num-complex-0.4.6/.cargo_vcs_info.json0000644000000001360000000000100133070ustar { "git": { "sha1": "91fdc06356c0c868cb88b5a180859023c57e6e50" }, "path_in_vcs": "" }num-complex-0.4.6/.gitignore000064400000000000000000000000221046102023000140610ustar 00000000000000Cargo.lock target num-complex-0.4.6/Cargo.toml0000644000000034560000000000100113150ustar # THIS FILE IS AUTOMATICALLY GENERATED BY CARGO # # When uploading crates to the registry Cargo will automatically # "normalize" Cargo.toml files for maximal compatibility # with all versions of Cargo and also rewrite `path` dependencies # to registry (e.g., crates.io) dependencies. # # If you are reading this file be aware that the original Cargo.toml # will likely look very different (and much more reasonable). # See Cargo.toml.orig for the original contents. [package] edition = "2021" rust-version = "1.60" name = "num-complex" version = "0.4.6" authors = ["The Rust Project Developers"] exclude = [ "/ci/*", "/.github/*", ] description = "Complex numbers implementation for Rust" homepage = "https://github.com/rust-num/num-complex" documentation = "https://docs.rs/num-complex" readme = "README.md" keywords = [ "mathematics", "numerics", ] categories = [ "algorithms", "data-structures", "science", "no-std", ] license = "MIT OR Apache-2.0" repository = "https://github.com/rust-num/num-complex" [package.metadata.docs.rs] features = [ "bytemuck", "std", "serde", "rkyv/size_64", "bytecheck", "rand", ] [dependencies.bytecheck] version = "0.6" optional = true default-features = false [dependencies.bytemuck] version = "1" optional = true [dependencies.num-traits] version = "0.2.18" features = ["i128"] default-features = false [dependencies.rand] version = "0.8" optional = true default-features = false [dependencies.rkyv] version = "0.7" optional = true default-features = false [dependencies.serde] version = "1.0" optional = true default-features = false [features] bytecheck = ["dep:bytecheck"] bytemuck = ["dep:bytemuck"] default = ["std"] libm = ["num-traits/libm"] rand = ["dep:rand"] rkyv = ["dep:rkyv"] serde = ["dep:serde"] std = ["num-traits/std"] num-complex-0.4.6/Cargo.toml.orig000064400000000000000000000024471046102023000147750ustar 00000000000000[package] authors = ["The Rust Project Developers"] description = "Complex numbers implementation for Rust" documentation = "https://docs.rs/num-complex" homepage = "https://github.com/rust-num/num-complex" keywords = ["mathematics", "numerics"] categories = ["algorithms", "data-structures", "science", "no-std"] license = "MIT OR Apache-2.0" name = "num-complex" repository = "https://github.com/rust-num/num-complex" version = "0.4.6" readme = "README.md" exclude = ["/ci/*", "/.github/*"] edition = "2021" rust-version = "1.60" [package.metadata.docs.rs] features = ["bytemuck", "std", "serde", "rkyv/size_64", "bytecheck", "rand"] [dependencies] [dependencies.bytemuck] optional = true version = "1" [dependencies.num-traits] version = "0.2.18" default-features = false features = ["i128"] [dependencies.serde] optional = true version = "1.0" default-features = false [dependencies.rkyv] optional = true version = "0.7" default-features = false [dependencies.bytecheck] optional = true version = "0.6" default-features = false [dependencies.rand] optional = true version = "0.8" default-features = false [features] default = ["std"] std = ["num-traits/std"] libm = ["num-traits/libm"] bytecheck = ["dep:bytecheck"] bytemuck = ["dep:bytemuck"] rand = ["dep:rand"] rkyv = ["dep:rkyv"] serde = ["dep:serde"] num-complex-0.4.6/LICENSE-APACHE000064400000000000000000000251371046102023000140330ustar 00000000000000 Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright [yyyy] [name of copyright owner] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. num-complex-0.4.6/LICENSE-MIT000064400000000000000000000020571046102023000135370ustar 00000000000000Copyright (c) 2014 The Rust Project Developers Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. num-complex-0.4.6/README.md000064400000000000000000000031151046102023000133560ustar 00000000000000# num-complex [![crate](https://img.shields.io/crates/v/num-complex.svg)](https://crates.io/crates/num-complex) [![documentation](https://docs.rs/num-complex/badge.svg)](https://docs.rs/num-complex) [![minimum rustc 1.60](https://img.shields.io/badge/rustc-1.60+-red.svg)](https://rust-lang.github.io/rfcs/2495-min-rust-version.html) [![build status](https://github.com/rust-num/num-complex/workflows/master/badge.svg)](https://github.com/rust-num/num-complex/actions) `Complex` numbers for Rust. ## Usage Add this to your `Cargo.toml`: ```toml [dependencies] num-complex = "0.4" ``` ## Features This crate can be used without the standard library (`#![no_std]`) by disabling the default `std` feature. Use this in `Cargo.toml`: ```toml [dependencies.num-complex] version = "0.4" default-features = false ``` Features based on `Float` types are only available when `std` or `libm` is enabled. Where possible, `FloatCore` is used instead. Formatting complex numbers only supports format width when `std` is enabled. ## Releases Release notes are available in [RELEASES.md](RELEASES.md). ## Compatibility The `num-complex` crate is tested for rustc 1.60 and greater. ## License Licensed under either of * [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0) * [MIT license](http://opensource.org/licenses/MIT) at your option. ### Contribution Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions. num-complex-0.4.6/RELEASES.md000064400000000000000000000147651046102023000136410ustar 00000000000000# Release 0.4.6 (2024-05-07) - [Upgrade to 2021 edition, **MSRV 1.60**][121] - [Add `const ZERO`/`ONE`/`I` and implement `ConstZero` and `ConstOne`][125] - [Add `c32` and `c64` functions to help construct `Complex` values][126] **Contributors**: @cuviper [121]: https://github.com/rust-num/num-complex/pull/121 [125]: https://github.com/rust-num/num-complex/pull/125 [126]: https://github.com/rust-num/num-complex/pull/126 # Release 0.4.5 (2024-02-06) - [Relaxed `T` bounds on `serde::Deserialize` for `Complex`.][119] **Contributors**: @cuviper, @WalterSmuts [119]: https://github.com/rust-num/num-complex/pull/119 # Release 0.4.4 (2023-08-13) - [Fixes NaN value for `powc` of zero][116] **Contributors**: @cuviper, @domna [116]: https://github.com/rust-num/num-complex/pull/116 # Release 0.4.3 (2023-01-19) - [`Complex` now optionally supports `bytecheck` 0.6 and `rkyv` 0.7][110]. **Contributors**: @cuviper, @zyansheep [110]: https://github.com/rust-num/num-complex/pull/110 # Release 0.4.2 (2022-06-17) - [The new `ComplexFloat` trait][95] provides a generic abstraction between floating-point `T` and `Complex`. - [`Complex::exp` now handles edge cases with NaN and infinite parts][104]. **Contributors**: @cuviper, @JorisDeRidder, @obsgolem, @YakoYakoYokuYoku [95]: https://github.com/rust-num/num-complex/pull/95 [104]: https://github.com/rust-num/num-complex/pull/104 # Release 0.4.1 (2022-04-29) - [`Complex::from_str_radix` now returns an error for radix > 18][90], because 'i' and 'j' as digits are ambiguous with _i_ or _j_ imaginary parts. - [`Complex` now implements `bytemuck` traits when `T` does][100]. - [`Complex::cis` creates a complex with the given phase][101], _e__i_ θ. **Contributors**: @bluss, @bradleyharden, @cuviper, @rayhem [90]: https://github.com/rust-num/num-complex/pull/90 [100]: https://github.com/rust-num/num-complex/pull/100 [101]: https://github.com/rust-num/num-complex/pull/101 # Release 0.4.0 (2021-03-05) - `rand` support has been updated to 0.8, requiring Rust 1.36. **Contributors**: @cuviper # Release 0.3.1 (2020-10-29) - Clarify the license specification as "MIT OR Apache-2.0". **Contributors**: @cuviper # Release 0.3.0 (2020-06-13) ### Enhancements - [The new "libm" feature passes through to `num-traits`][73], enabling `Float` features on no-`std` builds. ### Breaking Changes - `num-complex` now requires Rust 1.31 or greater. - The "i128" opt-in feature was removed, now always available. - [Updated public dependences][65]: - `rand` support has been updated to 0.7, requiring Rust 1.32. - [Methods for `T: Float` now take values instead of references][82], most notably affecting the constructor `from_polar`. **Contributors**: @cuviper, @SOF3, @vks [65]: https://github.com/rust-num/num-complex/pull/65 [73]: https://github.com/rust-num/num-complex/pull/73 [82]: https://github.com/rust-num/num-complex/pull/82 # Release 0.2.4 (2020-01-09) - [`Complex::new` is now a `const fn` for Rust 1.31 and later][63]. - [Updated the `autocfg` build dependency to 1.0][68]. **Contributors**: @burrbull, @cuviper, @dingelish [63]: https://github.com/rust-num/num-complex/pull/63 [68]: https://github.com/rust-num/num-complex/pull/68 # Release 0.2.3 (2019-06-11) - [`Complex::sqrt()` is now more accurate for negative reals][60]. - [`Complex::cbrt()` computes the principal cube root][61]. **Contributors**: @cuviper [60]: https://github.com/rust-num/num-complex/pull/60 [61]: https://github.com/rust-num/num-complex/pull/61 # Release 0.2.2 (2019-06-10) - [`Complex::l1_norm()` computes the Manhattan distance from the origin][43]. - [`Complex::fdiv()` and `finv()` use floating-point for inversion][41], which may avoid overflows for some inputs, at the cost of trigonometric rounding. - [`Complex` now implements `num_traits::MulAdd` and `MulAddAssign`][44]. - [`Complex` now implements `Zero::set_zero` and `One::set_one`][57]. - [`Complex` now implements `num_traits::Pow` and adds `powi` and `powu`][56]. **Contributors**: @adamnemecek, @cuviper, @ignatenkobrain, @Schultzer [41]: https://github.com/rust-num/num-complex/pull/41 [43]: https://github.com/rust-num/num-complex/pull/43 [44]: https://github.com/rust-num/num-complex/pull/44 [56]: https://github.com/rust-num/num-complex/pull/56 [57]: https://github.com/rust-num/num-complex/pull/57 # Release 0.2.1 (2018-10-08) - [`Complex` now implements `ToPrimitive`, `FromPrimitive`, `AsPrimitive`, and `NumCast`][33]. **Contributors**: @cuviper, @termoshtt [33]: https://github.com/rust-num/num-complex/pull/33 # Release 0.2.0 (2018-05-24) ### Enhancements - [`Complex` now implements `num_traits::Inv` and `One::is_one`][17]. - [`Complex` now implements `Sum` and `Product`][11]. - [`Complex` now supports `i128` and `u128` components][27] with Rust 1.26+. - [`Complex` now optionally supports `rand` 0.5][28], implementing the `Standard` distribution and [a generic `ComplexDistribution`][30]. - [`Rem` with a scalar divisor now avoids `norm_sqr` overflow][25]. ### Breaking Changes - [`num-complex` now requires rustc 1.15 or greater][16]. - [There is now a `std` feature][22], enabled by default, along with the implication that building *without* this feature makes this a `#![no_std]` crate. A few methods now require `FloatCore`, and the remaining methods based on `Float` are only supported with `std`. - [The `serde` dependency has been updated to 1.0][7], and `rustc-serialize` is no longer supported by `num-complex`. **Contributors**: @clarcharr, @cuviper, @shingtaklam1324, @termoshtt [7]: https://github.com/rust-num/num-complex/pull/7 [11]: https://github.com/rust-num/num-complex/pull/11 [16]: https://github.com/rust-num/num-complex/pull/16 [17]: https://github.com/rust-num/num-complex/pull/17 [22]: https://github.com/rust-num/num-complex/pull/22 [25]: https://github.com/rust-num/num-complex/pull/25 [27]: https://github.com/rust-num/num-complex/pull/27 [28]: https://github.com/rust-num/num-complex/pull/28 [30]: https://github.com/rust-num/num-complex/pull/30 # Release 0.1.43 (2018-03-08) - [Fix a usage typo in README.md][20]. **Contributors**: @shingtaklam1324 [20]: https://github.com/rust-num/num-complex/pull/20 # Release 0.1.42 (2018-02-07) - [num-complex now has its own source repository][num-356] at [rust-num/num-complex][home]. **Contributors**: @cuviper [home]: https://github.com/rust-num/num-complex [num-356]: https://github.com/rust-num/num/pull/356 # Prior releases No prior release notes were kept. Thanks all the same to the many contributors that have made this crate what it is! num-complex-0.4.6/src/cast.rs000064400000000000000000000064531046102023000141760ustar 00000000000000use super::Complex; use num_traits::{AsPrimitive, FromPrimitive, Num, NumCast, ToPrimitive}; macro_rules! impl_to_primitive { ($ty:ty, $to:ident) => { #[inline] fn $to(&self) -> Option<$ty> { if self.im.is_zero() { self.re.$to() } else { None } } }; } // impl_to_primitive // Returns None if Complex part is non-zero impl ToPrimitive for Complex { impl_to_primitive!