×z-'1-'Ç´œ¼üýÆ{ʵËßo¼²Ä¬²¼ží§üÓ\ÿøZd®Õm%ŠLL‹LL‹LL‹ÌµœÅ‹LL‹LL‹LL‹Ìµº­D‘‰i‘‰i‘‰i‘¹V÷Œ(21-2ǼÈÄ´È\ËY¼ÈÄ´ÈÄ~æm%ŠÌµº­D‘‰i‘‰i‘‰i‘¹–³x‘‰i‘‰i‘‰i‘¹V·•(21-21-21-2×ê¶E&¦E昙˜™k9‹™˜™˜™˜™ku[‰"Ó"³"ór—x§¹öýâr¹g¼ÞÄ´ÞÄ´ÞÄ´Þ\«›PÔ›˜Ö›˜Ö›˜Ö›ku‡‰zÓzóË¢ÞÄ´Þ\«;LÔ›˜Ö›˜Ö›˜Ö›k=‹Ö›˜Ö›˜Ö›˜Ö›ku‡‰zÓzÓzÓzs­nQobZobZobZo®õ,ZobZoŽy½‰i½¹Vw˜¨7±NY¢ÞÄ:f‰zëœ%êM¬ƒ–¨7×êõ&ÖQKÔ›Xg-Qob¶D½‰uÚõæZÏÒuKÔ›c^ob¸D½‰uâõ&Ö‘KÔ›k´î\¢Þĺt‰zs-gñzÓzëÖ%êM¬[¯7¯þüäMçÕŸ‘âoz_ë¹»‹‰zë.&ê͵ºÃD½‰uõ&Ö]LÔ›Xw1QobÝÅD½¹Ö³tõ&Ö]LÔ›_/ò½ÞÒ7¤ ïì»!]wCºí†tÙ é®;$«î‹¼ÞÒE7¤{nH×Ü!Ù,Cºä†tÇ éŠÒ w(ÇÐý6¤ë틼ÞÒåvHvÛ®¶!ÝlCºØ†´Þ<$«dH·Ú.µ!ÝiCºÒÕQobZobºÑÖd3`ºÑ0­71­71ÝRkßg‰-ÉWØîŠ-ÉWèFÃt£yé¹ö}£]έýçåÜ^…bºý0Ý~k²q0Ý~˜n?L·¦Ûo­gÑí7æU(¦ÛëíU(¦U(¦U(¦U(¦Uèš¼-À´ Å´ Å´ ó*t-gñ*Ó*Ó*Ó*tMÞ`Z…bZ…bZ…bZ…®õ,Z…ŽyŠiŠiº&o 0­B1­B1­B1­B×äm¦U(¦U(¦Uè˜W¡k9‹W¡˜V¡˜V¡˜V¡kò¶Ó*Ó*Ó*Ó*tMÞ`Z…ŽyŠiŠiº–³xŠiŠiŠiº&o0­B1­B1­BǼ ]“7˜V¡˜V¡˜V¡˜V¡k=ËûÅ,Z…bZ…bZ…®ÉL«Ð1¯B±[ÏâUèš¼À´ Å´ Å´ Å´ ]ëY´ Å´ Å´ ó*tMÞ`Z…bZ…bZ…bZ…®õ,ïöÓ*Ó*Ó*t­."Q…~YT¡Ø-g‰*t­Î"Q…bZ…bV…^=E+ºÖj+Ši+ŠY+zõ ­èZS¢ Å´ Å´ Å´ ]«‹JT¡˜V¡˜V¡˜V¡k=‹V¡c^…b·¼¬DºöHÓ*Ó*Ó*Ó*t­n+Q…bZ…bZ…®Õ'ªPL«PL«PL«Ð5y€iŠiŠiŠiºÖ³hŠi:柧‰iÿ¹V7(=1ý>¿‰¼ÈÒ7¤ ïì»!]wCºí†tÙ é®;$«î‹¼ÈÒE7¤{nH×Ü!Ù,Cºä†tÇ éŠÒ w(ÇÐý6¤ë틼ÈÒåvHvÛ®¶!ÝlCºØ†´È<$«dH·Ú.µ!ÝiCºÒÕQdbZdbºÑÖd3`ZdbáÿÆ€¯ø ÿ7|…n´µž[7¦ Ó6æEæšl4L7¦ Ó†éF[“-‚éFÃt£aºÑ0Ýhk=‹n´1¯,1ÝhXo´¨,1­,1­,1­,1­,×þ?Êî6·+Gí”Zé¬Jyþ{°›çŠ`¾úÕ^Ìôý Ä},W}L+KL+KL+Ë1¯,×r¯,1­,1­,1­,×äªie‰ie‰ie‰ie¹Ö³he9æ•%¦•%¦•åš\õ1­,1­,1­,1­,×äªie‰ie‰ie9æ•åZÎâ•%¦•%¦•%¦•åš\õ1­,1­,1­,1­,×äªie9æ•%¦•%¦•åZÎâ•%¦•%¦•%¦•åš\õ1­,1­,1­,Ǽ²\“«>¦•%¦•%¦•%¦•åZÏ¢•%¦•%¦•%¦•åš\õ1­,Ǽ²Ä¾z¯,×äªie‰ie‰ie‰ie¹Ö³he‰ie‰ie9æ•åš\õ1­,1­,1­,1­,×z­,1­,1­,1­,×êÊ•åEe‰}å,QY®Õ©#*KL+KìÿPYòVY^?óy{yÿ3´ÈÄ´ÈÄþEæ|…™kuL‰"Ó"Ó"Ó"s­.*QdbZdbZdbZd®õ,ZdŽy‘‰}åe%ŠÌµï4-21-21-21-2×ê¶E&¦E&¦EæZÝK¢ÈÄ´ÈÄ´ÈÄ´È\«{I™˜™˜™˜™k=‹™˜™c^dbZd®Õ½$ŠLL‹LL‹LL‹Ìµº—D‘‰i‘‰i‘‰i‘¹–³x‘‰i‘‰i‘‰i‘¹V÷’(21-21-21-2×êFE&¦E昙˜™k9‹™˜™˜™˜™ku/‰"Ó"Ó"Ó"s-gñ"Ó"Ó"Ó"s­î%QdbZdbZdbZd®Õ½$ŠLL‹Ì1/21-2×r/21-21-21-2×ê^E&¦E&¦E&¦EæZÝK¢ÈÄ´ÈÄ´ÈÄ´È\ëY´ÈÄ´ÈÄ´ÈÄ´È\«{I™˜™?E&¦EæZÝK¢ÈÄ´ÈÄ´ÈÄ´È\ëY´ÈÄ´ÈÄ´ÈÄ´È\«{I™˜™˜™˜™ku£ˆ"Ó"Ó"Ó"s­gÑ"Ó"sÌ‹LL‹Ìµº—D‘‰užE&ÖJ™X'*Qdb©D‘¹V·›(2±U¢ÈÄ:U‰"ëX%ŠL¬s•(2×z–.V¢Èó"ëh%ŠL¬³•(2±W¢È\ûNëv%ŠL¬ë•(2×r/21-2±îW¼È¼î…Þi^w¿ø¯¡cZdbݯD‘‰u¿E&ÖýJ™ku‰"ë~%ŠL¬û•(2±îW¢Èĺ_‰"s­gé~%ŠL¬û•(2¯™Cºñ†tá=’}7¤ënH·Ý.»!ÝudÕý™Cºè†tÏ éš{$›eH—Üî¸!]qCºáåºß†t½ý™CºÜÉnÒÕ6¤›mHÛ™d• éVÒ¥6¤;mHWÚ£#ŠLL‹LL7ÚšlL‹LL·¦[ Ó-µÖ³è–ÂtKaº¥Æ¼²\“-…é–ÂtKaº¥0ÝRk²0ÝR˜n)L·¦[j­gÑ-5æ•%¦[ ë-•%¦•%¦•%¦•%¦•åš\ê1­,1­,1­,Ǽ²\ËY¼²Ä´²Ä´²Ä´²\“K=¦•%¦•%¦•%ö}Ì¢•%¦•å˜W–˜V–˜V–kr©Ç´²Ä´²Ä´²Ä´²\“K=¦•%¦•%¦•å˜W–k9‹W–˜V–˜V–˜V–kr©Ç´²Ä´²Ä´²Ä¾íR¿&—zL+Ë1¯,1­,1­,×r¯,1­,1­,1­,×äRie‰ie‰ie9æ•åš\ê1­,1­,1­,1­,×z­,1­,1­,1­,×äRie9æ•%öÕ³xe¹&—zL+KL+KL+KL+˵žE+KL+KL+Ë1¯,×äRie‰ie‰ie‰ie¹Ö³he‰ie‰ie‰ie¹V—‹¨,,*Kì+g‰Êr­Î^YÆe’¯Ðö³ö2®–|…~ÂåZÏ­=%¦=%f=%æåäZ=¢œÄ´œÄ´œÄ´œ\«Ë‡—“篧÷”˜ö”˜õ”篵W–˜V–c^Yb_y-‰Êrí;M+KL+KL+KL+˵º—De‰ie‰ie¹V÷’¨,1­,1­,1­,×ê^•%¦•%¦•%¦•åZÏ¢•%¦•å˜W–˜V–ku/‰ÊÓÊÓÊÓÊr­î%QYbZYbZYbZY®å,^YbZYbZYbZY®Õ½$*KL+KL+KL+˵ºQDe‰ie9æ•%¦•åZÎâ•%¦•%¦•%¦•åZÝK¢²Ä´²Ä´²Ä´²\ËY¼²Ä´²Ä´²Ä´²\«{IT–˜V–˜V–˜V–ku/‰ÊÓÊrÌ+KL+˵œÅ+KL+KL+KL+˵ß÷’ó{9o/1m/1k/Ïïå¾µÈ\«ÛJ™˜™˜™˜™k=‹™˜™˜™˜™ku[‰"û;g‰"Ó"s­n+QdbZdbZdbZd®õ,ZdbZdbZdbZd®Õm%ŠLL‹LL‹LL‹ÌµºgD‘‰i‘‰i‘‰i‘¹Ö³h‘‰ýݳx‘‰i‘¹V·•(2±ÎS¢ÈÄ:P‰"ëD%ŠL¬#•(2×ê^E&Ö¡J™X§*Qdb«D‘‰u®EæZÏÒÅJ™c^db­D‘‰u¶E&ÖáJ™kßiÝ®D‘‰u½EæZÎâE&¦E&fýÊõý“wš×÷Añ_8Ǻu‰"ëÖ%ŠL¬[—(2±n]¢È\«{I™X·.QdbݺD‘‰uëE&Ö­K™k=K·.Qdbݺx‘ù÷Ï”ZdB¶ñ [xK¿÷dë²mÙ²ƒl×-ý^uCZdB¶è Ûs­¹¥ß›²%ÙŽƒlÅA¶á–r Ûo­·!-2![nK¿wd« ²ÍæKó¶î ë4ýïïý‚ßk² Ù„lÿÿkl).ýîú_ã¥ç3+=ŸÙ¦üØïó̶ß3Û~Ïlû=³í÷±žÅ¶ß3Û~ÏlûaZz~ì÷ö{fÛï™m¿g¶ýžÙöûØïó̶ß3Û~Ïlû=³í÷±žÅ¶¦¥ç3Û~ÏzûyéùÌJÏgVz>³Òó™•žûýZðÌJÏgVz>³ÒÓÒóc9‹–žÏ¬ô|f¥ç3+=?öûµà™•žÏ¬ô|f¥ç3+=?Ö³Xé‰iéùÌJÏgVz~ì÷kÁ3+=ŸYéùÌJÏgVz~ì÷kÁ3+=ŸYéùÌJOLKÏå,Zz>³Ò󙕞ϬôüØïׂgVz>³Ò󙕞ϬôüØïׂgVzbZz>³Òó™•žËY´ô|f¥ç3+=ŸYéù±ß/Ϭô|f¥ç3+=1-=?öûà™•žÏ¬ô|f¥ç3+=?Ö³XéùÌJÏgVz>³Òóc¿_žYé‰iéùì«gÑÒóc¿_žYéùÌJÏgVz>³Òóc=‹•žÏ¬ô|f¥'ö·•žûýðÌJÏgVz>³Òó™•žëY¬ô|f¥ç3+=ŸYéù±ºˆxé9æ¥çÿ;~Rôþó™õŸ«c‰÷Ÿ×ϘÞ>³þó™•žë ­ô|f¥ç3+=1-=?VÇ/=ŸYéùÌJÏgVz~¬.*^z>³¦ó™5ϬéüXÏbõ&¦õæ³/¹–<³zócßiVo>³zó™Õ›Ï¬ÞüXÝ@¼Þ|fõæ3«7?V7¯7ŸY½ùÌêÍgVo~¬n ^o>³zó™Õ›Ï¬ÞüXÏbõæ3«71­7ŸY½ù±ºx½ùÌêÍgVo>³zócuñzó™Õ›Ï¬Þ|fõæÇr­7ŸY½ùÌêÍgVo~¬n ^o>³zó™Õ›Ï¬ÞüXݼÞ|fõ&¦õæ3«7?–³h½ùÌêÍgVo>³zócuñzó™Õ›Ï¬Þ|fõæÇr­7ŸY½ùÌêÍgVo~¬n ^o>³zó™Õ›Ï¬ÞüXÝ@¼Þ|fõ&¦õæ3«7?–³h½ùÌêÍgVo>³zócuñNó™ušÏ¬Ó|fEæÇêâEæ3+2ŸY‘ùÌŠÌõ,Vd>³"ó™™Ï¬ÈüXÝ@¼È|fE昙ϬÈüXÝ@¼È|fEæ3+2ŸY‘ù±žÅŠÌgVd>³"ó™™«ˆ™Ï¬È|fEæ3+2?Vw/2ŸY‘ùÌŠÌgVd~¬g±"󙙘™Ï¬ÈüXÝ@¼È|ÖyŠ™Ï:Pñ"óY'*^d>ëHÅ‹ÌÕ]ËÌgªx‘ù¬S/2Ÿu¬âEæ³ÎU¼ÈüXÏÒÅŠ™˜™Ï:Zñ"óYg+^d>ëDÅ‹Ì}§uâEæ3+Ržu|âE&¦Eæ3+2ÿßq×ôNóºAz§ù¬›/2Ÿu“âEæÇz–nR¼È|ÖMŠ™«ˆ™ÏºIñ"óY7)^d>ë&Å‹Ìgݤx‘ù±ž¥›/2Ÿu“Eæ×?¿Q¼ÈÒ7¤ ï‘ì»!]wCºí†tÙ é®{$«î‡¼ÈÒE7d{.þ™/°å¼/-4¤ qH÷á®Ã!݆r Ý…Cº èoÝ„CºÉÒ58¤[pH—àušK²v†téÒý7¤ëïQá•åõ;ÓÛËë·f™k²q0Ý~˜n?L·¦Ûo­gÑí‡éöÃtûy‘¹&ÛÓí‡éöÃtûaºýÖdã`ºý0Ý~˜n?L·ßZÏ¢ÛoÌ‹LL·ÖÛ/ŠLL‹LL‹LL‹LL‹Ì5yÀ´ÈÄ´ÈÄ´Èó"s-gñ"Ó"Ó"Ó"sM^0-21-21-21-2×z-2ǼÈÄ´ÈÄ´È\“L‹LL‹LL‹LL‹Ì5yÀ´ÈÄ´ÈÄ´Èó"s-gñ"Ó"Ó"Ó"sM^0-21-21-21-2×äÓ"sÌ‹LL‹LL‹ÌµœÅ‹LL‹LL‹LL‹Ì5yÀ´ÈÄ´ÈÄ´Èó"sM^0-21-21-21-2×z-21-21-21-2×äÓ"sÌ‹Lì«gñ"sM^0-21-21-21-2×z-21-21-2ÇþÖ"sM^0-21-21-21-2×z-21-21-21+2ÏŸÁ¼ÓÄ´Óü1ï4¯ŸÝ¢ÓÄ´Ó\«Êÿås:ßWX§yÏ­õ&¦õæZÏ­õ&¦õ&¦õæ˜×›kuL‰zÓzÓzÓzsí÷Eåü5ó¦Ó¦³¦óüµöÒs­.AQzŽyé‰}å&Jϵï4-=1-=1-=1-=×ê¶¥'¦¥'¦¥çÚße^zbZzbZzbZz®Õm%JOLKOLKOLKϵžEKOLKÏ1/=1-=×ê¶¥'¦¥'¦¥'¦¥çZÝV¢ôÄ´ôÄ´ôÄ´ô\ËY¼ôÄ´ôÄ´ôÄ´ô\«ÛJ”ž˜–ž˜–ž˜–žkuψÒÓÒsÌKOLKϵœÅKOLKOLKOLKϵº­Dé‰ié‰ié‰ié¹–³xé‰ié‰ié‰ié¹V·•(=1-=1-=1-=×ê¶¥'¦¥ç˜—ž˜–žk9‹—ž˜–ž˜–ž˜–žku[ñÒóüÐûOLûOÌúÏó{@¯BǼ Å´ Å´ Å´ ]ëY´ Å´ Å´ Å´ ]«;LT¡˜V¡?U(¦UèZÝa¢ Å´ Å´ Å´ ]ëY´ Å´ Å´ Å´ ]«;LT¡˜V¡˜V¡˜V¡kuûˆ*Ó*Ó*Ó*t­gÑ*Ó*tÌ«PL«Ðµº¸DŠu"U(Ö‘LT¡Xg2Q…bÊDºV÷’¨B±Že¢ Å´ ]«{IT¡XW0Q…bÝÁDŠu Uè˜W¡XÇ0Q…bÃDŠuUèÚwZ71Q…b]ÅDº–³hz}¯ã­èõ=‹·¢û;­»˜¨B±îb¢ ]ëYº‹‰*ë.&ªÐµº—DŠuU(Ö]LT¡Xw1Q…bÝÅDºÖ³tU(Ö]LT¡?.^…éÆÒ…÷HöÝ®»!ÝvCºì†t×=’U÷C^…Ù¢‹¿Hæ lûÅß#óºÉÒ…8¤ûpH×ánÃG9†îÂ!]…?äUè.ÂG²‡t é²%xýÚz+úH–ÑíÅëw„¤Cº+‡tU>ªáâs:1ýœNL·ßšlL·¦ÛÓí‡éö[ëYtûaºý0Ý~c^…®ÉöÃtûaºý0Ý~˜n¿5Ù8˜n?L·¦ÛÓí·Ö³èöó*Óí‡õö‹*Ó*Ó*Ó*Ó*tM^ 0­B1­B1­BǼ ]ËY¼ Å´ Å´ Å´ ]“×L«PL«PL«PL«ÐµžE«Ð1¯B1­B1­B×äµÓ*Ó*Ó*Ó*tM^ 0­B1­B1­BǼ ]ËY¼ Å´ Å´ Å´ ]“×L«PL«PL«PL«Ð5y-À´ ó*Ó*Ó*t-gñ*Ó*Ó*Ó*tM^0­B1­B1­BǼ ]“L«PL«Pì/{À´ ]ëY´ Å´ Å´ Å´ ]“L«Ð1¯B±¯žÅ«Ð5yÀ´ Å´ Å´ Å´ ]ëY´ Å´ Å´ ó*tM^0­B1­B±¿d–뇶hE×zBmE1mE1mE1kE¯Ÿ£Å´ý1oEŸ}å„Q…®Õ Å«Ðgú9˜–ž˜–žk=‹–ž˜–ž˜–žc^z®Õ$JOLKOì¯c-=×êJM'¦M'¦ŸÓ‰i½¹Ö³h½9æõ&ö•¨7×¾Ó´ÞÄ´ÞÄ´ÞÄ´Þ\«HÔ›˜Ö›˜Ö›ku‰zÓzÓzÓzs­n QobZobZobZo®õ,ZobZoŽy½‰i½¹V7¨71­71­71­7×êõ&¦õ&¦õ&¦õæZÎâõ&¦õ&¦õ&¦õæZÝ@¢ÞÄ´ÞÄ´ÞÄ´Þ\«»CÔ›˜Ö›c^obZo®å,^obZobZobZo®Õ $êMLëMÌêÍë{Îh:×~Ox}¥'¦¥'f¥ç9·öŸ÷lZ…bZ…bZ…bZ…bZ…®Õm%ªP̪Ðóß“·¢˜¶¢k¿'<ÿýzAŠiAŠiAŠiAºVw˜ø¬PL[QL[QL?+t­î0Q…bZ…bZ…bZ…®õ,Z…bZ…bZ…bZ…®Õ&ªPL«Ð‹*Ó*t­î0Q…bZ…bZ…bZ…®õ,Z…bZ…bZ…bZ…®Õ&ªPL«PL«PL«ÐµºrDŠiŠiŠiºÖ³hŠi:æU(¦UèZÝV¢ Å:‘‰*ëH&ªP¬3™¨B±e¢ ]«ÛJT¡˜V¡˜V¡X'0Q…bÁDŠuUèZÏÒ%LT¡c^…bÃDŠuU(¦U(¦UèÚwšV¡X‡.Q…bºxz}/ç­èõ=™·¢Ïº‹‰*ë.&ªP¬»˜¨B×z–îb¢ ꋉ*t­î0Q…bÝÅDŠuU(Ö]LT¡Xw1Q…®õ,ÝÅDŠuUè¿ÿùAÍ«Ð!ÝxCºðɾÒu7¤ÛnÈ–]üÁŸ/° îßÈZü!/H‡t)éNÒ•øH¶Ð.Ä!݇Cº‡t>Ê1té*ü!¯B‡t>’=8¤kpH·à.Á!í?É Ò 8¤ pH÷ß®¿G5F”ž˜–ž˜n´5Ù"˜n4L7¦ Ó¶Ö³èFÃt£aºÑƼô\“†éFÃt£aºÑ0Ýhk²E0Ýh˜n4L7¦m­g±výý'f{îúÛ=ªÐ5y…À´ Å´ Å´ Å´ ]“WL«PL«PL«Ð1¯B×r¯B1­B1­B1­B×äÓ*Ó*Ó*Ó*t­gÑ*tÌ«PL«PL«Ð5yÁ´ Å´ Å´ Å´ ]“×L«PL«PL«Ð1¯B×r¯B1­B1­B1­B×äåÓ*Ó*Ó*Ó*tí÷ Àù÷°¶¢çßµ^bVžÿ|íJï¾Ö¦˜Ö¦˜Ö¦˜Ö¦˜Ö¦kò²€imŠimŠim:æµéš¼,`Z›bZ›bÙ˦µéZÏ¢µ)¦µ)¦µ)¦µéš¼,`Z›ŽymŠ}õ,^›®É˦µ)¦µ)¦µ)¦µéZÏ¢µ)¦µ)fµéùçßÔ5yoÀ´AÅ´AÅþ’ Ï¿oþÖu­'ÔÓÓÓÿ‚üZ]e¢6ý±¨M±¯œ%jÓµ:·DmŠimŠimŠimºÖ³hmŠimŠim:æµéZ^¢6Å´6Åþ:fÑÚt­®/Q›bZ›bZ›bZ›®õ,Z›ŽymŠ}å&jÓµï4­M1­M1­M1­M×êµ)¦µ)¦µéZÝa¢6Å´6Å´6Å´6]«;LÔ¦˜Ö¦˜Ö¦˜Ö¦k=‹Ö¦˜Ö¦c^›bZ›®Õ&jSLkSLkSLkÓµº­DmŠimŠimŠimº–³xmŠimŠimŠimºV·•¨M1­M1­M1­M×êžµ)¦µé˜×¦˜Ö¦k9‹×¦˜Ö¦˜Ö¦˜Ö¦ku[‰ÚÓÚÓÏ Å´+]ËY¼ Å´ Åô³B1ý¬Ðµº­DŠiŠiŠiºV·•¨B1ý¬Ð1ï?1í?×r/=1-=1-=1-=×ê¥'¦¥'¦¥'¦¥çZÝ@¢ôÄ´ôÄ´ôÄ´ô\ëY´ôÄ´ôÄ´ôÄ´ô\«H”ž˜–ž?¥'¦¥çZÝ@¢ôÄ´ôÄ´ôÄ´ô\ëY´ôÄ´ôÄ´ôÄ´ô\«H”ž˜–ž˜–ž˜–žkuKˆÒÓÒÓÒÓÒs­gÑÒÓÒsÌKOLKϵºkDé‰uö¥'ÖáK”žX§/QzbZzbZz®Õ]#JO¬£–(=±ÎZ¢ôÄ:l‰Òë´%Jϵž¥ë–(=ǼôÄ:p‰ÒëÄ%JO¬#—(=×¾Óºs‰ÒëÒÅKÏëìýçu›ÿ‚<¦¥'Ö]L”žXw1QzbÝÅDé¹Ö³t¥'Ö]L”žku‰Òë.&JO¬»˜(=±îb¢ô勉Òs­gÑÒsÌKOLKOL[—ÿùç7¦—žCºñ†tá=’}7¤ënH·Ý.»!ÝudÕý×›Cºè†tÏ éš{$›eH—Üî¸!]qCºáåºß†t½ý×›CºÜÉnÒÕ6¤›mHÛÖ›d­ éVÒ¥6¤;mHëÍG5FÔ›˜Ö›˜n©5Ù ˜n)L·¦[ Ó-µÖ³è–ÂtKaº¥Æ¼Þ\“-…é–ÂtKaº¥0ÝRk²0ÝR˜n)L·¦[j­gÑ-5æ&¦[ ë-E&¦E&öïc-21-2×äRi‘‰i‘‰i‘9æEæZÎâE&¦E&¦E&¦Eæš\ê1-21-21-21-2×z-2ǼÈÄ´ÈÄ´È\“K=¦E&öo™%~â+¬ÓŒŸ†ø ­7×äªi½‰i½‰i½9æõæZÎâõ&¦õ&¦õ&¦õæš\õ1«7Ï_3m:Ï_3/=1+=ï¾õŸ÷?_?+tÌKOL?+ÓÏ ]“— LëMLëMLëMLëÍ5y-À´ÞÄ´ÞÄ´ÞózsM^ 0­71­71­71­7×z­71­71­71­7×äµÓzsÌëMì«gñzsM^ 0­71­71­71«7Ï?ÿÞtbÚtbÚtbÖtž§xÓ¹&/ ˜6˜6˜5Ï´Þ\ëY´ÞÄ´ÞÄ´ÞÄ´Þ\«KKÔ›?õ&ö•³D½¹Vç–¨71­71­71­7×z­71­71­7ǼÞ\«ÃKÔ›˜Ö›˜Ö›˜Ö›ku}‰zÓzÓz³zóú»(šNL›Î1m:¯¿o¢ôÄ´ô\ûNÓÒÓÒÓÒÓÒsí?ñ½A”ž˜–ž˜–žku³‰ÒÓÒÓÒÓÒs­n6QzbZzbZzbZz®õ,ZzbZzŽyé‰ié¹V7›(=1-=1-=1-=×êf¥'¦¥'¦¥'¦¥çZÎâ¥'¦¥'¦¥'¦¥çZÝl¢ôÄ´ôÄ´ôÄ´ô\«;I”ž˜–žc^zbZz®å,^zbZzbZzbZz®ÕÍ&JOLKOLKOLKϵœÅKOLKOLKOLKϵºÃDé‰ié‰ié‰ié¹Vw˜(=1-=ǼôÄ´ô\ËY¼ôÄ´ôÄ´ôÄ´ô\«{I”ž˜–ž˜–ž˜–žku/‰ÒÓÒÓÒÓÒs­gÑÒÓÒÓÒÓÒs­î%QzbZzþX”ž˜–žku/‰ÒÓÒÓÒÓÒs­gÑÒÓÒÓÒÓÒs­.#QzbZzbZzbZz®ÕÝ!JOLKOLKOLKϵžEKOLKÏ1/=1-=×ê¥'ÖÙK”žX‡/Qzb¾Dé‰uü¥çZÝ@¢ôÄ:€‰Òë&JO¬#˜(=±Î`¢ô\ëYº„‰ÒsÌKO¬c˜(=±Îa¢ôÄ:ˆ‰Òsí;­›˜(=1«b®û÷Ÿ×'þ«ðc^zbZzbÝÐDé‰uC¥'Ö M”žk=K74QzbÝÐDé¹V7(=±nh¢ôĺ¡‰ÒûŸ¼Dé‰uC¥çZÏÒ M”žX74QzþçŸo,¼ôÒ7¤ ï‘ì»!]wCºí†tÙ é®{$«î‡¼ôÒE7¤{nH×Ü#Ù,Cºä†tÇ éŠÒ ÷(ÇÐý6¤ë퇼ôÒåöè÷n‹¿ûç láÅ_ýóº‡t iúHVÉnÀ!]€CZ…iú¨Æˆ*Ó*Ó¶&[Ó†éFÃt£aºÑÖzÝh˜n4L7Ú˜W¡k²Ñ0Ýh˜n4L7¦mM¶¦ Ó†éFÃt£­õ,ºÑƼ Åt£a½Ñ¢ Å´ Å´ Å´ Å´ ]“«>¦U(¦U(¦Uè˜W¡k9‹W¡˜V¡˜V¡˜V¡krÕÇþÇ®ú˜V¡˜V¡˜V¡k=‹V¡c^…bZ…bZ…®ÉUÓ*³*ô™~N'¦¥çš\õ1-=1-=1+=¯ï¼ÿ¼¾ˆ*Ó*Ó*Ó*Ó*tM^°ÿ9fÑÏôÄ´ôÄô3=×äÓzsÌëMLëMLë͵œÅëMLëMLëMLëÍ5yÀ´ÞÄ´ÞÄ´ÞózsM^0­71­71­71­7×z­71­71«7Ï?ÿÚtžþ½ôÄ´ôÓÒóœÍûOLûÏ5yCÀ´ÿÄ´ÿÄ´ÿĬÿ<ÿzÿ‰iÿ‰iÿ‰éA~ÌKÏ5yYÀ´ôÄ´ôÄ´ôÄ´ô\ëY´ôÄ´ôÄ´ôÄ´ô\«KK”ž?¥'ö•³Dé¹Vç–(=1-=1-=1-=×z-=1-=1-=Ǽô\û}x¹þN‰þÓþ³þóú3Uèš¼B`Z…bZ…bZ…bú™žk=‹öŸcþ™žØW^a¢ô\ûNÓÒÓÒÓÒÓÒs­î0QzbZzbZz®Õ&JOLKOLKOLKϵºÃDé‰ié‰ié‰ié¹Ö³hé‰ié9æ¥'¦¥çZÝa¢ôÄ´ôÄ´ôÄ´ô\«;L”ž˜–ž˜–ž˜–žk9‹—ž˜–ž˜–ž˜–žku‡‰ÒÓÒÓÒÓÒs­nQzbZzŽyé‰ié¹–³xé‰ié‰ié‰ié¹Vw˜(=1-=1-=1-=×r/=1-=1-=1-=×ê¶â¥çù½Ž÷Ÿ˜õŸç÷3^…®ÕÆ«Ð{nkEÏÙ¼ Å´ ]˹½ Å´ Å´ Å´ ]«›M¤˜¤˜¤˜¤ku³‰‚Ó‚Ó‚Ó‚t­gтӂӂûOÞl¢ Å´ Å´ ý±(H1-H×ê)¦)¦)¦éZÏ¢)¦)¦)¦éZÝV¢ Å´ Å´ Å´ ]«{F¤˜¤˜¤Øò¶)¦)¦é˜¤˜¤ku[‰‚ëœ& R¬ƒš(H±Nj¢ Å:ª‰‚t­n+QbÖDAŠuZ)ÖqM¤Xç5Q®õ,]ØDA:æ)Ö‘M¤˜¤X·3QbZ®}§u?ãéõ=™w¥×÷dñ__˹½ Å´ ź·‰‚ëÞ& R¬{›(H×z–îm¢ ź·‰‚t­n+QbÝÛDAŠuo)Ö½M¤X÷6Q®õ,ÝÛDAŠuoé÷??DzA:¤oHÞ#ÙwCºî†tÛ é²Ò]÷HVÝyA:¤‹nH÷Ü®¹G²Y†tÉ éŽÒ7¤îQŽ¡ûmH×ÛyA:¤Ëí‘ì¶!]mCºÙ†t± iúHÖÃnµ!­B‡´ Ò5õ¨Æˆ*Ó*³-›w¿â÷¾ˆÍËWèFÃt£aºÑ0Ýhk²Ñ0Ýh˜n4L7Ú˜¤k²Ñ0Ýh˜n4L7¦mM¶fíü} ]éùûÀkSL·ßZÏ­ÛoÌkSL·ÖÛ/jSLkSLkSLkSLkÓ5yYÀ´6Å´6Å´6óÚt-gñÚÓÚÓÚÓÚtM^0­M1­M1­M1­M×z­MǼ6Å´6Å´6]“—LkSLkSLkSLkÓ5yYÀ´6Å´6ÅôsEÇüsE×r/H1-H1-H1-H×äÓ‚Ó‚Ó‚Ó‚tM^0-HǼ Å´ Å´ ]ËY¼ Å´ Å´ Å´ ]“L RÌ ÒsÇjWzîX­Mφ6¨÷?CËTLËTLËTLËÔ5yåÀ´LÅ´LÅþe*_¡Ÿ6º&ï ˜6¨cþi£Ø—LøLkÓ5yoÀ¬6=­½AÅ´AÅô¿ ¿ÖjmŠimŠim:æµéš¼B`Z›bZ›bZ›bZ›®õ,Z›bZ›bZ›bZ›®ÕU&jÓ‹ÚûÊY¢6]«ÓLÔ¦˜Ö¦˜Ö¦˜Ö¦k=‹Ö¦˜Ö¦˜Ö¦c^›®Õ‘&ºRL»RL?WÓ‚t­.5QbZbZbZ®õ,ZŽyAŠ}åÅ& Òµï4-H1-H1-H1-H×ê)öw˜(H×ê)¦)¦)¦éZÝa¢ Å´ Å´ Å´ ]ëY´ Å´ ó‚Ó‚t­n+QbZbZbZ®Õm% RL Rì;o+Q®å,^bZbZbZ®Õm% RL RL RL ÒµºgDAŠiA:æ)¦éZÎâ)¦)¦)¦éZÝV¢ Å´ žY´ ]ËY¼ Å´ Å´ Å´ ]«ÛJ|V(¦­(¦ŸŠiºV·•ø¬PL?+tÌKOLKϵœÅKOLKOLKOLKϵº­Dé‰ié‰}³hé¹V·•(=1-=1-=1-=×z-=1-=1-=1-=×ê¥'¦¥çEé‰ié¹V׎(=1-=1-=1-=×z-=1-=1-=1-=×ꮥ'¦¥'¦¥'¦¥çZÝ¢ôÄ´ôÄ´ôÄ´ô\ëY´ôÄ´ôóÒÓÒs­îQzb½Dé‰uø¥'ÖéK”žXÇ/Qz®Õ]#JO¬˜(=±N`¢ôÄ:‚‰Òë &Jϵž¥K˜(=ǼôÄ:†‰Òë&JO¬ƒ˜(=×¾Ó¬‰¹nëÞ^wéø/ÈcÐDé9æ¥'¦¥'¦¥çZÝ@¢ô勉Òë.&JO¬»˜(=±îb¢ô\«H”žXw1QzbÝÅDé‰ié‰ié‰uë¥çZÏÒ­K”žX·.QzþýÏo>-=ãñ|íÁøS<_`Ëñü'ØÆ<ÿ ºF‡l‹žÿp[­ç?\÷í#Y·?äµé.Û!ݵCºjÉvÒE;¤{vH×ìnÙG9†îØ!]±?äµé.ØG²_‡t½Ùv½~iƒzý>Ò2õü'Ør>ÿ Z±iÅ:¤;xHWð#ÙÀ?+¦+¦xM¶¦Ó ŒéÆt¯õ,º1ÝÀ˜nà1/S×dcº1ÝÀ˜n`L7ðšl=L70¦Ó Œé^ëYtymŠéÆzGmŠimŠimŠimŠimº&¯˜Ö¦˜Ö¦˜Ö¦c^›®å,^›bZ›bZ›bZ›®É+¦µ)¦µ)¦µ)¦µéZÏ¢µé˜×¦˜Ö¦˜Ö¦kò imŠimŠimŠimº&¯˜Ö¦˜Ö¦˜Ö¦c^›®å,^›bZ›bZ›bZ›®É+¦µ)¦µ)¦µ)¦µéš¼B`Z›ŽymŠimŠimº–³xmŠimŠimŠimº&¯˜Ö¦˜~^)¦ŸW:æŸWº&¯˜V¡˜V¡˜U¡×w·ÑŠ®õ„ÚŠbÚŠbÖŠ^ßNG+º&/˜¶¢cÞŠb_2á3mE×äÅÓO&Å´ Å´ Å´ ]ëY´ Å´ Å´ ó*tM^,0­B1­B1­B1­B×z­B1­B1­B1­B×äÅÓ*ôÇ¢ žr–¨B×ê„U(¦U(¦U(¦UèZÏ¢U(¦U(¦Uè˜W¡kuL‰*Ó*Ó*Ó*t­.*Q…bZ…bZ…bZ…®õ,Z…ŽyŠ}å$ªÐµï4­B1­B1­B1­B×êU(ö7¨B×êU(¦U(¦U(¦UèZÝ@¢ Å´ Å´ Å´ ]ëY´ ÅþÎHT¡˜V¡ku‰*Ó*Ó*Ó*t­n Q…bZ…bßy‰*t-gñ*Ó*Ó*Ó*t­n Q…bZ…bZ…bZ…®ÕÝ!ªPìï¼DŠiº–³xŠiŠiŠiºV7¨B1­B±ïc­B×r¯B1­B1­B1­B×êU(¦U(¦U(¦UèZÝ@¢ ÅþÎHT¡˜V¡k9‹W¡˜V¡˜V¡˜V¡ku‰*Ó*Ó*Ó*t­n Q…bZ…bZ…bZ…®õ,Z…bZ…bZ…bZ…®Õµ#ªPL«Ð‹*Ó*t­îQ…bZ…bZ…bZ…®õ,Z…bZ…bZ…bZ…®Õ]#ªPL«PL«PL«Ðµº%DŠiŠiŠiºÖ³hŠi:æU(¦UèZÝ5¢ Å´ Å´ Å´ ]ëY:g‰*Ó*ëJ%ªÐ1¯B±U¢ Å:U‰*ëX%ªP¬s•¨B×z–.V¢ ó*ëh%ªP¬³•¨B1­B1­B×¾ÿÿ–Ÿ|…•'×m=þkóX)Q…®ýžó*Ó*ë&%ªP¬›”¨B±nR¢ ]ëYºI‰*ë&%ªÐµºDŠu“U(ÖMJT¡X7)Q…bݤDºÖ³t“U(ÖMŠW¡ÿÔYßñŸ¦(f;ïcÒub¶óžÙÎ{¦¹&f;ïc¿w¦mæ3ÛyÏlç=³÷±ß{æ™í¼g¶óžÙÎ{f;ïc=‹í¼g¶ó0í4ŸÙÎûØï÷Lÿ#ò˜í¼gšebV`~ì÷îx¦Û Óÿ?˜~º5f{ìc9‹Ç•‹VW.Ú*ûåó@Ú2[´m¶hëlÑöÙx dmÑVÚ¢í´‡Zþ¿·Ú¢­µEÛk‹¶Øm³ý¿×É¢í¶EýÐχ¶Ým½ýÇ@¶àju¹h+nñØq^.Zy¹hé墵—‹_þ¿¯ý‹–_.Z¹hæC-0ÿÀHÌE‹0­Â\´ óü}÷_´sÑJÌEK1­Åü¬Æ|¨9¦ÿµ_b•¦ÿµ_bñæøûµ`ÑòÍEë7-à\´‚óüýd°h ç¢Eœ‹Vq>ôÿý{ 9­ä\´”sÑZÎ?ð÷ãÁ¢Õœ‹–s.ZϹhAçøûaђ·Út.ZÔ¹hUçØi×¹ha碕‹–vþ¿ß-î\´ºsQ?6Ô¾óüý pÿÍ£Ý碅Ÿ‹V~ÞgiúùÊ'™>´øsÑêÏEÍ?ê¯þƒ¿Ÿ!­õ|¨±çâ×1æžàw~‹áúЊÏEK>õ¿FÿÁc «>-û\´î󡆟àïW‰EK?­ý\´øsÑêÏ?ðÈúÏE @­]´ôÌ[G  W ‹_=w `l¼]´tÑZÐE‹AÿÀc ËA­]´ ô¡¡`žn¼ ]´(tQÿô- ýó~ãa袕¡‹–†.ZúYúPóÐů¾ãx ú~ÿÿ|IÙ/±ptÑÊÑs×zPºhEé˜WoJ-*]´ªôÌ«w¥‹–.ZYºhié˜WK­.]´¼tÑúÒ?ðÈ ÓÅ¿ûêãé¢E¦`^}<3]´ÎtÑBÓE+MÿÀ¼úxkºh±é¢Õ¦‹–›þ=§‹Vœ.ZrºhÍé˜W¯N-;]´îtÑÂÓ?0,žžÞ‰j‘úP“Ôû/Q-UÿÀßÃßóiÁú_F°°uÑÊÖEK[ÿÀ¼yܺhuë¢å­‹Ö·þ=®‹–¸.Zãºh‘ë˜"Ï\­s]´ÐuÑJ×?0/DÞº.ZìúPk×EË]ÿÀHƒ×ûO‡v°‹ÂÞt´ý/#X6û_þ)VÓ.ZN»h=í¢µ`^ž<©]´¦vÑ¢ÚE«jÿÀc ëj-¬]´²vÑÒÚ?0¯I×.Z] z^»h}í˜×$/l-±]´ÆvÑ"Û?ðÈ2ÛEël-´]´ÒöüNÔÖvÑbÛE«m-·ýóxãÁí¢·‹–Ü.ZsûYu»hÙíCín-¼ýóšäéíâÑ!y|»x”Hžß.-’¸‹Gä î˜×$p"É3ÜÅ£Iòwñ¨’<Å]<º$qÿÀc #Mò÷¡¹‹GäIîâÑ'y”»xJžåžßªx­{~«¹îãhò4wñhš<Î}¨uî¢å¹‹GÔäîâ5y¢»xDMéþÇ@GÔäîâ5y©ûæ5É[ÝÅ#jòZwñˆš¼×]<¢&/v¨É›Ý?ð舚<Û]<¢¦ wÿõÏO©îŽù¾óuù̶å˜/Ë1ß•c¾*Ç|S>³EùcîŽùšó-9æKò™­¤1_‘c¾!Ç|AŽù~|Ö³øvóåøcîŽùj|f›qÌã˜ïÅ1_‹cî>³½2æ{nÌ×ܘo¹1_rÏr–þlç0ãm¥€¾ã@ßq ï8ÐwÜâ1ï8Ðwè;n0ÂÝEÛq ï8Ðwè;ô·h+ôúŽ}Ǿã|Ç F¸ úŽWá.èá.èá.èá.èá˜€î‚î‚îF¸»ØE¸ z¸ z¸ z¸»hO8 ‡» ‡» ‡» ‡»‹Ç@îj¸»¨‰îCqíe´·~ðãK<Ñ5ÑŸ ùwíôpôpôpw0ÂÝÅ(Â]ÐÃ]ÐÃ]ÐÃÝE{=Ü=Ü=Ü=Ü]´Nôpw0Â]ÐÃ]ÐÃÝÅ(Â]ÐÃ]ÐÃ]ÐÃÝE{­=Ü-ܽÿ¸FÎ;9aœ–#ç=ç5ç}èáî¢=µ€î‚î‚îÞÿª#ç]´÷PsÞó_uD¾à— ¿è‘‚€ù‚ù‚ù‚ù.yä zä zä;‘‚€ù‚ù‚ù‚ù.yä zä zä z付wŠ|°"_ð«ªÈw1;ù‚ù‚ù‚ù.yä zä zä;‘ïbžy*ò=ò=ò=ò]Ì[OE¾ G¾ G¾ G¾‹Ç@ùFä ~õͧ"ßÅïFÏyAÍyz¸ z¸»˜WŸ wAwAwóêSá.èá.èá.èáîb^}*Ü=Ü=Ü=Ü]<òpôpw0Â]ÐÃÝżúT¸ z¸ z¸ z¸»˜WŸ wAwAwAw{ wAwAwAwóêSá.èá.èá.èáîbY<Ü]ôDwÐ݇ã.ö@žÝ>ôÀôÀôÀv1¯>؂؂؂Ø.ö@؂؂؂Ø.æ%§[Ð[Ð[ÐÛżäT` z`;-èíb¤í¢§´ ¦´-šýó’S!,è!,è!,è!ìb^r*„=„=„=„]<òôôôv1¯3‚Âþ`…° ‡°‹y‡©ôôôvñÈCXÐCXÐCXÐCØÅ¼¸T z z z»˜Ž aAaAaAa<„=„Œôv1/.‚G×S!,x”=‚GÛS!,xÔ=Â.æÅ¥BXð(|*„ƧBXð¨|*„ΧBØÅc #õ©v0BXð¨}*„Þ§BXЊŸó°ïyìyž<öáU ‰P…°‹=P„° ‡°à¿ú:S!,xDB‚G$T!ìâ1Ð U ‘P…°‹y©<"¡ aÁ#ª<"¡ aÁ#ªvñ舄*„HÈCØú+â¯~3zCÌWønóÕúÌ6ë˜-Ö{nݶçܾ‚Ç|?³ücØŽÙú=ÿ7yv{ýoŠ÷™­Å1_Óc¶¥ï¹}uéæ>ÿ7ù:óm>æËüÇ"ÜóUþÌ6ù˜/ò1ßãcîŽy¸ûÌöà˜ïå1_Ëc¾•Ç|)?ËY*Ü=Ü}'/Ú }'ƒ¾“AßÉ ïäÅc ßÉ ïdÐwò`„»‹¶“AßÉ ïdÐw2è;yÑV è;ô úN}'/ùNŒpô ÚNþíÅôpôpôpôpwÑ^L@wAwAw#Ü]ì"Ü=Ü=Ü=Ü]´ÐÃ]ÐÃ]ÐÃ]ÐÃÝÅc w#Ü=Üÿ¥/&‹öbú§è‚žè‚þ)º Ç¸‹öbzŒ zŒ zŒ;1îb1.è1.è1.è1˜€ã‚ã‚ã‚ã.Ú‹ è1î`ĸ Ç¸à¿Ž"Æ=Æ-Æ=¿¡®DôDwÑÞQ@OtAýlÝë;õJt#Ñ]´×Ðc\Ðc\Ðc\ÐcÜÅc qAqAÿ]гÛE{]ýSt#°¿Ž"°]´×Ð[Ð[Ð[ÐÛÅc lAlAl#°]´×Ð[Ð[Ð[ÐÛÅc lAlAlAlóTíV` ~õ@Ø.æq§[Ð[Ð[ÐÛÅc lAlAl#°]ÌsL¶ ¶ ¶ ¶‹y“©ÀôÀôÀôÀvñÈÛÁlÁ¯¾ÍT`»øÝè-è-è-èíb^g*°=°=°]ÌëL¶ ¶ ¶ ¶‹y©ÀôÀôÀôÀvñÈ[ÐÛÁlAló:S-è-è-èíb^g*°=°=°=°]ì"°=°=°=°]ÌëL¶ ¶ ¶ ¶‹y ©ÀôÀv0[ÐÛÅ([Ð[Ð[ÐÛżÎT` z` z` z`»ØE` z` z` z`»˜×™ lAlAlAló:S-èí`¶ ¶‹=P¶ ¶ ¶ ¶‹y©ÀôÀôÀôÀv1ï0؂؂؂Ø.y` z` z` z`»˜— lAl°[ÐÛż¸T` z` z` z`»x ä-è-è-èíb^\*°=°=°=°]ÌG¶ ¶ ¶ ¶‹Ç@Ø‚ØF` z`»˜— lAlÁ#ªÀvñÈ[Ð[ð¨{*°]Ì‹K¶ ¶ ¶àÑíT` åN¶àQéT`»x t$9ØF` UN¶àÑåx`{¾ÅÄçÏ^ï"‘Ý~ð»ñy*°”§ÛÅ([Ð[ðˆy*°˜§[ðˆy*°]<:bž lÁ#æ©Àv1¯3Ø‚GÌS-xÄ<Ø‚GÌS-xÄ<Ø.1O¶àóÔ'ÍþûŸo}â“fÇ|_Žùº|fÛrÌ—å˜ïÊ1_•c¾)ŸÙ¢ü±aÇ|MŽù–ó%ùÌVÒ˜¯È1ßc¾ Ç|?>ëY|;Žùrü1 VkOÍWèÂŒ5õ¾Â¶è˜/Ñ1[Ç\´õú>}‚¾A߇‹Ç@¾A߇ ïÃÁˆ[m‚¾A߇ ïCÐ÷áâïõsþäõú3Z!,è»ôݹh»ôÝ9!,è»Í‚͂͂Í.y4 z4;Ñ,èÑìb^r*š=š=š=š]ÌKNE³ G³ G³ G³‹=PD³ G³ G³ G³‹yÉ©hôhôhôhv1'Í‚ÍF4 z4»ØE4 z4 z4 z4»˜—œŠfAfAfAf{ ˆfAfAfAfó´TÑ,èÑ,èÑ,èÑìb^g*š=šŒhôhv±Šhôhôhôhv1ï0͂͂͂Í.æÅ¥¢YУYУYУÙÅc _y4 z4 z4»˜—ŠfAf°¢YУÙż¸T4 z4 z4 z4»x äÑ,èÑ,èÑ,èÑìb^\*š=š=š=š]ÌGE³ G³ G³ G³‹Ç@Í‚ÍF4 z4»˜—ŠfÁ£ªh<* ŠfÁ£ªh³•4æ+rÌ7ä˜/È1ßÏzߎc¾,>åuÌWã3ÛŒcÂŽy;æ«nÌCØg¶WÆ|Ïùšó-7æKîYÎR!,è!,è;nÑV è;ôúŽ}Ç-ùŽ}Ǿã#„]´úŽ}Ǿã@ßq‹¶R@ßq ï8Ðwè;nñÈwÜ`Ä­ ï8ðØq·‚·‚·‚·‚·.Ú èq+èq+èqë`Ä­‹=PÄ­ Ç­ Ç­ Ç­‹özÜ zÜ zÜ ZÜZ?„í—ȘñC_â!ì`„° ‡° ‡°‹öZz z z z»h¯ ‡° ‡° ‡°ƒÂÞ¿¼þ9±ç/oä± å±ÿeÍcï<š]´WУYУYУYУÙÅ߯ ÿå߉§´ƒ‘Ò‚žÒ‚úù³ç¿êHiAOiAMiz4 z4»h/& G³ G³ G³ƒÍ.Ú‹ èÑ,èÑ,èÑ,èÑìâ1G³ G³ G³ G³‹öbz4;Ñ,øu Ñ좽˜€Í‚͂͂Í.y4 z4 z4;Ñìâï“ûï¬HiAOiAMiÏ¿–"°]´çÐ[Ð[Ð[ÐÛżU`ûƒØ‚_=P¶‹y4ªÀôÀôÀôÀvñÈ[Ð[ÐÛÁló|T-è-è-èíbÞ*°=°=°=°]<òÀv0[ð«oIØ.~7z` z` z` z`»˜×¤ lAlAlóšT-è-è-èíb^“*°=°=°=°]<òÀôÀv0[ÐÛż&U` z` z` z`»˜×¤ lAlAlAl{ lAlAlAlóšT-è-è-èíb^“*°=°ŒÀôÀv±ŠÀôÀôÀôÀvñïFlAlAlAl{ lAlAlAlódU-è-è-èíb^r*°=°ŒÀôÀv±ŠÀôÀôÀôÀv1¯3؂؂؂Ø.æu¦[Ð[Ð[ÐÛÅc lAlAlAló:S-èíV` z`»˜×™ lAlAlAl<°=°=°=°]ÌëL¶ ¶ ¶ ¶‹yà¨ÀôÀôÀôÀvñÈ[ÐÛÁlAlóâR-xôBØ‚G1T-x4CØ‚G5Tíb^\*°r¨[ðh‡*°z¨[ðè‡*°]<:¢ l#°ŠÈÛó(ŸU{V#»}xTGØ.~7áQ¶à‘U`»ØE` z` ñQ¶àU` ñQ¶‹Ç@G|T-xÄGØ.æu¦[ðˆ*°ø¨[ðˆ*°ø¨ÛÅc #>ªÀ<⣠lÿóÏï¬lÇ|_Žùº|fÛrÌ—å˜ïÊ1_•c¾)ŸÙ¢ü±lÇ|MŽù–ó%ùÌVÒ˜¯È1ßc¾ Ç|?>ëY|;Žùrü±lÇ|5>³·ˆ1lÇ|×ùªóÀö™í•1ßsc¾æÆ|Ëù’{–³T` z` úŽ[´•úŽ}Ǿã@ßq‹Ç@¾ã@ßq ï¸ÁlmǾã@ßq ï8ÐwÜ¢­Ðwè;ôúŽ[<ò7-è;ªÀ<⣠l^¤"°ó}9æëò™mË1_–c¾+Ç|UŽù¦|f‹òÇ"°ó59æ[rÌ—ä3[Ic¾"Ç|CŽù‚óýø¬gñí8æËñÇ"°óÀö™½[Œù²ó]7æ«nÌÛg¶WÆ|Ïùšó-7æKîYÎR-è-è;nÑV è;ôúŽ}Ç-ùŽ}Ǿã#°]´úŽ}Ǿã@ßq‹¶R@ßq ï8Ðwè;nñÈwÜ`¶ ï8ðØq؂؂؂؂Ø.Ú è-è-èí`|‚íbÑ,èÑ,èÑ,èÑ좽@€Í‚͂͂Í.y4;Ñ,èÑ,èŸJ»h/ ‡° ‡° ‡° ‡°‹öz z z;!ìb!,è!,h!lý”Ï—x»hï ~¦lÜøÏcAÏcAÏcíµôv0BXÐCXÐCØÅ(BXÐCXÐCXÐCØE{­=„=„=„ŒvÑ^+@aAaAaAa<„=„=„=„]´× ÐCØÁaÁ¯c aíµôôôôO]<òäü¾ò¸u0âÖE{­=n=n=n=n]<ò¸ô¸ô¸ô¸u1ï/·þ`Å­àWTqëba*n=n=n=n]<ò¸üî[LÅ­ƒ·.æ9¦âVÐãVÐãVÐãÖżÉTÜ zÜ zÜ zܺx äqë`Ä­àWßf*n]ünô¸ô¸ô¸´¸õüÖ³’WP“×ë»Ë aAa_rîá==ç‹hôhôhv1¯>͂͂͂ÿ¹òhôhôhv0¢YУÙżúT4 z4 z4 ú'Í.æÕÇóØû7c|þ,èy,¨yìùÛ8¢ÙÁˆfAfAfAfóBTÑ,èÑ,èÑ,øŸk fAfAf#š=š]ì"š=š=š=š]Ì QE³ G³ G³ G³‹=PD³ G³ G³ E³÷ôHiAMiÏ?ËØ‚Ø‚Ø.æÝ¨[ÐÛÁlAl{ lAlAlAlóBT-è-è-èíb^ˆ*°=°=°=°]<òÀôÀôÀôÀv1/DØ‚Øþ`¶ ¶‹y!ªÀôÀôÀôÀvñÈ[Ð[Ð[ÐÛżU` z` z` z`»˜™ lAlAlAl<°=°ŒÀôÀv1/DØ‚G/T-xCØ‚G3T-xTCØ.æ…¨[ð(‡*°v¨[ð¨‡*°~¨ÛÅc #!ªÀvPÛóûµø\Ûë[²ÈnÍQ¶àQU`»øÝx„GØ‚GzTíb-è-xÄGØ‚G|T-xÄGØ.ñQ¶àU`»˜WŸ lÁ#>ªÀ<⣠lÁ#>ªÀ<⣠lŽø¨[ðˆ*°ý‰B"°ó}9æëò™mË1_–c¾+Ç|UŽù¦|f‹òÇ4°­¿Ëç+tyÆ_åó¾QÇ|¡>³õ5æëtÌ·é˜/Ó1ߥÏzߤc¾H,bÜ1qŸÙfóÅ8æ{qÌ×â˜Ç¸ÏlùNó•8æqÌⳜ¥b\Ðc\Ð÷᢭Ð÷!èûô}ú>\<ò}ú>}FŒ»hûô}ú>}‚¾mý€¾A߇ ïCÐ÷áâ1ïÃÁˆqA߇à±+Æ=Æ=Æ=Æ=Æ]´— Ðc\Ðc\ÐcÜÁˆq{ ˆqAqAqAqíeôôôôwñÈcÜùôôwÑ^6@qAqAqAqí ôôôwPcÜóÛ½JtAOtAOtAý¬ÚëÛÈJtíeÔD÷¡Ç¸ Ç¸ Ç¸‹ö²ZŒ{ÿ:D¢ z¢ z¢»ØcF¢ j¢{þ F¸ z¸»h¯  ‡»à·>Ë€îF¸»h¯  ‡» ‡» ‡» ‡»‹Ç@î‚î‚î‚î.Ú+èáî`„»à×1P„»‹ö z¸ z¸ z¸ z¸»x äá.ø} äáî`„»‹ö z¸ z¸ z¸ z¸»x äá.èá.èá.èáîbÞu*ÜýÁ wÁ¯¨ÂÝÅ<îT¸ z¸ z¸ z¸»x äá.øÝw› w#Ü]ÌÓM…» ‡» ‡» ‡»‹y¿©pôpôpôpwñÈÃÝÁwÁ¯¾ãT¸»øÝèá.èá.èá.èŸJ»˜—œúTZÐc\ÐcÜżäԧ҂؂؂Ø.æ%§[Ð[Ð[ÐÛÅc lAl#°=°]ÌKN¶ ¶ ¶ ¶‹yɩϟ=¥=¥ý“f{ ˆfAfAfAfó’SÑ,hÑìù3\¥´ §´‹rN¹~تÀôÀv0[ÐÛżúT` z` z` z`»˜WŸ lAlAlAl{ lAlAlAÿTÚżïԧ҂͂͂Í.æ%§¢YУÙÁˆfAf{ ˆfAfAfAfófSÑ,èÑ,èÑ,èÑìb^g*š=š=š=š]<òhôhôhôhv1¯3Í‚Íþ`E³ G³‹y©hôhôhôhvñÈ£YУYУYУÙżÎT4 z4 z4 z4»˜ÇŠfAfAfAf<š=šŒhôhv1¯3Í‚GTÑ,xT@Í‚GTÑ,x”@Í.æu¦¢YУYðH|*š]ÌëLE³à‘ùT4 ¡OE³à‘úx4{þ@ŸU{}[)íó’SÑ,xÄAÍ‚Í.~7PE³à‘U4»ØE4 z4 ‘PE³à U4 ‘PE³‹Ç@G$TÑ,xDBÍ.æ%§¢Yðˆ„*šH¨¢Yðˆ„*šH¨¢ÙÅc ¿"šH(¢Ù¯þNòh6þ²ã+t‹úßu|…®Ö5Ù¬˜.VL÷*¦kÓ­º&KuÌ?ÁÓ•ŠéFÅt¡®ÉúÂtbºM1]¦˜îÒµžE7)¦Ñì˜G³˜®Æ5ÙŒ˜.FL÷"¦kÓhvMv¦;Ó•ˆéFÄt!®å,Í>Ôhö¡îÃÊúy¨ûð¡îǺê>üà1îǺê>=šý ìǺê>|¨ûð¡îÃÊúy¨ûð¡îǺê>üà1îCУهºû0¢Ù‡ÍžÛ2RÚk]F`ûÐÛÿ2‚f·÷ã>Ô÷¡Æ¸ Ç¸”1jŒûPc܇ã>Ô÷ƒò òPc܇ã>Ô÷¡Æ¸<úùf/Ðc܇ã>Ô÷ƒò òPc܇ã>Ô÷¡Æ¸üý rÿéðD÷¡&º5ÑýórÏ?tžè>ÔD÷¡&º5Ñ}¨1îåÅ䡯¸5Æ}¨1îCq?(/&ÿ¶гۇšÝ>Ôìöƒ=g·5»}¨íC l?(/&5°}¨íC lAl?(/&5°}¨íC lj`ûÁc lj`ûPÛ‡Ø~P^Lj` z`ûðëÈÛÊ‹ÉC lï¿a=»}¨Ùíù÷¤Ç¸<†×÷¡Æ¸5Æ=Æý ¼®<Ô÷¡Æ¸5Æ}¨1î4Æ}¨1îCqjŒûÁ¼EŒ;1îï(bÜæ!(b܇ã>Ô÷¡Æ¸<Ò÷¡Æ¸5Æ=Æý`ž„"Æ}¨1îCqjŒûÁ¼ EŒûPc܇ã>Ô÷ƒÇ@ã‚ã>üêûPĸünÔ÷¡Æ¸5Æ}¨1îóB1îCqjŒûÁ¼EŒûPc܇ã>Ô÷ƒy!Š÷¡Æ¸5Æ}¨1î4Æ}¨1.è1îCq?˜¢ˆqjŒûPc܇ã~0/Dã>Ô÷¡Æ¸5Æý`ä1îCqjŒûPcÜæ%'b܇ú ¶5»}¨ÙíópíC lAlj`ûÁÈÛ‡Ø>ÔÀö¡¶ÌKN¶5°}¨íC l?Øy`ûPÛ‡Ø>ÔÀöƒyñÀöü©(²Û럈qjŒûÁß—œÿ2Ÿ&º5Ñ=‡÷p÷¡†»Ì3T„»5Ü}¨áîC w?˜WŸwj¸ûPÃ݇î~0¯>î>Ôp÷¡†»5Üýà1†»5Ü}¨áîC w?˜WŸwj¸;áîï(Â݇î>Ôp÷¡†»5Üýà1†»5Ü}¨áîC w?˜—œwj¸ûPÃ݇î~0'î>Ôp÷¡†»5Üýà1†»5Ü=Ü}øÕ—œwj¸ûPÃ݇š=<ê¢w}Q„»Â(ÂÝæ%'Â݇Geáîã3Šp÷áQE¸ûðh"Üýà1åFç÷1ñ¸×·*‘ó>üê«O„»>)Â݇G¡áî¿H)Â݇G¦áî{ wj¸ûð•"Ü}x„Jî>ªÀ<⣠lŽø¨[ðˆ*°]ÌkR¶àU` ñQ¶àU` ñQ¶‹Ç@G|T-xÄGØþõÏáØŽù¾óuù̶å˜/Ë1ß•c¾*Ç|S>³EùcØŽùšó-9æKò™íÈ1_‘c¾!Ç|AŽù~|Ö³x`;æ ïÇ"°óu÷̶ݘ/»1ßuc¾êÆ<°}f{eÌ÷ܘ¯¹1ßrc¾äžå,؂؂¾ãm¥€¾ã@ßq ï8ÐwÜâ1ï8Ðwè;n0ÛEÛq ï8Ðwè;ô·h+ôúŽ}Ǿã|Ç F` úŽW-è-è-è-èí¢½‚€Ø‚Ø‚ØF`»ØE` z` z` z`»h¯  ¶ ¶ ¶ ¶‹Ç@ØF` z` z`»h/ ¶ ¶ ¶õs3_¢ŸU?7ï—XÏ z` z` z`;íb-è-è-èí¢½l€Ø‚؂؂Ø.ÚËèí`¶ ¶ ¶‹=P¶ ¶ ¶ ¶‹öZz` z` z`;í¢½V€Ø‚؂؂Ø.y` z` z` z`»h¯ ¶ƒØ‚_Ç@Ø.Úkè-è-è-èíâ1¶ ¶ ¶ƒØ.Úkè-è-hí½÷<»=÷^ĸ Ç¸ Ç¸ Ç¸ Ç¸‹y«©÷+Æ¿z Šqó`S1.è1.è1.è1îâ1Ǹ Ç¸ Ç¸ƒã.æé¦b\Ðc\Ðc\ÐcÜżßTŒ zŒ zŒ zŒ»x ä1î`ĸàWßq*Æ]ünôôôôw1/9ã‚ã‚ã.æ%§b\Ðc\Ðc\ÐcÜżäTŒ zŒ zŒ zŒ»x ä1.è1î`ĸ Ç¸‹yÉ©üëÈc\ÐcÜżäTŒ zŒ zŒ zŒ»ØEŒ ú§Ò‚žÝ‚þ©´‹yÉ©ÀôÀôÀôÀv1'Ø‚ØF` z`»ØE` þu ä-èíb^rêSiAOiAKiÏïh#¥½¾£­Àv0[ÐÛ{¾ÈnAý\Ûsøø´[Ð[Ð[Ð[ÐÛżúT` z`;¨íý¯:²ÛÅÓ³Ûó×!b\Ðc\ÐcÜżUŒ zŒ zŒ zŒ»˜¢ÊnAÏnAÍnz`»x ä-è-è-èíb^ˆ*°=°ýÁ lAlóBT-è-è-èíâ1¶ ¶ ¶ ¶‹y!ªÀôÀôÀôÀv1,؂؂؂Ø.y` z`;-èíb^}*°^¨[ð(†*°f¨[ð¨†*°]Ì«O¶àQU` íP¶àQU` ý¶ç· ñ¹¶×òìöáÑU` ÅQ¶àÑU` ÕQ¶‹ßGxT-x¤GØ.ö@؂؂G|T-xÄGØ‚G|Tíâ1ÐU` ñQ¶‹y!ªÀ<⣠lÁ#>ªÀ<⣠lÁ#>ªÀvñèˆ*°ø¨ÛÿóÀvÌ÷嘯Ëg¶-Ç|YŽù®óU9æ›ò™-Ê‹ÀvÌ×ä˜oÉ1_’ÏlGŽùŠó 9æ rÌÛg=‹o¼1_x?혯»g¶íÆ|Ùù®óU7æí3Û+c¾çÆ|Íù–ó%÷,g©ÀôÀô·h+ôúŽ}Ǿã|Ǿã@ßqƒØ.ÚŽ}Ǿã@ßq ï¸E[) ï8Ðwè;ô·x ä;n0[Ðwxì¸ lAlAlAlAlíôÀôÀôÀv0ÛÅ([Ð[Ð[ÐÛE{=°=°-°­ùÍnãGÆý’cxq#Æ=Æ-ƽÿ—E¢ z¢ z¢ êgàžÿÂ<Ñý ½‚€ã‚ã‚ãFŒ»ØEŒ zŒ zŒ zŒ»hï Ç¸ Ç¸ Å¸÷o©Htå½ãüáî`„» ‡» ‡»‹ö,z¸ z¸ z¸ z¸»h¯  ‡» …»÷¯`伃‘ó.ÊÛÈùË‘/è‘/è‘/è‘ï¢=á€ù‚ù‚ù‚ù.Ú‹ è‘ï`D¾à×1PD¾‹öbzä zä zä z仸{ û·q¤¿ §¿ ¦¿çoã‚íuô ô ôOÜýw<ò=ò=ò=ò]Ì{QE¾?X‘/øÕU付G£Š|A|A|A|<ò=ò=òŒÈw1ÏGù‚ù‚ù‚ù.æ ©"_Ð#_Ð#_Ð#ßÅc |#ò¿ú–T‘ïâw£G¾ G¾ G¾ G¾‹yMªÈôÈôÈw1¯Iù‚ù‚ù‚ù.æ5©"_Ð#_Ð"ßscVú»xŒ©éïµ1+Œ ô x1/Oƒ]y z¼˜—§ ‚A‚A‚A‚{ ‚A‚A‚A‚óòTA0èA0èA0èAðbo*=Œ ô x±Š üëȃ`ЃàżU z êgë>ôOÑ]ì"òýStAÏyAÍy?˜¢ wAwAwAwóBTá.èáî`|2.è‰îbŸŒ zŒ zŒ zŒ»˜WŸŠqAqAqAqóêS1.è1.è1.è1îâ1Ǹ Ç¸ Ç¸ Ç¸‹yÉ©ô÷+Æ=Æ]ÌKNŸ Ç¸ Ç¸ Ç¸‹Ç@ã‚ã‚ã‚ã.æi©b\Ðc\Ðc\ÐcÜÅ<†TŒ zŒ zŒ zŒ»x ä1.è1î`ĸ Ç¸‹y©<Ú¢ŠqÁ£.ª<ú¢ŠqÁ£0ªw1¯3ã‚GeT1.xtFã‚GiT1.h­ÑùCe|îõ£a$º4©bÜÁˆqÁ£Nª<ú¤ŠqÁ£Pªwñ»ñˆ”*ÆL©bÜÅ(b\Ðc\ð•*ÆP©b\ð•*Æ]<:B¥ŠqÁ#Tªw1o6ã‚G¨T1.x„Jã‚G¨T1.x„Jã.¡RŸà*UŒûóü1î˜ïË1_—Ïl[Žù²ó]9æ«rÌ7å3[”?1É1ß’c¾$ŸÙšó9ærÌcÜ1qŸõ,¾ñÆ|áýXĸc¾îžÙ¶óe7æ»nÌWݘǸÏl¯Œùžó57æ[n̗ܳœ¥b\Ðc\ÐwÜ¢­Ðwè;ôúŽ[<òúŽ}Ç FŒ»h;ôúŽ}Ǿãm¥€¾ã@ßq ï8ÐwÜâ1ï¸ÁˆqAßqà±ã*Æ=Æ=Æ=Æ=Æ]´Ðc\Ðc\ÐcÜÁˆq{ ˆqAqAqAqíôôôO»ýÓn<°ÔÀ¶~†åK<»õ3pãÜý{­=»=»5»}èí¢½V€Ø‚Ø‚ØF`»ØE` z` z` z`»h¯ ¶ ¶ Ú-è)í¢½V€ÍF4 z4 z4»ØE4 z4 z4 z4»h¯ G³ Ú-èyì`䱋¿_+î¿y"5=ÿæ‰hôhvÑžZ@fAfAfAfíeôhv0¢Yðë(¢ÙE{Ù=š=š=šçÿH<ò<ô<ôOÆŒvÑ^6@aAaAaAa<„=„=„=„]Ì[M…°?X!,øÕU»˜› aAaAaÁÿ½òôôôv0BØÅ<ÝT Z{îƒÊcAÍc¯}PÑ,èÑ,èÑ,èÑ,èÑìâ1G³ƒÍ‚_}ó©hvñ»Ñ£YУYУYð¯<š=š=š=š]Ì«OE³ G³ G³ G³‹¿¯>÷HiAOiAý¼ÜóÏU¤´‹y²ªOÑ=šŒhôhv1/D͂͂͂Í.æ…¨¢YУYУYУÙÅ(¢YУYУYУÙżU4 z4 z4 z4»˜fï?®‘ÒFJ jJ{þqÀôÀôÀôÀôÀv1/D؂؂؂Ø.ö@؂؂؂Ø.æ…¨[Ð[Ð[ÐÛżU` z`;-èíb-è-è-èíb^ˆ*°=°=°=°]Ì Q¶ ¶ ¶ ¶‹Ç@؂؂؂Ø.æÕ§[ÐÛ¬ÀôÀv1¯>؂؂؂Ø.y` z` z` z`»˜WŸ lAlAlAlóÈR-è-è-èíâ1¶ ¶ƒØ‚Ø.æÕ§[ðè…*°b¨[ðh†*°j¨ÛżúT` åP¶àÑU` õ¶ç÷Âñ¸×w´‘Ý~ðþÈ*°ŒÀ<Š£ lÁ£9ªÀ<ª£ l¿ð¨[ðH*°]ì"°=°ø¨[ðˆ*°ø¨ÛÅc #>ªÀ<⣠ló’S-xÄGØ‚G|T-xÄGØ‚G|Tíâ1ÐU` ñQ¶ÿùçgßlÇ|_Žùº|fÛrÌ—å˜ïÊ1_•c¾)ŸÙ¢ü±lÇ|MŽù–ó%ùÌÖ̘¯È1lÇ<°ó÷¬gñ7æ ïÇ"°óu÷̶ݘ/»1ßuc¾êÆ<°}f{eÌ÷ܘ¯¹1ßrc¾äžå,؂؂¾ãm¥€¾ã@ßq ï8ÐwÜâ1ï8Ðwè;n0ÛEÛq ï8Ðwè;ô·h+ôúŽ}ǾãTßÑó%ºùâ;úù’ˆqA߇à±+Æ=Æ=Æ=Æ=Æ]´— Ðc\Ðc\ÐcÜÁˆq{ qï_{OtÏ_ûwAwíeôpôpôp´p÷¿ü;ñœôœwÐ?/÷ü·9/¨9ïíôpôpôpôpwÑ^A@wAwAw5ܽy=ç=‘"ò=ò=ò=ò]´Ð#_Ð#_Ð#_Ð#ßÅß/&ÿå_µ§¿ƒ‘þ‚šþž¿H/ÚsèA0èA0èA0ø¿úº²h¯+ Á Á Áƒ/Úë èé/蟌 zä zä»x ä‘/è‘/è‘/è‘®€ùFä ~Eä»h¯+ G¾ G¾ G¾àÿêëÊâ1G¾ G¾ G¾ƒù.Úë è‘/è‘/è‘/è‘ïâ1G¾ G¾ G¾ G¾‹y/ªÈ÷+ò¿z Š|óhT‘/è‘/è‘/ø¿×@ù‚ù‚ù‚ùF付磊|Aÿ´[Ðs^Ð?ív1oHî‚î‚î‚î.y¸;á.øÕ·¤ w¿=Ü=Ü=Üÿ÷ÈÃ]ÐÃ]ÐÃ]ÐÃÝż&U¸ z¸ z¸ z¸»˜×¤JtAOtAMtzŒ»x ä1.è1î`ĸ Ç¸‹yÞªôôôw1/Dã‚ã‚ã‚ã.ö@ã‚ã‚ã‚ã.æ…¨b\Ðc\ÐbÜó§¿JtóÈŸk{ýôW‰î`$º Úíb1.è1.è1.è1îb^}*Æ=Æ=Æ=Æ]ì"Æ=Æ=Æ=Æ]Ì3TŸ Ç¸ Ç¸ Ç¸‹yÉ©ôw0b\ÐcÜÅ(b\Ðc\Ðc\ÐcÜżÎTŒ zŒ zŒ zŒ»˜×™ŠqAqAqAq<Æ=Æ=Æ=Æ]ÌëLŸ Ç¸?X1.è1îb^g*Æ=Æ=Æ=Æ]<òôôôw1¯3ã‚ã‚ã‚ã.æ1¤b\Ðc\Ðc\ÐcÜÅc qAq#Æ=Æ]ÌëLŸàÑUŒ uQŸàÑUŒ …QŸ‹y©<*£ŠqÁ£3ª´Òèü.:>÷ú^8݇G˜T1.x¤IãFŒ uRŸàÑ'UŒ …RŸ‹ßG¤T1.xdJã.ö@ã‚ã‚G¨T1.x„Jã‚G¨T1îâ1Ð*UŒ ¡RŸ‹yÉ©íôO»=š=š]´УYУYðo¨~åKô3pã'Ñý’cxOi=¥}èÑ,hÑìý+‹”Ô”öüeG` z` z`»h/ ¶ ¶ ¶ƒñɸ‹=PD³ G³ G³ G³‹ö²z4 z4 þ-Ý¥"¥]”÷Žó¯T¤´ƒ‘Ò‚þ)º G³‹ö,z4 z4 z4 z4»h¯  G³ G³ G³ƒÍ.Ú+èÑ,èÑ,èÑ,èÑìâ1G³ G³ G³ G³‹ö z4;Ñ,øu Ñ좽‚€Í‚͂͂Í.y4 z4 z4;Ñ좽‚€Í‚͂͂Í.y4 z4 z4 z4»˜wŠf°¢Yð«ªhv1;͂͂͂Í.y4 z4 z4;Ñìbžy*š=š=š=š]Ì[OE³ G³ G³ G³‹Ç@ÍF4 ~õͧ¢ÙÅïFfAfAfAfóêSÑ,èÑ,èÑìb^}*š=š=š=š]Ì«OE³ G³ G³ G³‹Ç@Í‚ÍF4 z4»˜WŸŠfAfA‹fÏB*¥]Ì[P¤´×O(؂؂Ø.ö˜Ø‚؂؂Ø.æ…¨[Ð[Ð?íô”v1,‘Ò>ôhv0¢YУÙÅ(¢YУYУYУÙżïT4 z4 z4 z4»ØE4 z4 z4 z4»˜—œŠfAfAfAfó’SÑ,èÑì`D³ G³‹=PD³ G³ G³ G³‹y©hôhôhôhv1¯3͂͂͂Í.y4 z4 z4 z4»˜×™ŠfAf°¢YУÙżÎT4 z4 z4 z4»x äÑ,èÑ,èÑ,èÑìb^g*š=š=š=š]ÌcHE³ G³ G³ G³‹Ç@ß×@ÍF4 z4»˜×™ŠfÁ£ªh<* ŠfÁ£ªhî‚îF¸ z¸»ØE¸ z¸ z¸ z¸»˜WŸ wAwAwAwóêSá.èá.èá.èáîâ1‡» ‡» ‡» ‡»‹yõ©pôp÷+Ü=Ü]ü®ï*Ü=Ü=Ü=Ü]<òpôpôpôpw1¯>î‚î‚î‚î.æ‘¥Â]ÐÃ]ÐÃ]ÐÃÝÅc wAw#Ü=Ü]Ì«O…»àÑ!U¸ %R…»àÑ"U¸ 5R…»‹yõ©p<Ф wAk’Οþâ3p¯Ÿþ"ç}x$Lî‚GÄTá.xdLîF¸ %S…»àÑ2U¸ 5S…»‹ßGÐTá.x$Mî.ö@î‚î‚GÔTá.xDMî‚GÔTáîâ1Ð5U¸ QS…»‹y©p<¢¦ wÁ#jªp<¢¦ wAwÁ#TªpÔ÷AY)uÇ=Ô÷PwÜCÝq<Ò÷PwÜCÝq ‡»”÷PwÜCÝquÇ=Ô÷AY)uÇ=Ô÷PwÜCÝq<ÒzŒûPwÜÃcÇEŒûPc܇ã>Ô÷¡Æ¸”ˆ‡šÝ>ÔÀö¡~Ú-è)í{ fã¿÷%šÒ>ÔÏÀõŸ ß—hJûAy­x¨)íCMijJûP£Ùþ:Ðo~Ã4¥=¥=Ã<°}¨íåeã¡¶5°}¨íC l?(/5°}¨íC lAl?Øy`ûPÛ‡Ø>ÔÀöƒò²ñPÛ‡Ø>ÔÀö¡¶”—‡Ø‚Ø>ÔÀö¡¶ì<°}¨íC lj`ûAyÙx¨íC lj` z`ûAyÙx¨íC lj`ûPÛi`ûPÛ‡Ø>ÔÀöƒò²ñP[ÐÛ‡_Ç@Ø~P^6j`ûPÛ‡Ø>ÔÀöƒÇ@Ø>ÔÀö¡¶ ¶”—‡Ø>ÔÀö¡¶5°ýà1¶5°}¨íC l?˜·šl#°}øÕE`ûÁ<ØD`ûPÛ‡Ø>ÔÀöƒÇ@Ø>ÔÀö¡¶ ¶ÌÓM¶5°}¨íC l?˜÷›lj`ûPÛ‡Ø~ðH[ÐÛ‡_}lj”öƒßšÒ>Ôhö¡F³5šý`^r"š}¨ÑìCf?˜—œøÛ‡šÇ>Ô<ö¡†°ÌKN„°õljòúPãÖiÜúPãVÐãÖ‡_}ɉ¸õ¡Æ­5n}¨qëC[?˜—œˆ[jÜúPãÖ‡·~°ò¸õ¡Æ­5n}hqëy^ˆäõº DûPC؇Â>´ö7ÃkûPóØûW¦Ñ,èÑìï¾úD4ûP£Ù‡Í>Ôhö¡F³ÌKND³5š}¨ÑìCf?Øy4ûP£Ù‡Í>Ôhöƒyɉhö¡E³÷_cOijJûA¹ïœÇ=°}¨-èíïcLlj`ûPÛ‡Ø>ÔÀöƒyõ‰Àö¡¶5°}¨íóêíC lj`ûPÛi`ûPÛ‡Ø>ÔÀöƒyõ‰Àö¡¶ƒØ>ÔÀöƒyõ‰Àö¡¶5°}¨í4°}¨íC lj`ûÁ¼úD`ûPÛ‡Ø>ÔÀöƒyd‰Àö¡¶5°}¨í4°}¨-èíC l?˜WŸl½P¶b(Û‡G3íãŠÀöƒyõ‰ÀöáQy`{~ÛŸ—{-ÿÈn¥Q¶Ö(Û¹Q¶ ¶â(Û‡Gsíã:ŠÀöƒßGxíÃ#=ŠÀöƒ=¶5°}xÄGØ><â£lñQ¶<:â£lñQ¶Ì Q¶ø(Û‡G|íÃ#>ŠÀöáE`ûÁc #>ŠÀöáU`ûÇ?ÿ0#°ó}9æëò™mË1_–c¾+Ç|UŽù¦|f‹òÇ"°ó59æí˜¶ÏlÍŒùÚó­7æKoÌwÞ³žÅ7Þ˜/¼‹ÀvÌ×Ý3Ûvc¾ìÆ|×ùªóÀö™í•1ßsc¾æÆ|Ëù’{–³T` z` úŽ[´•úŽ}Ǿã@ßq‹Ç@¶ãêûU¾D7_|¿Ê—ø>ŒwÑö!èûô}ú>}.Úú}‚¾A߇ ïÃÅc ߇ƒゾÁcVŒ zŒ zŒ zŒ zŒ»hí+è1.è1.è1î Æ¸÷¿«HtAý\Ûó]$º &º=Æ]´WÐc\Ðc\Ðc\ÐcÜÅc Ïn=»}è-èí¢½‚€Ø‚؂؂Ø.Ú+è-è-èí`¶‹=P¶ ¶ ¶ ¶‹¿¾lÜÿ\#»=»5»=ÿ-GŒ»h¯  Ç¸ƒã‚ã‚ã.ö@ã‚ã‚ã‚ã.Ú+è1.è1.è1î`ĸ‹ö zŒ zŒ zŒ zŒ»x ä1.è1.è1.è1‚€ãFŒ ~EŒ»h¯  Ç¸ Ç¸ Ç¸ Ç¸‹Ç@ã‚ã‚ãFŒ»h¯  Ç¸àú zŒ zŒ»x ä1.è1.è1.è1îbÞu*ÆýÁŠqÁ¯¨bÜÅ<îTŒ zŒ zŒ zŒ»x ä1.è1.è1î`ĸ‹yæ©üã(b\ÐcÜżõTŒ zŒ zŒ zŒ»x ä1î`ĸàWß|*Æ]ünôôô´÷ü²]Ð]PÝëÈ wóBTá.èá.èá.èáîb^}*Ü=Ü=Ü=Ü]<òpôpw0Â]ð«¯>î‚î‚î‚î‚î.þzõ¹ÿDÎ zÎ jÎ{þˆÈw1OVù‚ù‚ù‚ú ¶Ì[P…» ‡» ‡» ~‚íóȉîCq#Æ¿úêS1.è1.è1.è1.è1îb^}*Æ=Æ=Æ=Æ]ì"Æ=Æ=Æ=Æ]Ì«OŸ ~‚íCÏnAÏn­g=°=°ŒÀôÀv±ŠÀôÀôÀôÀv1/9؂؂؂Ø.æ%§[Ð[Ð[ÐÛÅc lAlAlAló’S-èíV` z`»˜—œ lAlAlAl<°=°=°=°]ÌKN¶ ¶ ¶ ¶‹y8©ÀôÀôÀôÀvñÈ[ÐÛÁlAló’S-xôBØ‚G1T-x4CØ‚G5Tíb^r*°­:”ˆÏµ½~ ˆìöƒyõ©ÀªÀ<⣠lÁ#>ªÀvñÈ[Ð[ðŠ*°]ÌKN¶àU` AQ¶àU` AQ¶‹Ç@GPT-xEØþùÏ÷bØŽù¾óuù̶å˜/Ë1ß•c¾*Ç|S>³EùcØŽy`;æí˜/¾g¶fÆ|íùÖó¥7æ;ïYÏâoÌÞE`;æëî™m»1_vc¾ëÆ|Õy`ûÌöʘï¹1_sc¾åÆ|É=ËY*°=°}Ç-ÚJ}Ǿã@ßq ï¸Åc ßq ï8ÐwÜ`D³‹¶ã@ßq ï8Ðwè;nÑV è;ôúŽ}Ç-ùŽŒhô;î´УYУYУYУÙE{=š=š=šŒO°]ì<}è!,è!,è!좽@€‚‚ÂÖO¿|‰æ±ñÓï~É1¼G³ƒÍ‚Í‚ÍÞ¿²HiAMiÏ_v¶ ¶ ¶‹ö²z` z` z`;íb-è-è-èí¢½l€žÒ‚žÒ‚þ ¶ G³‹ö²z4;Ñ,èÑ,èÑìbÑ,èÑ,èÑ,èÑ좽l€Í‚Í‚ÍF4»h/ G³àú²z4 z4»x äÑ,èÑ,èÑ,èÑ좽l€ÍF4 ~E4»h/àŸú²z4 z4 z4»x äÑ,èÑ,èÑì`D³‹ö²z4 þ¡/ G³ G³‹Ç@͂͂͂Í.æ­¦¢Ù¬hüê*š]̃ME³ G³ G³ G³‹Ç@͂͂ÍF4»˜§›ŠfÁ?Ž"š=š]ÌûME³ G³ G³ G³‹Ç@ÍF4 ~õ§¢ÙÅïÆ?û’SÑ,èÑ,èŸ`»˜—œÊcAÿ[ÐCØÅ¼äT z z z»˜—œ aAaAaA aÏÓ*5½~L«hv0¢YУÙżúT4 z4 Z4{ÿ†EJ»(· ó7,RZÐSZÐ?´hö7¿2Oi#¥5¥=ÙØ‚Ø.æ5©[Ð[Ð[ÐÛÅ<ÈT` z`;-èíb-è-è-èíbÞ‚*°=°=°=°]ì"°=°=°=°]Ì«O¶ ¶ ¶ ¶‹yõ©ÀôÀv0[ÐÛÅ([Ð[Ð[ÐÛżúT` z` z` z`»˜WŸ lAlAlAl<°=°=°=°]Ì«O¶ ¶?X-èíb^}*°=°=°=°]<òÀôÀôÀôÀv1¯>؂؂؂Ø.æ‘¥[Ð[Ð[ÐÛÅc lAl#°=°]Ì«O¶àÑ U` ÅP¶àÑ U` ÕP¶‹yõñÀöüÎ=>×öúþ;²Û‡GgT-x”FØ‚GkTíâ1БU`;-xGØ‚GsT-xTGØ.~7áQ¶à‘U`»ØE` z` ñQ¶àU` ñQ¶‹Ç@G|T-xÄGØ.æ-¨[ðˆ*°ø¨[ðˆ*°ø¨ÛÅc #>ªÀ<⣠lÿõÏO°ØŽù¾óuù̶å˜/Ë1ß•c¾*Ç|S>³EùcØŽy`;æ›oÌß3[3c¾öÆ|ëùÒó÷¬gñ7æ ïÇ"°óu÷̶ݘ/»1ßuc¾êÆ<°}f{eÌ÷ܘ¯¹1ßrc¾äžå,؂؂¾ãm¥€¾ã@Ûqõ]'_¢›/¾ëäK|.Ãû>}‚¾#Æ]´}ú>}‚¾A߇‹¶~@߇ ïCÐ÷!hûðþ‹á‰îù#ÂÝÁwAßà±;+Ü=Ü=Ü=Ü=Ü]üõeãþ­ŽœôœôœwÐsÞóO0"_Ð#_Ð#_Ð"ßû÷$ÒßE{5ý½Ùƒþɸ 2îâ1¦G¾ƒù‚ù‚þɸ‹öbú'ã‚î‚î‚î.Ú‹ èá.èá.èáî`„»‹=P„» ‡» ‡» ‡»‹öbz¸ z¸ z¸ z¸»h/& ‡»ƒî‚î‚î.ö@î‚î‚î‚î.Ú‹ èá.èá.èáî`„»‹öbz¸ z¸ z¸ z¸»x äá.èá.èá.èá˜€îF¸ ~E¸»h/&àŸúbz¸ z¸ z¸»x äá.èá.èáî`„»‹öbz¸ z¸ z¸ z¸»x äá.èá.èá.èáîbÞ€*ÜýÁ wÁ¯¨ÂÝÅ<U¸ z¸ z¸ z¸»x äá.èá.èáî`„»‹yªpôpôpôpw1ïBî‚î‚î‚î.y¸;á.øÕ÷¡ w¿ÿì Q…» ‡» ‡»‹y!ªp´p÷ü1­rÞżEÎ{ý˜V‘/è‘/è‘ïb^ˆ*ò=ò=òýÓnüÓnAw#Ü=Ü]Ì“U…» ‡» Ú-è‰îb^}*Æ=Æ=Æýl{ ÈnAÿ[Ð[ÐÛżäT` z` z` z`»˜Ç lAl#°=°]ì"°=°=°=°]üO£¶ ¶ ¶ ¶‹=P¶ ¶ ¶ ¶‹y©ÀôÀôÀôÀv1¯3Ø‚ØF` z`»ØE` z` z` z`»˜×™ lAlAlAló:S-è-è-èíâ1¶ ¶ ¶ ¶‹y©ÀôÀö+°=°]ÌëL¶ ¶ ¶ ¶‹Ç@؂؂؂Ø.æu¦[Ð[Ð[ÐÛÅ<†T` z` z` z`»x ä-èí`¶ ¶‹y©À³gŒ‹ÀvÌWߘo¾1_|ÏlÍŒùÚó­7æKoÌwÞ³žÅ6^}s1_¡k0¾·øùŠˆqÇ|5>³Í8æ‹qÌ÷☯Å1qŸÙó8æ+qÌ7â˜/Äg9KŸ Ç¸ ïÃE[? ïCÐ÷!èûô}¸x äûô}ú>ŒÀvÑö!èûô}ú>}.Úú}‚¾A߇ ïÃÅc Û‡çˆ"¥½þKT-xìNl3Ÿg· g· g· g·‹òÞqÿžxv zv zv;Ÿ¢»hÏ2 ¶ ¶ Š.è)í¢½‚€þ)º G³ G³ G³‹Ç@ÍF4 z4 z4»øŸFfAfAfAf}¹ÿEFJ zJ jJ{þ»ŠÀvÑžp@lAlAlAlíÅôÀôÀôÀôÀvÑ^L@l#°=°=°]ì"°=°=°=°]´Ð[Ð[ÐÛÁlíÅôÀôÀôÀôÀvñÈ[Ð[Ð[ÐÛE{1=°ŒÀü:ŠÀvÑ^L@lAlAlAl<°=°=°ŒÀvÑ^L@lAlAlAl<°=°=°=°]ÌP¶?X-øÕU`»˜‡  lAlAlAl<°=°=°ŒÀv1OB؂؂؂Ø.æ­§[Ð[Ð[ÐÛÅc l#°¿~þUz`»øÝè-è-è-èíb^}*°ý“qAOióêSŸŒ z4 z4 z4»˜WŸŠfAfAfAf<š=šŒhôhv1¯>͂͂͂Í.Z£ z4 z4 z4 z4»ØE4 z4 z4 z4»˜×™ŠfAfAfAfóRÑ,èÑì`D³ G³‹=PD³ G³ G³ G³‹y©hôhôhôhv±Šhôhôhôhv1/.͂͂͂Í.æÅ¥¢YУÙÁˆfAf{ ˆfAfAfAfóâRÑ,èÑ,èÑ,èÑìb^\*š=š=š=š]<òhôhü«/.Í.æÅ¥¢YУÙ¬hôhv1/.͂͂͂Í.y4 z4 z4 z4»˜—ŠfAfAfAfóÀQÑ,èÑ,øW_\*š]<òhôhv0¢YУÙż¸T4  PE³àQU4 PE³àQy4{¾ÿÄgÕ^¯8‘Ò><Ê¡ŠfÁ£ªh<ꡊfÁ¿ú:SÑìâ1G³ G³ƒÍ‚GTÑ,x´AÍ‚GTÑìâwãU4 ‰PE³‹=PD³ G³à U4 ‘PE³à U4»x tDBÍ‚G$TÑìb^g*šH¨¢Yðˆ„*šH¨¢Yðˆ„*š]<òhv0¢Yð*šýûŸïÿ"šó}9æëò™mË1_–c¾+Ç|UŽy4ûÌž&~,¢Ù1_}c¶ùj3ÏWø:|&Ë'–ö|…¯È1ßc¾ Ç|?>ûuÂû׫;óü5ù"ý±lÇ|>³-:æKtÌw蘯Ð1lŸÙ¾óý9æësÌ·ç˜/Ïg9K¶ ¶ ïÎE[U ïNÐw'è»ôݹx ä»ôÝ úîŒÀvÑv'è»ôÝ úî}w.Úª}w‚¾;Aß ïÎÅc ÿ%°/‰Ïª}£‚ÇF­Ïª=š=š=š5š½þƒûÏ—Ø+èÑ,èÑ,èÑì`D³‹=PD³ G³ G³ G³‹ö z4 z4 z4 z4»x äÑì`D³ G³ G³‹ö z4 z4 z4 z4»h¯  ç± ç± Òì`„°‹=P„° ‡° ‡° ‡°‹ö z z z z»h¯  ‡°ƒ‚‚Â.ö@‚‚‚Â.Ú+è!,è!,è!ì`„°‹ö z z z z»x ä!,è!,è!,è!좽‚€ÂF ~E»h¯  ‡° ‡° ‡° ‡°‹Ç@‚‚ÂÞßF»ho# æ±çw]͂͂Í.cz4 z4 z4 z4»˜7 Šf°¢Yð«ªhv1A͂͂͂Í.y4 z4 z4;Ñ좽‚€Í‚͂͂Í.æý¦¢YУYУYУÙÅc f#š¿úŽSÑìâw£G³ G³ G³ G³‹yÉ©hôhôhv1/9͂͂͂Í.æ%§¢YУYУYУÙÅc fAf#š=š]ÌKNE³ G³ G³ G³‹y³©hôhôhôhv±Šhôhôhôhv1¯3͂͂͂Í.æ1¤¢YУÙÁˆfAf{ ˆfAfAfAfó:SÑ,èÑ,èÑ,èÑìbÑ,èÑ,èÑ,èÑìb^g*š=š=š=š]ÌëLE³ G³ƒÍ‚Í.ö@͂͂͂Í.æu¦¢YУYУYУÙżÎT4 z4 z4 z4»x äÑ,èÑ,èÑ,èÑìb^g*š=šýÁŠfAfó:SÑ,èÑ,èÑ,èÑìâ1G³àß} ©hôhv1¯3͂͂͂Í.棢YУYУYУÙÅc fAf#š=š]Ì‹KE³àÑU4 PE³àÑU4 Z t^øâóg¯;]¤´`D³àQU4 •PE³àQU4 MPE³‹Ç@Í‚GëSÑ,xÔ>Í‚GïSÑ,x?Í.~7ÑOE³à‘ýT4»ØE4 z4 áOE³àþT4 áOE³‹Ç@GøSÑ,x„?Í.æu¦¢Yð*šð§¢Yð*šð§¢ÙÅc f#šħ¢ÙŸ»BD³c¾/Ç|]>³m9æËrÌwå˜G³cÍ>³å÷cÍŽùêóÍ7æ‹ï™­™1_{c¾õÆ|éùÎ{Ö³øÆó…÷c·Žùº{fÛn̗ݘïº1_uc·>³½2æ{nÌ×ܘo¹1_rÏr–Š[A[Aßq‹¶R@ßq ï8Ðwè;nñÈwè;ô7që¢í8Ðwè;ôúŽ[´•úŽ}Ǿã@ßq‹¿T?Öð%¾ùÿ§OåK|‚Ç>¬ä´äõþ•E j{ÿÊü3eíeôôôv0BØÅ(BXÐCXÐCXÐCØE{Ù=„=„=„-„½ÿÖD j{þ­‰hôhôhvÑ^A@fAfAfAfÿÿŸ4Ë—xJ jJ{ÿV{`;í¢=á€Ø‚؂؂Ø.Ú‹ è-è-è-èíâ¯/&÷od·ƒžÝž¼ã‚ã.Úsè1.è1.è1.è1®€ã‚ã‚ãFŒ»h¯+ Ç¸ Ç¸ Ç¸ Ç¸‹Ç@ã‚ã‚ã‚ã.Úë è1î`ĸà×1Pĸ‹öºzŒ zŒ zŒ zŒ»x ä1.è1.èŸJ;¨ÙíýŸ¥ˆqAÿ¬ZP³Ûó¿Yã‚ã.czŒ zŒ zŒ zŒ»˜·¥Šq°b\ð«ªw1Lã‚ã‚ã‚ã.yŒ zŒ zŒ;1îbžš*Æ=Æ=Æ=Æ]Ì{SŸ Ç¸ Ç¸ Ç¸‹Ç@ãFŒ ~õÝ©bÜÅïFqAqAqAqóòT1.è1.è1îb^ž*Æ=Æ=Æ=Æ]ÌËSŸ Ç¸ Ç¸ Ç¸‹Ç@ß×@ãFŒ zŒ»˜§°ŠqAqAqAqóšT1.è1.è1.è1îb1.è1.è1.è1îb^ˆ*Æ=Æ=Æ=Æ]ÌÓKŸ Ç¸ƒã‚ã.ö@ã‚ã‚ã‚ã.æÕ§b\Ðc\Ðc\ÐcÜÅ(b\Ðc\Ðc\ÐcÜżäTŒ zŒ zŒ ZŒ{þR‰.øÝ÷Ht¯B*Ü=Ü]ì1#Ü=Ü=Ü=Ü]ÌKN…» ‡» ‡» ‡»‹yÉ©pôpôpôpwñÈÃ]ÐÃ]ÐÃ]ÐÃÝżäT¸ z¸ûƒî‚î.æ%§Â]ÐÃ]ÐÃ]ÐÃÝÅc wAwAwAwó’Sá.èá.èá.èáîbC*Ü=Ü=Ü=Ü]<òpôpw0Â]ÐÃÝżÎT¸ R…»àQ"U¸ -’‡»ç:ÏÀ½–bä¼ÌKN…»àQ/U¸ ýR…»àQ0U¸  S…»‹Ç@GÆTáî`„»àQ2U¸ -S…»àQ3U¸»øÝxMî‚GÒTáîbá.èá.xDMî‚GÔTá.xDMî.QS…»à5U¸»˜—œ wÁ#jªp<¢¦ wÁ#jªp<¢¦ wŽ|©Â]ð•"ÜýïùÿûÏËÃ]L÷%¦ërM¶%¦ËÓpÓ¥ˆéö[“å7æá.¦«Ó͇éâ[“5ƒéÚÃtëaºô0Ýyk=‹nÔp÷¡î¸ÊJy¨;î¡î¸‡¶ãâÛà÷%ºùüÛàÏ—Ãë>|¨ûð¡îCÐ#ßÊ>|¨ûð¡îǺê>ü ¬Ÿ‡ºê>|hûðþãõô÷ƒ2æùgïé/èéïCÝÝ‘ïCý\Û‡šó>Ôœ÷¡†»üõäþsðœ÷¡æ¼çŸƒG¾ G¾”'œ‡ù>ÔÈ÷¡E¾÷¿”w”ó÷ăà‡?Ô ø¡~2îėšþ‚ù>ÔÈ÷¡F¾”ו‡ù>ÔÈ÷¡F¾5òý ¼®<Ôœ÷¡æ¼5Ü=Üý`äáîC wj¸ûPÃÝÊ‹ÉC wj¸ûPÃ݇î~P^Lj¢ z¢ûPc܇ã~°ò÷¡Æ¸5Æ}¨1îåÅ䡯¸5Æ}¨1.è1îåÅ䡯¸5Æ}¨1îCq?x ¤1îCqjŒûPcÜÊ‹ÉCqAq~yŒûAy1y¨1îCqjŒûPcÜiŒûPc܇ã‚þ¸”“‡šÝ>Ôìö¡¶5°ýà1¶5°}¨íC l?˜7 l#°}øÕE`ûÁ<E`ûPÛ‡Ø>ÔÀöƒÇ@Ø>ÔÀö¡¶ ¶Ì“P¶5°}¨íC l?˜w¡lj`ûPÛ‡Ø~ðH[ÐÛ‡_r:B‰ìöƒß¿âõJĸ5Æ}¨1îCq?˜×¤ˆqjŒûPcÜæ…(b܇ã>Ô÷¡Æ¸Ì Qĸ5Æ}¨1îCq?x ô} ¤1.è1îCq?˜'«ˆqjŒûPc܇ã~0¯>ã>Ô÷¡Æ¸5Æý`ä1îCqjŒûPcÜæ%'b܇ã>Ô÷¡Æ¸ÌcHĸ5Æ=Æ}¨1î{ qï}à‰îCMtj¢{. wj¸ûPÃ݇î>Ôp÷ƒ=‡»5Ü}¨áîC w?˜—œwj¸ûPÃ݇ú)ºÌKN$º5Ñ=Æ}¨1î{ qjŒûPc܇ã~0/9ã>Ô÷¡Æ¸5Æý`^r"Æ}¨1îCqjŒûÁc qjŒûPc܇ã~0/9ã>Ôw0b܇ã~0/9ã>Ô÷¡Æ¸5Æýà1Ƹ5Æ}¨1îCq?˜—œˆqjŒûPc܇ã~0'ã>Ô÷¡Æ¸5Æýà1Ƹ5Æ=Æ}¨1îó’1îã-Š÷áQEŒûÐú¢ó{§ølÝë; Ht9RĸàŸG1îÃ#IŠ÷ƒyõ‰÷á‘%EŒûð“"Æ}x¤Iã‚ã><꤈q}RĸB)bÜ~7‘RĸL)bÜö@ã>Ô÷á*EŒûð•"Æ}¨1îCM’>x tÄGã><⣈q?˜—œˆqñQĸø(b܇G|1îCq™Qĸ (b܇GPT1îÏÿ!bÜ1ß—c¾.ŸÙ¶ówÌcÜ1_c¾ýžÙòûù?DŒ;æ«oÌ7ߘ/¾g¶fÆ|íùÖó¥7æ;ïYÏâoÌÞÏÿ!bÜ1_wÏlÛù²ó]7æ«nÌcÜg¶WÆ|Ïùšó-7æKîYÎR1.è1.è;nÑV è;ôúŽ}Ç-ùŽ}Ǿã#°]´úŽ}Ǿã@ßq‹¶R@ßq ï8Ðwè;nñÈwÜ`D³ ï8ðØq͂͂͂͂Í.Úkèy,¨yìCaÿôv±ŠôÔO»}èÉ뢽V€·‚·Öã|‰&¯ñã8_â!ìâ1¼‡°ƒÂÞÃ{{Ñ좽l€Í‚͂͂Í.ÚËèÑ,èÑ,èÑì`D³‹=PD³ G³ G³ G³‹ö²z4 z4 z4 z4»h/ G³ƒÍ‚Í‚Í.ö@͂͂͂Í.ÚËèÑ,èÑ,èÑì`D³‹¿¾lÜÿ剔Ô”öüÏR¶ ¶‹ö,z` z` z` z`»h¯  ¶ƒØ‚_Ç@Ø.Ú+è-è-è-èíâ1¶ ¶ ¶ƒØ.Ú+è-è-è-èíâ1¶ ¶ ¶ ¶‹yשÀöçÿP-øÕU`»˜Ç lAlAlAl<°=°=°ŒÀv1Ï<؂؂؂Ø.æ­§[Ð[Ð[ÐÛÅc l#°¿úæã)í¹k#°}è)-¨)íµˆ+°=°]Ì Q¶ ¶ ¶‹y!òÀöþ­þS³Ûó7,b\ÐcÜż&yŒû›á=Ñ5ѽeî.Ã{¸ z¸;á.èáîb^ž*Ü=Ü=Ü=Ü]ÌËS…» ‡» ‡» ‡»‹=P„» ‡» ‡» ‡»‹yyªpôpôpôpw17î‚îF¸ z¸»Øù§è>ôDôDÔD÷ƒy!ªôôôw±Šôôôw1/Dã‚ã‚ã‚ã.æ…¨b\ÐcÜÁˆqAq{ ˆqAqAqAqóBT1.è1.è1.è1îb^ˆ*Æ=Æ=Æ=Æ]<òôôôw1¯>ã‚ãþü*Æ=Æ]Ì«OŸ Ç¸ Ç¸ Ç¸‹Ç@ã‚ã‚ã‚ã.æÕ§b\Ðc\Ðc\ÐcÜÅ<²TŒ zŒ zŒ zŒ»x ä1.è1î`ĸ Ç¸‹yõ©<Ú¢ŠqÁ£.ò÷ü©(>/÷úÁ'݇GT1îb^ˆ*Æ"©b\ðh’*Æ*©b\ðè’*Æ]<:Ò¤Šq#Æ:©b\ðè“*ÆB©bÜÅïÆ#Rª<2¥Šq{ ˆqAqÁ#Tª}Xá.èá.èá.èá.èáV€î‚î‚îÞöžóžöù‚ù‚ù‚ù‚ùþæWæé/èé/¨Ÿk{ÿžø§Ý‚ù.czä;Ÿv ú§Ý‚î.Ú+èá.èá.èá.èá‚€î‚î‚îF¸»ØE¸ z¸ z¸ z¸»h¯  ‡» ‡» ‡» ‡»‹ö z¸;á.èá.èáîbá.èá.èá.èá‚€î‚î‚îF¸»h¯  'º Ú-è1.è1îâ1Ǹ Ç¸ Ç¸ Ç¸‹ö zŒ;1.øu 1‚€ã‚ã‚ã‚ã.yŒ zŒ zŒ;1‚€ã‚ã‚ã‚ã.yŒ zŒ zŒ zŒ»˜wŠq°b\ð«ªw1;ã‚ã‚ã‚ã.yŒ zŒ zŒ;1îbžy*Æ=Æ=Æ=Æ]Ì[OŸ Ç¸ Ç¸ Ç¸‹Ç@ãFŒ ~õͧ>×vñ»Ñ³[Ð?ÁôÀôÀv1¯>Øž?lUv zv»(· ë‡­ú´[Ð?íôÀôÀv1/Dõi· §´ Ú-èÑìâ1G³ G³ƒÍ‚Í.æÕ§¢YУYУYУÙżúT4 z4 z4 z4»ØE4 z4 z4 z4»˜—œŠfAfAfAfóRÑ,èÑì`D³ G³‹=PD³ G³ G³ G³‹y©hôhôhôhv±Šhôhôhôhv1¯3͂͂͂Í.æu¦¢YУÙÁˆfAf{ ˆfAfAfAfó:SÑ,èÑ,èÑ,èÑìb^g*š=š=š=š]<òhôhôhôhv1¯3Í‚Íþ`E³ G³‹y©hôhôhôhvñÈ£YУYУYУÙżÎT4 z4 z4 z4»˜ÇŠfAfAfAf<š=šŒhôhv1¯3Í‚GTÑ,hÐùÓ_|®íõ3\¤´h¨¢YðȆ*šŒh<Ê¡ŠfÁ£ªh<ꡊfÁ£ªhvñèHˆ*šŒh<*¢ŠfÁ£#ªh³½2æ{nÌ×ܘo¹1_rÏr–ŠfAfAßq‹¶R@ßq ï8Ðwè;nñÈwè;ô7Ñì¢í8Ðwè;ôúŽ[´•ÚŽ«køÝ|ñc _âûô}¸x ïûp0¢YÐ÷!xìÊfAfAfAfAfíµôhôhôO»ŒO»]ì"„ÿžÇžã“qíeô<Ô<ö¡‡° ‡°‹Ç@ÂF z z»h/ ‡° ‡° ‡° ‡°‹ö²z z z;!ìb!,ø‡¾l€‚Â.ÚËè!,è!,è!,è!좽l€ÂF z z»ØE z z z»h/ ‡° ‡° ‡°ƒÂ.ÚËè!,è!,è!,è!ìâ1‡° ‡° ‡° ‡°‹ö²Z{¯¶ÈcÁ/óÜ{ÍþfOiAMiï<°=°=°]<ÆôÀôÀôÀv0ÛE{1=°=°=°=°]<òÀôÀôÀôÀv1o@Øþ`¶àWTíb‚*°=°=°=°]<òÀôÀôÀv0ÛÅ< U` z` z` z`»˜w¡ lAlAlAl<°ŒÀüêûP¶‹ß؂؂؂Ø.æ…¨>Áô”ô”v1/D͂͂͂Í.æ…¨¢YУYУYУÙÅc fAf#š=š]Ì«OE³ G³ G³ G³‹yõ©hôhôhôhv±Šhôhôh´höü²RZPSÚëÈ lAlAl=²üæW¦Ùí=¼Ç¸ƒã‚ã.æ…¨b\Ðc\Ðc\ÐcÜżUŒ zŒ zŒ zŒ»ØEŒ zŒ zŒ zŒ»˜"qᅩ‘肞肚èž#Ü=Ü=ÜŒpôpw±Špôpôpôpw1¯Iî‚î‚î‚î.æ5©Â]ÐÃ]ÐÃ]ÐÃÝÅc wAwAwAwóšTá.èáîV¸ z¸»˜×¤ wAwAwAw<Ü=Ü=Ü=Ü]Ì«O…» ‡» ‡» ‡»‹yd©pôpôpôpwñÈÃ]ÐÃÝÁwAwóêSá.xtHîž3>÷Ú{‘ó><º¥ wÁ£\ªpw1/Dî‚G½Tá.xôKî‚GÁTá.x4Lî.S…»ƒî‚GÉTá.x´Lî‚GÍTáîâwã4U¸ IS…»‹=P„» ‡»à5U¸ QS…»à5U¸»x tDMî‚GÔTáîb^ˆ*ܨ©Â]ðˆš*Ü=Ü=ÜP©ÂÝÅc #TªpOïùlwþæÅ7ê¢-0P7ê=ŸïYÐ÷,è{vñÓ÷ì`Á ïYðسƒƒƒƒ/Ú› èA0èA0èAð`Á‹=PÁ Á‹þɸ G¾‹öbzä zä zä zä»x ä‘ï`D¾ G¾ G¾‹öbzä zä zä zä»h/& G¾ G¾ G¾ƒù.þ:ÐýŸ_OÏÿˆF z z¼h/& Á Á Á Á‹öbz<A0èA0èAðâ¯Ý¼‘ ƒš Ÿöƒ/Úë èñ0èñ0èñð`ÄËöºz< z< z< z<¼x äñ0èñ0èñ0èñ𢽮€þ)ºƒ‘ ƒ_Ç@ñ)º‹öºú§è‚ù‚ù‚ù.yä zä zä;‘®€ù‚ù‚ù‚ù.yä zä zä z付÷¢Š|°"_ð«ªÈw1Fù‚ù‚ù‚ù.yä zä zä;‘ïbž*ò=ò=ò=ò]ÌRE¾ G¾ G¾ G¾‹Ç@ùFä ~õ-©"ßÅïF|A|A|A|óšT‘/è‘/è‘ïb^“*ò=ò=ò=ò]Ì QE¾ G¾ G¾ G¾‹Ç@ù‚ùFä z付—œŠ|A|A|A|ó’S‘/è‘/è‘/è‘ïb‘/è‘/è‘/蟌»˜—ÏyÏ™*ç=ç5ç½~žªOÑýStAw#Ü=Ü]ì"Ü=Ü=Ü=Ü]Ì«O…» ‡» ‡» ‡»‹=P„» ‡» ‡» ‡»‹y†ªOÑ=Ñ=ÑýStó’S1.è1î`ĸ Ç¸‹=Pĸ Ç¸ Ç¸ Ç¸‹yZªôôôw1¯3ã‚ã‚ã‚ã.yŒ zŒ zŒ zŒ»˜×™ŠqAq°b\ÐcÜżÎTŒ zŒ zŒ þü?Ç@ã‚ã‚ã‚ã.æu¦b\Ðc\Ðc\ÐcÜÅ<†TŒ zŒ zŒ zŒ»x ä1.è1î`ĸ Ç¸‹y©´¶èüN/>[÷ú~-ÝÃ-RŸàQ#UŒ»˜—œŠqÁ£Hª<š¤ŠqÁ£Jª<º¤ŠqŽ4©bÜÁˆqÁ£Nª<ú¤ŠqÁ£Pªwñ»ñˆ”*ÆL©bÜÅ(b\Ðc\ð•*ÆP©b\ð•*Æ]<:B¥ŠqAq#Æ]ÌKNŸ Ç¸ Ç¸à‘UŒ zŒ ‘PŸà UŒ ‘PŸà UŒû×?׈qÇ<ÆóøÌ6à˜/À1ßc¾þÆ|û=³å÷cãŽùêóÍ7æ‹ï™­™1_{c¾õÆ|éùÎ{Ö³øÆó…÷cãŽùº{fÛn̗ݘïº1_ucÿ>fñE7æ{nÌ×ܘo¹1_rÏr–ŠqAqAßq‹¶R@ßq ï8Ðwè;nñÈwè;ô7¨mý±_"›/~ŠàKþ——/ñ- ê–¼G°Ýù›|£‚ÿKŒË—øž}Ï‚¾g1}ÏFŒ úž=[1.è1.è1.è1.è1˜€ã‚ã‚ãFŒ»ØEŒ zŒ zŒ zŒ»h¯  Ç¸ Ç¸ Ç¸ Ç¸‹Ç@ãFŒ zŒ zŒ»h¯  Ç¸ Ç¸ Ç¸ Ç¸‹ö zŒ zŒ zŒ;1îbŸ¸ z` z` z`»h¯  ¶ ¶ ¶ ¶‹ö z`;-è-èíb¤)í½1ÿ§À–/ñÀôÀvÑ^L@lAlAl#°]´Ð[Ð[Ð[ÐÛÅc lAlAlAlíÅôÀv0[ðë(ÛE{1=°=°=°=°]<òÀôÀôÀv0ÛE{1=°=°=°=°]<òÀôÀôÀôÀv1o@Øþ`¶àWTíb‚*°=°=°=°]<òÀôÀôÀv0ÛÅ< U` z` z` z`»˜w¡ lAlAlAl<°ŒÀüêûP¶‹ß؂؂؂Ø.æ…¨[Ð[ÐÛżU` z` z` z`»h¯  ¶ ¶à_}²ªÀvñÈÛó;ÚÊn=»½¾Ý­w1/9ã‚ã‚ã‚ã.æ%§b\Ðc\Ðc\ÐbÜûÉÝóÏ!Â]ÐÂÝ{„ÈyAÍyïù<òõ3{zÎ þuéŸÎ»˜™ wAw#Ü=Ü]ì"Ü=Ü=Ü=Ü]Ì Q…» ‡» ‡» ‡»‹=P„» ‡» ‡» ‡»‹y!ªpôpü«2î.æ…¨Â]ÐÃÝÁwAw{ wAwAwAwóBTá.èá.èá.èáîb^}*Ü=Ü=Ü=Ü]<òpôpôpôpw1¯>î‚îþ`…» ‡»‹yõ©pôpôpôpwñÈÃ]ÐÃ]ÐÃ]ÐÃÝżúT¸ z¸ z¸ z¸»˜G– wAwAwAw<Ü=ÜŒpôpw1¯>îžß@Ægë^ß#FÎûð¨–*Ün©Â]ð(—*Ü]Ì Q…»àQ/U¸ ýR…»àQ0U¸  S…»‹Ç@GÆTáî`„»àQ2U¸ -S…»àQ3U¸»øÝxMî‚GÒTáîbá.èá.xDMî‚GÔTá.xDMî.QS…»à5U¸»˜¢ wÁ#Iªpôpw1¯>î‚GPTá.xEî‚GPTá.xEîþýÏF"Üó8æ+ð™mÀ1_€c¾ÿÆ|ýùö{fËïÇ"ÜóÕ7æ›oÌß3[3c¾öÆ|ëùÒó÷¬gñ7æ ïÇ"Üóu÷̶ݘ/»1ßuc¾êÆ<Ü}f{eÌö\}ç9_¡Ë/¾ñœ¯ð8æ ñYÎ]‘/è‘/èûpÑÖèûô}ú>}.ù>}‚¾ãSt݇çßÏyÏ¿2•ó‚¾;Aß‹¶ª@ß ïNÐw'è»sñÈwç`ĸ ïNðØã‚ã‚ã‚ã‚ã.ÚËè1.è1.è1î`ĸ‹=Pĸ Ç¸ Ç¸ Ç¸‹ö²zŒ zŒ zŒ zŒ»x ä1î`ĸ Ç¸ Ç¸‹ö²zŒ zŒ zŒ zŒ»h/ Ç¸ Ç¸ Ç¸ƒã.ö@ã‚ã‚ã‚ã.ÚËè1.è1.è1.è1l€ãFŒ zŒ zŒ»ØÅçÚ‚šÝ>ôÀôÀvÑ^6@lAlAl#°]´— Ð[Ð[Ð[ÐÛÅc lAlAlAlíeôÀv0[ðë(ÛE{Ù=°=°=°=°]<úûÈ[ÐÛÁlíeôÀôÀôÀôÀvñÈ[Ð[Ð[ÐÛżÕT`ûƒØ‚_=P¶‹y°©ÀôÀôÀ´Àöü1­²[ðï> Dv{ý€W1î`ĸ‹yæ©ôôôw1o=ã‚ã‚ã‚ã.yŒ;1.øÕwœŠq¿=Æ=Æ=Æ=Æ]ÌKNŸ Ç¸ Ç¸‹yÉ©ôôôwÑ^6@qAqÁ¿ú:S1îâ1Ú-èÙí`|Ú-èíb^g*°=°=°=°]ÌëL¶ ¶ ¶ ÚíbÑ,èŸv z ú§Ý.æu¦BXÐCXð¯k aóR!,è!ì`„° ‡°‹=P„° ‡° ‡° ‡°‹y©ôôôv±Šôôôv1¯3‚‚‚Â.æu¦BXÐCØÁaAa{ aAaAaAaó:S!,è!,è!,è!ìb^g*„=„=„=„]<òôôôv1¯3‚Âþ`…° ‡°‹y©ôôôvñÈCXÐCXÐCXÐCØÅ¼ÎT z z z»˜Ç aAaAaAa<„=„Œôvñ×ëÌy˜ˆÏµ½Î ‘Ç><"  aó´T!,x„@‚G T!ì`„°àQU =P…°àQU MP…°‹Ç@GT!ì`„°àQU mP…°àQU»øÝè!,è!,xd?Â.ö@‚‚GøS!,x„?‚GøS!ìâ1ÐþT áO…°‹y©Ç|{Žùò|–³T4 z4 úî\´Uúî}w‚¾;Aß‹Ç@¾;AÛç?•Ji#¥]üÿ2._ò¿|2._âÛôí úö]´eþ/ŸvË—øN}'ƒ¾“1}'F` úN\-è-è-è-èí¢½˜€Ø‚Ø‚ØF`»ØE` z` z` z`»h/& ¶ ¶ ¶ ¶‹Ç@ØF` z` z`»h/& ¶ ¶ ¶ ¶‹öbz` z` z`;íb-è-è-èí¢½˜€Ø‚؂؂Ø.Ú‹ èí`¶ ¶ ¶‹=P¶ ¶ ¶ ¶‹öbþ­/& ¶ ¶ƒØ.Ú‹ è-è-è-èíâ1¶ ¶ ¶ ¶‹ßØF` ~E`»h/& ¶ ¶ ¶ ¶‹Ç@_y` z`;í¢½˜€Ø‚؂؂Ø.y` z` z` z`»˜7  l°[ð«ªÀv1A؂؂؂þ ¶‹Ç@÷©¤>Áôhv0¢ÙE{=š=š=š=š]ÌûME³ G³ G³ G³‹Ç@ÍF4 ~õ§¢ÙÅïFfAfAfAfó’SÑ,èÑ,èÑìb^r*š=š=š=š]´WУYУYУYУÙÅc fAf#š=š]Ì‹KE³ G³ G³ G³‹yq©hôhôhôhv±Šhôhôhôhv1/.͂͂͂Í.棢YУÙÁˆfAf{ ˆfAfAfAfóâRÑ,èÑ,èÑ,èÑìbÑ,èÑ,èÑ,èÑìb^\*š=š=š=š]Ì‹KE³ G³ƒÍ‚Í.ö@͂͂͂Í.æÅ¥¢YУYУYУÙż¸T4 z4 z4 z4»x äÑ,èÑ,èÑ,èÑìb^\*š=šýÁŠfAf¿ëû„ŠfAfAfAf<š=š=š=š]Ì‹KE³ G³ G³ G³‹yà¨hôhôhôhvñÈ£YУÙÁˆfA‹fÏ—ÝøLÙë•5RÚ‡G/TÑ,xCÍ‚G3TÑ,xTCÍ.æu¦¢Yð(‡*šv¨¢YУYðH‚*š=š]<:RŸŠf#šÚ§¢Yðè}*šâ§¢ÙÅïÆ#ú©h<²ŸŠf{ ˆfAfÁ#ü©h<ŸŠfÁ#ü©hvñè*šħ¢ÙżÎT4 ÙNE³à‘íT4 z4 NE³àèT4 NE³àèD4ûßÿ:}ý+¢YLw ¦+pM6 ¦ Óý‡éúÃtû­ÉòóhÓÕ‡éæÃtñ­ÉšÁtíaºõ0]z˜î¼µžE7¦ oÌãVL×Ýšl;L—¦»ÓU‡iܺ&{Ó=‡éšÃtËaºäÖr–ˆ[jÜúPwÜe¥<Ô÷PwÜCÝquÇ}ðHwÜCÝquÇž±~PvÜCÝquÇ=Ô÷PwÜe¥<Ô÷PwÜCÝquÇ}ðHwèêCÝqêCPj„úP#Ô‡¡~P^ j„úP#Ô‡¡‚¡~°òõ¡F¨5B}¨êåâ¡F¨5B}¨êCP?x ¤*èêCPj„úAyx¨êCPj„úÐ"Ô¸Ú|¾DÞ%üjó¾DƒÕ‡¬>Ô`ô`õƒ2æC Vj°úPƒÕ‡¬Þ¿›ž±ž¿›·>Ô¸õ¡Æ­5ný ¼l<Ô¸ô¸õ¡Æ­5ný`äqëC[jÜúPãÖÊËÆC[jÜúPãVÐãÖÊËÆC[jÜúPãÖ‡·~ðHãÖ‡·>Ô¸õ¡Æ­”—‡·‚·>ü:ò¸õƒò²ñPãÖ‡·>Ô¸õ¡Æ­<Ò¸õ¡Æ­5n=ný ¼l<Ô¸õ¡Æ­5n}¨që4n}¨qëC[jÜúÁ¼ÕDÜ:qëï(âÖæÁ&âÖ‡·>Ô¸õ¡Æ­<Ò¸õ¡Æ­5n=ný`žn"n}¨qëC[jÜúÁ¼ßDÜúPãÖ‡·>Ô¸õƒÇ@·‚·>üê;NÄ­ünÔ¸õ¡Æ­5n}¨qëó’qëC[jÜúÁ¼äDÜúPãÖ‡·>Ô¸õƒyɉ¸õ¡Æ­5n}¨që4n}¨q+ø/[jÜúÁ¼äDÜúPãÖ‡·>Ô¸õƒyɉ¸õ¡Å­ç[‘¼>ÔäõúI,BXÐC؇Â>Ôö¡†°Ì«O„°5„}¨!ìC a?˜G–aj zûPCØö@Â>Ôö¡†°5„ýà¯WŸû¯±ç±5}¨yìùwÜ£ÙæÉ*¢Ù‡Í>Ôhö¡E³÷o˜§´5¥=O<°}¨íC l?(· ‡Ø>ÔÀôÀö¡¶ì<°}¨íC lj`ûÁ¼úD`ûPÛ‡Ø>ÔÀöƒyõ‰Àö¡¶5°}¨í4°}¨íC lj`ûÁ¼úD`ûPÛÁlj`ûÁ¼úD`ûPÛ‡Ø>ÔÀöƒÇ@Ø>ÔÀö¡¶5°ý`^}"°}¨íC lj`ûÁ<²D`ûPÛ‡Ø>ÔÀöƒÇ@Ø>ÔÀÔÀö\mñYµ×öŠìö¡¶¶(Û‡G]íã/ŠÀöáQE`ûÁ¼E`ûð¨Œ"°}xtFØ>ŠÀöƒÇ@G|íÃ#>ŠÀöƒy!ŠÀöáE`ûðˆ"°}xÄGØ><â£l?x tÄGØ><⣠l¿þù/E¶c¾Ç|>³ 8æ pÌ÷ߘ¯¿1ß~ÏlùýX¶c¾úÆ|óùâ{fkfÌ×Þ˜o½1_zc¾óžõ,¾ñÆ|áýX¶c¾îžÙ¶óe7æ»nÌWݘ¶Ïl¯Œùžó57æ[n̗ܳœ¥[Ð[ÐwÜ¢­Ðwè;ôúŽ[<²W?bð%ºùâG ¾Ä÷á`ĸ‹¶A߇ ïCÐ÷!èûpÑÖèû´}xÿV{¢{þVG¸»x ï»s0Â]Ðw'xìÎ wAwAwAwAwíÅôpôpôpwPÃÝû/Fä¼ æ¼çßšˆ|A|A|}]ùͯÌÓ_PÓßûWæA0èAð¢= þ˃`Ѓ`ЃàE{]===õSi?hï( G¾ G¾ G¾ƒù.ö@ù‚ù‚ù‚ú©´´ÐÃ]ÐÃ]ÐÃ]ÐÃÝE{1=ÜŒpôpôpw±ŠpôpôpôpwÑ^L@wAwAw#Ü]´ÐÃ]ÐÃ]ÐÃ]ÐÃÝÅc wAwAwAwíÅôpw0Â]ðë(ÂÝE{1=Ü=Ü=Ü=Ü]<òpôpôpw0ÂÝE{1=Ü=Ü=Ü=Ü]<òpôpôpôpw1o@îþ`…»àWTáîb‚*Ü=Ü=Ü=Ü]<òpôpôpw0ÂÝÅ< U¸ z¸ z¸ z¸»˜w¡ wAwAwAw<ÜŒpüêûP…»‹ßî‚î‚î‚î.þz!:dªœôœÔœ÷úyª"ßA|ïá#ý=ý5ý=‡ ô ô ô ô xñȃ`ЃàÁy z¼˜¢ ‚A‚A‚A‚óBTA0¨ŸvûÐÓ_PÓßö@ù‚ù‚ù‚ù.æ-¨"_Ð#_Ð#_Ð#ßÅ<œTä zä;‘/è‘ïb‘/è‘/è‘/è‘ïb^r*ç=ç5ç}èáîbá.èá.èá.¨ŸvûÁ¼äD¢ûÐc\Ðc\ÐcÜżäTŒ zŒ;1.è1îb1.è1.è1.è1îb^r*Æ=Æ=Æ=Æ]ÌKNŸàW_r*Æ=Æ]<òôôôw1/9ã‚ãþ`Ÿ Ç¸‹yÉ©ôôôwñÈc\Ðc\Ðc\ÐcÜżäTŒ ~EŒ zŒ»˜‡“ŠqAqAqAq<Æ-Æ=|‰ÏÀ½~‰D÷ƒyõ©<:¤ŠqÁ£Dªã‚_Ç@ã‚G“T1.xTIã‚G—T1îâ1Б&UŒ;1.xÔIã‚GŸT1.xJã.~7‘RŸà‘)UŒ»ØEŒ zŒ ¡RŸà*UŒ ¡RŸ‹Ç@ã‚ã‚G|T1îb^g*Æø¨b\ðˆ*Æø¨b\Ðc\ðŠ*Æ ¨b\ðŠ*ÆýãŸïV#Æó8æ+ð™mÀ1_€c¾ÿÆ|ýùö{fËïÇ"ÆóÕ7æ›oÌß3[3c¾öÆ|ëÙÒ«ïÀæ+tÆ7`ï+znߎc¾,ÂÝ1_Ïl3Žùbó½8ækqÌÃÝg¿î ó÷ÞsÞë÷>"ß1ßžc¾<ŸÙîü±Š|Á¯ž¦"ßE[U ïNÐvçù»\é/èuñS7êõ§WŸ¸ úžŒÈwÑö,è{ô= úž}Ï.ÚZ}Ï‚¾gAÛ³÷Ÿ}伋2æù'‘ï`D¾ ïdðØÉù‚ù‚ù‚ù‚ù.þúbrÿ9Dú zú jú{þ!Å'ù.ÚsèŸä zä zä zä»h¯+ ç¼ ’/èá.èáîâ1‡»ƒî‚î‚î.Úë èá.èá.èá.èá®€î‚î‚îF¸»ØE¸ z¸ z¸ z¸»h¯+ ‡» ‡» ‡» ‡»‹öºz¸;á.èá.èáîbá.èá.èá.èá®€î‚î‚îF¸»h¯+ ‡» ‡» ‡» ‡»‹Ç@î‚î‚î‚î.Úë èáî`„»à×1P„»‹öºz¸ z¸ z¸ z¸»x äá.èá.èáî`„»‹öºz¸ z¸ z¸ z¸»x äá.èá.èá.èáîbÞ‹*ÜýÁ wÁ¯¨ÂÝÅ<U¸ z¸ Z¸{~]9y}£ì‘ïoFðôÔô÷!‚àÅ<5U z z z¼˜÷¦ ‚A‚A‚A‚<Œ üê[RÁ‹ßƒƒƒ/æ5©Ò_ÐÓ_Ð?Éw1ïFõI¾ ç¼ ç¼ ’ïb^ˆ*Ü=Ü=Ü=Ü]<òpôpw0Â]ÐÃÝÅôpw1¯>î‚G³Tá.xTKî‚G·Tá.x”Kî.æªÂ]ð¨—*Ü~©Â]ð(˜*Ü=Ü=Ü]<:Ò¤ w#Ü:©Â]ð¾ÎT¸ …R…»‹ßî‚GyTá.x´GîF¸ z¸ ñQ…»àU¸ ™Q…»‹Ç@î‚GPTáî`„»‹y©p<‚¢ wÁ#(ªp<‚¢ wAwÁ#ªp<"¡ wÁ#ªp÷Ï~ÆpwÌwà˜¯Àg¶Ç|Žùþóõ7æÛï™-¿‹pwÌWߘo¾1_|ÏlÍŒùÚó­7æKoÌwÞ³žÅ7Þ˜/¼‹wÌ×Ý3Ûvc¾ìÆ|×ùªó÷™í•1ßsc¾æÆ|Ëù’{–³T` z` úŽ[´•úŽ}Ǿã@ßq‹Ç@¾ã@ßq ï¸ÁˆfmǾã@ßq ï8ÐwÜ¢­Ðwè;ôúŽ[<ò7!,è;î‚G½Tá.xôKî‚GÁTá.x4Lî.S…»ƒî‚GÉTá.x´Lî‚GÍTáîâwã4U¸ IS…»‹=P„» ‡»à5U¸ QS…»à5U¸»x tDMî‚GÔTáîb^g*ܨ©Â]ðˆš*ܨ©Â]ðˆš*Ü]<:¢¦ wÁ#jªp÷ßÿüÇ ÂÝ1ßc¾ŸÙó8æûoÌ×ߘo¿g¶ü~,ÂÝ1_}c¾ùÆ|ñ=ûÿ¿vÌWø2Ó]ß‚ÍWø‚³ýxϦKóüß÷M:æ‹ôÇ"ó5ú̶è˜/Ñ1ß¡c¾BÇ<~fûjÌ÷瘯Ï1ßžc¾<Ÿå,ƒŸK*^´úFu£^û*}Ï.cúž}Ï‚¾g#^´= úž}Ï‚¾gAß³‹¶Ö@Û³÷ßOŠÏ?ÞAßÉ‹Çð¾“#4}'ƒÇN®ÐôÐôÐôÐôÐxÑ^L@AA#4^ì"4=4=4=4^üO£‡Æ ‡Æ ‡Æ ‡Æ‹Ç@Fh zh zh¼h/& ‡Æ Š.蟢 z<¼h/& ÇàÇàÇÃ/ö@ƒƒƒ/Ú‹ èñ0èñ0èñ0èñ𢽘€F< z< z<¼ØE< z< z< z<¼h/& ÇàŠ.è™ð`|Šî¢½˜€ƒƒƒ/y z ú§è‚žþ.þúbr{éï`¤¿à—y~cé®€ù‚ù‚ÿÖ×Ð#ßÅc ÿÄ]Ðs^Ð?qw0ÂÝE{î=Ü=Ü=Ü=Ü]<òpôpôpôpw1ïEîþ`…»àWTáîb*Ü=ÜÿÝw£ w<Ü=Ü=ÜŒpwÑ^L@OtAÿd\Ðc\ÐcÜżõTŒ zŒ zŒ zŒ»x äÙí`d·àWß|*°]ünôÀôÀü÷5¶‹yß©ÀôÀôÀv1/9؂؂؂Ø.æ%§[Ð[Ð[ÐÛÅc lAl#°=°]ÌëL¶ ¶ ¶ ¶‹y©ÀôÀôÀôÀv±ŠÀôÀôÀ´Àöü¦µ²[г[P³Ûë›ÖŠqAqópR1.è1î`ĸ Ç¸‹=Pĸ Ç¸ Ç¸ Ç¸‹yÉ©ôôôw±Šôôôw1/9ã‚ã‚ã‚ã.æ%§b\ÐcÜÁˆqAq{ ˆqAqAqAqó’S1.è1.è1.è1îb^r*Æ=Æ=Æ=Æ]<òôôôw1/9ã‚ãþ`Ÿ Ç¸‹Ö¾‚ã‚ã‚ã‚ã.yŒ zŒ zŒ zŒ»˜×™ŠqAqAqAqóR1.è1.è1.h1îù½S|¶îõP$º=ÆŒôw1/9ã‚G‡T1.x”Hã‚G‹T1.xÔHã.æ%§b\ð(’*Æ&©b\ðè*ÆÖ¨bÜÅc #!ªw0b\ð¨ˆ*Æލb\ð(‰*Æ]ün<ÿ|*»uK^Bゾ;#Æ]üuwÞ¿2OtÏá#Ü}Ï‚¾gm­¾gAß³ ïYÐ÷ìâ1ïÙÁwAß³à±g+Ü=Ü=Ü=Ü=Ü]´WÐÃ]ÐÃ]ÐÃÝÁw{ wAwAwAwíôpôpôpôpwñÈÃÝÁwAwAwíôpôpôpôpwÑ^A@wAwAw#Ü]ì"Ü=Ü=Ü=Ü]´WÐÃ]ÐÃ]ÐÃ]ÐÃÝE{=ÜŒpôpôpw±ŠpôpôpôpwÑ^A@wAwAw#Ü]´WÐÃ]ÐÃ]ÐÃ]ÐÃÝÅc wÁ¿ôôpôpwÑ^A@w#Ü¿Ž"Ü]´WÐÃ]ÐÃ]ÐÃ]ÐÃÝÅc wAwAw#Ü]´— ÐÃ]ÐÃ]ÐÃ]ÐÂÝû{þÈyAÍyÏ"ò=òý“qóTŸŒûƒõɸàWTŸŒ»˜‡ úd\Ð[Ð[ÐÛó·²[P³Ûë×cÜߌ ‰îù¿áîbžš*Ü=Ü=ÜýwóÞT‰.øW_œ*Æ=Æ]<òw0b\ð«oIã.~7zŒ zŒ zŒ zŒ»˜×¤ŠqAqAqónT1.è1.è1.è1®€ã‚ã‚ã‚ã.yŒ zŒ;1.è1îb^}*Æ=Æ=Æ=Æ]Ì«OŸ Ç¸ Ç¸ Ç¸‹=Pĸ Ç¸ Ç¸ Ç¸‹yõ©ôôôw1,ã‚ãFŒ zŒ»ØEŒ zŒ zŒ zŒ»˜WŸŠqAqAqAq{ ˆqAqAqAqóêS1.è1.è1.è1îb^}*Æ-ƽ¿ŒDÔD÷üî2Â]ÐÃ]ÐÃ]ÐÃ]ÐÃÝżU¸ z¸ z¸ z¸»˜¢ wAwAwAw<Ü=Ü=Ü=Ü]Ì Q…» ‡»?Xá.èáîb^ˆ*Ü=Ü=Ü=Ü]<òpôpôpôpw1/Dî‚î‚î‚î.æé¥Â]ÐÂÝó?¢ñ9¼×'#çýà1¼‡» ‡»ƒî‚î.æ…¨Â]ðh–*Üj©Â]ðè–*Ür©ÂÝżU¸ õR…»àÑ/U¸ S…»àÑ0U¸»x tdLîF¸ %S…»àÑ2U¸ 5S…»‹ßGºTá.xdJî.ö@î‚î‚G¨Tá.x„Jî‚G¨TáîÿQrGY’·bD×Ô6)5÷¿1›…HÔ# é÷ÝÓHÎ jáZ<úwN*Üø¨ÂÝżäT¸ AQ…»àU¸ AQ…»àU¸»x tEî‚GPTáî_ÿáî˜ïÀ1_ÏlŽùóý7æëoÌ·ß3[~‹pwÌWߘo¾1_|ÏlÍŒùÚó­7æKoÌwÞ³žÅ7Þ˜/¼E¸;æëî™m»1_vc¶ëêãðü„/À1ÏyŸÉ¶‰OÑó¾Ç|%ŽùFó…øÌöáÇ*Ü=Ü}.Úú}‚¾A߇ ïÃÅc ߇ ïCÐ÷á`ĸ‹¶A߇ ïCÐ÷!èûpÑÖèûô}ú>}.ù>ŒÀô}û°[Ð[Ð[Ð[ÐÛE{Ùÿ­/ ¶ ¶ƒØ.ö@؂؂؂Ø.ÚËè-è-è-èíâ1¶ƒØ‚Ø‚Ø.ÚËè-è-è-èí¢½l€ÿÖ— Ð[ÐÛÁl{ lAlAlAlíµôÀôÀôÀôÀvÑ^+@l#°=°=°]ì"°=°=°=°]´× Ð[Ð[ÐÛÁlíµôÀôÀ´ÀöüÜ]Ùíâ1¦f·×GïŠqAqAqíeôw0b\ðç(bÜE{Ù=Æ=Æ=Æ=Æ]<òôôw0bÜE{­=Æ=Æ=Æý[t,»½_Ev zv jv{þ¾Šô÷ƒÿÛ·èò#?=|%º‹rò¹þÉ*Ü=Ü=Üý›qó2Uߌ ú7ã‚þ͸ƒØ.æI¨[Ð[Ð[ÐÛż U` z` z` z`»x äí`¶àOß|*°]ümôÀôÀôÀôÀv1¯>؂؂Ø.æÕ§[Ð[Ð[ÐÛżúT` z` z` z`»x ä-èí`¶ ¶‹yõ©ÀôÀôÀôÀv1¯>؂؂؂Ø.ö@؂؂؂Ø.æÕ§[Ð[Ð[ÐÛÅ<²T` z`;-èíb-è-è-èíb^}*°=°=°=°]ì"°=°=°=°]Ì«O¶ ¶ ¶ ¶‹yõ©Àôo»Œ”ôo»]ì"š=š=š=š]Ì«OE³ G³ G³à_}d©hv0¢YУYУYУÙÅc fAfAfAfó¾SÑ,èÑì+š=š]ÌKNE³ G³ G³ G³‹Ç@͂͂͂õ%§¢ÙÁˆfAfAfAfópâÑìy^ˆïÀ½Ž‘Ò>ôhvñÞ£YУÙÁˆfAfó’SÑ,xôBÍ‚G1TÑ,x4CÍ‚G5TÑìb^g*šr¨¢Yðh‡*šz¨¢Yðè‡*š]<:¢Šf#šЍ¢Yðèˆ*šf¨¢ÙÅ߯#ªh<¡Šf{ ˆfAfÁ#ªh<"¡ŠfÁ#ªhvñ舄*šH¨¢ÙżÎT4 ‘PE³à U4 ‘PE³à U4»x tDBÍ‚G$Ñ쟟ϜÍbº1[ñ9eBö¢Lá'tYbº+1]•˜nÊ5Y”cØbº&1Ý’˜.É5YI˜®HL7$¦ Óý¸Ö³èvÄt9Žy`‹éj\ûçf<Ýyv‹é¶¼~Mzv‹iv»&û Óý‰éúÄt{bº<×r–lj`ûPwçeU=ÔÝùPwçCÝuw~ñHwçCÝuw‚Ø~QvçCÝuw>ÔÝùPwçeU=ÔÝùPwçCÝuw~ñHw'èíCÝÝíC lj`ûPÛ‡Ø~Q^6j`ûPۇ؂Ø~±òÀö¡¶5°}¨íåeã¡¶5°}¨íC l¿x ¤-èíC lÏ=Ùíµ #Æ}¨1îCqjŒûPcÜ/Ê+ÈCqjŒûPc\ÐcÜ/ö@ã>Ô÷¡Æ¸5Æý¢¼‚<Ô÷¡Æ¸5Æ}¨1îå䡯¸ Ç¸5Æ}¨1î{ qjŒûPc܇ã~Q^AjŒûPc܇ã‚ã~Q^AjŒûPc܇úm·5»ýâ1f·5°}¨íC l¿(¯ 5°=°}øs äíåä¡¶-°½7‰g·5»=׌Ǹ5Æ}¨1îCqAq¿(¯ 5Æ}¨1îCqjŒûÅc ý܇šÝ>Ôìö¡f·_”kÏC lãÛnþô@‘Ò~1;Í>Ôhö¡F³5šýâ1F³5š}¨Ñ,èÑìóÌãÑìù§@¤´5¥}¨)íõGD¶5°}¨íC lj`ûÅc lAlþôÍ'Û/þ6j`ûPÛ‡Ø>ÔÀö‹yõ‰Àö¡¶5°ýb^}"°}¨íC lj`ûżúD`ûPÛ‡Ø>ÔÀö‹Ç@Ø>ÔÀôÀö¡¶_Ì«O¶5°}¨íC l¿˜WŸlj`ûPÛ‡Ø~±úSÛ‡Ø>ÔÀö¡¶_Ì«O¶5°}¨íC l¿˜G–lZ`{ï=ÏnjvûEóÜ{ã>Ô÷¡Æ¸5Æýb^}"Æ}¨1îCqjŒûÅÈc܇ã>Ô÷¡Æ¸_Ì«Oĸ5Æ}¨1îCq¿˜WŸˆqjŒ zŒûPcÜ/ö@ã>Ô÷¡Æ¸5Æýb^}"Æ}¨1îCqjŒûżúDŒûPc܇ã>Ô÷‹Ç@ã>Ô÷¡Æ¸5Æýb^}"Æ}¨1î`ĸ5Æýb^}"Æ}¨1îCqjŒûÅc qjŒûPc܇ã~1/9ã>Ô÷¡Æ¸5Æýâ?'ç~ïµ½¶t$º5Æ}¨1îóê1îCqAqjŒûżúDŒûðè"Æ}¨1î޾(b܇Ga1îóê1îã2Š÷áÑEŒûð("Æ}x´Fã~ñèÈ"Æ=Æ}xGã><ꢈq%Qĸ_ümÑ옯¾1ß|c¾øžÙšóµ7æ[oÌ—Þ˜ï¼g=‹o¼1_x‹hvÌÖ]}"~?!;0>ÏOøbó½8ækqÌÛg¶ƒÆ|'ŽÙJ¼ÿ]øžÓ5yþ{òÝù±ŠqAqAß‹¶ª@ß ïNÐw'è»sñÈw'è»ôÝ91î¢íNÐw'è»ôÝ úî\´Uúî}w‚¾;Aß‹Ç@¾;#°}w‚Çî¬ÀôÀôÀôÀôÀvÑ^A@lAlAl#°]ìâlAÿ[УYУÙE{=š=š=šýl<Œo°=„=„]´WÐCXÐCXÐCXÐCØE{=„=„=„Œv±úÓCXÐCXÐCXÐCØE{Ù=„=„=„=„]´— ÐCØÁaAaAa{ aAaAaAaíeôôôv0BØE{Ù=„=„=„=„]<òôôôvÑ^6@a#„Ž"„]´— ÐCXÐCXÐCXÐCØÅc aAaAa#„]´× ÐCXÐCXÐCXÐCØÅc aAaAaAaóVS!ì+„z  aó`S!,è!,è!,è!ìâ1‡° ‡° ‡°ƒÂ.æé¦BXÐCXÐCXÐBØódQy,¨yìu´¨hôhôhvñÓ£ÙÁˆfÁŸ¾ØT4»øÛèÑ,èÑ,èÑ,èÑìb^g*š=š=š]ÌëLE³àÏ1PD³ G³‹y©hôhôhôhvñÈ£YУÙÁˆfAfó:SÑ,èÑ,èÑ,èÑìb^g*š=š=š=š]ì"šúRÑ,èÑìb^g*š=š=š=š]ÌcHE³ G³ƒÍ‚Í.ö@͂͂͂Í.æu¦¢YУYУYТÙ{ùGJ;)-øc7›ó“A¶ ¶‹yÉ©ÀôÀôoš=¥]ÌKN}Ó,èÑì`D³ G³‹=PD³ G³ G³ G³‹yÉ©hôhôhôhv1/9͂͂͂Í.y4 z4 z4 z4»˜—œŠfAf?XÑ,èÑìb^r*š=š=š=š]<òhôhôhôhv1/9͂͂͞›$¾öÚ‘Ò>ôhôhôhôhvñÈ£YУÙÁˆfAfóêSÑ,xôBÍ‚G1TÑ,x4CÍ‚G5TÑìb^}*šr¨¢Yðh‡*šz¨¢Yðè‡*š]<:¢Šf#š=š]üm<Ú ŠfÁ£ªhvñ·ñ„*š¨¢ÙÅ(¢YУYð*šð§¢Yð*š]<:ŸŠfÁ#ü©hv1/9Í‚GøSÑ,x„?Í‚GøSÑ,x„?Í.áOE³àþT4ûy±ŒhvÌwà˜¯Àg¶Ç|Žùþóõ7æÛïÙ?—_}Lûü„§´ñ)m~Â×ä˜oÉ1_’Ïl%ùŠó 9æ rÌ÷㳞ŷã˜-Çóß}d·cº0¯ÿ.ñ ¶c¾DÇ|‡Žù óÀö™í«1ߟc¾>Ç|{Žùò|–³T4 z4 úî\´Uúî}w‚¾;Aß‹Ç@¾;Aß ïÎÁˆfmw‚¾;Aß ïNÐw碭*Ðw'è»ôÝ úî\<òÝ9Ñ,è»RV` z` z` z`»h¯  ¶ ¶ ¶ƒØ.Ú+è-è-è-ø‡¾‚,y` z` z` z`»h¯  ¶ƒØ‚?Ç@Ø.Ú+è-è-è-èíâ1¶ ¶ ¶ƒØ.ÚËè-è-è-øÇ5¶ ¶ ¶ ¶ ¶‹yשÀöƒØ‚?=P¶‹ö²z` z` z` z`»x ä-è-èí ¶çÞ‹ìöÚ{ã‚ã‚ã‚ôɤ²[п•ôÀôÀôÀvñÈÛÁlÁŸ¾ãT`»øÛè-è-è-èíb^r*°=°=°]ÌKN¶ ¶ ¶ ¶‹yÉ©ÀôÀôÀôÀvñÈ[ÐÛA lï?y<»=ÿ䉴÷?Œà‰.¨‰î=Ÿ‡»‹y!ªpôpôpôpw±Špôpôpôpw1/Dî‚î‚î‚î.æA¦Â]ÐÃÝÁwAw{ wAwAwAwóBTá.èá.èá.èßv»ØE¢ j¢ûÐc\ÐcÜżUŒ zŒ zŒ zŒ»˜¢ŠqAq#Æ=Æ]ì"Æ=Æ=Æ=Æ]Ì“UŸ Ç¸ Ç¸ Å¸÷öòD÷\Pî‚î‚î‚î.æÉªÂ]ÐÃ]ÐÃ]ÐÃÝżU¸ z¸ûÁ wAwóBTá.èá.èá.èáîâ1‡» ‡» ‡» ‡»‹y!ªp´p÷ü}ß{ý¾Šœ÷‹y¼©pôpôpôpwñÈÃ]ÐÃÝÁwAwóšTá.x4Kî‚GµTá.xtKî‚G¹Táîb^“*Ü"©Â]ðh’*Ü*©Â]ðè’*Ü]<:Ò¤ w#Ü=Ü]Ì Q…»àU¸ z¸»øÛx„Gî‚GzTáîbá.èá.xÄGî‚G|Tá.xÄGî.ñQ…»àU¸»˜¢ wÁ#>ªp<⣠wÁ#>ªp<⣠wŽø¨Â]ðˆ*ÜýóïÓF„»c¾Ç|>³ 8æ pÌ÷ߘ¯¿1ß~Ïlù},¾ívÌWߘo¾1_|ÏlÍŒùÚó­7æKoÌwÞ³ÎRŸmç'|ŽéŒ½ŸŸˆDwÌWã3ÛŒc¾Ç|/ŽùZó÷™í 1߉c¾Ç|#ŽÙB<ÿ›E¢û±JtAMt¯ÿ¢î.Úª}w‚¾;Aß ïÎÅc ß ïNÐwç`„»‹¶;Aß ïNÐw'è»sÑVè»ôÝ úî}w.ùîŒpôÝ Úî<ÏUÎ jÎ{þ¾ÒÈ÷?Œàé/èé£Üóy z z<Að¢=÷€ƒƒƒ/Úë èA0èA0èA0èAðâ1Áƒƒƒ/Úë èA0èA0èA0èA𢽮€ƒƒF¼ØE z z z¼h¯+ Á Á Á Á‹öºz<A0èA0èߢ»ØEä zä zä zä»h/& G¾ G¾ G¾ƒù.Ú‹ è‘/è‘/è‘/ø‡¾˜,yä zä zä zä»h/& G¾ƒù‚?Ç@ù.Ú‹ è‘/è‘/è‘/è‘ïâ1G¾ G¾ G¾ƒù.Ú+è‘/è‘/è‘/øÇ5G¾ G¾ G¾ G¾ G¾‹yªÈ÷ƒù‚?=PE¾‹yªÈôÈôÈôÈwñÈ#_Ð#_Ð#ßÁøÝÅHÅwà^ÏJ‘Ò>ôhv1!͂͂͂Í.y4 z4;Ñ,èÑìb^g*š^¨¢Yð(†*šf¨¢Yð¨†*š]ÌëLE³àQU4 íPE³àQU4 ýPE³‹Ç@G,TÑì`D³àQU4 mPE³àQU4»øÛxBÍ‚G"TÑìbÑ,èÑ,x„?Í‚GøSÑ,øç5ÐþT4 áOE³àþT4»˜×™ŠfÁ#ü©h<ŸŠfÁ#ü©h<ŸŠfŽð§¢Yð*šý×ߌD4;æ;pÌWà3Û€c¾Ç|ÿùúóí÷Ì–ßÇ"šóÕ7æ›oÌß3[3c¾öÆ|ëùÒ³WnßOü÷_ƒ2?áÛqÌ—ãÇ"šóÕøÌ6ã˜/Æ1ß‹c¾Ç<š}f;hÌw☯Ä1߈c¾Ÿå,•Ç‚–Çž¿J"½~™T4 Úîü#èF½Gð= úž]<†÷= Úžýÿd¾}=»=ÿ±#Æ}'ƒ¾“AÛÉ÷?Y$º‹²ï2ßß ïoÐ÷7èû{Ñö7èû{0Â]Ð÷7xìïJtAÿÆ]пqüóȳÛE{]=°=°=°ŒÀv±ŠÀôÀôÀôÀvÑ^W@lAlAlAl<°ŒÀôÀôÀvÑ^W@lAlÁ?õuôÀvÑ^W@lAlAl#°]ì"°=°=°=°]´×Ð[Ð[Ð[ÐÛE{]=°ŒÀôÀôÀv±ŠÀôÀôÀôÀvÑ^W@lAlAl#°]´×Ð[Ð[Ð[ÐÛÅc lAlAlAlíuôÀv0[ðç(ÛE{]=°=°=°=°]<òÀôÀôÀv0ÛE{1=°=°=°=°]<òÀôÀôÀôÀv1ïEØ~°[ð§ªÀv1F؂؂؂Ø.y` z` z`;íbž²*°=°=°=°]Ì»P¶ ¶ ¶ ¶‹Ç@ØF` þô}¨ÛÅßFlAlAlAlíÅôÀôÀôÀv1/9؂؂؂Ø.æu¦[Ð[Ð[ÐÛÅc lAl#°=°]Ì‹K¶ ¶ ¶ ¶‹yq©ÀôÀôÀôÀv±ŠÀôÀôÀôÀvñŸ—ó6XÙ-èÙ-¨Ùíu8¬w1!ã‚ãFŒ zŒ»ØEŒ zŒ zŒ zŒ»˜×™ŠqAqAqAq{ ˆqAqAqAqó:S1.è1.è1.è1îb^g*Æ=ÆŒôw±Šôôôw1¯3ã‚ã‚ã‚ã.æu¦b\Ðc\Ðc\ÐcÜÅc qAqAqAqó:S1.è1î+Æ=Æ]ÌëLŸ Ç¸ Ç¸ Ç¸‹Ç@ÿºòôôwñŸ×™ó“A|¯íµß#Ñ}è1.è1îbN*Æ=Æ=Æ=Æ]<òôw0b\ÐcÜżäTŒ RŸàQ"UŒ þ«/9ã‚GT1îb^r*Æ"©b\ðh’*Æ*©b\ðè’*Æ]<:r£Šq#Æâ¨b\ðhŽ*Æê¨bÜÅ߯õ%§b\ðH*Æ]ì"Æ=Æ=Æ]ÌKNŸ Ç¸à UŒ»x tDBã‚GT1îb^r*Æð§b\ðH|*Ƙ§b\ðˆy*Æ]<:bžŠqÁ#æ©÷óQ6bÜ1ßc¾ŸÙó8æûoÌ×ߘo¿g¶ü>1¾1ß|c¾øžÙšóµ7f[¯>ÁÎOø*ÓMnßOôܾÇ|9~,bÜ1_Ïl3Žùbó½8ækqÌcÜg¶ƒÆ|'ŽùJó8æ ñYÎR1.¨ßUûÐ÷᢭Ð÷!èû´}xþr¯”vQƼ~ÁW` úî}wÆ7Ø.Úî}w‚¾;Aß ïÎE[U ïNÐw'h»óþÏyìâ_ñò#¾g#š}ςǞ­hôhôhôhôhvÑUУYУYУÙÁˆf{ ˆfAfAfAfíôhôhôhôhvñÈ£ÙÁˆfAfAfíôhôhôhôhvÑ^A@fAfAf#š]ì"š=š=š=š]´WУYУYУYУÙE{=šŒhôhôhv±Šhôhôh´hö^Š‘Ò‚žÒ‚šÒž3ÛÁlíÅôÀôÀôÀôÀvñÈ[Ð[Ð[ÐÛE{1=°ŒÀü9ŠÀvÑzVÐ[Ð[Ð[ÐÛÅc lAlAl#°]´WÐ[Ð[Ð[ÐÛÅc lAlAlAlóTí+°z  lóT-è-è-èíâ1¶ ¶ ¶ƒØ.æ™§[Ð[Ð[ÐÛżõT` z` z` z`»x äí`¶àOß|*°]ümôÀ´ÀöüÀQÙ-¨Ùíõ™¢b\Ðc\Ðc\ÐcÜÅã‚ã‚ã‚ã.æÕ§b\ÐcÜÁˆqAq{ ˆqAqAqAqóêS1.è1.è1.è1îbÞw*Æ=Æ=Æ=Æ]<òôôôwñ·Ñc\ÐcÜVŒ zŒ»˜—œŠqAqAqAq<Æ=Æ=Æ-Æ=·W|_"Ñ}è1.è1.è1îbY*Æ=Æ=Æ=Æ]<òôw0b\ÐcÜżúTŒ RŸàQ"UŒ -RŸàQ#UŒ»˜WŸŠqÁ£Hª<š¤ŠqÁ£Jª< ¤ŠqŽÜ¨bÜÁˆqÁ£8ª<š£ŠqÁ£:ªwñ·ñ*Æô¨bÜÅ(b\Ðc\ðˆ*Æø¨b\Ðc\ðÈŒ*Æ ¨b\ðŠ*Æ]ÌKNŸàUŒ AQŸàUŒ zŒ éPŸà UŒ ‘PŸý}½ˆwÌwà˜¯Àg¶Ç|Žùþóõ7æÛï™-¿EŒ;æ«oÌ7ߘ/¾g¶fÆlíÕGØù Ý…ñ v~Âä˜ïÇg=·oÇ1_Ž‹wÌWã3ÛŒc¾Ç|/ŽùZó÷™í 1߉c¾Ç|#ŽùB|–³TŒ zŒ Ú><YV¢ ê–¼~ÑV¸ úî}w.cúî}w‚¾;#Æ]´Ý úî}w‚¾;Aß‹¶ª@ß ïNÐw'è»sñÈwç`¶ ïNðØØ‚Ø‚Ø‚Ø‚Ø.Ú+è-è-èí`¶‹=P¶ ¶ ¶ ¶‹ö z` z` z` z`»x äí`¶ ¶ ¶‹ö²Z`{ïÏnÏ?ò#Æ=Æ]´WÐc\Ðc\ÐcÜÁˆq{ ˆqAqAqAqíôôôôwÑ^A@q#Æ=Æ=Æ]ì"Æ=Æ=Æýlíôìôo°-°½/Gv»(o#çoôˆqAqAqAqí ôôô´÷?ü«öDôDwÐÝó¿C„» ‡»‹ÖÉ‚î‚î‚î‚î.y¸ z¸ z¸;á˜€î‚î‚î‚î.y¸ z¸ z¸ z¸»˜÷¢ w?Xá.øÓU¸»˜G£ wAwAwAw<Ü=Ü=ÜŒpw1OBî‚î‚î‚î.æ]¨Â]ÐÃ]ÐÃ]ÐÃÝÅc w#Üú>Táîâo£‡» 3.è‰.èߌ»h/& Ç¸ Ç¸à_}õ©w0b\Ðc\Ðc\ÐcÜżúTŒ zŒ ZŒ{~à¨DwQƼ>ST¸ Z¸{Ïç9ï9BD¾‹yMªÈôÈôÈôÈw1¯Iù‚ù‚ù‚]yä;‘/è‘/è‘/è‘ïb^“*ò=ò=ò=ò]ÌãME¾ G¾ƒù‚ù.ö@ñ-º ç¼ ç¼ ‹îb^“*Ü=Ü=Üÿºòpw0Â]ÐÃ]ÐÃ]ÐÃÝżU¸ z¸ z¸ z¸»˜¢ wAw#Ü=Ü]ì"Ü=Ü=Ü=Ü]Ì Q…» ‡» ‡» ‡»‹y!ªpôpôpôpwñÈÃ]ÐÃ]ÐÃ]ÐÃÝżúT¸ z¸ûÁ wAwó¾Sá.èá.èá.èáîâ1‡» ‡» …»ç'½ønÝë“^ä¼`„» ‡» ‡» ‡»‹yd©pôpôpôpwñÈÃ]ÐÃÝÁwAwóêSá.x4Kî‚GµTá.xtKî‚G¹Táîb^}*Üz©Â]ðè—*Ü=Ü=Ü.©ÂÝÅc #Mªpw0Â]ð¨“*Ü>©Â]ð(”*Ü]üm<"¥ wÁ#Sªpw±Špôpôpw1¯>î‚G|Tá.xÄGî‚G|Tá.xÄGî.æªÂ]ðˆ*Üø¨Â]ðˆ*Üø¨ÂÝÅc #>ªp<â£wÿÿ«ÿÿg©‡»˜î@LWàšl@L ¦ûÓõ‡éö[“å7æá.¦«Ó͇éâ[û皉ϰü„.Cìwù ]˜îÇ5Y˜nGL—㘇»˜®Æ5ÙŒ˜.FL÷"¦kÓpwMv¦;Ó•ˆéFÄt!®å,î>Ôp÷áÿî~D–ÒCÝ’uK^¿¢#Ü}¨»ó‹Ç˜º;êî|h»óþæ9ïÿë“÷#¶gÿú}êö½GÐüEYu'?ÔüPwòCÝÉ_<Ò züPwòÃc'GüPƒà‡?Ô ø¡Á_”“‡?Ô ø¡Á Á_ì<~¨AðC ‚jüEy1y¨AðC ‚jüPƒà/i züPƒà‡Q^Lê7î>Ôô÷¡F¾5òý¢¼˜<ÔÈ÷¡F¾5ò=òýbä‘ïC|jäûP#ß/Ê‹ÉC|jäûP#߇ù~Q^Ljä zäûP#߇ù~±òÈ÷¡F¾5ò}¨‘ïåÅä¡F¾5ò}¨ß¢ zÎûEy1y¨áîC wj¸ûPÃÝ/i¸ûPÃ݇î>ÔoÑý¢¼˜<ÔDôD÷áÏ1Ǹ_”W‡ã>Ô÷¡Æ¸5Æýâ1Ƹ5Æ}¨1.è1îå䡯¸5Æ}¨1îCq¿x ¤1îCqjŒûPcÜ/æ (bÜÁˆqþô@ã~1Aã>Ô÷¡Æ¸5Æýâ1Ƹ5Æ}¨1.è1îóÌ1îCqjŒûPcÜ/æ­'b܇ã>Ô÷¡Æ¸_<Òô÷áOß|"Æýâo£Æ¸5Æ}¨1îCq¿˜÷ˆqjŒûð¯¾äDŒ zŒûPc܇ã>Ô÷‹r³y¨1îCqþ1îûq¯ÓM$º-Æý#èwë‚ÿKŒû~DcÜ/æ%'b܇ã>Ô÷¡Æ¸_ÌKNĸ5Æ}¨1îÿ®4Æ=Æ}¨1îCqjŒûżäDŒûPc܇ã>Ô÷‹y8‰÷¡Æ¸à¿4Æ}¨1î{ qjŒûPc܇ã~1/9ã>Ô÷¡Æ¸ÿºÒô÷¡Æ¸5Æ}¨1îó’1îCqjŒûPcÜ/æ%'b܇ã‚ã>Ô÷‹=Ǹ5Æ}¨1îCq¿˜—œˆqjŒûPc܇ã~1/9ã>Ô÷¡Æ¸5Æýâ1Ƹ5Æ}¨1îCq¿˜—œˆqjŒ;1îCq¿˜—œˆqjŒûPc܇ã~ñHc܇㞟ôâ»u¯s‘è~1¯>ã>Ô÷¡Æ¸5ÆýbY"Æ}¨1îCqjŒûÅc qjŒ zŒûPcÜ/æÕ'b܇G‡1îãDŠ÷áÑ"EŒûð¨‘"Æýb^}"Æ}xIã><š¤ˆqýQĸÖ(bÜ/¹Qĸ Ç¸â(b܇Gs1îã:Š÷‹¿Gx1îÃ#=Š÷‹=Ǹ5Æ}¨1îóê1îCÍŒAQĸ_<:‚¢ˆqjŒ þëH‡"Æ}¨1îÃ#Š÷áþDŒûð"Æ}x„?ã~ñè"Æ}x„?ã~B#Æó8æ+ð™mÀ1_€c¾ÿÆ|ýùö{fËïcãŽùê³ÍWTç'|>“åŸaç'|EŽù†ó9æûñ™­Ç1ߎc¾?1Æg¶Ç|1Žù^óµ8æ1î3ÛAc¾Ç|%ŽùFó…ø,g©ôô}¸hëô}ú>}‚¾|‚¾A߇ƒ‘Ò.Ú>}‚¾A߇ ïÃE[? ïCÐ÷!èûô}¸x äûpPCØóOáÊcÁcKF{ý!]Ñ,èÑ,èÑ,èÑ좽l€Í‚Í‚ÍF4»ØE4 z4 z4 z4»h/ G³ G³ G³ G³‹Ç@ÍF4 z4 z4»h/ G³ G³ G³ G³‹ö²z4 z4 z4;ÑìbÑ,èÑ,èÑ,èÑ좽l€Í‚͂͂Í.ÚËèÑìà¿<š=š=š]ì"š=š=š=š]´— УYУYУÙÁˆfíeôhôhôhôhvñÈ£YУYУYУÙE{Ù=šŒhü9ŠhvÑ^+@fAfAfAf<š=š=šŒhvÑ^+À}­=š=š=š]<òhôhôhôhvñŸ·šûSt¤´Œ”öú \-èíbw*°=°=°=°]<òÀôÀ´ÀöüÙíùß!b\ðç>b\Ðc\ÐcÜżõTŒ zŒ zŒ zŒ»x ä1î`ĸàOß|*Æ]ümôôôôw1¯>ã‚ã‚ã.æÕ§b\Ðc\Ðc\ÐcÜżúTŒ zŒ ZŒ»¨ÙíôÛnzJ;¨)íýÇR¤´‹y Š”öü-[Ð[ÐÛEëYAlAlAlAl{ lAlAlAlóêS-è-è-èíbY*°=°ü—¶ ¶‹=P¶ ¶ ¶ ¶‹yõ©ÀôÀôÀôÀv±ŠÀôÀôÀôÀv1¯>؂؂؂Ø.æÕ§[ÐÛÁlAl{ lAlAlAlóêS-hí½Ú"»=»]”[йÚ"Æ=Æ=Æ=Æ]Ì“UŸ Ç¸ Ç¸ Ç¸‹y!ªô÷ƒã‚ã.æ…¨b\Ðc\Ðc\ÐcÜÅc ‹qÏ_ãñ}¹×¯ÔHtzŒ»˜×¤ŠqAqAqAqóxS1.è1.è1.è1îâ1Ǹ Ç¸ƒã‚ã.fùS1.xtHã‚G‰T1.x´Hã‚GT1îb^ˆ*Æ"©b\ð¨*ÆÒ¨b\ðh*Æ]<:r£Šq#Æâ¨b\ðhŽ*Æê¨bÜÅ߯#<ª<Ò£Šq{ ˆqAqÁ#>ª<⣊qÁ#>ªwñèˆ*Æø¨bÜżúTŒ ñQŸàUŒ ñQŸàUŒ»x tÄGã‚GfT1îÿùûb1î˜ïÀ1_ÏlŽùóý7æëoÌ·ß3[~‹wÌWߘo¾1_|ÏlÍŒùÚó­7æKoÌwÞ³žÅ7Þ˜/¼E`;æëî™m»1_vc¾ëÆ|Õy`ûÌöʘï¹1_sc¾åÆ|É=ËY*°=°}Ç-ÚJ}Ƕãêïvüˆn¾ø»?âûpñÞ÷!èûô}81î¢íCÐ÷!èûô}ú>\´õú>}‚¾A߇‹Ç@¾ã[iA߇à±ë[iAlAlAlAlíe´ÀöþMÙ-¨Ùíù;2bÜÅ>b\Ðc\Ðc\ÐcÜE{=Æ=Æ=Æ=Æ]<òw0b\Ðc\ÐcÜE{=Æ=Æ=Æ=Æ]´WÐc\Ðc\ÐcÜÁˆq{ ˆqAqA‹qïßËžèž¿]#Ü=Ü=Ü=Ü=Ü]´ÐÃÝÁwAwAw{ wAwAwAwíôpôpôpw0ÂÝE{ôôpôpôpwñÈÃ]ÐÃ]ÐÃ]ÐÃÝE{=ÜŒpü9ŠpwÑ^6@wAwAwAw<Ü=Ü=ÜŒpwÑ^6À}Ù=Ü=Ü=Ü]<òpôpôpôpw1ï:•è~°¾íüé*Æ]ÌãNŸ Ç¸ Å¸ç"ŽD÷ZÄî‚î‚î‚þ͸ƒñ͸‹yªôôôw1ïBã‚ã‚ã‚ã.yŒ;1.øÓ÷¡Šq=Æ=Æ=Æ-ƽwx¢{þîˆpôp´p÷?Ìç9ï ç¼çðù‚ù‚ù.æ5©"_Ð#_Ð#_Ð#ßÅc |A|ýûrzλ˜×¤úf\ÐÃ]ÐÃ]ÐÃÝż&U¸ z¸ z¸ z¸»ØE¸ z¸ z¸ z¸»øW£‡» ‡» ‡» ‡»‹y©pôpw0Â]ÐÃÝÅè_î‚î‚î‚î.æ…¨Â]ÐÃ]ÐÃ]ÐÃÝÅ(Â]ÐÃ]ÐÃ]ÐÃÝÅ^ˆîä9ï¹f"ò=ò=ò]Ì QE¾ G¾ƒù‚ù.ö@ù‚ù‚ù‚ù.æ…¨"_пEôœôœw1/Dî‚î‚î‚î.y¸ z¸ z¸ z¸»˜¢ wAw?Xá.èáîb^ˆ*Ü=Ü=Ü=Ü]üç@çŸYñݺןY‘ó>ôpôpw1¯Iî‚î‚î‚î.æñ¦Â]ÐÃ]ÐÃ]ÐÃÝÅc wAw#Ü=Ü]ÌkR…»àÑ,U¸ ÕR…»àÑ-U¸ åR…»‹y!ªp<ê¥ wÁ£_ªp< ¦ wÁ£aªpwñèȘ*ÜŒpèßä zR ú7ùF<¼ØE< z< z< z<¼h/1 ÇàÇàÇàÇËÇ@F< z< z<¼h/1 ÇàÇàÇàÇËÖꂃƒF<¼ØE< z< ú7ù‚þM¾‹öºz z z z¼h¯+ Áƒƒƒ/ö@ƒƒƒ/Úë èA0èA0èAð`Á‹öºz z z z¼x äA0èA0èA0èAð¢=÷€F þE¼h/& Á Á Á Á‹Ç@ƒƒF¼h/& Á Á Á Á‹Ç@ƒƒƒ/潨‚àV þô@/æÑ¨‚`Ѓ`пôoç]<òÈôÈôÈw0"ßE{1=ò=ò=ò=ò]Ì[OE¾ G¾ G¾ G¾‹Ç@ùFä þôͧ"ßÅßF|A|A|AÿÆÝżÙT¸ z¸ ú7î.æu¦¾qôôôwÑ^L@qAqAqAq<Æ=ÆŒôw1/.ã‚ã‚ã‚ã.æÅ¥b\Ðc\Ðc\ÐcÜÅ(b\Ðc\Ðc\ÐcÜż¸TŒ zŒ zŒ zŒ»˜ŽŠqAq#Æ=Æ]ìþå1.è1.è1.è1îb^\*Æ=Æ=Æ=Æ]ì"Æ=Æ=Æ=Æ]Ì‹K}‹.è-è-èíb^\*°=°ŒÀôÀv±ŠÀôÀôÀôÀv1/.؂؂؂Ø.æÅ¥[Ð[Ð[ÐÛÅc lAlAlAlóâR-èí+°=°]Ì‹K¶ ¶àÿß -°=_ãûr¯÷¼Ènz` z` z`»˜×™ lAlAlAlóR-è-è-èíâ1¶ ¶ƒØ‚Ø.æu¦[ðh‹*°º¨[ðè‹*°¨ÛżÎT` •Q¶àÑU` z` ùP¶ ¶‹Ç@GTí`¶àQU` mP¶à×@Ø.þ6P¶à‘U`»ØE` z` z`»˜×™ lAlÁ#æ©Àvñèˆy*°l§ÛżÎT` N¶àèT` N¶àèT`»x t:Ø‚G Síçr¶c¾Ç|>³ 8æ pÌ÷ߘ¯¿1ß~Ïlù},Û1_}c¶ùêóïü„®Ãøøû~ÂVÒ˜¯È1ßc¾ Ç|?>ûïÃàù Ý™ç?¯/ÒE`;ækô™mÑ1_¢c¾CÇ|…Žy`ûÌöÕ˜ïÏ1_Ÿc¾=Ç|y>ûç,çÏÊnAýÞë¿v};5Ð÷,è{ô= úž]<ò= úž}ÏF»h{ô= úž}Ï‚¾gm­¾gAß³ ïYÐ÷ìâ1ïÙÁaAÛ³÷oÈcímÔ<öü}Ñ,èÑ,èÑ좽˜€Í‚Í‚ÍF4»ØE4 z4 z4 z4»h/& G³ G³ G³ G³‹Ç@ÍF4 z4 z4»h/& G³ G³ G³ G³‹öbz4 z4 z4;ÑìbÑ,èÑ,èÑ,èÑ좽˜€Í‚͂͂Í.Ú‹ èÑì`D³ G³ G³‹=PD³ G³ G³ G³‹öbz4 z4 z4;Ñ좽˜€Í‚͂͂Í.y4 z4 z4 z4»hO8 G³ƒÍ‚?Ç@Í.Ú+èÑ,èÑ,èÑ,èÑìâ1G³ G³ G³ƒÍ.Ú+èÑ,èÑ,èÑ,èÑìâ1G³ G³ G³ E³÷gáHiAOi?)íõY¸[ÐÛÅ<U` z` z` z`»x ä-è-èí`¶‹yžªÀôÀôÀôÀv1o=؂؂؂Ø.y`;-øÓ7Ÿ l=°=°=°=°]ÌKN¶ ¶ ¶‹yÉ©ÀôÀôÀôÀv1/9؂؂؂Ø.y` z`;-èíb^r*°=°=°=°]Ì›M¶ ¶ ¶ ¶‹=P¶ ¶ ¶ ¶‹y©ÀôÀôÀôÀv1!Ø‚ØF` z`»ØE` z` z` z`»˜×™ lAlAlAl{ lAlAlAló:S-è-è-èíb^g*°=°ŒÀôÀv±ŠÀôÀôÀôÀv1¯3؂؂؂Ø.æu¦[Ð[Ð[ÐÛÅc lÁùK[ ¶ ¶‹y©ÀôÀöƒØ‚Ø.æu¦[Ð[ÐÛó/Ïñ½¶×_#»}è-è-è-èíb^r*°=°=°=°]ÌÃI¶àŸ}É©ÀôÀvñÈ[ÐÛÁlAlófS-x´EØ‚G]T-xôEØ‚GaTíb^g*°ʨ[ÐÛżÎT` þÙ×™ lÁ# ªÀôÀ<º  lÁ£ ªÀ<Ú  lÁ£ªÀvñ·ñ„*°D¨ÛÅ([Ð[ð*°ð§[ð*°]<:Ÿ lÁ#ü©Àv1¯3Ø‚GøS-x„?Ø‚GøS-x„?Ø.áO¶ ¶ '>ÿúûÐí˜ïÀ1_ÏlŽùóý7æëoÌ·ß3[~‹ÀvÌV_}žŸÐ}Ÿç'|I>³•4æ+rÌ7ä˜-ÈûŸI·æùÏä«tÌ7é˜/ÒE`;ækô™mÑ1_¢c¾CÇ|…Žy`ûìŸûêüwïÙíõï>bÜ1ß´c¾hŸÙžýXe· f·}Ï.ÚZ}Ï‚¾gAÛ³ç‚Ên1uû^ÿõ*Æ}'FŒ»h;ô úN}'ƒ¾“m‚¾“AßÉ ïdÐwòâ1ïäÁˆqAßÉ౓+»ý[iAlAlAlíÅôÀôÀôÀv0ÛÅ([Ð[Ð[ÐÛE{1=°=°=°=°]<òÀv0[Ð[ÐÛE{1=°=°=°=°]´Ð[Ð[ÐÛÁl{ lAlAlAlíÅôÀôÀôÀôÀvÑ^L@l#°=°=°]ì"°=°-°½?ªDv»hï( f·çG•ˆqAq#Æ]´×Ðc\Ðc\Ðc\ÐcÜÅc qAqAqAqíÅôw0b\ðç(bÜE{1=Æ=Æ=Æ=Æ]<òôôw0bÜE{1=Æ=Æ=Æ-ƽÿüˆDôDÔD÷üó#Â]пív1oK•è~°¾íüé*Æ]ÌSŸ Ç¸ Ç¸ Ç¸‹Ç@ã‚ã‚ãFŒ»˜'¡ŠqAqAqAqó.T1.è1.è1.è1îâ1Ǹƒã‚?}ó©wñ·Ñc\Ðc\Ðc\ÐcÜżúTŒ zŒ zŒ»˜÷ŠqAqAqAqó’S1.è1.è1.è1îâ1Ǹ Ç¸ƒã‚ã.æ%§b\Ðc\Ðc\ÐcÜżäTŒ zŒ zŒ zŒ»ØEŒ zŒ zŒ zŒ»˜—œŠqAqAqAqópR1.è1î`ĸ Ç¸‹=Pĸ Ç¸ Ç¸ Ç¸‹yÉ©ôôôw±Šôôôw1/9ã‚ã‚ã‚ã.æ%§b\ÐcÜÁˆqAq{ ˆqAqAqAqó’S1.è1.è1.è1îbÞl*Æ=Æ=Æ=Æ]<òôôôw1¯3ã‚ã~°b\ÐcÜżÎTŒ ZŒ{þ…=¾÷úkw$º_<†÷ôôôw1/9ã‚ã‚ã‚ã.扤b\Ðc\Ðc\ÐcÜÅc qAq#Æ=Æ]ÌëLŸàÑ!UŒ %RŸàÑ"UŒ 5RŸ‹y©ôô<:£ŠqÁ£4ªôôwñèHˆ*ÆŒ<*¢ŠqÁ£#ª³½2æ{nÌ×ܘo¹1_rÏr– aAaAßq‹¶R@ßq ï8Ðwè;nñÈv\ý–Ñ͇åG|F»hûô}ú>}‚¾mý€¾A߇ ïCÐ÷áâ1ïÃÁaA߇à±+„=„=„=„=„]´× ÐCXÐCXÐCØA aïßW‘Ç‚šÇž¿é"š=š=š]´— УYУYУYУÙÅc f#š=š=š]´— УYУYУYУÙE{Ù=š=š=šŒhv±ŠhôhôhôhvÑ^6@‹fïßˑ҂šÒž¿—#°]´WÐÛÁlAlAl{ lAlAÿ[ÐSÚE{ýlAfAf#š]´WУYУYУYУÙÅc fAfAfÁ_}ÙX´— УÙÁˆfÁŸc ˆfíeôhôhôh´höþ“'RZPSÚóOžlAl#°]´WÐ[Ð[Ð[пívñÈSZпíôhüíPE³ G³¬hüé*š]ÌCPE³ G³ G³ G³‹Ç@͂͂ÍF4»˜'¡ŠfAfAfAfó.TÑ,èÑ,èÑ,ø+fUJ jJ{ý™U-øÓ·¤ l=°=°=°=°]ÌkR¶ ¶ ¶‹yMªÀ´Àöþ…Ù-èÙí¢ÜÎ_5ã‚ã‚ã‚ã.æy«b\ÐcÜÁˆqAqóšT1.è1.è1.è1îb^“*Æ=Æ=Æ=Æ]ì"Æ=Æ=Æ=Æ]Ì»QŸ Ç¸ Ç¸ Ç¸‹y©ôw0b\ÐcÜÅ(b\Ðc\Ðc\ÐcÜżUŒ zŒ zŒ zŒ»ØEŒ zŒ zŒ zŒ»˜¢ŠqAqAqAqóBT1.è1î`ĸ Ç¸‹=Pĸ Ç¸ Ç¸ Ç¸‹yõ©ôôôw1¯>ã‚ã‚ã‚ã.yŒ zŒ zŒ zŒ»˜WŸŠqAq?X1.è1îb^}<Æ=?@Æ÷å^#Ñ}è1îâ1¼Ç¸ Ç¸ Ç¸ Ç¸‹y ªôôôw1,ã‚ã‚ã‚ã.yŒ zŒ;1.è1îb^}*Æ©b\ð(‘*Æ©b\ð¨‘*Æ]Ì«OŸàQ$UŒ MRŸàQ%UŒ ]RŸ‹Ç@GšT1î`ĸàQ'UŒ }RŸàQ(UŒ»øÛxDJã‚G¦T1îb1.è1.x„Jã‚G¨T1.x„Jã.yŒ zŒ ñQŸ‹y©<⣊qÁ#>ª<⣊qÁ#>ªwñèˆ*Æø¨bÜÏ[lĸc¾Ç|>ûç¬óºãSçü„ïÊ1_•c¾)ŸýsQžsGÎ;¦ËóúgŠÈwÌê3[_c¾NÇ|›Žù2ó]ú¬gñM:f‹ôüwéï˜.×ëß}Ác¾pÇ|ߎùºó ø™í¶1ßµc¾jÇ|ÓŽù¢}–³T z úž]´µúž}Ï‚¾gAß³‹Ç@¾gAß³ ïÙÁˆ|mÏ‚¾gAß³ ïYÐ÷좭5Ð÷,è{ô= úž]<ò=;‘/è{<ölE¾ G¾ G¾ G¾ G¾‹ö zä zä zä;ßv»ØÅ·Ý‚î‚î‚î.Ú+èá.èá.èá.èáîâ1‡»ƒî‚î‚î.Ú+èá.èá.èá.èá‚€î‚î‚îF¸»Øi¸{~詜Ôœ÷úØS‘˜€þ͸ ç¼ 3.èá˜€îF¸ z¸ Z¸{ÿGŠœÔœ÷ü‘/è‘/è‘®€ù‚ù‚ùÎÿ5"ßE{]=ò=ò=ò=ò]<òÈôÈôÈüÕ“E{1=òŒÈü9ŠÈwÑ^L@|A|A|AÿfÜÅc ÿf\ÐÃ]ð/}1ŒpwÑ^L@wAwAwAw<Ü=Ü=Üû\Tá.èáî+Üz  wíÅôpôpôpôpwñÈÃ]ÐÃ]ð¯>òT¸»˜gž wAwAwAwó~Sá.èá.èá.ø{ ä‰.èßv;1.øÓwœŠq=Æ=Æ=Æ=Æ]ÌKNŸ Ç¸ Ç¸‹yÉ©ôo»=»=»]ÌKN¶ ¶ ¶ ¶‹Ç@Ø‚ØF` z`»˜—œ lAlAlAló’S-è-è-èíb-è-è-èíb^r*°=°=°=°]ÌÃI¶ ¶ƒØ‚Ø.ö@؂؂؂Ø.æ%§[Ð[Ð[ÐÛÅ([Ð[Ð[ÐÛżäT` z` z` z`»˜×™ lAl#°=°]ì"°=°=°=°]Ì;L¶ ¶ ¶ ¶‹yq©ÀôÀôÀôÀvñÈ[Ð[Ð[ÐÛż¸T` z`ûÁ lAlÿyq9Ïñ¸×…/²Û‡Ø‚Ø.湨[Ð[Ð[ÐÛżÎT` z` z` z`»˜Ç lAlAlAl<°=°ŒÀôÀv1¯3Ø‚G[T-xÔE؂؂G4T-xdCØF` z` 9P¶‹y©À<’  lÁ# ªÀ<²  l#°=°]ÌëL¶àüT` z`»øÛxD?Ø‚GöSíb-è-x„?Ø‚GøS-x„?Ø.áO¶àþT`»˜×™ lÁ#ü©À<Ÿ lÁ#ü©À<Ÿ lŽð§[ð"°ýûÿ½?#°Åtbº×þëÀ–Ÿø[~Bw%f«òþß×ý¹&ëóšÍ³[LW*¦³…zþ3yv{έ«ÓÍ‹éâÅtï®É„˜n]L—î˜g·˜®Ü5Ù¸˜.\L÷-¦ëÓÀvMv¦»ÓU‹é¦ÅtÑ®å,Ø>ÔÀö¡îÙ/ÊZ{¨{ö¡îÙ‡ºgêžýâ1îÙ‡ºgêž=°ý¢ìÙ‡ºgêž}¨{ö¡îÙ/ÊZ{¨{ö¡îÙ‡ºgêžýâ1îYPÛóOÚÈnêö½þŽ÷¡Æ¸5Æ}¨1îCq¿(/&5Æ}¨1îCqAq¿ØyŒûPc܇ã>Ô÷‹òbòPc܇ã>Ô÷¡Æ¸_<Òô÷¡Æ¸5Æý¢¼˜<Ô÷¡Æ¸5Æ}¨1îåÅ䡯¸5Æ}¨1.è1î{ ÿ݇šÝ>Ôìö¡¶_”“‡Ø>ÔÀö¡¶5°ý¢¼˜<ÔÀôÀö¡¶õ›q¿ØyJûP£Ù‡Í>Ôhö‹òbòP£Ù‡Í>üëÈ£Ù/Ê‹ÉCfj4ûP£Ù‡Í~ñH£Ù‡Í>Ôhö¡F³_”W‡Í‚Í>ü9òhö‹ò òP£Ù‡Í>Ôhö¡F³_<Òhö¡F³ÿ’Wû“ž§´_”·‘ó“ž¶-°ýóiv{ 1îå顯¸5Æ}¨1îCq¿(¯+5ÆŒ÷áO1îå<ôPc܇ã>Ô÷¡Æ¸_<Ò÷¡Æ¸ÿê#Oĸ_Ì3Oĸ5Æ}¨1îCq¿˜·žˆqjŒûPc܇ã~ñHc\Ðc܇?}ó‰÷‹¿ã>Ô÷¡Æ¸5Æýb^}"Æ}¨1îCq¿˜WŸˆqjŒûPc܇ã~1¯>ã>Ô÷¡Æ¸5Æýâ1Ƹ5Æ=Æ}h1î¹#Ñ}¨‰îCMt¯uáîC w¿˜WŸwj¸ûPÃ݇î~±òp÷¡†»5Ü}¨áîóêáîC wj¸ûPÃÝ/æ‘%Â݇î‚î>Ôp÷‹=‡»5Ü}¨áîC w¿˜WŸwj¸ûPÃ݇î~±ú·†»5Ü}¨áîC w¿˜WŸwj¸ûPÃ݇î~1¯>î>Ôpôp÷¡†»_ì<Ü}¨áîC wj¸ûżúD¸ûPÃ݇î>Ôp÷‹yõ‰p÷¡†»5Ü}¨áî4Ü}¨áîC wj¸ûżúD¸ûPÃÝÁwZ¸{~T‰ï˽>pDÎûPÃ݇î>Ôp÷‹y²Šp÷¡†»5Ü}¨áîóBáîC wj¸ûPÃÝ/æá$Â݇î>Ôp÷¡†»_<Òp÷¡†» ‡»5Üýb^r"Ü}x4Kî><ª¥wj¡ôðˆ‘"Ü}x„Gî‚î><*£wj¸ûżäD¸ûðȇ"Ü}xDî><¢wAwQ„»Ž(Â݇GIáî˜(Â݇GNáî{ wj¸ûðŠ"Ü}xEî><‚¢w¿x tEî><‚¢w¿˜—œwAQ„» (Â݇GPáîÃ#(Šp÷‹Ç@GPáîÃ#ªp÷çï?ô"ܳX<ç't1ÆçÎ÷¶-ÇlYÞÿû¾AÇtž³ùV}fKõcîŽÙJ=ÿ™<ç½æöoÑ]³U7æ«wÌ7ï˜/Þ1ß»Ïzߺc¾t?áÜg¶qÇ|áŽù¾óu;fáîùëÀsÞë×AD¾c¾–Ç|+ùR~f;ùcù‚ù‚¾“m‚¾“AßÉ ïdÐwòâ1ïdÐw2è;y0"ßEÛÉ ïdÐw2è;ô¼h+ô úN}'ƒ¾“|'ú·è>ô ;¹Â]ÐÃ]ÐÃ]ÐÃ]ÐÃÝE{1=Ü=Ü=ÜŒpw±ŠpôpôpôpwÑ^L@wAwAwAw<ÜŒpôpôpwÑ^L@wAwAwAwíÅôpôpôpw0ÂÝÅ(Â]ÐÃ]ÐÃ]ÐÃÝE{1=Ü=Ü=Ü=Ü]´ÐÃÝÁwAwAw{ wA wÏ€•ó‚žó.Ê;ÊõÙ±"_Ð#_Ð#ßÁ{ä»h¯+ G¾ G¾ G¾ E¾÷‡HAOAMÏÿƒ/Úë èAð`ÁàÏ1PÁ‹öºz z z z¼x äA0èA0hAðÃHíuôÈÔoÑ}¨9ïCwÿ9Ðý»#r^Ðs^PsÞówGD¾‹y[ªÈ÷ƒù‚?ú4z付G£Š|A|A|A|<ò=ò=òŒÈwñ·Ñ#_Ð#_Ð#_Ð#ßż Uä zä zä zä»x ä‘ï`D¾àOß|*ò]ümôÈôÈôÈôÈw1¯>ù‚ù‚ù.æÕ§"_Ð#_Ð#_Ð#ßżúTä zä zä zä»x ä‘/è‘ï`D¾ ~ãîóêS9/¨9ïCwAwóêSá.èá.èá.èáîbá.èá.èá.èáîb^}*Ü=Ü=Ü=Ü]Ì#K…» ‡»ƒî‚î.ö@î‚î‚î‚î.æÕ§Â]ÐÃ]ÐÃ]ÐÃÝÅèßî‚î‚î‚î.æÕ§Â]ÐÃ]ÐÃ]ÐÃÝżúT¸ z¸;á.èáîbá.èá.èá.èáîb^}*Ü=Ü=Ü=Ü]´Nv0Â]ÐÃ]ÐÃ]ÐÃÝÅc wAwAwAwófSá.èáî=Ü=ÿ~ßÃ{ý-7rÞ‡î‚î‚î‚î.y¸ z¸ z¸ z¸»˜—œ wAwAwAwó’Sá.èá.èá.èáîâ1‡» ‡»ƒî‚î.æu¦Â]ðh–*Ü=Ü]<òp<²£ wÁ#1ªpw0Â]ÐÃ]ÐÃ]ðh‡*Üz¨Â]ðè‡*Ü]<:¢ w#ÜЍÂ]ðèˆ*Ü’¨ÂÝÅ߯#ªp<¡ w{ wAwÁ#ªp<"¡ wÁ#ªpwñ舄*ÜH¨ÂÝżÎT¸ ‘P…»à U¸ ‘P…»à U¸»x tDBî‚G$Táîçƒw„»c¾Ç|>ûï¿qw~âùÆÝù ß•cÿË7îÎOøþ|fëóc‘èŽéò¼þ™âwÇ|¡>³õ5æëtÌ·é˜/Ó1ߥÏzߤc¶HÏÿf‘èŽér½þÝG¸;æ wÌ÷혯Û1ÿÆÝg¶ÛÆ|׎ùªóM;æ‹öYÎR1.è1.è{vÑÖè{ô= úž}Ï.ùž}Ï‚¾g#Æ]´= úž}Ï‚¾gAß³‹¶Ö@ß³ ïYÐ÷,è{vñÈ÷ì`ĸ ïYðسã‚ã‚ã‚ã‚ã.Ú+è1.è1.è1î`ĸ‹=Pĸ Ç¸ Ç¸ Ç¸‹ö zŒ zŒ zŒ zŒ»x ä1î`ĸ Ç¸ Ç¸‹ö zŒ zŒ zŒ zŒ»h¯  Ç¸ Ç¸ Ç¸ƒã.ö@ã‚ã‚ã‚ã.Ú+è1.è1.è1.è1‚€ãFŒ zŒ zŒ»ØEŒ ú·è‚žÝ‚žÝ.Ú+è-è-èí`¶‹ö z` z` z` ú·è.yJ ú·è‚Í‚Í.ÚËèÑì`D³àÏ1PD³‹ö²z4 z4 z4 z4»x äÑ,èÑ,èÑì`D³‹ö²z4 z4 z4 z4»x äy,èy,èßv z»h/ ‡°¬üé*„]ÌÓL…° ‡° ‡° ‡°‹Ç@‚‚ÂF»˜ç˜ aAaAaAaóÎR!,è!,è!,è!ìâ1‡°ƒ‚?}o©vñ·ÑCXÐCXÐCXÐCØÅ¼¸T z z»˜— aAaAaAaóâR!,è!,è!,è!ìâ1‡° ‡°ƒ‚Â.þóâr^p+=5½¼Í.æu¦¢YУYУYУÙÅ(¢YУYУYУÙżÎT4 z4 z4 z4»˜ÇŠfAf#š=š]ì"š=š=š=š]ÌëLE³ G³ G³ G³‹=PD³ G³ G³ G³‹y©hôhôhôhv1¯3Í‚ÍF4 z4»ØE4 z4 z4 z4»˜×™ŠfAfAfAfó:SÑ,èÑ,èÑ,ø"š=š=š=š=š]ÌëLE³ E³çgŠøÜë“A¤´_ÌKNE³ G³ G³ G³‹Ç@͂͂͂Í.æ%§¢YУYУYðÿE4 z4 z4 z4 z4»x äÑ,èÑì`D³ G³‹yÉ©h³¥ú±HiÇ|¥ŽùFó…úÌÖט¯Ó1ߦc¾LÇ|—>ëY|“Žù"ýXä±c¾FŸýs‹ž¿~"ÓÍzýú‰hvÌ£Ùg¶ÛÆ|׎ùªóM;æ‹öYÎRÑ,èÑ,è{vÑÖè{ô= úž}Ï.ùž}Ï‚¾g#š]´= úž}Ï‚¾gAß³‹¶Ö@ß³ ïYÐ÷,è{vñÈ÷ì`D³ ïYðس͂͂͂͂Í.Ú+èÑ,èÑ,èÑì`D³‹=PD³ G³ G³ G³‹ö z4 z4 z4 z4»x äÑì`D³ G³ G³‹ö z4 z4 z4 z4»h¯  G³ G³ G³ƒÍ.ö@͂͂͂Í.Ú+èÑ,èÑ,èÑ,èÑ좽‚€ÍF4 z4 z4»ØE4 z4 z4 z4»h¯  G³ G³ G³ƒÍ.Ú+èÑ,èÑ,èÑ,èÑìâ?:?éWJ zJ jJ{ýE ÛE{=°ŒÀü±1z`»h¯  ¶ ¶ ¶ ¶‹Ç@؂؂ØF`»h¯  ¶ ¶ ¶ ¶‹Ç@؂؂؂Ø.Ú+èí+°z  ló`S-è-è-èíâ1¶ ¶ ¶ƒØ.æé¦[Ð[Ð[ÐÛE{=°=°=°=°]<òÀv0[ð§o3Ø.þ6z` z` z` z`»˜×™ lAlAló:S-è-è-èíb^g*°=°=°=°]<òÀôÀv0[ÐÛżÎTJ zJ þq äÑìb^g*š=š=š=š]ì"š=š=š=š]ÌëLE³ G³ G³ G³‹y ©hôhvP£Ùó¯•Ò.ö˜žÒ^•¨Àü£/9Ø.æ%§[Ð[Ð[ÐÛÅ([Ð[Ð[ÐÛżäT` z` z` z`»˜—œ lAl#°=°]ì"°=°ÿèKN¶‹yÉ©ÀôÀôÀôÀv1/9؂؂؂Ø.y` z` z` z`»˜§%lï?›ý»j¯?a#»}èíb^r*°=°=°=°]<òÀôÀôÀôÀv1/9؂؂؂Ø.æá¤[Ð[Ð[ÐÛÅc lAl#°=°]ÌKN¶àÑU` Q¶ ¶à‘U` )P¶ƒØ‚G T-xô@Ø‚GT-x4AØ.YP¶ƒØ‚GT-xT@Ø‚GñSíâoãýT` ÙO¶‹=P¶ ¶àþT` áO¶àþT`»x t„?Ø‚GøSíb^r*°ð§[ð*°ð§[ð*°]<:Ÿ lÁ#ü©ÀöÏ¿ÿ\ÓÀ¶>³ÎOèfŒ¬ó¶.ïÿÿ%ÆŸðÅ:æ{uÌ×ê˜oÕg¶T?혯Ô1ߨc¾PŸÙúóu:æÛtÌ—é˜ïÒg=‹oÒ1_¤‹ÀvÌ×è³ÿ>°ŸðÕ:ö¿¶ó¾nÇ<°}f»mÌw혯Ú1ß´c¾hŸå,؂؂¾gm­¾gAß³ ïYÐ÷ìâ1ïYÐ÷,è{v0ÛEÛ³ ïYÐ÷,è{ô=»hk ô= úž}Ï‚¾g|ÏF` úž=[-è-è-è-èí¢½˜€Ø‚Ø‚ØF`»ØE` z` z` z`»ho# ¶ ¶ ¶ ¶‹Ç@ØF` z` z`»h¯  ¶ ¶ ¶ ¶‹ö z` Z`{~X¨ìvгÛëãBŸ Ç¸ Ç¸ Ç¸ Ç¸‹öbzŒ zŒ zŒ zŒ»h/& Ç¸ƒã‚ã‚ã.ö@ã‚ã‚ã‚ã.Ú‹ è1.è1.è1î`ĸ‹öbzŒ zŒ ZŒ{ÿvý·&ºçïÈû·Ý‚þÏ=üˆ‡»àÿîò#î.Úë èáî`„»àùÐÃÝE{]-ܽÿmFÎ zÎ jÎ{þ«ŽÈôÈôÈôÈw0"ßE{‰=ò=ò=ò=ò]<úS_b@|A|A|í%ôÈ÷ƒù‚?=PE¾‹y4ªÈôÈôÈôÈwñÈ#_Ð#_Ð#ßÁˆ|ó|T‘/è‘/è‘/è‘Āö¹¨"_Ð#_Ð#ßÅc |#òú>T‘ïâo£G¾ G¾ G¾ G¾‹y!ªÈôÈôÈw1/Dù‚ù‚ù‚ù.æ…¨"_Ð#_Ð#_Ð#ßÅc |A|#ò=ò]Ì QE¾ G¾à×@ù.æ…¨"_Ð#_Ð#_Ð#ßÅ("_Ð#_Ð#_Ð#ßżUä zä zä z付™Š|A|ã›qAÏy{ øf\ÐÃ]ð¾U¸»˜¢ wAwAwAw{ wAwAwAwóêSá.èá.èá.èáîb^}*Ü=ÜŒpôpw±Špôpôpôpw1¯>î‚î‚î‚î.æÕ§Â]ÐÃ]ÐÃ]ÐÃÝÅc wAwAwAwÿûÿ/Øüˆ~_îu$ˆœw°Â]ÐÃÝżäT¸ z¸ z¸ z¸»x äá.èá.èá.èáîb^g*Ü=Ü=Ü=Ü]ÌcH…» ‡» ‡» ‡»‹Ç@î‚îF¸ z¸»˜×™ wAwAwAw޾¨Â]ð(Œ*Ü]ÌëL…»àQU¸ Q…»àQU¸ ­Q…»‹Ç@GnTáî`„»àQU¸ uQ…»àQU¸»øÛxÄDî‚GNTáîbá.èá.xEî‚GPTá.xEî.AQ…»àU¸»˜×™ wÁ#(ªp<‚¢ wÁ#(ªp<‚¢ wŽ ¨Â]ðŠ*Üý<ñÆ7ãŽùóøìŸ°>$ÏOèZŒÏÈó¾+ÇlUÞÿû¾?ŸÙúüX$ºcº<¯¦wÇ|¡>³õ5æëtÌ·é˜/Ó1ߥÏzߤc¾H?áÑg¶EÇ|‰Žùó:æ1î3ÛWc¾?Ç|}Žùöóåù,g©ôôݹh« ôÝ úî}w‚¾;|w‚¾;A߃ã.Úî}w‚¾;Aß ïÎE[U ïNÐw'è»ôݹx ä»s0b\Ðw'xìΊqAqAqAqAqíeôôôw0bÜÅ(b\Ðc\Ðc\ÐcÜE{Ù=Æ=Æ=Æ=Æ]<òw0b\Ðc\ÐcÜE{Ù=Æ=Æ=Æ=Æ]´— Ðc\пíôìv0¾ív±ÒÀöüðYÙ-¨Ùíõ1²bÜE{=Æ=Æ=Æ=Æ]´WÐcÜAqïՑ肚èžÿª#Ü=Ü=Ü=Ü=Ü]´ÐÃ]ÐÃ]ÐÃÝÁw­}=Ü=Üý[tAÿÝÅc ?¯<»5»}èí¢½‚€ØF` þE`»h¯  3.è)-è)-èߌ»x äÑ,èÑ,hÑìý燧´çØ‚Øþ‡<»5»½çówñþO}]=Æ=Æ=Æ]´×ÐcÜVŒ þô@ã.æy¨b\Ðc\Ðc\ÐcÜÅc qAqAq#Æ]Ì“PŸ Ç¸ Ç¸ Ç¸‹yªôôôwñÈcÜÁˆqÁŸ¾UŒ»øÛè1.è1.è1.è1îb^ˆ*Æ=Æ=Æ]Ì QŸ Ç¸ Ç¸ Ç¸‹y!ªôôôwñÈc\ÐcÜÁˆqAqóBT1.è1.è1.è1îb^ˆ*Æ=Æ=Æ=Æ]ì"Æ=Æ=Æ=Æ]Ì QŸ Ç¸ Ç¸ Ç¸‹y©ôw0b\ÐcÜÅ(b\Ðc\Ðc\ÐcÜżUŒ zŒ zŒ zŒ»ØEŒ zŒ zŒ zŒ»˜¢ŠqAqAqAqóêS1.è1î`ĸ Ç¸‹=Pĸ Ç¸ Ç¸ Ç¸‹yÉ©ôôôwñ71b\Ðc\Ðc\ÐcÜÅc qAqAqA‹qÏ¿Çwë^ŽD÷¡Ç¸¬ôw1¯>ã‚ã‚ã‚ã.yŒ zŒ zŒ zŒ»˜WŸŠqAqAqAqóR1.è1.è1.è1îâ1Ǹ Ç¸ƒã‚ã.æu¦b\ðè*Æ©b\Ðc\ðŒ*Ƙ¨bÜÁˆqAqÁ#ªw1¯3ã‚G>T1.xDã‚GBT1î`ĸàQUŒ QŸàQUŒ»øÛxÄDã‚GNT1îb1.è1.xEã‚GPT1.xEã.AQŸàUŒ»˜×™ŠqÁ#(ª<‚¢ŠqÁ#(ª<‚¢ŠqŽ ¨b\ðŠ*Æýýûÿ1î˜ïÀ1_ÏlŽùóý7æëoÌ·ß3[~‹”vÌWߘo¾1_|ÏlÍŒùÚó­7æKoÌwÞ³žÅ7Þ˜/¼E4;æëî™m»1_vc¾ëÆ|Õy4ûÌöʘí¹ú›áü„.¿ø‹áü„oÄ1_ˆÏrî lAlA߇‹¶~@߇ ïCÐ÷!èûpñÈ÷!èûô}8íâ?÷áù+&²Ûë—LŸ ïNÐw碭*Ðw'è»ôÝ úî\<òÝ91.è»ÿÒ–[lË­à§~Am¹õ`}¦-·‚¶Üºþ5RV^·¿FÚ"ìÁåâ}ôEXÐaƒeö`}ê¦-‚¾ ú",è‹°ëó7m´EØýÇ[ÖcA]]öeiô¥Ù`Yš?õç|ÚÒìÁ·Ž¾4 úÒ,èK³ /ͬÏú´¥YЗfA_š=XŸõiK³ /Í‚¾4 úÒìÁú¬O[š}iô¥YЗf.äK³ /ÍËÒ,èK³ë³>miô¥YЗfA_š=XŸõiK³ /Í‚¾4 úÒìÁ~Aeiô¥YЗfA_š=XŸõiK³ /Í‚¾4 úÒìÁú$K[š}i6X–fA_š=Ø/¨,Í‚¾4 úÒ,èK³ë³>miô¥YЗfA_š=Ø/H—f÷û{Y¥}•ÔUÚõæ_lA_°}Áô[ÐlÖg}Ú‚-èï,ï ÚÒìþC*«´ ®Ò®?‡²` ú‚-è ¶ÿü ÑO¾3_»uívÿÎ|ôe܃õÙ¤¶Œ ú2.è˸ /ã\.È—qA[ÆÝþ^µëCí+º/¬Ï<µe\ð[*¬-ゾŒ{°>óÔ–qA_Æ}ôe܃Ëù2.è˸ /ゾŒ{°>óÔ–qA_Æ}ôe܃õ‰ž¶Œ ú2.è˸ /ã\.È—qÁoË•e\ЗqÖgžÚ2.¸ì!µe\pÙDj˸ಋԖqÁe©-ã¬Ï&µe\pÙHj˸ಓԖqÁe+©-ã‚Ë^R[Æ=¸\вšÔ–qƒe\¶“Ú2.¸ì'µe\pÙPj˸ß:.KJm\Ö”Ú2îÁ~Aeôe\pYTj˸ನԖqÁeQ©-ã\.hYTj˸ನԖqÖgˆÚ2.¸,*µe\pYTj˸ನԖqÁeQ©-ã\.hYTj˸ನT–qßž¿ç}Ó{ ¦·ÀcrÄôˆéýÓÛ¦w¿cró‹ù2.¦·>Lï|˜ÞøŽÉmÓÛ¦w=Loz˜ÞóŽõkÑ;¦7¼˜/ãbv»+=vNÈ=ÐsŒzcÄô¾ˆÙmq¿6]ç]¯Mo ˜Þ?1»}îצ÷TLo©ëuë}6V‚u!xPï³/”ÛÚ Þgõ>;¨÷ÙA½Ï¾p¹ ½Ïê}vPï³ /¿PzŸÔûì Þgõ>ûB¹­ ê}vPﳃzŸÔûì — Òû,è ÁƒzŸ\î³e!xP‚u!xP‚u!ø…2‰Ô…àA]Ô…`Ђ_Ø/È‚u!xP‚u!ø…2‰Ô…àA]Ô…àA]~árAº úBð .êBð e3¨ Áƒº<¨ï`;¨«¿/”éÊ .ùê’ï .ù‚¾äûÂ~A¾ä;¨K¾ƒºä;¨K¾/”9Ê .ùê’ï .ùê’ï e§vP—|A_òÔ%ßA]ò}a¿ _òÔ%ßA]òÔ%ßÊdP—|uÉwP—|A_ò}¡L6uÉwP—|uÉwP—|_¸\.ùê’ï .ùê’ï e²1¨K¾à›.ù~Z.È—|_(“A]òÔ%ßA]òÔ%ß.¤K¾ƒºä;¨K¾ /ù¾P&ƒºä;¨K¾ƒºä;¨K¾/\.H—|mÉwƲú;¨«¿[6–…àA]úBðzñeMxPׄ·‹÷åáŸ\‚®ï_EßEwPWŠuyø…õ¯²<<¨Ëú< úòð ëSMeyxP—‡uyxP—‡_(Ï, êò𠾋 êšð — Ò…`Ђ?õg‚ÊBð ß:êBð .êBð .¿°>ëS‚u!xP‚_XŸõ) Áƒº<¨ ÁƒºüÂú¬OYÔ…àA]Ô…à.¤ Áƒº úBð .¿°>ëS‚u!xP‚u!ø…õYŸ²<¨ Áƒº<¨ Á/ìä Áƒº<¨ ÁƒºüÂú¬OYÔ…àA]Ô…àÖ'YÊBð .ƒ¾<¨ Á/ìä Áƒº<¨ ÁƒºüÂú¬OYÔ…àA[Þÿêò5áöËô÷Ö]ÿ^ó5áA]Ô5áÖgˆÊBð .êBð .¿°>CT‚u!|Ó…àA}Ýö òÕßA]òÔ%ßA]ò}a}†¨¬óê:ï .îêâî ë3DeqwPwuqwPw_¸\-îîÿÐý½u×®¾Î;¨‹»/¬Ï&•ÅÝA]Ü –ÅÝA]Ü}a}6©,îêâî .îêâî — ÒÅÝA]ÜÔÅÝA]Ü}a}6©,îêâî .îêâî ë“7eqwPwuqwPw_¸\.îêâ.è‹»ƒº¸ûÂú QYÜ\v–ÊâîವTw—½¥²¸;¸l.•ÅÝÖgrÊâîಽTw—ý¥²¸;¸l0•ÅÝÁe‡©,î¾p¹ e©,¸;¨‹»/¬Ïä”ÅÝÁeA©,îêâî ß:.‹GeqwpY2*‹»/ìä‹»ƒº¸;¸,•ÅÝÁe¡¨,î. Eeq÷…Ë- EeqwpY(*‹»/¬Ïä”ÅÝÁe¡¨,î. EeqwpY(*‹»ƒËBQYÜ}árAËBQYÜ\ŠÚâî§÷§ptq·ýzg,Cç„ß.Çìnó›eÌï•1¿UÆüN9f7ÊÇÞü>óÛdÌï’1¿IŽÙ-)æ·È˜ß!c~ƒŒùýq¬_‹Ý×ß_ýÝ~ÊBpÌo£cvùM4f÷Ðõ{ò÷ì]¿']ý=f÷¶˜ßkc~«ù6f7Úýûõ»ïcew{0Ú’/è÷äƒv ýž ú=ô{2è÷äƒËù=ô{2è÷ä`Yò=h÷dÐïÉ ß“A¿'ƒ~O>h·@ÐïÉ ß“A¿'ƒ~O>¸\ß“ƒeÉô{2¸Ü“Û’/èK¾ /ù‚¶ä»þ;o«¿eæ²þC/ Á /ƒ¾, Ám4úB0è Á /ƒ¾|Ð&1 /ƒ¾ úB0è Á— ò…à`Y}!ô…àƒ6s}!ô…`ЂA_>hÓЂ÷WeMô5á ¯ ¯ÿèÊò0èËà/ƒ¾< úòðA›Ä€¾< úò0èËà/´I èËÃÁ²< úò0èËÃû•åaЗ‡A_}yø Mb@_}yôåá`Y>hÓЗ‡A_myxÿ·\VŠÊe®ÿ\Ë¢1h‹Æ?¹>]?Þ/Á—’ÚÔô¥äà›/%ƒŸì2})ù Mm@_J})ô¥dЗ’.äKÉ /%ƒ¾”,KÉmjúR2èKÉ /%ƒ¾”|p¹ _Jõ‡}ýÔõãÖç¡Ú¢ñƒå‡?É­ÿ\Ë¢ñ ëSTwËÃñåaЗ‡A_>¸\¦/ƒ¾< úòp°,¬OaµåaЗ‡A_}yø`}nª-ƒ¾< úò0èË× òåá`Y?õçÚòðÁ·Ž¾< úò0èËà/¬Ï&µåaЗ‡A_>XŸMjËà/ƒ¾< úòðÁúlR[}yôåaЗ‡.äËà/Ëò0èËÃë³ImyôåaЗ‡A_>ø­£/ƒ¾< úò0èËÃû•åaЗ‡A_}yø`}†¨-ƒ¾< úò0èËÃë2myôåá`Y}yø`¿ ²< úò0èËà/¬ÏµåaЗ‡A}7áA_>Ø/Èׄ}!ô…`ЂÖg}ÚB0è Á /ƒ¾|°>ëÓ‚A_–…`Ђö * Á /ƒ¾ úBðÁú¬O[}!ô…`ЂÖg}ÚB0è Á /ƒ¾|ðÏ´÷”¿¿ïZE¾&<è Á /¬OYµ…`Ђl Á /¬Ïä´…`ЂA_}!øàrA¾ úB0è Á /¬Ïä´…`ЂA_}!ø`}â¤-ƒ¾ úB0è Á— ò…`Ђƒe!ô…àƒõ™œ¶ úB0è Áà²áÔ‚ÁeÇ©-ƒË–S[>XŸi Áà²éÔ‚Áeש-ƒË¶S[—}§¶|p¹ _}!8X‚Áe“©-ƒË.S[}!ô…àƒo—%¥¶ .kJm!ø`¿ ² úB0¸,µ…`pY>j Áà²|Ô‚.´,µ…`pY>j Áë³3m!\–ÚB0¸,µ…`pY>j Áà²|Ô‚.´,µ…`pY>ò…àöWôç÷ÿªûûû–?¢sÂî—û×Лèú5üγëþõýnÓ›ízm~³ðceÑ8æ·ß˜ß}c~ó³[]Ìo½1¿óÆüÆóûîX¿¿ëÆü¦ûXYŽù-wÌî¸1¿áÆü~óÛmÌ‚ÇìÞó{mÌoµ1¿ÓÆüF;V¯¥½“/èK¾ ßgÚm ôû,è÷YÐï³ ßg.ä÷YÐï³ ßgƒeÉ÷ ÝgA¿Ï‚~Ÿý> ú}ö ÝÖ@¿Ï‚~Ÿý> ú}öàrA~Ÿ –%_Ðï³ /ùüÖÑ—|A_òý|A_ç=hSÐwA_Ü}q7Xwö *‹» /¸ úâîA›‚€¾¸ úâ.è‹» /î\.ÈwƒeqôÅ]ÐwÚôÅ]ÐwA_Ü}q÷ MA@'_ÐWtA_Ñ –wò=Ø/¨,ゾŒ ú2.è˸m ú2.è˸ /ゾŒ{Ц  /ãË2.è˸ /ãìT–qA[Æ]#¤­è‚º¢»eH[Ümq÷'×§ë¼û%ø’o°,ù´‰ èK¾ -ùîß™¿oðú•Õ߃ËÅû’/èï& ú» ƒ¾¸{Ц+ /îËâ.øi¹ ²¸{Ц+ /¸ úâ.è‹»— òÅ]ÐwA_Ü –Å݃6]}qôÅ]ðóvA¾¸{p¹ _Ü}qôÅ]ÐwÖç€ÚâîƒmqüÔ/¨­è¬Oî”ÝA_Æ}ôe܃Ëù2.è˸ /ãË2îÁú4O[Æ}ü¼]/ã¬Ïõ´e\ЗqA_Æ}÷àrA¾Œ,˸à§þœO[Æ=øÖÑ—qA_Æ}ôe܃õYŸ¶Œ ú2.è˸ë³>môe\ЗqA_Æ=XŸõi˸ /ゾŒ ú2îÁå‚|ôeÜ`YÆ}÷`}Ö§-ゾŒ ú2.è˸ë³>môe\ЗqA_Æ=Ø/¨,ゾŒ ú2.è˸ë³>môe\ЗqA_Æ=XŸdñeܵ3ÊŠîÖmq´ÅÝýÊ:/¨ë¼ûõù’/èK¾ /ù¬Ï&µ%_З|A_ò}É÷`¿ ²ä ú’/èK¾ /ù¬Ï&µ%_З|A_ò}É÷`}6©-ù‚¾ä,K¾ /ùì¤K¾û?7_ý}õÔÕßõßUY}!ô…`ЂA_>XŸMj Á /ƒ¾ ÚBðþCò÷ ^j_ô…`ЂA_>XŸ!j Á /?Ø‚A_>XŸ!j Á /ƒ¾ úBðÁå‚|!ô…`ЂA_>XŸ!j Á /ƒ¾ úBðÁú„L[}!ô…`Ђ.ä Á /ËB0è Áë3Dm!ô…`ЂA_>¸\/ƒËŠR[—u¤¶, Á಑Ô‚Áe'©-ƒËVR[—½¤¶|p¹ e5©-ËB0¸l'µ…`pÙOj ÁಡÔ‚¾u\–”ÚB0¸¬)µ…àƒý‚ÊB0è ÁನÔ‚ÁeQ©-ƒË¢R[>¸\в¨Ô‚ÁeQ©-¬Ïµ…`pYTj ÁನÔ‚ÁeQ©-ƒË¢R[>¸\в¨Ô‚ÁeQén!ø™i_-ç„ß/c~»³»eÌo–1¿WÆüVó;å˜Ý(+‹»1¿MÆü.ó›ä˜Ý’b~‹ŒÙrýYû:ïö³.K¾cýºýNóéceÉ7æ·Ñ1»‹Æü&ó{hÌo¡1_ò³ûUÌïŸ1¿}Æüîó›çX½–¶ä ú’/è÷΃v«ýÞ ú½ô{'è÷΃Ëù½ô{'è÷Î`Yò=h÷NÐï ß;A¿w‚~ïëÓ–|A_ò}Éô%߃õYŸ¶ä ú’/èK¾ /ùìT–|A_ò}Éô%߃õYŸ¶ä ú’/èK¾ /ù¬O²´wÜýwƒeqôwÜ=Ø/¨¼ã.è˸ /ゾŒ{°>ëÓ–qA_Æ}ôe܃ý‚Ê2.è˸ /ゾŒ{°>ëÓ–qA_Æ}ôe܃õYŸ¶Œ ú2n°,ゾŒ{°_PyÇ]ÐÖn÷¿FÞ|ô÷á=(Ï­ª”e\ЗqA_Æ}÷ -ãË2.è˸ -ãgïú€ùŠî /ゾŒ ú2.è˸ë³>môeÜÛ2.è˸ë³>môe\ЗqA_Æ=¸\/ゾŒ ú2.è˸ë³>môe\ЗqA_Æ=XŸdi˸ /ゾŒ ú2îÁå‚|ôeÜ`YÆ}÷`}Ö§-ゾŒ .ËEm÷àrAË~Q[Æ— £¶Œ{°>ëÓ–qÁe˨-ã‚ËžQ[Æ—M£¶Œ ú2.¸,µe\pY!j˸Á²Œ .[Dm\öˆÚ2.¸lµe܃o—e¢¶Œ .ëDm÷`¿ ²Œ ú2.¸,µe\pY(j˸à²PÔ–q.´,µe\pY(j˸ë39m\ŠÚ2.¸,µe\pY(j˸à²PÔ–q.´,µe\pY(òeÜÿí—ÿû/ÿâ¿þïÿæ_þò¯þáûãïMÿøÿ‡õ¿¾ÿ‰þÇ/ÿý/ÿîßÿò×_þ¯¿|úåß~ÿ¿þÓ_ÞŸÐÿë/ÿË_¾ÿ–|¿ fm÷ŸžQÛ§y[ßüåþò½¯¾ŸÎÿúþ˜þ}_Zûë·×éüÏüûmà÷þOÏÿüÁß'úo/ÏÿüÁ¼œsu/ÿ—ã›ÿÿU¾ù÷¬øÿúûôùÛüåÓólø_Ïÿ-ÿûëó—ÿû³k¿ýò·úåï~ûëßÿò·ÿô—ÿùoÏÿÑûÙ÷ÍÄï·±×áßo¿ïT}ýáð—›ÃïÏ¡}úáðÛ9üÏœù_ï¿9ß¾<Xþ?¼oA}}<uå¾ü}òòýf9ÎÿüÁß÷\¿½<ÿs~ sí?\ðÿôÃ÷ñý¦øþ´âoÏ×|¿øï)dßúzü™»}âGöÿáø÷_äïiö~üÓ_ý±{~÷¾ÿÿÊ?…ùŸóXþåŸ?´ÿìì?þåÞÿ]þðc{+½ñÏÏ…|ÿ‡ûüòŸ?ôËû™_ƒßÿ_¿Ïÿ~_ˆüúù—Ï<ßÌÿ9ßÊû—ÿ-Ûólä¿ÏL~{šôûï Wðüÿ•Kûÿw™ëoë{2¼§ÑÛû¼_åø/ÿøßþé?_üÐÞÇ6ß¾Ìïá÷ÿ#þÝßý?ÿåï¿ÿ3øåïþûßÿû_þöo?þ-ŸoÅŸ…øçÿ¼ÿ§ö3Å<öe±oç/í?ÙÛo‹½þ þ³½u{¾æS³ß{ý5÷'{ßã^ðóù+Gðˆ¯?GþŒßØ þqnÓ‚o þ° +øû†_ÏÄàÏø½¶|m˜ ~ÙðÛyÊûÏø=|­H ¾-øþgtÇßϺ‚_|ŸoÔß¡÷¿;~9Ï2 ~[ðûŠ«¿CßÿFòòy;Oˆ½Ž¬ÿÙøqsêÏ—ðýϸßþôû¶_ÂÛW9²_ÂûK^êïækB‚_Îs%‚ß:¾oÈüÖ~7Üs|;±ÿgüôiÃW ~]ðýIªöë÷¾ú°à— _ÛÆÏ¿møÇi1Á·ðWê}zýç#ë¯ÔûðùSûåû”xÁ׬WðˆßÎ ôÏø¾°Ûñ5¬|[ð{}}ª¿o_ßð5mû3¾ýuÃÏgÞ$øeÃ×èÏøí· ÿ8ÓÁ·Ž?Î%?3Á¯ ¾·hûúñ‰uÁ/çInÁo ¾oGµß¡Ÿ|;ÏÒþ?\ÿE¾?Uú×ö›õãžüçúþ|å_ÛïÛû‹ ¾V±>zñ?<»÷Ñëûþ'Ç·ö»ùþÛ‚¯ £?ãOZ ~>Ï×~Ü¿í/¯Å™ŸÛÏœ¾$EÌ“"æIñ˜&E»ðœ°ÐX¯»äÇc%?bž1Ïì3”ü=?@ÏÐó#Xò´üXe’õan©Zªì— ³_BÉгô¬=k‚š5ûw¦±³g%‚%@O Ð(Xô=@O `I Ðè ÅÎ`Éвæ Ì`IÐSôT=Ul©zª€ž*Á’* § è©,©zª€ž* §J°¤ è©Zª¬ÿ–=`ÖË0=U‚%U@OÐSôT –T=U@O•`IÐSôT –T=U@OÐReÿÅЀÙ14k~òU,vÖ¯Ò´Z/ÁÃh¿Í¥ý«hDýä«xZžVÁ’V §hiµg\ûwV‚ ´à,izZ–V-¢K.žK åÒþhjDí¦¦ÕO¾Š×O¾ŠWû*_ßgþ%¸b\írÂ3ì±2Ù‰ùd'æiõXI«˜§UÌÓê±–V §èizZKZ>Ù}²,¹údôÉN°$h ´þz­¿h-—‚e úô –=@O `I Ðô=‚%@O Ð(Xô=‚%@O ÐhÿeÔ0Z[.žK çR°äè¹z.K.žK çè¹,¹z.>Ù jô=‚%@O Ðô j­¿©FûoªæÒþU4¢ö¯RÒ ô´ –´=­@O+Ч@Á2} úèÁ–@ O@ŸË´€9h©²þì=`ÖŸ}Ëгô‰QPæ § è©ÔTÙ ˜ý1)YzÖKÖ€ž5 O‚0û·­³Û0-UÞ_VùVËb>Šy~Z-k‚%k@Ïг&X²æm¶mxúdôT –T=U@O•`IÐS´TÙ¼0û·d èYzÖKÖ€ž5 gMP³fL4vöǤ$P°$è úô)Ѓ-k@Ïг&X²ô¬=k‚%k@Ïгô¬ –¬=kÀ›)PŽ\M8â zKž@ 'è ,S Ч@ O‚e zª€ž*Á’* § h©²ÿì5`öŸ}Éðf Ä‘›)Ðs¤%è zKž@ Ok@ŸÖKÖ€ž5 gM°d èYzÖË´€9è©Zª¬¿50ûoMÉðfZ“#WÓŽÜLk8r3­áˆ&Pþ»â „iaš@1ŸÀ`;˜N`bš5å‘â„ÅNy 8¡ Ä=555@ŸÖ ê´fP³ô¬Ô¬Ô¬=k5k5k5k@ÏšAÍšAËšõÊcgý* 4¨ÓЧ5ƒš5ƒš5ƒš5 gÍ fÍ f èÓšAÖ jª€š*ûOPfÿ zÖ jÖ=kÖëóØY¯Ïhÿ*FûWñ\Ô\5—öëÓˆÚ¯ÏÓjÐÒj¿ ®ý<ÃuºútiÐÒj¿x ®ýâ=Ã5Ã5Ã5Ã@ϰAͰAÍ0Ð3lÐ2l4=Î@³ý¡ödÔéÒ N—@ϰA. êt)XÒjPÓjPÓ ô´Ô´Ô´Ô´=­5­5­@O«AM«AK«õ—уký}+6¨6¨#Ð'Fƒ–Vûw¦Áµgþ£A}Ñ NŒ=—>½ÿ-^r)æ¹ó\z¬äRÌs)æ¹ô˜O0až@µ=@O Ð(Xô=‚š@í”#Fí”#žKÁ’K çè¹z.K.žK N@Ÿ zž@Á’@ 'è zKo[0G.Þ¶€#%—@Ï%Ðs)è“Aì zž@–ÉΠNvu²údgÐSôT údgP';ƒž Nv@Ÿì zR€žÁ›·"˜#oE0Gt²jRì— ¡±_BÉÐó#Xòôü=?‚%?@ zh} 4èIzR€žÁ’ 'èIñ`K Гô¤–¤=)@O Ð’bý5öÐX[~€žÁ›·8˜#%ûõùô)Рçxñsäâ-8¢©² ˜Ÿ|]„Kª€ž* § è©ò¼AsI•˜§JÌR¥=Zω0±‹·8à„gÍc%kbž51Ïš¼‘uÉгô¬=k‚%k@Ïг&X&; Ov@O•`IÐSôT=U‚%U@K•õwÔfýElYZÖì— ±³_‚&ÐþU4Œ~òU<—@Ï¥`É%Ð'F OŒ‚%@O Ð(Xô=@O [ž@ 'P°$è zKž@ 'è , zËm¹Yn›#ºÜ6è ,SЧ* g èY,YzÖ€ž5Á’5 g èY,YzÖ€Ëmsäb¹#%À‹å¶9r±Ü–#-—@Ï%Ðs)xó¶sÄ"j¿ø’V Ok‚eZz.žKÁ2­}ZzKž@ O`À‹E8ŽÜ,ÂÍ]„¼X„ãÈÍ"Üñ=@O ÏïaV(æ óiÍc%vb>­‰yÖ},©úô L°L`@ŸÀ€ž 'E°$x3áÈÍ&GJ~€ž çG°äèùz~€ž¶ü=?@Ï`ÉÐòcý!y”¬?¤–* § è©zªKª€ž* Ok‚WÓŽÜLk8⩼šÖpäfZÃÏг&X²ô¬=k‚%k@Ïг&X²ô¬}Zú´&XRôi èÓš[~€ž çG°Lk@ ƒž 'E°$èIzR¯&0ñÐ/Þdš#%?@ÏðfÑ› LŽ\M`8r3áˆO`‚ez~€oH=G –¬-köÇDcgLJKž@ 'P°¼ô èY,Ð'0 § è©,©zª€ž*Á’* § è©,©zª€ž* §J°¤ è©zª<ØRôT=U‚%U@OðâÐæÈÅ;¡q¤d èYzÖˤô€}R,©Zªì˜Ìþ€•×µËëZ@Ÿ”€žÁ’ çèÓÐCãËës~?ø`æÄÅ1sÂóã±’1ϘçÇcWo%1‹’õûõTY/Àæ'_ųô¬ –¬=k@Ïš`Éгô¬ –¬}úôT –T=U@O• ¦Êþ‹¡³ÿb”¬ –¬=k@ÏЧ5Á2­=U@O•`IÐSôT –T=UÀ‹7xž#oðœ#mZzª€ž*Á’* § è©,©úô èùÔüX%ûÏ¡¤J°¤ è©zªKª€ž* § è©,©zª€oðÌ‘›7xž#ž5 gM°d èYzÖ€ž5Á’5 g èYó`Ëг´¬YH;ë©%èÓЧ5Á’5 g èY,YzÖ€ž5Á›7xž#;ûC]–Å@Ïš`Éгô¬ Þ¼Áó¹xƒç9â z}ýõk]‹ùT%æYóXÉš˜gM̳æ±2U‰yÀÄ|ªòX›ª€>U=?@Ï`ÉÐó´üh¿I9¢QÒ~“8â©zªKª€ž* ¥ÊþiÀìßYÉг¼y'´¹z'4Žø´ô¬ –¬-kö‹×ØÙ/¾$P°$è Zí¯a´_|É%Ðri¿„QàÍ;¬qħ@ /·=Ør ô\=—‚%—@Ï%Ðs)xõNh¹y'4ŽxZ7ï„–#Wï„ÆŸžVÁ’V §hiµg\ûwV2 ´ ûÉ%xœ5Îöë+Éút)X¦KàÍ»¦qÄâl¿ø’l 'èÉz²K²žl 'Ûƒ-Ù@O6Ð'QÁ2‰=Ã@Ï0Ð3,X2 ô =Â%Ã@Ï0ðæ]Óräê]Ó8bqvÐ3 ô – oÞ5#7ïš–#eú$ ô =ÃÞÞ¿Xɰ˜gXÌ3ì±’a1ϰ˜gØc%Ãbža1ϰÇZ†ža gè,z†> –)èiZZµ_íÑàj¿Úñ }búÄ(XÒ ô´}b,Ëm çè¹,¹úô)è , Þ¼f‡#7¯ÙÉ‘21-öKÐ0Ú/¡„èÓ%Ðôz°%è zK7¯ïáÈÍë{r¤L—@Ÿ.–@ûõií×Wá@K ý4ŒöK¸zÝGn^7ÄŸZËÔ ô\}jzËÔ ô=‚%@ŸD>‰ –¬=k@Ïг&X²ô¬=klYzÖ€ž5Á’5 g èYzÖKÖ€–5ë¿+õßÕÝë†8âaÞ¼n(GÊ2è Þ¼nˆ#7¯Ê‘’K O­@ŸZKž@àÍk8baT¾íüṄi.ašK1Ï%Ls Ó\Šy.ašK˜æ=y. j. j. Z.•G4¢Ö\I«AM+ÐÓjPÓjP§V O­5—5—5—@Ï¥AÍ¥AÍ%ÐsiPsiPs ô\Ô\Ô\Ô\=—/riŽ\äG<—ub4¨ v 'Р&Р&Р&P°$Р&Р&è 4x‘@sDgC ÆÎú, 4x‘@sä"8â 4x‘@sä"8r“@sä"æˆ&xóÖ sDÃhÐÂh¿>Ï%ÐsiPsiPs ô\Ô\Ô\=—5—5—5—@Ï¥AÍ¥AÍ¥`É¥AÍ¥AÍ%ÐsiPsiPsiðâ®9róF×sä"­æÈEZqä&­æˆ¦ÕàEZqÄÓjPÓjð"­æÈEZqäæ-æÈÅ[2ÌÍ0Ð3lP3lð"ÃæÈM†}úõ¶<ˆy†Å<Ã+ó ‹Y†µoø9¡q¶~¿%Ùb–lë×÷[/Àóî'_Å£´èÛ/Á'gƒžw ç]°ähy·Û}ûwVRô=AOÁ ¦àþi îßYÉÆ`ÉFгôl –l=AÏFг1X²ÔEÃA}­XRô=ƒ%AOAÐSô|°¥ h)¸þ2z ®¿Œ-A]ô@ ú4lÐSÔ…ÀA}­XòÔ%¿A]ò}ÉoP—ü=Â>‰ôàu5èi,izZžVÁ’V §èi,izZžV §U°¤èizZ=ØÒ ´´Zÿ¡{p­ÿÐ[†ža g¨S+ЧVƒºŒ7hµ?&QûcR" Ô×O%—@Ï%P—ñuôéÒ N—=k‚%k@Ëšýç ±³ÿ|ïû¿Å¯mó¬‰yÖµ}j,ùÞL­8r±¸Ç‘’* § x3µâÈÍÔ*GJÖ€7S+ŽÜL­räjjÅ‘›©G<—‚%—@Ï%Ðs ô\ –\-—öÇD#jLJZžV §U°¤èizZžVÁ’V §èiõ`K+ЧV O­‚%—@Ï%Ðs ô\ –\o&Q¹™DåÈÕ$Š#QàÍ$*GJZžV §èi,izZžVÁ’V OŒ@}íÒ çÒïï¿Z%—bžK1Ï¥ÇJ.Å<—bžK•\Šy.Å<—k¹z.žKàÍ2^Ž\-ãqÄÓ ô´ –´=­@_Æ –ˆ}z.žKÁ’K çè¹¼y·»9rñnwsÄÓ*XÒ ô hµ_¼FÔ~ñšVûWÑàúÉWñÉN°Lv@Ÿì€>Ù –\-—öo»Dxñ.z9ÒÒ ô´=­‚%­@Ÿì€Qëcr·È‘‹7Ÿ#o>G|b¼yw¾9rñî|sħKÁ2]}ºz.K.žK çè¹,¹út ¼xw>ŽÜ¼;ßñ\=—‚šKûõiDí×WÒ ô´ –´=­@O«[ZžVàÅ;ùqäæüæˆeØO¾ŠÇxñfæÑdÛ/ACî'_Eßšô·¦ô8}Â,z†ža gX°dèz†K†ža gèöü‘Z2,æó {¬dXÌ3,æöXɰ˜gXÌ3, — =Ã@Ï0ð&Ãrä*Ã8âz†5ÃöëÓ8Û¯¯$[°$èÉz²žlÁ’l 'èÉ,.Ð'\ gX°dèú"xñYJ)³,ð&­8âi,izZžVÁ’VàMZqÄÒjÿ¶ËÔêÁ–V §èiÔ´Z¿3®õ;»Ë°¹Ê0ŽÜdGn2Œ#žaÁ2á}qô´ –´=­@O«àÕë§8rñѳsÄ3 ô – =Ã@_ò –IèizZË$ ôIè¹z.K.žK çÒƒ-—@Ï%Ð'QÁ2‰-zì€7¯ŸÊ‘«×OqÄ—ü@ÏšàÕ$Š#;ûõ• –=@O Ð(xõ:'ŽÜ¼Î‰#žKÁ’K çè¹Z.µïì˯ÔÕ¿ØÅg?qÂÓê±’V1O«˜§Õc%­bžV1O«ÇZZžV §è Á²z.žKÁ2µ}jzK=;G.>zvŽx.K.žK çR°äè¹z.K.žK çèK~ÁF /ùž@Á’@ 'è , ú2xñMsÄcçÁ«“#ž@ 'Pð*8r“@ñ×Ëâx“5¹ÉŽxÖ¯¦K¹™.qÄ(Xô=‚eºút ô¬=k‚š5û£©±³?šW“¨¹šDqÄs ô\ –\=—@Ï%Ðs)Xr ô\=—l¹z.žKÁ’K çxññ·säfb”#W#ŽÜLŒ8âi,#Ð'F çR°äh¹´Û7•;G<­‚eºút ô\ Þ|¦Ô¹øL©9âiú$êë¯ou!0擨˜çÒc%—bžK1Ï¥ÇJ.Å<—bžKµ\=—@Ï%ðf•#W“(ŽxZžVÁ’V §èi,iút ôéè¹,¹z.žKÁ’K çè¹,¹z.7K~¹YòË‘«%?ŽÜL¢8â,z†žaÁ’a gèë| ׃mºzZžVÁ²¸úâè¹,¹úëœ@KÐ(x•@ñyxóÚ¥) zž@Á’@ %Ðþm_½‹G<—‚e úô)P°L@ÏвfLJì€7 vñ=‚%@O ÐèÁ–@ 'x³`—#W v±\úÉW±ˆúÉWñ×D¯r‰#7¹ÄÏ¥`É%Ðs ô\ –\-—út ô –=@O `™>1=k@Ïšoïÿ•)Yó¬‰YÖ´ß§çD‰˜ÅNûUË O ÇJÅþ¶çˆ%Р&ÐA‹ƒŸ#ŸÍM ƒ–@-5Z´Ô:h tðãËxçÈÇßê#žK-—Z. j.´\:h¹4¨¹tÐré åÒAË¥Á‹‰Ñ9òñ¥¹sÄÒjP#ê åÒAË¥AÍ¥ƒ–K-—Z. j.´\:h¹4¨¹tÐriÿ jD jDüøè±´:hi5¨uÐré …è tÐèàǧ@säb tŽXýä«|| tŽX. ^LΑOÎK«AM«ƒ–V-­5­öïLƒkÿÎ4ÃZ† jp´´:hi5¨iuÐÒê EÔAÏ¥O¿~)‹pcžK1Ï¥ÇJ.Å<—bžKi.Y}ü38qó™GçÈÇ?ó豈úÉW±´Ôˆ:è¹z.K.ÿÌ£säãŸy4GJZžV §èi¼øÌ£säãŸytŽx†5ÃZpô´ –´=­@K«ƒQƒ%—@Ï%Ðs)Xr ô\=—‚%—@Ï%Ðré …Øô=‚%@O Ð(Xô=@O  &ÐA‹ƒž5Á’5 g èY,YzÖ€ž5 gM°d èYzÖKÖ€–5=`‚%`@ ˜ƒž*àǧ@säb tŽxÖ€ž5¶¬?þ™GçÈÇ?óhŽhì´¬9hsÐS%¨©rТäàÇ?óhŽ\|æÑ9â©zª5UZ”ôü=?‚%?@ÏÐó#XòüødçùødçñTùí×oe¹mÌS%æ©òXI•˜¥JûŽs¦}Ãω’51Ïš˜Ovk“Ð'; Ov@Ï æÇú`y”¬VK•àÅ;Í#§¹sħ@Á’* § è©zªËô)èù,ùz~€–ûÏA£dÿ9”T=UÀ¿+ÝÑ€Ù¯¯d èYÔ¬Ù¯Ocg¿¾’@Á’@ 'è z=Øô=‚%@O Ð(Xô=@O `I Ðô –=@O `I Ðô=‚%@O Ð(Xô=‚%@O ÐôiM°Lk@ÏвfýÏR‹Ðbgýo–ÇÎ`Éгô¬=k‚%k@ÏЧ*Á2U=U@O•`IÐSôT=U‚%U@OÐS%XRôI è“Ðóã÷÷ÿî–üˆy~Äþ²úsäã/«çH‹Ð_Sz&/^VŽX<ì_’ô¤–¤=)@OŠ`I Гô¤–¤=)@O ðã/«Ÿ#/«?G‰ÔÔI蓨AÍšAÍšAÏšO¿~m‹{˜gM̳汒51Ïš˜.ãÅ|b„yªÄtb+ËxƒºŒ7¨S Á‹îäÈÍGwÎÏÐó#XòÔ)РNÀ’ 'èIzRKR€ž 'E°$èIzRKR€žàÅÇqΑ‹ãäHÉÐóôü–ü=?@Ï`ÉÐóôü=?,ÓšA ÐC#èÓšAO Ð’býÅðÐX1Z~€–?¹‹’ý| 4hù±_‚FÉ~ %U@OP§@ O-?öïL£dÿÎ|b–ü-?öëÓ(Ù¯¯¤ è©zª5Uö‹¿ùHÐ9¢K~ƒž*Á’* § è©ò`KÐS¼øHPŽÜ|$豬ùÉW¹øHÐ9â ¼ùHÐ9rñ‘ sÄs)Xr ô\=—‚%—@Ï%Ðs ô\ –\=—@Ï¥`É%Ðs ô\=—ž_Ê’K±‹·dà„ETû•yN”´ŠyZÅ<­Ó´Z¯»WÌ‚kýžZ†ža gè“`™ì€žV §U°¤èizZKZžV §èi,izZžVAM«õ·Íƒkÿ•*,Z†í×Wæ=àM†åHÉ0Ð3 ô – =Ã@ϰ fØþ€iœíII6ГíÁ»‰G,äÖëky,yzÞ>1 jÈíß™†Üþ•騋{ &Û~}rûõ•éR°$hɶ_Ÿ†Ü~}%ï@Ÿ.ºä7èÉ,ÉÞ$Gn’-GJ²–lû%” jÈí×çK~ƒžl '[°$èÉz²=Ø’ ôdo’-G®’#Ÿ/’#7ÉÆO¶`™Z>µ=Â%Ã@Ï0Ð3,X2 ü¼¡gè,Z†í?A³ý'X’ ôd=Ù@O¶ßßÿÔ,Éó WÌ'\• ‹y†Å<Ã+®˜WÌ'\µ´=­@O+ÐÓ*XÒ ô´=­‚%­@O+ÐÒªýjçH .Ђ«ýÞsÄ3 ô – =Ã@ϰ`™p>á=­‚%­À›´âˆ§x“V9RÒ ô´=­‚%­@O+ÐÓ*x•V¹I+ŽxZžV¶ièÓ0Ðs)Xr ô\=—‚eÁô è zËÔ ¼™Zqäfj•#%@ŸZ>µ –¬=k@Ïг&X²¼ÉŽÜdMŽ”¬o²†#ž5Á«¬áˆg èYzÖKÖ€ž5 g̓-k@Ïð&krä*k8bYsÐì@O•`IÐSôT –T=U@K•ýÑÔ€ÙÍ’5 g èY,YÞd Gn²&GJÖ€ž5 g èYóǯ”Žöå„ÇNìfõœ( óŠy=v5‰Ê £ØÍ$ê9qõsäâ-$戧èi,izZžVÁ’V §èS«`‰(ЧV çè¹,¹z.žKÁ«©G<¢À‹7çHI+ЗA(Ð_,¹z.žKÁ’K çè¹,  /‚ž@ 'Ѓ-@O Ð(Xô=‚%@O Ðô –ýuC Ov‚%kÀ›ÉGn&;9Rô=@O `I Ð_ úk‚7oÉ0G.Þ’aŽxìËë†@Ïðâ-æÈÅ[2päæ-æÈÅ[2ÌÏ¥[.žK ¿Æ(X^czž@ 'P°$è zKž@ Ok‚eZzÖ€ž5 gM°d èKs /ÍKª€ž* § h©Òþu|ùõ­®ÒÅ,UÚ?œœðiÍc%Ubž*1O•ÇÊ´&fQ²>W©òœh“Ð'; çèù,ùz~€žÁ’ çèù,ùz~€ž çG°äèùz~¯òƒ#7KsñÉN°äèùz~€žÁ’ çèù,ùz~€žÁ’ çhù±ÿx5JÖoKÐSôT –T=U@O•`IÐRe}À<`ö¬dMðj¹#7Ëmñ –}²úd'X²ô¬=k@Ïš`Éг´¬Ù;ûÏ¡¼Æô¬ –¬=k@ŸÖ€>­ –i èÓÐóãÁ– çèù,ùz~€–ëÏÞ£dýÙß½ˆ#7¯âˆgM°d èYzÖ5köïLcgÿÎJž@Á’@ 'è ÔÚ¿m £ýÛ.¹údçíý¿2%Œb>Éy=V(æ óz¬$PÌç21_X{¬e èYzÖ€ž5Á’5 g èY,YzÖ€ž5AÍšöÛË‘›…5Žxž@Á’@ 'è , k ÏZ@Ïš`Éðfa#;àÍÂZŽ”=@O `I Ðô –=@ŸÀ€>y°e èYzÖKÖ€ž5 gM°d èÐ'0 §J°L`À›%4ŽÜ,¡åHIÐSôT –T=U@OÐS%XR¼YBãÈÍZŽ”%4ðf #0Á0àÍÛ!pijô¬ –¬=k@Ïš[Ö€ž5 gM°d èYúTô©J°LU@‹’õãdýñ¶T=U@O•`™À€%=?@Ï`ÉÐóôü– èГ¼™À|{ÿ[¹„Fìf“ž•üˆy~ÄoË8r³X–#%k@ÏгæÁ–5 g èY,YzÖ€7ÓŽÜLkr¤$è‹e O`‚%k@Ïг&X²ô¬=k@Ïš`Éгô¬ ^MU8r3Uáˆ'¨S•ï÷›/mÝ Ó© ¦Yó¬Á4k°‹Ïïɉ›Ïïá„N`°‹Ïïɉ«Ïï™#:­´¬ùÉ%Xìì—à“Aì jÖ€ž5ƒš5ƒš5 gÍ .¬ ê´fPSÔTÙ0ûÏÁ³ô¬Ô¬Ô¬=k5k5kua ôiÍ ¦Ê ¥ÊþsЀÙš5?ù*; ÆÎ~ ž@ƒš@ƒš@Á’@ƒš@ƒš@ 'Р&Р&è 4¨ 4¨ 4¨ z j jž@ƒš@ƒŸßÑ›Ïï™#šKƒšKƒ–KûõiDí×çËmƒšK çÒ æÒ æè¹4¨¹4¨“A쀞@ƒš@ƒš@Á’@ƒš@ƒš@ 'Р&РNvu²zÖ jÖ jÖ€ž5ƒš5ƒoÀ‘›· ˜#š@ƒš@ƒš@ 'Р&Р&è“Aì jÖ zÖ|ÿ>·¬‰yÖÄUÔ©Ê ‡FЧ*ƒž 'èIñàÕGÏ ÐBcý•jùz~€žÁ’ çèù^|Ô(Gn>jtŽxª€ž*Á’* § x“*9r•*ñT/>jtŽ\|Ô(G|¹mÐSôT –T=U@O•`Iðâ£FçÈÅGÎÏš`Éгô¬y°e èYzÖKÖ€ž5 g èY,YzÖ€ž5Á’5 g x“59r•5ñ¬=k@Ïš`Éгô¬ –¬=k@Ïгæóû¡dM̳&æYóXÉš˜gML—Ðb¾„†yªÄ–”#7K:G–tŽ\¼gŽø´ô¬ –¬=k@Ïš[Ö€ž5 gM°d hY³>ÔWŸ[3G<‚%@O Ð(¨ ´gFûwæËm /· zž@ 'P°$è zKž@ 'è ô=êÂZÌ(æ ôXI ˜'PÌè±’@1O ˜'Ðc-@O ÐÔ×Ë€ezÖ€ž5AÍšö‘#;í"G<‚%@O Ðô –=@O `I Ðô –=@ŸÀ€> ^e G|.ZÀì¿5%k@Ïг&X²ô¬=k@Ïš[Ö€ž5 gMP³fý!yì¬?ý«\%G<@Ÿì€¾X,Yú´ôiMPSeL4`öǤdMð*k8âYÞd G‰},“(Ð'Q gX°dèz†ža_ßÿßK†Å,ÃÚ('.>j4'J²Å<Ùb>µzìæ£F9aq¶^w™p=Ö&\ gè.Ð'\Á’V §èi,izZžVÁ’V §èS+Ð"jýÉ{D­?ú6áo^”#%¢À‹Ïú™#žVÁ’V §èizZKZžV §U°¤è.Ð#*¨µÿ5¢öRI+ÐÓêÁ»´âˆÏÈ@¨ FÔúµ´=­‚åµK O¸@Ï%Ð'\Á2á=@O `I ðâ#LçÈÅG˜rÄßinÐô·N=v‚ejzÖ€ž5Á›0#a:G,ö¯¢a´•2 }zKž@ 'Ѓ-@O Ð(Xô=@O `I Ðô –=@ŸZËÔ ô¬=k@Ïš`Éвfý×á±³þëh zž@ 'ÐÛûŸ%b>‰Šù$ê±’51Ïš˜gÍce/æÓ¥˜§Êc-U@OÐSôT –T=U@O•`IÐSôT –T=U@OÐì‚eÁôü}Z,¡ú´ô¤–¤=)@O Г"X’´¤hÿ©âÈÍ‚]Ž”üo&;±(Ù/¡,ã>Ù=?@ÏÛ2è¡zhË´ô¤=)‚%)@O Гô¤–¤=)@OŠàÕÒGn–æ8âKsÁ«¥9ŽXhì—Pòôü–ü=?@Ï`™ª€>U}ª,SÐ3ôL=‚%@ÏÐ3áÁ–  gè™,™z&€ž  gB°dxñ9;säâsv8rµ4Ç ÐBc¿„’ çx³4Ç‘›¥¹¹ZšãÈÍÒG|Z,©zª€–*ûÅkÀ´‹ÿöëuÁ.æY³¬i÷œ(±³ØY¯»$Ðc%bž@1O ÇZž@ 'è , zž@Á’@ 'è , zž@ 'P°$è zKž@ %ÐúïÂÃhýåo¹z.žKÁ’K O`@ŸÀK>},YzÖ€ž5 g̓-k@Ïг&X²ô¬=k‚%k@Ïгô¬ –¬=k@ËšõŸŽÇÎúO§-–ž5Á2)}Rzª€ž*Á’* § è©,©zª€ž*Á’* § xñ9;säâsv8R²ô¬=klYzÖ€ž5AÍšõ1ñØY“–@ 'P°$è“Ð'%Á2)=`@Ÿ”Kª€ž* OJ@‹’ý‡¤Q²ÿʲhù±_‚FÉ~ š*?ù*0?ù*:ùþ—å[[BÃ4U0ÀÄ¿ÿ¥Y&\1ŸpÅ<—+¹ó\Š]¼Û]NܼÛ'|óiØc-—@Ï%Ðs ô\ –\=—@Ï¥`É%Ðs ô\ –\=—@Ï%Ðs)Xr ô\/Þ#7Ï:G|Âz.K.žK çè¹,¹z.žKÁ’K çh¹´ÿJDo‡0G|Âú„ëÁ«·C˜#ï47G<­‚%­@O+ÐÓ*xóNssäâææˆ.^¼ÓGnÞinŽèòà §U°¤èi^¼ÓGnÞinŽx†ï47G.>ö•#%Ù@O6P Á2á=Ã@]4}ÑpðâææÈÅ;ÍÍϰ`É0Ð3 ô {°eèúÔ*X¦V ¥ÕA(Ð'QÁ2‰uypÐ(Xô/ÞiŽ#7ï47G,Œzž@Á’@àÅ[2Ì‘‹·dàHÉ%Ðs ô\=—~ÿõK]Œy.Å<—+¹ó\Šùté±2]ŠyÅ<k zž@ 'P°$è zKž@ 'P°$è zž@Á’@ 'è£`YÜ=k@Ïš`Éгô¬=k‚%k@Ïг&X²ô¬} ,úôT=Ul“Ð'; çG°äx³ŒÇ’àÍgÍ_Æo–ñ8r³Œ—#e¼YÆãÈÍ2^Ž”T=U@ŸË¼YÆãÈÍ2G|b,ùz~€žÁ’ çèù¼ZšãÈÍÒG| z~K~€ž çǃ-?@ÏÐó#Xòôü=?@Ï`ÉðfŽ#7‹p9rµÇðf.GÊ"è©zª€ž*Á’* Ok@ŸÖK~€ž çèùñǯo_[~ÄÙ –ÉèYÞ¼¾'G®^ßÃO Ðô –=@O [ž@ 'P°$è údôØ –Ø}± ô¬ –¬=kÀ›Å²¹Z,ãˆ%ÐAŸÖ€ž5Á’5àÍbGnËr¤$è zž@oïÿ—ŠyÅ<+ óŠy=V(æ óz¬%è z7“¹šìpÄs ô\ j.í×§µ__I«`I+ÐÓ ô´=­‚%­@O+Ч@Á2=—@Ï¥`É%Ч@ O@O  &Ðþ‹Q¼ø !Ž”\=—@Ï¥`™7S ŽXíßYÉ¥Û"èS Ð(Xô-ÖÇänŽ#¾Þ,Âqäf.GÊ"è zKž@ Ov‚7Ÿ74Gïo^‡“#%U@OðâcTçÈÅǨr¤d èYzÖKÖ€ž5 g ¨Yóý1þÖ–Û0ÍL³&æYƒiÖ`š51ÏL³Ó¬‰•¬Ô¬Ô¬Ô¬=k5k5kÀ›i͹˜ÖÌM Ч5ƒ;ûõiìì×ç z j jž@ƒš@ƒš@ 'Р&Р&ÐàÅë{8âa4xñúž9¢¹z. êdgP'; 'ÐàÅdgŽ\LvæˆåÒúU®^ 4G4­5­À›×Í‘‹×Í]š=­/^ 4G.^ 4Gôµ@ §Õ Nu z. j. j.7S 9bµ?`¾7¨¹z. j. j.žKƒšKƒšK çÒ æÒ æÒ æè¹4¨¹4h¹´þì=¢ÖŸ}I«AM+ÐÓjPÓjðâµ@sDƒ ÔàÚ¿m_šÔ)èKsƒQƒ:Ù=—5—u²3¨“ÐhPhPôÔÔôúíýþP(f Ô~Ûr¨ý>='J.Å<—bžKi.­×­µ^wI«ÇZZžV §èi,iZZ­ˆ×ú”éÒ N—=­‚%­@]„ԉѠåÒþ˜hDíII+ÐÓ*XÒ ô´=­‚šVû·­ÁµÛ%Ã@D%¸@D zZKZžV §U°¤¨Ó¥A. êt)xõº¡9âaz5ŒÖŸ}Yšô –uº4¨¯ô¬ –¬=k@Ïš`Éвfÿ jìì?Ÿ êÊÛ g èY,YzÖ€ž5Á’5 g èY,Y^¼qô¹xãè9â , z:1 –‰Ñ g èY,YzÖ€:1ô€ úÄhÐSôT –T=U@O•`IÐSôT=U‚%UÀ‹×ìÌ‘‹×ìp¤d èYzÖ€ž5߃¦-¬a7Y“7Yóœ(Yó¬‰]|ÎNNÜ|Î'|bó¬y¬e hY³^¹ÇÎzé-‚%À›âÈMåHI Ðh¿ £ýJ.žK çx“K9r•Kñ\=—‚%—@Ï%Ðs)x•K¹É%Žx.žKÁ’K çè¹,¹z.žKÁ’K çè¹z.=x—Kñ\=—‚W¹ÄÏ%Ðs)Xr ô\=—@Ï¥`É%Ðs ô\ –\or‰#7¹”#%—@Ï%ðâ3yæÈÅgòp¤¤èizZKZžV §U°¤x“V¹I+ŽXZí_Eƒkÿ*%Ã@ϰ[†ža gX°dèz†žaÁ’a gh¶þ<ÎÖRK6Г-X’ ôd=Ù@O¶`I6ЧK O—‚%Ã@Ï0Ð3 ô ûýûÏ­eXì&Ãrâ&Þ%Ãbža±› {N\eXNx†Å<ÃkÞdGn2Œ#žaÁ’a /ù¾ä,iút ôéR°äè¹z.7¹”#W¹ÄÏ%ðâÝî8rónwsÄÓ ô´ –%?Зü@Ï%Ðs)Xr ô\=—‚%—@Ï%Ðs)Xr ô\=—@Ï¥ïr‰#žK çRð*—8â¹z.oÞ•nŽ\¼+Ýñ´/Þ•Ž#7ïJ7G<Ã@ϰ`É0ð&Ã8â+zÁ›w¥›#žaàM†qä&Ãr¤dèz†K†žaàÅ;ØqäæìæÈM²qä&Ù8âÓ°`™†ža g؃-Ã@Ï0Ð3,X2 ô =Ã@ϰ`É0Ð3 ôiX°LÃ@O+ÐÓ*XÒ ô´=­@O«`I+ðfÆ‘›iXŽ” =Ã@Ï0Ð3ìy¤J†ÅüuN1Óc%­bžV1_Ü{¬¼Î)æ¹ó\ÊoIÉ%Зñ@_Æ=‚š@í7‰#Fí7‰#žKÁ«×Dqäæ5Qñ´ –´o^Å‘›×DqÄ_,¯‰=­@ŸDË$ ô\=—‚%—@Ï%Ðs ¼yMTŽhDí?‡’V §U°¤èizZKZ7¯‰âˆèÁõàÝëœ8âÁzp¯^çÄ‘›×9qÄ3,X¦VàÍëœ8ró:'Žø„+X&\ §èi,iúëœ@¨`™ZžK /ù¾ä, zž@Á’@ '蓨`™DþÚ%Ð_»zªKª€ž* §Êƒ-U@OÐS%XRôTo^Ä ˜õŸkËгô¬ –¬=k@Ïš`ÉвfÀn>›hŽxK>]}º,YzÖ€ž5 gÍ×÷ÿ%kbž51ÏšÇJÖÄÙ}²zRKR€ž 'E°$èIzRKR€ž 'è˜àÍhÏ‘›·Yàˆ'E°$èIzRKR€>­-öǤ$ŃwIÁO Г"èïJ7èÓÐ3!X2¼ÉŽÜdG<‚7:G.>uŽxRKR€ž 'E°$èIzR€žÁ’ 'xñѨ¹ùhÔ9âùz~K~€ž çèù,ùz~€ž¶ü=?@Ëõ‡äQ²þZª€7©Â‘›TÉM•ý«Ü¼Ùöñ¬ –¬=k@Ïš fÍþiììßY™ì€ž5Á’5 g èYÔ¬Ù¿mýÛ. z½ýúG]°‹yÅ<+ óŠy=V(æ óz¬%è zž@Á’@ 'è ¼šÖpäfZÃÏ¥`É%Ðs ô\=—‚%—@Ï%Ðs)Xr ô\=—‚%—@Ï%Ðs ô\ ^åGnr‰#žKÁ’K çè¹,¹ÞL`8ró®t¹yWºçÈ]ZqÄÓ ô´ ^Mk8r3­áÈÅçqäæsŒæÈM²qä&Ù8âÉ,“Ð'; gX°dèz†K†ža gè,z†>Ù –ÉèizZKZžV §èi,izZžV¶´=­@ŸìËdô\} ¼ø¼!Ž”x“@ñ –=@O `™ì€;=k@Ïš`Éгô¬ –i èÓÐSôTùöë[]B‹yªÄ1}b¼z}Gn^ßÃ}xóúž¹z}G1¼È°9r‘añ Ô ÔéèÓ¥AM«AM+ÐÓjð"­æˆ¥Õþ€ù$ ô´Ô´´´Ú/^ƒk¿ø›“#g ÆÙ~ ¾ä7¨6¨,6¨6¨z† j† j†¾¸7¨ïJ7¨i5x‘V¹I«9¢i5¨izZ êhÐ"jÿÎnÞ:aŽhZ jZ ZZí×§Áµ_ŸgØ fè6¨Ó¥A .ЧKƒšVƒšVƒšV §Õ ¦Õ ¦U°¤Õ ¦Õ ¦èi5¨i5¨i5¨izZ jZ jZžVƒšVƒiÅ‘›´š#šVƒšVƒšV §Õ N—uºz. j. j. z.ýöþ·dÉ¥˜çRÌsé±’K1Ï¥˜çÒc%—bžK1Ï¥ÇZ.žK N—uº–=À›Ê‘«âˆ'x“@9âëqƒ“¨9r“@¹I ) zž@Á’@ 'è , ê‚ݠΑ=k‚%k@Ïð&krä*k8r“5ñ¬ ^e G|ùÖ²&æYó¬9V²&æYó¬9V²&æYó¬9Ö²ô¬=k@ßÖ5`ÚO)#0í‘Ïšàj³ÃÈf³Ãˆ'P°$h t|F÷ÇWr)Xr ô\=—‚%—@Ï%ps½LFV×Ë0âizZ›ëe2²º^†?°zZW×Ë0²¹^†ϰ`É0зK ¸øüžŒ¬>¿gF<Ã@ϰà*ÃÙd#~¸-X·›´bd“VŒxZKZžV §U°¤èizZËA8Ð# ôíè¹Ô\º“4¢îߤ’VÁ’V §èi,izZ–V÷×Dƒëþš” =ÃÀ͵@g¤Å¸¹ˆO¶`I6Ð’íAßp› ˈfØý™•mè,z†žaÁ’a eØý5Ñ8»¿&%Ù‚%Ù@O6Г-X’ ôd=Ù@O¶×[ØÅ<ÙbžlÇJ²Å<ÙbžlÇJ²Å<ÙbžlÇZ²žl '¸ÙDedµ‰bÄ7Q '[°l¢@ßDžaÁÍç ÍÈæ.oŒøÖ ô – =Ã@ϰ fØýikœÝŸvÙpˆ ô -Ãî~óBŒ”C~ gè,.Ð7\ §UpóB3²ø ¡ñ ýßÁ¶á=­@O«`9äú!?Ðs)Xr ôƒ{ Ü=‚%@K ë·×Ãèúím¹z.žKÁ’K åÒý™­6QŒxZË& ´ˆº?>¨ûã+i.>ChF<¸‚%¸@ ®ûƒ/.Ð7\Á’V §è®ƒ-¢@ßp–K×—Ú#êú‚í¶aŒl¶aŒøAà×ý!¬¶aŒx†K†ža gX°dhö oÃ@O«`I+ÐÓ ô´ –´=­@O+PÓêËÇ·!zZašV˜¦UÌÓ Ó´Â4­bžV˜¦¦i+i5¨i5¨i5¨Û0Я]Ô\\Ü’‘Í-fDÓjpqKF|ï5¸H«YÜ’aF·d`Ä3lP3lP3 ômØ nÃ5­@O«ÁÅ-fdqK†у† §Õ ¦Õàâ– ŒlnÉ0#šaƒ–a÷‡à{¯ÁE†ÍˆfØ fX°dØ fØ fè6¨6¨n>ÊuFå:#šlƒšl 'Û n­ukz† j† j†žaƒºµÔ­Õ ¦èi5¸H«Y¤#žVƒ‹´šM+póñ¬3¢®AM«AM+ÐÓjPÓjPÓ*XÒjPÓjP7Q o¢-—ÔMÔ &èGÿ·z˜‘Å­ñÔ\Üê‘Í­fDsiPsiPs ô\Ô\Ô\=—5—5—=—^QÓb–Kí[” ¨cQí»— O«˜§Õ±’V1O«˜§Õ±–V §èizZKZ–V×ïŽ×õ[P¶Vƒ–V÷‡ Áu%¸@½ÖjP·VƒQ÷¯uðšV?ø*\÷¯R2 ´ »?³ûCÐd» ¹|=À8èÉ,Éz²º }6èê6 ,ÁêAÃAO+ÐÓê`K+ÐÒêúímÁÔàº~ï[†žaA߆ ê6lÐÓ ô´ –´=­@O«`I+ÐÓ ô´ –´=­@O+ÐÓ*XÒ Ôë§õXr ÔC~ƒFAß9 zž@ %Ðý窄èaZ]èZ.žK çRPséú´=¢î¾¤èi,iêÁ½AÝ%—@Ï%P7F oŒ=@O ÐèþMÒ0º“J.žKÁ’K çè¹z.}~=Ù–K1ß.Å<ŒŽ•íRlñBL,>C(%—bžK1Ï¥cžK×îu}ä-­@O«àæ®Y\Ã5#z ,iúÖ Ô`É%pq]ÖŒ,®Ëš=–Mè›(Ð7QÁ’@ o¢ÀÅuYŒl®Ëš=8èY.®Ëbds]ÖŒxž@ÁÍuY3²¸.kF<—‚%—@Ï%Ðs ô\:Ør ôMèa,›(Ðô –=@O Ð(Xô-®o)£ë[ªåè¹,¹z.žK çR°äè¹z.K.žK çR°äè¹.®‰š‘Å5QŒ”ˆ=¢ÀÅ5Qi.®‰šO«`ÙDQz.žKÁ’K çè¹,¹z.žKÁ’K çè¹úÆ(X6F '¸ø|$F6Ÿ4#žK çè¹ôÛÛËXr)¶Ù.eÂ#êØj»” ß.Å|»tLséú¸KDÅ,¢®{—VŒlÒŠO+ÐÓ*¸J+F6iň§U°¤èizZKZ¾‰}z.K.žK çR°ä¸Ù1²Ùedµ1bd³1bÄÓ ôQ°lŒ@Ï%Ðs)X6F oŒ@O `I Ðô=¶=@O `I Ðô –=@O Ð(Xô} ,[ гô¬ –¬=k@Ïг&X²ô¬=k‚š5×_.;×_.-‚%@O p“@Œl(#š@÷¯¢aôƒ¯â‡ñ¶0}»zKž@ 'è , zž@Á’@ 'è , zž@àfc”‘ÕÆˆÏ%Ð7FÁ²1=@O ÐèËÛ_4ÚK’ £öŠdÂÃèXÙ.Å”úøö·Å’@±Å혰0jîL”\Šy.Åt«ó­ æ Ó­J¬lUu«2èêV,©.n^=#‹›W3R²Üd #›¬ÉHÉгô¬7¯fdsóêÑÃmƒž5Á’5 g èYÜlkfd±­™O Ð(Xô=‚%@O Ð(Xô=@O ƒ«k3âaz77™žÏ%Ðs)Xr ô\=—@Ï¥`É%Ðs ô\ –\Ëfdq°Œß z.žK n@ß zž@Á’@ 'è , zž@àâ†ÔŒ”0[ ñ\:Ør Ô-РnÀ’@ 'è zKž@ nv@ßì zÖ€ž5Á’5 g èYzÖKÖ€ž5 gM°d ¨ÛšAÝÖ zª|úð¥Ã|[ómͱ’1ϘçDZ’1ϘçDZ– çèùz~K~€¾)KÊÈæcIgD€ .>–” ûC(ù.>–tFKʈ,ôü=?‚%?@ÏÐó#X¶*àâcIgdñ±¤3âù,ùz~€‹%edó±¤3b©òƒ¯â,.®Ã™Ïгæ`Ûì€0 L°lv@OÐS%XRôT=U@O•`IÐSôT –T}³n6;YmvñT=U@O•`IÐSôT –T=U@O•`IÐSôT}[,Qú¶ôü8Øòôü=?‚%?@ÏÐóôü–ü=?@Ï`ÉÐó\\×ÂÈæº–ñT=U@O•`IÐSôT –T=U@OÐR¥½ÔŸ?|«ÇÍb‹;–1áYs¬dM̳&æYs¬dM̳&æYslu#æY܈yF<@O àæFÌ3²¸óŒøÁ²`ÙÀ€ž@ ^–­ ¸øŒ›Y|ÆÍŒøÁ²`Éгô¬ –¬=kÀÅgÜ0²ùŒ›ñƒe oUÀÅgÜ0²ùŒ›ñ},Ð70 L° èÐS´T¹¾š0×W³e èYÔ¬¹?>ûã+ , zž@ 'P°$è zKž@ ^‡– èYzÖ€ž5AÍšûCcçþÆ( , zž@Á’@ 'è zKž@ 'ÐÁ–@ 'è , z–@×w‡Ñõ]Ór ô\=—‚%—@Ï%з5Á²­-î/˜†Ñý+¹,¹z.žKAÍ¥û3Óˆº?³’V o~{ûX"*æ[ ˜çÒ±’K1Ï¥˜çÒ±’K1Ï¥˜çÒ±¶} zž@Á²} n¶@Ymñ7[ Œ”0-Œî¯B=‚%@O Ð(Xô}³,›p³ÙaÄc\Üà™‘²Ù=k@Ïš`Ép³­aÄbçþÌ6wX›‘Íf‡Ï%Ð7;Ûfô=‚e³Zì\_ëkÒô=@O `I Ðèþ´5ŒîO»äè¹z.K.žK çè¹,[ ÐÂèþjjÝ_Í’K åÒý!hDÝBI+ÐÓ ô´=­‚%­@O+ÐÓê`K+ÐÓ ô´ –´=­@ß.¾] –\-—®o ¨ë£¥èizZKZ–Vúv ô\ –\=—@Ï¥`Ù.¾]=@O /oÁQ(æ ó:V(æ ó:V(æ ó:Öô=@O `I ÐÜ$PFV Ĉ'¸I Œ”7 ÄÈæ #›ƒp)¹z.žKÁ’K çè¹,¹nr‰‘ÍA8Fü \°äè¹nÂeduŽ‘MZ1â{¤ FÔý!”íè¹z.l¹z.žKÁ’K „} , zž@ 'P°$¸I F6 ”‘’@ 'è , zž@ 'P°$èá@ßKÖ€›¬ad“5)YzÖ€ž5 gM°d èYzÖlYzÖ€ž5Á’5 g èYzÖKÖ€›¬ad“5)YZÖÜ‚ÆÎý!”=@O Ð(Xô=‚%@O ÐôúúáK=JóŠy+ óŠy+ óŠmîÆv&vwccds76F,¢~ðU<­‚%­ÀÍ-ÙÜâ #倸¹Å#›[d¤è×¾]7·8ÈH‰(psç6F<­‚%­@O+ÐÓ*¸ºÅ#›[0âû)ÐÓ*XÒ ô´},›(ÐØFÁrÀô=@O ƒ-@K ë·×Ãèúím¹z.žKÁ’K çè¹z.K.~hôCsÁ’@ 'è , zž@ 'P°$è zK~ôƒpÁ’5 eÍý§CcçþÓ±ºÅAF4Œî_Esé_Å"êúUZZ›»Ç1²¹{\FJ†ža gè,úa뇉Ågýd¢¤JÌS%æ©r¬¤JÌS%æ©r¬¥ ¸847#‹Cs3âY,Y.ÍÍÈâÐ#~hnpqhnF‡æ)±êÆhP7Fƒ‹CsŒl>hFí–@ 'P°$è zKž@ n`@ßÀ zÖ€ž5 gM°d èYzÖKÖ€‹k3²8°6#‹s¿’äk;Ɔ-nÌÍ„okŽ•ŠyÅ<Ž•ŠyÅ<Ž­nÌ=#‹sψov@O àæÆÜ3²¸1÷Œè¡9°$è›PÂ%kÀŹgdqcîÑCs`ÙÖ€ž5 gM°d hYsÚ%v‚›sψ°ô¬ìÙ°›O Ð(Xô=‚%@O Ð\„ËÈê ÜŒø¶ô0 –m è zKž@ 'è , zž@Á’@ 'è , zž@ 'Pps³íYÜl{F<—‚%—@Ï%Ðs)Xr ô\-—FÔý5)[ Ðs ô\:è¹t}ð«Ãm3âi,#Ð"êAÏ%Ðs)Xr ô\=—‚%—@Ï%Ðs)Xr ô\=—@Ï¥`É%Ðs ´\º¿¥4¢îo©²1}cúÆè|wJÅüÀZÌèXI ˜'PÌèXI ˜'PÌ(ï̲ýÀèYZÖ´÷CF4vÚû?ÜzÖKÖ€ž5 gM°d èÛз5 §J°¤ è©zªKª€¾=J‚å`èùZ~ÜßR›h3¢Qrÿ*%?ø*ž*Á’* § è©,©zª€ž* ok¶m èùz~K~€žàâÚF6×Ö̈¥Ê¾ŠÌ¾ŠgM°d ¸¸{ÜŒ,îÇHI Ðô –-îÏLÃèþÌJ.ËÆôè , zž@AM û ¦atÁÊv ôƒpÁ’@ 'è t°mŒ@ß–5×Ìcçú‚yýà«Xýà«,®b¤Dhu%­‚šV÷ǧÁu%Â%Ã@Ï0Ð3 ô – =Ã@ßZËÖ ô´=­@O«ßÞþêUÒ*æió´:VÒ*æi³´jo¦3¡ÁÕÞK™ð ‹-îv—‰ÕÝîfdsp9ÐBîþÊÁ=Г ôd –d=Ù@O¶`I6Г ôd=Ù‚šl÷oÒæ®t3ây,yzÞžwÁ’w çèÛ%ÐÍË¡9Ð7F gX°dèZ†Ý¿½«ë{ñd=Ù@O¶ƒ-Ù@O6Г-X’ ôd}c,#Ð7F oŒ@O«`I+Ð7F oŒ‚%—@Ï%Ðréú~󈺾ßÚv ´ˆúÁCðˆ jDÝ_I+ÐÓ*XÒ ô´=­‚e»úv ô\=—‚%—@Ï%Ðsé`Ë%Ðs ô-P°l@K } ú(Xô-¸¸##›;Â͈oŒ@O•`IÐSôT=U‚%U@OÐS%XRôT=U@O•/~«Çãbž*1O•c%Ubž*±Mªœ‰UªdÂS%¶I•3±KF6©Âˆ§ ¸I•Œ”T7×1²¹Æ(#%kÀÍ5FŒl®1ÊHI Ðô=‚«bd“@ŒxKž@ 'P°$è zž@Á’@ 'è , z¾‰ –MèYzÖ€ž5=k®ï·;àâfÛŒ”=@O `I Ðô=‚%@O Ð(Xô}c,#гÜd #–5÷7FÙž5 gM°d èYzÖKÖ€‹sÏÈâÆÜ3â , zž@[‹hÏÈâÚŒ”\=—@Ï%Ðs)Xr ô\7¹”‘U.1â¹z.K.žK çè¹,¹z.žKÁ’K çè¹n®1úúá[=JóˆŠyDÓˆjoŠLxZÅü€Ý1¨ëó-³ˆº>îÝõHŒl®GbÄ# ôë‘‚«ë‘Ù\Ĉo‚%—@ß¾ –7×#1²¹‰Ï¥`9äú!?Ð(XÜ\Ĉ‡Qpu=#žK çè¹,¹z.žKÁ’K çè¹,¹z.žK çÒÁ¶=Œ@ßKž@ 'P°$è zž@Á’@ 'è , zž@Á’@ 'è× ¾Ã ®®bdsÝ#ž@AM ûCÐ0º?„’KÁ’K oÀÍ5FŒl®1ÊHÉ%Ðs ô\:Ør ôè£`I Ðô=‚%@O зËuC g èYÔ¬¹¾k”=@O Ð(è×ì ê¶fP·5àæÀÚŒl²†‘MÖdd•5ŒxÖ€ž5 gM°d èYzÖlYzÖ€‹;Â1²¹#ÜŒxž@ 'P°$è zKž@ 'Pp•@ŒlˆO Ð(X´º?x £ûƒ/¹z.žK çÒ§ßÚA8Ì÷=1=+ óŠ-ÂebsŽ £Øâ \&VáfdqnF<ŒÀÅA8FJ.žK çR°äè¹z.K.žK çè¹Ün›‘Åá¶ñ´ úá¶A(P·%—@Ï%Ðs ô\ –\=—@Ï¥`É%Ðs ô\ –\=—@Ï%Ðséàê3â.nqÀHÙžK çR°äè¹z.–K÷L#êþš”´=­‚%­@ß‹CsŒlÍ͈§¸¸uÂŒxp7‡æfÄ3 ô –=¨‡æõÐè‡æ‡æfdqhnF<­‚%­@O+ÐÓê`K+ÐÓ ôQ°lŒ@Ï%Ðs ô\ –\=—ÀÅA8F6áfÄÓ ô´ úA¸A‹¨=—@Ï¥`É%Ð7F oŒ‚%@O Ðôúõí÷fI ˜'PÌèXI ˜%P{7e¨½™Î„Þæ ÓÏŠ•ÏÔÏô€}³,©zª€ž*Á’* § è©,©zª€ž* §J°lv@ß쀞Á’ çhùq}¯n/0#ž* § è©,©zª€ž*AM•ûk¢sMJÖKÖ€ž5 g èYs°m@зKª€ž* §J°¤ è©zª€¾Ù –Íèùz~K~€ž X –m èIú¶ôx–m è™z&K&€ž  gB°dè[pqË€YÜ2€‘’  gè™ppõ±¤3²øXÒñ¤–¤=)@O Г"X’ô¤},Ð3ôL–L=@ÏÐ3!X2ôLKÊÈæcIgÄ“ô¤=)Î_îKRÄ<)bžÇ4)Úë‘ örd¡+Ió¤ˆyR䱕¤=)@O Г"X’ô¤=)‚%)@O Г"X’ô¤=)@OŠ`I Ð’âú>ôи¾[~€ž o?‚eûzR€ž 'E°$èIzRËöôíè™,™z&€ž  gÂÁ–  gè™,™z&€ž Á’  gè™z&K&€ž  eÂõÇÕãáúãÚ’ô¤–¤=)@O Г"X’ô¤=)‚%)@O Г"X’ô¤7IÁˆï‚÷7†&Åý!hh\¿JÛR€¾¥=)‚š×ï¡qð%?@Ï`ÉÐóôü–ü=?@Ï`ÉÐóôü-?îß$’û7©¤ ¸I•Œ¬R…K•| ˜|Ïš/¾ÔÃb±Íµ5™ðØ9¶¹q4~°,æYs¬dM̳&æYslw½ #›ëeñ=‚%@O Ð(Xô=‚%@O Ðô –7 ÄÈ&2R\ÜàyF6×ÖdDséþU4¢~ðU<­@O«`I+ÐÓ ô´ –´=­@O«`I+ÐÓ ô´=­¶´=­@O«`I+ÐÓ ô´ –´=­@O+ÐÓ*XÒ ô´7i•‘UZ1âizZKZžV §èi,izZžVÁ’V §èi,izZ›´bd³­Éˆ×ý«hpýà«øfç`K+ÐÓ ô´ ®ÒŠ‘MZ1âizZKZžV §U°¤èizZKZžV §¸I«Œ¬ÒŠO+ЋËa1Ð7; ov@O ¯oÿmI Ø&2á tl•@™ðŠy[Ý^ F±ÍíÎÄ.—Ùä#žK çR°ä¸ø¨ÑY|Ô(#%­@O+ÐÓ*XÒ ô´=­@K«ûk¢ÁuMÊá6зKZ›´bd“VY¥#›´bÄÓ ô´ –´=­@O«`I+ÐÓ ô´ –´=­@O+ÐÓêàîšF<¸@®àêŒx†žaÁ’a gèz†K†ža „ –ƒpàæŒlnq‘’a gèz†K†ža gXpu‹F6·8`ds‹ƒŒ¬nqÀˆçè·8}G\%#›dcÄ“í`K6Г ôd –v ÅÙƒža gX°dèz†K†ža gX°dèz†~À.XØžV §U°¤èizZ‹%}û—ïç\1 ®öƒ“ ®c嚘§UÌÓêXÙ.Å,¢®¯Å*­ÎÄ.­Ù¤#žV §Upó±¤3²øXÒñ­U°¤èizZKZ‹%‘ÅǒΈo¸‚eÃzZžVÁÕá±àº?³rÈ/Xù~Èô\=—‚%—@Ï%Ðs)Xr ô\=—‚%—@Ï%Ðs ô\:Ø6Q ‡èa,›(Ðô –=@O Ð(¸ºÑ5#›]3â¹,¹ú& ôMT°$è zž@ÁÕ®ÙÜ蚑ͮ3RvYà&—ñ W°l¸@O Ðô –kŒ@¿Æô¬9زô¬=k‚%k@Ïвæú½÷ع~{[ž@ 'P°$è zWwycÄÂèþš”\=—‚%—@Ï%Ðs)¨¹tÚQ÷§]Ò üù´úõ­ Êq¾±ŸO«™°´Â4­Æ,­Æ,­0M«1K«1‹(l“KÏÈÏçÒ3b¹ô åÒà"—ž‘ŸÏ¥gÄriPséAË¥-—5—üù\zF~>—žË¥AÍ¥-—´\Ô\zÐÂèAK AM -´zÐhPèAK -5´zÐhPèAK -´=´zÐhPèAK -5´zÐèAK AM -v´¬Ô¬yвæAËšAÍš-k´¬yвfp‘5ÏÈÏgÍ3òóY3#š5÷¯¢±ó eÍ f̓–5ZÖkžËš-kþáýÿ}÷7ÿúßþÓß½ÿû?½ÏÛÿà÷ÿù§¿ÿ¯oò·÷ÿïÝ?ý÷¿¼ÿ_ï>¾ÿϯÿûçwo?¿¼ÿ/ï>}=ï°п¼ÿõõCøqvM~ÿ§wŸ^ÿÍóÇ/çßüo~Þ¡û8üÎ_ÿjøõÿ}þø¿¾þ×oxþø‡ÿÅzßþw¿óüÿç¿Êó{qÿæ?¾ÞÌïÿ߯¿vòùó§×_q^¿v^ÿzûíÓûßÿåý¿ýôË¿{ÿû?¿û¿Ÿÿíûðç§Ëþþu3üúqùúõ»á/›á×Ûáõ‹ÿáoÏð|K_oöó-Ë?¿þVúzÿœïé_ý_¾~ø6üÎ?¾~K|ûîàÏßÿ¯¼|½þø'òçïþ‰O¯¹/ßýüù»âóëïe¿}÷OðçùÞΫðÝSÿ÷ß½"Ÿ^?µ_¿¼ÿòzìŸÏËð W{ïã_¿I_óùË—q1þªó_¾^¾…÷ñ·¿Z½~¹ô·Ï}üíß~ß¾ýÕ[÷/¬ÏOÑ×9³ûçùã¼%ÞýÕ[ä/§ÿüîOo¿f^GþòÇ—ÎÿÿëçOü&úïïÿÏOý(~æ=ýë_½§ÏŸ?¿ºøõ× ·ùëwéÛúÇóóŒþáÝÿ9¼A( endstream endobj 46 0 obj << /Alternate /DeviceRGB /N 3 /Length 2596 /Filter /FlateDecode >> stream xœ–wTSهϽ7½P’Š”ÐkhRH ½H‘.*1 JÀ"6DTpDQ‘¦2(à€£C‘±"Š…Q±ëDÔqp–Id­ß¼yïÍ›ß÷~kŸ½ÏÝgï}ÖºüƒÂLX € ¡Xáçň‹g` ðlàp³³BøF™|ØŒl™ø½º ùû*Ó?ŒÁÿŸ”¹Y"1P˜ŒçòøÙ\É8=Wœ%·Oɘ¶4MÎ0JÎ"Y‚2V“sò,[|ö™e9ó2„<ËsÎâeðäÜ'ã9¾Œ‘`çø¹2¾&cƒtI†@Æoä±|N6(’Ü.æsSdl-c’(2‚-ãyàHÉ_ðÒ/XÌÏËÅÎÌZ.$§ˆ&\S†“‹áÏÏMç‹ÅÌ07#â1Ø™YárfÏüYym²";Ø8980m-m¾(Ô]ü›’÷v–^„îDøÃöW~™ °¦eµÙú‡mi]ëP»ý‡Í`/в¾u}qº|^RÄâ,g+«ÜÜ\KŸk)/èïúŸC_|ÏR¾Ýïåaxó“8’t1C^7nfz¦DÄÈÎâpù 柇øþuü$¾ˆ/”ED˦L L–µ[Ȉ™B†@øŸšøÃþ¤Ù¹–‰ÚøЖX¥!@~(* {d+Ðï} ÆGù͋љ˜ûÏ‚þ}W¸LþÈ$ŽcGD2¸QÎìšüZ4 E@ê@èÀ¶À¸àA(ˆq`1à‚D €µ ”‚­`'¨u 4ƒ6ptcà48.Ë`ÜR0ž€)ð Ì@„…ÈR‡t CȲ…XäCP”%CBH@ë R¨ª†ê¡fè[è(tº C· Qhúz#0 ¦ÁZ°l³`O8Ž„ÁÉð28.‚·À•p|î„O×àX ?§€:¢‹0ÂFB‘x$ !«¤i@Ú¤¹ŠH‘§È[EE1PL” Ê…⢖¡V¡6£ªQP¨>ÔUÔ(j õMFk¢ÍÑÎèt,:‹.FW ›Ðè³èô8úƒ¡cŒ1ŽL&³³³ÓŽ9…ÆŒa¦±X¬:ÖëŠ År°bl1¶ {{{;Ž}ƒ#âtp¶8_\¡8áú"ãEy‹.,ÖXœ¾øøÅ%œ%Gщ1‰-‰ï9¡œÎôÒ€¥µK§¸lî.îžoo’ïÊ/çO$¹&•'=JvMÞž<™âžR‘òTÀT ž§ú§Ö¥¾N MÛŸö)=&½=—‘˜qTH¦ û2µ3ó2‡³Ì³Š³¤Ëœ—í\6% 5eCÙ‹²»Å4ÙÏÔ€ÄD²^2šã–S“ó&7:÷Hžrž0o`¹ÙòMË'ò}ó¿^ZÁ]Ñ[ [°¶`t¥çÊúUЪ¥«zWë¯.Z=¾Æo͵„µik(´.,/|¹.f]O‘VÑš¢±õ~ë[‹ŠEÅ76¸l¨ÛˆÚ(Ø8¸iMKx%K­K+Jßoæn¾ø•ÍW•_}Ú’´e°Ì¡lÏVÌVáÖëÛÜ·(W.Ï/Û²½scGÉŽ—;—ì¼PaWQ·‹°K²KZ\Ù]ePµµê}uJõHWM{­fí¦Ú×»y»¯ìñØÓV§UWZ÷n¯`ïÍz¿úΣ†Š}˜}9û6F7öÍúº¹I£©´éÃ~á~éˆ}ÍŽÍÍ-š-e­p«¤uò`ÂÁËßxÓÝÆl«o§·—‡$‡›øíõÃA‡{°Ž´}gø]mµ£¤ê\Þ9Õ•Ò%íŽë>x´·Ç¥§ã{Ëï÷Ó=Vs\åx٠‰¢ŸN柜>•uêééäÓc½Kz=s­/¼oðlÐÙóç|Ïé÷ì?yÞõü± ÎŽ^d]ìºäp©sÀ~ ãû:;‡‡º/;]îž7|âŠû•ÓW½¯ž»píÒÈü‘áëQ×oÞH¸!½É»ùèVú­ç·snÏÜYs}·äžÒ½Šûš÷~4ý±]ê =>ê=:ð`Áƒ;cܱ'?eÿô~¼è!ùaÅ„ÎDó#ÛGÇ&}'/?^øxüIÖ“™§Å?+ÿ\ûÌäÙw¿xü20;5þ\ôüÓ¯›_¨¿ØÿÒîeïtØôýW¯f^—¼Qsà-ëmÿ»˜w3¹ï±ï+?˜~èùôñî§ŒOŸ~÷„óû endstream endobj 49 0 obj << /Length 3640 /Filter /FlateDecode >> stream xÚµZ[oãÆ~ϯð# ¬ÎC¢@$hŠ¢H7 é-Ó²²¢¤ˆV¼Î¯ï¹Íp†¢×Þ&y°EçræÌ9ß¹Íßn¾øò篔*[çôÕÍý•2¦ôusU;_jã®nî®þSèòZîz¥”¶Å?·ð²ï;øº^o‹¯ç36<â·Ã›]ñý^v¿Â¿í~sýß›|ùMsÕ–m­k\©ºZ©¦4â5Þ÷#ôì»ü__k_<\¯¬åÙ¬ÕÅxØá*É"ªùÓ#¾ã£)pŽ#Í1ö2žŸáoz‹Ÿ¶´}=^¯t]Flz”O¿âê2úiú©R÷:¥3¡mb÷L÷ŽØ$[‚ÍÓ~‰Ï¼ßþÙNÖ…-ð˜I]t £!9UÅ" ÌŒŠä^¬°Òm]zÝ,òür9Õ–ÞF‚Þ0¿Q¥Ñq€(ñš–aAF$ž¾½¬~ØéHâx¥•Xd¿¿¤~ømÄiÇG9¾Qûð7Ó>jÁNŒSÓÁŽ$%—¬Y9UVµÍùÚùº²©"wWHêîI?ZÚĺڄͯhw:ŸpWl°©¦âë­œŸ`êÁ9¢zL°8Ñ‘j56w8~sX‘ö®dOˆ¼°ð@@â‰íøû¯ þ6“¢CÛw §,ט|ñSå*Õ¶~«kmÛâ§î¹éæx–m=r㺓ñq÷ò~Ë<ç—c7Òn…ˆC2氤ˢ:˜öÕ<ÑSZ°fÆT¤€Í'lÞ< ¤ãÇkJûŠLш¹QQÏÑoe²Ž¥;~˜ºA¼Î9~w=˜êo®‹"Fİ¥ [I… ï5×"ø8³Z6ΡžÈ‚N0Ê0 ;–2c,°ÐÕ,ŽÏ±}È6c‹  È)Ÿr Y´Â¥‰Y(\ï^œ€üг.vOvbX’S—uݼÑm©UìÛíyö(…qý³b$rœÌìHT­ûàgØMìG]w¦X3¯ã†O]PwÔhg‰ÚÃpL>@…³Ñ¹z¥(ÚCÏ3/š¼æh]ÚÏ0º.U•¼•mLñ„üÜ®Qð¾dÅm ¹¿Î¥‡É,²Méæp$ð•PhI³KÓÚÏ8R[‡ÎŸ2¶²¿,l]¶Mxc4 +Èááí gÀDž³gš\Â=šà%ÛÌSÎ úíxÔ@úôé#»ÅQÏüL2ußMX+ÒÚÒ€{>NL5w0°MíÞŒku]ˆ÷†ÃV¸6²Àc´qó0u½ xƒ›©}„¬Ó9íY6'hóð› Ð\.¬/[ý‚®£5Rä9wa­È:þ¶’O—‡Û0sdbmQrÂØ4&7?#kÄ&ë rcÅIÇ}á2hÃðÛ-êÉ3??öØzó`Kêd PÊ vÁp£aêNCú§Þ0jÍ ÌÁšN‚à¬dþadÉ[2ŒBÞ[}êµÝa¬ÔJ/z¤ïëà œæXVen YP°9s©æËŒ¼Q~§i6ÄÙ¨Qû ÉléÀ;ŠS³W·´ç‘¸Oš„ûS&lj³®®¥&€CVc¿pªø-ú"›–†.‰"äš`äAç}P²ùqûžûtøãR¯”@7@Kîiââ÷ü¼—ų%3J¡JO[G¯Ÿ×Ñ$¤ÅV1Ž‘=7/8ŦuNño9©Áønr·Ó2‹ûÌ6‰Ó'6IÜÏžKðø’s³*Ê—ô;"óAR.ŒŒ =D{vkIøVÆ œ;?-! ;öâ8 ÛTêO@oß”¦ªSÓÜ4ÅíYÜÇe2·+—2/'ç““ó íÄQÑoœÛZpUås[,6ÄÄÅasÝzæóa'ø|'Ÿ;Ä @Q[[g ŸvÑzè¹6RÇDæ&ìbä¶‘ÄXfZ‡”]/_ïãh‡FˆÒ:<Œ¹… —Ê&_Īªå ÿѶjd8/w¬K\zñ*Dïqì+A3$Ýc’)8ïÛ;±Ïر“^]B× Æ}¢€Ô™¶j^†’êSÙ‡ßçŸT¥o£ã³€" ào·‘—h÷ƒ«­Áo%GƒIñxÒ—^H¶ ã$ðÂq …tÛÊØ5mÛbëÐáv¶ÊÅ™míJ¨Ï˜|“Á©a‚«ÉÝ1Zr…;ŽC2…MÒAyRÎB{Ï’lx²á½ÂøÈÉðï9É$‘'5}ÇN*nwý0áÙ'’á7×àW8äŽQÁ9xN§@vÏ=² *îÏ"ÆI<×íbŠM|~ÝJŒPMÐmÇŽ´ðõs€Òø$ñ@Î~-4ï¦e9†ß£˜‚ÝVä0æ h²˜Ð¨ J?uãã¢3 ‘•­² ;‘côËP»U;Å ­†>Á ;òHÚ,ü2wÖI¾~)ÆÓ¥÷Mðî–í¸re]«Oevk°U 3±¦ÞÇ“¹Ì¸Ö¥³æµ™ýë3¿Š ΗV»ÏÚÃYVб.ç¡M¨“dÿJ!àFZ[6훢oå3'+“u‰ŸIG ¾E“Í?~Ä‚CÝITB´9KæÂˆÿl‚ƒßó3ÙÏa›„RÝiiwÖ•jÊA½$s¦t>&ò©Ÿ›ÀöCæLvŸL)ë×þ-ZÔ€ø¸×9-ŽÈH ätü#‰õààï$A;˜{ålñsÏ ÷ ûfôÈv± ç|c•šf`Ÿ3—¹§±ÛfkÃõ©îŒ=ÆŸ5Åd Z¤Jíìk‡[A` ÒÌYk)ój°·Î‘x‘‰µ™pvhÈÓÞ&æûÏpùÜêºÔMý`ÿôÀ¶@Ò~‘X¢'ú{Éóy[:=¯¾$»^ÊM–õ[öU„óQS÷”–/|/îðY2Ø"µªÇÀ\ñÆ)`iŽZ†)yçëâ}g¥@Hüq2§áEÖ#`Z®.þý^œ"NÑLË ¦²¨2–ÙbY`èÀŸöàeUº© 9×hMRh=%"•Ô¤¥v¥¤êsáØg‚U9¿ÇЍ`¡.ŠôÜH'º 9ͦôðe†kLó 1 ¾Uˆ~G__/§  ùŽó>ó#Ȳ-â‡YñŒB, TV;öe«â™ü(] åÖ›†lVY™úÊ”µ’-üua,P^%½~\4-FÅc›'ŽÉÙòÆFg —òâTÆåD¥ÕääA©Ú¶^N[£/J5yÖϘ—Ó4O†ø‚Pnm»)w½•ª)g󧺦>qø³L³¦Ìg^?@U‘D×uJj¯Ù”ˆ‚îÏkšûñ.^a®o àê$òÜÊm0‡ ôs,åˆGì8Ѓ_*ÉàÝ3 ô5ïÈ–•þ´ë»rÚ׆Xí§j»yqˆ¶2FîCÍÈ)mx(x?œž9_«¬ÁX_­–3ùeŒ}×l¯($Ž™|™k7v¾ Ú= q¢uæ¯êvÒµSR>AòK¾™öm€‡pŸ/Yíb&?Á\\—g‹…æáäRw.¶zVõ!Ä„#5#§ì;¶ dIP6{þpQ¦´ºÉ«$ÚG$„Oªq?EĆ^é|dpá°-ŽŽdPn®;[‘”Ný4ŽŠš±¾rŠ0uæ(¥=¦®ÄÐ$G2dÐ\MÐ —Rˆ­xS&f<}H0~Ïu{júa Ñt«†Ÿø¼ã!›ƒÏ’¤ds±X=ר\%_\iZõj ²äËÚëKdÿ¿b óF%މóIr¾£ÒôH,t±æ‰’¡|Š"m1ù=æóPYi—„ð|;#Þ=¢ìßTìïP€)kõ®m_åÚ·dàrSVnÆä èkB@3¿Øªc¦æ;5;Å·! Ù±oC4bœxº#œ£XècRî1R¤L©,yàöIÐ<†*õùÈ œ¦ÌÛÔS2þ6¸Þ†TÖÒ-Ý>½ ÑpæxT6^ ®¦Œ >¿\Ú¡jle’[5W¿ùT͸-Ð)`|¹§*ºbÝ ¼ØÈ,37Z^8šºud„p–þc(\ôкîÆpÿÉ£OBÞ‚™¥c±#Ûb)9„?·!ú¾K5Õ6áU„ËmZ˜±^î›7ù%.Töä nÃU¥Çrbw¬—«ßÍŒC¶¹0£#÷甎õiüÄù&ÀKSƒÎbÔÔÈvküôÅ×7_üJjY endstream endobj 52 0 obj << /Length 1199 /Filter /FlateDecode >> stream xÚÕXKÛ6¾ï¯0Òä"ÒŠ¤ž‹&‡»( hlö xåQËv-oÛ-‚üöòñQ½lí+@4)r8óÍ7£é7³“Ó‹d’ziÄ£Él1aBxq”L¢0ö¸'³ëÉ¥Sî§ÌÙìäOv“O]úÎR>”f8—Cµ¶TRj~ž­äJꇵÊåðÙ¶ÙZþ^›æÜ˜UµóKn6í´„µ³Y˜Ù­²°ù,VJUaVK¥ç_ÙòÒ›ºA8³/Qvpnþ]òVéÒSjp7½šý:ñ'.c^Âï=<»U`7`„p2¥j»ªÜµ:7kX“2Öw¹­,6S—ÇÎF» Ùõ ti>ÌXÙRÞ­´Æ¼^P ýÔg¸Ð*çÚ÷²¥sn°Èu­Gñ¾×Șã)?O/Ò€Ä\zÍ¥×,1^¿žº!ÎûYïÒÕôÏrèš¡…›i FªÀ³¥n‰¸{DÛ'?ôç½õ·€è[W˜Ç–²ý"ÛX´–2¬½D¿‚Ú?¡n‡Få¶xVdýñ6§{e:%ýHï Yzm³]OÏ6^¸D¡Ñð±BÇÅp‘CÙ¡( Ù¬n_Ó=!l®ŸµˆMà¼v)‡®%è[×Ⱥ†}»íÛŽÝBfM¢rÄGÝÝÏÍ˃±aëøUoÝј|ì‹Ô°QÂ-û’زSÔP‰íC¯Wsgã´0¥4|<¦•›¾¦TÍ Üôq¿%1Ü£!ú Pd “ý¬$<†€£Îÿ[»ÚiKš’ÿû€Ómrm‰Ülh$Iûši<âòCâüìîŽp•p·$Vº=6ðsR8Èw°OU³Z|¼"_»Ãµ£þr~b"@A}A*ÒéEœ ŸÆ@Ñ늹X¶ 9ícIt¥Ý0nìIf€Àñä=q÷"-@Kº¤ùÝi%Ê&-¾_ֵߔ‡dáá—úɲr<ÔNÞ©Æû çýÒásdéCÈþnD?ŠälÆý$³~é'.­öž1í5Ñ^ Îš"öº#šk#òK9h±ÔÌÑç ÚhÖ[fö‰% —hÞ××1™mÌâÆíç)jøÿŠ‚±5Í:c“µåsëü`% rõ»>mŽ_à†í3çGøZÓuÓñÝ̹DA:×@¥ÇÕ‘ëE¿þáä¿oAÑ í¬ÏLÏíbAR§ ™–5JÎKß:7-Ó¾|s!‘›ï[7ÔkÉÈ Ñ€‘¢¶wö•©Ä,Ô†~Ÿº+ã8&:)ÿ¬ÎŒñÀƒGóy“¥srœ_¶îÓø´|À£ù3JO“L¦¡|T§r› ·µžß°YúZ¶¯Pý•æšÛ‡ó’\®Œ¾¬ ‘¨>ëê|¢Ç^5ó"ikaÌtà­ÈâÌ÷“šÖS’.±À$©š'­²3®dêI‘qåêãaŠ&Ìê9yeâŠ.Lõ0ÉórÑ=a¶þ4ROD¡Ì‡ÔK|Pc%wr>;ù#t endstream endobj 56 0 obj << /Length 1506 /Filter /FlateDecode >> stream xÚíÙnÛFðÝ_!Jµ&Ã=¸$ƒ4@šÚ´¶ Äy %ÊQ#™ª(×5ôÛ»;3KEÚñ‘ ꇅöÎ}êçÉÞóÃ4åQn¤Mæ#¡T”šld’4’*Mf£wÁ»±´]ûv½‡‰T¢«Ü®È.wv¥v%ãP‘1½ù{ p¡ˆuH»ii‚‹í[’Šà¥Ý»÷Ò®¾7Hö»Åõ~òë(…BDyÂØLºlºO3"ÑsBlï²)‰TÌXÉV5b>ŽÅàáÇcû°°ëÜ® ÚÏ0 žÚme׌èÖv½ uÆßóÃá;Z?Ò9íY#%kH<¶Æ¿ÉV¿Øí!ÓÄš¸ü«ñ&µdâù¤©™ïZa¥Vd(ì«6õz9OãÄñüŒ®ZµzOæÆ­[-x5sÓ㼡§’2ÿœérA÷ fødB˜.鉳Ê0o3lªϨTºßS¡4!x†2ŠÀÞQη*þÍVO;V÷¬È}™¼/Á½zP+L×­¯,’Š©w7´n¥+‚ïH¾{ªè^‡Y@·%À¼¼ëâR™;Hu³“‘-Þ°^¹^Ò÷œ¹ØŠydœü„?×øóþœ€8° Û,Ã-…ë.uË»½ûŽ x¯,0×)cR ô;5–oY^4eáÂ)¡À¹·¿±º‘ )»ú<'CÉ6¯r˜À4k±µì6sñ-ïþ{$:ï‚•_‹ëU´Ö¾’’±3éH°SŽVÄÒÓqÖöؽV‚Òüô‹ \ÿF÷½²ë¡þÄ}(âó„TC¾—‘›«LSîús•lf+Ô¶!ífYýÈ¡å¤[Œs’¨á}ËÜ0ú‘„À¢÷E>—©/Ä¢jŽ”PED.m´ÒgÑ·†9±¨n'\óPM—EýõÐ'%Ÿ†ç§áùixþJ‡çÿãìlî=;fÀ….ê¿™ õ·8;C>üÌìŒ3üH–ý»Ùü“5€$éHèHi# FÉ(—dmW0„L‚cðk_•jÛm)t-6ƒö´]´~¯Ò$8*Oc¡/JüÊÕH±?kd1ñ4ùàäØ/ÅyPlhS{Ë,)ºìݪ¸Ë Æ{rn\[RÕÆûºˆÁ¨q±EH(E—K2‰½8³µ4õ$Áõ ýõ~¾$ ÅÌ×/úεŒF‰GgÁb:¶X?Žç%jÀ#_¯ª ÓP[Eš9°:¸#gîö•çj†—¼vÍ@PB“^øAí1¸íâ£S¡ÜVø¥ó÷²ô=|/ ¦‘Œ•OƒS–¡jZkv7ë›V›(Ï´G°?@ÃR 骩[¿‡1ågµ #’-¢PÛ`›V`}Ì— ˜^7dBÇQ*Tׂ%k|ÐÙ{„»…pX“PSìhÕV'iÀ¾G€ÔÎÐ3ð2Ö ²[q¶$Ž&rmamìl(E@¹ªéTA_ù(rÈV ¥Ö`¾áªh):}˜è(Nt¿c¼\ƒ'9 Tø‡T(mÀ `_5±E>QWWÞS®ñvfùà”x“6ÒÝs jvyd Õ„EƒÁl0÷Uoß}OPž­êÒ’@C%¼EŒ]ïÒ˜jê¸Þì»â$ía jï™7*‰2ëì†ý“9À½ƒÉÞ¿Wºµ endstream endobj 60 0 obj << /Length 3544 /Filter /FlateDecode >> stream xÚ•Z[wÛ6~ï¯ðéK©s"ˆHìî‹ã$­›K½–{;Û} %ÚÖF·ŠT§¾sHJt’>Ø¢@\ƒùf¾èùÍW“WyzV¨Âwvsw¦­U™ËÏ\š)cÓ³›ùÙ£z¤£zÿžÆ6Møûlô¿›`tg°ÍT ccu½6»ü/ccCc« þ­øû𸇿ö©°MSŸýï±v3|íë‘É£†ßò¼ü¼ÚÔÔG[œeÜŽÆ&‹6´N­FãÄšèœ×Z•£qšFÿïL€³¯¶8t3‚aâ:$_6y6–µVE*JÁ‘k˜ÄÚE ñI%YW'&WYb¼NPª%mþDy:WEVøŽA.ì]­*Z l¼:±ÃFÖ? ¨›=vc‹‰nI Áîî¹Ã‰¶Ø±œ‰¾½üÒy)s¯‡63N2• Š(TbõWPª±Ñ¿aИËŸ¡¢júÞÈñàÜäÝLúaûïqK÷ íCÓ9,?3 »‘î;éZ³±¢0«öq&“¯;yYù„ µÿ89£Xvny燑d†Gó‹€2gÖ=N>«ØðS›tŒ„¾ÎÙ¬áuÅãî6,<½ÝÜq£?™ÔŸÝ=ý¯QÒ?¾ ©j”ã^ZVeÐÓnÙÊwn¾÷ÂÍy½[´ G2öXÌÜñW2ׇQöaœ8'x ÌÐ2ØæÅO\Õ(B¹“ã[2Ì0Í]Ò*åRÎýq”'xtIQí-jží€ßì¥çœ'D«w‘Ì>g€hÿý°S~àJn®·²BrõIôËd‘¤¢Ö­CcNòoî° ˆØ¼§.snŸ‘Vw›–lôªl:’ø•Eì „rÁ9Ãz^ô#ÞFµAËóڷδ¶/Qšj\îþ¾]4áÙÅtšqRñ³øÊÚKHÛ"GG¯q‰Í6ŽÎÂ¥LVo(mÖ2!9„Z¾¬È=p¢–Gœ‹6„ânrj¤l§Å†t0oãV½QÔC'ªH’~·q»Γ¸us BÇî[!îoü–ÿAüïÅO…®—€£uâÆ©4йÙZ9€zäà`^Š¥„—Rä#ßvJ¼åà­ CgUÕ" ùéÙøUðüa°eð¤Vimû^›t@¤Â<F¸×ØæqT¡¹Ф¹‹^. žðÁÀwh‰9È»Š\‘Þ‰®‰>!F²‚ ME"¶-åZF}/ˇž:öÆ Ã F ë®Ó~ $žQø_xj—;öM§5ól¼ß ÉW5¿»ë 'D—!¢-–vx%‘˜_wáîbÒ±ÄÌM¸ æ¸ Ä·Á KEz\ ÏŽØx—Ñá,²Õ]ÃŽy¡à×{ ø^õ èÈHx> 1d(ÄnÈ *ŶŸf@›8éB†WœV6JtMN“G­…þÐØÂuy$ŒS:Ke¬És‰jìÕÀ lôøŒ ô U”$B~Ô–E—¡9¦íã‹ýÝÝÈDÒç‡öÅk¿¾ùž_¨Œa.´\Vz™”#Ä1ЧFq`ò…Ó½£b¢}G€×#SP$§íѨSŸ²P¹;òq‚ÇF*Lªc°Í·ðüZJƒ}ç­«M–h\õ+ÙZC’³|äwWØ@ž«\.Í WÓÍ’Ü&;jYhá·WðÊí?“ù’ÿó€ÀæÁçÜG’Ë3ìcÛþ©&Õ ¤ß°Ù~· Í+qIÐøà7ØMëèÛÉ䇃êÐ xZx®Ó¨Ž‚&KŠÇå¤ìLºû÷';|^à¡–£(B—=ünË (ìç}«Ïëz''HÑA<ÀTµ ¬kx´džŠ£×Ë—}UÀOÁ­­QI¬?î(97.÷ZÖºö&78ó´×¹.rΜY8ÄN6*S„A/ »QŠ8MM$$ÛfqôUÜÃ×óš›…Þ€kd@§G<{ºÅ¾|D>Ä9v )n†«tZ¿ù"O2ï$¿¿|þv %$£Ä‰N½Íí»™Ÿ ÿ†#iß|ªâÖ¼Æ÷U7ëuWùÅùMµ ~~âB.c›QÁOhµ–  ab:9ªÃöرOm+tÁÁ–÷ò<“yHwg“Å#*̌鼥ˆ[VÛ'ò—LiÉ=Na–äÙ“0vcóO:ÿ@ŠÎŸŒf.@ Œrþ'ÁdMojn\¬ù3'#vĺÚj.ËBʋψWáûR¸¸ç?­¥Øà 7ÉMßÁ(V+¿Ä.ÔÄÇVŸø ÉÚc§ä^Qê ­„Cè}àÍKEÔ©ÛÔO:s£­j½çͼ'fþ ožÄì kÇ›}@¥©{Çþ”£ÇQµÍáIGŸi•§O¹ykðpÉ0rˆº¾žÖ Ýé8ú•óäS^c •¤ù—Ð-^‰ç-–kN¯ýŒr'Öì 9 Àm¡5_ ã{>•Æ4þãÏvé‹1e[«C¶ãK¯Ð÷¢_^.á˜óûéqéśҽTÊâL¹ãüy!¤ÆzæÃî‘[®|>}¿+ñ¨W\Êyÿ­Oë5Ð b4[ªÇR­~A×Ol%€†M§öF8fÙ:vÒŠ#[щ·þeí”@Ç*³GW—¡ÁÕ>b”0œx(°à³{ Áèjq'&RIUD·w S™Ö“äúÌfÍ%ŸÁ\9ѧö•´ö岄ì+˜S¨,|ÅV`ÔOÔæà‰Š™ƒ¯ÄµôöÉÓ·¹r.@ú¹÷V+ÁfC¤ç=ÙÛi>«Øq®åÁeö/—ǃG ~$;â|o*ŸñÎäú3K£WC‘(U…vŸŒD9$ÖSºb®:—) ô,ápó(0+Wâ÷ ßyóbJå/)à%_}°MÀ{¸Ë𜠻œr&Aì;V¹;®µoÝô¤:ç ÿ]°¾.—²—z˜ÌÀÅŸÅÂM8¨™¿W3‘¿CçOÉçžÂ ?/Ä.<ß)ŨÎÍÞDž‡~0İsÝ^BÁ?Å:«û"ø[•×½¼…¹K”K³Ï¢2ÎL‡lYÇâ#M_ {Eî>hû.7Ÿ®…Ë7•8PVßGqÿ&3œ zöá6梉¶ÌÍ7 š•fEå3b%‹îm‡ HÍ‹czw]ÝûËföqè‡áþÀÚ¾rÚu¯VŧCWkö´„úíN,d뇷ö¥53qÜtÍôÒ—« BçÐ9§ÈI²/*ƒ9Óut2ï/íã•ÈþØlÚ¢[ÿÄÊ&;ôq»Žw·r{”‚*Û{ZÉ©¹îSKh¹x𠶪ß{â`{W>^Ñ«Ú_ŸAžpìô}Ūì1mùmÍÞWägC,–¯lm¤æ:“¸ßõ?õ×# {6È€Z[˜Ãk›çRƒðuF¤ T‡E@ !òÑe»o†ào²§ˆƒŽm¬øä°ï@ºëú‘eZ"”甉:¹O9Åsªr?°Á Äœ˜j‰‰t2ˆV›Ñïµ ÓmYw’ hhÚûú%·ÈHH:·wÐ^·“WÜrò£lœ‰úzÜ“iæ¿$ãþäÌg<-¾c2l†âE’¨´ýýÅ? ³Î¯¨öRS ©±Ïö2öZÚjù,e«3±öI§m+Ϲê@ žËø/ƒ/å7U™sÛLö¡dFd\„*Èd0m„L!. VEݾzyóÕߢq? endstream endobj 89 0 obj << /Length1 1417 /Length2 7941 /Length3 0 /Length 8902 /Filter /FlateDecode >> stream xÚ·P›k6 ´¸[bA‹{qw/ÅÁ½@qw(îNq+V¼8ÅÝ]Z ÅûÑžs^ûÿ™ï›Ì$Ïî^»÷î½×õÌ„ŽJM“UÂb’…8ÀX9Ù8R*’zœn6.4::-0ÌôNuCÿ!aO>i ì ¨q(ºØ8¹œ¼‚œ|‚.€¨ @è ¶¨°! g4:)ˆ£le {:çŸGƒ9#€S@€åO:@›*@˜5ÈþéDs @bÁ<þ«ƒ°5 æ(ÈÎîææÆ´wfƒ@­DYn`˜5@ä ‚º‚,¿G¨íAƆFв;ÿЄXÂÜ€PàÉa698?¥¸8X€ €§Óš Ê€7Ž ‡¿ÀÊX_€“ó_åþÎþ]ìð'hn±w:x€¬–`;à¬2ÌÆ:Xüíœ!Où@W ØhöøÓ: +¡>Mø÷|ÎæP°#Ì™Íl÷{Fößež®YÆÁB bor€9£ýîO ™?Ý»ûß˵u€¸9xýcY‚,,aáâÈ®ívr)Hÿyr¡ýÛg‚^sppðñò@N»¹5ûï´<A‚œ¿ÝO3øx9B–Oc€|À– §4/g +ƒº€|¼þ3ðß''Àl˜¬Àhÿ®þäYþe?í vp<ÑÀñûó¯'£'†Y@ì<þ ÿ³bv9õ·ú’ÒÌü¯ ¤$ÄàÅúšÀÊõšÀÉÉËà{zðùï:j@ðß}üG®‚ƒ% ðW»O÷ôOË®s€áo0þ»–*䉹 ÿ‰nÈñšÃüé‹óÿ™îRþÿXþ»Êÿ•èÿÛ‘¬‹ÝŸ8Ã_€ÿOh¶óøñÄ\Ø“ T OZpø_¨.è/éJBì,þ7¦>iAÂÁÊî_×v–»ƒ,ÔÀ0së¿èò—_û·ÐìÀ 5ˆ3ø÷«ÀÊÉÁñ?±'u™Û>½>œŸ8ù'zÏ)ã`±ø­2®§ ¡P ÚÓ’Ÿ¬×/Î'9Z€Üÿ°ÀÎæ=¥ž†óXB h¿7* `7ÿíúcñðkïT¤ËqráÇRËÿvë•s¯ë+[y?»£¾[Í«„~_6Å¥iPü•.×,s†˜ ÆJŽÂ„wîŽýõòj/{ü¥b3šÏqw¡—þ:WôÍŒçJ…—s -‰>1ù³K¼‘Iz/ÉýdE¢9¯’¢È5‘¹,¾°˜ÁÅ Þø%j_5bhP)«H†¿r'>mW¶›yÔNÇ|\@ÿвÅ+˜®DÎ2¡Šf¨Ä$“ ìwó@C®¯oÁü©›¢ëøT»“É;>†X3joÌžâJ³#Ó—÷þ‰½8)§Œ˜d ·J³¨úæÅÔ¨f®ŒÆsT}—A߯\¶¢Ÿ¬6ÏlB¼‹`ö†«‚½èîüDjcwfjõû g'…±ÖC 5—„8&¡[0®Gî„F¾oA, \D’X'å™üƒŠ©k3öÎdÚºê·zÇTd“}bXÓ™'ebKê§xÇ<' ù(t£ép¶4G?“‰Q2±Ûü§Y‚Á&í—.Ò úöiÆìƒÀ†éå]¿Yž”»<ƒñ3/v`ʾô”ºéÁnÊ@+<5”n'ë uÿô±œ]6®U“ŒÁgFÎ4¨&ª‚iîcA§]äMI7ˆúJ~jòçqPÙ áŸ2ŠyµwéB¤ë“lª¾G¥þ:Ó5N(ÊŠÌ&“(6Óõ›h°Ç·®J y”Ÿ@†.(iÊçêNÑÂ:ñ ³Á/o€íÈ&«¯èe¥›ähtÚ oÄ]mÇ`Íl2dÞžåúyà ¡,Õo”(ÙùoI¨ÏQ&qJå%ù:fÅD©Ë³ò3‰`ÇÉCnBL“;¡v¯Ñ;Ñee1%u·o9ƒ5)¨û ¸˜ŽI‘¾Žš’Fò êŶ|·Ó.‰Ü¤÷CÌÀ­áåæˆ9*½þži1ÉdivÇj †³…Êø¾Å7¹*ý_ÿHˆr‡oN×…íË@@µˆ¦è:猅í“: à4ë¶;±îµ•Ãû¯jÌy,W%( õš^õ³ã»½Waôái*ôµ|õ¸-¸É0ýµ»ç†Pr?ï×I*Åͯ©ëÞ1uTcw’/ ×DŽ%IGGÖ±´)_XÚ0'Æw|êüu”=”IíÎÑóÓšæYùš‹ø¢ÏÆþõl Ú…Bœ * À¦s×h·Ï•­æÞ‚BXŠzo+ÓýÖ.¯ºÈÇ"„¤ˆ¾W7p)›„ìW$BYª´õ¢AÓÆ¡ZÚƒ@/„cYºÑûš¾=7ôó¥­è>8³½gáŽß½&òȬťGŒ´èýäÇøAKÚ™N‹s¦gWÒýŽ„9¦_¦Å4F^¿°¹]iÿÙx#…§¦”|“ųÊQ%¼Ï3“G`}]”†ËFz9ƒvV_Ÿ ²7zË8ûºp‰Èÿê¬UtmO>;§Í¾7¹ÝïUo##.­u³q*º.[nh¶¡0o†Ô^ Z„6ÛsL™©¶ îlDŸYkCroñ¦ ~\ÕM€Ô½ûȨ{•C”M¸• çøZwŽýx‡)PLÉtq(+·gáô—Ï•ÐXg\-vE‚xÁ§HÑYùjÿŠî£»›³Ò%{δ[ÖŸ;9w„¥8ñð'}˜Ÿ1ö`6|è(Ü}*+›žEA»,búçMâ»·j’`ы퉣³ã%×PÙC kÛÔÆ*ÄuœüÏ)‘ÒžŸ1!uö“‡©*¼Tw-àAðlûÆ3÷Ó>àÀÏH.y¸ff4°…üKølT›Ájçrþf•¡Àô WJDËCñ’§7"Çú—KVb-¯öjÔkù³Øãƒ¾äÀæ&fJ4ù=O¤ê·`Àv×mè‹QÑNPv1·zÂkú+ɵ“RâìhšKE]ÊÚJ()Ÿá]0ìüuÕ2 wT¢eôç±v’ùÖçD%Ø=³ÞéE_(Dá•eB›.1Üq¬«¬=¨¶lu¾hVñ…( _kYµ. V GC?ƒ¢ª0t-œµ®EÎŒn§ÓpT¼§Óã,¯ ß–i`•Ëyøc7ñX0଩Æl‘5{Q¿°»1 ÙVñë ¥]ßKœ‰ˆŒ_C/:ÛÆ~WL;öî—  ŸdßE û‡k¨ns>K6f™ñûO´LêaΦ©”Ö|ª¬Ä›/ÞÄ£9F¯§F0@ÏJ1r|·W8/ÒÑ{æbÒ‘……ü,Xª§y w,3YÔºÇJ¼Ï«lÛ5ø[ù~Pˆ‚ÑC‘B?‚ÆAu2U§òÈÄÛj¬ñö3M« $eC:VY”é¾Úk“}hßǯ—ù·3ÑÖP:@Ü7¸•8—=:´yÝ‘Á©–ÚB$<QµY$êH6-ñ·AuqáHVm!”V)kÕeL*:rí—]íÖa…¥mË _3\—û-sÙuóŠYõëiŸÞL„Æ™ŠEë¾³ µDa4PïjUÚ¯ôTeg0V]•dÈDBu91º§'ã!‰…øp[³a Œ’#áç†â‹V‘ãŠbö'§…Ä ü<Ƴ“ÛؓÒÙdÀ{>Œ­‚æ® ¯Ê¡â ¼r}ªzSVè¢ÝB ÓY›ü» â¬m²…Öùð\Æse)x«)4A3EÔÐ[åÖ^§˜—‰Ð=›×ƽÏÊT5tê±÷*ù@„ëßcjéŽ7Ækðßö'¹ Âfý’)–ž‡ñô7Gl ;QëÂ$ …r%J®îóó)j/I-‰‡Ü<<¼å r½ßkû¾¶ë>ª|#GLÅ€ëðÇ=u^šk™_Ç6™lï½›•‹èM wW²ÁÎ~Ä}‰[•ÉKH—eîÿŒ¦`À·!=%üË›]DÌg „©°¸WÀMÎôïã Àn,º ¦³1˜šøà0Ø£Þ-–%±!ÐUê¼0ÞwS£?Þ´…ôÁ†:ya°BÉ6 Sý5Q؇a…À2›/÷2ï¿™i1žbWcçPG½¯mp;Xq½«Ûð¦%bã9L`Ÿv[B_‡Ž;ÂÕ›õmBQ£°$Ê?¯ë ߸2— #U+Km·%1—/ñ#Ä$“ÝxD°¹KM-ôgÓ¿ëÔ.IòY0TØy ¥Ì¾&R´"ÅÈìÚÜ]’#~Y: ˆGfÈøþ·›-ù˜üu”ž†)ûÒí§/dÓ*þuB예ÍÞEYmº[¡g[Ê’’¦§0ÛT™žìÃPy ÌþQjÙ´Ã=œšïeñ3ßu\ërÛNWäé‚xÂ<%ÝÖ±Lþo%‰~=ÜøÑðw¸3oïçãXOT|RÉ}ÐgØ.âtÁå„À‚© Rx·Àb1²ò—¾#ôŸñTNOÎTqFEÝ…V±†ÐŠ}C?˜³çÈï—3SDÐIÚ4²òM`¼ÈÒLç:{xÏô­O&qâD!Ô:Ó6ξ‹ÝÊ{hP‚¡Œ3{Šiî&mÒÂø¾ŒRš+–X+*ÒŽómžÿ¼1œ66+Ûb'‚ž†ƒrrs1¨ŸV¹“Ñ "#îûbH¹ëŒï&óë⺢zᘷµ\w. ý=¾:?*æI0»}i1ÚìJœS_IëM‘uÙú¼5j.Ã#–m¿éâPC –ìS_ø[¾û…¨ÅyÓôŽšbtÍ`ï/70o8”Ÿ/Ì„oHùTDn>Lñ9M84¼|7Ó8YæÆÅ³Š3ÜeÁnv*íkÀX}ƒlÅSœË½ÿ°"GÇî¨ØC‡D¾ TÙKØÅ„O„$vÜ?Ä8$¸éñqSI'Äe‡óB-¯ðÏç`3+MÙ²¡ÒߊŽ(ØÅ|wõèé1k÷•ñ×u-`éüR)|+°kEÛ2•vвÀUgŽâÃ蟹µç™°.H"ŒûñçÙåRì %j¤ç¼/§4k{_NÛcXk‘ï»°ÌÒÙæc—S˜®¯T}Þý[’ ‘=ЛÝ-Æ.‡è¯"¡5üΘ¦&ÚíoÆc9¢,o?°‘ËÞ-'À§gÓÁ'Ê}&j%°é`¡‡;}¡M?¦YQÆ}˜FYžªY9jÕa¸ÕÜsžv´2ùœÙšŸ-„€j¨¸^,î"sßÈÐÜÔ3 ©‘Ù\¡«# ¹ÞŽš|ÿ‚þ>}‰úxâÜÒº³)“L‹(6B§†rê»G¥yqZïiÝÊ´ˆéìjªuHÆIÜLJ—Û½ËýMŒ>ÓϪT¬¨§h_ßò3é°*—ræ’jàcQÊÌÆžÉCkgÌÙM åYŸÅZæ¤ï´–'·4*Pê™gªýœ÷ kâä ¿¿Û6.ìãy â%ŸNd´!S´$ô1!QÆ9åSôøk)a—({åtyÂÂn›%"¶b‰cÏ–mÄ+Ô¼Él¯^øñäË>¿wöaÒ{ø<¯TdSœvaîhäç›Æ/Ü%¾ÛÊݘoӲÕòŽ. ^€OuìœÖÓ7Ö¸§;AÔ^ù³²ê–ÀO°£ºn’÷Ç(pà#Ò8¥ö=£4›Øè,ܬ@{fµ%ÆWÙYô¤^KË&Š ¶‰†')Šþˆ £Óƺàÿ ë…ÛzKóx-cOpWz¸/Þ‰‘eú¸%n6¥g'VÝHø+¤wÄr"ÂwÖ2CÄéç&ÅÞò i*ý¥Ž%iÒ¡)ó ;ÂyzıÄl™û”ò-˜Üò/Bà‚Kc.{ž©ñ]Ç'Ñ|¡ˆÑ`n6×Þ('×ÒÚ€gÈb¤l¼—Q2¶X¢«ï¢þþ¨Á¦ÔW–MïÍçâ6#÷@2Ÿq›E»®6©šÛ1ÿhg?ÅëÄe¨ðÞo=%²un´ó¸€:TÈÍØ‹–ƒ¯Ê·¯ÈWGùüë'_éάR½'“ŒñÚÍð(1®)„ΙHCŒžî‘G7Qh™žnŠŠÎBTéè åè—L«ÎýRKz–AÃùÙ³‹uaCöÞcÿ¥z½<ÂJ1ÞxÈøéç 9“ÇUÿœûYûóò«mǪvT Ó ™Égw_¥gÚ³ŒXCàn«]X2¾:v½ç /ï–QÔñ3è´/B=†ÆbA¨¢@Ç£ÇBõîÆS§Ëª©#iq6|ºE‡4uSñHÓȉsÃuC­’:r ~ëàm"ƒm…b] añæý­ ‘Þ+±jü+8ÜHZL­a¹Ò#¼ÜUgå×— pcqÊ”.á¬Ñð¼³V&®·hÊ»B™êæþ<_Æz%*n½ocnŸðÐá”ÕîàyýìN…ÙH¯Ìû YQŠ%²%R»_Áq«`á{¯Ôn­€ J|t&Ä7æWâL½ó`²bO<ë-Yä«8Ô`ƒ lÍ{t]• QI—*Ýõôúi Á|èÑ]W˸3è%Šæ›‚CÌšmH €”}G`ñÚsêãAg#ú”ê¥M£¶'=šõÊgÇ«&6×_R5æ…϶ßGZfP ìMåÝDVÈÝËä[«Jù,„±=‚ךò˜4JÙØDôsÄ»?Ìû0rH¿ gX´Pâ<ÿ\»¶Ù/±ðꀙŒ_ÜÃC]óÈe÷,q\Ïó1Ëþ`Û}îGX‰*ªÒÙ%b"Þ"¢nAJ,õQOì®=0iDÇO×Âceéµ"vlÝä¾íòÇÑä5ºfk›µæŠRËvc3!¢?…ÿÜmÙ˰¤»f³ çsÒšG/ø#A¯zSz€¦ããÌWŒZø¼Ô¸ª·«VÅÏDJNŒp–¡£–T‚ùs„nëX”‹BØ-I€q‰[%Ôt1«èžçªqNïSžóÀÕòã0öÆhŽ¢ö™Ãuá­”¤jh¶Œ+ Ùòä_,k¢$û,q '/7¦4µÆ"b Ž?pêYR¿—ˆ@ÍÛýfæDpoDvÕ¡;ˤó&†B¥¶8Ë¢yne‚bbÔÃ^uÈ*7¬7síY·Ï,ç’ki5’‘‹[Z:-}ˆ¶Š-¶G1jPqÈÿ•‚âÊP#]Ë^ÿcQÙ¬×ï bÎbólA£RhI.CL ¨øYG {ãÑÃx©òW“U¾½ïzºi­>WäþÆD¨wâ„×¶„¢yŠºÆu†“ƒÃ*öÒ´ïMWéQS­2E©˜çËò!žÀåÓäj÷µùs‰8s‡aÃîý¤ÄÛ#TÇ„ b¢8ÆÅJ@BúZ‡?b˜ƒK5 òl¯­úÆ‹£~N%ƒ;©Ëœ°Œ?šÍž×t¬- ¢2mÝû‘<C/|ó®lÂÑAT•|Ó­í‰5´,ov”«––Ǫ>¡å¥å)·7àT+šÁ7 µ+œª*KÍ~pj²)¥á²ôWbˆúKÅ{ Ù%¡ð½Ê²·L@§¯‡ söm” ï‚§‚Kqw\Èk1í»W@ªãþðÙiâœBIÉ»cÂS}†Ü¯D¤jøÜ]ð¢–aÛ(¦e?ìÝî<žÍWÔ®w%ø(s 8A6çNi?ÎÖIx¶Wt¤$%J•÷îÜG9MJ+H ¹†·ô·;ôÙ¦—ÑäÄ~®l’‚^fFÖ»46ò`bs¯;&ßóãJ;±$ôwÐ_¯`p«`üØpFê…Ͳã—u7kaíÆß5bK &IKtáXA@Îǘ)P¿7ñô.TËeR’ÒvŠ·ÍKŒd‚2‰F‹Õ© *¥H®=¨e ú¼»é%š²vN;H5Tåµ ø¨œübK[ÏY‡\½Å½ÃŽ®8eçÇ™Öί²/ýMüu¾~8 ‚1áMR¢Ú_Ÿ0f”[;Ù½/`UjPΔX_n`³pÑ^ËÉ4ìR¤‹bzî<µyÇM›Œ¿)¶†F‡¿‡÷kÁA[|„1~à ¥Ùƒ¹—ª(œÝƛʉ¬Ñ”oÇÛâX &TP’j¼,gxÞç£ïŸÆÁnj )áËN?H±yÛOÌ’ÐË)Û û®JYúÀN0…öó^[\/ç7\Á¾î€ßíäÌ+RC'…¯mÃIsW±þ’ÎÖ}{\ÑçŽ?Þã±­‡Ë;Ê2v ¹¦ìo7â%ÒìØ÷ <<ú ˆ(e )Q@D|´Í·4{Gn]— VþŸ]E²f´“¿xª˜LÁ:{S¦•àƒÍø7¬ð<¤ü—un“ßC¹I·é£˜>™Òj~LO¶´¨ ù$ÇS9a<Í #8–Ü·1Œr™Ëdb.ìD_©³(Jë‚ó(ç¶:b¦Œ’†åéâJ8-;1.ǬVF˜µ­N·œ3P·`;‚[ù½_¬±ªË‚[ZP>Œ\cÛ±t2¾Ù£¸ð,z[#Ëù]žVV¸O‘™ÔHI%>3n†o¡Z¦"\Ùðΰ&öI…*}AÒ¡–rÍ÷:èݸ÷NŠ·Gväs¨jy“ÕÚÇ&tÇ·ô¸Ã|ǧeW÷Dœ6DpGèÉ[ùa—U[¸{u5VGRÞ@øj¥ì†‹WAÌÞÈ'k# ƒ>CG}\I’èt“÷†½ÝV£3‡ËzÒ>¯M"ûI'Ëgó „²ôÖí3½².N~)T,^ù#ZrФ#<Û?]-Œ¹—pMÜ ímIlïŠÚË®ˆÞiº¹Á¿ lG ‚ÞT‹ÝH9„¾¯l*¤›ÆÒX¼;ט\’d¥Õ€¿›•ãœÌ@®Þt“'uÿ¸øè!Aèó‰E–Ý!û{1R‡óÞâüHÓ¶VMè»—Ù/ȼ048V»ZÐûÑ­äíyu›3x)týùÖÓ̶íÆÊƒ(ÝR¼f‡W8ãÖ&º¿@ú®ph¼êú7%F)•ûŘ³JÙª6«ÒRœš^ÞÔa³Sl´¿Fñyúwp™0ØRv]’Ùkêàu”©-kJZ¯„±3ÑÅ S`žÜ´B%~å¬iÒI•}>×EE𦌄|ƒ]6häüdùгž”)\¹FÖ§,ÓÊ~ ÷U<\ ÒMîÔÒLM#+W%¦ÈHk&E^!’Gëhæ×~³m²k;˜Qÿ^$¿óˆ¯UbI;ŒÅã™[Ï…üªt'Ã+þ—;†“©=w—ó‡6$UÞ쾸¯ÎIÜê¶ÌR²€¥FÕzXjеV[?¯BiAçäð›ÒÏ&k¿“ÏæÖz á½ÙôÔ òѽô™“5æ ï»q%jc‡1n vØÔÒº~É'òw *è4ǃp©Dº“Ê‚çcÚ/XXØÕ^ïARa9ºKÏ›Õhl¼9?¶ óįžï a»6HÚáÅV©v¶kï7Þ; štʪ9ùS…aX¾;‰N ÞÖœœ &cËݾK†Ë×/`¼TâcDøxñ'W!>OÇnPn­µ¦‚l6¬S¬´¹t ó}°Ææ½˜j<$ɹn²PÆÙCùÊÙpIñ‘RÈs“z¬W”ƨ¾‹ä!61´®›Ñ¤ÞÔvÐQÏ7é|2d=Îß?Ç{Rì ׳˜A{ò“Äœ‘¶NÆŸuÙW/Ü¡S~ :[lþ8Ì6þùñ`‡¤PRUÛü70 (žV•,6Vý;KïZ|†#1Êt ¹Rñýhš~iÑìxw— ¯ý…_g®ÅËÆês96Vrb Ri4áî$Yo2«½JÓYkRòßÃDT¼ SŸ”µAÑ^’SÊ-ðàñUÕ‡|GÚlð¶Ï!upí=í—_ … NVŸiIµ×ÎK÷ûÚ —^M t3šbçUæwîË|a’Q_¹–öePYSÀò •kD›÷m ¼9Ô ¨7ayMð½˜*‘ºG o^+Ú1Cåãn§‹ÅŽúPh&ÀL£u¤üë½…Í5?_²ä´’¼¼tGæJ=ZÊL»!¢k;VR½*/¹ðr—•gB33Y¯¹jJm®Î Ù8T4fy«Ö¸û>Nü›ñh ]¶QKkȺ‰Jû­d³‘cn_PR¢ÅbŽÉò‘DÀýê›J[&:IdK!Z@}á ìŒO©ÄÍø×K;øE‘22*f$Š2’º8íåt3+á¯ZÍb½®½QÜN’™å8ñËö)™uYÊ>&K*÷ï/’Âl©Êpñ¯çÌãâØ'–Í:%¸)ú V¼½ù'uྊR¸ÇôÔŸ¸8Ùª›K'#N‘' uð¹G&˜0Çu¤£ãGÀª8¦'³°—¶%|¥#RŒ÷¬}ÁÇâŒ$óë×µéçí 7‚÷"µhlŹ|•=àÞõez<_L£qy}–¼YÞÖuаÞe¼êÙ“¨XÀùSñçÿb.¢ endstream endobj 91 0 obj << /Length1 1985 /Length2 13184 /Length3 0 /Length 14398 /Filter /FlateDecode >> stream xÚøP\ÛÖ ãÜ]wwwîîÒ¸6îî ÁCpîî.ÁÝÝ‚;œsî͹ßÿW½W]սǚ²Æœk̵«š’TYQÔÜÑ(åèàÊÈÊÄÂWÓfe°°°3±°°ÁSRª[»Úÿ³O© ¹X;:ðýËC4q}[“0q}sTptȺÙXÙ¬\|¬Ü|,,6Þÿ8:‚ø&îÖæ&€¬£ÐžRÜÑÉ dmiåú¶Ï4f´V^^n†¿Â¢ö@µ™‰@ÁÄÕ hÿ¶£™‰@ÍÑÌèêõ?)h¬\]ø˜™=<<˜Lì]˜A–B´ kW+€*Ðrš~— P4±þS<%@ÝÊÚåoƒš£…«‡ x[°³6:¸¼…¸9˜A€·Ýj2ò%' ÃßÎò;0þi€•‰õ¿éþ‰þÈÚá¯`33G{'/kK€…µ $%ÏäêéÊ0q0ÿíhbçâøoânbmgbúæðu€”¨ Àä­Âês1Y;¹º0¹XÛý®‘ùwš·6K:˜‹;ÚÛ\]àó“°ÍÞúîÅüÏáÚ:8z8øüYX;˜[ü.ÃÜ͉YÃÁÚÙ (#ñÏÛüŸ5K +€“………›‹t=ͬ˜o îåüËÈú{ù­?'G'€Å[@?k àÛ¼‹‰;à rúùüÛ𿞕`nmæ 0ZZ;ÀÿÉþ¶ ´ø¿?ÈÚ Çò&?VËïÏŸ Þfîè`çõÇý¯#fVW}OÿOÉÿ5Љ9z|9ÙŒlœ¬VVv^7' Àïó(›XÿÃåO¬Œƒ…#€÷oºo}úe÷4@óÏ€Ðþ7—¢ã›rš?B×gád1{ûbýÿ,÷¿Bþÿ©üw–ÿW¡ÿ_FRnvvÙiþvøÿ±›Ø[Ûyýãñ¦\7×·)Pp|›‡ÿëªü{tÅíÌÿ¯MÆÕämD,íþÛFk)kO ¹²µ«™Õßrù{]ã÷ ÙY;•]¬_-FV–ÿc{›.3Û·ëÃåM“™€oÃó¿[J:˜9šÿž26N.€ dâÏò&%6NN€ëÛ8š=ÿR1€™ÉÁÑõ-ðVœÀÂÿûD¹8Ì¢¿—þF\f±?ˆÀ,ññ˜%ÿ‹¸ÙÌ2Ð[œüÄ `Vø/âa0+ÿAloBýƒÞ²¨ýAoY4ÿ‹xß²˜üAo\Lÿ 7.fÿE¿ûÆlþ/È `þ ¾miñþFÖÿ…ocñÝÿ¸sþ¶;ºþÿæbù/È`¶ú|k õ¿àO»Á7¢ö ëQ‡Á7¢Žÿ…o¾oߨ8ý1¿uÇém`ÿUéÛ ˆÙù_ðÚ¿ˆ³¾QsùSØ›ÑåíRùc~KèúÇüÆÅÕ üW'ÞȺz8þ+àíDÜþßJuÿW_ßÜÿ•í-Ÿ×¿à[-ÞÁÿ‘¯™ôv‰ÿuÁ¼iû?ø¯7è 4ƒ_˜u4㵩 m¹û!JàÁ¸3&ø“rG+…–ÑgÔêö€ ›D[ñ5x t#š4Ø…º¼%Is-²HòìsÔXÑôI¥ùÑ÷ÉèƒêäN3üüvßø·#Ñê^¢w„Œê"»¾ÏξšA¶àí²”ÙÎn<Èʹw=ÒžÕ½ÅK#á³;*»\rOÅSŒq±úAÓ”9¦3¸d0®ŒDptèçž(Ó×7?ѳÆ_Id?ÐÃûDZçû讳ÅßÏx¯”ª³¹tàQàéâA^£LRùˆí'ËâÌù~O ùnAd8[/ÔŠbâÌQIÚ¾ P<<¾1Œ{`$^Œ²5ž`¦²I)6x`§–Õ†‹ž]Í]0õÌj”ï¢Ò¶÷ŒíS6ý"Ügëz¢Ì‘ÚýÑŽ8ôšF¦m?b?yŽk/·¯—׊ºæãk€È‡y6ÓW½NO¤“6î»_~ããÒp™zWê:'Bê`„ƒä&C¬V¤Yü0Æ'™Z}å诶BàEq“r6#•k²íÞȯ݊™Gf!‹†»÷"ˆësÎê;n¡óæÅzÀÉø4>ÙN¨a¹Çhr6µÜzŸz3ÄLÑ…GJÀƒC«¸+ ML¾%GåRã7DX^Ü*ñÕLME"˜Wˆ™ô”)ž8 {oè©€R^2$—8cÍ(a×ú”×Å42qÙ.Ë„Í5W>M$¢Ž§0xLV+ Â¥Á+U îÇÊLFÜ !Oª×µé¼±Ê¬¥OÑxñ¨xýµÿTC‘¸Ý=±©¿¡¥È$žO£9¥¦¸»K˜ÝÚÕÀކ =-*|ag„êÒY¤®\[ŒÐïe¡æU¸1ÛnºŽ6ÚmÌëFäßw£¼9øCÑ 4K+/èfU?<5 1¶ÓÔ©<cXà‡[ß@ÝÑ1 ¿ÍX8æ­A7ºDÌ^ºç³õ>ß'Ä{G…bf¶™yvc”éó$–™gS1vž;î—b|š´`t]h®ù4N¹¥é´jðŸôÞOhÒ­9,à´ ÒOÑ|s˜ƒf¹àØbHE9Ü2š3AÏг;ÙZ¯éªHµ_y{ uuÓ‰ì}ÍpC#*ƒƒeôíÃÁÂýR?îœ Þdã±èã=[È#¦ƒ æg¡’Z‚”z^ýáWFOâÓË:PÀ!ùÁCi†¨wI‚¾tZT† =1ç›i} ‘HéÆ+äzPí£ÑG) mÃÈ…êY˜jO{¢p:ÇøD:AF´|É[« äÖ½ð+úºœh@ä ÃÕ„ÕKz‡c_ËØF·¶Õ±Îñ“b᳦„.cErgyê´Ö¢\²SmâinC]Ž¿ºÛmþù¬ÒQ5+Ö‡RÒû B“t*nŽo!{бËSí½° ‚MôÃÅšR8f»ì½ì?†ñúyl{¬Ž O`ìš±öDà×LÒvjƒëo;ú‘¦ÛùÎs ôR)F³Ìù&¬Í°fSmžÅضG8Aåò —|y¸ÛÕßÖËÚFý×_̲ÑçŒß®GaZð )VøÁI}+º)‚žßMÁHªKÝãøÔBÄ㠄Ѐ£—Å=¾Ç³EÃCbxï_nX2®!TᆾêO Å‹“,ňiJ?>ó…í®%Ñ>Íz÷~,ƒ T™Tt|Õ+¤[r:²*<?ʳ©¬ n¿ŸCn”P¾šL+Œäj"øðùž÷»» •d‡‘6MŸWb¸â] , /~ÁŽ9ç¬@îª6G1t3'iÂ9¢¶x:ÌIbÙ›ø’¶zTýùiíLܦdâšòô§;º†é>ÂZF!B§Aù¦ÇšþyÝÌ~qÿê~»ëûëÒhôfóTÖo£|ÌAKRÌ~øÖe¿¸d•1úsX^vM@[’JœÝì‘tymÝ&7)? ¸—3ýÆnÉ/¤)Ùš¤Ñ#h˜w»î·6Ì ‰™Å¯!ºDʨ´?,f镜´"]ýœÉz ªºVÙâ«)­$¿9”E1>{X™¶¼¿g·–ô ®ÕCÉ·?ö¾MRź£ úù©'™ÍáƒÖãä­Ê¬u€Ìø®9¨ÐÄHz·ö“½Õ§b ÅuKCàžžsz}SƬ8‹¡Fî-Ñq+Uñ΃èä;F2zŽjŠÕ|¡©Æo)‚äå@9:-ˆɨ W(£AFÙÖÏý¦Dcyy—ºæ çEVɉU1 =BžŠ'E¹«N[ .ß3¥å”ò­„.³~:Æ]ý<Ê.ÌÀï[”å?—¥×·‡#!”Å{äÂê²ÅÈŸµâ%ƒQDKLu굞ö­¸<|DQÌWËÝýÒGP”ÁÄó×à¦è¢}]Dç¾[ÈõÑ_•±’•Å|Rs¸ÿÖ»åO`„Fn@”Y«o}NŠu/;jýuÈy8Å^ W °hÍŽô¢S»Gö»‰²–Öäò0©ÇÙ °¯ w@õÖU!0”ŸÙcQ°¸Œ;S®í'äéí^óÅvø — Æçâ"ñ›o¶»1-q“D8!!{ÎÂn’EfÞþ»Ô{@UZòÔŠKw†NóúOÕרOù]êHu#f•°%lÇB(ƒž¼$ôjÐÔxßÏŸ«ÄµÌd€,®¤ Ÿô99#’È·ܱôÂtÆkh±ö°å¶Õò küSËðµx¨ò¸MúÌ)^¾¬$!º2k¡Í{·´÷àÀ]–r4¨ÈùÐ.Ž‚…iI´˜ 5;âuÓ’ð­C("Êå_M|KoȠɸÚåâåI”µ‡×¼M‘¿g醛MÝú½ÐRâÈÏËY(±¡¬”m®h§k4+k€¯­ €¬Ø 7DÕ’F¯Xu[;l¡&êõª÷'?Wy'ƒ?ÓÞ·?ºUÂw¸ÑcÚÕ˜_osÔ4x™É»D|¾S—…Ñãƒ.uà ÛÖŠR¼‹QÀ¢kBú¡m}v*oqi!5Í\ Œ6òÙulÄÈd”4{iSìÐÕàÚ;X¿'ºtõ³*s*ˆãÛÑþ¶ÂCa2ö Xúœ”GÀÀ“:Þà" F·Cy”Øi<~n®î;¨Bx@9Ñ$teLþ5#$A/ü¸ZqÌò-»´_¾:8ÞuÚbN‚Cù€¡DÂTö,u6czTàjà²Ô]›‡‚’zb…„‹lʰ ASÍCgˆì»Ç VõÕ¶ú+¶rM¼åŠ.kSñ(m”b!‹V±K„s —BY»ø—Žr_ÉÞgŒW O£dJØÆÄP 5F¹©e+iêΚ‰úÓ'/ÊÌX•eV7n™ì²U¦Ám¥(m² •kàYO›½MÙË+µWèíåêCûú-È–™Ùýóz*øo’¹s™¹;ˇ÷T)£w×’ eÅêEvÁ_¹DYº¬:0U¥xd©Ï"ú$ÒäR¥œS¬…%ð _Yµãß¾^'(¼ÚtìÁf!ÎS&JAàh†¾.FJo¸×ëñ­ñÉTûFêQî6yÓKÀb³‡Wtnõ¾Ô•]õ¯BÄÁaþ\oÛ˜ á9¤xh''ÂM¢ÏØ!ý²XµÍINˆÍF(G/ ®ATö ¬å-¸§Pl]È}.|$³Ñ†nÖv|VáÏJVÔgÌÈ?‘í“ÓYàÒ§“‚kˆF}‚@dfGïØòäNþÅENÐþjBz-¹E>€ñøŒ0˜4è–cšÛÀüiMº½z™ð^ùV¿Hߨtck†â$ØF;*œÈüÿ–7^ ÝCLõðh»œ)›³h W¬nKUZÏkB†«IбEE䉯j¹[pTêœb›$˜~ËÐem «hYy¯wVž¶-eÙ¤æ.2•g}Pç±7åEþlžö Ñ5|ŽJé2´æŸ® ¼ºûi@¶Ï·saÂÖôMxcyÙ',{gK:k6N¤Š¯/Ç®ô¡×Åd—g¡MºiJ3Ú¢ùJ­%g¹í(D\À¸ñ4žQøôÚ€ŸñòFÚO‚ØÄñvÃq®ÎÖúÌ#õ¹â‹W˜ÔaJèªSw 1fã§?ºÕ1ñq!/á4%£ApèŽ/èO|›I•¦’{Ùš¡¬uSšç÷¦ !drŽR,榉&øMÇx¯#Y«Ò†#¥¶i|öºGù–ááRk_V ²õó¦øIÃfA3ÂX•YO#Vƒ·.ôèc¹Ñ}Fµ.é™}jU8ûD &®…^Öà•¿&G@/”5RìxO–¨ùYù«1T¹ ~óK…ìY¶VÆqúY 7s¡µ_ü·Ö¢Fm§QXðŽRF“©f¶×ŠéÓ1w$ƹîsX3´liIK©·)ÈO¸î'}^ÎàžJö6Ëëô¥Ü¯5޵ˆÚíNá)=¡õ,k¦QOÂl¸üóÑŦ±–É>~4´µ¯:óBiZ¦$|!¡ t¨Óš‘úªÄ †©€šêU0ˆ9½ç©ëÜzR´Hb-“Dñ=K|X=Î3¤¸×à±x/™öŠÄ: Ü•C7=YlÚÀ~'*Hó'؇E¥ÇOAå×-´–`Ö/𔌲}Ùz?Ôµ¹§™™ðÃÌ"°c‚à4 "n­¸Ïxr9Æ ßyïóòmToؼ؃ܯӕ¯âÉ‘„>fÙz^4oÝ6–ïnèÉBð* /þòãjœeRU„ÙÇâHEü—_‰ùPÜÀÜÿü¨ú€´’£ù9k2ñº9ÖB9ϱþ$°]á'½!5C ò)—ó’–ÕüèàÙ sÔdÚáˆÍ^µšßÔˉl„7¤KxôLÝvôƬ λÂÕjïtygQ}0Õ)+ Ú>oE5Yù/BÃÌžÏý‰jÁû‰i§Ô'ü'ät!E±”Y ‚ad•±ýi„üy7©ºóWÝ;7 _ÉàB Ûh[#´9÷­ §‚MQ竊(ãX¡7gÝaX—-Ý…÷9¸ª¹ƒÞß|À>"}¹¬U¼zî´ÉÝTâ *lÅ\h3]yÝùÖîš#uáu±[½sý‹êÌçÒCE^7Zöc®s<}ã†ÂÙ–½Ú‚ƒ¤… ¢=B¡ª4Q…TYrOWÚbNaÞk†j4AÏ71Òâ^Eá@Y¬è³=ê9Q¦Ûå®/Â;̦¹[”fª5Aá-¤Pt![i9¼˜˜<Ñ$ËŠ(nFê‡i¬uˆ$T§tÐÀoІTn2¾×÷¡ô¯³,Eµd|à‰æ8j°çe%]\å×Jd’sDçG‚R Ý}$Ù(“zdaž,˜`h[ϩ׺>>ÁqÝW«$L¡¸ˆ'<ÃýÔuºïj:GL(-Í‘ü›M·öå´¦KŽ4²½Ã/Àorc†3ÂsodÀSëw{vBuO{ef[yáÐôÌvbÙ“þ˜Þa·Œ»ÙmŠÐ_µ°0´ÌšA aQ8±Â]š æàúüßK] ÕU;(1x:%Ž&ä³\t|¢$jÈ9îB$|LŠômøë)òQ͇²¨GGå$“©>í šü$¾Y6GÃg5GF~z2‘”D^æ kÿ. w8XêÍÈM9ß”ºhËÌ&SgE]Vài*0"–„~ãÛϯ³ù¡¼Ý®CÊg¾˜ëæën>/<5ƒPˆÝaž®³³Ècì(\Lñ˜§ È\x‹¾xûUzlýE>w #;»>WFÕ„Ñoâ¶ËhÑë ¹NY–,Ý KüJU#GÊÄâz@[šŸˆjq~=3}Éo7é¦à±£-ðÁw©ý.§á|Õ—¼yˆÏwx¢…k5gŽãýýüi[Ð/™P0Éø|û«é_iîeQ¦ ]zižÅÁA¨:a"õ)ë Byœúêöa>ã|Qnñmz£Ý”6UrémQÍWƒh‰Us¤¶Òw³,›tAnkÐKÞW¦Û8?‚S~•€t&O¾W)FÿȪ£¼œÄ³„»À×Ц²äJœWjÛ»|XŸÖc«4\ĽKGö–®8yX+fO•éì”3A¼tàä ÖaYÑŽº}Ó-ôÞcÛ-‡³/ é­Ex÷!÷2` ÎBtž š“öÍ'#ô/Û¹ãRN*¦ç;öñ%»xÀ¤gôP§0-j ¼D¹µõ²QcÀaÌѵ¨¹šeE ¥¯e™Ï(üʼnâIk6ý²‘¶¡äªDëuùn²ñÚ:‘>|pôÃ)—RÉYå‹Q‹ÅþT¯l¥‹=¶»èÞøœ¦‘g] ÎS‚»xVÃe`xûù\f¤»¥ôSˆJ]šª@çÚÅfÙä‘ÿXêUÙcøB­ú»Ï`òмÕÒþ‚ô&c­&9ÌsáÍ45ð¯ðíC?_A¼ÅV ã»D›y­S”rþËÞ)›n^&Šä¿TÌpx&î)’õŒ¾w•5½x„Gièu*˜ï©´¥¾¬ZÔDÁNÔzð­¬#Sì+4ñ§ÓÕs}¸~Ú4Tèšòz”6o¼–',à"­¢$–[uZÿÀ¶åàÔ‰M,ï¯%Aïë2d®%ÍU^åÅ kZ‚ «Í-'_EÞsÊ=¹Ç>ÃÂFEýÀAæ€4&š,{¹€N“´A‚ÅÏäž !7>¼ì¬û}‚?ÏÃÔó²å;„ô)´K‹Ù>©k¨½à‹äz «ë6¦8Ž»<{ŒÂÌ9½!×íüø­UfoiZ€Ìº¼zÃwœà6¯`F+8 Øâé ¦j¨HÓrwëgÔUåf“wB"AÓÒö×ÚF{Ô–‰#ö,gz%"6„«ØÐÔ¹+Ú£tÌÇ(¤äÎ(pZyS» 4C=;¬†ÀÑaÝ&ÛØmP$0y=~Ì»KÚ8°ƒ÷v[ÌdbQå~Ð4ŸëÔÜ]w“.z 5Eí‹÷Mv(ËÏ * Ã0gÏê‘´x,» ì峩žKkNÀò'ó ³¸5¨3Ä£œ"¤ƒüoï­ØY‡7~žS©ú"“Aòw¾îúN’ü*p#éqÆ …Õ-£U *˜òÆI`%Q^-¼êjB,ÇäçPhgS&+ÄX„ë3§á~,£«V#t³h –ÁµŠÕ99KðSÏ$ýÆZG+7§Ì„4(¤€i4™ò„jÁýµYy{ßêCy~ìf„ŽêT5¥G„ _Û‚Å™çoÌ~Ä*ä´vbrTfóhî¨>Ö˜J5o°Þ'«7ðòcEo?P¤¿Š\ŠÇzë!ozÀ§XðPIX }c]}«XŽù×twŒ3¡m±"ØD6§ b=2ìK\›9“¾Š”ªÅq ‹mÈ  F™p0ÊU™ñÜœcfúäyÃ`T*Z8‚RÈÄ‚IE¿å„ì¬Ê¥Œ‹žÝÕu¤—Lp$‰÷ÓøªgÏ‚r©’.ö–¢¤ŽÛ½%&ŒèLìºë™=$("!÷³s2ÁÆÒï°-ü¡_åEî+pY~™·ÂZ¯´áZ8T%!Ü¡2ã‰RjNfë,~“û5e4WçÝ‘?¨Œ$h°Ñaú(ÝéÕjä—hÚUo¹AÍ<úáõesƒ—ÊU^æJ…|)ß0¹¹w}yvvªgK©o›¾Ío'4šÏ¢®¬“k¹<ªÌuØ]”qR`ô‘oQ…£S,ÑØÄÙ)ü¨KÍô•erÖ®^¸rCP\>[d]5›8 &TveÄà>r;Ëбªy¥76‹hgDßÕ{u¾Q)˜Da]Z.í±±JõdÖ¦e…(Ì k)wXÔ¯ á0wmz¥³ÀñªÜýE¾Ý Ä_Â_¿l~m; ÛaªüŠRÊÎÓáÆq®>oäİÿòýÑ~ñeÎë²E\<M‹{Y‡G…9ärf—x¯̶`1¸è†+ ´X¬·ºxMž’DûiÈî0E\ÉQâS‹ƒµ™ÆDš v˜ŒRÙÊ[%Ç"LzpÏŒ.ÓÖ5#8ïjÅþ2Óô›åX>Ù¦pv’_m©ú;4B¸ 8ž½Š®©/ë´ßüˆV­a6 öºñ8†Z6ÔQdÖLZa]b`÷øÜ°û'=£A!z!V¢*ï ÷^è,UáÅÅ…ß+Å99ã×Ó²ÝéôžÁµqâ©ÞÜ*¬‘ÎÀ3—Æqê}é}gUþ 9 ¼;Å­€Ñ¨«ã$£f[mDù°°ðÍÆçG[Ë/ü„Ÿxå·î÷¬K+,“§*.”9%ÄAÄâ ÔõœxË(àe|Ë ˆß`ê8ŠàÒñÚàÈa}pô y¬’m¯»E±šÍ£ÆYÔúÛ\Zï¯(Ç~°vÌó|«Xæ;9¨ºüõ>ì¡ûø‚Û3³2#ÒçØÐ¥fÌÌsð‰Lémð!b·Þóó®CyÄ|z‰üª_|DõLYdñ¤ääq“a0Òö=üìYñKËBí¦`áHà ¤)õ¾ûfpÈ&׃VrލÒ+‡°QLÂUñÜñB_cX>âºö#él9Ö ØlǨtª%âóø”MñdH37Zõã;>‚SféÐUír}‡ÑŽ÷p&~ÂI4ªžÆï ôN‘>²°4¯Ï…c!S'(¦¥zöÌÅ!»ô¯CPèøú÷L×ô:`žÝŸí‚¯K©ô’ÕE‹JÍ œ?å% î/§ÄâUCþ]Øç˜xÀõ¡M> Rˆ•y¾¤oÆ+î•íäx¹«› —ê´ÜÌ•rg²ãN)È+0J×óAõ{"ˆrÎ&¦Ó<Ö`ãfÿfßÔ£½ ÊQë*ªÜ@:…zé…$Êß „eF×½Ehû¼$y†›VEØNìD'ÞµØKgŠõ´Pî=2‡àK”$Öž:LÔC™BR™Â(ûX>‘,£ò¡ì†õœ€îf¹¤pŸ è“_ »E󀼪ÆÜ&‡J3ªäAT¼T±î§z_ãÔ:}¨×¤ÅUŒe“Y¹ ]ܱr¸%ñ²KýA:–Á½”÷YG~Ëôix ý–ÒQŠ&o£…Ù>¬3ÖÇB­fÖèR‡FI¦®ñ£æ 5“‚Þ×­6µ_éºÊ5AÑSÕ:¬èc'ÅÕ*¶D»Ø-îz¦ú²â¸)ô¹-1’/êÇ)¼àk\ñØC‘ÊXõoïܧ·N)G·ŠO?ù;yîUõ£ØŠ…‹,ÄÀžh—æH5ó•÷V¦Ñ×ïÐL›q–%ê$¸.;hy¦&ÈÚšSX̘椧&åõ.ÎGˆ|Žsý6ب<ŸE?ýšËþõV+p'¹™h B‰QŒ>’ 1ÅV0[ ™„oÞ¸ÝþGîþ9gׂR5†eÛþÂÍ0Ú6[~Ù RÉÊÑbÚëjê˜*ªNo1éRמ™ªÜfñ¤4/f#8>×-„Wãl¿<ÖÃÍ{ÄX…4œŽvþd£seøØ½Ÿ‹XâÇô¾ ³ti̼øˆŸX'C>e§è¸¦V­€L>Üq¢uT“ö„qÛÙ§^5ºÑšáÔs_ÅĽQêµú ž"ezvÖÿPBïP¿*ÿ‰Té°¥¡ø*o¦R%¥…›õãÏí×—0qÞBiei{˜ÅÊ*dHΘ.ö3L ÔÎVUá‹sªwøÉNS”õOXð2wN¼lü À5r{™s=––¥Æåf븨ñ½ÜG¤¼0aL9kôÇ”‚ j?W`¶†6r ÎªÛªZ§äv7e'ÁeÙ¶>'x`š¤Ž²E]^U‡=¶Ah‹þTzyùèz89Ç‚½ûm_¦…+¾Åé›™Ç3Щ;£ÂŽ-ÅTó¥÷¹í«»«z–®|ˆsŒ¼ü’ÐzÏà÷0É×õ³Ó¬ƒè×J誯‰ÉŸ~|ýÙlöµÓq§„ŽÏ²ùœkÀ"‡XÑc˜²EºûRN× ½±dĸ¦¼ÌNí9ÇxMËÞ‘xÙ äåÃëkŸ†ù¥%³yÈäô‹€Kð—…)Ò3âθ‘yã캇å3…‰]?7:x„`5ñj HϧɉŸR·_¾>í:Ç2œ'8“*°ýáDVÃÏBó K¬<¸ߢ./µnE»ž½ëò5éÇ|¿“Gˆb-óÅ¥a\ç,7s¾Hè±ü’{éÒ³}¥‰wèÕí§°-hÂÝ$)QJ 8¬…Vøs‚€Ük#Lœ5„ImÖ3öþ(²]OgŒŠáCKã „‘&òÏO RÓž)J†â±:°ó;»eË$ÆÅ]dWž¯Á"%9µdOÌDꦔ÷Gppuh½­>i©mOüÀ&–ŵ`6oeµÐ9ëvv€Ÿ²é$¡Âw:Ï:¶.ºªa”EDÓ%¤M$/¿Âþºbà …Å26 Yƒä‡‘ŠiÀD~öiR÷4K>ÐÎÚ9TNµ1Y~,YƒiÐßÚ„ñŒ{4ûê1¤”à± í¶f$}i…BÚ«Ë.$ÈÐ[LqÒp)‡GN¼ŠU2X‡™ÄÙ [r\î¸—ËÆhꂚ;»Zl}R>@ ¢ç*{½×ûB±…Niüà¼}™â¢­ ”Ÿ¿K}Î^ñ|Æ$£M¦ÊÌ8õJ3bC®ë&ö;Þø‰@ë‹»ûBà’†SbÔéX>[ñ`AźZ¯Íà³”)±$?à†0ZËF™Üy „Eü·É` 2¤vw#åÿ±0J¸Ìkó"ó+Áe¬™VéµWÿîÜÿÑN„)%’Oš‹kš@ N™Ï²³XJ¡ý5]ÏÔO’cK±œ¥Ñ9ŒÄ NÑÙ¢&a”ázên0¹] ä©<Ø{î£Õ^t3¼å‚}¸‰A Îë"ù¶¸aB&ÜãÖOÒf¼1 ûcxÖ ¼ž¯†¢¡ÎÑu<6x}c®OäQsã‹!Ò”ŽÅ4žIze°'­ñƒÄ¬¹M½Ç£îµrœÅ¹0*4F4œð;ÁŸ©ÐÛtö{åÎN` .ލ—îö‹)6W«“¬F»é|pEÞ9 ¢T€mùR{+à$~¥Ê—Õ,ko[sdh^;8¤‹Tž Ç™‡p'pä¡E&ñ±‘š/¹Ã÷Ê@ãßm@ÎûbÁVf:¡ZšníÃ{užæÕÿ§0zæov¤þÈÕ1Q€Ÿ'#vm çBÝÌíL¼¿ïa²’j_qfº6t9¨‡›4ëòªÄ¼‡B¾ßwÕjœžÂÙâw*QíØTûœÿaà¨4å'ÈßE«¼‘¢sXC¹²Wk˜ˆ¬c4ÅsS4J?„ÖE=õÌ™Àís¿n@±Vˆ=ú„>+óYC£ôþþšýp”ö : g%øNcíœÒ!ï\eöpÛ´twºGz„aÖ5óýX —£Hø5øÀB’àÙ½t0d~É} ¦5ˆÊù>é5» 8ò`Ð*#n$œËßfÉÛ7%ÙzÖ´ á" 1(ÞVññ]Û®¬&Ýõɹ¢M{3•Ã6g½SS ì4~œ¸Œú÷náSƒ Š®~sµ6Ƥ@~O·eêbMÔä,=bOL²¼GUÊ{¯pCúÚLÕãT=uh¡OüT=¬9–‰¼‚7-vÍ`Ëûjìûtƒë„=p)(({]Ž¿à—²?¡5¦Gã?ß;eo6«G…ðÌŽö}  ±œºŒ²ðùÅ$ôwV72HTW03¤…O 5ùÞ>Ö¼Gä³QšÀç¹èœJ[›‘n§ä ¦g;ËëPYoj¤¤ã»êk™c«þèS¹;-ŠP›"ÐØÎcã?îV~ŽÝÌ& YÊL¢µ(«<…ˆíQé¤mqáâ*”ZccÔ(@‰‡‘9(3¹öÎ@äc7 ¥¢ÂÔ ÂÈ­"ŒzuÎ!l0Ûï¼4ž<©T~IÖ ôOÌ¿„”7ùnÌ—¥3æªç¯#¡ŠìñÒò0 ·°6Õ$èù3aÐ?êDÿ§·A­E‡,4³@ôe@*ƒ¸g—áeãûeôÎÀ§Ö½-‚6PÆH\–lvq£Û°¦ ÙÖB’¥/zÈòd,мÀŠy\ Àe mÖº·â+ɉóæÎÛ}ÚÜ6-1mº½ÆŽh¤m·¾uª4´ v>ÞJÜÜÚP1]´f; Ô¡³ßËxß:ÑrãêSvÁ(E¨Â¼ö¾;Ͳ-¢dSz¡¦—ä>À­w;f¿$ç /Fvúàß§Þðtfsz".˜ãWÛæÇÊ-~öâËÄˬUG&ê Z»ÓÚ5@7hÊ¿:$·ñÓh½åGuÏsÛojK8»”å„»Ë6-yKÒôHà¹9„Vî¿JØ¥ŽYÎwкïÐ*ð:ç{,Žçö½Ýð—3+;Pêø w ‰ƒú$B —\€†Öc'€ïx(—âà¸dbÂÉÒ†ÆÜL½eýœ%0™Um½ëÝó« °Õú]oFñ1¼àê…Þ‹¨-«èk½eP¿*ŽïìrlYiÊcÉK#™ü.·7¬Õ®Ù/˜•Ç;xK^Q¼Ÿj?8Óå³$ð."Àts„7×49ì0ÿ‚ÉmƳ[ÿäýG ŒxïÙÈ ¬wæÃlD3Rf™Ó$ðh­IúypÞÎ{Øå&C,úLÐÌãýb{ËUv±l©TxG¹9`m?rkƱŒm–îüÌöUðj ð©sÙò =Þ¹Þ´²ê²….¨  †?d¬;VølØ™ºfÇé÷kqÛ_!Ä9¤L;ÏŸéÜÂþ4f ùÈkq4È<ðù,«øúÕ˜MN 0òjŸhu‚¿±Á9Ó¬¥ †¸Ô/ú˜¿6€èezYÊÛ'»SµKG?±‚¿;ížÕZsmÔÇÛ/ës²Å"ÈŠps*Dü®¾fëÞŸ~ÓÒdýþU¼WŸ2ÄhU§è_t>pì× E¨i?|qþu‚ ï%žñâ¼Xs‘Ä* ª]£%„FñEŽÕÙp•¯ÆúË?Üt…âžý+.CB棃ЄöÚÀ&i‹ ^´"mîÑs7¸ûR“#® ôú„ûŒ8*cà=bW«gÇAŽÐ6Í j vx'BL~>îúlZA“Öºû§âËäUTtít ×J-F/×âÓ48¾ŒBsk³ârÿ•K&Z"Š0ž½à$s»æ' Q°œ÷®ÇBÄ”¯©©"gšîhSÓ©¶7°i·Øn¦‚Îï{ŒüV#G\ѣʌQp‚O>›ß[®´_¡…ZN^VUM‰×°Ãa®>XÀ?«ŸX$UÝV©Ü²ù ?ŽbG§¶u¿¤¾2 æm .ŠâAáLŸNŽ_H„¹5½zxŸL¨¢GQPqüYS´ šÌ1]=_ûëG<=;|×eG˜G/ÕþÌÂHrïÔçÛh[èÒýèº/kdÞÇÒ¿Æ…E©%}i?k‹SòX(–ÔÏnCmñˆ¾<¼ûù9*¸l8ßÅÄ ;px^Ä?÷L ëóK¶aóÊžARçêû[ý^„2î¯Î¦(ýþ¯6¼ºtxŒÝ¯œ‰!!wj V¢^òdØ#{Eª±Uk»!Ái ––ðÓ“Y­4¼ž)bå3ØŠs¯†Å÷}C&£s’K¼ð.ŒòŠ-Ý_·zË31§7X'WÓT„þÕðbE¾›€±#‘é`¾s5¢¾r¬j¨þ…ÒSž 5áLÃLcÆ4C \¿ód×ËØœÞS'š2cß*V@G$Ó]¯®R´P¸"ú݆Ñdùtëúú˜`^4%kƒŸ~ß$O}­‰õ¹V›Ý…]›½ˆçÓw¹f!>ôØó)è;¹ |M#ÎüŒ;‚ÖåÀŸYƒÑ¥F3=öl»Ö*[>ÐŽ‘R*„NÚÍf‚ŸÜ²âuü7–|$£&ŸÀB«Ô~Ñl”(t.qT2$ˆÁpDr¤Ž,ŸªVßQu>¨ÅAF»ï¬†ßzwý Œ¬;·‹±öÿr…h‰©¸¿Ìs– iƒVDzÍ„Ѻ7è®êŽjw>bjSW›!±ÿBš4¹°<·„Â$ß›eº¿ê\ߪÐqB.²ep¸° î;Œøk*•èlôâMÂ%Ø1´œÇtw6ï‚÷¶¨v„êe¢aæ^å³ËRÌì Tñ…æ;µnµ_ž¼«3î\¼Ì ÝÕ&’O&ÈŸ³£WÀ¹Ó‚¡›ë¶ ª8$/T*øb‹ ˜ß³Ñ¾¿–ÖLûÑ3mœõ|ÓÏ_/ÐLA{Œ(¼¸ÞÔ5éo±P®™¶I=>Óë .,ê cI·fš–¥á‡aw£ ‘}NJ©¾ù!áR3ÿ› þòŠ,﹎q("2ÿ;Þ³z{û$mz(¦€@,¥3á—TO&fq¯4¨í7ðFôæ€o_®5 ý¿DFY8lçÑÅVH÷Œfúša´]3{‰£ß^%’NCJC¼äµ lÇÄ•‰âõÎA{•ÖY|ú{e’ˆ,âÄšóÿ!¼µI‰õÿKÕZ endstream endobj 93 0 obj << /Length1 1391 /Length2 6299 /Length3 0 /Length 7254 /Filter /FlateDecode >> stream xÚw4œ]×¶ ˆN¢·['z'zÞ‰n˜Á(3ÌŒN½÷.Q¢E/Q‚‰Ñ;Ñ¢E‰Aô|’<ïû¼Ïûÿk}ߺךû콯½ÏÞç\×½Ö°2êðȃá¶8 Å#ÀËÿPÔRx$ðó ñòó â²²BQ.¿Ü¸¬Æ ‡=ø€"BÝø”@¨œ¨{¸B€€è±üü€ ?¿Ä¿€pÄ@ ä Z¼€:Aâ²*ÂÝ|PGÔÍ6ÿZvœ€€„„÷ït@Þ‚€Ú`€åq½ÙÑäÀí ”Ï?JpH9¢Pnøø¼¼¼xA®H^8ÂA†“ð‚¢}‚ð„€_Ú WÈŸÉxqYCG(òßnò! ÀÃj!o2<``¸Ù0PÓtÜ °?`Í?n௳xþ]î¯ì_… °ßÉ ;;¸«æ…9öP £¢É‹òFq øä‚„ßäƒnH뺀üF°ÿ†š@þˆVîþï˜ t#y˜ƒË¿ŠTzCÀºP”ã®üñýÒ˜ Ñ…#¡¿>*?ÿÅn„eç|óá@Þòwr£›n© ³ƒƒ LPD! Ü›+¾±D?%‚!Þ¿) ðñÂਛàf¸ÀŽÀýuŸŸÝ/×oK@@àCü‡)ð!›ÿØÔθQÝoRÜtô/û·Ä!oˆîÜ4ÜN2Ô©>´ý´VžÆ‹gcXz‚uÃ$““ÇoñÚãœ;³&÷É2âD>íý[â…5eŽc¹y†+¿ÝW/±#ZSôÚ.ü/­“ôÇ6ÚpgGÉ{GŠvåzèîÐòÊmú_¹û;c¼ºÕ©Îšïî!N¨[x÷Ô«[Õ»¡§üã`øô†Þf¨Þeù8OœQ¬Epé$kíÓ)J&,Î}ÒoÞD“Ç'¤y#?Ô“¸p¾Ä û™­ÆŸMù.V "ßP±P™QÒa“ޱù)l¥«SÌø••D½,˜œ*}è³ß¶~¸Ñ7Zn¥’¡qÍ/¦#œA¤Ýñß÷›ðK¹„™˜F_WP`2ôPЛfYâÙI>N ¾ÏWš’» çey¹¥µÒÀÚ¥óî;ãÆ°í "j–×i &aæ-<êižÓÅbÿ­é@B¬·ÂÐ^Ƶ¥ÑÚóëNEñ…ó”ôê¥Z]3×d¦ê#í™ÚDÉ…t+>yĬɌwë”V0²eؾr­Áê™^˜á’ (|b!òM)úì^è‘Ñ>#S^€ì€`KÊóp{säéhòÏ“QY­^òî‡I†4ÚatÒkÑæ„‡É2…xj÷Ì3Y?ÒÄP¡ ë o죄ý+_Z°î ûFGŸvfŒ2š`n¢5xU«©zW I¼œeœŠƒ7m‡S|ÔÒ»æÞbé}0“ó²Y>ã\ãžÚ¢1K[n%u´r–˜’ÍÛ5aÎ+åóT®<ƒl¸'eU‡‹ÏãÀ¯;¦Sc“h_ëÚ ‘ô/- ôÁ)®Z÷œ,sFÎ^üðåcbøìƒ+¬#T2n‡„Üõ=­aI_I1¹“3¹böŽë&[ÞG¢C%êrÛZ§²sgôõ=‰ºö±Q¥* Å©´ ú-∶²¼b«Ûê¤xéºkZЉ×üÓZ¼oË5ôÝÂ${²ºloãUÛPɽMïùòrÆH§Ë Mvýâò–aB͵~¡³R Õ>)ö Å}aæ’¬[c{Éæ·#©Ò?àÔ/Äý¶,ùuR(™¢šÆ9Š-¯3ud¿Ç_óe}ýÚ©Ô%ÆŽ5›´¥wqj¾a|æL[2òö.ÜŸ÷k%¢ ì%ž9 „gÜgkvj*ðp§°y$Í+EŸ£z””£xîÊô ¬W¬v(¥—ÛhËY¦ça&oQ &­ hµùT`÷zrs¼3ö­3‰›ç=æfÎ3A÷\­GÔÜÆKoŠtËIU}k :©p{ÏŸKÒcö¸/ƒe+õ°“RP²H² WülR³d•ó W÷¨.>’z%ö·Ú„¸æ¤Xi´{>Oé~f ¸žBWI\Z¢ܬ²©o&.î5ç&Éb`ZŽïL#÷MÒfÁUZÝÖñ2„^2ÄzÓÞŽÏó¯ïxØüq^qt¤„EÄí«¿ÖÝ:Ëž;©¨Ì"¤)ó,òd˜tpuí®½¤ãhúñHãyL«2täÁäSTBÞ”5§]fŸd†åƒ}Ç¢•Šæð‡ç\òRéñ’oׯ¯%ì̬ œ‰XõhÍ@矧Ø) 5÷Þ•-³òK•ºö$›@sòÆ›%2³•¶Ñ*ÇVã¡æ˜Ÿº£·wóÖ Õ¶ƒ-AÁ¬üDÊFûŒÑ=” [lC5'êZ9ºA²AiÓ53d‰Ñ,œ£5#|×I~¼vy7¹m*,~ÜöX6kÍójt¬a«eW¼Û»ƒómù¢ºöé9æë0‡ø»Å‚Üv•šÍ“Ýú†ã ¤†5Ô`¸öµ ÜÆ=£7Š[Ûô¼lú¹ÈÕ|¥¹Ü‡Âf›U˜…›^ì'} E&Œìoò%aýæDwtoç¼{5œÿª¤’¢whYåÚãᜢë÷JÁÂrt#BŠ«:3æ£RWæš«SKŸ<§’‹qãïy:óG–ê×,v'NÄmÄl„ˆ4WUλî=Ì“t2­4cÕð$Íúü¦MÝÐ1«šj)dSFq,ðxØ#x–8f?|@ÄÙZv¤ÙbÛ Il¬ay®"펳*ãeΚíQŽ¿B~-:íg!ÕF=:YK­ýO’‰ fâô!ã+õ<Ú]ñ|ƒyðg! K*÷ÚSÉÜŒŸúìƒQ¾+òZ. œá³rm‰¸òÏxÝØ¨º\0õíh°¸>ëm‘û‘^Ãê)vRÒÏô´‚,MËJ;ëkV’öOÇ“Âݶïhé#²>h\3Í…|¥Àõô&ø ûU¬xé ÍG|§ø¡»ŸÓ¤ã¦ÑV§fM¸Ö w0#ÌÍÀKy'ÂCT_©û+æ¾Njr¸>Ñ“c>F¦a{Fá¡uW§‰.S.ò€ø¼—¤”“¶ ?½CK3¹ýŽùñt?\)bpuõÕçt/Üïô-dK.©oå—…7ñÞçϺ‰3ìÚzAÏ,ÞK8^|ç.é}ý…¤ïi”¿ðê(.Á…:׳ÌÔK•ø®ÈÄ¡–8åðЬW4‰š„¶ÔqœÄA*ú#Ž,¯½ã.?é½:µŸçf0vQe£Ù¶æÝ¯ªÊÀõÎÈ–\³ˆõe/o D{ÆTOy¥í¡QÖ%~Äx¡]$µ;Q` ³ã¹ËkJ¬È€ûŠáQ׆"W3$m½Ùv·Iêã:Ó½™ 3ß“/ù"å-¦Œ+)”שh$Þ2ù T™iû±´„ösN¼ñ»¸§|š„œ|¨noÍ’‰ù?(ª®‚ù7Í¡erû0evÙ^rªì“i÷zAO}¥Ø?¶óeKåœ×D“½dïý^:ÇÊk6îï˜sõJÜí{Zø·€™œ° »û‡"IjE( Yº"“½§†¯Öí ]#±±è—joÒT¦KXzJÖFÒS©ßIÓ/ŠP;g™¶Æ’“lzèP‘ÑP’®,þµ”o‚ût>xW0šqz“vÓãM"õ̹ôÌ$Ö¢sŸ¶QìDÓ >æc|Ñ#¶Á…6éÓüó…SÁb–\½/)E²¾_ZIP«Ì.UÌNêêû‰¾C” zTÞí0ll’ùI#%¿y$…‡W8ܾx"¸T[ôAÒ)p½ã;ãøf âþ!óQè#í„?_Ú°*ú õø#ŽýQU¸ù‰~)S/2IB¸mãîU”rscÞL¨N„qü‡P-«%Í ½=ÉowM7z×RgŰDNöÚåé‹Í, Œ_j/Pa·× ™xf¢(~$ùTOèáG­¡‡¶²GÀ׃LÉÍ8÷–9¾­7ÐâS¡$?rGJ 7ŽUøƒéËÉÌeËñ3ʨ¶•ÇRgq1š‘ò¡ž*èì6:Ì¥º½_Ïeï´ä›%ïº/¸.ÌÌ_-Îuû0ð@JTÄæ[ß‹ÀÈoþÎz›€’Uàä!9šlƒ…ÞQÂH­TBVµ.¯OŽ–œ‡Õé³Ìq½oµ><Ï1MùÒ—º¯3ëÅÞoÞåEÐNFàRKÖFNè—-ÊÙçÔC`£ËnJ "ˆ‰0*L°Vî;Í~šÿeWO#N¤¼C¥ãÑ*4ý(Á Qx÷ügÆah廕WLNaî·Î1–§Ó^wëD“T€¥ÛR›âÆç!E´zÆæM¸êyyvQëSYb–‰­„<†ä®O ¶Ú¹Þ8œ™=H@÷y(J9¼—â”įn¶±Ö×s–à¹P%>ÊìæWìrÍúµ{Ñ43žš±˜j{GBQ1‚Íc)¾~ÏšS¢ª¼ápeQ9¸ä¡ 1“¦øÓ:”–ø„ï½èÙÜ­’;Y¯‹¬K1ÇÌ+pÖèúVÄ“^”j£v;5e}bS·þ¢„È•ÔXºY¹6ÉÃÑœ>z<ñ;¹E3òàáÕ0AáòreÕ©gˆ"Ö '2R“Z¾U®Øc1+ä¹—Ô]ôZăÅA£Z'© ¡Nü|¦1EÝC¦ ˜Í]¶=œ˜pLêû97Í¥¼þÉžÊwÛ(­ªåË‹^Çfg »PÆô¶µ¡íâN§{,![[ E:qhÚZ)<˜xy¶–þÎŽD/t?·îr3ïÍ2¨‚R/oµtÜ1?{¶Ÿøðà +{xͦ¶Æc¯§Z³‘7=‘I¤=ôD``ŸÛÞj0N*[JGn­YÑ©ÕñÉSº^tŽéH·¢‘=96D3R>æH–»Ð&Z÷0øûÅû³¡u–iëÏßµ9·Ì»÷ú${Á³M÷ÑCƒ\¼—7]2ü*$SŸ´„—'Jƒ¼ý ñtÃ[ “ˆèGC,ÌPŒº±Ë/æ]¹ç{ ü,È1EÏóõd5-¥¢°³ú§MŸÚ´XÆ/R.aaÇ z¬TT—Õó7SéÔ­ê‘mw*Ðõ™µ3RiËÑ(ŽðÔŠˆï5¹˜[*VŠ5pÌͤºÁ^{o&i3\Çt_ÑÉΔMïÌ`Ôá»Ô³¹ßwŒ<ë¬F¬æ’'6fùÉñb?R-*ÿ´­´‹+Á¿&K¨1°ˆ)šŠ µéV“ºÕÓ"]éÞ×x?^Ÿd”¡Ž@î$Ph&V¹úµ\]À«KˆÃz‚º_| ë4u 1zç½8²lû‚ͺU`ÃŒãžy—cŠ„”ç…“9iû8˜˜;á7ª“3’¿Åhã¦&qîGU9ÒµfÛ§äû>mb dPÏK§žx _¬“vrIwÄ}bà"ܧc$ÏÝ·,7œ*­‘ .³j'm“ðCc„:k+Håyvñ„suâ^WøÚ["rûÅ;˜ ÒËuÛOu" y[%CAr¸‹é UKe׎O4«Pšq¨Vç†Fo5ËdjÚbãÈ=Û¦Mpÿ1ÞVè©x¶·JG¸‚J@Ëâš}öÌb~‰Ù8­ÉåÇ) ÍacHøjºÜ,Ý,måk`áP MK“z²x?Õ÷y+ãçüû\Âéè |c6~úhqéÕ–8»ß Ä|ƒ ¿´hÙH·;­dS³1¼ˆîübLÖiÆkÓ•zmÏ XŒ½õézuíðPÆOì`„„1'%[[u(þÂûþú¨áX¯±’á]ÐuÕDƒ¸—#ðöu%®~f&§L§Ó‚‰ØœÎ}Mw ÷ׯn°×%^_}”Hểž}`̘bêYBúä’I´Gˆ_ÃVgè$[Mõî™kr,®LÕøÇ7:çÎáôKÝ&§g2V&Š)ˆ·ÒšÔ8Œ “j6P·o®Û’·Ñ,NÊÔßc°3z@ÞÙsôŽR·ëгÓ8GDz¥¸v1¸~†Ô&ŒÓa`Ùˆù¶öV6®åâœymûÉ'ˆ½Bîgμ~­i9í¶!™|¹dGuµ“¤gjX2BUì÷#‹×s@JMÕMEM¾CÔxÍõñ¶ó¬Ktì—T^âèo< ªØŠ6š3X@ù…ËÉ;!B¢âÛ oõT ±âÐGSP3+-ð­7Í-Ý^7kÑIº{¾H\©^[?ú(´oG\¬1¿A—‹F€ÓÔÐ<—gdÿ 5¿õ5'Z‡´ ³»¢O»úeÅtóÅà9U‰¥¨›FÕû‚I®õòöš;ÎÏ^u …_j(&(M 3î›=áKy™?-ž"ŠìEóY úŠblšè£®“fÿÉ‹»ïß(TB|†½-±VK€J^Ïû^u¬ ”su<]z¯ÿH”Œì¾Éãçì‹!¥ËHS_Údë[£õ~og«Ótmš¯;¾;¹’}øšPmÐ7zEQ?Ÿ­u¡æju¼piÄ!þZFê3m+N‡¼»ÍòùâE™q™ÏDȧQâÕáIFˆÜ¹ò {´/å9Ô6,_÷»ÿž#‹•ž·¤A”:Ñ[ß¶FæÜΩí¸C˜’B…uÙ0-«1+^-•@‘`›Ï¼>¹Æë£b$¥JLàññÆDRƺ~{.î â·â6Åîw;ì$α¶Ö¥—(â*ýÇdu1ú¬z#ÊÉä­¢*ªqYuñt“{O l¸Üƒ/`9lHæ‘ö3Ðb0GPƦÚp»âÃt÷³¹¥abšMóç¼_ΚŒf\$*s—*– Q…l ß° »EˆñRî½û>ö$ãiñ÷f^Cói/“pD²¶+s¼Yñ¾j!¾¢;½ÂªÒsÏ_á(áq£A,Ÿžï¶0@¢Lä7¨Æ¢Aÿä™­?00¸ÿ4JË÷k¡ÄšTÜ̲ásÑôý3ϼ¦;%ÈK½è²½òq^–8ESÞZöc’ýÒT‚ªÌÔŽÏ@iè·n“ØS]ÒLV‚M±ŠNŸÀÎŒüðcUJŽéZY# Œ`ƒÀ¥xœ(¹U)äÅ)oÖDj0ó8ëAoBØp®ÓƒÕŽ)Nþ‡©¸æÚ©j‘—:/ðgsüÊ¥^_0Ä|üü¬7‹Vѯ6RßepýÐl^Íkp?\3K í3nwØ‘þ—`âÝQl‘ë‚Íah1¥¶Aeì-^ tÿk)˜ѹºÊ¶ÓézäõÑe9U£Äà¬( –Ù[N‹rU¡´÷U—o«íû™ÇõïeNÜt¤ÃÝn3D‘PP y%¯n˜-àþ̱CJúà{ŽÈŸ`Š MõHЂü¡õîTç·‡ZØ<0”¹—!WH}åFÂuü*õLÿ‹¼OIuײ6ÛUíÜ4sØ|)£Ùíö‹Îš±*dRøŒ¹ØòHä)Ÿ¤[“¸¢bÍ„RÓ!Èž½åV€õ1|áK9"YŸhœÃ;½n]…/ƒ‡»ÿʼcó«n€Ä»²íºVí]îi¾ñ`5²äÓ#¢ºÃ½7€ÿÂÜ Xrý5”ãÓ¤^…ò ³#SÝÐ…OM!Êón…tÅ¡²+í‰bcëÆzׂsμ*vÖÝÉšM€ÇaWûùÿßI endstream endobj 95 0 obj << /Length1 1448 /Length2 6897 /Length3 0 /Length 7874 /Filter /FlateDecode >> stream xÚw4œ]×6Ñ‚D¯ÑF”eFï½E] 3Æ £w¢·Ñ;ÑE'z z¢†D ¢¾Iò¼ïó>ïÿ¯õ}ë^kîsívöÞçÚgÝÃÆ¬­Ç#AZA•‘W>^8@ASÞH  ð‚@üllú0W8ô/1Û(ʆDˆÿ‡ vEËÁ®h;M$ æð ø„ÅùDÄA ?$ö/C$J v‡Aš¼5$êBÀ¦€tòBÁlí\ÑÛük à°æð‰‰‰pÿvÈ9BQ0k0  vµƒ:¢w´ÃzHkÔÕë!8$í\]Ä@^°£ /e+ÍÉ ð€¹Út¡.P”;øU0@ ìýS/@ßæòG®‡´qõ£ ´³†"\Ðn@oÐSÕ|Ì` Bsúõü{eަ‰€{ýmþû|J†54¸þTüo¼<ÒàÃ#$ àáøøÄ„"è…ß?Ãhƒa¥úÛWaƒˆýÉݦeìþ8þNÀ?ci!Ѭ…8þ&¹Hdþáû?Sý·Ëÿá¿¢üo$ÿï„”ÝàðßjŽßúÿG v„Á½þ2@“ÖÍ=šHô þÛÔúghå‘pÈëT]Áè1CØÂÿÝD˜‹2Ì ц¹ZÛýáʹÁ¯ƒÃPm¤ ì×¥àáþK‡,kôÅá‚&äo=7ÿÜR a„ü0~!a…{ „>|èI„@=SäE ]Ñ.tq~$Šà×y €r¿D¿‘˜þ‰€V#1Ðú߈ODýDÇqù( ºþ†ÿÈÖÚ …Bëo6¡Kùþ}7@¡žPk‚¹¤µDˆý›·gÕrt<_F¥&Ù¾¦ròøÌ¡ÚÜ.ˆð^rVe<[BȽ|×M²°¦Äq,û‰é§Ïvs^xK¢Në¥ïÕÓºã_Z fǨú?lËÕö1àÓóèËnøþtö}ä€ÕŒÙ¡Æ–ãì&J¤G~æÑ«âYÛW:?6óEg£JXðªt‚'Ö Æ,¨xŠ-×*sšæ>®+Ãí‡dûžÄSÇ'“dÙn˜Ô^pøíÄ ú˜,ó??Ÿö^,×çwé¤e¥5¡aÀ:&g÷‘ÿš¬Fýѧ¤(N-,ºÈ†Áb¦Qºì,XÃÜ1'YúþÃÊ{šoOƒJ‰×ÆÃâ¬uVÙäß}ƒëe·ÓåÔŠOüä{šOà¢Ó¾ù“Ê;ºxOHº"ªP†êÕ¼éÆDœ¨ò{¿V L_õn¿•M, ZìÊ0áäUÝ} >GŠØÚ‰À±ü¨“*JÈ{çÝÆWËE¦P"¤ÿºr‹óëtŒ8̉Ho5:!ÒåÖ¹{ DªC%ªž«ŸÛÚ—3F¤ûÓzuîÞ¬¥¤9$3 šƒgoMä:iŠEš…ÃM³ÎšvkMˆ8Ýú“ôÍ@uР³€¯V4ª5rS@k|’Uµò™ˆ³Ì/«S*§¶:;# ãôªzŠrå=/¶ÅîÚEìaË,a‘&‘QP[ ©Q-z{à'?_ì§·OvR“e20ö²Ì){`¸È¶ VRqU“õœ,Œ‘G&?|ëË×…ˆ³í2ù;Î…(U½§¼G$'HoØ “îÛ·4I<º¬­Pˆ;pî™Êtï 0©|,žKÀ®Ô`ò@ ë Ò9ƒ‚|2²ýkï1[<ÔvûÃÖ—böáNR=$–(êž„hE–!œÉý~1ʲ­À³èÆaQã|\*ä“TY¥ÿ“Ö{FõùC–XîÄz7Ï<$Dé’/h<*==å®°ðïq.3cZaLª2탳‹*ùUJXn“˜|*ãdxUKܘøÈ„ô{+Ñ (°CõÎX„€Ýil+ž=Ð;¤ehÁý”‘1ë-ӭ«¬ÿÍf9‘˜‡Õy§ÆëÈ:];,b+u<úØœ8š"PöÑóIR”jÚ†„q€bº Û"x–ÓÜÙÇ·O:ø>y±_SJi}WRÂæE¶"¿¶}&:g‰{Ñ QÏÇ(ÿmâßÒ¾l-§~•¥üÒ™ [#ûäCq¸Eǹ5ÆÂ,ɉ¼¸¿ˆ&‘ç°ƒ¦#Ÿ¿Úqê†ã“øšA¨"ÞiÛ¤¾äP5H¨"Ô’q*H»ÿÕ×{® l‡Jå|ãÈ,@Hùì;Q§ŒrѨ:Ñpe=`Èò´ ʈOé‘”ôÒ¸rÚ[]È`#âÒæõFŸ-v‘R¿·§À¥§-uÿN§j%còOlÍZFéYIoäöÎr›e ut¾’Ýíl7º¹aEÝ…ˆÜŠ4(rÌóÀTæêà'*¬¥›OõîýÈy¹Fº\M“Çh{bUt*'žð™SPô$çƒ÷ó÷ÒªÙ Žâ«ÙF ¸sáÊÍC-±KEDQØÏŽlØdò‚>ßšô–q† È”®dñ°ó=Q¯ƒÓ¥«oqŒïQíL^ Eã8uEpoઽYŽZD [F5:%3îN¥ LwŒB>ÆlN/âÅ^5Y@>?˜“(-+ºu Ëœ!ieaÚQ>(²n¸adè¾bå‹¶&Š£únœ¢~X\!Y66O,%å«Wχ^®d’r’z <Á_˜Æ86Ÿ†X?ê®×¨ê뙨äa÷B "?]-;¿}L·D;òZ4üü‰è1søÔëò93EZÜ2&(ÕÄ|M=MŠwkpBB¿¿´umŽÑèÕ .Ù‘c)F§=UøÂ|!‚ôãxs™ýy2;oB‡r¬/†¶¹Ec”ˆ2Rç(Ò]à³x0ÿ­ ò­ETê#½h"Jæ½,Æ ¡¾FÕ¬ôúÌ=w„åœM`\Ðʾ'ùDsçAÆ®ð8Ÿ ^:rÿ!´JÁ,<è`b_‡tËa ôýÊùÓ¦ô!Sû'ìBn% ¢Óú^ð×3Z:îµ» ‰•1±k„yár¹vI×ýO¯VéKãêtᶘC'Æ·ìbÓ¨Á“ýñ)ä5moaläøÔW'œùÍŽ–º£gŠ[“áä%ÚÃI^ß«"•í¤X­µîY´Søž]Ä;*¸®lí«”ÂÓõólM¨äÎc¹{œº‘§ yÉZte>ÈÊ>KRz°±JÞ%6‡‡KÈe!ÆöÆäƒ1׋5C‰×@µûnoG÷Ó%޾d cMô)Úªzн¾O‡òx×GmG^¦KS9E•׸ä¯n—©»e1´Û#(Ø>²â)¢™M1“ðÜaFcl÷kÿqtGjöú>S?Ûœûcç9}®dJì­w8’ÄŒë¸Õ©síˆÚÑlÜÖc®8m2G,·=¯íi²h<,kù„‰ßûºª¦”ö‹ÂíPMB»5QF§šÜø¬CƒÛ÷=Èy qn=§ÊÈX lM›…&=a‘”m;pÃb©üâÅ'¹RzñÇ¥c8áã`põ+Ée"a/»SÖV›î}·7…YÎÁ'AlOgQ„f3}ƒ¥WNË,¥îgš™ÕÓ¥Ú‰OüÄów©ûlïÝ¡{ýÒ^w΄Û3£¡w 5ª,ª#É¡|dù¹ËoÀ°cÙjT@Ì ¤¸¦ŽjŸÐÑwö„Ö¶ÙŒÜ_§-{€ÐˆQ€⪠‰±{E͇@©/,Òß?^¿®§›ºlUm™e7-ݳÐ.i<.£R_Ž»žR)€ü¨•å*y•3s•Kþ#¦&<Þ4CÔ©þÄñhœÅ=(ÅÒŒ­Q~€w|½n)Ìó6¬’+ÖZeèúqÉgÁGšèvÚKNÖ«oÙÒæK_}ÞVáŸ=US;3õͯþþO¤¶9Vª éx×È.Q<Á·ÜÇ œíL\?ŒùšÙê!BæuwåJu9–¦x±"/8Ú·ñÒ¥GÒï6¹ ³awpžš‚¢Ø§’zçu¯q°…Òë›75«Öê“ÍþxžÌ#>t¦ÃªÔyÜýõÃÖԷ鬀1Z‘íŸT.s{ÄÝÆ˜u„ÓDšd"9•>ÿ8$âNŨÿbâ4.×Ѷf[ô´c¢$ÿ‰ÏäÉÄf^ú®|¸š>Õ¨>ñþìó–omÄí–´¯C ½#.ßF¡JLæ‚êËoºûdõúŽ)p53’á Â«ÄB ª­xM9EqïDòî'WüO»+”*HûÉ…&ðU¼5¨¬a± oWŠ7UvXÂ}IíÀ‰¬@â¾Yߊ•¸¯O¹V“dGþ=ûôú©”ÝU͵÷Tß1£ÑŸäÑ>58àõ÷'öŒÕ—ùªm“A_È1ôéj¼â'™ù+±*Íõãµ%HTnG÷¸¼W¸cöQ„™ª×ô¨µiãt¹dx“3g<|[z×Ða4ÏVÃeù.Ð &“é-Àƒ±ßci%z[›èñKø0d›qØu¼7µ¨íPö²(?_êQðQ‰ÉÙ‰q;é-cõ!6ÃËÆ¥‚k¸öª%îùvÒ™–Ût|P¾»®K»¬-í3ƒ~*šo•LìœHìYvÈô.:ÎeŸ’ ³_^„öÞ÷¸{N™MÈ' t“±–D´í¿°j‘|X.”Øo¶åº¥­p¢¿>6„äÒðŒTMJ>=§¿Æ`hšÇ3ˆ¾]B†ŸÓdß 3lâÅ˲ì. _¥Î3§³2†Ó<8Ÿ,N›½´Ü½´‚º"Éð‰w™ò1O%À?ì],È»ŸŸ%wâ8ùŠíoÞ£ÛÈIÏXaBzÒI´÷æµ$p¦ö†d¿jM§wOóÉ›J¨ÒÊ %«Ÿ}Ÿ{Yz4(êM0«(×Ò&=ä¶îÌϪ>:Äù¹¥GîXþÞu'†’€Ìd¬†ü«zÍY±eªàD­áœÆ]§—I~5¤ßÌqxFÞÙP,îL½¯S£˜ð€Æ;˜“ªk)¹<,ÈE M4~Q§Âb×C£5ç·YËH»HËÜôM+¡À4Ť@{ôÞ—µ»y•Þ(EŸ¡Í>• ³ôÖǯ¨Í ÄSvµ†iâÉØÅQônÕeUŒ£!›óEðÄzåCšòB™S7. 8q$ªµ­µ.Hª'¯l‘ñ#[¹UßV¹.(•–û;t§Dàûpn,–UÁ*ÉÇ휟¼¸GI¦¥$°‡ƒíJZ#>0kSºCDÒóØûÖ9-{’àáFƒÝGë-¡g3ªo©ˆù²&z:GG ×dáÖºP¶?»©91p!Ûe„šœK|7Û3ŽšxÈ8Tw Ù»SgúhtmÇFÅ óri øäu V®—K…'ž©psw±`×pã475U^/¸Ku†G1{D*ƒcw-BÉɤÃÚȳìŒ_J#øáüeÇÜÄó}†ÿɽÁæ+9Šv6‡­èæÐb3ôö'Î &'ª‡éŠO¿ÔHªEשUS½=Q°Šm~0ß .qœìܺ¦ÿl™k¬´7"QÐ Ð+ó$<Ÿ×çÈ0õÍ{2Ñ2¾CM›¾|ããÏfÝzÔª‡ñ,’÷K´dTÓÔÌ.ÍBZøaæ6¶Ù1ŶkŋȻvçõϘ•Ô©*ÈB*í£}s¸ö‹F«§WžŸª™l¦JŸùìbZ0¸1)'ÚsÐtil bxóLàˆQ޳eí Ãþ2⬰ð8LþåT¹Á–E°áZ÷×ÙðÜã4Iþf…]LxÀãç=è´ '^1D,Šö/ï> Óq*´øª×ˆšÄ=Û‡> L1((§ê|^<Éé8ŽuyŠZ²Å´ŒÞp+¹~™Å»ÆÙi|'€€‚:t"¢slï»\ž>†±ZC—úX 9©9ªö4¹ ‹ôËÀÕKŸÂ9#ÄH{±õqß|[áLâî9õ÷Ô(*³¾šqòùýg“R8ÃâNâ›õB<ƒ¢¹cóÐýÇü=°Ÿ7]î*¦Cv2øóŒ+¸jæ2cÁç£=›qs,u¼ðGƒv‰7¯oõj‚çïp‘YôÆ8¯”MŽy/T€XÅ€c£qÍ„œ¡OLˆGòÕZ—’³ìÄÁyyÒl¥ë [ëˆLr¤ø9 ã鯧dJ{8%ôdf‚4¼mqBÁ¿½>ÔûúšfUAæÊöbX]Èâ:ê_“+OSµ6¸¾·Ç\žé—8¹•|o‹±"+ÙI•ä­Êý]ƒÉáÃíÎÙz5ÙÊÏÓ7n-caß^¬[fcG(-¹­pJ醥öý…ÁWGÑWECr񴌱 \ø’ eGrHŒ±rp.Úñà†ë†^š.ï4I› 75±/ï`÷9]0) «äöç×.DÚ,°kU~–šÉÔëçÑ9Eiß19‰ nçözÓð}³:/#~<€SÈ vÒª‹rÍïþ~šM™’!¤×Þ5ûéA‰h8þuKØ”¯ÙáUp]Pšq¼Öø 4$yªbfBh'°¼q<šB (h}¨ÀB§ö¼L5c§¿5{]ÃÕè>6nôÓÇL˜³‡³å¤nu`£sz©MÖÁTù~¬N(|Ç®Æò¼ÚÀÔ˜‘l½O­ïa‹ ¾Æiû£¬_¬¶ð¸ÝCšYZApMÆ‘¸ÍëÌ84@4»Ù©îÛD&z¤ËÇ|,ÝËx40X3"ŽÉ¾‘°‹‡ßШ~^äPþyù­3þ•]ö óPh¦Buz}í3Á!ÉÙ®ˆåž ˆóËðÔ(•}ÜDBO·GÓ%˜éð5ý¶t´ä-‹Í,^±¹œ „Pft,CÜð!—1†½Î1]+œàã'á£2í¨Wl4Éy!yžïÆ“Úö€lê4pªìá~-e)ç{F…¯áâ+}Š §=Û¼Õ‚oˆÃ/:=:x¬™1¦=5cV^¤š³s(T\Q3ÙGKäÜÔ³»š“öõDØ;ÓÎ_š(¤†‘v“ŠH÷Ðí&s(Q›Ó“èÜUª›QÄ“(¦Œ»ÏN>MS– eþ€¢ã0¤í8+ž¥äg~Ybýì1†.wDZaöÏ/PùIF•Ô˜Ù¶»Íx˜)dM/oüäç䲕ž™Pâ‡Óöó ;;ˆ§N:”ÚúJ¡’P‚<ÔU”cKó÷Þ€<þŽÄ춦Fìn–:‰Éë7 ½t—Â5‚D¬øtqäõFRÃ>?c@§žðÇþ˜3…‘ŸJµœ’$ eMúËÀ5ØðU§·“/ÝʤIªˆ›[é˜Ö% kL0Åe™ôv8fÆ='†EÈR‡È2-‡â°j~ãV ñ&qaª.E`ÃÕJ+¬àɉmìgis ÙÈd\ò‘óÉí¼ eºA!ó£o8Z,|Êf4ºr¤ÝIâö–gMÁ³EM¬„x;l3 8ýQ»pMN©N¯‘ŠC*í Û‰Í/\Ò³¯î¯ HZñ±ø2ŒèÊœºYÝ!fM¬?©Òê4ÉhKú¡ð`ýZ»qG¹ëÎÀé‹]ò®Ê»ïÝî#K¢½Ò^F=³['L#] ˆóW+¦7(–}‹™œí1sƒ9ˆEÍ“WŒùˆdÿ™¥w@.ysõaøzŸ‡NÔ¤:ÑwI²5­öòî7¼\äð]vú†S19` ÒC£¨³·‹r³6¼KÕ\~˜ï;O¿\Qº!*²¡©|á·¼Uò=;W3@ŽV¼†m<`È…L€£0³ÃÝê¨ß$ç@ùûÝa@VËÌ^©t4uÙØ*/¹¯b<¹}y ³àÜP£Ä¨°y$½ÿÌß=)¾Òw‘k…ºÏz™;™cUæó""ÞIXÍ\èá3Z¾©iz¾i÷ºçÇ.~¶x÷ÏNY6-,¶¾…ãï›a¶ü‹çvŒßFnGêMùòd÷ÐI¿qShö¦«ÐÂØ:Ù¨¸Ht`Ø®?K{Æ8fO¿ðc@¥Í@v&À"Æ“]ÜtDÊÓ”Rá ¾ãRm\!_M½Oö‘Ó¸fÇáì¥òv<âÛö…òqUn´/cIòj_¾Ì<ëM¡Bt¹8Ë`_rQ›žâLÞNO‰(”…?äeÜåƒç:¸^yàJ¢Öî€EÕßõw5|’5òý–«z¿ü ²–N:ñÈâxêusG!Ð0Î( d2¶s…§z,oõé¤^²y×FÝ?,ìduФ+úx‹–ÈnOéêÙî56ç>Ì÷Ÿý(Äñ0ñ¾ä=© #kÒ…îæc‘Ÿ‚Çb=´Jä*[ãªÿ8%Î endstream endobj 97 0 obj << /Length1 2082 /Length2 15301 /Length3 0 /Length 16549 /Filter /FlateDecode >> stream xÚõPKÓ† ãîî,wwww. X¸»$@pww—œÁàîîNp=ìýJöûýÕ9E<×tO÷Ý3Ý%™²ƒˆ™½ PÒÞÎ……‘™ ¦ ¦&ÆÂ `ffcdffE ¤T¹Øÿk@ Ô:9ƒìíxÿá"æ4vy_7vy÷T°·ȺÚXØ,œ¼,\¼ÌÌVffžÿ8Ú;ñÄÝ@fF€¬½ÐRÌÞÁÓ daéòžè?ŸjS ýßÛ"¶@'©±@ÁØÅhûžÑÔØ fo ºxþOj~K^&&wwwFc[gF{' Az€;ÈÅ  t:¹Í P4¶þ§6FJ€º%Èù_5{swc' à}Ád ´s~ßãjgt¼§¨ÉÈ”€vÿr–ÿ—=àß§`adùo¸ïþ+ÈîïÍÆ¦¦ö¶Ævž ; €9ÈP’”gtñp¡Û™ýåhlãlÿ¾ßØÍdclòîð·vc€¤ˆ Àø½ÄèlêrpqftÙüU$Ó_aÞÏYÂÎLÌÞÖhçâŒð—>qÐôýà=™þs¿ÖvöîvÞÿEs™ù_…˜¹:0iØ]2âÿvz_Bø³ftp0ss±3³€Ž ‡©%Ó_)Ô=€YþZ~¯Â×ÛÁÞ`þ^Ðd|ÿƒàílì¸8¹}½ÿiø_B`a˜L]&@ ŸèïË@óñ{ 8<ºÌïÈ`þëç¿_úïMffogãùÇýï[fú$*¢£ªC÷Ÿšÿkµ÷x³°X9˜,Ì\\®÷ßÿ£l ú·Žl•±3·üë/½ïõÍnÿnê àƒ)Ú¿w/@ý§Ùõ˜9˜Mß±ünù¿·üÿëô¿¢ü¿7ûÿ•$éjcó·õ¿=þŒmA6žÿvyo_W—÷QP°»ÿëªü×+Í@®¶ÿ×*ãbü>"v6ÿ=K³$Èh¦ r1µüWÏük]ã¯y³Ù•íA=1fæÿc{2Së÷gÄù½1ÿe2v~Ÿ8—¿oñ/¾ÏÔÿJ°3µ7ûkøX98ÆNNÆžï7ÿNïð>¥f@¿[ÀÄhgïò¾ð^®/ÀÜÞ á¯[æä0‰üµô/â0‰þ!n“øâ0Iü—¸˜L’ˆÀ$õ‡XLÒˆ À$ó‡ØL²è=»ÜzÏ.ÿ‡¸L è]‹âz×¢ô_â~×¢ü‡Þ³«þ¡÷ìjè=»úzÏ õ‡Þ3hÿ¡÷ :ÿ%žwOã?ôn3ý/±¿Ç|mÿØÿºW&³àûéÿïÍÿï -þïá,ÿ? KOË÷×ùÇûèø®Íúø^†Í?ð]«í|p¦„zŸ˜ìÿïÊþä~¿‡÷©µÿS Û{4GWû÷qù{*þl|íô|Wèü|ôOçwÁ®ÿÀwÁnõ]¡Ç?ð]¡ç?ð]¡×ßø?S`êêäô>&¿]ï#òþûÿè4EXœ³7å ²ª j»ÿ.Bèΰ;Æ}žz¯ÍÊ0VhçÒ'1e¸¯–•¹$W.¹ØË"i`Õ¡(êxŸ½6ÿÛ{§Ž´Þ“ý–TòÀ‚Ô$vîí|&ÁûŽˆ|µ,O+Y”„·Ä©L™8­^ÈÌ¢OÕ‡ª¶g!Áý#V©$—ì×6ÅöÎ陵ò8D<š'[ª.?LÕw9®ñ¨r¶lc·#õÂRÓÉåøÛâÝ«Ñ6†WÐ{‰»"¾Èºì^P» K𠉳ÃVk®ä£<甸§cx›Ha ›õ•Ócîú©´šëšƒO¼z½B4_%ÒN ¯ë©ÃõPqÆSŒ`Á^ØP&*Íñk´”ɲÃû–_%?}Þß÷L§oƼÉY¬Œ0sç.Ýuç•’Ù@Êà òâÕf§ÆiZ„аk9ÏÇW„ä“f¶©µÿr˜ò ÄhLHs×Ã}¤`„!ZâÐß@ÞÞhYlC–)?5vŽ¦× G[Ððc¿·šºÙùèý‡ù¨OÆp•eÖµ·‘ÙÝ›hÏA¦XÕ'Ÿ1Ïe+gø##ê‡z~_ñ“2 òVšeº½ · p‹à+1IMµD—0Œy±ÅøSéE Vý‘Ò¼ = ŠQÜ Ë:íÐæÎæ{} 8o ˜¤6œò¨|ë’VÇ!%Kº¬äX×€yMYËG2i8úɃÜ4ý ,‚¡ ÉT¯Z• ¡¢]ÍË<ú_¨†BIlÞ÷MüÖËd8/èiŒ×Ât¦l„²©Dóýg݇dÛëëkWÒ©£hIîa— çžÎö3CL¤qú{uãŠÖˆ˲¶•Ï»Õì´¯õÈçÓ-ÔæìÕwÜéÙ^ø+ž ‰ÇY‰×®®ß“½‚ÐF‚-ctôwÌý’ð¶µnvU,ÔÈ¥¬¤Îû+¨/VÐ.Î|”,^ä-8ù𮮨‡¦næ`Û‰³Âì•›Aì"a¸‚uâ®­v눹n"¤¸/ý^3¤.›[»[Ø­öX~4V±o©1™ê¸Df¬°ädšåß™Ð3Ã[ݰw–Ìœ/%Mî-¯‰y1„P.hh)ֲº«,«¾zŠ)I™(¸F˜êš¥y¸äW#}†ãËìÀjƒ®àFF(L””¿ìŽ…x¡‘«×ë;¸hÒíöXïÈʼnKé8 + sÎYŽ_ÕH_•©V¸ŒÅÖÒþ¡úã ¤-›–OÉÅ8ºô×èô¡–»ÉÆãÎ:Þä³áëL–rë=8“QàÏÉæ5ÉÝ7·”g°7öf8 »‘& ‰e·*•Ï\/ð!„B‚ …ßr$w‹9#:²F„ï‘üE#ÏÁ]ž§~¹z6ô(,1.:âÊŽŠEFÊ»¿Ý›”ºzd˜Âÿ¨Ñ|¬xG€µ% ›…¤ü ‘õÒ¢Œ=pÕy1`ïÙ+úë,ÕùÝd¾Ÿ{õLœ›÷¤rÿ¾º¼z‰¬ø7O"iÝúŽ+«Qùð»/NOðëB!¤Éh”!}ø”OFq|ÛÌ’½Û¬—ø‡Õt¶ÅḲiä)ýÛ2C§¨FÃíS’ØÓzÝ7dĪ›·ªç²†1 Z”LtìCÔ 7fŠ‹ÞQ/ù*Alü /ª~>ç:Ý 5$Ò K-üêâœ0žóó´¼YøHpÞÝD7|pkjö5‚X–DàöBÂT;è-Oðsiiï ê{>!…5‚¼V‹ªÉ Œ7y;³æ <ÐmU{>ÙàQ1Îð…§“¯‰æXóÇG­ü>'rýosQÐ… ‹Ã·F!„†=IüpSEÚ›§§\i$0ª¾L²ìyë!ƒ É’¦n‘²"›Ýg7‹B8±òý³%‰QûsûßÍfÐ-ˆòŸS²œE;ª±ÑKñœ:6—†•KãÍ­OQw­¿} «þš‘^7:>1Ô*dä30Ãô…w£ÜÇÞòµr&µÞNÌÒϜ߭~6ø"f{>O–Ói|ÐÐVMÇnÜ™³¾We˜Çÿü°mcœì¶0-'`zdIßð‘aî`¨é>}SUµâó¥ÃIH-§Û2³ö⥳Ôø¯éîO­vnd9RE!q#EÏr"åJtUF…Ä <σ爨 &j+UèJZúñ›8\Òzpa‚ÑlXжo(…Î$–¥ 7ÄYŠÀå…–b#S/”[œï[+.éÖ—\ó®mQ}l )Z1¥š¥…d¾\-‚+nÓñhBeŒÚOBË‚IÁo˜Oh`H)‘¥Y'®õ¤æZ~o²õ%9ÿÐ}7ѽàê’G‡Ô€òæµ÷U MÒçz‹¯c œl¬ÔkŸA|+“mYÓëi­m›è`)4Džcá§ÉÚ½ÿ^J!u†|è,5o¡5¹4®r{9‡–›6~™Ì<'çåD9¼¡~ùòz|I6Aa~€ñ\WÆêýÕõiн¿÷¾º¸Îš°K5–vzˆËi„}N‹ô: d 'Z[ái^åÆøÛ•îl{‘ü©Ç Ĩ=JžgCu4B˜=ë§¿†Ïäôeæ>8K_ŸÉ.Ùh¢þiÅÃhD–ŽÜ÷&é®v.…ˆ¸dO:šñ IÓds#›bÕý¡-¹vb.PwáF¬¾1Ù WòBƒÿo³[·¡”=°/Ã,¼†–kNË]Ø1bhþÌtŦ€µ;‰@K*ÿ­Â”3µ÷ç7_»ÙZ 5⤀H‰8‹[¹_H†KöX“ÁäSÛx[P݆³P`P`o$d1Ú"70)¦å)Á7™Y«a_pxI¹G¬ƒЮ%n#EÇèQdLmTò*W5‚Ê“L[œÅŠ*ª$Ú y!h@"Òˆ—ª°ía†9Db xRiŽàÛ Ø¢O§ÐãÆ¢'LäË41RH[&둌˜oˆ‚Í$T< /±›c/K\ócÙ…›‰þa†9ÌT—@ƒ½±5»y³ì 5¹Ððíˆß5 Š©ü¯„Œ†!ÊÀjµ–˜ŽY¶›ýößyÖ?-±°Š)ÑáóýÜß﬈;YZ0OJ3Æ1 òU4Ú£*yQ <¡W¹>ø~ƒàn8<ùk€Íf³LFKp3¤¼¢A¨uÊš‰iø ”=|±Þ5Qw‰©àV2¢¢uA[6g}Íi„®ûùÂ~Û{øÂœr ©ÊðHìÅÌÝînÕ?˜Üà•Ž«Æ–ÈCŠUÅ>a—,¼ZÍüFÖ¼ZÇ­-`;­È˜:”ük¡‘^÷ySp }8[мÚÂïy˜ÂîõÝ1¸ÿüaëµ.c+“/˜ÙR‚`Cƽ¨Ó¸ø0&õ‡C#ÜØH¯vÁ¸a›?Uˆ—îbj= ýˆA£J¤½¥R°kHèÒŽ+nI,ÑŸåȉ?>ë÷^:OFcYIJÿèQ€,”È{±ßÛìÞá^ÑÖ¯yÝa5ô¯˜.{<|iÛ~¦h«”×í’»ej5ÍÍ­¦ë$AOtGð÷ÊšŸžêƒ($û…C2ƒR^½"}ÔÏF#Ç3ˆ¼%£YLEYø^ÉZ%álŸ"UŠ=êô7ι.Ha9ZÏú~´ÂØEúߊ–˜ ðËûÉ_l,B¡˜gQMìÕ^ºUf¶¤kS¤¥eF™µ™@dKFèÁ¨í†ÊAÄ™ò,'áñ7hhJ‚Q@ :šž>Ã6­/ÌÉ„VÍgú1/4³Ñ!ÓÒT E6ÕOù±jÂìécà*Ú½Þm,ã'}¿¥_ˆ„è6›–3vVBrÏ 3ê(ãxõ"Õ»îõMÛ³£ìûî9¶ÔZÊfcò 43ë\Ô~ƒrp›0wò0`Z3Ÿz.#M-òTbæ3|N*8×£Ÿ–¾b\ ŽQüHoaRÇÛ£!B]‹)ªâ1HYrî’“Ù/ØA^þi }ä7íSäTÆ8×X¸“½Cœâ&‡Ô1×6EQkÆoܯ ¡ŠCâeùc<ö°IóU_mû¾Øw¡Ã|#$ÆB|³#ˆÞÞ¯¶À6ô‘UZ¿LÙ„tK»4•0îµ×I¹üD•¥ûZËI!vÓ¥h\$ìH¾+©¸2£—zjQž³ü¸ZÿpÒÏòŽubú¿^v²mRZûkE¨ÿ%´DcF{Êîøg =‚ðzö¶B¼ªûÏdt"çvè å|ó÷fkÁNr™‡Œe鯴ü¼Í™{º@é µq¸€Yß¾³µ¯ ƒU(: ÛPÐØtUǺn½žc‹â4”6?‘°Nîvâ Ià ÄdVéö*ÁÞš/ýÌ~2yOµ¯­i ‡ék³¨Œ+gR‹åîßc€“Ãî«üâ(µëûÝ;=__>)oûݨà£ñÞB±üPFˆÞ~ÉnÆ‹oáscý*Ä>èÔ#Ðùü‡ Ÿ‰zUm’âý^ÇbrLÈ5Ýp™w‚ ‚ØgØß¦7’——et¢U>û])ñèÄj”þKf¤¿í;9NHiÉãóœçÝ~TÚž*‚8ˆlíã—ׯ³¬Ü’ë£ÖÞÈ}`zåOaÈs!s“÷7¸0*>±BôBì…5ö¨ªÇÇjžjÇÄðQÞ 9FàÞLï"Bc›%îÖonÝ™î7í8Ê`Eï‰*ŽH|¶I‹äOæ·k²cz FBT—Aïêë-•¤÷ý\¹«.â8Ñ»8ò"r5 ]½V§²Á&Åiª/йp›æUÜ#Ú˜mÂó”ã2Éé®A¯6Oé©E¾|Tù)®öAô…²qJ­bTãÕ2Ë'öЀzjÃL6Ÿ‰r™Xø4Öò 8£Ë)ÅÄ×É ¹=?Ë:¢)Í~l±¾jÚ-Híº¨JÌÁH)ßáMoÿütSÅHû¥‘ÀÍ3ó‰&‚éÖ! mÜs²Ðé[øEØOtþˆÜÞ¯¿÷È­å+{œmé>†Ï’È b5. W{Þë ùâT•ø ~gÄÁ˜0ÖŽUãÙ¤ ’8²{ÐdP®¡D÷_wõ%åËKŒOó*6¨KÏk;ç5Ÿ/âûféz1Úõ½]aŠ>ò`êÎ_—uŒð#^pê.Îrs*#P¡¿Â&Þ²  ê]nUŒb›®~æÒ;^ : T;´¤¸s«õ]ºˆ¨"þ.cEÐQq x,©“ýÖ°4^.\Ï .J‘ñÕ¨FÄg_U?ù#$[iÇÂåyË–d¨.µ­yk¾©\÷U}%JÍ ažÆß|ËlãM‡”÷çL–õ6ÃØ>¼R¹{AJÀ¾ö÷co‹S·¼äâ—(ÑÞóŠ2ÃÅX'˜ÎÊpK[5·Š¿nÖög²G\<®9˜Õ»:&â| S¨@Û‚4yðqHR¼ê#újÞ_%ïkæ<`jHŽ8…K‚= ûó̼Š‘¿‘7UÒ>£j¶çŸzwݵU¤«÷~$Ñ9hbéÕ¡WÍ ~xÁ9¢R×6ýò Ë-~°Â¯ÕQÒ÷VgŒÖpv¸IïÕ‹ÎýÁ8½ZáAiRM(p§äªÎÄ¢¯mÁ¢'*¬ã çù«Pâ0¸Jl5K"Uñu|þ¢8,na”ì´u¹Î·Aü'Xï|0ã©ØS¢¬ÑJò÷邜\1]¬øøôÂŽ¶šÑâà& ´š™LŠ?·}láÇò­ø xŸŠN%ž¬‚cÀìvg°Û~JÃŒ¾P+ƒ½n³µTþٙ#J¾…Õâq0ÛAØf2DðIe¬l|U'šKïÇSÞpÕWEɧ¼ŠŽôdåÁco×ö¯­Þq¨îHYŒCXöFÁæŸw!<³`ò“(¬n§5É‚R~¨(a¾‘žŒu}ŧ7Z¨_vœD-xÉÂàï F{èg!¼#´YÏÍÖ‹ o3~¥&¯7â¾Ö¶D†Ü¿³qóÛ¬ñ®Œk»GnËV6~út^NãÃ9žÜÅÔ#óúÝ›s‚àT$eÆúØÖjj|^LE•—Lç>¿ÀöÍç•…¸A{²sc¯ìΨk–= loêiñ·‡Ñ9øôˆ:tújêG9zyÄIÌ ; 2×_è^Áù0tÌ\:¹Ùû8}rªe· M¹¶^4ÌzµO1‰˜t?|Ž;Q§ÿ$mù)i"[!ZWÉC'Ú[Ôüþ° /3AÌ {¥NÝLÇæ¾`¶gŠ-‚j îÜÂB 4ªkã6WöºÆÇ÷xÅbSîå̧ÃPf~ôÍ*75XСaózù¦-ÔißYÜ&5xó[0ÿŠÂ/㮊Ü+áænƱ4R¹&¬K©I[þÀ†^â«]ª»Ì”YÊm@æSéVeHÁ*œpOb·ÁʤÊm•b¡Tî^¢Ž^‰þ‡«&•~ ÂYýFèký¼©[©¬KÎâ¥íGFœ›ý¸íÊÉoçëS¹àœ£ó™2#vÏT¼èk˜p&¶¤¥]í0Ý?§ÃNŽBÊÜQ'üy‰‹“ûçÌ>üö³ô—t ãoíËÇÙ¸ë›I½óí›twÿaXJ¢µ ºïÏO4¥¹,Ó£èJ“J{}f¾6„ ™ôÓ‹­ëfç³fžã3§6£ÍM‚Ïpʪt[mAµ 2Mî‰üm†¬ÆZ\_dבØÞÌ^ì!L!*b€¿ÐIË)!XIž«IZ/)4ÍkAïb1Ä‚] ÷h´­†®üUÜC]m]þ1nÖéHú³yC\ùX4V>„ «ídj†‹»›f¶ðHm~§GÁûÑg@î î——}'n 3³ŽHôã°˜Ïwkº¬"É {Á¦–í]8ýB†L¢â|?ÄÂYÃ-n’½Ü:±/Ï`wXp?¯§Æ8ÊÈåv5ÄWKî Of R¢ÄݾqBki"4•w§À7t»e·Þ`zN?|åyD'ò‹¼Yø¡j,2%øæ1b×ßÊ‚l«%œqG>‘ A;{îöcaˆå;…_Ó9x.kËGJ÷ŸVÅ<7Nâ“çÈ1Nyм =AâéËøàjÉš¹­Á‰oŠ$"®r@Ê'±½Ë&‹@?¥Øðã«8²×7{’ćy¨£¯V·æàÛ3‰úÙÐÌæ9z|8+yå0¹Ò’Ê_©á—¹uí®‡1vŽ4¸í¾ ¿¢ }”É~ýHŒc­éŸdàUlË_å®Ðe¦î”ZØSäÎèÍã8ëe{ëê+áSP¹ç9ªñê-ë ï¥anÎëûËÑæL¶Öguôât_¶ÝAã&g"ÄœP#7²LO#™D kÃKܤ“Ì …Á2P™æÅcK£Œˆœíñ@¼x|ã‰ìºoüzP1cóÐålª]ˆ]++or#Ê}!l¦ø[Îé=“ª¿Øe©`d_ýfAêf÷ž9NÊ7/—å" ª#D­£Èüâ´œh*^ç†Áu¼C …ÞÏÅ9Îý‰ÆT3/û‘¯gx´­Z©Oâ¼Nc~€é¡óúŠS?^©_ŠI@ŒÞ™;饡ˆ=Gé³®#ßëªjÞÓùÕ-ì/fÂ[7ï2rý¨ë£›€Uή©8sDæ+¥àÚø°å`ß—%Ëþ}B½«ê'¹Iû©ÜØ×%T e ¾à¹O ~±lƒA÷¿"]2–­@'eµøÎw»ØvÒJIæ VIÙIQµpÙ̳ðüûUUm‘ì*óV˜›Eƒár¼ÕG'>ŽrŒŠ|˹ØJŒø}ŒÍm®/«øbȪlKÄ•1àçÓýOâÌ(ˆèIòÅ ~MŸD üש„éFcþl·´ƒ›gœN“_ÌÃM†‡¬oŒ*’>à F ñ~æ¤c˜Ö‚‹Ê³dàçmŒ¬c‰ò+ür;éV9>¦%†µñ[–=KòKˆaÓ67êJÂ\&Ç[E³pj „t!P…7ˆ“eÛ#Û¤ p— ZÁ] iî™ýHg,§²!³Ã¹vˆ9ü=3†4tæ×äYñã`GY ~@× Ö˜ô乨p›D‡˜¿ØTqF¾ð®‰CúP «²õ‚À›*,döCʼ°6bEšŸÜÞØBInÚt¾m—•”ÒW¾Qz–>h'míxý&ŸÊVhg_Ržññß1Þ*4ù®7†Q]}¹Þ@–Q …‰‘qŠ’OÞP*™ÉÊÀê6,í>à–ú¥¶øÃð¥ÓâÙáÚ#q±6=²ž‘ÒÜ—šÉ_! çÕ*=Tƒ¿´~ÝÕ'©#©\Ï8ÁZù)mƒÝRÓi·aRÌÙ$ ‚ÿbý¨pùqd¦wÀ™ŽF>{0ízœÀACƒa8éxžÁ*tnƒùS0Œn úüÜHG’óuïÝàuO^¿ËX€Çs?±V F·IANÁ òÚñ²qÓÙï(¨ô*¨~S?­Aé±ÙOIP i)H\!Co³æ’Ÿ4Nb¯|îᮜ£ø{HjµO°0‹,„Þä}O©„k>}[¤fP·"¾kð ÐG_W]KÊåž?ÄT”ÿhßóÝ+¨1ƒ|+áé0ÍÎã kÎ>û쪘„»’~¡ƒcÁÜ&ÌT•»Ž)—-óäG—-"Æ¡a¯ÉJßó0•)E cÅùB0ÝNÎ$Ê¢6Wñ¤V.«”zî0_}4dày¤ñå³3‚Oú€ÆÊÜC¸rÝŸítœšÚ‰owìTîéÓ%h¿øk³×œ{~¨]'.•¿®_ ÎSúl4’¸ã8\6Ï£â ÕXy :ͽÕeG°¹òh!y‘Ò©`À%P»ˆ}–^è§KרŸ_÷Ô¿÷þ-®0žšy„@¬ü@ˆó3zW§ìÈH$Ü&´”^-”V…vM©wÕ üM$|[p鱫$Q67…reàQF¬@m¿FŽ¢Þ–¯$Ý$ ŸAF¸F³÷sš—DS%¹]&àJkøæêø„~Ne$aý‹,FÎP7ä—‚’Qr}5Jj¦SÝx iݾHÜ}Æ×—@(Íñÿˆ¬©á zHup1>Kr´½*¯ù2¾ÀçdöÞ=÷¦*y‰€²’cÏØµ¦Øùj°!¸L ¾“Èø)T2º ¶¼çì•|ð創±VžBpbѶÎS™Õ)Ÿ¼žŸò÷´AЊEÂ7M±èMs|¡¼ŽNDEžàe'$ üß$“Î,uÃÁϺFŒ±|»u–$&¹Æ,ào~ mÔuBðíŸ<}.s½ û¬nÔn‹%®Lª³£JNü†óSö f®½¨_È$_ú¡ 2ÛcIĆ’Si2_JÐOàl±‚†7ZŠ7?‘dsã‹«ÂYdþn´W¦Ú@6'L‚è—]žŽãj‡hÔ0×—Dˆ¸ù¦ 9WD:?NŠ%8kný`*ªÅEnø™ÕqïôÈ‚•”åw°Ü1ôÏË ï8mS WMp´_‹xN°¨GȘ;À’E=ÛCÒ?Øsß’f»¥Yaïù©ö#¡Ø$Ql·ª\¥»T3Ç¥p¤Ý‚¯b’—!(qžÍÁ–Ûî‰EÜHn«ãIzî° Ò¦b@hÓ-Åž‹8 ‰â2mލ%†%ÙÒ‘+¸”Ý»ÀšGã™´BKñ”œ‹žzð|%u;4Io„vÒe‚ßݯrTK½fÝ3€W™Ü϶äüœ_tò‡ÏwIª ŸmOEÊ\"”O ‚Ó¦‚¨MÜ":CP8:®æÓ«Ú'y ª…J;‘uaÔO‘¤41ãÞ:¬¾X,ýu÷É”B•× ߨ©ÈSfdœmdðæ\ÉïgýÙÃ'„'µ‚c£ABJd¬PvÄùGÕ?íÕªXV#T¾JFnºÑ[L»ˆ³¼uUFð2&¨W¬oW9€ÖP4v°ôÓo­¡¹ºÏ%Â<þ6L 7H’R(Öž«LÓ®dÁ¨H¯KdÊã îüÑ ü¤¿9¡±¢ø]Zä3ÆÏcŽÅÅ“¦3µ>£a‡TËS¹è =˜1 ×fäŠ*ƒ—¶ÚEÏãÆ“ÌŠ#Åì]á—]ÚÝV·ð—æûý²ÅøÓòõ 4/Ë&Øì²Hè±¥Aìï‘0‹Èø*;H•å@_¨Mž„ÑâAŸpΕÜ3_S¥´õ°Ó/h2»É"§¼~ã ]=WèhgÜÕàdm.\jýHíFú•Ëÿ¬oRõûê.©ÃWJ¼1P^§ˆ!.]R m Õu<@&WJ1TL@üý”ýG©ò>í|g&éç|ý@,ú”¸ ¨n¨"ð‡Þ¯EÙU\â[,Ì,»ˆfWáÉùm:ØÔa»ì¿¹{‹Äì®Í…°7û(Pžã/×§e¸êøu#žñ0òÖËžkÖÏ;²BÛJÏŽÒËP’iXùwÎFqñ¾ýŽ8Ó˜ þ $‘¦Þ»cpã L‘R‰4'"V¿ÒÊ:Q{Üô[8¡MÏ-¼ê&4Pž;–98PÓŠ·áG„ÐÂ@ê üd`àÊ‚—lü"y[xø‹Ð¸ö¤F',‡qì­NùóاėLdï-¹&2ÚqôÛ{­&Èýìðök÷k §F‹ñóÔªñ¥ŽàØ]^kE쇭LdÙºœ×²i.þ0‘÷#V 4ó1 ?M&½„˜Y$ó±¤'ÞïV:O:âs_dî÷·œòJ÷ˆ*iöÃ+ˆRkDc§Ý͉í„r+¢d"·ÓðñÆŸ}}ø 2 ©2Œj" ‹Á:»%+i‰GY<íG‡ì¿ rÜWº®µÕ~%$fמ-F¥ úP<—n欟òõ½5V¡eåKí/Jw9k½q‹z¡À-t¬ÊÒØý¶¶­…†€uxw†AL¶æ‹ u¨~b)f¢œ®‡PŽÚâqΆÒ$é_åû耓ÄÑ <yî\GK {óYŽçýÄK‚ì¥ CQ“¨§ÎÖQc<޾ôÃU_¨¬ÈéÜ‘ÿ Æô:­ÄyžøÀøÇÙ {µK…î2uÇK=†¾ž½Î÷Uâ\•¹‰pØ1§i0PŽÖo±„É.Rë웼 kÊ:Eh23‹¾mì`>6XMÖ÷®œ?kë÷#3Ÿô½Âïã¡“ó¨Öõ.J¼‡¦#X0ÝÀzÕ€n…ñHû_9 Qšºu„P//¬;:÷lÑŸ‹W]ê!õSÁ•›Sì¾~Ôi*·U e;u*M÷,…QŇ >|ûŒvÕxÓ<å×™µ)8õãj ð³HŠM½Mêá!_ϳòdK#Œª®áCágu ‡³òYo­æ“üht´`zëÊXrðÁ&2ú¯yñÊx¬?®FªÈ©¾'棕¶¨úºU¨„ü²m÷ .6¿\ÂÍ ¼·¤º9TåÈçÖÞ 2ëN´-e·[Àû§¡~Þ”ªâ fU¨{ˆ¹yÉ]3ÍAÓÇÛðÃIÏâ8TV¥× Ñ$I‘v°¶ À7.‚Zv1\Î\ʇõÑÄ8ÑÿêJ’íÕ²Œ²Ð›!S/öËã†ä+T¼L™H°Ë^9Õ×±û4‘1Ý[â. )¿‡p† ô.Áðq€à(.!aAkg6ÔiåÂÞC~µzoÇM”}WÅR¸œ¥ÄÅâèCèdáÒ¯j<{*z6AÐð1™¥yJW›I "4TX”–YHk‘6Ñìó~L¥œåØä9…G’o§.¿ø0èÄ,“»d-N¬‚oSeø[µ>" ½ª´4\«"nÒafTóÝ•ÈRÙ„Ã2Á?ÉѶ=k?ùŒaxœ£,ÒH›Íßu-9¾˜iu–|µ6@½ÿ¨nî*#¾mœÊ>tdðm\å­L3A,£‰4ØÞ£%¶@m†Á)*¼å •YY<4G’ òm¶Vìá9ì%TÎ ®Ð¤É4ã5{Ê+âÛéoÙà†ùÅ\éÝfu‘LMl:.ðÈÃ7 'ò¬n‹+Öyˆ z<.oeöÞ„Ëà dSOk=¾”«áÓ&ö4û€H°€¾±fÍy+s¶»D RÐ^LJÃûœ[Ë®P¦”аåÚ ÆÈ¿LÇ- xº!Õd׺•ªIŽé¦ùŸù—ƒ|~¡@\ºSµr ”«x~pc ôpu—ÇcÊó=ij2c~@¿AÖðñþ`î« æPµÖS¿c†®²èÙˆ ©²yÿé ¡œxÇ9fÉ&Ì…d´ß¦žËÊ:]^ *IDœ±¦&VÉ”,vñ{AwÞ]œ8hƒH“ÜÄ4«„ê—kÚ´á—ßPB䥰¯}(Ðh}_uF}‰ˆiJÌWŠ·abw°øÁk1?-‘®Ö½;RÔÃéõ lu£è¨£‚ôýÏè©Ü–GDð‰IÉö¢,R!‰ÈΤj¸ûX¾ÐM#¼íΕ¯îÄN“ö›ÞÄÊoYaiþäÄ}ím¹,Ú"ë­Ÿz=b§øŽr§äîš?dOe¿a¹# Äeë÷óvž7\ÆeîØÃºUÙ ÎKúi²“ÐqJ‰~ñ(ƒýJÔ2uAªê¬@u¬\è7<êSèôìÇ é­à$ê"úvmtMqÒ(7­À‹zî,bÌÂܯX£*¯ƒÁ°\Öuד¼Â^¤pwz³ÀAÛª­—J°äС¬Ê7GŒ4¬g‘ey½z ôf¼/M†ßN¥eUñ`¦­nð`œM<×`GÀóíĆÙ+‰×ðýbL)X3À½Ç­b½+0€„®N4W…u„SÓ›$ÅéžÔÓ$)¸¯]E;VÊ1¸æûzþj¸®.˜õ𥛣)4Ðâ\6ec’Pû¶¦‘#’wîv×\ÒZ¼el²ÓÚÜùL_Züן\â¶Xæº&1'è“çP»ÔAñivD½HÜ)±pç¾-·“©ÈÀ2—¸ôÈj¿´ö“7'±ØM¦¡@Õç-±†Gç®é„h¼…ÆÚƒ>¡„tÌÁ/MÓPÊ¡2›<¶ýjèFõº5XPdêz޼”h/JqjÙÙ}€l‹¦æ Ï1žf>4H1ãnX†Pcé—÷kN7beŠÚ”¾H󪺫LñaÇ(Âo` EÕÓÊQÍöá÷Z\ȴѴͳà)«lc4ã`B,À'r‰$õT`Û_v¥cÅFV•DJðBA›Dä¿ê&_ù:ÉܺŒâZo“¯±ý­¢yfßœR@—¿ ü…dì»ÁÏ7|{7R™å°«ÓtEVÎ{ärx×3Pœ9«¥×/¥ ¼è†•Íž.U°J‰z!7Ý—’àµñt6s'·TÜhÎÅM&¡ø´gÍ=q¯³Ÿ Эt†¤ú¼î{«|¤.Mœžáå‰õSÁ€K¢ 7Èß*)T÷A€Â†¬×§­„9Úêæhó‹~êPšÀá7Nüp’ ’c„¢›°ÇÏO2øê£ oÆb6_è®ò BÊ‹ªd3Jè›QòFaË=A»z™ìŠÁËõj†{þ"Ç´d×q–áõoÝÆAoj6.JëRñ€ö¨²eÚ/¯jöº¿]]½u8Z¥ h«—hª=ÀB:/¢£oçr¨Žž4g¿ò ÃåOGôðßñðI/ÿ|ªŸtkCÐã~ÄTþ!8ÕhÆÏ6‚[åõ–-mÍÿ³å§[7Kß*k'ZœµqÞÇ·P ÆÙöë®\G÷ &«ˆ\0ŽD¥i²Hë<ÈŸJa¨ÎnQfSA¥íœ!y±±È.à · 2àbD°Ê ï­`”±WC—FÍ,->æ]I¦6QÒ“·:íçÇs]~ÆÁPëbT[–=sõ÷áJƒÚ¶„(àsPÅ‘©§s¬KЫâ‰zÛ^ÜeHI„ìM=±{¤ÊÂR Eˆ‹µ3Uð8k™R$@’?T$Ãa­.^º ¢Ç§9hAxUùò!û ¬3+ÒÒî ¯`hþð2²:Ï„Þè³WÒ‡`(Ð$»û¡Ay*ÚKHµ39š³†*4±¢MÈO„µ˜!¹P÷ìò|›FåôÐ"/A6¡U³Ãö®>.òÃ=œ ÙàÅRíÑc:˶D`Êx³Úh7_yzUU˾%_r¾áåe¢aWú-¯s)¡|5B(ò.¤lW=p2þ¦§JPA¬+Œ¶…ÿÝ ˜*È!"ÂÀ5’}œñéüÅÀZz<›óm0‚|IŒŽÙ¹µt/Ä>Qeᔺÿ¾,uÔÞëªç5¿¡†z§Þ¬yöVÙÌÍ*Çc¯7QmrOñ ­èO=‰3U­"m¾"TSšDà'K? àG)ê(r8<‰¿#sö[ó7~ÂÏúik ?Þœ³Ž¯úyZ|iÇî4ˆ{Ôû±ét‰YÐÄ­óÔï{’)âÝ·¢ÄÇûÑå!*Þ jÆá‘ž+㥵vç}j¢Išñ ¶“lÏtDŒöõ_Ä"éégïûÑ—|Œü†>EæéŒ¦dÜÈÉRùt…6>y›8Jù`›×÷7ÅÆ®Éñˆ…tîÿƒ1EqäÌt¿-‚Ðo§Áw¾~ý’—Nõfd#õÀ’ZÀ wlêô¢3{¤×-™*eöš""JSBs'¨ù¼o%5Þ>â FäK«ïb4¸Uü|²´ °©õÞ¡[˜Ž´¡ënõ\n—üH€ f°3ûQHCò=]€¡ù†j;#KÆUüó‰u|+2¤Q¨ÜÙàd„3Òï€O_RáßÎ4ˆ5·~˜kc‘-!1I)( ýçú=fô«ß £«´7¢ôZBçW[7y‘×X…`—y‡µÓ±1ŸÇÛâªzÐʳåÝžƒ½);Èkg㙬au–¤\&¡VꮤËdQË^:›š…vt!¢«œøtI~È¢TÇ`ŽôâÆSLÙÍÐÑÐ&h\YÌ äÜ©­H]&ÞÎf{Q^™jH$%¢œ„„C©ÍÖŠïšm”7ÑM|Π†>+1ᎊÑ0[ x³X_ùIt´T¬2©ÛÐò™¡~ˆ>•Í´E¯&`.÷úU´—æ”r`Xóð ºÆë;¤!Kå…k»+uNw×äI××î_-Ñ<b äÖ?+¡Ý¥Ã3ë– c8þŒ`œSåiè/ßQ|*1À0«Ô ‰Ó4"£DL_Å=ÉÊø©x/å®bÆN"qcº6û.ðù7ã3ÉÇÀÒÚ=Ê!4Ð\1?p¤u.-:^7˱& PJ‰ëŸË=êÌ£â4¹c´m}ä䟃§üDˆ‰'`°WxÔ?ßyŠ®`5žŒß)oÐQɺ½ã›ßpŒ¨;$ÿ€5Ÿv¨f¶,hˆ”¦¸Ã gkÇiïI” Ë‹#¨ÍÅLl$®DÃÖ‰7ßyºv'ÖÎt¶QU gåãmivxfLô´ÉnÈå\¢úREl7S"Ëar›ÆyÍΞOôë_õýu¥ŸE{¨ôˆ^ù›å6äÆ&•–_:ó³xIHDÑÁjed3V›ZS—” Œ×¦v ¿— (ppÅ¿ÄOWåp‡»hûˆº(M¨/½åèÀÌÑpÒ[ÐMF  ‘8¸X}ïóßÈâ>‰ÜÙ©&ò¶—õ•&0ËrÄ1˲sM؇9¸ºšàô6•Ÿ‰T›xNŒÍ®MCEì]ê]T…%ù&‚©hô›:Ï4'ýqe­åUh7ï9‘|[Èh3Úu±:x·ß`n̽Ërk0êÓ’ÁYe4V “pZ Ñá8-¬IÛŽŽúqÓ–îáfËKLJ­c=u²qL‡NÓ ÉËî¬!-Î,õƒÒÙKìV²oôÒ¨£ºR™è¡ÎJ“RhL4ϦE=ÔÍüÁüasÍgqÁ…D³‰d0]5éšš<^’7Û·vWiß>vΙS¦}øY1«[a3ݵ˜‡˜dwW„VàïYÆKµ0޲Pa[Y¨4Yœ/ €€Gp-Û“xgßmf°û(’Jð H£, ÅÆ*nÐÝnŸP¨vûnÀÆk×›‹É[¶*@š’qöÖT©#?ÍP➥žŒO¡eñA×,F`hèÕ–ª?ø—––â¦6Š(’±mkµ Sæ$,q&òêâ×O|F›~¥tLøÞEÞ•B£ÊMŠ'×tQTh¨j»ËNCUûì}Ɡ$-aS:%¸îøyºÚ'#ðÎïiwø3 NUëô£ÆxZyÁhCF6t(®©r¤¨øIµC];ˆvL꿱}'ÝšÒÎÊDNƒ×j\Ôø±¦@+ Ø Â›¤ᣠ>‘#¥:¯ìïʼ.èÅê½™-EǤ‚ù^°˜{éïàãIõ¤Hó:mÐ"UÐê<ƒºUDŒÜ¹S×o´¡<Ä¿d†Œïh™Ùr(¡Y»!Ja½lÄ<¬}8ö«zÆoÜœu{&J|´¯-˜Î`Œ©:j0êK¶NeÊFç5GۙЯ~ç T›”.. ¼Ùîïk88uð\–šê«ïšš/Ü'Nü¦˜ú«TƒhÖôiQ"È ·mìâö¨¡õ˜ÎBç¶ÆUd|üŒâVòÆ|u6BVb•Zµ´ųLßÕõF{‰¢Sƒ©_Á$´DŠÖ/kc›™>iyhR?ÀKÆYÖ;|-ŽGlst8঎\†+ÀáÏ ÄTÌkÚ¬ó°ùùÐìWS…r§è Ì`ÂÂe¼IÔM§þ®>T(óAì‚÷PÄ‘BrÒ$‹yÅLÕZE-­QÖ/ßIE±h'V¿[$¤xãȬ?f=…ª†²Wà8¨dÈÝ‘JÊÁ@~ʵqYâ>s "*ÛÉîZr¤Éž·Xs(‚©'%žqgí £³wÆr°+ uÄÖî}¡º½ «®‰ùÐXñ)ØÕ?ž‚)?rûôð,2òú»P §Bõr„Ø•ÀÝù6?â=¢Ù¶½)]΄ Ì|™ÆMñš©ëLøèè¹cÒ[Ñí sà¿Cé«•ÞT´>"óâCQßMÕ€ø¡„¹Vë ^\LŠjuÕõ…,S,rÈ"UÖU¬º·µ“Zp}Øq°¹ÿج@ùS¾–‡K~< ÛnFÿ"ü#U°;*ÿÅ«ÿ XU“ ýØ›ªDDï"ËÄòÅ‚:³#«2rdybo—ð›ü›2ûMCÂI•õv ª×¡zaÿrØ<Ý“Ák¾HÓäu-âòâ•b^aªÉ@êC —Þá9^ì¶‹’êª~jÌn‰EJ>ô9Έ#KS£&–š4'½±¯QK„¥‰%ÊáÖ¹Q?:ô@VêN.¨oxIöu{ßd¸¥Bd §ˆ¯„ÎpÏ8…°Õ.BR·^Ò¦  Ø^øIé³7ÆÐá2¨B½kúÁº°ž§"—·É!ñã™5#)]ÙÑ}µ5[—ÝõÝ É3Q—~¢Å ANØHH\UÁ®Í Ë’Ï›ŽožÓòó@æòÔ>ñQ›”×Ú|Q’¥s¶:Ê•”ÜUÒÑÎS(­J»¥´dc–~çm ú]VarNª#v(èÛ4DC¢–÷×éÓä·Ø—ÂAéMÑËQˆ”ëĨºËÏs˜xGeKDœ¿FÐá EøJùØ 9àá:Eìý–í=Zn¡Êm55q‘€ý\FB¾Jx7¿C©®æ–y›súZ%%×—pûe²8©äe¢Âð¤SÇŽÖ–šX„­:²Æ‡mÂdûþnnÖZZpªQ¾×ÌžŸ8ï¾âwäJ˜õx<¡Iìz.G1¤cÇ,Ù·P™Šèà®\T+Ù1úéq .ê;#]ØAàIY {°–äEć`·"x “­×èMJ"‡2 òêüuvZî¥ÄÅÅÈðP$VÄ,U3¿ÊÊ`§æÐwôŽeÄßf¾]\Âæ&ž¦Æ&5Öý~üKߺÆÉeLJ|o»\½ƒÅöO&Ê)ÆKÕøS›0çñn(¡6Âw%;û\lA(h^Û™6h 3cø—ŸîÆÄWQ¥£LhbÑ>œŒv˜ü6I7N–k]°­#pfÔæþ°V;cL{l¦)Ê x õbu©ÈÚ>—J}Úa[n! FÉÐ6­Y)Ù‰°øqKøŽñµ 5úÃ÷âV™£¶)ͺuÜᕜÁ‘}¥@Òs±Ö®—}* '4+è½cálôõ¥cùÐ~±@;ÂÚ,ìBÛîC‚¦¯FËâ“P†7d‰ÓÈÑä £ÖÄgl‰ôFÍ忏G_ú°AWk™sä‡2ªÑk„âE»ø2³ð(ôäe†Êƒh617ÒV9¸ƒbNkLÝl+Œ-!¬Ñ %Â2åd^ýÁ±Ö㵤4H‰ÍRpéÃê6Ñ LGpCèñcw3Eª½Œ;3yuãÏ¡5¼~‰ñ²Õû0U±:îoOóU @þÆ<à-½çÿ®mLÎ endstream endobj 99 0 obj << /Length1 1527 /Length2 8334 /Length3 0 /Length 9359 /Filter /FlateDecode >> stream xÚ·T”Ý6Œ€Hˆ„HÇHIÏ ÝÝÝ!9ÀC 0# ÒÝ]ÒHw#)) JÒ !Ò!ð¡ï{Î{Îùÿµ¾oÍZ3Ïu×¾¯½¯{¯gž«k±KXÂÍ¡²pG$;˜$RQQƒ ĉÍÀ  CÚCÿeÇfÐ…º `pGÁÿˆrB÷6iò>PîP|esÀ¼‚`>AÀ  ü+î"†¸Â,*E¸#Í wòpYÛ ï×ù×#€É‚àcû“p€ºÀ, ŽÒêp¿¢Ä ·€A‘ÿU‚I؉tÝÜÜ8 ¸‹µ(3À †´hBPW¨%à7e€*Äú75l€¶ ñ—C n…tƒ¸@÷{˜ÔqŸòÊÑê¸_ ¥  Ps‚:þ¬üWàïÍ€9Àÿ.÷wöïB0Ç?É ¸ƒÄÑæh °‚ÙCj²ÊHw$âhù;b€ßçC\!0{ˆù}ÀŸÖ!Y äžáßü.0'$‚³ÿÍø»Ìý6Ë8ZJÁ ŽHöïþ¤a.P‹û}÷þ}¸vŽp7G¯!+˜£¥Õo–¯œ€:Ž0çWPé¿cîMØÿج¡HˆŸ‹Ÿu@Ý-l€¿Ðöp‚þq‚›ï9øx9ÁV÷4 >0+èý¶â  ]^A}¼þÓñß XÂ,s¨5ÌûŸê÷f¨Õ_øþü]`îCнüÀÐïÏ¿ŸŒïf w´÷ø'üÏ ¤ ÔdåXÿ¦üo§¤$ÜàÅÎÅ `çäÀ n~ßýƒÏ×Q‡Àþîã?r­à€ßÅ~÷{¿QÿêÙõo0ý=!Ì€ÿ.¦ ¿—.ÀôÒ@< ‹û/ðÿ³Þÿ¤üÿÉüw•ÿ«Òÿ·#ÙWööüLüü˜½Çß÷Ò}…¼øý08þo¨ô¯ÙUZÂ^9ü¯W ¹ Gë{I³ƒ¹9@ÜÙaY˜;ÔR†´°ùK6Ùu~œ=̪GÀ~_1÷Y Ðÿøî§ÌÂîþAÜkó/q?rÈ?ùCï‡ê¿ûq´€[þž>N^ÄÅâ}ø÷ˆà¾SK¨ûu€Žpä} àž³À î‚ýû yy@‰ß¦?ˆŸÔüñ€úÿF| äß ºO„ýämÿ yA ýoÿø@‡à½Ö€Žÿ@Îûu=ÿÀÿ"gñÊÅåžýUÞ3ÿþsÏ@¡îP ìÙi¸…Pm]PûE…ûƘðÃô }Nö±BLd¿Ì„éj‚Ö›¬9¥2ÙÙ>°¬‰m—ª¤óEöÒ̱×z=Mƒ÷;ì–5yÜôÝÙƒ©D¯sJÚi¼”<½IjÁb—~uªHün,1Kë~-<ïu½_݉JdùƒÛU;»kJ²”‰)t÷¾i"[͇´7xNH_ä|sˆ \‹2 OUÍ Uî¼ÄNp«Æ_Z è£ê‰ôWt ØøA‚$¢”æ~T­»ÿäWN±ën¡—¹ÜSñ]Ëþòe攋:Õ#›õ£]ãçLIÝ|6fIVQà=ÏK*§"É4—Ü‚ÍËùìP´æAÑÄs„no:LþýRå7*;ÅÐ`%¹©Þñ•_¯”R ? 1±©$ˆÜV¬ïù42tD»Z… ¶½¨I!X—a%ÎbÞñ± Ì ·³pÆ<¥ÇiÈŸfÓ®-úvA ¨ÍOŸ€‹ ×–V¥óØø}ðQ‘Á™—'÷mþqg§$ãœsu¤c4a”çJý‚wFaÞÕ!ø¡Á"½6JÊÓÍaõÌ»Ú}ÕXyÐ^äSéÙîÀ³¿2CÐd—îtEE“r´…ÓVίõ…RW ÆY¢”¨æ–_ø€·£pa»–øG]ízÞì¢fT±<–©?Òè²æÌïÇAe»û)Ú–ªæ§Èí ½Ñäjšne!òêdÍ'n[' X †½Úø¤’´®&ŽgãÃþtž)7€Hc(p;!6ª]bå¤5'’y²–bjÿq{‰ˆ?&‡@é÷¬Ý.k òã,‘'4†¦4wæwpÓg?$)u —¯F5éÑÒì“¡®7½É|¿9Ú†¿”E¨Å3%2ZrµºE©¾«œ”=•ö9ý9ÿ&¾ß ùIû~C-ØöeU uÉŒ.°ygk–bÄÛ¬Ó&ºØü5s›Aà¡…!#È6éG> ŸÇ…5öÓ42­æà|Ƈ¯}nÙ'v¬¦MëiSì~ {nOÝíã-GÍã•.*Óh¨xu= ª§wJ|²Œ£Y`”9f0=S2D+fÁõ)6Ö.—Í$ÊA¹¡ÈÍ9ýüÀ6Z>¿#gdЊՕO7áæxsM?º–æ¤~² ¡p¢Ó6Yͤ}5° Ÿ¡ûq¬Î›¶à/Ñ©h`nEu©”|y4ÆPá“ç4Obù݈˜[4‚0⑉›ôÛâPË'}h;˜¥Á¸ÉŠxW£¦Óc—e¿d«ôúšzðäô1Ú8m¥’Åö¦)6ö‰è¯¿´áã"…,”O[>Œ\yúÍÒ9=Å O×£„¼õ«ó{ãÁù’KôM3ŰܸøâÎBW¬—ÉÔE…ö"léç¸X¦ºÂilƒ¬žq߉R}tIçê1_mcÂÒ#¯4[ëmtòÕ Üíi#¹ÊnKc_„+GY‘À[’šZ^H{Á¨Áv†Oo)§R èÀT·†xì]Ô£ùQ`1o·ïH8èÈN2!làÖþ@Ô-aIGø›¼Atͺ»+aÇS¿uYvúLÚLs¢çLžvÒšæH¡úÁ'Û¶…-}oìpÖUÉθ+'1¸/ÓO–ëîl%X2ͬ'B5Êjë°˜Þ~ñ¯ÑÀÕ¡ ’r2ßú(.tÑ+…"Ýf”5dŠÄÎÿ|wùVlŒ4Ú%b?­½Íô¤*øÁ„•¦ÞÒgÔµ’œ’W— Åóøh;`Bc5Ïéã%—_¾bùײ/+è¾,3ßãÖÏ6½µ%•™²«ó«{®ßß­×Ùt‘7¯“Zs–¹P µ¿Ò–§rœ¸õÈìƒê ÜýBK /dEÀƒ¹hƼiÕÆé뛞­þ‹ªUŒÉäIr_tÀâ!@T¡Áq…;Ÿd=“èßvúé|*¡¢ÙÏXñº;¯äRay`×¹ùÔÈËëY®æÍ“í«ÔzÀÝ?7ÙV¤ºÔiu¤¡y42;’ˆµeën(6‘Q_b°Ò QØA‚s ‰=F­ÒjýSg¬X ­ÈDPU‰¹&™Ú–Vá':—U5©1=ì2bù<ŠŒ:{W±[ž™ÒEã,®‘Jƒç¬àµ6©¹²PtŒÇŽpô\DÃ-_í–˜çW…`ò [¾Ž)±²ºX|ãà0‰ªTÕ¦–ÊÙØáÜ9Ñä'ŸÎÃ6oüäb™±¥Óë}#½Ã¿I4é}”ý¼Y6byx4¢å–|{N9QÈô5¶¥FŠ¢}S[J¯ÁÓWRbMç­§çІ¤ ¾VÓøhl)å¼õßHLÁW“¾nœw»¥”ZlÅÀ±b˜8ÇÓSýËöLkÊZ?!ßåÒ êÄìmau“•;ˆO°_Çi ÄÍË´¢é©Y³Ï¥L÷DáÕÈo;m’>ÈcPÓbyÞ¼ÇNLRÉØê>ôz?j×&ë*ßLðxè)y{úM¯¥þðžkB>*´•´ÜÖ©òœåšëÖžVômß4¬ël¼ýÂevãš{ëäè¨óXEW¯,óŒãûSväVzÚvMe§ç›/?ナPB±…µx‘àFû¾E³wæ›(9m( »ÄãT¦Ìo^¦O™Bñežh!q‹t,xö>J­ŠGÀûyðÝ•¥?vI¤E4½¾éW}KõY ¹Ÿe5à¾É)Í”0ê˜[775[ˆ.û4^…ÀímüvÅᲄYƒF},cXÊŽVqÓ¼wúd+°Äß³#e#Ö¥ê!ÞÎÊ}‘dŽ2*0"î»`‹$ñ)`zi†ÑOŽ"{b üŠdŒ0óÇN8IöÎhKdª%æÎY.fÚþ!YwÃN`×þ®5{ Å®hõäúu•C䢸’i¡Ä‹Í™î—m“Ý„˜lôšP,‡)iC´Êèîh'ß‘U?Âq0ô%nø$k!“’{ûÄ/QõsNMLß²·@éÑ/~·ÄòùÔ ™Ùz§­ •åe}¬ßÝ­Î[–+^ £¯ÇM’›«‰sñÂÃ;êQôNh¶•~ÝÛn½È`VXɬªP±l*»ù× C§¨äbË ím°O>¶Ñ{¤¼ÔΣÃáKêt ¶ôêàÝ0– Ú·ö8­B8¯š¢sçÓ÷{¯T‹šPû PLAS1ñÜk)Ì4Öƒ”-”³/[nèŒ?ñ!Åx ô2e ²òÑ(ÌË$K…\+Ëš°L{zƒ»Ýó©tA?íï¦cìï|ì|•ÇÅ¿ïW¼Ç‘é3)·ùºÃlWÙ Ãâ7ŸŒ¿G˜\¸ËÝqć`âí’ª‡d¼Œ<°­^“%Ò^hÿŒËF9 $ל¯¹BX%5~5rð³°ÃkY7_c†Žn.£ûõÈ섚F²IU9÷2†Üè?ÝU(ȘJCwé0šozðáîÛµ&næš°ÚæbIâ$¶÷iªª:Ëê‹ÔØ3ŒÚÒéV½‡gN!SÇvùcC¹4øL³Æ*ëd3xXøDg q&þ•ã_Ô’kí?}ö¡<)1ñ䑉ò'ó¤¿ ±Ø_ØiE8ÅvHü@µ)vAàw„™=Tü˜xkÙÞ:*'c3Ÿ%ö,0Pðt¥ŠÂ,ùÍš¸@äó4¸‘¸r"D;ÕX‰³‡çÙUý‚œ¥ç\G(„]fœ|#8þNÛüÛbÏzusׯΤNÑò=%wg®Þ¢•¦ÈbªÊÌí¸ÏÞãz3 a ‚Q‘M™xñê¶$ŽCN“—ú"Á&*yÑ èÖœúèbý”Põù×Á™¼ ½¬möŸ*«cž3„¹O\vÔìM/¢EœÈ4ÑDMÍ^“ ë ÂSKy_žj¹dc$gfþà BÍ_˜ÑLÏ´t4d¢Ãõ´Ú9£aêôpíXê!mùkWdË©í-J´XZÎÕˆÕdó&G B°ÓxBHž³*¸£N̾«¡Î‚ˆpýE½èüä9³`~‡ Žù $Æ› ‡$'.ÜØ]7¼–1¶Ç“à™c¹Oƒb? ­íñË1„;µØhVù)8™|åxóžÞBËo—‚çyYBv(9âÛœxðó”&ßui¬I:~¡Ç¯óŽîŽèT9&;5"ÖR?òãüÅ.·vg< E›'¶»øÞÿá”O¬"áôoñJ•òÉYÇ´¦]~ Ä»” ?}ôsp—”>“¥™7þôjÈÆïôy  ´Bhkä‰ß„^?G‰¥ï¹Ü-H&mu ¥pI¼ÞTí«‰Ð-s~?ÚR]žT‰?íôݺPõ›‡ñò´QÖ‚ÓÙáàV,›ãk‘RÓÕ™×é©v+w~HwÎûØbÕüÃ)üŒN»Ý•>Ë÷‘ÁÀâ°"ãc€vB·nÛBÀõ~&ç"YnQ(zúíN¿!VM*ö—‹W7­:šþv+hq÷o$Ãáåý»B‚¼ÛõÕ§ru;ú™¶=—Æw¼\;bzU‘,9£?3,ðQ¤ÓkGÉpL…vSKì™ov¸©Š‹›Ê–\¦“=¾Xܯ#€&¡–ÃT‚ø`UËÀ´pí4&=/OËÉø0Ý)Géз&Ü|í„ë¹È+™cí¤TL¦]ia¡zÛš¾áæ«åY…KNU~ÓòµDƒuˆ\âGU­Á‹Ω_m3.„!‹k|_¤bL¤$sW#·jˆD]âÆÍRŽˆ²ì+™8»ÒU¡o”¶’@õT{bÅNà”óŸ8&ÑiGOˆž˜©ûjÝш(-Þ‰É\n*Qdf2Ö³‡¸ÑsbÑÎDݧ¸:Qv¿èäU8>ldA5Ëu”žKàT&êð öÃãXœ)/qeŠÎìíŠÍÅ5XG…4㣳Â9=>…TÍ6ùP¿ÛRÚþª¤«HWÎO¾•ì$#Øé6ü&{œXÆ‚'1§·¢WDát;¼XqÐìLJ$}fM÷Ã¥„í8´>w,žqŽ9›:Ì6iy²œYЪE£oO+±bÑãµ–Cÿ"Agtâ!¥Å†[Y!aƒ»œÏÁ¿|{½Ê›—±¦žžh]ºnÞÒTJô™ï´4\¯ÛW0Ø{ž€2 ¾ˆï‰ÒêRªÜJFM‹G›b2t?5'ΓiwVíèsNĵr¯¼q˜ïNäÐ)0ˆ|Ø’&\uĤ…™ýFR 3o ’ßýH¨ø¶´-÷y 'ñ!Js†6ý–‚ÊÙªG$J?17P…Ê»¦¹‹.GÄŒ—|à!êÃx$îÓ1~»ajXþ†°ùerVNëìµÒ0Vj!ÜLt¹ùׯ=ùñù´\œCêèÃíN×?Нa6¾M‹„¨ø…½O!!¢®ƒz_§˜W£NÇyŒT寥‡yšÜéT£f^vþ¼/›ŒÄJQËA-q¯+jë9‡ûõ­éf¿È]"þ kjõ„šÀFˆ„Ï(ižΪ‡ ›ˆ»iTO¹ÎÃw±ÝËy¼j˜¡¶’skübÁbAß7¤¾‹F‰§4Œ9ñNšízä ÷Ö”.Á<r—âíÆL `¶‚WÙ ƒ@¼!ˆvÅ7ÚN´\C⌛âûÄß&€Á¨Ý)pàY,rœÇ'ùø”u”˜…¯éPþ“é…†ð )Ø¡æ×¨ý ~Þî Oª¥>â*E>¦6ÐÒNωoÃÙCsBxzÕGä„=Ë5 ý—Ü'"ŸƒÖO‹ô©“êOìÌ0ÔŸºÓËLÊ)kzÖ‘¥n]ÆD€µx]Œ`YmãŸí\yËÅZ ”Œ*-ÑR…IXæ—k-o£Y±$Üž)`Ÿw(+ã³° dxשìõ\B…1¸o/T†MɵÃÒ}_¤¹VS]‹ix`Û®Î.\Mz݃“æÍ^c¡ŒtÒ Nsàé;D@€šuG¡|EÂ7UT)Çú²{$G2ªv9¢kG¤“…qÔ_›¯œß÷uh]ÚÄÊ@—}ò{~šgM4uý-6Š×Ío{r)ó™l£ïÌ7XˆE¼‘Ql‰ Â~}óaMÃG„°n›JÅ x"é<†…&V–,ð(•½¤w¾þ’àµ'œ'p¨h¡¼Þ² _æuâõ0c/QÀWŒâ‹×Ê­b †Eö/ksZfRQøœ¡Ú…ÄÅÂæE8NNȺ楉¤¶žšYåÄn5wz÷÷ï?c.ô[Èr+F¬ù•äˆL@õÏý§á'žoõŒŽÀ1ôÚYÐS•êÛ»~Mk£»}/E8‡jWtÚðºÌí)'2 êDôµ§ÇÖ¬Ë •-E£ÂCQ•eâŠ_s}1:ÐRäÏ+ ~a¾ývSGl‰y}JÓœaüzÕì—¶%Á‹»Ö7èËœ†¥–€]^:¨ïÆóH;²êm—^Â%£’.)–wÊá´¬$RžödS‚TNát6NãÚÛ }GØ5s™D‹XÆ®°&Jö†8yÂlÚ·Û¼8x^õ˜i¨œO0›ý,MÕÐlÚfúõèœ;‘‡4¹Þ¤8p)(€He¹F…É#Çb&öQSV¥w¥×ïö˨õZÌŽS·ÕÜ2ª#Ú-J'Ïϲ¢°5~_©o—ÐPۣūA²»‰¾WüYØ0ïös½Ý챸+™gM ­‡¼l× Ú=ô¡Ñ·c™³¡‰äSœ`­›wº6ÙÆ¤öŒóËy²½‹‚­ïñÕ ·éé†"0ŸK – D 30£>"‚®eª¸'Þ Òš*§^‰Q¾·$d¹ ró¹3íµq;áT©ó·³Pr »òPe#FÌ…Ocê•5B@‡,MJûÉ3¬Íâ¢Pö9xÙdìÖ­YzJÞ€Ÿý0þáÀ¸‘/™&ë3z×^xŠtQúœuÈ2æ­‡ÿåNîäé¼·cN"³(8%¯†º´à‘饷k¤4Oí3u$Ý‹£ÎÖpŽrù2˜ZŠŸôF’GËÈUq%Ð_~w ¾ü¶öü|¿…x¯6'PÿFv¢—ýâˆ9ÞÄàÉj­7, Y: Îs'B f½óQÊÂïÉRÁù zË[¸ðÈx*€:ËéØâ…–‘À»ŽmfÒy♣2:îë‹È*ùÀþETåªöýC †éÓ:öîhá„:uÎ÷K·LÄÚ3Ùþ8¼eÞ±˜,Yé:‹ªüå)Â*Œ:5]£‚õº_`«vÅ©Ú8 ­½¬»Ü& ô 6ÓupÇDÏÿI€°'+I+):,zíƒÇ£‡‘ÝÁÌÙSÔÆž(—vÔ@ÔTyöôu×36èT0 u‘Kqµ•†ê†`D•"¡Ó3ñ×Ó Ì–þ’%øŽÚqƃÒ;ZC†Æ2ÓyÍ/®Éñ’H=¸r7fÉԃߪÛýKCYø,k?&ƒ¿\«x5ªc¶PÊ­HKñ£º SÎÊ:àôO°¥äZ7àÜí‡òfÓIpÞRÄRµØÏ££›™<ÿ¦š;`G=}¼¹qŒ`^‹•g'#!>J Š¡ÒŽ­ ðÛ}Úž>nH8Â_KÃËFXê, ÙІýÅÉ–õ+Gžb½1ßrm¶VZWà[¾Vqân冸ò'^¨d$Djé½÷æÛ "G Š/×øÁp[9ïD5ÓùW„Ê?"@³ôC£ªí£A ×ѽî°2pQ4½‰øl‹«S»ò Ï|§Çö+¹kCkj)6òöÈ!PmÅFÓTƒyf朗ºzlj¾?jÚ~–Ø ú‚µÈ\7vPjgQY ›£áÞ]ùX·øÅ4#ŊŇ¦Ú³óSØLß¼e(QùÉN=–¯þsPÞ6PÏ”¾Á1÷é3Ã/…ú}ýàŸÌœÜ™àjÄu eJA ãrÁêW%i|MùB‘ßèN0{2n$~ÐtÎ%ñ“¨¹ Bá}!îÛ·ëà©m®"hÓê[V…l9ÔÔï¦Â?_6F·<<Ũòê]÷üg¸Öàß±üD"‹¨Šúq¬¢Ü¨Ñ5¤ »š8a¼–Lô @ÇÊ5ëC²YoÛ¤:G‰©g5Z™êgœ…åàV/ ­ïmêºGéåÇA$aµ+ûÎô–*®;Åòâ4¤ýÊ8'Å\èíŸãZ¥Šè¬8-Hv+ û7ï0ÓO¦¨ä?Ïp<Ž!i¯SH-Ö¨ƒªôŒoBï³z°3_©× léD“Ìg£ì?+O‰raÌß6eXt…û•='™±¾è’N™<ÃñžO3œôòÕí1l*î³i9Ä•¹ÖÜ/y±áª¯ ΢ ÞRMãÉ2’­“k¦%zó­Î ½^è ¯)fíœôãÄPsïŽôwÙ³(¥5bä•Ó˜¨%øPÖϣŤ Îôù±[?÷µeÔÈ[¸ž:T±Ñ0Y:J剨^]΀ʤƒ>c…(n]tç'D<ö’é]ö£xÈÂ]VÜ+Ö­—‹Rn¦;ráUºÎºzq(–=|n1«D7e )?KTL4—¸Â7‰ñéß8æìh˯söï½<¢Œ‹fÞ5ܯæÄe*ãõ’âK[·ßÉyCækoóÛڭ߼̒€Ä²òEÞÞqg„z %¢·â†KÚ¤ãœsmaÒ{ï¬XÎwÙX<öFecê±½Ãç µàßÓæ`ТZ-lß:b •>˜ˆar«ÀźÁúØTa›k-fæõìZ™ûÕãJ¤Ñ[MMÁHwÂ5Ò¼–Ü…÷]Ÿ!ž_¹ mÛøø,Ì€ÈdžÚ諵ï\ÅÚKx}a¬i~euK¤¥y’ÖmW«‘[lS;P½4¬<éd·®õðé>*ͨëyøbÁcJfºõ²à’{ÒÃn¢¡ùs–ûK´}ý…ü‹Ù'ö}:g”‘ðÀ@³Ãø¦iìVË*.–ªó‹gù¯¶Cf‰tnæêf) ¦½OŠOký„´ úþ‹ù˜, •¤ºŠí`_$£³P!µFdlÜcgL@r]‹ª‘¢aI¦¸—Y~"wfž–¾ðΧ³]Ë"˜œ Ê“L ¤ì¶ýÀ; (Ó@kZê9Êg&(Ü'2&窴à£Ì˜}ÿ¹˜^%]Ô)@B©™BÒÚO/)O¸cÅÑ^áš3˜dô…™àÛve{h¼‡¾ÿWQ—GS§»¸ŒQ×òqZÛcñ±Ñu²›öKÚ ¦î},r)h;Û»C²Ù“KÔ«ƒ¬r=³`GÈ­~·(‘èüS+݉óKŠDô’}¥ù|¬5ñ_LB —©ÿga7z endstream endobj 101 0 obj << /Length1 1400 /Length2 6317 /Length3 0 /Length 7279 /Filter /FlateDecode >> stream xÚtT”ïö.)ˆÒ-C7ÌÐ% ÒJ ÃCÌC‹„t Hˆtw#Ò HƒR’" ñãœóÿ{׺wÍZß|{ïgïwïw?ÏÇ ­Ç#k°‚*!àH/P ¯¡¡"x@~<}Òú×Çbuuƒ!àâÿ ï #Q>0…Ó@ÀªîŽ$,ü@ Ø¿€Wq€Øf Ðà¨"àP7<y„³·+ÌÖ‰:æ_¯v$&&Âý; ëu…AÀp€iuB;ôéýì’vH¤³8Ÿ§§'/ØÉáj+ÅÁ ð„!íºP7¨«Ôðk`€&Ø úg2^<€¾Ìí_aƒô»B(‡# …»¡2ÜáÖPWêp€žŠ:@Ë ÿVÿàü½ˆôïr³‚Á'ƒ!„“3î ƒÛl`ŽP€–’:/Ò É Ã­ÁŽnT>Ø s[¡¿;”du`Ô€Çsƒ¸Âœ‘n¼n0Ç_#òý*ƒºeE¸µ<ÂÉ GºáýêOæ … ®Ý›ïÏfàO¸ï_÷¶ù5„µ»3ŸæâUQø A¹ðþã³…"B@QQ~Ôõ‚Øñý*¯ïí ýýr£&ðóuF8lPC@ý`6PÔž¯Ø @ººCý|ÿwàŸ°†A+¨- Ž÷Ÿê(7ÔæZ¾+Ì ðˆâüõû÷›Š^Ö¸£÷à¿÷Ë'§¤ùXUëÏÄÿŽÉÉ!¼¾< ¿‰€"¨¿VÑÃþvüOª Üÿt‹º¦uìñ—ìÅÁøg1MеPûHn BPÐÿ7Õ§üßþ«Êÿ‹äÿÝ’»£ãï0ûïøÿ;Á½ÿP¤uG¢ @ÉþßP#èÑj@­aîNÿUA‚QB…Û¢ÈÌä þñÃÜ”`^Pkmb÷‡2ü¿¤æƒCµn°_ßTø_1”¾ ¨ï‡Š—B`7”Ø¿×øË†¢äôÏ>á„õ/Ýñ À®®`o<ÔêQ–À„¨5Ôë7³|¼p•@Íì°A¸âýZ3(àƒýòý5…|ö¿ÍqwuEõñ›¨þeÿÖ:ê…àÍÏ Áö5Á­çU²4ž<c’Ø©çÆüÅI‹Õ½ÌŒµ¥ù^’¹}‡¦œËù›Ï³'¾ëµôuÞ‚g<ôJ_mé­âgnÏЧ}Ð2Î6¡e%Ë=/tíCÓ¦‹zÐyWÚÚ¶O…ð[MÏ\¢'+i‘’ˆjH«f{gUQ†:9­˜áÞš.²Ùj@Cè”’-kÍ)îÅ—hÓˆÍ׌j’íx ž•Vú‡–ˆz麢U=‚6™C‘DŠ´ ‚8•†K9WY…»¯‰}­“È)s<äH,ŠßHï3ÚÅò«rÚŒÙtÏ•è°ß-¹Êý\G'Lèœa©3ò~ã[mõIà’ê)ýí%fàÖ¸ C™7÷òŽ•[´•޽¥ƒ5ÚGz—pøé뻳ô>ü± e³C•x#Ítýèù{DÂK¬ûÆ ÖIOKžGõØ&~ªš¼ÈL±Ý}r£oM!]çÇI!wåð±h€E*`B~2Â.›£¡1×’'zÇ"†´™OLL;S·‘þžã‘Mn5Ï©µYÁݲëårEƒ>šë^‹ Šç6Ÿè3w9/í–_¼Äñܲ…ÝᥛÌWvÜ×ñ&Ê _‹ëÃÛ}·‹¥:ݦæŠò²Äj?ÿOÑaKbéÎ3¾7^\ÁVN¼éòFŸìî”úw¹—,!U8á°##G²ƒ6 î÷yê’½Úò©G„‘+CG/ÞÅ`aÏúŠ¿v‹Ðkëæ‰³}ì%Ù#“\îŽHx”ÜA duD°Z&˜…›®Ùï«ò 0|J>ôM×ô¾ …It…ÊRW5é3üe;H.JG—QÖìo]Vbšö¢~ÙW¡ÉÍ€ž›ƒÿ’s÷þwM›6ÍœãVö¼ Üa1ÜMÌ++#F·«''b•"ñ¬?tpȨY1n6Ç=hϯø,ù1|Ò ,ïjŒ%âeë±L@ˆ†â¿Øï¸5å_r8-1V|0é+µŸ×»¢½ÞC;sŒ ï ²oîr¥÷¿Z/o öÏyJ*vE”ñlÐIBrYƒoaÆürïa——&nä1R7¸Äx[VCÈaŸš=©ÓºsU<åYÿ:›Ú%Q‹3§¤M*¬\£ãôø‰ñ­˜Ž†µËÍ–ˆüÓbÁŒ7FfŒ9V‰ È ˆæU¤Ê5 Ï·7´Ëh?¥j›ÓY‡ÏZ[2žŽ&þÄT/<Ǭ3ìdè Tçm'P\…ZäÈ¿p…œ¨0.0 9;†2´®w…1]õ‡í^ŸÎöUär’Pg˜ó¢¥ ì&ÂÔ's!'3ÿh‰6mXçeÁ³„µœâlÚ·{òáÐFx`Ú¡ ‹ð£buŒÑêÂ.Fa hÌkï~O;Â4îϵ ’®‚È-–­¾MýÞr€Iy(¨éKÙº*‚äñJÒR{ÆKÝ­ªœÂ2š&Ìkÿ#D†Ur}˜-åhûõfÞ³ªà Z®4^9pJ›ëY=jÂH ÏYËÿJD“ÿîÆ›C4‡˜þcÿÐäý­:O ùFl*Í8ñÉM“ç,Ö46¹3³¡ $ ÚÂ'çb#ºU¥3ö¦=\Üï‘>“mœmöié×ÜT¨""£1'-úy6ªÒ„ñøíë­è %nOÝÊ ËäÊÙÔqÊÌ÷°ÛÈ ñ|ºÓ¶EaÌH¡Ž¤ÍèbÜÑ’’'øY³º„‡âûï¿‚Uí5†ŒeÎÉ9MÐX§(kãN58A^þ¸Öùr$C/Ùq÷º>@f´..Kê‹rl&—¢Wž¹I½Kì:+z¡Zß>Ù›czg•ué\íJe+lÿP3å![ ©d‡D²~æÂZo"Í‹7<ÆÈkÿ%†èv´<é»Ã9Oùéßûqñhߣÿù}{O}QLióá{Ì5ÃO±?òÚß Œý;â«8j?qáØò` ÏSÏWsF8­ú±'Äßi7é}i`>9(…ÇÕ™¯úPÉ:‘rœ¥½6²”ndKüÑÀW[E¨u´j÷[gÃ@rgV‘§b.‹D:•o×Wõ†ÉXqüfàÞ¸ @;}ùÕjÀõ³j›y¾5¥8×’ Ü$B]C«—æ§'X‡wÑÏFžõó$9Ïy=Þ¿>À,%ŒÉÄñ—fÃÙŠ²íð™#w¬)J ;?Üá~»A3VËÔTðºY¶A^©<-ÙÄéMˆù½=™h^’‚9·™–ø)3Ú¹YU¢·“å<¾®r§lÙžÖ!ô–k­0r›'ÿ‚ßSµÆQ¨¢OC¤4 ºß>!üÃÊSe6|;îÀBQs·w‰|?ÙÑéŒMø(ý^T­èyb¾òr»lМHz®Yl6œHj‚»à5<²¾ÎçMecvˆ·#uŽîb¾a™pxYÓF´ùœ­6ÓÓòDà«kûxŠ}sT:³Hÿ¼{ÛgJ×^Öóܽ,ʄԪrÉ>Àž ( Êc~€þùÕ Ò—zZ´Èrvd^–wDÕ¿£Y÷&¢óí+õ•Žà$÷¼àˆ4WR ðSå=ÿ C7$èC¸¼jOú¢ ÀŒá@Å<, ëJ¯Wψbe—RE^TÒÒ¾ uÖþ¤ãZ/ß +K˜s0s‘{NÏšÿ‚4¼âúM’i£¶¾‘©[‹Áû€þù,ŸÌ8¨ä{ó'²NlZ7‡œ¼¯ˆ#œ:1†àó9iR¯à‰”5Åú¤úåO;Ð{ÖÞœ5©J±®0FÈÝ¥Ôƒ¼ž<¥z8äç/¤¸á¤`Üj7µ­æÒàpx8‡Ë¡}†ËÂÃçHô ¹‹Ý”ziûI៸ªß®sÙ®ý(Æá8%¬£ué%]CØ |}µ#àt Ãbu`¶¤Ö§ìÝ;¨ò0 G8ˆ±Í œÕ’VñÏ÷‹º^úo› o8)0’1sÃŒ‚ï¿\ì·¾cÉãfô¥î¥å6–édÛû›íáý6†5¥ºé‰4›jQ¹¦›ùÞ¥Bv´ÚÊ4F˜« Ê>®síFaÙëîô%½~+XÁÚâÙ±°í_,(sªú-u¦,²ê‘ƒ}-ÑNi3 pw}5–Eé8kt¹Ï×YxJo*ˆtg>Ïø[ŒçhûôéŒ8l,c¹Ü™Òà0DŠÚÍ·Èw~àט:ªÅeÅ`”!E˜ÌÖwsJˆ½4_É*hÛ#Ãtêe«âˆôçE§À‡á¯ÇpñKä(gšC6, غ±Òù=4‰ß;*}N7 gkZ÷~¶9¤ˆ–{F2/@sEWm¢„xkÙmæì†‰ñŠ¥õtpÃgQ¿]=,ïcÙ`êÞJÒŒNSßš–]g­AÉØ‰–O~iÔhotX îç­ ßá»ß<-á÷*÷ºwJí£¤žêÍ’tº­~pa[¡¹ù.Ÿâ'›’ « MòŒi§½ôâtÆ¢Cœ$œà±y5öš±è@ëЦâ:Y;ŽêIê ÓŠ(ªMÓ\Ö„…d=–³µÈ56Àf®5Î5µ X sÛt ™2®Â ÐÄÛŽƒ}hKâè©DrQjsÕÄÕÑ–7·âÊÑÅÊ´áϾªþ£?úNp.×µx–¸`¬ŽwaÈ8湚±›»4”ÙäSÜá~›G5’+—OÇ×™½éú³й¢8ذ½\€jß×·{¯—&fÛåo‘é‰ñ­ŒøÁ|‰å3ÄÞï¾_àAéD¸¬±hèŸç|·bï—ž‡XŒÙç\â™-¶NÛ=âÉ b¿²è7/‰¦·ô•.¸•ë0ø‰3‹ÃšÝ‚~gcéôlêæî¼˜r¯‹ÿñÏ6(RÐj}¨Ðp/J~£S÷\ÈCmSñfø™á²i뢹®ZÂåaÂCBÜMdü•‹ˆ‘OâIʾýóêî[—Öàý­¸X½.ÚäºåC£QRI›é-˜VëȾT¾±Z¬ú?cŸ”X%sD&ø§Ãr‰/þwÒ–ñxŠBøJU]è´”röŽéDÏg/%KÜëÚÕh¨ö]¡‹Šrñ P\¿k1Ÿ#âÝüðƒÂ2ƒj3IÞ'áùDÄÚêÈ©ó²EnL_æAƒ–ç?‹Ò`Ó¼‚L£¡ýc ¬¨âïŽë×üXäÆÞ:Œžx4Ú]TúšX>“Üî…CŸ)ÐMƒøÜ3j~xJQZú¼^Ô7.óSHO¤1~MfiJÒ&5(ˆ{Yµû¸8\ëR·®ì$¦1¿µ X@ôAü˜–€òXœ ý-À2oûŽ=º¡À—ì§#&w¦æHuË¥F-ôBÙ©S¨8ݨ¬Ã­æ Å~C±æ(ù!e‹DËå<š12H”¦•Cea'A&¡ìmt>žû£¢§‚‚.þ.Oºmµ-ø^ÎîJ/0º'6ï‡4´åIÈD×*Ǧç6³"“#­„Ù5coý¬ Yag4«Ô,œ,B¥¤¹Ü¼[þQEÆ ›³¯D^ׇoM‘÷hÁ|Q•Î,[þŽEooïrº3RjŒØ]§r¯_ÐD ÷}Îב²·9Õ%*üN­ßõM}k¿¯p ŽdÊ×€¾£Ð>½k³¸4‘¢ŸeûØÄKõÒQë«„ÅqF=t·%iøJ—(ǶFqiÅÌ!™Æ 3À)¸Ì›çNÁ#五ĩô öqí|µeAÌÎ:`‡à9 –\µ•]úÖ_>¸(úÎÂP$±Œ|ʹÃtzôCûй܊G9Ñ":Ðëx¸®ý†T4(ü›)ÝôøqÅÈH/lcéÁVEPÿüã^ìí&|S8HáEîQI‹EêpH£ÛZ\Ø«×7Œ™Õdg$‰ÏnJ´ƒyíê6€|¿]©¼Å:3Ñ&B¤`Ú‹ZX&êÉDæÎ5Њ¼²;[r^“u2ÞÜ‚chLœœ­Ú&üwKÖ2Ó*ÆÎ¼×lçô¥JOϙϟ–''ú*€¶‘d‡Òj×€êaß›œÙ–IûÏi7ÛdaŒƒ‚,¾ò»¾'¶}%ڔͰ býl F I ^eM¥Ô¹Ä°£ñðÞÞðWK@Í4u.>Çfâ/:Ã{å.íÆ¤³x5éž§£æF»ž½W‡%: f”é=ÏeDŸ³'1Þ<™¼6È$êz­Æˆ>)¤ s‚KIu§veuTâ¶?”¬ô7¦Ô±ñ’ÿÒúÊXüÞIËGÇ€Wƒï\†›æo&öàÙñhvÚ›:ÀÇ’Ö½æã{.Ì8T„-MvTOûbSSE^=ýD#oŠe1Éù:°š¿ë}ÿDëª?Àcì8Èj²´?i&æ—û3 ûÈÿ^(ÿùTi¼¾,Iyn~ëØÐÅý‡YXpiõd©ÐûO^„wêil¯u€¿_ˆöÑö1:¤ÙÊ«OÅá}œûÉX4žø6îá¸#)SÆNŽy¢\€†}›q`§ÿŽÀdùBÕÀÙ.\‘ªÅßR×­èi}ÉèBÖZÜÍÊåé¨ý¯Â×ab÷Bü{üZ:Ác`ª¬S{ˆ^ª5SQÝâ©Ù>c×á®_B}`ÏKlñÝÎ}rÒzo þn‡ß·ÔÝý;7Å fܨÌÖ/+)æŠâûNÆz"´ýhh¬´$…é˜{ÂõvëçÝ6/â#.Ú¨eœújÝ¡O«z"@þ¼Æ•¶á2‡o·¾9è(Oj’¶îé\vDƒõ‡¬DÑ74šÊUýœéœýû¼Ûåâ¢Í§€më­wèÙ_ʈͤ™~²%=YLQ ¿<š¡x-Eƒúÿç0X!>õ`®º~*VÆg+ÝeŠÿÃÜEutrÇTŠ˜¯á‡.~Kž³¡†(¡ûFò Ÿögf—ùñ… äbɘÔp|+S^¨ b÷[¯"KxçaÝÚ$bعÊhCõFGJ?f¡pe8¥XÆl‘+””çÎçý=BÄ ÷²è‹~*ž¦ò&1Nļ-‘Ra¸­Ç |£;i3‹çœÀÓD5ªÎï/â•’dBì r÷Î|JÚ¿ËÒ^/I²ÖøñÖøÔ¬ä¢,äΊÛ=/?Èåý¬x¿ZŒª- žäa§)ð°VXjí±eÝm­§ßozØ ‰Ûº_ÜøHšü«‹è½™O+gåù28–¡21s¹†ãeB;‘ý]™ êçƒÞVüiòXLV»³ÉžÎ~K¦¡Ÿùš!2rºÚC˜?®Ò}Þ¯?^UÚÖ-è8»gg=kÕä`8³-Ü¿è}X ¢RY'ï[ ›Âþò| ÂܤO&y«DLB#ÔJ…5Fg%boÁ%“›îb ³žá¢PtѧX‹i‰8[…Wl¿`LÆ‘²)»… `ŒçÍ$[†ÖQ>¦šˆµ{"^üØHŒÌz^/|xš‡¦æˆ>M\Lÿ?éñ2 endstream endobj 103 0 obj << /Length1 2593 /Length2 22912 /Length3 0 /Length 24375 /Filter /FlateDecode >> stream xÚŒ·p] Û.mììØ¶m»1wlÛiÒ iР±ÍƶíÆF㤱Î~ð½íûýÿÌ9“™d_7¯[kíP(«1ˆ˜9˜%ì]X™yb ª,Ìff6FffV u+W[à¿b M ³‹•ƒ=ïbÎ@cWLÜØd§à`u³°°X8yY¸x™™¬ÌÌ<ÿcèàÌ 7v·2(0dì.bŽ^ÎV–® 4ÿó@mJ`ááá¢ÿÛ bt¶25¶(»Zí@Mmj¦V@W¯ÿ AÍoéêêÈËÄäááÁhlçÂèàl!HCð°rµ¨]€Îî@3À_í€ÿTƈ@P·´rùG®æ`îêaì €¶V¦@{‡›½ÐJP“‘(9íÿ1–ÿÇ€ðoo,Œ,ÿ ÷¯÷_¬ìÿv665u°s4¶÷²²·˜[ÙJ’òŒ®ž®ôc{³¿ m]@þÆîÆV¶Æ& ƒ¿™$ETÆ ÿ-ÏÅÔÙÊÑÕ…ÑÅÊö¯™þ 겄½™˜ƒÐÞÕá/~âVÎ@SPÛ½˜þ™¬½ƒ‡½Ï¿ÀÜÊÞÌü¯"ÌÜ™4쭜܀2âÿš€D¿e@W333èzšZ2ý^ÝËø·’å/1¨?GG€9¨ Ÿ•9ôÁÇÅØpuvúùü©øo„ÀÂ0³2u˜-¬ì~G‰æÿ`Ðð­<ºÌ Ýc0ÿõóŸOú õ2s°·õúmþ÷|™äTe$•èþ©ø?:QQO€;3€•ƒÀò×’q>øýwec«iüá+coîàù‡-¨MÿÃØýß þ÷8hÿKÑ´µ@õï%×cæ`6ýbù^õ¿]þÿ6ü¯(ÿ·%ÿß„$ÝlmÿVSÿ­ÿÿ¨í¬l½þ5-­›+è@g`ÿ¿Mµ€ÿ­ÐÌÊÍîke\A‡ boaûŸ6Z¹HZyÍ”­\M-ÿÙ–ä]™­•=PÙÁÅê¯Ç €4šÿ¥–© èÑáZÉ¿U@ÐåüwJ {S³¿NŒ•ƒ`ììlì…2q|X@·hôü{‰LŒö® ¨y•áã!kZ••j”}coûØ–Ý쯀P*üôÝ„š’F CgR%̪VÃ(t×6 áa‡¹èZÛ­f·¹u2Á2ÏÌ÷7À²¶åq`S·ÏSÓÚðÈÃÝÇä–ûáÆ‘n?­"¡~! Z KÝÈÕÞ4ÂdèR×qˆ.-  Æ;úe÷¯ÜÏÐÆaü>Á—¢x,ÛùÌÌ:ÜнàcgÙ¾—Ÿý*ê/;6çÞ/Úz é‡¼…p*¾™t&_\äãZ²I¥¤ÎI“èþ”³K¥ÂW ¬Ÿ )eºØ¬Àb/ñ"–ßæXº$/`—‘êÝ[¬ŽÔ ö²~àÉc<Ó¬Ðhý‘§B²{Å0~X4$ÖÇskv¸}[V&j€yä ùpQá!:üyK+4çS‡j`V—‹Rª”HDáÝÎ|/¼ Ù©º¨;‰]c,ª–ºÀãÎxWá³}©Œ8UÁ…~¹#þpßúK⽸ÕÂXŸnYkÛ•î©ÁÒß­}¦Hß_$3lnÔ¼|ÅÅWS¿Ï%óÞë]œß!Þ!÷±­Ð+bïkðqD§BÚÆQ’,î~»Þ ŽŽ|5lZ×ð©[&¨I›nœ A‰’Á¶³1cNœHòK¨Ò×å è0Þ2­·½3„‰c›*]ôj×1nøÃÊôº´ÁÉ7Ä…"4~ÂOí?s~Íšñ”ÊQ±,Ãÿ‰»kUE±˜I²8 Ï †]£›ùíý¯‚’hó°Áp¦‡ï£àÀvøç©0†jc“.UÑ•Ù$rHBxkÞS½ß|A‘E­b„þÑW+&;&ëZ FÙëÃó…³,Hsªwªëx~Az?á:Š©dErуT’#1ÖãR-‚Ü·ê-ÈA…â`"qÚÈ¿?ƒˆ…¹Ä.õ¿õÈî¼®ña)}}Øòb=;t£â(®¾¾º:Mh×Hèš+é Ñp,Z÷kÇ5·§2?;Ë<áµ€ëä½4Ø2*2gjs“Ÿ³œËÛÓ7 10h«oXuÒ®µÓ³~·^8D ¯þ¦DzNçz--ûìJìî$ºi†w2-¹Õçß«ž1öM£ð˜7Ë®d²´™ËÇbÝ}87pôî{ÎYNÃßHÙpî 3Ôg´åWåp~ÓtÓcKÈùGˆéˆJe¶#z­P£DÊQ}ìeUbžÕL®ä”Q&'·}:z,obHÀÞÔíÂ9žŽGÝâÁáÊ-R²RX$šTy‡ßÉŽá¦Ò»9ø+”³öáx¯»Å§f‡ÏqÒ~k¥-DîïA.›~ãéœ(ÞêË“KÄ2¥Á¼ÛÒ»°Èr­ *Ùù<Ù÷ëÉFýØ£=a¿<ÛLQO¬)-bYévaR¸@‹Õ“øÛ‰DÞl¦rßáØ—E“)zHT@¸æ×ã) s|·vŽƒ÷ùéÃÔÝ` E_Eçô0¦ÇÖú«¾Ciï ÒðEHÆrÕí0GÔîL›·žn)É ®dÈ‹ó.¸ky@(‰\Š#oÏ¡våAYÂp<[]•)å}_ÌóG`ˆ*~—zì¥MæÙRñ±nÁgW €’Â)ïn:o‡ mU_ØE9DªpòÓ®O¸QkþcN~…ݪ óhÚG£oǰ}9  Læ7½¶íʬ9¼Dš"4j¢òLûü¥Xgè¥b™"yw¶|•>£]ˆÔd-K í%aâIá¢ÀRÀB¹}T—âßw÷©cSïj]@˜ˆ¼Èù:( ¢/Ì&k½ßx%ˆkGöÚU8|ã ,Ë®1h¿3vÍ$†Vb9ÎaÊ“¼$Nl`ó""KÝ1EUPXœ’ê×yYÓ…´+kñžŒ– €G³-}(#푬B-iŠÆj‰øhÒ|ZUZ±Â¥Ï9Z/:WEÃjÂ*ho•Œ„,mWÎ`Þñu/Ä9À2á±)Á ëòKh´­ÜPåná‹¡°96'žô†²±û´7®Æ8¦auÖ8Æ€N méî` ZU¬Ý ‰càG>ŸµÒ1ø  6¬CMM¾¥œ¶ñˆYd´J%F¥ÌM+ú6nî²¢“ÞaYz›Â¤’›r’÷ê9&O)qšAŸm©m-*»3–Mf*bÖHšKç“æGõ¶^ŒÙUX°«Çüe<ÛNšMEc€x›Ó\³Ïiö(ÞqÝp°yù¼ ò™Þ¸úŸß_”:#Fä–†¸+ŠwD)HqñËÈ[½R&ˆ,YàoÙÛrz‡ËÂÇJ*Õ_ñËÁï+ç+}Áqÿ˜°>c›KyP¯½·XGõcLkyj/„²+—9HðŠ‹ùÉ ÞêÇŒ¼I&^÷`Ÿ·ˆtÁ|8‚ã•n¶góöš+‹ˆ[Ei’£È$£.{žÚ«‰G")Àµ$ÿLˆ‡cI >V»†ØOšJBä¿[ÆGÇ娗ïቋ¦½-…`°Æ!Q9¾z˜€‰Fe¸Úœ$U·uqHM$‚dÛˆ>}Æb´ÊíÆxíFw¶óƒôñZï‚>À{¸nšÁ¡µj#Ûrˆ9Å%øýÂ.š‹¤çäÙÜaòÀâÕ..¦ÞSÓë¦~ùýt©>™·?Nr‘£ûU7ráǸÔÛ¥þbFgQžOä˜öMÚbb,}®¥fÂdwÅÜ`S6ŠásQrÕàÙ³|y]?çlƒ$©a—¢¯# Áù6· Ì^Ë{žNÁã+Þ=oжEòæ|ÝéGE/…té*äᯗŠE“0 Ó<ʵÜlî£ÀTI˜,pPnïÛž~@^ú¥tš­íN™g‘çD'Æ…'œÊh§‚ùÄyYëW1±àdÈeöf0±‘XÆ<)Ý€Pk-Œ’•Ý­ÄÖqŸ|ŽUë½Öc-làD‰Çä-oT©0 }d\«—VM©ÐÈ«4Z¥>b8QOåk¾$m骕:ÖeÌ¡"àÖÌ0OÁ($ÿ£…úwÅ9®Ø*8:ÕÔ…]ç‚´ç!í›~ôSm' _[ÍRAÔÝ’v¸òã/„ Ip ‰Ü“ë×è‹Y¹®yTéhªÚzApá T™›®y»oIé]ºÅ4\}”ÏÙ–öH5¸GÚTs+Æ= ê½—Tœæ6R™ì í¿BÊÊç`!ÂQ' #ÔdN}C¨¨W$ô‘“¬ßX¹0°I3Yï±ÿéuj$_•§·bœ¯‘ÞÜïóæ¾}.¿±Ú²ŸËžð‹%…<ÝÙNäíÌå+FÏÀõ•½Î$mj«@É݈ËÍ…C†‰°Oœ×"‰˜q”¶)£V€NÃÉ9Ñ>3¶=⦉c˜…‹rŠ9ôÞmÕÄ\¥<¿c'Zª-:’o³Z÷á#ãp_RùÄ ·W±{ñ–a­¨wåHxÖÇ_¬Bîsmp0?¯ÛnÃ{?€ç‘pãÎçÛ!$­„ãXxü E€»çÚ“„×öRÓ÷¿ Ë‚H­x°u]8*O€'NÊp'a~8lŒ”L FZÛx<+‘Ø0Ö6¿Wöd”ËÆôý «õ\Ç·"E´€ñN”MôÇëçýû-i=ÒÙ2]˜{–¤‰ÔSSÅ{žRGAV.ÙVÑ—ëz&ȳÈ ê_%ž˜*ô(®‚º•ÛÜã R.ýMA¼Äªä<úœ”v^•4Võ¸‘îÃGÖ=·ZÅQò}ª¢„ª¢Æ¶Çžß ³µ3xk9Šª 6öÏV0Î#aÑ?·V Öã?1Yç‡möÿÈ!ñ[7J<;§Ô"*Ý]PùÐL#½Qt€:æ*“_Ñ04ÏøC›àRxɳÌ9éá¯ûÕ 8ä¥çWEhydû¤¨d!hÃu,ð ŒøzÿL¬X¾#¢ê©Ób9Ñðõ N`_C÷*qU\‚`â¡m§ŠcÜG¼²Ü€Yš® õWL1|°j¸THÍ7¼»®P²5ÖÂ?1<˾‡HP3KðM´`®¨8A|.L´Q§j¾È|Ç—ÉÿÅ ß~i×-ÈÕV^Œ%áC€c/Á)n±Ïi¦ Hh7jÊ›EL®‹ O™¥×Ÿ8 ¡Æ:ŽÈV&›¤°<úÕ–úr¶žލ8¬²Çdç¨È!Ç®õŒô¥é]YZ7Ž”NªØÔiž­bw‹Ñðëìï;èýU ƒ¡˜&MÒþzòìd\nN{¯x6 WŽâд@¢ªé„è)M@ôǘŒ>~  Ë€ìz¶å½%ʘ®ÊGyËRm†½`5çW/c€‚²¶TÉüT >TÉ4¶6VT˜0G`üÚÆ45Â}zœ bFoHã°¸´uxî»LgÌ`ÏÕ$„}ÆÁå©…ªªœI›äÊeÛ>>ʤ*2þƒåoÕWÀ/4æÓ»’ÞiFƒB¹;2¦`ÂjÒ”IüoÐmñgP@w{0nô  É`½ÍšR¶þkã /¯¶ÞËY:ŒLS’<Ï è¤`“I…×…O[Læ~lIiÇ£…ƒ;¤R%Iï+¨Ì\¦açˆ?hi¼ø=ßÖ76i÷ÕÇ Î-RX’HwœG)I¿Á &6|hˆâ; ¯¸ ˆÛ–mrÏA© Ò_%C ÿ[ŠºB%f)đʪ†óBØz:ZÝ})œP“ÿ͸¼.#U$À4òã‘­ƒxõU,Œ3XcÙŠÑ┽¶õŠ›¯-„;a¥Q •ŒmöKÀf É^ÝsÎͬrÏȉOb.ŒDUʹÀ„£ñ¡bÐ’å±’ ¤QFãYÚŽãý#R·›×*¹óUÒÚõW7s?S§^:Žn/’—5ýùŒGüû® ú ð×lš}+^é«ì¥°¾êJC RС¤fÇ«Ó –`¹ÛáfƒoÄÖeŸwHfXš´ŽE¬Æ©ûRò”÷ŽÎæ¨hŒE ¢úvS›Nå‡ãM¡6; Ùø{,†Y¶Ð;B«EiáÕ/Aæ“!/6MªŒÇi7/îTƒvŒhTãj;=â­c?l½ž‰q¸°r‘´oľWôÛÕ4TI¹qJ¥ÁÞ×ÿ`)|BueŠžC|݌۾@ØdÿTÃRaaø$.èçC·o^jÁcINøXÜ®/|®ð`´d0Ó,%wËÇQ“ï1xÜ µ+ãìt.RÌf.¼¡ýÞÊ­<°gm·÷ª}úüdMÛùÝ¡øÍ-ol̲¬jä AÄõ=Ò1Céz šíãÒüáËíIݹ"·78µ¹xÜÐ÷}êr%ÆÈw=,†”Bt·!<£ðCò¼ d¨“ÞÚ¬ßqÈ•Êt™ÖûùZu‘Çy‹o£kLö|ñhÕŽ¡k)×á8?è›ÌïOg鼪· øìÂ7r»†Àó…*?!Æ\X8¬û6`°Ì‰Æ”é5ýdd|‘ƒV8„©[5ùÎh¦cL"3¯Ç¯úĘ)Ç{ßêJÞ8ÍÏz¤ú`Xø)/rϯ?Àuÿ\«6uÏ>Üås ³=-ŠJ•­N‰÷uÔ×´(Á¦îSbGùiÊ¡¼'Ès9#A€Q]1EQRîÙZç°K©P‹ûhë€Þó'ÚxÌ…•‘­bEó0º•¶ŽõÐLRø˜EðmÞÓ×?-Æw?q«“ÌžNåïEÿðèµÖTZ>ñHÛ1dqûÆ.ôU¿ç {±ô·ñÜ´Å«oÝSNò@‡ÚôÓk¤»‚øø).ÁšüëTiû/™-Å"\¤G>âUù™X]_ú=¸ì>ÙðÈ|øožW’> ¹ý6ùòD‡þ£ðƒÄIQÒ»!ÆŸ[$]S½¤´²+j\(]ËÚDUp‡ÐçÖ+È„”3?De‘èÊö#:›[áЖÑn’söÈ9ÝkÕðÔµß"[Á©”O~cŸ(:;J›¤º=¹ë}Ä6Ó”’_ §;ÀrÁ,—zÍß4`j*qªë…¾·ŒîG-xÐ!*÷/qFb»¢}KË:TX´¦áײ4ÚUh‹|[Ì~óßnžjŠËÎû&·´|@õ›.sŽÂP:D4ÇyHÉ‹OTöノ$m“»%›ˆSÏnD‘¼{Ô;À{¹3˜K€$ăDäK…ïòý© ×ë F–v›ã|Sé™J¡ÊPa2áó$kúLÌvM¬6Æ[jmòþt…¢ÉU6–Ip$Géí,ÐYs=¨×S¿º¦Mfû<«»^?Ð6ã’áãîAΔ$ß;zEÊb*t«’H½E•n™+é¹ñ_SÄ]Bê¼§ÂK’çØŠoˆ°jº×˜køËiZ-7µ`‚ÚÙÍ›%Å-cW—¾«CШAO3…Ù{ø½Ð#Fè(6I`N‰ÿªºCÔFŒQ…Ö{÷ÌÝ^°µÍè!4,¹ž¾¾joqÅbKú¦yvÇ„@jdúFQ}ˆ¯ •FÕXxÇ)ƒ¨Gœz°z+øÌ;¬iø1,8_ÈC+Ãì‡5[¯G계 wΦ±ì=p9ì¶+™n9ö#?ìFy£x„FâK7jð³FAú£Må…zä(¦Ó蓮5YAsÕ*f„%¬Ó bAz›‹2C³p<‚¤Wìi…¯ÊT8Ä~éã@çÊÛÅ7,Ø/¯O~¾N =²€7мtÞ®­¨G„íf…ŽÓ¡„`VV?‰àxœÆ5|ì½Gý8Õô¯” wN±‚>Õ«ÚTÔU Uu‹"ï”ò_´”8KͶ*ð„I“E ð*±ä+WÅù(\WÇÂZ™ ÷Õèš´º‘u›ÐsÈÇH6Ò¢d&³ÌÄþRˆ|ŸK‰†R¡“g$Û0»~íš9Ü?Xö‹/y‹5J³©Øoï!ŒîÒ¡Xêb‰Q"Ã7ôgYeù¾¾^ê\7B>‘±3D‘UFlUEl—.ˆÆž¥Ë¶&‰&E“H[Ÿç^œÕÏMߢÎ.÷Â$áG©ï[7å3ÙªD+skuˆ ºG7¦@è|§ko¯/dM®>C¯8Óò@MÿÄÏÐi}ýEþC«žÒã=upcpt\Û ŠlãW‡°\®=}gF6åª÷@n¬% ùîö!¦d|wMTÔñÂ%Fð¸Ù€‡ éòWõɌα¤zL=·”…Å÷ÓÆ[¬}øj|à~ƒ¡IÓEï¿ÅéÓÆþôfe/1½»”g'¿d]‘¬);öà_2Ú.Þä¢A)/3ìýÄœ!3u}¾¤ÒjkÞœRµÆÑq¾©wxêzæ¯)€<ÒF¹Š›÷б]˦™ö†¹  µã.±ÏczÄå¹ñúf{~àÿn©NÐ/³¯ØÝÞWq@¹°jñXlg÷i98}ËÃÓžžÍ~ÿêøn©(ªÝ*“v!ÇB¬SóÍš›ÅxµGªbX·:gCå½ äÃãâ¶¾ÿw.!®U9¥V@6À#d¼Š3bÏÍÌŶÐC ë]hbÛˆô¤›ÉüBzkþ–Ñf‰N(a~Tì8n0‘ØC)ºòêãdÈGÊÂr[ÿ/l?“ï1fçšbÌ ñ¤j >%Úlc”GtbŒŠ÷¼ëÇ p¦!jÅÂò;øÖpLòh§‹­]ä˜kô<ŸpZ0[6^5¯-¨µÎ½·¨]n?Ùcµ)×¶â;³oWeohBOC*Qk%p}hÓŽ™é˜atì¬éÞ -’;åäê½ØïbÂã>=O¼pÂñŠs§%÷Äï®Yc·B_|j?SŠ®Æ1SüJ2CÌtÆ“DÊka'¶3¢vŸÑ¼ssOê½dc­½•îìÌÑ®öŸSÛƒK𜜎ÖgÕ^çºÛÓïV܉îjŠ`£µHá°H“—,zéÆ%:SÓ$Ð×ã:dÉú™z(7-²d#’GªûQÑ‹¨Ð.}~šùᕉ/ëYÈâµ\KLº2ê'þ%EÜ;ÃA3Ÿ‹‰m³ÍÀ¦MñþÔB]²i¸ˆ%&ǹw>߉2äGLü’Ÿ:,犺ŸÎTj5Ø“g ‚V4®òCëJœx¥Åë…­vZ;i¸~ ÉÃÔ’j¿^.o8è°©ß{=}]­¡4ë_µ(”ÄuIG½»L[½6-ô¬6ó;–Àãc#ü¬ºê&§oÙ¯™ÊNYóRâoE¹„Ô Hy*S›×hîÂ'F}ÓO!ä>ìؚ܋±þÚ ?>ç`™ô`§&a††jPþ-;NúWÍû /×H7äiô“B¼J|ÞGrÏ!Ú^Å`ÂÆ#7æfÛ:6Z$™¦}@ îà*L5ûÔ¹ö`?ñ÷1C´“"ø´*Eƒ4+Íwz6}Ppo 3éðÄø:–oZ5ø.º·D}©Ç÷ÒÝùîãB:zçÜÒǶî ågµt°‡lD"¾«z2›h% ´ä‡/’1 {‡ÏH}9$Ò¥Ö*3$„à=1bÈÙoçWØwu°5©®V‹‚Þ0¤´…C²?62Ç.ë"­®ïÃ^S†·ŒO¸+ämûoϽ·¡2ófŽ}Àa¶µ¸'ÏÛ.‚V  ?§2üY – ïÆDúÑ‚%ÍÄäÎ̉MòêyYË ÞÆ¼yǴăÓáe*ðƒ1êË'pµ1Óúß”Æ8‰Ý~ò&kÁ¡gÚâöÏwhzÔèˆfEps`r#­ §e0ÎåŸÌ_K™ ~¾c7ßͦ=Ì;‰Z„‚`¸^TœV ‹f oÙ-çŸcÙbM3Ë*›X~ºtO˜9Km¡±û‘4ÜcIc*iÊ~ h¬„ìëDnçðZöEç3Ù§ËO—ªIÚ¬ŒŽ²¿še YO߆Ö‚ÇЄÀž„ä?þZ[8Êë$°#øºlðËy–©Dñ3YU4vû¢ßÖ>¯_ b¢¡ƒqtÍx¤©>ÍœZYWn ðBðìò~ 15zQ7ËÙY­¤XsInî>†Ja±g5¾a“hbKÇ•*¾Ð_e;ÓI _´€ÅÀ×>˜·Œ7ý°×,þÈ:%Ù4"T®½K=‡Å…tœÍTÜOb~Ƭ¸—ÖQûpc¼…²šˆUƄ͑UÐ>s™ÝØq¢.ËD™Ýœl¤_ ¼yÅôãôÚ‡I”]Lg€à~¿uÀ1°<ÏSù;2¾<¾áb±®±qÕ飄fwdr’æ«k·©Ôt¨Ñø$0Œ¤´ÅØù(£“ Ña÷³„ÜEŠUÚ©" pѳxß½}ø¶õsn’Ï6‡Â‰žý#ãW‰X`©7—Y4ÜBÌlÀ¼¿í}Ÿ[Š*L'·àMnPöš©!&Zäê© •˜z k†°¾uÀ©¤z’Qáo’޽¿˜Àa søLë ¥¼_lÿ&tœ é|(€H=T‚W¦oþB>™0q ZÕg\MugjÓK–jǓśèÞNúó3Ñû‡h§öj©Ê™æí-=8mQ\–|y $–!½‡Èl Žáø*òŠsb4ž^F²Î±®áucãᖅϪ~¯ö_pƒéi]!Æ<òYŒIúíöt>ñ¦ùpÝPª:W8*~Â+W1ÝÓÒÓeWvSbõae\mˆŒ~9ŸsÄ«‹a¾×§›G“Á†[íRÁ¢z° þ™Îí7ô2¬#­÷}¸BÓ-§ëц”Üï( |ªo¡4á;þ¸ö¶+ŠFf ýÛÆX GôL¶âc©ÝÚ À¥sYщÔè¹?‚]C¶6‹¤¯5ˆ"º+Ö”™ÑŸBùUåJâ~ÊÝcýNU¯@¡šø¡á ôQ±®½~´ e–×è¯ •²¨nºu•xÈ”Ÿï-Ì2Á K]žë„%w³Ë©ÉÁâµ–—À‘îM±½¼üíoÕ=*ÓÇò½ Ú?§=ï¾!ù¤cW.éÂlªuñ¬ØhÏT£iÃ×c*-ÌÞ]²á4¤9‰A£ÇÖv1Û~T÷„ ^@Þ¹{R\´+ÐØýéÜô„×±3=û»­–þMrÞyÑ÷ËqÔv” ™êѦ7ûE6á›ÊYÿòKƒ¸ ºžÚ;qƱöaÝ«#U’ŒJU‹>XãŽÚy…à^rx·œOÛ›tža†6šz¥’D ¤ü¥KXƒ¸Nêzrò‹Ñ)T©}„SÛðD~P36çm=E* ¯kGCóÊ|7êý똤Êä}98ŒBZŒ:Ù~ÎÄE5û¡6¯bj6/G*CHKúø]zæÂ¨€Ù‘ýgʨ'V-«¯ ÚØ“ßJ,!ôйÝOyùöêŒÚÚh~˜“&Ù`ªèœÍï_Û¿z’C«Ëoñ£ºõÇ岘 ï…Œ‹RÐ:Œ“+ȲÕd‡þô¹Y¥Ô•Ó©túLMOÖ®ß]ôÔbaJu÷IF·,²õéNª&ÃþÀºòè \"•qèþº"F÷×9ðYô/[x]2³~CÊB‘záéEì^ÜOÞP2‹¸ú™Ã4øúÍCÂ<¶;™å,N~, ž ˜;ZÒ1û.b¶Œ{q¡Õ¶9íaí¬6_Ie±Ãg;8¸~RÜÓïå1“©úÂ0Ff9(¸üR·ÀWÞëÈ÷’f³¬Æ¯#ÄH·×7Žpn€4×ÞÖ’ïŸ"¯ÛÑ 10‚mçn ßë5Xah¯Žõ¼ßÝÄ“h¨:ÖùaýlìùþØ–—јkg@z·¾ŽzöÅâ|¢¯†}ºóÜÓµí<ƒK`†ZŽPDô.ØÈfêÄõ!]ɧøÅô ÆS²ÕLÍåd7ô³êüCä³`Íó5"t†»@wºŽgûÁÛÞÎO©{;f“_õ¼­™Ê " ¸ÚW²âM#昧h]ïŠ&D„Î^ÛIÉì󴢂†ÁØ•l\F=e6òýMßÉ78‘˜n?FèánªjüÐéƒSA¢‡lÏ4,áÄÕç°ªYLM~z½¡(N‹.ësî—ønOfƒ 5´030]°ƒë/¦8·ØäQ¯6¥»6½·egDÄ—ü&ì{ì•÷ŽŒ\tŸ9ž[ïóFø'8¢\=õÎÚ vËѽúÈoî->®¥Ê²r1E»÷³¯¥ñºÍî0&æoÌÁÄõ-Ç|u, ©©ŽÀˆ‚}{~¶DS»øÄÞÁN„ÀÏÜU`W¹b).È@ÁAØo,Äß›£¼!×–‚¾ÂíáæÊ6]2—g º½è0ܹño´D|2¾ÅGBMýÌÇ>¯%II÷&ØÏ±{—²ϵ•øé^Í#2 £%Ɖå‰A…õq½!µÖuò)Ž@›Z(Ý~å¹ô‹¨'S|£"£4@ÎGÝ~¹x²9š©¾.µU^®èƒâÇ$¡hÚå½0wáš;|È13t÷ÌJ‡ÆYÅPî³ÿñƒ±'t„æôþÉÆzW´åk‰3îЖ­Ë¥É–ó]骢W¡Ï»`ôÜÔsë/–yÞrNx¸‰á¥ÁS•ïÁ´Ÿb}>o2¦ä†Z¼tà—XFßeú´¾n3,í}bg6ïH¥Ÿr¬¤ÓDe¥!¶Yß ÉÀ™xˆ¨Ï- &Óá…£vÎápHÔr×BŠ|ªÛ¬úÅVùÖ–K>7KŒ ž­ûà×á¢UïËÖU›©‰YÕÆð-#çTŠRPE˜0á=í8LÄúþ—ÄÕ ÊZtÿU­ög&ÿvÒí•ùû®í[tš«˜Ó%%A…ç8/Dd¿F5•O Š(Æ ¶]-6`‘6««Í%TæbÛ24ϱ%U¶hÔ¯-Hƒø½d#nØL”àñÌ?³((”™¿êãòàÔ@pD´Ý!ª¬\¯ÓâØ*j¯^©<‰J¼(˜)eסµ¶~Ã'“X ‡çá0}ª)§ûe.ôe(, òŒÃ@L½eŽú»+ßôÀµ7¾‰5ÆŽ™f.~Ý•0AWXÙn_DêÐ77Âõ§Ió§…×uO®,e—{Ñ:¥=9áSüÝ 9m„€D2üûÔ!Y”õï]“„:ƒ9ÊZt¤sgu³„DušMðnò2œB9¶¾Îãtúm,Êß¾P·>Þj‰ÅÃÞ*µÇa7¾;¡µÉP”‘í ‘iCº9Í×äÏ/Ñ3ã è®1 ÞÕóR“©½¹çnœ¢Õ{r!üÍwá=+ +»Ž*d~Ýâx…õŠÇä±õÀ]¾rRïÔ3ÏPi °$‹ˆí­*)^=¸ øŠ“ ðç+; n¼5rOŒ²Ö£‹Ï%Xé£,Òr&Ù?™°©ES×ò?ÃC”ÕgªM=,_2Glµi—u¶Ëj &áhmS%C8Z¡ ¶aÂñ¾±‘õ æAø‹_'‡#3Ñ't:QJy¢)~B Iͪ–á´ÎÙ‹ÂBû6¶èô6oßLæ‹Ä‹ýaç·„Â.3¶ÌÃÛ xËNTq,ûŒ%}ÓâÀzq××è›ëF‰›‘•ê¿`Ó½æá¤)R8ËÜáIWƒõÇÐÂÄl Y/É#!]š<7G_$áçÁsOáâ'q³Ð¦šCWó.Ÿ‹%ÜeXîsSŸ¬ÑÅ~¹îL4\6Zâù4}°ìVµkóiÚ³¤üPî°Ìã¥ó£-l5J0OÕȰh[hÔ)-t‡1#Eh„¥ÖYÊÀº|OÕ¢†ûmÏ»<¤j¤‚< oz‚·J`’×âC=!J±òZ®¦píÈdÙ<"6…¢Mô$;›©,Üó`ȵ Ì‚E*îî^‡†ŠS‹pK ù} }¹Yª9DT­hÖ1x;´•K}„…|ÒÑ«á zûBw¦Äõ7Ø •!)Aøf†åÏÃÜ%¬Ò¸Êæ&_aÖ›0CJÕœð‰ËÁÚ»}Lµ„…L·A"õ—È",Óéªus-ζT6ƒKJb ©„E³ÇëTNi™ÅbeÓ`&¼eÜÄð&œ"2R5RÁôÆ•ÐË”(Š„bätÓ…aäR èqÒÃ97!¹›"öôï#P§}¯|ï/1$8C½ÒÓÜêWóM©,múGuÖeK™¡X#¿Œ‚ÑÙ¢'©nËñ¢[³–Eæm U=s?i—l×îwNŠØBª_¦UŽ© §åF‰.£*¸î˜}ËFw€íY×Kc$qP$tˆBÂ#R}Ü ñ3õ9Íwx›M󿯌Ix‘ïjý•N”µ¹9n‘qO £ ¥á}¦ú ½ à§FÃpð‰ ÖHwcħþ‡Õ£éhÝÈ›yAŒ7®ÅÈb¬錉]p8E™¥ÈPÖÕBºn<ËnàÇô¾à¸b‡ÂôÝ#`Ôgû™†CN;ú;³3k´ðèo›ÝòyS֨ױZxš_àC£ÂGš´+âDÆúÊûïáÓ°Û©1È_79F)îb_?œâòê:¢¥mC~L¸ÑÕtâŠ8!ØÝPN€ÆyúñÕ½·ªW i‰õó¥ ¬p•Çð¸X³É»Ù!€ÞÎ4NlùEã½S†Î\Àé’.sÎ\ƒI‰áiÕåÔ{Î ·KŽÕÖùÏGœ™ã7ԯ͙ՕÄò5‚jÉ 1Öþ¿ KêÊà‹Ö2²ºaé?ilÕïãæ%À™º¯IìÓÝP¦Àô$Ã"GDÉCÜЪ‘½×º¸ç|íÖ6{wæBþ)`JTý>-Ê¥Â"¶²Æ8Aj³nû :qIÎk´hh8ÌõZ˱Ç=†¤CjH—}›Ÿ{~"ç¡ ˆÚhTY¡¼åmæw.5%{ñ)ìw“å0T•ÑMð—­Õœú6eLØüÁ8+Œ#¬T` ~ç÷¯_b§‚A‚°]®ÚñÊ}DÉ:ûª•$ ·~ªMü—E7mÄ–ö”é… '¤¤jLûXœwç­n–d¯GØKš>Pž›"&À@ZtÄÊꔞöÆö×+L˸M’`—É\>lžº°V”'$¸a°ßxN99žÚ}‰‡ŒæYJoF)пö®~…]êã7 õoz•¼:¡ø× ÉÍ XÜO^SJ?/äúíj¨Ÿ®.‰3]“@•ÓoˆíMÚÏ*Çœ~0ÑØÕðW ÝP‘õ‹H{Æ¢ñÚ°í~¼øšç5¶S(aêÐÞ¹Px¦ ½ýkomFWŸAeª.¼ÖFÁøñÆóS>ŸÌ±CSòyéŒ+/ëܹWA¼žÈ›÷¾lç:6{Ÿª~5ÿÀübv(©ïøj?.ÙÕ¦}wžÂðSOþ“UTWÝ£ÞñrÇûþÒÍZ z OOA](×ny‘ÕÙ¢ Î5Æ À^¤“ŵƒMO¢¦ !þÂ%6~í«y«><,öXd!{ø¥·ˆmîÆ•õÁNÃTóQ= iSïÒ1*¬h³B¦ãB†…] ˆ^7à]xñªfé/oVÄ|6}ù-H ì¢)›¢­’›Û ëe›ÙÂa#)²t6ïOOׂ)SšLuuʾ¡,ë1¡Æ-ðhhÁPY‹s®®^Àƒ“'Æ)Mà?q´ù4G%}ÛUÅJšbE¢†DZ¾Ê\ø’ò&ìµ÷¥ùɈ#ßð•â2å3 DÒóI¶p÷PÿdÇÇ"5t4Zé° PS­¹H[VŠÞ’QÞ4ÁÊ[sâ½iXÜÚÍúܸñž/Te•”ç»c ‘’2ßϪ` E§Ó÷å+ƒë%ä¬È#Ù ¾k؀䢡 ½Ùq¥Y´þ9MqÄ›òñC_¥-uN¥Ííç6|Ñò­¡.W!÷;/2¦‘Kr P:ñÔöØk LF9Ÿ¼Üê…¦–åQ©žPç+Œê÷(k€ÉfÃS8¼÷œ-c|õmž’D«îq êMª¸Iþ²Î#Š2½Df’³¶†CbqHÎçæ#5“wa- ãìõ:ßn,£(6|â4‡ Õ2Ø1‰]æ*gtVXTø´)õÅ¥>ÚQB >†Í¢Y¸.ÏËáxD4<0ãF‰ºUËt~4¿U]ÄTÿ^ÖÔyܲ饣R²•uNöŒýÉXi¦é–¥ÇÉ-£ç<Óàg5Qà jx"²‡£ó°åVeY.Z9TE]€c”3ü(}²¾ûõ¤{ÐWÀ@t| èM(ÕHží)SQê%’Ö‘Ñ"4‚ÿMÍP3dºÉªš …zö–‹¨ezûÁ^B“µUEsöͯ·´rg¹ ÷X$¡ -ã­uðXχHJ5bç©Qõ‚‘îÕ-}þzc[¯òÜèï¦Å¥¼rpe°?t›?2{o´/ ’ØVøÊè,XêîÊæ JÍ‚šªd;üSH‰Ýѵʌ/ðƒà­µŽ×)˜-(ýª”[ÏMP Á¬Ëçe¥í|¾äßù«<î> Y2œÔéŽð™téXVÉd†jÞ+|ëÿ®–Àé“…Én`œµÀæTÂÒo×.®;^R믫nëõªz–  7°ú.sZh¤ƒûAŒ*Û3 “®¬§­Ít+½·Nk}Ôª]†ˆÿ^Rj«Ù· !%Nk+šHDnü}Ð÷àâƒa^.nô4…zÔ¡kÒùÔr\ï—åZuó.u÷®lWn|LUofy8~T9/×zñŒ£‰á±ÞÓHÆ))ïïÒEæ·}O‹W(.UvwÌøø‹PÈuWæ5ùl] Úxó«ºØ¾qÁ¥âuýÈÚRù6ýL|ì¶’ú”’ɲ”‚jcϱeù>–MŸ “þu4oEé€"p+•m DaÒGؤ˜(( nJÍ>~ðÍ0 ‘ ÊÈmû€ð°ÖòJ´eÔ.eX4|Š x ´ºgôq¡Ò/–ÁpSC*bOY-x_-Æ&¶KÃå­Y:ëp§Áp(›_ ­»{mKfÜøß÷i¾eí‚'9Qèí@3êØgv½Û"ŠFÛ8*a=÷UÖ‘åªò·•t-ù0#6YÑhéô ’¯¨ÅÛç »–²Èê+‰Ëèï²UÊÓþe•¨KQ«OKÁ›êe ¯DÿðØû¾ï@/σ×WI© >„$],ü†a)ô• ñþ““½˜“J¿ËzWU:©•w™ygë8S‹ÅRUOÙÖJŸ“[ƒE†™úwÕTI(n9Œ¯øæ¿°ù8­w»Ó«àº±Ä¸˜MBªãˆ§ŸIr›óóÖl¿wJ… ôå%år™"Ü|À‡Í¹Ö3æðc[‚ö$ÌÞ¦JÄÉêó×%hÍ%1Ù˜tà‘ü³=~ûæÛ×mñ…,ïÅÒÝ v—ç ±9V° W§#ð]£Xͺ6z¡#Eà" ö|ÏSʇS±?‰`$.‰c &!Ðè³MjE>j×\â§Ðµ˜f(ô•EBænô°»²'µ‰ ±-ޝ.j–FmAu.,ŽôcEòì$Ý3A$jHâÛ²ÔkBeþ­ñîÐà>¦’¹ÖÆ—ÔA 9A8©2cN±Û{(îA)‹ô•U‚UYšùÕíÆ(®p a_s&wºÄ6Š£ø¼½BH>dèT#ï)š‡Ð߯A¢yÏ_—–¤ý„!N*7JÀ{ý)AßžÅûx;·«Gf?\sÏZ¢ˆíuSÇSíoôZ`_ö˜<Ý Ë¿…*“ÞZfC¨PÍþåCÎþÝ—¡™a y¦‹Ï¥¼èbÏKduÞéólXK¢}úãkI§ÀF ÓÅI*–˜ë~tÑ¯Ì %Ð#ª!ÝÌo!öÎ#äqcÎû+Š.ïy]ƒn7Ã%†u< 0iÑPNœœzZN“½]µ7¤+ZÖQjIg!2ù¦\7ɘ’ ÷N½MQ½õnG/NÉmX³Fúdq¿öî‰7ÆOþ¬ ¦`$ÆÆ2t{’T0®Ôj“³‹BiÒ·?ÏðêK¿7!Ÿü.oØÎæÕŸT`v• |Ž©XÓ—àÛefѺµÉdüw®¾7ˆEc,'é2 sŽt•|và)W—ŠñJÖd‹ê'·.ži"·ú L3‘¼µ»sfzß±Îúq¡{„%hÜ#ýú²¨žÚ³Í1rùH~*¬Œ X¡_B²AàB)†wÒƒè6ëDtê¶ThßÀBÞ¸*¼§xoÚï½aq½Ø¤]™û'˜-déu$°_ÂCoæâÝ9VhÔ)iT¹¦§ Å­!†·YƒjæN¼¾ ç¬T–_òùPÕx¯èŠGüÑèYá‡:§PÀ¸òhòÛð:†ŒÅçŒ[–|GiƒxüɃö9_ýFñt9 M¨äfÖàhýýr—u&N"1¬»vˆq‡ÆE0¢–Ïéó®•ùXÄÛvËÎÚ±Øð$Ñ  Ç’Y>jq’ªéÉÆ+ÑÑX<@¡+ ‰]dMÄLºÑìó]ñg±ã ÉÂö³œäfhÔÑkS©¼Ë.Z}7ʱfÍ ¿çM¶y+m¶¨B8IC¡Á·z¾‘‚f«T¡Á¹HVÐùöd¦Â_n,wzSö|`\´ÐŸw{͆…æŸY"iï/¯)WHRà¦Ú&±t%ñ©Ýy®ÌÔ<ˆƒK=dÑ)/Ê Ë€»ƒÄ…Ú,òɸV@1ñôhžö)º˜‹c,Q£}Š b£`Ýr® /Њ7~ %Èÿ[pô»Ø¾„É’Ï×gT¡±Ø0Z‘Ÿi8nÛç™›Í kmbIKèsJc º·Êo¹¤z''ä’ ‹ÊŒºï”Ä&é2 3Nâæ)ÕÏ;Bíµr,ªaIa-çU‡ëcCî?žŸ]S¬<“} ¶¨©4‡–ót6æR|}³DVkGú?qŽâF9‰=Y¨ŸŒ}ÙK‡G=“÷a0+ÿq„õL}£þÑéü¤]߇£…Ÿ¤Ü‘·g-4«v™9Ð `·¸6âÙ µ:€,,ͰÈSUšD uÍè-\ ’Ìtw¨kŸÿR3OÇĘi_Ï`<~2¸ý O½]½?êf?¥-µÇb ùï ¯­Ð Ý݃þo‚d ™ˆÐÕ2Vm¾Í{FóŠÓg~«+:ó×iï>…«L‰ °]ã'm†èº–måÿÕi…è]Ü/;¯­öŽØžAtÁ—Ü“¨:KÊ›«×ªÄ1 ¡µà&ýçU•Y(OTºÞµ·9$?Ø.!x\Þù–…¨E$²3o‚7Ðyµ:á&R IÈe€dIÂúZÝÒ W#âlQÇ4z7ÁCÊ1†VD;ƒ³AÇr"%ô!–ÍÌN5Ak=Ø—ê’ºß}ÞPÄ×CÔ™è]F­3?¼dÉô·šø[Œ'®¨Á›yeíÆqŽ™›˜¦b`Ê+úE÷ó'ŸBo-rzÿ,²§}-U±ˆÝèHÜÏyñ,ñΞ –‚8Á 8qa.v,r5Æ OÛÌ ÛJãoV<Œ Æzµ^ç¢(‹¨B˜Ÿxg%cž(|ÂNxâZ~Åõ¬íTïßp•Y¯ç[K…uN0¯°‡fÜÁÂäaަɖ—F ªŒ˜hM-‰ûïB…¸†öb»âÒäùeCýõ]ÙÜš¢›Ö£ 1I(o©Tã$RÜ7íeþÏ̈ºÙ.ø¦þ}ùKT°ZÎÃZ¯úcX%¬"˜šh÷ë‹ÝÊšZ¦¯ïs€¸Z\ô´vEº>¦¤_‰@d…Wpa -hëØ_ñÿ°¢È©ÓÅØXˆÜ `ÌÇcS~„ÃQseªîxÿ{L5‡© °à,\öN§Ï¡œýjܼæj¤–I”²£çãdˆlz°,ŒÖ‘Ë8ZÆúHªýþ—òÔ)´%lùd®ñ…MV!1f"] ÚA.«(Yr¥¶]}èMz$ª©ÀMú‰¬Ç&ÖÃí^y,¨ï¦ýîd Ï '¯™aÚ°uüáj‚B0Ÿ´Ë|CŒ½šB[έ±ïïèÛ=ÉÕ>ѽ,1ÊŒaÿ$U…AÄ×F }ÚšiŽy:|îH×T>øŒno$jà6)‚鋯ÊÑô¿â¨{`“_Æç†WšÁ)bY9¸É3‚S]i-Ù÷6¥Á‹„‹J˜äð°Ã š zI°@]ˬ¤õÛ2«øØ[§ñпXׯ©¼T“Ö<¢Rô`HµgÅ·˜ªG^}<4@°6³ÛòÔ“³ÞçûqÓ ðå°(UM$¥g ÑÉÒ&‰}zæð:òOÊ¢NÌL ´ÐëHìWH‰Â‘G;Ò€"àãp“Ål£š5£ 䟞_tGÿ guÐþх¦ÂÌæßÎ9Vª$MâŒúõE§ÝnüYOP;IC„ «)ž«wÌ}*Fõ¤™8FËö%‰ÑOD÷èK{+‹nÜâpËeÜI[YT#RDš‚ØWº"<Ì0Qòº²ñKV} 4²Ø±Yqìâû,f'óSð‘Õ]ŽŸ>Ïà:¶Ý$Þ} pÝ‚§øs·" ”èXë;û,¼ ëÚ0£"©S¡/Å⥠xÃ|+þοÃrŸ¢q‡c’ MgsÑÃj¯ÁÌ`q}øC²2ß‘ÞáV.ÅU;ñqò›XRË!’Á¸‹/¼ç.DÓ”Ž ÉÁÃȭϤWÿ ãCäR‡*óTí}ÇsÊCh‹t` KPXׇÏ`rzyÛ†9)•³¨u¾UrñErÕ»aÝ›®ñjZóT ío÷†¦fÅôà¿WÝhJ>Û‡ w_H-„¿÷ÊÇ«ý¥ØÓhî ³œÂU\§Z ™óüñÓUÒ6•å¸s]N\¶üã :WérÏÂAÞô.9s#¦ÊTÇ|º½F@Vnb¡¶|#¢YÙù~É9ÚÙƒ{ÚÊ=zýsý¬ÍgjÕQNÍMì9wXï˜ wë,[k@œ©1brn̺Œ_ô±d—Xš's_ó,TUU6L²K¢º…¯Æ„q ¤—>fœ=²h:ÚsžlŠ(Öþ- «´§ÚØJ2 €Uah1q iLš„ ’‰ÆQ°²4[0åÖ.‚e–Ìò¨â |ˆä‹°œ*kó- Å$Dê4Pµ»ô­w®“¬‘'®Ò˜Þ{9ð£Ò“–‹°Õ41ÊŸ¹QÜÆÝU)âµ×í’&£yÛ+˜!Ó¿£šòÌâÃ4,+Æ;‹\8Åò#Z”‡ÁóÚ3Ï»…ÚˆOTUíü£ÈÍFD8E~T³9æ·íYí”>¹çÍî^u©=%C—˜á”AÙP{z çI¢”†ýÝì ÐFáGÔ®Ðñ;)‚_âf_±]Й&>n$êënâtãȆ7ìKf¡B^»‰Õ:‚–Vî`*|í…c.± µZ6 AK…X÷ÌÆÍ–* ‚Êž 4í´Ìâ‰OTâã³;FÓÙ4 |soеç?ôû¿ˆËãßø[Pœ‚X5ÞúSIyA˜»IÔÈ–"¾kS”)ļ}Û¯E} èLÌ©9ÂÉ sY”$£ƒ§ÌJdÐPÌêä*Lß‹>á¦Âë¬ièÊ™n#TŸáîí.eV-xµm3¤(?™˜¢O˜JÕ4\¢yˆ…ö>ØæáJ Ž}²cúv*Ûø¨‡d IlŸ»Ÿ¹ $”OÈ…{ZÖì™R:65}»y†7qèÍ’Ø‚.%|¬ TÇDH&ëšaÿ$œ~¤Hó4Ë× mê©çõ´†/ƒÎG «}Ÿ<Ö«ÌK}o—ŸóäÒJ«ß–ÁùÓ4gšS~X·š ÓòÖ^Ð:yY‘YÒò>ä§³hõR@y\ÃEß¼™OEÖkcxšßý’¡36<ÑA#€Rˆâ!Nµ«vXl8Vº3•¿×àWqç¦X ýêçNõMfI€Þâî°rw÷Ì%{ •?C ïYgð½èжç"ÂqWÑ1ÌJï;{l`k?•Bÿ³ ú4´„õh`ŒjŽ53É®jÑ㎴v®$ï¤QK58MJôm«´ÄüB}ävõ9„NA*ÇxIËç¶8£gG¦q´ÀùV íŠÍ®ˆ0d‰+Ì´f¾¤À ÷º)Q¨­h{µsâïn®WÜÄœ°q'œÈ «Ç8D„{TàŽö}T´šÃ;}as[A•Y½h— ˜ƒ„ßÇÏe±.öƒ#ñšìÔd»Ïp¨“Ð ußwž RŬá[H>^éÝ/tn@u„Š/úĮʓBð(˜ϱé™ôL½ò@[ÐÐ’ÃÔ)k[ç^ÿò;"ªë²)”mÆ÷­Û U…Å1_"ÍwÚ_óÈmÞÚ¼Èól öÞBÿŸƒ©©üÈ7J&òðyM´cx4‰OyïµLË+?uÒžôƒjÍøý»šÄ©w}.€Ô¶Ã½ic°ø+_ØKÅÏÏ_¢þ§xs}ã0Õz®»JEèòæà”£÷8ì ŸÂ5ªGH· 8^í·RRÁ\k <¢œù+j‹Òµ*·µøŽx7v–›‚©·Âmi¦K»Ýøž¥C†æ]ëb¸Ë‘ºÄ¨ò°—W8“Ä/È^¼çÑÀ‹Î#FMñEñŸÔƒ[Œu¶Æ3åïy&–e±z›I† ˜PŠmô)HÍäg*ïú´ÃŽVÄYÁ¶ ÓF§ûµq9$ҤƎÄýš=ü"nšÀóÁòÝ5ÒR ooߨää¾9.¾‡,·§ç=Ý£ƒj—1mZÐ;ÑæӲ߶x¯zÖîßhe/ÇihlÜ”FV•(ÕŽÝ³ÕØî‚GQáàÒÓþ+·"yèò1#Î]½£?ÇκÕwTèh•,QdæŠD4ç~Wëó$rEI”ºt¾p®ó^ŽF5póÆÌ/[`cE¬1Š‘ÇæÜ·a¤³_±:«{™¾üóhbŸ–3˜=0¿K)¥`ç§è:óæ(Ñ& –Aø£OÿçA ô¡g!óÍ—üZ!hò¦Þ´6Ý­Ü{¦ò‡êü˜ãÐ=J½½8£Ü†ÊŽ0Ü´ÛȺý˜KõÑ!‚ô’EÛjð^C =ÚPø %Þ–)Å›ê„Ã7±ÙÍÊÑ;%èŒG¤%wxt)³6q:tÜÛ_ÎuÅ„€ôúÒ¹¤¤ÌCbùý¢0æêš€E©‰Ëe_Ûá¢Ü b8oB?Teí° œ¢›)¦ÚØÈî_1½–3% Ñï(/üµ„ý]£zcåðRÕ çŒä‡y3¨ôá|rïÐŽH!Í&OSH™ž…ÔÊâ#+Ù:ÇNv*˜ž!F{JÁ4ÕOíbFTw™Q‡—?37s›«W¢{Ä.àZöÙ/àRk3åÄ @¯o£nZ#Éõî@LË7÷LÁòg#‹7«;!9UœH$Ãôn‚`À4,®8º×žÍŒ¾}ÉüÔJ* ¾÷n=ÿðA{£¸tXy²…³ç D$ýuÇ#Ïá/ŸŽo†ËÜk ™~{óglæ/2)D¾}Áé)ÎÄÞ£FãjÔ: ³ud½·^~ºjT†Y7ý´`ËÉëÙ[ ¯YŸJñ3Kùøk4ëˆõ›J{•è ên×ò§ µþÕmŽ$®?úÅTj&@ûä£ÝõÇÞð62‡¾a“ô%ÊÍ¥e·í@Ùq‚:0G™”±*{†/Lp£nX (þe+GÃ/A ‹ˆÓõû ô OLQ‘˜¥]~YÃdŒÁt…©ðƒý^{YôElW-tÍtJ^1‚¶|¬<Ù÷;î\öœmx*)Í;~ŽÊüDÊk÷¿ß¹¹žQ]Çði¹¼ðT\u°‰´œù &C4|„»Z²Ø›MðžÈÇ™b8: îv‹¥¶½q0 ŠVß®‘ ´i®ú±öJà©n¼r€äšHVOF“sŸax¼8é_L!ì';.}-òHx¢?_w1îâ«vईá¢CU«¿ÊU7üÂW•Š£­u¹Þ@µ»¦”¹ –PçƒßŽÕ]Ñæne…((ÄÚjÑÆSï;íDZÙYت“kóéXãÆÒÞ¥ÁëáWlØuÜ¿üÞSVCÙFÿKÃÕ`ÖÚ<»¸ÏÍd.RŒ‡øù‹¡âÓVK)G†:ö¿Bli©I”—¤f4ä—³oI „ÝÏLJþ8ã ïç|jc´¬wm°³Ã'å#p®QÒ¾] ¨‡)º$ù 7¯+]ÃB­ÝÈqR6c.μ.¯yêf`€D$þ­3€®ÒI5óv<œ6DD˜d» ¯:‘¢íºo_=´=1ÅÊ×]§×œ/zd5—êÊ>~¤õí’@bª^P¨X¤y-˜õÂÌv=ú ´>'©®M`þö>¯^úid%Ù䯓ô:| Ÿ+ð‹[b{‘PN{]IïB!“Câ¾eKA@ VÒHÍ}R-DühäooSzRK?«SàU5ÙËÜhJ;Öô©¸Õ¿rÛ˜i´Ú Ò-œm)ž‡²ã5®PéhO¿†÷g7)™3~§ƒà¡¢|[s¦U‘zD5¢€¾  þ$>×l¬³VCÐQ {æ-Ë Èëm4Í N¼¦=†Of(°FÞJÛTë÷¡¨¾'ÿŽd¨f(Üœ!e3Swp¿²uÔò<̦ ÏçðË…Y@ä²+ê%;·~§Hê0%æ1ŒÃŽüç@5J3쿪%êñG0¥bi½qù‹ÀÜŒ¡…°ôÌìH®g×݇K0§$º@Æ#DCaw® Ú{q…..ä?Wü›±/xBuÃQ(;á~øÆ¢ÐO‡f[Å*Ã/o¤i¿Sö«ÄæÝJ[8®–’À‰€A]o­w“ØkÈp•ñ†âÍÉ}×»çeô€ž Z œB÷*-ÿøÌÚôîjÁW #@½Ø¨ùÎ̘–ÞDöòƒÏ3ðsÌ[6S y½òU×ô·ÒHØ« ]ñ:m‹þ»¤Fm¾ýÞ°à.cÅ„" NËi²O˜ÂÒœžUë d¶ Û20â¡^tïRŒ ‡U ãHr­ë»ÕvÌ:‰i¿g‹‚ìˆSTÎGÄFšÖ†Bß“†å@pì“/ƒhP:CêdŠù²ÂŸÕª<{QžÌNšIøÓ„s¾!!âq–Á­*S+óÐ =[çß•¥ea`1ârË À†R°|©’ýÃÐ9¦L¦z¼d]µ»{µÉÄÛf6ˆŒÍ>·¼L«§`§ìkîà C?döŠÇO,0ЗpúÛCé×\÷¼’4øà¢@6y¢DÉCê¦-{ã è„7xy˜Jóôl+j±‘çÀ•ZϳÖÈ©#¢é T)¯Û½ йíá,'8«$ooM¨dLú‚—°eRŸµ9×ãêKuVy*`MÜ/Ÿµ+ ³n¸S̤nÚ_<±°Åwi%ttÿ˜·R»ÚáôyJ ‘ƒ^¿vfšt™èHßÁvYà«öÔI1’y!:_¯™ñeªaA­ŠbGZ9EºWœ1“E0ž%´Çÿz·‹1·F‚X{à'á_"{T£™«˜@Ç5³j/w«ª]ÜŸ&¤Ì»N;ÖÉÈ«¿Êæ…š1Mœ²ŸZAýDVˆ¯¤õÁ` : ©¤',˜ÄÂQ¿9®¥¨ j.§ì@Þosþ.–ç·DÈóÕCjuLqäx& · “bï‚«§¨7š5Åõ=БöZ§VceÄS”‰¢¿‰¯QÅ&0ü÷¹gëbçFqBE»±{Á¶1Þ$@áEß¿*ðByå gÅÔP‡O°¯¯õ•±A}Û[·É;d¤.ÿ%êÏΩ|c{”|‚Û›ÖÍÃfÚ]Öõ¹ÀÛîAÌÏ^S‰~tzœCiÆ‘V_¤÷ö¬Vw«É‡AÊJƒÄ7Õ–ÙaçN—âR)„÷+ƒ#ÿ ¤Î;ᆠ_¢AÄ;)1ª2­DQ©òä:Ȫ–Û„²ë`‡¿þÎÌzåý¿®ïj  ºI³Žh8w¶ÆÄ±‰Ãðþ7[šžñAÖ¨?ºfð30‰LÍ8Úä07™ˆ=®×®såAõŽU@¥¿|ÿºG‚¥œ¼$AûG5Šþ<ÅFÜ{UÑ$¤DÍOâ¯I]gI‘zµèì0XŽC»´^°·ˆpØ2!ì̃Áé˜Úp›=ppßïÄ2ZmÒ3Co7¿¥êÍÓQyÎÏN&ç }P·i0_}è½üßpáj!ÐEçRQÀ¯0xЖ",ha½¼ËõÒúï:?”•¤=¤1:'wÀÎVl¸ÆÙFÒ´9!eçzb>ë0úÅoàœ%ÆÑíEÌ’ÎÜ)ɆâfvŠù ŠõU%ÉPÉÊ‚xW,E½S•ëß/¥$¤ô†çUBR†ŸN‰RÊÀ8W¹¢Ý_Ù,t"D³¿„^z@­®\³ˆEï Ü[ô÷ÜqéÉãð)Ï:—wÙG2ù“öåf+tñÖi트i³Å’‹²¾/-¦©œìSÎã˜ïí"Ï)‹sÌQj µX¬¬‰éÒâH_•»‘ôêú IŒŸ`º€Û†,ŒA‰UÆÆú‘ORæƒ endstream endobj 105 0 obj << /Length1 1685 /Length2 9843 /Length3 0 /Length 10934 /Filter /FlateDecode >> stream xÚ´PØ-Šî  îîîà.Ah ‘w ÜÝIpww w×Á„GfæÎ̽ÿW½W]ÕÝkË:{Ÿ½ö¡¡TÕ`‘0·7ÉÚCœY8XÙRJêœvv.VvvNM°³-è/3 6궇þ+@ :?Û¤ÎÏqJö€‚‹-€ƒ ÀÁ+ÈÁ'ÈÎàdgøO =T t›”X ö ”½ƒliåü|ÌþèÍ|̤$ì@P°P:[ìžO4Ú4ìÍÀ gÿ¢ ¶rvvdcssscÚ9±ÚC-E˜n`g+€:È u™~7 PÚþ쌅 ivúÓ®aoáì„‚Ï[°âôœá1Aχ4ä* ÈŸÁŠ0þº+Çßteÿ&CþHš™ÙÛ9!`ˆ%Àl ¨È*²:»;3€óß@['ûç| +l 4}ø£r @VB |nð¯öœÌ `g'V'°íïÙ~Ó<ß² Ä\ÊÞÎqvBù]Ÿ4 2{¾v¶?'k±wƒxý,Às‹ßM˜»8°iAÀŽ. yé¿BžM(ÿØ,AÎvvv>nÈr7³bûM¯éáúÃÉñÛüÜ—ƒ½Àâ¹ Øôüƒâåtœ¡. ¯;þ¡ppÌÁfÎS%‚òû³dñ'~>ì0`Ö€ý÷çï†Ïò2·‡ØzüþÇ|ÙÞªjê*)2ýÙñß>II{w€ 7€…“‡ ÀÏàãaøü7‹*üWìÿ¤ÊC,ìû|Kÿ)Øõ¯ùÓÿµ €ÿæR¶-@ÿÆß±ó°›=qü?+ý”ÿ?ÿfù¿iü ’u±µýÃMÿ‡ÿÿãÚm=þ xÖ¬‹ó³þ•쟷ò¿¡: ?wV dv±û_¯¼3ðy$ –¶_#ØIì2W;›Yý)–?íZ¿—Ì ©Ú;¿*vöÿñ=o–™ÍóËáô¬È?\ çÅùï#e föæ¿7Œ“‡„B(ìÏBâäáxq<¯¢9Èý ØX!öÎÏ)€çö|öP”ßåå°Iü6ýøžÑÛ?€MùoÄÏ`SýqØÔÿF|6à߈›Àö¼úvÿX~wÆfþ/È`ý rØ,ÿŸ«ÿ >“Ûü >Weûäxf†ü >3ÛÿS‰À3‚üë¤ç½`sø|®ú7|¾26'+èºg½²9[AAÿ0<ÏÍÙí_'žP2Øœ:ZŒ°‚=Ë¡Ç(ÂõwCfk£kx Í&2d-þÛ–™µnkš”#«îÃò³g žÓa®;Œ¶x§—föƒ]ûãNævÄF°I4 "ߪ[“r¤Q™H?Ôe‘¹\ ´"DQ%e¦ç¶p5¨¢Öî}GeȨúÖ6à†r6p¸ƒWªUú$QU‘ËŸ‰]ˆü)&ú® .tkÜ…@nrKPz'tK!,ú}Hþ…NEïÅxçʼna »0k©¥†$&š²m"®~¶J¬âÉL^4©‘@}Þ/ÁOo[¼È¢?yõ…–CýKçe˜7ˆ³ÛáE;¬ÙRÜ¿'ת ü¢Óí;8ö;xÞ&F"öÐQ½rn~±“G úT³¸êð•œ#@C»Ö'fHðc÷z)ðœݪÁËÏOØqŽÓíx,'ù>ÿ½%Ï /|`òð Ê]Ð+R¹@+ÿH߉ã‹Ya.)"ô÷æ]ep }0ó„ŠäŽŒ®ºhHßï»Ñqä:\)K»4Ffce²Êõ×k@ÚÝõO~ÆxÎd<°fi|HPº¤`YiŠüáúSuÆÊŸJ˜CžJÅxÏi­°­XöÆÒ¥ºoç˜ÀtÓz…É1äö)!>ïô=ÇNµŒÁî~'†–“×ËÄÁbÞ 3œðfâ ) üâ§å™RÙÄ»6e¤ò Œ3ò1íôâiB÷é ]Ð3RðÇÑ·h=i˜)|«½bj©´Üpýúý³ )¿ ™HÂíÔúépx·åùóü{tÒ™pS¯)tÙ ÎF›Óï˜'Ì× %’ñ¦Ñņâ-?=O$>ÖNí6•š Æ\ ¤ó°€“˜‚";Ü«Ð{ öW'Nô|Ô¿NXí øVM8ØjÝã{R–Ò…BÅÄ-(6n½cç®§èóe.åz»ÄÚа!6¾žß@ÇË*×¢}ë; Ù‘u9 Ù_RËB ú‘ÛÊñÒÉ´ÂûD~"xœDñ\á;$ž6«çhÝ4ŸãÒ±··ãÆÒ%³lf”Ôòã&M9Ë?I¸3ŽPoQ®ZR¨Ã½ñ×€yU&¤Þ£ s¬µé$Fiû1Ji©|ŠÓWåÛ +Þ{Í~¾¢ûF·‰?±ø"©—¹ÉÚ¦x|FÛ6Ù%W Båfè(Ê݉ŒèKQr¯º?n.ygÄÏö‘‡i>™WnäÃ)¶õÛJà¶JçE0@æ\Úh˜Ì‰%§ÐßtÕºLß¶mWõ¦aÐjư;m](Ë"ÃÁ¡m¢|-'¸TˆîsJ 6&+«OCðˆö["ñöRÌâí¯ÏM‘L‰á³–¿!A õNåL!ùYÄ üDƒö”*ÎÇ*þƒÈMÿªUö`œÂ${ڊΡ|z‡É=Éu\×'¤VìöÜ<¶4™`J QcLCÞLN,#m ÷™Ã"tÛ=êq‹Ožcd…™a#~¦a<½G!ekd„8æ³ÜÈâ( Þ:µzZG¯iûõ)·É;ÂM)š`†'°¡ŠO¿›-lÃ߆T%”TÊ7ô†-¡ ‰;E}ù QOgÅŒ?âüžVþ³ì+ïqÆÕ È`xÜò ÅžC8Q²Ú¤%mn쫽j?ï¹;8QÍŽ ›ê­—P—÷ÕzâJˆ&—/:&4b$˜jüd—nr\–dþ¿„ÚQÍ‹›WmGí‘ÇIZ8¢%hm]\¹tón§JÍ !ÐÓ¼¢S¿Œ"±ž†É±Ÿç S*…ø(þŠa‚9MTùÕÀ6fr#ôu&g&z„»9º¾L#XíÃØ0u™p®ú >²DœŸ%;¼Z"ñ…ðºbʃ«·ð1/Ò¬ÜÒ®¸s”£nH¤èÖHŒƒŸG½¬m™DÕÛåJX Þ"ì—ÉɆ =XLé÷›5¶q—ƼøtÉÄß'¹VMl5Ñé+K ³û0yyÔY zèe*Ž$(¹œ@Œù‡«chú¿J‡eœê•§"íêÍ&KÏXYWîDÑB{ÃfÎ3EÕºBi[H“‡Ü+÷¾µxBR1ºÂBl¤Š«-uX–’~ñ:†Û#1¦:0±^[ZÛêçBÉ­œIc¾ˆq r9/-yВʦQº _;Rœ`W·É²*Í`x•l ¥K°CîMã+Å\ûqõ”¿0)¤ îTáðÒæRe<Ä £zàR9`ÞLTÃCH‚.­«Y5w“Pa®B‰¾Ñ–a‡òïÍæxÖ dÉÙ‡ t;6"¬¸óWÇ*ÄuõÖ§4Àìt“.XÔLÿiÛ=eFqs“²™V*?Ñ‘¤]ÿ]éåÚëÀ>;?¨ (S±šPJK¯k5ú„#àš3ëÁHŠD'oçÜhˆWqÈr6“2iËÝfψî¯õ¯äç)ד  ;ˆãPHGe@#©ÂMœ…ˆÉ8DGo±ó#ÞUÝÒ1|6æ^"ëôy«—WÅÔ`>/jd¶®ýw‡]FЙyø'.1C9øäP¡¨«˜Éá`$óKòübÜ Nqß„tˆSôÈ<ÀI«>‰¶æ‚¨ñä¯VŽŒš!KÝ@T½RQüÛ¼|ªÍJ7±‡¾­ú§ñ„¾Ÿ[Î Yd+ݔƀö™~sh­WÑ£9Züs´ø¹!Óbc\G„Ô ¦gËÛëÅ»ú‘Ve×Û³ÈWÌ´sˤÕïH+bWw'ó9%«Ë&p¨vkaN»/~õ5“9²ãð`¾è¾WÀÁŽ{˧¯(ýXti±/ÏQüJlÖÚ¹n„_>R>[./g f´7bèqh*ºpS^m ôp›éž½hðY$¬Þ¯ªM kϳO¾“òÅÇÁF(6HN¹KWÙA"<™QËÉÐTÈ2–<ŠEQðkä ~ùrå˜.p1ù%¦àÎ$‡ûÝPâùð®I¢vwÒ­Œ \N€X£Æü-šÔJÊP_-‹ÉÐõ‹ª %× ¤C²Cïº÷´Ný‘_Ð*yu)û-© æ¡ nØ»Áú`ó¥èûY{Š›OÆïí91v„×ÚJ‘áÂj^ ¡÷`‘‡º+ÅÊw¡t\VP›KkêÏcÝ¡M÷Y÷7m&€½UX¿Ê¸™jÀµ: H"yÆnͧ×S6¤sZžÂÎ?âñcm®Œ›"™AS)ZÎWâtH80ü$^o@tóÇÎ8`Û¸ßCâÞ’õ¨H±(K”l‰Zòˆë¹Ñ#¸Ô÷?-gËø‘W÷,;óbù(ç\ÎËGK'Ƨ†w•¥QtQÄÀ­#ø¿6ôm”ÅëèŽ[’ÑÄå¶S #ì…r ؇¾P’[lÇ}Ch‹ÐȤÕÁ÷Ò&‡©D\1~B/ÅØìÿÔÀ–’¦c†€¾Ç‘°È“ãÇ_GʆÖ:¨ÝºSõéréSKßy@`£‘¬ •š*é~t³? âã‰o2‰]Ÿ¯õibfüKY×WÚƒŠð·§‹¬XHïèôò¯£/õ#rp£ÈÂÃæ½÷qh‘2;0Ö- |˜[þjí¾&€"O¸ÎÞ1›A\Ç+"ƒ„@uÐ'ÂGÑ=¹þ Ô"O˜û*kÕÏUÌÖ:_ Ô—+]øêÑÚn­ílQB"Ò¹r(WO‰ ñÁßI¢ÀÈX&.ýü”µ<Ô$uf/Šï´´ÒUF…|}VŠ1›±oÍEƒ#†I^ŽbŒ%ß¡SX¶v"!ÀÚj=Ú»ýŒÈa®{­Fã)ÒO]¬ë"Ü„¯À«.—r=Z¿:êj·¾[GHsu××–S7gX.¢*åü¸j̹:4kóó —öû ê¨FŽo!¡H>ù6²ƒ]Í¢‡­5î9â‚xã$#D©±íÍ ;)5 Á÷ç¼’³Ž ½aðµIJ[R¢“øðiE]TêU높‘Ͻaˆ¹¢¤K3½[êð-`NNód¶S#ŠÝï›”û }WX9Òÿ­¸²xjäw¼Ô‹ªþݵ» ÎõêÂ^ð<4o !„æU>®{ÄÔ8w߇cþÏMÇÁþ5¡Ãù<6¾s‚¿:²¤Ý^— YŸUK¼¸¯@þb¢¡þ®QïF ë´›ò&áO©š8›=Ü2ßu—7TôüÊ|uWÌ 6yBrTK¡o ìJ$^‹ñ²\dÈ QAno >Ò5ìÇH÷ß/=®v…AþÅ™\b2×ѬêX9’°{)fZÞ*çÅL-ZdÔõÐ)‘¥ÐðØJRHìÏú¯<&cIÌ›[l³§FP!1ÑÅSLQµLå9}0RPùÆMfœeJˆƒˆWÈŒ1æpûì›qQúÏõ.:3EžÞšcõ;ÚòJ;UŒÁ¼½øHcf_+—„S2ÕyÆ]YÜ*÷”0cÂî.’9µó?¢CÅvó$-Þçg}'Sÿ‡öÚ}CUÏm…Jÿ6—ÔrÀ·…¿“e>záð}Ç8žø-½ÏQÑcø>f&¢&ªRJf°jEM É‰ÃlXž‰g¤×/ºŒÌ0w´ð|¦ôx”Ï„Â?„â”Ó—zÆ6låßå®9eõ‰œ80«Ç¶Ç^^ûr(|)-aŒZ¨î*Q4Hkêrb4³¼_ôµ³±p-–â_ AGÐtÐ1„ÿœ æsh*ãlL TS,«ã«-tèFo"0ÿÊ nØód%¶l`÷ÞAŒêȽ …ù…Û¾˜½gÝyFÓêKùmeÉ7˜tG°u§Ñ„Ú:¥ø‘”º¼³ tݶ 6?§[ñ¬ôcúŽðãöî]§¥Ô°~Ä„ðýK¯ÕNCrèaï ¥Î`rh7ºí”ÂiH_ìäŽu!¥¿{!ÑÕ39vÎç Už[ ø §HA²…ýêû*CÝ÷®Àî‰W((ºÙUu›W®êqgO•ˆ³ÖÂ&FÅ9À/¦eo‡ÈÖ¢]Âi;Gtd>çýV…O£x˜ñDSíÎBÉ…í×bª»/ þÕé‘óLy„Ô#±œû`ã´É,O×'&¯ ¥† ͘¾ùLE¶×#0Þ5Tî)‘²·´‡Üä-¼þ…h?H±r}aתRÂ\¤iÐ~X°4 >¡€F/w.5}aÊe=p6n˜f¦óÿثʰ|1ù)Ê8ƒ½Å­óÞa:õ•–KdcñT d8é '2„Äq97-h¢2æí¸nžŠ·¾õ…ë€~¦¯•zëíÂ{ZIý¾‰Å$’t³ ­Dˆw_éÞ{ §ÏÒ÷ÜÿFàRjPc{Noß¾ô„8`I’f+ƒyä–ÐÔÜ3Ìäéçpi¾\§k‹#­ëB—Ÿ-‡ÚBnÊ©ª@ß g-,Ün€ÕWtÝù[$¾¥È@4p’Þ©ãç!æz¤ÈÌladô§õ‘ZOGwîN@1!:ö Ëþv]áØ³`B<§V@êY›þT;»]¼u•j¸_K!Dn½n*.ŒÊC·60îfYiOÚ³=åozù«9G '°¹Îò¿œŸ/øÍe\æ±h¤#2 ŠÓbvDĽëŸ2ìÎ2ÕÙÈ£ÌW^/rXÂöý`·ˆi·Yƒ´Í ÈHG¡Õ; }“‚ žU_aïÍ©a½)Ø…‰û†·=–¥Ó@ OÀïEg'¥µØ$Ô¤æü‹t'Ë 2B£Ûz0½Þ[^›bx_J_4±øƒÐ~wï^ÚŸœš)#¾8O±^¶«}¥øª¶3’r¡†~íèÃŽ×À/~æ"áV:¯RÞÖ+L²°ØŸÍÇvô4Mþ¨ÅG~äleQZ›_SMâšðDxšh¸7¦ eŠækÃo^&‘±ŠÀoÍ œ-Dg³<Æ_ðu©sa I¨Dð³D„ÀûY~ bXQø(„8@IH!—“ü9»¿ ß2ŠÍ{tÒ­}‹ѧG¿?°Ç /¦Çy- W9¾Ú^‹{îÐßïÚøCÒcÄìQ¦¶1Žˆâ²ž¸dfÌ—rÜ'|Ã[ lÓ{Áå´çœòj2›-°h<¾ý*Àí®Ó ͽÙî½~ªælÏÃ×[3“9ØÞûÄÖb#8÷¨_°QKuÉ­«×C;$ÈöâÔεª/™r}9ÞFÖʇï@â,i¤ 鋃2¿ŠlíC{­¥Æ§òÐ!ZQt¦˜W½:^ü/÷ätÖü,*Û ^Wá°¿Ò9ÂT„{ÿ 8qÇI4¬R¡TÂcÍ›Èâ7| ±VLav¾Ål”*Í«åFâY@x18Û£· _›Ýàìâûª«¥T+ÖèêGý)Ä%ßž¶ê£j®ÙÑ 3mðo °Hu¾6t#‹DêWÛ ý‚>Â/º§‹ã S ÆÛÖ‹7 “ 1…1 ŸEö` ¨E',H_åœ “iwNé\Ì·Î3oÝÃÓÐõ$,ù– Å2”OXÕôû/[åd8‘B«»Íªå>ß– Ãdèì<­OÒ ÚÔ%ûØ0å2ºF„i5¯ :X½w»ÒKšº‰°ŸÌ…Í­1ôÆ`4‹oYàÖ õö}iSû‘Mv/ÂB܉͑Äôµ¿œ5$Æ“ ÕLìfeÂäæ]X†›PÞò‰#¾ÌkäˈÂÍl‘ò±ó.ñôiûJ.‰óY¨Oˆn'Òl¤+¸:úZ‘_K~f-Æûìóï\Já’ýØtoœ–cjØ4íÏ©rûyVõ2Xh&´< ºÒLiù¨Š?>Tµ¿U~Raµ¿}l¡^§ó…Å"Ê4?¼6ëð]¿°GcW›(0à´sçT{Úì@[J¾ì#k(d4g6Âoý±Á(ƒ}@­•3¢5²€|hÎR ž•DãŸê(Ø9ŧv2CöQÑú„’€xúMr”®,ŹâS›]ÃBÕ9®ZŒD®s”-¶FoîžÉz!ÎR·^_î%Yǽª0{¤¡‡Âö¿(BMÙ'##îÑ@¹±PÊcÞÅÀ9×±ÂÏ6¹$uDI—>ðÍÄII”P û ö Ÿ‹Äk¾†—ð Ç5ÉíŸKô)“cøôÍöñ¼¯ŠÿWs™GÉöž®Œ5Iø,‡Zn:jŸ^cìU%È$è–Æþf“©fè&…‡÷QÅSÎ¥ñp ¹b¬{mF«ç^'o¤’½{” ³@õôrlùƒ¯DÝl¹D¦ìN2©UhZíªƒ«…†TF†™ùñá#BÈÏÕ]ëGüÝ»÷‹a¿èN¦mô^mÆJ¸ÌN#ÑËZvB‰KΙoHc­M TmƒgxM: ˜}O1ŸŸENÊ%\-Ìöªå ™ìÆP¦P é4þ6]bÃpå[ÜÑ Æ-YýRÙ]îÚNE,Âr4—˜maÛìjeí/m¥~wøõKô¥~¸eÝ£F’²ÓD÷„_TÇV´\7¤Ó*©Ð¤28š~•˜š/²°ÜVª‰Zƒæì^{ä}¸Ó§blW@¿@+Ÿàž8­}¾ó™¸lÒ† ƒoÚ…9Ýòlr,Šä•‘Uiû>a"9I†´ JL­ADEtwoþÀÛÍoÎ+ ¥e¹£A:7Èj×wUçΓ˔AuOí‹¶ñ·E1SœÐÕ¶ŸƒJëŠ òºÚ_|òðv­Ä? ì¯uÅJÏ÷ÐJ·^öõKdä÷!tÎápûÞ¼ÇGô‹dϯ»'«»E¿ ffz‡$‚<úðøE–¹ás¨÷y&È9óëCwôÌKæL>&õ\ÝVÞŒIòNÒW©oE…P²—’èýº ΚêaÇbèe{±À—?a¼ä Ͼþ"°»&6B.z˜”x™¼ÇC"ßCQT(ånÓ÷¹ïX° Üñx!»nàÂ'º°•„òÖ” ²¿³ðS{守p&~p¼¸¼Š©ª=ÞM ç5kÉ™W’8iWë·‚Yjß›½J/¥R„‡Œ¼Sˆ5[Ý‘eËa°¥4oÂIYßàì `·‹&éã>ûw!Ä×ÃÙ075lÇiÒ<µ\£“RËÎz§áÃ,9ïØ¯#„]Á3Äáû|'•|ݱV¤/ó 6go”9~ð7„vùqI"¿3qäýn£‘Óo­¾oÞ?~ýa2ù7°k@­Õ¸Üò™™—7ÎÕã:&…qª‚Éo|Òúw–cÍ–ý~ÍÛ²˜OÉ—Ëð,9,7k “kµLö Õ—?> ôÑ6É“áÇй´c"›q°`÷†5B©¿nÚK`£ðÒñ° bS3BƒûX¿"÷ݰËIó—<“¾¬ 4ceô´BVWX/ÝEóê—'YÊÍ×[¬ösðp ú%²¸R0EÐõYe§õ¼·b–>ßßµúL.…aU[¦§±õéõ}f¬:/lªÕ¤-£¿³Ý!¬è$èJ^¼97œ K§0Ù÷høM+h^žX†ÜáÌrz¯Ó ‡¼0¯þ…hRþrè“ka5’XÛ Ä8¤àÈ î ×®P⥤Lvð;±N{Õ~n²+º Íû鵦ãI—ZIëO\´—d3O>)(1X0Á· µåÈ‘¦ÁY¢øºâ‡¦|¹p5Á6Oà¤ë¡Vâˆ:ªºú=±˜”ÔI9\ýªr<±~íB!LáΔç‹jQ‰»«*7–̱< ïM©¸œT’ôb›w\õ=êʨËŠw·ôåÕN˜²ïR8¾T>¨Âwx3v -º|e)`wì´sB™Oä%¥×m€M•ޝ`첩0#Üßà.75X1Kü“ÜX#e°|z¤_§æ(ÉñuâIóõ¼5úž ÷b`JpIÆÌ1ç„C>²¤ñ™ÿw]¬Q$…N$ì®áHî–òeoÊ#J£Þ¹¯§_K0|—K¶£¢aBJGú¡±BÔ“'z%¾”dªlТ‘Œ,5½“PÓNå¢:7hä ‚ Æ¦>a2ä0¨ð²À*&$êÏ 8Ð/ш#ºçî{k íýl~PÀvÕ†À#œ¿u´ˆÊž-Ï×yfÜkO²; 6l44¾4ðà''CGÄx„RÉoÂä¥s˜ZnU÷È„™À/-˜MDÎ3ìí÷~²ÑilÊ5Y²â÷úÔ~5]UzÔxy™¡{ÙW0Àù•ó<*Jòî{y?.)§EòÐUôáu]«„ùtªnD!¨#Š£l¬‡Ød~z´±=åÆå“yWì¸h|÷ØèìÜéôzÝsÏÌáô³Ølå}AØ9ºÐÓFZ¶-8¤VG¶5œ9æ‚þXÍy6:Û§™|1òR2^Òrx¿õOL0#Y-ïxbœ¥É‡d‘j•L:ñµ5¼GIÖ$}6ûÊñp'–Úv‚Š÷Z>LK¤›X.Mkg´ŠSž¥JDËÍ^Ý('£·o«8Áë¾[¡ ú¢:T ŽSlÑ äsœ@«¸"ƒôMt¼Ú î\[›?ؾi¤ÞŠ!Ë¢ê. Ú?‹Ñþü~[ž2Åñ„19‹O MK“ôû8Ž7Ôc,Šô {"øõC22¥«ŽE;dó—jèCmÉ¢*Pg¬Îõ¾F |ö¢IûŠ +–û+ćRŠŽ*å+g «HËÂÌU…Ý‹"wqˆ1 aéä;™Öck ±áÕƒë‹"o+¨EØ‹¡FÎu×åôr¯ò/¾eh2ñU¡#/Sg¦kSøà%—ˆË2ˆ@úR†X³cÄJzج–bݼGå¹—ö<ºça¦9[zHu½Ê.=’%“E?»=UânÕûæÂé­“éL¯Ýékð‚ì@ØZ¢š=ºCüh2ûúIT-,³…7÷Û‰‰&*؈ɋ”Ã-ˆØCÛ¾‡i(Û–äÅò;ù¶÷DI°­ãj“ 0ºMÄXÑ#jŽ(šzÞè’75RGóE“ž0î ±”íµ¸ÅÃìS—÷-Ùn‹æz·ÊtžŒÑ‹×wgO€„ú->¸)&5¹dîݘ´ïç¿z·v ¦Qy©[±FŒÅiYRú1¬ Âð9‡P¼mªfxŒ½{Þvjå&Ë•Ö[Yo–s±ò7Þž_Nõ¥×M^Õ?¡íQj†ßW ^úˆ)ô¼p/>Þ5 zå—8!ò4Ä8¦„X”ǽ®¥yàµHGt»U‹ªeã a ‹ßêÞXP˜6Œ?ÐwʘXRoŒe½æ:0–É"¾HéãÝÑÀX|“ãø…dÑ}JËë#Þ¦B ÝiG;Úó@àÓ—Q.ÈÅlMŠÒØ·N¹åQßBíñDû9Ë×NdûµëyÆ:ÞMÊ÷¸Ì\!s+‹Â*^u߉ú¹P©i9Y*–POz @ANÅïMè·‹ÔÙN˜˜ççâ™§ÆÝ Wßp:–ËlÒLàÆLÑ­®î™ÞoÂz6½þl9ù©-Ü–¨Ùj†Œ¯¹ÒþKÆn,Âhá]f@¦¡ïjÐG6‹,Ò´RäÒÝ…¯§/’ã%iÇLß(¾9©²¤‡¤)ÚØ{| -ZѽÀñ¤¦îÀ2”¿¨ŽkÐF¶ÀDuR~ø!â!Hå%²s¯ÝËLOK6Ä H½ÒÕöxÍNORÓM`ØBðÔL 9£œdJt±Nu'Ä.ô5ÁçàF·ÕïŠë"Š"å^Ò‚M&6x ¹Ÿ“kìà0‰=Û^s´Ûè”<ÖuêCÄ[Kü4Aþ³T$<ù::Ê9jl…ã¬ê{T½+ÊD¦”¸ˆ¹ªçšxž?p\„ÔÅz=mauWñ(B61Ô^‹1ÄåjÕÀG ¶9UqfQOûº¶þç ž endstream endobj 107 0 obj << /Length1 1629 /Length2 9570 /Length3 0 /Length 10633 /Filter /FlateDecode >> stream xÚ·PœÙ-L‚†àÞhp'¸»»—éÆÝÝÝÝ‚ ¸[p îÜÝ™™;3÷þÕ{ÕUÝßÚ²ÎÞç¬}ª? Ez!ˆPv gf`âˆÈ)3s˜˜X˜˜X)(TAVÀ¿Ìˆê@;{Ìý¯; ¡Ã‹MÔÐá%NH;Z˜Y̹™9¸™˜,LL\ÿ „ØqD @&9€4 ´G¤ظÚÌÌ^–ùÏ#€Ê˜ÀÌÅÅA÷G:@Èh26ä ÌÖ/+ZT Æ  ƒëQPñš;8Øp32:;;3ZÛ3@ìÌø©éÎ s€2Ðhç4ün oh ü³3D €ª9ÈþO» ÄÔÁÙÐx1XŒ`û— G° Ðð²8@EJ `ÿ,ûg௽030ÿM÷Wöo"ødCccˆµ!Ø6˜‚¬€qY:€!Øäw ¡•=ä%ßÐÉdehôðGå†q!%€áKƒµgol²q°g°Yýn‘ñ7ÍË.‹MD ÖÖ@°ƒ=âïúDAv@ã—mweüód-Ág°û_À61ýÝ„‰£ £dë”ý+äÅ„øÍ è`gbbâàbm@csÆßôª®6À?œÌ¿Í/xºÛ@l¦/M=A¦À—Dw{C' ÀÁÎèéþoÇ#Dff€ ÈØ`4ÿa1MÿÄ/‡orh3½hÀôûó÷“L `+×Âÿ8_ÆOZ"Š2š´vü·OXâp§geг°3¸ØØl\ÏÿfQ4ýUÓ?©R`S€ëÏb_vé?;ýuþTÍ5࿹ä!/¢¨þѸ;“ñËóÿ³ÒÿHùÿøo–ÿ›Æÿ· qG+«?ÜTøÿ?nCk•ë_/šutxÑ¿äe Àÿªüsfå€& GëÿõJ9¾ÌØÌêïmÙ‹ƒ\€&Š có?Åò§]í÷YÀ@Eˆ=è÷­ gfbúßËd[¾Üö/ŠüÃ|œÿ^R l 1ù=a,ì†vv†®ˆL/Bbag¸3¿Œ¢ Ðå À‡—ÀK{žSˆâïýÈ`úmúqpåþFœLFÅ €QùÄ `Tùq½äþƒ¸ŒÆ#vαzið?æ3ÿ_˜Mÿ_¨Íþ_*ý ¾,eù|%FÈ¿à •Í¿ €Ñî_ð…Êþ_ð#€ÑáÈòÒ®Ëð¿vØØÑÎîåŽùc^¶ÿ?ø t#.ÌBŒy,¾´ÞU á;ÓoñMQlk¤PÓ»/ص9> À'RWfø­ÙÝ%v£-ÿ£º\$þé~ØT ܯÔòèñ¤«<±Ý‚8ÿ»o¼àP¨¦—𠽪àŽÇO[u_Kè¦WÒ9¶Žœ(Šy˜wÎß$\jzK—F‚f·•v*?ʼ}*¤T‹Ðñ-š¦È5ÊœyO ç@Oˆ@ƒqæ‚:}}3…‘=þL,K‹èyÉúÙýÓ:KÔýŒÛJ¹*‹}'.9î§÷„Ð×#”îÂ{IÒ8sîÅ…áh Ã,y?¥3uBç¥I¨ô¶}zÜ-ÆdºàEnÖÃ(]€AmÃ;·>žpgnâ­"µá;Z.]|ÍÖJ„Atã×hŸn:<îf¥'ŠÒ°AF>È#Lí«MaQïì’±©¸Õ?e•ÆxÒ9º¨ÌtµŸ™å‰õ†ÚõpÖ k¡k¡¬)N $J,æå Á.)¦r´£®¤wí$ó„ë#\´¶àbDò XûñÞEÌŠ«Êm>Ž«.–“|½A¶57áúI¢-Áø<‚DµJs#ùÖÓÌÒ–+Sç;öÚ½â'£{Èÿ]ràñ=VR7噃k6ß½—MóÉÖ5¶à:B)ç$ä¡8Þ,QÎÙ3-Vuœ=§´þ‰/?¥ˆžŸ ßWBÔ¾êʉ÷ÔÓ=­ô7k´GøŸÓ©ÖÌõ#¬2 ©šÂá|@§2y Ræ‚ä¥.}ÊÿE@ЩëSK›mf8¶¨|BÏ{f-á“IíM0µQƒŠWÞ­/ÙëR)"Ôa3;º˜¬=ÙM U´ßå¶6«®lÍè;YtS‰NM¸êôÌ#7‹4m’Ï£¤o¾4Ñiug°@ª|¡(ZõºÆÈ¥6=«rÔ¾0bå½n½Û1Û%jS<¢„؇7zù^„ñ¹•èW@¯ÌX]Æêô½ýù9>Ö=Lbàv(ì•Ïiž™ £ÿ ÃK°>Ü-UwTWoíýpT[-ß6ÄœóygÐÙ‘$rÑu ¶|W°áµ˜‰éipxXžýûÌÑUL´qzwW½D¥f¬„Ö¨Ä>Î1(bÞëHÜm{™ˆxÜzËï®ÅÝô¥œs†æM}wÖ}¼+ž(x“£5*ÅÛtƒ¤ªÆ¯zñï?¢O„Ù;“Œ'H¾ÇP á’š$}]ë$Œqý¥wƒŸÚ´( ¬ëi2*¼XƒúÕÎfM˜Å”´àIˆpp$’Pñ|·è]’÷^¯àU †;g²!Åx¹¾L•þ«‚!l¾(O†î½Èo!8ü–yQj5|W¹ýèþG7·Søù6\”Í,îlï6¿‘£Bt–BÅ'ÑÖôsAÉ@X¼I‚ïºX–]j‚YY¦¬6:r¢'(ãbÄÚÏ–~¨¥ÕôŸÆ¬E$™ñÅøß¾½Tý [Ýp2É”4¼¸XÇ¥<‹‰´©?×;#!Ôvs‚‚›ÿy°%±Ø¹HCKµ{µÏÿ‡Ï‰É…Çô˜ù-< ÝÄÏy.TMsWö2ocVŠÏèæiÇø«t .SÁ ×Ë)ªŽ!‹í2=JJ‰ž.5¥Ô>CEÛxá#ûÄÍ&v•üì›l†´ÜØ,ãËø:%<‚K—ûfŽ4‚ƒMZm±kaé§#Êq6Q]úÓ˽‡ã‡|èˆ#Š¥ªO*»Å-yn• Ùg%Ë÷tÛ4y}þL2âAª©eok$¾_.«ÎøŸ&oYÞÁqÌõLÓçþê„þU§`š.L] ­6!b*ÆÉPƒ,¥Á侺Ù/1]x˜°÷¦S¸ú6l4PS׆̼eå cSF-øºCîêfÁCM4l5µl&œfô˜¦wá¬kRÑź=«ÊŽèàÝF8ç8£æ*î;Ž6åaFG,$ç;Mß[/!õðj@³¿Þ­¹(èࢶ«˜A¬ÊS¬½—ÏÜN4óCHª]æ3¦óyÕ#̪ŸQ‹ú5ôð4Hyã´®ï—WþðÈt×3Ù|8¢†’,”Å·6cå±ÒììeUpfnÐ1¾f’!ã"T¾Q S‹µ ô¹’¼ë¸£¸¨¡œ-¢Ò« ŸŒæk¼%¦]p([N ý{µú~ð­£÷=Í  »Â7—ÔõÄ­—CùòOˆ}îà"ŠÒ,GnN·E ©˜Šß¯° jòùL°_´<¯p~®ÝF°$í¾3ŸÍi1ÆÂtvk£o|NÔùO»¥þJ¹c“õ1çúÓ‡}G˜H¥-ôÞƒ g™÷r5&ˆF#©m]\Õ¯ãCíUµžÌ¥ò×½‰¬uMVºy¿ ±aa`V|¿.½Žçû•ßt“娤9Ƨ ¹œ6(‚ß]Íü¢~?ƒ÷Ù€“‘ß­Þˆc!ëç‹])\8ºPrÐ6díqâGw;ÃâÔKµ FEþyµ²êJcBLà¬ï€ÝŠ•Kà]¹¡ÓTë ,ú–xéÌ:¡š³¡¶Á" 3å=< µK¬`{­åŸ¸P±løöŽe"Í /#•ãóG}9> Jorïsè[FJOø¡2”«!œèoÎ@$6°´[  0ͼÕYíxJ‡ˆóLÝW!Ê|=RßÙKµ›Ô¬X¶Šo"ïcµ5“ÂöS¥œ”âS1èóôêv:©[ãùtÌ3 ÊÎ]©êÐpÞÔÓ …h·›uP|_ ' ½,z!…Y-U¸Éb¦Œq?Ú·ŠÁm'óõº"z@}zVÀ¥]ÿ2²E#ÌKÓ'ËâwôLáZæ2ß(áRJÁÈz¹Ã÷`ªõð´Æ9¨màU»× òJF=XÑÕœž†Pë? ª¨ÐDWu íR¿ûynØsZÕ¶ƒ=ãlÅ Ï6³¡p‚_¯1¶ž¹F§Jpß;-©+ò`ø/ã$ßÿzëʰÝõmÚO=®q¹Ú×/obƒ([#Ö&ÃÉÑd†\04Š›¦W!ši_¸Xßà×Ý%Ÿ©„o¹^v¤™àcÕ|£å*¹^<¼Ð.Wú„…ëDÿcQ¯R øy’Ú·!Y@ V)ÒªLB›4sT„‡¼Ó;·®ÔöˆªNiò3bÜ${}ЪjÙe§éø}ãUšñˆh0—T Œ0ÂTÞ­6£Hì­†‚9I:³®²ÆÖî×J–Uþ[×jlÑïN!Íœ$ä-y¦,“áÛï?¹ò0A¹Jõk,£*7F¢öM³£…ßúëßÌ̶o²$òüô?[ÄøX“™¾u]üÝ}Ä)ðº%S—²7)A=À«|l²SËdW^2¡ÁçrŠ?Õx…E.-AB×v·voÇ0g¸h ý6XY¢>[öíyØø@‰øòOyƒþÁÆ„úÐõÚ3NÈ÷ÆÎª<£n£š!õ 3 lâÿw {àðf¸PsëYŠe…Z­à§_b˜~ PZ3KsÜqT¥MKCƒMÝryê´Az,ÑBÅ!Ì„ÌFaŒË¸ 0—Ü·©´“Ï&of¿}Ô;2ÂÞîiV»rÝ“e¼šØ³…ÃÿZ.&ÔÿZ”#Rèɦ¯¤‚òþ ¼¼…Éü™äH6Ëaÿä Ó“O =|ßG-~LÍ Kô˜”%¸†æRH‘2Øël9J¸ûõ]ÉFBQp‚1Ì—Šz¸+h¡Zþo3ɈÊïòüÓ¼¸Ú¢ƒDTZä:«›¯w¹Qö`a¥%±’±&xñ$ÔØ,L*ZkL8E ¶u7@] e¬›ÜÉŠõÉò¹É·¯YÌÊJ{+”¿²W[Ù&á5»Ž8 ˜™ž›Þxí™Ü Úü…ÀÝ´lLùf>%ð»ãÁd}¬.c'Mº7£^¡ ÕâÏý¼…!³˜t8„úçj©WüÂþhÇ*bþÎk~|K°äÏ«j'˜\ùl‰ÂöäZEÂYäêb£hº¨Ö#Ž´ÜZ=uÁ¼zþĺÁ¢’ç£}åœáÁªiÄþ¥æËæF[®zËÚõ¯G@|*çj%ã 2ÑF×›]H*È!8LWòÅp"uMëò^H¾Tb„áu&â¼¼}r±{×­o9T‡L4ŠÃLŒ=÷ú†/…!+62$ MßV®Hˆä|öÊOàPj¢³b’S~B U&ÂAG£š«û™ò€eB²Âø i³Ó_IörÖdN´ %P®£»ç²ôK Á¶ŽR%…” •yH8÷P"­ƒys(õê’Žìj&LVy±°(Ñ"–a¥î4àaö­MOz´ËÚ¦K™J¤µ3ê˜ÅqñJoº4óº:HÂ7~׆ZÝOw hYtºu´ú$ÔQK!¹î7Õó¾½0OJ–èHÞ\²ÉƒO;BQÙ ‚Ã7ÒN×t€'ÑΚIrý—¦(7ƾ-rçÞd±ÈÒ0,­ + ¨¾Ã»¼Ôd¯MóHÒðݸ¯ê_düµgÔÔx®K?2¿ùÑ”†ë´»>ÔÀ–OÜnCê(C6w÷¢]§aIåœæŠðûäý¸ËæÏLÂÀÿ1ªrsYÊþ¡{ì, Ð]Kœ™¦žÆº N™²¬=G03¸²°/;3ß§UPrˆAÀUÖz{“²®«…!È,Xw$0ƒSdÓQN#˧ðÚ$Ûï Gx}¨pvì—/\Òó ¯9*M¯ÿªSû­ÁˆHx1örúƒ#ÌŸH•¨¸/n-šÜv@ ©oî‘.‹ÚˆÇpêÃ5îûˆ¯œíàaëp¬ðæšÁçýdˆÖ«¸D×Ëæ±°FO©–*‡ é[nRPÏŒ|I-z†vnõ(ID??æ”}Œ%˜‹œ~[ëÄÖïNè£%¨á»U®û oÓš½Žöõ2Ž9lXQnôÅÊ3;Ü"-eÿs‡ÿر¼ðJÚ <¬1«(‚½"ï´–Y`åàúJ˜û½ü«hAK«dpÑ€ºŒgÈEîü%m€Ëmå-±ÙMÇ3ëGtž‚öVí…øÐìL“u7[=¯€O4îÞJ¯ä˜wnœZ 15ÓVmv¯è»¾Ðµ+ÜÜ4¯wë•©¼¾ ÑÁmQƒZ[%gÓb›¤6ñÒ¥ÆûR2*éHÁО߻ùN„‰H žÎ©óÛMŸ}!Ö…N¡—¨¡µ_ÁÜßûYŸ§¬O*ê_ë³L…úФWŽ¡¸n‡ ÷©¡L4¼ñQÑâŽÈ÷HZŒ«GöåR}½xȳ&¦íV·ä~¥çHkLèÊáÑÊìÍ(|cÀó5$½áÎÀz£Ø‰ßÐ&u릿Hìm ¨šGˆÓœ#L®yãuK†(g„© tr.þž“án%‚’ÙX ˆ,‡$lY˜®úêWßæ‚.ÎϹ`î!X NðC­¨mÂæ!Ü“\>fé´Ò‘´ÚXÚ=Õô©:¤ Ó‹ïÀU-ò뢶Ì'²d]¨¼†t«¡Ò¯ô7S¡£Y™“C»„~.