(usize, to_usize); impl_to_primitive!(isize, to_isize); impl_to_primitive!(u8, to_u8); impl_to_primitive!(u16, to_u16); impl_to_primitive!(u32, to_u32); impl_to_primitive!(u64, to_u64); impl_to_primitive!(i8, to_i8); impl_to_primitive!(i16, to_i16); impl_to_primitive!(i32, to_i32); impl_to_primitive!(i64, to_i64); impl_to_primitive!(u128, to_u128); impl_to_primitive!(i128, to_i128); impl_to_primitive!(f32, to_f32); impl_to_primitive!(f64, to_f64); } macro_rules! impl_from_primitive { ($ty:ty, $from_xx:ident) => { #[inline] fn $from_xx(n: $ty) -> Option { Some(Complex { re: T::$from_xx(n)?, im: T::zero(), }) } }; } // impl_from_primitive impl FromPrimitive for Complex { impl_from_primitive!(usize, from_usize); impl_from_primitive!(isize, from_isize); impl_from_primitive!(u8, from_u8); impl_from_primitive!(u16, from_u16); impl_from_primitive!(u32, from_u32); impl_from_primitive!(u64, from_u64); impl_from_primitive!(i8, from_i8); impl_from_primitive!(i16, from_i16); impl_from_primitive!(i32, from_i32); impl_from_primitive!(i64, from_i64); impl_from_primitive!(u128, from_u128); impl_from_primitive!(i128, from_i128); impl_from_primitive!(f32, from_f32); impl_from_primitive!(f64, from_f64); } impl NumCast for Complex { fn from(n: U) -> Option { Some(Complex { re: T::from(n)?, im: T::zero(), }) } } impl AsPrimitive for Complex where T: AsPrimitive, U: 'static + Copy, { fn as_(self) -> U { self.re.as_() } } #[cfg(test)] mod test { use super::*; #[test] fn test_to_primitive() { let a: Complex = Complex { re: 3, im: 0 }; assert_eq!(a.to_i32(), Some(3_i32)); let b: Complex = Complex { re: 3, im: 1 }; assert_eq!(b.to_i32(), None); let x: Complex = Complex { re: 1.0, im: 0.1 }; assert_eq!(x.to_f32(), None); let y: Complex = Complex { re: 1.0, im: 0.0 }; assert_eq!(y.to_f32(), Some(1.0)); let z: Complex = Complex { re: 1.0, im: 0.0 }; assert_eq!(z.to_i32(), Some(1)); } #[test] fn test_from_primitive() { let a: Complex = FromPrimitive::from_i32(2).unwrap(); assert_eq!(a, Complex { re: 2.0, im: 0.0 }); } #[test] fn test_num_cast() { let a: Complex = NumCast::from(2_i32).unwrap(); assert_eq!(a, Complex { re: 2.0, im: 0.0 }); } #[test] fn test_as_primitive() { let a: Complex = Complex { re: 2.0, im: 0.2 }; let a_: i32 = a.as_(); assert_eq!(a_, 2_i32); } } num-complex-0.4.6/src/complex_float.rs000064400000000000000000000276401046102023000161010ustar 00000000000000// Keeps us from accidentally creating a recursive impl rather than a real one. #![deny(unconditional_recursion)] use core::ops::Neg; use num_traits::{Float, FloatConst, Num, NumCast}; use crate::Complex; mod private { use num_traits::{Float, FloatConst}; use crate::Complex; pub trait Seal {} impl Seal for T where T: Float + FloatConst {} impl Seal for Complex {} } /// Generic trait for floating point complex numbers. /// /// This trait defines methods which are common to complex floating point /// numbers and regular floating point numbers. /// /// This trait is sealed to prevent it from being implemented by anything other /// than floating point scalars and [Complex] floats. pub trait ComplexFloat: Num + NumCast + Copy + Neg + private::Seal { /// The type used to represent the real coefficients of this complex number. type Real: Float + FloatConst; /// Returns `true` if this value is `NaN` and false otherwise. fn is_nan(self) -> bool; /// Returns `true` if this value is positive infinity or negative infinity and /// false otherwise. fn is_infinite(self) -> bool; /// Returns `true` if this number is neither infinite nor `NaN`. fn is_finite(self) -> bool; /// Returns `true` if the number is neither zero, infinite, /// [subnormal](http://en.wikipedia.org/wiki/Denormal_number), or `NaN`. fn is_normal(self) -> bool; /// Take the reciprocal (inverse) of a number, `1/x`. See also [Complex::finv]. fn recip(self) -> Self; /// Raises `self` to a signed integer power. fn powi(self, exp: i32) -> Self; /// Raises `self` to a real power. fn powf(self, exp: Self::Real) -> Self; /// Raises `self` to a complex power. fn powc(self, exp: Complex) -> Complex; /// Take the square root of a number. fn sqrt(self) -> Self; /// Returns `e^(self)`, (the exponential function). fn exp(self) -> Self; /// Returns `2^(self)`. fn exp2(self) -> Self; /// Returns `base^(self)`. fn expf(self, base: Self::Real) -> Self; /// Returns the natural logarithm of the number. fn ln(self) -> Self; /// Returns the logarithm of the number with respect to an arbitrary base. fn log(self, base: Self::Real) -> Self; /// Returns the base 2 logarithm of the number. fn log2(self) -> Self; /// Returns the base 10 logarithm of the number. fn log10(self) -> Self; /// Take the cubic root of a number. fn cbrt(self) -> Self; /// Computes the sine of a number (in radians). fn sin(self) -> Self; /// Computes the cosine of a number (in radians). fn cos(self) -> Self; /// Computes the tangent of a number (in radians). fn tan(self) -> Self; /// Computes the arcsine of a number. Return value is in radians in /// the range [-pi/2, pi/2] or NaN if the number is outside the range /// [-1, 1]. fn asin(self) -> Self; /// Computes the arccosine of a number. Return value is in radians in /// the range [0, pi] or NaN if the number is outside the range /// [-1, 1]. fn acos(self) -> Self; /// Computes the arctangent of a number. Return value is in radians in the /// range [-pi/2, pi/2]; fn atan(self) -> Self; /// Hyperbolic sine function. fn sinh(self) -> Self; /// Hyperbolic cosine function. fn cosh(self) -> Self; /// Hyperbolic tangent function. fn tanh(self) -> Self; /// Inverse hyperbolic sine function. fn asinh(self) -> Self; /// Inverse hyperbolic cosine function. fn acosh(self) -> Self; /// Inverse hyperbolic tangent function. fn atanh(self) -> Self; /// Returns the real part of the number. fn re(self) -> Self::Real; /// Returns the imaginary part of the number. fn im(self) -> Self::Real; /// Returns the absolute value of the number. See also [Complex::norm] fn abs(self) -> Self::Real; /// Returns the L1 norm `|re| + |im|` -- the [Manhattan distance] from the origin. /// /// [Manhattan distance]: https://en.wikipedia.org/wiki/Taxicab_geometry fn l1_norm(&self) -> Self::Real; /// Computes the argument of the number. fn arg(self) -> Self::Real; /// Computes the complex conjugate of the number. /// /// Formula: `a+bi -> a-bi` fn conj(self) -> Self; } macro_rules! forward { ($( $base:ident :: $method:ident ( self $( , $arg:ident : $ty:ty )* ) -> $ret:ty ; )*) => {$( #[inline] fn $method(self $( , $arg : $ty )* ) -> $ret { $base::$method(self $( , $arg )* ) } )*}; } macro_rules! forward_ref { ($( Self :: $method:ident ( & self $( , $arg:ident : $ty:ty )* ) -> $ret:ty ; )*) => {$( #[inline] fn $method(self $( , $arg : $ty )* ) -> $ret { Self::$method(&self $( , $arg )* ) } )*}; } impl ComplexFloat for T where T: Float + FloatConst, { type Real = T; fn re(self) -> Self::Real { self } fn im(self) -> Self::Real { T::zero() } fn l1_norm(&self) -> Self::Real { self.abs() } fn arg(self) -> Self::Real { if self.is_nan() { self } else if self.is_sign_negative() { T::PI() } else { T::zero() } } fn powc(self, exp: Complex) -> Complex { Complex::new(self, T::zero()).powc(exp) } fn conj(self) -> Self { self } fn expf(self, base: Self::Real) -> Self { base.powf(self) } forward! { Float::is_normal(self) -> bool; Float::is_infinite(self) -> bool; Float::is_finite(self) -> bool; Float::is_nan(self) -> bool; Float::recip(self) -> Self; Float::powi(self, n: i32) -> Self; Float::powf(self, f: Self) -> Self; Float::sqrt(self) -> Self; Float::cbrt(self) -> Self; Float::exp(self) -> Self; Float::exp2(self) -> Self; Float::ln(self) -> Self; Float::log(self, base: Self) -> Self; Float::log2(self) -> Self; Float::log10(self) -> Self; Float::sin(self) -> Self; Float::cos(self) -> Self; Float::tan(self) -> Self; Float::asin(self) -> Self; Float::acos(self) -> Self; Float::atan(self) -> Self; Float::sinh(self) -> Self; Float::cosh(self) -> Self; Float::tanh(self) -> Self; Float::asinh(self) -> Self; Float::acosh(self) -> Self; Float::atanh(self) -> Self; Float::abs(self) -> Self; } } impl ComplexFloat for Complex { type Real = T; fn re(self) -> Self::Real { self.re } fn im(self) -> Self::Real { self.im } fn abs(self) -> Self::Real { self.norm() } fn recip(self) -> Self { self.finv() } // `Complex::l1_norm` uses `Signed::abs` to let it work // for integers too, but we can just use `Float::abs`. fn l1_norm(&self) -> Self::Real { self.re.abs() + self.im.abs() } // `Complex::is_*` methods use `T: FloatCore`, but we // have `T: Float` that can do them as well. fn is_nan(self) -> bool { self.re.is_nan() || self.im.is_nan() } fn is_infinite(self) -> bool { !self.is_nan() && (self.re.is_infinite() || self.im.is_infinite()) } fn is_finite(self) -> bool { self.re.is_finite() && self.im.is_finite() } fn is_normal(self) -> bool { self.re.is_normal() && self.im.is_normal() } forward! { Complex::arg(self) -> Self::Real; Complex::powc(self, exp: Complex) -> Complex; Complex::exp2(self) -> Self; Complex::log(self, base: Self::Real) -> Self; Complex::log2(self) -> Self; Complex::log10(self) -> Self; Complex::powf(self, f: Self::Real) -> Self; Complex::sqrt(self) -> Self; Complex::cbrt(self) -> Self; Complex::exp(self) -> Self; Complex::expf(self, base: Self::Real) -> Self; Complex::ln(self) -> Self; Complex::sin(self) -> Self; Complex::cos(self) -> Self; Complex::tan(self) -> Self; Complex::asin(self) -> Self; Complex::acos(self) -> Self; Complex::atan(self) -> Self; Complex::sinh(self) -> Self; Complex::cosh(self) -> Self; Complex::tanh(self) -> Self; Complex::asinh(self) -> Self; Complex::acosh(self) -> Self; Complex::atanh(self) -> Self; } forward_ref! { Self::powi(&self, n: i32) -> Self; Self::conj(&self) -> Self; } } #[cfg(test)] mod test { use crate::{ complex_float::ComplexFloat, test::{_0_0i, _0_1i, _1_0i, _1_1i, float::close}, Complex, }; use std::f64; // for constants before Rust 1.43. fn closef(a: f64, b: f64) -> bool { close_to_tolf(a, b, 1e-10) } fn close_to_tolf(a: f64, b: f64, tol: f64) -> bool { // returns true if a and b are reasonably close let close = (a == b) || (a - b).abs() < tol; if !close { println!("{:?} != {:?}", a, b); } close } #[test] fn test_exp2() { assert!(close(ComplexFloat::exp2(_0_0i), _1_0i)); assert!(closef(::exp2(0.), 1.)); } #[test] fn test_exp() { assert!(close(ComplexFloat::exp(_0_0i), _1_0i)); assert!(closef(ComplexFloat::exp(0.), 1.)); } #[test] fn test_powi() { assert!(close(ComplexFloat::powi(_0_1i, 4), _1_0i)); assert!(closef(ComplexFloat::powi(-1., 4), 1.)); } #[test] fn test_powz() { assert!(close(ComplexFloat::powc(_1_0i, _0_1i), _1_0i)); assert!(close(ComplexFloat::powc(1., _0_1i), _1_0i)); } #[test] fn test_log2() { assert!(close(ComplexFloat::log2(_1_0i), _0_0i)); assert!(closef(ComplexFloat::log2(1.), 0.)); } #[test] fn test_log10() { assert!(close(ComplexFloat::log10(_1_0i), _0_0i)); assert!(closef(ComplexFloat::log10(1.), 0.)); } #[test] fn test_conj() { assert_eq!(ComplexFloat::conj(_0_1i), Complex::new(0., -1.)); assert_eq!(ComplexFloat::conj(1.), 1.); } #[test] fn test_is_nan() { assert!(!ComplexFloat::is_nan(_1_0i)); assert!(!ComplexFloat::is_nan(1.)); assert!(ComplexFloat::is_nan(Complex::new(f64::NAN, f64::NAN))); assert!(ComplexFloat::is_nan(f64::NAN)); } #[test] fn test_is_infinite() { assert!(!ComplexFloat::is_infinite(_1_0i)); assert!(!ComplexFloat::is_infinite(1.)); assert!(ComplexFloat::is_infinite(Complex::new( f64::INFINITY, f64::INFINITY ))); assert!(ComplexFloat::is_infinite(f64::INFINITY)); } #[test] fn test_is_finite() { assert!(ComplexFloat::is_finite(_1_0i)); assert!(ComplexFloat::is_finite(1.)); assert!(!ComplexFloat::is_finite(Complex::new( f64::INFINITY, f64::INFINITY ))); assert!(!ComplexFloat::is_finite(f64::INFINITY)); } #[test] fn test_is_normal() { assert!(ComplexFloat::is_normal(_1_1i)); assert!(ComplexFloat::is_normal(1.)); assert!(!ComplexFloat::is_normal(Complex::new( f64::INFINITY, f64::INFINITY ))); assert!(!ComplexFloat::is_normal(f64::INFINITY)); } #[test] fn test_arg() { assert!(closef( ComplexFloat::arg(_0_1i), core::f64::consts::FRAC_PI_2 )); assert!(closef(ComplexFloat::arg(-1.), core::f64::consts::PI)); assert!(closef(ComplexFloat::arg(-0.), core::f64::consts::PI)); assert!(closef(ComplexFloat::arg(0.), 0.)); assert!(closef(ComplexFloat::arg(1.), 0.)); assert!(ComplexFloat::arg(f64::NAN).is_nan()); } } num-complex-0.4.6/src/crand.rs000064400000000000000000000076411046102023000143330ustar 00000000000000//! Rand implementations for complex numbers use crate::Complex; use num_traits::Num; use rand::distributions::Standard; use rand::prelude::*; impl Distribution> for Standard where T: Num + Clone, Standard: Distribution, { fn sample(&self, rng: &mut R) -> Complex { Complex::new(self.sample(rng), self.sample(rng)) } } /// A generic random value distribution for complex numbers. #[derive(Clone, Copy, Debug)] pub struct ComplexDistribution { re: Re, im: Im, } impl ComplexDistribution { /// Creates a complex distribution from independent /// distributions of the real and imaginary parts. pub fn new(re: Re, im: Im) -> Self { ComplexDistribution { re, im } } } impl Distribution> for ComplexDistribution where T: Num + Clone, Re: Distribution, Im: Distribution, { fn sample(&self, rng: &mut R) -> Complex { Complex::new(self.re.sample(rng), self.im.sample(rng)) } } #[cfg(test)] fn test_rng() -> impl RngCore { /// Simple `Rng` for testing without additional dependencies struct XorShiftStar { a: u64, } impl RngCore for XorShiftStar { fn next_u32(&mut self) -> u32 { self.next_u64() as u32 } fn next_u64(&mut self) -> u64 { // https://en.wikipedia.org/wiki/Xorshift#xorshift* self.a ^= self.a >> 12; self.a ^= self.a << 25; self.a ^= self.a >> 27; self.a.wrapping_mul(0x2545_F491_4F6C_DD1D) } fn fill_bytes(&mut self, dest: &mut [u8]) { for chunk in dest.chunks_mut(8) { let bytes = self.next_u64().to_le_bytes(); let slice = &bytes[..chunk.len()]; chunk.copy_from_slice(slice) } } fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand::Error> { self.fill_bytes(dest); Ok(()) } } XorShiftStar { a: 0x0123_4567_89AB_CDEF, } } #[test] fn standard_f64() { let mut rng = test_rng(); for _ in 0..100 { let c: Complex = rng.gen(); assert!(c.re >= 0.0 && c.re < 1.0); assert!(c.im >= 0.0 && c.im < 1.0); } } #[test] fn generic_standard_f64() { let mut rng = test_rng(); let dist = ComplexDistribution::new(Standard, Standard); for _ in 0..100 { let c: Complex = rng.sample(dist); assert!(c.re >= 0.0 && c.re < 1.0); assert!(c.im >= 0.0 && c.im < 1.0); } } #[test] fn generic_uniform_f64() { use rand::distributions::Uniform; let mut rng = test_rng(); let re = Uniform::new(-100.0, 0.0); let im = Uniform::new(0.0, 100.0); let dist = ComplexDistribution::new(re, im); for _ in 0..100 { // no type annotation required, since `Uniform` only produces one type. let c = rng.sample(dist); assert!(c.re >= -100.0 && c.re < 0.0); assert!(c.im >= 0.0 && c.im < 100.0); } } #[test] fn generic_mixed_f64() { use rand::distributions::Uniform; let mut rng = test_rng(); let re = Uniform::new(-100.0, 0.0); let dist = ComplexDistribution::new(re, Standard); for _ in 0..100 { // no type annotation required, since `Uniform` only produces one type. let c = rng.sample(dist); assert!(c.re >= -100.0 && c.re < 0.0); assert!(c.im >= 0.0 && c.im < 1.0); } } #[test] fn generic_uniform_i32() { use rand::distributions::Uniform; let mut rng = test_rng(); let re = Uniform::new(-100, 0); let im = Uniform::new(0, 100); let dist = ComplexDistribution::new(re, im); for _ in 0..100 { // no type annotation required, since `Uniform` only produces one type. let c = rng.sample(dist); assert!(c.re >= -100 && c.re < 0); assert!(c.im >= 0 && c.im < 100); } } num-complex-0.4.6/src/lib.rs000064400000000000000000002704471046102023000140200ustar 00000000000000// Copyright 2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Complex numbers. //! //! ## Compatibility //! //! The `num-complex` crate is tested for rustc 1.60 and greater. #![doc(html_root_url = "https://docs.rs/num-complex/0.4")] #![no_std] #[cfg(any(test, feature = "std"))] #[cfg_attr(test, macro_use)] extern crate std; use core::fmt; #[cfg(test)] use core::hash; use core::iter::{Product, Sum}; use core::ops::{Add, Div, Mul, Neg, Rem, Sub}; use core::str::FromStr; #[cfg(feature = "std")] use std::error::Error; use num_traits::{ConstOne, ConstZero, Inv, MulAdd, Num, One, Pow, Signed, Zero}; use num_traits::float::FloatCore; #[cfg(any(feature = "std", feature = "libm"))] use num_traits::float::{Float, FloatConst}; mod cast; mod pow; #[cfg(any(feature = "std", feature = "libm"))] mod complex_float; #[cfg(any(feature = "std", feature = "libm"))] pub use crate::complex_float::ComplexFloat; #[cfg(feature = "rand")] mod crand; #[cfg(feature = "rand")] pub use crate::crand::ComplexDistribution; // FIXME #1284: handle complex NaN & infinity etc. This // probably doesn't map to C's _Complex correctly. /// A complex number in Cartesian form. /// /// ## Representation and Foreign Function Interface Compatibility /// /// `Complex` is memory layout compatible with an array `[T; 2]`. /// /// Note that `Complex` where F is a floating point type is **only** memory /// layout compatible with C's complex types, **not** necessarily calling /// convention compatible. This means that for FFI you can only pass /// `Complex` behind a pointer, not as a value. /// /// ## Examples /// /// Example of extern function declaration. /// /// ``` /// use num_complex::Complex; /// use std::os::raw::c_int; /// /// extern "C" { /// fn zaxpy_(n: *const c_int, alpha: *const Complex, /// x: *const Complex, incx: *const c_int, /// y: *mut Complex, incy: *const c_int); /// } /// ``` #[derive(PartialEq, Eq, Copy, Clone, Hash, Debug, Default)] #[repr(C)] #[cfg_attr( feature = "rkyv", derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize) )] #[cfg_attr(feature = "rkyv", archive(as = "Complex"))] #[cfg_attr(feature = "bytecheck", derive(bytecheck::CheckBytes))] pub struct Complex { /// Real portion of the complex number pub re: T, /// Imaginary portion of the complex number pub im: T, } /// Alias for a [`Complex`] pub type Complex32 = Complex; /// Create a new [`Complex`] with arguments that can convert [`Into`]. /// /// ``` /// use num_complex::{c32, Complex32}; /// assert_eq!(c32(1u8, 2), Complex32::new(1.0, 2.0)); /// ``` /// /// Note: ambiguous integer literals in Rust will [default] to `i32`, which does **not** implement /// `Into`, so a call like `c32(1, 2)` will result in a type error. The example above uses a /// suffixed `1u8` to set its type, and then the `2` can be inferred as the same type. /// /// [default]: https://doc.rust-lang.org/reference/expressions/literal-expr.html#integer-literal-expressions #[inline] pub fn c32>(re: T, im: T) -> Complex32 { Complex::new(re.into(), im.into()) } /// Alias for a [`Complex`] pub type Complex64 = Complex; /// Create a new [`Complex`] with arguments that can convert [`Into`]. /// /// ``` /// use num_complex::{c64, Complex64}; /// assert_eq!(c64(1, 2), Complex64::new(1.0, 2.0)); /// ``` #[inline] pub fn c64>(re: T, im: T) -> Complex64 { Complex::new(re.into(), im.into()) } impl Complex { /// Create a new `Complex` #[inline] pub const fn new(re: T, im: T) -> Self { Complex { re, im } } } impl Complex { /// Returns the imaginary unit. /// /// See also [`Complex::I`]. #[inline] pub fn i() -> Self { Self::new(T::zero(), T::one()) } /// Returns the square of the norm (since `T` doesn't necessarily /// have a sqrt function), i.e. `re^2 + im^2`. #[inline] pub fn norm_sqr(&self) -> T { self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone() } /// Multiplies `self` by the scalar `t`. #[inline] pub fn scale(&self, t: T) -> Self { Self::new(self.re.clone() * t.clone(), self.im.clone() * t) } /// Divides `self` by the scalar `t`. #[inline] pub fn unscale(&self, t: T) -> Self { Self::new(self.re.clone() / t.clone(), self.im.clone() / t) } /// Raises `self` to an unsigned integer power. #[inline] pub fn powu(&self, exp: u32) -> Self { Pow::pow(self, exp) } } impl> Complex { /// Returns the complex conjugate. i.e. `re - i im` #[inline] pub fn conj(&self) -> Self { Self::new(self.re.clone(), -self.im.clone()) } /// Returns `1/self` #[inline] pub fn inv(&self) -> Self { let norm_sqr = self.norm_sqr(); Self::new( self.re.clone() / norm_sqr.clone(), -self.im.clone() / norm_sqr, ) } /// Raises `self` to a signed integer power. #[inline] pub fn powi(&self, exp: i32) -> Self { Pow::pow(self, exp) } } impl Complex { /// Returns the L1 norm `|re| + |im|` -- the [Manhattan distance] from the origin. /// /// [Manhattan distance]: https://en.wikipedia.org/wiki/Taxicab_geometry #[inline] pub fn l1_norm(&self) -> T { self.re.abs() + self.im.abs() } } #[cfg(any(feature = "std", feature = "libm"))] impl Complex { /// Create a new Complex with a given phase: `exp(i * phase)`. /// See [cis (mathematics)](https://en.wikipedia.org/wiki/Cis_(mathematics)). #[inline] pub fn cis(phase: T) -> Self { Self::new(phase.cos(), phase.sin()) } /// Calculate |self| #[inline] pub fn norm(self) -> T { self.re.hypot(self.im) } /// Calculate the principal Arg of self. #[inline] pub fn arg(self) -> T { self.im.atan2(self.re) } /// Convert to polar form (r, theta), such that /// `self = r * exp(i * theta)` #[inline] pub fn to_polar(self) -> (T, T) { (self.norm(), self.arg()) } /// Convert a polar representation into a complex number. #[inline] pub fn from_polar(r: T, theta: T) -> Self { Self::new(r * theta.cos(), r * theta.sin()) } /// Computes `e^(self)`, where `e` is the base of the natural logarithm. #[inline] pub fn exp(self) -> Self { // formula: e^(a + bi) = e^a (cos(b) + i*sin(b)) = from_polar(e^a, b) let Complex { re, mut im } = self; // Treat the corner cases +∞, -∞, and NaN if re.is_infinite() { if re < T::zero() { if !im.is_finite() { return Self::new(T::zero(), T::zero()); } } else if im == T::zero() || !im.is_finite() { if im.is_infinite() { im = T::nan(); } return Self::new(re, im); } } else if re.is_nan() && im == T::zero() { return self; } Self::from_polar(re.exp(), im) } /// Computes the principal value of natural logarithm of `self`. /// /// This function has one branch cut: /// /// * `(-∞, 0]`, continuous from above. /// /// The branch satisfies `-π ≤ arg(ln(z)) ≤ π`. #[inline] pub fn ln(self) -> Self { // formula: ln(z) = ln|z| + i*arg(z) let (r, theta) = self.to_polar(); Self::new(r.ln(), theta) } /// Computes the principal value of the square root of `self`. /// /// This function has one branch cut: /// /// * `(-∞, 0)`, continuous from above. /// /// The branch satisfies `-π/2 ≤ arg(sqrt(z)) ≤ π/2`. #[inline] pub fn sqrt(self) -> Self { if self.im.is_zero() { if self.re.is_sign_positive() { // simple positive real √r, and copy `im` for its sign Self::new(self.re.sqrt(), self.im) } else { // √(r e^(iπ)) = √r e^(iπ/2) = i√r // √(r e^(-iπ)) = √r e^(-iπ/2) = -i√r let re = T::zero(); let im = (-self.re).sqrt(); if self.im.is_sign_positive() { Self::new(re, im) } else { Self::new(re, -im) } } } else if self.re.is_zero() { // √(r e^(iπ/2)) = √r e^(iπ/4) = √(r/2) + i√(r/2) // √(r e^(-iπ/2)) = √r e^(-iπ/4) = √(r/2) - i√(r/2) let one = T::one(); let two = one + one; let x = (self.im.abs() / two).sqrt(); if self.im.is_sign_positive() { Self::new(x, x) } else { Self::new(x, -x) } } else { // formula: sqrt(r e^(it)) = sqrt(r) e^(it/2) let one = T::one(); let two = one + one; let (r, theta) = self.to_polar(); Self::from_polar(r.sqrt(), theta / two) } } /// Computes the principal value of the cube root of `self`. /// /// This function has one branch cut: /// /// * `(-∞, 0)`, continuous from above. /// /// The branch satisfies `-π/3 ≤ arg(cbrt(z)) ≤ π/3`. /// /// Note that this does not match the usual result for the cube root of /// negative real numbers. For example, the real cube root of `-8` is `-2`, /// but the principal complex cube root of `-8` is `1 + i√3`. #[inline] pub fn cbrt(self) -> Self { if self.im.is_zero() { if self.re.is_sign_positive() { // simple positive real ∛r, and copy `im` for its sign Self::new(self.re.cbrt(), self.im) } else { // ∛(r e^(iπ)) = ∛r e^(iπ/3) = ∛r/2 + i∛r√3/2 // ∛(r e^(-iπ)) = ∛r e^(-iπ/3) = ∛r/2 - i∛r√3/2 let one = T::one(); let two = one + one; let three = two + one; let re = (-self.re).cbrt() / two; let im = three.sqrt() * re; if self.im.is_sign_positive() { Self::new(re, im) } else { Self::new(re, -im) } } } else if self.re.is_zero() { // ∛(r e^(iπ/2)) = ∛r e^(iπ/6) = ∛r√3/2 + i∛r/2 // ∛(r e^(-iπ/2)) = ∛r e^(-iπ/6) = ∛r√3/2 - i∛r/2 let one = T::one(); let two = one + one; let three = two + one; let im = self.im.abs().cbrt() / two; let re = three.sqrt() * im; if self.im.is_sign_positive() { Self::new(re, im) } else { Self::new(re, -im) } } else { // formula: cbrt(r e^(it)) = cbrt(r) e^(it/3) let one = T::one(); let three = one + one + one; let (r, theta) = self.to_polar(); Self::from_polar(r.cbrt(), theta / three) } } /// Raises `self` to a floating point power. #[inline] pub fn powf(self, exp: T) -> Self { if exp.is_zero() { return Self::one(); } // formula: x^y = (ρ e^(i θ))^y = ρ^y e^(i θ y) // = from_polar(ρ^y, θ y) let (r, theta) = self.to_polar(); Self::from_polar(r.powf(exp), theta * exp) } /// Returns