¹8’íxt°Ýïè ꩲµ•4|¥Š;„¬kk Y¦Eãl ž4§N9KÔŠçìœjg«Â—ØAÕZÌ\=¨Ù3NÞ¨Öe«_ïÆÍM®WKo¸no>ü¦ßªŠ S†ä$—pGqÄÖ»§þj…S±Ö¨ÙIöÑe' ÿi'æ´°Bö@E°h~ž›ñMµÓJMZ³¾™+µP:Ô+ùM8äÜv „6ÅÕ2ßw`‘ÆïØ+«Ò–DéÝ©ƒ-§ŸbK§ãùÛké×уʸ]êѤCÉÉȰ§tJ(,”ïp™6Óo&Ì©ôê §«"l×èÃ9*¹Íì[óæ>Çüx²ÐÚ4GZœš•Üôj°î‚d y“UŸ­hÕ„·}Y"ðXÀôÖzGó#Eßß‹7ØÈà$¡†Öª5C”ª^‹Ã(ÀŸ~׿xý`nöj3åéì« ²»¯nKÂÆ(†×@½Ð±¬ ~ÃXÀ‚áAs^†1IÑ«˜Ü3¦Ò9ŠdÎXìÌ"›Ë§89ÒãŸÐ*Ò˜¶ï/¬4ªR2É&æc} tSÄ*E€ ÊÞîÓ­¯puó7‚TlìQ HŸÝ¿žÐkäÐ’5Š¡ÂÝZkÏEê!ÎŒ†LR<ñ*ë™’H ÛKwŒŠ|»é n‡aû¼ô+Þ1÷^lÚñZj‚h~vñ±LÐ/ÄӠ㱸²·A-ØÃÝ vä¸+Ù‡¥IFìïµZPÏi;,®Åjl+ÎOé¶½ÌÜü­L$©Â6òÝ1¢h#ŠÙ튛?ï}«*—¤<{»ždP-O¼ Åý,Ò™òzùæSÐþD=™7WëßT²dR1xáðå‹·þ%…›òs„Ýrßø5•¬ÐZ‹¦4Èüýò$À£éÃÊÖ§Ó攃;râ:P#‰JÓT½*¨é5§ÐüoÏ:û“ìOŸÃ9ÀÓiÆ ¡ÖÐwçS»aÍk®h?ÅÚh°Jâ‹'cé³ß¢0ÔèéIv;þªNk¯¥"9nÌ{˶Πw‹Q2׋M˜‚޼æ+=ÛbЦ.½p3W!f_›o!è-¹¤Ÿ½ÒV‚Êç<è®øy®ž¼“Z‹È[L@\—k¥Ox¸‘APä)h¼ U¿š(PXHè¡Þq¦„tj\(Ý>9#ã'pMî¼1±ÔÂYÝbZw½25Rð´‘Ê»غ䙘¸"éø•dœ´™!AE•u&hÇÏÕpäz1åG+,öF](˜Ê¬×kâ‘bƶð ÚˬIØ–}Å`¿°·LW˜A…Þðröü2ÏË“½‹Ïäó¸Ö‡ó³q)OK>€þÕ@³ênÄ„¢“#$–$rÔ—ünŸŸüìÓׇ€‚r¡ê .ÏTˆ0AÌÛCVZuU&Ë®ø›yW¼h¦>+Òf)ý¤«£Iþµst¿Ý¨Â2#¶7K=¤ò†ç"¯’9µ˜Ößk¤ÅuØ'A=£¢œŸÅ $Z¥ùAÅ%*DZ¤2µy»`‰®2þ÷'Cͱ§fqæ ¿—·ì•Ažá˜F^§|@Ïå&IR®´Ää…Š*a`X-_ƒ|µ5yì08À@ZçýÇiš­4Uæzrëwµ€Ÿß¸M⩤ÈÛ3öé’SÙµeÚäwňjeé:lXœÎ¤õ%ÈÐÞîE’OÔ™ÊõÇàí]™3Q\ÏpBÿöÙüWd™yÌœäéñ¨'\9V‡i*rG—Þ'F™fâÕû†&Çð××*Ðe^+Íä;‡ÕËá<áQ6­†fÊaO!l§ë;мÄwI7ï»–ŠÔÊq§YO$¢}ôÎ(oçZê:oœ—}bëy4öW /ð¶Š WÆ)bV ë·ìJ\2æÍQI£ýãu)ˆîpö€êO¢8”{(X~—†Ñe´FòÞÕ ÅB{ôOC´Ï<ì«Yë£XU¤§[dRöÐã³[yX}ßÂ…ÚÐj{ ³êÁ_,ßYÉ‘,—áÝß –¶äršsµk,=ˆŒhÐ=`JÁ—™>hSY3$† çÑÑææ—‘s"¼–vjÌêäQ}4«wèçHzÖ³ÜDò+z7qT ﯃ŸœÝ8ûóH´­÷ˆuߤä{L]ž¼™ºQï™À:ŸªÊ<~iDu»"ÃlØFDô «úô8™+:÷ "²˜ÎÄÐ=~u:°Dþn ¦¢~…¶å½» Äу÷ÄêfÓn›p=‘.œ{³DÅ®õ3ÈÕ×K¯øíÁ"yóQ‹ÅQí©_á][î²W2žZ¸ÞXë·úñŒ`e˳lþ¾.Ê™*µóÇÍ+ø¾é•n¦›7š¯`×¾©?Šfz©®·?¢|!Û_7r3 „d v/,DºŒ™&u-&~oX¡K&jÜ®Äßv‘R€ç|üÈ)Œ9Ë2X}MîÅ,ÅÖ * —¬“¥Nh,kݳN2ÑÉÕqùò¤)ÙÍ’¶Š|»Šäe&.aó%íîøÒè˜ÒÊ^‰<½Qîä/5¹þ9(˳´“𱽉£@,I»Pˆ` é `ÂŲ:„[¸E;õÆãÕn r&¹µe¿Ômûzá«NCÊâúPíz‡¨ŒîsÛ£ž!Řã¶ï¦ÁÀ¯=Õ! ¶6ïtI¯EGT[©æÍ nu€â#5'«Ï[«Xî HÔGW{‚¿/CIéRºDÐÕ×Ój¬À5L^Q’žhgÀê$šS!ï‡ÓÛž«õëræAƒ-YÉç½E}gI•Mø~‰ÒU™-âæR~ºG4æ)1k…iš€l‡Ì/ùwÆDHôÔÜs °î‘òkŽ“7‰ hú¨ü'ùHåà'Ú~rÓ„BH VPX¤˜dÏÇÑœQ…¦­VLG öºEã;'T—ç%öL˜ÑtÎ 8½}› Ìr¢ 1éžN‰UŸ=©ï@ùùÛýú7s·À‚q·íÁøÁÄ£}ÒœÖdt÷„ð›S̱֟·DÓÉa„ü£¹’Ò³@ÄU̺†:tïý¢)sö¹g²âFT±þ|Ý „Cæ-ZÁTèYJ…¶MÀBx“U`r™lÛ`5—Æx`ÝåSX“E-#,ur-{ÏšÕ;äyj%L*ú Àð1sòH¤.@Cì’­|ã—R0ê*ùÊ^QåtZóiâVŠ(H«~áûvËJœ}/ÛÒr{–û¶ÎÊŽTmç()|®GÖ S/á£öUz—O±äAÍLSè}N‚›°ÿÊeæ;}ù å„½±H1ƒe›¥ÆÓçÝJÀ²®“®²+~•çæá£‹ @hèõ5ýD:ónäâëS;_þ µ_úNü"\œa–‰Àî~˜Ì¨=ŒÕÛ“7øXÙz>ÈøtIºâŠ‹Jî$!¯÷áéT+u#ÅÚ$‚ãÇù"ózV»ñeq­• =”™"îD2¬•¢f?ÕÚ„Íò´¢Ò§øêˆ†pÕÚÓàÍ~Š7ãð É~Þl±tñÓöô¿X÷‰úTÃ?í"W'Ü ˜’І°=aLµUÚÚŒ×gÚnÉz½%h÷ô¡!ÇÝÕ4Eµï kP^L”¹ ¾ÁX{Y¯ˆ“ÉN€‰ º«(ÂÒ ÌÅ<"@>ÎeD·PC(O,ô²¬}®^0d‘ÖGßmˆ[±Ié°»Ðèù¤gÍ‘ÌG9ê8þD9€«;й#¿ÅsÉÁuåùÆ^ú;,RÏNjH}¦0Ùv÷káûòaуÛ•åípåá—Í-‹SâýìsÇDßÝ–`·¶# Kš«nsÍg”ÔÏ8y•IY3Ͻt!CHzŸûDò7ÆN•ƒ¤ß­  $Îȉ•:FrPÍXu½’ûØ­)4ž±­Ý¥r³I ÔÒÍp§–”ÊÝé;¡½ÚbÍlO<¿¼•I /78ÄBeâX@ưú4*ä»ÜYÓwñ»Ù/Àý2ÿô]¿‹oQËCAi¨ôþÕ¦òN i´©‘nQû.‰ÿ§…às óU’[‘d²ë€*øÖ1'ŒPטhBÊT€k`=¨*êó=w‚u*uïãçÏdV`[²“énç07]¬cœ£#Üò'>¶TK¿-˜n4?TMÑÙéÔr†éG6xÜžû`^ —8SS'‹€üÑøÑ’’;eâqU½à ¼c:)+¾Á¨Æ~’ÞÄN¨›J¬½$¼NtØrFé¼h¢gBE¸K¯£ƒ'o}~èwö×nÚÑiv–ç(£n«:çQp~•»éº‰3C8C·[ON*À»ËˆúÌ—®Úªš¸ˆ « ¡¹’’ò‡ÿõ)à¤þ†ù¡¦‹ñ£îÀH ¢§¿,·ònó¥DÁ÷`'±&&ßUÏy7Ü$¥Ù¦oaM¡Äü°câ×Ä6–>øøb6Î…ŒøÓã}˜I‚Óâ)ÚkÜN¯'Ѿ3䕳Ÿ+åAK,WY†š³`žF>ž³üzSlÏ··Q/QøDqGÝ$råfc•e™;`(fátËpý5²¹ËÀ±¢t¾³o†QLÓþyVQÅÑ$߯Yì8+¢†Çf²íÊÏ…Ÿö4ù0[`†¸ÖÝŠõ}ÅÀþƬ3Úˆ²ËËò /Ãâ’}â¨"Š ìUÜ¡w n{5O×ÝN…QoŽY5q)ð‘DïzÙÂe Q–€½Ž–웟gâöUE̦ۭ,ênœXq/'ï™Ö5><À>ØwL&Þ²L¤iø(ϽušC>º‘$šeý ;ÿþG=< ŒÒëùJ ýãÜb ’o®‰e»ÚL†ÃÜpªéN žÎÈlLaØÇùª¹Ñà˜Lq[ÆÅÜëJ }ò³öyK–põt¨—‡´n…ö«NËUÄJ„Xãí|Á\î L11½7nþM•$eÏ£9Ÿº6Žn%Kæn´íl/Vs<¢U~ùˆ§Boõ.>k*U1+ôÏx)›R8·òaÓ/ìÑ›ìížý^+Àð„GÆÑ!¿‘Ñ\HTÒÚ¾ÕEz¤hOò£Ð~0íå":×ì 9¯±±²ñÏw•.ÍÅÅc§PS»]òÔ‰æ+j£Yø¿S©³Ïtw½A2†LF‹ÇÜ÷ê.^Í6¯*x'ªV,{ß)ÕãmÖ/º‡Ö jŠy¿²Qó-œšIŒÍ»þ”þè˜Â­D ãÊUÊi>3lI¢2žGç—uI.×®CY]²ËÏuêYºXN=@Ù1'‹í€à9ìåGHe;Ç£4 ­§"åà{‰5%~(í7ªH»H¨”“S5†ù~sˆç¢âl¢‡†¹%úÖÆ¹ù+~¨ŽpÙ³ož“,·¿§Ä]*UáΧi›°çµ[5Xð|Å,\›”;ðvLVc±a¤¸Þ™kû $îvöQnÓDûém€ÿBúA¦·!JƶFéìVÞ»Š&T!%;#Ñ-›¤Eµ6O£ã.NMkƒÇAŸIÕÓ%¿#q}wýÖ[ž+ìcŽ·a1éV¼65póæ›j¿1“Ce*›UQÄR‘n?º§ßÍÈ/ :Þ¯p´© 2¸« -X8þ(8¢°Xê$ÿšéQ¸–v€ëfõ• ±µÃ…È ‡ôª6}¡ôId¥ìÊÐ1fI,¶Ã:Ú³92:¶ÿIŽ_Çr‡NNÉÄå‘X¹ü¯ÝŒC)s)!ì1Ao×™w+c-kòLâ?L"$-µÊSðy-4ÃÚÔë¾W®åÂë–•‘B+ô% ­‘=ÖUm ÃFÞ6=(-ÉgZbÎ þ$¿22Âê£11Êi¥i—¸Ò‰ÕkY{‚ñO°PŒG=!ìÀŽ[\’¬YÑ® Ï躟ÜyŠfˆ5¡WÁš–´ì¸¨ž>]0/zÜCÎþaƆ¡K-¨Àeç ”7Ö;ºÙ*±Ý­æ¨ 40_âÒ±ç¬,8BÏ.`³zuMý7IÅ endstream endobj 109 0 obj << /Length1 1408 /Length2 6441 /Length3 0 /Length 7405 /Filter /FlateDecode >> stream xÚwTlû7€€¤€ #FÇèîî)aÀ€ l86Ò"H "R’Št#%©Rÿéó¼ïûÞï;çûÎÎÙîëwÅ}ÅïºÏÙÀ˜OÑnQƒÃ|‚ü )€²®‘愈@(Ò òJ 4ƒ <¡p˜ÔÿÒ+# `$S#1fºp@ åŠI ŠK@!Hò_†p„@ìuèò´à0ˆ'1PîჀ:» 1·üëàtàJJŠóþq(ºCP0   Fº@Ü17:€ÝÆp(éóœ2.H¤‡”€€··7?ØÝ“Žp–ãâxC‘.#ˆ'áqü. v‡ü)ŒŸ0qzþÃÞ`€Ü ˜'Æs„ ˜»Æš:}ì/c¿ x· È/øïp{ÿ…ýq;8ÀÝ=À0(ÌàuƒôÕtø‘h$/ sümvó„cüÁ^`¨Øcð'q0@MÑÆÔ÷wuž¨Ò“ßêö»Bßa0MV…9*ÃÝÝ!0¤'ñïüT ˆ¦ë>Æê ƒ{Ãüþ:;AaŽN¿KpDy˜Â OPM•¿-0ñ0g Ä%$'ÚÁEàwpÈ¥ào“€ŸÜà„)u‚`~ˆý<Á^‚øýoÅ?%bAA€#Ô °‡8CaÄÿ‰Ž!NɘÉ# h€Cçß‹Áøg,=8†±çn 9`¾ÿ¿iþÇåÿÆîßQþÿï|ÔPnn´œ¿Õÿ‡ìuóù[á+ ‰á¾.³°ÿ65‡üµ®ºG(Êý¿µšH0faÎnÿn"ÔS І8@‘.Qå/Üô÷‚¹Aa¸'ô÷ƒàþK‡Ù*WÌ£á‰áã³4ÿ¼Ræwü½]B¢b0ö!ÆŒ#‰ü1kèAÿa0@€Gb\˜òNpñïyŠ œà(Äoô " À¼Sÿ–1@º ÿ aoøù¹8 Ì&þá &ÑÉÖACˆçgàÒáëÂÛÎjïyó­ÊN×ÍŸsñùÍ#ÚQd„é\ÕÙ¡+ˆŸŠéïî,®©rž(|bºòÛii ŒlM5|ûËÿÒ6Ùhbý-ñÜ8mïXÑŽbý‡D÷ùL6ü¯žø›…¸â¶`wjóŸ $È ©Î¼{ÔÑõʆ#fÖ 7ªÅ´I.Ë&ùâMã¬CJ> ìs¦éX|nqS É?žüœ¢Ì»aÒJæ!Ø.ö³\J8Ÿö]ª0òì¢g£·¤{€{B9<Áî§´ùLëî¬ßëâÄpÆ4mûÈg÷4A·MNßu=£3ÄÖGìÀ1)Nz:\jÍØ¸•V÷摜ƒE­´æñ{O^ýè¾›x^ÅÔ+æ {êû{´vV6&Fù¶UåÈ„KÒê„q2ëÒn‡Rï‰ÎŠõÓï~6æÖ—/Ù–?¶2ÿy5㸆2ï,Žiâ>ßu$þ¯R‚3o€3–ާr¦Y5ä‰F¨Hn(’¬ox“÷ÉêöBLKù“¤šj¢ w KñÁÖ}W>uÛ%ë/ÆCT5>êÙ':¹ÇWiYIz Î/v… ¤¶ÞÝÙð¿P¸ÉÏÏkføõq ÙíöDjO¼òÁ’]Wp‚Jxd‰|õ-­Ê(þ-nòiå¾RQÆö‰ÌuÏ:a¦ô®tîå·Õž,˜8 Z²mTNúg.n4 £Ý>UéG¢fÑ)Îê›þØR»ìz° 6­UÃ}ŸËoËa"7GåJ=|8¾2 ?»y ]â_¸œbè{õoH20fmtÄD‚Úȱ—V+“à4P³ÀñŸ¥V1¦øÈ^G8Ø C,ŸEŽ?Ï­)Ó‡¾ŽŠø¹Qù:Iƒ7âXÜîäYü†­¥Ì!•sΡeçÕÎÈeCÙsÁJ^^PÐt^è“ô(@‚ÇVª‚KD÷¼yûµ+ƒÓŽÉàî3rº Ò5ˆR@ŒòCjÜŒI‘f®4ÔÎs|áÇÛF “Lóþn‡öXÊ!mc¾¡5ÚŒ¶xeU8P^ŽÁ1ÃÃLñG©Â­ª-gSeû»A±$Ùp»,PM;úظ!wò)dóè²²å⨨µƒÃ“à;‚íÖ{œHò5Z~UFßDsÎ(ÖP]½áäF±OܳªÒ37ãʽô…ÕàG‚§>¢%K.->Nĵžw>ñK„ŒÕˆVu9@)ÔÙD‡œAûÚ&n׸—³ ór6ô7N_æqÌ'¿…/ˆ&ª›í¤­VÀŠîåÉÚàoY&ÙÅQî¥FpoàŠ“l²ä’çßJüç°1wêýÔ\€Sseêg‘ã´EkväW–X¼2´a°{“\Š×««ÇB¸èÈØ*òˆmh½Óz#ùm}¡3i&Hèô± ³€›PùËŒw_·;EzÓk»œo̰Súˆî®sQ/gKhæj9Xgïê3]æ”DL%˜<Û>¥YúE%™s_e’skÈgJr¿à¹'d–þiŽ÷w£H ñ%æºÑx²gJ =2ív R¡^‘ÓY÷ÆCçþBV¥zà( c²ÄyDQ:ôK^ZKÚîñ¥sñ©zZZ²XšøõÁ #–™x'X%ŸP¶ „«©o㥢y¯ˆ°Ì©onz㹊ý•wUtÐX°ÐSÐÙÞâ,°Ö²*‹DöCŵfÿÓ¾× åËïû5¡ r†ŒöOÕ ¬ð¶©ŽJ}8<òÙÛ±¸MØëçž1¾ÄJÛMhÊNç:~÷J³eš³f\0Ï)=UZm=©µ¥jm,ù³Ê<\aÿaº}ÕøZyð%Yïmµj´qàE©™ac¦ùz¥*ÂÚxoE3¡Š`Ë,(Ï“ˆ 剅G6Á˜Í¨ÿ ®?BÿS4v0¶ƒÃ–ˆæ(^ÛÌ6'Bät¤ ~ìñåՎ瀄bïæÛœŒodk#Ûon ,pDøv§vtÖ¿Ý®©î9À’ì/í©™Õú{Ѹ÷TñmoWfsÛëè¿7Ý="îKÓî¬TxàéTæ®õòP”~©:elÿ•£¢• ýãÕªŽÐ:|>s¼ÜïR+ä¼²4JÛ×îe«Ïw!,Q$Y%yUaðÀ÷‹%ux÷wåxW½çÑš¶€H½gtÅçáyô3#$VaC±!$º ßEúÀgÅ­îô m2›Ó®€ûüP`­M³ÎÏû@ú\Ìòë¦'~ßš*oµèÇwÆSpaW.±ôYAú½£eAÐ!C?#νå{è¼#sºÕgEìäU6\¯®'ã@ªTYZ…r€µ­wÉøVIG°_LE‹G·XöÊÄî5™N¡î³+÷$]Ö+b#â§[/‚Ú²Ë'ØÆów+ƒ÷#Žñîõú¿kÉôgZÏLêOTO¤ÖÌh²ëqr}r €lÆ·dÏáH~'ûõ–pqøG{<Íçû¦¹¢·Â Á•ý½W¥ŠíÕØ_ó(y/K~p}£•‚Òßêu8p±”rëܪž ½-£–%þO€G⨺Ӻ`§ÛŒ¿>;níú°ˆ‚Ý–ÿ¾ ‡òew±R#T¹ÛCÿI-%¹Ú`w†ZÅf$O†ñî;" KÐz4óAÿ6^¤•eàLhZÉ×§™ògGöMb’I!J§j¯yéÔÄÁ{w»Í,fS~í Ãú©äå 'DkÎúZ¸ôm¡ËV &º!Õ¤u÷z1þãB»ƒå5/1U˜g>Py§uy¿TÚ¤°?b}’cUKpL¼xLŸ\¥‘ÝŒ7Õ=„Y)ÙÒô =³Å'S€¡žËëLòÒ¨˜›R_Ç}D7cÑË¢ÒYÝÓÅL¡I áZþâR%îDsûÝ‹™nBŒ4ˆ¬¸-|2ZAëоJØÿêžxé€ÏLG´‡£k‰É§áY#àq¬½Ë[Lu‹ÌѵŸèœÎÔÈÎêË«X9]±BòÆ@*ÿF{`ÍÚõUFá®;²WJŽNUÐBKk_ ÿ¦(Å2!µlëFIƒ+Чm’Þcz8f²{-?°qTU*~59klº7T†fiüplÿ\$PÄæ!ÙtëFJÇéƒç’U’&2íó_hoã¾|ÚŸ'Ik¥é÷ÜàB.Œ!L”ÌåÀιWFûs ´Xæ•CQw˜Ÿ'}à·%|…Æ xk äïÀ³Ïƒ˜çïQ” AŒÑ»*Ø¡Œ/ËïÁw37?û-¼íÚjÚ̸EÐé ã578ȧ®ò}ó,.[z†Ç( ùÔläáášì‰õ$êU«R:á‡ïG¦œÊ^½¸Þò³D‘7X*yEthä÷‹©°Ö‹Uƒ«~49Vù”@|]xPS(WÕÏjCS&yÙÄ`íúé°HRÓi)Y’˜¦†s \u†#²pVg¿q¯ÇÚ­rX'ÅÅgçÒ^€¬L;ÀuÛ,ëzY…•O&ÆÊ³°E' 'įØ{7­§¥ätöu3Ž=Œlþå×ÑGHbÙ>ÊdM×Êyãxâkî̧“d_œçqú‹ÞÇzÁ—€ÓÙ¨DìÖ*d¿o´«B;þ͵úÝW²’¦BK%ŸÃhë[”k®^1%Mk|é†{$ 8Î?á©ï ðš¶ -²5ö¶RÑ“´¸HÏkb†Œ>+ •b„«œõ›¶WÒ©–Ÿ«5ûÀ¥AŸ®ƒÈ//L.¸ŒË1° ±ö¥÷^ÔR'˜ˆj1s3œ­ß=7¾«P¢»!Î*Á>³Ë÷ªä<ß'vÑ#ùbùø Ý€o±Oþl¦Í ™“-Vþ˜ÿs¿æ³Þ(©$­x#kYÝ—ÀÁ^ÝØ““ìE“Ú.ù%_š³F#-ù…†Ôu¾å¥³6”Tž±e&;ÇS á™dDOÕùú–F’ºÁ뾕ëGÁë\ÂäIY{ºm? ‹5*s Ñ÷Þݘq¦ósNyÖ\H¯ù¯Øè›äMç>Ü™”´cTÇ¿}Éf`>_±Ø;\˜uR~,Òg OðpT)^r?öíÇ/é±ùÜBQ÷f¦ß·+R;­IcæJìMX+u|¬ÛJ˜ï>1+2tYfaÖÁZpþ¥µ9«E÷²ðÀæÕw_áìKÉ5Š(<ä9(+ÂýÓÕYœm4«°$}i’ÇW& +{½Å¹T=‘ÅÞ@ö(ëh$4'”:VïÕ‰ÙØfíBnјb¿©+;Î;…ޱ‰çžïÂ"Z#l¥[ 3+š¨cžœpÚ–^5çH}o㟗âÚ ¥e´š bdz¿F~à×;xEàßõÑ`Þ½7à]—@ªz•U\‘Å´ü=Wc¸‰õ¬%zGƒ€ -<Ì›è œ{¶‡¨»š¦[uMÎò0ðî”×ͼg¤£ã½¥Oò]¸ɆO¥Áqù¡V™€B€²áº16ïvÜea÷´?o¡—lË~ÀVD6“rTYv¶˜™wóÆq"n*b¹K‚HíqHÜhÕ7>TjdvT$¼%¶SictîrX7Éÿ‘½œ×Xêˆw#§%ÔÝòHïqÐY·•Þ´Bz>·å›Ÿ6¤Y]\µÅ¿± IW+/5†þª"õV¦L¬NHf™bêµjðQ)×êçe±zmeÆ-@S¬<×þ*›0žæ3äœ.)¦É¥ÉBÄÆœÜ3-ðúüDÇ <…Ó ÐÇh»»"ÌÔø¥¹ Ó95³}LŽú«ñnHOhاrh=J±æÝ<úq·M”Õ3’³ôÇ3²‰ªY‡ÓyôBgÊ"À¡£† Š!G„á^ë$m!µ€twr~Ò§äóå?B‚üoØÂ?tîÇ þÒìǹ¯Њ-úy4”Y¡k›Zsè¦<1ÿây0Ã>ͬ9뫾¤„z²49/^ÝåCÁío]ѶkÕ »• ¨AðõHzú~\h[ÅadR³sq‡¥`T¢TðÓÀ (gŠ[\Ìš¬ë“*puÅ— ù×ì¹e)i®™e¦Þ±»(´Ã7yÅZpØü#æÒc2¬ºè–|m.Ó‹/ÄÙ²ÅcÊãÂáV~A‰+ìÅÇšç&ús†¤Ä†a74L¹i>‹œÅª4Ü]¿ä:+8V"WÂD£H]HƒÂÍ‚3–ìx7O¼Â&L¦üVnÚ…iô;®öslãdvFçTvyˆJn°—]h–¢ë„©C©d>¯Cù·¼5¤j¦FÙÚn ©p†4]½’-¯Ü+ŸbÔ†W串åôS–trKGë¤XÍÕHØ ¨JOY'ÕoRÐáŠÄ“ú",åî°±:žäS޽`ê¬ãƒ×7Râú"…«÷A º«áyñ èH\q,f¥‘<] *’?à«X¹¹Lfžˆþ ´›Ñ˜÷°l=õð˃½çïòûÆÊQvRÒ¥ØL0©]ýñ>ýžU¨ó‘¦ß{GE½”Þ ¢{ÜûÝ5yRÅf{TÎŒ×@wHyÑ“¥Ô$+a™1]%“"pÓ*B¯ÝªôtåR?˜JÄz¡g³:B ÞÛ<¼–¥VA’ø+çjá@.eˆã¡c ݦ—‘Ä ½“ïj«¸ü¢qº>¬¦Ð“Uºí“wÿÏ‘dll¡âÙå®õžSŽþL³l×ÕÈ-JÏÂéî¥&ÃÔ…æJ ¤ÒÎÊä.ËÚf«RQo“ƇÚáõ~3ä +[,c >þÒÅW—±·Á7Q=«@u#݇Î/lV%ˆ!ïfëôÀšÝTn$§~èXK¸¨Íš„ŽVªgKz¶‹†aºnÆxr–cý`Y!—ÔÁv!I—½¢â‡bw‡!ÔÛ5ÛJ_[IýLK=oÛÌ_Nv,ŽÈÓžµÕÚÆÄ4¿Áo ¶ß@Ý4ÄL·©½í«}¡o'æd)±])᱈bw»omߪhhåÖõÐï±—ÃIÝ͵¿eƒWU—³œ&é£`ž-{d³3çi¢öDƒ¯²Õö”³øæÚp¦§…4—ÿ௎}+l/6íZF«˜692Ÿ)âjû°#®N™¢Z?E•>©<õkã“¿èn-¶”[¾-È+·qRhþD-0nY”(Ò~ß"ÿ×—ñ—(,áB¥Ó2%Žbµ¦¨ÇJÙµøSɉ¦ è`¯ÅÊÓ‘}^³­•Gêmh=7&Ù)u×\‘^ú:|%›ˆZ 4Ksе§åvÎý!‰Sö?÷®Æ®¾m=سLœŸÊ •g§teÿÔU”Ú,¡Z·¨–2ðºgÍÝâçÑë­6¬ÇåìT¬…íáž_^ô¬_$(/ö4½!Ëõ™áÁ/ö5^eïÏM:â*µ1l¾ ï¢ôÞêF%Ò¼q~}¥¯Ù½Ì–’8,ÚWi†:Ÿ Ž~±vúÑqë D>Òxˆåœ0ù \¼:¯‡WåxBVS2j~¸oï~®#»úùcuž· é³u~$™àœã³&® GúÅ”úß_ñ*úJè׃Áó;A®6­I QXÙ ?ÚNam?ÞÊ÷ c͉í_bûÖöÚ9À´õj¦tQ»•4î9OùúÑõ¹HúQÎíTu˜µq Ý)zQa,m {mžcçK,¶q*hÒÇÝé´‰7< |—ǂӯñ?¹SR7 endstream endobj 111 0 obj << /Length1 1408 /Length2 6437 /Length3 0 /Length 7400 /Filter /FlateDecode >> stream xÚvTlû7%1:¤‘I(½énI ©16° ÆèA)IIIABEZDJBB:•”’”ÿôyÞ÷ý?ï÷ó}gçl÷õ»â¾âwÝgü×ÍDU1Np- ' ËÕ Me€`°„,àç7Gâ<à¡þ;p¬7ƒ–ÿ_zu,ŠÃcPÞ̃êùx!@ˆ´ÈṎ,mËè‡I1*QužS8§ˆèÙ—W?ä`#Ù´ ·/®±°°â Ø«Žvw-!r»í·ÞôÕk“ˆb×ý†HʪƒrØ“O¿z£a×xRÐÊGÅc–Ñ)‚9)éc¸[Ù¸ˆ‹)âÝ;ÒWcÓ·âm^Õ¦v€Í¨)Ó…ú•ÓªIïÁ‚É–SW,»\0ÍÉÛÉcì+Þ:µ!e]áÞÇÍ•&´ÈÓ½ ’‚ZùÉ'Œ¾už†SÝÙ^)ažHjõDº'×9ºíŒí.;¶fU·i–[bÈ·¿W[îRº©!µM·ÖE÷šÇM6†:ðí|£{EÝë£áÌ9!‘`B~”¡Æfc†ð‘¤ZÏ)ñoŸ/nX˜6:Qø•™àø¼˜oµàž&Ã2¢›U¯ÄÏq¾2r0qszÅüÉ¥`ièU>]þK¯ùÇÆº¼U¢† )ƒëwüÝhÚý»6UfßNg3ÚÌéI»†í¼ZœRtUªœøD*O×›„q÷m˜eÛm/¸hó·Ûó»¸À)½ëWaƯÕƒºØ ŠsÇ5ÎØï3ÚOou@¾´ª8h„Xa›Ó4*nÛ$•höŠ &}UÜHà·/i‰ßi­c¬kföýsW÷²ÀÜîj§ ÑÀFv…Ó4AÌê8Skn€:-›0&<þÈN¨?aÈ…zÃÝ_ô¦({÷|‚BØþ[ݸ¯jÕ{F³ï—¶?w™/çæ–U­®¿*Qï¾å»Üçd=§cJþSêíe-RÃ$©;×ýòGì¿¥P0MtMø¦  KŠˆ†ÃÛ¼i,$W™Æ,mf('hTyÁ½ÚÒÛéŸÅ—s’W‰æç•ûknmù¿fÆ3'I`Þ/Td†[ ƒƒ„ÄN/ªÃº”££o*æÝ¯íÖÕ;ãì ì>E©óx{¢Ã+óÄÃ!A§ŠšçSnD’‡£6FůõC…üî7(ÿ"<`~¾¾Í›þ./’D®ŒýÖà‰êÁ§Æ4”2Ñ!_í«Q>ZÛÙÝâ§±ù©/+ýCQÒí¤ wìõ=ˆ¹ï$ü¬xΣY$K«Mwœ¿ÚµÜYÛÙ¬íÖD³ö>¶Ã,Ó1ÉÖž–ýòé™p‘]´Ëꦱº[ê”6™*\ gÍÇætVVóe`(-s‡†6÷˧ΪËÄ9m‡°b}ÀÎå}ÜJß§l»‰o¿(ŸX„ aÎòUâ(öïÒhÏØùöHɽ}Z‚ô|= ;Ë;åùØœbtw°Ë†§˜§9DO#8Ùv“‹¥o´Z‰²ï`—bÞ ¤+-—ÓrKÞ ×îRÆÙKg•Ð<é1„ûµ³&íÈTÆŽª%ÁÖ¦sò$¶ù²2毿{)òa3\ë(R½F6íä%ai¯FPzóÙŒÀ#«uA+ái|‰ÊÒ<ŠÞ7õGI²5¸Ï­ 0ø1fÕ{H€ Oèʈ[r§Wl5 bÙª°€Ëu¢wsäO=/¶úq[3ìs˜-Z¥aЋ_P‡Œ×µfG­me€»OÊÅÒ·qúô™¬š#MÛ„}”1v÷ã]§kw¾WŒ¥”ϺÉÜ:@{[÷yDƒx·F¶XV_pˆÞ?½ 8’_ãtº1}÷‡ ý¶Î«÷d£ªVDSš©—/~Z¸ä*¸W{½ 0`ë¨R+_ÿ(äör¤Þ•f\7î&ß•f•)y”˜X$È+ƒ¿ÌӨ⠶E|[ñу]Ëh¢ÑÏ]Ù}êšïëo‡"J•¢ÚZâÁn§×¶Äݲ•Ý‘ò Ý^¹+Ï-¬­&ðVK˜Çˆ04Â~o#Ê&Å–¡ŠS1 Þ<ÌEM +V–ÝédÔ!µÌ3š—Ø >#ÊóD=ó45[8ˬÕ|ifë¹{Ç*g'M¬×ôZëcsv¬& Þ:4¯ð+bªºihŒÿjOÄq ÷áCmÃy“ÐQÅã¾A‚åzsÏnëžzKGTlѰY“gòÛsn)ß–JæäÇNå9y1të}¶RòrVÃ@·X"Ó¬9^»"K¯ê웺’䥯°§m}è‘‘í§ ìI~çlÿ,ø:ø\×ÎÆùåZ6¸ºÓ¼ê|GO¥"xçѵ¦H–8J¡ï%ìÍY~»ÌtôTú¹´ƒ×÷ ÆhÀëÇÄ^¾$bZ\VªéùZ!G¤,Õì‰èBâ,•FGÄo§y­’¼xqÏ«2¢0Žƒ'øðV·7´÷+7ß %ïU²Ù­ÃBÒ+àJk•’“†ž©ÓÒuºÚ ݦ„ "%ÆOWÖÂßb†ÔßÍlFp«Š+¶ª(o¾oã1¦¯´¹8ôŠ„ÖœýôÓ ¢1Ÿ3Ì¥o!•­b>IFÌ„à~ÂsZ³N]Ö BB7n¤8Ûô‡ˆGZîgÑ‹mH¾HˆÛn´çï*âªbîÓ˜ Þ±Q®Úz ó Á²KøŠJˆZCÁx Òçfw3O¨×Ìxœ–7Cúý±×& ö\ec‡ËÜ&¿_?6-É ö&¬,ö°–‹àp–â+ç\TÞ#+“©S›è³¸ Þàäª[÷ïšBˆW¦ ¥9ªUT05ècWÎÝ÷b£]wÆg´„ûü$gr3–M­hy¹êŠO 䊼%XÅð¼åuZ¤õ#6ÊDj…½" Xp#¿™õ!.Ï$v4WÄy"ÎñÅ| º-¶U|ÐÒÇ‘\æÐuq—u.©î—û À+­K½$+”sÎiM qÂ#æBúMÂLmâåõþŒ½~ïYÙ÷ÂK3‘ÔéiÈ̺Éo2õ½Ìç'û¼+¯§[1šg†Æà°g)ºìÓ#MÛû“gÂ\2é(M~’F˜vÆP²"50j³ƒóòÐ|ÄâNWïtd5[rìT3™îúì>µß¬·{'#Îùª%j÷%À_†i¥ÖL“¹Qª²0ívÎÄÐŽÅGyeÌ+/ª*:K[Ú_¯þXáÎõŠ%*fa1ž#øˆS8¼êJ¸TÝÞÝ¿`*âûZæ­¦Ax×jƒ“"û¡RGÖIÙ“Ý®ñl¦ãBÞ«®f ¦ªU›Jⳤä·Ç”=hy¼fh‡5¾ßŽŒ:ôq?$–tážîÎá-¥"(r4j‰>•“…Ó5:¨¯¼œTSXT,wÙпMB›®o]MpÔë{õ…MN,ªÛ´°¯$BæFVüÃaPõÓñq2ÈVÎúj<´¿Ì§1Vï›ŸÆ +Dn·GßÞRÆà’P ús‹»Îº,¶ë˦:(޹›Ôüaù·á¥ëŒTM"!..ŽÀÚÏN?®Ôø¤SÔœ-ÞqƘ×;”kòE¾ˆ3بoÜwúN3O7˜Ä*ø‚×ç¼p}fžl]H¡€EÚÂAzy-$æ‘Â=›wµš—Çiv25Kèõ‡i«-4ŠtÒ1G°Ðk¼Ž¯H0†Žuºó˵ÕcÙ`]óºñ¦ízÂwTZåÅ´oJÂdÖúdê6LùËR½™=?þœõß=ºÔ¹Í¢aúÅõÁQL\Ô4ýbi©2@Käû‘ÊtmÒÓîÑE~ÆjËyŸµD­æyéÑ2м~)ÀÊ0[ϯ'ÅEÌñps] ,>;ú °Š5¶öª©åblGp\Ͱ€ç˜H»=&ó¡Û޹^M\Œ»·bm «ùý—oDßøE¬r­ÊÂ7úK”réNǃ§‹íu#-ÖÛ,­2cöà¨î†ŽÍ“V"“½G¢Àâ§TÓFv‘%¿¾ž‘Ò¨›íx:÷´ô\Úö EŸt±Š‹@æ Íoè™î¨ûÜ ¸iÄóV›R‚ûÎB®é=ø¶8"ŠyÆšx{ÀÚ<]Ýn9Ú :ýðý ¨Ïf_]eB íQ¿†ÌŠ#½E¸ð¼”ì㋨­[•*Kõ™¾Ÿî1âÖ:ót©IÚ|z“‡£)·«•ô…ïSs kMï‹QòëÝ*¸üb9EK3õmÖÒæ UšŒÓ„®àlÌ4©8iÍü9$§ú9pFi»q”•¾wKkèšöø‹7/š¹äßv•:_Ýd¶ŠDë¾?´ë/)ô÷­±Bȣμ‘ÅF|NžéaŸ=k,œÁ¼½É¥:Z»'U7»¿Z³$¾îyÑ—_ØÉü1¼Ý¼ø¦lc¯gÚs_ wÚ Á}¹NERÕ 9òÑ›ãêN6 2¹â_1è|î]åÆYïáøµ”ÈÁ‰kôžL5бë¶[­ÜC®Í„õýfX&♫j ›iÃf_õ·¿@摘!fQK‰ —é ¥5Š]mã~GbCqÞ]í¦ ¢é\ÑÖ¡ÊÙ„BŸ ¤ï çî¤Ù–6-ҸɌÍÝ»[»ÍŽ“€y‰1ßÖã¸[A雬¡?Žq(ÝÌ ™Tm"lÓ)nÛ6¿G»¤ëÔªrÜ oH«ðNy2Ò\‹—«Å‰@KaÓ/È&§½,˜ró[œ_£?›ì—Z¥ü„[(@õOmzô­ùX”ÀpL±¢ ®>5)oJN ‘ô7Ú°‰ÕQÌû3[ä…”ê0gb «p¥ðTó*UO ¤‡xþhGY]uשú*…¿ÕMü“ôbQ؈œ‰ÁZþ¨±–£F‚]4YHÎÕE›ŸÉo_&Êz†ߢñûV×/$PÎÓx÷F¹O|¯ñ3ìSŸmÑ~ŠXÅÌ’j¬ºÚÛeŒãèÁnv¿ËÈñ úmi™fà”‚ÓÛr(å~@àdÔ"‡0Ã[üœËÀÁg£Ó -É”¤õíHÅzé—˜7%/YöNžÑTp!FûR’¬7ÚÀV:¥ü’•†Ó:Ä8¿-VàP\Û£1r°ýΩ÷ÐPµÂ {X²:H¸$(Óip? ÜQò´™¨ËYv+^²e¦c v­§°v£(Ò!ìë,MLÕ57?Ïw\¿g40P2ͼT¦¯D ®Æ;,Q 9Þ~A./õž2Æp3çéRHrðñŠQ£E÷Ï„ë¼sÔ&Ÿ›hÕ+Óst[õ¡«ŽŸ”Àà’ØE>}#º;Ø_.»!zkLîùÙ^Ô8©Úé ‹> A&e'*Ÿ#äMëìí[âlã~nÚÓnÕ‹@x°m®4o¨>ÙC ” Rêt|¥Òõ‹.IÍi5B’; |!ÆLÎ%>ÃyŽòâ_¨Eg>²ª”>p |uÜC ýz^M-À±í'mû퉭UÎ’jOKÖ=É,ÇOv¯·ÒƒS|#—"¦Ä!-‚‰”9s›¤IÄd´ÜÕWAó =)ç¬UVx¶vÇ›˜Sö¯ðŠôú0îßps޹ֹ£îÁõ`Û&~âd‘pu‡M¥F>«CY˜Ú^ÝMDUQ.:×äÚ[£X ÓªDtnqˆiSd–L-zõÛ‡¡ì¸/O×Ú×DiGÈ5 ÝÝV7¾¢Ðî<9¾H½p;‰Ç…¾\rz”x¨YñPn?š·M+e=]ºl¤áù*ÜÓ\Ú†ÿÇÙŒî¼ çV¶(‘›=e{(”JW7pÉ™rÝÍúP Ñ1š‡}“œ/ÛJ&П=m_urAÂi‡_]…¯Ìйf“OV`Ã;å‘ñGKX±õ宼xÚ°Ñ=/z’þ¯’™‡I|ù€’;Ö¾UítjHëYÌ€álÚXJaåÄòRéÞe¥Eï Ýµ¥*ÔVôTËgoy—ýtt„5øã|mB-oÇ+ß!—è’ 6¢Ôz8r?[nˆ,p—‡Š§±‹z ÏŽÎØÈì šý%aÀÍ.“¸æ’ý¬»*ãý†)‰£‰¾ìnÛãÝí©´0Øõ0ï 0L¡âR–)ÿ!u@ÄÄ€\tŸí{㹓MÈzûW݃Yȧ¶ùè*Õ›µœvö= MãŸúówu§_TÊÖ!|©ÊE'æ‰ø§rŠnßQ3¿ó˜„E§tÚšE¸ÕS/Ä 0×ûåÙ¬Ç&YÒkýðZàM5“ÛNR-dfbmРfìp7\Ç’D¡Óı tÜmæ å /Iؼëÿiš8DBà¹HöÍCRÖ)e²ùd˜è^ñêó´ïlVyÂëã7¤ ¹äD'r%Ræùªý¡QrP#â O3,Za”7ïB“/ÆåèÌÓUÁÀZòK¹¸B?Áîm”b‹3í°`ê¥cqðJ4éøI‹—fn¥%)h€ QÁb¶Ä¢È~Oˆ{óF¿cxºXÀݱ2ìôM-*”¸Rþx)ÜuÅc.(!u¡_BZ4ŠÑ£|T™åþîd„]<Õa×»ý±Ñýú~]13Ã'¶·“áovXP”˜Ô*öå­uÞ½ÏÓ¦y©÷NK=Åî.o[¼áu å¥UY ÈÛÍIñ~áíÛnƒòIÃX[ ½E3‡7Ï:ŽNÛ•ƒŠ «ßˆŽø6–iÕU|¾2SÜúÒ`úêÇŽÅ·W^rC8{¶bÞ¦´3×ˉHÂ7ž‡[çeWBõÍ)—f#-,í0ö<£ü?Çeœ”Ž]佯ǙÎãeÙS2/Ûmø ¿ŒT°ôááîët%ºaÂH5 bóÏäú|‰¯ó®h‡u<>&#?ÄI4ó^ÞÚ^eix&Kßí|¼ÈS¡Å#fnsäÆ]YP›À˜žpg7WŒx›G“xéC-¢íGë¥í¶>³ê<¿~òPçÝû™ë:ä,åÂN—»ßyR®ßçn'aæ=~Ž£–¹ž…Ê>í#TÈP9âcy.V'n r …÷J¸Ýµ°l¶©Ýç-8Õ/ë°úòÐtÈkíA‰ƒÍ‹ŒÐi¡'Âø±ía‹(øJðÍ-¶º‰™tᨵÌù ‘o·BVj·¾ÈJ,0\÷àS"3`ÌÞeòoM›…q½¶*ßo¤ÿì¼ÝàqÝW«Ó/¥çKRBÎÞðÓˆÑÖæTÃGÕ»~`ÛG7ž_U7Î÷¯å•ºrlg_ô‰ß"+b@â{q`JÖ©Ð5—ê¢Z©IÆk ÆíñÚüš‚©4&qµÚ<,—`ÁÕüÀ(U–XEËÆÂ²M =–̺Äȵ Âkv&Wc‰×Zãue*±òÙœÛÞ_§•ZúÖÏSçÙÈÌ'À?x9±Nس€¥¸p*v;rlùÏä–Kˆm–÷'’g…È0oYL0{Ö~Eo³Ò«œ)2Ë,¿G3xÎÝߎ¿I8ý¢¥š«f)Àƒ4@þ85,é¿¡öÐiâ‘U碕¬E‰0g\²Wi”ÃþÊܨÛN‡.O³,ï2‹³²G¯‚$¸£jï5QÕ Ç M}yhnndsÓFtN”Û—¯Äß[\bxµ-·ʼºnÿâ1mÉŠM'=W{ÅÄs÷å{ÝŠrcVJŸêÌOÑñ_ЧT_- ¼”Õg«éJ“ÙU/ˆÏ r¸h’‡*ìÒ4ÖÔ'~=~ú?'Ž3Y endstream endobj 113 0 obj << /Length1 2325 /Length2 17909 /Length3 0 /Length 19271 /Filter /FlateDecode >> stream xÚŒµPœë².Œ»kðÁ]—Ü]ƒdpw—àîîî`ÁÝ5—à îεö>;kŸÿ¯º·RE¾§ýéî·‡š\YYÄÔÞ$ioç daãˆ)¨òØØ8XØØØ‘¨©Õ-]l@ÿ’"Qk‚œœ-ííøÿ¡s¹€eâF.`3{;€¬« ÈróyøÙØìll|ÿchïÄ7r³4(°díí@ÎHÔböžN–æ.à,ÿó  3¡ùøx˜þvˆØ‚œ,MŒì F. [pF#€š½‰%ÈÅó¿Bн·pqqàgeuwwg1²uf±w2ÿ@Ïp·t±¨‚œANn SÀ_tŠF¶ ¿‰± QÔ-,ÿ%V³7sq7rÀK3ØÁÕÎäç¨ÉÈ”@vÿ2–ÿ—àß­Y€ÿ ÷oï¿YÚýíldbboë`dçiig0³´”$åY\<\˜Fv¦Ù8ÛƒýÜŒ,mŒŒÁnQùý›³‰“¥ƒ‹3‹³¥Í_ Yÿ n²„©˜½­-ÈÎÅé¯úÄ-@&à®{²þ=Vk;{w;ï}›YÚ™šýEÁÔÕUÃÎÒÑ$#þo °éÌäàbccãá@އ‰ë_ÁÕ=@+ÿƒë÷õv°w˜)€|-Í@àÿ¼Ü@'W¯÷?ÿ€@€©¥‰ Àdni‡ô':X 2ûOÞÉÒ Ë^< €í¯ÿùÒï–©½çó¿‡Ëª *-¦)Æø7áÿ¨DEí=ÞÌÜfv.6‡ Àþðýï(ÊF–ÿ®‚í¯Œ™=€ï_Å‚»ô?»ý{útÿ~ô€ÿŽ¥hÞX€îÏ‚ë±q±™€ÿÿŸ×üo—ÿ¿íþ+ÊÿeÁÿw=’®66kéþRÿ´F¶–6žÿÖƒ÷ÕÕ¼û öà`÷¿M?‚þõ\@¦–®¶ÿ[+ãb~"væ6ÿi¢¥³¤¥ÈTÙÒÅÄâ_«ò/¹Æ_ÌÆÒ¤lïlù×A0ÙØþ—üªL¬ÁGü«@àGóß)%ìLìMÿz]ì\Ü#''#O$ðˆÁˆ à ?CSÇß `e±³w»Àô|föNHÍ“› À*ò—è_ˆÀ*úñXÅþ ^«øÄ`•ø/«ä°JýAìVé?ˆÀ*ó³ËýAàìò8»Âήø³+ýñ‚³+ÿAà|ª8ŸÚÄ `UÿƒÀÙ5þ pvÍ?œýãήõÄÖýA`ñ®Ìä?ˆœ|mÿXÿ5cVÓ@p¯@ÿà²þkÁþ€é˜ý`s³À¿”–Üÿ‚ö®NÿðÓ7ÿ×cñ§:0 O ðmÿc–Yþ‚ ²ú3·þS·ùs·ýG©`¦"s]íÀ+ý=˜‹ýŸbÀÎöÿ¥“qø£sÿHÙÙ€Ìþt‡øo©Ó5\µø²Øÿ£Ñà_hVÇÿ@p6GW{ð;ÿïnÁ úGû€àn8ÿ¡V:ƒOò58Ïgðicu±pýcœà¢]Üíÿán‚ë? ¸nÿ€à¢Üÿ1[°÷?’±ƒÃ{þ‚Ûãõ‡18’Èé_©þë@˜¸:ûãò÷_ÿÁÿƒ@ ¤å{`«úàŽû:"wæ½)ÁYê½éôÌÞËN®hð)ôµÙŸ7œnERFû0Öv$èn„WÈ^¼·6‡µ%©´?ù<&¨Îìµ#-}Çš.þ-Ò0H‚H̬.üËçÅÑG3к²[–:ßÑ•M¹ûÞ}@Ê£a°ru"taOåW-·òsåæh½À²9êãœùwp.Ì$ Xçès7·³XyÓod² ŒH¾Ç1%Þ:›ì±ó^?«ÕÙ{¨tÞ‘@ß`MÌÐx‹¤Êâ/z——l8M¤ÍãuNnÙ&mè¼öUï/ h¨§ùéÞ±BãÈDEo´I'Ú–‘'Âq术ÉnxÈ\ò´;3)%Z¾)ÙðÔ£\™Ï4¤w:s üJéSN ÈIkl©ñuÁòhdê‘q“äІÈ=«Ò‡»Dz\;ñ«l&ËÀÝÏ‘Þv²F䟠óHPfU}J~“Ï ºžŒQ»—¡u6^'j/ZôóO#‚óQî†vHÁS4QÂmùR#2YvsóU´Nsh§Ÿ‚^Ý"¡tÚ@ Ý*õêŽg S3=£ôF”ÀŽ-D¾ÐþéìNа jŘv^Zã«)8ìþ”ž$ãaÓMTËcªš–ó¶ëxKB# Ðm²sþ·õ­ Iz~_Ò·ZŽ]-¤XT·{èrj)Åó®ÅA|¦¥¬~Ÿ¾GÜQdCËÂbÄ+±sð®Ä[¢™õe¤>›ìvšñìΔN\²/N&¬ùªÐ^÷‡P+ú…¯i_0…‘÷þ¸c»yžÅ@›ækúj(q¼ý:Ÿó‡bÔ‡ñþö®„¶=¤Z^«./™ÙÕC±4jûöÙçªØL%;^¢KUsÊTñŽÔq¢Üïì t²ŒAãW>Ë3½RÙIeó'Ù¿q6­ùVê‚p®@ž…„˜/å¬#|ŒLÌÆî­|ãïy |sVh˜'¿½æ·ŠZ‰[J^'g+5<_Ô{\ŸZb#. ŸSØ9Ë÷¸8—'†íã‘ÃÍ)e(',£©Öô6E®œ¨âݹ’ËõÐÇlÂóõ퀮Ŧº§ã'6Ö½°ä6ªÇ»n—QœÑ†!X†¤T„pšºgOpIÒ:/¹wrµONzî7‰þ®Ô§†õ™’¨ÈmЂE» 8)s9#¡b¡féÔÌ‹«ßºT?tlGª@CM¡»_¼o sj|~·yêUôk7I|&$ûä[{ÄÿAbBH" ¤ëÆEóªwå€Äø–"ä{£º¤¾<œ^@ŽÈDÖýL5Ü…ɤ…Ø”û*²<ù¶®¨ˆ~®£¤úAí†33+û¨8|ßYF+…g¿‘fE ³ÚßCåÊPé®i3I‡Fb•t ʬ|`Ï\F¡ÿÿÜVñ¿»¤qÐÏ+Ê#š»»Ôß6)^ëVR32ùVLBÉC6ôÉJÒ¶4Ø‚ž@k´º€xþ{XosÐ0IÔÊaª÷Ž+|?jTˆIÞ@ù8HhÅxocÂF³úÕçn S¸x`†³Øê·ˆÙ6_S—æ³ñuA"/”úÓªi½Õ;NòCÍŽ¶ô]PýS¤ŽÛœH³ôG(Œ’ÔÏ“ƒRÅpno«6Ø~‡§CËáuº\Nòa¾Žêçn¶Vb {UÆ Xüæ¹['½ýa·ˆšJ¿q,§~í'­T¢“ÖPúÌxÚÞ1sN23_d#›…HÞz||D‹é¬êlŠqpnÑ"ávdŽ V@§=Å~)Œ[Ù 1]µ9{Œ6ɨ¥Ád dßci¾QœXñìqdKŒ¹iÂedÐÁªœÊÝ2Z E_ŒžeÎ&²l ˜zÓÏo9 ˆZà#0rVĹj "3ÔW@mñ?Ú&•¼'¡vþü•œ©d{”W+k’цóÖ*w— ùVÉ øµDÝÁ-F<Ä -g`ž,:sõÚƒ*½é„ÑÌæz×#1 àOo­à6Pûѹî£Q˜€ssƒMÿ 5­hR+#D¬t}| û¨‘Àv¨ÍÐùËU¼Úà‘VhgñÅ äˆwßûxS‹R×A‡Ðù0›´¬"ájFíÑw@gK )ŠLgìä¨íHà ©?U%Mb>¼<ñ®Ø'?©°†ÿ«â²Š®)dÇIèü¼vÊEà™Š5î÷>Ã;µ"Ö‘ñ;^£$͇jZû7 öXòêã2k .¡¸«‚Jú_‘)æ4²T§de8˜sãL›Ã«Vjú¸4cÀcIÇï #G «£Z™ ±q–•6a—jfŠÉØiÞŽ:Ĉµ´ÐÂÛ¦0÷v6$-Þ/râ×…oƒ™ˆ œ.«êÚqèø|™oZ¾œ ›^CádLbŠ.Ö“6†ïØ"½zœ$гÞpdœo'Ï0\7Õ»=òµ½Ë‚äš\,È]9¾Nr[O$x%ŽŸwÕ2 hUsÑø»F]$! }•4™ß,c¼dJ&^lÇ’0èäµÇ¯÷æGbHÙGƒî$bÅ™D¨ŽÓWésG'èàÑôl£÷õg¢!Èð­ñ“å×JNG|#d¥þÄd‹WÕ`™{ŒñKmsÛ‘¦ðÁæjòç¯ø¢Gíù<<¸cCÙœ*\ÇáŒ^xÙëÜ‚dk×QÏzJÆÊº  ô±¼Ñoã1ùX@ò^DFæEÐÍÞòGc²:}z•ÌE+3;ø¸q‹@Œ=—š )½øµè[^þ#&ïðúzÁhYt‰ vÝ_ÄÛ¼ÅyÖÚIøzo‰heÖsï¾ï=Q¯§Viü3vŒ7°R…L‹ƒÓL)¸{Øþ6ί??Kʼ©KoÆI‡|J„¸ÍtËîJù]±'H=ËbôËR.4.¢ÆSAôÁ޼SÍÕÚÓ‚ë몸ÒBÙ-'áèÝÆD°Š*ÍByÛHÏì·6Õw&Ö4³˲ùù(œ¶S¨WºK=ºI#>Sú$ÙØ\»H|²Í#1­¤#7ó ³Hl5hó;yæ—»½†HÄîv[ÝÞ‡*"ß`í Ë*Z¥Ì“d¤S£õá%PêЮìý5sÞ¾ítpòÓ…!Œëí¨k“Á;¿ïnÈoÙLíWlÚDRÈA9A=¤­3lfÎT§±ÓssØ"¹¯äj®Í0\ AÅ|cqQÇï‹ãü2ã"ü|PâšYøë“öÆÞHû˜ÈÛVÀ•]Ñ€ãVuOÜ©‰³bži¦jÛz¨‰²£n¾)³Ïå<Ò¡„"ióï:A3×5Þ;ß¿äÇiÎŽ+19(ߪ'­ÛLå!›™ç ȼvnô¦Rd¬ŠÎ.ÌŠ{~¯G‘?Vø€$ñ“iÓ¤t¡×ç‰Ð7- vOðq¿§yÒ×Xî”ýùª#òÉ`ïÔà㌆ˆ&Ï?.å©„ì„+¤*{ŠUÖú0Zãœ0”$ú\¦ ®©O[ #ø „޶)–Óå¨V¬1o2-á¼_$ˆ B­hËT;ΰÂb|ÃK\çZŒÊô놇]ÀÆ.&rޝˈSó÷ÕÌæaL|B{¼ t›FàÝ ûi½µVqA>Òý.oìÄ× È£sé„5œÝx˜«o’Zú›|Áʯ2FÈ—ÃX«8½ÅqÑR"ŠÛ#Áöe*îáI‡{¾Tâš§°Al‘_.aî("éëÖÃO?ISEóJ ‚ÔTÛ/ê[èDˆÉÅÀòä¦ãÕéõÝÁÕ  çvþú\NøD {§˜ ìɯÊ꯹Ž@É^³| Ìæ`{T Ÿ^ÊÙ‘p_GÖ>ÔÊÝ`8q³At&± Ì÷†ê–¯t(f²^;¤ÈY´) õPçßPUì“q¡FÁxÃA…§ÚXh ¡:-×/:ÄA³3æ!¦ýˆ|³¬;>׳šÓê†Xx?i© ³ªñBO^ØSR‹R[Ã(¬PõÍ¥µ’w7ö°å ï™bjñ—nÑ—)µ/ìù7Œhâ­Ä~¾ ©,q=yw#×ù©²nܵ/veÍz›íúèn$á“Û ´!ðý|_…¼õ’Û ýbµšŽWFËRµØcFa!µÀ)ˆ±€S(±Zª6©CŸ¾ôx¤#;·ìyéŽÜ‚û 8Ñ⺲„zKª~zƒ/XÙÆmÐÌH-¦ª‡‹>×%N4‹ß:Y8N}Öu^°†ð¿ã´–m?fý¢¦T9m§-«Ga;B¸wêå ,h€%ŠInz…ÍÞc€† —}–;]Nô¡ë*´ërÃ^hŒpŽÒ@YvuJUc®³ÔjÇÖ<ëž·Êþâ-KywÎÃ@AC05•SuCCuá-õpZ'ôɦ#¯¿’>(Z€ÆÇ-Tí]ü}O®Þm.šš‚Dš¼ý¹õËKøÀŒb.Q ð'HŒj™Ñ|7 ¢ñ›ÆÔ‹ºÐ‘™é(¼´æ“ì,ÿŸ–¹ÈÃv(ב]]§$ 7¯åÐ^8tŠt¹SýO•ПN3é0áÚ+X¥~‹L2ˆf–oÈ`åÄ#à»<9…YA™¤}tìºs Ò•±${ïhº5[¤í~z‹‘ÙØ¸†  b®Ü úä[úÃŽÑz ñxV. õ;ã³s›3#ݤDMÊ1T!éįŽzÖ¾*n‚Å{H5•áµx ÓTC—ÆÑ.Ö²òPoQ©\²$ÿDÃÏx3BD]ë3ïOAÇŸÛöP‰¸h¦£ðñÍ\^Ý($ñ”yÏ|p¡½ü»VEý#ð0ïÜÍ®áï>p=m½†Es“lTù‹¬dÊÈFÑÆy3‹ØÔSYœÙRÖ¨´r‘™š²ºr0V’-ˆ™VÞèÌ¢ÍDÍù»Eô~¡7o壪‡“ÖµÍøvEý ì8ºòf¸ŽÏk&‡W2å:D(íáÞšOˆÎ°eò¾‚š]‹sþ¡ÛÍÑ­H'¶lœšÎXdùË¿=«q4ú¾jÅÓÕw3'/úËyô©•MNr²x“à¨!t.‚oÄrë0’Ch›¯bÔ‰ëÇymÒ{5Ï&=cQ]ècKå®!en¯Øojù?¤÷,£6:‹Ù®=¾øÄ«ßÌRN¬F/«Œ× \eKwÄ.K[¸mÏ?]r¹Ì€â±õâˆÈ›»ëî:^¯;U‚Þp ”lªÃÃ÷Œ‹e”Fj±¿ÿ¤_²YY³‰ðÚœaðx³.#'NI‚·Ë^S~¿ÐßkSXsE¡vpkÀ#çæ6÷ " ³þcY°9¸Ÿ $Uî»8°Š´|lôC>ušK(!hœÙEa÷%›®&½Ðkcæƒz²±%J•A¯›sÐ]£ÛPÓy ÈõaWo¬äkè¤háqÄ;ç(Å™$eñº\vü›ƒè¡mñš;ráO¦Ñ: ¦¼÷”fíÔ¯Œ¤ò\œù)žO‡Ýª1”±iWjÎ-±!Œßᯭ*©;‡F¶žú÷òdër»ãë?ס÷î¢ÝìÁßI§} ü´‡©æ“rCk„KΣ{» CÀ"ê&ÇÄéí7YK+‘Œo³{[ºñóA”…Û¼/ÒN Æ÷dBR>‹Ë è«uÓ.$0-=\»A¢¬Ä ÁIm8; ¨âÍdvBù®ÞLNé©¥ÛÈIWQãà «PÌÁï®_PkŠ_UDTGŶeá†þøÕêyB.À†Wfõ‰¥‚ì[ÊÝ_ýÚö³)"yY2›@\\*«.ä@ÔÕJGûmÓXý¥=p‚^ÌôUoUͦ$÷¥æm|ìäçë/v$ã$¤déùÙн¡ýNÇiݺ8›Ú‹w}ÚáÖ¨•>ûŸJ}í²û×'§0‘ó¬Dò º~þ ›0˜ð»_SÈÂ^•Ë3Xèg†[þ@‹Î«0mã)c­g:×®0)¿CîÜÁóCÇvOž“H웯~4“Š.AÑù¯÷‚ÐSuÈçq+7ö¿{»µ+å†V³ã"%û]B¼X¿y©Zø?è{1åÚôóqôÑ4"Ä¢Táļy> дTë!„5º1¹ia·ývc„–ù’v ç—wMh”‘è,xOAç°§ÒQv›O¡ªÒsX¦æôˆ˜(eÚ?š†ëJ}îÒ÷ !›LÁô·ÎKoã’x.§EyöŠ•´M{ÌЯ‰8_³Uï÷žþl‘ôЉLH§"­ÅzqËvQê!$å/°þ^øŽ ‹Óßžà¼WùÍo®¥êàkžÀvÔÝφŸ¯ãÀ‘O מ2™‘±äfçßäC¯Ë$¸‹1ßM1þÜqÏÎÏd5 ,aÔR¼ Õœ’?ìQ—Òù•MàjÍM6ä´i^Þf”†ˆçâ(ø€±¯ Xû*ôèºÏégÁcd%õVá¹Z<^4ŸQ÷bÌ»äÃsØïpdˆ‚5)r9ÜÄîüAøÄiÉ:–†Ênon*ŒÈ®f¹ûÓNÔt‡©œ¸¢YH>Yí®?7ÛP'e; wÒM'߯—‰Ù×›ÉM¬-©/JojµšA|¹´™4’Ñ”çÓ[šÑ×½N0 Eúu—²Ì1­ÊÉ ŒëÜnoã­˜›_v $9³C›ÉßVÉ|¶Äh•Œ_ ¦e¯°¨*¿½ló‡³GaúÚ;ãá:†Ž‚^÷ðJ8ŽÃÛr(UKîê+›„sà·ðúÅ1Q@k]•Ì¥-ëÇu_¾3S¾¯wüÌ Ï;ø­b-!‚ÿ£³ïWwÄÙRL½ð«ÃEŸRÙ“!ÏJô€ ´U~&³Ñ»?-¶k%dáÒlˆô—y³‚ß|ÊV´`€žH^Ns ¨ÞCùMçùjÎlKx'höc]¼íõØß³ù21ÁØ©<6ÐÇ®¥aä奩Šåëí8¦¥­7õH}QãÔŸ q?çLòv!Ä7ç˜ùu [zž§ø“Ù ½‰ ¶ô9íO NEàÐï—É£j<åG¤Ïy»ÖÙ9ÒÙ¶¤)Ì1an§ ïlùLh)¤Å#QÉ_.™­Ú³©uwj{ä(4÷ñLÝêˆãQKm/Hƒµ‹Ï+7RøF·ÌÃ~´½yÆJ{zzŽ<â&‹IMgïyÖÁ ©"Ö)gDuf›©ûÈJFÞ{‡&Áί TËi®w?ólvr㉷Tb9ñµý|0‚½f4æ ¶5†gòWyÏñ¹tt†BŸËÝ)X~9zÞˆ £¹õ#¼nCýàB®¹éÊa ÎG)£%ÖÉÝÞðaÚß{˜g‹ÓÏJý$¶Š-¹f»žï¤—æ I!¬’(Å¿F×ÉÒ¾I\eÀ~$Ñ&¥­|ùr„UOò9¹ïÖõ™júÎ9DØDr>XŒ ŒÏŒU~½Äyø,…ñzŸ=`'‰á¿×îbT™"žQïD0R,ÐýË.anµOý=⫵ïvò‹7aÛ…ìɺj/Ãöí8U‚•ЙÐFîbÀàC#S]Ç *žÁE_¾UV†jò±–`Y‹«±Úó‚¥5Í\¸îëAfguËm9v„i»Ž‘œ:¤ g_Тâp×F¼¤Jî˜î$ü ÞVd I÷·EÚî% @¦œÒ¨R¸Ç,÷óš¯1M‚Â'ßÂÚ"Ö•‹ÊWû1Ü8{%¬bªð30’sÿŽIM;Ú«ÁŒDúƒKg‘P7¸§x.í« w³›ë©& ²„n_Õ¦mÓPÄêNÎD3…°¼7g“ætøÂAã˜üã«;äÍ‚«Ôåÿr£hîÅåž…ŒJÏÖKÕŸo¤ÕÏ*Íyq'zçq°Q¿¹fßß¡³ÓM6_õ»u­Øã °[Œd¥<£~]M}aZ—Ç豲ܶ(_œ®q –¨‡ Q%Bï{°~(íγþµ.Ï Eu‘} „L„^mpPë©þ$ùz,O¢·Ì׎Ñ{=#ÃÖJÚåRåèš<éž\H-7ÒÁÞú-ÕÃîû†`Dù.^ 8ñ]ÊŒç Œ¶´0/Á¶.ŸÒÕ²m)­„lfߩÃŒïfÚ€Ž“Òälo|cåš&ƒ¿NÝx4y£þr"ÆýÆéùÓ!vŽgÄfÊnŠw¸ÁÜܽP*uçÃX°ú³çV5¬æ÷ .THÓ«M¡åÙCH¢Ñž¼\ÿÕQFÙ³g¢Å~¤o=’®52ÜQÅ‹ÕsÙ q%¦*ðª`Ònùc×ç _:¨©èºÃ¤¸¤Uã>ò©‚ÊeSP޶Äíâo…[2û³(‡LTÑòœÛ÷ e´.æTÝ‘ãJÁ«ìΰ Gþ¿©ðg“g)Å­Ös€W+ã¡táÓ~uj®¡± >b.­Ì~ÑKz8¿CÌÔ8„ˆà¢žy߇¨G¿û¹ÕR>: ׋¸gƒç#«1Êfý["JŠù¤êMN×ÝÏDdîØ]ì'Êyõ+ƒ¥î1a;c-´»R¾G’—aÇwýÜG]ÞÐ3†Ï6×0,ÒcžEéEKémø´ã>À'¶šÀJ ?¬þ—‘vIrw²EªÍ— ¥hTéô¹};Ü…¡Ëý«/ηF9âgȬƒ@ézÌ@å@œ²šr*w~Aùá‘Êžˆw0l.C»æ1¹+²á^¯PjÓ!¨”{Ÿµz–ªC€ÛʧÈic¾+–T‰N¼ƒÕ^fQU íAÂýüH h±Eo)+Y¶£tÂ¥%cà ðèf=ÖÛ‰ZÇwÒúÀ²çÅO4xët`Ú7í¡ÿ…ÏAf‡€ó!ÀnåI&gžÝje¿õ»È/X±ÂѶîß®vZÐæÉF0þhÛì°×½õ­üW1drûñ;Û÷ž¾,%ÛaòãäNÑjWÙR‡/ìý]>JèQÎù1cP”ÜŒ7¾=’ß_o2ïÇk¾žeežSêS“úÆâû¿ôloõèýàËás8B_ø¨e§ÑZ•BØuH€AU-¹ú _cD—Å7Oðc‘bäÇø!ð¤©|CF¬áþ~T¤>w<,WIOùuǾÌlx­¨8Ÿ¢ý'l ¼>iù=Û”ÜqÚ8uC¸þ–š3õ7·jŒõ³µ/ë‡9/’µ$e¼ZúŸûŸœ¬/GÎf×ò‹æš}ôØ8ûo7yað÷÷©5 ÷&²R)ÞS„A‡­$Û%•‡Á¸Ç¿„.Å_š|÷ØŸV'ä?Àà–®)ÕEê 2{éÆ;:V¢£ø¤J¶WŸ-=“íª[ÀžMئ!Áê¿‘GSH·/á¯ïß~fíN¬I6]¸ß_ä^Š“"2û$sA¤õ}wš¾oe‰š{ï¬-š~Ÿ][«0ó”ÝcŠziÒtØ ™0÷¾üg’ð~å¹ËXÁ±+\ï(‡Ý ´ˆ[ dA³µö/ê#?/'-xoY¶Þ/¾öça…voD2¡¹oxø>É!1›mCõN)8ÆzÓ¥¥+äùŒ¦ö©ùêaVÇêßsî_HZL¬zû¤'ß–—àî`@ˆ4›§ÞŠðÛ³Yë³YÅŸ¶W/Ùfx$ªý®!ð\I[8¿¬^ÿïÁCd£ª<±s¶ïxF,û|c’2ËN1ÀŠ‘û0úV¢y=¸iƒï(Ö0}RÞpÒÒ¶tŒòbK*\Î×´<)Ìh§!N¤o&úŠXy ž²‘ÕÒO÷iLµ™ÁúWÛ‚\üØmä´ß|l¡2·T «r'˜*TO}úG3 ì^8ÇÇ„fzƶójBPYÓ6ð½G©¬Úws|ûüš|’ƒR£[ah‘ý:²—Sìšo¬d/,ýX"!¯C¨Í€ßLÅVàê“®w€[…Z–(­vAí, á±’wã°$³»rçìí0²A/×ë‡M™ƒ›Åë‘—oYõ,üp_ÉWÆ~Frbm™Ü¢¦8+Ð_ÉãÑz‰·r͆' û–Vo±½³ÉIrÁJ¹àÉ#òÈìßôåb ?Àrl˃N$l/(¤ƒÓ%e4Ü­)L’7 åœ0~?d}¬Vaé>º`¦¹˜LTO:( ³¾_7‡ÐȲގF‡%Tí”þÌÍUÔò »PœÕ‰¯R·g‹sŒëÃû¹­Á[Imf27nûVãgÂËl6íë´à_}ßçS–IÍäÊEù-`œʯNÝ}‘çy7öVá¡@ŸV û¾3©Ž4s[xšt²üèÚOÇ…H¡"¨“<î:ú4Ì.d7äKÔêË2xXõ¶ý<Ã8“ÆÞô…9[œš•RÕ]Yƒ+ÂOà{Töêw´äØ™–\ ÇJìÅP}Z(ö[s­jBpm~iQx´t¥* ÌÞ¶|£• o‚HLfcжèPAý…EQ(‘àü(Ñ„ò¸çþÑh>£ ¢“ÒãC‰ûÑçÄ0b:þ56þI|ÈÈók~Ë §Í›`ÚöãE jÖ÷^ø E¶é =ìåtä*~Þ^îèÝDN¢&í3ÏÅŒfrNù’ŒfSÅ/È ºo,ç6>UO~`PE‘`X—M‹´¶ù)e4™u *ãÖ+Øà÷Ë\»óŒ¢mV[®_@ÍÓ”) éýd“•7:¬ôKoò6%ÎÚ±¯d.ñ"3WùÈš°ºï-’Ϻ€kª‰q’€=jC!¯Däu„¬ô# B™ƒe†iÓQs2²ñŒŸ¸?cp:ýƒaÜ)?J@VT9s]›|ÂZ±q«T¼üLìXÞi–û]INmðq¬Ò Õ"Fñ.æÆø:uÕίLì¯h9»åËÔ+äè[zšÇ|K›Ä:|oµfÇŸ£“vN ð›>SpÍ'5Hs¶©±ØõÉoÔ™¢ä*t_æ5?º³"ºV…<ÍS<$óUFUúÆšÂéŸP¬±Ì5}é´+Ò¡n—(ÌÎ$†øXúl*ºT]vv,§@ rsuA*”{?׊s0rõT]1rœ#`7”$ Õ_ù|;ó˜G´>ôØ9á«C»]ªY…ðoqa&½*˜ß›é¾æƒÖ/?ÒdîÏ¿¶©‘ãaíu˜oÎoKvÖÑ .þ˜×OýÐ…-~0íRr#ìÌBÀiæ,ÿ↔ç§`j"ýëæè0´ãIB«¨«ê‹ë¢kjÐ禹_ã\Oò¼â<ì‘?ÑÐ0ç4úø -¬‰ümE´QíæŒYôIÞ,íüi¢ÅVG˯tjÂo®ÅÜÓÓ~B¾-¤¡°üÔê.v,éúΗ1¦Žýe8±±€Þ޽ÜQÛ¹“p·+HNºcŽ–>ñÃVÖE*QÏÚ>Eƒ`cT [©iÁPó¶Hôá¥K™y2*½Œèv· 3AŠlÖ{u#à J\PƒÂ:œY Ü–Kz#=õöVCªÍ˜”˜6’Áú†éiׯÐb^ê×ò-ÂÈ¿«¼UÒ€£÷Š#úMñâô 'í_*jE^š®§ÂaÚTê’ÈMά뺜ÎbÏ<0Ú0³`c'É~¹Ø5ÎÞN[¾Ÿ¯W…ø,þ6@÷•*„ƒ1£B²ÁÒ@'ýÆ¡Ûk2̧-_£8I&üUJ¢Z̧ZNd™Ž\KȲśۊóê³yékYó»øä!CŽ —Øw\c|–-ž^Sq¡Š»Š{؆aSb¡¥ñ•d\K·¿fÄj0‰ßÇêZ_?®ôìúõÈÂ_ÏNÆH»‹á˜ØÏÛ]*^¼5Ë‹_*…A7E?*š2<ÝÓT Ó86„²ª”û±{XÇfdÒ6Ý¡Ôoæ(Q§2FþÔÙ˜è€ÆTÓ“(V!¥rÿT^®¶:˜ð!ոÂSÄŽÄ\25Ìç6O¨}œ0Jqã¶æ¤×Rú‰i|º ÜÝÄ ôÓÑ 3Ѹ¥ø%,J³ñmEìr¨pÄê. }"?Κ>ÌžÚwe­Ö;ª³YIµE·^ã°š¬ÊM¸Iã7]¦C;Äz@H†kb‰R⛢џ|.‰­ßyðOùDB‹Õ«% U\ßnSpt’lZØ9Ǧ¥ßA‡°é¹çÓÞ3ÝÍãjvò0Jo&^î¦×µ+F‰;2ð•ÙÛvóû,$¢Ñ„’Ã'C$ï(Σ4‘¼2=ñ/ D¿óvÐÕù Hˆ_\N{=3óòdkKšD.æÉ"‹*ÞØîHÐS#°p—d§Ën=wÔ>«óä,j6ÏꘙLô³ªØ¢°w·ìÛ4½Òz£ß…`GD}1ñiêµH/S/æðì­·Ar ‰5xM®ªkcjS×—¢Šº7©f6ÖȓԲ‹EYŠRçG© Çôc m˜G¸åî ì?³¢ŽõZTqJå×Ä,<„…USC,Vó"þ¼êË Òku&¢ƒÇG]:éGŽY2\HÖ˜–©ÒÎÓÒEò·Å0Jx'§ˆ}Ax¡»l&¡©½ZWžgî(Œ<yÚÆ´núÄv+(ío8º4³y$kÿyÁðÎpÝæúQÊÈ,™ÄÂû“ ‹èc&9Ï­¾!Ò^ç4¦ÇïëäbîÝ—*1hPÕq÷#WmU~Öì'ص#S˜Ñ"¸uµ‘~Œ»°º}ÆúüäêY$I⟥—^£™ô«¥Ð·y#á5LU4·-¦Ðާ–†«x_H¾u:ÈðS[tÞ±‰'Q©Âh›®¥g­S7¶ÀËÓªY9¿ÿD¡èÈažXQh1{w?¡ØnáLÁŒ+ |Øó÷å`0¹›|Óú˜‚‹ C0‹ß–ÜÉqm%Ì#>û¡§Ö„ˆ\šD䥨ÁE®Û™›ís„¾ŸL­m]:³ê…ƒÏ­³o¡ 5*-6×ízžíP¬GzÎ&ëØ^kA,1\ PPHø‡¥'a¨¢Ýmãz —I¡FŠ£Ž×ï$ô³Ä/J;\JØ 3½Ÿ×¾Èž´f«È #ÌäKK+&?/-iY 6¤¦ 3+cì~i~W[p0{âѸµIA—Bzs©R9|$zy“ð¶R6sïå~›ƒÒiÑ.kh:tzéM’ï5ÆúÍ4>,VIÇ-1å0`eiYú9O'S©t4õk8R…Òªò<“¶@Oè +$' œ1Uгl3Ov,š*Êê„´ä]‹uþ4€Éè¶½bT\xPVø“µ?‘=“YÉ#M@IÁþ+qqv6þ%dË.»£è!Ãi ôÆ~ômÛ ÿâûâÃÔ Ñ‚_Ë­Ö|¤$Ö(]ee¿ÅR­M}DÉs fÜò¥@PMS¿Þuq|¤ž’!E;FÔ®¾=1”I 6ýô,·ëÂ!Á€žœS¬„V/Þ¶’Õ ÆQsÃZ££e©:Ýãâ;¬ü-IK¹²z×а3ÎíýŽïm®º`"Æ£ËÓÌ“u>€³¶ ̧ý·í2a@L#õþ;ªì¥@ª‘nT'#Û¢_¹}îÅ ¢}©~Óó‹üj¢“w ÁX51Þ>Dv~.΃oî=4^v‰Ü†ÖϨ”P’ßL5$¨Ê~ñ‘ÃNŽ«µûv xù¢Ÿ~"šøÞ“\ËåÿŦÚf@R6C´¯h…öÖ1/Åz-Nò7ã\‰`æg!ÔœÛ Â–¥¸+gg3Zr<1q6Žžbsg"³Îàf;È:‘ÊÍYÍ¢W÷ÙD|&¿èh¥—Ú¿zšT#u¢Yï#o)ÒÕ… â‘!™ÜæK‰*žÚ×ûüÖÆuÌYùŽÅÀµf?÷õ=k:5ìéûóàwZŠÛóC¦q'µr²Â†)!{³‚ðžæmÚz\/éñQ“‘ÓKµ™/rÜ>0>ñ~›ÎXÈ—e?Ë&WrVÖ PÁè‹ùX`¥2«3«<à}F¨ïÒ± =—÷ØiÈÙŠ}àe‡ÛÓ”E/”£Oª]k“Í\°5Ú;ÖÔ^?æžNTù˜TäŒ[Æu>† ¼èðkài†ÄC›XÆ×7åŒÿú2ž*Yü+xcùÈš‡V€ÛCÌ‚ZËv>ú6ë¥!¦Uw<•x9U륲êpŸà){#ù"-'CþKåQÖ²Dõ¤ê vÄx4«+¤Ý]Qý®{—Y â8ñp»Wÿ¥|Ãe<ûx/Èu:¶Aê${YÏF„‰q6·"1~0)Ê'XžÙS®b!Ç…KGA÷K–ß*bß‘y¡Ü'ܳ…âkÞžYÁ—x”:Àk·kM-f¼1£ò£Õ|=n…oÕ#Z ¶$ó?W˜Ö¯®%ä ñ.Bu+`YúfãßWïæ”LÜòå+rLþxŒâè^óÇÓhÿÔ¦±òiß´r® ŸÈ-e§ŠmHiz®G·’ÜÓø5?3‰è Ã5BÕ£{ÈbÄÕgèçÜQÏr½z>×ð-ù|KÈR•FÒá¿6÷7qUêQ7Wî×å509Jã}ÿÊÑÔá~èÚ—ÿQþ2OOUŽD‚¢l}’±”b›U_OÊN[âNJ22j¥{”á.bÕî©C1[•Aö­Â÷­ˆàý²| ëÌWïÍÆ÷%PyŸPà8ê—†ïÙº…,8 ”[ªó#ݺßô0`ûLEû)&î¦ý!’°›¨> =Øjvi´IcÎ|o­ CZ™ñ²bkŽÿ_Êl– T«Ö…H“³4‡ŠÏŒ¨µkk@a¬¼ÕÂà ´Dâ˜-x¸ÜU|Ú(h& Þcÿ,äE¹J†ØÎk£õüÕ¥MØ81O³®¶@SõçŽsA†‹O]«záXy»(Üi-,¨kg籦´Ã·0çÜ• &éÞ^Žz¹÷–PÛQn8@KÙZ«_ÎChiHÛq¤i+ØÎØø b¥]¹èOä`xÛ8¿90•)¿)ÃÌvxs.§7™W‹äEPoÜ5èÙÅ#) ‘U‹Ú¦‚ßc'Œêîò}—.`È0†$:dŸ`bµ.Z:OÂU¥:õ¿ ‰•Hgš…\Þâ?•+)÷Q„Ýhê8t7”à›N`ÿJZlN šÃ:m†¾ÈdyÄaS“»èÝ“¹>0UvRŒøØ}(‡þüžð V©Üí•©Ç­Rƒ‚’Œ§étôãmþôŠQ}QŽšP2…úŒIÞ|7Ö}¾5´FiŸnñ ÌÀ4sF>Yµlú×ÚxH(§r (]÷e»Ly<”#22yt§kº&<¤CD¦áX–Ë%¿ZÖ½ËQÕÙ÷bb^ !”7qÕ˜¸µ~exB6o0Ÿs$…VÚÚZµ„‘ÐVn_ãÓZèU }Â9Ãaú¤¦ð…õ1’©ŸÂ\CÉ*o?oS_7ד‚s´æÃ®ÕA:# êRM?UÉ\‡¼X‚hÌáFÖY ¯‚Ö’Ç°Ñ 2_¬«z‰F~타•­q(ÛŸ5ð¿9¹lëÊœm¥’™,C˜¦Ô›Ù-¯Ú×°?d«‡é’KJI!ìô !ùm¿]<1ýˆz¤–vvÖÆ"àò (ͦì×Õ´òï¿OˆÊ–’ÄÎ&±5¸` ëÖ^XÏ‹¤·ç(ýù1©¢÷ Âú × ¹À£³FÃfY¡4t3°Æ…áwjŠd™Š kÇXg,z?»1›q*ÔzááÞÒv1®ëª•œC{"„uJ·M¿KîTà´ËÚ…_ ûo‡?¯n=Òd™ãûgqh×ÂUËŠº©/É­ÊÙkßÉfÃÐ!7f|ù²@ˆèzŸ0¦í†Xp¿y«tóq­o#.¦o.ÀÇ×jæß=òäå~;ñdß…YpXà)ñ1¬J“ýД±õŽÒõJ¦uÍ= •†^lÄBe‹}ã3¦¨ ºøú'UÊh`q92Sâá;{ ¶:=¿H8Á„»Ü €k[Ÿ,ÀpK§Æ¶¦¨˜JíQb¶‡6q\¼Y&Ôl¾Ý`Ó4]—`FåTnXÎõ)u0ÖY«ÞfÞL¸3r|ñȘÖè>(âá¥ãœ5‘WgâÎðG!G‰R4UZ/7£ªîo…Ø Í“ ®æºé¡dÔ™®yߌ¢ ö…Eí},æ> ®ø¾Ö?O- ï WaIJØEóÄ‹‡GqnV;¬“òcŽ„g£›3è«ÓNÆäw’¹£kÔ>jT<ÏEåz?…ÚÞUÎ1•“# ~ÚŽ΢†Õ½yÎ3M£ ½í”Ͳê’ûîÞ{Çúr¡ÓߌŠ.o}Fè%hîl ÀŸã‘Þû˜+j¾x­´½™ãý Îg²ÿÎ/øÊ"ã”kV3ͳPcü¯̃{0­Ìgü QJHØ(¦käDÂ_mØ™\éØu.›# R]Œp4ZîÛt=uÙšïHüæ™·ß• õfUÇdÃ@qh9¯Ú «‰c¨‘Ävn¹ËRUmá?“`ãõ!…Â,&ŒöªžŽ‹ÿ¸ëNV¡nÝ«ÎÁêƒ «C¨è(—WAœ9 X"<ͱBð{c»YôGâ²@Ã)¡_pªfð÷¥²4ÆTœÄoïy×ê"nuOÄ0œÅO'?ÉSÒÒº`] «ÙqþžMìT]Òé¹’‰ç~Ü¡´¾ÅØ“7DâÞcD€§<ó…µ jf­uU®eµkÓ9œÌC»XG>r½«ÇYBi\}Ñ…²ˆ;b³±áW¡fÍöÅîŽâ›j°è¤Þ‘b•Q½*[o›€ËçG/dõ™=½ç´Hè…uiga˵ßVÓ¥8™;/ûn"6õC[xÊ~ÒÕÈ5cý?R¡á…^ ú­|[éôÆjoØYºüq/:‹±7ÖYÈÒçxC¡¾]‘yBuJÛ¿íÍ ïËÝBmiÐŽâ=r-npþO¢ ]ö+€zÆsé£ì; Q€ÇEu˜KmEæI÷Vÿì¥W$¿£O!¬p®ˆudgšÄ‹À˜õ Z“\€Ük…a„ä!¨mšY©µSмúÒ¨éqóÄM ¹`¨Î¸ò?i‘æŒdZ^ž½\×¼“¤õíÇyöw³Üåö^ ˜»NHcn°e;þ—A/µ²*”ü|X=…¦gõoú+ñѹAYì‡I]Þ ü Mkb«­ÅÅæžj” ( [qôƒÛth°½,‹|bÒh‚Ú&^9,äa\¨ñÄïA6ŒaÆ Ë=çË^•¥òù-I•\þVœ½­¶T[°´÷Á½ ú»TÕÞ³ÂÁ´˜]Ú¯Qj Àï}€žÜo‚ßç™× ÛÂÄx*—øÈÊs㡳LyN¾P¤wð»œû[ ÑÊ{nD>¹ÈE\*–bŽ£zËÍ·z‰¼msèk¼‰òµ4›éJÁ‚ÖÒ0nÐ:U xÁq`á}è>ë6gÍ‘ˆ06µP}Ï4òR¦,Vo’³/PR·J ƒŠø'Ìt2vÜB®fÅr š~ôšÜ• ¬šþ:Û“é\Oýª¢DÜb¹‚ð}ÑzR ƒñ_˜ñ1‹7½–É óªù橵ÄHq9…KvÏt —5å·VQoÖnjí úôïëép]¿ ³ÅV—ÆB®c¨µúŸÀ+¥<Áò¤¢Úx],V©Dü+@(å!ÿ£AŸãþ qéÏ:%w±”7UÇ»¢DÇ´ )+íYY<3Ï(¸a¦W× —WÞã9Ñu í,<ÖR<–ËW×ð\Ò/¨ðv_˜¼æ¾€Ö‰/†Ä ²ÎèÚR|S¬g’c¬! )aZö…·—šŒ_úâ h)ëWk~þ¬kì§Ÿˆ¼y¶Z,)÷„œû»Þ Ónç±þ·i o¨êl‰ýe’uÑ­°ÔË]˜uwÖÌ x Ò /Œ–‚ªïÏz‰âGàÏ]•m“nÆw–#‚­ÎqL:aïß‹Ì×õÞWviÀ…Ž :éÄ\¶žÄȼKW·ùÊ÷ õ à $ùÍéߦçn¿¯Œ’Z&ïôî%îZD¢KÀÓH-íÎ_òHyé"³”ï~é;`HJL8³ÿ÷`0Œ›Ôĺ"{Z0ñèôaîP„ US Å»®¤€Î@[[„*Ä©Yä53t^( :wZœ,hnÇÚUlnÖì®›r2µ?fÛ@$1¦f×ʹ2N{qÙóŸ…-£N°GÄ7“~„²ZØ0µ¸Ø u¾¬Õäëa3pDºaùØ<¸¤ñßo…Eà­|øÒcÍYigÖ‡¹µ‚X¸öó7Y‚yŠÚì¯5ëõªwöˆ}«n"’ \Éy­aÑË7ï/¨$Ø excí0Ì[. zœäL»9@c—tù‡çÍ’àíc8mÈáJ75‚—z¥×š²…2ž…:KÊ;©Õ‡o˜Ê"®„i鯅ÕSÍ[É_;CSiÓA‰ŒD}’°¥µûifX2]žæ#§!-Ì¢ÅF.©+ ÷kO~–ËdŸo‹‡šúñÅÂ=ªÆþëË9ÕA^ªFonqþh¥Å(XK|äéÐ-؉ž÷ÅØÍd÷ªŒQz† œø‘û¥šÿ𗿀³¬×egÊæ²çlcSí꜠ ¬.›¡£j•ã:wuH1~¬*E&X°dDÉâØðFÉæüP‡†³ú&à£TA¾SÏf¥¨vùX¬7fø¼”¬Ï@\Š0 ÖcOÅ†ÑæRžE>¾MZæ—‚/­Tãóðkãl§ÝT{[]Ø4Æq`ƒ„\ÊѸu7}Ýž®ôÛ(yÁü¼µg™'øÍÖ©² À®iMé–ž§t,3„8B[ó%uÇpНh{;R/4ßø"Þ}óEé„…ôfº“ìÇ›‘¯¢!é:»”» ¬b3À0+Î5r‹Ö•®Jggý¢è ?]u>)Å MÖ)ŽE…”H¡ý=a³ESP·Ü6è å5×@yyäb˜“41sZQÇV>ª.9— ´‚©ÎØú­—k=ç/3îz”-¨!qHŠ4\†í]}ûn¨ÇWp@O“XÁ<Û˜XwË®œl÷FùeÇ~Ç3ЏYPèžJ{„ ©_ýù‚‘ñðl&È5ˆ€ykÂÛZø·œ ²SÅÙ$v‘[Ý•¢'ß t“´¨QÒ>Ê{w=Ç#غ"Àh0»êNk¬Àãý ²!É—Q¤TL?¦&Ì­Shéõf4 o5FCAT&—#ä‹o÷ãË¢q·Nz8õa1‘_t¬êˆ)ƒÝßBhÒv Ok°Åüú`jÜ| %uRÊ©­¬‘äöJz­Š«ÿ¨À·G ‡øay:œ`<[å˜r¨)Ò|Õ™`ölô†µQ•mþ.•kTPFÜPj™;žšQ+1ðÇR“Ó†—Rw¨nWVSUhX¼©¿Ô^Ÿ`Éö=ªü>p—Q­„)PŒ„–RØ\«¡¢ÛôÏêšeðd5XÔØªð9ä=$Zq¸‰q ué2­¡·rÛ?+̯#Ž#ÙÙ*Âúb;¢ËwJן.•¡û«C¤JÊÎÅl}’VÒ­Yw2Ô(ÒÙi±t@Ê1c®j^ÓÙö˜®ÉcªÕ`ñ‡ïÔeÇ9­D‚€K'ºNqÐë(Vë/7ޏˆY»ìŠˆ™ ^†ª$ ½cX鉀\¡‰N£ÎE]j6¥'åft•þCOïp}!ZBª»ôÈx„IºWKÍgžQ[=ÿäÁ˨ÛèU/ʵ)æ#Ô<"o(AZÁñ‡c –²ŒaëM>F7ÑFy­÷=-ê5Á³iäÍZÿ(…SF^=w1ÄÐóž¬ÞáªË[ççelŽj í<Åç.,íOA#Ëu|EŽQ·¿¢Œœ0ê+wbùä^Ý–nI=ÆÂuîßÛÚ=,üyþæâæ8WyömlνZ*Æ@Xà‹’{HÃ_Món½yo­|Æ^ýÝÛ<¥ªu­úbž > stream xÚ´TœË¶-Œw‚Kãîîî‚K5îÜÝ-@€àîÁw·\‚»<ö>çžsÿŒ÷FñuÍe5WÕ\EEöAIÌl ”Û»0±1³ò$”Ôø¬¬̬¬ìˆTT [࿬ˆTZ@'gØžÿ¿„ÐÄåÍ&iâò¦¶È»ÚØ8lÜül<ü¬¬vVV¾ÿ ;ñ$MÜ@æ%f€<ØèŒH%vðtYZ¹¼íò?K­€‡ñït€˜Ð dfbP2q±Ú½íhfb P›€.žÿU‚VÐÊÅÅŸ…ÅÝÝÙÄΙìd)LÇp¹XÔ€Î@'7 9à¯vÊ&vÀ¿cF¤hXœÿeV[¸¸›8o[ÐÞù-ÁÕÞèxÛ .§PqÚÿ+Xñ_Œ€ €™í?åþýW!ýßÉ&ff`;{O½%Àd ¨H+2»x¸0LìÍÿ 4±u¿å›¸™€lMLßþ&nS˜¼õ÷ïîœÍœ@.ÎÌÎ Û¿:dù«ÌÛ!KÙ›K€íì€ö.Έñ“9ÍÞNÝ“åïkµ±»Û{ÿkm²7·ø«sWM{£+PNòßo&Äl–@+++;èz˜Y±üU\ÃÓø·“í/ó_o°Àâ­ /Èøö‡èílâ¸8¹}½ÿtü7Bdc˜ƒÌ\¦@K=â?ÕßÌ@‹á·›wyôXß„Ç`ýë÷Ÿ•Á›¶ÌÁö¶žÿ„ÿ}¹,j²Zâ ª 7ü—¸8ØàÍÄÁ`bçb°±rpxÞ¾ÿ]åƒ èß,XÿÉ•³·øþEöí”þ‡°Û¿oŸö߃AøïZÊà7Å´ÿ\Ÿ•‹ÕìíÃöÿ,ó¿SþÿÔýW•ÿ‹Àÿ7iW[Û¿½´¹ÿ?^;­ç¿ýozuuyÓ¾ømìÿw¨6ð_ãª4¹Úýo¯œ‹ÉÛ ˆÙ[ÚþçAÎÒ  ù‹™Õ¿¤ò/»æ_f ²~;ƒþzPLl¬¬ÿË÷6Uf6o†ó›ÿv߆濷”²7›ÿ5]ì\Ü''OÄ·+~C\o¶·14zü­` ³=Øå-ðÖž/Àì„ø×}òðX”þ2ýxÙß$ôâ°¨ÿƒ¸,šÿA|oy&ÿ ^‹é?ˆÀböôWW,æ@6 ðø¶¥Å?ð/úÃûFÁòÈ `±ú¾Qú3ø“Íð”íð•Ý?í•ýðøøÆÃá?“û ½)üGo/>‹ãð™Óð™óð­€Ëð¨ëð¨Ûð¨û'òÆÌóøÆÌëoø_:0surz{ÿžÓ7‘üþûÉ=€fˆKó`3`ëºàö»1Bw¦q¡ªít:&ï%§×T¸ºêìÀ §±”ï½è«ÛR´×¢Ë¤ÏÞG­ paß’TÛ}žŒÔ¦vÚ'q' Äꈈ˜4Dw}ž}´l [!»ä©ò]yQ?|Áºsï—ñ¨([ ßQÝ­æV@z*›fŠÑŒÖ(ž¥Ê7Í™Ã#çÂD Oyæ6{}3ƒ™;ñJ*ŸÀ€è{ÃQäýq“=ö~Îk­BƒÝ¹Ÿÿ#1ô5æèµ·ø~ª<î‚wIÑêà¢G«`i. cÚ*:ó>{V5H-ʾ¹¯Ömt©“íW^ ˜†pëWRmi3¶‘¹Êûê6£(,—Z ñ~§…øZûV…uÑ2ßtý+`އ,©ås„ûØš72G~n¡¼ûï±Â“„t9ë­G |í'Üg9‚cf7‰‘Qm£5®Ú˜bËí×iÚ7*O~«d äÃ}C‹SN®Çò³EÑ"ÒcËÜG÷ò9¸ŽÂÐ…çâ†S¨4‚ì ¦ ¿‰Ô+ßyáäÀ³´ÚlìštüüÞù¡’Üú¼7 qÏeÓWs™â}šžÃnÂŽšÜÉù,Ñ]¸“%ì²ï­Î“㤮~« 0,á¼J@R vï„y<4Jú†cŸ¢ÇÕPºœæɇã¡ïÈÓ‘É‘š©XDï$ÝGîÏ’XâûR¦"+ x ]“ÕÙ_¯ÜÚÖÆŽ‘ýÂw=]nFÌÉìX}Ì™a>l*:½Ö°kü"þl»+{•7"¥©üQ:°®ÔXõÊ“Îx} wõÎÒˆ/-—Vä¤É4(ï÷Jåqmyª sZ‰çݳä_Q›”™‚¼Ës@ùÒ°sž®"ªôXV ¢Ÿ5òŽ–P;ægil&¼U.Ì‚²üS’qyá´ï¼6wË—þ<<1ø˜„èÜÊÑYä‘<Æmí«I®sʈê§:¢ô ™~ƹ•lzòÔn¤fD6JÛÀáÑW*”@lþü£E¾8Ãß…åOmwïik뾪©æáÌ|iÌ0 “¾>¨£íôË©Ãk¸A¥@mí. ^îXé .[§’#¢†íÅÈÝÝûEêÁ´•Îï½ã)AÙbÇAóÃ÷ëL1–µ¡þákÿ7ámçç=`ê°åÀ–,ãjãK²ëY3$_“«ob0¡QÎvÂa¦É™’8Ö|xxAY•er†¯B(uÚøwŠ‘qp†À2§k¼‰Œ‡S%Y×¼¢8²Dw{¼+9jž‚äaìtpêT»Ù½— †mWŒ~ö–ÙãZÆÂŠpsëúöËIÌbS°eprÁLˆµ0[­²œß™ñãGê|Í|Œ÷êºÙª#` ÆÎpÂB×>2«ÌWaÀsm–ÿ1óùnà@Ù|0ß õ}×f"Wuy™Ði!ÿ4ÌS)áÚ¬ )7ZBŒå*&µêvÍG9½FAíc‘&ʾ/`?,;²_ ÇN$…‚.ÇcPÓÜ^V‡Èw]ÿìïYÆi­- à|¯¼ïúñc“Hš¢šƒêÉE{Õ]Uák#³+ íjãXþNÂ#ºé~ˆI<ƒäh™Òó’¡õ²½«¥ÖfÉZÁ´s.}u!·~ÿ—CÈ êÏDï.-72RÛózì¾oâªé»Ë»!L¨9ÜÔœïÐú…þØð#å‡Çh¢šškê~ò¯m%æ§™:lJ-1œ`³bTBŠ™™ë¼@æ”g)bY)\)4œ.>ÇÊ3CÚÆÄøžöz’/ÛUu“Q,{˜Nß:p)ë½Ð«y:§%Sñ›²œÔ‹t3Ä~(<À`y[”,mø¥óTÍÞ"ÜÃo gÓõ”Ò.BŽ"ãa« Dtr·ÊˆO4ÑIàYdÚFt[¶M@D?×÷ûW}Cr À’Ê 9Šmú— ¦^R:4x‰à{Ý©¨½¹ÉåÈ?¸ kÚ"OµÏòýýù ÷çÐvYÁ!Ü‚ë!ü¾5lþªçg4YCÃÀÏYñ"ŸÈcxÅjûB!c£;×^0­Œj´gWwÇzWiµKA™-œ¹°ÎqFë9åä,‡ßM·§VqÊÞmï{e~>ÚÙíÔ ìµ,°m¼Ã_á5j…•)±¶žðÖ¨è/Ð&ogs#Ê¡NKÒÂõçMÖ..þòí»K,Ÿ¼¥åÓ»Ûõm8ç„5b;â8$_½ë!2æ–kb¹÷+¤£×ÐW‚|n$’´SæV|Œ$Q`…)ÎÉO"]:@CìYÿ8’~©ßÝÂÉMïì@ª3x#Ÿ_K²³HžN#¾_–ÀøÐ@§± o’ÑÇÒDRíGæ+ ã¢ÎóAÍ~qÆ@¹ÐvÂêbƒëø¤ì­¸ÄÏP#Ü÷\tÉÝ7–šzݯ;rGwdu1"X¼æ²¼èUd͆¬ú¹Š‰Ã7#¥€tU[ݕɆþ ÓØ›±ÑŸV«i²m/tã+ã²[CW_0)ÃìüGƒ¯W´'ä:öa ^ªê äbÝ¡Ke!IÏVcE\×w‘ ­#OËmב{Õf‹ü\ß5?çN©i{‘Fiu™Yp¯?viùDE1ðˆMúr–Á5}B|Ü8hEÞ¬ñloÅZ™æ¸§¦[ÜæZ$WÑtÈôùnWŸ/_÷FÿÈL5YbÅ\ÏpÁ ñýój<Ü:î:ïœïôéá+Lùma‡ca‹«jdîtô’‹µâÄy{4“XÍz¥ˆhðx¦ãøuÍVÇíÉ5E9¯ç¦ §,&qŸÜC"o“MÃH\ÿ˜ÚãµÀÕ¸×;Ù¬Qÿ"=B½Ï2Ð-»ø(O#´QF:an]@"ëý³R´ý’[‚"#|æ<ÅpêĨº’¯)öíÎWå{¥²ë™Q“ŠŽÇ…½ŸhP÷0_/UE· ›^Eî1Ý>°êˬ·ÛãøåŸ²^çúÕqÒìN¯uË´t[ Báq>ƒøÊ+t¬À噜fê¼f?²M.éœnŸBX?Õ}w¯êSŽ)ç`†™5í‘­`€bTÞ5B= aóÁì q®« \aeÖø¾>´Åzÿ¡ãê".<ÕfÏé¥ 4²›5“ö‚» ]¾d,aˆ96¿¶éFabRñŒ6äÈÆÏU4K5÷ =–ª¢.{ð\svˆ°‹M¶gñÙþ(t¬XúülzÑ×å6Dªù+d å}ÒÞØo.+왘8w® ‡¶ŸÂ>Êê­ÔZ¥¯Ï‚­$ÇÌ_K¾dV´gø7iÅ=®}­²sŸ.– b}ß㦛| KÍg ÷Eø~‰mDò]»:­ONd0-x ~ø+;ahoÊ™®€çL %ç~©ø[íc”u6h¯Å ¨RûQµª×Ó¨‹_!mÐHô½¬·±GÀzœÇe ¢‘e¥þ€\³KÄ)iVmlT8—]?U.èÖ‡õ¤›†ÅŸCäå~ ôëÖÑ÷Gj‘òõî}ñËfý äg"91 Ì-ŠM¬Žìê8oIô8Ú@dîÉ¿,¸ãž–AkG/¬×'÷ßPsÚcÆlÊ#»å[ÙY‰­~A+U87&ï7)éªfâ`ljïßH^“RÐ,ƒqDœ§«ËÅGåyO–¨t8ûuüeÃŒ,Çw_Qlå½'cÃ'ލÈVu{Té ¦UÅ“I dÍX¨1ਤ8„bT‘ÿÊëã·uJý{â´un¨O¥lIÛßæ±ÿSbÃò$¹í§ï 5ض5ñÇ-M7J3•¿®ðøV›2ø8`h1*øÊvp Þú³€Çïè—þÊ«¬½h;tï–Èd.]êÚ-ä ðChᯰ{¯ÒœØbxYRͳu†uÙÄ,5ï’G­4_|¯¶Zš  ™”l"Ç× L·ëülWܹ˜Q»jùLÐ5:àãDçé ËûH0óÈ:ÑÌiøæêxðLPôýy^)„ø¥"~ó†‘UÖ¾ 9¶Ê¹:W-øÓpôÄ'$Ž|VÛUv¡µFD#/CEþH ‚öúÍS,- Œáaúý·ÊÕtf– ­|ìZËUËw8™”à!+3S&Ðå¤{ƒ:ßD“A&­EsìÅXÅÙÏØJ(–äœ##E6djËVÅ÷…c¡• <Ñh³¤hÒªq¤$NGá_QdÇ;…(ªI±e<ô%&×8¥\ЄÀ<©Ý'MR:ŸŒµ¯ôºÒ#)²XXÝΨLAˆ¤ô{BŒÉ”œ°^G;¨6Á¦6gDn"áòR^¬:F–êäëk]R³Ick$O éºiHDê8§Æ|ÙèiËõ…ÎPpQ(¯wf‚?JE$§f¯ ªïo2wvºp2_ŇdDpêxÉÈýK\¦ù¤îÔñè†1§ÄyðƒM¶C,öá«£$©ÓŒ_hQx®_³”Si¾Qͱ=vi@oUqóA{:HG¶\ô o¢ŸéoÐHx@û)*·ÑMüÖÚ…[O¾®ÿM¢ÂºFþX“Ÿy1ƒ/ÐO(=CóîwÏ|;ð¼öR&çH JÈg0Ñý-GNŽ QªÙéÎ)Ó»–J;¾µõ¹~±ïšÊ\P»Ôà`Êõ´r|DõÀejuG®­^5¹:»~ç´úŠU¶\Bj’uAŽŠ­†Í`¾ßÍèž’7ôS«Ø.¯!ίýRlêe–îäÎGî—gv‘s&¡(.â—øW1ª˜LV{k |X“`,‡$¡Z*a”±ÂÙlÙG_:qÐ…ç­Œ<õ‘Í–ëü¡³ÿ‹å¢6씩1®;4¦À,]!´îFÀxP«+#®b8œFÚúHìqì-q™-·ôí]¼š<5gÄtñÎx˜—$í-/Pû:þ EªEúÖTV™ïä°Sbü*†Ýñ»RÜgòpy‡[ÂzÌvÐh\¯â‚ß-’u°·‡áQøë…ß³Ó:k–êôD'²:©·¦½@êÈR ˜¢K«F*%;…ZªŸåú+ð˾Cr ;r/*è¨Z”þExQB/¬}H:@ûÐb>Ùoµ‹.JÔí áÊ/‹ê‚å ÃJø;Kïr§,ú–ƒÄ<'\µ@—D¼¯œÔÕ’üÍæ*ÔÝÒ‚ªlFa6õƒ‚âaƒÔ›Ë JÆX/åLA¬;;Õqø–Æw1vHÀÑxŸmaqÖ8%T¢Èsý˜hX.SI[½uíô¶lëaù×sÚ8µÕ’ÍÉ´°>¥ÇÓl MéšÉ“ÆÒÅ6n3—~ÚËî’îúwªv¾tvVmX Xß:@MlN›kö‰P¤tÙªŸûG`,6tu×w¹³${¶]&1RgòŒ‚L¬ùr.ì½HxF*Y„­À=ÀDä…E#Θ`JFTŠ*k¡«(6å÷ì´7Ëz²Âl‘ËnmfŒª²\ãªvúNÚrãslWÍʵ7²3 –¿rè—>—hh»z#c¾|`óÅ™GáQk Øô|!;³ùlýaŠd½ÿtÉbbçèºh›ÙJ…ƾÙpö’@4P¬›…™‰Øæ ç›V#ƒ£(Y-3¡NO'ªÌÁE'1¸Â˜…ç~}×8É)Ô1ËM®äåûÙ`ELžÎ@1)û“4½œ}ju®„áž*™\f1.ŽªVbvÍYFäNôǺ'L³Höå¹xMôÐÂ9qxñè´.TiÓsé¹ê”Þ+\{ÜÆ49âD1E€aôu}o`V0˜ù UÿAýtë†`g &NWÎõØOǹR ‰d”í3qw×åd¡ l•yõž#dÉ•2¥¼e샽¢ó/oqGÝÖø)/ºâËNG±‘'Á× N¼‘K®:õèwå=õuyŽüˆÐ||@³wj3Þ^µÐaßD¾š×”FÄA*Ý¥µØZG˜©øsÁêí"ÃéXÆ2´¾|·¹»E$y²„ZzÁªZõ:¨á^(!¥Q>_b½5Ž­1vå ó#òŸnÒÜR׉z¿™ÑòÇg>*+Jo÷î‘Zá½.ð!Å’q0ˆ³rª<8nzÖaKî8üz°FõsÒ‚‰ÑœGµí½NxšèÛÊóSÀ>e\Cš þQå´$‹* áp?qøXL6%¾øúÛÖàt³C .p’ßÚî@ç3šhöå”§¹nªGm”¤HhùÆ­ŠÔÊd.C”h´¯.jÝrìÝ“xðÔ:nxzÐKìítÐcj“œŽŠ¿EðNSÛ@ç®Yô*ªËÊ—Í‚Ï/œ í]°-<{Ð4QŠ×+Û+¿/‡ ҹº'àè÷‡/mZy_îDîCظ3c»öV²3q,;¯2 ú ¤Šƒ!¤¸äÂrQzŽYj­"W`¾©)oK;w¸qHwØrUécÀ-8ËéËH´…\vl.ÛÃö†½)÷þL¿-Ø\í:;(¦—¥S3¬-‰ÚÙÆC Slï­ÝìzÑ:žzÇsözO@ÍŇh.+ÿ¦Yª•(Ÿ”ôT`Ú®[šò¢ÁZŸÝxœ`ãÄ{éMn@`öK´,zpJö\’+„iv.rÃ=B‚턪 ¤¹%”×°HÄÙØZâÒJ®4¢§CžU@¹“€î wU¢h°Ñï¾^·ž°WTø#+þB…]âÔØg`(ŒNn „Zû(’ÏÈÁƒ>P‡þ­ìŽ"F·³^£P^tÃA R)ÿ8œ'H‘ù=ËçÉäŠéˆ)}uø˜±»ˆ¹„Z=˜ "NŽEߥ-é|—”£~B«²Uâ±å°ûÜÂ\6NT,ø!C w\a‰¥}ûRF'ï¦Y·É‹9»_ÞR`k?Öt|³×ÿîDÝ¬Ç à—¤E!HûyáÚ]pèÌ|Ê`ÔÓXM„·¶o9jne6Õ¼€›~>ßR¢‹Ê€@ô=VTÅæîK'‰¿br{jÞe6÷9k!>,zSJ¤Ö~ø‚Fåþt½u•ðˆ@o_§‡ cÌóoîUÁl¶ôXctÖí üêϲÞÃb?aüõ*ûz#S}¨¯g”œ"ÝI«˜_ó6Ô¡;®†Óä45f{yêwŽå?]‚LÀº`Tz®_ó›á?ìH/ãÐ+fxÓLèM<åÌyë·¾7Õ,Êó@¨¾¼=/c.µ2ÞIŸ|¹[†ë²(ëOŽšÞÚ€-bÍï›Âm:Þœˆ\‘ÀÊ•ƒ}µèYY<‚Á.¥4FNOtB8³‘=§:4ÉÏ%(D^ù’äœU®¸.èr¾Ëw:²©#O6{]t8gt×òŠ1:ü8b^I{ûÕ¸2 š_ÀµŽä–^c·üв"¿4îäòû”*³§/y°½ g¾·õˆW=4äÍ9$[Ï?FïBˆé»ˆÓXÿ³½#Ð(0 ÄÍøÐý;€ÔŽò IxOjGõKÊŽë~4<Œ_ƒ‡Ò}„ MüØ…AŠš@ŽÐ¼}Ä'lÓ#k*Ã< P™Ð§a/ŽÒKBŒôÁÅÃt7ØI‹!hFðŒaì1Â.FJ‡>}€- ®–ÞuðlªPßB¼ÅZ)m`„ä!ðl¯ºG=g2ˆî+lv³ žwÆÜ¥Peß2MÓ~ðÂ-‚ ·Á­ù–´“¹¸>ö³LNaØ‘õòa]×1 ¼Å… fÓØ¿Fl^)s­©Ÿ»´‘Îév¼Û )&nÇàC¯õóbòSòÎÔ<Ï•6+ôÝ(^t¢z¥}SiIÏSË«-qì¢hf¥‚˜¹ ±¢«£HD4=»³¾¯+ªÿY²WÁúÝÝk² ·J¿ò7«ï=ôøü™{rí¢:¶iKß —ä²óÏqï ÝK%ØX/†Æß§=MD æžËê[r¹üý5óâ†ô—ÞY½†–vòhyÂÉFPa¯GRÙZ‡Òÿ€ZßnGÝÄ{a<Ès]9hž~#úñ|?Õxv­[>[rN­Na6¥²¨—ºÍíÇ×[K-¬¹k&ø)äøÚÉ1[‡…_c!ц؆˜¡ß°lQ‹l‹Ï£.£”€?ˆŸ>Ñ\2@zF¤RKû!65V˜„Ž%¥¡Fnq(ä‘æÃ qàK &sŽp˜Ê&ùÞ”æ—8 Êk¶ ¹÷ÅZp"*¯ä Þ«´í>žÐçÜ^¥tÕúGf…a £Ã^ԋΕ-`1S†[ÉHD×-•¶²<ÞÈ…G>憘–J‘X/Gv~¢´l#æ9Qdƒ…ŸÁA½Ik¦bû2ùž0ù¤›Jç›~zÍ .µôK‘åÓ» Åæ‘jË´”€ýò@3¶"rx}´3 3 x"áâ¶2õ¼3Ýõ;öY(ÎŽžh’“çÍ:—Ð\e×÷`g­³C0ò7kŒÍÐÙâÈòòÇV øÈlõ|™^ÕŸÐñE¾å©Gù^c-HPWã%÷0׫YöÃalj‘D"Æa4Ç»ÝU–WýHžŒ i|–Ÿ3®#uû9¦/—o·}Ò˜¨Äé`‘ñV“e¤â¢7QPÇýÐùÒ}U• ÛðÚí"¹Üx7öOQùè=Ðç›’ ÛSŠC¦o£³4t°Û˜çj­¢–>ûYu%9 Y>¢dªE½” ¹ÜÃD"Þ[eS0y‡rG¬G9Ç[mCVûéW¥©n6ÓàU†…¥NÔ y—r:rhÎ py â6[Ž£úMÓ=S‰ùðÍHùã÷kñ˜Å™¡õ¬³õã›ÔCä£lzœ¥Pàðã)_U=¥¡ÐŠûùÕól6Gš´‡ÉÆË*t„Ga-… ²—n÷CÇä(dc¦ WÀÄ/¼ž ‘ÀÔgÜ ®DÌs"»®H¬ÞøI#Ö†[níg~'Íå–•(4%â« õ †¦—™E²Ú’“3JpMž˜î2fdîà€æ×fecϼ²yû:?,B!ŽÎM7‘Æó:ݶ6õß°8¼Gmg¥ùYt?ÇßúÆ?Žäj16ðžÀ¯·{ØgK‡•!I寿øÙKZ¼d'ÂöûB>žÃ=)µœ»ÖóN?Š™!'DOšÖÛçe­f×D?.io¤Ðë{x¼ùb!…»Å„ƒ„581DˆÛ ‡²VËŒ/ÞRO“5bô!³Ñ1BÄÛÜ4¡Ø+§¬IGʳŠYìꉦ…ifdäDçƒ,¨8Öt–k ÆÆõÞ `öˆ5Ÿ;L·Š ÑÈ Ö@±»zòr±ÙLŠ|Y™õÔ£û^ž«hÓ 66Í+á†=@ñ ²â4ØEnÞ<¨57²£WK½Êú]òZ˪åá õ%ôž‰´ÖS> D7ŽZÉÓ)´v¡n'~ #Šç"»bPz‰W"­®Óå| ©>gc#o猌@þ 5’T#ƒ ²rQý[©Œ1Ã5çè ÅðŸ2¾GÜÏYã%—ÈÑ’8¾Ç§'WaȰ}®˜¦g®¿±ÊLŸÌòZÙñç8ûn§˜:ð ;Hïµy§¸H6Mûá3’zŒ¿üÏÔᚣFÞÖF¬´á´%Qó'Ë~0‚ÅNé œŠzª°4‘‹€#Æ`ÊYäÃ9Öø¼A7[R¯ÆŸâ4uÂÉ7ïýÜ“óUÍ‚ðàJ w¿vBæ¥ÅÑa†œáëƒ iÝ ºÜ ¯á<ï–Íf ßÅPêÛ÷fô/Š2¨ÍÎI§Ò‚ût…OlùàlnöcŽŒ[åã­Ôõp8ucâ­¢y¤¥z¹b‡ýÄ:F\n/Ò¾S=¢SÐ’õH)æ 5‰žÌª¤Ÿ·)ÉÆúÆq´(b=lüä¿M,-ñ3%ŸœÁà:Ø4,‰7)/+¬¨ÑñÒТØ]pƒ—ÿ#•¥ârS0‘…Û%ÚÕËW:õBƒ6*ÙƒÁÏZPI}xeä2»!—íþEfú1“9½UãÂÒ"µ¨­¼By6cfYÇÄ´ù¢èvÕ+?÷݆†áËä›~‘˜•×'ßWksdèîg®"soDDÞ9¬:YÕ5Vw¤GK§›.87Å2¼F"Æ:ôåBu]òêGR˵ô¯ãÉq]ýhÃüúÚ;6H¾7ª‹^ò:º³ÅßœÌÜš0×§ˆü†Èº¥[ìŽ.„{øÖêÖyƒYË—»<¹oÜkB^Ð¥eß¡<˜¢òì“äM……æ9v°®ŠçâÌs Ö"gD*´øYú†ñ©Üˆ‰Z7Z“Æyži’t'v¾ò”Ž*~fÛgQMëÊÌÂäâ±™CDûí¾Û }Wñx}J(µ!^»Ž"¢’¡-ýz»ãb¡Ÿ{šª.WµaT»}=[‘^k[•«›dÅÃRbåõ¾Z,Ü4Ó 1i!¶hˆ!ly1Þa·Ի¸^:6Wé­¾Î{ÿ›ú™O1ΈÀbbp—RÄÕ«r95DÅ-Š·h˜>IÁøzé4º.“Ï{ï½YrnØŽ ½ç7 ÷‘9E͘í‹5×Ry ÷ìÑH°>7!,xš;ܳº3Ïœÿ[÷²Dó½+ƒ¸5œœšÜubÿWɆ]½Ö(—ÔXž¤ÉúÐåçùôDÇúƒF ˆ{±KÕ/1úD¥ÉuiÅK÷ë•ZƉ㚤Da´zŸ˜s CdX£0JbÕˆè–g.¾½Nmåù¸€xÕÙÿÃì`±ÚdT^w!oÐ}Ü®Ë×)/tøNb…úwÙ@oþ°g ýñÉ·Fµä½ßfRÚ!U±ª¸†“$¿[!âݰvvV÷Ë;Á;¸XWí.Á_”$•kú¬ï®´‰‡žpúNV$ qs»YúæMÓçØ›}mÖ]Ô“¹¡)²W7Ÿ}à“§lÍ"BÁú¹ ëcÃ@Q¿r@hN½vA?Çó*« ¹\R»Fí*+èç1• !Pž¿)‰5g6Ï@+c± 0ÓAU\º0ˆ<ê ý¯º¾yH8«ÆšÑ±ûqTŠécCï4Äý©%wTíRÁ‰QSØ ™vzqºeÅýiûïä.å+Ñø‡«Ùæfìµí÷‹ÌW!©à ÍGòW¿Ä‰Ëdt!]qr1³xÞŸ=9ÔséÀr øW2 ±™¦>Ñ2¥ôm¤|§4&zGR_åø‚¹'ÒÊ$x¡b*ѾI‹½2%ŸT$AëYjuJ¿Xºÿ4ážî#E¡ì°ÒXªR\cKnÖ€LÄû ®n5ß”X_¦*eK‹Å®Åù‘¢taEŒìj¹Ø‡Dêäì9žÈcÅ&&òáH¯m¥o—m“P›ñlm9êc0öÙ˜\öI?¸´g1x”/1Í’óœö/£OT¤®m²Œ?ÍØÜ‡ÖŸ@íah 苞ÙáâÒJ&ƃò°ÿ/Âùž©e$N‰Y¢ÑµÏÈuýÜaŸÔv¦;gîüÍQ[›ÆwdŸÞIYd3hØJ²ïÍ.¡eù¸ÍR}aU _˜?B©mñ0çŒLVT/¶Lä0È‚ +ën³ rL¸Pïy㺠±]Ð;Šä§š¡G5úí`™÷Æft¿ÀØ£›9`\æl¬‹±½Çä—R4ÊIñîÐb“<Æ‹b;ùÝZþsØù•á[ºg~Éúˆ´%„ð³Ú¥¯S+ú&ÏAB¨¦\µ3NÔR¶IÙN½"”v¡‰ö±›”5Ž´ª9v/p/@vÜ‚ÈÊH'³tÞ^ƒLLÊõ@{g\ÀÐÚ˜£\NÖðëÉ}E”3ÖãŽ}Ç ÝÚ›B*,u!šÖPÏ^bèO_öt¦=¦Ô{Až6 *•¯DMÔ¾n¹Zc…M³\‡>‡„9\Nµ^3ìù‹2'%T˜òøž´ 臖Ã5ûAsÇ'•͈^ðNwzá¡U©J«²Ü»p$6<£¢j+­“‘bãØYÿïiž"^¥ŒkS"ÔÏØÏnÒ]ù ÂÔ¦l}:×Ü$O‰‰zÈÃE x—z•H;÷„W'ô©jêzLg Æáì>éàí=ÅÄÈZ“ÄEG]ð¢w4W#G$)]†à¼î} Îö¸©†¹Ð–ÓI•k̠ăÛÖu ªÝ:‹BÎÎó!²¥ï! dƒFËF{¶oçÐãÓÜWXZ0‰öŠ’ýqµ]K{³62>ö](«§µžTy¿å¥b\àXFÃ#G±§m÷J‹u([ 8·öA,0¨^f7.ÁUZ›àãJn)Wwp+HHv³C‚âJX,[黀’ÎYaó¥+g1÷^"ï|ãœîÒ\ד28= Ž _‰j,›Ú¶TN7/C ,¢å t Ö¦Öõí.éhcùɧ} Ö'È qZ­ðÅ+Õ—‚¾Hù’²u–AÁRã’é™ eòƒ:¹.#šÊŽ^2Ú7f˜±{Lܺ'3q­¦‰ ¿ôŠ¿?x>?jl}YSw(¹Œ¦CÓ¢å©ÅðQ—µì ƒëRO`†:»IQ{¥öö`Pæf Žìk2¾œ—`üˆÄS&g6ÑWZ¯_&ðË 1y~| âŠ-H;TÀ[í» M:ÿLoÉxB5Nn&}p¿ºB¦ë¤°æ.ç‡B½/ÊØGÇzéÚm™ò(ôR–vŽò’/ÙĬš¸6FC-Gˆ|xf=ÔV°Õ,³o¹ª\ÿ*·üc™Ó¬0 ЧÉŽ–l«2y°ôÍ9¡gÊcöãå‡QÚ˜‘[,~yð±ôr½ôºÅæŠZÎ'9ÒúÜÛÞÕÇ£ˆÉ.ψÀWèþº]ͦ™†_8ï¼Ã¾ñ„ðøò½öKî[ÑtÄ®i†#Ž¿žT›Ø™‘°-C>¯é¤·›Ží-¢´ ‰øSx¸à %+Àjëª|Tûè­Y«)Yw߸IÜ•ìœtœµçO->÷rLØ*ö­4 æ2N:QŽ/±ÖÇ¥áü@hr8%ÉFzä1‚üZl'¸!Á,wóá‚cÊŸÈôˆúåäªpv0r"QŸÉ ä{öqû6^´VŠÞªíàjB}L? $|•E*ìꌿ4ɲU b„Á:ï ÷½ô«@òÖs~J†IhRI–ø$±ç)øçný­ù "*žšzcG@_Ò'wSÓ„)å«ÏžòÓTÑFP8'©ñ –í«Ö6+$S…G3Ù^ÅPhBJŒòŽõã¥Y¤®ÍˆèX+áLä߂Ϩ~ä·K·EœVM°'>ò‡yÄ}¾±& ÝÕŽÒú$ôÐeX¨‚0ƒïŸOˆ)š´cæo»Àvmy8ág–ÑG-Ñ«X¬^õm{K{櫽šßéþqvé“UDÙWsà;ω:GéOáa‰i‹›v—SiÅ¥ÄRJö˜Ãe*Ÿ$éý®^aϨ­&eÏ'EìÑžàõ"NãŠëƒ)ÇÂýS¦ù¶Š­1‘ÇF\„f9ûéÐgh©§VÖZ” Û!í)ªJæ‚>m¨[rWv’rÞ£ò ó“!ôRlâC0a/-HVHÿÜ=ÿæ§œŽi%½VÊW“A4—©/%h°yÿ͆Üî³|»‚Š Îh6uõìáYv¿¸–Ÿòg‘…¸Ã¤¼©—Sö£˜zhtpºñµ|Ç&éšbµ¢2¥zîûÜNUd†€)ÓÔ‚l-š2³lýI哟ùå•ñš„YU+Î? Ü ·æ·ªº¦ìù°ÝÚÇÅ„ârjhFøbÐ‡ÐØKÅï·ÒßX—×'³x}66±|Ï·ð˜k‰¤‹+ÜJ‚‚ìÏ ÔyJèÕ§«'s®Ú;Ã~Ñpþ&‰ I³{Õó2xy=Ýoœ‰vJòp-xE„ÅuU8Ž(Ú‘Á|4¥$y9«L¦ÜÝ-A («0ø$YKÝßjὯút?ŽÔ$²ÐÑÂ"¬CBM][‡uÚÌ/žÔD¦£{\¯ZÍá¥.Ç;ѪxaÆY MÞ‡¨åÅïEtwk„& ²ƒ À°!µJÓŬ³rr][˜¹ú{¾ù! C¢ýŸx~›‚Wiîâ9Ëâ}näÞ¯WŸè›~¢ˆá£õ•÷름ùuÎ £LÚ…öcÜ'ŧX:ñÄgŒm:Ÿs 9Ë ·)Ì‘?ñÝâ@D;ºìtº$*°…wˆ‚ðT¼;,ÃÖ>r¯Á*o?Œ"¦)’ 7ÁW³ u"DÆÒ"ôæzQu,ËÃÅ%•fïX;±.ú Ö͸êÐÿ"W‡æE ~÷OÃ0‘Šï[«Ö/+PtÒÎ+OEÙT‘À¨ÖVTTãJ×$&ƒ× ñŠÊ“ñ7d¦¥œ3¸™Ôžf¾öÁiüüŸ^¹`[Vшm;$׃—r®ª}%Ifc¯ÌúêZm¥Í¬{™l¨!ñöÛ˜¼åtvù¥ß)?[—Õ‚™ã"i,ìL“˜—kÝTИJ#™}U–èðtƒW^ÿß„ÛKðÇ£Ö"<6'³U<¸7׃¤£OM{”¤Åèô]k‡ÊLc€L\ù7ÎçFUùö§Ÿ\^u¨î,d %Eì–„‰{ü÷Ùè²\TTö˶kÕ#Ãauºõl¬TÌÁãÆL»°ýv¿  sØy~ê,d˜ŽT ãñ“¨å}ëÜ=y„'pÈý?¾ÞÎ\ endstream endobj 117 0 obj << /Length1 2296 /Length2 14165 /Length3 0 /Length 15540 /Filter /FlateDecode >> stream xÚweT›k·-^Ü]ÅÝ]ŠKñânÁ!Hp§¸»[Ñân-¥Hq—âîV¤Enº÷wv÷wîýqGÆH2—=k.yÞ„†Rõ‹¸È (r³p°² $•Þ)jhp°ØÙ¹XÙÙ9‘ih4lÀöÀ?d- ‹« ÈQð_6’.@S0D&e †˜* nö.¯ Ÿ ;;€“]à A.‚)Sw €+@ätE¦‘9y¹ØXYƒ!'ýÏW½9€C@€ù/w€¸ÐÅÆÜÔ d ¶:@N47µ¼™ÛÁ^ÿ‚^Ø vdcóðð`5upe¹X‰20à¼"@Å èø·±âßÌ€ÿ”ÀÁÊñO¸ÿxÿdãø—³©¹9ÈÁÉÔÑËÆÑ `ic¨È(²‚=ÁÌSG‹ß†¦ö® ˆ¿©»©½©Äà¯äM2âjSÇÿ0t5w±q»²ºÚØÿfÉö; ¤ÐÒŽ’  #Øùw~R6.@sH彨þi±#ÈÃÑç¶´q´°üMÅÂ͉MÓÑÆÙ (/õ+ˆùÌ ð°³³óC t=Í­Ù~¢áåüKÉñ[ ááçãrXB¨ýl,dWSw ìâôóù·â¿2ÀÂÆ 0ZÙ8"ÿ‰-ÿÆ)p±ñè³C†ÀþûõÏ7CÈœY€í½þ˜ÿÕh6]%-qu¦Hÿ£–y|X8Ù,œ\\^>¯/Àï¿©šÚü'‘¹Ê;Z‚ç )ÔÿäìþŸA ÿÏž0þ;–22À@ýŸy7`ça7‡¼qüOý_.ÿ¯aÿåÿcÞÿwN2nööYÐÿÉÿeaê`cïõÈ»!ë ‚,…ãÿ6Õþ½ÅJ@ 7‡ÿ­•›BÖBÜÑ 2Ú,¬Ü¼‹m\el<ª6`së¿Æäo±æïµ³·qª‚\m~_5vöÿ¥ƒìš¹ä:q…Lç_* d•þûTiGsÅïãäᘺ¸˜z!³C†Š“‡àÃYN  ç_ó `cu!.C?€%Èùwkyylâ¿E#^›ÄÄ`“üñqØäþ ˆNéÄÑ©ÿA\¶w7€Mãâ°éüƒ QLÿAœãM]Ím õ°·þ#çæü-†´ÅÆÕî+$Ù1135·sµ7uµþ#å€H] b 䯷ÿ‘sý#ÿ{NÿQØÌÿA<#ÌAöÖü“ ÷o‰ƒÃ¿r†ôŒÍâÈa`²·7uù—$‹?dx#g7ÈÄÿ1€$oùçTHr–6îßd|‚]‡¤|™}ë66sÉÃyý˜õ5¾/]âé t‰L-ìù‡ ü*D4ôfVBøW{Ó8h^G¾”uUžéƒMïYK(›éHW"|›v10{ÑчU‘‰'"=Æ£1¼¸87 ’dÈ£æÚÓ’^‰Ž“óDfb*¤<ëKØçÛ{ò–g$<ü¢ F·F£pU¿¶v­NÂkÝ䨢?ÔÈDR1Í{4°Î̱Ѿcµ˜µwýªHÑÕ•ÅÎþ|ÎGI^9Êñ£4Œ{wÃÛ Ç‹ç¼ƒÊŠ›ØI(I3‰Ä¥?Ðü¶á:`7½¡Ì–‡©¦õäŠMöKª žÆO5CI%Nô„œô8•ì>'› ®£ˆôŸÐìÚĉÉ”XÑ ï{Õufhm×=k°ï Ó~Í*KÞá¹owô‹ëK¸– /ô·°¶Ü ¿¿0!ƒÓñ24ŽSyûƒmî©ûS¼Þ¬âïçå>ZÔCÇFjvº7…%OÌU€Z•·ŠJ²›lîÃü*û™EM@Ï2:§8äÞµ@Ž•RxI‰®ˆé˜Fµ¯])¬6ñe(™ï‚Î÷ZlOËÊ_®•;Û;HsÄZž+zyK#b\_g¸ˆ°}€6°ìtøfî¢?6cñ}Áñã[ÎuCc“{lˆ3ãi(‰‚ª©Óy Húr!"!Œ+3‚åaràñ­ZÈÕÔ-t)1¨5¸›õrßnS8ï•w|/gæ‡ÿ©Ä˜îÍNCT“²F %VÕcÜõ…<FÜAŒ•‡¬ñ’ª¸Z»!Šx¦¨—eçafõ×ä×÷2|±eë¦òÔbš’^"á½-pWz)è沊Ú7TF…eD¯n9^`ˆaÄÉ黜ֺN®–u¾ <¯ß6mf¨¬~Î,ó$ÊÌ¡f)Zæf@Ò½;fõg$žÃ…ù0øsÑÝ\ç þA[K3n‚•Ü]C¿gï¼"vC^µðr¾(VÕŠBlùéãÖwk&-8g?ÔãtµX¹Ê­‚Ù ¿<ɧȟ5ïzs#<Ý (I:a‹ #lŒzK¦=m2ÞróäzòëÓÖöU®Ýü‚«gwE½î;óµwê"H"ôR^IóïÍòÆJít—B5·•¡`dmxXÍD”yÔצ3:p6jI çÀ¦1+}3–J«?’¤r£†ý#Ëkȸôv5ƒnDž’d"¸÷ê’¶ù•:–š—d•Ü®Gê:Á‡ ýCs¨L‹D óËà¸Àpò|oÖʼBù7òpFS ]ÆŸ?‚›‰¹ëe;9]):·Þ+>KbT $s³ž–UŸ˜‹÷R Lå«'ºG%~—îìµ@RÅzߟ_ÔÚn=Ã+L6âoºÅîùOâÅȱ=¼CÖ•ZA¨ê%ݲ«ü¡PräîË•¾à¯çÁÔìd‹ÏA5§Ê’‘ô3Å3ß  ú²êÙ½¯‚΋§Ò¢¦zõ%lê‘5ŠYÚ> â—ˆÄzd?ÈuQJ+åðÅ´]çÑ4Ï JØï±¦÷Î1µrwÁÑâ\¼tºâì™Fn&]ym6ú¨mz1o§Ñ6qØŠ¦8¬Làg(î›rTüÍ7#Kú±]CuÔˆsž1sòÄxo³P²Ã‰¯Î¬xÂô™pš®ÑÝóIý ­–žßX³uÇñM={@ÄÜ£›£4*eØUƒ×”Ó†g¯<K©™á²W¯È!c±“áªYÜâ[Øe,o%3nt“ˆú÷«Šlì`SÉöw³#ÌÔÓµÙÖáY5,©°gÎùqº¢_îÖ@\¡úP>YD8çÏ›Ä?7-~ÐŸÖ d">ÑÕN¾mÔŒ¼êµ, Õ8j ½ÎK/G×*¡­Fª\•r6#ZAS>´`Ñú2E{>I_NôVG!÷à5*”þªŠd/ž[np¹T3ÜÓiöžòÎù½¨2I˜Añ…1o¬+'7îZ”*e]NJ¤†³ûÀL@“yQ:ˆr³G¥AýÒˆT`õ §µcŽa¨4àŠÒõ“l¯>ûú#S[˜«H}äÒ‘ôf ÆL¬£ä…É–ß#ar¢_/æ‰ÅhófsÍ}Œýpª4d~_ç8KˆÎlHøŽŠè ©³aB”•«‰æšd aãüoû9–ÉúˆP‹ q«„èL¦Å›þÍĹFx)Šß“AüÉSä7̧ÍGX*µ—*wíôÖH¯ÅÁˆo|b™U[Bs«làöF´ºï' –¯D+;†ïÀÌ]‹ «îÛ’ ÙTCî VV#7ëÖ~yÚÛ y‡dÅBï&¸ú[ è_µZ$…ûÍTHìà…Ì^Äïû`š8òïLÐXx^qú2Ã’Ëžô2l}—[õ,ß×DéáfmöÕã¡Ö7±x¢³gÅCY‡Ÿö!ÀÉ•›ëNUG@9eˆ=ñŸdÉýìàðþÓÎ:S’œ1÷Xe'ì×fëEB’QOiSü—h}k#cg:³Êâî´v™”›ï$ ;ÃÜ X ¯d)Ñ–]Êw*U3ÍÊÕ9 çVö¶å2!qSä-}ˆšû®ÅÆFh{W©êˆÁT´õszQMÇ\ Œ’^+–hEÂÉÇҬ͕“Ánµ;²_v‚vi1#"m\™)Á™23Τ÷ÀåB¢k •ºÄt­4¹[^ðEEª…HûÞÕl•gM–"ø³îÌ!/ƒ&Ë:ìÝd[Z«^7–2c‘ʉ‚½ÎøžgœCZÖ óág³Û20Y{ ê@Ã{ÓзkL ‚ø2G'«¤IÐ;¶AoTc„ ¢Í²àx›×KæRrRµz‰ó¼` ]Èßr¥êaö¼¸É‹"´ÇPµI[¬…A‘Ú3"š›L׎Ä݃©G9¡\­ÍL/ô›•û*õ¹RŽ<<ù˜87u›9Dè£ø+Ûúª7ÖY¬«œ;’"ªÓz']ž÷æK>¦kŒ{|—\LH4$íŽÒ>Ì©pèמû¸E›!p“Áf‡¾KgÞ9}Á÷±âD_’Ŧ®’ Sº7FÜifû– ÚÖ\èTΞñÕ(:MÉž•'r~ølÌtz$Éx5Í@Š]¤f&Í, ÇÆåë”Ã̽-¦Qõ3¬qt˜ûø…d8fÖç»&Ù—·}Í!ë©þžOÉc§Xç¢Éúè Ä^oáSÐÔ3ƒr²'i¼ƒƒ=âøšU£±Û3I²ˆ?yO7¡Ž  >ƒWÀÆ™½žò»()üÉC¥‰(ï®ß{dÂñu¸íÔ‰„ÐÊo¯îȯøœÐÌ0­˜_ æÂò'=ËÈ€yb#Ÿ†]a¢P@9à $lÆ*8|èeF>Üslñ°»Ê% ¾@;2‰Ç"ß:”œß }/xb,^|î5ê¾JV´¾×Ñi…ÏóöùÜùu\TVý.ûÛøØiŒ–ÕË¥(Ò§Z48½Á7L”\C%áÚyšs'z?~9"h¿ÎSögÄòÓ/%m»tZ›¸·&Ð.¶&—sÅã÷nÖPÛÖC‹ê¶•câ[O\2½BþUübG /ÀÛ¸¼˜,?±0°ÿ=èÝ0õL*ÍEšêeJIÆØ“ÞôûÅ7ÞEöè]í–£…é—åœCZ~g*^‹±ï\vÍË7ÊÄä^®qÃYpfáH"â ¹~a Ún§›>ÁéÚ&žî$LÈ ´Ü‚d-çkÒØ"1-ÆFê7™o{­Â8¹$ƒ¸%¿ôtfàÍûQh­ÈÍÕ…Þµ|ßDÇÚ }v¹Äû~ÝZ”tMÛ útïf³ïºa_ÿSâõ¯¼- ÇÜüê0¡|€§Ð KÒºr«ö±q`QÇE °€úä9"^ÔÝ}zDXã¹€`¶Éþy\²ü@2´‡± ðÚ½zôà(ߣ5P"²HÏ5õ½Q]ÛÄQ{—hÙí C2ÊíÕñ6Åò²0ýF…ôGKÔ…u¡ZëõT]àaIÜ°ÛÆ®¿z\ZÛèvµ“ËSß‚ÃuÇ Lì¼+ˆ€>i½6h•Ö»hjs»ÀÇ€QçRÀù:\•é žÇÑkgñ2ƒœE¯1<‡ÚÆy*ÃǽZlðLÀO¢$<¦ÞŒo¥ù©E‰øp¡šˆ\^?X:Ï©ìcãI'À{ñªàºv%l,ø8_ÌŽ'¹H²èÕ»çñ _&3‘(ݸ¿½w»·wˬXOª$¯oŽuq¦WRë‚:ìˆä Âm§ÂYäã”u?"'eÚÁUšÀí¾þn|õµ¿ý¥–‘tná}‹ÔâÔúŒŠì7‘LÍ×p‹ãp§ØmñÂý&oÀz›yhQ­Ýº1‡D {Ï|i…PCÙ­\§¡SlQ9pت;½`¡ÀÉ~U'Wž¼IJ²~°9MôÃHÈ—fõ²úШ¥“Cd+ß:ƒ´F¯ù2÷šï› ¯4Â×ñl–_û0߇¿ƒë¦XZD„G¨Ê=õð‘Äk]":Ï‚ÿx`àokÎDô8 ÿ*ëÇ-î'ÿgþŒ¹²Þ>¦5…ÖfPøj¨à‹a®Ý‹…2~>K縵¸¼Híh¡’ܾ‹¨ý¥™ûŒ\s~]‰˜ø:ÔœêWí9}öW¾y¦ØO-uèüœn°tQ—­%¹‰Úaü—tÕ,”Eyz9²Ö^Ì"Q–l#Àþ)d¡ìdókÑAù®¥c´/Ž\[Ì5í]<-§Êíà¦)Û*Ž“×ˆ릦/¤wçï¡ñÄ;IdhRñ—miÉk«®Iˆ«ˆµr¦Wʺ3!›Àô¯M ®2¡aÈyø×/õ$›?Ü&„ª_H~qS½ \¨„a¨Êªê;\>ðŽÔmÛA9S's}ÄËk‰ÞB£¶&BÌ3GøáàÄò‘)2¨X¤“™l%(åo‰y*¾½é!</5 mJÜ03 x=MClß½Q³o»î ¢B<¢È˜ôâTl:ܯœkcù¤XyðUfxïNÈ‚äƒdêÇ'’XQ¸—燴Öö"14í5R%)=fãAø„r »u‡½Þk_øó8Ò"Ó`ÒÉëŸûá (ãù\ÜL?šè<Ý‚ã¦\ùAr§[±A³éìcGÜAHã{^IŠ€“Ðë8a̳Ä8¶ÓKÃÍëZ×z¶j`iü—³W> úY(Eêqsë«£Ë,8¾(Û™l7`ôÐ5‹7ø¹­wÊVçS½¨ËÃuH¯6Ū&ÆêAÚ™¤È0΃;2ÑþÆEn\ÞÂÏw9‹¸Á:0£ ïŠQªK1ß•ÄöpË4'È„aµ´¥hâ¬ù-òë²ò½ÚÞ˜H.©Ç…tàz Ë~7aä«.° _³¿'?ÃíÉk^ôp |r±v*ãJ2*¼ qfØN“Zùú›e­Rvr»)X²W2Vé÷²¡jJ( ®'Ë]1Z¤ÒÔû!ECÙ€jUCŠŸWóßÐlh®ìÚItKÌ¦Š¤¸µX¤J)‡~Ÿ–ªë¥™>×¢tN£Í•Exba}á¦û0 áå¤IÓ!Ðû<ÆÅ“Ƶ—<•~ÓåU§ï$>PiÊs=XgçQ²ÛîÚŸwŠ„íìü1ÿh>Pç¢ú|y§c±8¶U€ˆz³>2¾«&Z+š TÉï…ÎÀ4öwD„­šx¹:k唊ŽÅ¦}ÉÿI#>ir¼x„t ¨ÝÍ%~Õ?ý!ãûë_â]#ßs~ùJ[ÎëeÁ‘ì ÜGâî«P¤Õd¥ûæ¤Í7E!Pe*Ÿsœåxí\ª®®š:°³4Òy; š¿5z è pþ¸ëœIÒ/¦¶¯¶3ÒGž!®éáus b¯ +—ã·*Ùú™ðÌ$ŠÿmöǬˆEÏ/d%ìĜѰk~ä)IÀT¾j^^éù¼Â©9•KZ+hmÝ®jçø\½âva¤1”£ ÏEúXÈ{ûŒhUáëqúÜÑÔ¸wb}ÛÀýËŽÖ;7¢hô®0“¹óê£ûEìwÕÜ׶ȯ¯ö–GXÝ5¤ŠyÙv¿¯cáè%»l,>æ \ÆF£» †”Å=®(¥ž†¸¸–Ù½uÒ{Þ4J£Û7y Ê›uËhƬ»ûq#¯P…9t¿ýŠuJŠ1pÀ~ªŒæ‹î>‰X™Y3ŒNÛ»Iýb§€/%©¥PêÁ¸¤[Á•ÇŸþ|ÄD ç·¡Ñ®}‚ž¡´˜éXôD 4û°u$G™žÎ“ü %=…Õ5¢Åóz­ÕDÁuŒp/iÆa¤%íD¯Û×¹QŒJ£ö²oÉOÓûÐkáÚçø©ðšÐpÔõmñrEšÍž®½lßÚ-Ûõú+Ä“¡Œ1z"²x&kÙ)÷æ[#ë9lînšNÔ&qDw&… 0]ˆaÁÎdàH±?¶2Ãæ/FôöªœPÉ|XNxbÚ ›V ‡$ýE&ÏÙ³™7FGçÔD­[w˨i_ ¬;« —iã’ãªæ~vL*+$q–µ}ó>Lf „·îº~/ë5†s5IGþš?‚óÝ5Ô¾´´rãäQL}0‘X*Ë—×ÊÆV›-  rÉM<ŒéMwVwÁÒÌÑÀ­ûO•Ês­ü‹©¶*ì ôõöõK gêàV«ñWüO§Í‡ƒŽ«|R0õ2v«»?çuù^ï ´q߃„ˆYX_Äì.Y¿—™ Ïo*°K´"åÖçâ¹P ¥ž«*uYÙ÷VEMv¸ê&—V«ý(Ef˜q@sÁùòÀ1üüqŸ [æF‡-×øÊªuœ³-è+C‡Ô–lÖâx ÿË`•¬Bß%!¢Ön&"ëET,ÅÆ& ת* —hvMUa6ã)¡RÊñ-×ÒË«çw%ÂO‰@ŸÂ“cÊd1Ð#3ÑP¾èqJÄ›©È*¯¬U}Ô´D¶‡y¤´P…YZ¾OÜ(ÎÒÑÖ`=\ð€nùñ¦8NO?•Êx0nKž6¿(*ûÝÁê›B¡¾Hï²l¦Éå0Ξ![v??ЗV_¼³)H boÓ³»á qÂÿJ[|ê¦@²yàÙñš4ÅÎÚíýOËþðýÍž^´ÝyÁ=‹RU§¨z7è>½œ„÷Ÿ×e— ®7a"XØZ?!ÂÙ NàTÚÕnbº§¿†w¨Ú"ívLzwÝ€¡‡ÅÚO–:^­[®rÇ£!¼MÿŒ*ÏWÁiÍ”ÿ5‡Á—ÝŒ[5`kOd¾Jz[Ü«µ~Ôj!ùÝ@M‘NrPŒ!¼)½^&HRﯓ¥¯¯ú«rõ'â‚Ì0(¦°&urÙ)’‚|Ü/<õjÕBé" •lGåÌ}^Qš5êZüÌu ø®˜†Ú[y­ûCûÙ=‘tÅоa×C‰ý®´Æ¼ÔÚOÝ¢à]OVú2M”4¢¢U[whRSrÏ¥8W¦ø¾'1©±žP'4 °¸“pm¿¿H|Õõ¡Æ¥€4‹¿»²«]AqÂË6bÅuñ”çzù`š'U¼Vë›>¼1’YÕ27äè ,‹Qý>¼H*,¢ñúœé³¸¬Ïa·úõectÛÉ3§á3ÉJ£$ãfy>}àvlµ1‚t{¯èýª'Ø;bÂQ;K­âg¢šjC4vâ ÝhÝaÚÏ^SEvAl}Bóøv­9/Ë9©²<×ïjð¦*ÖNWñ–Bûô51á0½GìÂÏ&\/ÜU¤m߯ü„æèˆ´)Ûe¢O*‚EÓ·!‹ÚðªLÑXª0ìÊÝêã‡ú$€‡–óiªâ©TVÖoºæòãÝÐQTè¦j—ÞG«àŸ‰IÀlÑ»Y«(7{s/¾\’/{á×½Ñ<žõí^Ližbð ˆç½É >Ñ©ì™qÉV­—ì6"2,]0;p¡¯ÍóˆSÍo¡áÒ }—‡›H­–xú­WwÃ{©ó„´aéÿŠt‘WÌ90¯‚ÖJ–Bò¼D_XD5ÜruV/¶àÉPà¾ÞÔi܅­|¶™}(š"NsÍ3˜0?=zêDVy‘»É2aÊNj9“Š ¹pó‡]‘Í m`íÈp§¹ÚMå<ùE¨ƒJ%ï_´òB©PÇ·E¼6þ‹ì&p†V5©pcÙQ’ÕFž¹-Ï–çÀJ)~e,«zf®ÊHlJct@‹EËœ9}à–ªä Å/ŠWõ)³ëÔ=´Ø¨<‡¢^±ž•$Yï<Î0r¨ÅRãÎ-éúx!M¶²P=Xî¬nº«YàaÄMÆö —!…¦aïZkaæ²t…qyîêÈÑûÜ4òémTÀB,EdÀ6Ôa‘BÝc岈Çsk!Pî •^vPÈ@NÈ“lºx¢OHô³Xüžõ n6âºÎ¡D[×ÎX5Ê‚ón:–v3£Šà1 ½±àß ŸÃ1‰¡ç3›Ú[Ý·©º„x+Šqå Ý­þçÓO§6’ÈCLè°øŽ†ÝÝ\”9CBðWMZÅ#ž ôzý}ú4°™êJv/ 'ÖÈØÕjy”g|àŒÃf|ï>H), €Ö3òún•¶àžËÊX’*²ÕNžèçX7ÐêMS‚”|£rsNݹâ’Óêøêc²óH­˜²z˜Žç€¬ý xlìç8e®RÁÙ:’+úØÔmå[ƒfŠTùdzÅà"­éè·NæÏCãKl -C°ʾ,žÕüBTT’˜?Š8n:˜Ò†¸:u(Q÷®èbÓR‚GD/N_‚<è×õ`—‚FgëŠ5>èöC‘ç0¡¥(+µà\ÅÐ;`La%^;ñ¥ÈžìE89k.Xø9MçoD꥜mIww-ño(ÉbžYÇßyÐ÷ëÚ#ÃŽ—ÇSF}ÚÏÑ ùó>÷ÂB¸À®¥Œ˜¬"c ߨ‘¢CƒëöV±ÿ“Ì®4ùhv0A O;òCCD'#8UÞå'¿‚™¾—ܱ‹KOóÍÞ‹2›Ô› \` è¼È“ =÷±”¤«M£v;Zšöô;™¹p¾tGé×] ÿäÔ,–'Îß®ßê*|‘Æ7Ò¼S ñà‹¾ÐèÜÔ.sÿåðÅIõ—À'Sn{«g;@csÌbÒ=TOên­¾àyüw ÂÃt5kÁPkÉ’(”G‘‹,âûªÀI¼ƒv{sLv«±:è½Qd%‚bolÑàG¥ ×IžJ¯iZéœ»Ï 4ÈZÄÈp4 Á›§Tè «OG<‡›Yé^ép2(ú4ßx;Ì’ ¾­ö÷!ø'‰~z«÷Tö^5õiÁt/~ãù‘j%åa$vÏ¥ií¢ÂóU_“pÔιAb<[ä\eÏi‘cß`ÁÌÍæÖ7‹Íƒ¸×sؾBÖìœW}ʯg*AØ¡™i_\6[» ]Rjžy{bò†ÛÅØ´NKç³ÇÌË¡Žß²Q﬌Êrá \1*KÐ Xe÷R)Åuˆ/N¹Y»T¼¢Ú_àªruâç¹úÞW^¶‚>zù‘K‡iXÌtp‹Ë¬×xÚШä`Mžîz~õlºœ–uÓbßÈÿ'KÊ5X6: %N%ÇÌ-³(¸Nâ cKù æWþ<âë4‹Ê©Äƒ®€T»r‚}½]ªŒ:äïUŽŽNz¾íƒF‚ܼûR(îÓT® ÝCðÏügŒC,Iœd.ŠvÌÐÞÛ‹ÔRJ rÕs½‘¤ %__ b²µ§k˺€¿BÏP“C0Ód§BsYU´·N³N²¯,z0ºÑ\«‰ÅÅrG9sÔµ. ÅÝ‚6ÌžE!ê†bN\¯á÷å±zTž|:D¤@›Íx õãM´_’ýDÇFÙie¤èç—ްý‘!²/> æY“\n•Ü\¯hk‚å9¥³tüFcØHÉÞèñ;Ÿê©Ÿ.©´ì«Æ)'ÊãñÙbûIDØ)å ~Ê‘¶—Ž(-žS¸3!('ȇw®(ÕÍçðk%f)釽 É*Ü«b”¤öÝIÂó„'eª.ŸèÀaç’÷õ­ö¾rYÿèÞ%,¨æ|s>MÂ'D£7«c¶Û¯ZÛbJ‚# %°>Á„4DïÔ¾G'â²”¨ôæpJ!¶SiÇÀ{c£×¥ÍfUA$ýÎëa12n³Ê;ùøÒ#vïVa¼bck‹ÑœYEk ˜ø)q„Ê$+ÉrzzÁžnMnƒÉƒFDàëŽ}m¿[ï;|RË…‹ã…K:¼î)—|'SyGExÜ4þ ö-X&;‚ž£×r%øbæè"£àÕ¼é'BŸQT°±Jó~)ÉV¢ ¥0=‘|–ïi†ÝWÀ ¬†ò±¿Ç©uÏ›ª¬ö%–!§™§Ï6\`2ïØHÞ9²zd:>Œ24TwR!:¥aûI†ÂÉÎúû3¼ò¶êí™Wù@#3ɃÁŒÈŠ—XG\PüÊ`QUÔe~q×ÖeûôÒ:ΔÓ—røŸÝZ*o¿ðŸÞB sd/®6=}Ö?·¿P®º£-4Õ2õÃÔ4 FÊ®a›QYKˆx÷~Iuºšà(º£keÖØîQ-VǨx,¶3uß$u' h/Øo¼¤FÃË6攟†[6JçI_™&ÎgÁ|Soð™çó8ˆÜr®”«¹j+-}?þ¦j—Ó¸¯Ï½œ¬î.&,méËÝêÛóÜžÙY³ÅèR[@ÿ,Ž óýŽØaóÂì¡·¦Ý—ìm]iCÈGªI;˸:k¼›—.¼“øŽGÅLMçéë· ”º)RC8øÁføÙi½³^>çRW4NWðä ÌØ¡Ä¯—áõ D¼Áã’<ë%l3^«FZÏv·æï”šg#Sð”Q0‰®œÞúdÏ渽4`ÓîÛÍñ¸ ­W1©¢ð¥å[}.xür×ýLØü+ŽƒGf¢5"ðÒý9.¦–2±ÚiIJ¸ïV QÏ\îá}ÿ8:·ùÔÂe5×õmÝàCêÝÌgj¦bÎÅWç¿Ô«øÙ§¨çg“¢|ù&9—árå-7D%½×ZÃ÷÷J ŒÛòù/Ãf4’#}¬`dƒ(#1›ïCÇ_>é_j’@†{Àkœvê»ÙžÝõPëx|°Z’]دÿA$ V¿<ðjÌbTðabv$¿!ŽL]¼Ë\'ið'$m“•Æ‘ëk@y°÷@+Ø©)7b b|Œ*Ô¥¿kMF¢¿ މë%x2hßx¡}ÍïÛEÁèjxé?z$,­;ÚôX׺ÃÄ,lŸ”ÞΙ÷ù±+ à»Rv½ÀØp‰>øéBôK_ÕW˜,6(ߺã;L¶6¡Sj™¤gû‹‡hœŸÉÚ"Πǣï$6¨ŽXœ8©¸c°œcÞ×ÍjêÇάZ*<Ü÷øMwœ‹˜˜.t Dõþñ'Ò2ëháX¦@Þ²ã¢ê(‚áhtJl¾—ùº‰4jÂÒ܃ÞßbÚ×îò;öŒÒrμ‰ÚhéŽlquݰÅnù¥c‰µ£û(žKÌJ>‰»úé_[ ñŸ/Ñ-ØìF»ÌÖú|ŸMÍÓÔ>.ªlº¥”P^†5*²¡Rs²}ý8!Wžü†—©W€–¸ÁÈ tx¾ÌÐ+ó ~ôÓ[“Ù¾ÐèmÿÊ—ŠË<Íò²®§ö œÁÔ“¬z1xäÖ/Fôûòèmk°½Ò®¢±|LÍle+6k¨€t‘À“Ï’øãeV™Y˜oÞÁºU×娱wÍõ#`캮†Ìɉ:Ûôä|ê #ŽÞK…# Ißt1={L‘;»LIt9âò¯:ä e|ÿ&C²€/¶DémÞˆóÁþp:*°7õ _¼c"»]¢Ajš4TcÝ 7SŠ˜©ûÖ~‚Â-ö pÙqÎlÕtÜß7/ÃòðSèÏ)þ¦á¯.IèI±0)B.8äUûÅ=ûIì'=_B™C3­]‡Mh¥÷Û¶z·ÔtÌr†xÊ>nŒð4Ö¥%>Ù´übsóÍpØ}¥c`O°µ!®Fž*qøWhøptšx–¤#)åÕ|ç ƒÿqH]ýªÄ/Éþ€_§L/i“þ$ bã !ÆeK—ª÷tlÛ#SIÚº;Ó ýÀ†öëºÂ”œ­|¨^pÂíXF>rP¤dó….캇²ŸŒäO¾Ñ[î0|÷iã³’ÆÚ`Þž\îñÒ^©•*Šþ\Ote§’ÊqÔ)‡±“¶DÞ ~ެ¾ý¦r£ü•礋,ÿÀ[¶N†À’í‡#4eÛ¤h¦mÂjÓ屚Ð)BÞ ´ ¶aŽÎù æIþ€7üåhô¨¹¯ãwO²ø„Å+BÆ1Àd±²½Â'•F ¾H©âJ¸Ä†qÊ–4ÝÄïÁÌCÅœ©0Í+®ü´s4áqõuF¬úäWðþ; Ü:ΗU3ª©Vé%e~ù7`ÜéÍmë1`nv´So¡™¥ÇÉyà FõØw¥žâÙŸ )Àn¾Ù¾š‚ÙÓš({‡BITæžÉ›5‹¼-Üû¾OüwHé§Äšµë_®k-D<ã|ßeÝ–›NQÓ¬5>åÛXWKyET!#ýÀ<¹VËÕ†·vÿŽZ½*úÔ™ˆ*1¬K~ÚÛª®Ö Ò^yò(8¯×ìP"‘Y ‘E ù TÌïÅ^XLŽÝM.OÛbÜ bg(<ÔG/T˜˜Ò½¡½-¯T‹ˆN$d¨ Æ[Ìy\Ö©—ÁÍxª6]V]:k±¼ÅÝES¬ IIAÑö… ÓÝÌg4EOÄÎëKÙÜbÙNk—)ÝúûgvÄ=¶°WE¬•–>À 0Õ8N‰£™Š«w¾”ðÑ•EöùzÒ®ÈuuZâ,ÕJ`Å>f¹§•¡©iŸûôo EIá¦ç¹L£{ヶ ƒn+øí8žfÕ¶_áÐk½CØGÂðÔ[êØÎ¸‰y­Nõ¶QĬ¹iÜ´³ß*)4Ñ_œ~P/±V¬ÐðUQV¶’GÇš©ˆÔ'ÞQ$ 5„‰ n™(ÛÌŽ&©Ú6›ßÜ¿;âÙ6!šWè,ÌåŸKIƒ8+xOJ›ÌH#3“`o9ÉRâ:ü„JFfo¹•ÓÁ=F£Í²Ê% Õ:á[”ìˆ>×w.ØÍ¦þ‰¬Y6RŠÓê©ðh€p-+ô®€¥Fjò%,˜š£YmV}Þœ-‰MëêWuwšã……–oµ4ÍOÃë¬_gr~Àóc4)&þh“ýMO¶OؼµþøS5áÝ ÆkJ…Ú7ÚoØËÁ Â^üz s…g<ˆ#ï;}ùUeCM§"¥F’ššTV“Fœ#±¡È(ïb‚ý¢ÂÃUŒDÀeJ0¡p'û“Ôö[ÓEaq}f¿„㧪C;ž(æ…ê³äâÆ÷PÝ DÂÝî]‰–ïRÍç˜Mð"ì Š3H¨qrú 릙/Hêj§äê5FL"0lÎ]j,$^-5t°zÑ9Løhžg¡ê ?5ZË,w apR Îmïí½×#ŠoïwX’· Ÿ´–ýÌq¾Éß’³ eŒu×úÊŒl‹¥P‡Ü`ùуUŠKóY  ÐaðZÓ¸qhwAr·ÕÍrx“ÏÔ(&Ž\èQ:Pë¼ñVüæ·¿[!¹s”ü%"q_ö½ZcžÑ­P"-]ëÄG¯V:OÉÌ×úa§eZùüè¾ÀÁåó+÷ï;ojRa$wrð¥ÒÄÇVïÎDo'Ÿ™$U„,ʼn²ˆ‘±!U~áuG¬»IrµüÄü懣­ÄDŸ£œ&¶œÞx3¶LÎ žüˆª¡£ŒM„Xp¯!|lm<nàÕ}¼ê;0.®~­"ÛkyLÛO†ªúÊø7˜)©/cõ«ÓýÔÓÔθùc]ÐŒ±¤•SP@¶ƒ‚/³ÉÅ«±©rK¶ƒ8ægçÖlt¿|‰"º¹ê‘nãBžÚ ß&ÊÞÔ «×Ûúõ1°¯ƒŸ_Ûï%t^¬&¶rÏw_z¦ÑŠÛY8ýòÊ¡õ·Vÿ6Oø¶b&€Æ™ŽºwgV3áõWYu$5ñ‹ëõäÅìw–®þ·=é”0îsëÉŠ‰©?87çp<ý’jÀ»ñ¡(EÂt5í%ð;ã¥áv©·• ÜGô<aª±Ê:k/V‹ÕÌŒd-Òïçœì+LÕõÔ#qó,1M86äSeBh‰Ï*.8°¿vSx{ýh­+9à½å-ßu¤Dù^YܪF‹É9¤%DPª"fJx¥›_á8ý‹ U/ÕÊŠÆèW ê%ï«XÌñÄ'Æf"-ëûYÚÂ+Q–y^˜þÞ Õfúå¹°Ÿîç=äñ¨ÂMµ‹š-0;ûÔÚ+]¡s‹^¯5ô\>ÒM«}Ábwÿ?VA`‘ endstream endobj 119 0 obj << /Length1 1382 /Length2 5965 /Length3 0 /Length 6914 /Filter /FlateDecode >> stream xÚxTSÛº5ÒEz•^Þ{ïMJHB‚$ô^¤IGŽ ½HïJ.¨ ½ "  ‚¾èñÜ{Ïýÿ1Þcg¯ï›_[kÎŒÍÍad*¬ E9Á4PHŒ0H(PÕ7µ@ ¸(FÂÍmÇ `ÛI¸-`^h8 )óU/ƒµ©1X > ÐñF@⤠HJˆÒQ^25° Ðè 04 ·*ÊÓß îâŠÁÖùûÀဤ¥¥„~‡”=`^p Ðc\aØŠ0`Š‚Àaÿ¤à“sÅ`þ#VéŒHÿÕ.vŸþnÙçøþ„ðÏ\(,sa¾ý.PÁ^@ÿgºÿùÿ±üW–ÿ•èÿÝ‘†7ñÛÏ÷àÿñƒ=àÿ?,s½1X裰Z@þ7Ôö—tõaP¸·Ç{µ1`¬”‘.XF ƒn‹oÿe‡£5à~0¨qý‹5ÙÍé GÂŒPhø¯' 6 ü/VdwìS¥æo «¡ÖUGBPÐ_b“€½¼Àþ$سƮ$ ¬*¡0¿ßdˆŠ Ql;c0ÀåEòë`ÅnDÑp쀽~9Hþ‘âíå…UÚo`+ÿ½þ-kÌ!YœGAd£ÜžEu]Ô+3û oŽ®¬öÄ¥XÆJ`xÞ<tÕ#ÊÑœ¹§â­½9öÈh¡2zz>ˆYàðbÂïðåL­B ŽúàºÊ‘pÑÈד.06(ŠÉeRêQÜ:Õ§TcV G[|[ÞtËùËûR}âÛO·J®zÐÛ6Òû@Ù%G&3&Q¹ g÷5×*fÔú.eµ—m–·™¶ùäîxÒ¹JWãWÿuÛ¤ìÑ÷ï_æ >?.Öí¯“¬¦a¤ Ðá(Kf¤KÍÓiEãð¨Hœ©Vf¤p2–zDó,ã9J-Ÿ-êL÷nv1P ¿aòªÅ»%1/_з|Ìâ°‘köU”ìf[Zœ«Pý#.î:(ÎÙhÖ§:qDa?>=€°±çíOýYTyʵîRKQH¤¸ýÖÔÍ ÇÄœT˜]†<âÎð‡'*’F6Ï1gË¥K¹ 7‘6ž‡Ûª÷Ø-!‘/OáÕVìéÈÓ¶—]£}1G(®CVº™ð«îœý½ÔVm‰³×Tê’˜Ý7¨^þä‚äÙP“Â|£ÎMY%é…)Îd qŠ"3ª7fzÛ8Y×­eî+‡ÍR’Ó¸V²>]ª‘|õX>¢M>ãN0äíÔÑ55ãÉ” ë7Œû¾ا8y‰ŠÛëöظ:–ðê`n§À[öS.wT¬gÂ¤æ— U~˜‡:ÐT„Ü-tNüžôeû´ùS¡•rc¬ "îaïLèºÃ“W¬Ý6CI,Yϧ>öwóflûi5;Ã?¢qÕ”æŒ*ET·$Kt¨¾¢‹3·ëu¶{õ½rn9ýJ ²=—½½îi¿ÓlðÉó{Õ=55ïÂ}iñõZý0é@|ÒX‹P5²/w¨ÉÀSÍbóHWç’ „¢î}ñ¾-׃¶xªÆošžGgý,ïi:XDu† çx¥w¾û‰¿û je(ùÒ_ÕÛp²¿mgyY-B¿0ÖúöJùItU±uòÜ«b+#õ#½+±u±öµí•(­Œ@ƒß #íÈoo—7cP'Šìâ웥;«IŽúÃ㲃ìöäYÜÓï<׳ì?éï†êQᚸ‚ž²i8}.« ŒA©^ØÊJßöñG±ø8Ï¡"'oæéï°7Ÿ#Y ˱œ‡µö¡&5[vUÑ”¯áåQºU†#3IÚ7žÍ>û¾}ó‹ Õ̬¥lvï«ÏYÃÞJ|·ª0¯Êifo˜?Î ZÿòÅ8,¾©QÀËè9¹ã‡_ÃLT2ƒIÓ²T®è«]“mäX²XžúA¦Ú1Jij|ôÖ§£àcšb_ãCvÙ‡y òcï„¢†ÖË«{îrVmÉÈa˜69 ð1QÍX(ÅÏ3Vs%a$ŸUr*¦Ë£èv§¦OtrFl+k_ÙãV5fû.æÐ”AµG´Üù çâ‘~ßSØâGÂ?šŽši7:êNTŽ£™î“Ž[×uˆ~ôy‘¼Û”³H6y'ãÒÛÇ4ŽDYâ8[REžêm±òm¶Ù:qmvrÃdçýéóJ;QÂqáÐàÀØé¡¥ÂÙLÁ,9pòkW•ð„'räízÓ쇹À*2ƒÊœO®Üè¯U»Gœö7«%ô›5KѽàÊ»ÓÅ9!R܃c'L"=Ë•R2õ§a¬OŸC9¡Éî«FéS€=žÑ‡±çùõ)Ìçí^’ç]/dKm2wz‡6|ؤÝIý©’蛵Òü=e™ÔFÞ¬ÒÝ@yS2G&Qv5ïs4U9¹#‚`ïK}9v2Ç%ÇJMŒv¸¶ZÛe~v¿æéNR¿µ°S å­éßìeno!})†#Ê<àþœ³ØËœ°ðŽÔcì~Í%Ó@±ùÉç§‹‰±“æIí"nM|®žVéëÝw§'-üY_ˆî¾y ±öÏï,-̽FBã ÿ*áÊQX©‘HmAxÅÌ{š7Ù0uV‰1­)¡€*¾o°¢Ã§á‹´Ž¼?pîn`Ùlýü@cAnG%¸1s×½ñm?ÑŠÉßÒܤ½Ø7%Wùòê£GT'NÂÅ."È#5ûòcåmFãͺڨ"ÿ|š ôä%vêO‚!)%…lÕ›!I¯Ÿ-â¥éí¿­=c¥ßÇ,ÜǻԂåD/©6íúnsjJ“–}$;$*,°k)3¤ Œ¯÷fFCô'ÆÑw-‹3zý6QAíqjר†n S|]ªx¶Ä3Ù˜~k;Q^©!Žm|¹Ê¸Ð¦¼ñ°ýE7ÑÓ0¡uUd‹cÐ/f½o'Ðô«L.s.ëÁñu_йÉv¡â—"®H†s&NõŠà².üoªî·P„÷RSÇœlß ê-U€þtó7ËI ïo¶ðÞz´Êx¯ü•‹ê(cêIê§…ç9פ:7ÍbU—CE0!©ƒYÑå(VƒGÒ C^“sÚŠPnuæºg4~nE"×…Ç/@õóÏ>“ökç"Ôô>Ûà‰‡Ÿ· #Q§]ÇݼrSÖÝ+„0á Ñ ò„B©ðu‰[ 1ŸKPI™vªU \?ð4®¸pLÅ Ñ3OdOC!2›?Ñ·ß@ªgrúòçå…-Ó.›Ç| ÊÅɼEøUÂ"jßyÚ<~ïžQxðùåLüÏ„ìÿ™> à £~ÂtŽôçr¶¤àÍtVAOå0¡z¡òAnÕbTª#R¹_æHÓ>eÖ5?Z`¡ ÙÕ¨`figbLòV;âqE8Y|a¤®LŒ½äFaaóžÇ‡:1¨&¥ú†µÌðŸG{Ê3¡âåkÆt»½*l§!\GÒêÅô)nò$ìÕ;ù¾uâ祇.³½·óU²w6r?*WTS¯vß{6y4FÁ¾ò|yúv3Q<[LIÊÔ!è©‘óÍ××kN„æM %O×»X{•”Û¦¾áãø´«¹á{"Ãio¨ß¹&×ÏBæ¨Ò½I‘à¢ö‰¯¶V0¼›ìÑÏ~©oÈI¿Yû™ƒá»ÀXw•¡è¶/á@œÉ>¥ÅÅ9d¶n¥~mGïŸ(Xq¼ôÈ€}Uš@Г[þ䜱PÕڹȿóÚa.•@Îÿ"ÏÀ› üh¯´¢{P¤lè.Æ ©t !öŒ²Í]YÛ.†ŸAÿ‚"´Å´xë§uæ"²™)"‘0;yާBÀ>‰u8•÷¢„C±vó’§u$Hneb°äÑyÛ4ÓA=õϽÅ*Á‡òÚ°¹¢^h¹lóÝpiO‡Ür㮥/¼e¹šMŸV ²Èq+ÆŸ»Ù5Q#OÄ­tŠÕÂä .î_ëvB’±&Þcp²æSà\¼#°ó gdܽÂ_üµóv§µÞG–¬æ»Ö~aWFÚÍœB·}¨žF7ZÚÿÀ7|‘q5›J„‹ÎbuÛ• “wàÎåîÎew{¿ŽÿâÜVô­Ž²Sß2Séxìä»xþÙ#Ov„qÝãtã­ì8|§Õ :QÏ“kÍ'YÌÒïõhLßÁwø1§L•֋ܧ1~Mô³ØC7)'@Vn®·€0ÜãxÝ.õj’¾i?ïÉg^ú«{Vaf×Ç9æ¹÷cQbÅJ1Fþ‚±IçÓöºƒŒÕµâ ÿ[|ëuŽÜKUÌ”å]Æly¢@ôŠ_û©ó¶Jµ`͜׃Oê+Ÿl1ÓK.†º,‰ÆO¸¾q=“§eúñ&Oqª$á§´¯bÊ$ß›c™ÃáÐÖbégÊÞ--U…>YÍ"ñòìf¬Ѻ]jP1QöÆBî£Y1š¼çkªw3;<ùñkùÏä9°çPó7ÌñµË-m¾¡¯ßAÒÜEvoȇ§¥nô\ueSܧEÏÝèkfä˜Jî꘬¿0*x (œ_[YdþàQƒÆó #ÎN݉èhÁê®ë˜"°š/ãŒefÎÑk’uq'’~AÍg­-œ’€p|úåPÖqŽn{KyŠXK¦ééãUk-V'PzóZ§Öp`›oä°‰½õt#¹Éc.Š×™Zj‹ÇLŠžÇDþÓÚi–¹5ä;#ú†‡TbÏÏŠ4uŒ\C šlÛðµGöbÃT‰Ìè–gœ¯o_—›Í|˜p~Íñ6öWY4¯ÃÛuµúžË1Øä:!EÑRèÝŠ0ª51wçbð Ê[GJì)÷)³¬Öd ¢TØÓ®Ç•[Ñ$‹­jË*r˜•ÄDn´¢é?â™ÛmFÁ_¾.Z`=ÜI¯'Äž¬3ȬìÕP„àm¹,˸<¹v÷ô|¡p„E/w?²È(G ƒ¡À=óÖ Õu¹½t2È&ÛêÍϹÛ(ûíiFfŸO÷ØÑåÕFÅ^ÈNÑ4 NIs‘z Â6!î©à;]ãÙ( #çèlõ´ü~øgôîòA¤JÇnõMÇ+ßKIÃ÷"Á Â0ûc¡TGÅkc•‚5T¥­5µÏ/Y¥âÍÑ9Oç+‡ü·7GÒ‰Ì T%.5½\ÖÌ (%^q%Ç9óògo ÞÞÑCAÝޢߋSÆ(fßbfúœ9áµÊ€ÒI ªK5lgCîÚ'x´ç‹Æ0ÞúLYÐù&‰®ÊäÃøÀ7šÐ:óì»/Ê“æt7›#[}À(_JCusrÀ͈Bzí¸–3÷…KºJ|~ÂÄà¢ÑaÒ©¬Š½q²aeºø×^•â‘ÞÈN<®Öí!ò½Ÿ…†„°ޝIس¸ž¯8F KÓ‹”nê7 ^ ìÍÔ7_c£üèºg_ætÔ{ýj·s¯ÚaOLnúb3ƒr¦W=qÜ~am·€¨óûÀ+é{¼.iõL•²WM—͈ñEŒs.Ÿ‹’¯s™EöXŸí^hÈ~Hãë.›=…²¸OÍõá5Ã\Ÿ™:–±k>¤$ß6ÍÚ–¿ßÓ:Ý:˽f›à?™6Ç…Õ¼uŸ“x5QþèÈ7x_)0EžÀßR¡÷(vCá[jݶ¿ÒÖàÏvóÕoÄ¿_)ôkÉC3äüUœ¤*<~ÉGJ•1¯?e C‹ðßv{oìÝÅéÇÝâÌ =çõ> ¢ãPx+þØ”ÈÐßõÄ~îéÛüsÙ­†Éíõ†óßÄ(M*úš(ü^îì³ÇŸúª¸L¥®u]™^uär¾©Bä:ȶ7diûÏÝUCðbl/ÎÓ«Â]Ÿ´U‰P©Æóü±xF¢4cz¾5ÀÍ~À¿#êi2|±¼ø¼Šó¦X³7I–:,MâBp`±]nsÌËDLÛÐ^þ%ëöS¬ñ3¦Ó£zSu¡Ûà …‘)€È‡‡r9l-„[„F7à®mQ|Ôöåú9½ú‘Ð:ÌBl†J^ŸEÃO+®¶øP"3Ãd¾(6ݦ0Š}ó2“¢×زãq¤áÕ—éÔÛ†ß;D m'n‡ÕÖ<—+ï&i’?îÉïKQ?´¾™ÝtvñòhOHY9ª½¢Ÿ!š§xù*>{•ÌŒi2Ø~fÖј–Nù9Þ¢(oÆ6ÃôsÇcÀVãrí±WÕ±ô½f`ƒÏUHm9?—¶Ï¡¢oLJdÜÿ3 Íj–£à" *Vý”¥…§çeµr¾v¿£;UÃÅ)Òß×/—ñ0r°K¢w ±lVøõ4‚¯Þ?ÿGÖ7Ò SjF›¯»iKÃDkÁ—›°­zêãü³YqùªMwɤeÑ>7+<µ«ƒñ¯C4Î_bC¶~ñ"燾ÓáÁÇKìï–„ø'$ûllÕÝ9«G¸ò»Ê v’‡Q=/Þî d_lÞ[¿JÌ=3¥1‰ŠäŸ?nÜ­,@»à¨4§‹4ø„ÑVåè)±…x1qíèÄßP M:œîÀÔÛÍ„ èX~õÂQLla9;](€ùÇ]ì‰Æil†C:x·T£·î½Þy>N6‹Ù™ÁWU«Ó?‘œN(Œwn¢±NuþDGNƽå8_³Öšš¾l#ç@ýJŸ¸—ÉU°jvd³ñÔÅÃý 'g© endstream endobj 121 0 obj << /Length1 1395 /Length2 6016 /Length3 0 /Length 6972 /Filter /FlateDecode >> stream xÚtT”íÚ.Ý(Ý1( ! C‹„t7Ò‚Ã0À30 Ý”€Ò%Ò’‚HJKJÒÝ]"(ð±÷þ¿}ÎZç¬Yë÷¹î¾Ÿëz9Øtôùd­VP%ÅâÈkꛈ„ø‰88 `(Gè_˜ˆÃŠt…!àÿËA £Ð˜…öÓDÀjnŽ$*“ <ø—#)P»Ã¬šü5êJÄ!pöBÂlíPè2ÿzpA¸ ÄîÿÈ:A‘0Уì N芰#@AQ^ÿHÁ%i‡B9Kü`'W~ÒVšû>À†²èA]¡Hw¨5à×À-°ôÏdüD;˜ë\aƒò#¡4àƒ@á®è7¸5 @è«j´¡ð?Îîþîâý;Ýßè_‰`ðßÁ`áä †{Á඘# ­¤ÁòDÝ€áÖ¿ÁŽ®t<Ø s[¡~w(ÉêÀèÿŽç AœQ®ü®0Ç_#¥AoYn-pr‚ÂQ®D¿úS€!¡ôÚ½€nÖŽð€ûü=ØÀàÖ6¿†°vs>†Ã\Ü ª ]ÐÑ0[( "ð@TTXu@=!vÀ_é ¼œ¡¿ _0z?g„3À=ÔfEÿù¸‚Ý¡Ò êçó¿ ÿ<@k°‚ÚÂàDÿÉŽ†¡6ÎèËGÂ<fhî¿~ÿ~{‚¦—5îèõ÷ß÷ 4ÐÓÒWUæý3ñ¿mrrO€HÀ÷@ ¢bâ‚¿¦ÑÃþ¶!ðŸXU¸ ðàO·è5ý«c÷¿àú+nÀ?si!Ь…¸þCrsúúÿ¦úïÿÃeù‘ü¿Rrstümæúmÿ?Ì`'˜£×_4iÝPhh"Ð2€ÿ·«ôh5¡Ö07§ÿ¶ª¢Àh!ÈÂmÑdæ ó ÿÁa®J0O¨µ ±ûC™?øã_Rs„Á¡:Wدo :J@à¿lh}AÐßW4/› hùü³®"‚°þ¥3AQ‰{  é$("ð¡i õüÍdŽ@¡Cèý6$ѯkÁ¨_—†Bsmû £tFÂÐ[ù…ü£"Ä ‰D+ï71Ðíüëü[æP¨'B45€< µ¯mú^)ËèÁ·6ˆ·°Ôò,Þ¤+RÅ9ùÊÇN?]yÔEî©u9]ŠÎ×’ð‘ _FžýïCžæ3ƒæ“UrPŠ]+r‡|¹Ÿ.N>ÚBY¬ ¶Ãb)ÏVÈt™o?5Ã1»÷Âhâg˜X»ÐÆÛõü«× Ó;'@á72¶dFT¬lvËV´ ûªÏÄœ,Ži–êf úxø +w.×Cáµb—Ö77×›ÙÝ•"tüZ½£B´<œ’žÊ[-»?±‡ž:!S­ÞƒSNä›|IRüú§pÎyl§êq{\'½€ ˆÉ¾_‰™ˆÔ¾­6\ÛØ42 ÈÙ+ÉöÓÛ ï‡Ôà­&¤A’6 Ü++ç‚lyõ%´¬·=S®][˜Lr Ü›°gEé÷ÒõïµsÉçÌG»ªÜÒÒ¾ŒZÜø˜ïÜ(zªûVDaÄtZF£šÄWWt“ÿÅîdÝ\žþ9üÇ#ãõÉtå£ Ì  9OùK|¦£ ÜŠ{ŠfKš–—*šÇ‘ý¢%¼Ê%«içìS«:ÅÏä­Y¸ýˆYáÕÚ­¡¾W$1Ê•ú‹³æ×ÀÙ“ÏÇJŒ ¯52ý@üð‡‚ŒÒ‘büë{rV-z1XU>óko1«‰õ©:ùkÐâPôÍcñ=Þ3F*H2Ü­ÛÊš¥ m,²÷növYa¹O£Š—TP××(%gã<îݤˆÜ©{ÆñÙ¦Ðxx}Ôÿ-Ãg ɾ{|»|&:S$(R¦b“AÍ$.›-CðœWÄ‹¿6f GEôÉûuô%Ð[¡ï])¨´@uUP_$;L´™é&›Ô¡)0aUõXôëët)¤"Hõ©}{RàÌRïÙmá,L2ÞkfÝYÝýmFAlß™ä¸FÆ7uOTiŒ—‚gJ7¾D“Ìgò¾ì²ÄÑ[x–gÂU«%òi9BtwÌr·¥Ð& »,iFאָšÝá!4t­( ìÌo;/ߤÑvyACÆ#yǦ³ñ"±¦õ‹Á§b‹®x…Ô˜> j‘‰ÈéDËgŒîÚïcÂ÷´vÛGLÅZ$åÙ/(—FH;ÆåSçXÊÔn˜ª¶ˆI65l™µµ¯4·Íkš²è —mYúy%ý:eVì} .gj{³2µÕZ¼´ëê^n‹N+HúÚÈ.š*¥äo+cI-þíÒçôÌÍî«'Ǩp²o`+>‹ÜÜzÄ)Þ’,ì£ýû1]q³®Ë¨›ºA1’º(ÛŸQ‘gÿç(eªñHÊcAíR!Âcú‚MºDcúwï4Ï~à%(jçc–’Ç×GÌÇèÌà¾( ŽVÁ´zxO„ùËáYŇ1ʽq‘vYÍë» Ÿ±*>ëcêÛµ/¥æU'–Ü£]øàÃL¦y×j¦ëW¾¿Ñü‚ÃØôÊØòЬZu¤º@Û9½@¤-\L.·ÃÑýõAñ¼'Û¦lóÔ_§ܯ^e“ãT©G Óë8á[b}¦á˜)ìòÁãf&t­MYviPyY~†û0Äþ¥ûÝ'ŸýóÝŸ™M¾^m²ÜÊ…+£Á›¨cí eAš¯é·.e\¸só‡„ñpG™¹ZpåN.£,êz£ßöæÌ€þULò‚s$ÕÇ›Ø{„šu!‹>quÎ!_1è˜B˾lˆ<‚zÔÇ0É\07gLiû¾¯~¸Ô’ÜÖ¾è¥4³» :|Cz¨œd<¶+4¶Þq´óxÁ` Y·\ßnAÍœ•ÖgÑsrìÅRyՖе‰ ûúÈñña6Ó¯½¡Ò|4RŒø¯T?Qª­óéÉòè<ªgsk}vX·ÇÝ7Ó1áŽóú"ïÝÕ»÷˰ÔÖø·~ Ë2¯#j$¿S÷+’vIhH¹Ñì+®«.œ ´$UýÜ’gíÎ\õžîiÝ,>ˆ™îp_Ñc0{ÚPËóó|º‹;–·QÂ÷òy œ)(EPÍèç5Œ *òw#òÕÏÎ}fÒK{º5åTêð±WV´0R‰~#Ä•oë¯9:5NcÈW]ÁóýÂÚ…j¨Êl;ªÃb˜4r2’lµ 8åEKÛ™@:sÏ ± V)iR ZL3>¬cR-Ùáím?PõŒ¸üºò"ñYK —öÁ;vœl¸±š°Á†IÆ›;œüL!Ì&>ß\áöÍ#òÓw‘œ­ Ë·ŠÂ>h vTË›43Oôšæ|ï‰0çÏ`JÞñê-À`Èéw°Ù”†vHLìC*ÁvÚ[) ~2æsNÍ8j¼5ôÙ$<¤X,*¶%ú'ÿùíBn oËŒ0º¥‹›k$~z%jö¡ªïæ”nŒ*åÁ#‡66lw²Í“lªS­”Zùù:]¦Õê?-<°¿ApsKrûõl—SÔóLD&ÑdºƒüQÍöòϵaAo½éùÛÛ/£ŸžÉ_æ\·k:Øè> 'k°òÓà”ÎÆõ‹9ò ±Àlª ²ªÇ}úŠ=’&°k¨­"]oc¯–û1ФUÌaÄ#!9Ü0x‡JAj⢈•ó¼]µÿo×Ph'Yý§ÉP¹Nß‹£ˆ?º0 ^’½ í8-¬Hn«Ín4ðÒfíЋÅ;Æ›æjŽžL×ˆÉ 4x¡“é\™™­9TòX¯­2¹?Ðf7†·1)¡%´–ÔÚÃÓè1TÜïukÐcÒæ.NQõP8÷‰Ÿ<õm6»†ñJNf‹É ìlqÖ§'Ÿù¢`ØÜ´Ð}ÁDQFƒ‰ãë 73ß[8öæ-³’å‰?²"%ͪq1Òv‘zswŠw"2[gÉ §[¹¸÷T¸m¥6?ú,|y—ÓðDFÑß  ®ŒëìúhÊ8’â^mÔSƒËÖ奾”â¼;„½²èÁâúìúK|+ó›:8ˆvžÁØVÛ.ótB ½RL©¨È·p]'(ÝÈõ–Ú¢ü®.¦¸(™Qñè· e’#a–›³`úš ߨÐrâ/vu´a3>Ó oÏÔnTó}­Ù}ú³ÊPág'VÚSçb&ÞÀɭΪe{m>-‘² \LÃ*%å–•¬æ¤ÖÝ뢤(žõ™yæ=«ü•{g¤KÌŽùÆ5ú_äõs³'dƒ©û?t9#Ê¢Ù¦Á¯{ߢÊ3ÏšÌéêLzA –ÂuS]z£Ä>y/ØX?sQÌÑðÓ†ø-MòÉõñ†ţݬ¼üÑ ›¾ b èðÿÒ ©)ö.p*¼×ñeûÞø°¼ë*†«Ä€_¶_s§Ð·ï¹ÁqáFJì²U¡.Q²â¢¢ÛŽß2Çn "êØrx+ˆº-]b8É;êµÉl3»>ŽléDÔ^31ä°È–e~|°hŸHsëòE LŒ¡dO„E<*)·Ú™d:#éU[Û¸‘D!tm7ØW?Þà¹ÿ hWS£c¿Þâ³ú”!„¸UAþÔÃ’ÒŽöô=°ÒYªTÍ”}ó‰vØîp÷ÇûÇÄO°Ÿ–s"蹄š¥ñÀãŽM1¸©,»ßG¤ž«ã4-÷…ÕÉ~ö­ÁRæ7‹ÞÊÒ[?œ !Òž8’]‘{ïØ>â³îêx‡rèt.Xrèe°L€®ŽðQÜÄë†k•)éf~¡ÇÌ z¹Ÿ|Ëké”ÚªÇ ™Ußå©Î¥ZäÒ,gt o3+Ì}‚%V¯ÜëÅ+e‚¾,&ÕC^(® ±Ì…QŠÒ“Ôª‚âs5¤6_'N"4ˆÏå_ܱK'ò;!¸ÝUj†þêû½Ö' £×`M$W1'زײ“%£S´áüš=ÃÏ×?\¶öıº»õÓq¹xîp:5ÕµäÖŸrÑHç#o‚Ö£¦¡þ²Ã3‹@$ûÑr0"˜Üô¸¶¶v~Ç ¹õqÓv:µ”×^f5Æþ‰»ˆB0»¬@·Y|&‹E!zíà¤WÁZÞx4ƒ¨V©k[Å{°„*‘`0o?"àÌ&²ŠCGM—¼l&„éÅs¶ÓÌg¤  ]Þ³²– Ç€dBŒÛŸˆŒÈeïæZoT™¯ZHçC$:šôOÇ Êô°¸¶®pö¶bö)ØãP~G’,D*¸—€ÈÂ!<¯ziþäòģ½žå°2ª¬ö%„~o¨yÉâuÞÙ+òçÖ7~Oÿª¬ßV\]™Êr_ †-hqê]hò“Gø‰g;ónç› Ì5„;SBNGÍ¢¯ÏÈMû܆ÁÔ 7÷7ÒŽFL:Z.YkÊó±n‚§„×/÷oœÎÅ{w’¨ÖØäKíª¶©Õ3ÍèýÌlË\7Æ¥å­c¤ÁÈzËK®Ô9¡:õ.#Â#Uè•À¢]¶­Ž>ö©49ö ¾¡¾Ü=˜Û !îVO9Ôµ;s$)úÚuó¢%ˬ¨±3œþÙf¿…Äš‰ßµ¨´€yÑb"SYúFæ¼êz¿ßHm`åÌzJ<’<ŠãÃs¼ïö¤õÞ/voK¦­Z-Üë5SŠÒ.ßx>Ýou~¾5•ýÉÝEÝr9«íB’o±|Æá½Oðz`ÞÃ@¾Nì›éTbøP«Ê@2#äø Òp®õê¹ÌŠ ‹»c„ Ü6Yâè­±ÛŠyŽ3†c¢ÒæÊ†Œ¥¿òM¶g‰$6}«õ.3õ|&.'Z'<âc²ÆkK§Ä9§4Ž‘¸`͎д!XgóPòfÑE3™–¨+Oi > stream xÚöP]ÛÒ ãNp'°qwwÜ%8l`cw .‚…àîîîîî. –à®#÷žs¿ÿ¯z¯vÕÚktîÙ=çèY‹ŠLYIÌ l”Û93±1³òÄÔeÙX¬¬̬¬ìHTTê gàìHTš@G'ØŽÿ_ qG ±ó›MÂØù¨¶|t±°qظùÙxøYY쬬|ÿ!‚ùÆ® 3€3à#Øè„D%¶÷pYX:¿­óŸW­)€‡ñÏp€˜-ÐdjlP0v¶Ú¾­hjlP›‚€Îÿ“‚VÐÒÙÙžŸ…ÅÍÍÙØÖ‰ìh!LÇp9[TN@GW à–ŠÆ¶À¿[cF¢¨[‚œþr¨ÍÝŒ€7ƒ Èhçôâbgt¼­P“•(Ùíþ"ËÿE`ü½96f¶ÿ¦û;úD »?ƒMMÁ¶öÆv ; €9ÈP’’gvvwfÛ™ýA4¶q¿Å»ƒlŒMÞ–n S¿uøwN¦Ž {g'f'Í=²ü‘æm›%íÌÄÁ¶¶@;g'¤?ê“9Mßö݃åïõ¶»Ùyý™ƒìÌÌÿhÃÌÅžEÃäà”•ø›ófBúÇftp±²²ò²ó€ »©%Ë ¨{Øÿt²ýa~ëÁÇËl0kè2¾ý!y9»ÎŽ.@¯;þ!±±Ì@¦Î ÈéŸìof ù_øíüAî€O¬oòc°þñûï›þ›ÂÌÀv6ÿÐÿüƒx,âÿ ^‹Ä€EöÄ `ùøz‹Sø/â}cªýƒÞ˜êÿE|oLã€Åô¿èÝ`1ûd°ÿÙ,æÿ‚oy-ÿ 9ߺ²ô°·|»Äþa¼Ù@ÿ‚oK[ÿ ¾ugó/øVŠí?ðm¬Xþ•êmYÀÿ‚o¥Øÿ³öÛÚ¿éü¯ÚÙÞªsü|+Åé_ð-Âù_ð­2—Á·RÜþ„ÿsð¦.ŽŽo·àŸú¦Šÿà?¯\ ÐhŠ´¼6²ª j»«#rcú1ÁΉ:pq… µ'Iຯ .xÉ‘¹$Ö5÷3ò~ ó˜½èµÑZ—ÕÚ`Ó;9’w¹® ÖÜd—Ñ{ SèáØIÞ…ý§\g§®‡™îi“êÛ•è,£Ãùù´CiAꦊÛrËSxš†_Ì(PQ‘ðø¼¼(PAíbiíªÅfç:d).D'~Ç¿—:¼OîeçÚX)a„m'¡ÚË]¥ ?èá&”3šÌRíõHâ?~¥ ¸j úLkâ4¦&B!.»7u!s±%«jÑ$3¸ÝŸ-¾õ•ül Q,ÓÝ„fÇ@€¾S¢¨%b9Q=ß“ƒ‹¦¤§´TKH ¹o QjúWP s&†œ·|õðtœºSbúlr>ãh*Vƒ²Ú¥×"Û´)âhd c4ˆñCûû]?Õ@ˆŒ(x«EÃõ€Içj¼¶^4d*2´ˆóG’cŠÍP6NÒØ#K KófË1Dõ Á`¯ÙCxír Ok4ÒP:¬o©'<£ÚÅUžÜÞZíáSQ!~ŽÅ~C¨óE붨ubñ”ÎìuºQ¸,R ÷jŽÆ4È|ö¹y—x4Tÿ5¨V* ßó©úè5õ›Mú™VÒkð{ê1óØäRŸÉl‡(SÆ`ѲD¯°ÚQîßÓM‘ˆj5%}µ®×” µW ZrÊó¥/H9)¤™šË*±"Çëì¥eÜ%.yE£F>˜5.¾¹5m;$廹߸®;ôVSŒ+Á›3›`^Ì•îúµ¢J“Ì¢4ÿÚûœ=G.GšK„¹òY’ 0–MÖS¬¥ï88SÉZýM-Ð'ÍI‡ŽIÀªKK9q8¯íJH¯õÅ)êXæeÙ®ÑRûEC€0Ÿ¹ß˜”G{p† ÊË^!Ùs_f¹S}-ñÚª Qįïñýv œÒ¼¼eyEÁ£¬3®ú{à4ü.6uÇ>£˜rÚêõÙ/EA€?ŸÂöîÔþ¸9z„Š;¹©à—ø•M_EËò*ÖS£•P‰ò[ ¡Ñ'ç+v(±,ç7ÚõYEi -(nºfU ŽÓÍÈäŸä ”´\óï¼™ToO¢–¤?•â¸O.+ð9Q7 òà;P!Ð -6\QÅ?g¢!xÆå~ä£:ýj=Cºu9cÆâUªŸaqÙ÷9€}ôf°@Pï1œj3ÞnR‹6›ËEw“zfÃ,W1Ï\«ªÍ¹T?é^¶ãˆƒôÊäâ°8VóTý´š¯¿ÒuqE=êu‚Ñó¡å–¶“´yí.Õ>ZìÀxù´åI«àk}´&f…%EV"Q2¼úädD¶3 Œ¼8$‰Eú\‹ªê3GΪ‚©QÏŷؼçÏÉÒÅ•z,–ÓvŽú îµ|é <+ŸØ©~Êû̽>dÔÁγâ)ÍmýІâ\"á3úÂ/qœ©P£–FüD*)yûÆðΊ[߆øÈ›)ò!%èÏ)KÚÒ0w<<ô²E|Jy’è^ä_ÓUÄÜ®XΧ @Y„Œ I-)¹ ÜÜ\üÑ"jþèŽì×ÁˆÑ —ú¿;úG\qËBj¾l/õu¿h é£h¼Ããõ›ØÛŽÂ¬^Üq†’Ãúsí ¼¿Äíl°ZÚýøÂp·Ô N'‹Ü/)¤óˆc6ÄB˜>Ê|3°P´Ñä?? ’A^{ ÍÃ~ ¶¢dþz‹%¾Š7,…e}óß­pÚË6æ¹LRÞK€^²Û~ˆÊ@"Z û /@ ç0åGkñ‹AÒ¬™æ„OÆÃy=k›dXc\Ò÷pü«§ÔWÁ_XtŒài,踰GJùõª,Ñ2u¥ÛÉ›=|Õ󎽖¦éuÆõž%›`‚Éaú¼È9e™ªû ’WÊWuçZ–u}KãížúRè8²KÙž«µ?å'¼ÉÅ%«Ü|>üLëoÏ?¬`­à ¶¿t æTáw”ûîÖ~Å`'>çëÚy³à †È¨ àO2®eDõ Õƒ'ÐÁç=i—8ý¨é>›œ¬ÄõÅ3í l‹í±/²“ =G‰Ýîò;œ¶ ÷‡\öÌVäz CÄ$ÌCy7sÉ8JÉÎBþ ûÒܯ0“;›”ŠN•jÄdwÙª8+>ŽÔö'µÞaTR…IœuÜé›\ãÜ«Äçò‹z½²!U¼aœ3a2Õ‰èc¾V…0•¸‰DÍy³Úí H„õ†—ûkP8•÷ZÔ²ç§kIJ×öéb×…X–ôÍÅ€^F-تÞ ¢‹C´¼* ë"-öiêQÎÖ –š‚”ņê…òÇK .Ï0W¦ž|"§u³OÕ´eÙìÕk¿®Æ˜–î|yÊñúõѯ?9–R«$.²~êHSÐÏ0Ÿ×þ)Òà®O j¾Kþyf§!üpú9gj¤é™vºK]$– 0yœÕ˜M†¹Î­a d¼!S^úrxK!Ådd!Dˆ_a¾N‡¤_#)â÷ŠL•u‘Ä‹HY Ïr%w;ñ•ÄÆÔ½#ó¿š’Öqì  \Èþ 8ͼ”ßëê¿Ãnç·ä?¶zBL“øaJÊkMÌ|wbó»²ÍÛÆ#¥¸–¥ôn-E€&™–]Y_qÛîv¶zîÉF¯OüiÉ‹?7qûK7Ó¬S€G0Î$pwT¢0ˆñ(>9^ñ’ô.¿ ‡8ñ®5‡+ÑŽ´¥Øßµ\8†žÌ € ùdßÀÀ5æ»u:Ùé8L'ðQ 9e:lë#{ýÑŒ‡>3Û=Â. 0ç ëþ>„^ѦB»3?qÌg‹®Í)Û€#ÇŽÜšbzlggm9"UhyÒ,Øôã€Ñ¢üþsœ?`¢Ç”mÑÓû,Ã6{/ŸÊMøFš6îU‹ƒZ¨Xå·N™wÛ¢™ðö©ç$‹{E0*ã¸üæC†¡"GêHeÃï[jÁ¸2ÓÀ]õl.Ê\Þ3¿ß®qÚÇ…è¤)N–¹IS³˜äHjÇ ]OÉLÜvB»ÎÍ\ k'q†\àõÏQo“;ë»vhp\ ;d7÷|Zo鯙°ßû5ÛÊX…³ù8<·–*³ãz¯óþÊö ³®QÞ¾áßÿ"Þú…x™œïš:z…~Y:¼¹:Î{§Áõ©ÙpöÝr÷4ÝáNÈvdûa$€ÿõ¹‰m. ݤ U¢€ïÏgTÊ(z¡³œõÖt¿qÏ.Gu-°Kö&̾Τ&2æÉ匯U3s¸x^"^QUÒ?jrGoç% ƒŸ¸¨ÙÏÏspÛuµ&)_:Tø•'ÛÆºôNº&Ü nZY.]E­š„&^· åECòoKÜzgšà‚|¤ÖÌ´šcG"NÜ"žNPµ+™öfù³äœŸ›˜øÉ1द²;l”š›c¨D¡wÁÂ#Ù`Ë£-‚Y"BhÜ¢ö‘Ê èµ°rŒkŠòÓÂÂÁ çÛïß%& Ùœ°ÐÕQ±p–ê‚o;,^rSß_ƒŽ:Èj,êPýiÌ{EjÝZÃÓärtço¯©a§¡²) žévt¾3z~¿ï÷ŒœêŒ‚…ÿYPIÅF–˜1˜ÕPU¢Enï2ùH°½2Vud+ÚÜu|zªÂ¥E6HoDunØ~U5`-‰—sÆ<õšïD³øPûH>¿Yx{*a~G¶µ)äW¬²ˆ½ËÿtOÛ‰ø)¢×·H#ÊÉ•ÄÊ/y$ÞºTÙ‚x—å ¿Vníòæ«¡¾IVCw¢çi<Šú)#¥fñ4†ÕøÉªîfýUÌ+úûW?,®ŽÍÆBç ùQ‡±ŠßËÉ3ÒÖ¦7Û'^yéˆÞ…ª-÷PÏòèÈxúØ®âb–”h´\Ù|¼Çb¼¼à#4¶Ñ»¼wU%CááÙj#JC(b®""‘I Y›­óP»Í±šÖNB6®&“¹P¼ÃÞ5C½zí†T^g3EµÂÔԞIJð8i×Uï´4ÛÕ@bQ§š¹ ë³q”C>q(m×Ò×Oé@!syo´Ãoº-0zdº¤ÑMcIãᚬkæÑ Ï©¿9†\[-ƒSk¶„g»Óy?lÑKÃ'C÷¡_GGø~a1;?ûu–…å&jí×è¹áüõìUõhFQõÀ`·Rä—Ûâ9‚Ì“ªÏ¡¶ÙÂ-ÜÉ#Oàü-ôºuœ©çàÙµñÞ½ŒÑ¼%Þ·Î>Œ4¤ÉÈ-L™eiƒ4g­W­çé‘§ý b.z“~hx|¾'Åaè¨:ê¹JŸ•FŠtz„5¤ž‡¡ýPï‡zñ|mö4ÿ¹Q-Ü.27±¤_DÖCÃ4ê ‚¢jÓAQíÖʼæ¥ÍÂ"¥—åÁc€êìþr,õÛûrz¨Â›ï£(“æ–‡#—~WË«)¢rõH mÐ…Q,òB½‡—Æãç,ªá +T š°®×ø ³‹Ò aÓâWõ4Äž:£aÍE ñFêÖ+ζ5ƒ²6&¸<_ lO¿Õƒ^Ú?†-.Uë»l»zåG ³o¶M §³¬…ãddËÐ…NÕՆG:g,yØk2gT2“æáñú~†˜(äÁÛ \_ø$§f0ÙÕûàÇš†~Š×E+5 ©Çª˜½C½˜°¸ <ݪe—ç0è„î˜/´ƒ2ˆâÝÂæî:+ý¾sS èÑè~löãI½14›ÖýÙÉ hÕth¶}G³n ·è:¦±Ø–<~Tê^ øÖ!$"µ»E–ºÄƒ¤ú’aà»õðÒöTQ‘ç9>ÅZn½ø°_…ÈÖŸÊG‹[踓éýõè'Fuø«‰Óù §)F·ˆ¶dÀv•+øWr¯ ýlÖÄ@Ô±*ø œ„÷>ªòItÏ^׳r¾Y<Îí+e§¾O–'Öíðq¦reÑî–(º-7û7A‰÷þÞÀεV¯,®6ú,Ϥ†o{ùµa7¬ê)ÍÑÔšd™‹Ì@ŽÌ©üÀ¤Ù+ì @½= ì·œ\8^úµ1‚uÁ=øpÒ>ž”½“+±‘Õ)’ꊞ¯øÉãC"°:a”ÂkŽðèbÇw‚=Õ!AGkIÁ×°Jˆº}YÒ"é¶ÐÓeòƒ'¯û‹çp6ʶ•Ÿ1àNWKìEí=üzˆ9pÇ !GøûÝSëÓñå´Ù)¢¡]œÝhž–É<¡ýX5u»cù‹;ï„[VB°î¥6ì.=ôÍe Ÿ ßyÈhÄÁ²¬SÓ‘Ì¿:7Á2úw‘M¦‚ÜÂÝ3Þ{ù¡xˆ_­£ˆ›xGNuà—#£7¶& Tï&ò`YwÇ'äí¥¿Ê«±]´ßûhÌWï¹®Õå”;š0i&Q‹ -󀙦g¶šgÕáGÇá¾Fe÷Lc€èÀñ“S*|¨´UÅÖ[—å²á(ùr OYˆê¬rí%2N÷ð=ï4-6Ƴ×ÕÂXóо{ ¯F ¾©b|çðMl¸'~ Jâ8¼ùSñC‰ ÂE×®‡3Ú”§¾}YóPay~ô7f‘ž±¸éÊ9–5›µO6ëÔiûØ„˜áª¾1ZnÈr¯âníôxd¹Ütôe\±ÖjÚ4È¿“^n}Q$Àï^ƒÅl>ã¼H ™\§_‡ë»òÒMÿ¥Áf§_z®ºdP·Öºb¸ø”:8Ut1ªìTIUЍvHÛ§ÁvÞ­¶dˆx x<›ºO™kàÉÑÂP¹ÍE ÑXcâ®®.7·0ÈâÖ$:Ÿ‘i™¸ œ4ÚŠ)޵ùËo_í6C?ëÎëL˯*äÝz|,S‰§#îR†„f‡ Ôl³¤GT"©‚™"x—vBúZ‹+f÷ n:„¿+6†pšghe÷ÓÎä8 6¬Éò÷i­Uóá ±û—Ya‘€Ù²8¥`N0ÊÆÕŽÒÇ¢³Û¼›Ú—ý(Ǥ¹Y èpþA^ëæv‘P|õd˜Æ•}DÙæÇàÚ’‡°;¨ÛtMqGª”Ôæ|¤øL‡(î JMM“Z’;ÌäóLX¾vbD¦lXöë.žÕ¨b,ÓÏI— KÅ,ìz ˆÓmdMµmŒiK¡Ü9 ÉÔ;9’¶I—v0Q̪һ¯ãb!Àš’ ˆÁþ¼Cöd­÷ÞHrIÕðÅÓ€ Tah÷¯ud÷89у(¨È ãb×És•·Kƒ>ïL^w9P;rXØWcœèè °ŠÖ`n@7Åß6"ÓØpTû—®´“øýß*‰cb›H-8I§k8mXºûµU¡¦¼eÍM‚¼²-'P$³Ãô¹?Ù1¦zóê“TŠg1âµ}˜‡Ô&§W È×kN²H¨Ü 7ªyZý Ÿž¯!Ž,ÔšqqI'?/)±‚Þ³6sJ¨¦6&tV2 G,ÑKWbY~¼zôwšî¿îï"¼ip./¨U6—Â+¼IE\c6þýVœliR¤ûx,N²ØpÙŠêwÓ´ÎïþžS9­ç8¶‹Ô¨oûÙ,:Ö΢YÌ|~\÷n‚½*d&S5h?ï—ävˆJ Ø1Ó¢¾Þr *:x™îK2þ£Sq[™d‚†z‰Ö²¢Ûø×w“´°s^}+ÕŸñ ¦!ö2ü0„ßÉÌIu˜ö­(JàˆŸm,@Hâ§Ïvƒñk &+u1yŸät,‰¾ÙJÞJÛkgÌeÝìf ´î¹¼Çcq6¤îDn«©ÐÛ HÊJN{íÀO1/q#2Ñö6z}"N–rÚ—¾mX™K÷ÚóœÊÂm´™'â?óã››Úi']‹¼Ù©Ç±RD¹62Ù±ÿ 3`xΡõ³KæQøêE2ëI°ù»a=:/£ÖzusÈþu¿›Ï´60ðÁ“áÎpNDj?tÎfçÃ?Y·><|¥ÀVH.$Ytˆ8%Oì8³ÐoJ”eÓŸ6òÝÆEË%`‚ª«Ñ›øJù#›3j°©ÌuxW“hó.–›w)0ù(Ëä"%*ïCTÙ–<ñ]8Ïdµ'ý±èoRHÖiý¡ìçã8ý¶,LèïG]öZÍQOB§­e`ÏÛY Š[¯{Ô¥Çß„»=&9p ?ýg’™ü\$<ƹ“è\qÅR~gIÒC×¥¨BnaÌKÜôC‘e‚¼Ð.òÖSE&Ôøai»°r;#TÔ|˜¢‘/¥ô¼ê‘!!M_ ƒ>æO–ýÈXI˜m¥"MÅ£Ýf$×Vc fw«×ÄpÅvWéN I%2ÈÆäñQ™¦žÊÁ.:RãÖ¹½(}x¹Á˜yÆ¥ s’fc\é¶É2/•ÍÝØ0‚ÍTŒM÷g¸b”ïUÛ’ô=b!ʬÅ}æÕÎ3ÃzW‚SÝH ,jõ¨GvWZ¦È8¦á ·ÚD± U°r!ˆâA\k ¹ßF³³p€ë"ÍÌ ½·Ò”fìZ;‰¸L¦«O¼èˆh&‚¡2€QÂKq5.Þ¬Áªõô}6þÄÉÂ᳤MÈåAÅÊœ”Ì ÈŠÝþ‘žõZ´”㸢¯¦ÖvIO±Y9†ƒ‰ŸÄeÊ7½7Ѻ~Wç;·zP-‹AÊ¡k©NnHÂ@ÊÞc´>. ã’í)à 7©|Q2–ˆW·=Ä‚ð´ÐGƒ%¨o¼.æZ¤½’ÇÅÇBÒƒ„Þ=,ó ѱŒLûh“É céAƒàý ±x6e𚈥Š$vEö"sï:LòKs¿nEt|‘•ߺ8A''ÄÏcù.É\˜å™9¸OØŸq—“ð¼’Èdû~æsßêAÁŒ ²3À†sX'VßݶGƒ¢RpmÍ$æD.{ûý×ѲdO}_U®‚ÉrmÆ–Fb~ç!Í«ç¼4‹ÁE #CC€a–D…‚³íwÌ8ëÚSÓÁ‡ôÙ/÷Jˆ’!ñfór´¡Å²k?/b,¼¨A³¼ɨ\N ¤EÀãÚÐxéáŽdê•’Ix®J¬ÛiªkÙ¼ðHáž‚.—GSô­!'æ©XÁ0¿Ú¿4T•¾íqÝe„Dwxgëâî;o¥ô‰½x£—ûó°¬ -6KœààQýzOcŽ+Ë€9 ¹´{P’ëç¢p'ÉÕyå«Ù"ÃcüV¦h$¸J42õžÅ|¿šò.d©, iv­‘@ð ú3€P.ɾýgsÎĭн,)߯ÄsÚkì95:DB³÷o·× ï›ŠÅªý Ú=sm&Z€_Ü‘Ÿå; ©•0ææå¬ z½nM.ÆÅT?º½28:8s%‹`ñeP³lÛ'„=`Éýí&ÚDŸÐ>ÐÞú=°°xW. fÔèõq½H(÷\™Šc$:â|ulÞAJ6ðòËT¨4šˆ‡I¡Eý•`]’ Ë€üº’åX;EÂZÃ:#Ææ$@®{Ž“òs8GY²`«"ãY…èPÎi1‘ج‰ŒIÝ•‹)µ)/r®ÇɉoÞºð³%½wiQªŸAÑñ±Ò‹´ýδ'Ž,å•S)ún†wP`Á2NkÃGíN6&?Šs×r£» i~Ó™Hw|4à$q{ b&æY‡7 Giv‹Ââ¸@ȯäo×Röù±ß’KèšÚNޏ5T\V¶3¼Tm‹T†óèÆÛ“ÿ4•¬ÜŸžÝÚÚeluuÅÒªmmŽW÷ÎŽAj š„J«Ô‰©­Dõ%$i2.ÍZº4 ¼øþN§Rì·®ÛÐ>oJ­Ò7õêrYæžCÞ w¯ˆ´Äþˆ¤áÉq_Ìj€UiBë€xQjÆ J»¹¡dþ`JæSÊòœ÷£LxÖ¦C¤®Úãâf,Ò–ó¹9È\4QUú¸ еãÓ¶Mò ’(°ó5Ò BŸÌ};ÂUSMÑŽXðÞ•ãÐг® ozõB¾È‰Ü/m<•ø’Gz4¯‰ÿb#bBx¤7‹w ´v’#¶5øÝ5ÅõxYæ›:4yD_òo£ï2o6ÅüÌÒ”ñµ•“þ½„q'æÅ¼<žÏËäâèÙê}ìôÃõnçèßè~7ÓG}[Z”¤ŒNOÿ›|pQ,›å§'„Ø”¡xcܤB¹:öä^OVõÅpû€¶«^ V~õçÁ¶Œc6· œ+Ù1Ô`-ñú‹;î Zrì÷Hi?ɳu6» ²G!_DCÕì¡[ö_ë”ðöÓŽ 9ïED\ˆê±ðdú’éî¾’Ò–ÚàÛ¬¸ÐË·°M„˜!PÝ¥Ö«ƒŠñ3΢@ ÄBL«œ3y {ø £,pV_™PÑn~4¬¯É1Êÿn2–n)ÒІÈ*R‚/qÙ§,,[uÕ~w2¢6*E¡‚›®B;f¤zÈ•X;¤ª(“WϦPµàANÌX_37l«Ø‹f>HÒë“qî·T¬F ‘rÌŽÍ9b÷Œ÷ÛY`œ•¶ÆÜY•KÒO¨ÐiÉÝ®*DvV;â ÁÎïrr€ÏE§Ó˜g0·ÙW@úo_E ët?¥ðñxˆÌo|7ìZ%"¨9èŠ2F¹Y²Ò"Äõ`1²]ÙÏŒo’-¾Hw4B„@絪¾'Ƭje!3H̾¥©¹ç.júÖË}þû ÒçïTïi&×jT­byï»7CG ®r8ð%¼Mîak–?VøÛÕTà17õ%U„ޱqœŽ WY/4º9ï'_ÅåI3ŠsâgðÌÓëš½ç*:Kí+å•3’9Nxʰñ‚ tX|ËVDïrSÙ`пßò$ÆMb÷‰Tû>0W2~ýÌê '¡fµ5ñ#6?ßÿÀ_ÁÌòzþcM[o&íTj ws—‰urèt÷ªÃtŒ6>v6:„eí]9ED‹vçþö=\º¡R^Šî8#þ¸¢°Œ¿ý0ëÄŠÍÇøÕQ)ui]ùäc$™êRŠ\ëUÓ¹ln%Fôpþdš©.!{ƒ<¡ôlZ~´ö6RÀoñ=¨Ü*Ø¥›Ž0ía;Òv”väìë$ê3½~òÎzÁƒE<Ä i9‚Ž#ÎúÁ¢}ÌÀØRKÇ7Ëð™K ÕœDœa6’Øåçõ¦å¬V)g‰õÙˆ£ŸC?ECKvN™é ¥„}Â~oH:ȧÜumÊP‰~6g8ЕÂËëpÆœü!D™>A‰PÜ\Â;‹ƒ’Ge,úDºSú[†«Š^xN6ÃÔìX°2T•~D½/&ìƒz®î…ßv9Âx½Õ:ܬ1Êû~eõË0‚ Ì ü³¡L† ˆ/Ví»®±çoÔÏU" ìp›9Ä0Â'з™{š„}Œ^h  ·Äâ™vÒFV@†o—!³E"ÍVë±­ˆí°”üƒ€ -è’·£ `”J¸òñ¨™°C aϨw1íÜI6|:®Js!ü¬8ƒ{wÿjd¸{|œÄzö98¿­zµÇý‡ª}c1AxKA?©ûb¡¡1ÅK¦uU·/, $d°ñ7t"ê§ïH‘ñݲ|ô|ÃrtŠ¿ùðrÎúùÎ5KPL§ùF1êö®q0Iê$(èòdϴל‡5£Uâ̤¸÷œN|Ï03k¡³–168¢H-¶eÆ5еö§î†§íoÅÛkY‰‹MÀuVÓèn´—ö*«­?cS}~ضÊä€Ló {Çâ·É½3¼½æXÃÃ]RE?Tá1åùl~Í&tKü¥¡â‘;†Òd—¢½¤yyç-{þí; X˜$j{‡gÞ9UfÙ·°¹„ !i_-o­ zï¿R”/ë?„ùU`ðCŒÞA~ðQÏožb˜ÊxzTÝjU*µéT G TµOžÐÉóÛ-ápϲyœ´R²“D'A|Ïø,u‘ûm³³Ì›)žÞ·¸GÑÄÿ˜ð–‚l§’Ÿýö)pø˜[ug¸HtrTŸwðŽ~J W‘„íÉ =X¾ÃilâØgT{°i¬d½¿¹mÞÐôhãÕ…Ø»ßpö8H²C׿?ˆ ¿T6žEžÔ,t ½BM÷ª„Xç¶ë·ß_kĶÑ9ã“l­á'ᯛ‚]ËrŽ¢áœÓ$øÊ°Ù|»NÍÏÂjÛIZ_´b=“ÿqH~ÜÈ(žíàÑÝÄF‰×>i¿‡ŸIÂÒ/ëìQüU)'Ö›õ”Çú)‘„Ìóy@‘iƒÌ«ª…wñ‚š+xU𥯉K¶¦aǹ#ö÷‰~äéf~‹ªn0ò­ÕTÏ„ù‚qj–Ú„fÒ¦L~¢>úýL‹n›¼â ’dåµa¸Hm£ ‰Uà:‹V!Ûî…HP·—ò°Z®õVÇfFž…£3`5sù—[¸ûo3$gÆg½¶ÄP]ÜŸº ÏT²D†Iß)ýÒ3VéwÎêQ!ošá`0Ž,™²U«Ïs´|î5B¾Á>®Y °;]¦+K¢~ê3JV`sT²²³ïux=–z†$§Ô$΄‘ÊÇÕ\˜ièqfਠ~øä%Áɸ£È÷õÔJ6ó—¯EPÕx~úàH 'ÔÆÝJ2Wìçïõ‘ &ÆQttôH^¦ÉÊZ™Â„³ËŠ/¶Š,Tp“ãæu’¶B Yý»´sË\xGâéb"â±¾Žù¾?*„D´ŽÇHNHäà£9b¥”~äöóÙ$`C)÷å¡i8F¾RXy_þNsþi^áô׸ÇòFq=ZÁú*ˆ5*ëBDñ–Èm¨~½ÖjɺÉà½ÕôH®ÓçCš¤V\¼&&5a?è¼d…±â$ “ c‹}ñï›üÈÈf4J»…D“&*'¹eL…™ÚD«ßŠÕІxäب †à‡F–€3\tÙBþOji1®ôßOÉ<ÂS —yµTá*ƒz¬â…¤%²{Ù\j2Úø0VV§[*c¸Ÿå#éÐ×PÌ3U%[×éa>wwËlö%-ÚàÅ7ñÓA´ àq1!a„"?k™Úýø*9ËÁ8„j“ÝâÚÆº ‡”úäž®ûSš' ¶˜tnjitg ‹ „†â@%jÞqhv9DVåý§1ƒàîÈ¡„:—n h‚ô5N(aÉrµv½Ô ŸN` U<Ñ ?@tÅYfˆ»=²ÂÀ– tï®öÀVKÃ=iÌÑà÷¿~¬gÈ8p·ð*îðuaè…ÈJ³Hû7(é~!šýÀCû!Jiøùã3YmÌ—G26Ò±”ðÁæ‰Üë›Zæk;'ÇP@»DZu®ê»KÞq”ltD‹LŽ\ˆcýß6dVZýK±æUìîA}ú ¿×óÜ¢+ª|3WùXÔAAnMqÖrž—–<Ö´g¡¬{‘М{€q¤ ð×mÁ÷œ›Ã‰èY JV ±rã›L‡Í•^ø«ëY§w<騒”ûÓrƒüZü;Ò©˜¨†¡»A3ÅœÝwQP¢»#`pºaª’KcnÚ"†ŸI¢èévá™^×…2§m`“ê ‰}/ÈVFƒš¸¥1àǘ? ùu;*)²…ïhµ³·KÊI3Dl†>W“-ùØý`QB„CYpŽÐ˜æ]ñï±Åõõf2…y ¹½,ê¯-ô,2Ûó:ÊÒ+E%Ü,ž¶Í«‹5LZ&ËOÊÉkï‘} JbÍÑ”ÍC½¥(âb6Úñ9ç´OëZÑ6Z$¹S7…Ñðd79–z~PõCÊ 牲=GHÄ”ç¯ ÙGÒÓ~Bo›…Ÿ_ƒ„…I8M³–ß²0;ùíЫþ­S«½Aj'Óë`Ì^g§"ÕgäpCfþ]}QhÌWGàHÏYÒj7Ã!qôå<ŸÇñ·eü‚û·9h¤n1^ŠÖR]­<³Ú×C$ÉÔÛé(§òZ±äÉ$œ¢,ÖJŠA¨²ýW":÷ôÞ®”dãrÏÉÖ^ëPKý¦ìÃm¹Rhïg^ˆ¸ÏcÔ²)=?qÁÚÊݳ *i´Ì¦Âãeå~"ü^U‚¤ÀPè>oq¼4¥þ@Âô š+ü¹Ñ Cæªa}˱›Ñ1©rú^eÄÅF0M£ {5åÑ·Ë7Lxš4N±´¿™:[K‚jKûÿP»M endstream endobj 125 0 obj << /Length1 1403 /Length2 6467 /Length3 0 /Length 7427 /Filter /FlateDecode >> stream xÚTTT]»–î‡n˜¡S¤B¤††˜™¡¤Kié’%¥[)é‘RARQî¨ßÿ÷ûï]ëÞuÖ:g¿Ïû}÷~žÃÃah"¢â„t„i"(P ¦o –¢@ 81)ãû &æ1‡¡Ðp$Bþ¿¨¡` S‡`°qúH@ÇÇ’€¤åA2ò@ @”ûW %P‡øÂú¢$†&æQCz à.®ì6ÿZø¡œœŒðït€Š' ‡B}Ææ‰Ý ñ˜ ¡p&à%ø]1/y11???Qˆ'Z‰r¹% ðƒc\Æ04 å süpâ û3™(1ÀÔŽþƒ› 1~ €<àPÍðA8ÁPìæ°ÀÀ †ø¬÷'@ð×Ù@¢ —û+ûW!8âw2 EzzAp„ Àîhê‰bü1ÂÂéW ÄÄæC|!pˆ#6àwç€¦Š‚ð¯ñÐPÜ ƒEÃ=~(ö« ö”5NjHOOƒ&þÕŸ:ƒb=@ìÏͺ#~ˆÀ¿ g8ÂÉù×N>^bf¸· ¬þW"þsaR@ PV\óÀü¡®b¿Ê›xÁ~;A¿`ìÁ^H/€3vX0܆ý¢!¾0å üïŽZÄ À Åa.pñßÕ±0Ìù½|Ü` Ärþzþ½²ÅÒË ‰ðø;ü÷ýŠ™[Xè¨ý™øß>UU¤? PDB ".€@r@€ vüÏ2†ø_mÿÎ#œ‘¹?Ýbé_ûþEþ¿Ä!øg­;H,kaþ¿In”B±/Ðÿ›ê¿Sþ7†ÿªò‘ü?Òôñðøíæÿíÿnˆ'Ü#à¯,i}0Xè#±2@üg¨ìhõaNpÏÿô‚1¬T.X2‹€$E’p8Zîs2„c ®(ó7û%58fˆDÃý[°Y@àø°ú‚ºcÿh,/»`Xùüs_ éôKgâRÒ  ÆÞ4Ö’‚°‚t‚ùÿf2@LÄ`S؃ÎHñ¯k••ˆ™ü‚~[Râ1g¤êoø¢`°ßÈ?v†ú PXþ&¶­Ù¿åƒùàÄK H¨B”[CTçy ‹ŸÈÖ„¸$ÙàQÜ1‘Ŧ“ï¶Q„šâÅW‰'_«ôÎ}xxñŽzO¼âªÅý.=ÐÝn-(ë¡<ýRSçugÇ÷ÂASÔJßöÐz>ât{z¬$N.ôŸ[‡ýŽoÏ 0{nÍçîh)ò¶>;{êú™¯y_”w"á!!£¬¬)nT—Jn×3Õz•Ù¹n07úèöÄÁ#6Í‹¬Qq©Áå*aøzËî.™—îqîî­ÌýÒ̺S€YžÍ~ ÆïÉüÇQáüŽè1ÅVcã$Q½G¡N»~![ KÉÄ}·õ¡yÁéíÆdu,z"€0.ÒݬÙQ‘œ`=ûÚÏ|lFâätL²»¯&†œø<»r/]žd>°S<²$ªA±–õ?™ò÷~|ÚTÒš@ÙX‹ÌDî8á¼™LÛQÁÄdã4Q§Oï¶Ì´â˜„´ìòh²ë÷ Á÷½HcñüºT '÷ë-gj| w$(V%¾¶Â|„ìÀÂ54ÞŒ:Œ”´€[6] Âf€¼sMc˜—C5šZÞÒé ë‹Cß\“ؾzê·)ÞåÅóúXüªƒÛ¸äC«xt•Çdì)QlïÍÒÞ˜D(Ö“r~ä‘r‹¹§U©v3s«ã J¶‘}¡ÌNTÏ›gã|tÙ¹T³ïN´%HÞ×–ÈÓ¡Ê/ÙÁi@-£ýÙ/2¬sÓ…#Â"êòùÈT<×<£ÖJŒyˆ[Êš•dðyn5û–¥œèÌ~}’"`ÇKÍùâçC²â‰G. ·®šÒ«¼Rz<ŠV‹î¿4:±)ø\‹T3áÌ21_S¤¨tmô¹¨`Y­ôË'áEK)xã'U×'‚ž?/8 Ö§bTûÔRóé ¡?D´Ú 88P)|Á›a‰a1j²ìÙKµ¢ÜÕÏÅ…ÌÇ Ñ¯1ɦxÉÀy{µ+Âg =Ãõú¸qR‹R'(\8‹Ÿ¼„ÄÛÚ°ý§£5ãL¾vWúhúû×qŸ6qîÕÚædGÙ{œÄj]ÅÔ“êpÛå½Y3…úOµ ¨¢ÙCQJÉ%™?ò%X (f½ Ç­´upd»™-kkϳ@ßÇí½%‰rZÃÔ”MÞ 7>2F¶ßº}¿æ[¶®Î¼tÙÖMZc½–/oªâ¾¢óBm5ôÒ¸xß–\õ¾óVk!‹Æ‡ÒHÆ2ŒêÏX~èàÕà_›æká¶P’:­¨³Ê?2ÖëñP̓øÎ8Æ.矧i=4 U²{¥¸bwKmWÇ?Í6§iö8jR àÈ>^ü¢àMù±fñ†ø DÚó‚Ñn‘üä¾&•–òçÌ_X-™¦YÝf× ŽVÎÀ¦c(:6×pAË‚¦´ƒÅ Å 5ޱ:~!eÃB7Á_Ùù>¬dÁiäÉJÛŸ¾¿”ºe]1y}Xž[UfQZç^tnæ)]®>½°ÕyBh–úó<ìd÷ðz&Ô!±QöÉå—ó°ËzïÚsʬ˪ YžYÎTO&ñRyËÔaMG¼Wš eËÔªÏd‰’ ¼R`Puz½©…PUýpZ A7¥öDË &AX7•ê6-‡}£†@ûÞ‡ëãæŸFÓ%g0ùÓ~h;Ô@‹R)Ô†'{¥Qkqš0Äû›|mdÁGF‰ŸL<­5”·\[?2¢…'¼ë@¡Øorw‚¾‘Q=¶xÑ߯æü`´œ¥›_v×Jò¶o'—Á?kO¢ ©ê¸ɽ¶Óˆ?êmm ZŒð5—sM™¯ÙiâÛ™´Ó›õ¨ýYÝ·µÍ•’;›Ï®Ï·£\–F¬á¼o¤ix1u?žeÀæÐïö˜/µeXH”=ðÞëͽ Û_Ö<¦Š§Àô‹²…ä¡òÄ#îQ/®g†9Î|ä\¼{p.ˆÚ¤ \ÃrÌ4vfau|Ð<­)€aÀˆOÝ7œO²&áéÖ¿.Vc’<(”å{_PÕ"œC kHjŽ#éUŸ6ÓLt½|eã ×ìÞÀSz–vÓ,fL:D2ŸFÝôÐ"yhKÁéÞ½œþk÷1ËS罃­Ä2a‹¶[û­—_Ã>eG,ñÊuÌY•½zyì®’»ˆ¸—&KiÉÕiB嶇ý?ØdîU[Ö}vœî-¨©±Ûœë}ï¾sð‚0ðJS^ü éÝçóе^iJ9GÅèZÞü<”ÝØ•sIfófkê|(Ý2ëõà1±Õ.{ܤó Ñóøð8§%þ¾Ó¸¤”ÈÕCSVë5¨v1áé;V„²Êá½u›ˆÏ¯  ÈâH¦¿ûT­KÓ¬kBº}ø>~óµÜj¯Ü¬3Om&®TÙ•?žÇå,x˜÷³N¶±²B3œØ3†ø#Ýê^«|êxïZÛÒ³!ST#Ø¢þÀ„Yrmò<ë¹/ø›ÂU÷ôoðçÖÒ1æ ºHŸÛt`s¶ŽÈÜ6e7þ¼jZc>ÑÔWü+-¼ ¸ïOGF®òø¡~ Âl™Þ¹œƒäo¥3¬×¾Í«êˆ7MÜþ‰ xßzʹ^±»@¯s’URA76Ú©T-ò€¶·÷s+ÈÂôÌl¹Æ±žz„“©[2ÅËXßðÓ„Pñ+¨`*CRYuÞðÝ]f‡õΡœqô©u˜¸=-$Ę,OÔžˆô;9§kÆäÀ@¯}·”ÈÅ\V1éEF¨±'ug-³® 0o ÀsNì†?\³«éTÒ0ŸqôLŸEEä°°OŠò÷­ ⼲͓…éÔìMk¬¥ éÃŽ‚û­µbš©cô?…¨¤¹*ÒtTæ›jXk¨0kõ.^‚ŽÜ£ãY^a›ÿ-¼ö~h½úîžäIÉuÃÈÐ|þx%¡A„ý=¾˜ ‹FÍmš´$‰òŒÄš,IAĹDÙQUm—ÿLOÕEÆ{NAN9Wñ©­QÁ¶<‘¥»£âwgQ©Ú±ýÛ:9êënÞ.ŸR&KtËê>ណÌ^ ™ømš('ÄMfŠD”¡©Í^ YÀ9šÙðûW½)r#ôÞ“ MNírÍÄ4]I@©6h m¿´&Ûj2{}Æ'ßw£‰à’ÚÈH³ž•ð~aÆ@—mxûº`ÎëÝŠÌÓl™×ÐŽ«8QC²lý¾nu¯¾µihJ²ñÇW­–´|Èðê˜ZEG~xUžvg²ý;ói¸ÆÊ­[ò4û“×7Î…#_=(}$ÙÞô-à'UöÛ®m¥¶Œçsõ^Ng½9‘‡#8JÐ^}ºÁº»Þ€ª"&³Èºô%°ÖjQ å¸ n$šµ ¶£7ÊLk×ßJÓæñÍ0d7¯RM]?Á×1†ù†ép7/ï˜[ m±s<×’Ë-‡qìl&{¬9ÄOVæŠ#ö%$§VqgÅO5‹3¨¨[ZÙ0-X,æ;„d6QR¯û/}–ö ör…-u¿ÉlÛ}"5³ÁbjEqåÞΞ³SâU/Ü ±ži—4UÆ5›,GT¬ŽD´‰ä#Çóä^i©wª¾Ž•ަ ât‹Ã½‘Ö1v,¤¶»cäöò¬û:ï®­ÕÃ;—O¿e’î\³Ó4åØÜš§âdã´¬º+ñ’ùðÅí&»’ž©ÕØR’Í¡ÌÌÎ/‡ryfIzMä­lð ç¶~pï$ñZ [‰³/òº]h dæÝÔµ¡ò`¯¨bÿ’W?PyËðS ~"òZÚ£rÉþRСõ¾›Ž¨g´†Z²~Q,jÂ{å­GKÁJ‹hDoþÁÛÍÄ&>õÚÏ‚>½ßX«‹£-PqËQ Óð©bz@ ÕOù Eœ­”êEdaš4zdY Äã¼²®’£@j™MeÊðܪ‹ÅU‹ï—A€ú¦ ÊìcÃ9ÂTsò>nWÅ£ŒÒ Yé79âQ_[•¾L÷Ýï¼›!ƒú‡’³y·ÁrpÛ.V¶~Î)›ö1çžJžÀÞÂó¸Üç:ìicϦ¡(i>ý|³ËxSw<+K)󶨕ú‡à ±ÌÙqÎ ~¾¯Š…æ¬/¶-Éï|Á°îÄÕ‚I]·rlçCÁý{_ûnš,̯¿4Oüž0f‚Ôä?ä¢{ù°Q.Q»ÒsCGÖqÃÞÁ†”YÔ[”êŠëxô,ßš—Œs訕ö;0ñ:ñÑò}#ߜߢԃöSçÐðî÷ìߣYô™¦6.ñÙeZºãZÇ412$£pL…RˆBÑœ–‚ï^89\=°¯]ÆG?ø>~ë3ºC™ùâNÕ‚çø'2[¼ŠÎ1†«xËäi\õ«]ùÓ¢7Ř©·%Ò™Acxpå. 2pU>9Ò}˺cMI}“¢m4£"“ZùÒ3üÍyAû}¿)«›Q±O¹™ÇŽÊ…K)û#iˆË/qŸè>“ëËJ•g›  @ƒåüχںŸû“×ÜÜqâ:Qñ¥áH”kñ#ÄÍúÚLõöÙÛØìÂÒ;ªùÀ8±‚Ù¸#RÐÔØJ¢ýò¤T×]ˆx÷Za¡Uhë±îÓq[ù·1ß í¤jMPFàMJN´¹›òWQÎÏ í$ߨv5(xjø\N§:®®+xúe:mía¶F|]w{Ê%lÏòöcï†k—xÎÚß,¿=ޝ-”Xß6"Ôæ]žÊ b¶ß²ïžÎì|$~Ÿˆ!ƒ¯ú€ã×ë·ÒÓòªµãñH©Ç?Ÿl»_µçã‘+Ü=­{¢UÂÔ`ôZ^;dlg‡_ýÝ…àÃú¡Aä |ÒU<.ÁÚ\ƒŽi}ž°Œ#­Y÷@m|)²]åmNΈ5ìµôF¦ÚÂÁÁwÄ;º>_y¼ z„ ÙÃj®]æx>ËG:Äžâ˜>ÛLlé%óüóáiìÝ× ¬ š‚ÈíŠKó&tッ â†D{õÜ×΂±xA pq8Xgýg~™‹¨—pÌü Õ—›ê‹ΜvüARW‘®ª×ã Ê%SƾFÅ7†uâàvüHÒ÷ú! V1L ®Ï0ž æ2ï »,.×RÝr± °|ÔÛ'Ÿûà3ÅJe©›‹y.ðŠ»ÍšEì‹A¥fŠ¡‡L7Šh–!U«*$ÚxØ«¾SôCÞágPUN'ê,ºñ“ƒŠd:C/K[˜ÓQU«v€¨±H1$›¾£áZ)u–Ѧ§§$þ|zB´MçžÇý ¹ £zÊxèæ÷±½·儸lÏØwÃIó†}/c0u•Ôœ "MKwŠíˆÃ8¡@[®»¡#µ[ZŸJ¾Évõê1ú³=Ô•`£ÿ]“=y›V¯>ú‚Ó’©ŸYÔË_ñNØ>SÖûÛ>°Bè>îòH…–Î<½ÜSzº0ÙÖ•i¹å ×C“†Ð#õ«á`$çQáJGwx}1ûZ^²9Û¤ î³êféßÙ}'«±_„wÙËþh 6$›II¦æRxAWÍ‘ ²z´÷Qîº{|]øæ{uÀô—ä-ÞÎ#Î7ÇÇ.¿_ H¤Jo~ {¹°W12ÿø ¿i2w­¶Ùw¯3˜‚†ƒÉ`ªI¹Š´D¼c'}AQðã¶™P®úÕ›°$P@nc›³ñ Jc0±3íŒtÿš^ÎIé¡ÐÎ=™‡~Æþ:mßÐ|¥;å¤üÁ¾Iq…ie÷aÁAaƒÊ™êcL#Úl÷"^-i3ü¼Ée= ¼’?ºGî;¢_Y5Èõy¾{™„JWûýâÕ5PËFU0Øé çxa¹9ÃÌj$É?hÒ‹ÀÄ®r:ôh!)˜­ŽÙ6Uª ßC¥Ë¸9Ýé'·A6é-<ß•½ælEª3pK÷›¸‹«ç†ÄÆÁ/Pוy¿îÔ©æM©ú¢ï¬ZEk5ÌZ¸‰K(ç!ÝåDX9iÞtÿVK7˜ endstream endobj 127 0 obj << /Length1 2476 /Length2 17225 /Length3 0 /Length 18680 /Filter /FlateDecode >> stream xÚŒötêú Gí4𤱭ÆNcÛ™¨±­Æ¶ÓضÛÛiÔ˜wö>ûìöü¿o­{WÖšÌï1ßgÈI”é…Ll€â¶6NôÌ L<Yf&+ <9¹Š…“ð¿txr5 ƒ£…­ Ï"@C'MÔÐ $(kkøäl`f0sð0sò01X˜˜¸ÿ+hëÀ5t±0È2>ÙÚáÉElíÜ,ÌÌ@~þû@eL `æææ¤û[ d t°06´È:™­A ­Ê¶Æ@'÷ÿ1AÅkîädÇÃÈèêêÊ`híÈ`ë`ÆOMpµp2(.@À_)ä ­ÿ¤ÆOP1·püCÙÖÔÉÕЬ,Œ6Ž g ä ,%·ÚüGXæ?t€Š`f`þ×Ü?Ú²°ù[ÙÐØØÖÚÎÐÆÝÂÆ `jaÈ‹Ë08¹9Ñ mLþ4´r´éºZXþÝ .¤0eøO~ŽÆvNŽ ŽVåÈø—P™ÅlLDl­­6NŽðÅ'já4ÕÝñŸæ~¶±uµñü/2µ°11ý+ g;FU {g ”è?2 üošÐ ÀÎÄÄÄÅÊÚ€nÆæŒ9Pq·þÍdþ‹ ÊÁÛÓÎÖ` Jèma ýƒ÷t4tœœÞž2þÁ33L,ŒF@3 øßÖAd é0¨ÿnm&Ðø1˜þúû÷›.hÂLlm¬Ü‹ÿÝbFQQy!MÚRþ—),lëð¤gг°²ØY9Üïÿµ¢`hñOhJÙ˜Ú¸ÿ,¨Jÿ ØåŸ  úg=¨ÿkKÎ4·@Õï1×abg2}0ÿö¿UþÿÍø_Vþ_ÇüÿF$îleõ7Ÿê?ÿ?|Ck +÷$@sëìÚY[Ð&Øü_QuàWhbálý¹RN† ]²1³ú·Žân@ 'có¿gã?dÕ¿öÌʨ`ëhñ×Ë gfbú?<Ðr½Ž ‘ü›íÎÿz³1¶5ùkÉXØ9††îðL Ibagx2ƒ¶Ñèö÷ll@*PvÞS[ø¿ZÊÁ`ú‹ôÄ `ù¸Œ¢¿7€Qì_ÄÉ`ÿXŒR¿Ȧôo²)û/âé)üFÌFÅ߈À¨ôl*ÿFlF•ߙƿˆäÁð_ÄÌÂ‚ŽÆ ªZ™ÿ¥³±üE5ÖÂñóoU!£?TA^Œ ~³Añ9‚Óo:ë¿ôÿ ø¿ P‘ŒÿEì ëÆ¶V ÞþÛ_kë?Â5Ñärù;hPOÿãã/¾½3hS~«€23ý­ŠÍÔÂå±mþP‰˜ý¶â›ýuµ€Š€5ÿ6¨£æîvæ@›?$@4‹? (RË? ¨'Ÿÿ€ JüŽ˜”²Õ_Sý›ª›õoz¾»bÙ²mÃ|PlGR¶ý6(#»ßl1;Й³ùŸ²1ÿCýß‚^GF; èœý!Êñ7ÍÂöw›Ø@´³rþ#ÐOFûßf@å³w¶ušýÑ(fõ3ƒ*øÛû_èòG‰ÙA⎠+ð¯SPlŽV†Žæ˜…ö;PÐûÊèdîü£÷ Ü\mÿPÙpþ=® Ÿ|Gc[‡? j—ËT`×?¶dÔíòêþ;HªÐá?.ÿç©2vv•ÛéïkzÇþ‹ÿþqºá—l?ZÖvÜ×á»ÒïMòÍ’ï©§RÓ{.9t:?"Ã$QWgl8Ü %ô¢®îˆQÝ.¿xž´6À„´%(¶?y=ëÇ)ÍìµÃÿ˜Æœ*8ª „# WÜ÷z±÷Róÿ Ù Þõ‰<ÇÞ™ Y!ãÞµ_­~ leø¤ŽkÍöhýpu®Ž¬ ©òW§ÕŽ›=Ë @oÜk›ÿHÊMФàýàý-n£«oÆðfÁ’Aÿe2*gyL’¸qÍf?Jïø~Ð5fdV¶y–ÆÍºe{_³*sœÿt‰Áa£"ÖÎÔ“I´Û‹C°ü û(ë£î1cõ7s¯©i†ûb%!¨õ‘é9HëL«[½U õU?œˆµ!O¢æ¼‹kñþ÷kçå„Y )]øËói#¬±âÒ>RØÁ…œ‚Ø*œB«²Oò Èá £×b#%Gi-‚5j¿~ô®‹¿ÿйo9 ©q#¶è\NÜ‘Ï>Ôn·+,ÕQ´•® À~.Íá´SìŒbc2—L››g»pÖ>ErÕììKNÿº—ÅÒ¡í4ý}d4y9?²!SÀü:-¼Å(së•f‰‚ÌÞd°Ð œ  „”ÆãJsYJ]ê¥:s>XziŠýPŽ!ÚXàt:g’Ò[œÃW‘‘É>ñ«Ã—¿©àÌ’³‡üÄBð-{c|&tL…lÚ>ô½êê´øQí]l+s¢“ØTÀ÷æµdØ«ð€D"½Cü¸JnpÒ<¶¦…J 0Ýç,È’ TßÉr1Ò çËö%ÍÍÇRƒs~´="°ª¤ÊYJhë´GBiJéíY$Jþl´L±M9:ÙCÏpeV %dAìMú‹y=l(J¿•Ã_ql{óÔ¾wwšøÙWOV†e%®ãKrUªvÅ••×Ûé²ÜµÐ»ú˜ŸÌ¾¹’l§ Žw8öûª|O«í†4 áQ·'ÑõµÌumO0x;,(…‚‰¤Üë5Ø4׃îETQ‰‘*·‘ Zí6å¡uNÄ_Eßõå ¯Ý.ìø§úÝ.®(KˆìB7©ø Ê5™[÷oËÃrT»f*JOåß©À“PœxRáJð0ˆœZLHsçu¹IÐc¸l‹=ϱ¹é³…îÅä,µ=‡§÷Ó]-6Ù¶b§43Z³§K–¼eÈ'Ôr lÁÉÉÙÜiõK\½ƒ±wž jª]M„øvÝcöt4g ÁcûÓ‡¦¿3}«íÊhÓî~¬žù¬ÎÛÅOì”*ùÜSèý´£ì¡ ñkã˜7ªúU&:z‰Þ÷åbª§eæ.—lYpçB–±$jP¿¾|fç;¤ÈÐÌ=µ Zrý<æ…S‚›ì"R¡ô؇ª]:2ÿ²ý Fž¤»üÕc0w¨/_Œš+_(ÓÉ€6eÒöxé8¶ªÉÁ>‰×«o¥!MÕ„É*B, 5ƒ“¹}Üâk( dŽý™_[­_5ÿA Ö*Üë ñpÌ&'J¿·¼S“6«WÔ»ä¯V»Á¯O?¸`6’ÔS ìEe:;¢=WÔa& ›¸&â{-"I|zó`lÎ<”¤ü¦E¶–öCv²€+ª`3:fP u<4¼–—sóZÆn­ïNš}ëðóè*ë—ÀÓ4Û‚go6þf­7‡áÏvœU­7n±²ì…9‰ª-ç86îeþM[<ûoŒ[>GÈnÛÉ1ÊA^™¦Üċݗ ÎÃÂn¦FbÏ ®êŸ‚Òléºáp …e>–nô„á6…53{¦·:ò*§èÀ÷ûŽ‹,;lH“?GvFØåòaµ‰ÿ”SõÔøÈw¢¯ ¦Œ²3ĦEe:m’92ý H}}°ü¦déMm±4UΚ–ûm…-Â]…j¦÷uc©Ä©·;œ´ÒctÙV¾W?Ñ«ÂXë•ÀC¸`ÿ‹`³–ŸñÚ·‡MAÃ| [ò¾‘@ì?é$VøÛŒfwÐùYæNØ‘J‘™pƒÆR·ê‹øñ§jRtm;Ý^„åw£v“æ‘?zr&»ãK.ƒU!¸ü¦æü•‚žøØî§ ‹ƒÞ9ÒxÙŠ­Þõšô|˜Ô&I—H:,‘•à»c$œ=59ü¼È嵺"1õu}í\çc›$"¼Íà´1KèFµ±Æ$4f3‰Ï&ÖZkò*¶Ó¢¾MlòÖ™»$³Àpå. ¶Gz6p,È0ºaNò(zŠiIÿØ*Èárãá\+hô.bέÁxpÍÀa¡û€ Yêô=/f¹UŸ Ö‰YùXÙäÝ5îž&ÙYuAoåÍL?î"Ï»pì³®$4]„{%tÝiq©*•Ïn–fF_%L`¨xà{¶ÏË3 "§!RÈ ìì»Ê®ù±}+øõŽ<Üè–=õâ'Œu2¶9l«šƒr‡×+œ$TVE^¦Iò§í·ýu¹È0Ý[š…Cmeü<ùL»›*È(â÷Þ47_Èh"ÑËLó°3DÀå<Œ›ÚÓ‹ŸØ%|&|ô¶|ŽY"çLÊ ÐÁÃwt=(»†yö¦ Õ…ÊÒøÙpiá_ ŠØ7ø>©\=V&H†bs•hn5cÛ´`LOy>×Òû£tÜ?Â~uzûî­ð|šèÔ•WüÉ­>‰kqxV‰`e‹GÇsÔÀyíM+Ÿ¸±øšü¨•µ'4æ9ˆ³WgÞÁ& XîqãñkÄÔUÚKŽxåçŠ:„úwWßä-»R:ßWm,ïÓ6À¨ßÏO;–ÊΫ¥DP—ݧ&ÿêÙ„)ût©©v9–ÁÕpÚÍÜómòá“ 3¶†lðé@†Qñ¸b2Áù·VSãæéÙl‡†Îj^3+Ÿ¨ó”8vÍjé)>å½KÝxÁÐ?}öyIÇÍ€§›U¬ÁcÆ«í¶ˆñÏjkÎûf»¾‰/¹ g¨Þ”lVIÓ‰{‚Õ]úòR­œxSŒž±zPîô&¸nH¦ø¹ãÄ蜟6f.ïg»ï”³Jw(³ßã{xⵞ5ÎV0‚õôûÏ”[ÛÛw_4á¿#5[Iˆ¤ò¥%B©Œl–®( ä”1çP¬àtÛŸB,š«§>mèYÎUõ.ó”-åÇr?]æ¦EQˆ¦ÁF+ ð‡®&m”ýµl\Ms–O~·Çjﺻ¿ê¾È´`pŠf~0~¶¨nÛØ†µsVð$Ç“·üžƒŠQ£Ú|«O:š>k¸Z^Ã^t>›Òi !vAÝtãñÅ22R©mð§”hõŠ.¬V/u-ª‡ÀãiI¸ÁýINù¾üýÑ@{õˆ`ø+¼êÕJœ¯<Ž8ä0.D4¤²¼ãÐD©îG‹Û–ÜrR:ïRÙ£Ìç×PèuÂveˆŒæ°zèªÍäm(¹°Fž‡Ë*«HpÞ‹ÍS~$| bÆ„ìgŽúRâý2ÔX”ÌVÜr>æNù©|L&UÄOtµ›´ÌÀJ˜7×`¾«ÿHyS2ý®A¯È…wŠêü—ïc»D7B U?ÖpRŸXÎ$…Öª\…Ô“È‚£FßÅAM~;/<Ö:ù ; Ìüˆcš[{nÜÌÏÁYU+3‘3LEÿrÌvðÞšR0ÒÚ¡tßfï„RÏ•Ɖa>[ðÞ©«€ï%Ä"mž„:MʇÆ+ ¦[ÇܪxÒè0© L‘ /ïåÈå Ö ¼cJL±Ã{ûù*sѨÑP‹´¼þ šh(½ÇoèîÐÁ¶˜0/ˆ÷`ò­,¥'ñÀ¥š³â¸-“ˆÕ/jªDÛļ`ñæX¾¢ÇEøš>7mmá—¾òQ¬²Zæ¸_7SÒ«R9¡·¦6¤ðáf¸ ¦«øâ~Œ°¡xï ¦»}¥Ìêù¦ÿ!m0|Wr¨ÌŒý¾,8ëé"a÷ƒÖT1CM…‚^†®õÆVÉU1L Í.Ÿ‚0Åʘ3Ë.jŸ{½Ð(Ò§uJdÎe¡Z@öÜ(¹?ß1þ²X“W^â¡@£8V𢼍´gBC|`%÷çGŒ†åHH)&„k§³þ@1$.Ó.k¡~—u$ãᆯâåu½³éõvü%¥œT^û¶À†½eÙe5ühôIúlíצ\!ô¡Âi‡¼íöR ÉéDîk‡w^}œuè¿$ÈyB®>9¼6ñ®S•›Ièõö7ÔûT»)AëùIo¯Ïááôlj>j‰Ž%Þ·$’a ˜6s¥,§ox£µÆkŒíÚ†°>gRnÓª½8o|²Ýî¹Å¿Å/@&’0áÇÏS-v`ÍÁà¹åœÐðヸÚ-Œ÷'v?ù¹Âky5õ`¾#Öž!²_^|AøNzöT·ùmðã{V/¡8ñ-M¶[u˜Ê’£©Ÿ¶Š¿Qû¼a’giw¡É ô]|ÄÊVr Ùh«dÏ ýª¾çå÷q¾JŠã, "Q‚RÇ$üPúáÚÑ›%ÏSQˆÚõý§c'Íh, VçH%tV• {ö8#/"Ÿ“ÇxÞ#–§nN<#!ï ÿì´÷…2sòOŒ¨”<ÄSs— ] q%DmàX—\f‘Ràd7tIoã²îÞÇE™8£ÔÆñ«ïÖ%§¿qnI#p vF[0¬"BØÞMa7Î;‡ºÀK7* L0iñ–v\Éê}µƒØZ8ODâÕ51J#éù m6ûÑ‘ Ûäµ–hu‰r7câæ/n %b>*ú©S œ¬jBTvD–RiŽœŸs¹B_6æÃ)µv±"óª´¸;e²·»è„Wt›q°Ý‘|T ­Osñ¸<Èør ]ºd‹1(–Ý¥¶ ”«QVº]`!öÒlM`à 傷ûDÈ\ç…U%Þ0}'uHÇw̘T©Ú‡àëýî>Šø¤=÷4§ÇKB_ÄLVÃ.“¸.‹†&EÏÿŠ=Ÿ(uÆbò!ý÷EšT dЇZÀÔ€YôF“1M»08mI%Öª¸ºI°¬÷”’¦sš‘ds@¥Kú±€¾™ìgv-Û~Û5Ì]‚’ìú/ßMs‚!}p6~JôòÏ=ÿh<™¥ËFÍ©HÝ1û<¢ !Æ…Ñ,™šýÃÀ0TŽÑÀºå`rûˆ…ŲäÑi ŽŠQ»_pÇë£Hј®¡ÇÎ¼Æ R z D‡HD8˜<öm˜âi˜¦AÉÁ'}áêM"óâ9ûË# .D’# WSCø]4ý]2²wCçF]‰E²Òx)†žF¶ÒRû63ª¶-ø®óf„W¬ñ=óQ^qJßì Ð.Ê)KQöÁ•l¥ÔtúaVt-T̆#¢´õ7´õO-ƒ ªò_Ù ªK(å¸\QdCÉahÅx\"áÃGI![fËÎK}· ‹Ü°?Ni"FÔ[#ÞÕN£®ÎÏKI7-ìùéúßkÙŒö•d°î÷F§Ç© kÍØ>auøÈN•šß²_W+ßUgSBnâ1¶,c- 0e—‹oäa‰ý(:êBÊë‹=\/$ÀÍ×5b?‹;ì‰ùø(;ÖÞtKá-³oãœUä‹[ȶ’­¦=¾I˧dt\Bæt[Ë|ÌÐä=²04Ûc<ó\í¹[ÎË›árz·Ú²=î±pÂûˆ0v™<<¿Æ=ÛèOšiàÔ”6šJæ~4]¶«v ÐUOÆí]ø>ÇŸ¿¶ÃùíÆ—X¡@8¾Y†PKdd0#\þë±²¿Ü Sý‘ß¼a N[ÀäBwôžr`-ûdÒ½7gXìÜ ö}O N‹”HUŒ'ópk°Pxê†Ö@ý.Lžƒ|•,Â{›TtŽbÌŽ˜±}Ærl½ $s ÍpJ Ù礤ް¦ˆQWœCÚ‘áL ®¬7»õkö^ü7×DÊÚÝñf EËx¡Ù†G©Á‘½ àá$¨¾±|o‘ ‰XFÒHYÕ…ÉÚê†ÙÏ«í8Û-‡: ËÁ;±‰]ÓKsláÉÖK‘õìãKhÆœ!€çšYÞqâ]VÿpR¯î¸ÇïÝ‹ê¿ï£;%'ô2ãFR„øÓ4ñ‚üõ{ZÿÐ}kï’ßièIßX=Ý.Å…Èõ¾Šˆ2ð±ìw±å¢˜DUÈ8øNQÈ,ç}õãaÂÑ5-ŸDõ÷ó‘¸àF ¿ðÓ…»–ºTVm2M<«éì6.±e«`±øKЖüzßÕ…¼ž [JßÓõ-õÈñ1ŒdÎØÏ™Þ™%ú¤Z¹ìÈG¹\Þ^Û{:ð9¤ [{Höƒ×FÑUï%Gƒƒaˆ¯õ¯Ã:r®Û æ—€jVÏ-ñëc[GS¾h1ªrj¡ódÖ$[}arâäLqŽÄch¢›+Q0@IëÐé#S!hdU¬x»wùL8±× j]ì¨3‹©R•ŒÿP*—ZÇ×d‹_Z¥öh¤åŒË¾(žU{˜~4 .²!Öî#4§ah”¦+;5 åðãYÝz¯ê–Ô=|p’ÐG¬¼«JYW½»}z§|³7Sû¯© =+Ïn†Ÿc—v®™Yî>’Uiñc#½°¦úz Ûdê±a½¿[›;¿åiO@À~…ǶhÎ{½¢ÁIü:†K#ã(G™ Ëc}ÿ“:£ÜÚ *…¸EŠýÚéçØ‘¸2‹6HØ$Ì1u}½Í I‰XÄö"¨ç—‰jH¢àÚ«H¦÷®öš¬â¥` <6¶¾&fÒó¨*¹ûC:©µ:Á÷åÇÖ‘/ŧ? µTè Œ¾k".(š§­»B÷qñõ€§¬=dÅ¾ŠŸä´ÆoÚ.tpƒyS¤c©Ö•ãùY©6•Ôý°HÙR²»Ôú®®Wûú‹¬WvQõíwŸVaÇ×YG¦“þÝCî+ ÊOH‘.Cùû´˜ ($‰»"m–œ7õi³RîcOAdÿm/RE}ò³õz„ïxe{ä¥êæ(Yç\ý†¨–³;¼8¦Yaêø?cpš»% DЛùi¥f\ÆÓÑÈÏ9ÓBú‚Ì–IsE+Âäe÷ tuNaÈ~åtG —Fð6Ij\Ðt‡ê}„9A ||D4󷲕6ݦ¸¤ßíÛ<êÓ—ŠŠçßøžâKoƒÎsxAà$B˜¾÷j´„«:î'PÖÚGÒyX4ú!¦ý;=8)¿°Î¸tê¯D9ãbNsOþÊj|iOV†XaÓ纰É+üƳæÛš½†g‚o>jœçmãSo›c/eä»{òòÌR¿´>ø¿ÌWü¼!¦0ŸD°;4l+xm2¡N­NUR?Ÿ›Î9k‡Ö`0I?À–Cv›v2ñ~¦fÓÍPûXÂ*”ìÈN/ö„#^€™ ? N”Z»‡Ž€‘¼,ñ%Eñ(È×ÓPf€ƒKÓþ®9»8 â¶\;^G‘\VÛ bÇØ£Â:|æ°í1™B‚´¿Æs|¢ô†­_Ã9i¡tÒÇJ"&V.«zx21Rªö—íÅÚ±ãIî«3¦ 1’IIbÑ5Ä×=þ¹í÷uÉMŸï7pyòH+÷PóûHîë¾h“‘tq3îRʨGꦅØZ“ú,…ßqOñЧŽw¼¶%¤Šm}d¡ïtÚÕà+Ü_¸··¸ÅRç'¾ÞèÔad†¿Ðð° }>,zÑwÉÓ¦«hù6 !™*­Ø%?Ötv1s¸¤p®”M „ÑOÆô>ãJ06åíAðZÀ.Dãìÿ"& ƒ30îÜ–S’È9vdàžú¶Å&:lïÛ%%I@dÏ¿þ8×[ÿ VZÝ®±ENá‚]Rl Ž–VÑŒ cÖcìLŸBqdLÐ,/JèÐ'¹Ää’².¨ºïG±8+óÎÌ»)œÊxÁ ŸêlmX~½ØUZÙrÜÙpÞ&‚pd#á»p?²‹1kp@E=Çó/„JÕŸïgô¶Uyâ,êT?4v¾µ3áœ7'Ô•X¢5â}ø„›ê][“×‰Ö ˜ÀÎ[û>0FP³–s-_O 7®ÞoƒhMœYņUuÜ_¶ÛƒF•Gø=ÁõQìõ°#$ÑÔDs>%Åë®×ÞÛöSLX´NçAm§ÊX‰s'ûùªïPÕ¹ 0’“Vл'XM6§4­"¡’ÃK{g®Í« ?ó ‚Q“M‹™ŠãÈéN±øè3}§—O>çIƒŽq'Û—q¬î2ÈB¤U…ã7ǧG;du#—Üf¶îIÓÀÏè¤O>üÄ’Y`Né ¨}êü±j6Ë‹ Sÿú c̆»®]G}€ð*<õ}3YÇ{U¦rò©Ýµð¨ šœr-ƒØÝ}˜aLÓ1…ì30÷i›—$µëÑœå¹à& ·í7VÊw7¬ŽȘ@Ÿã1–ü)GFQ>|¦¼ qÚ&t¨L#l&Æ¥ºi—xßdH—Á3&D³JÝ¢júújHi&˜ƒ3k‡íQ¥„@ÈÇÂJôšÂÞ´n¸§Ì,YŽ{Ö ÛC¨£ý•„ÞÊ‚x[b«ù”¯›å&Þïb”9E;‡ãŽFýbÊÐë^šë- ¨0ÅÕåƵN";¸…!jôêd¥õëóƒ(k4æ+Î¢gDðûn¦Ü¾h Hç/™Êyƒçe¸\‘ö&G–¿2øÓ+OîQ|'¶=+cíìD­2fa´ÊQH©s~öBq¬*É\Éc¦нSÚ ^}77&ê £Dë\ÎóK”gœñù1\.Æ—–S×Ñ,¤‡h6ɆT'oÐù1WÏô•“Œé×jfÁ}²@6˜Ä-ª¯È;žÌˆN’Ñyüt‘pH V(dóÇýö@ü÷¡·vì2v€§3K_Öen{ç8ʯã~ß:¯/ ü¶µl[‚ré´§ñõ\ÇÆF Q-ð¸nEJ(6<±®ÐÏÌ£^Ï¢IoôKýlE»Ql—›œ;ý®Ä(àL°|ÒIl½Ã_sË¡ Ù#’ïlQ›cP“Xy2|¡1@Î]æ?à€:8KÁÑঠe «ÎçßDbþDÈμ|›‹±M¡]BÑc‡ufgÍ_…€çøëPbÃT‘¼p­æç`ކÃ2Ï…ŠVé O6Ñ•˜3zæo8Ct½™ó\[°»Âíü{m˜kïyžcs¯­lI*GüFÞ©MÄméY•/—(&33ÝL¯à‚e¼è©·>ãjîe³€íÏ*’•«Â"yyu¯²¾Q*Hì’Ù»ðÕ“}0·ÂÒ1Õ*{®l"¹Òë¹Y4#8Ö ß›Y4tn7u9š>¶+SæSÅÛ§•+ת<ˆE£;örÔb›ë)O§Ô“¹„Ÿ Úù)ÿ¹ÿniçÛ)É·sRû=7XÌ…tÌä×M⓹·¦ÂoŠÑ†£‘ûRU2³çÊGT6ti;ëšXU!‹®°òà m÷=Ÿ1~æqÙ¸5~uºïÃ%µ2þþÖcÜ„GÜ б+šMh z¾ @•‰× <Ôš¿“©)§É¨AS%ô+5#&ý §–II~¯ºjÉ?)+z°Ú«úÎ~¬ñA°[Dpzµ 5ÛÇÏçÜ€JrÜwX9§*å4¯pÜ—ýñ2IéÇd«ËªÚñhŸÛ<­´"|8âõíãÂý>…¾öͶåúqVÏFñ™T›IŸ&«¸ÈÉ„1Êür¸±Ç“[™l. âó~M6¿â”o¯q=s1“™l8LÚÔ“ghcÔE5"(6§gÊŸ›ð–4K|ÃÑj+yhvf/ ”?ZŠdŒI qš“©ÛþTèðϽ סkuôÈD¿kýzaq©?ŒÈ¥’Õ°[PïÎúXìSêu\8r1É0J ‡Ö©ª`S¤¬ÛhfÚQzÿAÒ@®p¼§Åá©\B;ÿIÁŠ6 E¢u\ƒr¼Ý±º Q_b§›ùÖ½HŽ{“.u 6ëÎ./ÿÚáÔýPëÝhî! BëŒ x/É>­Up]½mG†||,©C‘ÅòàT]]‹{6ê%[ aWæÖxrÒ±œ­¤`ú8aÅ:¸4-ð°ãݺÒ)÷¶ý|ÖPÇxmdl8)ƒ#ªoÑÙ fE1†´q˜„Ûö¯,Ããr!SŠuƒ t—,ÒƒZlG®° B–v¼ï̾žF_ô…Gö®ö³aÉOtP²¶=* I y¬¾3Á%Òa+:Õ=šŽ¦Â{a-+:=³ỹZÐá(9Vï ±UÞiÙªÝÎWR/f)W»&¥¯Ï̇W?µÁ¢3}O}‹xä…†PÈKJÃûC…ië0ŠpèT<´UŽ¡ƒzÖ ÕF’—õô`‹`ÌM"itspô^*=¿ƒ¦M)\¨MbÊMs1Ò†þ¢çS[Ô[¼2³ ¨‘¼ªB¨¿^K¨óƒÍý5k’Ñ;Å?¢{$ø5Ük}¤a¤”î2®[ãtyoµpºF¼ú›éÑr é+ÆVÈD.©Ìò«²¬"æ»­w4)‡Åñ  “C߀è¼,Ì.y/=5™´Î̽wkŽNùªöZæ®z)§~X†fÀm"«¹(³*õopgÌÈþÞ57^Íow[à}'¨ÃU¢Ý§zHTïœ,`}vž I Ò=“?X‚1Ö i„‚ŠÄêFÍÈ eÛ t†uÏÞû/œò;k\Ô©±Ê¥ô÷…“œð#î÷U‡eñϱ>" qº/²ù2XÝvÝôÑ&ñ¤Û½>¼ˆ½“’ì¶…ÿh]¦ûSç&;î[…g©’µ½Öd\ßyÀa£T½ñ@NWæéT4ÙÛ¶ pU>ìuʸr–Ñj4¼<ÏÊ´[kµ:-g”æ/GëÕÄÀkÝRL77ƒËÉÇDçbúÁ@ë„Û^çùl–DÍv’Ý%”%*n·Õ÷ׄŠWç)Œ¯Ð5Úq‘\€ä¥Û't`£ô†PÅ'o­Î³j ¸‹·h´«Fú´¬>«L²;JΡùªüc×ÊÜ”œ²ÜÍPæIJ;þ.ßg×Ïì!™\>7rÙвJÒiÑ!ì’š"…Œú™çõÛ—ÚÈP>[ß'£4u ÑÌÏŒ¬™ÛöÛ÷ʰÒ“uÞ6ÒÄAy²IM‡Ôå¤ààø1J½äx(EáÚ¯nzÉò9‰äà±íJô5”_D—ø_ÃM¯djüÞµtcnE«~Nyb}o;m2kbò¹¡Lz‘7w©‘*Ž:¥Â”žˆˆrtÒˆû2‹èŒs¡Å£Ù@{G¹ê—ŸóZ™T%>óÉù΃Æl@"ï…G.)uæIƒY¹*ÔV¸­² «s‘ Ñ%©²ªðãã)ƒe^Pµ¦a2W)ÿ`rT#âò"¹s‘Ÿ¨r+Tå+ôôžMƒÊN©îÍ†í²•šAĆ#Ÿö»£Õ¼×|t»lapîŒDù˜«O´w¶G–FŸK¿õ¨~޳YÎV'ví‹+ƒ+WÂJìt¡ŽéÉRTƒ ³ñzz%hÓ<¹d;³ª2Di~Êûe â·ž«Šm–ƳϞßYîɇ—Úì¿ù"¹¨Ápˆ/Pó¢Sè3¦1>´tê Hí=b`bâøa}‡dBïÍÄ›àÎYÿ‹C!•p.K¥í[äH‰È£ãhH¸ÊÏf¨Ç¹[ŠnÅ8ê$Œ| Ýô£vò§TÏ=Ïd½q@ží؉®÷7Ø'ÜÀ‡+ÝÕ‰´¯O…ÊH+g'£¹®œë-Nå©«_eæceþJg&S3Üä Úß/Çl‡–Ì·éB©0EÌüÀµV,ÿ"ëZáML·ÇÃL›gÄë.Ô&„ýu’ƒ9?!ËrÍ‹ƒ§hÎ:¾la Úû"K­J€Š„Ûçý54Eè-QøÖÜÁ Æ’!Üp¥²ÉѱŽL”ÕëOâgìÅα“°ÕE.Âu–3Öø“Œà_v9ua¯³ºOü£¶NDÛƒùR†H/=¢ó…Wx:ë4B!¥¯•ÆS¬[Pô#Õ“aNìFGòÖ* –tlÝv©î¡q:wNç›c1¡¥7…é¯"ê¶üÖ7Â,!‹‘üê³Reöúƒ Bê>eØtŠi†¨yi ºlP5äÒ"#¨<Ø0gbT_šÍ*_RX"Eª±jÝãx Ò~®T f<§äž¢ ЋbH*³é0XŒÎаI˜°x miØz‡Õt{wšJW;ÚƒÕ;~e”jž œ>#1:"$?ìfc ”®ûFñ~®ÙëÝ ¢îea1X,zª\~ʈªé»[‡Lò<2^OR`«¤ —ôðÒEùfU]PgPdë]±Ó†€Ržuâ8[ÁáŽýÛ†¢«¥ ÷Ë¥§yÒî&y]MôˆÊAÞÇéöJ·Ÿý-éïJܨ3é³×Rµ Ò¿œ5HzWC*ó†Èµ·ªø(Ö,a` j ×èÐ/³1÷¶Ç™”ÐÀÛ†TØJðš}'²6¿¥í„•‹¬ÐÍnt •Âî< ÆÍè´Å&ìß\ ‡ÞC®Å¢²Û2Š­Tµª%T}Þ^J¦iÄô‡°º–‹`_§É?‚‰½ƒð•!;åô³­È¬ô‹"ý,Ômc)Ìø}¨£ù6ÛÏ$ÜÑ4,LÑ`W¿»€'Ë^É¿¼Ê’ª©Fº»¾éGŽ^¸Õp.]ÁÍôˆÃ/nlé¬mSt-Êé†.c1õOa¹†ŽÝ'ì™D°yˆ>PZÖNz[Á­ÑÚªâ“døÑQ+ñdË>»g$èK—®A½ÖEÖ‘/ª¹tÊ]‹\IŸ5&2î«akÅqË ÝYŠä×RÔðNG勵Jr%ar;’û=°>¡ûšäƒYå}ijU‡ÖßéÐ[W]„"þ¡Ýaö, -KkiãJÒ ¬à3WÔ3$@èýEk0“BÂn–Ð~SF®8Ôó<ÉMá=h{²öÑÛˆ'AÁÃ"‡­~x¯$v±nàå݃ï¨n³· ×D²¹…Ô0üÖŠ³®í#òKå–$“µ<厳yºqñ¹vî€Ân4ê4ŸGÍ<„Ã/kQÉ[Xý ð^¶BFlyÓX"ë8å€Ý5¥Ð!B¼Íä×Iâr/ ûáþ°1Dlí¥•pîù=œuH¥\éB0~%Çýƒ·þ¦çšÞ/ ¸7ásÛÄÂ!f`NÞ†¯’ÚêhìÛ—é’VîJ[Ó‘pÆêrCèÖCïíñŒÃè6.N˜Þ'ÓÜ©·ýð”ÞÜ»*'­!3H"JЃ(¸f¯çš$ã¸61¨Ë>*­@K Ù°&µtÏÄÌ D¡& ¼S¥n${]·]*É:œ#|VJèYªÚÈö ÝN Ä:äwÙ,{Â*Ž÷Ót8²ßmÕNH·û.çCÞñ/ *Î:¹˜ÒÓOÞ\i³ÌçÈyÍ"G|¡TÿØj<¾O:S¥ }R =r’<Ì¡¸8koöY¤œö#”FäÅW Ï‹·[¤ƒ,&Âç&xí›ÏÒ‹”»z_pÍ’´äN”°hk¤oòEæ[[Iž·/$Rï!;äDÅ$Š7ƒOð)£cS`Ñni•Ã&7ªô’6c ûq™X>‘÷¨÷}s4œøh1jÎKµÂZØnÄ*ëëJ/°‘`æñ=Y3ÈÉûší ¯ÝéÓMjF§BhÌiîd•ñ @‘Y¼´e(ÔÂO>jŠäNmbÿNؘ–Üûvj2híëƒìS(“[ÖüßõÛ¥ß+›ýânBojügŠ Â1C\WõàÂIùëN%wŠ·´_ŸV MtškT„Þó¾ ¯E‹Ž„zñ|1Vž‡ä“*”¡½„•¡Ü·e#®«Ñ)ÌçàQŽ·Ró¯Ù4¹ö~ÁÍ=æç  [¤Á¶ðçf è…F§É¾>ú&/Kªëœis­Ús+E“O\)鈤u1Yùôy+?àŹ+x÷öö5ær Û ý-¸è뼟Ïã‹Á#¤þ´A›Ûd:ÍÏÖË}~cªg»÷“ò6Q3رn'VÚIBÏø3ïØç)øÎ_¸¿ ;FYß¹rªýB¡ø¦ò¤‡ÆìFYM™uÁÞî(úÜÈ­‚Ï>ƒ·Û73©ê1èÖM‡·Ö‡+>²o¬o„5¥ ZÿÌ~ÕØ¾¯ñ0,œ³’Ã…(¢k¼.ÊK› Š9‰D¾6Õ¯$£HÎ{½LK1(ÐMöþ€žs©6]<ô…&ì¤~ÆtØC05ù"ö(Î!¢ÿ R«Bñ§ÅÚ5Š)yÁ—jZ†®é éççÙ\{ÄÕx 8ä—¶:òG×\›/%gã»,[Ç%ÅwW;ŽØÒ¸= »^éÍU+Ð[¸´}–CWÁãÀD‘Òy–®m’¤Å# iu&Õ0wÓ¦k'©-+M2¿ûž„pMLzC"!†œ}â…ÊØÉ"3öÐã%2„sd ͽ ±oVZB(SÐ8zÑ{2‡³1Mð4ï³Üj„§ô\=ͪu _ðš{ö4–ììæ¿ ¼ïá—¡¾Q@üЦÆ >é…ø ¬ïäãê߯ÖŒ–e =zòÒZïùÉüFOõý()ƒ(ë ð ¡átŶõ€dô‡£µ¢´ “°–Tß¼’SÏ-: ·9XÎ9¿œÕI¢7„¨3º?-ÎÃl7žegôÁ¼G!ç8Öût*•`@!ü¸èÆÊ Š™Õç9*où{@â¤=u…ôø3v°Sç8ÔÌ)†R]×Oo!6Á±‡õð+ç:<§‰5• {ຠñÚi+£¸Lw°ìc<Ìóêۯʠã½zæ¬Vxe§×NšÍhwºx°t¶ÆªK»>ÇÓW1¯}(¦ómˆŸ¾Ô©{}½wu¼tFY}›mS ´ú„KíÌÑ?åÎóÂ}ÂNev‰'²ž%Ð89…F‰Z¡†?naø6Q“+xÂM·,ì¶(ÎÉÂb¨ø`³4W?U6½yŽË"-X)íÆè\£(ä×qÈ¥ºÝä}€ÆÄy‚ž•·ÚEQT*%ZEB åk37¡J‡ëEؤ­gZ¯%ïYôQM 0àhÛ©ñ쨇Xâ:>çç H)"’¬±SâõÌEü¦ËÓ„sé±Í7tÍÐ~H kŠp`…”·a ³^^}\”—®Pm¬*OˆßæòPßOÜðd´”·U~S…Á–ðû޼±Ê@2õ˜?7¦‡ÃâÔË1W‹»ÊZN(ž&Ê—Â?QήþóHj„póçûz™dðÉH„ÚañÐwŽ‚ïµ|`×ÄÐïØø>E¢(Ç?BÙ(sÇ“'o©¯à8˜zþPO1ó¬1AZ¬o€Fêê'"M±þ¼u>¥x0 àüΞ0lz›a<¥†ÒÝs7ég‹féCžzþ€ ô"“Ø*½ÚŒ ·cÆÒì뜥½ñ‡,× ])( Á¤œâ+9UOÓÚ±¦£%Š[÷Âæ  àlʤ!ÅíœÉÄ€¤Gejõ¦‡ÏL(ì«ãYº÷7Ñyÿe‡ÅžA<­º(’þüUôM²Ér0ÿxgÑî]mÂ^ºŸ£÷aµ3«…¿0û;•HLËûòywQŸö!(¤ïxØà¬Dc­å‹óø‡FJüÏa†ʨ#ö«T_ºá®`<âj‹Xg¤-CŸsS›?™Ûº ”Cbý'òïS¾ãó77:T’¯Ñ5ÁÞ£ª² öÌ®Ñ;P]ˆ×~@.%îZ'c'#Äç0ô“Ñ¥ïváb†äLÉn}J§ €ÀA·°ºOïÊ:ßËt´\åµ×ÕwÇÝR€pñÇØ•×zïF‹¿ƒßNɆ©/¤û£‹¬/Ú>Sß¡Ýò§eøÊxÃfÞÙ7eFœÕš ,ÈÓãï¾ /ð Ñá‡uç ÜJ‚9ȵҟ0t–õ²KÀ–a®Ýüˆ xgB+.öÒ×2§5Ü-¶w§¨KäI}Jê>$ZxbÍL„á\¼X7†Ó‰wá?ðÞÚòø‰]Ýô¿æÎ1 Aãäe…bÄOpžࣨ+}úÐb&ÿJ?q‚ì CHQ«‚U¡Úг,“ëjL©Ø,ZÙ°Ø` a1O)¾qÆÎû³kç׸ß5 Ö /?‘Ì ñªi«±–Õ]÷VÐz–%¾Ð4$RƒÝÅ¢ªç,kk™76«àŽ!«ÏÏÚÓK”›Ú—^™/ïˆK+^ñeÈ”ë©Íª×Ÿ<ñP²ª‰ ‰®y›Þ¾[9ÆZáÒ¼Ÿí¨ŽÇ§…=î"Ƹk¢(Gô@ääSKXŒß^³ïþµæùnY,£t5™Q>ƒ3ÞV&n*ÒÎ þÜ…è"þõƒJe,Øb”ª>Ãô÷çÙ«iÜ-nhÿÀa3¸æ8„NfSy“®¥wƒdŽtÌ¡óŸ„sáCjh°«,0Ÿ_x-–ñÝ)ßñÞ&©áî°dŠL=®/ qvGÝ(vl†œè*|æçà KaXcD¨éÛõAàihžØ:ÕÚµPŽœÏ¿ÕÔðå~ê^d±3jh*H²õmâPC%ÛcÀú.¾mY’Œr”ñ ÎUÍûSãûrüzô1´üdøØºÒ¸€sú¬¼ùGö³Ô ¿5Ut+QÁÂ%‹%èKÚôuK5 %ßÚD­•úG„šÀ‹Ê[û Ù5)J-{)œn_:x—gÚð3oŸ˜š©Xzª¹ÿ'>Áø&ƒÔþ|Ƭ„Øyí KDµ\c“Ó ZÂæ®Dî9Ô*5¸þiL:ßmpêlsâ,¬é[.„ Q+õoX(ë-b!bÀ¯¸ü;I0¨—·BL¦7­ª§PyÝÜYçs8÷¤[ÿ¦Fi=NV‡ \.w~X8böƒEÓ"Ý—Ô¶6;·}¸Ó©š‡ü+˜ `˜.îä„þ8Z#úwÒ15óÙxòð>Â0‚Öº¸Ýã_I¿ìiÈÚ©ÃëÚCà±ÍJÇ9ý²çæÐ­ðúæ}!kĶŸG©Ñ«ŠÄ9V‹yÒ~&I„ºtÎ'²ÄU}ólZ¾Ô-‘N—Àc± Öú9ß³¬N^âXëüu×TP{)ò¶†¤ê§(ùæQ*…Ʀ3ð¨Î6³J¤>ÞYÆj; K§­sy]ôrÜ*¹p¨9ôñÓ=cူ©hwí(ï'äŸV’æ©; äeï‰p¼ÁÁ9ÌCÜíî6D:x)ïq[·,‡Åe7ø_¤£m42oXÇÔLžCÛ™°â‡XdÇtDST `Ž÷jlþJ˜>ãnø$Kšû†@ö tÃel޽k¸ÄOe*Õ©_Ú°pyI×ñÉ~o½e‘ú×w†Ô2K¢3c{Ûb^ºpG¹^Qåp½^< _ü‰Ù©Sp¨¿Eó[©ú:¤'åÕËŠ˜1ÑÞ.Cs@õ¸Ž½³yøûÄ–ÿ­p̨d¿ÉH´¿=+@íZù—Š:§1Ù±häWa’)‚-hžÎøµ puÆ2³r¤ƒæØ”é6Pû™ÏÉ‚: R¹rê@DQܽ^ Í,Ò•¾VõÒ?ÀlÁžìdÿ–½ÄÄõÃ¥uBò´Y íUj„]®]¡p_Ô{zöuÊ3…Ç`®Oåt ³7º´zØ Ä¯}Å$k/w§gNÑä«6ð:ûd¶(Øœ0ëºwI”Oü™§PŽ?qiüb 镊efŽ,5O û˜Ôð^‡áÓþI(´XôïöÜZÄùžYW`í ´f—ï (h·“Y ïÏq¸¤LË·ý-ò•] £0ÔéD.â7þ\ÈÞm0TÀ„39©žò;&‘ožZÎÑlµÂ×X2æ¦7ä½fü¼ào%dèFÄ羽E.[¶xˆ_g<ŠØÛçæÃBâYDÎ$}iÛ%Êpx󘫬æ|LðÅñœ?2×ã 4|éá^r½#ÈÊW¯”zE"ZÚhLpRìCõîÁÊ–CŠû¬ã‘Y0¦†)2„Câ!¤w]žõQÈ+?Ú.¥}Èþ‡æÛ¨b§mÿ"&5¥tl’o`M²QòÄ/„\.ZŒ×ü£ÉÇb©äxªòÓ¿>sèÝu©W ÌÃÛ¸}oÅéÒ9{Ì23Ðfo_»²%ßë‹y0‰:öJ·çÔœ¡hòI½Ú;J" +ééâŠu–¶7Å]T/ûTJÅŽ [ƒÿ•lWßM”ÂŽBÜàgkÈΙ ÌC cS4;ü ¬]¼ôDmsBüûß,vG5/ÚíïÚˆAžHo¯Ÿ$ì—úPU20`1Àd—¶Scl•!ÜVä|õÀ˜íTú½ÒüTÄ.òËj~xIe¼§¥J²‚ùÀœ'Âò?.wÇ.0dÓ@ï-F9`Êqá|Ф©+x =”±?Îûl ±«ÈjxÅËž3õÓ¸7_è¶¼KØ6EÎh'ÃDkX¼RlÄÈH-V¨Yð¡ó-ñ `¥õn­ÑÔÓQKlP–+l㉯DÖ‹„kôå†PI:o]º-Há{o‡’PTåþðDaŠØÅöë(M¹®Knî(_»Õƒ6ËŠ<Á ¾×R‘¼àoâvè…ÆLÑÒ#ûǸ:àÝÕÉ™S@±¸áœ?'ª¥½¾olJ,.RæGÊ|Ó>S{ï'Ð9<‡RèÏÞn= øð$ο*C¦f“‡çSöÂðºwàˆ7},××ö&sdþ›•aº´À0;¾ãØ82pÔ#üg—ݤ/&P\CXgJTzN×w ŸCÅ Fò¸®ÎTjQ²E0»„/9· ý`DˆäÀ/ØŽ_êälÞ5ÌM4_òÚæ“^õ~Œ¿aQ¤U}dµ,¶†ÄÞ -I\ajüò;v 1qÉÈ0³H­²ïoAª-aºý±ÄäqÃÒL+"íõDö%í¬»8”Ïé—àir0ˆ‡HÑ7ºãûw–t> 1Ñ©ŒIR¢¸OáÍ·„HõL¥?ŸpQ‹­æíòÊôˆKñ'™c¾7vú?+k¬Ÿ39ÚT€.¼‘ÛuUŒƒƒÂUI^ðt¸E>¼S'‡¬„ç 1Qš\E×ÞUŠ÷òqÔ„Ó Š ?p~]:Q‘s˜)úZˆd¯‘l endstream endobj 129 0 obj << /Length1 1542 /Length2 3121 /Length3 0 /Length 4102 /Filter /FlateDecode >> stream xÚT 8”m÷·¦Di±“Ù‡Yìkd_“%ŠÊ˜yÆLÆÌ˜yŒ™,ÙK”â¥,oTŠ’]–"QH„­„dOÊ¥åêmyÿÿëú¾k®kf~çüιÏ9÷ïÜrҎΪ&X²7hA&AªH5„`jï⢠êjŠWNÎ…Áf^¹ •F “ô~#˜RA4IJ™¡!ÏžLlˆR@jé!µõ…@èþC$Sõ34€ìÕ2 ¤ñÊ™’)L*Á±Žùç/ ˆQººÚ°õpÀĤ0h`†ð ëD š8“1bþ‘BÑA=8<00P íGS#S}Œ”`@ ÂN ¤ÒA,°Ö0à€ö¿w¦Æ+¸à ´ïvg2 DSA€e 0 ‰ÆŠ aA*À:p¶¶öQ@Òw²Ýw ø1©†ü™îGôZ"i=Áý(h“@òp"ì³°Sƒ @“°kD4‘FfÅ£éhíÍ"¬WŽ,LöhVƒ?Ú£a¨ DS£ˆk-Â×Ò°¦lNš’ýü@Dã]«ÏŒ@1¬±3áßoÖ—D$ý8 ‹[k@»’þ µÙ ËÄûËæB€&ÐQG ?20xøZz&\w"×̬B‚(d €c5†p ë‡7ˆ†¦ƒD C‚~wü‰x‘HKÀ@€7èC ñþÊÎ2ƒ¸ï˜uùTð@°´‡kŸŸÿ³ä…%“ˆÌ_ôõû…[;Y¹Û¸«|ïø§oï^2RÕTQê(@SCÐÒÕBþLâˆ&ü(ñ+Òš„#ºßke éŸzé?®_ñÇj(ær ³4 Š¿$î‰ÐD`X_ÈÿYèë!ÿŸ¾×²ü7‰ÿ» ‹"qÝ­¸îÿ?n´ÈüA`I6bÉßžÌZÒ¿©nà÷•µ±„¿{­!4k LH>ÄŸc$Ð, ëH€0øua|7»®­‘@É4ÂÚ›¨"ˆùX{…ñe½4–×] kmþ<Ñœ„!c×ö ¥© ©T4“Á’JSB² 2Ö ÀÕHdˆ°º pd*ïÚ…ê¨pç5Ó:ÒÕàè_H€c~"$K{pð7¨ À ¿AÙï'ÔÐàÖå’±¿H Ný ²âi¿AVôÔàôß +{à/ˆBpÆ:üc˜*•õ¬«•5©ðúË‚ ÃÛßCÆèG+‰ª^)2TkCið7Ο^ÜèöÚ\”>±?ÂÔàã‚úÕ¸>“ûÝãq‡·Ï r¿Uøº !| §Æé õ—Usã¼GaÁÛ ?ÍÐìPã¶µµ‡¼ÔIX¡¹J§G‹Æ]JÂ0ÿ÷cÏ2¦, ä+ –óñs< åoÔø8ÚÎÄñˆèè¨óqDÕ˜dÔì-6éê¾g½›6oÜ6›$i1õ1µ¡¥ùªqà&Œ0’*>=ÍO±]̘6º8Y¯%fëÕtɽ®7Y=§±X®èMkuLäø(㊈.}åg[- å"ƒ°5k*Ü:^Ø™r:=;ŽÇ×Ú5åE.®âæì &h,çÖlô÷ÌMÄø~¶4¿õ̾¬³ #×-ƒ÷¢½ñÌIÍ (®3ý­(áôÚJº¦ºhÝ ËSúî3;GñöL{ÓÑØ‚aDo"Ý31}pøµeb¬g¡Ü¦¾Ó‡H©yÍEg!ž;ø·ØÝjÝÚÏþð\AD4êv{X›Éèmz¿9NIÿ•÷£™»KKòv•oC2zJDæ-; »‡Jô<Ê Thžç´ü7,YŠ%ò/âëæ*–35>çÛS¶ëÝJó†ö¶¯QË„ƒ¶þgOöŽô•«ÞÔ­Ý¡OšFS‡‘ÇcËÂ7‡]çß¹³T_< 1$ÿYGòÌIÉSKËi‡Mnø†GŠ˜%Ä*duq4ØDx Gf“A!kòÆ8\'R«Éþ¾éVâx ÚOÌi° U|VãÜš(³ÉÀc8òô–v{3_XÂîo3Rè¼×ç®.Ê 'C¸v—Ù#(ÍFvã$NÛ QÎDc†—³¬‡-¶Àíí­2FWÉkÆËÄðòWlœ—›‘‡DzüÓšëåB¿†É儎~ÁÍ^Äkò?z ]$ ®4Æ7jòT&¿%߈46ÔgºAé7K¤q5jË4xÙQ^\ºÝ÷@¤["ªË» ï´_ ï‘¾ëJ‹ÓJdz­Ž.'Ç4a_‰TíB—^úò®½á/‡›f^sîê“—™Ý4ƒ›!°ÛÀËÃ#•=î ßf•Ç_^Í‹±áÍÀŸ‚™<‹^òkÑÀã ­­h á`Zwh#­øyÚ•÷+j=Iæo&aEÈ÷ûf¯ƒ_*ZµnÏgĆºzi_ñ5ܶew,=ÖÈÀ!³³iäyÏ ÛÜJÞSr¨È£Á<&ó"a5ˆÀÖ»b ™de\zÌÅ:—ÇÕ‡dãu^¥Ý¿°€½—eÌ7È>™ú5Q`™ž]yó¦•xLáö-—öYˆ̱«XÑZiúìƒéƒ\§*šP09qÑÉK‚+‹‰Íʲìk1<{ç(GU¿@0$.³ˆk_W«ošÕ‹îîMvÞš¯ßi´„¿°¼ÐðÄ÷šÓL’îÁfâÆ¦üN«X’͈“Eù±I\íÚ‹a6‚á™xR9“ôȯµâÐey3¶°Ð}ê†ç¹>wõßuŠÑ‰1“RàJ[f È|²û̵:l `› «ÚìdWD:ì(œn$søüÈXôêÑU”ç1JEaòÛ^+qëVÛÏ\i£‰Æ”ÉœÀÆ æ÷â¾Ö©^ÀUº¬Ž©ÝybçÓ%ôUáÆlZ*µ´äØ–Žxñ£F‘”VTºLŒ–uñ°Ñ»»‚rZÉ'“ßöòi9é`xN×dýÅ®’ rˆ7‹ BÏA¿¹qè–”RÎò]ˆ1¢g|¸¢ð‹tG8ãòqL¡éåAï$Šn_ßóÉ©A‰ûœoˆÝÝ."Ïzã/ä^>·ØëjúòàEᦅ~hîI>tC²-sÒóƒAGp_{óŽ)Ç2x·ºžÅRþ‚·výZ”>Sdœ'5zìS…çÇ“{t”±ñ»ÒK|e1òræ•ùϦ·î+Jûrïe/`—Ë õ7–÷‹¯ÅxKÞ©×:ÔÚl÷‘ö.Üì€eÎJ©ËwrY"Z6ÎæíœŠê:Ó.ûðK†Á·¶™û\êù¤ûZÑŠ_“+·´¾I°3pã…œžÛ27Ô^(|ï¥À]©1U¤Û¾°ÓZñýHpË¥wœSK;ÎÛ¡úYø’X­î|<êoܼ¥@5…q®å½ YÒà|!û‚Ýhº´™ 8d«÷îÚ*‹z¨Ðêñ>„ã8Ä \ÚÖÚüv³öó>­’eìÓËî´ÚÀHö‰ƒŸmSÂæÙ3ÔÃnllhòI·Ê³}«¸#’ª¬ý2tùp”Ïæ„ÛU¥¦ãmG†Ø(\!JÝ¥°³Êµ*oUÞ·ØóPd£Ž©ûM–XÂÄ_¾NÖ>{Þ°röÊß\Í–%ì©×$ñ™ˆ«³Ùš_K¢w.~àˆø6"„ÎÑ·Õz+ÿ}Þ7’=QÆ+ àèk.Ú§Ï:õ ¡vIn³egÃ9¬øPÝÇ¡ zϱüxùè¿#åÁA³ü™€Œç%Žœ eÃQuíXŸáéþ{ÅP³Ø Ã°I_xìãã5´)ó[NsJqCc¦bËoãmÎfiÌ+¯jø+›”º­Ä¦±š>&s†²8wžWbSôæîW#Ù^ÂÅ›”w°YU?©À^…&ÈB|¾ ÊÕ6Xò~Ñ‹‹ºQ&Ê‚M ÅÁS‹~ºgæ*zëžþíÆp{=žë(ißÝ¡yë”çٓȵ«ÀK+_ þuù‹I£Ö‹ú™ÞuT^yýtd‡Èœr¸Û•±ài}Æ®1üöŠë{âŠdo«mܱràʆèq†Jæq¿ýu¼[^7l’^æ~&ep6Ws0ù‰cíÁS¶¡¸(”„Yè*]ªáÞ„l™Ï}ílΰÚ~ißÐÐ×;p¼w_9&¶ZW¬Ñ?ùôb«ä5d£åƒŠê& ­bÒÝÕ<‹‡£¶Á2]®=¾=(]ZªÞÇy88M‡-2Šà~ÂSŸ­°"æ³YcÆ"¿Âù‹ä}†ÜαVâR—.ØuÔZ7ûr<~X%½òœjeŠ ðpËÝÐ8xÇèùÄ´ìî¨>ج>A¼ü%ÞOű×}&®¶¬¶_™Û¾{Æ=§‚›" âêK¦Ò2ÀÖâªÍg糪7ÛÌhˆ~¹}‚Cp!Îp:¥À´Ã¶«Å{Bu*óćy‹Î[õ¾LmI2–iQÌ÷Í~ö²5?Y/OK 7ÿ)þE™w^ß!A#P[êr £(}tß·‘Ó"‰'ÃïµÎô»$ñJ;œÏÙ*b­wÚ  oÆ4ɹéf¬ü©pÓÅšMÒÁ¢.úÜ2œŧ̥,᢫«Ëü 4Poq‹×#øÿˆÉ ¾Ø3ÞvÀÇçI!ìзp±D;¾};¿ÆŽÒrM=£*›ÈƒEݧ–eÏ(®¦ªå,¦¡Æ‡§1¾||wÆ·,|û4ÍëræH†·Áƒ§Éuƒâ·'Œ\–UÅ ©‹œuãÝwåS6Ïð ãÏæœhvµ—˜OõÉx•4Ô9!q5ãè防ÞäÂH¡[ÈŠvUä]ÍnW÷êê”~…Û×3}qé¥uÑ%rO1º#wjÃ÷=ï:—T_C;Þ©›ýh;ûAD]3[Âýø‚%`úTcoó\/×LWïÙ‚„Ägè…³ÃGžö—î'J ˜•žþôw··5}šüèÞùªˆ×í  œÖßÓo kœäZ!1ÖSø“n© »>Ý6š”c¨³µ6/6©‹¹L9ärßU¼ ] endstream endobj 131 0 obj << /Length1 721 /Length2 1124 /Length3 0 /Length 1695 /Filter /FlateDecode >> stream xÚmRkTSg-T)C‚F†Oh„$fxŠ"!„È+˜ƒ ’›äêͽx¹Á`!->€º$¢c+¯¢`‹• ÓQ¬"•Xj‘‡–—ÊØ € Pèšµf}ÎÙgŸuöÙß!¯ ÁPB‘ Ñ=èTšà‡l‹ yÑh€FÝ`B&³pHHÀ,$ ?‰Jt`Ðht2`a©8,•ÀE亂XD(†å0b1K‡E2°1===0=MAÅ›¨ú&>B Œ@€Å‹çFr€ '2p Â…à)RXÂa„¦A®@‚áYL€CÅð¼¦4ê‚4 ½0 ŽÉA[°%$*RØ,O Q1Õ·£DšŸž ‰pùüvî€XŽár”²-WqåbD5¡Ó ’¨‰ç¼o\T‚¯EX¬H]*é¥éõ½‡®@ Iôl‚D åpaaòTá C8 ¶ar!ºÄÊa$ãÿòþ`p ¡Þ‡-¨Tïm‚ÓB`%$æÁ„Þj‰Ñ[´€ÇA‹ÿ‰a…|±Òû¡ÿQ1†"ŒÔ¯±0Ð3žËÙÆP–`¡ÌFE˜F¥€Oè½ââe`¡Ì‹׳$féšýÏ?}%/éùŠX[¹(rÅø§“Ä©‡ûyn-Ì3çF.oÝS`Á¡ÙYþÝ+Í{ :Ú¦PŽëŽõ–§·Ï‘ ~Ê%sìPÉó”ͺdž¹ÅúHãdÛdYIEvê@nü é܆÷ãzSÐÆL«ð†»5uUAÛ_~jð‰ïí´J¿½EÁœÒÙÎû´ÍëNÝ–œçOÙÛ:^Ñ ñYöÌò½Æ³…£•}"¹Èº] Y'1Ÿñ¸óÞj±Wï¥-›”4Ò?%[Sª‘{!Šîs^¦gÜlrKK"Ïs×øæ=¨^wo{Äÿ¶éfPŽáXô.‹„5W¼™ªM®wΩ@[÷žßÖ®r{štÖÛ'0ëÛWFµOÛ^ÿí\5óÁ›ÄìŸøˆÙÑÒ ^ö›ÄþÚÔâd–Óðpù±7m”&+e+û× çZ‡Ã^$¨;s?¼Ô˜áš·5^z4åò¨uó1/íQ×ú]‡>öon·û̵Ðîûû Yª¶Æ;ߌìgäĦD¯ jìΗԷ͜ͱvßæ2Û„ˆ¯”îThÐ>ðªÅ¼Ç|‹©(ñ wÌ韷î뎭}‡¹O&õô¯³¸ócvýjþýáAÒÛ¶ï¾¢8ç~m)ùlåÞcCŠš² d¿r†ùÇ-*TjU#kfJ³º„ÿ×9çkΛ3t§Ð6ãljuµùec:@=fr²¹†¥©°¾œÔÓi¦Íê®®³•õ=‰¶Ì 4Ô 7Þ`<è°ªÜ}nú\aX]5^íÿýì3b\ ¹ÿ·¨U4xKYeØñÖ‚ñóÌ0›ÉêÿÖ<±ñu6Ùt©–Á!©còÉ~g‘&¯Ñ£ÛSwf4 ~¹õ2ý°×¸gû¯s7 ;Š:Ž´_ Ü]Öûá;»tέã~þKA ÷®šÑÙ’1Yu¯°8µ>2Jc•göâ¤6ó·_j&cwè®=CqéúÖèA3ô¯.Ì*÷Íþà‰ˆ³9ý¨ZEÌñ(î?Ú”¼/Q4UD™ý÷ G·ædÃ"üë|¥‡ÍfºyuÕnÔU“#&]ÿ>ý¹ï„jï˜Æºóýk»§H_Ýò?ôñ`•Fg~k~âŸo™³éSÃC‡w®=#g_/¦Œºdª]ïžöùD¢ã–M¯Ç¸™&‡Vl˜±)ZgYµÖ;6sr°3 ÈyúKØ£f÷÷ `¡vHå}‹ M–KÙŽÔpÖ¤rÓ—].êÓÆë«6]»­I(›“ج8>{½×º¾Éó•¹"·^p£ö&]Ž™ª_»û„þ(s˜ Ÿ¸MY™‰Ñ’èßÝ߃œ»Xm}€Ä)­¨mLz¦¶Xcˆ[~Ñçjâq×áv÷Ù/ì%Ú1GVm†ô£ /ùÝ}³áÁ÷. ¨dϼ.(L Tnù{Zp endstream endobj 133 0 obj << /Length1 721 /Length2 4672 /Length3 0 /Length 5264 /Filter /FlateDecode >> stream xÚmrg4jÔu :Ñ£ ¢£DÔè%.£E‰13Ì 3Ñ£÷N"D'щ5¢Dï½Fô½^7÷½÷]ßZßzþœ³Ï>ë쳟ÃË¥ŽAã!îÎ0HDT`¨n  ˆŠˆ“ñòª`P<ƒV…â2`ˆp€Äb¢¢ 2^€ ÆÙ‹´³Ç`‚@€±ŽD!±cŒÆ ³ȹºº*ºâž‹`Ÿ+ˆ\7"¼=`‹tBTôôÍ´À °@F`¡Nýç6NH@ C qA€- pú'À0h8òoM8‘?Ю,þZ˜-ƒèªA”ÔõÀ€šÊˆ Іt4¯ÛÑxœÌ5âþÞî>ÿ_äý/²ù/ú¯Šuû'!p$ °AØ!ÑdþöM m‹<ü†?wþ·t-w­ pí¡ Ž°½f?wrCQ€€ åüÀt1p 0À  èYPÒÉýÿËû_†zíƒÚîÚ9Ñ $N醀ë#ñ×VÛB®-úƒ› þù]ùõO?âÚë…cÐNîÿ;òz?èé<Ñ5úïþ”ÕÐ0 ‰¶⯽„báÿÊúPä?×󯘯 ú¿\ŠÇ"Ýæ¢"Ÿ‡èßïßÈòÿXÊÊ7OaÐ#i€°¸’|—òþäžc±4þá×»ü›ÿ9$ #›ÃÀd’ªƒ |Ôr o ôY Æ{·Íi‘­öðgK¿X÷ ¬™/(Øûýlä¿oÎkí}䆯 (Vº{"¹B-ÇXOÞñÚù”Ξý•uZjµuÓ˜ßÜÛÅ'OMúë{$Þ¦ÿ,}â’'O«Š´Î¯m¾E3;1|€Ö´ä§KyzIø!TB3`”½eóøda’0$3à;Å6/Ë3ûì?祳=»Kqr“ytnèEÊGuàÊ2ËrH˜tnèÞ%Mb’·÷ÞÔˆ‰Ìp¿ÄŸsäÚ§é¢ñÐ BJƒæ ;`ô¥ùeî`FX(óŒú¸8WD"¶ãûQã/ø]ýà*\Ò±aÎÈòR„¯ëƨ™oV@~ÊCMŸÂ…bÐýøÔ™eî3'3'>]·±ö¢ã—}TJTãÊ!™{ôÔQ¯ñyŦ–rõØžš{§ } ¤¥Ó2¹%.ÇE“vÊpùüz#Jõ,¡ï™’ƒÐÎ †Jc9u}-*žÕ;òÕÌ\‰­pf4Ñ«&Çwϯ,¦º÷3oäý…;Èô!Àï@ æLG€‰ßl¸É*É÷* ³7¼ï$ÂîWWpñœYQ5Ïš‘“5#­ çµoŒ9±-Ͱ‘Eq?sëHf =ûˆéR¼=]q'b."_{®88ƒ  æ8ixxãûs=™Å³Üe2´Ëèð6R>-M’Ôœ­y$l£$Hâr*Rú±©e³KòÀö¦\õw¬èá:‰(_é¬``¶Mó:‹Ç¦ÕB¸Ô²Ž¯ÃmhRÒ‹±§²@NP¢ „×÷‹ÒÛ>öÑ·šçUí%' 13Ãatã–Ljg„÷öt4Où¿Ú "ÖßÈ‘ò)±<­ÓÎÂþÎuâ·þ¤@V°ÝÕoYA¾38™IôÞG ï ²4_Ö?)o~[u³.á…¬p­Läñ½w¶ñš$,t«tQ«[ â\6Q‚ßbÔ})ÅŽî72K@žÕðw­>T¦8~5,N˜ä¹c-Tül v#$IÇ2<-ßfJÊLZ®õ¨®Øæ‘³lœru^ŸÔPd<»âùÓå=û­†‹.m1ÕMMf+k‘ùm(¢»ä=«[£3’/71¾„±æ,(ž¥m¶}!†˜ñ\Î.žÎ‡Ú”e=D‰„{ŠÏ‰M’^– ðÖEÅ2µÑ !®ÒÂw/ö3+¥§“H„6öì»= íÕMÁ4öA'àZæ‹,‹§DÆžú£iÖ*Ës\F.À® O¥Ë÷â¥N¼²ÄÞœÕ Á6 …Û¹³,öíÖW!£#%X…f¢oÖß·90 )!Usá*ï@¾†>i}áÞŸ|GvÙ‰-ÔÈzï Cù-d9œDí–u1N,t¨Aªª‰² po%ŒÇž†MÝ©° vI°üeʾË&Ä´6ºðÙÔòflVk•;‹âç;ÓÝv…þ^ñ-Yl¬M.#&Õl¬¥^ö°ÇDÒ3 KYÿò¾O¢•ôhËëòlò¸ýu9œZšåM:IQþt½ûf\”ÀjÃüwÉìwÕŶLaG|˜-;+ƒñÛqÔmŸó¹¢@Ù§µ N¥4 8ûÇÕ$ZT‡cgïÞ3-K¥üªøV˜nÊ*?ÉC¦¢“Œü•Ïm YÕ;º’S^cyס‰8'"èR\éRÏ.E°(/^,j&NyûŠøŽ[ë™§îºøÏ}çþ‡ƒxØÆŽ0Q;Ú>vd½àJKoÍÂ×7f>êÐ!ʵ–sø5hêr\TÐù°ÜØÅesn¥ÙëX´×͈à¬ï†œS)lY,Œ÷ýW%!%?íòbüŽ<ÈW¼‘Ó’º,þc‹{rNèå=˾ò^kNtÈ*tU"=ÆìIƒcÞÎÚê#¡â †V#ô{7¿Y3÷2LAÜxiÛS—ñ¡³¶mÓÒh½Ÿ‰§¢NúˆL’´Ã8‡²„œ¼ß‰ª_tòIDíÉp¤/pQ™,gMÉžéZX¨JÆXõoÊ7M2õmÿzC-}¬qõÁÊÓ¹×úîU†ûßm P ¹ˆ4î‡=9[ð+ƒwm™Ÿ+‘²Ù¢­¼¬ÎôþÚŒ®×hí)ÐÏxVmvÇÁæÝÒ5ÊŸßðبD.ò¶ÏmC9ÿÍ+}µÖßs™Ÿ#®@’}AõïûÔ½šÀ tŽž¯ƒ‡1Âû`Sz»?xUÙqeš1J§È€\$þÍ©-wRûxýÇÆ œiVúÎÅn¡Âø$á|3"j‰[=ts"$J5Ñ<,_{c@QÄ“GmîU:§I9;‘<’©ïJŸ­ºá±2–ÒztÁíñ.‰áYYò$ÈÀm~)ü½WŽYv\0 c»³ÓâegsºÂÈ_¸ýiéo_A|¢¯/ùètÃéÍ7÷•A„ˆÀÕ£rÚ‰üËÀY´»á"RMïæi|#!sÑ@‘i€ F™9P¬§Ê›Éï¿ùŒˆNLðW²÷¸ÅNíNu•ÀÈòélÇÔ¼ÄñúçÖšEMÐdo‹œÀïù#JR¶ûöž8›ÊKn•G¦ ì·’')»ëý_Ï{ òKSÁmíâ¹²3,n%K›óìGt~ä»ÀÛöôÙûÙ·7]„äñwœÖyæ÷‰ã=åÔu.G5TñnOMúJŽžOi‡÷½4­SUA}pä‘0AxQ¡')ùÚƒb”¨îÙ€>D>µ±bÝ6ô0Ç*/ë꘤”ùép&8³­yëÒ\¼/¦Ã+5¼D 8®ûÇ’Üšªñs¤Ï©µRúXK¼ÿ®I¿ÈÄõÅ×HdÝ¢xÞà›ñN®»» m&·¼ ÞV}ih6{ÆÍŽºÎQÍÎ Öëz|yøÅ„½'™Âú<3®röeh¡;­Xy³3ú•ìE÷ ="œë×A`¯.j÷“æïËbZ¡©×î_+Ú2fÝò·˜%·–÷§vãI^Ù‹7‰Ò¤zÃ3™qä |“…PïoÖü_-Ég畈—ƒ eWG°Ãßš&P¹‘J/$¦µ/µ32¢pDÇqDwu–&:`µî¤O#4) ½é=l·‚Øp7•‚Xø\¬~\НÄmÕ+Øû™r›¹ð-]òÜhQ"ßeï±ôGúùÄ>xÙñT˜h§Ž êžà›"#U…¨¥Ôêd¬—½5ûi\*ß!³ª–£Ô' ÿìx•ËA™‡EÔÉÛ@}oUïÅ4îÇgnô…¶ÅŸ5¯Y,tñ§lå·“:¯°/I÷šZ¦o8¬i‰oœ'’"ó·vî){¹g¨þdåÖXߟØ;¯ÐÙºEÅ+uÀ‡œ‹7ô×{<³Ï/&Uãi†ÑÝ*âv|0ï”l ¬§éÁ•›ÓµºÜ(k–N1²ööôS#´kÞ><éEÅWA);}:;%lo£µÈ ÈS½ÃË™Ë=Î/Ù³Ôm6•~™¯©zžü¼ñþLñâ+§]qWCoÖO‘b96ew?Ý{Y9Aû­yºý|Ž'?8*·Yf ’d‹W(ËâjP ]¨¯~:eÂ!=ˆ0ùÁÏiټ౱] ²ëP˜àÉEôËf-|ÑÆ6%ý~¿ˆRÇ)Ì'®µ¦ßryhz`“±v,ïz5¯búpìhѵý1¯[¦é³ô$¾1ʪÌ{ÜÂJb˜~ÞÔ¿Ä ÅÄs«;îÊ_<9|9t©«*°ʆãûXŒ|ºJy~¬ï˜Ž>üMÛ©^¾L(ÍÝ¡• £Ö£“å¼K”ØHÚª©¥Ž«z“ÄÔ´ñâD™jûøt󀳸±Þ˜yÂÌì&m=¦t9¢©óù+–rã‰é[Âl±ƒñS3΄ôQêD¡gy+3f^x_«ýhiÔÞ Ëdéd”­3ô¢­š57hm ¢OŠÚÚ»;=Èþ›Ö×FÖÓ!}ê¶7;––µí\+•9n"jqK5T—¤õ«ãÉç¾ç?ÉêÕÈ"Å(Ælœ ,A™]ØDn,•š’¿,fhéa‚¦P¥­)¡¨Fe‡¬¤ºèÉ»3o±ª›5Ñ2Èi@{;H8dg¿%Ìö¨“¯lo V¿éãÔÁÚUÜÞ{â#g‚ã–öÑZúîß#KÍðÑ ¢‡Î2f}õ{U Z³I¦Ý´ˆzEW1©M;7I^³_wó±›^Ã1ëò„cÅ=åÕÿâô!m endstream endobj 135 0 obj << /Length1 721 /Length2 5420 /Length3 0 /Length 6002 /Filter /FlateDecode >> stream xÚmUP”mצQDR¤–’Ž]¤;%—Î¥vaaÙ…¥¥$¤»‘T:¤¤A. i éôçõýÞ÷›oæŸgæ™s®s¹¯sÝgæfeTD!]u½œ @ /¿(@G¬ñóøyXYåÐPKW8 )oé @m:P'¸£ Xr('/4ÜÖÎÀnÍñè#,màŽp4@…@¹Ã­íâîîîÒî.n¼h7IÞ»&(àjÀà(@NSËHEC À®¤¡P‚"¡hK@ËÍ ·¨Á­¡H(†B'kÒþ—&Þ?îP´ë0åPWЕQÔÔÐ(ÈñéÊ,‘65å»v¤«‹èjvük:n€ë¿ÂòßÈêßèß*ÚóØÀ­]VP[8’€ï/ßT0@èoØÆÍéŸÒ —;}ö;96PØÛ аt„ØåPŽNn®P4@eE#`”£%ò–¥#áõÿòþÃPqµ¼óAi{çÿßÜEî µÑ‚»ÞY ³DÜYô7€þ}/êP¸›ãßýÐ;?înÔ…DxýçÈ»1þÈ6Ò–qý»Ê Hk” i Ðq½óÒmó/ð§¬e ÿ{{þóÏ6€ÿÍÕ-]ÑpO€ ?ï_ëÁÿ×÷Odö_–¬,ÊÓ›ø\À#âŸÝýDž|ÿG®µ Eºþ1ün–ò?‹…zB­ f&QÖbÁö)u¯KüòGßãr[èqM1§†Z÷MHá]v6µŸ4¿tiÞzÒZI|ß]RùUËd%\Œd 3›¤9ÇüÞÖ¯báR;÷âC˜ùŽ>µ£µÎ~ø¡kÚìÌ+-ÎÁgÙÛªÎE¤JÀH‹â¦\’ÅØéñc¤‡Yºñ-!t…«œdÔ.$oÏJê|y+ômÐwÂ}Vjˆ]^I ÓZ¨Ñ‘ {ƒÈÒ·Fž•_ŽM—€:m v“a±‘båö´¿ˆ% ýÉÑGt°ÂåÎ<-—AjÝçŠî‚ö-<ƒM*1²h%8³g²Q˜Ð¯›õçl yýo<¦î§àZðíÈ܃À\ëß?ìë+üGaÁ0t5ô2Züú ½s´•îɤ”užU¼ÖrWÇ5^®bÂ=<º/cŽÒ¢ªßm¸Bjý÷¡±ÍIHk¼mÙ'Èä¿ìÄôKŒAñö /ùGg}Ôw¥œûuÚÁÆ®0.«T°êj…#¢úE<ù':È“sgÈmúí防Lî£m¬]Á4-JãP·&ƒ¹ùHQ7±-4ÿÜ@r=!²ìáå·%Š~5ùQR6®Ù”ßj—ÏlXþ§ls_õByÒÉ,yK…ZrúmwĽ¥»âX?²xŒŠCÄú¡„GÞ'›Ë©5í¨;kQ£ƒùÀa/_gUì©(6ÅÇíÍÐ6\L7 ©L®”ú€Ar K\LŽÂlb*øa 1$^°Þ>À|:ΡÿðàÉêv8$ó÷ŒPœOÖÌñ—tÃKˆhE—Ô~¤ìør+gßy’$ˆKOÎÒø©<¯jB2ñ}“Œ$OŽÆcmÎ1ÝæODê÷¡z”~öÔƒÒŠŸ&µlß‚…ëCXž¤^,O¨ŠÛZ»1ɸ§VKUÞágªp|?ŒJÚ…½·þ¬øMµpËOú‡'999uö8×e‚¤…ç¡{ž­Êûùzn¶ÑtéØl›—jâÏGAœE¿ › ?/Ee´Û! «"¹$¹ä°iq¥Û¥ü¡Ý“"<ãšQPMÂoÉ)g\ÿûƒY$ËfccIÐV·ÿ vNIý^¹ Ý…ê÷klkDäo‹Ç8OÁ*¦r>+§]?À1>E‰y¶>/‰è±m†™¨¸tz‹ŸÕ±ñ6$ÇZS°zÖ…x<ïÏÔ=ÖTƒD“M7­eÜSrÄ ü ë4ñËX“~ ÔγÛG <+P" v(WE¯v<­¢ã³ýZá×zucY,[ž@f––pwœ™ßU™'–nÍñx- ÈÝ› »ðçë«pÆÆ²1IÊt‚Ze¨Ü4$ÌížZ ÇÖCd§Ï"Ëz›1„¦®Í¥·ñèùå¨>ßOÿö£ @5Å¥»ÁJ»ò=Äö±üfø€óŠFòÇTv>S[Åš ì¾ywæ|•×bÎïîJ¯L¹Cø,¯îβɢnÕ<ó¯ç¸ÀÏ( ä"˜”FÄÅ$;±æ³ûÔpòEî£Ç€Êc@ÚkµšI›Ïå&Èþçu—?ÜÎ[ÏC”Vh¶VµŠß§ò54J½9hýÚÐ0ÚaÀ=[È¡š0¨{M$¯ÈPvs|®5çãu)ÿ÷[ù$Nõ’i˜Ä]‘ìåyZ°IþºLÛ ‰wi½öUË'gþÇ'ÑZ³ü4œµ·‹ò‹œ—™µÕB{oB «ßq™Ë†½ÎY¤ n”² p*ûÈÓï}¡1ô¢•x+Ê&<ÞåŠLåy™õ¥(ÁaaJ„‰Ô>@WXòê¯ä á»D^Bò¯ŽæÐÝî¶½Öø»bKƒ¶M‹ !L‘Ø0îHm”’dк¦F0G¡ÅË"Ž®ík>÷‡•ÁÅl ›o«š½ŽxªÆ¥ëå±<]¸îæÅ \B>v¸„à 7†—ŸßH³´«–KúÒÚgz¡wÜ>bI¿%&õœé.ÀH‰Z/.3.ÅH³L¬ë®`:l.eqakËŒ h`ú×E° ‹`–-o-•`z`dRã¬æFh’1§N\ÜÈØÏ^šâé}›¼vòc9&i̦ºUÙ’Òû/×˹n;p­,ëiU+슂"ˆ¸7e;BhaÙqc5˹£>§øk·²m³ƒJOÛÌêÞt _KÑûâhK3ØE,¹g½š„¶Æ¦V;1å(6Ï÷²¾´0 sDláKdË5=U:Gìá­Í¶pœ<²ßOCÉGM0¼§Ö{Õ3Ÿ_*:²+W2èÓaw?RÿI·5pN6~šu˜4–JWdNïAµ÷˜ÓKÙE„ñ“y0œG|·›n×›Rfqo³lùS+®ÅÓÞ/‰+·tўôÂ’f¦!¤i¿Ì0ãÏáÔò^ôoËB; C g™Œ‹Þ§ñᆲö¹uÎ뢦eÅz5›ŽõndÓ’Aœ#²iqnPY1økäAZG ÍŒž,·ŽxðÔ'p†®ŠQ¤aR¥ª *».¹B%®vqÿ÷ñ7‘ô]ì›ùõ@¡žŽËDþ7­#˜¼š&›1³‚ì…/‡xˆ+z\¸=ìð£Æ[,ioÖŠj™•öy½wIù›p¶AˆbN÷ë—‰pN+FøÙqQÿî}—±y‚4ìÁ!»î÷kë ‹î¥6É SŠ÷ÔPô™yiß2$SÄsζ'`tHU3C ³[?~¡ÒîûøðH‹â’ºÐpéV”Vž”Ä.é}p÷oqÆ„S5"ÐËȬÔ+ãÈ$hfF=Á»–röT÷D:m4‘®ª¦‹y;oÓ¦|®\8G…dç0Haè~–ü0¦N­¯ûVòÅæã‹¾Bn\À¢´Ú?ªÐ‹û}Äs³x'Õ¦âã?ÜQÌ· ¢U–6 uÒü‚^ô §ãb X;ŠŸ¸(¬_9%û|e€4±`)ÐæÀüFA$1¦¢¦2oÑs—ER6…YÓYÛ ãÅøL #ĵ|óVÒ¸Kä°ס {I¶0òÊËýÃØ0ó‹LRóÔ¹@Ö @Üáýô-ãözÔ©‹µ‰¸//Ê /8ZMW¥~p8²ØÒìSì-Éjùä]–zêÕWRε±á91jÐâq¨Á滾rÙú‡Áä+³½å”J?˜îÂh1Öó¿ª?ÚЯÈs´ÏW;o~}Ü(>_…%™Ú’›$«¨B€ybA†#|³¤ á㥯‡_ú„÷Lý’S|!x6p/xâT\V§'£ƒ‘{X}·8±§Ì2€tK9eŸ ŸÒÃÃ#Idîá`¯±%E’g‚è Ì9ýeÅøö1žýàe 0µI÷zFQñ´m Ð  Ì<ƒïrƒX*odJö˜EÑÌ—/Ê"Ò‡Oˆ+ˆêÒ>ó#À_Öý{×W $ê®LoVcV¶Ú^ᇫ²ìÍk &G÷Ôa#³ yÈÎ{øÐÛ#΂ûö ‘)Ž%<>Ôc/bõT†–¼—z.5½][W°HÞÞzòA (ðÉO'Šïú¼Ã=r„ÅYôÏÅ>ì’´ŒÄ[Û”°¸´÷,­îùBÅ÷!½ÛìÃIå"›Æ…ÏRÔ_ö€%uoM¬§L^ 0AÚ!ä¬ò @V“ä«j¢ a® ÒYoÊÅ®m~€¦ÃŠbÕÐ×4-"F"¬üŠøàÚ´)n¡ îd}wbžÛIdRƆ.HÄΣÊy“=†æÄ…Òg-AŸìsìL2þFtÿÃ=‰ géʘZ X¼ŸpYàÅ”Ÿâ(éÅoîѬ¶5‚¹ølœ¸Ì¤ ï‚§¶'ã£óp«Wš&w—µ™?š0½:¤Æ§Ghþï3ñ,îmI¨*¿}b{¥r^<¦¿BÊ›%gc<¥9pÏ:åâ‹v Y£åoŸtV¬‹Cƒ<{8ƒH{Û½òwD ÅŽŒ¤3²¸®vÎ#* ׋ŠRý:~W4IPÍ DâY§LÍj o÷Þì1yª:Ër™Ÿ7Ì~œbÇà_“L 6¥çýERW¾ö“?+íŠÈɹ¼<Á9ÜŽ£HRTR o¦’Úw\yJ=:±etù@OLPpÙ',tq ÙXsX;ÑêÖg•ªXµËµ@ú˜ÜB ¨†jÓ"rN¨ÒñËsh•}m2 ϧh_N«b0\ÆFÆ^©×ÍÆÉ}“åã˜;‚{¨/Y!L¦›,yÏ^yDVqô¢“ÄÐquRüÉ7Þ0f ,*¥ð‰õÝWŒ\æãÅç˱í<"ôüF3y„2\uxíGl龿] ±àÑ@2ëSÏŒnö0Rι±ù¼=yû`j}¬I#6#÷Ž$(&…P/¢&½·bŒõ±N9[¹éK—zOO§Ë“R(BÊ7xùZ^uÊ2 ±š™|¿‹Ù D¿ï˜à×D}·ý•n#¤ä?*û[gLAìg’ër.àm†d¸Ë”Rsýç𾉃{`®ŒàB¥L;꾇p*ÒPÀâ°d2há3'©uòJÑ­A;_ü@ ©…vB0Ä~ü1™ ¢fhæŠx0v“Õ©ÊÒw×€z×^B¹u“~ÅÒÉM§2+ŠÙUByÊKW=QWˆ>=b¢áƒÛìtÜ-~â®_“EÝâ]L5íÆã—è씢K$¾j¹è±\UëQñÃR¥ZÀuÖÑùíYIByñ ÝäÛàñ4 Çb‡¨1ü,,kˆ.ÞR ½ÑC÷ñ¦}%}çO:Ùõ”Ô·ÇT„ýÀW¹eì&8ÔdÚëP;æ¶W‚_!ß-„ã> ?MÜФïa,\Ðq^L§ì”b>À N[Ÿ …W™H}è âi1é7\½ÃÞRa“96é#x§#â¬CK”¬Ë‡ ß"e¤äŒ%\°‰”¸³ÂÊÒ´`›ƒæ«Äû²­Ñm53Þ3ñ™]o8ö¥ ¸nïGÁ˰ØÝѦ%[²>TÆ­"Žïë_ÒxÃFPg/oü <µ'5YÐ HkG¹×éIË Ÿìö¦šd,Ú}Öî&)R¡ˆ¼¦2ŒãnYI{ÉÂÇš:˜m">“t$çjÚ?†å ¦X=Ícë»Ù/mÏ“Šúõ„ÂnxœC’’"”¾×jrÎTð´¤&Û¶‚uÊûG®ãÆo‘ÑøåŠüœYe„Òž_Œ4ûÏ/òPËòÖЧ‰åå¤ -seá•^…ƒà)³ìÅ*\ã@qr4ÍçÁ0F&š¡×Ïó¾w>Ó3ÉÈ¡XñadNUl>ýZA®º¶&Ã[9¶.Xu÷:êÏ¡Õ> ú~ià¢ÜàgpÏçK,aÓoǺxu u³Ü_:MÈ>Ê¢ñ£È89³9þ™.7ì4}¹&üùä÷sCHhÝÚÇ¢fY7ºq½¿>4Ã{&9>ýô[ ÈÀÉæÆêÉêäOâüR¾ 5n¥\% Çm}™™Ëiü<¶üÓ€ˆ ¹ÛÞWQuÀ%4Ls¯Düc+Ó$íœsÂÔ§™Çþ¤lÓ©ÑÁ4¨ÐQM‰.¯Ž8ÁsZ¬Ÿ=Ÿ›ÓOs–áZªÜÿù¥8ø´SBq=fð^Èéìf4‘L?ÐXkiè…’0‡€Ž|Èxcˆ¿³Ë8(:gþH$;lTæ±kê9”€dò‡]S»ôâ^ÈûÊ‹«EkEX"‡«>‹çÝ›äýyN)VQºí3’aEm)uö¾…kütÖÙqŒª¶ÑqF#1:¤vè Ådh†oÜ^“E½è†è’oëyý¥TÁ ¢Õ[Ô(;ëÞøcA&\`$vifN°Œ!µ,Üjì‰Ua“.7¨ !¦7n‹‡Î\›9±8gà.¡éï^‡ï8ÑR>1‰~öCÈ>öãÑ“æÞ½Ÿªt›p>E?Þ±ÛDûo)v7«ººÊ>ºÄ‰aH?¤°~e¦F"+%î“r@Y8—†E´p2 <úè:M0›g²:Âhðh'vÓXûòzËâ}rÖåxóÕûw¨Ö8µÿîfÔ endstream endobj 137 0 obj << /Length1 725 /Length2 15948 /Length3 0 /Length 16495 /Filter /FlateDecode >> stream xÚm»ctnÍÒ6ÛvîØ¶mÛ¶­gÅNVlÛ¶mÛZ±Íó콿ý~ç=ãŒù§ºªzôUWWWwÏ9&‘¸ƒ½«ª—£=#7@E\U•‰‘‘ÀHÏCF&âlfäjå`/jäjÆ Ð03¨˜9˜˜ÌŒŒL0dG/g+ KW¥ Õ¿•u[#S+;+g€ºƒ­ƒ»•‰%€×ÝÝ]ÐÝÅÞÙŸþŸN*ffWK3€¹•­@DAQKJ^@)!¯0³7s6²(ºÛZ™d­LÌì]̨æÎÛÿ4&ö¦VÿÂäBÿoöîfήÿ3wv°ȉ© ‰+È«ÄDTEFö¦Yɺۻºpÿãmfâêú¯èh®ÿ#Ùýdü?ÒÿX=ÿ#ÑÃ01L­L\ÆfVö0 ÿâMÊÞÜÀþµ©›ãMÿrù€ò©¦fæÿx»ÙÚÊÙ™(EìÝ\Íœr¦fÎö€qïálõæ¿®FvV¶^ÿ¿ÎÿÇCÊÕè2„ì-þ¡ñ?*+q+O3SE+×øvuv3ûZÃì?s#gfjåf÷ŸîfÿpòϬš:ØÛzýŸÿ åßã1(È«+i ÑüOüÛ,foâ`jeoPqý‡O#gÓÿQüÛ¬hdõŸ ú/–ÿf€éÿ¶åŒ\­<:ŒôÿJÆ=ÿ•ôþ¯—°°ƒ§73#'€Ž…ÀÄÂÁ àdáôý_pMÜœÍì]ÿMú?±ü·ýïd23ó43Y_q0á ¶Nm -÷+œ«§™›1T£Ya^î¹ÑA¶²458ºÂ¹WÅÉó€ÃŸ 4æÛ»Ü•ºo&6Š3ƒ;™œŠ& ×[Áy-&©°ð«Ù~WÊ«׿SǶ3‘»‰¸sMßXR¤žbÍÌ9¯‘v*åC–`Š6,ëèGÚ‰_[|´— Ò£@ÉÐþ†3; ©Fš³ )¸6xÝ_ Ëû½wC†m`YPèx¦_e-¢£¥8ÏÔ%‰™«sˆ-ºJ¾ã^ñ;´$tŲ‘¶å!´r¤û”Ç0²Y~ë°µ ‡¯pË ™µô)SÉ«·ýÄÇZÑéq´7ëþâ7£¡¡Káà:C¡·#½ F Ä.{ä=j·Ï³!³ì*ë´)è=Áµ9¾¦B_nu2—`°…A\ÕùgáÚù¬àÝ›Ïv—LX9 ÂuÓTþ‚½ÔlÓ47Ðþ/œ¬Èi(ôØi[›t"\9Ë;Ð#!Ãà˜E>#¬}œ¥@ÂâÙŒÇA4Wg³ ÛA2…ĘˆKFSì ·›€ÐŸUöƒsUó02† _º5dÉ xšò”Ï³Š£‘ªÇ$¾{ºzêf±¦6yi^ÅС5UÂÛÜÆ^¢èøž¤A ÈÉSø!}Ëw®˜Ž“»ïî—)!h°¾•¹ %SFë¬à‘;ååräŠBî90.Œ3=l‡—ëÚtf‹_µÜ›<9­•Ka­¢(:‹ìy,²ùéop÷à–È#EÏ}r#丂Y Ã|µÏòÀÆ/xISýØ™A®Xg‰b³ñÖùEàR€^Ú½9ßÁ s-'p'wñÙ«ÄY5(´Ó•ð| °›¬3uVþAó÷Rb‘$!¥ñÂêÁó.ÆþïD 1á@0ã’œñ]Iƒ2 g#^pTóÇNYhß½Y~t…ló2œ­ Wù*’…TXQj*zl‡}†t-ÒÎf:nñûV á…Mo P»X"*Z_Œn[7*µãÄþJ¸®SkU{u±ÖFs'šÕæØLd‹jïig‡©û…&ÜâÀ©âkhÖŽ w™A3¸tݽJïÃúìÛ×nK©nö9ç­¼6[žéöÝo/[x ]Vì w÷ÂAâ™eèDÃHç~ã3‘Ë }ÃMg¢âºˆ…w;…k¡}bö21%:‚ÝwoÿQPK"›åF\H1^g•Û p½ÞHš¶™Ucî”Ëûf Uovže´yƒ1ë-غ–¾ ¦aWÌßÊÚ xCì£L|JRzV>ì= ê;JHõ®½A¾“[á³Õ;`’†Ùƒ;ÁÖ£ú'-AÚ!í´ ÒÊäÉÜW^Ñù ÀóaøeíïîhÄ«O1¾Ÿ]eî•´Š†©£V¢ èO„ \ =V'í›ü ä÷}Ö]^Qc®Ä(Èè%–¬OOzn³uÕ<†ÄœQØ‹“Ðë©TIʪ+Ÿ¡„šûe¾Aö%‰µú8ùd$ƒ ­d>ˆ#ÊgØ´·Ëg¿AÁü‚ânÕK}ªW¢;Ù2(åôG¿5}þý‡3è´.}yËþ‡sA4Ξäèï=®¥ˆp‚d²¬ZaâQe£¼õ͆ŒÖƒ•Š­—$NLj·®J)ûÐÆ?üÉ…¢˜Lo°/IKcïR!Úq²¬‘1ÑhHøýSEzsu3ýMpþÓ[‘íÈHÿRÑ9"¸Wq;¯·E¬ÍD-¨Ë‰A0Q™‚kðr‚l¸äß(ôRDàRTÐ2;ƒ]Þéb×·}7C†è¼€ª®«¹¡—Ýì©É$ý s4Š|ìÉêE]TxÔp8TîåQ*Üë}XW×±¶¤çÄò—ZsïÛ«ÏÇozMZÇ›st!G©¥ˆõ¸øºèÇ{ÏÛ~V7îN]£¸öÝj[vj’‚òØxaŽ{L¤ë½±Î×dKcŽñ§Ý‰ˆš¨ÚZ]µïœƒËä÷±Ï`a»ê2&¡+W“kƒ ¸ñ Mv^ –a&¦õ˜nhâkúîS·” Í/œS#Ù7í¹«ÂR-‚ÑnKvÕ¹fŧϴÌLúBCªÑrŽ=‚m8p cM¸7=Û©´e¬jô H¹® ˆ6yÉ'{H¢@î…‚°Û$÷ËõÎ_ñ¸Må²WÓ¦{_^gÐãf2 — B’È*ëˆò‹ïáð££|XvÏå-Ôî@!Gšòš9¤”Lá´Àý5fÍîIŽ";1ëuCDò(Tç>Ë'À½¦’p}uŸa$•c¿cöØé܈¡ Çÿš}b†•–Æøuõ~É땺W"tð¼FãåB³@û™Í ØÔëˆ]ç–êÓ¶õÈV¤ŠcÏ+ìU?0è|7¿’$“:˜ò‚N‘ÎéW›¸ž6Uí 0OÏ„±†:ý ÐTÀ|wº^ÐÄ)3î)2ˆÈûÊ¿LX…ÙUÜžô~c]'ÄJ¿P2^Y¬nŠ9í¥÷ƒg%:¦N_‰1P„ÉÀ”óÀ8“ñ—ë-Ôv”Ѐ'¤ùÆ~{œÎ"ó瘲dzr²­ý~a7Ÿ¦Ðÿ¨îkÏTUä(jÁߎy”wëô\Ìät}Æ DÜñª‰¸abËRµ3±¾|gÖ$÷#þÜA´^!ÄM{–õ/pU#_¼Â§EÇmë¤Ú? 0i© HGam4pq¡h@!š#Eb×üÁò».ìŠêÛ .lýÐXp(#\€ñ³¶ðu 8"µ*57£Ò•”øÀ:S¡)Â:Á¸e%à‹„ŒeŠõ¡¡OÆŽf‡pgq­±| ügy%ÚCHNm‹Ýºˆ‘mè^ŽäË­ùƼ]ÑìžI³ß•ñ¬ãÅXùx0úJÖÉÞ*ÿÅÍÈ_sÂ~åã.%#­]”“çVºûBoKd-O—Smöf=‰mué˜\>à :b( œXs'»JcÓr-št‹#wNš%ÕìôóTAx «äØ@"Öté-ê¾'3<0—z©C‚Vm²*O_> 3Y¬Æ%ërÉqC¡{n¿Âf €á \çaƒþÆ /ÚEÕ ½#›!8¨ &Ñ©ìE(í·žg®‚{`ýõÅû^a¬ yë 0"æ0Û¯E…Ñ&¹ymCÀ‘ÛÖÜ#@¿³;âšÜàÏ`“å(¨FƵ¿×ù[Ÿûµˆßè.gÍEq¬¼`ØSœn\Ú^ïA=.µ‰#xè…¾¹þ*/\š{9Áؾ” ã%À:æºö;ÑvÞvˆÐË_ºÞ=ë¸}Øóò~ÂßZ£A\<²€o"×Z\r£\?eûcèûzÙ;}–ô¢#©V+a!—ÍcE+¿¾uø÷@ •–< O᥎®Wo²%j˜ãS€ÀLIª™å&o Õy˜N&ðýøöÂýÔ7xá¶- ÈØˆ#“èuÀƒ¬))I¯¶*hoëf1ZOƒe4õ–Ù3R¬"Ïô=ÄÔæ)¾¥¿žg*õ̱$DÙ'ØßÉÜÇ…s­»“3cœµý11Õ¦Ђ$`—LVÅ@L$ó—ê‰ †èŠ‹¯àRø? 9:äù×X«<¸Ï°O@ÝðWrqAcØZáÕ¤aÁ Ä,¶Ì®ž17y•ÂBt1¦’f©© ç‚À£ögtǵ¦·É'—Í&²"¢eî °ímÚ®­” Á¢½2£¨ßy ]ƒ™EÅ&“ÍŠbc°øÓ±Ã:xÍjtßìÑ:º¸ŸìF!ù3¯.Ü\­:8›n®•‰•t¨yÀ™‹}\y¦™Š?ÉöZ‰¥’~*ÊgØê¶áŠã×Gá÷ÀëÇ:ôÜ{”¿é¼2Œ “½§¡H§BÇHU,-0ŸòI6v!rQ÷ƒœá\€öW‡W0ŸÉÅqáaXxó¥œå‰-ؕԞ‹›F(ngÙmˆ(Ñà 9¹FŒýãbG®º™zG ôè YÍçæÐ¬ Ã/u¼VÖ_–l!¦†Iaâ°r#¤í‘?à¸ÛOl\ý7á‚É"Ö2 x¼ÚÏÀ€•‡dwû•P"¼/‚B’`pÏ·Ó(ª-jК˜ÂÉ)Þjøý(rg¦y¥dLlŸ¹ìJ^¤›lÓ%¾ã¨ iàe9»á,Êb âE»U]#'s Í×@©{ܜ辧©Mvõ“%ßRñùÉqÁ ëA>ñötZŽÆÏ ÆZjj7?«´Ý¨—MÐy+mIÓ\3z'F`ñrAøCœ‘š×ÓD²iV-!v„y}í×]±!h^– U¹I!QŒÊ‰üà`ŽNòf?_ ÊEµ'¢·B_úáwZ¢²ªzÌãl-à‹“¢¾ZB ‡¶_ØO#R7|pX §´5J¶­¹¸˜)(P~$¯hÓù»l¼æ³Oq֗߉àUI¦¯}°°;Èu®ýÿ©A*Ä8ÃÈqp)ê/ä sna5;Š]‹<7Ã@ðä Ò"Ì{RL+.ÙHÎÙlê¸Qn¦ë5»¼¥Êq-œ&¯‘‹¶\ì<2°htïòÂÅÔ¹¸ñ2zŸ.Ab·ýäuøTÊ÷ŒŠAßð?ù?eSÑC[@0ý¤†C­â6¨T3§n&, ™øbTËUü¾·‘_!¶|Jy(9ˆúE¼x×£¯V6e 4¬'´>qRÌ­n$¹ð¨ª¼S4¸?ÆÎ®Ë0LzåLåQÍb]{& }±qõeøæ&U2 á,‰†ßN2J!Fõ¿Ò 7þØŽ  Àâzotwq‡1ÆÊh‘uò{­Ë*nÕ²|T‘k‹õöï÷ ï ÐZ ³â®ñ{çh§ÌÒÂÛœØÕ­#þ4!¸Ð 4ö2Æ×>9N}­âp$X-oÿ`kkùÍc@&Dþs6Èä𯎙j£ôÃì,z}tÆŸò"íð*Bæï¬‚úUýbQktw3“|$ñ͹G‹Åª¬@U#ñdÆ€ú6oZ9CPQÎGÂ:Åj%· ŒŒ¿í(0knšb>fÏ7`*¤%ý‰FXóåïÀÿÅ(š¥î®"ÛŒ€GÞJ8é4Õ—¢¦P~ šõe9ðÏš·f*NMø›W(s­² &QÐ ú;»ÎæµñóH膿ë *”×›¹¤>‡p*,ì’}KU§hH莢JÈÉ{õãŽá寜B±˜ƒŸZ=¡p£ÍèÏ"‚ªê«šì(©½Ú0#%‰ÊàÈô»¿)XI|·¸CÞ%[ÉíìÝ–@4’„é£Ä5QJÝRÐ$Ùõ A‡U%>"‚–€¾|{££e²£Ü-ýÌAë; ý<ü„­‘ÿ]ÇÚìbÖrîYÔZâpÙlŸÈ0C—Š‹#åbѨ¦þ¹‡Ó cH-'{¡ Ç-Aúô eü%WN" ìçi¼h5ј*³§™Ú=³Á”¾(‘V‡A8‚²;ˆx_jD¡]œ|‡KÖø~Ó¤Á= àÖH"Üžµ £qÝV_Q6OÓñ¯‹0·¸ô¤!v׿ÀŒ¸Š‘¯e~Rýmܪàúû}¶:ž·ø¶ÌÆ;3$«qñJ·;*«MRú¨*N±)듟:‹OÕ'¹a‘ùh9® ZsÙ¾|.n¨’°Ð¬#]‡ôYÖ§=J³ë{VÌ_ø¨†DÿeQ|‡xóë\Æ/sr$7]5N‚âFÒp(ðÐmLBñ™7ÓðêS.4¬ÕÎfþÅ`=F|šD, *lŸ>E»šÌLŠa r¸ðCË ‹1ã"±,Ä÷Íï/Ôßhä‘R;Mr …µœÅB4*YÕÇ9ŽÝør)üÒ`·‡ßï›!»fÇÛäDÊÉò@ØM›áv…Hw>Xºû—=:r¦ÇÏ¿KÜ»}ª¡žÞóï&Õ¡;[Áž&Ð~´ÚF¨izã)v$°À5BQ‚ýac¢›À!«7°8œ8¸°\.\¼½¨kVÈ*t·XÒ·×Æßp§,ƒÅðqÕ⡽ÿX£Ù79¦ÜbVæzÆiO('UU ùBÚŽ ,ª¥âkêeXòæ*îÒc‹ÓÎk4 €3àÇ«E†6àî-3IÁµ"×#~Ï•&y"‚`¤6ËÃ÷ (eèGP{:kû¡i†áÂE’cÉ ³[¶ŒÏP‰P,=¿‘ìcVÐC¯Mñ=jp–h6Ñûiz¹ôoOxSÙÌvùAb7Ñ`ÇKidTŽãÿÄi[EÔ›ðUSx^­®~œ´Pk*<º”g>ÀµíÉt²»TÍ—*ÕÏ…™ "`ew9iâ-(»épLÉ~w5JYˆ¬‚×)lÍŸÜ-óÞPˆe]R,¿Å³¹Ï%FL&F4=¿é­'Á q—D?qû )3qÌë½½o€ßåbõŠ·á5·y·ù%+ Ò²æÎw_á¶ŸµTl/nHÄ9€/@‚JÒDŒ|‹#…HüµCpì-ábƒ÷3õoáDžÇ—ïˆæˆNŸñ3l­$çžã̾.¹yF³H:DŠÂ£¼úD÷ìÌöÉÇv‰Ü"]­ôO¯žŸ¤Î@?‡OSyqd·^ÑD?E$¥›þdÞ0ÄÙPî?Æ|||ˆÕ‚Þ‚µè€@“7üêüÕ$" WPHÔ =_>–qĦ6äª! ˜ ¡_³þ…ÔþË‹&sÈ7‡°…'VD9ê!Á÷ÞKæf+å>ÇU.Ó¨÷ I¯á’.<Õ™@š¾»"g™þ}€³#HkhmòA,Ëür3Ï›UÐUUi>Ä›GgÒrƒìzÉé¼¥ ¶Šü#,¢dx{kHn*xÇȧ1z¤†WI=ÝCÐîÛ0€{üû…Õ_wç§msÊHsÈ2Ø¡¢áÉæ#Î’Šü-cwF5¬§KÀ/õeûùI<*~ß_è¬q*.–)§,Û+wŒ é|‚‚(-b{èâ‘2Q%Œˆ—þ«xŽLaA°,æ;¯øïÔr›eJ¿-Jus¹È«xK‰óÐ8óRdWÖø¿ŒSí™} ^Ñ „`Èõ÷òŰF‡µK$ús³,%ƒÇ”Ÿ"CÈ%÷S;Ô¼5 `‹AGE"ìÆqç´Èö\UXx=¯ü6~^¯à£g9”œo_s³dã XWõ¿œ „T–Àß´:gسFl‚ü«p«9©¯Ò•yû‚O¸}4±¨ ¡sñüö¥Üê~L;õN¸æµn² ©Qæáò¬’ﶈ-zŽ¿qu¨k#eºs‚ŒÛmžFŒÒŠõÍ”?U7d»råÑžÙ"käwÐc¡ý)²ç%Ç;Ñw{=îäûûŽLÇŒ­º•ðŠù´„úÒ–‘ŽïéIx…LŠ ­éÌ{Þ³lÛŒUvŽ`GH$ö5¸›wŠËât¤ÕÁ½N$ üÇJ8ß§ñÂf> Tԉ̿ásb~^ýûލv7ÂVß±Qb}àó+Hª‹1ÝPǤÁÏYáb¯1<æ¤ô:ö­,4^4Éç/ôñ“³#o@ÑŠu©ÈÛ5–24ö›éQÐxž‹13bˉãNþ&% 5Í%=Q$‰f²ˆ5d"µ¥ Á{^¨÷þ<‰Z7m/cÁ0&þæ}Hð|åÒ‚#)÷ýg¸iÎ j$HܤôáÞ¤ã=ŸùÂJÄML÷·5Ÿüˆ”¿ã´Šã΄8Í r¬÷ÍÙíÃcj[—h²tѳ´¾âéÉÖ;ಋx ø‹‹¡æ›9 ïûsù‚>  œÆ¡–l•‡B¡·ÎcÐÐ8IÓ)nºi¦æø°+H›ãßÓØÒúÌòðé¯f=ëã×Ëß ëöZÒ‰¥Ltjl¿Öª”úÎÄ•µÝé;œQ öPÕ|°LȰP~a90y3‡M8Ùe U>F®Øô@?¹ù»¨ç–OžYx½ÄÜm$G#Ä̲ÉÇF;i_Œ3@8¿õ‹@¿HOeC©À¬%Pƒ×É•ý¤v]¡¿Y›[í¸ù÷}µ±`·5áöû…(¨q¦Éðÿz;^ßÖyWmYéÛ1ƒ`‚±Ú¨¹eO¶9;za0{¾V‹SÍžV% ©ô‡îW©kC aBM¥ Ý¼-ëVó†WÒ‹C»lUþZI±‚Y‘”$®¨×(§÷M õòIêAbrûmÚ휹V†±1Ölà_ÊaŠAjËKµÒC]P ì\ÅØzbŽ=& <&T WÅá‰Gý”*ž•n€GçÄ]ƒÃ("50Ú]QL†‡%W×䲋³ŠÇusŽÈâ 8èà X #øŒmdÇ¢­x¿­åÓg«tòŒ%WõR +²tú¦Ï4 0:ìËJñ¢ÞV!•sjZ,Tv÷ª›à> «"±ø[‹`X 2.‡ãúü6œ¡¥­u‚0ÚV~ô)®ÈÎØ¸d§pŽÖ¿ä.¸ñn¹RËnä¨"Óæþ§øïX%\A"­8]e¢±|¢ÄçX ÷¬”-~O˜'7ÂÎÈË8výIQkN\G,^wßb£ênQd®­£"âò ¶ÓEíR„>‚ª-d 8Ò…¼A“ÂzyXînk­fPã3AP(¯“'N–a§lÒ®”%B†j_ª5³ F/êèº"­ÔØI›;ŒïÞ!È(¡-Ã'ÃíËU # æ‡rΑ8­ ñµ¨?Å5ŒïX›Îò ß:›¯ÂÙÌ\tL¿à}Ì "­oж,C¤¾VÃoÎ=Yˆmc’øÉ•Ù4ñ½±-û§ôÔrÁ Æ•¢³x\oþN¿;.ùH R†@\/ |ýsN[öç£fv)GàF¨=—9ÁG™–«³×¼Ÿ¹‚~4KMžôp×v]÷?móõ?B <SªQÕonW­/Ê®äy.£Ï '´V§‰v"3RÚ0” g/¿1| ,²ï‘¶ðõÊôMKµ<ÊÂìè˜.j²5üƒƒ_(¦›7Üíç Ò÷;¼¤å÷=£Añ®ôÎNÛʯòš`„¬qè±2T­uÞñô&"< ÓNÈÀcù¡çB$‘4 &üæÃN™º¢1LÉE³¹šÙÐkÇìröñe[b,E¡ÂŽn’MN‡|µ*}ˆè{–®Ñ¨™¹ (ÝûÅnTà¨Ã"}˜õ·ånPAY–¤¯R¥MX1<Ä?Ë#-Û¹`UÀ´Nq|¹(¦„uâYFGø½Pfe1ÍäIn|°Ò•Ó~9·E¾Ü'>¾íÑ Í>ÏrY[÷P~r‰nÌsÏýF'géüBõ]!Ø×á $iø*€í21Hy .þ–ôàoÿJyÜ•ê|Í}Övhv¤Âaþx§¿;yY4Ĥ Ë t©‘ßèâ­xÀ #ÚÃÛÝŸu3ç±Zîù¾­£_‡›éÜFgIï·}½¶] ŽóBTllC1­„ ¦ µþKK‚“ß…@HTç²–Y>ٴ̺Ëõ{—n#ÙIƒÝÓð½»þšKòšï´áÉ¡ÚßÐ(™AMóÕ¤cqɾ)Däý³]O‚¸w—fëŒenä;—ãEô†~ýŽcƒlp ‚ñ5° G}Vª 7ˆ®_¢%ƒÔ%ü§,xÑÿ%ÉOpƒ}ÇzPÖ+)5Õ`7Ìú·ó9ä­{5ªQ¿ H2p!¯òñšQÔhß­½1ýæõÊÿN9>£^c©DLÞ>’ezÐgŸIrN›pÕ‡òØ;pàÖØŒVû »ç̬휛Y¥¼Ý}ø`ŒûC|¸vuES`ê¨qµ‚ßcÏ­úˆýÞ:~X ÁÞI“¢¬­ô7Õ…‹÷„7±9QŸHøàˆ©îä—:ס\·B/iþÚ/ûV‰&>úØD±ïÙßuɬÜèçLïÜuÊÏj¯òùÃÅ’iïMþ–ºwcªÓE£J›¬‚7=~žAÓ=q'QP*G-_É ¡ÿþ{õ5Iàñó¤zÄ]ùO+N>ÛÇÓ‹KNç3 %û~’0qÿÜïzPiØeû±±öAÖ ûÂG>õ3/ôº3y]㼕äMäðâ¬'ï Ë“ËpEè•ÂÊd8щHTá5ž²NÀ~ ÜAçv7¡ ÎZ i 'ì6yT„tžÀƒ'<¼D…óƒÊJ(—×Äž×ê›NåûPŠxù›HãV0DJN|O‰’)0T ë¡B¶šál˜¦A‡õCgy¬½HÈXGTxxPƒìJ:ïÎSÁ,UUj.3àÒ³Pf]ìþ‘ÚÁ:´Z.‘»Ÿ„“+Ø8HæCxºi³@Ç¥¬q£2â!O—æ¢H"dëQÙ&œ,sE“„!C÷ÈleæŠ=òíŠ~E÷ïÜV•3Öâ¶ñ„z¹Zl]‚³·† æ^ß £TR\‡gWrÏ1åÝwC²Rw„šÓw{¦˜ŽUxõrÀÓ,eÕ÷ß§ ‰iwk›+¦×ÇÛ€´;6º{òQåsËÁ¢eÙy¥il†æ×Ü1ö5áô܉GøñPLêH—i%ŸL¤0—à¸vt,uT-aÎ FW…ž¡ù™8% w& ;í&´óŒbqÜŸhFjðY´lÅpÒEJgÚž±T Ì[±Ì”=ßÊÁøQïNµ?OôGŸ9ýdzÀþ˜•hÀM¦—ðÓKªƒ¡H0å£é0#ò@o~© “ºRö¯&ehîQN?KÆy§“\rÎ/:£¡š7ô--Ëuc4u‹½‘/ˆÖ¯íj{y“Ž„ÙƒBâ>䤸ä¡Tó¿‰ f´¤2=4yØÆnS×¶6ì1ân¾ÃÂw•Gäuû«%åšm.\¸S‘HPÔ âK€7œZkøÚ–ýç?˜Ÿ ÕãE—pW ß@ê‰xç@Wáâó#3éÁ›ï¶? d(bÞAgú^r>Ö (Ù6oè–ƒhòp¨¼pƒ.@=Sw>h@-‘ÐZwÄ*ä© ¿„G-:ȽÅúõf½3E^@Ëë:¾â=‘Ù¹C­ô†¬ítሠ„ %A[ãÕvù«r1báÙÇò °wbƒœ‡Ú °/æÎ–¯j¾“—-ììÁpï…·®ñ¥‰ ¢|¤=¸,aT\.ÒqXÊĉ¬Ä.sÒ>mÃÌqNÞ;z¤)¬×k+Ï㊸ÓÜaT ç?þºë/·Û¾°‹ˆîù3t¤­ãSl3‹VEÍS¤46¯o—Œ<ÕÐ`ùZþ*=AcpÞpw=hëW»³ciëJ¨c8Ž•“]Ö¨ì}ýEµM-È‹ÅþDÅâê該%óÙoWñÜ-zm•"Ð<$­7ïÔþ× @Ó÷Ó`"L¤i® -3ñôqúæVÖãŠn‘n_DFcòžÕú )QƲ3ãª$—­‹¥˜jiØ@@·IP['ÞRÆÞŠêvÁtäµBøJ.)U1dÏiÿýG–¼RãÔ›üIךláñ[Ä78‡uäw%”ϲjK2 ‡pÏêyÿsvüœ•¯§æ@$éGª™<ÄMp:p0^æ¸')%Æ–V 'S‚`|0ÏÄG3)I’£Ð )¼2šÞ£!ËNS2ˆfK“º.$D£ ß„F&¨AúXFøNÅ)j€fsÞ^&WßöróÖA+ãõÜ¥æ÷O5›V¤œ:¿y$f 0S è› )¾¯a˜’Ë÷º3±“2†ý¤£MâõNM»›µ‚¥­8ãív´Ûvã ·ætÕñsžóeZŒ,ÿÂd—bôÚ¦G—û^üoÊëéã*¤,!,ãðW-¶óÚO3H!ÃðoÌ _u‹ uÑóozØcã]¤£”«BI“ÜÁ¼†°P¸DnÞ6Ί¶3rí3Iå­eãZ…¬i˜ˆÑf?É&ybÉÍ~¸U1qö3?® ?0 †ðlÑ&ÅÏPîú–aÛ ²¹iNK1ùßÁŒË¢–Ó…¦ÊDl3·”L¥Höæþº,ÍRàò¨ì çvÖ¼;¨ßJ®sÏ­ÜæE멺Þ~Ï¡¡Év7±f¾¬D©L Eêê¥Ô›õö ¸ü†ô\t)Ûæ±‰ (ÔG2>æâÜÍ26dßÂÖ™pŠMÞØHŠ*¿½7Ò¾…-×deÔ ŽíQLêÂÿ‚2¼àÍ;”¦Ûíz”xž¬²Ts‚Múv5±œŽtûV¿ˆE³# ¸KFmÆÝAI+hw†N/Ž«æ0@Mû‘šï<'£-c³á„ƒîXH†»;@Ò„7J ¯ ð9ÙÊ—G/{*Ä[Óª›R @íAÀ’ jèß(5,‡î!R0H9À]Ác5âÙª9"±$ø;}ËO›(:a±"ÕÙç¦ÃæN§‹úÁ)ÙF;î.«YÚ–úK¨ÿÊÈŸ†ÚÒ94}ÒNùE·¸b þé«éŒ–1– õsO<ÅD¾AŒ]§¸‘`C@³?oÛ….ttiïðpP„B¼Cp¸u¬×®Np:}w‹y9Çžš q}ÙIhU£UÃùSîÇ€FG_É-UT‹kÐT©(ò.Ž-7Q?ò ø¸­¥*Ѿ7/‡ax«þ½„ßw}iÙEýHÞ ¬Zú“ 6¸tªýöóÂè‚r„ºpñ™÷®NëÛöÀ${G³GåÈ„î¼/¨ š¨ãí`|Ï8zu÷Œn“ Ð(¸•ÐÖ®ð&-r;à‚ÆïÆ¯¬ð17£m$ 7Ì÷>ÚèÕ¾VËs…У=Î4¢ºg¸õ܆l"`EÁ$˜ó÷1Dƒø1¶ÐÈ}tÄ”*MÃr"ɯÂ&¯vÞ›”q:v{$“ú Ê“éÑ‚„!]c’¨ò™¬·á­±š³º¿ÄÝC‡sß>õ‡嫦ÃèByeé—Dli>-eüëT€óçaÂ;æÜF;ú¦êüèfar2ªÞл·ÜËùƒcßîS¹(õ¼cØeX~u®bÜþOü}ü¯tr\ʬJEáß]ׯ\´áKôFiðKÔ¶-á?³R÷;ÃJk \f®‹k©yWsHFʧ¯³…rægó,«3lÅã¼óíö¾0BÛÚ}˜$Ï(â\Þ’Ø¿áE4 «ÇM¢gÀ[7»åaÒµ’¹õ¸/IÎÐÅÔÏÚí¡ÙôŒÉÏ1ó³Æi¾WK fQ®”ŽÒ7"ÅoF !BÂÅØþ)u4f‘¾[÷÷n·¬âÛƒYÒKÿ2@(êÿµ!+7ÎËùÙgónð¬=VŸ‡ð§Z :k«øžM9«ì­¿bpʪŽÅbõi„RµìÈõ›€5âù™â¡WðÜ“5¸Ø-4gÊ¿á"ØY †Ý$œä3íl ~JÉa¿Ý`m +Œ^§%+ïª"£G”~GÀ=e}éÄQA‚¡RŽ&•2$ÝT¸âd¤Ü+Á3ì†ÀmB&Î2éÔ†Çè᳋2êåÍ3 o¾÷jvÏ‚ /®»}ƒú˜“¬æÀ¡Ü);Î;aŧw€ŒKí¡³„¸aD\mÄMô£»UªÐ|œ¡³µ.Óhըݾ,ߥŽ4Þ~[ôó_õPœ÷)Ç+—Ó» eëd ßÖ6¾±Þõ.†HYÄÒ sj^·?FÏu¦C›ç"»i¬£¨?A/Éù;Ùüã&½—ŒÄƒd&L“|¼Ìàìì«NöÐmmÃ3\!þ àJ5À÷„{ú ¬ëKˆKõ6V3–©Y?sÞª{­‡ØhRkÑG€_à¯ÚA îêVñ0¥¨ièC¨˜™/m£õ¯ëŸCZíéD²A3±CÄŒA§Lx"tj\[e¹J¶ŸSXýý¸ мƇ°–üÓ$+WU+=׳¨ÖÃë°å6%‡ù¶¥û¶;U'µR§âœôü æÌù4‰dçúÂmгj#$²i.}ʦ½zº*ŠÞ©6§»Ì‹ûÑc‰Aœ uû‹¤=šZuòŠNäwÚ9£ïš÷?È£fWÌW!µ²&„N¸Þ÷LÃÒÁ“ËOlh‰‘5FUòn²9ÍÌcƒ÷ I'žQúð W^o!·²Æõ#²‹ÍnÔ@ñc?%/4Ò}ÓˆQ6Ë]Ý m&M—)K¶÷Òokq ~’#÷ý¢$ÜÁÆDfR;»žøÒ©]õ_ÐÍØÆáÒªÛ¿V]zvÔò@„å=…¯ãǹÊ19{9«ËfZ"·qäx•lÐV%„à ¥Å6& dGä3Ò@§åŸbÀÈùÛL–zDË vÊBmÄšL’ÐíÀ„”¢ä8qŒƒÕ…zΦ¥gðg´öÿáhÀ4óOÀÒÍ—Ú [¾†á.*(øKϢ̃‡ª$lž„Š~ŒÌ%n¤"1¿5ܨBçKs”“b±¯_¼+ê¼ÓŠg-¢¶Š©ž¼ž¥¡}ñm¸\:ÊÙ™¥Õêò$Âm[f݉âŽÍ'°½¦R±z&£Ø]£hD¥F5T¨|‡Ææs·<—À~™‘`‹$(ðÜ”Ê)3ˆixÔçÍéÜ4ï RBPl^£ò <«DàÆ ýuÒMKEÀÙŒ§9* ·êU‘½2Ä’»Ôä5Kò†M`0È H¹©l˜é¢pR(ÿ(puj»h+v‹9äÒFùÜwÍöGkzˆ%€Á¥‚ðsíÑ%}Á?}£A×$õÕwõè^!‡:è3Ôþ³ZjÅ\šÊ@{Ed*UøKlÊ`ƒvH´fñÂ4‡$ óPÒšïÙš#Éø>aÕ4õ+ Bd1rq¸Aâ¬Ã9_^q¥Zën,ŠÑš~\‚ *—Ä1ûoñ±¾N‚H’gÊ3‚uù‘‘º‡ <²Ê4”_0*½g´úL5ÑNpHÌß8Ý6]Âã›|õAou}‚»AŸ iÑ2¡´GE"_©a?¶Në—W¹Ö¨ dM™®Š‚LêxÝVOã'ž(G´ž5çéâS­·kÂzã½·Y£3¨ï€õ}l8~xµç±þ1eÜ.©«v¡%àzð:Ðc›ø^|;P¨û«êùðúñZܧdΜF­ ›‘#ÍÛµ"~VGØ­n„AÅŒ&Ä9°écþm½ 5¾P˜&eð§Æ÷Hx¨Ðʨ>®-%ŸÇÞœÈP¥ÕÀsë”_É’ý5–S)ûp3ƒ%A“_zꌰ_ çUæIl¯7]Ü@‚5¼¶~Dƒ¦Ë “ùp Â…ß9$Rã`7’óÆCVDnS¸C–^‰=ܧ?•bùk&uY7Í Å3œ,™.ù˜cwH¨C„Ûq¯<ù`iqó,*¹° ²„[—÷Ï×'æËôææ^P ¬©@o¢œ fýx%r˧g¦mÚäUÜÈ8 ”0½¿û™(‘°(˸ «ªûR\´×c¥½$ÜÑ ŸGp3ÊÐ_p˧ ¦(B`Å>œÑ‡«î Ö|Ugç™·®¤Ü{ˆœÕHvæ$¿©¢žYÝ jª÷¹ =&Mü|Ë®Ð5J¥Åÿ÷ç8¬]eÖhœÉÖçÙ1ý\}hN Zu€Ë_Û§±™­«v|ÞÑûÊwغ¿úé)4±áÁ à|8Zïçß0”¨…áRʪ†ì 5\à¢B;µÖUµ7_f·i€ ÇÀŽ™æ§!RÜ‹~=)˜[¸QdçÏe]gß v$ߨžÊJ-©ªÝ–E¯ÒjiZÕ÷q2)…0ø;‡•Nâ0z³ý1RôáêÈ*GIÑ{Ó['gM0皈”$á ‘’3‹¼ J™b_[@èXCw]ãL¨šî'ÓÕ['»qS×ÓÅpL–.ô.ÅIßS Ã!U]í»Ôh×9 ^”è¨^ŽÿEEÙü <2XRdljog<œ ò¾V™EŒ#´Sâ–Qý x{¾{Ïw5½`€(,Øœ:ÍxœÐ,Ù’}^á³¢/êxk —À8°žä‘6…Èy‚¤óð0þ0ÆBÝ6áˆÝZV¢®˜b@‰ép$¯g˜¿ßÆ…Ù\x;Ö~¾(o[„_'aÿ€»ÿà”…,S-êw_˜¬$¾ÎÌGi)aÔŸ ~¥Lœ(OË~ÏÖJzc}]~ґ»©Øú{cE-YžÑ‡8ô~µ÷8hm”æVЋ>5™£KNsý Kè®ÓsRnpR4Ã’<¶Áüv`ÿ°k—“®õžàuüÂnÙQ¡ÇÕ5ºz›_ÇcÒ˜†¥UF7–“…&{»ä\L‹IÍVßµ]Æãî•è>;zkïx—РjóP *ÒûL ©Ú‡4\ÓÅaª].íÐÜ…TWº$™/Œ ú»&1ų„f‚ GâRÿ¤ù¨i–l­4Xå¹$0@k¥NûÝ͇¤× +{ÕÁå’€1«¢üjÜ5~„˜Ó nTmk¹Þr!ç#«…<`²¾Êó*O#e]IX€Øì‘^\cÆÙÀ”éƒh‡ò±Þö '€‘ 7~xìÊ$WÝ7»Õ©>D˜ápÐÆÎHz³0Õ¦½¤Óo•ÏõóûcÓ@ê?1ÔN©tJMüS§_\F‚’d[îÓš>²,ê”䄤°³=Ýõ ^ë,]œÆ¹¿€šÕbœÓ"õF½úÝ_•{´ò3ưJ¾šf‘-ce£§çU܄ϯ¤ëƒš…õåü ôd\¬ "©ªÕÀT*$²‘óÇÁ !J¶ÎA˜b+%(ÐJh1ß ¢»‰„3¹}L{³4Pž¤å\¼/D~¥²+Iý{uù’bò”AÖ-FQÕ ÷ê>%)‚Óq6û æ0k·p(;‹ã©@PçPÞÁŽ™ê¥_ÈÎ;2˜¼ësãb¾¶µô*ËŠÑ_˜.¨üêØ|•é.ê‰#]<¶ŠÛÚû¹K®¤IV›t…hùKà+q£Á¤)OãF Ù|?qÜIÊF²pÜ–áA0÷:½ã _ËÀPèCXƒ„X\̹4IrôúôOálefBÜ<2YÒR,cŠVpÀ9ÏŽ¼n1î^|Á.¹oâÅ>K&ý©¬Rf}bñFØ]ЛÌVú¬ΜVôíbֻöD$›MÐöé&)›õ0í)léžß`(û"Ì£cø  H O{'dŸ©A&ΊA?ˆW­`d “¨g¸CmÆ)„5«Nä¨ê‚Æ÷ ¶rç<@±ÓBlÐ4ödW+[ægBŸÛáátÓiÖ¼™;ÍL¶Fö¿(½TŠÞà‘÷—Eépl ê\ñ,êjm¾$»ž ¦uM/~³àà[6w]Ø,}Wiõ³BÁ“„äü2¼§ä”[î#³­†äïꉃNèi—'Ýȶö[?%FJá`ú¸àI¹"Bñ¿§lÉÁ,jÛ €WÞ(cxª–¶´Þý;V*“¨˜´ØçÌTR±Ðˆ@ˆÉ9[+ä¥Mï¿ÉçÆ1¤µ¢ÈÐÐÀÜØ0jJ}'fú¿DÍêPP@ñÏY75Bà6 ¿˜r‘»î¨„øbQ1EO¨—ÇQû­Ž0¯¡ÕæíìNÕ_9”h6k,=ÆšÌÊYÚ^ö˜­¦hÙlCC“  7¹ ?¼:7$ž¢xaéí] ÖºÑÚm|²O”*Ã&ȪŸÄ¾ôC}_Ãéß;ɧJZ0îÿå‘Dé@)¸Åm_Åÿ3Zɲ9F0±0í7œYêA"¯dZ„ÿθìà©Ài|™ …ÏüƒælNÎÊ0\²l•s½LÀ8¹= Sâ]s­&í"æ¨ãØíA¦HT\“"Eq2D ê1ëñ™!è¨ ›õfA6& ÇñÙYr‚Ox;ù×ýA–ˆHß/ûíÕ=f¹Õ_™GV_0•‚0•ºxš_¥C&uò)GgNjÀ®yyÖ-{5˜ ˜2æ.èÒSPJqݶR8ÏÓz¯wu7÷r¡¯|T+Kz6nÃAšÆYtú*ÚÐÇQÕŠUÆ?µ:>ãG³ºsŒÌO‘,Å\1°–€‡TeèyhRÂSÆsœ»Q²¯f¬ ´k†?‘ Ãn‹Qm޽%\ô5˜Å†…¥lk~Ь’U};l­¦††SQÞÞÂ69w†‡×qZd>²‚uý®-v¨r+ oˆ‚Pð$FM]yˆSAÓ&Åœî§Ü ŠY؈ ZÊ­ìD´c®bŒæ1;¸ÓKöJ2¬C÷!࡟Èp_ÏLv­˜ìÉìËóÑ^)pI¢N:|håŸÝ)1z¯”ÿºÉ. endstream endobj 18 0 obj << /Type /ObjStm /N 100 /First 850 /Length 5026 /Filter /FlateDecode >> stream xÚí À ¨È¢ P ÁHöç  ¢wР‘8 VœG<€ÞEáz {4dÍK¬ñ ÄnРu°í:ˆ9ö4‡6°lA 9H€öp›A¡R%Ù#®€Žæ` Î"GСÍàH#DÖ#Z ÌD ÖfaQÔøÁ?tï—_zåÉ_×UQ¾í_T½rw2žWãù¬ÐàjG½ò¨šMÓA5¿£Ãê|Øß™ü(>‹·ˆêK–Oa"F°ý‹0ï¶â—_Šr4hpº "›ºíRͧ®U ‰ÔsL]4°å2‰ç¾G9rµª—DH¬ÜGK[RT¨ºåRTõa»åÛédp\Í‹Ï Š½ý¢<©~Ì‹/KNn”‘Rm!)ñ )eœŒ÷úóªøÇÞÿÀ¹ã…cPY%ÂÀ69ïœ;ÎG0sT<›ö¯/‡ƒYñf1¿^ÌŸGç‹A5ÅY½e¶Ä“Dk‚COš¬¡p{åñâëœÞâ ì•¯ûW8§zåNV‘ÊçÕè{5ú½ò×ñ`r>_౟1tŒúFŒOw&£óÑ~.vwqÅyaHg_2JKxƹZ]~Ž·Ç³a=½7üö­  ª>öòj8^Ìà .ÿXLæÕ¨ú6ǃ¯<Ÿ€Pg³ay1í¯Êþ`1¯ÊÁp:X\}U?Êùpt^•WýÁt2.¿N+€%ýÁ”[žÄl8+·Æ“ùyõ­œír1õWƒ—‹ñEº¸õórr1W¿—ƒ>â›]÷Õ—u£¿9†ç®Ðpx:U—Æ}úæëoÕ€\An¤b÷fÍîÍÂÖÏY{T¿µkç½ÛycõOƒnŽjî»Q·¶Qó 6§Çk ¯p²º-¦”[òA-ãÉ[ïÚ˜yĽˆÐ[PºH»å  "ÈuVÁž¼×8Jp: „UXî„-¬lüä†1ÃDXy}¢ â–T™(0$µ1"ž|ÄI¢”$a`m.•œ'1`ø_¿ãÙz,_ƒ£PÿÁ.‚D‰ó¾r¹>%VàÞ´&½\íì 4f•ÙŠ¨9‰ü˜—©µ$·`hï4«=i—ú<û6ᤖ©ä­U¨¯4"I¯^ î-€6@ùóRmAµiå  eÔ/é-€6 V ¤¥€’`ÆÌÎF6Å4ŽZ¨(-Ɇœ«·Ÿ3´Î›–…6"z§ˆAr«q«ÎÐx2T”!G³V²Y‘IR?î;^Å8cÛÀ0ÙˆExT;™µ„*% ,…ÔB™m‘q~¡@©e ~„ÈIòÜFEÖ„¾õ÷ÿõ¤nbdé“=» È (vxCªGOáqmƒNm‘B¡›1P¾€,„]@…OÖc„A«ój˯Bˆ&WK¾àíÿsÑ„H^BîË-ò» ŽhÜY—¡§°i_:…2Zš¨‹èòRÐ ‚GÑ…}žúÁÛäB0%» Þµ^Ôï²~›+kcBÊ!:õáðQøÂ<º”íd¾‰–Ž4^¹‚fCGœ±Ðþí‚ÿG.hM@§»C«éËÛ j5ƒáÑó¼5¢ÉîE¤”Ä“õ ôƒeÈc1€£[á½°B  À '­Mý Ð¦ yBø\k‘7ñprüÝþmI»tpG õÜ8ÄMjU´‹†»Ûñy€ ùÕrıE9Œc4‚± #­wdŒnE€[bÂy?‡4¬¨Ô&˜lV[ ó9¶‡´ùÞ¸MÌ<)¸åfÞC¢'—lsÞ¨ÐÙ\¤ÃJktZ‚ÔA‘KS ©Gçè˜òìÞv%Æúp¬¹¤$¦’èR‹XcÀ™¸b"gh¹Ä4!NÌú íÓxÃ*fI<¬:¶¥ ža =¨À¸Rc>Ë q?Á{ÎH!Ú`¬“ãX«ý’JMPD¼UÏB€ŒÍØ%ØãðIWØÂçe:%öœ°·:RmP)$;Îs"”aI}GÁ \PQS ÜN²¨ áò‚Ë…;°œ3‘â5e y+=ÓÂüDR ¨0Ú:Œ&Œ…A4w˜Ó˜€;5øH\ 4d Ez™àè R†Rß 8(a±y6É@&ãpz€9Òi`=ž é)É·^âÛP&=gÖr½A§æŠ[Å!—[¨‡Ö?jÄp9‡ïÏ+­EÊ• Âàê‡UÖZ:ظXYör¨\ µ9¤¹l{7m¬ë_­í‚±²kpË#dl‚î˜-ÊSªÌ7,Z€KÏøt0DR=áá1Z›°§ œSZÂoYœŸ¯ÈÛeÁZ3Úîe" dIY?Ó6tªjI¶ Íš’iMYvRH6Ë pŸÛ•M ¿ƒ(HÚo-[MYŒŸõ”ËØÎ=×ò~¼¡¢Fýr¬ ÝQJ£Óø7…ä E†æ~ eè½É 2 «Þí;¼K›0f;#´LÇž¢÷Ì«x‚'>fná0¤K¬€]ð1d$C ŠÎs=ï°Ü`¼÷à”Ò¦~Б.(,%…Xà‚‹$C§R—[j]!\9GÖ8ºdc=Ñ+ßtdúÅцÖ#¶<ÂZ¡u+Xž7÷a`EHZªçXBÜO-ÙD9ŒtE°” S«‚¥Ýšä¤]-^A!ULhÒˆ! Dªïh$’…KA‡3rn„‰æýRÇHÎénˆä³d9¶‡´ùÞ¸eZ†nv¸åfÝó‘ÊLü˜ ½t3qBp…¬‘Ž_E¤ZâáuŒ™[– ¬KØŽZ)¬ÛR!GÈs1¬÷BÄIoÔC_ÉôíenF­ÄVÛª!yÞEf©ªÕ 3Àý‹”Áöèz ¼Gâ ÝT8 ú$:²üYZFH<»1ß@ñFE¹õ¥T˜2Pà –½@…–ÓqL¢ b’ˆKEKÓN"ׂšò»@÷‹žjÓ@^CQúibˆJ¨¡ÞE¯æ¾Ñtȹ´†GÓJÇ;O›F"]µ¤•<Øèúue 3ÄœPáç®8ñÇ0q>ô€±,ÿ=íÏ8Òµ<ⵡT~Y½¡CÚ¡%:ÍaS”¶” M+É ŒH«ô¯L¸)k³f…¡4}Ê­ÞXJêj†›½ú¢1S÷y]=O+hÌJGG:„r™Ö® xNãq—{neˆfÖz*"1Qµ©å>o¡;E‡†äɼÑY]aD&MZyJle€``š˜ÖÐ|ÂJ«S?riAð>U[K|‘’ù|Ä:4mÞµ±aÅAÞÏG³T÷e}å©ÜÍ`ÒZ§L/ÉÆ+ÊõhmŽ“`°bź•/÷L I³Ìõ¿´>8°WÍÓáõ|2åG~ü±gïÎ>íìýs÷pçT ˜õ/f…aˆz‚øÔºâ©Â¼Qâ§ÿ,œ€åö ŸËƒ„r·ý¼^\ÂÛàz%’Á¹§'æýÑp°=¾U ?žWW0•ê•§i$r€ã²?Åç‚ÿ(å`ruÕ/§åì ïbkC¼ùÓ73u´»³{ôœ™RLid fêø8L‰ØÉÔv¹Sî•¿–å«ò°|[•Ç凲_~vÏ˪üV~ÂßwèMÓò¢¼,‡å¨¼*Ç夜Œ«òº¼®¦ÃÉyù ¦œ ”ór~9­ªrþç¤\”ßËå_å¿s‘E¹‰ÈÞí½{ýq‡D:$“(mGbJÝb-ˆzn~}ÿñÍ«WÄMìà&,:>7ÒߢÖ5ênÞàÊnÂÕ§í³£3àj÷x·ÃY!÷`¶„÷M¶¬l±¥k¶DO>W–7™ô~ù¬|†ý¢|IÆýº|“ ü¤üXž–gÀúÒ§ÙÔѺ/ÿº¾¬Æ`俯̼6qüÜÐi²¼:¬Ûo"¹³½³7ûÏ@r‡]QN«¥äLø‰AèÛ â)Êùâ;áôA¿•ø¹(B“Á"ÞÎþëg/މA3riï˜? {Av²lå¼@ ½ 3/÷ß3G]Ê2b©,ÂÍÊÒ]¼ÕÒwo±õwÉÚßCHÿHöþ•,~4gvO¨Ëj|ÞŸ]b¼Ç¿aöGuä_ùÆo+ïá Xøü\÷ØSÀwè“rɇ®G‹œäJç_G½|à Z^6«®†¼åYõ¨ã 3á^ÛçÌŸì‹å¿«é¤©ã"ôË·'§‡¯HÇ'´6|Bãw$EÅö¿ebØêg*»Hñ©>„§I:µDÖ¥°YD?Û}ûò”¤Ðá¶Z³¥GƒÕ]¼³l‡¬Î¥ šRXæ&ý•sÀF9L˜°‡M†7 Äï?}Øyûv7ó«Äê\Ö¢ö ;ÕN.‡š]é³ÉÙFøõ«—ÇÇ:4©ü’3¥…3ïË™Ü(=ßý°‹œud†Ú­’ñ8œ¹ ¢ñzÞÁ‘øt‰›1˜ƒïðá—óñv ½!5ï ™r£yôüÃÎËw¨‡ŽœV/3t¡ÝãèÁtêádý¾]ÄpérSV—%s¶“9)7Ššg‡¶_ Ž_œt¥H4^}AU]& )²À·+Y(¬IùN¼sŠð< å„L¯? ‡ü©öþ -dö;ˆêkð;Ÿ«_§Ð­ædW©ÏVÔÎÎ'£QŠæûÇ¢?"1×…â~ù š¶SêUJ9^\}­¦³áÅxs†,!etÚåF¼fÂ…ÿýƒOÇ»XeŸuê Œ8â·ãðKvÞÛZq`Ñ÷KTèÔÜlx5é6YÚ(>>xF,ueÞ8«Ìf|PÁQ·-ŽúóùpPÍ' ééðªj°¦6 üÛ/Ž0àœtWMvu¨™G*+\øiðÇü<­¿ >·•ËàógSÅߟÞ||±Mâ?“FUCv§/Çè¬i²µQ4}»·÷foºc©áPjõƒBéÝŠ­åáŽûaV^ÝS§w¦«JìnÁô·V8}`!–EÕ® k1>‡€=˜L«î «6 ºGÏO_œ’‚»®öP¿xùOã¬ß[Ò7®-*ìUÓ5‰×&“…᳃gG'ÿ<Þ?:Nt-’­èûÏ?lS³ÚÄâçWcVtÖQKÓ¼êÏ/éÍÒî÷¯^žGø9ŸŽ³%Däc>æþpôu1Uó&/›¥®gï¶Î˜ÕÍ‹MÚ1 ^õ_ÖÎFQóÍëïζ#Œšö&päø‡  ÿŽ(¸Ì†ßdè†(ÑñÅMs,…Q 1áo$ør—/¤Ö_Cm?]jˆÁ¾­¶?œÎæÈO׿¯úé T½òãð|~9Û¸ã·akâí§@-âªMjâÝñpâ­ç)-Ú¦M;Æ.Æåæ´[O?Z´]›6^Œe´]Í·ÝœöÚ3ŠõЦ®c‡Ôßœzûž¿I¤Í»èÒù=äÞº„o_78Ѽ¨%ïÕæÔ[·æmêk&‡‡yƺ®Y¿ñæun›¸û‰£›š¸»‡Í5oQÛÄ×LΆç¢&6'Þ¼ÑlÑ–ë.7w[Û›¿ßÍ+Ç6iuWÒAlNºy'Ø&ý3[ËØ¾‡Ä›÷`mÚîîaÝÜ#À¬]=µé¯¸†©«ÚÉ]Üœ~û¥E]­Ù›Ê©«ÚÏÜ=δÖUG›öºÁå~æ²È~¥·ï"ÚÄ×LÎ4OµXS¿‡Ú[¥›øšÍÙÜÞCZý=NÔv}Þ&~wƒó÷à¼U<¶ˆëõøæ:b«¿Ïq¾VÔµé¯Û\îí& 4é6V?eâõ’¬½ŸõȧÑ™6Ä#ìh½°jïÈÝUBÁ?Â~ÖË¢ö~nOuæ§îûÁ_ĘáOb,ðº¢þU”å~CyÃ?@Á—Ÿ;LÁª*x?ø£zô 8€üü•Ùø endstream endobj 142 0 obj << /Producer (pdfTeX-1.40.16) /Creator (TeX) /CreationDate (D:20170423125210-05'00') /ModDate (D:20170423125210-05'00') /Trapped /False /PTEX.Fullbanner (This is pdfTeX, Version 3.14159265-2.6-1.40.16 (TeX Live 2015) kpathsea version 6.2.1) >> endobj 140 0 obj << /Type /ObjStm /N 3 /First 20 /Length 112 /Filter /FlateDecode >> stream xÚ35V0P04¶T07V041T042æ²±áÒ©,HUÐHLO-æÒwÎ/Í+Q0æò‹R,z… .}ïÌ”b…hSCOÁÔBåb¹ììpd Óhh ÑaŒE‡sbIbN~:D+ÜJ 9>, endstream endobj 143 0 obj << /Type /XRef /Index [0 144] /Size 144 /W [1 3 1] /Root 141 0 R /Info 142 0 R /ID [ ] /Length 401 /Filter /FlateDecode >> stream xÚ%ѹOQÆáï=3sAÐ ‚âreG@eQAdÇÕå &ü7!Rb ‰6  ÄŠ„ "Å¥Î‰…æ}mžü¾/'3“9ffY Ä`–k¬§dšµ©G½!q°¬´v/I?yDIDBXI…޼&°†yÄÃâ §H9«žÕn˜d’“$‹d“SpsK:ršäÂ-jŒ‘3pÖ8.j—OòàVV5Îrîã7íž“IRHΑ>RDΓbRB.Rr‘\"—É'WI)'¤’T‘jRCjÉ5RGêá>ëƒàRͪ벩Tm©šôþVÝ@ð.GÕŒ`#_uÁþU šuÕ-„cßU­ßªn#\íTÝA¸­kC”‘Pµ#jO©:%¡êDô>©º‹èK½ê¢ô”ê>|t ê‚éQuÃ'vUàgÿ¿·>ùCõ~ù«ª—·ø£=Ý›ƒOïüÏOö˜Gå endstream endobj startxref 453286 %%EOF SparseM/inst/doc/SparseM.R0000644000175100001440000000302113077164712015065 0ustar hornikusers### R code from vignette source 'SparseM.Rnw' ################################################### ### code chunk number 1: SparseM.Rnw:132-141 ################################################### library(SparseM) a <- rnorm(5*4) a[abs(a)<0.7] <- 0 A <- matrix(a,5,4) A A.csr <- as.matrix.csr(A) A.csr as.matrix(A.csr) ################################################### ### code chunk number 2: SparseM.Rnw:166-172 ################################################### data(triogramX) par(mfrow=c(1,2)) image(X) title("X") image(t(X)%*%X) title("X\'X") ################################################### ### code chunk number 3: SparseM.Rnw:261-283 ################################################### #hb.o <- read.matrix.hb(system.file("HBdata","lsq.rra",package = "SparseM")) data(lsq) X <- model.matrix(lsq) #extract the design matrix y <- model.response(lsq) # extract the rhs X1 <- as.matrix(X) slm.time <- system.time(slm(y~X1-1) -> slm.o) # pretty fast lm.time <- system.time(lm(y~X1-1) -> lm.o) # very slow slm.fit.time <- system.time(slm.fit(X,y)) # very fast lm.fit.time <- system.time(lm.fit(X1,y)) # still very slow cat("slm time =",slm.time,"\n") cat("lm time =",lm.time,"\n") cat("slm.fit time =",slm.fit.time,"\n") cat("lm.fit time =",lm.fit.time,"\n") cat("slm Results: Reported Coefficients Truncated to 5 ","\n") sum.slm <- summary(slm.o) sum.slm$coef <- sum.slm$coef[1:5,] sum.slm cat("lm Results: Reported Coefficients Truncated to 5 ","\n") sum.lm <- summary(lm.o) sum.lm$coefficients <- sum.lm$coefficients[1:5,] sum.lm SparseM/src/0000755000175100001440000000000013077164713012442 5ustar hornikusersSparseM/src/extract.f0000644000175100001440000000107213077164713014263 0ustar hornikusersc SparseM Package c Author: Pin Ng c c Extract: Subroutine to extract the non-diagonal structure and c entries from A stored in CSR format c subroutine extract(d,jd,id,dsub,jdsub,m,nnzd,nnzds,ierr) integer jd(nnzd),jdsub(nnzds),id(*),m,mp1,ierr,nnzd,nnzds double precision d(nnzd),dsub(nnzds) c c Call csrmsr in SPARSKIT2 to transform the storage format in d c from csr to msr c call csrmsr(m,d,jd,id,dsub,jdsub,dsub,jdsub,nnzds,ierr) mp1 = m + 1 do i=1,mp1 jdsub(i) = jdsub(i) - mp1 enddo return end SparseM/src/cholesky.f0000644000175100001440000066644713077164713014461 0ustar hornikusersC*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C************ ASSMB .... INDEXED ASSEMBLY OPERATION ************ C*********************************************************************** C*********************************************************************** C C PURPOSE: C THIS ROUTINE PERFORMS AN INDEXED ASSEMBLY (I.E., SCATTER-ADD) C OPERATION, ASSUMING DATA STRUCTURES USED IN SOME OF OUR SPARSE C CHOLESKY CODES. C C INPUT PARAMETERS: C M - NUMBER OF ROWS IN Y. C Q - NUMBER OF COLUMNS IN Y. C Y - BLOCK UPDATE TO BE INCORPORATED INTO FACTOR C STORAGE. C RELIND - RELATIVE INDICES FOR MAPPING THE UPDATES C ONTO THE TARGET COLUMNS. C XLNZ - POINTERS TO THE START OF EACH COLUMN IN THE C TARGET MATRIX. C C OUTPUT PARAMETERS: C LNZ - CONTAINS COLUMNS MODIFIED BY THE UPDATE C MATRIX. C C*********************************************************************** C SUBROUTINE ASSMB ( M , Q , Y , RELIND, XLNZ , & LNZ , LDA ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- C INTEGER LDA , M , Q INTEGER XLNZ(*) INTEGER RELIND(*) DOUBLE PRECISION LNZ(*) , Y(*) C C ---------------- C LOCAL VARIABLES. C ---------------- C INTEGER ICOL , IL1 , IR , IY1 , LBOT1 , & YCOL , YOFF1 C C*********************************************************************** C C YOFF1 = 0 DO 200 ICOL = 1, Q YCOL = LDA - RELIND(ICOL) LBOT1 = XLNZ(YCOL+1) - 1 CDIR$ IVDEP DO 100 IR = ICOL, M IL1 = LBOT1 - RELIND(IR) IY1 = YOFF1 + IR LNZ(IL1) = LNZ(IL1) + Y(IY1) Y(IY1) = 0.0D0 100 CONTINUE YOFF1 = IY1 - ICOL 200 CONTINUE C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Joseph W.H. Liu C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C****** BETREE ..... BINARY TREE REPRESENTATION OF ETREE ******* C*********************************************************************** C*********************************************************************** C C WRITTEN BY JOSEPH LIU (JUL 17, 1985) C C PURPOSE: C TO DETERMINE THE BINARY TREE REPRESENTATION OF THE ELIMINATION C TREE GIVEN BY THE PARENT VECTOR. THE RETURNED REPRESENTATION C WILL BE GIVEN BY THE FIRST-SON AND BROTHER VECTORS. THE ROOT C OF THE BINARY TREE IS ALWAYS NEQNS. C C INPUT PARAMETERS: C NEQNS - NUMBER OF EQUATIONS. C PARENT - THE PARENT VECTOR OF THE ELIMINATION TREE. C IT IS ASSUMED THAT PARENT(I) > I EXCEPT OF C THE ROOTS. C C OUTPUT PARAMETERS: C FSON - THE FIRST SON VECTOR. C BROTHR - THE BROTHER VECTOR. C C*********************************************************************** C SUBROUTINE BETREE ( NEQNS , PARENT, FSON , BROTHR ) C C*********************************************************************** C INTEGER BROTHR(*) , FSON(*) , & PARENT(*) C INTEGER NEQNS C C*********************************************************************** C INTEGER LROOT , NODE , NDPAR C C*********************************************************************** C IF ( NEQNS .LE. 0 ) RETURN C DO 100 NODE = 1, NEQNS FSON(NODE) = 0 BROTHR(NODE) = 0 100 CONTINUE LROOT = NEQNS C ------------------------------------------------------------ C FOR EACH NODE := NEQNS-1 STEP -1 DOWNTO 1, DO THE FOLLOWING. C ------------------------------------------------------------ IF ( NEQNS .LE. 1 ) RETURN DO 300 NODE = NEQNS-1, 1, -1 NDPAR = PARENT(NODE) IF ( NDPAR .LE. 0 .OR. NDPAR .EQ. NODE ) THEN C ------------------------------------------------- C NODE HAS NO PARENT. GIVEN STRUCTURE IS A FOREST. C SET NODE TO BE ONE OF THE ROOTS OF THE TREES. C ------------------------------------------------- BROTHR(LROOT) = NODE LROOT = NODE ELSE C ------------------------------------------- C OTHERWISE, BECOMES FIRST SON OF ITS PARENT. C ------------------------------------------- BROTHR(NODE) = FSON(NDPAR) FSON(NDPAR) = NODE ENDIF 300 CONTINUE BROTHR(LROOT) = 0 C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C****** BFINIT ..... INITIALIZATION FOR BLOCK FACTORIZATION ****** C*********************************************************************** C*********************************************************************** C C PURPOSE: C THIS SUBROUTINE COMPUTES ITEMS NEEDED BY THE LEFT-LOOKING C BLOCK-TO-BLOCK CHOLESKY FACTORITZATION ROUTINE BLKFCT. C C INPUT PARAMETERS: C NEQNS - NUMBER OF EQUATIONS. C NSUPER - NUMBER OF SUPERNODES. C XSUPER - INTEGER ARRAY OF SIZE (NSUPER+1) CONTAINING C THE SUPERNODE PARTITIONING. C SNODE - SUPERNODE MEMBERSHIP. C (XLINDX,LINDX) - ARRAYS DESCRIBING THE SUPERNODAL STRUCTURE. C CACHSZ - CACHE SIZE (IN KBYTES). C C OUTPUT PARAMETERS: C TMPSIZ - SIZE OF WORKING STORAGE REQUIRED BY BLKFCT. C SPLIT - SPLITTING OF SUPERNODES SO THAT THEY FIT C INTO CACHE. C C*********************************************************************** C SUBROUTINE BFINIT ( NEQNS , NSUPER, XSUPER, SNODE , XLINDX, & LINDX , CACHSZ, TMPSIZ, SPLIT ) C C*********************************************************************** C INTEGER CACHSZ, NEQNS , NSUPER, TMPSIZ INTEGER XLINDX(*) , XSUPER(*) INTEGER LINDX (*) , SNODE (*) , & SPLIT(*) C C*********************************************************************** C C --------------------------------------------------- C DETERMINE FLOATING POINT WORKING SPACE REQUIREMENT. C --------------------------------------------------- CALL FNTSIZ ( NSUPER, XSUPER, SNODE , XLINDX, LINDX , & TMPSIZ ) C C ------------------------------- C PARTITION SUPERNODES FOR CACHE. C ------------------------------- CALL FNSPLT ( NEQNS , NSUPER, XSUPER, XLINDX, CACHSZ, & SPLIT ) C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.3 C Last modified: March 6, 1995 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratoy C C*********************************************************************** C*********************************************************************** C********* BLKFC2 ..... BLOCK GENERAL SPARSE CHOLESKY ********* C*********************************************************************** C*********************************************************************** C C PURPOSE: C THIS SUBROUTINE FACTORS A SPARSE POSITIVE DEFINITE MATRIX. C THE COMPUTATION IS ORGANIZED AROUND KERNELS THAT PERFORM C SUPERNODE-TO-SUPERNODE UPDATES, I.E., BLOCK-TO-BLOCK UPDATES. C C INPUT PARAMETERS: C NSUPER - NUMBER OF SUPERNODES. C XSUPER - SUPERNODE PARTITION. C SNODE - MAPS EACH COLUMN TO THE SUPERNODE CONTAINING C IT. C SPLIT - SPLITTING OF SUPERNODES SO THAT THEY FIT C INTO CACHE. C (XLINDX,LINDX) - ROW INDICES FOR EACH SUPERNODE (INCLUDING C THE DIAGONAL ELEMENTS). C (XLNZ,LNZ) - ON INPUT, CONTAINS MATRIX TO BE FACTORED. C TMPSIZ - SIZE OF TEMPORARY WORKING STORAGE. C MMPYN - EXTERNAL ROUTINE: MATRIX-MATRIX MULTIPLY. C SMXPY - EXTERNAL ROUTINE: MATRIX-VECTOR MULTIPLY. C C OUTPUT PARAMETERS: C LNZ - ON OUTPUT, CONTAINS CHOLESKY FACTOR. C IFLAG - ERROR FLAG. C 0: SUCCESSFUL FACTORIZATION. C -1: NONPOSITIVE DIAGONAL ENCOUNTERED, C MATRIX IS NOT POSITIVE DEFINITE. C -2: INSUFFICIENT WORKING STORAGE C [TEMP(*)]. C C WORKING PARAMETERS: C LINK - LINKS TOGETHER THE SUPERNODES IN A SUPERNODE C ROW. C LENGTH - LENGTH OF THE ACTIVE PORTION OF EACH C SUPERNODE. C INDMAP - VECTOR OF SIZE NEQNS INTO WHICH THE GLOBAL C INDICES ARE SCATTERED. C RELIND - MAPS LOCATIONS IN THE UPDATING COLUMNS TO C THE CORRESPONDING LOCATIONS IN THE UPDATED C COLUMNS. (RELIND IS GATHERED FROM INDMAP). C TEMP - REAL VECTOR FOR ACCUMULATING UPDATES. MUST C ACCOMODATE ALL COLUMNS OF A SUPERNODE. C C*********************************************************************** C SUBROUTINE BLKFC2 ( NSUPER, XSUPER, SNODE , SPLIT , XLINDX, & LINDX , XLNZ , LNZ , LINK , LENGTH, & INDMAP, RELIND, TMPSIZ, TEMP , IFLAG , & MMPYN , SMXPY ) C C********************************************************************* C C ----------- C PARAMETERS. C ----------- C EXTERNAL MMPYN , SMXPY INTEGER XLINDX(*) , XLNZ(*) INTEGER INDMAP(*) , LENGTH(*) , & LINDX(*) , LINK(*) , & RELIND(*) , SNODE(*) , & SPLIT(*) , XSUPER(*) INTEGER IFLAG , NSUPER, TMPSIZ DOUBLE PRECISION LNZ(*) , TEMP(*) C C ---------------- C LOCAL VARIABLES. C ---------------- C INTEGER FJCOL , FKCOL , I , ILEN , ILPNT , & INDDIF, JLEN , JLPNT , JSUP , JXPNT , & KFIRST, KLAST , KLEN , KLPNT , KSUP , & KXPNT , LJCOL , NCOLUP, NJCOLS, NKCOLS, & NXKSUP, NXTCOL, NXTSUP, STORE CxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPC DOUBLE PRECISION MXDIAG INTEGER NTINY CxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPC C C********************************************************************* C IFLAG = 0 NTINY = 0 C C ----------------------------------------------------------- C INITIALIZE EMPTY ROW LISTS IN LINK(*) AND ZERO OUT TEMP(*). C ----------------------------------------------------------- DO 100 JSUP = 1, NSUPER LINK(JSUP) = 0 100 CONTINUE DO 200 I = 1, TMPSIZ TEMP(I) = 0.0D+00 200 CONTINUE CxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPC C COMPUTE MAXIMUM DIAGONAL ELEMENT IN INPUT MATRIX MXDIAG = 0.D0 DO 201 I = 1, XSUPER(NSUPER+1)-1 FJCOL = XLNZ(I) MXDIAG = MAX(MXDIAG, LNZ(FJCOL)) 201 CONTINUE CxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPC C C --------------------------- C FOR EACH SUPERNODE JSUP ... C --------------------------- DO 600 JSUP = 1, NSUPER C C ------------------------------------------------ C FJCOL ... FIRST COLUMN OF SUPERNODE JSUP. C LJCOL ... LAST COLUMN OF SUPERNODE JSUP. C NJCOLS ... NUMBER OF COLUMNS IN SUPERNODE JSUP. C JLEN ... LENGTH OF COLUMN FJCOL. C JXPNT ... POINTER TO INDEX OF FIRST C NONZERO IN COLUMN FJCOL. C ------------------------------------------------ FJCOL = XSUPER(JSUP) NJCOLS = XSUPER(JSUP+1) - FJCOL LJCOL = FJCOL + NJCOLS - 1 JLEN = XLNZ(FJCOL+1) - XLNZ(FJCOL) JXPNT = XLINDX(JSUP) C print *, 'Super Node: ', JSUP, ' first: ', FJCOL, C . ' last: ', LJCOL C C C ----------------------------------------------------- C SET UP INDMAP(*) TO MAP THE ENTRIES IN UPDATE COLUMNS C TO THEIR CORRESPONDING POSITIONS IN UPDATED COLUMNS, C RELATIVE THE THE BOTTOM OF EACH UPDATED COLUMN. C ----------------------------------------------------- CALL LDINDX ( JLEN, LINDX(JXPNT), INDMAP ) C C ----------------------------------------- C FOR EVERY SUPERNODE KSUP IN ROW(JSUP) ... C ----------------------------------------- KSUP = LINK(JSUP) 300 IF ( KSUP .GT. 0 ) THEN NXKSUP = LINK(KSUP) C C ------------------------------------------------------- C GET INFO ABOUT THE CMOD(JSUP,KSUP) UPDATE. C C FKCOL ... FIRST COLUMN OF SUPERNODE KSUP. C NKCOLS ... NUMBER OF COLUMNS IN SUPERNODE KSUP. C KLEN ... LENGTH OF ACTIVE PORTION OF COLUMN FKCOL. C KXPNT ... POINTER TO INDEX OF FIRST NONZERO IN ACTIVE C PORTION OF COLUMN FJCOL. C ------------------------------------------------------- FKCOL = XSUPER(KSUP) NKCOLS = XSUPER(KSUP+1) - FKCOL KLEN = LENGTH(KSUP) KXPNT = XLINDX(KSUP+1) - KLEN C C ------------------------------------------- C PERFORM CMOD(JSUP,KSUP), WITH SPECIAL CASES C HANDLED DIFFERENTLY. C ------------------------------------------- C IF ( KLEN .NE. JLEN ) THEN C C ------------------------------------------- C SPARSE CMOD(JSUP,KSUP). C C NCOLUP ... NUMBER OF COLUMNS TO BE UPDATED. C ------------------------------------------- C DO 400 I = 0, KLEN-1 NXTCOL = LINDX(KXPNT+I) IF ( NXTCOL .GT. LJCOL ) GO TO 500 400 CONTINUE I = KLEN 500 CONTINUE NCOLUP = I C IF ( NKCOLS .EQ. 1 ) THEN C C ---------------------------------------------- C UPDATING TARGET SUPERNODE BY TRIVIAL C SUPERNODE (WITH ONE COLUMN). C C KLPNT ... POINTER TO FIRST NONZERO IN ACTIVE C PORTION OF COLUMN FKCOL. C ---------------------------------------------- KLPNT = XLNZ(FKCOL+1) - KLEN CALL MMPYI ( KLEN, NCOLUP, LINDX(KXPNT), & LNZ(KLPNT), XLNZ, LNZ, INDMAP ) C ELSE C C -------------------------------------------- C KFIRST ... FIRST INDEX OF ACTIVE PORTION OF C SUPERNODE KSUP (FIRST COLUMN TO C BE UPDATED). C KLAST ... LAST INDEX OF ACTIVE PORTION OF C SUPERNODE KSUP. C -------------------------------------------- C KFIRST = LINDX(KXPNT) KLAST = LINDX(KXPNT+KLEN-1) INDDIF = INDMAP(KFIRST) - INDMAP(KLAST) C IF ( INDDIF .LT. KLEN ) THEN C C --------------------------------------- C DENSE CMOD(JSUP,KSUP). C C ILPNT ... POINTER TO FIRST NONZERO IN C COLUMN KFIRST. C ILEN ... LENGTH OF COLUMN KFIRST. C --------------------------------------- ILPNT = XLNZ(KFIRST) ILEN = XLNZ(KFIRST+1) - ILPNT CALL MMPY ( KLEN, NKCOLS, NCOLUP, & SPLIT(FKCOL), XLNZ(FKCOL), & LNZ, LNZ(ILPNT), ILEN, MMPYN ) C ELSE C C ------------------------------- C GENERAL SPARSE CMOD(JSUP,KSUP). C COMPUTE CMOD(JSUP,KSUP) UPDATE C IN WORK STORAGE. C ------------------------------- STORE = KLEN * NCOLUP - NCOLUP * & (NCOLUP-1) / 2 IF ( STORE .GT. TMPSIZ ) THEN IFLAG = -2 RETURN ENDIF CALL MMPY ( KLEN, NKCOLS, NCOLUP, & SPLIT(FKCOL), XLNZ(FKCOL), & LNZ, TEMP, KLEN, MMPYN ) C ---------------------------------------- C GATHER INDICES OF KSUP RELATIVE TO JSUP. C ---------------------------------------- CALL IGATHR ( KLEN, LINDX(KXPNT), & INDMAP, RELIND ) C -------------------------------------- C INCORPORATE THE CMOD(JSUP,KSUP) BLOCK C UPDATE INTO THE TO APPROPRIATE COLUMNS C OF L. C -------------------------------------- CALL ASSMB ( KLEN, NCOLUP, TEMP, RELIND, & XLNZ(FJCOL), LNZ, JLEN ) C ENDIF C ENDIF C ELSE C C ---------------------------------------------- C DENSE CMOD(JSUP,KSUP). C JSUP AND KSUP HAVE IDENTICAL STRUCTURE. C C JLPNT ... POINTER TO FIRST NONZERO IN COLUMN C FJCOL. C ---------------------------------------------- JLPNT = XLNZ(FJCOL) CALL MMPY ( KLEN, NKCOLS, NJCOLS, SPLIT(FKCOL), & XLNZ(FKCOL), LNZ, LNZ(JLPNT), JLEN, & MMPYN ) NCOLUP = NJCOLS IF ( KLEN .GT. NJCOLS ) THEN NXTCOL = LINDX(JXPNT+NJCOLS) ENDIF C ENDIF C C ------------------------------------------------ C LINK KSUP INTO LINKED LIST OF THE NEXT SUPERNODE C IT WILL UPDATE AND DECREMENT KSUP'S ACTIVE C LENGTH. C ------------------------------------------------ IF ( KLEN .GT. NCOLUP ) THEN NXTSUP = SNODE(NXTCOL) LINK(KSUP) = LINK(NXTSUP) LINK(NXTSUP) = KSUP LENGTH(KSUP) = KLEN - NCOLUP ELSE LENGTH(KSUP) = 0 ENDIF C C ------------------------------- C NEXT UPDATING SUPERNODE (KSUP). C ------------------------------- KSUP = NXKSUP GO TO 300 C ENDIF C C ---------------------------------------------- C APPLY PARTIAL CHOLESKY TO THE COLUMNS OF JSUP. C ---------------------------------------------- CxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPC CALL CHLSUP ( JLEN, NJCOLS, SPLIT(FJCOL), XLNZ(FJCOL), LNZ, & MXDIAG, NTINY, IFLAG, MMPYN, SMXPY ) IF ( IFLAG .NE. 0 ) THEN IFLAG = -1 RETURN ENDIF C C ----------------------------------------------- C INSERT JSUP INTO LINKED LIST OF FIRST SUPERNODE C IT WILL UPDATE. C ----------------------------------------------- IF ( JLEN .GT. NJCOLS ) THEN NXTCOL = LINDX(JXPNT+NJCOLS) NXTSUP = SNODE(NXTCOL) LINK(JSUP) = LINK(NXTSUP) LINK(NXTSUP) = JSUP LENGTH(JSUP) = JLEN - NJCOLS ELSE LENGTH(JSUP) = 0 ENDIF C 600 CONTINUE C CxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPC C IF(NTINY .NE. 0) WRITE(6,699) NTINY C 699 FORMAT(1X,' FOUND ',I6,' TINY DIAGONALS; REPLACED WITH INF') C C SET IFLAG TO -1 TO INDICATE PRESENCE OF TINY DIAGONALS C IF(NTINY .NE. 0) IFLAG = -1 CxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPC RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: March 6, 1995 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C********* BLKFCT ..... BLOCK GENERAL SPARSE CHOLESKY ********* C*********************************************************************** C*********************************************************************** C C PURPOSE: C THIS SUBROUTINE CALLS THE BLOCK GENERAL SPARSE CHOLESKY ROUTINE, C BLKFC2. C C INPUT PARAMETERS: C NSUPER - NUMBER OF SUPERNODES. C XSUPER - SUPERNODE PARTITION. C SNODE - MAPS EACH COLUMN TO THE SUPERNODE CONTAINING C IT. C SPLIT - SPLITTING OF SUPERNODES SO THAT THEY FIT C INTO CACHE. C (XLINDX,LINDX) - ROW INDICES FOR EACH SUPERNODE (INCLUDING C THE DIAGONAL ELEMENTS). C (XLNZ,LNZ) - ON INPUT, CONTAINS MATRIX TO BE FACTORED. C IWSIZ - SIZE OF INTEGER WORKING STORAGE C TMPSIZ - SIZE OF FLOATING POINT WORKING STORAGE. C MMPYN - EXTERNAL ROUTINE: MATRIX-MATRIX MULTIPLY. C SMXPY - EXTERNAL ROUTINE: MATRIX-VECTOR MULTIPLY. C C OUTPUT PARAMETERS: C LNZ - ON OUTPUT, CONTAINS CHOLESKY FACTOR. C IFLAG - ERROR FLAG. C 0: SUCCESSFUL FACTORIZATION. C -1: NONPOSITIVE DIAGONAL ENCOUNTERED, C MATRIX IS NOT POSITIVE DEFINITE. C -2: INSUFFICIENT WORKING STORAGE C [TEMP(*)]. C -3: INSUFFICIENT WORKING STORAGE C [IWORK(*)]. C C WORKING PARAMETERS: C IWORK - INTEGER WORKING STORAGE OF LENGTH C 2*NEQNS + 2*NSUPER. C TMPVEC - DOUBLE PRECISION WORKING STORAGE OF LENGTH C NEQNS. C C*********************************************************************** C SUBROUTINE BLKFCT ( NEQNS , NSUPER, XSUPER, SNODE , SPLIT , & XLINDX, LINDX , XLNZ , LNZ , IWSIZ , & IWORK , TMPSIZ, TMPVEC, IFLAG , MMPYN , & SMXPY ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- C EXTERNAL MMPYN , SMXPY INTEGER XLINDX(*) , XLNZ(*) INTEGER IWORK(*) , LINDX(*) , & SNODE(*) , SPLIT(*) , & XSUPER(*) INTEGER IFLAG , IWSIZ , NEQNS , NSUPER, TMPSIZ DOUBLE PRECISION LNZ(*) , TMPVEC(*) C C********************************************************************* C IFLAG = 0 IF ( IWSIZ .LT. 2*NEQNS+2*NSUPER ) THEN IFLAG = -3 RETURN ENDIF CALL BLKFC2 ( NSUPER, XSUPER, SNODE , SPLIT , XLINDX, & LINDX , XLNZ , LNZ , & IWORK(1) , & IWORK(NSUPER+1) , & IWORK(2*NSUPER+1) , & IWORK(2*NSUPER+NEQNS+1) , & TMPSIZ, TMPVEC, IFLAG , MMPYN , SMXPY ) RETURN END C*********************************************************************** C*********************************************************************** C C Written: October 6, 1996 by SJW. Based on routine BLKSLV of C Esmond G. Ng and Barry W. Peyton. C C Modified: Sept 30, 1999 to improve efficiency in the case C in which the right-hand side and solution are both C expected to be sparse. Happens a lot in "dense" C column handling. C C*********************************************************************** C*********************************************************************** C********* BLKSLB ... BACK TRIANGULAR SUBSTITUTION ********** C*********************************************************************** C*********************************************************************** C C PURPOSE: C GIVEN THE CHOLESKY FACTORIZATION OF A SPARSE SYMMETRIC C POSITIVE DEFINITE MATRIX, THIS SUBROUTINE PERFORMS THE C BACKWARD TRIANGULAR SUBSTITUTION. IT USES OUTPUT FROM BLKFCT. C C INPUT PARAMETERS: C NSUPER - NUMBER OF SUPERNODES. C XSUPER - SUPERNODE PARTITION. C (XLINDX,LINDX) - ROW INDICES FOR EACH SUPERNODE. C (XLNZ,LNZ) - CHOLESKY FACTOR. C C UPDATED PARAMETERS: C RHS - ON INPUT, CONTAINS THE RIGHT HAND SIDE. ON C OUTPUT, CONTAINS THE SOLUTION. C C*********************************************************************** C SUBROUTINE BLKSLB ( NSUPER, XSUPER, XLINDX, LINDX , XLNZ , & LNZ , RHS ) C C*********************************************************************** C INTEGER NSUPER INTEGER LINDX(*) , XSUPER(*) INTEGER XLINDX(*) , XLNZ(*) DOUBLE PRECISION LNZ(*) , RHS(*) C C*********************************************************************** C INTEGER FJCOL , I , IPNT , IX , IXSTOP, & IXSTRT, JCOL , JPNT , JSUP , LJCOL DOUBLE PRECISION T C C*********************************************************************** C IF ( NSUPER .LE. 0 ) RETURN C ------------------------- C BACKWARD SUBSTITUTION ... C ------------------------- LJCOL = XSUPER(NSUPER+1) - 1 DO 600 JSUP = NSUPER, 1, -1 FJCOL = XSUPER(JSUP) IXSTOP = XLNZ(LJCOL+1) - 1 JPNT = XLINDX(JSUP) + (LJCOL - FJCOL) DO 500 JCOL = LJCOL, FJCOL, -1 IXSTRT = XLNZ(JCOL) IPNT = JPNT + 1 T = RHS(JCOL) CDIR$ IVDEP DO 400 IX = IXSTRT+1, IXSTOP I = LINDX(IPNT) IF(RHS(I) .NE. 0.D0) T = T - LNZ(IX)*RHS(I) IPNT = IPNT + 1 400 CONTINUE IF(T .NE. 0.D0) THEN RHS(JCOL) = T/LNZ(IXSTRT) ELSE RHS(JCOL) = 0.D0 ENDIF IXSTOP = IXSTRT - 1 JPNT = JPNT - 1 500 CONTINUE LJCOL = FJCOL - 1 600 CONTINUE C RETURN END C*********************************************************************** C*********************************************************************** C C Written: October 6, 1996 by SJW. Based on routine BLKSLV of C Esmond G. Ng and Barry W. Peyton. C C Modified: Sept 30, 1999 to improve efficiency in the case C in which the right-hand side and solution are both C expected to be sparse. Happens a lot in "dense" C column handling. C C*********************************************************************** C*********************************************************************** C********* BLKSLF ... FORWARD TRIANGULAR SUBSTITUTION ********** C*********************************************************************** C*********************************************************************** C C PURPOSE: C GIVEN THE CHOLESKY FACTORIZATION OF A SPARSE SYMMETRIC C POSITIVE DEFINITE MATRIX, THIS SUBROUTINE PERFORMS THE C FORWARD TRIANGULAR SUBSTITUTIOn. IT USES OUTPUT FROM BLKFCT. C C INPUT PARAMETERS: C NSUPER - NUMBER OF SUPERNODES. C XSUPER - SUPERNODE PARTITION. C (XLINDX,LINDX) - ROW INDICES FOR EACH SUPERNODE. C (XLNZ,LNZ) - CHOLESKY FACTOR. C C UPDATED PARAMETERS: C RHS - ON INPUT, CONTAINS THE RIGHT HAND SIDE. ON C OUTPUT, CONTAINS THE SOLUTION. C C*********************************************************************** C SUBROUTINE BLKSLF ( NSUPER, XSUPER, XLINDX, LINDX , XLNZ , & LNZ , RHS ) C C*********************************************************************** C INTEGER NSUPER INTEGER LINDX(*) , XSUPER(*) INTEGER XLINDX(*) , XLNZ(*) DOUBLE PRECISION LNZ(*) , RHS(*) C C*********************************************************************** C INTEGER FJCOL , I , IPNT , IX , IXSTOP, & IXSTRT, JCOL , JPNT , JSUP , LJCOL DOUBLE PRECISION T C C*********************************************************************** C IF ( NSUPER .LE. 0 ) RETURN C C ------------------------ C FORWARD SUBSTITUTION ... C ------------------------ FJCOL = XSUPER(1) DO 300 JSUP = 1, NSUPER LJCOL = XSUPER(JSUP+1) - 1 IXSTRT = XLNZ(FJCOL) JPNT = XLINDX(JSUP) DO 200 JCOL = FJCOL, LJCOL IXSTOP = XLNZ(JCOL+1) - 1 IF(RHS(JCOL) .NE. 0.D0) THEN T = RHS(JCOL)/LNZ(IXSTRT) RHS(JCOL) = T IPNT = JPNT + 1 CDIR$ IVDEP DO 100 IX = IXSTRT+1, IXSTOP I = LINDX(IPNT) RHS(I) = RHS(I) - T*LNZ(IX) IPNT = IPNT + 1 100 CONTINUE ENDIF IXSTRT = IXSTOP + 1 JPNT = JPNT + 1 200 CONTINUE FJCOL = LJCOL + 1 300 CONTINUE C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C Modified: Sept 30, 1999 to improve efficiency in the case C in which the right-hand side and solution are both C expected to be sparse. Happens a lot in "dense" C column handling. C C*********************************************************************** C*********************************************************************** C********* BLKSLV ... BLOCK TRIANGULAR SOLUTIONS ********** C*********************************************************************** C*********************************************************************** C C PURPOSE: C GIVEN THE CHOLESKY FACTORIZATION OF A SPARSE SYMMETRIC C POSITIVE DEFINITE MATRIX, THIS SUBROUTINE PERFORMS THE C TRIANGULAR SOLUTION. IT USES OUTPUT FROM BLKFCT. C C INPUT PARAMETERS: C NSUPER - NUMBER OF SUPERNODES. C XSUPER - SUPERNODE PARTITION. C (XLINDX,LINDX) - ROW INDICES FOR EACH SUPERNODE. C (XLNZ,LNZ) - CHOLESKY FACTOR. C C UPDATED PARAMETERS: C RHS - ON INPUT, CONTAINS THE RIGHT HAND SIDE. ON C OUTPUT, CONTAINS THE SOLUTION. C C*********************************************************************** C SUBROUTINE BLKSLV ( NSUPER, XSUPER, XLINDX, LINDX , XLNZ , & LNZ , RHS ) C C*********************************************************************** C INTEGER NSUPER INTEGER LINDX(*) , XSUPER(*) INTEGER XLINDX(*) , XLNZ(*) DOUBLE PRECISION LNZ(*) , RHS(*) C C*********************************************************************** C INTEGER FJCOL , I , IPNT , IX , IXSTOP, & IXSTRT, JCOL , JPNT , JSUP , LJCOL DOUBLE PRECISION T C C*********************************************************************** C IF ( NSUPER .LE. 0 ) RETURN C C ------------------------ C FORWARD SUBSTITUTION ... C ------------------------ FJCOL = XSUPER(1) DO 300 JSUP = 1, NSUPER LJCOL = XSUPER(JSUP+1) - 1 IXSTRT = XLNZ(FJCOL) JPNT = XLINDX(JSUP) DO 200 JCOL = FJCOL, LJCOL IXSTOP = XLNZ(JCOL+1) - 1 IF(RHS(JCOL) .NE. 0.D0) THEN T = RHS(JCOL)/LNZ(IXSTRT) RHS(JCOL) = T IPNT = JPNT + 1 CDIR$ IVDEP DO 100 IX = IXSTRT+1, IXSTOP I = LINDX(IPNT) RHS(I) = RHS(I) - T*LNZ(IX) IPNT = IPNT + 1 100 CONTINUE ENDIF IXSTRT = IXSTOP + 1 JPNT = JPNT + 1 200 CONTINUE FJCOL = LJCOL + 1 300 CONTINUE C C ------------------------- C BACKWARD SUBSTITUTION ... C ------------------------- LJCOL = XSUPER(NSUPER+1) - 1 DO 600 JSUP = NSUPER, 1, -1 FJCOL = XSUPER(JSUP) IXSTOP = XLNZ(LJCOL+1) - 1 JPNT = XLINDX(JSUP) + (LJCOL - FJCOL) DO 500 JCOL = LJCOL, FJCOL, -1 IXSTRT = XLNZ(JCOL) IPNT = JPNT + 1 T = RHS(JCOL) CDIR$ IVDEP DO 400 IX = IXSTRT+1, IXSTOP I = LINDX(IPNT) IF(RHS(I) .NE. 0.D0) T = T - LNZ(IX)*RHS(I) IPNT = IPNT + 1 400 CONTINUE IF(T .NE. 0.D0) THEN RHS(JCOL) = T/LNZ(IXSTRT) ELSE RHS(JCOL) = 0.D0 ENDIF IXSTOP = IXSTRT - 1 JPNT = JPNT - 1 500 CONTINUE LJCOL = FJCOL - 1 600 CONTINUE C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: January 12, 1995 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C****** BTREE2 ..... BINARY TREE REPRESENTATION OF ETREE ******* C*********************************************************************** C*********************************************************************** C C PURPOSE: C TO DETERMINE A BINARY TREE REPRESENTATION OF THE ELIMINATION C TREE, FOR WHICH EVERY "LAST CHILD" HAS THE MAXIMUM POSSIBLE C COLUMN NONZERO COUNT IN THE FACTOR. THE RETURNED REPRESENTATION C WILL BE GIVEN BY THE FIRST-SON AND BROTHER VECTORS. THE ROOT OF C THE BINARY TREE IS ALWAYS NEQNS. C C INPUT PARAMETERS: C NEQNS - NUMBER OF EQUATIONS. C PARENT - THE PARENT VECTOR OF THE ELIMINATION TREE. C IT IS ASSUMED THAT PARENT(I) > I EXCEPT OF C THE ROOTS. C COLCNT - COLUMN NONZERO COUNTS OF THE FACTOR. C C OUTPUT PARAMETERS: C FSON - THE FIRST SON VECTOR. C BROTHR - THE BROTHER VECTOR. C C WORKING PARAMETERS: C LSON - LAST SON VECTOR. C C*********************************************************************** C SUBROUTINE BTREE2 ( NEQNS , PARENT, COLCNT, FSON , BROTHR, & LSON ) C C*********************************************************************** C INTEGER BROTHR(*) , COLCNT(*) , & FSON(*) , LSON(*) , & PARENT(*) C INTEGER NEQNS C C*********************************************************************** C INTEGER LROOT , NODE , NDLSON, NDPAR C C*********************************************************************** C IF ( NEQNS .LE. 0 ) RETURN C DO 100 NODE = 1, NEQNS FSON(NODE) = 0 BROTHR(NODE) = 0 LSON(NODE) = 0 100 CONTINUE LROOT = NEQNS C ------------------------------------------------------------ C FOR EACH NODE := NEQNS-1 STEP -1 DOWNTO 1, DO THE FOLLOWING. C ------------------------------------------------------------ IF ( NEQNS .LE. 1 ) RETURN DO 300 NODE = NEQNS-1, 1, -1 NDPAR = PARENT(NODE) IF ( NDPAR .LE. 0 .OR. NDPAR .EQ. NODE ) THEN C ------------------------------------------------- C NODE HAS NO PARENT. GIVEN STRUCTURE IS A FOREST. C SET NODE TO BE ONE OF THE ROOTS OF THE TREES. C ------------------------------------------------- BROTHR(LROOT) = NODE LROOT = NODE ELSE C ------------------------------------------- C OTHERWISE, BECOMES FIRST SON OF ITS PARENT. C ------------------------------------------- NDLSON = LSON(NDPAR) IF ( NDLSON .NE. 0 ) THEN IF ( COLCNT(NODE) .GE. COLCNT(NDLSON) ) THEN BROTHR(NODE) = FSON(NDPAR) FSON(NDPAR) = NODE ELSE BROTHR(NDLSON) = NODE LSON(NDPAR) = NODE ENDIF ELSE FSON(NDPAR) = NODE LSON(NDPAR) = NODE ENDIF ENDIF 300 CONTINUE BROTHR(LROOT) = 0 C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.3 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratoy C C*********************************************************************** C*********************************************************************** C****** CHLSUP .... DENSE CHOLESKY WITHIN SUPERNODE ************** C*********************************************************************** C*********************************************************************** C C PURPOSE - THIS ROUTINE PERFORMS CHOLESKY C FACTORIZATION ON THE COLUMNS OF A SUPERNODE C THAT HAVE RECEIVED ALL UPDATES FROM COLUMNS C EXTERNAL TO THE SUPERNODE. C C INPUT PARAMETERS - C M - NUMBER OF ROWS (LENGTH OF THE FIRST COLUMN). C N - NUMBER OF COLUMNS IN THE SUPERNODE. C XPNT - XPNT(J+1) POINTS ONE LOCATION BEYOND THE END C OF THE J-TH COLUMN OF THE SUPERNODE. C X(*) - CONTAINS THE COLUMNS OF OF THE SUPERNODE TO C BE FACTORED. C SMXPY - EXTERNAL ROUTINE: MATRIX-VECTOR MULTIPLY. C C OUTPUT PARAMETERS - C X(*) - ON OUTPUT, CONTAINS THE FACTORED COLUMNS OF C THE SUPERNODE. C IFLAG - UNCHANGED IF THERE IS NO ERROR. C =1 IF NONPOSITIVE DIAGONAL ENTRY IS ENCOUNTERED. C C*********************************************************************** C CxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPC SUBROUTINE CHLSUP ( M, N, SPLIT, XPNT, X, MXDIAG, NTINY, & IFLAG, MMPYN, SMXPY ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- C EXTERNAL MMPYN, SMXPY C INTEGER M, N, IFLAG C INTEGER XPNT(*), SPLIT(*) C CxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPC DOUBLE PRECISION X(*), MXDIAG INTEGER NTINY C C ---------------- C LOCAL VARIABLES. C ---------------- C INTEGER FSTCOL, JBLK , JPNT , MM , NN , & NXTCOL, Q C C*********************************************************************** C JBLK = 0 FSTCOL = 1 MM = M JPNT = XPNT(FSTCOL) C C ---------------------------------------- C FOR EACH BLOCK JBLK IN THE SUPERNODE ... C ---------------------------------------- 100 CONTINUE IF ( FSTCOL .LE. N ) THEN JBLK = JBLK + 1 NN = SPLIT(JBLK) C ------------------------------------------ C ... PERFORM PARTIAL CHOLESKY FACTORIZATION C ON THE BLOCK. C ------------------------------------------ CxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPC CALL PCHOL ( MM, NN, XPNT(FSTCOL), X, MXDIAG, NTINY, & IFLAG, SMXPY ) IF ( IFLAG .EQ. 1 ) RETURN C ---------------------------------------------- C ... APPLY THE COLUMNS IN JBLK TO ANY COLUMNS C OF THE SUPERNODE REMAINING TO BE COMPUTED. C ---------------------------------------------- NXTCOL = FSTCOL + NN Q = N - NXTCOL + 1 MM = MM - NN JPNT = XPNT(NXTCOL) IF ( Q .GT. 0 ) THEN CALL MMPYN ( MM, NN, Q, XPNT(FSTCOL), X, X(JPNT), MM ) ENDIF FSTCOL = NXTCOL GO TO 100 ENDIF C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C********** CHORDR ..... CHILD REORDERING *********** C*********************************************************************** C*********************************************************************** C C PURPOSE: C REARRANGE THE CHILDREN OF EACH VERTEX SO THAT THE LAST ONE C MAXIMIZES (AMONG THE CHILDREN) THE NUMBER OF NONZEROS IN THE C CORRESPONDING COLUMN OF L. ALSO DETERMINE AN NEW POSTORDERING C BASED ON THE STRUCTURE OF THE MODIFIED ELIMINATION TREE. C C INPUT PARAMETERS: C NEQNS - NUMBER OF EQUATIONS. C (XADJ,ADJNCY) - THE ADJACENCY STRUCTURE. C C UPDATED PARAMETERS: C (PERM,INVP) - ON INPUT, THE GIVEN PERM AND INVERSE PERM C VECTORS. ON OUTPUT, THE NEW PERM AND C INVERSE PERM VECTORS OF THE NEW C POSTORDERING. C COLCNT - COLUMN COUNTS IN L UNDER INITIAL ORDERING; C MODIFIED TO REFLECT THE NEW ORDERING. C C OUTPUT PARAMETERS: C PARENT - THE PARENT VECTOR OF THE ELIMINATION TREE C ASSOCIATED WITH THE NEW ORDERING. C C WORKING PARAMETERS: C FSON - THE FIRST SON VECTOR. C BROTHR - THE BROTHER VECTOR. C INVPOS - THE INVERSE PERM VECTOR FOR THE C POSTORDERING. C C PROGRAM SUBROUTINES: C BTREE2, EPOST2, INVINV. C C*********************************************************************** C SUBROUTINE CHORDR ( NEQNS , XADJ , ADJNCY, PERM , INVP , & COLCNT, PARENT, FSON , BROTHR, INVPOS ) C C*********************************************************************** C INTEGER ADJNCY(*) , BROTHR(*) , & COLCNT(*) , FSON(*) , & INVP(*) , INVPOS(*) , & PARENT(*) , PERM(*) C INTEGER XADJ(*) INTEGER NEQNS C C*********************************************************************** C C ---------------------------------------------------------- C COMPUTE A BINARY REPRESENTATION OF THE ELIMINATION TREE, C SO THAT EACH "LAST CHILD" MAXIMIZES AMONG ITS SIBLINGS THE C NUMBER OF NONZEROS IN THE CORRESPONDING COLUMNS OF L. C ---------------------------------------------------------- CALL BTREE2 ( NEQNS , PARENT, COLCNT, FSON , BROTHR, & INVPOS ) C C ---------------------------------------------------- C POSTORDER THE ELIMINATION TREE (USING THE NEW BINARY C REPRESENTATION. C ---------------------------------------------------- CALL EPOST2 ( NEQNS , FSON , BROTHR, INVPOS, PARENT, & COLCNT, PERM ) C C -------------------------------------------------------- C COMPOSE THE ORIGINAL ORDERING WITH THE NEW POSTORDERING. C -------------------------------------------------------- CALL INVINV ( NEQNS , INVP , INVPOS, PERM ) C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C****** DSCAL1 .... SCALE A VECTOR ************** C*********************************************************************** C*********************************************************************** C C PURPOSE - THIS ROUTINE COMPUTES A <-- AX, WHERE A IS A C SCALAR AND X IS A VECTOR. C C INPUT PARAMETERS - C N - LENGTH OF THE VECTOR X. C A - SCALAR MULIPLIER. C X - VECTOR TO BE SCALED. C C OUTPUT PARAMETERS - C X - REPLACED BY THE SCALED VECTOR, AX. C C*********************************************************************** C SUBROUTINE DSCAL1 ( N, A, X ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- INTEGER N DOUBLE PRECISION A, X(N) C C ---------------- C LOCAL VARIABLES. C ---------------- INTEGER I C C*********************************************************************** C DO 100 I = 1, N X(I) = A * X(I) 100 CONTINUE RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C*************** EPOST2 ..... ETREE POSTORDERING #2 *************** C*********************************************************************** C*********************************************************************** C C PURPOSE: C BASED ON THE BINARY REPRESENTATION (FIRST-SON,BROTHER) OF THE C ELIMINATION TREE, A POSTORDERING IS DETERMINED. THE C CORRESPONDING PARENT AND COLCNT VECTORS ARE ALSO MODIFIED TO C REFLECT THE REORDERING. C C INPUT PARAMETERS: C ROOT - ROOT OF THE ELIMINATION TREE (USUALLY IT C IS NEQNS). C FSON - THE FIRST SON VECTOR. C BROTHR - THE BROTHR VECTOR. C C UPDATED PARAMETERS: C PARENT - THE PARENT VECTOR. C COLCNT - COLUMN NONZERO COUNTS OF THE FACTOR. C C OUTPUT PARAMETERS: C INVPOS - INVERSE PERMUTATION FOR THE POSTORDERING. C C WORKING PARAMETERS: C STACK - THE STACK FOR POSTORDER TRAVERSAL OF THE C TREE. C C*********************************************************************** C SUBROUTINE EPOST2 ( ROOT , FSON , BROTHR, INVPOS, PARENT, & COLCNT, STACK ) C C*********************************************************************** C INTEGER BROTHR(*) , COLCNT(*) , & FSON(*) , INVPOS(*) , & PARENT(*) , STACK(*) C INTEGER ROOT C C*********************************************************************** C INTEGER ITOP , NDPAR , NODE , NUM , NUNODE C C*********************************************************************** C NUM = 0 ITOP = 0 NODE = ROOT C ------------------------------------------------------------- C TRAVERSE ALONG THE FIRST SONS POINTER AND PUSH THE TREE NODES C ALONG THE TRAVERSAL INTO THE STACK. C ------------------------------------------------------------- 100 CONTINUE ITOP = ITOP + 1 STACK(ITOP) = NODE NODE = FSON(NODE) IF ( NODE .GT. 0 ) GO TO 100 C ---------------------------------------------------------- C IF POSSIBLE, POP A TREE NODE FROM THE STACK AND NUMBER IT. C ---------------------------------------------------------- 200 CONTINUE IF ( ITOP .LE. 0 ) GO TO 300 NODE = STACK(ITOP) ITOP = ITOP - 1 NUM = NUM + 1 INVPOS(NODE) = NUM C ---------------------------------------------------- C THEN, TRAVERSE TO ITS YOUNGER BROTHER IF IT HAS ONE. C ---------------------------------------------------- NODE = BROTHR(NODE) IF ( NODE .LE. 0 ) GO TO 200 GO TO 100 C 300 CONTINUE C ------------------------------------------------------------ C DETERMINE THE NEW PARENT VECTOR OF THE POSTORDERING. BROTHR C IS USED TEMPORARILY FOR THE NEW PARENT VECTOR. C ------------------------------------------------------------ DO 400 NODE = 1, NUM NUNODE = INVPOS(NODE) NDPAR = PARENT(NODE) IF ( NDPAR .GT. 0 ) NDPAR = INVPOS(NDPAR) BROTHR(NUNODE) = NDPAR 400 CONTINUE C DO 500 NUNODE = 1, NUM PARENT(NUNODE) = BROTHR(NUNODE) 500 CONTINUE C C ---------------------------------------------- C PERMUTE COLCNT(*) TO REFLECT THE NEW ORDERING. C ---------------------------------------------- DO 600 NODE = 1, NUM NUNODE = INVPOS(NODE) STACK(NUNODE) = COLCNT(NODE) 600 CONTINUE C DO 700 NODE = 1, NUM COLCNT(NODE) = STACK(NODE) 700 CONTINUE C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Joseph W.H. Liu C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C********** ETORDR ..... ELIMINATION TREE REORDERING *********** C*********************************************************************** C*********************************************************************** C C WRITTEN BY JOSEPH LIU (JUL 17, 1985) C C PURPOSE: C TO DETERMINE AN EQUIVALENT REORDERING BASED ON THE STRUCTURE OF C THE ELIMINATION TREE. A POSTORDERING OF THE GIVEN ELIMINATION C TREE IS RETURNED. C C INPUT PARAMETERS: C NEQNS - NUMBER OF EQUATIONS. C (XADJ,ADJNCY) - THE ADJACENCY STRUCTURE. C C UPDATED PARAMETERS: C (PERM,INVP) - ON INPUT, THE GIVEN PERM AND INVERSE PERM C VECTORS. ON OUTPUT, THE NEW PERM AND C INVERSE PERM VECTORS OF THE EQUIVALENT C ORDERING. C C OUTPUT PARAMETERS: C PARENT - THE PARENT VECTOR OF THE ELIMINATION TREE C ASSOCIATED WITH THE NEW ORDERING. C C WORKING PARAMETERS: C FSON - THE FIRST SON VECTOR. C BROTHR - THE BROTHER VECTOR. C INVPOS - THE INVERSE PERM VECTOR FOR THE C POSTORDERING. C C PROGRAM SUBROUTINES: C BETREE, ETPOST, ETREE , INVINV. C C*********************************************************************** C SUBROUTINE ETORDR ( NEQNS , XADJ , ADJNCY, PERM , INVP , & PARENT, FSON , BROTHR, INVPOS ) C C*********************************************************************** C INTEGER ADJNCY(*) , BROTHR(*) , & FSON(*) , INVP(*) , & INVPOS(*) , PARENT(*) , & PERM(*) C INTEGER XADJ(*) INTEGER NEQNS C C*********************************************************************** C C ----------------------------- C COMPUTE THE ELIMINATION TREE. C ----------------------------- CALL ETREE ( NEQNS, XADJ, ADJNCY, PERM, INVP, PARENT, INVPOS ) C C -------------------------------------------------------- C COMPUTE A BINARY REPRESENTATION OF THE ELIMINATION TREE. C -------------------------------------------------------- CALL BETREE ( NEQNS, PARENT, FSON, BROTHR ) C C ------------------------------- C POSTORDER THE ELIMINATION TREE. C ------------------------------- CALL ETPOST ( NEQNS, FSON, BROTHR, INVPOS, PARENT, PERM ) C C -------------------------------------------------------- C COMPOSE THE ORIGINAL ORDERING WITH THE NEW POSTORDERING. C -------------------------------------------------------- CALL INVINV ( NEQNS, INVP, INVPOS, PERM ) C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Joseph W.H. Liu C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C*************** ETPOST ..... ETREE POSTORDERING *************** C*********************************************************************** C*********************************************************************** C C WRITTEN BY JOSEPH LIU (SEPT 17, 1986) C C PURPOSE: C BASED ON THE BINARY REPRESENTATION (FIRST-SON,BROTHER) OF C THE ELIMINATION TREE, A POSTORDERING IS DETERMINED. THE C CORRESPONDING PARENT VECTOR IS ALSO MODIFIED TO REFLECT C THE REORDERING. C C INPUT PARAMETERS: C ROOT - ROOT OF THE ELIMINATION TREE (USUALLY IT C IS NEQNS). C FSON - THE FIRST SON VECTOR. C BROTHR - THE BROTHR VECTOR. C C UPDATED PARAMETERS: C PARENT - THE PARENT VECTOR. C C OUTPUT PARAMETERS: C INVPOS - INVERSE PERMUTATION FOR THE POSTORDERING. C C WORKING PARAMETERS: C STACK - THE STACK FOR POSTORDER TRAVERSAL OF THE C TREE. C C*********************************************************************** C SUBROUTINE ETPOST ( ROOT , FSON , BROTHR, INVPOS, PARENT, & STACK ) C C*********************************************************************** C INTEGER BROTHR(*) , FSON(*) , & INVPOS(*) , PARENT(*) , & STACK(*) C INTEGER ROOT C C*********************************************************************** C INTEGER ITOP , NDPAR , NODE , NUM , NUNODE C C*********************************************************************** C NUM = 0 ITOP = 0 NODE = ROOT C ------------------------------------------------------------- C TRAVERSE ALONG THE FIRST SONS POINTER AND PUSH THE TREE NODES C ALONG THE TRAVERSAL INTO THE STACK. C ------------------------------------------------------------- 100 CONTINUE ITOP = ITOP + 1 STACK(ITOP) = NODE NODE = FSON(NODE) IF ( NODE .GT. 0 ) GO TO 100 C ---------------------------------------------------------- C IF POSSIBLE, POP A TREE NODE FROM THE STACK AND NUMBER IT. C ---------------------------------------------------------- 200 CONTINUE IF ( ITOP .LE. 0 ) GO TO 300 NODE = STACK(ITOP) ITOP = ITOP - 1 NUM = NUM + 1 INVPOS(NODE) = NUM C ---------------------------------------------------- C THEN, TRAVERSE TO ITS YOUNGER BROTHER IF IT HAS ONE. C ---------------------------------------------------- NODE = BROTHR(NODE) IF ( NODE .LE. 0 ) GO TO 200 GO TO 100 C 300 CONTINUE C ------------------------------------------------------------ C DETERMINE THE NEW PARENT VECTOR OF THE POSTORDERING. BROTHR C IS USED TEMPORARILY FOR THE NEW PARENT VECTOR. C ------------------------------------------------------------ DO 400 NODE = 1, NUM NUNODE = INVPOS(NODE) NDPAR = PARENT(NODE) IF ( NDPAR .GT. 0 ) NDPAR = INVPOS(NDPAR) BROTHR(NUNODE) = NDPAR 400 CONTINUE C DO 500 NUNODE = 1, NUM PARENT(NUNODE) = BROTHR(NUNODE) 500 CONTINUE C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Joseph W.H. Liu C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C**************** ETREE ..... ELIMINATION TREE ***************** C*********************************************************************** C*********************************************************************** C C WRITTEN BY JOSEPH LIU (JUL 17, 1985) C C PURPOSE: C TO DETERMINE THE ELIMINATION TREE FROM A GIVEN ORDERING AND C THE ADJACENCY STRUCTURE. THE PARENT VECTOR IS RETURNED. C C INPUT PARAMETERS: C NEQNS - NUMBER OF EQUATIONS. C (XADJ,ADJNCY) - THE ADJACENCY STRUCTURE. C (PERM,INVP) - PERMUTATION AND INVERSE PERMUTATION VECTORS C C OUTPUT PARAMETERS: C PARENT - THE PARENT VECTOR OF THE ELIMINATION TREE. C C WORKING PARAMETERS: C ANCSTR - THE ANCESTOR VECTOR. C C*********************************************************************** C SUBROUTINE ETREE ( NEQNS , XADJ , ADJNCY, PERM , INVP , & PARENT, ANCSTR ) C C*********************************************************************** C INTEGER ADJNCY(*) , ANCSTR(*) , & INVP(*) , PARENT(*) , & PERM(*) C INTEGER NEQNS INTEGER XADJ(*) C C*********************************************************************** C INTEGER I , J , JSTOP , JSTRT , NBR , & NEXT , NODE C C*********************************************************************** C IF ( NEQNS .LE. 0 ) RETURN C DO 400 I = 1, NEQNS PARENT(I) = 0 ANCSTR(I) = 0 NODE = PERM(I) C JSTRT = XADJ(NODE) JSTOP = XADJ(NODE+1) - 1 IF ( JSTRT .LE. JSTOP ) THEN DO 300 J = JSTRT, JSTOP NBR = ADJNCY(J) NBR = INVP(NBR) IF ( NBR .LT. I ) THEN C ------------------------------------------- C FOR EACH NBR, FIND THE ROOT OF ITS CURRENT C ELIMINATION TREE. PERFORM PATH COMPRESSION C AS THE SUBTREE IS TRAVERSED. C ------------------------------------------- 100 CONTINUE IF ( ANCSTR(NBR) .EQ. I ) GO TO 300 IF ( ANCSTR(NBR) .GT. 0 ) THEN NEXT = ANCSTR(NBR) ANCSTR(NBR) = I NBR = NEXT GO TO 100 ENDIF C -------------------------------------------- C NOW, NBR IS THE ROOT OF THE SUBTREE. MAKE I C THE PARENT NODE OF THIS ROOT. C -------------------------------------------- PARENT(NBR) = I ANCSTR(NBR) = I ENDIF 300 CONTINUE ENDIF 400 CONTINUE C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: January 12, 1995 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C************** FCNTHN ..... FIND NONZERO COUNTS *************** C*********************************************************************** C*********************************************************************** C C PURPOSE: C THIS SUBROUTINE DETERMINES THE ROW COUNTS AND COLUMN COUNTS IN C THE CHOLESKY FACTOR. IT USES A DISJOINT SET UNION ALGORITHM. C C TECHNIQUES: C 1) SUPERNODE DETECTION. C 2) PATH HALVING. C 3) NO UNION BY RANK. C C NOTES: C 1) ASSUMES A POSTORDERING OF THE ELIMINATION TREE. C C INPUT PARAMETERS: C (I) NEQNS - NUMBER OF EQUATIONS. C (I) ADJLEN - LENGTH OF ADJACENCY STRUCTURE. C (I) XADJ(*) - ARRAY OF LENGTH NEQNS+1, CONTAINING POINTERS C TO THE ADJACENCY STRUCTURE. C (I) ADJNCY(*) - ARRAY OF LENGTH XADJ(NEQNS+1)-1, CONTAINING C THE ADJACENCY STRUCTURE. C (I) PERM(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE C POSTORDERING. C (I) INVP(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE C INVERSE OF THE POSTORDERING. C (I) ETPAR(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE C ELIMINATION TREE OF THE POSTORDERED MATRIX. C C OUTPUT PARAMETERS: C (I) ROWCNT(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE NUMBER C OF NONZEROS IN EACH ROW OF THE FACTOR, C INCLUDING THE DIAGONAL ENTRY. C (I) COLCNT(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE NUMBER C OF NONZEROS IN EACH COLUMN OF THE FACTOR, C INCLUDING THE DIAGONAL ENTRY. C (I) NLNZ - NUMBER OF NONZEROS IN THE FACTOR, INCLUDING C THE DIAGONAL ENTRIES. C C WORK PARAMETERS: C (I) SET(*) - ARRAY OF LENGTH NEQNS USED TO MAINTAIN THE C DISJOINT SETS (I.E., SUBTREES). C (I) PRVLF(*) - ARRAY OF LENGTH NEQNS USED TO RECORD THE C PREVIOUS LEAF OF EACH ROW SUBTREE. C (I) LEVEL(*) - ARRAY OF LENGTH NEQNS+1 CONTAINING THE LEVEL C (DISTANCE FROM THE ROOT). C (I) WEIGHT(*) - ARRAY OF LENGTH NEQNS+1 CONTAINING WEIGHTS C USED TO COMPUTE COLUMN COUNTS. C (I) FDESC(*) - ARRAY OF LENGTH NEQNS+1 CONTAINING THE C FIRST (I.E., LOWEST-NUMBERED) DESCENDANT. C (I) NCHILD(*) - ARRAY OF LENGTH NEQNS+1 CONTAINING THE C NUMBER OF CHILDREN. C (I) PRVNBR(*) - ARRAY OF LENGTH NEQNS USED TO RECORD THE C PREVIOUS ``LOWER NEIGHBOR'' OF EACH NODE. C C FIRST CREATED ON APRIL 12, 1990. C LAST UPDATED ON JANUARY 12, 1995. C C*********************************************************************** C SUBROUTINE FCNTHN ( NEQNS , ADJLEN, XADJ , ADJNCY, PERM , & INVP , ETPAR , ROWCNT, COLCNT, NLNZ , & SET , PRVLF , LEVEL , WEIGHT, FDESC , & NCHILD, PRVNBR ) C C ----------- C PARAMETERS. C ----------- INTEGER ADJLEN, NEQNS , NLNZ INTEGER ADJNCY(ADJLEN) , COLCNT(NEQNS) , & ETPAR(NEQNS) , FDESC(0:NEQNS), & INVP(NEQNS) , LEVEL(0:NEQNS), & NCHILD(0:NEQNS) , PERM(NEQNS) , & PRVLF(NEQNS) , PRVNBR(NEQNS) , & ROWCNT(NEQNS) , SET(NEQNS) , & WEIGHT(0:NEQNS) INTEGER XADJ(*) C C ---------------- C LOCAL VARIABLES. C ---------------- INTEGER HINBR , IFDESC, J , JSTOP , JSTRT , & K , LAST1 , LAST2 , LCA , LFLAG , & LOWNBR, OLDNBR, PARENT, PLEAF , TEMP , & XSUP C C*********************************************************************** C C -------------------------------------------------- C COMPUTE LEVEL(*), FDESC(*), NCHILD(*). C INITIALIZE XSUP, ROWCNT(*), COLCNT(*), C SET(*), PRVLF(*), WEIGHT(*), PRVNBR(*). C -------------------------------------------------- XSUP = 1 LEVEL(0) = 0 DO 100 K = NEQNS, 1, -1 ROWCNT(K) = 1 COLCNT(K) = 0 SET(K) = K PRVLF(K) = 0 LEVEL(K) = LEVEL(ETPAR(K)) + 1 WEIGHT(K) = 1 FDESC(K) = K NCHILD(K) = 0 PRVNBR(K) = 0 100 CONTINUE NCHILD(0) = 0 FDESC(0) = 0 DO 200 K = 1, NEQNS PARENT = ETPAR(K) WEIGHT(PARENT) = 0 NCHILD(PARENT) = NCHILD(PARENT) + 1 IFDESC = FDESC(K) IF ( IFDESC .LT. FDESC(PARENT) ) THEN FDESC(PARENT) = IFDESC ENDIF 200 CONTINUE C ------------------------------------ C FOR EACH ``LOW NEIGHBOR'' LOWNBR ... C ------------------------------------ DO 600 LOWNBR = 1, NEQNS LFLAG = 0 IFDESC = FDESC(LOWNBR) OLDNBR = PERM(LOWNBR) JSTRT = XADJ(OLDNBR) JSTOP = XADJ(OLDNBR+1) - 1 C ----------------------------------------------- C FOR EACH ``HIGH NEIGHBOR'', HINBR OF LOWNBR ... C ----------------------------------------------- DO 500 J = JSTRT, JSTOP HINBR = INVP(ADJNCY(J)) IF ( HINBR .GT. LOWNBR ) THEN IF ( IFDESC .GT. PRVNBR(HINBR) ) THEN C ------------------------- C INCREMENT WEIGHT(LOWNBR). C ------------------------- WEIGHT(LOWNBR) = WEIGHT(LOWNBR) + 1 PLEAF = PRVLF(HINBR) C ----------------------------------------- C IF HINBR HAS NO PREVIOUS ``LOW NEIGHBOR'' C THEN ... C ----------------------------------------- IF ( PLEAF .EQ. 0 ) THEN C ----------------------------------------- C ... ACCUMULATE LOWNBR-->HINBR PATH LENGTH C IN ROWCNT(HINBR). C ----------------------------------------- ROWCNT(HINBR) = ROWCNT(HINBR) + & LEVEL(LOWNBR) - LEVEL(HINBR) ELSE C ----------------------------------------- C ... OTHERWISE, LCA <-- FIND(PLEAF), WHICH C IS THE LEAST COMMON ANCESTOR OF PLEAF C AND LOWNBR. C (PATH HALVING.) C ----------------------------------------- LAST1 = PLEAF LAST2 = SET(LAST1) LCA = SET(LAST2) 300 CONTINUE IF ( LCA .NE. LAST2 ) THEN SET(LAST1) = LCA LAST1 = LCA LAST2 = SET(LAST1) LCA = SET(LAST2) GO TO 300 ENDIF C ------------------------------------- C ACCUMULATE PLEAF-->LCA PATH LENGTH IN C ROWCNT(HINBR). C DECREMENT WEIGHT(LCA). C ------------------------------------- ROWCNT(HINBR) = ROWCNT(HINBR) & + LEVEL(LOWNBR) - LEVEL(LCA) WEIGHT(LCA) = WEIGHT(LCA) - 1 ENDIF C ---------------------------------------------- C LOWNBR NOW BECOMES ``PREVIOUS LEAF'' OF HINBR. C ---------------------------------------------- PRVLF(HINBR) = LOWNBR LFLAG = 1 ENDIF C -------------------------------------------------- C LOWNBR NOW BECOMES ``PREVIOUS NEIGHBOR'' OF HINBR. C -------------------------------------------------- PRVNBR(HINBR) = LOWNBR ENDIF 500 CONTINUE C ---------------------------------------------------- C DECREMENT WEIGHT ( PARENT(LOWNBR) ). C SET ( P(LOWNBR) ) <-- SET ( P(LOWNBR) ) + SET(XSUP). C ---------------------------------------------------- PARENT = ETPAR(LOWNBR) WEIGHT(PARENT) = WEIGHT(PARENT) - 1 IF ( LFLAG .EQ. 1 .OR. & NCHILD(LOWNBR) .GE. 2 ) THEN XSUP = LOWNBR ENDIF SET(XSUP) = PARENT 600 CONTINUE C --------------------------------------------------------- C USE WEIGHTS TO COMPUTE COLUMN (AND TOTAL) NONZERO COUNTS. C --------------------------------------------------------- NLNZ = 0 DO 700 K = 1, NEQNS TEMP = COLCNT(K) + WEIGHT(K) COLCNT(K) = TEMP NLNZ = NLNZ + TEMP PARENT = ETPAR(K) IF ( PARENT .NE. 0 ) THEN COLCNT(PARENT) = COLCNT(PARENT) + TEMP ENDIF 700 CONTINUE C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: May 26, 1995 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C**** FNSPLT ..... COMPUTE FINE PARTITIONING OF SUPERNODES ***** C*********************************************************************** C*********************************************************************** C C PURPOSE: C THIS SUBROUTINE DETERMINES A FINE PARTITIONING OF SUPERNODES C WHEN THERE IS A CACHE AVAILABLE ON THE MACHINE. THE FINE C PARTITIONING IS CHOSEN SO THAT DATA RE-USE IS MAXIMIZED. C C INPUT PARAMETERS: C NEQNS - NUMBER OF EQUATIONS. C NSUPER - NUMBER OF SUPERNODES. C XSUPER - INTEGER ARRAY OF SIZE (NSUPER+1) CONTAINING C THE SUPERNODE PARTITIONING. C XLINDX - INTEGER ARRAY OF SIZE (NSUPER+1) CONTAINING C POINTERS IN THE SUPERNODE INDICES. C CACHSZ - CACHE SIZE IN KILO BYTES. C IF THERE IS NO CACHE, SET CACHSZ = 0. C C OUTPUT PARAMETERS: C SPLIT - INTEGER ARRAY OF SIZE NEQNS CONTAINING THE C FINE PARTITIONING. C C*********************************************************************** C SUBROUTINE FNSPLT ( NEQNS , NSUPER, XSUPER, XLINDX, & CACHSZ, SPLIT ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- INTEGER CACHSZ, NEQNS , NSUPER INTEGER XSUPER(*), SPLIT(*) INTEGER XLINDX(*) C C ---------------- C LOCAL VARIABLES. C ---------------- INTEGER CACHE , CURCOL, FSTCOL, HEIGHT, KCOL , 1 KSUP , LSTCOL, NCOLS , NXTBLK, USED , 1 WIDTH C C ******************************************************************* C C -------------------------------------------- C COMPUTE THE NUMBER OF 8-BYTE WORDS IN CACHE. C -------------------------------------------- IF ( CACHSZ .LE. 0 ) THEN CACHE = 2 000 000 000 ELSE CACHE = ( FLOAT(CACHSZ) * 1024. / 8. ) * 0.9 ENDIF C C --------------- C INITIALIZATION. C --------------- DO 100 KCOL = 1, NEQNS SPLIT(KCOL) = 0 100 CONTINUE C C --------------------------- C FOR EACH SUPERNODE KSUP ... C --------------------------- DO 1000 KSUP = 1, NSUPER C ----------------------- C ... GET SUPERNODE INFO. C ----------------------- HEIGHT = XLINDX(KSUP+1) - XLINDX(KSUP) FSTCOL = XSUPER(KSUP) LSTCOL = XSUPER(KSUP+1) - 1 WIDTH = LSTCOL - FSTCOL + 1 NXTBLK = FSTCOL C -------------------------------------- C ... UNTIL ALL COLUMNS OF THE SUPERNODE C HAVE BEEN PROCESSED ... C -------------------------------------- CURCOL = FSTCOL - 1 200 CONTINUE C ------------------------------------------- C ... PLACE THE FIRST COLUMN(S) IN THE CACHE. C ------------------------------------------- CURCOL = CURCOL + 1 IF ( CURCOL .LT. LSTCOL ) THEN CURCOL = CURCOL + 1 NCOLS = 2 USED = 4 * HEIGHT - 1 HEIGHT = HEIGHT - 2 ELSE NCOLS = 1 USED = 3 * HEIGHT HEIGHT = HEIGHT - 1 ENDIF C C -------------------------------------- C ... WHILE THE CACHE IS NOT FILLED AND C THERE ARE COLUMNS OF THE SUPERNODE C REMAINING TO BE PROCESSED ... C -------------------------------------- 300 CONTINUE IF ( USED+HEIGHT .LT. CACHE .AND. & CURCOL .LT. LSTCOL ) THEN C -------------------------------- C ... ADD ANOTHER COLUMN TO CACHE. C -------------------------------- CURCOL = CURCOL + 1 NCOLS = NCOLS + 1 USED = USED + HEIGHT HEIGHT = HEIGHT - 1 GO TO 300 ENDIF C ------------------------------------- C ... RECORD THE NUMBER OF COLUMNS THAT C FILLED THE CACHE. C ------------------------------------- SPLIT(NXTBLK) = NCOLS NXTBLK = NXTBLK + 1 C -------------------------- C ... GO PROCESS NEXT BLOCK. C -------------------------- IF ( CURCOL .LT. LSTCOL ) GO TO 200 1000 CONTINUE C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C****** FNTSIZ ..... COMPUTE WORK STORAGE SIZE FOR BLKFCT ****** C*********************************************************************** C*********************************************************************** C C PURPOSE: C THIS SUBROUTINE DETERMINES THE SIZE OF THE WORKING STORAGE C REQUIRED BY BLKFCT. C C INPUT PARAMETERS: C NSUPER - NUMBER OF SUPERNODES. C XSUPER - INTEGER ARRAY OF SIZE (NSUPER+1) CONTAINING C THE SUPERNODE PARTITIONING. C SNODE - SUPERNODE MEMBERSHIP. C (XLINDX,LINDX) - ARRAYS DESCRIBING THE SUPERNODAL STRUCTURE. C C OUTPUT PARAMETERS: C TMPSIZ - SIZE OF WORKING STORAGE REQUIRED BY BLKFCT. C C*********************************************************************** C SUBROUTINE FNTSIZ ( NSUPER, XSUPER, SNODE , XLINDX, & LINDX , TMPSIZ ) C C*********************************************************************** C INTEGER NSUPER, TMPSIZ INTEGER XLINDX(*) , XSUPER(*) INTEGER LINDX (*) , SNODE (*) C INTEGER BOUND , CLEN , CURSUP, I , IBEGIN, IEND , & KSUP , LENGTH, NCOLS , NXTSUP, & TSIZE , WIDTH C C*********************************************************************** C C RETURNS SIZE OF TEMP ARRAY USED BY BLKFCT FACTORIZATION ROUTINE. C NOTE THAT THE VALUE RETURNED IS AN ESTIMATE, THOUGH IT IS USUALLY C TIGHT. C C ---------------------------------------- C COMPUTE SIZE OF TEMPORARY STORAGE VECTOR C NEEDED BY BLKFCT. C ---------------------------------------- TMPSIZ = 0 DO 500 KSUP = NSUPER, 1, -1 NCOLS = XSUPER(KSUP+1) - XSUPER(KSUP) IBEGIN = XLINDX(KSUP) + NCOLS IEND = XLINDX(KSUP+1) - 1 LENGTH = IEND - IBEGIN + 1 BOUND = LENGTH * (LENGTH + 1) / 2 IF ( BOUND .GT. TMPSIZ ) THEN CURSUP = SNODE(LINDX(IBEGIN)) CLEN = XLINDX(CURSUP+1) - XLINDX(CURSUP) WIDTH = 0 DO 400 I = IBEGIN, IEND NXTSUP = SNODE(LINDX(I)) IF ( NXTSUP .EQ. CURSUP ) THEN WIDTH = WIDTH + 1 IF ( I .EQ. IEND ) THEN IF ( CLEN .GT. LENGTH ) THEN TSIZE = LENGTH * WIDTH - & (WIDTH - 1) * WIDTH / 2 TMPSIZ = MAX ( TSIZE , TMPSIZ ) ENDIF ENDIF ELSE IF ( CLEN .GT. LENGTH ) THEN TSIZE = LENGTH * WIDTH - & (WIDTH - 1) * WIDTH / 2 TMPSIZ = MAX ( TSIZE , TMPSIZ ) ENDIF LENGTH = LENGTH - WIDTH BOUND = LENGTH * (LENGTH + 1) / 2 IF ( BOUND .LE. TMPSIZ ) GO TO 500 WIDTH = 1 CURSUP = NXTSUP CLEN = XLINDX(CURSUP+1) - XLINDX(CURSUP) ENDIF 400 CONTINUE ENDIF 500 CONTINUE C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C**************** FSUP1 ..... FIND SUPERNODES #1 ***************** C*********************************************************************** C*********************************************************************** C C PURPOSE: C THIS SUBROUTINE IS THE FIRST OF TWO ROUTINES FOR FINDING A C MAXIMAL SUPERNODE PARTITION. IT RETURNS ONLY THE NUMBER OF C SUPERNODES NSUPER AND THE SUPERNODE MEMBERSHIP VECTOR SNODE(*), C WHICH IS OF LENGTH NEQNS. THE VECTORS OF LENGTH NSUPER ARE C COMPUTED SUBSEQUENTLY BY THE COMPANION ROUTINE FSUP2. C C METHOD AND ASSUMPTIONS: C THIS ROUTINE USES THE ELIMINATION TREE AND THE FACTOR COLUMN C COUNTS TO COMPUTE THE SUPERNODE PARTITION; IT ALSO ASSUMES A C POSTORDERING OF THE ELIMINATION TREE. C C INPUT PARAMETERS: C (I) NEQNS - NUMBER OF EQUATIONS. C (I) ETPAR(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE C ELIMINATION TREE OF THE POSTORDERED MATRIX. C (I) COLCNT(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE C FACTOR COLUMN COUNTS: I.E., THE NUMBER OF C NONZERO ENTRIES IN EACH COLUMN OF L C (INCLUDING THE DIAGONAL ENTRY). C C OUTPUT PARAMETERS: C (I) NOFSUB - NUMBER OF SUBSCRIPTS. C (I) NSUPER - NUMBER OF SUPERNODES (<= NEQNS). C (I) SNODE(*) - ARRAY OF LENGTH NEQNS FOR RECORDING C SUPERNODE MEMBERSHIP. C C FIRST CREATED ON JANUARY 18, 1992. C LAST UPDATED ON NOVEMBER 11, 1994. C C*********************************************************************** C SUBROUTINE FSUP1 ( NEQNS , ETPAR , COLCNT, NOFSUB, NSUPER, & SNODE ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- INTEGER NEQNS , NOFSUB, NSUPER INTEGER COLCNT(*) , ETPAR(*) , & SNODE(*) C C ---------------- C LOCAL VARIABLES. C ---------------- INTEGER KCOL C