the logarithm of `self` with respect to an arbitrary base. #[inline] pub fn log(self, base: T) -> Self { // formula: log_y(x) = log_y(ρ e^(i θ)) // = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y) // = log_y(ρ) + i θ / ln(y) let (r, theta) = self.to_polar(); Self::new(r.log(base), theta / base.ln()) } /// Raises `self` to a complex power. #[inline] pub fn powc(self, exp: Self) -> Self { if exp.is_zero() { return Self::one(); } // formula: x^y = exp(y * ln(x)) (exp * self.ln()).exp() } /// Raises a floating point number to the complex power `self`. #[inline] pub fn expf(self, base: T) -> Self { // formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i) // = from_polar(x^a, b ln(x)) Self::from_polar(base.powf(self.re), self.im * base.ln()) } /// Computes the sine of `self`. #[inline] pub fn sin(self) -> Self { // formula: sin(a + bi) = sin(a)cosh(b) + i*cos(a)sinh(b) Self::new( self.re.sin() * self.im.cosh(), self.re.cos() * self.im.sinh(), ) } /// Computes the cosine of `self`. #[inline] pub fn cos(self) -> Self { // formula: cos(a + bi) = cos(a)cosh(b) - i*sin(a)sinh(b) Self::new( self.re.cos() * self.im.cosh(), -self.re.sin() * self.im.sinh(), ) } /// Computes the tangent of `self`. #[inline] pub fn tan(self) -> Self { // formula: tan(a + bi) = (sin(2a) + i*sinh(2b))/(cos(2a) + cosh(2b)) let (two_re, two_im) = (self.re + self.re, self.im + self.im); Self::new(two_re.sin(), two_im.sinh()).unscale(two_re.cos() + two_im.cosh()) } /// Computes the principal value of the inverse sine of `self`. /// /// This function has two branch cuts: /// /// * `(-∞, -1)`, continuous from above. /// * `(1, ∞)`, continuous from below. /// /// The branch satisfies `-π/2 ≤ Re(asin(z)) ≤ π/2`. #[inline] pub fn asin(self) -> Self { // formula: arcsin(z) = -i ln(sqrt(1-z^2) + iz) let i = Self::i(); -i * ((Self::one() - self * self).sqrt() + i * self).ln() } /// Computes the principal value of the inverse cosine of `self`. /// /// This function has two branch cuts: /// /// * `(-∞, -1)`, continuous from above. /// * `(1, ∞)`, continuous from below. /// /// The branch satisfies `0 ≤ Re(acos(z)) ≤ π`. #[inline] pub fn acos(self) -> Self { // formula: arccos(z) = -i ln(i sqrt(1-z^2) + z) let i = Self::i(); -i * (i * (Self::one() - self * self).sqrt() + self).ln() } /// Computes the principal value of the inverse tangent of `self`. /// /// This function has two branch cuts: /// /// * `(-∞i, -i]`, continuous from the left. /// * `[i, ∞i)`, continuous from the right. /// /// The branch satisfies `-π/2 ≤ Re(atan(z)) ≤ π/2`. #[inline] pub fn atan(self) -> Self { // formula: arctan(z) = (ln(1+iz) - ln(1-iz))/(2i) let i = Self::i(); let one = Self::one(); let two = one + one; if self == i { return Self::new(T::zero(), T::infinity()); } else if self == -i { return Self::new(T::zero(), -T::infinity()); } ((one + i * self).ln() - (one - i * self).ln()) / (two * i) } /// Computes the hyperbolic sine of `self`. #[inline] pub fn sinh(self) -> Self { // formula: sinh(a + bi) = sinh(a)cos(b) + i*cosh(a)sin(b) Self::new( self.re.sinh() * self.im.cos(), self.re.cosh() * self.im.sin(), ) } /// Computes the hyperbolic cosine of `self`. #[inline] pub fn cosh(self) -> Self { // formula: cosh(a + bi) = cosh(a)cos(b) + i*sinh(a)sin(b) Self::new( self.re.cosh() * self.im.cos(), self.re.sinh() * self.im.sin(), ) } /// Computes the hyperbolic tangent of `self`. #[inline] pub fn tanh(self) -> Self { // formula: tanh(a + bi) = (sinh(2a) + i*sin(2b))/(cosh(2a) + cos(2b)) let (two_re, two_im) = (self.re + self.re, self.im + self.im); Self::new(two_re.sinh(), two_im.sin()).unscale(two_re.cosh() + two_im.cos()) } /// Computes the principal value of inverse hyperbolic sine of `self`. /// /// This function has two branch cuts: /// /// * `(-∞i, -i)`, continuous from the left. /// * `(i, ∞i)`, continuous from the right. /// /// The branch satisfies `-π/2 ≤ Im(asinh(z)) ≤ π/2`. #[inline] pub fn asinh(self) -> Self { // formula: arcsinh(z) = ln(z + sqrt(1+z^2)) let one = Self::one(); (self + (one + self * self).sqrt()).ln() } /// Computes the principal value of inverse hyperbolic cosine of `self`. /// /// This function has one branch cut: /// /// * `(-∞, 1)`, continuous from above. /// /// The branch satisfies `-π ≤ Im(acosh(z)) ≤ π` and `0 ≤ Re(acosh(z)) < ∞`. #[inline] pub fn acosh(self) -> Self { // formula: arccosh(z) = 2 ln(sqrt((z+1)/2) + sqrt((z-1)/2)) let one = Self::one(); let two = one + one; two * (((self + one) / two).sqrt() + ((self - one) / two).sqrt()).ln() } /// Computes the principal value of inverse hyperbolic tangent of `self`. /// /// This function has two branch cuts: /// /// * `(-∞, -1]`, continuous from above. /// * `[1, ∞)`, continuous from below. /// /// The branch satisfies `-π/2 ≤ Im(atanh(z)) ≤ π/2`. #[inline] pub fn atanh(self) -> Self { // formula: arctanh(z) = (ln(1+z) - ln(1-z))/2 let one = Self::one(); let two = one + one; if self == one { return Self::new(T::infinity(), T::zero()); } else if self == -one { return Self::new(-T::infinity(), T::zero()); } ((one + self).ln() - (one - self).ln()) / two } /// Returns `1/self` using floating-point operations. /// /// This may be more accurate than the generic `self.inv()` in cases /// where `self.norm_sqr()` would overflow to ∞ or underflow to 0. /// /// # Examples /// /// ``` /// use num_complex::Complex64; /// let c = Complex64::new(1e300, 1e300); /// /// // The generic `inv()` will overflow. /// assert!(!c.inv().is_normal()); /// /// // But we can do better for `Float` types. /// let inv = c.finv(); /// assert!(inv.is_normal()); /// println!("{:e}", inv); /// /// let expected = Complex64::new(5e-301, -5e-301); /// assert!((inv - expected).norm() < 1e-315); /// ``` #[inline] pub fn finv(self) -> Complex { let norm = self.norm(); self.conj() / norm / norm } /// Returns `self/other` using floating-point operations. /// /// This may be more accurate than the generic `Div` implementation in cases /// where `other.norm_sqr()` would overflow to ∞ or underflow to 0. /// /// # Examples /// /// ``` /// use num_complex::Complex64; /// let a = Complex64::new(2.0, 3.0); /// let b = Complex64::new(1e300, 1e300); /// /// // Generic division will overflow. /// assert!(!(a / b).is_normal()); /// /// // But we can do better for `Float` types. /// let quotient = a.fdiv(b); /// assert!(quotient.is_normal()); /// println!("{:e}", quotient); /// /// let expected = Complex64::new(2.5e-300, 5e-301); /// assert!((quotient - expected).norm() < 1e-315); /// ``` #[inline] pub fn fdiv(self, other: Complex) -> Complex { self * other.finv() } } #[cfg(any(feature = "std", feature = "libm"))] impl Complex { /// Computes `2^(self)`. #[inline] pub fn exp2(self) -> Self { // formula: 2^(a + bi) = 2^a (cos(b*log2) + i*sin(b*log2)) // = from_polar(2^a, b*log2) Self::from_polar(self.re.exp2(), self.im * T::LN_2()) } /// Computes the principal value of log base 2 of `self`. #[inline] pub fn log2(self) -> Self { Self::ln(self) / T::LN_2() } /// Computes the principal value of log base 10 of `self`. #[inline] pub fn log10(self) -> Self { Self::ln(self) / T::LN_10() } } impl Complex { /// Checks if the given complex number is NaN #[inline] pub fn is_nan(self) -> bool { self.re.is_nan() || self.im.is_nan() } /// Checks if the given complex number is infinite #[inline] pub fn is_infinite(self) -> bool { !self.is_nan() && (self.re.is_infinite() || self.im.is_infinite()) } /// Checks if the given complex number is finite #[inline] pub fn is_finite(self) -> bool { self.re.is_finite() && self.im.is_finite() } /// Checks if the given complex number is normal #[inline] pub fn is_normal(self) -> bool { self.re.is_normal() && self.im.is_normal() } } // Safety: `Complex` is `repr(C)` and contains only instances of `T`, so we // can guarantee it contains no *added* padding. Thus, if `T: Zeroable`, // `Complex` is also `Zeroable` #[cfg(feature = "bytemuck")] unsafe impl bytemuck::Zeroable for Complex {} // Safety: `Complex` is `repr(C)` and contains only instances of `T`, so we // can guarantee it contains no *added* padding. Thus, if `T: Pod`, // `Complex` is also `Pod` #[cfg(feature = "bytemuck")] unsafe impl bytemuck::Pod for Complex {} impl From for Complex { #[inline] fn from(re: T) -> Self { Self::new(re, T::zero()) } } impl<'a, T: Clone + Num> From<&'a T> for Complex { #[inline] fn from(re: &T) -> Self { From::from(re.clone()) } } macro_rules! forward_ref_ref_binop { (impl $imp:ident, $method:ident) => { impl<'a, 'b, T: Clone + Num> $imp<&'b Complex> for &'a Complex { type Output = Complex; #[inline] fn $method(self, other: &Complex) -> Self::Output { self.clone().$method(other.clone()) } } }; } macro_rules! forward_ref_val_binop { (impl $imp:ident, $method:ident) => { impl<'a, T: Clone + Num> $imp> for &'a Complex { type Output = Complex; #[inline] fn $method(self, other: Complex) -> Self::Output { self.clone().$method(other) } } }; } macro_rules! forward_val_ref_binop { (impl $imp:ident, $method:ident) => { impl<'a, T: Clone + Num> $imp<&'a Complex> for Complex { type Output = Complex; #[inline] fn $method(self, other: &Complex) -> Self::Output { self.$method(other.clone()) } } }; } macro_rules! forward_all_binop { (impl $imp:ident, $method:ident) => { forward_ref_ref_binop!(impl $imp, $method); forward_ref_val_binop!(impl $imp, $method); forward_val_ref_binop!(impl $imp, $method); }; } // arithmetic forward_all_binop!(impl Add, add); // (a + i b) + (c + i d) == (a + c) + i (b + d) impl Add> for Complex { type Output = Self; #[inline] fn add(self, other: Self) -> Self::Output { Self::Output::new(self.re + other.re, self.im + other.im) } } forward_all_binop!(impl Sub, sub); // (a + i b) - (c + i d) == (a - c) + i (b - d) impl Sub> for Complex { type Output = Self; #[inline] fn sub(self, other: Self) -> Self::Output { Self::Output::new(self.re - other.re, self.im - other.im) } } forward_all_binop!(impl Mul, mul); // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c) impl Mul> for Complex { type Output = Self; #[inline] fn mul(self, other: Self) -> Self::Output { let re = self.re.clone() * other.re.clone() - self.im.clone() * other.im.clone(); let im = self.re * other.im + self.im * other.re; Self::Output::new(re, im) } } // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (a*d + (b*c + f)) impl> MulAdd> for Complex { type Output = Complex; #[inline] fn mul_add(self, other: Complex, add: Complex) -> Complex { let re = self.re.clone().mul_add(other.re.clone(), add.re) - (self.im.clone() * other.im.clone()); // FIXME: use mulsub when available in rust let im = self.re.mul_add(other.im, self.im.mul_add(other.re, add.im)); Complex::new(re, im) } } impl<'a, 'b, T: Clone + Num + MulAdd> MulAdd<&'b Complex> for &'a Complex { type Output = Complex; #[inline] fn mul_add(self, other: &Complex, add: &Complex) -> Complex { self.clone().mul_add(other.clone(), add.clone()) } } forward_all_binop!(impl Div, div); // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d) // == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)] impl Div> for Complex { type Output = Self; #[inline] fn div(self, other: Self) -> Self::Output { let norm_sqr = other.norm_sqr(); let re = self.re.clone() * other.re.clone() + self.im.clone() * other.im.clone(); let im = self.im * other.re - self.re * other.im; Self::Output::new(re / norm_sqr.clone(), im / norm_sqr) } } forward_all_binop!