C*********************************************************************** C C -------------------------------------------- C COMPUTE THE FUNDAMENTAL SUPERNODE PARTITION. C -------------------------------------------- NSUPER = 1 SNODE(1) = 1 NOFSUB = COLCNT(1) DO 300 KCOL = 2, NEQNS IF ( ETPAR(KCOL-1) .EQ. KCOL ) THEN IF ( COLCNT(KCOL-1) .EQ. COLCNT(KCOL)+1 ) THEN SNODE(KCOL) = NSUPER GO TO 300 ENDIF ENDIF NSUPER = NSUPER + 1 SNODE(KCOL) = NSUPER NOFSUB = NOFSUB + COLCNT(KCOL) 300 CONTINUE C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C**************** FSUP2 ..... FIND SUPERNODES #2 ***************** C*********************************************************************** C*********************************************************************** C C PURPOSE: C THIS SUBROUTINE IS THE SECOND OF TWO ROUTINES FOR FINDING A C MAXIMAL SUPERNODE PARTITION. IT'S SOLE PURPOSE IS TO C CONSTRUCT THE NEEDED VECTOR OF LENGTH NSUPER: XSUPER(*). THE C FIRST ROUTINE FSUP1 COMPUTES THE NUMBER OF SUPERNODES AND THE C SUPERNODE MEMBERSHIP VECTOR SNODE(*), WHICH IS OF LENGTH NEQNS. C C C ASSUMPTIONS: C THIS ROUTINE ASSUMES A POSTORDERING OF THE ELIMINATION TREE. IT C ALSO ASSUMES THAT THE OUTPUT FROM FSUP1 IS AVAILABLE. C C INPUT PARAMETERS: C (I) NEQNS - NUMBER OF EQUATIONS. C (I) NSUPER - NUMBER OF SUPERNODES (<= NEQNS). C (I) ETPAR(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE C ELIMINATION TREE OF THE POSTORDERED MATRIX. C (I) SNODE(*) - ARRAY OF LENGTH NEQNS FOR RECORDING C SUPERNODE MEMBERSHIP. C C OUTPUT PARAMETERS: C (I) XSUPER(*) - ARRAY OF LENGTH NSUPER+1, CONTAINING THE C SUPERNODE PARTITIONING. C C FIRST CREATED ON JANUARY 18, 1992. C LAST UPDATED ON NOVEMEBER 22, 1994. C C*********************************************************************** C SUBROUTINE FSUP2 ( NEQNS , NSUPER, ETPAR , SNODE , XSUPER ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- INTEGER NEQNS , NSUPER INTEGER ETPAR(*) , SNODE(*) , & XSUPER(*) C C ---------------- C LOCAL VARIABLES. C ---------------- INTEGER KCOL , KSUP , LSTSUP C C*********************************************************************** C C ------------------------------------------------- C COMPUTE THE SUPERNODE PARTITION VECTOR XSUPER(*). C ------------------------------------------------- LSTSUP = NSUPER + 1 DO 100 KCOL = NEQNS, 1, -1 KSUP = SNODE(KCOL) IF ( KSUP .NE. LSTSUP ) THEN XSUPER(LSTSUP) = KCOL + 1 ENDIF LSTSUP = KSUP 100 CONTINUE XSUPER(1) = 1 C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Joseph W.H. Liu C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = GENMMD C (C) UNIVERSITY OF WATERLOO JANUARY 1984 C*********************************************************************** C*********************************************************************** C**** GENMMD ..... MULTIPLE MINIMUM EXTERNAL DEGREE ************ C*********************************************************************** C*********************************************************************** C C PURPOSE - THIS ROUTINE IMPLEMENTS THE MINIMUM DEGREE C ALGORITHM. IT MAKES USE OF THE IMPLICIT REPRESENTATION C OF ELIMINATION GRAPHS BY QUOTIENT GRAPHS, AND THE C NOTION OF INDISTINGUISHABLE NODES. IT ALSO IMPLEMENTS C THE MODIFICATIONS BY MULTIPLE ELIMINATION AND MINIMUM C EXTERNAL DEGREE. C --------------------------------------------- C CAUTION - THE ADJACENCY VECTOR ADJNCY WILL BE C DESTROYED. C --------------------------------------------- C C INPUT PARAMETERS - C NEQNS - NUMBER OF EQUATIONS. C (XADJ,ADJNCY) - THE ADJACENCY STRUCTURE. C DELTA - TOLERANCE VALUE FOR MULTIPLE ELIMINATION. C MAXINT - MAXIMUM MACHINE REPRESENTABLE (SHORT) INTEGER C (ANY SMALLER ESTIMATE WILL DO) FOR MARKING C NODES. C C OUTPUT PARAMETERS - C PERM - THE MINIMUM DEGREE ORDERING. C INVP - THE INVERSE OF PERM. C NOFSUB - AN UPPER BOUND ON THE NUMBER OF NONZERO C SUBSCRIPTS FOR THE COMPRESSED STORAGE SCHEME. C C WORKING PARAMETERS - C DHEAD - VECTOR FOR HEAD OF DEGREE LISTS. C INVP - USED TEMPORARILY FOR DEGREE FORWARD LINK. C PERM - USED TEMPORARILY FOR DEGREE BACKWARD LINK. C QSIZE - VECTOR FOR SIZE OF SUPERNODES. C LLIST - VECTOR FOR TEMPORARY LINKED LISTS. C MARKER - A TEMPORARY MARKER VECTOR. C C PROGRAM SUBROUTINES - C MMDELM, MMDINT, MMDNUM, MMDUPD. C C*********************************************************************** C SUBROUTINE GENMMD ( NEQNS, XADJ, ADJNCY, INVP, PERM, 1 DELTA, DHEAD, QSIZE, LLIST, MARKER, 1 MAXINT, NOFSUB ) C C*********************************************************************** C INTEGER ADJNCY(*), DHEAD(*) , INVP(*) , LLIST(*) , 1 MARKER(*), PERM(*) , QSIZE(*) INTEGER XADJ(*) INTEGER DELTA , EHEAD , I , MAXINT, MDEG , 1 MDLMT , MDNODE, NEQNS , NEXTMD, NOFSUB, 1 NUM, TAG C C*********************************************************************** C IF ( NEQNS .LE. 0 ) RETURN C C ------------------------------------------------ C INITIALIZATION FOR THE MINIMUM DEGREE ALGORITHM. C ------------------------------------------------ NOFSUB = 0 CALL MMDINT ( NEQNS, XADJ, ADJNCY, DHEAD, INVP, PERM, 1 QSIZE, LLIST, MARKER ) C C ---------------------------------------------- C NUM COUNTS THE NUMBER OF ORDERED NODES PLUS 1. C ---------------------------------------------- NUM = 1 C C ----------------------------- C ELIMINATE ALL ISOLATED NODES. C ----------------------------- NEXTMD = DHEAD(1) 100 CONTINUE IF ( NEXTMD .LE. 0 ) GO TO 200 MDNODE = NEXTMD NEXTMD = INVP(MDNODE) MARKER(MDNODE) = MAXINT INVP(MDNODE) = - NUM NUM = NUM + 1 GO TO 100 C 200 CONTINUE C ---------------------------------------- C SEARCH FOR NODE OF THE MINIMUM DEGREE. C MDEG IS THE CURRENT MINIMUM DEGREE; C TAG IS USED TO FACILITATE MARKING NODES. C ---------------------------------------- IF ( NUM .GT. NEQNS ) GO TO 1000 TAG = 1 DHEAD(1) = 0 MDEG = 2 300 CONTINUE IF ( DHEAD(MDEG) .GT. 0 ) GO TO 400 MDEG = MDEG + 1 GO TO 300 400 CONTINUE C ------------------------------------------------- C USE VALUE OF DELTA TO SET UP MDLMT, WHICH GOVERNS C WHEN A DEGREE UPDATE IS TO BE PERFORMED. C ------------------------------------------------- MDLMT = MDEG + DELTA EHEAD = 0 C 500 CONTINUE MDNODE = DHEAD(MDEG) IF ( MDNODE .GT. 0 ) GO TO 600 MDEG = MDEG + 1 IF ( MDEG .GT. MDLMT ) GO TO 900 GO TO 500 600 CONTINUE C ---------------------------------------- C REMOVE MDNODE FROM THE DEGREE STRUCTURE. C ---------------------------------------- NEXTMD = INVP(MDNODE) DHEAD(MDEG) = NEXTMD IF ( NEXTMD .GT. 0 ) PERM(NEXTMD) = - MDEG INVP(MDNODE) = - NUM NOFSUB = NOFSUB + MDEG + QSIZE(MDNODE) - 2 IF ( NUM+QSIZE(MDNODE) .GT. NEQNS ) GO TO 1000 C ---------------------------------------------- C ELIMINATE MDNODE AND PERFORM QUOTIENT GRAPH C TRANSFORMATION. RESET TAG VALUE IF NECESSARY. C ---------------------------------------------- TAG = TAG + 1 IF ( TAG .LT. MAXINT ) GO TO 800 TAG = 1 DO 700 I = 1, NEQNS IF ( MARKER(I) .LT. MAXINT ) MARKER(I) = 0 700 CONTINUE 800 CONTINUE CALL MMDELM ( MDNODE, XADJ, ADJNCY, DHEAD, INVP, 1 PERM, QSIZE, LLIST, MARKER, MAXINT, 1 TAG ) NUM = NUM + QSIZE(MDNODE) LLIST(MDNODE) = EHEAD EHEAD = MDNODE IF ( DELTA .GE. 0 ) GO TO 500 900 CONTINUE C ------------------------------------------- C UPDATE DEGREES OF THE NODES INVOLVED IN THE C MINIMUM DEGREE NODES ELIMINATION. C ------------------------------------------- IF ( NUM .GT. NEQNS ) GO TO 1000 CALL MMDUPD ( EHEAD, NEQNS, XADJ, ADJNCY, DELTA, MDEG, 1 DHEAD, INVP, PERM, QSIZE, LLIST, MARKER, 1 MAXINT, TAG ) GO TO 300 C 1000 CONTINUE CALL MMDNUM ( NEQNS, PERM, INVP, QSIZE ) RETURN C END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C C GTIMER is commented out for compatibility in the windoze boxes C CC C REAL FUNCTION GTIMER () CC -------------------------- CC FOR IBM RS/6000 ... CC INTEGER MCLOCK CC GTIMER = MCLOCK()/100.0 CC -------------------------- CC FOR MOST BERKELEY UNIX ... C REAL ETIME C REAL VEC(2) C GTIMER = ETIME(VEC) CC -------------------------- CC FOR CRAY ... CC REAL SECOND CC GTIMER = SECOND() CC -------------------------- C RETURN C END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C****** IGATHR .... INTEGER GATHER OPERATION ************** C*********************************************************************** C*********************************************************************** C C PURPOSE - THIS ROUTINE PERFORMS A STANDARD INTEGER GATHER C OPERATION. C C INPUT PARAMETERS - C KLEN - LENGTH OF THE LIST OF GLOBAL INDICES. C LINDX - LIST OF GLOBAL INDICES. C INDMAP - INDEXED BY GLOBAL INDICES, IT CONTAINS THE C REQUIRED RELATIVE INDICES. C C OUTPUT PARAMETERS - C RELIND - LIST RELATIVE INDICES. C C*********************************************************************** C SUBROUTINE IGATHR ( KLEN , LINDX, INDMAP, RELIND ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- INTEGER KLEN INTEGER INDMAP(*), LINDX (*), RELIND(*) C C ---------------- C LOCAL VARIABLES. C ---------------- INTEGER I C C*********************************************************************** C CDIR$ IVDEP DO 100 I = 1, KLEN RELIND(I) = INDMAP(LINDX(I)) 100 CONTINUE RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C C ------------------------------------------------------ C INPUT NUMERICAL VALUES INTO SPARSE DATA STRUCTURES ... C ------------------------------------------------------ C SUBROUTINE INPNV ( NEQNS, XADJF, ADJF, ANZF, PERM, INVP, & NSUPER, XSUPER, XLINDX, LINDX, & XLNZ, LNZ, OFFSET ) C INTEGER XADJF(*), ADJF(*) DOUBLE PRECISION ANZF(*) INTEGER PERM(*), INVP(*) INTEGER NEQNS, NSUPER INTEGER XSUPER(*), XLINDX(*), LINDX(*) INTEGER XLNZ(*) DOUBLE PRECISION LNZ(*) INTEGER OFFSET(*) C INTEGER I, II, J, JLEN, JSUPER, LAST, OLDJ C DO 500 JSUPER = 1, NSUPER C C ---------------------------------------- C FOR EACH SUPERNODE, DO THE FOLLOWING ... C ---------------------------------------- C C ----------------------------------------------- C FIRST GET OFFSET TO FACILITATE NUMERICAL INPUT. C ----------------------------------------------- JLEN = XLINDX(JSUPER+1) - XLINDX(JSUPER) DO 100 II = XLINDX(JSUPER), XLINDX(JSUPER+1)-1 I = LINDX(II) JLEN = JLEN - 1 OFFSET(I) = JLEN 100 CONTINUE C DO 400 J = XSUPER(JSUPER), XSUPER(JSUPER+1)-1 C ----------------------------------------- C FOR EACH COLUMN IN THE CURRENT SUPERNODE, C FIRST INITIALIZE THE DATA STRUCTURE. C ----------------------------------------- DO 200 II = XLNZ(J), XLNZ(J+1)-1 LNZ(II) = 0.0 200 CONTINUE C C ----------------------------------- C NEXT INPUT THE INDIVIDUAL NONZEROS. C ----------------------------------- OLDJ = PERM(J) LAST = XLNZ(J+1) - 1 DO 300 II = XADJF(OLDJ), XADJF(OLDJ+1)-1 I = INVP(ADJF(II)) IF ( I .GE. J ) THEN LNZ(LAST-OFFSET(I)) = ANZF(II) ENDIF 300 CONTINUE 400 CONTINUE C 500 CONTINUE RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Joseph W.H. Liu C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C*********** INVINV ..... CONCATENATION OF TWO INVP ************ C*********************************************************************** C*********************************************************************** C C WRITTEN BY JOSEPH LIU (JUL 17, 1985) C C PURPOSE: C TO PERFORM THE MAPPING OF C ORIGINAL-INVP --> INTERMEDIATE-INVP --> NEW INVP C AND THE RESULTING ORDERING REPLACES INVP. THE NEW PERMUTATION C VECTOR PERM IS ALSO COMPUTED. C C INPUT PARAMETERS: C NEQNS - NUMBER OF EQUATIONS. C INVP2 - THE SECOND INVERSE PERMUTATION VECTOR. C C UPDATED PARAMETERS: C INVP - THE FIRST INVERSE PERMUTATION VECTOR. ON C OUTPUT, IT CONTAINS THE NEW INVERSE C PERMUTATION. C C OUTPUT PARAMETER: C PERM - NEW PERMUTATION VECTOR (CAN BE THE SAME AS C INVP2). C C*********************************************************************** C SUBROUTINE INVINV ( NEQNS , INVP , INVP2 , PERM ) C C*********************************************************************** C INTEGER INVP(*) , INVP2(*) , & PERM(*) C INTEGER NEQNS C C*********************************************************************** C INTEGER I , INTERM, NODE C C*********************************************************************** C DO 100 I = 1, NEQNS INTERM = INVP(I) INVP(I) = INVP2(INTERM) 100 CONTINUE C DO 200 I = 1, NEQNS NODE = INVP(I) PERM(NODE) = I 200 CONTINUE C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C****** LDINDX .... LOAD INDEX VECTOR ************** C*********************************************************************** C*********************************************************************** C C PURPOSE - THIS ROUTINE COMPUTES THE SECOND INDEX VECTOR C USED TO IMPLEMENT THE DOUBLY-INDIRECT SAXPY-LIKE C LOOPS THAT ALLOW US TO ACCUMULATE UPDATE C COLUMNS DIRECTLY INTO FACTOR STORAGE. C C INPUT PARAMETERS - C JLEN - LENGTH OF THE FIRST COLUMN OF THE SUPERNODE, C INCLUDING THE DIAGONAL ENTRY. C LINDX - THE OFF-DIAGONAL ROW INDICES OF THE SUPERNODE, C I.E., THE ROW INDICES OF THE NONZERO ENTRIES C LYING BELOW THE DIAGONAL ENTRY OF THE FIRST C COLUMN OF THE SUPERNODE. C C OUTPUT PARAMETERS - C INDMAP - THIS INDEX VECTOR MAPS EVERY GLOBAL ROW INDEX C OF NONZERO ENTRIES IN THE FIRST COLUMN OF THE C SUPERNODE TO ITS POSITION IN THE INDEX LIST C RELATIVE TO THE LAST INDEX IN THE LIST. MORE C PRECISELY, IT GIVES THE DISTANCE OF EACH INDEX C FROM THE LAST INDEX IN THE LIST. C C*********************************************************************** C SUBROUTINE LDINDX ( JLEN, LINDX, INDMAP ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- INTEGER JLEN INTEGER LINDX(*), INDMAP(*) C C ---------------- C LOCAL VARIABLES. C ---------------- INTEGER CURLEN, J, JSUB C C*********************************************************************** C CURLEN = JLEN DO 200 J = 1, JLEN JSUB = LINDX(J) CURLEN = CURLEN - 1 INDMAP(JSUB) = CURLEN 200 CONTINUE RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C C ----------------------------------------- C GATHER STATISTICS ABOUT FACTORIZATION ... C ----------------------------------------- C SUBROUTINE LSTATS ( NSUPER, XSUPER, XLINDX, LINDX , XLNZ , & TMPSIZ, OUTUNT ) C INTEGER NSUPER, OUTUNT, TMPSIZ INTEGER XSUPER(*), XLINDX(*), LINDX(*), XLNZ(*) C INTEGER J , JLEN , JSIZE , JSUPER, MAXSUP, & N , NCOLS , NOFNZ , NOFSUB, SUPSZE DOUBLE PRECISION FCTOPS, SLVOPS C N = XSUPER(NSUPER+1) - 1 C C WRITE (OUTUNT,*) ' ' C ------------------------------------------------------- C DETERMINE THE NUMBER OF NONZEROS IN CHOLESKY FACTOR AND C THE NUMBER OF SUBSCRIPTS IN REPRESENTING THE SUPERNODAL C STRUCTURE. C ------------------------------------------------------- NOFNZ = XLNZ(N+1) - 1 NOFSUB = XLINDX(NSUPER+1) - 1 C WRITE (OUTUNT,1) C & ' NUMBER OF SUPERNODES = ', NSUPER C WRITE (OUTUNT,1) C & ' NUMBER OF NONZEROS IN L = ', NOFNZ C WRITE (OUTUNT,1) C & ' NUMBER OF SUBSCRIPTS IN L = ', NOFSUB C C ------------------------------------------------------- C DETERMINE THE LARGEST SUPERNODE IN THE CHOLESKY FACTOR. C ------------------------------------------------------- MAXSUP = 0 SUPSZE = 0 DO 100 JSUPER = 1, NSUPER C --------------------------------------------------- C NCOLS IS THE NUMBER OF COLUMNS IN SUPERNODE JSUPER. C --------------------------------------------------- NCOLS = XSUPER(JSUPER+1) - XSUPER(JSUPER) IF ( NCOLS .GT. MAXSUP ) MAXSUP = NCOLS C C ---------------------------------------------------- C JSIZE IS THE NUMBER OF NONZEROS IN SUPERNDOE JSUPER. C ---------------------------------------------------- JLEN = XLINDX(JSUPER+1) - XLINDX(JSUPER) JSIZE = ((2*JLEN - NCOLS + 1)*NCOLS)/2 IF ( JSIZE .GT. SUPSZE ) SUPSZE = JSIZE 100 CONTINUE C WRITE (OUTUNT,1) C & ' LARGEST SUPERNODE BY COLUMNS = ', MAXSUP C WRITE (OUTUNT,1) C & ' LARGEST SUPERNODE BY NONZEROS = ', SUPSZE C C WRITE (OUTUNT,1) C & ' SIZE OF TEMPORARY WORK STORAGE = ', TMPSIZ C C --------------------------- C DETERMINE OPERATION COUNTS. C --------------------------- SLVOPS = 0.0 FCTOPS = 0.0 DO 400 J = 1, N JLEN = XLNZ(J+1) - XLNZ(J) SLVOPS = SLVOPS + 2*JLEN - 1 FCTOPS = FCTOPS + JLEN**2 - 1 400 CONTINUE SLVOPS = 2*SLVOPS C WRITE (OUTUNT,2) C & ' FACTORIZATION OPERATION COUNT = ', FCTOPS C WRITE (OUTUNT,2) C & ' TRIANGULAR SOLN OPERATION COUNT = ', SLVOPS C C 1 FORMAT ( A40, I10 ) C 2 FORMAT ( A40, 1PD20.10 ) RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Joseph W.H. Liu C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = MMDELM C (C) UNIVERSITY OF WATERLOO JANUARY 1984 C*********************************************************************** C*********************************************************************** C** MMDELM ..... MULTIPLE MINIMUM DEGREE ELIMINATION *********** C*********************************************************************** C*********************************************************************** C C PURPOSE - THIS ROUTINE ELIMINATES THE NODE MDNODE OF C MINIMUM DEGREE FROM THE ADJACENCY STRUCTURE, WHICH C IS STORED IN THE QUOTIENT GRAPH FORMAT. IT ALSO C TRANSFORMS THE QUOTIENT GRAPH REPRESENTATION OF THE C ELIMINATION GRAPH. C C INPUT PARAMETERS - C MDNODE - NODE OF MINIMUM DEGREE. C MAXINT - ESTIMATE OF MAXIMUM REPRESENTABLE (SHORT) C INTEGER. C TAG - TAG VALUE. C C UPDATED PARAMETERS - C (XADJ,ADJNCY) - UPDATED ADJACENCY STRUCTURE. C (DHEAD,DFORW,DBAKW) - DEGREE DOUBLY LINKED STRUCTURE. C QSIZE - SIZE OF SUPERNODE. C MARKER - MARKER VECTOR. C LLIST - TEMPORARY LINKED LIST OF ELIMINATED NABORS. C C*********************************************************************** C SUBROUTINE MMDELM ( MDNODE, XADJ, ADJNCY, DHEAD, DFORW, 1 DBAKW, QSIZE, LLIST, MARKER, MAXINT, 1 TAG ) C C*********************************************************************** C INTEGER ADJNCY(*), DBAKW(*) , DFORW(*) , DHEAD(*) , 1 LLIST(*) , MARKER(*), QSIZE(*) INTEGER XADJ(*) INTEGER ELMNT , I , ISTOP , ISTRT , J , 1 JSTOP , JSTRT , LINK , MAXINT, MDNODE, 1 NABOR , NODE , NPV , NQNBRS, NXNODE, 1 PVNODE, RLMT , RLOC , RNODE , TAG , 1 XQNBR C C*********************************************************************** C C ----------------------------------------------- C FIND REACHABLE SET AND PLACE IN DATA STRUCTURE. C ----------------------------------------------- MARKER(MDNODE) = TAG ISTRT = XADJ(MDNODE) ISTOP = XADJ(MDNODE+1) - 1 C ------------------------------------------------------- C ELMNT POINTS TO THE BEGINNING OF THE LIST OF ELIMINATED C NABORS OF MDNODE, AND RLOC GIVES THE STORAGE LOCATION C FOR THE NEXT REACHABLE NODE. C ------------------------------------------------------- ELMNT = 0 RLOC = ISTRT RLMT = ISTOP DO 200 I = ISTRT, ISTOP NABOR = ADJNCY(I) IF ( NABOR .EQ. 0 ) GO TO 300 IF ( MARKER(NABOR) .GE. TAG ) GO TO 200 MARKER(NABOR) = TAG IF ( DFORW(NABOR) .LT. 0 ) GO TO 100 ADJNCY(RLOC) = NABOR RLOC = RLOC + 1 GO TO 200 100 CONTINUE LLIST(NABOR) = ELMNT ELMNT = NABOR 200 CONTINUE 300 CONTINUE C ----------------------------------------------------- C MERGE WITH REACHABLE NODES FROM GENERALIZED ELEMENTS. C ----------------------------------------------------- IF ( ELMNT .LE. 0 ) GO TO 1000 ADJNCY(RLMT) = - ELMNT LINK = ELMNT 400 CONTINUE JSTRT = XADJ(LINK) JSTOP = XADJ(LINK+1) - 1 DO 800 J = JSTRT, JSTOP NODE = ADJNCY(J) LINK = - NODE IF ( NODE ) 400, 900, 500 500 CONTINUE IF ( MARKER(NODE) .GE. TAG .OR. 1 DFORW(NODE) .LT. 0 ) GO TO 800 MARKER(NODE) = TAG C --------------------------------- C USE STORAGE FROM ELIMINATED NODES C IF NECESSARY. C --------------------------------- 600 CONTINUE IF ( RLOC .LT. RLMT ) GO TO 700 LINK = - ADJNCY(RLMT) RLOC = XADJ(LINK) RLMT = XADJ(LINK+1) - 1 GO TO 600 700 CONTINUE ADJNCY(RLOC) = NODE RLOC = RLOC + 1 800 CONTINUE 900 CONTINUE ELMNT = LLIST(ELMNT) GO TO 300 1000 CONTINUE IF ( RLOC .LE. RLMT ) ADJNCY(RLOC) = 0 C -------------------------------------------------------- C FOR EACH NODE IN THE REACHABLE SET, DO THE FOLLOWING ... C -------------------------------------------------------- LINK = MDNODE 1100 CONTINUE ISTRT = XADJ(LINK) ISTOP = XADJ(LINK+1) - 1 DO 1700 I = ISTRT, ISTOP RNODE = ADJNCY(I) LINK = - RNODE IF ( RNODE ) 1100, 1800, 1200 1200 CONTINUE C -------------------------------------------- C IF RNODE IS IN THE DEGREE LIST STRUCTURE ... C -------------------------------------------- PVNODE = DBAKW(RNODE) IF ( PVNODE .EQ. 0 .OR. 1 PVNODE .EQ. (-MAXINT) ) GO TO 1300 C ------------------------------------- C THEN REMOVE RNODE FROM THE STRUCTURE. C ------------------------------------- NXNODE = DFORW(RNODE) IF ( NXNODE .GT. 0 ) DBAKW(NXNODE) = PVNODE IF ( PVNODE .GT. 0 ) DFORW(PVNODE) = NXNODE NPV = - PVNODE IF ( PVNODE .LT. 0 ) DHEAD(NPV) = NXNODE 1300 CONTINUE C ---------------------------------------- C PURGE INACTIVE QUOTIENT NABORS OF RNODE. C ---------------------------------------- JSTRT = XADJ(RNODE) JSTOP = XADJ(RNODE+1) - 1 XQNBR = JSTRT DO 1400 J = JSTRT, JSTOP NABOR = ADJNCY(J) IF ( NABOR .EQ. 0 ) GO TO 1500 IF ( MARKER(NABOR) .GE. TAG ) GO TO 1400 ADJNCY(XQNBR) = NABOR XQNBR = XQNBR + 1 1400 CONTINUE 1500 CONTINUE C ---------------------------------------- C IF NO ACTIVE NABOR AFTER THE PURGING ... C ---------------------------------------- NQNBRS = XQNBR - JSTRT IF ( NQNBRS .GT. 0 ) GO TO 1600 C ----------------------------- C THEN MERGE RNODE WITH MDNODE. C ----------------------------- QSIZE(MDNODE) = QSIZE(MDNODE) + QSIZE(RNODE) QSIZE(RNODE) = 0 MARKER(RNODE) = MAXINT DFORW(RNODE) = - MDNODE DBAKW(RNODE) = - MAXINT GO TO 1700 1600 CONTINUE C -------------------------------------- C ELSE FLAG RNODE FOR DEGREE UPDATE, AND C ADD MDNODE AS A NABOR OF RNODE. C -------------------------------------- DFORW(RNODE) = NQNBRS + 1 DBAKW(RNODE) = 0 ADJNCY(XQNBR) = MDNODE XQNBR = XQNBR + 1 IF ( XQNBR .LE. JSTOP ) ADJNCY(XQNBR) = 0 C 1700 CONTINUE 1800 CONTINUE RETURN C END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Joseph W.H. Liu C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = MMDINT C (C) UNIVERSITY OF WATERLOO JANUARY 1984 C*********************************************************************** C*********************************************************************** C*** MMDINT ..... MULT MINIMUM DEGREE INITIALIZATION *********** C*********************************************************************** C*********************************************************************** C C PURPOSE - THIS ROUTINE PERFORMS INITIALIZATION FOR THE C MULTIPLE ELIMINATION VERSION OF THE MINIMUM DEGREE C ALGORITHM. C C INPUT PARAMETERS - C NEQNS - NUMBER OF EQUATIONS. C (XADJ,ADJNCY) - ADJACENCY STRUCTURE. C C OUTPUT PARAMETERS - C (DHEAD,DFORW,DBAKW) - DEGREE DOUBLY LINKED STRUCTURE. C QSIZE - SIZE OF SUPERNODE (INITIALIZED TO ONE). C LLIST - LINKED LIST. C MARKER - MARKER VECTOR. C C*********************************************************************** C SUBROUTINE MMDINT ( NEQNS, XADJ, ADJNCY, DHEAD, DFORW, 1 DBAKW, QSIZE, LLIST, MARKER ) C C*********************************************************************** C INTEGER ADJNCY(*), DBAKW(*) , DFORW(*) , DHEAD(*) , 1 LLIST(*) , MARKER(*), QSIZE(*) INTEGER XADJ(*) INTEGER FNODE , NDEG , NEQNS , NODE C C*********************************************************************** C DO 100 NODE = 1, NEQNS DHEAD(NODE) = 0 QSIZE(NODE) = 1 MARKER(NODE) = 0 LLIST(NODE) = 0 100 CONTINUE C ------------------------------------------ C INITIALIZE THE DEGREE DOUBLY LINKED LISTS. C ------------------------------------------ DO 200 NODE = 1, NEQNS NDEG = XADJ(NODE+1) - XADJ(NODE) + 1 FNODE = DHEAD(NDEG) DFORW(NODE) = FNODE DHEAD(NDEG) = NODE IF ( FNODE .GT. 0 ) DBAKW(FNODE) = NODE DBAKW(NODE) = - NDEG 200 CONTINUE RETURN C END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Joseph W.H. Liu C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = MMDNUM C (C) UNIVERSITY OF WATERLOO JANUARY 1984 C*********************************************************************** C*********************************************************************** C***** MMDNUM ..... MULTI MINIMUM DEGREE NUMBERING ************* C*********************************************************************** C*********************************************************************** C C PURPOSE - THIS ROUTINE PERFORMS THE FINAL STEP IN C PRODUCING THE PERMUTATION AND INVERSE PERMUTATION C VECTORS IN THE MULTIPLE ELIMINATION VERSION OF THE C MINIMUM DEGREE ORDERING ALGORITHM. C C INPUT PARAMETERS - C NEQNS - NUMBER OF EQUATIONS. C QSIZE - SIZE OF SUPERNODES AT ELIMINATION. C C UPDATED PARAMETERS - C INVP - INVERSE PERMUTATION VECTOR. ON INPUT, C IF QSIZE(NODE)=0, THEN NODE HAS BEEN MERGED C INTO THE NODE -INVP(NODE); OTHERWISE, C -INVP(NODE) IS ITS INVERSE LABELLING. C C OUTPUT PARAMETERS - C PERM - THE PERMUTATION VECTOR. C C*********************************************************************** C SUBROUTINE MMDNUM ( NEQNS, PERM, INVP, QSIZE ) C C*********************************************************************** C INTEGER INVP(*) , PERM(*) , QSIZE(*) INTEGER FATHER, NEQNS , NEXTF , NODE , NQSIZE, 1 NUM , ROOT C C*********************************************************************** C DO 100 NODE = 1, NEQNS NQSIZE = QSIZE(NODE) IF ( NQSIZE .LE. 0 ) PERM(NODE) = INVP(NODE) IF ( NQSIZE .GT. 0 ) PERM(NODE) = - INVP(NODE) 100 CONTINUE C ------------------------------------------------------ C FOR EACH NODE WHICH HAS BEEN MERGED, DO THE FOLLOWING. C ------------------------------------------------------ DO 500 NODE = 1, NEQNS IF ( PERM(NODE) .GT. 0 ) GO TO 500 C ----------------------------------------- C TRACE THE MERGED TREE UNTIL ONE WHICH HAS C NOT BEEN MERGED, CALL IT ROOT. C ----------------------------------------- FATHER = NODE 200 CONTINUE IF ( PERM(FATHER) .GT. 0 ) GO TO 300 FATHER = - PERM(FATHER) GO TO 200 300 CONTINUE C ----------------------- C NUMBER NODE AFTER ROOT. C ----------------------- ROOT = FATHER NUM = PERM(ROOT) + 1 INVP(NODE) = - NUM PERM(ROOT) = NUM C ------------------------ C SHORTEN THE MERGED TREE. C ------------------------ FATHER = NODE 400 CONTINUE NEXTF = - PERM(FATHER) IF ( NEXTF .LE. 0 ) GO TO 500 PERM(FATHER) = - ROOT FATHER = NEXTF GO TO 400 500 CONTINUE C ---------------------- C READY TO COMPUTE PERM. C ---------------------- DO 600 NODE = 1, NEQNS NUM = - INVP(NODE) INVP(NODE) = NUM PERM(NUM) = NODE 600 CONTINUE RETURN C END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Joseph W.H. Liu C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C--- SPARSPAK-A (ANSI FORTRAN) RELEASE III --- NAME = MMDUPD C (C) UNIVERSITY OF WATERLOO JANUARY 1984 C*********************************************************************** C*********************************************************************** C***** MMDUPD ..... MULTIPLE MINIMUM DEGREE UPDATE ************* C*********************************************************************** C*********************************************************************** C C PURPOSE - THIS ROUTINE UPDATES THE DEGREES OF NODES C AFTER A MULTIPLE ELIMINATION STEP. C C INPUT PARAMETERS - C EHEAD - THE BEGINNING OF THE LIST OF ELIMINATED C NODES (I.E., NEWLY FORMED ELEMENTS). C NEQNS - NUMBER OF EQUATIONS. C (XADJ,ADJNCY) - ADJACENCY STRUCTURE. C DELTA - TOLERANCE VALUE FOR MULTIPLE ELIMINATION. C MAXINT - MAXIMUM MACHINE REPRESENTABLE (SHORT) C INTEGER. C C UPDATED PARAMETERS - C MDEG - NEW MINIMUM DEGREE AFTER DEGREE UPDATE. C (DHEAD,DFORW,DBAKW) - DEGREE DOUBLY LINKED STRUCTURE. C QSIZE - SIZE OF SUPERNODE. C LLIST - WORKING LINKED LIST. C MARKER - MARKER VECTOR FOR DEGREE UPDATE. C TAG - TAG VALUE. C C*********************************************************************** C SUBROUTINE MMDUPD ( EHEAD, NEQNS, XADJ, ADJNCY, DELTA, 1 MDEG, DHEAD, DFORW, DBAKW, QSIZE, 1 LLIST, MARKER, MAXINT, TAG ) C C*********************************************************************** C INTEGER ADJNCY(*), DBAKW(*) , DFORW(*) , DHEAD(*) , 1 LLIST(*) , MARKER(*), QSIZE(*) INTEGER XADJ(*) INTEGER DEG , DEG0 , DELTA , EHEAD , ELMNT , 1 ENODE , FNODE , I , IQ2 , ISTOP , 1 ISTRT , J , JSTOP , JSTRT , LINK , 1 MAXINT, MDEG , MDEG0 , MTAG , NABOR , 1 NEQNS , NODE , Q2HEAD, QXHEAD, TAG C C*********************************************************************** C MDEG0 = MDEG + DELTA ELMNT = EHEAD 100 CONTINUE C ------------------------------------------------------- C FOR EACH OF THE NEWLY FORMED ELEMENT, DO THE FOLLOWING. C (RESET TAG VALUE IF NECESSARY.) C ------------------------------------------------------- IF ( ELMNT .LE. 0 ) RETURN MTAG = TAG + MDEG0 IF ( MTAG .LT. MAXINT ) GO TO 300 TAG = 1 DO 200 I = 1, NEQNS IF ( MARKER(I) .LT. MAXINT ) MARKER(I) = 0 200 CONTINUE MTAG = TAG + MDEG0 300 CONTINUE C --------------------------------------------- C CREATE TWO LINKED LISTS FROM NODES ASSOCIATED C WITH ELMNT: ONE WITH TWO NABORS (Q2HEAD) IN C ADJACENCY STRUCTURE, AND THE OTHER WITH MORE C THAN TWO NABORS (QXHEAD). ALSO COMPUTE DEG0, C NUMBER OF NODES IN THIS ELEMENT. C --------------------------------------------- Q2HEAD = 0 QXHEAD = 0 DEG0 = 0 LINK = ELMNT 400 CONTINUE ISTRT = XADJ(LINK) ISTOP = XADJ(LINK+1) - 1 DO 700 I = ISTRT, ISTOP ENODE = ADJNCY(I) LINK = - ENODE IF ( ENODE ) 400, 800, 500 C 500 CONTINUE IF ( QSIZE(ENODE) .EQ. 0 ) GO TO 700 DEG0 = DEG0 + QSIZE(ENODE) MARKER(ENODE) = MTAG C ---------------------------------- C IF ENODE REQUIRES A DEGREE UPDATE, C THEN DO THE FOLLOWING. C ---------------------------------- IF ( DBAKW(ENODE) .NE. 0 ) GO TO 700 C --------------------------------------- C PLACE EITHER IN QXHEAD OR Q2HEAD LISTS. C --------------------------------------- IF ( DFORW(ENODE) .EQ. 2 ) GO TO 600 LLIST(ENODE) = QXHEAD QXHEAD = ENODE GO TO 700 600 CONTINUE LLIST(ENODE) = Q2HEAD Q2HEAD = ENODE 700 CONTINUE 800 CONTINUE C -------------------------------------------- C FOR EACH ENODE IN Q2 LIST, DO THE FOLLOWING. C -------------------------------------------- ENODE = Q2HEAD IQ2 = 1 900 CONTINUE IF ( ENODE .LE. 0 ) GO TO 1500 IF ( DBAKW(ENODE) .NE. 0 ) GO TO 2200 TAG = TAG + 1 DEG = DEG0 C ------------------------------------------ C IDENTIFY THE OTHER ADJACENT ELEMENT NABOR. C ------------------------------------------ ISTRT = XADJ(ENODE) NABOR = ADJNCY(ISTRT) IF ( NABOR .EQ. ELMNT ) NABOR = ADJNCY(ISTRT+1) C ------------------------------------------------ C IF NABOR IS UNELIMINATED, INCREASE DEGREE COUNT. C ------------------------------------------------ LINK = NABOR IF ( DFORW(NABOR) .LT. 0 ) GO TO 1000 DEG = DEG + QSIZE(NABOR) GO TO 2100 1000 CONTINUE C -------------------------------------------- C OTHERWISE, FOR EACH NODE IN THE 2ND ELEMENT, C DO THE FOLLOWING. C -------------------------------------------- ISTRT = XADJ(LINK) ISTOP = XADJ(LINK+1) - 1 DO 1400 I = ISTRT, ISTOP NODE = ADJNCY(I) LINK = - NODE IF ( NODE .EQ. ENODE ) GO TO 1400 IF ( NODE ) 1000, 2100, 1100 C 1100 CONTINUE IF ( QSIZE(NODE) .EQ. 0 ) GO TO 1400 IF ( MARKER(NODE) .GE. TAG ) GO TO 1200 C ------------------------------------- C CASE WHEN NODE IS NOT YET CONSIDERED. C ------------------------------------- MARKER(NODE) = TAG DEG = DEG + QSIZE(NODE) GO TO 1400 1200 CONTINUE C ---------------------------------------- C CASE WHEN NODE IS INDISTINGUISHABLE FROM C ENODE. MERGE THEM INTO A NEW SUPERNODE. C ---------------------------------------- IF ( DBAKW(NODE) .NE. 0 ) GO TO 1400 IF ( DFORW(NODE) .NE. 2 ) GO TO 1300 QSIZE(ENODE) = QSIZE(ENODE) + 1 QSIZE(NODE) QSIZE(NODE) = 0 MARKER(NODE) = MAXINT DFORW(NODE) = - ENODE DBAKW(NODE) = - MAXINT GO TO 1400 1300 CONTINUE C -------------------------------------- C CASE WHEN NODE IS OUTMATCHED BY ENODE. C -------------------------------------- IF ( DBAKW(NODE) .EQ.0 ) 1 DBAKW(NODE) = - MAXINT 1400 CONTINUE GO TO 2100 1500 CONTINUE C ------------------------------------------------ C FOR EACH ENODE IN THE QX LIST, DO THE FOLLOWING. C ------------------------------------------------ ENODE = QXHEAD IQ2 = 0 1600 CONTINUE IF ( ENODE .LE. 0 ) GO TO 2300 IF ( DBAKW(ENODE) .NE. 0 ) GO TO 2200 TAG = TAG + 1 DEG = DEG0 C --------------------------------- C FOR EACH UNMARKED NABOR OF ENODE, C DO THE FOLLOWING. C --------------------------------- ISTRT = XADJ(ENODE) ISTOP = XADJ(ENODE+1) - 1 DO 2000 I = ISTRT, ISTOP NABOR = ADJNCY(I) IF ( NABOR .EQ. 0 ) GO TO 2100 IF ( MARKER(NABOR) .GE. TAG ) GO TO 2000 MARKER(NABOR) = TAG LINK = NABOR C ------------------------------ C IF UNELIMINATED, INCLUDE IT IN C DEG COUNT. C ------------------------------ IF ( DFORW(NABOR) .LT. 0 ) GO TO 1700 DEG = DEG + QSIZE(NABOR) GO TO 2000 1700 CONTINUE C ------------------------------- C IF ELIMINATED, INCLUDE UNMARKED C NODES IN THIS ELEMENT INTO THE C DEGREE COUNT. C ------------------------------- JSTRT = XADJ(LINK) JSTOP = XADJ(LINK+1) - 1 DO 1900 J = JSTRT, JSTOP NODE = ADJNCY(J) LINK = - NODE IF ( NODE ) 1700, 2000, 1800 C 1800 CONTINUE IF ( MARKER(NODE) .GE. TAG ) 1 GO TO 1900 MARKER(NODE) = TAG DEG = DEG + QSIZE(NODE) 1900 CONTINUE 2000 CONTINUE 2100 CONTINUE C ------------------------------------------- C UPDATE EXTERNAL DEGREE OF ENODE IN DEGREE C STRUCTURE, AND MDEG (MIN DEG) IF NECESSARY. C ------------------------------------------- DEG = DEG - QSIZE(ENODE) + 1 FNODE = DHEAD(DEG) DFORW(ENODE) = FNODE DBAKW(ENODE) = - DEG IF ( FNODE .GT. 0 ) DBAKW(FNODE) = ENODE DHEAD(DEG) = ENODE IF ( DEG .LT. MDEG ) MDEG = DEG 2200 CONTINUE C ---------------------------------- C GET NEXT ENODE IN CURRENT ELEMENT. C ---------------------------------- ENODE = LLIST(ENODE) IF ( IQ2 .EQ. 1 ) GO TO 900 GO TO 1600 2300 CONTINUE C ----------------------------- C GET NEXT ELEMENT IN THE LIST. C ----------------------------- TAG = MTAG ELMNT = LLIST(ELMNT) GO TO 100 C END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C************** MMPY .... MATRIX-MATRIX MULTIPLY ************** C*********************************************************************** C*********************************************************************** C C PURPOSE - C THIS ROUTINE PERFORMS A MATRIX-MATRIX MULTIPLY, Y = Y + XA, C ASSUMING DATA STRUCTURES USED IN SOME OF OUR SPARSE CHOLESKY C CODES. C C INPUT PARAMETERS - C M - NUMBER OF ROWS IN X AND IN Y. C N - NUMBER OF COLUMNS IN X AND NUMBER OF ROWS C IN A. C Q - NUMBER OF COLUMNS IN A AND Y. C SPLIT(*) - BLOCK PARTITIONING OF X. C XPNT(*) - XPNT(J+1) POINTS ONE LOCATION BEYOND THE C END OF THE J-TH COLUMN OF X. XPNT IS ALSO C USED TO ACCESS THE ROWS OF A. C X(*) - CONTAINS THE COLUMNS OF X AND THE ROWS OF A. C LDY - LENGTH OF FIRST COLUMN OF Y. C MMPYN - EXTERNAL ROUTINE: MATRIX-MATRIX MULTIPLY, C WITH LEVEL N LOOP UNROLLING. C C UPDATED PARAMETERS - C Y(*) - ON OUTPUT, Y = Y + AX. C C*********************************************************************** C SUBROUTINE MMPY ( M , N , Q , SPLIT , XPNT , & X , Y , LDY , MMPYN ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- C EXTERNAL MMPYN INTEGER LDY , M , N , Q INTEGER SPLIT(*) , XPNT(*) DOUBLE PRECISION X(*) , Y(*) C C ---------------- C LOCAL VARIABLES. C ---------------- C INTEGER BLK , FSTCOL, NN C C*********************************************************************** C BLK = 1 FSTCOL = 1 100 CONTINUE IF ( FSTCOL .LE. N ) THEN NN = SPLIT(BLK) CALL MMPYN ( M, NN, Q, XPNT(FSTCOL), X, Y, LDY ) FSTCOL = FSTCOL + NN BLK = BLK + 1 GO TO 100 ENDIF RETURN C END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C************* MMPY1 .... MATRIX-MATRIX MULTIPLY ************** C*********************************************************************** C*********************************************************************** C C PURPOSE - C THIS ROUTINE PERFORMS A MATRIX-MATRIX MULTIPLY, Y = Y + XA, C ASSUMING DATA STRUCTURES USED IN SOME OF OUR SPARSE CHOLESKY C CODES. C C LOOP UNROLLING: LEVEL 1 C C INPUT PARAMETERS - C M - NUMBER OF ROWS IN X AND IN Y. C N - NUMBER OF COLUMNS IN X AND NUMBER OF ROWS C IN A. C Q - NUMBER OF COLUMNS IN A AND Y. C XPNT(*) - XPNT(J+1) POINTS ONE LOCATION BEYOND THE C END OF THE J-TH COLUMN OF X. XPNT IS ALSO C USED TO ACCESS THE ROWS OF A. C X(*) - CONTAINS THE COLUMNS OF X AND THE ROWS OF A. C LDY - LENGTH OF FIRST COLUMN OF Y. C C UPDATED PARAMETERS - C Y(*) - ON OUTPUT, Y = Y + AX. C C*********************************************************************** C SUBROUTINE MMPY1 ( M , N , Q , XPNT , X , & Y , LDY ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- C INTEGER LDY , M , N , Q INTEGER XPNT(*) DOUBLE PRECISION X(*) , Y(*) C C ---------------- C LOCAL VARIABLES. C ---------------- C INTEGER I1 INTEGER IY , IYLAST, IYSTRT, IYSTOP, LENY , & MM , XCOL , YCOL DOUBLE PRECISION A1 C C*********************************************************************** C MM = M IYLAST = 0 LENY = LDY C ------------------------------------ C TO COMPUTE EACH COLUMN YCOL OF Y ... C ------------------------------------ DO 300 YCOL = 1, Q IYSTRT = IYLAST + 1 IYSTOP = IYSTRT + MM - 1 IYLAST = IYLAST + LENY C -------------------------------------------------- C ... PERFORM THE APPROPRATE MATRIX VECTOR MULTIPLY: C X * A(*,YCOL). C -------------------------------------------------- DO 200 XCOL = 1, N I1 = XPNT(XCOL+1) - MM A1 = - X(I1) DO 100 IY = IYSTRT, IYSTOP Y(IY) = Y(IY) + A1 * X(I1) I1 = I1 + 1 100 CONTINUE 200 CONTINUE MM = MM - 1 LENY = LENY - 1 300 CONTINUE C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: May 26, 1995 C Authors: Esmond G. Ng, Barry W. Peyton, and Guodong Zhang C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C************* MMPY2 .... MATRIX-MATRIX MULTIPLY ************** C*********************************************************************** C*********************************************************************** C C PURPOSE - C THIS ROUTINE PERFORMS A MATRIX-MATRIX MULTIPLY, Y = Y + XA, C ASSUMING DATA STRUCTURES USED IN SOME OF OUR SPARSE CHOLESKY C CODES. C C LOOP UNROLLING: LEVEL 2 UPDATING TWO COLUMNS AT A TIME C C INPUT PARAMETERS - C M - NUMBER OF ROWS IN X AND IN Y. C N - NUMBER OF COLUMNS IN X AND NUMBER OF ROWS C IN A. C Q - NUMBER OF COLUMNS IN A AND Y. C XPNT(*) - XPNT(J+1) POINTS ONE LOCATION BEYOND THE C END OF THE J-TH COLUMN OF X. XPNT IS ALSO C USED TO ACCESS THE ROWS OF A. C X(*) - CONTAINS THE COLUMNS OF X AND THE ROWS OF A. C LDY - LENGTH OF FIRST COLUMN OF Y. C C UPDATED PARAMETERS - C Y(*) - ON OUTPUT, Y = Y + AX. C C*********************************************************************** C SUBROUTINE MMPY2 ( M , N , Q , XPNT , X , & Y , LDY ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- C INTEGER LDY , M , N , Q INTEGER XPNT(*) DOUBLE PRECISION X(*) , Y(*) C C ---------------- C LOCAL VARIABLES. C ---------------- C INTEGER I , J , K , QQ INTEGER I1 , I2 INTEGER IYBEG , IYBEG1, IYBEG2, LENY , MM DOUBLE PRECISION A1 , A2 , A9 , A10 DOUBLE PRECISION B1 , B2 , Y1 , Y2 C C*********************************************************************** C C ---------------------------------------------------- C COMPUTE EACH DIAGONAL ENTRY OF THE ODD COLUMNS OF Y. C ---------------------------------------------------- C MM = M QQ = MIN(M,Q) IYBEG = 1 LENY = LDY - 1 DO 200 J = 1, QQ-1 , 2 CDIR$ IVDEP DO 100 I = 1, N I1 = XPNT(I+1) - MM A1 = X(I1) Y(IYBEG) = Y(IYBEG) - A1*A1 100 CONTINUE IYBEG = IYBEG + 2*LENY + 1 LENY = LENY - 2 MM = MM - 2 200 CONTINUE C C ------------------------------------------------------- C UPDATE TWO COLUMNS OF Y AT A TIME, EXCEPT THE DIAGONAL C ELEMENT. C NOTE: THE DIAGONAL ELEMENT OF THE ODD COLUMN HAS C BEEN COMPUTED, SO WE COMPUTE THE SAME NUMBER OF C ELEMENTS FOR THE TWO COLUMNS. C ------------------------------------------------------- C MM = M IYBEG = 1 LENY = LDY - 1 C DO 600 J = 1, QQ-1, 2 C IYBEG1 = IYBEG IYBEG2 = IYBEG + LENY C DO 400 K = 1, N-1, 2 C C --------------------------------- C TWO COLUMNS UPDATING TWO COLUMNS. C --------------------------------- C I1 = XPNT(K+1) - MM I2 = XPNT(K+2) - MM A1 = X(I1) A2 = X(I2) A9 = X(I1+1) A10 = X(I2+1) C Y(IYBEG1+1) = Y(IYBEG1+1) - & A1*A9 - A2*A10 C Y(IYBEG2+1) = Y(IYBEG2+1) - & A9*A9 - A10*A10 C DO 300 I = 2, MM-1 Y1 = Y(IYBEG1+I) B1 = X(I1+I) Y1 = Y1 - B1 * A1 Y2 = Y(IYBEG2+I) B2 = X(I2+I) Y2 = Y2 - B1 * A9 Y1 = Y1 - B2 * A2 Y(IYBEG1+I) = Y1 Y2 = Y2 - B2 * A10 Y(IYBEG2+I) = Y2 300 CONTINUE C 400 CONTINUE C C ----------------------------- C BOUNDARY CODE FOR THE K LOOP. C ----------------------------- C IF ( K .EQ. N ) THEN C C -------------------------------- C ONE COLUMN UPDATING TWO COLUMNS. C -------------------------------- C I1 = XPNT(K+1) - MM A1 = X(I1) A9 = X(I1+1) C Y(IYBEG1+1) = Y(IYBEG1+1) - & A1*A9 C Y(IYBEG2+1) = Y(IYBEG2+1) - & A9*A9 C DO 500 I = 2, MM-1 Y1 = Y(IYBEG1+I) B1 = X(I1+I) Y1 = Y1 - B1 * A1 Y2 = Y(IYBEG2+I) Y(IYBEG1+I) = Y1 Y2 = Y2 - B1 * A9 Y(IYBEG2+I) = Y2 500 CONTINUE C ENDIF C C ----------------------------------------------- C PREPARE FOR NEXT PAIR OF COLUMNS TO BE UPDATED. C ----------------------------------------------- C MM = MM - 2 IYBEG = IYBEG2 + LENY + 1 LENY = LENY - 2 C 600 CONTINUE C C ------------------------------------------------------ C BOUNDARY CODE FOR J LOOP: EXECUTED WHENEVER Q IS ODD. C ------------------------------------------------------ C IF ( J .EQ. QQ ) THEN CALL SMXPY2 ( MM, N, Y(IYBEG), XPNT, X ) ENDIF C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: May 26, 1995 C Authors: Esmond G. Ng, Barry W. Peyton, and Guodong Zhang C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C************* MMPY4 .... MATRIX-MATRIX MULTIPLY ************** C*********************************************************************** C*********************************************************************** C C PURPOSE - C THIS ROUTINE PERFORMS A MATRIX-MATRIX MULTIPLY, Y = Y + XA, C ASSUMING DATA STRUCTURES USED IN SOME OF OUR SPARSE CHOLESKY C CODES. C C LOOP UNROLLING: LEVEL 4 UPDATING TWO COLUMNS AT A TIME C C INPUT PARAMETERS - C M - NUMBER OF ROWS IN X AND IN Y. C N - NUMBER OF COLUMNS IN X AND NUMBER OF ROWS C IN A. C Q - NUMBER OF COLUMNS IN A AND Y. C XPNT(*) - XPNT(J+1) POINTS ONE LOCATION BEYOND THE C END OF THE J-TH COLUMN OF X. XPNT IS ALSO C USED TO ACCESS THE ROWS OF A. C X(*) - CONTAINS THE COLUMNS OF X AND THE ROWS OF A. C LDY - LENGTH OF FIRST COLUMN OF Y. C C UPDATED PARAMETERS - C Y(*) - ON OUTPUT, Y = Y + AX. C C*********************************************************************** C SUBROUTINE MMPY4 ( M , N , Q , XPNT , X , & Y , LDY ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- C INTEGER LDY , M , N , Q INTEGER XPNT(*) DOUBLE PRECISION X(*) , Y(*) C C ---------------- C LOCAL VARIABLES. C ---------------- C INTEGER I , J , K , QQ INTEGER I1 , I2 , I3 , I4 INTEGER IYBEG , IYBEG1, IYBEG2, LENY , MM DOUBLE PRECISION A1 , A2 , A3 , A4 , A9 , & A10 , A11 , A12 DOUBLE PRECISION B1 , B2 , B3 , B4 , Y1 , & Y2 C C*********************************************************************** C C ---------------------------------------------------- C COMPUTE EACH DIAGONAL ENTRY OF THE ODD COLUMNS OF Y. C ---------------------------------------------------- C MM = M QQ = MIN(M,Q) IYBEG = 1 LENY = LDY - 1 DO 200 J = 1, QQ-1, 2 CDIR$ IVDEP DO 100 I = 1, N I1 = XPNT(I+1) - MM A1 = X(I1) Y(IYBEG) = Y(IYBEG) - A1*A1 100 CONTINUE IYBEG = IYBEG + 2*LENY + 1 LENY = LENY - 2 MM = MM - 2 200 CONTINUE C C ------------------------------------------------------- C UPDATE TWO COLUMNS OF Y AT A TIME, EXCEPT THE DIAGONAL C ELEMENT. C NOTE: THE DIAGONAL ELEMENT OF THE ODD COLUMN HAS C BEEN COMPUTED, SO WE COMPUTE THE SAME NUMBER OF C ELEMENTS FOR THE TWO COLUMNS. C ------------------------------------------------------- C MM = M IYBEG = 1 LENY = LDY - 1 C DO 2000 J = 1, QQ-1, 2 C IYBEG1 = IYBEG IYBEG2 = IYBEG + LENY C DO 400 K = 1, N-3, 4 C C ---------------------------------- C FOUR COLUMNS UPDATING TWO COLUMNS. C ---------------------------------- C I1 = XPNT(K+1) - MM I2 = XPNT(K+2) - MM I3 = XPNT(K+3) - MM I4 = XPNT(K+4) - MM A1 = X(I1) A2 = X(I2) A3 = X(I3) A4 = X(I4) A9 = X(I1+1) A10 = X(I2+1) A11 = X(I3+1) A12 = X(I4+1) C Y(IYBEG1+1) = Y(IYBEG1+1) - & A1*A9 - A2*A10 - A3*A11 - A4*A12 C Y(IYBEG2+1) = Y(IYBEG2+1) - & A9*A9 - A10*A10 - A11*A11 - A12*A12 C DO 300 I = 2, MM-1 Y1 = Y(IYBEG1+I) B1 = X(I1+I) Y1 = Y1 - B1 * A1 Y2 = Y(IYBEG2+I) B2 = X(I2+I) Y2 = Y2 - B1 * A9 Y1 = Y1 - B2 * A2 B3 = X(I3+I) Y2 = Y2 - B2 * A10 Y1 = Y1 - B3 * A3 B4 = X(I4+I) Y2 = Y2 - B3 * A11 Y1 = Y1 - B4 * A4 Y(IYBEG1+I) = Y1 Y2 = Y2 - B4 * A12 Y(IYBEG2+I) = Y2 300 CONTINUE C 400 CONTINUE C C ----------------------------- C BOUNDARY CODE FOR THE K LOOP. C ----------------------------- C GO TO ( 1100, 900, 700, 500 ), N-K+2 C 500 CONTINUE C C ----------------------------------- C THREE COLUMNS UPDATING TWO COLUMNS. C ----------------------------------- C I1 = XPNT(K+1) - MM I2 = XPNT(K+2) - MM I3 = XPNT(K+3) - MM A1 = X(I1) A2 = X(I2) A3 = X(I3) A9 = X(I1+1) A10 = X(I2+1) A11 = X(I3+1) C Y(IYBEG1+1) = Y(IYBEG1+1) - & A1*A9 - A2*A10 - A3*A11 C Y(IYBEG2+1) = Y(IYBEG2+1) - & A9*A9 - A10*A10 - A11*A11 C DO 600 I = 2, MM-1 Y1 = Y(IYBEG1+I) B1 = X(I1+I) Y1 = Y1 - B1 * A1 Y2 = Y(IYBEG2+I) B2 = X(I2+I) Y2 = Y2 - B1 * A9 Y1 = Y1 - B2 * A2 B3 = X(I3+I) Y2 = Y2 - B2 * A10 Y1 = Y1 - B3 * A3 Y(IYBEG1+I) = Y1 Y2 = Y2 - B3 * A11 Y(IYBEG2+I) = Y2 600 CONTINUE C GO TO 1100 C 700 CONTINUE C C --------------------------------- C TWO COLUMNS UPDATING TWO COLUMNS. C --------------------------------- C I1 = XPNT(K+1) - MM I2 = XPNT(K+2) - MM A1 = X(I1) A2 = X(I2) A9 = X(I1+1) A10 = X(I2+1) Y(IYBEG1+1) = Y(IYBEG1+1) - & A1*A9 - A2*A10 Y(IYBEG2+1) = Y(IYBEG2+1) - & A9*A9 - A10*A10 DO 800 I = 2, MM-1 Y1 = Y(IYBEG1+I) B1 = X(I1+I) Y1 = Y1 - B1 * A1 Y2 = Y(IYBEG2+I) B2 = X(I2+I) Y2 = Y2 - B1 * A9 Y1 = Y1 - B2 * A2 Y(IYBEG1+I) = Y1 Y2 = Y2 - B2 * A10 Y(IYBEG2+I) = Y2 800 CONTINUE C GO TO 1100 C 900 CONTINUE C C -------------------------------- C ONE COLUMN UPDATING TWO COLUMNS. C -------------------------------- C I1 = XPNT(K+1) - MM A1 = X(I1) A9 = X(I1+1) C Y(IYBEG1+1) = Y(IYBEG1+1) - & A1*A9 C Y(IYBEG2+1) = Y(IYBEG2+1) - & A9*A9 C DO 1000 I = 2, MM-1 Y1 = Y(IYBEG1+I) B1 = X(I1+I) Y1 = Y1 - B1 * A1 Y2 = Y(IYBEG2+I) Y(IYBEG1+I) = Y1 Y2 = Y2 - B1 * A9 Y(IYBEG2+I) = Y2 1000 CONTINUE C GO TO 1100 C C ----------------------------------------------- C PREPARE FOR NEXT PAIR OF COLUMNS TO BE UPDATED. C ----------------------------------------------- C 1100 CONTINUE MM = MM - 2 IYBEG = IYBEG2 + LENY + 1 LENY = LENY - 2 C 2000 CONTINUE C C ------------------------------------------------------ C BOUNDARY CODE FOR J LOOP: EXECUTED WHENEVER Q IS ODD. C ------------------------------------------------------ C IF ( J .EQ. QQ ) THEN CALL SMXPY4 ( MM, N, Y(IYBEG), XPNT, X ) ENDIF C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: May 26, 1995 C Authors: Esmond G. Ng, Barry W. Peyton, and Guodong Zhang C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C************* MMPY8 .... MATRIX-MATRIX MULTIPLY ************** C*********************************************************************** C*********************************************************************** C C PURPOSE - C THIS ROUTINE PERFORMS A MATRIX-MATRIX MULTIPLY, Y = Y + XA, C ASSUMING DATA STRUCTURES USED IN SOME OF OUR SPARSE CHOLESKY C CODES. C C LOOP UNROLLING: LEVEL 8 UPDATING TWO COLUMNS AT A TIME C C INPUT PARAMETERS - C M - NUMBER OF ROWS IN X AND IN Y. C N - NUMBER OF COLUMNS IN X AND NUMBER OF ROWS C IN A. C Q - NUMBER OF COLUMNS IN A AND Y. C XPNT(*) - XPNT(J+1) POINTS ONE LOCATION BEYOND THE C END OF THE J-TH COLUMN OF X. XPNT IS ALSO C USED TO ACCESS THE ROWS OF A. C X(*) - CONTAINS THE COLUMNS OF X AND THE ROWS OF A. C LDY - LENGTH OF FIRST COLUMN OF Y. C C UPDATED PARAMETERS - C Y(*) - ON OUTPUT, Y = Y + AX. C C*********************************************************************** C SUBROUTINE MMPY8 ( M , N , Q , XPNT , X , & Y , LDY ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- C INTEGER LDY , M , N , Q INTEGER XPNT(*) DOUBLE PRECISION X(*) , Y(*) C C ---------------- C LOCAL VARIABLES. C ---------------- C INTEGER I , J , K , QQ INTEGER I1 , I2 , I3 , I4 , I5 , & I6 , I7 , I8 INTEGER IYBEG , IYBEG1, IYBEG2, LENY , MM DOUBLE PRECISION A1 , A2 , A3 , A4 , A5 , & A6 , A7 , A8 , A9 , A10 , & A11 , A12 , A13 , A14 , A15 , & A16 DOUBLE PRECISION B1 , B2 , B3 , B4 , B5 , & B6 , B7 , B8 , Y1 , Y2 C C*********************************************************************** C C ---------------------------------------------------- C COMPUTE EACH DIAGONAL ENTRY OF THE ODD COLUMNS OF Y. C ---------------------------------------------------- C MM = M QQ = MIN(M,Q) IYBEG = 1 LENY = LDY - 1 DO 200 J = 1, QQ-1 , 2 CDIR$ IVDEP DO 100 I = 1, N I1 = XPNT(I+1) - MM A1 = X(I1) Y(IYBEG) = Y(IYBEG) - A1*A1 100 CONTINUE IYBEG = IYBEG + 2*LENY + 1 LENY = LENY - 2 MM = MM - 2 200 CONTINUE C C ------------------------------------------------------- C UPDATE TWO COLUMNS OF Y AT A TIME, EXCEPT THE DIAGONAL C ELEMENT. C NOTE: THE DIAGONAL ELEMENT OF THE ODD COLUMN HAS C BEEN COMPUTED, SO WE COMPUTE THE SAME NUMBER OF C ELEMENTS FOR THE TWO COLUMNS. C ------------------------------------------------------- C MM = M IYBEG = 1 LENY = LDY - 1 C DO 3000 J = 1, QQ-1, 2 C IYBEG1 = IYBEG IYBEG2 = IYBEG + LENY C DO 400 K = 1, N-7, 8 C C ----------------------------------- C EIGHT COLUMNS UPDATING TWO COLUMNS. C ----------------------------------- C I1 = XPNT(K+1) - MM I2 = XPNT(K+2) - MM I3 = XPNT(K+3) - MM I4 = XPNT(K+4) - MM I5 = XPNT(K+5) - MM I6 = XPNT(K+6) - MM I7 = XPNT(K+7) - MM I8 = XPNT(K+8) - MM A1 = X(I1) A2 = X(I2) A3 = X(I3) A4 = X(I4) A5 = X(I5) A6 = X(I6) A7 = X(I7) A8 = X(I8) A9 = X(I1+1) A10 = X(I2+1) A11 = X(I3+1) A12 = X(I4+1) A13 = X(I5+1) A14 = X(I6+1) A15 = X(I7+1) A16 = X(I8+1) C Y(IYBEG1+1) = Y(IYBEG1+1) - & A1*A9 - A2*A10 - A3*A11 - A4*A12 - A5*A13 - & A6*A14 - A7*A15 - A8*A16 C Y(IYBEG2+1) = Y(IYBEG2+1) - & A9*A9 - A10*A10 - A11*A11 - A12*A12 - A13*A13 - & A14*A14 - A15*A15 - A16*A16 C DO 300 I = 2, MM-1 Y1 = Y(IYBEG1+I) B1 = X(I1+I) Y1 = Y1 - B1 * A1 Y2 = Y(IYBEG2+I) B2 = X(I2+I) Y2 = Y2 - B1 * A9 Y1 = Y1 - B2 * A2 B3 = X(I3+I) Y2 = Y2 - B2 * A10 Y1 = Y1 - B3 * A3 B4 = X(I4+I) Y2 = Y2 - B3 * A11 Y1 = Y1 - B4 * A4 B5 = X(I5+I) Y2 = Y2 - B4 * A12 Y1 = Y1 - B5 * A5 B6 = X(I6+I) Y2 = Y2 - B5 * A13 Y1 = Y1 - B6 * A6 B7 = X(I7+I) Y2 = Y2 - B6 * A14 Y1 = Y1 - B7 * A7 B8 = X(I8+I) Y2 = Y2 - B7 * A15 Y1 = Y1 - B8 * A8 Y(IYBEG1+I) = Y1 Y2 = Y2 - B8 * A16 Y(IYBEG2+I) = Y2 300 CONTINUE C 400 CONTINUE C C ----------------------------- C BOUNDARY CODE FOR THE K LOOP. C ----------------------------- C GO TO ( 2000, 1700, 1500, 1300, & 1100, 900, 700, 500 ), N-K+2 C 500 CONTINUE C C ----------------------------------- C SEVEN COLUMNS UPDATING TWO COLUMNS. C ----------------------------------- C I1 = XPNT(K+1) - MM I2 = XPNT(K+2) - MM I3 = XPNT(K+3) - MM I4 = XPNT(K+4) - MM I5 = XPNT(K+5) - MM I6 = XPNT(K+6) - MM I7 = XPNT(K+7) - MM A1 = X(I1) A2 = X(I2) A3 = X(I3) A4 = X(I4) A5 = X(I5) A6 = X(I6) A7 = X(I7) A9 = X(I1+1) A10 = X(I2+1) A11 = X(I3+1) A12 = X(I4+1) A13 = X(I5+1) A14 = X(I6+1) A15 = X(I7+1) C Y(IYBEG1+1) = Y(IYBEG1+1) - & A1*A9 - A2*A10 - A3*A11 - A4*A12 - A5*A13 - & A6*A14 - A7*A15 C Y(IYBEG2+1) = Y(IYBEG2+1) - & A9*A9 - A10*A10 - A11*A11 - A12*A12 - A13*A13 - & A14*A14 - A15*A15 C DO 600 I = 2, MM-1 Y1 = Y(IYBEG1+I) B1 = X(I1+I) Y1 = Y1 - B1 * A1 Y2 = Y(IYBEG2+I) B2 = X(I2+I) Y2 = Y2 - B1 * A9 Y1 = Y1 - B2 * A2 B3 = X(I3+I) Y2 = Y2 - B2 * A10 Y1 = Y1 - B3 * A3 B4 = X(I4+I) Y2 = Y2 - B3 * A11 Y1 = Y1 - B4 * A4 B5 = X(I5+I) Y2 = Y2 - B4 * A12 Y1 = Y1 - B5 * A5 B6 = X(I6+I) Y2 = Y2 - B5 * A13 Y1 = Y1 - B6 * A6 B7 = X(I7+I) Y2 = Y2 - B6 * A14 Y1 = Y1 - B7 * A7 Y(IYBEG1+I) = Y1 Y2 = Y2 - B7 * A15 Y(IYBEG2+I) = Y2 600 CONTINUE C GO TO 2000 C 700 CONTINUE C C --------------------------------- C SIX COLUMNS UPDATING TWO COLUMNS. C --------------------------------- C I1 = XPNT(K+1) - MM I2 = XPNT(K+2) - MM I3 = XPNT(K+3) - MM I4 = XPNT(K+4) - MM I5 = XPNT(K+5) - MM I6 = XPNT(K+6) - MM A1 = X(I1) A2 = X(I2) A3 = X(I3) A4 = X(I4) A5 = X(I5) A6 = X(I6) A9 = X(I1+1) A10 = X(I2+1) A11 = X(I3+1) A12 = X(I4+1) A13 = X(I5+1) A14 = X(I6+1) C Y(IYBEG1+1) = Y(IYBEG1+1) - & A1*A9 - A2*A10 - A3*A11 - A4*A12 - A5*A13 - & A6*A14 C Y(IYBEG2+1) = Y(IYBEG2+1) - & A9*A9 - A10*A10 - A11*A11 - A12*A12 - A13*A13 - & A14*A14 C DO 800 I = 2, MM-1 Y1 = Y(IYBEG1+I) B1 = X(I1+I) Y1 = Y1 - B1 * A1 Y2 = Y(IYBEG2+I) B2 = X(I2+I) Y2 = Y2 - B1 * A9 Y1 = Y1 - B2 * A2 B3 = X(I3+I) Y2 = Y2 - B2 * A10 Y1 = Y1 - B3 * A3 B4 = X(I4+I) Y2 = Y2 - B3 * A11 Y1 = Y1 - B4 * A4 B5 = X(I5+I) Y2 = Y2 - B4 * A12 Y1 = Y1 - B5 * A5 B6 = X(I6+I) Y2 = Y2 - B5 * A13 Y1 = Y1 - B6 * A6 Y(IYBEG1+I) = Y1 Y2 = Y2 - B6 * A14 Y(IYBEG2+I) = Y2 800 CONTINUE C GO TO 2000 C 900 CONTINUE C C ---------------------------------- C FIVE COLUMNS UPDATING TWO COLUMNS. C ---------------------------------- C I1 = XPNT(K+1) - MM I2 = XPNT(K+2) - MM I3 = XPNT(K+3) - MM I4 = XPNT(K+4) - MM I5 = XPNT(K+5) - MM A1 = X(I1) A2 = X(I2) A3 = X(I3) A4 = X(I4) A5 = X(I5) A9 = X(I1+1) A10 = X(I2+1) A11 = X(I3+1) A12 = X(I4+1) A13 = X(I5+1) C Y(IYBEG1+1) = Y(IYBEG1+1) - & A1*A9 - A2*A10 - A3*A11 - A4*A12 - A5*A13 C Y(IYBEG2+1) = Y(IYBEG2+1) - & A9*A9 - A10*A10 - A11*A11 - A12*A12 - A13*A13 C DO 1000 I = 2, MM-1 Y1 = Y(IYBEG1+I) B1 = X(I1+I) Y1 = Y1 - B1 * A1 Y2 = Y(IYBEG2+I) B2 = X(I2+I) Y2 = Y2 - B1 * A9 Y1 = Y1 - B2 * A2 B3 = X(I3+I) Y2 = Y2 - B2 * A10 Y1 = Y1 - B3 * A3 B4 = X(I4+I) Y2 = Y2 - B3 * A11 Y1 = Y1 - B4 * A4 B5 = X(I5+I) Y2 = Y2 - B4 * A12 Y1 = Y1 - B5 * A5 Y(IYBEG1+I) = Y1 Y2 = Y2 - B5 * A13 Y(IYBEG2+I) = Y2 1000 CONTINUE C GO TO 2000 C 1100 CONTINUE C C ---------------------------------- C FOUR COLUMNS UPDATING TWO COLUMNS. C ---------------------------------- C I1 = XPNT(K+1) - MM I2 = XPNT(K+2) - MM I3 = XPNT(K+3) - MM I4 = XPNT(K+4) - MM A1 = X(I1) A2 = X(I2) A3 = X(I3) A4 = X(I4) A9 = X(I1+1) A10 = X(I2+1) A11 = X(I3+1) A12 = X(I4+1) C Y(IYBEG1+1) = Y(IYBEG1+1) - & A1*A9 - A2*A10 - A3*A11 - A4*A12 C Y(IYBEG2+1) = Y(IYBEG2+1) - & A9*A9 - A10*A10 - A11*A11 - A12*A12 C DO 1200 I = 2, MM-1 Y1 = Y(IYBEG1+I) B1 = X(I1+I) Y1 = Y1 - B1 * A1 Y2 = Y(IYBEG2+I) B2 = X(I2+I) Y2 = Y2 - B1 * A9 Y1 = Y1 - B2 * A2 B3 = X(I3+I) Y2 = Y2 - B2 * A10 Y1 = Y1 - B3 * A3 B4 = X(I4+I) Y2 = Y2 - B3 * A11 Y1 = Y1 - B4 * A4 Y(IYBEG1+I) = Y1 Y2 = Y2 - B4 * A12 Y(IYBEG2+I) = Y2 1200 CONTINUE C GO TO 2000 C 1300 CONTINUE C C ----------------------------------- C THREE COLUMNS UPDATING TWO COLUMNS. C ----------------------------------- C I1 = XPNT(K+1) - MM I2 = XPNT(K+2) - MM I3 = XPNT(K+3) - MM A1 = X(I1) A2 = X(I2) A3 = X(I3) A9 = X(I1+1) A10 = X(I2+1) A11 = X(I3+1) C Y(IYBEG1+1) = Y(IYBEG1+1) - & A1*A9 - A2*A10 - A3*A11 C Y(IYBEG2+1) = Y(IYBEG2+1) - & A9*A9 - A10*A10 - A11*A11 C DO 1400 I = 2, MM-1 Y1 = Y(IYBEG1+I) B1 = X(I1+I) Y1 = Y1 - B1 * A1 Y2 = Y(IYBEG2+I) B2 = X(I2+I) Y2 = Y2 - B1 * A9 Y1 = Y1 - B2 * A2 B3 = X(I3+I) Y2 = Y2 - B2 * A10 Y1 = Y1 - B3 * A3 Y(IYBEG1+I) = Y1 Y2 = Y2 - B3 * A11 Y(IYBEG2+I) = Y2 1400 CONTINUE C GO TO 2000 C 1500 CONTINUE C C --------------------------------- C TWO COLUMNS UPDATING TWO COLUMNS. C --------------------------------- C I1 = XPNT(K+1) - MM I2 = XPNT(K+2) - MM A1 = X(I1) A2 = X(I2) A9 = X(I1+1) A10 = X(I2+1) C Y(IYBEG1+1) = Y(IYBEG1+1) - & A1*A9 - A2*A10 C Y(IYBEG2+1) = Y(IYBEG2+1) - & A9*A9 - A10*A10 C DO 1600 I = 2, MM-1 Y1 = Y(IYBEG1+I) B1 = X(I1+I) Y1 = Y1 - B1 * A1 Y2 = Y(IYBEG2+I) B2 = X(I2+I) Y2 = Y2 - B1 * A9 Y1 = Y1 - B2 * A2 Y(IYBEG1+I) = Y1 Y2 = Y2 - B2 * A10 Y(IYBEG2+I) = Y2 1600 CONTINUE C GO TO 2000 C 1700 CONTINUE C C -------------------------------- C ONE COLUMN UPDATING TWO COLUMNS. C -------------------------------- C I1 = XPNT(K+1) - MM A1 = X(I1) A9 = X(I1+1) C Y(IYBEG1+1) = Y(IYBEG1+1) - & A1*A9 C Y(IYBEG2+1) = Y(IYBEG2+1) - & A9*A9 C DO 1800 I = 2, MM-1 Y1 = Y(IYBEG1+I) B1 = X(I1+I) Y1 = Y1 - B1 * A1 Y2 = Y(IYBEG2+I) Y(IYBEG1+I) = Y1 Y2 = Y2 - B1 * A9 Y(IYBEG2+I) = Y2 1800 CONTINUE C GO TO 2000 C C ----------------------------------------------- C PREPARE FOR NEXT PAIR OF COLUMNS TO BE UPDATED. C ----------------------------------------------- C 2000 CONTINUE MM = MM - 2 IYBEG = IYBEG2 + LENY + 1 LENY = LENY - 2 C 3000 CONTINUE C C ----------------------------------------------------- C BOUNDARY CODE FOR J LOOP: EXECUTED WHENVER Q IS ODD. C ----------------------------------------------------- C IF ( J .EQ. QQ ) THEN CALL SMXPY8 ( MM, N, Y(IYBEG), XPNT, X ) ENDIF C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C************* MMPYI .... MATRIX-MATRIX MULTIPLY ************** C*********************************************************************** C*********************************************************************** C C PURPOSE - C THIS ROUTINE PERFORMS A MATRIX-MATRIX MULTIPLY, Y = Y + XA, C ASSUMING DATA STRUCTURES USED IN SOME OF OUR SPARSE CHOLESKY C CODES. C C MATRIX X HAS ONLY 1 COLUMN. C C INPUT PARAMETERS - C M - NUMBER OF ROWS IN X AND IN Y. C Q - NUMBER OF COLUMNS IN A AND Y. C XPNT(*) - XPNT(J+1) POINTS ONE LOCATION BEYOND THE C END OF THE J-TH COLUMN OF X. XPNT IS ALSO C USED TO ACCESS THE ROWS OF A. C X(*) - CONTAINS THE COLUMNS OF X AND THE ROWS OF A. C IY(*) - IY(COL) POINTS TO THE BEGINNING OF COLUMN C RELIND(*) - RELATIVE INDICES. C C UPDATED PARAMETERS - C Y(*) - ON OUTPUT, Y = Y + AX. C C*********************************************************************** C SUBROUTINE MMPYI ( M , Q , XPNT , X , IY , & Y , RELIND ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- C INTEGER M , Q INTEGER IY(*) , RELIND(*) , & XPNT(*) DOUBLE PRECISION X(*) , Y(*) C C ---------------- C LOCAL VARIABLES. C ---------------- C INTEGER COL , I , ISUB , K , YLAST DOUBLE PRECISION A C C*********************************************************************** C DO 200 K = 1, Q COL = XPNT(K) YLAST = IY(COL+1) - 1 A = - X(K) CDIR$ IVDEP DO 100 I = K, M ISUB = XPNT(I) ISUB = YLAST - RELIND(ISUB) Y(ISUB) = Y(ISUB) + A*X(I) 100 CONTINUE 200 CONTINUE RETURN C END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C**** ORDMMD ..... MULTIPLE MINIMUM EXTERNAL DEGREE ************ C*********************************************************************** C*********************************************************************** C C PURPOSE - THIS ROUTINE CALLS LIU'S MULTIPLE MINIMUM DEGREE C ROUTINE. C C INPUT PARAMETERS - C NEQNS - NUMBER OF EQUATIONS. C (XADJ,ADJNCY) - THE ADJACENCY STRUCTURE. C IWSIZ - SIZE OF INTEGER WORKING STORAGE. C C OUTPUT PARAMETERS - C PERM - THE MINIMUM DEGREE ORDERING. C INVP - THE INVERSE OF PERM. C NOFSUB - AN UPPER BOUND ON THE NUMBER OF NONZERO C SUBSCRIPTS FOR THE COMPRESSED STORAGE SCHEME. C IFLAG - ERROR FLAG. C 0: SUCCESSFUL ORDERING C -1: INSUFFICIENT WORKING STORAGE C [IWORK(*)]. C C WORKING PARAMETERS - C IWORK - INTEGER WORKSPACE OF LENGTH 4*NEQNS. C C*********************************************************************** C SUBROUTINE ORDMMD ( NEQNS , XADJ , ADJNCY, INVP , PERM , 1 IWSIZ , IWORK , NOFSUB, IFLAG ) C C*********************************************************************** C INTEGER ADJNCY(*), INVP(*) , IWORK(*) , PERM(*) INTEGER XADJ(*) INTEGER DELTA , IFLAG , IWSIZ , MAXINT, NEQNS , & NOFSUB C C********************************************************************* C IFLAG = 0 IF ( IWSIZ .LT. 4*NEQNS ) THEN IFLAG = -1 RETURN ENDIF C C DELTA - TOLERANCE VALUE FOR MULTIPLE ELIMINATION. C MAXINT - MAXIMUM MACHINE REPRESENTABLE (SHORT) INTEGER C (ANY SMALLER ESTIMATE WILL DO) FOR MARKING C NODES. C DELTA = 0 MAXINT = 32767 CALL GENMMD ( NEQNS , XADJ , ADJNCY, INVP , PERM , 1 DELTA , 1 IWORK(1) , 1 IWORK(NEQNS+1) , 1 IWORK(2*NEQNS+1) , 1 IWORK(3*NEQNS+1) , 1 MAXINT, NOFSUB ) RETURN C END C*********************************************************************** C*********************************************************************** C C Version: 0.3 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratoy C C*********************************************************************** C*********************************************************************** C****** PCHOL .... DENSE PARTIAL CHOLESKY ************** C*********************************************************************** C*********************************************************************** C C PURPOSE - THIS ROUTINE PERFORMS CHOLESKY C FACTORIZATION ON THE COLUMNS OF A SUPERNODE C THAT HAVE RECEIVED ALL UPDATES FROM COLUMNS C EXTERNAL TO THE SUPERNODE. C C INPUT PARAMETERS - C M - NUMBER OF ROWS (LENGTH OF THE FIRST COLUMN). C N - NUMBER OF COLUMNS IN THE SUPERNODE. C XPNT - XPNT(J+1) POINTS ONE LOCATION BEYOND THE END C OF THE J-TH COLUMN OF THE SUPERNODE. C X(*) - CONTAINS THE COLUMNS OF OF THE SUPERNODE TO C BE FACTORED. C SMXPY - EXTERNAL ROUTINE: MATRIX-VECTOR MULTIPLY. C C OUTPUT PARAMETERS - C X(*) - ON OUTPUT, CONTAINS THE FACTORED COLUMNS OF C THE SUPERNODE. C IFLAG - UNCHANGED IF THERE IS NO ERROR. C =1 IF NONPOSITIVE DIAGONAL ENTRY IS ENCOUNTERED. C C*********************************************************************** C CxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPC SUBROUTINE PCHOL ( M, N, XPNT, X, MXDIAG, NTINY, IFLAG, SMXPY ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- C EXTERNAL SMXPY C INTEGER M, N, IFLAG C INTEGER XPNT(*) C CxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPC DOUBLE PRECISION X(*), MXDIAG INTEGER NTINY C C ---------------- C LOCAL VARIABLES. C ---------------- C INTEGER JPNT , JCOL , MM C DOUBLE PRECISION DIAG C C*********************************************************************** C C ------------------------------------------ C FOR EVERY COLUMN JCOL IN THE SUPERNODE ... C ------------------------------------------ MM = M JPNT = XPNT(1) DO 100 JCOL = 1, N C C ---------------------------------- C UPDATE JCOL WITH PREVIOUS COLUMNS. C ---------------------------------- IF ( JCOL .GT. 1 ) THEN CALL SMXPY ( MM, JCOL-1, X(JPNT), XPNT, X ) ENDIF C C --------------------------- C COMPUTE THE DIAGONAL ENTRY. C --------------------------- DIAG = X(JPNT) CxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPC IF (DIAG .LE. 1.0D-30*MXDIAG) THEN DIAG = 1.0D+128 NTINY = NTINY+1 ENDIF CxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPCxPC DIAG = SQRT ( DIAG ) X(JPNT) = DIAG DIAG = 1.0D+00 / DIAG C C ---------------------------------------------------- C SCALE COLUMN JCOL WITH RECIPROCAL OF DIAGONAL ENTRY. C ---------------------------------------------------- MM = MM - 1 JPNT = JPNT + 1 CALL DSCAL1 ( MM, DIAG, X(JPNT) ) JPNT = JPNT + MM C 100 CONTINUE C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: January 12, 1995 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C************** SFINIT ..... SET UP FOR SYMB. FACT. ************ C*********************************************************************** C*********************************************************************** C C PURPOSE: C THIS SUBROUTINE COMPUTES THE STORAGE REQUIREMENTS AND SETS UP C PRELIMINARY DATA STRUCTURES FOR THE SYMBOLIC FACTORIZATION. C C NOTE: C THIS VERSION PRODUCES THE MAXIMAL SUPERNODE PARTITION (I.E., C THE ONE WITH THE FEWEST POSSIBLE SUPERNODES). C C INPUT PARAMETERS: C NEQNS - NUMBER OF EQUATIONS. C NNZA - LENGTH OF ADJACENCY STRUCTURE. C XADJ(*) - ARRAY OF LENGTH NEQNS+1, CONTAINING POINTERS C TO THE ADJACENCY STRUCTURE. C ADJNCY(*) - ARRAY OF LENGTH XADJ(NEQNS+1)-1, CONTAINING C THE ADJACENCY STRUCTURE. C PERM(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE C POSTORDERING. C INVP(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE C INVERSE OF THE POSTORDERING. C IWSIZ - SIZE OF INTEGER WORKING STORAGE. C C OUTPUT PARAMETERS: C COLCNT(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE NUMBER C OF NONZEROS IN EACH COLUMN OF THE FACTOR, C INCLUDING THE DIAGONAL ENTRY. C NNZL - NUMBER OF NONZEROS IN THE FACTOR, INCLUDING C THE DIAGONAL ENTRIES. C NSUB - NUMBER OF SUBSCRIPTS. C NSUPER - NUMBER OF SUPERNODES (<= NEQNS). C SNODE(*) - ARRAY OF LENGTH NEQNS FOR RECORDING C SUPERNODE MEMBERSHIP. C XSUPER(*) - ARRAY OF LENGTH NEQNS+1, CONTAINING THE C SUPERNODE PARTITIONING. C IFLAG(*) - ERROR FLAG. C 0: SUCCESSFUL SF INITIALIZATION. C -1: INSUFFICENT WORKING STORAGE C [IWORK(*)]. C C WORK PARAMETERS: C IWORK(*) - INTEGER WORK ARRAY OF LENGTH 7*NEQNS+3. C C FIRST CREATED ON NOVEMEBER 14, 1994. C LAST UPDATED ON January 12, 1995. C C*********************************************************************** C SUBROUTINE SFINIT ( NEQNS , NNZA , XADJ , ADJNCY, PERM , & INVP , COLCNT, NNZL , NSUB , NSUPER, & SNODE , XSUPER, IWSIZ , IWORK , IFLAG ) C C ----------- C PARAMETERS. C ----------- INTEGER IFLAG , IWSIZ , NNZA , NEQNS , NNZL , & NSUB , NSUPER INTEGER ADJNCY(NNZA) , COLCNT(NEQNS) , & INVP(NEQNS) , IWORK(7*NEQNS+3), & PERM(NEQNS) , SNODE(NEQNS) , & XADJ(NEQNS+1) , XSUPER(NEQNS+1) C C*********************************************************************** C C -------------------------------------------------------- C RETURN IF THERE IS INSUFFICIENT INTEGER WORKING STORAGE. C -------------------------------------------------------- IFLAG = 0 IF ( IWSIZ .LT. 7*NEQNS+3 ) THEN IFLAG = -1 RETURN ENDIF C C ------------------------------------------ C COMPUTE ELIMINATION TREE AND POSTORDERING. C ------------------------------------------ CALL ETORDR ( NEQNS , XADJ , ADJNCY, PERM , INVP , & IWORK(1) , & IWORK(NEQNS+1) , & IWORK(2*NEQNS+1) , & IWORK(3*NEQNS+1) ) C C --------------------------------------------- C COMPUTE ROW AND COLUMN FACTOR NONZERO COUNTS. C --------------------------------------------- CALL FCNTHN ( NEQNS , NNZA , XADJ , ADJNCY, PERM , & INVP , IWORK(1) , SNODE , COLCNT, & NNZL , & IWORK(NEQNS+1) , & IWORK(2*NEQNS+1) , & XSUPER , & IWORK(3*NEQNS+1) , & IWORK(4*NEQNS+2) , & IWORK(5*NEQNS+3) , & IWORK(6*NEQNS+4) ) C C --------------------------------------------------------- C REARRANGE CHILDREN SO THAT THE LAST CHILD HAS THE MAXIMUM C NUMBER OF NONZEROS IN ITS COLUMN OF L. C --------------------------------------------------------- CALL CHORDR ( NEQNS , XADJ , ADJNCY, PERM , INVP , & COLCNT, & IWORK(1) , & IWORK(NEQNS+1) , & IWORK(2*NEQNS+1) , & IWORK(3*NEQNS+1) ) C C ---------------- C FIND SUPERNODES. C ---------------- CALL FSUP1 ( NEQNS , IWORK(1) , COLCNT, NSUB , & NSUPER, SNODE ) CALL FSUP2 ( NEQNS , NSUPER, IWORK(1) , SNODE , & XSUPER ) C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C****** SMXPY1 .... MATRIX-VECTOR MULTIPLY ************** C*********************************************************************** C*********************************************************************** C C PURPOSE - THIS ROUTINE PERFORMS A MATRIX-VECTOR MULTIPLY, C Y = Y + AX, ASSUMING DATA STRUCTURES USED IN C RECENTLY DEVELOPED SPARSE CHOLESKY CODES. THE C '1' SIGNIFIES NO LOOP UNROLLING, I.E., C LOOP-UNROLLING TO LEVEL 1. C C INPUT PARAMETERS - C M - NUMBER OF ROWS. C N - NUMBER OF COLUMNS. C Y - M-VECTOR TO WHICH AX WILL BE ADDED. C APNT - INDEX VECTOR FOR A. XA(I) POINTS TO THE C FIRST NONZERO IN COLUMN I OF A. C Y - ON OUTPUT, CONTAINS Y = Y + AX. C C*********************************************************************** C SUBROUTINE SMXPY1 ( M, N, Y, APNT, A ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- C INTEGER M, N C INTEGER APNT(N) C DOUBLE PRECISION Y(M), A(*) C C ---------------- C LOCAL VARIABLES. C ---------------- C INTEGER I, II, J C DOUBLE PRECISION AMULT C C*********************************************************************** C DO 200 J = 1, N II = APNT(J+1) - M AMULT = - A(II) DO 100 I = 1, M Y(I) = Y(I) + AMULT * A(II) II = II + 1 100 CONTINUE 200 CONTINUE RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C****** SMXPY2 .... MATRIX-VECTOR MULTIPLY ************** C*********************************************************************** C*********************************************************************** C C PURPOSE - THIS ROUTINE PERFORMS A MATRIX-VECTOR MULTIPLY, C Y = Y + AX, ASSUMING DATA STRUCTURES USED IN C RECENTLY DEVELOPED SPARSE CHOLESKY CODES. THE C '2' SIGNIFIES LEVEL 2 LOOP UNROLLING. C C INPUT PARAMETERS - C M - NUMBER OF ROWS. C N - NUMBER OF COLUMNS. C Y - M-VECTOR TO WHICH AX WILL BE ADDED. C APNT - INDEX VECTOR FOR A. XA(I) POINTS TO THE C FIRST NONZERO IN COLUMN I OF A. C Y - ON OUTPUT, CONTAINS Y = Y + AX. C C*********************************************************************** C SUBROUTINE SMXPY2 ( M, N, Y, APNT, A ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- C INTEGER M, N, LEVEL C INTEGER APNT(*) C DOUBLE PRECISION Y(*), A(*) C PARAMETER ( LEVEL = 2 ) C C ---------------- C LOCAL VARIABLES. C ---------------- C INTEGER I, I1, I2, & J, REMAIN C DOUBLE PRECISION A1, A2 C C*********************************************************************** C REMAIN = MOD ( N, LEVEL ) C GO TO ( 2000, 100 ), REMAIN+1 C 100 CONTINUE I1 = APNT(1+1) - M A1 = - A(I1) DO 150 I = 1, M Y(I) = Y(I) + A1*A(I1) I1 = I1 + 1 150 CONTINUE GO TO 2000 C 2000 CONTINUE DO 4000 J = REMAIN+1, N, LEVEL I1 = APNT(J+1) - M I2 = APNT(J+2) - M A1 = - A(I1) A2 = - A(I2) DO 3000 I = 1, M Y(I) = ( (Y(I)) + & A1*A(I1)) + A2*A(I2) I1 = I1 + 1 I2 = I2 + 1 3000 CONTINUE 4000 CONTINUE C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C****** SMXPY4 .... MATRIX-VECTOR MULTIPLY ************** C*********************************************************************** C*********************************************************************** C C PURPOSE - THIS ROUTINE PERFORMS A MATRIX-VECTOR MULTIPLY, C Y = Y + AX, ASSUMING DATA STRUCTURES USED IN C RECENTLY DEVELOPED SPARSE CHOLESKY CODES. THE C '4' SIGNIFIES LEVEL 4 LOOP UNROLLING. C C INPUT PARAMETERS - C M - NUMBER OF ROWS. C N - NUMBER OF COLUMNS. C Y - M-VECTOR TO WHICH AX WILL BE ADDED. C APNT - INDEX VECTOR FOR A. XA(I) POINTS TO THE C FIRST NONZERO IN COLUMN I OF A. C Y - ON OUTPUT, CONTAINS Y = Y + AX. C C*********************************************************************** C SUBROUTINE SMXPY4 ( M, N, Y, APNT, A ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- C INTEGER M, N, LEVEL C INTEGER APNT(*) C DOUBLE PRECISION Y(*), A(*) C PARAMETER ( LEVEL = 4 ) C C ---------------- C LOCAL VARIABLES. C ---------------- C INTEGER I, I1, I2, I3, I4, & J, REMAIN C DOUBLE PRECISION A1, A2, A3, A4 C C*********************************************************************** C REMAIN = MOD ( N, LEVEL ) C GO TO ( 2000, 100, 200, 300 ), REMAIN+1 C 100 CONTINUE I1 = APNT(1+1) - M A1 = - A(I1) DO 150 I = 1, M Y(I) = Y(I) + A1*A(I1) I1 = I1 + 1 150 CONTINUE GO TO 2000 C 200 CONTINUE I1 = APNT(1+1) - M I2 = APNT(1+2) - M A1 = - A(I1) A2 = - A(I2) DO 250 I = 1, M Y(I) = ( (Y(I)) & + A1*A(I1)) + A2*A(I2) I1 = I1 + 1 I2 = I2 + 1 250 CONTINUE GO TO 2000 C 300 CONTINUE I1 = APNT(1+1) - M I2 = APNT(1+2) - M I3 = APNT(1+3) - M A1 = - A(I1) A2 = - A(I2) A3 = - A(I3) DO 350 I = 1, M Y(I) = (( (Y(I)) & + A1*A(I1)) + A2*A(I2)) & + A3*A(I3) I1 = I1 + 1 I2 = I2 + 1 I3 = I3 + 1 350 CONTINUE GO TO 2000 C 2000 CONTINUE DO 4000 J = REMAIN+1, N, LEVEL I1 = APNT(J+1) - M I2 = APNT(J+2) - M I3 = APNT(J+3) - M I4 = APNT(J+4) - M A1 = - A(I1) A2 = - A(I2) A3 = - A(I3) A4 = - A(I4) DO 3000 I = 1, M Y(I) = ((( (Y(I)) & + A1*A(I1)) + A2*A(I2)) & + A3*A(I3)) + A4*A(I4) I1 = I1 + 1 I2 = I2 + 1 I3 = I3 + 1 I4 = I4 + 1 3000 CONTINUE 4000 CONTINUE C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: December 27, 1994 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C****** SMXPY8 .... MATRIX-VECTOR MULTIPLY ************** C*********************************************************************** C*********************************************************************** C C PURPOSE - THIS ROUTINE PERFORMS A MATRIX-VECTOR MULTIPLY, C Y = Y + AX, ASSUMING DATA STRUCTURES USED IN C RECENTLY DEVELOPED SPARSE CHOLESKY CODES. THE C '8' SIGNIFIES LEVEL 8 LOOP UNROLLING. C C INPUT PARAMETERS - C M - NUMBER OF ROWS. C N - NUMBER OF COLUMNS. C Y - M-VECTOR TO WHICH AX WILL BE ADDED. C APNT - INDEX VECTOR FOR A. APNT(I) POINTS TO THE C FIRST NONZERO IN COLUMN I OF A. C Y - ON OUTPUT, CONTAINS Y = Y + AX. C C*********************************************************************** C SUBROUTINE SMXPY8 ( M, N, Y, APNT, A ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- C INTEGER M, N, LEVEL C INTEGER APNT(*) C DOUBLE PRECISION Y(*), A(*) C PARAMETER ( LEVEL = 8 ) C C ---------------- C LOCAL VARIABLES. C ---------------- C INTEGER I, I1, I2, I3, I4, I5, I6, I7, I8, & J, REMAIN C DOUBLE PRECISION A1, A2, A3, A4, A5, A6, A7, A8 C C*********************************************************************** C REMAIN = MOD ( N, LEVEL ) C GO TO ( 2000, 100, 200, 300, & 400, 500, 600, 700 ), REMAIN+1 C 100 CONTINUE I1 = APNT(1+1) - M A1 = - A(I1) DO 150 I = 1, M Y(I) = Y(I) + A1*A(I1) I1 = I1 + 1 150 CONTINUE GO TO 2000 C 200 CONTINUE I1 = APNT(1+1) - M I2 = APNT(1+2) - M A1 = - A(I1) A2 = - A(I2) DO 250 I = 1, M Y(I) = ( (Y(I)) & + A1*A(I1)) + A2*A(I2) I1 = I1 + 1 I2 = I2 + 1 250 CONTINUE GO TO 2000 C 300 CONTINUE I1 = APNT(1+1) - M I2 = APNT(1+2) - M I3 = APNT(1+3) - M A1 = - A(I1) A2 = - A(I2) A3 = - A(I3) DO 350 I = 1, M Y(I) = (( (Y(I)) & + A1*A(I1)) + A2*A(I2)) & + A3*A(I3) I1 = I1 + 1 I2 = I2 + 1 I3 = I3 + 1 350 CONTINUE GO TO 2000 C 400 CONTINUE I1 = APNT(1+1) - M I2 = APNT(1+2) - M I3 = APNT(1+3) - M I4 = APNT(1+4) - M A1 = - A(I1) A2 = - A(I2) A3 = - A(I3) A4 = - A(I4) DO 450 I = 1, M Y(I) = ((( (Y(I)) & + A1*A(I1)) + A2*A(I2)) & + A3*A(I3)) + A4*A(I4) I1 = I1 + 1 I2 = I2 + 1 I3 = I3 + 1 I4 = I4 + 1 450 CONTINUE GO TO 2000 C 500 CONTINUE I1 = APNT(1+1) - M I2 = APNT(1+2) - M I3 = APNT(1+3) - M I4 = APNT(1+4) - M I5 = APNT(1+5) - M A1 = - A(I1) A2 = - A(I2) A3 = - A(I3) A4 = - A(I4) A5 = - A(I5) DO 550 I = 1, M Y(I) = (((( (Y(I)) & + A1*A(I1)) + A2*A(I2)) & + A3*A(I3)) + A4*A(I4)) & + A5*A(I5) I1 = I1 + 1 I2 = I2 + 1 I3 = I3 + 1 I4 = I4 + 1 I5 = I5 + 1 550 CONTINUE GO TO 2000 C 600 CONTINUE I1 = APNT(1+1) - M I2 = APNT(1+2) - M I3 = APNT(1+3) - M I4 = APNT(1+4) - M I5 = APNT(1+5) - M I6 = APNT(1+6) - M A1 = - A(I1) A2 = - A(I2) A3 = - A(I3) A4 = - A(I4) A5 = - A(I5) A6 = - A(I6) DO 650 I = 1, M Y(I) = ((((( (Y(I)) & + A1*A(I1)) + A2*A(I2)) & + A3*A(I3)) + A4*A(I4)) & + A5*A(I5)) + A6*A(I6) I1 = I1 + 1 I2 = I2 + 1 I3 = I3 + 1 I4 = I4 + 1 I5 = I5 + 1 I6 = I6 + 1 650 CONTINUE GO TO 2000 C 700 CONTINUE I1 = APNT(1+1) - M I2 = APNT(1+2) - M I3 = APNT(1+3) - M I4 = APNT(1+4) - M I5 = APNT(1+5) - M I6 = APNT(1+6) - M I7 = APNT(1+7) - M A1 = - A(I1) A2 = - A(I2) A3 = - A(I3) A4 = - A(I4) A5 = - A(I5) A6 = - A(I6) A7 = - A(I7) DO 750 I = 1, M Y(I) = (((((( (Y(I)) & + A1*A(I1)) + A2*A(I2)) & + A3*A(I3)) + A4*A(I4)) & + A5*A(I5)) + A6*A(I6)) & + A7*A(I7) I1 = I1 + 1 I2 = I2 + 1 I3 = I3 + 1 I4 = I4 + 1 I5 = I5 + 1 I6 = I6 + 1 I7 = I7 + 1 750 CONTINUE GO TO 2000 C 2000 CONTINUE DO 4000 J = REMAIN+1, N, LEVEL I1 = APNT(J+1) - M I2 = APNT(J+2) - M I3 = APNT(J+3) - M I4 = APNT(J+4) - M I5 = APNT(J+5) - M I6 = APNT(J+6) - M I7 = APNT(J+7) - M I8 = APNT(J+8) - M A1 = - A(I1) A2 = - A(I2) A3 = - A(I3) A4 = - A(I4) A5 = - A(I5) A6 = - A(I6) A7 = - A(I7) A8 = - A(I8) DO 3000 I = 1, M Y(I) = ((((((( (Y(I)) & + A1*A(I1)) + A2*A(I2)) & + A3*A(I3)) + A4*A(I4)) & + A5*A(I5)) + A6*A(I6)) & + A7*A(I7)) + A8*A(I8) I1 = I1 + 1 I2 = I2 + 1 I3 = I3 + 1 I4 = I4 + 1 I5 = I5 + 1 I6 = I6 + 1 I7 = I7 + 1 I8 = I8 + 1 3000 CONTINUE 4000 CONTINUE C RETURN END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: February 13, 1995 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C************* SYMFC2 ..... SYMBOLIC FACTORIZATION ************** C*********************************************************************** C*********************************************************************** C C PURPOSE: C THIS ROUTINE PERFORMS SUPERNODAL SYMBOLIC FACTORIZATION ON A C REORDERED LINEAR SYSTEM. IT ASSUMES ACCESS TO THE COLUMNS C COUNTS, SUPERNODE PARTITION, AND SUPERNODAL ELIMINATION TREE C ASSOCIATED WITH THE FACTOR MATRIX L. C C INPUT PARAMETERS: C (I) NEQNS - NUMBER OF EQUATIONS C (I) ADJLEN - LENGTH OF THE ADJACENCY LIST. C (I) XADJ(*) - ARRAY OF LENGTH NEQNS+1 CONTAINING POINTERS C TO THE ADJACENCY STRUCTURE. C (I) ADJNCY(*) - ARRAY OF LENGTH XADJ(NEQNS+1)-1 CONTAINING C THE ADJACENCY STRUCTURE. C (I) PERM(*) - ARRAY OF LENGTH NEQNS CONTAINING THE C POSTORDERING. C (I) INVP(*) - ARRAY OF LENGTH NEQNS CONTAINING THE C INVERSE OF THE POSTORDERING. C (I) COLCNT(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE NUMBER C OF NONZEROS IN EACH COLUMN OF THE FACTOR, C INCLUDING THE DIAGONAL ENTRY. C (I) NSUPER - NUMBER OF SUPERNODES. C (I) XSUPER(*) - ARRAY OF LENGTH NSUPER+1, CONTAINING THE C FIRST COLUMN OF EACH SUPERNODE. C (I) SNODE(*) - ARRAY OF LENGTH NEQNS FOR RECORDING C SUPERNODE MEMBERSHIP. C (I) NOFSUB - NUMBER OF SUBSCRIPTS TO BE STORED IN C LINDX(*). C C OUTPUT PARAMETERS: C (I) XLINDX - ARRAY OF LENGTH NEQNS+1, CONTAINING POINTERS C INTO THE SUBSCRIPT VECTOR. C (I) LINDX - ARRAY OF LENGTH MAXSUB, CONTAINING THE C COMPRESSED SUBSCRIPTS. C (I) XLNZ - COLUMN POINTERS FOR L. C (I) FLAG - ERROR FLAG: C 0 - NO ERROR. C 1 - INCONSISTANCY IN THE INPUT. C C WORKING PARAMETERS: C (I) MRGLNK - ARRAY OF LENGTH NSUPER, CONTAINING THE C CHILDREN OF EACH SUPERNODE AS A LINKED LIST. C (I) RCHLNK - ARRAY OF LENGTH NEQNS+1, CONTAINING THE C CURRENT LINKED LIST OF MERGED INDICES (THE C "REACH" SET). C (I) MARKER - ARRAY OF LENGTH NEQNS USED TO MARK INDICES C AS THEY ARE INTRODUCED INTO EACH SUPERNODE'S C INDEX SET. C C*********************************************************************** C SUBROUTINE SYMFC2 ( NEQNS , ADJLEN, XADJ , ADJNCY, PERM , & INVP , COLCNT, NSUPER, XSUPER, SNODE , & NOFSUB, XLINDX, LINDX , XLNZ , MRGLNK, & RCHLNK, MARKER, FLAG ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- INTEGER ADJLEN, FLAG , NEQNS , NOFSUB, NSUPER INTEGER ADJNCY(ADJLEN), COLCNT(NEQNS) , & INVP(NEQNS) , MARKER(NEQNS) , & MRGLNK(NSUPER), LINDX(*) , & PERM(NEQNS) , RCHLNK(0:NEQNS), & SNODE(NEQNS) , XSUPER(NSUPER+1) INTEGER XADJ(NEQNS+1) , XLINDX(NSUPER+1), & XLNZ(NEQNS+1) C C ---------------- C LOCAL VARIABLES. C ---------------- INTEGER FSTCOL, HEAD , I , JNZBEG, JNZEND, & JPTR , JSUP , JWIDTH, KNZ , KNZBEG, & KNZEND, KPTR , KSUP , LENGTH, LSTCOL, & NEWI , NEXTI , NODE , NZBEG , NZEND , & PCOL , PSUP , POINT , TAIL , WIDTH C C*********************************************************************** C FLAG = 0 IF ( NEQNS .LE. 0 ) RETURN C C --------------------------------------------------- C INITIALIZATIONS ... C NZEND : POINTS TO THE LAST USED SLOT IN LINDX. C TAIL : END OF LIST INDICATOR C (IN RCHLNK(*), NOT MRGLNK(*)). C MRGLNK : CREATE EMPTY LISTS. C MARKER : "UNMARK" THE INDICES. C --------------------------------------------------- NZEND = 0 HEAD = 0 TAIL = NEQNS + 1 POINT = 1 DO 50 I = 1, NEQNS MARKER(I) = 0 XLNZ(I) = POINT POINT = POINT + COLCNT(I) 50 CONTINUE XLNZ(NEQNS+1) = POINT POINT = 1 DO 100 KSUP = 1, NSUPER MRGLNK(KSUP) = 0 FSTCOL = XSUPER(KSUP) XLINDX(KSUP) = POINT POINT = POINT + COLCNT(FSTCOL) 100 CONTINUE XLINDX(NSUPER+1) = POINT C C --------------------------- C FOR EACH SUPERNODE KSUP ... C --------------------------- DO 1000 KSUP = 1, NSUPER C C --------------------------------------------------------- C INITIALIZATIONS ... C FSTCOL : FIRST COLUMN OF SUPERNODE KSUP. C LSTCOL : LAST COLUMN OF SUPERNODE KSUP. C KNZ : WILL COUNT THE NONZEROS OF L IN COLUMN KCOL. C RCHLNK : INITIALIZE EMPTY INDEX LIST FOR KCOL. C --------------------------------------------------------- FSTCOL = XSUPER(KSUP) LSTCOL = XSUPER(KSUP+1) - 1 WIDTH = LSTCOL - FSTCOL + 1 LENGTH = COLCNT(FSTCOL) KNZ = 0 RCHLNK(HEAD) = TAIL JSUP = MRGLNK(KSUP) C C ------------------------------------------------- C IF KSUP HAS CHILDREN IN THE SUPERNODAL E-TREE ... C ------------------------------------------------- IF ( JSUP .GT. 0 ) THEN C --------------------------------------------- C COPY THE INDICES OF THE FIRST CHILD JSUP INTO C THE LINKED LIST, AND MARK EACH WITH THE VALUE C KSUP. C --------------------------------------------- JWIDTH = XSUPER(JSUP+1) - XSUPER(JSUP) JNZBEG = XLINDX(JSUP) + JWIDTH JNZEND = XLINDX(JSUP+1) - 1 DO 200 JPTR = JNZEND, JNZBEG, -1 NEWI = LINDX(JPTR) KNZ = KNZ+1 MARKER(NEWI) = KSUP RCHLNK(NEWI) = RCHLNK(HEAD) RCHLNK(HEAD) = NEWI 200 CONTINUE C ------------------------------------------ C FOR EACH SUBSEQUENT CHILD JSUP OF KSUP ... C ------------------------------------------ JSUP = MRGLNK(JSUP) 300 CONTINUE IF ( JSUP .NE. 0 .AND. KNZ .LT. LENGTH ) THEN C ---------------------------------------- C MERGE THE INDICES OF JSUP INTO THE LIST, C AND MARK NEW INDICES WITH VALUE KSUP. C ---------------------------------------- JWIDTH = XSUPER(JSUP+1) - XSUPER(JSUP) JNZBEG = XLINDX(JSUP) + JWIDTH JNZEND = XLINDX(JSUP+1) - 1 NEXTI = HEAD DO 500 JPTR = JNZBEG, JNZEND NEWI = LINDX(JPTR) 400 CONTINUE I = NEXTI NEXTI = RCHLNK(I) IF ( NEWI .GT. NEXTI ) GO TO 400 IF ( NEWI .LT. NEXTI ) THEN KNZ = KNZ+1 RCHLNK(I) = NEWI RCHLNK(NEWI) = NEXTI MARKER(NEWI) = KSUP NEXTI = NEWI ENDIF 500 CONTINUE JSUP = MRGLNK(JSUP) GO TO 300 ENDIF ENDIF C --------------------------------------------------- C STRUCTURE OF A(*,FSTCOL) HAS NOT BEEN EXAMINED YET. C "SORT" ITS STRUCTURE INTO THE LINKED LIST, C INSERTING ONLY THOSE INDICES NOT ALREADY IN THE C LIST. C --------------------------------------------------- IF ( KNZ .LT. LENGTH ) THEN NODE = PERM(FSTCOL) KNZBEG = XADJ(NODE) KNZEND = XADJ(NODE+1) - 1 DO 700 KPTR = KNZBEG, KNZEND NEWI = ADJNCY(KPTR) NEWI = INVP(NEWI) IF ( NEWI .GT. FSTCOL .AND. & MARKER(NEWI) .NE. KSUP ) THEN C -------------------------------- C POSITION AND INSERT NEWI IN LIST C AND MARK IT WITH KCOL. C -------------------------------- NEXTI = HEAD 600 CONTINUE I = NEXTI NEXTI = RCHLNK(I) IF ( NEWI .GT. NEXTI ) GO TO 600 KNZ = KNZ + 1 RCHLNK(I) = NEWI RCHLNK(NEWI) = NEXTI MARKER(NEWI) = KSUP ENDIF 700 CONTINUE ENDIF C ------------------------------------------------------------ C IF KSUP HAS NO CHILDREN, INSERT FSTCOL INTO THE LINKED LIST. C ------------------------------------------------------------ IF ( RCHLNK(HEAD) .NE. FSTCOL ) THEN RCHLNK(FSTCOL) = RCHLNK(HEAD) RCHLNK(HEAD) = FSTCOL KNZ = KNZ + 1 ENDIF C C -------------------------------------------- C COPY INDICES FROM LINKED LIST INTO LINDX(*). C -------------------------------------------- NZBEG = NZEND + 1 NZEND = NZEND + KNZ IF ( NZEND+1 .NE. XLINDX(KSUP+1) ) GO TO 8000 I = HEAD DO 800 KPTR = NZBEG, NZEND I = RCHLNK(I) LINDX(KPTR) = I 800 CONTINUE C C --------------------------------------------------- C IF KSUP HAS A PARENT, INSERT KSUP INTO ITS PARENT'S C "MERGE" LIST. C --------------------------------------------------- IF ( LENGTH .GT. WIDTH ) THEN PCOL = LINDX ( XLINDX(KSUP) + WIDTH ) PSUP = SNODE(PCOL) MRGLNK(KSUP) = MRGLNK(PSUP) MRGLNK(PSUP) = KSUP ENDIF C 1000 CONTINUE C RETURN C C ----------------------------------------------- C INCONSISTENCY IN DATA STRUCTURE WAS DISCOVERED. C ----------------------------------------------- 8000 CONTINUE FLAG = -2 RETURN C END C*********************************************************************** C*********************************************************************** C C Version: 0.4 C Last modified: February 13, 1995 C Authors: Esmond G. Ng and Barry W. Peyton C C Mathematical Sciences Section, Oak Ridge National Laboratory C C*********************************************************************** C*********************************************************************** C************* SYMFCT ..... SYMBOLIC FACTORIZATION ************** C*********************************************************************** C*********************************************************************** C C PURPOSE: C THIS ROUTINE CALLS SYMFC2 WHICH PERFORMS SUPERNODAL SYMBOLIC C FACTORIZATION ON A REORDERED LINEAR SYSTEM. C C INPUT PARAMETERS: C (I) NEQNS - NUMBER OF EQUATIONS C (I) ADJLEN - LENGTH OF THE ADJACENCY LIST. C (I) XADJ(*) - ARRAY OF LENGTH NEQNS+1 CONTAINING POINTERS C TO THE ADJACENCY STRUCTURE. C (I) ADJNCY(*) - ARRAY OF LENGTH XADJ(NEQNS+1)-1 CONTAINING C THE ADJACENCY STRUCTURE. C (I) PERM(*) - ARRAY OF LENGTH NEQNS CONTAINING THE C POSTORDERING. C (I) INVP(*) - ARRAY OF LENGTH NEQNS CONTAINING THE C INVERSE OF THE POSTORDERING. C (I) COLCNT(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE NUMBER C OF NONZEROS IN EACH COLUMN OF THE FACTOR, C INCLUDING THE DIAGONAL ENTRY. C (I) NSUPER - NUMBER OF SUPERNODES. C (I) XSUPER(*) - ARRAY OF LENGTH NSUPER+1, CONTAINING THE C FIRST COLUMN OF EACH SUPERNODE. C (I) SNODE(*) - ARRAY OF LENGTH NEQNS FOR RECORDING C SUPERNODE MEMBERSHIP. C (I) NOFSUB - NUMBER OF SUBSCRIPTS TO BE STORED IN C LINDX(*). C (I) IWSIZ - SIZE OF INTEGER WORKING STORAGE. C C OUTPUT PARAMETERS: C (I) XLINDX - ARRAY OF LENGTH NEQNS+1, CONTAINING POINTERS C INTO THE SUBSCRIPT VECTOR. C (I) LINDX - ARRAY OF LENGTH MAXSUB, CONTAINING THE C COMPRESSED SUBSCRIPTS. C (I) XLNZ - COLUMN POINTERS FOR L. C (I) FLAG - ERROR FLAG: C 0 - NO ERROR. C -1 - INSUFFICIENT INTEGER WORKING SPACE. C -2 - INCONSISTANCY IN THE INPUT. C C WORKING PARAMETERS: C (I) IWORK - WORKING ARRAY OF LENGTH NSUPER+2*NEQNS. C C*********************************************************************** C SUBROUTINE SYMFCT ( NEQNS , ADJLEN, XADJ , ADJNCY, PERM , & INVP , COLCNT, NSUPER, XSUPER, SNODE , & NOFSUB, XLINDX, LINDX , XLNZ , IWSIZ , & IWORK , & FLAG ) C C*********************************************************************** C C ----------- C PARAMETERS. C ----------- INTEGER ADJLEN, FLAG , IWSIZ , NEQNS , NOFSUB, & NSUPER INTEGER ADJNCY(ADJLEN), COLCNT(NEQNS) , & INVP(NEQNS) , & IWORK(NSUPER+2*NEQNS+1), & LINDX(NOFSUB) , & PERM(NEQNS) , SNODE(NEQNS) , & XSUPER(NSUPER+1) INTEGER XADJ(NEQNS+1) , XLINDX(NSUPER+1), & XLNZ(NEQNS+1) C C*********************************************************************** C FLAG = 0 IF ( IWSIZ .LT. NSUPER+2*NEQNS+1 ) THEN FLAG = -1 RETURN ENDIF CALL SYMFC2 ( NEQNS , ADJLEN, XADJ , ADJNCY, PERM , & INVP , COLCNT, NSUPER, XSUPER, SNODE , & NOFSUB, XLINDX, LINDX , XLNZ , & IWORK(1) , & IWORK(NSUPER+1) , & IWORK(NSUPER+NEQNS+2) , & FLAG ) RETURN END SparseM/src/chol.f0000644000175100001440000001737213077164713013550 0ustar hornikusers subroutine chol(m,nnzdmax,d,jd,id,nnzdsm,dsub,jdsub,nsub,nsubmax, & lindx,xlindx,nsuper,nnzlmax,lnz,xlnz,invp,perm, & iwmax,iwork,colcnt,snode,xsuper,split,tmpmax, & tmpvec,cachsz,level,ierr,timed) c 1 2 3 4 5 6 7 c23456789012345678901234567890123456789012345678901234567890123456789012 c Sparse least squares solver via Ng-Peyton's sparse Cholesky c factorization for sparse symmetric positive definite c INPUT: c m -- the number of column in the design matrix X c nnzdmax -- upper bound of the non-zero elements in X'X c d -- an nnzdmax-vector of non-zero values of the transpose of c the design matrix multiplied by the design matrix stored in c csr format (X'X) c jd -- an nnzdmax-vector of indices in d c id -- an (m+1)-vector of pointers to the begining of each c row in d and jd c dsub -- the values of d excluding the diagonal elements c jdsub -- the indices to dsub c nsubmax -- upper bound of the dimension of lindx c lindx -- an nsub-vector of integer which contains, in c column major oder, the row subscripts of the nonzero c entries in L in a compressed storage format c xlindx -- an nsuper-vector of integer of pointers for lindx c nsuper -- the length of xlindx c nnzlmax -- the upper bound of the non-zero entries in c L stored in lnz, including the diagonal entries c lnz -- First contains the non-zero entries of d; later c contains the entries of the Cholesky factor c xlnz -- column pointer for L stored in lnz c invp -- an n-vector of integer of inverse permutation c vector c perm -- an n-vector of integer of permutation vector c colcnt -- array of length m, containing the number of c non-zeros in each column of the factor, including c the diagonal entries c snode -- array of length m for recording supernode c membership c xsuper -- array of length m+1 containing the supernode c partitioning c split -- an m-vector with splitting of supernodes so that c they fit into cache c tmpmax -- upper bound of the dimension of tmpvec c tmpvec -- a tmpmax-vector of temporary vector c cachsz -- size of the cache (in kilobytes) on the target c machine c level -- level of loop unrolling while performing numerical c factorization c ierr -- error flag c 1 -- insufficient work space in call to extract c 2 -- insufficient storage in iwork when calling ordmmd; c 3 -- insufficient storage in iwork when calling sfinit; c 4 -- nnzl > nnzlmax when calling sfinit c 5 -- nsub > nsubmax when calling sfinit c 6 -- insufficient work space in iwork when calling symfct c 7 -- inconsistancy in input when calling symfct c 8 -- tmpsiz > tmpmax when calling symfct; increase tmpmax c 9 -- nonpositive diagonal encountered when calling c blkfct c 10 -- insufficient work storage in tmpvec when calling c blkfct c 11 -- insufficient work storage in iwork when calling c blkfct c OUTPUT: c y -- an m-vector of least squares solution c nsub -- number of subscripts in lindx c WORK ARRAYS: c iwmax -- upper bound of the general purpose integer c working storage iwork; set at 7*m+3 c iwork -- an iwsiz-vector of integer as work space c 1 2 3 4 5 6 7 c23456789012345678901234567890123456789012345678901234567890123456789012 integer nsub,nsuper,nnzdmax,nnzdsm,nnzl,iwsiz,tmpsiz,iwmax, & nnzlmax,nsubmax,cachsz,level,tmpmax,ierr, & jdsub(nnzdsm),jd(nnzdmax), & id(m+1),lindx(nsubmax),xlindx(m+1), & invp(m),perm(m),xlnz(m+1),iwork(iwmax), & colcnt(m),snode(m),xsuper(m+1),split(m) double precision dsub(nnzdsm),d(nnzdmax), & lnz(nnzlmax),tmpvec(tmpmax) double precision timed c real gtimer,timbegw,timendw external smxpy1,smxpy2,smxpy4,smxpy8 external mmpy1,mmpy2,mmpy4,mmpy8 c c timbegw=gtimer() c c Extract the non-diagonal structure of d,jd,id c The diagonal entries are stored in dsub(1:m), the off-diagonal entries c are stored rowwise in dsub(m+2:nnzd+1), their column indices are stored c in jsub(m+2:nnzd+1), the pointers to the nondiagonal entries in c dsub(m+2:nnzd+1) and jsub(m+2:nnzd+1) are stored in jsub(1:m+1) c nsub = 0 nnzd = id(m+1) - 1 nnzdsub = nnzd - m call extract(d,jd,id,dsub,jdsub,m,nnzdmax,nnzdsm,ierr) if (ierr .eq. -1) then ierr = 1 go to 100 endif c c Save the X'X matrix structure from jdsub(m+2:nnzd+1),jdsub(1:m+1) c to lindx and xlindx because the matrix structure is destroyed by the c minimum degree ordering routine c do i = 1,m+1 xlindx(i) = jdsub(i) enddo do i = 1,nnzdsub lindx(i) = jdsub(m+1+i) enddo c c Reorder the matrix using minimum degree ordering routine c iwsiz = 4*m call ordmmd(m,xlindx,lindx,invp,perm,iwsiz,iwork,nsub,ierr) if (ierr .eq. -1) then ierr = 2 go to 100 endif c c Call sfinit: Symbolic factorization initialization c to compute supernode partition and storage requirements c for symbolic factorization. New ordering is a postordering c of the nodal elimination tree c iwsiz = 7 * m + 3 call sfinit(m,nnzdsub,jdsub(1),jdsub(m+2),perm, & invp,colcnt,nnzl,nsub,nsuper,snode,xsuper,iwsiz, & iwork,ierr) if (ierr .eq. -1) then ierr = 3 go to 100 endif if (nnzl .gt. nnzlmax) then ierr = 4 go to 100 endif if (nsub .gt. nsubmax) then ierr = 5 go to 100 endif c c Call symfct: Perform supernodal symbolic factorization c iwsiz = nsuper + 2 * m + 1 call symfct(m,nnzdsub,jdsub(1),jdsub(m+2),perm,invp, & colcnt,nsuper,xsuper,snode,nsub,xlindx,lindx, & xlnz,iwsiz,iwork,ierr) if (ierr .eq. -1) then ierr = 6 go to 100 endif if (ierr .eq. -2) then ierr = 7 go to 100 endif c c Call inpnv: Input numerical values into data structures of L c iwsiz = m call inpnv(m,id,jd,d,perm,invp,nsuper,xsuper,xlindx,lindx, & xlnz,lnz,iwork) c c Call bfinit: Initialization for block factorization c call bfinit(m,nsuper,xsuper,snode,xlindx,lindx,cachsz,tmpsiz, & split) if (tmpsiz .gt. tmpmax) then ierr = 8 go to 100 endif c c Call blkfct: Numerical factorization c iwsiz = 2 * m + 2 * nsuper if (level .eq. 1) then call blkfct(m,nsuper,xsuper,snode,split,xlindx,lindx,xlnz, & lnz,iwsiz,iwork,tmpsiz,tmpvec,ierr,mmpy1,smxpy1) elseif (level .eq. 2) then call blkfct(m,nsuper,xsuper,snode,split,xlindx,lindx,xlnz, & lnz,iwsiz,iwork,tmpsiz,tmpvec,ierr,mmpy2,smxpy2) elseif (level .eq. 4) then call blkfct(m,nsuper,xsuper,snode,split,xlindx,lindx,xlnz, & lnz,iwsiz,iwork,tmpsiz,tmpvec,ierr,mmpy4,smxpy4) elseif (level .eq. 8) then call blkfct(m,nsuper,xsuper,snode,split,xlindx,lindx,xlnz, & lnz,iwsiz,iwork,tmpsiz,tmpvec,ierr,mmpy8,smxpy8) endif if (ierr .eq. -1) then ierr = 9 go to 100 elseif (ierr .eq. -2) then ierr = 10 go to 100 elseif (ierr .eq. -3) then ierr = 11 go to 100 endif 100 continue c timendw=gtimer() c timed = timendw - timbegw return end SparseM/src/csr.f0000644000175100001440000000503013077164713013376 0ustar hornikusers subroutine csr (a,ra,ja,ia,m,n,nnz,eps) c 1 2 3 4 5 6 7 c23456789012345678901234567890123456789012345678901234567890123456789012 c Convert the sparse matrix `a' into compressed sparse row format. c INPUT: c a(m,n) -- an (m x n) sparse matrix c m -- number of rows in `a' c n -- number of columns in `a' c eps -- the smallest postive floating-point number c OUTPUT: c ra(nnz) -- values of `a' stored in CSR format c ja(nnz) -- column indices of the elements a(i,j) as stored in ra c ia(m+1) -- pointers to the beginning of each row in ra and ja c 1 2 3 4 5 6 7 double precision a(m,*),ra(nnz),eps integer ja(nnz),ia(m+1),m,n,nnz nnz = 0 do 10 i = 1,m ia(i) = 1+nnz nz = 0 do 20 j = 1,n if (dabs(a(i,j)) .ge. eps) then nnz = nnz+1 ra(nnz) = a(i,j) ja(nnz) = j endif 20 continue 10 continue ia(m+1) = 1+nnz return end c subroutine nzero (ra,ja,ia,nrow,ncol,nnz,nz,rao,jao,iao,colmn) c 1 2 3 4 5 6 7 c23456789012345678901234567890123456789012345678901234567890123456789012 c Return the structure of the zero entries in ra,ja,ia, in c compressed sparse row format via rao, jao, iao. c INPUT: c ra, ja, ia -- csr format of the matrix A c nrow -- number of rows in `a' c ncol -- number of columns in `a' c nnz -- number of non-zero elements c nz -- number of zero elements c OUTPUT: c rao, jao, iao -- strucvture of the zero entries in csr format c WORK ARRAY: c colmn -- logical vector of length ncol c 1 2 3 4 5 6 7 c23456789012345678901234567890123456789012345678901234567890123456789012 double precision ra(nnz),rao(nz),one integer ja(nnz),ia(nrow+1),jao(nz),iao(nrow+1), & nrow,ncol,nnz,nz,inz logical colmn(ncol) parameter (one = 1.d0) inz = 0 iao(1) = 1 do i = 1,nrow iao(i+1) = iao(i) do l = 1,ncol colmn(l) = .true. enddo do j = ia(i),ia(i+1)-1 colmn(ja(j)) = .false. enddo do k = 1,ncol if(colmn(k)) then inz = inz + 1 jao(inz) = k rao(inz) = one iao(i+1) = iao(i+1) + 1 endif enddo enddo return end SparseM/src/subscr.f0000644000175100001440000000531113077164713014112 0ustar hornikusersc SparseM c Author: Pin Ng subroutine subext(nsub,ir,jc,a,ja,ia,sorted,values,iadd) c 1 2 3 4 5 6 7 c23456789012345678901234567890123456789012345678901234567890123456789012 integer i,nsub,ir(nsub),jc(nsub),ja(*),ia(*),iadd(nsub) double precision a(*),values(nsub),getelm logical sorted do i = 1,nsub values(i) = getelm(ir(i),jc(i),a,ja,ia,iadd(i),sorted) enddo return end subroutine subasg(nrow,ncol,nsub,nnza,nnzb,ir,jc,a,ja,ia, & b,jb,ib,values,colmn,ierr) c 1 2 3 4 5 6 7 c23456789012345678901234567890123456789012345678901234567890123456789012 c Assign the new values into b,jb, ib c Input: c nrow = number of row c ncol = number of column c nsub = length of the new values to be assigned into b,jb,ib c nnza = number of nonzero elements in a,ja,ia c nnzb = number of nonzero elements in b,jb,ib c ir = row indices of the new values c jc = column indices of the new values c a, ja, ia = original matrix stored in csr format c values = vector of new values to be assigned into a, ja, ia c Output: c b, jb, ib = new matrix with the updated value with possible fill-in c Note: b, jb, ib are not sorted column wise c ierr = error flag c 0 = normal return c 1 = not enough space (nnzb) assigned to b,jb and ib c Work space: c colmn = logical values c c 1 2 3 4 5 6 7 c23456789012345678901234567890123456789012345678901234567890123456789012 integer nrow,ncol,nsub,nnza,nnzb,len,ierr integer ir(nsub),jc(nsub),ja(nnza),ia(nrow+1),jb(nnzb),ib(nrow+1) double precision a(nnza),b(nnzb),values(nsub) logical colmn(ncol) ierr = 0 len = 0 ib(1) = 1 do i = 1,nrow ib(i+1) = ib(i) do l = 1,ncol colmn(l) = .true. enddo do j = 1,nsub if (ir(j) .eq. i) then len = len + 1 if (len .gt. nnzb) then ierr = 1 return endif b(len) = values(j) jb(len) = jc(j) ib(i+1) = ib(i+1) + 1 colmn(jc(j)) = .false. endif enddo do k = ia(i),ia(i+1)- 1 if(colmn(ja(k))) then len = len + 1 if (len .gt. nnzb) then ierr = 1 return endif b(len) = a(k) jb(len) = ja(k) ib(i+1) = ib(i+1) + 1 endif enddo enddo return end SparseM/src/chol2csr.f0000644000175100001440000000231113077164713014325 0ustar hornikusers subroutine chol2csr(nrow,nnzlindx,nsuper,lindx,xlindx,nnzl,lnz, & xlnz,dim,ra,ia,ja) integer nrow, nnzlindx, nsuper, lindx(nnzlindx), xlindx(nrow+1), & nnzl, xlnz(nrow+1), dim(2), ia(nrow+1), ja(nnzl), & place, i, j, k, lindx2(nnzlindx+1) double precision lnz(nnzl), ra(nnzl) c first, the easy ones dim(1) = nrow dim(2) = nrow do 100 i = 1, nnzl ra(i) = lnz(i) 100 continue do 150 i = 1, (nnzlindx) lindx2(i) = lindx(i) 150 continue lindx2(nnzlindx+1) = nrow+1 c lindx2 is a copy of lindx, but with an extra entry that allows the c loop below not to over-run the array do 200 i = 1, (nrow+1) ia(i) = xlnz(i) 200 continue c initialization place = 1 c fill out the ja slot do 300 i = 1, nsuper do 250 j = 0, (lindx2(xlindx(i+1)) - lindx2(xlindx(i))-1) do 225 k = (xlindx(i)+j), (xlindx(i+1)-1) ja(place) = lindx2(k) c write(*,*) 'i =', i, ' j =', j,' k =', k,' place =',place place = place + 1 225 continue 250 continue 300 continue END subroutine SparseM/src/sparskit.f0000644000175100001440000026276413077164713014472 0ustar hornikusers c----------------------------------------------------------------------c c S P A R S K I T c c----------------------------------------------------------------------c c UNARY SUBROUTINES MODULE c c----------------------------------------------------------------------c c amask : extracts C = A mask M c c csort : sorts the elements in increasing order of columns c c ivperm : permutes an integer vector (in-place) c c dvperm : permutes a real vector (in-place) c c getelm : returns a(i,j) for any (i,j) from a CSR-stored matrix. c c rperm : permutes the rows of a matrix (B = P A) c c filter1 : filters elements from a matrix according to their magnitudec c amubdg : gets number of nonzeros in each row of A*B (as well as NNZ) c c aplbdg : gets number of nonzeros in each row of A+B (as well as NNZ) c c----------------------------------------------------------------------c subroutine amask (nrow,ncol,a,ja,ia,jmask,imask, * c,jc,ic,iw,nzmax,ierr) c--------------------------------------------------------------------- double precision a(*),c(*) integer ia(nrow+1),ja(*),jc(*),ic(nrow+1),jmask(*),imask(nrow+1) logical iw(ncol) c----------------------------------------------------------------------- c This subroutine builds a sparse matrix from an input matrix by c extracting only elements in positions defined by the mask jmask, imask c----------------------------------------------------------------------- c On entry: c--------- c nrow = integer. row dimension of input matrix c ncol = integer. Column dimension of input matrix. c c a, c ja, c ia = matrix in Compressed Sparse Row format c c jmask, c imask = matrix defining mask (pattern only) stored in compressed c sparse row format. c c nzmax = length of arrays c and jc. see ierr. c c On return: c----------- c c a, ja, ia and jmask, imask are unchanged. c c c c jc, c ic = the output matrix in Compressed Sparse Row format. c c ierr = integer. serving as error message.c c ierr = 0 means normal return c ierr .gt. 1 means that amask stopped when processing c row number ierr, because there was not enough space in c c, jc according to the value of nzmax. c c work arrays: c------------- c iw = logical work array of length ncol. c c note: c------ the algorithm is in place: c, jc, ic can be the same as c a, ja, ia in which cas the code will overwrite the matrix c c on a, ja, ia c c----------------------------------------------------------------------- ierr = 0 len = 0 do 1 j=1, ncol iw(j) = .false. 1 continue c unpack the mask for row ii in iw do 100 ii=1, nrow c save pointer in order to be able to do things in place do 2 k=imask(ii), imask(ii+1)-1 iw(jmask(k)) = .true. 2 continue c add umasked elemnts of row ii k1 = ia(ii) k2 = ia(ii+1)-1 ic(ii) = len+1 do 200 k=k1,k2 j = ja(k) if (iw(j)) then len = len+1 if (len .gt. nzmax) then ierr = ii return endif jc(len) = j c(len) = a(k) endif 200 continue c do 3 k=imask(ii), imask(ii+1)-1 iw(jmask(k)) = .false. 3 continue 100 continue ic(nrow+1)=len+1 c return c-----end-of-amask ----------------------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine csort (n,a,ja,ia,iwork,values) logical values integer n, ja(*), ia(n+1), iwork(*) double precision a(*) c----------------------------------------------------------------------- c This routine sorts the elements of a matrix (stored in Compressed c Sparse Row Format) in increasing order of their column indices within c each row. It uses a form of bucket sort with a cost of O(nnz) where c nnz = number of nonzero elements. c requires an integer work array of length 2*nnz. c----------------------------------------------------------------------- c on entry: c--------- c n = the row dimension of the matrix c a = the matrix A in compressed sparse row format. c ja = the array of column indices of the elements in array a. c ia = the array of pointers to the rows. c iwork = integer work array of length max ( n+1, 2*nnz ) c where nnz = (ia(n+1)-ia(1)) ) . c values= logical indicating whether or not the real values a(*) must c also be permuted. if (.not. values) then the array a is not c touched by csort and can be a dummy array. c c on return: c---------- c the matrix stored in the structure a, ja, ia is permuted in such a c way that the column indices are in increasing order within each row. c iwork(1:nnz) contains the permutation used to rearrange the elements. c----------------------------------------------------------------------- c Y. Saad - Feb. 1, 1991. c----------------------------------------------------------------------- c local variables integer i, k, j, ifirst, nnz, next c c count the number of elements in each column c do 1 i=1,n+1 iwork(i) = 0 1 continue do 3 i=1, n do 2 k=ia(i), ia(i+1)-1 j = ja(k)+1 iwork(j) = iwork(j)+1 2 continue 3 continue c c compute pointers from lengths. c iwork(1) = 1 do 4 i=1,n iwork(i+1) = iwork(i) + iwork(i+1) 4 continue c c get the positions of the nonzero elements in order of columns. c ifirst = ia(1) nnz = ia(n+1)-ifirst do 5 i=1,n do 51 k=ia(i),ia(i+1)-1 j = ja(k) next = iwork(j) iwork(nnz+next) = k iwork(j) = next+1 51 continue 5 continue c c convert to coordinate format c do 6 i=1, n do 61 k=ia(i), ia(i+1)-1 iwork(k) = i 61 continue 6 continue c c loop to find permutation: for each element find the correct c position in (sorted) arrays a, ja. Record this in iwork. c do 7 k=1, nnz ko = iwork(nnz+k) irow = iwork(ko) next = ia(irow) c c the current element should go in next position in row. iwork c records this position. c iwork(ko) = next ia(irow) = next+1 7 continue c c perform an in-place permutation of the arrays. c call ivperm (nnz, ja(ifirst), iwork) if (values) call dvperm (nnz, a(ifirst), iwork) c c reshift the pointers of the original matrix back. c do 8 i=n,1,-1 ia(i+1) = ia(i) 8 continue ia(1) = ifirst c return c---------------end-of-csort-------------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine ivperm (n, ix, perm) integer n, perm(n), ix(n) c----------------------------------------------------------------------- c this subroutine performs an in-place permutation of an integer vector c ix according to the permutation array perm(*), i.e., on return, c the vector x satisfies, c c ix(perm(j)) :== ix(j), j=1,2,.., n c c----------------------------------------------------------------------- c on entry: c--------- c n = length of vector x. c perm = integer array of length n containing the permutation array. c ix = input vector c c on return: c---------- c ix = vector x permuted according (perm(*)) := ix(*) c c----------------------------------------------------------------------c c Y. Saad, Sep. 21 1989 c c----------------------------------------------------------------------c c local variables integer tmp, tmp1 c init = 1 tmp = ix(init) ii = perm(init) perm(init)= -perm(init) k = 0 c c loop c 6 k = k+1 c c save the chased element -- c tmp1 = ix(ii) ix(ii) = tmp next = perm(ii) if (next .lt. 0 ) goto 65 c c test for end c if (k .gt. n) goto 101 tmp = tmp1 perm(ii) = - perm(ii) ii = next c c end loop c goto 6 c c reinitilaize cycle -- c 65 init = init+1 if (init .gt. n) goto 101 if (perm(init) .lt. 0) goto 65 tmp = ix(init) ii = perm(init) perm(init)=-perm(init) goto 6 c 101 continue do 200 j=1, n perm(j) = -perm(j) 200 continue c return c-------------------end-of-ivperm--------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine dvperm (n, x, perm) integer n, perm(n) double precision x(n) c----------------------------------------------------------------------- c this subroutine performs an in-place permutation of a real vector x c according to the permutation array perm(*), i.e., on return, c the vector x satisfies, c c x(perm(j)) :== x(j), j=1,2,.., n c c----------------------------------------------------------------------- c on entry: c--------- c n = length of vector x. c perm = integer array of length n containing the permutation array. c x = input vector c c on return: c---------- c x = vector x permuted according to x(perm(*)) := x(*) c c----------------------------------------------------------------------c c Y. Saad, Sep. 21 1989 c c----------------------------------------------------------------------c c local variables double precision tmp, tmp1 c init = 1 tmp = x(init) ii = perm(init) perm(init)= -perm(init) k = 0 c c loop c 6 k = k+1 c c save the chased element -- c tmp1 = x(ii) x(ii) = tmp next = perm(ii) if (next .lt. 0 ) goto 65 c c test for end c if (k .gt. n) goto 101 tmp = tmp1 perm(ii) = - perm(ii) ii = next c c end loop c goto 6 c c reinitilaize cycle -- c 65 init = init+1 if (init .gt. n) goto 101 if (perm(init) .lt. 0) goto 65 tmp = x(init) ii = perm(init) perm(init)=-perm(init) goto 6 c 101 continue do 200 j=1, n perm(j) = -perm(j) 200 continue c return c-------------------end-of-dvperm--------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- double precision function getelm (i,j,a,ja,ia,iadd,sorted) c----------------------------------------------------------------------- c purpose: c -------- c this function returns the element a(i,j) of a matrix a, c for any pair (i,j). the matrix is assumed to be stored c in compressed sparse row (csr) format. getelm performs a c binary search in the case where it is known that the elements c are sorted so that the column indices are in increasing order. c also returns (in iadd) the address of the element a(i,j) in c arrays a and ja when the search is successsful (zero if not). c----- c first contributed by noel nachtigal (mit). c recoded jan. 20, 1991, by y. saad [in particular c added handling of the non-sorted case + the iadd output] c----------------------------------------------------------------------- c parameters: c ----------- c on entry: c---------- c i = the row index of the element sought (input). c j = the column index of the element sought (input). c a = the matrix a in compressed sparse row format (input). c ja = the array of column indices (input). c ia = the array of pointers to the rows' data (input). c sorted = logical indicating whether the matrix is knonw to c have its column indices sorted in increasing order c (sorted=.true.) or not (sorted=.false.). c (input). c on return: c----------- c getelm = value of a(i,j). c iadd = address of element a(i,j) in arrays a, ja if found, c zero if not found. (output) c c note: the inputs i and j are not checked for validity. c----------------------------------------------------------------------- c noel m. nachtigal october 28, 1990 -- youcef saad jan 20, 1991. c----------------------------------------------------------------------- integer i, ia(*), iadd, j, ja(*) double precision a(*) logical sorted c c local variables. c integer ibeg, iend, imid, k c c initialization c iadd = 0 getelm = 0.0 ibeg = ia(i) iend = ia(i+1)-1 c c case where matrix is not necessarily sorted c if (.not. sorted) then c c scan the row - exit as soon as a(i,j) is found c do 5 k=ibeg, iend if (ja(k) .eq. j) then iadd = k goto 20 endif 5 continue c c end unsorted case. begin sorted case c else c c begin binary search. compute the middle index. c 10 imid = ( ibeg + iend ) / 2 c c test if found c if (ja(imid).eq.j) then iadd = imid goto 20 endif if (ibeg .ge. iend) goto 20 c c else update the interval bounds. c if (ja(imid).gt.j) then iend = imid -1 else ibeg = imid +1 endif goto 10 c c end both cases c endif c 20 if (iadd .ne. 0) getelm = a(iadd) c return c--------end-of-getelm-------------------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine rperm (nrow,a,ja,ia,ao,jao,iao,perm,job) integer nrow,ja(*),ia(nrow+1),jao(*),iao(nrow+1),perm(nrow),job double precision a(*),ao(*) c----------------------------------------------------------------------- c this subroutine permutes the rows of a matrix in CSR format. c rperm computes B = P A where P is a permutation matrix. c the permutation P is defined through the array perm: for each j, c perm(j) represents the destination row number of row number j. c Youcef Saad -- recoded Jan 28, 1991. c----------------------------------------------------------------------- c on entry: c---------- c n = dimension of the matrix c a, ja, ia = input matrix in csr format c perm = integer array of length nrow containing the permutation arrays c for the rows: perm(i) is the destination of row i in the c permuted matrix. c ---> a(i,j) in the original matrix becomes a(perm(i),j) c in the output matrix. c c job = integer indicating the work to be done: c job = 1 permute a, ja, ia into ao, jao, iao c (including the copying of real values ao and c the array iao). c job .ne. 1 : ignore real values. c (in which case arrays a and ao are not needed nor c used). c c------------ c on return: c------------ c ao, jao, iao = input matrix in a, ja, ia format c note : c if (job.ne.1) then the arrays a and ao are not used. c----------------------------------------------------------------------c c Y. Saad, May 2, 1990 c c----------------------------------------------------------------------c logical values values = (job .eq. 1) c c determine pointers for output matix. c do 50 j=1,nrow i = perm(j) iao(i+1) = ia(j+1) - ia(j) 50 continue c c get pointers from lengths c iao(1) = 1 do 51 j=1,nrow iao(j+1)=iao(j+1)+iao(j) 51 continue c c copying c do 100 ii=1,nrow c c old row = ii -- new row = iperm(ii) -- ko = new pointer c ko = iao(perm(ii)) do 60 k=ia(ii), ia(ii+1)-1 jao(ko) = ja(k) if (values) ao(ko) = a(k) ko = ko+1 60 continue 100 continue c return c---------end-of-rperm ------------------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine filter1(n,rel,drptol,a,ja,ia,b,jb,ib,len,ierr) double precision a(*),b(*),drptol integer ja(*),jb(*),ia(*),ib(*),n,len,ierr c----------------------------------------------------------------------- c Modification of the original filter subroutine in Sparskit2 on 6/17/02 c by Pin Ng c This module removes any elements whose value c is small from an input matrix A and puts the resulting c matrix in B. c----------------------------------------------------------------------- c on entry: c--------- c n = integer. row dimension of matrix c rel = integer that controls the drop criterion c 1 = values greater than drptol are kept c 2 = values greater than or equal to drptol are kept c 3 = values equal to drptol are kept c 4 = values not equal to drptol are kept c drptol = real. drop tolerance used for dropping strategy. c a c ja c ia = input matrix in compressed sparse format c len = integer. the amount of space available in arrays b and jb. c c on return: c---------- c b c jb c ib = resulting matrix in compressed sparse format. c c ierr = integer. containing error message. c ierr .eq. 0 indicates normal return c ierr .gt. 0 indicates that there is'nt enough c space is a and ja to store the resulting matrix. c ierr then contains the row number where filter stopped. c note: c------ This module is in place. (b,jb,ib can ne the same as c a, ja, ia in which case the result will be overwritten). c----------------------------------------------------------------------c c contributed by David Day, Sep 19, 1989. c c----------------------------------------------------------------------c c local variables double precision loctol integer index,row,k,k1,k2,rel c index = 1 goto (100,200,300,400) rel 100 do 10 row= 1,n k1 = ia(row) k2 = ia(row+1) - 1 ib(row) = index loctol = drptol do 11 k = k1,k2 if( a(k) .gt. loctol)then if (index .gt. len) then ierr = row return endif b(index) = a(k) jb(index) = ja(k) index = index + 1 endif 11 continue 10 continue ib(n+1) = index return 200 do 20 row= 1,n k1 = ia(row) k2 = ia(row+1) - 1 ib(row) = index loctol = drptol do 21 k = k1,k2 if( a(k) .ge. loctol)then if (index .gt. len) then ierr = row return endif b(index) = a(k) jb(index) = ja(k) index = index + 1 endif 21 continue 20 continue ib(n+1) = index return 300 do 30 row= 1,n k1 = ia(row) k2 = ia(row+1) - 1 ib(row) = index loctol = drptol do 31 k = k1,k2 if( a(k) .eq. loctol)then if (index .gt. len) then ierr = row return endif b(index) = a(k) jb(index) = ja(k) index = index + 1 endif 31 continue 30 continue ib(n+1) = index return 400 do 40 row= 1,n k1 = ia(row) k2 = ia(row+1) - 1 ib(row) = index loctol = drptol do 41 k = k1,k2 if( a(k) .ne. loctol)then if (index .gt. len) then ierr = row return endif b(index) = a(k) jb(index) = ja(k) index = index + 1 endif 41 continue 40 continue ib(n+1) = index return c--------------------end-of-filter ------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine amubdg (nrow,ncol,ncolb,ja,ia,jb,ib,ndegr,nnz,iw) integer ja(*),jb(*),ia(nrow+1),ib(ncol+1),ndegr(nrow),iw(ncolb) c----------------------------------------------------------------------- c gets the number of nonzero elements in each row of A*B and the total c number of nonzero elements in A*B. c----------------------------------------------------------------------- c on entry: c -------- c c nrow = integer. row dimension of matrix A c ncol = integer. column dimension of matrix A = row dimension of c matrix B. c ncolb = integer. the colum dimension of the matrix B. c c ja, ia= row structure of input matrix A: ja = column indices of c the nonzero elements of A stored by rows. c ia = pointer to beginning of each row in ja. c c jb, ib= row structure of input matrix B: jb = column indices of c the nonzero elements of A stored by rows. c ib = pointer to beginning of each row in jb. c c on return: c --------- c ndegr = integer array of length nrow containing the degrees (i.e., c the number of nonzeros in each row of the matrix A * B c c nnz = total number of nonzero elements found in A * B c c work arrays: c------------- c iw = integer work array of length ncolb. c----------------------------------------------------------------------- do 1 k=1, ncolb iw(k) = 0 1 continue do 2 k=1, nrow ndegr(k) = 0 2 continue c c method used: Transp(A) * A = sum [over i=1, nrow] a(i)^T a(i) c where a(i) = i-th row of A. We must be careful not to add the c elements already accounted for. c c do 7 ii=1,nrow c c for each row of A c ldg = 0 c c end-of-linked list c last = -1 do 6 j = ia(ii),ia(ii+1)-1 c c row number to be added: c jr = ja(j) do 5 k=ib(jr),ib(jr+1)-1 jc = jb(k) if (iw(jc) .eq. 0) then c c add one element to the linked list c ldg = ldg + 1 iw(jc) = last last = jc endif 5 continue 6 continue ndegr(ii) = ldg c c reset iw to zero c do 61 k=1,ldg j = iw(last) iw(last) = 0 last = j 61 continue c----------------------------------------------------------------------- 7 continue c nnz = 0 do 8 ii=1, nrow nnz = nnz+ndegr(ii) 8 continue c return c---------------end-of-amubdg ------------------------------------------ c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine aplbdg (nrow,ncol,ja,ia,jb,ib,ndegr,nnz,iw) integer ja(*),jb(*),ia(nrow+1),ib(nrow+1),iw(ncol),ndegr(nrow) c----------------------------------------------------------------------- c gets the number of nonzero elements in each row of A+B and the total c number of nonzero elements in A+B. c----------------------------------------------------------------------- c on entry: c --------- c nrow = integer. The row dimension of A and B c ncol = integer. The column dimension of A and B. c c a, c ja, c ia = Matrix A in compressed sparse row format. c c b, c jb, c ib = Matrix B in compressed sparse row format. c c on return: c---------- c ndegr = integer array of length nrow containing the degrees (i.e., c the number of nonzeros in each row of the matrix A + B. c c nnz = total number of nonzero elements found in A * B c c work arrays: c------------ c iw = integer work array of length equal to ncol. c c----------------------------------------------------------------------- do 1 k=1, ncol iw(k) = 0 1 continue c do 2 k=1, nrow ndegr(k) = 0 2 continue c do 7 ii=1,nrow ldg = 0 c c end-of-linked list c last = -1 c c row of A c do 5 j = ia(ii),ia(ii+1)-1 jr = ja(j) c c add element to the linked list c ldg = ldg + 1 iw(jr) = last last = jr 5 continue c c row of B c do 6 j=ib(ii),ib(ii+1)-1 jc = jb(j) if (iw(jc) .eq. 0) then c c add one element to the linked list c ldg = ldg + 1 iw(jc) = last last = jc endif 6 continue c done with row ii. ndegr(ii) = ldg c c reset iw to zero c do 61 k=1,ldg j = iw(last) iw(last) = 0 last = j 61 continue c----------------------------------------------------------------------- 7 continue c nnz = 0 do 8 ii=1, nrow nnz = nnz+ndegr(ii) 8 continue return c----------------end-of-aplbdg ----------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- c----------------------------------------------------------------------c c S P A R S K I T c c----------------------------------------------------------------------c c BASIC LINEAR ALGEBRA FOR SPARSE MATRICES. BLASSM MODULE c c----------------------------------------------------------------------c c amub : computes C = A*B c c aplb : computes C = A+B c c aplsb : computes C = A + s B c c amudia : Computes C = A* Diag c c aemub : computes element-wise C = A * B c c aedib : computes element-wise C = A / B c c aeexpb : computes element-wise C = A ^ B c c----------------------------------------------------------------------c c Note: this module still incomplete. c c----------------------------------------------------------------------c subroutine amub (nrow,ncol,job,a,ja,ia,b,jb,ib, * c,jc,ic,nzmax,iw,ierr) double precision a(*), b(*), c(*) integer ja(*),jb(*),jc(*),ia(nrow+1),ib(*),ic(*),iw(ncol) c----------------------------------------------------------------------- c performs the matrix by matrix product C = A B c----------------------------------------------------------------------- c on entry: c --------- c nrow = integer. The row dimension of A = row dimension of C c ncol = integer. The column dimension of B = column dimension of C c job = integer. Job indicator. When job = 0, only the structure c (i.e. the arrays jc, ic) is computed and the c real values are ignored. c c a, c ja, c ia = Matrix A in compressed sparse row format. c c b, c jb, c ib = Matrix B in compressed sparse row format. c c nzmax = integer. The length of the arrays c and jc. c amub will stop if the result matrix C has a number c of elements that exceeds exceeds nzmax. See ierr. c c on return: c---------- c c, c jc, c ic = resulting matrix C in compressed sparse row sparse format. c c ierr = integer. serving as error message. c ierr = 0 means normal return, c ierr .gt. 0 means that amub stopped while computing the c i-th row of C with i=ierr, because the number c of elements in C exceeds nzmax. c c work arrays: c------------ c iw = integer work array of length equal to the number of c columns in B. c Note: c------- c The row dimension of B is not needed. However there is no checking c on the condition that ncol(A) = nrow(B). c c----------------------------------------------------------------------- double precision scal logical values values = (job .ne. 0) len = 0 ic(1) = 1 ierr = 0 c initialize array iw. do 1 j=1, ncol iw(j) = 0 1 continue c do 500 ii=1, nrow c row i do 200 ka=ia(ii), ia(ii+1)-1 if (values) scal = a(ka) jj = ja(ka) do 100 kb=ib(jj),ib(jj+1)-1 jcol = jb(kb) jpos = iw(jcol) if (jpos .eq. 0) then len = len+1 if (len .gt. nzmax) then ierr = ii return endif jc(len) = jcol iw(jcol)= len if (values) c(len) = scal*b(kb) else if (values) c(jpos) = c(jpos) + scal*b(kb) endif 100 continue 200 continue do 201 k=ic(ii), len iw(jc(k)) = 0 201 continue ic(ii+1) = len+1 500 continue return c-------------end-of-amub----------------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine aplb (nrow,ncol,job,a,ja,ia,b,jb,ib, * c,jc,ic,nzmax,iw,ierr) double precision a(*), b(*), c(*) integer ja(*),jb(*),jc(*),ia(nrow+1),ib(nrow+1),ic(nrow+1), * iw(ncol) c----------------------------------------------------------------------- c performs the matrix sum C = A+B. c----------------------------------------------------------------------- c on entry: c --------- c nrow = integer. The row dimension of A and B c ncol = integer. The column dimension of A and B. c job = integer. Job indicator. When job = 0, only the structure c (i.e. the arrays jc, ic) is computed and the c real values are ignored. c c a, c ja, c ia = Matrix A in compressed sparse row format. c c b, c jb, c ib = Matrix B in compressed sparse row format. c c nzmax = integer. The length of the arrays c and jc. c amub will stop if the result matrix C has a number c of elements that exceeds exceeds nzmax. See ierr. c c on return: c---------- c c, c jc, c ic = resulting matrix C in compressed sparse row sparse format. c c ierr = integer. serving as error message. c ierr = 0 means normal return, c ierr .gt. 0 means that amub stopped while computing the c i-th row of C with i=ierr, because the number c of elements in C exceeds nzmax. c c work arrays: c------------ c iw = integer work array of length equal to the number of c columns in A. c c----------------------------------------------------------------------- logical values values = (job .ne. 0) ierr = 0 len = 0 ic(1) = 1 do 1 j=1, ncol iw(j) = 0 1 continue c do 500 ii=1, nrow c row i do 200 ka=ia(ii), ia(ii+1)-1 len = len+1 jcol = ja(ka) if (len .gt. nzmax) goto 999 jc(len) = jcol if (values) c(len) = a(ka) iw(jcol)= len 200 continue c do 300 kb=ib(ii),ib(ii+1)-1 jcol = jb(kb) jpos = iw(jcol) if (jpos .eq. 0) then len = len+1 if (len .gt. nzmax) goto 999 jc(len) = jcol if (values) c(len) = b(kb) iw(jcol)= len else if (values) c(jpos) = c(jpos) + b(kb) endif 300 continue do 301 k=ic(ii), len iw(jc(k)) = 0 301 continue ic(ii+1) = len+1 500 continue return 999 ierr = ii return c------------end of aplb ----------------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine aplsb (nrow,ncol,job,a,ja,ia,s,b,jb,ib, * c,jc,ic,nzmax,iw,ierr) double precision a(*), b(*), c(*), s integer ja(*),jb(*),jc(*),ia(nrow+1),ib(nrow+1),ic(nrow+1), * iw(ncol) c----------------------------------------------------------------------- c performs the matrix sum C = A+*B. c Modified from aplb by Pin Ng on 2/26/03 c There is no difference between the original aplsb and aplsb1 in SPARSKIT2 c----------------------------------------------------------------------- c on entry: c --------- c nrow = integer. The row dimension of A and B c ncol = integer. The column dimension of A and B. c job = integer. Job indicator. When job = 0, only the structure c (i.e. the arrays jc, ic) is computed and the c real values are ignored. c c a, c ja, c ia = Matrix A in compressed sparse row format. c c b, c jb, c ib = Matrix B in compressed sparse row format. c c nzmax = integer. The length of the arrays c and jc. c amub will stop if the result matrix C has a number c of elements that exceeds exceeds nzmax. See ierr. c c on return: c---------- c c, c jc, c ic = resulting matrix C in compressed sparse row sparse format. c c ierr = integer. serving as error message. c ierr = 0 means normal return, c ierr .gt. 0 means that amub stopped while computing the c i-th row of C with i=ierr, because the number c of elements in C exceeds nzmax. c c work arrays: c------------ c iw = integer work array of length equal to the number of c columns in A. c c----------------------------------------------------------------------- logical values values = (job .ne. 0) ierr = 0 len = 0 ic(1) = 1 do 1 j=1, ncol iw(j) = 0 1 continue c do 500 ii=1, nrow c row i do 200 ka=ia(ii), ia(ii+1)-1 len = len+1 jcol = ja(ka) if (len .gt. nzmax) goto 999 jc(len) = jcol if (values) c(len) = a(ka) iw(jcol)= len 200 continue c do 300 kb=ib(ii),ib(ii+1)-1 jcol = jb(kb) jpos = iw(jcol) if (jpos .eq. 0) then len = len+1 if (len .gt. nzmax) goto 999 jc(len) = jcol if (values) c(len) = s*b(kb) iw(jcol)= len else if (values) c(jpos) = c(jpos) + s*b(kb) endif 300 continue do 301 k=ic(ii), len iw(jc(k)) = 0 301 continue ic(ii+1) = len+1 500 continue return 999 ierr = ii return c------------end of aplsb ----------------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine aplsb1 (nrow,ncol,a,ja,ia,s,b,jb,ib,c,jc,ic, * nzmax,ierr) double precision a(*), b(*), c(*), s integer ja(*),jb(*),jc(*),ia(nrow+1),ib(nrow+1),ic(nrow+1) c----------------------------------------------------------------------- c performs the operation C = A+s B for matrices in sorted CSR format. c the difference with aplsb is that the resulting matrix is such that c the elements of each row are sorted with increasing column indices in c each row, provided the original matrices are sorted in the same way. c----------------------------------------------------------------------- c on entry: c --------- c nrow = integer. The row dimension of A and B c ncol = integer. The column dimension of A and B. c c a, c ja, c ia = Matrix A in compressed sparse row format with entries sorted c c s = real. scalar factor for B. c c b, c jb, c ib = Matrix B in compressed sparse row format with entries sorted c ascendly in each row c c nzmax = integer. The length of the arrays c and jc. c amub will stop if the result matrix C has a number c of elements that exceeds exceeds nzmax. See ierr. c c on return: c---------- c c, c jc, c ic = resulting matrix C in compressed sparse row sparse format c with entries sorted ascendly in each row. c c ierr = integer. serving as error message. c ierr = 0 means normal return, c ierr .gt. 0 means that amub stopped while computing the c i-th row of C with i=ierr, because the number c of elements in C exceeds nzmax. c c Notes: c------- c this will not work if any of the two input matrices is not sorted c----------------------------------------------------------------------- ierr = 0 kc = 1 ic(1) = kc c c the following loop does a merge of two sparse rows + adds them. c do 6 i=1, nrow ka = ia(i) kb = ib(i) kamax = ia(i+1)-1 kbmax = ib(i+1)-1 5 continue c c this is a while -- do loop -- c if (ka .le. kamax .or. kb .le. kbmax) then c if (ka .le. kamax) then j1 = ja(ka) else c take j1 large enough that always j2 .lt. j1 j1 = ncol+1 endif if (kb .le. kbmax) then j2 = jb(kb) else c similarly take j2 large enough that always j1 .lt. j2 j2 = ncol+1 endif c c three cases c if (j1 .eq. j2) then c(kc) = a(ka)+s*b(kb) jc(kc) = j1 ka = ka+1 kb = kb+1 kc = kc+1 else if (j1 .lt. j2) then jc(kc) = j1 c(kc) = a(ka) ka = ka+1 kc = kc+1 else if (j1 .gt. j2) then jc(kc) = j2 c(kc) = s*b(kb) kb = kb+1 kc = kc+1 endif if (kc .gt. nzmax) goto 999 goto 5 c c end while loop c endif ic(i+1) = kc 6 continue return 999 ierr = i return c------------end-of-aplsb --------------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine amudia (nrow,job, a, ja, ia, diag, b, jb, ib) double precision a(*), b(*), diag(*) integer ja(*),jb(*), ia(nrow+1),ib(nrow+1) c----------------------------------------------------------------------- c performs the matrix by matrix product B = A * Diag (in place) c----------------------------------------------------------------------- c on entry: c --------- c nrow = integer. The row dimension of A c c job = integer. job indicator. Job=0 means get array b only c job = 1 means get b, and the integer arrays ib, jb. c c a, c ja, c ia = Matrix A in compressed sparse row format. c c diag = diagonal matrix stored as a vector dig(1:n) c c on return: c---------- c c b, c jb, c ib = resulting matrix B in compressed sparse row sparse format. c c Notes: c------- c 1) The column dimension of A is not needed. c 2) algorithm in place (B can take the place of A). c----------------------------------------------------------------- do 1 ii=1,nrow c c scale each element c k1 = ia(ii) k2 = ia(ii+1)-1 do 2 k=k1, k2 b(k) = a(k)*diag(ja(k)) 2 continue 1 continue c if (job .eq. 0) return c do 3 ii=1, nrow+1 ib(ii) = ia(ii) 3 continue do 31 k=ia(1), ia(nrow+1) -1 jb(k) = ja(k) 31 continue return c----------------------------------------------------------------------- c-----------end-of-amudiag---------------------------------------------- end c----------------------------------------------------------------------- subroutine aemub (nrow,ncol,a,ja,ia,amask,jmask,imask, * c,jc,ic,iw,aw,nzmax,ierr) c--------------------------------------------------------------------- double precision a(*),c(*),amask(*),aw(ncol) integer ia(nrow+1),ja(*),jc(*),ic(nrow+1),jmask(*),imask(nrow+1) logical iw(ncol) c----------------------------------------------------------------------- c Modified from amask by Pin T. Ng on 2/27/03 to perform c element-wise multiplication c----------------------------------------------------------------------- c On entry: c--------- c nrow = integer. row dimension of input matrix c ncol = integer. Column dimension of input matrix. c c a, c ja, c ia = the A matrix in Compressed Sparse Row format c c amask, c jmask, c imask = matrix defining mask stored in compressed c sparse row format. (This is the B matrix) c c nzmax = length of arrays c and jc. see ierr. c c On return: c----------- c c a, ja, ia and amask, jmask, imask are unchanged. c c c c jc, c ic = the output matrix in Compressed Sparse Row format. c c ierr = integer. serving as error message.c c ierr = 1 means normal return c ierr .gt. 1 means that amask stopped when processing c row number ierr, because there was not enough space in c c, jc according to the value of nzmax. c c work arrays: c------------- c iw = logical work array of length ncol. c aw = real work array of length ncol. c c note: c------ the algorithm is in place: c, jc, ic can be the same as c a, ja, ia in which cas the code will overwrite the matrix c c on a, ja, ia c c----------------------------------------------------------------------- ierr = 0 len = 0 do 1 j=1, ncol iw(j) = .false. aw(j) = 0.0 1 continue c unpack the mask for row ii in iw do 100 ii=1, nrow c save pointer and value in order to be able to do things in place do 2 k=imask(ii), imask(ii+1)-1 iw(jmask(k)) = .true. aw(jmask(k)) = amask(k) 2 continue c add umasked elemnts of row ii k1 = ia(ii) k2 = ia(ii+1)-1 ic(ii) = len+1 do 200 k=k1,k2 j = ja(k) if (iw(j)) then len = len+1 if (len .gt. nzmax) then ierr = ii return endif jc(len) = j c(len) = a(k)*aw(j) endif 200 continue c do 3 k=imask(ii), imask(ii+1)-1 iw(jmask(k)) = .false. aw(jmask(k)) = 0.0 3 continue 100 continue ic(nrow+1)=len+1 c return c-----end-of-aemub ----------------------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine aemub1 (nrow,ncol,a,ja,ia,b,jb,ib,c,jc,ic, * nzmax,ierr) double precision a(*), b(*), c(*) integer ja(*),jb(*),jc(*),ia(nrow+1),ib(nrow+1),ic(nrow+1) c----------------------------------------------------------------------- c A modification of aplsb by Pin Ng on 6/12/02 to c perform the element-wise operation C = A*B for matrices in c sorted CSR format. c the difference with aplsb is that the resulting matrix is such that c the elements of each row are sorted with increasing column indices in c each row, provided the original matrices are sorted in the same way. c----------------------------------------------------------------------- c on entry: c --------- c nrow = integer. The row dimension of A and B c ncol = integer. The column dimension of A and B. c c a, c ja, c ia = Matrix A in compressed sparse row format with entries sorted c c b, c jb, c ib = Matrix B in compressed sparse row format with entries sorted c ascendly in each row c c nzmax = integer. The length of the arrays c and jc. c amub will stop if the result matrix C has a number c of elements that exceeds exceeds nzmax. See ierr. c c on return: c---------- c c, c jc, c ic = resulting matrix C in compressed sparse row sparse format c with entries sorted ascendly in each row. c c ierr = integer. serving as error message. c ierr = 0 means normal return, c ierr .gt. 0 means that amub stopped while computing the c i-th row of C with i=ierr, because the number c of elements in C exceeds nzmax. c c Notes: c------- c this will not work if any of the two input matrices is not sorted c----------------------------------------------------------------------- ierr = 0 kc = 1 ic(1) = kc c c the following loop does a merge of two sparse rows and c multiplies them. c do 6 i=1, nrow ka = ia(i) kb = ib(i) kamax = ia(i+1)-1 kbmax = ib(i+1)-1 5 continue c c this is a while -- do loop -- c if (ka .le. kamax .or. kb .le. kbmax) then c if (ka .le. kamax) then j1 = ja(ka) else c take j1 large enough that always j2 .lt. j1 j1 = ncol+1 endif if (kb .le. kbmax) then j2 = jb(kb) else c similarly take j2 large enough that always j1 .lt. j2 j2 = ncol+1 endif c c three cases c if (j1 .eq. j2) then c(kc) = a(ka)*b(kb) jc(kc) = j1 ka = ka+1 kb = kb+1 kc = kc+1 else if (j1 .lt. j2) then ka = ka+1 else if (j1 .gt. j2) then kb = kb+1 endif if (kc .gt. nzmax) goto 999 goto 5 c c end while loop c endif ic(i+1) = kc 6 continue return 999 ierr = i return c------------end-of-aemub1 --------------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine aedib (nrow,ncol,job,a,ja,ia,b,jb,ib, * c,jc,ic,nzmax,iw,aw,ierr) double precision a(*), b(*), c(*), aw(ncol) integer ja(*),jb(*),jc(*),ia(nrow+1),ib(nrow+1),ic(nrow+1), * iw(ncol) c----------------------------------------------------------------------- c performs the element-wise matrix division C = A/B. c Modified from aplsb by Pin Ng on 2/27/03 c----------------------------------------------------------------------- c on entry: c --------- c nrow = integer. The row dimension of A and B c ncol = integer. The column dimension of A and B. c job = integer. Job indicator. When job = 0, only the structure c (i.e. the arrays jc, ic) is computed and the c real values are ignored. c c a, c ja, c ia = Matrix A in compressed sparse row format. c c b, c jb, c ib = Matrix B in compressed sparse row format. c c nzmax = integer. The length of the arrays c and jc. c amub will stop if the result matrix C has a number c of elements that exceeds exceeds nzmax. See ierr. c c on return: c---------- c c, c jc, c ic = resulting matrix C in compressed sparse row sparse format. c c ierr = integer. serving as error message. c ierr = 0 means normal return, c ierr .gt. 0 means that amub stopped while computing the c i-th row of C with i=ierr, because the number c of elements in C exceeds nzmax. c c work arrays: c------------ c iw = integer work array of length equal to the number of c columns in A. c aw = real work array of length equal to the number of c columns in A. c c----------------------------------------------------------------------- logical values values = (job .ne. 0) ierr = 0 len = 0 ic(1) = 1 do 1 j=1, ncol iw(j) = 0 1 continue c do 500 ii=1, nrow c row i do 200 ka=ia(ii), ia(ii+1)-1 len = len+1 jcol = ja(ka) if (len .gt. nzmax) goto 999 jc(len) = jcol if (values) c(len) = a(ka)/0.0 iw(jcol)= len aw(jcol) = a(ka) 200 continue c do 300 kb=ib(ii),ib(ii+1)-1 jcol = jb(kb) jpos = iw(jcol) if (jpos .eq. 0) then len = len+1 if (len .gt. nzmax) goto 999 jc(len) = jcol if (values) c(len) = 0.0 iw(jcol)= len else if (values) c(jpos) = aw(jcol)/b(kb) endif 300 continue do 301 k=ic(ii), len iw(jc(k)) = 0 301 continue ic(ii+1) = len+1 500 continue return 999 ierr = ii return c------------end of aedib ----------------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine aeexpb (nrow,ncol,job,a,ja,ia,b,jb,ib, * c,jc,ic,nzmax,iw,aw,ierr) double precision a(*), b(*), c(*), aw(ncol) integer ja(*),jb(*),jc(*),ia(nrow+1),ib(nrow+1),ic(nrow+1), * iw(ncol) c----------------------------------------------------------------------- c performs the element-wise matrix division C = A/B. c Modified from aplsb by Pin Ng on 2/27/03 c----------------------------------------------------------------------- c on entry: c --------- c nrow = integer. The row dimension of A and B c ncol = integer. The column dimension of A and B. c job = integer. Job indicator. When job = 0, only the structure c (i.e. the arrays jc, ic) is computed and the c real values are ignored. c c a, c ja, c ia = Matrix A in compressed sparse row format. c c b, c jb, c ib = Matrix B in compressed sparse row format. c c nzmax = integer. The length of the arrays c and jc. c amub will stop if the result matrix C has a number c of elements that exceeds exceeds nzmax. See ierr. c c on return: c---------- c c, c jc, c ic = resulting matrix C in compressed sparse row sparse format. c c ierr = integer. serving as error message. c ierr = 0 means normal return, c ierr .gt. 0 means that amub stopped while computing the c i-th row of C with i=ierr, because the number c of elements in C exceeds nzmax. c c work arrays: c------------ c iw = integer work array of length equal to the number of c columns in A. c aw = real work array of length equal to the number of c columns in A. c c----------------------------------------------------------------------- logical values values = (job .ne. 0) ierr = 0 len = 0 ic(1) = 1 do 1 j=1, ncol iw(j) = 0 1 continue c do 500 ii=1, nrow c row i do 200 ka=ia(ii), ia(ii+1)-1 len = len+1 jcol = ja(ka) if (len .gt. nzmax) goto 999 jc(len) = jcol if (values) c(len) = 1.0 iw(jcol)= len aw(jcol) = a(ka) 200 continue c do 300 kb=ib(ii),ib(ii+1)-1 jcol = jb(kb) jpos = iw(jcol) if (jpos .eq. 0) then len = len+1 if (len .gt. nzmax) goto 999 jc(len) = jcol if (values) c(len) = 0.0**b(kb) iw(jcol)= len else if (values) c(jpos) = aw(jcol)**b(kb) endif 300 continue do 301 k=ic(ii), len iw(jc(k)) = 0 301 continue ic(ii+1) = len+1 500 continue return 999 ierr = ii return c------------end of aeexpb ----------------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- c S P A R S K I T c c----------------------------------------------------------------------c c BASIC MATRIX-VECTOR OPERATIONS - MATVEC MODULE c c Matrix-vector Mulitiplications and Triang. Solves c c----------------------------------------------------------------------c c contents: (as of Nov 18, 1991) c c---------- c c 1) Matrix-vector products: c c--------------------------- c c amux : A times a vector. Compressed Sparse Row (CSR) format. c c----------------------------------------------------------------------c c 1) M A T R I X B Y V E C T O R P R O D U C T S c c----------------------------------------------------------------------c subroutine amux (n, x, y, a,ja,ia) double precision x(*), y(*), a(*) integer n, ja(*), ia(*) c----------------------------------------------------------------------- c A times a vector c----------------------------------------------------------------------- c multiplies a matrix by a vector using the dot product form c Matrix A is stored in compressed sparse row storage. c c on entry: c---------- c n = row dimension of A c x = real array of length equal to the column dimension of c the A matrix. c a, ja, c ia = input matrix in compressed sparse row format. c c on return: c----------- c y = real array of length n, containing the product y=Ax c c----------------------------------------------------------------------- c local variables c double precision t integer i, k c----------------------------------------------------------------------- do 100 i = 1,n c c compute the inner product of row i with vector x c t = 0.0d0 do 99 k=ia(i), ia(i+1)-1 t = t + a(k)*x(ja(k)) 99 continue c c store result in y(i) c y(i) = t 100 continue c return end c---------end-of-amux--------------------------------------------------- c S P A R S K I T c c----------------------------------------------------------------------c c FORMAT CONVERSION MODULE c c----------------------------------------------------------------------c c contents: c c---------- c c csrdns : converts a row-stored sparse matrix into the dense format. c c dnscsr : converts a dense matrix to a sparse storage format. c c coocsr : converts coordinate to to csr format c c coicsr : in-place conversion of coordinate to csr format c c csrcoo : converts compressed sparse row to coordinate. c c csrcsc2 : rectangular version of csrcsc c c csrmsr : converts compressed sparse row format to modified sparse c c row format c c csrssr : converts compressed sparse row to symmetric sparse row c c ssrcsr : converts symmetric sparse row to compressed sparse row c c cscssc : converts compressed sparse column to symmetric sparse c c column c c----------------------------------------------------------------------c subroutine csrdns(nrow,ncol,a,ja,ia,dns,ndns,ierr) double precision dns(ndns,*),a(*) integer ja(*),ia(*) c----------------------------------------------------------------------- c Compressed Sparse Row to Dense c----------------------------------------------------------------------- c c converts a row-stored sparse matrix into a densely stored one c c On entry: c---------- c c nrow = row-dimension of a c ncol = column dimension of a c a, c ja, c ia = input matrix in compressed sparse row format. c (a=value array, ja=column array, ia=pointer array) c dns = array where to store dense matrix c ndns = first dimension of array dns c c on return: c----------- c dns = the sparse matrix a, ja, ia has been stored in dns(ndns,*) c c ierr = integer error indicator. c ierr .eq. 0 means normal return c ierr .eq. i means that the code has stopped when processing c row number i, because it found a column number .gt. ncol. c c----------------------------------------------------------------------- ierr = 0 do 1 i=1, nrow do 2 j=1,ncol dns(i,j) = 0.0d0 2 continue 1 continue c do 4 i=1,nrow do 3 k=ia(i),ia(i+1)-1 j = ja(k) if (j .gt. ncol) then ierr = i return endif dns(i,j) = a(k) 3 continue 4 continue return c---- end of csrdns ---------------------------------------------------- c----------------------------------------------------------------------- end subroutine dnscsr(nrow,ncol,nzmax,dns,ndns,a,ja,ia,ierr) double precision dns(ndns,*),a(*) integer ia(*),ja(*) c----------------------------------------------------------------------- c Dense to Compressed Row Sparse c----------------------------------------------------------------------- c c converts a densely stored matrix into a row orientied c compactly sparse matrix. ( reverse of csrdns ) c Note: this routine does not check whether an element c is small. It considers that a(i,j) is zero if it is exactly c equal to zero: see test below. c----------------------------------------------------------------------- c on entry: c--------- c c nrow = row-dimension of a c ncol = column dimension of a c nzmax = maximum number of nonzero elements allowed. This c should be set to be the lengths of the arrays a and ja. c dns = input nrow x ncol (dense) matrix. c ndns = first dimension of dns. c c on return: c---------- c c a, ja, ia = value, column, pointer arrays for output matrix c c ierr = integer error indicator: c ierr .eq. 0 means normal retur c ierr .eq. i means that the the code stopped while c processing row number i, because there was no space left in c a, and ja (as defined by parameter nzmax). c----------------------------------------------------------------------- ierr = 0 next = 1 ia(1) = 1 do 4 i=1,nrow do 3 j=1, ncol if (dns(i,j) .eq. 0.0d0) goto 3 if (next .gt. nzmax) then ierr = i return endif ja(next) = j a(next) = dns(i,j) next = next+1 3 continue ia(i+1) = next 4 continue return c---- end of dnscsr ---------------------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine coocsr(nrow,nnz,a,ir,jc,ao,jao,iao) c----------------------------------------------------------------------- double precision a(*),ao(*),x integer ir(*),jc(*),jao(*),iao(*) c----------------------------------------------------------------------- c Coordinate to Compressed Sparse Row c----------------------------------------------------------------------- c converts a matrix that is stored in coordinate format c a, ir, jc into a row general sparse ao, jao, iao format. c c on entry: c--------- c nrow = dimension of the matrix c nnz = number of nonzero elements in matrix c a, c ir, c jc = matrix in coordinate format. a(k), ir(k), jc(k) store the nnz c nonzero elements of the matrix with a(k) = actual real value of c the elements, ir(k) = its row number and jc(k) = its column c number. The order of the elements is arbitrary. c c on return: c----------- c ir is destroyed c c ao, jao, iao = matrix in general sparse matrix format with ao c continung the real values, jao containing the column indices, c and iao being the pointer to the beginning of the row, c in arrays ao, jao. c c Notes: c------ This routine is NOT in place. See coicsr c c------------------------------------------------------------------------ do 1 k=1,nrow+1 iao(k) = 0 1 continue c determine row-lengths. do 2 k=1, nnz iao(ir(k)) = iao(ir(k))+1 2 continue c starting position of each row.. k = 1 do 3 j=1,nrow+1 k0 = iao(j) iao(j) = k k = k+k0 3 continue c go through the structure once more. Fill in output matrix. do 4 k=1, nnz i = ir(k) j = jc(k) x = a(k) iad = iao(i) ao(iad) = x jao(iad) = j iao(i) = iad+1 4 continue c shift back iao do 5 j=nrow,1,-1 iao(j+1) = iao(j) 5 continue iao(1) = 1 return c------------- end of coocsr ------------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine coicsr (n,nnz,job,a,ja,ia,iwk) integer ia(nnz),ja(nnz),iwk(n+1) double precision a(*) c------------------------------------------------------------------------ c IN-PLACE coo-csr conversion routine. c------------------------------------------------------------------------ c this subroutine converts a matrix stored in coordinate format into c the csr format. The conversion is done in place in that the arrays c a,ja,ia of the result are overwritten onto the original arrays. c------------------------------------------------------------------------ c on entry: c--------- c n = integer. row dimension of A. c nnz = integer. number of nonzero elements in A. c job = integer. Job indicator. when job=1, the real values in a are c filled. Otherwise a is not touched and the structure of the c array only (i.e. ja, ia) is obtained. c a = real array of size nnz (number of nonzero elements in A) c containing the nonzero elements c ja = integer array of length nnz containing the column positions c of the corresponding elements in a. c ia = integer array of length nnz containing the row positions c of the corresponding elements in a. c iwk = integer work array of length n+1 c on return: c---------- c a c ja c ia = contains the compressed sparse row data structure for the c resulting matrix. c Note: c------- c the entries of the output matrix are not sorted (the column c indices in each are not in increasing order) use coocsr c if you want them sorted. c----------------------------------------------------------------------c c Coded by Y. Saad, Sep. 26 1989 c c----------------------------------------------------------------------c double precision t,tnext logical values c----------------------------------------------------------------------- values = (job .eq. 1) c find pointer array for resulting matrix. do 35 i=1,n+1 iwk(i) = 0 35 continue do 4 k=1,nnz i = ia(k) iwk(i+1) = iwk(i+1)+1 4 continue c------------------------------------------------------------------------ iwk(1) = 1 do 44 i=2,n iwk(i) = iwk(i-1) + iwk(i) 44 continue c c loop for a cycle in chasing process. c init = 1 k = 0 5 if (values) t = a(init) i = ia(init) j = ja(init) ia(init) = -1 c------------------------------------------------------------------------ 6 k = k+1 c current row number is i. determine where to go. ipos = iwk(i) c save the chased element. if (values) tnext = a(ipos) inext = ia(ipos) jnext = ja(ipos) c then occupy its location. if (values) a(ipos) = t ja(ipos) = j c update pointer information for next element to come in row i. iwk(i) = ipos+1 c determine next element to be chased, if (ia(ipos) .lt. 0) goto 65 t = tnext i = inext j = jnext ia(ipos) = -1 if (k .lt. nnz) goto 6 goto 70 65 init = init+1 if (init .gt. nnz) goto 70 if (ia(init) .lt. 0) goto 65 c restart chasing -- goto 5 70 do 80 i=1,n ia(i+1) = iwk(i) 80 continue ia(1) = 1 return c----------------- end of coicsr ---------------------------------------- c------------------------------------------------------------------------ end c----------------------------------------------------------------------- subroutine csrcoo (nrow,job,nzmax,a,ja,ia,nnz,ao,ir,jc,ierr) c----------------------------------------------------------------------- double precision a(*),ao(*) integer ir(*),jc(*),ja(*),ia(nrow+1) c----------------------------------------------------------------------- c Compressed Sparse Row to Coordinate c----------------------------------------------------------------------- c converts a matrix that is stored in coordinate format c a, ir, jc into a row general sparse ao, jao, iao format. c c on entry: c--------- c nrow = dimension of the matrix. c job = integer serving as a job indicator. c if job = 1 fill in only the array ir, ignore jc, and ao. c if job = 2 fill in ir, and jc but not ao c if job = 3 fill in everything. c The reason why these options are provided is that on return c ao and jc are the same as a, ja. So when job = 3, a and ja are c simply copied into ao, jc. When job=2, only jc and ir are c returned. With job=1 only the array ir is returned. Moreover, c the algorithm is in place: c call csrcoo (nrow,1,nzmax,a,ja,ia,nnz,a,ia,ja,ierr) c will write the output matrix in coordinate format on a, ja,ia. c c a, c ja, c ia = matrix in compressed sparse row format. c nzmax = length of space available in ao, ir, jc. c the code will stop immediatly if the number of c nonzero elements found in input matrix exceeds nzmax. c c on return: c----------- c ao, ir, jc = matrix in coordinate format. c c nnz = number of nonzero elements in matrix. c ierr = integer error indicator. c ierr .eq. 0 means normal retur c ierr .eq. 1 means that the the code stopped c because there was no space in ao, ir, jc c (according to the value of nzmax). c c NOTES: 1)This routine is PARTIALLY in place: csrcoo can be called with c ao being the same array as as a, and jc the same array as ja. c but ir CANNOT be the same as ia. c 2) note the order in the output arrays, c------------------------------------------------------------------------ ierr = 0 nnz = ia(nrow+1)-1 if (nnz .gt. nzmax) then ierr = 1 return endif c------------------------------------------------------------------------ goto (3,2,1) job 1 do 10 k=1,nnz ao(k) = a(k) 10 continue 2 do 11 k=1,nnz jc(k) = ja(k) 11 continue c c copy backward to allow for in-place processing. c 3 do 13 i=nrow,1,-1 k1 = ia(i+1)-1 k2 = ia(i) do 12 k=k1,k2,-1 ir(k) = i 12 continue 13 continue return c------------- end-of-csrcoo ------------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- c----------------------------------------------------------------------- subroutine csrcsc2 (n,n2,job,ipos,a,ja,ia,ao,jao,iao) integer ia(n+1),iao(n2+1),ja(*),jao(*) double precision a(*),ao(*) c----------------------------------------------------------------------- c Compressed Sparse Row to Compressed Sparse Column c c (transposition operation) Not in place. c----------------------------------------------------------------------- c Rectangular version. n is number of rows of CSR matrix, c n2 (input) is number of columns of CSC matrix. c----------------------------------------------------------------------- c -- not in place -- c this subroutine transposes a matrix stored in a, ja, ia format. c --------------- c on entry: c---------- c n = number of rows of CSR matrix. c n2 = number of columns of CSC matrix. c job = integer to indicate whether to fill the values (job.eq.1) of the c matrix ao or only the pattern., i.e.,ia, and ja (job .ne.1) c c ipos = starting position in ao, jao of the transposed matrix. c the iao array takes this into account (thus iao(1) is set to ipos.) c Note: this may be useful if one needs to append the data structure c of the transpose to that of A. In this case use for example c call csrcsc2 (n,n,1,ia(n+1),a,ja,ia,a,ja,ia(n+2)) c for any other normal usage, enter ipos=1. c a = real array of length nnz (nnz=number of nonzero elements in input c matrix) containing the nonzero elements. c ja = integer array of length nnz containing the column positions c of the corresponding elements in a. c ia = integer of size n+1. ia(k) contains the position in a, ja of c the beginning of the k-th row. c c on return: c ---------- c output arguments: c ao = real array of size nzz containing the "a" part of the transpose c jao = integer array of size nnz containing the column indices. c iao = integer array of size n+1 containing the "ia" index array of c the transpose. c c----------------------------------------------------------------------- c----------------- compute lengths of rows of transp(A) ---------------- do 1 i=1,n2+1 iao(i) = 0 1 continue do 3 i=1, n do 2 k=ia(i), ia(i+1)-1 j = ja(k)+1 iao(j) = iao(j)+1 2 continue 3 continue c---------- compute pointers from lengths ------------------------------ iao(1) = ipos do 4 i=1,n2 iao(i+1) = iao(i) + iao(i+1) 4 continue c--------------- now do the actual copying ----------------------------- do 6 i=1,n do 62 k=ia(i),ia(i+1)-1 j = ja(k) next = iao(j) if (job .eq. 1) ao(next) = a(k) jao(next) = i iao(j) = next+1 62 continue 6 continue c-------------------------- reshift iao and leave ---------------------- do 7 i=n2,1,-1 iao(i+1) = iao(i) 7 continue iao(1) = ipos c--------------- end of csrcsc2 ---------------------------------------- c----------------------------------------------------------------------- end subroutine csrmsr (n,a,ja,ia,ao,jao,wk,iwk,nnzao,ierr) double precision a(*),ao(*),wk(n) integer ia(n+1),ja(*),jao(*),iwk(n+1),nnzao,ierr c----------------------------------------------------------------------- c Compressed Sparse Row to Modified - Sparse Row c Sparse row with separate main diagonal c----------------------------------------------------------------------- c converts a general sparse matrix a, ja, ia into c a compressed matrix using a separated diagonal (referred to as c the bell-labs format as it is used by bell labs semi conductor c group. We refer to it here as the modified sparse row format. c Note: this has been coded in such a way that one can overwrite c the output matrix onto the input matrix if desired by a call of c the form c c call csrmsr (n, a, ja, ia, a, ja, wk,iwk) c c In case ao, jao, are different from a, ja, then one can c use ao, jao as the work arrays in the calling sequence: c c call csrmsr (n, a, ja, ia, ao, jao, ao,jao) c c----------------------------------------------------------------------- c c on entry : c--------- c a, ja, ia = matrix in csr format. note that the c algorithm is in place: ao, jao can be the same c as a, ja, in which case it will be overwritten on it c upon return. c nnzao = the number of non-zero entries in ao, jao c c on return : c----------- c c ao, jao = sparse matrix in modified sparse row storage format: c + ao(1:n) contains the diagonal of the matrix. c + ao(n+2:nnz) contains the nondiagonal elements of the c matrix, stored rowwise. c + jao(n+2:nnz) : their column indices c + jao(1:n+1) contains the pointer array for the nondiagonal c elements in ao(n+2:nnz) and jao(n+2:nnz). c i.e., for i .le. n+1 jao(i) points to beginning of row i c in arrays ao, jao. c here nnz = number of nonzero elements+1 c ierr: c = -1 : length of ao, jao < itpr c c work arrays: c------------ c wk = real work array of length n c iwk = integer work array of length n+1 c c notes: c------- c Algorithm is in place. i.e. both: c c call csrmsr (n, a, ja, ia, ao, jao, ao,jao) c (in which ao, jao, are different from a, ja) c and c call csrmsr (n, a, ja, ia, a, ja, wk,iwk) c (in which wk, jwk, are different from a, ja) c are OK. c-------- c coded by Y. Saad Sep. 1989. Rechecked Feb 27, 1990. c Modified by Pin Ng on June 11, 2002 to provide warning when c iptr > nnzao+1 c----------------------------------------------------------------------- icount = 0 c c store away diagonal elements and count nonzero diagonal elements. c do 1 i=1,n wk(i) = 0.0d0 iwk(i+1) = ia(i+1)-ia(i) do 2 k=ia(i),ia(i+1)-1 if (ja(k) .eq. i) then wk(i) = a(k) icount = icount + 1 iwk(i+1) = iwk(i+1)-1 endif 2 continue 1 continue c c compute total length c iptr = n + ia(n+1) - icount if (iptr .gt. nnzao+1) then ierr = -1 return endif c c copy backwards (to avoid collisions) c do 500 ii=n,1,-1 do 100 k=ia(ii+1)-1,ia(ii),-1 j = ja(k) if (j .ne. ii) then ao(iptr) = a(k) jao(iptr) = j iptr = iptr-1 endif 100 continue 500 continue c c compute pointer values and copy wk(*) c jao(1) = n+2 do 600 i=1,n ao(i) = wk(i) jao(i+1) = jao(i)+iwk(i+1) 600 continue return c------------ end of subroutine csrmsr --------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine csrssr (nrow,a,ja,ia,nzmax,ao,jao,iao,ierr) double precision a(*), ao(*), t integer ia(*), ja(*), iao(*), jao(*) c----------------------------------------------------------------------- c Compressed Sparse Row to Symmetric Sparse Row c----------------------------------------------------------------------- c this subroutine extracts the lower triangular part of a matrix. c It can used as a means for converting a symmetric matrix for c which all the entries are stored in sparse format into one c in which only the lower part is stored. The routine is in place in c that the output matrix ao, jao, iao can be overwritten on c the input matrix a, ja, ia if desired. Csrssr has been coded to c put the diagonal elements of the matrix in the last position in c each row (i.e. in position ao(ia(i+1)-1 of ao and jao) c----------------------------------------------------------------------- c On entry c----------- c nrow = dimension of the matrix a. c a, ja, c ia = matrix stored in compressed row sparse format c c nzmax = length of arrays ao, and jao. c c On return: c----------- c ao, jao, c iao = lower part of input matrix (a,ja,ia) stored in compressed sparse c row format format. c c ierr = integer error indicator. c ierr .eq. 0 means normal return c ierr .eq. i means that the code has stopped when processing c row number i, because there is not enough space in ao, jao c (according to the value of nzmax) c c----------------------------------------------------------------------- ierr = 0 ko = 0 c----------------------------------------------------------------------- do 7 i=1, nrow kold = ko kdiag = 0 do 71 k = ia(i), ia(i+1) -1 if (ja(k) .gt. i) goto 71 ko = ko+1 if (ko .gt. nzmax) then ierr = i return endif ao(ko) = a(k) jao(ko) = ja(k) if (ja(k) .eq. i) kdiag = ko 71 continue if (kdiag .eq. 0 .or. kdiag .eq. ko) goto 72 c c exchange c t = ao(kdiag) ao(kdiag) = ao(ko) ao(ko) = t c k = jao(kdiag) jao(kdiag) = jao(ko) jao(ko) = k 72 iao(i) = kold+1 7 continue c redefine iao(n+1) iao(nrow+1) = ko+1 return c--------- end of csrssr ----------------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine cscssc (ncol,a,ja,ia,nzmax,ao,jao,iao,ierr) double precision a(*), ao(*) integer ia(*), ja(*), iao(*), jao(*) c----------------------------------------------------------------------- c Compressed Sparse Column to Symmetric Sparse Column c----------------------------------------------------------------------- c c Modified from csrssr by Pin Ng on 6/28/02 c c this subroutine extracts the lower triangular part of a matrix. c It can used as a means for converting a symmetric matrix for c which all the entries are stored in sparse format into one c in which only the lower part is stored. The routine is in place in c that the output matrix ao, jao, iao can be overwritten on c the input matrix a, ja, ia if desired. Cscssc has been coded to c put the diagonal elements of the matrix in the last position in c each row (i.e. in position ao(ia(i+1)-1 of ao and jao) c----------------------------------------------------------------------- c On entry c----------- c ncol = dimension of the matrix a. c a, ja, c ia = matrix stored in compressed row sparse format c c nzmax = length of arrays ao, and jao. c c On return: c----------- c ao, jao, c iao = lower part of input matrix (a,ja,ia) stored in compressed sparse c row format format. c c ierr = integer error indicator. c ierr .eq. 0 means normal return c ierr .eq. i means that the code has stopped when processing c row number i, because there is not enough space in ao, jao c (according to the value of nzmax) c c----------------------------------------------------------------------- ierr = 0 ko = 0 c----------------------------------------------------------------------- do 7 i=1, ncol kold = ko kdiag = 0 do 71 k = ia(i), ia(i+1) -1 if (ja(k) .lt. i) goto 71 ko = ko+1 if (ko .gt. nzmax) then ierr = i return endif ao(ko) = a(k) jao(ko) = ja(k) if (ja(k) .eq. i) kdiag = ko 71 continue c if (kdiag .eq. 0 .or. kdiag .eq. ko) goto 72 c c exchange c c t = ao(kdiag) c ao(kdiag) = ao(ko) c ao(ko) = t c c k = jao(kdiag) c jao(kdiag) = jao(ko) c jao(ko) = k 72 iao(i) = kold+1 7 continue c redefine iao(n+1) iao(ncol+1) = ko+1 return c--------- end of cscssc ----------------------------------------------- c----------------------------------------------------------------------- end c----------------------------------------------------------------------- subroutine ssrcsr(job, value2, nrow, a, ja, ia, nzmax, & ao, jao, iao, indu, iwk, ierr) c .. Scalar Arguments .. integer ierr, job, nrow, nzmax, value2 c .. c .. Array Arguments .. integer ia(nrow+1), iao(nrow+1), indu(nrow), & iwk(nrow+1), ja(*), jao(nzmax) double precision a(*), ao(nzmax) c .. c----------------------------------------------------------------------- c Symmetric Sparse Row to Compressed Sparse Row format c----------------------------------------------------------------------- c This subroutine converts a given matrix in SSR format to regular c CSR format by computing Ao = A + A' - diag(A), where A' is A c transpose. c c Typically this routine is used to expand the SSR matrix of c Harwell Boeing matrices, or to obtain a symmetrized graph of c unsymmetric matrices. c c This routine is inplace, i.e., (Ao,jao,iao) may be same as c (a,ja,ia). c c It is possible to input an arbitrary CSR matrix to this routine, c since there is no syntactical difference between CSR and SSR c format. It also removes duplicate entries and perform a partial c ordering. The output matrix has an order of lower half, main c diagonal and upper half after the partial ordering. c----------------------------------------------------------------------- c on entry: c--------- c c job = options c 0 -- duplicate entries are not removed. If the input matrix is c SSR (not an arbitary CSR) matrix, no duplicate entry should c arise from this routine. c 1 -- eliminate duplicate entries, zero entries. c 2 -- eliminate duplicate entries and perform partial ordering. c 3 -- eliminate duplicate entries, sort the entries in the c increasing order of clumn indices. c c value2= will the values of A be copied? c 0 -- only expand the graph (a, ao are not touched) c 1 -- expand the matrix with the values. c c nrow = column dimension of inout matrix c a, c ia, c ja = matrix in compressed sparse row format. c c nzmax = size of arrays ao and jao. SSRCSR will abort if the storage c provided in ao, jao is not sufficient to store A. See ierr. c c on return: c---------- c ao, jao, iao c = output matrix in compressed sparse row format. The resulting c matrix is symmetric and is equal to A+A'-D. ao, jao, iao, c can be the same as a, ja, ia in the calling sequence. c c indu = integer array of length nrow. INDU will contain pointers c to the beginning of upper traigular part if job > 1. c Otherwise it is also used as a work array (size nrow). c c iwk = integer work space (size nrow+1). c c ierr = integer. Serving as error message. If the length of the arrays c ao, jao exceeds nzmax, ierr returns the minimum value c needed for nzmax. otherwise ierr=0 (normal return). c c----------------------------------------------------------------------- c .. Local Scalars .. integer i, ipos, j, k, kfirst, klast, ko, kosav, nnz double precision tmp c .. c .. Executable Statements .. ierr = 0 do 10 i = 1, nrow indu(i) = 0 iwk(i) = 0 10 continue iwk(nrow+1) = 0 c c .. compute number of elements in each row of (A'-D) c put result in iwk(i+1) for row i. c do 30 i = 1, nrow do 20 k = ia(i), ia(i+1) - 1 j = ja(k) if (j.ne.i) & iwk(j+1) = iwk(j+1) + 1 20 continue 30 continue c c .. find addresses of first elements of ouput matrix. result in iwk c iwk(1) = 1 do 40 i = 1, nrow indu(i) = iwk(i) + ia(i+1) - ia(i) iwk(i+1) = iwk(i+1) + indu(i) indu(i) = indu(i) - 1 40 continue c.....Have we been given enough storage in ao, jao ? nnz = iwk(nrow+1) - 1 if (nnz.gt.nzmax) then ierr = nnz return endif c c .. copy the existing matrix (backwards). c kosav = iwk(nrow+1) do 60 i = nrow, 1, -1 klast = ia(i+1) - 1 kfirst = ia(i) iao(i+1) = kosav kosav = iwk(i) ko = iwk(i) - kfirst iwk(i) = ko + klast + 1 do 50 k = klast, kfirst, -1 if (value2.ne.0) & ao(k+ko) = a(k) jao(k+ko) = ja(k) 50 continue 60 continue iao(1) = 1 c c now copy (A'-D). Go through the structure of ao, jao, iao c that has already been copied. iwk(i) is the address c of the next free location in row i for ao, jao. c do 80 i = 1, nrow do 70 k = iao(i), indu(i) j = jao(k) if (j.ne.i) then ipos = iwk(j) if (value2.ne.0) & ao(ipos) = ao(k) jao(ipos) = i iwk(j) = ipos + 1 endif 70 continue 80 continue if (job.le.0) return c c .. eliminate duplicate entries -- c array INDU is used as marker for existing indices, it is also the c location of the entry. c IWK is used to stored the old IAO array. c matrix is copied to squeeze out the space taken by the duplicated c entries. c do 90 i = 1, nrow indu(i) = 0 iwk(i) = iao(i) 90 continue iwk(nrow+1) = iao(nrow+1) k = 1 do 120 i = 1, nrow iao(i) = k ipos = iwk(i) klast = iwk(i+1) 100 if (ipos.lt.klast) then j = jao(ipos) if (indu(j).eq.0) then c .. new entry .. if (value2.ne.0) then if (ao(ipos) .ne. 0.0D0) then indu(j) = k jao(k) = jao(ipos) ao(k) = ao(ipos) k = k + 1 endif else indu(j) = k jao(k) = jao(ipos) k = k + 1 endif else if (value2.ne.0) then c .. duplicate entry .. ao(indu(j)) = ao(indu(j)) + ao(ipos) endif ipos = ipos + 1 go to 100 endif c .. remove marks before working on the next row .. do 110 ipos = iao(i), k - 1 indu(jao(ipos)) = 0 110 continue 120 continue iao(nrow+1) = k if (job.le.1) return c c .. partial ordering .. c split the matrix into strict upper/lower triangular c parts, INDU points to the the beginning of the strict upper part. c do 140 i = 1, nrow klast = iao(i+1) - 1 kfirst = iao(i) 130 if (klast.gt.kfirst) then if (jao(klast).lt.i .and. jao(kfirst).ge.i) then c .. swap klast with kfirst .. j = jao(klast) jao(klast) = jao(kfirst) jao(kfirst) = j if (value2.ne.0) then tmp = ao(klast) ao(klast) = ao(kfirst) ao(kfirst) = tmp endif endif if (jao(klast).ge.i) & klast = klast - 1 if (jao(kfirst).lt.i) & kfirst = kfirst + 1 go to 130 endif c if (jao(klast).lt.i) then indu(i) = klast + 1 else indu(i) = klast endif 140 continue if (job.le.2) return c c .. order the entries according to column indices c bubble-sort is used c do 190 i = 1, nrow do 160 ipos = iao(i), indu(i)-1 do 150 j = indu(i)-1, ipos+1, -1 k = j - 1 if (jao(k).gt.jao(j)) then ko = jao(k) jao(k) = jao(j) jao(j) = ko if (value2.ne.0) then tmp = ao(k) ao(k) = ao(j) ao(j) = tmp endif endif 150 continue 160 continue do 180 ipos = indu(i), iao(i+1)-1 do 170 j = iao(i+1)-1, ipos+1, -1 k = j - 1 if (jao(k).gt.jao(j)) then ko = jao(k) jao(k) = jao(j) jao(j) = ko if (value2.ne.0) then tmp = ao(k) ao(k) = ao(j) ao(j) = tmp endif endif 170 continue 180 continue 190 continue c return c---- end of ssrcsr ---------------------------------------------------- end c----------------------------------------------------------------------- subroutine atmux (n, x, y, a, ja, ia) double precision x(*), y(*), a(*) integer n, ia(*), ja(*) c----------------------------------------------------------------------- c transp( A ) times a vector c----------------------------------------------------------------------- c multiplies the transpose of a matrix by a vector when the original c matrix is stored in compressed sparse row storage. Can also be c viewed as the product of a matrix by a vector when the original c matrix is stored in the compressed sparse column format. c----------------------------------------------------------------------- c c on entry: c---------- c n = row dimension of A c x = real array of length equal to the column dimension of c the A matrix. c a, ja, c ia = input matrix in compressed sparse row format. c c on return: c----------- c y = real array of length n, containing the product y=transp(A)*x c c----------------------------------------------------------------------- c local variables c integer i, k c----------------------------------------------------------------------- c c zero out output vector c do 1 i=1,n y(i) = 0.0 1 continue c c loop over the rows c do 100 i = 1,n do 99 k=ia(i), ia(i+1)-1 y(ja(k)) = y(ja(k)) + x(i)*a(k) 99 continue 100 continue c return c-------------end-of-atmux---------------------------------------------- c----------------------------------------------------------------------- end SparseM/src/bckslv.f0000644000175100001440000002022413077164713014075 0ustar hornikusers subroutine bckslv(m,nsubmax,nsuper,nrhs,lindx,xlindx,nnzlmax,lnz, & xlnz,invp,perm,xsuper,newrhs,sol,b,timed) c 1 2 3 4 5 6 7 c23456789012345678901234567890123456789012345678901234567890123456789012 c Sparse least squares solver via Ng-Peyton's sparse Cholesky c factorization for sparse symmetric positive definite c INPUT: c m -- the number of column in the design matrix X c nsubmax -- upper bound of the dimension of lindx c lindx -- an nsub-vector of interger which contains, in c column major oder, the row subscripts of the nonzero c entries in L in a compressed storage format c xlindx -- an nsuper-vector of integer of pointers for lindx c nnzlmax -- the upper bound of the non-zero entries in c L stored in lnz, including the diagonal entries c lnz -- First contains the non-zero entries of d; later c contains the entries of the Cholesky factor c xlnz -- column pointer for L stored in lnz c invp -- an m-vector of integer of inverse permutation c vector c perm -- an m-vector of integer of permutation vector c xsuper -- array of length m+1 containing the supernode c partitioning c newrhs -- extra work vector for right-hand side and c solution c sol -- the least squares solution c b -- an m-vector, usualy the rhs of the equality constraint c X'a = (1-tau)X'e in the rq setting c OUTPUT: c y -- an m-vector of least squares solution c WORK ARRAYS: c b -- an m-vector, usually the rhs of the equality constraint c X'a = (1-tau)X'e in the rq setting c 1 2 3 4 5 6 7 c23456789012345678901234567890123456789012345678901234567890123456789012 integer nnzlmax,nsubmax,nsuper,nrhs,lindx(nsubmax),xlindx(m+1), & invp(m),perm(m),xlnz(m+1), & xsuper(m+1) double precision lnz(nnzlmax),b(m,nrhs),newrhs(m),sol(m,nrhs) double precision timed c real gtimer,timbegw,timendw c c timbegw=gtimer() c Call blkslv: Numerical solution c do j = 1,nrhs do i = 1,m newrhs(i) = b(perm(i),j) enddo call blkslv(nsuper,xsuper,xlindx,lindx,xlnz,lnz,newrhs) do i = 1,m sol(i,j) = newrhs(invp(i)) enddo enddo 100 continue c timendw=gtimer() c timed = timendw - timbegw return end c----------------------------------------------------------------------c c c c BEGIN BEN ADDED c c c c These fortran subroutines are blatant ripoffs of the one in the c c file bckslv.f included in the SparseM package. c c c subroutine bckslb(m,nsubmax,nsuper,nrhs,lindx,xlindx,nnzlmax,lnz, & xlnz,invp,perm,xsuper,newrhs,sol,b,timed) c 1 2 3 4 5 6 7 c23456789012345678901234567890123456789012345678901234567890123456789012 c Sparse back solver of triangular system via Ng-Peyton's sparse Cholesky c factorization for sparse symmetric positive definite c INPUT: c m -- the number of column in the design matrix X c nsubmax -- upper bound of the dimension of lindx c lindx -- an nsub-vector of interger which contains, in c column major oder, the row subscripts of the nonzero c entries in L in a compressed storage format c xlindx -- an nsuper-vector of integer of pointers for lindx c nnzlmax -- the upper bound of the non-zero entries in c L stored in lnz, including the diagonal entries c lnz -- First contains the non-zero entries of d; later c contains the entries of the Cholesky factor c xlnz -- column pointer for L stored in lnz c invp -- an m-vector of integer of inverse permutation c vector c perm -- an m-vector of integer of permutation vector c xsuper -- array of length m+1 containing the supernode c partitioning c newrhs -- extra work vector for right-hand side and c solution c sol -- the least squares solution c b -- an m-vector, usualy the rhs of the equality constraint c X'a = (1-tau)X'e in the rq setting c OUTPUT: c y -- an m-vector of least squares solution c WORK ARRAYS: c b -- an m-vector, usually the rhs of the equality constraint c X'a = (1-tau)X'e in the rq setting c 1 2 3 4 5 6 7 c23456789012345678901234567890123456789012345678901234567890123456789012 integer nnzlmax,nsubmax,nsuper,nrhs,lindx(nsubmax),xlindx(m+1), & invp(m),perm(m),xlnz(m+1), & xsuper(m+1) double precision lnz(nnzlmax),b(m,nrhs),newrhs(m),sol(m,nrhs) double precision timed c Call blkslb: Numerical solution c c newrhs = b c call blkslb(nsuper,xsuper,xlindx,lindx,xlnz,lnz,newrhs) do j = 1,nrhs do i = 1,m newrhs(i) = b(perm(i),j) enddo c write(*,*) 'newrhs =', newrhs call blkslb(nsuper,xsuper,xlindx,lindx,xlnz,lnz,newrhs) do i = 1,m sol(i,j) = newrhs(invp(i)) enddo enddo 100 continue return end c---------------------------------------------------------------------------- subroutine bckslf(m,nsubmax,nsuper,nrhs,lindx,xlindx,nnzlmax,lnz, & xlnz,invp,perm,xsuper,newrhs,sol,b,timed) c 1 2 3 4 5 6 7 c23456789012345678901234567890123456789012345678901234567890123456789012 c Sparse least squares solver via Ng-Peyton's sparse Cholesky c factorization for sparse symmetric positive definite c INPUT: c m -- the number of column in the design matrix X c nsubmax -- upper bound of the dimension of lindx c lindx -- an nsub-vector of interger which contains, in c column major oder, the row subscripts of the nonzero c entries in L in a compressed storage format c xlindx -- an nsuper-vector of integer of pointers for lindx c nnzlmax -- the upper bound of the non-zero entries in c L stored in lnz, including the diagonal entries c lnz -- First contains the non-zero entries of d; later c contains the entries of the Cholesky factor c xlnz -- column pointer for L stored in lnz c invp -- an m-vector of integer of inverse permutation c vector c perm -- an m-vector of integer of permutation vector c xsuper -- array of length m+1 containing the supernode c partitioning c newrhs -- extra work vector for right-hand side and c solution c sol -- the least squares solution c b -- an m-vector, usualy the rhs of the equality constraint c X'a = (1-tau)X'e in the rq setting c OUTPUT: c y -- an m-vector of least squares solution c WORK ARRAYS: c b -- an m-vector, usually the rhs of the equality constraint c X'a = (1-tau)X'e in the rq setting c 1 2 3 4 5 6 7 c23456789012345678901234567890123456789012345678901234567890123456789012 integer nnzlmax,nsubmax,nsuper,nrhs,lindx(nsubmax),xlindx(m+1), & invp(m),perm(m),xlnz(m+1), & xsuper(m+1) double precision lnz(nnzlmax),b(m,nrhs),newrhs(m),sol(m,nrhs) double precision timed c Call blkslf: Numerical solution c do j = 1,nrhs do i = 1,m newrhs(i) = b(perm(i),j) enddo c write(*,*) 'newrhs =', newrhs call blkslf(nsuper,xsuper,xlindx,lindx,xlnz,lnz,newrhs) do i = 1,m sol(i,j) = newrhs(invp(i)) enddo enddo 100 continue return end c c c END BEN ADDED c c----------------------------------------------------------------------c SparseM/src/init.c0000644000175100001440000001056713077164713013562 0ustar hornikusers#include #include // for NULL #include /* FIXME: Check these declarations against the C/Fortran source code. */ /* .Fortran calls */ extern void F77_NAME(aedib)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(aeexpb)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(aemub)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(amub)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(amubdg)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(amux)(void *, void *, void *, void *, void *, void *); extern void F77_NAME(aplsb)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(bckslb)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(bckslf)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(bckslv)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(chol)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(chol2csr)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(coocsr)(void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(cscssc)(void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(csr)(void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(csrcoo)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(csrcsc2)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(csrdns)(void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(csrssr)(void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(filter1)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(nzero)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); extern void F77_NAME(ssrcsr)(void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *, void *); static const R_FortranMethodDef FortranEntries[] = { {"aedib", (DL_FUNC) &F77_NAME(aedib), 16}, {"aeexpb", (DL_FUNC) &F77_NAME(aeexpb), 16}, {"aemub", (DL_FUNC) &F77_NAME(aemub), 15}, {"amub", (DL_FUNC) &F77_NAME(amub), 15}, {"amubdg", (DL_FUNC) &F77_NAME(amubdg), 10}, {"amux", (DL_FUNC) &F77_NAME(amux), 6}, {"aplsb", (DL_FUNC) &F77_NAME(aplsb), 16}, {"bckslb", (DL_FUNC) &F77_NAME(bckslb), 16}, {"bckslf", (DL_FUNC) &F77_NAME(bckslf), 16}, {"bckslv", (DL_FUNC) &F77_NAME(bckslv), 16}, {"chol", (DL_FUNC) &F77_NAME(chol), 30}, {"chol2csr", (DL_FUNC) &F77_NAME(chol2csr), 12}, {"coocsr", (DL_FUNC) &F77_NAME(coocsr), 8}, {"cscssc", (DL_FUNC) &F77_NAME(cscssc), 9}, {"csr", (DL_FUNC) &F77_NAME(csr), 8}, {"csrcoo", (DL_FUNC) &F77_NAME(csrcoo), 11}, {"csrcsc2", (DL_FUNC) &F77_NAME(csrcsc2), 10}, {"csrdns", (DL_FUNC) &F77_NAME(csrdns), 8}, {"csrssr", (DL_FUNC) &F77_NAME(csrssr), 9}, {"filter1", (DL_FUNC) &F77_NAME(filter1), 11}, {"nzero", (DL_FUNC) &F77_NAME(nzero), 11}, {"ssrcsr", (DL_FUNC) &F77_NAME(ssrcsr), 13}, {NULL, NULL, 0} }; void R_init_SparseM(DllInfo *dll) { R_registerRoutines(dll, NULL, NULL, FortranEntries, NULL); R_useDynamicSymbols(dll, FALSE); } SparseM/NAMESPACE0000644000175100001440000000443713060021337013064 0ustar hornikusersuseDynLib(SparseM, .registration = TRUE, .fixes = "f_") importFrom("utils", packageDescription) importFrom("graphics", "axis", "box", "image.default") importFrom("methods", "as", "is", "new", "validObject") importFrom("stats", "coef", "coefficients", "fitted", "model.extract", "pf", "printCoefmat", "pt", "quantile", "residuals", "rnorm", "symnum", "weighted.residuals", "weights") export(is.matrix.csr, is.matrix.csc, is.matrix.ssr, is.matrix.ssc, is.matrix.coo, as.matrix.csr, as.matrix.csc, as.matrix.ssr, as.matrix.ssc, as.matrix.coo, forwardsolve, read.matrix.hb, model.guess, model.xexact, rbind.matrix.csr, cbind.matrix.csr, Ops.matrix.csr, Ops.matrix.diag.csr, "[.matrix.csr", "[<-.matrix.csr", "[.matrix.diag.csr", slm, slm.fit, slm.wfit, slm.fit.csr, coef.slm, fitted.slm, residuals.slm, deviance.slm, extractAIC.slm, summary.mslm, summary.slm, print.summary.slm, print.slm, "[<-.matrix.coo","[.matrix.coo") if(getRversion() < "2.11.0" || R.version$`svn rev` < 51018) export("norm") if(getRversion() >= "2.15.0") importFrom("methods", kronecker) ## Exporting S4 classes exportClasses(matrix.csr, matrix.csc, matrix.ssr, matrix.ssc, matrix.coo, matrix.csr.chol, matrix.csc.hb, matrix.ssc.hb, slm, mslm, summary.slm, matrix.diag.csr) ## Exporting S4 methods {*not* for S3 !