(impl Rem, rem); impl Complex { /// Find the gaussian integer corresponding to the true ratio rounded towards zero. fn div_trunc(&self, divisor: &Self) -> Self { let Complex { re, im } = self / divisor; Complex::new(re.clone() - re % T::one(), im.clone() - im % T::one()) } } impl Rem> for Complex { type Output = Self; #[inline] fn rem(self, modulus: Self) -> Self::Output { let gaussian = self.div_trunc(&modulus); self - modulus * gaussian } } // Op Assign mod opassign { use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign}; use num_traits::{MulAddAssign, NumAssign}; use crate::Complex; impl AddAssign for Complex { fn add_assign(&mut self, other: Self) { self.re += other.re; self.im += other.im; } } impl SubAssign for Complex { fn sub_assign(&mut self, other: Self) { self.re -= other.re; self.im -= other.im; } } // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c) impl MulAssign for Complex { fn mul_assign(&mut self, other: Self) { let a = self.re.clone(); self.re *= other.re.clone(); self.re -= self.im.clone() * other.im.clone(); self.im *= other.re; self.im += a * other.im; } } // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (b*c + (a*d + f)) impl MulAddAssign for Complex { fn mul_add_assign(&mut self, other: Complex, add: Complex) { let a = self.re.clone(); self.re.mul_add_assign(other.re.clone(), add.re); // (a*c + e) self.re -= self.im.clone() * other.im.clone(); // ((a*c + e) - b*d) let mut adf = a; adf.mul_add_assign(other.im, add.im); // (a*d + f) self.im.mul_add_assign(other.re, adf); // (b*c + (a*d + f)) } } impl<'a, 'b, T: Clone + NumAssign + MulAddAssign> MulAddAssign<&'a Complex, &'b Complex> for Complex { fn mul_add_assign(&mut self, other: &Complex, add: &Complex) { self.mul_add_assign(other.clone(), add.clone()); } } // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d) // == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)] impl DivAssign for Complex { fn div_assign(&mut self, other: Self) { let a = self.re.clone(); let norm_sqr = other.norm_sqr(); self.re *= other.re.clone(); self.re += self.im.clone() * other.im.clone(); self.re /= norm_sqr.clone(); self.im *= other.re; self.im -= a * other.im; self.im /= norm_sqr; } } impl RemAssign for Complex { fn rem_assign(&mut self, modulus: Self) { let gaussian = self.div_trunc(&modulus); *self -= modulus * gaussian; } } impl AddAssign for Complex { fn add_assign(&mut self, other: T) { self.re += other; } } impl SubAssign for Complex { fn sub_assign(&mut self, other: T) { self.re -= other; } } impl MulAssign for Complex { fn mul_assign(&mut self, other: T) { self.re *= other.clone(); self.im *= other; } } impl DivAssign for Complex { fn div_assign(&mut self, other: T) { self.re /= other.clone(); self.im /= other; } } impl RemAssign for Complex { fn rem_assign(&mut self, other: T) { self.re %= other.clone(); self.im %= other; } } macro_rules! forward_op_assign { (impl $imp:ident, $method:ident) => { impl<'a, T: Clone + NumAssign> $imp<&'a Complex> for Complex { #[inline] fn $method(&mut self, other: &Self) { self.$method(other.clone()) } } impl<'a, T: Clone + NumAssign> $imp<&'a T> for Complex { #[inline] fn $method(&mut self, other: &T) { self.$method(other.clone()) } } }; } forward_op_assign!(impl AddAssign, add_assign); forward_op_assign!(impl SubAssign, sub_assign); forward_op_assign!(impl MulAssign, mul_assign); forward_op_assign!(impl DivAssign, div_assign); forward_op_assign!(impl RemAssign, rem_assign); } impl> Neg for Complex { type Output = Self; #[inline] fn neg(self) -> Self::Output { Self::Output::new(-self.re, -self.im) } } impl<'a, T: Clone + Num + Neg> Neg for &'a Complex { type Output = Complex; #[inline] fn neg(self) -> Self::Output { -self.clone() } } impl> Inv for Complex { type Output = Self; #[inline] fn inv(self) -> Self::Output { Complex::inv(&self) } } impl<'a, T: Clone + Num + Neg> Inv for &'a Complex { type Output = Complex; #[inline] fn inv(self) -> Self::Output { Complex::inv(self) } } macro_rules! real_arithmetic { (@forward $imp:ident::$method:ident for $($real:ident),*) => ( impl<'a, T: Clone + Num> $imp<&'a T> for Complex { type Output = Complex; #[inline] fn $method(self, other: &T) -> Self::Output { self.$method(other.clone()) } } impl<'a, T: Clone + Num> $imp for &'a Complex { type Output = Complex; #[inline] fn $method(self, other: T) -> Self::Output { self.clone().$method(other) } } impl<'a, 'b, T: Clone + Num> $imp<&'a T> for &'b Complex { type Output = Complex; #[inline] fn $method(self, other: &T) -> Self::Output { self.clone().$method(other.clone()) } } $( impl<'a> $imp<&'a Complex<$real>> for $real { type Output = Complex<$real>; #[inline] fn $method(self, other: &Complex<$real>) -> Complex<$real> { self.$method(other.clone()) } } impl<'a> $imp> for &'a $real { type Output = Complex<$real>; #[inline] fn $method(self, other: Complex<$real>) -> Complex<$real> { self.clone().$method(other) } } impl<'a, 'b> $imp<&'a Complex<$real>> for &'b $real { type Output = Complex<$real>; #[inline] fn $method(self, other: &Complex<$real>) -> Complex<$real> { self.clone().$method(other.clone()) } } )* ); ($($real:ident),*) => ( real_arithmetic!(@forward Add::add for $($real),*); real_arithmetic!(@forward Sub::sub for $($real),*); real_arithmetic!(@forward Mul::mul for $($real),*); real_arithmetic!(@forward Div::div for $($real),*); real_arithmetic!(@forward Rem::rem for $($real),*); $( impl Add> for $real { type Output = Complex<$real>; #[inline] fn add(self, other: Complex<$real>) -> Self::Output { Self::Output::new(self + other.re, other.im) } } impl Sub> for $real { type Output = Complex<$real>; #[inline] fn sub(self, other: Complex<$real>) -> Self::Output { Self::Output::new(self - other.re, $real::zero() - other.im) } } impl Mul> for $real { type Output = Complex<$real>; #[inline] fn mul(self, other: Complex<$real>) -> Self::Output { Self::Output::new(self * other.re, self * other.im) } } impl Div> for $real { type Output = Complex<$real>; #[inline] fn div(self, other: Complex<$real>) -> Self::Output { // a / (c + i d) == [a * (c - i d)] / (c*c + d*d) let norm_sqr = other.norm_sqr(); Self::Output::new(self * other.re / norm_sqr.clone(), $real::zero() - self * other.im / norm_sqr) } } impl Rem> for $real { type Output = Complex<$real>; #[inline] fn rem(self, other: Complex<$real>) -> Self::Output { Self::Output::new(self, Self::zero()) % other } } )* ); } impl Add for Complex { type Output = Complex; #[inline] fn add(self, other: T) -> Self::Output { Self::Output::new(self.re + other, self.im) } } impl Sub for Complex { type Output = Complex; #[inline] fn sub(self, other: T) -> Self::Output { Self::Output::new(self.re - other, self.im) } } impl Mul for Complex { type Output = Complex; #[inline] fn mul(self, other: T) -> Self::Output { Self::Output::new(self.re * other.clone(), self.im * other) } } impl Div for Complex { type Output = Self; #[inline] fn div(self, other: T) -> Self::Output { Self::Output::new(self.re / other.clone(), self.im / other) } } impl Rem for Complex { type Output = Complex; #[inline] fn rem(self, other: T) -> Self::Output { Self::Output::new(self.re % other.clone(), self.im % other) } } real_arithmetic!(usize, u8, u16, u32, u64, u128, isize, i8, i16, i32, i64, i128, f32, f64); // constants impl Complex { /// A constant `Complex` 0. pub const ZERO: Self = Self::new(T::ZERO, T::ZERO); } impl ConstZero for Complex { const ZERO: Self = Self::ZERO; } impl Zero for Complex { #[inline] fn zero() -> Self { Self::new(Zero::zero(), Zero::zero()) } #[inline] fn is_zero(&self) -> bool { self.re.is_zero() && self.im.is_zero() } #[inline] fn set_zero(&mut self) { self.re.set_zero(); self.im.set_zero(); } } impl Complex { /// A constant `Complex` 1. pub const ONE: Self = Self::new(T::ONE, T::ZERO); /// A constant `Complex` _i_, the imaginary unit. pub const I: Self = Self::new(T::ZERO, T::ONE); } impl ConstOne for Complex { const ONE: Self = Self::ONE; } impl One for Complex { #[inline] fn one() -> Self { Self::new(One::one(), Zero::zero()) } #[inline] fn is_one(&self) -> bool { self.re.is_one() && self.im.is_zero() } #[inline] fn set_one(&mut self) { self.re.set_one(); self.im.set_zero(); } } macro_rules! write_complex { ($f:ident, $t:expr, $prefix:expr, $re:expr, $im:expr, $T:ident) => {{ let abs_re = if $re < Zero::zero() { $T::zero() - $re.clone() } else { $re.clone() }; let abs_im = if $im < Zero::zero() { $T::zero() - $im.clone() } else { $im.clone() }; return if let Some(prec) = $f.precision() { fmt_re_im( $f, $re < $T::zero(), $im < $T::zero(), format_args!(concat!("{:.1$", $t, "}"), abs_re, prec), format_args!(concat!("{:.1$", $t, "}"), abs_im, prec), ) } else { fmt_re_im( $f, $re < $T::zero(), $im < $T::zero(), format_args!(concat!("{:", $t, "}"), abs_re), format_args!(concat!("{:", $t, "}"), abs_im), ) }; fn fmt_re_im( f: &mut fmt::Formatter<'_>, re_neg: bool, im_neg: bool, real: fmt::Arguments<'_>, imag: fmt::Arguments<'_>, ) -> fmt::Result { let prefix = if f.alternate() { $prefix } else { "" }; let sign = if re_neg { "-" } else if f.sign_plus() { "+" } else { "" }; if im_neg { fmt_complex( f, format_args!( "{}{pre}{re}-{pre}{im}i", sign, re = real, im = imag, pre = prefix ), ) } else { fmt_complex( f, format_args!( "{}{pre}{re}+{pre}{im}i", sign, re = real, im = imag, pre = prefix ), ) } } #[cfg(feature = "std")] // Currently, we can only apply width using an intermediate `String` (and thus `std`) fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result { use std::string::ToString; if let Some(width) = f.width() { write!(f, "{0: >1$}", complex.to_string(), width) } else { write!(f, "{}", complex) } } #[cfg(not(feature = "std"))] fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result { write!(f, "{}", complex) } }}; } // string conversions impl fmt::Display for Complex where T: fmt::Display + Num + PartialOrd + Clone, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write_complex!(f, "", "", self.re, self.im, T) } } impl fmt::LowerExp for Complex where T: fmt::LowerExp + Num + PartialOrd + Clone, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write_complex!(f, "e", "", self.re, self.im, T) } } impl fmt::UpperExp for Complex where T: fmt::UpperExp + Num + PartialOrd + Clone, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write_complex!(f, "E", "", self.re, self.im, T) } } impl fmt::LowerHex for Complex where T: fmt::LowerHex + Num + PartialOrd + Clone, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write_complex!(f, "x", "0x", self.re, self.im, T) } } impl fmt::UpperHex for Complex where T: fmt::UpperHex + Num + PartialOrd + Clone, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write_complex!(f, "X", "0x", self.re, self.im, T) } } impl fmt::Octal for Complex where T: fmt::Octal + Num + PartialOrd + Clone, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write_complex!(f, "o", "0o", self.re, self.im, T) } } impl fmt::Binary for Complex where T: fmt::Binary + Num + PartialOrd + Clone, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write_complex!(f, "b", "0b", self.re, self.im, T) } } fn from_str_generic(s: &str, from: F) -> Result, ParseComplexError> where F: Fn(&str) -> Result, T: Clone + Num, { let imag = match s.rfind('j') { None => 'i', _ => 'j', }; let mut neg_b = false; let mut a = s; let mut b = ""; for (i, w) in s.as_bytes().windows(2).enumerate() { let p = w[0]; let c = w[1]; // ignore '+'/'-' if part of an exponent if (c == b'+' || c == b'-') && !(p == b'e' || p == b'E') { // trim whitespace around the separator a = s[..=i].trim_end_matches(char::is_whitespace); b = s[i + 2..].trim_start_matches(char::is_whitespace); neg_b = c == b'-'; if b.is_empty() || (neg_b && b.starts_with('-')) { return Err(ParseComplexError::expr_error()); } break; } } // split off real and imaginary parts if b.is_empty() { // input was either pure real or pure imaginary b = if a.ends_with(imag) { "0" } else { "0i" }; } let re; let neg_re; let im; let neg_im; if a.ends_with(imag) { im = a; neg_im = false; re = b; neg_re = neg_b; } else if b.ends_with(imag) { re = a; neg_re = false; im = b; neg_im = neg_b; } else { return Err(ParseComplexError::expr_error()); } // parse re let re = from(re).map_err(ParseComplexError::from_error)?; let re = if neg_re { T::zero() - re } else { re }; // pop imaginary unit off let mut im = &im[..im.len() - 1]; // handle im == "i" or im == "-i" if im.is_empty() || im == "+" { im = "1"; } else if im == "-" { im = "-1"; } // parse im let im = from(im).map_err(ParseComplexError::from_error)?; let im = if neg_im { T::zero() - im } else { im }; Ok(Complex::new(re, im)) } impl FromStr for Complex where T: FromStr + Num + Clone, { type Err = ParseComplexError; /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T` fn from_str(s: &str) -> Result { from_str_generic(s, T::from_str) } } impl Num for Complex { type FromStrRadixErr = ParseComplexError; /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T` /// /// `radix` must be <= 18; larger radix would include *i* and *j* as digits, /// which cannot be supported. /// /// The conversion returns an error if 18 <= radix <= 36; it panics if radix > 36. /// /// The elements of `T` are parsed using `Num::from_str_radix` too, and errors /// (or panics) from that are reflected here as well. fn from_str_radix(s: &str, radix: u32) -> Result { assert!