} exportMethods(as.matrix.csr, as.matrix.csc, as.matrix.ssr, as.matrix.ssc, as.matrix.coo, as.matrix, t, dim, diff, diag, "diag<-", norm, chol, backsolve, solve, model.matrix, model.response, "%*%", kronecker, "image") S3method(coef, slm) S3method(fitted, slm) S3method(residuals, slm) S3method(summary, mslm) S3method(summary, slm) S3method(print, summary.slm) S3method(print, slm) S3method(deviance, slm) S3method(extractAIC, slm) S3method(cbind, matrix.csr) S3method(rbind, matrix.csr) S3method(Ops, matrix.csr) S3method(Ops, matrix.diag.csr) S3method("[", matrix.coo) S3method("[", matrix.csr) S3method("[", matrix.diag.csr) S3method("[<-", matrix.coo) S3method("[<-", matrix.csr) S3method("as", matrix.coo) S3method("as", matrix.csr) S3method("as", matrix.csc) S3method("as", matrix.ssr) S3method("as", matrix.ssc) S3method("is", matrix.coo) S3method("is", matrix.csr) S3method("is", matrix.csc) S3method("is", matrix.ssr) S3method("is", matrix.ssc) SparseM/demo/0000755000175100001440000000000013010640464012564 5ustar hornikusersSparseM/demo/Solve.R0000644000175100001440000000163213010640132013771 0ustar hornikusersread.matrix.hb(system.file("HBdata","lsq.rra",package = "SparseM"))-> hb.o class(hb.o) # -> [1] "matrix.csc.hb" model.matrix(hb.o)->design.o class(design.o) # -> "matrix.csr" dim(design.o) # -> [1] 1850 712 y <- model.response(hb.o) # extract the rhs class(y) # -> numeric length(y) # [1] 1850 t(design.o)%*%design.o -> XpX #X'X t(design.o)%*%y -> Xpy #X'y chol(XpX)->chol.o class(chol.o) # "matrix.csr.chol" backsolve(chol.o,Xpy)-> b1 # least squares solutions in two steps b1[1:10] solve(XpX,Xpy) -> b2 # least squares estimates in one step back.solve(chol.o, forward.solve(chol.o, Xpy)) -> b3 # least squares solutions # in 3 steps b2[1:10] solve(XpX) -> XpX.inv # (X'X)^-1 class(XpX) # -> "matrix.csr" diag(XpX %*% XpX.inv) # diagonal of the 712 x 712 identity matrix system.time(solve(XpX)) # faster system.time(solve(as.matrix(XpX))) # much slower image(XpX) SparseM/demo/Visualization.R0000644000175100001440000000013011547113521015544 0ustar hornikusersdata(triogramX) image(X) cat("Hit RETURN to continue\n");readLines(n=1) image(t(X)%*%X) SparseM/demo/LinearAlgebra.R0000644000175100001440000000122211547113521015376 0ustar hornikusersn1 = 5 n2 = 5 p = 6 y = rnorm(n1) a = rnorm(n1*p) a[abs(a)<1.0] = 0 A = matrix(a,n1,p) b = rnorm(n2*p) b[abs(b)<1.0] = 0 B = matrix(b,n2,p) A.csr = as.matrix.csr(A) B.csr = as.matrix.csr(B) # testing matrix transposition and matrix-matrix multiplication A.csr%*%t(B.csr) as.matrix(A.csr%*%t(B.csr)) A%*%t(B) # testing matrix transposition and matrix-vector multiplication t(A.csr)%*%y t(A)%*%y # testing diag and diag<- diag(A.csr) diag(A) diag(A.csr) <- 99 diag(A) <- 99 as.matrix(A.csr) A # testing element-wise addition A.csr+B.csr as.matrix(A.csr+B.csr) A+B # testing mix-mode multiplication class(t(A.csr)%*%B) class(t(A)%*%B.csr) class(y%*%B.csr) SparseM/demo/00Index0000644000175100001440000000044211547113521013720 0ustar hornikusersBinding Binding and Indexing for Sparse Matrices Coercion Coercion of Matrices into Various New Classes LeastSquares Least Squares Linear Regression LinearAlgebra Basic Linear Algebra for Sparse Matrices Solve Linear Equation Solving Visualization Visualization Tools for Sparse Matrices SparseM/demo/LeastSquares.R0000644000175100001440000000140213010640105015310 0ustar hornikusers# lsq.rra is real rectangular matrix stored in compressed sparse column for mat read.matrix.hb(system.file("HBdata","lsq.rra",package = "SparseM"))-> hb.o X <- model.matrix(hb.o) #extract the design matrix y <- model.response(hb.o) # extract the rhs X1 <- as.matrix(X) slm.time <- system.time(slm(y~X1-1) -> slm.o) # pretty fast lm.time <- system.time(lm(y~X1-1) -> lm.o) # very slow cat("slm time =",slm.time,"\n") cat("lm time =",lm.time,"\n") sum.slm <- summary(slm.o) sum.slm$coef <- sum.slm$coef[1:5,] sum.lm <- summary(lm.o) sum.lm$coef <- sum.lm$coef[1:5,] sum.slm sum.lm slm.fit.time <- system.time(slm.fit(X,y)) # very fast lm.fit.time <- system.time(lm.fit(X1,y)) # still very slow cat("slm.fit time =",slm.fit.time,"\n") cat("lm.fit time =",lm.fit.time,"\n") SparseM/demo/Binding.R0000644000175100001440000000054611547113521014270 0ustar hornikusersn1 = 3 n2 = 4 p = 5 a = rnorm(n1*p) a[abs(a)<0.7] = 0 A = matrix(a,n1,p) b = rnorm(n2*p) b[abs(b)<0.7] = 0 B = matrix(b,n2,p) A.csr = as.matrix.csr(A) B.csr = as.matrix.csr(B) class(rbind(A.csr,B.csr)) A B as.matrix(rbind(A.csr,B.csr)) as.matrix(cbind(t(A.csr),t(B.csr))) B as.matrix(B.csr[,c(1,3)]) as.matrix(B.csr[-c(1,3),]) B.csr[1,]<-99 as.matrix(B.csr) SparseM/demo/Coercion.R0000644000175100001440000000065511547113521014460 0ustar hornikusers# Demonstrate coercions between various sparse classes n = 5 p = 3 y = rnorm(n) a = rnorm(n*p) a[abs(a)<0.7] = 0 A = matrix(a,n,p) A.csr = as.matrix.csr(A) class(A.csr) ncol(A.csr) nrow(A.csr) dim(A.csr) A.csr as.matrix(A.csr) A A.csc = as.matrix.csc(A.csr) A.csc as.matrix(A.csc) B = t(A)%*%A B.ssr = as.matrix.ssr(B) B.ssr as.matrix(B.ssr) B D.csr<-as.matrix.csr(4*diag(5)) C<-chol(D.csr) C<-as.matrix.csr(C, upper.tri=FALSE) CSparseM/data/0000755000175100001440000000000011547113521012553 5ustar hornikusersSparseM/data/lsq.rda0000644000175100001440000015675611547113521014066 0ustar hornikusers‹ìÝw<Õïÿ8~’RJ¡d4¤%$Zz˜Q©T”2“²‰lE$[öÞ{{c{JC4”ÔÏûýyéö½õ¾u«^­×ûýËîs.çù¼®ëqÍçyvNˆÊò,–]LBB2dÞR’yd³ÿœ?oö) ÉòE³’iëê’1|òô¼kçfS‘°ðACcЮ«~º}$ÿþù¬-222’ìéßm£q¤ØÝ u?Í®ÀM¥8^ÿET~¾Tn_{>ÌyWé˜X¿ÚÖ 5Ë•kÿ¶?ë¼¾Õ6®»#á—½¿Ù‘¿ò1çß}Ÿ_u¾ÿÔã|oýªóüR;ø«ýê¯*÷ï-Ç/åïg·Ã]?ûø?{i U‰âùa~o|üSæ¿ê<~tù×±›õê˜ýcüR9ÿîöõ«Ç‘¦Ã¯˜l†¸õ”ùé©¿ÝZò¹ñòïŽ_Š×OçkßšþS?wþ?:Ý×þýn¯?«>—Ÿ¯]üÝ÷ÿÒßýîö9ç§õÚÀX7,ŸÝ÷ËüÙý4á¯òþ]~mœýêrÿUóšŸ=oýÙ–†ÔÞ–JöÇOüRÿö%w»üÝþ¯¶÷oíŸ?~Õ¼ákû埽Ïñ%Ç?ñïæ÷g­7~U}ý]Ô>Ùï^?ê÷Æå·æ¿’QæÜ>£íÿ3þèõ)ÁN:¤‚dû/÷Óþ³¸€OêÅ0ã_êŸ×õ„_u=ìKùÿQ×kf×y)ñë§íìwµ÷ïÝÏøQõõ£®c~)¾¾6__ëÏšýîøü’?{ü»ÚÊç5OüÒ>îïÞï›ó¿½¾~õúùÓz¬~êrj´1ÿï×ö‹¿ês Ÿ–ãø7öó¿zÝóO¹ý£ÚÍ·æÿG¯“~÷uÛoý\ǧñú½ñ÷»Ö ¿{¿óWïûÔ*˜Go| þóWí—ý¬yîê‡~t¿ò£× ?»ß™÷¾Ôÿ|mº¿'ß»¯üµå9wœo-§oßÛïþ¨óøQ~)¾÷ó'_Jÿ%ÕþÔ×ú¹õ]Å_qü¿ê÷ÖãïÞ§ÿÑV1ç]y ñ_ëÏ×?×>¾·ÿ®}†=¿øR;ùUýÕ·ú¥óþÞýäº7ÿ?º<¿÷ó–÷ó¡ßoß;~|íñÿi×S~ô>¯þ|ù·Îç~÷¾Æ¯ÚÿûÕãšïÿè~ñW­C~U½þªüü¬ù×ïnÿmíê{Ï÷g¿ÿϾÞú³óÿ»ËÿKþSûÕ_½Ïý«ûûï­÷=ßþUãËß­ŸŸÝü¨òùÕqû¥óþYë‘/ù«ËágÇÇϪŸúý}ß¿j]ø«ú¯_µÏó«Žó£ç›¿ëzäÿn\ÿ¯ú¥òøÝóØwŸ+‡¿ÛÿþÝrýÑÇûUãͯú¼×?¥ž~u=þìööwËáG·ÃʼëW¿ßÏÊ÷¯Úßû]qû³Êíw]'ûÙëù?ëºÙÏŠ£"Fúãú¸ÿø±xÆÂðÉAò?~§·ÿûÝ÷U}ɯíG~÷ýäŸú³®sý,×ç~õ}HŶ49Ë)´þøÇÿ 3ê.r·IÊüñüÿƒk®eú¸1ýñüã-rXPÿÇÿŸ˜{GÎ1)ïü¯òwßÇ÷³ýYû2?úºZacÐÉ'Uü‡šL~°qÕá?þñüãÿøãÅE©ÖU¬›öŸXµµ‚ÓÎ íW €‡¤‰{5“°OâÒ M¶o:!ïÄ¡u–¼KÔÅ¥ÅK>:)¤TµžÂH¶^{’ü•ú™ÌÄ ï8ãÀ þü¨Þ"lŸ´aß(Š•¾$5!n{0U»ˆ r#æ$È„6’Á_é Ïy3EÑbA‘¹InOͯ„¶2@ñ’Ì sch!ß™=Öâý+ö©eÎâO_€d OŒÌ´Swc¥ÐÑgéÚ1ý]à7šgD©tT{ÉV¨ÕäÌQYõ Úøé&'Ýt _/vš5v¯%/Y߆­ÓBG)ï`“•c±Šk%ÓÒuhßcÉëÚ¢õp ì„lîZrßçvEÜФøAîýZhÛË…Ò²”нJ…E–Iÿu¿¬ßÝÙ¿¤PLÔ£€êveóóc½0ô±ïlp¹ë l?#n|Ÿó6P×\OâÁB÷`*‘‹­h1û:%µ”Rl´¶S†AæÁ3ù Vw;ñÇAO CûºvØjâhfÔ9-KÈ´JMa“¿éYêìØ8Â|µ^ ´øt$¡LfH"Î4ÛêT,SÞAS‹ó/v ž2È•yo ]gN¼Éºtûî<¡]öÀÛ-˜4ÛŒ qÇÒÞÅÐbImQ±÷”Dwh5ºn+‡b®Õ ´Òß@ýCze îÙ×+ßùúü:$úÅdp B†ôç¶t›o²èÛ5‡ Ú Âƒ0bµîÍ ªã8tmŒÑg =6>Ò∔G¦Ê Çm 9–wGX‚< í &urlÆÞõü,žÃHœÙB]´ò¼³SwaÙ»Å& àØ)ÁÐð*{߃ەÐþápÙõqè[wi^ß´/öb‹ÞÑùÛ¸¼±3ÆFêcªI“ÚX-tû2ßN´Þõ°_…$Qšù8_½°‘šþ€5̵z“˜«ÛJr€3RÏ.‘WþpêÅ× ¤.ƒ¶ÐÒ$¸úÅvð‡Yöc?¾in_6Žm,èh«aM ùº>˜bë ,}Ë 2 ¢K6'iBý1ý‡“+ï@›±¯˜òK è Ï«zþT»CÒ"„gz‘XfePgœŒ ¤Ä]ž‰`eEAÉö¢ Kª/¤y]:B Uk=oUö—@㘙žÀ´•'†šZ@Ohãø‚н³üðZN¬[NXÕ·Ì ÊnûQwá‘Ykœ‹pÀ²A»‚v[oùQ>XUú‚¶Ô71IWµñRC‚è«”7²¡&°IŒk‰íS’ô'‚‡³» ŽF<ì+åÀŠöñ± 6ö Å4 ª™G=æÇA£ô ±šë±}ÃäSñÉ‹Xp«žGãzE+.Õ5=E¹šú"Oê A°Ù]ï%+Ù9V6XB÷Jkß³ñíØÃë¸ùc¶–w]Ž,6Q“VuÊ‘cun¸FQbrÿý.[0vö±n¡\Iîϵ¾¤eåû§Œ¡~öq·§4Ý©¯\„—ëhA-¯Ê! 3h×^5fD§ Ñü‰v±ÇyîXä¿ãÜŸ×èßqî:òòßq~µ  G—¥º4¼Å²«Ôoë×ÅBcJv„òå H‚Ï;îY[äap”¤ò±Õfœ«ç¹zŸ‹ƒ¹¸èkp0åJ9…m9GIŽ !!NÛg!G& T¬^Ñ.4V G Tÿ@Áf7ht~¾’+%ÚWr·F\Ø =G.„yGöã­Êqµük¿€ä¯Ÿûs¯¹¬š1e£Å‡âP‡@ãÁV{O Z0i¶Œ<‡{J"‚o°ß{¹GBîÙÙ~ì #‰4Vz)<§Ø¦&Ö¦xpBéž¨Õ {½ ¥ÞiK‰C :{øŽ$˜cŸc£þ5JÏDÖ)ЬÇj~™óƒ´ä˜ðD;Ö“> V.»m¶øt'åì¿ìn«’ÍÉk™pQj¹×vli~RÙ"Áƒá³Ž—ÒÀ_aÈ0à‰ÈÛãØ¿I:Ïn[¶i°êe3Ùc½@˜¶Q¤/bν™GkœÀQæYÏ®L;¾®êD2%ÆëŒ8Æ=ð’óô´ëÝÌqÁþêaÂy$Vع³ˆ®ÃZ®„d=)Ì‘Y§sR²=/NÈD3ahrÄ»“ÚJ ^­¼}ÇgæÅ˼ÅÁX]=‹çUFºCîãž4è›'e¨JÅR Y3Ö¨ë<ôÇÛO+5Žàhõ›•“Œ·6n5wN†,;âЪb&f8×ãDŠC»MušÔ °ÙJývpƒZí]Þ{´ZùÇ·%‰€ÁÈÐ}L´ØýŠ^Ì;¢[c¼žH7s"áb_ÙÙÂ%XrâäþB¹p'f· uBµ“gJætHÉ2ðËÀÀ ¹ï¦íe8@`Rœ(í“~öÝ ï°4ètYàƒQ´§¾œpœjZªêÆ‚ ÍÊÖ¯"í0ô¡%ß}ݻμµ²ÔŶ£Ñ+wŸÆF6)h!ÅNK‰†å°ð}‡èF%ÀHºø2 ~Ž|*©xó<„²]°}µª4y"¹¡Ñrÿ•8vhóo 2bÒ‡îôÈ Ì"±SmŸzöݻ¡ru¿6'ž8€ CÙ¹‹›16¾Á¯3ÓÖKMšø’a„ÂöµQÔy.e—™¯@ðlºV§¡ð€m4á8Ì>¿×r”ü_z¨˜}_Ç\ehq{ºÑæ*´>Y:EHö€"ÏT]öikàÕ ÀV®£&Œ\Ø8ƒBGW¿Ã꯮J?¬Á¬ºEÆ>¼rÏžéüÄ(»º™úŒAyË í³dhaÏÊÕu@ ;G±þÞ)èš §öÊ^‚ÿŠÛ¥$w‘Ø7´Â­`#ÆÚºoݺí³Ä0àñsëdøëuè§:Sêöá2¶¼ey9›ŒFR+‘ð†zàõš|¬y¾(Áø}¬äâÛµ…5–^QI73Ä;êÅÝ–¸KõÈóW(s–"fk3dlw"á[,ÅíiK“ÚÎk$ØúfÛ­a»R3´»VÚ𮺟 o"ØÃAV³Òî6Vì°¢KXØSµjçƒt˜  ÂÝy‰yR64œ©M§z ­¥O¹ +A§QÇû}öNådrøàl»\æ_ÏV„-lË.ëøßÄÕ5çnv#f± =˜˜Â™ŠóëoBꪊYï¡`áQ±[9TÄï‘”9_ „h‰ålnÑж{r«¶mtÝ eˆýœ ÑGïÍŽcUÔÌ̵G±ñæÓØ,~¨1úÞS2NA>%D?(ãêY– …W¤8ˆáò‰Py:4Ñè_S<` -K×/Í÷<#ž—¬q(`v&åCllf¡ñÄ’öñB»"¡Œ>Q‹õ'´/u©3æá‡~îÎ+Ç'Ô°ÿ¦¨t—>v^Ów™:<;?8$ÏD—p ‡™c9y¨¡Qh†´8éöìNª>n¿3Òƒ&ǯ®|qK±¥bï CÌ•’ãÊ1ºõhQ†ß]i:tÉc‰>–ÓZ¤X „çÖªÛ R`€;Ÿu“ao‰hËâ)_lº˜upGG?VØ:꛿ûòc¯ï]~üÑ*ngº>Mxp©x‹•<öŸµ¥áOïĆE¸U<ëæ–P¬ÙûDl¸MDš¡@cÇi®bGxð„f,VU ‡úŒ/®£-Çæß]R‹‚°¢%Õ[•s[8½Ë¼ÿï1Tê%$>öÓ„F©ƸNhµLÕNð‡Ž”»ùI·R±;*pÜÚ¾Û9ï곉=GÂ=ó„Ü÷X*RR)U9 *b§I¡ÑÐô>ôQBÇ‘•´Ä)è§>Í›©Eƒ}Ó±ÙÅ‹^`ƒ†|C¨¼!ÊÖ\Ëtv—ƒÁ3%Ê¡Á8Jï{dM %š¨'Ž:—Bµ!ïîM—9`ÈGýQ47¶?RÍóiz‡­!Þ5V;¢°élM§Ýò³ëbóR*²Ææs®_~s2“©žK²]SG½÷)ÍbNÉp‹óJ’3ÔÚ±›Pú¥@ãâþ„5—ã?ú×ûB瀘¥ê±(ì½Ê¯¾µ( [žlsnÃŽ•QÛõÌŽ‹š›UÒDZàn[ e&¿š¦;–£ i+ÝÕdR†ÂÙÇ»ï÷}”0›®öf!ðàt¢2ôãÚ=ý<{*=ªÂô±Å@©ÎDÚ Ëv´ôÈ.Vr–Rx…:û؇.¦iÂÐYÎŒ ryl–xO¶x‹>6¥Tû­.¦õÏÜ9i–c£³†ükÒ5X¶~%£QÎ*Lò®o[” åo8xÖ0‚Æ“LqVB÷ËÖ9@_¤ËíÐ|OìÿñÔù%¶ò-=»šü<Ö–Ò{÷n.Åm»Ð!HñÝ®äÕÚm\Þ±“ÄÁˆè³ ]NXá!ˆ•·žX¦„‘ÀœsÏ÷ \Í7"£ÇÖW:MÞlH0œ¿¹1Kæ=¸œ¦Š©=K5‹•ý ¸ƒÖøeÔ)[0·Æ@“åÃ'öÔ@d’lÔòç®n›ÈU×ù°¿{ݲTK‘áLûAíV±EÑ-Ô›=îÖù+9®”CK蚃 ý0¸Žc¹Ôpˆ}(EÌâìL õ¯Ïmž [륌l_dbǦfËD¼e7cÂgj/A0iúcQU¨\™ÍÒgâíÏ4‚'¸×A_ÒŠÕáGKqH}x»Æ±­Ø`ØkÀ̵›Ó×-P‚áî…Äsj‘Ø8²còò3ìØ«ëM1;¸æ¬Ø-2ó…¹ß­¢<‡wöѸ¤ëí€ Ým²ÌQ+ ±jûfyÐa¯êÈ…äkL–3!](R0½ œÝº»¸^a·‚I2û•6Ùg¬Üö„ÚÌö¼Ãf#‘0®X,QŒµé¯ÓÏS&BK[àíž®ÙuveäÓI›ÙuEe-v7¶´Ý´{„¡b:ûÏC›ð©æ¥Nï`€»pÝb63ì¾ÒqhÁ $Vh×1Ì_€ 'ø˜yH,±b’qoØ”æ[»\ªî»„{ãš~ ©ÅF\8¸Ú¶ ÙôºíZ%Icxpd—âÝïSÐGõýB.çH%³ã»LVŽÃGŸôlÚ‡-/öµ²ó{@v3å)®@- î'’ôµoþ+ë­Vþ{ÿ_÷TÂÇué_qdÁÍÝü4År{_Ãèd,Œn—\pnÜ;¢úëœ9å±­¨ÌA“{6‹x «G&c£ŽBG°U6ÖHQSÕÁŠ{Vϼ&FX-Û€ÙWÚBDµÄ0³Ü÷]ñeÌ䟯Ɇ®¢—ooÂô8£´–ÔJL_·lá¥ëB˜6oœý²LaqLGÞf ŒI;¸’ýš‡™œŒ×¡Ïµ¼êÄ tZùžf¼]דû.êdDç^ÑŽŒØ[hït;¨£‘ ͦ¾çA]Þ‡G¦]xžŽJéœ5È\7Ò~tî\Œ:gi]F—:ß¾tä‹ã{î!ØJ Ä^1t'ÿËÍ©pׂÑ{QïJpç6+½}Q ’åöP½…äÖW·î±qCÊ%¾†‘Ð`H©»b¼ùf¤Êµov.Pƒ´]ub÷¤ÏBZ=•ÓHm¤›ªŸÙ§éÓwÖê>‚L:c©í9yà}Í8‹,dú2»¬x ™N©¡‰ûº K÷†Â­•»!›à'd1oäH•,È:a ÷I‰1,<Âp?Å·(Þì1äm}ü¸Ïe”îs¼½¬XJÍ[Vò qCijW†p‹*”Qé]´(±†2Xž·8;Ê´„Š.ÒÆjû°“ìm4X5ÐÓ¼>q«ÒÏ%ˆÛa#”è{mÇòøÒc•õîX6Í;m¨e|‹Î‹Äâ*ÐT’¹Å …wî*öc‘'mtôñ~Äâš-ýb˜Ì*!DÃï?}1£T€Yt“”6͇0s1­”ƒ(¦3{Š’ôoÅ$ž‰{m6k1~,hìá¢fŒéº¦£d/‡Aã'¢s2ЯE=˜Â=ïÆ·?k¿„ª«æ JWR€¼æð»Ù@0{>OSŸw ø©lqžvd„x‡2ÉpcHöØczFa÷¨k‹gdSMMÓU݇öù¶A;ûb @j_ü°${”Ø+µ›@ñ §˜×ë@(g#Œ<Î $šª!äPÕ¹cøÛ¨îçÌ8vÀêü„øÎxM@½°zòÙ07 ,­<¤á†Íggh²`³Œ&iôÀ 6=•c'³jv\~{[×ð<6‹.Ùö›aÍý¸¶ lÞ=¥S Ô6q)÷Êé㾑ÝeÍâc鑺ìA#Äß._šD[‰o’T åvCÒéO†2HÕ¡$ܸÒômÈëñ„,©«©³7 ûå‹7G#L ²A‹õ¤0àbúJ£\P0ÆÈ0}Û [éŒ%Ì÷@q‰…œIÞ¿*—]ãÉB (Í á\Õ{ʲe9lC»ºéÞË¡blE¨ƒËrÌ÷œÎ5ÒÄüù´Ñúåy˜Ç+!´D5￲ï/½¹ODÔ6aº÷®ûë0Í€G`€‹SƒÄd¦1U#BÿqšÆüNé1a¼¢Íyñ=|1Fvœ¦† }гnŽ„§"ãÇW©ãmš‘¶¶²çè`íF>u¶t9Hk)ÏäƒÑÖŽÖótlàrjlå3¸K#n%Å!J…»®Œ@¨²!“qïC»·kŠÞ´[t]ó}§h°åø6õ#ŠrØ´o±ÿÌq9,?wé²ÚÝ,ÞÕǼ*¨ýmÓÝ7ßb‚‹{½ÐÔs‚|ÃÁíó]¯BÁéÁÎãƒP¬þìrŒÝrhÜì{kgÄÐì|¥R˜[NkW_Üs lse#W¬çÆTzdé“‡È ®´ aU¢át?ü¤ð½[!Õv*¹â²žóCÍ9wþCn UB¼lÿäeh[p—vŶ­Ø(»p}ðÖCظ¸òäjµwXÖU<>ɱËHÞÌ{«¿KÌ7ðÕÁäã7OËä}À¨˜—B;×CøÞÊ[-|4P,<¤ tÛJÇW¼ö B¹²s¶Å TúÆ”ç¡F-*Óñê¦;šßšŽ-9¶œk«¯ì˜9Jµ†IK2fçN;o¸ìÂjí:«ñ]˜'~‡2BLsJ¬èh/êáíÁ•ä«v¡=ë:ý<ã0níç^tˆÌÞi&eìP„,^îÕR+!Ÿ~ ° %Auê†aéäkP“èiZJÚŽu{½{cÝîƒU»ëC±ÖôN«nËÖTÚ?–ŠÁÇ-Y¼h±|dMk¿G–‰¾5qìsÇRq·ˆ.~,°(&1*Å‚ÕI±L\9xÅLŸŠ‘æz„1[.~‰)šF2‘›1…‘³7Lî<&Ç/°‘MMÀdR³—¬7naÒÐ(‹,&¦\œf»¹–*ûb¬ùe£Û|*K}`Í9‡§up³>GÝ1Œ”n;™k)¶~Œ¹±~ ÷\³fA0D©hòø®”€Ï¢Ê O $À€¬Ü?J_Ú³(~Hƒ2Så}¥:ï¡ZÒûIÖAÍŒôiº&;¨íدúÈå4Ô-³iM €—.ê@ýAh4i;&šŠA‘ÒJÏX¨0ÈîUeŸ?Y-»àÑ«ŠAj>;FïöcRn¤Á f :ºb¿ÂVa ¢ÝëÐ+§„AKÏÐhyz`àÝó¶‘«0Ð6`oÀk <Àš{%ê•Þd¥`à™“}ð^LK|‡dF–/mÅ€ø¶÷F½B`çßù†<ô^]{/‰B¯”F×c÷¶d'ô~krÕc2ô˜|ÂÌå0úlŸÉHCÿŒdfeFÿ[na&6ˆþ7Jº¨o2 ¿¢6w»Ñl:Ù[Ùw,Ñ_€Öþ¢úóîUšW†~ïdå: ôwÓbÞ‡~lúžïåeÑWíÈÙRôÚfæp”½æKØÐ‰ž/|É™Vó£g“°ÜÞyѳþÔâ'ÍNè·pW.k#z ‹¸·=u8m©•ž¢§–ä’JÏè)¸Ñçs2zòÉ4¸¹R¢çBa*cùûè1£{`¹2zŒöÞvëéBžå%l|èáfWo$?ˆŽ Û½cGíÃñÍ£‡ÚÅIÙ–èÁ«t°|P=Ø],yÆÐc}a–ÎÔº7Ö­Ú[‰îÕךä:©Ñ=è°²s“?º{^÷zÓ9ûººF epº+¹ìôGwÁm)™ÅËÑ}— ÍAYt§fxöÒºÝ)ù eŠ_£[â†êþèΜïaºÙ6××*@7³wœ™Ë¡›ø²j»«¤è&²Át·ð&t[_Õ@Ê#‹nLd³5œÑµ{ƒôSí:t% vE„ÎG×¾çwÊÑ5HÚxí’t½rÈ™—Ñõ¢ÆÊ'Ú/ÑU˜cò’›"ºî‘>ñ'g{A®g¨Ðu¡4W™âÝ6A3RGvt鿏dÁ9»Þ¹›šˆ7-ÂØ„Ä× =qÙ•Q]´êy²š¢íýÞÝÖGûÛl+ W¢ýº;/ì+ÑnJºñP47Ú=¾ÓŸ»ÒíH·ÑÒN,GÛ—,×Ñ6çÎå„{>hÓ³­¡}+Úz úE>ìF[GÓØåƒh+@®Nʈ¶Ü‚Ü vhó^ðü‘H9´™0½¦¶¦mn›JŠ‹\E›ëU”4·IІ깨n¶,ÚqœÌb+AëÝìûìÐz/ýi#cD«®ñ†x¿´j`ï› ÚŒVZì9IóýÐJI­rF¨­XMÔ¼:IÐjuºþ0ýn´ld·”)b@Ë"AE´ŒœOû°-}a͸œZ*«iÊnFK©ô­çÈ7¡åú`5SÏ´¤ßd£SƒÒÉè¶×¡Eýþm n´à9!ÞzE͇¶µ-Þ¿ÍkB_¹­§Cs~—¥zz­h쀃ꙚÏd6æÝf’Û`=^?(x‡>`šÆI“[•^DS÷ª”QBhB1Z~æ0šdÓ{Ú‡9 É^g羕×Р¦Bv’·õ>ñ[g‡G¶ˆžÓ® E†Œb«ü(8T4T@ƒÐ¤µ”rîÖÕÈï»fŽüo«"{ù— ý‰ÃSö"W`ÚNÉã ‘ÙVå}ãdI¸¸êf2R͘*¿ PÌï­×ÊH- kºi-Ý`}ALÖ¢ píÕªk(n·§gÖχýzT MôiãÊ–Æ‚¸ w‡rÜH,Í`hr¢mm–H=M®­éyE ÄëÄeQï] –˜œ¼€>ï<ž­?ŸT6îãÒÐÇ®CBeC%úì]ÕQ®·ÝVJR³©¥ kÍËÜèêda¤œ;„®JEA·l&Ðuµ[µUܼ[Vß:¾¾ï^Ùe›ÝwwKZó9wáÝÕé]r”bèòÚÑo,É]*kKW;£K(¯çÃEèâJ¥Æ ­Ž.²ýô|š»ÑeÛ‡µd,§Ðe3Ï*»n¼#ý6¤£zÚ]/U÷qÕAÛ¢ ¶’¢{hóLu£²Æ^´9Ý{ÐêZÛqyÏŒÖ+mg¢•dêKº3‰hùÁÚ{ ÷Z®š°‘¸Ê„·H…:&ÑâDbÃÕ fTO» Y/”„ h-‡“x޳y!˜*“[-—»ŠŠB>1 QîéË´ÔÇ2xrȳÄÌ›¥â¼J%ÊQBK}áƒRt.}f’H»nMª?nyŠlcbö¡: ûa_ß.ÐKºnSyôOI¦²M‚~¯ÝžÈ¨J0H]!HÜ'†Sï¼—Þ£²¦mĬI0>·cd|¥§$ï“ÓËJ/דǙñ‘ 0••ç8(r L'î%íZf†wön)ó8I’EÔ²pCcšQ¦e?X(“Ø”½†[aÝ®nR;áÖŒ™jeÕ"p¸}9NÍ€Ãè£SuàÈ˘òØÈo\á®æ$Ç×–7·n¼·kǴɯ='±™¢ó5ÀÉÀË0Åý"8Œ½Ú}rœuï^Ð: Î(÷êÝs^¸³A h÷*ê"q3^p~èžZ ËE$y­ÓÁƒÕes7/xŒÊS#׉Á#Žzò@ÇðhŒYm{6xÒÌз0Pç>Fç‚§"Ú]©Ï›;\i©Á3SIÖD\<Ÿ¿õ`‰/ž#·£¶Ì€×©EÝÛrÁKˤCi;x9½·]" .±X²“BDu—·ÁT>D´eϰXAİ׹ޛ òôÞtî©& 5pò2Dê6ÄMÐóA¤YÓNö±1ˆôen¼ m‘qdçÖõCdýù ;FˆìÔ­|!Õ‘Ï ÚÔ§D!&\wmͪÕS´¨4Ï{Ätó˜u¯/†˜ç­ʸ!–¦æU3¯"Änˆn’…تç„–Cìá·¢Á{–B¬ ËnúÎy{õÒm;¿:ˆußÚ½{ÆbÓ Åó.æA,R­…ŸBlSi·ô¨Ä>§5uV ±3» ðdBÜrÛ¯»×@ܶ¦n…,ˆ;~çi]ÁKˆ3ÔÙäGŸ –œŽÇÙ@B\ùõ)mmH(³: 7ýúcÞßµž o^·£#‡Äå­¥SßC"KÚsUyHä&|¼™…®šèö|€D¹½¼Zލ9d·jK$Z_›W|ƒZÓWAbðã'iü3˜¢°eïx3$+Q%ï9h ÉWÌÕ’.‡d“§ÊEu5luÅŽ5a'$ßòØÞ{‡’ïÖJ†jÙBò=ò‹êâÏ!9Ò§ÔŠröïŠ(íD¼É!¹òvlš$×qOz©”Br«ær5qHîÞ¹ÿ2³4$—·Ž½ÉÏ*ë^C¦œÚƒa­Æ¿xñÈžÉe©°•†\Åšë#ׂÏO¿hº¨ÕæÉK¨3V»ÌÐèì &ƒ@³Œ|yåK€Ö—Ãö;:¸³ lãÆÞtŸ{bjÔØëe]¸P+¶Œ?Ñ2ŠE¡Âs –ÄmŸÈTÃÔ,ßÐ+{Ïcª ¨À¤])ܱ¹çå²ü¸—>·#šŸÏÈc«'wA°ø[w r:ï<"`~U"÷¹çן1 uÖTÎäSm ‡ªº“kÒgr¡æ°zï‘Tr¨ÝGc¿¢jÓ./{\݇š…=|úžØ(o¾å u6Yï0Lú…Ó¦sÅ`ã. íøåØÈQôª) Y:7è1¡îA‹"ï»`Ó[§xò~8„Øö±h•R@؉œ›Ê¹/ Ž[*vÚAÆ»µ*ë ¡0•rÁâ4c(V5~»r/TfQ¤¸¸*@­¿nTë¨ÍWL$Ɔº‘àçz³ýoÃàš­k (¡iÛxukU¹_¾¨Ãš´)»C±XãÖ{aA>;Öp×6í_skVú¾QP\€Õ3«x™‰‰JÁÄcÃú}å®’Û~Œ:׿#ÙU Ãw„.x¶c˜H˜ …ºé[É9Q®DëbOÁ‚ÓMx£»vm¡_&œ'Û•¦¡–¨_ÝêvbÝ’é@}érep‡Dœ5ߟú("ù7•93(BÜ«mRûÂK!aµ ¹ã­H ‹’LXÊ I’Vk¸+@²×°ÆžvFH¡1U<}!2»K •ò![òœäcÈ +1).p€û¢ìB#ÏàþÕ' Ç8 ß6CÑÞnàg»<€¢=ƒ²÷žuCQŸò{s×N(^û&¤5Šßž´4#?%òh©â.BÙ“ìeo¨tÖ•s1Ø• ½Wbd¡j8©ý:O,T¯îȽ– «œZ¨ø+pDW#3ËÒc}”aée®+•K0gþ2ááE˜5ñÂî@È Ì꾸÷E9fÕl#‰TQÆ,gæ×ée²˜eÊnͽç f)æJ«>䯬CEí´Ã¬=·Â®mRÁ,Ö«5ÎÓ˜E>%Sq4 3Ÿy{g×É™"¡iAˆé¢Û¯t‹qbú¶ò[ëiÌ1~ßþñEõ˜NUh%j‚i¯‚TÓ m1­¥˲à÷˜–&&ùè4/¦…'¬9Ѐi®Ñ×J—hc𥠅¦:ò¢˜Ó˜—0­½7ión6ê½ÂÔUþ‘ÌL½g|ôA@=¦ê0MÞHÇTîSÉ·&b0uňU^°6¦ÌPß)CaÂý÷D0%‰æG “¤[[Þ?¼ŒI Ê!ÙUÛ0iQwÕ€#&“Éf7ùU 0Ѭ¢åu6ù×&J[òa"…G”O ÚNjôŽbBŠÆ ŒsÇûãc ¾ü˜ ðâÎtŸ&ì½ÎÀ{™¨âçQ$a|ß±yÒ‡0¾Lb쉹+ÆG½cŽ#iÄøË*·–ÄøÃhù¼bä~mùÙu{$£èý“‹0‚¸”b‘Š!Fäñ$2Û#FDTUì:K…¦i;Z%’0â`VNÛÓbŒØ!Õ¼ ß#–­Û¸uJÃGÄŸ·Âðü5Q n®¥2¾EZ Ã7fUÊ2—bØàž£Kû30,kCv,AÃŒ CûŽ`˜²Àé\y ãêÉŸÇ¡¯sÔÒ04u¼“9CoÖè/Åг"šùg{0”¿jòõ7 ¥õebŦfÒ™Ùz·ˆƒC CÔ÷OH Á7Ò2Ší0d‹q’Ä a ~=@pîÃ{kɶî|‚÷îHp¯"Ç{‡N‹80'ã½%‡÷XÙ³¡OùÙ#ëýÝÑçRNÊ|bz¿\IsT¼ ½}õ Ì Wÿqùk±:èåaê lZƒž‘!yÌdeè)¸[v*r=JÖ‹¯¼ÒŠdôâá'yнÂ<™åt ºÕt1:£Ûµø(éMè*¿à´¨&š½!¹DòÎÍR6®s&¢éÚÝUÖ¦.hÜttœŸU”äè®.GCã½²¬Q¿õm]’X ê™`'U“A]#ÉýB¯SñÚ©|\©ÖŠW›ã 6x¼ÀË]ò‘Œêxqs½ŠpÍ]T?1/î©x9ªl>-rò’žLàvãV®¼cty] zøÑÞMßöç}ß_ÛÃömõì„-Œpóè¼3œ+àæpüÌ ]Up8óЇÀ|ÝŸÙ] ·e™Eðö81l!Kp§Ììêö“C༣¡ÛÅevÞœ—šsv܉b¤UÛ¹\6—r/—kþ®ò%à2ÁJçh.ž÷†òúÁÝ×Ï÷.O×›Š)²_€km{’G€¸qB\N¨‚›« Ë ~p_Í7ÃÌ}ÜwL¦%Z€{_Ê•©ÀãŒ,U åJðßÖ—œ”  Þ”{ÜZŸØC`ü¾+#̘o»F1‚˜smOµ!è=ÇÆØ2Ò$^̯q‚`%&a/™oC–'!œêƒE‡!Dªïlb&„TÚ¾Ý#É¡*ˆzl!ôNN8ƒÒ(„qº's¯ƒ0²>ÊSƲǿ®b3„y¤Ý}¤¶¢ézl¯€hwΕ‘dM,0ØC1TÏLÝt†˜“½/Î\Û1ÎÆŽaK:yCŠ4b™ßXç!>Üò˜G U°†Þ™7:,Q7ݱFÕ+ùè Žakä½ý7 N@î´Ó¼£wÉßKqñìüñ÷Ö[;u!.[÷¢Ä JÂßòCüŽFá-Ì£/äG©2;ó;9œ’$ É1k*Ę!¹‹aKNÐHYc`¢wR$™££=… åÌ£kU[{!ŵРR#)>‰iÝô1âϲ…íþsHx–,\} RI_¦çú8Aêê¸X9qHÝýfv)h©'=}½s!U‡Ùw…BªÍDÜF6H Œ®gÚ©IÃÝ<Ò‡ µ@£÷âÞÇZ¿LlÝ”$¤Ìϳᅌ5,Tê C«²Ç‰öd˜-`?ÂArÛ„^Œ¼È)ç Ï £ô¢qZÛ Ètí¿}ƒ2Iï´·g²˜Ú¯v€LÑUçD¤!óêb×%“i¡É½¢Õ 2]*ë_™BfÊ…˜5ÛE!óEAá¨;d-Í7W;àY»“õÌÙ KcOÆÆÈòe(H…¬fÉ&6)ÈJ Ü'¬YÈ;*8¹[.•Y߯†\þÚ ·CîÅŠŽÕkÂz½XÈr]ú“å¦Á}×½Bõ!,Pl¨Ø'<ÑMìg)Æ>0}­@ØT–¶šRæ‹6lð?ýâªïœH¼p`ñ•W?'4w{Þ ¥Mþhþ­©nU²}ÐÊ”a¢±Ø~Nlg¿4Y“ù9¡Ñëù€×º¨fœH®;SÔøÑLG7gêõ,m"4…Úeωýÿ¹ŸÏZ›ØDû˜Sà—¢`ù–ÖǶé,<7,<çWï¯ïUúœÿþ¾ï̉UÌyW¹½)¾Vôv^±J×sΟv^åŠ^œ4ßIxÂ'@ÏUš‡u>K:FÝ÷|I\EQÙ­=ç7Ÿ×ÿÚqZ­z_(úœÐòU)‘â£DèÚ¡F—2ç7g‚òí9¿ê<ÿ¿9}óÄc¡m=Ë>'t>u9Mv,àS¿»=üì|ýìôík™,˜Æ?'F döÌÿ“å·¨-$‡‡-I—f®´q…AHQvûœXò÷9þ]ÿ}äÿãwÇo‡â&v®wŸ Zª³ˆúù­èŸß­¤½þ‹VS3§l/[7'6ÞºÚ8ì¢÷µB³F×û\÷ ðæ„K¬÷ØbQi_åsãS±[@Á#{×ÝO…æÈ‰±ñâáX„RÒgm]úäeˆÇ–9±q]¼_ô|«@xåVú8í£Ù#‹¨Ïh}Ñœ¹›òþzÐ0Q,Æ?¸ãSÿqí¥ÕÏK'gbíç„-Žaúw6%Ö‘¾—ÍšÛ-óbzŸªŸD¾|ÉíúE ŒöãïæÄF‡– ƒ„Šo*%l3“›Ÿÿmk¢ ¬cexçĶËÇ÷ýj?'Ôß!=/DÓðYÞÎ3ص¹rÎïîŸÿîxõ×÷¿Ìùé÷Â|sÜôÏtNîhRŸ²}Ÿ‡'Äÿ‡´r˺çÄG³ù¢Ïú×÷]y 1'ÿš}"ôÛ=×{]—0çóñ¹÷ÿëû•>õsßÃôÍåÑxû¡Y`Èç„ìƒZ§™“?ZäAIR¢8ÿ›-Ñß4yú¹”yˆš%>3œ;«©e¯^fùÛ|x~y3””n-Ý!øôo[ñ@¡Ü}Nìð~ùˆ¦{âsB(-]Å2µïÏÉxý]?­ïõ^*##ÕÐú½bKg\æõ¤_ê^è&¨¾ZÂ¥ùvŒY×X^‡”øµBªI¾a¿öÑÿ93οkÏæ™;ŽT̯ ûœ¥±H°eŠªÅÒÎÞñÃ,‰·Ü~iL ûü +_~*¤ª Û;º\ûh|,Ÿ÷»%?Z줴xv-¸ósBiHím©ôg?JìÛÉÉ=7õ©P¬Ó@™áù£üæ~ö[ÓÿÝuÑ׎/ ³>Z¾ÿKB÷ìº]RØÿS?;^Œe˜<8{u;v>ŽCVÙ±O…f^þK¹±Fm‰¯N"øÌ‰µì\ï‡×¤~«Ð6&|˜ô^ÒG;˜Oê²µnÛŸv$¼Í>ü©Ð䲂5€Gº× < œó›æDß®9±¹{Þ}áò§Ÿˆ ‡ŒÒîBÏ6å}ÒTƒs~ó~@ç«ÛVõ½ÿœõ*QþÍû/›Ÿ_kûf«ÚÅ"éö«Ì‰…ŒuÃF|ß*Ävoéøç„æ[†»*N4B²kN¨Hü±¿m«\ÎõÍ£Ä9±ãävïNÚŸõ¶¯_„BÊ»PØ=¿Ç˜ƒþ‡[ËokV:H2'vïdä¬îÿT ¼»°à±Ó½6¨‡[pÇ~´±ùˆû¼s¯±ó©*aq'Û§BsΑ‹}]Šma?XGûÌjNl ²oÑ5iøœÐzB°~M-´æZíaaýÔ/ŽÄ*Ö]”ŸVÓ3·Žy}´9cבyòOÅÞðUËî(•ÿ‡‘¯®L„N(,=§£=ò£ÅÄ‘|ñ«G/BÕ.ÚŽObëPs(…v×—„rÎ+› Ã.߬F¢q€Å% œá”i1ï›óßã~Ôh÷§þkü×'wZ;'6­(ng rø’@lQo½põ眻ßõã}®_Z¿~íù•‡p«ñÐ%ÿ]¡×êñÍ-’K>›É^5‰q—|­à{VÉÚh÷7['nÔóÿ1÷æñT¶ëû°{MÒ`*•F4¡I‘œ*•hRiÑL†J„FÉTÊ,dž‡Âb™‡N2U EÍs‘F*ï¹~{[½ï³?Ïoïýýþóþqt®ë¾¯û¾¦ó8ŽsñyM붧术‡f³ðóí6ñî0Ûy3Žïø»üÜ5z¶Á[¡IbÌ™ÌÍ· y‡qÓÕ9nÿç÷J»Jþ]ü?¿wš ¾ ï:]¿våwÞ¿‹P-·9¤ê’7ÌQ[w{ñÅÎ7asd£Ì€Gþ.BSÜ èNÓ£Ð,qÛWLöÜÝ;ÿŒËᮾˆ÷ßþ\ë‘”û×wKÊz?S‡Æµ­â62ÐtÝZ}Õýõ}ÆçƦ¥/üo#ÜøªÅª Ùô/±æŒLö¢÷¦¢X{lùÃUŸÕþ.Òü×wzÌ\,ŠMÏ5+µ§KöÅÿñs·:- êÊêþ·n4˜­{žðáocÍæS'÷N³ÅZ¯çÛŠ¼ÿ.þ÷|éüÙäž¿âï"´vàï­x öi¬kñÓ±vê£}sz ÿÛ÷¶Ž‹±{¬-¯¾/ý4ûò_#Þ,§?þ]„»b/G]ûµZï¥ß»qÛ‚¾ˆõn¹Ÿü§îìúþá<´(ï?™=读IùHcg_þ]åÀ¸7ºÎýÉg^_üëéÿöçLÿ­Ý7o»ní½¿F¸ã1¤ !šöm6ZõAò¯ñüÜ;¿»÷¤??Jvÿ» Ú Iæ–Ðóè}\™µ(Þù0+Yóž^_¤ïárÞ‹‹ÿ¡>}QÕƒ‚U¢Ø yÓ”þi<ÇÛz-¡aUž÷fé¢x'øØ ¯rNÿÖoüó÷‚ÿaü?¿•È™Üÿã¼úOû ¿ÿ<ÖÞá/ñßÝïŠ#^{:ßým,Ó;ú¹|ë_bõ©Niƒ÷ýo#Þ;é¾Íe±¿ùwWTXš'ÿÇÑ]ÕZÇîVÖ_#\‰’;>å Þ߯Ê_Û<—ùßF|°u “sžÛ¿ÄÒïQåî“,þmþ=tÓI2ÿi„?åïþÚü¿Ž‘g®<Ül„Xpyć˜=öéª?O-i,œí§päÊMHsš9Y_öDÞw ±ïži†e6Õ?–AdŽñ '¼²¾ë˜rã’êˆÒõö—VHÂ|ÙºËqw¯÷un'ÑŸöåá0ˆ‹¯è" FþY.¿¸»Àd¥Ûù…=/1sïáUUGs`{ÞÚYú‹b榑[]L†@Þ¹˵¥0÷]£ÖøIß!OòÑzÙâÌý¥¢ºui äö¶ëí¨Ú‚ ž:‘õâ`s)&;V¯³ˆƒŒ¤ÞIç†öBFjþ÷ðŽ:È-SÞ`½·2ò†UªµCîü<Ù]©`f´'M<„|;C£ ñ¾yÿ°êØŒ»c`kÈöĦíM`¼¬ÙbwÔaô›+7 á˜fŒQ;>‹Aß§«_~˜=ÌjÁÐ/¶iùÓÊOÝf6I‡L½[Vµû—C¢Ãçy-Þòñ£ÖXý XÙ_ÚùOû¦ŒŽ\U´¨ÒÝ|V-o„È=Ô{ó{„´꿘¶B¤-â¯ë…Š`Ö>#àæå õ öcõ(¸±¯óÇy-\ÓŽ©’Úß«^ƃç\Bµ0u¨ÍÁÐÒpçÙÛòöÇ c Ø|c½UE gÞàaýÊøfÛ= Ù‘¢v_¿¼j‡)çBžÍ²®3!ï½8«}í H6õÆÚÛ&K˜–@òÊ}ÎWµ!ñ¶ë›qÇÊЇyê´ìÀCô­~ÆÎ*½k¶ýL؆þ?¦³ƒS:£Æê‰6²IÀ¹£ ÍøàüÊ{^~ïo´Ó~3pEsßu´ßÞ4nè¬B´wˆ+0×°uƒzYŸØýÐ^m^‡í„u°á@ð¥øc†`8v ÍÑáÆxøÊ•Dµ´Ÿ°iê¾Üi·Œ³Ï©­†¸ªs‡yJˆò7nH±Ï€Û¯`Ûº9™Æ¹fìéúO’-0Ëum×ñ¬Ø!y6 `»>fúʨöÃäåýVÞ…î¯)þ70Y«õNˆ”# ŒVNWˆ‚óÚBåÑʺÿØ„ã~wžü@ß!µo¯3„È…–×TýD߭쌻nŽÑÓÛ;ö‡úžš¡aéØ‘Ì¡„Eiò9ШÓmˆŽm„!«OBä°Å Ã/‚ÀkÃòz±y9~ÊÁ»ûÿÃ=w½y÷v,S]ùŸr'ãÒëXükžúÅÍ´ýW؆°}JA÷fHÚYx\l/èoUû6ù.Œ½Â[t²óY6h,˜ˆþY9“¶`Þ—…sy_×£É/%ÿ‹Ò=˜°_}¦Ø%#4eÝ͵µ¶Â„c­kµ>¼Å¼·Y Ûí;WÌëj×?qÆýŸV>=!èê;ð=z?Î:ùOûð„þÓrúï©þ—Œ[)CguÝvž ¾—“Ü¿_ÓÔá爵1˜l=ó®.ís {Œ²‡»³¨¼÷ÊLÍ©ûÃëj4&ïÐóš9ù,Æ~>*­ä#&7?—²} ñ•퉇1>ÿ—5O ¢0PmÓWŒOËH/9ãc¯ŽßüT¶ËáÉöüXúáüqÈ÷y`z0¦ °Ní,6+ŒŒÄ„¹ÝÇ_ÑE»ëÊ_ïþ¬Å؃ÚgóËß@bówß%ªÛ1öp¶jÅ‘þ¢vJXÅæ²x¾>xbbÓmL‰™÷ûiE<Q6™[âçwzO˜±bJ–ñ9ZGð¼½ÃÚ¡ç ¦TÌ¥wÄ äïÕ¨û½@£ÝÜÎê¾D¾¥Á¹s§c¢ïÔƒ)‡ƒÆubHzâ–fþ‰)³‹öûa2úáKd1°÷ähÓÒ7ÄùT~Êî,¦”»8Q?Cݻ݆çW¡ÿÃæ<ïd\p¼O>ø×Ñá{°úÝ-H„Žú¹Kìú»©èpÅ’«-·ÀÜ£í¦tË7tª»)sÛè Än5s^Q±†ïZµ$!"ô‘Áu¹]h`:m"@töÉQ¢ë©ê:,£¡kÖ8ÙÒq:y›éþ>$†Ùúg¢T—Yaö¢^M¯èÏÑÖSèAhÇÔ¢—^Þíø­ŸÎ.:ßáîÍK²Âóó:ºÓëáùñãw(©\ígšî̲ˆÇ'00Â䀓€!Æm‘òž·0î‘käÔ ÑœR´b ƵÈKÙ`\åÏ •Gû‰úÇ]˵(Ý´¹¯ IŸ¯<Øm I‚Šž›4úô 86,çŒåw\3> ƒ¾ïžTg ùni3F(¸¡yvà-ÎJ4ŸY|n€Cä'ð”ä;ȦMî‘£ ¼^qí­Aƒð|áµs¿ÖBrÿßyÕ©ZüÅ%̼¶@&ç†f>’HåFÉþi7=P}-53ce<Æ5üÓN1­=í ˜påóJïàWm}jÇb¿µÙëO{Òȇ׿vŸs·ÒÔ=5>ð ðïÔŽ xŠËgðGx7ŸÄÜÙŽ*fÃù¨çzPâd5æª^16Z ÙË÷M ~å#ª³²}=}jvly¶°ÔªºÛv¼ÈìÍ‚0ë“NËnCÁöQy­W!, ‹?Œ‹(ØüQ;L¯úKÍM:Fcî‚„d$3¬Œ5xaÂÅÜEò«LNa–mè°LEÌÕнҫáˆYNIku_¡«1[~`Ö[t>ð´p™kºzD¯¸°í=:/]v&4åÆï©×ÙÚ‹Î}ÆDüÆx«%íŠ~c!ËÉìòÙ´\|ý[ëÛ½µ7EÖ5qZE Žåô[‚–Z…oÄBÖÁÙöS↠ըûo¥æþ.Ç%Oõ/ ¡£½¬dðÍ}ÄŽù¯îkcá$óÑ…OÑ×ÐW"çö=,Ÿ®à€¾f†?Ô‡cqv÷ã¡y‰ài|IWBÌ‹K”ŒFë Ïe2\f~Æ|ƒ·š{~×GOø¿ê0¥ÃÝaàÖÖà=ñ·/³!j–öYpý¼óH[óZàó¬×sšo@FgÈÞ¸ Ÿ û¸Ñ<Èø6pPzë`ÈvºûºYÐ&ÜUºþ' ÛaÌÐú{×Eí¸R‡>aѧº,¦©‚¶Q8!‚Þ»×µ„î±ï~~â[ì-?³âÒv,ùñåVuæ9­{ÔZyn:Ø4ßy³d¨½óþÝÍÁyíËn¦Zò&òؤCàÀ£ƒjOHõé\_ÝŽ!çŽøØBÜý‚⯓Ax ÊŒ¶eS!¾¿tibr„Ÿn\8yÄ‹o|t«3å«ÖŒ›|“6)–-8¶MSž›\¼·óælÙ£9­&©ï:Äu™^èѼ«û²£÷N×òÞeÑ[m.êëÂ…Ìç|¹¢xFõqÃ(ÞK8Ó$QTg°‚GTM\*¹¢wî6ïT0ƒ3WoZˆ7±Á×þcÞŒ¼å§1¼@mÜð;Ã[iÞÑczm· Þ‰ÙòéÖWõ@´Ö›r•-˜Í”tø1¾Ç«fq˜y²cŒÜú›èÂÝÓÑ¡ƒ™Q÷÷÷Ûwò^%ï’rõ¡z肸ӥa?FÓþ;Ã66|[ãIê7\.·ÚaØ.ç/š:µÍ'­ÝKÃN>è <œ Q—‡¬ú´>¢’\LuYEò¶öòuºÿú%ž~•¦ÚaÝPƒ™Ãgo|­v7Œ*.е÷À¹´†‘×ÑtMU×2K\ÿúÐô`Ûm`5l¦ZmÑ]4ŒšÕѹfì¼³7M!) 7–÷£©ì;G³\—žŠAQò8Á¹vîþV<Ã4 öxžú1X³? ]u»kÏs°Öœþ!á ìþ¼Ãúæد^tH²rì/ï2;t ¬ovt?Ö˜9GM½uVdBÎæ~%VÐ÷™-ßV}üȃœmmÅä÷BÈN¹oŠYJ˜SµÆÓ³ßD¼PþæVY-&ñ·Œžfr§¾¯É^T¹âzÔt†cR‡ ÊÄ…BzGCÙÄLz½Ï´Â2ØÒC†K¢û°ç¢c<Ô‘Š÷ÖD×G=O²ŠñÐMÕ“•Ö`Iêý7§ó1Z!mRâíÝà>ì°Vlö>Œ–Üßp}S,¸y§,‹Úq^ôóýÕnŸzBŠ*ŸBœÊJãÍäYÝ9¾g/N…8™äœ¶“Ò P'©6ê:¸\úš;wËFHdsHþ<¸\™#!i=ÒoH\žÁ@ªw%Ì8šwñŽC£†¬†„&æk{bÀ¦ý»ÖªX÷ÝÇÍÁ{¿w÷ƒì)2U$Ñý!ÿ“æxuÈ¢ 뽡»“iê~n ä*üôó/C¶YJÿ Æ¡˜Þ1ÿ†ÆÎÀO¾–7 ¨Ó_ŽP(M²ÿ'Cò^~[„éþWNeHv€ÀþÎÉ¢!¶p@ùÚÚXË Ø¶ùÒL°9½qž±ØmôeŸ>ç!¡µ¬a]èÓµ Û þ9æYÉÇ/þ¦Ýw.˜Ö8öÍ hÈÒŠ˜º¨û6 f*œ?×á†ÇNàݵ£^y=޲À„C¶–ú]ÁˆèÇží¸?Âëëä"iÈ ­»fgºfí¬÷÷ȃ›ËJft`Ö]™ŠS®» kSæ±!KÓ1«¢ñ`†„zN«Ô+íÆ¬¢œkÚ+OBfZ³yö˜{(8·~N„̜ۚÏ.``wgSøLgÈÜ4{¬ÒÅ` Ò¸æàbj ©>ÃŒÜSàâqEöœåŸ Õí{æø·!³1$?‹cü–Z·(Õ*Ì®¼=ÍoÛjÌî^äTùp- >K}zk¢ƒ‚¼øz·a_¥DMà·bü'År¯SïÊWKN·G[¿Öékc¼õS•õÃÀ©v¬Ø¤‹ú(¸uÐQâà8Tæ³÷ált~÷z½²J¤#‚f«•s›ÁÉuJv™^3,ý˜I¦ÓÁbaøR¥Þ4ˆÞÖ<­A~Ǫ™éæC´•«¬ÖcdãrÅžÔMhäpìÓ iÈ.o>Vîþ ·ôÏrÚ–ªŒü—ÊžzYCqãÌÑ8È¿~öq‚×+ Sñ»hf5ò£_.É—Æ\-æûŒ°RÌr¬‡5s†qµóçÈ:PyKÖË ’žïÜa¦hüu“¬½¤÷cê>VIÍéeÀ_i»$ICøi›”Ø3À_Á«P\·øQ¹ãvêÕ'™áw²0oÂÄÍ„áó%éEƒÀÖ\LuF„$}ßTœ‚¶›rcõ $ö]ènZªÖþ«Þ+²pÃQ“r3™å¨ßšôS^à»w]®I˜±7‘½3f¡fiös5éš„*ÖKV˜ƒ`í\Î3Åå`·ã¹öA+úÚñµÒ|\0½ ¼gØ_ÒX`–T ÔªCîúÀL#ƒ¸Ù{Ã…u‚X5'1sËŒ[÷Ãí&q ?JœeÅõÿÀêèkcâL+4KÒbì–‡aâô²ŸÅç¥ÐLý–´I½¯üpmZx øßû*骮Ájã—܄ļ¹í™Û!x¬¡ÓÀ7ß!—Ýd ï—·ãŒë ±¼©Mgÿi8L6ÓˆF/ÏíñêÝn ºV]V½v¾ø}‰ù©)-¦ÕéY˜ºsÚ•œœwxÆùü[…û½˜>ðÍœ ‹cëŽ]£Œ¿»~“†Ìuq7N.ƒ]ß4[3ŸÛ`*Û¢¦êÐY‘_¤tNwüýmdʤ¬ßvÁwod´H@æˆêŸµë7a¢ÜÃs€íHíAëŠý1¡W)-âþ°5øÎ}ø}*ØB¡€ól¦Ç÷4öš¶‡m/ðÔÇt¯—.¡‹‚á||«Wù>s œ£«¼þÅŸöÕ𯪇1“ÿùàý h_`pYÇ3¼CÞi‡ìÌÐ)žCRê(¹i÷B ;}FêZÅ|È.î=žŸ¿’J_'Ì~†={åŸ$äAÒÍ5ÒVí›`£Žñîe_¦cÄ£õŸ'Œü›ÏñJ'ÈZaDRX]¦"d³ÊkvÅ`⻥OÂdš «üWð§ém˜øáü¹×¬HLÿëþèS¤kr*í“`ÒrGç«Ià7AMO¯cLëO-—é«ÀoˇÅÕ*ó3,ì–:d ÿa(= 2.óå?ý†¬!ûÒUAÐÿ’ºÔÄÝ(ˆ_’ìœ0ªÏ/Pp!(ÕLbjßy ÀùÝÝoÉ…˜Òe7aå+ILyzâÈãˆ[&Ï~Å–Å”nýñ;rÌ!NÉÞÄæî3L{îð!ýâÆEnÛÒßKÔŽW¬{>ûl0F–”O½Vœñª¼ƒu 02;þÔ®ßç0É“ç|Äóå>ç¥jÂŒegÿÿ€›% Mì0cFuYC´ æ3û C2®cZäUá”0Æüç÷ëDL º?c¶®îŽjè˜lõNËA”ÜÅûâz0&^gio± Æ$zu¬JÓƒ¨%³3ÏÆcLÈÃOó¥‡cô$Í#›ù‡!“Ýc¸°û4Fÿ\÷ùª2d2‚ÔºAGÐ?Ué¶úä·˜$·æAç‹÷è÷ªÂ¦{À×qØ¿Ïî8(ï¶øadüÅ*•2®Ÿ1`Ò²R‹˜Ù˜´¢tÚäÝ?÷øÓÙSõÿ¶äÁO?Eˆ×4_†c„±2Ùó8áÃÁ&©þ¡¤Ò9‘ø¶¯íÎÐ-˜%(üÌv/›Ž*%[G1Lìõ˜ß¦ J¾Œ‰ímÞwv[Rýú,pˆc ¨ŽšýVdC€Tº8/ù °ÄúÝ—œÙ¶¡ÛÃЩ¸=1䌪ò)ÈÖÚª>ôfGIÞ÷tú þ‰µû®'<‡Ë ³Ì®ÈÛcö®·;NðÀ„“G-Š\a‚œ\WSº¼Þ}ìèñïÀÿÄ^=øOÞ© gŽ®¦«# w÷À©§&w ݱ?Ï”E<Ó—¹æ#‹&r1ŽmV*È Æ‹]u{'kcè›~'ì¤ô0öÑ‹߯Hcè#g]»`Œ½=ÔS…‡ÚþºñÙF% íRT¼[k‰!gß±SGe‹ž ñ9ºùà¥xIYîûÖ—£1dÏA“SfॉßV?™v<:ùÉã–£_„‚¾]£;˜_ÊL73+µ=gzè^3çO¿²‹*×çØßv>èĄą{Lð÷x×yÆ ¯æqoY`# ·Ì‘wÄFÍöq*%Ú FýT‰Z»ÇJëRÛ%Ýæ‘-µW—éù‚ÑmkøM½˜³Ùã¡uÃŒnˆ©š»=üÔ9bïH øÌßòbzÖæí_þ$¸~S2óV±Gv½€Ä|¿‹ Õ)µ¿nqÈXÞaVÿ ¥ƒL~z^ƒ°ægñ–rý0p¼a¢øó(´<(â.Àüê¹-£JÒ‘o°#zQ*ÛT'«øÛAÄŠq;›×݃ˋÇrjÇÍ…Üm/;Ùú®P´EùÔÈÁ:Pn\Ÿ+m‹pu¥{ÊË}PªÐºËöê](ø.u…{j(|³¶Uo0ƒœ°ø¦)îqí™–¤n!$ý¶N0Ÿïg.>–´îÄK< ŠÐwTå’†¸§àÛn²»脾™möâMý”SäþÄm+ƒaª¨]²ÏËy ï¸Ï>&‘i Õ³¯yÚ¾„’–ãK-öCVݳ¶ã“qü×ö?ŸkòOûÊ“…ÒL9…`Pš¼g«5Jýùº.G@i¼¤óhqE(½2²L¶_Ο~ÿ¸ŽMž×3#†cSªÏ>éè^lÊÙ·tø|.6Å”¿c¥ŽqCæÆ×‰æ•±ü˜¿žÄ)Èм=2äå,,¶{âÞyá3Ö|sô‘§ˆÅ¶óRTÖ¶CyCž4­‚òzùÇ%òYÀ/PÚܱr-ðsUçü~â±ò¸À»mi=à ð-Æo[ÐòëOÛ²vÁ«ñ~ÀOQœ\ŠÜW•?qÞ‚ åV532Ű¡´ì½ûË›øøˆÁâŠÈoP^ic9îóS(o¡læRåMû#%´ÿRçØÓ÷¢ûüLÅÒ6À/º£øLtÿŸã@ùMù µ©†Ð¨¸ï´„fbx„ß…_£½<×äT6–0Ó¥¤\~  @XáÓ ÷×â‰aÉØ¹¾ÃDmÁõÊßžõ-£¯³vNÍș߉÷ nºMü·Ë3ýg,Æ^ªñB…µ³´Š½b²Ô·ÖÕ©ß õí«G©T~‚G¦1 2 ¨ýëùÓùƒ ¼Ì7Ÿ1Ó‚Šûò‘ძ°¢¨ÞRêü3ŸŒ‹‚:};{> ªywpÒ±¢Š»¥èÀXQüË< gÛ G/YÈY{5Bá€úŸçÿ9ÏŠbóõsMÆŠšÓ‰YƒsPЪý|lŶ¾õBý§ÁãOCÎŒA)òWÙ(h¼b6ÂãÏ|þц+7t¯Ú6bhù¹×kuj0´TedjþHô;ôÃxóÓ(QôÕ5~òiùãd×±(P45>´þØšõ±â‘ Øí.*H©w¾Ô V%-¶(æY÷›yVèz íù¬*. }N ›ÅžAÎ×(Ž2`œ <ÈtfA¡è~žE†‰Mƒ(òzœü6X[íÄÊØy‚ÝŽCZòiX0ÔQìÓ0Q¨ÆÜ ãÿ‰ÿ˜÷ŸuLd¼ïU>BÁøuÉÒ¿—£`ìÍUmwN£`ÊóÜø~%—,¹ ¤Šw—nýŽ’Ï>mü~ìÂBü» Ž‹"Èï³^¢˜gu;¤¼B c4®ò²4fC±SÍ>çÙP|$öá÷¶H(=u±äbB ”ºð”bÇQ§«³ï‹".qºtÙÈP{äÃŽzÀűóÇõÈA±Õ†Ùô¾@±å±ÒÛm€ ³oÏç¢X|Hªn·éŠ/ŸªÑ†Ò“Σ¾ñ«)Ùiqä6Ôiß•àÅœeŠSSÕÍFÁÒKÊ6u'lꬥïS#d¿ª¶Š¢ïµ{Wx\Bßš¤9‡Ñ÷.Ëéêæ,Q,ù™ñÁ;æOÔ(, X†(Pp§æ¤" ÔÜœ.n؉‚Ù½c-¦D£`N³µ÷À?ýþ³Í \#±³MÃBž'*üË}¦EÌVÉ¢pA bä0&h©”ì^kŒY»x¸K;Ƭ˜™YØ}S~MïqwE¿[,~9N/Ž«Û-hùÙáJꪙ ÛbRõ²vKɾˆÕXóªÊ‹¢ßû©K}_­D¿×7‡m Gß+*¿]P,;sªÅJúû æk8Æ\4(·+þŒ1†«oÖßÛ+Šöm’¦ïÔ¹˜½W9Éi²¥(ö],^u}rµ –î?¶`÷Ÿó}žì4!oCú—}9gD±àšÛ‚ÞçPpÝ8ãìR Q?Û“¼ûõEèÎìøt²äO„j›/áËþľ}Ÿ?ÇlÇÈÌ3~÷=¿Ú‘O¶õÚŠú(Mt\@ZÃ=g4¦‹¢h.t}©S]Š1ë£^ ‘òíƒoöРҙޢè÷ÀpQÚ˜6Qíû¬x‹òH ¸’Y¸ï†S_Äü««ßOõÏFÿî#®MÛÇa~EÓò­%Tç|•§ÒxóËÝùd´ý»®¼Î]|UÔ¿ÄXLVºa,ænáÌÏ}®†%[³#«?ÄÜÍùרý¹ÿÏvþÃH'§Æ‡˜ÿøÙ;Ûù˜ßîÇ™œ‘õ§ßó}ïûëûÿÙÎoà¸}Y6½OÜ÷CÊ,XYœy!Þ åJm¼FMÅl×KÞåsIçÂ<Öf¾Ì2½ÿjyŒò%¯}׈iVú-ÈÀäß=»VaïÇȬ¦“_88srð#Œm;{<å¢)†K‘J¾ŽásmG5aàú~!6c á®œ$ ŸwÃ0éÕGL‹‰Tþ`S‹9’k«‹’°põ‡³²Åô}ªüÇ×m©Ó]F¯x‰ÙiqñÑ‹0Ó[ÌK-, ³‹®ÛY²³Ó5BTj*iß—îK¶·¢çãäžNøysVY’â€9¾pn´ؚÞ× ÿÌgóûô•¥®=`à» SDmû¦EõÚÀñ‰£à¸tQ øôÇìe*ËûOÇ¢ýª¹2nÑXdó|Ñ¡0¯ ¡Õç§)ƽš¿AÎ,1u}‰óI8Î úíÔ2ŽýP´ïyöˬ©‹cogxD…~C×;£ê à”¬ï¤Þ6 œ.Nºl7E ì5Yò„#g“—NËÜ ¡Çf†?M…˜œH顾Ñÿ4ËþÄ +H™­v·N1RfÚŽY~ Æ»ÅíƒßXå€Î1_áÄòž|û¯ÖoŒ~´© $´œ^Я, Âã¿5ù·–BÂýåŸK 0Dõ¹°&+8·ñÚêBw8§îíQŠf§W¦¼r<vsvù¸žk‡såjê¯àœþøû7Ì€–ñý¥Ã9©I‹´YpNó§VÑÜzp®Ü|½M• ñvéVWAŠá^÷¤awdSÒ³yî¶7â`ì$ÈŸóªñ·ÔlÈ}Uô+ë{+µ ÞÙ>Í€´}>?u˜9çèÿÁ&㤬ðÌw/âÛñm?óMà|«zÉ8G¸ûy^IÁÑ|±ßòïL!°`¬Ð9j3¦sщ)CÁb@quôê‘à›.6ãûÜpzRÖŒžåí?º¿ÑI·»o¢òiÄ|pæät[ð¾Õòqãé&àÏ0uî1Þ ‚Mo-hÖ$=±0’[¸ÂÞM‡t¥o¦ Û,!ùî½AnA!}ê$ÕW9v àîÔ}5ð.6Ï}é;Jô¾¶ØÝI1 hܘ%j—OBXû;ýà­?fþ´K­§ñ°ß³#k_ßÄ=‹“îF¼0CM'Ôß™4‰ÚA¯*ßF- ¬g¦x^bc@¸>gÅÌ X³âùÖO0 ôãŽQ§Ý0(u´Vÿ¡?ñ°}Hû]9+ÜÓ_:ÞCÒ=Vl¶ž¶?bX]WÒkÔ[2]⇿þ]½î°3¼´ 0Kz%Lâ`ŒâµÇN…`žfiëÇ_¾Q­Ûu†9Kï÷ݹZàyÙwFéA8ômèp=EM Ù¼ÌS=¼îîëg>Âclv­O‚ Ÿ¼Cœsà„ê^I«[®à'W:`ßöl81-ã†ZÌÖöÛíù3M·Wõ£[;#G¥‡®~ïuð¤íJ})¶bÄÙÙúç{)‘êç+KŸ3äB@ýcƒ)-`mУe' vÇP:ÍŠž>è]k!³cÚÎ_@³ SŠÄφÀ9ØÔþòéc¸<µ±|"XŸµh4\É»©_ÅÅã$Á‚µ6M°Å˜ÉaÒ;wÖ@ @k´á±AàÓo–‘Í)8-§Š#ŽZA¼¼óKMç'#–0W²ãx—KUÔ væOJov_^ážÁ'§×«E˜)j-¸G,vÔˆl?Ñ9õP¦êÄ]“•1 lôìY­ç1°6ÁcëÏ. )óãM?Ž7r—&¼ÝïëÿÏçÁ¡3/½ÿ–ñ`§’¦¿foø+Z÷j±$^5æ\wð„¬ÍC4+“BD1¿ ž[eCaèŽÀŒ©ÝPô1ðáêñ!Pò!uûùJŠ_gí ëíÇ ïS¿ô~Ê5é9¯-YK·@ÑUÕwó¾AIU»Lž`\)//q_¨ ÅÏN/í| EáWµV†BÑžê«Ô›¡h÷ÇÊÑ1ÿ¯ö÷´c Ã!vž®˜vr_zOOŠö‡üÙû}bÇ[@šyÍâücJ"ýèÓ“>éQëš–7{G‚óÂĞ”ÍF2º])wüñHEÍ(H³áoú9ÇrßÌ]Â~ñòÕ†&Jì= YýïƒêlŠl‹¶õ‚ßÈ…Ö!áÄÆqª»àÄʬ¤±ÏD×ût7þñÆ;Ç/l…˜¬KnvÙ^z¨ãù!]S°ÿ¼çéì?Eº®Ÿ¦~ãñ% ‘îÛûm[Ñ{¯Mä}þbÿˆ¿ùÅ:ß­+Ö®,¾á‹÷dȳÔ1òö«AÄ õ<¤±cà(Œ}¾ßÿý:OLêïâÝöp8¦I6³’Ët‘/Íî’ô|†YÛ£cM¢º7Ü"Íå²;ù¹ÙˆãQí"/XµžJÎ÷T,õy,ßAõ„â»Ä‡1¿­{d˜«2æ?‰™Åº®MѰ¤dö ,1™ñ¤n¶æÍ’¸ºÚƺ°â¨®xä‘xŒÚOl¢.>§vظÅÒ…¸_÷i¡òãXÚ5N_ù€šõ]<õÁR4(1Ë8œJüë8йæÎp¨L~›¥¾f;Ôî Úe%µ:ë”l^A¥Oýë¹ê¿ÿ´åËŸ!ƒeo‚ÅË?¤ai÷*׈uòh[}£û@›‰¨]öaÆDÝYPñrQüN«:,ë,×îiv@[CñÝþg þµßÓK—~ö‡Êí3íF:cé³k÷<’4°½lîɨÂH¬¼£ºf׺ÃXùðSÂÙøJ¸?èhÚÉK ¿{ÌôÂ*|˜6 ü´¹1úß²îœ<òÊŸv‘^¹\€7>L^\ÿ£ªýƒ8{†‡«@ÕuÅV§QPÕ4únШjyÇý+CùÍ¿Fn‚ª½K²Ü¡ÊÞúãûPuHâìä× êˆZÑÞ‹G Ê¡Áð&wTíÐ+ ûzro(¯y=[+ßò¶¦.y |Hê^¿øð÷åO6{€¡_tu‡ 0cYüÛ í±Þuס3–¶ëŽ;ºC¿5;xÜÅ ]åY¯÷Û`è×Û>Ë}*©ý©ù”¥†v\¶õÈ8úÚe+Lý1´ Å^FÅBžúŽ9Ìm(4mÛ¥Nwâ­ÇÚÜþÕP«‘7ñÀåP»ºýþD¬ Þ©½3°k¤«–ð@ }fÛ&eibœç¼Ê¯EÑgñm«zέçlÚ7¨]#;Ø^o2ÖÈ®9«6O}–>“ö1Œq>ãÜWÛ‰úHGkÝmK§q_Ǻô»Iã|-’ó»Eã|³|§5•Ú•þ*þt]š‰²Y2}f¬‰xyûËŸq7¯ßsë×(â.~·ò4ï™1ÌjÕ}Uf½£ùZömÍHôÑýùqÕÊ_z-#®~­¸Q§†Éž)Õ*ƈ•k^Áí>K—cðò²žMç“ðBö˜§Z.ý0¼¬Acµýj /ú¼ÿði^¸´n¶¦ÏH ÖäíîŠ!Öƒý’naÄe§ç:bðâ~㤯Q‘?÷è³¶YÛjð-¤n:&”7§¥}†—·|H‹“ÃŒõAkŽÔFÌûþy–ö˜môÁ3e©!fôN/œò{9&¤ˆ8>a úþÜgÖ«ƒîC5V*ò{aÃû+[CÁãÚJCÏù¡àšê˜`²g.TÛðjE#ž—ßb,aJŠòŠãúcf°—ãúƆ¬«›µ@C-WÌûÎ F›o.âµpÄkú÷á áÔ„Ù™±¯Áµ&÷fËÔð¸Û9*yÜVp-mÕ¤sü²7ì‘™ˆç¥|Â^™ˆa“g9/™ð 3/øMk~°cCo,ª^àƒ¡6óG¯ú™‡n’ SçZ.Æã7 Øèð¼c7ëר‰nëÒýò{|1Åoê÷‚”‘±:bÁh_yôÞYçôɬ.ç 2<úý‹_ zܲ-Úg'·üõ2=q à:cåµ`ü¼²Ie}¿i`¶Í*ù üô“-úÓ@°úZ]wÇÈRÕ›¨çÙ;®™d¹Ò]beÏCžÇ+ûvA~¼õ~vp®é8=wƒ\¢¦s‹¢áÊšñNiZPÜv 3P¨´Ér¨ßaÈ?ÚÚÿx“äJbc™Yƒ(æyXnϱùqs|ìåùP¸ö²¦]Ó(ùÔ³óWåt(Üÿ¥f`Äì¸óqfÝmÈ2[ýö‘s´ ¢ª©øiªâ¯‚ÔÀ+‘uu!iÓDõ+ó—B³8|é ipi›Ò„+Îñc¥þ­û)¯ÛŠ·~„¼½Šî—¤iœâú¨UPh•r@°}ôë}ëŒ!kðçÄìî× X%{CéÐs'r¶§î#g‘ã…ºª?ã°³·î8 bºkŽ‚KƳϺœ¿,çÏx{ä_+tÑz4djGÆBIWÞè…Ë‚ pÝŽÅ¥K~Ñú/ \OûØm~¬j í£Yø¾™O ¸ýØÀÍÏCnHëi‡ª+{Vl1ÎáˆbõHk•ior}kçFH;±dCÝ¥¿µñj&}OÉW»2rc d—¤™©KÛ@Î=™ ê!ûÊT÷ÈþÙt?Üö’Qä×I±ÎŸ…+ÓSËõ+éýïV©'An¨üÐÒÃ' pÊ­‡A+ ÿXãÆò{_!Wªpœ©‘ dï8%¾v‚"å‹Qî‹[”G#·”éN„„ú3oÛr§Aà§ÍšúÃ’Á-Ë~ùšKwÁuŠ…ú·ÛGÀ-üSÎéšZp•»¯ýÅk<ú—È̸¬ŽWå›3½wWŒ»ý< #Ö{øx'`Vn¯Î›_ ˜U¤(Ñzx7µK3oPÁ”s˜䛢›ÎïÇ¥^‚wòÜÇÙ5®mï —6ÂXÝŽ™¼ÜÑ¿­ÝLÓÝúop´>( î¶Ãê"ÅýjrµæÃ‘C9µ^¶{á”Ì¡ [Rúx ¹Y_\ו‚ë…7—íOOAmÙ…Ú…ûaC”¿ùÞOÊè®Àè†Å:¢_Xã©_†cBZó—Àrȫӌ;¾³·¾jì^ƒ‚ÁqÒ©Oß`†áÀò$yY̰۸Néé‘Îgº}®üí"æ ¬&\.~¹^Ó’¦Ä™ ÀyªZ‰ÊK(»/—ËýŠ™ÕÚ'½%03ãŠñ‘™¿É¿h¤É4b–8sºxÜÌêÿ&Çg„fõÞÊY«žMµ½t³Ìõ4BÝPàqE|AÜ.òÑ—RGµýP ˜®òîê11KLLŒ“– ÈÚ·þ$&6^íWÅØ„„Q„xB"=ñ–ðð‹Ð+&Æmã]Ÿ |CàÄ o8AžHý'QI‚4A†0˜úvS”% !Ȇ¨?§“ðƒž  ç&Óµ¡z—Xá¢ð¿k&Œ&Œ!(ДïPKG®…Æâ¼¡ëôyCsf(ïZ#CûÀиŒp¬pB$!ŠCçEïâÖÓ{ˆ#âBDb q„’:Oö#÷á=á÷?¨Î½MÏÐÅ…dQ}Á¢¼eÑy±i︔\Ú¿ÿ‡½÷ ‹ªÙÖE±4J–¨”dÉiPr    ˆTDfÌéS#˜0+&i³"P$™3æ,wŒ¶'ǽîZû®{öÚçìýl~|O}EwÏY³j¤zß·¦|ŒÑ|ŒÑ|ŒÏ|\c>®‘ckÖ\.=®1׉ƒõë.®ç’‹sÉÇ<ÏǼÆÁ¸ÅÁXÃÁÀGû`üPœÁ¼ÀÁœÀÁ{q0¿p(·í¾€qN€1P€¾ÉÁœÁÁ±p(Oà<0> (¦`þààø8˜;8˜;8”7pÞ8˜C8˜?8”;pîøô\4¯˜O8”Kp~ù4vÌ)ÌmÌkÌi²5Ê-h'\ô.ú—üs혃ù†C¹×€¾(@û ­p0qÈÆ1r) ï ª~ÃŒŒŒŒuŠs¯9ø\ÊK¸n\\K.­Æm>ú¸çL@µæiiЉ9ß9Xcqq¹8—\ i´MÆ|Ö]¬¯¸h\§П¤)NbÝÅÁÁAÿç`^à Ÿp0p0×p0Çp¨–AûáÒš¡ípÑŽø˜oø´_ÁE@Ø)æ;iŠÉX»qð3‘öVè·Ò§ñ»ÌÌ7Ì5|Ú“a#Mqž| ÿŸƒßå`ÃÁ1s°¶àPƒ¶( ìó¯s-ïÇÁqsðÙ98XqÑ6¹T¿b !ÀœË!;ÂøÀÁÚˆƒóÎÁùåP}Dõ1æpæ_æeÅœ?.ÕŘט“9Xïp°6áЕ0$¬y8X§pðÿ9øœº}†ùŸƒãâà¸8T¦õ›ó9ïÁÁëq°Nà`ÝÄ¡kàg¬£8ô;¬8ô,8g/Õ#„gÐ^¿#À\ÏÁ1rhŒX#p¨F@¿à8x=ÆÖj©nAÛáÒÓï(n`mÀA»çöó) û¡q(> Ÿs¨¶Aããzð1þ p¾4ߘ›9ä·”ï G£=5α€ên¼‡âÅò3ÂÌ1ßðq-8תãéÞä«q]¹hÔ\Ì+\ªë0q1r1rÑV¹8h.æ.Æ.Ú m„‹y‡‹9…‹9‚‹ùK¹óã)ã)c)s!c)ó)ó!c)ã*ã*ó!ã*ã8c«mC€sÁŘÎÅ8ËŸ. }6íé0ær1§q1 Ðhç\Œ÷\Œ¯\Ìç\Ìo\Ìc\Œµ\ÌG\Ìe\Ì\Ú‹¡ ð÷Â5æáÚòp~ùôaŸ®|Â˜ÉÆð:¼†s‘㊀âÆ,Æú¾}Zó—4ÕÍ+¹´wB[PmJ1–öVhCªSɧÑO¹è§\ôÚ-׌‡óÎC{ä¡-òÐyø{anh'|ÂÔñ·|´ί×C€ó+Àù–CøΟçK@óEs‚1‚K1cý†‡~ÃÃõç¡mòÐþxè<ôŽ‹‡¶Ê£ýaô„Å£ pÝ„‹àÚ pMT¯àšp ´˜S¸X r©NÂÃE¿ç¢OsÑN¹èÓ\´E.ù4®¯ÁC;àáøx˜+x˜+xÄöù‡ù€‡±ƒ‡×ááüò0Gò0ò0Oò0oò0®ó0Žó0¶ó0–ó0†óðþ<¬ExT‹à8x„Íb¾àÑžssã:c8æ€æÇÇÃññ0ïð0þóÐoxähË|´C>å*ô>Ž™óÊÇ\ÅDZñ©FÁgáãð)ncn⇱—ãáãœóql|ç†OqÇËÇ{ðq-ø8~>Þ“vÊGûãcÎâcâãóòÑnùh—|Ì_|Œ×|œG>anho||>Ö;|ÂL0/ñÑ–ùøl||V>> í’us$ç€ÏÆÇZ‰sÀǹáÓžm’1‰¹ŽO{ôS>æ\>Ú2ã ósŸö5˜ø8g|\#>Ú8í˜O9r'æ;>® k>® ×…Ou Ö/|Ê·˜'ù˜'ù”'©æÀÜÇÇ<ÆGä£ðÑ/ø˜+ù˜Ïø¿ù˜ùè|Ìa|Ì |Ìw|ô >æ'>æ>æL>æ:>Ú1Ÿx-Œ[|Œ|Ú7O{Â|1. 0¾0¶ÛÅ%Àø"Àø" }ÆO>æ=>Õ70Ï p øŒªµpìŠXÿðYø\œΫc„€pG|fÎ×@€µ×A€ñD€ó)Ày`]!À¹à¸ÄL› è,ÿH82,ÿH<#úo;×H<"ÆÈv.‘8D|Žv‘øBâ‰3D[ó ÄÊò†Ä¢‰9Câ>ˆ7$žxJ–+$~¸ â5ˆË!>ˆ¸"⑈$>8BâŸÐÛyA⿈c9Aâ‰$¸Aâ‰óCßó~Ä _H|q†,çGâòˆç#>ów;§G<Úx;—Gkƒ>ÛÎáG<qxÄßÇrxÄÛaÙÎÝW‡>ÚÎ×7‡>ßÎÏ7GÝ4©ßüqrèsí¼qqÄ1°|ñÄywB\ ñ1ÄÕÃòpĉGñqÄ»_LÜqÆÄ«g†uZ;o¶QJ̵ódÄ“cm@\¹˜Ç#> kívNŒø0âÅXNŒ¸.Œb¾‹ø,Œ5íœñRÄk7EÜñSÄMGÅòSŒÔoŽ c¦˜û"® ór;_Eæ¢vžŠ¸)ÌIíüqR˜Ûy)â ˆÓfy(♈Gþ“k"Þóv;wDüæm1GD\ñDÄa^û“"þ‡8–ï!ž‡8–ß!nGÌëŸÃr9ÄãHø›v>‡øâ{$üñAÄ WD¼Ë#·D|“˜‹"Ίøôÿvˆø)âÐÿÅ\áU,¿C8aŽ„_J8–Û!GÌý_¢‹ÿD\ú;ŸC<'q:èÿb^‡¸Xô1K q²„¦L¸3q³Ä×?Kœ ñ0ÄÛCÜ ú;ÿBœ ú¿˜w©ßÜ q(èÿí< q(Ä¥B¼q),7Bœú¿˜÷ >ý¿Ó ¾‚x –³@ÿoç-ˆ?@ÿoçˆ?ˆ“ú_áÝ„¹±ñèÿbN€°}ÂÂX|Ÿ0{ô1nO¼%ú?q—bNž°y‡'ÎpzÂ㉳'Lž0xôÿvžpwô1öNx;ú¿s'lpwô{oÇ×Y\ý_̇?†þ/æÈX¬ÅÕÑÿ‰7kÇ× C'ŒptôÂÒÛ±sÂÊ ?gñrâ'ˆç"œœðrÂÊ ''¼œÅÊ GÿoÇÈ çFÿcÝ,¦M˜7áÚ„e£ÿ‹ñlÂøÑÿŘ6qY\[Œ^Jø8‹GæL˜4áÎbÈ ZŒ%V‹þߎ×¶N˜-ú;–Mø-ú¿Ã%¬ý_Œ×6‹þߎÏK\1᱄Á'L8,á¯èÿí,a­èÿb¼õOœ”Å;ÑÿŘ'ᦄ{¢ÿ‹±OôÂ?Ř'íáiG{rߤý1‹qÞÆâœ„¦‰þ/Æ5Y,“pMÏDÿoÇ4 «dqM Û$üp@ÂÑÿÅX"a~,žHØá~„ÿöGX'á,æG¸'abèÿíøáx„–G¸ú¿›#ü ý¿O#,ýŸ051†þ/ÆÂÿBÿc`„w¡ÿ·c^„s~ó'Ö…þ/Æ·ó"‹Å½Ïbñ+ô1†EØú¿Ÿ"\ ý_ŒMÞNøú?aTb¬Œp3ÂË›BÿãS„G¡ÿ‹1)œ—"܉řÐÿÛ±&˜ÐÿÅ8áJèÿ„-‰1%ô1®„þ/Æ–ÐÿÛñ%Â’ÐÿÛñ$ÂŽÐÿÅøaEèÿíxa?,fDá=èÿḃðôÿvŒ‡0Ây§!\ý¿›! ý_Œ#6LX2ú¿O&\ý_ŒM.Žþߎþþ/ÆÀ‰@ÿ'^@Œ%¾Cx‹ñ†C8á8„õ–ƒþ/Æs·Aÿc7„ϰø ú?a8b\ˆ0ô1NCØ ú¿Ÿ!<†0ÂdˆObqô1Ãb0„ÉC¸ a#„àÿ‹±w!,ˆ°ÂYÓ!¬…ÅW !Œ…ÅÇÐÿ #cu„³ ÿ·c-„© ÿ‹qÂOÐÿÅ á$„£6Ù&Áp:ýÆqÄØ‹‰°8 ‹ÈþÈýŒDùœ„Å\Ô%¸‹æXIw ^¢ýf¢÷7c%ú¿ñ1Fb$ÁFzKðï$œý_Œ³Ž>àßÇMÄ<aèÿ,'FÜן80áÄ„-‹ñnôÂ¼Åø±š%VDÚ"VóÃjjXm «saµ+¬~Õ°°úVCÃjqXlÕý=,Õ±ø«ßau8¬¦†ÕɰšAV ÈjÿÔ"Jt‹¬&‘Õ²ºÁv­ «Óaµ>¬fˆÅ Y­‹#²Ú+Od5PduQèÿblñoõQ,Éj³X=«cµd«Qcµe¬NŒÕ±˜&«ñbõWèÿ„iþ«i’è“XÍiœX½T»Vëï᪬~‹Åh%:®vˆN<8a넹O=a÷„ç¾O˜?áÿ„û“¶€0}ô1îO;aîèÿb|puÒENNX:aåèÿbíáâèÿí˜9aã„&N8á℃^Nx:iîH7‹þOÜ,ËáŠùdô1ç'áôˆû#nxf⨉Ã&®8yÒ ðÑÿù¤—Dÿç£ÿ“V@ÌÿOœq ÄA7þ/æ,ˆ£ N‚8âˆg }©„ûs(,gB\ ú?é¥HSEš3ÒÀ‘Ft€¤$í/«'&½?é÷é¡ó.t¦…ΪÐ:[BçHè\ÿ ³t®ãïñvb>‹¸3â´ˆ?£3/èÿb>tør ¤­f¹ÒX£ÿ‹ÏÖŸôúÄ9fŸtÿtF€¸UôÒðÓ:3 Öe£ÿ‹Ï@°ç…xÎN áíd$ܬ„¿û“ÃPøÇ<†øŒ©`ÏiIx¹înN[ÂÏéJ8ºž¿y:⿇¡„û0–ð}$ÒðV‡49¤¥!Ý écÄš=™ßº=Òå‘öô‚¤§$ͤXã¨ø[çHºFÒ«’Æ–t¨¤Ó%Í1é—IÛKiÒO“ÞZ|VBû÷y :Ag¥èì¤3tN‘ÎÒY,:_Dg•è\å¢ó`tVŒÎ‘‘fœ4å¤;§ógì95:ÇFçßèlcµ<§TÏÙÁsvðœÌrÈ´ü?àÿ%ßÙ*áªÿ™÷´þo½'•Öƒjâ6‰[–pÊÿÔ{Q‰&>˜jAªE¶Iý羃”8dâ‰;&ƒÅ´Xì„ÅJ$¸CÇûF¥þ¹÷OÎräIRÿ3ß'J|>qùgho1Bê?ç=¢,ßOu>Æœÿ²ï %M« ½Àn©Žw„’Þ€°©Í;BIï@:â8‰ïûWrQÿˆsú[>ä™Ôÿ÷»AIcA9íã_þ.PÒbP# †ì˜ô¬ƒlGÂmý§¾÷“ô¤çø!õÿÿ}Ÿ¤!ýåÔRÿü;>9Rÿü{ºKýÏ~g'éXHÃBúÒ¬Pž ß’f…Õ«V…|€8f —ùßú½œ8æÿ²ïã$ikHWC˜ú.©Ž÷m’>ˆâ1qô\4o¤¢øLœ4A¬ˆâ2ñ„ÍUJu¼Gcïÿˆ÷h’^‰ÆA9™öŽ´Ï%\“ôIt_Ò-QÎ$<›ðQÂ;I¿D¾Jº%Ò+Ð^’0XÒ?‘f‰Õ+Q'~ çò_ýÌÿ×û-Y-éX ñ„ÿ’¾‚ôH¤E"‚öe´G ]i’ˆ‹ |˜ô¤å¡=;á¼T£P\ º™0_ªWÈ^ICú⾉K&™8d⎉7&ΘxbÚã?Døq?„ûC ñ/Ľо–öºÄà˜ÿO½#ò?òÞ¾Ž³%RgK:Ζtœ-é8[Òq¶¤ãlIÇÙ’Ž³%RgK¤:Ζtœ-é8[Òq¶¤ãlIÇÙ’Ž³%gK:Ζtœ-é8[Òq¶¤ãlIÇÙ’Ž³%gK:Ζtœ-ùou¶„ö8Dx(ŸÉE¬›ÜotGLƒ£I,&±”Ä<ÓHL"±‡Ä3Hì±}Äì‹Gl1uÄÈûF,z”˜9#–Œ˜0b¼ˆÝ"F‹˜,b­ˆ"ŠX'b˜ˆM"æˆØ"b†J˜Bm‰™!¦…ØbKˆ !ƒ˜ b+ˆ™ ‚bˆ- ´Ÿ|Bë ¥_%Aà×Iý/õæV©v•fû¿â¾_ª]…)FÌ ~I‚x×HPí»[¢¨#É„BL(/¡º„ÐâJ(*!£„H IÈã" X"AçXEE•Y«‘ eƒŠ½” Z´ƒ%¤Š)B¢u"ĈP!B€!ä…”Qdbµq(– %#ٵߖ켟JvØŸ$;eÚ%ÓΘv´ó¥-íBigI;DÚÒÎvy´Ã£ÝíÎh—5[²#Z%Ù½ì“ìJÊÿØ}œ“ì(j$»‡’ ÿýïJ]\•SNÕ6UØT]SMU2UÃTÑJAâÊ’ªHª© ¤**8ªØ–Iª1¶òb«­íTRGþ¨ÎHª›’Šå±¤ y)Õþ¯ü‰« Š,T=Pµ@ÕU”©);SF¦lI2e(ÊBó%™â/I6Ø,‰úÛ%Q~¯$¢‘DìS’ˆ|IuoH¢l$¢6J"èCIä|*‰–­’¨øùwôG;I´ÒD£ž’èÒOM(b oIc c—¦“B¸®Ò¤Ð¦“?¸¶Ò˜Y¥éÔ úº4ί4<¡“fè[Òø Ò¤r%…!ú·4Ž[mZÇ,~#ã“Æè-ó'ó'‘XçO#® ŽMmY#¦ ú Æ!— Æ!¬Zdp\2¸Ö2hw2‹d°ÚÁ±É Ë`u ƒs,ƒc“Áu—ÁŒ.ƒ™\³· ®¿ ŽQç[×^çXçWý\çW×Z}O³œ ŽUÇ*ƒó+ƒ>(ƒs+ƒó*ƒë.ƒþ.ƒF3Š f!ÆM!Ž[ˆY@ˆ^ˆ]ˆó)DÛbÔb¤✠Ñ„‘…K…h¯B¬¼„Xq qŽ…Xa ±²b5%Ĺâó±2â\ ±Ú¢Í1v1v±Rb\¢ýñy„hËB¬„8çB|&!ÚýZˆ±Kˆ6,Dßb|¢ 1S qþ…˜m…èçB´!>³¥ðëo‹,ÆYôqYÌh²¸²h²¸²¸²hÓ²ø,²_d1³ÈbF‘Å5‘ÅêQ«EY¿,V²ø ²XíÉ¢/Ê¢ÝËbÜ‘E?—Åù•Åù”E—ŵ—EßîŒ1¥3fÉÎ8_1ŽtF›êŒcé‚•Y¿ŽAï)‡qTçJ+9yÌ7òèßòXñÉãœÈãwå1ßÈã|È£ ÊãœÈã|Èc,—ÇJHçBíP}G}Gç@}E}YÇ!ÿã·GÇ¢€þ«€÷TÀgVÀÌ«€¶§€÷W@ŸPÀuS@ûSÀjXã«Æ<|NÌ£ 8&¬FÐö0î)à:)`ìSÀ8¯€cRÀ5RÀñ( ­) ­) }) ï*à:( * (à|(âü+â8q@Šç±JPĸ®ˆ¶¤ˆ±]mHÇ ˆ±Nm_íDm_mD+[Eœ E´{E´{EœE¬<1Î)¢?*b^SÄœ«ˆž"Î…"æZEœEƒ"VXŠ#”0Ö*¡!(á(aSB{VÂ{+a,SBVÂ5WÂZ@ ýO ç@ s®>¿®³>»®ŸÆ%ô9%̽J8%ŒsJhJX%*a¬TÆçRÆyUFûWÆñ+£-«àµ»âõºâºvÅgèŠ6¬Š±D+]UôQU\?U´U´aUôKU´#UÌ‹ªçT1–¨¢Oªb|SCTÃùSܨ†÷QÃgPêJ ã›®£ΟÚ¬Ú’úœÖ2jh¯jh«jèoj8jø jÓÔpÝÔ0V¨áº©aVC{TõSùSÃ\©†Õ©æ~µ¯¿…^ê¸vê8wêè;ê8êÃÔ1O©£-©ãªã3«£ ©ãÚ©ã=Õ1O©£Í¨c^RÇø¯ŽñHýDs¡:æBu´uôu\u̇êx/u¬f5p40j`ÌÑÀkà=4p}4Ð'5ðÙ4ðÚ¸& 5°æÑÀkk`£Ï¡þ 6 ö§q@c±Æ ¼¶Æ \M¬c4qìšè“šèëšxMMŒ¹šhoš8fMŒIšèwšXWiâÚjâ®Fí[ñGm\ŸCãŽ&ú›&>‡&ÆPM|MŒ9šx?M´5MŒûZ¸NZ¸NZg´ð´0Îkái¡}ia<ÐBÿÒBÑÂÜ£…¶¡…Ϥ…v¦…ñ] ã Æu-\'-ôy-|N-Ü%iá´ÐÖµ0ÿháX´p­´ÐF´Ð¿ºã÷µÑ´qW©¶©õ—6®©6ŽQ}P+q̺8V=´%=¬âõp½zZÿMõ,HOÊ0Iö»j–¶ƒ^ð÷=RA}îš1“zA@§ós¾Æ€ú̓‡“RßB°VèUi?èâæâ˜ÿ ‚5zžH®Ž…€ÎrçL/fàß_æŒqÚÇ9Qþ‚^ ð¾gß«A»LI)è¥3´ Žöi3ïS§“NO„€/ƒ3Z“Àû¤ÔÎÃ>×ÁûLMtC% tËI´xÁ€÷EÅuûüGaf[[È@»8d´ˆ!Xû±Ì:˜ý¦ýNúƒAÿ ¦pÂNè=]sBæ„ä•CðÚ­ñ§½l T®s©K¯9ë׿)Û™Oûe퇰õ]+ï Á«çTÍW¯„°µÏŸžÚð¼Îâ4ì†à{USœŽƒw©³ñE¿¿ øîÅïfG#ÁûhÛ¸ÎSæw…quä=ðX5ÁQãQoð>=ÃüâîEàQ¸u¼“j~Þ{wÏ…ã!ÄáÒÂõ]T!põįUR÷ ÄæYÈ•üØß³dÓ–`ð;:½`ÿ"®ãÈ Õ üŽ {kÏÀõs‡F®¿cëŸÌº ~凿vüòG‡~Øa‰¿›[v:üæ×UŸ‘ª¿Å—ÊJÆZ€_jBÒÇ#5ø½Y5¼áà—õÄóÓ|ð[p`݆†pù•lnbtÀþ♢ÙG ¸þÎu`ÆÕ?²^ û% çÎo†ý¸W¡{†‚¿K¥ËŒ;–¢7¼h›¦û–ÚãîìÀv£ñóˆï ò­ª;ßPþn㯼+Û"÷M³'âçݵ”¾þ‚ ]k’º¥ÿÕŸ*÷ռǾR–fZ2ø¯T^”ù3 <º®­Ó…àmû5áx( ®3¼âý°Øî•BðPN?¹åy_€iS"G ‘–¼.Þ “¦Ÿ+Ô¼÷BY?«eÀì#ši§äÀ]v^ÐÖeëfÍ:¹ï–öõ{ɦõ€°–ßsl!øJàó¿­Ä~âmé†w|}üÅiRÖüt+7äþ}jÚ£3!\eÏ›ÓZ.vŽÛ)Vì»ôíå o9}n, jòÛèb?¢Ür— n_r.u8x4õ}>U!ø×ç-y_»Bû .ï÷¶üïhhß=áùuº GYVì/èþèëæI¾Àçò¡øŠ¢î‹ö]sÙ UŠ{#'j€‡6‡w#ó^Ô`;´×AÕ¸^Ý < r_jº‰@/èË€Çn‚‡ÅÂUPXzCÞ¹z¯G»~&/8ל[ËÞ.œ8ûß•ô9ÎÏ~MËêbz9¹©{§T€‡þ~ùE/@oúØ]wmÞ‚GßïÏð¯‡á”y“Ž û£O'ohÆõvùùÃý0 º#_Ýöd: ªÓàø V+;jŽä G¹ßª¢>‚CAæõ´î=ÁѪwÿWTÁ¡TñÑ´Ì&p´Û|é]t08:}H ËKø9ô¡Õ¥³ØÏ>ûy•?ÀC¥Ófé£CÆ1ôVð/‘º^OÀj±¢ñi5ðgΞ¯¯é`ï´ûºùPH1›Å•Ëä-S?Gkx¸4$ðöJ·Þ¢n‹÷mÖ¾ ο’Ÿª°‘N)“ú¾\¬s ¥Ì¶A`á®.”ú‚‹yÍÐÃË.`Üzµìù¯2pðØðæÂ‡à)¿ôc³›!8ØÆ „{ÃÀSq¡îâ1kÁSiü¶ª½»!`†Ï† ?fƒ§\ŽÅºG¹0½8ð«ç/°üu±AÖê185®Sœ–o?=ëóc8=y¼;c•8«xÅÙß|V YuÃ×I©é!ÿë(°rç{*òöUHtáöóÀ*`ýÝOö‚ëÈ™Ó++ŸÖž‰12àš°~åÅø÷áº/Ö§·§î3ƒL'kL†0ÿí*p{æzéNÞ0l»Iåi·'I3|ÒWâ÷„¹3Ÿåáß/ë½g2¸=šë~ ¸òVsw.¸ïo¾uàÛ(°¹)}0§`¸zTÈ«PÏ.åý´Ë‚§ ¯À´ò4x  ó¤ø5¸r¯…Ÿšóü¥å ó¿&)é+ÆOÁÃù–Zôƒýàýªtã’™•àUw¨Ë°…¶°ÕH8ödlÙ¢ÛWãø—5}+1ï“#l”†Ï…+ššƒéÞk#y.h…s"kðwÙ±‡ßƒWý¶sð$Ltǵ(öi·³¿ ÒÀ#l¶hOëXð{•·VcítpU¬Ý¦»ò x%O½²KS×mónëuðT¾ÆÛð¹\‡t²WÉŽ›×™ù¹¹²àÎ µôÙpûÇxï/(ølþdè{ì/Y­`°FªílåY€B»Š±+cÁýäKç³ö&kT¢¶¥a gÝLg¼Ó3¶8¯ŸS(¬ñ3ndô® _|çÙª¦0@—_X”® áK•æ>ËЃð¼õÊA´z\ú¨Þ? ì—ÚzAøð½Q/G@Àü¬[&Zà??=þâÎCàÙ©GÿÍ×'C`SؾÔh¿‹§Ú½_"›ê—¶`œêmd²ñ'ˆÌ–ÞŸ¤züõ}{=gn‚¿ÁËáÆÏy ê·aF¶çfð×SñÍ÷È‘ñ#·'²KÁbæªÙ*·.E´£Ï"·"°˜–2¥n´3X$Ft]ãÜ,*^Ö?>,lš×?·‹½áÃ, T oÛÁŸŸÕŸwÍÂ~ìð‚Û ø“g‰^ÔZùY³Y¯?·ô‰xÞªUÅsNCðw»ôÕ›µÁ[}üQ/S0J}\Í{~ ¼>¬÷ y FÓÝ-sU tÆÀ;ê¹™à½ó¡Yòî-:5Š[ükx»cxºÌŽL¼2òúZðwuß—QTf»CÆýõ¼;ø{]»Úx9ÌJw-°(òÆ:JuÞø¡À(È;ºkÆg¹‘™žx‚‘óø3‡Õƒ¹h™ÎÏMa`”f`°c(˜{¾hhº4¼ºÜxµe@ðÊì4¯ß¢6ðâ6˜Æ9׃WÖQÃ{0‡mÞgõLðÊvš‡y<Ôü”ô»å²ÿôŒÐ šy!ˆ;ã%„ìºz*+z!ˆr3Wè¼¢œã¯»CÈî}çŸ?oÑägùAß!ø|w‡é# @ôþÙløìÁ>Éœ»¢¹°ü*kLf÷o\ GÏ šõ| ¨<ƒM-x”^v²d½ó½cS;Ô»¾ï×ènyè|çR’Ûjßãàûjþ…tý8ÐÕí+HúÆ€ï|}í~O‚®ŽÆa¯øzð]гùTuoÙ¹ìûÚSà;ÏÛùÙc xãèð–•!x}ƒEàRu]–µnѪÙ\xÂ;3ÅB—+¬1è3ÂýQ½JB—¼ Ø™˜Ž}õà=Û/B@ë‰Û‘; °ßâù›y_`ð‹³:·¤ó`ð›óDÇÑïßÌÖ«UçB ‰ÉÌЦhxÕ7w‡ñì£yápòxÀ'=|ºý•üNm.¼ì^®ä>º;ô³;;q£iQãWp«Y7«øøí1 ªi·ú{÷¶Š à#³>æ’2¸Ý{tn©;|®t÷š± üg®]ÑçÍäná¼Ð ü§çôn¾Î`¿ñãÍþ*0p÷’ÙŸ‚ï‚“Nh@Eœ18õ¨7˜=쟼úYøcô™£˜à¿à¨ÅW©û0xéºSjqÎà¿Ñïíî`pÉ»[”¾cT:äΜ¥à«SÇØÑÑ£Ò_&ãÐ6ö¾½\|ÅÖq—Áà= ·¯Çõžz9µòÉlðÏ¿«£u¬¼wëÊ-ï¹"ùÎû`ðЍ~Ÿ#ž9ß4w¾?fZ6 .¬W¿éÜd?Ç·%Ó\??ùì³µÔG6§?z>\ïx(8Y¥ƒšòñ!‰f™®¸æ¦ÃŒr矷…uï ÜxAçéË“ÀA Fm[4Ì »¯už}t.¯¹¬9'%Þ‹šõT{*÷ZÓ§n¸òØ(ý¨¸Å>Bâj÷^³W¿»QŒöÝ7B¸h}Þ[yõ×`ðx#õ$jMh½S—é$oõ í²ƒÁýàL9E‹[à^S>ÿøÌ ŸÛº3»¤Àýú£ÜX©Uàqc~í‚uwÀ½Z§Í6 ûÕà]¥=œ5zl2؉õuõ©²£µYàÑœÖêUyÕszŽ›ÞIð”}yOgã]ðxnìßU!®ØÜ)íw`¼æ ›B™~xïq×hð7šv5mÙ Y8üBÏàµtåôªÑ hã´Æ.Êàµê]öžÒ´>¼fʲõ _ºÆ¯µ ‚ÖýP7:V †*ÒñŸ'ôÌúœãŸF=».‹q0 ßðÿB5å7¶Ä[ƒ«qòªêgj*Ôü°ô+¸Z[zË)˜wåј>µë Ôzì¾Õùß@_Ö(4bÒiö:›àxº?è÷(”KÛ½|Ô~Ýù<8ôwï4uèBHY¹õ±Þµài©ÿjþ‰²§d¹ýþ9ài ûLÓbÀç͉_G‚ïÒgÍ•\S€oGÇìžÏheœ|¥qÝï7‰;1”éèLý‚û-®ûk¹'á×(ïDð˜{²[^×/À1·;z÷ÃuYt>où°˜4Í…Ó¶çëDlÙ¯¯àÞ]mØ®SØ÷|9&²[Ö×jOûv÷Ë¡möBUßíù›xégù³&äÇ[87í>¸ …ûRR×°åჳM­\}ëèËœ¿ôíäQp‚kúüä^vgQDˆi?GŒ£eæ:-ÀÙúnI#æåÀ©©1.;ΠµX÷e½!pÚƒ#ÂÕ\~ڷǹ£û!x„Ö©A#e+Þú„çV®ø”f}ªpú:ç'»މ Ou~«Ï éÕ•Îϧ]ÿÈíç¦~^ôÊ ¾j´}Äbð¬8%Ÿ³Î¾]YUÔ <¯|=ST_èüb×ço\“ÎàYgW ®OÞý*²–×o¦/î|ÙùÍ·š>cÇe€g³úòµÙròãú)S&‚§°k˜Me% >4ñMÓ—6è¶uû¢¿®FÃàƒN²n¿ 4å|¶ÇÆ à^9MY{ÉbÍ«Ùnaî.a8º›y Øfv Ü/Mk16> Ýïç÷ÐîrãÐÁµ›Jâ¡ÇÛྮAŒâ—^߃f0ŠúÍügWƒC¿EÌ_!6:VÙÊŸ àæ_>ß&›Bpˆ4Ù®*:¯Àe®0£¾`3ô;6éÑÙáпØ;ݶÀ¥QåI°ìsèoÛµáA3¯)íÆ[n7?ë×Þ€õ…çã5ÁãÖx#Mï0qÆñ‹ŒóhdµdàK0üÖP4Ê‚§«ë¼ç1gϱ'.¯!xv€FñóÇ`a¾ýG¼òxðô[œ7, ,<ÝÇgõÚ ž“u¦]­Ï¡ûåÚÒ•@ïµ›*Ž:à;sUæEпSÛ6&¼¥Óƒß¼´ç‹E±:MÀ›op⇇,8Ÿ ŒqɽªQY3•ç燺ß.'¤ƒê–ŠÌ¤Ùªó¤mKüy8©ýëý ¬{£Ç®±»&„Ð1%Ö鸹ìü×lðÈÿëižM \uÚ5,¥?x,ð5U~ªv§œ¾Ú©èÇbís‰¿Vƒ]u}ßÅ“ïCHÔäãUU`ö=Iõ$óèU½3 ÁÜwÆ!ý¦`n5Giúõ"ëšuçþ 0WßR`0ð5x—ìÛØ-é X—o8Qµª¼÷¤Šž‚u£Æ„ÕûBˆ`Þëä!*2wYêÚw‡!„w¤»šUO™µpÏENŠóÇYÏ7©Îö„ù©kLË¢œ?-YbÓœ_&V÷/g¾îüyË•cf¶€‰eÚ*­0‰g5ï‚¿iÂû¦.Z`2¨álåë'˜wú¿Yúþ zì/¼À þÆ%¡sßç¡Ü—š%Ͷà_ükeÍ&°³xýÎãÿÎò®é¿ŠÀÎ*í¼fÌeèÙj²ë8§€ÑùÙ黓ì"èåZ;Óåm+£sYaÏÑÜ)Ð+E)t`´£““/”soíISVLx 6J ß­†‡n«^:k 6Ú#÷ÓzÖ׿uùÔ0»Ú¦ÿ¼š Öw‡l¼õ¥¬«Û&œšdƒEµläÁúþï:×6½)skö ž¨¹µÌl3ò×vºÁi¯»­s<à–•Ø”Àóþ÷¼wØî4ý|/+†ÔÅíy  ›´råöÜ¥iÚéËÚ¶¦ùÂc0àÅáÞ;Úà¿ëÌ´õûB·ÕSßh}¾þ»¿¼[» ¬GößbçžzQÖ1ö: óãœ>wØð´}bVl¯‘I…N\O]µTî)0w«p®5<ͦxç?®C{)éßzSü ʲ†ð‹ÁÃjÍ ¹‹ ĺ÷2ç%ð0­Üêt¬£nÛ*c~§UlsƒQ‰‘Ï‹¼´¿÷¶Áâg …n[>#8B†müÖYûÒÂñ=dПº×ëgž!î'êm·AÐG™Ï0ÏyÔÍñˆ0ßÓ¹æßŒ„À:îÈs"ð=Ú¢xÊ-ïd˜w¼£’5Ƽ]Í`cØë\?ÍE`´m䛫&›Á¦Ÿâ3Á¨@ðè›10´»ؘ¼åoú¼¨èë!f‡7vw‹¸³rqKŽAÈÀ»[öžçEØ(NOMSè’gÓ\=>Ü”ã'mô??®Ü\äÚÜ]˧bþµÞps¾\ESÞÄÈí%»Á§WŸwU †à£cn”×fRQ[öd[Ñrô‡úó)cVbœìbt{.ú ÿŒßØžOgV·åvîÓOY¤þQ?a‘OÅM]c“A_Á¢ÚóÔu®`Q{¡ÅêÔPpÝÎ«Ž›ÁcFÖ.Ý& Áq…çžÞiźï\®ß£dðÊhXÇé] VIÇC®+~¯œ÷¿z/Õ«¿Èim­à°!~`íÖ*p8ºªƒ^ƒcòÈ qñKÀáß5VW“Ö+´}}ë&¿ªró×ÄX¾gäWœñT‘G¦Þ†ü¯s 7&9Sœ&ÝÛ¹+@žÚá õAäµ%í£B ˆD“]«KOáßC5"Ÿ›ó4Ý.€Å¦z®ï¢à®ÌiâYw‹¹ï·þ¼^Í8…>ý8¿…qòµ¹]jºq »Ý=ìÊiÆ)°íž+~.Px˜µ ??w«sö#ì}#×E@šÈ8]AI’¯›•v6 û.ͤ› Ýä×¹¹_Aº©Â¼ï«Aƨ,>Ï·&Nß¼m%¯‘Ú›³Û4ë}©!SꌔÏö˜ÌµKÿ⡇¿ßês`×1˜Q¨«¤>ûá»f\ï cò^)hl†Q¯úé¶Ú-±#Ú˜&Óiö©\Us ~?Ýìµ÷GuÈt*¼5iÌWÈJ~fT¢6&—ªrûtrNjî-<¹rúoî§4²¥7þš¡ “cø£S¢õaòÐÏßo~é YÖok^A桜§¹\{˜¸[¶™Éª…ñ‘² >[–A†S¿S{‡G@zZy¦Ó÷“0~CKØ»Ðøwýç#d`âÀ-›¨_Ƕ8;à`&¶S–]¹’‹mÑœ s`Š÷‡ áÊ]3t{Ú–ý¾0µò®¶ÓÞ$˜2§OT¡0)ëE}tþ˜Xr@du¿[á‘Ö¦1Øê½¾±_Çu¨eòÁï8ÎIk´½Wãøý›m“£‹"K›Ê·`ÇpÞ\È–»ré]k¿<»²o:É¡¶`wp­í¶UsÀîäØÕ¬ºá÷–í^[ vGrZß®µ»£'EÙ?»cKj¥œ»Šå½ Åï:L=ÚìÎeMyÙ4 ¯—v»þ­4æÃfi—Ä›øy¯rïLu°+Ý:D~^=ö¯^½»Fìv_[zU{Ø6ȸó¬3 Y`²Õµâ5 ™_þrÔ'ìoê³íÂP’ÿmgŸÒáØß¾G§K)öSg?¶Ù v÷¦Wuýñìn4»k·ìöþµ}wÃF°« Iq.Ì»š±cÜ}ñyÜo¦FšAÌ»]«ºÅÖâuîDœYy [%“ʲ§Œç¶=[‡Øæ0ž»ÊÍŽrËÏ=Ç‹¤¥ϲoéVmÝ æ£õãÏZ¹ó©Øí²ô.ˆyå²ú&.`XÓâ/fLÒ •£f3qþ§5ÙÏ$ùîo^ô}?ç7Nóמ*&É'sG- ûMG®—yB¬ïtKís'aÄÖ½Bë#†0¢hlé°€ˆõú¥»ÚßLc DA¬íW]¥×ë!]S8Ég¨s¬nöóƒæÙáç¦Ößß\Ç~ŒÎ½Äµôùè+7B¬»¶MÂ¥hˆõl\sfLçô­½Ô¦EÞÅJƒÀÔú”‡é@]0šÚZ¬U¦>›jìÆûn¶»ñ°ŽøV/ÞÙN]±~$0ölÿ ¥VÙÆãàçEÝó ø:y²[ͨñšsHçÈ´XˆI/Ð;;á1$ ȉšŽß‹šglî1)U}·tû G§T¯W3Ä¿çé¿ûµbÆ=Ô{:·+Ĥ•Ýù¼ÅŽOݵÿ¢2~¯ÓƒUøùГùõÆÏmaùXþîÐÚâÆl}Ú6·¼†ÐIÎy 7U!rGÝÍVŸ!ÌíJ®Ö­àU©}4ðÅ,s·Oã]{a®áŸúŽ~ ažæmžž¥ØØïQ™9öü×ùdA˜‡Ç¼üÙVà£PXÓ»A÷¤kIì8lÛUq…æÌ·ËÎÙ a.»µ ùWñ÷Óü£Ì¥ðó úAç6B|üY~/|øƒÕ2Õ´Cëç^ ÁGÊ'ï}«þ=ÆZý%þnÄ˃€÷-ì½ÉVì¶-ñã½ìŠÕJœZ*˜'uµ¶mÒd< k÷šôÎ 8÷¢›KÖ{ð=ÎûÀßÞamo®EyýªŒZ§Ö;Ø~¶©ïºì7ëHéÉýÂÛçj}°ô†úÜ*°_$œÿÚLìCOõºlýì—§§Ç{W3QïïyߨÿŒ Ðn»¼cd2 ³ËiN‘gcûA}ExG¿ÕIÌÞ‘Ö×®wIï`³žöôÂßgm_˜Ž×ø¸÷lØüÖÞìÿúõiôÎ7`_üWîÒi©`¿RcäŽ~±8^«#wԢߥžžù ú-Ôó#& È|’b f»’šœÜÁöp·VvE`{Z>Üìd˜í/iù<{>Øå¹rÉF°=xÇþÄê·ÙMgÚ–›0n~Ë ¯R°ÝuGÇʰ?ØŠx?rÔ*0Ûû­Â/Vãû—yª=†¨c¿Žk¹n‚¨Š³õŽ35 !s¯|³{0D^spíåòÌËØ|«:„¦Ý*Ñ·¬e¡gz™g0Ž'òšÉ”g`[6zÐäN½ÀöÄéWþßTÀ¶Ü9[­ú&(+Û3¯Êoƒ²¼ëþÛQ`{$hÝÝ—8Î’…Odô†€‰3ݪô„€Œ¯ ºÝ ¶Û–:Ôœ{¶{¥/ýpeE­ˆºMC@©õGÎÌ o¼ß=ã{ªK°ý4üü Kˆ*¯”ë3ÿ5>g®{Lðy¼¾ö٥ΰÝ}¾®§ÎÓî³EB ªôçÌcCóí/ Öý“Î2Ú/O|áhϨx{£ÞÉäꊷç§åj»TT*~ò*ž,ňԓӞ~ŸÁˆ4V<Ÿëf¯¾*l¬¿ f/>ùU{ã~¦Ó«KÓó €Ó%l o-„65LÖémˆ÷–…r^³ìØ„;ï!üÆG¹¡¥+ âýo•qñîJj܉~ø÷E· ,ßà÷lŽù»ÌІ_û7]Åöã‹‹Ž?ðú]­ê±5?¼}˜5–zL¼³ÌZÎûPÊœstí‰=ØN‘{/}‘é2“ÏŽ Ãö³%ã(#RáÔ°°+#RœÚkS¶ëmça{ ÇxÞ@lëö;ʈz‰ž>™¿œõ”ïÔtë p¶/Ýç÷LÀ™éûGœÔ³†¶¸ôúdl?©ü%þ¿ö r‡í‘þÆáÖzõÞʼnQØ>t˜ñ"„Ÿ16nð(À¶ùS“ç6ˆhܰʼþ2D4Eg×þu†æÄ˜û7Œ€¡¹=¶¨¬lÄχ½U‡mÆ_ÊûîC´æ•>¡Nº­îØú#ìöãR–O‚ˆ;¯õö÷Ù‡mŒB×qß Z#5Ãtó,l— :m: ç(Ðãul«y#…×Âv(ïW)k÷r„Ÿ[;Aϰ-±ñB¯´| qöÂöË·èŸ÷Á¿áÚóciÕàß\°dÅQ 0+ÔMÚe×Ì6¶¼šÈÜy¬ifªWW$D¤1"çùöýªÏ1"§/–53&cŽ·àb;¬Ã¨å 6êª7\ò*ž…eœkeL’œ>œVƘŒ‘N°þÎø]údl勚ô‘™Ûaß{‘yÿâ’ÀÝØ÷ÓiP»Œ}ëÚŒoÑ@ÕbÓ©:ŒÈqñäý—_b»J†IyÃø(­¸tsª7ã£è¦Ùººþýú•ÍM+±½ØÍ`##7¹Êrlí~ŽÉ¾Í˜¤*šQŘL0§<Åô_ÓyUg÷ÝLÿåÙþfÏ÷V4Fò¥(;V4wEû,3Ûy“Ñ•­”^÷t%¶žÞŸ§+CÔ†©_Çv‘‚Þ½÷U˜çßZ×Û•2và ]ÍU#æ¬qÀVöø-ÛŠŠÏJ9)¾UV|jé]l6nKE㢟#yì*šºNžºôb4cs}Ü›lÆ$Žg6Òß™é?ãì#«l“ÔWßĈ\¶6TéÚãóôÜÞÜ,Àç®ÊÍsmá‚ý~«q]Ôoz­LÆçϱñÏf‘ëÝÅC4Á¿1¶有¸Îª«ï Úƒö*µþù0slù>ƒ¦ÆAøéþóLŸýÂöžþ<½@ü^ñ½nE`¶N*ö³ÕL0+xwvÈ@œwóñÝfÆÖÉÁà’#²îñv÷ô:Fdç7>ܹ–Y®½bY3ˆÙœ”غ?Ÿtݲå1#òtØÛ#a4þîIÁ=å8&àv]Å]ÝØÞõ˜í…ëæê&P;NmÆù^•ŒI®ßÐÙ2ŒÉ¤7vMÕ˘þ›S2·•àzm;CvRÑ´ïÏÂI/±5‰}úZÅç®å›ÖÕMÁ–cÊóOetM¶ØØuet{÷®Õvu‚¨õ‘!ã/Ga;ôS†÷͵.™× L§’†‡×0Sv=¶qÓiµÚ“ÐÓ±ßÚuò¦Óš£ar±¯3Ûu+ÃìÛ´$cZFúšóqÅ”óLÀ^“]»üd¤‹N˜Þ3¾ˆýáæ{o0Òýòä¹1vR†[:}1fì8;Óï–ÿ`lÛ*—¤ïHf¤/‡q§¿cý“h-FúVä ï¶ãõG¶èßÎHßiœtœÙˆýÍV}e=;^àXÁ™ ÆöGÂÔÙéŸÇÆ^ 8Œëô5»G삾N÷zt‘Ë'Cއ­XT_mxuøv¿½Þcc! 'jæŸy¡›­S¯]ºá ²ow‘S–ØTUí„èUù¹ÆúaXU°È“Ù Ã:iν±é+Ä;=52«LÃ6¹tÀÔ[0LêÄåÞ6 Ý—?'7ôâZÿúanøÍý<Ä¥”±8ÙN\cËØr9GVQcÿ„ÉÛŸ®w¯Sû®%Û€‘ûºd3ýR0¶~È TalU‚½Šöµ1n {ÚÚ5ê3ç¶?›Ÿz“d_<8\C~% ÁñôÉ´ÇxÇT×¹vW î×РS)°¿EÕ-F³Ö­ž|/ ’ÕƒOk¿oÆö\çÚ)á`º©ß§=Ý2¢í;nMy÷‚íX²3SëöÍ–@Ô¨ÃÇ/·Êà÷Û.ž˜¼’ÕŽøF‰ °Æ«ztF/Öµ\)ç£Þ ÏïÎY £<›u6ÔN‚Ñw—Ž[ÑeŒ®[kÒUa:Œ^]›3nuŒ~ž}âþR€Ô^ÆÝ¶ý°€´üeõ?¹CzÆ›¢o×_BÆîÕ‚’ÓÉØzýëþHy” :÷— ¶JöUaÉl"Ú9ãŒ?{ælœÚ)H?®8ÐcúsH]eѺ;»û+ºæ¶Âp~À˜ÞÚ"opÁÓ R:\rõ„¤ÔŸRÃüaôÄõƒ†nƒÑ*ÊK ÞBJ—Ó\“»ëú½ãÅ‘øýw^6oðïÒ“V–@òhý¯*Ù‡!=}ë"å®qdzÔÔ«!]μ)úò|߸Ã9kÙr˜ìå¡=c³²æ'zô &{þ,]‘Ý Æ7­›üqÔVHïr1ÄÍTÈ(­3:6#ŸÛ®w´f=^ÿóWËæx¼a½É¨xßïRsäs`ì+ÿ Á£b{êv‚;ĬQ Ê\§ £^ìÀiކ”saouiäŠ]óNÜæCº}Èó3áuše´Öxà ìKÇwâ )I"§_®KaBé²#»§ÝÌ™y|‘ÓPÈ ®,ôáÌ„ŒŸ¶^:&¨w©Y¿i$d,a·Z û½º›ÊîƒÌáÚ);ñwÎÑï°¾IIÜstoc¤Eäµtzjƒ÷Y|==ãÞ÷s®Ìì¿´é¾M ÇÙ<û´Ã’œ{ëˆÖn…G¾=óc&$9m:õvÛ$~ßIq›úˆïa¼i|ÄXˆß;ÞÞæö÷ݹò^ïXÂ¥¨ƒ³ u¥ã½+o—À¸‰W®õõm€ä¾‰kÆ FûjþËëãpuì[?tì{¿­pÉ_×JÙÖ¸õ0Ùcó`~.dÍ3øõäFüû¨²¥/ Ñ.úv^Ýå3ÚE¹[ºÇ_hWÓF†zöÀ[k3Æî\>ÕæœŒVÞÙµxš9Œž Vò|¯$=ô+ë5†w_®³züH§ÞR£¤ïÍZ§†vd$¬‰¿Û Ñ¶ËÇ™µ8Ÿ›s4îß—.Ï>4{Œ}qÏ|AÊœ‡‘¼ë¾hG}gÚÏÃõëÕe§ùX\ßi.V«AÊÈ–AQ=GbßÿüJÓí8¿uGk¿q É¡í Ól?\‡ƒ6ãºLþ²è]&®SÇO÷V@â˜Å;tu"axýñ# Þ=Åõü<ÒÂŽxíînW÷ø‰}D «zaÿQ•í£[?á®ÆÞo&0¼Aù’ÊâÞ8V‡söv Œ>‘ÓÐ}Ú(ô[&˺×LkfY-}¶Ò¿oøPòhL|k·à†ÙqlÓ¬8oÁäÍÛó coÀ”--wí2Ö@öÈ5¡ü7 gÞX‡â,È™où6xE þ½êZ§È ˜²Uáà><ü]íÊ…±=ÈwÝËi“öa·Tî.Èí”)œ>Ù­·­¬/¦C¶UäˆSß2á~+?œÜˆíà R†0჊8œEÅL¸¯‹ž£ÃDÈ*“‘•uÿ‰ñÀ4væ5\÷w/¿.ÇuÏÎ^Šñ£Ø ~d-®û…‘Sb»Cò¨ Óy™è_]b³2OôÂuÌÛga«Œö0K·`Ú7üÞzÑëÔðw3¹kÄë|^™³Ë¯?YïÚÐM+ž4ÿ€‰ç®üpåÇ`›?gxl¤´\(”ψƒäþ7—¼„í¬µN<¤<8ÕZ cŠñvó£/¯Ê1 ùÐÒ\ üÙó6¤ö”)))¸…ñ[û\ùÃ×gZ½4‚q~ÞóE0î'ìÙ¸ôæsÏüºÔ`^hë”ØØÛ ¿¥´BbæÃã½£µ ÞaœÝá†ñ÷sÜ•×@œtŸ$€agíêZ7„è%㤵kÍ!üî„ÞщÈ-ÈÚ)¾rkMm{L/>ötͰ¬I×òè#ôí½UyMìQÆunå'íÞ-ŒãU­51qŒtsÎÁÆ—ŒÜ粄 匂cðù©²Œê(AîEKlOÝ8Ü 8,âÿêv‘ÉPzm òa©¸X3˜‘¡V!µ½?WzÊd`?&^©ôûX&²³£}B$3T;FîFÀZ&R¦µ cQ É›1|ß5`"…ëG$¯ØÊ„¾s-ø¡3‘ ™æôb‹a)2ËUÕmž:úQ¹˜ùÍ„ä©Ltú´€ “™â<åE#34Àò¼Í³0fhÏ{µ)Ï+˜HeƒÔ×ßcß¹nƒ›3Ô¿Ñ7dYo&L>pÐÌ¥ÌÐ@EÏ º§ñ{ó]î…ãéuçØâ:Cüû¯ŸVzúL˜Ò%ó‡œL耞¯Vžc†ê½ÒÌÇÄC’ÜÚ÷VLL—~·ngbäΙHO1þ¥þ¶6û.3q¹Õ#¿5Õ3I“• ÃþÂ~ÈË{>b¬ÊV½ƒØ8rì…&)ËnÉáÛL\ιf0oæ0'7-Å6ýÙjé7LÄë=»Þb⨼«ŒÂy’þh°t)k{;€ë‡mæåˆ&œ¿cÚõ8oëܹ#°m|&t›È ÕQžxÓ€‰w›y{Œ‰ É\ÆÄH+µÕŸ]ÆÄuz»-s“¤WÝÿÍÏ`ìGî|5•IÒÕœyQ?›‰38ñ¬õ"?W:dt<û‹î™ŽÔÁþ¾1ø;˜8ýmã'žg’z yBçg8EªÛž¼¨ìRæ%«pÔXìÚÁ‹Ç­í$šÊ$iÅ̪ …ñ!}.ÔT2É ûW¶lg²ï­cúuc¢®—”¿œËÄK+¹½­b¢j¾éYòðw¯ÜrúÃøà×ݪ_2ÙõK×®tÅï8óÙÞ’‰— ¹d1n uãÜ$÷ÃVžzîxãq^vbøåš:&ÙòaÎ×>½ð>W[åÜ3ÉV惗ŽÁþô¹B?&êÚšPû‚£xßžŸ={à8n}‹‘ßaÌv“çAðÂÒÈG;Ê™äà{Õƒùá8¼œ’´ÖáøÂ^lÐyÁÄ F—Ë9ôf¢ª ÞäT—ãó¾ÚéÐöÂNžu«ŸTフWMÄ$‡ÔÊ5(tÅñ(-ýÊ$[çÜ[nKãr9,‚—€pÜ ;ié ã¨õa¥òeKÆQÕlväæEŒ£Ü݈íG¥e]ædÖ1Ž ? uË20É#ig|23p«WBʲیÅ2Ë—Ê9Œç‹)6û&2fåF×wL±eú-é•Ûdz›éÝØ˜c¼a?Ó÷Cbò…ŸKÇ8—au2AÞÙØW™¾ÇŠô0æï_?*‡ýÚ+qZë2JE—–/=]Êô=—85Y«cþmÁõ:Ý׌‡ÐE‡gÔqÞçÿéêÚ£¡\×øK¥ËqÉe;r¢\J¢Ü×ã:옙BÉ-3 fæâ>CÔv$Ò.Ú¢”¨mï$Iì"y¢L!m!×vM[’Ž„Î;uÖ*|ëYï÷=ëý=ëy~ß÷½Ï»Öó¼Ô¬c5ÈHqâŒöˆÚ*^Ò¤ª6#£‹q‹Þ×ák>jZ8‰€[$g)Ÿ¨9;%û…ȳîî¢âÑ7HÏôE?™Á‡î:+«5à(M¹¯+»–Èß™ä— jÅàXëo°DÖ­?þÀÃê#ãæ*¤o£Ä¥«!ýƒ._Ö_Ù²yy`݉æŒÉˆZu«HræEgŸt”€#aÓ9Æàðûú_ÿ±0:ºm®%Ű)uhÔ.Ë\3 ÓrsîÍùFð O¼&'Ÿá2;SV-øióB—lÀg‚ó°ÎSüÓÖˆB„i@¥¾ßøn9ãÄ-p0{¦D·¼fÆzd~È€›r±3NAÅËêÕoàŸ’¼½7ƒ>ã-äÒ2%ðûî%S!ý ø …íªß¢ž¡ŽÖ÷ÞM¹ëž{Óã°ÌH¾Jiw„M±{í«ãÆi“Yä¬Ê¾zzBTâQ4yv(z Ó¿èÆBÐù;Æ@v$£àn„©ìÓ¤ïÚ¬Ú® —i,8 Ah’fañÖ> ]nÁôzð-}KÑŠIGúcå‹óþà‰ *¨Û¿.Ρ±H=`ì1žøñ$„¯,Ý—JfNÔ/^¤T`mkI=Â=¬Nh!^_9=9Õ¡ í{Ö{­´ÄÈYš ¾Å Õ5'þËD)~Qx6<ÒK“À¯3qØL‡`™;*¯Äã™O¾µú1ˆ)3<9ôO«sr¯©ƒST…Ëlöë6çŠL«2 ±Ó†v!làÅ—ui¹·ë¿ Ëgt–7è„e¦ÎÚi¬¿µì±}ýØ"ËŽ=ñ"ൗŽ3רÙjL= ÙͲ¶ûK!¾HªâBâ÷·òCïð ‰ëqW¹9¼ìë³îƒÐ¼§×P=’ýŒÌ¬9SJô°^ÓÖ ©«.¹ÅEäÃa-p‡U!îÇ:ë @¨>R…úAgÔ¥)‹¥ÆqJb=žÏ³|Ëî 4ûƒ®x¢ÏçÂV†ÃýÊsóu ™“õŠÜÐ …5má‡!¾†lñ<_bØ+Hï_c»ã8™×ALäÇ‘vΣ¨ÕŸn(éïhoxv•ÄÜ ìó;/q.Í%Ô9Àò½kvÐ#øßÖäRD§Ó®i 㸹g cúEâ9ŒóT~Djö‡‰Ì7Ä8uó6ÜbŒóplöv ÆÙ-ýFx?¬Úðƒ½#–rÊú•\Œ§dÒX q$©½ý“áïÓ«kU—1^騙ê!Œ“Sûè ã.2w¼k‚d[ûž"ö§lôæ½mØjlî û‘±Óº û‘R_¥ I¢‘¡¥§w ¹3ó‚“®3–¡"õ«?ƒ°Ñ-¼Ree·L­:]±‘¦Dµ¹Y<Þ¨=`ç‹|T¶*Ô;ã<¡…x®ç$)Û§¼-ž”Œk6Oª#ÕÀôE™RÊ4ô6Çlá½ñ/ymrçÉ¿J‰1nÕ®‡ã˜—´ } Ç‘Þö±ºÇ/6ˆ<»óC»ûÙ æ‹›«èŠ$]¹þżJ·,×Lălù/l¦=‘áLŠ g¨¹~ÒÈ«BF2¢::þÿ™´Žž/’1E&=2†šEhó1»aFºí,k÷Šœ@f­»³åh Ž÷hýyQŒluC2í3j­á/úÓ†eÕž²a± >ÿëòO)²·»»Ôò¢ÐF-8†@ ~^öD>„ÉfDñ™ÑQÿë¹"i;-éÈ"é®û"QRWŠ•¿U#,G’“¨±£C$%¬ý꾤kû·–GÒ$–K­µšM‹á1¶óƒ·…Ó—[À¡GЖÏLôäÐx|†ä䇥ÿ_ÿ €98áSparseM/data/triogramX.rda0000644000175100001440000002522311547113521015223 0ustar hornikusers‹í›y4Õ_ÛÿÏdžç)s¡„"CÂÞ%™S¤(I(J£hš4iÔ R¤™"eØ[¥yPH(™çᘎ™ß>Ï}κÏ×Ó½ÖóçﻵÞÎõÞŸñµ¯ýÙ×þèpŸïe,ì%L¡Ph?•B£“A#?¨ФûÓ‹B¥+Mh¤…®&?ÅIëcÀ¤üÏ¿ÿ~þ÷ó¿ŸÿûëO–¶·…|чY©3K¡¤cg&så*¨bÍÌ/ú†únÚ›{H|Ó¾©žlz ”õß Tßê3ëB1TB´¼Qͼs~šŸà»-$ |UæS¡¼§‘E@«Ï_Z> ŠÕèìä›û 4ÄŠ¯è¬•ÆVÊ&¢bKú¡ê£]GèOžC“ÁbóéM­P/-óœ 4 NZRX#ÍŸ=Ñ_í«…]r.öWú«a­;w;˜ú,TtgšS{TUŠÕ™íhiu±i'4ëP½™ûÔµOƒæ÷«}ÍÛ)wµÄŒQû³åßµS‚°¢xŠà]ÖC(=ÏÖo–)x—êtwä˜ è´&Î|ç9ÔóÜ%þýñ—àÝ…Îo«¶‚±‹ÛZ²œÁ§óýeWPÖPݛŠΟdÖÀRs¨(·ñâébÐû¥~ºU±œE©¯¿fA¾íëJ–Ø¡òÍwŸ,ÜÎ_ÀŽ7¶¢|ùØå*çE@Q…Ù¨Ò(?–K|gP;³Jžþ$°d„Žz~mÝ6§õdˆÏä±:•Zý¼ºõ  Û³xýCÞò Þb¡Ø¯Ó¬ÏÔ¢º±wÏ®.Âb®4›/亿Öz½`Ð%\„jLg§,Ü *+º7¯L®…Ô¤Äç~˜Òõ5¡'W«=M‘œkpU˜8^‘…ŠauP$ã3¤ütýö!Si[ÿXôžè±ìRÚºõlSw{÷ÔŒjMÏnŸÌžmù²‹œ8b¼¹Ò=ô¹odnô´5J>ìLß‹)9â}n 3\ì­€ÅNPto§ÈfA“ƒÎ†É£Oêµjý©qм½¶üÒòÐåûÙöTáIÈ·5¬Â-r2–Ì;vˆõR$_„ W|u vÓžßiŸ-Ýo»-D5©;Ûß~½÷‡†ú~‚îýt»hõ>¼PЋ9•ûMM«†4óK?Y-ùà^œéÌ5@ß‚×s貘rãR¥;\*üZ~-?àÚ³ì<:èù Qõþ3ƒìÏX@{μx›lH•Îvl©QBƒ¿úéW¥b mlx÷öú5ˆùIÝÁïÇj̾}YäÒk0•JÅ×”‚á•‹RÖÝ’¹¹/tÆkAS’kÖ[ Liš»è`—èI¢h¾Üˆ† Þ ž-Ê çå>TG=.3Õg4•@úïó¬0Â|)YÂ>›QCÐÅ›YçŸC†Až±Ù©RÐæMwk^ˆXîûÔLÇA_¶ýs¹tLP.k•ö4÷gG:—ÌEUÚ¬{ÔWÀh¶IÂÇ{S Ÿlã¤ä{K°Dóà¢-„ERBÒ®N[Å|k6TxgcºõÙÙsO-ÔÕHú*:j‘ùcwh• ;"zéÄuYÄ’ä×Ï»v|·¿Uô=KaUá¹ÁÂÐüqþW{wè_‘e¸0@Ö}Ф"}hñP0;4<Ï?¸îäû] î–(>“¸-Pú˜þvåï%`ÀÕòÎË-+°Ø<À×¶=15tçE8{C!ý ÷÷Î`ÔxÓ›;«.ƒÒØ­Òçï1Á»³¿Z{…×bºlü’µvÃxf‡Ì óM»ñÔöºî®;àìWcÔ¸¬d({P-hN¨è|ía¿AVdN½~½æÎPU TšþÜ ¦8\ºg€XåUWÚ°ü³{-ÁJV9oc˜Û@þŸTrÒö`ZD°Å{)èÉœŸ6Åp*®Ó,žæ¼Ë*FþîYŽ…Vü˜;þueFj*úÚ@‘§™{&KÅ‚¡=ËWŸ+¿‹\㇂ڳfF6 ñËézöyÙ }ËëÝòæ9[ÎX¾ 1«\ÌZãÂxã–h$óèÀ¾W×£Þ]97ŠlûÁ·.‹ù;;¾4ëöëb@{‘úÆ…¿£ºäâê©ë=A—¡bNáÂÅ ÈHãë£jtik½P„eb¬lâg¤f›§›ÎÊvÄzœ.P¾h-”í÷Ø€ ìШÚH¢I† (þ!˜éºvÉ““´}¯-ªoÇq‹¯UkÑÐOVÀxGäu(zm2š6î¾~¯^0× œ1†AIä¨ÎèÞK ü"ÿ¢•/ö¡‘w[DŠ¡JXó>𨠛ŸUp¿U% |+}(À©Ë”*ÌXM‡¿µ?8n ªÞvIˆÜt1”ï:u[Ôá)«î|E mÛ:– ˜caËœðˆÇ6 CÛFìø(¸Q¨ýáð3L•ºëéõ&Œ¾™Õé©Ú‹©r,¿çûa,1¿9×U­Jz´¶8 þ)¹ò“_´lŒéyP›€ò- 6x:›‚ŸQR×o·ò¡†Œãž¼: ~ .n›[€Åµ«Tè7æ¢]£âF…/Pà]øm›â .ÝD_eC®üê†Ô ÙSÀ¯˜;ww;%cÚP7+ØP hù†Ø-¿ )ÖŒœÁà+hÀ„q:¾| ™_*Xr4Q[­Ïܺ™&XOûXM¸òc¨ë+½¡ÆKô^Ýúùˆ*YÈÚP)™:7䬛ó´Æú:l]“/suÂúúg™_ÎAÌ£ê.Î܇Úë”rZ·ÚA™Ë^ã¯ÊrÍ); Ú_ìøzÆÿ5–-žön™àH±]ט‘¸õ¸¦9Õ¨tñÇ,Ê~…u4\"/ÎÄü¯e:*5Q]¼Þ3FîH;žÊgº`þ³Ëî·ìÝ+d뾇  ¾ïífé1ÃßaÕ¼ä`ÈRªG{l èÚ»\#Œn %+ÏÚa!3k/Á{w0å,G¨?`ꈄôµRAï~ŸÐËxÕ.züùÛZзònÅ™Ý ˜¢’ú¢6õ:Ô  ¹OEË|ÃÓK°†¹´ŒËOKÐå­Ñ`W´Ÿèòß%, :ž…„u*Y^ â>ZcµÛ¯¼êG´wçf¶·ÌŒA¡÷=%f+¡Ïs~ëi(ªï€ìãBù‰¶÷üÛ£àeÉ>AÅlðûØÇžEVx’nêÖq­¨r Ç4i"œ$€¦O{Å}5Áïsjgß•¢ÿ£n¢fIØDÐþÒ]÷ÇàŽªŸ•%4vt?öŠvT—(¬Lga1ÏÁ#…fö)ì$–¬_£)ï)¨árIïùƒØLiH³]æ Ê/YYöò¶.4=¨+YõÍ4=¿0À*Am®×zDŽª§ã·+eðR¾@ñœ‘=hšÁW‚òTÁPôáI ATÚ~@ÛòÑi,|úÇ”·.þâ:odúùBÔ‘ç\¹;b*è­õšüDЬSV:Ÿ€úãs£ÖK@ѽU`]bùzgDuºbÁ€«ÌOЪ¾ì^ÏIÈ0<ÿ¡@WµDïûÙ³ŒàÃñ‚ÎíXDòŶ"I#T/y¾uò ÌÔ!µÀ= ¯™M5°ä#¦Ã"lÃv«2ÀSwËyËFóù;³§AÏѧx5Œi¯gKgfÒ ¬dÛÞ¯I&¨ŠM5s9ŽUèàe!茧©Å ?]€üÕ&šoÆ41ñö2ùó`¨áœ‚Þéó˜&ëýâxð-Ô•øfcrÈ~ÔtqæC±Ô P+&à;©hè]³âܵŸóChYZ7ªÙi°-sñèñOv;êô ¥Æ'ò•@jÖG£d}#0XAeh-êö2¯½~_Œn¹îÿx¦u¯8tà´”½Ñ|Kð´,`ö®:¾!ÄË\w·¿w`7êÊ©ºôT»˜á×.‡JܦƊm6EuWNyˆ»> $xÆ*0d“ó lÂíE­b[ŸBþâuM—§!–HÓ'R› ðœ'uCaXBk¹Ï:5hÔY’¨V„r|7k§®ÄTŸƒËn§ÎDÌn×áÛaf€¹äèGÚ4¤Þ[»¹¡3”Í=ôhÙq¬äúª/X} 0ûÅ& ¬O_Ù~kª°\âõ{ ËS7k+²~³°¾5%ö)ê?¼Qtöç¯h|Ç‹ÃLÿ½¨ûå‚®¡ñ€¹Í~”²ú¤Ôúä­œý S˜›7æÍ› :ùírµjÁ›•‘/ËA—@xU:™?G.6ÓbB«AGvTÝd¿5¨¤yoÝÚY ;ãÈÑ“¿¯£óº/”§w戙­Ø1yÔzÍåtÄÑó oBÞ‡Æ(ÄÚßóQ¨™š®_yaºpS:û‚‚˶A~!5¿Ý¨ó‹èÀ1¡X9`Æ£V•{ øÖA9«È »RÖC»­ V–‹ô¡ÒŽ/-aÏÀ¹^nËú¯à%#²âÚ ¡RTfÖô´.¬¸ÊÿÉËR…ŸG<Æt§òüÒÈL7û"è9ˆ SΕ8t€‘¡­qõrFPÈãƒy«¬jÅÓ™#?4AÍœkòº«Pwp§{ ëWЯo†Ž£(Ó\hÓ±Ì+t¿Ï× ð}kî.¿«ŠJVj®¿ êl»åŽtcF•­”i ¨ï…âÂi Çý^€äMe0î=ØœK‘@#"M=}Zi€¥¬¯0cä ¶(kãºgá…-˜^ø*âZê—œYf}ÚŒõ‡Ÿ èúJZDÚzôK wϦU% ¹á¼¶“V–88\½I”§é§¯)·BO- A]Q.ZBUÀ÷ƒ;Úš¥N9ç5¦‚ñâbŸZRÐÍÂkK*Žc¾ä§wgƒá%¥raZ`hSÁ1ÖwÔi+-~‹é’ïïßmªœÕÿì÷Bßtmzj³§ƒQmªðµòQL ÙôáG&ø´D,E¯U5÷^/¶=µ¾Sl]6Uô{”ù6}/†ÄðYƒÞqñëÆGQs}+#éÍ}4ÛÑ_¼d%¤q[ôùRŒÆ]üGÕ¬÷UrºåXÂòÊý¿ÓkëÛ èù:…ÆY¥ÇQß»‹AF³Á/媿oÁ|cËdOø@Úg½çO<¥!mI×hÚÝhÜÉß°ñCÌòý×ѯbþÆÜ)Yªæ`¼†ÕU=f ÆÞò È€oP^Z¨«OÉ Kgà•’–ÓAgšÑF=)4ê˜'¬{óhÏ­‹ÞqG2>½Üsp¸èÈ˜Ò Ñx͵|Ñ{0ðš2ëõ÷\Ðç™N»û‹—IìÒ`.3ÊÂo ©@J‡åoÔ´}íSg f‘ÊQêz1ÌŸÓµI{S4¨)`žò×,ýêòw9oÀ8«›î;˜véìÃOrF +j¯IÕ¯i˜Ñoî3° *®îÝraq–^`!ë"úJÖ¯?¦îùõöž{?$ž…U¤?þP» Å¿ ¯¿äHÞsßÏÉEæÓv²Ã”uIrçç#ïùÙk5oƒ>ÊlJ6KÒ÷êúôaQ‘ó¦†:èó‘jÅ]Ê /RywÂð\4Ø–îdüu& Ý&‚!U°0o‹ø¹u‘­æePuYüó…B#P#|l¯ðÙ¨³F¦R¼:hU×ë;ˆ…#]:Pÿ Vž¾•z!JzìyuØRtª/щ3¿-i7ßÓ«nk¡êžݹ޴R( u¯DõjÐô4~xú”BÕÐëuøþtѨ۳iMÿ냨ÁÿJzaóZòà«ì- zUM²7øð¡Ñ;i‰†`¸îžLEÃÔí]ªš*cejF÷èƒÁ_'õsôƒÍ3"ëò×c5µÅ]–¦‘P+÷º™³í2¬Véb åõbnš˜/LvXíÇ|lôëÆ·Ë|ꩤ±ɼ_»à•ͶT(X>©÷…:¨ú¥«þ%èêVKJ Æ|w?>(44·œY¸eþjPußxÌöx¦tœô Ì òÉ¥OÖ?55t•N²\5<Š4Œ_¹E4Ž›üØí ê;.5ÿç‰Ç úüÃ=º_cºásÁ½ièÝ'j[·­+¨ÝSÓ”l9 ÆŸSÊÔlLÝÒÑö¢e˜¡rýé›\H™%`|,ù*ªÊS³5Ñq}%†½{¥PÇÉÞºÐ\ 4šü°aî­jЯ0¸RSÂU®wot(ÝÚ¾ Î:~ª„<_m·|ÂV¡¦š72r+bÁ´º²“ïóîaUûÍÇ¡@mËÚ=’C {Ac^ðhoètÈ\ˆ:ŽiLõÿ&úgûu…[|A¬Æwû´\ÀÐýøyO£ ègÑ ¬R˜Q¿bÙÕß0ŸõPAÎñhP{ÙçV¦}¤5‡v ;þ jg{걘ÿ⼬¡çPÕvŸŠµO ªåí çK¸èpÛ°Þ÷Vç~§C™ŸtpONÞÚ¹f`ËÐòÑ£2Ú®KÄ&ÚÑ]Aõ…û/_‰€EX¾Õý8m¦“ˆÊëDd?8äBQg3b+üÄ6Û©‡±hÁá}Æd}§ß6€îñ€C3žštt|œµ­®.cÆ5™ŸQï—~NÎ~ÿ$0xu3ò«4ƒF³ã‚Kâ -=XrÚ§TH3l.¿Ä²Gc_…Ý…¥0ßnƒ5—sÇ èÙº´ÅnÔî?3Ö‹1ß©+_,ï½Ù©#[QïCyG³¼Á˜ç‹™WÁÐéí7¶waÚ í£ µ3krx5#  Õ Oy¾|'©+—Z¢»÷€î¡Ã——ŠBÿ_ýfpFÆÛ‚æÆmØCâÛâíI[ ¿šªr2]®½z®Aí EQgž³Û8¨Í6–_¼} 3T §¹Ögb¡«•1æÀ ´K¯pjEƒ{?4è €A±Ö˜BêÆÑ/O–š î´Ÿ ›@L{¥8ͳc7èó1¹¿©ü6¯žç÷Ò Ó‡)?ƒÌMQŸõ8+a’îaÜ 6˜¨›$É|ÔÐ8³s!är¹ÀV> ´Þx~Æõ„-û£¯…%2šÎ®† ʃ¥“N‡@¾ÍÁ;÷mH#ùÎ;¾l|úðR¾ z;•õ.¸ŠŽö˜u© š¼óZ¼2þj»O)z­éº‹Î÷ø*âY’Vņw¢ÀX¤é…‹Î«0e÷,¿Ak4”ž] žÝ£zc—Fr!UI,T-u¤\²Ö/ËDݪ¾>4 bÁ¤ËöÒ­Á Ýóó.I#Ðhaµ½BUŸïu¼=€º~©u*À Þ|±RòMq0êm“^ô£VW~˜ØŠ†Üæ¹.̓¦©â[N\.µ§® Bå•=Öûf›aÓ A½êwÀÈæ?&>%kÀ¨‡›DÅ©(,ª¹[û¡£!Ê¢'ææÊWAé snG:¦aiåú¹¬`qÔ×Fe=òI½Éw‚Oÿ­R6@!ù&ê–}½¥¦á-hœj°¸@U9WKº6ÊX¾ÿi®Ù Z£¯7æËkcÅ6ÙyË·%‚¡ôuÞ;R¡³‡•y‹°+4Q/tKÙÁÀÞÓë[4wG@Ëö…;ÊÑ· ‚îå‰qBÆàÛÞn •¨,RÖõKä%0z8}cá}Ж¾«ÕoíU4T–­¿µ¥ u ̲/Ï=£”MÓç<e‰–íÆ{Q£²Ñü–¢¨ýÑfq™JÀÚ{}ÆÃbg0¼ïšŒßKļoD™; í;•˜ßSFs%mÏQAŸÈÑ'ïŠÑ §¡ìÔ„"Ô½>¨×ΑÌ÷ž >½ :ÒTŽzï¨Aï»DÁÇÄjª(xub'ž§Ó—Ož£MןÊèÞC톞jQê|X¸otöª“v€yýF`ýänHl×> ¨¹ä„¿ÞoÀâs ~éÜ]{³ô~ß!ï£ò6Ç„ÚóÌÌé÷ts{ò\30Р¿¶…|ã™J6[ЋS÷bÕ§cqêÓµmžƒÞÃë(YGz!í¬¯QèsY46‡–(él†ÃµðÉG% á"-RUÙTÄgh'Êoo”´Â—8’õšôî&ÐLO5äwÈ=¬ýM6 NoÁ³Ë&×Vü‚Ó.Е\Å–AIµ¨ØÜ›¥¨ÎÕz[›|ïݳ„AåRzíÇüPD®ØÁ¨$Ët-^e-Üœ¶©<£§¡ÞaG§²˜RÈ·+–Vè­z¾Q’>&c>‹$ßh}Ðã2˜Eß–zw-´?,ˆzUG/¥‡á$¹§r­VhxŸã…:«Ç4VgxBé]‘Í6˜u³³3/O‹LHºeé %÷h¨žc éz·õòæaù±ã#ô± ÔôÒc°Æ¶0•cÝ&ù€Vx£ãÉ6AÔõ‚²ªµ¨±ÎýôÕ–j0¶ºÝêtüȈ:ÏíµÚ=ݧ,Põžˆðh†”8ù»Oû@¿ºQT?õÍ~)×YŽ©¿DûvÃè‰ßÌZÏþf–û›Yÿj¥°·þÏ·ºˆøˆø‰ˆ‰ØG°¿ü%B$ú¯ãØßê¢HIIIÉÉÉÉ))))©M"R%R#R'Ò Ò$Ò"Ò&šL4…H‡H—Hh*Ñ4"}¢éDD†DFD3ˆf™Í"2%2#2'² šMdI4‡ÈŠÈšÈ†ýå"²à¤Ì%šGdK4ŸÈŽh‘=‘‘#‘‘3‘ ‘+ÑB"7¢ED‹‰Ü‰<ˆ–y-%ZFäEäM´œh‘ÑJ"_¢UD~Dì\ørò!Èékýÿƒ§qúÛ…s\¯Âã•þƒ÷ãx§íéœ|jqî‡ëx¼Ö/ÍÓÆ=ßtÎùØñ¤ÿàíy¼=§OØã=6¦qòÇÇ;q¼ñ_¼Wçiã=Û³Ç6{\ÍåäŒëõ9mî—íeÿâÿâWó?ÑOçxnþ¸×cÇb<÷9›Kùg¾ÙmBœþfk·ÿƒæäƇ“¶wœà yÚ¸ûsÛx={ö<`ÄÓ¿l?•§×[óxv¼ãÙ±·šàyÚØÜœþ±áô‡(çí›Y<±çÆÜýÅ(ÿÜØ„Çëò´qýŒ¿xÞëq={nä>+8ž{óx÷ ^ž§÷xwν³ï›;׈ò´ñzÎõyãE<ž{¼$'—ìyÓ’ãå8m\/ÃÓÆë—ñøy<~æ_¼%§MŠÓ—ìyÙƒãÙñœ¿xîþ&<7=ûxîxguÞùh¢×âÜ7žÉãÙ1·NMhãåŸÏ«ñxnÌÛ?jϸó+7Vù‹_ÀñÜØ™çx®çÍ—#'Vÿ‹ŸÏñ2ÚØó3ïãõìñÆ­ÛìzhÏã§×s·ƒ¿ìoËÉm?¯gs*sظuëx¼Ãؾšs>nmóäé;®çíOOÊ¿çcîñÜxù¿”ÓÆ­M\Ï˜ÐÆ üsŽg¯oØëö³ìËã-&xîúD•'öæñÜã¹cÉ€“?v¬ûü2žýu9ž›{öXXIùw-äzÞúÈë5(ÿšƒyãù<çÓàxÞívâE¯ý?ŸãÕ'´±×ƒÜu’?Ç/çiÓäÉ—ÏïÏã¹Ç³Ÿn  ü³žñÎ\ϽîœÉ¹÷«1¡½fu£ü{=ÄõKÿâ—s<7àøå<dz׿Üzi3Á{ñxŽçŽ'v›/OlôoÁ³?×óŽv ûž=ß.ãÙŸëÙÛyçd~Ê?ë+?ÏvžûñâÜß” ^d³ÈÞ±êωÍþâ-8žoBû~x×_Üç—»¾S›_ Ê?Ç·žrë½îÏ_¼ó3{¾æ_¼ë''ž˜»žåͧ/yÏÏ>·>që5;æÖKvlú?›Ó&=¡òÏ5ß„ûãÖcn}×à¥&\“[Ϲó?÷:\?sB77®œ|qßÝ&z NÛ´ m¼û{òÄî<žóίî<ž÷|\~nÿóÞ+w}Íë¹üÜþf÷¥åßs {,sŸe8!æ]s½ÏöÅög{n½å¾/ñn[Âs®ç=7ÛKNÈŸåßµ{)O̳xYÙ^‘òÏüÚM¸wžçz m"<ǰ·sk37¼1o½wà¹ïW²;ßܹ™wýÏõfxÌ'0à ý3yBÿKSþ]SØõBbBÿrçö¿8åŸã]…òÏgbåŸ5‰;³ïÕw½ûrÎçÍãU'xÞzÍ[߸Þë/ûóö§ð„ýÙÛyç{:眜zùÏßl­ãüf‹º“òßßlýÿö›­5Dëˆ6m% 'ÚE´—hÑ!¢£D'‰âˆÎ]"ºJtƒè6Q*Ñ¢4¢ ¢çD¹DùDDï‰>}#*!*#úMTMTOÔLÔNÔEÔG4H4J† +T2>¨dLPÙã‡äžJòM%9¦’¼RI.©$T’3*É•ä†JòA%9 ’~§’¾¦’þ¥’>¥’~¤’¾£’þ¢’>¢’~¡’¾ ~*á§~*á§~*á§~*á§~*á§~*á§~*á§~*á§~*á§~*á§~*á§~*á§~*á§~*á§~*á§~*á§~*á§~*á§~*á§~á§~á§~á§~á§~á§~á§~á§~á§~á§~á§~á§~á§~á§­a? D„ŸFøi„ŸFøi„ŸFøi„ŸFøi„ŸFøi„ŸFøi„ŸFøi„ŸFøi„ŸFøi„ŸFøi„ŸFøi„ŸFøi„ŸFøi„ŸFøi„ŸFøi„ŸFøi„ŸFøi„ŸFøi„ŸNøé„ŸNøé„ŸNøé„ŸýWÍtÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂO'ütÂÏ ü ÂÏ ü öÿ ~ág°ÿª›ð3?ƒð3?ƒð3?ƒð3?ƒð3?ƒð3?ƒð3?ƒð3?ƒð3?ƒð3?ƒð3?ƒð3?ƒð3?ƒð3?ƒð3?ƒð3?ƒð3?ƒð3?ƒð3Ò&ÌüBë6®Ù´mÝæM”Mäd#uå—¾€ «·m#Û%y…7® ]·Ó0`[è„ݶ¬YÄžºxðز:tÛöŒ9ÆÕÿ+XÑT(?SparseM/R/0000755000175100001440000000000013077164663012060 5ustar hornikusersSparseM/R/SparseM.R0000644000175100001440000022662013077164460013560 0ustar hornikusers#-------------------------------------------------------------------- "is.matrix.csr" <- function(x, ...) is(x,"matrix.csr") #-------------------------------------------------------------------- "is.matrix.csc" <- function(x, ...) is(x,"matrix.csc") #-------------------------------------------------------------------- "is.matrix.ssr" <- function(x, ...) is(x,"matrix.ssr") #-------------------------------------------------------------------- "is.matrix.ssc" <- function(x, ...) is(x,"matrix.ssc") #-------------------------------------------------------------------- "is.matrix.coo" <- function(x, ...) is(x,"matrix.coo") #-------------------------------------------------------------------- "as.matrix.csr" <- function(x, nrow = 1, ncol = 1, eps = .Machine$double.eps, ...){ if(is.matrix.csr(x)) {x; return(x)} if (!is.matrix(x)) { if (missing(nrow)) nrow <- ceiling(length(x)/ncol) else if (missing(ncol)) ncol <- ceiling(length(x)/nrow) if (length(x) == nrow * ncol) x <- matrix(x, nrow, ncol) else{ if(length(x)==1 && abs(x)=eps) if(nnz==0){ z<-new("matrix.csr",ra=0,ja=as.integer(1), ia=as.integer(c(1:1,rep(2,dimx[1]))), dimension=dimx) return(z) } z <- .Fortran(f_csr, as.double(x), ra=double(nnz), ja=integer(nnz), ia=integer(dimx[1]+1), as.integer(dimx[1]), as.integer(dimx[2]), nnz=as.integer(nnz), as.double(eps)) if(nnz!=z$nnz)stop("nnz values inconsistent") nnz <- z$nnz z <- new("matrix.csr",ra = z$ra[1:nnz], ja = z$ja[1:nnz], ia = z$ia, dimension = dimx) return(z) } #-------------------------------------------------------------------- "as.matrix.csc" <- function(x, nrow = 1, ncol = 1, eps = .Machine$double.eps, ...) { if (is.matrix.csc(x)) x else as.matrix.csc(as.matrix.csr(x,nrow = nrow, ncol = ncol, eps = eps)) } #-------------------------------------------------------------------- "as.matrix.ssr" <- function(x, nrow = 1, ncol = 1, eps = .Machine$double.eps, ...) { if (is.matrix.ssr(x)) x else as.matrix.ssr(as.matrix.csr(x,nrow = nrow, ncol = ncol, eps = eps)) } #-------------------------------------------------------------------- "as.matrix.ssc" <- function(x, nrow = 1, ncol = 1, eps = .Machine$double.eps, ...) { if (is.matrix.ssc(x)) x else as.matrix.ssc(as.matrix.csc(x,nrow = nrow, ncol = ncol, eps = eps)) } #-------------------------------------------------------------------- "as.matrix.coo" <- function(x, nrow = 1, ncol = 1, eps = .Machine$double.eps, ...) { if (is.matrix.coo(x) && missing(nrow) && missing(ncol)) x else as.matrix.coo(as.matrix.csr(x,nrow = nrow, ncol = ncol, eps = eps)) } #-------------------------------------------------------------------- #"ncol.matrix.csr" <- #function(x){dim(x)[2]} #-------------------------------------------------------------------- #"nrow.matrix.csr" <- #function(x){dim(x)[1]} #-------------------------------------------------------------------- ".ssr.csr" <- function(x){ nrow <- x@dimension[1] nnza <- x@ia[nrow+1]-1 nnzao <- 2*nnza #can be set smaller z <- .Fortran(f_ssrcsr, job = as.integer(0), value2 = as.integer(1), nrow = as.integer(nrow), a = as.double(x@ra), ja = as.integer(x@ja), ia = as.integer(x@ia), nzmax = as.integer(nnzao), ao = double(nnzao), jao = integer(nnzao), iao = integer(nrow+1), indu = integer(nrow), iwk = integer(nrow+1), ierr = integer(1)) if(z$ierr != 0) stop("Not enough space") nnz <- z$iao[nrow+1]-1 z <- new("matrix.csr",ra=z$ao[1:nnz],ja=z$jao[1:nnz],ia=z$iao,dimension=x@dimension) return(z) } #-------------------------------------------------------------------- ".csr.ssr" <- function(x){ nrow <- x@dimension[1] nnza <- ceiling((x@ia[nrow+1]-1)/2)+nrow if(nrow!=x@dimension[2]) stop("Cannot convert an asymmetric matrix into `matrix.ssr' class") if(sum(abs((t(as.matrix.csr(x))-as.matrix.csr(x))@ra))!=0) stop("Cannot convert an asymmetric matrix into `matrix.ssr' class") z <- .Fortran(f_csrssr, as.integer(nrow), as.double(x@ra), as.integer(x@ja), as.integer(x@ia), as.integer(nnza), ao = as.double(x@ra), jao = as.integer(x@ja), iao = as.integer(x@ia), ierr = integer(1)) if(z$ierr != 0) stop("Not enough space. This is usually caused by trying to convert an asymmetric matrix into ssr format") nnza <- z$iao[nrow+1]-1 z <- new("matrix.ssr",ra=z$ao[1:nnza],ja=z$jao[1:nnza],ia=z$iao,dimension=x@dimension) z } #-------------------------------------------------------------------- ".csc.ssc" <- function(x){ nrow <- x@dimension[2] nnza <- ceiling((x@ia[nrow+1]-1)/2)+nrow if(nrow!=x@dimension[1]) stop("Cannot convert an asymmetric matrix into `matrix.ssc' class") if(sum(abs((t(as.matrix.csr(x))-as.matrix.csr(x))@ra))!=0) stop("Cannot convert an asymmetric matrix into `matrix.ssc' class") z <- .Fortran(f_cscssc, as.integer(nrow), as.double(x@ra), as.integer(x@ja), as.integer(x@ia), as.integer(nnza), ao = as.double(x@ra), jao = as.integer(x@ja), iao = as.integer(x@ia), ierr = integer(1)) if(z$ierr != 0) stop("Not enough space. This is usually caused by trying to convert an asymmetric matrix into ssc format") nnza <- z$iao[nrow+1]-1 z <- new("matrix.ssc",ra=z$ao[1:nnza],ja=z$jao[1:nnza],ia=z$iao,dimension=x@dimension) return(z) } #-------------------------------------------------------------------- ".csr.coo" <- function (x) { nrow <- x@dimension[1] ncol <- x@dimension[2] nnza <- length(x@ra) z <- .Fortran(f_csrcoo, as.integer(nrow), as.integer(1), as.integer(nnza), as.double(x@ra), as.integer(x@ja), as.integer(x@ia), nnz = integer(1), ao = as.double(x@ra), ir = integer(nnza), jc = as.integer(x@ja), ierr = integer(1)) if (z$ierr != 0) stop("Not enough space.") z <- new("matrix.coo", ra = x@ra, ja = x@ja, ia = z$ir, dimension = x@dimension) return(z) } #-------------------------------------------------------------------- "rbind.matrix.csr" <- function(...) { # Very preliminary function to rbind matrix.csr objects no name handling allargs <- list(...) n <- length(allargs) if (n == 0) stop("nothing to rbind") nms <- names(allargs) Ncol <- ncol(allargs[[1]]) if(n>1){ if(!all(sapply(allargs,is.matrix.csr)))stop("some args not csr format") if(!all(sapply(allargs,ncol) == Ncol)) stop("args have differing numbers of columns") } if (is.null(nms)) nms <- character(length(allargs)) cl <- NULL perm <- rows <- rlabs <- vector("list", n) Nrow <- nia <- 0 value <- clabs <- NULL all.levs <- list() ra <- ja <- ia <- dim <- NULL for(i in 1:n){ xi <- allargs[[i]] ra <- c(ra,xi@ra) ja <- as.integer(c(ja,xi@ja)) ia <- as.integer(c(ia[-(Nrow+1)],nia + xi@ia)) nia <- ia[length(ia)]-1 Nrow <- Nrow + length(xi@ia)-1 } z <- new("matrix.csr", ra=ra, ja=ja, ia = ia, dimension = as.integer(c(Nrow,Ncol))) return(z) } #-------------------------------------------------------------------- "cbind.matrix.csr" <- function(...) { # Very preliminary function to cbind matrix.csr objects no name handling allargs <- list(...) n <- length(allargs) if (n == 0) return(structure(list(), class = "data.frame", row.names = character())) nms <- names(allargs) allargs <- sapply(allargs,t,simplify=FALSE) Ncol <- ncol(allargs[[1]]) if(n>1){ if(!all(sapply(allargs,is.matrix.csr)))stop("some args not csr format") if(!all(sapply(allargs,ncol) == Ncol)) stop("args have differing numbers of rows") } if (is.null(nms)) nms <- character(length(allargs)) cl <- NULL perm <- rows <- rlabs <- vector("list", n) Nrow <- nia <- 0 value <- clabs <- NULL all.levs <- list() ra <- ja <- ia <- dim <- NULL for(i in 1:n){ xi <- allargs[[i]] ra <- c(ra,xi@ra) ja <- as.integer(c(ja,xi@ja)) ia <- as.integer(c(ia[-(Nrow+1)],nia + xi@ia)) nia <- ia[length(ia)]-1 Nrow <- Nrow + length(xi@ia)-1 } z <- new("matrix.csr",ra=ra, ja=ja, ia = ia, dimension = as.integer(c(Nrow,Ncol))) z <- t(z) return(z) } #-------------------------------------------------------------------- "read.matrix.hb" <- function(file) { # Adapted from readHB() in Bates's Matrix package by P. Ng 7 Oct, 2005 if (is.character(file)) if (file == "") file <- stdin() else file <- file(file) if (!inherits(file, "connection")) stop("'file' must be a character string or connection") if (!isOpen(file)) { open(file) on.exit(close(file)) } readone <- function (ln, iwd, nper, conv) { ln <- gsub("D", "E", ln) inds <- seq(0, by = iwd, length = nper + 1) (conv)(substring(ln, 1 + inds[-length(inds)], inds[-1])) } readmany <- function (conn, nlines, nvals, fmt, conv) { if (!grep("[[:digit:]]+[DEFGI][[:digit:]]+", fmt)) stop("Not a valid format") Iind <- regexpr("[DEFGI]", fmt) nper <- as.integer(substr(fmt, regexpr("[[:digit:]]+[DEFGI]", fmt), Iind - 1)) iwd <- as.integer(substr(fmt, Iind + 1, regexpr("[\\.\\)]", fmt) - 1)) rem <- nvals%%nper full <- nvals%/%nper ans <- vector("list", nvals%/%nper) for (i in seq(len = full)) ans[[i]] <- readone(readLines(conn, 1, ok = FALSE), iwd, nper, conv) if (!rem) return(unlist(ans)) c(unlist(ans), readone(readLines(conn, 1, ok = FALSE), iwd, rem, conv)) } hdr <- readLines(file, 4, ok = FALSE) Title <- sub('[[:space:]]+$', '', substr(hdr[1], 1, 72)) Key <- sub('[[:space:]]+$', '', substr(hdr[1], 73, 80)) totln <- as.integer(substr(hdr[2], 1, 14)) ptrln <- as.integer(substr(hdr[2], 15, 28)) indln <- as.integer(substr(hdr[2], 29, 42)) valln <- as.integer(substr(hdr[2], 43, 56)) rhsln <- as.integer(substr(hdr[2], 57, 70)) if (!(t1 <- substr(hdr[3], 1, 1)) %in% c('C', 'R', 'P')) stop(paste("Invalid storage type:", t1)) if (t1 != 'R') stop("Doesn't handle non-real matrices") ## _FIXME: Patterns should also be allowed if (!(t2 <- substr(hdr[3], 2, 2)) %in% c('H', 'R', 'S', 'U', 'Z')) stop(paste("Invalid storage format:", t2)) if(t2 == 'S') format <- "ssc" else if(t2 == "R" | t2 == "U") format <- "csc" else stop("Doesn't handle matrices other than symmetric or rectangular!") if (!(t3 <- substr(hdr[3], 3, 3)) %in% c('A', 'E')) stop(paste("Invalid assembled indicator:", t3)) if (t3 != 'A') stop("Doesn't handle elemental matrices!") nr <- as.integer(substr(hdr[3], 15, 28)) nc <- as.integer(substr(hdr[3], 29, 42)) nz <- as.integer(substr(hdr[3], 43, 56)) nel <- as.integer(substr(hdr[3], 57, 70)) ptrfmt <- toupper(sub('[[:space:]]+$', '', substr(hdr[4], 1, 16))) indfmt <- toupper(sub('[[:space:]]+$', '', substr(hdr[4], 17, 32))) valfmt <- toupper(sub('[[:space:]]+$', '', substr(hdr[4], 33, 52))) rhsfmt <- toupper(sub('[[:space:]]+$', '', substr(hdr[4], 53, 72))) rhs <- NULL rhs.mode <- NULL guess <- NULL xexact <- NULL if (!is.na(rhsln) && rhsln > 0) { h5 <- readLines(file, 1, ok = FALSE) rhs.mode <- substr(h5[1],1,1) g.mode <- substr(h5[1],2,2) e.mode <- substr(h5[1],3,3) if (rhs.mode != 'F') stop("Right-hand side has to be in full storage mode.") if (g.mode != " " & g.mode != 'G') stop("Incorrect indicator for the starting vector in the rhs.") if (e.mode != " " & e.mode != 'X') stop("Incorrect indicator for the exact solution vector in the rhs.") } ptr <- readmany(file, ptrln, nc + 1, ptrfmt, as.integer) ind <- readmany(file, indln, nz, indfmt, as.integer) vals <- readmany(file, valln, nz, valfmt, as.numeric) if (!is.na(rhsln) && rhsln > 0) { nrhs <- as.integer(substr(h5,15,28)) nrhsix <- as.integer(substr(h5,29,42)) nrhstot <- nrhside <- nr*nrhs rhs <- readmany(file,rhsln,nrhside,rhsfmt,as.numeric) if (substr(h5,2,2) %in% c("G")){ guess <- readmany(file,rhsln,nrhside,rhsfmt,as.numeric) } if (substr(h5,3,3) %in% c("X")){ xexact <- readmany(file,rhsln,nrhside,rhsfmt,as.numeric) } } if (format == 'csc') rd.o <- new("matrix.csc.hb", ra = vals, ja = ind, ia = ptr, rhs.ra = rhs, guess = guess, xexact = xexact, dimension = c(nr, nc), rhs.dim = c(nr, nrhs), rhs.mode = "F") else rd.o <- new("matrix.ssc.hb", ra = vals, ja = ptr, ia = ind, rhs.ra = rhs, guess = guess, xexact = xexact, dimension = c(nr, nc), rhs.dim = c(nr, nrhs), rhs.mode = "F") return(rd.o) } #-------------------------------------------------------------------- "Ops.matrix.csr" <- function(e1,e2){ if(missing(e2)){ e1.op <- switch(.Generic, "+" = e1, "-" = new("matrix.csr",ra=-e1@ra,ja=e1@ja,ia=e1@ia,dimension=e1@dimension), "!" = .matrix.csr.compl(e1), stop(paste("Unary operator \"",.Generic,"\""," is undefined for class \"matrix.csr\"",sep="")) ) return(e1.op) } e1.op.e2 <- { switch(.Generic, "+" = .matrix.csr.addsub(e1,e2,1), "-" = .matrix.csr.addsub(e1,e2,-1), "*" = .matrix.csr.elemul(e1,e2), "/" = .matrix.csr.elediv(e1,e2), "^" = .matrix.csr.expo(e1,e2), "%/%" = .matrix.csr.intdiv(e1,e2), "%%" = .matrix.csr.mod(e1,e2), ">" = .matrix.csr.relation(e1,e2,"gt"), ">=" = .matrix.csr.relation(e1,e2,"ge"), "<" = .matrix.csr.relation(e1,e2,"lt"), "<=" = .matrix.csr.relation(e1,e2,"le"), "==" = .matrix.csr.relation(e1,e2,"eq"), "!=" = .matrix.csr.relation(e1,e2,"ne"), "&" = {z <- .matrix.csr.elemul(e1,e2);z@ra <- rep(1,length(z@ja));z}, "|" = {z <- .matrix.csr.addsub(e1,e2,1);z@ra <- rep(1,length(z@ja));z}, stop(paste("Binary operator \"",.Generic,"\""," is undefined for class \"matrix.csr\"",sep="")) ) } return(e1.op.e2) } #-------------------------------------------------------------------- "Ops.matrix.diag.csr" <- function(e1,e2){ if(missing(e2)){ e1.op <- switch(.Generic, "+" = e1, "-" = new("matrix.csr",ra=-e1@ra,ja=e1@ja,ia=e1@ia,dimension=e1@dimension), "!" = .matrix.csr.compl(e1), stop(paste("Unary operator \"",.Generic,"\""," is undefined for class \"matrix.csr\"",sep="")) ) return(e1.op) } e1.op.e2 <- { switch(.Generic, "+" = .matrix.csr.addsub(e1,e2,1), "-" = .matrix.csr.addsub(e1,e2,-1), "*" = .matrix.csr.elemul(e1,e2), "/" = .matrix.csr.elediv(e1,e2), "^" = .matrix.csr.expo(e1,e2), "%/%" = .matrix.csr.intdiv(e1,e2), "%%" = .matrix.csr.mod(e1,e2), ">" = .matrix.csr.relation(e1,e2,"gt"), ">=" = .matrix.csr.relation(e1,e2,"ge"), "<" = .matrix.csr.relation(e1,e2,"lt"), "<=" = .matrix.csr.relation(e1,e2,"le"), "==" = .matrix.csr.relation(e1,e2,"eq"), "!=" = .matrix.csr.relation(e1,e2,"ne"), "&" = {z <- .matrix.csr.elemul(e1,e2);z@ra <- rep(1,length(z@ja));z}, "|" = {z <- .matrix.csr.addsub(e1,e2,1);z@ra <- rep(1,length(z@ja));z}, stop(paste("Binary operator \"",.Generic,"\""," is undefined for class \"matrix.csr\"",sep="")) ) } return(e1.op.e2) } #-------------------------------------------------------------------- ".matrix.csr.compl" <- function(e1){ nrow <- e1@dimension[1] ncol <- e1@dimension[2] nnz <- e1@ia[nrow+1]-1 nz <- nrow*ncol - nnz if(nz == 0){ # full matrix z <- as.matrix.csr(0,nrow,ncol) return(z) } if(nnz == 1 && e1@ra == 0){ # zero matrix z <- as.matrix.csr(1,nrow,ncol) return(z) } if(length(e1@ra) == 1 && is.na(e1@ra)){ #trap zero matrix z <- list(ra=rep(1,nz),ja=rep(1:ncol,nrow),ia=seq(1,nz+1,by=ncol),dim=e1@dimension) } else{ z <- .Fortran(f_nzero, as.double(e1@ra), as.integer(e1@ja), as.integer(e1@ia), as.integer(nrow), as.integer(ncol), as.integer(nnz), as.integer(nz), ra = double(nz), ja = integer(nz), ia = integer(nrow+1), logical(ncol)) z <- new("matrix.csr",ra=z$ra,ja=z$ja,ia=z$ia,dimension=e1@dimension) } z } #-------------------------------------------------------------------- ".matrix.csr.addsub" <- function(A,B,s){ #matrix addition/subtraction of two sparse csr matrices if(is.matrix(A)) A <- as.matrix.csr(A) if(is.matrix(B)) B <- as.matrix.csr(B) nrow <- A@dimension[1] ncol <- A@dimension[2] Bcol <- B@dimension[2] Brow <- B@dimension[1] if(ncol != Bcol | nrow != Brow)stop("matrices not conformable for addition") nnza <- A@ia[nrow+1]-1 nnzb <- B@ia[nrow+1]-1 nnzmax <- length(union(A@ja+A@dimension[2]*(rep(1:A@dimension[1],diff(A@ia))-1), B@ja+B@dimension[2]*(rep(1:B@dimension[1],diff(B@ia))-1)))+1 z <- .Fortran(f_aplsb, as.integer(nrow), as.integer(ncol), as.integer(1), as.double(A@ra), as.integer(A@ja), as.integer(A@ia), as.double(s), as.double(B@ra), as.integer(B@ja), as.integer(B@ia), ra = double(nnzmax), ja = integer(nnzmax), ia = integer(nrow+1), as.integer(nnzmax), integer(ncol), ierr = integer(1)) if(z$ierr != 0) stop("insufficient space for sparse matrix addition") nnz <- z$ia[nrow+1]-1 z <- new("matrix.csr",ra=z$ra[1:nnz],ja=z$ja[1:nnz],ia=z$ia,dimension=c(nrow,ncol)) return(z) } #-------------------------------------------------------------------- ".matrix.csr.elemul" <- function(A,B){ if(is.vector(A)) { if(length(A) == 1){ if(A==0) return(as.matrix.csr(0,nrow(B),ncol(B))) else{B@ra <- A*B@ra;return(B)} } else if(length(A) == nrow(B)) return(as(A,"matrix.diag.csr") %*% B) else if(length(A) == ncol(B)) return(B %*% as(A,"matrix.diag.csr")) else stop("A and B not conformable for element-by-element multiplication") } else if(is.vector(B)) { if(length(B) == 1){ if(B==0) return(as.matrix.csr(0,nrow(A),ncol(A))) else{A@ra <- B*A@ra;return(A)} } else if(length(B) == nrow(A)) return(as(B,"matrix.diag.csr") %*% A) else if(length(B) == ncol(A)) return(A %*% as(B,"matrix.diag.csr")) else stop("A and B not conformable for element-by-element multiplication") } if(is.matrix(A)) A <- as.matrix.csr(A) else if(is.matrix(B)) B <- as.matrix.csr(B) if(!(is.matrix.csr(A) && is.matrix.csr(B))) stop("Arguments must be of class: vector, matrix or matrix.csr") else Arow <- nrow(A) Acol <- ncol(A) Brow <- nrow(B) Bcol <- ncol(B) if(Acol != Bcol | Arow != Brow) stop("A and B not conformable for element-by-element multiplication") nnza <- A@ia[Arow+1]-1 nnzb <- B@ia[Arow+1]-1 nnzmax <- length(intersect(A@ja+A@dimension[2]*(rep(1:A@dimension[1],diff(A@ia))-1), B@ja+B@dimension[2]*(rep(1:B@dimension[1],diff(B@ia))-1)))+1 z <- .Fortran(f_aemub, as.integer(Arow), as.integer(Acol), as.double(A@ra), as.integer(A@ja), as.integer(A@ia), as.double(B@ra), as.integer(B@ja), as.integer(B@ia), ra = double(nnzmax), ja = integer(nnzmax), ia = integer(Arow+1), integer(Acol), double(Acol), as.integer(nnzmax), ierr = integer(1)) if(z$ierr != 0) stop("insufficient space for element-wise sparse matrix multiplication") nnz <- z$ia[Arow+1]-1 if(identical(z$ra,0)){#trap zero matrix z$ja <- as.integer(1) z$ia <- as.integer(c(1,rep(2,Arow))) } z <- new("matrix.csr",ra=z$ra[1:nnz],ja=z$ja[1:nnz],ia=z$ia,dimension=c(Arow,Acol)) return(z) } #-------------------------------------------------------------------- ".matrix.csr.elediv" <- function(A,B){ # Element-wise matrix division of two sparse csr matrices if(is.numeric(A) && length(A) == 1) z <- new("matrix.csr",ra=A/B@ra,ja=B@ja,ia=B@ia,dimension=B@dimension) else if(is.numeric(B) && length(B) == 1) z <- new("matrix.csr",ra=A@ra/B,ja=A@ja,ia=A@ia,dimension=A@dimension) else if(is.matrix.csr(A) || is.matrix.csr(B) || is.matrix(A) || is.matrix(B)){ if(is.matrix(A)) A <- as.matrix.csr(A) if(is.matrix(B)) B <- as.matrix.csr(B) nrow <- A@dimension[1] ncol <- A@dimension[2] Bcol <- B@dimension[2] Brow <- B@dimension[1] if(ncol != Bcol | nrow != Brow)stop("matrices not conformable for element-by-element division") nnza <- A@ia[nrow+1]-1 nnzb <- B@ia[nrow+1]-1 nnzmax <- length(union(A@ja+A@dimension[2]*(rep(1:A@dimension[1],diff(A@ia))-1), B@ja+B@dimension[2]*(rep(1:B@dimension[1],diff(B@ia))-1)))+1 z <- .Fortran(f_aedib, as.integer(nrow), as.integer(ncol), as.integer(1), as.double(A@ra), as.integer(A@ja), as.integer(A@ia), as.double(B@ra), as.integer(B@ja), as.integer(B@ia), ra = double(nnzmax), ja = integer(nnzmax), ia = integer(nrow+1), as.integer(nnzmax), integer(ncol), double(ncol), ierr = integer(1)) if(z$ierr != 0) stop("insufficient space for element-wise sparse matrix division") nnz <- z$ia[nrow+1]-1 z1 <- vector("numeric",nrow*ncol) idx1 <- z$ja[1:nnz]+ncol*(rep(1:nrow,diff(z$ia))-1) idx2 <- union(A@ja+A@dimension[2]*(rep(1:A@dimension[1],diff(A@ia))-1), B@ja+B@dimension[2]*(rep(1:B@dimension[1],diff(B@ia))-1)) idx3 <- setdiff(1:(nrow*ncol),idx2) z1[idx1] <- z$ra[1:nnz] z1[idx3] <- NaN z <- new("matrix.csr",ra=z1,ja=as.integer(rep(1:ncol,nrow)), ia=as.integer(seq(1,nrow*ncol+1,by=ncol)),dimension=as.integer(c(nrow,ncol))) } else stop("Arguments have to be class \"matrix.csr\" or numeric") return(z) } #-------------------------------------------------------------------- ".matrix.csr.expo" <- function(A,B){ # Performs element-wise exponentiation on sparse matrices if(is.numeric(A) && length(A) == 1) z <- new("matrix.csr",ra=A^B@ra,ja=B@ja,ia=B@ia,dimension=B@dimension) else if(is.numeric(B) && length(B) == 1) z <- new("matrix.csr",ra=A@ra^B,ja=A@ja,ia=A@ia,dimension=A@dimension) else if(is.matrix.csr(A) || is.matrix.csr(B) || is.matrix(A) || is.matrix(B)){ if(is.matrix(A)) A <- as.matrix.csr(A) if(is.matrix(B)) B <- as.matrix.csr(B) nrow <- A@dimension[1] ncol <- A@dimension[2] Bcol <- B@dimension[2] Brow <- B@dimension[1] if(ncol != Bcol | nrow != Brow)stop("matrices not conformable for element-by-element division") nnza <- A@ia[nrow+1]-1 nnzb <- B@ia[nrow+1]-1 nnzmax <- length(union(A@ja+A@dimension[2]*(rep(1:A@dimension[1],diff(A@ia))-1), B@ja+B@dimension[2]*(rep(1:B@dimension[1],diff(B@ia))-1)))+1 z <- .Fortran(f_aeexpb, as.integer(nrow), as.integer(ncol), as.integer(1), as.double(A@ra), as.integer(A@ja), as.integer(A@ia), as.double(B@ra), as.integer(B@ja), as.integer(B@ia), ra = double(nnzmax), ja = integer(nnzmax), ia = integer(nrow+1), as.integer(nnzmax), integer(ncol), double(ncol), ierr = integer(1)) if(z$ierr != 0) stop("insufficient space for element-wise sparse matrix exponentiation") nnz <- z$ia[nrow+1]-1 z1 <- vector("numeric",nrow*ncol) idx1 <- z$ja[1:nnz]+ncol*(rep(1:nrow,diff(z$ia))-1) idxA <- A@ja+A@dimension[2]*(rep(1:A@dimension[1],diff(A@ia))-1) idxB <- B@ja+B@dimension[2]*(rep(1:B@dimension[1],diff(B@ia))-1) idx2 <- union(idxA,idxB) idx3 <- setdiff(1:(nrow*ncol),idx2) idx4 <- setdiff(idxB,idxA) idxInf <- (idxB[B@ra<0])[!is.element(idxB[B@ra<0],idxA)] z1[idx1] <- z$ra[1:nnz] z1[idx3] <- 1 z1[idxInf] <- Inf #this is needed because Fortran returns NA instead of Inf for 0^-1 z <- new("matrix.csr",ra=z1,ja=as.integer(rep(1:ncol,nrow)), ia=as.integer(seq(1,nrow*ncol+1,by=ncol)),dimension=as.integer(c(nrow,ncol))) } else stop("Arguments have to be class \"matrix.csr\" or numeric") return(z) } #-------------------------------------------------------------------- ".matrix.csr.intdiv" <- function(A,B){ # This operation is not efficient storage-wise for sparse matrices if(is.matrix.csr(A)) A <- as.matrix(A) if(is.matrix.csr(B)) B <- as.matrix(B) AB <- A%/%B nan <- is.nan(AB) infty <- is.infinite(AB) & AB >0 ninfty <- is.infinite(AB) & AB <0 uniq <- rnorm(3) while(any(uniq %in% AB[!(nan|infty|ninfty)])) uniq <- rnorm(3) AB[nan] <- uniq[1] AB[infty] <- uniq[2] AB[ninfty] <- uniq[3] AB <- as.matrix.csr(AB) AB@ra[AB@ra==uniq[1]] <- NaN AB@ra[AB@ra==uniq[2]] <- Inf AB@ra[AB@ra==uniq[3]] <- -Inf as(AB,"matrix.csr") AB } #-------------------------------------------------------------------- ".matrix.csr.mod" <- function(A,B){ # This operation is not efficient storage-wise for sparse matrices if(is.matrix.csr(A)) A <- as.matrix(A) if(is.matrix.csr(B)) B <- as.matrix(B) AB <- A%%B nan <- is.nan(AB) infty <- is.infinite(AB) & AB >0 ninfty <- is.infinite(AB) & AB <0 uniq <- rnorm(3) while(any(uniq %in% AB[!(nan|infty|ninfty)])) uniq <- rnorm(3) AB[nan] <- uniq[1] AB[infty] <- uniq[2] AB[ninfty] <- uniq[3] AB <- as.matrix.csr(AB) AB@ra[AB@ra==uniq[1]] <- NaN AB@ra[AB@ra==uniq[2]] <- Inf AB@ra[AB@ra==uniq[3]] <- -Inf as(AB,"matrix.csr") AB } #-------------------------------------------------------------------- ".matrix.csr.relation" <- function(e1,e2,rel){ if(is.numeric(e2) && length(e2) == 1){ z <- .csr.relation(e1,e2,rel) } else if(is.numeric(e1) && length(e1) == 1){ z <- .csr.relation(-e2,-e1,rel) } else { #inefficient implementation if (is.matrix(e2)) e1 <- as.matrix(e1) else if (is.matrix(e1)) e2 <- as.matrix(e2) else {e1 <- as.matrix(e1); e2 <- as.matrix(e2)} z <- switch(rel, "gt" = e1 > e2, "lt" = e1 < e2, "ge" = e1 >= e2, "le" = e1 <= e2, "eq" = e1 == e2, "ne" = e1 != e2) z <- as.matrix.csr(z) } if(!(length(z@ra)==1 && z@ra==0 && z@ja==1)) #trap returned matrix with all zeros z@ra <- rep(1,length(z@ra)) z } #-------------------------------------------------------------------- ".csr.relation" <- function(A,drptol,rel){ nrow <- A@dimension[1] nnza <- A@ia[nrow+1]-1 flag <- FALSE if((rel=="gt" || rel=="le") && drptol >=0){ relidx <- 1 flag <- TRUE } if((rel=="lt" || rel=="ge") && drptol <=0){ relidx <- 1 drptol <- -drptol A@ra <- -A@ra flag <- TRUE } if(rel=="eq" && drptol !=0){ relidx <- 3 flag <- TRUE } if((rel=="ne" || rel=="eq") && drptol ==0){ relidx <- 4 flag <- TRUE } if(flag){ z <- .Fortran(f_filter1, as.integer(nrow), as.integer(relidx), as.double(drptol), as.double(A@ra), as.integer(A@ja), as.integer(A@ia), ra = double(nnza), ja = integer(nnza), ia = integer(nrow+1), as.integer(nnza), ierr = integer(1)) if(z$ierr !=0) stop("Not enough space") nnza <- z$ia[nrow+1]-1 if(nnza==0){ # trap returned matrix with all zeros z$ra <- 0 z$ja <- as.integer(1) z$ia <- as.integer(c(1,rep(2,A@dimension[1]))) } if(rel == "lt") z <- new("matrix.csr",ra=z$ra[1:nnza],ja=z$ja[1:nnza],ia=z$ia,dimension=A@dimension) else if(rel == "gt") z <- new("matrix.csr",ra=-z$ra[1:nnza],ja=z$ja[1:nnza],ia=z$ia,dimension=A@dimension) else if(rel == "le"){ z <- new("matrix.csr",ra=-z$ra[1:nnza],ja=z$ja[1:nnza],ia=z$ia,dimension=A@dimension) z <- !z } else if(rel == "ge"){ z <- new("matrix.csr",ra=z$ra[1:nnza],ja=z$ja[1:nnza],ia=z$ia,dimension=A@dimension) z <- !z } else if(rel == "ne") z <- new("matrix.csr",ra=-z$ra[1:nnza],ja=z$ja[1:nnza],ia=z$ia,dimension=A@dimension) else if(drptol == 0){ z <- new("matrix.csr",ra=-z$ra[1:nnza],ja=z$ja[1:nnza],ia=z$ia,dimension=A@dimension) z <- !z } else z <- new("matrix.csr",ra=-z$ra[1:nnza],ja=z$ja[1:nnza],ia=z$ia,dimension=A@dimension) } else{ #This operation is inefficient storage-wise if(rel == "gt") z <- as.matrix.csr(as.matrix(A) > drptol) else if(rel == "ge") z <- as.matrix.csr(as.matrix(A) >= drptol) else if(rel == "lt") z <- as.matrix.csr(as.matrix(A) < drptol) else if(rel == "le") z <- as.matrix.csr(as.matrix(A) <= drptol) else z <- as.matrix.csr(as.matrix(A) != drptol) } z } #-------------------------------------------------------------------- "[.matrix.csr" <- function (x, rw = 1:x@dimension[1], cl = 1:x@dimension[2]) { x <- as.matrix.coo(x) y <- x[rw,cl] if(is(y,"matrix.coo")) as.matrix.csr(y) else y } #-------------------------------------------------------------------- "[<-.matrix.csr" <- function (x, rw = 1:x@dimension[1], cl = 1:x@dimension[2], value) { x <- as.matrix.coo(x) # value <- as.matrix.coo(value) x[rw,cl]<-value as.matrix.csr(x) } #-------------------------------------------------------------------- "[.matrix.diag.csr" <- function (x, rw = 1:x@dimension[1], cl = 1:x@dimension[2]) { x <- as.matrix.coo(as(x,"matrix.csr")) y <- x[rw,cl] if(is(y,"matrix.coo")) as(as.matrix.csr(y),"matrix.diag.csr") else y } #-------------------------------------------------------------------- ".matmul.matrix.csr" <- function(x,y){ if(is.matrix.csr(x)){ if(is.matrix.csr(y)){ #matrix multiply two sparse csr matrices nrow <- x@dimension[1] ncol <- y@dimension[2] Acol <- x@dimension[2] Brow <- y@dimension[1] if(Acol != Brow) stop("matrices not conformable for multiplication") z <- .Fortran(f_amubdg, as.integer(nrow), as.integer(Acol), as.integer(ncol), as.integer(x@ja), as.integer(x@ia), as.integer(y@ja), as.integer(y@ia), integer(nrow), nnz = integer(1), integer(ncol)) nnzmax <- z$nnz z <- .Fortran(f_amub, as.integer(nrow), as.integer(ncol), as.integer(1), as.double(x@ra), as.integer(x@ja), as.integer(x@ia), as.double(y@ra), as.integer(y@ja), as.integer(y@ia), ra = double(nnzmax), ja = integer(nnzmax), ia = integer(nrow+1), as.integer(nnzmax), integer(ncol), ierr = integer(1)) nnz <- z$ia[nrow+1]-1 if(z$ierr != 0) stop("insufficient space for sparse matrix multiplication") if(length(z$ra)==0){#trap zero matrix z$ra <- 0 z$ja <- as.integer(1) z$ia <- as.integer(c(1,rep(2,nrow))) } z <- new("matrix.csr",ra=z$ra[1:nnz],ja=z$ja[1:nnz], ia=z$ia,dimension=as.integer(c(nrow,ncol))) } else{ if(is.matrix(y)){ z <- .matmul.matrix.csr(x,as.matrix.csr(y)) } else{ #matrix-vector multiplication: multiply a sparse csr matrix by a vector #A -- csr structure returned from call to function "as.matrix.csr" #B -- vector nrow <- x@dimension[1] ncol <- x@dimension[2] if(length(y) != ncol)stop("not conformable for multiplication") z <- .Fortran(f_amux, as.integer(nrow), as.double(y), y=double(nrow), as.double(x@ra), as.integer(x@ja), as.integer(x@ia)) z <- z$y dim(z) <- c(nrow,1) } } } else{ if(is.matrix(x)){ z <- .matmul.matrix.csr(as.matrix.csr(x),y) } else{ #matrix-vector multiplication: multiply a sparse csr matrix by a vector #A -- csr structure returned from call to function "as.matrix.csr" #B -- vector y <- t(y) nrow <- y@dimension[1] ncol <- y@dimension[2] if(length(x) != ncol)stop("not conformable for multiplication") z <- .Fortran(f_amux, as.integer(nrow), as.double(x), y=double(nrow), as.double(y@ra), as.integer(y@ja), as.integer(y@ia)) z <- z$y dim(z) <- c(1,nrow) } } return(z) } #-------------------------------------------------------------------- ".kron.matrix.csr" <- function(X,Y){ X = as.matrix.coo(X) Y = as.matrix.coo(Y) la = length(X@ra) lb = length(Y@ra) ra = rep(Y@ra,la)*rep(X@ra,each=lb) ja = as.integer(rep(Y@ja,la)+rep((X@ja-1)*dim(Y)[2],each=lb)) ia = as.integer(rep(Y@ia,la)+rep((X@ia-1)*dim(Y)[1],each=lb)) dim = as.integer(dim(X)*dim(Y)) as.matrix.csr(new("matrix.coo",ra=ra,ia=ia,ja=ja, dimension=dim)) # /*RSB*/ dim= changed to dimension= } #-------------------------------------------------------------------- #"chol" <- function(x, ...) UseMethod("chol") #-------------------------------------------------------------------- #"chol.default" <- base::chol #-------------------------------------------------------------------- "slm" <- function (formula, data, weights, na.action, method = "csr", contrasts = NULL, ...) { call <- match.call() m <- match.call(expand.dots = FALSE) m$method <- m$model <- m$x <- m$y <- m$contrasts <- m$... <- NULL m[[1]] <- as.name("model.frame") m <- eval(m, sys.frame(sys.parent())) if (method == "model.frame") return(m) Terms <- attr(m, "terms") weights <- model.extract(m, weights) Y <- model.extract(m, "response") X <- as.matrix.csr(model.matrix(Terms, m, contrasts)) fit <- { if (length(weights)) slm.wfit(X, Y, weights, method, ...) else slm.fit(X, Y, method, ...) } fit$terms <- Terms fit$call <- call attr(fit, "na.message") <- attr(m, "na.message") class(fit) <- c(if (is.matrix(Y)) "mslm", "slm") fit } #-------------------------------------------------------------------- "slm.fit" <- function (x, y, method = "csr", ...) { fit <- slm.fit.csr(x, y, ...) fit$contrasts <- attr(x, "contrasts") fit } #-------------------------------------------------------------------- "slm.wfit" <- function (x, y, weights, ...) { if (!is.matrix.csr(x)) stop("model matrix must be in sparse csr mode") if (!is.numeric(y)) stop("response must be numeric") if (any(weights < 0)) stop("negative weights not allowed") contr <- attr(x, "contrasts") w <- sqrt(weights) x <- as(w,"matrix.diag.csr") %*% x y <- y * w fit <- slm.fit.csr(x, y, ...) fit$contrasts <- attr(x, "contrasts") fit } #-------------------------------------------------------------------- "slm.fit.csr" <- function (x, y, ...) { # n <- length(y) if(is.matrix(y)) n <- dim(y)[1] else n <- length(y) p <- x@dimension[2] if (n != x@dimension[1]) stop("x and y don't match n") chol <- chol(t(x)%*%x, ...) xy <- t(x) %*% y coef <- backsolve(chol,xy) fitted <- as.matrix(x %*% coef) resid <- y - fitted df <- n - p list(coefficients=coef, chol=chol, residuals=resid, fitted=fitted, df.residual = df) } #-------------------------------------------------------------------- "coef.slm" <- function (object, ...) object$coefficients #-------------------------------------------------------------------- "fitted.slm" <- function (object, ...) object$fitted #-------------------------------------------------------------------- "residuals.slm" <- function (object, ...){ r <- object$residuals r } # Suggested by jracine April 14, 2006 extractAIC.slm <- function (fit, scale = 0, k = 2, ...) { n <- length(fit$residuals) edf <- n - fit$df.residual RSS <- deviance.slm(fit) dev <- if (scale > 0) { RSS/scale - n } else { n * log(RSS/n) } c(edf, dev + k * edf) } deviance.slm <- function (object, ...) { sum(weighted.residuals(object)^2, na.rm = TRUE) } #-------------------------------------------------------------------- "summary.mslm" <- function (object, ...) { coef <- coef(object) ny <- ncol(coef) if (is.null(ny)) return(NextMethod("summary")) effects <- object$effects resid <- residuals(object) fitted <- fitted(object) ynames <- colnames(coef) if (is.null(ynames)) { lhs <- object$terms[[2]] if (mode(lhs) == "call" && lhs[[1]] == "cbind") ynames <- as.character(lhs)[-1] else ynames <- paste("Y", seq(ny), sep = "") } value <- vector("list", ny) names(value) <- paste("Response", ynames) cl <- class(object) class(object) <- cl[match("mslm", cl):length(cl)][-1] for (i in seq(ny)) { object$coefficients <- coef[, i] object$residuals <- resid[, i] object$fitted.values <- fitted[, i] object$effects <- effects[, i] object$call$formula[[2]] <- object$terms[[2]] <- as.name(ynames[i]) value[[i]] <- summary(object, ...) } class(value) <- "listof" # class(value) <- "summary.mslm" value } #-------------------------------------------------------------------- "summary.slm" <- function (object, correlation = FALSE, ...) { Chol <- object$chol if (is.null(object$terms) || is.null(Chol)) stop("invalid 'lm' object: no terms or chol component") n <- length(object$residuals) p <- object$chol@nrow rdf <- n - p r <- residuals(object) f <- fitted(object) w <- weights(object) if (is.null(w)) { mss <- if (attr(object$terms, "intercept")) sum((f - mean(f))^2) else sum(f^2) rss <- sum(r^2) } else { mss <- if (attr(object$terms, "intercept")) { m <- sum(w * f/sum(w)) sum(w * (f - m)^2) } else sum(w * f^2) rss <- sum(w * r^2) r <- sqrt(w) * r } resvar <- rss/rdf R <- backsolve(Chol,diag(p)) se <- sqrt(diag(R) * resvar) est <- coefficients(object) tval <- est/se ans <- object[c("call", "terms")] ans$residuals <- r ans$coefficients <- cbind(est, se, tval, 2 * (1 - pt(abs(tval), rdf))) dimnames(ans$coefficients) <- list(names(object$coefficients), c("Estimate", "Std. Error", "t value", "Pr(>|t|)")) ans$sigma <- sqrt(resvar) ans$df <- c(p, rdf, n) if (p != attr(object$terms, "intercept")) { df.int <- if (attr(object$terms, "intercept")) 1 else 0 ans$r.squared <- mss/(mss + rss) ans$adj.r.squared <- 1 - (1 - ans$r.squared) * ((n - df.int)/rdf) ans$fstatistic <- c(value = (mss/(p - df.int))/resvar, numdf = p - df.int, dendf = rdf) } ans$cov.unscaled <- R dimnames(ans$cov.unscaled) <- dimnames(ans$coefficients)[c(1, 1)] if (correlation) { ans$correlation <- (R * resvar)/outer(se, se) dimnames(ans$correlation) <- dimnames(ans$cov.unscaled) } class(ans) <- "summary.slm" ans } #-------------------------------------------------------------------- "print.summary.slm" <- function (x, digits = max(3, getOption("digits") - 3), symbolic.cor = p > 4, signif.stars = getOption("show.signif.stars"), ...) { cat("\nCall:\n") cat(paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "") resid <- x$residuals df <- x$df rdf <- df[2] cat(if (!is.null(x$w) && diff(range(x$w))) "Weighted ", "Residuals:\n", sep = "") if (rdf > 5) { nam <- c("Min", "1Q", "Median", "3Q", "Max") rq <- structure(quantile(resid), names = nam) print(rq, digits = digits, ...) } else if (rdf > 0) { print(resid, digits = digits, ...) } else { cat("ALL", df[1], "residuals are 0: no residual degrees of freedom!\n") } # if (nsingular <- df[3] - df[1]) # cat("\nCoefficients: (", nsingular, " not defined because of singularities)\n", # sep = "") #else cat("\nCoefficients:\n") cat("\nCoefficients:\n") printCoefmat(x$coef, digits = digits, signif.stars = signif.stars, ...) cat("\nResidual standard error:", format(signif(x$sigma, digits)), "on", rdf, "degrees of freedom\n") if (!is.null(x$fstatistic)) { cat("Multiple R-Squared:", formatC(x$r.squared, digits = digits)) cat(",\tAdjusted R-squared:", formatC(x$adj.r.squared, digits = digits), "\nF-statistic:", formatC(x$fstatistic[1], digits = digits), "on", x$fstatistic[2], "and", x$fstatistic[3], "DF,\tp-value:", formatC(1 - pf(x$fstatistic[1], x$fstatistic[2], x$fstatistic[3]), digits = digits), "\n") } correl <- x$correlation if (!is.null(correl)) { p <- NCOL(correl) if (p > 1) { cat("\nCorrelation of Coefficients:\n") if (symbolic.cor) print(symnum(correl)[-1, -p]) else { correl[!lower.tri(correl)] <- NA print(correl[-1, -p, drop = FALSE], digits = digits, na = "") } } } cat("\n") invisible(x) } #-------------------------------------------------------------------- "print.slm" <- function (x, digits = max(3, getOption("digits") - 3), ...) { cat("\nCall:\n", deparse(x$call), "\n\n", sep = "") cat("Coefficients:\n") print.default(format(coef(x), digits = digits), print.gap = 2, quote = FALSE) cat("\n") invisible(x) } "[.matrix.coo" <- function (x, rw = 1:x@dimension[1], cl = 1:x@dimension[2]) { nrow <- x@dimension[1] ncol <- x@dimension[2] if (is.matrix.coo(rw)) { stop("Indexing by 'matrix.coo' matrices not implemented") } if (is.matrix.csr(rw)) { if(nrow != rw@dimension[1] || ncol != rw@dimension[2]) stop("Dimension of the indexing matrix is not the same as the matrix being indexed") x <- as.matrix.coo(t(as.matrix.csr(x))) rw <- as.matrix.coo(t(rw)) s <- match(paste(rw@ia,rw@ja),paste(x@ia,x@ja)) ra <- x@ra[s] A <- ra } else if(is.matrix(rw)){ if(!all(abs(rw[,1])%in%1:nrow)||!all(abs(rw[,2])%in%1:ncol)) stop("Subscripts out of bound") s <- match(paste(rw[,1],rw[,2]),paste(x@ia,x@ja)) ra <- x@ra[s] ra[is.na(ra)] <- 0 A <- ra } else{ if (is.logical(rw)) if (length(rw) > nrow) stop("logical subscript too long") else rw <- (1:nrow)[rw] if (is.logical(cl)) if (length(cl) > ncol) stop("logical subscript too long") else cl <- (1:ncol)[cl] if (!all(abs(rw) %in% 1:nrow) || !all(abs(cl) %in% 1:ncol)) stop("Subscripts out of bound") if (any(rw < 0)) { if (!all(rw <= 0)) stop("Only 0's may mix with negative subscripts") else rw <- setdiff(1:nrow, abs(rw)) } if (any(cl < 0)) { if (!all(cl <= 0)) stop("Only 0's may mix with negative subscripts") else cl <- setdiff(1:ncol, abs(cl)) } if(any(duplicated(rw)) || any(duplicated(cl))){ s <- ((x@ja %in% cl) & (x@ia %in% rw)) urw <- as.integer(names(table(rw))) ucl <- as.integer(names(table(cl))) ja <- match(x@ja[s],ucl) ia <- match(x@ia[s],urw) dim <- c(length(urw),length(ucl)) ra <- x@ra[s] A <- new("matrix.coo",ra=ra,ja=ja,ia=ia,dimension=dim) A <- as.matrix.csr(A) #obviously this looping is horrible but is there a better way? #could be fortranized I suppose. rn <- table(rw) ri <- as.integer(names(rn)) B <- NULL for(i in 1:length(rw)){ j <- match(rw[i],urw) if(is.null(B)) B <- A[j,] else B <- rbind(B,A[j,]) } A <- B B <- NULL cn <- table(cl) ci <- as.integer(names(cn)) for(i in 1:length(cl)){ j <- match(cl[i],ucl) if(is.null(B)) B <- A[,j] else B <- cbind(B,A[,j]) } A <- as.matrix.coo(B) } else{ s <- ((x@ja %in% cl) & (x@ia %in% rw)) ja <- match(x@ja[s],cl) ia <- match(x@ia[s],rw) dim <- c(length(rw),length(cl)) ra <- x@ra[s] if (length(ra) == 0 && length(ja) == 0){ ra = 0 ja = ia = as.integer(1) } A <- new("matrix.coo",ra=ra,ja=ja,ia=ia,dimension=dim) } } return(A) } "[<-.matrix.coo" <- function (x, rw = 1:x@dimension[1], cl = 1:x@dimension[2], value) { nrow <- x@dimension[1] ncol <- x@dimension[2] # if (!is.matrix.coo(value)) # stop("replacement matrix must be of matrix.coo class") if (is.matrix.coo(rw)) { stop("Indexing by 'matrix.coo' matrices not implemented") } else if (is.matrix.csr(rw)) { if(nrow != rw@dimension[1] || ncol != rw@dimension[2]) stop("Dimension of the indexing matrix is not the same as the matrix being indexed") x <- as.matrix.coo(t(as.matrix.csr(x))) rw <- as.matrix.coo(t(rw)) s <- match(paste(rw@ia,rw@ja),paste(x@ia,x@ja)) len.s <- length(s) value <- as.matrix.csr(value) len.value <- length(value@ra) value.ra <- value@ra if (len.s != len.value){ if (len.value == 1) value.ra <- rep(value@ra,len.s) else{ if (len.value >= len.s){ value.ra <- value@ra[1:len.s] warning("number of items to replace is not a multiple of replacement length") } else { value.ra <- rep(value@ra,len.s%/%len.value+1)[1:len.s] warning("number of items to replace is not a multiple of replacement length") } } } ra <- c(x@ra[-s],value.ra) ia <- as.integer(c(x@ja[-s],rw@ja)) ja <- as.integer(c(x@ia[-s],rw@ia)) dim <- rev(x@dimension) x <- new("matrix.coo",ra=ra,ja=ja,ia=ia,dimension=dim) } else if(is.matrix(rw)){ if(!all(abs(rw[,1])%in%1:nrow)||!all(abs(rw[,2])%in%1:ncol)) stop("Subscripts out of bound") s <- match(paste(rw[,1],rw[,2]),paste(x@ia,x@ja)) if(length(value)==1) value <- rep(value,nrow(rw)) if(length(value)!=nrow(rw)) stop("assignment value has incompatible length") as <- -s[!is.na(s)] as <- ifelse(length(as),as,TRUE) ra <- c(x@ra[as],value) ja <- as.integer(c(x@ja[as],rw[,2])) ia <- as.integer(c(x@ia[as],rw[,1])) dim <- x@dimension x <- new("matrix.coo",ra=ra,ja=ja,ia=ia,dimension=dim) } else { if (is.logical(rw)) if (length(rw) > nrow) stop("logical subscript too long") else rw <- (1:nrow)[rw] if (is.logical(cl)) if (length(cl) > ncol) stop("logical subscript too long") else cl <- (1:ncol)[cl] if (!all(abs(rw) %in% 1:nrow) || !all(abs(cl) %in% 1:ncol)) stop("Subscripts out of bound") if (any(rw < 0)) { if (!all(rw <= 0)) stop("Only 0's may mix with negative subscripts") else rw <- setdiff(1:nrow, abs(rw)) } if (any(cl < 0)) { if (!all(cl <= 0)) stop("Only 0's may mix with negative subscripts") else cl <- setdiff(1:ncol, abs(cl)) } s <- ((x@ja %in% cl) & (x@ia %in% rw)) value <- as.matrix.coo(as.matrix.csr(value,nrow=length(rw),ncol=length(cl))) ra <- c(x@ra[!s],value@ra) ja <- as.integer(c(x@ja[!s],cl[value@ja])) ia <- as.integer(c(x@ia[!s],rw[value@ia])) dim <- x@dimension x <- new("matrix.coo",ra=ra,ja=ja,ia=ia,dimension=dim) } return(x) } # All the S4 Methods stuff is collected below this point setClass("matrix.csr",representation(ra="numeric", ja="integer",ia="integer", dimension="integer"), validity = function(object) { if(!(length(object@dimension) == 2) ) return("invalid dimension attribute") else{ nrow <- object@dimension[1] ncol <- object@dimension[2] } if(!(length(object@ra) ==length(object@ja))) return("ra and ja don't have equal lengths") if(any(object@ja < 1) || any(object@ja > ncol)) return("ja exceeds dim bounds") if(any(object@ia < 1)) return("some elements of ia are <= 0") if(any(diff(object@ia)<0)) return("ia vector not monotone increasing") if(object@ia[length(object@ia)] != length(object@ra)+1) return("last element of ia doesn't conform") if(length(object@ia) != nrow+1) return("ia has wrong number of elements") if(length(object@ra) < 1 || length(object@ra) > prod(object@dimension)) return("ra has too few, or too many elements") TRUE}) setMethod("initialize", "matrix.csr", function(.Object, ra = 0, ja = as.integer(1), ia = as.integer(c(1,2)),dimension = as.integer(c(1,1))) { .Object@ra <- ra .Object@ja <- ja .Object@ia <- ia .Object@dimension <- dimension validObject(.Object) .Object }) setClass("matrix.csc",representation(ra="numeric",ja="integer",ia="integer", dimension="integer")) setClass("matrix.ssr",representation(ra="numeric",ja="integer",ia="integer", dimension="integer")) setClass("matrix.ssc",representation(ra="numeric",ja="integer",ia="integer", dimension="integer")) setClass("matrix.coo",representation(ra="numeric", ja="integer",ia="integer", dimension="integer"), validity = function(object) { if(!length(object@dimension) == 2 ) return("invalid dimension attribute") else{ nrow <- object@dimension[1] ncol <- object@dimension[2] } if(!(length(object@ra) ==length(object@ja) && length(object@ra) ==length(object@ia))) return("ra,ja,ia don't have equal lengths") if(any(object@ja < 1) || any(object@ja > ncol)) return("ja exceeds dim bounds") if(any(object@ia < 1) || any(object@ia > nrow)) return("ia exceeds dim bounds") if(length(object@ra) < 1 || length(object@ra) > prod(object@dimension)) return("ra has too few, or too many elements") TRUE}) setMethod("initialize", "matrix.coo", function(.Object, ra = numeric(0), ja = integer(0), ia = integer(0),dimension = integer(0)) { .Object@ra <- ra .Object@ja <- ja .Object@ia <- ia .Object@dimension <- dimension validObject(.Object) .Object }) #------------------------------------------------------------------------- setClass("matrix.csr.chol",representation(nrow="numeric",nnzlindx="numeric", nsuper="numeric",lindx="numeric",xlindx="numeric",nnzl="numeric", lnz="numeric",xlnz="numeric",invp="numeric",perm="numeric", xsuper="numeric",det="numeric", ######################################################################## # BEGIN BEN ADDED # log.det="numeric", # END BEN ADDED # ######################################################################## ierr="numeric", time="numeric")) setClassUnion("numeric or NULL",c("numeric","NULL")) setClassUnion("character or NULL",c("character","NULL")) setClass("matrix.csc.hb",representation(ra="numeric",ja="integer",ia="integer", rhs.ra="numeric",guess="numeric or NULL",xexact="numeric or NULL",dimension ="integer", rhs.dim="numeric",rhs.mode="character or NULL")) setClass("matrix.ssc.hb","matrix.csc.hb") setClass("slm",representation(coefficients="numeric",chol="matrix.csr.chol", residuals="numeric",fitted="numeric")) setClass("mslm","slm") setClass("summary.slm","slm") #-------------------------------------------------------------------- setGeneric("as.matrix.csr") #-------------------------------------------------------------------- setMethod("as.matrix.csr","matrix.csc", function(x, nrow, ncol,eps){ x <- t(x) x@dimension <- as.integer(rev(dim(x))) new("matrix.csr",ra = x@ra, ja = x@ja, ia = x@ia, dimension = x@dimension) }) #-------------------------------------------------------------------- setMethod("as.matrix.csr","matrix.ssr", function(x, nrow, ncol,eps){.ssr.csr(x)}) #-------------------------------------------------------------------- setMethod("as.matrix.csr","matrix.ssc", function(x, nrow, ncol,eps){.ssr.csr(x)}) #-------------------------------------------------------------------- setMethod("as.matrix.csr","matrix.coo", function(x, nrow, ncol,eps){ # if (missing(nrow)) nrow <- x@dimension[1] # if (missing(ncol)) ncol <- x@dimension[2] nrow <- x@dimension[1] ncol <- x@dimension[2] nnz <- length(x@ra) z <- .Fortran(f_coocsr, as.integer(nrow), as.integer(nnz), as.double(x@ra), as.integer(x@ia), as.integer(x@ja), ao = double(nnz), jao = integer(nnz), iao = integer(nrow+1)) nnza <- z$ao[nrow+1]-1 z <- new("matrix.csr",ra=z$ao,ja=z$jao,ia=z$iao,dimension=x@dimension) return(z) }) #-------------------------------------------------------------------- ######################################################################## # BEGIN BEN ADDED # # # # Coercion from matrix.csr.chol # # # # # setMethod("as.matrix.csr","matrix.csr.chol", function(x, nrow, ncol, eps, upper.tri=TRUE, ...) { returned.data <- .Fortran('f_chol2csr', nrow=as.integer(x@nrow), nnzlindx=as.integer(x@nnzlindx), nsuper=as.integer(x@nsuper), lindx=as.integer(x@lindx), xlindx=as.integer(x@xlindx), nnzl=as.integer(x@nnzl), lnz=as.double(x@lnz), xlnz=as.integer(x@xlnz), dim=integer(2), ra=double(x@nnzl), ia=integer(x@nrow+1), ja=integer(x@nnzl)) C0 <- new("matrix.csr", ra = returned.data$ra, ja = returned.data$ja, ia = returned.data$ia, dimension = returned.data$dim) if (upper.tri) return(C0) else return(t(C0)) }) # # # END BEN ADDED # ######################################################################## #-------------------------------------------------------------------- setGeneric("as.matrix.csc") #-------------------------------------------------------------------- setMethod("as.matrix.csc","matrix.csr", function(x, nrow, ncol,eps){ x <- t(x) x@dimension <- as.integer(rev(dim(x))) new("matrix.csc",ra = x@ra, ja = x@ja, ia = x@ia, dimension = x@dimension) }) #-------------------------------------------------------------------- setMethod("as.matrix.csc","matrix.ssr", function(x, nrow, ncol,eps){ as.matrix.csc(as.matrix.csr(x))}) #-------------------------------------------------------------------- setMethod("as.matrix.csc","matrix.ssc", function(x, nrow, ncol,eps){ as.matrix.csc(as.matrix.csr(x))}) #-------------------------------------------------------------------- setGeneric("as.matrix.ssr") #-------------------------------------------------------------------- setMethod("as.matrix.ssr","matrix.csr", function(x, nrow, ncol,eps){.csr.ssr(x)}) #-------------------------------------------------------------------- setMethod("as.matrix.ssr","matrix.csc", function(x, nrow, ncol,eps){ as.matrix.ssr(as.matrix.csr(x))}) #-------------------------------------------------------------------- setMethod("as.matrix.ssr","matrix.ssc", function(x, nrow, ncol,eps){ as.matrix.ssr(as.matrix.csr(x))}) #-------------------------------------------------------------------- setGeneric("as.matrix.ssc") #-------------------------------------------------------------------- setMethod("as.matrix.ssc","matrix.csr", function(x, nrow, ncol,eps){ x <- as.matrix.csc(x) as.matrix.ssc(x)}) #-------------------------------------------------------------------- setMethod("as.matrix.ssc","matrix.csc", function(x, nrow, ncol,eps){.csc.ssc(x)}) #-------------------------------------------------------------------- setMethod("as.matrix.ssc","matrix.ssr", function(x, nrow, ncol,eps){ as.matrix.ssc(as.matrix.csr(x))}) #-------------------------------------------------------------------- setGeneric("as.matrix.coo") #-------------------------------------------------------------------- setMethod("as.matrix.coo","matrix.csr", function(x, nrow, ncol,eps){.csr.coo(x)}) #-------------------------------------------------------------------- setMethod("as.matrix","matrix.csr", function(x){ nrow <- x@dimension[1] ncol <- x@dimension[2] if(length(x@ra)==1 && is.na(x@ra)){ #trap zero matrix dns <- matrix(0,nrow=nrow,ncol=ncol) return(dns) } nan <- is.nan(x@ra) infty <- is.infinite(x@ra) & x@ra >0 ninfty <- is.infinite(x@ra) & x@ra <0 uniq <- rnorm(3) while(any(uniq %in% x@ra[!(nan|infty|ninfty)])) uniq <- rnorm(3) x@ra[nan] <- uniq[1] x@ra[infty] <- uniq[2] x@ra[ninfty] <- uniq[3] z <- .Fortran(f_csrdns, as.integer(nrow), as.integer(ncol), as.double(x@ra), as.integer(x@ja), as.integer(x@ia), dns = double(nrow*ncol), ndns = as.integer(nrow), ierr = integer(1)) if(z$ierr != 0) stop("insufficient space for dns") dns <- matrix(z$dns,nrow=nrow,ncol=ncol) dns[dns==uniq[1]] <- NaN dns[dns==uniq[2]] <- Inf dns[dns==uniq[3]] <- -Inf return(dns) }) setMethod("as.matrix","matrix.ssr",function(x)as.matrix(as.matrix.csr(x))) setMethod("as.matrix","matrix.ssc",function(x)as.matrix(as.matrix.csr(x))) setMethod("as.matrix","matrix.coo",function(x)as.matrix(as.matrix.csr(x))) setMethod("as.matrix","matrix.csc",function(x)as.matrix(as.matrix.csr(x))) setMethod("t","matrix.csr",function(x){ nrow <- x@dimension[1] ncol <- x@dimension[2] nnz <- x@ia[nrow+1]-1 z <- .Fortran(f_csrcsc2, as.integer(nrow), as.integer(ncol), as.integer(1), as.integer(1), as.double(x@ra), as.integer(x@ja), as.integer(x@ia), ao=double(nnz), jao=integer(nnz), iao=integer(ncol+1)) dim <- as.integer(rev(x@dimension)) new("matrix.csr",ra = z$ao, ja = z$jao, ia = z$iao, dimension = dim) }) setMethod("t","matrix.csc",function(x) { nrow <- x@dimension[1] ncol <- x@dimension[2] nnz <- x@ia[ncol + 1] - 1 z <- .Fortran(f_csrcsc2, as.integer(ncol), as.integer(nrow), as.integer(1), as.integer(1), as.double(x@ra), as.integer(x@ja), as.integer(x@ia), ao = double(nnz), jao = integer(nnz), iao = integer(nrow + 1)) dim <- as.integer(rev(x@dimension)) new("matrix.csc",ra = z$ao, ja = z$jao, ia = z$iao, dimension = dim) }) setMethod("t","matrix.coo",function(x) as.matrix.coo(t(as.matrix.csr(x)))) setMethod("dim","matrix.csr",function(x)x@dimension) setMethod("dim","matrix.csc",function(x)x@dimension) setMethod("dim","matrix.ssr",function(x)x@dimension) setMethod("dim","matrix.ssc",function(x)x@dimension) setMethod("dim","matrix.coo",function(x)x@dimension) setMethod("diff","matrix.csr", function(x, lag = 1, differences = 1, ...) { xlen <- dim(x)[1] if (length(lag) > 1 || length(differences) > 1 || lag < 1 || differences < 1) stop("`lag' and `differences' must be integers >= 1") if (lag * differences >= xlen) stop("lag * differences >= nrow") r <- x i1 <- -1:-lag for (i in 1:differences) r <- r[i1,] - r[-nrow(r):-(nrow(r) - lag + 1),] r }) #setClass("matrix.diag.csr") setClass("matrix.diag.csr","matrix.csr") #setIs("matrix.csr","matrix.diag.csr") setAs("matrix","matrix.csr",function(from){as.matrix.csr(from)}) setAs("numeric","matrix.diag.csr",function(from){ #if(!is.numeric(from))stop("non-numeric entries in sparse matrices not allowed") if(length(from)==1){ n <- as.integer(from) if(n>0) from <- rep(1,n) else stop("Sparse identity matrices must have positive, integer dimension") } else n <- length(from) return(new("matrix.diag.csr", ra = from ,ja = as.integer(1:n), ia = as.integer(1:(n+1)), dimension = as.integer(c(n,n)))) }) setAs("matrix.csr","matrix.diag.csr",function(from){ nr <- from@dimension[1] nc <- from@dimension[2] if( nr!=nc) stop("Resulting 'matrix.diag.csr' matrix has to be square") if(!(setequal(from@ja,1:nc)&setequal(from@ia, 1:(nr+1)))) stop("matrix not diagonal") new("matrix.diag.csr", ra = from@ra, ja = from@ja, ia = from@ia, dimension = from@dimension) }) setMethod("diag","matrix.csr", function (x = 1, nrow, ncol){ if (is.matrix.csr(x) && missing(nrow) && missing(ncol)) { if ((m <- min(dim(x))) == 0) return(numeric(0)) y <- rep(0,m) ia <- rep(1:dim(x)[1],diff(x@ia)) y[x@ja[ia == x@ja]] <- x@ra[ia == x@ja] n <- sum(ia == x@ja) nms <- dimnames(x) if (is.list(nms) && !any(sapply(nms, is.null)) && all((nm <- nms[[1]][1:m]) == nms[[2]][1:m])) names(y) <- nm return(y) } else stop("diag method for class matrix.csr doesn't understand nrow and ncol args") }) setMethod("diag<-","matrix.csr", function(x,value) { dx <- dim(x) if (length(dx) != 2) stop("only matrix diagonals can be replaced") i <- seq(length = min(dx)) if (length(value) != 1 && length(value) != length(i)) stop("replacement diagonal has wrong length") if (length(value) == 1) value <- rep(value,min(dx)) x[cbind(i, i)] <- value x }) setMethod("diag<-","matrix.diag.csr",function(x,value) { y <- as(x,"matrix.csr") diag(y) <- value as(y,"matrix.diag.csr") }) ## ## Defining methods for det() is "wrong by design", as nowadays, ## determinant() is preferred, and det() a wrapper around determinant(). ## ==> should rather define methods for determinant() ## and export a det() which is using the S4 generic determinant() ## --> will define determinant() methods below, at least for now. ## ##MM setGeneric("det") ## Altered 10 July 2014 to agree with procedure in Matrix det <- base::det environment(det) <- environment() setMethod("determinant", signature(x = "matrix.csr", logarithm = "missing"), function(x, logarithm, ...) determinant(x, logarithm = TRUE, ...)) setMethod("determinant", signature(x = "matrix.csr.chol", logarithm = "missing"), function(x, logarithm, ...) determinant(x, logarithm = TRUE, ...)) setMethod("determinant", signature(x = "matrix.csr.chol", logarithm = "logical"), function(x, logarithm, ...) { modulus <- if (logarithm) x@log.det else x@det attr(modulus, "logarithm") <- logarithm val <- list(modulus = modulus, sign = sign(x@det)) class(val) <- "det" val }) setMethod("determinant", signature(x = "matrix.csr", logarithm = "logical"), function(x, logarithm, ...) { r <- determinant(chol(x), logarithm=logarithm) r$modulus <- if (logarithm) 2* r$modulus else r$modulus^2 r }) .norm.csr <- function(x, type, ...) { ## instead of default (above), need this [pre 2.11.0]: if(missing(type)) type <- "sup" switch(type, sup = max(abs(x@ra)), HS = sqrt(sum(x@ra^2)), l1 = sum(abs(x@ra))) } if(getRversion() < "2.11.0" || R.version$`svn rev` < 51018) { setGeneric("norm", function(x, type, ...) standardGeneric("norm"))# as "Matrix" setMethod("norm", "matrix.csr", .norm.csr) } else { ## 2.11.0 has implicitGeneric norm() with signature (x, type) setMethod("norm", c(x = "matrix.csr", type = "missing"), function(x, type, ...) .norm.csr(x, type="sup")) setMethod("norm", c(x = "matrix.csr", type = "character"), .norm.csr) } ##MM setGeneric("chol", def = function(x, pivot= FALSE,...) standardGeneric("chol"), ##MM useAsDefault= function(x, pivot= FALSE,...) base::chol(x, pivot, ...)) setMethod("chol","matrix.csr", function(x, pivot = FALSE, nsubmax, nnzlmax, tmpmax, eps = .Machine$double.eps, ...){ # Interface for a sparse least squares solver via Ng-Peyton's Cholesky # factorization # x -- csr structure returned from call to function "as.matrix.csr" # cachsz -- size of the cache memory -- machine dependent. # Check that input matrix is symmetric if(norm(t(x)-x) > eps) stop("Input matrix to chol() not symmetric") cachsz <- 64 nrow <- x@dimension[1] ncol <- x@dimension[2] if(nrow!=ncol) stop("Can't perform Cholesky Factorization for Non-square matrix\n") nnzdmax <- x@ia[nrow+1]-1 nnzdsm <- nnzdmax + nrow + 1 iwmax <- 7*nrow+3 if(missing(nsubmax)) nsubmax <- nnzdmax if(missing(nnzlmax)) nnzlmax <- max(4*nnzdmax,floor(.2*nnzdmax^1.3)) if(missing(tmpmax)) tmpmax <- 50*nrow level <- 8 z <- .Fortran(f_chol, nrow = as.integer(nrow), nnzdmax = as.integer(nnzdmax), d = as.double(x@ra), jd = as.integer(x@ja), id = as.integer(x@ia), nnzdsm = as.integer(nnzdsm), dsub = double(nnzdsm), jdsub = integer(nnzdsm), nsub = integer(1), nsubmax = as.integer(nsubmax), lindx = integer(nsubmax), xlindx = integer(nrow+1), nsuper = integer(1), nnzlmax = as.integer(nnzlmax), lnz = double(nnzlmax), xlnz = integer(nrow+1), invp = integer(nrow), perm = integer(nrow), iwmax = as.integer(iwmax), iwork = integer(iwmax), colcnt = integer(nrow), snode = integer(nrow), xsuper = integer(nrow+1), split = integer(nrow), tmpmax = as.integer(tmpmax), tmpvec = double(tmpmax), cachsz = as.integer(cachsz), level = as.integer(level), ierr = integer(1), time = double(1)) if (z$ierr != 0){ if(z$ierr == 9) mess <- "singularity problem" else if(z$ierr == 4) mess <- "Increase nnzlmax" else if(z$ierr == 5) mess <- "Increase nsubmax" else if(z$ierr %in% c(8,10)) mess <- "Increase tmpmax" else mess <- "insufficient space" if(z$ierr == 9) warning(mess) else stop(mess) } nnzl <- z$xlnz[length(z$xlnz)]-1 nnzlindx <- z$nsub k <- z$xlnz R <- z$lnz det <- prod(R[k[-length(k)]]) ######################################################################## # BEGIN BEN ADDED # # # # computes the log determinant. # # # log.det <- sum(log(R[k[-length(k)]])) # # # END BEN ADDED # ######################################################################## new("matrix.csr.chol",nrow=z$nrow,nnzlindx=nnzlindx, nsuper=z$nsuper,lindx=z$lindx[1:nnzlindx],xlindx=z$xlindx, nnzl=as.integer(nnzl),lnz=z$lnz[1:nnzl],xlnz=z$xlnz,invp=z$invp, perm=z$perm,xsuper=z$xsuper,det=det, ######################################################################## # BEGIN BEN ADDED # log.det=log.det, # END BEN ADDED # ######################################################################## ierr=z$ierr,time=z$time) }) setMethod("chol","matrix.csc",function(x,pivot = FALSE, ...)chol(as.matrix.csr(x))) ## Need generic here, as we want to add argument 'twice': setGeneric("backsolve", function(r, x, k = NULL, upper.tri = NULL, transpose = NULL, twice = TRUE, ...) standardGeneric("backsolve"), useAsDefault= function(r, x, k = ncol(r), upper.tri = TRUE, transpose = FALSE, twice = TRUE, ...) base::backsolve(r, x, k = k, upper.tri = upper.tri, transpose = transpose, ...)) setMethod("backsolve","matrix.csr.chol", function(r, x, k = NULL, upper.tri = NULL, transpose = NULL, twice = TRUE, ...){ # backsolve for Ng-Peyton's Cholesky factorization # If twice = TRUE: Solves linear system A b = x where r is chol(A) # If twice = FALSE: Solves linear system r b = x where r is chol(A) # Input: # r -- structure returned by chol.matrix.csr # x -- rhs may be a matrix in dense form m <- r@nrow if(!is.matrix(x)) x <- as.matrix(x) if(nrow(x) != m) stop("chol structure 'r' is not conformable with x") p <- ncol(x) if(twice) z <- .Fortran(f_bckslv, m = as.integer(m), nnzlindx = as.integer(r@nnzlindx), as.integer(r@nsuper), as.integer(p), as.integer(r@lindx), as.integer(r@xlindx), as.integer(r@nnzl), as.double(r@lnz), as.integer(r@xlnz), as.integer(r@invp), as.integer(r@perm), as.integer(r@xsuper), double(m), sol = double(m*p), as.double(x), time = double(1)) else z <- .Fortran(f_bckslb, m = as.integer(m), nnzlindx = as.integer(r@nnzlindx), as.integer(r@nsuper), as.integer(p), as.integer(r@lindx), as.integer(r@xlindx), as.integer(r@nnzl), as.double(r@lnz), as.integer(r@xlnz), as.integer(r@invp), as.integer(r@perm), as.integer(r@xsuper), double(m), sol = double(m*p), as.double(x), time = double(1)) z <- matrix(z$sol,nrow=nrow(x),ncol=ncol(x)) drop(z) }) setMethod("forwardsolve","matrix.csr.chol", function(l, x, k = NULL, upper.tri = NULL, transpose = NULL) { # forward-solve for Ng-Peyton's Cholesky factorization # Solves triangular system r' b = x where r is chol(A) # Input: # l -- structure returned by chol.matrix.csr # x -- rhs may be a matrix in dense form m <- l@nrow if(!is.matrix(x)) x <- as.matrix(x) if(nrow(x)!=m)stop("chol not conformable with x") p <- ncol(x) z <- .Fortran(f_bckslf, m = as.integer(m), nnzlindx = as.integer(l@nnzlindx), as.integer(l@nsuper), as.integer(p), as.integer(l@lindx), as.integer(l@xlindx), as.integer(l@nnzl), as.double(l@lnz), as.integer(l@xlnz), as.integer(l@invp), as.integer(l@perm), as.integer(l@xsuper), double(m), sol = double(m*p), as.double(x), time = double(1)) z <- matrix(z$sol,nrow=nrow(x),ncol=ncol(x)) drop(z) }) setMethod("solve","matrix.csr", function (a, b, ...) { missing.b <- FALSE if(!is.matrix.csr(a))stop("a not in csr format") nr <- nrow(a) nc <- ncol(a) if (nc != nr) stop("only square systems can be solved") a <- chol(a,...) if (missing(b)) { b <- diag(1, nc) missing.b <- TRUE } else if(!is.matrix.csr(b))b <- as.matrix(b) z <- backsolve(a,b) if (missing.b) z <- as.matrix.csr(z) z }) ##MM setGeneric("model.matrix", function(object, ...) # /*RSB*/ changed definition ##MM standardGeneric("model.matrix")) # /*RSB*/ setMethod("model.matrix","matrix.csc.hb", function(object,...){ object <- new("matrix.csc",ra=object@ra,ja=object@ja, ia=object@ia,dimension=object@dimension) as.matrix.csr(object) }) setMethod("model.matrix","matrix.ssc.hb", function(object, ...){ object <- new("matrix.ssc",ra=object@ra,ja=object@ja,ia=object@ia, dimension=object@dimension) as.matrix.csr(object) }) ##MM setGeneric("model.response", function(data, type) # /*RSB*/ changed definition ##MM standardGeneric("model.response")) # /*RSB*/ setMethod("model.response","ANY", # /*RSB*/ function(data,type="any"){ # /*RSB*/ stats::model.response(data, type="any") # /*RSB*/ }) # /*RSB*/ setMethod("model.response","matrix.csc.hb", function(data,type="any"){ if(is.null(data@rhs.mode)) stop("Right-hand side doesn't exist") if (data@rhs.mode == "F") z <- matrix(data@rhs.ra,nrow=data@rhs.dim[1], ncol=data@rhs.dim[2]) else stop("Invalid storage mode for rhs") z }) setMethod("model.response","matrix.ssc.hb", function(data,type="any"){ if(is.null(data@rhs.mode)) stop("Right-hand side doesn't exist") if (data@rhs.mode == "F") z <- matrix(data@rhs.ra,nrow=data@rhs.dim[1], ncol=data@rhs.dim[2]) else stop("Invalid storage mode for rhs") z }) setGeneric("model.xexact",function(data) standardGeneric("model.xexact")) setMethod("model.xexact","matrix.ssc.hb", function(data){ matrix(data@xexact,nrow=data@rhs.dim[1], ncol=data@rhs.dim[2]) }) setMethod("model.xexact","matrix.csc.hb", function(data){ matrix(data@xexact,nrow=data@rhs.dim[1], ncol=data@rhs.dim[2]) }) setGeneric("model.guess",function(data) standardGeneric("model.guess")) setMethod("model.guess","matrix.ssc.hb", function(data){ matrix(data@guess,nrow=data@rhs.dim[1], ncol=data@rhs.dim[2]) }) setMethod("model.guess","matrix.csc.hb", function(data){ matrix(data@guess,nrow=data@rhs.dim[1], ncol=data@rhs.dim[2]) }) setMethod("%*%",signature(x="matrix.csr",y="matrix.csr"),.matmul.matrix.csr) setMethod("%*%",signature(x="matrix.csr",y="matrix"),.matmul.matrix.csr) setMethod("%*%",signature(x="matrix.csr",y="numeric"),.matmul.matrix.csr) setMethod("%*%",signature(x="matrix",y="matrix.csr"),.matmul.matrix.csr) setMethod("%*%",signature(x="numeric",y="matrix.csr"),.matmul.matrix.csr) ## This used to define methods for "%x%", now "kronecker" instead ## [see .onLoad above! ] -- for better co-habitation with 'Matrix': tmp <- function(X, Y, FUN = "*", make.dimnames = FALSE, ...) .kron.matrix.csr(X,Y) setMethod("kronecker",signature(X="matrix.csr",Y="matrix.csr"), tmp) setMethod("kronecker",signature(X="matrix.csr",Y="numeric"), tmp) setMethod("kronecker",signature(X="numeric",Y="matrix.csr"), tmp) setMethod("kronecker",signature(X="matrix",Y="matrix.csr"), tmp) setMethod("kronecker",signature(X="matrix.csr",Y="matrix"), tmp) rm(tmp) setMethod("image","matrix.csr", function(x,col=c("white","gray"),xlab="column",ylab="row", ...){ n <- x@dimension[1] p <- x@dimension[2] z <- matrix(0,n,p) column <- x@ja row <- rep(n:1,diff(x@ia)) z[cbind(row,column)] <- 1 image.default(x=1:p,y=-(n:1),t(z),axes=FALSE, col=col,xlab=xlab,ylab=ylab, ...) # /*RSB*/ changed call to make sure axis(1,pretty(1:p), ...) axis(2,pretty(-(n:1)),labels=rev(pretty(1:n)), ...) box() }) #setMethod("summary","slm",summary.slm) #setMethod("summary","mslm",summary.mslm) #setMethod("coef","slm",coef.slm) #setMethod("fitted","slm",fitted.slm) #setMethod("residuals","slm",residuals.slm) #setMethod("print","summary.slm",print.summary.slm) #-------------------------------------------------------------------- SparseM/vignettes/0000755000175100001440000000000013077164713013663 5ustar hornikusersSparseM/vignettes/SparseM.Rnw0000644000175100001440000004465313010640254015723 0ustar hornikusers%\VignetteIndexEntry{An Introduction to the SparseM Package for Sparse Linear Algebra} \documentclass{article} \title{SparseM: A Sparse Matrix Package for R \thanks{This package should be considered experimental. The authors would welcome comments about any aspect of the package. This document is an R vignette prepared with the aid of \texttt{Sweave}, Leisch(2002). Support from NSF SES 99-11184 is gratefully acknowledged.}} \author{Roger Koenker and Pin Ng} \begin{document} \maketitle \begin{abstract} SparseM provides some basic R functionality for linear algebra with sparse matrices. Use of the package is illustrated by a family of linear model fitting functions that implement least squares methods for problems with sparse design matrices. Significant performance improvements in memory utilization and computational speed are possible for applications involving large sparse matrices. \end{abstract} \section{Introduction} Many applications in statistics involve large sparse matrices, matrices with a high proportion of zero entries. \ A typical example from parametric linear regression involves longitudinal data with fixed effects: many indicator variables consisting of a few ones and a large number of zero elements. \ In nonparametric regression, e.g. smoothing splines design matices are extremely sparse often with less than 1\% of nonzero entries. \ Conventional algorithms for linear algebra in such situations entail exorbitant storage requirements and many wasteful floating point operations involving zero entries. For some specially structured problems, e.g. banded matrices, special algorithms are available. But recent developments in sparse linear algebra have produced efficient methods for handling unstructured sparsity in a remarkably efficient way. Exploiting these developments, the package SparseM provides some basic linear algebra functionality for sparse matrices stored in several standard formats. \ The package attempts to make the use of these methods as transparent as possible by adhering to the method-dispatch conventions of $R$.\footnote{ The first release of the SparseM packaged used {\it S3} method-dispatch, the current release has adopted the new {\it S4} method dispatch. Our thanks to Brian Ripley and Kurt Hornik for advice on this aspect of the package.} Functions are provided for: coercion, basic unary and binary operations on matrices and linear equation solving. %There have been a few linear algebra packages proposed or implemented for %sparse matrices, see Carney, Heroux, Li, and Wu (1994), Saad (1994), Remington %and Pozo (1996), Duff, Marrone, Radicati and Vittoli (1997), and Bank and %Douglas (2001). Our implementation is based on Sparskit (Saad (1994)), which provides one of the more complete collection of subroutines for BLAS like functions and sparse matrix utilities available in the public domain.\footnote {Recently, a sparse matrix version of BLAS subprograms has been provided by Duff, Heroux and Pozo (2002). Unfortunately, it handles only sparse matrix times dense matrix multiplication at the Level 3 Sparse BLAS, but not sparse matrix times sparse matrix multiplication. The sparse matrix utilities available in Sparskit, e.g.\ masking, sorting, permuting, extracting, and filtering, which are not available in Sparse BLAS, are also extrememly valuable. Sparse linear algebra is a rapidly developing field in numerical analysis and we would expect to see many important new developments that could be incorportated into SparseM and related code in the near future.} Our Cholesky factorization and backsolve routines are based on Ng and Peyton (1993), which still appears to represent the state of the art for solving linear systems involving symmetric positive definite matrices.\footnote{There are also several new direct methods for solving unsymmetric sparse systems of linear equations over the last decade. A rather comprehensive comparison of performance of some prominent software packages for solving general sparse systems can be found in Gupta (2002). Unfortunately, the comparisons do not include the Peyton and Ng algorithm employed here. The top performer reported in the study is WSMP (Gupta, 2000) which requires proprietary XLF Fortran complier, XLC C compilier and the AIX operating system, and the library is not released under the GPL license. The runner up reported is MUMPS (Amestoy, Duff, L'Excellent and Koster, 2002) which has a non-commerical license but is written in Fortran 90. The third best performer is UMFPACK (Davis, 2002), which is implemented in MATLAB Version 6.0 and later, also has a non-commerical license. Since it is a general sparse solver not written specifically for symmetric positive definite systems of linear equations, it would be interesting to see how it compares with the Choleski factorization of Peyton and Ng adopted here.} In Section 2 we discuss in more detail the components of the package, provide some examples on their use and explain the basic design philosopy. Section 3 discusses some refinements proposed for future implementations. SparseM can be obtained from the Comprehensive R Archive Network, CRAN, at \texttt{http://cran.r-project.org/}. \section{Design Philosophy} In this section we briefly describe some aspects of our design philosophy beginning with the question of storage modes. \subsection{Storage Modes} There are currently more than twenty different storage formats used for sparse matrices. \ Each of these formats is designed to exploit particular features of the matrices that arise in various applications areas to gain efficiency in both memory utilization and computation. \ Duff, Erisman and Reid (1986) and Saad (1994) provide detailed accounts of the various storage schemes. \ Following Saad (1994) we have chosen compressed sparse row (\textbf{csr}) format as the primary storage mode for SparseM.\footnote{Other sparse storage formats supported in SparseM include compressed sparse column (\textbf{csc}), symmetric sparse row (\textbf{ssr}) and symmetric sparse column (\textbf{ssc}). \ The data structure of \textbf{csc} format is the same as that of \textbf{csr} format except the information is stored column-wise. \ The\ \textbf{ssr} and \textbf{ssc} formats are special cases of \textbf{csr} and \textbf{csc}, respectively, for symmetric matrices, only the information in the lower triangle is stored. \ We have created new class objects, \texttt{matrix.csr}, \texttt{matrix.csc}, \texttt{matrix.ssr}, \texttt{matrix.ssc}, for each of these four formats.} \ An $n$ by $m$ matrix $A$ with real elements $a_{ij}$, stored in \textbf{csr} format consists of three arrays: \begin{itemize} \item \texttt{ra}: a real array of $nnz$ elements containing the non-zero elements of $A$, stored in row order. Thus, if $i>= library(SparseM) a <- rnorm(5*4) a[abs(a)<0.7] <- 0 A <- matrix(a,5,4) A A.csr <- as.matrix.csr(A) A.csr as.matrix(A.csr) @ To facilitate testing we have included \texttt{read.matrix.hb} and \texttt{write.matrix.hb} to deal with matrices in the Harwell-Boeing storage format. \ A list of sites with extensive collections of sparse matrices in this format can be found at \texttt{http://math.nist.gov/MatrixMarket/}. \ Details on the Harwell-Boeing format can be found in the help files for \texttt{read.matrix.hb} and \texttt{write.matrix.hb} as well as in the User's Guide for Harwell-Boeing Sparse Matrix Collection at \texttt{ftp://ftp.cerfacs.fr/pub/harwell\_boeing/}. @ \subsection{Visualization} The \texttt{image} function allows users to explore the structure of the sparsity in matrices stored in \textbf{csr} format. In the next example we illustrate the design matrix for a bivariate spline smoothing problem illustrated in Koenker and Mizera (2002). The upper 100 rows of the matrix are an identity matrix, the lower 275 rows represent the penalty component of the design matrix. In this example $X$ has 1200 nonzero entries, roughly 3.2 percent of the number of floating point numbers needed to represent the matrix in dense form. The $X'X$ form of the matrix has 1162 nonzero elements or 11.62 percent of the entries in the full matrix. \begin{center} <>= data(triogramX) par(mfrow=c(1,2)) image(X) title("X") image(t(X)%*%X) title("X\'X") @ \end{center} \subsection{Indexing and Binding} Indexing and the functions \texttt{cbind} and \texttt{rbind} for the \texttt{matrix.csr} class work just like they do on dense matrices. Objects returned by \texttt{cbind} and \texttt{rbind} operating on objects of the \texttt{matrix.csr} class retain their \texttt{matrix.csr} class attribute. \subsection{Linear Algebra} SparseM provides a reasonably complete set of commonly used linear algebra operations for the \texttt{matrix.csr} class. \ The general design philosophy for this set of functions is that operations on \texttt{matrix.csr} class will yield an object also in \texttt{matrix.csr} class with a few exceptions mentioned below. The functions \texttt{t}, and \texttt{\%*\%} for transposition, and multiplication of \textbf{csr} matrices work just like their dense matrix counterparts and the returned objects retain their \texttt{matrix.csr} class. The \texttt{diag} and \texttt{diag<-} functions for extracting and assigning the diagonal elements of \textbf{csr} matrices also work like their dense matrix counterparts except that the returned objects from \texttt{diag} are dense vectors with appropriate zeros reintroduced. The unary and binary functions in the group generic functions \textsc{Ops} return objects of \texttt{matrix.csr} class. \subsection{Linear Equation Solving} Research on solutions to sparse symmetric positive definite systems of linear equations has focused primarily on methods based on the Cholesky factorization, and we have followed this approach. There are three functions \texttt{chol}, \texttt{backsolve} and \texttt{solve }to handle a symmetric positive definite system of linear equations. \texttt{chol} performs Cholesky factorization using the block sparse Cholesky algorithms of Ng and Peyton (1993). \ The result can then be passed on to \texttt{backsolve} with a right-hand-side to obtain the solutions. \ For systems of linear equations that only vary on the right-hand-side, the result from \texttt{chol} can be reused, saving considerable computing time. \ The function \texttt{solve}, which combines the use of \texttt{chol} and \texttt{backsolve}, will compute the inverse of a matrix by default, if the right-hand-side is missing.% The data structure of the \texttt{chol.matrix.csr} object produced by the sparse Cholesky method is comewhat complicated. Users interested in recovering the Cholesky factor in some more conventional form should recognize that the original matrix has undergone a permutation of its rows and columns before Cholesky factorization; this permutation is given by the \texttt{perm} component of the structure. Currently no coercion methods are supplied for the class \texttt{chol.matrix.csr}, but the computation of the determinant by extracting the diagonal of the Cholesky factor offers some clues for how such coercion could be done. This determinant is provided as a component of the \texttt{chol.matrix.csr} structure because it can be of some value in certain maximum likelihood applications. \subsection{Least Squares Problems} To illustrate the functionality of the package we include an application to least squares regression. The group of functions \texttt{slm}, \texttt{slm.fit}, \texttt{slm.fit.csr}, \texttt{summary.slm} and \texttt{print.summary.slm} provide analogues of the familiar \texttt{lm} family. In the current implementation \texttt{slm} processes a formula object in essentially the same way as \texttt{lm}, and calls an intermediate function \texttt{slm.fit}, which in turn calls \texttt{slm.fit.csr} where the actual fitting occurs. Rather than the usual QR decomposition, \texttt{slm.fit.csr} proceeds by backsolving the triangular system resulting from a Cholesky decomposition of the $X^\top X$ matrix. The sparsity of the resulting structure is usually well preserved by this strategy. The use of sparse methods is quite transparent in the present \texttt{slm} implementation and \texttt{summary.slm} with the associated \texttt{print.summary.slm} should produce identical output to their cousins in the \texttt{lm} family. However, the speed and memory utilization can be quite drammatically improved. In the following problem, which involves a design matrix that is 1850 by 712 there is a nearly three hundred fold improvement in speed (on a Sun Ultra 2) when we compare \texttt{lm.fit} and \texttt{slm.fit}. The comparison is somewhat less compelling between \texttt{lm} and \texttt{slm} since there is a substantial common fixed cost to the setup of the problems. In addition to the computational time saved there is also a significant reduction in the memory required for large sparse problems. In extreme cases memory becomes a binding constraint on the feasibility of large problems and sparse storage is critical in expanding the range of problem sizes. This is particularly true of applications in smoothing and related image processing contexts. <<>>= #hb.o <- read.matrix.hb(system.file("HBdata","lsq.rra",package = "SparseM")) data(lsq) X <- model.matrix(lsq) #extract the design matrix y <- model.response(lsq) # extract the rhs X1 <- as.matrix(X) slm.time <- system.time(slm(y~X1-1) -> slm.o) # pretty fast lm.time <- system.time(lm(y~X1-1) -> lm.o) # very slow slm.fit.time <- system.time(slm.fit(X,y)) # very fast lm.fit.time <- system.time(lm.fit(X1,y)) # still very slow cat("slm time =",slm.time,"\n") cat("lm time =",lm.time,"\n") cat("slm.fit time =",slm.fit.time,"\n") cat("lm.fit time =",lm.fit.time,"\n") cat("slm Results: Reported Coefficients Truncated to 5 ","\n") sum.slm <- summary(slm.o) sum.slm$coef <- sum.slm$coef[1:5,] sum.slm cat("lm Results: Reported Coefficients Truncated to 5 ","\n") sum.lm <- summary(lm.o) sum.lm$coefficients <- sum.lm$coefficients[1:5,] sum.lm @ \section{Some Potential Refinements} There are still many features that could be usefully added to the package. Among these we would especially like to see: \texttt{crossprod}, \texttt{row},\texttt{ col}, code for \texttt{eigen}, \texttt{svd} would also be desirable, but seems somewhat more problematic. Support for other storage formats might be eventually useful, although \textbf{csr, csc, ssr, ssc} formats seem quite sufficient for most purposes. A major improvement in the \texttt{slm} implementation would be to replace the line \begin{verbatim} X <- as.matrix.csr(model.matrix(Terms, m, contrasts)) \end{verbatim} which coerces the dense form of the regression design matrix produced by model.matrix into the sparse form. Ideally, this would be done with a special \texttt{.csr} form of \texttt{model.matrix}, thus obviating the need to construct the dense form of the matrix. We have not looked carefully at the question of implementing this suggestion, but we (still) hope that someone else might be inspired to do so. Our primary motivation for $R$ sparse linear algebra comes from our experience, see e.g. Koenker, Ng and Portnoy (1994) and He and Ng (1999), with interior point algorithms for quantile regression smoothing problems. We plan to report on this experience elsewhere. \begin{center} {\Large{\bf References}} \end{center} %\textsc{Bank, R.E. and C.C. Douglas.} (1993). Sparse matrix multiplication %package (SMMP). \textit{Advances in Computational Mathematics, 1, 127-137.} %\textsc{Carney, Sandra, Michael A. Heroux, Guangye Li, and Kesheng Wu.} %(1994). A revised proposal for a sparse BLAS toolkit. Technical Report 94-034, %Army High Performance Computing Research Center. \textsc{Amestoy, P. R., I. S. Duff, J. -Y. L'Excellent {\small and} J. Koster.} (2002). MUltifrontal Massively Parallel Solver (MUMPS Version 4.2 beta) Users' Guide, http://www.enseeiht.fr/lima/apo/MUMPS/ \textsc{Davis, T. A.} (2002). UMFPACK Version 4.0 User Guide, \newline http://www.cise.ufl.edu/research/sparse/umfpack. \textsc{Duff, I.S., A. M. Erisman {\small and} J. K. Reid.} (1986). \textit{Direct Methods for Sparse Matrices}, Clarendon Press, Oxford. \textsc{Duff, I. S., M. A. Heroux, {\small and} R. Pozo.} (2002). ``An Overview of the Sparse Basic Linear Algebra Subroutines: The New Standard from the BLAS Technical Forum,'' \emph{ACM Transactions on Mathematical Software}, 28, 239-267. %\textsc{Duff, I. S., M. Marrone, G. Radicati, and C. Vittoli.} (1997). Level 3 %Basic Linear Algebra Subprograms for sparse matrices: a user level interface. %\textit{ACM Trans. Math. Softw}., 23(3):379--401. \textsc{Gupta, A.} (2000). WSMP: Watson Sparse Matrix Package (Part-II: direct solution of general sparse systems). Technical Report RC 21888 (98472), IBM T.J. Watson Research Center, Yorktown Heights, N.Y., http://www.cs.umn.edu/ \newline $\sim$agupta/doc/wssmp-paper.ps \textsc{Gupta, A.} (2002). ``Recent Advances in Direct Methods for Solving Unsymmetric Sparse Systems of Linear Equations,'' \emph{ACM Transactions on Mathematical Software}, 28, 301-324. \textsc{He, X., {\small and} P.~Ng} (1999): ``COBS: {Q}ualitatively Constrained Smoothing Via Linear Programming,'' \emph{Computational Statistics}, 14, 315--337. \textsc{Koenker, R., P.~Ng, {\small and} S.~Portnoy} (1994): ``Quantile smoothing splines,'' \emph{Biometrika}, 81, 673--680. \textsc{Leisch, F.} (2002). Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis, \texttt{http://www.wu-wien.ac.at/am}. \textsc{Koenker, R. {\small and} Mizera, I} (2002). Penalized Triograms: Total Variation Regularization for Bivariate Smoothing, preprint. \textsc{Ng, E. G. {\small and} B. W. Peyton}. (1993) Block sparse Cholesky algorithms on advanced uniprocessor computers'', \textit{SIAM J. Sci. Comput.}, 14, 1034-1056. \textsc{Saad, Y.} (1994) Sparskit: A basic tool kit for sparse matrix computations; Version 2, \texttt{http://www.cs.umn.edu/Research/arpa/SPARSKIT/sparskit.html} \end{document} SparseM/MD50000644000175100001440000000563013077170726012170 0ustar hornikusersbeb16bbf6c0c3817b48bb6a991c78c89 *DESCRIPTION 465a182ae57c2d2ecb0a979f3da656bb *INDEX 10711206bdaaadc5b45c673062073978 *NAMESPACE b754680c0e1de11162fd64c2de2a4ac9 *R/SparseM.R 1a1b53da5b3ba77df4d123d9dadf220f *README 08377c9c6ea02c58d1231665861b5d6d *build/vignette.rds 6aeb1615cc971cbbe5216d9077477a00 *data/lsq.rda 94ee66529ae6c23a9b95948c901bcc60 *data/triogramX.rda 6ddb4b6a5196af61e12a9d1e80794844 *demo/00Index 837ba802116b859903e4c52634ef0912 *demo/Binding.R f867383e75cb81e04c8f487baa66a47a *demo/Coercion.R a1e23002df89ab4fb2e64bf621f9bbe6 *demo/LeastSquares.R 91c13c4679244617edc2c0f40d7254c0 *demo/LinearAlgebra.R 0088f1be5e01158371693fd351716c34 *demo/Solve.R 562ecc120d06e2f7d22ecd247d2a4664 *demo/Visualization.R 2318a842b8119c8e8118be15d4054825 *inst/ChangeLog 6c5e5addd9df174275b1140c78580b8e *inst/TODO 7699ec748e30c58bec482b8d3a47fac3 *inst/doc/SparseM.R 3f2396d6048ead2efa411b4c95147c09 *inst/doc/SparseM.Rnw 8ab0e9cdf489d09df1dba6703350727f *inst/doc/SparseM.pdf c6589c5c8697dda9d5399540bc3a7abf *inst/extdata/lsq.out 79ffa8d4a3ea5633c9e89b259a079e8d *inst/extdata/lsq.rra 453c119e83ff6d1b28941938c2c13f90 *inst/extdata/rua_32_ax.rua 051938890a5073d1e77a32198a81ce91 *man/SparseM.hb.Rd 028723608fc3764b43212e11c7d20e49 *man/SparseM.image.Rd 92ff21874748fdf32fded0d08ca96ca4 *man/SparseM.ontology.Rd 7de9d0cd981beed371bf1825b48fc5e9 *man/SparseM.ops.Rd 35f9bb0ea5995f6039751763f40a8197 *man/SparseM.solve.Rd c509c7e29f3184ff7dd51f6ef83f1fba *man/character-null-class.Rd cdf6774966428f893e7ff205234ca2d5 *man/lsq.Rd 61112380cc5d504035d29275f68f2fe8 *man/matrix.coo-class.Rd c998946a324e7a701ead47dac7be59ce *man/matrix.csc-class.Rd b50b80d5b6260f76cf9431c7dd6bc279 *man/matrix.csc.hb-class.Rd 15beba2f82b8798598a59291891853e0 *man/matrix.csr-class.Rd c1840aaa11cd42bd47bc6e05f04e7351 *man/matrix.csr.chol-class.Rd 6d0d73685ebf00247bdda7266bf7a0f2 *man/matrix.ssc-class.Rd 23a0e4a881e802d9d96d49eb545df974 *man/matrix.ssc.hb-class.Rd beb8926fa7f84b58360f7b274164cc47 *man/matrix.ssr-class.Rd 9749bc3989e59a7048fbdbcdc1544013 *man/mslm-class.Rd a4551c2cad0fc75aaf78f30f0333d9dd *man/numeric-null-class.Rd 874b0ff920b89f6af8348182e1dba536 *man/slm-class.Rd e0f12facb4d16f5209be2e0ccc3fb6be *man/slm.Rd 8c8e951cdf4bd26a37b00e99864cd224 *man/slm.fit.Rd d2c63254267be45d7e7ce26bf5e307f5 *man/slm.methods.Rd 4c83fca692a52ba7f8c61609e087cffe *man/summary.mslm-class.Rd cbe86a5e52f242349f2d17ef9cb06376 *man/summary.slm-class.Rd b453eb7e5c0b9d26b50c266ff87aacc4 *man/triogramX.Rd 42376c42db32d470e3780d1aef97a95c *src/bckslv.f 2470ba28b4ba62e5d1e76a2a74b1ce11 *src/chol.f c560a6a41916b6b685f5b5b70d5b660d *src/chol2csr.f 065f5d3d3d3d500a9a86c5095374ab69 *src/cholesky.f 5f78e83b0115f65461756c48ca70db4a *src/csr.f e58fc1ca7b8a7af1e5a23b897596c34a *src/extract.f f84b521dd0ada37f8efaaf5e11800aae *src/init.c 9a62fbc51b88ef44cbd558a906eddf19 *src/sparskit.f a521b97c0286e8c869c2eef5c7d4dab7 *src/subscr.f 3f2396d6048ead2efa411b4c95147c09 *vignettes/SparseM.Rnw SparseM/README0000644000175100001440000000143011727723545012535 0ustar hornikusers Versions of SparseM prior to 0.95 included a LICENSE file that described some uncertainties over the licensing status of the fortran code in src/cholesky.f. As of 9 March 2012, original authors of cholesky.f, Esmond Ng and Barry Peyton, have now, very kindly, given permission to use cholesky.f under an open source license. They have requested that their code be credited via the following two publications: Esmond G. Ng and Barry W. Peyton, "Block sparse Cholesky algorithms on advanced uniprocessor computers". SIAM J. Sci. Stat. Comput. 14 (1993), pp. 1034-1056. John R. Gilbert, Esmond G. Ng, and Barry W. Peyton, "An efficient algorithm to compute row and column counts for sparse Cholesky factorization". SIAM J. Matrix Anal. Appl. 15 (1994), pp. 1075-1091. SparseM/build/0000755000175100001440000000000013077164713012752 5ustar hornikusersSparseM/build/vignette.rds0000644000175100001440000000035413077164713015313 0ustar hornikusers‹uQÛ Â0 íܼL _°oPQAÔ_ã–ép¶£« ßür5ÓM´j išœÓœÐM—1Ö`¶CѦÔRh‘È-æ0—ÎÞ*•ãÜ[ŠÂhÆ‚O„V2:…:‘‚kÉõyÅà °CKUÕø,ŠÓnü•E±Ñr_*HëðÑxȜư)àˆ¹Ánû˜¡ˆÊòõ7ߺ”ÎÏ…T5çÓª0N¤XÏ]'úu±~P¥ÖÒÔðõþ‡~WÉ«wè—ÿs¡p#3 SÈÍE»hðbEüR÷waÁcáSparseM/DESCRIPTION0000644000175100001440000000120313077170726013356 0ustar hornikusersPackage: SparseM Version: 1.77 Author: Roger Koenker and Pin Ng Maintainer: Roger Koenker Depends: R (>= 2.15), methods Imports: graphics, stats, utils Description: Some basic linear algebra functionality for sparse matrices is provided: including Cholesky decomposition and backsolving as well as standard R subsetting and Kronecker products. License: GPL (>= 2) Title: Sparse Linear Algebra URL: http://www.econ.uiuc.edu/~roger/research/sparse/sparse.html NeedsCompilation: yes Repository: CRAN Packaged: 2017-04-23 17:52:11 UTC; roger Date/Publication: 2017-04-23 18:26:30 UTC SparseM/man/0000755000175100001440000000000013011074211012403 5ustar hornikusersSparseM/man/SparseM.image.Rd0000644000175100001440000000245611547113521015346 0ustar hornikusers\name{SparseM.image} \title{Image Plot for Sparse Matrices} \alias{image} \alias{SparseM.image} \alias{image,matrix.csr-method} \description{Display the pattern of non-zero entries of a matrix of class \code{matrix.csr}.% or \code{matrix.csc} } \usage{ \S4method{image}{matrix.csr}(x, col=c("white","gray"), xlab="column", ylab="row", \dots) } \arguments{ \item{x}{a matrix of class \code{matrix.csr}.}% or \code{matrix.csc}.} \item{col}{a list of colors such as that generated by \code{\link{rainbow}}. Defaults to c("white","gray")} \item{xlab,ylab}{each a character string giving the labels for the x and y axis.} \item{\dots}{additional arguments.} } \details{The pattern of the non-zero entries of a sparse matrix is displayed. By default nonzero entries of the matrix appear as gray blocks and zero entries as white background.} \references{ Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for \R,\cr \url{http://www.econ.uiuc.edu/~roger/research} } \seealso{ \code{SparseM.ops}, \code{SparseM.solve}, \code{SparseM.ontology} } \examples{ a <- rnorm(20*5) A <- matrix(a,20,5) A[row(A)>col(A)+4|row(A)col(A)+2|row(A) [1] "matrix.csc.hb" X <- model.matrix(Xy)->X class(X) # -> "matrix.csr" dim(X) # -> [1] 1850 712 y <- model.response(Xy) # extract the rhs length(y) # [1] 1850 Xy <- read.matrix.hb(system.file("extdata","rua_32_ax.rua",package = "SparseM")) X <- model.matrix(Xy) y <- model.response(Xy) # extract the rhs g <- model.guess(Xy) # extract the guess a <- model.xexact(Xy) # extract the xexact fit <- solve(t(X) \%*\% X, t(X) \%*\% y) # compare solution with xexact solution } \keyword{IO} SparseM/man/matrix.csc-class.Rd0000644000175100001440000000337711547113521016074 0ustar hornikusers\name{matrix.csc-class} \docType{class} \alias{matrix.csc-class} \title{Class "matrix.csc"} \description{A new class for sparse matrices stored in compressed sparse column format} \section{Objects from the Class}{ Objects can be created by calls of the form \code{new("matrix.csc", ...)}. } \section{Slots}{ \describe{ \item{\code{ra}:}{Object of class \code{numeric}, a real array of nnz elements containing the non-zero elements of A, stored in column order. Thus, if i,matrix.csr-method} \alias{>=,matrix.csr-method} \alias{<,matrix.csr-method} \alias{<=,matrix.csr-method} \alias{==,matrix.csr-method} \alias{!=,matrix.csr-method} \alias{&,matrix.csr-method} \alias{|,matrix.csr-method} \alias{norm} \alias{norm,ANY-method} % For R 2.10.x and earlier: \alias{norm,matrix.csr-method} % For R 2.11.0 and later: \alias{norm,matrix.csr,character-method} \alias{norm,matrix.csr,missing-method} % FIXME(MM) - deprecate det() methods, propagating determinant() \alias{det,ANY-method} \alias{det,matrix-method} \alias{det,matrix.csr-method} \alias{det,matrix.csr.chol-method} \alias{determinant,matrix.csr.chol,missing-method} \alias{determinant,matrix.csr.chol,logical-method} \alias{determinant,matrix.csr,missing-method} \alias{determinant,matrix.csr,logical-method} % \alias{t,ANY-method} \alias{t,matrix.csr-method} \alias{t,matrix.csc-method} \alias{t,matrix.coo-method} \alias{diag,ANY-method} \alias{diag,matrix.csr-method} \alias{diag<-,ANY-method} \alias{diag<-,matrix.csr-method} \alias{diag<-,matrix.diag.csr-method} \alias{diff,matrix.csr-method} \alias{diff<-,ANY-method} \alias{diff<-,matrix.csr-method} \alias{diag.assign,matrix.csr-method} \alias{ncol,matrix.csr-method} \alias{nrow,matrix.csr-method} \alias{dim,ANY-method} \alias{dim,matrix.csr-method} \alias{dim,matrix.csc-method} \alias{dim,matrix.ssr-method} \alias{dim,matrix.ssc-method} \alias{dim,matrix.coo-method} \alias{rbind.matrix.csr} \alias{cbind.matrix.csr} \alias{[.matrix.csr} \alias{[.matrix.diag.csr} \alias{[<-.matrix.csr} \alias{[<-.matrix.diag.csr} \alias{[.matrix.coo} \alias{[<-.matrix.coo} \title{Basic Linear Algebra for Sparse Matrices} \description{Basic linear algebra operations for sparse matrices of class \code{matrix.csr}.} \arguments{ \item{x}{matrix of class \code{matrix.csr}.} \item{y}{matrix of class \code{matrix.csr} or a dense matrix or vector.} \item{value}{replacement values.} \item{i,j}{vectors of elements to extract or replace.} \item{nrow}{optional number of rows for the result.} \item{lag}{an integer indicating which lag to use.} \item{differences}{an integer indicating the order of the difference.} } \details{Linear algebra operations for matrices of class \code{matrix.csr} are designed to behave exactly as for regular matrices. In particular, matrix multiplication, kronecker product, addition, subtraction and various logical operations should work as with the conventional dense form of matrix storage, as does indexing, rbind, cbind, and diagonal assignment and extraction. The method diag may be used to extract the diagonal of a \code{matrix.csr} object, to create a sparse diagonal see \code{SparseM.ontology}. The function \code{\link[base]{determinant}} computes the (log) determinant, of the argument, returning a \code{"det"} object as the base function. This is \emph{preferred} over using the function \code{det()} which is a simple wrapper for \code{determinant()}. Using \code{det()} in the following way is somewhat deprecated: \cr \code{det()} computes the determinant of the argument matrix. If the matrix is of class \code{matrix.csr} then it must be symmetric, or an error will be returned. If the matrix is of class \code{matrix.csr.chol} then the determinant of the Cholesky factor is returned, ie the product of the diagonal elements. % rather have them use determinant()... %For the log determinant, use \code{det(x, logarithm=TRUE)}. The function \code{norm} is used to check for symmetry by computing the maximum of the elements of the difference between the matrix and its transpose. Optionally, this sup norm can be replaced by the Hilbert-Schmidt norm, or the l1 norm. } \references{ Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for \R,\cr \url{http://www.econ.uiuc.edu/~roger/research} } \seealso{ \code{slm} for sparse linear model fitting. \code{SparseM.ontology} for coercion and other class relations involving the sparse matrix classes. } \examples{ n1 <- 10 n2 <- 10 p <- 6 y <- rnorm(n1) a <- rnorm(n1*p) a[abs(a) < 0.5] <- 0 A <- matrix(a,n1,p) A.csr <- as.matrix.csr(A) b <- rnorm(n2*p) b[abs(b)<1.0] <- 0 B <- matrix(b,n2,p) B.csr <- as.matrix.csr(B) # matrix transposition and multiplication A.csr\%*\%t(B.csr) # kronecker product - via kronecker() methods: A.csr \%x\% matrix(1:4,2,2) } \keyword{algebra} SparseM/man/mslm-class.Rd0000644000175100001440000000202211547113521014753 0ustar hornikusers\name{mslm-class} \docType{class} \alias{mslm-class} \title{Class "mslm"} \description{A sparse extension of \code{lm}} \section{Objects from the Class}{ Objects can be created by calls of the form \code{new("mslm", ...)}. } \section{Slots}{ \describe{ \item{\code{coefficients}:}{Object of class \code{numeric} estimated coefficients} \item{\code{chol}:}{Object of class \code{matrix.csr.chol} generated by the function \code{chol}} \item{\code{residuals}:}{Object of class \code{"numeric"} residuals} \item{\code{fitted}:}{Object of class \code{"numeric"} fitted values} } } \section{Extends}{ Class \code{"lm"}, directly. Class \code{"slm"}, directly. Class \code{"oldClass"}, by class "lm". } \section{Methods}{ \describe{ \item{coef}{\code{signature(object = "mslm")}: ... } \item{fitted}{\code{signature(object = "mslm")}: ... } \item{residuals}{\code{signature(object = "mslm")}: ... } \item{summary}{\code{signature(object = "mslm")}: ... } } } \seealso{ \code{\link{slm}}} \keyword{classes} SparseM/man/SparseM.ontology.Rd0000644000175100001440000001556311661465070016147 0ustar hornikusers\name{SparseM.ontology} \alias{SparseM.ontology} \alias{matrix.csr} \alias{matrix.csc} \alias{initialize,ANY-method} \alias{initialize,matrix.csr-method} \alias{initialize,matrix.coo-method} \alias{coerce,vector,matrix.diag.csr-method} \alias{coerce,matrix,matrix.csr-method} \alias{coerce,matrix.csr,matrix.diag.csr-method} \alias{coerce,vector,matrix.csr-method} \alias{coerce,numeric,matrix.diag.csr-method} \alias{as.matrix,ANY-method} \alias{as.matrix,matrix.csr-method} \alias{as.matrix,csr-method} \alias{is.matrix,csr-methods} \alias{as.matrix,csc-methods} \alias{is.matrix,csc-methods} \alias{as.matrix,ssr-methods} \alias{is.matrix,ssr-methods} \alias{as.matrix,ssc-methods} \alias{is.matrix,ssc-methods} \alias{as.matrix,coo-methods} \alias{is.matrix,coo-methods} \alias{as.matrix.csr,ANY-method} \alias{as.matrix.csr,matrix.csc-method} \alias{as.matrix.csr,matrix.ssr-method} \alias{as.matrix.csr,matrix.ssc-method} \alias{as.matrix.csr,matrix.coo-method} \alias{as.matrix.csr,matrix.csr.chol-method} \alias{as.matrix.csc,ANY-method} \alias{as.matrix.csc,matrix.csr-method} \alias{as.matrix.csc,matrix.csc-method} \alias{as.matrix.csc,matrix.ssr-method} \alias{as.matrix.csc,matrix.ssc-method} \alias{as.matrix.csc,matrix.coo-method} \alias{as.matrix.ssr,ANY-method} \alias{as.matrix.ssr,matrix.csc-method} \alias{as.matrix.ssr,matrix.ssr-method} \alias{as.matrix.ssr,matrix.ssc-method} \alias{as.matrix.ssr,matrix.coo-method} \alias{as.matrix.ssc,ANY-method} \alias{as.matrix.ssc,matrix.csr-method} \alias{as.matrix.ssc,matrix.csc-method} \alias{as.matrix.ssc,matrix.ssr-method} \alias{as.matrix.ssc,matrix.ssc-method} \alias{as.matrix.ssc,matrix.coo-method} \alias{as.matrix.coo,ANY-method} \alias{as.matrix.coo,matrix.csr-method} \alias{as.matrix.coo,matrix.csc-method} \alias{as.matrix.coo,matrix.ssr-method} \alias{as.matrix.coo,matrix.ssc-method} \alias{as.matrix.coo,matrix.coo-method} \alias{as.matrix,matrix.csc-method} \alias{as.matrix,matrix.ssc-method} \alias{as.matrix,matrix.ssr-method} \alias{as.matrix,matrix.coo-method} \alias{matrix.ssc} \alias{as.matrix.ssc,matrix.csc-method} \alias{as.matrix.ssc.matrix.csr-method} \alias{as.matrix.ssc,matrix.ssr-method} \alias{matrix.ssr} \alias{as.matrix.ssr,matrix.csc-method} \alias{as.matrix.ssr,matrix.csr-method} \alias{as.matrix.ssr,matrix.ssc-method} \alias{is.matrix.csr} \alias{is.matrix.csc} \alias{is.matrix.ssr} \alias{is.matrix.ssc} \alias{is.matrix.coo} \alias{is.matrix.csr} \alias{as.matrix.csr} \alias{as.matrix.csc} \alias{as.matrix.ssr} \alias{as.matrix.ssc} \alias{as.matrix.coo} \title{Sparse Matrix Class} \description{ This group of functions evaluates and coerces changes in class structure. } \usage{ \method{as}{matrix.csr}(x, nrow = 1, ncol = 1, eps = .Machine$double.eps, ...) \method{as}{matrix.csc}(x, nrow = 1, ncol = 1, eps = .Machine$double.eps, ...) \method{as}{matrix.ssr}(x, nrow = 1, ncol = 1, eps = .Machine$double.eps, ...) \method{as}{matrix.ssc}(x, nrow = 1, ncol = 1, eps = .Machine$double.eps, ...) \method{is}{matrix.csr}(x, ...) \method{is}{matrix.csc}(x, ...) \method{is}{matrix.ssr}(x, ...) \method{is}{matrix.ssc}(x, ...) } \arguments{ \item{x}{is a matrix, or vector object, of either dense or sparse form} \item{nrow}{number of rows of matrix } \item{ncol}{number of columns of matrix } \item{eps}{A tolerance parameter: elements of x such that abs(x) < eps set to zero. This argument is only relevant when coercing matrices from dense to sparse form. Defaults to \code{eps = .Machine$double.eps} } \item{...}{other arguments} } \details{ The function \code{matrix.csc} acts like \code{matrix} to coerce a vector object to a sparse matrix object of class \code{matrix.csr}. This aspect of the code is in the process of conversion from S3 to S4 classes. For the most part the S3 syntax prevails. An exception is the code to coerce vectors to diagonal matrix form which uses \code{as(v,"matrix.diag.csr"}. The generic functions \code{as.matrix.xxx} coerce a matrix \code{x} into a matrix of storage class \code{matrix.xxx}. The argument matrix \code{x} may be of conventional dense form, or of any of the four supported classes: \code{matrix.csr, matrix.csc, matrix.ssr, matrix.ssc}. The generic functions \code{is.matrix.xxx} evaluate whether the argument is of class \code{matrix.xxx}. The function \code{as.matrix} transforms a matrix of any sparse class into conventional dense form. The primary storage class for sparse matrices is the compressed sparse row \code{matrix.csr} class. An \emph{n} by \emph{m} matrix \emph{A} with real elements \eqn{a_{ij}}{a_{ij}}, stored in \code{matrix.csr} format consists of three arrays: \itemize{ \item \code{ra}: a real array of \emph{nnz} elements containing the non-zero elements of \emph{A}, stored in row order. Thus, if \emph{i TRUE is.matrix.csc(A.csc) # -> TRUE is.matrix.ssr(B.ssr) # -> TRUE is.matrix.ssc(B.ssc) # -> TRUE as.matrix(A.csr) as.matrix(A.csc) as.matrix(B.ssr) as.matrix(B.ssc) as.matrix.csr(rep(0,9),3,3) #sparse matrix of all zeros as(4,"matrix.diag.csr") #identity matrix of dimension 4 } \keyword{algebra} SparseM/man/slm.Rd0000644000175100001440000001001113010640010013451 0ustar hornikusers\name{slm} \alias{slm} \title{Fit a linear regression model using sparse matrix algebra} \description{ This is a function to illustrate the use of sparse linear algebra to solve a linear least squares problem using Cholesky decomposition. The syntax and output attempt to emulate \code{lm()} but may fail to do so fully satisfactorily. Ideally, this would eventually become a method for \code{lm}. The main obstacle to this step is that it would be necessary to have a model.matrix function that returned an object in sparse csr form. For the present, the objects represented in the formula must be in dense form. If the user wishes to specify fitting with a design matrix that is already in sparse form, then the lower level function \code{slm.fit()} should be used. } \usage{ slm(formula, data, weights, na.action, method = "csr", contrasts = NULL, ...) } \arguments{ \item{formula}{ a formula object, with the response on the left of a \code{~} operator, and the terms, separated by \code{+} operators, on the right. As in \code{lm()}, the response variable in the formula can be matrix valued. } \item{data}{ a data.frame in which to interpret the variables named in the formula, or in the subset and the weights argument. If this is missing, then the variables in the formula should be on the search list. This may also be a single number to handle some special cases -- see below for details. } \item{weights}{ vector of observation weights; if supplied, the algorithm fits to minimize the sum of the weights multiplied into the absolute residuals. The length of weights must be the same as the number of observations. The weights must be nonnegative and it is strongly recommended that they be strictly positive, since zero weights are ambiguous. } \item{na.action}{ a function to filter missing data. This is applied to the model.frame after any subset argument has been used. The default (with \code{na.fail}) is to create an error if any missing values are found. A possible alternative is \code{na.omit}, which deletes observations that contain one or more missing values. } \item{method}{there is only one method based on Cholesky factorization} \item{contrasts}{ a list giving contrasts for some or all of the factors default = \code{NULL} appearing in the model formula. The elements of the list should have the same name as the variable and should be either a contrast matrix (specifically, any full-rank matrix with as many rows as there are levels in the factor), or else a function to compute such a matrix given the number of levels. } \item{...}{ additional arguments for the fitting routines } } \value{ A list of class \code{slm} consisting of: \item{coefficients}{estimated coefficients} \item{chol}{cholesky object from fitting} \item{residuals}{residuals} \item{fitted}{fitted values} \item{terms}{terms} \item{call}{call} ... } \references{ Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for \R, \cr \url{http://www.econ.uiuc.edu/~roger/research} } \author{ Roger Koenker } \seealso{ \code{slm.methods} for methods \code{summary}, \code{print}, \code{fitted}, \code{residuals} and \code{coef} associated with class \code{slm}, and \code{slm.fit} for lower level fitting functions. The latter functions are of special interest if you would like to pass a sparse form of the design matrix directly to the fitting process.} \examples{ data(lsq) X <- model.matrix(lsq) #extract the design matrix y <- model.response(lsq) # extract the rhs X1 <- as.matrix(X) slm.time <- system.time(slm(y~X1-1) -> slm.o) # pretty fast lm.time <- system.time(lm(y~X1-1) -> lm.o) # very slow cat("slm time =",slm.time,"\n") cat("slm Results: Reported Coefficients Truncated to 5 ","\n") sum.slm <- summary(slm.o) sum.slm$coef <- sum.slm$coef[1:5,] sum.slm cat("lm time =",lm.time,"\n") cat("lm Results: Reported Coefficients Truncated to 5 ","\n") sum.lm <- summary(lm.o) sum.lm$coef <- sum.lm$coef[1:5,] sum.lm } \keyword{regression} SparseM/man/slm-class.Rd0000644000175100001440000000174711547113521014613 0ustar hornikusers\name{slm-class} \docType{class} \alias{slm-class} \title{Class "slm"} \description{A sparse extension of \code{lm}} \section{Objects from the Class}{ Objects can be created by calls of the form \code{new("slm", ...)}. } \section{Slots}{ \describe{ \item{\code{coefficients}:}{Object of class \code{numeric} estimated coefficients} \item{\code{chol}:}{Object of class \code{matrix.csr.chol} generated by function \code{chol}} \item{\code{residuals}:}{Object of class \code{"numeric"} residuals} \item{\code{fitted}:}{Object of class \code{"numeric"} fitted values} } } \section{Extends}{ Class \code{"lm"}, directly. Class \code{"oldClass"}, by class "lm". } \section{Methods}{ \describe{ \item{coef}{\code{signature(object = "slm")}: ... } \item{fitted}{\code{signature(object = "slm")}: ... } \item{residuals}{\code{signature(object = "slm")}: ... } \item{summary}{\code{signature(object = "slm")}: ... } } } \seealso{ \code{\link{slm}}} \keyword{classes} SparseM/man/slm.fit.Rd0000644000175100001440000000426112173773362014276 0ustar hornikusers\name{slm.fit} \alias{slm.fit} \alias{slm.fit} \alias{slm.wfit} \alias{slm.fit.csr} \title{Internal slm fitting functions} \description{ Fitting functions for sparse linear model fitting. } \usage{ slm.fit(x,y,method, \dots) slm.wfit(x,y,weights,\dots) slm.fit.csr(x, y, \dots) } \arguments{ \item{x}{ design matrix. } \item{y}{ vector of response observations. } \item{method}{ only \code{csr} is supported currently } \item{weights}{an optional vector of weights to be used in the fitting process. If specified, weighted least squares is used with weights `weights' (that is, minimizing \deqn{\sum w_i*e_i^2}{sum w e^2} The length of weights must be the same as the number of observations. The weights must be nonnegative and it is strongly recommended that they be strictly positive, since zero weights are ambiguous.} \item{\dots}{additional arguments.} } \details{ \code{slm.fit} and \code{slm.wfit} call \code{slm.fit.csr} to do Cholesky decomposition and then backsolve to obtain the least squares estimated coefficients. These functions can be called directly if the user is willing to specify the design matrix in \code{matrix.csr} form. This is often advantageous in large problems to reduce memory requirements. } \value{ A list of class \code{slm} consisting of: \item{coef}{estimated coefficients} \item{chol}{cholesky object from fitting} \item{residuals}{residuals} \item{fitted}{fitted values} \item{df.residual}{degrees of freedom} \item{terms}{terms} \item{call}{call} ... } \references{ Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for \R,\cr \url{http://www.econ.uiuc.edu/~roger/research}} \author{ Roger Koenker } \seealso{ \code{\link{slm}} } \examples{ data(lsq) X <- model.matrix(lsq) #extract the design matrix y <- model.response(lsq) # extract the rhs class(X) # -> "matrix.csr" class(y) # -> NULL slm.fit(X,y)->slm.fit.o # this is much more efficient in memory usage than slm() slm(y~as.matrix(X)-1) -> slm.o # this requires X to be transformed into dense mode cat("Difference between `slm.fit' and `slm' estimated coefficients =", sum(abs(slm.fit.o$coef-slm.o$coef)),"\n") } \keyword{ regression } SparseM/man/numeric-null-class.Rd0000644000175100001440000000055711547113521016430 0ustar hornikusers\name{numeric or NULL-class} \docType{class} \alias{numeric or NULL-class} \title{Class "numeric or NULL"} \description{A virtual class needed by the "matrix.csc.hb" class} \section{Objects from the Class}{A virtual Class: No objects may be created from it.} \section{Methods}{ No methods defined with class "numeric or NULL" in the signature. } \keyword{classes} SparseM/man/character-null-class.Rd0000644000175100001440000000056711547113521016723 0ustar hornikusers\name{character or NULL-class} \docType{class} \alias{character or NULL-class} \title{Class "character or NULL"} \description{A virtual class needed by the "matrix.csc.hb" class} \section{Objects from the Class}{A virtual Class: No objects may be created from it.} \section{Methods}{ No methods defined with class "character or NULL" in the signature. } \keyword{classes} SparseM/man/matrix.coo-class.Rd0000644000175100001440000000215511547113521016075 0ustar hornikusers\name{matrix.coo-class} \docType{class} \alias{matrix.coo-class} \title{Class "matrix.coo"} \description{A new class for sparse matrices stored in coordinate format} \section{Objects from the Class}{ Objects can be created by calls of the form \code{new("matrix.coo", ...)}. } \section{Slots}{ \describe{ \item{\code{ra}:}{Object of class \code{numeric}, a real array of nnz elements containing the non-zero elements of A.} \item{\code{ja}:}{Object of class \code{integer}, an integer array of nnz elements containing the column indices of the elements stored in `ra'.} \item{\code{ia}:}{Object of class \code{integer}, an integer array of nnz elements containing the row indices of the elements stored in `ra'.} \item{\code{dimension}:}{Object of class \code{integer}, dimension of the matrix } } } \section{Methods}{ \describe{ \item{as.matrix.csr}{\code{signature(x = "matrix.coo")}: ... } \item{as.matrix}{\code{signature(x = "matrix.coo")}: ... } \item{dim}{\code{signature(x = "matrix.coo")}: ... } } } \seealso{ \code{\link{matrix.csr-class}}} \keyword{classes} SparseM/man/matrix.csr-class.Rd0000644000175100001440000000551311547113521016105 0ustar hornikusers\name{matrix.csr-class} \docType{class} \alias{matrix.csr-class} \alias{matrix.diag.csr-class} \title{Class "matrix.csr"} \description{A new class for sparse matrices stored in compressed sparse row format} \section{Objects from the Class}{ Objects can be created by calls of the form \code{new("matrix.csr", ...)}. and coerced from various other formats. Coercion of integer scalars and vectors into identity matrices and diagonal matrices respectively is accomplished by \code{as(x,"matrix.diag.csr")} which generates an object that has all the rights and responsibilties of the matrix.csr class. The default matrix.csr object is a scalar (1 by 1) matrix with element 0. } \section{Slots}{ \describe{ \item{\code{ra}:}{Object of class \code{numeric}, a real array of nnz elements containing the non-zero elements of A, stored in row order. Thus, if i [1] "matrix.csc.hb" model.matrix(lsq)->design.o class(design.o) # -> "matrix.csr" dim(design.o) # -> [1] 1850 712 y <- model.response(lsq) # extract the rhs length(y) # [1] 1850 t(design.o) \%*\% design.o -> XpX t(design.o) \%*\% y -> Xpy chol(XpX) -> chol.o b1 <- backsolve(chol.o,Xpy) # least squares solutions in two steps b2 <- solve(XpX,Xpy) # least squares estimates in one step b3 <- backsolve(chol.o, forwardsolve(chol.o, Xpy), twice = FALSE) # in three steps ## checking that these three are indeed equal : stopifnot(all.equal(b1, b2), all.equal(b2, b3)) } \keyword{algebra} SparseM/man/lsq.Rd0000644000175100001440000000370111547113521013504 0ustar hornikusers\name{lsq} \alias{lsq} \title{Least Squares Problems in Surveying} \description{One of the four matrices from the least-squares solution of problems in surveying that were used by Michael Saunders and Chris Paige in the testing of LSQR} \usage{data(lsq)} \format{ A list of class \code{matrix.csc.hb} or \code{matrix.ssc.hb} depending on how the coefficient matrix is stored with the following components: \itemize{ \item{ra }{ra component of the csc or ssc format of the coefficient matrix, X. } \item{ja }{ja component of the csc or ssc format of the coefficient matrix, X. } \item{ia }{ia component of the csc or ssc format of the coefficient matrix, X. } \item{rhs.ra }{ra component of the right-hand-side, y, if stored in csc or ssc format; right-hand-side stored in dense vector or matrix otherwise.} \item{rhs.ja }{ja component of the right-hand-side, y, if stored in csc or ssc format; a null vector otherwise.} \item{rhs.ia }{ia component of the right-hand-side, y, if stored in csc or ssc format; a null vector otherwise.} \item{xexact}{vector of the exact solutions, b, if they exist; a null vector o therwise.} \item{guess}{vector of the initial guess of the solutions if they exist; a null vector otherwise.} \item{dim}{dimenson of the coefficient matrix, X.} \item{rhs.dim}{dimenson of the right-hand-side, y.} \item{rhs.mode}{storage mode of the right-hand-side; can be full storage or same format as the coefficient matrix.} } } \seealso{\code{read.matrix.hb}} \examples{ data(lsq) class(lsq) # -> [1] "matrix.csc.hb" model.matrix(lsq)->X class(X) # -> "matrix.csr" dim(X) # -> [1] 1850 712 y <- model.response(lsq) # extract the rhs length(y) # [1] 1850 } \references{ Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for \R,\cr \url{http://www.econ.uiuc.edu/~roger/research} Matrix Market, \url{http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/lsq/lsq.html} } \keyword{datasets} SparseM/man/triogramX.Rd0000644000175100001440000000104711547113521014662 0ustar hornikusers\name{triogramX} \alias{triogramX} \alias{X} \title{A Design Matrix for a Triogram Problem} \description{This is a design matrix arising from a bivariate smoothing problem using penalized triogram fitting. It is used in the SparseM vignette to illustrate the use of the sparse matrix image function.} \usage{data(triogramX)} \format{A 375 by 100 matrix stored in compressed sparse row format} \references{ Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for \R,\cr \url{http://www.econ.uiuc.edu/~roger/research} } \keyword{datasets} SparseM/man/matrix.csr.chol-class.Rd0000644000175100001440000000425611547113521017034 0ustar hornikusers\name{matrix.csr.chol-class} \docType{class} \alias{matrix.csr.chol-class} \title{Class "matrix.csr.chol"} \description{A class of objects returned from Ng and Peyton's (1993) block sparse Cholesky algorithm} \section{Objects from the Class}{ Objects can be created by calls of the form \code{new("matrix.csr.chol", ...)}. } \section{Slots}{ \describe{ \item{\code{nrow}:}{Object of class \code{integer}, number of rows in the linear system of equations } \item{\code{nnzlindx}:}{Object of class \code{numeric}, number of non-zero elements in lindx} \item{\code{nsuper}:}{Object of class \code{integer}, number of supernodes} \item{\code{lindx}:}{Object of class \code{integer}, vector of integer containing, in column major order, the row subscripts of the non-zero entries in the Cholesky factor in a compressed storage format} \item{\code{xlindx}:}{Object of class \code{integer}, vector of integer of pointers for lindx} \item{\code{nnzl}:}{Object of class \code{numeric}, number of non-zero entries, including the diagonal entries, of the Cholesky factor stored in lnz} \item{\code{lnz}:}{Object of class \code{numeric}, contains the entries of the Cholesky factor } \item{\code{log.det}:}{Object of class \code{numeric}, log determinant of the Cholesky factor} \item{\code{xlnz}:}{Object of class \code{integer}, column pointer for the Cholesky factor stored in lnz} \item{\code{invp}:}{Object of class \code{integer}, vector of integer of inverse permutation vector} \item{\code{perm}:}{Object of class \code{integer}, vector of integer of permutation vector } \item{\code{xsuper}:}{Object of class \code{integer}, array containing the supernode partioning} \item{\code{det}:}{Object of class \code{numeric}, determinant of the Cholesky factor} \item{\code{ierr}:}{Object of class \code{integer}, error flag } \item{\code{time}:}{Object of class \code{numeric} execution time } } } \section{Methods}{ \describe{ \item{backsolve}{\code{signature(r = "matrix.csr.chol")}: ... } \item{as.matrix.csr}{\code{signature(x = "matrix.csr.chol", upper.tri=TRUE)}: ... } } } \seealso{\code{\link{chol}}, \code{\link{backsolve}}} \keyword{classes} SparseM/man/slm.methods.Rd0000644000175100001440000000546413011074115015143 0ustar hornikusers\name{slm.methods} \alias{slm.methods} \alias{summary.slm} \alias{summary.mslm} \alias{print.summary.slm} \alias{print.slm} \alias{fitted.slm} \alias{residuals.slm} \alias{coef.slm} \alias{extractAIC.slm} \alias{deviance.slm} \title{Methods for slm objects} \description{ Summarize, print, and extract objects from \code{\link{slm}} objects. } \usage{ \method{summary}{slm}(object, correlation, \dots) \method{summary}{mslm}(object, \dots) \method{print}{slm}(x, digits, \dots) \method{print}{summary.slm}(x, digits, symbolic.cor, signif.stars, \dots) \method{fitted}{slm}(object, \dots) \method{residuals}{slm}(object, \dots) \method{coef}{slm}(object, \dots) \method{extractAIC}{slm}(fit, scale = 0, k = 2, \dots) \method{deviance}{slm}(object, \dots) } \arguments{ \item{object,x,fit}{ object of class \code{slm}. } \item{digits}{minimum number of significant digits to be used for most numbers.} \item{scale}{optional numeric specifying the scale parameter of the model, see 'scale' in 'step'. Currently only used in the '"lm"' method, where 'scale' specifies the estimate of the error variance, and 'scale = 0' indicates that it is to be estimated by maximum likelihood.} \item{k}{ numeric specifying the "weight" of the equivalent degrees of freedom ('edf') part in the AIC formula.} \item{symbolic.cor}{logical; if \code{TRUE}, the correlation of coefficients will be printed. The default is \code{FALSE}} \item{signif.stars}{logical; if \code{TRUE}, P-values are additionally encoded visually as ``significance stars'' in order to help scanning of long coefficient tables. It defaults to the `show.signif.stars' slot of `options'. } \item{correlation}{logical; if \code{TRUE}, the correlation matrix of the estimated parameters is returned and printed.} \item{\dots}{additional arguments passed to methods.} } \value{ \code{print.slm} and \code{print.summary.slm} return invisibly. \code{fitted.slm}, \code{residuals.slm}, and \code{coef.slm} return the corresponding components of the \code{slm} object. \code{extractAIC.slm} and \code{deviance.slm} return the AIC and deviance values of the fitted object. } \references{ Koenker, R and Ng, P. (2002). SparseM: A Sparse Matrix Package for \R,\cr \url{http://www.econ.uiuc.edu/~roger/research} } \author{ Roger Koenker } \seealso{ \code{slm} } \examples{ data(lsq) X <- model.matrix(lsq) #extract the design matrix y <- model.response(lsq) # extract the rhs X1 <- as.matrix(X) slm.time <- system.time(slm(y~X1-1) -> slm.o) # pretty fast cat("slm time =",slm.time,"\n") cat("slm Results: Reported Coefficients Truncated to 5 ","\n") sum.slm <- summary(slm.o) sum.slm$coef <- sum.slm$coef[1:5,] sum.slm fitted(slm.o)[1:10] residuals(slm.o)[1:10] coef(slm.o)[1:10] } \keyword{ regression } SparseM/man/matrix.ssc-class.Rd0000644000175100001440000000324711547113521016110 0ustar hornikusers\name{matrix.ssc-class} \docType{class} \alias{matrix.ssc-class} \title{Class "matrix.ssc"} \description{A new class for sparse matrices stored in symmetric sparse column format} \section{Objects from the Class}{ Objects can be created by calls of the form \code{new("matrix.ssc", ...)}. } \section{Slots}{ \describe{ \item{\code{ra}:}{Object of class \code{numeric}, a real array of nnz elements containing the non-zero elements of the lower triangular part of A, stored in column order. Thus, if i