( radix <= 36, "from_str_radix: radix is too high (maximum 36)" ); // larger radix would include 'i' and 'j' as digits, which cannot be supported if radix > 18 { return Err(ParseComplexError::unsupported_radix()); } from_str_generic(s, |x| -> Result { T::from_str_radix(x, radix) }) } } impl Sum for Complex { fn sum(iter: I) -> Self where I: Iterator, { iter.fold(Self::zero(), |acc, c| acc + c) } } impl<'a, T: 'a + Num + Clone> Sum<&'a Complex> for Complex { fn sum(iter: I) -> Self where I: Iterator>, { iter.fold(Self::zero(), |acc, c| acc + c) } } impl Product for Complex { fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::one(), |acc, c| acc * c) } } impl<'a, T: 'a + Num + Clone> Product<&'a Complex> for Complex { fn product(iter: I) -> Self where I: Iterator>, { iter.fold(Self::one(), |acc, c| acc * c) } } #[cfg(feature = "serde")] impl serde::Serialize for Complex where T: serde::Serialize, { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { (&self.re, &self.im).serialize(serializer) } } #[cfg(feature = "serde")] impl<'de, T> serde::Deserialize<'de> for Complex where T: serde::Deserialize<'de>, { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { let (re, im) = serde::Deserialize::deserialize(deserializer)?; Ok(Self::new(re, im)) } } #[derive(Debug, PartialEq)] pub struct ParseComplexError { kind: ComplexErrorKind, } #[derive(Debug, PartialEq)] enum ComplexErrorKind { ParseError(E), ExprError, UnsupportedRadix, } impl ParseComplexError { fn expr_error() -> Self { ParseComplexError { kind: ComplexErrorKind::ExprError, } } fn unsupported_radix() -> Self { ParseComplexError { kind: ComplexErrorKind::UnsupportedRadix, } } fn from_error(error: E) -> Self { ParseComplexError { kind: ComplexErrorKind::ParseError(error), } } } #[cfg(feature = "std")] impl Error for ParseComplexError { #[allow(deprecated)] fn description(&self) -> &str { match self.kind { ComplexErrorKind::ParseError(ref e) => e.description(), ComplexErrorKind::ExprError => "invalid or unsupported complex expression", ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion", } } } impl fmt::Display for ParseComplexError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self.kind { ComplexErrorKind::ParseError(ref e) => e.fmt(f), ComplexErrorKind::ExprError => "invalid or unsupported complex expression".fmt(f), ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion".fmt(f), } } } #[cfg(test)] fn hash(x: &T) -> u64 { use std::collections::hash_map::RandomState; use std::hash::{BuildHasher, Hasher}; let mut hasher = ::Hasher::new(); x.hash(&mut hasher); hasher.finish() } #[cfg(test)] pub(crate) mod test { #![allow(non_upper_case_globals)] use super::{Complex, Complex64}; use super::{ComplexErrorKind, ParseComplexError}; use core::f64; use core::str::FromStr; use std::string::{String, ToString}; use num_traits::{Num, One, Zero}; pub const _0_0i: Complex64 = Complex::new(0.0, 0.0); pub const _1_0i: Complex64 = Complex::new(1.0, 0.0); pub const _1_1i: Complex64 = Complex::new(1.0, 1.0); pub const _0_1i: Complex64 = Complex::new(0.0, 1.0); pub const _neg1_1i: Complex64 = Complex::new(-1.0, 1.0); pub const _05_05i: Complex64 = Complex::new(0.5, 0.5); pub const all_consts: [Complex64; 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i]; pub const _4_2i: Complex64 = Complex::new(4.0, 2.0); pub const _1_infi: Complex64 = Complex::new(1.0, f64::INFINITY); pub const _neg1_infi: Complex64 = Complex::new(-1.0, f64::INFINITY); pub const _1_nani: Complex64 = Complex::new(1.0, f64::NAN); pub const _neg1_nani: Complex64 = Complex::new(-1.0, f64::NAN); pub const _inf_0i: Complex64 = Complex::new(f64::INFINITY, 0.0); pub const _neginf_1i: Complex64 = Complex::new(f64::NEG_INFINITY, 1.0); pub const _neginf_neg1i: Complex64 = Complex::new(f64::NEG_INFINITY, -1.0); pub const _inf_1i: Complex64 = Complex::new(f64::INFINITY, 1.0); pub const _inf_neg1i: Complex64 = Complex::new(f64::INFINITY, -1.0); pub const _neginf_infi: Complex64 = Complex::new(f64::NEG_INFINITY, f64::INFINITY); pub const _inf_infi: Complex64 = Complex::new(f64::INFINITY, f64::INFINITY); pub const _neginf_nani: Complex64 = Complex::new(f64::NEG_INFINITY, f64::NAN); pub const _inf_nani: Complex64 = Complex::new(f64::INFINITY, f64::NAN); pub const _nan_0i: Complex64 = Complex::new(f64::NAN, 0.0); pub const _nan_1i: Complex64 = Complex::new(f64::NAN, 1.0); pub const _nan_neg1i: Complex64 = Complex::new(f64::NAN, -1.0); pub const _nan_nani: Complex64 = Complex::new(f64::NAN, f64::NAN); #[test] fn test_consts() { // check our constants are what Complex::new creates fn test(c: Complex64, r: f64, i: f64) { assert_eq!(c, Complex::new(r, i)); } test(_0_0i, 0.0, 0.0); test(_1_0i, 1.0, 0.0); test(_1_1i, 1.0, 1.0); test(_neg1_1i, -1.0, 1.0); test(_05_05i, 0.5, 0.5); assert_eq!(_0_0i, Zero::zero()); assert_eq!(_1_0i, One::one()); } #[test] fn test_scale_unscale() { assert_eq!(_05_05i.scale(2.0), _1_1i); assert_eq!(_1_1i.unscale(2.0), _05_05i); for &c in all_consts.iter() { assert_eq!(c.scale(2.0).unscale(2.0), c); } } #[test] fn test_conj() { for &c in all_consts.iter() { assert_eq!(c.conj(), Complex::new(c.re, -c.im)); assert_eq!(c.conj().conj(), c); } } #[test] fn test_inv() { assert_eq!(_1_1i.inv(), _05_05i.conj()); assert_eq!(_1_0i.inv(), _1_0i.inv()); } #[test] #[should_panic] fn test_divide_by_zero_natural() { let n = Complex::new(2, 3); let d = Complex::new(0, 0); let _x = n / d; } #[test] fn test_inv_zero() { // FIXME #20: should this really fail, or just NaN? assert!(_0_0i.inv().is_nan()); } #[test] #[allow(clippy::float_cmp)] fn test_l1_norm() { assert_eq!(_0_0i.l1_norm(), 0.0); assert_eq!(_1_0i.l1_norm(), 1.0); assert_eq!(_1_1i.l1_norm(), 2.0); assert_eq!(_0_1i.l1_norm(), 1.0); assert_eq!(_neg1_1i.l1_norm(), 2.0); assert_eq!(_05_05i.l1_norm(), 1.0); assert_eq!(_4_2i.l1_norm(), 6.0); } #[test] fn test_pow() { for c in all_consts.iter() { assert_eq!(c.powi(0), _1_0i); let mut pos = _1_0i; let mut neg = _1_0i; for i in 1i32..20 { pos *= c; assert_eq!(pos, c.powi(i)); if c.is_zero() { assert!(c.powi(-i).is_nan()); } else { neg /= c; assert_eq!(neg, c.powi(-i)); } } } } #[cfg(any(feature = "std", feature = "libm"))] pub(crate) mod float { use core::f64::INFINITY; use super::*; use num_traits::{Float, Pow}; #[test] fn test_cis() { assert!(close(Complex::cis(0.0 * f64::consts::PI), _1_0i)); assert!(close(Complex::cis(0.5 * f64::consts::PI), _0_1i)); assert!(close(Complex::cis(1.0 * f64::consts::PI), -_1_0i)); assert!(close(Complex::cis(1.5 * f64::consts::PI), -_0_1i)); assert!(close(Complex::cis(2.0 * f64::consts::PI), _1_0i)); } #[test] #[cfg_attr(target_arch = "x86", ignore)] // FIXME #7158: (maybe?) currently failing on x86. #[allow(clippy::float_cmp)] fn test_norm() { fn test(c: Complex64, ns: f64) { assert_eq!(c.norm_sqr(), ns); assert_eq!(c.norm(), ns.sqrt()) } test(_0_0i, 0.0); test(_1_0i, 1.0); test(_1_1i, 2.0); test(_neg1_1i, 2.0); test(_05_05i, 0.5); } #[test] fn test_arg() { fn test(c: Complex64, arg: f64) { assert!((c.arg() - arg).abs() < 1.0e-6) } test(_1_0i, 0.0); test(_1_1i, 0.25 * f64::consts::PI); test(_neg1_1i, 0.75 * f64::consts::PI); test(_05_05i, 0.25 * f64::consts::PI); } #[test] fn test_polar_conv() { fn test(c: Complex64) { let (r, theta) = c.to_polar(); assert!((c - Complex::from_polar(r, theta)).norm() < 1e-6); } for &c in all_consts.iter() { test(c); } } pub(crate) fn close(a: Complex64, b: Complex64) -> bool { close_to_tol(a, b, 1e-10) } fn close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool { // returns true if a and b are reasonably close let close = (a == b) || (a - b).norm() < tol; if !close { println!("{:?} != {:?}", a, b); } close } // Version that also works if re or im are +inf, -inf, or nan fn close_naninf(a: Complex64, b: Complex64) -> bool { close_naninf_to_tol(a, b, 1.0e-10) } fn close_naninf_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool { let mut close = true; // Compare the real parts if a.re.is_finite() { if b.re.is_finite() { close = (a.re == b.re) || (a.re - b.re).abs() < tol; } else { close = false; } } else if (a.re.is_nan() && !b.re.is_nan()) || (a.re.is_infinite() && a.re.is_sign_positive() && !(b.re.is_infinite() && b.re.is_sign_positive())) || (a.re.is_infinite() && a.re.is_sign_negative() && !(b.re.is_infinite() && b.re.is_sign_negative())) { close = false; } // Compare the imaginary parts if a.im.is_finite() { if b.im.is_finite() { close &= (a.im == b.im) || (a.im - b.im).abs() < tol; } else { close = false; } } else if (a.im.is_nan() && !b.im.is_nan()) || (a.im.is_infinite() && a.im.is_sign_positive() && !(b.im.is_infinite() && b.im.is_sign_positive())) || (a.im.is_infinite() && a.im.is_sign_negative() && !(b.im.is_infinite() && b.im.is_sign_negative())) { close = false; } if close == false { println!("{:?} != {:?}", a, b); } close } #[test] fn test_exp2() { assert!(close(_0_0i.exp2(), _1_0i)); } #[test] fn test_exp() { assert!(close(_1_0i.exp(), _1_0i.scale(f64::consts::E))); assert!(close(_0_0i.exp(), _1_0i)); assert!(close(_0_1i.exp(), Complex::new(1.0.cos(), 1.0.sin()))); assert!(close(_05_05i.exp() * _05_05i.exp(), _1_1i.exp())); assert!(close( _0_1i.scale(-f64::consts::PI).exp(), _1_0i.scale(-1.0) )); for &c in all_consts.iter() { // e^conj(z) = conj(e^z) assert!(close(c.conj().exp(), c.exp().conj())); // e^(z + 2 pi i) = e^z assert!(close( c.exp(), (c + _0_1i.scale(f64::consts::PI * 2.0)).exp() )); } // The test values below were taken from https://en.cppreference.com/w/cpp/numeric/complex/exp assert!(close_naninf(_1_infi.exp(), _nan_nani)); assert!(close_naninf(_neg1_infi.exp(), _nan_nani)); assert!(close_naninf(_1_nani.exp(), _nan_nani)); assert!(close_naninf(_neg1_nani.exp(), _nan_nani)); assert!(close_naninf(_inf_0i.exp(), _inf_0i)); assert!(close_naninf(_neginf_1i.exp(), 0.0 * Complex::cis(1.0))); assert!(close_naninf(_neginf_neg1i.exp(), 0.0 * Complex::cis(-1.0))); assert!(close_naninf( _inf_1i.exp(), f64::INFINITY * Complex::cis(1.0) )); assert!(close_naninf( _inf_neg1i.exp(), f64::INFINITY * Complex::cis(-1.0) )); assert!(close_naninf(_neginf_infi.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified assert!(close_naninf(_inf_infi.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified assert!(close_naninf(_neginf_nani.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified assert!(close_naninf(_inf_nani.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified assert!(close_naninf(_nan_0i.exp(), _nan_0i)); assert!(close_naninf(_nan_1i.exp(), _nan_nani)); assert!(close_naninf(_nan_neg1i.exp(), _nan_nani)); assert!(close_naninf(_nan_nani.exp(), _nan_nani)); } #[test] fn test_ln() { assert!(close(_1_0i.ln(), _0_0i)); assert!(close(_0_1i.ln(), _0_1i.scale(f64::consts::PI / 2.0))); assert!(close(_0_0i.ln(), Complex::new(f64::neg_infinity(), 0.0))); assert!(close( (_neg1_1i * _05_05i).ln(), _neg1_1i.ln() + _05_05i.ln() )); for &c in all_consts.iter() { // ln(conj(z() = conj(ln(z)) assert!(close(c.conj().ln(), c.ln().conj())); // for this branch, -pi <= arg(ln(z)) <= pi assert!(-f64::consts::PI <= c.ln().arg() && c.ln().arg() <= f64::consts::PI); } } #[test] fn test_powc() { let a = Complex::new(2.0, -3.0); let b = Complex::new(3.0, 0.0); assert!(close(a.powc(b), a.powf(b.re))); assert!(close(b.powc(a), a.expf(b.re))); let c = Complex::new(1.0 / 3.0, 0.1); assert!(close_to_tol( a.powc(c), Complex::new(1.65826, -0.33502), 1e-5 )); let z = Complex::new(0.0, 0.0); assert!(close(z.powc(b), z)); assert!(z.powc(Complex64::new(0., INFINITY)).is_nan()); assert!(z.powc(Complex64::new(10., INFINITY)).is_nan()); assert!(z.powc(Complex64::new(INFINITY, INFINITY)).is_nan()); assert!(close(z.powc(Complex64::new(INFINITY, 0.)), z)); assert!(z.powc(Complex64::new(-1., 0.)).re.is_infinite()); assert!(z.powc(Complex64::new(-1., 0.)).im.is_nan()); for c in all_consts.iter() { assert_eq!(c.powc(_0_0i), _1_0i); } assert_eq!(_nan_nani.powc(_0_0i), _1_0i); } #[test] fn test_powf() { let c = Complex64::new(2.0, -1.0); let expected = Complex64::new(-0.8684746, -16.695934); assert!(close_to_tol(c.powf(3.5), expected, 1e-5)); assert!(close_to_tol(Pow::pow(c, 3.5_f64), expected, 1e-5)); assert!(close_to_tol(Pow::pow(c, 3.5_f32), expected, 1e-5)); for c in all_consts.iter() { assert_eq!(c.powf(0.0), _1_0i); } assert_eq!(_nan_nani.powf(0.0), _1_0i); } #[test] fn test_log() { let c = Complex::new(2.0, -1.0); let r = c.log(10.0); assert!(close_to_tol(r, Complex::new(0.349485, -0.20135958), 1e-5)); } #[test] fn test_log2() { assert!(close(_1_0i.log2(), _0_0i)); } #[test] fn test_log10() { assert!(close(_1_0i.log10(), _0_0i)); } #[test] fn test_some_expf_cases() { let c = Complex::new(2.0, -1.0); let r = c.expf(10.0); assert!(close_to_tol(r, Complex::new(-66.82015, -74.39803), 1e-5)); let c = Complex::new(5.0, -2.0); let r = c.expf(3.4); assert!(close_to_tol(r, Complex::new(-349.25, -290.63), 1e-2)); let c = Complex::new(-1.5, 2.0 / 3.0); let r = c.expf(1.0 / 3.0); assert!(close_to_tol(r, Complex::new(3.8637, -3.4745), 1e-2)); } #[test] fn test_sqrt() { assert!(close(_0_0i.sqrt(), _0_0i)); assert!(close(_1_0i.sqrt(), _1_0i)); assert!(close(Complex::new(-1.0, 0.0).sqrt(), _0_1i)); assert!(close(Complex::new(-1.0, -0.0).sqrt(), _0_1i.scale(-1.0))); assert!(close(_0_1i.sqrt(), _05_05i.scale(2.0.sqrt()))); for &c in all_consts.iter() { // sqrt(conj(z() = conj(sqrt(z)) assert!(close(c.conj().sqrt(), c.sqrt().conj())); // for this branch, -pi/2 <= arg(sqrt(z)) <= pi/2 assert!( -f64::consts::FRAC_PI_2 <= c.sqrt().arg() && c.sqrt().arg() <= f64::consts::FRAC_PI_2 ); // sqrt(z) * sqrt(z) = z assert!(close(c.sqrt() * c.sqrt(), c)); } } #[test] fn test_sqrt_real() { for n in (0..100).map(f64::from) { // √(n² + 0i) = n + 0i let n2 = n * n; assert_eq!(Complex64::new(n2, 0.0).sqrt(), Complex64::new(n, 0.0)); // √(-n² + 0i) = 0 + ni assert_eq!(Complex64::new(-n2, 0.0).sqrt(), Complex64::new(0.0, n)); // √(-n² - 0i) = 0 - ni assert_eq!(Complex64::new(-n2, -0.0).sqrt(), Complex64::new(0.0, -n)); } } #[test] fn test_sqrt_imag() { for n in (0..100).map(f64::from) { // √(0 + n²i) = n e^(iπ/4) let n2 = n * n; assert!(close( Complex64::new(0.0, n2).sqrt(), Complex64::from_polar(n, f64::consts::FRAC_PI_4) )); // √(0 - n²i) = n e^(-iπ/4) assert!(close( Complex64::new(0.0, -n2).sqrt(), Complex64::from_polar(n, -f64::consts::FRAC_PI_4) )); } } #[test] fn test_cbrt() { assert!(close(_0_0i.cbrt(), _0_0i)); assert!(close(_1_0i.cbrt(), _1_0i)); assert!(close( Complex::new(-1.0, 0.0).cbrt(), Complex::new(0.5, 0.75.sqrt()) )); assert!(close( Complex::new(-1.0, -0.0).cbrt(), Complex::new(0.5, -(0.75.sqrt())) )); assert!(close(_0_1i.cbrt(), Complex::new(0.75.sqrt(), 0.5))); assert!(close(_0_1i.conj().cbrt(), Complex::new(0.75.sqrt(), -0.5))); for &c in all_consts.iter() { // cbrt(conj(z() = conj(cbrt(z)) assert!(close(c.conj().cbrt(), c.cbrt().conj())); // for this branch, -pi/3 <= arg(cbrt(z)) <= pi/3 assert!( -f64::consts::FRAC_PI_3 <= c.cbrt().arg() && c.cbrt().arg() <= f64::consts::FRAC_PI_3 ); // cbrt(z) * cbrt(z) cbrt(z) = z assert!(close(c.cbrt() * c.cbrt() * c.cbrt(), c)); } } #[test] fn test_cbrt_real() { for n in (0..100).map(f64::from) { // ∛(n³ + 0i) = n + 0i let n3 = n * n * n; assert!(close( Complex64::new(n3, 0.0).cbrt(), Complex64::new(n, 0.0) )); // ∛(-n³ + 0i) = n e^(iπ/3) assert!(close( Complex64::new(-n3, 0.0).cbrt(), Complex64::from_polar(n, f64::consts::FRAC_PI_3) )); // ∛(-n³ - 0i) = n e^(-iπ/3) assert!(close( Complex64::new(-n3, -0.0).cbrt(), Complex64::from_polar(n, -f64::consts::FRAC_PI_3) )); } } #[test] fn test_cbrt_imag() { for n in (0..100).map(f64::from) { // ∛(0 + n³i) = n e^(iπ/6) let n3 = n * n * n; assert!(close( Complex64::new(0.0, n3).cbrt(), Complex64::from_polar(n, f64::consts::FRAC_PI_6) )); // ∛(0 - n³i) = n e^(-iπ/6) assert!(close( Complex64::new(0.0, -n3).cbrt(), Complex64::from_polar(n, -f64::consts::FRAC_PI_6) )); } } #[test] fn test_sin() { assert!(close(_0_0i.sin(), _0_0i)); assert!(close(_1_0i.scale(f64::consts::PI * 2.0).sin(), _0_0i)); assert!(close(_0_1i.sin(), _0_1i.scale(1.0.sinh()))); for &c in all_consts.iter() { // sin(conj(z)) = conj(sin(z)) assert!(close(c.conj().sin(), c.sin().conj())); // sin(-z) = -sin(z) assert!(close(c.scale(-1.0).sin(), c.sin().scale(-1.0))); } } #[test] fn test_cos() { assert!(close(_0_0i.cos(), _1_0i)); assert!(close(_1_0i.scale(f64::consts::PI * 2.0).cos(), _1_0i)); assert!(close(_0_1i.cos(), _1_0i.scale(1.0.cosh()))); for &c in all_consts.iter() { // cos(conj(z)) = conj(cos(z)) assert!(close(c.conj().cos(), c.cos().conj())); // cos(-z) = cos(z) assert!(close(c.scale(-1.0).cos(), c.cos())); } } #[test] fn test_tan() { assert!(close(_0_0i.tan(), _0_0i)); assert!(close(_1_0i.scale(f64::consts::PI / 4.0).tan(), _1_0i)); assert!(close(_1_0i.scale(f64::consts::PI).tan(), _0_0i)); for &c in all_consts.iter() { // tan(conj(z)) = conj(tan(z)) assert!(close(c.conj().tan(), c.tan().conj())); // tan(-z) = -tan(z) assert!(close(c.scale(-1.0).tan(), c.tan().scale(-1.0))); } } #[test] fn test_asin() { assert!(close(_0_0i.asin(), _0_0i)); assert!(close(_1_0i.asin(), _1_0i.scale(f64::consts::PI / 2.0))); assert!(close( _1_0i.scale(-1.0).asin(), _1_0i.scale(-f64::consts::PI / 2.0) )); assert!(close(_0_1i.asin(), _0_1i.scale((1.0 + 2.0.sqrt()).ln()))); for &c in all_consts.iter() { // asin(conj(z)) = conj(asin(z)) assert!(close(c.conj().asin(), c.asin().conj())); // asin(-z) = -asin(z) assert!(close(c.scale(-1.0).asin(), c.asin().scale(-1.0))); // for this branch, -pi/2 <= asin(z).re <= pi/2 assert!( -f64::consts::PI / 2.0 <= c.asin().re && c.asin().re <= f64::consts::PI / 2.0 ); } } #[test] fn test_acos() { assert!(close(_0_0i.acos(), _1_0i.scale(f64::consts::PI / 2.0))); assert!(close(_1_0i.acos(), _0_0i)); assert!(close( _1_0i.scale(-1.0).acos(), _1_0i.scale(f64::consts::PI) )); assert!(close( _0_1i.acos(), Complex::new(f64::consts::PI / 2.0, (2.0.sqrt() - 1.0).ln()) )); for &c in all_consts.iter() { // acos(conj(z)) = conj(acos(z)) assert!(close(c.conj().acos(), c.acos().conj())); // for this branch, 0 <= acos(z).re <= pi assert!(0.0 <= c.acos().re && c.acos().re <= f64::consts::PI); } } #[test] fn test_atan() { assert!(close(_0_0i.atan(), _0_0i)); assert!(close(_1_0i.atan(), _1_0i.scale(f64::consts::PI / 4.0))); assert!(close( _1_0i.scale(-1.0).atan(), _1_0i.scale(-f64::consts::PI / 4.0) )); assert!(close(_0_1i.atan(), Complex::new(0.0, f64::infinity()))); for &c in all_consts.iter() { // atan(conj(z)) = conj(atan(z)) assert!(close(c.conj().atan(), c.atan().conj())); // atan(-z) = -atan(z) assert!(close(c.scale(-1.0).atan(), c.atan().scale(-1.0))); // for this branch, -pi/2 <= atan(z).re <= pi/2 assert!( -f64::consts::PI / 2.0 <= c.atan().re && c.atan().re <= f64::consts::PI / 2.0 ); } } #[test] fn test_sinh() { assert!(close(_0_0i.sinh(), _0_0i)); assert!(close( _1_0i.sinh(), _1_0i.scale((f64::consts::E - 1.0 / f64::consts::E) / 2.0) )); assert!(close(_0_1i.sinh(), _0_1i.scale(1.0.sin()))); for &c in all_consts.iter() { // sinh(conj(z)) = conj(sinh(z)) assert!(close(c.conj().sinh(), c.sinh().conj())); // sinh(-z) = -sinh(z) assert!(close(c.scale(-1.0).sinh(), c.sinh().scale(-1.0))); } } #[test] fn test_cosh() { assert!(close(_0_0i.cosh(), _1_0i)); assert!(close( _1_0i.cosh(), _1_0i.scale((f64::consts::E + 1.0 / f64::consts::E) / 2.0) )); assert!(close(_0_1i.cosh(), _1_0i.scale(1.0.cos()))); for &c in all_consts.iter() { // cosh(conj(z)) = conj(cosh(z)) assert!(close(c.conj().cosh(), c.cosh().conj())); // cosh(-z) = cosh(z) assert!(close(c.scale(-1.0).cosh(), c.cosh())); } } #[test] fn test_tanh() { assert!(close(_0_0i.tanh(), _0_0i)); assert!(close( _1_0i.tanh(), _1_0i.scale((f64::consts::E.powi(2) - 1.0) / (f64::consts::E.powi(2) + 1.0)) )); assert!(close(_0_1i.tanh(), _0_1i.scale(1.0.tan()))); for &c in all_consts.iter() { // tanh(conj(z)) = conj(tanh(z)) assert!(close(c.conj().tanh(), c.conj().tanh())); // tanh(-z) = -tanh(z) assert!(close(c.scale(-1.0).tanh(), c.tanh().scale(-1.0))); } } #[test] fn test_asinh() { assert!(close(_0_0i.asinh(), _0_0i)); assert!(close(_1_0i.asinh(), _1_0i.scale(1.0 + 2.0.sqrt()).ln())); assert!(close(_0_1i.asinh(), _0_1i.scale(f64::consts::PI / 2.0))); assert!(close( _0_1i.asinh().scale(-1.0), _0_1i.scale(-f64::consts::PI / 2.0) )); for &c in all_consts.iter() { // asinh(conj(z)) = conj(asinh(z)) assert!(close(c.conj().asinh(), c.conj().asinh())); // asinh(-z) = -asinh(z) assert!(close(c.scale(-1.0).asinh(), c.asinh().scale(-1.0))); // for this branch, -pi/2 <= asinh(z).im <= pi/2 assert!( -f64::consts::PI / 2.0 <= c.asinh().im && c.asinh().im <= f64::consts::PI / 2.0 ); } } #[test] fn test_acosh() { assert!(close(_0_0i.acosh(), _0_1i.scale(f64::consts::PI / 2.0))); assert!(close(_1_0i.acosh(), _0_0i)); assert!(close( _1_0i.scale(-1.0).acosh(), _0_1i.scale(f64::consts::PI) )); for &c in all_consts.iter() { // acosh(conj(z)) = conj(acosh(z)) assert!(close(c.conj().acosh(), c.conj().acosh())); // for this branch, -pi <= acosh(z).im <= pi and 0 <= acosh(z).re assert!( -f64::consts::PI <= c.acosh().im && c.acosh().im <= f64::consts::PI && 0.0 <= c.cosh().re ); } } #[test] fn test_atanh() { assert!(close(_0_0i.atanh(), _0_0i)); assert!(close(_0_1i.atanh(), _0_1i.scale(f64::consts::PI / 4.0))); assert!(close(_1_0i.atanh(), Complex::new(f64::infinity(), 0.0))); for &c in all_consts.iter() { // atanh(conj(z)) = conj(atanh(z)) assert!(close(c.conj().atanh(), c.conj().atanh())); // atanh(-z) = -atanh(z) assert!(close(c.scale(-1.0).atanh(), c.atanh().scale(-1.0))); // for this branch, -pi/2 <= atanh(z).im <= pi/2 assert!( -f64::consts::PI / 2.0 <= c.atanh().im && c.atanh().im <= f64::consts::PI / 2.0 ); } } #[test] fn test_exp_ln() { for &c in all_consts.iter() { // e^ln(z) = z assert!(close(c.ln().exp(), c)); } } #[test] fn test_exp2_log() { for &c in all_consts.iter() { // 2^log2(z) = z assert!(close(c.log2().exp2(), c)); } } #[test] fn test_trig_to_hyperbolic() { for &c in all_consts.iter() { // sin(iz) = i sinh(z) assert!(close((_0_1i * c).sin(), _0_1i * c.sinh())); // cos(iz) = cosh(z) assert!(close((_0_1i * c).cos(), c.cosh())); // tan(iz) = i tanh(z) assert!(close((_0_1i * c).tan(), _0_1i * c.tanh())); } } #[test] fn test_trig_identities() { for &c in all_consts.iter() { // tan(z) = sin(z)/cos(z) assert!(close(c.tan(), c.sin() / c.cos())); // sin(z)^2 + cos(z)^2 = 1 assert!(close(c.sin() * c.sin() + c.cos() * c.cos(), _1_0i)); // sin(asin(z)) = z assert!(close(c.asin().sin(), c)); // cos(acos(z)) = z assert!(close(c.acos().cos(), c)); // tan(atan(z)) = z // i and -i are branch points if c != _0_1i && c != _0_1i.scale(-1.0) { assert!(close(c.atan().tan(), c)); } // sin(z) = (e^(iz) - e^(-iz))/(2i) assert!(close( ((_0_1i * c).exp() - (_0_1i * c).exp().inv()) / _0_1i.scale(2.0), c.sin() )); // cos(z) = (e^(iz) + e^(-iz))/2 assert!(close( ((_0_1i * c).exp() + (_0_1i * c).exp().inv()).unscale(2.0), c.cos() )); // tan(z) = i (1 - e^(2iz))/(1 + e^(2iz)) assert!(close( _0_1i * (_1_0i - (_0_1i * c).scale(2.0).exp()) / (_1_0i + (_0_1i * c).scale(2.0).exp()), c.tan() )); } } #[test] fn test_hyperbolic_identites() { for &c in all_consts.iter() { // tanh(z) = sinh(z)/cosh(z) assert!(close(c.tanh(), c.sinh() / c.cosh())); // cosh(z)^2 - sinh(z)^2 = 1 assert!(close(c.cosh() * c.cosh() - c.sinh() * c.sinh(), _1_0i)); // sinh(asinh(z)) = z assert!(close(c.asinh().sinh(), c)); // cosh(acosh(z)) = z assert!(close(c.acosh().cosh(), c)); // tanh(atanh(z)) = z // 1 and -1 are branch points if c != _1_0i && c != _1_0i.scale(-1.0) { assert!(close(c.atanh().tanh(), c)); } // sinh(z) = (e^z - e^(-z))/2 assert!(close((c.exp() - c.exp().inv()).unscale(2.0), c.sinh())); // cosh(z) = (e^z + e^(-z))/2 assert!(close((c.exp() + c.exp().inv()).unscale(2.0), c.cosh())); // tanh(z) = ( e^(2z) - 1)/(e^(2z) + 1) assert!(close( (c.scale(2.0).exp() - _1_0i) / (c.scale(2.0).exp() + _1_0i), c.tanh() )); } } } // Test both a + b and a += b macro_rules! test_a_op_b { ($a:ident + $b:expr, $answer:expr) => { assert_eq!($a + $b, $answer); assert_eq!( { let mut x = $a; x += $b; x }, $answer ); }; ($a:ident - $b:expr, $answer:expr) => { assert_eq!($a - $b, $answer); assert_eq!( { let mut x = $a; x -= $b; x }, $answer ); }; ($a:ident * $b:expr, $answer:expr) => { assert_eq!($a * $b, $answer); assert_eq!( { let mut x = $a; x *= $b; x }, $answer ); }; ($a:ident / $b:expr, $answer:expr) => { assert_eq!($a / $b, $answer); assert_eq!( { let mut x = $a; x /= $b; x }, $answer ); }; ($a:ident % $b:expr, $answer:expr) => { assert_eq!($a % $b, $answer); assert_eq!( { let mut x = $a; x %= $b; x }, $answer ); }; } // Test both a + b and a + &b macro_rules! test_op { ($a:ident $op:tt $b:expr, $answer:expr) => { test_a_op_b!($a $op $b, $answer); test_a_op_b!($a $op &$b, $answer); }; } mod complex_arithmetic { use super::{_05_05i, _0_0i, _0_1i, _1_0i, _1_1i, _4_2i, _neg1_1i, all_consts}; use num_traits::{MulAdd, MulAddAssign, Zero}; #[test] fn test_add() { test_op!(_05_05i + _05_05i, _1_1i); test_op!(_0_1i + _1_0i, _1_1i); test_op!(_1_0i + _neg1_1i, _0_1i); for &c in all_consts.iter() { test_op!(_0_0i + c, c); test_op!(c + _0_0i, c); } } #[test] fn test_sub() { test_op!(_05_05i - _05_05i, _0_0i); test_op!(_0_1i - _1_0i, _neg1_1i); test_op!(_0_1i - _neg1_1i, _1_0i); for &c in all_consts.iter() { test_op!(c - _0_0i, c); test_op!(c - c, _0_0i); } } #[test] fn test_mul() { test_op!(_05_05i * _05_05i, _0_1i.unscale(2.0)); test_op!(_1_1i * _0_1i, _neg1_1i); // i^2 & i^4 test_op!(_0_1i * _0_1i, -_1_0i); assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i); for &c in all_consts.iter() { test_op!(c * _1_0i, c); test_op!(_1_0i * c, c); } } #[test] #[cfg(any(feature = "std", feature = "libm"))] fn test_mul_add_float() { assert_eq!(_05_05i.mul_add(_05_05i, _0_0i), _05_05i * _05_05i + _0_0i); assert_eq!(_05_05i * _05_05i + _0_0i, _05_05i.mul_add(_05_05i, _0_0i)); assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i); assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i); assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i)); let mut x = _1_0i; x.mul_add_assign(_1_0i, _1_0i); assert_eq!(x, _1_0i * _1_0i + _1_0i); for &a in &all_consts { for &b in &all_consts { for &c in &all_consts { let abc = a * b + c; assert_eq!(a.mul_add(b, c), abc); let mut x = a; x.mul_add_assign(b, c); assert_eq!(x, abc); } } } } #[test] fn test_mul_add() { use super::Complex; const _0_0i: Complex = Complex { re: 0, im: 0 }; const _1_0i: Complex = Complex { re: 1, im: 0 }; const _1_1i: Complex = Complex { re: 1, im: 1 }; const _0_1i: Complex = Complex { re: 0, im: 1 }; const _neg1_1i: Complex = Complex { re: -1, im: 1 }; const all_consts: [Complex; 5] = [_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i]; assert_eq!(_1_0i.mul_add(_1_0i, _0_0i), _1_0i * _1_0i + _0_0i); assert_eq!(_1_0i * _1_0i + _0_0i, _1_0i.mul_add(_1_0i, _0_0i)); assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i); assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i); assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i)); let mut x = _1_0i; x.mul_add_assign(_1_0i, _1_0i); assert_eq!(x, _1_0i * _1_0i + _1_0i); for &a in &all_consts { for &b in &all_consts { for &c in &all_consts { let abc = a * b + c; assert_eq!(a.mul_add(b, c), abc); let mut x = a; x.mul_add_assign(b, c); assert_eq!(x, abc); } } } } #[test] fn test_div() { test_op!(_neg1_1i / _0_1i, _1_1i); for &c in all_consts.iter() { if c != Zero::zero() { test_op!(c / c, _1_0i); } } } #[test] fn test_rem() { test_op!(_neg1_1i % _0_1i, _0_0i); test_op!(_4_2i % _0_1i, _0_0i); test_op!(_05_05i % _0_1i, _05_05i); test_op!(_05_05i % _1_1i, _05_05i); assert_eq!((_4_2i + _05_05i) % _0_1i, _05_05i); assert_eq!((_4_2i + _05_05i) % _1_1i, _05_05i); } #[test] fn test_neg() { assert_eq!(-_1_0i + _0_1i, _neg1_1i); assert_eq!((-_0_1i) * _0_1i, _1_0i); for &c in all_consts.iter() { assert_eq!(-(-c), c); } } } mod real_arithmetic { use super::super::Complex; use super::{_4_2i, _neg1_1i}; #[test] fn test_add() { test_op!(_4_2i + 0.5, Complex::new(4.5, 2.0)); assert_eq!(0.5 + _4_2i, Complex::new(4.5, 2.0)); } #[test] fn test_sub() { test_op!(_4_2i - 0.5, Complex::new(3.5, 2.0)); assert_eq!(0.5 - _4_2i, Complex::new(-3.5, -2.0)); } #[test] fn test_mul() { assert_eq!(_4_2i * 0.5, Complex::new(2.0, 1.0)); assert_eq!(0.5 * _4_2i, Complex::new(2.0, 1.0)); } #[test] fn test_div() { assert_eq!(_4_2i / 0.5, Complex::new(8.0, 4.0)); assert_eq!(0.5 / _4_2i, Complex::new(0.1, -0.05)); } #[test] fn test_rem() { assert_eq!(_4_2i % 2.0, Complex::new(0.0, 0.0)); assert_eq!(_4_2i % 3.0, Complex::new(1.0, 2.0)); assert_eq!(3.0 % _4_2i, Complex::new(3.0, 0.0)); assert_eq!(_neg1_1i % 2.0, _neg1_1i); assert_eq!(-_4_2i % 3.0, Complex::new(-1.0, -2.0)); } #[test] fn test_div_rem_gaussian() { // These would overflow with `norm_sqr` division. let max = Complex::new(255u8, 255u8); assert_eq!(max / 200, Complex::new(1, 1)); assert_eq!(max % 200, Complex::new(55, 55)); } } #[test] fn test_to_string() { fn test(c: Complex64, s: String) { assert_eq!(c.to_string(), s); } test(_0_0i, "0+0i".to_string()); test(_1_0i, "1+0i".to_string()); test(_0_1i, "0+1i".to_string()); test(_1_1i, "1+1i".to_string()); test(_neg1_1i, "-1+1i".to_string()); test(-_neg1_1i, "1-1i".to_string()); test(_05_05i, "0.5+0.5i".to_string()); } #[test] fn test_string_formatting() { let a = Complex::new(1.23456, 123.456); assert_eq!(format!("{}", a), "1.23456+123.456i"); assert_eq!(format!("{:.2}", a), "1.23+123.46i"); assert_eq!(format!("{:.2e}", a), "1.23e0+1.23e2i"); assert_eq!(format!("{:+.2E}", a), "+1.23E0+1.23E2i"); #[cfg(feature = "std")] assert_eq!(format!("{:+20.2E}", a), " +1.23E0+1.23E2i"); let b = Complex::new(0x80, 0xff); assert_eq!(format!("{:X}", b), "80+FFi"); assert_eq!(format!("{:#x}", b), "0x80+0xffi"); assert_eq!(format!("{:+#b}", b), "+0b10000000+0b11111111i"); assert_eq!(format!("{:+#o}", b), "+0o200+0o377i"); #[cfg(feature = "std")] assert_eq!(format!("{:+#16o}", b), " +0o200+0o377i"); let c = Complex::new(-10, -10000); assert_eq!(format!("{}", c), "-10-10000i"); #[cfg(feature = "std")] assert_eq!(format!("{:16}", c), " -10-10000i"); } #[test] fn test_hash() { let a = Complex::new(0i32, 0i32); let b = Complex::new(1i32, 0i32); let c = Complex::new(0i32, 1i32); assert!(crate::hash(&a) != crate::hash(&b)); assert!(crate::hash(&b) != crate::hash(&c)); assert!(crate::hash(&c) != crate::hash(&a)); } #[test] fn test_hashset() { use std::collections::HashSet; let a = Complex::new(0i32, 0i32); let b = Complex::new(1i32, 0i32); let c = Complex::new(0i32, 1i32); let set: HashSet<_> = [a, b, c].iter().cloned().collect(); assert!(set.contains(&a)); assert!(set.contains(&b)); assert!(set.contains(&c)); assert!(!set.contains(&(a + b + c))); } #[test] fn test_is_nan() { assert!(!_1_1i.is_nan()); let a = Complex::new(f64::NAN, f64::NAN); assert!(a.is_nan()); } #[test] fn test_is_nan_special_cases() { let a = Complex::new(0f64, f64::NAN); let b = Complex::new(f64::NAN, 0f64); assert!(a.is_nan()); assert!(b.is_nan()); } #[test] fn test_is_infinite() { let a = Complex::new(2f64, f64::INFINITY); assert!(a.is_infinite()); } #[test] fn test_is_finite() { assert!(_1_1i.is_finite()) } #[test] fn test_is_normal() { let a = Complex::new(0f64, f64::NAN); let b = Complex::new(2f64, f64::INFINITY); assert!(!a.is_normal()); assert!(!b.is_normal()); assert!(_1_1i.is_normal()); } #[test] fn test_from_str() { fn test(z: Complex64, s: &str) { assert_eq!(FromStr::from_str(s), Ok(z)); } test(_0_0i, "0 + 0i"); test(_0_0i, "0+0j"); test(_0_0i, "0 - 0j"); test(_0_0i, "0-0i"); test(_0_0i, "0i + 0"); test(_0_0i, "0"); test(_0_0i, "-0"); test(_0_0i, "0i"); test(_0_0i, "0j"); test(_0_0i, "+0j"); test(_0_0i, "-0i"); test(_1_0i, "1 + 0i"); test(_1_0i, "1+0j"); test(_1_0i, "1 - 0j"); test(_1_0i, "+1-0i"); test(_1_0i, "-0j+1"); test(_1_0i, "1"); test(_1_1i, "1 + i"); test(_1_1i, "1+j"); test(_1_1i, "1 + 1j"); test(_1_1i, "1+1i"); test(_1_1i, "i + 1"); test(_1_1i, "1i+1"); test(_1_1i, "+j+1"); test(_0_1i, "0 + i"); test(_0_1i, "0+j"); test(_0_1i, "-0 + j"); test(_0_1i, "-0+i"); test(_0_1i, "0 + 1i"); test(_0_1i, "0+1j"); test(_0_1i, "-0 + 1j"); test(_0_1i, "-0+1i"); test(_0_1i, "j + 0"); test(_0_1i, "i"); test(_0_1i, "j"); test(_0_1i, "1j"); test(_neg1_1i, "-1 + i"); test(_neg1_1i, "-1+j"); test(_neg1_1i, "-1 + 1j"); test(_neg1_1i, "-1+1i"); test(_neg1_1i, "1i-1"); test(_neg1_1i, "j + -1"); test(_05_05i, "0.5 + 0.5i"); test(_05_05i, "0.5+0.5j"); test(_05_05i, "5e-1+0.5j"); test(_05_05i, "5E-1 + 0.5j"); test(_05_05i, "5E-1i + 0.5"); test(_05_05i, "0.05e+1j + 50E-2"); } #[test] fn test_from_str_radix() { fn test(z: Complex64, s: &str, radix: u32) { let res: Result::FromStrRadixErr> = Num::from_str_radix(s, radix); assert_eq!(res.unwrap(), z) } test(_4_2i, "4+2i", 10); test(Complex::new(15.0, 32.0), "F+20i", 16); test(Complex::new(15.0, 32.0), "1111+100000i", 2); test(Complex::new(-15.0, -32.0), "-F-20i", 16); test(Complex::new(-15.0, -32.0), "-1111-100000i", 2); fn test_error(s: &str, radix: u32) -> ParseComplexError<::FromStrRadixErr> { let res = Complex64::from_str_radix(s, radix); res.expect_err(&format!("Expected failure on input {:?}", s)) } let err = test_error("1ii", 19); if let ComplexErrorKind::UnsupportedRadix = err.kind { /* pass */ } else { panic!("Expected failure on invalid radix, got {:?}", err); } let err = test_error("1 + 0", 16); if let ComplexErrorKind::ExprError = err.kind { /* pass */ } else { panic!("Expected failure on expr error, got {:?}", err); } } #[test] #[should_panic(expected = "radix is too high")] fn test_from_str_radix_fail() { // ensure we preserve the underlying panic on radix > 36 let _complex = Complex64::from_str_radix("1", 37); } #[test] fn test_from_str_fail() { fn test(s: &str) { let complex: Result = FromStr::from_str(s); assert!( complex.is_err(), "complex {:?} -> {:?} should be an error", s, complex ); } test("foo"); test("6E"); test("0 + 2.718"); test("1 - -2i"); test("314e-2ij"); test("4.3j - i"); test("1i - 2i"); test("+ 1 - 3.0i"); } #[test] fn test_sum() { let v = vec![_0_1i, _1_0i]; assert_eq!(v.iter().sum::(), _1_1i); assert_eq!(v.into_iter().sum::(), _1_1i); } #[test] fn test_prod() { let v = vec![_0_1i, _1_0i]; assert_eq!(v.iter().product::(), _0_1i); assert_eq!(v.into_iter().product::(), _0_1i); } #[test] fn test_zero() { let zero = Complex64::zero(); assert!(zero.is_zero()); let mut c = Complex::new(1.23, 4.56); assert!(!c.is_zero()); assert_eq!(c + zero, c); c.set_zero(); assert!(c.is_zero()); } #[test] fn test_one() { let one = Complex64::one(); assert!(one.is_one()); let mut c = Complex::new(1.23, 4.56); assert!(!c.is_one()); assert_eq!(c * one, c); c.set_one(); assert!(c.is_one()); } #[test] #[allow(clippy::float_cmp)] fn test_const() { const R: f64 = 12.3; const I: f64 = -4.5; const C: Complex64 = Complex::new(R, I); assert_eq!(C.re, 12.3); assert_eq!(C.im, -4.5); } } num-complex-0.4.6/src/pow.rs000064400000000000000000000116201046102023000140410ustar 00000000000000use super::Complex; use core::ops::Neg; #[cfg(any(feature = "std", feature = "libm"))] use num_traits::Float; use num_traits::{Num, One, Pow}; macro_rules! pow_impl { ($U:ty, $S:ty) => { impl<'a, T: Clone + Num> Pow<$U> for &'a Complex { type Output = Complex; #[inline] fn pow(self, mut exp: $U) -> Self::Output { if exp == 0 { return Complex::one(); } let mut base = self.clone(); while exp & 1 == 0 { base = base.clone() * base; exp >>= 1; } if exp == 1 { return base; } let mut acc = base.clone(); while exp > 1 { exp >>= 1; base = base.clone() * base; if exp & 1 == 1 { acc = acc * base.clone(); } } acc } } impl<'a, 'b, T: Clone + Num> Pow<&'b $U> for &'a Complex { type Output = Complex; #[inline] fn pow(self, exp: &$U) -> Self::Output { self.pow(*exp) } } impl<'a, T: Clone + Num + Neg> Pow<$S> for &'a Complex { type Output = Complex; #[inline] fn pow(self, exp: $S) -> Self::Output { if exp < 0 { Pow::pow(&self.inv(), exp.wrapping_neg() as $U) } else { Pow::pow(self, exp as $U) } } } impl<'a, 'b, T: Clone + Num + Neg> Pow<&'b $S> for &'a Complex { type Output = Complex; #[inline] fn pow(self, exp: &$S) -> Self::Output { self.pow(*exp) } } }; } pow_impl!(u8, i8); pow_impl!(u16, i16); pow_impl!(u32, i32); pow_impl!(u64, i64); pow_impl!(usize, isize); pow_impl!(u128, i128); // Note: we can't add `impl Pow for Complex` because new blanket impls are a // breaking change. Someone could already have their own `F` and `impl Pow for Complex` // which would conflict. We can't even do this in a new semantic version, because we have to // gate it on the "std" feature, and features can't add breaking changes either. macro_rules! powf_impl { ($F:ty) => { #[cfg(any(feature = "std", feature = "libm"))] impl<'a, T: Float> Pow<$F> for &'a Complex where $F: Into, { type Output = Complex; #[inline] fn pow(self, exp: $F) -> Self::Output { self.powf(exp.into()) } } #[cfg(any(feature = "std", feature = "libm"))] impl<'a, 'b, T: Float> Pow<&'b $F> for &'a Complex where $F: Into, { type Output = Complex; #[inline] fn pow(self, &exp: &$F) -> Self::Output { self.powf(exp.into()) } } #[cfg(any(feature = "std", feature = "libm"))] impl Pow<$F> for Complex where $F: Into, { type Output = Complex; #[inline] fn pow(self, exp: $F) -> Self::Output { self.powf(exp.into()) } } #[cfg(any(feature = "std", feature = "libm"))] impl<'b, T: Float> Pow<&'b $F> for Complex where $F: Into, { type Output = Complex; #[inline] fn pow(self, &exp: &$F) -> Self::Output { self.powf(exp.into()) } } }; } powf_impl!(f32); powf_impl!(f64); // These blanket impls are OK, because both the target type and the trait parameter would be // foreign to anyone else trying to implement something that would overlap, raising E0117. #[cfg(any(feature = "std", feature = "libm"))] impl<'a, T: Float> Pow> for &'a Complex { type Output = Complex; #[inline] fn pow(self, exp: Complex) -> Self::Output { self.powc(exp) } } #[cfg(any(feature = "std", feature = "libm"))] impl<'a, 'b, T: Float> Pow<&'b Complex> for &'a Complex { type Output = Complex; #[inline] fn pow(self, &exp: &'b Complex) -> Self::Output { self.powc(exp) } } #[cfg(any(feature = "std", feature = "libm"))] impl Pow> for Complex { type Output = Complex; #[inline] fn pow(self, exp: Complex) -> Self::Output { self.powc(exp) } } #[cfg(any(feature = "std", feature = "libm"))] impl<'b, T: Float> Pow<&'b Complex> for Complex { type Output = Complex; #[inline] fn pow(self, &exp: &'b Complex) -> Self::Output { self.powc(exp) } }